1 /*- 2 * Copyright (c) 2010 Luigi Rizzo, Riccardo Panicucci, Universita` di Pisa 3 * All rights reserved 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 /* 28 * Dummynet portions related to packet handling. 29 */ 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_inet6.h" 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/malloc.h> 38 #include <sys/mbuf.h> 39 #include <sys/kernel.h> 40 #include <sys/lock.h> 41 #include <sys/module.h> 42 #include <sys/priv.h> 43 #include <sys/proc.h> 44 #include <sys/rwlock.h> 45 #include <sys/socket.h> 46 #include <sys/time.h> 47 #include <sys/sysctl.h> 48 49 #include <net/if.h> /* IFNAMSIZ, struct ifaddr, ifq head, lock.h mutex.h */ 50 #include <net/netisr.h> 51 #include <net/vnet.h> 52 53 #include <netinet/in.h> 54 #include <netinet/ip.h> /* ip_len, ip_off */ 55 #include <netinet/ip_var.h> /* ip_output(), IP_FORWARDING */ 56 #include <netinet/ip_fw.h> 57 #include <netinet/ip_dummynet.h> 58 #include <netinet/if_ether.h> /* various ether_* routines */ 59 #include <netinet/ip6.h> /* for ip6_input, ip6_output prototypes */ 60 #include <netinet6/ip6_var.h> 61 62 #include <netpfil/ipfw/ip_fw_private.h> 63 #include <netpfil/ipfw/dn_heap.h> 64 #include <netpfil/ipfw/ip_dn_private.h> 65 #include <netpfil/ipfw/dn_sched.h> 66 67 /* 68 * We keep a private variable for the simulation time, but we could 69 * probably use an existing one ("softticks" in sys/kern/kern_timeout.c) 70 * instead of dn_cfg.curr_time 71 */ 72 73 struct dn_parms dn_cfg; 74 //VNET_DEFINE(struct dn_parms, _base_dn_cfg); 75 76 static long tick_last; /* Last tick duration (usec). */ 77 static long tick_delta; /* Last vs standard tick diff (usec). */ 78 static long tick_delta_sum; /* Accumulated tick difference (usec).*/ 79 static long tick_adjustment; /* Tick adjustments done. */ 80 static long tick_lost; /* Lost(coalesced) ticks number. */ 81 /* Adjusted vs non-adjusted curr_time difference (ticks). */ 82 static long tick_diff; 83 84 static unsigned long io_pkt; 85 static unsigned long io_pkt_fast; 86 static unsigned long io_pkt_drop; 87 88 /* 89 * We use a heap to store entities for which we have pending timer events. 90 * The heap is checked at every tick and all entities with expired events 91 * are extracted. 92 */ 93 94 MALLOC_DEFINE(M_DUMMYNET, "dummynet", "dummynet heap"); 95 96 extern void (*bridge_dn_p)(struct mbuf *, struct ifnet *); 97 98 #ifdef SYSCTL_NODE 99 100 /* 101 * Because of the way the SYSBEGIN/SYSEND macros work on other 102 * platforms, there should not be functions between them. 103 * So keep the handlers outside the block. 104 */ 105 static int 106 sysctl_hash_size(SYSCTL_HANDLER_ARGS) 107 { 108 int error, value; 109 110 value = dn_cfg.hash_size; 111 error = sysctl_handle_int(oidp, &value, 0, req); 112 if (error != 0 || req->newptr == NULL) 113 return (error); 114 if (value < 16 || value > 65536) 115 return (EINVAL); 116 dn_cfg.hash_size = value; 117 return (0); 118 } 119 120 static int 121 sysctl_limits(SYSCTL_HANDLER_ARGS) 122 { 123 int error; 124 long value; 125 126 if (arg2 != 0) 127 value = dn_cfg.slot_limit; 128 else 129 value = dn_cfg.byte_limit; 130 error = sysctl_handle_long(oidp, &value, 0, req); 131 132 if (error != 0 || req->newptr == NULL) 133 return (error); 134 if (arg2 != 0) { 135 if (value < 1) 136 return (EINVAL); 137 dn_cfg.slot_limit = value; 138 } else { 139 if (value < 1500) 140 return (EINVAL); 141 dn_cfg.byte_limit = value; 142 } 143 return (0); 144 } 145 146 SYSBEGIN(f4) 147 148 SYSCTL_DECL(_net_inet); 149 SYSCTL_DECL(_net_inet_ip); 150 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet, CTLFLAG_RW, 0, "Dummynet"); 151 152 /* wrapper to pass dn_cfg fields to SYSCTL_* */ 153 //#define DC(x) (&(VNET_NAME(_base_dn_cfg).x)) 154 #define DC(x) (&(dn_cfg.x)) 155 /* parameters */ 156 157 158 SYSCTL_PROC(_net_inet_ip_dummynet, OID_AUTO, hash_size, 159 CTLTYPE_INT | CTLFLAG_RW, 0, 0, sysctl_hash_size, 160 "I", "Default hash table size"); 161 162 163 SYSCTL_PROC(_net_inet_ip_dummynet, OID_AUTO, pipe_slot_limit, 164 CTLTYPE_LONG | CTLFLAG_RW, 0, 1, sysctl_limits, 165 "L", "Upper limit in slots for pipe queue."); 166 SYSCTL_PROC(_net_inet_ip_dummynet, OID_AUTO, pipe_byte_limit, 167 CTLTYPE_LONG | CTLFLAG_RW, 0, 0, sysctl_limits, 168 "L", "Upper limit in bytes for pipe queue."); 169 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, io_fast, 170 CTLFLAG_RW, DC(io_fast), 0, "Enable fast dummynet io."); 171 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, debug, 172 CTLFLAG_RW, DC(debug), 0, "Dummynet debug level"); 173 174 /* RED parameters */ 175 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_lookup_depth, 176 CTLFLAG_RD, DC(red_lookup_depth), 0, "Depth of RED lookup table"); 177 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_avg_pkt_size, 178 CTLFLAG_RD, DC(red_avg_pkt_size), 0, "RED Medium packet size"); 179 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_max_pkt_size, 180 CTLFLAG_RD, DC(red_max_pkt_size), 0, "RED Max packet size"); 181 182 /* time adjustment */ 183 SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_delta, 184 CTLFLAG_RD, &tick_delta, 0, "Last vs standard tick difference (usec)."); 185 SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_delta_sum, 186 CTLFLAG_RD, &tick_delta_sum, 0, "Accumulated tick difference (usec)."); 187 SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_adjustment, 188 CTLFLAG_RD, &tick_adjustment, 0, "Tick adjustments done."); 189 SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_diff, 190 CTLFLAG_RD, &tick_diff, 0, 191 "Adjusted vs non-adjusted curr_time difference (ticks)."); 192 SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_lost, 193 CTLFLAG_RD, &tick_lost, 0, 194 "Number of ticks coalesced by dummynet taskqueue."); 195 196 /* Drain parameters */ 197 SYSCTL_UINT(_net_inet_ip_dummynet, OID_AUTO, expire, 198 CTLFLAG_RW, DC(expire), 0, "Expire empty queues/pipes"); 199 SYSCTL_UINT(_net_inet_ip_dummynet, OID_AUTO, expire_cycle, 200 CTLFLAG_RD, DC(expire_cycle), 0, "Expire cycle for queues/pipes"); 201 202 /* statistics */ 203 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, schk_count, 204 CTLFLAG_RD, DC(schk_count), 0, "Number of schedulers"); 205 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, si_count, 206 CTLFLAG_RD, DC(si_count), 0, "Number of scheduler instances"); 207 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, fsk_count, 208 CTLFLAG_RD, DC(fsk_count), 0, "Number of flowsets"); 209 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, queue_count, 210 CTLFLAG_RD, DC(queue_count), 0, "Number of queues"); 211 SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt, 212 CTLFLAG_RD, &io_pkt, 0, 213 "Number of packets passed to dummynet."); 214 SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt_fast, 215 CTLFLAG_RD, &io_pkt_fast, 0, 216 "Number of packets bypassed dummynet scheduler."); 217 SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt_drop, 218 CTLFLAG_RD, &io_pkt_drop, 0, 219 "Number of packets dropped by dummynet."); 220 #undef DC 221 SYSEND 222 223 #endif 224 225 static void dummynet_send(struct mbuf *); 226 227 /* 228 * Packets processed by dummynet have an mbuf tag associated with 229 * them that carries their dummynet state. 230 * Outside dummynet, only the 'rule' field is relevant, and it must 231 * be at the beginning of the structure. 232 */ 233 struct dn_pkt_tag { 234 struct ipfw_rule_ref rule; /* matching rule */ 235 236 /* second part, dummynet specific */ 237 int dn_dir; /* action when packet comes out.*/ 238 /* see ip_fw_private.h */ 239 uint64_t output_time; /* when the pkt is due for delivery*/ 240 struct ifnet *ifp; /* interface, for ip_output */ 241 struct _ip6dn_args ip6opt; /* XXX ipv6 options */ 242 }; 243 244 /* 245 * Return the mbuf tag holding the dummynet state (it should 246 * be the first one on the list). 247 */ 248 static struct dn_pkt_tag * 249 dn_tag_get(struct mbuf *m) 250 { 251 struct m_tag *mtag = m_tag_first(m); 252 KASSERT(mtag != NULL && 253 mtag->m_tag_cookie == MTAG_ABI_COMPAT && 254 mtag->m_tag_id == PACKET_TAG_DUMMYNET, 255 ("packet on dummynet queue w/o dummynet tag!")); 256 return (struct dn_pkt_tag *)(mtag+1); 257 } 258 259 static inline void 260 mq_append(struct mq *q, struct mbuf *m) 261 { 262 if (q->head == NULL) 263 q->head = m; 264 else 265 q->tail->m_nextpkt = m; 266 q->tail = m; 267 m->m_nextpkt = NULL; 268 } 269 270 /* 271 * Dispose a list of packet. Use a functions so if we need to do 272 * more work, this is a central point to do it. 273 */ 274 void dn_free_pkts(struct mbuf *mnext) 275 { 276 struct mbuf *m; 277 278 while ((m = mnext) != NULL) { 279 mnext = m->m_nextpkt; 280 FREE_PKT(m); 281 } 282 } 283 284 static int 285 red_drops (struct dn_queue *q, int len) 286 { 287 /* 288 * RED algorithm 289 * 290 * RED calculates the average queue size (avg) using a low-pass filter 291 * with an exponential weighted (w_q) moving average: 292 * avg <- (1-w_q) * avg + w_q * q_size 293 * where q_size is the queue length (measured in bytes or * packets). 294 * 295 * If q_size == 0, we compute the idle time for the link, and set 296 * avg = (1 - w_q)^(idle/s) 297 * where s is the time needed for transmitting a medium-sized packet. 298 * 299 * Now, if avg < min_th the packet is enqueued. 300 * If avg > max_th the packet is dropped. Otherwise, the packet is 301 * dropped with probability P function of avg. 302 */ 303 304 struct dn_fsk *fs = q->fs; 305 int64_t p_b = 0; 306 307 /* Queue in bytes or packets? */ 308 uint32_t q_size = (fs->fs.flags & DN_QSIZE_BYTES) ? 309 q->ni.len_bytes : q->ni.length; 310 311 /* Average queue size estimation. */ 312 if (q_size != 0) { 313 /* Queue is not empty, avg <- avg + (q_size - avg) * w_q */ 314 int diff = SCALE(q_size) - q->avg; 315 int64_t v = SCALE_MUL((int64_t)diff, (int64_t)fs->w_q); 316 317 q->avg += (int)v; 318 } else { 319 /* 320 * Queue is empty, find for how long the queue has been 321 * empty and use a lookup table for computing 322 * (1 - * w_q)^(idle_time/s) where s is the time to send a 323 * (small) packet. 324 * XXX check wraps... 325 */ 326 if (q->avg) { 327 u_int t = div64((dn_cfg.curr_time - q->q_time), fs->lookup_step); 328 329 q->avg = (t < fs->lookup_depth) ? 330 SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0; 331 } 332 } 333 334 /* Should i drop? */ 335 if (q->avg < fs->min_th) { 336 q->count = -1; 337 return (0); /* accept packet */ 338 } 339 if (q->avg >= fs->max_th) { /* average queue >= max threshold */ 340 if (fs->fs.flags & DN_IS_GENTLE_RED) { 341 /* 342 * According to Gentle-RED, if avg is greater than 343 * max_th the packet is dropped with a probability 344 * p_b = c_3 * avg - c_4 345 * where c_3 = (1 - max_p) / max_th 346 * c_4 = 1 - 2 * max_p 347 */ 348 p_b = SCALE_MUL((int64_t)fs->c_3, (int64_t)q->avg) - 349 fs->c_4; 350 } else { 351 q->count = -1; 352 return (1); 353 } 354 } else if (q->avg > fs->min_th) { 355 /* 356 * We compute p_b using the linear dropping function 357 * p_b = c_1 * avg - c_2 358 * where c_1 = max_p / (max_th - min_th) 359 * c_2 = max_p * min_th / (max_th - min_th) 360 */ 361 p_b = SCALE_MUL((int64_t)fs->c_1, (int64_t)q->avg) - fs->c_2; 362 } 363 364 if (fs->fs.flags & DN_QSIZE_BYTES) 365 p_b = div64((p_b * len) , fs->max_pkt_size); 366 if (++q->count == 0) 367 q->random = random() & 0xffff; 368 else { 369 /* 370 * q->count counts packets arrived since last drop, so a greater 371 * value of q->count means a greater packet drop probability. 372 */ 373 if (SCALE_MUL(p_b, SCALE((int64_t)q->count)) > q->random) { 374 q->count = 0; 375 /* After a drop we calculate a new random value. */ 376 q->random = random() & 0xffff; 377 return (1); /* drop */ 378 } 379 } 380 /* End of RED algorithm. */ 381 382 return (0); /* accept */ 383 384 } 385 386 /* 387 * Enqueue a packet in q, subject to space and queue management policy 388 * (whose parameters are in q->fs). 389 * Update stats for the queue and the scheduler. 390 * Return 0 on success, 1 on drop. The packet is consumed anyways. 391 */ 392 int 393 dn_enqueue(struct dn_queue *q, struct mbuf* m, int drop) 394 { 395 struct dn_fs *f; 396 struct dn_flow *ni; /* stats for scheduler instance */ 397 uint64_t len; 398 399 if (q->fs == NULL || q->_si == NULL) { 400 printf("%s fs %p si %p, dropping\n", 401 __FUNCTION__, q->fs, q->_si); 402 FREE_PKT(m); 403 return 1; 404 } 405 f = &(q->fs->fs); 406 ni = &q->_si->ni; 407 len = m->m_pkthdr.len; 408 /* Update statistics, then check reasons to drop pkt. */ 409 q->ni.tot_bytes += len; 410 q->ni.tot_pkts++; 411 ni->tot_bytes += len; 412 ni->tot_pkts++; 413 if (drop) 414 goto drop; 415 if (f->plr && random() < f->plr) 416 goto drop; 417 if (f->flags & DN_IS_RED && red_drops(q, m->m_pkthdr.len)) 418 goto drop; 419 if (f->flags & DN_QSIZE_BYTES) { 420 if (q->ni.len_bytes > f->qsize) 421 goto drop; 422 } else if (q->ni.length >= f->qsize) { 423 goto drop; 424 } 425 mq_append(&q->mq, m); 426 q->ni.length++; 427 q->ni.len_bytes += len; 428 ni->length++; 429 ni->len_bytes += len; 430 return 0; 431 432 drop: 433 io_pkt_drop++; 434 q->ni.drops++; 435 ni->drops++; 436 FREE_PKT(m); 437 return 1; 438 } 439 440 /* 441 * Fetch packets from the delay line which are due now. If there are 442 * leftover packets, reinsert the delay line in the heap. 443 * Runs under scheduler lock. 444 */ 445 static void 446 transmit_event(struct mq *q, struct delay_line *dline, uint64_t now) 447 { 448 struct mbuf *m; 449 struct dn_pkt_tag *pkt = NULL; 450 451 dline->oid.subtype = 0; /* not in heap */ 452 while ((m = dline->mq.head) != NULL) { 453 pkt = dn_tag_get(m); 454 if (!DN_KEY_LEQ(pkt->output_time, now)) 455 break; 456 dline->mq.head = m->m_nextpkt; 457 mq_append(q, m); 458 } 459 if (m != NULL) { 460 dline->oid.subtype = 1; /* in heap */ 461 heap_insert(&dn_cfg.evheap, pkt->output_time, dline); 462 } 463 } 464 465 /* 466 * Convert the additional MAC overheads/delays into an equivalent 467 * number of bits for the given data rate. The samples are 468 * in milliseconds so we need to divide by 1000. 469 */ 470 static uint64_t 471 extra_bits(struct mbuf *m, struct dn_schk *s) 472 { 473 int index; 474 uint64_t bits; 475 struct dn_profile *pf = s->profile; 476 477 if (!pf || pf->samples_no == 0) 478 return 0; 479 index = random() % pf->samples_no; 480 bits = div64((uint64_t)pf->samples[index] * s->link.bandwidth, 1000); 481 if (index >= pf->loss_level) { 482 struct dn_pkt_tag *dt = dn_tag_get(m); 483 if (dt) 484 dt->dn_dir = DIR_DROP; 485 } 486 return bits; 487 } 488 489 /* 490 * Send traffic from a scheduler instance due by 'now'. 491 * Return a pointer to the head of the queue. 492 */ 493 static struct mbuf * 494 serve_sched(struct mq *q, struct dn_sch_inst *si, uint64_t now) 495 { 496 struct mq def_q; 497 struct dn_schk *s = si->sched; 498 struct mbuf *m = NULL; 499 int delay_line_idle = (si->dline.mq.head == NULL); 500 int done, bw; 501 502 if (q == NULL) { 503 q = &def_q; 504 q->head = NULL; 505 } 506 507 bw = s->link.bandwidth; 508 si->kflags &= ~DN_ACTIVE; 509 510 if (bw > 0) 511 si->credit += (now - si->sched_time) * bw; 512 else 513 si->credit = 0; 514 si->sched_time = now; 515 done = 0; 516 while (si->credit >= 0 && (m = s->fp->dequeue(si)) != NULL) { 517 uint64_t len_scaled; 518 519 done++; 520 len_scaled = (bw == 0) ? 0 : hz * 521 (m->m_pkthdr.len * 8 + extra_bits(m, s)); 522 si->credit -= len_scaled; 523 /* Move packet in the delay line */ 524 dn_tag_get(m)->output_time = dn_cfg.curr_time + s->link.delay ; 525 mq_append(&si->dline.mq, m); 526 } 527 528 /* 529 * If credit >= 0 the instance is idle, mark time. 530 * Otherwise put back in the heap, and adjust the output 531 * time of the last inserted packet, m, which was too early. 532 */ 533 if (si->credit >= 0) { 534 si->idle_time = now; 535 } else { 536 uint64_t t; 537 KASSERT (bw > 0, ("bw=0 and credit<0 ?")); 538 t = div64(bw - 1 - si->credit, bw); 539 if (m) 540 dn_tag_get(m)->output_time += t; 541 si->kflags |= DN_ACTIVE; 542 heap_insert(&dn_cfg.evheap, now + t, si); 543 } 544 if (delay_line_idle && done) 545 transmit_event(q, &si->dline, now); 546 return q->head; 547 } 548 549 /* 550 * The timer handler for dummynet. Time is computed in ticks, but 551 * but the code is tolerant to the actual rate at which this is called. 552 * Once complete, the function reschedules itself for the next tick. 553 */ 554 void 555 dummynet_task(void *context, int pending) 556 { 557 struct timeval t; 558 struct mq q = { NULL, NULL }; /* queue to accumulate results */ 559 560 CURVNET_SET((struct vnet *)context); 561 562 DN_BH_WLOCK(); 563 564 /* Update number of lost(coalesced) ticks. */ 565 tick_lost += pending - 1; 566 567 getmicrouptime(&t); 568 /* Last tick duration (usec). */ 569 tick_last = (t.tv_sec - dn_cfg.prev_t.tv_sec) * 1000000 + 570 (t.tv_usec - dn_cfg.prev_t.tv_usec); 571 /* Last tick vs standard tick difference (usec). */ 572 tick_delta = (tick_last * hz - 1000000) / hz; 573 /* Accumulated tick difference (usec). */ 574 tick_delta_sum += tick_delta; 575 576 dn_cfg.prev_t = t; 577 578 /* 579 * Adjust curr_time if the accumulated tick difference is 580 * greater than the 'standard' tick. Since curr_time should 581 * be monotonically increasing, we do positive adjustments 582 * as required, and throttle curr_time in case of negative 583 * adjustment. 584 */ 585 dn_cfg.curr_time++; 586 if (tick_delta_sum - tick >= 0) { 587 int diff = tick_delta_sum / tick; 588 589 dn_cfg.curr_time += diff; 590 tick_diff += diff; 591 tick_delta_sum %= tick; 592 tick_adjustment++; 593 } else if (tick_delta_sum + tick <= 0) { 594 dn_cfg.curr_time--; 595 tick_diff--; 596 tick_delta_sum += tick; 597 tick_adjustment++; 598 } 599 600 /* serve pending events, accumulate in q */ 601 for (;;) { 602 struct dn_id *p; /* generic parameter to handler */ 603 604 if (dn_cfg.evheap.elements == 0 || 605 DN_KEY_LT(dn_cfg.curr_time, HEAP_TOP(&dn_cfg.evheap)->key)) 606 break; 607 p = HEAP_TOP(&dn_cfg.evheap)->object; 608 heap_extract(&dn_cfg.evheap, NULL); 609 610 if (p->type == DN_SCH_I) { 611 serve_sched(&q, (struct dn_sch_inst *)p, dn_cfg.curr_time); 612 } else { /* extracted a delay line */ 613 transmit_event(&q, (struct delay_line *)p, dn_cfg.curr_time); 614 } 615 } 616 if (dn_cfg.expire && ++dn_cfg.expire_cycle >= dn_cfg.expire) { 617 dn_cfg.expire_cycle = 0; 618 dn_drain_scheduler(); 619 dn_drain_queue(); 620 } 621 622 DN_BH_WUNLOCK(); 623 dn_reschedule(); 624 if (q.head != NULL) 625 dummynet_send(q.head); 626 CURVNET_RESTORE(); 627 } 628 629 /* 630 * forward a chain of packets to the proper destination. 631 * This runs outside the dummynet lock. 632 */ 633 static void 634 dummynet_send(struct mbuf *m) 635 { 636 struct mbuf *n; 637 638 for (; m != NULL; m = n) { 639 struct ifnet *ifp = NULL; /* gcc 3.4.6 complains */ 640 struct m_tag *tag; 641 int dst; 642 643 n = m->m_nextpkt; 644 m->m_nextpkt = NULL; 645 tag = m_tag_first(m); 646 if (tag == NULL) { /* should not happen */ 647 dst = DIR_DROP; 648 } else { 649 struct dn_pkt_tag *pkt = dn_tag_get(m); 650 /* extract the dummynet info, rename the tag 651 * to carry reinject info. 652 */ 653 dst = pkt->dn_dir; 654 ifp = pkt->ifp; 655 tag->m_tag_cookie = MTAG_IPFW_RULE; 656 tag->m_tag_id = 0; 657 } 658 659 switch (dst) { 660 case DIR_OUT: 661 ip_output(m, NULL, NULL, IP_FORWARDING, NULL, NULL); 662 break ; 663 664 case DIR_IN : 665 netisr_dispatch(NETISR_IP, m); 666 break; 667 668 #ifdef INET6 669 case DIR_IN | PROTO_IPV6: 670 netisr_dispatch(NETISR_IPV6, m); 671 break; 672 673 case DIR_OUT | PROTO_IPV6: 674 ip6_output(m, NULL, NULL, IPV6_FORWARDING, NULL, NULL, NULL); 675 break; 676 #endif 677 678 case DIR_FWD | PROTO_IFB: /* DN_TO_IFB_FWD: */ 679 if (bridge_dn_p != NULL) 680 ((*bridge_dn_p)(m, ifp)); 681 else 682 printf("dummynet: if_bridge not loaded\n"); 683 684 break; 685 686 case DIR_IN | PROTO_LAYER2: /* DN_TO_ETH_DEMUX: */ 687 /* 688 * The Ethernet code assumes the Ethernet header is 689 * contiguous in the first mbuf header. 690 * Insure this is true. 691 */ 692 if (m->m_len < ETHER_HDR_LEN && 693 (m = m_pullup(m, ETHER_HDR_LEN)) == NULL) { 694 printf("dummynet/ether: pullup failed, " 695 "dropping packet\n"); 696 break; 697 } 698 ether_demux(m->m_pkthdr.rcvif, m); 699 break; 700 701 case DIR_OUT | PROTO_LAYER2: /* N_TO_ETH_OUT: */ 702 ether_output_frame(ifp, m); 703 break; 704 705 case DIR_DROP: 706 /* drop the packet after some time */ 707 FREE_PKT(m); 708 break; 709 710 default: 711 printf("dummynet: bad switch %d!\n", dst); 712 FREE_PKT(m); 713 break; 714 } 715 } 716 } 717 718 static inline int 719 tag_mbuf(struct mbuf *m, int dir, struct ip_fw_args *fwa) 720 { 721 struct dn_pkt_tag *dt; 722 struct m_tag *mtag; 723 724 mtag = m_tag_get(PACKET_TAG_DUMMYNET, 725 sizeof(*dt), M_NOWAIT | M_ZERO); 726 if (mtag == NULL) 727 return 1; /* Cannot allocate packet header. */ 728 m_tag_prepend(m, mtag); /* Attach to mbuf chain. */ 729 dt = (struct dn_pkt_tag *)(mtag + 1); 730 dt->rule = fwa->rule; 731 dt->rule.info &= IPFW_ONEPASS; /* only keep this info */ 732 dt->dn_dir = dir; 733 dt->ifp = fwa->oif; 734 /* dt->output tame is updated as we move through */ 735 dt->output_time = dn_cfg.curr_time; 736 return 0; 737 } 738 739 740 /* 741 * dummynet hook for packets. 742 * We use the argument to locate the flowset fs and the sched_set sch 743 * associated to it. The we apply flow_mask and sched_mask to 744 * determine the queue and scheduler instances. 745 * 746 * dir where shall we send the packet after dummynet. 747 * *m0 the mbuf with the packet 748 * ifp the 'ifp' parameter from the caller. 749 * NULL in ip_input, destination interface in ip_output, 750 */ 751 int 752 dummynet_io(struct mbuf **m0, int dir, struct ip_fw_args *fwa) 753 { 754 struct mbuf *m = *m0; 755 struct dn_fsk *fs = NULL; 756 struct dn_sch_inst *si; 757 struct dn_queue *q = NULL; /* default */ 758 759 int fs_id = (fwa->rule.info & IPFW_INFO_MASK) + 760 ((fwa->rule.info & IPFW_IS_PIPE) ? 2*DN_MAX_ID : 0); 761 DN_BH_WLOCK(); 762 io_pkt++; 763 /* we could actually tag outside the lock, but who cares... */ 764 if (tag_mbuf(m, dir, fwa)) 765 goto dropit; 766 if (dn_cfg.busy) { 767 /* if the upper half is busy doing something expensive, 768 * lets queue the packet and move forward 769 */ 770 mq_append(&dn_cfg.pending, m); 771 m = *m0 = NULL; /* consumed */ 772 goto done; /* already active, nothing to do */ 773 } 774 /* XXX locate_flowset could be optimised with a direct ref. */ 775 fs = dn_ht_find(dn_cfg.fshash, fs_id, 0, NULL); 776 if (fs == NULL) 777 goto dropit; /* This queue/pipe does not exist! */ 778 if (fs->sched == NULL) /* should not happen */ 779 goto dropit; 780 /* find scheduler instance, possibly applying sched_mask */ 781 si = ipdn_si_find(fs->sched, &(fwa->f_id)); 782 if (si == NULL) 783 goto dropit; 784 /* 785 * If the scheduler supports multiple queues, find the right one 786 * (otherwise it will be ignored by enqueue). 787 */ 788 if (fs->sched->fp->flags & DN_MULTIQUEUE) { 789 q = ipdn_q_find(fs, si, &(fwa->f_id)); 790 if (q == NULL) 791 goto dropit; 792 } 793 if (fs->sched->fp->enqueue(si, q, m)) { 794 /* packet was dropped by enqueue() */ 795 m = *m0 = NULL; 796 goto dropit; 797 } 798 799 if (si->kflags & DN_ACTIVE) { 800 m = *m0 = NULL; /* consumed */ 801 goto done; /* already active, nothing to do */ 802 } 803 804 /* compute the initial allowance */ 805 if (si->idle_time < dn_cfg.curr_time) { 806 /* Do this only on the first packet on an idle pipe */ 807 struct dn_link *p = &fs->sched->link; 808 809 si->sched_time = dn_cfg.curr_time; 810 si->credit = dn_cfg.io_fast ? p->bandwidth : 0; 811 if (p->burst) { 812 uint64_t burst = (dn_cfg.curr_time - si->idle_time) * p->bandwidth; 813 if (burst > p->burst) 814 burst = p->burst; 815 si->credit += burst; 816 } 817 } 818 /* pass through scheduler and delay line */ 819 m = serve_sched(NULL, si, dn_cfg.curr_time); 820 821 /* optimization -- pass it back to ipfw for immediate send */ 822 /* XXX Don't call dummynet_send() if scheduler return the packet 823 * just enqueued. This avoid a lock order reversal. 824 * 825 */ 826 if (/*dn_cfg.io_fast &&*/ m == *m0 && (dir & PROTO_LAYER2) == 0 ) { 827 /* fast io, rename the tag * to carry reinject info. */ 828 struct m_tag *tag = m_tag_first(m); 829 830 tag->m_tag_cookie = MTAG_IPFW_RULE; 831 tag->m_tag_id = 0; 832 io_pkt_fast++; 833 if (m->m_nextpkt != NULL) { 834 printf("dummynet: fast io: pkt chain detected!\n"); 835 m->m_nextpkt = NULL; 836 } 837 m = NULL; 838 } else { 839 *m0 = NULL; 840 } 841 done: 842 DN_BH_WUNLOCK(); 843 if (m) 844 dummynet_send(m); 845 return 0; 846 847 dropit: 848 io_pkt_drop++; 849 DN_BH_WUNLOCK(); 850 if (m) 851 FREE_PKT(m); 852 *m0 = NULL; 853 return (fs && (fs->fs.flags & DN_NOERROR)) ? 0 : ENOBUFS; 854 } 855