xref: /freebsd/sys/netpfil/ipfw/dn_sched_wf2q.c (revision 40a8ac8f62b535d30349faf28cf47106b7041b83)
1 /*
2  * Copyright (c) 2010 Riccardo Panicucci, Universita` di Pisa
3  * Copyright (c) 2000-2002 Luigi Rizzo, Universita` di Pisa
4  * All rights reserved
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /*
29  * $FreeBSD$
30  */
31 
32 #ifdef _KERNEL
33 #include <sys/malloc.h>
34 #include <sys/socket.h>
35 #include <sys/socketvar.h>
36 #include <sys/kernel.h>
37 #include <sys/mbuf.h>
38 #include <sys/module.h>
39 #include <net/if.h>	/* IFNAMSIZ */
40 #include <netinet/in.h>
41 #include <netinet/ip_var.h>		/* ipfw_rule_ref */
42 #include <netinet/ip_fw.h>	/* flow_id */
43 #include <netinet/ip_dummynet.h>
44 #include <netpfil/ipfw/dn_heap.h>
45 #include <netpfil/ipfw/ip_dn_private.h>
46 #include <netpfil/ipfw/dn_sched.h>
47 #else
48 #include <dn_test.h>
49 #endif
50 
51 #ifndef MAX64
52 #define MAX64(x,y)  (( (int64_t) ( (y)-(x) )) > 0 ) ? (y) : (x)
53 #endif
54 
55 /*
56  * timestamps are computed on 64 bit using fixed point arithmetic.
57  * LMAX_BITS, WMAX_BITS are the max number of bits for the packet len
58  * and sum of weights, respectively. FRAC_BITS is the number of
59  * fractional bits. We want FRAC_BITS >> WMAX_BITS to avoid too large
60  * errors when computing the inverse, FRAC_BITS < 32 so we can do 1/w
61  * using an unsigned 32-bit division, and to avoid wraparounds we need
62  * LMAX_BITS + WMAX_BITS + FRAC_BITS << 64
63  * As an example
64  * FRAC_BITS = 26, LMAX_BITS=14, WMAX_BITS = 19
65  */
66 #ifndef FRAC_BITS
67 #define FRAC_BITS    28 /* shift for fixed point arithmetic */
68 #define	ONE_FP	(1UL << FRAC_BITS)
69 #endif
70 
71 /*
72  * Private information for the scheduler instance:
73  * sch_heap (key is Finish time) returns the next queue to serve
74  * ne_heap (key is Start time) stores not-eligible queues
75  * idle_heap (key=start/finish time) stores idle flows. It must
76  *	support extract-from-middle.
77  * A flow is only in 1 of the three heaps.
78  * XXX todo: use a more efficient data structure, e.g. a tree sorted
79  * by F with min_subtree(S) in each node
80  */
81 struct wf2qp_si {
82     struct dn_heap sch_heap;	/* top extract - key Finish  time */
83     struct dn_heap ne_heap;	/* top extract - key Start   time */
84     struct dn_heap idle_heap;	/* random extract - key Start=Finish time */
85     uint64_t V;			/* virtual time */
86     uint32_t inv_wsum;		/* inverse of sum of weights */
87     uint32_t wsum;		/* sum of weights */
88 };
89 
90 struct wf2qp_queue {
91     struct dn_queue _q;
92     uint64_t S, F;		/* start time, finish time */
93     uint32_t inv_w;		/* ONE_FP / weight */
94     int32_t heap_pos;		/* position (index) of struct in heap */
95 };
96 
97 /*
98  * This file implements a WF2Q+ scheduler as it has been in dummynet
99  * since 2000.
100  * The scheduler supports per-flow queues and has O(log N) complexity.
101  *
102  * WF2Q+ needs to drain entries from the idle heap so that we
103  * can keep the sum of weights up to date. We can do it whenever
104  * we get a chance, or periodically, or following some other
105  * strategy. The function idle_check() drains at most N elements
106  * from the idle heap.
107  */
108 static void
109 idle_check(struct wf2qp_si *si, int n, int force)
110 {
111     struct dn_heap *h = &si->idle_heap;
112     while (n-- > 0 && h->elements > 0 &&
113 		(force || DN_KEY_LT(HEAP_TOP(h)->key, si->V))) {
114 	struct dn_queue *q = HEAP_TOP(h)->object;
115         struct wf2qp_queue *alg_fq = (struct wf2qp_queue *)q;
116 
117         heap_extract(h, NULL);
118         /* XXX to let the flowset delete the queue we should
119 	 * mark it as 'unused' by the scheduler.
120 	 */
121         alg_fq->S = alg_fq->F + 1; /* Mark timestamp as invalid. */
122         si->wsum -= q->fs->fs.par[0];	/* adjust sum of weights */
123 	if (si->wsum > 0)
124 		si->inv_wsum = ONE_FP/si->wsum;
125     }
126 }
127 
128 static int
129 wf2qp_enqueue(struct dn_sch_inst *_si, struct dn_queue *q, struct mbuf *m)
130 {
131     struct dn_fsk *fs = q->fs;
132     struct wf2qp_si *si = (struct wf2qp_si *)(_si + 1);
133     struct wf2qp_queue *alg_fq;
134     uint64_t len = m->m_pkthdr.len;
135 
136     if (m != q->mq.head) {
137 	if (dn_enqueue(q, m, 0)) /* packet was dropped */
138 	    return 1;
139 	if (m != q->mq.head)	/* queue was already busy */
140 	    return 0;
141     }
142 
143     /* If reach this point, queue q was idle */
144     alg_fq = (struct wf2qp_queue *)q;
145 
146     if (DN_KEY_LT(alg_fq->F, alg_fq->S)) {
147         /* F<S means timestamps are invalid ->brand new queue. */
148         alg_fq->S = si->V;		/* init start time */
149         si->wsum += fs->fs.par[0];	/* add weight of new queue. */
150 	si->inv_wsum = ONE_FP/si->wsum;
151     } else { /* if it was idle then it was in the idle heap */
152         heap_extract(&si->idle_heap, q);
153         alg_fq->S = MAX64(alg_fq->F, si->V);	/* compute new S */
154     }
155     alg_fq->F = alg_fq->S + len * alg_fq->inv_w;
156 
157     /* if nothing is backlogged, make sure this flow is eligible */
158     if (si->ne_heap.elements == 0 && si->sch_heap.elements == 0)
159         si->V = MAX64(alg_fq->S, si->V);
160 
161     /*
162      * Look at eligibility. A flow is not eligibile if S>V (when
163      * this happens, it means that there is some other flow already
164      * scheduled for the same pipe, so the sch_heap cannot be
165      * empty). If the flow is not eligible we just store it in the
166      * ne_heap. Otherwise, we store in the sch_heap.
167      * Note that for all flows in sch_heap (SCH), S_i <= V,
168      * and for all flows in ne_heap (NEH), S_i > V.
169      * So when we need to compute max(V, min(S_i)) forall i in
170      * SCH+NEH, we only need to look into NEH.
171      */
172     if (DN_KEY_LT(si->V, alg_fq->S)) {
173         /* S>V means flow Not eligible. */
174         if (si->sch_heap.elements == 0)
175             D("++ ouch! not eligible but empty scheduler!");
176         heap_insert(&si->ne_heap, alg_fq->S, q);
177     } else {
178         heap_insert(&si->sch_heap, alg_fq->F, q);
179     }
180     return 0;
181 }
182 
183 /* XXX invariant: sch > 0 || V >= min(S in neh) */
184 static struct mbuf *
185 wf2qp_dequeue(struct dn_sch_inst *_si)
186 {
187 	/* Access scheduler instance private data */
188 	struct wf2qp_si *si = (struct wf2qp_si *)(_si + 1);
189 	struct mbuf *m;
190 	struct dn_queue *q;
191 	struct dn_heap *sch = &si->sch_heap;
192 	struct dn_heap *neh = &si->ne_heap;
193 	struct wf2qp_queue *alg_fq;
194 
195 	if (sch->elements == 0 && neh->elements == 0) {
196 		/* we have nothing to do. We could kill the idle heap
197 		 * altogether and reset V
198 		 */
199 		idle_check(si, 0x7fffffff, 1);
200 		si->V = 0;
201 		si->wsum = 0;	/* should be set already */
202 		return NULL;	/* quick return if nothing to do */
203 	}
204 	idle_check(si, 1, 0);	/* drain something from the idle heap */
205 
206 	/* make sure at least one element is eligible, bumping V
207 	 * and moving entries that have become eligible.
208 	 * We need to repeat the first part twice, before and
209 	 * after extracting the candidate, or enqueue() will
210 	 * find the data structure in a wrong state.
211 	 */
212   m = NULL;
213   for(;;) {
214 	/*
215 	 * Compute V = max(V, min(S_i)). Remember that all elements
216 	 * in sch have by definition S_i <= V so if sch is not empty,
217 	 * V is surely the max and we must not update it. Conversely,
218 	 * if sch is empty we only need to look at neh.
219 	 * We don't need to move the queues, as it will be done at the
220 	 * next enqueue
221 	 */
222 	if (sch->elements == 0 && neh->elements > 0) {
223 		si->V = MAX64(si->V, HEAP_TOP(neh)->key);
224 	}
225 	while (neh->elements > 0 &&
226 		    DN_KEY_LEQ(HEAP_TOP(neh)->key, si->V)) {
227 		q = HEAP_TOP(neh)->object;
228 		alg_fq = (struct wf2qp_queue *)q;
229 		heap_extract(neh, NULL);
230 		heap_insert(sch, alg_fq->F, q);
231 	}
232 	if (m) /* pkt found in previous iteration */
233 		break;
234 	/* ok we have at least one eligible pkt */
235 	q = HEAP_TOP(sch)->object;
236 	alg_fq = (struct wf2qp_queue *)q;
237 	m = dn_dequeue(q);
238 	heap_extract(sch, NULL); /* Remove queue from heap. */
239 	si->V += (uint64_t)(m->m_pkthdr.len) * si->inv_wsum;
240 	alg_fq->S = alg_fq->F;  /* Update start time. */
241 	if (q->mq.head == 0) {	/* not backlogged any more. */
242 		heap_insert(&si->idle_heap, alg_fq->F, q);
243 	} else {			/* Still backlogged. */
244 		/* Update F, store in neh or sch */
245 		uint64_t len = q->mq.head->m_pkthdr.len;
246 		alg_fq->F += len * alg_fq->inv_w;
247 		if (DN_KEY_LEQ(alg_fq->S, si->V)) {
248 			heap_insert(sch, alg_fq->F, q);
249 		} else {
250 			heap_insert(neh, alg_fq->S, q);
251 		}
252 	}
253     }
254 	return m;
255 }
256 
257 static int
258 wf2qp_new_sched(struct dn_sch_inst *_si)
259 {
260 	struct wf2qp_si *si = (struct wf2qp_si *)(_si + 1);
261 	int ofs = offsetof(struct wf2qp_queue, heap_pos);
262 
263 	/* all heaps support extract from middle */
264 	if (heap_init(&si->idle_heap, 16, ofs) ||
265 	    heap_init(&si->sch_heap, 16, ofs) ||
266 	    heap_init(&si->ne_heap, 16, ofs)) {
267 		heap_free(&si->ne_heap);
268 		heap_free(&si->sch_heap);
269 		heap_free(&si->idle_heap);
270 		return ENOMEM;
271 	}
272 	return 0;
273 }
274 
275 static int
276 wf2qp_free_sched(struct dn_sch_inst *_si)
277 {
278 	struct wf2qp_si *si = (struct wf2qp_si *)(_si + 1);
279 
280 	heap_free(&si->sch_heap);
281 	heap_free(&si->ne_heap);
282 	heap_free(&si->idle_heap);
283 
284 	return 0;
285 }
286 
287 static int
288 wf2qp_new_fsk(struct dn_fsk *fs)
289 {
290 	ipdn_bound_var(&fs->fs.par[0], 1,
291 		1, 100, "WF2Q+ weight");
292 	return 0;
293 }
294 
295 static int
296 wf2qp_new_queue(struct dn_queue *_q)
297 {
298 	struct wf2qp_queue *q = (struct wf2qp_queue *)_q;
299 
300 	_q->ni.oid.subtype = DN_SCHED_WF2QP;
301 	q->F = 0;	/* not strictly necessary */
302 	q->S = q->F + 1;    /* mark timestamp as invalid. */
303         q->inv_w = ONE_FP / _q->fs->fs.par[0];
304 	if (_q->mq.head != NULL) {
305 		wf2qp_enqueue(_q->_si, _q, _q->mq.head);
306 	}
307 	return 0;
308 }
309 
310 /*
311  * Called when the infrastructure removes a queue (e.g. flowset
312  * is reconfigured). Nothing to do if we did not 'own' the queue,
313  * otherwise remove it from the right heap and adjust the sum
314  * of weights.
315  */
316 static int
317 wf2qp_free_queue(struct dn_queue *q)
318 {
319 	struct wf2qp_queue *alg_fq = (struct wf2qp_queue *)q;
320 	struct wf2qp_si *si = (struct wf2qp_si *)(q->_si + 1);
321 
322 	if (alg_fq->S >= alg_fq->F + 1)
323 		return 0;	/* nothing to do, not in any heap */
324 	si->wsum -= q->fs->fs.par[0];
325 	if (si->wsum > 0)
326 		si->inv_wsum = ONE_FP/si->wsum;
327 
328 	/* extract from the heap. XXX TODO we may need to adjust V
329 	 * to make sure the invariants hold.
330 	 */
331 	if (q->mq.head == NULL) {
332 		heap_extract(&si->idle_heap, q);
333 	} else if (DN_KEY_LT(si->V, alg_fq->S)) {
334 		heap_extract(&si->ne_heap, q);
335 	} else {
336 		heap_extract(&si->sch_heap, q);
337 	}
338 	return 0;
339 }
340 
341 /*
342  * WF2Q+ scheduler descriptor
343  * contains the type of the scheduler, the name, the size of the
344  * structures and function pointers.
345  */
346 static struct dn_alg wf2qp_desc = {
347 	_SI( .type = ) DN_SCHED_WF2QP,
348 	_SI( .name = ) "WF2Q+",
349 	_SI( .flags = ) DN_MULTIQUEUE,
350 
351 	/* we need extra space in the si and the queue */
352 	_SI( .schk_datalen = ) 0,
353 	_SI( .si_datalen = ) sizeof(struct wf2qp_si),
354 	_SI( .q_datalen = ) sizeof(struct wf2qp_queue) -
355 				sizeof(struct dn_queue),
356 
357 	_SI( .enqueue = ) wf2qp_enqueue,
358 	_SI( .dequeue = ) wf2qp_dequeue,
359 
360 	_SI( .config = )  NULL,
361 	_SI( .destroy = )  NULL,
362 	_SI( .new_sched = ) wf2qp_new_sched,
363 	_SI( .free_sched = ) wf2qp_free_sched,
364 
365 	_SI( .new_fsk = ) wf2qp_new_fsk,
366 	_SI( .free_fsk = )  NULL,
367 
368 	_SI( .new_queue = ) wf2qp_new_queue,
369 	_SI( .free_queue = ) wf2qp_free_queue,
370 };
371 
372 
373 DECLARE_DNSCHED_MODULE(dn_wf2qp, &wf2qp_desc);
374