xref: /freebsd/sys/netpfil/ipfw/dn_sched_wf2q.c (revision 3806950135d2c8633ec0764e8807eacc87cf3e10)
1 /*
2  * Copyright (c) 2010 Riccardo Panicucci, Universita` di Pisa
3  * Copyright (c) 2000-2002 Luigi Rizzo, Universita` di Pisa
4  * All rights reserved
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /*
29  * $FreeBSD$
30  */
31 
32 #ifdef _KERNEL
33 #include <sys/malloc.h>
34 #include <sys/socket.h>
35 #include <sys/socketvar.h>
36 #include <sys/kernel.h>
37 #include <sys/lock.h>
38 #include <sys/mbuf.h>
39 #include <sys/module.h>
40 #include <sys/rwlock.h>
41 #include <net/if.h>	/* IFNAMSIZ */
42 #include <netinet/in.h>
43 #include <netinet/ip_var.h>		/* ipfw_rule_ref */
44 #include <netinet/ip_fw.h>	/* flow_id */
45 #include <netinet/ip_dummynet.h>
46 #include <netpfil/ipfw/ip_fw_private.h>
47 #include <netpfil/ipfw/dn_heap.h>
48 #include <netpfil/ipfw/ip_dn_private.h>
49 #ifdef NEW_AQM
50 #include <netpfil/ipfw/dn_aqm.h>
51 #endif
52 #include <netpfil/ipfw/dn_sched.h>
53 #else
54 #include <dn_test.h>
55 #endif
56 
57 #ifndef MAX64
58 #define MAX64(x,y)  (( (int64_t) ( (y)-(x) )) > 0 ) ? (y) : (x)
59 #endif
60 
61 /*
62  * timestamps are computed on 64 bit using fixed point arithmetic.
63  * LMAX_BITS, WMAX_BITS are the max number of bits for the packet len
64  * and sum of weights, respectively. FRAC_BITS is the number of
65  * fractional bits. We want FRAC_BITS >> WMAX_BITS to avoid too large
66  * errors when computing the inverse, FRAC_BITS < 32 so we can do 1/w
67  * using an unsigned 32-bit division, and to avoid wraparounds we need
68  * LMAX_BITS + WMAX_BITS + FRAC_BITS << 64
69  * As an example
70  * FRAC_BITS = 26, LMAX_BITS=14, WMAX_BITS = 19
71  */
72 #ifndef FRAC_BITS
73 #define FRAC_BITS    28 /* shift for fixed point arithmetic */
74 #define	ONE_FP	(1UL << FRAC_BITS)
75 #endif
76 
77 /*
78  * Private information for the scheduler instance:
79  * sch_heap (key is Finish time) returns the next queue to serve
80  * ne_heap (key is Start time) stores not-eligible queues
81  * idle_heap (key=start/finish time) stores idle flows. It must
82  *	support extract-from-middle.
83  * A flow is only in 1 of the three heaps.
84  * XXX todo: use a more efficient data structure, e.g. a tree sorted
85  * by F with min_subtree(S) in each node
86  */
87 struct wf2qp_si {
88     struct dn_heap sch_heap;	/* top extract - key Finish  time */
89     struct dn_heap ne_heap;	/* top extract - key Start   time */
90     struct dn_heap idle_heap;	/* random extract - key Start=Finish time */
91     uint64_t V;			/* virtual time */
92     uint32_t inv_wsum;		/* inverse of sum of weights */
93     uint32_t wsum;		/* sum of weights */
94 };
95 
96 struct wf2qp_queue {
97     struct dn_queue _q;
98     uint64_t S, F;		/* start time, finish time */
99     uint32_t inv_w;		/* ONE_FP / weight */
100     int32_t heap_pos;		/* position (index) of struct in heap */
101 };
102 
103 /*
104  * This file implements a WF2Q+ scheduler as it has been in dummynet
105  * since 2000.
106  * The scheduler supports per-flow queues and has O(log N) complexity.
107  *
108  * WF2Q+ needs to drain entries from the idle heap so that we
109  * can keep the sum of weights up to date. We can do it whenever
110  * we get a chance, or periodically, or following some other
111  * strategy. The function idle_check() drains at most N elements
112  * from the idle heap.
113  */
114 static void
115 idle_check(struct wf2qp_si *si, int n, int force)
116 {
117     struct dn_heap *h = &si->idle_heap;
118     while (n-- > 0 && h->elements > 0 &&
119 		(force || DN_KEY_LT(HEAP_TOP(h)->key, si->V))) {
120 	struct dn_queue *q = HEAP_TOP(h)->object;
121         struct wf2qp_queue *alg_fq = (struct wf2qp_queue *)q;
122 
123         heap_extract(h, NULL);
124         /* XXX to let the flowset delete the queue we should
125 	 * mark it as 'unused' by the scheduler.
126 	 */
127         alg_fq->S = alg_fq->F + 1; /* Mark timestamp as invalid. */
128         si->wsum -= q->fs->fs.par[0];	/* adjust sum of weights */
129 	if (si->wsum > 0)
130 		si->inv_wsum = ONE_FP/si->wsum;
131     }
132 }
133 
134 static int
135 wf2qp_enqueue(struct dn_sch_inst *_si, struct dn_queue *q, struct mbuf *m)
136 {
137     struct dn_fsk *fs = q->fs;
138     struct wf2qp_si *si = (struct wf2qp_si *)(_si + 1);
139     struct wf2qp_queue *alg_fq;
140     uint64_t len = m->m_pkthdr.len;
141 
142     if (m != q->mq.head) {
143 	if (dn_enqueue(q, m, 0)) /* packet was dropped */
144 	    return 1;
145 	if (m != q->mq.head)	/* queue was already busy */
146 	    return 0;
147     }
148 
149     /* If reach this point, queue q was idle */
150     alg_fq = (struct wf2qp_queue *)q;
151 
152     if (DN_KEY_LT(alg_fq->F, alg_fq->S)) {
153         /* F<S means timestamps are invalid ->brand new queue. */
154         alg_fq->S = si->V;		/* init start time */
155         si->wsum += fs->fs.par[0];	/* add weight of new queue. */
156 	si->inv_wsum = ONE_FP/si->wsum;
157     } else { /* if it was idle then it was in the idle heap */
158         heap_extract(&si->idle_heap, q);
159         alg_fq->S = MAX64(alg_fq->F, si->V);	/* compute new S */
160     }
161     alg_fq->F = alg_fq->S + len * alg_fq->inv_w;
162 
163     /* if nothing is backlogged, make sure this flow is eligible */
164     if (si->ne_heap.elements == 0 && si->sch_heap.elements == 0)
165         si->V = MAX64(alg_fq->S, si->V);
166 
167     /*
168      * Look at eligibility. A flow is not eligibile if S>V (when
169      * this happens, it means that there is some other flow already
170      * scheduled for the same pipe, so the sch_heap cannot be
171      * empty). If the flow is not eligible we just store it in the
172      * ne_heap. Otherwise, we store in the sch_heap.
173      * Note that for all flows in sch_heap (SCH), S_i <= V,
174      * and for all flows in ne_heap (NEH), S_i > V.
175      * So when we need to compute max(V, min(S_i)) forall i in
176      * SCH+NEH, we only need to look into NEH.
177      */
178     if (DN_KEY_LT(si->V, alg_fq->S)) {
179         /* S>V means flow Not eligible. */
180         if (si->sch_heap.elements == 0)
181             D("++ ouch! not eligible but empty scheduler!");
182         heap_insert(&si->ne_heap, alg_fq->S, q);
183     } else {
184         heap_insert(&si->sch_heap, alg_fq->F, q);
185     }
186     return 0;
187 }
188 
189 /* XXX invariant: sch > 0 || V >= min(S in neh) */
190 static struct mbuf *
191 wf2qp_dequeue(struct dn_sch_inst *_si)
192 {
193 	/* Access scheduler instance private data */
194 	struct wf2qp_si *si = (struct wf2qp_si *)(_si + 1);
195 	struct mbuf *m;
196 	struct dn_queue *q;
197 	struct dn_heap *sch = &si->sch_heap;
198 	struct dn_heap *neh = &si->ne_heap;
199 	struct wf2qp_queue *alg_fq;
200 
201 	if (sch->elements == 0 && neh->elements == 0) {
202 		/* we have nothing to do. We could kill the idle heap
203 		 * altogether and reset V
204 		 */
205 		idle_check(si, 0x7fffffff, 1);
206 		si->V = 0;
207 		si->wsum = 0;	/* should be set already */
208 		return NULL;	/* quick return if nothing to do */
209 	}
210 	idle_check(si, 1, 0);	/* drain something from the idle heap */
211 
212 	/* make sure at least one element is eligible, bumping V
213 	 * and moving entries that have become eligible.
214 	 * We need to repeat the first part twice, before and
215 	 * after extracting the candidate, or enqueue() will
216 	 * find the data structure in a wrong state.
217 	 */
218   m = NULL;
219   for(;;) {
220 	/*
221 	 * Compute V = max(V, min(S_i)). Remember that all elements
222 	 * in sch have by definition S_i <= V so if sch is not empty,
223 	 * V is surely the max and we must not update it. Conversely,
224 	 * if sch is empty we only need to look at neh.
225 	 * We don't need to move the queues, as it will be done at the
226 	 * next enqueue
227 	 */
228 	if (sch->elements == 0 && neh->elements > 0) {
229 		si->V = MAX64(si->V, HEAP_TOP(neh)->key);
230 	}
231 	while (neh->elements > 0 &&
232 		    DN_KEY_LEQ(HEAP_TOP(neh)->key, si->V)) {
233 		q = HEAP_TOP(neh)->object;
234 		alg_fq = (struct wf2qp_queue *)q;
235 		heap_extract(neh, NULL);
236 		heap_insert(sch, alg_fq->F, q);
237 	}
238 	if (m) /* pkt found in previous iteration */
239 		break;
240 	/* ok we have at least one eligible pkt */
241 	q = HEAP_TOP(sch)->object;
242 	alg_fq = (struct wf2qp_queue *)q;
243 	m = dn_dequeue(q);
244 	heap_extract(sch, NULL); /* Remove queue from heap. */
245 	si->V += (uint64_t)(m->m_pkthdr.len) * si->inv_wsum;
246 	alg_fq->S = alg_fq->F;  /* Update start time. */
247 	if (q->mq.head == 0) {	/* not backlogged any more. */
248 		heap_insert(&si->idle_heap, alg_fq->F, q);
249 	} else {			/* Still backlogged. */
250 		/* Update F, store in neh or sch */
251 		uint64_t len = q->mq.head->m_pkthdr.len;
252 		alg_fq->F += len * alg_fq->inv_w;
253 		if (DN_KEY_LEQ(alg_fq->S, si->V)) {
254 			heap_insert(sch, alg_fq->F, q);
255 		} else {
256 			heap_insert(neh, alg_fq->S, q);
257 		}
258 	}
259     }
260 	return m;
261 }
262 
263 static int
264 wf2qp_new_sched(struct dn_sch_inst *_si)
265 {
266 	struct wf2qp_si *si = (struct wf2qp_si *)(_si + 1);
267 	int ofs = offsetof(struct wf2qp_queue, heap_pos);
268 
269 	/* all heaps support extract from middle */
270 	if (heap_init(&si->idle_heap, 16, ofs) ||
271 	    heap_init(&si->sch_heap, 16, ofs) ||
272 	    heap_init(&si->ne_heap, 16, ofs)) {
273 		heap_free(&si->ne_heap);
274 		heap_free(&si->sch_heap);
275 		heap_free(&si->idle_heap);
276 		return ENOMEM;
277 	}
278 	return 0;
279 }
280 
281 static int
282 wf2qp_free_sched(struct dn_sch_inst *_si)
283 {
284 	struct wf2qp_si *si = (struct wf2qp_si *)(_si + 1);
285 
286 	heap_free(&si->sch_heap);
287 	heap_free(&si->ne_heap);
288 	heap_free(&si->idle_heap);
289 
290 	return 0;
291 }
292 
293 static int
294 wf2qp_new_fsk(struct dn_fsk *fs)
295 {
296 	ipdn_bound_var(&fs->fs.par[0], 1,
297 		1, 100, "WF2Q+ weight");
298 	return 0;
299 }
300 
301 static int
302 wf2qp_new_queue(struct dn_queue *_q)
303 {
304 	struct wf2qp_queue *q = (struct wf2qp_queue *)_q;
305 
306 	_q->ni.oid.subtype = DN_SCHED_WF2QP;
307 	q->F = 0;	/* not strictly necessary */
308 	q->S = q->F + 1;    /* mark timestamp as invalid. */
309         q->inv_w = ONE_FP / _q->fs->fs.par[0];
310 	if (_q->mq.head != NULL) {
311 		wf2qp_enqueue(_q->_si, _q, _q->mq.head);
312 	}
313 	return 0;
314 }
315 
316 /*
317  * Called when the infrastructure removes a queue (e.g. flowset
318  * is reconfigured). Nothing to do if we did not 'own' the queue,
319  * otherwise remove it from the right heap and adjust the sum
320  * of weights.
321  */
322 static int
323 wf2qp_free_queue(struct dn_queue *q)
324 {
325 	struct wf2qp_queue *alg_fq = (struct wf2qp_queue *)q;
326 	struct wf2qp_si *si = (struct wf2qp_si *)(q->_si + 1);
327 
328 	if (alg_fq->S >= alg_fq->F + 1)
329 		return 0;	/* nothing to do, not in any heap */
330 	si->wsum -= q->fs->fs.par[0];
331 	if (si->wsum > 0)
332 		si->inv_wsum = ONE_FP/si->wsum;
333 
334 	/* extract from the heap. XXX TODO we may need to adjust V
335 	 * to make sure the invariants hold.
336 	 */
337 	if (q->mq.head == NULL) {
338 		heap_extract(&si->idle_heap, q);
339 	} else if (DN_KEY_LT(si->V, alg_fq->S)) {
340 		heap_extract(&si->ne_heap, q);
341 	} else {
342 		heap_extract(&si->sch_heap, q);
343 	}
344 	return 0;
345 }
346 
347 /*
348  * WF2Q+ scheduler descriptor
349  * contains the type of the scheduler, the name, the size of the
350  * structures and function pointers.
351  */
352 static struct dn_alg wf2qp_desc = {
353 	_SI( .type = ) DN_SCHED_WF2QP,
354 	_SI( .name = ) "WF2Q+",
355 	_SI( .flags = ) DN_MULTIQUEUE,
356 
357 	/* we need extra space in the si and the queue */
358 	_SI( .schk_datalen = ) 0,
359 	_SI( .si_datalen = ) sizeof(struct wf2qp_si),
360 	_SI( .q_datalen = ) sizeof(struct wf2qp_queue) -
361 				sizeof(struct dn_queue),
362 
363 	_SI( .enqueue = ) wf2qp_enqueue,
364 	_SI( .dequeue = ) wf2qp_dequeue,
365 
366 	_SI( .config = )  NULL,
367 	_SI( .destroy = )  NULL,
368 	_SI( .new_sched = ) wf2qp_new_sched,
369 	_SI( .free_sched = ) wf2qp_free_sched,
370 
371 	_SI( .new_fsk = ) wf2qp_new_fsk,
372 	_SI( .free_fsk = )  NULL,
373 
374 	_SI( .new_queue = ) wf2qp_new_queue,
375 	_SI( .free_queue = ) wf2qp_free_queue,
376 #ifdef NEW_AQM
377 	_SI( .getconfig = )  NULL,
378 #endif
379 
380 };
381 
382 
383 DECLARE_DNSCHED_MODULE(dn_wf2qp, &wf2qp_desc);
384