xref: /freebsd/sys/netpfil/ipfw/dn_sched_qfq.c (revision c6ec7d31830ab1c80edae95ad5e4b9dba10c47ac)
1 /*
2  * Copyright (c) 2010 Fabio Checconi, Luigi Rizzo, Paolo Valente
3  * All rights reserved
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /*
28  * $FreeBSD$
29  */
30 
31 #ifdef _KERNEL
32 #include <sys/malloc.h>
33 #include <sys/socket.h>
34 #include <sys/socketvar.h>
35 #include <sys/kernel.h>
36 #include <sys/mbuf.h>
37 #include <sys/module.h>
38 #include <net/if.h>	/* IFNAMSIZ */
39 #include <netinet/in.h>
40 #include <netinet/ip_var.h>		/* ipfw_rule_ref */
41 #include <netinet/ip_fw.h>	/* flow_id */
42 #include <netinet/ip_dummynet.h>
43 #include <netpfil/ipfw/dn_heap.h>
44 #include <netpfil/ipfw/ip_dn_private.h>
45 #include <netpfil/ipfw/dn_sched.h>
46 #else
47 #include <dn_test.h>
48 #endif
49 
50 #ifdef QFQ_DEBUG
51 struct qfq_sched;
52 static void dump_sched(struct qfq_sched *q, const char *msg);
53 #define	NO(x)	x
54 #else
55 #define NO(x)
56 #endif
57 #define DN_SCHED_QFQ	4 // XXX Where?
58 typedef	unsigned long	bitmap;
59 
60 /*
61  * bitmaps ops are critical. Some linux versions have __fls
62  * and the bitmap ops. Some machines have ffs
63  */
64 #if defined(_WIN32) || (defined(__MIPSEL__) && defined(LINUX_24))
65 int fls(unsigned int n)
66 {
67 	int i = 0;
68 	for (i = 0; n > 0; n >>= 1, i++)
69 		;
70 	return i;
71 }
72 #endif
73 
74 #if !defined(_KERNEL) || defined( __FreeBSD__ ) || defined(_WIN32) || (defined(__MIPSEL__) && defined(LINUX_24))
75 static inline unsigned long __fls(unsigned long word)
76 {
77 	return fls(word) - 1;
78 }
79 #endif
80 
81 #if !defined(_KERNEL) || !defined(__linux__)
82 #ifdef QFQ_DEBUG
83 int test_bit(int ix, bitmap *p)
84 {
85 	if (ix < 0 || ix > 31)
86 		D("bad index %d", ix);
87 	return *p & (1<<ix);
88 }
89 void __set_bit(int ix, bitmap *p)
90 {
91 	if (ix < 0 || ix > 31)
92 		D("bad index %d", ix);
93 	*p |= (1<<ix);
94 }
95 void __clear_bit(int ix, bitmap *p)
96 {
97 	if (ix < 0 || ix > 31)
98 		D("bad index %d", ix);
99 	*p &= ~(1<<ix);
100 }
101 #else /* !QFQ_DEBUG */
102 /* XXX do we have fast version, or leave it to the compiler ? */
103 #define test_bit(ix, pData)	((*pData) & (1<<(ix)))
104 #define __set_bit(ix, pData)	(*pData) |= (1<<(ix))
105 #define __clear_bit(ix, pData)	(*pData) &= ~(1<<(ix))
106 #endif /* !QFQ_DEBUG */
107 #endif /* !__linux__ */
108 
109 #ifdef __MIPSEL__
110 #define __clear_bit(ix, pData)	(*pData) &= ~(1<<(ix))
111 #endif
112 
113 /*-------------------------------------------*/
114 /*
115 
116 Virtual time computations.
117 
118 S, F and V are all computed in fixed point arithmetic with
119 FRAC_BITS decimal bits.
120 
121    QFQ_MAX_INDEX is the maximum index allowed for a group. We need
122   	one bit per index.
123    QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
124    The layout of the bits is as below:
125 
126                    [ MTU_SHIFT ][      FRAC_BITS    ]
127                    [ MAX_INDEX    ][ MIN_SLOT_SHIFT ]
128   				 ^.__grp->index = 0
129   				 *.__grp->slot_shift
130 
131    where MIN_SLOT_SHIFT is derived by difference from the others.
132 
133 The max group index corresponds to Lmax/w_min, where
134 Lmax=1<<MTU_SHIFT, w_min = 1 .
135 From this, and knowing how many groups (MAX_INDEX) we want,
136 we can derive the shift corresponding to each group.
137 
138 Because we often need to compute
139 	F = S + len/w_i  and V = V + len/wsum
140 instead of storing w_i store the value
141 	inv_w = (1<<FRAC_BITS)/w_i
142 so we can do F = S + len * inv_w * wsum.
143 We use W_TOT in the formulas so we can easily move between
144 static and adaptive weight sum.
145 
146 The per-scheduler-instance data contain all the data structures
147 for the scheduler: bitmaps and bucket lists.
148 
149  */
150 /*
151  * Maximum number of consecutive slots occupied by backlogged classes
152  * inside a group. This is approx lmax/lmin + 5.
153  * XXX check because it poses constraints on MAX_INDEX
154  */
155 #define QFQ_MAX_SLOTS	32
156 /*
157  * Shifts used for class<->group mapping. Class weights are
158  * in the range [1, QFQ_MAX_WEIGHT], we to map each class i to the
159  * group with the smallest index that can support the L_i / r_i
160  * configured for the class.
161  *
162  * grp->index is the index of the group; and grp->slot_shift
163  * is the shift for the corresponding (scaled) sigma_i.
164  *
165  * When computing the group index, we do (len<<FP_SHIFT)/weight,
166  * then compute an FLS (which is like a log2()), and if the result
167  * is below the MAX_INDEX region we use 0 (which is the same as
168  * using a larger len).
169  */
170 #define QFQ_MAX_INDEX		19
171 #define QFQ_MAX_WSHIFT		16	/* log2(max_weight) */
172 
173 #define	QFQ_MAX_WEIGHT		(1<<QFQ_MAX_WSHIFT)
174 #define QFQ_MAX_WSUM		(2*QFQ_MAX_WEIGHT)
175 //#define IWSUM	(q->i_wsum)
176 #define IWSUM	((1<<FRAC_BITS)/QFQ_MAX_WSUM)
177 
178 #define FRAC_BITS		30	/* fixed point arithmetic */
179 #define ONE_FP			(1UL << FRAC_BITS)
180 
181 #define QFQ_MTU_SHIFT		11	/* log2(max_len) */
182 #define QFQ_MIN_SLOT_SHIFT	(FRAC_BITS + QFQ_MTU_SHIFT - QFQ_MAX_INDEX)
183 
184 /*
185  * Possible group states, also indexes for the bitmaps array in
186  * struct qfq_queue. We rely on ER, IR, EB, IB being numbered 0..3
187  */
188 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
189 
190 struct qfq_group;
191 /*
192  * additional queue info. Some of this info should come from
193  * the flowset, we copy them here for faster processing.
194  * This is an overlay of the struct dn_queue
195  */
196 struct qfq_class {
197 	struct dn_queue _q;
198 	uint64_t S, F;		/* flow timestamps (exact) */
199 	struct qfq_class *next; /* Link for the slot list. */
200 
201 	/* group we belong to. In principle we would need the index,
202 	 * which is log_2(lmax/weight), but we never reference it
203 	 * directly, only the group.
204 	 */
205 	struct qfq_group *grp;
206 
207 	/* these are copied from the flowset. */
208 	uint32_t	inv_w;	/* ONE_FP/weight */
209 	uint32_t 	lmax;	/* Max packet size for this flow. */
210 };
211 
212 /* Group descriptor, see the paper for details.
213  * Basically this contains the bucket lists
214  */
215 struct qfq_group {
216 	uint64_t S, F;			/* group timestamps (approx). */
217 	unsigned int slot_shift;	/* Slot shift. */
218 	unsigned int index;		/* Group index. */
219 	unsigned int front;		/* Index of the front slot. */
220 	bitmap full_slots;		/* non-empty slots */
221 
222 	/* Array of lists of active classes. */
223 	struct qfq_class *slots[QFQ_MAX_SLOTS];
224 };
225 
226 /* scheduler instance descriptor. */
227 struct qfq_sched {
228 	uint64_t	V;		/* Precise virtual time. */
229 	uint32_t	wsum;		/* weight sum */
230 	NO(uint32_t	i_wsum;		/* ONE_FP/w_sum */
231 	uint32_t	_queued;	/* debugging */
232 	uint32_t	loops;	/* debugging */)
233 	bitmap bitmaps[QFQ_MAX_STATE];	/* Group bitmaps. */
234 	struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
235 };
236 
237 /*---- support functions ----------------------------*/
238 
239 /* Generic comparison function, handling wraparound. */
240 static inline int qfq_gt(uint64_t a, uint64_t b)
241 {
242 	return (int64_t)(a - b) > 0;
243 }
244 
245 /* Round a precise timestamp to its slotted value. */
246 static inline uint64_t qfq_round_down(uint64_t ts, unsigned int shift)
247 {
248 	return ts & ~((1ULL << shift) - 1);
249 }
250 
251 /* return the pointer to the group with lowest index in the bitmap */
252 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
253 					unsigned long bitmap)
254 {
255 	int index = ffs(bitmap) - 1; // zero-based
256 	return &q->groups[index];
257 }
258 
259 /*
260  * Calculate a flow index, given its weight and maximum packet length.
261  * index = log_2(maxlen/weight) but we need to apply the scaling.
262  * This is used only once at flow creation.
263  */
264 static int qfq_calc_index(uint32_t inv_w, unsigned int maxlen)
265 {
266 	uint64_t slot_size = (uint64_t)maxlen *inv_w;
267 	unsigned long size_map;
268 	int index = 0;
269 
270 	size_map = (unsigned long)(slot_size >> QFQ_MIN_SLOT_SHIFT);
271 	if (!size_map)
272 		goto out;
273 
274 	index = __fls(size_map) + 1;	// basically a log_2()
275 	index -= !(slot_size - (1ULL << (index + QFQ_MIN_SLOT_SHIFT - 1)));
276 
277 	if (index < 0)
278 		index = 0;
279 
280 out:
281 	ND("W = %d, L = %d, I = %d\n", ONE_FP/inv_w, maxlen, index);
282 	return index;
283 }
284 /*---- end support functions ----*/
285 
286 /*-------- API calls --------------------------------*/
287 /*
288  * Validate and copy parameters from flowset.
289  */
290 static int
291 qfq_new_queue(struct dn_queue *_q)
292 {
293 	struct qfq_sched *q = (struct qfq_sched *)(_q->_si + 1);
294 	struct qfq_class *cl = (struct qfq_class *)_q;
295 	int i;
296 	uint32_t w;	/* approximated weight */
297 
298 	/* import parameters from the flowset. They should be correct
299 	 * already.
300 	 */
301 	w = _q->fs->fs.par[0];
302 	cl->lmax = _q->fs->fs.par[1];
303 	if (!w || w > QFQ_MAX_WEIGHT) {
304 		w = 1;
305 		D("rounding weight to 1");
306 	}
307 	cl->inv_w = ONE_FP/w;
308 	w = ONE_FP/cl->inv_w;
309 	if (q->wsum + w > QFQ_MAX_WSUM)
310 		return EINVAL;
311 
312 	i = qfq_calc_index(cl->inv_w, cl->lmax);
313 	cl->grp = &q->groups[i];
314 	q->wsum += w;
315 	// XXX cl->S = q->V; ?
316 	// XXX compute q->i_wsum
317 	return 0;
318 }
319 
320 /* remove an empty queue */
321 static int
322 qfq_free_queue(struct dn_queue *_q)
323 {
324 	struct qfq_sched *q = (struct qfq_sched *)(_q->_si + 1);
325 	struct qfq_class *cl = (struct qfq_class *)_q;
326 	if (cl->inv_w) {
327 		q->wsum -= ONE_FP/cl->inv_w;
328 		cl->inv_w = 0; /* reset weight to avoid run twice */
329 	}
330 	return 0;
331 }
332 
333 /* Calculate a mask to mimic what would be ffs_from(). */
334 static inline unsigned long
335 mask_from(unsigned long bitmap, int from)
336 {
337 	return bitmap & ~((1UL << from) - 1);
338 }
339 
340 /*
341  * The state computation relies on ER=0, IR=1, EB=2, IB=3
342  * First compute eligibility comparing grp->S, q->V,
343  * then check if someone is blocking us and possibly add EB
344  */
345 static inline unsigned int
346 qfq_calc_state(struct qfq_sched *q, struct qfq_group *grp)
347 {
348 	/* if S > V we are not eligible */
349 	unsigned int state = qfq_gt(grp->S, q->V);
350 	unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
351 	struct qfq_group *next;
352 
353 	if (mask) {
354 		next = qfq_ffs(q, mask);
355 		if (qfq_gt(grp->F, next->F))
356 			state |= EB;
357 	}
358 
359 	return state;
360 }
361 
362 /*
363  * In principle
364  *	q->bitmaps[dst] |= q->bitmaps[src] & mask;
365  *	q->bitmaps[src] &= ~mask;
366  * but we should make sure that src != dst
367  */
368 static inline void
369 qfq_move_groups(struct qfq_sched *q, unsigned long mask, int src, int dst)
370 {
371 	q->bitmaps[dst] |= q->bitmaps[src] & mask;
372 	q->bitmaps[src] &= ~mask;
373 }
374 
375 static inline void
376 qfq_unblock_groups(struct qfq_sched *q, int index, uint64_t old_finish)
377 {
378 	unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
379 	struct qfq_group *next;
380 
381 	if (mask) {
382 		next = qfq_ffs(q, mask);
383 		if (!qfq_gt(next->F, old_finish))
384 			return;
385 	}
386 
387 	mask = (1UL << index) - 1;
388 	qfq_move_groups(q, mask, EB, ER);
389 	qfq_move_groups(q, mask, IB, IR);
390 }
391 
392 /*
393  * perhaps
394  *
395 	old_V ^= q->V;
396 	old_V >>= QFQ_MIN_SLOT_SHIFT;
397 	if (old_V) {
398 		...
399 	}
400  *
401  */
402 static inline void
403 qfq_make_eligible(struct qfq_sched *q, uint64_t old_V)
404 {
405 	unsigned long mask, vslot, old_vslot;
406 
407 	vslot = q->V >> QFQ_MIN_SLOT_SHIFT;
408 	old_vslot = old_V >> QFQ_MIN_SLOT_SHIFT;
409 
410 	if (vslot != old_vslot) {
411 		mask = (2UL << (__fls(vslot ^ old_vslot))) - 1;
412 		qfq_move_groups(q, mask, IR, ER);
413 		qfq_move_groups(q, mask, IB, EB);
414 	}
415 }
416 
417 /*
418  * XXX we should make sure that slot becomes less than 32.
419  * This is guaranteed by the input values.
420  * roundedS is always cl->S rounded on grp->slot_shift bits.
421  */
422 static inline void
423 qfq_slot_insert(struct qfq_group *grp, struct qfq_class *cl, uint64_t roundedS)
424 {
425 	uint64_t slot = (roundedS - grp->S) >> grp->slot_shift;
426 	unsigned int i = (grp->front + slot) % QFQ_MAX_SLOTS;
427 
428 	cl->next = grp->slots[i];
429 	grp->slots[i] = cl;
430 	__set_bit(slot, &grp->full_slots);
431 }
432 
433 /*
434  * remove the entry from the slot
435  */
436 static inline void
437 qfq_front_slot_remove(struct qfq_group *grp)
438 {
439 	struct qfq_class **h = &grp->slots[grp->front];
440 
441 	*h = (*h)->next;
442 	if (!*h)
443 		__clear_bit(0, &grp->full_slots);
444 }
445 
446 /*
447  * Returns the first full queue in a group. As a side effect,
448  * adjust the bucket list so the first non-empty bucket is at
449  * position 0 in full_slots.
450  */
451 static inline struct qfq_class *
452 qfq_slot_scan(struct qfq_group *grp)
453 {
454 	int i;
455 
456 	ND("grp %d full %x", grp->index, grp->full_slots);
457 	if (!grp->full_slots)
458 		return NULL;
459 
460 	i = ffs(grp->full_slots) - 1; // zero-based
461 	if (i > 0) {
462 		grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
463 		grp->full_slots >>= i;
464 	}
465 
466 	return grp->slots[grp->front];
467 }
468 
469 /*
470  * adjust the bucket list. When the start time of a group decreases,
471  * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
472  * move the objects. The mask of occupied slots must be shifted
473  * because we use ffs() to find the first non-empty slot.
474  * This covers decreases in the group's start time, but what about
475  * increases of the start time ?
476  * Here too we should make sure that i is less than 32
477  */
478 static inline void
479 qfq_slot_rotate(struct qfq_sched *q, struct qfq_group *grp, uint64_t roundedS)
480 {
481 	unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
482 
483 	grp->full_slots <<= i;
484 	grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
485 }
486 
487 
488 static inline void
489 qfq_update_eligible(struct qfq_sched *q, uint64_t old_V)
490 {
491 	bitmap ineligible;
492 
493 	ineligible = q->bitmaps[IR] | q->bitmaps[IB];
494 	if (ineligible) {
495 		if (!q->bitmaps[ER]) {
496 			struct qfq_group *grp;
497 			grp = qfq_ffs(q, ineligible);
498 			if (qfq_gt(grp->S, q->V))
499 				q->V = grp->S;
500 		}
501 		qfq_make_eligible(q, old_V);
502 	}
503 }
504 
505 /*
506  * Updates the class, returns true if also the group needs to be updated.
507  */
508 static inline int
509 qfq_update_class(struct qfq_sched *q, struct qfq_group *grp,
510 	    struct qfq_class *cl)
511 {
512 
513 	cl->S = cl->F;
514 	if (cl->_q.mq.head == NULL)  {
515 		qfq_front_slot_remove(grp);
516 	} else {
517 		unsigned int len;
518 		uint64_t roundedS;
519 
520 		len = cl->_q.mq.head->m_pkthdr.len;
521 		cl->F = cl->S + (uint64_t)len * cl->inv_w;
522 		roundedS = qfq_round_down(cl->S, grp->slot_shift);
523 		if (roundedS == grp->S)
524 			return 0;
525 
526 		qfq_front_slot_remove(grp);
527 		qfq_slot_insert(grp, cl, roundedS);
528 	}
529 	return 1;
530 }
531 
532 static struct mbuf *
533 qfq_dequeue(struct dn_sch_inst *si)
534 {
535 	struct qfq_sched *q = (struct qfq_sched *)(si + 1);
536 	struct qfq_group *grp;
537 	struct qfq_class *cl;
538 	struct mbuf *m;
539 	uint64_t old_V;
540 
541 	NO(q->loops++;)
542 	if (!q->bitmaps[ER]) {
543 		NO(if (q->queued)
544 			dump_sched(q, "start dequeue");)
545 		return NULL;
546 	}
547 
548 	grp = qfq_ffs(q, q->bitmaps[ER]);
549 
550 	cl = grp->slots[grp->front];
551 	/* extract from the first bucket in the bucket list */
552 	m = dn_dequeue(&cl->_q);
553 
554 	if (!m) {
555 		D("BUG/* non-workconserving leaf */");
556 		return NULL;
557 	}
558 	NO(q->queued--;)
559 	old_V = q->V;
560 	q->V += (uint64_t)m->m_pkthdr.len * IWSUM;
561 	ND("m is %p F 0x%llx V now 0x%llx", m, cl->F, q->V);
562 
563 	if (qfq_update_class(q, grp, cl)) {
564 		uint64_t old_F = grp->F;
565 		cl = qfq_slot_scan(grp);
566 		if (!cl) { /* group gone, remove from ER */
567 			__clear_bit(grp->index, &q->bitmaps[ER]);
568 			// grp->S = grp->F + 1; // XXX debugging only
569 		} else {
570 			uint64_t roundedS = qfq_round_down(cl->S, grp->slot_shift);
571 			unsigned int s;
572 
573 			if (grp->S == roundedS)
574 				goto skip_unblock;
575 			grp->S = roundedS;
576 			grp->F = roundedS + (2ULL << grp->slot_shift);
577 			/* remove from ER and put in the new set */
578 			__clear_bit(grp->index, &q->bitmaps[ER]);
579 			s = qfq_calc_state(q, grp);
580 			__set_bit(grp->index, &q->bitmaps[s]);
581 		}
582 		/* we need to unblock even if the group has gone away */
583 		qfq_unblock_groups(q, grp->index, old_F);
584 	}
585 
586 skip_unblock:
587 	qfq_update_eligible(q, old_V);
588 	NO(if (!q->bitmaps[ER] && q->queued)
589 		dump_sched(q, "end dequeue");)
590 
591 	return m;
592 }
593 
594 /*
595  * Assign a reasonable start time for a new flow k in group i.
596  * Admissible values for \hat(F) are multiples of \sigma_i
597  * no greater than V+\sigma_i . Larger values mean that
598  * we had a wraparound so we consider the timestamp to be stale.
599  *
600  * If F is not stale and F >= V then we set S = F.
601  * Otherwise we should assign S = V, but this may violate
602  * the ordering in ER. So, if we have groups in ER, set S to
603  * the F_j of the first group j which would be blocking us.
604  * We are guaranteed not to move S backward because
605  * otherwise our group i would still be blocked.
606  */
607 static inline void
608 qfq_update_start(struct qfq_sched *q, struct qfq_class *cl)
609 {
610 	unsigned long mask;
611 	uint64_t limit, roundedF;
612 	int slot_shift = cl->grp->slot_shift;
613 
614 	roundedF = qfq_round_down(cl->F, slot_shift);
615 	limit = qfq_round_down(q->V, slot_shift) + (1UL << slot_shift);
616 
617 	if (!qfq_gt(cl->F, q->V) || qfq_gt(roundedF, limit)) {
618 		/* timestamp was stale */
619 		mask = mask_from(q->bitmaps[ER], cl->grp->index);
620 		if (mask) {
621 			struct qfq_group *next = qfq_ffs(q, mask);
622 			if (qfq_gt(roundedF, next->F)) {
623 				cl->S = next->F;
624 				return;
625 			}
626 		}
627 		cl->S = q->V;
628 	} else { /* timestamp is not stale */
629 		cl->S = cl->F;
630 	}
631 }
632 
633 static int
634 qfq_enqueue(struct dn_sch_inst *si, struct dn_queue *_q, struct mbuf *m)
635 {
636 	struct qfq_sched *q = (struct qfq_sched *)(si + 1);
637 	struct qfq_group *grp;
638 	struct qfq_class *cl = (struct qfq_class *)_q;
639 	uint64_t roundedS;
640 	int s;
641 
642 	NO(q->loops++;)
643 	DX(4, "len %d flow %p inv_w 0x%x grp %d", m->m_pkthdr.len,
644 		_q, cl->inv_w, cl->grp->index);
645 	/* XXX verify that the packet obeys the parameters */
646 	if (m != _q->mq.head) {
647 		if (dn_enqueue(_q, m, 0)) /* packet was dropped */
648 			return 1;
649 		NO(q->queued++;)
650 		if (m != _q->mq.head)
651 			return 0;
652 	}
653 	/* If reach this point, queue q was idle */
654 	grp = cl->grp;
655 	qfq_update_start(q, cl); /* adjust start time */
656 	/* compute new finish time and rounded start. */
657 	cl->F = cl->S + (uint64_t)(m->m_pkthdr.len) * cl->inv_w;
658 	roundedS = qfq_round_down(cl->S, grp->slot_shift);
659 
660 	/*
661 	 * insert cl in the correct bucket.
662 	 * If cl->S >= grp->S we don't need to adjust the
663 	 * bucket list and simply go to the insertion phase.
664 	 * Otherwise grp->S is decreasing, we must make room
665 	 * in the bucket list, and also recompute the group state.
666 	 * Finally, if there were no flows in this group and nobody
667 	 * was in ER make sure to adjust V.
668 	 */
669 	if (grp->full_slots) {
670 		if (!qfq_gt(grp->S, cl->S))
671 			goto skip_update;
672 		/* create a slot for this cl->S */
673 		qfq_slot_rotate(q, grp, roundedS);
674 		/* group was surely ineligible, remove */
675 		__clear_bit(grp->index, &q->bitmaps[IR]);
676 		__clear_bit(grp->index, &q->bitmaps[IB]);
677 	} else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V))
678 		q->V = roundedS;
679 
680 	grp->S = roundedS;
681 	grp->F = roundedS + (2ULL << grp->slot_shift); // i.e. 2\sigma_i
682 	s = qfq_calc_state(q, grp);
683 	__set_bit(grp->index, &q->bitmaps[s]);
684 	ND("new state %d 0x%x", s, q->bitmaps[s]);
685 	ND("S %llx F %llx V %llx", cl->S, cl->F, q->V);
686 skip_update:
687 	qfq_slot_insert(grp, cl, roundedS);
688 
689 	return 0;
690 }
691 
692 
693 #if 0
694 static inline void
695 qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
696 	struct qfq_class *cl, struct qfq_class **pprev)
697 {
698 	unsigned int i, offset;
699 	uint64_t roundedS;
700 
701 	roundedS = qfq_round_down(cl->S, grp->slot_shift);
702 	offset = (roundedS - grp->S) >> grp->slot_shift;
703 	i = (grp->front + offset) % QFQ_MAX_SLOTS;
704 
705 #ifdef notyet
706 	if (!pprev) {
707 		pprev = &grp->slots[i];
708 		while (*pprev && *pprev != cl)
709 			pprev = &(*pprev)->next;
710 	}
711 #endif
712 
713 	*pprev = cl->next;
714 	if (!grp->slots[i])
715 		__clear_bit(offset, &grp->full_slots);
716 }
717 
718 /*
719  * called to forcibly destroy a queue.
720  * If the queue is not in the front bucket, or if it has
721  * other queues in the front bucket, we can simply remove
722  * the queue with no other side effects.
723  * Otherwise we must propagate the event up.
724  * XXX description to be completed.
725  */
726 static void
727 qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl,
728 				 struct qfq_class **pprev)
729 {
730 	struct qfq_group *grp = &q->groups[cl->index];
731 	unsigned long mask;
732 	uint64_t roundedS;
733 	int s;
734 
735 	cl->F = cl->S;	// not needed if the class goes away.
736 	qfq_slot_remove(q, grp, cl, pprev);
737 
738 	if (!grp->full_slots) {
739 		/* nothing left in the group, remove from all sets.
740 		 * Do ER last because if we were blocking other groups
741 		 * we must unblock them.
742 		 */
743 		__clear_bit(grp->index, &q->bitmaps[IR]);
744 		__clear_bit(grp->index, &q->bitmaps[EB]);
745 		__clear_bit(grp->index, &q->bitmaps[IB]);
746 
747 		if (test_bit(grp->index, &q->bitmaps[ER]) &&
748 		    !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
749 			mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
750 			if (mask)
751 				mask = ~((1UL << __fls(mask)) - 1);
752 			else
753 				mask = ~0UL;
754 			qfq_move_groups(q, mask, EB, ER);
755 			qfq_move_groups(q, mask, IB, IR);
756 		}
757 		__clear_bit(grp->index, &q->bitmaps[ER]);
758 	} else if (!grp->slots[grp->front]) {
759 		cl = qfq_slot_scan(grp);
760 		roundedS = qfq_round_down(cl->S, grp->slot_shift);
761 		if (grp->S != roundedS) {
762 			__clear_bit(grp->index, &q->bitmaps[ER]);
763 			__clear_bit(grp->index, &q->bitmaps[IR]);
764 			__clear_bit(grp->index, &q->bitmaps[EB]);
765 			__clear_bit(grp->index, &q->bitmaps[IB]);
766 			grp->S = roundedS;
767 			grp->F = roundedS + (2ULL << grp->slot_shift);
768 			s = qfq_calc_state(q, grp);
769 			__set_bit(grp->index, &q->bitmaps[s]);
770 		}
771 	}
772 	qfq_update_eligible(q, q->V);
773 }
774 #endif
775 
776 static int
777 qfq_new_fsk(struct dn_fsk *f)
778 {
779 	ipdn_bound_var(&f->fs.par[0], 1, 1, QFQ_MAX_WEIGHT, "qfq weight");
780 	ipdn_bound_var(&f->fs.par[1], 1500, 1, 2000, "qfq maxlen");
781 	ND("weight %d len %d\n", f->fs.par[0], f->fs.par[1]);
782 	return 0;
783 }
784 
785 /*
786  * initialize a new scheduler instance
787  */
788 static int
789 qfq_new_sched(struct dn_sch_inst *si)
790 {
791 	struct qfq_sched *q = (struct qfq_sched *)(si + 1);
792 	struct qfq_group *grp;
793 	int i;
794 
795 	for (i = 0; i <= QFQ_MAX_INDEX; i++) {
796 		grp = &q->groups[i];
797 		grp->index = i;
798 		grp->slot_shift = QFQ_MTU_SHIFT + FRAC_BITS -
799 					(QFQ_MAX_INDEX - i);
800 	}
801 	return 0;
802 }
803 
804 /*
805  * QFQ scheduler descriptor
806  */
807 static struct dn_alg qfq_desc = {
808 	_SI( .type = ) DN_SCHED_QFQ,
809 	_SI( .name = ) "QFQ",
810 	_SI( .flags = ) DN_MULTIQUEUE,
811 
812 	_SI( .schk_datalen = ) 0,
813 	_SI( .si_datalen = ) sizeof(struct qfq_sched),
814 	_SI( .q_datalen = ) sizeof(struct qfq_class) - sizeof(struct dn_queue),
815 
816 	_SI( .enqueue = ) qfq_enqueue,
817 	_SI( .dequeue = ) qfq_dequeue,
818 
819 	_SI( .config = )  NULL,
820 	_SI( .destroy = )  NULL,
821 	_SI( .new_sched = ) qfq_new_sched,
822 	_SI( .free_sched = )  NULL,
823 	_SI( .new_fsk = ) qfq_new_fsk,
824 	_SI( .free_fsk = )  NULL,
825 	_SI( .new_queue = ) qfq_new_queue,
826 	_SI( .free_queue = ) qfq_free_queue,
827 };
828 
829 DECLARE_DNSCHED_MODULE(dn_qfq, &qfq_desc);
830 
831 #ifdef QFQ_DEBUG
832 static void
833 dump_groups(struct qfq_sched *q, uint32_t mask)
834 {
835 	int i, j;
836 
837 	for (i = 0; i < QFQ_MAX_INDEX + 1; i++) {
838 		struct qfq_group *g = &q->groups[i];
839 
840 		if (0 == (mask & (1<<i)))
841 			continue;
842 		for (j = 0; j < QFQ_MAX_SLOTS; j++) {
843 			if (g->slots[j])
844 				D("    bucket %d %p", j, g->slots[j]);
845 		}
846 		D("full_slots 0x%x", g->full_slots);
847 		D("        %2d S 0x%20llx F 0x%llx %c", i,
848 			g->S, g->F,
849 			mask & (1<<i) ? '1' : '0');
850 	}
851 }
852 
853 static void
854 dump_sched(struct qfq_sched *q, const char *msg)
855 {
856 	D("--- in %s: ---", msg);
857 	ND("loops %d queued %d V 0x%llx", q->loops, q->queued, q->V);
858 	D("    ER 0x%08x", q->bitmaps[ER]);
859 	D("    EB 0x%08x", q->bitmaps[EB]);
860 	D("    IR 0x%08x", q->bitmaps[IR]);
861 	D("    IB 0x%08x", q->bitmaps[IB]);
862 	dump_groups(q, 0xffffffff);
863 };
864 #endif /* QFQ_DEBUG */
865