xref: /freebsd/sys/netpfil/ipfw/dn_sched_qfq.c (revision bd81e07d2761cf1c13063eb49a5c0cb4a6951318)
1 /*
2  * Copyright (c) 2010 Fabio Checconi, Luigi Rizzo, Paolo Valente
3  * All rights reserved
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /*
28  * $FreeBSD$
29  */
30 
31 #ifdef _KERNEL
32 #include <sys/malloc.h>
33 #include <sys/socket.h>
34 #include <sys/socketvar.h>
35 #include <sys/kernel.h>
36 #include <sys/mbuf.h>
37 #include <sys/module.h>
38 #include <net/if.h>	/* IFNAMSIZ */
39 #include <netinet/in.h>
40 #include <netinet/ip_var.h>		/* ipfw_rule_ref */
41 #include <netinet/ip_fw.h>	/* flow_id */
42 #include <netinet/ip_dummynet.h>
43 #include <netpfil/ipfw/dn_heap.h>
44 #include <netpfil/ipfw/ip_dn_private.h>
45 #include <netpfil/ipfw/dn_sched.h>
46 #else
47 #include <dn_test.h>
48 #endif
49 
50 #ifdef QFQ_DEBUG
51 struct qfq_sched;
52 static void dump_sched(struct qfq_sched *q, const char *msg);
53 #define	NO(x)	x
54 #else
55 #define NO(x)
56 #endif
57 #define DN_SCHED_QFQ	4 // XXX Where?
58 typedef	unsigned long	bitmap;
59 
60 /*
61  * bitmaps ops are critical. Some linux versions have __fls
62  * and the bitmap ops. Some machines have ffs
63  */
64 #if defined(_WIN32) || (defined(__MIPSEL__) && defined(LINUX_24))
65 int fls(unsigned int n)
66 {
67 	int i = 0;
68 	for (i = 0; n > 0; n >>= 1, i++)
69 		;
70 	return i;
71 }
72 #endif
73 
74 #if !defined(_KERNEL) || defined( __FreeBSD__ ) || defined(_WIN32) || (defined(__MIPSEL__) && defined(LINUX_24))
75 static inline unsigned long __fls(unsigned long word)
76 {
77 	return fls(word) - 1;
78 }
79 #endif
80 
81 #if !defined(_KERNEL) || !defined(__linux__)
82 #ifdef QFQ_DEBUG
83 int test_bit(int ix, bitmap *p)
84 {
85 	if (ix < 0 || ix > 31)
86 		D("bad index %d", ix);
87 	return *p & (1<<ix);
88 }
89 void __set_bit(int ix, bitmap *p)
90 {
91 	if (ix < 0 || ix > 31)
92 		D("bad index %d", ix);
93 	*p |= (1<<ix);
94 }
95 void __clear_bit(int ix, bitmap *p)
96 {
97 	if (ix < 0 || ix > 31)
98 		D("bad index %d", ix);
99 	*p &= ~(1<<ix);
100 }
101 #else /* !QFQ_DEBUG */
102 /* XXX do we have fast version, or leave it to the compiler ? */
103 #define test_bit(ix, pData)	((*pData) & (1<<(ix)))
104 #define __set_bit(ix, pData)	(*pData) |= (1<<(ix))
105 #define __clear_bit(ix, pData)	(*pData) &= ~(1<<(ix))
106 #endif /* !QFQ_DEBUG */
107 #endif /* !__linux__ */
108 
109 #ifdef __MIPSEL__
110 #define __clear_bit(ix, pData)	(*pData) &= ~(1<<(ix))
111 #endif
112 
113 /*-------------------------------------------*/
114 /*
115 
116 Virtual time computations.
117 
118 S, F and V are all computed in fixed point arithmetic with
119 FRAC_BITS decimal bits.
120 
121    QFQ_MAX_INDEX is the maximum index allowed for a group. We need
122   	one bit per index.
123    QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
124    The layout of the bits is as below:
125 
126                    [ MTU_SHIFT ][      FRAC_BITS    ]
127                    [ MAX_INDEX    ][ MIN_SLOT_SHIFT ]
128   				 ^.__grp->index = 0
129   				 *.__grp->slot_shift
130 
131    where MIN_SLOT_SHIFT is derived by difference from the others.
132 
133 The max group index corresponds to Lmax/w_min, where
134 Lmax=1<<MTU_SHIFT, w_min = 1 .
135 From this, and knowing how many groups (MAX_INDEX) we want,
136 we can derive the shift corresponding to each group.
137 
138 Because we often need to compute
139 	F = S + len/w_i  and V = V + len/wsum
140 instead of storing w_i store the value
141 	inv_w = (1<<FRAC_BITS)/w_i
142 so we can do F = S + len * inv_w * wsum.
143 We use W_TOT in the formulas so we can easily move between
144 static and adaptive weight sum.
145 
146 The per-scheduler-instance data contain all the data structures
147 for the scheduler: bitmaps and bucket lists.
148 
149  */
150 /*
151  * Maximum number of consecutive slots occupied by backlogged classes
152  * inside a group. This is approx lmax/lmin + 5.
153  * XXX check because it poses constraints on MAX_INDEX
154  */
155 #define QFQ_MAX_SLOTS	32
156 /*
157  * Shifts used for class<->group mapping. Class weights are
158  * in the range [1, QFQ_MAX_WEIGHT], we to map each class i to the
159  * group with the smallest index that can support the L_i / r_i
160  * configured for the class.
161  *
162  * grp->index is the index of the group; and grp->slot_shift
163  * is the shift for the corresponding (scaled) sigma_i.
164  *
165  * When computing the group index, we do (len<<FP_SHIFT)/weight,
166  * then compute an FLS (which is like a log2()), and if the result
167  * is below the MAX_INDEX region we use 0 (which is the same as
168  * using a larger len).
169  */
170 #define QFQ_MAX_INDEX		19
171 #define QFQ_MAX_WSHIFT		16	/* log2(max_weight) */
172 
173 #define	QFQ_MAX_WEIGHT		(1<<QFQ_MAX_WSHIFT)
174 #define QFQ_MAX_WSUM		(2*QFQ_MAX_WEIGHT)
175 
176 #define FRAC_BITS		30	/* fixed point arithmetic */
177 #define ONE_FP			(1UL << FRAC_BITS)
178 
179 #define QFQ_MTU_SHIFT		11	/* log2(max_len) */
180 #define QFQ_MIN_SLOT_SHIFT	(FRAC_BITS + QFQ_MTU_SHIFT - QFQ_MAX_INDEX)
181 
182 /*
183  * Possible group states, also indexes for the bitmaps array in
184  * struct qfq_queue. We rely on ER, IR, EB, IB being numbered 0..3
185  */
186 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
187 
188 struct qfq_group;
189 /*
190  * additional queue info. Some of this info should come from
191  * the flowset, we copy them here for faster processing.
192  * This is an overlay of the struct dn_queue
193  */
194 struct qfq_class {
195 	struct dn_queue _q;
196 	uint64_t S, F;		/* flow timestamps (exact) */
197 	struct qfq_class *next; /* Link for the slot list. */
198 
199 	/* group we belong to. In principle we would need the index,
200 	 * which is log_2(lmax/weight), but we never reference it
201 	 * directly, only the group.
202 	 */
203 	struct qfq_group *grp;
204 
205 	/* these are copied from the flowset. */
206 	uint32_t	inv_w;	/* ONE_FP/weight */
207 	uint32_t 	lmax;	/* Max packet size for this flow. */
208 };
209 
210 /* Group descriptor, see the paper for details.
211  * Basically this contains the bucket lists
212  */
213 struct qfq_group {
214 	uint64_t S, F;			/* group timestamps (approx). */
215 	unsigned int slot_shift;	/* Slot shift. */
216 	unsigned int index;		/* Group index. */
217 	unsigned int front;		/* Index of the front slot. */
218 	bitmap full_slots;		/* non-empty slots */
219 
220 	/* Array of lists of active classes. */
221 	struct qfq_class *slots[QFQ_MAX_SLOTS];
222 };
223 
224 /* scheduler instance descriptor. */
225 struct qfq_sched {
226 	uint64_t	V;		/* Precise virtual time. */
227 	uint32_t	wsum;		/* weight sum */
228 	uint32_t	iwsum;		/* inverse weight sum */
229 	NO(uint32_t	i_wsum;		/* ONE_FP/w_sum */
230 	uint32_t	_queued;	/* debugging */
231 	uint32_t	loops;	/* debugging */)
232 	bitmap bitmaps[QFQ_MAX_STATE];	/* Group bitmaps. */
233 	struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
234 };
235 
236 /*---- support functions ----------------------------*/
237 
238 /* Generic comparison function, handling wraparound. */
239 static inline int qfq_gt(uint64_t a, uint64_t b)
240 {
241 	return (int64_t)(a - b) > 0;
242 }
243 
244 /* Round a precise timestamp to its slotted value. */
245 static inline uint64_t qfq_round_down(uint64_t ts, unsigned int shift)
246 {
247 	return ts & ~((1ULL << shift) - 1);
248 }
249 
250 /* return the pointer to the group with lowest index in the bitmap */
251 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
252 					unsigned long bitmap)
253 {
254 	int index = ffs(bitmap) - 1; // zero-based
255 	return &q->groups[index];
256 }
257 
258 /*
259  * Calculate a flow index, given its weight and maximum packet length.
260  * index = log_2(maxlen/weight) but we need to apply the scaling.
261  * This is used only once at flow creation.
262  */
263 static int qfq_calc_index(uint32_t inv_w, unsigned int maxlen)
264 {
265 	uint64_t slot_size = (uint64_t)maxlen *inv_w;
266 	unsigned long size_map;
267 	int index = 0;
268 
269 	size_map = (unsigned long)(slot_size >> QFQ_MIN_SLOT_SHIFT);
270 	if (!size_map)
271 		goto out;
272 
273 	index = __fls(size_map) + 1;	// basically a log_2()
274 	index -= !(slot_size - (1ULL << (index + QFQ_MIN_SLOT_SHIFT - 1)));
275 
276 	if (index < 0)
277 		index = 0;
278 
279 out:
280 	ND("W = %d, L = %d, I = %d\n", ONE_FP/inv_w, maxlen, index);
281 	return index;
282 }
283 /*---- end support functions ----*/
284 
285 /*-------- API calls --------------------------------*/
286 /*
287  * Validate and copy parameters from flowset.
288  */
289 static int
290 qfq_new_queue(struct dn_queue *_q)
291 {
292 	struct qfq_sched *q = (struct qfq_sched *)(_q->_si + 1);
293 	struct qfq_class *cl = (struct qfq_class *)_q;
294 	int i;
295 	uint32_t w;	/* approximated weight */
296 
297 	/* import parameters from the flowset. They should be correct
298 	 * already.
299 	 */
300 	w = _q->fs->fs.par[0];
301 	cl->lmax = _q->fs->fs.par[1];
302 	if (!w || w > QFQ_MAX_WEIGHT) {
303 		w = 1;
304 		D("rounding weight to 1");
305 	}
306 	cl->inv_w = ONE_FP/w;
307 	w = ONE_FP/cl->inv_w;
308 	if (q->wsum + w > QFQ_MAX_WSUM)
309 		return EINVAL;
310 
311 	i = qfq_calc_index(cl->inv_w, cl->lmax);
312 	cl->grp = &q->groups[i];
313 	q->wsum += w;
314 	q->iwsum = ONE_FP / q->wsum; /* XXX note theory */
315 	// XXX cl->S = q->V; ?
316 	return 0;
317 }
318 
319 /* remove an empty queue */
320 static int
321 qfq_free_queue(struct dn_queue *_q)
322 {
323 	struct qfq_sched *q = (struct qfq_sched *)(_q->_si + 1);
324 	struct qfq_class *cl = (struct qfq_class *)_q;
325 	if (cl->inv_w) {
326 		q->wsum -= ONE_FP/cl->inv_w;
327 		if (q->wsum != 0)
328 			q->iwsum = ONE_FP / q->wsum;
329 		cl->inv_w = 0; /* reset weight to avoid run twice */
330 	}
331 	return 0;
332 }
333 
334 /* Calculate a mask to mimic what would be ffs_from(). */
335 static inline unsigned long
336 mask_from(unsigned long bitmap, int from)
337 {
338 	return bitmap & ~((1UL << from) - 1);
339 }
340 
341 /*
342  * The state computation relies on ER=0, IR=1, EB=2, IB=3
343  * First compute eligibility comparing grp->S, q->V,
344  * then check if someone is blocking us and possibly add EB
345  */
346 static inline unsigned int
347 qfq_calc_state(struct qfq_sched *q, struct qfq_group *grp)
348 {
349 	/* if S > V we are not eligible */
350 	unsigned int state = qfq_gt(grp->S, q->V);
351 	unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
352 	struct qfq_group *next;
353 
354 	if (mask) {
355 		next = qfq_ffs(q, mask);
356 		if (qfq_gt(grp->F, next->F))
357 			state |= EB;
358 	}
359 
360 	return state;
361 }
362 
363 /*
364  * In principle
365  *	q->bitmaps[dst] |= q->bitmaps[src] & mask;
366  *	q->bitmaps[src] &= ~mask;
367  * but we should make sure that src != dst
368  */
369 static inline void
370 qfq_move_groups(struct qfq_sched *q, unsigned long mask, int src, int dst)
371 {
372 	q->bitmaps[dst] |= q->bitmaps[src] & mask;
373 	q->bitmaps[src] &= ~mask;
374 }
375 
376 static inline void
377 qfq_unblock_groups(struct qfq_sched *q, int index, uint64_t old_finish)
378 {
379 	unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
380 	struct qfq_group *next;
381 
382 	if (mask) {
383 		next = qfq_ffs(q, mask);
384 		if (!qfq_gt(next->F, old_finish))
385 			return;
386 	}
387 
388 	mask = (1UL << index) - 1;
389 	qfq_move_groups(q, mask, EB, ER);
390 	qfq_move_groups(q, mask, IB, IR);
391 }
392 
393 /*
394  * perhaps
395  *
396 	old_V ^= q->V;
397 	old_V >>= QFQ_MIN_SLOT_SHIFT;
398 	if (old_V) {
399 		...
400 	}
401  *
402  */
403 static inline void
404 qfq_make_eligible(struct qfq_sched *q, uint64_t old_V)
405 {
406 	unsigned long mask, vslot, old_vslot;
407 
408 	vslot = q->V >> QFQ_MIN_SLOT_SHIFT;
409 	old_vslot = old_V >> QFQ_MIN_SLOT_SHIFT;
410 
411 	if (vslot != old_vslot) {
412 		/* should be 1ULL not 2ULL */
413 		mask = (1ULL << (__fls(vslot ^ old_vslot))) - 1;
414 		qfq_move_groups(q, mask, IR, ER);
415 		qfq_move_groups(q, mask, IB, EB);
416 	}
417 }
418 
419 /*
420  * XXX we should make sure that slot becomes less than 32.
421  * This is guaranteed by the input values.
422  * roundedS is always cl->S rounded on grp->slot_shift bits.
423  */
424 static inline void
425 qfq_slot_insert(struct qfq_group *grp, struct qfq_class *cl, uint64_t roundedS)
426 {
427 	uint64_t slot = (roundedS - grp->S) >> grp->slot_shift;
428 	unsigned int i = (grp->front + slot) % QFQ_MAX_SLOTS;
429 
430 	cl->next = grp->slots[i];
431 	grp->slots[i] = cl;
432 	__set_bit(slot, &grp->full_slots);
433 }
434 
435 /*
436  * remove the entry from the slot
437  */
438 static inline void
439 qfq_front_slot_remove(struct qfq_group *grp)
440 {
441 	struct qfq_class **h = &grp->slots[grp->front];
442 
443 	*h = (*h)->next;
444 	if (!*h)
445 		__clear_bit(0, &grp->full_slots);
446 }
447 
448 /*
449  * Returns the first full queue in a group. As a side effect,
450  * adjust the bucket list so the first non-empty bucket is at
451  * position 0 in full_slots.
452  */
453 static inline struct qfq_class *
454 qfq_slot_scan(struct qfq_group *grp)
455 {
456 	int i;
457 
458 	ND("grp %d full %x", grp->index, grp->full_slots);
459 	if (!grp->full_slots)
460 		return NULL;
461 
462 	i = ffs(grp->full_slots) - 1; // zero-based
463 	if (i > 0) {
464 		grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
465 		grp->full_slots >>= i;
466 	}
467 
468 	return grp->slots[grp->front];
469 }
470 
471 /*
472  * adjust the bucket list. When the start time of a group decreases,
473  * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
474  * move the objects. The mask of occupied slots must be shifted
475  * because we use ffs() to find the first non-empty slot.
476  * This covers decreases in the group's start time, but what about
477  * increases of the start time ?
478  * Here too we should make sure that i is less than 32
479  */
480 static inline void
481 qfq_slot_rotate(struct qfq_sched *q, struct qfq_group *grp, uint64_t roundedS)
482 {
483 	unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
484 
485 	grp->full_slots <<= i;
486 	grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
487 }
488 
489 
490 static inline void
491 qfq_update_eligible(struct qfq_sched *q, uint64_t old_V)
492 {
493 	bitmap ineligible;
494 
495 	ineligible = q->bitmaps[IR] | q->bitmaps[IB];
496 	if (ineligible) {
497 		if (!q->bitmaps[ER]) {
498 			struct qfq_group *grp;
499 			grp = qfq_ffs(q, ineligible);
500 			if (qfq_gt(grp->S, q->V))
501 				q->V = grp->S;
502 		}
503 		qfq_make_eligible(q, old_V);
504 	}
505 }
506 
507 /*
508  * Updates the class, returns true if also the group needs to be updated.
509  */
510 static inline int
511 qfq_update_class(struct qfq_sched *q, struct qfq_group *grp,
512 	    struct qfq_class *cl)
513 {
514 
515 	cl->S = cl->F;
516 	if (cl->_q.mq.head == NULL)  {
517 		qfq_front_slot_remove(grp);
518 	} else {
519 		unsigned int len;
520 		uint64_t roundedS;
521 
522 		len = cl->_q.mq.head->m_pkthdr.len;
523 		cl->F = cl->S + (uint64_t)len * cl->inv_w;
524 		roundedS = qfq_round_down(cl->S, grp->slot_shift);
525 		if (roundedS == grp->S)
526 			return 0;
527 
528 		qfq_front_slot_remove(grp);
529 		qfq_slot_insert(grp, cl, roundedS);
530 	}
531 	return 1;
532 }
533 
534 static struct mbuf *
535 qfq_dequeue(struct dn_sch_inst *si)
536 {
537 	struct qfq_sched *q = (struct qfq_sched *)(si + 1);
538 	struct qfq_group *grp;
539 	struct qfq_class *cl;
540 	struct mbuf *m;
541 	uint64_t old_V;
542 
543 	NO(q->loops++;)
544 	if (!q->bitmaps[ER]) {
545 		NO(if (q->queued)
546 			dump_sched(q, "start dequeue");)
547 		return NULL;
548 	}
549 
550 	grp = qfq_ffs(q, q->bitmaps[ER]);
551 
552 	cl = grp->slots[grp->front];
553 	/* extract from the first bucket in the bucket list */
554 	m = dn_dequeue(&cl->_q);
555 
556 	if (!m) {
557 		D("BUG/* non-workconserving leaf */");
558 		return NULL;
559 	}
560 	NO(q->queued--;)
561 	old_V = q->V;
562 	q->V += (uint64_t)m->m_pkthdr.len * q->iwsum;
563 	ND("m is %p F 0x%llx V now 0x%llx", m, cl->F, q->V);
564 
565 	if (qfq_update_class(q, grp, cl)) {
566 		uint64_t old_F = grp->F;
567 		cl = qfq_slot_scan(grp);
568 		if (!cl) { /* group gone, remove from ER */
569 			__clear_bit(grp->index, &q->bitmaps[ER]);
570 			// grp->S = grp->F + 1; // XXX debugging only
571 		} else {
572 			uint64_t roundedS = qfq_round_down(cl->S, grp->slot_shift);
573 			unsigned int s;
574 
575 			if (grp->S == roundedS)
576 				goto skip_unblock;
577 			grp->S = roundedS;
578 			grp->F = roundedS + (2ULL << grp->slot_shift);
579 			/* remove from ER and put in the new set */
580 			__clear_bit(grp->index, &q->bitmaps[ER]);
581 			s = qfq_calc_state(q, grp);
582 			__set_bit(grp->index, &q->bitmaps[s]);
583 		}
584 		/* we need to unblock even if the group has gone away */
585 		qfq_unblock_groups(q, grp->index, old_F);
586 	}
587 
588 skip_unblock:
589 	qfq_update_eligible(q, old_V);
590 	NO(if (!q->bitmaps[ER] && q->queued)
591 		dump_sched(q, "end dequeue");)
592 
593 	return m;
594 }
595 
596 /*
597  * Assign a reasonable start time for a new flow k in group i.
598  * Admissible values for \hat(F) are multiples of \sigma_i
599  * no greater than V+\sigma_i . Larger values mean that
600  * we had a wraparound so we consider the timestamp to be stale.
601  *
602  * If F is not stale and F >= V then we set S = F.
603  * Otherwise we should assign S = V, but this may violate
604  * the ordering in ER. So, if we have groups in ER, set S to
605  * the F_j of the first group j which would be blocking us.
606  * We are guaranteed not to move S backward because
607  * otherwise our group i would still be blocked.
608  */
609 static inline void
610 qfq_update_start(struct qfq_sched *q, struct qfq_class *cl)
611 {
612 	unsigned long mask;
613 	uint64_t limit, roundedF;
614 	int slot_shift = cl->grp->slot_shift;
615 
616 	roundedF = qfq_round_down(cl->F, slot_shift);
617 	limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
618 
619 	if (!qfq_gt(cl->F, q->V) || qfq_gt(roundedF, limit)) {
620 		/* timestamp was stale */
621 		mask = mask_from(q->bitmaps[ER], cl->grp->index);
622 		if (mask) {
623 			struct qfq_group *next = qfq_ffs(q, mask);
624 			if (qfq_gt(roundedF, next->F)) {
625 				/* from pv 71261956973ba9e0637848a5adb4a5819b4bae83 */
626 				if (qfq_gt(limit, next->F))
627 					cl->S = next->F;
628 				else /* preserve timestamp correctness */
629 					cl->S = limit;
630 				return;
631 			}
632 		}
633 		cl->S = q->V;
634 	} else { /* timestamp is not stale */
635 		cl->S = cl->F;
636 	}
637 }
638 
639 static int
640 qfq_enqueue(struct dn_sch_inst *si, struct dn_queue *_q, struct mbuf *m)
641 {
642 	struct qfq_sched *q = (struct qfq_sched *)(si + 1);
643 	struct qfq_group *grp;
644 	struct qfq_class *cl = (struct qfq_class *)_q;
645 	uint64_t roundedS;
646 	int s;
647 
648 	NO(q->loops++;)
649 	DX(4, "len %d flow %p inv_w 0x%x grp %d", m->m_pkthdr.len,
650 		_q, cl->inv_w, cl->grp->index);
651 	/* XXX verify that the packet obeys the parameters */
652 	if (m != _q->mq.head) {
653 		if (dn_enqueue(_q, m, 0)) /* packet was dropped */
654 			return 1;
655 		NO(q->queued++;)
656 		if (m != _q->mq.head)
657 			return 0;
658 	}
659 	/* If reach this point, queue q was idle */
660 	grp = cl->grp;
661 	qfq_update_start(q, cl); /* adjust start time */
662 	/* compute new finish time and rounded start. */
663 	cl->F = cl->S + (uint64_t)(m->m_pkthdr.len) * cl->inv_w;
664 	roundedS = qfq_round_down(cl->S, grp->slot_shift);
665 
666 	/*
667 	 * insert cl in the correct bucket.
668 	 * If cl->S >= grp->S we don't need to adjust the
669 	 * bucket list and simply go to the insertion phase.
670 	 * Otherwise grp->S is decreasing, we must make room
671 	 * in the bucket list, and also recompute the group state.
672 	 * Finally, if there were no flows in this group and nobody
673 	 * was in ER make sure to adjust V.
674 	 */
675 	if (grp->full_slots) {
676 		if (!qfq_gt(grp->S, cl->S))
677 			goto skip_update;
678 		/* create a slot for this cl->S */
679 		qfq_slot_rotate(q, grp, roundedS);
680 		/* group was surely ineligible, remove */
681 		__clear_bit(grp->index, &q->bitmaps[IR]);
682 		__clear_bit(grp->index, &q->bitmaps[IB]);
683 	} else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V))
684 		q->V = roundedS;
685 
686 	grp->S = roundedS;
687 	grp->F = roundedS + (2ULL << grp->slot_shift); // i.e. 2\sigma_i
688 	s = qfq_calc_state(q, grp);
689 	__set_bit(grp->index, &q->bitmaps[s]);
690 	ND("new state %d 0x%x", s, q->bitmaps[s]);
691 	ND("S %llx F %llx V %llx", cl->S, cl->F, q->V);
692 skip_update:
693 	qfq_slot_insert(grp, cl, roundedS);
694 
695 	return 0;
696 }
697 
698 
699 #if 0
700 static inline void
701 qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
702 	struct qfq_class *cl, struct qfq_class **pprev)
703 {
704 	unsigned int i, offset;
705 	uint64_t roundedS;
706 
707 	roundedS = qfq_round_down(cl->S, grp->slot_shift);
708 	offset = (roundedS - grp->S) >> grp->slot_shift;
709 	i = (grp->front + offset) % QFQ_MAX_SLOTS;
710 
711 #ifdef notyet
712 	if (!pprev) {
713 		pprev = &grp->slots[i];
714 		while (*pprev && *pprev != cl)
715 			pprev = &(*pprev)->next;
716 	}
717 #endif
718 
719 	*pprev = cl->next;
720 	if (!grp->slots[i])
721 		__clear_bit(offset, &grp->full_slots);
722 }
723 
724 /*
725  * called to forcibly destroy a queue.
726  * If the queue is not in the front bucket, or if it has
727  * other queues in the front bucket, we can simply remove
728  * the queue with no other side effects.
729  * Otherwise we must propagate the event up.
730  * XXX description to be completed.
731  */
732 static void
733 qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl,
734 				 struct qfq_class **pprev)
735 {
736 	struct qfq_group *grp = &q->groups[cl->index];
737 	unsigned long mask;
738 	uint64_t roundedS;
739 	int s;
740 
741 	cl->F = cl->S;	// not needed if the class goes away.
742 	qfq_slot_remove(q, grp, cl, pprev);
743 
744 	if (!grp->full_slots) {
745 		/* nothing left in the group, remove from all sets.
746 		 * Do ER last because if we were blocking other groups
747 		 * we must unblock them.
748 		 */
749 		__clear_bit(grp->index, &q->bitmaps[IR]);
750 		__clear_bit(grp->index, &q->bitmaps[EB]);
751 		__clear_bit(grp->index, &q->bitmaps[IB]);
752 
753 		if (test_bit(grp->index, &q->bitmaps[ER]) &&
754 		    !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
755 			mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
756 			if (mask)
757 				mask = ~((1UL << __fls(mask)) - 1);
758 			else
759 				mask = ~0UL;
760 			qfq_move_groups(q, mask, EB, ER);
761 			qfq_move_groups(q, mask, IB, IR);
762 		}
763 		__clear_bit(grp->index, &q->bitmaps[ER]);
764 	} else if (!grp->slots[grp->front]) {
765 		cl = qfq_slot_scan(grp);
766 		roundedS = qfq_round_down(cl->S, grp->slot_shift);
767 		if (grp->S != roundedS) {
768 			__clear_bit(grp->index, &q->bitmaps[ER]);
769 			__clear_bit(grp->index, &q->bitmaps[IR]);
770 			__clear_bit(grp->index, &q->bitmaps[EB]);
771 			__clear_bit(grp->index, &q->bitmaps[IB]);
772 			grp->S = roundedS;
773 			grp->F = roundedS + (2ULL << grp->slot_shift);
774 			s = qfq_calc_state(q, grp);
775 			__set_bit(grp->index, &q->bitmaps[s]);
776 		}
777 	}
778 	qfq_update_eligible(q, q->V);
779 }
780 #endif
781 
782 static int
783 qfq_new_fsk(struct dn_fsk *f)
784 {
785 	ipdn_bound_var(&f->fs.par[0], 1, 1, QFQ_MAX_WEIGHT, "qfq weight");
786 	ipdn_bound_var(&f->fs.par[1], 1500, 1, 2000, "qfq maxlen");
787 	ND("weight %d len %d\n", f->fs.par[0], f->fs.par[1]);
788 	return 0;
789 }
790 
791 /*
792  * initialize a new scheduler instance
793  */
794 static int
795 qfq_new_sched(struct dn_sch_inst *si)
796 {
797 	struct qfq_sched *q = (struct qfq_sched *)(si + 1);
798 	struct qfq_group *grp;
799 	int i;
800 
801 	for (i = 0; i <= QFQ_MAX_INDEX; i++) {
802 		grp = &q->groups[i];
803 		grp->index = i;
804 		grp->slot_shift = QFQ_MTU_SHIFT + FRAC_BITS -
805 					(QFQ_MAX_INDEX - i);
806 	}
807 	return 0;
808 }
809 
810 /*
811  * QFQ scheduler descriptor
812  */
813 static struct dn_alg qfq_desc = {
814 	_SI( .type = ) DN_SCHED_QFQ,
815 	_SI( .name = ) "QFQ",
816 	_SI( .flags = ) DN_MULTIQUEUE,
817 
818 	_SI( .schk_datalen = ) 0,
819 	_SI( .si_datalen = ) sizeof(struct qfq_sched),
820 	_SI( .q_datalen = ) sizeof(struct qfq_class) - sizeof(struct dn_queue),
821 
822 	_SI( .enqueue = ) qfq_enqueue,
823 	_SI( .dequeue = ) qfq_dequeue,
824 
825 	_SI( .config = )  NULL,
826 	_SI( .destroy = )  NULL,
827 	_SI( .new_sched = ) qfq_new_sched,
828 	_SI( .free_sched = )  NULL,
829 	_SI( .new_fsk = ) qfq_new_fsk,
830 	_SI( .free_fsk = )  NULL,
831 	_SI( .new_queue = ) qfq_new_queue,
832 	_SI( .free_queue = ) qfq_free_queue,
833 };
834 
835 DECLARE_DNSCHED_MODULE(dn_qfq, &qfq_desc);
836 
837 #ifdef QFQ_DEBUG
838 static void
839 dump_groups(struct qfq_sched *q, uint32_t mask)
840 {
841 	int i, j;
842 
843 	for (i = 0; i < QFQ_MAX_INDEX + 1; i++) {
844 		struct qfq_group *g = &q->groups[i];
845 
846 		if (0 == (mask & (1<<i)))
847 			continue;
848 		for (j = 0; j < QFQ_MAX_SLOTS; j++) {
849 			if (g->slots[j])
850 				D("    bucket %d %p", j, g->slots[j]);
851 		}
852 		D("full_slots 0x%x", g->full_slots);
853 		D("        %2d S 0x%20llx F 0x%llx %c", i,
854 			g->S, g->F,
855 			mask & (1<<i) ? '1' : '0');
856 	}
857 }
858 
859 static void
860 dump_sched(struct qfq_sched *q, const char *msg)
861 {
862 	D("--- in %s: ---", msg);
863 	ND("loops %d queued %d V 0x%llx", q->loops, q->queued, q->V);
864 	D("    ER 0x%08x", q->bitmaps[ER]);
865 	D("    EB 0x%08x", q->bitmaps[EB]);
866 	D("    IR 0x%08x", q->bitmaps[IR]);
867 	D("    IB 0x%08x", q->bitmaps[IB]);
868 	dump_groups(q, 0xffffffff);
869 };
870 #endif /* QFQ_DEBUG */
871