1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2010 Fabio Checconi, Luigi Rizzo, Paolo Valente 5 * All rights reserved 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 /* 30 * $FreeBSD$ 31 */ 32 33 #ifdef _KERNEL 34 #include <sys/malloc.h> 35 #include <sys/socket.h> 36 #include <sys/socketvar.h> 37 #include <sys/kernel.h> 38 #include <sys/lock.h> 39 #include <sys/mbuf.h> 40 #include <sys/module.h> 41 #include <sys/rwlock.h> 42 #include <net/if.h> /* IFNAMSIZ */ 43 #include <netinet/in.h> 44 #include <netinet/ip_var.h> /* ipfw_rule_ref */ 45 #include <netinet/ip_fw.h> /* flow_id */ 46 #include <netinet/ip_dummynet.h> 47 #include <netpfil/ipfw/ip_fw_private.h> 48 #include <netpfil/ipfw/dn_heap.h> 49 #include <netpfil/ipfw/ip_dn_private.h> 50 #ifdef NEW_AQM 51 #include <netpfil/ipfw/dn_aqm.h> 52 #endif 53 #include <netpfil/ipfw/dn_sched.h> 54 #else 55 #include <dn_test.h> 56 #endif 57 58 #ifdef QFQ_DEBUG 59 #define _P64 unsigned long long /* cast for printing uint64_t */ 60 struct qfq_sched; 61 static void dump_sched(struct qfq_sched *q, const char *msg); 62 #define NO(x) x 63 #else 64 #define NO(x) 65 #endif 66 #define DN_SCHED_QFQ 4 // XXX Where? 67 typedef unsigned long bitmap; 68 69 /* 70 * bitmaps ops are critical. Some linux versions have __fls 71 * and the bitmap ops. Some machines have ffs 72 * NOTE: fls() returns 1 for the least significant bit, 73 * __fls() returns 0 for the same case. 74 * We use the base-0 version __fls() to match the description in 75 * the ToN QFQ paper 76 */ 77 #if defined(_WIN32) || (defined(__MIPSEL__) && defined(LINUX_24)) 78 int fls(unsigned int n) 79 { 80 int i = 0; 81 for (i = 0; n > 0; n >>= 1, i++) 82 ; 83 return i; 84 } 85 #endif 86 87 #if !defined(_KERNEL) || defined( __FreeBSD__ ) || defined(_WIN32) || (defined(__MIPSEL__) && defined(LINUX_24)) 88 static inline unsigned long __fls(unsigned long word) 89 { 90 return fls(word) - 1; 91 } 92 #endif 93 94 #if !defined(_KERNEL) || !defined(__linux__) 95 #ifdef QFQ_DEBUG 96 static int test_bit(int ix, bitmap *p) 97 { 98 if (ix < 0 || ix > 31) 99 D("bad index %d", ix); 100 return *p & (1<<ix); 101 } 102 static void __set_bit(int ix, bitmap *p) 103 { 104 if (ix < 0 || ix > 31) 105 D("bad index %d", ix); 106 *p |= (1<<ix); 107 } 108 static void __clear_bit(int ix, bitmap *p) 109 { 110 if (ix < 0 || ix > 31) 111 D("bad index %d", ix); 112 *p &= ~(1<<ix); 113 } 114 #else /* !QFQ_DEBUG */ 115 /* XXX do we have fast version, or leave it to the compiler ? */ 116 #define test_bit(ix, pData) ((*pData) & (1<<(ix))) 117 #define __set_bit(ix, pData) (*pData) |= (1<<(ix)) 118 #define __clear_bit(ix, pData) (*pData) &= ~(1<<(ix)) 119 #endif /* !QFQ_DEBUG */ 120 #endif /* !__linux__ */ 121 122 #ifdef __MIPSEL__ 123 #define __clear_bit(ix, pData) (*pData) &= ~(1<<(ix)) 124 #endif 125 126 /*-------------------------------------------*/ 127 /* 128 129 Virtual time computations. 130 131 S, F and V are all computed in fixed point arithmetic with 132 FRAC_BITS decimal bits. 133 134 QFQ_MAX_INDEX is the maximum index allowed for a group. We need 135 one bit per index. 136 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight. 137 The layout of the bits is as below: 138 139 [ MTU_SHIFT ][ FRAC_BITS ] 140 [ MAX_INDEX ][ MIN_SLOT_SHIFT ] 141 ^.__grp->index = 0 142 *.__grp->slot_shift 143 144 where MIN_SLOT_SHIFT is derived by difference from the others. 145 146 The max group index corresponds to Lmax/w_min, where 147 Lmax=1<<MTU_SHIFT, w_min = 1 . 148 From this, and knowing how many groups (MAX_INDEX) we want, 149 we can derive the shift corresponding to each group. 150 151 Because we often need to compute 152 F = S + len/w_i and V = V + len/wsum 153 instead of storing w_i store the value 154 inv_w = (1<<FRAC_BITS)/w_i 155 so we can do F = S + len * inv_w * wsum. 156 We use W_TOT in the formulas so we can easily move between 157 static and adaptive weight sum. 158 159 The per-scheduler-instance data contain all the data structures 160 for the scheduler: bitmaps and bucket lists. 161 162 */ 163 /* 164 * Maximum number of consecutive slots occupied by backlogged classes 165 * inside a group. This is approx lmax/lmin + 5. 166 * XXX check because it poses constraints on MAX_INDEX 167 */ 168 #define QFQ_MAX_SLOTS 32 169 /* 170 * Shifts used for class<->group mapping. Class weights are 171 * in the range [1, QFQ_MAX_WEIGHT], we to map each class i to the 172 * group with the smallest index that can support the L_i / r_i 173 * configured for the class. 174 * 175 * grp->index is the index of the group; and grp->slot_shift 176 * is the shift for the corresponding (scaled) sigma_i. 177 * 178 * When computing the group index, we do (len<<FP_SHIFT)/weight, 179 * then compute an FLS (which is like a log2()), and if the result 180 * is below the MAX_INDEX region we use 0 (which is the same as 181 * using a larger len). 182 */ 183 #define QFQ_MAX_INDEX 19 184 #define QFQ_MAX_WSHIFT 16 /* log2(max_weight) */ 185 186 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) 187 #define QFQ_MAX_WSUM (2*QFQ_MAX_WEIGHT) 188 189 #define FRAC_BITS 30 /* fixed point arithmetic */ 190 #define ONE_FP (1UL << FRAC_BITS) 191 192 #define QFQ_MTU_SHIFT 11 /* log2(max_len) */ 193 #define QFQ_MIN_SLOT_SHIFT (FRAC_BITS + QFQ_MTU_SHIFT - QFQ_MAX_INDEX) 194 195 /* 196 * Possible group states, also indexes for the bitmaps array in 197 * struct qfq_queue. We rely on ER, IR, EB, IB being numbered 0..3 198 */ 199 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE }; 200 201 struct qfq_group; 202 /* 203 * additional queue info. Some of this info should come from 204 * the flowset, we copy them here for faster processing. 205 * This is an overlay of the struct dn_queue 206 */ 207 struct qfq_class { 208 struct dn_queue _q; 209 uint64_t S, F; /* flow timestamps (exact) */ 210 struct qfq_class *next; /* Link for the slot list. */ 211 212 /* group we belong to. In principle we would need the index, 213 * which is log_2(lmax/weight), but we never reference it 214 * directly, only the group. 215 */ 216 struct qfq_group *grp; 217 218 /* these are copied from the flowset. */ 219 uint32_t inv_w; /* ONE_FP/weight */ 220 uint32_t lmax; /* Max packet size for this flow. */ 221 }; 222 223 /* Group descriptor, see the paper for details. 224 * Basically this contains the bucket lists 225 */ 226 struct qfq_group { 227 uint64_t S, F; /* group timestamps (approx). */ 228 unsigned int slot_shift; /* Slot shift. */ 229 unsigned int index; /* Group index. */ 230 unsigned int front; /* Index of the front slot. */ 231 bitmap full_slots; /* non-empty slots */ 232 233 /* Array of lists of active classes. */ 234 struct qfq_class *slots[QFQ_MAX_SLOTS]; 235 }; 236 237 /* scheduler instance descriptor. */ 238 struct qfq_sched { 239 uint64_t V; /* Precise virtual time. */ 240 uint32_t wsum; /* weight sum */ 241 uint32_t iwsum; /* inverse weight sum */ 242 NO(uint32_t i_wsum;) /* ONE_FP/w_sum */ 243 NO(uint32_t queued;) /* debugging */ 244 NO(uint32_t loops;) /* debugging */ 245 bitmap bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */ 246 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */ 247 }; 248 249 /*---- support functions ----------------------------*/ 250 251 /* Generic comparison function, handling wraparound. */ 252 static inline int qfq_gt(uint64_t a, uint64_t b) 253 { 254 return (int64_t)(a - b) > 0; 255 } 256 257 /* Round a precise timestamp to its slotted value. */ 258 static inline uint64_t qfq_round_down(uint64_t ts, unsigned int shift) 259 { 260 return ts & ~((1ULL << shift) - 1); 261 } 262 263 /* return the pointer to the group with lowest index in the bitmap */ 264 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q, 265 unsigned long bitmap) 266 { 267 int index = ffs(bitmap) - 1; // zero-based 268 return &q->groups[index]; 269 } 270 271 /* 272 * Calculate a flow index, given its weight and maximum packet length. 273 * index = log_2(maxlen/weight) but we need to apply the scaling. 274 * This is used only once at flow creation. 275 */ 276 static int qfq_calc_index(uint32_t inv_w, unsigned int maxlen) 277 { 278 uint64_t slot_size = (uint64_t)maxlen *inv_w; 279 unsigned long size_map; 280 int index = 0; 281 282 size_map = (unsigned long)(slot_size >> QFQ_MIN_SLOT_SHIFT); 283 if (!size_map) 284 goto out; 285 286 index = __fls(size_map) + 1; // basically a log_2() 287 index -= !(slot_size - (1ULL << (index + QFQ_MIN_SLOT_SHIFT - 1))); 288 289 if (index < 0) 290 index = 0; 291 292 out: 293 ND("W = %d, L = %d, I = %d\n", ONE_FP/inv_w, maxlen, index); 294 return index; 295 } 296 /*---- end support functions ----*/ 297 298 /*-------- API calls --------------------------------*/ 299 /* 300 * Validate and copy parameters from flowset. 301 */ 302 static int 303 qfq_new_queue(struct dn_queue *_q) 304 { 305 struct qfq_sched *q = (struct qfq_sched *)(_q->_si + 1); 306 struct qfq_class *cl = (struct qfq_class *)_q; 307 int i; 308 uint32_t w; /* approximated weight */ 309 310 /* import parameters from the flowset. They should be correct 311 * already. 312 */ 313 w = _q->fs->fs.par[0]; 314 cl->lmax = _q->fs->fs.par[1]; 315 if (!w || w > QFQ_MAX_WEIGHT) { 316 w = 1; 317 D("rounding weight to 1"); 318 } 319 cl->inv_w = ONE_FP/w; 320 w = ONE_FP/cl->inv_w; 321 if (q->wsum + w > QFQ_MAX_WSUM) 322 return EINVAL; 323 324 i = qfq_calc_index(cl->inv_w, cl->lmax); 325 cl->grp = &q->groups[i]; 326 q->wsum += w; 327 q->iwsum = ONE_FP / q->wsum; /* XXX note theory */ 328 // XXX cl->S = q->V; ? 329 return 0; 330 } 331 332 /* remove an empty queue */ 333 static int 334 qfq_free_queue(struct dn_queue *_q) 335 { 336 struct qfq_sched *q = (struct qfq_sched *)(_q->_si + 1); 337 struct qfq_class *cl = (struct qfq_class *)_q; 338 if (cl->inv_w) { 339 q->wsum -= ONE_FP/cl->inv_w; 340 if (q->wsum != 0) 341 q->iwsum = ONE_FP / q->wsum; 342 cl->inv_w = 0; /* reset weight to avoid run twice */ 343 } 344 return 0; 345 } 346 347 /* Calculate a mask to mimic what would be ffs_from(). */ 348 static inline unsigned long 349 mask_from(unsigned long bitmap, int from) 350 { 351 return bitmap & ~((1UL << from) - 1); 352 } 353 354 /* 355 * The state computation relies on ER=0, IR=1, EB=2, IB=3 356 * First compute eligibility comparing grp->S, q->V, 357 * then check if someone is blocking us and possibly add EB 358 */ 359 static inline unsigned int 360 qfq_calc_state(struct qfq_sched *q, struct qfq_group *grp) 361 { 362 /* if S > V we are not eligible */ 363 unsigned int state = qfq_gt(grp->S, q->V); 364 unsigned long mask = mask_from(q->bitmaps[ER], grp->index); 365 struct qfq_group *next; 366 367 if (mask) { 368 next = qfq_ffs(q, mask); 369 if (qfq_gt(grp->F, next->F)) 370 state |= EB; 371 } 372 373 return state; 374 } 375 376 /* 377 * In principle 378 * q->bitmaps[dst] |= q->bitmaps[src] & mask; 379 * q->bitmaps[src] &= ~mask; 380 * but we should make sure that src != dst 381 */ 382 static inline void 383 qfq_move_groups(struct qfq_sched *q, unsigned long mask, int src, int dst) 384 { 385 q->bitmaps[dst] |= q->bitmaps[src] & mask; 386 q->bitmaps[src] &= ~mask; 387 } 388 389 static inline void 390 qfq_unblock_groups(struct qfq_sched *q, int index, uint64_t old_finish) 391 { 392 unsigned long mask = mask_from(q->bitmaps[ER], index + 1); 393 struct qfq_group *next; 394 395 if (mask) { 396 next = qfq_ffs(q, mask); 397 if (!qfq_gt(next->F, old_finish)) 398 return; 399 } 400 401 mask = (1UL << index) - 1; 402 qfq_move_groups(q, mask, EB, ER); 403 qfq_move_groups(q, mask, IB, IR); 404 } 405 406 /* 407 * perhaps 408 * 409 old_V ^= q->V; 410 old_V >>= QFQ_MIN_SLOT_SHIFT; 411 if (old_V) { 412 ... 413 } 414 * 415 */ 416 static inline void 417 qfq_make_eligible(struct qfq_sched *q, uint64_t old_V) 418 { 419 unsigned long mask, vslot, old_vslot; 420 421 vslot = q->V >> QFQ_MIN_SLOT_SHIFT; 422 old_vslot = old_V >> QFQ_MIN_SLOT_SHIFT; 423 424 if (vslot != old_vslot) { 425 /* must be 2ULL, see ToN QFQ article fig.5, we use base-0 fls */ 426 mask = (2ULL << (__fls(vslot ^ old_vslot))) - 1; 427 qfq_move_groups(q, mask, IR, ER); 428 qfq_move_groups(q, mask, IB, EB); 429 } 430 } 431 432 /* 433 * XXX we should make sure that slot becomes less than 32. 434 * This is guaranteed by the input values. 435 * roundedS is always cl->S rounded on grp->slot_shift bits. 436 */ 437 static inline void 438 qfq_slot_insert(struct qfq_group *grp, struct qfq_class *cl, uint64_t roundedS) 439 { 440 uint64_t slot = (roundedS - grp->S) >> grp->slot_shift; 441 unsigned int i = (grp->front + slot) % QFQ_MAX_SLOTS; 442 443 cl->next = grp->slots[i]; 444 grp->slots[i] = cl; 445 __set_bit(slot, &grp->full_slots); 446 } 447 448 /* 449 * remove the entry from the slot 450 */ 451 static inline void 452 qfq_front_slot_remove(struct qfq_group *grp) 453 { 454 struct qfq_class **h = &grp->slots[grp->front]; 455 456 *h = (*h)->next; 457 if (!*h) 458 __clear_bit(0, &grp->full_slots); 459 } 460 461 /* 462 * Returns the first full queue in a group. As a side effect, 463 * adjust the bucket list so the first non-empty bucket is at 464 * position 0 in full_slots. 465 */ 466 static inline struct qfq_class * 467 qfq_slot_scan(struct qfq_group *grp) 468 { 469 int i; 470 471 ND("grp %d full %x", grp->index, grp->full_slots); 472 if (!grp->full_slots) 473 return NULL; 474 475 i = ffs(grp->full_slots) - 1; // zero-based 476 if (i > 0) { 477 grp->front = (grp->front + i) % QFQ_MAX_SLOTS; 478 grp->full_slots >>= i; 479 } 480 481 return grp->slots[grp->front]; 482 } 483 484 /* 485 * adjust the bucket list. When the start time of a group decreases, 486 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to 487 * move the objects. The mask of occupied slots must be shifted 488 * because we use ffs() to find the first non-empty slot. 489 * This covers decreases in the group's start time, but what about 490 * increases of the start time ? 491 * Here too we should make sure that i is less than 32 492 */ 493 static inline void 494 qfq_slot_rotate(struct qfq_sched *q, struct qfq_group *grp, uint64_t roundedS) 495 { 496 unsigned int i = (grp->S - roundedS) >> grp->slot_shift; 497 498 (void)q; 499 grp->full_slots <<= i; 500 grp->front = (grp->front - i) % QFQ_MAX_SLOTS; 501 } 502 503 static inline void 504 qfq_update_eligible(struct qfq_sched *q, uint64_t old_V) 505 { 506 bitmap ineligible; 507 508 ineligible = q->bitmaps[IR] | q->bitmaps[IB]; 509 if (ineligible) { 510 if (!q->bitmaps[ER]) { 511 struct qfq_group *grp; 512 grp = qfq_ffs(q, ineligible); 513 if (qfq_gt(grp->S, q->V)) 514 q->V = grp->S; 515 } 516 qfq_make_eligible(q, old_V); 517 } 518 } 519 520 /* 521 * Updates the class, returns true if also the group needs to be updated. 522 */ 523 static inline int 524 qfq_update_class(struct qfq_sched *q, struct qfq_group *grp, 525 struct qfq_class *cl) 526 { 527 528 (void)q; 529 cl->S = cl->F; 530 if (cl->_q.mq.head == NULL) { 531 qfq_front_slot_remove(grp); 532 } else { 533 unsigned int len; 534 uint64_t roundedS; 535 536 len = cl->_q.mq.head->m_pkthdr.len; 537 cl->F = cl->S + (uint64_t)len * cl->inv_w; 538 roundedS = qfq_round_down(cl->S, grp->slot_shift); 539 if (roundedS == grp->S) 540 return 0; 541 542 qfq_front_slot_remove(grp); 543 qfq_slot_insert(grp, cl, roundedS); 544 } 545 return 1; 546 } 547 548 static struct mbuf * 549 qfq_dequeue(struct dn_sch_inst *si) 550 { 551 struct qfq_sched *q = (struct qfq_sched *)(si + 1); 552 struct qfq_group *grp; 553 struct qfq_class *cl; 554 struct mbuf *m; 555 uint64_t old_V; 556 557 NO(q->loops++;) 558 if (!q->bitmaps[ER]) { 559 NO(if (q->queued) 560 dump_sched(q, "start dequeue");) 561 return NULL; 562 } 563 564 grp = qfq_ffs(q, q->bitmaps[ER]); 565 566 cl = grp->slots[grp->front]; 567 /* extract from the first bucket in the bucket list */ 568 m = dn_dequeue(&cl->_q); 569 570 if (!m) { 571 D("BUG/* non-workconserving leaf */"); 572 return NULL; 573 } 574 NO(q->queued--;) 575 old_V = q->V; 576 q->V += (uint64_t)m->m_pkthdr.len * q->iwsum; 577 ND("m is %p F 0x%llx V now 0x%llx", m, cl->F, q->V); 578 579 if (qfq_update_class(q, grp, cl)) { 580 uint64_t old_F = grp->F; 581 cl = qfq_slot_scan(grp); 582 if (!cl) { /* group gone, remove from ER */ 583 __clear_bit(grp->index, &q->bitmaps[ER]); 584 // grp->S = grp->F + 1; // XXX debugging only 585 } else { 586 uint64_t roundedS = qfq_round_down(cl->S, grp->slot_shift); 587 unsigned int s; 588 589 if (grp->S == roundedS) 590 goto skip_unblock; 591 grp->S = roundedS; 592 grp->F = roundedS + (2ULL << grp->slot_shift); 593 /* remove from ER and put in the new set */ 594 __clear_bit(grp->index, &q->bitmaps[ER]); 595 s = qfq_calc_state(q, grp); 596 __set_bit(grp->index, &q->bitmaps[s]); 597 } 598 /* we need to unblock even if the group has gone away */ 599 qfq_unblock_groups(q, grp->index, old_F); 600 } 601 602 skip_unblock: 603 qfq_update_eligible(q, old_V); 604 NO(if (!q->bitmaps[ER] && q->queued) 605 dump_sched(q, "end dequeue");) 606 607 return m; 608 } 609 610 /* 611 * Assign a reasonable start time for a new flow k in group i. 612 * Admissible values for \hat(F) are multiples of \sigma_i 613 * no greater than V+\sigma_i . Larger values mean that 614 * we had a wraparound so we consider the timestamp to be stale. 615 * 616 * If F is not stale and F >= V then we set S = F. 617 * Otherwise we should assign S = V, but this may violate 618 * the ordering in ER. So, if we have groups in ER, set S to 619 * the F_j of the first group j which would be blocking us. 620 * We are guaranteed not to move S backward because 621 * otherwise our group i would still be blocked. 622 */ 623 static inline void 624 qfq_update_start(struct qfq_sched *q, struct qfq_class *cl) 625 { 626 unsigned long mask; 627 uint64_t limit, roundedF; 628 int slot_shift = cl->grp->slot_shift; 629 630 roundedF = qfq_round_down(cl->F, slot_shift); 631 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift); 632 633 if (!qfq_gt(cl->F, q->V) || qfq_gt(roundedF, limit)) { 634 /* timestamp was stale */ 635 mask = mask_from(q->bitmaps[ER], cl->grp->index); 636 if (mask) { 637 struct qfq_group *next = qfq_ffs(q, mask); 638 if (qfq_gt(roundedF, next->F)) { 639 /* from pv 71261956973ba9e0637848a5adb4a5819b4bae83 */ 640 if (qfq_gt(limit, next->F)) 641 cl->S = next->F; 642 else /* preserve timestamp correctness */ 643 cl->S = limit; 644 return; 645 } 646 } 647 cl->S = q->V; 648 } else { /* timestamp is not stale */ 649 cl->S = cl->F; 650 } 651 } 652 653 static int 654 qfq_enqueue(struct dn_sch_inst *si, struct dn_queue *_q, struct mbuf *m) 655 { 656 struct qfq_sched *q = (struct qfq_sched *)(si + 1); 657 struct qfq_group *grp; 658 struct qfq_class *cl = (struct qfq_class *)_q; 659 uint64_t roundedS; 660 int s; 661 662 NO(q->loops++;) 663 DX(4, "len %d flow %p inv_w 0x%x grp %d", m->m_pkthdr.len, 664 _q, cl->inv_w, cl->grp->index); 665 /* XXX verify that the packet obeys the parameters */ 666 if (m != _q->mq.head) { 667 if (dn_enqueue(_q, m, 0)) /* packet was dropped */ 668 return 1; 669 NO(q->queued++;) 670 if (m != _q->mq.head) 671 return 0; 672 } 673 /* If reach this point, queue q was idle */ 674 grp = cl->grp; 675 qfq_update_start(q, cl); /* adjust start time */ 676 /* compute new finish time and rounded start. */ 677 cl->F = cl->S + (uint64_t)(m->m_pkthdr.len) * cl->inv_w; 678 roundedS = qfq_round_down(cl->S, grp->slot_shift); 679 680 /* 681 * insert cl in the correct bucket. 682 * If cl->S >= grp->S we don't need to adjust the 683 * bucket list and simply go to the insertion phase. 684 * Otherwise grp->S is decreasing, we must make room 685 * in the bucket list, and also recompute the group state. 686 * Finally, if there were no flows in this group and nobody 687 * was in ER make sure to adjust V. 688 */ 689 if (grp->full_slots) { 690 if (!qfq_gt(grp->S, cl->S)) 691 goto skip_update; 692 /* create a slot for this cl->S */ 693 qfq_slot_rotate(q, grp, roundedS); 694 /* group was surely ineligible, remove */ 695 __clear_bit(grp->index, &q->bitmaps[IR]); 696 __clear_bit(grp->index, &q->bitmaps[IB]); 697 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V)) 698 q->V = roundedS; 699 700 grp->S = roundedS; 701 grp->F = roundedS + (2ULL << grp->slot_shift); // i.e. 2\sigma_i 702 s = qfq_calc_state(q, grp); 703 __set_bit(grp->index, &q->bitmaps[s]); 704 ND("new state %d 0x%x", s, q->bitmaps[s]); 705 ND("S %llx F %llx V %llx", cl->S, cl->F, q->V); 706 skip_update: 707 qfq_slot_insert(grp, cl, roundedS); 708 709 return 0; 710 } 711 712 #if 0 713 static inline void 714 qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp, 715 struct qfq_class *cl, struct qfq_class **pprev) 716 { 717 unsigned int i, offset; 718 uint64_t roundedS; 719 720 roundedS = qfq_round_down(cl->S, grp->slot_shift); 721 offset = (roundedS - grp->S) >> grp->slot_shift; 722 i = (grp->front + offset) % QFQ_MAX_SLOTS; 723 724 #ifdef notyet 725 if (!pprev) { 726 pprev = &grp->slots[i]; 727 while (*pprev && *pprev != cl) 728 pprev = &(*pprev)->next; 729 } 730 #endif 731 732 *pprev = cl->next; 733 if (!grp->slots[i]) 734 __clear_bit(offset, &grp->full_slots); 735 } 736 737 /* 738 * called to forcibly destroy a queue. 739 * If the queue is not in the front bucket, or if it has 740 * other queues in the front bucket, we can simply remove 741 * the queue with no other side effects. 742 * Otherwise we must propagate the event up. 743 * XXX description to be completed. 744 */ 745 static void 746 qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl, 747 struct qfq_class **pprev) 748 { 749 struct qfq_group *grp = &q->groups[cl->index]; 750 unsigned long mask; 751 uint64_t roundedS; 752 int s; 753 754 cl->F = cl->S; // not needed if the class goes away. 755 qfq_slot_remove(q, grp, cl, pprev); 756 757 if (!grp->full_slots) { 758 /* nothing left in the group, remove from all sets. 759 * Do ER last because if we were blocking other groups 760 * we must unblock them. 761 */ 762 __clear_bit(grp->index, &q->bitmaps[IR]); 763 __clear_bit(grp->index, &q->bitmaps[EB]); 764 __clear_bit(grp->index, &q->bitmaps[IB]); 765 766 if (test_bit(grp->index, &q->bitmaps[ER]) && 767 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) { 768 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1); 769 if (mask) 770 mask = ~((1UL << __fls(mask)) - 1); 771 else 772 mask = ~0UL; 773 qfq_move_groups(q, mask, EB, ER); 774 qfq_move_groups(q, mask, IB, IR); 775 } 776 __clear_bit(grp->index, &q->bitmaps[ER]); 777 } else if (!grp->slots[grp->front]) { 778 cl = qfq_slot_scan(grp); 779 roundedS = qfq_round_down(cl->S, grp->slot_shift); 780 if (grp->S != roundedS) { 781 __clear_bit(grp->index, &q->bitmaps[ER]); 782 __clear_bit(grp->index, &q->bitmaps[IR]); 783 __clear_bit(grp->index, &q->bitmaps[EB]); 784 __clear_bit(grp->index, &q->bitmaps[IB]); 785 grp->S = roundedS; 786 grp->F = roundedS + (2ULL << grp->slot_shift); 787 s = qfq_calc_state(q, grp); 788 __set_bit(grp->index, &q->bitmaps[s]); 789 } 790 } 791 qfq_update_eligible(q, q->V); 792 } 793 #endif 794 795 static int 796 qfq_new_fsk(struct dn_fsk *f) 797 { 798 ipdn_bound_var(&f->fs.par[0], 1, 1, QFQ_MAX_WEIGHT, "qfq weight"); 799 ipdn_bound_var(&f->fs.par[1], 1500, 1, 2000, "qfq maxlen"); 800 ND("weight %d len %d\n", f->fs.par[0], f->fs.par[1]); 801 return 0; 802 } 803 804 /* 805 * initialize a new scheduler instance 806 */ 807 static int 808 qfq_new_sched(struct dn_sch_inst *si) 809 { 810 struct qfq_sched *q = (struct qfq_sched *)(si + 1); 811 struct qfq_group *grp; 812 int i; 813 814 for (i = 0; i <= QFQ_MAX_INDEX; i++) { 815 grp = &q->groups[i]; 816 grp->index = i; 817 grp->slot_shift = QFQ_MTU_SHIFT + FRAC_BITS - 818 (QFQ_MAX_INDEX - i); 819 } 820 return 0; 821 } 822 823 /* 824 * QFQ scheduler descriptor 825 */ 826 static struct dn_alg qfq_desc = { 827 _SI( .type = ) DN_SCHED_QFQ, 828 _SI( .name = ) "QFQ", 829 _SI( .flags = ) DN_MULTIQUEUE, 830 831 _SI( .schk_datalen = ) 0, 832 _SI( .si_datalen = ) sizeof(struct qfq_sched), 833 _SI( .q_datalen = ) sizeof(struct qfq_class) - sizeof(struct dn_queue), 834 835 _SI( .enqueue = ) qfq_enqueue, 836 _SI( .dequeue = ) qfq_dequeue, 837 838 _SI( .config = ) NULL, 839 _SI( .destroy = ) NULL, 840 _SI( .new_sched = ) qfq_new_sched, 841 _SI( .free_sched = ) NULL, 842 _SI( .new_fsk = ) qfq_new_fsk, 843 _SI( .free_fsk = ) NULL, 844 _SI( .new_queue = ) qfq_new_queue, 845 _SI( .free_queue = ) qfq_free_queue, 846 #ifdef NEW_AQM 847 _SI( .getconfig = ) NULL, 848 #endif 849 }; 850 851 DECLARE_DNSCHED_MODULE(dn_qfq, &qfq_desc); 852 853 #ifdef QFQ_DEBUG 854 static void 855 dump_groups(struct qfq_sched *q, uint32_t mask) 856 { 857 int i, j; 858 859 for (i = 0; i < QFQ_MAX_INDEX + 1; i++) { 860 struct qfq_group *g = &q->groups[i]; 861 862 if (0 == (mask & (1<<i))) 863 continue; 864 for (j = 0; j < QFQ_MAX_SLOTS; j++) { 865 if (g->slots[j]) 866 D(" bucket %d %p", j, g->slots[j]); 867 } 868 D("full_slots 0x%llx", (_P64)g->full_slots); 869 D(" %2d S 0x%20llx F 0x%llx %c", i, 870 (_P64)g->S, (_P64)g->F, 871 mask & (1<<i) ? '1' : '0'); 872 } 873 } 874 875 static void 876 dump_sched(struct qfq_sched *q, const char *msg) 877 { 878 D("--- in %s: ---", msg); 879 D("loops %d queued %d V 0x%llx", q->loops, q->queued, (_P64)q->V); 880 D(" ER 0x%08x", (unsigned)q->bitmaps[ER]); 881 D(" EB 0x%08x", (unsigned)q->bitmaps[EB]); 882 D(" IR 0x%08x", (unsigned)q->bitmaps[IR]); 883 D(" IB 0x%08x", (unsigned)q->bitmaps[IB]); 884 dump_groups(q, 0xffffffff); 885 }; 886 #endif /* QFQ_DEBUG */ 887