1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2010 Fabio Checconi, Luigi Rizzo, Paolo Valente 5 * All rights reserved 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 /* 30 */ 31 32 #ifdef _KERNEL 33 #include <sys/malloc.h> 34 #include <sys/socket.h> 35 #include <sys/socketvar.h> 36 #include <sys/kernel.h> 37 #include <sys/lock.h> 38 #include <sys/mbuf.h> 39 #include <sys/module.h> 40 #include <sys/rwlock.h> 41 #include <net/if.h> /* IFNAMSIZ */ 42 #include <netinet/in.h> 43 #include <netinet/ip_var.h> /* ipfw_rule_ref */ 44 #include <netinet/ip_fw.h> /* flow_id */ 45 #include <netinet/ip_dummynet.h> 46 #include <netpfil/ipfw/ip_fw_private.h> 47 #include <netpfil/ipfw/dn_heap.h> 48 #include <netpfil/ipfw/ip_dn_private.h> 49 #ifdef NEW_AQM 50 #include <netpfil/ipfw/dn_aqm.h> 51 #endif 52 #include <netpfil/ipfw/dn_sched.h> 53 #else 54 #include <dn_test.h> 55 #endif 56 57 #ifdef QFQ_DEBUG 58 #define _P64 unsigned long long /* cast for printing uint64_t */ 59 struct qfq_sched; 60 static void dump_sched(struct qfq_sched *q, const char *msg); 61 #define NO(x) x 62 #else 63 #define NO(x) 64 #endif 65 #define DN_SCHED_QFQ 4 // XXX Where? 66 typedef unsigned long bitmap; 67 68 /* 69 * bitmaps ops are critical. Some linux versions have __fls 70 * and the bitmap ops. Some machines have ffs 71 * NOTE: fls() returns 1 for the least significant bit, 72 * __fls() returns 0 for the same case. 73 * We use the base-0 version __fls() to match the description in 74 * the ToN QFQ paper 75 */ 76 #if defined(_WIN32) || (defined(__MIPSEL__) && defined(LINUX_24)) 77 int fls(unsigned int n) 78 { 79 int i = 0; 80 for (i = 0; n > 0; n >>= 1, i++) 81 ; 82 return i; 83 } 84 #endif 85 86 #if !defined(_KERNEL) || defined( __FreeBSD__ ) || defined(_WIN32) || (defined(__MIPSEL__) && defined(LINUX_24)) 87 static inline unsigned long __fls(unsigned long word) 88 { 89 return fls(word) - 1; 90 } 91 #endif 92 93 #if !defined(_KERNEL) || !defined(__linux__) 94 #ifdef QFQ_DEBUG 95 static int test_bit(int ix, bitmap *p) 96 { 97 if (ix < 0 || ix > 31) 98 D("bad index %d", ix); 99 return *p & (1<<ix); 100 } 101 static void __set_bit(int ix, bitmap *p) 102 { 103 if (ix < 0 || ix > 31) 104 D("bad index %d", ix); 105 *p |= (1<<ix); 106 } 107 static void __clear_bit(int ix, bitmap *p) 108 { 109 if (ix < 0 || ix > 31) 110 D("bad index %d", ix); 111 *p &= ~(1<<ix); 112 } 113 #else /* !QFQ_DEBUG */ 114 /* XXX do we have fast version, or leave it to the compiler ? */ 115 #define test_bit(ix, pData) ((*pData) & (1<<(ix))) 116 #define __set_bit(ix, pData) (*pData) |= (1<<(ix)) 117 #define __clear_bit(ix, pData) (*pData) &= ~(1<<(ix)) 118 #endif /* !QFQ_DEBUG */ 119 #endif /* !__linux__ */ 120 121 #ifdef __MIPSEL__ 122 #define __clear_bit(ix, pData) (*pData) &= ~(1<<(ix)) 123 #endif 124 125 /*-------------------------------------------*/ 126 /* 127 128 Virtual time computations. 129 130 S, F and V are all computed in fixed point arithmetic with 131 FRAC_BITS decimal bits. 132 133 QFQ_MAX_INDEX is the maximum index allowed for a group. We need 134 one bit per index. 135 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight. 136 The layout of the bits is as below: 137 138 [ MTU_SHIFT ][ FRAC_BITS ] 139 [ MAX_INDEX ][ MIN_SLOT_SHIFT ] 140 ^.__grp->index = 0 141 *.__grp->slot_shift 142 143 where MIN_SLOT_SHIFT is derived by difference from the others. 144 145 The max group index corresponds to Lmax/w_min, where 146 Lmax=1<<MTU_SHIFT, w_min = 1 . 147 From this, and knowing how many groups (MAX_INDEX) we want, 148 we can derive the shift corresponding to each group. 149 150 Because we often need to compute 151 F = S + len/w_i and V = V + len/wsum 152 instead of storing w_i store the value 153 inv_w = (1<<FRAC_BITS)/w_i 154 so we can do F = S + len * inv_w * wsum. 155 We use W_TOT in the formulas so we can easily move between 156 static and adaptive weight sum. 157 158 The per-scheduler-instance data contain all the data structures 159 for the scheduler: bitmaps and bucket lists. 160 161 */ 162 /* 163 * Maximum number of consecutive slots occupied by backlogged classes 164 * inside a group. This is approx lmax/lmin + 5. 165 * XXX check because it poses constraints on MAX_INDEX 166 */ 167 #define QFQ_MAX_SLOTS 32 168 /* 169 * Shifts used for class<->group mapping. Class weights are 170 * in the range [1, QFQ_MAX_WEIGHT], we to map each class i to the 171 * group with the smallest index that can support the L_i / r_i 172 * configured for the class. 173 * 174 * grp->index is the index of the group; and grp->slot_shift 175 * is the shift for the corresponding (scaled) sigma_i. 176 * 177 * When computing the group index, we do (len<<FP_SHIFT)/weight, 178 * then compute an FLS (which is like a log2()), and if the result 179 * is below the MAX_INDEX region we use 0 (which is the same as 180 * using a larger len). 181 */ 182 #define QFQ_MAX_INDEX 19 183 #define QFQ_MAX_WSHIFT 16 /* log2(max_weight) */ 184 185 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) 186 #define QFQ_MAX_WSUM (2*QFQ_MAX_WEIGHT) 187 188 #define FRAC_BITS 30 /* fixed point arithmetic */ 189 #define ONE_FP (1UL << FRAC_BITS) 190 191 #define QFQ_MTU_SHIFT 11 /* log2(max_len) */ 192 #define QFQ_MIN_SLOT_SHIFT (FRAC_BITS + QFQ_MTU_SHIFT - QFQ_MAX_INDEX) 193 194 /* 195 * Possible group states, also indexes for the bitmaps array in 196 * struct qfq_queue. We rely on ER, IR, EB, IB being numbered 0..3 197 */ 198 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE }; 199 200 struct qfq_group; 201 /* 202 * additional queue info. Some of this info should come from 203 * the flowset, we copy them here for faster processing. 204 * This is an overlay of the struct dn_queue 205 */ 206 struct qfq_class { 207 struct dn_queue _q; 208 uint64_t S, F; /* flow timestamps (exact) */ 209 struct qfq_class *next; /* Link for the slot list. */ 210 211 /* group we belong to. In principle we would need the index, 212 * which is log_2(lmax/weight), but we never reference it 213 * directly, only the group. 214 */ 215 struct qfq_group *grp; 216 217 /* these are copied from the flowset. */ 218 uint32_t inv_w; /* ONE_FP/weight */ 219 uint32_t lmax; /* Max packet size for this flow. */ 220 }; 221 222 /* Group descriptor, see the paper for details. 223 * Basically this contains the bucket lists 224 */ 225 struct qfq_group { 226 uint64_t S, F; /* group timestamps (approx). */ 227 unsigned int slot_shift; /* Slot shift. */ 228 unsigned int index; /* Group index. */ 229 unsigned int front; /* Index of the front slot. */ 230 bitmap full_slots; /* non-empty slots */ 231 232 /* Array of lists of active classes. */ 233 struct qfq_class *slots[QFQ_MAX_SLOTS]; 234 }; 235 236 /* scheduler instance descriptor. */ 237 struct qfq_sched { 238 uint64_t V; /* Precise virtual time. */ 239 uint32_t wsum; /* weight sum */ 240 uint32_t iwsum; /* inverse weight sum */ 241 NO(uint32_t i_wsum;) /* ONE_FP/w_sum */ 242 NO(uint32_t queued;) /* debugging */ 243 NO(uint32_t loops;) /* debugging */ 244 bitmap bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */ 245 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */ 246 }; 247 248 /*---- support functions ----------------------------*/ 249 250 /* Generic comparison function, handling wraparound. */ 251 static inline int qfq_gt(uint64_t a, uint64_t b) 252 { 253 return (int64_t)(a - b) > 0; 254 } 255 256 /* Round a precise timestamp to its slotted value. */ 257 static inline uint64_t qfq_round_down(uint64_t ts, unsigned int shift) 258 { 259 return ts & ~((1ULL << shift) - 1); 260 } 261 262 /* return the pointer to the group with lowest index in the bitmap */ 263 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q, 264 unsigned long bitmap) 265 { 266 int index = ffs(bitmap) - 1; // zero-based 267 return &q->groups[index]; 268 } 269 270 /* 271 * Calculate a flow index, given its weight and maximum packet length. 272 * index = log_2(maxlen/weight) but we need to apply the scaling. 273 * This is used only once at flow creation. 274 */ 275 static int qfq_calc_index(uint32_t inv_w, unsigned int maxlen) 276 { 277 uint64_t slot_size = (uint64_t)maxlen *inv_w; 278 unsigned long size_map; 279 int index = 0; 280 281 size_map = (unsigned long)(slot_size >> QFQ_MIN_SLOT_SHIFT); 282 if (!size_map) 283 goto out; 284 285 index = __fls(size_map) + 1; // basically a log_2() 286 index -= !(slot_size - (1ULL << (index + QFQ_MIN_SLOT_SHIFT - 1))); 287 288 if (index < 0) 289 index = 0; 290 291 out: 292 ND("W = %d, L = %d, I = %d\n", ONE_FP/inv_w, maxlen, index); 293 return index; 294 } 295 /*---- end support functions ----*/ 296 297 /*-------- API calls --------------------------------*/ 298 /* 299 * Validate and copy parameters from flowset. 300 */ 301 static int 302 qfq_new_queue(struct dn_queue *_q) 303 { 304 struct qfq_sched *q = (struct qfq_sched *)(_q->_si + 1); 305 struct qfq_class *cl = (struct qfq_class *)_q; 306 int i; 307 uint32_t w; /* approximated weight */ 308 309 /* import parameters from the flowset. They should be correct 310 * already. 311 */ 312 w = _q->fs->fs.par[0]; 313 cl->lmax = _q->fs->fs.par[1]; 314 if (!w || w > QFQ_MAX_WEIGHT) { 315 w = 1; 316 D("rounding weight to 1"); 317 } 318 cl->inv_w = ONE_FP/w; 319 w = ONE_FP/cl->inv_w; 320 if (q->wsum + w > QFQ_MAX_WSUM) 321 return EINVAL; 322 323 i = qfq_calc_index(cl->inv_w, cl->lmax); 324 cl->grp = &q->groups[i]; 325 q->wsum += w; 326 q->iwsum = ONE_FP / q->wsum; /* XXX note theory */ 327 // XXX cl->S = q->V; ? 328 return 0; 329 } 330 331 /* remove an empty queue */ 332 static int 333 qfq_free_queue(struct dn_queue *_q) 334 { 335 struct qfq_sched *q = (struct qfq_sched *)(_q->_si + 1); 336 struct qfq_class *cl = (struct qfq_class *)_q; 337 if (cl->inv_w) { 338 q->wsum -= ONE_FP/cl->inv_w; 339 if (q->wsum != 0) 340 q->iwsum = ONE_FP / q->wsum; 341 cl->inv_w = 0; /* reset weight to avoid run twice */ 342 } 343 return 0; 344 } 345 346 /* Calculate a mask to mimic what would be ffs_from(). */ 347 static inline unsigned long 348 mask_from(unsigned long bitmap, int from) 349 { 350 return bitmap & ~((1UL << from) - 1); 351 } 352 353 /* 354 * The state computation relies on ER=0, IR=1, EB=2, IB=3 355 * First compute eligibility comparing grp->S, q->V, 356 * then check if someone is blocking us and possibly add EB 357 */ 358 static inline unsigned int 359 qfq_calc_state(struct qfq_sched *q, struct qfq_group *grp) 360 { 361 /* if S > V we are not eligible */ 362 unsigned int state = qfq_gt(grp->S, q->V); 363 unsigned long mask = mask_from(q->bitmaps[ER], grp->index); 364 struct qfq_group *next; 365 366 if (mask) { 367 next = qfq_ffs(q, mask); 368 if (qfq_gt(grp->F, next->F)) 369 state |= EB; 370 } 371 372 return state; 373 } 374 375 /* 376 * In principle 377 * q->bitmaps[dst] |= q->bitmaps[src] & mask; 378 * q->bitmaps[src] &= ~mask; 379 * but we should make sure that src != dst 380 */ 381 static inline void 382 qfq_move_groups(struct qfq_sched *q, unsigned long mask, int src, int dst) 383 { 384 q->bitmaps[dst] |= q->bitmaps[src] & mask; 385 q->bitmaps[src] &= ~mask; 386 } 387 388 static inline void 389 qfq_unblock_groups(struct qfq_sched *q, int index, uint64_t old_finish) 390 { 391 unsigned long mask = mask_from(q->bitmaps[ER], index + 1); 392 struct qfq_group *next; 393 394 if (mask) { 395 next = qfq_ffs(q, mask); 396 if (!qfq_gt(next->F, old_finish)) 397 return; 398 } 399 400 mask = (1UL << index) - 1; 401 qfq_move_groups(q, mask, EB, ER); 402 qfq_move_groups(q, mask, IB, IR); 403 } 404 405 /* 406 * perhaps 407 * 408 old_V ^= q->V; 409 old_V >>= QFQ_MIN_SLOT_SHIFT; 410 if (old_V) { 411 ... 412 } 413 * 414 */ 415 static inline void 416 qfq_make_eligible(struct qfq_sched *q, uint64_t old_V) 417 { 418 unsigned long mask, vslot, old_vslot; 419 420 vslot = q->V >> QFQ_MIN_SLOT_SHIFT; 421 old_vslot = old_V >> QFQ_MIN_SLOT_SHIFT; 422 423 if (vslot != old_vslot) { 424 /* must be 2ULL, see ToN QFQ article fig.5, we use base-0 fls */ 425 mask = (2ULL << (__fls(vslot ^ old_vslot))) - 1; 426 qfq_move_groups(q, mask, IR, ER); 427 qfq_move_groups(q, mask, IB, EB); 428 } 429 } 430 431 /* 432 * XXX we should make sure that slot becomes less than 32. 433 * This is guaranteed by the input values. 434 * roundedS is always cl->S rounded on grp->slot_shift bits. 435 */ 436 static inline void 437 qfq_slot_insert(struct qfq_group *grp, struct qfq_class *cl, uint64_t roundedS) 438 { 439 uint64_t slot = (roundedS - grp->S) >> grp->slot_shift; 440 unsigned int i = (grp->front + slot) % QFQ_MAX_SLOTS; 441 442 cl->next = grp->slots[i]; 443 grp->slots[i] = cl; 444 __set_bit(slot, &grp->full_slots); 445 } 446 447 /* 448 * remove the entry from the slot 449 */ 450 static inline void 451 qfq_front_slot_remove(struct qfq_group *grp) 452 { 453 struct qfq_class **h = &grp->slots[grp->front]; 454 455 *h = (*h)->next; 456 if (!*h) 457 __clear_bit(0, &grp->full_slots); 458 } 459 460 /* 461 * Returns the first full queue in a group. As a side effect, 462 * adjust the bucket list so the first non-empty bucket is at 463 * position 0 in full_slots. 464 */ 465 static inline struct qfq_class * 466 qfq_slot_scan(struct qfq_group *grp) 467 { 468 int i; 469 470 ND("grp %d full %x", grp->index, grp->full_slots); 471 if (!grp->full_slots) 472 return NULL; 473 474 i = ffs(grp->full_slots) - 1; // zero-based 475 if (i > 0) { 476 grp->front = (grp->front + i) % QFQ_MAX_SLOTS; 477 grp->full_slots >>= i; 478 } 479 480 return grp->slots[grp->front]; 481 } 482 483 /* 484 * adjust the bucket list. When the start time of a group decreases, 485 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to 486 * move the objects. The mask of occupied slots must be shifted 487 * because we use ffs() to find the first non-empty slot. 488 * This covers decreases in the group's start time, but what about 489 * increases of the start time ? 490 * Here too we should make sure that i is less than 32 491 */ 492 static inline void 493 qfq_slot_rotate(struct qfq_sched *q, struct qfq_group *grp, uint64_t roundedS) 494 { 495 unsigned int i = (grp->S - roundedS) >> grp->slot_shift; 496 497 (void)q; 498 grp->full_slots <<= i; 499 grp->front = (grp->front - i) % QFQ_MAX_SLOTS; 500 } 501 502 static inline void 503 qfq_update_eligible(struct qfq_sched *q, uint64_t old_V) 504 { 505 bitmap ineligible; 506 507 ineligible = q->bitmaps[IR] | q->bitmaps[IB]; 508 if (ineligible) { 509 if (!q->bitmaps[ER]) { 510 struct qfq_group *grp; 511 grp = qfq_ffs(q, ineligible); 512 if (qfq_gt(grp->S, q->V)) 513 q->V = grp->S; 514 } 515 qfq_make_eligible(q, old_V); 516 } 517 } 518 519 /* 520 * Updates the class, returns true if also the group needs to be updated. 521 */ 522 static inline int 523 qfq_update_class(struct qfq_sched *q, struct qfq_group *grp, 524 struct qfq_class *cl) 525 { 526 527 (void)q; 528 cl->S = cl->F; 529 if (cl->_q.mq.head == NULL) { 530 qfq_front_slot_remove(grp); 531 } else { 532 unsigned int len; 533 uint64_t roundedS; 534 535 len = cl->_q.mq.head->m_pkthdr.len; 536 cl->F = cl->S + (uint64_t)len * cl->inv_w; 537 roundedS = qfq_round_down(cl->S, grp->slot_shift); 538 if (roundedS == grp->S) 539 return 0; 540 541 qfq_front_slot_remove(grp); 542 qfq_slot_insert(grp, cl, roundedS); 543 } 544 return 1; 545 } 546 547 static struct mbuf * 548 qfq_dequeue(struct dn_sch_inst *si) 549 { 550 struct qfq_sched *q = (struct qfq_sched *)(si + 1); 551 struct qfq_group *grp; 552 struct qfq_class *cl; 553 struct mbuf *m; 554 uint64_t old_V; 555 556 NO(q->loops++;) 557 if (!q->bitmaps[ER]) { 558 NO(if (q->queued) 559 dump_sched(q, "start dequeue");) 560 return NULL; 561 } 562 563 grp = qfq_ffs(q, q->bitmaps[ER]); 564 565 cl = grp->slots[grp->front]; 566 /* extract from the first bucket in the bucket list */ 567 m = dn_dequeue(&cl->_q); 568 569 if (!m) { 570 D("BUG/* non-workconserving leaf */"); 571 return NULL; 572 } 573 NO(q->queued--;) 574 old_V = q->V; 575 q->V += (uint64_t)m->m_pkthdr.len * q->iwsum; 576 ND("m is %p F 0x%llx V now 0x%llx", m, cl->F, q->V); 577 578 if (qfq_update_class(q, grp, cl)) { 579 uint64_t old_F = grp->F; 580 cl = qfq_slot_scan(grp); 581 if (!cl) { /* group gone, remove from ER */ 582 __clear_bit(grp->index, &q->bitmaps[ER]); 583 // grp->S = grp->F + 1; // XXX debugging only 584 } else { 585 uint64_t roundedS = qfq_round_down(cl->S, grp->slot_shift); 586 unsigned int s; 587 588 if (grp->S == roundedS) 589 goto skip_unblock; 590 grp->S = roundedS; 591 grp->F = roundedS + (2ULL << grp->slot_shift); 592 /* remove from ER and put in the new set */ 593 __clear_bit(grp->index, &q->bitmaps[ER]); 594 s = qfq_calc_state(q, grp); 595 __set_bit(grp->index, &q->bitmaps[s]); 596 } 597 /* we need to unblock even if the group has gone away */ 598 qfq_unblock_groups(q, grp->index, old_F); 599 } 600 601 skip_unblock: 602 qfq_update_eligible(q, old_V); 603 NO(if (!q->bitmaps[ER] && q->queued) 604 dump_sched(q, "end dequeue");) 605 606 return m; 607 } 608 609 /* 610 * Assign a reasonable start time for a new flow k in group i. 611 * Admissible values for \hat(F) are multiples of \sigma_i 612 * no greater than V+\sigma_i . Larger values mean that 613 * we had a wraparound so we consider the timestamp to be stale. 614 * 615 * If F is not stale and F >= V then we set S = F. 616 * Otherwise we should assign S = V, but this may violate 617 * the ordering in ER. So, if we have groups in ER, set S to 618 * the F_j of the first group j which would be blocking us. 619 * We are guaranteed not to move S backward because 620 * otherwise our group i would still be blocked. 621 */ 622 static inline void 623 qfq_update_start(struct qfq_sched *q, struct qfq_class *cl) 624 { 625 unsigned long mask; 626 uint64_t limit, roundedF; 627 int slot_shift = cl->grp->slot_shift; 628 629 roundedF = qfq_round_down(cl->F, slot_shift); 630 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift); 631 632 if (!qfq_gt(cl->F, q->V) || qfq_gt(roundedF, limit)) { 633 /* timestamp was stale */ 634 mask = mask_from(q->bitmaps[ER], cl->grp->index); 635 if (mask) { 636 struct qfq_group *next = qfq_ffs(q, mask); 637 if (qfq_gt(roundedF, next->F)) { 638 /* from pv 71261956973ba9e0637848a5adb4a5819b4bae83 */ 639 if (qfq_gt(limit, next->F)) 640 cl->S = next->F; 641 else /* preserve timestamp correctness */ 642 cl->S = limit; 643 return; 644 } 645 } 646 cl->S = q->V; 647 } else { /* timestamp is not stale */ 648 cl->S = cl->F; 649 } 650 } 651 652 static int 653 qfq_enqueue(struct dn_sch_inst *si, struct dn_queue *_q, struct mbuf *m) 654 { 655 struct qfq_sched *q = (struct qfq_sched *)(si + 1); 656 struct qfq_group *grp; 657 struct qfq_class *cl = (struct qfq_class *)_q; 658 uint64_t roundedS; 659 int s; 660 661 NO(q->loops++;) 662 DX(4, "len %d flow %p inv_w 0x%x grp %d", m->m_pkthdr.len, 663 _q, cl->inv_w, cl->grp->index); 664 /* XXX verify that the packet obeys the parameters */ 665 if (m != _q->mq.head) { 666 if (dn_enqueue(_q, m, 0)) /* packet was dropped */ 667 return 1; 668 NO(q->queued++;) 669 if (m != _q->mq.head) 670 return 0; 671 } 672 /* If reach this point, queue q was idle */ 673 grp = cl->grp; 674 qfq_update_start(q, cl); /* adjust start time */ 675 /* compute new finish time and rounded start. */ 676 cl->F = cl->S + (uint64_t)(m->m_pkthdr.len) * cl->inv_w; 677 roundedS = qfq_round_down(cl->S, grp->slot_shift); 678 679 /* 680 * insert cl in the correct bucket. 681 * If cl->S >= grp->S we don't need to adjust the 682 * bucket list and simply go to the insertion phase. 683 * Otherwise grp->S is decreasing, we must make room 684 * in the bucket list, and also recompute the group state. 685 * Finally, if there were no flows in this group and nobody 686 * was in ER make sure to adjust V. 687 */ 688 if (grp->full_slots) { 689 if (!qfq_gt(grp->S, cl->S)) 690 goto skip_update; 691 /* create a slot for this cl->S */ 692 qfq_slot_rotate(q, grp, roundedS); 693 /* group was surely ineligible, remove */ 694 __clear_bit(grp->index, &q->bitmaps[IR]); 695 __clear_bit(grp->index, &q->bitmaps[IB]); 696 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V)) 697 q->V = roundedS; 698 699 grp->S = roundedS; 700 grp->F = roundedS + (2ULL << grp->slot_shift); // i.e. 2\sigma_i 701 s = qfq_calc_state(q, grp); 702 __set_bit(grp->index, &q->bitmaps[s]); 703 ND("new state %d 0x%x", s, q->bitmaps[s]); 704 ND("S %llx F %llx V %llx", cl->S, cl->F, q->V); 705 skip_update: 706 qfq_slot_insert(grp, cl, roundedS); 707 708 return 0; 709 } 710 711 #if 0 712 static inline void 713 qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp, 714 struct qfq_class *cl, struct qfq_class **pprev) 715 { 716 unsigned int i, offset; 717 uint64_t roundedS; 718 719 roundedS = qfq_round_down(cl->S, grp->slot_shift); 720 offset = (roundedS - grp->S) >> grp->slot_shift; 721 i = (grp->front + offset) % QFQ_MAX_SLOTS; 722 723 #ifdef notyet 724 if (!pprev) { 725 pprev = &grp->slots[i]; 726 while (*pprev && *pprev != cl) 727 pprev = &(*pprev)->next; 728 } 729 #endif 730 731 *pprev = cl->next; 732 if (!grp->slots[i]) 733 __clear_bit(offset, &grp->full_slots); 734 } 735 736 /* 737 * called to forcibly destroy a queue. 738 * If the queue is not in the front bucket, or if it has 739 * other queues in the front bucket, we can simply remove 740 * the queue with no other side effects. 741 * Otherwise we must propagate the event up. 742 * XXX description to be completed. 743 */ 744 static void 745 qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl, 746 struct qfq_class **pprev) 747 { 748 struct qfq_group *grp = &q->groups[cl->index]; 749 unsigned long mask; 750 uint64_t roundedS; 751 int s; 752 753 cl->F = cl->S; // not needed if the class goes away. 754 qfq_slot_remove(q, grp, cl, pprev); 755 756 if (!grp->full_slots) { 757 /* nothing left in the group, remove from all sets. 758 * Do ER last because if we were blocking other groups 759 * we must unblock them. 760 */ 761 __clear_bit(grp->index, &q->bitmaps[IR]); 762 __clear_bit(grp->index, &q->bitmaps[EB]); 763 __clear_bit(grp->index, &q->bitmaps[IB]); 764 765 if (test_bit(grp->index, &q->bitmaps[ER]) && 766 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) { 767 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1); 768 if (mask) 769 mask = ~((1UL << __fls(mask)) - 1); 770 else 771 mask = ~0UL; 772 qfq_move_groups(q, mask, EB, ER); 773 qfq_move_groups(q, mask, IB, IR); 774 } 775 __clear_bit(grp->index, &q->bitmaps[ER]); 776 } else if (!grp->slots[grp->front]) { 777 cl = qfq_slot_scan(grp); 778 roundedS = qfq_round_down(cl->S, grp->slot_shift); 779 if (grp->S != roundedS) { 780 __clear_bit(grp->index, &q->bitmaps[ER]); 781 __clear_bit(grp->index, &q->bitmaps[IR]); 782 __clear_bit(grp->index, &q->bitmaps[EB]); 783 __clear_bit(grp->index, &q->bitmaps[IB]); 784 grp->S = roundedS; 785 grp->F = roundedS + (2ULL << grp->slot_shift); 786 s = qfq_calc_state(q, grp); 787 __set_bit(grp->index, &q->bitmaps[s]); 788 } 789 } 790 qfq_update_eligible(q, q->V); 791 } 792 #endif 793 794 static int 795 qfq_new_fsk(struct dn_fsk *f) 796 { 797 ipdn_bound_var(&f->fs.par[0], 1, 1, QFQ_MAX_WEIGHT, "qfq weight"); 798 ipdn_bound_var(&f->fs.par[1], 1500, 1, 2000, "qfq maxlen"); 799 ND("weight %d len %d\n", f->fs.par[0], f->fs.par[1]); 800 return 0; 801 } 802 803 /* 804 * initialize a new scheduler instance 805 */ 806 static int 807 qfq_new_sched(struct dn_sch_inst *si) 808 { 809 struct qfq_sched *q = (struct qfq_sched *)(si + 1); 810 struct qfq_group *grp; 811 int i; 812 813 for (i = 0; i <= QFQ_MAX_INDEX; i++) { 814 grp = &q->groups[i]; 815 grp->index = i; 816 grp->slot_shift = QFQ_MTU_SHIFT + FRAC_BITS - 817 (QFQ_MAX_INDEX - i); 818 } 819 return 0; 820 } 821 822 /* 823 * QFQ scheduler descriptor 824 */ 825 static struct dn_alg qfq_desc = { 826 _SI( .type = ) DN_SCHED_QFQ, 827 _SI( .name = ) "QFQ", 828 _SI( .flags = ) DN_MULTIQUEUE, 829 830 _SI( .schk_datalen = ) 0, 831 _SI( .si_datalen = ) sizeof(struct qfq_sched), 832 _SI( .q_datalen = ) sizeof(struct qfq_class) - sizeof(struct dn_queue), 833 834 _SI( .enqueue = ) qfq_enqueue, 835 _SI( .dequeue = ) qfq_dequeue, 836 837 _SI( .config = ) NULL, 838 _SI( .destroy = ) NULL, 839 _SI( .new_sched = ) qfq_new_sched, 840 _SI( .free_sched = ) NULL, 841 _SI( .new_fsk = ) qfq_new_fsk, 842 _SI( .free_fsk = ) NULL, 843 _SI( .new_queue = ) qfq_new_queue, 844 _SI( .free_queue = ) qfq_free_queue, 845 #ifdef NEW_AQM 846 _SI( .getconfig = ) NULL, 847 #endif 848 }; 849 850 DECLARE_DNSCHED_MODULE(dn_qfq, &qfq_desc); 851 852 #ifdef QFQ_DEBUG 853 static void 854 dump_groups(struct qfq_sched *q, uint32_t mask) 855 { 856 int i, j; 857 858 for (i = 0; i < QFQ_MAX_INDEX + 1; i++) { 859 struct qfq_group *g = &q->groups[i]; 860 861 if (0 == (mask & (1<<i))) 862 continue; 863 for (j = 0; j < QFQ_MAX_SLOTS; j++) { 864 if (g->slots[j]) 865 D(" bucket %d %p", j, g->slots[j]); 866 } 867 D("full_slots 0x%llx", (_P64)g->full_slots); 868 D(" %2d S 0x%20llx F 0x%llx %c", i, 869 (_P64)g->S, (_P64)g->F, 870 mask & (1<<i) ? '1' : '0'); 871 } 872 } 873 874 static void 875 dump_sched(struct qfq_sched *q, const char *msg) 876 { 877 D("--- in %s: ---", msg); 878 D("loops %d queued %d V 0x%llx", q->loops, q->queued, (_P64)q->V); 879 D(" ER 0x%08x", (unsigned)q->bitmaps[ER]); 880 D(" EB 0x%08x", (unsigned)q->bitmaps[EB]); 881 D(" IR 0x%08x", (unsigned)q->bitmaps[IR]); 882 D(" IB 0x%08x", (unsigned)q->bitmaps[IB]); 883 dump_groups(q, 0xffffffff); 884 }; 885 #endif /* QFQ_DEBUG */ 886