1 /* 2 * Copyright (c) 2010 Fabio Checconi, Luigi Rizzo, Paolo Valente 3 * All rights reserved 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 /* 28 * $FreeBSD$ 29 */ 30 31 #ifdef _KERNEL 32 #include <sys/malloc.h> 33 #include <sys/socket.h> 34 #include <sys/socketvar.h> 35 #include <sys/kernel.h> 36 #include <sys/mbuf.h> 37 #include <sys/module.h> 38 #include <net/if.h> /* IFNAMSIZ */ 39 #include <netinet/in.h> 40 #include <netinet/ip_var.h> /* ipfw_rule_ref */ 41 #include <netinet/ip_fw.h> /* flow_id */ 42 #include <netinet/ip_dummynet.h> 43 #include <netpfil/ipfw/dn_heap.h> 44 #include <netpfil/ipfw/ip_dn_private.h> 45 #include <netpfil/ipfw/dn_sched.h> 46 #else 47 #include <dn_test.h> 48 #endif 49 50 #ifdef QFQ_DEBUG 51 struct qfq_sched; 52 static void dump_sched(struct qfq_sched *q, const char *msg); 53 #define NO(x) x 54 #else 55 #define NO(x) 56 #endif 57 #define DN_SCHED_QFQ 4 // XXX Where? 58 typedef unsigned long bitmap; 59 60 /* 61 * bitmaps ops are critical. Some linux versions have __fls 62 * and the bitmap ops. Some machines have ffs 63 * NOTE: fls() returns 1 for the least significant bit, 64 * __fls() returns 0 for the same case. 65 * We use the base-0 version __fls() to match the description in 66 * the ToN QFQ paper 67 */ 68 #if defined(_WIN32) || (defined(__MIPSEL__) && defined(LINUX_24)) 69 int fls(unsigned int n) 70 { 71 int i = 0; 72 for (i = 0; n > 0; n >>= 1, i++) 73 ; 74 return i; 75 } 76 #endif 77 78 #if !defined(_KERNEL) || defined( __FreeBSD__ ) || defined(_WIN32) || (defined(__MIPSEL__) && defined(LINUX_24)) 79 static inline unsigned long __fls(unsigned long word) 80 { 81 return fls(word) - 1; 82 } 83 #endif 84 85 #if !defined(_KERNEL) || !defined(__linux__) 86 #ifdef QFQ_DEBUG 87 int test_bit(int ix, bitmap *p) 88 { 89 if (ix < 0 || ix > 31) 90 D("bad index %d", ix); 91 return *p & (1<<ix); 92 } 93 void __set_bit(int ix, bitmap *p) 94 { 95 if (ix < 0 || ix > 31) 96 D("bad index %d", ix); 97 *p |= (1<<ix); 98 } 99 void __clear_bit(int ix, bitmap *p) 100 { 101 if (ix < 0 || ix > 31) 102 D("bad index %d", ix); 103 *p &= ~(1<<ix); 104 } 105 #else /* !QFQ_DEBUG */ 106 /* XXX do we have fast version, or leave it to the compiler ? */ 107 #define test_bit(ix, pData) ((*pData) & (1<<(ix))) 108 #define __set_bit(ix, pData) (*pData) |= (1<<(ix)) 109 #define __clear_bit(ix, pData) (*pData) &= ~(1<<(ix)) 110 #endif /* !QFQ_DEBUG */ 111 #endif /* !__linux__ */ 112 113 #ifdef __MIPSEL__ 114 #define __clear_bit(ix, pData) (*pData) &= ~(1<<(ix)) 115 #endif 116 117 /*-------------------------------------------*/ 118 /* 119 120 Virtual time computations. 121 122 S, F and V are all computed in fixed point arithmetic with 123 FRAC_BITS decimal bits. 124 125 QFQ_MAX_INDEX is the maximum index allowed for a group. We need 126 one bit per index. 127 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight. 128 The layout of the bits is as below: 129 130 [ MTU_SHIFT ][ FRAC_BITS ] 131 [ MAX_INDEX ][ MIN_SLOT_SHIFT ] 132 ^.__grp->index = 0 133 *.__grp->slot_shift 134 135 where MIN_SLOT_SHIFT is derived by difference from the others. 136 137 The max group index corresponds to Lmax/w_min, where 138 Lmax=1<<MTU_SHIFT, w_min = 1 . 139 From this, and knowing how many groups (MAX_INDEX) we want, 140 we can derive the shift corresponding to each group. 141 142 Because we often need to compute 143 F = S + len/w_i and V = V + len/wsum 144 instead of storing w_i store the value 145 inv_w = (1<<FRAC_BITS)/w_i 146 so we can do F = S + len * inv_w * wsum. 147 We use W_TOT in the formulas so we can easily move between 148 static and adaptive weight sum. 149 150 The per-scheduler-instance data contain all the data structures 151 for the scheduler: bitmaps and bucket lists. 152 153 */ 154 /* 155 * Maximum number of consecutive slots occupied by backlogged classes 156 * inside a group. This is approx lmax/lmin + 5. 157 * XXX check because it poses constraints on MAX_INDEX 158 */ 159 #define QFQ_MAX_SLOTS 32 160 /* 161 * Shifts used for class<->group mapping. Class weights are 162 * in the range [1, QFQ_MAX_WEIGHT], we to map each class i to the 163 * group with the smallest index that can support the L_i / r_i 164 * configured for the class. 165 * 166 * grp->index is the index of the group; and grp->slot_shift 167 * is the shift for the corresponding (scaled) sigma_i. 168 * 169 * When computing the group index, we do (len<<FP_SHIFT)/weight, 170 * then compute an FLS (which is like a log2()), and if the result 171 * is below the MAX_INDEX region we use 0 (which is the same as 172 * using a larger len). 173 */ 174 #define QFQ_MAX_INDEX 19 175 #define QFQ_MAX_WSHIFT 16 /* log2(max_weight) */ 176 177 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) 178 #define QFQ_MAX_WSUM (2*QFQ_MAX_WEIGHT) 179 180 #define FRAC_BITS 30 /* fixed point arithmetic */ 181 #define ONE_FP (1UL << FRAC_BITS) 182 183 #define QFQ_MTU_SHIFT 11 /* log2(max_len) */ 184 #define QFQ_MIN_SLOT_SHIFT (FRAC_BITS + QFQ_MTU_SHIFT - QFQ_MAX_INDEX) 185 186 /* 187 * Possible group states, also indexes for the bitmaps array in 188 * struct qfq_queue. We rely on ER, IR, EB, IB being numbered 0..3 189 */ 190 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE }; 191 192 struct qfq_group; 193 /* 194 * additional queue info. Some of this info should come from 195 * the flowset, we copy them here for faster processing. 196 * This is an overlay of the struct dn_queue 197 */ 198 struct qfq_class { 199 struct dn_queue _q; 200 uint64_t S, F; /* flow timestamps (exact) */ 201 struct qfq_class *next; /* Link for the slot list. */ 202 203 /* group we belong to. In principle we would need the index, 204 * which is log_2(lmax/weight), but we never reference it 205 * directly, only the group. 206 */ 207 struct qfq_group *grp; 208 209 /* these are copied from the flowset. */ 210 uint32_t inv_w; /* ONE_FP/weight */ 211 uint32_t lmax; /* Max packet size for this flow. */ 212 }; 213 214 /* Group descriptor, see the paper for details. 215 * Basically this contains the bucket lists 216 */ 217 struct qfq_group { 218 uint64_t S, F; /* group timestamps (approx). */ 219 unsigned int slot_shift; /* Slot shift. */ 220 unsigned int index; /* Group index. */ 221 unsigned int front; /* Index of the front slot. */ 222 bitmap full_slots; /* non-empty slots */ 223 224 /* Array of lists of active classes. */ 225 struct qfq_class *slots[QFQ_MAX_SLOTS]; 226 }; 227 228 /* scheduler instance descriptor. */ 229 struct qfq_sched { 230 uint64_t V; /* Precise virtual time. */ 231 uint32_t wsum; /* weight sum */ 232 uint32_t iwsum; /* inverse weight sum */ 233 NO(uint32_t i_wsum; /* ONE_FP/w_sum */ 234 uint32_t _queued; /* debugging */ 235 uint32_t loops; /* debugging */) 236 bitmap bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */ 237 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */ 238 }; 239 240 /*---- support functions ----------------------------*/ 241 242 /* Generic comparison function, handling wraparound. */ 243 static inline int qfq_gt(uint64_t a, uint64_t b) 244 { 245 return (int64_t)(a - b) > 0; 246 } 247 248 /* Round a precise timestamp to its slotted value. */ 249 static inline uint64_t qfq_round_down(uint64_t ts, unsigned int shift) 250 { 251 return ts & ~((1ULL << shift) - 1); 252 } 253 254 /* return the pointer to the group with lowest index in the bitmap */ 255 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q, 256 unsigned long bitmap) 257 { 258 int index = ffs(bitmap) - 1; // zero-based 259 return &q->groups[index]; 260 } 261 262 /* 263 * Calculate a flow index, given its weight and maximum packet length. 264 * index = log_2(maxlen/weight) but we need to apply the scaling. 265 * This is used only once at flow creation. 266 */ 267 static int qfq_calc_index(uint32_t inv_w, unsigned int maxlen) 268 { 269 uint64_t slot_size = (uint64_t)maxlen *inv_w; 270 unsigned long size_map; 271 int index = 0; 272 273 size_map = (unsigned long)(slot_size >> QFQ_MIN_SLOT_SHIFT); 274 if (!size_map) 275 goto out; 276 277 index = __fls(size_map) + 1; // basically a log_2() 278 index -= !(slot_size - (1ULL << (index + QFQ_MIN_SLOT_SHIFT - 1))); 279 280 if (index < 0) 281 index = 0; 282 283 out: 284 ND("W = %d, L = %d, I = %d\n", ONE_FP/inv_w, maxlen, index); 285 return index; 286 } 287 /*---- end support functions ----*/ 288 289 /*-------- API calls --------------------------------*/ 290 /* 291 * Validate and copy parameters from flowset. 292 */ 293 static int 294 qfq_new_queue(struct dn_queue *_q) 295 { 296 struct qfq_sched *q = (struct qfq_sched *)(_q->_si + 1); 297 struct qfq_class *cl = (struct qfq_class *)_q; 298 int i; 299 uint32_t w; /* approximated weight */ 300 301 /* import parameters from the flowset. They should be correct 302 * already. 303 */ 304 w = _q->fs->fs.par[0]; 305 cl->lmax = _q->fs->fs.par[1]; 306 if (!w || w > QFQ_MAX_WEIGHT) { 307 w = 1; 308 D("rounding weight to 1"); 309 } 310 cl->inv_w = ONE_FP/w; 311 w = ONE_FP/cl->inv_w; 312 if (q->wsum + w > QFQ_MAX_WSUM) 313 return EINVAL; 314 315 i = qfq_calc_index(cl->inv_w, cl->lmax); 316 cl->grp = &q->groups[i]; 317 q->wsum += w; 318 q->iwsum = ONE_FP / q->wsum; /* XXX note theory */ 319 // XXX cl->S = q->V; ? 320 return 0; 321 } 322 323 /* remove an empty queue */ 324 static int 325 qfq_free_queue(struct dn_queue *_q) 326 { 327 struct qfq_sched *q = (struct qfq_sched *)(_q->_si + 1); 328 struct qfq_class *cl = (struct qfq_class *)_q; 329 if (cl->inv_w) { 330 q->wsum -= ONE_FP/cl->inv_w; 331 if (q->wsum != 0) 332 q->iwsum = ONE_FP / q->wsum; 333 cl->inv_w = 0; /* reset weight to avoid run twice */ 334 } 335 return 0; 336 } 337 338 /* Calculate a mask to mimic what would be ffs_from(). */ 339 static inline unsigned long 340 mask_from(unsigned long bitmap, int from) 341 { 342 return bitmap & ~((1UL << from) - 1); 343 } 344 345 /* 346 * The state computation relies on ER=0, IR=1, EB=2, IB=3 347 * First compute eligibility comparing grp->S, q->V, 348 * then check if someone is blocking us and possibly add EB 349 */ 350 static inline unsigned int 351 qfq_calc_state(struct qfq_sched *q, struct qfq_group *grp) 352 { 353 /* if S > V we are not eligible */ 354 unsigned int state = qfq_gt(grp->S, q->V); 355 unsigned long mask = mask_from(q->bitmaps[ER], grp->index); 356 struct qfq_group *next; 357 358 if (mask) { 359 next = qfq_ffs(q, mask); 360 if (qfq_gt(grp->F, next->F)) 361 state |= EB; 362 } 363 364 return state; 365 } 366 367 /* 368 * In principle 369 * q->bitmaps[dst] |= q->bitmaps[src] & mask; 370 * q->bitmaps[src] &= ~mask; 371 * but we should make sure that src != dst 372 */ 373 static inline void 374 qfq_move_groups(struct qfq_sched *q, unsigned long mask, int src, int dst) 375 { 376 q->bitmaps[dst] |= q->bitmaps[src] & mask; 377 q->bitmaps[src] &= ~mask; 378 } 379 380 static inline void 381 qfq_unblock_groups(struct qfq_sched *q, int index, uint64_t old_finish) 382 { 383 unsigned long mask = mask_from(q->bitmaps[ER], index + 1); 384 struct qfq_group *next; 385 386 if (mask) { 387 next = qfq_ffs(q, mask); 388 if (!qfq_gt(next->F, old_finish)) 389 return; 390 } 391 392 mask = (1UL << index) - 1; 393 qfq_move_groups(q, mask, EB, ER); 394 qfq_move_groups(q, mask, IB, IR); 395 } 396 397 /* 398 * perhaps 399 * 400 old_V ^= q->V; 401 old_V >>= QFQ_MIN_SLOT_SHIFT; 402 if (old_V) { 403 ... 404 } 405 * 406 */ 407 static inline void 408 qfq_make_eligible(struct qfq_sched *q, uint64_t old_V) 409 { 410 unsigned long mask, vslot, old_vslot; 411 412 vslot = q->V >> QFQ_MIN_SLOT_SHIFT; 413 old_vslot = old_V >> QFQ_MIN_SLOT_SHIFT; 414 415 if (vslot != old_vslot) { 416 /* must be 2ULL, see ToN QFQ article fig.5, we use base-0 fls */ 417 mask = (2ULL << (__fls(vslot ^ old_vslot))) - 1; 418 qfq_move_groups(q, mask, IR, ER); 419 qfq_move_groups(q, mask, IB, EB); 420 } 421 } 422 423 /* 424 * XXX we should make sure that slot becomes less than 32. 425 * This is guaranteed by the input values. 426 * roundedS is always cl->S rounded on grp->slot_shift bits. 427 */ 428 static inline void 429 qfq_slot_insert(struct qfq_group *grp, struct qfq_class *cl, uint64_t roundedS) 430 { 431 uint64_t slot = (roundedS - grp->S) >> grp->slot_shift; 432 unsigned int i = (grp->front + slot) % QFQ_MAX_SLOTS; 433 434 cl->next = grp->slots[i]; 435 grp->slots[i] = cl; 436 __set_bit(slot, &grp->full_slots); 437 } 438 439 /* 440 * remove the entry from the slot 441 */ 442 static inline void 443 qfq_front_slot_remove(struct qfq_group *grp) 444 { 445 struct qfq_class **h = &grp->slots[grp->front]; 446 447 *h = (*h)->next; 448 if (!*h) 449 __clear_bit(0, &grp->full_slots); 450 } 451 452 /* 453 * Returns the first full queue in a group. As a side effect, 454 * adjust the bucket list so the first non-empty bucket is at 455 * position 0 in full_slots. 456 */ 457 static inline struct qfq_class * 458 qfq_slot_scan(struct qfq_group *grp) 459 { 460 int i; 461 462 ND("grp %d full %x", grp->index, grp->full_slots); 463 if (!grp->full_slots) 464 return NULL; 465 466 i = ffs(grp->full_slots) - 1; // zero-based 467 if (i > 0) { 468 grp->front = (grp->front + i) % QFQ_MAX_SLOTS; 469 grp->full_slots >>= i; 470 } 471 472 return grp->slots[grp->front]; 473 } 474 475 /* 476 * adjust the bucket list. When the start time of a group decreases, 477 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to 478 * move the objects. The mask of occupied slots must be shifted 479 * because we use ffs() to find the first non-empty slot. 480 * This covers decreases in the group's start time, but what about 481 * increases of the start time ? 482 * Here too we should make sure that i is less than 32 483 */ 484 static inline void 485 qfq_slot_rotate(struct qfq_sched *q, struct qfq_group *grp, uint64_t roundedS) 486 { 487 unsigned int i = (grp->S - roundedS) >> grp->slot_shift; 488 489 grp->full_slots <<= i; 490 grp->front = (grp->front - i) % QFQ_MAX_SLOTS; 491 } 492 493 494 static inline void 495 qfq_update_eligible(struct qfq_sched *q, uint64_t old_V) 496 { 497 bitmap ineligible; 498 499 ineligible = q->bitmaps[IR] | q->bitmaps[IB]; 500 if (ineligible) { 501 if (!q->bitmaps[ER]) { 502 struct qfq_group *grp; 503 grp = qfq_ffs(q, ineligible); 504 if (qfq_gt(grp->S, q->V)) 505 q->V = grp->S; 506 } 507 qfq_make_eligible(q, old_V); 508 } 509 } 510 511 /* 512 * Updates the class, returns true if also the group needs to be updated. 513 */ 514 static inline int 515 qfq_update_class(struct qfq_sched *q, struct qfq_group *grp, 516 struct qfq_class *cl) 517 { 518 519 cl->S = cl->F; 520 if (cl->_q.mq.head == NULL) { 521 qfq_front_slot_remove(grp); 522 } else { 523 unsigned int len; 524 uint64_t roundedS; 525 526 len = cl->_q.mq.head->m_pkthdr.len; 527 cl->F = cl->S + (uint64_t)len * cl->inv_w; 528 roundedS = qfq_round_down(cl->S, grp->slot_shift); 529 if (roundedS == grp->S) 530 return 0; 531 532 qfq_front_slot_remove(grp); 533 qfq_slot_insert(grp, cl, roundedS); 534 } 535 return 1; 536 } 537 538 static struct mbuf * 539 qfq_dequeue(struct dn_sch_inst *si) 540 { 541 struct qfq_sched *q = (struct qfq_sched *)(si + 1); 542 struct qfq_group *grp; 543 struct qfq_class *cl; 544 struct mbuf *m; 545 uint64_t old_V; 546 547 NO(q->loops++;) 548 if (!q->bitmaps[ER]) { 549 NO(if (q->queued) 550 dump_sched(q, "start dequeue");) 551 return NULL; 552 } 553 554 grp = qfq_ffs(q, q->bitmaps[ER]); 555 556 cl = grp->slots[grp->front]; 557 /* extract from the first bucket in the bucket list */ 558 m = dn_dequeue(&cl->_q); 559 560 if (!m) { 561 D("BUG/* non-workconserving leaf */"); 562 return NULL; 563 } 564 NO(q->queued--;) 565 old_V = q->V; 566 q->V += (uint64_t)m->m_pkthdr.len * q->iwsum; 567 ND("m is %p F 0x%llx V now 0x%llx", m, cl->F, q->V); 568 569 if (qfq_update_class(q, grp, cl)) { 570 uint64_t old_F = grp->F; 571 cl = qfq_slot_scan(grp); 572 if (!cl) { /* group gone, remove from ER */ 573 __clear_bit(grp->index, &q->bitmaps[ER]); 574 // grp->S = grp->F + 1; // XXX debugging only 575 } else { 576 uint64_t roundedS = qfq_round_down(cl->S, grp->slot_shift); 577 unsigned int s; 578 579 if (grp->S == roundedS) 580 goto skip_unblock; 581 grp->S = roundedS; 582 grp->F = roundedS + (2ULL << grp->slot_shift); 583 /* remove from ER and put in the new set */ 584 __clear_bit(grp->index, &q->bitmaps[ER]); 585 s = qfq_calc_state(q, grp); 586 __set_bit(grp->index, &q->bitmaps[s]); 587 } 588 /* we need to unblock even if the group has gone away */ 589 qfq_unblock_groups(q, grp->index, old_F); 590 } 591 592 skip_unblock: 593 qfq_update_eligible(q, old_V); 594 NO(if (!q->bitmaps[ER] && q->queued) 595 dump_sched(q, "end dequeue");) 596 597 return m; 598 } 599 600 /* 601 * Assign a reasonable start time for a new flow k in group i. 602 * Admissible values for \hat(F) are multiples of \sigma_i 603 * no greater than V+\sigma_i . Larger values mean that 604 * we had a wraparound so we consider the timestamp to be stale. 605 * 606 * If F is not stale and F >= V then we set S = F. 607 * Otherwise we should assign S = V, but this may violate 608 * the ordering in ER. So, if we have groups in ER, set S to 609 * the F_j of the first group j which would be blocking us. 610 * We are guaranteed not to move S backward because 611 * otherwise our group i would still be blocked. 612 */ 613 static inline void 614 qfq_update_start(struct qfq_sched *q, struct qfq_class *cl) 615 { 616 unsigned long mask; 617 uint64_t limit, roundedF; 618 int slot_shift = cl->grp->slot_shift; 619 620 roundedF = qfq_round_down(cl->F, slot_shift); 621 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift); 622 623 if (!qfq_gt(cl->F, q->V) || qfq_gt(roundedF, limit)) { 624 /* timestamp was stale */ 625 mask = mask_from(q->bitmaps[ER], cl->grp->index); 626 if (mask) { 627 struct qfq_group *next = qfq_ffs(q, mask); 628 if (qfq_gt(roundedF, next->F)) { 629 /* from pv 71261956973ba9e0637848a5adb4a5819b4bae83 */ 630 if (qfq_gt(limit, next->F)) 631 cl->S = next->F; 632 else /* preserve timestamp correctness */ 633 cl->S = limit; 634 return; 635 } 636 } 637 cl->S = q->V; 638 } else { /* timestamp is not stale */ 639 cl->S = cl->F; 640 } 641 } 642 643 static int 644 qfq_enqueue(struct dn_sch_inst *si, struct dn_queue *_q, struct mbuf *m) 645 { 646 struct qfq_sched *q = (struct qfq_sched *)(si + 1); 647 struct qfq_group *grp; 648 struct qfq_class *cl = (struct qfq_class *)_q; 649 uint64_t roundedS; 650 int s; 651 652 NO(q->loops++;) 653 DX(4, "len %d flow %p inv_w 0x%x grp %d", m->m_pkthdr.len, 654 _q, cl->inv_w, cl->grp->index); 655 /* XXX verify that the packet obeys the parameters */ 656 if (m != _q->mq.head) { 657 if (dn_enqueue(_q, m, 0)) /* packet was dropped */ 658 return 1; 659 NO(q->queued++;) 660 if (m != _q->mq.head) 661 return 0; 662 } 663 /* If reach this point, queue q was idle */ 664 grp = cl->grp; 665 qfq_update_start(q, cl); /* adjust start time */ 666 /* compute new finish time and rounded start. */ 667 cl->F = cl->S + (uint64_t)(m->m_pkthdr.len) * cl->inv_w; 668 roundedS = qfq_round_down(cl->S, grp->slot_shift); 669 670 /* 671 * insert cl in the correct bucket. 672 * If cl->S >= grp->S we don't need to adjust the 673 * bucket list and simply go to the insertion phase. 674 * Otherwise grp->S is decreasing, we must make room 675 * in the bucket list, and also recompute the group state. 676 * Finally, if there were no flows in this group and nobody 677 * was in ER make sure to adjust V. 678 */ 679 if (grp->full_slots) { 680 if (!qfq_gt(grp->S, cl->S)) 681 goto skip_update; 682 /* create a slot for this cl->S */ 683 qfq_slot_rotate(q, grp, roundedS); 684 /* group was surely ineligible, remove */ 685 __clear_bit(grp->index, &q->bitmaps[IR]); 686 __clear_bit(grp->index, &q->bitmaps[IB]); 687 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V)) 688 q->V = roundedS; 689 690 grp->S = roundedS; 691 grp->F = roundedS + (2ULL << grp->slot_shift); // i.e. 2\sigma_i 692 s = qfq_calc_state(q, grp); 693 __set_bit(grp->index, &q->bitmaps[s]); 694 ND("new state %d 0x%x", s, q->bitmaps[s]); 695 ND("S %llx F %llx V %llx", cl->S, cl->F, q->V); 696 skip_update: 697 qfq_slot_insert(grp, cl, roundedS); 698 699 return 0; 700 } 701 702 703 #if 0 704 static inline void 705 qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp, 706 struct qfq_class *cl, struct qfq_class **pprev) 707 { 708 unsigned int i, offset; 709 uint64_t roundedS; 710 711 roundedS = qfq_round_down(cl->S, grp->slot_shift); 712 offset = (roundedS - grp->S) >> grp->slot_shift; 713 i = (grp->front + offset) % QFQ_MAX_SLOTS; 714 715 #ifdef notyet 716 if (!pprev) { 717 pprev = &grp->slots[i]; 718 while (*pprev && *pprev != cl) 719 pprev = &(*pprev)->next; 720 } 721 #endif 722 723 *pprev = cl->next; 724 if (!grp->slots[i]) 725 __clear_bit(offset, &grp->full_slots); 726 } 727 728 /* 729 * called to forcibly destroy a queue. 730 * If the queue is not in the front bucket, or if it has 731 * other queues in the front bucket, we can simply remove 732 * the queue with no other side effects. 733 * Otherwise we must propagate the event up. 734 * XXX description to be completed. 735 */ 736 static void 737 qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl, 738 struct qfq_class **pprev) 739 { 740 struct qfq_group *grp = &q->groups[cl->index]; 741 unsigned long mask; 742 uint64_t roundedS; 743 int s; 744 745 cl->F = cl->S; // not needed if the class goes away. 746 qfq_slot_remove(q, grp, cl, pprev); 747 748 if (!grp->full_slots) { 749 /* nothing left in the group, remove from all sets. 750 * Do ER last because if we were blocking other groups 751 * we must unblock them. 752 */ 753 __clear_bit(grp->index, &q->bitmaps[IR]); 754 __clear_bit(grp->index, &q->bitmaps[EB]); 755 __clear_bit(grp->index, &q->bitmaps[IB]); 756 757 if (test_bit(grp->index, &q->bitmaps[ER]) && 758 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) { 759 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1); 760 if (mask) 761 mask = ~((1UL << __fls(mask)) - 1); 762 else 763 mask = ~0UL; 764 qfq_move_groups(q, mask, EB, ER); 765 qfq_move_groups(q, mask, IB, IR); 766 } 767 __clear_bit(grp->index, &q->bitmaps[ER]); 768 } else if (!grp->slots[grp->front]) { 769 cl = qfq_slot_scan(grp); 770 roundedS = qfq_round_down(cl->S, grp->slot_shift); 771 if (grp->S != roundedS) { 772 __clear_bit(grp->index, &q->bitmaps[ER]); 773 __clear_bit(grp->index, &q->bitmaps[IR]); 774 __clear_bit(grp->index, &q->bitmaps[EB]); 775 __clear_bit(grp->index, &q->bitmaps[IB]); 776 grp->S = roundedS; 777 grp->F = roundedS + (2ULL << grp->slot_shift); 778 s = qfq_calc_state(q, grp); 779 __set_bit(grp->index, &q->bitmaps[s]); 780 } 781 } 782 qfq_update_eligible(q, q->V); 783 } 784 #endif 785 786 static int 787 qfq_new_fsk(struct dn_fsk *f) 788 { 789 ipdn_bound_var(&f->fs.par[0], 1, 1, QFQ_MAX_WEIGHT, "qfq weight"); 790 ipdn_bound_var(&f->fs.par[1], 1500, 1, 2000, "qfq maxlen"); 791 ND("weight %d len %d\n", f->fs.par[0], f->fs.par[1]); 792 return 0; 793 } 794 795 /* 796 * initialize a new scheduler instance 797 */ 798 static int 799 qfq_new_sched(struct dn_sch_inst *si) 800 { 801 struct qfq_sched *q = (struct qfq_sched *)(si + 1); 802 struct qfq_group *grp; 803 int i; 804 805 for (i = 0; i <= QFQ_MAX_INDEX; i++) { 806 grp = &q->groups[i]; 807 grp->index = i; 808 grp->slot_shift = QFQ_MTU_SHIFT + FRAC_BITS - 809 (QFQ_MAX_INDEX - i); 810 } 811 return 0; 812 } 813 814 /* 815 * QFQ scheduler descriptor 816 */ 817 static struct dn_alg qfq_desc = { 818 _SI( .type = ) DN_SCHED_QFQ, 819 _SI( .name = ) "QFQ", 820 _SI( .flags = ) DN_MULTIQUEUE, 821 822 _SI( .schk_datalen = ) 0, 823 _SI( .si_datalen = ) sizeof(struct qfq_sched), 824 _SI( .q_datalen = ) sizeof(struct qfq_class) - sizeof(struct dn_queue), 825 826 _SI( .enqueue = ) qfq_enqueue, 827 _SI( .dequeue = ) qfq_dequeue, 828 829 _SI( .config = ) NULL, 830 _SI( .destroy = ) NULL, 831 _SI( .new_sched = ) qfq_new_sched, 832 _SI( .free_sched = ) NULL, 833 _SI( .new_fsk = ) qfq_new_fsk, 834 _SI( .free_fsk = ) NULL, 835 _SI( .new_queue = ) qfq_new_queue, 836 _SI( .free_queue = ) qfq_free_queue, 837 }; 838 839 DECLARE_DNSCHED_MODULE(dn_qfq, &qfq_desc); 840 841 #ifdef QFQ_DEBUG 842 static void 843 dump_groups(struct qfq_sched *q, uint32_t mask) 844 { 845 int i, j; 846 847 for (i = 0; i < QFQ_MAX_INDEX + 1; i++) { 848 struct qfq_group *g = &q->groups[i]; 849 850 if (0 == (mask & (1<<i))) 851 continue; 852 for (j = 0; j < QFQ_MAX_SLOTS; j++) { 853 if (g->slots[j]) 854 D(" bucket %d %p", j, g->slots[j]); 855 } 856 D("full_slots 0x%x", g->full_slots); 857 D(" %2d S 0x%20llx F 0x%llx %c", i, 858 g->S, g->F, 859 mask & (1<<i) ? '1' : '0'); 860 } 861 } 862 863 static void 864 dump_sched(struct qfq_sched *q, const char *msg) 865 { 866 D("--- in %s: ---", msg); 867 ND("loops %d queued %d V 0x%llx", q->loops, q->queued, q->V); 868 D(" ER 0x%08x", q->bitmaps[ER]); 869 D(" EB 0x%08x", q->bitmaps[EB]); 870 D(" IR 0x%08x", q->bitmaps[IR]); 871 D(" IB 0x%08x", q->bitmaps[IB]); 872 dump_groups(q, 0xffffffff); 873 }; 874 #endif /* QFQ_DEBUG */ 875