1 /* 2 * Copyright (c) 2010 Fabio Checconi, Luigi Rizzo, Paolo Valente 3 * All rights reserved 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 /* 28 * $FreeBSD$ 29 */ 30 31 #ifdef _KERNEL 32 #include <sys/malloc.h> 33 #include <sys/socket.h> 34 #include <sys/socketvar.h> 35 #include <sys/kernel.h> 36 #include <sys/lock.h> 37 #include <sys/mbuf.h> 38 #include <sys/module.h> 39 #include <sys/rwlock.h> 40 #include <net/if.h> /* IFNAMSIZ */ 41 #include <netinet/in.h> 42 #include <netinet/ip_var.h> /* ipfw_rule_ref */ 43 #include <netinet/ip_fw.h> /* flow_id */ 44 #include <netinet/ip_dummynet.h> 45 #include <netpfil/ipfw/ip_fw_private.h> 46 #include <netpfil/ipfw/dn_heap.h> 47 #include <netpfil/ipfw/ip_dn_private.h> 48 #ifdef NEW_AQM 49 #include <netpfil/ipfw/dn_aqm.h> 50 #endif 51 #include <netpfil/ipfw/dn_sched.h> 52 #else 53 #include <dn_test.h> 54 #endif 55 56 #ifdef QFQ_DEBUG 57 #define _P64 unsigned long long /* cast for printing uint64_t */ 58 struct qfq_sched; 59 static void dump_sched(struct qfq_sched *q, const char *msg); 60 #define NO(x) x 61 #else 62 #define NO(x) 63 #endif 64 #define DN_SCHED_QFQ 4 // XXX Where? 65 typedef unsigned long bitmap; 66 67 /* 68 * bitmaps ops are critical. Some linux versions have __fls 69 * and the bitmap ops. Some machines have ffs 70 * NOTE: fls() returns 1 for the least significant bit, 71 * __fls() returns 0 for the same case. 72 * We use the base-0 version __fls() to match the description in 73 * the ToN QFQ paper 74 */ 75 #if defined(_WIN32) || (defined(__MIPSEL__) && defined(LINUX_24)) 76 int fls(unsigned int n) 77 { 78 int i = 0; 79 for (i = 0; n > 0; n >>= 1, i++) 80 ; 81 return i; 82 } 83 #endif 84 85 #if !defined(_KERNEL) || defined( __FreeBSD__ ) || defined(_WIN32) || (defined(__MIPSEL__) && defined(LINUX_24)) 86 static inline unsigned long __fls(unsigned long word) 87 { 88 return fls(word) - 1; 89 } 90 #endif 91 92 #if !defined(_KERNEL) || !defined(__linux__) 93 #ifdef QFQ_DEBUG 94 static int test_bit(int ix, bitmap *p) 95 { 96 if (ix < 0 || ix > 31) 97 D("bad index %d", ix); 98 return *p & (1<<ix); 99 } 100 static void __set_bit(int ix, bitmap *p) 101 { 102 if (ix < 0 || ix > 31) 103 D("bad index %d", ix); 104 *p |= (1<<ix); 105 } 106 static void __clear_bit(int ix, bitmap *p) 107 { 108 if (ix < 0 || ix > 31) 109 D("bad index %d", ix); 110 *p &= ~(1<<ix); 111 } 112 #else /* !QFQ_DEBUG */ 113 /* XXX do we have fast version, or leave it to the compiler ? */ 114 #define test_bit(ix, pData) ((*pData) & (1<<(ix))) 115 #define __set_bit(ix, pData) (*pData) |= (1<<(ix)) 116 #define __clear_bit(ix, pData) (*pData) &= ~(1<<(ix)) 117 #endif /* !QFQ_DEBUG */ 118 #endif /* !__linux__ */ 119 120 #ifdef __MIPSEL__ 121 #define __clear_bit(ix, pData) (*pData) &= ~(1<<(ix)) 122 #endif 123 124 /*-------------------------------------------*/ 125 /* 126 127 Virtual time computations. 128 129 S, F and V are all computed in fixed point arithmetic with 130 FRAC_BITS decimal bits. 131 132 QFQ_MAX_INDEX is the maximum index allowed for a group. We need 133 one bit per index. 134 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight. 135 The layout of the bits is as below: 136 137 [ MTU_SHIFT ][ FRAC_BITS ] 138 [ MAX_INDEX ][ MIN_SLOT_SHIFT ] 139 ^.__grp->index = 0 140 *.__grp->slot_shift 141 142 where MIN_SLOT_SHIFT is derived by difference from the others. 143 144 The max group index corresponds to Lmax/w_min, where 145 Lmax=1<<MTU_SHIFT, w_min = 1 . 146 From this, and knowing how many groups (MAX_INDEX) we want, 147 we can derive the shift corresponding to each group. 148 149 Because we often need to compute 150 F = S + len/w_i and V = V + len/wsum 151 instead of storing w_i store the value 152 inv_w = (1<<FRAC_BITS)/w_i 153 so we can do F = S + len * inv_w * wsum. 154 We use W_TOT in the formulas so we can easily move between 155 static and adaptive weight sum. 156 157 The per-scheduler-instance data contain all the data structures 158 for the scheduler: bitmaps and bucket lists. 159 160 */ 161 /* 162 * Maximum number of consecutive slots occupied by backlogged classes 163 * inside a group. This is approx lmax/lmin + 5. 164 * XXX check because it poses constraints on MAX_INDEX 165 */ 166 #define QFQ_MAX_SLOTS 32 167 /* 168 * Shifts used for class<->group mapping. Class weights are 169 * in the range [1, QFQ_MAX_WEIGHT], we to map each class i to the 170 * group with the smallest index that can support the L_i / r_i 171 * configured for the class. 172 * 173 * grp->index is the index of the group; and grp->slot_shift 174 * is the shift for the corresponding (scaled) sigma_i. 175 * 176 * When computing the group index, we do (len<<FP_SHIFT)/weight, 177 * then compute an FLS (which is like a log2()), and if the result 178 * is below the MAX_INDEX region we use 0 (which is the same as 179 * using a larger len). 180 */ 181 #define QFQ_MAX_INDEX 19 182 #define QFQ_MAX_WSHIFT 16 /* log2(max_weight) */ 183 184 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) 185 #define QFQ_MAX_WSUM (2*QFQ_MAX_WEIGHT) 186 187 #define FRAC_BITS 30 /* fixed point arithmetic */ 188 #define ONE_FP (1UL << FRAC_BITS) 189 190 #define QFQ_MTU_SHIFT 11 /* log2(max_len) */ 191 #define QFQ_MIN_SLOT_SHIFT (FRAC_BITS + QFQ_MTU_SHIFT - QFQ_MAX_INDEX) 192 193 /* 194 * Possible group states, also indexes for the bitmaps array in 195 * struct qfq_queue. We rely on ER, IR, EB, IB being numbered 0..3 196 */ 197 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE }; 198 199 struct qfq_group; 200 /* 201 * additional queue info. Some of this info should come from 202 * the flowset, we copy them here for faster processing. 203 * This is an overlay of the struct dn_queue 204 */ 205 struct qfq_class { 206 struct dn_queue _q; 207 uint64_t S, F; /* flow timestamps (exact) */ 208 struct qfq_class *next; /* Link for the slot list. */ 209 210 /* group we belong to. In principle we would need the index, 211 * which is log_2(lmax/weight), but we never reference it 212 * directly, only the group. 213 */ 214 struct qfq_group *grp; 215 216 /* these are copied from the flowset. */ 217 uint32_t inv_w; /* ONE_FP/weight */ 218 uint32_t lmax; /* Max packet size for this flow. */ 219 }; 220 221 /* Group descriptor, see the paper for details. 222 * Basically this contains the bucket lists 223 */ 224 struct qfq_group { 225 uint64_t S, F; /* group timestamps (approx). */ 226 unsigned int slot_shift; /* Slot shift. */ 227 unsigned int index; /* Group index. */ 228 unsigned int front; /* Index of the front slot. */ 229 bitmap full_slots; /* non-empty slots */ 230 231 /* Array of lists of active classes. */ 232 struct qfq_class *slots[QFQ_MAX_SLOTS]; 233 }; 234 235 /* scheduler instance descriptor. */ 236 struct qfq_sched { 237 uint64_t V; /* Precise virtual time. */ 238 uint32_t wsum; /* weight sum */ 239 uint32_t iwsum; /* inverse weight sum */ 240 NO(uint32_t i_wsum;) /* ONE_FP/w_sum */ 241 NO(uint32_t queued;) /* debugging */ 242 NO(uint32_t loops;) /* debugging */ 243 bitmap bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */ 244 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */ 245 }; 246 247 /*---- support functions ----------------------------*/ 248 249 /* Generic comparison function, handling wraparound. */ 250 static inline int qfq_gt(uint64_t a, uint64_t b) 251 { 252 return (int64_t)(a - b) > 0; 253 } 254 255 /* Round a precise timestamp to its slotted value. */ 256 static inline uint64_t qfq_round_down(uint64_t ts, unsigned int shift) 257 { 258 return ts & ~((1ULL << shift) - 1); 259 } 260 261 /* return the pointer to the group with lowest index in the bitmap */ 262 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q, 263 unsigned long bitmap) 264 { 265 int index = ffs(bitmap) - 1; // zero-based 266 return &q->groups[index]; 267 } 268 269 /* 270 * Calculate a flow index, given its weight and maximum packet length. 271 * index = log_2(maxlen/weight) but we need to apply the scaling. 272 * This is used only once at flow creation. 273 */ 274 static int qfq_calc_index(uint32_t inv_w, unsigned int maxlen) 275 { 276 uint64_t slot_size = (uint64_t)maxlen *inv_w; 277 unsigned long size_map; 278 int index = 0; 279 280 size_map = (unsigned long)(slot_size >> QFQ_MIN_SLOT_SHIFT); 281 if (!size_map) 282 goto out; 283 284 index = __fls(size_map) + 1; // basically a log_2() 285 index -= !(slot_size - (1ULL << (index + QFQ_MIN_SLOT_SHIFT - 1))); 286 287 if (index < 0) 288 index = 0; 289 290 out: 291 ND("W = %d, L = %d, I = %d\n", ONE_FP/inv_w, maxlen, index); 292 return index; 293 } 294 /*---- end support functions ----*/ 295 296 /*-------- API calls --------------------------------*/ 297 /* 298 * Validate and copy parameters from flowset. 299 */ 300 static int 301 qfq_new_queue(struct dn_queue *_q) 302 { 303 struct qfq_sched *q = (struct qfq_sched *)(_q->_si + 1); 304 struct qfq_class *cl = (struct qfq_class *)_q; 305 int i; 306 uint32_t w; /* approximated weight */ 307 308 /* import parameters from the flowset. They should be correct 309 * already. 310 */ 311 w = _q->fs->fs.par[0]; 312 cl->lmax = _q->fs->fs.par[1]; 313 if (!w || w > QFQ_MAX_WEIGHT) { 314 w = 1; 315 D("rounding weight to 1"); 316 } 317 cl->inv_w = ONE_FP/w; 318 w = ONE_FP/cl->inv_w; 319 if (q->wsum + w > QFQ_MAX_WSUM) 320 return EINVAL; 321 322 i = qfq_calc_index(cl->inv_w, cl->lmax); 323 cl->grp = &q->groups[i]; 324 q->wsum += w; 325 q->iwsum = ONE_FP / q->wsum; /* XXX note theory */ 326 // XXX cl->S = q->V; ? 327 return 0; 328 } 329 330 /* remove an empty queue */ 331 static int 332 qfq_free_queue(struct dn_queue *_q) 333 { 334 struct qfq_sched *q = (struct qfq_sched *)(_q->_si + 1); 335 struct qfq_class *cl = (struct qfq_class *)_q; 336 if (cl->inv_w) { 337 q->wsum -= ONE_FP/cl->inv_w; 338 if (q->wsum != 0) 339 q->iwsum = ONE_FP / q->wsum; 340 cl->inv_w = 0; /* reset weight to avoid run twice */ 341 } 342 return 0; 343 } 344 345 /* Calculate a mask to mimic what would be ffs_from(). */ 346 static inline unsigned long 347 mask_from(unsigned long bitmap, int from) 348 { 349 return bitmap & ~((1UL << from) - 1); 350 } 351 352 /* 353 * The state computation relies on ER=0, IR=1, EB=2, IB=3 354 * First compute eligibility comparing grp->S, q->V, 355 * then check if someone is blocking us and possibly add EB 356 */ 357 static inline unsigned int 358 qfq_calc_state(struct qfq_sched *q, struct qfq_group *grp) 359 { 360 /* if S > V we are not eligible */ 361 unsigned int state = qfq_gt(grp->S, q->V); 362 unsigned long mask = mask_from(q->bitmaps[ER], grp->index); 363 struct qfq_group *next; 364 365 if (mask) { 366 next = qfq_ffs(q, mask); 367 if (qfq_gt(grp->F, next->F)) 368 state |= EB; 369 } 370 371 return state; 372 } 373 374 /* 375 * In principle 376 * q->bitmaps[dst] |= q->bitmaps[src] & mask; 377 * q->bitmaps[src] &= ~mask; 378 * but we should make sure that src != dst 379 */ 380 static inline void 381 qfq_move_groups(struct qfq_sched *q, unsigned long mask, int src, int dst) 382 { 383 q->bitmaps[dst] |= q->bitmaps[src] & mask; 384 q->bitmaps[src] &= ~mask; 385 } 386 387 static inline void 388 qfq_unblock_groups(struct qfq_sched *q, int index, uint64_t old_finish) 389 { 390 unsigned long mask = mask_from(q->bitmaps[ER], index + 1); 391 struct qfq_group *next; 392 393 if (mask) { 394 next = qfq_ffs(q, mask); 395 if (!qfq_gt(next->F, old_finish)) 396 return; 397 } 398 399 mask = (1UL << index) - 1; 400 qfq_move_groups(q, mask, EB, ER); 401 qfq_move_groups(q, mask, IB, IR); 402 } 403 404 /* 405 * perhaps 406 * 407 old_V ^= q->V; 408 old_V >>= QFQ_MIN_SLOT_SHIFT; 409 if (old_V) { 410 ... 411 } 412 * 413 */ 414 static inline void 415 qfq_make_eligible(struct qfq_sched *q, uint64_t old_V) 416 { 417 unsigned long mask, vslot, old_vslot; 418 419 vslot = q->V >> QFQ_MIN_SLOT_SHIFT; 420 old_vslot = old_V >> QFQ_MIN_SLOT_SHIFT; 421 422 if (vslot != old_vslot) { 423 /* must be 2ULL, see ToN QFQ article fig.5, we use base-0 fls */ 424 mask = (2ULL << (__fls(vslot ^ old_vslot))) - 1; 425 qfq_move_groups(q, mask, IR, ER); 426 qfq_move_groups(q, mask, IB, EB); 427 } 428 } 429 430 /* 431 * XXX we should make sure that slot becomes less than 32. 432 * This is guaranteed by the input values. 433 * roundedS is always cl->S rounded on grp->slot_shift bits. 434 */ 435 static inline void 436 qfq_slot_insert(struct qfq_group *grp, struct qfq_class *cl, uint64_t roundedS) 437 { 438 uint64_t slot = (roundedS - grp->S) >> grp->slot_shift; 439 unsigned int i = (grp->front + slot) % QFQ_MAX_SLOTS; 440 441 cl->next = grp->slots[i]; 442 grp->slots[i] = cl; 443 __set_bit(slot, &grp->full_slots); 444 } 445 446 /* 447 * remove the entry from the slot 448 */ 449 static inline void 450 qfq_front_slot_remove(struct qfq_group *grp) 451 { 452 struct qfq_class **h = &grp->slots[grp->front]; 453 454 *h = (*h)->next; 455 if (!*h) 456 __clear_bit(0, &grp->full_slots); 457 } 458 459 /* 460 * Returns the first full queue in a group. As a side effect, 461 * adjust the bucket list so the first non-empty bucket is at 462 * position 0 in full_slots. 463 */ 464 static inline struct qfq_class * 465 qfq_slot_scan(struct qfq_group *grp) 466 { 467 int i; 468 469 ND("grp %d full %x", grp->index, grp->full_slots); 470 if (!grp->full_slots) 471 return NULL; 472 473 i = ffs(grp->full_slots) - 1; // zero-based 474 if (i > 0) { 475 grp->front = (grp->front + i) % QFQ_MAX_SLOTS; 476 grp->full_slots >>= i; 477 } 478 479 return grp->slots[grp->front]; 480 } 481 482 /* 483 * adjust the bucket list. When the start time of a group decreases, 484 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to 485 * move the objects. The mask of occupied slots must be shifted 486 * because we use ffs() to find the first non-empty slot. 487 * This covers decreases in the group's start time, but what about 488 * increases of the start time ? 489 * Here too we should make sure that i is less than 32 490 */ 491 static inline void 492 qfq_slot_rotate(struct qfq_sched *q, struct qfq_group *grp, uint64_t roundedS) 493 { 494 unsigned int i = (grp->S - roundedS) >> grp->slot_shift; 495 496 (void)q; 497 grp->full_slots <<= i; 498 grp->front = (grp->front - i) % QFQ_MAX_SLOTS; 499 } 500 501 502 static inline void 503 qfq_update_eligible(struct qfq_sched *q, uint64_t old_V) 504 { 505 bitmap ineligible; 506 507 ineligible = q->bitmaps[IR] | q->bitmaps[IB]; 508 if (ineligible) { 509 if (!q->bitmaps[ER]) { 510 struct qfq_group *grp; 511 grp = qfq_ffs(q, ineligible); 512 if (qfq_gt(grp->S, q->V)) 513 q->V = grp->S; 514 } 515 qfq_make_eligible(q, old_V); 516 } 517 } 518 519 /* 520 * Updates the class, returns true if also the group needs to be updated. 521 */ 522 static inline int 523 qfq_update_class(struct qfq_sched *q, struct qfq_group *grp, 524 struct qfq_class *cl) 525 { 526 527 (void)q; 528 cl->S = cl->F; 529 if (cl->_q.mq.head == NULL) { 530 qfq_front_slot_remove(grp); 531 } else { 532 unsigned int len; 533 uint64_t roundedS; 534 535 len = cl->_q.mq.head->m_pkthdr.len; 536 cl->F = cl->S + (uint64_t)len * cl->inv_w; 537 roundedS = qfq_round_down(cl->S, grp->slot_shift); 538 if (roundedS == grp->S) 539 return 0; 540 541 qfq_front_slot_remove(grp); 542 qfq_slot_insert(grp, cl, roundedS); 543 } 544 return 1; 545 } 546 547 static struct mbuf * 548 qfq_dequeue(struct dn_sch_inst *si) 549 { 550 struct qfq_sched *q = (struct qfq_sched *)(si + 1); 551 struct qfq_group *grp; 552 struct qfq_class *cl; 553 struct mbuf *m; 554 uint64_t old_V; 555 556 NO(q->loops++;) 557 if (!q->bitmaps[ER]) { 558 NO(if (q->queued) 559 dump_sched(q, "start dequeue");) 560 return NULL; 561 } 562 563 grp = qfq_ffs(q, q->bitmaps[ER]); 564 565 cl = grp->slots[grp->front]; 566 /* extract from the first bucket in the bucket list */ 567 m = dn_dequeue(&cl->_q); 568 569 if (!m) { 570 D("BUG/* non-workconserving leaf */"); 571 return NULL; 572 } 573 NO(q->queued--;) 574 old_V = q->V; 575 q->V += (uint64_t)m->m_pkthdr.len * q->iwsum; 576 ND("m is %p F 0x%llx V now 0x%llx", m, cl->F, q->V); 577 578 if (qfq_update_class(q, grp, cl)) { 579 uint64_t old_F = grp->F; 580 cl = qfq_slot_scan(grp); 581 if (!cl) { /* group gone, remove from ER */ 582 __clear_bit(grp->index, &q->bitmaps[ER]); 583 // grp->S = grp->F + 1; // XXX debugging only 584 } else { 585 uint64_t roundedS = qfq_round_down(cl->S, grp->slot_shift); 586 unsigned int s; 587 588 if (grp->S == roundedS) 589 goto skip_unblock; 590 grp->S = roundedS; 591 grp->F = roundedS + (2ULL << grp->slot_shift); 592 /* remove from ER and put in the new set */ 593 __clear_bit(grp->index, &q->bitmaps[ER]); 594 s = qfq_calc_state(q, grp); 595 __set_bit(grp->index, &q->bitmaps[s]); 596 } 597 /* we need to unblock even if the group has gone away */ 598 qfq_unblock_groups(q, grp->index, old_F); 599 } 600 601 skip_unblock: 602 qfq_update_eligible(q, old_V); 603 NO(if (!q->bitmaps[ER] && q->queued) 604 dump_sched(q, "end dequeue");) 605 606 return m; 607 } 608 609 /* 610 * Assign a reasonable start time for a new flow k in group i. 611 * Admissible values for \hat(F) are multiples of \sigma_i 612 * no greater than V+\sigma_i . Larger values mean that 613 * we had a wraparound so we consider the timestamp to be stale. 614 * 615 * If F is not stale and F >= V then we set S = F. 616 * Otherwise we should assign S = V, but this may violate 617 * the ordering in ER. So, if we have groups in ER, set S to 618 * the F_j of the first group j which would be blocking us. 619 * We are guaranteed not to move S backward because 620 * otherwise our group i would still be blocked. 621 */ 622 static inline void 623 qfq_update_start(struct qfq_sched *q, struct qfq_class *cl) 624 { 625 unsigned long mask; 626 uint64_t limit, roundedF; 627 int slot_shift = cl->grp->slot_shift; 628 629 roundedF = qfq_round_down(cl->F, slot_shift); 630 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift); 631 632 if (!qfq_gt(cl->F, q->V) || qfq_gt(roundedF, limit)) { 633 /* timestamp was stale */ 634 mask = mask_from(q->bitmaps[ER], cl->grp->index); 635 if (mask) { 636 struct qfq_group *next = qfq_ffs(q, mask); 637 if (qfq_gt(roundedF, next->F)) { 638 /* from pv 71261956973ba9e0637848a5adb4a5819b4bae83 */ 639 if (qfq_gt(limit, next->F)) 640 cl->S = next->F; 641 else /* preserve timestamp correctness */ 642 cl->S = limit; 643 return; 644 } 645 } 646 cl->S = q->V; 647 } else { /* timestamp is not stale */ 648 cl->S = cl->F; 649 } 650 } 651 652 static int 653 qfq_enqueue(struct dn_sch_inst *si, struct dn_queue *_q, struct mbuf *m) 654 { 655 struct qfq_sched *q = (struct qfq_sched *)(si + 1); 656 struct qfq_group *grp; 657 struct qfq_class *cl = (struct qfq_class *)_q; 658 uint64_t roundedS; 659 int s; 660 661 NO(q->loops++;) 662 DX(4, "len %d flow %p inv_w 0x%x grp %d", m->m_pkthdr.len, 663 _q, cl->inv_w, cl->grp->index); 664 /* XXX verify that the packet obeys the parameters */ 665 if (m != _q->mq.head) { 666 if (dn_enqueue(_q, m, 0)) /* packet was dropped */ 667 return 1; 668 NO(q->queued++;) 669 if (m != _q->mq.head) 670 return 0; 671 } 672 /* If reach this point, queue q was idle */ 673 grp = cl->grp; 674 qfq_update_start(q, cl); /* adjust start time */ 675 /* compute new finish time and rounded start. */ 676 cl->F = cl->S + (uint64_t)(m->m_pkthdr.len) * cl->inv_w; 677 roundedS = qfq_round_down(cl->S, grp->slot_shift); 678 679 /* 680 * insert cl in the correct bucket. 681 * If cl->S >= grp->S we don't need to adjust the 682 * bucket list and simply go to the insertion phase. 683 * Otherwise grp->S is decreasing, we must make room 684 * in the bucket list, and also recompute the group state. 685 * Finally, if there were no flows in this group and nobody 686 * was in ER make sure to adjust V. 687 */ 688 if (grp->full_slots) { 689 if (!qfq_gt(grp->S, cl->S)) 690 goto skip_update; 691 /* create a slot for this cl->S */ 692 qfq_slot_rotate(q, grp, roundedS); 693 /* group was surely ineligible, remove */ 694 __clear_bit(grp->index, &q->bitmaps[IR]); 695 __clear_bit(grp->index, &q->bitmaps[IB]); 696 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V)) 697 q->V = roundedS; 698 699 grp->S = roundedS; 700 grp->F = roundedS + (2ULL << grp->slot_shift); // i.e. 2\sigma_i 701 s = qfq_calc_state(q, grp); 702 __set_bit(grp->index, &q->bitmaps[s]); 703 ND("new state %d 0x%x", s, q->bitmaps[s]); 704 ND("S %llx F %llx V %llx", cl->S, cl->F, q->V); 705 skip_update: 706 qfq_slot_insert(grp, cl, roundedS); 707 708 return 0; 709 } 710 711 712 #if 0 713 static inline void 714 qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp, 715 struct qfq_class *cl, struct qfq_class **pprev) 716 { 717 unsigned int i, offset; 718 uint64_t roundedS; 719 720 roundedS = qfq_round_down(cl->S, grp->slot_shift); 721 offset = (roundedS - grp->S) >> grp->slot_shift; 722 i = (grp->front + offset) % QFQ_MAX_SLOTS; 723 724 #ifdef notyet 725 if (!pprev) { 726 pprev = &grp->slots[i]; 727 while (*pprev && *pprev != cl) 728 pprev = &(*pprev)->next; 729 } 730 #endif 731 732 *pprev = cl->next; 733 if (!grp->slots[i]) 734 __clear_bit(offset, &grp->full_slots); 735 } 736 737 /* 738 * called to forcibly destroy a queue. 739 * If the queue is not in the front bucket, or if it has 740 * other queues in the front bucket, we can simply remove 741 * the queue with no other side effects. 742 * Otherwise we must propagate the event up. 743 * XXX description to be completed. 744 */ 745 static void 746 qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl, 747 struct qfq_class **pprev) 748 { 749 struct qfq_group *grp = &q->groups[cl->index]; 750 unsigned long mask; 751 uint64_t roundedS; 752 int s; 753 754 cl->F = cl->S; // not needed if the class goes away. 755 qfq_slot_remove(q, grp, cl, pprev); 756 757 if (!grp->full_slots) { 758 /* nothing left in the group, remove from all sets. 759 * Do ER last because if we were blocking other groups 760 * we must unblock them. 761 */ 762 __clear_bit(grp->index, &q->bitmaps[IR]); 763 __clear_bit(grp->index, &q->bitmaps[EB]); 764 __clear_bit(grp->index, &q->bitmaps[IB]); 765 766 if (test_bit(grp->index, &q->bitmaps[ER]) && 767 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) { 768 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1); 769 if (mask) 770 mask = ~((1UL << __fls(mask)) - 1); 771 else 772 mask = ~0UL; 773 qfq_move_groups(q, mask, EB, ER); 774 qfq_move_groups(q, mask, IB, IR); 775 } 776 __clear_bit(grp->index, &q->bitmaps[ER]); 777 } else if (!grp->slots[grp->front]) { 778 cl = qfq_slot_scan(grp); 779 roundedS = qfq_round_down(cl->S, grp->slot_shift); 780 if (grp->S != roundedS) { 781 __clear_bit(grp->index, &q->bitmaps[ER]); 782 __clear_bit(grp->index, &q->bitmaps[IR]); 783 __clear_bit(grp->index, &q->bitmaps[EB]); 784 __clear_bit(grp->index, &q->bitmaps[IB]); 785 grp->S = roundedS; 786 grp->F = roundedS + (2ULL << grp->slot_shift); 787 s = qfq_calc_state(q, grp); 788 __set_bit(grp->index, &q->bitmaps[s]); 789 } 790 } 791 qfq_update_eligible(q, q->V); 792 } 793 #endif 794 795 static int 796 qfq_new_fsk(struct dn_fsk *f) 797 { 798 ipdn_bound_var(&f->fs.par[0], 1, 1, QFQ_MAX_WEIGHT, "qfq weight"); 799 ipdn_bound_var(&f->fs.par[1], 1500, 1, 2000, "qfq maxlen"); 800 ND("weight %d len %d\n", f->fs.par[0], f->fs.par[1]); 801 return 0; 802 } 803 804 /* 805 * initialize a new scheduler instance 806 */ 807 static int 808 qfq_new_sched(struct dn_sch_inst *si) 809 { 810 struct qfq_sched *q = (struct qfq_sched *)(si + 1); 811 struct qfq_group *grp; 812 int i; 813 814 for (i = 0; i <= QFQ_MAX_INDEX; i++) { 815 grp = &q->groups[i]; 816 grp->index = i; 817 grp->slot_shift = QFQ_MTU_SHIFT + FRAC_BITS - 818 (QFQ_MAX_INDEX - i); 819 } 820 return 0; 821 } 822 823 /* 824 * QFQ scheduler descriptor 825 */ 826 static struct dn_alg qfq_desc = { 827 _SI( .type = ) DN_SCHED_QFQ, 828 _SI( .name = ) "QFQ", 829 _SI( .flags = ) DN_MULTIQUEUE, 830 831 _SI( .schk_datalen = ) 0, 832 _SI( .si_datalen = ) sizeof(struct qfq_sched), 833 _SI( .q_datalen = ) sizeof(struct qfq_class) - sizeof(struct dn_queue), 834 835 _SI( .enqueue = ) qfq_enqueue, 836 _SI( .dequeue = ) qfq_dequeue, 837 838 _SI( .config = ) NULL, 839 _SI( .destroy = ) NULL, 840 _SI( .new_sched = ) qfq_new_sched, 841 _SI( .free_sched = ) NULL, 842 _SI( .new_fsk = ) qfq_new_fsk, 843 _SI( .free_fsk = ) NULL, 844 _SI( .new_queue = ) qfq_new_queue, 845 _SI( .free_queue = ) qfq_free_queue, 846 #ifdef NEW_AQM 847 _SI( .getconfig = ) NULL, 848 #endif 849 }; 850 851 DECLARE_DNSCHED_MODULE(dn_qfq, &qfq_desc); 852 853 #ifdef QFQ_DEBUG 854 static void 855 dump_groups(struct qfq_sched *q, uint32_t mask) 856 { 857 int i, j; 858 859 for (i = 0; i < QFQ_MAX_INDEX + 1; i++) { 860 struct qfq_group *g = &q->groups[i]; 861 862 if (0 == (mask & (1<<i))) 863 continue; 864 for (j = 0; j < QFQ_MAX_SLOTS; j++) { 865 if (g->slots[j]) 866 D(" bucket %d %p", j, g->slots[j]); 867 } 868 D("full_slots 0x%llx", (_P64)g->full_slots); 869 D(" %2d S 0x%20llx F 0x%llx %c", i, 870 (_P64)g->S, (_P64)g->F, 871 mask & (1<<i) ? '1' : '0'); 872 } 873 } 874 875 static void 876 dump_sched(struct qfq_sched *q, const char *msg) 877 { 878 D("--- in %s: ---", msg); 879 D("loops %d queued %d V 0x%llx", q->loops, q->queued, (_P64)q->V); 880 D(" ER 0x%08x", (unsigned)q->bitmaps[ER]); 881 D(" EB 0x%08x", (unsigned)q->bitmaps[EB]); 882 D(" IR 0x%08x", (unsigned)q->bitmaps[IR]); 883 D(" IB 0x%08x", (unsigned)q->bitmaps[IB]); 884 dump_groups(q, 0xffffffff); 885 }; 886 #endif /* QFQ_DEBUG */ 887