1 /* 2 * Copyright (c) 2010 Fabio Checconi, Luigi Rizzo, Paolo Valente 3 * All rights reserved 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 /* 28 * $FreeBSD$ 29 */ 30 31 #ifdef _KERNEL 32 #include <sys/malloc.h> 33 #include <sys/socket.h> 34 #include <sys/socketvar.h> 35 #include <sys/kernel.h> 36 #include <sys/mbuf.h> 37 #include <sys/module.h> 38 #include <net/if.h> /* IFNAMSIZ */ 39 #include <netinet/in.h> 40 #include <netinet/ip_var.h> /* ipfw_rule_ref */ 41 #include <netinet/ip_fw.h> /* flow_id */ 42 #include <netinet/ip_dummynet.h> 43 #include <netpfil/ipfw/dn_heap.h> 44 #include <netpfil/ipfw/ip_dn_private.h> 45 #include <netpfil/ipfw/dn_sched.h> 46 #else 47 #include <dn_test.h> 48 #endif 49 50 #ifdef QFQ_DEBUG 51 struct qfq_sched; 52 static void dump_sched(struct qfq_sched *q, const char *msg); 53 #define NO(x) x 54 #else 55 #define NO(x) 56 #endif 57 #define DN_SCHED_QFQ 4 // XXX Where? 58 typedef unsigned long bitmap; 59 60 /* 61 * bitmaps ops are critical. Some linux versions have __fls 62 * and the bitmap ops. Some machines have ffs 63 */ 64 #if defined(_WIN32) || (defined(__MIPSEL__) && defined(LINUX_24)) 65 int fls(unsigned int n) 66 { 67 int i = 0; 68 for (i = 0; n > 0; n >>= 1, i++) 69 ; 70 return i; 71 } 72 #endif 73 74 #if !defined(_KERNEL) || defined( __FreeBSD__ ) || defined(_WIN32) || (defined(__MIPSEL__) && defined(LINUX_24)) 75 static inline unsigned long __fls(unsigned long word) 76 { 77 return fls(word) - 1; 78 } 79 #endif 80 81 #if !defined(_KERNEL) || !defined(__linux__) 82 #ifdef QFQ_DEBUG 83 int test_bit(int ix, bitmap *p) 84 { 85 if (ix < 0 || ix > 31) 86 D("bad index %d", ix); 87 return *p & (1<<ix); 88 } 89 void __set_bit(int ix, bitmap *p) 90 { 91 if (ix < 0 || ix > 31) 92 D("bad index %d", ix); 93 *p |= (1<<ix); 94 } 95 void __clear_bit(int ix, bitmap *p) 96 { 97 if (ix < 0 || ix > 31) 98 D("bad index %d", ix); 99 *p &= ~(1<<ix); 100 } 101 #else /* !QFQ_DEBUG */ 102 /* XXX do we have fast version, or leave it to the compiler ? */ 103 #define test_bit(ix, pData) ((*pData) & (1<<(ix))) 104 #define __set_bit(ix, pData) (*pData) |= (1<<(ix)) 105 #define __clear_bit(ix, pData) (*pData) &= ~(1<<(ix)) 106 #endif /* !QFQ_DEBUG */ 107 #endif /* !__linux__ */ 108 109 #ifdef __MIPSEL__ 110 #define __clear_bit(ix, pData) (*pData) &= ~(1<<(ix)) 111 #endif 112 113 /*-------------------------------------------*/ 114 /* 115 116 Virtual time computations. 117 118 S, F and V are all computed in fixed point arithmetic with 119 FRAC_BITS decimal bits. 120 121 QFQ_MAX_INDEX is the maximum index allowed for a group. We need 122 one bit per index. 123 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight. 124 The layout of the bits is as below: 125 126 [ MTU_SHIFT ][ FRAC_BITS ] 127 [ MAX_INDEX ][ MIN_SLOT_SHIFT ] 128 ^.__grp->index = 0 129 *.__grp->slot_shift 130 131 where MIN_SLOT_SHIFT is derived by difference from the others. 132 133 The max group index corresponds to Lmax/w_min, where 134 Lmax=1<<MTU_SHIFT, w_min = 1 . 135 From this, and knowing how many groups (MAX_INDEX) we want, 136 we can derive the shift corresponding to each group. 137 138 Because we often need to compute 139 F = S + len/w_i and V = V + len/wsum 140 instead of storing w_i store the value 141 inv_w = (1<<FRAC_BITS)/w_i 142 so we can do F = S + len * inv_w * wsum. 143 We use W_TOT in the formulas so we can easily move between 144 static and adaptive weight sum. 145 146 The per-scheduler-instance data contain all the data structures 147 for the scheduler: bitmaps and bucket lists. 148 149 */ 150 /* 151 * Maximum number of consecutive slots occupied by backlogged classes 152 * inside a group. This is approx lmax/lmin + 5. 153 * XXX check because it poses constraints on MAX_INDEX 154 */ 155 #define QFQ_MAX_SLOTS 32 156 /* 157 * Shifts used for class<->group mapping. Class weights are 158 * in the range [1, QFQ_MAX_WEIGHT], we to map each class i to the 159 * group with the smallest index that can support the L_i / r_i 160 * configured for the class. 161 * 162 * grp->index is the index of the group; and grp->slot_shift 163 * is the shift for the corresponding (scaled) sigma_i. 164 * 165 * When computing the group index, we do (len<<FP_SHIFT)/weight, 166 * then compute an FLS (which is like a log2()), and if the result 167 * is below the MAX_INDEX region we use 0 (which is the same as 168 * using a larger len). 169 */ 170 #define QFQ_MAX_INDEX 19 171 #define QFQ_MAX_WSHIFT 16 /* log2(max_weight) */ 172 173 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) 174 #define QFQ_MAX_WSUM (2*QFQ_MAX_WEIGHT) 175 176 #define FRAC_BITS 30 /* fixed point arithmetic */ 177 #define ONE_FP (1UL << FRAC_BITS) 178 179 #define QFQ_MTU_SHIFT 11 /* log2(max_len) */ 180 #define QFQ_MIN_SLOT_SHIFT (FRAC_BITS + QFQ_MTU_SHIFT - QFQ_MAX_INDEX) 181 182 /* 183 * Possible group states, also indexes for the bitmaps array in 184 * struct qfq_queue. We rely on ER, IR, EB, IB being numbered 0..3 185 */ 186 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE }; 187 188 struct qfq_group; 189 /* 190 * additional queue info. Some of this info should come from 191 * the flowset, we copy them here for faster processing. 192 * This is an overlay of the struct dn_queue 193 */ 194 struct qfq_class { 195 struct dn_queue _q; 196 uint64_t S, F; /* flow timestamps (exact) */ 197 struct qfq_class *next; /* Link for the slot list. */ 198 199 /* group we belong to. In principle we would need the index, 200 * which is log_2(lmax/weight), but we never reference it 201 * directly, only the group. 202 */ 203 struct qfq_group *grp; 204 205 /* these are copied from the flowset. */ 206 uint32_t inv_w; /* ONE_FP/weight */ 207 uint32_t lmax; /* Max packet size for this flow. */ 208 }; 209 210 /* Group descriptor, see the paper for details. 211 * Basically this contains the bucket lists 212 */ 213 struct qfq_group { 214 uint64_t S, F; /* group timestamps (approx). */ 215 unsigned int slot_shift; /* Slot shift. */ 216 unsigned int index; /* Group index. */ 217 unsigned int front; /* Index of the front slot. */ 218 bitmap full_slots; /* non-empty slots */ 219 220 /* Array of lists of active classes. */ 221 struct qfq_class *slots[QFQ_MAX_SLOTS]; 222 }; 223 224 /* scheduler instance descriptor. */ 225 struct qfq_sched { 226 uint64_t V; /* Precise virtual time. */ 227 uint32_t wsum; /* weight sum */ 228 uint32_t iwsum; /* inverse weight sum */ 229 NO(uint32_t i_wsum; /* ONE_FP/w_sum */ 230 uint32_t _queued; /* debugging */ 231 uint32_t loops; /* debugging */) 232 bitmap bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */ 233 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */ 234 }; 235 236 /*---- support functions ----------------------------*/ 237 238 /* Generic comparison function, handling wraparound. */ 239 static inline int qfq_gt(uint64_t a, uint64_t b) 240 { 241 return (int64_t)(a - b) > 0; 242 } 243 244 /* Round a precise timestamp to its slotted value. */ 245 static inline uint64_t qfq_round_down(uint64_t ts, unsigned int shift) 246 { 247 return ts & ~((1ULL << shift) - 1); 248 } 249 250 /* return the pointer to the group with lowest index in the bitmap */ 251 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q, 252 unsigned long bitmap) 253 { 254 int index = ffs(bitmap) - 1; // zero-based 255 return &q->groups[index]; 256 } 257 258 /* 259 * Calculate a flow index, given its weight and maximum packet length. 260 * index = log_2(maxlen/weight) but we need to apply the scaling. 261 * This is used only once at flow creation. 262 */ 263 static int qfq_calc_index(uint32_t inv_w, unsigned int maxlen) 264 { 265 uint64_t slot_size = (uint64_t)maxlen *inv_w; 266 unsigned long size_map; 267 int index = 0; 268 269 size_map = (unsigned long)(slot_size >> QFQ_MIN_SLOT_SHIFT); 270 if (!size_map) 271 goto out; 272 273 index = __fls(size_map) + 1; // basically a log_2() 274 index -= !(slot_size - (1ULL << (index + QFQ_MIN_SLOT_SHIFT - 1))); 275 276 if (index < 0) 277 index = 0; 278 279 out: 280 ND("W = %d, L = %d, I = %d\n", ONE_FP/inv_w, maxlen, index); 281 return index; 282 } 283 /*---- end support functions ----*/ 284 285 /*-------- API calls --------------------------------*/ 286 /* 287 * Validate and copy parameters from flowset. 288 */ 289 static int 290 qfq_new_queue(struct dn_queue *_q) 291 { 292 struct qfq_sched *q = (struct qfq_sched *)(_q->_si + 1); 293 struct qfq_class *cl = (struct qfq_class *)_q; 294 int i; 295 uint32_t w; /* approximated weight */ 296 297 /* import parameters from the flowset. They should be correct 298 * already. 299 */ 300 w = _q->fs->fs.par[0]; 301 cl->lmax = _q->fs->fs.par[1]; 302 if (!w || w > QFQ_MAX_WEIGHT) { 303 w = 1; 304 D("rounding weight to 1"); 305 } 306 cl->inv_w = ONE_FP/w; 307 w = ONE_FP/cl->inv_w; 308 if (q->wsum + w > QFQ_MAX_WSUM) 309 return EINVAL; 310 311 i = qfq_calc_index(cl->inv_w, cl->lmax); 312 cl->grp = &q->groups[i]; 313 q->wsum += w; 314 q->iwsum = ONE_FP / q->wsum; /* XXX note theory */ 315 // XXX cl->S = q->V; ? 316 return 0; 317 } 318 319 /* remove an empty queue */ 320 static int 321 qfq_free_queue(struct dn_queue *_q) 322 { 323 struct qfq_sched *q = (struct qfq_sched *)(_q->_si + 1); 324 struct qfq_class *cl = (struct qfq_class *)_q; 325 if (cl->inv_w) { 326 q->wsum -= ONE_FP/cl->inv_w; 327 if (q->wsum != 0) 328 q->iwsum = ONE_FP / q->wsum; 329 cl->inv_w = 0; /* reset weight to avoid run twice */ 330 } 331 return 0; 332 } 333 334 /* Calculate a mask to mimic what would be ffs_from(). */ 335 static inline unsigned long 336 mask_from(unsigned long bitmap, int from) 337 { 338 return bitmap & ~((1UL << from) - 1); 339 } 340 341 /* 342 * The state computation relies on ER=0, IR=1, EB=2, IB=3 343 * First compute eligibility comparing grp->S, q->V, 344 * then check if someone is blocking us and possibly add EB 345 */ 346 static inline unsigned int 347 qfq_calc_state(struct qfq_sched *q, struct qfq_group *grp) 348 { 349 /* if S > V we are not eligible */ 350 unsigned int state = qfq_gt(grp->S, q->V); 351 unsigned long mask = mask_from(q->bitmaps[ER], grp->index); 352 struct qfq_group *next; 353 354 if (mask) { 355 next = qfq_ffs(q, mask); 356 if (qfq_gt(grp->F, next->F)) 357 state |= EB; 358 } 359 360 return state; 361 } 362 363 /* 364 * In principle 365 * q->bitmaps[dst] |= q->bitmaps[src] & mask; 366 * q->bitmaps[src] &= ~mask; 367 * but we should make sure that src != dst 368 */ 369 static inline void 370 qfq_move_groups(struct qfq_sched *q, unsigned long mask, int src, int dst) 371 { 372 q->bitmaps[dst] |= q->bitmaps[src] & mask; 373 q->bitmaps[src] &= ~mask; 374 } 375 376 static inline void 377 qfq_unblock_groups(struct qfq_sched *q, int index, uint64_t old_finish) 378 { 379 unsigned long mask = mask_from(q->bitmaps[ER], index + 1); 380 struct qfq_group *next; 381 382 if (mask) { 383 next = qfq_ffs(q, mask); 384 if (!qfq_gt(next->F, old_finish)) 385 return; 386 } 387 388 mask = (1UL << index) - 1; 389 qfq_move_groups(q, mask, EB, ER); 390 qfq_move_groups(q, mask, IB, IR); 391 } 392 393 /* 394 * perhaps 395 * 396 old_V ^= q->V; 397 old_V >>= QFQ_MIN_SLOT_SHIFT; 398 if (old_V) { 399 ... 400 } 401 * 402 */ 403 static inline void 404 qfq_make_eligible(struct qfq_sched *q, uint64_t old_V) 405 { 406 unsigned long mask, vslot, old_vslot; 407 408 vslot = q->V >> QFQ_MIN_SLOT_SHIFT; 409 old_vslot = old_V >> QFQ_MIN_SLOT_SHIFT; 410 411 if (vslot != old_vslot) { 412 /* should be 1ULL not 2ULL */ 413 mask = (1ULL << (__fls(vslot ^ old_vslot))) - 1; 414 qfq_move_groups(q, mask, IR, ER); 415 qfq_move_groups(q, mask, IB, EB); 416 } 417 } 418 419 /* 420 * XXX we should make sure that slot becomes less than 32. 421 * This is guaranteed by the input values. 422 * roundedS is always cl->S rounded on grp->slot_shift bits. 423 */ 424 static inline void 425 qfq_slot_insert(struct qfq_group *grp, struct qfq_class *cl, uint64_t roundedS) 426 { 427 uint64_t slot = (roundedS - grp->S) >> grp->slot_shift; 428 unsigned int i = (grp->front + slot) % QFQ_MAX_SLOTS; 429 430 cl->next = grp->slots[i]; 431 grp->slots[i] = cl; 432 __set_bit(slot, &grp->full_slots); 433 } 434 435 /* 436 * remove the entry from the slot 437 */ 438 static inline void 439 qfq_front_slot_remove(struct qfq_group *grp) 440 { 441 struct qfq_class **h = &grp->slots[grp->front]; 442 443 *h = (*h)->next; 444 if (!*h) 445 __clear_bit(0, &grp->full_slots); 446 } 447 448 /* 449 * Returns the first full queue in a group. As a side effect, 450 * adjust the bucket list so the first non-empty bucket is at 451 * position 0 in full_slots. 452 */ 453 static inline struct qfq_class * 454 qfq_slot_scan(struct qfq_group *grp) 455 { 456 int i; 457 458 ND("grp %d full %x", grp->index, grp->full_slots); 459 if (!grp->full_slots) 460 return NULL; 461 462 i = ffs(grp->full_slots) - 1; // zero-based 463 if (i > 0) { 464 grp->front = (grp->front + i) % QFQ_MAX_SLOTS; 465 grp->full_slots >>= i; 466 } 467 468 return grp->slots[grp->front]; 469 } 470 471 /* 472 * adjust the bucket list. When the start time of a group decreases, 473 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to 474 * move the objects. The mask of occupied slots must be shifted 475 * because we use ffs() to find the first non-empty slot. 476 * This covers decreases in the group's start time, but what about 477 * increases of the start time ? 478 * Here too we should make sure that i is less than 32 479 */ 480 static inline void 481 qfq_slot_rotate(struct qfq_sched *q, struct qfq_group *grp, uint64_t roundedS) 482 { 483 unsigned int i = (grp->S - roundedS) >> grp->slot_shift; 484 485 grp->full_slots <<= i; 486 grp->front = (grp->front - i) % QFQ_MAX_SLOTS; 487 } 488 489 490 static inline void 491 qfq_update_eligible(struct qfq_sched *q, uint64_t old_V) 492 { 493 bitmap ineligible; 494 495 ineligible = q->bitmaps[IR] | q->bitmaps[IB]; 496 if (ineligible) { 497 if (!q->bitmaps[ER]) { 498 struct qfq_group *grp; 499 grp = qfq_ffs(q, ineligible); 500 if (qfq_gt(grp->S, q->V)) 501 q->V = grp->S; 502 } 503 qfq_make_eligible(q, old_V); 504 } 505 } 506 507 /* 508 * Updates the class, returns true if also the group needs to be updated. 509 */ 510 static inline int 511 qfq_update_class(struct qfq_sched *q, struct qfq_group *grp, 512 struct qfq_class *cl) 513 { 514 515 cl->S = cl->F; 516 if (cl->_q.mq.head == NULL) { 517 qfq_front_slot_remove(grp); 518 } else { 519 unsigned int len; 520 uint64_t roundedS; 521 522 len = cl->_q.mq.head->m_pkthdr.len; 523 cl->F = cl->S + (uint64_t)len * cl->inv_w; 524 roundedS = qfq_round_down(cl->S, grp->slot_shift); 525 if (roundedS == grp->S) 526 return 0; 527 528 qfq_front_slot_remove(grp); 529 qfq_slot_insert(grp, cl, roundedS); 530 } 531 return 1; 532 } 533 534 static struct mbuf * 535 qfq_dequeue(struct dn_sch_inst *si) 536 { 537 struct qfq_sched *q = (struct qfq_sched *)(si + 1); 538 struct qfq_group *grp; 539 struct qfq_class *cl; 540 struct mbuf *m; 541 uint64_t old_V; 542 543 NO(q->loops++;) 544 if (!q->bitmaps[ER]) { 545 NO(if (q->queued) 546 dump_sched(q, "start dequeue");) 547 return NULL; 548 } 549 550 grp = qfq_ffs(q, q->bitmaps[ER]); 551 552 cl = grp->slots[grp->front]; 553 /* extract from the first bucket in the bucket list */ 554 m = dn_dequeue(&cl->_q); 555 556 if (!m) { 557 D("BUG/* non-workconserving leaf */"); 558 return NULL; 559 } 560 NO(q->queued--;) 561 old_V = q->V; 562 q->V += (uint64_t)m->m_pkthdr.len * q->iwsum; 563 ND("m is %p F 0x%llx V now 0x%llx", m, cl->F, q->V); 564 565 if (qfq_update_class(q, grp, cl)) { 566 uint64_t old_F = grp->F; 567 cl = qfq_slot_scan(grp); 568 if (!cl) { /* group gone, remove from ER */ 569 __clear_bit(grp->index, &q->bitmaps[ER]); 570 // grp->S = grp->F + 1; // XXX debugging only 571 } else { 572 uint64_t roundedS = qfq_round_down(cl->S, grp->slot_shift); 573 unsigned int s; 574 575 if (grp->S == roundedS) 576 goto skip_unblock; 577 grp->S = roundedS; 578 grp->F = roundedS + (2ULL << grp->slot_shift); 579 /* remove from ER and put in the new set */ 580 __clear_bit(grp->index, &q->bitmaps[ER]); 581 s = qfq_calc_state(q, grp); 582 __set_bit(grp->index, &q->bitmaps[s]); 583 } 584 /* we need to unblock even if the group has gone away */ 585 qfq_unblock_groups(q, grp->index, old_F); 586 } 587 588 skip_unblock: 589 qfq_update_eligible(q, old_V); 590 NO(if (!q->bitmaps[ER] && q->queued) 591 dump_sched(q, "end dequeue");) 592 593 return m; 594 } 595 596 /* 597 * Assign a reasonable start time for a new flow k in group i. 598 * Admissible values for \hat(F) are multiples of \sigma_i 599 * no greater than V+\sigma_i . Larger values mean that 600 * we had a wraparound so we consider the timestamp to be stale. 601 * 602 * If F is not stale and F >= V then we set S = F. 603 * Otherwise we should assign S = V, but this may violate 604 * the ordering in ER. So, if we have groups in ER, set S to 605 * the F_j of the first group j which would be blocking us. 606 * We are guaranteed not to move S backward because 607 * otherwise our group i would still be blocked. 608 */ 609 static inline void 610 qfq_update_start(struct qfq_sched *q, struct qfq_class *cl) 611 { 612 unsigned long mask; 613 uint64_t limit, roundedF; 614 int slot_shift = cl->grp->slot_shift; 615 616 roundedF = qfq_round_down(cl->F, slot_shift); 617 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift); 618 619 if (!qfq_gt(cl->F, q->V) || qfq_gt(roundedF, limit)) { 620 /* timestamp was stale */ 621 mask = mask_from(q->bitmaps[ER], cl->grp->index); 622 if (mask) { 623 struct qfq_group *next = qfq_ffs(q, mask); 624 if (qfq_gt(roundedF, next->F)) { 625 /* from pv 71261956973ba9e0637848a5adb4a5819b4bae83 */ 626 if (qfq_gt(limit, next->F)) 627 cl->S = next->F; 628 else /* preserve timestamp correctness */ 629 cl->S = limit; 630 return; 631 } 632 } 633 cl->S = q->V; 634 } else { /* timestamp is not stale */ 635 cl->S = cl->F; 636 } 637 } 638 639 static int 640 qfq_enqueue(struct dn_sch_inst *si, struct dn_queue *_q, struct mbuf *m) 641 { 642 struct qfq_sched *q = (struct qfq_sched *)(si + 1); 643 struct qfq_group *grp; 644 struct qfq_class *cl = (struct qfq_class *)_q; 645 uint64_t roundedS; 646 int s; 647 648 NO(q->loops++;) 649 DX(4, "len %d flow %p inv_w 0x%x grp %d", m->m_pkthdr.len, 650 _q, cl->inv_w, cl->grp->index); 651 /* XXX verify that the packet obeys the parameters */ 652 if (m != _q->mq.head) { 653 if (dn_enqueue(_q, m, 0)) /* packet was dropped */ 654 return 1; 655 NO(q->queued++;) 656 if (m != _q->mq.head) 657 return 0; 658 } 659 /* If reach this point, queue q was idle */ 660 grp = cl->grp; 661 qfq_update_start(q, cl); /* adjust start time */ 662 /* compute new finish time and rounded start. */ 663 cl->F = cl->S + (uint64_t)(m->m_pkthdr.len) * cl->inv_w; 664 roundedS = qfq_round_down(cl->S, grp->slot_shift); 665 666 /* 667 * insert cl in the correct bucket. 668 * If cl->S >= grp->S we don't need to adjust the 669 * bucket list and simply go to the insertion phase. 670 * Otherwise grp->S is decreasing, we must make room 671 * in the bucket list, and also recompute the group state. 672 * Finally, if there were no flows in this group and nobody 673 * was in ER make sure to adjust V. 674 */ 675 if (grp->full_slots) { 676 if (!qfq_gt(grp->S, cl->S)) 677 goto skip_update; 678 /* create a slot for this cl->S */ 679 qfq_slot_rotate(q, grp, roundedS); 680 /* group was surely ineligible, remove */ 681 __clear_bit(grp->index, &q->bitmaps[IR]); 682 __clear_bit(grp->index, &q->bitmaps[IB]); 683 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V)) 684 q->V = roundedS; 685 686 grp->S = roundedS; 687 grp->F = roundedS + (2ULL << grp->slot_shift); // i.e. 2\sigma_i 688 s = qfq_calc_state(q, grp); 689 __set_bit(grp->index, &q->bitmaps[s]); 690 ND("new state %d 0x%x", s, q->bitmaps[s]); 691 ND("S %llx F %llx V %llx", cl->S, cl->F, q->V); 692 skip_update: 693 qfq_slot_insert(grp, cl, roundedS); 694 695 return 0; 696 } 697 698 699 #if 0 700 static inline void 701 qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp, 702 struct qfq_class *cl, struct qfq_class **pprev) 703 { 704 unsigned int i, offset; 705 uint64_t roundedS; 706 707 roundedS = qfq_round_down(cl->S, grp->slot_shift); 708 offset = (roundedS - grp->S) >> grp->slot_shift; 709 i = (grp->front + offset) % QFQ_MAX_SLOTS; 710 711 #ifdef notyet 712 if (!pprev) { 713 pprev = &grp->slots[i]; 714 while (*pprev && *pprev != cl) 715 pprev = &(*pprev)->next; 716 } 717 #endif 718 719 *pprev = cl->next; 720 if (!grp->slots[i]) 721 __clear_bit(offset, &grp->full_slots); 722 } 723 724 /* 725 * called to forcibly destroy a queue. 726 * If the queue is not in the front bucket, or if it has 727 * other queues in the front bucket, we can simply remove 728 * the queue with no other side effects. 729 * Otherwise we must propagate the event up. 730 * XXX description to be completed. 731 */ 732 static void 733 qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl, 734 struct qfq_class **pprev) 735 { 736 struct qfq_group *grp = &q->groups[cl->index]; 737 unsigned long mask; 738 uint64_t roundedS; 739 int s; 740 741 cl->F = cl->S; // not needed if the class goes away. 742 qfq_slot_remove(q, grp, cl, pprev); 743 744 if (!grp->full_slots) { 745 /* nothing left in the group, remove from all sets. 746 * Do ER last because if we were blocking other groups 747 * we must unblock them. 748 */ 749 __clear_bit(grp->index, &q->bitmaps[IR]); 750 __clear_bit(grp->index, &q->bitmaps[EB]); 751 __clear_bit(grp->index, &q->bitmaps[IB]); 752 753 if (test_bit(grp->index, &q->bitmaps[ER]) && 754 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) { 755 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1); 756 if (mask) 757 mask = ~((1UL << __fls(mask)) - 1); 758 else 759 mask = ~0UL; 760 qfq_move_groups(q, mask, EB, ER); 761 qfq_move_groups(q, mask, IB, IR); 762 } 763 __clear_bit(grp->index, &q->bitmaps[ER]); 764 } else if (!grp->slots[grp->front]) { 765 cl = qfq_slot_scan(grp); 766 roundedS = qfq_round_down(cl->S, grp->slot_shift); 767 if (grp->S != roundedS) { 768 __clear_bit(grp->index, &q->bitmaps[ER]); 769 __clear_bit(grp->index, &q->bitmaps[IR]); 770 __clear_bit(grp->index, &q->bitmaps[EB]); 771 __clear_bit(grp->index, &q->bitmaps[IB]); 772 grp->S = roundedS; 773 grp->F = roundedS + (2ULL << grp->slot_shift); 774 s = qfq_calc_state(q, grp); 775 __set_bit(grp->index, &q->bitmaps[s]); 776 } 777 } 778 qfq_update_eligible(q, q->V); 779 } 780 #endif 781 782 static int 783 qfq_new_fsk(struct dn_fsk *f) 784 { 785 ipdn_bound_var(&f->fs.par[0], 1, 1, QFQ_MAX_WEIGHT, "qfq weight"); 786 ipdn_bound_var(&f->fs.par[1], 1500, 1, 2000, "qfq maxlen"); 787 ND("weight %d len %d\n", f->fs.par[0], f->fs.par[1]); 788 return 0; 789 } 790 791 /* 792 * initialize a new scheduler instance 793 */ 794 static int 795 qfq_new_sched(struct dn_sch_inst *si) 796 { 797 struct qfq_sched *q = (struct qfq_sched *)(si + 1); 798 struct qfq_group *grp; 799 int i; 800 801 for (i = 0; i <= QFQ_MAX_INDEX; i++) { 802 grp = &q->groups[i]; 803 grp->index = i; 804 grp->slot_shift = QFQ_MTU_SHIFT + FRAC_BITS - 805 (QFQ_MAX_INDEX - i); 806 } 807 return 0; 808 } 809 810 /* 811 * QFQ scheduler descriptor 812 */ 813 static struct dn_alg qfq_desc = { 814 _SI( .type = ) DN_SCHED_QFQ, 815 _SI( .name = ) "QFQ", 816 _SI( .flags = ) DN_MULTIQUEUE, 817 818 _SI( .schk_datalen = ) 0, 819 _SI( .si_datalen = ) sizeof(struct qfq_sched), 820 _SI( .q_datalen = ) sizeof(struct qfq_class) - sizeof(struct dn_queue), 821 822 _SI( .enqueue = ) qfq_enqueue, 823 _SI( .dequeue = ) qfq_dequeue, 824 825 _SI( .config = ) NULL, 826 _SI( .destroy = ) NULL, 827 _SI( .new_sched = ) qfq_new_sched, 828 _SI( .free_sched = ) NULL, 829 _SI( .new_fsk = ) qfq_new_fsk, 830 _SI( .free_fsk = ) NULL, 831 _SI( .new_queue = ) qfq_new_queue, 832 _SI( .free_queue = ) qfq_free_queue, 833 }; 834 835 DECLARE_DNSCHED_MODULE(dn_qfq, &qfq_desc); 836 837 #ifdef QFQ_DEBUG 838 static void 839 dump_groups(struct qfq_sched *q, uint32_t mask) 840 { 841 int i, j; 842 843 for (i = 0; i < QFQ_MAX_INDEX + 1; i++) { 844 struct qfq_group *g = &q->groups[i]; 845 846 if (0 == (mask & (1<<i))) 847 continue; 848 for (j = 0; j < QFQ_MAX_SLOTS; j++) { 849 if (g->slots[j]) 850 D(" bucket %d %p", j, g->slots[j]); 851 } 852 D("full_slots 0x%x", g->full_slots); 853 D(" %2d S 0x%20llx F 0x%llx %c", i, 854 g->S, g->F, 855 mask & (1<<i) ? '1' : '0'); 856 } 857 } 858 859 static void 860 dump_sched(struct qfq_sched *q, const char *msg) 861 { 862 D("--- in %s: ---", msg); 863 ND("loops %d queued %d V 0x%llx", q->loops, q->queued, q->V); 864 D(" ER 0x%08x", q->bitmaps[ER]); 865 D(" EB 0x%08x", q->bitmaps[EB]); 866 D(" IR 0x%08x", q->bitmaps[IR]); 867 D(" IB 0x%08x", q->bitmaps[IB]); 868 dump_groups(q, 0xffffffff); 869 }; 870 #endif /* QFQ_DEBUG */ 871