1 /* 2 * FQ_PIE - The FlowQueue-PIE scheduler/AQM 3 * 4 * $FreeBSD$ 5 * 6 * Copyright (C) 2016 Centre for Advanced Internet Architectures, 7 * Swinburne University of Technology, Melbourne, Australia. 8 * Portions of this code were made possible in part by a gift from 9 * The Comcast Innovation Fund. 10 * Implemented by Rasool Al-Saadi <ralsaadi@swin.edu.au> 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 /* Important note: 35 * As there is no an office document for FQ-PIE specification, we used 36 * FQ-CoDel algorithm with some modifications to implement FQ-PIE. 37 * This FQ-PIE implementation is a beta version and have not been tested 38 * extensively. Our FQ-PIE uses stand-alone PIE AQM per sub-queue. By 39 * default, timestamp is used to calculate queue delay instead of departure 40 * rate estimation method. Although departure rate estimation is available 41 * as testing option, the results could be incorrect. Moreover, turning PIE on 42 * and off option is available but it does not work properly in this version. 43 */ 44 45 46 #ifdef _KERNEL 47 #include <sys/malloc.h> 48 #include <sys/socket.h> 49 #include <sys/kernel.h> 50 #include <sys/mbuf.h> 51 #include <sys/lock.h> 52 #include <sys/module.h> 53 #include <sys/mutex.h> 54 #include <net/if.h> /* IFNAMSIZ */ 55 #include <netinet/in.h> 56 #include <netinet/ip_var.h> /* ipfw_rule_ref */ 57 #include <netinet/ip_fw.h> /* flow_id */ 58 #include <netinet/ip_dummynet.h> 59 60 #include <sys/proc.h> 61 #include <sys/rwlock.h> 62 63 #include <netpfil/ipfw/ip_fw_private.h> 64 #include <sys/sysctl.h> 65 #include <netinet/ip.h> 66 #include <netinet/ip6.h> 67 #include <netinet/ip_icmp.h> 68 #include <netinet/tcp.h> 69 #include <netinet/udp.h> 70 #include <sys/queue.h> 71 #include <sys/hash.h> 72 73 #include <netpfil/ipfw/dn_heap.h> 74 #include <netpfil/ipfw/ip_dn_private.h> 75 76 #include <netpfil/ipfw/dn_aqm.h> 77 #include <netpfil/ipfw/dn_aqm_pie.h> 78 #include <netpfil/ipfw/dn_sched.h> 79 80 #else 81 #include <dn_test.h> 82 #endif 83 84 #define DN_SCHED_FQ_PIE 7 85 86 /* list of queues */ 87 STAILQ_HEAD(fq_pie_list, fq_pie_flow) ; 88 89 /* FQ_PIE parameters including PIE */ 90 struct dn_sch_fq_pie_parms { 91 struct dn_aqm_pie_parms pcfg; /* PIE configuration Parameters */ 92 /* FQ_PIE Parameters */ 93 uint32_t flows_cnt; /* number of flows */ 94 uint32_t limit; /* hard limit of FQ_PIE queue size*/ 95 uint32_t quantum; 96 }; 97 98 /* flow (sub-queue) stats */ 99 struct flow_stats { 100 uint64_t tot_pkts; /* statistics counters */ 101 uint64_t tot_bytes; 102 uint32_t length; /* Queue length, in packets */ 103 uint32_t len_bytes; /* Queue length, in bytes */ 104 uint32_t drops; 105 }; 106 107 /* A flow of packets (sub-queue)*/ 108 struct fq_pie_flow { 109 struct mq mq; /* list of packets */ 110 struct flow_stats stats; /* statistics */ 111 int deficit; 112 int active; /* 1: flow is active (in a list) */ 113 struct pie_status pst; /* pie status variables */ 114 struct fq_pie_si_extra *psi_extra; 115 STAILQ_ENTRY(fq_pie_flow) flowchain; 116 }; 117 118 /* extra fq_pie scheduler configurations */ 119 struct fq_pie_schk { 120 struct dn_sch_fq_pie_parms cfg; 121 }; 122 123 124 /* fq_pie scheduler instance extra state vars. 125 * The purpose of separation this structure is to preserve number of active 126 * sub-queues and the flows array pointer even after the scheduler instance 127 * is destroyed. 128 * Preserving these varaiables allows freeing the allocated memory by 129 * fqpie_callout_cleanup() independently from fq_pie_free_sched(). 130 */ 131 struct fq_pie_si_extra { 132 uint32_t nr_active_q; /* number of active queues */ 133 struct fq_pie_flow *flows; /* array of flows (queues) */ 134 }; 135 136 /* fq_pie scheduler instance */ 137 struct fq_pie_si { 138 struct dn_sch_inst _si; /* standard scheduler instance. SHOULD BE FIRST */ 139 struct dn_queue main_q; /* main queue is after si directly */ 140 uint32_t perturbation; /* random value */ 141 struct fq_pie_list newflows; /* list of new queues */ 142 struct fq_pie_list oldflows; /* list of old queues */ 143 struct fq_pie_si_extra *si_extra; /* extra state vars*/ 144 }; 145 146 147 static struct dn_alg fq_pie_desc; 148 149 /* Default FQ-PIE parameters including PIE */ 150 /* PIE defaults 151 * target=15ms, max_burst=150ms, max_ecnth=0.1, 152 * alpha=0.125, beta=1.25, tupdate=15ms 153 * FQ- 154 * flows=1024, limit=10240, quantum =1514 155 */ 156 struct dn_sch_fq_pie_parms 157 fq_pie_sysctl = {{15000 * AQM_TIME_1US, 15000 * AQM_TIME_1US, 158 150000 * AQM_TIME_1US, PIE_SCALE * 0.1, PIE_SCALE * 0.125, 159 PIE_SCALE * 1.25, PIE_CAPDROP_ENABLED | PIE_DERAND_ENABLED}, 160 1024, 10240, 1514}; 161 162 static int 163 fqpie_sysctl_alpha_beta_handler(SYSCTL_HANDLER_ARGS) 164 { 165 int error; 166 long value; 167 168 if (!strcmp(oidp->oid_name,"alpha")) 169 value = fq_pie_sysctl.pcfg.alpha; 170 else 171 value = fq_pie_sysctl.pcfg.beta; 172 173 value = value * 1000 / PIE_SCALE; 174 error = sysctl_handle_long(oidp, &value, 0, req); 175 if (error != 0 || req->newptr == NULL) 176 return (error); 177 if (value < 1 || value > 7 * PIE_SCALE) 178 return (EINVAL); 179 value = (value * PIE_SCALE) / 1000; 180 if (!strcmp(oidp->oid_name,"alpha")) 181 fq_pie_sysctl.pcfg.alpha = value; 182 else 183 fq_pie_sysctl.pcfg.beta = value; 184 return (0); 185 } 186 187 static int 188 fqpie_sysctl_target_tupdate_maxb_handler(SYSCTL_HANDLER_ARGS) 189 { 190 int error; 191 long value; 192 193 if (!strcmp(oidp->oid_name,"target")) 194 value = fq_pie_sysctl.pcfg.qdelay_ref; 195 else if (!strcmp(oidp->oid_name,"tupdate")) 196 value = fq_pie_sysctl.pcfg.tupdate; 197 else 198 value = fq_pie_sysctl.pcfg.max_burst; 199 200 value = value / AQM_TIME_1US; 201 error = sysctl_handle_long(oidp, &value, 0, req); 202 if (error != 0 || req->newptr == NULL) 203 return (error); 204 if (value < 1 || value > 10 * AQM_TIME_1S) 205 return (EINVAL); 206 value = value * AQM_TIME_1US; 207 208 if (!strcmp(oidp->oid_name,"target")) 209 fq_pie_sysctl.pcfg.qdelay_ref = value; 210 else if (!strcmp(oidp->oid_name,"tupdate")) 211 fq_pie_sysctl.pcfg.tupdate = value; 212 else 213 fq_pie_sysctl.pcfg.max_burst = value; 214 return (0); 215 } 216 217 static int 218 fqpie_sysctl_max_ecnth_handler(SYSCTL_HANDLER_ARGS) 219 { 220 int error; 221 long value; 222 223 value = fq_pie_sysctl.pcfg.max_ecnth; 224 value = value * 1000 / PIE_SCALE; 225 error = sysctl_handle_long(oidp, &value, 0, req); 226 if (error != 0 || req->newptr == NULL) 227 return (error); 228 if (value < 1 || value > PIE_SCALE) 229 return (EINVAL); 230 value = (value * PIE_SCALE) / 1000; 231 fq_pie_sysctl.pcfg.max_ecnth = value; 232 return (0); 233 } 234 235 /* define FQ- PIE sysctl variables */ 236 SYSBEGIN(f4) 237 SYSCTL_DECL(_net_inet); 238 SYSCTL_DECL(_net_inet_ip); 239 SYSCTL_DECL(_net_inet_ip_dummynet); 240 static SYSCTL_NODE(_net_inet_ip_dummynet, OID_AUTO, fqpie, 241 CTLFLAG_RW, 0, "FQ_PIE"); 242 243 #ifdef SYSCTL_NODE 244 245 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, target, 246 CTLTYPE_LONG | CTLFLAG_RW, NULL, 0, 247 fqpie_sysctl_target_tupdate_maxb_handler, "L", 248 "queue target in microsecond"); 249 250 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, tupdate, 251 CTLTYPE_LONG | CTLFLAG_RW, NULL, 0, 252 fqpie_sysctl_target_tupdate_maxb_handler, "L", 253 "the frequency of drop probability calculation in microsecond"); 254 255 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, max_burst, 256 CTLTYPE_LONG | CTLFLAG_RW, NULL, 0, 257 fqpie_sysctl_target_tupdate_maxb_handler, "L", 258 "Burst allowance interval in microsecond"); 259 260 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, max_ecnth, 261 CTLTYPE_LONG | CTLFLAG_RW, NULL, 0, 262 fqpie_sysctl_max_ecnth_handler, "L", 263 "ECN safeguard threshold scaled by 1000"); 264 265 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, alpha, 266 CTLTYPE_LONG | CTLFLAG_RW, NULL, 0, 267 fqpie_sysctl_alpha_beta_handler, "L", "PIE alpha scaled by 1000"); 268 269 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, beta, 270 CTLTYPE_LONG | CTLFLAG_RW, NULL, 0, 271 fqpie_sysctl_alpha_beta_handler, "L", "beta scaled by 1000"); 272 273 SYSCTL_UINT(_net_inet_ip_dummynet_fqpie, OID_AUTO, quantum, 274 CTLFLAG_RW, &fq_pie_sysctl.quantum, 1514, "quantum for FQ_PIE"); 275 SYSCTL_UINT(_net_inet_ip_dummynet_fqpie, OID_AUTO, flows, 276 CTLFLAG_RW, &fq_pie_sysctl.flows_cnt, 1024, "Number of queues for FQ_PIE"); 277 SYSCTL_UINT(_net_inet_ip_dummynet_fqpie, OID_AUTO, limit, 278 CTLFLAG_RW, &fq_pie_sysctl.limit, 10240, "limit for FQ_PIE"); 279 #endif 280 281 /* Helper function to update queue&main-queue and scheduler statistics. 282 * negative len & drop -> drop 283 * negative len -> dequeue 284 * positive len -> enqueue 285 * positive len + drop -> drop during enqueue 286 */ 287 __inline static void 288 fq_update_stats(struct fq_pie_flow *q, struct fq_pie_si *si, int len, 289 int drop) 290 { 291 int inc = 0; 292 293 if (len < 0) 294 inc = -1; 295 else if (len > 0) 296 inc = 1; 297 298 if (drop) { 299 si->main_q.ni.drops ++; 300 q->stats.drops ++; 301 si->_si.ni.drops ++; 302 io_pkt_drop ++; 303 } 304 305 if (!drop || (drop && len < 0)) { 306 /* Update stats for the main queue */ 307 si->main_q.ni.length += inc; 308 si->main_q.ni.len_bytes += len; 309 310 /*update sub-queue stats */ 311 q->stats.length += inc; 312 q->stats.len_bytes += len; 313 314 /*update scheduler instance stats */ 315 si->_si.ni.length += inc; 316 si->_si.ni.len_bytes += len; 317 } 318 319 if (inc > 0) { 320 si->main_q.ni.tot_bytes += len; 321 si->main_q.ni.tot_pkts ++; 322 323 q->stats.tot_bytes +=len; 324 q->stats.tot_pkts++; 325 326 si->_si.ni.tot_bytes +=len; 327 si->_si.ni.tot_pkts ++; 328 } 329 330 } 331 332 /* 333 * Extract a packet from the head of sub-queue 'q' 334 * Return a packet or NULL if the queue is empty. 335 * If getts is set, also extract packet's timestamp from mtag. 336 */ 337 __inline static struct mbuf * 338 fq_pie_extract_head(struct fq_pie_flow *q, aqm_time_t *pkt_ts, 339 struct fq_pie_si *si, int getts) 340 { 341 struct mbuf *m = q->mq.head; 342 343 if (m == NULL) 344 return m; 345 q->mq.head = m->m_nextpkt; 346 347 fq_update_stats(q, si, -m->m_pkthdr.len, 0); 348 349 if (si->main_q.ni.length == 0) /* queue is now idle */ 350 si->main_q.q_time = dn_cfg.curr_time; 351 352 if (getts) { 353 /* extract packet timestamp*/ 354 struct m_tag *mtag; 355 mtag = m_tag_locate(m, MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, NULL); 356 if (mtag == NULL){ 357 D("PIE timestamp mtag not found!"); 358 *pkt_ts = 0; 359 } else { 360 *pkt_ts = *(aqm_time_t *)(mtag + 1); 361 m_tag_delete(m,mtag); 362 } 363 } 364 return m; 365 } 366 367 /* 368 * Callout function for drop probability calculation 369 * This function is called over tupdate ms and takes pointer of FQ-PIE 370 * flow as an argument 371 */ 372 static void 373 fq_calculate_drop_prob(void *x) 374 { 375 struct fq_pie_flow *q = (struct fq_pie_flow *) x; 376 struct pie_status *pst = &q->pst; 377 struct dn_aqm_pie_parms *pprms; 378 int64_t p, prob, oldprob; 379 aqm_time_t now; 380 int p_isneg; 381 382 now = AQM_UNOW; 383 pprms = pst->parms; 384 prob = pst->drop_prob; 385 386 /* calculate current qdelay using DRE method. 387 * If TS is used and no data in the queue, reset current_qdelay 388 * as it stays at last value during dequeue process. 389 */ 390 if (pprms->flags & PIE_DEPRATEEST_ENABLED) 391 pst->current_qdelay = ((uint64_t)q->stats.len_bytes * pst->avg_dq_time) 392 >> PIE_DQ_THRESHOLD_BITS; 393 else 394 if (!q->stats.len_bytes) 395 pst->current_qdelay = 0; 396 397 /* calculate drop probability */ 398 p = (int64_t)pprms->alpha * 399 ((int64_t)pst->current_qdelay - (int64_t)pprms->qdelay_ref); 400 p +=(int64_t) pprms->beta * 401 ((int64_t)pst->current_qdelay - (int64_t)pst->qdelay_old); 402 403 /* take absolute value so right shift result is well defined */ 404 p_isneg = p < 0; 405 if (p_isneg) { 406 p = -p; 407 } 408 409 /* We PIE_MAX_PROB shift by 12-bits to increase the division precision */ 410 p *= (PIE_MAX_PROB << 12) / AQM_TIME_1S; 411 412 /* auto-tune drop probability */ 413 if (prob < (PIE_MAX_PROB / 1000000)) /* 0.000001 */ 414 p >>= 11 + PIE_FIX_POINT_BITS + 12; 415 else if (prob < (PIE_MAX_PROB / 100000)) /* 0.00001 */ 416 p >>= 9 + PIE_FIX_POINT_BITS + 12; 417 else if (prob < (PIE_MAX_PROB / 10000)) /* 0.0001 */ 418 p >>= 7 + PIE_FIX_POINT_BITS + 12; 419 else if (prob < (PIE_MAX_PROB / 1000)) /* 0.001 */ 420 p >>= 5 + PIE_FIX_POINT_BITS + 12; 421 else if (prob < (PIE_MAX_PROB / 100)) /* 0.01 */ 422 p >>= 3 + PIE_FIX_POINT_BITS + 12; 423 else if (prob < (PIE_MAX_PROB / 10)) /* 0.1 */ 424 p >>= 1 + PIE_FIX_POINT_BITS + 12; 425 else 426 p >>= PIE_FIX_POINT_BITS + 12; 427 428 oldprob = prob; 429 430 if (p_isneg) { 431 prob = prob - p; 432 433 /* check for multiplication underflow */ 434 if (prob > oldprob) { 435 prob= 0; 436 D("underflow"); 437 } 438 } else { 439 /* Cap Drop adjustment */ 440 if ((pprms->flags & PIE_CAPDROP_ENABLED) && 441 prob >= PIE_MAX_PROB / 10 && 442 p > PIE_MAX_PROB / 50 ) { 443 p = PIE_MAX_PROB / 50; 444 } 445 446 prob = prob + p; 447 448 /* check for multiplication overflow */ 449 if (prob<oldprob) { 450 D("overflow"); 451 prob= PIE_MAX_PROB; 452 } 453 } 454 455 /* 456 * decay the drop probability exponentially 457 * and restrict it to range 0 to PIE_MAX_PROB 458 */ 459 if (prob < 0) { 460 prob = 0; 461 } else { 462 if (pst->current_qdelay == 0 && pst->qdelay_old == 0) { 463 /* 0.98 ~= 1- 1/64 */ 464 prob = prob - (prob >> 6); 465 } 466 467 if (prob > PIE_MAX_PROB) { 468 prob = PIE_MAX_PROB; 469 } 470 } 471 472 pst->drop_prob = prob; 473 474 /* store current delay value */ 475 pst->qdelay_old = pst->current_qdelay; 476 477 /* update burst allowance */ 478 if ((pst->sflags & PIE_ACTIVE) && pst->burst_allowance) { 479 if (pst->burst_allowance > pprms->tupdate) 480 pst->burst_allowance -= pprms->tupdate; 481 else 482 pst->burst_allowance = 0; 483 } 484 485 if (pst->sflags & PIE_ACTIVE) 486 callout_reset_sbt(&pst->aqm_pie_callout, 487 (uint64_t)pprms->tupdate * SBT_1US, 488 0, fq_calculate_drop_prob, q, 0); 489 490 mtx_unlock(&pst->lock_mtx); 491 } 492 493 /* 494 * Reset PIE variables & activate the queue 495 */ 496 __inline static void 497 fq_activate_pie(struct fq_pie_flow *q) 498 { 499 struct pie_status *pst = &q->pst; 500 struct dn_aqm_pie_parms *pprms; 501 502 mtx_lock(&pst->lock_mtx); 503 pprms = pst->parms; 504 505 pprms = pst->parms; 506 pst->drop_prob = 0; 507 pst->qdelay_old = 0; 508 pst->burst_allowance = pprms->max_burst; 509 pst->accu_prob = 0; 510 pst->dq_count = 0; 511 pst->avg_dq_time = 0; 512 pst->sflags = PIE_INMEASUREMENT | PIE_ACTIVE; 513 pst->measurement_start = AQM_UNOW; 514 515 callout_reset_sbt(&pst->aqm_pie_callout, 516 (uint64_t)pprms->tupdate * SBT_1US, 517 0, fq_calculate_drop_prob, q, 0); 518 519 mtx_unlock(&pst->lock_mtx); 520 } 521 522 523 /* 524 * Deactivate PIE and stop probe update callout 525 */ 526 __inline static void 527 fq_deactivate_pie(struct pie_status *pst) 528 { 529 mtx_lock(&pst->lock_mtx); 530 pst->sflags &= ~(PIE_ACTIVE | PIE_INMEASUREMENT); 531 callout_stop(&pst->aqm_pie_callout); 532 //D("PIE Deactivated"); 533 mtx_unlock(&pst->lock_mtx); 534 } 535 536 /* 537 * Initialize PIE for sub-queue 'q' 538 */ 539 static int 540 pie_init(struct fq_pie_flow *q, struct fq_pie_schk *fqpie_schk) 541 { 542 struct pie_status *pst=&q->pst; 543 struct dn_aqm_pie_parms *pprms = pst->parms; 544 545 int err = 0; 546 if (!pprms){ 547 D("AQM_PIE is not configured"); 548 err = EINVAL; 549 } else { 550 q->psi_extra->nr_active_q++; 551 552 /* For speed optimization, we caculate 1/3 queue size once here */ 553 // XXX limit divided by number of queues divided by 3 ??? 554 pst->one_third_q_size = (fqpie_schk->cfg.limit / 555 fqpie_schk->cfg.flows_cnt) / 3; 556 557 mtx_init(&pst->lock_mtx, "mtx_pie", NULL, MTX_DEF); 558 callout_init_mtx(&pst->aqm_pie_callout, &pst->lock_mtx, 559 CALLOUT_RETURNUNLOCKED); 560 } 561 562 return err; 563 } 564 565 /* 566 * callout function to destroy PIE lock, and free fq_pie flows and fq_pie si 567 * extra memory when number of active sub-queues reaches zero. 568 * 'x' is a fq_pie_flow to be destroyed 569 */ 570 static void 571 fqpie_callout_cleanup(void *x) 572 { 573 struct fq_pie_flow *q = x; 574 struct pie_status *pst = &q->pst; 575 struct fq_pie_si_extra *psi_extra; 576 577 mtx_unlock(&pst->lock_mtx); 578 mtx_destroy(&pst->lock_mtx); 579 psi_extra = q->psi_extra; 580 581 DN_BH_WLOCK(); 582 psi_extra->nr_active_q--; 583 584 /* when all sub-queues are destroyed, free flows fq_pie extra vars memory */ 585 if (!psi_extra->nr_active_q) { 586 free(psi_extra->flows, M_DUMMYNET); 587 free(psi_extra, M_DUMMYNET); 588 fq_pie_desc.ref_count--; 589 } 590 DN_BH_WUNLOCK(); 591 } 592 593 /* 594 * Clean up PIE status for sub-queue 'q' 595 * Stop callout timer and destroy mtx using fqpie_callout_cleanup() callout. 596 */ 597 static int 598 pie_cleanup(struct fq_pie_flow *q) 599 { 600 struct pie_status *pst = &q->pst; 601 602 mtx_lock(&pst->lock_mtx); 603 callout_reset_sbt(&pst->aqm_pie_callout, 604 SBT_1US, 0, fqpie_callout_cleanup, q, 0); 605 mtx_unlock(&pst->lock_mtx); 606 return 0; 607 } 608 609 /* 610 * Dequeue and return a pcaket from sub-queue 'q' or NULL if 'q' is empty. 611 * Also, caculate depature time or queue delay using timestamp 612 */ 613 static struct mbuf * 614 pie_dequeue(struct fq_pie_flow *q, struct fq_pie_si *si) 615 { 616 struct mbuf *m; 617 struct dn_aqm_pie_parms *pprms; 618 struct pie_status *pst; 619 aqm_time_t now; 620 aqm_time_t pkt_ts, dq_time; 621 int32_t w; 622 623 pst = &q->pst; 624 pprms = q->pst.parms; 625 626 /*we extarct packet ts only when Departure Rate Estimation dis not used*/ 627 m = fq_pie_extract_head(q, &pkt_ts, si, 628 !(pprms->flags & PIE_DEPRATEEST_ENABLED)); 629 630 if (!m || !(pst->sflags & PIE_ACTIVE)) 631 return m; 632 633 now = AQM_UNOW; 634 if (pprms->flags & PIE_DEPRATEEST_ENABLED) { 635 /* calculate average depature time */ 636 if(pst->sflags & PIE_INMEASUREMENT) { 637 pst->dq_count += m->m_pkthdr.len; 638 639 if (pst->dq_count >= PIE_DQ_THRESHOLD) { 640 dq_time = now - pst->measurement_start; 641 642 /* 643 * if we don't have old avg dq_time i.e PIE is (re)initialized, 644 * don't use weight to calculate new avg_dq_time 645 */ 646 if(pst->avg_dq_time == 0) 647 pst->avg_dq_time = dq_time; 648 else { 649 /* 650 * weight = PIE_DQ_THRESHOLD/2^6, but we scaled 651 * weight by 2^8. Thus, scaled 652 * weight = PIE_DQ_THRESHOLD /2^8 653 * */ 654 w = PIE_DQ_THRESHOLD >> 8; 655 pst->avg_dq_time = (dq_time* w 656 + (pst->avg_dq_time * ((1L << 8) - w))) >> 8; 657 pst->sflags &= ~PIE_INMEASUREMENT; 658 } 659 } 660 } 661 662 /* 663 * Start new measurment cycle when the queue has 664 * PIE_DQ_THRESHOLD worth of bytes. 665 */ 666 if(!(pst->sflags & PIE_INMEASUREMENT) && 667 q->stats.len_bytes >= PIE_DQ_THRESHOLD) { 668 pst->sflags |= PIE_INMEASUREMENT; 669 pst->measurement_start = now; 670 pst->dq_count = 0; 671 } 672 } 673 /* Optionally, use packet timestamp to estimate queue delay */ 674 else 675 pst->current_qdelay = now - pkt_ts; 676 677 return m; 678 } 679 680 681 /* 682 * Enqueue a packet in q, subject to space and FQ-PIE queue management policy 683 * (whose parameters are in q->fs). 684 * Update stats for the queue and the scheduler. 685 * Return 0 on success, 1 on drop. The packet is consumed anyways. 686 */ 687 static int 688 pie_enqueue(struct fq_pie_flow *q, struct mbuf* m, struct fq_pie_si *si) 689 { 690 uint64_t len; 691 struct pie_status *pst; 692 struct dn_aqm_pie_parms *pprms; 693 int t; 694 695 len = m->m_pkthdr.len; 696 pst = &q->pst; 697 pprms = pst->parms; 698 t = ENQUE; 699 700 /* drop/mark the packet when PIE is active and burst time elapsed */ 701 if (pst->sflags & PIE_ACTIVE && pst->burst_allowance == 0 702 && drop_early(pst, q->stats.len_bytes) == DROP) { 703 /* 704 * if drop_prob over ECN threshold, drop the packet 705 * otherwise mark and enqueue it. 706 */ 707 if (pprms->flags & PIE_ECN_ENABLED && pst->drop_prob < 708 (pprms->max_ecnth << (PIE_PROB_BITS - PIE_FIX_POINT_BITS)) 709 && ecn_mark(m)) 710 t = ENQUE; 711 else 712 t = DROP; 713 } 714 715 /* Turn PIE on when 1/3 of the queue is full */ 716 if (!(pst->sflags & PIE_ACTIVE) && q->stats.len_bytes >= 717 pst->one_third_q_size) { 718 fq_activate_pie(q); 719 } 720 721 /* reset burst tolerance and optinally turn PIE off*/ 722 if (pst->drop_prob == 0 && pst->current_qdelay < (pprms->qdelay_ref >> 1) 723 && pst->qdelay_old < (pprms->qdelay_ref >> 1)) { 724 725 pst->burst_allowance = pprms->max_burst; 726 if (pprms->flags & PIE_ON_OFF_MODE_ENABLED && q->stats.len_bytes<=0) 727 fq_deactivate_pie(pst); 728 } 729 730 /* Use timestamp if Departure Rate Estimation mode is disabled */ 731 if (t != DROP && !(pprms->flags & PIE_DEPRATEEST_ENABLED)) { 732 /* Add TS to mbuf as a TAG */ 733 struct m_tag *mtag; 734 mtag = m_tag_locate(m, MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, NULL); 735 if (mtag == NULL) 736 mtag = m_tag_alloc(MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, 737 sizeof(aqm_time_t), M_NOWAIT); 738 if (mtag == NULL) { 739 m_freem(m); 740 t = DROP; 741 } 742 *(aqm_time_t *)(mtag + 1) = AQM_UNOW; 743 m_tag_prepend(m, mtag); 744 } 745 746 if (t != DROP) { 747 mq_append(&q->mq, m); 748 fq_update_stats(q, si, len, 0); 749 return 0; 750 } else { 751 fq_update_stats(q, si, len, 1); 752 pst->accu_prob = 0; 753 FREE_PKT(m); 754 return 1; 755 } 756 757 return 0; 758 } 759 760 /* Drop a packet form the head of FQ-PIE sub-queue */ 761 static void 762 pie_drop_head(struct fq_pie_flow *q, struct fq_pie_si *si) 763 { 764 struct mbuf *m = q->mq.head; 765 766 if (m == NULL) 767 return; 768 q->mq.head = m->m_nextpkt; 769 770 fq_update_stats(q, si, -m->m_pkthdr.len, 1); 771 772 if (si->main_q.ni.length == 0) /* queue is now idle */ 773 si->main_q.q_time = dn_cfg.curr_time; 774 /* reset accu_prob after packet drop */ 775 q->pst.accu_prob = 0; 776 777 FREE_PKT(m); 778 } 779 780 /* 781 * Classify a packet to queue number using Jenkins hash function. 782 * Return: queue number 783 * the input of the hash are protocol no, perturbation, src IP, dst IP, 784 * src port, dst port, 785 */ 786 static inline int 787 fq_pie_classify_flow(struct mbuf *m, uint16_t fcount, struct fq_pie_si *si) 788 { 789 struct ip *ip; 790 struct tcphdr *th; 791 struct udphdr *uh; 792 uint8_t tuple[41]; 793 uint16_t hash=0; 794 795 ip = (struct ip *)mtodo(m, dn_tag_get(m)->iphdr_off); 796 //#ifdef INET6 797 struct ip6_hdr *ip6; 798 int isip6; 799 isip6 = (ip->ip_v == 6); 800 801 if(isip6) { 802 ip6 = (struct ip6_hdr *)ip; 803 *((uint8_t *) &tuple[0]) = ip6->ip6_nxt; 804 *((uint32_t *) &tuple[1]) = si->perturbation; 805 memcpy(&tuple[5], ip6->ip6_src.s6_addr, 16); 806 memcpy(&tuple[21], ip6->ip6_dst.s6_addr, 16); 807 808 switch (ip6->ip6_nxt) { 809 case IPPROTO_TCP: 810 th = (struct tcphdr *)(ip6 + 1); 811 *((uint16_t *) &tuple[37]) = th->th_dport; 812 *((uint16_t *) &tuple[39]) = th->th_sport; 813 break; 814 815 case IPPROTO_UDP: 816 uh = (struct udphdr *)(ip6 + 1); 817 *((uint16_t *) &tuple[37]) = uh->uh_dport; 818 *((uint16_t *) &tuple[39]) = uh->uh_sport; 819 break; 820 default: 821 memset(&tuple[37], 0, 4); 822 } 823 824 hash = jenkins_hash(tuple, 41, HASHINIT) % fcount; 825 return hash; 826 } 827 //#endif 828 829 /* IPv4 */ 830 *((uint8_t *) &tuple[0]) = ip->ip_p; 831 *((uint32_t *) &tuple[1]) = si->perturbation; 832 *((uint32_t *) &tuple[5]) = ip->ip_src.s_addr; 833 *((uint32_t *) &tuple[9]) = ip->ip_dst.s_addr; 834 835 switch (ip->ip_p) { 836 case IPPROTO_TCP: 837 th = (struct tcphdr *)(ip + 1); 838 *((uint16_t *) &tuple[13]) = th->th_dport; 839 *((uint16_t *) &tuple[15]) = th->th_sport; 840 break; 841 842 case IPPROTO_UDP: 843 uh = (struct udphdr *)(ip + 1); 844 *((uint16_t *) &tuple[13]) = uh->uh_dport; 845 *((uint16_t *) &tuple[15]) = uh->uh_sport; 846 break; 847 default: 848 memset(&tuple[13], 0, 4); 849 } 850 hash = jenkins_hash(tuple, 17, HASHINIT) % fcount; 851 852 return hash; 853 } 854 855 /* 856 * Enqueue a packet into an appropriate queue according to 857 * FQ-CoDe; algorithm. 858 */ 859 static int 860 fq_pie_enqueue(struct dn_sch_inst *_si, struct dn_queue *_q, 861 struct mbuf *m) 862 { 863 struct fq_pie_si *si; 864 struct fq_pie_schk *schk; 865 struct dn_sch_fq_pie_parms *param; 866 struct dn_queue *mainq; 867 struct fq_pie_flow *flows; 868 int idx, drop, i, maxidx; 869 870 mainq = (struct dn_queue *)(_si + 1); 871 si = (struct fq_pie_si *)_si; 872 flows = si->si_extra->flows; 873 schk = (struct fq_pie_schk *)(si->_si.sched+1); 874 param = &schk->cfg; 875 876 /* classify a packet to queue number*/ 877 idx = fq_pie_classify_flow(m, param->flows_cnt, si); 878 879 /* enqueue packet into appropriate queue using PIE AQM. 880 * Note: 'pie_enqueue' function returns 1 only when it unable to 881 * add timestamp to packet (no limit check)*/ 882 drop = pie_enqueue(&flows[idx], m, si); 883 884 /* pie unable to timestamp a packet */ 885 if (drop) 886 return 1; 887 888 /* If the flow (sub-queue) is not active ,then add it to tail of 889 * new flows list, initialize and activate it. 890 */ 891 if (!flows[idx].active) { 892 STAILQ_INSERT_TAIL(&si->newflows, &flows[idx], flowchain); 893 flows[idx].deficit = param->quantum; 894 fq_activate_pie(&flows[idx]); 895 flows[idx].active = 1; 896 } 897 898 /* check the limit for all queues and remove a packet from the 899 * largest one 900 */ 901 if (mainq->ni.length > schk->cfg.limit) { 902 /* find first active flow */ 903 for (maxidx = 0; maxidx < schk->cfg.flows_cnt; maxidx++) 904 if (flows[maxidx].active) 905 break; 906 if (maxidx < schk->cfg.flows_cnt) { 907 /* find the largest sub- queue */ 908 for (i = maxidx + 1; i < schk->cfg.flows_cnt; i++) 909 if (flows[i].active && flows[i].stats.length > 910 flows[maxidx].stats.length) 911 maxidx = i; 912 pie_drop_head(&flows[maxidx], si); 913 drop = 1; 914 } 915 } 916 917 return drop; 918 } 919 920 /* 921 * Dequeue a packet from an appropriate queue according to 922 * FQ-CoDel algorithm. 923 */ 924 static struct mbuf * 925 fq_pie_dequeue(struct dn_sch_inst *_si) 926 { 927 struct fq_pie_si *si; 928 struct fq_pie_schk *schk; 929 struct dn_sch_fq_pie_parms *param; 930 struct fq_pie_flow *f; 931 struct mbuf *mbuf; 932 struct fq_pie_list *fq_pie_flowlist; 933 934 si = (struct fq_pie_si *)_si; 935 schk = (struct fq_pie_schk *)(si->_si.sched+1); 936 param = &schk->cfg; 937 938 do { 939 /* select a list to start with */ 940 if (STAILQ_EMPTY(&si->newflows)) 941 fq_pie_flowlist = &si->oldflows; 942 else 943 fq_pie_flowlist = &si->newflows; 944 945 /* Both new and old queue lists are empty, return NULL */ 946 if (STAILQ_EMPTY(fq_pie_flowlist)) 947 return NULL; 948 949 f = STAILQ_FIRST(fq_pie_flowlist); 950 while (f != NULL) { 951 /* if there is no flow(sub-queue) deficit, increase deficit 952 * by quantum, move the flow to the tail of old flows list 953 * and try another flow. 954 * Otherwise, the flow will be used for dequeue. 955 */ 956 if (f->deficit < 0) { 957 f->deficit += param->quantum; 958 STAILQ_REMOVE_HEAD(fq_pie_flowlist, flowchain); 959 STAILQ_INSERT_TAIL(&si->oldflows, f, flowchain); 960 } else 961 break; 962 963 f = STAILQ_FIRST(fq_pie_flowlist); 964 } 965 966 /* the new flows list is empty, try old flows list */ 967 if (STAILQ_EMPTY(fq_pie_flowlist)) 968 continue; 969 970 /* Dequeue a packet from the selected flow */ 971 mbuf = pie_dequeue(f, si); 972 973 /* pie did not return a packet */ 974 if (!mbuf) { 975 /* If the selected flow belongs to new flows list, then move 976 * it to the tail of old flows list. Otherwise, deactivate it and 977 * remove it from the old list and 978 */ 979 if (fq_pie_flowlist == &si->newflows) { 980 STAILQ_REMOVE_HEAD(fq_pie_flowlist, flowchain); 981 STAILQ_INSERT_TAIL(&si->oldflows, f, flowchain); 982 } else { 983 f->active = 0; 984 fq_deactivate_pie(&f->pst); 985 STAILQ_REMOVE_HEAD(fq_pie_flowlist, flowchain); 986 } 987 /* start again */ 988 continue; 989 } 990 991 /* we have a packet to return, 992 * update flow deficit and return the packet*/ 993 f->deficit -= mbuf->m_pkthdr.len; 994 return mbuf; 995 996 } while (1); 997 998 /* unreachable point */ 999 return NULL; 1000 } 1001 1002 /* 1003 * Initialize fq_pie scheduler instance. 1004 * also, allocate memory for flows array. 1005 */ 1006 static int 1007 fq_pie_new_sched(struct dn_sch_inst *_si) 1008 { 1009 struct fq_pie_si *si; 1010 struct dn_queue *q; 1011 struct fq_pie_schk *schk; 1012 struct fq_pie_flow *flows; 1013 int i; 1014 1015 si = (struct fq_pie_si *)_si; 1016 schk = (struct fq_pie_schk *)(_si->sched+1); 1017 1018 if(si->si_extra) { 1019 D("si already configured!"); 1020 return 0; 1021 } 1022 1023 /* init the main queue */ 1024 q = &si->main_q; 1025 set_oid(&q->ni.oid, DN_QUEUE, sizeof(*q)); 1026 q->_si = _si; 1027 q->fs = _si->sched->fs; 1028 1029 /* allocate memory for scheduler instance extra vars */ 1030 si->si_extra = malloc(sizeof(struct fq_pie_si_extra), 1031 M_DUMMYNET, M_NOWAIT | M_ZERO); 1032 if (si->si_extra == NULL) { 1033 D("cannot allocate memory for fq_pie si extra vars"); 1034 return ENOMEM ; 1035 } 1036 /* allocate memory for flows array */ 1037 si->si_extra->flows = malloc(schk->cfg.flows_cnt * sizeof(struct fq_pie_flow), 1038 M_DUMMYNET, M_NOWAIT | M_ZERO); 1039 flows = si->si_extra->flows; 1040 if (flows == NULL) { 1041 free(si->si_extra, M_DUMMYNET); 1042 si->si_extra = NULL; 1043 D("cannot allocate memory for fq_pie flows"); 1044 return ENOMEM ; 1045 } 1046 1047 /* init perturbation for this si */ 1048 si->perturbation = random(); 1049 si->si_extra->nr_active_q = 0; 1050 1051 /* init the old and new flows lists */ 1052 STAILQ_INIT(&si->newflows); 1053 STAILQ_INIT(&si->oldflows); 1054 1055 /* init the flows (sub-queues) */ 1056 for (i = 0; i < schk->cfg.flows_cnt; i++) { 1057 flows[i].pst.parms = &schk->cfg.pcfg; 1058 flows[i].psi_extra = si->si_extra; 1059 pie_init(&flows[i], schk); 1060 } 1061 1062 fq_pie_desc.ref_count++; 1063 1064 return 0; 1065 } 1066 1067 1068 /* 1069 * Free fq_pie scheduler instance. 1070 */ 1071 static int 1072 fq_pie_free_sched(struct dn_sch_inst *_si) 1073 { 1074 struct fq_pie_si *si; 1075 struct fq_pie_schk *schk; 1076 struct fq_pie_flow *flows; 1077 int i; 1078 1079 si = (struct fq_pie_si *)_si; 1080 schk = (struct fq_pie_schk *)(_si->sched+1); 1081 flows = si->si_extra->flows; 1082 for (i = 0; i < schk->cfg.flows_cnt; i++) { 1083 pie_cleanup(&flows[i]); 1084 } 1085 si->si_extra = NULL; 1086 return 0; 1087 } 1088 1089 /* 1090 * Configure FQ-PIE scheduler. 1091 * the configurations for the scheduler is passed fromipfw userland. 1092 */ 1093 static int 1094 fq_pie_config(struct dn_schk *_schk) 1095 { 1096 struct fq_pie_schk *schk; 1097 struct dn_extra_parms *ep; 1098 struct dn_sch_fq_pie_parms *fqp_cfg; 1099 1100 schk = (struct fq_pie_schk *)(_schk+1); 1101 ep = (struct dn_extra_parms *) _schk->cfg; 1102 1103 /* par array contains fq_pie configuration as follow 1104 * PIE: 0- qdelay_ref,1- tupdate, 2- max_burst 1105 * 3- max_ecnth, 4- alpha, 5- beta, 6- flags 1106 * FQ_PIE: 7- quantum, 8- limit, 9- flows 1107 */ 1108 if (ep && ep->oid.len ==sizeof(*ep) && 1109 ep->oid.subtype == DN_SCH_PARAMS) { 1110 1111 fqp_cfg = &schk->cfg; 1112 if (ep->par[0] < 0) 1113 fqp_cfg->pcfg.qdelay_ref = fq_pie_sysctl.pcfg.qdelay_ref; 1114 else 1115 fqp_cfg->pcfg.qdelay_ref = ep->par[0]; 1116 if (ep->par[1] < 0) 1117 fqp_cfg->pcfg.tupdate = fq_pie_sysctl.pcfg.tupdate; 1118 else 1119 fqp_cfg->pcfg.tupdate = ep->par[1]; 1120 if (ep->par[2] < 0) 1121 fqp_cfg->pcfg.max_burst = fq_pie_sysctl.pcfg.max_burst; 1122 else 1123 fqp_cfg->pcfg.max_burst = ep->par[2]; 1124 if (ep->par[3] < 0) 1125 fqp_cfg->pcfg.max_ecnth = fq_pie_sysctl.pcfg.max_ecnth; 1126 else 1127 fqp_cfg->pcfg.max_ecnth = ep->par[3]; 1128 if (ep->par[4] < 0) 1129 fqp_cfg->pcfg.alpha = fq_pie_sysctl.pcfg.alpha; 1130 else 1131 fqp_cfg->pcfg.alpha = ep->par[4]; 1132 if (ep->par[5] < 0) 1133 fqp_cfg->pcfg.beta = fq_pie_sysctl.pcfg.beta; 1134 else 1135 fqp_cfg->pcfg.beta = ep->par[5]; 1136 if (ep->par[6] < 0) 1137 fqp_cfg->pcfg.flags = 0; 1138 else 1139 fqp_cfg->pcfg.flags = ep->par[6]; 1140 1141 /* FQ configurations */ 1142 if (ep->par[7] < 0) 1143 fqp_cfg->quantum = fq_pie_sysctl.quantum; 1144 else 1145 fqp_cfg->quantum = ep->par[7]; 1146 if (ep->par[8] < 0) 1147 fqp_cfg->limit = fq_pie_sysctl.limit; 1148 else 1149 fqp_cfg->limit = ep->par[8]; 1150 if (ep->par[9] < 0) 1151 fqp_cfg->flows_cnt = fq_pie_sysctl.flows_cnt; 1152 else 1153 fqp_cfg->flows_cnt = ep->par[9]; 1154 1155 /* Bound the configurations */ 1156 fqp_cfg->pcfg.qdelay_ref = BOUND_VAR(fqp_cfg->pcfg.qdelay_ref, 1157 1, 5 * AQM_TIME_1S); 1158 fqp_cfg->pcfg.tupdate = BOUND_VAR(fqp_cfg->pcfg.tupdate, 1159 1, 5 * AQM_TIME_1S); 1160 fqp_cfg->pcfg.max_burst = BOUND_VAR(fqp_cfg->pcfg.max_burst, 1161 0, 5 * AQM_TIME_1S); 1162 fqp_cfg->pcfg.max_ecnth = BOUND_VAR(fqp_cfg->pcfg.max_ecnth, 1163 0, PIE_SCALE); 1164 fqp_cfg->pcfg.alpha = BOUND_VAR(fqp_cfg->pcfg.alpha, 0, 7 * PIE_SCALE); 1165 fqp_cfg->pcfg.beta = BOUND_VAR(fqp_cfg->pcfg.beta, 0, 7 * PIE_SCALE); 1166 1167 fqp_cfg->quantum = BOUND_VAR(fqp_cfg->quantum,1,9000); 1168 fqp_cfg->limit= BOUND_VAR(fqp_cfg->limit,1,20480); 1169 fqp_cfg->flows_cnt= BOUND_VAR(fqp_cfg->flows_cnt,1,65536); 1170 } 1171 else { 1172 D("Wrong parameters for fq_pie scheduler"); 1173 return 1; 1174 } 1175 1176 return 0; 1177 } 1178 1179 /* 1180 * Return FQ-PIE scheduler configurations 1181 * the configurations for the scheduler is passed to userland. 1182 */ 1183 static int 1184 fq_pie_getconfig (struct dn_schk *_schk, struct dn_extra_parms *ep) { 1185 1186 struct fq_pie_schk *schk = (struct fq_pie_schk *)(_schk+1); 1187 struct dn_sch_fq_pie_parms *fqp_cfg; 1188 1189 fqp_cfg = &schk->cfg; 1190 1191 strcpy(ep->name, fq_pie_desc.name); 1192 ep->par[0] = fqp_cfg->pcfg.qdelay_ref; 1193 ep->par[1] = fqp_cfg->pcfg.tupdate; 1194 ep->par[2] = fqp_cfg->pcfg.max_burst; 1195 ep->par[3] = fqp_cfg->pcfg.max_ecnth; 1196 ep->par[4] = fqp_cfg->pcfg.alpha; 1197 ep->par[5] = fqp_cfg->pcfg.beta; 1198 ep->par[6] = fqp_cfg->pcfg.flags; 1199 1200 ep->par[7] = fqp_cfg->quantum; 1201 ep->par[8] = fqp_cfg->limit; 1202 ep->par[9] = fqp_cfg->flows_cnt; 1203 1204 return 0; 1205 } 1206 1207 /* 1208 * FQ-PIE scheduler descriptor 1209 * contains the type of the scheduler, the name, the size of extra 1210 * data structures, and function pointers. 1211 */ 1212 static struct dn_alg fq_pie_desc = { 1213 _SI( .type = ) DN_SCHED_FQ_PIE, 1214 _SI( .name = ) "FQ_PIE", 1215 _SI( .flags = ) 0, 1216 1217 _SI( .schk_datalen = ) sizeof(struct fq_pie_schk), 1218 _SI( .si_datalen = ) sizeof(struct fq_pie_si) - sizeof(struct dn_sch_inst), 1219 _SI( .q_datalen = ) 0, 1220 1221 _SI( .enqueue = ) fq_pie_enqueue, 1222 _SI( .dequeue = ) fq_pie_dequeue, 1223 _SI( .config = ) fq_pie_config, /* new sched i.e. sched X config ...*/ 1224 _SI( .destroy = ) NULL, /*sched x delete */ 1225 _SI( .new_sched = ) fq_pie_new_sched, /* new schd instance */ 1226 _SI( .free_sched = ) fq_pie_free_sched, /* delete schd instance */ 1227 _SI( .new_fsk = ) NULL, 1228 _SI( .free_fsk = ) NULL, 1229 _SI( .new_queue = ) NULL, 1230 _SI( .free_queue = ) NULL, 1231 _SI( .getconfig = ) fq_pie_getconfig, 1232 _SI( .ref_count = ) 0 1233 }; 1234 1235 DECLARE_DNSCHED_MODULE(dn_fq_pie, &fq_pie_desc); 1236