1 /* 2 * FQ_PIE - The FlowQueue-PIE scheduler/AQM 3 * 4 * $FreeBSD$ 5 * 6 * Copyright (C) 2016 Centre for Advanced Internet Architectures, 7 * Swinburne University of Technology, Melbourne, Australia. 8 * Portions of this code were made possible in part by a gift from 9 * The Comcast Innovation Fund. 10 * Implemented by Rasool Al-Saadi <ralsaadi@swin.edu.au> 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 /* Important note: 35 * As there is no an office document for FQ-PIE specification, we used 36 * FQ-CoDel algorithm with some modifications to implement FQ-PIE. 37 * This FQ-PIE implementation is a beta version and have not been tested 38 * extensively. Our FQ-PIE uses stand-alone PIE AQM per sub-queue. By 39 * default, timestamp is used to calculate queue delay instead of departure 40 * rate estimation method. Although departure rate estimation is available 41 * as testing option, the results could be incorrect. Moreover, turning PIE on 42 * and off option is available but it does not work properly in this version. 43 */ 44 45 #ifdef _KERNEL 46 #include <sys/malloc.h> 47 #include <sys/socket.h> 48 #include <sys/kernel.h> 49 #include <sys/mbuf.h> 50 #include <sys/lock.h> 51 #include <sys/module.h> 52 #include <sys/mutex.h> 53 #include <net/if.h> /* IFNAMSIZ */ 54 #include <netinet/in.h> 55 #include <netinet/ip_var.h> /* ipfw_rule_ref */ 56 #include <netinet/ip_fw.h> /* flow_id */ 57 #include <netinet/ip_dummynet.h> 58 59 #include <sys/proc.h> 60 #include <sys/rwlock.h> 61 62 #include <netpfil/ipfw/ip_fw_private.h> 63 #include <sys/sysctl.h> 64 #include <netinet/ip.h> 65 #include <netinet/ip6.h> 66 #include <netinet/ip_icmp.h> 67 #include <netinet/tcp.h> 68 #include <netinet/udp.h> 69 #include <sys/queue.h> 70 #include <sys/hash.h> 71 72 #include <netpfil/ipfw/dn_heap.h> 73 #include <netpfil/ipfw/ip_dn_private.h> 74 75 #include <netpfil/ipfw/dn_aqm.h> 76 #include <netpfil/ipfw/dn_aqm_pie.h> 77 #include <netpfil/ipfw/dn_sched.h> 78 79 #else 80 #include <dn_test.h> 81 #endif 82 83 #define DN_SCHED_FQ_PIE 7 84 85 VNET_DECLARE(unsigned long, io_pkt_drop); 86 #define V_io_pkt_drop VNET(io_pkt_drop) 87 88 /* list of queues */ 89 STAILQ_HEAD(fq_pie_list, fq_pie_flow) ; 90 91 /* FQ_PIE parameters including PIE */ 92 struct dn_sch_fq_pie_parms { 93 struct dn_aqm_pie_parms pcfg; /* PIE configuration Parameters */ 94 /* FQ_PIE Parameters */ 95 uint32_t flows_cnt; /* number of flows */ 96 uint32_t limit; /* hard limit of FQ_PIE queue size*/ 97 uint32_t quantum; 98 }; 99 100 /* flow (sub-queue) stats */ 101 struct flow_stats { 102 uint64_t tot_pkts; /* statistics counters */ 103 uint64_t tot_bytes; 104 uint32_t length; /* Queue length, in packets */ 105 uint32_t len_bytes; /* Queue length, in bytes */ 106 uint32_t drops; 107 }; 108 109 /* A flow of packets (sub-queue)*/ 110 struct fq_pie_flow { 111 struct mq mq; /* list of packets */ 112 struct flow_stats stats; /* statistics */ 113 int deficit; 114 int active; /* 1: flow is active (in a list) */ 115 struct pie_status pst; /* pie status variables */ 116 struct fq_pie_si_extra *psi_extra; 117 STAILQ_ENTRY(fq_pie_flow) flowchain; 118 }; 119 120 /* extra fq_pie scheduler configurations */ 121 struct fq_pie_schk { 122 struct dn_sch_fq_pie_parms cfg; 123 }; 124 125 /* fq_pie scheduler instance extra state vars. 126 * The purpose of separation this structure is to preserve number of active 127 * sub-queues and the flows array pointer even after the scheduler instance 128 * is destroyed. 129 * Preserving these varaiables allows freeing the allocated memory by 130 * fqpie_callout_cleanup() independently from fq_pie_free_sched(). 131 */ 132 struct fq_pie_si_extra { 133 uint32_t nr_active_q; /* number of active queues */ 134 struct fq_pie_flow *flows; /* array of flows (queues) */ 135 }; 136 137 /* fq_pie scheduler instance */ 138 struct fq_pie_si { 139 struct dn_sch_inst _si; /* standard scheduler instance. SHOULD BE FIRST */ 140 struct dn_queue main_q; /* main queue is after si directly */ 141 uint32_t perturbation; /* random value */ 142 struct fq_pie_list newflows; /* list of new queues */ 143 struct fq_pie_list oldflows; /* list of old queues */ 144 struct fq_pie_si_extra *si_extra; /* extra state vars*/ 145 }; 146 147 static struct dn_alg fq_pie_desc; 148 149 /* Default FQ-PIE parameters including PIE */ 150 /* PIE defaults 151 * target=15ms, max_burst=150ms, max_ecnth=0.1, 152 * alpha=0.125, beta=1.25, tupdate=15ms 153 * FQ- 154 * flows=1024, limit=10240, quantum =1514 155 */ 156 struct dn_sch_fq_pie_parms 157 fq_pie_sysctl = {{15000 * AQM_TIME_1US, 15000 * AQM_TIME_1US, 158 150000 * AQM_TIME_1US, PIE_SCALE * 0.1, PIE_SCALE * 0.125, 159 PIE_SCALE * 1.25, PIE_CAPDROP_ENABLED | PIE_DERAND_ENABLED}, 160 1024, 10240, 1514}; 161 162 static int 163 fqpie_sysctl_alpha_beta_handler(SYSCTL_HANDLER_ARGS) 164 { 165 int error; 166 long value; 167 168 if (!strcmp(oidp->oid_name,"alpha")) 169 value = fq_pie_sysctl.pcfg.alpha; 170 else 171 value = fq_pie_sysctl.pcfg.beta; 172 173 value = value * 1000 / PIE_SCALE; 174 error = sysctl_handle_long(oidp, &value, 0, req); 175 if (error != 0 || req->newptr == NULL) 176 return (error); 177 if (value < 1 || value > 7 * PIE_SCALE) 178 return (EINVAL); 179 value = (value * PIE_SCALE) / 1000; 180 if (!strcmp(oidp->oid_name,"alpha")) 181 fq_pie_sysctl.pcfg.alpha = value; 182 else 183 fq_pie_sysctl.pcfg.beta = value; 184 return (0); 185 } 186 187 static int 188 fqpie_sysctl_target_tupdate_maxb_handler(SYSCTL_HANDLER_ARGS) 189 { 190 int error; 191 long value; 192 193 if (!strcmp(oidp->oid_name,"target")) 194 value = fq_pie_sysctl.pcfg.qdelay_ref; 195 else if (!strcmp(oidp->oid_name,"tupdate")) 196 value = fq_pie_sysctl.pcfg.tupdate; 197 else 198 value = fq_pie_sysctl.pcfg.max_burst; 199 200 value = value / AQM_TIME_1US; 201 error = sysctl_handle_long(oidp, &value, 0, req); 202 if (error != 0 || req->newptr == NULL) 203 return (error); 204 if (value < 1 || value > 10 * AQM_TIME_1S) 205 return (EINVAL); 206 value = value * AQM_TIME_1US; 207 208 if (!strcmp(oidp->oid_name,"target")) 209 fq_pie_sysctl.pcfg.qdelay_ref = value; 210 else if (!strcmp(oidp->oid_name,"tupdate")) 211 fq_pie_sysctl.pcfg.tupdate = value; 212 else 213 fq_pie_sysctl.pcfg.max_burst = value; 214 return (0); 215 } 216 217 static int 218 fqpie_sysctl_max_ecnth_handler(SYSCTL_HANDLER_ARGS) 219 { 220 int error; 221 long value; 222 223 value = fq_pie_sysctl.pcfg.max_ecnth; 224 value = value * 1000 / PIE_SCALE; 225 error = sysctl_handle_long(oidp, &value, 0, req); 226 if (error != 0 || req->newptr == NULL) 227 return (error); 228 if (value < 1 || value > PIE_SCALE) 229 return (EINVAL); 230 value = (value * PIE_SCALE) / 1000; 231 fq_pie_sysctl.pcfg.max_ecnth = value; 232 return (0); 233 } 234 235 /* define FQ- PIE sysctl variables */ 236 SYSBEGIN(f4) 237 SYSCTL_DECL(_net_inet); 238 SYSCTL_DECL(_net_inet_ip); 239 SYSCTL_DECL(_net_inet_ip_dummynet); 240 static SYSCTL_NODE(_net_inet_ip_dummynet, OID_AUTO, fqpie, 241 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 242 "FQ_PIE"); 243 244 #ifdef SYSCTL_NODE 245 246 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, target, 247 CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0, 248 fqpie_sysctl_target_tupdate_maxb_handler, "L", 249 "queue target in microsecond"); 250 251 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, tupdate, 252 CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0, 253 fqpie_sysctl_target_tupdate_maxb_handler, "L", 254 "the frequency of drop probability calculation in microsecond"); 255 256 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, max_burst, 257 CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0, 258 fqpie_sysctl_target_tupdate_maxb_handler, "L", 259 "Burst allowance interval in microsecond"); 260 261 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, max_ecnth, 262 CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0, 263 fqpie_sysctl_max_ecnth_handler, "L", 264 "ECN safeguard threshold scaled by 1000"); 265 266 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, alpha, 267 CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0, 268 fqpie_sysctl_alpha_beta_handler, "L", 269 "PIE alpha scaled by 1000"); 270 271 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, beta, 272 CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0, 273 fqpie_sysctl_alpha_beta_handler, "L", 274 "beta scaled by 1000"); 275 276 SYSCTL_UINT(_net_inet_ip_dummynet_fqpie, OID_AUTO, quantum, 277 CTLFLAG_RW, &fq_pie_sysctl.quantum, 1514, "quantum for FQ_PIE"); 278 SYSCTL_UINT(_net_inet_ip_dummynet_fqpie, OID_AUTO, flows, 279 CTLFLAG_RW, &fq_pie_sysctl.flows_cnt, 1024, "Number of queues for FQ_PIE"); 280 SYSCTL_UINT(_net_inet_ip_dummynet_fqpie, OID_AUTO, limit, 281 CTLFLAG_RW, &fq_pie_sysctl.limit, 10240, "limit for FQ_PIE"); 282 #endif 283 284 /* Helper function to update queue&main-queue and scheduler statistics. 285 * negative len & drop -> drop 286 * negative len -> dequeue 287 * positive len -> enqueue 288 * positive len + drop -> drop during enqueue 289 */ 290 __inline static void 291 fq_update_stats(struct fq_pie_flow *q, struct fq_pie_si *si, int len, 292 int drop) 293 { 294 int inc = 0; 295 296 if (len < 0) 297 inc = -1; 298 else if (len > 0) 299 inc = 1; 300 301 if (drop) { 302 si->main_q.ni.drops ++; 303 q->stats.drops ++; 304 si->_si.ni.drops ++; 305 V_dn_cfg.io_pkt_drop ++; 306 } 307 308 if (!drop || (drop && len < 0)) { 309 /* Update stats for the main queue */ 310 si->main_q.ni.length += inc; 311 si->main_q.ni.len_bytes += len; 312 313 /*update sub-queue stats */ 314 q->stats.length += inc; 315 q->stats.len_bytes += len; 316 317 /*update scheduler instance stats */ 318 si->_si.ni.length += inc; 319 si->_si.ni.len_bytes += len; 320 } 321 322 if (inc > 0) { 323 si->main_q.ni.tot_bytes += len; 324 si->main_q.ni.tot_pkts ++; 325 326 q->stats.tot_bytes +=len; 327 q->stats.tot_pkts++; 328 329 si->_si.ni.tot_bytes +=len; 330 si->_si.ni.tot_pkts ++; 331 } 332 333 } 334 335 /* 336 * Extract a packet from the head of sub-queue 'q' 337 * Return a packet or NULL if the queue is empty. 338 * If getts is set, also extract packet's timestamp from mtag. 339 */ 340 __inline static struct mbuf * 341 fq_pie_extract_head(struct fq_pie_flow *q, aqm_time_t *pkt_ts, 342 struct fq_pie_si *si, int getts) 343 { 344 struct mbuf *m = q->mq.head; 345 346 if (m == NULL) 347 return m; 348 q->mq.head = m->m_nextpkt; 349 350 fq_update_stats(q, si, -m->m_pkthdr.len, 0); 351 352 if (si->main_q.ni.length == 0) /* queue is now idle */ 353 si->main_q.q_time = V_dn_cfg.curr_time; 354 355 if (getts) { 356 /* extract packet timestamp*/ 357 struct m_tag *mtag; 358 mtag = m_tag_locate(m, MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, NULL); 359 if (mtag == NULL){ 360 D("PIE timestamp mtag not found!"); 361 *pkt_ts = 0; 362 } else { 363 *pkt_ts = *(aqm_time_t *)(mtag + 1); 364 m_tag_delete(m,mtag); 365 } 366 } 367 return m; 368 } 369 370 /* 371 * Callout function for drop probability calculation 372 * This function is called over tupdate ms and takes pointer of FQ-PIE 373 * flow as an argument 374 */ 375 static void 376 fq_calculate_drop_prob(void *x) 377 { 378 struct fq_pie_flow *q = (struct fq_pie_flow *) x; 379 struct pie_status *pst = &q->pst; 380 struct dn_aqm_pie_parms *pprms; 381 int64_t p, prob, oldprob; 382 aqm_time_t now; 383 int p_isneg; 384 385 now = AQM_UNOW; 386 pprms = pst->parms; 387 prob = pst->drop_prob; 388 389 /* calculate current qdelay using DRE method. 390 * If TS is used and no data in the queue, reset current_qdelay 391 * as it stays at last value during dequeue process. 392 */ 393 if (pprms->flags & PIE_DEPRATEEST_ENABLED) 394 pst->current_qdelay = ((uint64_t)q->stats.len_bytes * pst->avg_dq_time) 395 >> PIE_DQ_THRESHOLD_BITS; 396 else 397 if (!q->stats.len_bytes) 398 pst->current_qdelay = 0; 399 400 /* calculate drop probability */ 401 p = (int64_t)pprms->alpha * 402 ((int64_t)pst->current_qdelay - (int64_t)pprms->qdelay_ref); 403 p +=(int64_t) pprms->beta * 404 ((int64_t)pst->current_qdelay - (int64_t)pst->qdelay_old); 405 406 /* take absolute value so right shift result is well defined */ 407 p_isneg = p < 0; 408 if (p_isneg) { 409 p = -p; 410 } 411 412 /* We PIE_MAX_PROB shift by 12-bits to increase the division precision */ 413 p *= (PIE_MAX_PROB << 12) / AQM_TIME_1S; 414 415 /* auto-tune drop probability */ 416 if (prob < (PIE_MAX_PROB / 1000000)) /* 0.000001 */ 417 p >>= 11 + PIE_FIX_POINT_BITS + 12; 418 else if (prob < (PIE_MAX_PROB / 100000)) /* 0.00001 */ 419 p >>= 9 + PIE_FIX_POINT_BITS + 12; 420 else if (prob < (PIE_MAX_PROB / 10000)) /* 0.0001 */ 421 p >>= 7 + PIE_FIX_POINT_BITS + 12; 422 else if (prob < (PIE_MAX_PROB / 1000)) /* 0.001 */ 423 p >>= 5 + PIE_FIX_POINT_BITS + 12; 424 else if (prob < (PIE_MAX_PROB / 100)) /* 0.01 */ 425 p >>= 3 + PIE_FIX_POINT_BITS + 12; 426 else if (prob < (PIE_MAX_PROB / 10)) /* 0.1 */ 427 p >>= 1 + PIE_FIX_POINT_BITS + 12; 428 else 429 p >>= PIE_FIX_POINT_BITS + 12; 430 431 oldprob = prob; 432 433 if (p_isneg) { 434 prob = prob - p; 435 436 /* check for multiplication underflow */ 437 if (prob > oldprob) { 438 prob= 0; 439 D("underflow"); 440 } 441 } else { 442 /* Cap Drop adjustment */ 443 if ((pprms->flags & PIE_CAPDROP_ENABLED) && 444 prob >= PIE_MAX_PROB / 10 && 445 p > PIE_MAX_PROB / 50 ) { 446 p = PIE_MAX_PROB / 50; 447 } 448 449 prob = prob + p; 450 451 /* check for multiplication overflow */ 452 if (prob<oldprob) { 453 D("overflow"); 454 prob= PIE_MAX_PROB; 455 } 456 } 457 458 /* 459 * decay the drop probability exponentially 460 * and restrict it to range 0 to PIE_MAX_PROB 461 */ 462 if (prob < 0) { 463 prob = 0; 464 } else { 465 if (pst->current_qdelay == 0 && pst->qdelay_old == 0) { 466 /* 0.98 ~= 1- 1/64 */ 467 prob = prob - (prob >> 6); 468 } 469 470 if (prob > PIE_MAX_PROB) { 471 prob = PIE_MAX_PROB; 472 } 473 } 474 475 pst->drop_prob = prob; 476 477 /* store current delay value */ 478 pst->qdelay_old = pst->current_qdelay; 479 480 /* update burst allowance */ 481 if ((pst->sflags & PIE_ACTIVE) && pst->burst_allowance) { 482 if (pst->burst_allowance > pprms->tupdate) 483 pst->burst_allowance -= pprms->tupdate; 484 else 485 pst->burst_allowance = 0; 486 } 487 488 if (pst->sflags & PIE_ACTIVE) 489 callout_reset_sbt(&pst->aqm_pie_callout, 490 (uint64_t)pprms->tupdate * SBT_1US, 491 0, fq_calculate_drop_prob, q, 0); 492 493 mtx_unlock(&pst->lock_mtx); 494 } 495 496 /* 497 * Reset PIE variables & activate the queue 498 */ 499 __inline static void 500 fq_activate_pie(struct fq_pie_flow *q) 501 { 502 struct pie_status *pst = &q->pst; 503 struct dn_aqm_pie_parms *pprms; 504 505 mtx_lock(&pst->lock_mtx); 506 pprms = pst->parms; 507 508 pprms = pst->parms; 509 pst->drop_prob = 0; 510 pst->qdelay_old = 0; 511 pst->burst_allowance = pprms->max_burst; 512 pst->accu_prob = 0; 513 pst->dq_count = 0; 514 pst->avg_dq_time = 0; 515 pst->sflags = PIE_INMEASUREMENT | PIE_ACTIVE; 516 pst->measurement_start = AQM_UNOW; 517 518 callout_reset_sbt(&pst->aqm_pie_callout, 519 (uint64_t)pprms->tupdate * SBT_1US, 520 0, fq_calculate_drop_prob, q, 0); 521 522 mtx_unlock(&pst->lock_mtx); 523 } 524 525 /* 526 * Deactivate PIE and stop probe update callout 527 */ 528 __inline static void 529 fq_deactivate_pie(struct pie_status *pst) 530 { 531 mtx_lock(&pst->lock_mtx); 532 pst->sflags &= ~(PIE_ACTIVE | PIE_INMEASUREMENT); 533 callout_stop(&pst->aqm_pie_callout); 534 //D("PIE Deactivated"); 535 mtx_unlock(&pst->lock_mtx); 536 } 537 538 /* 539 * Initialize PIE for sub-queue 'q' 540 */ 541 static int 542 pie_init(struct fq_pie_flow *q, struct fq_pie_schk *fqpie_schk) 543 { 544 struct pie_status *pst=&q->pst; 545 struct dn_aqm_pie_parms *pprms = pst->parms; 546 547 int err = 0; 548 if (!pprms){ 549 D("AQM_PIE is not configured"); 550 err = EINVAL; 551 } else { 552 q->psi_extra->nr_active_q++; 553 554 /* For speed optimization, we caculate 1/3 queue size once here */ 555 // XXX limit divided by number of queues divided by 3 ??? 556 pst->one_third_q_size = (fqpie_schk->cfg.limit / 557 fqpie_schk->cfg.flows_cnt) / 3; 558 559 mtx_init(&pst->lock_mtx, "mtx_pie", NULL, MTX_DEF); 560 callout_init_mtx(&pst->aqm_pie_callout, &pst->lock_mtx, 561 CALLOUT_RETURNUNLOCKED); 562 } 563 564 return err; 565 } 566 567 /* 568 * callout function to destroy PIE lock, and free fq_pie flows and fq_pie si 569 * extra memory when number of active sub-queues reaches zero. 570 * 'x' is a fq_pie_flow to be destroyed 571 */ 572 static void 573 fqpie_callout_cleanup(void *x) 574 { 575 struct fq_pie_flow *q = x; 576 struct pie_status *pst = &q->pst; 577 struct fq_pie_si_extra *psi_extra; 578 579 mtx_unlock(&pst->lock_mtx); 580 mtx_destroy(&pst->lock_mtx); 581 psi_extra = q->psi_extra; 582 583 DN_BH_WLOCK(); 584 psi_extra->nr_active_q--; 585 586 /* when all sub-queues are destroyed, free flows fq_pie extra vars memory */ 587 if (!psi_extra->nr_active_q) { 588 free(psi_extra->flows, M_DUMMYNET); 589 free(psi_extra, M_DUMMYNET); 590 fq_pie_desc.ref_count--; 591 } 592 DN_BH_WUNLOCK(); 593 } 594 595 /* 596 * Clean up PIE status for sub-queue 'q' 597 * Stop callout timer and destroy mtx using fqpie_callout_cleanup() callout. 598 */ 599 static int 600 pie_cleanup(struct fq_pie_flow *q) 601 { 602 struct pie_status *pst = &q->pst; 603 604 mtx_lock(&pst->lock_mtx); 605 callout_reset_sbt(&pst->aqm_pie_callout, 606 SBT_1US, 0, fqpie_callout_cleanup, q, 0); 607 mtx_unlock(&pst->lock_mtx); 608 return 0; 609 } 610 611 /* 612 * Dequeue and return a pcaket from sub-queue 'q' or NULL if 'q' is empty. 613 * Also, caculate depature time or queue delay using timestamp 614 */ 615 static struct mbuf * 616 pie_dequeue(struct fq_pie_flow *q, struct fq_pie_si *si) 617 { 618 struct mbuf *m; 619 struct dn_aqm_pie_parms *pprms; 620 struct pie_status *pst; 621 aqm_time_t now; 622 aqm_time_t pkt_ts, dq_time; 623 int32_t w; 624 625 pst = &q->pst; 626 pprms = q->pst.parms; 627 628 /*we extarct packet ts only when Departure Rate Estimation dis not used*/ 629 m = fq_pie_extract_head(q, &pkt_ts, si, 630 !(pprms->flags & PIE_DEPRATEEST_ENABLED)); 631 632 if (!m || !(pst->sflags & PIE_ACTIVE)) 633 return m; 634 635 now = AQM_UNOW; 636 if (pprms->flags & PIE_DEPRATEEST_ENABLED) { 637 /* calculate average depature time */ 638 if(pst->sflags & PIE_INMEASUREMENT) { 639 pst->dq_count += m->m_pkthdr.len; 640 641 if (pst->dq_count >= PIE_DQ_THRESHOLD) { 642 dq_time = now - pst->measurement_start; 643 644 /* 645 * if we don't have old avg dq_time i.e PIE is (re)initialized, 646 * don't use weight to calculate new avg_dq_time 647 */ 648 if(pst->avg_dq_time == 0) 649 pst->avg_dq_time = dq_time; 650 else { 651 /* 652 * weight = PIE_DQ_THRESHOLD/2^6, but we scaled 653 * weight by 2^8. Thus, scaled 654 * weight = PIE_DQ_THRESHOLD /2^8 655 * */ 656 w = PIE_DQ_THRESHOLD >> 8; 657 pst->avg_dq_time = (dq_time* w 658 + (pst->avg_dq_time * ((1L << 8) - w))) >> 8; 659 pst->sflags &= ~PIE_INMEASUREMENT; 660 } 661 } 662 } 663 664 /* 665 * Start new measurment cycle when the queue has 666 * PIE_DQ_THRESHOLD worth of bytes. 667 */ 668 if(!(pst->sflags & PIE_INMEASUREMENT) && 669 q->stats.len_bytes >= PIE_DQ_THRESHOLD) { 670 pst->sflags |= PIE_INMEASUREMENT; 671 pst->measurement_start = now; 672 pst->dq_count = 0; 673 } 674 } 675 /* Optionally, use packet timestamp to estimate queue delay */ 676 else 677 pst->current_qdelay = now - pkt_ts; 678 679 return m; 680 } 681 682 /* 683 * Enqueue a packet in q, subject to space and FQ-PIE queue management policy 684 * (whose parameters are in q->fs). 685 * Update stats for the queue and the scheduler. 686 * Return 0 on success, 1 on drop. The packet is consumed anyways. 687 */ 688 static int 689 pie_enqueue(struct fq_pie_flow *q, struct mbuf* m, struct fq_pie_si *si) 690 { 691 uint64_t len; 692 struct pie_status *pst; 693 struct dn_aqm_pie_parms *pprms; 694 int t; 695 696 len = m->m_pkthdr.len; 697 pst = &q->pst; 698 pprms = pst->parms; 699 t = ENQUE; 700 701 /* drop/mark the packet when PIE is active and burst time elapsed */ 702 if (pst->sflags & PIE_ACTIVE && pst->burst_allowance == 0 703 && drop_early(pst, q->stats.len_bytes) == DROP) { 704 /* 705 * if drop_prob over ECN threshold, drop the packet 706 * otherwise mark and enqueue it. 707 */ 708 if (pprms->flags & PIE_ECN_ENABLED && pst->drop_prob < 709 (pprms->max_ecnth << (PIE_PROB_BITS - PIE_FIX_POINT_BITS)) 710 && ecn_mark(m)) 711 t = ENQUE; 712 else 713 t = DROP; 714 } 715 716 /* Turn PIE on when 1/3 of the queue is full */ 717 if (!(pst->sflags & PIE_ACTIVE) && q->stats.len_bytes >= 718 pst->one_third_q_size) { 719 fq_activate_pie(q); 720 } 721 722 /* reset burst tolerance and optinally turn PIE off*/ 723 if (pst->drop_prob == 0 && pst->current_qdelay < (pprms->qdelay_ref >> 1) 724 && pst->qdelay_old < (pprms->qdelay_ref >> 1)) { 725 726 pst->burst_allowance = pprms->max_burst; 727 if (pprms->flags & PIE_ON_OFF_MODE_ENABLED && q->stats.len_bytes<=0) 728 fq_deactivate_pie(pst); 729 } 730 731 /* Use timestamp if Departure Rate Estimation mode is disabled */ 732 if (t != DROP && !(pprms->flags & PIE_DEPRATEEST_ENABLED)) { 733 /* Add TS to mbuf as a TAG */ 734 struct m_tag *mtag; 735 mtag = m_tag_locate(m, MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, NULL); 736 if (mtag == NULL) 737 mtag = m_tag_alloc(MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, 738 sizeof(aqm_time_t), M_NOWAIT); 739 if (mtag == NULL) { 740 t = DROP; 741 } else { 742 *(aqm_time_t *)(mtag + 1) = AQM_UNOW; 743 m_tag_prepend(m, mtag); 744 } 745 } 746 747 if (t != DROP) { 748 mq_append(&q->mq, m); 749 fq_update_stats(q, si, len, 0); 750 return 0; 751 } else { 752 fq_update_stats(q, si, len, 1); 753 pst->accu_prob = 0; 754 FREE_PKT(m); 755 return 1; 756 } 757 758 return 0; 759 } 760 761 /* Drop a packet form the head of FQ-PIE sub-queue */ 762 static void 763 pie_drop_head(struct fq_pie_flow *q, struct fq_pie_si *si) 764 { 765 struct mbuf *m = q->mq.head; 766 767 if (m == NULL) 768 return; 769 q->mq.head = m->m_nextpkt; 770 771 fq_update_stats(q, si, -m->m_pkthdr.len, 1); 772 773 if (si->main_q.ni.length == 0) /* queue is now idle */ 774 si->main_q.q_time = V_dn_cfg.curr_time; 775 /* reset accu_prob after packet drop */ 776 q->pst.accu_prob = 0; 777 778 FREE_PKT(m); 779 } 780 781 /* 782 * Classify a packet to queue number using Jenkins hash function. 783 * Return: queue number 784 * the input of the hash are protocol no, perturbation, src IP, dst IP, 785 * src port, dst port, 786 */ 787 static inline int 788 fq_pie_classify_flow(struct mbuf *m, uint16_t fcount, struct fq_pie_si *si) 789 { 790 struct ip *ip; 791 struct tcphdr *th; 792 struct udphdr *uh; 793 uint8_t tuple[41]; 794 uint16_t hash=0; 795 796 ip = (struct ip *)mtodo(m, dn_tag_get(m)->iphdr_off); 797 //#ifdef INET6 798 struct ip6_hdr *ip6; 799 int isip6; 800 isip6 = (ip->ip_v == 6); 801 802 if(isip6) { 803 ip6 = (struct ip6_hdr *)ip; 804 *((uint8_t *) &tuple[0]) = ip6->ip6_nxt; 805 *((uint32_t *) &tuple[1]) = si->perturbation; 806 memcpy(&tuple[5], ip6->ip6_src.s6_addr, 16); 807 memcpy(&tuple[21], ip6->ip6_dst.s6_addr, 16); 808 809 switch (ip6->ip6_nxt) { 810 case IPPROTO_TCP: 811 th = (struct tcphdr *)(ip6 + 1); 812 *((uint16_t *) &tuple[37]) = th->th_dport; 813 *((uint16_t *) &tuple[39]) = th->th_sport; 814 break; 815 816 case IPPROTO_UDP: 817 uh = (struct udphdr *)(ip6 + 1); 818 *((uint16_t *) &tuple[37]) = uh->uh_dport; 819 *((uint16_t *) &tuple[39]) = uh->uh_sport; 820 break; 821 default: 822 memset(&tuple[37], 0, 4); 823 } 824 825 hash = jenkins_hash(tuple, 41, HASHINIT) % fcount; 826 return hash; 827 } 828 //#endif 829 830 /* IPv4 */ 831 *((uint8_t *) &tuple[0]) = ip->ip_p; 832 *((uint32_t *) &tuple[1]) = si->perturbation; 833 *((uint32_t *) &tuple[5]) = ip->ip_src.s_addr; 834 *((uint32_t *) &tuple[9]) = ip->ip_dst.s_addr; 835 836 switch (ip->ip_p) { 837 case IPPROTO_TCP: 838 th = (struct tcphdr *)(ip + 1); 839 *((uint16_t *) &tuple[13]) = th->th_dport; 840 *((uint16_t *) &tuple[15]) = th->th_sport; 841 break; 842 843 case IPPROTO_UDP: 844 uh = (struct udphdr *)(ip + 1); 845 *((uint16_t *) &tuple[13]) = uh->uh_dport; 846 *((uint16_t *) &tuple[15]) = uh->uh_sport; 847 break; 848 default: 849 memset(&tuple[13], 0, 4); 850 } 851 hash = jenkins_hash(tuple, 17, HASHINIT) % fcount; 852 853 return hash; 854 } 855 856 /* 857 * Enqueue a packet into an appropriate queue according to 858 * FQ-CoDe; algorithm. 859 */ 860 static int 861 fq_pie_enqueue(struct dn_sch_inst *_si, struct dn_queue *_q, 862 struct mbuf *m) 863 { 864 struct fq_pie_si *si; 865 struct fq_pie_schk *schk; 866 struct dn_sch_fq_pie_parms *param; 867 struct dn_queue *mainq; 868 struct fq_pie_flow *flows; 869 int idx, drop, i, maxidx; 870 871 mainq = (struct dn_queue *)(_si + 1); 872 si = (struct fq_pie_si *)_si; 873 flows = si->si_extra->flows; 874 schk = (struct fq_pie_schk *)(si->_si.sched+1); 875 param = &schk->cfg; 876 877 /* classify a packet to queue number*/ 878 idx = fq_pie_classify_flow(m, param->flows_cnt, si); 879 880 /* enqueue packet into appropriate queue using PIE AQM. 881 * Note: 'pie_enqueue' function returns 1 only when it unable to 882 * add timestamp to packet (no limit check)*/ 883 drop = pie_enqueue(&flows[idx], m, si); 884 885 /* pie unable to timestamp a packet */ 886 if (drop) 887 return 1; 888 889 /* If the flow (sub-queue) is not active ,then add it to tail of 890 * new flows list, initialize and activate it. 891 */ 892 if (!flows[idx].active) { 893 STAILQ_INSERT_TAIL(&si->newflows, &flows[idx], flowchain); 894 flows[idx].deficit = param->quantum; 895 fq_activate_pie(&flows[idx]); 896 flows[idx].active = 1; 897 } 898 899 /* check the limit for all queues and remove a packet from the 900 * largest one 901 */ 902 if (mainq->ni.length > schk->cfg.limit) { 903 /* find first active flow */ 904 for (maxidx = 0; maxidx < schk->cfg.flows_cnt; maxidx++) 905 if (flows[maxidx].active) 906 break; 907 if (maxidx < schk->cfg.flows_cnt) { 908 /* find the largest sub- queue */ 909 for (i = maxidx + 1; i < schk->cfg.flows_cnt; i++) 910 if (flows[i].active && flows[i].stats.length > 911 flows[maxidx].stats.length) 912 maxidx = i; 913 pie_drop_head(&flows[maxidx], si); 914 drop = 1; 915 } 916 } 917 918 return drop; 919 } 920 921 /* 922 * Dequeue a packet from an appropriate queue according to 923 * FQ-CoDel algorithm. 924 */ 925 static struct mbuf * 926 fq_pie_dequeue(struct dn_sch_inst *_si) 927 { 928 struct fq_pie_si *si; 929 struct fq_pie_schk *schk; 930 struct dn_sch_fq_pie_parms *param; 931 struct fq_pie_flow *f; 932 struct mbuf *mbuf; 933 struct fq_pie_list *fq_pie_flowlist; 934 935 si = (struct fq_pie_si *)_si; 936 schk = (struct fq_pie_schk *)(si->_si.sched+1); 937 param = &schk->cfg; 938 939 do { 940 /* select a list to start with */ 941 if (STAILQ_EMPTY(&si->newflows)) 942 fq_pie_flowlist = &si->oldflows; 943 else 944 fq_pie_flowlist = &si->newflows; 945 946 /* Both new and old queue lists are empty, return NULL */ 947 if (STAILQ_EMPTY(fq_pie_flowlist)) 948 return NULL; 949 950 f = STAILQ_FIRST(fq_pie_flowlist); 951 while (f != NULL) { 952 /* if there is no flow(sub-queue) deficit, increase deficit 953 * by quantum, move the flow to the tail of old flows list 954 * and try another flow. 955 * Otherwise, the flow will be used for dequeue. 956 */ 957 if (f->deficit < 0) { 958 f->deficit += param->quantum; 959 STAILQ_REMOVE_HEAD(fq_pie_flowlist, flowchain); 960 STAILQ_INSERT_TAIL(&si->oldflows, f, flowchain); 961 } else 962 break; 963 964 f = STAILQ_FIRST(fq_pie_flowlist); 965 } 966 967 /* the new flows list is empty, try old flows list */ 968 if (STAILQ_EMPTY(fq_pie_flowlist)) 969 continue; 970 971 /* Dequeue a packet from the selected flow */ 972 mbuf = pie_dequeue(f, si); 973 974 /* pie did not return a packet */ 975 if (!mbuf) { 976 /* If the selected flow belongs to new flows list, then move 977 * it to the tail of old flows list. Otherwise, deactivate it and 978 * remove it from the old list and 979 */ 980 if (fq_pie_flowlist == &si->newflows) { 981 STAILQ_REMOVE_HEAD(fq_pie_flowlist, flowchain); 982 STAILQ_INSERT_TAIL(&si->oldflows, f, flowchain); 983 } else { 984 f->active = 0; 985 fq_deactivate_pie(&f->pst); 986 STAILQ_REMOVE_HEAD(fq_pie_flowlist, flowchain); 987 } 988 /* start again */ 989 continue; 990 } 991 992 /* we have a packet to return, 993 * update flow deficit and return the packet*/ 994 f->deficit -= mbuf->m_pkthdr.len; 995 return mbuf; 996 997 } while (1); 998 999 /* unreachable point */ 1000 return NULL; 1001 } 1002 1003 /* 1004 * Initialize fq_pie scheduler instance. 1005 * also, allocate memory for flows array. 1006 */ 1007 static int 1008 fq_pie_new_sched(struct dn_sch_inst *_si) 1009 { 1010 struct fq_pie_si *si; 1011 struct dn_queue *q; 1012 struct fq_pie_schk *schk; 1013 struct fq_pie_flow *flows; 1014 int i; 1015 1016 si = (struct fq_pie_si *)_si; 1017 schk = (struct fq_pie_schk *)(_si->sched+1); 1018 1019 if(si->si_extra) { 1020 D("si already configured!"); 1021 return 0; 1022 } 1023 1024 /* init the main queue */ 1025 q = &si->main_q; 1026 set_oid(&q->ni.oid, DN_QUEUE, sizeof(*q)); 1027 q->_si = _si; 1028 q->fs = _si->sched->fs; 1029 1030 /* allocate memory for scheduler instance extra vars */ 1031 si->si_extra = malloc(sizeof(struct fq_pie_si_extra), 1032 M_DUMMYNET, M_NOWAIT | M_ZERO); 1033 if (si->si_extra == NULL) { 1034 D("cannot allocate memory for fq_pie si extra vars"); 1035 return ENOMEM ; 1036 } 1037 /* allocate memory for flows array */ 1038 si->si_extra->flows = mallocarray(schk->cfg.flows_cnt, 1039 sizeof(struct fq_pie_flow), M_DUMMYNET, M_NOWAIT | M_ZERO); 1040 flows = si->si_extra->flows; 1041 if (flows == NULL) { 1042 free(si->si_extra, M_DUMMYNET); 1043 si->si_extra = NULL; 1044 D("cannot allocate memory for fq_pie flows"); 1045 return ENOMEM ; 1046 } 1047 1048 /* init perturbation for this si */ 1049 si->perturbation = random(); 1050 si->si_extra->nr_active_q = 0; 1051 1052 /* init the old and new flows lists */ 1053 STAILQ_INIT(&si->newflows); 1054 STAILQ_INIT(&si->oldflows); 1055 1056 /* init the flows (sub-queues) */ 1057 for (i = 0; i < schk->cfg.flows_cnt; i++) { 1058 flows[i].pst.parms = &schk->cfg.pcfg; 1059 flows[i].psi_extra = si->si_extra; 1060 pie_init(&flows[i], schk); 1061 } 1062 1063 fq_pie_desc.ref_count++; 1064 1065 return 0; 1066 } 1067 1068 /* 1069 * Free fq_pie scheduler instance. 1070 */ 1071 static int 1072 fq_pie_free_sched(struct dn_sch_inst *_si) 1073 { 1074 struct fq_pie_si *si; 1075 struct fq_pie_schk *schk; 1076 struct fq_pie_flow *flows; 1077 int i; 1078 1079 si = (struct fq_pie_si *)_si; 1080 schk = (struct fq_pie_schk *)(_si->sched+1); 1081 flows = si->si_extra->flows; 1082 for (i = 0; i < schk->cfg.flows_cnt; i++) { 1083 pie_cleanup(&flows[i]); 1084 } 1085 si->si_extra = NULL; 1086 return 0; 1087 } 1088 1089 /* 1090 * Configure FQ-PIE scheduler. 1091 * the configurations for the scheduler is passed fromipfw userland. 1092 */ 1093 static int 1094 fq_pie_config(struct dn_schk *_schk) 1095 { 1096 struct fq_pie_schk *schk; 1097 struct dn_extra_parms *ep; 1098 struct dn_sch_fq_pie_parms *fqp_cfg; 1099 1100 schk = (struct fq_pie_schk *)(_schk+1); 1101 ep = (struct dn_extra_parms *) _schk->cfg; 1102 1103 /* par array contains fq_pie configuration as follow 1104 * PIE: 0- qdelay_ref,1- tupdate, 2- max_burst 1105 * 3- max_ecnth, 4- alpha, 5- beta, 6- flags 1106 * FQ_PIE: 7- quantum, 8- limit, 9- flows 1107 */ 1108 if (ep && ep->oid.len ==sizeof(*ep) && 1109 ep->oid.subtype == DN_SCH_PARAMS) { 1110 fqp_cfg = &schk->cfg; 1111 if (ep->par[0] < 0) 1112 fqp_cfg->pcfg.qdelay_ref = fq_pie_sysctl.pcfg.qdelay_ref; 1113 else 1114 fqp_cfg->pcfg.qdelay_ref = ep->par[0]; 1115 if (ep->par[1] < 0) 1116 fqp_cfg->pcfg.tupdate = fq_pie_sysctl.pcfg.tupdate; 1117 else 1118 fqp_cfg->pcfg.tupdate = ep->par[1]; 1119 if (ep->par[2] < 0) 1120 fqp_cfg->pcfg.max_burst = fq_pie_sysctl.pcfg.max_burst; 1121 else 1122 fqp_cfg->pcfg.max_burst = ep->par[2]; 1123 if (ep->par[3] < 0) 1124 fqp_cfg->pcfg.max_ecnth = fq_pie_sysctl.pcfg.max_ecnth; 1125 else 1126 fqp_cfg->pcfg.max_ecnth = ep->par[3]; 1127 if (ep->par[4] < 0) 1128 fqp_cfg->pcfg.alpha = fq_pie_sysctl.pcfg.alpha; 1129 else 1130 fqp_cfg->pcfg.alpha = ep->par[4]; 1131 if (ep->par[5] < 0) 1132 fqp_cfg->pcfg.beta = fq_pie_sysctl.pcfg.beta; 1133 else 1134 fqp_cfg->pcfg.beta = ep->par[5]; 1135 if (ep->par[6] < 0) 1136 fqp_cfg->pcfg.flags = 0; 1137 else 1138 fqp_cfg->pcfg.flags = ep->par[6]; 1139 1140 /* FQ configurations */ 1141 if (ep->par[7] < 0) 1142 fqp_cfg->quantum = fq_pie_sysctl.quantum; 1143 else 1144 fqp_cfg->quantum = ep->par[7]; 1145 if (ep->par[8] < 0) 1146 fqp_cfg->limit = fq_pie_sysctl.limit; 1147 else 1148 fqp_cfg->limit = ep->par[8]; 1149 if (ep->par[9] < 0) 1150 fqp_cfg->flows_cnt = fq_pie_sysctl.flows_cnt; 1151 else 1152 fqp_cfg->flows_cnt = ep->par[9]; 1153 1154 /* Bound the configurations */ 1155 fqp_cfg->pcfg.qdelay_ref = BOUND_VAR(fqp_cfg->pcfg.qdelay_ref, 1156 1, 5 * AQM_TIME_1S); 1157 fqp_cfg->pcfg.tupdate = BOUND_VAR(fqp_cfg->pcfg.tupdate, 1158 1, 5 * AQM_TIME_1S); 1159 fqp_cfg->pcfg.max_burst = BOUND_VAR(fqp_cfg->pcfg.max_burst, 1160 0, 5 * AQM_TIME_1S); 1161 fqp_cfg->pcfg.max_ecnth = BOUND_VAR(fqp_cfg->pcfg.max_ecnth, 1162 0, PIE_SCALE); 1163 fqp_cfg->pcfg.alpha = BOUND_VAR(fqp_cfg->pcfg.alpha, 0, 7 * PIE_SCALE); 1164 fqp_cfg->pcfg.beta = BOUND_VAR(fqp_cfg->pcfg.beta, 0, 7 * PIE_SCALE); 1165 1166 fqp_cfg->quantum = BOUND_VAR(fqp_cfg->quantum,1,9000); 1167 fqp_cfg->limit= BOUND_VAR(fqp_cfg->limit,1,20480); 1168 fqp_cfg->flows_cnt= BOUND_VAR(fqp_cfg->flows_cnt,1,65536); 1169 } 1170 else { 1171 D("Wrong parameters for fq_pie scheduler"); 1172 return 1; 1173 } 1174 1175 return 0; 1176 } 1177 1178 /* 1179 * Return FQ-PIE scheduler configurations 1180 * the configurations for the scheduler is passed to userland. 1181 */ 1182 static int 1183 fq_pie_getconfig (struct dn_schk *_schk, struct dn_extra_parms *ep) { 1184 struct fq_pie_schk *schk = (struct fq_pie_schk *)(_schk+1); 1185 struct dn_sch_fq_pie_parms *fqp_cfg; 1186 1187 fqp_cfg = &schk->cfg; 1188 1189 strcpy(ep->name, fq_pie_desc.name); 1190 ep->par[0] = fqp_cfg->pcfg.qdelay_ref; 1191 ep->par[1] = fqp_cfg->pcfg.tupdate; 1192 ep->par[2] = fqp_cfg->pcfg.max_burst; 1193 ep->par[3] = fqp_cfg->pcfg.max_ecnth; 1194 ep->par[4] = fqp_cfg->pcfg.alpha; 1195 ep->par[5] = fqp_cfg->pcfg.beta; 1196 ep->par[6] = fqp_cfg->pcfg.flags; 1197 1198 ep->par[7] = fqp_cfg->quantum; 1199 ep->par[8] = fqp_cfg->limit; 1200 ep->par[9] = fqp_cfg->flows_cnt; 1201 1202 return 0; 1203 } 1204 1205 /* 1206 * FQ-PIE scheduler descriptor 1207 * contains the type of the scheduler, the name, the size of extra 1208 * data structures, and function pointers. 1209 */ 1210 static struct dn_alg fq_pie_desc = { 1211 _SI( .type = ) DN_SCHED_FQ_PIE, 1212 _SI( .name = ) "FQ_PIE", 1213 _SI( .flags = ) 0, 1214 1215 _SI( .schk_datalen = ) sizeof(struct fq_pie_schk), 1216 _SI( .si_datalen = ) sizeof(struct fq_pie_si) - sizeof(struct dn_sch_inst), 1217 _SI( .q_datalen = ) 0, 1218 1219 _SI( .enqueue = ) fq_pie_enqueue, 1220 _SI( .dequeue = ) fq_pie_dequeue, 1221 _SI( .config = ) fq_pie_config, /* new sched i.e. sched X config ...*/ 1222 _SI( .destroy = ) NULL, /*sched x delete */ 1223 _SI( .new_sched = ) fq_pie_new_sched, /* new schd instance */ 1224 _SI( .free_sched = ) fq_pie_free_sched, /* delete schd instance */ 1225 _SI( .new_fsk = ) NULL, 1226 _SI( .free_fsk = ) NULL, 1227 _SI( .new_queue = ) NULL, 1228 _SI( .free_queue = ) NULL, 1229 _SI( .getconfig = ) fq_pie_getconfig, 1230 _SI( .ref_count = ) 0 1231 }; 1232 1233 DECLARE_DNSCHED_MODULE(dn_fq_pie, &fq_pie_desc); 1234