1 /* 2 * FQ_PIE - The FlowQueue-PIE scheduler/AQM 3 * 4 * $FreeBSD$ 5 * 6 * Copyright (C) 2016 Centre for Advanced Internet Architectures, 7 * Swinburne University of Technology, Melbourne, Australia. 8 * Portions of this code were made possible in part by a gift from 9 * The Comcast Innovation Fund. 10 * Implemented by Rasool Al-Saadi <ralsaadi@swin.edu.au> 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 /* Important note: 35 * As there is no an office document for FQ-PIE specification, we used 36 * FQ-CoDel algorithm with some modifications to implement FQ-PIE. 37 * This FQ-PIE implementation is a beta version and have not been tested 38 * extensively. Our FQ-PIE uses stand-alone PIE AQM per sub-queue. By 39 * default, timestamp is used to calculate queue delay instead of departure 40 * rate estimation method. Although departure rate estimation is available 41 * as testing option, the results could be incorrect. Moreover, turning PIE on 42 * and off option is available but it does not work properly in this version. 43 */ 44 45 #ifdef _KERNEL 46 #include <sys/malloc.h> 47 #include <sys/socket.h> 48 #include <sys/kernel.h> 49 #include <sys/mbuf.h> 50 #include <sys/lock.h> 51 #include <sys/module.h> 52 #include <sys/mutex.h> 53 #include <net/if.h> /* IFNAMSIZ */ 54 #include <netinet/in.h> 55 #include <netinet/ip_var.h> /* ipfw_rule_ref */ 56 #include <netinet/ip_fw.h> /* flow_id */ 57 #include <netinet/ip_dummynet.h> 58 59 #include <sys/proc.h> 60 #include <sys/rwlock.h> 61 62 #include <netpfil/ipfw/ip_fw_private.h> 63 #include <sys/sysctl.h> 64 #include <netinet/ip.h> 65 #include <netinet/ip6.h> 66 #include <netinet/ip_icmp.h> 67 #include <netinet/tcp.h> 68 #include <netinet/udp.h> 69 #include <sys/queue.h> 70 #include <sys/hash.h> 71 72 #include <netpfil/ipfw/dn_heap.h> 73 #include <netpfil/ipfw/ip_dn_private.h> 74 75 #include <netpfil/ipfw/dn_aqm.h> 76 #include <netpfil/ipfw/dn_aqm_pie.h> 77 #include <netpfil/ipfw/dn_sched.h> 78 79 #else 80 #include <dn_test.h> 81 #endif 82 83 #define DN_SCHED_FQ_PIE 7 84 85 /* list of queues */ 86 STAILQ_HEAD(fq_pie_list, fq_pie_flow) ; 87 88 /* FQ_PIE parameters including PIE */ 89 struct dn_sch_fq_pie_parms { 90 struct dn_aqm_pie_parms pcfg; /* PIE configuration Parameters */ 91 /* FQ_PIE Parameters */ 92 uint32_t flows_cnt; /* number of flows */ 93 uint32_t limit; /* hard limit of FQ_PIE queue size*/ 94 uint32_t quantum; 95 }; 96 97 /* flow (sub-queue) stats */ 98 struct flow_stats { 99 uint64_t tot_pkts; /* statistics counters */ 100 uint64_t tot_bytes; 101 uint32_t length; /* Queue length, in packets */ 102 uint32_t len_bytes; /* Queue length, in bytes */ 103 uint32_t drops; 104 }; 105 106 /* A flow of packets (sub-queue)*/ 107 struct fq_pie_flow { 108 struct mq mq; /* list of packets */ 109 struct flow_stats stats; /* statistics */ 110 int deficit; 111 int active; /* 1: flow is active (in a list) */ 112 struct pie_status pst; /* pie status variables */ 113 struct fq_pie_si_extra *psi_extra; 114 STAILQ_ENTRY(fq_pie_flow) flowchain; 115 }; 116 117 /* extra fq_pie scheduler configurations */ 118 struct fq_pie_schk { 119 struct dn_sch_fq_pie_parms cfg; 120 }; 121 122 /* fq_pie scheduler instance extra state vars. 123 * The purpose of separation this structure is to preserve number of active 124 * sub-queues and the flows array pointer even after the scheduler instance 125 * is destroyed. 126 * Preserving these varaiables allows freeing the allocated memory by 127 * fqpie_callout_cleanup() independently from fq_pie_free_sched(). 128 */ 129 struct fq_pie_si_extra { 130 uint32_t nr_active_q; /* number of active queues */ 131 struct fq_pie_flow *flows; /* array of flows (queues) */ 132 }; 133 134 /* fq_pie scheduler instance */ 135 struct fq_pie_si { 136 struct dn_sch_inst _si; /* standard scheduler instance. SHOULD BE FIRST */ 137 struct dn_queue main_q; /* main queue is after si directly */ 138 uint32_t perturbation; /* random value */ 139 struct fq_pie_list newflows; /* list of new queues */ 140 struct fq_pie_list oldflows; /* list of old queues */ 141 struct fq_pie_si_extra *si_extra; /* extra state vars*/ 142 }; 143 144 static struct dn_alg fq_pie_desc; 145 146 /* Default FQ-PIE parameters including PIE */ 147 /* PIE defaults 148 * target=15ms, max_burst=150ms, max_ecnth=0.1, 149 * alpha=0.125, beta=1.25, tupdate=15ms 150 * FQ- 151 * flows=1024, limit=10240, quantum =1514 152 */ 153 struct dn_sch_fq_pie_parms 154 fq_pie_sysctl = {{15000 * AQM_TIME_1US, 15000 * AQM_TIME_1US, 155 150000 * AQM_TIME_1US, PIE_SCALE * 0.1, PIE_SCALE * 0.125, 156 PIE_SCALE * 1.25, PIE_CAPDROP_ENABLED | PIE_DERAND_ENABLED}, 157 1024, 10240, 1514}; 158 159 static int 160 fqpie_sysctl_alpha_beta_handler(SYSCTL_HANDLER_ARGS) 161 { 162 int error; 163 long value; 164 165 if (!strcmp(oidp->oid_name,"alpha")) 166 value = fq_pie_sysctl.pcfg.alpha; 167 else 168 value = fq_pie_sysctl.pcfg.beta; 169 170 value = value * 1000 / PIE_SCALE; 171 error = sysctl_handle_long(oidp, &value, 0, req); 172 if (error != 0 || req->newptr == NULL) 173 return (error); 174 if (value < 1 || value > 7 * PIE_SCALE) 175 return (EINVAL); 176 value = (value * PIE_SCALE) / 1000; 177 if (!strcmp(oidp->oid_name,"alpha")) 178 fq_pie_sysctl.pcfg.alpha = value; 179 else 180 fq_pie_sysctl.pcfg.beta = value; 181 return (0); 182 } 183 184 static int 185 fqpie_sysctl_target_tupdate_maxb_handler(SYSCTL_HANDLER_ARGS) 186 { 187 int error; 188 long value; 189 190 if (!strcmp(oidp->oid_name,"target")) 191 value = fq_pie_sysctl.pcfg.qdelay_ref; 192 else if (!strcmp(oidp->oid_name,"tupdate")) 193 value = fq_pie_sysctl.pcfg.tupdate; 194 else 195 value = fq_pie_sysctl.pcfg.max_burst; 196 197 value = value / AQM_TIME_1US; 198 error = sysctl_handle_long(oidp, &value, 0, req); 199 if (error != 0 || req->newptr == NULL) 200 return (error); 201 if (value < 1 || value > 10 * AQM_TIME_1S) 202 return (EINVAL); 203 value = value * AQM_TIME_1US; 204 205 if (!strcmp(oidp->oid_name,"target")) 206 fq_pie_sysctl.pcfg.qdelay_ref = value; 207 else if (!strcmp(oidp->oid_name,"tupdate")) 208 fq_pie_sysctl.pcfg.tupdate = value; 209 else 210 fq_pie_sysctl.pcfg.max_burst = value; 211 return (0); 212 } 213 214 static int 215 fqpie_sysctl_max_ecnth_handler(SYSCTL_HANDLER_ARGS) 216 { 217 int error; 218 long value; 219 220 value = fq_pie_sysctl.pcfg.max_ecnth; 221 value = value * 1000 / PIE_SCALE; 222 error = sysctl_handle_long(oidp, &value, 0, req); 223 if (error != 0 || req->newptr == NULL) 224 return (error); 225 if (value < 1 || value > PIE_SCALE) 226 return (EINVAL); 227 value = (value * PIE_SCALE) / 1000; 228 fq_pie_sysctl.pcfg.max_ecnth = value; 229 return (0); 230 } 231 232 /* define FQ- PIE sysctl variables */ 233 SYSBEGIN(f4) 234 SYSCTL_DECL(_net_inet); 235 SYSCTL_DECL(_net_inet_ip); 236 SYSCTL_DECL(_net_inet_ip_dummynet); 237 static SYSCTL_NODE(_net_inet_ip_dummynet, OID_AUTO, fqpie, 238 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 239 "FQ_PIE"); 240 241 #ifdef SYSCTL_NODE 242 243 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, target, 244 CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0, 245 fqpie_sysctl_target_tupdate_maxb_handler, "L", 246 "queue target in microsecond"); 247 248 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, tupdate, 249 CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0, 250 fqpie_sysctl_target_tupdate_maxb_handler, "L", 251 "the frequency of drop probability calculation in microsecond"); 252 253 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, max_burst, 254 CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0, 255 fqpie_sysctl_target_tupdate_maxb_handler, "L", 256 "Burst allowance interval in microsecond"); 257 258 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, max_ecnth, 259 CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0, 260 fqpie_sysctl_max_ecnth_handler, "L", 261 "ECN safeguard threshold scaled by 1000"); 262 263 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, alpha, 264 CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0, 265 fqpie_sysctl_alpha_beta_handler, "L", 266 "PIE alpha scaled by 1000"); 267 268 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, beta, 269 CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0, 270 fqpie_sysctl_alpha_beta_handler, "L", 271 "beta scaled by 1000"); 272 273 SYSCTL_UINT(_net_inet_ip_dummynet_fqpie, OID_AUTO, quantum, 274 CTLFLAG_RW, &fq_pie_sysctl.quantum, 1514, "quantum for FQ_PIE"); 275 SYSCTL_UINT(_net_inet_ip_dummynet_fqpie, OID_AUTO, flows, 276 CTLFLAG_RW, &fq_pie_sysctl.flows_cnt, 1024, "Number of queues for FQ_PIE"); 277 SYSCTL_UINT(_net_inet_ip_dummynet_fqpie, OID_AUTO, limit, 278 CTLFLAG_RW, &fq_pie_sysctl.limit, 10240, "limit for FQ_PIE"); 279 #endif 280 281 /* Helper function to update queue&main-queue and scheduler statistics. 282 * negative len & drop -> drop 283 * negative len -> dequeue 284 * positive len -> enqueue 285 * positive len + drop -> drop during enqueue 286 */ 287 __inline static void 288 fq_update_stats(struct fq_pie_flow *q, struct fq_pie_si *si, int len, 289 int drop) 290 { 291 int inc = 0; 292 293 if (len < 0) 294 inc = -1; 295 else if (len > 0) 296 inc = 1; 297 298 if (drop) { 299 si->main_q.ni.drops ++; 300 q->stats.drops ++; 301 si->_si.ni.drops ++; 302 io_pkt_drop ++; 303 } 304 305 if (!drop || (drop && len < 0)) { 306 /* Update stats for the main queue */ 307 si->main_q.ni.length += inc; 308 si->main_q.ni.len_bytes += len; 309 310 /*update sub-queue stats */ 311 q->stats.length += inc; 312 q->stats.len_bytes += len; 313 314 /*update scheduler instance stats */ 315 si->_si.ni.length += inc; 316 si->_si.ni.len_bytes += len; 317 } 318 319 if (inc > 0) { 320 si->main_q.ni.tot_bytes += len; 321 si->main_q.ni.tot_pkts ++; 322 323 q->stats.tot_bytes +=len; 324 q->stats.tot_pkts++; 325 326 si->_si.ni.tot_bytes +=len; 327 si->_si.ni.tot_pkts ++; 328 } 329 330 } 331 332 /* 333 * Extract a packet from the head of sub-queue 'q' 334 * Return a packet or NULL if the queue is empty. 335 * If getts is set, also extract packet's timestamp from mtag. 336 */ 337 __inline static struct mbuf * 338 fq_pie_extract_head(struct fq_pie_flow *q, aqm_time_t *pkt_ts, 339 struct fq_pie_si *si, int getts) 340 { 341 struct mbuf *m = q->mq.head; 342 343 if (m == NULL) 344 return m; 345 q->mq.head = m->m_nextpkt; 346 347 fq_update_stats(q, si, -m->m_pkthdr.len, 0); 348 349 if (si->main_q.ni.length == 0) /* queue is now idle */ 350 si->main_q.q_time = dn_cfg.curr_time; 351 352 if (getts) { 353 /* extract packet timestamp*/ 354 struct m_tag *mtag; 355 mtag = m_tag_locate(m, MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, NULL); 356 if (mtag == NULL){ 357 D("PIE timestamp mtag not found!"); 358 *pkt_ts = 0; 359 } else { 360 *pkt_ts = *(aqm_time_t *)(mtag + 1); 361 m_tag_delete(m,mtag); 362 } 363 } 364 return m; 365 } 366 367 /* 368 * Callout function for drop probability calculation 369 * This function is called over tupdate ms and takes pointer of FQ-PIE 370 * flow as an argument 371 */ 372 static void 373 fq_calculate_drop_prob(void *x) 374 { 375 struct fq_pie_flow *q = (struct fq_pie_flow *) x; 376 struct pie_status *pst = &q->pst; 377 struct dn_aqm_pie_parms *pprms; 378 int64_t p, prob, oldprob; 379 aqm_time_t now; 380 int p_isneg; 381 382 now = AQM_UNOW; 383 pprms = pst->parms; 384 prob = pst->drop_prob; 385 386 /* calculate current qdelay using DRE method. 387 * If TS is used and no data in the queue, reset current_qdelay 388 * as it stays at last value during dequeue process. 389 */ 390 if (pprms->flags & PIE_DEPRATEEST_ENABLED) 391 pst->current_qdelay = ((uint64_t)q->stats.len_bytes * pst->avg_dq_time) 392 >> PIE_DQ_THRESHOLD_BITS; 393 else 394 if (!q->stats.len_bytes) 395 pst->current_qdelay = 0; 396 397 /* calculate drop probability */ 398 p = (int64_t)pprms->alpha * 399 ((int64_t)pst->current_qdelay - (int64_t)pprms->qdelay_ref); 400 p +=(int64_t) pprms->beta * 401 ((int64_t)pst->current_qdelay - (int64_t)pst->qdelay_old); 402 403 /* take absolute value so right shift result is well defined */ 404 p_isneg = p < 0; 405 if (p_isneg) { 406 p = -p; 407 } 408 409 /* We PIE_MAX_PROB shift by 12-bits to increase the division precision */ 410 p *= (PIE_MAX_PROB << 12) / AQM_TIME_1S; 411 412 /* auto-tune drop probability */ 413 if (prob < (PIE_MAX_PROB / 1000000)) /* 0.000001 */ 414 p >>= 11 + PIE_FIX_POINT_BITS + 12; 415 else if (prob < (PIE_MAX_PROB / 100000)) /* 0.00001 */ 416 p >>= 9 + PIE_FIX_POINT_BITS + 12; 417 else if (prob < (PIE_MAX_PROB / 10000)) /* 0.0001 */ 418 p >>= 7 + PIE_FIX_POINT_BITS + 12; 419 else if (prob < (PIE_MAX_PROB / 1000)) /* 0.001 */ 420 p >>= 5 + PIE_FIX_POINT_BITS + 12; 421 else if (prob < (PIE_MAX_PROB / 100)) /* 0.01 */ 422 p >>= 3 + PIE_FIX_POINT_BITS + 12; 423 else if (prob < (PIE_MAX_PROB / 10)) /* 0.1 */ 424 p >>= 1 + PIE_FIX_POINT_BITS + 12; 425 else 426 p >>= PIE_FIX_POINT_BITS + 12; 427 428 oldprob = prob; 429 430 if (p_isneg) { 431 prob = prob - p; 432 433 /* check for multiplication underflow */ 434 if (prob > oldprob) { 435 prob= 0; 436 D("underflow"); 437 } 438 } else { 439 /* Cap Drop adjustment */ 440 if ((pprms->flags & PIE_CAPDROP_ENABLED) && 441 prob >= PIE_MAX_PROB / 10 && 442 p > PIE_MAX_PROB / 50 ) { 443 p = PIE_MAX_PROB / 50; 444 } 445 446 prob = prob + p; 447 448 /* check for multiplication overflow */ 449 if (prob<oldprob) { 450 D("overflow"); 451 prob= PIE_MAX_PROB; 452 } 453 } 454 455 /* 456 * decay the drop probability exponentially 457 * and restrict it to range 0 to PIE_MAX_PROB 458 */ 459 if (prob < 0) { 460 prob = 0; 461 } else { 462 if (pst->current_qdelay == 0 && pst->qdelay_old == 0) { 463 /* 0.98 ~= 1- 1/64 */ 464 prob = prob - (prob >> 6); 465 } 466 467 if (prob > PIE_MAX_PROB) { 468 prob = PIE_MAX_PROB; 469 } 470 } 471 472 pst->drop_prob = prob; 473 474 /* store current delay value */ 475 pst->qdelay_old = pst->current_qdelay; 476 477 /* update burst allowance */ 478 if ((pst->sflags & PIE_ACTIVE) && pst->burst_allowance) { 479 if (pst->burst_allowance > pprms->tupdate) 480 pst->burst_allowance -= pprms->tupdate; 481 else 482 pst->burst_allowance = 0; 483 } 484 485 if (pst->sflags & PIE_ACTIVE) 486 callout_reset_sbt(&pst->aqm_pie_callout, 487 (uint64_t)pprms->tupdate * SBT_1US, 488 0, fq_calculate_drop_prob, q, 0); 489 490 mtx_unlock(&pst->lock_mtx); 491 } 492 493 /* 494 * Reset PIE variables & activate the queue 495 */ 496 __inline static void 497 fq_activate_pie(struct fq_pie_flow *q) 498 { 499 struct pie_status *pst = &q->pst; 500 struct dn_aqm_pie_parms *pprms; 501 502 mtx_lock(&pst->lock_mtx); 503 pprms = pst->parms; 504 505 pprms = pst->parms; 506 pst->drop_prob = 0; 507 pst->qdelay_old = 0; 508 pst->burst_allowance = pprms->max_burst; 509 pst->accu_prob = 0; 510 pst->dq_count = 0; 511 pst->avg_dq_time = 0; 512 pst->sflags = PIE_INMEASUREMENT | PIE_ACTIVE; 513 pst->measurement_start = AQM_UNOW; 514 515 callout_reset_sbt(&pst->aqm_pie_callout, 516 (uint64_t)pprms->tupdate * SBT_1US, 517 0, fq_calculate_drop_prob, q, 0); 518 519 mtx_unlock(&pst->lock_mtx); 520 } 521 522 /* 523 * Deactivate PIE and stop probe update callout 524 */ 525 __inline static void 526 fq_deactivate_pie(struct pie_status *pst) 527 { 528 mtx_lock(&pst->lock_mtx); 529 pst->sflags &= ~(PIE_ACTIVE | PIE_INMEASUREMENT); 530 callout_stop(&pst->aqm_pie_callout); 531 //D("PIE Deactivated"); 532 mtx_unlock(&pst->lock_mtx); 533 } 534 535 /* 536 * Initialize PIE for sub-queue 'q' 537 */ 538 static int 539 pie_init(struct fq_pie_flow *q, struct fq_pie_schk *fqpie_schk) 540 { 541 struct pie_status *pst=&q->pst; 542 struct dn_aqm_pie_parms *pprms = pst->parms; 543 544 int err = 0; 545 if (!pprms){ 546 D("AQM_PIE is not configured"); 547 err = EINVAL; 548 } else { 549 q->psi_extra->nr_active_q++; 550 551 /* For speed optimization, we caculate 1/3 queue size once here */ 552 // XXX limit divided by number of queues divided by 3 ??? 553 pst->one_third_q_size = (fqpie_schk->cfg.limit / 554 fqpie_schk->cfg.flows_cnt) / 3; 555 556 mtx_init(&pst->lock_mtx, "mtx_pie", NULL, MTX_DEF); 557 callout_init_mtx(&pst->aqm_pie_callout, &pst->lock_mtx, 558 CALLOUT_RETURNUNLOCKED); 559 } 560 561 return err; 562 } 563 564 /* 565 * callout function to destroy PIE lock, and free fq_pie flows and fq_pie si 566 * extra memory when number of active sub-queues reaches zero. 567 * 'x' is a fq_pie_flow to be destroyed 568 */ 569 static void 570 fqpie_callout_cleanup(void *x) 571 { 572 struct fq_pie_flow *q = x; 573 struct pie_status *pst = &q->pst; 574 struct fq_pie_si_extra *psi_extra; 575 576 mtx_unlock(&pst->lock_mtx); 577 mtx_destroy(&pst->lock_mtx); 578 psi_extra = q->psi_extra; 579 580 DN_BH_WLOCK(); 581 psi_extra->nr_active_q--; 582 583 /* when all sub-queues are destroyed, free flows fq_pie extra vars memory */ 584 if (!psi_extra->nr_active_q) { 585 free(psi_extra->flows, M_DUMMYNET); 586 free(psi_extra, M_DUMMYNET); 587 fq_pie_desc.ref_count--; 588 } 589 DN_BH_WUNLOCK(); 590 } 591 592 /* 593 * Clean up PIE status for sub-queue 'q' 594 * Stop callout timer and destroy mtx using fqpie_callout_cleanup() callout. 595 */ 596 static int 597 pie_cleanup(struct fq_pie_flow *q) 598 { 599 struct pie_status *pst = &q->pst; 600 601 mtx_lock(&pst->lock_mtx); 602 callout_reset_sbt(&pst->aqm_pie_callout, 603 SBT_1US, 0, fqpie_callout_cleanup, q, 0); 604 mtx_unlock(&pst->lock_mtx); 605 return 0; 606 } 607 608 /* 609 * Dequeue and return a pcaket from sub-queue 'q' or NULL if 'q' is empty. 610 * Also, caculate depature time or queue delay using timestamp 611 */ 612 static struct mbuf * 613 pie_dequeue(struct fq_pie_flow *q, struct fq_pie_si *si) 614 { 615 struct mbuf *m; 616 struct dn_aqm_pie_parms *pprms; 617 struct pie_status *pst; 618 aqm_time_t now; 619 aqm_time_t pkt_ts, dq_time; 620 int32_t w; 621 622 pst = &q->pst; 623 pprms = q->pst.parms; 624 625 /*we extarct packet ts only when Departure Rate Estimation dis not used*/ 626 m = fq_pie_extract_head(q, &pkt_ts, si, 627 !(pprms->flags & PIE_DEPRATEEST_ENABLED)); 628 629 if (!m || !(pst->sflags & PIE_ACTIVE)) 630 return m; 631 632 now = AQM_UNOW; 633 if (pprms->flags & PIE_DEPRATEEST_ENABLED) { 634 /* calculate average depature time */ 635 if(pst->sflags & PIE_INMEASUREMENT) { 636 pst->dq_count += m->m_pkthdr.len; 637 638 if (pst->dq_count >= PIE_DQ_THRESHOLD) { 639 dq_time = now - pst->measurement_start; 640 641 /* 642 * if we don't have old avg dq_time i.e PIE is (re)initialized, 643 * don't use weight to calculate new avg_dq_time 644 */ 645 if(pst->avg_dq_time == 0) 646 pst->avg_dq_time = dq_time; 647 else { 648 /* 649 * weight = PIE_DQ_THRESHOLD/2^6, but we scaled 650 * weight by 2^8. Thus, scaled 651 * weight = PIE_DQ_THRESHOLD /2^8 652 * */ 653 w = PIE_DQ_THRESHOLD >> 8; 654 pst->avg_dq_time = (dq_time* w 655 + (pst->avg_dq_time * ((1L << 8) - w))) >> 8; 656 pst->sflags &= ~PIE_INMEASUREMENT; 657 } 658 } 659 } 660 661 /* 662 * Start new measurment cycle when the queue has 663 * PIE_DQ_THRESHOLD worth of bytes. 664 */ 665 if(!(pst->sflags & PIE_INMEASUREMENT) && 666 q->stats.len_bytes >= PIE_DQ_THRESHOLD) { 667 pst->sflags |= PIE_INMEASUREMENT; 668 pst->measurement_start = now; 669 pst->dq_count = 0; 670 } 671 } 672 /* Optionally, use packet timestamp to estimate queue delay */ 673 else 674 pst->current_qdelay = now - pkt_ts; 675 676 return m; 677 } 678 679 /* 680 * Enqueue a packet in q, subject to space and FQ-PIE queue management policy 681 * (whose parameters are in q->fs). 682 * Update stats for the queue and the scheduler. 683 * Return 0 on success, 1 on drop. The packet is consumed anyways. 684 */ 685 static int 686 pie_enqueue(struct fq_pie_flow *q, struct mbuf* m, struct fq_pie_si *si) 687 { 688 uint64_t len; 689 struct pie_status *pst; 690 struct dn_aqm_pie_parms *pprms; 691 int t; 692 693 len = m->m_pkthdr.len; 694 pst = &q->pst; 695 pprms = pst->parms; 696 t = ENQUE; 697 698 /* drop/mark the packet when PIE is active and burst time elapsed */ 699 if (pst->sflags & PIE_ACTIVE && pst->burst_allowance == 0 700 && drop_early(pst, q->stats.len_bytes) == DROP) { 701 /* 702 * if drop_prob over ECN threshold, drop the packet 703 * otherwise mark and enqueue it. 704 */ 705 if (pprms->flags & PIE_ECN_ENABLED && pst->drop_prob < 706 (pprms->max_ecnth << (PIE_PROB_BITS - PIE_FIX_POINT_BITS)) 707 && ecn_mark(m)) 708 t = ENQUE; 709 else 710 t = DROP; 711 } 712 713 /* Turn PIE on when 1/3 of the queue is full */ 714 if (!(pst->sflags & PIE_ACTIVE) && q->stats.len_bytes >= 715 pst->one_third_q_size) { 716 fq_activate_pie(q); 717 } 718 719 /* reset burst tolerance and optinally turn PIE off*/ 720 if (pst->drop_prob == 0 && pst->current_qdelay < (pprms->qdelay_ref >> 1) 721 && pst->qdelay_old < (pprms->qdelay_ref >> 1)) { 722 723 pst->burst_allowance = pprms->max_burst; 724 if (pprms->flags & PIE_ON_OFF_MODE_ENABLED && q->stats.len_bytes<=0) 725 fq_deactivate_pie(pst); 726 } 727 728 /* Use timestamp if Departure Rate Estimation mode is disabled */ 729 if (t != DROP && !(pprms->flags & PIE_DEPRATEEST_ENABLED)) { 730 /* Add TS to mbuf as a TAG */ 731 struct m_tag *mtag; 732 mtag = m_tag_locate(m, MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, NULL); 733 if (mtag == NULL) 734 mtag = m_tag_alloc(MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, 735 sizeof(aqm_time_t), M_NOWAIT); 736 if (mtag == NULL) { 737 m_freem(m); 738 t = DROP; 739 } 740 *(aqm_time_t *)(mtag + 1) = AQM_UNOW; 741 m_tag_prepend(m, mtag); 742 } 743 744 if (t != DROP) { 745 mq_append(&q->mq, m); 746 fq_update_stats(q, si, len, 0); 747 return 0; 748 } else { 749 fq_update_stats(q, si, len, 1); 750 pst->accu_prob = 0; 751 FREE_PKT(m); 752 return 1; 753 } 754 755 return 0; 756 } 757 758 /* Drop a packet form the head of FQ-PIE sub-queue */ 759 static void 760 pie_drop_head(struct fq_pie_flow *q, struct fq_pie_si *si) 761 { 762 struct mbuf *m = q->mq.head; 763 764 if (m == NULL) 765 return; 766 q->mq.head = m->m_nextpkt; 767 768 fq_update_stats(q, si, -m->m_pkthdr.len, 1); 769 770 if (si->main_q.ni.length == 0) /* queue is now idle */ 771 si->main_q.q_time = dn_cfg.curr_time; 772 /* reset accu_prob after packet drop */ 773 q->pst.accu_prob = 0; 774 775 FREE_PKT(m); 776 } 777 778 /* 779 * Classify a packet to queue number using Jenkins hash function. 780 * Return: queue number 781 * the input of the hash are protocol no, perturbation, src IP, dst IP, 782 * src port, dst port, 783 */ 784 static inline int 785 fq_pie_classify_flow(struct mbuf *m, uint16_t fcount, struct fq_pie_si *si) 786 { 787 struct ip *ip; 788 struct tcphdr *th; 789 struct udphdr *uh; 790 uint8_t tuple[41]; 791 uint16_t hash=0; 792 793 ip = (struct ip *)mtodo(m, dn_tag_get(m)->iphdr_off); 794 //#ifdef INET6 795 struct ip6_hdr *ip6; 796 int isip6; 797 isip6 = (ip->ip_v == 6); 798 799 if(isip6) { 800 ip6 = (struct ip6_hdr *)ip; 801 *((uint8_t *) &tuple[0]) = ip6->ip6_nxt; 802 *((uint32_t *) &tuple[1]) = si->perturbation; 803 memcpy(&tuple[5], ip6->ip6_src.s6_addr, 16); 804 memcpy(&tuple[21], ip6->ip6_dst.s6_addr, 16); 805 806 switch (ip6->ip6_nxt) { 807 case IPPROTO_TCP: 808 th = (struct tcphdr *)(ip6 + 1); 809 *((uint16_t *) &tuple[37]) = th->th_dport; 810 *((uint16_t *) &tuple[39]) = th->th_sport; 811 break; 812 813 case IPPROTO_UDP: 814 uh = (struct udphdr *)(ip6 + 1); 815 *((uint16_t *) &tuple[37]) = uh->uh_dport; 816 *((uint16_t *) &tuple[39]) = uh->uh_sport; 817 break; 818 default: 819 memset(&tuple[37], 0, 4); 820 } 821 822 hash = jenkins_hash(tuple, 41, HASHINIT) % fcount; 823 return hash; 824 } 825 //#endif 826 827 /* IPv4 */ 828 *((uint8_t *) &tuple[0]) = ip->ip_p; 829 *((uint32_t *) &tuple[1]) = si->perturbation; 830 *((uint32_t *) &tuple[5]) = ip->ip_src.s_addr; 831 *((uint32_t *) &tuple[9]) = ip->ip_dst.s_addr; 832 833 switch (ip->ip_p) { 834 case IPPROTO_TCP: 835 th = (struct tcphdr *)(ip + 1); 836 *((uint16_t *) &tuple[13]) = th->th_dport; 837 *((uint16_t *) &tuple[15]) = th->th_sport; 838 break; 839 840 case IPPROTO_UDP: 841 uh = (struct udphdr *)(ip + 1); 842 *((uint16_t *) &tuple[13]) = uh->uh_dport; 843 *((uint16_t *) &tuple[15]) = uh->uh_sport; 844 break; 845 default: 846 memset(&tuple[13], 0, 4); 847 } 848 hash = jenkins_hash(tuple, 17, HASHINIT) % fcount; 849 850 return hash; 851 } 852 853 /* 854 * Enqueue a packet into an appropriate queue according to 855 * FQ-CoDe; algorithm. 856 */ 857 static int 858 fq_pie_enqueue(struct dn_sch_inst *_si, struct dn_queue *_q, 859 struct mbuf *m) 860 { 861 struct fq_pie_si *si; 862 struct fq_pie_schk *schk; 863 struct dn_sch_fq_pie_parms *param; 864 struct dn_queue *mainq; 865 struct fq_pie_flow *flows; 866 int idx, drop, i, maxidx; 867 868 mainq = (struct dn_queue *)(_si + 1); 869 si = (struct fq_pie_si *)_si; 870 flows = si->si_extra->flows; 871 schk = (struct fq_pie_schk *)(si->_si.sched+1); 872 param = &schk->cfg; 873 874 /* classify a packet to queue number*/ 875 idx = fq_pie_classify_flow(m, param->flows_cnt, si); 876 877 /* enqueue packet into appropriate queue using PIE AQM. 878 * Note: 'pie_enqueue' function returns 1 only when it unable to 879 * add timestamp to packet (no limit check)*/ 880 drop = pie_enqueue(&flows[idx], m, si); 881 882 /* pie unable to timestamp a packet */ 883 if (drop) 884 return 1; 885 886 /* If the flow (sub-queue) is not active ,then add it to tail of 887 * new flows list, initialize and activate it. 888 */ 889 if (!flows[idx].active) { 890 STAILQ_INSERT_TAIL(&si->newflows, &flows[idx], flowchain); 891 flows[idx].deficit = param->quantum; 892 fq_activate_pie(&flows[idx]); 893 flows[idx].active = 1; 894 } 895 896 /* check the limit for all queues and remove a packet from the 897 * largest one 898 */ 899 if (mainq->ni.length > schk->cfg.limit) { 900 /* find first active flow */ 901 for (maxidx = 0; maxidx < schk->cfg.flows_cnt; maxidx++) 902 if (flows[maxidx].active) 903 break; 904 if (maxidx < schk->cfg.flows_cnt) { 905 /* find the largest sub- queue */ 906 for (i = maxidx + 1; i < schk->cfg.flows_cnt; i++) 907 if (flows[i].active && flows[i].stats.length > 908 flows[maxidx].stats.length) 909 maxidx = i; 910 pie_drop_head(&flows[maxidx], si); 911 drop = 1; 912 } 913 } 914 915 return drop; 916 } 917 918 /* 919 * Dequeue a packet from an appropriate queue according to 920 * FQ-CoDel algorithm. 921 */ 922 static struct mbuf * 923 fq_pie_dequeue(struct dn_sch_inst *_si) 924 { 925 struct fq_pie_si *si; 926 struct fq_pie_schk *schk; 927 struct dn_sch_fq_pie_parms *param; 928 struct fq_pie_flow *f; 929 struct mbuf *mbuf; 930 struct fq_pie_list *fq_pie_flowlist; 931 932 si = (struct fq_pie_si *)_si; 933 schk = (struct fq_pie_schk *)(si->_si.sched+1); 934 param = &schk->cfg; 935 936 do { 937 /* select a list to start with */ 938 if (STAILQ_EMPTY(&si->newflows)) 939 fq_pie_flowlist = &si->oldflows; 940 else 941 fq_pie_flowlist = &si->newflows; 942 943 /* Both new and old queue lists are empty, return NULL */ 944 if (STAILQ_EMPTY(fq_pie_flowlist)) 945 return NULL; 946 947 f = STAILQ_FIRST(fq_pie_flowlist); 948 while (f != NULL) { 949 /* if there is no flow(sub-queue) deficit, increase deficit 950 * by quantum, move the flow to the tail of old flows list 951 * and try another flow. 952 * Otherwise, the flow will be used for dequeue. 953 */ 954 if (f->deficit < 0) { 955 f->deficit += param->quantum; 956 STAILQ_REMOVE_HEAD(fq_pie_flowlist, flowchain); 957 STAILQ_INSERT_TAIL(&si->oldflows, f, flowchain); 958 } else 959 break; 960 961 f = STAILQ_FIRST(fq_pie_flowlist); 962 } 963 964 /* the new flows list is empty, try old flows list */ 965 if (STAILQ_EMPTY(fq_pie_flowlist)) 966 continue; 967 968 /* Dequeue a packet from the selected flow */ 969 mbuf = pie_dequeue(f, si); 970 971 /* pie did not return a packet */ 972 if (!mbuf) { 973 /* If the selected flow belongs to new flows list, then move 974 * it to the tail of old flows list. Otherwise, deactivate it and 975 * remove it from the old list and 976 */ 977 if (fq_pie_flowlist == &si->newflows) { 978 STAILQ_REMOVE_HEAD(fq_pie_flowlist, flowchain); 979 STAILQ_INSERT_TAIL(&si->oldflows, f, flowchain); 980 } else { 981 f->active = 0; 982 fq_deactivate_pie(&f->pst); 983 STAILQ_REMOVE_HEAD(fq_pie_flowlist, flowchain); 984 } 985 /* start again */ 986 continue; 987 } 988 989 /* we have a packet to return, 990 * update flow deficit and return the packet*/ 991 f->deficit -= mbuf->m_pkthdr.len; 992 return mbuf; 993 994 } while (1); 995 996 /* unreachable point */ 997 return NULL; 998 } 999 1000 /* 1001 * Initialize fq_pie scheduler instance. 1002 * also, allocate memory for flows array. 1003 */ 1004 static int 1005 fq_pie_new_sched(struct dn_sch_inst *_si) 1006 { 1007 struct fq_pie_si *si; 1008 struct dn_queue *q; 1009 struct fq_pie_schk *schk; 1010 struct fq_pie_flow *flows; 1011 int i; 1012 1013 si = (struct fq_pie_si *)_si; 1014 schk = (struct fq_pie_schk *)(_si->sched+1); 1015 1016 if(si->si_extra) { 1017 D("si already configured!"); 1018 return 0; 1019 } 1020 1021 /* init the main queue */ 1022 q = &si->main_q; 1023 set_oid(&q->ni.oid, DN_QUEUE, sizeof(*q)); 1024 q->_si = _si; 1025 q->fs = _si->sched->fs; 1026 1027 /* allocate memory for scheduler instance extra vars */ 1028 si->si_extra = malloc(sizeof(struct fq_pie_si_extra), 1029 M_DUMMYNET, M_NOWAIT | M_ZERO); 1030 if (si->si_extra == NULL) { 1031 D("cannot allocate memory for fq_pie si extra vars"); 1032 return ENOMEM ; 1033 } 1034 /* allocate memory for flows array */ 1035 si->si_extra->flows = mallocarray(schk->cfg.flows_cnt, 1036 sizeof(struct fq_pie_flow), M_DUMMYNET, M_NOWAIT | M_ZERO); 1037 flows = si->si_extra->flows; 1038 if (flows == NULL) { 1039 free(si->si_extra, M_DUMMYNET); 1040 si->si_extra = NULL; 1041 D("cannot allocate memory for fq_pie flows"); 1042 return ENOMEM ; 1043 } 1044 1045 /* init perturbation for this si */ 1046 si->perturbation = random(); 1047 si->si_extra->nr_active_q = 0; 1048 1049 /* init the old and new flows lists */ 1050 STAILQ_INIT(&si->newflows); 1051 STAILQ_INIT(&si->oldflows); 1052 1053 /* init the flows (sub-queues) */ 1054 for (i = 0; i < schk->cfg.flows_cnt; i++) { 1055 flows[i].pst.parms = &schk->cfg.pcfg; 1056 flows[i].psi_extra = si->si_extra; 1057 pie_init(&flows[i], schk); 1058 } 1059 1060 fq_pie_desc.ref_count++; 1061 1062 return 0; 1063 } 1064 1065 /* 1066 * Free fq_pie scheduler instance. 1067 */ 1068 static int 1069 fq_pie_free_sched(struct dn_sch_inst *_si) 1070 { 1071 struct fq_pie_si *si; 1072 struct fq_pie_schk *schk; 1073 struct fq_pie_flow *flows; 1074 int i; 1075 1076 si = (struct fq_pie_si *)_si; 1077 schk = (struct fq_pie_schk *)(_si->sched+1); 1078 flows = si->si_extra->flows; 1079 for (i = 0; i < schk->cfg.flows_cnt; i++) { 1080 pie_cleanup(&flows[i]); 1081 } 1082 si->si_extra = NULL; 1083 return 0; 1084 } 1085 1086 /* 1087 * Configure FQ-PIE scheduler. 1088 * the configurations for the scheduler is passed fromipfw userland. 1089 */ 1090 static int 1091 fq_pie_config(struct dn_schk *_schk) 1092 { 1093 struct fq_pie_schk *schk; 1094 struct dn_extra_parms *ep; 1095 struct dn_sch_fq_pie_parms *fqp_cfg; 1096 1097 schk = (struct fq_pie_schk *)(_schk+1); 1098 ep = (struct dn_extra_parms *) _schk->cfg; 1099 1100 /* par array contains fq_pie configuration as follow 1101 * PIE: 0- qdelay_ref,1- tupdate, 2- max_burst 1102 * 3- max_ecnth, 4- alpha, 5- beta, 6- flags 1103 * FQ_PIE: 7- quantum, 8- limit, 9- flows 1104 */ 1105 if (ep && ep->oid.len ==sizeof(*ep) && 1106 ep->oid.subtype == DN_SCH_PARAMS) { 1107 fqp_cfg = &schk->cfg; 1108 if (ep->par[0] < 0) 1109 fqp_cfg->pcfg.qdelay_ref = fq_pie_sysctl.pcfg.qdelay_ref; 1110 else 1111 fqp_cfg->pcfg.qdelay_ref = ep->par[0]; 1112 if (ep->par[1] < 0) 1113 fqp_cfg->pcfg.tupdate = fq_pie_sysctl.pcfg.tupdate; 1114 else 1115 fqp_cfg->pcfg.tupdate = ep->par[1]; 1116 if (ep->par[2] < 0) 1117 fqp_cfg->pcfg.max_burst = fq_pie_sysctl.pcfg.max_burst; 1118 else 1119 fqp_cfg->pcfg.max_burst = ep->par[2]; 1120 if (ep->par[3] < 0) 1121 fqp_cfg->pcfg.max_ecnth = fq_pie_sysctl.pcfg.max_ecnth; 1122 else 1123 fqp_cfg->pcfg.max_ecnth = ep->par[3]; 1124 if (ep->par[4] < 0) 1125 fqp_cfg->pcfg.alpha = fq_pie_sysctl.pcfg.alpha; 1126 else 1127 fqp_cfg->pcfg.alpha = ep->par[4]; 1128 if (ep->par[5] < 0) 1129 fqp_cfg->pcfg.beta = fq_pie_sysctl.pcfg.beta; 1130 else 1131 fqp_cfg->pcfg.beta = ep->par[5]; 1132 if (ep->par[6] < 0) 1133 fqp_cfg->pcfg.flags = 0; 1134 else 1135 fqp_cfg->pcfg.flags = ep->par[6]; 1136 1137 /* FQ configurations */ 1138 if (ep->par[7] < 0) 1139 fqp_cfg->quantum = fq_pie_sysctl.quantum; 1140 else 1141 fqp_cfg->quantum = ep->par[7]; 1142 if (ep->par[8] < 0) 1143 fqp_cfg->limit = fq_pie_sysctl.limit; 1144 else 1145 fqp_cfg->limit = ep->par[8]; 1146 if (ep->par[9] < 0) 1147 fqp_cfg->flows_cnt = fq_pie_sysctl.flows_cnt; 1148 else 1149 fqp_cfg->flows_cnt = ep->par[9]; 1150 1151 /* Bound the configurations */ 1152 fqp_cfg->pcfg.qdelay_ref = BOUND_VAR(fqp_cfg->pcfg.qdelay_ref, 1153 1, 5 * AQM_TIME_1S); 1154 fqp_cfg->pcfg.tupdate = BOUND_VAR(fqp_cfg->pcfg.tupdate, 1155 1, 5 * AQM_TIME_1S); 1156 fqp_cfg->pcfg.max_burst = BOUND_VAR(fqp_cfg->pcfg.max_burst, 1157 0, 5 * AQM_TIME_1S); 1158 fqp_cfg->pcfg.max_ecnth = BOUND_VAR(fqp_cfg->pcfg.max_ecnth, 1159 0, PIE_SCALE); 1160 fqp_cfg->pcfg.alpha = BOUND_VAR(fqp_cfg->pcfg.alpha, 0, 7 * PIE_SCALE); 1161 fqp_cfg->pcfg.beta = BOUND_VAR(fqp_cfg->pcfg.beta, 0, 7 * PIE_SCALE); 1162 1163 fqp_cfg->quantum = BOUND_VAR(fqp_cfg->quantum,1,9000); 1164 fqp_cfg->limit= BOUND_VAR(fqp_cfg->limit,1,20480); 1165 fqp_cfg->flows_cnt= BOUND_VAR(fqp_cfg->flows_cnt,1,65536); 1166 } 1167 else { 1168 D("Wrong parameters for fq_pie scheduler"); 1169 return 1; 1170 } 1171 1172 return 0; 1173 } 1174 1175 /* 1176 * Return FQ-PIE scheduler configurations 1177 * the configurations for the scheduler is passed to userland. 1178 */ 1179 static int 1180 fq_pie_getconfig (struct dn_schk *_schk, struct dn_extra_parms *ep) { 1181 struct fq_pie_schk *schk = (struct fq_pie_schk *)(_schk+1); 1182 struct dn_sch_fq_pie_parms *fqp_cfg; 1183 1184 fqp_cfg = &schk->cfg; 1185 1186 strcpy(ep->name, fq_pie_desc.name); 1187 ep->par[0] = fqp_cfg->pcfg.qdelay_ref; 1188 ep->par[1] = fqp_cfg->pcfg.tupdate; 1189 ep->par[2] = fqp_cfg->pcfg.max_burst; 1190 ep->par[3] = fqp_cfg->pcfg.max_ecnth; 1191 ep->par[4] = fqp_cfg->pcfg.alpha; 1192 ep->par[5] = fqp_cfg->pcfg.beta; 1193 ep->par[6] = fqp_cfg->pcfg.flags; 1194 1195 ep->par[7] = fqp_cfg->quantum; 1196 ep->par[8] = fqp_cfg->limit; 1197 ep->par[9] = fqp_cfg->flows_cnt; 1198 1199 return 0; 1200 } 1201 1202 /* 1203 * FQ-PIE scheduler descriptor 1204 * contains the type of the scheduler, the name, the size of extra 1205 * data structures, and function pointers. 1206 */ 1207 static struct dn_alg fq_pie_desc = { 1208 _SI( .type = ) DN_SCHED_FQ_PIE, 1209 _SI( .name = ) "FQ_PIE", 1210 _SI( .flags = ) 0, 1211 1212 _SI( .schk_datalen = ) sizeof(struct fq_pie_schk), 1213 _SI( .si_datalen = ) sizeof(struct fq_pie_si) - sizeof(struct dn_sch_inst), 1214 _SI( .q_datalen = ) 0, 1215 1216 _SI( .enqueue = ) fq_pie_enqueue, 1217 _SI( .dequeue = ) fq_pie_dequeue, 1218 _SI( .config = ) fq_pie_config, /* new sched i.e. sched X config ...*/ 1219 _SI( .destroy = ) NULL, /*sched x delete */ 1220 _SI( .new_sched = ) fq_pie_new_sched, /* new schd instance */ 1221 _SI( .free_sched = ) fq_pie_free_sched, /* delete schd instance */ 1222 _SI( .new_fsk = ) NULL, 1223 _SI( .free_fsk = ) NULL, 1224 _SI( .new_queue = ) NULL, 1225 _SI( .free_queue = ) NULL, 1226 _SI( .getconfig = ) fq_pie_getconfig, 1227 _SI( .ref_count = ) 0 1228 }; 1229 1230 DECLARE_DNSCHED_MODULE(dn_fq_pie, &fq_pie_desc); 1231