1 /* 2 * FQ_PIE - The FlowQueue-PIE scheduler/AQM 3 * 4 * $FreeBSD$ 5 * 6 * Copyright (C) 2016 Centre for Advanced Internet Architectures, 7 * Swinburne University of Technology, Melbourne, Australia. 8 * Portions of this code were made possible in part by a gift from 9 * The Comcast Innovation Fund. 10 * Implemented by Rasool Al-Saadi <ralsaadi@swin.edu.au> 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 /* Important note: 35 * As there is no an office document for FQ-PIE specification, we used 36 * FQ-CoDel algorithm with some modifications to implement FQ-PIE. 37 * This FQ-PIE implementation is a beta version and have not been tested 38 * extensively. Our FQ-PIE uses stand-alone PIE AQM per sub-queue. By 39 * default, timestamp is used to calculate queue delay instead of departure 40 * rate estimation method. Although departure rate estimation is available 41 * as testing option, the results could be incorrect. Moreover, turning PIE on 42 * and off option is available but it does not work properly in this version. 43 */ 44 45 46 #ifdef _KERNEL 47 #include <sys/malloc.h> 48 #include <sys/socket.h> 49 #include <sys/kernel.h> 50 #include <sys/mbuf.h> 51 #include <sys/lock.h> 52 #include <sys/module.h> 53 #include <sys/mutex.h> 54 #include <net/if.h> /* IFNAMSIZ */ 55 #include <netinet/in.h> 56 #include <netinet/ip_var.h> /* ipfw_rule_ref */ 57 #include <netinet/ip_fw.h> /* flow_id */ 58 #include <netinet/ip_dummynet.h> 59 60 #include <sys/proc.h> 61 #include <sys/rwlock.h> 62 63 #include <netpfil/ipfw/ip_fw_private.h> 64 #include <sys/sysctl.h> 65 #include <netinet/ip.h> 66 #include <netinet/ip6.h> 67 #include <netinet/ip_icmp.h> 68 #include <netinet/tcp.h> 69 #include <netinet/udp.h> 70 #include <sys/queue.h> 71 #include <sys/hash.h> 72 73 #include <netpfil/ipfw/dn_heap.h> 74 #include <netpfil/ipfw/ip_dn_private.h> 75 76 #include <netpfil/ipfw/dn_aqm.h> 77 #include <netpfil/ipfw/dn_aqm_pie.h> 78 #include <netpfil/ipfw/dn_sched.h> 79 80 #else 81 #include <dn_test.h> 82 #endif 83 84 #define DN_SCHED_FQ_PIE 7 85 86 /* list of queues */ 87 STAILQ_HEAD(fq_pie_list, fq_pie_flow) ; 88 89 /* FQ_PIE parameters including PIE */ 90 struct dn_sch_fq_pie_parms { 91 struct dn_aqm_pie_parms pcfg; /* PIE configuration Parameters */ 92 /* FQ_PIE Parameters */ 93 uint32_t flows_cnt; /* number of flows */ 94 uint32_t limit; /* hard limit of FQ_PIE queue size*/ 95 uint32_t quantum; 96 }; 97 98 /* flow (sub-queue) stats */ 99 struct flow_stats { 100 uint64_t tot_pkts; /* statistics counters */ 101 uint64_t tot_bytes; 102 uint32_t length; /* Queue length, in packets */ 103 uint32_t len_bytes; /* Queue length, in bytes */ 104 uint32_t drops; 105 }; 106 107 /* A flow of packets (sub-queue)*/ 108 struct fq_pie_flow { 109 struct mq mq; /* list of packets */ 110 struct flow_stats stats; /* statistics */ 111 int deficit; 112 int active; /* 1: flow is active (in a list) */ 113 struct pie_status pst; /* pie status variables */ 114 struct fq_pie_si_extra *psi_extra; 115 STAILQ_ENTRY(fq_pie_flow) flowchain; 116 }; 117 118 /* extra fq_pie scheduler configurations */ 119 struct fq_pie_schk { 120 struct dn_sch_fq_pie_parms cfg; 121 }; 122 123 124 /* fq_pie scheduler instance extra state vars. 125 * The purpose of separation this structure is to preserve number of active 126 * sub-queues and the flows array pointer even after the scheduler instance 127 * is destroyed. 128 * Preserving these varaiables allows freeing the allocated memory by 129 * fqpie_callout_cleanup() independently from fq_pie_free_sched(). 130 */ 131 struct fq_pie_si_extra { 132 uint32_t nr_active_q; /* number of active queues */ 133 struct fq_pie_flow *flows; /* array of flows (queues) */ 134 }; 135 136 /* fq_pie scheduler instance */ 137 struct fq_pie_si { 138 struct dn_sch_inst _si; /* standard scheduler instance. SHOULD BE FIRST */ 139 struct dn_queue main_q; /* main queue is after si directly */ 140 uint32_t perturbation; /* random value */ 141 struct fq_pie_list newflows; /* list of new queues */ 142 struct fq_pie_list oldflows; /* list of old queues */ 143 struct fq_pie_si_extra *si_extra; /* extra state vars*/ 144 }; 145 146 147 static struct dn_alg fq_pie_desc; 148 149 /* Default FQ-PIE parameters including PIE */ 150 /* PIE defaults 151 * target=15ms, max_burst=150ms, max_ecnth=0.1, 152 * alpha=0.125, beta=1.25, tupdate=15ms 153 * FQ- 154 * flows=1024, limit=10240, quantum =1514 155 */ 156 struct dn_sch_fq_pie_parms 157 fq_pie_sysctl = {{15000 * AQM_TIME_1US, 15000 * AQM_TIME_1US, 158 150000 * AQM_TIME_1US, PIE_SCALE * 0.1, PIE_SCALE * 0.125, 159 PIE_SCALE * 1.25, PIE_CAPDROP_ENABLED | PIE_DERAND_ENABLED}, 160 1024, 10240, 1514}; 161 162 static int 163 fqpie_sysctl_alpha_beta_handler(SYSCTL_HANDLER_ARGS) 164 { 165 int error; 166 long value; 167 168 if (!strcmp(oidp->oid_name,"alpha")) 169 value = fq_pie_sysctl.pcfg.alpha; 170 else 171 value = fq_pie_sysctl.pcfg.beta; 172 173 value = value * 1000 / PIE_SCALE; 174 error = sysctl_handle_long(oidp, &value, 0, req); 175 if (error != 0 || req->newptr == NULL) 176 return (error); 177 if (value < 1 || value > 7 * PIE_SCALE) 178 return (EINVAL); 179 value = (value * PIE_SCALE) / 1000; 180 if (!strcmp(oidp->oid_name,"alpha")) 181 fq_pie_sysctl.pcfg.alpha = value; 182 else 183 fq_pie_sysctl.pcfg.beta = value; 184 return (0); 185 } 186 187 static int 188 fqpie_sysctl_target_tupdate_maxb_handler(SYSCTL_HANDLER_ARGS) 189 { 190 int error; 191 long value; 192 193 if (!strcmp(oidp->oid_name,"target")) 194 value = fq_pie_sysctl.pcfg.qdelay_ref; 195 else if (!strcmp(oidp->oid_name,"tupdate")) 196 value = fq_pie_sysctl.pcfg.tupdate; 197 else 198 value = fq_pie_sysctl.pcfg.max_burst; 199 200 value = value / AQM_TIME_1US; 201 error = sysctl_handle_long(oidp, &value, 0, req); 202 if (error != 0 || req->newptr == NULL) 203 return (error); 204 if (value < 1 || value > 10 * AQM_TIME_1S) 205 return (EINVAL); 206 value = value * AQM_TIME_1US; 207 208 if (!strcmp(oidp->oid_name,"target")) 209 fq_pie_sysctl.pcfg.qdelay_ref = value; 210 else if (!strcmp(oidp->oid_name,"tupdate")) 211 fq_pie_sysctl.pcfg.tupdate = value; 212 else 213 fq_pie_sysctl.pcfg.max_burst = value; 214 return (0); 215 } 216 217 static int 218 fqpie_sysctl_max_ecnth_handler(SYSCTL_HANDLER_ARGS) 219 { 220 int error; 221 long value; 222 223 value = fq_pie_sysctl.pcfg.max_ecnth; 224 value = value * 1000 / PIE_SCALE; 225 error = sysctl_handle_long(oidp, &value, 0, req); 226 if (error != 0 || req->newptr == NULL) 227 return (error); 228 if (value < 1 || value > PIE_SCALE) 229 return (EINVAL); 230 value = (value * PIE_SCALE) / 1000; 231 fq_pie_sysctl.pcfg.max_ecnth = value; 232 return (0); 233 } 234 235 /* define FQ- PIE sysctl variables */ 236 SYSBEGIN(f4) 237 SYSCTL_DECL(_net_inet); 238 SYSCTL_DECL(_net_inet_ip); 239 SYSCTL_DECL(_net_inet_ip_dummynet); 240 static SYSCTL_NODE(_net_inet_ip_dummynet, OID_AUTO, fqpie, 241 CTLFLAG_RW, 0, "FQ_PIE"); 242 243 #ifdef SYSCTL_NODE 244 245 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, target, 246 CTLTYPE_LONG | CTLFLAG_RW, NULL, 0, 247 fqpie_sysctl_target_tupdate_maxb_handler, "L", 248 "queue target in microsecond"); 249 250 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, tupdate, 251 CTLTYPE_LONG | CTLFLAG_RW, NULL, 0, 252 fqpie_sysctl_target_tupdate_maxb_handler, "L", 253 "the frequency of drop probability calculation in microsecond"); 254 255 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, max_burst, 256 CTLTYPE_LONG | CTLFLAG_RW, NULL, 0, 257 fqpie_sysctl_target_tupdate_maxb_handler, "L", 258 "Burst allowance interval in microsecond"); 259 260 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, max_ecnth, 261 CTLTYPE_LONG | CTLFLAG_RW, NULL, 0, 262 fqpie_sysctl_max_ecnth_handler, "L", 263 "ECN safeguard threshold scaled by 1000"); 264 265 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, alpha, 266 CTLTYPE_LONG | CTLFLAG_RW, NULL, 0, 267 fqpie_sysctl_alpha_beta_handler, "L", "PIE alpha scaled by 1000"); 268 269 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, beta, 270 CTLTYPE_LONG | CTLFLAG_RW, NULL, 0, 271 fqpie_sysctl_alpha_beta_handler, "L", "beta scaled by 1000"); 272 273 SYSCTL_UINT(_net_inet_ip_dummynet_fqpie, OID_AUTO, quantum, 274 CTLFLAG_RW, &fq_pie_sysctl.quantum, 1514, "quantum for FQ_PIE"); 275 SYSCTL_UINT(_net_inet_ip_dummynet_fqpie, OID_AUTO, flows, 276 CTLFLAG_RW, &fq_pie_sysctl.flows_cnt, 1024, "Number of queues for FQ_PIE"); 277 SYSCTL_UINT(_net_inet_ip_dummynet_fqpie, OID_AUTO, limit, 278 CTLFLAG_RW, &fq_pie_sysctl.limit, 10240, "limit for FQ_PIE"); 279 #endif 280 281 /* Helper function to update queue&main-queue and scheduler statistics. 282 * negative len & drop -> drop 283 * negative len -> dequeue 284 * positive len -> enqueue 285 * positive len + drop -> drop during enqueue 286 */ 287 __inline static void 288 fq_update_stats(struct fq_pie_flow *q, struct fq_pie_si *si, int len, 289 int drop) 290 { 291 int inc = 0; 292 293 if (len < 0) 294 inc = -1; 295 else if (len > 0) 296 inc = 1; 297 298 if (drop) { 299 si->main_q.ni.drops ++; 300 q->stats.drops ++; 301 si->_si.ni.drops ++; 302 io_pkt_drop ++; 303 } 304 305 if (!drop || (drop && len < 0)) { 306 /* Update stats for the main queue */ 307 si->main_q.ni.length += inc; 308 si->main_q.ni.len_bytes += len; 309 310 /*update sub-queue stats */ 311 q->stats.length += inc; 312 q->stats.len_bytes += len; 313 314 /*update scheduler instance stats */ 315 si->_si.ni.length += inc; 316 si->_si.ni.len_bytes += len; 317 } 318 319 if (inc > 0) { 320 si->main_q.ni.tot_bytes += len; 321 si->main_q.ni.tot_pkts ++; 322 323 q->stats.tot_bytes +=len; 324 q->stats.tot_pkts++; 325 326 si->_si.ni.tot_bytes +=len; 327 si->_si.ni.tot_pkts ++; 328 } 329 330 } 331 332 /* 333 * Extract a packet from the head of sub-queue 'q' 334 * Return a packet or NULL if the queue is empty. 335 * If getts is set, also extract packet's timestamp from mtag. 336 */ 337 __inline static struct mbuf * 338 fq_pie_extract_head(struct fq_pie_flow *q, aqm_time_t *pkt_ts, 339 struct fq_pie_si *si, int getts) 340 { 341 struct mbuf *m = q->mq.head; 342 343 if (m == NULL) 344 return m; 345 q->mq.head = m->m_nextpkt; 346 347 fq_update_stats(q, si, -m->m_pkthdr.len, 0); 348 349 if (si->main_q.ni.length == 0) /* queue is now idle */ 350 si->main_q.q_time = dn_cfg.curr_time; 351 352 if (getts) { 353 /* extract packet timestamp*/ 354 struct m_tag *mtag; 355 mtag = m_tag_locate(m, MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, NULL); 356 if (mtag == NULL){ 357 D("PIE timestamp mtag not found!"); 358 *pkt_ts = 0; 359 } else { 360 *pkt_ts = *(aqm_time_t *)(mtag + 1); 361 m_tag_delete(m,mtag); 362 } 363 } 364 return m; 365 } 366 367 /* 368 * Callout function for drop probability calculation 369 * This function is called over tupdate ms and takes pointer of FQ-PIE 370 * flow as an argument 371 */ 372 static void 373 fq_calculate_drop_prob(void *x) 374 { 375 struct fq_pie_flow *q = (struct fq_pie_flow *) x; 376 struct pie_status *pst = &q->pst; 377 struct dn_aqm_pie_parms *pprms; 378 int64_t p, prob, oldprob; 379 aqm_time_t now; 380 381 now = AQM_UNOW; 382 pprms = pst->parms; 383 prob = pst->drop_prob; 384 385 /* calculate current qdelay */ 386 if (pprms->flags & PIE_DEPRATEEST_ENABLED) { 387 pst->current_qdelay = ((uint64_t)q->stats.len_bytes * pst->avg_dq_time) 388 >> PIE_DQ_THRESHOLD_BITS; 389 } 390 391 /* calculate drop probability */ 392 p = (int64_t)pprms->alpha * 393 ((int64_t)pst->current_qdelay - (int64_t)pprms->qdelay_ref); 394 p +=(int64_t) pprms->beta * 395 ((int64_t)pst->current_qdelay - (int64_t)pst->qdelay_old); 396 397 /* We PIE_MAX_PROB shift by 12-bits to increase the division precision */ 398 p *= (PIE_MAX_PROB << 12) / AQM_TIME_1S; 399 400 /* auto-tune drop probability */ 401 if (prob < (PIE_MAX_PROB / 1000000)) /* 0.000001 */ 402 p >>= 11 + PIE_FIX_POINT_BITS + 12; 403 else if (prob < (PIE_MAX_PROB / 100000)) /* 0.00001 */ 404 p >>= 9 + PIE_FIX_POINT_BITS + 12; 405 else if (prob < (PIE_MAX_PROB / 10000)) /* 0.0001 */ 406 p >>= 7 + PIE_FIX_POINT_BITS + 12; 407 else if (prob < (PIE_MAX_PROB / 1000)) /* 0.001 */ 408 p >>= 5 + PIE_FIX_POINT_BITS + 12; 409 else if (prob < (PIE_MAX_PROB / 100)) /* 0.01 */ 410 p >>= 3 + PIE_FIX_POINT_BITS + 12; 411 else if (prob < (PIE_MAX_PROB / 10)) /* 0.1 */ 412 p >>= 1 + PIE_FIX_POINT_BITS + 12; 413 else 414 p >>= PIE_FIX_POINT_BITS + 12; 415 416 oldprob = prob; 417 418 /* Cap Drop adjustment */ 419 if ((pprms->flags & PIE_CAPDROP_ENABLED) && prob >= PIE_MAX_PROB / 10 420 && p > PIE_MAX_PROB / 50 ) 421 p = PIE_MAX_PROB / 50; 422 423 prob = prob + p; 424 425 /* decay the drop probability exponentially */ 426 if (pst->current_qdelay == 0 && pst->qdelay_old == 0) 427 /* 0.98 ~= 1- 1/64 */ 428 prob = prob - (prob >> 6); 429 430 431 /* check for multiplication over/under flow */ 432 if (p>0) { 433 if (prob<oldprob) { 434 D("overflow"); 435 prob= PIE_MAX_PROB; 436 } 437 } 438 else 439 if (prob>oldprob) { 440 prob= 0; 441 D("underflow"); 442 } 443 444 /* make drop probability between 0 and PIE_MAX_PROB*/ 445 if (prob < 0) 446 prob = 0; 447 else if (prob > PIE_MAX_PROB) 448 prob = PIE_MAX_PROB; 449 450 pst->drop_prob = prob; 451 452 /* store current delay value */ 453 pst->qdelay_old = pst->current_qdelay; 454 455 /* update burst allowance */ 456 if ((pst->sflags & PIE_ACTIVE) && pst->burst_allowance) { 457 if (pst->burst_allowance > pprms->tupdate) 458 pst->burst_allowance -= pprms->tupdate; 459 else 460 pst->burst_allowance = 0; 461 } 462 463 if (pst->sflags & PIE_ACTIVE) 464 callout_reset_sbt(&pst->aqm_pie_callout, 465 (uint64_t)pprms->tupdate * SBT_1US, 466 0, fq_calculate_drop_prob, q, 0); 467 468 mtx_unlock(&pst->lock_mtx); 469 } 470 471 /* 472 * Reset PIE variables & activate the queue 473 */ 474 __inline static void 475 fq_activate_pie(struct fq_pie_flow *q) 476 { 477 struct pie_status *pst = &q->pst; 478 struct dn_aqm_pie_parms *pprms; 479 480 mtx_lock(&pst->lock_mtx); 481 pprms = pst->parms; 482 483 pprms = pst->parms; 484 pst->drop_prob = 0; 485 pst->qdelay_old = 0; 486 pst->burst_allowance = pprms->max_burst; 487 pst->accu_prob = 0; 488 pst->dq_count = 0; 489 pst->avg_dq_time = 0; 490 pst->sflags = PIE_INMEASUREMENT | PIE_ACTIVE; 491 pst->measurement_start = AQM_UNOW; 492 493 callout_reset_sbt(&pst->aqm_pie_callout, 494 (uint64_t)pprms->tupdate * SBT_1US, 495 0, fq_calculate_drop_prob, q, 0); 496 497 mtx_unlock(&pst->lock_mtx); 498 } 499 500 501 /* 502 * Deactivate PIE and stop probe update callout 503 */ 504 __inline static void 505 fq_deactivate_pie(struct pie_status *pst) 506 { 507 mtx_lock(&pst->lock_mtx); 508 pst->sflags &= ~(PIE_ACTIVE | PIE_INMEASUREMENT); 509 callout_stop(&pst->aqm_pie_callout); 510 //D("PIE Deactivated"); 511 mtx_unlock(&pst->lock_mtx); 512 } 513 514 /* 515 * Initialize PIE for sub-queue 'q' 516 */ 517 static int 518 pie_init(struct fq_pie_flow *q, struct fq_pie_schk *fqpie_schk) 519 { 520 struct pie_status *pst=&q->pst; 521 struct dn_aqm_pie_parms *pprms = pst->parms; 522 523 int err = 0; 524 if (!pprms){ 525 D("AQM_PIE is not configured"); 526 err = EINVAL; 527 } else { 528 q->psi_extra->nr_active_q++; 529 530 /* For speed optimization, we caculate 1/3 queue size once here */ 531 // XXX limit divided by number of queues divided by 3 ??? 532 pst->one_third_q_size = (fqpie_schk->cfg.limit / 533 fqpie_schk->cfg.flows_cnt) / 3; 534 535 mtx_init(&pst->lock_mtx, "mtx_pie", NULL, MTX_DEF); 536 callout_init_mtx(&pst->aqm_pie_callout, &pst->lock_mtx, 537 CALLOUT_RETURNUNLOCKED); 538 } 539 540 return err; 541 } 542 543 /* 544 * callout function to destroy PIE lock, and free fq_pie flows and fq_pie si 545 * extra memory when number of active sub-queues reaches zero. 546 * 'x' is a fq_pie_flow to be destroyed 547 */ 548 static void 549 fqpie_callout_cleanup(void *x) 550 { 551 struct fq_pie_flow *q = x; 552 struct pie_status *pst = &q->pst; 553 struct fq_pie_si_extra *psi_extra; 554 555 mtx_unlock(&pst->lock_mtx); 556 mtx_destroy(&pst->lock_mtx); 557 psi_extra = q->psi_extra; 558 559 DN_BH_WLOCK(); 560 psi_extra->nr_active_q--; 561 562 /* when all sub-queues are destroyed, free flows fq_pie extra vars memory */ 563 if (!psi_extra->nr_active_q) { 564 free(psi_extra->flows, M_DUMMYNET); 565 free(psi_extra, M_DUMMYNET); 566 fq_pie_desc.ref_count--; 567 } 568 DN_BH_WUNLOCK(); 569 } 570 571 /* 572 * Clean up PIE status for sub-queue 'q' 573 * Stop callout timer and destroy mtx using fqpie_callout_cleanup() callout. 574 */ 575 static int 576 pie_cleanup(struct fq_pie_flow *q) 577 { 578 struct pie_status *pst = &q->pst; 579 580 mtx_lock(&pst->lock_mtx); 581 callout_reset_sbt(&pst->aqm_pie_callout, 582 SBT_1US, 0, fqpie_callout_cleanup, q, 0); 583 mtx_unlock(&pst->lock_mtx); 584 return 0; 585 } 586 587 /* 588 * Dequeue and return a pcaket from sub-queue 'q' or NULL if 'q' is empty. 589 * Also, caculate depature time or queue delay using timestamp 590 */ 591 static struct mbuf * 592 pie_dequeue(struct fq_pie_flow *q, struct fq_pie_si *si) 593 { 594 struct mbuf *m; 595 struct dn_aqm_pie_parms *pprms; 596 struct pie_status *pst; 597 aqm_time_t now; 598 aqm_time_t pkt_ts, dq_time; 599 int32_t w; 600 601 pst = &q->pst; 602 pprms = q->pst.parms; 603 604 /*we extarct packet ts only when Departure Rate Estimation dis not used*/ 605 m = fq_pie_extract_head(q, &pkt_ts, si, 606 !(pprms->flags & PIE_DEPRATEEST_ENABLED)); 607 608 if (!m || !(pst->sflags & PIE_ACTIVE)) 609 return m; 610 611 now = AQM_UNOW; 612 if (pprms->flags & PIE_DEPRATEEST_ENABLED) { 613 /* calculate average depature time */ 614 if(pst->sflags & PIE_INMEASUREMENT) { 615 pst->dq_count += m->m_pkthdr.len; 616 617 if (pst->dq_count >= PIE_DQ_THRESHOLD) { 618 dq_time = now - pst->measurement_start; 619 620 /* 621 * if we don't have old avg dq_time i.e PIE is (re)initialized, 622 * don't use weight to calculate new avg_dq_time 623 */ 624 if(pst->avg_dq_time == 0) 625 pst->avg_dq_time = dq_time; 626 else { 627 /* 628 * weight = PIE_DQ_THRESHOLD/2^6, but we scaled 629 * weight by 2^8. Thus, scaled 630 * weight = PIE_DQ_THRESHOLD /2^8 631 * */ 632 w = PIE_DQ_THRESHOLD >> 8; 633 pst->avg_dq_time = (dq_time* w 634 + (pst->avg_dq_time * ((1L << 8) - w))) >> 8; 635 pst->sflags &= ~PIE_INMEASUREMENT; 636 } 637 } 638 } 639 640 /* 641 * Start new measurment cycle when the queue has 642 * PIE_DQ_THRESHOLD worth of bytes. 643 */ 644 if(!(pst->sflags & PIE_INMEASUREMENT) && 645 q->stats.len_bytes >= PIE_DQ_THRESHOLD) { 646 pst->sflags |= PIE_INMEASUREMENT; 647 pst->measurement_start = now; 648 pst->dq_count = 0; 649 } 650 } 651 /* Optionally, use packet timestamp to estimate queue delay */ 652 else 653 pst->current_qdelay = now - pkt_ts; 654 655 return m; 656 } 657 658 659 /* 660 * Enqueue a packet in q, subject to space and FQ-PIE queue management policy 661 * (whose parameters are in q->fs). 662 * Update stats for the queue and the scheduler. 663 * Return 0 on success, 1 on drop. The packet is consumed anyways. 664 */ 665 static int 666 pie_enqueue(struct fq_pie_flow *q, struct mbuf* m, struct fq_pie_si *si) 667 { 668 uint64_t len; 669 struct pie_status *pst; 670 struct dn_aqm_pie_parms *pprms; 671 int t; 672 673 len = m->m_pkthdr.len; 674 pst = &q->pst; 675 pprms = pst->parms; 676 t = ENQUE; 677 678 /* drop/mark the packet when PIE is active and burst time elapsed */ 679 if (pst->sflags & PIE_ACTIVE && pst->burst_allowance == 0 680 && drop_early(pst, q->stats.len_bytes) == DROP) { 681 /* 682 * if drop_prob over ECN threshold, drop the packet 683 * otherwise mark and enqueue it. 684 */ 685 if (pprms->flags & PIE_ECN_ENABLED && pst->drop_prob < 686 (pprms->max_ecnth << (PIE_PROB_BITS - PIE_FIX_POINT_BITS)) 687 && ecn_mark(m)) 688 t = ENQUE; 689 else 690 t = DROP; 691 } 692 693 /* Turn PIE on when 1/3 of the queue is full */ 694 if (!(pst->sflags & PIE_ACTIVE) && q->stats.len_bytes >= 695 pst->one_third_q_size) { 696 fq_activate_pie(q); 697 } 698 699 /* reset burst tolerance and optinally turn PIE off*/ 700 if (pst->drop_prob == 0 && pst->current_qdelay < (pprms->qdelay_ref >> 1) 701 && pst->qdelay_old < (pprms->qdelay_ref >> 1)) { 702 703 pst->burst_allowance = pprms->max_burst; 704 if (pprms->flags & PIE_ON_OFF_MODE_ENABLED && q->stats.len_bytes<=0) 705 fq_deactivate_pie(pst); 706 } 707 708 /* Use timestamp if Departure Rate Estimation mode is disabled */ 709 if (t != DROP && !(pprms->flags & PIE_DEPRATEEST_ENABLED)) { 710 /* Add TS to mbuf as a TAG */ 711 struct m_tag *mtag; 712 mtag = m_tag_locate(m, MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, NULL); 713 if (mtag == NULL) 714 mtag = m_tag_alloc(MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, 715 sizeof(aqm_time_t), M_NOWAIT); 716 if (mtag == NULL) { 717 m_freem(m); 718 t = DROP; 719 } 720 *(aqm_time_t *)(mtag + 1) = AQM_UNOW; 721 m_tag_prepend(m, mtag); 722 } 723 724 if (t != DROP) { 725 mq_append(&q->mq, m); 726 fq_update_stats(q, si, len, 0); 727 return 0; 728 } else { 729 fq_update_stats(q, si, len, 1); 730 pst->accu_prob = 0; 731 FREE_PKT(m); 732 return 1; 733 } 734 735 return 0; 736 } 737 738 /* Drop a packet form the head of FQ-PIE sub-queue */ 739 static void 740 pie_drop_head(struct fq_pie_flow *q, struct fq_pie_si *si) 741 { 742 struct mbuf *m = q->mq.head; 743 744 if (m == NULL) 745 return; 746 q->mq.head = m->m_nextpkt; 747 748 fq_update_stats(q, si, -m->m_pkthdr.len, 1); 749 750 if (si->main_q.ni.length == 0) /* queue is now idle */ 751 si->main_q.q_time = dn_cfg.curr_time; 752 /* reset accu_prob after packet drop */ 753 q->pst.accu_prob = 0; 754 755 FREE_PKT(m); 756 } 757 758 /* 759 * Classify a packet to queue number using Jenkins hash function. 760 * Return: queue number 761 * the input of the hash are protocol no, perturbation, src IP, dst IP, 762 * src port, dst port, 763 */ 764 static inline int 765 fq_pie_classify_flow(struct mbuf *m, uint16_t fcount, struct fq_pie_si *si) 766 { 767 struct ip *ip; 768 struct tcphdr *th; 769 struct udphdr *uh; 770 uint8_t tuple[41]; 771 uint16_t hash=0; 772 773 //#ifdef INET6 774 struct ip6_hdr *ip6; 775 int isip6; 776 isip6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0; 777 778 if(isip6) { 779 ip6 = mtod(m, struct ip6_hdr *); 780 *((uint8_t *) &tuple[0]) = ip6->ip6_nxt; 781 *((uint32_t *) &tuple[1]) = si->perturbation; 782 memcpy(&tuple[5], ip6->ip6_src.s6_addr, 16); 783 memcpy(&tuple[21], ip6->ip6_dst.s6_addr, 16); 784 785 switch (ip6->ip6_nxt) { 786 case IPPROTO_TCP: 787 th = (struct tcphdr *)(ip6 + 1); 788 *((uint16_t *) &tuple[37]) = th->th_dport; 789 *((uint16_t *) &tuple[39]) = th->th_sport; 790 break; 791 792 case IPPROTO_UDP: 793 uh = (struct udphdr *)(ip6 + 1); 794 *((uint16_t *) &tuple[37]) = uh->uh_dport; 795 *((uint16_t *) &tuple[39]) = uh->uh_sport; 796 break; 797 default: 798 memset(&tuple[37], 0, 4); 799 } 800 801 hash = jenkins_hash(tuple, 41, HASHINIT) % fcount; 802 return hash; 803 } 804 //#endif 805 806 /* IPv4 */ 807 ip = mtod(m, struct ip *); 808 *((uint8_t *) &tuple[0]) = ip->ip_p; 809 *((uint32_t *) &tuple[1]) = si->perturbation; 810 *((uint32_t *) &tuple[5]) = ip->ip_src.s_addr; 811 *((uint32_t *) &tuple[9]) = ip->ip_dst.s_addr; 812 813 switch (ip->ip_p) { 814 case IPPROTO_TCP: 815 th = (struct tcphdr *)(ip + 1); 816 *((uint16_t *) &tuple[13]) = th->th_dport; 817 *((uint16_t *) &tuple[15]) = th->th_sport; 818 break; 819 820 case IPPROTO_UDP: 821 uh = (struct udphdr *)(ip + 1); 822 *((uint16_t *) &tuple[13]) = uh->uh_dport; 823 *((uint16_t *) &tuple[15]) = uh->uh_sport; 824 break; 825 default: 826 memset(&tuple[13], 0, 4); 827 } 828 hash = jenkins_hash(tuple, 17, HASHINIT) % fcount; 829 830 return hash; 831 } 832 833 /* 834 * Enqueue a packet into an appropriate queue according to 835 * FQ-CoDe; algorithm. 836 */ 837 static int 838 fq_pie_enqueue(struct dn_sch_inst *_si, struct dn_queue *_q, 839 struct mbuf *m) 840 { 841 struct fq_pie_si *si; 842 struct fq_pie_schk *schk; 843 struct dn_sch_fq_pie_parms *param; 844 struct dn_queue *mainq; 845 struct fq_pie_flow *flows; 846 int idx, drop, i, maxidx; 847 848 mainq = (struct dn_queue *)(_si + 1); 849 si = (struct fq_pie_si *)_si; 850 flows = si->si_extra->flows; 851 schk = (struct fq_pie_schk *)(si->_si.sched+1); 852 param = &schk->cfg; 853 854 /* classify a packet to queue number*/ 855 idx = fq_pie_classify_flow(m, param->flows_cnt, si); 856 857 /* enqueue packet into appropriate queue using PIE AQM. 858 * Note: 'pie_enqueue' function returns 1 only when it unable to 859 * add timestamp to packet (no limit check)*/ 860 drop = pie_enqueue(&flows[idx], m, si); 861 862 /* pie unable to timestamp a packet */ 863 if (drop) 864 return 1; 865 866 /* If the flow (sub-queue) is not active ,then add it to tail of 867 * new flows list, initialize and activate it. 868 */ 869 if (!flows[idx].active) { 870 STAILQ_INSERT_TAIL(&si->newflows, &flows[idx], flowchain); 871 flows[idx].deficit = param->quantum; 872 fq_activate_pie(&flows[idx]); 873 flows[idx].active = 1; 874 } 875 876 /* check the limit for all queues and remove a packet from the 877 * largest one 878 */ 879 if (mainq->ni.length > schk->cfg.limit) { 880 /* find first active flow */ 881 for (maxidx = 0; maxidx < schk->cfg.flows_cnt; maxidx++) 882 if (flows[maxidx].active) 883 break; 884 if (maxidx < schk->cfg.flows_cnt) { 885 /* find the largest sub- queue */ 886 for (i = maxidx + 1; i < schk->cfg.flows_cnt; i++) 887 if (flows[i].active && flows[i].stats.length > 888 flows[maxidx].stats.length) 889 maxidx = i; 890 pie_drop_head(&flows[maxidx], si); 891 drop = 1; 892 } 893 } 894 895 return drop; 896 } 897 898 /* 899 * Dequeue a packet from an appropriate queue according to 900 * FQ-CoDel algorithm. 901 */ 902 static struct mbuf * 903 fq_pie_dequeue(struct dn_sch_inst *_si) 904 { 905 struct fq_pie_si *si; 906 struct fq_pie_schk *schk; 907 struct dn_sch_fq_pie_parms *param; 908 struct fq_pie_flow *f; 909 struct mbuf *mbuf; 910 struct fq_pie_list *fq_pie_flowlist; 911 912 si = (struct fq_pie_si *)_si; 913 schk = (struct fq_pie_schk *)(si->_si.sched+1); 914 param = &schk->cfg; 915 916 do { 917 /* select a list to start with */ 918 if (STAILQ_EMPTY(&si->newflows)) 919 fq_pie_flowlist = &si->oldflows; 920 else 921 fq_pie_flowlist = &si->newflows; 922 923 /* Both new and old queue lists are empty, return NULL */ 924 if (STAILQ_EMPTY(fq_pie_flowlist)) 925 return NULL; 926 927 f = STAILQ_FIRST(fq_pie_flowlist); 928 while (f != NULL) { 929 /* if there is no flow(sub-queue) deficit, increase deficit 930 * by quantum, move the flow to the tail of old flows list 931 * and try another flow. 932 * Otherwise, the flow will be used for dequeue. 933 */ 934 if (f->deficit < 0) { 935 f->deficit += param->quantum; 936 STAILQ_REMOVE_HEAD(fq_pie_flowlist, flowchain); 937 STAILQ_INSERT_TAIL(&si->oldflows, f, flowchain); 938 } else 939 break; 940 941 f = STAILQ_FIRST(fq_pie_flowlist); 942 } 943 944 /* the new flows list is empty, try old flows list */ 945 if (STAILQ_EMPTY(fq_pie_flowlist)) 946 continue; 947 948 /* Dequeue a packet from the selected flow */ 949 mbuf = pie_dequeue(f, si); 950 951 /* pie did not return a packet */ 952 if (!mbuf) { 953 /* If the selected flow belongs to new flows list, then move 954 * it to the tail of old flows list. Otherwise, deactivate it and 955 * remove it from the old list and 956 */ 957 if (fq_pie_flowlist == &si->newflows) { 958 STAILQ_REMOVE_HEAD(fq_pie_flowlist, flowchain); 959 STAILQ_INSERT_TAIL(&si->oldflows, f, flowchain); 960 } else { 961 f->active = 0; 962 fq_deactivate_pie(&f->pst); 963 STAILQ_REMOVE_HEAD(fq_pie_flowlist, flowchain); 964 } 965 /* start again */ 966 continue; 967 } 968 969 /* we have a packet to return, 970 * update flow deficit and return the packet*/ 971 f->deficit -= mbuf->m_pkthdr.len; 972 return mbuf; 973 974 } while (1); 975 976 /* unreachable point */ 977 return NULL; 978 } 979 980 /* 981 * Initialize fq_pie scheduler instance. 982 * also, allocate memory for flows array. 983 */ 984 static int 985 fq_pie_new_sched(struct dn_sch_inst *_si) 986 { 987 struct fq_pie_si *si; 988 struct dn_queue *q; 989 struct fq_pie_schk *schk; 990 struct fq_pie_flow *flows; 991 int i; 992 993 si = (struct fq_pie_si *)_si; 994 schk = (struct fq_pie_schk *)(_si->sched+1); 995 996 if(si->si_extra) { 997 D("si already configured!"); 998 return 0; 999 } 1000 1001 /* init the main queue */ 1002 q = &si->main_q; 1003 set_oid(&q->ni.oid, DN_QUEUE, sizeof(*q)); 1004 q->_si = _si; 1005 q->fs = _si->sched->fs; 1006 1007 /* allocate memory for scheduler instance extra vars */ 1008 si->si_extra = malloc(sizeof(struct fq_pie_si_extra), 1009 M_DUMMYNET, M_NOWAIT | M_ZERO); 1010 if (si->si_extra == NULL) { 1011 D("cannot allocate memory for fq_pie si extra vars"); 1012 return ENOMEM ; 1013 } 1014 /* allocate memory for flows array */ 1015 si->si_extra->flows = malloc(schk->cfg.flows_cnt * sizeof(struct fq_pie_flow), 1016 M_DUMMYNET, M_NOWAIT | M_ZERO); 1017 flows = si->si_extra->flows; 1018 if (flows == NULL) { 1019 free(si->si_extra, M_DUMMYNET); 1020 si->si_extra = NULL; 1021 D("cannot allocate memory for fq_pie flows"); 1022 return ENOMEM ; 1023 } 1024 1025 /* init perturbation for this si */ 1026 si->perturbation = random(); 1027 si->si_extra->nr_active_q = 0; 1028 1029 /* init the old and new flows lists */ 1030 STAILQ_INIT(&si->newflows); 1031 STAILQ_INIT(&si->oldflows); 1032 1033 /* init the flows (sub-queues) */ 1034 for (i = 0; i < schk->cfg.flows_cnt; i++) { 1035 flows[i].pst.parms = &schk->cfg.pcfg; 1036 flows[i].psi_extra = si->si_extra; 1037 pie_init(&flows[i], schk); 1038 } 1039 1040 fq_pie_desc.ref_count++; 1041 1042 return 0; 1043 } 1044 1045 1046 /* 1047 * Free fq_pie scheduler instance. 1048 */ 1049 static int 1050 fq_pie_free_sched(struct dn_sch_inst *_si) 1051 { 1052 struct fq_pie_si *si; 1053 struct fq_pie_schk *schk; 1054 struct fq_pie_flow *flows; 1055 int i; 1056 1057 si = (struct fq_pie_si *)_si; 1058 schk = (struct fq_pie_schk *)(_si->sched+1); 1059 flows = si->si_extra->flows; 1060 for (i = 0; i < schk->cfg.flows_cnt; i++) { 1061 pie_cleanup(&flows[i]); 1062 } 1063 si->si_extra = NULL; 1064 return 0; 1065 } 1066 1067 /* 1068 * Configure FQ-PIE scheduler. 1069 * the configurations for the scheduler is passed fromipfw userland. 1070 */ 1071 static int 1072 fq_pie_config(struct dn_schk *_schk) 1073 { 1074 struct fq_pie_schk *schk; 1075 struct dn_extra_parms *ep; 1076 struct dn_sch_fq_pie_parms *fqp_cfg; 1077 1078 schk = (struct fq_pie_schk *)(_schk+1); 1079 ep = (struct dn_extra_parms *) _schk->cfg; 1080 1081 /* par array contains fq_pie configuration as follow 1082 * PIE: 0- qdelay_ref,1- tupdate, 2- max_burst 1083 * 3- max_ecnth, 4- alpha, 5- beta, 6- flags 1084 * FQ_PIE: 7- quantum, 8- limit, 9- flows 1085 */ 1086 if (ep && ep->oid.len ==sizeof(*ep) && 1087 ep->oid.subtype == DN_SCH_PARAMS) { 1088 1089 fqp_cfg = &schk->cfg; 1090 if (ep->par[0] < 0) 1091 fqp_cfg->pcfg.qdelay_ref = fq_pie_sysctl.pcfg.qdelay_ref; 1092 else 1093 fqp_cfg->pcfg.qdelay_ref = ep->par[0]; 1094 if (ep->par[1] < 0) 1095 fqp_cfg->pcfg.tupdate = fq_pie_sysctl.pcfg.tupdate; 1096 else 1097 fqp_cfg->pcfg.tupdate = ep->par[1]; 1098 if (ep->par[2] < 0) 1099 fqp_cfg->pcfg.max_burst = fq_pie_sysctl.pcfg.max_burst; 1100 else 1101 fqp_cfg->pcfg.max_burst = ep->par[2]; 1102 if (ep->par[3] < 0) 1103 fqp_cfg->pcfg.max_ecnth = fq_pie_sysctl.pcfg.max_ecnth; 1104 else 1105 fqp_cfg->pcfg.max_ecnth = ep->par[3]; 1106 if (ep->par[4] < 0) 1107 fqp_cfg->pcfg.alpha = fq_pie_sysctl.pcfg.alpha; 1108 else 1109 fqp_cfg->pcfg.alpha = ep->par[4]; 1110 if (ep->par[5] < 0) 1111 fqp_cfg->pcfg.beta = fq_pie_sysctl.pcfg.beta; 1112 else 1113 fqp_cfg->pcfg.beta = ep->par[5]; 1114 if (ep->par[6] < 0) 1115 fqp_cfg->pcfg.flags = 0; 1116 else 1117 fqp_cfg->pcfg.flags = ep->par[6]; 1118 1119 /* FQ configurations */ 1120 if (ep->par[7] < 0) 1121 fqp_cfg->quantum = fq_pie_sysctl.quantum; 1122 else 1123 fqp_cfg->quantum = ep->par[7]; 1124 if (ep->par[8] < 0) 1125 fqp_cfg->limit = fq_pie_sysctl.limit; 1126 else 1127 fqp_cfg->limit = ep->par[8]; 1128 if (ep->par[9] < 0) 1129 fqp_cfg->flows_cnt = fq_pie_sysctl.flows_cnt; 1130 else 1131 fqp_cfg->flows_cnt = ep->par[9]; 1132 1133 /* Bound the configurations */ 1134 fqp_cfg->pcfg.qdelay_ref = BOUND_VAR(fqp_cfg->pcfg.qdelay_ref, 1135 1, 5 * AQM_TIME_1S); 1136 fqp_cfg->pcfg.tupdate = BOUND_VAR(fqp_cfg->pcfg.tupdate, 1137 1, 5 * AQM_TIME_1S); 1138 fqp_cfg->pcfg.max_burst = BOUND_VAR(fqp_cfg->pcfg.max_burst, 1139 0, 5 * AQM_TIME_1S); 1140 fqp_cfg->pcfg.max_ecnth = BOUND_VAR(fqp_cfg->pcfg.max_ecnth, 1141 0, PIE_SCALE); 1142 fqp_cfg->pcfg.alpha = BOUND_VAR(fqp_cfg->pcfg.alpha, 0, 7 * PIE_SCALE); 1143 fqp_cfg->pcfg.beta = BOUND_VAR(fqp_cfg->pcfg.beta, 0, 7 * PIE_SCALE); 1144 1145 fqp_cfg->quantum = BOUND_VAR(fqp_cfg->quantum,1,9000); 1146 fqp_cfg->limit= BOUND_VAR(fqp_cfg->limit,1,20480); 1147 fqp_cfg->flows_cnt= BOUND_VAR(fqp_cfg->flows_cnt,1,65536); 1148 } 1149 else { 1150 D("Wrong parameters for fq_pie scheduler"); 1151 return 1; 1152 } 1153 1154 return 0; 1155 } 1156 1157 /* 1158 * Return FQ-PIE scheduler configurations 1159 * the configurations for the scheduler is passed to userland. 1160 */ 1161 static int 1162 fq_pie_getconfig (struct dn_schk *_schk, struct dn_extra_parms *ep) { 1163 1164 struct fq_pie_schk *schk = (struct fq_pie_schk *)(_schk+1); 1165 struct dn_sch_fq_pie_parms *fqp_cfg; 1166 1167 fqp_cfg = &schk->cfg; 1168 1169 strcpy(ep->name, fq_pie_desc.name); 1170 ep->par[0] = fqp_cfg->pcfg.qdelay_ref; 1171 ep->par[1] = fqp_cfg->pcfg.tupdate; 1172 ep->par[2] = fqp_cfg->pcfg.max_burst; 1173 ep->par[3] = fqp_cfg->pcfg.max_ecnth; 1174 ep->par[4] = fqp_cfg->pcfg.alpha; 1175 ep->par[5] = fqp_cfg->pcfg.beta; 1176 ep->par[6] = fqp_cfg->pcfg.flags; 1177 1178 ep->par[7] = fqp_cfg->quantum; 1179 ep->par[8] = fqp_cfg->limit; 1180 ep->par[9] = fqp_cfg->flows_cnt; 1181 1182 return 0; 1183 } 1184 1185 /* 1186 * FQ-PIE scheduler descriptor 1187 * contains the type of the scheduler, the name, the size of extra 1188 * data structures, and function pointers. 1189 */ 1190 static struct dn_alg fq_pie_desc = { 1191 _SI( .type = ) DN_SCHED_FQ_PIE, 1192 _SI( .name = ) "FQ_PIE", 1193 _SI( .flags = ) 0, 1194 1195 _SI( .schk_datalen = ) sizeof(struct fq_pie_schk), 1196 _SI( .si_datalen = ) sizeof(struct fq_pie_si) - sizeof(struct dn_sch_inst), 1197 _SI( .q_datalen = ) 0, 1198 1199 _SI( .enqueue = ) fq_pie_enqueue, 1200 _SI( .dequeue = ) fq_pie_dequeue, 1201 _SI( .config = ) fq_pie_config, /* new sched i.e. sched X config ...*/ 1202 _SI( .destroy = ) NULL, /*sched x delete */ 1203 _SI( .new_sched = ) fq_pie_new_sched, /* new schd instance */ 1204 _SI( .free_sched = ) fq_pie_free_sched, /* delete schd instance */ 1205 _SI( .new_fsk = ) NULL, 1206 _SI( .free_fsk = ) NULL, 1207 _SI( .new_queue = ) NULL, 1208 _SI( .free_queue = ) NULL, 1209 _SI( .getconfig = ) fq_pie_getconfig, 1210 _SI( .ref_count = ) 0 1211 }; 1212 1213 DECLARE_DNSCHED_MODULE(dn_fq_pie, &fq_pie_desc); 1214