1 /* 2 * FQ_PIE - The FlowQueue-PIE scheduler/AQM 3 * 4 * $FreeBSD$ 5 * 6 * Copyright (C) 2016 Centre for Advanced Internet Architectures, 7 * Swinburne University of Technology, Melbourne, Australia. 8 * Portions of this code were made possible in part by a gift from 9 * The Comcast Innovation Fund. 10 * Implemented by Rasool Al-Saadi <ralsaadi@swin.edu.au> 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 /* Important note: 35 * As there is no an office document for FQ-PIE specification, we used 36 * FQ-CoDel algorithm with some modifications to implement FQ-PIE. 37 * This FQ-PIE implementation is a beta version and have not been tested 38 * extensively. Our FQ-PIE uses stand-alone PIE AQM per sub-queue. By 39 * default, timestamp is used to calculate queue delay instead of departure 40 * rate estimation method. Although departure rate estimation is available 41 * as testing option, the results could be incorrect. Moreover, turning PIE on 42 * and off option is available but it does not work properly in this version. 43 */ 44 45 #ifdef _KERNEL 46 #include <sys/malloc.h> 47 #include <sys/socket.h> 48 #include <sys/kernel.h> 49 #include <sys/mbuf.h> 50 #include <sys/lock.h> 51 #include <sys/module.h> 52 #include <sys/mutex.h> 53 #include <net/if.h> /* IFNAMSIZ */ 54 #include <netinet/in.h> 55 #include <netinet/ip_var.h> /* ipfw_rule_ref */ 56 #include <netinet/ip_fw.h> /* flow_id */ 57 #include <netinet/ip_dummynet.h> 58 59 #include <sys/proc.h> 60 #include <sys/rwlock.h> 61 62 #include <netpfil/ipfw/ip_fw_private.h> 63 #include <sys/sysctl.h> 64 #include <netinet/ip.h> 65 #include <netinet/ip6.h> 66 #include <netinet/ip_icmp.h> 67 #include <netinet/tcp.h> 68 #include <netinet/udp.h> 69 #include <sys/queue.h> 70 #include <sys/hash.h> 71 72 #include <netpfil/ipfw/dn_heap.h> 73 #include <netpfil/ipfw/ip_dn_private.h> 74 75 #include <netpfil/ipfw/dn_aqm.h> 76 #include <netpfil/ipfw/dn_aqm_pie.h> 77 #include <netpfil/ipfw/dn_sched.h> 78 79 #else 80 #include <dn_test.h> 81 #endif 82 83 #define DN_SCHED_FQ_PIE 7 84 85 /* list of queues */ 86 STAILQ_HEAD(fq_pie_list, fq_pie_flow); 87 88 /* FQ_PIE parameters including PIE */ 89 struct dn_sch_fq_pie_parms { 90 struct dn_aqm_pie_parms pcfg; /* PIE configuration Parameters */ 91 /* FQ_PIE Parameters */ 92 uint32_t flows_cnt; /* number of flows */ 93 uint32_t limit; /* hard limit of FQ_PIE queue size*/ 94 uint32_t quantum; 95 }; 96 97 /* flow (sub-queue) stats */ 98 struct flow_stats { 99 uint64_t tot_pkts; /* statistics counters */ 100 uint64_t tot_bytes; 101 uint32_t length; /* Queue length, in packets */ 102 uint32_t len_bytes; /* Queue length, in bytes */ 103 uint32_t drops; 104 }; 105 106 /* A flow of packets (sub-queue)*/ 107 struct fq_pie_flow { 108 struct mq mq; /* list of packets */ 109 struct flow_stats stats; /* statistics */ 110 int deficit; 111 int active; /* 1: flow is active (in a list) */ 112 struct pie_status pst; /* pie status variables */ 113 struct fq_pie_si_extra *psi_extra; 114 STAILQ_ENTRY(fq_pie_flow) flowchain; 115 }; 116 117 /* extra fq_pie scheduler configurations */ 118 struct fq_pie_schk { 119 struct dn_sch_fq_pie_parms cfg; 120 }; 121 122 /* fq_pie scheduler instance extra state vars. 123 * The purpose of separation this structure is to preserve number of active 124 * sub-queues and the flows array pointer even after the scheduler instance 125 * is destroyed. 126 * Preserving these varaiables allows freeing the allocated memory by 127 * fqpie_callout_cleanup() independently from fq_pie_free_sched(). 128 */ 129 struct fq_pie_si_extra { 130 uint32_t nr_active_q; /* number of active queues */ 131 struct fq_pie_flow *flows; /* array of flows (queues) */ 132 }; 133 134 /* fq_pie scheduler instance */ 135 struct fq_pie_si { 136 struct dn_sch_inst _si; /* standard scheduler instance. SHOULD BE FIRST */ 137 struct dn_queue main_q; /* main queue is after si directly */ 138 uint32_t perturbation; /* random value */ 139 struct fq_pie_list newflows; /* list of new queues */ 140 struct fq_pie_list oldflows; /* list of old queues */ 141 struct fq_pie_si_extra *si_extra; /* extra state vars*/ 142 }; 143 144 static struct dn_alg fq_pie_desc; 145 146 /* Default FQ-PIE parameters including PIE */ 147 /* PIE defaults 148 * target=15ms, max_burst=150ms, max_ecnth=0.1, 149 * alpha=0.125, beta=1.25, tupdate=15ms 150 * FQ- 151 * flows=1024, limit=10240, quantum =1514 152 */ 153 struct dn_sch_fq_pie_parms 154 fq_pie_sysctl = {{15000 * AQM_TIME_1US, 15000 * AQM_TIME_1US, 155 150000 * AQM_TIME_1US, PIE_SCALE * 0.1, PIE_SCALE * 0.125, 156 PIE_SCALE * 1.25, PIE_CAPDROP_ENABLED | PIE_DERAND_ENABLED}, 157 1024, 10240, 1514}; 158 159 static int 160 fqpie_sysctl_alpha_beta_handler(SYSCTL_HANDLER_ARGS) 161 { 162 int error; 163 long value; 164 165 if (!strcmp(oidp->oid_name,"alpha")) 166 value = fq_pie_sysctl.pcfg.alpha; 167 else 168 value = fq_pie_sysctl.pcfg.beta; 169 170 value = value * 1000 / PIE_SCALE; 171 error = sysctl_handle_long(oidp, &value, 0, req); 172 if (error != 0 || req->newptr == NULL) 173 return (error); 174 if (value < 1 || value > 7 * PIE_SCALE) 175 return (EINVAL); 176 value = (value * PIE_SCALE) / 1000; 177 if (!strcmp(oidp->oid_name,"alpha")) 178 fq_pie_sysctl.pcfg.alpha = value; 179 else 180 fq_pie_sysctl.pcfg.beta = value; 181 return (0); 182 } 183 184 static int 185 fqpie_sysctl_target_tupdate_maxb_handler(SYSCTL_HANDLER_ARGS) 186 { 187 int error; 188 long value; 189 190 if (!strcmp(oidp->oid_name,"target")) 191 value = fq_pie_sysctl.pcfg.qdelay_ref; 192 else if (!strcmp(oidp->oid_name,"tupdate")) 193 value = fq_pie_sysctl.pcfg.tupdate; 194 else 195 value = fq_pie_sysctl.pcfg.max_burst; 196 197 value = value / AQM_TIME_1US; 198 error = sysctl_handle_long(oidp, &value, 0, req); 199 if (error != 0 || req->newptr == NULL) 200 return (error); 201 if (value < 1 || value > 10 * AQM_TIME_1S) 202 return (EINVAL); 203 value = value * AQM_TIME_1US; 204 205 if (!strcmp(oidp->oid_name,"target")) 206 fq_pie_sysctl.pcfg.qdelay_ref = value; 207 else if (!strcmp(oidp->oid_name,"tupdate")) 208 fq_pie_sysctl.pcfg.tupdate = value; 209 else 210 fq_pie_sysctl.pcfg.max_burst = value; 211 return (0); 212 } 213 214 static int 215 fqpie_sysctl_max_ecnth_handler(SYSCTL_HANDLER_ARGS) 216 { 217 int error; 218 long value; 219 220 value = fq_pie_sysctl.pcfg.max_ecnth; 221 value = value * 1000 / PIE_SCALE; 222 error = sysctl_handle_long(oidp, &value, 0, req); 223 if (error != 0 || req->newptr == NULL) 224 return (error); 225 if (value < 1 || value > PIE_SCALE) 226 return (EINVAL); 227 value = (value * PIE_SCALE) / 1000; 228 fq_pie_sysctl.pcfg.max_ecnth = value; 229 return (0); 230 } 231 232 /* define FQ- PIE sysctl variables */ 233 SYSBEGIN(f4) 234 SYSCTL_DECL(_net_inet); 235 SYSCTL_DECL(_net_inet_ip); 236 SYSCTL_DECL(_net_inet_ip_dummynet); 237 static SYSCTL_NODE(_net_inet_ip_dummynet, OID_AUTO, fqpie, 238 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 239 "FQ_PIE"); 240 241 #ifdef SYSCTL_NODE 242 243 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, target, 244 CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0, 245 fqpie_sysctl_target_tupdate_maxb_handler, "L", 246 "queue target in microsecond"); 247 248 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, tupdate, 249 CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0, 250 fqpie_sysctl_target_tupdate_maxb_handler, "L", 251 "the frequency of drop probability calculation in microsecond"); 252 253 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, max_burst, 254 CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0, 255 fqpie_sysctl_target_tupdate_maxb_handler, "L", 256 "Burst allowance interval in microsecond"); 257 258 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, max_ecnth, 259 CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0, 260 fqpie_sysctl_max_ecnth_handler, "L", 261 "ECN safeguard threshold scaled by 1000"); 262 263 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, alpha, 264 CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0, 265 fqpie_sysctl_alpha_beta_handler, "L", 266 "PIE alpha scaled by 1000"); 267 268 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, beta, 269 CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0, 270 fqpie_sysctl_alpha_beta_handler, "L", 271 "beta scaled by 1000"); 272 273 SYSCTL_UINT(_net_inet_ip_dummynet_fqpie, OID_AUTO, quantum, 274 CTLFLAG_RW, &fq_pie_sysctl.quantum, 1514, "quantum for FQ_PIE"); 275 SYSCTL_UINT(_net_inet_ip_dummynet_fqpie, OID_AUTO, flows, 276 CTLFLAG_RW, &fq_pie_sysctl.flows_cnt, 1024, "Number of queues for FQ_PIE"); 277 SYSCTL_UINT(_net_inet_ip_dummynet_fqpie, OID_AUTO, limit, 278 CTLFLAG_RW, &fq_pie_sysctl.limit, 10240, "limit for FQ_PIE"); 279 #endif 280 281 /* Helper function to update queue&main-queue and scheduler statistics. 282 * negative len & drop -> drop 283 * negative len -> dequeue 284 * positive len -> enqueue 285 * positive len + drop -> drop during enqueue 286 */ 287 __inline static void 288 fq_update_stats(struct fq_pie_flow *q, struct fq_pie_si *si, int len, 289 int drop) 290 { 291 int inc = 0; 292 293 if (len < 0) 294 inc = -1; 295 else if (len > 0) 296 inc = 1; 297 298 if (drop) { 299 si->main_q.ni.drops ++; 300 q->stats.drops ++; 301 si->_si.ni.drops ++; 302 V_dn_cfg.io_pkt_drop ++; 303 } 304 305 if (!drop || (drop && len < 0)) { 306 /* Update stats for the main queue */ 307 si->main_q.ni.length += inc; 308 si->main_q.ni.len_bytes += len; 309 310 /*update sub-queue stats */ 311 q->stats.length += inc; 312 q->stats.len_bytes += len; 313 314 /*update scheduler instance stats */ 315 si->_si.ni.length += inc; 316 si->_si.ni.len_bytes += len; 317 } 318 319 if (inc > 0) { 320 si->main_q.ni.tot_bytes += len; 321 si->main_q.ni.tot_pkts ++; 322 323 q->stats.tot_bytes +=len; 324 q->stats.tot_pkts++; 325 326 si->_si.ni.tot_bytes +=len; 327 si->_si.ni.tot_pkts ++; 328 } 329 330 } 331 332 /* 333 * Extract a packet from the head of sub-queue 'q' 334 * Return a packet or NULL if the queue is empty. 335 * If getts is set, also extract packet's timestamp from mtag. 336 */ 337 __inline static struct mbuf * 338 fq_pie_extract_head(struct fq_pie_flow *q, aqm_time_t *pkt_ts, 339 struct fq_pie_si *si, int getts) 340 { 341 struct mbuf *m = q->mq.head; 342 343 if (m == NULL) 344 return m; 345 q->mq.head = m->m_nextpkt; 346 347 fq_update_stats(q, si, -m->m_pkthdr.len, 0); 348 349 if (si->main_q.ni.length == 0) /* queue is now idle */ 350 si->main_q.q_time = V_dn_cfg.curr_time; 351 352 if (getts) { 353 /* extract packet timestamp*/ 354 struct m_tag *mtag; 355 mtag = m_tag_locate(m, MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, NULL); 356 if (mtag == NULL){ 357 D("PIE timestamp mtag not found!"); 358 *pkt_ts = 0; 359 } else { 360 *pkt_ts = *(aqm_time_t *)(mtag + 1); 361 m_tag_delete(m,mtag); 362 } 363 } 364 return m; 365 } 366 367 /* 368 * Callout function for drop probability calculation 369 * This function is called over tupdate ms and takes pointer of FQ-PIE 370 * flow as an argument 371 */ 372 static void 373 fq_calculate_drop_prob(void *x) 374 { 375 struct fq_pie_flow *q = (struct fq_pie_flow *) x; 376 struct pie_status *pst = &q->pst; 377 struct dn_aqm_pie_parms *pprms; 378 int64_t p, prob, oldprob; 379 int p_isneg; 380 381 pprms = pst->parms; 382 prob = pst->drop_prob; 383 384 /* calculate current qdelay using DRE method. 385 * If TS is used and no data in the queue, reset current_qdelay 386 * as it stays at last value during dequeue process. 387 */ 388 if (pprms->flags & PIE_DEPRATEEST_ENABLED) 389 pst->current_qdelay = ((uint64_t)q->stats.len_bytes * pst->avg_dq_time) 390 >> PIE_DQ_THRESHOLD_BITS; 391 else 392 if (!q->stats.len_bytes) 393 pst->current_qdelay = 0; 394 395 /* calculate drop probability */ 396 p = (int64_t)pprms->alpha * 397 ((int64_t)pst->current_qdelay - (int64_t)pprms->qdelay_ref); 398 p +=(int64_t) pprms->beta * 399 ((int64_t)pst->current_qdelay - (int64_t)pst->qdelay_old); 400 401 /* take absolute value so right shift result is well defined */ 402 p_isneg = p < 0; 403 if (p_isneg) { 404 p = -p; 405 } 406 407 /* We PIE_MAX_PROB shift by 12-bits to increase the division precision */ 408 p *= (PIE_MAX_PROB << 12) / AQM_TIME_1S; 409 410 /* auto-tune drop probability */ 411 if (prob < (PIE_MAX_PROB / 1000000)) /* 0.000001 */ 412 p >>= 11 + PIE_FIX_POINT_BITS + 12; 413 else if (prob < (PIE_MAX_PROB / 100000)) /* 0.00001 */ 414 p >>= 9 + PIE_FIX_POINT_BITS + 12; 415 else if (prob < (PIE_MAX_PROB / 10000)) /* 0.0001 */ 416 p >>= 7 + PIE_FIX_POINT_BITS + 12; 417 else if (prob < (PIE_MAX_PROB / 1000)) /* 0.001 */ 418 p >>= 5 + PIE_FIX_POINT_BITS + 12; 419 else if (prob < (PIE_MAX_PROB / 100)) /* 0.01 */ 420 p >>= 3 + PIE_FIX_POINT_BITS + 12; 421 else if (prob < (PIE_MAX_PROB / 10)) /* 0.1 */ 422 p >>= 1 + PIE_FIX_POINT_BITS + 12; 423 else 424 p >>= PIE_FIX_POINT_BITS + 12; 425 426 oldprob = prob; 427 428 if (p_isneg) { 429 prob = prob - p; 430 431 /* check for multiplication underflow */ 432 if (prob > oldprob) { 433 prob= 0; 434 D("underflow"); 435 } 436 } else { 437 /* Cap Drop adjustment */ 438 if ((pprms->flags & PIE_CAPDROP_ENABLED) && 439 prob >= PIE_MAX_PROB / 10 && 440 p > PIE_MAX_PROB / 50 ) { 441 p = PIE_MAX_PROB / 50; 442 } 443 444 prob = prob + p; 445 446 /* check for multiplication overflow */ 447 if (prob<oldprob) { 448 D("overflow"); 449 prob= PIE_MAX_PROB; 450 } 451 } 452 453 /* 454 * decay the drop probability exponentially 455 * and restrict it to range 0 to PIE_MAX_PROB 456 */ 457 if (prob < 0) { 458 prob = 0; 459 } else { 460 if (pst->current_qdelay == 0 && pst->qdelay_old == 0) { 461 /* 0.98 ~= 1- 1/64 */ 462 prob = prob - (prob >> 6); 463 } 464 465 if (prob > PIE_MAX_PROB) { 466 prob = PIE_MAX_PROB; 467 } 468 } 469 470 pst->drop_prob = prob; 471 472 /* store current delay value */ 473 pst->qdelay_old = pst->current_qdelay; 474 475 /* update burst allowance */ 476 if ((pst->sflags & PIE_ACTIVE) && pst->burst_allowance) { 477 if (pst->burst_allowance > pprms->tupdate) 478 pst->burst_allowance -= pprms->tupdate; 479 else 480 pst->burst_allowance = 0; 481 } 482 483 if (pst->sflags & PIE_ACTIVE) 484 callout_reset_sbt(&pst->aqm_pie_callout, 485 (uint64_t)pprms->tupdate * SBT_1US, 486 0, fq_calculate_drop_prob, q, 0); 487 488 mtx_unlock(&pst->lock_mtx); 489 } 490 491 /* 492 * Reset PIE variables & activate the queue 493 */ 494 __inline static void 495 fq_activate_pie(struct fq_pie_flow *q) 496 { 497 struct pie_status *pst = &q->pst; 498 struct dn_aqm_pie_parms *pprms; 499 500 mtx_lock(&pst->lock_mtx); 501 pprms = pst->parms; 502 503 pprms = pst->parms; 504 pst->drop_prob = 0; 505 pst->qdelay_old = 0; 506 pst->burst_allowance = pprms->max_burst; 507 pst->accu_prob = 0; 508 pst->dq_count = 0; 509 pst->avg_dq_time = 0; 510 pst->sflags = PIE_INMEASUREMENT | PIE_ACTIVE; 511 pst->measurement_start = AQM_UNOW; 512 513 callout_reset_sbt(&pst->aqm_pie_callout, 514 (uint64_t)pprms->tupdate * SBT_1US, 515 0, fq_calculate_drop_prob, q, 0); 516 517 mtx_unlock(&pst->lock_mtx); 518 } 519 520 /* 521 * Deactivate PIE and stop probe update callout 522 */ 523 __inline static void 524 fq_deactivate_pie(struct pie_status *pst) 525 { 526 mtx_lock(&pst->lock_mtx); 527 pst->sflags &= ~(PIE_ACTIVE | PIE_INMEASUREMENT); 528 callout_stop(&pst->aqm_pie_callout); 529 //D("PIE Deactivated"); 530 mtx_unlock(&pst->lock_mtx); 531 } 532 533 /* 534 * Initialize PIE for sub-queue 'q' 535 */ 536 static int 537 pie_init(struct fq_pie_flow *q, struct fq_pie_schk *fqpie_schk) 538 { 539 struct pie_status *pst=&q->pst; 540 struct dn_aqm_pie_parms *pprms = pst->parms; 541 542 int err = 0; 543 if (!pprms){ 544 D("AQM_PIE is not configured"); 545 err = EINVAL; 546 } else { 547 q->psi_extra->nr_active_q++; 548 549 /* For speed optimization, we caculate 1/3 queue size once here */ 550 // XXX limit divided by number of queues divided by 3 ??? 551 pst->one_third_q_size = (fqpie_schk->cfg.limit / 552 fqpie_schk->cfg.flows_cnt) / 3; 553 554 mtx_init(&pst->lock_mtx, "mtx_pie", NULL, MTX_DEF); 555 callout_init_mtx(&pst->aqm_pie_callout, &pst->lock_mtx, 556 CALLOUT_RETURNUNLOCKED); 557 } 558 559 return err; 560 } 561 562 /* 563 * callout function to destroy PIE lock, and free fq_pie flows and fq_pie si 564 * extra memory when number of active sub-queues reaches zero. 565 * 'x' is a fq_pie_flow to be destroyed 566 */ 567 static void 568 fqpie_callout_cleanup(void *x) 569 { 570 struct fq_pie_flow *q = x; 571 struct pie_status *pst = &q->pst; 572 struct fq_pie_si_extra *psi_extra; 573 574 mtx_unlock(&pst->lock_mtx); 575 mtx_destroy(&pst->lock_mtx); 576 psi_extra = q->psi_extra; 577 578 DN_BH_WLOCK(); 579 psi_extra->nr_active_q--; 580 581 /* when all sub-queues are destroyed, free flows fq_pie extra vars memory */ 582 if (!psi_extra->nr_active_q) { 583 free(psi_extra->flows, M_DUMMYNET); 584 free(psi_extra, M_DUMMYNET); 585 fq_pie_desc.ref_count--; 586 } 587 DN_BH_WUNLOCK(); 588 } 589 590 /* 591 * Clean up PIE status for sub-queue 'q' 592 * Stop callout timer and destroy mtx using fqpie_callout_cleanup() callout. 593 */ 594 static int 595 pie_cleanup(struct fq_pie_flow *q) 596 { 597 struct pie_status *pst = &q->pst; 598 599 mtx_lock(&pst->lock_mtx); 600 callout_reset_sbt(&pst->aqm_pie_callout, 601 SBT_1US, 0, fqpie_callout_cleanup, q, 0); 602 mtx_unlock(&pst->lock_mtx); 603 return 0; 604 } 605 606 /* 607 * Dequeue and return a pcaket from sub-queue 'q' or NULL if 'q' is empty. 608 * Also, caculate depature time or queue delay using timestamp 609 */ 610 static struct mbuf * 611 pie_dequeue(struct fq_pie_flow *q, struct fq_pie_si *si) 612 { 613 struct mbuf *m; 614 struct dn_aqm_pie_parms *pprms; 615 struct pie_status *pst; 616 aqm_time_t now; 617 aqm_time_t pkt_ts, dq_time; 618 int32_t w; 619 620 pst = &q->pst; 621 pprms = q->pst.parms; 622 623 /*we extarct packet ts only when Departure Rate Estimation dis not used*/ 624 m = fq_pie_extract_head(q, &pkt_ts, si, 625 !(pprms->flags & PIE_DEPRATEEST_ENABLED)); 626 627 if (!m || !(pst->sflags & PIE_ACTIVE)) 628 return m; 629 630 now = AQM_UNOW; 631 if (pprms->flags & PIE_DEPRATEEST_ENABLED) { 632 /* calculate average depature time */ 633 if(pst->sflags & PIE_INMEASUREMENT) { 634 pst->dq_count += m->m_pkthdr.len; 635 636 if (pst->dq_count >= PIE_DQ_THRESHOLD) { 637 dq_time = now - pst->measurement_start; 638 639 /* 640 * if we don't have old avg dq_time i.e PIE is (re)initialized, 641 * don't use weight to calculate new avg_dq_time 642 */ 643 if(pst->avg_dq_time == 0) 644 pst->avg_dq_time = dq_time; 645 else { 646 /* 647 * weight = PIE_DQ_THRESHOLD/2^6, but we scaled 648 * weight by 2^8. Thus, scaled 649 * weight = PIE_DQ_THRESHOLD /2^8 650 * */ 651 w = PIE_DQ_THRESHOLD >> 8; 652 pst->avg_dq_time = (dq_time* w 653 + (pst->avg_dq_time * ((1L << 8) - w))) >> 8; 654 pst->sflags &= ~PIE_INMEASUREMENT; 655 } 656 } 657 } 658 659 /* 660 * Start new measurment cycle when the queue has 661 * PIE_DQ_THRESHOLD worth of bytes. 662 */ 663 if(!(pst->sflags & PIE_INMEASUREMENT) && 664 q->stats.len_bytes >= PIE_DQ_THRESHOLD) { 665 pst->sflags |= PIE_INMEASUREMENT; 666 pst->measurement_start = now; 667 pst->dq_count = 0; 668 } 669 } 670 /* Optionally, use packet timestamp to estimate queue delay */ 671 else 672 pst->current_qdelay = now - pkt_ts; 673 674 return m; 675 } 676 677 /* 678 * Enqueue a packet in q, subject to space and FQ-PIE queue management policy 679 * (whose parameters are in q->fs). 680 * Update stats for the queue and the scheduler. 681 * Return 0 on success, 1 on drop. The packet is consumed anyways. 682 */ 683 static int 684 pie_enqueue(struct fq_pie_flow *q, struct mbuf* m, struct fq_pie_si *si) 685 { 686 uint64_t len; 687 struct pie_status *pst; 688 struct dn_aqm_pie_parms *pprms; 689 int t; 690 691 len = m->m_pkthdr.len; 692 pst = &q->pst; 693 pprms = pst->parms; 694 t = ENQUE; 695 696 /* drop/mark the packet when PIE is active and burst time elapsed */ 697 if (pst->sflags & PIE_ACTIVE && pst->burst_allowance == 0 698 && drop_early(pst, q->stats.len_bytes) == DROP) { 699 /* 700 * if drop_prob over ECN threshold, drop the packet 701 * otherwise mark and enqueue it. 702 */ 703 if (pprms->flags & PIE_ECN_ENABLED && pst->drop_prob < 704 (pprms->max_ecnth << (PIE_PROB_BITS - PIE_FIX_POINT_BITS)) 705 && ecn_mark(m)) 706 t = ENQUE; 707 else 708 t = DROP; 709 } 710 711 /* Turn PIE on when 1/3 of the queue is full */ 712 if (!(pst->sflags & PIE_ACTIVE) && q->stats.len_bytes >= 713 pst->one_third_q_size) { 714 fq_activate_pie(q); 715 } 716 717 /* reset burst tolerance and optinally turn PIE off*/ 718 if (pst->drop_prob == 0 && pst->current_qdelay < (pprms->qdelay_ref >> 1) 719 && pst->qdelay_old < (pprms->qdelay_ref >> 1)) { 720 721 pst->burst_allowance = pprms->max_burst; 722 if (pprms->flags & PIE_ON_OFF_MODE_ENABLED && q->stats.len_bytes<=0) 723 fq_deactivate_pie(pst); 724 } 725 726 /* Use timestamp if Departure Rate Estimation mode is disabled */ 727 if (t != DROP && !(pprms->flags & PIE_DEPRATEEST_ENABLED)) { 728 /* Add TS to mbuf as a TAG */ 729 struct m_tag *mtag; 730 mtag = m_tag_locate(m, MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, NULL); 731 if (mtag == NULL) 732 mtag = m_tag_alloc(MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, 733 sizeof(aqm_time_t), M_NOWAIT); 734 if (mtag == NULL) { 735 t = DROP; 736 } else { 737 *(aqm_time_t *)(mtag + 1) = AQM_UNOW; 738 m_tag_prepend(m, mtag); 739 } 740 } 741 742 if (t != DROP) { 743 mq_append(&q->mq, m); 744 fq_update_stats(q, si, len, 0); 745 return 0; 746 } else { 747 fq_update_stats(q, si, len, 1); 748 pst->accu_prob = 0; 749 FREE_PKT(m); 750 return 1; 751 } 752 753 return 0; 754 } 755 756 /* Drop a packet form the head of FQ-PIE sub-queue */ 757 static void 758 pie_drop_head(struct fq_pie_flow *q, struct fq_pie_si *si) 759 { 760 struct mbuf *m = q->mq.head; 761 762 if (m == NULL) 763 return; 764 q->mq.head = m->m_nextpkt; 765 766 fq_update_stats(q, si, -m->m_pkthdr.len, 1); 767 768 if (si->main_q.ni.length == 0) /* queue is now idle */ 769 si->main_q.q_time = V_dn_cfg.curr_time; 770 /* reset accu_prob after packet drop */ 771 q->pst.accu_prob = 0; 772 773 FREE_PKT(m); 774 } 775 776 /* 777 * Classify a packet to queue number using Jenkins hash function. 778 * Return: queue number 779 * the input of the hash are protocol no, perturbation, src IP, dst IP, 780 * src port, dst port, 781 */ 782 static inline int 783 fq_pie_classify_flow(struct mbuf *m, uint16_t fcount, struct fq_pie_si *si) 784 { 785 struct ip *ip; 786 struct tcphdr *th; 787 struct udphdr *uh; 788 uint8_t tuple[41]; 789 uint16_t hash=0; 790 791 ip = (struct ip *)mtodo(m, dn_tag_get(m)->iphdr_off); 792 //#ifdef INET6 793 struct ip6_hdr *ip6; 794 int isip6; 795 isip6 = (ip->ip_v == 6); 796 797 if(isip6) { 798 ip6 = (struct ip6_hdr *)ip; 799 *((uint8_t *) &tuple[0]) = ip6->ip6_nxt; 800 *((uint32_t *) &tuple[1]) = si->perturbation; 801 memcpy(&tuple[5], ip6->ip6_src.s6_addr, 16); 802 memcpy(&tuple[21], ip6->ip6_dst.s6_addr, 16); 803 804 switch (ip6->ip6_nxt) { 805 case IPPROTO_TCP: 806 th = (struct tcphdr *)(ip6 + 1); 807 *((uint16_t *) &tuple[37]) = th->th_dport; 808 *((uint16_t *) &tuple[39]) = th->th_sport; 809 break; 810 811 case IPPROTO_UDP: 812 uh = (struct udphdr *)(ip6 + 1); 813 *((uint16_t *) &tuple[37]) = uh->uh_dport; 814 *((uint16_t *) &tuple[39]) = uh->uh_sport; 815 break; 816 default: 817 memset(&tuple[37], 0, 4); 818 } 819 820 hash = jenkins_hash(tuple, 41, HASHINIT) % fcount; 821 return hash; 822 } 823 //#endif 824 825 /* IPv4 */ 826 *((uint8_t *) &tuple[0]) = ip->ip_p; 827 *((uint32_t *) &tuple[1]) = si->perturbation; 828 *((uint32_t *) &tuple[5]) = ip->ip_src.s_addr; 829 *((uint32_t *) &tuple[9]) = ip->ip_dst.s_addr; 830 831 switch (ip->ip_p) { 832 case IPPROTO_TCP: 833 th = (struct tcphdr *)(ip + 1); 834 *((uint16_t *) &tuple[13]) = th->th_dport; 835 *((uint16_t *) &tuple[15]) = th->th_sport; 836 break; 837 838 case IPPROTO_UDP: 839 uh = (struct udphdr *)(ip + 1); 840 *((uint16_t *) &tuple[13]) = uh->uh_dport; 841 *((uint16_t *) &tuple[15]) = uh->uh_sport; 842 break; 843 default: 844 memset(&tuple[13], 0, 4); 845 } 846 hash = jenkins_hash(tuple, 17, HASHINIT) % fcount; 847 848 return hash; 849 } 850 851 /* 852 * Enqueue a packet into an appropriate queue according to 853 * FQ-CoDe; algorithm. 854 */ 855 static int 856 fq_pie_enqueue(struct dn_sch_inst *_si, struct dn_queue *_q, 857 struct mbuf *m) 858 { 859 struct fq_pie_si *si; 860 struct fq_pie_schk *schk; 861 struct dn_sch_fq_pie_parms *param; 862 struct dn_queue *mainq; 863 struct fq_pie_flow *flows; 864 int idx, drop, i, maxidx; 865 866 mainq = (struct dn_queue *)(_si + 1); 867 si = (struct fq_pie_si *)_si; 868 flows = si->si_extra->flows; 869 schk = (struct fq_pie_schk *)(si->_si.sched+1); 870 param = &schk->cfg; 871 872 /* classify a packet to queue number*/ 873 idx = fq_pie_classify_flow(m, param->flows_cnt, si); 874 875 /* enqueue packet into appropriate queue using PIE AQM. 876 * Note: 'pie_enqueue' function returns 1 only when it unable to 877 * add timestamp to packet (no limit check)*/ 878 drop = pie_enqueue(&flows[idx], m, si); 879 880 /* pie unable to timestamp a packet */ 881 if (drop) 882 return 1; 883 884 /* If the flow (sub-queue) is not active ,then add it to tail of 885 * new flows list, initialize and activate it. 886 */ 887 if (!flows[idx].active) { 888 STAILQ_INSERT_TAIL(&si->newflows, &flows[idx], flowchain); 889 flows[idx].deficit = param->quantum; 890 fq_activate_pie(&flows[idx]); 891 flows[idx].active = 1; 892 } 893 894 /* check the limit for all queues and remove a packet from the 895 * largest one 896 */ 897 if (mainq->ni.length > schk->cfg.limit) { 898 /* find first active flow */ 899 for (maxidx = 0; maxidx < schk->cfg.flows_cnt; maxidx++) 900 if (flows[maxidx].active) 901 break; 902 if (maxidx < schk->cfg.flows_cnt) { 903 /* find the largest sub- queue */ 904 for (i = maxidx + 1; i < schk->cfg.flows_cnt; i++) 905 if (flows[i].active && flows[i].stats.length > 906 flows[maxidx].stats.length) 907 maxidx = i; 908 pie_drop_head(&flows[maxidx], si); 909 drop = 1; 910 } 911 } 912 913 return drop; 914 } 915 916 /* 917 * Dequeue a packet from an appropriate queue according to 918 * FQ-CoDel algorithm. 919 */ 920 static struct mbuf * 921 fq_pie_dequeue(struct dn_sch_inst *_si) 922 { 923 struct fq_pie_si *si; 924 struct fq_pie_schk *schk; 925 struct dn_sch_fq_pie_parms *param; 926 struct fq_pie_flow *f; 927 struct mbuf *mbuf; 928 struct fq_pie_list *fq_pie_flowlist; 929 930 si = (struct fq_pie_si *)_si; 931 schk = (struct fq_pie_schk *)(si->_si.sched+1); 932 param = &schk->cfg; 933 934 do { 935 /* select a list to start with */ 936 if (STAILQ_EMPTY(&si->newflows)) 937 fq_pie_flowlist = &si->oldflows; 938 else 939 fq_pie_flowlist = &si->newflows; 940 941 /* Both new and old queue lists are empty, return NULL */ 942 if (STAILQ_EMPTY(fq_pie_flowlist)) 943 return NULL; 944 945 f = STAILQ_FIRST(fq_pie_flowlist); 946 while (f != NULL) { 947 /* if there is no flow(sub-queue) deficit, increase deficit 948 * by quantum, move the flow to the tail of old flows list 949 * and try another flow. 950 * Otherwise, the flow will be used for dequeue. 951 */ 952 if (f->deficit < 0) { 953 f->deficit += param->quantum; 954 STAILQ_REMOVE_HEAD(fq_pie_flowlist, flowchain); 955 STAILQ_INSERT_TAIL(&si->oldflows, f, flowchain); 956 } else 957 break; 958 959 f = STAILQ_FIRST(fq_pie_flowlist); 960 } 961 962 /* the new flows list is empty, try old flows list */ 963 if (STAILQ_EMPTY(fq_pie_flowlist)) 964 continue; 965 966 /* Dequeue a packet from the selected flow */ 967 mbuf = pie_dequeue(f, si); 968 969 /* pie did not return a packet */ 970 if (!mbuf) { 971 /* If the selected flow belongs to new flows list, then move 972 * it to the tail of old flows list. Otherwise, deactivate it and 973 * remove it from the old list and 974 */ 975 if (fq_pie_flowlist == &si->newflows) { 976 STAILQ_REMOVE_HEAD(fq_pie_flowlist, flowchain); 977 STAILQ_INSERT_TAIL(&si->oldflows, f, flowchain); 978 } else { 979 f->active = 0; 980 fq_deactivate_pie(&f->pst); 981 STAILQ_REMOVE_HEAD(fq_pie_flowlist, flowchain); 982 } 983 /* start again */ 984 continue; 985 } 986 987 /* we have a packet to return, 988 * update flow deficit and return the packet*/ 989 f->deficit -= mbuf->m_pkthdr.len; 990 return mbuf; 991 992 } while (1); 993 994 /* unreachable point */ 995 return NULL; 996 } 997 998 /* 999 * Initialize fq_pie scheduler instance. 1000 * also, allocate memory for flows array. 1001 */ 1002 static int 1003 fq_pie_new_sched(struct dn_sch_inst *_si) 1004 { 1005 struct fq_pie_si *si; 1006 struct dn_queue *q; 1007 struct fq_pie_schk *schk; 1008 struct fq_pie_flow *flows; 1009 int i; 1010 1011 si = (struct fq_pie_si *)_si; 1012 schk = (struct fq_pie_schk *)(_si->sched+1); 1013 1014 if(si->si_extra) { 1015 D("si already configured!"); 1016 return 0; 1017 } 1018 1019 /* init the main queue */ 1020 q = &si->main_q; 1021 set_oid(&q->ni.oid, DN_QUEUE, sizeof(*q)); 1022 q->_si = _si; 1023 q->fs = _si->sched->fs; 1024 1025 /* allocate memory for scheduler instance extra vars */ 1026 si->si_extra = malloc(sizeof(struct fq_pie_si_extra), 1027 M_DUMMYNET, M_NOWAIT | M_ZERO); 1028 if (si->si_extra == NULL) { 1029 D("cannot allocate memory for fq_pie si extra vars"); 1030 return ENOMEM ; 1031 } 1032 /* allocate memory for flows array */ 1033 si->si_extra->flows = mallocarray(schk->cfg.flows_cnt, 1034 sizeof(struct fq_pie_flow), M_DUMMYNET, M_NOWAIT | M_ZERO); 1035 flows = si->si_extra->flows; 1036 if (flows == NULL) { 1037 free(si->si_extra, M_DUMMYNET); 1038 si->si_extra = NULL; 1039 D("cannot allocate memory for fq_pie flows"); 1040 return ENOMEM ; 1041 } 1042 1043 /* init perturbation for this si */ 1044 si->perturbation = random(); 1045 si->si_extra->nr_active_q = 0; 1046 1047 /* init the old and new flows lists */ 1048 STAILQ_INIT(&si->newflows); 1049 STAILQ_INIT(&si->oldflows); 1050 1051 /* init the flows (sub-queues) */ 1052 for (i = 0; i < schk->cfg.flows_cnt; i++) { 1053 flows[i].pst.parms = &schk->cfg.pcfg; 1054 flows[i].psi_extra = si->si_extra; 1055 pie_init(&flows[i], schk); 1056 } 1057 1058 fq_pie_desc.ref_count++; 1059 1060 return 0; 1061 } 1062 1063 /* 1064 * Free fq_pie scheduler instance. 1065 */ 1066 static int 1067 fq_pie_free_sched(struct dn_sch_inst *_si) 1068 { 1069 struct fq_pie_si *si; 1070 struct fq_pie_schk *schk; 1071 struct fq_pie_flow *flows; 1072 int i; 1073 1074 si = (struct fq_pie_si *)_si; 1075 schk = (struct fq_pie_schk *)(_si->sched+1); 1076 flows = si->si_extra->flows; 1077 for (i = 0; i < schk->cfg.flows_cnt; i++) { 1078 pie_cleanup(&flows[i]); 1079 } 1080 si->si_extra = NULL; 1081 return 0; 1082 } 1083 1084 /* 1085 * Configure FQ-PIE scheduler. 1086 * the configurations for the scheduler is passed fromipfw userland. 1087 */ 1088 static int 1089 fq_pie_config(struct dn_schk *_schk) 1090 { 1091 struct fq_pie_schk *schk; 1092 struct dn_extra_parms *ep; 1093 struct dn_sch_fq_pie_parms *fqp_cfg; 1094 1095 schk = (struct fq_pie_schk *)(_schk+1); 1096 ep = (struct dn_extra_parms *) _schk->cfg; 1097 1098 /* par array contains fq_pie configuration as follow 1099 * PIE: 0- qdelay_ref,1- tupdate, 2- max_burst 1100 * 3- max_ecnth, 4- alpha, 5- beta, 6- flags 1101 * FQ_PIE: 7- quantum, 8- limit, 9- flows 1102 */ 1103 if (ep && ep->oid.len ==sizeof(*ep) && 1104 ep->oid.subtype == DN_SCH_PARAMS) { 1105 fqp_cfg = &schk->cfg; 1106 if (ep->par[0] < 0) 1107 fqp_cfg->pcfg.qdelay_ref = fq_pie_sysctl.pcfg.qdelay_ref; 1108 else 1109 fqp_cfg->pcfg.qdelay_ref = ep->par[0]; 1110 if (ep->par[1] < 0) 1111 fqp_cfg->pcfg.tupdate = fq_pie_sysctl.pcfg.tupdate; 1112 else 1113 fqp_cfg->pcfg.tupdate = ep->par[1]; 1114 if (ep->par[2] < 0) 1115 fqp_cfg->pcfg.max_burst = fq_pie_sysctl.pcfg.max_burst; 1116 else 1117 fqp_cfg->pcfg.max_burst = ep->par[2]; 1118 if (ep->par[3] < 0) 1119 fqp_cfg->pcfg.max_ecnth = fq_pie_sysctl.pcfg.max_ecnth; 1120 else 1121 fqp_cfg->pcfg.max_ecnth = ep->par[3]; 1122 if (ep->par[4] < 0) 1123 fqp_cfg->pcfg.alpha = fq_pie_sysctl.pcfg.alpha; 1124 else 1125 fqp_cfg->pcfg.alpha = ep->par[4]; 1126 if (ep->par[5] < 0) 1127 fqp_cfg->pcfg.beta = fq_pie_sysctl.pcfg.beta; 1128 else 1129 fqp_cfg->pcfg.beta = ep->par[5]; 1130 if (ep->par[6] < 0) 1131 fqp_cfg->pcfg.flags = 0; 1132 else 1133 fqp_cfg->pcfg.flags = ep->par[6]; 1134 1135 /* FQ configurations */ 1136 if (ep->par[7] < 0) 1137 fqp_cfg->quantum = fq_pie_sysctl.quantum; 1138 else 1139 fqp_cfg->quantum = ep->par[7]; 1140 if (ep->par[8] < 0) 1141 fqp_cfg->limit = fq_pie_sysctl.limit; 1142 else 1143 fqp_cfg->limit = ep->par[8]; 1144 if (ep->par[9] < 0) 1145 fqp_cfg->flows_cnt = fq_pie_sysctl.flows_cnt; 1146 else 1147 fqp_cfg->flows_cnt = ep->par[9]; 1148 1149 /* Bound the configurations */ 1150 fqp_cfg->pcfg.qdelay_ref = BOUND_VAR(fqp_cfg->pcfg.qdelay_ref, 1151 1, 5 * AQM_TIME_1S); 1152 fqp_cfg->pcfg.tupdate = BOUND_VAR(fqp_cfg->pcfg.tupdate, 1153 1, 5 * AQM_TIME_1S); 1154 fqp_cfg->pcfg.max_burst = BOUND_VAR(fqp_cfg->pcfg.max_burst, 1155 0, 5 * AQM_TIME_1S); 1156 fqp_cfg->pcfg.max_ecnth = BOUND_VAR(fqp_cfg->pcfg.max_ecnth, 1157 0, PIE_SCALE); 1158 fqp_cfg->pcfg.alpha = BOUND_VAR(fqp_cfg->pcfg.alpha, 0, 7 * PIE_SCALE); 1159 fqp_cfg->pcfg.beta = BOUND_VAR(fqp_cfg->pcfg.beta, 0, 7 * PIE_SCALE); 1160 1161 fqp_cfg->quantum = BOUND_VAR(fqp_cfg->quantum,1,9000); 1162 fqp_cfg->limit= BOUND_VAR(fqp_cfg->limit,1,20480); 1163 fqp_cfg->flows_cnt= BOUND_VAR(fqp_cfg->flows_cnt,1,65536); 1164 } 1165 else { 1166 D("Wrong parameters for fq_pie scheduler"); 1167 return 1; 1168 } 1169 1170 return 0; 1171 } 1172 1173 /* 1174 * Return FQ-PIE scheduler configurations 1175 * the configurations for the scheduler is passed to userland. 1176 */ 1177 static int 1178 fq_pie_getconfig (struct dn_schk *_schk, struct dn_extra_parms *ep) { 1179 struct fq_pie_schk *schk = (struct fq_pie_schk *)(_schk+1); 1180 struct dn_sch_fq_pie_parms *fqp_cfg; 1181 1182 fqp_cfg = &schk->cfg; 1183 1184 strcpy(ep->name, fq_pie_desc.name); 1185 ep->par[0] = fqp_cfg->pcfg.qdelay_ref; 1186 ep->par[1] = fqp_cfg->pcfg.tupdate; 1187 ep->par[2] = fqp_cfg->pcfg.max_burst; 1188 ep->par[3] = fqp_cfg->pcfg.max_ecnth; 1189 ep->par[4] = fqp_cfg->pcfg.alpha; 1190 ep->par[5] = fqp_cfg->pcfg.beta; 1191 ep->par[6] = fqp_cfg->pcfg.flags; 1192 1193 ep->par[7] = fqp_cfg->quantum; 1194 ep->par[8] = fqp_cfg->limit; 1195 ep->par[9] = fqp_cfg->flows_cnt; 1196 1197 return 0; 1198 } 1199 1200 /* 1201 * FQ-PIE scheduler descriptor 1202 * contains the type of the scheduler, the name, the size of extra 1203 * data structures, and function pointers. 1204 */ 1205 static struct dn_alg fq_pie_desc = { 1206 _SI( .type = ) DN_SCHED_FQ_PIE, 1207 _SI( .name = ) "FQ_PIE", 1208 _SI( .flags = ) 0, 1209 1210 _SI( .schk_datalen = ) sizeof(struct fq_pie_schk), 1211 _SI( .si_datalen = ) sizeof(struct fq_pie_si) - sizeof(struct dn_sch_inst), 1212 _SI( .q_datalen = ) 0, 1213 1214 _SI( .enqueue = ) fq_pie_enqueue, 1215 _SI( .dequeue = ) fq_pie_dequeue, 1216 _SI( .config = ) fq_pie_config, /* new sched i.e. sched X config ...*/ 1217 _SI( .destroy = ) NULL, /*sched x delete */ 1218 _SI( .new_sched = ) fq_pie_new_sched, /* new schd instance */ 1219 _SI( .free_sched = ) fq_pie_free_sched, /* delete schd instance */ 1220 _SI( .new_fsk = ) NULL, 1221 _SI( .free_fsk = ) NULL, 1222 _SI( .new_queue = ) NULL, 1223 _SI( .free_queue = ) NULL, 1224 _SI( .getconfig = ) fq_pie_getconfig, 1225 _SI( .ref_count = ) 0 1226 }; 1227 1228 DECLARE_DNSCHED_MODULE(dn_fq_pie, &fq_pie_desc); 1229