1 /* 2 * FQ_PIE - The FlowQueue-PIE scheduler/AQM 3 * 4 * $FreeBSD$ 5 * 6 * Copyright (C) 2016 Centre for Advanced Internet Architectures, 7 * Swinburne University of Technology, Melbourne, Australia. 8 * Portions of this code were made possible in part by a gift from 9 * The Comcast Innovation Fund. 10 * Implemented by Rasool Al-Saadi <ralsaadi@swin.edu.au> 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 /* Important note: 35 * As there is no an office document for FQ-PIE specification, we used 36 * FQ-CoDel algorithm with some modifications to implement FQ-PIE. 37 * This FQ-PIE implementation is a beta version and have not been tested 38 * extensively. Our FQ-PIE uses stand-alone PIE AQM per sub-queue. By 39 * default, timestamp is used to calculate queue delay instead of departure 40 * rate estimation method. Although departure rate estimation is available 41 * as testing option, the results could be incorrect. Moreover, turning PIE on 42 * and off option is available but it does not work properly in this version. 43 */ 44 45 #ifdef _KERNEL 46 #include <sys/malloc.h> 47 #include <sys/socket.h> 48 #include <sys/kernel.h> 49 #include <sys/mbuf.h> 50 #include <sys/lock.h> 51 #include <sys/module.h> 52 #include <sys/mutex.h> 53 #include <net/if.h> /* IFNAMSIZ */ 54 #include <netinet/in.h> 55 #include <netinet/ip_var.h> /* ipfw_rule_ref */ 56 #include <netinet/ip_fw.h> /* flow_id */ 57 #include <netinet/ip_dummynet.h> 58 59 #include <sys/proc.h> 60 #include <sys/rwlock.h> 61 62 #include <netpfil/ipfw/ip_fw_private.h> 63 #include <sys/sysctl.h> 64 #include <netinet/ip.h> 65 #include <netinet/ip6.h> 66 #include <netinet/ip_icmp.h> 67 #include <netinet/tcp.h> 68 #include <netinet/udp.h> 69 #include <sys/queue.h> 70 #include <sys/hash.h> 71 72 #include <netpfil/ipfw/dn_heap.h> 73 #include <netpfil/ipfw/ip_dn_private.h> 74 75 #include <netpfil/ipfw/dn_aqm.h> 76 #include <netpfil/ipfw/dn_aqm_pie.h> 77 #include <netpfil/ipfw/dn_sched.h> 78 79 #else 80 #include <dn_test.h> 81 #endif 82 83 #define DN_SCHED_FQ_PIE 7 84 85 /* list of queues */ 86 STAILQ_HEAD(fq_pie_list, fq_pie_flow); 87 88 /* FQ_PIE parameters including PIE */ 89 struct dn_sch_fq_pie_parms { 90 struct dn_aqm_pie_parms pcfg; /* PIE configuration Parameters */ 91 /* FQ_PIE Parameters */ 92 uint32_t flows_cnt; /* number of flows */ 93 uint32_t limit; /* hard limit of FQ_PIE queue size*/ 94 uint32_t quantum; 95 }; 96 97 /* flow (sub-queue) stats */ 98 struct flow_stats { 99 uint64_t tot_pkts; /* statistics counters */ 100 uint64_t tot_bytes; 101 uint32_t length; /* Queue length, in packets */ 102 uint32_t len_bytes; /* Queue length, in bytes */ 103 uint32_t drops; 104 }; 105 106 /* A flow of packets (sub-queue)*/ 107 struct fq_pie_flow { 108 struct mq mq; /* list of packets */ 109 struct flow_stats stats; /* statistics */ 110 int deficit; 111 int active; /* 1: flow is active (in a list) */ 112 struct pie_status pst; /* pie status variables */ 113 struct fq_pie_si_extra *psi_extra; 114 STAILQ_ENTRY(fq_pie_flow) flowchain; 115 }; 116 117 /* extra fq_pie scheduler configurations */ 118 struct fq_pie_schk { 119 struct dn_sch_fq_pie_parms cfg; 120 }; 121 122 /* fq_pie scheduler instance extra state vars. 123 * The purpose of separation this structure is to preserve number of active 124 * sub-queues and the flows array pointer even after the scheduler instance 125 * is destroyed. 126 * Preserving these varaiables allows freeing the allocated memory by 127 * fqpie_callout_cleanup() independently from fq_pie_free_sched(). 128 */ 129 struct fq_pie_si_extra { 130 uint32_t nr_active_q; /* number of active queues */ 131 struct fq_pie_flow *flows; /* array of flows (queues) */ 132 }; 133 134 /* fq_pie scheduler instance */ 135 struct fq_pie_si { 136 struct dn_sch_inst _si; /* standard scheduler instance. SHOULD BE FIRST */ 137 struct dn_queue main_q; /* main queue is after si directly */ 138 uint32_t perturbation; /* random value */ 139 struct fq_pie_list newflows; /* list of new queues */ 140 struct fq_pie_list oldflows; /* list of old queues */ 141 struct fq_pie_si_extra *si_extra; /* extra state vars*/ 142 }; 143 144 static struct dn_alg fq_pie_desc; 145 146 /* Default FQ-PIE parameters including PIE */ 147 /* PIE defaults 148 * target=15ms, max_burst=150ms, max_ecnth=0.1, 149 * alpha=0.125, beta=1.25, tupdate=15ms 150 * FQ- 151 * flows=1024, limit=10240, quantum =1514 152 */ 153 struct dn_sch_fq_pie_parms 154 fq_pie_sysctl = {{15000 * AQM_TIME_1US, 15000 * AQM_TIME_1US, 155 150000 * AQM_TIME_1US, PIE_SCALE * 0.1, PIE_SCALE * 0.125, 156 PIE_SCALE * 1.25, PIE_CAPDROP_ENABLED | PIE_DERAND_ENABLED}, 157 1024, 10240, 1514}; 158 159 static int 160 fqpie_sysctl_alpha_beta_handler(SYSCTL_HANDLER_ARGS) 161 { 162 int error; 163 long value; 164 165 if (!strcmp(oidp->oid_name,"alpha")) 166 value = fq_pie_sysctl.pcfg.alpha; 167 else 168 value = fq_pie_sysctl.pcfg.beta; 169 170 value = value * 1000 / PIE_SCALE; 171 error = sysctl_handle_long(oidp, &value, 0, req); 172 if (error != 0 || req->newptr == NULL) 173 return (error); 174 if (value < 1 || value > 7 * PIE_SCALE) 175 return (EINVAL); 176 value = (value * PIE_SCALE) / 1000; 177 if (!strcmp(oidp->oid_name,"alpha")) 178 fq_pie_sysctl.pcfg.alpha = value; 179 else 180 fq_pie_sysctl.pcfg.beta = value; 181 return (0); 182 } 183 184 static int 185 fqpie_sysctl_target_tupdate_maxb_handler(SYSCTL_HANDLER_ARGS) 186 { 187 int error; 188 long value; 189 190 if (!strcmp(oidp->oid_name,"target")) 191 value = fq_pie_sysctl.pcfg.qdelay_ref; 192 else if (!strcmp(oidp->oid_name,"tupdate")) 193 value = fq_pie_sysctl.pcfg.tupdate; 194 else 195 value = fq_pie_sysctl.pcfg.max_burst; 196 197 value = value / AQM_TIME_1US; 198 error = sysctl_handle_long(oidp, &value, 0, req); 199 if (error != 0 || req->newptr == NULL) 200 return (error); 201 if (value < 1 || value > 10 * AQM_TIME_1S) 202 return (EINVAL); 203 value = value * AQM_TIME_1US; 204 205 if (!strcmp(oidp->oid_name,"target")) 206 fq_pie_sysctl.pcfg.qdelay_ref = value; 207 else if (!strcmp(oidp->oid_name,"tupdate")) 208 fq_pie_sysctl.pcfg.tupdate = value; 209 else 210 fq_pie_sysctl.pcfg.max_burst = value; 211 return (0); 212 } 213 214 static int 215 fqpie_sysctl_max_ecnth_handler(SYSCTL_HANDLER_ARGS) 216 { 217 int error; 218 long value; 219 220 value = fq_pie_sysctl.pcfg.max_ecnth; 221 value = value * 1000 / PIE_SCALE; 222 error = sysctl_handle_long(oidp, &value, 0, req); 223 if (error != 0 || req->newptr == NULL) 224 return (error); 225 if (value < 1 || value > PIE_SCALE) 226 return (EINVAL); 227 value = (value * PIE_SCALE) / 1000; 228 fq_pie_sysctl.pcfg.max_ecnth = value; 229 return (0); 230 } 231 232 /* define FQ- PIE sysctl variables */ 233 SYSBEGIN(f4) 234 SYSCTL_DECL(_net_inet); 235 SYSCTL_DECL(_net_inet_ip); 236 SYSCTL_DECL(_net_inet_ip_dummynet); 237 static SYSCTL_NODE(_net_inet_ip_dummynet, OID_AUTO, fqpie, 238 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 239 "FQ_PIE"); 240 241 #ifdef SYSCTL_NODE 242 243 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, target, 244 CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0, 245 fqpie_sysctl_target_tupdate_maxb_handler, "L", 246 "queue target in microsecond"); 247 248 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, tupdate, 249 CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0, 250 fqpie_sysctl_target_tupdate_maxb_handler, "L", 251 "the frequency of drop probability calculation in microsecond"); 252 253 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, max_burst, 254 CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0, 255 fqpie_sysctl_target_tupdate_maxb_handler, "L", 256 "Burst allowance interval in microsecond"); 257 258 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, max_ecnth, 259 CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0, 260 fqpie_sysctl_max_ecnth_handler, "L", 261 "ECN safeguard threshold scaled by 1000"); 262 263 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, alpha, 264 CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0, 265 fqpie_sysctl_alpha_beta_handler, "L", 266 "PIE alpha scaled by 1000"); 267 268 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, beta, 269 CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0, 270 fqpie_sysctl_alpha_beta_handler, "L", 271 "beta scaled by 1000"); 272 273 SYSCTL_UINT(_net_inet_ip_dummynet_fqpie, OID_AUTO, quantum, 274 CTLFLAG_RW, &fq_pie_sysctl.quantum, 1514, "quantum for FQ_PIE"); 275 SYSCTL_UINT(_net_inet_ip_dummynet_fqpie, OID_AUTO, flows, 276 CTLFLAG_RW, &fq_pie_sysctl.flows_cnt, 1024, "Number of queues for FQ_PIE"); 277 SYSCTL_UINT(_net_inet_ip_dummynet_fqpie, OID_AUTO, limit, 278 CTLFLAG_RW, &fq_pie_sysctl.limit, 10240, "limit for FQ_PIE"); 279 #endif 280 281 /* Helper function to update queue&main-queue and scheduler statistics. 282 * negative len & drop -> drop 283 * negative len -> dequeue 284 * positive len -> enqueue 285 * positive len + drop -> drop during enqueue 286 */ 287 __inline static void 288 fq_update_stats(struct fq_pie_flow *q, struct fq_pie_si *si, int len, 289 int drop) 290 { 291 int inc = 0; 292 293 if (len < 0) 294 inc = -1; 295 else if (len > 0) 296 inc = 1; 297 298 if (drop) { 299 si->main_q.ni.drops ++; 300 q->stats.drops ++; 301 si->_si.ni.drops ++; 302 V_dn_cfg.io_pkt_drop ++; 303 } 304 305 if (!drop || (drop && len < 0)) { 306 /* Update stats for the main queue */ 307 si->main_q.ni.length += inc; 308 si->main_q.ni.len_bytes += len; 309 310 /*update sub-queue stats */ 311 q->stats.length += inc; 312 q->stats.len_bytes += len; 313 314 /*update scheduler instance stats */ 315 si->_si.ni.length += inc; 316 si->_si.ni.len_bytes += len; 317 } 318 319 if (inc > 0) { 320 si->main_q.ni.tot_bytes += len; 321 si->main_q.ni.tot_pkts ++; 322 323 q->stats.tot_bytes +=len; 324 q->stats.tot_pkts++; 325 326 si->_si.ni.tot_bytes +=len; 327 si->_si.ni.tot_pkts ++; 328 } 329 330 } 331 332 /* 333 * Extract a packet from the head of sub-queue 'q' 334 * Return a packet or NULL if the queue is empty. 335 * If getts is set, also extract packet's timestamp from mtag. 336 */ 337 __inline static struct mbuf * 338 fq_pie_extract_head(struct fq_pie_flow *q, aqm_time_t *pkt_ts, 339 struct fq_pie_si *si, int getts) 340 { 341 struct mbuf *m; 342 343 next: m = q->mq.head; 344 if (m == NULL) 345 return m; 346 q->mq.head = m->m_nextpkt; 347 348 fq_update_stats(q, si, -m->m_pkthdr.len, 0); 349 350 if (si->main_q.ni.length == 0) /* queue is now idle */ 351 si->main_q.q_time = V_dn_cfg.curr_time; 352 353 if (getts) { 354 /* extract packet timestamp*/ 355 struct m_tag *mtag; 356 mtag = m_tag_locate(m, MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, NULL); 357 if (mtag == NULL){ 358 D("PIE timestamp mtag not found!"); 359 *pkt_ts = 0; 360 } else { 361 *pkt_ts = *(aqm_time_t *)(mtag + 1); 362 m_tag_delete(m,mtag); 363 } 364 } 365 if (m->m_pkthdr.rcvif != NULL && 366 __predict_false(m_rcvif_restore(m) == NULL)) { 367 m_freem(m); 368 goto next; 369 } 370 return m; 371 } 372 373 /* 374 * Callout function for drop probability calculation 375 * This function is called over tupdate ms and takes pointer of FQ-PIE 376 * flow as an argument 377 */ 378 static void 379 fq_calculate_drop_prob(void *x) 380 { 381 struct fq_pie_flow *q = (struct fq_pie_flow *) x; 382 struct pie_status *pst = &q->pst; 383 struct dn_aqm_pie_parms *pprms; 384 int64_t p, prob, oldprob; 385 int p_isneg; 386 387 pprms = pst->parms; 388 prob = pst->drop_prob; 389 390 /* calculate current qdelay using DRE method. 391 * If TS is used and no data in the queue, reset current_qdelay 392 * as it stays at last value during dequeue process. 393 */ 394 if (pprms->flags & PIE_DEPRATEEST_ENABLED) 395 pst->current_qdelay = ((uint64_t)q->stats.len_bytes * pst->avg_dq_time) 396 >> PIE_DQ_THRESHOLD_BITS; 397 else 398 if (!q->stats.len_bytes) 399 pst->current_qdelay = 0; 400 401 /* calculate drop probability */ 402 p = (int64_t)pprms->alpha * 403 ((int64_t)pst->current_qdelay - (int64_t)pprms->qdelay_ref); 404 p +=(int64_t) pprms->beta * 405 ((int64_t)pst->current_qdelay - (int64_t)pst->qdelay_old); 406 407 /* take absolute value so right shift result is well defined */ 408 p_isneg = p < 0; 409 if (p_isneg) { 410 p = -p; 411 } 412 413 /* We PIE_MAX_PROB shift by 12-bits to increase the division precision */ 414 p *= (PIE_MAX_PROB << 12) / AQM_TIME_1S; 415 416 /* auto-tune drop probability */ 417 if (prob < (PIE_MAX_PROB / 1000000)) /* 0.000001 */ 418 p >>= 11 + PIE_FIX_POINT_BITS + 12; 419 else if (prob < (PIE_MAX_PROB / 100000)) /* 0.00001 */ 420 p >>= 9 + PIE_FIX_POINT_BITS + 12; 421 else if (prob < (PIE_MAX_PROB / 10000)) /* 0.0001 */ 422 p >>= 7 + PIE_FIX_POINT_BITS + 12; 423 else if (prob < (PIE_MAX_PROB / 1000)) /* 0.001 */ 424 p >>= 5 + PIE_FIX_POINT_BITS + 12; 425 else if (prob < (PIE_MAX_PROB / 100)) /* 0.01 */ 426 p >>= 3 + PIE_FIX_POINT_BITS + 12; 427 else if (prob < (PIE_MAX_PROB / 10)) /* 0.1 */ 428 p >>= 1 + PIE_FIX_POINT_BITS + 12; 429 else 430 p >>= PIE_FIX_POINT_BITS + 12; 431 432 oldprob = prob; 433 434 if (p_isneg) { 435 prob = prob - p; 436 437 /* check for multiplication underflow */ 438 if (prob > oldprob) { 439 prob= 0; 440 D("underflow"); 441 } 442 } else { 443 /* Cap Drop adjustment */ 444 if ((pprms->flags & PIE_CAPDROP_ENABLED) && 445 prob >= PIE_MAX_PROB / 10 && 446 p > PIE_MAX_PROB / 50 ) { 447 p = PIE_MAX_PROB / 50; 448 } 449 450 prob = prob + p; 451 452 /* check for multiplication overflow */ 453 if (prob<oldprob) { 454 D("overflow"); 455 prob= PIE_MAX_PROB; 456 } 457 } 458 459 /* 460 * decay the drop probability exponentially 461 * and restrict it to range 0 to PIE_MAX_PROB 462 */ 463 if (prob < 0) { 464 prob = 0; 465 } else { 466 if (pst->current_qdelay == 0 && pst->qdelay_old == 0) { 467 /* 0.98 ~= 1- 1/64 */ 468 prob = prob - (prob >> 6); 469 } 470 471 if (prob > PIE_MAX_PROB) { 472 prob = PIE_MAX_PROB; 473 } 474 } 475 476 pst->drop_prob = prob; 477 478 /* store current delay value */ 479 pst->qdelay_old = pst->current_qdelay; 480 481 /* update burst allowance */ 482 if ((pst->sflags & PIE_ACTIVE) && pst->burst_allowance) { 483 if (pst->burst_allowance > pprms->tupdate) 484 pst->burst_allowance -= pprms->tupdate; 485 else 486 pst->burst_allowance = 0; 487 } 488 489 if (pst->sflags & PIE_ACTIVE) 490 callout_reset_sbt(&pst->aqm_pie_callout, 491 (uint64_t)pprms->tupdate * SBT_1US, 492 0, fq_calculate_drop_prob, q, 0); 493 494 mtx_unlock(&pst->lock_mtx); 495 } 496 497 /* 498 * Reset PIE variables & activate the queue 499 */ 500 __inline static void 501 fq_activate_pie(struct fq_pie_flow *q) 502 { 503 struct pie_status *pst = &q->pst; 504 struct dn_aqm_pie_parms *pprms; 505 506 mtx_lock(&pst->lock_mtx); 507 pprms = pst->parms; 508 509 pprms = pst->parms; 510 pst->drop_prob = 0; 511 pst->qdelay_old = 0; 512 pst->burst_allowance = pprms->max_burst; 513 pst->accu_prob = 0; 514 pst->dq_count = 0; 515 pst->avg_dq_time = 0; 516 pst->sflags = PIE_INMEASUREMENT | PIE_ACTIVE; 517 pst->measurement_start = AQM_UNOW; 518 519 callout_reset_sbt(&pst->aqm_pie_callout, 520 (uint64_t)pprms->tupdate * SBT_1US, 521 0, fq_calculate_drop_prob, q, 0); 522 523 mtx_unlock(&pst->lock_mtx); 524 } 525 526 /* 527 * Deactivate PIE and stop probe update callout 528 */ 529 __inline static void 530 fq_deactivate_pie(struct pie_status *pst) 531 { 532 mtx_lock(&pst->lock_mtx); 533 pst->sflags &= ~(PIE_ACTIVE | PIE_INMEASUREMENT); 534 callout_stop(&pst->aqm_pie_callout); 535 //D("PIE Deactivated"); 536 mtx_unlock(&pst->lock_mtx); 537 } 538 539 /* 540 * Initialize PIE for sub-queue 'q' 541 */ 542 static int 543 pie_init(struct fq_pie_flow *q, struct fq_pie_schk *fqpie_schk) 544 { 545 struct pie_status *pst=&q->pst; 546 struct dn_aqm_pie_parms *pprms = pst->parms; 547 548 int err = 0; 549 if (!pprms){ 550 D("AQM_PIE is not configured"); 551 err = EINVAL; 552 } else { 553 q->psi_extra->nr_active_q++; 554 555 /* For speed optimization, we caculate 1/3 queue size once here */ 556 // XXX limit divided by number of queues divided by 3 ??? 557 pst->one_third_q_size = (fqpie_schk->cfg.limit / 558 fqpie_schk->cfg.flows_cnt) / 3; 559 560 mtx_init(&pst->lock_mtx, "mtx_pie", NULL, MTX_DEF); 561 callout_init_mtx(&pst->aqm_pie_callout, &pst->lock_mtx, 562 CALLOUT_RETURNUNLOCKED); 563 } 564 565 return err; 566 } 567 568 /* 569 * callout function to destroy PIE lock, and free fq_pie flows and fq_pie si 570 * extra memory when number of active sub-queues reaches zero. 571 * 'x' is a fq_pie_flow to be destroyed 572 */ 573 static void 574 fqpie_callout_cleanup(void *x) 575 { 576 struct fq_pie_flow *q = x; 577 struct pie_status *pst = &q->pst; 578 struct fq_pie_si_extra *psi_extra; 579 580 mtx_unlock(&pst->lock_mtx); 581 mtx_destroy(&pst->lock_mtx); 582 psi_extra = q->psi_extra; 583 584 dummynet_sched_lock(); 585 psi_extra->nr_active_q--; 586 587 /* when all sub-queues are destroyed, free flows fq_pie extra vars memory */ 588 if (!psi_extra->nr_active_q) { 589 free(psi_extra->flows, M_DUMMYNET); 590 free(psi_extra, M_DUMMYNET); 591 fq_pie_desc.ref_count--; 592 } 593 dummynet_sched_unlock(); 594 } 595 596 /* 597 * Clean up PIE status for sub-queue 'q' 598 * Stop callout timer and destroy mtx using fqpie_callout_cleanup() callout. 599 */ 600 static int 601 pie_cleanup(struct fq_pie_flow *q) 602 { 603 struct pie_status *pst = &q->pst; 604 605 mtx_lock(&pst->lock_mtx); 606 callout_reset_sbt(&pst->aqm_pie_callout, 607 SBT_1US, 0, fqpie_callout_cleanup, q, 0); 608 mtx_unlock(&pst->lock_mtx); 609 return 0; 610 } 611 612 /* 613 * Dequeue and return a pcaket from sub-queue 'q' or NULL if 'q' is empty. 614 * Also, caculate depature time or queue delay using timestamp 615 */ 616 static struct mbuf * 617 pie_dequeue(struct fq_pie_flow *q, struct fq_pie_si *si) 618 { 619 struct mbuf *m; 620 struct dn_aqm_pie_parms *pprms; 621 struct pie_status *pst; 622 aqm_time_t now; 623 aqm_time_t pkt_ts, dq_time; 624 int32_t w; 625 626 pst = &q->pst; 627 pprms = q->pst.parms; 628 629 /*we extarct packet ts only when Departure Rate Estimation dis not used*/ 630 m = fq_pie_extract_head(q, &pkt_ts, si, 631 !(pprms->flags & PIE_DEPRATEEST_ENABLED)); 632 633 if (!m || !(pst->sflags & PIE_ACTIVE)) 634 return m; 635 636 now = AQM_UNOW; 637 if (pprms->flags & PIE_DEPRATEEST_ENABLED) { 638 /* calculate average depature time */ 639 if(pst->sflags & PIE_INMEASUREMENT) { 640 pst->dq_count += m->m_pkthdr.len; 641 642 if (pst->dq_count >= PIE_DQ_THRESHOLD) { 643 dq_time = now - pst->measurement_start; 644 645 /* 646 * if we don't have old avg dq_time i.e PIE is (re)initialized, 647 * don't use weight to calculate new avg_dq_time 648 */ 649 if(pst->avg_dq_time == 0) 650 pst->avg_dq_time = dq_time; 651 else { 652 /* 653 * weight = PIE_DQ_THRESHOLD/2^6, but we scaled 654 * weight by 2^8. Thus, scaled 655 * weight = PIE_DQ_THRESHOLD /2^8 656 * */ 657 w = PIE_DQ_THRESHOLD >> 8; 658 pst->avg_dq_time = (dq_time* w 659 + (pst->avg_dq_time * ((1L << 8) - w))) >> 8; 660 pst->sflags &= ~PIE_INMEASUREMENT; 661 } 662 } 663 } 664 665 /* 666 * Start new measurement cycle when the queue has 667 * PIE_DQ_THRESHOLD worth of bytes. 668 */ 669 if(!(pst->sflags & PIE_INMEASUREMENT) && 670 q->stats.len_bytes >= PIE_DQ_THRESHOLD) { 671 pst->sflags |= PIE_INMEASUREMENT; 672 pst->measurement_start = now; 673 pst->dq_count = 0; 674 } 675 } 676 /* Optionally, use packet timestamp to estimate queue delay */ 677 else 678 pst->current_qdelay = now - pkt_ts; 679 680 return m; 681 } 682 683 /* 684 * Enqueue a packet in q, subject to space and FQ-PIE queue management policy 685 * (whose parameters are in q->fs). 686 * Update stats for the queue and the scheduler. 687 * Return 0 on success, 1 on drop. The packet is consumed anyways. 688 */ 689 static int 690 pie_enqueue(struct fq_pie_flow *q, struct mbuf* m, struct fq_pie_si *si) 691 { 692 uint64_t len; 693 struct pie_status *pst; 694 struct dn_aqm_pie_parms *pprms; 695 int t; 696 697 len = m->m_pkthdr.len; 698 pst = &q->pst; 699 pprms = pst->parms; 700 t = ENQUE; 701 702 /* drop/mark the packet when PIE is active and burst time elapsed */ 703 if (pst->sflags & PIE_ACTIVE && pst->burst_allowance == 0 704 && drop_early(pst, q->stats.len_bytes) == DROP) { 705 /* 706 * if drop_prob over ECN threshold, drop the packet 707 * otherwise mark and enqueue it. 708 */ 709 if (pprms->flags & PIE_ECN_ENABLED && pst->drop_prob < 710 (pprms->max_ecnth << (PIE_PROB_BITS - PIE_FIX_POINT_BITS)) 711 && ecn_mark(m)) 712 t = ENQUE; 713 else 714 t = DROP; 715 } 716 717 /* Turn PIE on when 1/3 of the queue is full */ 718 if (!(pst->sflags & PIE_ACTIVE) && q->stats.len_bytes >= 719 pst->one_third_q_size) { 720 fq_activate_pie(q); 721 } 722 723 /* reset burst tolerance and optinally turn PIE off*/ 724 if (pst->drop_prob == 0 && pst->current_qdelay < (pprms->qdelay_ref >> 1) 725 && pst->qdelay_old < (pprms->qdelay_ref >> 1)) { 726 727 pst->burst_allowance = pprms->max_burst; 728 if (pprms->flags & PIE_ON_OFF_MODE_ENABLED && q->stats.len_bytes<=0) 729 fq_deactivate_pie(pst); 730 } 731 732 /* Use timestamp if Departure Rate Estimation mode is disabled */ 733 if (t != DROP && !(pprms->flags & PIE_DEPRATEEST_ENABLED)) { 734 /* Add TS to mbuf as a TAG */ 735 struct m_tag *mtag; 736 mtag = m_tag_locate(m, MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, NULL); 737 if (mtag == NULL) 738 mtag = m_tag_alloc(MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, 739 sizeof(aqm_time_t), M_NOWAIT); 740 if (mtag == NULL) { 741 t = DROP; 742 } else { 743 *(aqm_time_t *)(mtag + 1) = AQM_UNOW; 744 m_tag_prepend(m, mtag); 745 } 746 } 747 748 if (t != DROP) { 749 mq_append(&q->mq, m); 750 fq_update_stats(q, si, len, 0); 751 return 0; 752 } else { 753 fq_update_stats(q, si, len, 1); 754 pst->accu_prob = 0; 755 FREE_PKT(m); 756 return 1; 757 } 758 759 return 0; 760 } 761 762 /* Drop a packet form the head of FQ-PIE sub-queue */ 763 static void 764 pie_drop_head(struct fq_pie_flow *q, struct fq_pie_si *si) 765 { 766 struct mbuf *m = q->mq.head; 767 768 if (m == NULL) 769 return; 770 q->mq.head = m->m_nextpkt; 771 772 fq_update_stats(q, si, -m->m_pkthdr.len, 1); 773 774 if (si->main_q.ni.length == 0) /* queue is now idle */ 775 si->main_q.q_time = V_dn_cfg.curr_time; 776 /* reset accu_prob after packet drop */ 777 q->pst.accu_prob = 0; 778 779 FREE_PKT(m); 780 } 781 782 /* 783 * Classify a packet to queue number using Jenkins hash function. 784 * Return: queue number 785 * the input of the hash are protocol no, perturbation, src IP, dst IP, 786 * src port, dst port, 787 */ 788 static inline int 789 fq_pie_classify_flow(struct mbuf *m, uint16_t fcount, struct fq_pie_si *si) 790 { 791 struct ip *ip; 792 struct tcphdr *th; 793 struct udphdr *uh; 794 uint8_t tuple[41]; 795 uint16_t hash=0; 796 797 ip = (struct ip *)mtodo(m, dn_tag_get(m)->iphdr_off); 798 //#ifdef INET6 799 struct ip6_hdr *ip6; 800 int isip6; 801 isip6 = (ip->ip_v == 6); 802 803 if(isip6) { 804 ip6 = (struct ip6_hdr *)ip; 805 *((uint8_t *) &tuple[0]) = ip6->ip6_nxt; 806 *((uint32_t *) &tuple[1]) = si->perturbation; 807 memcpy(&tuple[5], ip6->ip6_src.s6_addr, 16); 808 memcpy(&tuple[21], ip6->ip6_dst.s6_addr, 16); 809 810 switch (ip6->ip6_nxt) { 811 case IPPROTO_TCP: 812 th = (struct tcphdr *)(ip6 + 1); 813 *((uint16_t *) &tuple[37]) = th->th_dport; 814 *((uint16_t *) &tuple[39]) = th->th_sport; 815 break; 816 817 case IPPROTO_UDP: 818 uh = (struct udphdr *)(ip6 + 1); 819 *((uint16_t *) &tuple[37]) = uh->uh_dport; 820 *((uint16_t *) &tuple[39]) = uh->uh_sport; 821 break; 822 default: 823 memset(&tuple[37], 0, 4); 824 } 825 826 hash = jenkins_hash(tuple, 41, HASHINIT) % fcount; 827 return hash; 828 } 829 //#endif 830 831 /* IPv4 */ 832 *((uint8_t *) &tuple[0]) = ip->ip_p; 833 *((uint32_t *) &tuple[1]) = si->perturbation; 834 *((uint32_t *) &tuple[5]) = ip->ip_src.s_addr; 835 *((uint32_t *) &tuple[9]) = ip->ip_dst.s_addr; 836 837 switch (ip->ip_p) { 838 case IPPROTO_TCP: 839 th = (struct tcphdr *)(ip + 1); 840 *((uint16_t *) &tuple[13]) = th->th_dport; 841 *((uint16_t *) &tuple[15]) = th->th_sport; 842 break; 843 844 case IPPROTO_UDP: 845 uh = (struct udphdr *)(ip + 1); 846 *((uint16_t *) &tuple[13]) = uh->uh_dport; 847 *((uint16_t *) &tuple[15]) = uh->uh_sport; 848 break; 849 default: 850 memset(&tuple[13], 0, 4); 851 } 852 hash = jenkins_hash(tuple, 17, HASHINIT) % fcount; 853 854 return hash; 855 } 856 857 /* 858 * Enqueue a packet into an appropriate queue according to 859 * FQ-CoDe; algorithm. 860 */ 861 static int 862 fq_pie_enqueue(struct dn_sch_inst *_si, struct dn_queue *_q, 863 struct mbuf *m) 864 { 865 struct fq_pie_si *si; 866 struct fq_pie_schk *schk; 867 struct dn_sch_fq_pie_parms *param; 868 struct dn_queue *mainq; 869 struct fq_pie_flow *flows; 870 int idx, drop, i, maxidx; 871 872 mainq = (struct dn_queue *)(_si + 1); 873 si = (struct fq_pie_si *)_si; 874 flows = si->si_extra->flows; 875 schk = (struct fq_pie_schk *)(si->_si.sched+1); 876 param = &schk->cfg; 877 878 /* classify a packet to queue number*/ 879 idx = fq_pie_classify_flow(m, param->flows_cnt, si); 880 881 /* enqueue packet into appropriate queue using PIE AQM. 882 * Note: 'pie_enqueue' function returns 1 only when it unable to 883 * add timestamp to packet (no limit check)*/ 884 drop = pie_enqueue(&flows[idx], m, si); 885 886 /* pie unable to timestamp a packet */ 887 if (drop) 888 return 1; 889 890 /* If the flow (sub-queue) is not active ,then add it to tail of 891 * new flows list, initialize and activate it. 892 */ 893 if (!flows[idx].active) { 894 STAILQ_INSERT_TAIL(&si->newflows, &flows[idx], flowchain); 895 flows[idx].deficit = param->quantum; 896 fq_activate_pie(&flows[idx]); 897 flows[idx].active = 1; 898 } 899 900 /* check the limit for all queues and remove a packet from the 901 * largest one 902 */ 903 if (mainq->ni.length > schk->cfg.limit) { 904 /* find first active flow */ 905 for (maxidx = 0; maxidx < schk->cfg.flows_cnt; maxidx++) 906 if (flows[maxidx].active) 907 break; 908 if (maxidx < schk->cfg.flows_cnt) { 909 /* find the largest sub- queue */ 910 for (i = maxidx + 1; i < schk->cfg.flows_cnt; i++) 911 if (flows[i].active && flows[i].stats.length > 912 flows[maxidx].stats.length) 913 maxidx = i; 914 pie_drop_head(&flows[maxidx], si); 915 drop = 1; 916 } 917 } 918 919 return drop; 920 } 921 922 /* 923 * Dequeue a packet from an appropriate queue according to 924 * FQ-CoDel algorithm. 925 */ 926 static struct mbuf * 927 fq_pie_dequeue(struct dn_sch_inst *_si) 928 { 929 struct fq_pie_si *si; 930 struct fq_pie_schk *schk; 931 struct dn_sch_fq_pie_parms *param; 932 struct fq_pie_flow *f; 933 struct mbuf *mbuf; 934 struct fq_pie_list *fq_pie_flowlist; 935 936 si = (struct fq_pie_si *)_si; 937 schk = (struct fq_pie_schk *)(si->_si.sched+1); 938 param = &schk->cfg; 939 940 do { 941 /* select a list to start with */ 942 if (STAILQ_EMPTY(&si->newflows)) 943 fq_pie_flowlist = &si->oldflows; 944 else 945 fq_pie_flowlist = &si->newflows; 946 947 /* Both new and old queue lists are empty, return NULL */ 948 if (STAILQ_EMPTY(fq_pie_flowlist)) 949 return NULL; 950 951 f = STAILQ_FIRST(fq_pie_flowlist); 952 while (f != NULL) { 953 /* if there is no flow(sub-queue) deficit, increase deficit 954 * by quantum, move the flow to the tail of old flows list 955 * and try another flow. 956 * Otherwise, the flow will be used for dequeue. 957 */ 958 if (f->deficit < 0) { 959 f->deficit += param->quantum; 960 STAILQ_REMOVE_HEAD(fq_pie_flowlist, flowchain); 961 STAILQ_INSERT_TAIL(&si->oldflows, f, flowchain); 962 } else 963 break; 964 965 f = STAILQ_FIRST(fq_pie_flowlist); 966 } 967 968 /* the new flows list is empty, try old flows list */ 969 if (STAILQ_EMPTY(fq_pie_flowlist)) 970 continue; 971 972 /* Dequeue a packet from the selected flow */ 973 mbuf = pie_dequeue(f, si); 974 975 /* pie did not return a packet */ 976 if (!mbuf) { 977 /* If the selected flow belongs to new flows list, then move 978 * it to the tail of old flows list. Otherwise, deactivate it and 979 * remove it from the old list and 980 */ 981 if (fq_pie_flowlist == &si->newflows) { 982 STAILQ_REMOVE_HEAD(fq_pie_flowlist, flowchain); 983 STAILQ_INSERT_TAIL(&si->oldflows, f, flowchain); 984 } else { 985 f->active = 0; 986 fq_deactivate_pie(&f->pst); 987 STAILQ_REMOVE_HEAD(fq_pie_flowlist, flowchain); 988 } 989 /* start again */ 990 continue; 991 } 992 993 /* we have a packet to return, 994 * update flow deficit and return the packet*/ 995 f->deficit -= mbuf->m_pkthdr.len; 996 return mbuf; 997 998 } while (1); 999 1000 /* unreachable point */ 1001 return NULL; 1002 } 1003 1004 /* 1005 * Initialize fq_pie scheduler instance. 1006 * also, allocate memory for flows array. 1007 */ 1008 static int 1009 fq_pie_new_sched(struct dn_sch_inst *_si) 1010 { 1011 struct fq_pie_si *si; 1012 struct dn_queue *q; 1013 struct fq_pie_schk *schk; 1014 struct fq_pie_flow *flows; 1015 int i; 1016 1017 si = (struct fq_pie_si *)_si; 1018 schk = (struct fq_pie_schk *)(_si->sched+1); 1019 1020 if(si->si_extra) { 1021 D("si already configured!"); 1022 return 0; 1023 } 1024 1025 /* init the main queue */ 1026 q = &si->main_q; 1027 set_oid(&q->ni.oid, DN_QUEUE, sizeof(*q)); 1028 q->_si = _si; 1029 q->fs = _si->sched->fs; 1030 1031 /* allocate memory for scheduler instance extra vars */ 1032 si->si_extra = malloc(sizeof(struct fq_pie_si_extra), 1033 M_DUMMYNET, M_NOWAIT | M_ZERO); 1034 if (si->si_extra == NULL) { 1035 D("cannot allocate memory for fq_pie si extra vars"); 1036 return ENOMEM ; 1037 } 1038 /* allocate memory for flows array */ 1039 si->si_extra->flows = mallocarray(schk->cfg.flows_cnt, 1040 sizeof(struct fq_pie_flow), M_DUMMYNET, M_NOWAIT | M_ZERO); 1041 flows = si->si_extra->flows; 1042 if (flows == NULL) { 1043 free(si->si_extra, M_DUMMYNET); 1044 si->si_extra = NULL; 1045 D("cannot allocate memory for fq_pie flows"); 1046 return ENOMEM ; 1047 } 1048 1049 /* init perturbation for this si */ 1050 si->perturbation = random(); 1051 si->si_extra->nr_active_q = 0; 1052 1053 /* init the old and new flows lists */ 1054 STAILQ_INIT(&si->newflows); 1055 STAILQ_INIT(&si->oldflows); 1056 1057 /* init the flows (sub-queues) */ 1058 for (i = 0; i < schk->cfg.flows_cnt; i++) { 1059 flows[i].pst.parms = &schk->cfg.pcfg; 1060 flows[i].psi_extra = si->si_extra; 1061 pie_init(&flows[i], schk); 1062 } 1063 1064 dummynet_sched_lock(); 1065 fq_pie_desc.ref_count++; 1066 dummynet_sched_unlock(); 1067 1068 return 0; 1069 } 1070 1071 /* 1072 * Free fq_pie scheduler instance. 1073 */ 1074 static int 1075 fq_pie_free_sched(struct dn_sch_inst *_si) 1076 { 1077 struct fq_pie_si *si; 1078 struct fq_pie_schk *schk; 1079 struct fq_pie_flow *flows; 1080 int i; 1081 1082 si = (struct fq_pie_si *)_si; 1083 schk = (struct fq_pie_schk *)(_si->sched+1); 1084 flows = si->si_extra->flows; 1085 for (i = 0; i < schk->cfg.flows_cnt; i++) { 1086 pie_cleanup(&flows[i]); 1087 } 1088 si->si_extra = NULL; 1089 return 0; 1090 } 1091 1092 /* 1093 * Configure FQ-PIE scheduler. 1094 * the configurations for the scheduler is passed fromipfw userland. 1095 */ 1096 static int 1097 fq_pie_config(struct dn_schk *_schk) 1098 { 1099 struct fq_pie_schk *schk; 1100 struct dn_extra_parms *ep; 1101 struct dn_sch_fq_pie_parms *fqp_cfg; 1102 1103 schk = (struct fq_pie_schk *)(_schk+1); 1104 ep = (struct dn_extra_parms *) _schk->cfg; 1105 1106 /* par array contains fq_pie configuration as follow 1107 * PIE: 0- qdelay_ref,1- tupdate, 2- max_burst 1108 * 3- max_ecnth, 4- alpha, 5- beta, 6- flags 1109 * FQ_PIE: 7- quantum, 8- limit, 9- flows 1110 */ 1111 if (ep && ep->oid.len ==sizeof(*ep) && 1112 ep->oid.subtype == DN_SCH_PARAMS) { 1113 fqp_cfg = &schk->cfg; 1114 if (ep->par[0] < 0) 1115 fqp_cfg->pcfg.qdelay_ref = fq_pie_sysctl.pcfg.qdelay_ref; 1116 else 1117 fqp_cfg->pcfg.qdelay_ref = ep->par[0]; 1118 if (ep->par[1] < 0) 1119 fqp_cfg->pcfg.tupdate = fq_pie_sysctl.pcfg.tupdate; 1120 else 1121 fqp_cfg->pcfg.tupdate = ep->par[1]; 1122 if (ep->par[2] < 0) 1123 fqp_cfg->pcfg.max_burst = fq_pie_sysctl.pcfg.max_burst; 1124 else 1125 fqp_cfg->pcfg.max_burst = ep->par[2]; 1126 if (ep->par[3] < 0) 1127 fqp_cfg->pcfg.max_ecnth = fq_pie_sysctl.pcfg.max_ecnth; 1128 else 1129 fqp_cfg->pcfg.max_ecnth = ep->par[3]; 1130 if (ep->par[4] < 0) 1131 fqp_cfg->pcfg.alpha = fq_pie_sysctl.pcfg.alpha; 1132 else 1133 fqp_cfg->pcfg.alpha = ep->par[4]; 1134 if (ep->par[5] < 0) 1135 fqp_cfg->pcfg.beta = fq_pie_sysctl.pcfg.beta; 1136 else 1137 fqp_cfg->pcfg.beta = ep->par[5]; 1138 if (ep->par[6] < 0) 1139 fqp_cfg->pcfg.flags = 0; 1140 else 1141 fqp_cfg->pcfg.flags = ep->par[6]; 1142 1143 /* FQ configurations */ 1144 if (ep->par[7] < 0) 1145 fqp_cfg->quantum = fq_pie_sysctl.quantum; 1146 else 1147 fqp_cfg->quantum = ep->par[7]; 1148 if (ep->par[8] < 0) 1149 fqp_cfg->limit = fq_pie_sysctl.limit; 1150 else 1151 fqp_cfg->limit = ep->par[8]; 1152 if (ep->par[9] < 0) 1153 fqp_cfg->flows_cnt = fq_pie_sysctl.flows_cnt; 1154 else 1155 fqp_cfg->flows_cnt = ep->par[9]; 1156 1157 /* Bound the configurations */ 1158 fqp_cfg->pcfg.qdelay_ref = BOUND_VAR(fqp_cfg->pcfg.qdelay_ref, 1159 1, 5 * AQM_TIME_1S); 1160 fqp_cfg->pcfg.tupdate = BOUND_VAR(fqp_cfg->pcfg.tupdate, 1161 1, 5 * AQM_TIME_1S); 1162 fqp_cfg->pcfg.max_burst = BOUND_VAR(fqp_cfg->pcfg.max_burst, 1163 0, 5 * AQM_TIME_1S); 1164 fqp_cfg->pcfg.max_ecnth = BOUND_VAR(fqp_cfg->pcfg.max_ecnth, 1165 0, PIE_SCALE); 1166 fqp_cfg->pcfg.alpha = BOUND_VAR(fqp_cfg->pcfg.alpha, 0, 7 * PIE_SCALE); 1167 fqp_cfg->pcfg.beta = BOUND_VAR(fqp_cfg->pcfg.beta, 0, 7 * PIE_SCALE); 1168 1169 fqp_cfg->quantum = BOUND_VAR(fqp_cfg->quantum,1,9000); 1170 fqp_cfg->limit= BOUND_VAR(fqp_cfg->limit,1,20480); 1171 fqp_cfg->flows_cnt= BOUND_VAR(fqp_cfg->flows_cnt,1,65536); 1172 } 1173 else { 1174 D("Wrong parameters for fq_pie scheduler"); 1175 return 1; 1176 } 1177 1178 return 0; 1179 } 1180 1181 /* 1182 * Return FQ-PIE scheduler configurations 1183 * the configurations for the scheduler is passed to userland. 1184 */ 1185 static int 1186 fq_pie_getconfig (struct dn_schk *_schk, struct dn_extra_parms *ep) { 1187 struct fq_pie_schk *schk = (struct fq_pie_schk *)(_schk+1); 1188 struct dn_sch_fq_pie_parms *fqp_cfg; 1189 1190 fqp_cfg = &schk->cfg; 1191 1192 strcpy(ep->name, fq_pie_desc.name); 1193 ep->par[0] = fqp_cfg->pcfg.qdelay_ref; 1194 ep->par[1] = fqp_cfg->pcfg.tupdate; 1195 ep->par[2] = fqp_cfg->pcfg.max_burst; 1196 ep->par[3] = fqp_cfg->pcfg.max_ecnth; 1197 ep->par[4] = fqp_cfg->pcfg.alpha; 1198 ep->par[5] = fqp_cfg->pcfg.beta; 1199 ep->par[6] = fqp_cfg->pcfg.flags; 1200 1201 ep->par[7] = fqp_cfg->quantum; 1202 ep->par[8] = fqp_cfg->limit; 1203 ep->par[9] = fqp_cfg->flows_cnt; 1204 1205 return 0; 1206 } 1207 1208 /* 1209 * FQ-PIE scheduler descriptor 1210 * contains the type of the scheduler, the name, the size of extra 1211 * data structures, and function pointers. 1212 */ 1213 static struct dn_alg fq_pie_desc = { 1214 _SI( .type = ) DN_SCHED_FQ_PIE, 1215 _SI( .name = ) "FQ_PIE", 1216 _SI( .flags = ) 0, 1217 1218 _SI( .schk_datalen = ) sizeof(struct fq_pie_schk), 1219 _SI( .si_datalen = ) sizeof(struct fq_pie_si) - sizeof(struct dn_sch_inst), 1220 _SI( .q_datalen = ) 0, 1221 1222 _SI( .enqueue = ) fq_pie_enqueue, 1223 _SI( .dequeue = ) fq_pie_dequeue, 1224 _SI( .config = ) fq_pie_config, /* new sched i.e. sched X config ...*/ 1225 _SI( .destroy = ) NULL, /*sched x delete */ 1226 _SI( .new_sched = ) fq_pie_new_sched, /* new schd instance */ 1227 _SI( .free_sched = ) fq_pie_free_sched, /* delete schd instance */ 1228 _SI( .new_fsk = ) NULL, 1229 _SI( .free_fsk = ) NULL, 1230 _SI( .new_queue = ) NULL, 1231 _SI( .free_queue = ) NULL, 1232 _SI( .getconfig = ) fq_pie_getconfig, 1233 _SI( .ref_count = ) 0 1234 }; 1235 1236 DECLARE_DNSCHED_MODULE(dn_fq_pie, &fq_pie_desc); 1237