1 /* 2 * FQ_PIE - The FlowQueue-PIE scheduler/AQM 3 * 4 * $FreeBSD$ 5 * 6 * Copyright (C) 2016 Centre for Advanced Internet Architectures, 7 * Swinburne University of Technology, Melbourne, Australia. 8 * Portions of this code were made possible in part by a gift from 9 * The Comcast Innovation Fund. 10 * Implemented by Rasool Al-Saadi <ralsaadi@swin.edu.au> 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 /* Important note: 35 * As there is no an office document for FQ-PIE specification, we used 36 * FQ-CoDel algorithm with some modifications to implement FQ-PIE. 37 * This FQ-PIE implementation is a beta version and have not been tested 38 * extensively. Our FQ-PIE uses stand-alone PIE AQM per sub-queue. By 39 * default, timestamp is used to calculate queue delay instead of departure 40 * rate estimation method. Although departure rate estimation is available 41 * as testing option, the results could be incorrect. Moreover, turning PIE on 42 * and off option is available but it does not work properly in this version. 43 */ 44 45 46 #ifdef _KERNEL 47 #include <sys/malloc.h> 48 #include <sys/socket.h> 49 #include <sys/kernel.h> 50 #include <sys/mbuf.h> 51 #include <sys/lock.h> 52 #include <sys/module.h> 53 #include <sys/mutex.h> 54 #include <net/if.h> /* IFNAMSIZ */ 55 #include <netinet/in.h> 56 #include <netinet/ip_var.h> /* ipfw_rule_ref */ 57 #include <netinet/ip_fw.h> /* flow_id */ 58 #include <netinet/ip_dummynet.h> 59 60 #include <sys/proc.h> 61 #include <sys/rwlock.h> 62 63 #include <netpfil/ipfw/ip_fw_private.h> 64 #include <sys/sysctl.h> 65 #include <netinet/ip.h> 66 #include <netinet/ip6.h> 67 #include <netinet/ip_icmp.h> 68 #include <netinet/tcp.h> 69 #include <netinet/udp.h> 70 #include <sys/queue.h> 71 #include <sys/hash.h> 72 73 #include <netpfil/ipfw/dn_heap.h> 74 #include <netpfil/ipfw/ip_dn_private.h> 75 76 #include <netpfil/ipfw/dn_aqm.h> 77 #include <netpfil/ipfw/dn_aqm_pie.h> 78 #include <netpfil/ipfw/dn_sched.h> 79 80 #else 81 #include <dn_test.h> 82 #endif 83 84 #define DN_SCHED_FQ_PIE 7 85 86 /* list of queues */ 87 STAILQ_HEAD(fq_pie_list, fq_pie_flow) ; 88 89 /* FQ_PIE parameters including PIE */ 90 struct dn_sch_fq_pie_parms { 91 struct dn_aqm_pie_parms pcfg; /* PIE configuration Parameters */ 92 /* FQ_PIE Parameters */ 93 uint32_t flows_cnt; /* number of flows */ 94 uint32_t limit; /* hard limit of FQ_PIE queue size*/ 95 uint32_t quantum; 96 }; 97 98 /* flow (sub-queue) stats */ 99 struct flow_stats { 100 uint64_t tot_pkts; /* statistics counters */ 101 uint64_t tot_bytes; 102 uint32_t length; /* Queue length, in packets */ 103 uint32_t len_bytes; /* Queue length, in bytes */ 104 uint32_t drops; 105 }; 106 107 /* A flow of packets (sub-queue)*/ 108 struct fq_pie_flow { 109 struct mq mq; /* list of packets */ 110 struct flow_stats stats; /* statistics */ 111 int deficit; 112 int active; /* 1: flow is active (in a list) */ 113 struct pie_status pst; /* pie status variables */ 114 struct fq_pie_si *psi; /* parent scheduler instance */ 115 STAILQ_ENTRY(fq_pie_flow) flowchain; 116 }; 117 118 /* extra fq_pie scheduler configurations */ 119 struct fq_pie_schk { 120 struct dn_sch_fq_pie_parms cfg; 121 }; 122 123 /* fq_pie scheduler instance */ 124 struct fq_pie_si { 125 struct dn_sch_inst _si; /* standard scheduler instance */ 126 struct dn_queue main_q; /* main queue is after si directly */ 127 uint32_t nr_active_q; 128 struct fq_pie_flow *flows; /* array of flows (queues) */ 129 uint32_t perturbation; /* random value */ 130 struct fq_pie_list newflows; /* list of new queues */ 131 struct fq_pie_list oldflows; /* list of old queues */ 132 }; 133 134 135 struct mem_to_free { 136 void *mem_flows; 137 void *mem_callout; 138 }; 139 static struct mtx freemem_mtx; 140 static struct dn_alg fq_pie_desc; 141 142 /* Default FQ-PIE parameters including PIE */ 143 /* PIE defaults 144 * target=15ms, max_burst=150ms, max_ecnth=0.1, 145 * alpha=0.125, beta=1.25, tupdate=15ms 146 * FQ- 147 * flows=1024, limit=10240, quantum =1514 148 */ 149 struct dn_sch_fq_pie_parms 150 fq_pie_sysctl = {{15000 * AQM_TIME_1US, 15000 * AQM_TIME_1US, 151 150000 * AQM_TIME_1US, PIE_SCALE * 0.1, PIE_SCALE * 0.125, 152 PIE_SCALE * 1.25, PIE_CAPDROP_ENABLED | PIE_DERAND_ENABLED}, 153 1024, 10240, 1514}; 154 155 static int 156 fqpie_sysctl_alpha_beta_handler(SYSCTL_HANDLER_ARGS) 157 { 158 int error; 159 long value; 160 161 if (!strcmp(oidp->oid_name,"alpha")) 162 value = fq_pie_sysctl.pcfg.alpha; 163 else 164 value = fq_pie_sysctl.pcfg.beta; 165 166 value = value * 1000 / PIE_SCALE; 167 error = sysctl_handle_long(oidp, &value, 0, req); 168 if (error != 0 || req->newptr == NULL) 169 return (error); 170 if (value < 1 || value > 7 * PIE_SCALE) 171 return (EINVAL); 172 value = (value * PIE_SCALE) / 1000; 173 if (!strcmp(oidp->oid_name,"alpha")) 174 fq_pie_sysctl.pcfg.alpha = value; 175 else 176 fq_pie_sysctl.pcfg.beta = value; 177 return (0); 178 } 179 180 static int 181 fqpie_sysctl_target_tupdate_maxb_handler(SYSCTL_HANDLER_ARGS) 182 { 183 int error; 184 long value; 185 186 if (!strcmp(oidp->oid_name,"target")) 187 value = fq_pie_sysctl.pcfg.qdelay_ref; 188 else if (!strcmp(oidp->oid_name,"tupdate")) 189 value = fq_pie_sysctl.pcfg.tupdate; 190 else 191 value = fq_pie_sysctl.pcfg.max_burst; 192 193 value = value / AQM_TIME_1US; 194 error = sysctl_handle_long(oidp, &value, 0, req); 195 if (error != 0 || req->newptr == NULL) 196 return (error); 197 if (value < 1 || value > 10 * AQM_TIME_1S) 198 return (EINVAL); 199 value = value * AQM_TIME_1US; 200 201 if (!strcmp(oidp->oid_name,"target")) 202 fq_pie_sysctl.pcfg.qdelay_ref = value; 203 else if (!strcmp(oidp->oid_name,"tupdate")) 204 fq_pie_sysctl.pcfg.tupdate = value; 205 else 206 fq_pie_sysctl.pcfg.max_burst = value; 207 return (0); 208 } 209 210 static int 211 fqpie_sysctl_max_ecnth_handler(SYSCTL_HANDLER_ARGS) 212 { 213 int error; 214 long value; 215 216 value = fq_pie_sysctl.pcfg.max_ecnth; 217 value = value * 1000 / PIE_SCALE; 218 error = sysctl_handle_long(oidp, &value, 0, req); 219 if (error != 0 || req->newptr == NULL) 220 return (error); 221 if (value < 1 || value > PIE_SCALE) 222 return (EINVAL); 223 value = (value * PIE_SCALE) / 1000; 224 fq_pie_sysctl.pcfg.max_ecnth = value; 225 return (0); 226 } 227 228 /* define FQ- PIE sysctl variables */ 229 SYSBEGIN(f4) 230 SYSCTL_DECL(_net_inet); 231 SYSCTL_DECL(_net_inet_ip); 232 SYSCTL_DECL(_net_inet_ip_dummynet); 233 static SYSCTL_NODE(_net_inet_ip_dummynet, OID_AUTO, fqpie, 234 CTLFLAG_RW, 0, "FQ_PIE"); 235 236 #ifdef SYSCTL_NODE 237 238 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, target, 239 CTLTYPE_LONG | CTLFLAG_RW, NULL, 0, 240 fqpie_sysctl_target_tupdate_maxb_handler, "L", 241 "queue target in microsecond"); 242 243 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, tupdate, 244 CTLTYPE_LONG | CTLFLAG_RW, NULL, 0, 245 fqpie_sysctl_target_tupdate_maxb_handler, "L", 246 "the frequency of drop probability calculation in microsecond"); 247 248 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, max_burst, 249 CTLTYPE_LONG | CTLFLAG_RW, NULL, 0, 250 fqpie_sysctl_target_tupdate_maxb_handler, "L", 251 "Burst allowance interval in microsecond"); 252 253 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, max_ecnth, 254 CTLTYPE_LONG | CTLFLAG_RW, NULL, 0, 255 fqpie_sysctl_max_ecnth_handler, "L", 256 "ECN safeguard threshold scaled by 1000"); 257 258 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, alpha, 259 CTLTYPE_LONG | CTLFLAG_RW, NULL, 0, 260 fqpie_sysctl_alpha_beta_handler, "L", "PIE alpha scaled by 1000"); 261 262 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, beta, 263 CTLTYPE_LONG | CTLFLAG_RW, NULL, 0, 264 fqpie_sysctl_alpha_beta_handler, "L", "beta scaled by 1000"); 265 266 SYSCTL_UINT(_net_inet_ip_dummynet_fqpie, OID_AUTO, quantum, 267 CTLFLAG_RW, &fq_pie_sysctl.quantum, 1514, "quantum for FQ_PIE"); 268 SYSCTL_UINT(_net_inet_ip_dummynet_fqpie, OID_AUTO, flows, 269 CTLFLAG_RW, &fq_pie_sysctl.flows_cnt, 1024, "Number of queues for FQ_PIE"); 270 SYSCTL_UINT(_net_inet_ip_dummynet_fqpie, OID_AUTO, limit, 271 CTLFLAG_RW, &fq_pie_sysctl.limit, 10240, "limit for FQ_PIE"); 272 #endif 273 274 /* Helper function to update queue&main-queue and scheduler statistics. 275 * negative len & drop -> drop 276 * negative len -> dequeue 277 * positive len -> enqueue 278 * positive len + drop -> drop during enqueue 279 */ 280 __inline static void 281 fq_update_stats(struct fq_pie_flow *q, struct fq_pie_si *si, int len, 282 int drop) 283 { 284 int inc = 0; 285 286 if (len < 0) 287 inc = -1; 288 else if (len > 0) 289 inc = 1; 290 291 if (drop) { 292 si->main_q.ni.drops ++; 293 q->stats.drops ++; 294 si->_si.ni.drops ++; 295 io_pkt_drop ++; 296 } 297 298 if (!drop || (drop && len < 0)) { 299 /* Update stats for the main queue */ 300 si->main_q.ni.length += inc; 301 si->main_q.ni.len_bytes += len; 302 303 /*update sub-queue stats */ 304 q->stats.length += inc; 305 q->stats.len_bytes += len; 306 307 /*update scheduler instance stats */ 308 si->_si.ni.length += inc; 309 si->_si.ni.len_bytes += len; 310 } 311 312 if (inc > 0) { 313 si->main_q.ni.tot_bytes += len; 314 si->main_q.ni.tot_pkts ++; 315 316 q->stats.tot_bytes +=len; 317 q->stats.tot_pkts++; 318 319 si->_si.ni.tot_bytes +=len; 320 si->_si.ni.tot_pkts ++; 321 } 322 323 } 324 325 /* 326 * Extract a packet from the head of sub-queue 'q' 327 * Return a packet or NULL if the queue is empty. 328 * If getts is set, also extract packet's timestamp from mtag. 329 */ 330 __inline static struct mbuf * 331 fq_pie_extract_head(struct fq_pie_flow *q, aqm_time_t *pkt_ts, 332 struct fq_pie_si *si, int getts) 333 { 334 struct mbuf *m = q->mq.head; 335 336 if (m == NULL) 337 return m; 338 q->mq.head = m->m_nextpkt; 339 340 fq_update_stats(q, si, -m->m_pkthdr.len, 0); 341 342 if (si->main_q.ni.length == 0) /* queue is now idle */ 343 si->main_q.q_time = dn_cfg.curr_time; 344 345 if (getts) { 346 /* extract packet timestamp*/ 347 struct m_tag *mtag; 348 mtag = m_tag_locate(m, MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, NULL); 349 if (mtag == NULL){ 350 D("PIE timestamp mtag not found!"); 351 *pkt_ts = 0; 352 } else { 353 *pkt_ts = *(aqm_time_t *)(mtag + 1); 354 m_tag_delete(m,mtag); 355 } 356 } 357 return m; 358 } 359 360 /* 361 * Callout function for drop probability calculation 362 * This function is called over tupdate ms and takes pointer of FQ-PIE 363 * flow as an argument 364 */ 365 static void 366 fq_calculate_drop_prob(void *x) 367 { 368 struct fq_pie_flow *q = (struct fq_pie_flow *) x; 369 struct pie_status *pst = &q->pst; 370 struct dn_aqm_pie_parms *pprms; 371 int64_t p, prob, oldprob; 372 aqm_time_t now; 373 374 /* dealing with race condition */ 375 if (callout_pending(&pst->aqm_pie_callout)) { 376 /* callout was reset */ 377 mtx_unlock(&pst->lock_mtx); 378 return; 379 } 380 381 if (!callout_active(&pst->aqm_pie_callout)) { 382 /* callout was stopped */ 383 mtx_unlock(&pst->lock_mtx); 384 mtx_destroy(&pst->lock_mtx); 385 q->psi->nr_active_q--; 386 return; 387 } 388 callout_deactivate(&pst->aqm_pie_callout); 389 390 now = AQM_UNOW; 391 pprms = pst->parms; 392 prob = pst->drop_prob; 393 394 /* calculate current qdelay */ 395 if (pprms->flags & PIE_DEPRATEEST_ENABLED) { 396 pst->current_qdelay = ((uint64_t)q->stats.len_bytes * pst->avg_dq_time) 397 >> PIE_DQ_THRESHOLD_BITS; 398 } 399 400 /* calculate drop probability */ 401 p = (int64_t)pprms->alpha * 402 ((int64_t)pst->current_qdelay - (int64_t)pprms->qdelay_ref); 403 p +=(int64_t) pprms->beta * 404 ((int64_t)pst->current_qdelay - (int64_t)pst->qdelay_old); 405 406 /* We PIE_MAX_PROB shift by 12-bits to increase the division precision */ 407 p *= (PIE_MAX_PROB << 12) / AQM_TIME_1S; 408 409 /* auto-tune drop probability */ 410 if (prob < (PIE_MAX_PROB / 1000000)) /* 0.000001 */ 411 p >>= 11 + PIE_FIX_POINT_BITS + 12; 412 else if (prob < (PIE_MAX_PROB / 100000)) /* 0.00001 */ 413 p >>= 9 + PIE_FIX_POINT_BITS + 12; 414 else if (prob < (PIE_MAX_PROB / 10000)) /* 0.0001 */ 415 p >>= 7 + PIE_FIX_POINT_BITS + 12; 416 else if (prob < (PIE_MAX_PROB / 1000)) /* 0.001 */ 417 p >>= 5 + PIE_FIX_POINT_BITS + 12; 418 else if (prob < (PIE_MAX_PROB / 100)) /* 0.01 */ 419 p >>= 3 + PIE_FIX_POINT_BITS + 12; 420 else if (prob < (PIE_MAX_PROB / 10)) /* 0.1 */ 421 p >>= 1 + PIE_FIX_POINT_BITS + 12; 422 else 423 p >>= PIE_FIX_POINT_BITS + 12; 424 425 oldprob = prob; 426 427 /* Cap Drop adjustment */ 428 if ((pprms->flags & PIE_CAPDROP_ENABLED) && prob >= PIE_MAX_PROB / 10 429 && p > PIE_MAX_PROB / 50 ) 430 p = PIE_MAX_PROB / 50; 431 432 prob = prob + p; 433 434 /* decay the drop probability exponentially */ 435 if (pst->current_qdelay == 0 && pst->qdelay_old == 0) 436 /* 0.98 ~= 1- 1/64 */ 437 prob = prob - (prob >> 6); 438 439 440 /* check for multiplication over/under flow */ 441 if (p>0) { 442 if (prob<oldprob) { 443 D("overflow"); 444 prob= PIE_MAX_PROB; 445 } 446 } 447 else 448 if (prob>oldprob) { 449 prob= 0; 450 D("underflow"); 451 } 452 453 /* make drop probability between 0 and PIE_MAX_PROB*/ 454 if (prob < 0) 455 prob = 0; 456 else if (prob > PIE_MAX_PROB) 457 prob = PIE_MAX_PROB; 458 459 pst->drop_prob = prob; 460 461 /* store current delay value */ 462 pst->qdelay_old = pst->current_qdelay; 463 464 /* update burst allowance */ 465 if ((pst->sflags & PIE_ACTIVE) && pst->burst_allowance) { 466 if (pst->burst_allowance > pprms->tupdate) 467 pst->burst_allowance -= pprms->tupdate; 468 else 469 pst->burst_allowance = 0; 470 } 471 472 if (pst->sflags & PIE_ACTIVE) 473 callout_reset_sbt(&pst->aqm_pie_callout, 474 (uint64_t)pprms->tupdate * SBT_1US, 475 0, fq_calculate_drop_prob, q, 0); 476 477 mtx_unlock(&pst->lock_mtx); 478 } 479 480 /* 481 * Reset PIE variables & activate the queue 482 */ 483 __inline static void 484 fq_activate_pie(struct fq_pie_flow *q) 485 { 486 struct pie_status *pst = &q->pst; 487 struct dn_aqm_pie_parms *pprms; 488 489 mtx_lock(&pst->lock_mtx); 490 pprms = pst->parms; 491 492 pprms = pst->parms; 493 pst->drop_prob = 0; 494 pst->qdelay_old = 0; 495 pst->burst_allowance = pprms->max_burst; 496 pst->accu_prob = 0; 497 pst->dq_count = 0; 498 pst->avg_dq_time = 0; 499 pst->sflags = PIE_INMEASUREMENT | PIE_ACTIVE; 500 pst->measurement_start = AQM_UNOW; 501 502 callout_reset_sbt(&pst->aqm_pie_callout, 503 (uint64_t)pprms->tupdate * SBT_1US, 504 0, fq_calculate_drop_prob, q, 0); 505 506 mtx_unlock(&pst->lock_mtx); 507 } 508 509 510 /* 511 * Deactivate PIE and stop probe update callout 512 */ 513 __inline static void 514 fq_deactivate_pie(struct pie_status *pst) 515 { 516 mtx_lock(&pst->lock_mtx); 517 pst->sflags &= ~(PIE_ACTIVE | PIE_INMEASUREMENT); 518 callout_stop(&pst->aqm_pie_callout); 519 //D("PIE Deactivated"); 520 mtx_unlock(&pst->lock_mtx); 521 } 522 523 /* 524 * Initialize PIE for sub-queue 'q' 525 */ 526 static int 527 pie_init(struct fq_pie_flow *q) 528 { 529 struct pie_status *pst=&q->pst; 530 struct dn_aqm_pie_parms *pprms = pst->parms; 531 struct fq_pie_schk *fqpie_schk; 532 533 fqpie_schk = (struct fq_pie_schk *)(q->psi->_si.sched+1); 534 int err = 0; 535 536 if (!pprms){ 537 D("AQM_PIE is not configured"); 538 err = EINVAL; 539 } else { 540 q->psi->nr_active_q++; 541 542 /* For speed optimization, we caculate 1/3 queue size once here */ 543 // XXX limit divided by number of queues divided by 3 ??? 544 pst->one_third_q_size = (fqpie_schk->cfg.limit / 545 fqpie_schk->cfg.flows_cnt) / 3; 546 547 mtx_init(&pst->lock_mtx, "mtx_pie", NULL, MTX_DEF); 548 callout_init_mtx(&pst->aqm_pie_callout, &pst->lock_mtx, 549 CALLOUT_RETURNUNLOCKED); 550 } 551 552 return err; 553 } 554 555 /* 556 * Clean up PIE status for sub-queue 'q' 557 * Stop callout timer and destroy mtx 558 */ 559 static int 560 pie_cleanup(struct fq_pie_flow *q) 561 { 562 struct pie_status *pst = &q->pst; 563 564 mtx_lock(&pst->lock_mtx); 565 if (callout_stop(&pst->aqm_pie_callout) || !(pst->sflags & PIE_ACTIVE)) { 566 mtx_unlock(&pst->lock_mtx); 567 mtx_destroy(&pst->lock_mtx); 568 q->psi->nr_active_q--; 569 } else { 570 mtx_unlock(&pst->lock_mtx); 571 return EBUSY; 572 } 573 return 0; 574 } 575 576 /* 577 * Dequeue and return a pcaket from sub-queue 'q' or NULL if 'q' is empty. 578 * Also, caculate depature time or queue delay using timestamp 579 */ 580 static struct mbuf * 581 pie_dequeue(struct fq_pie_flow *q, struct fq_pie_si *si) 582 { 583 struct mbuf *m; 584 struct dn_aqm_pie_parms *pprms; 585 struct pie_status *pst; 586 aqm_time_t now; 587 aqm_time_t pkt_ts, dq_time; 588 int32_t w; 589 590 pst = &q->pst; 591 pprms = q->pst.parms; 592 593 /*we extarct packet ts only when Departure Rate Estimation dis not used*/ 594 m = fq_pie_extract_head(q, &pkt_ts, si, 595 !(pprms->flags & PIE_DEPRATEEST_ENABLED)); 596 597 if (!m || !(pst->sflags & PIE_ACTIVE)) 598 return m; 599 600 now = AQM_UNOW; 601 if (pprms->flags & PIE_DEPRATEEST_ENABLED) { 602 /* calculate average depature time */ 603 if(pst->sflags & PIE_INMEASUREMENT) { 604 pst->dq_count += m->m_pkthdr.len; 605 606 if (pst->dq_count >= PIE_DQ_THRESHOLD) { 607 dq_time = now - pst->measurement_start; 608 609 /* 610 * if we don't have old avg dq_time i.e PIE is (re)initialized, 611 * don't use weight to calculate new avg_dq_time 612 */ 613 if(pst->avg_dq_time == 0) 614 pst->avg_dq_time = dq_time; 615 else { 616 /* 617 * weight = PIE_DQ_THRESHOLD/2^6, but we scaled 618 * weight by 2^8. Thus, scaled 619 * weight = PIE_DQ_THRESHOLD /2^8 620 * */ 621 w = PIE_DQ_THRESHOLD >> 8; 622 pst->avg_dq_time = (dq_time* w 623 + (pst->avg_dq_time * ((1L << 8) - w))) >> 8; 624 pst->sflags &= ~PIE_INMEASUREMENT; 625 } 626 } 627 } 628 629 /* 630 * Start new measurment cycle when the queue has 631 * PIE_DQ_THRESHOLD worth of bytes. 632 */ 633 if(!(pst->sflags & PIE_INMEASUREMENT) && 634 q->stats.len_bytes >= PIE_DQ_THRESHOLD) { 635 pst->sflags |= PIE_INMEASUREMENT; 636 pst->measurement_start = now; 637 pst->dq_count = 0; 638 } 639 } 640 /* Optionally, use packet timestamp to estimate queue delay */ 641 else 642 pst->current_qdelay = now - pkt_ts; 643 644 return m; 645 } 646 647 648 /* 649 * Enqueue a packet in q, subject to space and FQ-PIE queue management policy 650 * (whose parameters are in q->fs). 651 * Update stats for the queue and the scheduler. 652 * Return 0 on success, 1 on drop. The packet is consumed anyways. 653 */ 654 static int 655 pie_enqueue(struct fq_pie_flow *q, struct mbuf* m, struct fq_pie_si *si) 656 { 657 uint64_t len; 658 struct pie_status *pst; 659 struct dn_aqm_pie_parms *pprms; 660 int t; 661 662 len = m->m_pkthdr.len; 663 pst = &q->pst; 664 pprms = pst->parms; 665 t = ENQUE; 666 667 /* drop/mark the packet when PIE is active and burst time elapsed */ 668 if (pst->sflags & PIE_ACTIVE && pst->burst_allowance == 0 669 && drop_early(pst, q->stats.len_bytes) == DROP) { 670 /* 671 * if drop_prob over ECN threshold, drop the packet 672 * otherwise mark and enqueue it. 673 */ 674 if (pprms->flags & PIE_ECN_ENABLED && pst->drop_prob < 675 (pprms->max_ecnth << (PIE_PROB_BITS - PIE_FIX_POINT_BITS)) 676 && ecn_mark(m)) 677 t = ENQUE; 678 else 679 t = DROP; 680 } 681 682 /* Turn PIE on when 1/3 of the queue is full */ 683 if (!(pst->sflags & PIE_ACTIVE) && q->stats.len_bytes >= 684 pst->one_third_q_size) { 685 fq_activate_pie(q); 686 } 687 688 /* reset burst tolerance and optinally turn PIE off*/ 689 if (pst->drop_prob == 0 && pst->current_qdelay < (pprms->qdelay_ref >> 1) 690 && pst->qdelay_old < (pprms->qdelay_ref >> 1)) { 691 692 pst->burst_allowance = pprms->max_burst; 693 if (pprms->flags & PIE_ON_OFF_MODE_ENABLED && q->stats.len_bytes<=0) 694 fq_deactivate_pie(pst); 695 } 696 697 /* Use timestamp if Departure Rate Estimation mode is disabled */ 698 if (t != DROP && !(pprms->flags & PIE_DEPRATEEST_ENABLED)) { 699 /* Add TS to mbuf as a TAG */ 700 struct m_tag *mtag; 701 mtag = m_tag_locate(m, MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, NULL); 702 if (mtag == NULL) 703 mtag = m_tag_alloc(MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, 704 sizeof(aqm_time_t), M_NOWAIT); 705 if (mtag == NULL) { 706 m_freem(m); 707 t = DROP; 708 } 709 *(aqm_time_t *)(mtag + 1) = AQM_UNOW; 710 m_tag_prepend(m, mtag); 711 } 712 713 if (t != DROP) { 714 mq_append(&q->mq, m); 715 fq_update_stats(q, si, len, 0); 716 return 0; 717 } else { 718 fq_update_stats(q, si, len, 1); 719 pst->accu_prob = 0; 720 FREE_PKT(m); 721 return 1; 722 } 723 724 return 0; 725 } 726 727 /* Drop a packet form the head of FQ-PIE sub-queue */ 728 static void 729 pie_drop_head(struct fq_pie_flow *q, struct fq_pie_si *si) 730 { 731 struct mbuf *m = q->mq.head; 732 733 if (m == NULL) 734 return; 735 q->mq.head = m->m_nextpkt; 736 737 fq_update_stats(q, si, -m->m_pkthdr.len, 1); 738 739 if (si->main_q.ni.length == 0) /* queue is now idle */ 740 si->main_q.q_time = dn_cfg.curr_time; 741 /* reset accu_prob after packet drop */ 742 q->pst.accu_prob = 0; 743 744 FREE_PKT(m); 745 } 746 747 /* 748 * Classify a packet to queue number using Jenkins hash function. 749 * Return: queue number 750 * the input of the hash are protocol no, perturbation, src IP, dst IP, 751 * src port, dst port, 752 */ 753 static inline int 754 fq_pie_classify_flow(struct mbuf *m, uint16_t fcount, struct fq_pie_si *si) 755 { 756 struct ip *ip; 757 struct tcphdr *th; 758 struct udphdr *uh; 759 uint8_t tuple[41]; 760 uint16_t hash=0; 761 762 //#ifdef INET6 763 struct ip6_hdr *ip6; 764 int isip6; 765 isip6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0; 766 767 if(isip6) { 768 ip6 = mtod(m, struct ip6_hdr *); 769 *((uint8_t *) &tuple[0]) = ip6->ip6_nxt; 770 *((uint32_t *) &tuple[1]) = si->perturbation; 771 memcpy(&tuple[5], ip6->ip6_src.s6_addr, 16); 772 memcpy(&tuple[21], ip6->ip6_dst.s6_addr, 16); 773 774 switch (ip6->ip6_nxt) { 775 case IPPROTO_TCP: 776 th = (struct tcphdr *)(ip6 + 1); 777 *((uint16_t *) &tuple[37]) = th->th_dport; 778 *((uint16_t *) &tuple[39]) = th->th_sport; 779 break; 780 781 case IPPROTO_UDP: 782 uh = (struct udphdr *)(ip6 + 1); 783 *((uint16_t *) &tuple[37]) = uh->uh_dport; 784 *((uint16_t *) &tuple[39]) = uh->uh_sport; 785 break; 786 default: 787 memset(&tuple[37], 0, 4); 788 } 789 790 hash = jenkins_hash(tuple, 41, HASHINIT) % fcount; 791 return hash; 792 } 793 //#endif 794 795 /* IPv4 */ 796 ip = mtod(m, struct ip *); 797 *((uint8_t *) &tuple[0]) = ip->ip_p; 798 *((uint32_t *) &tuple[1]) = si->perturbation; 799 *((uint32_t *) &tuple[5]) = ip->ip_src.s_addr; 800 *((uint32_t *) &tuple[9]) = ip->ip_dst.s_addr; 801 802 switch (ip->ip_p) { 803 case IPPROTO_TCP: 804 th = (struct tcphdr *)(ip + 1); 805 *((uint16_t *) &tuple[13]) = th->th_dport; 806 *((uint16_t *) &tuple[15]) = th->th_sport; 807 break; 808 809 case IPPROTO_UDP: 810 uh = (struct udphdr *)(ip + 1); 811 *((uint16_t *) &tuple[13]) = uh->uh_dport; 812 *((uint16_t *) &tuple[15]) = uh->uh_sport; 813 break; 814 default: 815 memset(&tuple[13], 0, 4); 816 } 817 hash = jenkins_hash(tuple, 17, HASHINIT) % fcount; 818 819 return hash; 820 } 821 822 /* 823 * Enqueue a packet into an appropriate queue according to 824 * FQ-CoDe; algorithm. 825 */ 826 static int 827 fq_pie_enqueue(struct dn_sch_inst *_si, struct dn_queue *_q, 828 struct mbuf *m) 829 { 830 struct fq_pie_si *si; 831 struct fq_pie_schk *schk; 832 struct dn_sch_fq_pie_parms *param; 833 struct dn_queue *mainq; 834 int idx, drop, i, maxidx; 835 836 mainq = (struct dn_queue *)(_si + 1); 837 si = (struct fq_pie_si *)_si; 838 schk = (struct fq_pie_schk *)(si->_si.sched+1); 839 param = &schk->cfg; 840 841 /* classify a packet to queue number*/ 842 idx = fq_pie_classify_flow(m, param->flows_cnt, si); 843 844 /* enqueue packet into appropriate queue using PIE AQM. 845 * Note: 'pie_enqueue' function returns 1 only when it unable to 846 * add timestamp to packet (no limit check)*/ 847 drop = pie_enqueue(&si->flows[idx], m, si); 848 849 /* pie unable to timestamp a packet */ 850 if (drop) 851 return 1; 852 853 /* If the flow (sub-queue) is not active ,then add it to tail of 854 * new flows list, initialize and activate it. 855 */ 856 if (!si->flows[idx].active) { 857 STAILQ_INSERT_TAIL(&si->newflows, &si->flows[idx], flowchain); 858 si->flows[idx].deficit = param->quantum; 859 fq_activate_pie(&si->flows[idx]); 860 si->flows[idx].active = 1; 861 } 862 863 /* check the limit for all queues and remove a packet from the 864 * largest one 865 */ 866 if (mainq->ni.length > schk->cfg.limit) { 867 /* find first active flow */ 868 for (maxidx = 0; maxidx < schk->cfg.flows_cnt; maxidx++) 869 if (si->flows[maxidx].active) 870 break; 871 if (maxidx < schk->cfg.flows_cnt) { 872 /* find the largest sub- queue */ 873 for (i = maxidx + 1; i < schk->cfg.flows_cnt; i++) 874 if (si->flows[i].active && si->flows[i].stats.length > 875 si->flows[maxidx].stats.length) 876 maxidx = i; 877 pie_drop_head(&si->flows[maxidx], si); 878 drop = 1; 879 } 880 } 881 882 return drop; 883 } 884 885 /* 886 * Dequeue a packet from an appropriate queue according to 887 * FQ-CoDel algorithm. 888 */ 889 static struct mbuf * 890 fq_pie_dequeue(struct dn_sch_inst *_si) 891 { 892 struct fq_pie_si *si; 893 struct fq_pie_schk *schk; 894 struct dn_sch_fq_pie_parms *param; 895 struct fq_pie_flow *f; 896 struct mbuf *mbuf; 897 struct fq_pie_list *fq_pie_flowlist; 898 899 si = (struct fq_pie_si *)_si; 900 schk = (struct fq_pie_schk *)(si->_si.sched+1); 901 param = &schk->cfg; 902 903 do { 904 /* select a list to start with */ 905 if (STAILQ_EMPTY(&si->newflows)) 906 fq_pie_flowlist = &si->oldflows; 907 else 908 fq_pie_flowlist = &si->newflows; 909 910 /* Both new and old queue lists are empty, return NULL */ 911 if (STAILQ_EMPTY(fq_pie_flowlist)) 912 return NULL; 913 914 f = STAILQ_FIRST(fq_pie_flowlist); 915 while (f != NULL) { 916 /* if there is no flow(sub-queue) deficit, increase deficit 917 * by quantum, move the flow to the tail of old flows list 918 * and try another flow. 919 * Otherwise, the flow will be used for dequeue. 920 */ 921 if (f->deficit < 0) { 922 f->deficit += param->quantum; 923 STAILQ_REMOVE_HEAD(fq_pie_flowlist, flowchain); 924 STAILQ_INSERT_TAIL(&si->oldflows, f, flowchain); 925 } else 926 break; 927 928 f = STAILQ_FIRST(fq_pie_flowlist); 929 } 930 931 /* the new flows list is empty, try old flows list */ 932 if (STAILQ_EMPTY(fq_pie_flowlist)) 933 continue; 934 935 /* Dequeue a packet from the selected flow */ 936 mbuf = pie_dequeue(f, si); 937 938 /* pie did not return a packet */ 939 if (!mbuf) { 940 /* If the selected flow belongs to new flows list, then move 941 * it to the tail of old flows list. Otherwise, deactivate it and 942 * remove it from the old list and 943 */ 944 if (fq_pie_flowlist == &si->newflows) { 945 STAILQ_REMOVE_HEAD(fq_pie_flowlist, flowchain); 946 STAILQ_INSERT_TAIL(&si->oldflows, f, flowchain); 947 } else { 948 f->active = 0; 949 fq_deactivate_pie(&f->pst); 950 STAILQ_REMOVE_HEAD(fq_pie_flowlist, flowchain); 951 } 952 /* start again */ 953 continue; 954 } 955 956 /* we have a packet to return, 957 * update flow deficit and return the packet*/ 958 f->deficit -= mbuf->m_pkthdr.len; 959 return mbuf; 960 961 } while (1); 962 963 /* unreachable point */ 964 return NULL; 965 } 966 967 /* 968 * Initialize fq_pie scheduler instance. 969 * also, allocate memory for flows array. 970 */ 971 static int 972 fq_pie_new_sched(struct dn_sch_inst *_si) 973 { 974 struct fq_pie_si *si; 975 struct dn_queue *q; 976 struct fq_pie_schk *schk; 977 int i; 978 979 si = (struct fq_pie_si *)_si; 980 schk = (struct fq_pie_schk *)(_si->sched+1); 981 982 if(si->flows) { 983 D("si already configured!"); 984 return 0; 985 } 986 987 /* init the main queue */ 988 q = &si->main_q; 989 set_oid(&q->ni.oid, DN_QUEUE, sizeof(*q)); 990 q->_si = _si; 991 q->fs = _si->sched->fs; 992 993 /* allocate memory for flows array */ 994 si->flows = malloc(schk->cfg.flows_cnt * sizeof(struct fq_pie_flow), 995 M_DUMMYNET, M_NOWAIT | M_ZERO); 996 if (si->flows == NULL) { 997 D("cannot allocate memory for fq_pie configuration parameters"); 998 return ENOMEM ; 999 } 1000 1001 /* init perturbation for this si */ 1002 si->perturbation = random(); 1003 si->nr_active_q = 0; 1004 1005 /* init the old and new flows lists */ 1006 STAILQ_INIT(&si->newflows); 1007 STAILQ_INIT(&si->oldflows); 1008 1009 /* init the flows (sub-queues) */ 1010 for (i = 0; i < schk->cfg.flows_cnt; i++) { 1011 si->flows[i].pst.parms = &schk->cfg.pcfg; 1012 si->flows[i].psi = si; 1013 pie_init(&si->flows[i]); 1014 } 1015 1016 /* init mtx lock and callout function for free memory */ 1017 if (!fq_pie_desc.ref_count) { 1018 mtx_init(&freemem_mtx, "mtx_pie", NULL, MTX_DEF); 1019 } 1020 1021 mtx_lock(&freemem_mtx); 1022 fq_pie_desc.ref_count++; 1023 mtx_unlock(&freemem_mtx); 1024 1025 return 0; 1026 } 1027 1028 /* 1029 * Free FQ-PIE flows memory callout function. 1030 * This function is scheduled when a flow or more still active and 1031 * the scheduer is about to be destroyed, to prevent memory leak. 1032 */ 1033 static void 1034 free_flows(void *_mem) 1035 { 1036 struct mem_to_free *mem = _mem; 1037 1038 free(mem->mem_flows, M_DUMMYNET); 1039 free(mem->mem_callout, M_DUMMYNET); 1040 free(_mem, M_DUMMYNET); 1041 1042 fq_pie_desc.ref_count--; 1043 if (!fq_pie_desc.ref_count) { 1044 mtx_unlock(&freemem_mtx); 1045 mtx_destroy(&freemem_mtx); 1046 } else 1047 mtx_unlock(&freemem_mtx); 1048 //D("mem freed ok!"); 1049 } 1050 1051 /* 1052 * Free fq_pie scheduler instance. 1053 */ 1054 static int 1055 fq_pie_free_sched(struct dn_sch_inst *_si) 1056 { 1057 struct fq_pie_si *si; 1058 struct fq_pie_schk *schk; 1059 int i; 1060 1061 si = (struct fq_pie_si *)_si; 1062 schk = (struct fq_pie_schk *)(_si->sched+1); 1063 1064 for (i = 0; i < schk->cfg.flows_cnt; i++) { 1065 pie_cleanup(&si->flows[i]); 1066 } 1067 1068 /* if there are still some queues have a callout going to start, 1069 * we cannot free flows memory. If we do so, a panic can happen 1070 * as prob calculate callout function uses flows memory. 1071 */ 1072 if (!si->nr_active_q) { 1073 /* free the flows array */ 1074 free(si->flows , M_DUMMYNET); 1075 si->flows = NULL; 1076 mtx_lock(&freemem_mtx); 1077 fq_pie_desc.ref_count--; 1078 if (!fq_pie_desc.ref_count) { 1079 mtx_unlock(&freemem_mtx); 1080 mtx_destroy(&freemem_mtx); 1081 } else 1082 mtx_unlock(&freemem_mtx); 1083 //D("ok!"); 1084 return 0; 1085 } else { 1086 /* memory leak happens here. So, we register a callout function to free 1087 * flows memory later. 1088 */ 1089 D("unable to stop all fq_pie sub-queues!"); 1090 mtx_lock(&freemem_mtx); 1091 1092 struct callout *mem_callout; 1093 struct mem_to_free *mem; 1094 1095 mem = malloc(sizeof(*mem), M_DUMMYNET, 1096 M_NOWAIT | M_ZERO); 1097 mem_callout = malloc(sizeof(*mem_callout), M_DUMMYNET, 1098 M_NOWAIT | M_ZERO); 1099 1100 callout_init_mtx(mem_callout, &freemem_mtx, 1101 CALLOUT_RETURNUNLOCKED); 1102 1103 mem->mem_flows = si->flows; 1104 mem->mem_callout = mem_callout; 1105 callout_reset_sbt(mem_callout, 1106 (uint64_t)(si->flows[0].pst.parms->tupdate + 1000) * SBT_1US, 1107 0, free_flows, mem, 0); 1108 1109 si->flows = NULL; 1110 mtx_unlock(&freemem_mtx); 1111 1112 return EBUSY; 1113 } 1114 } 1115 1116 /* 1117 * Configure FQ-PIE scheduler. 1118 * the configurations for the scheduler is passed fromipfw userland. 1119 */ 1120 static int 1121 fq_pie_config(struct dn_schk *_schk) 1122 { 1123 struct fq_pie_schk *schk; 1124 struct dn_extra_parms *ep; 1125 struct dn_sch_fq_pie_parms *fqp_cfg; 1126 1127 schk = (struct fq_pie_schk *)(_schk+1); 1128 ep = (struct dn_extra_parms *) _schk->cfg; 1129 1130 /* par array contains fq_pie configuration as follow 1131 * PIE: 0- qdelay_ref,1- tupdate, 2- max_burst 1132 * 3- max_ecnth, 4- alpha, 5- beta, 6- flags 1133 * FQ_PIE: 7- quantum, 8- limit, 9- flows 1134 */ 1135 if (ep && ep->oid.len ==sizeof(*ep) && 1136 ep->oid.subtype == DN_SCH_PARAMS) { 1137 1138 fqp_cfg = &schk->cfg; 1139 if (ep->par[0] < 0) 1140 fqp_cfg->pcfg.qdelay_ref = fq_pie_sysctl.pcfg.qdelay_ref; 1141 else 1142 fqp_cfg->pcfg.qdelay_ref = ep->par[0]; 1143 if (ep->par[1] < 0) 1144 fqp_cfg->pcfg.tupdate = fq_pie_sysctl.pcfg.tupdate; 1145 else 1146 fqp_cfg->pcfg.tupdate = ep->par[1]; 1147 if (ep->par[2] < 0) 1148 fqp_cfg->pcfg.max_burst = fq_pie_sysctl.pcfg.max_burst; 1149 else 1150 fqp_cfg->pcfg.max_burst = ep->par[2]; 1151 if (ep->par[3] < 0) 1152 fqp_cfg->pcfg.max_ecnth = fq_pie_sysctl.pcfg.max_ecnth; 1153 else 1154 fqp_cfg->pcfg.max_ecnth = ep->par[3]; 1155 if (ep->par[4] < 0) 1156 fqp_cfg->pcfg.alpha = fq_pie_sysctl.pcfg.alpha; 1157 else 1158 fqp_cfg->pcfg.alpha = ep->par[4]; 1159 if (ep->par[5] < 0) 1160 fqp_cfg->pcfg.beta = fq_pie_sysctl.pcfg.beta; 1161 else 1162 fqp_cfg->pcfg.beta = ep->par[5]; 1163 if (ep->par[6] < 0) 1164 fqp_cfg->pcfg.flags = 0; 1165 else 1166 fqp_cfg->pcfg.flags = ep->par[6]; 1167 1168 /* FQ configurations */ 1169 if (ep->par[7] < 0) 1170 fqp_cfg->quantum = fq_pie_sysctl.quantum; 1171 else 1172 fqp_cfg->quantum = ep->par[7]; 1173 if (ep->par[8] < 0) 1174 fqp_cfg->limit = fq_pie_sysctl.limit; 1175 else 1176 fqp_cfg->limit = ep->par[8]; 1177 if (ep->par[9] < 0) 1178 fqp_cfg->flows_cnt = fq_pie_sysctl.flows_cnt; 1179 else 1180 fqp_cfg->flows_cnt = ep->par[9]; 1181 1182 /* Bound the configurations */ 1183 fqp_cfg->pcfg.qdelay_ref = BOUND_VAR(fqp_cfg->pcfg.qdelay_ref, 1184 1, 5 * AQM_TIME_1S); 1185 fqp_cfg->pcfg.tupdate = BOUND_VAR(fqp_cfg->pcfg.tupdate, 1186 1, 5 * AQM_TIME_1S); 1187 fqp_cfg->pcfg.max_burst = BOUND_VAR(fqp_cfg->pcfg.max_burst, 1188 0, 5 * AQM_TIME_1S); 1189 fqp_cfg->pcfg.max_ecnth = BOUND_VAR(fqp_cfg->pcfg.max_ecnth, 1190 0, PIE_SCALE); 1191 fqp_cfg->pcfg.alpha = BOUND_VAR(fqp_cfg->pcfg.alpha, 0, 7 * PIE_SCALE); 1192 fqp_cfg->pcfg.beta = BOUND_VAR(fqp_cfg->pcfg.beta, 0, 7 * PIE_SCALE); 1193 1194 fqp_cfg->quantum = BOUND_VAR(fqp_cfg->quantum,1,9000); 1195 fqp_cfg->limit= BOUND_VAR(fqp_cfg->limit,1,20480); 1196 fqp_cfg->flows_cnt= BOUND_VAR(fqp_cfg->flows_cnt,1,65536); 1197 } 1198 else { 1199 D("Wrong parameters for fq_pie scheduler"); 1200 return 1; 1201 } 1202 1203 return 0; 1204 } 1205 1206 /* 1207 * Return FQ-PIE scheduler configurations 1208 * the configurations for the scheduler is passed to userland. 1209 */ 1210 static int 1211 fq_pie_getconfig (struct dn_schk *_schk, struct dn_extra_parms *ep) { 1212 1213 struct fq_pie_schk *schk = (struct fq_pie_schk *)(_schk+1); 1214 struct dn_sch_fq_pie_parms *fqp_cfg; 1215 1216 fqp_cfg = &schk->cfg; 1217 1218 strcpy(ep->name, fq_pie_desc.name); 1219 ep->par[0] = fqp_cfg->pcfg.qdelay_ref; 1220 ep->par[1] = fqp_cfg->pcfg.tupdate; 1221 ep->par[2] = fqp_cfg->pcfg.max_burst; 1222 ep->par[3] = fqp_cfg->pcfg.max_ecnth; 1223 ep->par[4] = fqp_cfg->pcfg.alpha; 1224 ep->par[5] = fqp_cfg->pcfg.beta; 1225 ep->par[6] = fqp_cfg->pcfg.flags; 1226 1227 ep->par[7] = fqp_cfg->quantum; 1228 ep->par[8] = fqp_cfg->limit; 1229 ep->par[9] = fqp_cfg->flows_cnt; 1230 1231 return 0; 1232 } 1233 1234 /* 1235 * FQ-PIE scheduler descriptor 1236 * contains the type of the scheduler, the name, the size of extra 1237 * data structures, and function pointers. 1238 */ 1239 static struct dn_alg fq_pie_desc = { 1240 _SI( .type = ) DN_SCHED_FQ_PIE, 1241 _SI( .name = ) "FQ_PIE", 1242 _SI( .flags = ) 0, 1243 1244 _SI( .schk_datalen = ) sizeof(struct fq_pie_schk), 1245 _SI( .si_datalen = ) sizeof(struct fq_pie_si) - sizeof(struct dn_sch_inst), 1246 _SI( .q_datalen = ) 0, 1247 1248 _SI( .enqueue = ) fq_pie_enqueue, 1249 _SI( .dequeue = ) fq_pie_dequeue, 1250 _SI( .config = ) fq_pie_config, /* new sched i.e. sched X config ...*/ 1251 _SI( .destroy = ) NULL, /*sched x delete */ 1252 _SI( .new_sched = ) fq_pie_new_sched, /* new schd instance */ 1253 _SI( .free_sched = ) fq_pie_free_sched, /* delete schd instance */ 1254 _SI( .new_fsk = ) NULL, 1255 _SI( .free_fsk = ) NULL, 1256 _SI( .new_queue = ) NULL, 1257 _SI( .free_queue = ) NULL, 1258 _SI( .getconfig = ) fq_pie_getconfig, 1259 _SI( .ref_count = ) 0 1260 }; 1261 1262 DECLARE_DNSCHED_MODULE(dn_fq_pie, &fq_pie_desc); 1263