1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 1998-2002,2010 Luigi Rizzo, Universita` di Pisa 5 * All rights reserved 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 /* 30 * Binary heap and hash tables, used in dummynet 31 */ 32 33 #include <sys/cdefs.h> 34 #include <sys/param.h> 35 #ifdef _KERNEL 36 __FBSDID("$FreeBSD$"); 37 #include <sys/systm.h> 38 #include <sys/malloc.h> 39 #include <sys/kernel.h> 40 #include <netpfil/ipfw/dn_heap.h> 41 #ifndef log 42 #define log(x, arg...) 43 #endif 44 45 #else /* !_KERNEL */ 46 47 #include <stdio.h> 48 #include <dn_test.h> 49 #include <strings.h> 50 #include <stdlib.h> 51 52 #include "dn_heap.h" 53 #define log(x, arg...) fprintf(stderr, ## arg) 54 #define panic(x...) fprintf(stderr, ## x), exit(1) 55 #define MALLOC_DEFINE(a, b, c) volatile int __dummy__ ## a __attribute__((__unused__)) 56 static void *my_malloc(int s) { return malloc(s); } 57 static void my_free(void *p) { free(p); } 58 #define malloc(s, t, w) my_malloc(s) 59 #define free(p, t) my_free(p) 60 #endif /* !_KERNEL */ 61 62 static MALLOC_DEFINE(M_DN_HEAP, "dummynet", "dummynet heap"); 63 64 /* 65 * Heap management functions. 66 * 67 * In the heap, first node is element 0. Children of i are 2i+1 and 2i+2. 68 * Some macros help finding parent/children so we can optimize them. 69 * 70 * heap_init() is called to expand the heap when needed. 71 * Increment size in blocks of 16 entries. 72 * Returns 1 on error, 0 on success 73 */ 74 #define HEAP_FATHER(x) ( ( (x) - 1 ) / 2 ) 75 #define HEAP_LEFT(x) ( (x)+(x) + 1 ) 76 #define HEAP_SWAP(a, b, buffer) { buffer = a ; a = b ; b = buffer ; } 77 #define HEAP_INCREMENT 15 78 79 static int 80 heap_resize(struct dn_heap *h, unsigned int new_size) 81 { 82 struct dn_heap_entry *p; 83 84 if ((unsigned int)h->size >= new_size ) /* have enough room */ 85 return 0; 86 #if 1 /* round to the next power of 2 */ 87 new_size |= new_size >> 1; 88 new_size |= new_size >> 2; 89 new_size |= new_size >> 4; 90 new_size |= new_size >> 8; 91 new_size |= new_size >> 16; 92 #else 93 new_size = (new_size + HEAP_INCREMENT ) & ~HEAP_INCREMENT; 94 #endif 95 p = mallocarray(new_size, sizeof(*p), M_DN_HEAP, M_NOWAIT); 96 if (p == NULL) { 97 printf("--- %s, resize %d failed\n", __func__, new_size ); 98 return 1; /* error */ 99 } 100 if (h->size > 0) { 101 bcopy(h->p, p, h->size * sizeof(*p) ); 102 free(h->p, M_DN_HEAP); 103 } 104 h->p = p; 105 h->size = new_size; 106 return 0; 107 } 108 109 int 110 heap_init(struct dn_heap *h, int size, int ofs) 111 { 112 if (heap_resize(h, size)) 113 return 1; 114 h->elements = 0; 115 h->ofs = ofs; 116 return 0; 117 } 118 119 /* 120 * Insert element in heap. Normally, p != NULL, we insert p in 121 * a new position and bubble up. If p == NULL, then the element is 122 * already in place, and key is the position where to start the 123 * bubble-up. 124 * Returns 1 on failure (cannot allocate new heap entry) 125 * 126 * If ofs > 0 the position (index, int) of the element in the heap is 127 * also stored in the element itself at the given offset in bytes. 128 */ 129 #define SET_OFFSET(h, i) do { \ 130 if (h->ofs > 0) \ 131 *((int32_t *)((char *)(h->p[i].object) + h->ofs)) = i; \ 132 } while (0) 133 /* 134 * RESET_OFFSET is used for sanity checks. It sets ofs 135 * to an invalid value. 136 */ 137 #define RESET_OFFSET(h, i) do { \ 138 if (h->ofs > 0) \ 139 *((int32_t *)((char *)(h->p[i].object) + h->ofs)) = -16; \ 140 } while (0) 141 142 int 143 heap_insert(struct dn_heap *h, uint64_t key1, void *p) 144 { 145 int son = h->elements; 146 147 //log("%s key %llu p %p\n", __FUNCTION__, key1, p); 148 if (p == NULL) { /* data already there, set starting point */ 149 son = key1; 150 } else { /* insert new element at the end, possibly resize */ 151 son = h->elements; 152 if (son == h->size) /* need resize... */ 153 // XXX expand by 16 or so 154 if (heap_resize(h, h->elements+16) ) 155 return 1; /* failure... */ 156 h->p[son].object = p; 157 h->p[son].key = key1; 158 h->elements++; 159 } 160 /* make sure that son >= father along the path */ 161 while (son > 0) { 162 int father = HEAP_FATHER(son); 163 struct dn_heap_entry tmp; 164 165 if (DN_KEY_LT( h->p[father].key, h->p[son].key ) ) 166 break; /* found right position */ 167 /* son smaller than father, swap and repeat */ 168 HEAP_SWAP(h->p[son], h->p[father], tmp); 169 SET_OFFSET(h, son); 170 son = father; 171 } 172 SET_OFFSET(h, son); 173 return 0; 174 } 175 176 /* 177 * remove top element from heap, or obj if obj != NULL 178 */ 179 bool 180 heap_extract(struct dn_heap *h, void *obj) 181 { 182 int child, father, max = h->elements - 1; 183 184 if (max < 0) { 185 return false; 186 } 187 if (obj == NULL) 188 father = 0; /* default: move up smallest child */ 189 else { /* extract specific element, index is at offset */ 190 if (h->ofs <= 0) 191 panic("%s: extract from middle not set on %p\n", 192 __FUNCTION__, h); 193 father = *((int *)((char *)obj + h->ofs)); 194 if (father < 0 || father >= h->elements) 195 return false; 196 } 197 /* We should make sure that the object we're trying to remove is 198 * actually in this heap. */ 199 if (obj != NULL && h->p[father].object != obj) 200 return false; 201 202 /* 203 * below, father is the index of the empty element, which 204 * we replace at each step with the smallest child until we 205 * reach the bottom level. 206 */ 207 // XXX why removing RESET_OFFSET increases runtime by 10% ? 208 RESET_OFFSET(h, father); 209 while ( (child = HEAP_LEFT(father)) <= max ) { 210 if (child != max && 211 DN_KEY_LT(h->p[child+1].key, h->p[child].key) ) 212 child++; /* take right child, otherwise left */ 213 h->p[father] = h->p[child]; 214 SET_OFFSET(h, father); 215 father = child; 216 } 217 h->elements--; 218 if (father != max) { 219 /* 220 * Fill hole with last entry and bubble up, 221 * reusing the insert code 222 */ 223 h->p[father] = h->p[max]; 224 heap_insert(h, father, NULL); 225 } 226 227 return true; 228 } 229 230 #if 0 231 /* 232 * change object position and update references 233 * XXX this one is never used! 234 */ 235 static void 236 heap_move(struct dn_heap *h, uint64_t new_key, void *object) 237 { 238 int temp, i, max = h->elements-1; 239 struct dn_heap_entry *p, buf; 240 241 if (h->ofs <= 0) 242 panic("cannot move items on this heap"); 243 p = h->p; /* shortcut */ 244 245 i = *((int *)((char *)object + h->ofs)); 246 if (DN_KEY_LT(new_key, p[i].key) ) { /* must move up */ 247 p[i].key = new_key; 248 for (; i>0 && 249 DN_KEY_LT(new_key, p[(temp = HEAP_FATHER(i))].key); 250 i = temp ) { /* bubble up */ 251 HEAP_SWAP(p[i], p[temp], buf); 252 SET_OFFSET(h, i); 253 } 254 } else { /* must move down */ 255 p[i].key = new_key; 256 while ( (temp = HEAP_LEFT(i)) <= max ) { 257 /* found left child */ 258 if (temp != max && 259 DN_KEY_LT(p[temp+1].key, p[temp].key)) 260 temp++; /* select child with min key */ 261 if (DN_KEY_LT(>p[temp].key, new_key)) { 262 /* go down */ 263 HEAP_SWAP(p[i], p[temp], buf); 264 SET_OFFSET(h, i); 265 } else 266 break; 267 i = temp; 268 } 269 } 270 SET_OFFSET(h, i); 271 } 272 #endif /* heap_move, unused */ 273 274 /* 275 * heapify() will reorganize data inside an array to maintain the 276 * heap property. It is needed when we delete a bunch of entries. 277 */ 278 static void 279 heapify(struct dn_heap *h) 280 { 281 int i; 282 283 for (i = 0; i < h->elements; i++ ) 284 heap_insert(h, i , NULL); 285 } 286 287 int 288 heap_scan(struct dn_heap *h, int (*fn)(void *, uintptr_t), 289 uintptr_t arg) 290 { 291 int i, ret, found; 292 293 for (i = found = 0 ; i < h->elements ;) { 294 ret = fn(h->p[i].object, arg); 295 if (ret & HEAP_SCAN_DEL) { 296 h->elements-- ; 297 h->p[i] = h->p[h->elements] ; 298 found++ ; 299 } else 300 i++ ; 301 if (ret & HEAP_SCAN_END) 302 break; 303 } 304 if (found) 305 heapify(h); 306 return found; 307 } 308 309 /* 310 * cleanup the heap and free data structure 311 */ 312 void 313 heap_free(struct dn_heap *h) 314 { 315 if (h->size >0 ) 316 free(h->p, M_DN_HEAP); 317 bzero(h, sizeof(*h) ); 318 } 319 320 /* 321 * hash table support. 322 */ 323 324 struct dn_ht { 325 int buckets; /* how many buckets, really buckets - 1*/ 326 int entries; /* how many entries */ 327 int ofs; /* offset of link field */ 328 uint32_t (*hash)(uintptr_t, int, void *arg); 329 int (*match)(void *_el, uintptr_t key, int, void *); 330 void *(*newh)(uintptr_t, int, void *); 331 void **ht; /* bucket heads */ 332 }; 333 /* 334 * Initialize, allocating bucket pointers inline. 335 * Recycle previous record if possible. 336 * If the 'newh' function is not supplied, we assume that the 337 * key passed to ht_find is the same object to be stored in. 338 */ 339 struct dn_ht * 340 dn_ht_init(struct dn_ht *ht, int buckets, int ofs, 341 uint32_t (*h)(uintptr_t, int, void *), 342 int (*match)(void *, uintptr_t, int, void *), 343 void *(*newh)(uintptr_t, int, void *)) 344 { 345 int l; 346 347 /* 348 * Notes about rounding bucket size to a power of two. 349 * Given the original bucket size, we compute the nearest lower and 350 * higher power of two, minus 1 (respectively b_min and b_max) because 351 * this value will be used to do an AND with the index returned 352 * by hash function. 353 * To choice between these two values, the original bucket size is 354 * compared with b_min. If the original size is greater than 4/3 b_min, 355 * we round the bucket size to b_max, else to b_min. 356 * This ratio try to round to the nearest power of two, advantaging 357 * the greater size if the different between two power is relatively 358 * big. 359 * Rounding the bucket size to a power of two avoid the use of 360 * module when calculating the correct bucket. 361 * The ht->buckets variable store the bucket size - 1 to simply 362 * do an AND between the index returned by hash function and ht->bucket 363 * instead of a module. 364 */ 365 int b_min; /* min buckets */ 366 int b_max; /* max buckets */ 367 int b_ori; /* original buckets */ 368 369 if (h == NULL || match == NULL) { 370 printf("--- missing hash or match function"); 371 return NULL; 372 } 373 if (buckets < 1 || buckets > 65536) 374 return NULL; 375 376 b_ori = buckets; 377 /* calculate next power of 2, - 1*/ 378 buckets |= buckets >> 1; 379 buckets |= buckets >> 2; 380 buckets |= buckets >> 4; 381 buckets |= buckets >> 8; 382 buckets |= buckets >> 16; 383 384 b_max = buckets; /* Next power */ 385 b_min = buckets >> 1; /* Previous power */ 386 387 /* Calculate the 'nearest' bucket size */ 388 if (b_min * 4000 / 3000 < b_ori) 389 buckets = b_max; 390 else 391 buckets = b_min; 392 393 if (ht) { /* see if we can reuse */ 394 if (buckets <= ht->buckets) { 395 ht->buckets = buckets; 396 } else { 397 /* free pointers if not allocated inline */ 398 if (ht->ht != (void *)(ht + 1)) 399 free(ht->ht, M_DN_HEAP); 400 free(ht, M_DN_HEAP); 401 ht = NULL; 402 } 403 } 404 if (ht == NULL) { 405 /* Allocate buckets + 1 entries because buckets is use to 406 * do the AND with the index returned by hash function 407 */ 408 l = sizeof(*ht) + (buckets + 1) * sizeof(void **); 409 ht = malloc(l, M_DN_HEAP, M_NOWAIT | M_ZERO); 410 } 411 if (ht) { 412 ht->ht = (void **)(ht + 1); 413 ht->buckets = buckets; 414 ht->ofs = ofs; 415 ht->hash = h; 416 ht->match = match; 417 ht->newh = newh; 418 } 419 return ht; 420 } 421 422 /* dummy callback for dn_ht_free to unlink all */ 423 static int 424 do_del(void *obj, void *arg) 425 { 426 (void)obj; 427 (void)arg; 428 return DNHT_SCAN_DEL; 429 } 430 431 void 432 dn_ht_free(struct dn_ht *ht, int flags) 433 { 434 if (ht == NULL) 435 return; 436 if (flags & DNHT_REMOVE) { 437 (void)dn_ht_scan(ht, do_del, NULL); 438 } else { 439 if (ht->ht && ht->ht != (void *)(ht + 1)) 440 free(ht->ht, M_DN_HEAP); 441 free(ht, M_DN_HEAP); 442 } 443 } 444 445 int 446 dn_ht_entries(struct dn_ht *ht) 447 { 448 return ht ? ht->entries : 0; 449 } 450 451 /* lookup and optionally create or delete element */ 452 void * 453 dn_ht_find(struct dn_ht *ht, uintptr_t key, int flags, void *arg) 454 { 455 int i; 456 void **pp, *p; 457 458 if (ht == NULL) /* easy on an empty hash */ 459 return NULL; 460 i = (ht->buckets == 1) ? 0 : 461 (ht->hash(key, flags, arg) & ht->buckets); 462 463 for (pp = &ht->ht[i]; (p = *pp); pp = (void **)((char *)p + ht->ofs)) { 464 if (flags & DNHT_MATCH_PTR) { 465 if (key == (uintptr_t)p) 466 break; 467 } else if (ht->match(p, key, flags, arg)) /* found match */ 468 break; 469 } 470 if (p) { 471 if (flags & DNHT_REMOVE) { 472 /* link in the next element */ 473 *pp = *(void **)((char *)p + ht->ofs); 474 *(void **)((char *)p + ht->ofs) = NULL; 475 ht->entries--; 476 } 477 } else if (flags & DNHT_INSERT) { 478 // printf("%s before calling new, bucket %d ofs %d\n", 479 // __FUNCTION__, i, ht->ofs); 480 p = ht->newh ? ht->newh(key, flags, arg) : (void *)key; 481 // printf("%s newh returns %p\n", __FUNCTION__, p); 482 if (p) { 483 ht->entries++; 484 *(void **)((char *)p + ht->ofs) = ht->ht[i]; 485 ht->ht[i] = p; 486 } 487 } 488 return p; 489 } 490 491 /* 492 * do a scan with the option to delete the object. Extract next before 493 * running the callback because the element may be destroyed there. 494 */ 495 int 496 dn_ht_scan(struct dn_ht *ht, int (*fn)(void *, void *), void *arg) 497 { 498 int i, ret, found = 0; 499 void **curp, *cur, *next; 500 501 if (ht == NULL || fn == NULL) 502 return 0; 503 for (i = 0; i <= ht->buckets; i++) { 504 curp = &ht->ht[i]; 505 while ( (cur = *curp) != NULL) { 506 next = *(void **)((char *)cur + ht->ofs); 507 ret = fn(cur, arg); 508 if (ret & DNHT_SCAN_DEL) { 509 found++; 510 ht->entries--; 511 *curp = next; 512 } else { 513 curp = (void **)((char *)cur + ht->ofs); 514 } 515 if (ret & DNHT_SCAN_END) 516 return found; 517 } 518 } 519 return found; 520 } 521 522 /* 523 * Similar to dn_ht_scan(), except that the scan is performed only 524 * in the bucket 'bucket'. The function returns a correct bucket number if 525 * the original is invalid. 526 * If the callback returns DNHT_SCAN_END, the function move the ht->ht[i] 527 * pointer to the last entry processed. Moreover, the bucket number passed 528 * by caller is decremented, because usually the caller increment it. 529 */ 530 int 531 dn_ht_scan_bucket(struct dn_ht *ht, int *bucket, int (*fn)(void *, void *), 532 void *arg) 533 { 534 int i, ret, found = 0; 535 void **curp, *cur, *next; 536 537 if (ht == NULL || fn == NULL) 538 return 0; 539 if (*bucket > ht->buckets) 540 *bucket = 0; 541 i = *bucket; 542 543 curp = &ht->ht[i]; 544 while ( (cur = *curp) != NULL) { 545 next = *(void **)((char *)cur + ht->ofs); 546 ret = fn(cur, arg); 547 if (ret & DNHT_SCAN_DEL) { 548 found++; 549 ht->entries--; 550 *curp = next; 551 } else { 552 curp = (void **)((char *)cur + ht->ofs); 553 } 554 if (ret & DNHT_SCAN_END) 555 return found; 556 } 557 return found; 558 } 559