1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 1998-2002,2010 Luigi Rizzo, Universita` di Pisa 5 * All rights reserved 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 /* 30 * Binary heap and hash tables, used in dummynet 31 */ 32 33 #include <sys/param.h> 34 #ifdef _KERNEL 35 #include <sys/systm.h> 36 #include <sys/malloc.h> 37 #include <sys/kernel.h> 38 #include <netpfil/ipfw/dn_heap.h> 39 #ifndef log 40 #define log(x, arg...) 41 #endif 42 43 #else /* !_KERNEL */ 44 45 #include <stdio.h> 46 #include <dn_test.h> 47 #include <strings.h> 48 #include <stdlib.h> 49 50 #include "dn_heap.h" 51 #define log(x, arg...) fprintf(stderr, ## arg) 52 #define panic(x...) fprintf(stderr, ## x), exit(1) 53 #define MALLOC_DEFINE(a, b, c) volatile int __dummy__ ## a __attribute__((__unused__)) 54 static void *my_malloc(int s) { return malloc(s); } 55 static void my_free(void *p) { free(p); } 56 #define malloc(s, t, w) my_malloc(s) 57 #define free(p, t) my_free(p) 58 #endif /* !_KERNEL */ 59 60 static MALLOC_DEFINE(M_DN_HEAP, "dummynet", "dummynet heap"); 61 62 /* 63 * Heap management functions. 64 * 65 * In the heap, first node is element 0. Children of i are 2i+1 and 2i+2. 66 * Some macros help finding parent/children so we can optimize them. 67 * 68 * heap_init() is called to expand the heap when needed. 69 * Increment size in blocks of 16 entries. 70 * Returns 1 on error, 0 on success 71 */ 72 #define HEAP_FATHER(x) ( ( (x) - 1 ) / 2 ) 73 #define HEAP_LEFT(x) ( (x)+(x) + 1 ) 74 #define HEAP_SWAP(a, b, buffer) { buffer = a ; a = b ; b = buffer ; } 75 #define HEAP_INCREMENT 15 76 77 static int 78 heap_resize(struct dn_heap *h, unsigned int new_size) 79 { 80 struct dn_heap_entry *p; 81 82 if ((unsigned int)h->size >= new_size ) /* have enough room */ 83 return 0; 84 #if 1 /* round to the next power of 2 */ 85 new_size |= new_size >> 1; 86 new_size |= new_size >> 2; 87 new_size |= new_size >> 4; 88 new_size |= new_size >> 8; 89 new_size |= new_size >> 16; 90 #else 91 new_size = (new_size + HEAP_INCREMENT ) & ~HEAP_INCREMENT; 92 #endif 93 p = mallocarray(new_size, sizeof(*p), M_DN_HEAP, M_NOWAIT); 94 if (p == NULL) { 95 printf("--- %s, resize %d failed\n", __func__, new_size ); 96 return 1; /* error */ 97 } 98 if (h->size > 0) { 99 bcopy(h->p, p, h->size * sizeof(*p) ); 100 free(h->p, M_DN_HEAP); 101 } 102 h->p = p; 103 h->size = new_size; 104 return 0; 105 } 106 107 int 108 heap_init(struct dn_heap *h, int size, int ofs) 109 { 110 if (heap_resize(h, size)) 111 return 1; 112 h->elements = 0; 113 h->ofs = ofs; 114 return 0; 115 } 116 117 /* 118 * Insert element in heap. Normally, p != NULL, we insert p in 119 * a new position and bubble up. If p == NULL, then the element is 120 * already in place, and key is the position where to start the 121 * bubble-up. 122 * Returns 1 on failure (cannot allocate new heap entry) 123 * 124 * If ofs > 0 the position (index, int) of the element in the heap is 125 * also stored in the element itself at the given offset in bytes. 126 */ 127 #define SET_OFFSET(h, i) do { \ 128 if (h->ofs > 0) \ 129 *((int32_t *)((char *)(h->p[i].object) + h->ofs)) = i; \ 130 } while (0) 131 /* 132 * RESET_OFFSET is used for sanity checks. It sets ofs 133 * to an invalid value. 134 */ 135 #define RESET_OFFSET(h, i) do { \ 136 if (h->ofs > 0) \ 137 *((int32_t *)((char *)(h->p[i].object) + h->ofs)) = -16; \ 138 } while (0) 139 140 int 141 heap_insert(struct dn_heap *h, uint64_t key1, void *p) 142 { 143 int son = h->elements; 144 145 //log("%s key %llu p %p\n", __FUNCTION__, key1, p); 146 if (p == NULL) { /* data already there, set starting point */ 147 son = key1; 148 } else { /* insert new element at the end, possibly resize */ 149 son = h->elements; 150 if (son == h->size) /* need resize... */ 151 // XXX expand by 16 or so 152 if (heap_resize(h, h->elements+16) ) 153 return 1; /* failure... */ 154 h->p[son].object = p; 155 h->p[son].key = key1; 156 h->elements++; 157 } 158 /* make sure that son >= father along the path */ 159 while (son > 0) { 160 int father = HEAP_FATHER(son); 161 struct dn_heap_entry tmp; 162 163 if (DN_KEY_LT( h->p[father].key, h->p[son].key ) ) 164 break; /* found right position */ 165 /* son smaller than father, swap and repeat */ 166 HEAP_SWAP(h->p[son], h->p[father], tmp); 167 SET_OFFSET(h, son); 168 son = father; 169 } 170 SET_OFFSET(h, son); 171 return 0; 172 } 173 174 /* 175 * remove top element from heap, or obj if obj != NULL 176 */ 177 bool 178 heap_extract(struct dn_heap *h, void *obj) 179 { 180 int child, father, max = h->elements - 1; 181 182 if (max < 0) { 183 return false; 184 } 185 if (obj == NULL) 186 father = 0; /* default: move up smallest child */ 187 else { /* extract specific element, index is at offset */ 188 if (h->ofs <= 0) 189 panic("%s: extract from middle not set on %p\n", 190 __FUNCTION__, h); 191 father = *((int *)((char *)obj + h->ofs)); 192 if (father < 0 || father >= h->elements) 193 return false; 194 } 195 /* We should make sure that the object we're trying to remove is 196 * actually in this heap. */ 197 if (obj != NULL && h->p[father].object != obj) 198 return false; 199 200 /* 201 * below, father is the index of the empty element, which 202 * we replace at each step with the smallest child until we 203 * reach the bottom level. 204 */ 205 // XXX why removing RESET_OFFSET increases runtime by 10% ? 206 RESET_OFFSET(h, father); 207 while ( (child = HEAP_LEFT(father)) <= max ) { 208 if (child != max && 209 DN_KEY_LT(h->p[child+1].key, h->p[child].key) ) 210 child++; /* take right child, otherwise left */ 211 h->p[father] = h->p[child]; 212 SET_OFFSET(h, father); 213 father = child; 214 } 215 h->elements--; 216 if (father != max) { 217 /* 218 * Fill hole with last entry and bubble up, 219 * reusing the insert code 220 */ 221 h->p[father] = h->p[max]; 222 heap_insert(h, father, NULL); 223 } 224 225 return true; 226 } 227 228 #if 0 229 /* 230 * change object position and update references 231 * XXX this one is never used! 232 */ 233 static void 234 heap_move(struct dn_heap *h, uint64_t new_key, void *object) 235 { 236 int temp, i, max = h->elements-1; 237 struct dn_heap_entry *p, buf; 238 239 if (h->ofs <= 0) 240 panic("cannot move items on this heap"); 241 p = h->p; /* shortcut */ 242 243 i = *((int *)((char *)object + h->ofs)); 244 if (DN_KEY_LT(new_key, p[i].key) ) { /* must move up */ 245 p[i].key = new_key; 246 for (; i>0 && 247 DN_KEY_LT(new_key, p[(temp = HEAP_FATHER(i))].key); 248 i = temp ) { /* bubble up */ 249 HEAP_SWAP(p[i], p[temp], buf); 250 SET_OFFSET(h, i); 251 } 252 } else { /* must move down */ 253 p[i].key = new_key; 254 while ( (temp = HEAP_LEFT(i)) <= max ) { 255 /* found left child */ 256 if (temp != max && 257 DN_KEY_LT(p[temp+1].key, p[temp].key)) 258 temp++; /* select child with min key */ 259 if (DN_KEY_LT(>p[temp].key, new_key)) { 260 /* go down */ 261 HEAP_SWAP(p[i], p[temp], buf); 262 SET_OFFSET(h, i); 263 } else 264 break; 265 i = temp; 266 } 267 } 268 SET_OFFSET(h, i); 269 } 270 #endif /* heap_move, unused */ 271 272 /* 273 * heapify() will reorganize data inside an array to maintain the 274 * heap property. It is needed when we delete a bunch of entries. 275 */ 276 static void 277 heapify(struct dn_heap *h) 278 { 279 int i; 280 281 for (i = 0; i < h->elements; i++ ) 282 heap_insert(h, i , NULL); 283 } 284 285 int 286 heap_scan(struct dn_heap *h, int (*fn)(void *, uintptr_t), 287 uintptr_t arg) 288 { 289 int i, ret, found; 290 291 for (i = found = 0 ; i < h->elements ;) { 292 ret = fn(h->p[i].object, arg); 293 if (ret & HEAP_SCAN_DEL) { 294 h->elements-- ; 295 h->p[i] = h->p[h->elements] ; 296 found++ ; 297 } else 298 i++ ; 299 if (ret & HEAP_SCAN_END) 300 break; 301 } 302 if (found) 303 heapify(h); 304 return found; 305 } 306 307 /* 308 * cleanup the heap and free data structure 309 */ 310 void 311 heap_free(struct dn_heap *h) 312 { 313 if (h->size >0 ) 314 free(h->p, M_DN_HEAP); 315 bzero(h, sizeof(*h) ); 316 } 317 318 /* 319 * hash table support. 320 */ 321 322 struct dn_ht { 323 int buckets; /* how many buckets, really buckets - 1*/ 324 int entries; /* how many entries */ 325 int ofs; /* offset of link field */ 326 uint32_t (*hash)(uintptr_t, int, void *arg); 327 int (*match)(void *_el, uintptr_t key, int, void *); 328 void *(*newh)(uintptr_t, int, void *); 329 void **ht; /* bucket heads */ 330 }; 331 /* 332 * Initialize, allocating bucket pointers inline. 333 * Recycle previous record if possible. 334 * If the 'newh' function is not supplied, we assume that the 335 * key passed to ht_find is the same object to be stored in. 336 */ 337 struct dn_ht * 338 dn_ht_init(struct dn_ht *ht, int buckets, int ofs, 339 uint32_t (*h)(uintptr_t, int, void *), 340 int (*match)(void *, uintptr_t, int, void *), 341 void *(*newh)(uintptr_t, int, void *)) 342 { 343 int l; 344 345 /* 346 * Notes about rounding bucket size to a power of two. 347 * Given the original bucket size, we compute the nearest lower and 348 * higher power of two, minus 1 (respectively b_min and b_max) because 349 * this value will be used to do an AND with the index returned 350 * by hash function. 351 * To choice between these two values, the original bucket size is 352 * compared with b_min. If the original size is greater than 4/3 b_min, 353 * we round the bucket size to b_max, else to b_min. 354 * This ratio try to round to the nearest power of two, advantaging 355 * the greater size if the different between two power is relatively 356 * big. 357 * Rounding the bucket size to a power of two avoid the use of 358 * module when calculating the correct bucket. 359 * The ht->buckets variable store the bucket size - 1 to simply 360 * do an AND between the index returned by hash function and ht->bucket 361 * instead of a module. 362 */ 363 int b_min; /* min buckets */ 364 int b_max; /* max buckets */ 365 int b_ori; /* original buckets */ 366 367 if (h == NULL || match == NULL) { 368 printf("--- missing hash or match function"); 369 return NULL; 370 } 371 if (buckets < 1 || buckets > 65536) 372 return NULL; 373 374 b_ori = buckets; 375 /* calculate next power of 2, - 1*/ 376 buckets |= buckets >> 1; 377 buckets |= buckets >> 2; 378 buckets |= buckets >> 4; 379 buckets |= buckets >> 8; 380 buckets |= buckets >> 16; 381 382 b_max = buckets; /* Next power */ 383 b_min = buckets >> 1; /* Previous power */ 384 385 /* Calculate the 'nearest' bucket size */ 386 if (b_min * 4000 / 3000 < b_ori) 387 buckets = b_max; 388 else 389 buckets = b_min; 390 391 if (ht) { /* see if we can reuse */ 392 if (buckets <= ht->buckets) { 393 ht->buckets = buckets; 394 } else { 395 /* free pointers if not allocated inline */ 396 if (ht->ht != (void *)(ht + 1)) 397 free(ht->ht, M_DN_HEAP); 398 free(ht, M_DN_HEAP); 399 ht = NULL; 400 } 401 } 402 if (ht == NULL) { 403 /* Allocate buckets + 1 entries because buckets is use to 404 * do the AND with the index returned by hash function 405 */ 406 l = sizeof(*ht) + (buckets + 1) * sizeof(void **); 407 ht = malloc(l, M_DN_HEAP, M_NOWAIT | M_ZERO); 408 } 409 if (ht) { 410 ht->ht = (void **)(ht + 1); 411 ht->buckets = buckets; 412 ht->ofs = ofs; 413 ht->hash = h; 414 ht->match = match; 415 ht->newh = newh; 416 } 417 return ht; 418 } 419 420 /* dummy callback for dn_ht_free to unlink all */ 421 static int 422 do_del(void *obj, void *arg) 423 { 424 (void)obj; 425 (void)arg; 426 return DNHT_SCAN_DEL; 427 } 428 429 void 430 dn_ht_free(struct dn_ht *ht, int flags) 431 { 432 if (ht == NULL) 433 return; 434 if (flags & DNHT_REMOVE) { 435 (void)dn_ht_scan(ht, do_del, NULL); 436 } else { 437 if (ht->ht && ht->ht != (void *)(ht + 1)) 438 free(ht->ht, M_DN_HEAP); 439 free(ht, M_DN_HEAP); 440 } 441 } 442 443 int 444 dn_ht_entries(struct dn_ht *ht) 445 { 446 return ht ? ht->entries : 0; 447 } 448 449 /* lookup and optionally create or delete element */ 450 void * 451 dn_ht_find(struct dn_ht *ht, uintptr_t key, int flags, void *arg) 452 { 453 int i; 454 void **pp, *p; 455 456 if (ht == NULL) /* easy on an empty hash */ 457 return NULL; 458 i = (ht->buckets == 1) ? 0 : 459 (ht->hash(key, flags, arg) & ht->buckets); 460 461 for (pp = &ht->ht[i]; (p = *pp); pp = (void **)((char *)p + ht->ofs)) { 462 if (flags & DNHT_MATCH_PTR) { 463 if (key == (uintptr_t)p) 464 break; 465 } else if (ht->match(p, key, flags, arg)) /* found match */ 466 break; 467 } 468 if (p) { 469 if (flags & DNHT_REMOVE) { 470 /* link in the next element */ 471 *pp = *(void **)((char *)p + ht->ofs); 472 *(void **)((char *)p + ht->ofs) = NULL; 473 ht->entries--; 474 } 475 } else if (flags & DNHT_INSERT) { 476 // printf("%s before calling new, bucket %d ofs %d\n", 477 // __FUNCTION__, i, ht->ofs); 478 p = ht->newh ? ht->newh(key, flags, arg) : (void *)key; 479 // printf("%s newh returns %p\n", __FUNCTION__, p); 480 if (p) { 481 ht->entries++; 482 *(void **)((char *)p + ht->ofs) = ht->ht[i]; 483 ht->ht[i] = p; 484 } 485 } 486 return p; 487 } 488 489 /* 490 * do a scan with the option to delete the object. Extract next before 491 * running the callback because the element may be destroyed there. 492 */ 493 int 494 dn_ht_scan(struct dn_ht *ht, int (*fn)(void *, void *), void *arg) 495 { 496 int i, ret, found = 0; 497 void **curp, *cur, *next; 498 499 if (ht == NULL || fn == NULL) 500 return 0; 501 for (i = 0; i <= ht->buckets; i++) { 502 curp = &ht->ht[i]; 503 while ( (cur = *curp) != NULL) { 504 next = *(void **)((char *)cur + ht->ofs); 505 ret = fn(cur, arg); 506 if (ret & DNHT_SCAN_DEL) { 507 found++; 508 ht->entries--; 509 *curp = next; 510 } else { 511 curp = (void **)((char *)cur + ht->ofs); 512 } 513 if (ret & DNHT_SCAN_END) 514 return found; 515 } 516 } 517 return found; 518 } 519 520 /* 521 * Similar to dn_ht_scan(), except that the scan is performed only 522 * in the bucket 'bucket'. The function returns a correct bucket number if 523 * the original is invalid. 524 * If the callback returns DNHT_SCAN_END, the function move the ht->ht[i] 525 * pointer to the last entry processed. Moreover, the bucket number passed 526 * by caller is decremented, because usually the caller increment it. 527 */ 528 int 529 dn_ht_scan_bucket(struct dn_ht *ht, int *bucket, int (*fn)(void *, void *), 530 void *arg) 531 { 532 int i, ret, found = 0; 533 void **curp, *cur, *next; 534 535 if (ht == NULL || fn == NULL) 536 return 0; 537 if (*bucket > ht->buckets) 538 *bucket = 0; 539 i = *bucket; 540 541 curp = &ht->ht[i]; 542 while ( (cur = *curp) != NULL) { 543 next = *(void **)((char *)cur + ht->ofs); 544 ret = fn(cur, arg); 545 if (ret & DNHT_SCAN_DEL) { 546 found++; 547 ht->entries--; 548 *curp = next; 549 } else { 550 curp = (void **)((char *)cur + ht->ofs); 551 } 552 if (ret & DNHT_SCAN_END) 553 return found; 554 } 555 return found; 556 } 557