1 /* 2 * PIE - Proportional Integral controller Enhanced AQM algorithm. 3 * 4 * $FreeBSD$ 5 * 6 * Copyright (C) 2016 Centre for Advanced Internet Architectures, 7 * Swinburne University of Technology, Melbourne, Australia. 8 * Portions of this code were made possible in part by a gift from 9 * The Comcast Innovation Fund. 10 * Implemented by Rasool Al-Saadi <ralsaadi@swin.edu.au> 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 #include "opt_inet6.h" 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/malloc.h> 40 #include <sys/mbuf.h> 41 #include <sys/kernel.h> 42 #include <sys/lock.h> 43 #include <sys/module.h> 44 #include <sys/mutex.h> 45 #include <sys/priv.h> 46 #include <sys/proc.h> 47 #include <sys/rwlock.h> 48 #include <sys/socket.h> 49 #include <sys/time.h> 50 #include <sys/sysctl.h> 51 52 #include <net/if.h> /* IFNAMSIZ, struct ifaddr, ifq head, lock.h mutex.h */ 53 #include <net/netisr.h> 54 #include <net/vnet.h> 55 56 #include <netinet/in.h> 57 #include <netinet/ip.h> /* ip_len, ip_off */ 58 #include <netinet/ip_var.h> /* ip_output(), IP_FORWARDING */ 59 #include <netinet/ip_fw.h> 60 #include <netinet/ip_dummynet.h> 61 #include <netinet/if_ether.h> /* various ether_* routines */ 62 #include <netinet/ip6.h> /* for ip6_input, ip6_output prototypes */ 63 #include <netinet6/ip6_var.h> 64 #include <netpfil/ipfw/dn_heap.h> 65 66 #ifdef NEW_AQM 67 #include <netpfil/ipfw/ip_fw_private.h> 68 #include <netpfil/ipfw/ip_dn_private.h> 69 #include <netpfil/ipfw/dn_aqm.h> 70 #include <netpfil/ipfw/dn_aqm_pie.h> 71 #include <netpfil/ipfw/dn_sched.h> 72 73 /* for debugging */ 74 #include <sys/syslog.h> 75 76 static struct dn_aqm pie_desc; 77 78 /* PIE defaults 79 * target=15ms, tupdate=15ms, max_burst=150ms, 80 * max_ecnth=0.1, alpha=0.125, beta=1.25, 81 */ 82 struct dn_aqm_pie_parms pie_sysctl = 83 { 15 * AQM_TIME_1MS, 15 * AQM_TIME_1MS, 150 * AQM_TIME_1MS, 84 PIE_SCALE/10 , PIE_SCALE * 0.125, PIE_SCALE * 1.25 , 85 PIE_CAPDROP_ENABLED | PIE_DEPRATEEST_ENABLED | PIE_DERAND_ENABLED }; 86 87 static int 88 pie_sysctl_alpha_beta_handler(SYSCTL_HANDLER_ARGS) 89 { 90 int error; 91 long value; 92 93 if (!strcmp(oidp->oid_name,"alpha")) 94 value = pie_sysctl.alpha; 95 else 96 value = pie_sysctl.beta; 97 98 value = value * 1000 / PIE_SCALE; 99 error = sysctl_handle_long(oidp, &value, 0, req); 100 if (error != 0 || req->newptr == NULL) 101 return (error); 102 if (value < 1 || value > 7 * PIE_SCALE) 103 return (EINVAL); 104 value = (value * PIE_SCALE) / 1000; 105 if (!strcmp(oidp->oid_name,"alpha")) 106 pie_sysctl.alpha = value; 107 else 108 pie_sysctl.beta = value; 109 return (0); 110 } 111 112 static int 113 pie_sysctl_target_tupdate_maxb_handler(SYSCTL_HANDLER_ARGS) 114 { 115 int error; 116 long value; 117 118 if (!strcmp(oidp->oid_name,"target")) 119 value = pie_sysctl.qdelay_ref; 120 else if (!strcmp(oidp->oid_name,"tupdate")) 121 value = pie_sysctl.tupdate; 122 else 123 value = pie_sysctl.max_burst; 124 125 value = value / AQM_TIME_1US; 126 error = sysctl_handle_long(oidp, &value, 0, req); 127 if (error != 0 || req->newptr == NULL) 128 return (error); 129 if (value < 1 || value > 10 * AQM_TIME_1S) 130 return (EINVAL); 131 value = value * AQM_TIME_1US; 132 133 if (!strcmp(oidp->oid_name,"target")) 134 pie_sysctl.qdelay_ref = value; 135 else if (!strcmp(oidp->oid_name,"tupdate")) 136 pie_sysctl.tupdate = value; 137 else 138 pie_sysctl.max_burst = value; 139 return (0); 140 } 141 142 static int 143 pie_sysctl_max_ecnth_handler(SYSCTL_HANDLER_ARGS) 144 { 145 int error; 146 long value; 147 148 value = pie_sysctl.max_ecnth; 149 value = value * 1000 / PIE_SCALE; 150 error = sysctl_handle_long(oidp, &value, 0, req); 151 if (error != 0 || req->newptr == NULL) 152 return (error); 153 if (value < 1 || value > PIE_SCALE) 154 return (EINVAL); 155 value = (value * PIE_SCALE) / 1000; 156 pie_sysctl.max_ecnth = value; 157 return (0); 158 } 159 160 /* define PIE sysctl variables */ 161 SYSBEGIN(f4) 162 SYSCTL_DECL(_net_inet); 163 SYSCTL_DECL(_net_inet_ip); 164 SYSCTL_DECL(_net_inet_ip_dummynet); 165 static SYSCTL_NODE(_net_inet_ip_dummynet, OID_AUTO, 166 pie, CTLFLAG_RW, 0, "PIE"); 167 168 #ifdef SYSCTL_NODE 169 SYSCTL_PROC(_net_inet_ip_dummynet_pie, OID_AUTO, target, 170 CTLTYPE_LONG | CTLFLAG_RW, NULL, 0, 171 pie_sysctl_target_tupdate_maxb_handler, "L", 172 "queue target in microsecond"); 173 SYSCTL_PROC(_net_inet_ip_dummynet_pie, OID_AUTO, tupdate, 174 CTLTYPE_LONG | CTLFLAG_RW, NULL, 0, 175 pie_sysctl_target_tupdate_maxb_handler, "L", 176 "the frequency of drop probability calculation in microsecond"); 177 SYSCTL_PROC(_net_inet_ip_dummynet_pie, OID_AUTO, max_burst, 178 CTLTYPE_LONG | CTLFLAG_RW, NULL, 0, 179 pie_sysctl_target_tupdate_maxb_handler, "L", 180 "Burst allowance interval in microsecond"); 181 182 SYSCTL_PROC(_net_inet_ip_dummynet_pie, OID_AUTO, max_ecnth, 183 CTLTYPE_LONG | CTLFLAG_RW, NULL, 0, 184 pie_sysctl_max_ecnth_handler, "L", 185 "ECN safeguard threshold scaled by 1000"); 186 187 SYSCTL_PROC(_net_inet_ip_dummynet_pie, OID_AUTO, alpha, 188 CTLTYPE_LONG | CTLFLAG_RW, NULL, 0, 189 pie_sysctl_alpha_beta_handler, "L", 190 "PIE alpha scaled by 1000"); 191 SYSCTL_PROC(_net_inet_ip_dummynet_pie, OID_AUTO, beta, 192 CTLTYPE_LONG | CTLFLAG_RW, NULL, 0, 193 pie_sysctl_alpha_beta_handler, "L", 194 "beta scaled by 1000"); 195 #endif 196 197 198 /* 199 * Callout function for drop probability calculation 200 * This function is called over tupdate ms and takes pointer of PIE 201 * status variables as an argument 202 */ 203 static void 204 calculate_drop_prob(void *x) 205 { 206 int64_t p, prob, oldprob; 207 struct dn_aqm_pie_parms *pprms; 208 struct pie_status *pst = (struct pie_status *) x; 209 210 /* dealing with race condition */ 211 if (callout_pending(&pst->aqm_pie_callout)) { 212 /* callout was reset */ 213 mtx_unlock(&pst->lock_mtx); 214 return; 215 } 216 217 if (!callout_active(&pst->aqm_pie_callout)) { 218 /* callout was stopped */ 219 mtx_unlock(&pst->lock_mtx); 220 mtx_destroy(&pst->lock_mtx); 221 free(x, M_DUMMYNET); 222 //pst->pq->aqm_status = NULL; 223 pie_desc.ref_count--; 224 return; 225 } 226 callout_deactivate(&pst->aqm_pie_callout); 227 228 pprms = pst->parms; 229 prob = pst->drop_prob; 230 231 /* calculate current qdelay */ 232 if (pprms->flags & PIE_DEPRATEEST_ENABLED) { 233 pst->current_qdelay = ((uint64_t)pst->pq->ni.len_bytes * 234 pst->avg_dq_time) >> PIE_DQ_THRESHOLD_BITS; 235 } 236 237 /* calculate drop probability */ 238 p = (int64_t)pprms->alpha * 239 ((int64_t)pst->current_qdelay - (int64_t)pprms->qdelay_ref); 240 p +=(int64_t) pprms->beta * 241 ((int64_t)pst->current_qdelay - (int64_t)pst->qdelay_old); 242 243 /* We PIE_MAX_PROB shift by 12-bits to increase the division precision */ 244 p *= (PIE_MAX_PROB << 12) / AQM_TIME_1S; 245 246 /* auto-tune drop probability */ 247 if (prob < (PIE_MAX_PROB / 1000000)) /* 0.000001 */ 248 p >>= 11 + PIE_FIX_POINT_BITS + 12; 249 else if (prob < (PIE_MAX_PROB / 100000)) /* 0.00001 */ 250 p >>= 9 + PIE_FIX_POINT_BITS + 12; 251 else if (prob < (PIE_MAX_PROB / 10000)) /* 0.0001 */ 252 p >>= 7 + PIE_FIX_POINT_BITS + 12; 253 else if (prob < (PIE_MAX_PROB / 1000)) /* 0.001 */ 254 p >>= 5 + PIE_FIX_POINT_BITS + 12; 255 else if (prob < (PIE_MAX_PROB / 100)) /* 0.01 */ 256 p >>= 3 + PIE_FIX_POINT_BITS + 12; 257 else if (prob < (PIE_MAX_PROB / 10)) /* 0.1 */ 258 p >>= 1 + PIE_FIX_POINT_BITS + 12; 259 else 260 p >>= PIE_FIX_POINT_BITS + 12; 261 262 oldprob = prob; 263 264 /* Cap Drop adjustment */ 265 if ((pprms->flags & PIE_CAPDROP_ENABLED) && prob >= PIE_MAX_PROB / 10 266 && p > PIE_MAX_PROB / 50 ) 267 p = PIE_MAX_PROB / 50; 268 269 prob = prob + p; 270 271 /* decay the drop probability exponentially */ 272 if (pst->current_qdelay == 0 && pst->qdelay_old == 0) 273 /* 0.98 ~= 1- 1/64 */ 274 prob = prob - (prob >> 6); 275 276 277 /* check for multiplication overflow/underflow */ 278 if (p>0) { 279 if (prob<oldprob) { 280 D("overflow"); 281 prob= PIE_MAX_PROB; 282 } 283 } 284 else 285 if (prob>oldprob) { 286 prob= 0; 287 D("underflow"); 288 } 289 290 /* make drop probability between 0 and PIE_MAX_PROB*/ 291 if (prob < 0) 292 prob = 0; 293 else if (prob > PIE_MAX_PROB) 294 prob = PIE_MAX_PROB; 295 296 pst->drop_prob = prob; 297 298 /* store current queue delay value in old queue delay*/ 299 pst->qdelay_old = pst->current_qdelay; 300 301 /* update burst allowance */ 302 if ((pst->sflags & PIE_ACTIVE) && pst->burst_allowance>0) { 303 304 if (pst->burst_allowance > pprms->tupdate ) 305 pst->burst_allowance -= pprms->tupdate; 306 else 307 pst->burst_allowance = 0; 308 } 309 310 /* reschedule calculate_drop_prob function */ 311 if (pst->sflags & PIE_ACTIVE) 312 callout_reset_sbt(&pst->aqm_pie_callout, 313 (uint64_t)pprms->tupdate * SBT_1US, 0, calculate_drop_prob, pst, 0); 314 315 mtx_unlock(&pst->lock_mtx); 316 } 317 318 /* 319 * Extract a packet from the head of queue 'q' 320 * Return a packet or NULL if the queue is empty. 321 * If getts is set, also extract packet's timestamp from mtag. 322 */ 323 static struct mbuf * 324 pie_extract_head(struct dn_queue *q, aqm_time_t *pkt_ts, int getts) 325 { 326 struct m_tag *mtag; 327 struct mbuf *m = q->mq.head; 328 329 if (m == NULL) 330 return m; 331 q->mq.head = m->m_nextpkt; 332 333 /* Update stats */ 334 update_stats(q, -m->m_pkthdr.len, 0); 335 336 if (q->ni.length == 0) /* queue is now idle */ 337 q->q_time = dn_cfg.curr_time; 338 339 if (getts) { 340 /* extract packet TS*/ 341 mtag = m_tag_locate(m, MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, NULL); 342 if (mtag == NULL) { 343 D("PIE timestamp mtag not found!"); 344 *pkt_ts = 0; 345 } else { 346 *pkt_ts = *(aqm_time_t *)(mtag + 1); 347 m_tag_delete(m,mtag); 348 } 349 } 350 return m; 351 } 352 353 /* 354 * Initiate PIE variable and optionally activate it 355 */ 356 __inline static void 357 init_activate_pie(struct pie_status *pst, int resettimer) 358 { 359 struct dn_aqm_pie_parms *pprms; 360 361 mtx_lock(&pst->lock_mtx); 362 pprms = pst->parms; 363 pst->drop_prob = 0; 364 pst->qdelay_old = 0; 365 pst->burst_allowance = pprms->max_burst; 366 pst->accu_prob = 0; 367 pst->dq_count = 0; 368 pst->avg_dq_time = 0; 369 pst->sflags = PIE_INMEASUREMENT; 370 pst->measurement_start = AQM_UNOW; 371 372 if (resettimer) { 373 pst->sflags |= PIE_ACTIVE; 374 callout_reset_sbt(&pst->aqm_pie_callout, 375 (uint64_t)pprms->tupdate * SBT_1US, 376 0, calculate_drop_prob, pst, 0); 377 } 378 //DX(2, "PIE Activated"); 379 mtx_unlock(&pst->lock_mtx); 380 } 381 382 /* 383 * Deactivate PIE and stop probe update callout 384 */ 385 __inline static void 386 deactivate_pie(struct pie_status *pst) 387 { 388 mtx_lock(&pst->lock_mtx); 389 pst->sflags &= ~(PIE_ACTIVE | PIE_INMEASUREMENT); 390 callout_stop(&pst->aqm_pie_callout); 391 //D("PIE Deactivated"); 392 mtx_unlock(&pst->lock_mtx); 393 } 394 395 /* 396 * Dequeue and return a pcaket from queue 'q' or NULL if 'q' is empty. 397 * Also, caculate depature time or queue delay using timestamp 398 */ 399 static struct mbuf * 400 aqm_pie_dequeue(struct dn_queue *q) 401 { 402 struct mbuf *m; 403 struct dn_flow *ni; /* stats for scheduler instance */ 404 struct dn_aqm_pie_parms *pprms; 405 struct pie_status *pst; 406 aqm_time_t now; 407 aqm_time_t pkt_ts, dq_time; 408 int32_t w; 409 410 pst = q->aqm_status; 411 pprms = pst->parms; 412 ni = &q->_si->ni; 413 414 /*we extarct packet ts only when Departure Rate Estimation dis not used*/ 415 m = pie_extract_head(q, &pkt_ts, !(pprms->flags & PIE_DEPRATEEST_ENABLED)); 416 417 if (!m || !(pst->sflags & PIE_ACTIVE)) 418 return m; 419 420 now = AQM_UNOW; 421 if (pprms->flags & PIE_DEPRATEEST_ENABLED) { 422 /* calculate average depature time */ 423 if(pst->sflags & PIE_INMEASUREMENT) { 424 pst->dq_count += m->m_pkthdr.len; 425 426 if (pst->dq_count >= PIE_DQ_THRESHOLD) { 427 dq_time = now - pst->measurement_start; 428 429 /* 430 * if we don't have old avg dq_time i.e PIE is (re)initialized, 431 * don't use weight to calculate new avg_dq_time 432 */ 433 if(pst->avg_dq_time == 0) 434 pst->avg_dq_time = dq_time; 435 else { 436 /* 437 * weight = PIE_DQ_THRESHOLD/2^6, but we scaled 438 * weight by 2^8. Thus, scaled 439 * weight = PIE_DQ_THRESHOLD /2^8 440 * */ 441 w = PIE_DQ_THRESHOLD >> 8; 442 pst->avg_dq_time = (dq_time* w 443 + (pst->avg_dq_time * ((1L << 8) - w))) >> 8; 444 pst->sflags &= ~PIE_INMEASUREMENT; 445 } 446 } 447 } 448 449 /* 450 * Start new measurment cycle when the queue has 451 * PIE_DQ_THRESHOLD worth of bytes. 452 */ 453 if(!(pst->sflags & PIE_INMEASUREMENT) && 454 q->ni.len_bytes >= PIE_DQ_THRESHOLD) { 455 pst->sflags |= PIE_INMEASUREMENT; 456 pst->measurement_start = now; 457 pst->dq_count = 0; 458 } 459 } 460 /* Optionally, use packet timestamp to estimate queue delay */ 461 else 462 pst->current_qdelay = now - pkt_ts; 463 464 return m; 465 } 466 467 /* 468 * Enqueue a packet in q, subject to space and PIE queue management policy 469 * (whose parameters are in q->fs). 470 * Update stats for the queue and the scheduler. 471 * Return 0 on success, 1 on drop. The packet is consumed anyways. 472 */ 473 static int 474 aqm_pie_enqueue(struct dn_queue *q, struct mbuf* m) 475 { 476 struct dn_fs *f; 477 uint64_t len; 478 uint32_t qlen; 479 struct pie_status *pst; 480 struct dn_aqm_pie_parms *pprms; 481 int t; 482 483 len = m->m_pkthdr.len; 484 pst = q->aqm_status; 485 if(!pst) { 486 DX(2, "PIE queue is not initialized\n"); 487 update_stats(q, 0, 1); 488 FREE_PKT(m); 489 return 1; 490 } 491 492 f = &(q->fs->fs); 493 pprms = pst->parms; 494 t = ENQUE; 495 496 /* get current queue length in bytes or packets*/ 497 qlen = (f->flags & DN_QSIZE_BYTES) ? 498 q->ni.len_bytes : q->ni.length; 499 500 /* check for queue size and drop the tail if exceed queue limit*/ 501 if (qlen >= f->qsize) 502 t = DROP; 503 /* drop/mark the packet when PIE is active and burst time elapsed */ 504 else if ((pst->sflags & PIE_ACTIVE) && pst->burst_allowance==0 505 && drop_early(pst, q->ni.len_bytes) == DROP) { 506 /* 507 * if drop_prob over ECN threshold, drop the packet 508 * otherwise mark and enqueue it. 509 */ 510 if ((pprms->flags & PIE_ECN_ENABLED) && pst->drop_prob < 511 (pprms->max_ecnth << (PIE_PROB_BITS - PIE_FIX_POINT_BITS)) 512 && ecn_mark(m)) 513 t = ENQUE; 514 else 515 t = DROP; 516 } 517 518 /* Turn PIE on when 1/3 of the queue is full */ 519 if (!(pst->sflags & PIE_ACTIVE) && qlen >= pst->one_third_q_size) { 520 init_activate_pie(pst, 1); 521 } 522 523 /* Reset burst tolerance and optinally turn PIE off*/ 524 if ((pst->sflags & PIE_ACTIVE) && pst->drop_prob == 0 && 525 pst->current_qdelay < (pprms->qdelay_ref >> 1) && 526 pst->qdelay_old < (pprms->qdelay_ref >> 1)) { 527 528 pst->burst_allowance = pprms->max_burst; 529 if ((pprms->flags & PIE_ON_OFF_MODE_ENABLED) && qlen<=0) 530 deactivate_pie(pst); 531 } 532 533 /* Timestamp the packet if Departure Rate Estimation is disabled */ 534 if (t != DROP && !(pprms->flags & PIE_DEPRATEEST_ENABLED)) { 535 /* Add TS to mbuf as a TAG */ 536 struct m_tag *mtag; 537 mtag = m_tag_locate(m, MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, NULL); 538 if (mtag == NULL) 539 mtag = m_tag_alloc(MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, 540 sizeof(aqm_time_t), M_NOWAIT); 541 if (mtag == NULL) { 542 m_freem(m); 543 t = DROP; 544 } 545 *(aqm_time_t *)(mtag + 1) = AQM_UNOW; 546 m_tag_prepend(m, mtag); 547 } 548 549 if (t != DROP) { 550 mq_append(&q->mq, m); 551 update_stats(q, len, 0); 552 return (0); 553 } else { 554 update_stats(q, 0, 1); 555 556 /* reset accu_prob after packet drop */ 557 pst->accu_prob = 0; 558 FREE_PKT(m); 559 return 1; 560 } 561 return 0; 562 } 563 564 /* 565 * initialize PIE for queue 'q' 566 * First allocate memory for PIE status. 567 */ 568 static int 569 aqm_pie_init(struct dn_queue *q) 570 { 571 struct pie_status *pst; 572 struct dn_aqm_pie_parms *pprms; 573 int err = 0; 574 575 pprms = q->fs->aqmcfg; 576 577 do { /* exit with break when error occurs*/ 578 if (!pprms){ 579 D("AQM_PIE is not configured"); 580 err = EINVAL; 581 break; 582 } 583 584 q->aqm_status = malloc(sizeof(struct pie_status), 585 M_DUMMYNET, M_NOWAIT | M_ZERO); 586 if (q->aqm_status == NULL) { 587 D("cannot allocate PIE private data"); 588 err = ENOMEM ; 589 break; 590 } 591 592 pst = q->aqm_status; 593 /* increase reference count for PIE module */ 594 pie_desc.ref_count++; 595 596 pst->pq = q; 597 pst->parms = pprms; 598 599 /* For speed optimization, we caculate 1/3 queue size once here */ 600 // we can use x/3 = (x >>2) + (x >>4) + (x >>7) 601 pst->one_third_q_size = q->fs->fs.qsize/3; 602 603 mtx_init(&pst->lock_mtx, "mtx_pie", NULL, MTX_DEF); 604 callout_init_mtx(&pst->aqm_pie_callout, &pst->lock_mtx, 605 CALLOUT_RETURNUNLOCKED); 606 607 pst->current_qdelay = 0; 608 init_activate_pie(pst, !(pprms->flags & PIE_ON_OFF_MODE_ENABLED)); 609 610 //DX(2, "aqm_PIE_init"); 611 612 } while(0); 613 614 return err; 615 } 616 617 /* 618 * Clean up PIE status for queue 'q' 619 * Destroy memory allocated for PIE status. 620 */ 621 static int 622 aqm_pie_cleanup(struct dn_queue *q) 623 { 624 625 if(!q) { 626 D("q is null"); 627 return 0; 628 } 629 struct pie_status *pst = q->aqm_status; 630 if(!pst) { 631 //D("queue is already cleaned up"); 632 return 0; 633 } 634 if(!q->fs || !q->fs->aqmcfg) { 635 D("fs is null or no cfg"); 636 return 1; 637 } 638 if (q->fs->aqmfp && q->fs->aqmfp->type !=DN_AQM_PIE) { 639 D("Not PIE fs (%d)", q->fs->fs.fs_nr); 640 return 1; 641 } 642 643 mtx_lock(&pst->lock_mtx); 644 645 /* stop callout timer */ 646 if (callout_stop(&pst->aqm_pie_callout) || !(pst->sflags & PIE_ACTIVE)) { 647 mtx_unlock(&pst->lock_mtx); 648 mtx_destroy(&pst->lock_mtx); 649 free(q->aqm_status, M_DUMMYNET); 650 q->aqm_status = NULL; 651 pie_desc.ref_count--; 652 return 0; 653 } else { 654 q->aqm_status = NULL; 655 mtx_unlock(&pst->lock_mtx); 656 DX(2, "PIE callout has not been stoped from cleanup!"); 657 return EBUSY; 658 } 659 return 0; 660 } 661 662 /* 663 * Config PIE parameters 664 * also allocate memory for PIE configurations 665 */ 666 static int 667 aqm_pie_config(struct dn_fsk* fs, struct dn_extra_parms *ep, int len) 668 { 669 struct dn_aqm_pie_parms *pcfg; 670 671 int l = sizeof(struct dn_extra_parms); 672 if (len < l) { 673 D("invalid sched parms length got %d need %d", len, l); 674 return EINVAL; 675 } 676 /* we free the old cfg because maybe the orignal allocation 677 * was used for diffirent AQM type. 678 */ 679 if (fs->aqmcfg) { 680 free(fs->aqmcfg, M_DUMMYNET); 681 fs->aqmcfg = NULL; 682 } 683 684 fs->aqmcfg = malloc(sizeof(struct dn_aqm_pie_parms), 685 M_DUMMYNET, M_NOWAIT | M_ZERO); 686 if (fs->aqmcfg== NULL) { 687 D("cannot allocate PIE configuration parameters"); 688 return ENOMEM; 689 } 690 691 /* par array contains pie configuration as follow 692 * 0- qdelay_ref,1- tupdate, 2- max_burst 693 * 3- max_ecnth, 4- alpha, 5- beta, 6- flags 694 */ 695 696 /* configure PIE parameters */ 697 pcfg = fs->aqmcfg; 698 699 if (ep->par[0] < 0) 700 pcfg->qdelay_ref = pie_sysctl.qdelay_ref * AQM_TIME_1US; 701 else 702 pcfg->qdelay_ref = ep->par[0]; 703 if (ep->par[1] < 0) 704 pcfg->tupdate = pie_sysctl.tupdate * AQM_TIME_1US; 705 else 706 pcfg->tupdate = ep->par[1]; 707 if (ep->par[2] < 0) 708 pcfg->max_burst = pie_sysctl.max_burst * AQM_TIME_1US; 709 else 710 pcfg->max_burst = ep->par[2]; 711 if (ep->par[3] < 0) 712 pcfg->max_ecnth = pie_sysctl.max_ecnth; 713 else 714 pcfg->max_ecnth = ep->par[3]; 715 if (ep->par[4] < 0) 716 pcfg->alpha = pie_sysctl.alpha; 717 else 718 pcfg->alpha = ep->par[4]; 719 if (ep->par[5] < 0) 720 pcfg->beta = pie_sysctl.beta; 721 else 722 pcfg->beta = ep->par[5]; 723 if (ep->par[6] < 0) 724 pcfg->flags = pie_sysctl.flags; 725 else 726 pcfg->flags = ep->par[6]; 727 728 /* bound PIE configurations */ 729 pcfg->qdelay_ref = BOUND_VAR(pcfg->qdelay_ref, 1, 10 * AQM_TIME_1S); 730 pcfg->tupdate = BOUND_VAR(pcfg->tupdate, 1, 10 * AQM_TIME_1S); 731 pcfg->max_burst = BOUND_VAR(pcfg->max_burst, 0, 10 * AQM_TIME_1S); 732 pcfg->max_ecnth = BOUND_VAR(pcfg->max_ecnth, 0, PIE_SCALE); 733 pcfg->alpha = BOUND_VAR(pcfg->alpha, 0, 7 * PIE_SCALE); 734 pcfg->beta = BOUND_VAR(pcfg->beta, 0 , 7 * PIE_SCALE); 735 736 pie_desc.cfg_ref_count++; 737 //D("pie cfg_ref_count=%d", pie_desc.cfg_ref_count); 738 return 0; 739 } 740 741 /* 742 * Deconfigure PIE and free memory allocation 743 */ 744 static int 745 aqm_pie_deconfig(struct dn_fsk* fs) 746 { 747 if (fs && fs->aqmcfg) { 748 free(fs->aqmcfg, M_DUMMYNET); 749 fs->aqmcfg = NULL; 750 pie_desc.cfg_ref_count--; 751 } 752 return 0; 753 } 754 755 /* 756 * Retrieve PIE configuration parameters. 757 */ 758 static int 759 aqm_pie_getconfig (struct dn_fsk *fs, struct dn_extra_parms * ep) 760 { 761 struct dn_aqm_pie_parms *pcfg; 762 if (fs->aqmcfg) { 763 strcpy(ep->name, pie_desc.name); 764 pcfg = fs->aqmcfg; 765 ep->par[0] = pcfg->qdelay_ref / AQM_TIME_1US; 766 ep->par[1] = pcfg->tupdate / AQM_TIME_1US; 767 ep->par[2] = pcfg->max_burst / AQM_TIME_1US; 768 ep->par[3] = pcfg->max_ecnth; 769 ep->par[4] = pcfg->alpha; 770 ep->par[5] = pcfg->beta; 771 ep->par[6] = pcfg->flags; 772 773 return 0; 774 } 775 return 1; 776 } 777 778 static struct dn_aqm pie_desc = { 779 _SI( .type = ) DN_AQM_PIE, 780 _SI( .name = ) "PIE", 781 _SI( .ref_count = ) 0, 782 _SI( .cfg_ref_count = ) 0, 783 _SI( .enqueue = ) aqm_pie_enqueue, 784 _SI( .dequeue = ) aqm_pie_dequeue, 785 _SI( .config = ) aqm_pie_config, 786 _SI( .deconfig = ) aqm_pie_deconfig, 787 _SI( .getconfig = ) aqm_pie_getconfig, 788 _SI( .init = ) aqm_pie_init, 789 _SI( .cleanup = ) aqm_pie_cleanup, 790 }; 791 792 DECLARE_DNAQM_MODULE(dn_aqm_pie, &pie_desc); 793 #endif 794