1 /* $FreeBSD$ */ 2 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ 3 4 /*- 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * This code is referd to RFC 2367 35 */ 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 #include "opt_ipsec.h" 40 41 #include <sys/types.h> 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/mutex.h> 47 #include <sys/mbuf.h> 48 #include <sys/domain.h> 49 #include <sys/protosw.h> 50 #include <sys/malloc.h> 51 #include <sys/socket.h> 52 #include <sys/socketvar.h> 53 #include <sys/sysctl.h> 54 #include <sys/errno.h> 55 #include <sys/proc.h> 56 #include <sys/queue.h> 57 #include <sys/refcount.h> 58 #include <sys/syslog.h> 59 60 #include <net/if.h> 61 #include <net/route.h> 62 #include <net/raw_cb.h> 63 64 #include <netinet/in.h> 65 #include <netinet/in_systm.h> 66 #include <netinet/ip.h> 67 #include <netinet/in_var.h> 68 69 #ifdef INET6 70 #include <netinet/ip6.h> 71 #include <netinet6/in6_var.h> 72 #include <netinet6/ip6_var.h> 73 #endif /* INET6 */ 74 75 #ifdef INET 76 #include <netinet/in_pcb.h> 77 #endif 78 #ifdef INET6 79 #include <netinet6/in6_pcb.h> 80 #endif /* INET6 */ 81 82 #include <net/pfkeyv2.h> 83 #include <netipsec/keydb.h> 84 #include <netipsec/key.h> 85 #include <netipsec/keysock.h> 86 #include <netipsec/key_debug.h> 87 88 #include <netipsec/ipsec.h> 89 #ifdef INET6 90 #include <netipsec/ipsec6.h> 91 #endif 92 93 #include <netipsec/xform.h> 94 95 #include <machine/stdarg.h> 96 97 /* randomness */ 98 #include <sys/random.h> 99 100 #define FULLMASK 0xff 101 #define _BITS(bytes) ((bytes) << 3) 102 103 /* 104 * Note on SA reference counting: 105 * - SAs that are not in DEAD state will have (total external reference + 1) 106 * following value in reference count field. they cannot be freed and are 107 * referenced from SA header. 108 * - SAs that are in DEAD state will have (total external reference) 109 * in reference count field. they are ready to be freed. reference from 110 * SA header will be removed in key_delsav(), when the reference count 111 * field hits 0 (= no external reference other than from SA header. 112 */ 113 114 u_int32_t key_debug_level = 0; 115 static u_int key_spi_trycnt = 1000; 116 static u_int32_t key_spi_minval = 0x100; 117 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */ 118 static u_int32_t policy_id = 0; 119 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/ 120 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/ 121 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/ 122 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/ 123 static int key_preferred_oldsa = 1; /* preferred old sa rather than new sa.*/ 124 125 static u_int32_t acq_seq = 0; 126 127 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */ 128 static struct mtx sptree_lock; 129 #define SPTREE_LOCK_INIT() \ 130 mtx_init(&sptree_lock, "sptree", \ 131 "fast ipsec security policy database", MTX_DEF) 132 #define SPTREE_LOCK_DESTROY() mtx_destroy(&sptree_lock) 133 #define SPTREE_LOCK() mtx_lock(&sptree_lock) 134 #define SPTREE_UNLOCK() mtx_unlock(&sptree_lock) 135 #define SPTREE_LOCK_ASSERT() mtx_assert(&sptree_lock, MA_OWNED) 136 137 static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */ 138 static struct mtx sahtree_lock; 139 #define SAHTREE_LOCK_INIT() \ 140 mtx_init(&sahtree_lock, "sahtree", \ 141 "fast ipsec security association database", MTX_DEF) 142 #define SAHTREE_LOCK_DESTROY() mtx_destroy(&sahtree_lock) 143 #define SAHTREE_LOCK() mtx_lock(&sahtree_lock) 144 #define SAHTREE_UNLOCK() mtx_unlock(&sahtree_lock) 145 #define SAHTREE_LOCK_ASSERT() mtx_assert(&sahtree_lock, MA_OWNED) 146 147 /* registed list */ 148 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1]; 149 static struct mtx regtree_lock; 150 #define REGTREE_LOCK_INIT() \ 151 mtx_init(®tree_lock, "regtree", "fast ipsec regtree", MTX_DEF) 152 #define REGTREE_LOCK_DESTROY() mtx_destroy(®tree_lock) 153 #define REGTREE_LOCK() mtx_lock(®tree_lock) 154 #define REGTREE_UNLOCK() mtx_unlock(®tree_lock) 155 #define REGTREE_LOCK_ASSERT() mtx_assert(®tree_lock, MA_OWNED) 156 157 static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */ 158 static struct mtx acq_lock; 159 #define ACQ_LOCK_INIT() \ 160 mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF) 161 #define ACQ_LOCK_DESTROY() mtx_destroy(&acq_lock) 162 #define ACQ_LOCK() mtx_lock(&acq_lock) 163 #define ACQ_UNLOCK() mtx_unlock(&acq_lock) 164 #define ACQ_LOCK_ASSERT() mtx_assert(&acq_lock, MA_OWNED) 165 166 static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */ 167 static struct mtx spacq_lock; 168 #define SPACQ_LOCK_INIT() \ 169 mtx_init(&spacq_lock, "spacqtree", \ 170 "fast ipsec security policy acquire list", MTX_DEF) 171 #define SPACQ_LOCK_DESTROY() mtx_destroy(&spacq_lock) 172 #define SPACQ_LOCK() mtx_lock(&spacq_lock) 173 #define SPACQ_UNLOCK() mtx_unlock(&spacq_lock) 174 #define SPACQ_LOCK_ASSERT() mtx_assert(&spacq_lock, MA_OWNED) 175 176 /* search order for SAs */ 177 static const u_int saorder_state_valid_prefer_old[] = { 178 SADB_SASTATE_DYING, SADB_SASTATE_MATURE, 179 }; 180 static const u_int saorder_state_valid_prefer_new[] = { 181 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 182 }; 183 static u_int saorder_state_alive[] = { 184 /* except DEAD */ 185 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL 186 }; 187 static u_int saorder_state_any[] = { 188 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 189 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD 190 }; 191 192 static const int minsize[] = { 193 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 194 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 195 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 196 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 197 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 198 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ 199 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ 200 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ 201 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ 202 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ 203 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ 204 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ 205 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ 206 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ 207 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ 208 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ 209 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 210 0, /* SADB_X_EXT_KMPRIVATE */ 211 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ 212 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 213 }; 214 static const int maxsize[] = { 215 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 216 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 217 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 218 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 219 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 220 0, /* SADB_EXT_ADDRESS_SRC */ 221 0, /* SADB_EXT_ADDRESS_DST */ 222 0, /* SADB_EXT_ADDRESS_PROXY */ 223 0, /* SADB_EXT_KEY_AUTH */ 224 0, /* SADB_EXT_KEY_ENCRYPT */ 225 0, /* SADB_EXT_IDENTITY_SRC */ 226 0, /* SADB_EXT_IDENTITY_DST */ 227 0, /* SADB_EXT_SENSITIVITY */ 228 0, /* SADB_EXT_PROPOSAL */ 229 0, /* SADB_EXT_SUPPORTED_AUTH */ 230 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ 231 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 232 0, /* SADB_X_EXT_KMPRIVATE */ 233 0, /* SADB_X_EXT_POLICY */ 234 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 235 }; 236 237 static int ipsec_esp_keymin = 256; 238 static int ipsec_esp_auth = 0; 239 static int ipsec_ah_keymin = 128; 240 241 #ifdef SYSCTL_DECL 242 SYSCTL_DECL(_net_key); 243 #endif 244 245 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \ 246 &key_debug_level, 0, ""); 247 248 /* max count of trial for the decision of spi value */ 249 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \ 250 &key_spi_trycnt, 0, ""); 251 252 /* minimum spi value to allocate automatically. */ 253 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \ 254 &key_spi_minval, 0, ""); 255 256 /* maximun spi value to allocate automatically. */ 257 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \ 258 &key_spi_maxval, 0, ""); 259 260 /* interval to initialize randseed */ 261 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \ 262 &key_int_random, 0, ""); 263 264 /* lifetime for larval SA */ 265 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \ 266 &key_larval_lifetime, 0, ""); 267 268 /* counter for blocking to send SADB_ACQUIRE to IKEd */ 269 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \ 270 &key_blockacq_count, 0, ""); 271 272 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ 273 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \ 274 &key_blockacq_lifetime, 0, ""); 275 276 /* ESP auth */ 277 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \ 278 &ipsec_esp_auth, 0, ""); 279 280 /* minimum ESP key length */ 281 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \ 282 &ipsec_esp_keymin, 0, ""); 283 284 /* minimum AH key length */ 285 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \ 286 &ipsec_ah_keymin, 0, ""); 287 288 /* perfered old SA rather than new SA */ 289 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, preferred_oldsa, CTLFLAG_RW,\ 290 &key_preferred_oldsa, 0, ""); 291 292 #define __LIST_CHAINED(elm) \ 293 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) 294 #define LIST_INSERT_TAIL(head, elm, type, field) \ 295 do {\ 296 struct type *curelm = LIST_FIRST(head); \ 297 if (curelm == NULL) {\ 298 LIST_INSERT_HEAD(head, elm, field); \ 299 } else { \ 300 while (LIST_NEXT(curelm, field)) \ 301 curelm = LIST_NEXT(curelm, field);\ 302 LIST_INSERT_AFTER(curelm, elm, field);\ 303 }\ 304 } while (0) 305 306 #define KEY_CHKSASTATE(head, sav, name) \ 307 do { \ 308 if ((head) != (sav)) { \ 309 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \ 310 (name), (head), (sav))); \ 311 continue; \ 312 } \ 313 } while (0) 314 315 #define KEY_CHKSPDIR(head, sp, name) \ 316 do { \ 317 if ((head) != (sp)) { \ 318 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \ 319 "anyway continue.\n", \ 320 (name), (head), (sp))); \ 321 } \ 322 } while (0) 323 324 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association"); 325 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head"); 326 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy"); 327 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request"); 328 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous"); 329 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire"); 330 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire"); 331 332 /* 333 * set parameters into secpolicyindex buffer. 334 * Must allocate secpolicyindex buffer passed to this function. 335 */ 336 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \ 337 do { \ 338 bzero((idx), sizeof(struct secpolicyindex)); \ 339 (idx)->dir = (_dir); \ 340 (idx)->prefs = (ps); \ 341 (idx)->prefd = (pd); \ 342 (idx)->ul_proto = (ulp); \ 343 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 344 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 345 } while (0) 346 347 /* 348 * set parameters into secasindex buffer. 349 * Must allocate secasindex buffer before calling this function. 350 */ 351 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \ 352 do { \ 353 bzero((idx), sizeof(struct secasindex)); \ 354 (idx)->proto = (p); \ 355 (idx)->mode = (m); \ 356 (idx)->reqid = (r); \ 357 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 358 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 359 } while (0) 360 361 /* key statistics */ 362 struct _keystat { 363 u_long getspi_count; /* the avarage of count to try to get new SPI */ 364 } keystat; 365 366 struct sadb_msghdr { 367 struct sadb_msg *msg; 368 struct sadb_ext *ext[SADB_EXT_MAX + 1]; 369 int extoff[SADB_EXT_MAX + 1]; 370 int extlen[SADB_EXT_MAX + 1]; 371 }; 372 373 static struct secasvar *key_allocsa_policy __P((const struct secasindex *)); 374 static void key_freesp_so __P((struct secpolicy **)); 375 static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int)); 376 static void key_delsp __P((struct secpolicy *)); 377 static struct secpolicy *key_getsp __P((struct secpolicyindex *)); 378 static void _key_delsp(struct secpolicy *sp); 379 static struct secpolicy *key_getspbyid __P((u_int32_t)); 380 static u_int32_t key_newreqid __P((void)); 381 static struct mbuf *key_gather_mbuf __P((struct mbuf *, 382 const struct sadb_msghdr *, int, int, ...)); 383 static int key_spdadd __P((struct socket *, struct mbuf *, 384 const struct sadb_msghdr *)); 385 static u_int32_t key_getnewspid __P((void)); 386 static int key_spddelete __P((struct socket *, struct mbuf *, 387 const struct sadb_msghdr *)); 388 static int key_spddelete2 __P((struct socket *, struct mbuf *, 389 const struct sadb_msghdr *)); 390 static int key_spdget __P((struct socket *, struct mbuf *, 391 const struct sadb_msghdr *)); 392 static int key_spdflush __P((struct socket *, struct mbuf *, 393 const struct sadb_msghdr *)); 394 static int key_spddump __P((struct socket *, struct mbuf *, 395 const struct sadb_msghdr *)); 396 static struct mbuf *key_setdumpsp __P((struct secpolicy *, 397 u_int8_t, u_int32_t, u_int32_t)); 398 static u_int key_getspreqmsglen __P((struct secpolicy *)); 399 static int key_spdexpire __P((struct secpolicy *)); 400 static struct secashead *key_newsah __P((struct secasindex *)); 401 static void key_delsah __P((struct secashead *)); 402 static struct secasvar *key_newsav __P((struct mbuf *, 403 const struct sadb_msghdr *, struct secashead *, int *, 404 const char*, int)); 405 #define KEY_NEWSAV(m, sadb, sah, e) \ 406 key_newsav(m, sadb, sah, e, __FILE__, __LINE__) 407 static void key_delsav __P((struct secasvar *)); 408 static struct secashead *key_getsah __P((struct secasindex *)); 409 static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t)); 410 static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t)); 411 static int key_setsaval __P((struct secasvar *, struct mbuf *, 412 const struct sadb_msghdr *)); 413 static int key_mature __P((struct secasvar *)); 414 static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t, 415 u_int8_t, u_int32_t, u_int32_t)); 416 static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t, 417 u_int32_t, pid_t, u_int16_t)); 418 static struct mbuf *key_setsadbsa __P((struct secasvar *)); 419 static struct mbuf *key_setsadbaddr __P((u_int16_t, 420 const struct sockaddr *, u_int8_t, u_int16_t)); 421 static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t)); 422 static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t, 423 u_int32_t)); 424 static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int, 425 struct malloc_type *); 426 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src, 427 struct malloc_type *type); 428 #ifdef INET6 429 static int key_ismyaddr6 __P((struct sockaddr_in6 *)); 430 #endif 431 432 /* flags for key_cmpsaidx() */ 433 #define CMP_HEAD 1 /* protocol, addresses. */ 434 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ 435 #define CMP_REQID 3 /* additionally HEAD, reaid. */ 436 #define CMP_EXACTLY 4 /* all elements. */ 437 static int key_cmpsaidx 438 __P((const struct secasindex *, const struct secasindex *, int)); 439 440 static int key_cmpspidx_exactly 441 __P((struct secpolicyindex *, struct secpolicyindex *)); 442 static int key_cmpspidx_withmask 443 __P((struct secpolicyindex *, struct secpolicyindex *)); 444 static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int)); 445 static int key_bbcmp __P((const void *, const void *, u_int)); 446 static u_int16_t key_satype2proto __P((u_int8_t)); 447 static u_int8_t key_proto2satype __P((u_int16_t)); 448 449 static int key_getspi __P((struct socket *, struct mbuf *, 450 const struct sadb_msghdr *)); 451 static u_int32_t key_do_getnewspi __P((struct sadb_spirange *, 452 struct secasindex *)); 453 static int key_update __P((struct socket *, struct mbuf *, 454 const struct sadb_msghdr *)); 455 #ifdef IPSEC_DOSEQCHECK 456 static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t)); 457 #endif 458 static int key_add __P((struct socket *, struct mbuf *, 459 const struct sadb_msghdr *)); 460 static int key_setident __P((struct secashead *, struct mbuf *, 461 const struct sadb_msghdr *)); 462 static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *, 463 const struct sadb_msghdr *)); 464 static int key_delete __P((struct socket *, struct mbuf *, 465 const struct sadb_msghdr *)); 466 static int key_get __P((struct socket *, struct mbuf *, 467 const struct sadb_msghdr *)); 468 469 static void key_getcomb_setlifetime __P((struct sadb_comb *)); 470 static struct mbuf *key_getcomb_esp __P((void)); 471 static struct mbuf *key_getcomb_ah __P((void)); 472 static struct mbuf *key_getcomb_ipcomp __P((void)); 473 static struct mbuf *key_getprop __P((const struct secasindex *)); 474 475 static int key_acquire __P((const struct secasindex *, struct secpolicy *)); 476 static struct secacq *key_newacq __P((const struct secasindex *)); 477 static struct secacq *key_getacq __P((const struct secasindex *)); 478 static struct secacq *key_getacqbyseq __P((u_int32_t)); 479 static struct secspacq *key_newspacq __P((struct secpolicyindex *)); 480 static struct secspacq *key_getspacq __P((struct secpolicyindex *)); 481 static int key_acquire2 __P((struct socket *, struct mbuf *, 482 const struct sadb_msghdr *)); 483 static int key_register __P((struct socket *, struct mbuf *, 484 const struct sadb_msghdr *)); 485 static int key_expire __P((struct secasvar *)); 486 static int key_flush __P((struct socket *, struct mbuf *, 487 const struct sadb_msghdr *)); 488 static int key_dump __P((struct socket *, struct mbuf *, 489 const struct sadb_msghdr *)); 490 static int key_promisc __P((struct socket *, struct mbuf *, 491 const struct sadb_msghdr *)); 492 static int key_senderror __P((struct socket *, struct mbuf *, int)); 493 static int key_validate_ext __P((const struct sadb_ext *, int)); 494 static int key_align __P((struct mbuf *, struct sadb_msghdr *)); 495 static struct mbuf *key_setlifetime(struct seclifetime *src, 496 u_int16_t exttype); 497 static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype); 498 499 #if 0 500 static const char *key_getfqdn __P((void)); 501 static const char *key_getuserfqdn __P((void)); 502 #endif 503 static void key_sa_chgstate __P((struct secasvar *, u_int8_t)); 504 static struct mbuf *key_alloc_mbuf __P((int)); 505 506 static __inline void 507 sa_initref(struct secasvar *sav) 508 { 509 510 refcount_init(&sav->refcnt, 1); 511 } 512 static __inline void 513 sa_addref(struct secasvar *sav) 514 { 515 516 refcount_acquire(&sav->refcnt); 517 IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow")); 518 } 519 static __inline int 520 sa_delref(struct secasvar *sav) 521 { 522 523 IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow")); 524 return (refcount_release(&sav->refcnt)); 525 } 526 527 #define SP_ADDREF(p) do { \ 528 (p)->refcnt++; \ 529 IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow")); \ 530 } while (0) 531 #define SP_DELREF(p) do { \ 532 IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow")); \ 533 (p)->refcnt--; \ 534 } while (0) 535 536 537 /* 538 * Update the refcnt while holding the SPTREE lock. 539 */ 540 void 541 key_addref(struct secpolicy *sp) 542 { 543 SPTREE_LOCK(); 544 SP_ADDREF(sp); 545 SPTREE_UNLOCK(); 546 } 547 548 /* 549 * Return 0 when there are known to be no SP's for the specified 550 * direction. Otherwise return 1. This is used by IPsec code 551 * to optimize performance. 552 */ 553 int 554 key_havesp(u_int dir) 555 { 556 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? 557 LIST_FIRST(&sptree[dir]) != NULL : 1); 558 } 559 560 /* %%% IPsec policy management */ 561 /* 562 * allocating a SP for OUTBOUND or INBOUND packet. 563 * Must call key_freesp() later. 564 * OUT: NULL: not found 565 * others: found and return the pointer. 566 */ 567 struct secpolicy * 568 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag) 569 { 570 struct secpolicy *sp; 571 572 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 573 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 574 ("invalid direction %u", dir)); 575 576 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 577 printf("DP %s from %s:%u\n", __func__, where, tag)); 578 579 /* get a SP entry */ 580 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 581 printf("*** objects\n"); 582 kdebug_secpolicyindex(spidx)); 583 584 SPTREE_LOCK(); 585 LIST_FOREACH(sp, &sptree[dir], chain) { 586 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 587 printf("*** in SPD\n"); 588 kdebug_secpolicyindex(&sp->spidx)); 589 590 if (sp->state == IPSEC_SPSTATE_DEAD) 591 continue; 592 if (key_cmpspidx_withmask(&sp->spidx, spidx)) 593 goto found; 594 } 595 sp = NULL; 596 found: 597 if (sp) { 598 /* sanity check */ 599 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 600 601 /* found a SPD entry */ 602 sp->lastused = time_second; 603 SP_ADDREF(sp); 604 } 605 SPTREE_UNLOCK(); 606 607 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 608 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 609 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 610 return sp; 611 } 612 613 /* 614 * allocating a SP for OUTBOUND or INBOUND packet. 615 * Must call key_freesp() later. 616 * OUT: NULL: not found 617 * others: found and return the pointer. 618 */ 619 struct secpolicy * 620 key_allocsp2(u_int32_t spi, 621 union sockaddr_union *dst, 622 u_int8_t proto, 623 u_int dir, 624 const char* where, int tag) 625 { 626 struct secpolicy *sp; 627 628 IPSEC_ASSERT(dst != NULL, ("null dst")); 629 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 630 ("invalid direction %u", dir)); 631 632 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 633 printf("DP %s from %s:%u\n", __func__, where, tag)); 634 635 /* get a SP entry */ 636 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 637 printf("*** objects\n"); 638 printf("spi %u proto %u dir %u\n", spi, proto, dir); 639 kdebug_sockaddr(&dst->sa)); 640 641 SPTREE_LOCK(); 642 LIST_FOREACH(sp, &sptree[dir], chain) { 643 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 644 printf("*** in SPD\n"); 645 kdebug_secpolicyindex(&sp->spidx)); 646 647 if (sp->state == IPSEC_SPSTATE_DEAD) 648 continue; 649 /* compare simple values, then dst address */ 650 if (sp->spidx.ul_proto != proto) 651 continue; 652 /* NB: spi's must exist and match */ 653 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi) 654 continue; 655 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0) 656 goto found; 657 } 658 sp = NULL; 659 found: 660 if (sp) { 661 /* sanity check */ 662 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 663 664 /* found a SPD entry */ 665 sp->lastused = time_second; 666 SP_ADDREF(sp); 667 } 668 SPTREE_UNLOCK(); 669 670 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 671 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 672 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 673 return sp; 674 } 675 676 /* 677 * return a policy that matches this particular inbound packet. 678 * XXX slow 679 */ 680 struct secpolicy * 681 key_gettunnel(const struct sockaddr *osrc, 682 const struct sockaddr *odst, 683 const struct sockaddr *isrc, 684 const struct sockaddr *idst, 685 const char* where, int tag) 686 { 687 struct secpolicy *sp; 688 const int dir = IPSEC_DIR_INBOUND; 689 struct ipsecrequest *r1, *r2, *p; 690 struct secpolicyindex spidx; 691 692 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 693 printf("DP %s from %s:%u\n", __func__, where, tag)); 694 695 if (isrc->sa_family != idst->sa_family) { 696 ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.", 697 __func__, isrc->sa_family, idst->sa_family)); 698 sp = NULL; 699 goto done; 700 } 701 702 SPTREE_LOCK(); 703 LIST_FOREACH(sp, &sptree[dir], chain) { 704 if (sp->state == IPSEC_SPSTATE_DEAD) 705 continue; 706 707 r1 = r2 = NULL; 708 for (p = sp->req; p; p = p->next) { 709 if (p->saidx.mode != IPSEC_MODE_TUNNEL) 710 continue; 711 712 r1 = r2; 713 r2 = p; 714 715 if (!r1) { 716 /* here we look at address matches only */ 717 spidx = sp->spidx; 718 if (isrc->sa_len > sizeof(spidx.src) || 719 idst->sa_len > sizeof(spidx.dst)) 720 continue; 721 bcopy(isrc, &spidx.src, isrc->sa_len); 722 bcopy(idst, &spidx.dst, idst->sa_len); 723 if (!key_cmpspidx_withmask(&sp->spidx, &spidx)) 724 continue; 725 } else { 726 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) || 727 key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0)) 728 continue; 729 } 730 731 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) || 732 key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0)) 733 continue; 734 735 goto found; 736 } 737 } 738 sp = NULL; 739 found: 740 if (sp) { 741 sp->lastused = time_second; 742 SP_ADDREF(sp); 743 } 744 SPTREE_UNLOCK(); 745 done: 746 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 747 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 748 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 749 return sp; 750 } 751 752 /* 753 * allocating an SA entry for an *OUTBOUND* packet. 754 * checking each request entries in SP, and acquire an SA if need. 755 * OUT: 0: there are valid requests. 756 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. 757 */ 758 int 759 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx) 760 { 761 u_int level; 762 int error; 763 764 IPSEC_ASSERT(isr != NULL, ("null isr")); 765 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 766 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT || 767 saidx->mode == IPSEC_MODE_TUNNEL, 768 ("unexpected policy %u", saidx->mode)); 769 770 /* 771 * XXX guard against protocol callbacks from the crypto 772 * thread as they reference ipsecrequest.sav which we 773 * temporarily null out below. Need to rethink how we 774 * handle bundled SA's in the callback thread. 775 */ 776 IPSECREQUEST_LOCK_ASSERT(isr); 777 778 /* get current level */ 779 level = ipsec_get_reqlevel(isr); 780 #if 0 781 /* 782 * We do allocate new SA only if the state of SA in the holder is 783 * SADB_SASTATE_DEAD. The SA for outbound must be the oldest. 784 */ 785 if (isr->sav != NULL) { 786 if (isr->sav->sah == NULL) 787 panic("%s: sah is null.\n", __func__); 788 if (isr->sav == (struct secasvar *)LIST_FIRST( 789 &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) { 790 KEY_FREESAV(&isr->sav); 791 isr->sav = NULL; 792 } 793 } 794 #else 795 /* 796 * we free any SA stashed in the IPsec request because a different 797 * SA may be involved each time this request is checked, either 798 * because new SAs are being configured, or this request is 799 * associated with an unconnected datagram socket, or this request 800 * is associated with a system default policy. 801 * 802 * The operation may have negative impact to performance. We may 803 * want to check cached SA carefully, rather than picking new SA 804 * every time. 805 */ 806 if (isr->sav != NULL) { 807 KEY_FREESAV(&isr->sav); 808 isr->sav = NULL; 809 } 810 #endif 811 812 /* 813 * new SA allocation if no SA found. 814 * key_allocsa_policy should allocate the oldest SA available. 815 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt. 816 */ 817 if (isr->sav == NULL) 818 isr->sav = key_allocsa_policy(saidx); 819 820 /* When there is SA. */ 821 if (isr->sav != NULL) { 822 if (isr->sav->state != SADB_SASTATE_MATURE && 823 isr->sav->state != SADB_SASTATE_DYING) 824 return EINVAL; 825 return 0; 826 } 827 828 /* there is no SA */ 829 error = key_acquire(saidx, isr->sp); 830 if (error != 0) { 831 /* XXX What should I do ? */ 832 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 833 __func__, error)); 834 return error; 835 } 836 837 if (level != IPSEC_LEVEL_REQUIRE) { 838 /* XXX sigh, the interface to this routine is botched */ 839 IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA")); 840 return 0; 841 } else { 842 return ENOENT; 843 } 844 } 845 846 /* 847 * allocating a SA for policy entry from SAD. 848 * NOTE: searching SAD of aliving state. 849 * OUT: NULL: not found. 850 * others: found and return the pointer. 851 */ 852 static struct secasvar * 853 key_allocsa_policy(const struct secasindex *saidx) 854 { 855 #define N(a) _ARRAYLEN(a) 856 struct secashead *sah; 857 struct secasvar *sav; 858 u_int stateidx, arraysize; 859 const u_int *state_valid; 860 861 SAHTREE_LOCK(); 862 LIST_FOREACH(sah, &sahtree, chain) { 863 if (sah->state == SADB_SASTATE_DEAD) 864 continue; 865 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) { 866 if (key_preferred_oldsa) { 867 state_valid = saorder_state_valid_prefer_old; 868 arraysize = N(saorder_state_valid_prefer_old); 869 } else { 870 state_valid = saorder_state_valid_prefer_new; 871 arraysize = N(saorder_state_valid_prefer_new); 872 } 873 SAHTREE_UNLOCK(); 874 goto found; 875 } 876 } 877 SAHTREE_UNLOCK(); 878 879 return NULL; 880 881 found: 882 /* search valid state */ 883 for (stateidx = 0; stateidx < arraysize; stateidx++) { 884 sav = key_do_allocsa_policy(sah, state_valid[stateidx]); 885 if (sav != NULL) 886 return sav; 887 } 888 889 return NULL; 890 #undef N 891 } 892 893 /* 894 * searching SAD with direction, protocol, mode and state. 895 * called by key_allocsa_policy(). 896 * OUT: 897 * NULL : not found 898 * others : found, pointer to a SA. 899 */ 900 static struct secasvar * 901 key_do_allocsa_policy(struct secashead *sah, u_int state) 902 { 903 struct secasvar *sav, *nextsav, *candidate, *d; 904 905 /* initilize */ 906 candidate = NULL; 907 908 SAHTREE_LOCK(); 909 for (sav = LIST_FIRST(&sah->savtree[state]); 910 sav != NULL; 911 sav = nextsav) { 912 913 nextsav = LIST_NEXT(sav, chain); 914 915 /* sanity check */ 916 KEY_CHKSASTATE(sav->state, state, __func__); 917 918 /* initialize */ 919 if (candidate == NULL) { 920 candidate = sav; 921 continue; 922 } 923 924 /* Which SA is the better ? */ 925 926 IPSEC_ASSERT(candidate->lft_c != NULL, 927 ("null candidate lifetime")); 928 IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime")); 929 930 /* What the best method is to compare ? */ 931 if (key_preferred_oldsa) { 932 if (candidate->lft_c->addtime > 933 sav->lft_c->addtime) { 934 candidate = sav; 935 } 936 continue; 937 /*NOTREACHED*/ 938 } 939 940 /* preferred new sa rather than old sa */ 941 if (candidate->lft_c->addtime < 942 sav->lft_c->addtime) { 943 d = candidate; 944 candidate = sav; 945 } else 946 d = sav; 947 948 /* 949 * prepared to delete the SA when there is more 950 * suitable candidate and the lifetime of the SA is not 951 * permanent. 952 */ 953 if (d->lft_h->addtime != 0) { 954 struct mbuf *m, *result; 955 u_int8_t satype; 956 957 key_sa_chgstate(d, SADB_SASTATE_DEAD); 958 959 IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count")); 960 961 satype = key_proto2satype(d->sah->saidx.proto); 962 if (satype == 0) 963 goto msgfail; 964 965 m = key_setsadbmsg(SADB_DELETE, 0, 966 satype, 0, 0, d->refcnt - 1); 967 if (!m) 968 goto msgfail; 969 result = m; 970 971 /* set sadb_address for saidx's. */ 972 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 973 &d->sah->saidx.src.sa, 974 d->sah->saidx.src.sa.sa_len << 3, 975 IPSEC_ULPROTO_ANY); 976 if (!m) 977 goto msgfail; 978 m_cat(result, m); 979 980 /* set sadb_address for saidx's. */ 981 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 982 &d->sah->saidx.dst.sa, 983 d->sah->saidx.dst.sa.sa_len << 3, 984 IPSEC_ULPROTO_ANY); 985 if (!m) 986 goto msgfail; 987 m_cat(result, m); 988 989 /* create SA extension */ 990 m = key_setsadbsa(d); 991 if (!m) 992 goto msgfail; 993 m_cat(result, m); 994 995 if (result->m_len < sizeof(struct sadb_msg)) { 996 result = m_pullup(result, 997 sizeof(struct sadb_msg)); 998 if (result == NULL) 999 goto msgfail; 1000 } 1001 1002 result->m_pkthdr.len = 0; 1003 for (m = result; m; m = m->m_next) 1004 result->m_pkthdr.len += m->m_len; 1005 mtod(result, struct sadb_msg *)->sadb_msg_len = 1006 PFKEY_UNIT64(result->m_pkthdr.len); 1007 1008 if (key_sendup_mbuf(NULL, result, 1009 KEY_SENDUP_REGISTERED)) 1010 goto msgfail; 1011 msgfail: 1012 KEY_FREESAV(&d); 1013 } 1014 } 1015 if (candidate) { 1016 sa_addref(candidate); 1017 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1018 printf("DP %s cause refcnt++:%d SA:%p\n", 1019 __func__, candidate->refcnt, candidate)); 1020 } 1021 SAHTREE_UNLOCK(); 1022 1023 return candidate; 1024 } 1025 1026 /* 1027 * allocating a usable SA entry for a *INBOUND* packet. 1028 * Must call key_freesav() later. 1029 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). 1030 * NULL: not found, or error occured. 1031 * 1032 * In the comparison, no source address is used--for RFC2401 conformance. 1033 * To quote, from section 4.1: 1034 * A security association is uniquely identified by a triple consisting 1035 * of a Security Parameter Index (SPI), an IP Destination Address, and a 1036 * security protocol (AH or ESP) identifier. 1037 * Note that, however, we do need to keep source address in IPsec SA. 1038 * IKE specification and PF_KEY specification do assume that we 1039 * keep source address in IPsec SA. We see a tricky situation here. 1040 */ 1041 struct secasvar * 1042 key_allocsa( 1043 union sockaddr_union *dst, 1044 u_int proto, 1045 u_int32_t spi, 1046 const char* where, int tag) 1047 { 1048 struct secashead *sah; 1049 struct secasvar *sav; 1050 u_int stateidx, arraysize, state; 1051 const u_int *saorder_state_valid; 1052 1053 IPSEC_ASSERT(dst != NULL, ("null dst address")); 1054 1055 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1056 printf("DP %s from %s:%u\n", __func__, where, tag)); 1057 1058 /* 1059 * searching SAD. 1060 * XXX: to be checked internal IP header somewhere. Also when 1061 * IPsec tunnel packet is received. But ESP tunnel mode is 1062 * encrypted so we can't check internal IP header. 1063 */ 1064 SAHTREE_LOCK(); 1065 if (key_preferred_oldsa) { 1066 saorder_state_valid = saorder_state_valid_prefer_old; 1067 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); 1068 } else { 1069 saorder_state_valid = saorder_state_valid_prefer_new; 1070 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); 1071 } 1072 LIST_FOREACH(sah, &sahtree, chain) { 1073 /* search valid state */ 1074 for (stateidx = 0; stateidx < arraysize; stateidx++) { 1075 state = saorder_state_valid[stateidx]; 1076 LIST_FOREACH(sav, &sah->savtree[state], chain) { 1077 /* sanity check */ 1078 KEY_CHKSASTATE(sav->state, state, __func__); 1079 /* do not return entries w/ unusable state */ 1080 if (sav->state != SADB_SASTATE_MATURE && 1081 sav->state != SADB_SASTATE_DYING) 1082 continue; 1083 if (proto != sav->sah->saidx.proto) 1084 continue; 1085 if (spi != sav->spi) 1086 continue; 1087 #if 0 /* don't check src */ 1088 /* check src address */ 1089 if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, 0) != 0) 1090 continue; 1091 #endif 1092 /* check dst address */ 1093 if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, 0) != 0) 1094 continue; 1095 sa_addref(sav); 1096 goto done; 1097 } 1098 } 1099 } 1100 sav = NULL; 1101 done: 1102 SAHTREE_UNLOCK(); 1103 1104 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1105 printf("DP %s return SA:%p; refcnt %u\n", __func__, 1106 sav, sav ? sav->refcnt : 0)); 1107 return sav; 1108 } 1109 1110 /* 1111 * Must be called after calling key_allocsp(). 1112 * For both the packet without socket and key_freeso(). 1113 */ 1114 void 1115 _key_freesp(struct secpolicy **spp, const char* where, int tag) 1116 { 1117 struct secpolicy *sp = *spp; 1118 1119 IPSEC_ASSERT(sp != NULL, ("null sp")); 1120 1121 SPTREE_LOCK(); 1122 SP_DELREF(sp); 1123 1124 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1125 printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n", 1126 __func__, sp, sp->id, where, tag, sp->refcnt)); 1127 1128 if (sp->refcnt == 0) { 1129 *spp = NULL; 1130 key_delsp(sp); 1131 } 1132 SPTREE_UNLOCK(); 1133 } 1134 1135 /* 1136 * Must be called after calling key_allocsp(). 1137 * For the packet with socket. 1138 */ 1139 void 1140 key_freeso(struct socket *so) 1141 { 1142 IPSEC_ASSERT(so != NULL, ("null so")); 1143 1144 switch (so->so_proto->pr_domain->dom_family) { 1145 #ifdef INET 1146 case PF_INET: 1147 { 1148 struct inpcb *pcb = sotoinpcb(so); 1149 1150 /* Does it have a PCB ? */ 1151 if (pcb == NULL) 1152 return; 1153 key_freesp_so(&pcb->inp_sp->sp_in); 1154 key_freesp_so(&pcb->inp_sp->sp_out); 1155 } 1156 break; 1157 #endif 1158 #ifdef INET6 1159 case PF_INET6: 1160 { 1161 #ifdef HAVE_NRL_INPCB 1162 struct inpcb *pcb = sotoinpcb(so); 1163 1164 /* Does it have a PCB ? */ 1165 if (pcb == NULL) 1166 return; 1167 key_freesp_so(&pcb->inp_sp->sp_in); 1168 key_freesp_so(&pcb->inp_sp->sp_out); 1169 #else 1170 struct in6pcb *pcb = sotoin6pcb(so); 1171 1172 /* Does it have a PCB ? */ 1173 if (pcb == NULL) 1174 return; 1175 key_freesp_so(&pcb->in6p_sp->sp_in); 1176 key_freesp_so(&pcb->in6p_sp->sp_out); 1177 #endif 1178 } 1179 break; 1180 #endif /* INET6 */ 1181 default: 1182 ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n", 1183 __func__, so->so_proto->pr_domain->dom_family)); 1184 return; 1185 } 1186 } 1187 1188 static void 1189 key_freesp_so(struct secpolicy **sp) 1190 { 1191 IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp")); 1192 1193 if ((*sp)->policy == IPSEC_POLICY_ENTRUST || 1194 (*sp)->policy == IPSEC_POLICY_BYPASS) 1195 return; 1196 1197 IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC, 1198 ("invalid policy %u", (*sp)->policy)); 1199 KEY_FREESP(sp); 1200 } 1201 1202 /* 1203 * Must be called after calling key_allocsa(). 1204 * This function is called by key_freesp() to free some SA allocated 1205 * for a policy. 1206 */ 1207 void 1208 key_freesav(struct secasvar **psav, const char* where, int tag) 1209 { 1210 struct secasvar *sav = *psav; 1211 1212 IPSEC_ASSERT(sav != NULL, ("null sav")); 1213 1214 if (sa_delref(sav)) { 1215 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1216 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1217 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1218 *psav = NULL; 1219 key_delsav(sav); 1220 } else { 1221 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1222 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1223 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1224 } 1225 } 1226 1227 /* %%% SPD management */ 1228 /* 1229 * free security policy entry. 1230 */ 1231 static void 1232 key_delsp(struct secpolicy *sp) 1233 { 1234 struct ipsecrequest *isr, *nextisr; 1235 1236 IPSEC_ASSERT(sp != NULL, ("null sp")); 1237 SPTREE_LOCK_ASSERT(); 1238 1239 sp->state = IPSEC_SPSTATE_DEAD; 1240 1241 IPSEC_ASSERT(sp->refcnt == 0, 1242 ("SP with references deleted (refcnt %u)", sp->refcnt)); 1243 1244 /* remove from SP index */ 1245 if (__LIST_CHAINED(sp)) 1246 LIST_REMOVE(sp, chain); 1247 1248 for (isr = sp->req; isr != NULL; isr = nextisr) { 1249 if (isr->sav != NULL) { 1250 KEY_FREESAV(&isr->sav); 1251 isr->sav = NULL; 1252 } 1253 1254 nextisr = isr->next; 1255 ipsec_delisr(isr); 1256 } 1257 _key_delsp(sp); 1258 } 1259 1260 /* 1261 * search SPD 1262 * OUT: NULL : not found 1263 * others : found, pointer to a SP. 1264 */ 1265 static struct secpolicy * 1266 key_getsp(struct secpolicyindex *spidx) 1267 { 1268 struct secpolicy *sp; 1269 1270 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 1271 1272 SPTREE_LOCK(); 1273 LIST_FOREACH(sp, &sptree[spidx->dir], chain) { 1274 if (sp->state == IPSEC_SPSTATE_DEAD) 1275 continue; 1276 if (key_cmpspidx_exactly(spidx, &sp->spidx)) { 1277 SP_ADDREF(sp); 1278 break; 1279 } 1280 } 1281 SPTREE_UNLOCK(); 1282 1283 return sp; 1284 } 1285 1286 /* 1287 * get SP by index. 1288 * OUT: NULL : not found 1289 * others : found, pointer to a SP. 1290 */ 1291 static struct secpolicy * 1292 key_getspbyid(u_int32_t id) 1293 { 1294 struct secpolicy *sp; 1295 1296 SPTREE_LOCK(); 1297 LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) { 1298 if (sp->state == IPSEC_SPSTATE_DEAD) 1299 continue; 1300 if (sp->id == id) { 1301 SP_ADDREF(sp); 1302 goto done; 1303 } 1304 } 1305 1306 LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) { 1307 if (sp->state == IPSEC_SPSTATE_DEAD) 1308 continue; 1309 if (sp->id == id) { 1310 SP_ADDREF(sp); 1311 goto done; 1312 } 1313 } 1314 done: 1315 SPTREE_UNLOCK(); 1316 1317 return sp; 1318 } 1319 1320 struct secpolicy * 1321 key_newsp(const char* where, int tag) 1322 { 1323 struct secpolicy *newsp = NULL; 1324 1325 newsp = (struct secpolicy *) 1326 malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO); 1327 if (newsp) { 1328 SECPOLICY_LOCK_INIT(newsp); 1329 newsp->refcnt = 1; 1330 newsp->req = NULL; 1331 } 1332 1333 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1334 printf("DP %s from %s:%u return SP:%p\n", __func__, 1335 where, tag, newsp)); 1336 return newsp; 1337 } 1338 1339 static void 1340 _key_delsp(struct secpolicy *sp) 1341 { 1342 SECPOLICY_LOCK_DESTROY(sp); 1343 free(sp, M_IPSEC_SP); 1344 } 1345 1346 /* 1347 * create secpolicy structure from sadb_x_policy structure. 1348 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, 1349 * so must be set properly later. 1350 */ 1351 struct secpolicy * 1352 key_msg2sp(xpl0, len, error) 1353 struct sadb_x_policy *xpl0; 1354 size_t len; 1355 int *error; 1356 { 1357 struct secpolicy *newsp; 1358 1359 IPSEC_ASSERT(xpl0 != NULL, ("null xpl0")); 1360 IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len)); 1361 1362 if (len != PFKEY_EXTLEN(xpl0)) { 1363 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__)); 1364 *error = EINVAL; 1365 return NULL; 1366 } 1367 1368 if ((newsp = KEY_NEWSP()) == NULL) { 1369 *error = ENOBUFS; 1370 return NULL; 1371 } 1372 1373 newsp->spidx.dir = xpl0->sadb_x_policy_dir; 1374 newsp->policy = xpl0->sadb_x_policy_type; 1375 1376 /* check policy */ 1377 switch (xpl0->sadb_x_policy_type) { 1378 case IPSEC_POLICY_DISCARD: 1379 case IPSEC_POLICY_NONE: 1380 case IPSEC_POLICY_ENTRUST: 1381 case IPSEC_POLICY_BYPASS: 1382 newsp->req = NULL; 1383 break; 1384 1385 case IPSEC_POLICY_IPSEC: 1386 { 1387 int tlen; 1388 struct sadb_x_ipsecrequest *xisr; 1389 struct ipsecrequest **p_isr = &newsp->req; 1390 1391 /* validity check */ 1392 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { 1393 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", 1394 __func__)); 1395 KEY_FREESP(&newsp); 1396 *error = EINVAL; 1397 return NULL; 1398 } 1399 1400 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); 1401 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1); 1402 1403 while (tlen > 0) { 1404 /* length check */ 1405 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { 1406 ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest " 1407 "length.\n", __func__)); 1408 KEY_FREESP(&newsp); 1409 *error = EINVAL; 1410 return NULL; 1411 } 1412 1413 /* allocate request buffer */ 1414 /* NB: data structure is zero'd */ 1415 *p_isr = ipsec_newisr(); 1416 if ((*p_isr) == NULL) { 1417 ipseclog((LOG_DEBUG, 1418 "%s: No more memory.\n", __func__)); 1419 KEY_FREESP(&newsp); 1420 *error = ENOBUFS; 1421 return NULL; 1422 } 1423 1424 /* set values */ 1425 switch (xisr->sadb_x_ipsecrequest_proto) { 1426 case IPPROTO_ESP: 1427 case IPPROTO_AH: 1428 case IPPROTO_IPCOMP: 1429 break; 1430 default: 1431 ipseclog((LOG_DEBUG, 1432 "%s: invalid proto type=%u\n", __func__, 1433 xisr->sadb_x_ipsecrequest_proto)); 1434 KEY_FREESP(&newsp); 1435 *error = EPROTONOSUPPORT; 1436 return NULL; 1437 } 1438 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; 1439 1440 switch (xisr->sadb_x_ipsecrequest_mode) { 1441 case IPSEC_MODE_TRANSPORT: 1442 case IPSEC_MODE_TUNNEL: 1443 break; 1444 case IPSEC_MODE_ANY: 1445 default: 1446 ipseclog((LOG_DEBUG, 1447 "%s: invalid mode=%u\n", __func__, 1448 xisr->sadb_x_ipsecrequest_mode)); 1449 KEY_FREESP(&newsp); 1450 *error = EINVAL; 1451 return NULL; 1452 } 1453 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; 1454 1455 switch (xisr->sadb_x_ipsecrequest_level) { 1456 case IPSEC_LEVEL_DEFAULT: 1457 case IPSEC_LEVEL_USE: 1458 case IPSEC_LEVEL_REQUIRE: 1459 break; 1460 case IPSEC_LEVEL_UNIQUE: 1461 /* validity check */ 1462 /* 1463 * If range violation of reqid, kernel will 1464 * update it, don't refuse it. 1465 */ 1466 if (xisr->sadb_x_ipsecrequest_reqid 1467 > IPSEC_MANUAL_REQID_MAX) { 1468 ipseclog((LOG_DEBUG, 1469 "%s: reqid=%d range " 1470 "violation, updated by kernel.\n", 1471 __func__, 1472 xisr->sadb_x_ipsecrequest_reqid)); 1473 xisr->sadb_x_ipsecrequest_reqid = 0; 1474 } 1475 1476 /* allocate new reqid id if reqid is zero. */ 1477 if (xisr->sadb_x_ipsecrequest_reqid == 0) { 1478 u_int32_t reqid; 1479 if ((reqid = key_newreqid()) == 0) { 1480 KEY_FREESP(&newsp); 1481 *error = ENOBUFS; 1482 return NULL; 1483 } 1484 (*p_isr)->saidx.reqid = reqid; 1485 xisr->sadb_x_ipsecrequest_reqid = reqid; 1486 } else { 1487 /* set it for manual keying. */ 1488 (*p_isr)->saidx.reqid = 1489 xisr->sadb_x_ipsecrequest_reqid; 1490 } 1491 break; 1492 1493 default: 1494 ipseclog((LOG_DEBUG, "%s: invalid level=%u\n", 1495 __func__, 1496 xisr->sadb_x_ipsecrequest_level)); 1497 KEY_FREESP(&newsp); 1498 *error = EINVAL; 1499 return NULL; 1500 } 1501 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; 1502 1503 /* set IP addresses if there */ 1504 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { 1505 struct sockaddr *paddr; 1506 1507 paddr = (struct sockaddr *)(xisr + 1); 1508 1509 /* validity check */ 1510 if (paddr->sa_len 1511 > sizeof((*p_isr)->saidx.src)) { 1512 ipseclog((LOG_DEBUG, "%s: invalid " 1513 "request address length.\n", 1514 __func__)); 1515 KEY_FREESP(&newsp); 1516 *error = EINVAL; 1517 return NULL; 1518 } 1519 bcopy(paddr, &(*p_isr)->saidx.src, 1520 paddr->sa_len); 1521 1522 paddr = (struct sockaddr *)((caddr_t)paddr 1523 + paddr->sa_len); 1524 1525 /* validity check */ 1526 if (paddr->sa_len 1527 > sizeof((*p_isr)->saidx.dst)) { 1528 ipseclog((LOG_DEBUG, "%s: invalid " 1529 "request address length.\n", 1530 __func__)); 1531 KEY_FREESP(&newsp); 1532 *error = EINVAL; 1533 return NULL; 1534 } 1535 bcopy(paddr, &(*p_isr)->saidx.dst, 1536 paddr->sa_len); 1537 } 1538 1539 (*p_isr)->sp = newsp; 1540 1541 /* initialization for the next. */ 1542 p_isr = &(*p_isr)->next; 1543 tlen -= xisr->sadb_x_ipsecrequest_len; 1544 1545 /* validity check */ 1546 if (tlen < 0) { 1547 ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n", 1548 __func__)); 1549 KEY_FREESP(&newsp); 1550 *error = EINVAL; 1551 return NULL; 1552 } 1553 1554 xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr 1555 + xisr->sadb_x_ipsecrequest_len); 1556 } 1557 } 1558 break; 1559 default: 1560 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); 1561 KEY_FREESP(&newsp); 1562 *error = EINVAL; 1563 return NULL; 1564 } 1565 1566 *error = 0; 1567 return newsp; 1568 } 1569 1570 static u_int32_t 1571 key_newreqid() 1572 { 1573 static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 1574 1575 auto_reqid = (auto_reqid == ~0 1576 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); 1577 1578 /* XXX should be unique check */ 1579 1580 return auto_reqid; 1581 } 1582 1583 /* 1584 * copy secpolicy struct to sadb_x_policy structure indicated. 1585 */ 1586 struct mbuf * 1587 key_sp2msg(sp) 1588 struct secpolicy *sp; 1589 { 1590 struct sadb_x_policy *xpl; 1591 int tlen; 1592 caddr_t p; 1593 struct mbuf *m; 1594 1595 IPSEC_ASSERT(sp != NULL, ("null policy")); 1596 1597 tlen = key_getspreqmsglen(sp); 1598 1599 m = key_alloc_mbuf(tlen); 1600 if (!m || m->m_next) { /*XXX*/ 1601 if (m) 1602 m_freem(m); 1603 return NULL; 1604 } 1605 1606 m->m_len = tlen; 1607 m->m_next = NULL; 1608 xpl = mtod(m, struct sadb_x_policy *); 1609 bzero(xpl, tlen); 1610 1611 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen); 1612 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 1613 xpl->sadb_x_policy_type = sp->policy; 1614 xpl->sadb_x_policy_dir = sp->spidx.dir; 1615 xpl->sadb_x_policy_id = sp->id; 1616 p = (caddr_t)xpl + sizeof(*xpl); 1617 1618 /* if is the policy for ipsec ? */ 1619 if (sp->policy == IPSEC_POLICY_IPSEC) { 1620 struct sadb_x_ipsecrequest *xisr; 1621 struct ipsecrequest *isr; 1622 1623 for (isr = sp->req; isr != NULL; isr = isr->next) { 1624 1625 xisr = (struct sadb_x_ipsecrequest *)p; 1626 1627 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; 1628 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; 1629 xisr->sadb_x_ipsecrequest_level = isr->level; 1630 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; 1631 1632 p += sizeof(*xisr); 1633 bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len); 1634 p += isr->saidx.src.sa.sa_len; 1635 bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len); 1636 p += isr->saidx.src.sa.sa_len; 1637 1638 xisr->sadb_x_ipsecrequest_len = 1639 PFKEY_ALIGN8(sizeof(*xisr) 1640 + isr->saidx.src.sa.sa_len 1641 + isr->saidx.dst.sa.sa_len); 1642 } 1643 } 1644 1645 return m; 1646 } 1647 1648 /* m will not be freed nor modified */ 1649 static struct mbuf * 1650 #ifdef __STDC__ 1651 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, 1652 int ndeep, int nitem, ...) 1653 #else 1654 key_gather_mbuf(m, mhp, ndeep, nitem, va_alist) 1655 struct mbuf *m; 1656 const struct sadb_msghdr *mhp; 1657 int ndeep; 1658 int nitem; 1659 va_dcl 1660 #endif 1661 { 1662 va_list ap; 1663 int idx; 1664 int i; 1665 struct mbuf *result = NULL, *n; 1666 int len; 1667 1668 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1669 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1670 1671 va_start(ap, nitem); 1672 for (i = 0; i < nitem; i++) { 1673 idx = va_arg(ap, int); 1674 if (idx < 0 || idx > SADB_EXT_MAX) 1675 goto fail; 1676 /* don't attempt to pull empty extension */ 1677 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) 1678 continue; 1679 if (idx != SADB_EXT_RESERVED && 1680 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) 1681 continue; 1682 1683 if (idx == SADB_EXT_RESERVED) { 1684 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 1685 1686 IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len)); 1687 1688 MGETHDR(n, M_DONTWAIT, MT_DATA); 1689 if (!n) 1690 goto fail; 1691 n->m_len = len; 1692 n->m_next = NULL; 1693 m_copydata(m, 0, sizeof(struct sadb_msg), 1694 mtod(n, caddr_t)); 1695 } else if (i < ndeep) { 1696 len = mhp->extlen[idx]; 1697 n = key_alloc_mbuf(len); 1698 if (!n || n->m_next) { /*XXX*/ 1699 if (n) 1700 m_freem(n); 1701 goto fail; 1702 } 1703 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], 1704 mtod(n, caddr_t)); 1705 } else { 1706 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], 1707 M_DONTWAIT); 1708 } 1709 if (n == NULL) 1710 goto fail; 1711 1712 if (result) 1713 m_cat(result, n); 1714 else 1715 result = n; 1716 } 1717 va_end(ap); 1718 1719 if ((result->m_flags & M_PKTHDR) != 0) { 1720 result->m_pkthdr.len = 0; 1721 for (n = result; n; n = n->m_next) 1722 result->m_pkthdr.len += n->m_len; 1723 } 1724 1725 return result; 1726 1727 fail: 1728 m_freem(result); 1729 return NULL; 1730 } 1731 1732 /* 1733 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing 1734 * add an entry to SP database, when received 1735 * <base, address(SD), (lifetime(H),) policy> 1736 * from the user(?). 1737 * Adding to SP database, 1738 * and send 1739 * <base, address(SD), (lifetime(H),) policy> 1740 * to the socket which was send. 1741 * 1742 * SPDADD set a unique policy entry. 1743 * SPDSETIDX like SPDADD without a part of policy requests. 1744 * SPDUPDATE replace a unique policy entry. 1745 * 1746 * m will always be freed. 1747 */ 1748 static int 1749 key_spdadd(so, m, mhp) 1750 struct socket *so; 1751 struct mbuf *m; 1752 const struct sadb_msghdr *mhp; 1753 { 1754 struct sadb_address *src0, *dst0; 1755 struct sadb_x_policy *xpl0, *xpl; 1756 struct sadb_lifetime *lft = NULL; 1757 struct secpolicyindex spidx; 1758 struct secpolicy *newsp; 1759 int error; 1760 1761 IPSEC_ASSERT(so != NULL, ("null socket")); 1762 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1763 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1764 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 1765 1766 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 1767 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 1768 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 1769 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n")); 1770 return key_senderror(so, m, EINVAL); 1771 } 1772 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 1773 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 1774 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 1775 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1776 __func__)); 1777 return key_senderror(so, m, EINVAL); 1778 } 1779 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { 1780 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] 1781 < sizeof(struct sadb_lifetime)) { 1782 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1783 __func__)); 1784 return key_senderror(so, m, EINVAL); 1785 } 1786 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 1787 } 1788 1789 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 1790 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 1791 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 1792 1793 /* make secindex */ 1794 /* XXX boundary check against sa_len */ 1795 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1796 src0 + 1, 1797 dst0 + 1, 1798 src0->sadb_address_prefixlen, 1799 dst0->sadb_address_prefixlen, 1800 src0->sadb_address_proto, 1801 &spidx); 1802 1803 /* checking the direciton. */ 1804 switch (xpl0->sadb_x_policy_dir) { 1805 case IPSEC_DIR_INBOUND: 1806 case IPSEC_DIR_OUTBOUND: 1807 break; 1808 default: 1809 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 1810 mhp->msg->sadb_msg_errno = EINVAL; 1811 return 0; 1812 } 1813 1814 /* check policy */ 1815 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */ 1816 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST 1817 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { 1818 ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__)); 1819 return key_senderror(so, m, EINVAL); 1820 } 1821 1822 /* policy requests are mandatory when action is ipsec. */ 1823 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX 1824 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC 1825 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { 1826 ipseclog((LOG_DEBUG, "%s: some policy requests part required\n", 1827 __func__)); 1828 return key_senderror(so, m, EINVAL); 1829 } 1830 1831 /* 1832 * checking there is SP already or not. 1833 * SPDUPDATE doesn't depend on whether there is a SP or not. 1834 * If the type is either SPDADD or SPDSETIDX AND a SP is found, 1835 * then error. 1836 */ 1837 newsp = key_getsp(&spidx); 1838 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1839 if (newsp) { 1840 newsp->state = IPSEC_SPSTATE_DEAD; 1841 KEY_FREESP(&newsp); 1842 } 1843 } else { 1844 if (newsp != NULL) { 1845 KEY_FREESP(&newsp); 1846 ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n", 1847 __func__)); 1848 return key_senderror(so, m, EEXIST); 1849 } 1850 } 1851 1852 /* allocation new SP entry */ 1853 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) { 1854 return key_senderror(so, m, error); 1855 } 1856 1857 if ((newsp->id = key_getnewspid()) == 0) { 1858 _key_delsp(newsp); 1859 return key_senderror(so, m, ENOBUFS); 1860 } 1861 1862 /* XXX boundary check against sa_len */ 1863 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1864 src0 + 1, 1865 dst0 + 1, 1866 src0->sadb_address_prefixlen, 1867 dst0->sadb_address_prefixlen, 1868 src0->sadb_address_proto, 1869 &newsp->spidx); 1870 1871 /* sanity check on addr pair */ 1872 if (((struct sockaddr *)(src0 + 1))->sa_family != 1873 ((struct sockaddr *)(dst0+ 1))->sa_family) { 1874 _key_delsp(newsp); 1875 return key_senderror(so, m, EINVAL); 1876 } 1877 if (((struct sockaddr *)(src0 + 1))->sa_len != 1878 ((struct sockaddr *)(dst0+ 1))->sa_len) { 1879 _key_delsp(newsp); 1880 return key_senderror(so, m, EINVAL); 1881 } 1882 #if 1 1883 if (newsp->req && newsp->req->saidx.src.sa.sa_family) { 1884 struct sockaddr *sa; 1885 sa = (struct sockaddr *)(src0 + 1); 1886 if (sa->sa_family != newsp->req->saidx.src.sa.sa_family) { 1887 _key_delsp(newsp); 1888 return key_senderror(so, m, EINVAL); 1889 } 1890 } 1891 if (newsp->req && newsp->req->saidx.dst.sa.sa_family) { 1892 struct sockaddr *sa; 1893 sa = (struct sockaddr *)(dst0 + 1); 1894 if (sa->sa_family != newsp->req->saidx.dst.sa.sa_family) { 1895 _key_delsp(newsp); 1896 return key_senderror(so, m, EINVAL); 1897 } 1898 } 1899 #endif 1900 1901 newsp->created = time_second; 1902 newsp->lastused = newsp->created; 1903 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; 1904 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; 1905 1906 newsp->refcnt = 1; /* do not reclaim until I say I do */ 1907 newsp->state = IPSEC_SPSTATE_ALIVE; 1908 LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain); 1909 1910 /* delete the entry in spacqtree */ 1911 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1912 struct secspacq *spacq = key_getspacq(&spidx); 1913 if (spacq != NULL) { 1914 /* reset counter in order to deletion by timehandler. */ 1915 spacq->created = time_second; 1916 spacq->count = 0; 1917 SPACQ_UNLOCK(); 1918 } 1919 } 1920 1921 { 1922 struct mbuf *n, *mpolicy; 1923 struct sadb_msg *newmsg; 1924 int off; 1925 1926 /* create new sadb_msg to reply. */ 1927 if (lft) { 1928 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, 1929 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, 1930 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1931 } else { 1932 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, 1933 SADB_X_EXT_POLICY, 1934 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1935 } 1936 if (!n) 1937 return key_senderror(so, m, ENOBUFS); 1938 1939 if (n->m_len < sizeof(*newmsg)) { 1940 n = m_pullup(n, sizeof(*newmsg)); 1941 if (!n) 1942 return key_senderror(so, m, ENOBUFS); 1943 } 1944 newmsg = mtod(n, struct sadb_msg *); 1945 newmsg->sadb_msg_errno = 0; 1946 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 1947 1948 off = 0; 1949 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), 1950 sizeof(*xpl), &off); 1951 if (mpolicy == NULL) { 1952 /* n is already freed */ 1953 return key_senderror(so, m, ENOBUFS); 1954 } 1955 xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off); 1956 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { 1957 m_freem(n); 1958 return key_senderror(so, m, EINVAL); 1959 } 1960 xpl->sadb_x_policy_id = newsp->id; 1961 1962 m_freem(m); 1963 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 1964 } 1965 } 1966 1967 /* 1968 * get new policy id. 1969 * OUT: 1970 * 0: failure. 1971 * others: success. 1972 */ 1973 static u_int32_t 1974 key_getnewspid() 1975 { 1976 u_int32_t newid = 0; 1977 int count = key_spi_trycnt; /* XXX */ 1978 struct secpolicy *sp; 1979 1980 /* when requesting to allocate spi ranged */ 1981 while (count--) { 1982 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1)); 1983 1984 if ((sp = key_getspbyid(newid)) == NULL) 1985 break; 1986 1987 KEY_FREESP(&sp); 1988 } 1989 1990 if (count == 0 || newid == 0) { 1991 ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n", 1992 __func__)); 1993 return 0; 1994 } 1995 1996 return newid; 1997 } 1998 1999 /* 2000 * SADB_SPDDELETE processing 2001 * receive 2002 * <base, address(SD), policy(*)> 2003 * from the user(?), and set SADB_SASTATE_DEAD, 2004 * and send, 2005 * <base, address(SD), policy(*)> 2006 * to the ikmpd. 2007 * policy(*) including direction of policy. 2008 * 2009 * m will always be freed. 2010 */ 2011 static int 2012 key_spddelete(so, m, mhp) 2013 struct socket *so; 2014 struct mbuf *m; 2015 const struct sadb_msghdr *mhp; 2016 { 2017 struct sadb_address *src0, *dst0; 2018 struct sadb_x_policy *xpl0; 2019 struct secpolicyindex spidx; 2020 struct secpolicy *sp; 2021 2022 IPSEC_ASSERT(so != NULL, ("null so")); 2023 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2024 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2025 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2026 2027 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2028 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2029 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2030 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2031 __func__)); 2032 return key_senderror(so, m, EINVAL); 2033 } 2034 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2035 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2036 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2037 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2038 __func__)); 2039 return key_senderror(so, m, EINVAL); 2040 } 2041 2042 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 2043 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 2044 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 2045 2046 /* make secindex */ 2047 /* XXX boundary check against sa_len */ 2048 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 2049 src0 + 1, 2050 dst0 + 1, 2051 src0->sadb_address_prefixlen, 2052 dst0->sadb_address_prefixlen, 2053 src0->sadb_address_proto, 2054 &spidx); 2055 2056 /* checking the direciton. */ 2057 switch (xpl0->sadb_x_policy_dir) { 2058 case IPSEC_DIR_INBOUND: 2059 case IPSEC_DIR_OUTBOUND: 2060 break; 2061 default: 2062 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 2063 return key_senderror(so, m, EINVAL); 2064 } 2065 2066 /* Is there SP in SPD ? */ 2067 if ((sp = key_getsp(&spidx)) == NULL) { 2068 ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__)); 2069 return key_senderror(so, m, EINVAL); 2070 } 2071 2072 /* save policy id to buffer to be returned. */ 2073 xpl0->sadb_x_policy_id = sp->id; 2074 2075 sp->state = IPSEC_SPSTATE_DEAD; 2076 KEY_FREESP(&sp); 2077 2078 { 2079 struct mbuf *n; 2080 struct sadb_msg *newmsg; 2081 2082 /* create new sadb_msg to reply. */ 2083 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 2084 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2085 if (!n) 2086 return key_senderror(so, m, ENOBUFS); 2087 2088 newmsg = mtod(n, struct sadb_msg *); 2089 newmsg->sadb_msg_errno = 0; 2090 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2091 2092 m_freem(m); 2093 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2094 } 2095 } 2096 2097 /* 2098 * SADB_SPDDELETE2 processing 2099 * receive 2100 * <base, policy(*)> 2101 * from the user(?), and set SADB_SASTATE_DEAD, 2102 * and send, 2103 * <base, policy(*)> 2104 * to the ikmpd. 2105 * policy(*) including direction of policy. 2106 * 2107 * m will always be freed. 2108 */ 2109 static int 2110 key_spddelete2(so, m, mhp) 2111 struct socket *so; 2112 struct mbuf *m; 2113 const struct sadb_msghdr *mhp; 2114 { 2115 u_int32_t id; 2116 struct secpolicy *sp; 2117 2118 IPSEC_ASSERT(so != NULL, ("null socket")); 2119 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2120 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2121 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2122 2123 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2124 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2125 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); 2126 return key_senderror(so, m, EINVAL); 2127 } 2128 2129 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2130 2131 /* Is there SP in SPD ? */ 2132 if ((sp = key_getspbyid(id)) == NULL) { 2133 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2134 return key_senderror(so, m, EINVAL); 2135 } 2136 2137 sp->state = IPSEC_SPSTATE_DEAD; 2138 KEY_FREESP(&sp); 2139 2140 { 2141 struct mbuf *n, *nn; 2142 struct sadb_msg *newmsg; 2143 int off, len; 2144 2145 /* create new sadb_msg to reply. */ 2146 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2147 2148 MGETHDR(n, M_DONTWAIT, MT_DATA); 2149 if (n && len > MHLEN) { 2150 MCLGET(n, M_DONTWAIT); 2151 if ((n->m_flags & M_EXT) == 0) { 2152 m_freem(n); 2153 n = NULL; 2154 } 2155 } 2156 if (!n) 2157 return key_senderror(so, m, ENOBUFS); 2158 2159 n->m_len = len; 2160 n->m_next = NULL; 2161 off = 0; 2162 2163 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 2164 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2165 2166 IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)", 2167 off, len)); 2168 2169 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], 2170 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT); 2171 if (!n->m_next) { 2172 m_freem(n); 2173 return key_senderror(so, m, ENOBUFS); 2174 } 2175 2176 n->m_pkthdr.len = 0; 2177 for (nn = n; nn; nn = nn->m_next) 2178 n->m_pkthdr.len += nn->m_len; 2179 2180 newmsg = mtod(n, struct sadb_msg *); 2181 newmsg->sadb_msg_errno = 0; 2182 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2183 2184 m_freem(m); 2185 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2186 } 2187 } 2188 2189 /* 2190 * SADB_X_GET processing 2191 * receive 2192 * <base, policy(*)> 2193 * from the user(?), 2194 * and send, 2195 * <base, address(SD), policy> 2196 * to the ikmpd. 2197 * policy(*) including direction of policy. 2198 * 2199 * m will always be freed. 2200 */ 2201 static int 2202 key_spdget(so, m, mhp) 2203 struct socket *so; 2204 struct mbuf *m; 2205 const struct sadb_msghdr *mhp; 2206 { 2207 u_int32_t id; 2208 struct secpolicy *sp; 2209 struct mbuf *n; 2210 2211 IPSEC_ASSERT(so != NULL, ("null socket")); 2212 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2213 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2214 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2215 2216 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2217 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2218 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2219 __func__)); 2220 return key_senderror(so, m, EINVAL); 2221 } 2222 2223 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2224 2225 /* Is there SP in SPD ? */ 2226 if ((sp = key_getspbyid(id)) == NULL) { 2227 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2228 return key_senderror(so, m, ENOENT); 2229 } 2230 2231 n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid); 2232 if (n != NULL) { 2233 m_freem(m); 2234 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2235 } else 2236 return key_senderror(so, m, ENOBUFS); 2237 } 2238 2239 /* 2240 * SADB_X_SPDACQUIRE processing. 2241 * Acquire policy and SA(s) for a *OUTBOUND* packet. 2242 * send 2243 * <base, policy(*)> 2244 * to KMD, and expect to receive 2245 * <base> with SADB_X_SPDACQUIRE if error occured, 2246 * or 2247 * <base, policy> 2248 * with SADB_X_SPDUPDATE from KMD by PF_KEY. 2249 * policy(*) is without policy requests. 2250 * 2251 * 0 : succeed 2252 * others: error number 2253 */ 2254 int 2255 key_spdacquire(sp) 2256 struct secpolicy *sp; 2257 { 2258 struct mbuf *result = NULL, *m; 2259 struct secspacq *newspacq; 2260 2261 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2262 IPSEC_ASSERT(sp->req == NULL, ("policy exists")); 2263 IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC, 2264 ("policy not IPSEC %u", sp->policy)); 2265 2266 /* Get an entry to check whether sent message or not. */ 2267 newspacq = key_getspacq(&sp->spidx); 2268 if (newspacq != NULL) { 2269 if (key_blockacq_count < newspacq->count) { 2270 /* reset counter and do send message. */ 2271 newspacq->count = 0; 2272 } else { 2273 /* increment counter and do nothing. */ 2274 newspacq->count++; 2275 return 0; 2276 } 2277 SPACQ_UNLOCK(); 2278 } else { 2279 /* make new entry for blocking to send SADB_ACQUIRE. */ 2280 newspacq = key_newspacq(&sp->spidx); 2281 if (newspacq == NULL) 2282 return ENOBUFS; 2283 } 2284 2285 /* create new sadb_msg to reply. */ 2286 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); 2287 if (!m) 2288 return ENOBUFS; 2289 2290 result = m; 2291 2292 result->m_pkthdr.len = 0; 2293 for (m = result; m; m = m->m_next) 2294 result->m_pkthdr.len += m->m_len; 2295 2296 mtod(result, struct sadb_msg *)->sadb_msg_len = 2297 PFKEY_UNIT64(result->m_pkthdr.len); 2298 2299 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 2300 } 2301 2302 /* 2303 * SADB_SPDFLUSH processing 2304 * receive 2305 * <base> 2306 * from the user, and free all entries in secpctree. 2307 * and send, 2308 * <base> 2309 * to the user. 2310 * NOTE: what to do is only marking SADB_SASTATE_DEAD. 2311 * 2312 * m will always be freed. 2313 */ 2314 static int 2315 key_spdflush(so, m, mhp) 2316 struct socket *so; 2317 struct mbuf *m; 2318 const struct sadb_msghdr *mhp; 2319 { 2320 struct sadb_msg *newmsg; 2321 struct secpolicy *sp; 2322 u_int dir; 2323 2324 IPSEC_ASSERT(so != NULL, ("null socket")); 2325 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2326 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2327 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2328 2329 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) 2330 return key_senderror(so, m, EINVAL); 2331 2332 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2333 SPTREE_LOCK(); 2334 LIST_FOREACH(sp, &sptree[dir], chain) 2335 sp->state = IPSEC_SPSTATE_DEAD; 2336 SPTREE_UNLOCK(); 2337 } 2338 2339 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 2340 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2341 return key_senderror(so, m, ENOBUFS); 2342 } 2343 2344 if (m->m_next) 2345 m_freem(m->m_next); 2346 m->m_next = NULL; 2347 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2348 newmsg = mtod(m, struct sadb_msg *); 2349 newmsg->sadb_msg_errno = 0; 2350 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 2351 2352 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 2353 } 2354 2355 /* 2356 * SADB_SPDDUMP processing 2357 * receive 2358 * <base> 2359 * from the user, and dump all SP leaves 2360 * and send, 2361 * <base> ..... 2362 * to the ikmpd. 2363 * 2364 * m will always be freed. 2365 */ 2366 static int 2367 key_spddump(so, m, mhp) 2368 struct socket *so; 2369 struct mbuf *m; 2370 const struct sadb_msghdr *mhp; 2371 { 2372 struct secpolicy *sp; 2373 int cnt; 2374 u_int dir; 2375 struct mbuf *n; 2376 2377 IPSEC_ASSERT(so != NULL, ("null socket")); 2378 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2379 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2380 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2381 2382 /* search SPD entry and get buffer size. */ 2383 cnt = 0; 2384 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2385 LIST_FOREACH(sp, &sptree[dir], chain) { 2386 cnt++; 2387 } 2388 } 2389 2390 if (cnt == 0) 2391 return key_senderror(so, m, ENOENT); 2392 2393 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2394 LIST_FOREACH(sp, &sptree[dir], chain) { 2395 --cnt; 2396 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, 2397 mhp->msg->sadb_msg_pid); 2398 2399 if (n) 2400 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2401 } 2402 } 2403 2404 m_freem(m); 2405 return 0; 2406 } 2407 2408 static struct mbuf * 2409 key_setdumpsp(sp, type, seq, pid) 2410 struct secpolicy *sp; 2411 u_int8_t type; 2412 u_int32_t seq, pid; 2413 { 2414 struct mbuf *result = NULL, *m; 2415 struct seclifetime lt; 2416 2417 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt); 2418 if (!m) 2419 goto fail; 2420 result = m; 2421 2422 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2423 &sp->spidx.src.sa, sp->spidx.prefs, 2424 sp->spidx.ul_proto); 2425 if (!m) 2426 goto fail; 2427 m_cat(result, m); 2428 2429 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2430 &sp->spidx.dst.sa, sp->spidx.prefd, 2431 sp->spidx.ul_proto); 2432 if (!m) 2433 goto fail; 2434 m_cat(result, m); 2435 2436 m = key_sp2msg(sp); 2437 if (!m) 2438 goto fail; 2439 m_cat(result, m); 2440 2441 if(sp->lifetime){ 2442 lt.addtime=sp->created; 2443 lt.usetime= sp->lastused; 2444 m = key_setlifetime(<, SADB_EXT_LIFETIME_CURRENT); 2445 if (!m) 2446 goto fail; 2447 m_cat(result, m); 2448 2449 lt.addtime=sp->lifetime; 2450 lt.usetime= sp->validtime; 2451 m = key_setlifetime(<, SADB_EXT_LIFETIME_HARD); 2452 if (!m) 2453 goto fail; 2454 m_cat(result, m); 2455 } 2456 2457 if ((result->m_flags & M_PKTHDR) == 0) 2458 goto fail; 2459 2460 if (result->m_len < sizeof(struct sadb_msg)) { 2461 result = m_pullup(result, sizeof(struct sadb_msg)); 2462 if (result == NULL) 2463 goto fail; 2464 } 2465 2466 result->m_pkthdr.len = 0; 2467 for (m = result; m; m = m->m_next) 2468 result->m_pkthdr.len += m->m_len; 2469 2470 mtod(result, struct sadb_msg *)->sadb_msg_len = 2471 PFKEY_UNIT64(result->m_pkthdr.len); 2472 2473 return result; 2474 2475 fail: 2476 m_freem(result); 2477 return NULL; 2478 } 2479 2480 /* 2481 * get PFKEY message length for security policy and request. 2482 */ 2483 static u_int 2484 key_getspreqmsglen(sp) 2485 struct secpolicy *sp; 2486 { 2487 u_int tlen; 2488 2489 tlen = sizeof(struct sadb_x_policy); 2490 2491 /* if is the policy for ipsec ? */ 2492 if (sp->policy != IPSEC_POLICY_IPSEC) 2493 return tlen; 2494 2495 /* get length of ipsec requests */ 2496 { 2497 struct ipsecrequest *isr; 2498 int len; 2499 2500 for (isr = sp->req; isr != NULL; isr = isr->next) { 2501 len = sizeof(struct sadb_x_ipsecrequest) 2502 + isr->saidx.src.sa.sa_len 2503 + isr->saidx.dst.sa.sa_len; 2504 2505 tlen += PFKEY_ALIGN8(len); 2506 } 2507 } 2508 2509 return tlen; 2510 } 2511 2512 /* 2513 * SADB_SPDEXPIRE processing 2514 * send 2515 * <base, address(SD), lifetime(CH), policy> 2516 * to KMD by PF_KEY. 2517 * 2518 * OUT: 0 : succeed 2519 * others : error number 2520 */ 2521 static int 2522 key_spdexpire(sp) 2523 struct secpolicy *sp; 2524 { 2525 struct mbuf *result = NULL, *m; 2526 int len; 2527 int error = -1; 2528 struct sadb_lifetime *lt; 2529 2530 /* XXX: Why do we lock ? */ 2531 2532 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2533 2534 /* set msg header */ 2535 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0); 2536 if (!m) { 2537 error = ENOBUFS; 2538 goto fail; 2539 } 2540 result = m; 2541 2542 /* create lifetime extension (current and hard) */ 2543 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 2544 m = key_alloc_mbuf(len); 2545 if (!m || m->m_next) { /*XXX*/ 2546 if (m) 2547 m_freem(m); 2548 error = ENOBUFS; 2549 goto fail; 2550 } 2551 bzero(mtod(m, caddr_t), len); 2552 lt = mtod(m, struct sadb_lifetime *); 2553 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2554 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 2555 lt->sadb_lifetime_allocations = 0; 2556 lt->sadb_lifetime_bytes = 0; 2557 lt->sadb_lifetime_addtime = sp->created; 2558 lt->sadb_lifetime_usetime = sp->lastused; 2559 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 2560 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2561 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 2562 lt->sadb_lifetime_allocations = 0; 2563 lt->sadb_lifetime_bytes = 0; 2564 lt->sadb_lifetime_addtime = sp->lifetime; 2565 lt->sadb_lifetime_usetime = sp->validtime; 2566 m_cat(result, m); 2567 2568 /* set sadb_address for source */ 2569 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2570 &sp->spidx.src.sa, 2571 sp->spidx.prefs, sp->spidx.ul_proto); 2572 if (!m) { 2573 error = ENOBUFS; 2574 goto fail; 2575 } 2576 m_cat(result, m); 2577 2578 /* set sadb_address for destination */ 2579 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2580 &sp->spidx.dst.sa, 2581 sp->spidx.prefd, sp->spidx.ul_proto); 2582 if (!m) { 2583 error = ENOBUFS; 2584 goto fail; 2585 } 2586 m_cat(result, m); 2587 2588 /* set secpolicy */ 2589 m = key_sp2msg(sp); 2590 if (!m) { 2591 error = ENOBUFS; 2592 goto fail; 2593 } 2594 m_cat(result, m); 2595 2596 if ((result->m_flags & M_PKTHDR) == 0) { 2597 error = EINVAL; 2598 goto fail; 2599 } 2600 2601 if (result->m_len < sizeof(struct sadb_msg)) { 2602 result = m_pullup(result, sizeof(struct sadb_msg)); 2603 if (result == NULL) { 2604 error = ENOBUFS; 2605 goto fail; 2606 } 2607 } 2608 2609 result->m_pkthdr.len = 0; 2610 for (m = result; m; m = m->m_next) 2611 result->m_pkthdr.len += m->m_len; 2612 2613 mtod(result, struct sadb_msg *)->sadb_msg_len = 2614 PFKEY_UNIT64(result->m_pkthdr.len); 2615 2616 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 2617 2618 fail: 2619 if (result) 2620 m_freem(result); 2621 return error; 2622 } 2623 2624 /* %%% SAD management */ 2625 /* 2626 * allocating a memory for new SA head, and copy from the values of mhp. 2627 * OUT: NULL : failure due to the lack of memory. 2628 * others : pointer to new SA head. 2629 */ 2630 static struct secashead * 2631 key_newsah(saidx) 2632 struct secasindex *saidx; 2633 { 2634 struct secashead *newsah; 2635 2636 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 2637 2638 newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO); 2639 if (newsah != NULL) { 2640 int i; 2641 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++) 2642 LIST_INIT(&newsah->savtree[i]); 2643 newsah->saidx = *saidx; 2644 2645 /* add to saidxtree */ 2646 newsah->state = SADB_SASTATE_MATURE; 2647 2648 SAHTREE_LOCK(); 2649 LIST_INSERT_HEAD(&sahtree, newsah, chain); 2650 SAHTREE_UNLOCK(); 2651 } 2652 return(newsah); 2653 } 2654 2655 /* 2656 * delete SA index and all SA registerd. 2657 */ 2658 static void 2659 key_delsah(sah) 2660 struct secashead *sah; 2661 { 2662 struct secasvar *sav, *nextsav; 2663 u_int stateidx; 2664 int zombie = 0; 2665 2666 IPSEC_ASSERT(sah != NULL, ("NULL sah")); 2667 SAHTREE_LOCK_ASSERT(); 2668 2669 /* searching all SA registerd in the secindex. */ 2670 for (stateidx = 0; 2671 stateidx < _ARRAYLEN(saorder_state_any); 2672 stateidx++) { 2673 u_int state = saorder_state_any[stateidx]; 2674 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) { 2675 if (sav->refcnt == 0) { 2676 /* sanity check */ 2677 KEY_CHKSASTATE(state, sav->state, __func__); 2678 KEY_FREESAV(&sav); 2679 } else { 2680 /* give up to delete this sa */ 2681 zombie++; 2682 } 2683 } 2684 } 2685 if (!zombie) { /* delete only if there are savs */ 2686 /* remove from tree of SA index */ 2687 if (__LIST_CHAINED(sah)) 2688 LIST_REMOVE(sah, chain); 2689 if (sah->sa_route.ro_rt) { 2690 RTFREE(sah->sa_route.ro_rt); 2691 sah->sa_route.ro_rt = (struct rtentry *)NULL; 2692 } 2693 free(sah, M_IPSEC_SAH); 2694 } 2695 } 2696 2697 /* 2698 * allocating a new SA with LARVAL state. key_add() and key_getspi() call, 2699 * and copy the values of mhp into new buffer. 2700 * When SAD message type is GETSPI: 2701 * to set sequence number from acq_seq++, 2702 * to set zero to SPI. 2703 * not to call key_setsava(). 2704 * OUT: NULL : fail 2705 * others : pointer to new secasvar. 2706 * 2707 * does not modify mbuf. does not free mbuf on error. 2708 */ 2709 static struct secasvar * 2710 key_newsav(m, mhp, sah, errp, where, tag) 2711 struct mbuf *m; 2712 const struct sadb_msghdr *mhp; 2713 struct secashead *sah; 2714 int *errp; 2715 const char* where; 2716 int tag; 2717 { 2718 struct secasvar *newsav; 2719 const struct sadb_sa *xsa; 2720 2721 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2722 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2723 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2724 IPSEC_ASSERT(sah != NULL, ("null secashead")); 2725 2726 newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO); 2727 if (newsav == NULL) { 2728 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2729 *errp = ENOBUFS; 2730 goto done; 2731 } 2732 2733 switch (mhp->msg->sadb_msg_type) { 2734 case SADB_GETSPI: 2735 newsav->spi = 0; 2736 2737 #ifdef IPSEC_DOSEQCHECK 2738 /* sync sequence number */ 2739 if (mhp->msg->sadb_msg_seq == 0) 2740 newsav->seq = 2741 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq)); 2742 else 2743 #endif 2744 newsav->seq = mhp->msg->sadb_msg_seq; 2745 break; 2746 2747 case SADB_ADD: 2748 /* sanity check */ 2749 if (mhp->ext[SADB_EXT_SA] == NULL) { 2750 free(newsav, M_IPSEC_SA); 2751 newsav = NULL; 2752 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2753 __func__)); 2754 *errp = EINVAL; 2755 goto done; 2756 } 2757 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 2758 newsav->spi = xsa->sadb_sa_spi; 2759 newsav->seq = mhp->msg->sadb_msg_seq; 2760 break; 2761 default: 2762 free(newsav, M_IPSEC_SA); 2763 newsav = NULL; 2764 *errp = EINVAL; 2765 goto done; 2766 } 2767 2768 2769 /* copy sav values */ 2770 if (mhp->msg->sadb_msg_type != SADB_GETSPI) { 2771 *errp = key_setsaval(newsav, m, mhp); 2772 if (*errp) { 2773 free(newsav, M_IPSEC_SA); 2774 newsav = NULL; 2775 goto done; 2776 } 2777 } 2778 2779 SECASVAR_LOCK_INIT(newsav); 2780 2781 /* reset created */ 2782 newsav->created = time_second; 2783 newsav->pid = mhp->msg->sadb_msg_pid; 2784 2785 /* add to satree */ 2786 newsav->sah = sah; 2787 sa_initref(newsav); 2788 newsav->state = SADB_SASTATE_LARVAL; 2789 2790 /* XXX locking??? */ 2791 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav, 2792 secasvar, chain); 2793 done: 2794 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 2795 printf("DP %s from %s:%u return SP:%p\n", __func__, 2796 where, tag, newsav)); 2797 2798 return newsav; 2799 } 2800 2801 /* 2802 * free() SA variable entry. 2803 */ 2804 static void 2805 key_cleansav(struct secasvar *sav) 2806 { 2807 /* 2808 * Cleanup xform state. Note that zeroize'ing causes the 2809 * keys to be cleared; otherwise we must do it ourself. 2810 */ 2811 if (sav->tdb_xform != NULL) { 2812 sav->tdb_xform->xf_zeroize(sav); 2813 sav->tdb_xform = NULL; 2814 } else { 2815 KASSERT(sav->iv == NULL, ("iv but no xform")); 2816 if (sav->key_auth != NULL) 2817 bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth)); 2818 if (sav->key_enc != NULL) 2819 bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc)); 2820 } 2821 if (sav->key_auth != NULL) { 2822 if (sav->key_auth->key_data != NULL) 2823 free(sav->key_auth->key_data, M_IPSEC_MISC); 2824 free(sav->key_auth, M_IPSEC_MISC); 2825 sav->key_auth = NULL; 2826 } 2827 if (sav->key_enc != NULL) { 2828 if (sav->key_enc->key_data != NULL) 2829 free(sav->key_enc->key_data, M_IPSEC_MISC); 2830 free(sav->key_enc, M_IPSEC_MISC); 2831 sav->key_enc = NULL; 2832 } 2833 if (sav->sched) { 2834 bzero(sav->sched, sav->schedlen); 2835 free(sav->sched, M_IPSEC_MISC); 2836 sav->sched = NULL; 2837 } 2838 if (sav->replay != NULL) { 2839 free(sav->replay, M_IPSEC_MISC); 2840 sav->replay = NULL; 2841 } 2842 if (sav->lft_c != NULL) { 2843 free(sav->lft_c, M_IPSEC_MISC); 2844 sav->lft_c = NULL; 2845 } 2846 if (sav->lft_h != NULL) { 2847 free(sav->lft_h, M_IPSEC_MISC); 2848 sav->lft_h = NULL; 2849 } 2850 if (sav->lft_s != NULL) { 2851 free(sav->lft_s, M_IPSEC_MISC); 2852 sav->lft_s = NULL; 2853 } 2854 } 2855 2856 /* 2857 * free() SA variable entry. 2858 */ 2859 static void 2860 key_delsav(sav) 2861 struct secasvar *sav; 2862 { 2863 IPSEC_ASSERT(sav != NULL, ("null sav")); 2864 IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt)); 2865 2866 /* remove from SA header */ 2867 if (__LIST_CHAINED(sav)) 2868 LIST_REMOVE(sav, chain); 2869 key_cleansav(sav); 2870 SECASVAR_LOCK_DESTROY(sav); 2871 free(sav, M_IPSEC_SA); 2872 } 2873 2874 /* 2875 * search SAD. 2876 * OUT: 2877 * NULL : not found 2878 * others : found, pointer to a SA. 2879 */ 2880 static struct secashead * 2881 key_getsah(saidx) 2882 struct secasindex *saidx; 2883 { 2884 struct secashead *sah; 2885 2886 SAHTREE_LOCK(); 2887 LIST_FOREACH(sah, &sahtree, chain) { 2888 if (sah->state == SADB_SASTATE_DEAD) 2889 continue; 2890 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID)) 2891 break; 2892 } 2893 SAHTREE_UNLOCK(); 2894 2895 return sah; 2896 } 2897 2898 /* 2899 * check not to be duplicated SPI. 2900 * NOTE: this function is too slow due to searching all SAD. 2901 * OUT: 2902 * NULL : not found 2903 * others : found, pointer to a SA. 2904 */ 2905 static struct secasvar * 2906 key_checkspidup(saidx, spi) 2907 struct secasindex *saidx; 2908 u_int32_t spi; 2909 { 2910 struct secashead *sah; 2911 struct secasvar *sav; 2912 2913 /* check address family */ 2914 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) { 2915 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 2916 __func__)); 2917 return NULL; 2918 } 2919 2920 sav = NULL; 2921 /* check all SAD */ 2922 SAHTREE_LOCK(); 2923 LIST_FOREACH(sah, &sahtree, chain) { 2924 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst)) 2925 continue; 2926 sav = key_getsavbyspi(sah, spi); 2927 if (sav != NULL) 2928 break; 2929 } 2930 SAHTREE_UNLOCK(); 2931 2932 return sav; 2933 } 2934 2935 /* 2936 * search SAD litmited alive SA, protocol, SPI. 2937 * OUT: 2938 * NULL : not found 2939 * others : found, pointer to a SA. 2940 */ 2941 static struct secasvar * 2942 key_getsavbyspi(sah, spi) 2943 struct secashead *sah; 2944 u_int32_t spi; 2945 { 2946 struct secasvar *sav; 2947 u_int stateidx, state; 2948 2949 sav = NULL; 2950 SAHTREE_LOCK_ASSERT(); 2951 /* search all status */ 2952 for (stateidx = 0; 2953 stateidx < _ARRAYLEN(saorder_state_alive); 2954 stateidx++) { 2955 2956 state = saorder_state_alive[stateidx]; 2957 LIST_FOREACH(sav, &sah->savtree[state], chain) { 2958 2959 /* sanity check */ 2960 if (sav->state != state) { 2961 ipseclog((LOG_DEBUG, "%s: " 2962 "invalid sav->state (queue: %d SA: %d)\n", 2963 __func__, state, sav->state)); 2964 continue; 2965 } 2966 2967 if (sav->spi == spi) 2968 return sav; 2969 } 2970 } 2971 2972 return NULL; 2973 } 2974 2975 /* 2976 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. 2977 * You must update these if need. 2978 * OUT: 0: success. 2979 * !0: failure. 2980 * 2981 * does not modify mbuf. does not free mbuf on error. 2982 */ 2983 static int 2984 key_setsaval(sav, m, mhp) 2985 struct secasvar *sav; 2986 struct mbuf *m; 2987 const struct sadb_msghdr *mhp; 2988 { 2989 int error = 0; 2990 2991 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2992 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2993 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2994 2995 /* initialization */ 2996 sav->replay = NULL; 2997 sav->key_auth = NULL; 2998 sav->key_enc = NULL; 2999 sav->sched = NULL; 3000 sav->schedlen = 0; 3001 sav->iv = NULL; 3002 sav->lft_c = NULL; 3003 sav->lft_h = NULL; 3004 sav->lft_s = NULL; 3005 sav->tdb_xform = NULL; /* transform */ 3006 sav->tdb_encalgxform = NULL; /* encoding algorithm */ 3007 sav->tdb_authalgxform = NULL; /* authentication algorithm */ 3008 sav->tdb_compalgxform = NULL; /* compression algorithm */ 3009 3010 /* SA */ 3011 if (mhp->ext[SADB_EXT_SA] != NULL) { 3012 const struct sadb_sa *sa0; 3013 3014 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 3015 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { 3016 error = EINVAL; 3017 goto fail; 3018 } 3019 3020 sav->alg_auth = sa0->sadb_sa_auth; 3021 sav->alg_enc = sa0->sadb_sa_encrypt; 3022 sav->flags = sa0->sadb_sa_flags; 3023 3024 /* replay window */ 3025 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { 3026 sav->replay = (struct secreplay *) 3027 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO); 3028 if (sav->replay == NULL) { 3029 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3030 __func__)); 3031 error = ENOBUFS; 3032 goto fail; 3033 } 3034 if (sa0->sadb_sa_replay != 0) 3035 sav->replay->bitmap = (caddr_t)(sav->replay+1); 3036 sav->replay->wsize = sa0->sadb_sa_replay; 3037 } 3038 } 3039 3040 /* Authentication keys */ 3041 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { 3042 const struct sadb_key *key0; 3043 int len; 3044 3045 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH]; 3046 len = mhp->extlen[SADB_EXT_KEY_AUTH]; 3047 3048 error = 0; 3049 if (len < sizeof(*key0)) { 3050 error = EINVAL; 3051 goto fail; 3052 } 3053 switch (mhp->msg->sadb_msg_satype) { 3054 case SADB_SATYPE_AH: 3055 case SADB_SATYPE_ESP: 3056 case SADB_X_SATYPE_TCPSIGNATURE: 3057 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3058 sav->alg_auth != SADB_X_AALG_NULL) 3059 error = EINVAL; 3060 break; 3061 case SADB_X_SATYPE_IPCOMP: 3062 default: 3063 error = EINVAL; 3064 break; 3065 } 3066 if (error) { 3067 ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n", 3068 __func__)); 3069 goto fail; 3070 } 3071 3072 sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len, 3073 M_IPSEC_MISC); 3074 if (sav->key_auth == NULL ) { 3075 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3076 __func__)); 3077 error = ENOBUFS; 3078 goto fail; 3079 } 3080 } 3081 3082 /* Encryption key */ 3083 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { 3084 const struct sadb_key *key0; 3085 int len; 3086 3087 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT]; 3088 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; 3089 3090 error = 0; 3091 if (len < sizeof(*key0)) { 3092 error = EINVAL; 3093 goto fail; 3094 } 3095 switch (mhp->msg->sadb_msg_satype) { 3096 case SADB_SATYPE_ESP: 3097 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3098 sav->alg_enc != SADB_EALG_NULL) { 3099 error = EINVAL; 3100 break; 3101 } 3102 sav->key_enc = (struct seckey *)key_dup_keymsg(key0, 3103 len, 3104 M_IPSEC_MISC); 3105 if (sav->key_enc == NULL) { 3106 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3107 __func__)); 3108 error = ENOBUFS; 3109 goto fail; 3110 } 3111 break; 3112 case SADB_X_SATYPE_IPCOMP: 3113 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) 3114 error = EINVAL; 3115 sav->key_enc = NULL; /*just in case*/ 3116 break; 3117 case SADB_SATYPE_AH: 3118 case SADB_X_SATYPE_TCPSIGNATURE: 3119 default: 3120 error = EINVAL; 3121 break; 3122 } 3123 if (error) { 3124 ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n", 3125 __func__)); 3126 goto fail; 3127 } 3128 } 3129 3130 /* set iv */ 3131 sav->ivlen = 0; 3132 3133 switch (mhp->msg->sadb_msg_satype) { 3134 case SADB_SATYPE_AH: 3135 error = xform_init(sav, XF_AH); 3136 break; 3137 case SADB_SATYPE_ESP: 3138 error = xform_init(sav, XF_ESP); 3139 break; 3140 case SADB_X_SATYPE_IPCOMP: 3141 error = xform_init(sav, XF_IPCOMP); 3142 break; 3143 case SADB_X_SATYPE_TCPSIGNATURE: 3144 error = xform_init(sav, XF_TCPSIGNATURE); 3145 break; 3146 } 3147 if (error) { 3148 ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n", 3149 __func__, mhp->msg->sadb_msg_satype)); 3150 goto fail; 3151 } 3152 3153 /* reset created */ 3154 sav->created = time_second; 3155 3156 /* make lifetime for CURRENT */ 3157 sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT); 3158 if (sav->lft_c == NULL) { 3159 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3160 error = ENOBUFS; 3161 goto fail; 3162 } 3163 3164 sav->lft_c->allocations = 0; 3165 sav->lft_c->bytes = 0; 3166 sav->lft_c->addtime = time_second; 3167 sav->lft_c->usetime = 0; 3168 3169 /* lifetimes for HARD and SOFT */ 3170 { 3171 const struct sadb_lifetime *lft0; 3172 3173 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 3174 if (lft0 != NULL) { 3175 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { 3176 error = EINVAL; 3177 goto fail; 3178 } 3179 sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3180 if (sav->lft_h == NULL) { 3181 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3182 error = ENOBUFS; 3183 goto fail; 3184 } 3185 /* to be initialize ? */ 3186 } 3187 3188 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT]; 3189 if (lft0 != NULL) { 3190 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { 3191 error = EINVAL; 3192 goto fail; 3193 } 3194 sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3195 if (sav->lft_s == NULL) { 3196 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3197 error = ENOBUFS; 3198 goto fail; 3199 } 3200 /* to be initialize ? */ 3201 } 3202 } 3203 3204 return 0; 3205 3206 fail: 3207 /* initialization */ 3208 key_cleansav(sav); 3209 3210 return error; 3211 } 3212 3213 /* 3214 * validation with a secasvar entry, and set SADB_SATYPE_MATURE. 3215 * OUT: 0: valid 3216 * other: errno 3217 */ 3218 static int 3219 key_mature(struct secasvar *sav) 3220 { 3221 int error; 3222 3223 /* check SPI value */ 3224 switch (sav->sah->saidx.proto) { 3225 case IPPROTO_ESP: 3226 case IPPROTO_AH: 3227 /* 3228 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values 3229 * 1-255 reserved by IANA for future use, 3230 * 0 for implementation specific, local use. 3231 */ 3232 if (ntohl(sav->spi) <= 255) { 3233 ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n", 3234 __func__, (u_int32_t)ntohl(sav->spi))); 3235 return EINVAL; 3236 } 3237 break; 3238 } 3239 3240 /* check satype */ 3241 switch (sav->sah->saidx.proto) { 3242 case IPPROTO_ESP: 3243 /* check flags */ 3244 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) == 3245 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) { 3246 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3247 "given to old-esp.\n", __func__)); 3248 return EINVAL; 3249 } 3250 error = xform_init(sav, XF_ESP); 3251 break; 3252 case IPPROTO_AH: 3253 /* check flags */ 3254 if (sav->flags & SADB_X_EXT_DERIV) { 3255 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3256 "given to AH SA.\n", __func__)); 3257 return EINVAL; 3258 } 3259 if (sav->alg_enc != SADB_EALG_NONE) { 3260 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3261 "mismated.\n", __func__)); 3262 return(EINVAL); 3263 } 3264 error = xform_init(sav, XF_AH); 3265 break; 3266 case IPPROTO_IPCOMP: 3267 if (sav->alg_auth != SADB_AALG_NONE) { 3268 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3269 "mismated.\n", __func__)); 3270 return(EINVAL); 3271 } 3272 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 3273 && ntohl(sav->spi) >= 0x10000) { 3274 ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n", 3275 __func__)); 3276 return(EINVAL); 3277 } 3278 error = xform_init(sav, XF_IPCOMP); 3279 break; 3280 case IPPROTO_TCP: 3281 if (sav->alg_enc != SADB_EALG_NONE) { 3282 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3283 "mismated.\n", __func__)); 3284 return(EINVAL); 3285 } 3286 error = xform_init(sav, XF_TCPSIGNATURE); 3287 break; 3288 default: 3289 ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__)); 3290 error = EPROTONOSUPPORT; 3291 break; 3292 } 3293 if (error == 0) { 3294 SAHTREE_LOCK(); 3295 key_sa_chgstate(sav, SADB_SASTATE_MATURE); 3296 SAHTREE_UNLOCK(); 3297 } 3298 return (error); 3299 } 3300 3301 /* 3302 * subroutine for SADB_GET and SADB_DUMP. 3303 */ 3304 static struct mbuf * 3305 key_setdumpsa(sav, type, satype, seq, pid) 3306 struct secasvar *sav; 3307 u_int8_t type, satype; 3308 u_int32_t seq, pid; 3309 { 3310 struct mbuf *result = NULL, *tres = NULL, *m; 3311 int i; 3312 int dumporder[] = { 3313 SADB_EXT_SA, SADB_X_EXT_SA2, 3314 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 3315 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, 3316 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, 3317 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, 3318 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, 3319 }; 3320 3321 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt); 3322 if (m == NULL) 3323 goto fail; 3324 result = m; 3325 3326 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) { 3327 m = NULL; 3328 switch (dumporder[i]) { 3329 case SADB_EXT_SA: 3330 m = key_setsadbsa(sav); 3331 if (!m) 3332 goto fail; 3333 break; 3334 3335 case SADB_X_EXT_SA2: 3336 m = key_setsadbxsa2(sav->sah->saidx.mode, 3337 sav->replay ? sav->replay->count : 0, 3338 sav->sah->saidx.reqid); 3339 if (!m) 3340 goto fail; 3341 break; 3342 3343 case SADB_EXT_ADDRESS_SRC: 3344 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3345 &sav->sah->saidx.src.sa, 3346 FULLMASK, IPSEC_ULPROTO_ANY); 3347 if (!m) 3348 goto fail; 3349 break; 3350 3351 case SADB_EXT_ADDRESS_DST: 3352 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3353 &sav->sah->saidx.dst.sa, 3354 FULLMASK, IPSEC_ULPROTO_ANY); 3355 if (!m) 3356 goto fail; 3357 break; 3358 3359 case SADB_EXT_KEY_AUTH: 3360 if (!sav->key_auth) 3361 continue; 3362 m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH); 3363 if (!m) 3364 goto fail; 3365 break; 3366 3367 case SADB_EXT_KEY_ENCRYPT: 3368 if (!sav->key_enc) 3369 continue; 3370 m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT); 3371 if (!m) 3372 goto fail; 3373 break; 3374 3375 case SADB_EXT_LIFETIME_CURRENT: 3376 if (!sav->lft_c) 3377 continue; 3378 m = key_setlifetime(sav->lft_c, 3379 SADB_EXT_LIFETIME_CURRENT); 3380 if (!m) 3381 goto fail; 3382 break; 3383 3384 case SADB_EXT_LIFETIME_HARD: 3385 if (!sav->lft_h) 3386 continue; 3387 m = key_setlifetime(sav->lft_h, 3388 SADB_EXT_LIFETIME_HARD); 3389 if (!m) 3390 goto fail; 3391 break; 3392 3393 case SADB_EXT_LIFETIME_SOFT: 3394 if (!sav->lft_s) 3395 continue; 3396 m = key_setlifetime(sav->lft_s, 3397 SADB_EXT_LIFETIME_SOFT); 3398 3399 if (!m) 3400 goto fail; 3401 break; 3402 3403 case SADB_EXT_ADDRESS_PROXY: 3404 case SADB_EXT_IDENTITY_SRC: 3405 case SADB_EXT_IDENTITY_DST: 3406 /* XXX: should we brought from SPD ? */ 3407 case SADB_EXT_SENSITIVITY: 3408 default: 3409 continue; 3410 } 3411 3412 if (!m) 3413 goto fail; 3414 if (tres) 3415 m_cat(m, tres); 3416 tres = m; 3417 3418 } 3419 3420 m_cat(result, tres); 3421 if (result->m_len < sizeof(struct sadb_msg)) { 3422 result = m_pullup(result, sizeof(struct sadb_msg)); 3423 if (result == NULL) 3424 goto fail; 3425 } 3426 3427 result->m_pkthdr.len = 0; 3428 for (m = result; m; m = m->m_next) 3429 result->m_pkthdr.len += m->m_len; 3430 3431 mtod(result, struct sadb_msg *)->sadb_msg_len = 3432 PFKEY_UNIT64(result->m_pkthdr.len); 3433 3434 return result; 3435 3436 fail: 3437 m_freem(result); 3438 m_freem(tres); 3439 return NULL; 3440 } 3441 3442 /* 3443 * set data into sadb_msg. 3444 */ 3445 static struct mbuf * 3446 key_setsadbmsg(type, tlen, satype, seq, pid, reserved) 3447 u_int8_t type, satype; 3448 u_int16_t tlen; 3449 u_int32_t seq; 3450 pid_t pid; 3451 u_int16_t reserved; 3452 { 3453 struct mbuf *m; 3454 struct sadb_msg *p; 3455 int len; 3456 3457 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 3458 if (len > MCLBYTES) 3459 return NULL; 3460 MGETHDR(m, M_DONTWAIT, MT_DATA); 3461 if (m && len > MHLEN) { 3462 MCLGET(m, M_DONTWAIT); 3463 if ((m->m_flags & M_EXT) == 0) { 3464 m_freem(m); 3465 m = NULL; 3466 } 3467 } 3468 if (!m) 3469 return NULL; 3470 m->m_pkthdr.len = m->m_len = len; 3471 m->m_next = NULL; 3472 3473 p = mtod(m, struct sadb_msg *); 3474 3475 bzero(p, len); 3476 p->sadb_msg_version = PF_KEY_V2; 3477 p->sadb_msg_type = type; 3478 p->sadb_msg_errno = 0; 3479 p->sadb_msg_satype = satype; 3480 p->sadb_msg_len = PFKEY_UNIT64(tlen); 3481 p->sadb_msg_reserved = reserved; 3482 p->sadb_msg_seq = seq; 3483 p->sadb_msg_pid = (u_int32_t)pid; 3484 3485 return m; 3486 } 3487 3488 /* 3489 * copy secasvar data into sadb_address. 3490 */ 3491 static struct mbuf * 3492 key_setsadbsa(sav) 3493 struct secasvar *sav; 3494 { 3495 struct mbuf *m; 3496 struct sadb_sa *p; 3497 int len; 3498 3499 len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); 3500 m = key_alloc_mbuf(len); 3501 if (!m || m->m_next) { /*XXX*/ 3502 if (m) 3503 m_freem(m); 3504 return NULL; 3505 } 3506 3507 p = mtod(m, struct sadb_sa *); 3508 3509 bzero(p, len); 3510 p->sadb_sa_len = PFKEY_UNIT64(len); 3511 p->sadb_sa_exttype = SADB_EXT_SA; 3512 p->sadb_sa_spi = sav->spi; 3513 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0); 3514 p->sadb_sa_state = sav->state; 3515 p->sadb_sa_auth = sav->alg_auth; 3516 p->sadb_sa_encrypt = sav->alg_enc; 3517 p->sadb_sa_flags = sav->flags; 3518 3519 return m; 3520 } 3521 3522 /* 3523 * set data into sadb_address. 3524 */ 3525 static struct mbuf * 3526 key_setsadbaddr(exttype, saddr, prefixlen, ul_proto) 3527 u_int16_t exttype; 3528 const struct sockaddr *saddr; 3529 u_int8_t prefixlen; 3530 u_int16_t ul_proto; 3531 { 3532 struct mbuf *m; 3533 struct sadb_address *p; 3534 size_t len; 3535 3536 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + 3537 PFKEY_ALIGN8(saddr->sa_len); 3538 m = key_alloc_mbuf(len); 3539 if (!m || m->m_next) { /*XXX*/ 3540 if (m) 3541 m_freem(m); 3542 return NULL; 3543 } 3544 3545 p = mtod(m, struct sadb_address *); 3546 3547 bzero(p, len); 3548 p->sadb_address_len = PFKEY_UNIT64(len); 3549 p->sadb_address_exttype = exttype; 3550 p->sadb_address_proto = ul_proto; 3551 if (prefixlen == FULLMASK) { 3552 switch (saddr->sa_family) { 3553 case AF_INET: 3554 prefixlen = sizeof(struct in_addr) << 3; 3555 break; 3556 case AF_INET6: 3557 prefixlen = sizeof(struct in6_addr) << 3; 3558 break; 3559 default: 3560 ; /*XXX*/ 3561 } 3562 } 3563 p->sadb_address_prefixlen = prefixlen; 3564 p->sadb_address_reserved = 0; 3565 3566 bcopy(saddr, 3567 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)), 3568 saddr->sa_len); 3569 3570 return m; 3571 } 3572 3573 /* 3574 * set data into sadb_x_sa2. 3575 */ 3576 static struct mbuf * 3577 key_setsadbxsa2(mode, seq, reqid) 3578 u_int8_t mode; 3579 u_int32_t seq, reqid; 3580 { 3581 struct mbuf *m; 3582 struct sadb_x_sa2 *p; 3583 size_t len; 3584 3585 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); 3586 m = key_alloc_mbuf(len); 3587 if (!m || m->m_next) { /*XXX*/ 3588 if (m) 3589 m_freem(m); 3590 return NULL; 3591 } 3592 3593 p = mtod(m, struct sadb_x_sa2 *); 3594 3595 bzero(p, len); 3596 p->sadb_x_sa2_len = PFKEY_UNIT64(len); 3597 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 3598 p->sadb_x_sa2_mode = mode; 3599 p->sadb_x_sa2_reserved1 = 0; 3600 p->sadb_x_sa2_reserved2 = 0; 3601 p->sadb_x_sa2_sequence = seq; 3602 p->sadb_x_sa2_reqid = reqid; 3603 3604 return m; 3605 } 3606 3607 /* 3608 * set data into sadb_x_policy 3609 */ 3610 static struct mbuf * 3611 key_setsadbxpolicy(type, dir, id) 3612 u_int16_t type; 3613 u_int8_t dir; 3614 u_int32_t id; 3615 { 3616 struct mbuf *m; 3617 struct sadb_x_policy *p; 3618 size_t len; 3619 3620 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); 3621 m = key_alloc_mbuf(len); 3622 if (!m || m->m_next) { /*XXX*/ 3623 if (m) 3624 m_freem(m); 3625 return NULL; 3626 } 3627 3628 p = mtod(m, struct sadb_x_policy *); 3629 3630 bzero(p, len); 3631 p->sadb_x_policy_len = PFKEY_UNIT64(len); 3632 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 3633 p->sadb_x_policy_type = type; 3634 p->sadb_x_policy_dir = dir; 3635 p->sadb_x_policy_id = id; 3636 3637 return m; 3638 } 3639 3640 /* %%% utilities */ 3641 /* Take a key message (sadb_key) from the socket and turn it into one 3642 * of the kernel's key structures (seckey). 3643 * 3644 * IN: pointer to the src 3645 * OUT: NULL no more memory 3646 */ 3647 struct seckey * 3648 key_dup_keymsg(const struct sadb_key *src, u_int len, 3649 struct malloc_type *type) 3650 { 3651 struct seckey *dst; 3652 dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT); 3653 if (dst != NULL) { 3654 dst->bits = src->sadb_key_bits; 3655 dst->key_data = (char *)malloc(len, type, M_NOWAIT); 3656 if (dst->key_data != NULL) { 3657 bcopy((const char *)src + sizeof(struct sadb_key), 3658 dst->key_data, len); 3659 } else { 3660 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3661 __func__)); 3662 free(dst, type); 3663 dst = NULL; 3664 } 3665 } else { 3666 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3667 __func__)); 3668 3669 } 3670 return dst; 3671 } 3672 3673 /* Take a lifetime message (sadb_lifetime) passed in on a socket and 3674 * turn it into one of the kernel's lifetime structures (seclifetime). 3675 * 3676 * IN: pointer to the destination, source and malloc type 3677 * OUT: NULL, no more memory 3678 */ 3679 3680 static struct seclifetime * 3681 key_dup_lifemsg(const struct sadb_lifetime *src, 3682 struct malloc_type *type) 3683 { 3684 struct seclifetime *dst = NULL; 3685 3686 dst = (struct seclifetime *)malloc(sizeof(struct seclifetime), 3687 type, M_NOWAIT); 3688 if (dst == NULL) { 3689 /* XXX counter */ 3690 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3691 } else { 3692 dst->allocations = src->sadb_lifetime_allocations; 3693 dst->bytes = src->sadb_lifetime_bytes; 3694 dst->addtime = src->sadb_lifetime_addtime; 3695 dst->usetime = src->sadb_lifetime_usetime; 3696 } 3697 return dst; 3698 } 3699 3700 /* compare my own address 3701 * OUT: 1: true, i.e. my address. 3702 * 0: false 3703 */ 3704 int 3705 key_ismyaddr(sa) 3706 struct sockaddr *sa; 3707 { 3708 #ifdef INET 3709 struct sockaddr_in *sin; 3710 struct in_ifaddr *ia; 3711 #endif 3712 3713 IPSEC_ASSERT(sa != NULL, ("null sockaddr")); 3714 3715 switch (sa->sa_family) { 3716 #ifdef INET 3717 case AF_INET: 3718 sin = (struct sockaddr_in *)sa; 3719 for (ia = in_ifaddrhead.tqh_first; ia; 3720 ia = ia->ia_link.tqe_next) 3721 { 3722 if (sin->sin_family == ia->ia_addr.sin_family && 3723 sin->sin_len == ia->ia_addr.sin_len && 3724 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr) 3725 { 3726 return 1; 3727 } 3728 } 3729 break; 3730 #endif 3731 #ifdef INET6 3732 case AF_INET6: 3733 return key_ismyaddr6((struct sockaddr_in6 *)sa); 3734 #endif 3735 } 3736 3737 return 0; 3738 } 3739 3740 #ifdef INET6 3741 /* 3742 * compare my own address for IPv6. 3743 * 1: ours 3744 * 0: other 3745 * NOTE: derived ip6_input() in KAME. This is necessary to modify more. 3746 */ 3747 #include <netinet6/in6_var.h> 3748 3749 static int 3750 key_ismyaddr6(sin6) 3751 struct sockaddr_in6 *sin6; 3752 { 3753 struct in6_ifaddr *ia; 3754 struct in6_multi *in6m; 3755 3756 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 3757 if (key_sockaddrcmp((struct sockaddr *)&sin6, 3758 (struct sockaddr *)&ia->ia_addr, 0) == 0) 3759 return 1; 3760 3761 /* 3762 * XXX Multicast 3763 * XXX why do we care about multlicast here while we don't care 3764 * about IPv4 multicast?? 3765 * XXX scope 3766 */ 3767 in6m = NULL; 3768 IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m); 3769 if (in6m) 3770 return 1; 3771 } 3772 3773 /* loopback, just for safety */ 3774 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) 3775 return 1; 3776 3777 return 0; 3778 } 3779 #endif /*INET6*/ 3780 3781 /* 3782 * compare two secasindex structure. 3783 * flag can specify to compare 2 saidxes. 3784 * compare two secasindex structure without both mode and reqid. 3785 * don't compare port. 3786 * IN: 3787 * saidx0: source, it can be in SAD. 3788 * saidx1: object. 3789 * OUT: 3790 * 1 : equal 3791 * 0 : not equal 3792 */ 3793 static int 3794 key_cmpsaidx( 3795 const struct secasindex *saidx0, 3796 const struct secasindex *saidx1, 3797 int flag) 3798 { 3799 /* sanity */ 3800 if (saidx0 == NULL && saidx1 == NULL) 3801 return 1; 3802 3803 if (saidx0 == NULL || saidx1 == NULL) 3804 return 0; 3805 3806 if (saidx0->proto != saidx1->proto) 3807 return 0; 3808 3809 if (flag == CMP_EXACTLY) { 3810 if (saidx0->mode != saidx1->mode) 3811 return 0; 3812 if (saidx0->reqid != saidx1->reqid) 3813 return 0; 3814 if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 || 3815 bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0) 3816 return 0; 3817 } else { 3818 3819 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ 3820 if (flag == CMP_MODE_REQID 3821 ||flag == CMP_REQID) { 3822 /* 3823 * If reqid of SPD is non-zero, unique SA is required. 3824 * The result must be of same reqid in this case. 3825 */ 3826 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) 3827 return 0; 3828 } 3829 3830 if (flag == CMP_MODE_REQID) { 3831 if (saidx0->mode != IPSEC_MODE_ANY 3832 && saidx0->mode != saidx1->mode) 3833 return 0; 3834 } 3835 3836 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, 0) != 0) { 3837 return 0; 3838 } 3839 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, 0) != 0) { 3840 return 0; 3841 } 3842 } 3843 3844 return 1; 3845 } 3846 3847 /* 3848 * compare two secindex structure exactly. 3849 * IN: 3850 * spidx0: source, it is often in SPD. 3851 * spidx1: object, it is often from PFKEY message. 3852 * OUT: 3853 * 1 : equal 3854 * 0 : not equal 3855 */ 3856 static int 3857 key_cmpspidx_exactly( 3858 struct secpolicyindex *spidx0, 3859 struct secpolicyindex *spidx1) 3860 { 3861 /* sanity */ 3862 if (spidx0 == NULL && spidx1 == NULL) 3863 return 1; 3864 3865 if (spidx0 == NULL || spidx1 == NULL) 3866 return 0; 3867 3868 if (spidx0->prefs != spidx1->prefs 3869 || spidx0->prefd != spidx1->prefd 3870 || spidx0->ul_proto != spidx1->ul_proto) 3871 return 0; 3872 3873 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 && 3874 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0; 3875 } 3876 3877 /* 3878 * compare two secindex structure with mask. 3879 * IN: 3880 * spidx0: source, it is often in SPD. 3881 * spidx1: object, it is often from IP header. 3882 * OUT: 3883 * 1 : equal 3884 * 0 : not equal 3885 */ 3886 static int 3887 key_cmpspidx_withmask( 3888 struct secpolicyindex *spidx0, 3889 struct secpolicyindex *spidx1) 3890 { 3891 /* sanity */ 3892 if (spidx0 == NULL && spidx1 == NULL) 3893 return 1; 3894 3895 if (spidx0 == NULL || spidx1 == NULL) 3896 return 0; 3897 3898 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || 3899 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || 3900 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || 3901 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) 3902 return 0; 3903 3904 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ 3905 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY 3906 && spidx0->ul_proto != spidx1->ul_proto) 3907 return 0; 3908 3909 switch (spidx0->src.sa.sa_family) { 3910 case AF_INET: 3911 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY 3912 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) 3913 return 0; 3914 if (!key_bbcmp(&spidx0->src.sin.sin_addr, 3915 &spidx1->src.sin.sin_addr, spidx0->prefs)) 3916 return 0; 3917 break; 3918 case AF_INET6: 3919 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY 3920 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) 3921 return 0; 3922 /* 3923 * scope_id check. if sin6_scope_id is 0, we regard it 3924 * as a wildcard scope, which matches any scope zone ID. 3925 */ 3926 if (spidx0->src.sin6.sin6_scope_id && 3927 spidx1->src.sin6.sin6_scope_id && 3928 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) 3929 return 0; 3930 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr, 3931 &spidx1->src.sin6.sin6_addr, spidx0->prefs)) 3932 return 0; 3933 break; 3934 default: 3935 /* XXX */ 3936 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) 3937 return 0; 3938 break; 3939 } 3940 3941 switch (spidx0->dst.sa.sa_family) { 3942 case AF_INET: 3943 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY 3944 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) 3945 return 0; 3946 if (!key_bbcmp(&spidx0->dst.sin.sin_addr, 3947 &spidx1->dst.sin.sin_addr, spidx0->prefd)) 3948 return 0; 3949 break; 3950 case AF_INET6: 3951 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY 3952 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) 3953 return 0; 3954 /* 3955 * scope_id check. if sin6_scope_id is 0, we regard it 3956 * as a wildcard scope, which matches any scope zone ID. 3957 */ 3958 if (spidx0->dst.sin6.sin6_scope_id && 3959 spidx1->dst.sin6.sin6_scope_id && 3960 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) 3961 return 0; 3962 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr, 3963 &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) 3964 return 0; 3965 break; 3966 default: 3967 /* XXX */ 3968 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) 3969 return 0; 3970 break; 3971 } 3972 3973 /* XXX Do we check other field ? e.g. flowinfo */ 3974 3975 return 1; 3976 } 3977 3978 /* returns 0 on match */ 3979 static int 3980 key_sockaddrcmp( 3981 const struct sockaddr *sa1, 3982 const struct sockaddr *sa2, 3983 int port) 3984 { 3985 #ifdef satosin 3986 #undef satosin 3987 #endif 3988 #define satosin(s) ((const struct sockaddr_in *)s) 3989 #ifdef satosin6 3990 #undef satosin6 3991 #endif 3992 #define satosin6(s) ((const struct sockaddr_in6 *)s) 3993 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) 3994 return 1; 3995 3996 switch (sa1->sa_family) { 3997 case AF_INET: 3998 if (sa1->sa_len != sizeof(struct sockaddr_in)) 3999 return 1; 4000 if (satosin(sa1)->sin_addr.s_addr != 4001 satosin(sa2)->sin_addr.s_addr) { 4002 return 1; 4003 } 4004 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port) 4005 return 1; 4006 break; 4007 case AF_INET6: 4008 if (sa1->sa_len != sizeof(struct sockaddr_in6)) 4009 return 1; /*EINVAL*/ 4010 if (satosin6(sa1)->sin6_scope_id != 4011 satosin6(sa2)->sin6_scope_id) { 4012 return 1; 4013 } 4014 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr, 4015 &satosin6(sa2)->sin6_addr)) { 4016 return 1; 4017 } 4018 if (port && 4019 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) { 4020 return 1; 4021 } 4022 break; 4023 default: 4024 if (bcmp(sa1, sa2, sa1->sa_len) != 0) 4025 return 1; 4026 break; 4027 } 4028 4029 return 0; 4030 #undef satosin 4031 #undef satosin6 4032 } 4033 4034 /* 4035 * compare two buffers with mask. 4036 * IN: 4037 * addr1: source 4038 * addr2: object 4039 * bits: Number of bits to compare 4040 * OUT: 4041 * 1 : equal 4042 * 0 : not equal 4043 */ 4044 static int 4045 key_bbcmp(const void *a1, const void *a2, u_int bits) 4046 { 4047 const unsigned char *p1 = a1; 4048 const unsigned char *p2 = a2; 4049 4050 /* XXX: This could be considerably faster if we compare a word 4051 * at a time, but it is complicated on LSB Endian machines */ 4052 4053 /* Handle null pointers */ 4054 if (p1 == NULL || p2 == NULL) 4055 return (p1 == p2); 4056 4057 while (bits >= 8) { 4058 if (*p1++ != *p2++) 4059 return 0; 4060 bits -= 8; 4061 } 4062 4063 if (bits > 0) { 4064 u_int8_t mask = ~((1<<(8-bits))-1); 4065 if ((*p1 & mask) != (*p2 & mask)) 4066 return 0; 4067 } 4068 return 1; /* Match! */ 4069 } 4070 4071 static void 4072 key_flush_spd(time_t now) 4073 { 4074 static u_int16_t sptree_scangen = 0; 4075 u_int16_t gen = sptree_scangen++; 4076 struct secpolicy *sp; 4077 u_int dir; 4078 4079 /* SPD */ 4080 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 4081 restart: 4082 SPTREE_LOCK(); 4083 LIST_FOREACH(sp, &sptree[dir], chain) { 4084 if (sp->scangen == gen) /* previously handled */ 4085 continue; 4086 sp->scangen = gen; 4087 if (sp->state == IPSEC_SPSTATE_DEAD) { 4088 /* NB: clean entries created by key_spdflush */ 4089 SPTREE_UNLOCK(); 4090 KEY_FREESP(&sp); 4091 goto restart; 4092 } 4093 if (sp->lifetime == 0 && sp->validtime == 0) 4094 continue; 4095 if ((sp->lifetime && now - sp->created > sp->lifetime) 4096 || (sp->validtime && now - sp->lastused > sp->validtime)) { 4097 sp->state = IPSEC_SPSTATE_DEAD; 4098 SPTREE_UNLOCK(); 4099 key_spdexpire(sp); 4100 KEY_FREESP(&sp); 4101 goto restart; 4102 } 4103 } 4104 SPTREE_UNLOCK(); 4105 } 4106 } 4107 4108 static void 4109 key_flush_sad(time_t now) 4110 { 4111 struct secashead *sah, *nextsah; 4112 struct secasvar *sav, *nextsav; 4113 4114 /* SAD */ 4115 SAHTREE_LOCK(); 4116 LIST_FOREACH_SAFE(sah, &sahtree, chain, nextsah) { 4117 /* if sah has been dead, then delete it and process next sah. */ 4118 if (sah->state == SADB_SASTATE_DEAD) { 4119 key_delsah(sah); 4120 continue; 4121 } 4122 4123 /* if LARVAL entry doesn't become MATURE, delete it. */ 4124 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) { 4125 if (now - sav->created > key_larval_lifetime) 4126 KEY_FREESAV(&sav); 4127 } 4128 4129 /* 4130 * check MATURE entry to start to send expire message 4131 * whether or not. 4132 */ 4133 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) { 4134 /* we don't need to check. */ 4135 if (sav->lft_s == NULL) 4136 continue; 4137 4138 /* sanity check */ 4139 if (sav->lft_c == NULL) { 4140 ipseclog((LOG_DEBUG,"%s: there is no CURRENT " 4141 "time, why?\n", __func__)); 4142 continue; 4143 } 4144 4145 /* check SOFT lifetime */ 4146 if (sav->lft_s->addtime != 0 && 4147 now - sav->created > sav->lft_s->addtime) { 4148 /* 4149 * check SA to be used whether or not. 4150 * when SA hasn't been used, delete it. 4151 */ 4152 if (sav->lft_c->usetime == 0) { 4153 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4154 KEY_FREESAV(&sav); 4155 } else { 4156 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4157 /* 4158 * XXX If we keep to send expire 4159 * message in the status of 4160 * DYING. Do remove below code. 4161 */ 4162 key_expire(sav); 4163 } 4164 } 4165 /* check SOFT lifetime by bytes */ 4166 /* 4167 * XXX I don't know the way to delete this SA 4168 * when new SA is installed. Caution when it's 4169 * installed too big lifetime by time. 4170 */ 4171 else if (sav->lft_s->bytes != 0 && 4172 sav->lft_s->bytes < sav->lft_c->bytes) { 4173 4174 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4175 /* 4176 * XXX If we keep to send expire 4177 * message in the status of 4178 * DYING. Do remove below code. 4179 */ 4180 key_expire(sav); 4181 } 4182 } 4183 4184 /* check DYING entry to change status to DEAD. */ 4185 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) { 4186 /* we don't need to check. */ 4187 if (sav->lft_h == NULL) 4188 continue; 4189 4190 /* sanity check */ 4191 if (sav->lft_c == NULL) { 4192 ipseclog((LOG_DEBUG, "%s: there is no CURRENT " 4193 "time, why?\n", __func__)); 4194 continue; 4195 } 4196 4197 if (sav->lft_h->addtime != 0 && 4198 now - sav->created > sav->lft_h->addtime) { 4199 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4200 KEY_FREESAV(&sav); 4201 } 4202 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */ 4203 else if (sav->lft_s != NULL 4204 && sav->lft_s->addtime != 0 4205 && now - sav->created > sav->lft_s->addtime) { 4206 /* 4207 * XXX: should be checked to be 4208 * installed the valid SA. 4209 */ 4210 4211 /* 4212 * If there is no SA then sending 4213 * expire message. 4214 */ 4215 key_expire(sav); 4216 } 4217 #endif 4218 /* check HARD lifetime by bytes */ 4219 else if (sav->lft_h->bytes != 0 && 4220 sav->lft_h->bytes < sav->lft_c->bytes) { 4221 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4222 KEY_FREESAV(&sav); 4223 } 4224 } 4225 4226 /* delete entry in DEAD */ 4227 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) { 4228 /* sanity check */ 4229 if (sav->state != SADB_SASTATE_DEAD) { 4230 ipseclog((LOG_DEBUG, "%s: invalid sav->state " 4231 "(queue: %d SA: %d): kill it anyway\n", 4232 __func__, 4233 SADB_SASTATE_DEAD, sav->state)); 4234 } 4235 /* 4236 * do not call key_freesav() here. 4237 * sav should already be freed, and sav->refcnt 4238 * shows other references to sav 4239 * (such as from SPD). 4240 */ 4241 } 4242 } 4243 SAHTREE_UNLOCK(); 4244 } 4245 4246 static void 4247 key_flush_acq(time_t now) 4248 { 4249 struct secacq *acq, *nextacq; 4250 4251 /* ACQ tree */ 4252 ACQ_LOCK(); 4253 for (acq = LIST_FIRST(&acqtree); acq != NULL; acq = nextacq) { 4254 nextacq = LIST_NEXT(acq, chain); 4255 if (now - acq->created > key_blockacq_lifetime 4256 && __LIST_CHAINED(acq)) { 4257 LIST_REMOVE(acq, chain); 4258 free(acq, M_IPSEC_SAQ); 4259 } 4260 } 4261 ACQ_UNLOCK(); 4262 } 4263 4264 static void 4265 key_flush_spacq(time_t now) 4266 { 4267 struct secspacq *acq, *nextacq; 4268 4269 /* SP ACQ tree */ 4270 SPACQ_LOCK(); 4271 for (acq = LIST_FIRST(&spacqtree); acq != NULL; acq = nextacq) { 4272 nextacq = LIST_NEXT(acq, chain); 4273 if (now - acq->created > key_blockacq_lifetime 4274 && __LIST_CHAINED(acq)) { 4275 LIST_REMOVE(acq, chain); 4276 free(acq, M_IPSEC_SAQ); 4277 } 4278 } 4279 SPACQ_UNLOCK(); 4280 } 4281 4282 /* 4283 * time handler. 4284 * scanning SPD and SAD to check status for each entries, 4285 * and do to remove or to expire. 4286 * XXX: year 2038 problem may remain. 4287 */ 4288 void 4289 key_timehandler(void) 4290 { 4291 time_t now = time_second; 4292 4293 key_flush_spd(now); 4294 key_flush_sad(now); 4295 key_flush_acq(now); 4296 key_flush_spacq(now); 4297 4298 #ifndef IPSEC_DEBUG2 4299 /* do exchange to tick time !! */ 4300 (void)timeout((void *)key_timehandler, (void *)0, hz); 4301 #endif /* IPSEC_DEBUG2 */ 4302 } 4303 4304 u_long 4305 key_random() 4306 { 4307 u_long value; 4308 4309 key_randomfill(&value, sizeof(value)); 4310 return value; 4311 } 4312 4313 void 4314 key_randomfill(p, l) 4315 void *p; 4316 size_t l; 4317 { 4318 size_t n; 4319 u_long v; 4320 static int warn = 1; 4321 4322 n = 0; 4323 n = (size_t)read_random(p, (u_int)l); 4324 /* last resort */ 4325 while (n < l) { 4326 v = random(); 4327 bcopy(&v, (u_int8_t *)p + n, 4328 l - n < sizeof(v) ? l - n : sizeof(v)); 4329 n += sizeof(v); 4330 4331 if (warn) { 4332 printf("WARNING: pseudo-random number generator " 4333 "used for IPsec processing\n"); 4334 warn = 0; 4335 } 4336 } 4337 } 4338 4339 /* 4340 * map SADB_SATYPE_* to IPPROTO_*. 4341 * if satype == SADB_SATYPE then satype is mapped to ~0. 4342 * OUT: 4343 * 0: invalid satype. 4344 */ 4345 static u_int16_t 4346 key_satype2proto(satype) 4347 u_int8_t satype; 4348 { 4349 switch (satype) { 4350 case SADB_SATYPE_UNSPEC: 4351 return IPSEC_PROTO_ANY; 4352 case SADB_SATYPE_AH: 4353 return IPPROTO_AH; 4354 case SADB_SATYPE_ESP: 4355 return IPPROTO_ESP; 4356 case SADB_X_SATYPE_IPCOMP: 4357 return IPPROTO_IPCOMP; 4358 case SADB_X_SATYPE_TCPSIGNATURE: 4359 return IPPROTO_TCP; 4360 default: 4361 return 0; 4362 } 4363 /* NOTREACHED */ 4364 } 4365 4366 /* 4367 * map IPPROTO_* to SADB_SATYPE_* 4368 * OUT: 4369 * 0: invalid protocol type. 4370 */ 4371 static u_int8_t 4372 key_proto2satype(proto) 4373 u_int16_t proto; 4374 { 4375 switch (proto) { 4376 case IPPROTO_AH: 4377 return SADB_SATYPE_AH; 4378 case IPPROTO_ESP: 4379 return SADB_SATYPE_ESP; 4380 case IPPROTO_IPCOMP: 4381 return SADB_X_SATYPE_IPCOMP; 4382 case IPPROTO_TCP: 4383 return SADB_X_SATYPE_TCPSIGNATURE; 4384 default: 4385 return 0; 4386 } 4387 /* NOTREACHED */ 4388 } 4389 4390 /* %%% PF_KEY */ 4391 /* 4392 * SADB_GETSPI processing is to receive 4393 * <base, (SA2), src address, dst address, (SPI range)> 4394 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND 4395 * tree with the status of LARVAL, and send 4396 * <base, SA(*), address(SD)> 4397 * to the IKMPd. 4398 * 4399 * IN: mhp: pointer to the pointer to each header. 4400 * OUT: NULL if fail. 4401 * other if success, return pointer to the message to send. 4402 */ 4403 static int 4404 key_getspi(so, m, mhp) 4405 struct socket *so; 4406 struct mbuf *m; 4407 const struct sadb_msghdr *mhp; 4408 { 4409 struct sadb_address *src0, *dst0; 4410 struct secasindex saidx; 4411 struct secashead *newsah; 4412 struct secasvar *newsav; 4413 u_int8_t proto; 4414 u_int32_t spi; 4415 u_int8_t mode; 4416 u_int32_t reqid; 4417 int error; 4418 4419 IPSEC_ASSERT(so != NULL, ("null socket")); 4420 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4421 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4422 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4423 4424 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4425 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 4426 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4427 __func__)); 4428 return key_senderror(so, m, EINVAL); 4429 } 4430 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4431 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4432 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4433 __func__)); 4434 return key_senderror(so, m, EINVAL); 4435 } 4436 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4437 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4438 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4439 } else { 4440 mode = IPSEC_MODE_ANY; 4441 reqid = 0; 4442 } 4443 4444 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4445 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4446 4447 /* map satype to proto */ 4448 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4449 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4450 __func__)); 4451 return key_senderror(so, m, EINVAL); 4452 } 4453 4454 /* make sure if port number is zero. */ 4455 switch (((struct sockaddr *)(src0 + 1))->sa_family) { 4456 case AF_INET: 4457 if (((struct sockaddr *)(src0 + 1))->sa_len != 4458 sizeof(struct sockaddr_in)) 4459 return key_senderror(so, m, EINVAL); 4460 ((struct sockaddr_in *)(src0 + 1))->sin_port = 0; 4461 break; 4462 case AF_INET6: 4463 if (((struct sockaddr *)(src0 + 1))->sa_len != 4464 sizeof(struct sockaddr_in6)) 4465 return key_senderror(so, m, EINVAL); 4466 ((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0; 4467 break; 4468 default: 4469 ; /*???*/ 4470 } 4471 switch (((struct sockaddr *)(dst0 + 1))->sa_family) { 4472 case AF_INET: 4473 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4474 sizeof(struct sockaddr_in)) 4475 return key_senderror(so, m, EINVAL); 4476 ((struct sockaddr_in *)(dst0 + 1))->sin_port = 0; 4477 break; 4478 case AF_INET6: 4479 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4480 sizeof(struct sockaddr_in6)) 4481 return key_senderror(so, m, EINVAL); 4482 ((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0; 4483 break; 4484 default: 4485 ; /*???*/ 4486 } 4487 4488 /* XXX boundary check against sa_len */ 4489 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4490 4491 /* SPI allocation */ 4492 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE], 4493 &saidx); 4494 if (spi == 0) 4495 return key_senderror(so, m, EINVAL); 4496 4497 /* get a SA index */ 4498 if ((newsah = key_getsah(&saidx)) == NULL) { 4499 /* create a new SA index */ 4500 if ((newsah = key_newsah(&saidx)) == NULL) { 4501 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 4502 return key_senderror(so, m, ENOBUFS); 4503 } 4504 } 4505 4506 /* get a new SA */ 4507 /* XXX rewrite */ 4508 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 4509 if (newsav == NULL) { 4510 /* XXX don't free new SA index allocated in above. */ 4511 return key_senderror(so, m, error); 4512 } 4513 4514 /* set spi */ 4515 newsav->spi = htonl(spi); 4516 4517 /* delete the entry in acqtree */ 4518 if (mhp->msg->sadb_msg_seq != 0) { 4519 struct secacq *acq; 4520 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) { 4521 /* reset counter in order to deletion by timehandler. */ 4522 acq->created = time_second; 4523 acq->count = 0; 4524 } 4525 } 4526 4527 { 4528 struct mbuf *n, *nn; 4529 struct sadb_sa *m_sa; 4530 struct sadb_msg *newmsg; 4531 int off, len; 4532 4533 /* create new sadb_msg to reply. */ 4534 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 4535 PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4536 4537 MGETHDR(n, M_DONTWAIT, MT_DATA); 4538 if (len > MHLEN) { 4539 MCLGET(n, M_DONTWAIT); 4540 if ((n->m_flags & M_EXT) == 0) { 4541 m_freem(n); 4542 n = NULL; 4543 } 4544 } 4545 if (!n) 4546 return key_senderror(so, m, ENOBUFS); 4547 4548 n->m_len = len; 4549 n->m_next = NULL; 4550 off = 0; 4551 4552 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 4553 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 4554 4555 m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off); 4556 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); 4557 m_sa->sadb_sa_exttype = SADB_EXT_SA; 4558 m_sa->sadb_sa_spi = htonl(spi); 4559 off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4560 4561 IPSEC_ASSERT(off == len, 4562 ("length inconsistency (off %u len %u)", off, len)); 4563 4564 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, 4565 SADB_EXT_ADDRESS_DST); 4566 if (!n->m_next) { 4567 m_freem(n); 4568 return key_senderror(so, m, ENOBUFS); 4569 } 4570 4571 if (n->m_len < sizeof(struct sadb_msg)) { 4572 n = m_pullup(n, sizeof(struct sadb_msg)); 4573 if (n == NULL) 4574 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 4575 } 4576 4577 n->m_pkthdr.len = 0; 4578 for (nn = n; nn; nn = nn->m_next) 4579 n->m_pkthdr.len += nn->m_len; 4580 4581 newmsg = mtod(n, struct sadb_msg *); 4582 newmsg->sadb_msg_seq = newsav->seq; 4583 newmsg->sadb_msg_errno = 0; 4584 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 4585 4586 m_freem(m); 4587 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 4588 } 4589 } 4590 4591 /* 4592 * allocating new SPI 4593 * called by key_getspi(). 4594 * OUT: 4595 * 0: failure. 4596 * others: success. 4597 */ 4598 static u_int32_t 4599 key_do_getnewspi(spirange, saidx) 4600 struct sadb_spirange *spirange; 4601 struct secasindex *saidx; 4602 { 4603 u_int32_t newspi; 4604 u_int32_t min, max; 4605 int count = key_spi_trycnt; 4606 4607 /* set spi range to allocate */ 4608 if (spirange != NULL) { 4609 min = spirange->sadb_spirange_min; 4610 max = spirange->sadb_spirange_max; 4611 } else { 4612 min = key_spi_minval; 4613 max = key_spi_maxval; 4614 } 4615 /* IPCOMP needs 2-byte SPI */ 4616 if (saidx->proto == IPPROTO_IPCOMP) { 4617 u_int32_t t; 4618 if (min >= 0x10000) 4619 min = 0xffff; 4620 if (max >= 0x10000) 4621 max = 0xffff; 4622 if (min > max) { 4623 t = min; min = max; max = t; 4624 } 4625 } 4626 4627 if (min == max) { 4628 if (key_checkspidup(saidx, min) != NULL) { 4629 ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n", 4630 __func__, min)); 4631 return 0; 4632 } 4633 4634 count--; /* taking one cost. */ 4635 newspi = min; 4636 4637 } else { 4638 4639 /* init SPI */ 4640 newspi = 0; 4641 4642 /* when requesting to allocate spi ranged */ 4643 while (count--) { 4644 /* generate pseudo-random SPI value ranged. */ 4645 newspi = min + (key_random() % (max - min + 1)); 4646 4647 if (key_checkspidup(saidx, newspi) == NULL) 4648 break; 4649 } 4650 4651 if (count == 0 || newspi == 0) { 4652 ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n", 4653 __func__)); 4654 return 0; 4655 } 4656 } 4657 4658 /* statistics */ 4659 keystat.getspi_count = 4660 (keystat.getspi_count + key_spi_trycnt - count) / 2; 4661 4662 return newspi; 4663 } 4664 4665 /* 4666 * SADB_UPDATE processing 4667 * receive 4668 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4669 * key(AE), (identity(SD),) (sensitivity)> 4670 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. 4671 * and send 4672 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4673 * (identity(SD),) (sensitivity)> 4674 * to the ikmpd. 4675 * 4676 * m will always be freed. 4677 */ 4678 static int 4679 key_update(so, m, mhp) 4680 struct socket *so; 4681 struct mbuf *m; 4682 const struct sadb_msghdr *mhp; 4683 { 4684 struct sadb_sa *sa0; 4685 struct sadb_address *src0, *dst0; 4686 struct secasindex saidx; 4687 struct secashead *sah; 4688 struct secasvar *sav; 4689 u_int16_t proto; 4690 u_int8_t mode; 4691 u_int32_t reqid; 4692 int error; 4693 4694 IPSEC_ASSERT(so != NULL, ("null socket")); 4695 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4696 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4697 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4698 4699 /* map satype to proto */ 4700 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4701 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4702 __func__)); 4703 return key_senderror(so, m, EINVAL); 4704 } 4705 4706 if (mhp->ext[SADB_EXT_SA] == NULL || 4707 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4708 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 4709 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 4710 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 4711 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 4712 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 4713 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 4714 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 4715 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 4716 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 4717 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4718 __func__)); 4719 return key_senderror(so, m, EINVAL); 4720 } 4721 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 4722 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4723 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4724 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4725 __func__)); 4726 return key_senderror(so, m, EINVAL); 4727 } 4728 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4729 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4730 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4731 } else { 4732 mode = IPSEC_MODE_ANY; 4733 reqid = 0; 4734 } 4735 /* XXX boundary checking for other extensions */ 4736 4737 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 4738 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4739 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4740 4741 /* XXX boundary check against sa_len */ 4742 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4743 4744 /* get a SA header */ 4745 if ((sah = key_getsah(&saidx)) == NULL) { 4746 ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__)); 4747 return key_senderror(so, m, ENOENT); 4748 } 4749 4750 /* set spidx if there */ 4751 /* XXX rewrite */ 4752 error = key_setident(sah, m, mhp); 4753 if (error) 4754 return key_senderror(so, m, error); 4755 4756 /* find a SA with sequence number. */ 4757 #ifdef IPSEC_DOSEQCHECK 4758 if (mhp->msg->sadb_msg_seq != 0 4759 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) { 4760 ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u " 4761 "exists.\n", __func__, mhp->msg->sadb_msg_seq)); 4762 return key_senderror(so, m, ENOENT); 4763 } 4764 #else 4765 SAHTREE_LOCK(); 4766 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 4767 SAHTREE_UNLOCK(); 4768 if (sav == NULL) { 4769 ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n", 4770 __func__, (u_int32_t)ntohl(sa0->sadb_sa_spi))); 4771 return key_senderror(so, m, EINVAL); 4772 } 4773 #endif 4774 4775 /* validity check */ 4776 if (sav->sah->saidx.proto != proto) { 4777 ipseclog((LOG_DEBUG, "%s: protocol mismatched " 4778 "(DB=%u param=%u)\n", __func__, 4779 sav->sah->saidx.proto, proto)); 4780 return key_senderror(so, m, EINVAL); 4781 } 4782 #ifdef IPSEC_DOSEQCHECK 4783 if (sav->spi != sa0->sadb_sa_spi) { 4784 ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n", 4785 __func__, 4786 (u_int32_t)ntohl(sav->spi), 4787 (u_int32_t)ntohl(sa0->sadb_sa_spi))); 4788 return key_senderror(so, m, EINVAL); 4789 } 4790 #endif 4791 if (sav->pid != mhp->msg->sadb_msg_pid) { 4792 ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n", 4793 __func__, sav->pid, mhp->msg->sadb_msg_pid)); 4794 return key_senderror(so, m, EINVAL); 4795 } 4796 4797 /* copy sav values */ 4798 error = key_setsaval(sav, m, mhp); 4799 if (error) { 4800 KEY_FREESAV(&sav); 4801 return key_senderror(so, m, error); 4802 } 4803 4804 /* check SA values to be mature. */ 4805 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) { 4806 KEY_FREESAV(&sav); 4807 return key_senderror(so, m, 0); 4808 } 4809 4810 { 4811 struct mbuf *n; 4812 4813 /* set msg buf from mhp */ 4814 n = key_getmsgbuf_x1(m, mhp); 4815 if (n == NULL) { 4816 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 4817 return key_senderror(so, m, ENOBUFS); 4818 } 4819 4820 m_freem(m); 4821 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 4822 } 4823 } 4824 4825 /* 4826 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL. 4827 * only called by key_update(). 4828 * OUT: 4829 * NULL : not found 4830 * others : found, pointer to a SA. 4831 */ 4832 #ifdef IPSEC_DOSEQCHECK 4833 static struct secasvar * 4834 key_getsavbyseq(sah, seq) 4835 struct secashead *sah; 4836 u_int32_t seq; 4837 { 4838 struct secasvar *sav; 4839 u_int state; 4840 4841 state = SADB_SASTATE_LARVAL; 4842 4843 /* search SAD with sequence number ? */ 4844 LIST_FOREACH(sav, &sah->savtree[state], chain) { 4845 4846 KEY_CHKSASTATE(state, sav->state, __func__); 4847 4848 if (sav->seq == seq) { 4849 sa_addref(sav); 4850 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 4851 printf("DP %s cause refcnt++:%d SA:%p\n", 4852 __func__, sav->refcnt, sav)); 4853 return sav; 4854 } 4855 } 4856 4857 return NULL; 4858 } 4859 #endif 4860 4861 /* 4862 * SADB_ADD processing 4863 * add an entry to SA database, when received 4864 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4865 * key(AE), (identity(SD),) (sensitivity)> 4866 * from the ikmpd, 4867 * and send 4868 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4869 * (identity(SD),) (sensitivity)> 4870 * to the ikmpd. 4871 * 4872 * IGNORE identity and sensitivity messages. 4873 * 4874 * m will always be freed. 4875 */ 4876 static int 4877 key_add(so, m, mhp) 4878 struct socket *so; 4879 struct mbuf *m; 4880 const struct sadb_msghdr *mhp; 4881 { 4882 struct sadb_sa *sa0; 4883 struct sadb_address *src0, *dst0; 4884 struct secasindex saidx; 4885 struct secashead *newsah; 4886 struct secasvar *newsav; 4887 u_int16_t proto; 4888 u_int8_t mode; 4889 u_int32_t reqid; 4890 int error; 4891 4892 IPSEC_ASSERT(so != NULL, ("null socket")); 4893 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4894 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4895 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4896 4897 /* map satype to proto */ 4898 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4899 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4900 __func__)); 4901 return key_senderror(so, m, EINVAL); 4902 } 4903 4904 if (mhp->ext[SADB_EXT_SA] == NULL || 4905 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4906 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 4907 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 4908 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 4909 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 4910 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 4911 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 4912 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 4913 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 4914 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 4915 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4916 __func__)); 4917 return key_senderror(so, m, EINVAL); 4918 } 4919 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 4920 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4921 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4922 /* XXX need more */ 4923 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4924 __func__)); 4925 return key_senderror(so, m, EINVAL); 4926 } 4927 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4928 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4929 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4930 } else { 4931 mode = IPSEC_MODE_ANY; 4932 reqid = 0; 4933 } 4934 4935 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 4936 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 4937 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 4938 4939 /* XXX boundary check against sa_len */ 4940 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4941 4942 /* get a SA header */ 4943 if ((newsah = key_getsah(&saidx)) == NULL) { 4944 /* create a new SA header */ 4945 if ((newsah = key_newsah(&saidx)) == NULL) { 4946 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 4947 return key_senderror(so, m, ENOBUFS); 4948 } 4949 } 4950 4951 /* set spidx if there */ 4952 /* XXX rewrite */ 4953 error = key_setident(newsah, m, mhp); 4954 if (error) { 4955 return key_senderror(so, m, error); 4956 } 4957 4958 /* create new SA entry. */ 4959 /* We can create new SA only if SPI is differenct. */ 4960 SAHTREE_LOCK(); 4961 newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi); 4962 SAHTREE_UNLOCK(); 4963 if (newsav != NULL) { 4964 ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__)); 4965 return key_senderror(so, m, EEXIST); 4966 } 4967 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 4968 if (newsav == NULL) { 4969 return key_senderror(so, m, error); 4970 } 4971 4972 /* check SA values to be mature. */ 4973 if ((error = key_mature(newsav)) != 0) { 4974 KEY_FREESAV(&newsav); 4975 return key_senderror(so, m, error); 4976 } 4977 4978 /* 4979 * don't call key_freesav() here, as we would like to keep the SA 4980 * in the database on success. 4981 */ 4982 4983 { 4984 struct mbuf *n; 4985 4986 /* set msg buf from mhp */ 4987 n = key_getmsgbuf_x1(m, mhp); 4988 if (n == NULL) { 4989 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 4990 return key_senderror(so, m, ENOBUFS); 4991 } 4992 4993 m_freem(m); 4994 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 4995 } 4996 } 4997 4998 /* m is retained */ 4999 static int 5000 key_setident(sah, m, mhp) 5001 struct secashead *sah; 5002 struct mbuf *m; 5003 const struct sadb_msghdr *mhp; 5004 { 5005 const struct sadb_ident *idsrc, *iddst; 5006 int idsrclen, iddstlen; 5007 5008 IPSEC_ASSERT(sah != NULL, ("null secashead")); 5009 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5010 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5011 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5012 5013 /* don't make buffer if not there */ 5014 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL && 5015 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5016 sah->idents = NULL; 5017 sah->identd = NULL; 5018 return 0; 5019 } 5020 5021 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL || 5022 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5023 ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__)); 5024 return EINVAL; 5025 } 5026 5027 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC]; 5028 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST]; 5029 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC]; 5030 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST]; 5031 5032 /* validity check */ 5033 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { 5034 ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__)); 5035 return EINVAL; 5036 } 5037 5038 switch (idsrc->sadb_ident_type) { 5039 case SADB_IDENTTYPE_PREFIX: 5040 case SADB_IDENTTYPE_FQDN: 5041 case SADB_IDENTTYPE_USERFQDN: 5042 default: 5043 /* XXX do nothing */ 5044 sah->idents = NULL; 5045 sah->identd = NULL; 5046 return 0; 5047 } 5048 5049 /* make structure */ 5050 sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5051 if (sah->idents == NULL) { 5052 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5053 return ENOBUFS; 5054 } 5055 sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5056 if (sah->identd == NULL) { 5057 free(sah->idents, M_IPSEC_MISC); 5058 sah->idents = NULL; 5059 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5060 return ENOBUFS; 5061 } 5062 sah->idents->type = idsrc->sadb_ident_type; 5063 sah->idents->id = idsrc->sadb_ident_id; 5064 5065 sah->identd->type = iddst->sadb_ident_type; 5066 sah->identd->id = iddst->sadb_ident_id; 5067 5068 return 0; 5069 } 5070 5071 /* 5072 * m will not be freed on return. 5073 * it is caller's responsibility to free the result. 5074 */ 5075 static struct mbuf * 5076 key_getmsgbuf_x1(m, mhp) 5077 struct mbuf *m; 5078 const struct sadb_msghdr *mhp; 5079 { 5080 struct mbuf *n; 5081 5082 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5083 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5084 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5085 5086 /* create new sadb_msg to reply. */ 5087 n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED, 5088 SADB_EXT_SA, SADB_X_EXT_SA2, 5089 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, 5090 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 5091 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST); 5092 if (!n) 5093 return NULL; 5094 5095 if (n->m_len < sizeof(struct sadb_msg)) { 5096 n = m_pullup(n, sizeof(struct sadb_msg)); 5097 if (n == NULL) 5098 return NULL; 5099 } 5100 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; 5101 mtod(n, struct sadb_msg *)->sadb_msg_len = 5102 PFKEY_UNIT64(n->m_pkthdr.len); 5103 5104 return n; 5105 } 5106 5107 static int key_delete_all __P((struct socket *, struct mbuf *, 5108 const struct sadb_msghdr *, u_int16_t)); 5109 5110 /* 5111 * SADB_DELETE processing 5112 * receive 5113 * <base, SA(*), address(SD)> 5114 * from the ikmpd, and set SADB_SASTATE_DEAD, 5115 * and send, 5116 * <base, SA(*), address(SD)> 5117 * to the ikmpd. 5118 * 5119 * m will always be freed. 5120 */ 5121 static int 5122 key_delete(so, m, mhp) 5123 struct socket *so; 5124 struct mbuf *m; 5125 const struct sadb_msghdr *mhp; 5126 { 5127 struct sadb_sa *sa0; 5128 struct sadb_address *src0, *dst0; 5129 struct secasindex saidx; 5130 struct secashead *sah; 5131 struct secasvar *sav = NULL; 5132 u_int16_t proto; 5133 5134 IPSEC_ASSERT(so != NULL, ("null socket")); 5135 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5136 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5137 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5138 5139 /* map satype to proto */ 5140 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5141 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5142 __func__)); 5143 return key_senderror(so, m, EINVAL); 5144 } 5145 5146 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5147 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5148 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5149 __func__)); 5150 return key_senderror(so, m, EINVAL); 5151 } 5152 5153 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5154 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5155 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5156 __func__)); 5157 return key_senderror(so, m, EINVAL); 5158 } 5159 5160 if (mhp->ext[SADB_EXT_SA] == NULL) { 5161 /* 5162 * Caller wants us to delete all non-LARVAL SAs 5163 * that match the src/dst. This is used during 5164 * IKE INITIAL-CONTACT. 5165 */ 5166 ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__)); 5167 return key_delete_all(so, m, mhp, proto); 5168 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { 5169 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5170 __func__)); 5171 return key_senderror(so, m, EINVAL); 5172 } 5173 5174 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5175 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5176 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5177 5178 /* XXX boundary check against sa_len */ 5179 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5180 5181 /* get a SA header */ 5182 SAHTREE_LOCK(); 5183 LIST_FOREACH(sah, &sahtree, chain) { 5184 if (sah->state == SADB_SASTATE_DEAD) 5185 continue; 5186 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5187 continue; 5188 5189 /* get a SA with SPI. */ 5190 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5191 if (sav) 5192 break; 5193 } 5194 if (sah == NULL) { 5195 SAHTREE_UNLOCK(); 5196 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5197 return key_senderror(so, m, ENOENT); 5198 } 5199 5200 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5201 SAHTREE_UNLOCK(); 5202 KEY_FREESAV(&sav); 5203 5204 { 5205 struct mbuf *n; 5206 struct sadb_msg *newmsg; 5207 5208 /* create new sadb_msg to reply. */ 5209 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 5210 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5211 if (!n) 5212 return key_senderror(so, m, ENOBUFS); 5213 5214 if (n->m_len < sizeof(struct sadb_msg)) { 5215 n = m_pullup(n, sizeof(struct sadb_msg)); 5216 if (n == NULL) 5217 return key_senderror(so, m, ENOBUFS); 5218 } 5219 newmsg = mtod(n, struct sadb_msg *); 5220 newmsg->sadb_msg_errno = 0; 5221 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5222 5223 m_freem(m); 5224 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5225 } 5226 } 5227 5228 /* 5229 * delete all SAs for src/dst. Called from key_delete(). 5230 */ 5231 static int 5232 key_delete_all(so, m, mhp, proto) 5233 struct socket *so; 5234 struct mbuf *m; 5235 const struct sadb_msghdr *mhp; 5236 u_int16_t proto; 5237 { 5238 struct sadb_address *src0, *dst0; 5239 struct secasindex saidx; 5240 struct secashead *sah; 5241 struct secasvar *sav, *nextsav; 5242 u_int stateidx, state; 5243 5244 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5245 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5246 5247 /* XXX boundary check against sa_len */ 5248 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5249 5250 SAHTREE_LOCK(); 5251 LIST_FOREACH(sah, &sahtree, chain) { 5252 if (sah->state == SADB_SASTATE_DEAD) 5253 continue; 5254 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5255 continue; 5256 5257 /* Delete all non-LARVAL SAs. */ 5258 for (stateidx = 0; 5259 stateidx < _ARRAYLEN(saorder_state_alive); 5260 stateidx++) { 5261 state = saorder_state_alive[stateidx]; 5262 if (state == SADB_SASTATE_LARVAL) 5263 continue; 5264 for (sav = LIST_FIRST(&sah->savtree[state]); 5265 sav != NULL; sav = nextsav) { 5266 nextsav = LIST_NEXT(sav, chain); 5267 /* sanity check */ 5268 if (sav->state != state) { 5269 ipseclog((LOG_DEBUG, "%s: invalid " 5270 "sav->state (queue %d SA %d)\n", 5271 __func__, state, sav->state)); 5272 continue; 5273 } 5274 5275 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5276 KEY_FREESAV(&sav); 5277 } 5278 } 5279 } 5280 SAHTREE_UNLOCK(); 5281 { 5282 struct mbuf *n; 5283 struct sadb_msg *newmsg; 5284 5285 /* create new sadb_msg to reply. */ 5286 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, 5287 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5288 if (!n) 5289 return key_senderror(so, m, ENOBUFS); 5290 5291 if (n->m_len < sizeof(struct sadb_msg)) { 5292 n = m_pullup(n, sizeof(struct sadb_msg)); 5293 if (n == NULL) 5294 return key_senderror(so, m, ENOBUFS); 5295 } 5296 newmsg = mtod(n, struct sadb_msg *); 5297 newmsg->sadb_msg_errno = 0; 5298 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5299 5300 m_freem(m); 5301 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5302 } 5303 } 5304 5305 /* 5306 * SADB_GET processing 5307 * receive 5308 * <base, SA(*), address(SD)> 5309 * from the ikmpd, and get a SP and a SA to respond, 5310 * and send, 5311 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), 5312 * (identity(SD),) (sensitivity)> 5313 * to the ikmpd. 5314 * 5315 * m will always be freed. 5316 */ 5317 static int 5318 key_get(so, m, mhp) 5319 struct socket *so; 5320 struct mbuf *m; 5321 const struct sadb_msghdr *mhp; 5322 { 5323 struct sadb_sa *sa0; 5324 struct sadb_address *src0, *dst0; 5325 struct secasindex saidx; 5326 struct secashead *sah; 5327 struct secasvar *sav = NULL; 5328 u_int16_t proto; 5329 5330 IPSEC_ASSERT(so != NULL, ("null socket")); 5331 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5332 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5333 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5334 5335 /* map satype to proto */ 5336 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5337 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5338 __func__)); 5339 return key_senderror(so, m, EINVAL); 5340 } 5341 5342 if (mhp->ext[SADB_EXT_SA] == NULL || 5343 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5344 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5345 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5346 __func__)); 5347 return key_senderror(so, m, EINVAL); 5348 } 5349 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5350 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5351 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5352 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5353 __func__)); 5354 return key_senderror(so, m, EINVAL); 5355 } 5356 5357 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5358 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5359 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5360 5361 /* XXX boundary check against sa_len */ 5362 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5363 5364 /* get a SA header */ 5365 SAHTREE_LOCK(); 5366 LIST_FOREACH(sah, &sahtree, chain) { 5367 if (sah->state == SADB_SASTATE_DEAD) 5368 continue; 5369 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5370 continue; 5371 5372 /* get a SA with SPI. */ 5373 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5374 if (sav) 5375 break; 5376 } 5377 SAHTREE_UNLOCK(); 5378 if (sah == NULL) { 5379 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5380 return key_senderror(so, m, ENOENT); 5381 } 5382 5383 { 5384 struct mbuf *n; 5385 u_int8_t satype; 5386 5387 /* map proto to satype */ 5388 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 5389 ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n", 5390 __func__)); 5391 return key_senderror(so, m, EINVAL); 5392 } 5393 5394 /* create new sadb_msg to reply. */ 5395 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, 5396 mhp->msg->sadb_msg_pid); 5397 if (!n) 5398 return key_senderror(so, m, ENOBUFS); 5399 5400 m_freem(m); 5401 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5402 } 5403 } 5404 5405 /* XXX make it sysctl-configurable? */ 5406 static void 5407 key_getcomb_setlifetime(comb) 5408 struct sadb_comb *comb; 5409 { 5410 5411 comb->sadb_comb_soft_allocations = 1; 5412 comb->sadb_comb_hard_allocations = 1; 5413 comb->sadb_comb_soft_bytes = 0; 5414 comb->sadb_comb_hard_bytes = 0; 5415 comb->sadb_comb_hard_addtime = 86400; /* 1 day */ 5416 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100; 5417 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */ 5418 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100; 5419 } 5420 5421 /* 5422 * XXX reorder combinations by preference 5423 * XXX no idea if the user wants ESP authentication or not 5424 */ 5425 static struct mbuf * 5426 key_getcomb_esp() 5427 { 5428 struct sadb_comb *comb; 5429 struct enc_xform *algo; 5430 struct mbuf *result = NULL, *m, *n; 5431 int encmin; 5432 int i, off, o; 5433 int totlen; 5434 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5435 5436 m = NULL; 5437 for (i = 1; i <= SADB_EALG_MAX; i++) { 5438 algo = esp_algorithm_lookup(i); 5439 if (algo == NULL) 5440 continue; 5441 5442 /* discard algorithms with key size smaller than system min */ 5443 if (_BITS(algo->maxkey) < ipsec_esp_keymin) 5444 continue; 5445 if (_BITS(algo->minkey) < ipsec_esp_keymin) 5446 encmin = ipsec_esp_keymin; 5447 else 5448 encmin = _BITS(algo->minkey); 5449 5450 if (ipsec_esp_auth) 5451 m = key_getcomb_ah(); 5452 else { 5453 IPSEC_ASSERT(l <= MLEN, 5454 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 5455 MGET(m, M_DONTWAIT, MT_DATA); 5456 if (m) { 5457 M_ALIGN(m, l); 5458 m->m_len = l; 5459 m->m_next = NULL; 5460 bzero(mtod(m, caddr_t), m->m_len); 5461 } 5462 } 5463 if (!m) 5464 goto fail; 5465 5466 totlen = 0; 5467 for (n = m; n; n = n->m_next) 5468 totlen += n->m_len; 5469 IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l)); 5470 5471 for (off = 0; off < totlen; off += l) { 5472 n = m_pulldown(m, off, l, &o); 5473 if (!n) { 5474 /* m is already freed */ 5475 goto fail; 5476 } 5477 comb = (struct sadb_comb *)(mtod(n, caddr_t) + o); 5478 bzero(comb, sizeof(*comb)); 5479 key_getcomb_setlifetime(comb); 5480 comb->sadb_comb_encrypt = i; 5481 comb->sadb_comb_encrypt_minbits = encmin; 5482 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); 5483 } 5484 5485 if (!result) 5486 result = m; 5487 else 5488 m_cat(result, m); 5489 } 5490 5491 return result; 5492 5493 fail: 5494 if (result) 5495 m_freem(result); 5496 return NULL; 5497 } 5498 5499 static void 5500 key_getsizes_ah( 5501 const struct auth_hash *ah, 5502 int alg, 5503 u_int16_t* min, 5504 u_int16_t* max) 5505 { 5506 *min = *max = ah->keysize; 5507 if (ah->keysize == 0) { 5508 /* 5509 * Transform takes arbitrary key size but algorithm 5510 * key size is restricted. Enforce this here. 5511 */ 5512 switch (alg) { 5513 case SADB_X_AALG_MD5: *min = *max = 16; break; 5514 case SADB_X_AALG_SHA: *min = *max = 20; break; 5515 case SADB_X_AALG_NULL: *min = 1; *max = 256; break; 5516 default: 5517 DPRINTF(("%s: unknown AH algorithm %u\n", 5518 __func__, alg)); 5519 break; 5520 } 5521 } 5522 } 5523 5524 /* 5525 * XXX reorder combinations by preference 5526 */ 5527 static struct mbuf * 5528 key_getcomb_ah() 5529 { 5530 struct sadb_comb *comb; 5531 struct auth_hash *algo; 5532 struct mbuf *m; 5533 u_int16_t minkeysize, maxkeysize; 5534 int i; 5535 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5536 5537 m = NULL; 5538 for (i = 1; i <= SADB_AALG_MAX; i++) { 5539 #if 1 5540 /* we prefer HMAC algorithms, not old algorithms */ 5541 if (i != SADB_AALG_SHA1HMAC && i != SADB_AALG_MD5HMAC) 5542 continue; 5543 #endif 5544 algo = ah_algorithm_lookup(i); 5545 if (!algo) 5546 continue; 5547 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); 5548 /* discard algorithms with key size smaller than system min */ 5549 if (_BITS(minkeysize) < ipsec_ah_keymin) 5550 continue; 5551 5552 if (!m) { 5553 IPSEC_ASSERT(l <= MLEN, 5554 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 5555 MGET(m, M_DONTWAIT, MT_DATA); 5556 if (m) { 5557 M_ALIGN(m, l); 5558 m->m_len = l; 5559 m->m_next = NULL; 5560 } 5561 } else 5562 M_PREPEND(m, l, M_DONTWAIT); 5563 if (!m) 5564 return NULL; 5565 5566 comb = mtod(m, struct sadb_comb *); 5567 bzero(comb, sizeof(*comb)); 5568 key_getcomb_setlifetime(comb); 5569 comb->sadb_comb_auth = i; 5570 comb->sadb_comb_auth_minbits = _BITS(minkeysize); 5571 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); 5572 } 5573 5574 return m; 5575 } 5576 5577 /* 5578 * not really an official behavior. discussed in pf_key@inner.net in Sep2000. 5579 * XXX reorder combinations by preference 5580 */ 5581 static struct mbuf * 5582 key_getcomb_ipcomp() 5583 { 5584 struct sadb_comb *comb; 5585 struct comp_algo *algo; 5586 struct mbuf *m; 5587 int i; 5588 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5589 5590 m = NULL; 5591 for (i = 1; i <= SADB_X_CALG_MAX; i++) { 5592 algo = ipcomp_algorithm_lookup(i); 5593 if (!algo) 5594 continue; 5595 5596 if (!m) { 5597 IPSEC_ASSERT(l <= MLEN, 5598 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 5599 MGET(m, M_DONTWAIT, MT_DATA); 5600 if (m) { 5601 M_ALIGN(m, l); 5602 m->m_len = l; 5603 m->m_next = NULL; 5604 } 5605 } else 5606 M_PREPEND(m, l, M_DONTWAIT); 5607 if (!m) 5608 return NULL; 5609 5610 comb = mtod(m, struct sadb_comb *); 5611 bzero(comb, sizeof(*comb)); 5612 key_getcomb_setlifetime(comb); 5613 comb->sadb_comb_encrypt = i; 5614 /* what should we set into sadb_comb_*_{min,max}bits? */ 5615 } 5616 5617 return m; 5618 } 5619 5620 /* 5621 * XXX no way to pass mode (transport/tunnel) to userland 5622 * XXX replay checking? 5623 * XXX sysctl interface to ipsec_{ah,esp}_keymin 5624 */ 5625 static struct mbuf * 5626 key_getprop(saidx) 5627 const struct secasindex *saidx; 5628 { 5629 struct sadb_prop *prop; 5630 struct mbuf *m, *n; 5631 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); 5632 int totlen; 5633 5634 switch (saidx->proto) { 5635 case IPPROTO_ESP: 5636 m = key_getcomb_esp(); 5637 break; 5638 case IPPROTO_AH: 5639 m = key_getcomb_ah(); 5640 break; 5641 case IPPROTO_IPCOMP: 5642 m = key_getcomb_ipcomp(); 5643 break; 5644 default: 5645 return NULL; 5646 } 5647 5648 if (!m) 5649 return NULL; 5650 M_PREPEND(m, l, M_DONTWAIT); 5651 if (!m) 5652 return NULL; 5653 5654 totlen = 0; 5655 for (n = m; n; n = n->m_next) 5656 totlen += n->m_len; 5657 5658 prop = mtod(m, struct sadb_prop *); 5659 bzero(prop, sizeof(*prop)); 5660 prop->sadb_prop_len = PFKEY_UNIT64(totlen); 5661 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 5662 prop->sadb_prop_replay = 32; /* XXX */ 5663 5664 return m; 5665 } 5666 5667 /* 5668 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2(). 5669 * send 5670 * <base, SA, address(SD), (address(P)), x_policy, 5671 * (identity(SD),) (sensitivity,) proposal> 5672 * to KMD, and expect to receive 5673 * <base> with SADB_ACQUIRE if error occured, 5674 * or 5675 * <base, src address, dst address, (SPI range)> with SADB_GETSPI 5676 * from KMD by PF_KEY. 5677 * 5678 * XXX x_policy is outside of RFC2367 (KAME extension). 5679 * XXX sensitivity is not supported. 5680 * XXX for ipcomp, RFC2367 does not define how to fill in proposal. 5681 * see comment for key_getcomb_ipcomp(). 5682 * 5683 * OUT: 5684 * 0 : succeed 5685 * others: error number 5686 */ 5687 static int 5688 key_acquire(const struct secasindex *saidx, struct secpolicy *sp) 5689 { 5690 struct mbuf *result = NULL, *m; 5691 struct secacq *newacq; 5692 u_int8_t satype; 5693 int error = -1; 5694 u_int32_t seq; 5695 5696 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 5697 satype = key_proto2satype(saidx->proto); 5698 IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto)); 5699 5700 /* 5701 * We never do anything about acquirng SA. There is anather 5702 * solution that kernel blocks to send SADB_ACQUIRE message until 5703 * getting something message from IKEd. In later case, to be 5704 * managed with ACQUIRING list. 5705 */ 5706 /* Get an entry to check whether sending message or not. */ 5707 if ((newacq = key_getacq(saidx)) != NULL) { 5708 if (key_blockacq_count < newacq->count) { 5709 /* reset counter and do send message. */ 5710 newacq->count = 0; 5711 } else { 5712 /* increment counter and do nothing. */ 5713 newacq->count++; 5714 return 0; 5715 } 5716 } else { 5717 /* make new entry for blocking to send SADB_ACQUIRE. */ 5718 if ((newacq = key_newacq(saidx)) == NULL) 5719 return ENOBUFS; 5720 } 5721 5722 5723 seq = newacq->seq; 5724 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0); 5725 if (!m) { 5726 error = ENOBUFS; 5727 goto fail; 5728 } 5729 result = m; 5730 5731 /* set sadb_address for saidx's. */ 5732 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 5733 &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY); 5734 if (!m) { 5735 error = ENOBUFS; 5736 goto fail; 5737 } 5738 m_cat(result, m); 5739 5740 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 5741 &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY); 5742 if (!m) { 5743 error = ENOBUFS; 5744 goto fail; 5745 } 5746 m_cat(result, m); 5747 5748 /* XXX proxy address (optional) */ 5749 5750 /* set sadb_x_policy */ 5751 if (sp) { 5752 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id); 5753 if (!m) { 5754 error = ENOBUFS; 5755 goto fail; 5756 } 5757 m_cat(result, m); 5758 } 5759 5760 /* XXX identity (optional) */ 5761 #if 0 5762 if (idexttype && fqdn) { 5763 /* create identity extension (FQDN) */ 5764 struct sadb_ident *id; 5765 int fqdnlen; 5766 5767 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ 5768 id = (struct sadb_ident *)p; 5769 bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 5770 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 5771 id->sadb_ident_exttype = idexttype; 5772 id->sadb_ident_type = SADB_IDENTTYPE_FQDN; 5773 bcopy(fqdn, id + 1, fqdnlen); 5774 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); 5775 } 5776 5777 if (idexttype) { 5778 /* create identity extension (USERFQDN) */ 5779 struct sadb_ident *id; 5780 int userfqdnlen; 5781 5782 if (userfqdn) { 5783 /* +1 for terminating-NUL */ 5784 userfqdnlen = strlen(userfqdn) + 1; 5785 } else 5786 userfqdnlen = 0; 5787 id = (struct sadb_ident *)p; 5788 bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 5789 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 5790 id->sadb_ident_exttype = idexttype; 5791 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; 5792 /* XXX is it correct? */ 5793 if (curproc && curproc->p_cred) 5794 id->sadb_ident_id = curproc->p_cred->p_ruid; 5795 if (userfqdn && userfqdnlen) 5796 bcopy(userfqdn, id + 1, userfqdnlen); 5797 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); 5798 } 5799 #endif 5800 5801 /* XXX sensitivity (optional) */ 5802 5803 /* create proposal/combination extension */ 5804 m = key_getprop(saidx); 5805 #if 0 5806 /* 5807 * spec conformant: always attach proposal/combination extension, 5808 * the problem is that we have no way to attach it for ipcomp, 5809 * due to the way sadb_comb is declared in RFC2367. 5810 */ 5811 if (!m) { 5812 error = ENOBUFS; 5813 goto fail; 5814 } 5815 m_cat(result, m); 5816 #else 5817 /* 5818 * outside of spec; make proposal/combination extension optional. 5819 */ 5820 if (m) 5821 m_cat(result, m); 5822 #endif 5823 5824 if ((result->m_flags & M_PKTHDR) == 0) { 5825 error = EINVAL; 5826 goto fail; 5827 } 5828 5829 if (result->m_len < sizeof(struct sadb_msg)) { 5830 result = m_pullup(result, sizeof(struct sadb_msg)); 5831 if (result == NULL) { 5832 error = ENOBUFS; 5833 goto fail; 5834 } 5835 } 5836 5837 result->m_pkthdr.len = 0; 5838 for (m = result; m; m = m->m_next) 5839 result->m_pkthdr.len += m->m_len; 5840 5841 mtod(result, struct sadb_msg *)->sadb_msg_len = 5842 PFKEY_UNIT64(result->m_pkthdr.len); 5843 5844 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 5845 5846 fail: 5847 if (result) 5848 m_freem(result); 5849 return error; 5850 } 5851 5852 static struct secacq * 5853 key_newacq(const struct secasindex *saidx) 5854 { 5855 struct secacq *newacq; 5856 5857 /* get new entry */ 5858 newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 5859 if (newacq == NULL) { 5860 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5861 return NULL; 5862 } 5863 5864 /* copy secindex */ 5865 bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx)); 5866 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq); 5867 newacq->created = time_second; 5868 newacq->count = 0; 5869 5870 /* add to acqtree */ 5871 ACQ_LOCK(); 5872 LIST_INSERT_HEAD(&acqtree, newacq, chain); 5873 ACQ_UNLOCK(); 5874 5875 return newacq; 5876 } 5877 5878 static struct secacq * 5879 key_getacq(const struct secasindex *saidx) 5880 { 5881 struct secacq *acq; 5882 5883 ACQ_LOCK(); 5884 LIST_FOREACH(acq, &acqtree, chain) { 5885 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY)) 5886 break; 5887 } 5888 ACQ_UNLOCK(); 5889 5890 return acq; 5891 } 5892 5893 static struct secacq * 5894 key_getacqbyseq(seq) 5895 u_int32_t seq; 5896 { 5897 struct secacq *acq; 5898 5899 ACQ_LOCK(); 5900 LIST_FOREACH(acq, &acqtree, chain) { 5901 if (acq->seq == seq) 5902 break; 5903 } 5904 ACQ_UNLOCK(); 5905 5906 return acq; 5907 } 5908 5909 static struct secspacq * 5910 key_newspacq(spidx) 5911 struct secpolicyindex *spidx; 5912 { 5913 struct secspacq *acq; 5914 5915 /* get new entry */ 5916 acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 5917 if (acq == NULL) { 5918 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5919 return NULL; 5920 } 5921 5922 /* copy secindex */ 5923 bcopy(spidx, &acq->spidx, sizeof(acq->spidx)); 5924 acq->created = time_second; 5925 acq->count = 0; 5926 5927 /* add to spacqtree */ 5928 SPACQ_LOCK(); 5929 LIST_INSERT_HEAD(&spacqtree, acq, chain); 5930 SPACQ_UNLOCK(); 5931 5932 return acq; 5933 } 5934 5935 static struct secspacq * 5936 key_getspacq(spidx) 5937 struct secpolicyindex *spidx; 5938 { 5939 struct secspacq *acq; 5940 5941 SPACQ_LOCK(); 5942 LIST_FOREACH(acq, &spacqtree, chain) { 5943 if (key_cmpspidx_exactly(spidx, &acq->spidx)) { 5944 /* NB: return holding spacq_lock */ 5945 return acq; 5946 } 5947 } 5948 SPACQ_UNLOCK(); 5949 5950 return NULL; 5951 } 5952 5953 /* 5954 * SADB_ACQUIRE processing, 5955 * in first situation, is receiving 5956 * <base> 5957 * from the ikmpd, and clear sequence of its secasvar entry. 5958 * 5959 * In second situation, is receiving 5960 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 5961 * from a user land process, and return 5962 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 5963 * to the socket. 5964 * 5965 * m will always be freed. 5966 */ 5967 static int 5968 key_acquire2(so, m, mhp) 5969 struct socket *so; 5970 struct mbuf *m; 5971 const struct sadb_msghdr *mhp; 5972 { 5973 const struct sadb_address *src0, *dst0; 5974 struct secasindex saidx; 5975 struct secashead *sah; 5976 u_int16_t proto; 5977 int error; 5978 5979 IPSEC_ASSERT(so != NULL, ("null socket")); 5980 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5981 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5982 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5983 5984 /* 5985 * Error message from KMd. 5986 * We assume that if error was occured in IKEd, the length of PFKEY 5987 * message is equal to the size of sadb_msg structure. 5988 * We do not raise error even if error occured in this function. 5989 */ 5990 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { 5991 struct secacq *acq; 5992 5993 /* check sequence number */ 5994 if (mhp->msg->sadb_msg_seq == 0) { 5995 ipseclog((LOG_DEBUG, "%s: must specify sequence " 5996 "number.\n", __func__)); 5997 m_freem(m); 5998 return 0; 5999 } 6000 6001 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) { 6002 /* 6003 * the specified larval SA is already gone, or we got 6004 * a bogus sequence number. we can silently ignore it. 6005 */ 6006 m_freem(m); 6007 return 0; 6008 } 6009 6010 /* reset acq counter in order to deletion by timehander. */ 6011 acq->created = time_second; 6012 acq->count = 0; 6013 m_freem(m); 6014 return 0; 6015 } 6016 6017 /* 6018 * This message is from user land. 6019 */ 6020 6021 /* map satype to proto */ 6022 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6023 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6024 __func__)); 6025 return key_senderror(so, m, EINVAL); 6026 } 6027 6028 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6029 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 6030 mhp->ext[SADB_EXT_PROPOSAL] == NULL) { 6031 /* error */ 6032 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6033 __func__)); 6034 return key_senderror(so, m, EINVAL); 6035 } 6036 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6037 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 6038 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { 6039 /* error */ 6040 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6041 __func__)); 6042 return key_senderror(so, m, EINVAL); 6043 } 6044 6045 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 6046 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 6047 6048 /* XXX boundary check against sa_len */ 6049 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 6050 6051 /* get a SA index */ 6052 SAHTREE_LOCK(); 6053 LIST_FOREACH(sah, &sahtree, chain) { 6054 if (sah->state == SADB_SASTATE_DEAD) 6055 continue; 6056 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID)) 6057 break; 6058 } 6059 SAHTREE_UNLOCK(); 6060 if (sah != NULL) { 6061 ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__)); 6062 return key_senderror(so, m, EEXIST); 6063 } 6064 6065 error = key_acquire(&saidx, NULL); 6066 if (error != 0) { 6067 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 6068 __func__, mhp->msg->sadb_msg_errno)); 6069 return key_senderror(so, m, error); 6070 } 6071 6072 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); 6073 } 6074 6075 /* 6076 * SADB_REGISTER processing. 6077 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. 6078 * receive 6079 * <base> 6080 * from the ikmpd, and register a socket to send PF_KEY messages, 6081 * and send 6082 * <base, supported> 6083 * to KMD by PF_KEY. 6084 * If socket is detached, must free from regnode. 6085 * 6086 * m will always be freed. 6087 */ 6088 static int 6089 key_register(so, m, mhp) 6090 struct socket *so; 6091 struct mbuf *m; 6092 const struct sadb_msghdr *mhp; 6093 { 6094 struct secreg *reg, *newreg = 0; 6095 6096 IPSEC_ASSERT(so != NULL, ("null socket")); 6097 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6098 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6099 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6100 6101 /* check for invalid register message */ 6102 if (mhp->msg->sadb_msg_satype >= sizeof(regtree)/sizeof(regtree[0])) 6103 return key_senderror(so, m, EINVAL); 6104 6105 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ 6106 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) 6107 goto setmsg; 6108 6109 /* check whether existing or not */ 6110 REGTREE_LOCK(); 6111 LIST_FOREACH(reg, ®tree[mhp->msg->sadb_msg_satype], chain) { 6112 if (reg->so == so) { 6113 REGTREE_UNLOCK(); 6114 ipseclog((LOG_DEBUG, "%s: socket exists already.\n", 6115 __func__)); 6116 return key_senderror(so, m, EEXIST); 6117 } 6118 } 6119 6120 /* create regnode */ 6121 newreg = malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO); 6122 if (newreg == NULL) { 6123 REGTREE_UNLOCK(); 6124 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6125 return key_senderror(so, m, ENOBUFS); 6126 } 6127 6128 newreg->so = so; 6129 ((struct keycb *)sotorawcb(so))->kp_registered++; 6130 6131 /* add regnode to regtree. */ 6132 LIST_INSERT_HEAD(®tree[mhp->msg->sadb_msg_satype], newreg, chain); 6133 REGTREE_UNLOCK(); 6134 6135 setmsg: 6136 { 6137 struct mbuf *n; 6138 struct sadb_msg *newmsg; 6139 struct sadb_supported *sup; 6140 u_int len, alen, elen; 6141 int off; 6142 int i; 6143 struct sadb_alg *alg; 6144 6145 /* create new sadb_msg to reply. */ 6146 alen = 0; 6147 for (i = 1; i <= SADB_AALG_MAX; i++) { 6148 if (ah_algorithm_lookup(i)) 6149 alen += sizeof(struct sadb_alg); 6150 } 6151 if (alen) 6152 alen += sizeof(struct sadb_supported); 6153 elen = 0; 6154 for (i = 1; i <= SADB_EALG_MAX; i++) { 6155 if (esp_algorithm_lookup(i)) 6156 elen += sizeof(struct sadb_alg); 6157 } 6158 if (elen) 6159 elen += sizeof(struct sadb_supported); 6160 6161 len = sizeof(struct sadb_msg) + alen + elen; 6162 6163 if (len > MCLBYTES) 6164 return key_senderror(so, m, ENOBUFS); 6165 6166 MGETHDR(n, M_DONTWAIT, MT_DATA); 6167 if (len > MHLEN) { 6168 MCLGET(n, M_DONTWAIT); 6169 if ((n->m_flags & M_EXT) == 0) { 6170 m_freem(n); 6171 n = NULL; 6172 } 6173 } 6174 if (!n) 6175 return key_senderror(so, m, ENOBUFS); 6176 6177 n->m_pkthdr.len = n->m_len = len; 6178 n->m_next = NULL; 6179 off = 0; 6180 6181 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 6182 newmsg = mtod(n, struct sadb_msg *); 6183 newmsg->sadb_msg_errno = 0; 6184 newmsg->sadb_msg_len = PFKEY_UNIT64(len); 6185 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 6186 6187 /* for authentication algorithm */ 6188 if (alen) { 6189 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6190 sup->sadb_supported_len = PFKEY_UNIT64(alen); 6191 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 6192 off += PFKEY_ALIGN8(sizeof(*sup)); 6193 6194 for (i = 1; i <= SADB_AALG_MAX; i++) { 6195 struct auth_hash *aalgo; 6196 u_int16_t minkeysize, maxkeysize; 6197 6198 aalgo = ah_algorithm_lookup(i); 6199 if (!aalgo) 6200 continue; 6201 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6202 alg->sadb_alg_id = i; 6203 alg->sadb_alg_ivlen = 0; 6204 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); 6205 alg->sadb_alg_minbits = _BITS(minkeysize); 6206 alg->sadb_alg_maxbits = _BITS(maxkeysize); 6207 off += PFKEY_ALIGN8(sizeof(*alg)); 6208 } 6209 } 6210 6211 /* for encryption algorithm */ 6212 if (elen) { 6213 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6214 sup->sadb_supported_len = PFKEY_UNIT64(elen); 6215 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 6216 off += PFKEY_ALIGN8(sizeof(*sup)); 6217 6218 for (i = 1; i <= SADB_EALG_MAX; i++) { 6219 struct enc_xform *ealgo; 6220 6221 ealgo = esp_algorithm_lookup(i); 6222 if (!ealgo) 6223 continue; 6224 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6225 alg->sadb_alg_id = i; 6226 alg->sadb_alg_ivlen = ealgo->blocksize; 6227 alg->sadb_alg_minbits = _BITS(ealgo->minkey); 6228 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); 6229 off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); 6230 } 6231 } 6232 6233 IPSEC_ASSERT(off == len, 6234 ("length assumption failed (off %u len %u)", off, len)); 6235 6236 m_freem(m); 6237 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); 6238 } 6239 } 6240 6241 /* 6242 * free secreg entry registered. 6243 * XXX: I want to do free a socket marked done SADB_RESIGER to socket. 6244 */ 6245 void 6246 key_freereg(struct socket *so) 6247 { 6248 struct secreg *reg; 6249 int i; 6250 6251 IPSEC_ASSERT(so != NULL, ("NULL so")); 6252 6253 /* 6254 * check whether existing or not. 6255 * check all type of SA, because there is a potential that 6256 * one socket is registered to multiple type of SA. 6257 */ 6258 REGTREE_LOCK(); 6259 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 6260 LIST_FOREACH(reg, ®tree[i], chain) { 6261 if (reg->so == so && __LIST_CHAINED(reg)) { 6262 LIST_REMOVE(reg, chain); 6263 free(reg, M_IPSEC_SAR); 6264 break; 6265 } 6266 } 6267 } 6268 REGTREE_UNLOCK(); 6269 } 6270 6271 /* 6272 * SADB_EXPIRE processing 6273 * send 6274 * <base, SA, SA2, lifetime(C and one of HS), address(SD)> 6275 * to KMD by PF_KEY. 6276 * NOTE: We send only soft lifetime extension. 6277 * 6278 * OUT: 0 : succeed 6279 * others : error number 6280 */ 6281 static int 6282 key_expire(struct secasvar *sav) 6283 { 6284 int s; 6285 int satype; 6286 struct mbuf *result = NULL, *m; 6287 int len; 6288 int error = -1; 6289 struct sadb_lifetime *lt; 6290 6291 /* XXX: Why do we lock ? */ 6292 s = splnet(); /*called from softclock()*/ 6293 6294 IPSEC_ASSERT (sav != NULL, ("null sav")); 6295 IPSEC_ASSERT (sav->sah != NULL, ("null sa header")); 6296 6297 /* set msg header */ 6298 satype = key_proto2satype(sav->sah->saidx.proto); 6299 IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype)); 6300 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt); 6301 if (!m) { 6302 error = ENOBUFS; 6303 goto fail; 6304 } 6305 result = m; 6306 6307 /* create SA extension */ 6308 m = key_setsadbsa(sav); 6309 if (!m) { 6310 error = ENOBUFS; 6311 goto fail; 6312 } 6313 m_cat(result, m); 6314 6315 /* create SA extension */ 6316 m = key_setsadbxsa2(sav->sah->saidx.mode, 6317 sav->replay ? sav->replay->count : 0, 6318 sav->sah->saidx.reqid); 6319 if (!m) { 6320 error = ENOBUFS; 6321 goto fail; 6322 } 6323 m_cat(result, m); 6324 6325 /* create lifetime extension (current and soft) */ 6326 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 6327 m = key_alloc_mbuf(len); 6328 if (!m || m->m_next) { /*XXX*/ 6329 if (m) 6330 m_freem(m); 6331 error = ENOBUFS; 6332 goto fail; 6333 } 6334 bzero(mtod(m, caddr_t), len); 6335 lt = mtod(m, struct sadb_lifetime *); 6336 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6337 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 6338 lt->sadb_lifetime_allocations = sav->lft_c->allocations; 6339 lt->sadb_lifetime_bytes = sav->lft_c->bytes; 6340 lt->sadb_lifetime_addtime = sav->lft_c->addtime; 6341 lt->sadb_lifetime_usetime = sav->lft_c->usetime; 6342 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 6343 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6344 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; 6345 lt->sadb_lifetime_allocations = sav->lft_s->allocations; 6346 lt->sadb_lifetime_bytes = sav->lft_s->bytes; 6347 lt->sadb_lifetime_addtime = sav->lft_s->addtime; 6348 lt->sadb_lifetime_usetime = sav->lft_s->usetime; 6349 m_cat(result, m); 6350 6351 /* set sadb_address for source */ 6352 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 6353 &sav->sah->saidx.src.sa, 6354 FULLMASK, IPSEC_ULPROTO_ANY); 6355 if (!m) { 6356 error = ENOBUFS; 6357 goto fail; 6358 } 6359 m_cat(result, m); 6360 6361 /* set sadb_address for destination */ 6362 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 6363 &sav->sah->saidx.dst.sa, 6364 FULLMASK, IPSEC_ULPROTO_ANY); 6365 if (!m) { 6366 error = ENOBUFS; 6367 goto fail; 6368 } 6369 m_cat(result, m); 6370 6371 if ((result->m_flags & M_PKTHDR) == 0) { 6372 error = EINVAL; 6373 goto fail; 6374 } 6375 6376 if (result->m_len < sizeof(struct sadb_msg)) { 6377 result = m_pullup(result, sizeof(struct sadb_msg)); 6378 if (result == NULL) { 6379 error = ENOBUFS; 6380 goto fail; 6381 } 6382 } 6383 6384 result->m_pkthdr.len = 0; 6385 for (m = result; m; m = m->m_next) 6386 result->m_pkthdr.len += m->m_len; 6387 6388 mtod(result, struct sadb_msg *)->sadb_msg_len = 6389 PFKEY_UNIT64(result->m_pkthdr.len); 6390 6391 splx(s); 6392 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6393 6394 fail: 6395 if (result) 6396 m_freem(result); 6397 splx(s); 6398 return error; 6399 } 6400 6401 /* 6402 * SADB_FLUSH processing 6403 * receive 6404 * <base> 6405 * from the ikmpd, and free all entries in secastree. 6406 * and send, 6407 * <base> 6408 * to the ikmpd. 6409 * NOTE: to do is only marking SADB_SASTATE_DEAD. 6410 * 6411 * m will always be freed. 6412 */ 6413 static int 6414 key_flush(so, m, mhp) 6415 struct socket *so; 6416 struct mbuf *m; 6417 const struct sadb_msghdr *mhp; 6418 { 6419 struct sadb_msg *newmsg; 6420 struct secashead *sah, *nextsah; 6421 struct secasvar *sav, *nextsav; 6422 u_int16_t proto; 6423 u_int8_t state; 6424 u_int stateidx; 6425 6426 IPSEC_ASSERT(so != NULL, ("null socket")); 6427 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6428 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6429 6430 /* map satype to proto */ 6431 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6432 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6433 __func__)); 6434 return key_senderror(so, m, EINVAL); 6435 } 6436 6437 /* no SATYPE specified, i.e. flushing all SA. */ 6438 SAHTREE_LOCK(); 6439 for (sah = LIST_FIRST(&sahtree); 6440 sah != NULL; 6441 sah = nextsah) { 6442 nextsah = LIST_NEXT(sah, chain); 6443 6444 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 6445 && proto != sah->saidx.proto) 6446 continue; 6447 6448 for (stateidx = 0; 6449 stateidx < _ARRAYLEN(saorder_state_alive); 6450 stateidx++) { 6451 state = saorder_state_any[stateidx]; 6452 for (sav = LIST_FIRST(&sah->savtree[state]); 6453 sav != NULL; 6454 sav = nextsav) { 6455 6456 nextsav = LIST_NEXT(sav, chain); 6457 6458 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 6459 KEY_FREESAV(&sav); 6460 } 6461 } 6462 6463 sah->state = SADB_SASTATE_DEAD; 6464 } 6465 SAHTREE_UNLOCK(); 6466 6467 if (m->m_len < sizeof(struct sadb_msg) || 6468 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 6469 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6470 return key_senderror(so, m, ENOBUFS); 6471 } 6472 6473 if (m->m_next) 6474 m_freem(m->m_next); 6475 m->m_next = NULL; 6476 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); 6477 newmsg = mtod(m, struct sadb_msg *); 6478 newmsg->sadb_msg_errno = 0; 6479 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 6480 6481 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 6482 } 6483 6484 /* 6485 * SADB_DUMP processing 6486 * dump all entries including status of DEAD in SAD. 6487 * receive 6488 * <base> 6489 * from the ikmpd, and dump all secasvar leaves 6490 * and send, 6491 * <base> ..... 6492 * to the ikmpd. 6493 * 6494 * m will always be freed. 6495 */ 6496 static int 6497 key_dump(so, m, mhp) 6498 struct socket *so; 6499 struct mbuf *m; 6500 const struct sadb_msghdr *mhp; 6501 { 6502 struct secashead *sah; 6503 struct secasvar *sav; 6504 u_int16_t proto; 6505 u_int stateidx; 6506 u_int8_t satype; 6507 u_int8_t state; 6508 int cnt; 6509 struct sadb_msg *newmsg; 6510 struct mbuf *n; 6511 6512 IPSEC_ASSERT(so != NULL, ("null socket")); 6513 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6514 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6515 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6516 6517 /* map satype to proto */ 6518 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6519 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6520 __func__)); 6521 return key_senderror(so, m, EINVAL); 6522 } 6523 6524 /* count sav entries to be sent to the userland. */ 6525 cnt = 0; 6526 SAHTREE_LOCK(); 6527 LIST_FOREACH(sah, &sahtree, chain) { 6528 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 6529 && proto != sah->saidx.proto) 6530 continue; 6531 6532 for (stateidx = 0; 6533 stateidx < _ARRAYLEN(saorder_state_any); 6534 stateidx++) { 6535 state = saorder_state_any[stateidx]; 6536 LIST_FOREACH(sav, &sah->savtree[state], chain) { 6537 cnt++; 6538 } 6539 } 6540 } 6541 6542 if (cnt == 0) { 6543 SAHTREE_UNLOCK(); 6544 return key_senderror(so, m, ENOENT); 6545 } 6546 6547 /* send this to the userland, one at a time. */ 6548 newmsg = NULL; 6549 LIST_FOREACH(sah, &sahtree, chain) { 6550 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 6551 && proto != sah->saidx.proto) 6552 continue; 6553 6554 /* map proto to satype */ 6555 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 6556 SAHTREE_UNLOCK(); 6557 ipseclog((LOG_DEBUG, "%s: there was invalid proto in " 6558 "SAD.\n", __func__)); 6559 return key_senderror(so, m, EINVAL); 6560 } 6561 6562 for (stateidx = 0; 6563 stateidx < _ARRAYLEN(saorder_state_any); 6564 stateidx++) { 6565 state = saorder_state_any[stateidx]; 6566 LIST_FOREACH(sav, &sah->savtree[state], chain) { 6567 n = key_setdumpsa(sav, SADB_DUMP, satype, 6568 --cnt, mhp->msg->sadb_msg_pid); 6569 if (!n) { 6570 SAHTREE_UNLOCK(); 6571 return key_senderror(so, m, ENOBUFS); 6572 } 6573 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 6574 } 6575 } 6576 } 6577 SAHTREE_UNLOCK(); 6578 6579 m_freem(m); 6580 return 0; 6581 } 6582 6583 /* 6584 * SADB_X_PROMISC processing 6585 * 6586 * m will always be freed. 6587 */ 6588 static int 6589 key_promisc(so, m, mhp) 6590 struct socket *so; 6591 struct mbuf *m; 6592 const struct sadb_msghdr *mhp; 6593 { 6594 int olen; 6595 6596 IPSEC_ASSERT(so != NULL, ("null socket")); 6597 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6598 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6599 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6600 6601 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 6602 6603 if (olen < sizeof(struct sadb_msg)) { 6604 #if 1 6605 return key_senderror(so, m, EINVAL); 6606 #else 6607 m_freem(m); 6608 return 0; 6609 #endif 6610 } else if (olen == sizeof(struct sadb_msg)) { 6611 /* enable/disable promisc mode */ 6612 struct keycb *kp; 6613 6614 if ((kp = (struct keycb *)sotorawcb(so)) == NULL) 6615 return key_senderror(so, m, EINVAL); 6616 mhp->msg->sadb_msg_errno = 0; 6617 switch (mhp->msg->sadb_msg_satype) { 6618 case 0: 6619 case 1: 6620 kp->kp_promisc = mhp->msg->sadb_msg_satype; 6621 break; 6622 default: 6623 return key_senderror(so, m, EINVAL); 6624 } 6625 6626 /* send the original message back to everyone */ 6627 mhp->msg->sadb_msg_errno = 0; 6628 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 6629 } else { 6630 /* send packet as is */ 6631 6632 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); 6633 6634 /* TODO: if sadb_msg_seq is specified, send to specific pid */ 6635 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 6636 } 6637 } 6638 6639 static int (*key_typesw[]) __P((struct socket *, struct mbuf *, 6640 const struct sadb_msghdr *)) = { 6641 NULL, /* SADB_RESERVED */ 6642 key_getspi, /* SADB_GETSPI */ 6643 key_update, /* SADB_UPDATE */ 6644 key_add, /* SADB_ADD */ 6645 key_delete, /* SADB_DELETE */ 6646 key_get, /* SADB_GET */ 6647 key_acquire2, /* SADB_ACQUIRE */ 6648 key_register, /* SADB_REGISTER */ 6649 NULL, /* SADB_EXPIRE */ 6650 key_flush, /* SADB_FLUSH */ 6651 key_dump, /* SADB_DUMP */ 6652 key_promisc, /* SADB_X_PROMISC */ 6653 NULL, /* SADB_X_PCHANGE */ 6654 key_spdadd, /* SADB_X_SPDUPDATE */ 6655 key_spdadd, /* SADB_X_SPDADD */ 6656 key_spddelete, /* SADB_X_SPDDELETE */ 6657 key_spdget, /* SADB_X_SPDGET */ 6658 NULL, /* SADB_X_SPDACQUIRE */ 6659 key_spddump, /* SADB_X_SPDDUMP */ 6660 key_spdflush, /* SADB_X_SPDFLUSH */ 6661 key_spdadd, /* SADB_X_SPDSETIDX */ 6662 NULL, /* SADB_X_SPDEXPIRE */ 6663 key_spddelete2, /* SADB_X_SPDDELETE2 */ 6664 }; 6665 6666 /* 6667 * parse sadb_msg buffer to process PFKEYv2, 6668 * and create a data to response if needed. 6669 * I think to be dealed with mbuf directly. 6670 * IN: 6671 * msgp : pointer to pointer to a received buffer pulluped. 6672 * This is rewrited to response. 6673 * so : pointer to socket. 6674 * OUT: 6675 * length for buffer to send to user process. 6676 */ 6677 int 6678 key_parse(m, so) 6679 struct mbuf *m; 6680 struct socket *so; 6681 { 6682 struct sadb_msg *msg; 6683 struct sadb_msghdr mh; 6684 u_int orglen; 6685 int error; 6686 int target; 6687 6688 IPSEC_ASSERT(so != NULL, ("null socket")); 6689 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6690 6691 #if 0 /*kdebug_sadb assumes msg in linear buffer*/ 6692 KEYDEBUG(KEYDEBUG_KEY_DUMP, 6693 ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__)); 6694 kdebug_sadb(msg)); 6695 #endif 6696 6697 if (m->m_len < sizeof(struct sadb_msg)) { 6698 m = m_pullup(m, sizeof(struct sadb_msg)); 6699 if (!m) 6700 return ENOBUFS; 6701 } 6702 msg = mtod(m, struct sadb_msg *); 6703 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); 6704 target = KEY_SENDUP_ONE; 6705 6706 if ((m->m_flags & M_PKTHDR) == 0 || 6707 m->m_pkthdr.len != m->m_pkthdr.len) { 6708 ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__)); 6709 pfkeystat.out_invlen++; 6710 error = EINVAL; 6711 goto senderror; 6712 } 6713 6714 if (msg->sadb_msg_version != PF_KEY_V2) { 6715 ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n", 6716 __func__, msg->sadb_msg_version)); 6717 pfkeystat.out_invver++; 6718 error = EINVAL; 6719 goto senderror; 6720 } 6721 6722 if (msg->sadb_msg_type > SADB_MAX) { 6723 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 6724 __func__, msg->sadb_msg_type)); 6725 pfkeystat.out_invmsgtype++; 6726 error = EINVAL; 6727 goto senderror; 6728 } 6729 6730 /* for old-fashioned code - should be nuked */ 6731 if (m->m_pkthdr.len > MCLBYTES) { 6732 m_freem(m); 6733 return ENOBUFS; 6734 } 6735 if (m->m_next) { 6736 struct mbuf *n; 6737 6738 MGETHDR(n, M_DONTWAIT, MT_DATA); 6739 if (n && m->m_pkthdr.len > MHLEN) { 6740 MCLGET(n, M_DONTWAIT); 6741 if ((n->m_flags & M_EXT) == 0) { 6742 m_free(n); 6743 n = NULL; 6744 } 6745 } 6746 if (!n) { 6747 m_freem(m); 6748 return ENOBUFS; 6749 } 6750 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t)); 6751 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; 6752 n->m_next = NULL; 6753 m_freem(m); 6754 m = n; 6755 } 6756 6757 /* align the mbuf chain so that extensions are in contiguous region. */ 6758 error = key_align(m, &mh); 6759 if (error) 6760 return error; 6761 6762 msg = mh.msg; 6763 6764 /* check SA type */ 6765 switch (msg->sadb_msg_satype) { 6766 case SADB_SATYPE_UNSPEC: 6767 switch (msg->sadb_msg_type) { 6768 case SADB_GETSPI: 6769 case SADB_UPDATE: 6770 case SADB_ADD: 6771 case SADB_DELETE: 6772 case SADB_GET: 6773 case SADB_ACQUIRE: 6774 case SADB_EXPIRE: 6775 ipseclog((LOG_DEBUG, "%s: must specify satype " 6776 "when msg type=%u.\n", __func__, 6777 msg->sadb_msg_type)); 6778 pfkeystat.out_invsatype++; 6779 error = EINVAL; 6780 goto senderror; 6781 } 6782 break; 6783 case SADB_SATYPE_AH: 6784 case SADB_SATYPE_ESP: 6785 case SADB_X_SATYPE_IPCOMP: 6786 case SADB_X_SATYPE_TCPSIGNATURE: 6787 switch (msg->sadb_msg_type) { 6788 case SADB_X_SPDADD: 6789 case SADB_X_SPDDELETE: 6790 case SADB_X_SPDGET: 6791 case SADB_X_SPDDUMP: 6792 case SADB_X_SPDFLUSH: 6793 case SADB_X_SPDSETIDX: 6794 case SADB_X_SPDUPDATE: 6795 case SADB_X_SPDDELETE2: 6796 ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n", 6797 __func__, msg->sadb_msg_type)); 6798 pfkeystat.out_invsatype++; 6799 error = EINVAL; 6800 goto senderror; 6801 } 6802 break; 6803 case SADB_SATYPE_RSVP: 6804 case SADB_SATYPE_OSPFV2: 6805 case SADB_SATYPE_RIPV2: 6806 case SADB_SATYPE_MIP: 6807 ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n", 6808 __func__, msg->sadb_msg_satype)); 6809 pfkeystat.out_invsatype++; 6810 error = EOPNOTSUPP; 6811 goto senderror; 6812 case 1: /* XXX: What does it do? */ 6813 if (msg->sadb_msg_type == SADB_X_PROMISC) 6814 break; 6815 /*FALLTHROUGH*/ 6816 default: 6817 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 6818 __func__, msg->sadb_msg_satype)); 6819 pfkeystat.out_invsatype++; 6820 error = EINVAL; 6821 goto senderror; 6822 } 6823 6824 /* check field of upper layer protocol and address family */ 6825 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL 6826 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { 6827 struct sadb_address *src0, *dst0; 6828 u_int plen; 6829 6830 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]); 6831 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]); 6832 6833 /* check upper layer protocol */ 6834 if (src0->sadb_address_proto != dst0->sadb_address_proto) { 6835 ipseclog((LOG_DEBUG, "%s: upper layer protocol " 6836 "mismatched.\n", __func__)); 6837 pfkeystat.out_invaddr++; 6838 error = EINVAL; 6839 goto senderror; 6840 } 6841 6842 /* check family */ 6843 if (PFKEY_ADDR_SADDR(src0)->sa_family != 6844 PFKEY_ADDR_SADDR(dst0)->sa_family) { 6845 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 6846 __func__)); 6847 pfkeystat.out_invaddr++; 6848 error = EINVAL; 6849 goto senderror; 6850 } 6851 if (PFKEY_ADDR_SADDR(src0)->sa_len != 6852 PFKEY_ADDR_SADDR(dst0)->sa_len) { 6853 ipseclog((LOG_DEBUG, "%s: address struct size " 6854 "mismatched.\n", __func__)); 6855 pfkeystat.out_invaddr++; 6856 error = EINVAL; 6857 goto senderror; 6858 } 6859 6860 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 6861 case AF_INET: 6862 if (PFKEY_ADDR_SADDR(src0)->sa_len != 6863 sizeof(struct sockaddr_in)) { 6864 pfkeystat.out_invaddr++; 6865 error = EINVAL; 6866 goto senderror; 6867 } 6868 break; 6869 case AF_INET6: 6870 if (PFKEY_ADDR_SADDR(src0)->sa_len != 6871 sizeof(struct sockaddr_in6)) { 6872 pfkeystat.out_invaddr++; 6873 error = EINVAL; 6874 goto senderror; 6875 } 6876 break; 6877 default: 6878 ipseclog((LOG_DEBUG, "%s: unsupported address family\n", 6879 __func__)); 6880 pfkeystat.out_invaddr++; 6881 error = EAFNOSUPPORT; 6882 goto senderror; 6883 } 6884 6885 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 6886 case AF_INET: 6887 plen = sizeof(struct in_addr) << 3; 6888 break; 6889 case AF_INET6: 6890 plen = sizeof(struct in6_addr) << 3; 6891 break; 6892 default: 6893 plen = 0; /*fool gcc*/ 6894 break; 6895 } 6896 6897 /* check max prefix length */ 6898 if (src0->sadb_address_prefixlen > plen || 6899 dst0->sadb_address_prefixlen > plen) { 6900 ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n", 6901 __func__)); 6902 pfkeystat.out_invaddr++; 6903 error = EINVAL; 6904 goto senderror; 6905 } 6906 6907 /* 6908 * prefixlen == 0 is valid because there can be a case when 6909 * all addresses are matched. 6910 */ 6911 } 6912 6913 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) || 6914 key_typesw[msg->sadb_msg_type] == NULL) { 6915 pfkeystat.out_invmsgtype++; 6916 error = EINVAL; 6917 goto senderror; 6918 } 6919 6920 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh); 6921 6922 senderror: 6923 msg->sadb_msg_errno = error; 6924 return key_sendup_mbuf(so, m, target); 6925 } 6926 6927 static int 6928 key_senderror(so, m, code) 6929 struct socket *so; 6930 struct mbuf *m; 6931 int code; 6932 { 6933 struct sadb_msg *msg; 6934 6935 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 6936 ("mbuf too small, len %u", m->m_len)); 6937 6938 msg = mtod(m, struct sadb_msg *); 6939 msg->sadb_msg_errno = code; 6940 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 6941 } 6942 6943 /* 6944 * set the pointer to each header into message buffer. 6945 * m will be freed on error. 6946 * XXX larger-than-MCLBYTES extension? 6947 */ 6948 static int 6949 key_align(m, mhp) 6950 struct mbuf *m; 6951 struct sadb_msghdr *mhp; 6952 { 6953 struct mbuf *n; 6954 struct sadb_ext *ext; 6955 size_t off, end; 6956 int extlen; 6957 int toff; 6958 6959 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6960 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6961 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 6962 ("mbuf too small, len %u", m->m_len)); 6963 6964 /* initialize */ 6965 bzero(mhp, sizeof(*mhp)); 6966 6967 mhp->msg = mtod(m, struct sadb_msg *); 6968 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */ 6969 6970 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 6971 extlen = end; /*just in case extlen is not updated*/ 6972 for (off = sizeof(struct sadb_msg); off < end; off += extlen) { 6973 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); 6974 if (!n) { 6975 /* m is already freed */ 6976 return ENOBUFS; 6977 } 6978 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 6979 6980 /* set pointer */ 6981 switch (ext->sadb_ext_type) { 6982 case SADB_EXT_SA: 6983 case SADB_EXT_ADDRESS_SRC: 6984 case SADB_EXT_ADDRESS_DST: 6985 case SADB_EXT_ADDRESS_PROXY: 6986 case SADB_EXT_LIFETIME_CURRENT: 6987 case SADB_EXT_LIFETIME_HARD: 6988 case SADB_EXT_LIFETIME_SOFT: 6989 case SADB_EXT_KEY_AUTH: 6990 case SADB_EXT_KEY_ENCRYPT: 6991 case SADB_EXT_IDENTITY_SRC: 6992 case SADB_EXT_IDENTITY_DST: 6993 case SADB_EXT_SENSITIVITY: 6994 case SADB_EXT_PROPOSAL: 6995 case SADB_EXT_SUPPORTED_AUTH: 6996 case SADB_EXT_SUPPORTED_ENCRYPT: 6997 case SADB_EXT_SPIRANGE: 6998 case SADB_X_EXT_POLICY: 6999 case SADB_X_EXT_SA2: 7000 /* duplicate check */ 7001 /* 7002 * XXX Are there duplication payloads of either 7003 * KEY_AUTH or KEY_ENCRYPT ? 7004 */ 7005 if (mhp->ext[ext->sadb_ext_type] != NULL) { 7006 ipseclog((LOG_DEBUG, "%s: duplicate ext_type " 7007 "%u\n", __func__, ext->sadb_ext_type)); 7008 m_freem(m); 7009 pfkeystat.out_dupext++; 7010 return EINVAL; 7011 } 7012 break; 7013 default: 7014 ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n", 7015 __func__, ext->sadb_ext_type)); 7016 m_freem(m); 7017 pfkeystat.out_invexttype++; 7018 return EINVAL; 7019 } 7020 7021 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); 7022 7023 if (key_validate_ext(ext, extlen)) { 7024 m_freem(m); 7025 pfkeystat.out_invlen++; 7026 return EINVAL; 7027 } 7028 7029 n = m_pulldown(m, off, extlen, &toff); 7030 if (!n) { 7031 /* m is already freed */ 7032 return ENOBUFS; 7033 } 7034 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 7035 7036 mhp->ext[ext->sadb_ext_type] = ext; 7037 mhp->extoff[ext->sadb_ext_type] = off; 7038 mhp->extlen[ext->sadb_ext_type] = extlen; 7039 } 7040 7041 if (off != end) { 7042 m_freem(m); 7043 pfkeystat.out_invlen++; 7044 return EINVAL; 7045 } 7046 7047 return 0; 7048 } 7049 7050 static int 7051 key_validate_ext(ext, len) 7052 const struct sadb_ext *ext; 7053 int len; 7054 { 7055 const struct sockaddr *sa; 7056 enum { NONE, ADDR } checktype = NONE; 7057 int baselen = 0; 7058 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); 7059 7060 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) 7061 return EINVAL; 7062 7063 /* if it does not match minimum/maximum length, bail */ 7064 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) || 7065 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0])) 7066 return EINVAL; 7067 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) 7068 return EINVAL; 7069 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) 7070 return EINVAL; 7071 7072 /* more checks based on sadb_ext_type XXX need more */ 7073 switch (ext->sadb_ext_type) { 7074 case SADB_EXT_ADDRESS_SRC: 7075 case SADB_EXT_ADDRESS_DST: 7076 case SADB_EXT_ADDRESS_PROXY: 7077 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); 7078 checktype = ADDR; 7079 break; 7080 case SADB_EXT_IDENTITY_SRC: 7081 case SADB_EXT_IDENTITY_DST: 7082 if (((const struct sadb_ident *)ext)->sadb_ident_type == 7083 SADB_X_IDENTTYPE_ADDR) { 7084 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); 7085 checktype = ADDR; 7086 } else 7087 checktype = NONE; 7088 break; 7089 default: 7090 checktype = NONE; 7091 break; 7092 } 7093 7094 switch (checktype) { 7095 case NONE: 7096 break; 7097 case ADDR: 7098 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); 7099 if (len < baselen + sal) 7100 return EINVAL; 7101 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) 7102 return EINVAL; 7103 break; 7104 } 7105 7106 return 0; 7107 } 7108 7109 void 7110 key_init(void) 7111 { 7112 int i; 7113 7114 SPTREE_LOCK_INIT(); 7115 REGTREE_LOCK_INIT(); 7116 SAHTREE_LOCK_INIT(); 7117 ACQ_LOCK_INIT(); 7118 SPACQ_LOCK_INIT(); 7119 7120 for (i = 0; i < IPSEC_DIR_MAX; i++) 7121 LIST_INIT(&sptree[i]); 7122 7123 LIST_INIT(&sahtree); 7124 7125 for (i = 0; i <= SADB_SATYPE_MAX; i++) 7126 LIST_INIT(®tree[i]); 7127 7128 LIST_INIT(&acqtree); 7129 LIST_INIT(&spacqtree); 7130 7131 /* system default */ 7132 ip4_def_policy.policy = IPSEC_POLICY_NONE; 7133 ip4_def_policy.refcnt++; /*never reclaim this*/ 7134 7135 #ifndef IPSEC_DEBUG2 7136 timeout((void *)key_timehandler, (void *)0, hz); 7137 #endif /*IPSEC_DEBUG2*/ 7138 7139 /* initialize key statistics */ 7140 keystat.getspi_count = 1; 7141 7142 printf("IPsec: Initialized Security Association Processing.\n"); 7143 7144 return; 7145 } 7146 7147 /* 7148 * XXX: maybe This function is called after INBOUND IPsec processing. 7149 * 7150 * Special check for tunnel-mode packets. 7151 * We must make some checks for consistency between inner and outer IP header. 7152 * 7153 * xxx more checks to be provided 7154 */ 7155 int 7156 key_checktunnelsanity(sav, family, src, dst) 7157 struct secasvar *sav; 7158 u_int family; 7159 caddr_t src; 7160 caddr_t dst; 7161 { 7162 IPSEC_ASSERT(sav->sah != NULL, ("null SA header")); 7163 7164 /* XXX: check inner IP header */ 7165 7166 return 1; 7167 } 7168 7169 /* record data transfer on SA, and update timestamps */ 7170 void 7171 key_sa_recordxfer(sav, m) 7172 struct secasvar *sav; 7173 struct mbuf *m; 7174 { 7175 IPSEC_ASSERT(sav != NULL, ("Null secasvar")); 7176 IPSEC_ASSERT(m != NULL, ("Null mbuf")); 7177 if (!sav->lft_c) 7178 return; 7179 7180 /* 7181 * XXX Currently, there is a difference of bytes size 7182 * between inbound and outbound processing. 7183 */ 7184 sav->lft_c->bytes += m->m_pkthdr.len; 7185 /* to check bytes lifetime is done in key_timehandler(). */ 7186 7187 /* 7188 * We use the number of packets as the unit of 7189 * allocations. We increment the variable 7190 * whenever {esp,ah}_{in,out}put is called. 7191 */ 7192 sav->lft_c->allocations++; 7193 /* XXX check for expires? */ 7194 7195 /* 7196 * NOTE: We record CURRENT usetime by using wall clock, 7197 * in seconds. HARD and SOFT lifetime are measured by the time 7198 * difference (again in seconds) from usetime. 7199 * 7200 * usetime 7201 * v expire expire 7202 * -----+-----+--------+---> t 7203 * <--------------> HARD 7204 * <-----> SOFT 7205 */ 7206 sav->lft_c->usetime = time_second; 7207 /* XXX check for expires? */ 7208 7209 return; 7210 } 7211 7212 /* dumb version */ 7213 void 7214 key_sa_routechange(dst) 7215 struct sockaddr *dst; 7216 { 7217 struct secashead *sah; 7218 struct route *ro; 7219 7220 SAHTREE_LOCK(); 7221 LIST_FOREACH(sah, &sahtree, chain) { 7222 ro = &sah->sa_route; 7223 if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len 7224 && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) { 7225 RTFREE(ro->ro_rt); 7226 ro->ro_rt = (struct rtentry *)NULL; 7227 } 7228 } 7229 SAHTREE_UNLOCK(); 7230 } 7231 7232 static void 7233 key_sa_chgstate(sav, state) 7234 struct secasvar *sav; 7235 u_int8_t state; 7236 { 7237 IPSEC_ASSERT(sav != NULL, ("NULL sav")); 7238 SAHTREE_LOCK_ASSERT(); 7239 7240 if (sav->state != state) { 7241 if (__LIST_CHAINED(sav)) 7242 LIST_REMOVE(sav, chain); 7243 sav->state = state; 7244 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain); 7245 } 7246 } 7247 7248 void 7249 key_sa_stir_iv(sav) 7250 struct secasvar *sav; 7251 { 7252 7253 IPSEC_ASSERT(sav->iv != NULL, ("null IV")); 7254 key_randomfill(sav->iv, sav->ivlen); 7255 } 7256 7257 /* XXX too much? */ 7258 static struct mbuf * 7259 key_alloc_mbuf(l) 7260 int l; 7261 { 7262 struct mbuf *m = NULL, *n; 7263 int len, t; 7264 7265 len = l; 7266 while (len > 0) { 7267 MGET(n, M_DONTWAIT, MT_DATA); 7268 if (n && len > MLEN) 7269 MCLGET(n, M_DONTWAIT); 7270 if (!n) { 7271 m_freem(m); 7272 return NULL; 7273 } 7274 7275 n->m_next = NULL; 7276 n->m_len = 0; 7277 n->m_len = M_TRAILINGSPACE(n); 7278 /* use the bottom of mbuf, hoping we can prepend afterwards */ 7279 if (n->m_len > len) { 7280 t = (n->m_len - len) & ~(sizeof(long) - 1); 7281 n->m_data += t; 7282 n->m_len = len; 7283 } 7284 7285 len -= n->m_len; 7286 7287 if (m) 7288 m_cat(m, n); 7289 else 7290 m = n; 7291 } 7292 7293 return m; 7294 } 7295 7296 /* 7297 * Take one of the kernel's security keys and convert it into a PF_KEY 7298 * structure within an mbuf, suitable for sending up to a waiting 7299 * application in user land. 7300 * 7301 * IN: 7302 * src: A pointer to a kernel security key. 7303 * exttype: Which type of key this is. Refer to the PF_KEY data structures. 7304 * OUT: 7305 * a valid mbuf or NULL indicating an error 7306 * 7307 */ 7308 7309 static struct mbuf * 7310 key_setkey(struct seckey *src, u_int16_t exttype) 7311 { 7312 struct mbuf *m; 7313 struct sadb_key *p; 7314 int len; 7315 7316 if (src == NULL) 7317 return NULL; 7318 7319 len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src)); 7320 m = key_alloc_mbuf(len); 7321 if (m == NULL) 7322 return NULL; 7323 p = mtod(m, struct sadb_key *); 7324 bzero(p, len); 7325 p->sadb_key_len = PFKEY_UNIT64(len); 7326 p->sadb_key_exttype = exttype; 7327 p->sadb_key_bits = src->bits; 7328 bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src)); 7329 7330 return m; 7331 } 7332 7333 /* 7334 * Take one of the kernel's lifetime data structures and convert it 7335 * into a PF_KEY structure within an mbuf, suitable for sending up to 7336 * a waiting application in user land. 7337 * 7338 * IN: 7339 * src: A pointer to a kernel lifetime structure. 7340 * exttype: Which type of lifetime this is. Refer to the PF_KEY 7341 * data structures for more information. 7342 * OUT: 7343 * a valid mbuf or NULL indicating an error 7344 * 7345 */ 7346 7347 static struct mbuf * 7348 key_setlifetime(struct seclifetime *src, u_int16_t exttype) 7349 { 7350 struct mbuf *m = NULL; 7351 struct sadb_lifetime *p; 7352 int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime)); 7353 7354 if (src == NULL) 7355 return NULL; 7356 7357 m = key_alloc_mbuf(len); 7358 if (m == NULL) 7359 return m; 7360 p = mtod(m, struct sadb_lifetime *); 7361 7362 bzero(p, len); 7363 p->sadb_lifetime_len = PFKEY_UNIT64(len); 7364 p->sadb_lifetime_exttype = exttype; 7365 p->sadb_lifetime_allocations = src->allocations; 7366 p->sadb_lifetime_bytes = src->bytes; 7367 p->sadb_lifetime_addtime = src->addtime; 7368 p->sadb_lifetime_usetime = src->usetime; 7369 7370 return m; 7371 7372 } 7373