xref: /freebsd/sys/netipsec/key.c (revision f60a5b31c857e1cbcafdb8ffa8b7552b6d64f7ca)
1 /*	$FreeBSD$	*/
2 /*	$KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $	*/
3 
4 /*-
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * This code is referd to RFC 2367
35  */
36 
37 #include "opt_inet.h"
38 #include "opt_inet6.h"
39 #include "opt_ipsec.h"
40 
41 #include <sys/types.h>
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/mbuf.h>
48 #include <sys/domain.h>
49 #include <sys/protosw.h>
50 #include <sys/malloc.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/sysctl.h>
54 #include <sys/errno.h>
55 #include <sys/proc.h>
56 #include <sys/queue.h>
57 #include <sys/refcount.h>
58 #include <sys/syslog.h>
59 
60 #include <net/if.h>
61 #include <net/route.h>
62 #include <net/raw_cb.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/ip.h>
67 #include <netinet/in_var.h>
68 
69 #ifdef INET6
70 #include <netinet/ip6.h>
71 #include <netinet6/in6_var.h>
72 #include <netinet6/ip6_var.h>
73 #endif /* INET6 */
74 
75 #ifdef INET
76 #include <netinet/in_pcb.h>
77 #endif
78 #ifdef INET6
79 #include <netinet6/in6_pcb.h>
80 #endif /* INET6 */
81 
82 #include <net/pfkeyv2.h>
83 #include <netipsec/keydb.h>
84 #include <netipsec/key.h>
85 #include <netipsec/keysock.h>
86 #include <netipsec/key_debug.h>
87 
88 #include <netipsec/ipsec.h>
89 #ifdef INET6
90 #include <netipsec/ipsec6.h>
91 #endif
92 
93 #include <netipsec/xform.h>
94 
95 #include <machine/stdarg.h>
96 
97 /* randomness */
98 #include <sys/random.h>
99 
100 #define FULLMASK	0xff
101 #define	_BITS(bytes)	((bytes) << 3)
102 
103 /*
104  * Note on SA reference counting:
105  * - SAs that are not in DEAD state will have (total external reference + 1)
106  *   following value in reference count field.  they cannot be freed and are
107  *   referenced from SA header.
108  * - SAs that are in DEAD state will have (total external reference)
109  *   in reference count field.  they are ready to be freed.  reference from
110  *   SA header will be removed in key_delsav(), when the reference count
111  *   field hits 0 (= no external reference other than from SA header.
112  */
113 
114 u_int32_t key_debug_level = 0;
115 static u_int key_spi_trycnt = 1000;
116 static u_int32_t key_spi_minval = 0x100;
117 static u_int32_t key_spi_maxval = 0x0fffffff;	/* XXX */
118 static u_int32_t policy_id = 0;
119 static u_int key_int_random = 60;	/*interval to initialize randseed,1(m)*/
120 static u_int key_larval_lifetime = 30;	/* interval to expire acquiring, 30(s)*/
121 static int key_blockacq_count = 10;	/* counter for blocking SADB_ACQUIRE.*/
122 static int key_blockacq_lifetime = 20;	/* lifetime for blocking SADB_ACQUIRE.*/
123 static int key_preferred_oldsa = 1;	/* preferred old sa rather than new sa.*/
124 
125 static u_int32_t acq_seq = 0;
126 
127 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX];	/* SPD */
128 static struct mtx sptree_lock;
129 #define	SPTREE_LOCK_INIT() \
130 	mtx_init(&sptree_lock, "sptree", \
131 		"fast ipsec security policy database", MTX_DEF)
132 #define	SPTREE_LOCK_DESTROY()	mtx_destroy(&sptree_lock)
133 #define	SPTREE_LOCK()		mtx_lock(&sptree_lock)
134 #define	SPTREE_UNLOCK()	mtx_unlock(&sptree_lock)
135 #define	SPTREE_LOCK_ASSERT()	mtx_assert(&sptree_lock, MA_OWNED)
136 
137 static LIST_HEAD(_sahtree, secashead) sahtree;			/* SAD */
138 static struct mtx sahtree_lock;
139 #define	SAHTREE_LOCK_INIT() \
140 	mtx_init(&sahtree_lock, "sahtree", \
141 		"fast ipsec security association database", MTX_DEF)
142 #define	SAHTREE_LOCK_DESTROY()	mtx_destroy(&sahtree_lock)
143 #define	SAHTREE_LOCK()		mtx_lock(&sahtree_lock)
144 #define	SAHTREE_UNLOCK()	mtx_unlock(&sahtree_lock)
145 #define	SAHTREE_LOCK_ASSERT()	mtx_assert(&sahtree_lock, MA_OWNED)
146 
147 							/* registed list */
148 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1];
149 static struct mtx regtree_lock;
150 #define	REGTREE_LOCK_INIT() \
151 	mtx_init(&regtree_lock, "regtree", "fast ipsec regtree", MTX_DEF)
152 #define	REGTREE_LOCK_DESTROY()	mtx_destroy(&regtree_lock)
153 #define	REGTREE_LOCK()		mtx_lock(&regtree_lock)
154 #define	REGTREE_UNLOCK()	mtx_unlock(&regtree_lock)
155 #define	REGTREE_LOCK_ASSERT()	mtx_assert(&regtree_lock, MA_OWNED)
156 
157 static LIST_HEAD(_acqtree, secacq) acqtree;		/* acquiring list */
158 static struct mtx acq_lock;
159 #define	ACQ_LOCK_INIT() \
160 	mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF)
161 #define	ACQ_LOCK_DESTROY()	mtx_destroy(&acq_lock)
162 #define	ACQ_LOCK()		mtx_lock(&acq_lock)
163 #define	ACQ_UNLOCK()		mtx_unlock(&acq_lock)
164 #define	ACQ_LOCK_ASSERT()	mtx_assert(&acq_lock, MA_OWNED)
165 
166 static LIST_HEAD(_spacqtree, secspacq) spacqtree;	/* SP acquiring list */
167 static struct mtx spacq_lock;
168 #define	SPACQ_LOCK_INIT() \
169 	mtx_init(&spacq_lock, "spacqtree", \
170 		"fast ipsec security policy acquire list", MTX_DEF)
171 #define	SPACQ_LOCK_DESTROY()	mtx_destroy(&spacq_lock)
172 #define	SPACQ_LOCK()		mtx_lock(&spacq_lock)
173 #define	SPACQ_UNLOCK()		mtx_unlock(&spacq_lock)
174 #define	SPACQ_LOCK_ASSERT()	mtx_assert(&spacq_lock, MA_OWNED)
175 
176 /* search order for SAs */
177 static const u_int saorder_state_valid_prefer_old[] = {
178 	SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
179 };
180 static const u_int saorder_state_valid_prefer_new[] = {
181 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
182 };
183 static u_int saorder_state_alive[] = {
184 	/* except DEAD */
185 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
186 };
187 static u_int saorder_state_any[] = {
188 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
189 	SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
190 };
191 
192 static const int minsize[] = {
193 	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
194 	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
195 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
196 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
197 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
198 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_SRC */
199 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_DST */
200 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_PROXY */
201 	sizeof(struct sadb_key),	/* SADB_EXT_KEY_AUTH */
202 	sizeof(struct sadb_key),	/* SADB_EXT_KEY_ENCRYPT */
203 	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_SRC */
204 	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_DST */
205 	sizeof(struct sadb_sens),	/* SADB_EXT_SENSITIVITY */
206 	sizeof(struct sadb_prop),	/* SADB_EXT_PROPOSAL */
207 	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_AUTH */
208 	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_ENCRYPT */
209 	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
210 	0,				/* SADB_X_EXT_KMPRIVATE */
211 	sizeof(struct sadb_x_policy),	/* SADB_X_EXT_POLICY */
212 	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
213 };
214 static const int maxsize[] = {
215 	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
216 	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
217 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
218 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
219 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
220 	0,				/* SADB_EXT_ADDRESS_SRC */
221 	0,				/* SADB_EXT_ADDRESS_DST */
222 	0,				/* SADB_EXT_ADDRESS_PROXY */
223 	0,				/* SADB_EXT_KEY_AUTH */
224 	0,				/* SADB_EXT_KEY_ENCRYPT */
225 	0,				/* SADB_EXT_IDENTITY_SRC */
226 	0,				/* SADB_EXT_IDENTITY_DST */
227 	0,				/* SADB_EXT_SENSITIVITY */
228 	0,				/* SADB_EXT_PROPOSAL */
229 	0,				/* SADB_EXT_SUPPORTED_AUTH */
230 	0,				/* SADB_EXT_SUPPORTED_ENCRYPT */
231 	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
232 	0,				/* SADB_X_EXT_KMPRIVATE */
233 	0,				/* SADB_X_EXT_POLICY */
234 	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
235 };
236 
237 static int ipsec_esp_keymin = 256;
238 static int ipsec_esp_auth = 0;
239 static int ipsec_ah_keymin = 128;
240 
241 #ifdef SYSCTL_DECL
242 SYSCTL_DECL(_net_key);
243 #endif
244 
245 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL,	debug,	CTLFLAG_RW, \
246 	&key_debug_level,	0,	"");
247 
248 /* max count of trial for the decision of spi value */
249 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY,		spi_trycnt,	CTLFLAG_RW, \
250 	&key_spi_trycnt,	0,	"");
251 
252 /* minimum spi value to allocate automatically. */
253 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE,	spi_minval,	CTLFLAG_RW, \
254 	&key_spi_minval,	0,	"");
255 
256 /* maximun spi value to allocate automatically. */
257 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE,	spi_maxval,	CTLFLAG_RW, \
258 	&key_spi_maxval,	0,	"");
259 
260 /* interval to initialize randseed */
261 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT,	int_random,	CTLFLAG_RW, \
262 	&key_int_random,	0,	"");
263 
264 /* lifetime for larval SA */
265 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME,	larval_lifetime, CTLFLAG_RW, \
266 	&key_larval_lifetime,	0,	"");
267 
268 /* counter for blocking to send SADB_ACQUIRE to IKEd */
269 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT,	blockacq_count,	CTLFLAG_RW, \
270 	&key_blockacq_count,	0,	"");
271 
272 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
273 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME,	blockacq_lifetime, CTLFLAG_RW, \
274 	&key_blockacq_lifetime,	0,	"");
275 
276 /* ESP auth */
277 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH,	esp_auth, CTLFLAG_RW, \
278 	&ipsec_esp_auth,	0,	"");
279 
280 /* minimum ESP key length */
281 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN,	esp_keymin, CTLFLAG_RW, \
282 	&ipsec_esp_keymin,	0,	"");
283 
284 /* minimum AH key length */
285 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN,	ah_keymin, CTLFLAG_RW, \
286 	&ipsec_ah_keymin,	0,	"");
287 
288 /* perfered old SA rather than new SA */
289 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA,	preferred_oldsa, CTLFLAG_RW,\
290 	&key_preferred_oldsa,	0,	"");
291 
292 #define __LIST_CHAINED(elm) \
293 	(!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
294 #define LIST_INSERT_TAIL(head, elm, type, field) \
295 do {\
296 	struct type *curelm = LIST_FIRST(head); \
297 	if (curelm == NULL) {\
298 		LIST_INSERT_HEAD(head, elm, field); \
299 	} else { \
300 		while (LIST_NEXT(curelm, field)) \
301 			curelm = LIST_NEXT(curelm, field);\
302 		LIST_INSERT_AFTER(curelm, elm, field);\
303 	}\
304 } while (0)
305 
306 #define KEY_CHKSASTATE(head, sav, name) \
307 do { \
308 	if ((head) != (sav)) {						\
309 		ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \
310 			(name), (head), (sav)));			\
311 		continue;						\
312 	}								\
313 } while (0)
314 
315 #define KEY_CHKSPDIR(head, sp, name) \
316 do { \
317 	if ((head) != (sp)) {						\
318 		ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \
319 			"anyway continue.\n",				\
320 			(name), (head), (sp)));				\
321 	}								\
322 } while (0)
323 
324 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association");
325 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head");
326 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy");
327 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request");
328 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous");
329 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire");
330 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire");
331 
332 /*
333  * set parameters into secpolicyindex buffer.
334  * Must allocate secpolicyindex buffer passed to this function.
335  */
336 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
337 do { \
338 	bzero((idx), sizeof(struct secpolicyindex));                         \
339 	(idx)->dir = (_dir);                                                 \
340 	(idx)->prefs = (ps);                                                 \
341 	(idx)->prefd = (pd);                                                 \
342 	(idx)->ul_proto = (ulp);                                             \
343 	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
344 	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
345 } while (0)
346 
347 /*
348  * set parameters into secasindex buffer.
349  * Must allocate secasindex buffer before calling this function.
350  */
351 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \
352 do { \
353 	bzero((idx), sizeof(struct secasindex));                             \
354 	(idx)->proto = (p);                                                  \
355 	(idx)->mode = (m);                                                   \
356 	(idx)->reqid = (r);                                                  \
357 	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
358 	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
359 } while (0)
360 
361 /* key statistics */
362 struct _keystat {
363 	u_long getspi_count; /* the avarage of count to try to get new SPI */
364 } keystat;
365 
366 struct sadb_msghdr {
367 	struct sadb_msg *msg;
368 	struct sadb_ext *ext[SADB_EXT_MAX + 1];
369 	int extoff[SADB_EXT_MAX + 1];
370 	int extlen[SADB_EXT_MAX + 1];
371 };
372 
373 static struct secasvar *key_allocsa_policy __P((const struct secasindex *));
374 static void key_freesp_so __P((struct secpolicy **));
375 static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int));
376 static void key_delsp __P((struct secpolicy *));
377 static struct secpolicy *key_getsp __P((struct secpolicyindex *));
378 static void _key_delsp(struct secpolicy *sp);
379 static struct secpolicy *key_getspbyid __P((u_int32_t));
380 static u_int32_t key_newreqid __P((void));
381 static struct mbuf *key_gather_mbuf __P((struct mbuf *,
382 	const struct sadb_msghdr *, int, int, ...));
383 static int key_spdadd __P((struct socket *, struct mbuf *,
384 	const struct sadb_msghdr *));
385 static u_int32_t key_getnewspid __P((void));
386 static int key_spddelete __P((struct socket *, struct mbuf *,
387 	const struct sadb_msghdr *));
388 static int key_spddelete2 __P((struct socket *, struct mbuf *,
389 	const struct sadb_msghdr *));
390 static int key_spdget __P((struct socket *, struct mbuf *,
391 	const struct sadb_msghdr *));
392 static int key_spdflush __P((struct socket *, struct mbuf *,
393 	const struct sadb_msghdr *));
394 static int key_spddump __P((struct socket *, struct mbuf *,
395 	const struct sadb_msghdr *));
396 static struct mbuf *key_setdumpsp __P((struct secpolicy *,
397 	u_int8_t, u_int32_t, u_int32_t));
398 static u_int key_getspreqmsglen __P((struct secpolicy *));
399 static int key_spdexpire __P((struct secpolicy *));
400 static struct secashead *key_newsah __P((struct secasindex *));
401 static void key_delsah __P((struct secashead *));
402 static struct secasvar *key_newsav __P((struct mbuf *,
403 	const struct sadb_msghdr *, struct secashead *, int *,
404 	const char*, int));
405 #define	KEY_NEWSAV(m, sadb, sah, e)				\
406 	key_newsav(m, sadb, sah, e, __FILE__, __LINE__)
407 static void key_delsav __P((struct secasvar *));
408 static struct secashead *key_getsah __P((struct secasindex *));
409 static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t));
410 static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t));
411 static int key_setsaval __P((struct secasvar *, struct mbuf *,
412 	const struct sadb_msghdr *));
413 static int key_mature __P((struct secasvar *));
414 static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t,
415 	u_int8_t, u_int32_t, u_int32_t));
416 static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t,
417 	u_int32_t, pid_t, u_int16_t));
418 static struct mbuf *key_setsadbsa __P((struct secasvar *));
419 static struct mbuf *key_setsadbaddr __P((u_int16_t,
420 	const struct sockaddr *, u_int8_t, u_int16_t));
421 static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t));
422 static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t,
423 	u_int32_t));
424 static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int,
425 				     struct malloc_type *);
426 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src,
427 					    struct malloc_type *type);
428 #ifdef INET6
429 static int key_ismyaddr6 __P((struct sockaddr_in6 *));
430 #endif
431 
432 /* flags for key_cmpsaidx() */
433 #define CMP_HEAD	1	/* protocol, addresses. */
434 #define CMP_MODE_REQID	2	/* additionally HEAD, reqid, mode. */
435 #define CMP_REQID	3	/* additionally HEAD, reaid. */
436 #define CMP_EXACTLY	4	/* all elements. */
437 static int key_cmpsaidx
438 	__P((const struct secasindex *, const struct secasindex *, int));
439 
440 static int key_cmpspidx_exactly
441 	__P((struct secpolicyindex *, struct secpolicyindex *));
442 static int key_cmpspidx_withmask
443 	__P((struct secpolicyindex *, struct secpolicyindex *));
444 static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int));
445 static int key_bbcmp __P((const void *, const void *, u_int));
446 static u_int16_t key_satype2proto __P((u_int8_t));
447 static u_int8_t key_proto2satype __P((u_int16_t));
448 
449 static int key_getspi __P((struct socket *, struct mbuf *,
450 	const struct sadb_msghdr *));
451 static u_int32_t key_do_getnewspi __P((struct sadb_spirange *,
452 					struct secasindex *));
453 static int key_update __P((struct socket *, struct mbuf *,
454 	const struct sadb_msghdr *));
455 #ifdef IPSEC_DOSEQCHECK
456 static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t));
457 #endif
458 static int key_add __P((struct socket *, struct mbuf *,
459 	const struct sadb_msghdr *));
460 static int key_setident __P((struct secashead *, struct mbuf *,
461 	const struct sadb_msghdr *));
462 static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *,
463 	const struct sadb_msghdr *));
464 static int key_delete __P((struct socket *, struct mbuf *,
465 	const struct sadb_msghdr *));
466 static int key_get __P((struct socket *, struct mbuf *,
467 	const struct sadb_msghdr *));
468 
469 static void key_getcomb_setlifetime __P((struct sadb_comb *));
470 static struct mbuf *key_getcomb_esp __P((void));
471 static struct mbuf *key_getcomb_ah __P((void));
472 static struct mbuf *key_getcomb_ipcomp __P((void));
473 static struct mbuf *key_getprop __P((const struct secasindex *));
474 
475 static int key_acquire __P((const struct secasindex *, struct secpolicy *));
476 static struct secacq *key_newacq __P((const struct secasindex *));
477 static struct secacq *key_getacq __P((const struct secasindex *));
478 static struct secacq *key_getacqbyseq __P((u_int32_t));
479 static struct secspacq *key_newspacq __P((struct secpolicyindex *));
480 static struct secspacq *key_getspacq __P((struct secpolicyindex *));
481 static int key_acquire2 __P((struct socket *, struct mbuf *,
482 	const struct sadb_msghdr *));
483 static int key_register __P((struct socket *, struct mbuf *,
484 	const struct sadb_msghdr *));
485 static int key_expire __P((struct secasvar *));
486 static int key_flush __P((struct socket *, struct mbuf *,
487 	const struct sadb_msghdr *));
488 static int key_dump __P((struct socket *, struct mbuf *,
489 	const struct sadb_msghdr *));
490 static int key_promisc __P((struct socket *, struct mbuf *,
491 	const struct sadb_msghdr *));
492 static int key_senderror __P((struct socket *, struct mbuf *, int));
493 static int key_validate_ext __P((const struct sadb_ext *, int));
494 static int key_align __P((struct mbuf *, struct sadb_msghdr *));
495 static struct mbuf *key_setlifetime(struct seclifetime *src,
496 				     u_int16_t exttype);
497 static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype);
498 
499 #if 0
500 static const char *key_getfqdn __P((void));
501 static const char *key_getuserfqdn __P((void));
502 #endif
503 static void key_sa_chgstate __P((struct secasvar *, u_int8_t));
504 static struct mbuf *key_alloc_mbuf __P((int));
505 
506 static __inline void
507 sa_initref(struct secasvar *sav)
508 {
509 
510 	refcount_init(&sav->refcnt, 1);
511 }
512 static __inline void
513 sa_addref(struct secasvar *sav)
514 {
515 
516 	refcount_acquire(&sav->refcnt);
517 	IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow"));
518 }
519 static __inline int
520 sa_delref(struct secasvar *sav)
521 {
522 
523 	IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow"));
524 	return (refcount_release(&sav->refcnt));
525 }
526 
527 #define	SP_ADDREF(p) do {						\
528 	(p)->refcnt++;							\
529 	IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow"));		\
530 } while (0)
531 #define	SP_DELREF(p) do {						\
532 	IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow"));		\
533 	(p)->refcnt--;							\
534 } while (0)
535 
536 
537 /*
538  * Update the refcnt while holding the SPTREE lock.
539  */
540 void
541 key_addref(struct secpolicy *sp)
542 {
543 	SPTREE_LOCK();
544 	SP_ADDREF(sp);
545 	SPTREE_UNLOCK();
546 }
547 
548 /*
549  * Return 0 when there are known to be no SP's for the specified
550  * direction.  Otherwise return 1.  This is used by IPsec code
551  * to optimize performance.
552  */
553 int
554 key_havesp(u_int dir)
555 {
556 	return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
557 		LIST_FIRST(&sptree[dir]) != NULL : 1);
558 }
559 
560 /* %%% IPsec policy management */
561 /*
562  * allocating a SP for OUTBOUND or INBOUND packet.
563  * Must call key_freesp() later.
564  * OUT:	NULL:	not found
565  *	others:	found and return the pointer.
566  */
567 struct secpolicy *
568 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag)
569 {
570 	struct secpolicy *sp;
571 
572 	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
573 	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
574 		("invalid direction %u", dir));
575 
576 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
577 		printf("DP %s from %s:%u\n", __func__, where, tag));
578 
579 	/* get a SP entry */
580 	KEYDEBUG(KEYDEBUG_IPSEC_DATA,
581 		printf("*** objects\n");
582 		kdebug_secpolicyindex(spidx));
583 
584 	SPTREE_LOCK();
585 	LIST_FOREACH(sp, &sptree[dir], chain) {
586 		KEYDEBUG(KEYDEBUG_IPSEC_DATA,
587 			printf("*** in SPD\n");
588 			kdebug_secpolicyindex(&sp->spidx));
589 
590 		if (sp->state == IPSEC_SPSTATE_DEAD)
591 			continue;
592 		if (key_cmpspidx_withmask(&sp->spidx, spidx))
593 			goto found;
594 	}
595 	sp = NULL;
596 found:
597 	if (sp) {
598 		/* sanity check */
599 		KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
600 
601 		/* found a SPD entry */
602 		sp->lastused = time_second;
603 		SP_ADDREF(sp);
604 	}
605 	SPTREE_UNLOCK();
606 
607 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
608 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
609 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
610 	return sp;
611 }
612 
613 /*
614  * allocating a SP for OUTBOUND or INBOUND packet.
615  * Must call key_freesp() later.
616  * OUT:	NULL:	not found
617  *	others:	found and return the pointer.
618  */
619 struct secpolicy *
620 key_allocsp2(u_int32_t spi,
621 	     union sockaddr_union *dst,
622 	     u_int8_t proto,
623 	     u_int dir,
624 	     const char* where, int tag)
625 {
626 	struct secpolicy *sp;
627 
628 	IPSEC_ASSERT(dst != NULL, ("null dst"));
629 	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
630 		("invalid direction %u", dir));
631 
632 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
633 		printf("DP %s from %s:%u\n", __func__, where, tag));
634 
635 	/* get a SP entry */
636 	KEYDEBUG(KEYDEBUG_IPSEC_DATA,
637 		printf("*** objects\n");
638 		printf("spi %u proto %u dir %u\n", spi, proto, dir);
639 		kdebug_sockaddr(&dst->sa));
640 
641 	SPTREE_LOCK();
642 	LIST_FOREACH(sp, &sptree[dir], chain) {
643 		KEYDEBUG(KEYDEBUG_IPSEC_DATA,
644 			printf("*** in SPD\n");
645 			kdebug_secpolicyindex(&sp->spidx));
646 
647 		if (sp->state == IPSEC_SPSTATE_DEAD)
648 			continue;
649 		/* compare simple values, then dst address */
650 		if (sp->spidx.ul_proto != proto)
651 			continue;
652 		/* NB: spi's must exist and match */
653 		if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
654 			continue;
655 		if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0)
656 			goto found;
657 	}
658 	sp = NULL;
659 found:
660 	if (sp) {
661 		/* sanity check */
662 		KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
663 
664 		/* found a SPD entry */
665 		sp->lastused = time_second;
666 		SP_ADDREF(sp);
667 	}
668 	SPTREE_UNLOCK();
669 
670 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
671 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
672 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
673 	return sp;
674 }
675 
676 /*
677  * return a policy that matches this particular inbound packet.
678  * XXX slow
679  */
680 struct secpolicy *
681 key_gettunnel(const struct sockaddr *osrc,
682 	      const struct sockaddr *odst,
683 	      const struct sockaddr *isrc,
684 	      const struct sockaddr *idst,
685 	      const char* where, int tag)
686 {
687 	struct secpolicy *sp;
688 	const int dir = IPSEC_DIR_INBOUND;
689 	struct ipsecrequest *r1, *r2, *p;
690 	struct secpolicyindex spidx;
691 
692 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
693 		printf("DP %s from %s:%u\n", __func__, where, tag));
694 
695 	if (isrc->sa_family != idst->sa_family) {
696 		ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.",
697 			__func__, isrc->sa_family, idst->sa_family));
698 		sp = NULL;
699 		goto done;
700 	}
701 
702 	SPTREE_LOCK();
703 	LIST_FOREACH(sp, &sptree[dir], chain) {
704 		if (sp->state == IPSEC_SPSTATE_DEAD)
705 			continue;
706 
707 		r1 = r2 = NULL;
708 		for (p = sp->req; p; p = p->next) {
709 			if (p->saidx.mode != IPSEC_MODE_TUNNEL)
710 				continue;
711 
712 			r1 = r2;
713 			r2 = p;
714 
715 			if (!r1) {
716 				/* here we look at address matches only */
717 				spidx = sp->spidx;
718 				if (isrc->sa_len > sizeof(spidx.src) ||
719 				    idst->sa_len > sizeof(spidx.dst))
720 					continue;
721 				bcopy(isrc, &spidx.src, isrc->sa_len);
722 				bcopy(idst, &spidx.dst, idst->sa_len);
723 				if (!key_cmpspidx_withmask(&sp->spidx, &spidx))
724 					continue;
725 			} else {
726 				if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) ||
727 				    key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0))
728 					continue;
729 			}
730 
731 			if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) ||
732 			    key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0))
733 				continue;
734 
735 			goto found;
736 		}
737 	}
738 	sp = NULL;
739 found:
740 	if (sp) {
741 		sp->lastused = time_second;
742 		SP_ADDREF(sp);
743 	}
744 	SPTREE_UNLOCK();
745 done:
746 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
747 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
748 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
749 	return sp;
750 }
751 
752 /*
753  * allocating an SA entry for an *OUTBOUND* packet.
754  * checking each request entries in SP, and acquire an SA if need.
755  * OUT:	0: there are valid requests.
756  *	ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
757  */
758 int
759 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
760 {
761 	u_int level;
762 	int error;
763 
764 	IPSEC_ASSERT(isr != NULL, ("null isr"));
765 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
766 	IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT ||
767 		saidx->mode == IPSEC_MODE_TUNNEL,
768 		("unexpected policy %u", saidx->mode));
769 
770 	/*
771 	 * XXX guard against protocol callbacks from the crypto
772 	 * thread as they reference ipsecrequest.sav which we
773 	 * temporarily null out below.  Need to rethink how we
774 	 * handle bundled SA's in the callback thread.
775 	 */
776 	IPSECREQUEST_LOCK_ASSERT(isr);
777 
778 	/* get current level */
779 	level = ipsec_get_reqlevel(isr);
780 #if 0
781 	/*
782 	 * We do allocate new SA only if the state of SA in the holder is
783 	 * SADB_SASTATE_DEAD.  The SA for outbound must be the oldest.
784 	 */
785 	if (isr->sav != NULL) {
786 		if (isr->sav->sah == NULL)
787 			panic("%s: sah is null.\n", __func__);
788 		if (isr->sav == (struct secasvar *)LIST_FIRST(
789 			    &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) {
790 			KEY_FREESAV(&isr->sav);
791 			isr->sav = NULL;
792 		}
793 	}
794 #else
795 	/*
796 	 * we free any SA stashed in the IPsec request because a different
797 	 * SA may be involved each time this request is checked, either
798 	 * because new SAs are being configured, or this request is
799 	 * associated with an unconnected datagram socket, or this request
800 	 * is associated with a system default policy.
801 	 *
802 	 * The operation may have negative impact to performance.  We may
803 	 * want to check cached SA carefully, rather than picking new SA
804 	 * every time.
805 	 */
806 	if (isr->sav != NULL) {
807 		KEY_FREESAV(&isr->sav);
808 		isr->sav = NULL;
809 	}
810 #endif
811 
812 	/*
813 	 * new SA allocation if no SA found.
814 	 * key_allocsa_policy should allocate the oldest SA available.
815 	 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
816 	 */
817 	if (isr->sav == NULL)
818 		isr->sav = key_allocsa_policy(saidx);
819 
820 	/* When there is SA. */
821 	if (isr->sav != NULL) {
822 		if (isr->sav->state != SADB_SASTATE_MATURE &&
823 		    isr->sav->state != SADB_SASTATE_DYING)
824 			return EINVAL;
825 		return 0;
826 	}
827 
828 	/* there is no SA */
829 	error = key_acquire(saidx, isr->sp);
830 	if (error != 0) {
831 		/* XXX What should I do ? */
832 		ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
833 			__func__, error));
834 		return error;
835 	}
836 
837 	if (level != IPSEC_LEVEL_REQUIRE) {
838 		/* XXX sigh, the interface to this routine is botched */
839 		IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA"));
840 		return 0;
841 	} else {
842 		return ENOENT;
843 	}
844 }
845 
846 /*
847  * allocating a SA for policy entry from SAD.
848  * NOTE: searching SAD of aliving state.
849  * OUT:	NULL:	not found.
850  *	others:	found and return the pointer.
851  */
852 static struct secasvar *
853 key_allocsa_policy(const struct secasindex *saidx)
854 {
855 #define	N(a)	_ARRAYLEN(a)
856 	struct secashead *sah;
857 	struct secasvar *sav;
858 	u_int stateidx, arraysize;
859 	const u_int *state_valid;
860 
861 	SAHTREE_LOCK();
862 	LIST_FOREACH(sah, &sahtree, chain) {
863 		if (sah->state == SADB_SASTATE_DEAD)
864 			continue;
865 		if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) {
866 			if (key_preferred_oldsa) {
867 				state_valid = saorder_state_valid_prefer_old;
868 				arraysize = N(saorder_state_valid_prefer_old);
869 			} else {
870 				state_valid = saorder_state_valid_prefer_new;
871 				arraysize = N(saorder_state_valid_prefer_new);
872 			}
873 			SAHTREE_UNLOCK();
874 			goto found;
875 		}
876 	}
877 	SAHTREE_UNLOCK();
878 
879 	return NULL;
880 
881     found:
882 	/* search valid state */
883 	for (stateidx = 0; stateidx < arraysize; stateidx++) {
884 		sav = key_do_allocsa_policy(sah, state_valid[stateidx]);
885 		if (sav != NULL)
886 			return sav;
887 	}
888 
889 	return NULL;
890 #undef N
891 }
892 
893 /*
894  * searching SAD with direction, protocol, mode and state.
895  * called by key_allocsa_policy().
896  * OUT:
897  *	NULL	: not found
898  *	others	: found, pointer to a SA.
899  */
900 static struct secasvar *
901 key_do_allocsa_policy(struct secashead *sah, u_int state)
902 {
903 	struct secasvar *sav, *nextsav, *candidate, *d;
904 
905 	/* initilize */
906 	candidate = NULL;
907 
908 	SAHTREE_LOCK();
909 	for (sav = LIST_FIRST(&sah->savtree[state]);
910 	     sav != NULL;
911 	     sav = nextsav) {
912 
913 		nextsav = LIST_NEXT(sav, chain);
914 
915 		/* sanity check */
916 		KEY_CHKSASTATE(sav->state, state, __func__);
917 
918 		/* initialize */
919 		if (candidate == NULL) {
920 			candidate = sav;
921 			continue;
922 		}
923 
924 		/* Which SA is the better ? */
925 
926 		IPSEC_ASSERT(candidate->lft_c != NULL,
927 			("null candidate lifetime"));
928 		IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime"));
929 
930 		/* What the best method is to compare ? */
931 		if (key_preferred_oldsa) {
932 			if (candidate->lft_c->addtime >
933 					sav->lft_c->addtime) {
934 				candidate = sav;
935 			}
936 			continue;
937 			/*NOTREACHED*/
938 		}
939 
940 		/* preferred new sa rather than old sa */
941 		if (candidate->lft_c->addtime <
942 				sav->lft_c->addtime) {
943 			d = candidate;
944 			candidate = sav;
945 		} else
946 			d = sav;
947 
948 		/*
949 		 * prepared to delete the SA when there is more
950 		 * suitable candidate and the lifetime of the SA is not
951 		 * permanent.
952 		 */
953 		if (d->lft_h->addtime != 0) {
954 			struct mbuf *m, *result;
955 			u_int8_t satype;
956 
957 			key_sa_chgstate(d, SADB_SASTATE_DEAD);
958 
959 			IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count"));
960 
961 			satype = key_proto2satype(d->sah->saidx.proto);
962 			if (satype == 0)
963 				goto msgfail;
964 
965 			m = key_setsadbmsg(SADB_DELETE, 0,
966 			    satype, 0, 0, d->refcnt - 1);
967 			if (!m)
968 				goto msgfail;
969 			result = m;
970 
971 			/* set sadb_address for saidx's. */
972 			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
973 				&d->sah->saidx.src.sa,
974 				d->sah->saidx.src.sa.sa_len << 3,
975 				IPSEC_ULPROTO_ANY);
976 			if (!m)
977 				goto msgfail;
978 			m_cat(result, m);
979 
980 			/* set sadb_address for saidx's. */
981 			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
982 				&d->sah->saidx.dst.sa,
983 				d->sah->saidx.dst.sa.sa_len << 3,
984 				IPSEC_ULPROTO_ANY);
985 			if (!m)
986 				goto msgfail;
987 			m_cat(result, m);
988 
989 			/* create SA extension */
990 			m = key_setsadbsa(d);
991 			if (!m)
992 				goto msgfail;
993 			m_cat(result, m);
994 
995 			if (result->m_len < sizeof(struct sadb_msg)) {
996 				result = m_pullup(result,
997 						sizeof(struct sadb_msg));
998 				if (result == NULL)
999 					goto msgfail;
1000 			}
1001 
1002 			result->m_pkthdr.len = 0;
1003 			for (m = result; m; m = m->m_next)
1004 				result->m_pkthdr.len += m->m_len;
1005 			mtod(result, struct sadb_msg *)->sadb_msg_len =
1006 				PFKEY_UNIT64(result->m_pkthdr.len);
1007 
1008 			if (key_sendup_mbuf(NULL, result,
1009 					KEY_SENDUP_REGISTERED))
1010 				goto msgfail;
1011 		 msgfail:
1012 			KEY_FREESAV(&d);
1013 		}
1014 	}
1015 	if (candidate) {
1016 		sa_addref(candidate);
1017 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1018 			printf("DP %s cause refcnt++:%d SA:%p\n",
1019 				__func__, candidate->refcnt, candidate));
1020 	}
1021 	SAHTREE_UNLOCK();
1022 
1023 	return candidate;
1024 }
1025 
1026 /*
1027  * allocating a usable SA entry for a *INBOUND* packet.
1028  * Must call key_freesav() later.
1029  * OUT: positive:	pointer to a usable sav (i.e. MATURE or DYING state).
1030  *	NULL:		not found, or error occured.
1031  *
1032  * In the comparison, no source address is used--for RFC2401 conformance.
1033  * To quote, from section 4.1:
1034  *	A security association is uniquely identified by a triple consisting
1035  *	of a Security Parameter Index (SPI), an IP Destination Address, and a
1036  *	security protocol (AH or ESP) identifier.
1037  * Note that, however, we do need to keep source address in IPsec SA.
1038  * IKE specification and PF_KEY specification do assume that we
1039  * keep source address in IPsec SA.  We see a tricky situation here.
1040  */
1041 struct secasvar *
1042 key_allocsa(
1043 	union sockaddr_union *dst,
1044 	u_int proto,
1045 	u_int32_t spi,
1046 	const char* where, int tag)
1047 {
1048 	struct secashead *sah;
1049 	struct secasvar *sav;
1050 	u_int stateidx, arraysize, state;
1051 	const u_int *saorder_state_valid;
1052 
1053 	IPSEC_ASSERT(dst != NULL, ("null dst address"));
1054 
1055 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1056 		printf("DP %s from %s:%u\n", __func__, where, tag));
1057 
1058 	/*
1059 	 * searching SAD.
1060 	 * XXX: to be checked internal IP header somewhere.  Also when
1061 	 * IPsec tunnel packet is received.  But ESP tunnel mode is
1062 	 * encrypted so we can't check internal IP header.
1063 	 */
1064 	SAHTREE_LOCK();
1065 	if (key_preferred_oldsa) {
1066 		saorder_state_valid = saorder_state_valid_prefer_old;
1067 		arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1068 	} else {
1069 		saorder_state_valid = saorder_state_valid_prefer_new;
1070 		arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1071 	}
1072 	LIST_FOREACH(sah, &sahtree, chain) {
1073 		/* search valid state */
1074 		for (stateidx = 0; stateidx < arraysize; stateidx++) {
1075 			state = saorder_state_valid[stateidx];
1076 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
1077 				/* sanity check */
1078 				KEY_CHKSASTATE(sav->state, state, __func__);
1079 				/* do not return entries w/ unusable state */
1080 				if (sav->state != SADB_SASTATE_MATURE &&
1081 				    sav->state != SADB_SASTATE_DYING)
1082 					continue;
1083 				if (proto != sav->sah->saidx.proto)
1084 					continue;
1085 				if (spi != sav->spi)
1086 					continue;
1087 #if 0	/* don't check src */
1088 				/* check src address */
1089 				if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, 0) != 0)
1090 					continue;
1091 #endif
1092 				/* check dst address */
1093 				if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, 0) != 0)
1094 					continue;
1095 				sa_addref(sav);
1096 				goto done;
1097 			}
1098 		}
1099 	}
1100 	sav = NULL;
1101 done:
1102 	SAHTREE_UNLOCK();
1103 
1104 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1105 		printf("DP %s return SA:%p; refcnt %u\n", __func__,
1106 			sav, sav ? sav->refcnt : 0));
1107 	return sav;
1108 }
1109 
1110 /*
1111  * Must be called after calling key_allocsp().
1112  * For both the packet without socket and key_freeso().
1113  */
1114 void
1115 _key_freesp(struct secpolicy **spp, const char* where, int tag)
1116 {
1117 	struct secpolicy *sp = *spp;
1118 
1119 	IPSEC_ASSERT(sp != NULL, ("null sp"));
1120 
1121 	SPTREE_LOCK();
1122 	SP_DELREF(sp);
1123 
1124 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1125 		printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1126 			__func__, sp, sp->id, where, tag, sp->refcnt));
1127 
1128 	if (sp->refcnt == 0) {
1129 		*spp = NULL;
1130 		key_delsp(sp);
1131 	}
1132 	SPTREE_UNLOCK();
1133 }
1134 
1135 /*
1136  * Must be called after calling key_allocsp().
1137  * For the packet with socket.
1138  */
1139 void
1140 key_freeso(struct socket *so)
1141 {
1142 	IPSEC_ASSERT(so != NULL, ("null so"));
1143 
1144 	switch (so->so_proto->pr_domain->dom_family) {
1145 #ifdef INET
1146 	case PF_INET:
1147 	    {
1148 		struct inpcb *pcb = sotoinpcb(so);
1149 
1150 		/* Does it have a PCB ? */
1151 		if (pcb == NULL)
1152 			return;
1153 		key_freesp_so(&pcb->inp_sp->sp_in);
1154 		key_freesp_so(&pcb->inp_sp->sp_out);
1155 	    }
1156 		break;
1157 #endif
1158 #ifdef INET6
1159 	case PF_INET6:
1160 	    {
1161 #ifdef HAVE_NRL_INPCB
1162 		struct inpcb *pcb  = sotoinpcb(so);
1163 
1164 		/* Does it have a PCB ? */
1165 		if (pcb == NULL)
1166 			return;
1167 		key_freesp_so(&pcb->inp_sp->sp_in);
1168 		key_freesp_so(&pcb->inp_sp->sp_out);
1169 #else
1170 		struct in6pcb *pcb  = sotoin6pcb(so);
1171 
1172 		/* Does it have a PCB ? */
1173 		if (pcb == NULL)
1174 			return;
1175 		key_freesp_so(&pcb->in6p_sp->sp_in);
1176 		key_freesp_so(&pcb->in6p_sp->sp_out);
1177 #endif
1178 	    }
1179 		break;
1180 #endif /* INET6 */
1181 	default:
1182 		ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n",
1183 		    __func__, so->so_proto->pr_domain->dom_family));
1184 		return;
1185 	}
1186 }
1187 
1188 static void
1189 key_freesp_so(struct secpolicy **sp)
1190 {
1191 	IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp"));
1192 
1193 	if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1194 	    (*sp)->policy == IPSEC_POLICY_BYPASS)
1195 		return;
1196 
1197 	IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC,
1198 		("invalid policy %u", (*sp)->policy));
1199 	KEY_FREESP(sp);
1200 }
1201 
1202 /*
1203  * Must be called after calling key_allocsa().
1204  * This function is called by key_freesp() to free some SA allocated
1205  * for a policy.
1206  */
1207 void
1208 key_freesav(struct secasvar **psav, const char* where, int tag)
1209 {
1210 	struct secasvar *sav = *psav;
1211 
1212 	IPSEC_ASSERT(sav != NULL, ("null sav"));
1213 
1214 	if (sa_delref(sav)) {
1215 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1216 			printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1217 				__func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1218 		*psav = NULL;
1219 		key_delsav(sav);
1220 	} else {
1221 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1222 			printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1223 				__func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1224 	}
1225 }
1226 
1227 /* %%% SPD management */
1228 /*
1229  * free security policy entry.
1230  */
1231 static void
1232 key_delsp(struct secpolicy *sp)
1233 {
1234 	struct ipsecrequest *isr, *nextisr;
1235 
1236 	IPSEC_ASSERT(sp != NULL, ("null sp"));
1237 	SPTREE_LOCK_ASSERT();
1238 
1239 	sp->state = IPSEC_SPSTATE_DEAD;
1240 
1241 	IPSEC_ASSERT(sp->refcnt == 0,
1242 		("SP with references deleted (refcnt %u)", sp->refcnt));
1243 
1244 	/* remove from SP index */
1245 	if (__LIST_CHAINED(sp))
1246 		LIST_REMOVE(sp, chain);
1247 
1248 	for (isr = sp->req; isr != NULL; isr = nextisr) {
1249 		if (isr->sav != NULL) {
1250 			KEY_FREESAV(&isr->sav);
1251 			isr->sav = NULL;
1252 		}
1253 
1254 		nextisr = isr->next;
1255 		ipsec_delisr(isr);
1256 	}
1257 	_key_delsp(sp);
1258 }
1259 
1260 /*
1261  * search SPD
1262  * OUT:	NULL	: not found
1263  *	others	: found, pointer to a SP.
1264  */
1265 static struct secpolicy *
1266 key_getsp(struct secpolicyindex *spidx)
1267 {
1268 	struct secpolicy *sp;
1269 
1270 	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
1271 
1272 	SPTREE_LOCK();
1273 	LIST_FOREACH(sp, &sptree[spidx->dir], chain) {
1274 		if (sp->state == IPSEC_SPSTATE_DEAD)
1275 			continue;
1276 		if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1277 			SP_ADDREF(sp);
1278 			break;
1279 		}
1280 	}
1281 	SPTREE_UNLOCK();
1282 
1283 	return sp;
1284 }
1285 
1286 /*
1287  * get SP by index.
1288  * OUT:	NULL	: not found
1289  *	others	: found, pointer to a SP.
1290  */
1291 static struct secpolicy *
1292 key_getspbyid(u_int32_t id)
1293 {
1294 	struct secpolicy *sp;
1295 
1296 	SPTREE_LOCK();
1297 	LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) {
1298 		if (sp->state == IPSEC_SPSTATE_DEAD)
1299 			continue;
1300 		if (sp->id == id) {
1301 			SP_ADDREF(sp);
1302 			goto done;
1303 		}
1304 	}
1305 
1306 	LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) {
1307 		if (sp->state == IPSEC_SPSTATE_DEAD)
1308 			continue;
1309 		if (sp->id == id) {
1310 			SP_ADDREF(sp);
1311 			goto done;
1312 		}
1313 	}
1314 done:
1315 	SPTREE_UNLOCK();
1316 
1317 	return sp;
1318 }
1319 
1320 struct secpolicy *
1321 key_newsp(const char* where, int tag)
1322 {
1323 	struct secpolicy *newsp = NULL;
1324 
1325 	newsp = (struct secpolicy *)
1326 		malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO);
1327 	if (newsp) {
1328 		SECPOLICY_LOCK_INIT(newsp);
1329 		newsp->refcnt = 1;
1330 		newsp->req = NULL;
1331 	}
1332 
1333 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1334 		printf("DP %s from %s:%u return SP:%p\n", __func__,
1335 			where, tag, newsp));
1336 	return newsp;
1337 }
1338 
1339 static void
1340 _key_delsp(struct secpolicy *sp)
1341 {
1342 	SECPOLICY_LOCK_DESTROY(sp);
1343 	free(sp, M_IPSEC_SP);
1344 }
1345 
1346 /*
1347  * create secpolicy structure from sadb_x_policy structure.
1348  * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1349  * so must be set properly later.
1350  */
1351 struct secpolicy *
1352 key_msg2sp(xpl0, len, error)
1353 	struct sadb_x_policy *xpl0;
1354 	size_t len;
1355 	int *error;
1356 {
1357 	struct secpolicy *newsp;
1358 
1359 	IPSEC_ASSERT(xpl0 != NULL, ("null xpl0"));
1360 	IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len));
1361 
1362 	if (len != PFKEY_EXTLEN(xpl0)) {
1363 		ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__));
1364 		*error = EINVAL;
1365 		return NULL;
1366 	}
1367 
1368 	if ((newsp = KEY_NEWSP()) == NULL) {
1369 		*error = ENOBUFS;
1370 		return NULL;
1371 	}
1372 
1373 	newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1374 	newsp->policy = xpl0->sadb_x_policy_type;
1375 
1376 	/* check policy */
1377 	switch (xpl0->sadb_x_policy_type) {
1378 	case IPSEC_POLICY_DISCARD:
1379 	case IPSEC_POLICY_NONE:
1380 	case IPSEC_POLICY_ENTRUST:
1381 	case IPSEC_POLICY_BYPASS:
1382 		newsp->req = NULL;
1383 		break;
1384 
1385 	case IPSEC_POLICY_IPSEC:
1386 	    {
1387 		int tlen;
1388 		struct sadb_x_ipsecrequest *xisr;
1389 		struct ipsecrequest **p_isr = &newsp->req;
1390 
1391 		/* validity check */
1392 		if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1393 			ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n",
1394 				__func__));
1395 			KEY_FREESP(&newsp);
1396 			*error = EINVAL;
1397 			return NULL;
1398 		}
1399 
1400 		tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1401 		xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1);
1402 
1403 		while (tlen > 0) {
1404 			/* length check */
1405 			if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1406 				ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest "
1407 					"length.\n", __func__));
1408 				KEY_FREESP(&newsp);
1409 				*error = EINVAL;
1410 				return NULL;
1411 			}
1412 
1413 			/* allocate request buffer */
1414 			/* NB: data structure is zero'd */
1415 			*p_isr = ipsec_newisr();
1416 			if ((*p_isr) == NULL) {
1417 				ipseclog((LOG_DEBUG,
1418 				    "%s: No more memory.\n", __func__));
1419 				KEY_FREESP(&newsp);
1420 				*error = ENOBUFS;
1421 				return NULL;
1422 			}
1423 
1424 			/* set values */
1425 			switch (xisr->sadb_x_ipsecrequest_proto) {
1426 			case IPPROTO_ESP:
1427 			case IPPROTO_AH:
1428 			case IPPROTO_IPCOMP:
1429 				break;
1430 			default:
1431 				ipseclog((LOG_DEBUG,
1432 				    "%s: invalid proto type=%u\n", __func__,
1433 				    xisr->sadb_x_ipsecrequest_proto));
1434 				KEY_FREESP(&newsp);
1435 				*error = EPROTONOSUPPORT;
1436 				return NULL;
1437 			}
1438 			(*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1439 
1440 			switch (xisr->sadb_x_ipsecrequest_mode) {
1441 			case IPSEC_MODE_TRANSPORT:
1442 			case IPSEC_MODE_TUNNEL:
1443 				break;
1444 			case IPSEC_MODE_ANY:
1445 			default:
1446 				ipseclog((LOG_DEBUG,
1447 				    "%s: invalid mode=%u\n", __func__,
1448 				    xisr->sadb_x_ipsecrequest_mode));
1449 				KEY_FREESP(&newsp);
1450 				*error = EINVAL;
1451 				return NULL;
1452 			}
1453 			(*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1454 
1455 			switch (xisr->sadb_x_ipsecrequest_level) {
1456 			case IPSEC_LEVEL_DEFAULT:
1457 			case IPSEC_LEVEL_USE:
1458 			case IPSEC_LEVEL_REQUIRE:
1459 				break;
1460 			case IPSEC_LEVEL_UNIQUE:
1461 				/* validity check */
1462 				/*
1463 				 * If range violation of reqid, kernel will
1464 				 * update it, don't refuse it.
1465 				 */
1466 				if (xisr->sadb_x_ipsecrequest_reqid
1467 						> IPSEC_MANUAL_REQID_MAX) {
1468 					ipseclog((LOG_DEBUG,
1469 					    "%s: reqid=%d range "
1470 					    "violation, updated by kernel.\n",
1471 					    __func__,
1472 					    xisr->sadb_x_ipsecrequest_reqid));
1473 					xisr->sadb_x_ipsecrequest_reqid = 0;
1474 				}
1475 
1476 				/* allocate new reqid id if reqid is zero. */
1477 				if (xisr->sadb_x_ipsecrequest_reqid == 0) {
1478 					u_int32_t reqid;
1479 					if ((reqid = key_newreqid()) == 0) {
1480 						KEY_FREESP(&newsp);
1481 						*error = ENOBUFS;
1482 						return NULL;
1483 					}
1484 					(*p_isr)->saidx.reqid = reqid;
1485 					xisr->sadb_x_ipsecrequest_reqid = reqid;
1486 				} else {
1487 				/* set it for manual keying. */
1488 					(*p_isr)->saidx.reqid =
1489 						xisr->sadb_x_ipsecrequest_reqid;
1490 				}
1491 				break;
1492 
1493 			default:
1494 				ipseclog((LOG_DEBUG, "%s: invalid level=%u\n",
1495 					__func__,
1496 					xisr->sadb_x_ipsecrequest_level));
1497 				KEY_FREESP(&newsp);
1498 				*error = EINVAL;
1499 				return NULL;
1500 			}
1501 			(*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1502 
1503 			/* set IP addresses if there */
1504 			if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1505 				struct sockaddr *paddr;
1506 
1507 				paddr = (struct sockaddr *)(xisr + 1);
1508 
1509 				/* validity check */
1510 				if (paddr->sa_len
1511 				    > sizeof((*p_isr)->saidx.src)) {
1512 					ipseclog((LOG_DEBUG, "%s: invalid "
1513 						"request address length.\n",
1514 						__func__));
1515 					KEY_FREESP(&newsp);
1516 					*error = EINVAL;
1517 					return NULL;
1518 				}
1519 				bcopy(paddr, &(*p_isr)->saidx.src,
1520 					paddr->sa_len);
1521 
1522 				paddr = (struct sockaddr *)((caddr_t)paddr
1523 							+ paddr->sa_len);
1524 
1525 				/* validity check */
1526 				if (paddr->sa_len
1527 				    > sizeof((*p_isr)->saidx.dst)) {
1528 					ipseclog((LOG_DEBUG, "%s: invalid "
1529 						"request address length.\n",
1530 						__func__));
1531 					KEY_FREESP(&newsp);
1532 					*error = EINVAL;
1533 					return NULL;
1534 				}
1535 				bcopy(paddr, &(*p_isr)->saidx.dst,
1536 					paddr->sa_len);
1537 			}
1538 
1539 			(*p_isr)->sp = newsp;
1540 
1541 			/* initialization for the next. */
1542 			p_isr = &(*p_isr)->next;
1543 			tlen -= xisr->sadb_x_ipsecrequest_len;
1544 
1545 			/* validity check */
1546 			if (tlen < 0) {
1547 				ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n",
1548 					__func__));
1549 				KEY_FREESP(&newsp);
1550 				*error = EINVAL;
1551 				return NULL;
1552 			}
1553 
1554 			xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr
1555 			                 + xisr->sadb_x_ipsecrequest_len);
1556 		}
1557 	    }
1558 		break;
1559 	default:
1560 		ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__));
1561 		KEY_FREESP(&newsp);
1562 		*error = EINVAL;
1563 		return NULL;
1564 	}
1565 
1566 	*error = 0;
1567 	return newsp;
1568 }
1569 
1570 static u_int32_t
1571 key_newreqid()
1572 {
1573 	static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1574 
1575 	auto_reqid = (auto_reqid == ~0
1576 			? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1577 
1578 	/* XXX should be unique check */
1579 
1580 	return auto_reqid;
1581 }
1582 
1583 /*
1584  * copy secpolicy struct to sadb_x_policy structure indicated.
1585  */
1586 struct mbuf *
1587 key_sp2msg(sp)
1588 	struct secpolicy *sp;
1589 {
1590 	struct sadb_x_policy *xpl;
1591 	int tlen;
1592 	caddr_t p;
1593 	struct mbuf *m;
1594 
1595 	IPSEC_ASSERT(sp != NULL, ("null policy"));
1596 
1597 	tlen = key_getspreqmsglen(sp);
1598 
1599 	m = key_alloc_mbuf(tlen);
1600 	if (!m || m->m_next) {	/*XXX*/
1601 		if (m)
1602 			m_freem(m);
1603 		return NULL;
1604 	}
1605 
1606 	m->m_len = tlen;
1607 	m->m_next = NULL;
1608 	xpl = mtod(m, struct sadb_x_policy *);
1609 	bzero(xpl, tlen);
1610 
1611 	xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1612 	xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1613 	xpl->sadb_x_policy_type = sp->policy;
1614 	xpl->sadb_x_policy_dir = sp->spidx.dir;
1615 	xpl->sadb_x_policy_id = sp->id;
1616 	p = (caddr_t)xpl + sizeof(*xpl);
1617 
1618 	/* if is the policy for ipsec ? */
1619 	if (sp->policy == IPSEC_POLICY_IPSEC) {
1620 		struct sadb_x_ipsecrequest *xisr;
1621 		struct ipsecrequest *isr;
1622 
1623 		for (isr = sp->req; isr != NULL; isr = isr->next) {
1624 
1625 			xisr = (struct sadb_x_ipsecrequest *)p;
1626 
1627 			xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1628 			xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1629 			xisr->sadb_x_ipsecrequest_level = isr->level;
1630 			xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1631 
1632 			p += sizeof(*xisr);
1633 			bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len);
1634 			p += isr->saidx.src.sa.sa_len;
1635 			bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len);
1636 			p += isr->saidx.src.sa.sa_len;
1637 
1638 			xisr->sadb_x_ipsecrequest_len =
1639 				PFKEY_ALIGN8(sizeof(*xisr)
1640 					+ isr->saidx.src.sa.sa_len
1641 					+ isr->saidx.dst.sa.sa_len);
1642 		}
1643 	}
1644 
1645 	return m;
1646 }
1647 
1648 /* m will not be freed nor modified */
1649 static struct mbuf *
1650 #ifdef __STDC__
1651 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1652 	int ndeep, int nitem, ...)
1653 #else
1654 key_gather_mbuf(m, mhp, ndeep, nitem, va_alist)
1655 	struct mbuf *m;
1656 	const struct sadb_msghdr *mhp;
1657 	int ndeep;
1658 	int nitem;
1659 	va_dcl
1660 #endif
1661 {
1662 	va_list ap;
1663 	int idx;
1664 	int i;
1665 	struct mbuf *result = NULL, *n;
1666 	int len;
1667 
1668 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1669 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1670 
1671 	va_start(ap, nitem);
1672 	for (i = 0; i < nitem; i++) {
1673 		idx = va_arg(ap, int);
1674 		if (idx < 0 || idx > SADB_EXT_MAX)
1675 			goto fail;
1676 		/* don't attempt to pull empty extension */
1677 		if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1678 			continue;
1679 		if (idx != SADB_EXT_RESERVED  &&
1680 		    (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1681 			continue;
1682 
1683 		if (idx == SADB_EXT_RESERVED) {
1684 			len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1685 
1686 			IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len));
1687 
1688 			MGETHDR(n, M_DONTWAIT, MT_DATA);
1689 			if (!n)
1690 				goto fail;
1691 			n->m_len = len;
1692 			n->m_next = NULL;
1693 			m_copydata(m, 0, sizeof(struct sadb_msg),
1694 			    mtod(n, caddr_t));
1695 		} else if (i < ndeep) {
1696 			len = mhp->extlen[idx];
1697 			n = key_alloc_mbuf(len);
1698 			if (!n || n->m_next) {	/*XXX*/
1699 				if (n)
1700 					m_freem(n);
1701 				goto fail;
1702 			}
1703 			m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1704 			    mtod(n, caddr_t));
1705 		} else {
1706 			n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1707 			    M_DONTWAIT);
1708 		}
1709 		if (n == NULL)
1710 			goto fail;
1711 
1712 		if (result)
1713 			m_cat(result, n);
1714 		else
1715 			result = n;
1716 	}
1717 	va_end(ap);
1718 
1719 	if ((result->m_flags & M_PKTHDR) != 0) {
1720 		result->m_pkthdr.len = 0;
1721 		for (n = result; n; n = n->m_next)
1722 			result->m_pkthdr.len += n->m_len;
1723 	}
1724 
1725 	return result;
1726 
1727 fail:
1728 	m_freem(result);
1729 	return NULL;
1730 }
1731 
1732 /*
1733  * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1734  * add an entry to SP database, when received
1735  *   <base, address(SD), (lifetime(H),) policy>
1736  * from the user(?).
1737  * Adding to SP database,
1738  * and send
1739  *   <base, address(SD), (lifetime(H),) policy>
1740  * to the socket which was send.
1741  *
1742  * SPDADD set a unique policy entry.
1743  * SPDSETIDX like SPDADD without a part of policy requests.
1744  * SPDUPDATE replace a unique policy entry.
1745  *
1746  * m will always be freed.
1747  */
1748 static int
1749 key_spdadd(so, m, mhp)
1750 	struct socket *so;
1751 	struct mbuf *m;
1752 	const struct sadb_msghdr *mhp;
1753 {
1754 	struct sadb_address *src0, *dst0;
1755 	struct sadb_x_policy *xpl0, *xpl;
1756 	struct sadb_lifetime *lft = NULL;
1757 	struct secpolicyindex spidx;
1758 	struct secpolicy *newsp;
1759 	int error;
1760 
1761 	IPSEC_ASSERT(so != NULL, ("null socket"));
1762 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1763 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1764 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
1765 
1766 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1767 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1768 	    mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1769 		ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1770 		return key_senderror(so, m, EINVAL);
1771 	}
1772 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1773 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1774 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1775 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1776 			__func__));
1777 		return key_senderror(so, m, EINVAL);
1778 	}
1779 	if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1780 		if (mhp->extlen[SADB_EXT_LIFETIME_HARD]
1781 			< sizeof(struct sadb_lifetime)) {
1782 			ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1783 				__func__));
1784 			return key_senderror(so, m, EINVAL);
1785 		}
1786 		lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1787 	}
1788 
1789 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1790 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1791 	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1792 
1793 	/* make secindex */
1794 	/* XXX boundary check against sa_len */
1795 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1796 	                src0 + 1,
1797 	                dst0 + 1,
1798 	                src0->sadb_address_prefixlen,
1799 	                dst0->sadb_address_prefixlen,
1800 	                src0->sadb_address_proto,
1801 	                &spidx);
1802 
1803 	/* checking the direciton. */
1804 	switch (xpl0->sadb_x_policy_dir) {
1805 	case IPSEC_DIR_INBOUND:
1806 	case IPSEC_DIR_OUTBOUND:
1807 		break;
1808 	default:
1809 		ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
1810 		mhp->msg->sadb_msg_errno = EINVAL;
1811 		return 0;
1812 	}
1813 
1814 	/* check policy */
1815 	/* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1816 	if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST
1817 	 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1818 		ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__));
1819 		return key_senderror(so, m, EINVAL);
1820 	}
1821 
1822 	/* policy requests are mandatory when action is ipsec. */
1823         if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX
1824 	 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC
1825 	 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1826 		ipseclog((LOG_DEBUG, "%s: some policy requests part required\n",
1827 			__func__));
1828 		return key_senderror(so, m, EINVAL);
1829 	}
1830 
1831 	/*
1832 	 * checking there is SP already or not.
1833 	 * SPDUPDATE doesn't depend on whether there is a SP or not.
1834 	 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1835 	 * then error.
1836 	 */
1837 	newsp = key_getsp(&spidx);
1838 	if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1839 		if (newsp) {
1840 			newsp->state = IPSEC_SPSTATE_DEAD;
1841 			KEY_FREESP(&newsp);
1842 		}
1843 	} else {
1844 		if (newsp != NULL) {
1845 			KEY_FREESP(&newsp);
1846 			ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n",
1847 				__func__));
1848 			return key_senderror(so, m, EEXIST);
1849 		}
1850 	}
1851 
1852 	/* allocation new SP entry */
1853 	if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
1854 		return key_senderror(so, m, error);
1855 	}
1856 
1857 	if ((newsp->id = key_getnewspid()) == 0) {
1858 		_key_delsp(newsp);
1859 		return key_senderror(so, m, ENOBUFS);
1860 	}
1861 
1862 	/* XXX boundary check against sa_len */
1863 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1864 	                src0 + 1,
1865 	                dst0 + 1,
1866 	                src0->sadb_address_prefixlen,
1867 	                dst0->sadb_address_prefixlen,
1868 	                src0->sadb_address_proto,
1869 	                &newsp->spidx);
1870 
1871 	/* sanity check on addr pair */
1872 	if (((struct sockaddr *)(src0 + 1))->sa_family !=
1873 			((struct sockaddr *)(dst0+ 1))->sa_family) {
1874 		_key_delsp(newsp);
1875 		return key_senderror(so, m, EINVAL);
1876 	}
1877 	if (((struct sockaddr *)(src0 + 1))->sa_len !=
1878 			((struct sockaddr *)(dst0+ 1))->sa_len) {
1879 		_key_delsp(newsp);
1880 		return key_senderror(so, m, EINVAL);
1881 	}
1882 #if 1
1883 	if (newsp->req && newsp->req->saidx.src.sa.sa_family) {
1884 		struct sockaddr *sa;
1885 		sa = (struct sockaddr *)(src0 + 1);
1886 		if (sa->sa_family != newsp->req->saidx.src.sa.sa_family) {
1887 			_key_delsp(newsp);
1888 			return key_senderror(so, m, EINVAL);
1889 		}
1890 	}
1891 	if (newsp->req && newsp->req->saidx.dst.sa.sa_family) {
1892 		struct sockaddr *sa;
1893 		sa = (struct sockaddr *)(dst0 + 1);
1894 		if (sa->sa_family != newsp->req->saidx.dst.sa.sa_family) {
1895 			_key_delsp(newsp);
1896 			return key_senderror(so, m, EINVAL);
1897 		}
1898 	}
1899 #endif
1900 
1901 	newsp->created = time_second;
1902 	newsp->lastused = newsp->created;
1903 	newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1904 	newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1905 
1906 	newsp->refcnt = 1;	/* do not reclaim until I say I do */
1907 	newsp->state = IPSEC_SPSTATE_ALIVE;
1908 	LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1909 
1910 	/* delete the entry in spacqtree */
1911 	if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1912 		struct secspacq *spacq = key_getspacq(&spidx);
1913 		if (spacq != NULL) {
1914 			/* reset counter in order to deletion by timehandler. */
1915 			spacq->created = time_second;
1916 			spacq->count = 0;
1917 			SPACQ_UNLOCK();
1918 		}
1919     	}
1920 
1921     {
1922 	struct mbuf *n, *mpolicy;
1923 	struct sadb_msg *newmsg;
1924 	int off;
1925 
1926 	/* create new sadb_msg to reply. */
1927 	if (lft) {
1928 		n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
1929 		    SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
1930 		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1931 	} else {
1932 		n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
1933 		    SADB_X_EXT_POLICY,
1934 		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1935 	}
1936 	if (!n)
1937 		return key_senderror(so, m, ENOBUFS);
1938 
1939 	if (n->m_len < sizeof(*newmsg)) {
1940 		n = m_pullup(n, sizeof(*newmsg));
1941 		if (!n)
1942 			return key_senderror(so, m, ENOBUFS);
1943 	}
1944 	newmsg = mtod(n, struct sadb_msg *);
1945 	newmsg->sadb_msg_errno = 0;
1946 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
1947 
1948 	off = 0;
1949 	mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
1950 	    sizeof(*xpl), &off);
1951 	if (mpolicy == NULL) {
1952 		/* n is already freed */
1953 		return key_senderror(so, m, ENOBUFS);
1954 	}
1955 	xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off);
1956 	if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
1957 		m_freem(n);
1958 		return key_senderror(so, m, EINVAL);
1959 	}
1960 	xpl->sadb_x_policy_id = newsp->id;
1961 
1962 	m_freem(m);
1963 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
1964     }
1965 }
1966 
1967 /*
1968  * get new policy id.
1969  * OUT:
1970  *	0:	failure.
1971  *	others: success.
1972  */
1973 static u_int32_t
1974 key_getnewspid()
1975 {
1976 	u_int32_t newid = 0;
1977 	int count = key_spi_trycnt;	/* XXX */
1978 	struct secpolicy *sp;
1979 
1980 	/* when requesting to allocate spi ranged */
1981 	while (count--) {
1982 		newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
1983 
1984 		if ((sp = key_getspbyid(newid)) == NULL)
1985 			break;
1986 
1987 		KEY_FREESP(&sp);
1988 	}
1989 
1990 	if (count == 0 || newid == 0) {
1991 		ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n",
1992 			__func__));
1993 		return 0;
1994 	}
1995 
1996 	return newid;
1997 }
1998 
1999 /*
2000  * SADB_SPDDELETE processing
2001  * receive
2002  *   <base, address(SD), policy(*)>
2003  * from the user(?), and set SADB_SASTATE_DEAD,
2004  * and send,
2005  *   <base, address(SD), policy(*)>
2006  * to the ikmpd.
2007  * policy(*) including direction of policy.
2008  *
2009  * m will always be freed.
2010  */
2011 static int
2012 key_spddelete(so, m, mhp)
2013 	struct socket *so;
2014 	struct mbuf *m;
2015 	const struct sadb_msghdr *mhp;
2016 {
2017 	struct sadb_address *src0, *dst0;
2018 	struct sadb_x_policy *xpl0;
2019 	struct secpolicyindex spidx;
2020 	struct secpolicy *sp;
2021 
2022 	IPSEC_ASSERT(so != NULL, ("null so"));
2023 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2024 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2025 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2026 
2027 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2028 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2029 	    mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2030 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2031 			__func__));
2032 		return key_senderror(so, m, EINVAL);
2033 	}
2034 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2035 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2036 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2037 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2038 			__func__));
2039 		return key_senderror(so, m, EINVAL);
2040 	}
2041 
2042 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2043 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2044 	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2045 
2046 	/* make secindex */
2047 	/* XXX boundary check against sa_len */
2048 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2049 	                src0 + 1,
2050 	                dst0 + 1,
2051 	                src0->sadb_address_prefixlen,
2052 	                dst0->sadb_address_prefixlen,
2053 	                src0->sadb_address_proto,
2054 	                &spidx);
2055 
2056 	/* checking the direciton. */
2057 	switch (xpl0->sadb_x_policy_dir) {
2058 	case IPSEC_DIR_INBOUND:
2059 	case IPSEC_DIR_OUTBOUND:
2060 		break;
2061 	default:
2062 		ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
2063 		return key_senderror(so, m, EINVAL);
2064 	}
2065 
2066 	/* Is there SP in SPD ? */
2067 	if ((sp = key_getsp(&spidx)) == NULL) {
2068 		ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__));
2069 		return key_senderror(so, m, EINVAL);
2070 	}
2071 
2072 	/* save policy id to buffer to be returned. */
2073 	xpl0->sadb_x_policy_id = sp->id;
2074 
2075 	sp->state = IPSEC_SPSTATE_DEAD;
2076 	KEY_FREESP(&sp);
2077 
2078     {
2079 	struct mbuf *n;
2080 	struct sadb_msg *newmsg;
2081 
2082 	/* create new sadb_msg to reply. */
2083 	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2084 	    SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2085 	if (!n)
2086 		return key_senderror(so, m, ENOBUFS);
2087 
2088 	newmsg = mtod(n, struct sadb_msg *);
2089 	newmsg->sadb_msg_errno = 0;
2090 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2091 
2092 	m_freem(m);
2093 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2094     }
2095 }
2096 
2097 /*
2098  * SADB_SPDDELETE2 processing
2099  * receive
2100  *   <base, policy(*)>
2101  * from the user(?), and set SADB_SASTATE_DEAD,
2102  * and send,
2103  *   <base, policy(*)>
2104  * to the ikmpd.
2105  * policy(*) including direction of policy.
2106  *
2107  * m will always be freed.
2108  */
2109 static int
2110 key_spddelete2(so, m, mhp)
2111 	struct socket *so;
2112 	struct mbuf *m;
2113 	const struct sadb_msghdr *mhp;
2114 {
2115 	u_int32_t id;
2116 	struct secpolicy *sp;
2117 
2118 	IPSEC_ASSERT(so != NULL, ("null socket"));
2119 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2120 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2121 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2122 
2123 	if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2124 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2125 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__));
2126 		return key_senderror(so, m, EINVAL);
2127 	}
2128 
2129 	id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2130 
2131 	/* Is there SP in SPD ? */
2132 	if ((sp = key_getspbyid(id)) == NULL) {
2133 		ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2134 		return key_senderror(so, m, EINVAL);
2135 	}
2136 
2137 	sp->state = IPSEC_SPSTATE_DEAD;
2138 	KEY_FREESP(&sp);
2139 
2140     {
2141 	struct mbuf *n, *nn;
2142 	struct sadb_msg *newmsg;
2143 	int off, len;
2144 
2145 	/* create new sadb_msg to reply. */
2146 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2147 
2148 	MGETHDR(n, M_DONTWAIT, MT_DATA);
2149 	if (n && len > MHLEN) {
2150 		MCLGET(n, M_DONTWAIT);
2151 		if ((n->m_flags & M_EXT) == 0) {
2152 			m_freem(n);
2153 			n = NULL;
2154 		}
2155 	}
2156 	if (!n)
2157 		return key_senderror(so, m, ENOBUFS);
2158 
2159 	n->m_len = len;
2160 	n->m_next = NULL;
2161 	off = 0;
2162 
2163 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
2164 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2165 
2166 	IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)",
2167 		off, len));
2168 
2169 	n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2170 	    mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2171 	if (!n->m_next) {
2172 		m_freem(n);
2173 		return key_senderror(so, m, ENOBUFS);
2174 	}
2175 
2176 	n->m_pkthdr.len = 0;
2177 	for (nn = n; nn; nn = nn->m_next)
2178 		n->m_pkthdr.len += nn->m_len;
2179 
2180 	newmsg = mtod(n, struct sadb_msg *);
2181 	newmsg->sadb_msg_errno = 0;
2182 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2183 
2184 	m_freem(m);
2185 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2186     }
2187 }
2188 
2189 /*
2190  * SADB_X_GET processing
2191  * receive
2192  *   <base, policy(*)>
2193  * from the user(?),
2194  * and send,
2195  *   <base, address(SD), policy>
2196  * to the ikmpd.
2197  * policy(*) including direction of policy.
2198  *
2199  * m will always be freed.
2200  */
2201 static int
2202 key_spdget(so, m, mhp)
2203 	struct socket *so;
2204 	struct mbuf *m;
2205 	const struct sadb_msghdr *mhp;
2206 {
2207 	u_int32_t id;
2208 	struct secpolicy *sp;
2209 	struct mbuf *n;
2210 
2211 	IPSEC_ASSERT(so != NULL, ("null socket"));
2212 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2213 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2214 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2215 
2216 	if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2217 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2218 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2219 			__func__));
2220 		return key_senderror(so, m, EINVAL);
2221 	}
2222 
2223 	id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2224 
2225 	/* Is there SP in SPD ? */
2226 	if ((sp = key_getspbyid(id)) == NULL) {
2227 		ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2228 		return key_senderror(so, m, ENOENT);
2229 	}
2230 
2231 	n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid);
2232 	if (n != NULL) {
2233 		m_freem(m);
2234 		return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2235 	} else
2236 		return key_senderror(so, m, ENOBUFS);
2237 }
2238 
2239 /*
2240  * SADB_X_SPDACQUIRE processing.
2241  * Acquire policy and SA(s) for a *OUTBOUND* packet.
2242  * send
2243  *   <base, policy(*)>
2244  * to KMD, and expect to receive
2245  *   <base> with SADB_X_SPDACQUIRE if error occured,
2246  * or
2247  *   <base, policy>
2248  * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2249  * policy(*) is without policy requests.
2250  *
2251  *    0     : succeed
2252  *    others: error number
2253  */
2254 int
2255 key_spdacquire(sp)
2256 	struct secpolicy *sp;
2257 {
2258 	struct mbuf *result = NULL, *m;
2259 	struct secspacq *newspacq;
2260 
2261 	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2262 	IPSEC_ASSERT(sp->req == NULL, ("policy exists"));
2263 	IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC,
2264 		("policy not IPSEC %u", sp->policy));
2265 
2266 	/* Get an entry to check whether sent message or not. */
2267 	newspacq = key_getspacq(&sp->spidx);
2268 	if (newspacq != NULL) {
2269 		if (key_blockacq_count < newspacq->count) {
2270 			/* reset counter and do send message. */
2271 			newspacq->count = 0;
2272 		} else {
2273 			/* increment counter and do nothing. */
2274 			newspacq->count++;
2275 			return 0;
2276 		}
2277 		SPACQ_UNLOCK();
2278 	} else {
2279 		/* make new entry for blocking to send SADB_ACQUIRE. */
2280 		newspacq = key_newspacq(&sp->spidx);
2281 		if (newspacq == NULL)
2282 			return ENOBUFS;
2283 	}
2284 
2285 	/* create new sadb_msg to reply. */
2286 	m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2287 	if (!m)
2288 		return ENOBUFS;
2289 
2290 	result = m;
2291 
2292 	result->m_pkthdr.len = 0;
2293 	for (m = result; m; m = m->m_next)
2294 		result->m_pkthdr.len += m->m_len;
2295 
2296 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2297 	    PFKEY_UNIT64(result->m_pkthdr.len);
2298 
2299 	return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2300 }
2301 
2302 /*
2303  * SADB_SPDFLUSH processing
2304  * receive
2305  *   <base>
2306  * from the user, and free all entries in secpctree.
2307  * and send,
2308  *   <base>
2309  * to the user.
2310  * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2311  *
2312  * m will always be freed.
2313  */
2314 static int
2315 key_spdflush(so, m, mhp)
2316 	struct socket *so;
2317 	struct mbuf *m;
2318 	const struct sadb_msghdr *mhp;
2319 {
2320 	struct sadb_msg *newmsg;
2321 	struct secpolicy *sp;
2322 	u_int dir;
2323 
2324 	IPSEC_ASSERT(so != NULL, ("null socket"));
2325 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2326 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2327 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2328 
2329 	if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2330 		return key_senderror(so, m, EINVAL);
2331 
2332 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2333 		SPTREE_LOCK();
2334 		LIST_FOREACH(sp, &sptree[dir], chain)
2335 			sp->state = IPSEC_SPSTATE_DEAD;
2336 		SPTREE_UNLOCK();
2337 	}
2338 
2339 	if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2340 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2341 		return key_senderror(so, m, ENOBUFS);
2342 	}
2343 
2344 	if (m->m_next)
2345 		m_freem(m->m_next);
2346 	m->m_next = NULL;
2347 	m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2348 	newmsg = mtod(m, struct sadb_msg *);
2349 	newmsg->sadb_msg_errno = 0;
2350 	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2351 
2352 	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2353 }
2354 
2355 /*
2356  * SADB_SPDDUMP processing
2357  * receive
2358  *   <base>
2359  * from the user, and dump all SP leaves
2360  * and send,
2361  *   <base> .....
2362  * to the ikmpd.
2363  *
2364  * m will always be freed.
2365  */
2366 static int
2367 key_spddump(so, m, mhp)
2368 	struct socket *so;
2369 	struct mbuf *m;
2370 	const struct sadb_msghdr *mhp;
2371 {
2372 	struct secpolicy *sp;
2373 	int cnt;
2374 	u_int dir;
2375 	struct mbuf *n;
2376 
2377 	IPSEC_ASSERT(so != NULL, ("null socket"));
2378 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2379 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2380 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2381 
2382 	/* search SPD entry and get buffer size. */
2383 	cnt = 0;
2384 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2385 		LIST_FOREACH(sp, &sptree[dir], chain) {
2386 			cnt++;
2387 		}
2388 	}
2389 
2390 	if (cnt == 0)
2391 		return key_senderror(so, m, ENOENT);
2392 
2393 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2394 		LIST_FOREACH(sp, &sptree[dir], chain) {
2395 			--cnt;
2396 			n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt,
2397 			    mhp->msg->sadb_msg_pid);
2398 
2399 			if (n)
2400 				key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2401 		}
2402 	}
2403 
2404 	m_freem(m);
2405 	return 0;
2406 }
2407 
2408 static struct mbuf *
2409 key_setdumpsp(sp, type, seq, pid)
2410 	struct secpolicy *sp;
2411 	u_int8_t type;
2412 	u_int32_t seq, pid;
2413 {
2414 	struct mbuf *result = NULL, *m;
2415 	struct seclifetime lt;
2416 
2417 	m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2418 	if (!m)
2419 		goto fail;
2420 	result = m;
2421 
2422 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2423 	    &sp->spidx.src.sa, sp->spidx.prefs,
2424 	    sp->spidx.ul_proto);
2425 	if (!m)
2426 		goto fail;
2427 	m_cat(result, m);
2428 
2429 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2430 	    &sp->spidx.dst.sa, sp->spidx.prefd,
2431 	    sp->spidx.ul_proto);
2432 	if (!m)
2433 		goto fail;
2434 	m_cat(result, m);
2435 
2436 	m = key_sp2msg(sp);
2437 	if (!m)
2438 		goto fail;
2439 	m_cat(result, m);
2440 
2441 	if(sp->lifetime){
2442 		lt.addtime=sp->created;
2443 		lt.usetime= sp->lastused;
2444 		m = key_setlifetime(&lt, SADB_EXT_LIFETIME_CURRENT);
2445 		if (!m)
2446 			goto fail;
2447 		m_cat(result, m);
2448 
2449 		lt.addtime=sp->lifetime;
2450 		lt.usetime= sp->validtime;
2451 		m = key_setlifetime(&lt, SADB_EXT_LIFETIME_HARD);
2452 		if (!m)
2453 			goto fail;
2454 		m_cat(result, m);
2455 	}
2456 
2457 	if ((result->m_flags & M_PKTHDR) == 0)
2458 		goto fail;
2459 
2460 	if (result->m_len < sizeof(struct sadb_msg)) {
2461 		result = m_pullup(result, sizeof(struct sadb_msg));
2462 		if (result == NULL)
2463 			goto fail;
2464 	}
2465 
2466 	result->m_pkthdr.len = 0;
2467 	for (m = result; m; m = m->m_next)
2468 		result->m_pkthdr.len += m->m_len;
2469 
2470 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2471 	    PFKEY_UNIT64(result->m_pkthdr.len);
2472 
2473 	return result;
2474 
2475 fail:
2476 	m_freem(result);
2477 	return NULL;
2478 }
2479 
2480 /*
2481  * get PFKEY message length for security policy and request.
2482  */
2483 static u_int
2484 key_getspreqmsglen(sp)
2485 	struct secpolicy *sp;
2486 {
2487 	u_int tlen;
2488 
2489 	tlen = sizeof(struct sadb_x_policy);
2490 
2491 	/* if is the policy for ipsec ? */
2492 	if (sp->policy != IPSEC_POLICY_IPSEC)
2493 		return tlen;
2494 
2495 	/* get length of ipsec requests */
2496     {
2497 	struct ipsecrequest *isr;
2498 	int len;
2499 
2500 	for (isr = sp->req; isr != NULL; isr = isr->next) {
2501 		len = sizeof(struct sadb_x_ipsecrequest)
2502 			+ isr->saidx.src.sa.sa_len
2503 			+ isr->saidx.dst.sa.sa_len;
2504 
2505 		tlen += PFKEY_ALIGN8(len);
2506 	}
2507     }
2508 
2509 	return tlen;
2510 }
2511 
2512 /*
2513  * SADB_SPDEXPIRE processing
2514  * send
2515  *   <base, address(SD), lifetime(CH), policy>
2516  * to KMD by PF_KEY.
2517  *
2518  * OUT:	0	: succeed
2519  *	others	: error number
2520  */
2521 static int
2522 key_spdexpire(sp)
2523 	struct secpolicy *sp;
2524 {
2525 	struct mbuf *result = NULL, *m;
2526 	int len;
2527 	int error = -1;
2528 	struct sadb_lifetime *lt;
2529 
2530 	/* XXX: Why do we lock ? */
2531 
2532 	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2533 
2534 	/* set msg header */
2535 	m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2536 	if (!m) {
2537 		error = ENOBUFS;
2538 		goto fail;
2539 	}
2540 	result = m;
2541 
2542 	/* create lifetime extension (current and hard) */
2543 	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2544 	m = key_alloc_mbuf(len);
2545 	if (!m || m->m_next) {	/*XXX*/
2546 		if (m)
2547 			m_freem(m);
2548 		error = ENOBUFS;
2549 		goto fail;
2550 	}
2551 	bzero(mtod(m, caddr_t), len);
2552 	lt = mtod(m, struct sadb_lifetime *);
2553 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2554 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2555 	lt->sadb_lifetime_allocations = 0;
2556 	lt->sadb_lifetime_bytes = 0;
2557 	lt->sadb_lifetime_addtime = sp->created;
2558 	lt->sadb_lifetime_usetime = sp->lastused;
2559 	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
2560 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2561 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2562 	lt->sadb_lifetime_allocations = 0;
2563 	lt->sadb_lifetime_bytes = 0;
2564 	lt->sadb_lifetime_addtime = sp->lifetime;
2565 	lt->sadb_lifetime_usetime = sp->validtime;
2566 	m_cat(result, m);
2567 
2568 	/* set sadb_address for source */
2569 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2570 	    &sp->spidx.src.sa,
2571 	    sp->spidx.prefs, sp->spidx.ul_proto);
2572 	if (!m) {
2573 		error = ENOBUFS;
2574 		goto fail;
2575 	}
2576 	m_cat(result, m);
2577 
2578 	/* set sadb_address for destination */
2579 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2580 	    &sp->spidx.dst.sa,
2581 	    sp->spidx.prefd, sp->spidx.ul_proto);
2582 	if (!m) {
2583 		error = ENOBUFS;
2584 		goto fail;
2585 	}
2586 	m_cat(result, m);
2587 
2588 	/* set secpolicy */
2589 	m = key_sp2msg(sp);
2590 	if (!m) {
2591 		error = ENOBUFS;
2592 		goto fail;
2593 	}
2594 	m_cat(result, m);
2595 
2596 	if ((result->m_flags & M_PKTHDR) == 0) {
2597 		error = EINVAL;
2598 		goto fail;
2599 	}
2600 
2601 	if (result->m_len < sizeof(struct sadb_msg)) {
2602 		result = m_pullup(result, sizeof(struct sadb_msg));
2603 		if (result == NULL) {
2604 			error = ENOBUFS;
2605 			goto fail;
2606 		}
2607 	}
2608 
2609 	result->m_pkthdr.len = 0;
2610 	for (m = result; m; m = m->m_next)
2611 		result->m_pkthdr.len += m->m_len;
2612 
2613 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2614 	    PFKEY_UNIT64(result->m_pkthdr.len);
2615 
2616 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2617 
2618  fail:
2619 	if (result)
2620 		m_freem(result);
2621 	return error;
2622 }
2623 
2624 /* %%% SAD management */
2625 /*
2626  * allocating a memory for new SA head, and copy from the values of mhp.
2627  * OUT:	NULL	: failure due to the lack of memory.
2628  *	others	: pointer to new SA head.
2629  */
2630 static struct secashead *
2631 key_newsah(saidx)
2632 	struct secasindex *saidx;
2633 {
2634 	struct secashead *newsah;
2635 
2636 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
2637 
2638 	newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO);
2639 	if (newsah != NULL) {
2640 		int i;
2641 		for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++)
2642 			LIST_INIT(&newsah->savtree[i]);
2643 		newsah->saidx = *saidx;
2644 
2645 		/* add to saidxtree */
2646 		newsah->state = SADB_SASTATE_MATURE;
2647 
2648 		SAHTREE_LOCK();
2649 		LIST_INSERT_HEAD(&sahtree, newsah, chain);
2650 		SAHTREE_UNLOCK();
2651 	}
2652 	return(newsah);
2653 }
2654 
2655 /*
2656  * delete SA index and all SA registerd.
2657  */
2658 static void
2659 key_delsah(sah)
2660 	struct secashead *sah;
2661 {
2662 	struct secasvar *sav, *nextsav;
2663 	u_int stateidx;
2664 	int zombie = 0;
2665 
2666 	IPSEC_ASSERT(sah != NULL, ("NULL sah"));
2667 	SAHTREE_LOCK_ASSERT();
2668 
2669 	/* searching all SA registerd in the secindex. */
2670 	for (stateidx = 0;
2671 	     stateidx < _ARRAYLEN(saorder_state_any);
2672 	     stateidx++) {
2673 		u_int state = saorder_state_any[stateidx];
2674 		LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) {
2675 			if (sav->refcnt == 0) {
2676 				/* sanity check */
2677 				KEY_CHKSASTATE(state, sav->state, __func__);
2678 				KEY_FREESAV(&sav);
2679 			} else {
2680 				/* give up to delete this sa */
2681 				zombie++;
2682 			}
2683 		}
2684 	}
2685 	if (!zombie) {		/* delete only if there are savs */
2686 		/* remove from tree of SA index */
2687 		if (__LIST_CHAINED(sah))
2688 			LIST_REMOVE(sah, chain);
2689 		if (sah->sa_route.ro_rt) {
2690 			RTFREE(sah->sa_route.ro_rt);
2691 			sah->sa_route.ro_rt = (struct rtentry *)NULL;
2692 		}
2693 		free(sah, M_IPSEC_SAH);
2694 	}
2695 }
2696 
2697 /*
2698  * allocating a new SA with LARVAL state.  key_add() and key_getspi() call,
2699  * and copy the values of mhp into new buffer.
2700  * When SAD message type is GETSPI:
2701  *	to set sequence number from acq_seq++,
2702  *	to set zero to SPI.
2703  *	not to call key_setsava().
2704  * OUT:	NULL	: fail
2705  *	others	: pointer to new secasvar.
2706  *
2707  * does not modify mbuf.  does not free mbuf on error.
2708  */
2709 static struct secasvar *
2710 key_newsav(m, mhp, sah, errp, where, tag)
2711 	struct mbuf *m;
2712 	const struct sadb_msghdr *mhp;
2713 	struct secashead *sah;
2714 	int *errp;
2715 	const char* where;
2716 	int tag;
2717 {
2718 	struct secasvar *newsav;
2719 	const struct sadb_sa *xsa;
2720 
2721 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2722 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2723 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2724 	IPSEC_ASSERT(sah != NULL, ("null secashead"));
2725 
2726 	newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO);
2727 	if (newsav == NULL) {
2728 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2729 		*errp = ENOBUFS;
2730 		goto done;
2731 	}
2732 
2733 	switch (mhp->msg->sadb_msg_type) {
2734 	case SADB_GETSPI:
2735 		newsav->spi = 0;
2736 
2737 #ifdef IPSEC_DOSEQCHECK
2738 		/* sync sequence number */
2739 		if (mhp->msg->sadb_msg_seq == 0)
2740 			newsav->seq =
2741 				(acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
2742 		else
2743 #endif
2744 			newsav->seq = mhp->msg->sadb_msg_seq;
2745 		break;
2746 
2747 	case SADB_ADD:
2748 		/* sanity check */
2749 		if (mhp->ext[SADB_EXT_SA] == NULL) {
2750 			free(newsav, M_IPSEC_SA);
2751 			newsav = NULL;
2752 			ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2753 				__func__));
2754 			*errp = EINVAL;
2755 			goto done;
2756 		}
2757 		xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2758 		newsav->spi = xsa->sadb_sa_spi;
2759 		newsav->seq = mhp->msg->sadb_msg_seq;
2760 		break;
2761 	default:
2762 		free(newsav, M_IPSEC_SA);
2763 		newsav = NULL;
2764 		*errp = EINVAL;
2765 		goto done;
2766 	}
2767 
2768 
2769 	/* copy sav values */
2770 	if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2771 		*errp = key_setsaval(newsav, m, mhp);
2772 		if (*errp) {
2773 			free(newsav, M_IPSEC_SA);
2774 			newsav = NULL;
2775 			goto done;
2776 		}
2777 	}
2778 
2779 	SECASVAR_LOCK_INIT(newsav);
2780 
2781 	/* reset created */
2782 	newsav->created = time_second;
2783 	newsav->pid = mhp->msg->sadb_msg_pid;
2784 
2785 	/* add to satree */
2786 	newsav->sah = sah;
2787 	sa_initref(newsav);
2788 	newsav->state = SADB_SASTATE_LARVAL;
2789 
2790 	/* XXX locking??? */
2791 	LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
2792 			secasvar, chain);
2793 done:
2794 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
2795 		printf("DP %s from %s:%u return SP:%p\n", __func__,
2796 			where, tag, newsav));
2797 
2798 	return newsav;
2799 }
2800 
2801 /*
2802  * free() SA variable entry.
2803  */
2804 static void
2805 key_cleansav(struct secasvar *sav)
2806 {
2807 	/*
2808 	 * Cleanup xform state.  Note that zeroize'ing causes the
2809 	 * keys to be cleared; otherwise we must do it ourself.
2810 	 */
2811 	if (sav->tdb_xform != NULL) {
2812 		sav->tdb_xform->xf_zeroize(sav);
2813 		sav->tdb_xform = NULL;
2814 	} else {
2815 		KASSERT(sav->iv == NULL, ("iv but no xform"));
2816 		if (sav->key_auth != NULL)
2817 			bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2818 		if (sav->key_enc != NULL)
2819 			bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc));
2820 	}
2821 	if (sav->key_auth != NULL) {
2822 		if (sav->key_auth->key_data != NULL)
2823 			free(sav->key_auth->key_data, M_IPSEC_MISC);
2824 		free(sav->key_auth, M_IPSEC_MISC);
2825 		sav->key_auth = NULL;
2826 	}
2827 	if (sav->key_enc != NULL) {
2828 		if (sav->key_enc->key_data != NULL)
2829 			free(sav->key_enc->key_data, M_IPSEC_MISC);
2830 		free(sav->key_enc, M_IPSEC_MISC);
2831 		sav->key_enc = NULL;
2832 	}
2833 	if (sav->sched) {
2834 		bzero(sav->sched, sav->schedlen);
2835 		free(sav->sched, M_IPSEC_MISC);
2836 		sav->sched = NULL;
2837 	}
2838 	if (sav->replay != NULL) {
2839 		free(sav->replay, M_IPSEC_MISC);
2840 		sav->replay = NULL;
2841 	}
2842 	if (sav->lft_c != NULL) {
2843 		free(sav->lft_c, M_IPSEC_MISC);
2844 		sav->lft_c = NULL;
2845 	}
2846 	if (sav->lft_h != NULL) {
2847 		free(sav->lft_h, M_IPSEC_MISC);
2848 		sav->lft_h = NULL;
2849 	}
2850 	if (sav->lft_s != NULL) {
2851 		free(sav->lft_s, M_IPSEC_MISC);
2852 		sav->lft_s = NULL;
2853 	}
2854 }
2855 
2856 /*
2857  * free() SA variable entry.
2858  */
2859 static void
2860 key_delsav(sav)
2861 	struct secasvar *sav;
2862 {
2863 	IPSEC_ASSERT(sav != NULL, ("null sav"));
2864 	IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt));
2865 
2866 	/* remove from SA header */
2867 	if (__LIST_CHAINED(sav))
2868 		LIST_REMOVE(sav, chain);
2869 	key_cleansav(sav);
2870 	SECASVAR_LOCK_DESTROY(sav);
2871 	free(sav, M_IPSEC_SA);
2872 }
2873 
2874 /*
2875  * search SAD.
2876  * OUT:
2877  *	NULL	: not found
2878  *	others	: found, pointer to a SA.
2879  */
2880 static struct secashead *
2881 key_getsah(saidx)
2882 	struct secasindex *saidx;
2883 {
2884 	struct secashead *sah;
2885 
2886 	SAHTREE_LOCK();
2887 	LIST_FOREACH(sah, &sahtree, chain) {
2888 		if (sah->state == SADB_SASTATE_DEAD)
2889 			continue;
2890 		if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID))
2891 			break;
2892 	}
2893 	SAHTREE_UNLOCK();
2894 
2895 	return sah;
2896 }
2897 
2898 /*
2899  * check not to be duplicated SPI.
2900  * NOTE: this function is too slow due to searching all SAD.
2901  * OUT:
2902  *	NULL	: not found
2903  *	others	: found, pointer to a SA.
2904  */
2905 static struct secasvar *
2906 key_checkspidup(saidx, spi)
2907 	struct secasindex *saidx;
2908 	u_int32_t spi;
2909 {
2910 	struct secashead *sah;
2911 	struct secasvar *sav;
2912 
2913 	/* check address family */
2914 	if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
2915 		ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
2916 			__func__));
2917 		return NULL;
2918 	}
2919 
2920 	sav = NULL;
2921 	/* check all SAD */
2922 	SAHTREE_LOCK();
2923 	LIST_FOREACH(sah, &sahtree, chain) {
2924 		if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
2925 			continue;
2926 		sav = key_getsavbyspi(sah, spi);
2927 		if (sav != NULL)
2928 			break;
2929 	}
2930 	SAHTREE_UNLOCK();
2931 
2932 	return sav;
2933 }
2934 
2935 /*
2936  * search SAD litmited alive SA, protocol, SPI.
2937  * OUT:
2938  *	NULL	: not found
2939  *	others	: found, pointer to a SA.
2940  */
2941 static struct secasvar *
2942 key_getsavbyspi(sah, spi)
2943 	struct secashead *sah;
2944 	u_int32_t spi;
2945 {
2946 	struct secasvar *sav;
2947 	u_int stateidx, state;
2948 
2949 	sav = NULL;
2950 	SAHTREE_LOCK_ASSERT();
2951 	/* search all status */
2952 	for (stateidx = 0;
2953 	     stateidx < _ARRAYLEN(saorder_state_alive);
2954 	     stateidx++) {
2955 
2956 		state = saorder_state_alive[stateidx];
2957 		LIST_FOREACH(sav, &sah->savtree[state], chain) {
2958 
2959 			/* sanity check */
2960 			if (sav->state != state) {
2961 				ipseclog((LOG_DEBUG, "%s: "
2962 				    "invalid sav->state (queue: %d SA: %d)\n",
2963 				    __func__, state, sav->state));
2964 				continue;
2965 			}
2966 
2967 			if (sav->spi == spi)
2968 				return sav;
2969 		}
2970 	}
2971 
2972 	return NULL;
2973 }
2974 
2975 /*
2976  * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
2977  * You must update these if need.
2978  * OUT:	0:	success.
2979  *	!0:	failure.
2980  *
2981  * does not modify mbuf.  does not free mbuf on error.
2982  */
2983 static int
2984 key_setsaval(sav, m, mhp)
2985 	struct secasvar *sav;
2986 	struct mbuf *m;
2987 	const struct sadb_msghdr *mhp;
2988 {
2989 	int error = 0;
2990 
2991 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2992 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2993 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2994 
2995 	/* initialization */
2996 	sav->replay = NULL;
2997 	sav->key_auth = NULL;
2998 	sav->key_enc = NULL;
2999 	sav->sched = NULL;
3000 	sav->schedlen = 0;
3001 	sav->iv = NULL;
3002 	sav->lft_c = NULL;
3003 	sav->lft_h = NULL;
3004 	sav->lft_s = NULL;
3005 	sav->tdb_xform = NULL;		/* transform */
3006 	sav->tdb_encalgxform = NULL;	/* encoding algorithm */
3007 	sav->tdb_authalgxform = NULL;	/* authentication algorithm */
3008 	sav->tdb_compalgxform = NULL;	/* compression algorithm */
3009 
3010 	/* SA */
3011 	if (mhp->ext[SADB_EXT_SA] != NULL) {
3012 		const struct sadb_sa *sa0;
3013 
3014 		sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3015 		if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3016 			error = EINVAL;
3017 			goto fail;
3018 		}
3019 
3020 		sav->alg_auth = sa0->sadb_sa_auth;
3021 		sav->alg_enc = sa0->sadb_sa_encrypt;
3022 		sav->flags = sa0->sadb_sa_flags;
3023 
3024 		/* replay window */
3025 		if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3026 			sav->replay = (struct secreplay *)
3027 				malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO);
3028 			if (sav->replay == NULL) {
3029 				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3030 					__func__));
3031 				error = ENOBUFS;
3032 				goto fail;
3033 			}
3034 			if (sa0->sadb_sa_replay != 0)
3035 				sav->replay->bitmap = (caddr_t)(sav->replay+1);
3036 			sav->replay->wsize = sa0->sadb_sa_replay;
3037 		}
3038 	}
3039 
3040 	/* Authentication keys */
3041 	if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3042 		const struct sadb_key *key0;
3043 		int len;
3044 
3045 		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3046 		len = mhp->extlen[SADB_EXT_KEY_AUTH];
3047 
3048 		error = 0;
3049 		if (len < sizeof(*key0)) {
3050 			error = EINVAL;
3051 			goto fail;
3052 		}
3053 		switch (mhp->msg->sadb_msg_satype) {
3054 		case SADB_SATYPE_AH:
3055 		case SADB_SATYPE_ESP:
3056 		case SADB_X_SATYPE_TCPSIGNATURE:
3057 			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3058 			    sav->alg_auth != SADB_X_AALG_NULL)
3059 				error = EINVAL;
3060 			break;
3061 		case SADB_X_SATYPE_IPCOMP:
3062 		default:
3063 			error = EINVAL;
3064 			break;
3065 		}
3066 		if (error) {
3067 			ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n",
3068 				__func__));
3069 			goto fail;
3070 		}
3071 
3072 		sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len,
3073 								M_IPSEC_MISC);
3074 		if (sav->key_auth == NULL ) {
3075 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3076 				  __func__));
3077 			error = ENOBUFS;
3078 			goto fail;
3079 		}
3080 	}
3081 
3082 	/* Encryption key */
3083 	if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3084 		const struct sadb_key *key0;
3085 		int len;
3086 
3087 		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3088 		len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3089 
3090 		error = 0;
3091 		if (len < sizeof(*key0)) {
3092 			error = EINVAL;
3093 			goto fail;
3094 		}
3095 		switch (mhp->msg->sadb_msg_satype) {
3096 		case SADB_SATYPE_ESP:
3097 			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3098 			    sav->alg_enc != SADB_EALG_NULL) {
3099 				error = EINVAL;
3100 				break;
3101 			}
3102 			sav->key_enc = (struct seckey *)key_dup_keymsg(key0,
3103 								       len,
3104 								       M_IPSEC_MISC);
3105 			if (sav->key_enc == NULL) {
3106 				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3107 					__func__));
3108 				error = ENOBUFS;
3109 				goto fail;
3110 			}
3111 			break;
3112 		case SADB_X_SATYPE_IPCOMP:
3113 			if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3114 				error = EINVAL;
3115 			sav->key_enc = NULL;	/*just in case*/
3116 			break;
3117 		case SADB_SATYPE_AH:
3118 		case SADB_X_SATYPE_TCPSIGNATURE:
3119 		default:
3120 			error = EINVAL;
3121 			break;
3122 		}
3123 		if (error) {
3124 			ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n",
3125 				__func__));
3126 			goto fail;
3127 		}
3128 	}
3129 
3130 	/* set iv */
3131 	sav->ivlen = 0;
3132 
3133 	switch (mhp->msg->sadb_msg_satype) {
3134 	case SADB_SATYPE_AH:
3135 		error = xform_init(sav, XF_AH);
3136 		break;
3137 	case SADB_SATYPE_ESP:
3138 		error = xform_init(sav, XF_ESP);
3139 		break;
3140 	case SADB_X_SATYPE_IPCOMP:
3141 		error = xform_init(sav, XF_IPCOMP);
3142 		break;
3143 	case SADB_X_SATYPE_TCPSIGNATURE:
3144 		error = xform_init(sav, XF_TCPSIGNATURE);
3145 		break;
3146 	}
3147 	if (error) {
3148 		ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n",
3149 		        __func__, mhp->msg->sadb_msg_satype));
3150 		goto fail;
3151 	}
3152 
3153 	/* reset created */
3154 	sav->created = time_second;
3155 
3156 	/* make lifetime for CURRENT */
3157 	sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT);
3158 	if (sav->lft_c == NULL) {
3159 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3160 		error = ENOBUFS;
3161 		goto fail;
3162 	}
3163 
3164 	sav->lft_c->allocations = 0;
3165 	sav->lft_c->bytes = 0;
3166 	sav->lft_c->addtime = time_second;
3167 	sav->lft_c->usetime = 0;
3168 
3169 	/* lifetimes for HARD and SOFT */
3170     {
3171 	const struct sadb_lifetime *lft0;
3172 
3173 	lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3174 	if (lft0 != NULL) {
3175 		if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3176 			error = EINVAL;
3177 			goto fail;
3178 		}
3179 		sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC);
3180 		if (sav->lft_h == NULL) {
3181 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3182 			error = ENOBUFS;
3183 			goto fail;
3184 		}
3185 		/* to be initialize ? */
3186 	}
3187 
3188 	lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3189 	if (lft0 != NULL) {
3190 		if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3191 			error = EINVAL;
3192 			goto fail;
3193 		}
3194 		sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC);
3195 		if (sav->lft_s == NULL) {
3196 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3197 			error = ENOBUFS;
3198 			goto fail;
3199 		}
3200 		/* to be initialize ? */
3201 	}
3202     }
3203 
3204 	return 0;
3205 
3206  fail:
3207 	/* initialization */
3208 	key_cleansav(sav);
3209 
3210 	return error;
3211 }
3212 
3213 /*
3214  * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3215  * OUT:	0:	valid
3216  *	other:	errno
3217  */
3218 static int
3219 key_mature(struct secasvar *sav)
3220 {
3221 	int error;
3222 
3223 	/* check SPI value */
3224 	switch (sav->sah->saidx.proto) {
3225 	case IPPROTO_ESP:
3226 	case IPPROTO_AH:
3227 		/*
3228 		 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values
3229 		 * 1-255 reserved by IANA for future use,
3230 		 * 0 for implementation specific, local use.
3231 		 */
3232 		if (ntohl(sav->spi) <= 255) {
3233 			ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n",
3234 			    __func__, (u_int32_t)ntohl(sav->spi)));
3235 			return EINVAL;
3236 		}
3237 		break;
3238 	}
3239 
3240 	/* check satype */
3241 	switch (sav->sah->saidx.proto) {
3242 	case IPPROTO_ESP:
3243 		/* check flags */
3244 		if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3245 		    (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3246 			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3247 				"given to old-esp.\n", __func__));
3248 			return EINVAL;
3249 		}
3250 		error = xform_init(sav, XF_ESP);
3251 		break;
3252 	case IPPROTO_AH:
3253 		/* check flags */
3254 		if (sav->flags & SADB_X_EXT_DERIV) {
3255 			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3256 				"given to AH SA.\n", __func__));
3257 			return EINVAL;
3258 		}
3259 		if (sav->alg_enc != SADB_EALG_NONE) {
3260 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3261 				"mismated.\n", __func__));
3262 			return(EINVAL);
3263 		}
3264 		error = xform_init(sav, XF_AH);
3265 		break;
3266 	case IPPROTO_IPCOMP:
3267 		if (sav->alg_auth != SADB_AALG_NONE) {
3268 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3269 				"mismated.\n", __func__));
3270 			return(EINVAL);
3271 		}
3272 		if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3273 		 && ntohl(sav->spi) >= 0x10000) {
3274 			ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n",
3275 				__func__));
3276 			return(EINVAL);
3277 		}
3278 		error = xform_init(sav, XF_IPCOMP);
3279 		break;
3280 	case IPPROTO_TCP:
3281 		if (sav->alg_enc != SADB_EALG_NONE) {
3282 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3283 				"mismated.\n", __func__));
3284 			return(EINVAL);
3285 		}
3286 		error = xform_init(sav, XF_TCPSIGNATURE);
3287 		break;
3288 	default:
3289 		ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__));
3290 		error = EPROTONOSUPPORT;
3291 		break;
3292 	}
3293 	if (error == 0) {
3294 		SAHTREE_LOCK();
3295 		key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3296 		SAHTREE_UNLOCK();
3297 	}
3298 	return (error);
3299 }
3300 
3301 /*
3302  * subroutine for SADB_GET and SADB_DUMP.
3303  */
3304 static struct mbuf *
3305 key_setdumpsa(sav, type, satype, seq, pid)
3306 	struct secasvar *sav;
3307 	u_int8_t type, satype;
3308 	u_int32_t seq, pid;
3309 {
3310 	struct mbuf *result = NULL, *tres = NULL, *m;
3311 	int i;
3312 	int dumporder[] = {
3313 		SADB_EXT_SA, SADB_X_EXT_SA2,
3314 		SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3315 		SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3316 		SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3317 		SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3318 		SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3319 	};
3320 
3321 	m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3322 	if (m == NULL)
3323 		goto fail;
3324 	result = m;
3325 
3326 	for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) {
3327 		m = NULL;
3328 		switch (dumporder[i]) {
3329 		case SADB_EXT_SA:
3330 			m = key_setsadbsa(sav);
3331 			if (!m)
3332 				goto fail;
3333 			break;
3334 
3335 		case SADB_X_EXT_SA2:
3336 			m = key_setsadbxsa2(sav->sah->saidx.mode,
3337 					sav->replay ? sav->replay->count : 0,
3338 					sav->sah->saidx.reqid);
3339 			if (!m)
3340 				goto fail;
3341 			break;
3342 
3343 		case SADB_EXT_ADDRESS_SRC:
3344 			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3345 			    &sav->sah->saidx.src.sa,
3346 			    FULLMASK, IPSEC_ULPROTO_ANY);
3347 			if (!m)
3348 				goto fail;
3349 			break;
3350 
3351 		case SADB_EXT_ADDRESS_DST:
3352 			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3353 			    &sav->sah->saidx.dst.sa,
3354 			    FULLMASK, IPSEC_ULPROTO_ANY);
3355 			if (!m)
3356 				goto fail;
3357 			break;
3358 
3359 		case SADB_EXT_KEY_AUTH:
3360 			if (!sav->key_auth)
3361 				continue;
3362 			m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH);
3363 			if (!m)
3364 				goto fail;
3365 			break;
3366 
3367 		case SADB_EXT_KEY_ENCRYPT:
3368 			if (!sav->key_enc)
3369 				continue;
3370 			m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT);
3371 			if (!m)
3372 				goto fail;
3373 			break;
3374 
3375 		case SADB_EXT_LIFETIME_CURRENT:
3376 			if (!sav->lft_c)
3377 				continue;
3378 			m = key_setlifetime(sav->lft_c,
3379 					    SADB_EXT_LIFETIME_CURRENT);
3380 			if (!m)
3381 				goto fail;
3382 			break;
3383 
3384 		case SADB_EXT_LIFETIME_HARD:
3385 			if (!sav->lft_h)
3386 				continue;
3387 			m = key_setlifetime(sav->lft_h,
3388 					    SADB_EXT_LIFETIME_HARD);
3389 			if (!m)
3390 				goto fail;
3391 			break;
3392 
3393 		case SADB_EXT_LIFETIME_SOFT:
3394 			if (!sav->lft_s)
3395 				continue;
3396 			m = key_setlifetime(sav->lft_s,
3397 					    SADB_EXT_LIFETIME_SOFT);
3398 
3399 			if (!m)
3400 				goto fail;
3401 			break;
3402 
3403 		case SADB_EXT_ADDRESS_PROXY:
3404 		case SADB_EXT_IDENTITY_SRC:
3405 		case SADB_EXT_IDENTITY_DST:
3406 			/* XXX: should we brought from SPD ? */
3407 		case SADB_EXT_SENSITIVITY:
3408 		default:
3409 			continue;
3410 		}
3411 
3412 		if (!m)
3413 			goto fail;
3414 		if (tres)
3415 			m_cat(m, tres);
3416 		tres = m;
3417 
3418 	}
3419 
3420 	m_cat(result, tres);
3421 	if (result->m_len < sizeof(struct sadb_msg)) {
3422 		result = m_pullup(result, sizeof(struct sadb_msg));
3423 		if (result == NULL)
3424 			goto fail;
3425 	}
3426 
3427 	result->m_pkthdr.len = 0;
3428 	for (m = result; m; m = m->m_next)
3429 		result->m_pkthdr.len += m->m_len;
3430 
3431 	mtod(result, struct sadb_msg *)->sadb_msg_len =
3432 	    PFKEY_UNIT64(result->m_pkthdr.len);
3433 
3434 	return result;
3435 
3436 fail:
3437 	m_freem(result);
3438 	m_freem(tres);
3439 	return NULL;
3440 }
3441 
3442 /*
3443  * set data into sadb_msg.
3444  */
3445 static struct mbuf *
3446 key_setsadbmsg(type, tlen, satype, seq, pid, reserved)
3447 	u_int8_t type, satype;
3448 	u_int16_t tlen;
3449 	u_int32_t seq;
3450 	pid_t pid;
3451 	u_int16_t reserved;
3452 {
3453 	struct mbuf *m;
3454 	struct sadb_msg *p;
3455 	int len;
3456 
3457 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3458 	if (len > MCLBYTES)
3459 		return NULL;
3460 	MGETHDR(m, M_DONTWAIT, MT_DATA);
3461 	if (m && len > MHLEN) {
3462 		MCLGET(m, M_DONTWAIT);
3463 		if ((m->m_flags & M_EXT) == 0) {
3464 			m_freem(m);
3465 			m = NULL;
3466 		}
3467 	}
3468 	if (!m)
3469 		return NULL;
3470 	m->m_pkthdr.len = m->m_len = len;
3471 	m->m_next = NULL;
3472 
3473 	p = mtod(m, struct sadb_msg *);
3474 
3475 	bzero(p, len);
3476 	p->sadb_msg_version = PF_KEY_V2;
3477 	p->sadb_msg_type = type;
3478 	p->sadb_msg_errno = 0;
3479 	p->sadb_msg_satype = satype;
3480 	p->sadb_msg_len = PFKEY_UNIT64(tlen);
3481 	p->sadb_msg_reserved = reserved;
3482 	p->sadb_msg_seq = seq;
3483 	p->sadb_msg_pid = (u_int32_t)pid;
3484 
3485 	return m;
3486 }
3487 
3488 /*
3489  * copy secasvar data into sadb_address.
3490  */
3491 static struct mbuf *
3492 key_setsadbsa(sav)
3493 	struct secasvar *sav;
3494 {
3495 	struct mbuf *m;
3496 	struct sadb_sa *p;
3497 	int len;
3498 
3499 	len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3500 	m = key_alloc_mbuf(len);
3501 	if (!m || m->m_next) {	/*XXX*/
3502 		if (m)
3503 			m_freem(m);
3504 		return NULL;
3505 	}
3506 
3507 	p = mtod(m, struct sadb_sa *);
3508 
3509 	bzero(p, len);
3510 	p->sadb_sa_len = PFKEY_UNIT64(len);
3511 	p->sadb_sa_exttype = SADB_EXT_SA;
3512 	p->sadb_sa_spi = sav->spi;
3513 	p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3514 	p->sadb_sa_state = sav->state;
3515 	p->sadb_sa_auth = sav->alg_auth;
3516 	p->sadb_sa_encrypt = sav->alg_enc;
3517 	p->sadb_sa_flags = sav->flags;
3518 
3519 	return m;
3520 }
3521 
3522 /*
3523  * set data into sadb_address.
3524  */
3525 static struct mbuf *
3526 key_setsadbaddr(exttype, saddr, prefixlen, ul_proto)
3527 	u_int16_t exttype;
3528 	const struct sockaddr *saddr;
3529 	u_int8_t prefixlen;
3530 	u_int16_t ul_proto;
3531 {
3532 	struct mbuf *m;
3533 	struct sadb_address *p;
3534 	size_t len;
3535 
3536 	len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3537 	    PFKEY_ALIGN8(saddr->sa_len);
3538 	m = key_alloc_mbuf(len);
3539 	if (!m || m->m_next) {	/*XXX*/
3540 		if (m)
3541 			m_freem(m);
3542 		return NULL;
3543 	}
3544 
3545 	p = mtod(m, struct sadb_address *);
3546 
3547 	bzero(p, len);
3548 	p->sadb_address_len = PFKEY_UNIT64(len);
3549 	p->sadb_address_exttype = exttype;
3550 	p->sadb_address_proto = ul_proto;
3551 	if (prefixlen == FULLMASK) {
3552 		switch (saddr->sa_family) {
3553 		case AF_INET:
3554 			prefixlen = sizeof(struct in_addr) << 3;
3555 			break;
3556 		case AF_INET6:
3557 			prefixlen = sizeof(struct in6_addr) << 3;
3558 			break;
3559 		default:
3560 			; /*XXX*/
3561 		}
3562 	}
3563 	p->sadb_address_prefixlen = prefixlen;
3564 	p->sadb_address_reserved = 0;
3565 
3566 	bcopy(saddr,
3567 	    mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3568 	    saddr->sa_len);
3569 
3570 	return m;
3571 }
3572 
3573 /*
3574  * set data into sadb_x_sa2.
3575  */
3576 static struct mbuf *
3577 key_setsadbxsa2(mode, seq, reqid)
3578 	u_int8_t mode;
3579 	u_int32_t seq, reqid;
3580 {
3581 	struct mbuf *m;
3582 	struct sadb_x_sa2 *p;
3583 	size_t len;
3584 
3585 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3586 	m = key_alloc_mbuf(len);
3587 	if (!m || m->m_next) {	/*XXX*/
3588 		if (m)
3589 			m_freem(m);
3590 		return NULL;
3591 	}
3592 
3593 	p = mtod(m, struct sadb_x_sa2 *);
3594 
3595 	bzero(p, len);
3596 	p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3597 	p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3598 	p->sadb_x_sa2_mode = mode;
3599 	p->sadb_x_sa2_reserved1 = 0;
3600 	p->sadb_x_sa2_reserved2 = 0;
3601 	p->sadb_x_sa2_sequence = seq;
3602 	p->sadb_x_sa2_reqid = reqid;
3603 
3604 	return m;
3605 }
3606 
3607 /*
3608  * set data into sadb_x_policy
3609  */
3610 static struct mbuf *
3611 key_setsadbxpolicy(type, dir, id)
3612 	u_int16_t type;
3613 	u_int8_t dir;
3614 	u_int32_t id;
3615 {
3616 	struct mbuf *m;
3617 	struct sadb_x_policy *p;
3618 	size_t len;
3619 
3620 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
3621 	m = key_alloc_mbuf(len);
3622 	if (!m || m->m_next) {	/*XXX*/
3623 		if (m)
3624 			m_freem(m);
3625 		return NULL;
3626 	}
3627 
3628 	p = mtod(m, struct sadb_x_policy *);
3629 
3630 	bzero(p, len);
3631 	p->sadb_x_policy_len = PFKEY_UNIT64(len);
3632 	p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
3633 	p->sadb_x_policy_type = type;
3634 	p->sadb_x_policy_dir = dir;
3635 	p->sadb_x_policy_id = id;
3636 
3637 	return m;
3638 }
3639 
3640 /* %%% utilities */
3641 /* Take a key message (sadb_key) from the socket and turn it into one
3642  * of the kernel's key structures (seckey).
3643  *
3644  * IN: pointer to the src
3645  * OUT: NULL no more memory
3646  */
3647 struct seckey *
3648 key_dup_keymsg(const struct sadb_key *src, u_int len,
3649 	       struct malloc_type *type)
3650 {
3651 	struct seckey *dst;
3652 	dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT);
3653 	if (dst != NULL) {
3654 		dst->bits = src->sadb_key_bits;
3655 		dst->key_data = (char *)malloc(len, type, M_NOWAIT);
3656 		if (dst->key_data != NULL) {
3657 			bcopy((const char *)src + sizeof(struct sadb_key),
3658 			      dst->key_data, len);
3659 		} else {
3660 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3661 				  __func__));
3662 			free(dst, type);
3663 			dst = NULL;
3664 		}
3665 	} else {
3666 		ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3667 			  __func__));
3668 
3669 	}
3670 	return dst;
3671 }
3672 
3673 /* Take a lifetime message (sadb_lifetime) passed in on a socket and
3674  * turn it into one of the kernel's lifetime structures (seclifetime).
3675  *
3676  * IN: pointer to the destination, source and malloc type
3677  * OUT: NULL, no more memory
3678  */
3679 
3680 static struct seclifetime *
3681 key_dup_lifemsg(const struct sadb_lifetime *src,
3682 		 struct malloc_type *type)
3683 {
3684 	struct seclifetime *dst = NULL;
3685 
3686 	dst = (struct seclifetime *)malloc(sizeof(struct seclifetime),
3687 					   type, M_NOWAIT);
3688 	if (dst == NULL) {
3689 		/* XXX counter */
3690 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3691 	} else {
3692 		dst->allocations = src->sadb_lifetime_allocations;
3693 		dst->bytes = src->sadb_lifetime_bytes;
3694 		dst->addtime = src->sadb_lifetime_addtime;
3695 		dst->usetime = src->sadb_lifetime_usetime;
3696 	}
3697 	return dst;
3698 }
3699 
3700 /* compare my own address
3701  * OUT:	1: true, i.e. my address.
3702  *	0: false
3703  */
3704 int
3705 key_ismyaddr(sa)
3706 	struct sockaddr *sa;
3707 {
3708 #ifdef INET
3709 	struct sockaddr_in *sin;
3710 	struct in_ifaddr *ia;
3711 #endif
3712 
3713 	IPSEC_ASSERT(sa != NULL, ("null sockaddr"));
3714 
3715 	switch (sa->sa_family) {
3716 #ifdef INET
3717 	case AF_INET:
3718 		sin = (struct sockaddr_in *)sa;
3719 		for (ia = in_ifaddrhead.tqh_first; ia;
3720 		     ia = ia->ia_link.tqe_next)
3721 		{
3722 			if (sin->sin_family == ia->ia_addr.sin_family &&
3723 			    sin->sin_len == ia->ia_addr.sin_len &&
3724 			    sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
3725 			{
3726 				return 1;
3727 			}
3728 		}
3729 		break;
3730 #endif
3731 #ifdef INET6
3732 	case AF_INET6:
3733 		return key_ismyaddr6((struct sockaddr_in6 *)sa);
3734 #endif
3735 	}
3736 
3737 	return 0;
3738 }
3739 
3740 #ifdef INET6
3741 /*
3742  * compare my own address for IPv6.
3743  * 1: ours
3744  * 0: other
3745  * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
3746  */
3747 #include <netinet6/in6_var.h>
3748 
3749 static int
3750 key_ismyaddr6(sin6)
3751 	struct sockaddr_in6 *sin6;
3752 {
3753 	struct in6_ifaddr *ia;
3754 	struct in6_multi *in6m;
3755 
3756 	for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
3757 		if (key_sockaddrcmp((struct sockaddr *)&sin6,
3758 		    (struct sockaddr *)&ia->ia_addr, 0) == 0)
3759 			return 1;
3760 
3761 		/*
3762 		 * XXX Multicast
3763 		 * XXX why do we care about multlicast here while we don't care
3764 		 * about IPv4 multicast??
3765 		 * XXX scope
3766 		 */
3767 		in6m = NULL;
3768 		IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m);
3769 		if (in6m)
3770 			return 1;
3771 	}
3772 
3773 	/* loopback, just for safety */
3774 	if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
3775 		return 1;
3776 
3777 	return 0;
3778 }
3779 #endif /*INET6*/
3780 
3781 /*
3782  * compare two secasindex structure.
3783  * flag can specify to compare 2 saidxes.
3784  * compare two secasindex structure without both mode and reqid.
3785  * don't compare port.
3786  * IN:
3787  *      saidx0: source, it can be in SAD.
3788  *      saidx1: object.
3789  * OUT:
3790  *      1 : equal
3791  *      0 : not equal
3792  */
3793 static int
3794 key_cmpsaidx(
3795 	const struct secasindex *saidx0,
3796 	const struct secasindex *saidx1,
3797 	int flag)
3798 {
3799 	/* sanity */
3800 	if (saidx0 == NULL && saidx1 == NULL)
3801 		return 1;
3802 
3803 	if (saidx0 == NULL || saidx1 == NULL)
3804 		return 0;
3805 
3806 	if (saidx0->proto != saidx1->proto)
3807 		return 0;
3808 
3809 	if (flag == CMP_EXACTLY) {
3810 		if (saidx0->mode != saidx1->mode)
3811 			return 0;
3812 		if (saidx0->reqid != saidx1->reqid)
3813 			return 0;
3814 		if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
3815 		    bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
3816 			return 0;
3817 	} else {
3818 
3819 		/* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
3820 		if (flag == CMP_MODE_REQID
3821 		  ||flag == CMP_REQID) {
3822 			/*
3823 			 * If reqid of SPD is non-zero, unique SA is required.
3824 			 * The result must be of same reqid in this case.
3825 			 */
3826 			if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
3827 				return 0;
3828 		}
3829 
3830 		if (flag == CMP_MODE_REQID) {
3831 			if (saidx0->mode != IPSEC_MODE_ANY
3832 			 && saidx0->mode != saidx1->mode)
3833 				return 0;
3834 		}
3835 
3836 		if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, 0) != 0) {
3837 			return 0;
3838 		}
3839 		if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, 0) != 0) {
3840 			return 0;
3841 		}
3842 	}
3843 
3844 	return 1;
3845 }
3846 
3847 /*
3848  * compare two secindex structure exactly.
3849  * IN:
3850  *	spidx0: source, it is often in SPD.
3851  *	spidx1: object, it is often from PFKEY message.
3852  * OUT:
3853  *	1 : equal
3854  *	0 : not equal
3855  */
3856 static int
3857 key_cmpspidx_exactly(
3858 	struct secpolicyindex *spidx0,
3859 	struct secpolicyindex *spidx1)
3860 {
3861 	/* sanity */
3862 	if (spidx0 == NULL && spidx1 == NULL)
3863 		return 1;
3864 
3865 	if (spidx0 == NULL || spidx1 == NULL)
3866 		return 0;
3867 
3868 	if (spidx0->prefs != spidx1->prefs
3869 	 || spidx0->prefd != spidx1->prefd
3870 	 || spidx0->ul_proto != spidx1->ul_proto)
3871 		return 0;
3872 
3873 	return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 &&
3874 	       key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0;
3875 }
3876 
3877 /*
3878  * compare two secindex structure with mask.
3879  * IN:
3880  *	spidx0: source, it is often in SPD.
3881  *	spidx1: object, it is often from IP header.
3882  * OUT:
3883  *	1 : equal
3884  *	0 : not equal
3885  */
3886 static int
3887 key_cmpspidx_withmask(
3888 	struct secpolicyindex *spidx0,
3889 	struct secpolicyindex *spidx1)
3890 {
3891 	/* sanity */
3892 	if (spidx0 == NULL && spidx1 == NULL)
3893 		return 1;
3894 
3895 	if (spidx0 == NULL || spidx1 == NULL)
3896 		return 0;
3897 
3898 	if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
3899 	    spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
3900 	    spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
3901 	    spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
3902 		return 0;
3903 
3904 	/* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
3905 	if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
3906 	 && spidx0->ul_proto != spidx1->ul_proto)
3907 		return 0;
3908 
3909 	switch (spidx0->src.sa.sa_family) {
3910 	case AF_INET:
3911 		if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
3912 		 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
3913 			return 0;
3914 		if (!key_bbcmp(&spidx0->src.sin.sin_addr,
3915 		    &spidx1->src.sin.sin_addr, spidx0->prefs))
3916 			return 0;
3917 		break;
3918 	case AF_INET6:
3919 		if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
3920 		 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
3921 			return 0;
3922 		/*
3923 		 * scope_id check. if sin6_scope_id is 0, we regard it
3924 		 * as a wildcard scope, which matches any scope zone ID.
3925 		 */
3926 		if (spidx0->src.sin6.sin6_scope_id &&
3927 		    spidx1->src.sin6.sin6_scope_id &&
3928 		    spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
3929 			return 0;
3930 		if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
3931 		    &spidx1->src.sin6.sin6_addr, spidx0->prefs))
3932 			return 0;
3933 		break;
3934 	default:
3935 		/* XXX */
3936 		if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
3937 			return 0;
3938 		break;
3939 	}
3940 
3941 	switch (spidx0->dst.sa.sa_family) {
3942 	case AF_INET:
3943 		if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
3944 		 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
3945 			return 0;
3946 		if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
3947 		    &spidx1->dst.sin.sin_addr, spidx0->prefd))
3948 			return 0;
3949 		break;
3950 	case AF_INET6:
3951 		if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
3952 		 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
3953 			return 0;
3954 		/*
3955 		 * scope_id check. if sin6_scope_id is 0, we regard it
3956 		 * as a wildcard scope, which matches any scope zone ID.
3957 		 */
3958 		if (spidx0->dst.sin6.sin6_scope_id &&
3959 		    spidx1->dst.sin6.sin6_scope_id &&
3960 		    spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
3961 			return 0;
3962 		if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
3963 		    &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
3964 			return 0;
3965 		break;
3966 	default:
3967 		/* XXX */
3968 		if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
3969 			return 0;
3970 		break;
3971 	}
3972 
3973 	/* XXX Do we check other field ?  e.g. flowinfo */
3974 
3975 	return 1;
3976 }
3977 
3978 /* returns 0 on match */
3979 static int
3980 key_sockaddrcmp(
3981 	const struct sockaddr *sa1,
3982 	const struct sockaddr *sa2,
3983 	int port)
3984 {
3985 #ifdef satosin
3986 #undef satosin
3987 #endif
3988 #define satosin(s) ((const struct sockaddr_in *)s)
3989 #ifdef satosin6
3990 #undef satosin6
3991 #endif
3992 #define satosin6(s) ((const struct sockaddr_in6 *)s)
3993 	if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
3994 		return 1;
3995 
3996 	switch (sa1->sa_family) {
3997 	case AF_INET:
3998 		if (sa1->sa_len != sizeof(struct sockaddr_in))
3999 			return 1;
4000 		if (satosin(sa1)->sin_addr.s_addr !=
4001 		    satosin(sa2)->sin_addr.s_addr) {
4002 			return 1;
4003 		}
4004 		if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port)
4005 			return 1;
4006 		break;
4007 	case AF_INET6:
4008 		if (sa1->sa_len != sizeof(struct sockaddr_in6))
4009 			return 1;	/*EINVAL*/
4010 		if (satosin6(sa1)->sin6_scope_id !=
4011 		    satosin6(sa2)->sin6_scope_id) {
4012 			return 1;
4013 		}
4014 		if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr,
4015 		    &satosin6(sa2)->sin6_addr)) {
4016 			return 1;
4017 		}
4018 		if (port &&
4019 		    satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) {
4020 			return 1;
4021 		}
4022 		break;
4023 	default:
4024 		if (bcmp(sa1, sa2, sa1->sa_len) != 0)
4025 			return 1;
4026 		break;
4027 	}
4028 
4029 	return 0;
4030 #undef satosin
4031 #undef satosin6
4032 }
4033 
4034 /*
4035  * compare two buffers with mask.
4036  * IN:
4037  *	addr1: source
4038  *	addr2: object
4039  *	bits:  Number of bits to compare
4040  * OUT:
4041  *	1 : equal
4042  *	0 : not equal
4043  */
4044 static int
4045 key_bbcmp(const void *a1, const void *a2, u_int bits)
4046 {
4047 	const unsigned char *p1 = a1;
4048 	const unsigned char *p2 = a2;
4049 
4050 	/* XXX: This could be considerably faster if we compare a word
4051 	 * at a time, but it is complicated on LSB Endian machines */
4052 
4053 	/* Handle null pointers */
4054 	if (p1 == NULL || p2 == NULL)
4055 		return (p1 == p2);
4056 
4057 	while (bits >= 8) {
4058 		if (*p1++ != *p2++)
4059 			return 0;
4060 		bits -= 8;
4061 	}
4062 
4063 	if (bits > 0) {
4064 		u_int8_t mask = ~((1<<(8-bits))-1);
4065 		if ((*p1 & mask) != (*p2 & mask))
4066 			return 0;
4067 	}
4068 	return 1;	/* Match! */
4069 }
4070 
4071 static void
4072 key_flush_spd(time_t now)
4073 {
4074 	static u_int16_t sptree_scangen = 0;
4075 	u_int16_t gen = sptree_scangen++;
4076 	struct secpolicy *sp;
4077 	u_int dir;
4078 
4079 	/* SPD */
4080 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4081 restart:
4082 		SPTREE_LOCK();
4083 		LIST_FOREACH(sp, &sptree[dir], chain) {
4084 			if (sp->scangen == gen)		/* previously handled */
4085 				continue;
4086 			sp->scangen = gen;
4087 			if (sp->state == IPSEC_SPSTATE_DEAD) {
4088 				/* NB: clean entries created by key_spdflush */
4089 				SPTREE_UNLOCK();
4090 				KEY_FREESP(&sp);
4091 				goto restart;
4092 			}
4093 			if (sp->lifetime == 0 && sp->validtime == 0)
4094 				continue;
4095 			if ((sp->lifetime && now - sp->created > sp->lifetime)
4096 			 || (sp->validtime && now - sp->lastused > sp->validtime)) {
4097 				sp->state = IPSEC_SPSTATE_DEAD;
4098 				SPTREE_UNLOCK();
4099 				key_spdexpire(sp);
4100 				KEY_FREESP(&sp);
4101 				goto restart;
4102 			}
4103 		}
4104 		SPTREE_UNLOCK();
4105 	}
4106 }
4107 
4108 static void
4109 key_flush_sad(time_t now)
4110 {
4111 	struct secashead *sah, *nextsah;
4112 	struct secasvar *sav, *nextsav;
4113 
4114 	/* SAD */
4115 	SAHTREE_LOCK();
4116 	LIST_FOREACH_SAFE(sah, &sahtree, chain, nextsah) {
4117 		/* if sah has been dead, then delete it and process next sah. */
4118 		if (sah->state == SADB_SASTATE_DEAD) {
4119 			key_delsah(sah);
4120 			continue;
4121 		}
4122 
4123 		/* if LARVAL entry doesn't become MATURE, delete it. */
4124 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) {
4125 			if (now - sav->created > key_larval_lifetime)
4126 				KEY_FREESAV(&sav);
4127 		}
4128 
4129 		/*
4130 		 * check MATURE entry to start to send expire message
4131 		 * whether or not.
4132 		 */
4133 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) {
4134 			/* we don't need to check. */
4135 			if (sav->lft_s == NULL)
4136 				continue;
4137 
4138 			/* sanity check */
4139 			if (sav->lft_c == NULL) {
4140 				ipseclog((LOG_DEBUG,"%s: there is no CURRENT "
4141 					"time, why?\n", __func__));
4142 				continue;
4143 			}
4144 
4145 			/* check SOFT lifetime */
4146 			if (sav->lft_s->addtime != 0 &&
4147 			    now - sav->created > sav->lft_s->addtime) {
4148 				/*
4149 				 * check SA to be used whether or not.
4150 				 * when SA hasn't been used, delete it.
4151 				 */
4152 				if (sav->lft_c->usetime == 0) {
4153 					key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4154 					KEY_FREESAV(&sav);
4155 				} else {
4156 					key_sa_chgstate(sav, SADB_SASTATE_DYING);
4157 					/*
4158 					 * XXX If we keep to send expire
4159 					 * message in the status of
4160 					 * DYING. Do remove below code.
4161 					 */
4162 					key_expire(sav);
4163 				}
4164 			}
4165 			/* check SOFT lifetime by bytes */
4166 			/*
4167 			 * XXX I don't know the way to delete this SA
4168 			 * when new SA is installed.  Caution when it's
4169 			 * installed too big lifetime by time.
4170 			 */
4171 			else if (sav->lft_s->bytes != 0 &&
4172 			    sav->lft_s->bytes < sav->lft_c->bytes) {
4173 
4174 				key_sa_chgstate(sav, SADB_SASTATE_DYING);
4175 				/*
4176 				 * XXX If we keep to send expire
4177 				 * message in the status of
4178 				 * DYING. Do remove below code.
4179 				 */
4180 				key_expire(sav);
4181 			}
4182 		}
4183 
4184 		/* check DYING entry to change status to DEAD. */
4185 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) {
4186 			/* we don't need to check. */
4187 			if (sav->lft_h == NULL)
4188 				continue;
4189 
4190 			/* sanity check */
4191 			if (sav->lft_c == NULL) {
4192 				ipseclog((LOG_DEBUG, "%s: there is no CURRENT "
4193 					"time, why?\n", __func__));
4194 				continue;
4195 			}
4196 
4197 			if (sav->lft_h->addtime != 0 &&
4198 			    now - sav->created > sav->lft_h->addtime) {
4199 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4200 				KEY_FREESAV(&sav);
4201 			}
4202 #if 0	/* XXX Should we keep to send expire message until HARD lifetime ? */
4203 			else if (sav->lft_s != NULL
4204 			      && sav->lft_s->addtime != 0
4205 			      && now - sav->created > sav->lft_s->addtime) {
4206 				/*
4207 				 * XXX: should be checked to be
4208 				 * installed the valid SA.
4209 				 */
4210 
4211 				/*
4212 				 * If there is no SA then sending
4213 				 * expire message.
4214 				 */
4215 				key_expire(sav);
4216 			}
4217 #endif
4218 			/* check HARD lifetime by bytes */
4219 			else if (sav->lft_h->bytes != 0 &&
4220 			    sav->lft_h->bytes < sav->lft_c->bytes) {
4221 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4222 				KEY_FREESAV(&sav);
4223 			}
4224 		}
4225 
4226 		/* delete entry in DEAD */
4227 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) {
4228 			/* sanity check */
4229 			if (sav->state != SADB_SASTATE_DEAD) {
4230 				ipseclog((LOG_DEBUG, "%s: invalid sav->state "
4231 					"(queue: %d SA: %d): kill it anyway\n",
4232 					__func__,
4233 					SADB_SASTATE_DEAD, sav->state));
4234 			}
4235 			/*
4236 			 * do not call key_freesav() here.
4237 			 * sav should already be freed, and sav->refcnt
4238 			 * shows other references to sav
4239 			 * (such as from SPD).
4240 			 */
4241 		}
4242 	}
4243 	SAHTREE_UNLOCK();
4244 }
4245 
4246 static void
4247 key_flush_acq(time_t now)
4248 {
4249 	struct secacq *acq, *nextacq;
4250 
4251 	/* ACQ tree */
4252 	ACQ_LOCK();
4253 	for (acq = LIST_FIRST(&acqtree); acq != NULL; acq = nextacq) {
4254 		nextacq = LIST_NEXT(acq, chain);
4255 		if (now - acq->created > key_blockacq_lifetime
4256 		 && __LIST_CHAINED(acq)) {
4257 			LIST_REMOVE(acq, chain);
4258 			free(acq, M_IPSEC_SAQ);
4259 		}
4260 	}
4261 	ACQ_UNLOCK();
4262 }
4263 
4264 static void
4265 key_flush_spacq(time_t now)
4266 {
4267 	struct secspacq *acq, *nextacq;
4268 
4269 	/* SP ACQ tree */
4270 	SPACQ_LOCK();
4271 	for (acq = LIST_FIRST(&spacqtree); acq != NULL; acq = nextacq) {
4272 		nextacq = LIST_NEXT(acq, chain);
4273 		if (now - acq->created > key_blockacq_lifetime
4274 		 && __LIST_CHAINED(acq)) {
4275 			LIST_REMOVE(acq, chain);
4276 			free(acq, M_IPSEC_SAQ);
4277 		}
4278 	}
4279 	SPACQ_UNLOCK();
4280 }
4281 
4282 /*
4283  * time handler.
4284  * scanning SPD and SAD to check status for each entries,
4285  * and do to remove or to expire.
4286  * XXX: year 2038 problem may remain.
4287  */
4288 void
4289 key_timehandler(void)
4290 {
4291 	time_t now = time_second;
4292 
4293 	key_flush_spd(now);
4294 	key_flush_sad(now);
4295 	key_flush_acq(now);
4296 	key_flush_spacq(now);
4297 
4298 #ifndef IPSEC_DEBUG2
4299 	/* do exchange to tick time !! */
4300 	(void)timeout((void *)key_timehandler, (void *)0, hz);
4301 #endif /* IPSEC_DEBUG2 */
4302 }
4303 
4304 u_long
4305 key_random()
4306 {
4307 	u_long value;
4308 
4309 	key_randomfill(&value, sizeof(value));
4310 	return value;
4311 }
4312 
4313 void
4314 key_randomfill(p, l)
4315 	void *p;
4316 	size_t l;
4317 {
4318 	size_t n;
4319 	u_long v;
4320 	static int warn = 1;
4321 
4322 	n = 0;
4323 	n = (size_t)read_random(p, (u_int)l);
4324 	/* last resort */
4325 	while (n < l) {
4326 		v = random();
4327 		bcopy(&v, (u_int8_t *)p + n,
4328 		    l - n < sizeof(v) ? l - n : sizeof(v));
4329 		n += sizeof(v);
4330 
4331 		if (warn) {
4332 			printf("WARNING: pseudo-random number generator "
4333 			    "used for IPsec processing\n");
4334 			warn = 0;
4335 		}
4336 	}
4337 }
4338 
4339 /*
4340  * map SADB_SATYPE_* to IPPROTO_*.
4341  * if satype == SADB_SATYPE then satype is mapped to ~0.
4342  * OUT:
4343  *	0: invalid satype.
4344  */
4345 static u_int16_t
4346 key_satype2proto(satype)
4347 	u_int8_t satype;
4348 {
4349 	switch (satype) {
4350 	case SADB_SATYPE_UNSPEC:
4351 		return IPSEC_PROTO_ANY;
4352 	case SADB_SATYPE_AH:
4353 		return IPPROTO_AH;
4354 	case SADB_SATYPE_ESP:
4355 		return IPPROTO_ESP;
4356 	case SADB_X_SATYPE_IPCOMP:
4357 		return IPPROTO_IPCOMP;
4358 	case SADB_X_SATYPE_TCPSIGNATURE:
4359 		return IPPROTO_TCP;
4360 	default:
4361 		return 0;
4362 	}
4363 	/* NOTREACHED */
4364 }
4365 
4366 /*
4367  * map IPPROTO_* to SADB_SATYPE_*
4368  * OUT:
4369  *	0: invalid protocol type.
4370  */
4371 static u_int8_t
4372 key_proto2satype(proto)
4373 	u_int16_t proto;
4374 {
4375 	switch (proto) {
4376 	case IPPROTO_AH:
4377 		return SADB_SATYPE_AH;
4378 	case IPPROTO_ESP:
4379 		return SADB_SATYPE_ESP;
4380 	case IPPROTO_IPCOMP:
4381 		return SADB_X_SATYPE_IPCOMP;
4382 	case IPPROTO_TCP:
4383 		return SADB_X_SATYPE_TCPSIGNATURE;
4384 	default:
4385 		return 0;
4386 	}
4387 	/* NOTREACHED */
4388 }
4389 
4390 /* %%% PF_KEY */
4391 /*
4392  * SADB_GETSPI processing is to receive
4393  *	<base, (SA2), src address, dst address, (SPI range)>
4394  * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4395  * tree with the status of LARVAL, and send
4396  *	<base, SA(*), address(SD)>
4397  * to the IKMPd.
4398  *
4399  * IN:	mhp: pointer to the pointer to each header.
4400  * OUT:	NULL if fail.
4401  *	other if success, return pointer to the message to send.
4402  */
4403 static int
4404 key_getspi(so, m, mhp)
4405 	struct socket *so;
4406 	struct mbuf *m;
4407 	const struct sadb_msghdr *mhp;
4408 {
4409 	struct sadb_address *src0, *dst0;
4410 	struct secasindex saidx;
4411 	struct secashead *newsah;
4412 	struct secasvar *newsav;
4413 	u_int8_t proto;
4414 	u_int32_t spi;
4415 	u_int8_t mode;
4416 	u_int32_t reqid;
4417 	int error;
4418 
4419 	IPSEC_ASSERT(so != NULL, ("null socket"));
4420 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4421 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4422 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4423 
4424 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4425 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4426 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4427 			__func__));
4428 		return key_senderror(so, m, EINVAL);
4429 	}
4430 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4431 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4432 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4433 			__func__));
4434 		return key_senderror(so, m, EINVAL);
4435 	}
4436 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4437 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4438 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4439 	} else {
4440 		mode = IPSEC_MODE_ANY;
4441 		reqid = 0;
4442 	}
4443 
4444 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4445 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4446 
4447 	/* map satype to proto */
4448 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4449 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4450 			__func__));
4451 		return key_senderror(so, m, EINVAL);
4452 	}
4453 
4454 	/* make sure if port number is zero. */
4455 	switch (((struct sockaddr *)(src0 + 1))->sa_family) {
4456 	case AF_INET:
4457 		if (((struct sockaddr *)(src0 + 1))->sa_len !=
4458 		    sizeof(struct sockaddr_in))
4459 			return key_senderror(so, m, EINVAL);
4460 		((struct sockaddr_in *)(src0 + 1))->sin_port = 0;
4461 		break;
4462 	case AF_INET6:
4463 		if (((struct sockaddr *)(src0 + 1))->sa_len !=
4464 		    sizeof(struct sockaddr_in6))
4465 			return key_senderror(so, m, EINVAL);
4466 		((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0;
4467 		break;
4468 	default:
4469 		; /*???*/
4470 	}
4471 	switch (((struct sockaddr *)(dst0 + 1))->sa_family) {
4472 	case AF_INET:
4473 		if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4474 		    sizeof(struct sockaddr_in))
4475 			return key_senderror(so, m, EINVAL);
4476 		((struct sockaddr_in *)(dst0 + 1))->sin_port = 0;
4477 		break;
4478 	case AF_INET6:
4479 		if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4480 		    sizeof(struct sockaddr_in6))
4481 			return key_senderror(so, m, EINVAL);
4482 		((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0;
4483 		break;
4484 	default:
4485 		; /*???*/
4486 	}
4487 
4488 	/* XXX boundary check against sa_len */
4489 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4490 
4491 	/* SPI allocation */
4492 	spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4493 	                       &saidx);
4494 	if (spi == 0)
4495 		return key_senderror(so, m, EINVAL);
4496 
4497 	/* get a SA index */
4498 	if ((newsah = key_getsah(&saidx)) == NULL) {
4499 		/* create a new SA index */
4500 		if ((newsah = key_newsah(&saidx)) == NULL) {
4501 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
4502 			return key_senderror(so, m, ENOBUFS);
4503 		}
4504 	}
4505 
4506 	/* get a new SA */
4507 	/* XXX rewrite */
4508 	newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4509 	if (newsav == NULL) {
4510 		/* XXX don't free new SA index allocated in above. */
4511 		return key_senderror(so, m, error);
4512 	}
4513 
4514 	/* set spi */
4515 	newsav->spi = htonl(spi);
4516 
4517 	/* delete the entry in acqtree */
4518 	if (mhp->msg->sadb_msg_seq != 0) {
4519 		struct secacq *acq;
4520 		if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) {
4521 			/* reset counter in order to deletion by timehandler. */
4522 			acq->created = time_second;
4523 			acq->count = 0;
4524 		}
4525     	}
4526 
4527     {
4528 	struct mbuf *n, *nn;
4529 	struct sadb_sa *m_sa;
4530 	struct sadb_msg *newmsg;
4531 	int off, len;
4532 
4533 	/* create new sadb_msg to reply. */
4534 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4535 	    PFKEY_ALIGN8(sizeof(struct sadb_sa));
4536 
4537 	MGETHDR(n, M_DONTWAIT, MT_DATA);
4538 	if (len > MHLEN) {
4539 		MCLGET(n, M_DONTWAIT);
4540 		if ((n->m_flags & M_EXT) == 0) {
4541 			m_freem(n);
4542 			n = NULL;
4543 		}
4544 	}
4545 	if (!n)
4546 		return key_senderror(so, m, ENOBUFS);
4547 
4548 	n->m_len = len;
4549 	n->m_next = NULL;
4550 	off = 0;
4551 
4552 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
4553 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4554 
4555 	m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off);
4556 	m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4557 	m_sa->sadb_sa_exttype = SADB_EXT_SA;
4558 	m_sa->sadb_sa_spi = htonl(spi);
4559 	off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4560 
4561 	IPSEC_ASSERT(off == len,
4562 		("length inconsistency (off %u len %u)", off, len));
4563 
4564 	n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4565 	    SADB_EXT_ADDRESS_DST);
4566 	if (!n->m_next) {
4567 		m_freem(n);
4568 		return key_senderror(so, m, ENOBUFS);
4569 	}
4570 
4571 	if (n->m_len < sizeof(struct sadb_msg)) {
4572 		n = m_pullup(n, sizeof(struct sadb_msg));
4573 		if (n == NULL)
4574 			return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
4575 	}
4576 
4577 	n->m_pkthdr.len = 0;
4578 	for (nn = n; nn; nn = nn->m_next)
4579 		n->m_pkthdr.len += nn->m_len;
4580 
4581 	newmsg = mtod(n, struct sadb_msg *);
4582 	newmsg->sadb_msg_seq = newsav->seq;
4583 	newmsg->sadb_msg_errno = 0;
4584 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
4585 
4586 	m_freem(m);
4587 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
4588     }
4589 }
4590 
4591 /*
4592  * allocating new SPI
4593  * called by key_getspi().
4594  * OUT:
4595  *	0:	failure.
4596  *	others: success.
4597  */
4598 static u_int32_t
4599 key_do_getnewspi(spirange, saidx)
4600 	struct sadb_spirange *spirange;
4601 	struct secasindex *saidx;
4602 {
4603 	u_int32_t newspi;
4604 	u_int32_t min, max;
4605 	int count = key_spi_trycnt;
4606 
4607 	/* set spi range to allocate */
4608 	if (spirange != NULL) {
4609 		min = spirange->sadb_spirange_min;
4610 		max = spirange->sadb_spirange_max;
4611 	} else {
4612 		min = key_spi_minval;
4613 		max = key_spi_maxval;
4614 	}
4615 	/* IPCOMP needs 2-byte SPI */
4616 	if (saidx->proto == IPPROTO_IPCOMP) {
4617 		u_int32_t t;
4618 		if (min >= 0x10000)
4619 			min = 0xffff;
4620 		if (max >= 0x10000)
4621 			max = 0xffff;
4622 		if (min > max) {
4623 			t = min; min = max; max = t;
4624 		}
4625 	}
4626 
4627 	if (min == max) {
4628 		if (key_checkspidup(saidx, min) != NULL) {
4629 			ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n",
4630 				__func__, min));
4631 			return 0;
4632 		}
4633 
4634 		count--; /* taking one cost. */
4635 		newspi = min;
4636 
4637 	} else {
4638 
4639 		/* init SPI */
4640 		newspi = 0;
4641 
4642 		/* when requesting to allocate spi ranged */
4643 		while (count--) {
4644 			/* generate pseudo-random SPI value ranged. */
4645 			newspi = min + (key_random() % (max - min + 1));
4646 
4647 			if (key_checkspidup(saidx, newspi) == NULL)
4648 				break;
4649 		}
4650 
4651 		if (count == 0 || newspi == 0) {
4652 			ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n",
4653 				__func__));
4654 			return 0;
4655 		}
4656 	}
4657 
4658 	/* statistics */
4659 	keystat.getspi_count =
4660 		(keystat.getspi_count + key_spi_trycnt - count) / 2;
4661 
4662 	return newspi;
4663 }
4664 
4665 /*
4666  * SADB_UPDATE processing
4667  * receive
4668  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4669  *       key(AE), (identity(SD),) (sensitivity)>
4670  * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
4671  * and send
4672  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4673  *       (identity(SD),) (sensitivity)>
4674  * to the ikmpd.
4675  *
4676  * m will always be freed.
4677  */
4678 static int
4679 key_update(so, m, mhp)
4680 	struct socket *so;
4681 	struct mbuf *m;
4682 	const struct sadb_msghdr *mhp;
4683 {
4684 	struct sadb_sa *sa0;
4685 	struct sadb_address *src0, *dst0;
4686 	struct secasindex saidx;
4687 	struct secashead *sah;
4688 	struct secasvar *sav;
4689 	u_int16_t proto;
4690 	u_int8_t mode;
4691 	u_int32_t reqid;
4692 	int error;
4693 
4694 	IPSEC_ASSERT(so != NULL, ("null socket"));
4695 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4696 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4697 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4698 
4699 	/* map satype to proto */
4700 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4701 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4702 			__func__));
4703 		return key_senderror(so, m, EINVAL);
4704 	}
4705 
4706 	if (mhp->ext[SADB_EXT_SA] == NULL ||
4707 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4708 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
4709 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
4710 	     mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
4711 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
4712 	     mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
4713 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
4714 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
4715 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
4716 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
4717 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4718 			__func__));
4719 		return key_senderror(so, m, EINVAL);
4720 	}
4721 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
4722 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4723 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4724 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4725 			__func__));
4726 		return key_senderror(so, m, EINVAL);
4727 	}
4728 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4729 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4730 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4731 	} else {
4732 		mode = IPSEC_MODE_ANY;
4733 		reqid = 0;
4734 	}
4735 	/* XXX boundary checking for other extensions */
4736 
4737 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
4738 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4739 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4740 
4741 	/* XXX boundary check against sa_len */
4742 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4743 
4744 	/* get a SA header */
4745 	if ((sah = key_getsah(&saidx)) == NULL) {
4746 		ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__));
4747 		return key_senderror(so, m, ENOENT);
4748 	}
4749 
4750 	/* set spidx if there */
4751 	/* XXX rewrite */
4752 	error = key_setident(sah, m, mhp);
4753 	if (error)
4754 		return key_senderror(so, m, error);
4755 
4756 	/* find a SA with sequence number. */
4757 #ifdef IPSEC_DOSEQCHECK
4758 	if (mhp->msg->sadb_msg_seq != 0
4759 	 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) {
4760 		ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u "
4761 			"exists.\n", __func__, mhp->msg->sadb_msg_seq));
4762 		return key_senderror(so, m, ENOENT);
4763 	}
4764 #else
4765 	SAHTREE_LOCK();
4766 	sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
4767 	SAHTREE_UNLOCK();
4768 	if (sav == NULL) {
4769 		ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n",
4770 			__func__, (u_int32_t)ntohl(sa0->sadb_sa_spi)));
4771 		return key_senderror(so, m, EINVAL);
4772 	}
4773 #endif
4774 
4775 	/* validity check */
4776 	if (sav->sah->saidx.proto != proto) {
4777 		ipseclog((LOG_DEBUG, "%s: protocol mismatched "
4778 			"(DB=%u param=%u)\n", __func__,
4779 			sav->sah->saidx.proto, proto));
4780 		return key_senderror(so, m, EINVAL);
4781 	}
4782 #ifdef IPSEC_DOSEQCHECK
4783 	if (sav->spi != sa0->sadb_sa_spi) {
4784 		ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n",
4785 		    __func__,
4786 		    (u_int32_t)ntohl(sav->spi),
4787 		    (u_int32_t)ntohl(sa0->sadb_sa_spi)));
4788 		return key_senderror(so, m, EINVAL);
4789 	}
4790 #endif
4791 	if (sav->pid != mhp->msg->sadb_msg_pid) {
4792 		ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n",
4793 		    __func__, sav->pid, mhp->msg->sadb_msg_pid));
4794 		return key_senderror(so, m, EINVAL);
4795 	}
4796 
4797 	/* copy sav values */
4798 	error = key_setsaval(sav, m, mhp);
4799 	if (error) {
4800 		KEY_FREESAV(&sav);
4801 		return key_senderror(so, m, error);
4802 	}
4803 
4804 	/* check SA values to be mature. */
4805 	if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) {
4806 		KEY_FREESAV(&sav);
4807 		return key_senderror(so, m, 0);
4808 	}
4809 
4810     {
4811 	struct mbuf *n;
4812 
4813 	/* set msg buf from mhp */
4814 	n = key_getmsgbuf_x1(m, mhp);
4815 	if (n == NULL) {
4816 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
4817 		return key_senderror(so, m, ENOBUFS);
4818 	}
4819 
4820 	m_freem(m);
4821 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
4822     }
4823 }
4824 
4825 /*
4826  * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
4827  * only called by key_update().
4828  * OUT:
4829  *	NULL	: not found
4830  *	others	: found, pointer to a SA.
4831  */
4832 #ifdef IPSEC_DOSEQCHECK
4833 static struct secasvar *
4834 key_getsavbyseq(sah, seq)
4835 	struct secashead *sah;
4836 	u_int32_t seq;
4837 {
4838 	struct secasvar *sav;
4839 	u_int state;
4840 
4841 	state = SADB_SASTATE_LARVAL;
4842 
4843 	/* search SAD with sequence number ? */
4844 	LIST_FOREACH(sav, &sah->savtree[state], chain) {
4845 
4846 		KEY_CHKSASTATE(state, sav->state, __func__);
4847 
4848 		if (sav->seq == seq) {
4849 			sa_addref(sav);
4850 			KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
4851 				printf("DP %s cause refcnt++:%d SA:%p\n",
4852 					__func__, sav->refcnt, sav));
4853 			return sav;
4854 		}
4855 	}
4856 
4857 	return NULL;
4858 }
4859 #endif
4860 
4861 /*
4862  * SADB_ADD processing
4863  * add an entry to SA database, when received
4864  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4865  *       key(AE), (identity(SD),) (sensitivity)>
4866  * from the ikmpd,
4867  * and send
4868  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4869  *       (identity(SD),) (sensitivity)>
4870  * to the ikmpd.
4871  *
4872  * IGNORE identity and sensitivity messages.
4873  *
4874  * m will always be freed.
4875  */
4876 static int
4877 key_add(so, m, mhp)
4878 	struct socket *so;
4879 	struct mbuf *m;
4880 	const struct sadb_msghdr *mhp;
4881 {
4882 	struct sadb_sa *sa0;
4883 	struct sadb_address *src0, *dst0;
4884 	struct secasindex saidx;
4885 	struct secashead *newsah;
4886 	struct secasvar *newsav;
4887 	u_int16_t proto;
4888 	u_int8_t mode;
4889 	u_int32_t reqid;
4890 	int error;
4891 
4892 	IPSEC_ASSERT(so != NULL, ("null socket"));
4893 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4894 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4895 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4896 
4897 	/* map satype to proto */
4898 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4899 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4900 			__func__));
4901 		return key_senderror(so, m, EINVAL);
4902 	}
4903 
4904 	if (mhp->ext[SADB_EXT_SA] == NULL ||
4905 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4906 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
4907 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
4908 	     mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
4909 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
4910 	     mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
4911 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
4912 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
4913 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
4914 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
4915 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4916 			__func__));
4917 		return key_senderror(so, m, EINVAL);
4918 	}
4919 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
4920 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4921 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4922 		/* XXX need more */
4923 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4924 			__func__));
4925 		return key_senderror(so, m, EINVAL);
4926 	}
4927 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4928 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4929 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4930 	} else {
4931 		mode = IPSEC_MODE_ANY;
4932 		reqid = 0;
4933 	}
4934 
4935 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
4936 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
4937 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
4938 
4939 	/* XXX boundary check against sa_len */
4940 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4941 
4942 	/* get a SA header */
4943 	if ((newsah = key_getsah(&saidx)) == NULL) {
4944 		/* create a new SA header */
4945 		if ((newsah = key_newsah(&saidx)) == NULL) {
4946 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
4947 			return key_senderror(so, m, ENOBUFS);
4948 		}
4949 	}
4950 
4951 	/* set spidx if there */
4952 	/* XXX rewrite */
4953 	error = key_setident(newsah, m, mhp);
4954 	if (error) {
4955 		return key_senderror(so, m, error);
4956 	}
4957 
4958 	/* create new SA entry. */
4959 	/* We can create new SA only if SPI is differenct. */
4960 	SAHTREE_LOCK();
4961 	newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi);
4962 	SAHTREE_UNLOCK();
4963 	if (newsav != NULL) {
4964 		ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__));
4965 		return key_senderror(so, m, EEXIST);
4966 	}
4967 	newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4968 	if (newsav == NULL) {
4969 		return key_senderror(so, m, error);
4970 	}
4971 
4972 	/* check SA values to be mature. */
4973 	if ((error = key_mature(newsav)) != 0) {
4974 		KEY_FREESAV(&newsav);
4975 		return key_senderror(so, m, error);
4976 	}
4977 
4978 	/*
4979 	 * don't call key_freesav() here, as we would like to keep the SA
4980 	 * in the database on success.
4981 	 */
4982 
4983     {
4984 	struct mbuf *n;
4985 
4986 	/* set msg buf from mhp */
4987 	n = key_getmsgbuf_x1(m, mhp);
4988 	if (n == NULL) {
4989 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
4990 		return key_senderror(so, m, ENOBUFS);
4991 	}
4992 
4993 	m_freem(m);
4994 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
4995     }
4996 }
4997 
4998 /* m is retained */
4999 static int
5000 key_setident(sah, m, mhp)
5001 	struct secashead *sah;
5002 	struct mbuf *m;
5003 	const struct sadb_msghdr *mhp;
5004 {
5005 	const struct sadb_ident *idsrc, *iddst;
5006 	int idsrclen, iddstlen;
5007 
5008 	IPSEC_ASSERT(sah != NULL, ("null secashead"));
5009 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5010 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5011 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5012 
5013 	/* don't make buffer if not there */
5014 	if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5015 	    mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5016 		sah->idents = NULL;
5017 		sah->identd = NULL;
5018 		return 0;
5019 	}
5020 
5021 	if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5022 	    mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5023 		ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__));
5024 		return EINVAL;
5025 	}
5026 
5027 	idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5028 	iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5029 	idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5030 	iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5031 
5032 	/* validity check */
5033 	if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5034 		ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__));
5035 		return EINVAL;
5036 	}
5037 
5038 	switch (idsrc->sadb_ident_type) {
5039 	case SADB_IDENTTYPE_PREFIX:
5040 	case SADB_IDENTTYPE_FQDN:
5041 	case SADB_IDENTTYPE_USERFQDN:
5042 	default:
5043 		/* XXX do nothing */
5044 		sah->idents = NULL;
5045 		sah->identd = NULL;
5046 	 	return 0;
5047 	}
5048 
5049 	/* make structure */
5050 	sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5051 	if (sah->idents == NULL) {
5052 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5053 		return ENOBUFS;
5054 	}
5055 	sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5056 	if (sah->identd == NULL) {
5057 		free(sah->idents, M_IPSEC_MISC);
5058 		sah->idents = NULL;
5059 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5060 		return ENOBUFS;
5061 	}
5062 	sah->idents->type = idsrc->sadb_ident_type;
5063 	sah->idents->id = idsrc->sadb_ident_id;
5064 
5065 	sah->identd->type = iddst->sadb_ident_type;
5066 	sah->identd->id = iddst->sadb_ident_id;
5067 
5068 	return 0;
5069 }
5070 
5071 /*
5072  * m will not be freed on return.
5073  * it is caller's responsibility to free the result.
5074  */
5075 static struct mbuf *
5076 key_getmsgbuf_x1(m, mhp)
5077 	struct mbuf *m;
5078 	const struct sadb_msghdr *mhp;
5079 {
5080 	struct mbuf *n;
5081 
5082 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5083 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5084 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5085 
5086 	/* create new sadb_msg to reply. */
5087 	n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED,
5088 	    SADB_EXT_SA, SADB_X_EXT_SA2,
5089 	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5090 	    SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5091 	    SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST);
5092 	if (!n)
5093 		return NULL;
5094 
5095 	if (n->m_len < sizeof(struct sadb_msg)) {
5096 		n = m_pullup(n, sizeof(struct sadb_msg));
5097 		if (n == NULL)
5098 			return NULL;
5099 	}
5100 	mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5101 	mtod(n, struct sadb_msg *)->sadb_msg_len =
5102 	    PFKEY_UNIT64(n->m_pkthdr.len);
5103 
5104 	return n;
5105 }
5106 
5107 static int key_delete_all __P((struct socket *, struct mbuf *,
5108 	const struct sadb_msghdr *, u_int16_t));
5109 
5110 /*
5111  * SADB_DELETE processing
5112  * receive
5113  *   <base, SA(*), address(SD)>
5114  * from the ikmpd, and set SADB_SASTATE_DEAD,
5115  * and send,
5116  *   <base, SA(*), address(SD)>
5117  * to the ikmpd.
5118  *
5119  * m will always be freed.
5120  */
5121 static int
5122 key_delete(so, m, mhp)
5123 	struct socket *so;
5124 	struct mbuf *m;
5125 	const struct sadb_msghdr *mhp;
5126 {
5127 	struct sadb_sa *sa0;
5128 	struct sadb_address *src0, *dst0;
5129 	struct secasindex saidx;
5130 	struct secashead *sah;
5131 	struct secasvar *sav = NULL;
5132 	u_int16_t proto;
5133 
5134 	IPSEC_ASSERT(so != NULL, ("null socket"));
5135 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5136 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5137 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5138 
5139 	/* map satype to proto */
5140 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5141 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5142 			__func__));
5143 		return key_senderror(so, m, EINVAL);
5144 	}
5145 
5146 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5147 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5148 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5149 			__func__));
5150 		return key_senderror(so, m, EINVAL);
5151 	}
5152 
5153 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5154 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5155 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5156 			__func__));
5157 		return key_senderror(so, m, EINVAL);
5158 	}
5159 
5160 	if (mhp->ext[SADB_EXT_SA] == NULL) {
5161 		/*
5162 		 * Caller wants us to delete all non-LARVAL SAs
5163 		 * that match the src/dst.  This is used during
5164 		 * IKE INITIAL-CONTACT.
5165 		 */
5166 		ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__));
5167 		return key_delete_all(so, m, mhp, proto);
5168 	} else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5169 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5170 			__func__));
5171 		return key_senderror(so, m, EINVAL);
5172 	}
5173 
5174 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5175 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5176 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5177 
5178 	/* XXX boundary check against sa_len */
5179 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5180 
5181 	/* get a SA header */
5182 	SAHTREE_LOCK();
5183 	LIST_FOREACH(sah, &sahtree, chain) {
5184 		if (sah->state == SADB_SASTATE_DEAD)
5185 			continue;
5186 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5187 			continue;
5188 
5189 		/* get a SA with SPI. */
5190 		sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5191 		if (sav)
5192 			break;
5193 	}
5194 	if (sah == NULL) {
5195 		SAHTREE_UNLOCK();
5196 		ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5197 		return key_senderror(so, m, ENOENT);
5198 	}
5199 
5200 	key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5201 	SAHTREE_UNLOCK();
5202 	KEY_FREESAV(&sav);
5203 
5204     {
5205 	struct mbuf *n;
5206 	struct sadb_msg *newmsg;
5207 
5208 	/* create new sadb_msg to reply. */
5209 	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5210 	    SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5211 	if (!n)
5212 		return key_senderror(so, m, ENOBUFS);
5213 
5214 	if (n->m_len < sizeof(struct sadb_msg)) {
5215 		n = m_pullup(n, sizeof(struct sadb_msg));
5216 		if (n == NULL)
5217 			return key_senderror(so, m, ENOBUFS);
5218 	}
5219 	newmsg = mtod(n, struct sadb_msg *);
5220 	newmsg->sadb_msg_errno = 0;
5221 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5222 
5223 	m_freem(m);
5224 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5225     }
5226 }
5227 
5228 /*
5229  * delete all SAs for src/dst.  Called from key_delete().
5230  */
5231 static int
5232 key_delete_all(so, m, mhp, proto)
5233 	struct socket *so;
5234 	struct mbuf *m;
5235 	const struct sadb_msghdr *mhp;
5236 	u_int16_t proto;
5237 {
5238 	struct sadb_address *src0, *dst0;
5239 	struct secasindex saidx;
5240 	struct secashead *sah;
5241 	struct secasvar *sav, *nextsav;
5242 	u_int stateidx, state;
5243 
5244 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5245 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5246 
5247 	/* XXX boundary check against sa_len */
5248 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5249 
5250 	SAHTREE_LOCK();
5251 	LIST_FOREACH(sah, &sahtree, chain) {
5252 		if (sah->state == SADB_SASTATE_DEAD)
5253 			continue;
5254 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5255 			continue;
5256 
5257 		/* Delete all non-LARVAL SAs. */
5258 		for (stateidx = 0;
5259 		     stateidx < _ARRAYLEN(saorder_state_alive);
5260 		     stateidx++) {
5261 			state = saorder_state_alive[stateidx];
5262 			if (state == SADB_SASTATE_LARVAL)
5263 				continue;
5264 			for (sav = LIST_FIRST(&sah->savtree[state]);
5265 			     sav != NULL; sav = nextsav) {
5266 				nextsav = LIST_NEXT(sav, chain);
5267 				/* sanity check */
5268 				if (sav->state != state) {
5269 					ipseclog((LOG_DEBUG, "%s: invalid "
5270 						"sav->state (queue %d SA %d)\n",
5271 						__func__, state, sav->state));
5272 					continue;
5273 				}
5274 
5275 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5276 				KEY_FREESAV(&sav);
5277 			}
5278 		}
5279 	}
5280 	SAHTREE_UNLOCK();
5281     {
5282 	struct mbuf *n;
5283 	struct sadb_msg *newmsg;
5284 
5285 	/* create new sadb_msg to reply. */
5286 	n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5287 	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5288 	if (!n)
5289 		return key_senderror(so, m, ENOBUFS);
5290 
5291 	if (n->m_len < sizeof(struct sadb_msg)) {
5292 		n = m_pullup(n, sizeof(struct sadb_msg));
5293 		if (n == NULL)
5294 			return key_senderror(so, m, ENOBUFS);
5295 	}
5296 	newmsg = mtod(n, struct sadb_msg *);
5297 	newmsg->sadb_msg_errno = 0;
5298 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5299 
5300 	m_freem(m);
5301 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5302     }
5303 }
5304 
5305 /*
5306  * SADB_GET processing
5307  * receive
5308  *   <base, SA(*), address(SD)>
5309  * from the ikmpd, and get a SP and a SA to respond,
5310  * and send,
5311  *   <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5312  *       (identity(SD),) (sensitivity)>
5313  * to the ikmpd.
5314  *
5315  * m will always be freed.
5316  */
5317 static int
5318 key_get(so, m, mhp)
5319 	struct socket *so;
5320 	struct mbuf *m;
5321 	const struct sadb_msghdr *mhp;
5322 {
5323 	struct sadb_sa *sa0;
5324 	struct sadb_address *src0, *dst0;
5325 	struct secasindex saidx;
5326 	struct secashead *sah;
5327 	struct secasvar *sav = NULL;
5328 	u_int16_t proto;
5329 
5330 	IPSEC_ASSERT(so != NULL, ("null socket"));
5331 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5332 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5333 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5334 
5335 	/* map satype to proto */
5336 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5337 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5338 			__func__));
5339 		return key_senderror(so, m, EINVAL);
5340 	}
5341 
5342 	if (mhp->ext[SADB_EXT_SA] == NULL ||
5343 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5344 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5345 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5346 			__func__));
5347 		return key_senderror(so, m, EINVAL);
5348 	}
5349 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5350 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5351 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5352 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5353 			__func__));
5354 		return key_senderror(so, m, EINVAL);
5355 	}
5356 
5357 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5358 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5359 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5360 
5361 	/* XXX boundary check against sa_len */
5362 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5363 
5364 	/* get a SA header */
5365 	SAHTREE_LOCK();
5366 	LIST_FOREACH(sah, &sahtree, chain) {
5367 		if (sah->state == SADB_SASTATE_DEAD)
5368 			continue;
5369 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5370 			continue;
5371 
5372 		/* get a SA with SPI. */
5373 		sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5374 		if (sav)
5375 			break;
5376 	}
5377 	SAHTREE_UNLOCK();
5378 	if (sah == NULL) {
5379 		ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5380 		return key_senderror(so, m, ENOENT);
5381 	}
5382 
5383     {
5384 	struct mbuf *n;
5385 	u_int8_t satype;
5386 
5387 	/* map proto to satype */
5388 	if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
5389 		ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n",
5390 			__func__));
5391 		return key_senderror(so, m, EINVAL);
5392 	}
5393 
5394 	/* create new sadb_msg to reply. */
5395 	n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5396 	    mhp->msg->sadb_msg_pid);
5397 	if (!n)
5398 		return key_senderror(so, m, ENOBUFS);
5399 
5400 	m_freem(m);
5401 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5402     }
5403 }
5404 
5405 /* XXX make it sysctl-configurable? */
5406 static void
5407 key_getcomb_setlifetime(comb)
5408 	struct sadb_comb *comb;
5409 {
5410 
5411 	comb->sadb_comb_soft_allocations = 1;
5412 	comb->sadb_comb_hard_allocations = 1;
5413 	comb->sadb_comb_soft_bytes = 0;
5414 	comb->sadb_comb_hard_bytes = 0;
5415 	comb->sadb_comb_hard_addtime = 86400;	/* 1 day */
5416 	comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5417 	comb->sadb_comb_soft_usetime = 28800;	/* 8 hours */
5418 	comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
5419 }
5420 
5421 /*
5422  * XXX reorder combinations by preference
5423  * XXX no idea if the user wants ESP authentication or not
5424  */
5425 static struct mbuf *
5426 key_getcomb_esp()
5427 {
5428 	struct sadb_comb *comb;
5429 	struct enc_xform *algo;
5430 	struct mbuf *result = NULL, *m, *n;
5431 	int encmin;
5432 	int i, off, o;
5433 	int totlen;
5434 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5435 
5436 	m = NULL;
5437 	for (i = 1; i <= SADB_EALG_MAX; i++) {
5438 		algo = esp_algorithm_lookup(i);
5439 		if (algo == NULL)
5440 			continue;
5441 
5442 		/* discard algorithms with key size smaller than system min */
5443 		if (_BITS(algo->maxkey) < ipsec_esp_keymin)
5444 			continue;
5445 		if (_BITS(algo->minkey) < ipsec_esp_keymin)
5446 			encmin = ipsec_esp_keymin;
5447 		else
5448 			encmin = _BITS(algo->minkey);
5449 
5450 		if (ipsec_esp_auth)
5451 			m = key_getcomb_ah();
5452 		else {
5453 			IPSEC_ASSERT(l <= MLEN,
5454 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
5455 			MGET(m, M_DONTWAIT, MT_DATA);
5456 			if (m) {
5457 				M_ALIGN(m, l);
5458 				m->m_len = l;
5459 				m->m_next = NULL;
5460 				bzero(mtod(m, caddr_t), m->m_len);
5461 			}
5462 		}
5463 		if (!m)
5464 			goto fail;
5465 
5466 		totlen = 0;
5467 		for (n = m; n; n = n->m_next)
5468 			totlen += n->m_len;
5469 		IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l));
5470 
5471 		for (off = 0; off < totlen; off += l) {
5472 			n = m_pulldown(m, off, l, &o);
5473 			if (!n) {
5474 				/* m is already freed */
5475 				goto fail;
5476 			}
5477 			comb = (struct sadb_comb *)(mtod(n, caddr_t) + o);
5478 			bzero(comb, sizeof(*comb));
5479 			key_getcomb_setlifetime(comb);
5480 			comb->sadb_comb_encrypt = i;
5481 			comb->sadb_comb_encrypt_minbits = encmin;
5482 			comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
5483 		}
5484 
5485 		if (!result)
5486 			result = m;
5487 		else
5488 			m_cat(result, m);
5489 	}
5490 
5491 	return result;
5492 
5493  fail:
5494 	if (result)
5495 		m_freem(result);
5496 	return NULL;
5497 }
5498 
5499 static void
5500 key_getsizes_ah(
5501 	const struct auth_hash *ah,
5502 	int alg,
5503 	u_int16_t* min,
5504 	u_int16_t* max)
5505 {
5506 	*min = *max = ah->keysize;
5507 	if (ah->keysize == 0) {
5508 		/*
5509 		 * Transform takes arbitrary key size but algorithm
5510 		 * key size is restricted.  Enforce this here.
5511 		 */
5512 		switch (alg) {
5513 		case SADB_X_AALG_MD5:	*min = *max = 16; break;
5514 		case SADB_X_AALG_SHA:	*min = *max = 20; break;
5515 		case SADB_X_AALG_NULL:	*min = 1; *max = 256; break;
5516 		default:
5517 			DPRINTF(("%s: unknown AH algorithm %u\n",
5518 				__func__, alg));
5519 			break;
5520 		}
5521 	}
5522 }
5523 
5524 /*
5525  * XXX reorder combinations by preference
5526  */
5527 static struct mbuf *
5528 key_getcomb_ah()
5529 {
5530 	struct sadb_comb *comb;
5531 	struct auth_hash *algo;
5532 	struct mbuf *m;
5533 	u_int16_t minkeysize, maxkeysize;
5534 	int i;
5535 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5536 
5537 	m = NULL;
5538 	for (i = 1; i <= SADB_AALG_MAX; i++) {
5539 #if 1
5540 		/* we prefer HMAC algorithms, not old algorithms */
5541 		if (i != SADB_AALG_SHA1HMAC && i != SADB_AALG_MD5HMAC)
5542 			continue;
5543 #endif
5544 		algo = ah_algorithm_lookup(i);
5545 		if (!algo)
5546 			continue;
5547 		key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
5548 		/* discard algorithms with key size smaller than system min */
5549 		if (_BITS(minkeysize) < ipsec_ah_keymin)
5550 			continue;
5551 
5552 		if (!m) {
5553 			IPSEC_ASSERT(l <= MLEN,
5554 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
5555 			MGET(m, M_DONTWAIT, MT_DATA);
5556 			if (m) {
5557 				M_ALIGN(m, l);
5558 				m->m_len = l;
5559 				m->m_next = NULL;
5560 			}
5561 		} else
5562 			M_PREPEND(m, l, M_DONTWAIT);
5563 		if (!m)
5564 			return NULL;
5565 
5566 		comb = mtod(m, struct sadb_comb *);
5567 		bzero(comb, sizeof(*comb));
5568 		key_getcomb_setlifetime(comb);
5569 		comb->sadb_comb_auth = i;
5570 		comb->sadb_comb_auth_minbits = _BITS(minkeysize);
5571 		comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
5572 	}
5573 
5574 	return m;
5575 }
5576 
5577 /*
5578  * not really an official behavior.  discussed in pf_key@inner.net in Sep2000.
5579  * XXX reorder combinations by preference
5580  */
5581 static struct mbuf *
5582 key_getcomb_ipcomp()
5583 {
5584 	struct sadb_comb *comb;
5585 	struct comp_algo *algo;
5586 	struct mbuf *m;
5587 	int i;
5588 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5589 
5590 	m = NULL;
5591 	for (i = 1; i <= SADB_X_CALG_MAX; i++) {
5592 		algo = ipcomp_algorithm_lookup(i);
5593 		if (!algo)
5594 			continue;
5595 
5596 		if (!m) {
5597 			IPSEC_ASSERT(l <= MLEN,
5598 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
5599 			MGET(m, M_DONTWAIT, MT_DATA);
5600 			if (m) {
5601 				M_ALIGN(m, l);
5602 				m->m_len = l;
5603 				m->m_next = NULL;
5604 			}
5605 		} else
5606 			M_PREPEND(m, l, M_DONTWAIT);
5607 		if (!m)
5608 			return NULL;
5609 
5610 		comb = mtod(m, struct sadb_comb *);
5611 		bzero(comb, sizeof(*comb));
5612 		key_getcomb_setlifetime(comb);
5613 		comb->sadb_comb_encrypt = i;
5614 		/* what should we set into sadb_comb_*_{min,max}bits? */
5615 	}
5616 
5617 	return m;
5618 }
5619 
5620 /*
5621  * XXX no way to pass mode (transport/tunnel) to userland
5622  * XXX replay checking?
5623  * XXX sysctl interface to ipsec_{ah,esp}_keymin
5624  */
5625 static struct mbuf *
5626 key_getprop(saidx)
5627 	const struct secasindex *saidx;
5628 {
5629 	struct sadb_prop *prop;
5630 	struct mbuf *m, *n;
5631 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
5632 	int totlen;
5633 
5634 	switch (saidx->proto)  {
5635 	case IPPROTO_ESP:
5636 		m = key_getcomb_esp();
5637 		break;
5638 	case IPPROTO_AH:
5639 		m = key_getcomb_ah();
5640 		break;
5641 	case IPPROTO_IPCOMP:
5642 		m = key_getcomb_ipcomp();
5643 		break;
5644 	default:
5645 		return NULL;
5646 	}
5647 
5648 	if (!m)
5649 		return NULL;
5650 	M_PREPEND(m, l, M_DONTWAIT);
5651 	if (!m)
5652 		return NULL;
5653 
5654 	totlen = 0;
5655 	for (n = m; n; n = n->m_next)
5656 		totlen += n->m_len;
5657 
5658 	prop = mtod(m, struct sadb_prop *);
5659 	bzero(prop, sizeof(*prop));
5660 	prop->sadb_prop_len = PFKEY_UNIT64(totlen);
5661 	prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
5662 	prop->sadb_prop_replay = 32;	/* XXX */
5663 
5664 	return m;
5665 }
5666 
5667 /*
5668  * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
5669  * send
5670  *   <base, SA, address(SD), (address(P)), x_policy,
5671  *       (identity(SD),) (sensitivity,) proposal>
5672  * to KMD, and expect to receive
5673  *   <base> with SADB_ACQUIRE if error occured,
5674  * or
5675  *   <base, src address, dst address, (SPI range)> with SADB_GETSPI
5676  * from KMD by PF_KEY.
5677  *
5678  * XXX x_policy is outside of RFC2367 (KAME extension).
5679  * XXX sensitivity is not supported.
5680  * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
5681  * see comment for key_getcomb_ipcomp().
5682  *
5683  * OUT:
5684  *    0     : succeed
5685  *    others: error number
5686  */
5687 static int
5688 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
5689 {
5690 	struct mbuf *result = NULL, *m;
5691 	struct secacq *newacq;
5692 	u_int8_t satype;
5693 	int error = -1;
5694 	u_int32_t seq;
5695 
5696 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
5697 	satype = key_proto2satype(saidx->proto);
5698 	IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto));
5699 
5700 	/*
5701 	 * We never do anything about acquirng SA.  There is anather
5702 	 * solution that kernel blocks to send SADB_ACQUIRE message until
5703 	 * getting something message from IKEd.  In later case, to be
5704 	 * managed with ACQUIRING list.
5705 	 */
5706 	/* Get an entry to check whether sending message or not. */
5707 	if ((newacq = key_getacq(saidx)) != NULL) {
5708 		if (key_blockacq_count < newacq->count) {
5709 			/* reset counter and do send message. */
5710 			newacq->count = 0;
5711 		} else {
5712 			/* increment counter and do nothing. */
5713 			newacq->count++;
5714 			return 0;
5715 		}
5716 	} else {
5717 		/* make new entry for blocking to send SADB_ACQUIRE. */
5718 		if ((newacq = key_newacq(saidx)) == NULL)
5719 			return ENOBUFS;
5720 	}
5721 
5722 
5723 	seq = newacq->seq;
5724 	m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
5725 	if (!m) {
5726 		error = ENOBUFS;
5727 		goto fail;
5728 	}
5729 	result = m;
5730 
5731 	/* set sadb_address for saidx's. */
5732 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
5733 	    &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY);
5734 	if (!m) {
5735 		error = ENOBUFS;
5736 		goto fail;
5737 	}
5738 	m_cat(result, m);
5739 
5740 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
5741 	    &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY);
5742 	if (!m) {
5743 		error = ENOBUFS;
5744 		goto fail;
5745 	}
5746 	m_cat(result, m);
5747 
5748 	/* XXX proxy address (optional) */
5749 
5750 	/* set sadb_x_policy */
5751 	if (sp) {
5752 		m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
5753 		if (!m) {
5754 			error = ENOBUFS;
5755 			goto fail;
5756 		}
5757 		m_cat(result, m);
5758 	}
5759 
5760 	/* XXX identity (optional) */
5761 #if 0
5762 	if (idexttype && fqdn) {
5763 		/* create identity extension (FQDN) */
5764 		struct sadb_ident *id;
5765 		int fqdnlen;
5766 
5767 		fqdnlen = strlen(fqdn) + 1;	/* +1 for terminating-NUL */
5768 		id = (struct sadb_ident *)p;
5769 		bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
5770 		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
5771 		id->sadb_ident_exttype = idexttype;
5772 		id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
5773 		bcopy(fqdn, id + 1, fqdnlen);
5774 		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
5775 	}
5776 
5777 	if (idexttype) {
5778 		/* create identity extension (USERFQDN) */
5779 		struct sadb_ident *id;
5780 		int userfqdnlen;
5781 
5782 		if (userfqdn) {
5783 			/* +1 for terminating-NUL */
5784 			userfqdnlen = strlen(userfqdn) + 1;
5785 		} else
5786 			userfqdnlen = 0;
5787 		id = (struct sadb_ident *)p;
5788 		bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
5789 		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
5790 		id->sadb_ident_exttype = idexttype;
5791 		id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
5792 		/* XXX is it correct? */
5793 		if (curproc && curproc->p_cred)
5794 			id->sadb_ident_id = curproc->p_cred->p_ruid;
5795 		if (userfqdn && userfqdnlen)
5796 			bcopy(userfqdn, id + 1, userfqdnlen);
5797 		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
5798 	}
5799 #endif
5800 
5801 	/* XXX sensitivity (optional) */
5802 
5803 	/* create proposal/combination extension */
5804 	m = key_getprop(saidx);
5805 #if 0
5806 	/*
5807 	 * spec conformant: always attach proposal/combination extension,
5808 	 * the problem is that we have no way to attach it for ipcomp,
5809 	 * due to the way sadb_comb is declared in RFC2367.
5810 	 */
5811 	if (!m) {
5812 		error = ENOBUFS;
5813 		goto fail;
5814 	}
5815 	m_cat(result, m);
5816 #else
5817 	/*
5818 	 * outside of spec; make proposal/combination extension optional.
5819 	 */
5820 	if (m)
5821 		m_cat(result, m);
5822 #endif
5823 
5824 	if ((result->m_flags & M_PKTHDR) == 0) {
5825 		error = EINVAL;
5826 		goto fail;
5827 	}
5828 
5829 	if (result->m_len < sizeof(struct sadb_msg)) {
5830 		result = m_pullup(result, sizeof(struct sadb_msg));
5831 		if (result == NULL) {
5832 			error = ENOBUFS;
5833 			goto fail;
5834 		}
5835 	}
5836 
5837 	result->m_pkthdr.len = 0;
5838 	for (m = result; m; m = m->m_next)
5839 		result->m_pkthdr.len += m->m_len;
5840 
5841 	mtod(result, struct sadb_msg *)->sadb_msg_len =
5842 	    PFKEY_UNIT64(result->m_pkthdr.len);
5843 
5844 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
5845 
5846  fail:
5847 	if (result)
5848 		m_freem(result);
5849 	return error;
5850 }
5851 
5852 static struct secacq *
5853 key_newacq(const struct secasindex *saidx)
5854 {
5855 	struct secacq *newacq;
5856 
5857 	/* get new entry */
5858 	newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
5859 	if (newacq == NULL) {
5860 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5861 		return NULL;
5862 	}
5863 
5864 	/* copy secindex */
5865 	bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx));
5866 	newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
5867 	newacq->created = time_second;
5868 	newacq->count = 0;
5869 
5870 	/* add to acqtree */
5871 	ACQ_LOCK();
5872 	LIST_INSERT_HEAD(&acqtree, newacq, chain);
5873 	ACQ_UNLOCK();
5874 
5875 	return newacq;
5876 }
5877 
5878 static struct secacq *
5879 key_getacq(const struct secasindex *saidx)
5880 {
5881 	struct secacq *acq;
5882 
5883 	ACQ_LOCK();
5884 	LIST_FOREACH(acq, &acqtree, chain) {
5885 		if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY))
5886 			break;
5887 	}
5888 	ACQ_UNLOCK();
5889 
5890 	return acq;
5891 }
5892 
5893 static struct secacq *
5894 key_getacqbyseq(seq)
5895 	u_int32_t seq;
5896 {
5897 	struct secacq *acq;
5898 
5899 	ACQ_LOCK();
5900 	LIST_FOREACH(acq, &acqtree, chain) {
5901 		if (acq->seq == seq)
5902 			break;
5903 	}
5904 	ACQ_UNLOCK();
5905 
5906 	return acq;
5907 }
5908 
5909 static struct secspacq *
5910 key_newspacq(spidx)
5911 	struct secpolicyindex *spidx;
5912 {
5913 	struct secspacq *acq;
5914 
5915 	/* get new entry */
5916 	acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
5917 	if (acq == NULL) {
5918 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5919 		return NULL;
5920 	}
5921 
5922 	/* copy secindex */
5923 	bcopy(spidx, &acq->spidx, sizeof(acq->spidx));
5924 	acq->created = time_second;
5925 	acq->count = 0;
5926 
5927 	/* add to spacqtree */
5928 	SPACQ_LOCK();
5929 	LIST_INSERT_HEAD(&spacqtree, acq, chain);
5930 	SPACQ_UNLOCK();
5931 
5932 	return acq;
5933 }
5934 
5935 static struct secspacq *
5936 key_getspacq(spidx)
5937 	struct secpolicyindex *spidx;
5938 {
5939 	struct secspacq *acq;
5940 
5941 	SPACQ_LOCK();
5942 	LIST_FOREACH(acq, &spacqtree, chain) {
5943 		if (key_cmpspidx_exactly(spidx, &acq->spidx)) {
5944 			/* NB: return holding spacq_lock */
5945 			return acq;
5946 		}
5947 	}
5948 	SPACQ_UNLOCK();
5949 
5950 	return NULL;
5951 }
5952 
5953 /*
5954  * SADB_ACQUIRE processing,
5955  * in first situation, is receiving
5956  *   <base>
5957  * from the ikmpd, and clear sequence of its secasvar entry.
5958  *
5959  * In second situation, is receiving
5960  *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
5961  * from a user land process, and return
5962  *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
5963  * to the socket.
5964  *
5965  * m will always be freed.
5966  */
5967 static int
5968 key_acquire2(so, m, mhp)
5969 	struct socket *so;
5970 	struct mbuf *m;
5971 	const struct sadb_msghdr *mhp;
5972 {
5973 	const struct sadb_address *src0, *dst0;
5974 	struct secasindex saidx;
5975 	struct secashead *sah;
5976 	u_int16_t proto;
5977 	int error;
5978 
5979 	IPSEC_ASSERT(so != NULL, ("null socket"));
5980 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5981 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5982 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5983 
5984 	/*
5985 	 * Error message from KMd.
5986 	 * We assume that if error was occured in IKEd, the length of PFKEY
5987 	 * message is equal to the size of sadb_msg structure.
5988 	 * We do not raise error even if error occured in this function.
5989 	 */
5990 	if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
5991 		struct secacq *acq;
5992 
5993 		/* check sequence number */
5994 		if (mhp->msg->sadb_msg_seq == 0) {
5995 			ipseclog((LOG_DEBUG, "%s: must specify sequence "
5996 				"number.\n", __func__));
5997 			m_freem(m);
5998 			return 0;
5999 		}
6000 
6001 		if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) {
6002 			/*
6003 			 * the specified larval SA is already gone, or we got
6004 			 * a bogus sequence number.  we can silently ignore it.
6005 			 */
6006 			m_freem(m);
6007 			return 0;
6008 		}
6009 
6010 		/* reset acq counter in order to deletion by timehander. */
6011 		acq->created = time_second;
6012 		acq->count = 0;
6013 		m_freem(m);
6014 		return 0;
6015 	}
6016 
6017 	/*
6018 	 * This message is from user land.
6019 	 */
6020 
6021 	/* map satype to proto */
6022 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6023 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6024 			__func__));
6025 		return key_senderror(so, m, EINVAL);
6026 	}
6027 
6028 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6029 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6030 	    mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6031 		/* error */
6032 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
6033 			__func__));
6034 		return key_senderror(so, m, EINVAL);
6035 	}
6036 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6037 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6038 	    mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6039 		/* error */
6040 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
6041 			__func__));
6042 		return key_senderror(so, m, EINVAL);
6043 	}
6044 
6045 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
6046 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
6047 
6048 	/* XXX boundary check against sa_len */
6049 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
6050 
6051 	/* get a SA index */
6052 	SAHTREE_LOCK();
6053 	LIST_FOREACH(sah, &sahtree, chain) {
6054 		if (sah->state == SADB_SASTATE_DEAD)
6055 			continue;
6056 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID))
6057 			break;
6058 	}
6059 	SAHTREE_UNLOCK();
6060 	if (sah != NULL) {
6061 		ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__));
6062 		return key_senderror(so, m, EEXIST);
6063 	}
6064 
6065 	error = key_acquire(&saidx, NULL);
6066 	if (error != 0) {
6067 		ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
6068 			__func__, mhp->msg->sadb_msg_errno));
6069 		return key_senderror(so, m, error);
6070 	}
6071 
6072 	return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6073 }
6074 
6075 /*
6076  * SADB_REGISTER processing.
6077  * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6078  * receive
6079  *   <base>
6080  * from the ikmpd, and register a socket to send PF_KEY messages,
6081  * and send
6082  *   <base, supported>
6083  * to KMD by PF_KEY.
6084  * If socket is detached, must free from regnode.
6085  *
6086  * m will always be freed.
6087  */
6088 static int
6089 key_register(so, m, mhp)
6090 	struct socket *so;
6091 	struct mbuf *m;
6092 	const struct sadb_msghdr *mhp;
6093 {
6094 	struct secreg *reg, *newreg = 0;
6095 
6096 	IPSEC_ASSERT(so != NULL, ("null socket"));
6097 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6098 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6099 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6100 
6101 	/* check for invalid register message */
6102 	if (mhp->msg->sadb_msg_satype >= sizeof(regtree)/sizeof(regtree[0]))
6103 		return key_senderror(so, m, EINVAL);
6104 
6105 	/* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6106 	if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6107 		goto setmsg;
6108 
6109 	/* check whether existing or not */
6110 	REGTREE_LOCK();
6111 	LIST_FOREACH(reg, &regtree[mhp->msg->sadb_msg_satype], chain) {
6112 		if (reg->so == so) {
6113 			REGTREE_UNLOCK();
6114 			ipseclog((LOG_DEBUG, "%s: socket exists already.\n",
6115 				__func__));
6116 			return key_senderror(so, m, EEXIST);
6117 		}
6118 	}
6119 
6120 	/* create regnode */
6121 	newreg =  malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO);
6122 	if (newreg == NULL) {
6123 		REGTREE_UNLOCK();
6124 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6125 		return key_senderror(so, m, ENOBUFS);
6126 	}
6127 
6128 	newreg->so = so;
6129 	((struct keycb *)sotorawcb(so))->kp_registered++;
6130 
6131 	/* add regnode to regtree. */
6132 	LIST_INSERT_HEAD(&regtree[mhp->msg->sadb_msg_satype], newreg, chain);
6133 	REGTREE_UNLOCK();
6134 
6135   setmsg:
6136     {
6137 	struct mbuf *n;
6138 	struct sadb_msg *newmsg;
6139 	struct sadb_supported *sup;
6140 	u_int len, alen, elen;
6141 	int off;
6142 	int i;
6143 	struct sadb_alg *alg;
6144 
6145 	/* create new sadb_msg to reply. */
6146 	alen = 0;
6147 	for (i = 1; i <= SADB_AALG_MAX; i++) {
6148 		if (ah_algorithm_lookup(i))
6149 			alen += sizeof(struct sadb_alg);
6150 	}
6151 	if (alen)
6152 		alen += sizeof(struct sadb_supported);
6153 	elen = 0;
6154 	for (i = 1; i <= SADB_EALG_MAX; i++) {
6155 		if (esp_algorithm_lookup(i))
6156 			elen += sizeof(struct sadb_alg);
6157 	}
6158 	if (elen)
6159 		elen += sizeof(struct sadb_supported);
6160 
6161 	len = sizeof(struct sadb_msg) + alen + elen;
6162 
6163 	if (len > MCLBYTES)
6164 		return key_senderror(so, m, ENOBUFS);
6165 
6166 	MGETHDR(n, M_DONTWAIT, MT_DATA);
6167 	if (len > MHLEN) {
6168 		MCLGET(n, M_DONTWAIT);
6169 		if ((n->m_flags & M_EXT) == 0) {
6170 			m_freem(n);
6171 			n = NULL;
6172 		}
6173 	}
6174 	if (!n)
6175 		return key_senderror(so, m, ENOBUFS);
6176 
6177 	n->m_pkthdr.len = n->m_len = len;
6178 	n->m_next = NULL;
6179 	off = 0;
6180 
6181 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
6182 	newmsg = mtod(n, struct sadb_msg *);
6183 	newmsg->sadb_msg_errno = 0;
6184 	newmsg->sadb_msg_len = PFKEY_UNIT64(len);
6185 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6186 
6187 	/* for authentication algorithm */
6188 	if (alen) {
6189 		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6190 		sup->sadb_supported_len = PFKEY_UNIT64(alen);
6191 		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6192 		off += PFKEY_ALIGN8(sizeof(*sup));
6193 
6194 		for (i = 1; i <= SADB_AALG_MAX; i++) {
6195 			struct auth_hash *aalgo;
6196 			u_int16_t minkeysize, maxkeysize;
6197 
6198 			aalgo = ah_algorithm_lookup(i);
6199 			if (!aalgo)
6200 				continue;
6201 			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6202 			alg->sadb_alg_id = i;
6203 			alg->sadb_alg_ivlen = 0;
6204 			key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6205 			alg->sadb_alg_minbits = _BITS(minkeysize);
6206 			alg->sadb_alg_maxbits = _BITS(maxkeysize);
6207 			off += PFKEY_ALIGN8(sizeof(*alg));
6208 		}
6209 	}
6210 
6211 	/* for encryption algorithm */
6212 	if (elen) {
6213 		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6214 		sup->sadb_supported_len = PFKEY_UNIT64(elen);
6215 		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6216 		off += PFKEY_ALIGN8(sizeof(*sup));
6217 
6218 		for (i = 1; i <= SADB_EALG_MAX; i++) {
6219 			struct enc_xform *ealgo;
6220 
6221 			ealgo = esp_algorithm_lookup(i);
6222 			if (!ealgo)
6223 				continue;
6224 			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6225 			alg->sadb_alg_id = i;
6226 			alg->sadb_alg_ivlen = ealgo->blocksize;
6227 			alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6228 			alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6229 			off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6230 		}
6231 	}
6232 
6233 	IPSEC_ASSERT(off == len,
6234 		("length assumption failed (off %u len %u)", off, len));
6235 
6236 	m_freem(m);
6237 	return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6238     }
6239 }
6240 
6241 /*
6242  * free secreg entry registered.
6243  * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6244  */
6245 void
6246 key_freereg(struct socket *so)
6247 {
6248 	struct secreg *reg;
6249 	int i;
6250 
6251 	IPSEC_ASSERT(so != NULL, ("NULL so"));
6252 
6253 	/*
6254 	 * check whether existing or not.
6255 	 * check all type of SA, because there is a potential that
6256 	 * one socket is registered to multiple type of SA.
6257 	 */
6258 	REGTREE_LOCK();
6259 	for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6260 		LIST_FOREACH(reg, &regtree[i], chain) {
6261 			if (reg->so == so && __LIST_CHAINED(reg)) {
6262 				LIST_REMOVE(reg, chain);
6263 				free(reg, M_IPSEC_SAR);
6264 				break;
6265 			}
6266 		}
6267 	}
6268 	REGTREE_UNLOCK();
6269 }
6270 
6271 /*
6272  * SADB_EXPIRE processing
6273  * send
6274  *   <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6275  * to KMD by PF_KEY.
6276  * NOTE: We send only soft lifetime extension.
6277  *
6278  * OUT:	0	: succeed
6279  *	others	: error number
6280  */
6281 static int
6282 key_expire(struct secasvar *sav)
6283 {
6284 	int s;
6285 	int satype;
6286 	struct mbuf *result = NULL, *m;
6287 	int len;
6288 	int error = -1;
6289 	struct sadb_lifetime *lt;
6290 
6291 	/* XXX: Why do we lock ? */
6292 	s = splnet();	/*called from softclock()*/
6293 
6294 	IPSEC_ASSERT (sav != NULL, ("null sav"));
6295 	IPSEC_ASSERT (sav->sah != NULL, ("null sa header"));
6296 
6297 	/* set msg header */
6298 	satype = key_proto2satype(sav->sah->saidx.proto);
6299 	IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype));
6300 	m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6301 	if (!m) {
6302 		error = ENOBUFS;
6303 		goto fail;
6304 	}
6305 	result = m;
6306 
6307 	/* create SA extension */
6308 	m = key_setsadbsa(sav);
6309 	if (!m) {
6310 		error = ENOBUFS;
6311 		goto fail;
6312 	}
6313 	m_cat(result, m);
6314 
6315 	/* create SA extension */
6316 	m = key_setsadbxsa2(sav->sah->saidx.mode,
6317 			sav->replay ? sav->replay->count : 0,
6318 			sav->sah->saidx.reqid);
6319 	if (!m) {
6320 		error = ENOBUFS;
6321 		goto fail;
6322 	}
6323 	m_cat(result, m);
6324 
6325 	/* create lifetime extension (current and soft) */
6326 	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6327 	m = key_alloc_mbuf(len);
6328 	if (!m || m->m_next) {	/*XXX*/
6329 		if (m)
6330 			m_freem(m);
6331 		error = ENOBUFS;
6332 		goto fail;
6333 	}
6334 	bzero(mtod(m, caddr_t), len);
6335 	lt = mtod(m, struct sadb_lifetime *);
6336 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6337 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6338 	lt->sadb_lifetime_allocations = sav->lft_c->allocations;
6339 	lt->sadb_lifetime_bytes = sav->lft_c->bytes;
6340 	lt->sadb_lifetime_addtime = sav->lft_c->addtime;
6341 	lt->sadb_lifetime_usetime = sav->lft_c->usetime;
6342 	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
6343 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6344 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
6345 	lt->sadb_lifetime_allocations = sav->lft_s->allocations;
6346 	lt->sadb_lifetime_bytes = sav->lft_s->bytes;
6347 	lt->sadb_lifetime_addtime = sav->lft_s->addtime;
6348 	lt->sadb_lifetime_usetime = sav->lft_s->usetime;
6349 	m_cat(result, m);
6350 
6351 	/* set sadb_address for source */
6352 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6353 	    &sav->sah->saidx.src.sa,
6354 	    FULLMASK, IPSEC_ULPROTO_ANY);
6355 	if (!m) {
6356 		error = ENOBUFS;
6357 		goto fail;
6358 	}
6359 	m_cat(result, m);
6360 
6361 	/* set sadb_address for destination */
6362 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6363 	    &sav->sah->saidx.dst.sa,
6364 	    FULLMASK, IPSEC_ULPROTO_ANY);
6365 	if (!m) {
6366 		error = ENOBUFS;
6367 		goto fail;
6368 	}
6369 	m_cat(result, m);
6370 
6371 	if ((result->m_flags & M_PKTHDR) == 0) {
6372 		error = EINVAL;
6373 		goto fail;
6374 	}
6375 
6376 	if (result->m_len < sizeof(struct sadb_msg)) {
6377 		result = m_pullup(result, sizeof(struct sadb_msg));
6378 		if (result == NULL) {
6379 			error = ENOBUFS;
6380 			goto fail;
6381 		}
6382 	}
6383 
6384 	result->m_pkthdr.len = 0;
6385 	for (m = result; m; m = m->m_next)
6386 		result->m_pkthdr.len += m->m_len;
6387 
6388 	mtod(result, struct sadb_msg *)->sadb_msg_len =
6389 	    PFKEY_UNIT64(result->m_pkthdr.len);
6390 
6391 	splx(s);
6392 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6393 
6394  fail:
6395 	if (result)
6396 		m_freem(result);
6397 	splx(s);
6398 	return error;
6399 }
6400 
6401 /*
6402  * SADB_FLUSH processing
6403  * receive
6404  *   <base>
6405  * from the ikmpd, and free all entries in secastree.
6406  * and send,
6407  *   <base>
6408  * to the ikmpd.
6409  * NOTE: to do is only marking SADB_SASTATE_DEAD.
6410  *
6411  * m will always be freed.
6412  */
6413 static int
6414 key_flush(so, m, mhp)
6415 	struct socket *so;
6416 	struct mbuf *m;
6417 	const struct sadb_msghdr *mhp;
6418 {
6419 	struct sadb_msg *newmsg;
6420 	struct secashead *sah, *nextsah;
6421 	struct secasvar *sav, *nextsav;
6422 	u_int16_t proto;
6423 	u_int8_t state;
6424 	u_int stateidx;
6425 
6426 	IPSEC_ASSERT(so != NULL, ("null socket"));
6427 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6428 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6429 
6430 	/* map satype to proto */
6431 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6432 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6433 			__func__));
6434 		return key_senderror(so, m, EINVAL);
6435 	}
6436 
6437 	/* no SATYPE specified, i.e. flushing all SA. */
6438 	SAHTREE_LOCK();
6439 	for (sah = LIST_FIRST(&sahtree);
6440 	     sah != NULL;
6441 	     sah = nextsah) {
6442 		nextsah = LIST_NEXT(sah, chain);
6443 
6444 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6445 		 && proto != sah->saidx.proto)
6446 			continue;
6447 
6448 		for (stateidx = 0;
6449 		     stateidx < _ARRAYLEN(saorder_state_alive);
6450 		     stateidx++) {
6451 			state = saorder_state_any[stateidx];
6452 			for (sav = LIST_FIRST(&sah->savtree[state]);
6453 			     sav != NULL;
6454 			     sav = nextsav) {
6455 
6456 				nextsav = LIST_NEXT(sav, chain);
6457 
6458 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
6459 				KEY_FREESAV(&sav);
6460 			}
6461 		}
6462 
6463 		sah->state = SADB_SASTATE_DEAD;
6464 	}
6465 	SAHTREE_UNLOCK();
6466 
6467 	if (m->m_len < sizeof(struct sadb_msg) ||
6468 	    sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
6469 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6470 		return key_senderror(so, m, ENOBUFS);
6471 	}
6472 
6473 	if (m->m_next)
6474 		m_freem(m->m_next);
6475 	m->m_next = NULL;
6476 	m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
6477 	newmsg = mtod(m, struct sadb_msg *);
6478 	newmsg->sadb_msg_errno = 0;
6479 	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
6480 
6481 	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6482 }
6483 
6484 /*
6485  * SADB_DUMP processing
6486  * dump all entries including status of DEAD in SAD.
6487  * receive
6488  *   <base>
6489  * from the ikmpd, and dump all secasvar leaves
6490  * and send,
6491  *   <base> .....
6492  * to the ikmpd.
6493  *
6494  * m will always be freed.
6495  */
6496 static int
6497 key_dump(so, m, mhp)
6498 	struct socket *so;
6499 	struct mbuf *m;
6500 	const struct sadb_msghdr *mhp;
6501 {
6502 	struct secashead *sah;
6503 	struct secasvar *sav;
6504 	u_int16_t proto;
6505 	u_int stateidx;
6506 	u_int8_t satype;
6507 	u_int8_t state;
6508 	int cnt;
6509 	struct sadb_msg *newmsg;
6510 	struct mbuf *n;
6511 
6512 	IPSEC_ASSERT(so != NULL, ("null socket"));
6513 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6514 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6515 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6516 
6517 	/* map satype to proto */
6518 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6519 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6520 			__func__));
6521 		return key_senderror(so, m, EINVAL);
6522 	}
6523 
6524 	/* count sav entries to be sent to the userland. */
6525 	cnt = 0;
6526 	SAHTREE_LOCK();
6527 	LIST_FOREACH(sah, &sahtree, chain) {
6528 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6529 		 && proto != sah->saidx.proto)
6530 			continue;
6531 
6532 		for (stateidx = 0;
6533 		     stateidx < _ARRAYLEN(saorder_state_any);
6534 		     stateidx++) {
6535 			state = saorder_state_any[stateidx];
6536 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
6537 				cnt++;
6538 			}
6539 		}
6540 	}
6541 
6542 	if (cnt == 0) {
6543 		SAHTREE_UNLOCK();
6544 		return key_senderror(so, m, ENOENT);
6545 	}
6546 
6547 	/* send this to the userland, one at a time. */
6548 	newmsg = NULL;
6549 	LIST_FOREACH(sah, &sahtree, chain) {
6550 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6551 		 && proto != sah->saidx.proto)
6552 			continue;
6553 
6554 		/* map proto to satype */
6555 		if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
6556 			SAHTREE_UNLOCK();
6557 			ipseclog((LOG_DEBUG, "%s: there was invalid proto in "
6558 				"SAD.\n", __func__));
6559 			return key_senderror(so, m, EINVAL);
6560 		}
6561 
6562 		for (stateidx = 0;
6563 		     stateidx < _ARRAYLEN(saorder_state_any);
6564 		     stateidx++) {
6565 			state = saorder_state_any[stateidx];
6566 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
6567 				n = key_setdumpsa(sav, SADB_DUMP, satype,
6568 				    --cnt, mhp->msg->sadb_msg_pid);
6569 				if (!n) {
6570 					SAHTREE_UNLOCK();
6571 					return key_senderror(so, m, ENOBUFS);
6572 				}
6573 				key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
6574 			}
6575 		}
6576 	}
6577 	SAHTREE_UNLOCK();
6578 
6579 	m_freem(m);
6580 	return 0;
6581 }
6582 
6583 /*
6584  * SADB_X_PROMISC processing
6585  *
6586  * m will always be freed.
6587  */
6588 static int
6589 key_promisc(so, m, mhp)
6590 	struct socket *so;
6591 	struct mbuf *m;
6592 	const struct sadb_msghdr *mhp;
6593 {
6594 	int olen;
6595 
6596 	IPSEC_ASSERT(so != NULL, ("null socket"));
6597 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6598 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6599 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6600 
6601 	olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
6602 
6603 	if (olen < sizeof(struct sadb_msg)) {
6604 #if 1
6605 		return key_senderror(so, m, EINVAL);
6606 #else
6607 		m_freem(m);
6608 		return 0;
6609 #endif
6610 	} else if (olen == sizeof(struct sadb_msg)) {
6611 		/* enable/disable promisc mode */
6612 		struct keycb *kp;
6613 
6614 		if ((kp = (struct keycb *)sotorawcb(so)) == NULL)
6615 			return key_senderror(so, m, EINVAL);
6616 		mhp->msg->sadb_msg_errno = 0;
6617 		switch (mhp->msg->sadb_msg_satype) {
6618 		case 0:
6619 		case 1:
6620 			kp->kp_promisc = mhp->msg->sadb_msg_satype;
6621 			break;
6622 		default:
6623 			return key_senderror(so, m, EINVAL);
6624 		}
6625 
6626 		/* send the original message back to everyone */
6627 		mhp->msg->sadb_msg_errno = 0;
6628 		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6629 	} else {
6630 		/* send packet as is */
6631 
6632 		m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
6633 
6634 		/* TODO: if sadb_msg_seq is specified, send to specific pid */
6635 		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6636 	}
6637 }
6638 
6639 static int (*key_typesw[]) __P((struct socket *, struct mbuf *,
6640 		const struct sadb_msghdr *)) = {
6641 	NULL,		/* SADB_RESERVED */
6642 	key_getspi,	/* SADB_GETSPI */
6643 	key_update,	/* SADB_UPDATE */
6644 	key_add,	/* SADB_ADD */
6645 	key_delete,	/* SADB_DELETE */
6646 	key_get,	/* SADB_GET */
6647 	key_acquire2,	/* SADB_ACQUIRE */
6648 	key_register,	/* SADB_REGISTER */
6649 	NULL,		/* SADB_EXPIRE */
6650 	key_flush,	/* SADB_FLUSH */
6651 	key_dump,	/* SADB_DUMP */
6652 	key_promisc,	/* SADB_X_PROMISC */
6653 	NULL,		/* SADB_X_PCHANGE */
6654 	key_spdadd,	/* SADB_X_SPDUPDATE */
6655 	key_spdadd,	/* SADB_X_SPDADD */
6656 	key_spddelete,	/* SADB_X_SPDDELETE */
6657 	key_spdget,	/* SADB_X_SPDGET */
6658 	NULL,		/* SADB_X_SPDACQUIRE */
6659 	key_spddump,	/* SADB_X_SPDDUMP */
6660 	key_spdflush,	/* SADB_X_SPDFLUSH */
6661 	key_spdadd,	/* SADB_X_SPDSETIDX */
6662 	NULL,		/* SADB_X_SPDEXPIRE */
6663 	key_spddelete2,	/* SADB_X_SPDDELETE2 */
6664 };
6665 
6666 /*
6667  * parse sadb_msg buffer to process PFKEYv2,
6668  * and create a data to response if needed.
6669  * I think to be dealed with mbuf directly.
6670  * IN:
6671  *     msgp  : pointer to pointer to a received buffer pulluped.
6672  *             This is rewrited to response.
6673  *     so    : pointer to socket.
6674  * OUT:
6675  *    length for buffer to send to user process.
6676  */
6677 int
6678 key_parse(m, so)
6679 	struct mbuf *m;
6680 	struct socket *so;
6681 {
6682 	struct sadb_msg *msg;
6683 	struct sadb_msghdr mh;
6684 	u_int orglen;
6685 	int error;
6686 	int target;
6687 
6688 	IPSEC_ASSERT(so != NULL, ("null socket"));
6689 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6690 
6691 #if 0	/*kdebug_sadb assumes msg in linear buffer*/
6692 	KEYDEBUG(KEYDEBUG_KEY_DUMP,
6693 		ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__));
6694 		kdebug_sadb(msg));
6695 #endif
6696 
6697 	if (m->m_len < sizeof(struct sadb_msg)) {
6698 		m = m_pullup(m, sizeof(struct sadb_msg));
6699 		if (!m)
6700 			return ENOBUFS;
6701 	}
6702 	msg = mtod(m, struct sadb_msg *);
6703 	orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
6704 	target = KEY_SENDUP_ONE;
6705 
6706 	if ((m->m_flags & M_PKTHDR) == 0 ||
6707 	    m->m_pkthdr.len != m->m_pkthdr.len) {
6708 		ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__));
6709 		pfkeystat.out_invlen++;
6710 		error = EINVAL;
6711 		goto senderror;
6712 	}
6713 
6714 	if (msg->sadb_msg_version != PF_KEY_V2) {
6715 		ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n",
6716 		    __func__, msg->sadb_msg_version));
6717 		pfkeystat.out_invver++;
6718 		error = EINVAL;
6719 		goto senderror;
6720 	}
6721 
6722 	if (msg->sadb_msg_type > SADB_MAX) {
6723 		ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
6724 		    __func__, msg->sadb_msg_type));
6725 		pfkeystat.out_invmsgtype++;
6726 		error = EINVAL;
6727 		goto senderror;
6728 	}
6729 
6730 	/* for old-fashioned code - should be nuked */
6731 	if (m->m_pkthdr.len > MCLBYTES) {
6732 		m_freem(m);
6733 		return ENOBUFS;
6734 	}
6735 	if (m->m_next) {
6736 		struct mbuf *n;
6737 
6738 		MGETHDR(n, M_DONTWAIT, MT_DATA);
6739 		if (n && m->m_pkthdr.len > MHLEN) {
6740 			MCLGET(n, M_DONTWAIT);
6741 			if ((n->m_flags & M_EXT) == 0) {
6742 				m_free(n);
6743 				n = NULL;
6744 			}
6745 		}
6746 		if (!n) {
6747 			m_freem(m);
6748 			return ENOBUFS;
6749 		}
6750 		m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t));
6751 		n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
6752 		n->m_next = NULL;
6753 		m_freem(m);
6754 		m = n;
6755 	}
6756 
6757 	/* align the mbuf chain so that extensions are in contiguous region. */
6758 	error = key_align(m, &mh);
6759 	if (error)
6760 		return error;
6761 
6762 	msg = mh.msg;
6763 
6764 	/* check SA type */
6765 	switch (msg->sadb_msg_satype) {
6766 	case SADB_SATYPE_UNSPEC:
6767 		switch (msg->sadb_msg_type) {
6768 		case SADB_GETSPI:
6769 		case SADB_UPDATE:
6770 		case SADB_ADD:
6771 		case SADB_DELETE:
6772 		case SADB_GET:
6773 		case SADB_ACQUIRE:
6774 		case SADB_EXPIRE:
6775 			ipseclog((LOG_DEBUG, "%s: must specify satype "
6776 			    "when msg type=%u.\n", __func__,
6777 			    msg->sadb_msg_type));
6778 			pfkeystat.out_invsatype++;
6779 			error = EINVAL;
6780 			goto senderror;
6781 		}
6782 		break;
6783 	case SADB_SATYPE_AH:
6784 	case SADB_SATYPE_ESP:
6785 	case SADB_X_SATYPE_IPCOMP:
6786 	case SADB_X_SATYPE_TCPSIGNATURE:
6787 		switch (msg->sadb_msg_type) {
6788 		case SADB_X_SPDADD:
6789 		case SADB_X_SPDDELETE:
6790 		case SADB_X_SPDGET:
6791 		case SADB_X_SPDDUMP:
6792 		case SADB_X_SPDFLUSH:
6793 		case SADB_X_SPDSETIDX:
6794 		case SADB_X_SPDUPDATE:
6795 		case SADB_X_SPDDELETE2:
6796 			ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n",
6797 				__func__, msg->sadb_msg_type));
6798 			pfkeystat.out_invsatype++;
6799 			error = EINVAL;
6800 			goto senderror;
6801 		}
6802 		break;
6803 	case SADB_SATYPE_RSVP:
6804 	case SADB_SATYPE_OSPFV2:
6805 	case SADB_SATYPE_RIPV2:
6806 	case SADB_SATYPE_MIP:
6807 		ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n",
6808 			__func__, msg->sadb_msg_satype));
6809 		pfkeystat.out_invsatype++;
6810 		error = EOPNOTSUPP;
6811 		goto senderror;
6812 	case 1:	/* XXX: What does it do? */
6813 		if (msg->sadb_msg_type == SADB_X_PROMISC)
6814 			break;
6815 		/*FALLTHROUGH*/
6816 	default:
6817 		ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
6818 			__func__, msg->sadb_msg_satype));
6819 		pfkeystat.out_invsatype++;
6820 		error = EINVAL;
6821 		goto senderror;
6822 	}
6823 
6824 	/* check field of upper layer protocol and address family */
6825 	if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL
6826 	 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
6827 		struct sadb_address *src0, *dst0;
6828 		u_int plen;
6829 
6830 		src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
6831 		dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
6832 
6833 		/* check upper layer protocol */
6834 		if (src0->sadb_address_proto != dst0->sadb_address_proto) {
6835 			ipseclog((LOG_DEBUG, "%s: upper layer protocol "
6836 				"mismatched.\n", __func__));
6837 			pfkeystat.out_invaddr++;
6838 			error = EINVAL;
6839 			goto senderror;
6840 		}
6841 
6842 		/* check family */
6843 		if (PFKEY_ADDR_SADDR(src0)->sa_family !=
6844 		    PFKEY_ADDR_SADDR(dst0)->sa_family) {
6845 			ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
6846 				__func__));
6847 			pfkeystat.out_invaddr++;
6848 			error = EINVAL;
6849 			goto senderror;
6850 		}
6851 		if (PFKEY_ADDR_SADDR(src0)->sa_len !=
6852 		    PFKEY_ADDR_SADDR(dst0)->sa_len) {
6853 			ipseclog((LOG_DEBUG, "%s: address struct size "
6854 				"mismatched.\n", __func__));
6855 			pfkeystat.out_invaddr++;
6856 			error = EINVAL;
6857 			goto senderror;
6858 		}
6859 
6860 		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
6861 		case AF_INET:
6862 			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
6863 			    sizeof(struct sockaddr_in)) {
6864 				pfkeystat.out_invaddr++;
6865 				error = EINVAL;
6866 				goto senderror;
6867 			}
6868 			break;
6869 		case AF_INET6:
6870 			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
6871 			    sizeof(struct sockaddr_in6)) {
6872 				pfkeystat.out_invaddr++;
6873 				error = EINVAL;
6874 				goto senderror;
6875 			}
6876 			break;
6877 		default:
6878 			ipseclog((LOG_DEBUG, "%s: unsupported address family\n",
6879 				__func__));
6880 			pfkeystat.out_invaddr++;
6881 			error = EAFNOSUPPORT;
6882 			goto senderror;
6883 		}
6884 
6885 		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
6886 		case AF_INET:
6887 			plen = sizeof(struct in_addr) << 3;
6888 			break;
6889 		case AF_INET6:
6890 			plen = sizeof(struct in6_addr) << 3;
6891 			break;
6892 		default:
6893 			plen = 0;	/*fool gcc*/
6894 			break;
6895 		}
6896 
6897 		/* check max prefix length */
6898 		if (src0->sadb_address_prefixlen > plen ||
6899 		    dst0->sadb_address_prefixlen > plen) {
6900 			ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n",
6901 				__func__));
6902 			pfkeystat.out_invaddr++;
6903 			error = EINVAL;
6904 			goto senderror;
6905 		}
6906 
6907 		/*
6908 		 * prefixlen == 0 is valid because there can be a case when
6909 		 * all addresses are matched.
6910 		 */
6911 	}
6912 
6913 	if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) ||
6914 	    key_typesw[msg->sadb_msg_type] == NULL) {
6915 		pfkeystat.out_invmsgtype++;
6916 		error = EINVAL;
6917 		goto senderror;
6918 	}
6919 
6920 	return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
6921 
6922 senderror:
6923 	msg->sadb_msg_errno = error;
6924 	return key_sendup_mbuf(so, m, target);
6925 }
6926 
6927 static int
6928 key_senderror(so, m, code)
6929 	struct socket *so;
6930 	struct mbuf *m;
6931 	int code;
6932 {
6933 	struct sadb_msg *msg;
6934 
6935 	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
6936 		("mbuf too small, len %u", m->m_len));
6937 
6938 	msg = mtod(m, struct sadb_msg *);
6939 	msg->sadb_msg_errno = code;
6940 	return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
6941 }
6942 
6943 /*
6944  * set the pointer to each header into message buffer.
6945  * m will be freed on error.
6946  * XXX larger-than-MCLBYTES extension?
6947  */
6948 static int
6949 key_align(m, mhp)
6950 	struct mbuf *m;
6951 	struct sadb_msghdr *mhp;
6952 {
6953 	struct mbuf *n;
6954 	struct sadb_ext *ext;
6955 	size_t off, end;
6956 	int extlen;
6957 	int toff;
6958 
6959 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6960 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6961 	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
6962 		("mbuf too small, len %u", m->m_len));
6963 
6964 	/* initialize */
6965 	bzero(mhp, sizeof(*mhp));
6966 
6967 	mhp->msg = mtod(m, struct sadb_msg *);
6968 	mhp->ext[0] = (struct sadb_ext *)mhp->msg;	/*XXX backward compat */
6969 
6970 	end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
6971 	extlen = end;	/*just in case extlen is not updated*/
6972 	for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
6973 		n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
6974 		if (!n) {
6975 			/* m is already freed */
6976 			return ENOBUFS;
6977 		}
6978 		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
6979 
6980 		/* set pointer */
6981 		switch (ext->sadb_ext_type) {
6982 		case SADB_EXT_SA:
6983 		case SADB_EXT_ADDRESS_SRC:
6984 		case SADB_EXT_ADDRESS_DST:
6985 		case SADB_EXT_ADDRESS_PROXY:
6986 		case SADB_EXT_LIFETIME_CURRENT:
6987 		case SADB_EXT_LIFETIME_HARD:
6988 		case SADB_EXT_LIFETIME_SOFT:
6989 		case SADB_EXT_KEY_AUTH:
6990 		case SADB_EXT_KEY_ENCRYPT:
6991 		case SADB_EXT_IDENTITY_SRC:
6992 		case SADB_EXT_IDENTITY_DST:
6993 		case SADB_EXT_SENSITIVITY:
6994 		case SADB_EXT_PROPOSAL:
6995 		case SADB_EXT_SUPPORTED_AUTH:
6996 		case SADB_EXT_SUPPORTED_ENCRYPT:
6997 		case SADB_EXT_SPIRANGE:
6998 		case SADB_X_EXT_POLICY:
6999 		case SADB_X_EXT_SA2:
7000 			/* duplicate check */
7001 			/*
7002 			 * XXX Are there duplication payloads of either
7003 			 * KEY_AUTH or KEY_ENCRYPT ?
7004 			 */
7005 			if (mhp->ext[ext->sadb_ext_type] != NULL) {
7006 				ipseclog((LOG_DEBUG, "%s: duplicate ext_type "
7007 					"%u\n", __func__, ext->sadb_ext_type));
7008 				m_freem(m);
7009 				pfkeystat.out_dupext++;
7010 				return EINVAL;
7011 			}
7012 			break;
7013 		default:
7014 			ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n",
7015 				__func__, ext->sadb_ext_type));
7016 			m_freem(m);
7017 			pfkeystat.out_invexttype++;
7018 			return EINVAL;
7019 		}
7020 
7021 		extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7022 
7023 		if (key_validate_ext(ext, extlen)) {
7024 			m_freem(m);
7025 			pfkeystat.out_invlen++;
7026 			return EINVAL;
7027 		}
7028 
7029 		n = m_pulldown(m, off, extlen, &toff);
7030 		if (!n) {
7031 			/* m is already freed */
7032 			return ENOBUFS;
7033 		}
7034 		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
7035 
7036 		mhp->ext[ext->sadb_ext_type] = ext;
7037 		mhp->extoff[ext->sadb_ext_type] = off;
7038 		mhp->extlen[ext->sadb_ext_type] = extlen;
7039 	}
7040 
7041 	if (off != end) {
7042 		m_freem(m);
7043 		pfkeystat.out_invlen++;
7044 		return EINVAL;
7045 	}
7046 
7047 	return 0;
7048 }
7049 
7050 static int
7051 key_validate_ext(ext, len)
7052 	const struct sadb_ext *ext;
7053 	int len;
7054 {
7055 	const struct sockaddr *sa;
7056 	enum { NONE, ADDR } checktype = NONE;
7057 	int baselen = 0;
7058 	const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7059 
7060 	if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7061 		return EINVAL;
7062 
7063 	/* if it does not match minimum/maximum length, bail */
7064 	if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) ||
7065 	    ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0]))
7066 		return EINVAL;
7067 	if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7068 		return EINVAL;
7069 	if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7070 		return EINVAL;
7071 
7072 	/* more checks based on sadb_ext_type XXX need more */
7073 	switch (ext->sadb_ext_type) {
7074 	case SADB_EXT_ADDRESS_SRC:
7075 	case SADB_EXT_ADDRESS_DST:
7076 	case SADB_EXT_ADDRESS_PROXY:
7077 		baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7078 		checktype = ADDR;
7079 		break;
7080 	case SADB_EXT_IDENTITY_SRC:
7081 	case SADB_EXT_IDENTITY_DST:
7082 		if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7083 		    SADB_X_IDENTTYPE_ADDR) {
7084 			baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7085 			checktype = ADDR;
7086 		} else
7087 			checktype = NONE;
7088 		break;
7089 	default:
7090 		checktype = NONE;
7091 		break;
7092 	}
7093 
7094 	switch (checktype) {
7095 	case NONE:
7096 		break;
7097 	case ADDR:
7098 		sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7099 		if (len < baselen + sal)
7100 			return EINVAL;
7101 		if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7102 			return EINVAL;
7103 		break;
7104 	}
7105 
7106 	return 0;
7107 }
7108 
7109 void
7110 key_init(void)
7111 {
7112 	int i;
7113 
7114 	SPTREE_LOCK_INIT();
7115 	REGTREE_LOCK_INIT();
7116 	SAHTREE_LOCK_INIT();
7117 	ACQ_LOCK_INIT();
7118 	SPACQ_LOCK_INIT();
7119 
7120 	for (i = 0; i < IPSEC_DIR_MAX; i++)
7121 		LIST_INIT(&sptree[i]);
7122 
7123 	LIST_INIT(&sahtree);
7124 
7125 	for (i = 0; i <= SADB_SATYPE_MAX; i++)
7126 		LIST_INIT(&regtree[i]);
7127 
7128 	LIST_INIT(&acqtree);
7129 	LIST_INIT(&spacqtree);
7130 
7131 	/* system default */
7132 	ip4_def_policy.policy = IPSEC_POLICY_NONE;
7133 	ip4_def_policy.refcnt++;	/*never reclaim this*/
7134 
7135 #ifndef IPSEC_DEBUG2
7136 	timeout((void *)key_timehandler, (void *)0, hz);
7137 #endif /*IPSEC_DEBUG2*/
7138 
7139 	/* initialize key statistics */
7140 	keystat.getspi_count = 1;
7141 
7142 	printf("IPsec: Initialized Security Association Processing.\n");
7143 
7144 	return;
7145 }
7146 
7147 /*
7148  * XXX: maybe This function is called after INBOUND IPsec processing.
7149  *
7150  * Special check for tunnel-mode packets.
7151  * We must make some checks for consistency between inner and outer IP header.
7152  *
7153  * xxx more checks to be provided
7154  */
7155 int
7156 key_checktunnelsanity(sav, family, src, dst)
7157 	struct secasvar *sav;
7158 	u_int family;
7159 	caddr_t src;
7160 	caddr_t dst;
7161 {
7162 	IPSEC_ASSERT(sav->sah != NULL, ("null SA header"));
7163 
7164 	/* XXX: check inner IP header */
7165 
7166 	return 1;
7167 }
7168 
7169 /* record data transfer on SA, and update timestamps */
7170 void
7171 key_sa_recordxfer(sav, m)
7172 	struct secasvar *sav;
7173 	struct mbuf *m;
7174 {
7175 	IPSEC_ASSERT(sav != NULL, ("Null secasvar"));
7176 	IPSEC_ASSERT(m != NULL, ("Null mbuf"));
7177 	if (!sav->lft_c)
7178 		return;
7179 
7180 	/*
7181 	 * XXX Currently, there is a difference of bytes size
7182 	 * between inbound and outbound processing.
7183 	 */
7184 	sav->lft_c->bytes += m->m_pkthdr.len;
7185 	/* to check bytes lifetime is done in key_timehandler(). */
7186 
7187 	/*
7188 	 * We use the number of packets as the unit of
7189 	 * allocations.  We increment the variable
7190 	 * whenever {esp,ah}_{in,out}put is called.
7191 	 */
7192 	sav->lft_c->allocations++;
7193 	/* XXX check for expires? */
7194 
7195 	/*
7196 	 * NOTE: We record CURRENT usetime by using wall clock,
7197 	 * in seconds.  HARD and SOFT lifetime are measured by the time
7198 	 * difference (again in seconds) from usetime.
7199 	 *
7200 	 *	usetime
7201 	 *	v     expire   expire
7202 	 * -----+-----+--------+---> t
7203 	 *	<--------------> HARD
7204 	 *	<-----> SOFT
7205 	 */
7206 	sav->lft_c->usetime = time_second;
7207 	/* XXX check for expires? */
7208 
7209 	return;
7210 }
7211 
7212 /* dumb version */
7213 void
7214 key_sa_routechange(dst)
7215 	struct sockaddr *dst;
7216 {
7217 	struct secashead *sah;
7218 	struct route *ro;
7219 
7220 	SAHTREE_LOCK();
7221 	LIST_FOREACH(sah, &sahtree, chain) {
7222 		ro = &sah->sa_route;
7223 		if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len
7224 		 && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) {
7225 			RTFREE(ro->ro_rt);
7226 			ro->ro_rt = (struct rtentry *)NULL;
7227 		}
7228 	}
7229 	SAHTREE_UNLOCK();
7230 }
7231 
7232 static void
7233 key_sa_chgstate(sav, state)
7234 	struct secasvar *sav;
7235 	u_int8_t state;
7236 {
7237 	IPSEC_ASSERT(sav != NULL, ("NULL sav"));
7238 	SAHTREE_LOCK_ASSERT();
7239 
7240 	if (sav->state != state) {
7241 		if (__LIST_CHAINED(sav))
7242 			LIST_REMOVE(sav, chain);
7243 		sav->state = state;
7244 		LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7245 	}
7246 }
7247 
7248 void
7249 key_sa_stir_iv(sav)
7250 	struct secasvar *sav;
7251 {
7252 
7253 	IPSEC_ASSERT(sav->iv != NULL, ("null IV"));
7254 	key_randomfill(sav->iv, sav->ivlen);
7255 }
7256 
7257 /* XXX too much? */
7258 static struct mbuf *
7259 key_alloc_mbuf(l)
7260 	int l;
7261 {
7262 	struct mbuf *m = NULL, *n;
7263 	int len, t;
7264 
7265 	len = l;
7266 	while (len > 0) {
7267 		MGET(n, M_DONTWAIT, MT_DATA);
7268 		if (n && len > MLEN)
7269 			MCLGET(n, M_DONTWAIT);
7270 		if (!n) {
7271 			m_freem(m);
7272 			return NULL;
7273 		}
7274 
7275 		n->m_next = NULL;
7276 		n->m_len = 0;
7277 		n->m_len = M_TRAILINGSPACE(n);
7278 		/* use the bottom of mbuf, hoping we can prepend afterwards */
7279 		if (n->m_len > len) {
7280 			t = (n->m_len - len) & ~(sizeof(long) - 1);
7281 			n->m_data += t;
7282 			n->m_len = len;
7283 		}
7284 
7285 		len -= n->m_len;
7286 
7287 		if (m)
7288 			m_cat(m, n);
7289 		else
7290 			m = n;
7291 	}
7292 
7293 	return m;
7294 }
7295 
7296 /*
7297  * Take one of the kernel's security keys and convert it into a PF_KEY
7298  * structure within an mbuf, suitable for sending up to a waiting
7299  * application in user land.
7300  *
7301  * IN:
7302  *    src: A pointer to a kernel security key.
7303  *    exttype: Which type of key this is. Refer to the PF_KEY data structures.
7304  * OUT:
7305  *    a valid mbuf or NULL indicating an error
7306  *
7307  */
7308 
7309 static struct mbuf *
7310 key_setkey(struct seckey *src, u_int16_t exttype)
7311 {
7312 	struct mbuf *m;
7313 	struct sadb_key *p;
7314 	int len;
7315 
7316 	if (src == NULL)
7317 		return NULL;
7318 
7319 	len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src));
7320 	m = key_alloc_mbuf(len);
7321 	if (m == NULL)
7322 		return NULL;
7323 	p = mtod(m, struct sadb_key *);
7324 	bzero(p, len);
7325 	p->sadb_key_len = PFKEY_UNIT64(len);
7326 	p->sadb_key_exttype = exttype;
7327 	p->sadb_key_bits = src->bits;
7328 	bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src));
7329 
7330 	return m;
7331 }
7332 
7333 /*
7334  * Take one of the kernel's lifetime data structures and convert it
7335  * into a PF_KEY structure within an mbuf, suitable for sending up to
7336  * a waiting application in user land.
7337  *
7338  * IN:
7339  *    src: A pointer to a kernel lifetime structure.
7340  *    exttype: Which type of lifetime this is. Refer to the PF_KEY
7341  *             data structures for more information.
7342  * OUT:
7343  *    a valid mbuf or NULL indicating an error
7344  *
7345  */
7346 
7347 static struct mbuf *
7348 key_setlifetime(struct seclifetime *src, u_int16_t exttype)
7349 {
7350 	struct mbuf *m = NULL;
7351 	struct sadb_lifetime *p;
7352 	int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime));
7353 
7354 	if (src == NULL)
7355 		return NULL;
7356 
7357 	m = key_alloc_mbuf(len);
7358 	if (m == NULL)
7359 		return m;
7360 	p = mtod(m, struct sadb_lifetime *);
7361 
7362 	bzero(p, len);
7363 	p->sadb_lifetime_len = PFKEY_UNIT64(len);
7364 	p->sadb_lifetime_exttype = exttype;
7365 	p->sadb_lifetime_allocations = src->allocations;
7366 	p->sadb_lifetime_bytes = src->bytes;
7367 	p->sadb_lifetime_addtime = src->addtime;
7368 	p->sadb_lifetime_usetime = src->usetime;
7369 
7370 	return m;
7371 
7372 }
7373