1 /* $FreeBSD$ */ 2 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ 3 4 /*- 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * This code is referd to RFC 2367 35 */ 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 #include "opt_ipsec.h" 40 41 #include <sys/types.h> 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/mutex.h> 47 #include <sys/mbuf.h> 48 #include <sys/domain.h> 49 #include <sys/protosw.h> 50 #include <sys/malloc.h> 51 #include <sys/socket.h> 52 #include <sys/socketvar.h> 53 #include <sys/sysctl.h> 54 #include <sys/errno.h> 55 #include <sys/proc.h> 56 #include <sys/queue.h> 57 #include <sys/refcount.h> 58 #include <sys/syslog.h> 59 60 #include <net/if.h> 61 #include <net/route.h> 62 #include <net/raw_cb.h> 63 #include <net/vnet.h> 64 65 #include <netinet/in.h> 66 #include <netinet/in_systm.h> 67 #include <netinet/ip.h> 68 #include <netinet/in_var.h> 69 70 #ifdef INET6 71 #include <netinet/ip6.h> 72 #include <netinet6/in6_var.h> 73 #include <netinet6/ip6_var.h> 74 #endif /* INET6 */ 75 76 #if defined(INET) || defined(INET6) 77 #include <netinet/in_pcb.h> 78 #endif 79 #ifdef INET6 80 #include <netinet6/in6_pcb.h> 81 #endif /* INET6 */ 82 83 #include <net/pfkeyv2.h> 84 #include <netipsec/keydb.h> 85 #include <netipsec/key.h> 86 #include <netipsec/keysock.h> 87 #include <netipsec/key_debug.h> 88 89 #include <netipsec/ipsec.h> 90 #ifdef INET6 91 #include <netipsec/ipsec6.h> 92 #endif 93 94 #include <netipsec/xform.h> 95 96 #include <machine/stdarg.h> 97 98 /* randomness */ 99 #include <sys/random.h> 100 101 #define FULLMASK 0xff 102 #define _BITS(bytes) ((bytes) << 3) 103 104 /* 105 * Note on SA reference counting: 106 * - SAs that are not in DEAD state will have (total external reference + 1) 107 * following value in reference count field. they cannot be freed and are 108 * referenced from SA header. 109 * - SAs that are in DEAD state will have (total external reference) 110 * in reference count field. they are ready to be freed. reference from 111 * SA header will be removed in key_delsav(), when the reference count 112 * field hits 0 (= no external reference other than from SA header. 113 */ 114 115 VNET_DEFINE(u_int32_t, key_debug_level) = 0; 116 static VNET_DEFINE(u_int, key_spi_trycnt) = 1000; 117 static VNET_DEFINE(u_int32_t, key_spi_minval) = 0x100; 118 static VNET_DEFINE(u_int32_t, key_spi_maxval) = 0x0fffffff; /* XXX */ 119 static VNET_DEFINE(u_int32_t, policy_id) = 0; 120 /*interval to initialize randseed,1(m)*/ 121 static VNET_DEFINE(u_int, key_int_random) = 60; 122 /* interval to expire acquiring, 30(s)*/ 123 static VNET_DEFINE(u_int, key_larval_lifetime) = 30; 124 /* counter for blocking SADB_ACQUIRE.*/ 125 static VNET_DEFINE(int, key_blockacq_count) = 10; 126 /* lifetime for blocking SADB_ACQUIRE.*/ 127 static VNET_DEFINE(int, key_blockacq_lifetime) = 20; 128 /* preferred old sa rather than new sa.*/ 129 static VNET_DEFINE(int, key_preferred_oldsa) = 1; 130 #define V_key_spi_trycnt VNET(key_spi_trycnt) 131 #define V_key_spi_minval VNET(key_spi_minval) 132 #define V_key_spi_maxval VNET(key_spi_maxval) 133 #define V_policy_id VNET(policy_id) 134 #define V_key_int_random VNET(key_int_random) 135 #define V_key_larval_lifetime VNET(key_larval_lifetime) 136 #define V_key_blockacq_count VNET(key_blockacq_count) 137 #define V_key_blockacq_lifetime VNET(key_blockacq_lifetime) 138 #define V_key_preferred_oldsa VNET(key_preferred_oldsa) 139 140 static VNET_DEFINE(u_int32_t, acq_seq) = 0; 141 #define V_acq_seq VNET(acq_seq) 142 143 /* SPD */ 144 static VNET_DEFINE(LIST_HEAD(_sptree, secpolicy), sptree[IPSEC_DIR_MAX]); 145 #define V_sptree VNET(sptree) 146 static struct mtx sptree_lock; 147 #define SPTREE_LOCK_INIT() \ 148 mtx_init(&sptree_lock, "sptree", \ 149 "fast ipsec security policy database", MTX_DEF) 150 #define SPTREE_LOCK_DESTROY() mtx_destroy(&sptree_lock) 151 #define SPTREE_LOCK() mtx_lock(&sptree_lock) 152 #define SPTREE_UNLOCK() mtx_unlock(&sptree_lock) 153 #define SPTREE_LOCK_ASSERT() mtx_assert(&sptree_lock, MA_OWNED) 154 155 static VNET_DEFINE(LIST_HEAD(_sahtree, secashead), sahtree); /* SAD */ 156 #define V_sahtree VNET(sahtree) 157 static struct mtx sahtree_lock; 158 #define SAHTREE_LOCK_INIT() \ 159 mtx_init(&sahtree_lock, "sahtree", \ 160 "fast ipsec security association database", MTX_DEF) 161 #define SAHTREE_LOCK_DESTROY() mtx_destroy(&sahtree_lock) 162 #define SAHTREE_LOCK() mtx_lock(&sahtree_lock) 163 #define SAHTREE_UNLOCK() mtx_unlock(&sahtree_lock) 164 #define SAHTREE_LOCK_ASSERT() mtx_assert(&sahtree_lock, MA_OWNED) 165 166 /* registed list */ 167 static VNET_DEFINE(LIST_HEAD(_regtree, secreg), regtree[SADB_SATYPE_MAX + 1]); 168 #define V_regtree VNET(regtree) 169 static struct mtx regtree_lock; 170 #define REGTREE_LOCK_INIT() \ 171 mtx_init(®tree_lock, "regtree", "fast ipsec regtree", MTX_DEF) 172 #define REGTREE_LOCK_DESTROY() mtx_destroy(®tree_lock) 173 #define REGTREE_LOCK() mtx_lock(®tree_lock) 174 #define REGTREE_UNLOCK() mtx_unlock(®tree_lock) 175 #define REGTREE_LOCK_ASSERT() mtx_assert(®tree_lock, MA_OWNED) 176 177 static VNET_DEFINE(LIST_HEAD(_acqtree, secacq), acqtree); /* acquiring list */ 178 #define V_acqtree VNET(acqtree) 179 static struct mtx acq_lock; 180 #define ACQ_LOCK_INIT() \ 181 mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF) 182 #define ACQ_LOCK_DESTROY() mtx_destroy(&acq_lock) 183 #define ACQ_LOCK() mtx_lock(&acq_lock) 184 #define ACQ_UNLOCK() mtx_unlock(&acq_lock) 185 #define ACQ_LOCK_ASSERT() mtx_assert(&acq_lock, MA_OWNED) 186 187 /* SP acquiring list */ 188 static VNET_DEFINE(LIST_HEAD(_spacqtree, secspacq), spacqtree); 189 #define V_spacqtree VNET(spacqtree) 190 static struct mtx spacq_lock; 191 #define SPACQ_LOCK_INIT() \ 192 mtx_init(&spacq_lock, "spacqtree", \ 193 "fast ipsec security policy acquire list", MTX_DEF) 194 #define SPACQ_LOCK_DESTROY() mtx_destroy(&spacq_lock) 195 #define SPACQ_LOCK() mtx_lock(&spacq_lock) 196 #define SPACQ_UNLOCK() mtx_unlock(&spacq_lock) 197 #define SPACQ_LOCK_ASSERT() mtx_assert(&spacq_lock, MA_OWNED) 198 199 /* search order for SAs */ 200 static const u_int saorder_state_valid_prefer_old[] = { 201 SADB_SASTATE_DYING, SADB_SASTATE_MATURE, 202 }; 203 static const u_int saorder_state_valid_prefer_new[] = { 204 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 205 }; 206 static const u_int saorder_state_alive[] = { 207 /* except DEAD */ 208 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL 209 }; 210 static const u_int saorder_state_any[] = { 211 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 212 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD 213 }; 214 215 static const int minsize[] = { 216 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 217 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 218 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 219 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 220 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 221 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ 222 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ 223 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ 224 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ 225 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ 226 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ 227 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ 228 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ 229 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ 230 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ 231 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ 232 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 233 0, /* SADB_X_EXT_KMPRIVATE */ 234 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ 235 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 236 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ 237 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ 238 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ 239 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */ 240 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */ 241 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ 242 }; 243 static const int maxsize[] = { 244 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 245 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 246 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 247 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 248 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 249 0, /* SADB_EXT_ADDRESS_SRC */ 250 0, /* SADB_EXT_ADDRESS_DST */ 251 0, /* SADB_EXT_ADDRESS_PROXY */ 252 0, /* SADB_EXT_KEY_AUTH */ 253 0, /* SADB_EXT_KEY_ENCRYPT */ 254 0, /* SADB_EXT_IDENTITY_SRC */ 255 0, /* SADB_EXT_IDENTITY_DST */ 256 0, /* SADB_EXT_SENSITIVITY */ 257 0, /* SADB_EXT_PROPOSAL */ 258 0, /* SADB_EXT_SUPPORTED_AUTH */ 259 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ 260 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 261 0, /* SADB_X_EXT_KMPRIVATE */ 262 0, /* SADB_X_EXT_POLICY */ 263 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 264 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ 265 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ 266 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ 267 0, /* SADB_X_EXT_NAT_T_OAI */ 268 0, /* SADB_X_EXT_NAT_T_OAR */ 269 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ 270 }; 271 272 static VNET_DEFINE(int, ipsec_esp_keymin) = 256; 273 static VNET_DEFINE(int, ipsec_esp_auth) = 0; 274 static VNET_DEFINE(int, ipsec_ah_keymin) = 128; 275 276 #define V_ipsec_esp_keymin VNET(ipsec_esp_keymin) 277 #define V_ipsec_esp_auth VNET(ipsec_esp_auth) 278 #define V_ipsec_ah_keymin VNET(ipsec_ah_keymin) 279 280 #ifdef SYSCTL_DECL 281 SYSCTL_DECL(_net_key); 282 #endif 283 284 SYSCTL_VNET_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, 285 CTLFLAG_RW, &VNET_NAME(key_debug_level), 0, ""); 286 287 /* max count of trial for the decision of spi value */ 288 SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, 289 CTLFLAG_RW, &VNET_NAME(key_spi_trycnt), 0, ""); 290 291 /* minimum spi value to allocate automatically. */ 292 SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_MIN_VALUE, 293 spi_minval, CTLFLAG_RW, &VNET_NAME(key_spi_minval), 0, ""); 294 295 /* maximun spi value to allocate automatically. */ 296 SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_MAX_VALUE, 297 spi_maxval, CTLFLAG_RW, &VNET_NAME(key_spi_maxval), 0, ""); 298 299 /* interval to initialize randseed */ 300 SYSCTL_VNET_INT(_net_key, KEYCTL_RANDOM_INT, 301 int_random, CTLFLAG_RW, &VNET_NAME(key_int_random), 0, ""); 302 303 /* lifetime for larval SA */ 304 SYSCTL_VNET_INT(_net_key, KEYCTL_LARVAL_LIFETIME, 305 larval_lifetime, CTLFLAG_RW, &VNET_NAME(key_larval_lifetime), 0, ""); 306 307 /* counter for blocking to send SADB_ACQUIRE to IKEd */ 308 SYSCTL_VNET_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, 309 blockacq_count, CTLFLAG_RW, &VNET_NAME(key_blockacq_count), 0, ""); 310 311 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ 312 SYSCTL_VNET_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, 313 blockacq_lifetime, CTLFLAG_RW, &VNET_NAME(key_blockacq_lifetime), 0, ""); 314 315 /* ESP auth */ 316 SYSCTL_VNET_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, 317 CTLFLAG_RW, &VNET_NAME(ipsec_esp_auth), 0, ""); 318 319 /* minimum ESP key length */ 320 SYSCTL_VNET_INT(_net_key, KEYCTL_ESP_KEYMIN, 321 esp_keymin, CTLFLAG_RW, &VNET_NAME(ipsec_esp_keymin), 0, ""); 322 323 /* minimum AH key length */ 324 SYSCTL_VNET_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, 325 CTLFLAG_RW, &VNET_NAME(ipsec_ah_keymin), 0, ""); 326 327 /* perfered old SA rather than new SA */ 328 SYSCTL_VNET_INT(_net_key, KEYCTL_PREFERED_OLDSA, 329 preferred_oldsa, CTLFLAG_RW, &VNET_NAME(key_preferred_oldsa), 0, ""); 330 331 #define __LIST_CHAINED(elm) \ 332 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) 333 #define LIST_INSERT_TAIL(head, elm, type, field) \ 334 do {\ 335 struct type *curelm = LIST_FIRST(head); \ 336 if (curelm == NULL) {\ 337 LIST_INSERT_HEAD(head, elm, field); \ 338 } else { \ 339 while (LIST_NEXT(curelm, field)) \ 340 curelm = LIST_NEXT(curelm, field);\ 341 LIST_INSERT_AFTER(curelm, elm, field);\ 342 }\ 343 } while (0) 344 345 #define KEY_CHKSASTATE(head, sav, name) \ 346 do { \ 347 if ((head) != (sav)) { \ 348 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \ 349 (name), (head), (sav))); \ 350 continue; \ 351 } \ 352 } while (0) 353 354 #define KEY_CHKSPDIR(head, sp, name) \ 355 do { \ 356 if ((head) != (sp)) { \ 357 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \ 358 "anyway continue.\n", \ 359 (name), (head), (sp))); \ 360 } \ 361 } while (0) 362 363 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association"); 364 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head"); 365 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy"); 366 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request"); 367 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous"); 368 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire"); 369 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire"); 370 371 /* 372 * set parameters into secpolicyindex buffer. 373 * Must allocate secpolicyindex buffer passed to this function. 374 */ 375 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \ 376 do { \ 377 bzero((idx), sizeof(struct secpolicyindex)); \ 378 (idx)->dir = (_dir); \ 379 (idx)->prefs = (ps); \ 380 (idx)->prefd = (pd); \ 381 (idx)->ul_proto = (ulp); \ 382 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 383 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 384 } while (0) 385 386 /* 387 * set parameters into secasindex buffer. 388 * Must allocate secasindex buffer before calling this function. 389 */ 390 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \ 391 do { \ 392 bzero((idx), sizeof(struct secasindex)); \ 393 (idx)->proto = (p); \ 394 (idx)->mode = (m); \ 395 (idx)->reqid = (r); \ 396 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 397 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 398 } while (0) 399 400 /* key statistics */ 401 struct _keystat { 402 u_long getspi_count; /* the avarage of count to try to get new SPI */ 403 } keystat; 404 405 struct sadb_msghdr { 406 struct sadb_msg *msg; 407 struct sadb_ext *ext[SADB_EXT_MAX + 1]; 408 int extoff[SADB_EXT_MAX + 1]; 409 int extlen[SADB_EXT_MAX + 1]; 410 }; 411 412 static struct secasvar *key_allocsa_policy __P((const struct secasindex *)); 413 static void key_freesp_so __P((struct secpolicy **)); 414 static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int)); 415 static void key_delsp __P((struct secpolicy *)); 416 static struct secpolicy *key_getsp __P((struct secpolicyindex *)); 417 static void _key_delsp(struct secpolicy *sp); 418 static struct secpolicy *key_getspbyid __P((u_int32_t)); 419 static u_int32_t key_newreqid __P((void)); 420 static struct mbuf *key_gather_mbuf __P((struct mbuf *, 421 const struct sadb_msghdr *, int, int, ...)); 422 static int key_spdadd __P((struct socket *, struct mbuf *, 423 const struct sadb_msghdr *)); 424 static u_int32_t key_getnewspid __P((void)); 425 static int key_spddelete __P((struct socket *, struct mbuf *, 426 const struct sadb_msghdr *)); 427 static int key_spddelete2 __P((struct socket *, struct mbuf *, 428 const struct sadb_msghdr *)); 429 static int key_spdget __P((struct socket *, struct mbuf *, 430 const struct sadb_msghdr *)); 431 static int key_spdflush __P((struct socket *, struct mbuf *, 432 const struct sadb_msghdr *)); 433 static int key_spddump __P((struct socket *, struct mbuf *, 434 const struct sadb_msghdr *)); 435 static struct mbuf *key_setdumpsp __P((struct secpolicy *, 436 u_int8_t, u_int32_t, u_int32_t)); 437 static u_int key_getspreqmsglen __P((struct secpolicy *)); 438 static int key_spdexpire __P((struct secpolicy *)); 439 static struct secashead *key_newsah __P((struct secasindex *)); 440 static void key_delsah __P((struct secashead *)); 441 static struct secasvar *key_newsav __P((struct mbuf *, 442 const struct sadb_msghdr *, struct secashead *, int *, 443 const char*, int)); 444 #define KEY_NEWSAV(m, sadb, sah, e) \ 445 key_newsav(m, sadb, sah, e, __FILE__, __LINE__) 446 static void key_delsav __P((struct secasvar *)); 447 static struct secashead *key_getsah __P((struct secasindex *)); 448 static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t)); 449 static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t)); 450 static int key_setsaval __P((struct secasvar *, struct mbuf *, 451 const struct sadb_msghdr *)); 452 static int key_mature __P((struct secasvar *)); 453 static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t, 454 u_int8_t, u_int32_t, u_int32_t)); 455 static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t, 456 u_int32_t, pid_t, u_int16_t)); 457 static struct mbuf *key_setsadbsa __P((struct secasvar *)); 458 static struct mbuf *key_setsadbaddr __P((u_int16_t, 459 const struct sockaddr *, u_int8_t, u_int16_t)); 460 #ifdef IPSEC_NAT_T 461 static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t); 462 static struct mbuf *key_setsadbxtype(u_int16_t); 463 #endif 464 static void key_porttosaddr(struct sockaddr *, u_int16_t); 465 #define KEY_PORTTOSADDR(saddr, port) \ 466 key_porttosaddr((struct sockaddr *)(saddr), (port)) 467 static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t)); 468 static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t, 469 u_int32_t)); 470 static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int, 471 struct malloc_type *); 472 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src, 473 struct malloc_type *type); 474 #ifdef INET6 475 static int key_ismyaddr6 __P((struct sockaddr_in6 *)); 476 #endif 477 478 /* flags for key_cmpsaidx() */ 479 #define CMP_HEAD 1 /* protocol, addresses. */ 480 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ 481 #define CMP_REQID 3 /* additionally HEAD, reaid. */ 482 #define CMP_EXACTLY 4 /* all elements. */ 483 static int key_cmpsaidx 484 __P((const struct secasindex *, const struct secasindex *, int)); 485 486 static int key_cmpspidx_exactly 487 __P((struct secpolicyindex *, struct secpolicyindex *)); 488 static int key_cmpspidx_withmask 489 __P((struct secpolicyindex *, struct secpolicyindex *)); 490 static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int)); 491 static int key_bbcmp __P((const void *, const void *, u_int)); 492 static u_int16_t key_satype2proto __P((u_int8_t)); 493 static u_int8_t key_proto2satype __P((u_int16_t)); 494 495 static int key_getspi __P((struct socket *, struct mbuf *, 496 const struct sadb_msghdr *)); 497 static u_int32_t key_do_getnewspi __P((struct sadb_spirange *, 498 struct secasindex *)); 499 static int key_update __P((struct socket *, struct mbuf *, 500 const struct sadb_msghdr *)); 501 #ifdef IPSEC_DOSEQCHECK 502 static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t)); 503 #endif 504 static int key_add __P((struct socket *, struct mbuf *, 505 const struct sadb_msghdr *)); 506 static int key_setident __P((struct secashead *, struct mbuf *, 507 const struct sadb_msghdr *)); 508 static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *, 509 const struct sadb_msghdr *)); 510 static int key_delete __P((struct socket *, struct mbuf *, 511 const struct sadb_msghdr *)); 512 static int key_get __P((struct socket *, struct mbuf *, 513 const struct sadb_msghdr *)); 514 515 static void key_getcomb_setlifetime __P((struct sadb_comb *)); 516 static struct mbuf *key_getcomb_esp __P((void)); 517 static struct mbuf *key_getcomb_ah __P((void)); 518 static struct mbuf *key_getcomb_ipcomp __P((void)); 519 static struct mbuf *key_getprop __P((const struct secasindex *)); 520 521 static int key_acquire __P((const struct secasindex *, struct secpolicy *)); 522 static struct secacq *key_newacq __P((const struct secasindex *)); 523 static struct secacq *key_getacq __P((const struct secasindex *)); 524 static struct secacq *key_getacqbyseq __P((u_int32_t)); 525 static struct secspacq *key_newspacq __P((struct secpolicyindex *)); 526 static struct secspacq *key_getspacq __P((struct secpolicyindex *)); 527 static int key_acquire2 __P((struct socket *, struct mbuf *, 528 const struct sadb_msghdr *)); 529 static int key_register __P((struct socket *, struct mbuf *, 530 const struct sadb_msghdr *)); 531 static int key_expire __P((struct secasvar *)); 532 static int key_flush __P((struct socket *, struct mbuf *, 533 const struct sadb_msghdr *)); 534 static int key_dump __P((struct socket *, struct mbuf *, 535 const struct sadb_msghdr *)); 536 static int key_promisc __P((struct socket *, struct mbuf *, 537 const struct sadb_msghdr *)); 538 static int key_senderror __P((struct socket *, struct mbuf *, int)); 539 static int key_validate_ext __P((const struct sadb_ext *, int)); 540 static int key_align __P((struct mbuf *, struct sadb_msghdr *)); 541 static struct mbuf *key_setlifetime(struct seclifetime *src, 542 u_int16_t exttype); 543 static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype); 544 545 #if 0 546 static const char *key_getfqdn __P((void)); 547 static const char *key_getuserfqdn __P((void)); 548 #endif 549 static void key_sa_chgstate __P((struct secasvar *, u_int8_t)); 550 static struct mbuf *key_alloc_mbuf __P((int)); 551 552 static __inline void 553 sa_initref(struct secasvar *sav) 554 { 555 556 refcount_init(&sav->refcnt, 1); 557 } 558 static __inline void 559 sa_addref(struct secasvar *sav) 560 { 561 562 refcount_acquire(&sav->refcnt); 563 IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow")); 564 } 565 static __inline int 566 sa_delref(struct secasvar *sav) 567 { 568 569 IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow")); 570 return (refcount_release(&sav->refcnt)); 571 } 572 573 #define SP_ADDREF(p) do { \ 574 (p)->refcnt++; \ 575 IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow")); \ 576 } while (0) 577 #define SP_DELREF(p) do { \ 578 IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow")); \ 579 (p)->refcnt--; \ 580 } while (0) 581 582 583 /* 584 * Update the refcnt while holding the SPTREE lock. 585 */ 586 void 587 key_addref(struct secpolicy *sp) 588 { 589 SPTREE_LOCK(); 590 SP_ADDREF(sp); 591 SPTREE_UNLOCK(); 592 } 593 594 /* 595 * Return 0 when there are known to be no SP's for the specified 596 * direction. Otherwise return 1. This is used by IPsec code 597 * to optimize performance. 598 */ 599 int 600 key_havesp(u_int dir) 601 { 602 603 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? 604 LIST_FIRST(&V_sptree[dir]) != NULL : 1); 605 } 606 607 /* %%% IPsec policy management */ 608 /* 609 * allocating a SP for OUTBOUND or INBOUND packet. 610 * Must call key_freesp() later. 611 * OUT: NULL: not found 612 * others: found and return the pointer. 613 */ 614 struct secpolicy * 615 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag) 616 { 617 struct secpolicy *sp; 618 619 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 620 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 621 ("invalid direction %u", dir)); 622 623 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 624 printf("DP %s from %s:%u\n", __func__, where, tag)); 625 626 /* get a SP entry */ 627 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 628 printf("*** objects\n"); 629 kdebug_secpolicyindex(spidx)); 630 631 SPTREE_LOCK(); 632 LIST_FOREACH(sp, &V_sptree[dir], chain) { 633 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 634 printf("*** in SPD\n"); 635 kdebug_secpolicyindex(&sp->spidx)); 636 637 if (sp->state == IPSEC_SPSTATE_DEAD) 638 continue; 639 if (key_cmpspidx_withmask(&sp->spidx, spidx)) 640 goto found; 641 } 642 sp = NULL; 643 found: 644 if (sp) { 645 /* sanity check */ 646 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 647 648 /* found a SPD entry */ 649 sp->lastused = time_second; 650 SP_ADDREF(sp); 651 } 652 SPTREE_UNLOCK(); 653 654 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 655 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 656 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 657 return sp; 658 } 659 660 /* 661 * allocating a SP for OUTBOUND or INBOUND packet. 662 * Must call key_freesp() later. 663 * OUT: NULL: not found 664 * others: found and return the pointer. 665 */ 666 struct secpolicy * 667 key_allocsp2(u_int32_t spi, 668 union sockaddr_union *dst, 669 u_int8_t proto, 670 u_int dir, 671 const char* where, int tag) 672 { 673 struct secpolicy *sp; 674 675 IPSEC_ASSERT(dst != NULL, ("null dst")); 676 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 677 ("invalid direction %u", dir)); 678 679 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 680 printf("DP %s from %s:%u\n", __func__, where, tag)); 681 682 /* get a SP entry */ 683 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 684 printf("*** objects\n"); 685 printf("spi %u proto %u dir %u\n", spi, proto, dir); 686 kdebug_sockaddr(&dst->sa)); 687 688 SPTREE_LOCK(); 689 LIST_FOREACH(sp, &V_sptree[dir], chain) { 690 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 691 printf("*** in SPD\n"); 692 kdebug_secpolicyindex(&sp->spidx)); 693 694 if (sp->state == IPSEC_SPSTATE_DEAD) 695 continue; 696 /* compare simple values, then dst address */ 697 if (sp->spidx.ul_proto != proto) 698 continue; 699 /* NB: spi's must exist and match */ 700 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi) 701 continue; 702 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0) 703 goto found; 704 } 705 sp = NULL; 706 found: 707 if (sp) { 708 /* sanity check */ 709 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 710 711 /* found a SPD entry */ 712 sp->lastused = time_second; 713 SP_ADDREF(sp); 714 } 715 SPTREE_UNLOCK(); 716 717 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 718 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 719 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 720 return sp; 721 } 722 723 #if 0 724 /* 725 * return a policy that matches this particular inbound packet. 726 * XXX slow 727 */ 728 struct secpolicy * 729 key_gettunnel(const struct sockaddr *osrc, 730 const struct sockaddr *odst, 731 const struct sockaddr *isrc, 732 const struct sockaddr *idst, 733 const char* where, int tag) 734 { 735 struct secpolicy *sp; 736 const int dir = IPSEC_DIR_INBOUND; 737 struct ipsecrequest *r1, *r2, *p; 738 struct secpolicyindex spidx; 739 740 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 741 printf("DP %s from %s:%u\n", __func__, where, tag)); 742 743 if (isrc->sa_family != idst->sa_family) { 744 ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.", 745 __func__, isrc->sa_family, idst->sa_family)); 746 sp = NULL; 747 goto done; 748 } 749 750 SPTREE_LOCK(); 751 LIST_FOREACH(sp, &V_sptree[dir], chain) { 752 if (sp->state == IPSEC_SPSTATE_DEAD) 753 continue; 754 755 r1 = r2 = NULL; 756 for (p = sp->req; p; p = p->next) { 757 if (p->saidx.mode != IPSEC_MODE_TUNNEL) 758 continue; 759 760 r1 = r2; 761 r2 = p; 762 763 if (!r1) { 764 /* here we look at address matches only */ 765 spidx = sp->spidx; 766 if (isrc->sa_len > sizeof(spidx.src) || 767 idst->sa_len > sizeof(spidx.dst)) 768 continue; 769 bcopy(isrc, &spidx.src, isrc->sa_len); 770 bcopy(idst, &spidx.dst, idst->sa_len); 771 if (!key_cmpspidx_withmask(&sp->spidx, &spidx)) 772 continue; 773 } else { 774 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) || 775 key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0)) 776 continue; 777 } 778 779 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) || 780 key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0)) 781 continue; 782 783 goto found; 784 } 785 } 786 sp = NULL; 787 found: 788 if (sp) { 789 sp->lastused = time_second; 790 SP_ADDREF(sp); 791 } 792 SPTREE_UNLOCK(); 793 done: 794 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 795 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 796 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 797 return sp; 798 } 799 #endif 800 801 /* 802 * allocating an SA entry for an *OUTBOUND* packet. 803 * checking each request entries in SP, and acquire an SA if need. 804 * OUT: 0: there are valid requests. 805 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. 806 */ 807 int 808 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx) 809 { 810 u_int level; 811 int error; 812 struct secasvar *sav; 813 814 IPSEC_ASSERT(isr != NULL, ("null isr")); 815 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 816 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT || 817 saidx->mode == IPSEC_MODE_TUNNEL, 818 ("unexpected policy %u", saidx->mode)); 819 820 /* 821 * XXX guard against protocol callbacks from the crypto 822 * thread as they reference ipsecrequest.sav which we 823 * temporarily null out below. Need to rethink how we 824 * handle bundled SA's in the callback thread. 825 */ 826 IPSECREQUEST_LOCK_ASSERT(isr); 827 828 /* get current level */ 829 level = ipsec_get_reqlevel(isr); 830 831 /* 832 * We check new SA in the IPsec request because a different 833 * SA may be involved each time this request is checked, either 834 * because new SAs are being configured, or this request is 835 * associated with an unconnected datagram socket, or this request 836 * is associated with a system default policy. 837 * 838 * key_allocsa_policy should allocate the oldest SA available. 839 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt. 840 */ 841 sav = key_allocsa_policy(saidx); 842 if (sav != isr->sav) { 843 /* SA need to be updated. */ 844 if (!IPSECREQUEST_UPGRADE(isr)) { 845 /* Kick everyone off. */ 846 IPSECREQUEST_UNLOCK(isr); 847 IPSECREQUEST_WLOCK(isr); 848 } 849 if (isr->sav != NULL) 850 KEY_FREESAV(&isr->sav); 851 isr->sav = sav; 852 IPSECREQUEST_DOWNGRADE(isr); 853 } else if (sav != NULL) 854 KEY_FREESAV(&sav); 855 856 /* When there is SA. */ 857 if (isr->sav != NULL) { 858 if (isr->sav->state != SADB_SASTATE_MATURE && 859 isr->sav->state != SADB_SASTATE_DYING) 860 return EINVAL; 861 return 0; 862 } 863 864 /* there is no SA */ 865 error = key_acquire(saidx, isr->sp); 866 if (error != 0) { 867 /* XXX What should I do ? */ 868 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 869 __func__, error)); 870 return error; 871 } 872 873 if (level != IPSEC_LEVEL_REQUIRE) { 874 /* XXX sigh, the interface to this routine is botched */ 875 IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA")); 876 return 0; 877 } else { 878 return ENOENT; 879 } 880 } 881 882 /* 883 * allocating a SA for policy entry from SAD. 884 * NOTE: searching SAD of aliving state. 885 * OUT: NULL: not found. 886 * others: found and return the pointer. 887 */ 888 static struct secasvar * 889 key_allocsa_policy(const struct secasindex *saidx) 890 { 891 #define N(a) _ARRAYLEN(a) 892 struct secashead *sah; 893 struct secasvar *sav; 894 u_int stateidx, arraysize; 895 const u_int *state_valid; 896 897 state_valid = NULL; /* silence gcc */ 898 arraysize = 0; /* silence gcc */ 899 900 SAHTREE_LOCK(); 901 LIST_FOREACH(sah, &V_sahtree, chain) { 902 if (sah->state == SADB_SASTATE_DEAD) 903 continue; 904 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) { 905 if (V_key_preferred_oldsa) { 906 state_valid = saorder_state_valid_prefer_old; 907 arraysize = N(saorder_state_valid_prefer_old); 908 } else { 909 state_valid = saorder_state_valid_prefer_new; 910 arraysize = N(saorder_state_valid_prefer_new); 911 } 912 break; 913 } 914 } 915 SAHTREE_UNLOCK(); 916 if (sah == NULL) 917 return NULL; 918 919 /* search valid state */ 920 for (stateidx = 0; stateidx < arraysize; stateidx++) { 921 sav = key_do_allocsa_policy(sah, state_valid[stateidx]); 922 if (sav != NULL) 923 return sav; 924 } 925 926 return NULL; 927 #undef N 928 } 929 930 /* 931 * searching SAD with direction, protocol, mode and state. 932 * called by key_allocsa_policy(). 933 * OUT: 934 * NULL : not found 935 * others : found, pointer to a SA. 936 */ 937 static struct secasvar * 938 key_do_allocsa_policy(struct secashead *sah, u_int state) 939 { 940 struct secasvar *sav, *nextsav, *candidate, *d; 941 942 /* initilize */ 943 candidate = NULL; 944 945 SAHTREE_LOCK(); 946 for (sav = LIST_FIRST(&sah->savtree[state]); 947 sav != NULL; 948 sav = nextsav) { 949 950 nextsav = LIST_NEXT(sav, chain); 951 952 /* sanity check */ 953 KEY_CHKSASTATE(sav->state, state, __func__); 954 955 /* initialize */ 956 if (candidate == NULL) { 957 candidate = sav; 958 continue; 959 } 960 961 /* Which SA is the better ? */ 962 963 IPSEC_ASSERT(candidate->lft_c != NULL, 964 ("null candidate lifetime")); 965 IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime")); 966 967 /* What the best method is to compare ? */ 968 if (V_key_preferred_oldsa) { 969 if (candidate->lft_c->addtime > 970 sav->lft_c->addtime) { 971 candidate = sav; 972 } 973 continue; 974 /*NOTREACHED*/ 975 } 976 977 /* preferred new sa rather than old sa */ 978 if (candidate->lft_c->addtime < 979 sav->lft_c->addtime) { 980 d = candidate; 981 candidate = sav; 982 } else 983 d = sav; 984 985 /* 986 * prepared to delete the SA when there is more 987 * suitable candidate and the lifetime of the SA is not 988 * permanent. 989 */ 990 if (d->lft_h->addtime != 0) { 991 struct mbuf *m, *result; 992 u_int8_t satype; 993 994 key_sa_chgstate(d, SADB_SASTATE_DEAD); 995 996 IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count")); 997 998 satype = key_proto2satype(d->sah->saidx.proto); 999 if (satype == 0) 1000 goto msgfail; 1001 1002 m = key_setsadbmsg(SADB_DELETE, 0, 1003 satype, 0, 0, d->refcnt - 1); 1004 if (!m) 1005 goto msgfail; 1006 result = m; 1007 1008 /* set sadb_address for saidx's. */ 1009 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 1010 &d->sah->saidx.src.sa, 1011 d->sah->saidx.src.sa.sa_len << 3, 1012 IPSEC_ULPROTO_ANY); 1013 if (!m) 1014 goto msgfail; 1015 m_cat(result, m); 1016 1017 /* set sadb_address for saidx's. */ 1018 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 1019 &d->sah->saidx.dst.sa, 1020 d->sah->saidx.dst.sa.sa_len << 3, 1021 IPSEC_ULPROTO_ANY); 1022 if (!m) 1023 goto msgfail; 1024 m_cat(result, m); 1025 1026 /* create SA extension */ 1027 m = key_setsadbsa(d); 1028 if (!m) 1029 goto msgfail; 1030 m_cat(result, m); 1031 1032 if (result->m_len < sizeof(struct sadb_msg)) { 1033 result = m_pullup(result, 1034 sizeof(struct sadb_msg)); 1035 if (result == NULL) 1036 goto msgfail; 1037 } 1038 1039 result->m_pkthdr.len = 0; 1040 for (m = result; m; m = m->m_next) 1041 result->m_pkthdr.len += m->m_len; 1042 mtod(result, struct sadb_msg *)->sadb_msg_len = 1043 PFKEY_UNIT64(result->m_pkthdr.len); 1044 1045 if (key_sendup_mbuf(NULL, result, 1046 KEY_SENDUP_REGISTERED)) 1047 goto msgfail; 1048 msgfail: 1049 KEY_FREESAV(&d); 1050 } 1051 } 1052 if (candidate) { 1053 sa_addref(candidate); 1054 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1055 printf("DP %s cause refcnt++:%d SA:%p\n", 1056 __func__, candidate->refcnt, candidate)); 1057 } 1058 SAHTREE_UNLOCK(); 1059 1060 return candidate; 1061 } 1062 1063 /* 1064 * allocating a usable SA entry for a *INBOUND* packet. 1065 * Must call key_freesav() later. 1066 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). 1067 * NULL: not found, or error occured. 1068 * 1069 * In the comparison, no source address is used--for RFC2401 conformance. 1070 * To quote, from section 4.1: 1071 * A security association is uniquely identified by a triple consisting 1072 * of a Security Parameter Index (SPI), an IP Destination Address, and a 1073 * security protocol (AH or ESP) identifier. 1074 * Note that, however, we do need to keep source address in IPsec SA. 1075 * IKE specification and PF_KEY specification do assume that we 1076 * keep source address in IPsec SA. We see a tricky situation here. 1077 */ 1078 struct secasvar * 1079 key_allocsa( 1080 union sockaddr_union *dst, 1081 u_int proto, 1082 u_int32_t spi, 1083 const char* where, int tag) 1084 { 1085 struct secashead *sah; 1086 struct secasvar *sav; 1087 u_int stateidx, arraysize, state; 1088 const u_int *saorder_state_valid; 1089 int chkport; 1090 1091 IPSEC_ASSERT(dst != NULL, ("null dst address")); 1092 1093 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1094 printf("DP %s from %s:%u\n", __func__, where, tag)); 1095 1096 #ifdef IPSEC_NAT_T 1097 chkport = (dst->sa.sa_family == AF_INET && 1098 dst->sa.sa_len == sizeof(struct sockaddr_in) && 1099 dst->sin.sin_port != 0); 1100 #else 1101 chkport = 0; 1102 #endif 1103 1104 /* 1105 * searching SAD. 1106 * XXX: to be checked internal IP header somewhere. Also when 1107 * IPsec tunnel packet is received. But ESP tunnel mode is 1108 * encrypted so we can't check internal IP header. 1109 */ 1110 SAHTREE_LOCK(); 1111 if (V_key_preferred_oldsa) { 1112 saorder_state_valid = saorder_state_valid_prefer_old; 1113 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); 1114 } else { 1115 saorder_state_valid = saorder_state_valid_prefer_new; 1116 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); 1117 } 1118 LIST_FOREACH(sah, &V_sahtree, chain) { 1119 /* search valid state */ 1120 for (stateidx = 0; stateidx < arraysize; stateidx++) { 1121 state = saorder_state_valid[stateidx]; 1122 LIST_FOREACH(sav, &sah->savtree[state], chain) { 1123 /* sanity check */ 1124 KEY_CHKSASTATE(sav->state, state, __func__); 1125 /* do not return entries w/ unusable state */ 1126 if (sav->state != SADB_SASTATE_MATURE && 1127 sav->state != SADB_SASTATE_DYING) 1128 continue; 1129 if (proto != sav->sah->saidx.proto) 1130 continue; 1131 if (spi != sav->spi) 1132 continue; 1133 #if 0 /* don't check src */ 1134 /* check src address */ 1135 if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, chkport) != 0) 1136 continue; 1137 #endif 1138 /* check dst address */ 1139 if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, chkport) != 0) 1140 continue; 1141 sa_addref(sav); 1142 goto done; 1143 } 1144 } 1145 } 1146 sav = NULL; 1147 done: 1148 SAHTREE_UNLOCK(); 1149 1150 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1151 printf("DP %s return SA:%p; refcnt %u\n", __func__, 1152 sav, sav ? sav->refcnt : 0)); 1153 return sav; 1154 } 1155 1156 /* 1157 * Must be called after calling key_allocsp(). 1158 * For both the packet without socket and key_freeso(). 1159 */ 1160 void 1161 _key_freesp(struct secpolicy **spp, const char* where, int tag) 1162 { 1163 struct secpolicy *sp = *spp; 1164 1165 IPSEC_ASSERT(sp != NULL, ("null sp")); 1166 1167 SPTREE_LOCK(); 1168 SP_DELREF(sp); 1169 1170 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1171 printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n", 1172 __func__, sp, sp->id, where, tag, sp->refcnt)); 1173 1174 if (sp->refcnt == 0) { 1175 *spp = NULL; 1176 key_delsp(sp); 1177 } 1178 SPTREE_UNLOCK(); 1179 } 1180 1181 /* 1182 * Must be called after calling key_allocsp(). 1183 * For the packet with socket. 1184 */ 1185 void 1186 key_freeso(struct socket *so) 1187 { 1188 IPSEC_ASSERT(so != NULL, ("null so")); 1189 1190 switch (so->so_proto->pr_domain->dom_family) { 1191 #if defined(INET) || defined(INET6) 1192 #ifdef INET 1193 case PF_INET: 1194 #endif 1195 #ifdef INET6 1196 case PF_INET6: 1197 #endif 1198 { 1199 struct inpcb *pcb = sotoinpcb(so); 1200 1201 /* Does it have a PCB ? */ 1202 if (pcb == NULL) 1203 return; 1204 key_freesp_so(&pcb->inp_sp->sp_in); 1205 key_freesp_so(&pcb->inp_sp->sp_out); 1206 } 1207 break; 1208 #endif /* INET || INET6 */ 1209 default: 1210 ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n", 1211 __func__, so->so_proto->pr_domain->dom_family)); 1212 return; 1213 } 1214 } 1215 1216 static void 1217 key_freesp_so(struct secpolicy **sp) 1218 { 1219 IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp")); 1220 1221 if ((*sp)->policy == IPSEC_POLICY_ENTRUST || 1222 (*sp)->policy == IPSEC_POLICY_BYPASS) 1223 return; 1224 1225 IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC, 1226 ("invalid policy %u", (*sp)->policy)); 1227 KEY_FREESP(sp); 1228 } 1229 1230 void 1231 key_addrefsa(struct secasvar *sav, const char* where, int tag) 1232 { 1233 1234 IPSEC_ASSERT(sav != NULL, ("null sav")); 1235 IPSEC_ASSERT(sav->refcnt > 0, ("refcount must exist")); 1236 1237 sa_addref(sav); 1238 } 1239 1240 /* 1241 * Must be called after calling key_allocsa(). 1242 * This function is called by key_freesp() to free some SA allocated 1243 * for a policy. 1244 */ 1245 void 1246 key_freesav(struct secasvar **psav, const char* where, int tag) 1247 { 1248 struct secasvar *sav = *psav; 1249 1250 IPSEC_ASSERT(sav != NULL, ("null sav")); 1251 1252 if (sa_delref(sav)) { 1253 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1254 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1255 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1256 *psav = NULL; 1257 key_delsav(sav); 1258 } else { 1259 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1260 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1261 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1262 } 1263 } 1264 1265 /* %%% SPD management */ 1266 /* 1267 * free security policy entry. 1268 */ 1269 static void 1270 key_delsp(struct secpolicy *sp) 1271 { 1272 struct ipsecrequest *isr, *nextisr; 1273 1274 IPSEC_ASSERT(sp != NULL, ("null sp")); 1275 SPTREE_LOCK_ASSERT(); 1276 1277 sp->state = IPSEC_SPSTATE_DEAD; 1278 1279 IPSEC_ASSERT(sp->refcnt == 0, 1280 ("SP with references deleted (refcnt %u)", sp->refcnt)); 1281 1282 /* remove from SP index */ 1283 if (__LIST_CHAINED(sp)) 1284 LIST_REMOVE(sp, chain); 1285 1286 for (isr = sp->req; isr != NULL; isr = nextisr) { 1287 if (isr->sav != NULL) { 1288 KEY_FREESAV(&isr->sav); 1289 isr->sav = NULL; 1290 } 1291 1292 nextisr = isr->next; 1293 ipsec_delisr(isr); 1294 } 1295 _key_delsp(sp); 1296 } 1297 1298 /* 1299 * search SPD 1300 * OUT: NULL : not found 1301 * others : found, pointer to a SP. 1302 */ 1303 static struct secpolicy * 1304 key_getsp(struct secpolicyindex *spidx) 1305 { 1306 struct secpolicy *sp; 1307 1308 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 1309 1310 SPTREE_LOCK(); 1311 LIST_FOREACH(sp, &V_sptree[spidx->dir], chain) { 1312 if (sp->state == IPSEC_SPSTATE_DEAD) 1313 continue; 1314 if (key_cmpspidx_exactly(spidx, &sp->spidx)) { 1315 SP_ADDREF(sp); 1316 break; 1317 } 1318 } 1319 SPTREE_UNLOCK(); 1320 1321 return sp; 1322 } 1323 1324 /* 1325 * get SP by index. 1326 * OUT: NULL : not found 1327 * others : found, pointer to a SP. 1328 */ 1329 static struct secpolicy * 1330 key_getspbyid(u_int32_t id) 1331 { 1332 struct secpolicy *sp; 1333 1334 SPTREE_LOCK(); 1335 LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_INBOUND], chain) { 1336 if (sp->state == IPSEC_SPSTATE_DEAD) 1337 continue; 1338 if (sp->id == id) { 1339 SP_ADDREF(sp); 1340 goto done; 1341 } 1342 } 1343 1344 LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_OUTBOUND], chain) { 1345 if (sp->state == IPSEC_SPSTATE_DEAD) 1346 continue; 1347 if (sp->id == id) { 1348 SP_ADDREF(sp); 1349 goto done; 1350 } 1351 } 1352 done: 1353 SPTREE_UNLOCK(); 1354 1355 return sp; 1356 } 1357 1358 struct secpolicy * 1359 key_newsp(const char* where, int tag) 1360 { 1361 struct secpolicy *newsp = NULL; 1362 1363 newsp = (struct secpolicy *) 1364 malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO); 1365 if (newsp) { 1366 SECPOLICY_LOCK_INIT(newsp); 1367 newsp->refcnt = 1; 1368 newsp->req = NULL; 1369 } 1370 1371 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1372 printf("DP %s from %s:%u return SP:%p\n", __func__, 1373 where, tag, newsp)); 1374 return newsp; 1375 } 1376 1377 static void 1378 _key_delsp(struct secpolicy *sp) 1379 { 1380 SECPOLICY_LOCK_DESTROY(sp); 1381 free(sp, M_IPSEC_SP); 1382 } 1383 1384 /* 1385 * create secpolicy structure from sadb_x_policy structure. 1386 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, 1387 * so must be set properly later. 1388 */ 1389 struct secpolicy * 1390 key_msg2sp(xpl0, len, error) 1391 struct sadb_x_policy *xpl0; 1392 size_t len; 1393 int *error; 1394 { 1395 struct secpolicy *newsp; 1396 1397 IPSEC_ASSERT(xpl0 != NULL, ("null xpl0")); 1398 IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len)); 1399 1400 if (len != PFKEY_EXTLEN(xpl0)) { 1401 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__)); 1402 *error = EINVAL; 1403 return NULL; 1404 } 1405 1406 if ((newsp = KEY_NEWSP()) == NULL) { 1407 *error = ENOBUFS; 1408 return NULL; 1409 } 1410 1411 newsp->spidx.dir = xpl0->sadb_x_policy_dir; 1412 newsp->policy = xpl0->sadb_x_policy_type; 1413 1414 /* check policy */ 1415 switch (xpl0->sadb_x_policy_type) { 1416 case IPSEC_POLICY_DISCARD: 1417 case IPSEC_POLICY_NONE: 1418 case IPSEC_POLICY_ENTRUST: 1419 case IPSEC_POLICY_BYPASS: 1420 newsp->req = NULL; 1421 break; 1422 1423 case IPSEC_POLICY_IPSEC: 1424 { 1425 int tlen; 1426 struct sadb_x_ipsecrequest *xisr; 1427 struct ipsecrequest **p_isr = &newsp->req; 1428 1429 /* validity check */ 1430 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { 1431 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", 1432 __func__)); 1433 KEY_FREESP(&newsp); 1434 *error = EINVAL; 1435 return NULL; 1436 } 1437 1438 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); 1439 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1); 1440 1441 while (tlen > 0) { 1442 /* length check */ 1443 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { 1444 ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest " 1445 "length.\n", __func__)); 1446 KEY_FREESP(&newsp); 1447 *error = EINVAL; 1448 return NULL; 1449 } 1450 1451 /* allocate request buffer */ 1452 /* NB: data structure is zero'd */ 1453 *p_isr = ipsec_newisr(); 1454 if ((*p_isr) == NULL) { 1455 ipseclog((LOG_DEBUG, 1456 "%s: No more memory.\n", __func__)); 1457 KEY_FREESP(&newsp); 1458 *error = ENOBUFS; 1459 return NULL; 1460 } 1461 1462 /* set values */ 1463 switch (xisr->sadb_x_ipsecrequest_proto) { 1464 case IPPROTO_ESP: 1465 case IPPROTO_AH: 1466 case IPPROTO_IPCOMP: 1467 break; 1468 default: 1469 ipseclog((LOG_DEBUG, 1470 "%s: invalid proto type=%u\n", __func__, 1471 xisr->sadb_x_ipsecrequest_proto)); 1472 KEY_FREESP(&newsp); 1473 *error = EPROTONOSUPPORT; 1474 return NULL; 1475 } 1476 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; 1477 1478 switch (xisr->sadb_x_ipsecrequest_mode) { 1479 case IPSEC_MODE_TRANSPORT: 1480 case IPSEC_MODE_TUNNEL: 1481 break; 1482 case IPSEC_MODE_ANY: 1483 default: 1484 ipseclog((LOG_DEBUG, 1485 "%s: invalid mode=%u\n", __func__, 1486 xisr->sadb_x_ipsecrequest_mode)); 1487 KEY_FREESP(&newsp); 1488 *error = EINVAL; 1489 return NULL; 1490 } 1491 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; 1492 1493 switch (xisr->sadb_x_ipsecrequest_level) { 1494 case IPSEC_LEVEL_DEFAULT: 1495 case IPSEC_LEVEL_USE: 1496 case IPSEC_LEVEL_REQUIRE: 1497 break; 1498 case IPSEC_LEVEL_UNIQUE: 1499 /* validity check */ 1500 /* 1501 * If range violation of reqid, kernel will 1502 * update it, don't refuse it. 1503 */ 1504 if (xisr->sadb_x_ipsecrequest_reqid 1505 > IPSEC_MANUAL_REQID_MAX) { 1506 ipseclog((LOG_DEBUG, 1507 "%s: reqid=%d range " 1508 "violation, updated by kernel.\n", 1509 __func__, 1510 xisr->sadb_x_ipsecrequest_reqid)); 1511 xisr->sadb_x_ipsecrequest_reqid = 0; 1512 } 1513 1514 /* allocate new reqid id if reqid is zero. */ 1515 if (xisr->sadb_x_ipsecrequest_reqid == 0) { 1516 u_int32_t reqid; 1517 if ((reqid = key_newreqid()) == 0) { 1518 KEY_FREESP(&newsp); 1519 *error = ENOBUFS; 1520 return NULL; 1521 } 1522 (*p_isr)->saidx.reqid = reqid; 1523 xisr->sadb_x_ipsecrequest_reqid = reqid; 1524 } else { 1525 /* set it for manual keying. */ 1526 (*p_isr)->saidx.reqid = 1527 xisr->sadb_x_ipsecrequest_reqid; 1528 } 1529 break; 1530 1531 default: 1532 ipseclog((LOG_DEBUG, "%s: invalid level=%u\n", 1533 __func__, 1534 xisr->sadb_x_ipsecrequest_level)); 1535 KEY_FREESP(&newsp); 1536 *error = EINVAL; 1537 return NULL; 1538 } 1539 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; 1540 1541 /* set IP addresses if there */ 1542 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { 1543 struct sockaddr *paddr; 1544 1545 paddr = (struct sockaddr *)(xisr + 1); 1546 1547 /* validity check */ 1548 if (paddr->sa_len 1549 > sizeof((*p_isr)->saidx.src)) { 1550 ipseclog((LOG_DEBUG, "%s: invalid " 1551 "request address length.\n", 1552 __func__)); 1553 KEY_FREESP(&newsp); 1554 *error = EINVAL; 1555 return NULL; 1556 } 1557 bcopy(paddr, &(*p_isr)->saidx.src, 1558 paddr->sa_len); 1559 1560 paddr = (struct sockaddr *)((caddr_t)paddr 1561 + paddr->sa_len); 1562 1563 /* validity check */ 1564 if (paddr->sa_len 1565 > sizeof((*p_isr)->saidx.dst)) { 1566 ipseclog((LOG_DEBUG, "%s: invalid " 1567 "request address length.\n", 1568 __func__)); 1569 KEY_FREESP(&newsp); 1570 *error = EINVAL; 1571 return NULL; 1572 } 1573 bcopy(paddr, &(*p_isr)->saidx.dst, 1574 paddr->sa_len); 1575 } 1576 1577 (*p_isr)->sp = newsp; 1578 1579 /* initialization for the next. */ 1580 p_isr = &(*p_isr)->next; 1581 tlen -= xisr->sadb_x_ipsecrequest_len; 1582 1583 /* validity check */ 1584 if (tlen < 0) { 1585 ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n", 1586 __func__)); 1587 KEY_FREESP(&newsp); 1588 *error = EINVAL; 1589 return NULL; 1590 } 1591 1592 xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr 1593 + xisr->sadb_x_ipsecrequest_len); 1594 } 1595 } 1596 break; 1597 default: 1598 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); 1599 KEY_FREESP(&newsp); 1600 *error = EINVAL; 1601 return NULL; 1602 } 1603 1604 *error = 0; 1605 return newsp; 1606 } 1607 1608 static u_int32_t 1609 key_newreqid() 1610 { 1611 static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 1612 1613 auto_reqid = (auto_reqid == ~0 1614 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); 1615 1616 /* XXX should be unique check */ 1617 1618 return auto_reqid; 1619 } 1620 1621 /* 1622 * copy secpolicy struct to sadb_x_policy structure indicated. 1623 */ 1624 struct mbuf * 1625 key_sp2msg(sp) 1626 struct secpolicy *sp; 1627 { 1628 struct sadb_x_policy *xpl; 1629 int tlen; 1630 caddr_t p; 1631 struct mbuf *m; 1632 1633 IPSEC_ASSERT(sp != NULL, ("null policy")); 1634 1635 tlen = key_getspreqmsglen(sp); 1636 1637 m = key_alloc_mbuf(tlen); 1638 if (!m || m->m_next) { /*XXX*/ 1639 if (m) 1640 m_freem(m); 1641 return NULL; 1642 } 1643 1644 m->m_len = tlen; 1645 m->m_next = NULL; 1646 xpl = mtod(m, struct sadb_x_policy *); 1647 bzero(xpl, tlen); 1648 1649 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen); 1650 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 1651 xpl->sadb_x_policy_type = sp->policy; 1652 xpl->sadb_x_policy_dir = sp->spidx.dir; 1653 xpl->sadb_x_policy_id = sp->id; 1654 p = (caddr_t)xpl + sizeof(*xpl); 1655 1656 /* if is the policy for ipsec ? */ 1657 if (sp->policy == IPSEC_POLICY_IPSEC) { 1658 struct sadb_x_ipsecrequest *xisr; 1659 struct ipsecrequest *isr; 1660 1661 for (isr = sp->req; isr != NULL; isr = isr->next) { 1662 1663 xisr = (struct sadb_x_ipsecrequest *)p; 1664 1665 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; 1666 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; 1667 xisr->sadb_x_ipsecrequest_level = isr->level; 1668 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; 1669 1670 p += sizeof(*xisr); 1671 bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len); 1672 p += isr->saidx.src.sa.sa_len; 1673 bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len); 1674 p += isr->saidx.src.sa.sa_len; 1675 1676 xisr->sadb_x_ipsecrequest_len = 1677 PFKEY_ALIGN8(sizeof(*xisr) 1678 + isr->saidx.src.sa.sa_len 1679 + isr->saidx.dst.sa.sa_len); 1680 } 1681 } 1682 1683 return m; 1684 } 1685 1686 /* m will not be freed nor modified */ 1687 static struct mbuf * 1688 #ifdef __STDC__ 1689 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, 1690 int ndeep, int nitem, ...) 1691 #else 1692 key_gather_mbuf(m, mhp, ndeep, nitem, va_alist) 1693 struct mbuf *m; 1694 const struct sadb_msghdr *mhp; 1695 int ndeep; 1696 int nitem; 1697 va_dcl 1698 #endif 1699 { 1700 va_list ap; 1701 int idx; 1702 int i; 1703 struct mbuf *result = NULL, *n; 1704 int len; 1705 1706 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1707 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1708 1709 va_start(ap, nitem); 1710 for (i = 0; i < nitem; i++) { 1711 idx = va_arg(ap, int); 1712 if (idx < 0 || idx > SADB_EXT_MAX) 1713 goto fail; 1714 /* don't attempt to pull empty extension */ 1715 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) 1716 continue; 1717 if (idx != SADB_EXT_RESERVED && 1718 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) 1719 continue; 1720 1721 if (idx == SADB_EXT_RESERVED) { 1722 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 1723 1724 IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len)); 1725 1726 MGETHDR(n, M_DONTWAIT, MT_DATA); 1727 if (!n) 1728 goto fail; 1729 n->m_len = len; 1730 n->m_next = NULL; 1731 m_copydata(m, 0, sizeof(struct sadb_msg), 1732 mtod(n, caddr_t)); 1733 } else if (i < ndeep) { 1734 len = mhp->extlen[idx]; 1735 n = key_alloc_mbuf(len); 1736 if (!n || n->m_next) { /*XXX*/ 1737 if (n) 1738 m_freem(n); 1739 goto fail; 1740 } 1741 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], 1742 mtod(n, caddr_t)); 1743 } else { 1744 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], 1745 M_DONTWAIT); 1746 } 1747 if (n == NULL) 1748 goto fail; 1749 1750 if (result) 1751 m_cat(result, n); 1752 else 1753 result = n; 1754 } 1755 va_end(ap); 1756 1757 if ((result->m_flags & M_PKTHDR) != 0) { 1758 result->m_pkthdr.len = 0; 1759 for (n = result; n; n = n->m_next) 1760 result->m_pkthdr.len += n->m_len; 1761 } 1762 1763 return result; 1764 1765 fail: 1766 m_freem(result); 1767 va_end(ap); 1768 return NULL; 1769 } 1770 1771 /* 1772 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing 1773 * add an entry to SP database, when received 1774 * <base, address(SD), (lifetime(H),) policy> 1775 * from the user(?). 1776 * Adding to SP database, 1777 * and send 1778 * <base, address(SD), (lifetime(H),) policy> 1779 * to the socket which was send. 1780 * 1781 * SPDADD set a unique policy entry. 1782 * SPDSETIDX like SPDADD without a part of policy requests. 1783 * SPDUPDATE replace a unique policy entry. 1784 * 1785 * m will always be freed. 1786 */ 1787 static int 1788 key_spdadd(so, m, mhp) 1789 struct socket *so; 1790 struct mbuf *m; 1791 const struct sadb_msghdr *mhp; 1792 { 1793 struct sadb_address *src0, *dst0; 1794 struct sadb_x_policy *xpl0, *xpl; 1795 struct sadb_lifetime *lft = NULL; 1796 struct secpolicyindex spidx; 1797 struct secpolicy *newsp; 1798 int error; 1799 1800 IPSEC_ASSERT(so != NULL, ("null socket")); 1801 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1802 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1803 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 1804 1805 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 1806 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 1807 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 1808 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n")); 1809 return key_senderror(so, m, EINVAL); 1810 } 1811 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 1812 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 1813 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 1814 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1815 __func__)); 1816 return key_senderror(so, m, EINVAL); 1817 } 1818 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { 1819 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] 1820 < sizeof(struct sadb_lifetime)) { 1821 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1822 __func__)); 1823 return key_senderror(so, m, EINVAL); 1824 } 1825 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 1826 } 1827 1828 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 1829 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 1830 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 1831 1832 /* 1833 * Note: do not parse SADB_X_EXT_NAT_T_* here: 1834 * we are processing traffic endpoints. 1835 */ 1836 1837 /* make secindex */ 1838 /* XXX boundary check against sa_len */ 1839 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1840 src0 + 1, 1841 dst0 + 1, 1842 src0->sadb_address_prefixlen, 1843 dst0->sadb_address_prefixlen, 1844 src0->sadb_address_proto, 1845 &spidx); 1846 1847 /* checking the direciton. */ 1848 switch (xpl0->sadb_x_policy_dir) { 1849 case IPSEC_DIR_INBOUND: 1850 case IPSEC_DIR_OUTBOUND: 1851 break; 1852 default: 1853 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 1854 mhp->msg->sadb_msg_errno = EINVAL; 1855 return 0; 1856 } 1857 1858 /* check policy */ 1859 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */ 1860 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST 1861 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { 1862 ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__)); 1863 return key_senderror(so, m, EINVAL); 1864 } 1865 1866 /* policy requests are mandatory when action is ipsec. */ 1867 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX 1868 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC 1869 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { 1870 ipseclog((LOG_DEBUG, "%s: some policy requests part required\n", 1871 __func__)); 1872 return key_senderror(so, m, EINVAL); 1873 } 1874 1875 /* 1876 * checking there is SP already or not. 1877 * SPDUPDATE doesn't depend on whether there is a SP or not. 1878 * If the type is either SPDADD or SPDSETIDX AND a SP is found, 1879 * then error. 1880 */ 1881 newsp = key_getsp(&spidx); 1882 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1883 if (newsp) { 1884 SPTREE_LOCK(); 1885 newsp->state = IPSEC_SPSTATE_DEAD; 1886 SPTREE_UNLOCK(); 1887 KEY_FREESP(&newsp); 1888 } 1889 } else { 1890 if (newsp != NULL) { 1891 KEY_FREESP(&newsp); 1892 ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n", 1893 __func__)); 1894 return key_senderror(so, m, EEXIST); 1895 } 1896 } 1897 1898 /* allocation new SP entry */ 1899 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) { 1900 return key_senderror(so, m, error); 1901 } 1902 1903 if ((newsp->id = key_getnewspid()) == 0) { 1904 _key_delsp(newsp); 1905 return key_senderror(so, m, ENOBUFS); 1906 } 1907 1908 /* XXX boundary check against sa_len */ 1909 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1910 src0 + 1, 1911 dst0 + 1, 1912 src0->sadb_address_prefixlen, 1913 dst0->sadb_address_prefixlen, 1914 src0->sadb_address_proto, 1915 &newsp->spidx); 1916 1917 /* sanity check on addr pair */ 1918 if (((struct sockaddr *)(src0 + 1))->sa_family != 1919 ((struct sockaddr *)(dst0+ 1))->sa_family) { 1920 _key_delsp(newsp); 1921 return key_senderror(so, m, EINVAL); 1922 } 1923 if (((struct sockaddr *)(src0 + 1))->sa_len != 1924 ((struct sockaddr *)(dst0+ 1))->sa_len) { 1925 _key_delsp(newsp); 1926 return key_senderror(so, m, EINVAL); 1927 } 1928 #if 1 1929 if (newsp->req && newsp->req->saidx.src.sa.sa_family && newsp->req->saidx.dst.sa.sa_family) { 1930 if (newsp->req->saidx.src.sa.sa_family != newsp->req->saidx.dst.sa.sa_family) { 1931 _key_delsp(newsp); 1932 return key_senderror(so, m, EINVAL); 1933 } 1934 } 1935 #endif 1936 1937 newsp->created = time_second; 1938 newsp->lastused = newsp->created; 1939 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; 1940 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; 1941 1942 newsp->refcnt = 1; /* do not reclaim until I say I do */ 1943 newsp->state = IPSEC_SPSTATE_ALIVE; 1944 LIST_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, secpolicy, chain); 1945 1946 /* delete the entry in spacqtree */ 1947 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1948 struct secspacq *spacq = key_getspacq(&spidx); 1949 if (spacq != NULL) { 1950 /* reset counter in order to deletion by timehandler. */ 1951 spacq->created = time_second; 1952 spacq->count = 0; 1953 SPACQ_UNLOCK(); 1954 } 1955 } 1956 1957 { 1958 struct mbuf *n, *mpolicy; 1959 struct sadb_msg *newmsg; 1960 int off; 1961 1962 /* 1963 * Note: do not send SADB_X_EXT_NAT_T_* here: 1964 * we are sending traffic endpoints. 1965 */ 1966 1967 /* create new sadb_msg to reply. */ 1968 if (lft) { 1969 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, 1970 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, 1971 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1972 } else { 1973 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, 1974 SADB_X_EXT_POLICY, 1975 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1976 } 1977 if (!n) 1978 return key_senderror(so, m, ENOBUFS); 1979 1980 if (n->m_len < sizeof(*newmsg)) { 1981 n = m_pullup(n, sizeof(*newmsg)); 1982 if (!n) 1983 return key_senderror(so, m, ENOBUFS); 1984 } 1985 newmsg = mtod(n, struct sadb_msg *); 1986 newmsg->sadb_msg_errno = 0; 1987 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 1988 1989 off = 0; 1990 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), 1991 sizeof(*xpl), &off); 1992 if (mpolicy == NULL) { 1993 /* n is already freed */ 1994 return key_senderror(so, m, ENOBUFS); 1995 } 1996 xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off); 1997 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { 1998 m_freem(n); 1999 return key_senderror(so, m, EINVAL); 2000 } 2001 xpl->sadb_x_policy_id = newsp->id; 2002 2003 m_freem(m); 2004 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2005 } 2006 } 2007 2008 /* 2009 * get new policy id. 2010 * OUT: 2011 * 0: failure. 2012 * others: success. 2013 */ 2014 static u_int32_t 2015 key_getnewspid() 2016 { 2017 u_int32_t newid = 0; 2018 int count = V_key_spi_trycnt; /* XXX */ 2019 struct secpolicy *sp; 2020 2021 /* when requesting to allocate spi ranged */ 2022 while (count--) { 2023 newid = (V_policy_id = (V_policy_id == ~0 ? 1 : V_policy_id + 1)); 2024 2025 if ((sp = key_getspbyid(newid)) == NULL) 2026 break; 2027 2028 KEY_FREESP(&sp); 2029 } 2030 2031 if (count == 0 || newid == 0) { 2032 ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n", 2033 __func__)); 2034 return 0; 2035 } 2036 2037 return newid; 2038 } 2039 2040 /* 2041 * SADB_SPDDELETE processing 2042 * receive 2043 * <base, address(SD), policy(*)> 2044 * from the user(?), and set SADB_SASTATE_DEAD, 2045 * and send, 2046 * <base, address(SD), policy(*)> 2047 * to the ikmpd. 2048 * policy(*) including direction of policy. 2049 * 2050 * m will always be freed. 2051 */ 2052 static int 2053 key_spddelete(so, m, mhp) 2054 struct socket *so; 2055 struct mbuf *m; 2056 const struct sadb_msghdr *mhp; 2057 { 2058 struct sadb_address *src0, *dst0; 2059 struct sadb_x_policy *xpl0; 2060 struct secpolicyindex spidx; 2061 struct secpolicy *sp; 2062 2063 IPSEC_ASSERT(so != NULL, ("null so")); 2064 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2065 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2066 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2067 2068 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2069 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2070 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2071 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2072 __func__)); 2073 return key_senderror(so, m, EINVAL); 2074 } 2075 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2076 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2077 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2078 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2079 __func__)); 2080 return key_senderror(so, m, EINVAL); 2081 } 2082 2083 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 2084 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 2085 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 2086 2087 /* 2088 * Note: do not parse SADB_X_EXT_NAT_T_* here: 2089 * we are processing traffic endpoints. 2090 */ 2091 2092 /* make secindex */ 2093 /* XXX boundary check against sa_len */ 2094 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 2095 src0 + 1, 2096 dst0 + 1, 2097 src0->sadb_address_prefixlen, 2098 dst0->sadb_address_prefixlen, 2099 src0->sadb_address_proto, 2100 &spidx); 2101 2102 /* checking the direciton. */ 2103 switch (xpl0->sadb_x_policy_dir) { 2104 case IPSEC_DIR_INBOUND: 2105 case IPSEC_DIR_OUTBOUND: 2106 break; 2107 default: 2108 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 2109 return key_senderror(so, m, EINVAL); 2110 } 2111 2112 /* Is there SP in SPD ? */ 2113 if ((sp = key_getsp(&spidx)) == NULL) { 2114 ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__)); 2115 return key_senderror(so, m, EINVAL); 2116 } 2117 2118 /* save policy id to buffer to be returned. */ 2119 xpl0->sadb_x_policy_id = sp->id; 2120 2121 SPTREE_LOCK(); 2122 sp->state = IPSEC_SPSTATE_DEAD; 2123 SPTREE_UNLOCK(); 2124 KEY_FREESP(&sp); 2125 2126 { 2127 struct mbuf *n; 2128 struct sadb_msg *newmsg; 2129 2130 /* 2131 * Note: do not send SADB_X_EXT_NAT_T_* here: 2132 * we are sending traffic endpoints. 2133 */ 2134 2135 /* create new sadb_msg to reply. */ 2136 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 2137 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2138 if (!n) 2139 return key_senderror(so, m, ENOBUFS); 2140 2141 newmsg = mtod(n, struct sadb_msg *); 2142 newmsg->sadb_msg_errno = 0; 2143 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2144 2145 m_freem(m); 2146 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2147 } 2148 } 2149 2150 /* 2151 * SADB_SPDDELETE2 processing 2152 * receive 2153 * <base, policy(*)> 2154 * from the user(?), and set SADB_SASTATE_DEAD, 2155 * and send, 2156 * <base, policy(*)> 2157 * to the ikmpd. 2158 * policy(*) including direction of policy. 2159 * 2160 * m will always be freed. 2161 */ 2162 static int 2163 key_spddelete2(so, m, mhp) 2164 struct socket *so; 2165 struct mbuf *m; 2166 const struct sadb_msghdr *mhp; 2167 { 2168 u_int32_t id; 2169 struct secpolicy *sp; 2170 2171 IPSEC_ASSERT(so != NULL, ("null socket")); 2172 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2173 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2174 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2175 2176 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2177 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2178 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); 2179 return key_senderror(so, m, EINVAL); 2180 } 2181 2182 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2183 2184 /* Is there SP in SPD ? */ 2185 if ((sp = key_getspbyid(id)) == NULL) { 2186 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2187 return key_senderror(so, m, EINVAL); 2188 } 2189 2190 SPTREE_LOCK(); 2191 sp->state = IPSEC_SPSTATE_DEAD; 2192 SPTREE_UNLOCK(); 2193 KEY_FREESP(&sp); 2194 2195 { 2196 struct mbuf *n, *nn; 2197 struct sadb_msg *newmsg; 2198 int off, len; 2199 2200 /* create new sadb_msg to reply. */ 2201 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2202 2203 MGETHDR(n, M_DONTWAIT, MT_DATA); 2204 if (n && len > MHLEN) { 2205 MCLGET(n, M_DONTWAIT); 2206 if ((n->m_flags & M_EXT) == 0) { 2207 m_freem(n); 2208 n = NULL; 2209 } 2210 } 2211 if (!n) 2212 return key_senderror(so, m, ENOBUFS); 2213 2214 n->m_len = len; 2215 n->m_next = NULL; 2216 off = 0; 2217 2218 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 2219 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2220 2221 IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)", 2222 off, len)); 2223 2224 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], 2225 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT); 2226 if (!n->m_next) { 2227 m_freem(n); 2228 return key_senderror(so, m, ENOBUFS); 2229 } 2230 2231 n->m_pkthdr.len = 0; 2232 for (nn = n; nn; nn = nn->m_next) 2233 n->m_pkthdr.len += nn->m_len; 2234 2235 newmsg = mtod(n, struct sadb_msg *); 2236 newmsg->sadb_msg_errno = 0; 2237 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2238 2239 m_freem(m); 2240 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2241 } 2242 } 2243 2244 /* 2245 * SADB_X_GET processing 2246 * receive 2247 * <base, policy(*)> 2248 * from the user(?), 2249 * and send, 2250 * <base, address(SD), policy> 2251 * to the ikmpd. 2252 * policy(*) including direction of policy. 2253 * 2254 * m will always be freed. 2255 */ 2256 static int 2257 key_spdget(so, m, mhp) 2258 struct socket *so; 2259 struct mbuf *m; 2260 const struct sadb_msghdr *mhp; 2261 { 2262 u_int32_t id; 2263 struct secpolicy *sp; 2264 struct mbuf *n; 2265 2266 IPSEC_ASSERT(so != NULL, ("null socket")); 2267 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2268 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2269 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2270 2271 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2272 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2273 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2274 __func__)); 2275 return key_senderror(so, m, EINVAL); 2276 } 2277 2278 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2279 2280 /* Is there SP in SPD ? */ 2281 if ((sp = key_getspbyid(id)) == NULL) { 2282 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2283 return key_senderror(so, m, ENOENT); 2284 } 2285 2286 n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid); 2287 KEY_FREESP(&sp); 2288 if (n != NULL) { 2289 m_freem(m); 2290 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2291 } else 2292 return key_senderror(so, m, ENOBUFS); 2293 } 2294 2295 /* 2296 * SADB_X_SPDACQUIRE processing. 2297 * Acquire policy and SA(s) for a *OUTBOUND* packet. 2298 * send 2299 * <base, policy(*)> 2300 * to KMD, and expect to receive 2301 * <base> with SADB_X_SPDACQUIRE if error occured, 2302 * or 2303 * <base, policy> 2304 * with SADB_X_SPDUPDATE from KMD by PF_KEY. 2305 * policy(*) is without policy requests. 2306 * 2307 * 0 : succeed 2308 * others: error number 2309 */ 2310 int 2311 key_spdacquire(sp) 2312 struct secpolicy *sp; 2313 { 2314 struct mbuf *result = NULL, *m; 2315 struct secspacq *newspacq; 2316 2317 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2318 IPSEC_ASSERT(sp->req == NULL, ("policy exists")); 2319 IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC, 2320 ("policy not IPSEC %u", sp->policy)); 2321 2322 /* Get an entry to check whether sent message or not. */ 2323 newspacq = key_getspacq(&sp->spidx); 2324 if (newspacq != NULL) { 2325 if (V_key_blockacq_count < newspacq->count) { 2326 /* reset counter and do send message. */ 2327 newspacq->count = 0; 2328 } else { 2329 /* increment counter and do nothing. */ 2330 newspacq->count++; 2331 return 0; 2332 } 2333 SPACQ_UNLOCK(); 2334 } else { 2335 /* make new entry for blocking to send SADB_ACQUIRE. */ 2336 newspacq = key_newspacq(&sp->spidx); 2337 if (newspacq == NULL) 2338 return ENOBUFS; 2339 } 2340 2341 /* create new sadb_msg to reply. */ 2342 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); 2343 if (!m) 2344 return ENOBUFS; 2345 2346 result = m; 2347 2348 result->m_pkthdr.len = 0; 2349 for (m = result; m; m = m->m_next) 2350 result->m_pkthdr.len += m->m_len; 2351 2352 mtod(result, struct sadb_msg *)->sadb_msg_len = 2353 PFKEY_UNIT64(result->m_pkthdr.len); 2354 2355 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 2356 } 2357 2358 /* 2359 * SADB_SPDFLUSH processing 2360 * receive 2361 * <base> 2362 * from the user, and free all entries in secpctree. 2363 * and send, 2364 * <base> 2365 * to the user. 2366 * NOTE: what to do is only marking SADB_SASTATE_DEAD. 2367 * 2368 * m will always be freed. 2369 */ 2370 static int 2371 key_spdflush(so, m, mhp) 2372 struct socket *so; 2373 struct mbuf *m; 2374 const struct sadb_msghdr *mhp; 2375 { 2376 struct sadb_msg *newmsg; 2377 struct secpolicy *sp; 2378 u_int dir; 2379 2380 IPSEC_ASSERT(so != NULL, ("null socket")); 2381 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2382 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2383 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2384 2385 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) 2386 return key_senderror(so, m, EINVAL); 2387 2388 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2389 SPTREE_LOCK(); 2390 LIST_FOREACH(sp, &V_sptree[dir], chain) 2391 sp->state = IPSEC_SPSTATE_DEAD; 2392 SPTREE_UNLOCK(); 2393 } 2394 2395 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 2396 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2397 return key_senderror(so, m, ENOBUFS); 2398 } 2399 2400 if (m->m_next) 2401 m_freem(m->m_next); 2402 m->m_next = NULL; 2403 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2404 newmsg = mtod(m, struct sadb_msg *); 2405 newmsg->sadb_msg_errno = 0; 2406 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 2407 2408 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 2409 } 2410 2411 /* 2412 * SADB_SPDDUMP processing 2413 * receive 2414 * <base> 2415 * from the user, and dump all SP leaves 2416 * and send, 2417 * <base> ..... 2418 * to the ikmpd. 2419 * 2420 * m will always be freed. 2421 */ 2422 static int 2423 key_spddump(so, m, mhp) 2424 struct socket *so; 2425 struct mbuf *m; 2426 const struct sadb_msghdr *mhp; 2427 { 2428 struct secpolicy *sp; 2429 int cnt; 2430 u_int dir; 2431 struct mbuf *n; 2432 2433 IPSEC_ASSERT(so != NULL, ("null socket")); 2434 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2435 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2436 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2437 2438 /* search SPD entry and get buffer size. */ 2439 cnt = 0; 2440 SPTREE_LOCK(); 2441 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2442 LIST_FOREACH(sp, &V_sptree[dir], chain) { 2443 cnt++; 2444 } 2445 } 2446 2447 if (cnt == 0) { 2448 SPTREE_UNLOCK(); 2449 return key_senderror(so, m, ENOENT); 2450 } 2451 2452 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2453 LIST_FOREACH(sp, &V_sptree[dir], chain) { 2454 --cnt; 2455 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, 2456 mhp->msg->sadb_msg_pid); 2457 2458 if (n) 2459 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2460 } 2461 } 2462 2463 SPTREE_UNLOCK(); 2464 m_freem(m); 2465 return 0; 2466 } 2467 2468 static struct mbuf * 2469 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, u_int32_t pid) 2470 { 2471 struct mbuf *result = NULL, *m; 2472 struct seclifetime lt; 2473 2474 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt); 2475 if (!m) 2476 goto fail; 2477 result = m; 2478 2479 /* 2480 * Note: do not send SADB_X_EXT_NAT_T_* here: 2481 * we are sending traffic endpoints. 2482 */ 2483 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2484 &sp->spidx.src.sa, sp->spidx.prefs, 2485 sp->spidx.ul_proto); 2486 if (!m) 2487 goto fail; 2488 m_cat(result, m); 2489 2490 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2491 &sp->spidx.dst.sa, sp->spidx.prefd, 2492 sp->spidx.ul_proto); 2493 if (!m) 2494 goto fail; 2495 m_cat(result, m); 2496 2497 m = key_sp2msg(sp); 2498 if (!m) 2499 goto fail; 2500 m_cat(result, m); 2501 2502 if(sp->lifetime){ 2503 lt.addtime=sp->created; 2504 lt.usetime= sp->lastused; 2505 m = key_setlifetime(<, SADB_EXT_LIFETIME_CURRENT); 2506 if (!m) 2507 goto fail; 2508 m_cat(result, m); 2509 2510 lt.addtime=sp->lifetime; 2511 lt.usetime= sp->validtime; 2512 m = key_setlifetime(<, SADB_EXT_LIFETIME_HARD); 2513 if (!m) 2514 goto fail; 2515 m_cat(result, m); 2516 } 2517 2518 if ((result->m_flags & M_PKTHDR) == 0) 2519 goto fail; 2520 2521 if (result->m_len < sizeof(struct sadb_msg)) { 2522 result = m_pullup(result, sizeof(struct sadb_msg)); 2523 if (result == NULL) 2524 goto fail; 2525 } 2526 2527 result->m_pkthdr.len = 0; 2528 for (m = result; m; m = m->m_next) 2529 result->m_pkthdr.len += m->m_len; 2530 2531 mtod(result, struct sadb_msg *)->sadb_msg_len = 2532 PFKEY_UNIT64(result->m_pkthdr.len); 2533 2534 return result; 2535 2536 fail: 2537 m_freem(result); 2538 return NULL; 2539 } 2540 2541 /* 2542 * get PFKEY message length for security policy and request. 2543 */ 2544 static u_int 2545 key_getspreqmsglen(sp) 2546 struct secpolicy *sp; 2547 { 2548 u_int tlen; 2549 2550 tlen = sizeof(struct sadb_x_policy); 2551 2552 /* if is the policy for ipsec ? */ 2553 if (sp->policy != IPSEC_POLICY_IPSEC) 2554 return tlen; 2555 2556 /* get length of ipsec requests */ 2557 { 2558 struct ipsecrequest *isr; 2559 int len; 2560 2561 for (isr = sp->req; isr != NULL; isr = isr->next) { 2562 len = sizeof(struct sadb_x_ipsecrequest) 2563 + isr->saidx.src.sa.sa_len 2564 + isr->saidx.dst.sa.sa_len; 2565 2566 tlen += PFKEY_ALIGN8(len); 2567 } 2568 } 2569 2570 return tlen; 2571 } 2572 2573 /* 2574 * SADB_SPDEXPIRE processing 2575 * send 2576 * <base, address(SD), lifetime(CH), policy> 2577 * to KMD by PF_KEY. 2578 * 2579 * OUT: 0 : succeed 2580 * others : error number 2581 */ 2582 static int 2583 key_spdexpire(sp) 2584 struct secpolicy *sp; 2585 { 2586 struct mbuf *result = NULL, *m; 2587 int len; 2588 int error = -1; 2589 struct sadb_lifetime *lt; 2590 2591 /* XXX: Why do we lock ? */ 2592 2593 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2594 2595 /* set msg header */ 2596 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0); 2597 if (!m) { 2598 error = ENOBUFS; 2599 goto fail; 2600 } 2601 result = m; 2602 2603 /* create lifetime extension (current and hard) */ 2604 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 2605 m = key_alloc_mbuf(len); 2606 if (!m || m->m_next) { /*XXX*/ 2607 if (m) 2608 m_freem(m); 2609 error = ENOBUFS; 2610 goto fail; 2611 } 2612 bzero(mtod(m, caddr_t), len); 2613 lt = mtod(m, struct sadb_lifetime *); 2614 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2615 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 2616 lt->sadb_lifetime_allocations = 0; 2617 lt->sadb_lifetime_bytes = 0; 2618 lt->sadb_lifetime_addtime = sp->created; 2619 lt->sadb_lifetime_usetime = sp->lastused; 2620 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 2621 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2622 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 2623 lt->sadb_lifetime_allocations = 0; 2624 lt->sadb_lifetime_bytes = 0; 2625 lt->sadb_lifetime_addtime = sp->lifetime; 2626 lt->sadb_lifetime_usetime = sp->validtime; 2627 m_cat(result, m); 2628 2629 /* 2630 * Note: do not send SADB_X_EXT_NAT_T_* here: 2631 * we are sending traffic endpoints. 2632 */ 2633 2634 /* set sadb_address for source */ 2635 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2636 &sp->spidx.src.sa, 2637 sp->spidx.prefs, sp->spidx.ul_proto); 2638 if (!m) { 2639 error = ENOBUFS; 2640 goto fail; 2641 } 2642 m_cat(result, m); 2643 2644 /* set sadb_address for destination */ 2645 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2646 &sp->spidx.dst.sa, 2647 sp->spidx.prefd, sp->spidx.ul_proto); 2648 if (!m) { 2649 error = ENOBUFS; 2650 goto fail; 2651 } 2652 m_cat(result, m); 2653 2654 /* set secpolicy */ 2655 m = key_sp2msg(sp); 2656 if (!m) { 2657 error = ENOBUFS; 2658 goto fail; 2659 } 2660 m_cat(result, m); 2661 2662 if ((result->m_flags & M_PKTHDR) == 0) { 2663 error = EINVAL; 2664 goto fail; 2665 } 2666 2667 if (result->m_len < sizeof(struct sadb_msg)) { 2668 result = m_pullup(result, sizeof(struct sadb_msg)); 2669 if (result == NULL) { 2670 error = ENOBUFS; 2671 goto fail; 2672 } 2673 } 2674 2675 result->m_pkthdr.len = 0; 2676 for (m = result; m; m = m->m_next) 2677 result->m_pkthdr.len += m->m_len; 2678 2679 mtod(result, struct sadb_msg *)->sadb_msg_len = 2680 PFKEY_UNIT64(result->m_pkthdr.len); 2681 2682 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 2683 2684 fail: 2685 if (result) 2686 m_freem(result); 2687 return error; 2688 } 2689 2690 /* %%% SAD management */ 2691 /* 2692 * allocating a memory for new SA head, and copy from the values of mhp. 2693 * OUT: NULL : failure due to the lack of memory. 2694 * others : pointer to new SA head. 2695 */ 2696 static struct secashead * 2697 key_newsah(saidx) 2698 struct secasindex *saidx; 2699 { 2700 struct secashead *newsah; 2701 2702 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 2703 2704 newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO); 2705 if (newsah != NULL) { 2706 int i; 2707 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++) 2708 LIST_INIT(&newsah->savtree[i]); 2709 newsah->saidx = *saidx; 2710 2711 /* add to saidxtree */ 2712 newsah->state = SADB_SASTATE_MATURE; 2713 2714 SAHTREE_LOCK(); 2715 LIST_INSERT_HEAD(&V_sahtree, newsah, chain); 2716 SAHTREE_UNLOCK(); 2717 } 2718 return(newsah); 2719 } 2720 2721 /* 2722 * delete SA index and all SA registerd. 2723 */ 2724 static void 2725 key_delsah(sah) 2726 struct secashead *sah; 2727 { 2728 struct secasvar *sav, *nextsav; 2729 u_int stateidx; 2730 int zombie = 0; 2731 2732 IPSEC_ASSERT(sah != NULL, ("NULL sah")); 2733 SAHTREE_LOCK_ASSERT(); 2734 2735 /* searching all SA registerd in the secindex. */ 2736 for (stateidx = 0; 2737 stateidx < _ARRAYLEN(saorder_state_any); 2738 stateidx++) { 2739 u_int state = saorder_state_any[stateidx]; 2740 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) { 2741 if (sav->refcnt == 0) { 2742 /* sanity check */ 2743 KEY_CHKSASTATE(state, sav->state, __func__); 2744 /* 2745 * do NOT call KEY_FREESAV here: 2746 * it will only delete the sav if refcnt == 1, 2747 * where we already know that refcnt == 0 2748 */ 2749 key_delsav(sav); 2750 } else { 2751 /* give up to delete this sa */ 2752 zombie++; 2753 } 2754 } 2755 } 2756 if (!zombie) { /* delete only if there are savs */ 2757 /* remove from tree of SA index */ 2758 if (__LIST_CHAINED(sah)) 2759 LIST_REMOVE(sah, chain); 2760 if (sah->route_cache.sa_route.ro_rt) { 2761 RTFREE(sah->route_cache.sa_route.ro_rt); 2762 sah->route_cache.sa_route.ro_rt = (struct rtentry *)NULL; 2763 } 2764 free(sah, M_IPSEC_SAH); 2765 } 2766 } 2767 2768 /* 2769 * allocating a new SA with LARVAL state. key_add() and key_getspi() call, 2770 * and copy the values of mhp into new buffer. 2771 * When SAD message type is GETSPI: 2772 * to set sequence number from acq_seq++, 2773 * to set zero to SPI. 2774 * not to call key_setsava(). 2775 * OUT: NULL : fail 2776 * others : pointer to new secasvar. 2777 * 2778 * does not modify mbuf. does not free mbuf on error. 2779 */ 2780 static struct secasvar * 2781 key_newsav(m, mhp, sah, errp, where, tag) 2782 struct mbuf *m; 2783 const struct sadb_msghdr *mhp; 2784 struct secashead *sah; 2785 int *errp; 2786 const char* where; 2787 int tag; 2788 { 2789 struct secasvar *newsav; 2790 const struct sadb_sa *xsa; 2791 2792 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2793 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2794 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2795 IPSEC_ASSERT(sah != NULL, ("null secashead")); 2796 2797 newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO); 2798 if (newsav == NULL) { 2799 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2800 *errp = ENOBUFS; 2801 goto done; 2802 } 2803 2804 switch (mhp->msg->sadb_msg_type) { 2805 case SADB_GETSPI: 2806 newsav->spi = 0; 2807 2808 #ifdef IPSEC_DOSEQCHECK 2809 /* sync sequence number */ 2810 if (mhp->msg->sadb_msg_seq == 0) 2811 newsav->seq = 2812 (V_acq_seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq)); 2813 else 2814 #endif 2815 newsav->seq = mhp->msg->sadb_msg_seq; 2816 break; 2817 2818 case SADB_ADD: 2819 /* sanity check */ 2820 if (mhp->ext[SADB_EXT_SA] == NULL) { 2821 free(newsav, M_IPSEC_SA); 2822 newsav = NULL; 2823 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2824 __func__)); 2825 *errp = EINVAL; 2826 goto done; 2827 } 2828 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 2829 newsav->spi = xsa->sadb_sa_spi; 2830 newsav->seq = mhp->msg->sadb_msg_seq; 2831 break; 2832 default: 2833 free(newsav, M_IPSEC_SA); 2834 newsav = NULL; 2835 *errp = EINVAL; 2836 goto done; 2837 } 2838 2839 2840 /* copy sav values */ 2841 if (mhp->msg->sadb_msg_type != SADB_GETSPI) { 2842 *errp = key_setsaval(newsav, m, mhp); 2843 if (*errp) { 2844 free(newsav, M_IPSEC_SA); 2845 newsav = NULL; 2846 goto done; 2847 } 2848 } 2849 2850 SECASVAR_LOCK_INIT(newsav); 2851 2852 /* reset created */ 2853 newsav->created = time_second; 2854 newsav->pid = mhp->msg->sadb_msg_pid; 2855 2856 /* add to satree */ 2857 newsav->sah = sah; 2858 sa_initref(newsav); 2859 newsav->state = SADB_SASTATE_LARVAL; 2860 2861 SAHTREE_LOCK(); 2862 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav, 2863 secasvar, chain); 2864 SAHTREE_UNLOCK(); 2865 done: 2866 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 2867 printf("DP %s from %s:%u return SP:%p\n", __func__, 2868 where, tag, newsav)); 2869 2870 return newsav; 2871 } 2872 2873 /* 2874 * free() SA variable entry. 2875 */ 2876 static void 2877 key_cleansav(struct secasvar *sav) 2878 { 2879 /* 2880 * Cleanup xform state. Note that zeroize'ing causes the 2881 * keys to be cleared; otherwise we must do it ourself. 2882 */ 2883 if (sav->tdb_xform != NULL) { 2884 sav->tdb_xform->xf_zeroize(sav); 2885 sav->tdb_xform = NULL; 2886 } else { 2887 KASSERT(sav->iv == NULL, ("iv but no xform")); 2888 if (sav->key_auth != NULL) 2889 bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth)); 2890 if (sav->key_enc != NULL) 2891 bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc)); 2892 } 2893 if (sav->key_auth != NULL) { 2894 if (sav->key_auth->key_data != NULL) 2895 free(sav->key_auth->key_data, M_IPSEC_MISC); 2896 free(sav->key_auth, M_IPSEC_MISC); 2897 sav->key_auth = NULL; 2898 } 2899 if (sav->key_enc != NULL) { 2900 if (sav->key_enc->key_data != NULL) 2901 free(sav->key_enc->key_data, M_IPSEC_MISC); 2902 free(sav->key_enc, M_IPSEC_MISC); 2903 sav->key_enc = NULL; 2904 } 2905 if (sav->sched) { 2906 bzero(sav->sched, sav->schedlen); 2907 free(sav->sched, M_IPSEC_MISC); 2908 sav->sched = NULL; 2909 } 2910 if (sav->replay != NULL) { 2911 free(sav->replay, M_IPSEC_MISC); 2912 sav->replay = NULL; 2913 } 2914 if (sav->lft_c != NULL) { 2915 free(sav->lft_c, M_IPSEC_MISC); 2916 sav->lft_c = NULL; 2917 } 2918 if (sav->lft_h != NULL) { 2919 free(sav->lft_h, M_IPSEC_MISC); 2920 sav->lft_h = NULL; 2921 } 2922 if (sav->lft_s != NULL) { 2923 free(sav->lft_s, M_IPSEC_MISC); 2924 sav->lft_s = NULL; 2925 } 2926 } 2927 2928 /* 2929 * free() SA variable entry. 2930 */ 2931 static void 2932 key_delsav(sav) 2933 struct secasvar *sav; 2934 { 2935 IPSEC_ASSERT(sav != NULL, ("null sav")); 2936 IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt)); 2937 2938 /* remove from SA header */ 2939 if (__LIST_CHAINED(sav)) 2940 LIST_REMOVE(sav, chain); 2941 key_cleansav(sav); 2942 SECASVAR_LOCK_DESTROY(sav); 2943 free(sav, M_IPSEC_SA); 2944 } 2945 2946 /* 2947 * search SAD. 2948 * OUT: 2949 * NULL : not found 2950 * others : found, pointer to a SA. 2951 */ 2952 static struct secashead * 2953 key_getsah(saidx) 2954 struct secasindex *saidx; 2955 { 2956 struct secashead *sah; 2957 2958 SAHTREE_LOCK(); 2959 LIST_FOREACH(sah, &V_sahtree, chain) { 2960 if (sah->state == SADB_SASTATE_DEAD) 2961 continue; 2962 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID)) 2963 break; 2964 } 2965 SAHTREE_UNLOCK(); 2966 2967 return sah; 2968 } 2969 2970 /* 2971 * check not to be duplicated SPI. 2972 * NOTE: this function is too slow due to searching all SAD. 2973 * OUT: 2974 * NULL : not found 2975 * others : found, pointer to a SA. 2976 */ 2977 static struct secasvar * 2978 key_checkspidup(saidx, spi) 2979 struct secasindex *saidx; 2980 u_int32_t spi; 2981 { 2982 struct secashead *sah; 2983 struct secasvar *sav; 2984 2985 /* check address family */ 2986 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) { 2987 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 2988 __func__)); 2989 return NULL; 2990 } 2991 2992 sav = NULL; 2993 /* check all SAD */ 2994 SAHTREE_LOCK(); 2995 LIST_FOREACH(sah, &V_sahtree, chain) { 2996 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst)) 2997 continue; 2998 sav = key_getsavbyspi(sah, spi); 2999 if (sav != NULL) 3000 break; 3001 } 3002 SAHTREE_UNLOCK(); 3003 3004 return sav; 3005 } 3006 3007 /* 3008 * search SAD litmited alive SA, protocol, SPI. 3009 * OUT: 3010 * NULL : not found 3011 * others : found, pointer to a SA. 3012 */ 3013 static struct secasvar * 3014 key_getsavbyspi(sah, spi) 3015 struct secashead *sah; 3016 u_int32_t spi; 3017 { 3018 struct secasvar *sav; 3019 u_int stateidx, state; 3020 3021 sav = NULL; 3022 SAHTREE_LOCK_ASSERT(); 3023 /* search all status */ 3024 for (stateidx = 0; 3025 stateidx < _ARRAYLEN(saorder_state_alive); 3026 stateidx++) { 3027 3028 state = saorder_state_alive[stateidx]; 3029 LIST_FOREACH(sav, &sah->savtree[state], chain) { 3030 3031 /* sanity check */ 3032 if (sav->state != state) { 3033 ipseclog((LOG_DEBUG, "%s: " 3034 "invalid sav->state (queue: %d SA: %d)\n", 3035 __func__, state, sav->state)); 3036 continue; 3037 } 3038 3039 if (sav->spi == spi) 3040 return sav; 3041 } 3042 } 3043 3044 return NULL; 3045 } 3046 3047 /* 3048 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. 3049 * You must update these if need. 3050 * OUT: 0: success. 3051 * !0: failure. 3052 * 3053 * does not modify mbuf. does not free mbuf on error. 3054 */ 3055 static int 3056 key_setsaval(sav, m, mhp) 3057 struct secasvar *sav; 3058 struct mbuf *m; 3059 const struct sadb_msghdr *mhp; 3060 { 3061 int error = 0; 3062 3063 IPSEC_ASSERT(m != NULL, ("null mbuf")); 3064 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 3065 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 3066 3067 /* initialization */ 3068 sav->replay = NULL; 3069 sav->key_auth = NULL; 3070 sav->key_enc = NULL; 3071 sav->sched = NULL; 3072 sav->schedlen = 0; 3073 sav->iv = NULL; 3074 sav->lft_c = NULL; 3075 sav->lft_h = NULL; 3076 sav->lft_s = NULL; 3077 sav->tdb_xform = NULL; /* transform */ 3078 sav->tdb_encalgxform = NULL; /* encoding algorithm */ 3079 sav->tdb_authalgxform = NULL; /* authentication algorithm */ 3080 sav->tdb_compalgxform = NULL; /* compression algorithm */ 3081 /* Initialize even if NAT-T not compiled in: */ 3082 sav->natt_type = 0; 3083 sav->natt_esp_frag_len = 0; 3084 3085 /* SA */ 3086 if (mhp->ext[SADB_EXT_SA] != NULL) { 3087 const struct sadb_sa *sa0; 3088 3089 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 3090 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { 3091 error = EINVAL; 3092 goto fail; 3093 } 3094 3095 sav->alg_auth = sa0->sadb_sa_auth; 3096 sav->alg_enc = sa0->sadb_sa_encrypt; 3097 sav->flags = sa0->sadb_sa_flags; 3098 3099 /* replay window */ 3100 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { 3101 sav->replay = (struct secreplay *) 3102 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO); 3103 if (sav->replay == NULL) { 3104 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3105 __func__)); 3106 error = ENOBUFS; 3107 goto fail; 3108 } 3109 if (sa0->sadb_sa_replay != 0) 3110 sav->replay->bitmap = (caddr_t)(sav->replay+1); 3111 sav->replay->wsize = sa0->sadb_sa_replay; 3112 } 3113 } 3114 3115 /* Authentication keys */ 3116 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { 3117 const struct sadb_key *key0; 3118 int len; 3119 3120 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH]; 3121 len = mhp->extlen[SADB_EXT_KEY_AUTH]; 3122 3123 error = 0; 3124 if (len < sizeof(*key0)) { 3125 error = EINVAL; 3126 goto fail; 3127 } 3128 switch (mhp->msg->sadb_msg_satype) { 3129 case SADB_SATYPE_AH: 3130 case SADB_SATYPE_ESP: 3131 case SADB_X_SATYPE_TCPSIGNATURE: 3132 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3133 sav->alg_auth != SADB_X_AALG_NULL) 3134 error = EINVAL; 3135 break; 3136 case SADB_X_SATYPE_IPCOMP: 3137 default: 3138 error = EINVAL; 3139 break; 3140 } 3141 if (error) { 3142 ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n", 3143 __func__)); 3144 goto fail; 3145 } 3146 3147 sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len, 3148 M_IPSEC_MISC); 3149 if (sav->key_auth == NULL ) { 3150 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3151 __func__)); 3152 error = ENOBUFS; 3153 goto fail; 3154 } 3155 } 3156 3157 /* Encryption key */ 3158 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { 3159 const struct sadb_key *key0; 3160 int len; 3161 3162 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT]; 3163 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; 3164 3165 error = 0; 3166 if (len < sizeof(*key0)) { 3167 error = EINVAL; 3168 goto fail; 3169 } 3170 switch (mhp->msg->sadb_msg_satype) { 3171 case SADB_SATYPE_ESP: 3172 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3173 sav->alg_enc != SADB_EALG_NULL) { 3174 error = EINVAL; 3175 break; 3176 } 3177 sav->key_enc = (struct seckey *)key_dup_keymsg(key0, 3178 len, 3179 M_IPSEC_MISC); 3180 if (sav->key_enc == NULL) { 3181 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3182 __func__)); 3183 error = ENOBUFS; 3184 goto fail; 3185 } 3186 break; 3187 case SADB_X_SATYPE_IPCOMP: 3188 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) 3189 error = EINVAL; 3190 sav->key_enc = NULL; /*just in case*/ 3191 break; 3192 case SADB_SATYPE_AH: 3193 case SADB_X_SATYPE_TCPSIGNATURE: 3194 default: 3195 error = EINVAL; 3196 break; 3197 } 3198 if (error) { 3199 ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n", 3200 __func__)); 3201 goto fail; 3202 } 3203 } 3204 3205 /* set iv */ 3206 sav->ivlen = 0; 3207 3208 switch (mhp->msg->sadb_msg_satype) { 3209 case SADB_SATYPE_AH: 3210 error = xform_init(sav, XF_AH); 3211 break; 3212 case SADB_SATYPE_ESP: 3213 error = xform_init(sav, XF_ESP); 3214 break; 3215 case SADB_X_SATYPE_IPCOMP: 3216 error = xform_init(sav, XF_IPCOMP); 3217 break; 3218 case SADB_X_SATYPE_TCPSIGNATURE: 3219 error = xform_init(sav, XF_TCPSIGNATURE); 3220 break; 3221 } 3222 if (error) { 3223 ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n", 3224 __func__, mhp->msg->sadb_msg_satype)); 3225 goto fail; 3226 } 3227 3228 /* reset created */ 3229 sav->created = time_second; 3230 3231 /* make lifetime for CURRENT */ 3232 sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT); 3233 if (sav->lft_c == NULL) { 3234 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3235 error = ENOBUFS; 3236 goto fail; 3237 } 3238 3239 sav->lft_c->allocations = 0; 3240 sav->lft_c->bytes = 0; 3241 sav->lft_c->addtime = time_second; 3242 sav->lft_c->usetime = 0; 3243 3244 /* lifetimes for HARD and SOFT */ 3245 { 3246 const struct sadb_lifetime *lft0; 3247 3248 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 3249 if (lft0 != NULL) { 3250 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { 3251 error = EINVAL; 3252 goto fail; 3253 } 3254 sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3255 if (sav->lft_h == NULL) { 3256 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3257 error = ENOBUFS; 3258 goto fail; 3259 } 3260 /* to be initialize ? */ 3261 } 3262 3263 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT]; 3264 if (lft0 != NULL) { 3265 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { 3266 error = EINVAL; 3267 goto fail; 3268 } 3269 sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3270 if (sav->lft_s == NULL) { 3271 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3272 error = ENOBUFS; 3273 goto fail; 3274 } 3275 /* to be initialize ? */ 3276 } 3277 } 3278 3279 return 0; 3280 3281 fail: 3282 /* initialization */ 3283 key_cleansav(sav); 3284 3285 return error; 3286 } 3287 3288 /* 3289 * validation with a secasvar entry, and set SADB_SATYPE_MATURE. 3290 * OUT: 0: valid 3291 * other: errno 3292 */ 3293 static int 3294 key_mature(struct secasvar *sav) 3295 { 3296 int error; 3297 3298 /* check SPI value */ 3299 switch (sav->sah->saidx.proto) { 3300 case IPPROTO_ESP: 3301 case IPPROTO_AH: 3302 /* 3303 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values 3304 * 1-255 reserved by IANA for future use, 3305 * 0 for implementation specific, local use. 3306 */ 3307 if (ntohl(sav->spi) <= 255) { 3308 ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n", 3309 __func__, (u_int32_t)ntohl(sav->spi))); 3310 return EINVAL; 3311 } 3312 break; 3313 } 3314 3315 /* check satype */ 3316 switch (sav->sah->saidx.proto) { 3317 case IPPROTO_ESP: 3318 /* check flags */ 3319 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) == 3320 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) { 3321 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3322 "given to old-esp.\n", __func__)); 3323 return EINVAL; 3324 } 3325 error = xform_init(sav, XF_ESP); 3326 break; 3327 case IPPROTO_AH: 3328 /* check flags */ 3329 if (sav->flags & SADB_X_EXT_DERIV) { 3330 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3331 "given to AH SA.\n", __func__)); 3332 return EINVAL; 3333 } 3334 if (sav->alg_enc != SADB_EALG_NONE) { 3335 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3336 "mismated.\n", __func__)); 3337 return(EINVAL); 3338 } 3339 error = xform_init(sav, XF_AH); 3340 break; 3341 case IPPROTO_IPCOMP: 3342 if (sav->alg_auth != SADB_AALG_NONE) { 3343 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3344 "mismated.\n", __func__)); 3345 return(EINVAL); 3346 } 3347 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 3348 && ntohl(sav->spi) >= 0x10000) { 3349 ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n", 3350 __func__)); 3351 return(EINVAL); 3352 } 3353 error = xform_init(sav, XF_IPCOMP); 3354 break; 3355 case IPPROTO_TCP: 3356 if (sav->alg_enc != SADB_EALG_NONE) { 3357 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3358 "mismated.\n", __func__)); 3359 return(EINVAL); 3360 } 3361 error = xform_init(sav, XF_TCPSIGNATURE); 3362 break; 3363 default: 3364 ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__)); 3365 error = EPROTONOSUPPORT; 3366 break; 3367 } 3368 if (error == 0) { 3369 SAHTREE_LOCK(); 3370 key_sa_chgstate(sav, SADB_SASTATE_MATURE); 3371 SAHTREE_UNLOCK(); 3372 } 3373 return (error); 3374 } 3375 3376 /* 3377 * subroutine for SADB_GET and SADB_DUMP. 3378 */ 3379 static struct mbuf * 3380 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype, 3381 u_int32_t seq, u_int32_t pid) 3382 { 3383 struct mbuf *result = NULL, *tres = NULL, *m; 3384 int i; 3385 int dumporder[] = { 3386 SADB_EXT_SA, SADB_X_EXT_SA2, 3387 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 3388 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, 3389 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, 3390 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, 3391 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, 3392 #ifdef IPSEC_NAT_T 3393 SADB_X_EXT_NAT_T_TYPE, 3394 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT, 3395 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR, 3396 SADB_X_EXT_NAT_T_FRAG, 3397 #endif 3398 }; 3399 3400 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt); 3401 if (m == NULL) 3402 goto fail; 3403 result = m; 3404 3405 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) { 3406 m = NULL; 3407 switch (dumporder[i]) { 3408 case SADB_EXT_SA: 3409 m = key_setsadbsa(sav); 3410 if (!m) 3411 goto fail; 3412 break; 3413 3414 case SADB_X_EXT_SA2: 3415 m = key_setsadbxsa2(sav->sah->saidx.mode, 3416 sav->replay ? sav->replay->count : 0, 3417 sav->sah->saidx.reqid); 3418 if (!m) 3419 goto fail; 3420 break; 3421 3422 case SADB_EXT_ADDRESS_SRC: 3423 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3424 &sav->sah->saidx.src.sa, 3425 FULLMASK, IPSEC_ULPROTO_ANY); 3426 if (!m) 3427 goto fail; 3428 break; 3429 3430 case SADB_EXT_ADDRESS_DST: 3431 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3432 &sav->sah->saidx.dst.sa, 3433 FULLMASK, IPSEC_ULPROTO_ANY); 3434 if (!m) 3435 goto fail; 3436 break; 3437 3438 case SADB_EXT_KEY_AUTH: 3439 if (!sav->key_auth) 3440 continue; 3441 m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH); 3442 if (!m) 3443 goto fail; 3444 break; 3445 3446 case SADB_EXT_KEY_ENCRYPT: 3447 if (!sav->key_enc) 3448 continue; 3449 m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT); 3450 if (!m) 3451 goto fail; 3452 break; 3453 3454 case SADB_EXT_LIFETIME_CURRENT: 3455 if (!sav->lft_c) 3456 continue; 3457 m = key_setlifetime(sav->lft_c, 3458 SADB_EXT_LIFETIME_CURRENT); 3459 if (!m) 3460 goto fail; 3461 break; 3462 3463 case SADB_EXT_LIFETIME_HARD: 3464 if (!sav->lft_h) 3465 continue; 3466 m = key_setlifetime(sav->lft_h, 3467 SADB_EXT_LIFETIME_HARD); 3468 if (!m) 3469 goto fail; 3470 break; 3471 3472 case SADB_EXT_LIFETIME_SOFT: 3473 if (!sav->lft_s) 3474 continue; 3475 m = key_setlifetime(sav->lft_s, 3476 SADB_EXT_LIFETIME_SOFT); 3477 3478 if (!m) 3479 goto fail; 3480 break; 3481 3482 #ifdef IPSEC_NAT_T 3483 case SADB_X_EXT_NAT_T_TYPE: 3484 m = key_setsadbxtype(sav->natt_type); 3485 if (!m) 3486 goto fail; 3487 break; 3488 3489 case SADB_X_EXT_NAT_T_DPORT: 3490 m = key_setsadbxport( 3491 KEY_PORTFROMSADDR(&sav->sah->saidx.dst), 3492 SADB_X_EXT_NAT_T_DPORT); 3493 if (!m) 3494 goto fail; 3495 break; 3496 3497 case SADB_X_EXT_NAT_T_SPORT: 3498 m = key_setsadbxport( 3499 KEY_PORTFROMSADDR(&sav->sah->saidx.src), 3500 SADB_X_EXT_NAT_T_SPORT); 3501 if (!m) 3502 goto fail; 3503 break; 3504 3505 case SADB_X_EXT_NAT_T_OAI: 3506 case SADB_X_EXT_NAT_T_OAR: 3507 case SADB_X_EXT_NAT_T_FRAG: 3508 /* We do not (yet) support those. */ 3509 continue; 3510 #endif 3511 3512 case SADB_EXT_ADDRESS_PROXY: 3513 case SADB_EXT_IDENTITY_SRC: 3514 case SADB_EXT_IDENTITY_DST: 3515 /* XXX: should we brought from SPD ? */ 3516 case SADB_EXT_SENSITIVITY: 3517 default: 3518 continue; 3519 } 3520 3521 if (!m) 3522 goto fail; 3523 if (tres) 3524 m_cat(m, tres); 3525 tres = m; 3526 3527 } 3528 3529 m_cat(result, tres); 3530 if (result->m_len < sizeof(struct sadb_msg)) { 3531 result = m_pullup(result, sizeof(struct sadb_msg)); 3532 if (result == NULL) 3533 goto fail; 3534 } 3535 3536 result->m_pkthdr.len = 0; 3537 for (m = result; m; m = m->m_next) 3538 result->m_pkthdr.len += m->m_len; 3539 3540 mtod(result, struct sadb_msg *)->sadb_msg_len = 3541 PFKEY_UNIT64(result->m_pkthdr.len); 3542 3543 return result; 3544 3545 fail: 3546 m_freem(result); 3547 m_freem(tres); 3548 return NULL; 3549 } 3550 3551 /* 3552 * set data into sadb_msg. 3553 */ 3554 static struct mbuf * 3555 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq, 3556 pid_t pid, u_int16_t reserved) 3557 { 3558 struct mbuf *m; 3559 struct sadb_msg *p; 3560 int len; 3561 3562 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 3563 if (len > MCLBYTES) 3564 return NULL; 3565 MGETHDR(m, M_DONTWAIT, MT_DATA); 3566 if (m && len > MHLEN) { 3567 MCLGET(m, M_DONTWAIT); 3568 if ((m->m_flags & M_EXT) == 0) { 3569 m_freem(m); 3570 m = NULL; 3571 } 3572 } 3573 if (!m) 3574 return NULL; 3575 m->m_pkthdr.len = m->m_len = len; 3576 m->m_next = NULL; 3577 3578 p = mtod(m, struct sadb_msg *); 3579 3580 bzero(p, len); 3581 p->sadb_msg_version = PF_KEY_V2; 3582 p->sadb_msg_type = type; 3583 p->sadb_msg_errno = 0; 3584 p->sadb_msg_satype = satype; 3585 p->sadb_msg_len = PFKEY_UNIT64(tlen); 3586 p->sadb_msg_reserved = reserved; 3587 p->sadb_msg_seq = seq; 3588 p->sadb_msg_pid = (u_int32_t)pid; 3589 3590 return m; 3591 } 3592 3593 /* 3594 * copy secasvar data into sadb_address. 3595 */ 3596 static struct mbuf * 3597 key_setsadbsa(sav) 3598 struct secasvar *sav; 3599 { 3600 struct mbuf *m; 3601 struct sadb_sa *p; 3602 int len; 3603 3604 len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); 3605 m = key_alloc_mbuf(len); 3606 if (!m || m->m_next) { /*XXX*/ 3607 if (m) 3608 m_freem(m); 3609 return NULL; 3610 } 3611 3612 p = mtod(m, struct sadb_sa *); 3613 3614 bzero(p, len); 3615 p->sadb_sa_len = PFKEY_UNIT64(len); 3616 p->sadb_sa_exttype = SADB_EXT_SA; 3617 p->sadb_sa_spi = sav->spi; 3618 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0); 3619 p->sadb_sa_state = sav->state; 3620 p->sadb_sa_auth = sav->alg_auth; 3621 p->sadb_sa_encrypt = sav->alg_enc; 3622 p->sadb_sa_flags = sav->flags; 3623 3624 return m; 3625 } 3626 3627 /* 3628 * set data into sadb_address. 3629 */ 3630 static struct mbuf * 3631 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, u_int8_t prefixlen, u_int16_t ul_proto) 3632 { 3633 struct mbuf *m; 3634 struct sadb_address *p; 3635 size_t len; 3636 3637 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + 3638 PFKEY_ALIGN8(saddr->sa_len); 3639 m = key_alloc_mbuf(len); 3640 if (!m || m->m_next) { /*XXX*/ 3641 if (m) 3642 m_freem(m); 3643 return NULL; 3644 } 3645 3646 p = mtod(m, struct sadb_address *); 3647 3648 bzero(p, len); 3649 p->sadb_address_len = PFKEY_UNIT64(len); 3650 p->sadb_address_exttype = exttype; 3651 p->sadb_address_proto = ul_proto; 3652 if (prefixlen == FULLMASK) { 3653 switch (saddr->sa_family) { 3654 case AF_INET: 3655 prefixlen = sizeof(struct in_addr) << 3; 3656 break; 3657 case AF_INET6: 3658 prefixlen = sizeof(struct in6_addr) << 3; 3659 break; 3660 default: 3661 ; /*XXX*/ 3662 } 3663 } 3664 p->sadb_address_prefixlen = prefixlen; 3665 p->sadb_address_reserved = 0; 3666 3667 bcopy(saddr, 3668 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)), 3669 saddr->sa_len); 3670 3671 return m; 3672 } 3673 3674 /* 3675 * set data into sadb_x_sa2. 3676 */ 3677 static struct mbuf * 3678 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid) 3679 { 3680 struct mbuf *m; 3681 struct sadb_x_sa2 *p; 3682 size_t len; 3683 3684 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); 3685 m = key_alloc_mbuf(len); 3686 if (!m || m->m_next) { /*XXX*/ 3687 if (m) 3688 m_freem(m); 3689 return NULL; 3690 } 3691 3692 p = mtod(m, struct sadb_x_sa2 *); 3693 3694 bzero(p, len); 3695 p->sadb_x_sa2_len = PFKEY_UNIT64(len); 3696 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 3697 p->sadb_x_sa2_mode = mode; 3698 p->sadb_x_sa2_reserved1 = 0; 3699 p->sadb_x_sa2_reserved2 = 0; 3700 p->sadb_x_sa2_sequence = seq; 3701 p->sadb_x_sa2_reqid = reqid; 3702 3703 return m; 3704 } 3705 3706 #ifdef IPSEC_NAT_T 3707 /* 3708 * Set a type in sadb_x_nat_t_type. 3709 */ 3710 static struct mbuf * 3711 key_setsadbxtype(u_int16_t type) 3712 { 3713 struct mbuf *m; 3714 size_t len; 3715 struct sadb_x_nat_t_type *p; 3716 3717 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type)); 3718 3719 m = key_alloc_mbuf(len); 3720 if (!m || m->m_next) { /*XXX*/ 3721 if (m) 3722 m_freem(m); 3723 return (NULL); 3724 } 3725 3726 p = mtod(m, struct sadb_x_nat_t_type *); 3727 3728 bzero(p, len); 3729 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len); 3730 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; 3731 p->sadb_x_nat_t_type_type = type; 3732 3733 return (m); 3734 } 3735 /* 3736 * Set a port in sadb_x_nat_t_port. 3737 * In contrast to default RFC 2367 behaviour, port is in network byte order. 3738 */ 3739 static struct mbuf * 3740 key_setsadbxport(u_int16_t port, u_int16_t type) 3741 { 3742 struct mbuf *m; 3743 size_t len; 3744 struct sadb_x_nat_t_port *p; 3745 3746 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port)); 3747 3748 m = key_alloc_mbuf(len); 3749 if (!m || m->m_next) { /*XXX*/ 3750 if (m) 3751 m_freem(m); 3752 return (NULL); 3753 } 3754 3755 p = mtod(m, struct sadb_x_nat_t_port *); 3756 3757 bzero(p, len); 3758 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len); 3759 p->sadb_x_nat_t_port_exttype = type; 3760 p->sadb_x_nat_t_port_port = port; 3761 3762 return (m); 3763 } 3764 3765 /* 3766 * Get port from sockaddr. Port is in network byte order. 3767 */ 3768 u_int16_t 3769 key_portfromsaddr(struct sockaddr *sa) 3770 { 3771 3772 switch (sa->sa_family) { 3773 #ifdef INET 3774 case AF_INET: 3775 return ((struct sockaddr_in *)sa)->sin_port; 3776 #endif 3777 #ifdef INET6 3778 case AF_INET6: 3779 return ((struct sockaddr_in6 *)sa)->sin6_port; 3780 #endif 3781 } 3782 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 3783 printf("DP %s unexpected address family %d\n", 3784 __func__, sa->sa_family)); 3785 return (0); 3786 } 3787 #endif /* IPSEC_NAT_T */ 3788 3789 /* 3790 * Set port in struct sockaddr. Port is in network byte order. 3791 */ 3792 static void 3793 key_porttosaddr(struct sockaddr *sa, u_int16_t port) 3794 { 3795 3796 switch (sa->sa_family) { 3797 #ifdef INET 3798 case AF_INET: 3799 ((struct sockaddr_in *)sa)->sin_port = port; 3800 break; 3801 #endif 3802 #ifdef INET6 3803 case AF_INET6: 3804 ((struct sockaddr_in6 *)sa)->sin6_port = port; 3805 break; 3806 #endif 3807 default: 3808 ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n", 3809 __func__, sa->sa_family)); 3810 break; 3811 } 3812 } 3813 3814 /* 3815 * set data into sadb_x_policy 3816 */ 3817 static struct mbuf * 3818 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id) 3819 { 3820 struct mbuf *m; 3821 struct sadb_x_policy *p; 3822 size_t len; 3823 3824 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); 3825 m = key_alloc_mbuf(len); 3826 if (!m || m->m_next) { /*XXX*/ 3827 if (m) 3828 m_freem(m); 3829 return NULL; 3830 } 3831 3832 p = mtod(m, struct sadb_x_policy *); 3833 3834 bzero(p, len); 3835 p->sadb_x_policy_len = PFKEY_UNIT64(len); 3836 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 3837 p->sadb_x_policy_type = type; 3838 p->sadb_x_policy_dir = dir; 3839 p->sadb_x_policy_id = id; 3840 3841 return m; 3842 } 3843 3844 /* %%% utilities */ 3845 /* Take a key message (sadb_key) from the socket and turn it into one 3846 * of the kernel's key structures (seckey). 3847 * 3848 * IN: pointer to the src 3849 * OUT: NULL no more memory 3850 */ 3851 struct seckey * 3852 key_dup_keymsg(const struct sadb_key *src, u_int len, 3853 struct malloc_type *type) 3854 { 3855 struct seckey *dst; 3856 dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT); 3857 if (dst != NULL) { 3858 dst->bits = src->sadb_key_bits; 3859 dst->key_data = (char *)malloc(len, type, M_NOWAIT); 3860 if (dst->key_data != NULL) { 3861 bcopy((const char *)src + sizeof(struct sadb_key), 3862 dst->key_data, len); 3863 } else { 3864 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3865 __func__)); 3866 free(dst, type); 3867 dst = NULL; 3868 } 3869 } else { 3870 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3871 __func__)); 3872 3873 } 3874 return dst; 3875 } 3876 3877 /* Take a lifetime message (sadb_lifetime) passed in on a socket and 3878 * turn it into one of the kernel's lifetime structures (seclifetime). 3879 * 3880 * IN: pointer to the destination, source and malloc type 3881 * OUT: NULL, no more memory 3882 */ 3883 3884 static struct seclifetime * 3885 key_dup_lifemsg(const struct sadb_lifetime *src, 3886 struct malloc_type *type) 3887 { 3888 struct seclifetime *dst = NULL; 3889 3890 dst = (struct seclifetime *)malloc(sizeof(struct seclifetime), 3891 type, M_NOWAIT); 3892 if (dst == NULL) { 3893 /* XXX counter */ 3894 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3895 } else { 3896 dst->allocations = src->sadb_lifetime_allocations; 3897 dst->bytes = src->sadb_lifetime_bytes; 3898 dst->addtime = src->sadb_lifetime_addtime; 3899 dst->usetime = src->sadb_lifetime_usetime; 3900 } 3901 return dst; 3902 } 3903 3904 /* compare my own address 3905 * OUT: 1: true, i.e. my address. 3906 * 0: false 3907 */ 3908 int 3909 key_ismyaddr(sa) 3910 struct sockaddr *sa; 3911 { 3912 #ifdef INET 3913 struct sockaddr_in *sin; 3914 struct in_ifaddr *ia; 3915 #endif 3916 3917 IPSEC_ASSERT(sa != NULL, ("null sockaddr")); 3918 3919 switch (sa->sa_family) { 3920 #ifdef INET 3921 case AF_INET: 3922 sin = (struct sockaddr_in *)sa; 3923 IN_IFADDR_RLOCK(); 3924 TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) 3925 { 3926 if (sin->sin_family == ia->ia_addr.sin_family && 3927 sin->sin_len == ia->ia_addr.sin_len && 3928 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr) 3929 { 3930 IN_IFADDR_RUNLOCK(); 3931 return 1; 3932 } 3933 } 3934 IN_IFADDR_RUNLOCK(); 3935 break; 3936 #endif 3937 #ifdef INET6 3938 case AF_INET6: 3939 return key_ismyaddr6((struct sockaddr_in6 *)sa); 3940 #endif 3941 } 3942 3943 return 0; 3944 } 3945 3946 #ifdef INET6 3947 /* 3948 * compare my own address for IPv6. 3949 * 1: ours 3950 * 0: other 3951 * NOTE: derived ip6_input() in KAME. This is necessary to modify more. 3952 */ 3953 #include <netinet6/in6_var.h> 3954 3955 static int 3956 key_ismyaddr6(sin6) 3957 struct sockaddr_in6 *sin6; 3958 { 3959 struct in6_ifaddr *ia; 3960 #if 0 3961 struct in6_multi *in6m; 3962 #endif 3963 3964 IN6_IFADDR_RLOCK(); 3965 TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) { 3966 if (key_sockaddrcmp((struct sockaddr *)&sin6, 3967 (struct sockaddr *)&ia->ia_addr, 0) == 0) { 3968 IN6_IFADDR_RUNLOCK(); 3969 return 1; 3970 } 3971 3972 #if 0 3973 /* 3974 * XXX Multicast 3975 * XXX why do we care about multlicast here while we don't care 3976 * about IPv4 multicast?? 3977 * XXX scope 3978 */ 3979 in6m = NULL; 3980 IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m); 3981 if (in6m) { 3982 IN6_IFADDR_RUNLOCK(); 3983 return 1; 3984 } 3985 #endif 3986 } 3987 IN6_IFADDR_RUNLOCK(); 3988 3989 /* loopback, just for safety */ 3990 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) 3991 return 1; 3992 3993 return 0; 3994 } 3995 #endif /*INET6*/ 3996 3997 /* 3998 * compare two secasindex structure. 3999 * flag can specify to compare 2 saidxes. 4000 * compare two secasindex structure without both mode and reqid. 4001 * don't compare port. 4002 * IN: 4003 * saidx0: source, it can be in SAD. 4004 * saidx1: object. 4005 * OUT: 4006 * 1 : equal 4007 * 0 : not equal 4008 */ 4009 static int 4010 key_cmpsaidx( 4011 const struct secasindex *saidx0, 4012 const struct secasindex *saidx1, 4013 int flag) 4014 { 4015 int chkport = 0; 4016 4017 /* sanity */ 4018 if (saidx0 == NULL && saidx1 == NULL) 4019 return 1; 4020 4021 if (saidx0 == NULL || saidx1 == NULL) 4022 return 0; 4023 4024 if (saidx0->proto != saidx1->proto) 4025 return 0; 4026 4027 if (flag == CMP_EXACTLY) { 4028 if (saidx0->mode != saidx1->mode) 4029 return 0; 4030 if (saidx0->reqid != saidx1->reqid) 4031 return 0; 4032 if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 || 4033 bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0) 4034 return 0; 4035 } else { 4036 4037 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ 4038 if (flag == CMP_MODE_REQID 4039 ||flag == CMP_REQID) { 4040 /* 4041 * If reqid of SPD is non-zero, unique SA is required. 4042 * The result must be of same reqid in this case. 4043 */ 4044 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) 4045 return 0; 4046 } 4047 4048 if (flag == CMP_MODE_REQID) { 4049 if (saidx0->mode != IPSEC_MODE_ANY 4050 && saidx0->mode != saidx1->mode) 4051 return 0; 4052 } 4053 4054 #ifdef IPSEC_NAT_T 4055 /* 4056 * If NAT-T is enabled, check ports for tunnel mode. 4057 * Do not check ports if they are set to zero in the SPD. 4058 * Also do not do it for transport mode, as there is no 4059 * port information available in the SP. 4060 */ 4061 if (saidx1->mode == IPSEC_MODE_TUNNEL && 4062 saidx1->src.sa.sa_family == AF_INET && 4063 saidx1->dst.sa.sa_family == AF_INET && 4064 ((const struct sockaddr_in *)(&saidx1->src))->sin_port && 4065 ((const struct sockaddr_in *)(&saidx1->dst))->sin_port) 4066 chkport = 1; 4067 #endif /* IPSEC_NAT_T */ 4068 4069 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, chkport) != 0) { 4070 return 0; 4071 } 4072 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, chkport) != 0) { 4073 return 0; 4074 } 4075 } 4076 4077 return 1; 4078 } 4079 4080 /* 4081 * compare two secindex structure exactly. 4082 * IN: 4083 * spidx0: source, it is often in SPD. 4084 * spidx1: object, it is often from PFKEY message. 4085 * OUT: 4086 * 1 : equal 4087 * 0 : not equal 4088 */ 4089 static int 4090 key_cmpspidx_exactly( 4091 struct secpolicyindex *spidx0, 4092 struct secpolicyindex *spidx1) 4093 { 4094 /* sanity */ 4095 if (spidx0 == NULL && spidx1 == NULL) 4096 return 1; 4097 4098 if (spidx0 == NULL || spidx1 == NULL) 4099 return 0; 4100 4101 if (spidx0->prefs != spidx1->prefs 4102 || spidx0->prefd != spidx1->prefd 4103 || spidx0->ul_proto != spidx1->ul_proto) 4104 return 0; 4105 4106 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 && 4107 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0; 4108 } 4109 4110 /* 4111 * compare two secindex structure with mask. 4112 * IN: 4113 * spidx0: source, it is often in SPD. 4114 * spidx1: object, it is often from IP header. 4115 * OUT: 4116 * 1 : equal 4117 * 0 : not equal 4118 */ 4119 static int 4120 key_cmpspidx_withmask( 4121 struct secpolicyindex *spidx0, 4122 struct secpolicyindex *spidx1) 4123 { 4124 /* sanity */ 4125 if (spidx0 == NULL && spidx1 == NULL) 4126 return 1; 4127 4128 if (spidx0 == NULL || spidx1 == NULL) 4129 return 0; 4130 4131 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || 4132 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || 4133 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || 4134 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) 4135 return 0; 4136 4137 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ 4138 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY 4139 && spidx0->ul_proto != spidx1->ul_proto) 4140 return 0; 4141 4142 switch (spidx0->src.sa.sa_family) { 4143 case AF_INET: 4144 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY 4145 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) 4146 return 0; 4147 if (!key_bbcmp(&spidx0->src.sin.sin_addr, 4148 &spidx1->src.sin.sin_addr, spidx0->prefs)) 4149 return 0; 4150 break; 4151 case AF_INET6: 4152 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY 4153 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) 4154 return 0; 4155 /* 4156 * scope_id check. if sin6_scope_id is 0, we regard it 4157 * as a wildcard scope, which matches any scope zone ID. 4158 */ 4159 if (spidx0->src.sin6.sin6_scope_id && 4160 spidx1->src.sin6.sin6_scope_id && 4161 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) 4162 return 0; 4163 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr, 4164 &spidx1->src.sin6.sin6_addr, spidx0->prefs)) 4165 return 0; 4166 break; 4167 default: 4168 /* XXX */ 4169 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) 4170 return 0; 4171 break; 4172 } 4173 4174 switch (spidx0->dst.sa.sa_family) { 4175 case AF_INET: 4176 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY 4177 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) 4178 return 0; 4179 if (!key_bbcmp(&spidx0->dst.sin.sin_addr, 4180 &spidx1->dst.sin.sin_addr, spidx0->prefd)) 4181 return 0; 4182 break; 4183 case AF_INET6: 4184 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY 4185 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) 4186 return 0; 4187 /* 4188 * scope_id check. if sin6_scope_id is 0, we regard it 4189 * as a wildcard scope, which matches any scope zone ID. 4190 */ 4191 if (spidx0->dst.sin6.sin6_scope_id && 4192 spidx1->dst.sin6.sin6_scope_id && 4193 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) 4194 return 0; 4195 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr, 4196 &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) 4197 return 0; 4198 break; 4199 default: 4200 /* XXX */ 4201 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) 4202 return 0; 4203 break; 4204 } 4205 4206 /* XXX Do we check other field ? e.g. flowinfo */ 4207 4208 return 1; 4209 } 4210 4211 /* returns 0 on match */ 4212 static int 4213 key_sockaddrcmp( 4214 const struct sockaddr *sa1, 4215 const struct sockaddr *sa2, 4216 int port) 4217 { 4218 #ifdef satosin 4219 #undef satosin 4220 #endif 4221 #define satosin(s) ((const struct sockaddr_in *)s) 4222 #ifdef satosin6 4223 #undef satosin6 4224 #endif 4225 #define satosin6(s) ((const struct sockaddr_in6 *)s) 4226 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) 4227 return 1; 4228 4229 switch (sa1->sa_family) { 4230 case AF_INET: 4231 if (sa1->sa_len != sizeof(struct sockaddr_in)) 4232 return 1; 4233 if (satosin(sa1)->sin_addr.s_addr != 4234 satosin(sa2)->sin_addr.s_addr) { 4235 return 1; 4236 } 4237 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port) 4238 return 1; 4239 break; 4240 case AF_INET6: 4241 if (sa1->sa_len != sizeof(struct sockaddr_in6)) 4242 return 1; /*EINVAL*/ 4243 if (satosin6(sa1)->sin6_scope_id != 4244 satosin6(sa2)->sin6_scope_id) { 4245 return 1; 4246 } 4247 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr, 4248 &satosin6(sa2)->sin6_addr)) { 4249 return 1; 4250 } 4251 if (port && 4252 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) { 4253 return 1; 4254 } 4255 break; 4256 default: 4257 if (bcmp(sa1, sa2, sa1->sa_len) != 0) 4258 return 1; 4259 break; 4260 } 4261 4262 return 0; 4263 #undef satosin 4264 #undef satosin6 4265 } 4266 4267 /* 4268 * compare two buffers with mask. 4269 * IN: 4270 * addr1: source 4271 * addr2: object 4272 * bits: Number of bits to compare 4273 * OUT: 4274 * 1 : equal 4275 * 0 : not equal 4276 */ 4277 static int 4278 key_bbcmp(const void *a1, const void *a2, u_int bits) 4279 { 4280 const unsigned char *p1 = a1; 4281 const unsigned char *p2 = a2; 4282 4283 /* XXX: This could be considerably faster if we compare a word 4284 * at a time, but it is complicated on LSB Endian machines */ 4285 4286 /* Handle null pointers */ 4287 if (p1 == NULL || p2 == NULL) 4288 return (p1 == p2); 4289 4290 while (bits >= 8) { 4291 if (*p1++ != *p2++) 4292 return 0; 4293 bits -= 8; 4294 } 4295 4296 if (bits > 0) { 4297 u_int8_t mask = ~((1<<(8-bits))-1); 4298 if ((*p1 & mask) != (*p2 & mask)) 4299 return 0; 4300 } 4301 return 1; /* Match! */ 4302 } 4303 4304 static void 4305 key_flush_spd(time_t now) 4306 { 4307 static u_int16_t sptree_scangen = 0; 4308 u_int16_t gen = sptree_scangen++; 4309 struct secpolicy *sp; 4310 u_int dir; 4311 4312 /* SPD */ 4313 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 4314 restart: 4315 SPTREE_LOCK(); 4316 LIST_FOREACH(sp, &V_sptree[dir], chain) { 4317 if (sp->scangen == gen) /* previously handled */ 4318 continue; 4319 sp->scangen = gen; 4320 if (sp->state == IPSEC_SPSTATE_DEAD && 4321 sp->refcnt == 1) { 4322 /* 4323 * Ensure that we only decrease refcnt once, 4324 * when we're the last consumer. 4325 * Directly call SP_DELREF/key_delsp instead 4326 * of KEY_FREESP to avoid unlocking/relocking 4327 * SPTREE_LOCK before key_delsp: may refcnt 4328 * be increased again during that time ? 4329 * NB: also clean entries created by 4330 * key_spdflush 4331 */ 4332 SP_DELREF(sp); 4333 key_delsp(sp); 4334 SPTREE_UNLOCK(); 4335 goto restart; 4336 } 4337 if (sp->lifetime == 0 && sp->validtime == 0) 4338 continue; 4339 if ((sp->lifetime && now - sp->created > sp->lifetime) 4340 || (sp->validtime && now - sp->lastused > sp->validtime)) { 4341 sp->state = IPSEC_SPSTATE_DEAD; 4342 SPTREE_UNLOCK(); 4343 key_spdexpire(sp); 4344 goto restart; 4345 } 4346 } 4347 SPTREE_UNLOCK(); 4348 } 4349 } 4350 4351 static void 4352 key_flush_sad(time_t now) 4353 { 4354 struct secashead *sah, *nextsah; 4355 struct secasvar *sav, *nextsav; 4356 4357 /* SAD */ 4358 SAHTREE_LOCK(); 4359 LIST_FOREACH_SAFE(sah, &V_sahtree, chain, nextsah) { 4360 /* if sah has been dead, then delete it and process next sah. */ 4361 if (sah->state == SADB_SASTATE_DEAD) { 4362 key_delsah(sah); 4363 continue; 4364 } 4365 4366 /* if LARVAL entry doesn't become MATURE, delete it. */ 4367 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) { 4368 /* Need to also check refcnt for a larval SA ??? */ 4369 if (now - sav->created > V_key_larval_lifetime) 4370 KEY_FREESAV(&sav); 4371 } 4372 4373 /* 4374 * check MATURE entry to start to send expire message 4375 * whether or not. 4376 */ 4377 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) { 4378 /* we don't need to check. */ 4379 if (sav->lft_s == NULL) 4380 continue; 4381 4382 /* sanity check */ 4383 if (sav->lft_c == NULL) { 4384 ipseclog((LOG_DEBUG,"%s: there is no CURRENT " 4385 "time, why?\n", __func__)); 4386 continue; 4387 } 4388 4389 /* check SOFT lifetime */ 4390 if (sav->lft_s->addtime != 0 && 4391 now - sav->created > sav->lft_s->addtime) { 4392 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4393 /* 4394 * Actually, only send expire message if 4395 * SA has been used, as it was done before, 4396 * but should we always send such message, 4397 * and let IKE daemon decide if it should be 4398 * renegotiated or not ? 4399 * XXX expire message will actually NOT be 4400 * sent if SA is only used after soft 4401 * lifetime has been reached, see below 4402 * (DYING state) 4403 */ 4404 if (sav->lft_c->usetime != 0) 4405 key_expire(sav); 4406 } 4407 /* check SOFT lifetime by bytes */ 4408 /* 4409 * XXX I don't know the way to delete this SA 4410 * when new SA is installed. Caution when it's 4411 * installed too big lifetime by time. 4412 */ 4413 else if (sav->lft_s->bytes != 0 && 4414 sav->lft_s->bytes < sav->lft_c->bytes) { 4415 4416 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4417 /* 4418 * XXX If we keep to send expire 4419 * message in the status of 4420 * DYING. Do remove below code. 4421 */ 4422 key_expire(sav); 4423 } 4424 } 4425 4426 /* check DYING entry to change status to DEAD. */ 4427 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) { 4428 /* we don't need to check. */ 4429 if (sav->lft_h == NULL) 4430 continue; 4431 4432 /* sanity check */ 4433 if (sav->lft_c == NULL) { 4434 ipseclog((LOG_DEBUG, "%s: there is no CURRENT " 4435 "time, why?\n", __func__)); 4436 continue; 4437 } 4438 4439 if (sav->lft_h->addtime != 0 && 4440 now - sav->created > sav->lft_h->addtime) { 4441 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4442 KEY_FREESAV(&sav); 4443 } 4444 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */ 4445 else if (sav->lft_s != NULL 4446 && sav->lft_s->addtime != 0 4447 && now - sav->created > sav->lft_s->addtime) { 4448 /* 4449 * XXX: should be checked to be 4450 * installed the valid SA. 4451 */ 4452 4453 /* 4454 * If there is no SA then sending 4455 * expire message. 4456 */ 4457 key_expire(sav); 4458 } 4459 #endif 4460 /* check HARD lifetime by bytes */ 4461 else if (sav->lft_h->bytes != 0 && 4462 sav->lft_h->bytes < sav->lft_c->bytes) { 4463 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4464 KEY_FREESAV(&sav); 4465 } 4466 } 4467 4468 /* delete entry in DEAD */ 4469 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) { 4470 /* sanity check */ 4471 if (sav->state != SADB_SASTATE_DEAD) { 4472 ipseclog((LOG_DEBUG, "%s: invalid sav->state " 4473 "(queue: %d SA: %d): kill it anyway\n", 4474 __func__, 4475 SADB_SASTATE_DEAD, sav->state)); 4476 } 4477 /* 4478 * do not call key_freesav() here. 4479 * sav should already be freed, and sav->refcnt 4480 * shows other references to sav 4481 * (such as from SPD). 4482 */ 4483 } 4484 } 4485 SAHTREE_UNLOCK(); 4486 } 4487 4488 static void 4489 key_flush_acq(time_t now) 4490 { 4491 struct secacq *acq, *nextacq; 4492 4493 /* ACQ tree */ 4494 ACQ_LOCK(); 4495 for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) { 4496 nextacq = LIST_NEXT(acq, chain); 4497 if (now - acq->created > V_key_blockacq_lifetime 4498 && __LIST_CHAINED(acq)) { 4499 LIST_REMOVE(acq, chain); 4500 free(acq, M_IPSEC_SAQ); 4501 } 4502 } 4503 ACQ_UNLOCK(); 4504 } 4505 4506 static void 4507 key_flush_spacq(time_t now) 4508 { 4509 struct secspacq *acq, *nextacq; 4510 4511 /* SP ACQ tree */ 4512 SPACQ_LOCK(); 4513 for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) { 4514 nextacq = LIST_NEXT(acq, chain); 4515 if (now - acq->created > V_key_blockacq_lifetime 4516 && __LIST_CHAINED(acq)) { 4517 LIST_REMOVE(acq, chain); 4518 free(acq, M_IPSEC_SAQ); 4519 } 4520 } 4521 SPACQ_UNLOCK(); 4522 } 4523 4524 /* 4525 * time handler. 4526 * scanning SPD and SAD to check status for each entries, 4527 * and do to remove or to expire. 4528 * XXX: year 2038 problem may remain. 4529 */ 4530 void 4531 key_timehandler(void) 4532 { 4533 VNET_ITERATOR_DECL(vnet_iter); 4534 time_t now = time_second; 4535 4536 VNET_LIST_RLOCK_NOSLEEP(); 4537 VNET_FOREACH(vnet_iter) { 4538 CURVNET_SET(vnet_iter); 4539 key_flush_spd(now); 4540 key_flush_sad(now); 4541 key_flush_acq(now); 4542 key_flush_spacq(now); 4543 CURVNET_RESTORE(); 4544 } 4545 VNET_LIST_RUNLOCK_NOSLEEP(); 4546 4547 #ifndef IPSEC_DEBUG2 4548 /* do exchange to tick time !! */ 4549 (void)timeout((void *)key_timehandler, (void *)0, hz); 4550 #endif /* IPSEC_DEBUG2 */ 4551 } 4552 4553 u_long 4554 key_random() 4555 { 4556 u_long value; 4557 4558 key_randomfill(&value, sizeof(value)); 4559 return value; 4560 } 4561 4562 void 4563 key_randomfill(p, l) 4564 void *p; 4565 size_t l; 4566 { 4567 size_t n; 4568 u_long v; 4569 static int warn = 1; 4570 4571 n = 0; 4572 n = (size_t)read_random(p, (u_int)l); 4573 /* last resort */ 4574 while (n < l) { 4575 v = random(); 4576 bcopy(&v, (u_int8_t *)p + n, 4577 l - n < sizeof(v) ? l - n : sizeof(v)); 4578 n += sizeof(v); 4579 4580 if (warn) { 4581 printf("WARNING: pseudo-random number generator " 4582 "used for IPsec processing\n"); 4583 warn = 0; 4584 } 4585 } 4586 } 4587 4588 /* 4589 * map SADB_SATYPE_* to IPPROTO_*. 4590 * if satype == SADB_SATYPE then satype is mapped to ~0. 4591 * OUT: 4592 * 0: invalid satype. 4593 */ 4594 static u_int16_t 4595 key_satype2proto(u_int8_t satype) 4596 { 4597 switch (satype) { 4598 case SADB_SATYPE_UNSPEC: 4599 return IPSEC_PROTO_ANY; 4600 case SADB_SATYPE_AH: 4601 return IPPROTO_AH; 4602 case SADB_SATYPE_ESP: 4603 return IPPROTO_ESP; 4604 case SADB_X_SATYPE_IPCOMP: 4605 return IPPROTO_IPCOMP; 4606 case SADB_X_SATYPE_TCPSIGNATURE: 4607 return IPPROTO_TCP; 4608 default: 4609 return 0; 4610 } 4611 /* NOTREACHED */ 4612 } 4613 4614 /* 4615 * map IPPROTO_* to SADB_SATYPE_* 4616 * OUT: 4617 * 0: invalid protocol type. 4618 */ 4619 static u_int8_t 4620 key_proto2satype(u_int16_t proto) 4621 { 4622 switch (proto) { 4623 case IPPROTO_AH: 4624 return SADB_SATYPE_AH; 4625 case IPPROTO_ESP: 4626 return SADB_SATYPE_ESP; 4627 case IPPROTO_IPCOMP: 4628 return SADB_X_SATYPE_IPCOMP; 4629 case IPPROTO_TCP: 4630 return SADB_X_SATYPE_TCPSIGNATURE; 4631 default: 4632 return 0; 4633 } 4634 /* NOTREACHED */ 4635 } 4636 4637 /* %%% PF_KEY */ 4638 /* 4639 * SADB_GETSPI processing is to receive 4640 * <base, (SA2), src address, dst address, (SPI range)> 4641 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND 4642 * tree with the status of LARVAL, and send 4643 * <base, SA(*), address(SD)> 4644 * to the IKMPd. 4645 * 4646 * IN: mhp: pointer to the pointer to each header. 4647 * OUT: NULL if fail. 4648 * other if success, return pointer to the message to send. 4649 */ 4650 static int 4651 key_getspi(so, m, mhp) 4652 struct socket *so; 4653 struct mbuf *m; 4654 const struct sadb_msghdr *mhp; 4655 { 4656 struct sadb_address *src0, *dst0; 4657 struct secasindex saidx; 4658 struct secashead *newsah; 4659 struct secasvar *newsav; 4660 u_int8_t proto; 4661 u_int32_t spi; 4662 u_int8_t mode; 4663 u_int32_t reqid; 4664 int error; 4665 4666 IPSEC_ASSERT(so != NULL, ("null socket")); 4667 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4668 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4669 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4670 4671 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4672 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 4673 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4674 __func__)); 4675 return key_senderror(so, m, EINVAL); 4676 } 4677 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4678 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4679 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4680 __func__)); 4681 return key_senderror(so, m, EINVAL); 4682 } 4683 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4684 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4685 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4686 } else { 4687 mode = IPSEC_MODE_ANY; 4688 reqid = 0; 4689 } 4690 4691 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4692 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4693 4694 /* map satype to proto */ 4695 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4696 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4697 __func__)); 4698 return key_senderror(so, m, EINVAL); 4699 } 4700 4701 /* 4702 * Make sure the port numbers are zero. 4703 * In case of NAT-T we will update them later if needed. 4704 */ 4705 switch (((struct sockaddr *)(src0 + 1))->sa_family) { 4706 case AF_INET: 4707 if (((struct sockaddr *)(src0 + 1))->sa_len != 4708 sizeof(struct sockaddr_in)) 4709 return key_senderror(so, m, EINVAL); 4710 ((struct sockaddr_in *)(src0 + 1))->sin_port = 0; 4711 break; 4712 case AF_INET6: 4713 if (((struct sockaddr *)(src0 + 1))->sa_len != 4714 sizeof(struct sockaddr_in6)) 4715 return key_senderror(so, m, EINVAL); 4716 ((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0; 4717 break; 4718 default: 4719 ; /*???*/ 4720 } 4721 switch (((struct sockaddr *)(dst0 + 1))->sa_family) { 4722 case AF_INET: 4723 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4724 sizeof(struct sockaddr_in)) 4725 return key_senderror(so, m, EINVAL); 4726 ((struct sockaddr_in *)(dst0 + 1))->sin_port = 0; 4727 break; 4728 case AF_INET6: 4729 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4730 sizeof(struct sockaddr_in6)) 4731 return key_senderror(so, m, EINVAL); 4732 ((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0; 4733 break; 4734 default: 4735 ; /*???*/ 4736 } 4737 4738 /* XXX boundary check against sa_len */ 4739 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4740 4741 #ifdef IPSEC_NAT_T 4742 /* 4743 * Handle NAT-T info if present. 4744 * We made sure the port numbers are zero above, so we do 4745 * not have to worry in case we do not update them. 4746 */ 4747 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) 4748 ipseclog((LOG_DEBUG, "%s: NAT-T OAi present\n", __func__)); 4749 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) 4750 ipseclog((LOG_DEBUG, "%s: NAT-T OAr present\n", __func__)); 4751 4752 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 4753 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 4754 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 4755 struct sadb_x_nat_t_type *type; 4756 struct sadb_x_nat_t_port *sport, *dport; 4757 4758 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 4759 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 4760 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 4761 ipseclog((LOG_DEBUG, "%s: invalid nat-t message " 4762 "passed.\n", __func__)); 4763 return key_senderror(so, m, EINVAL); 4764 } 4765 4766 sport = (struct sadb_x_nat_t_port *) 4767 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 4768 dport = (struct sadb_x_nat_t_port *) 4769 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 4770 4771 if (sport) 4772 KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port); 4773 if (dport) 4774 KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port); 4775 } 4776 #endif 4777 4778 /* SPI allocation */ 4779 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE], 4780 &saidx); 4781 if (spi == 0) 4782 return key_senderror(so, m, EINVAL); 4783 4784 /* get a SA index */ 4785 if ((newsah = key_getsah(&saidx)) == NULL) { 4786 /* create a new SA index */ 4787 if ((newsah = key_newsah(&saidx)) == NULL) { 4788 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 4789 return key_senderror(so, m, ENOBUFS); 4790 } 4791 } 4792 4793 /* get a new SA */ 4794 /* XXX rewrite */ 4795 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 4796 if (newsav == NULL) { 4797 /* XXX don't free new SA index allocated in above. */ 4798 return key_senderror(so, m, error); 4799 } 4800 4801 /* set spi */ 4802 newsav->spi = htonl(spi); 4803 4804 /* delete the entry in acqtree */ 4805 if (mhp->msg->sadb_msg_seq != 0) { 4806 struct secacq *acq; 4807 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) { 4808 /* reset counter in order to deletion by timehandler. */ 4809 acq->created = time_second; 4810 acq->count = 0; 4811 } 4812 } 4813 4814 { 4815 struct mbuf *n, *nn; 4816 struct sadb_sa *m_sa; 4817 struct sadb_msg *newmsg; 4818 int off, len; 4819 4820 /* create new sadb_msg to reply. */ 4821 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 4822 PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4823 4824 MGETHDR(n, M_DONTWAIT, MT_DATA); 4825 if (len > MHLEN) { 4826 MCLGET(n, M_DONTWAIT); 4827 if ((n->m_flags & M_EXT) == 0) { 4828 m_freem(n); 4829 n = NULL; 4830 } 4831 } 4832 if (!n) 4833 return key_senderror(so, m, ENOBUFS); 4834 4835 n->m_len = len; 4836 n->m_next = NULL; 4837 off = 0; 4838 4839 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 4840 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 4841 4842 m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off); 4843 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); 4844 m_sa->sadb_sa_exttype = SADB_EXT_SA; 4845 m_sa->sadb_sa_spi = htonl(spi); 4846 off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4847 4848 IPSEC_ASSERT(off == len, 4849 ("length inconsistency (off %u len %u)", off, len)); 4850 4851 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, 4852 SADB_EXT_ADDRESS_DST); 4853 if (!n->m_next) { 4854 m_freem(n); 4855 return key_senderror(so, m, ENOBUFS); 4856 } 4857 4858 if (n->m_len < sizeof(struct sadb_msg)) { 4859 n = m_pullup(n, sizeof(struct sadb_msg)); 4860 if (n == NULL) 4861 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 4862 } 4863 4864 n->m_pkthdr.len = 0; 4865 for (nn = n; nn; nn = nn->m_next) 4866 n->m_pkthdr.len += nn->m_len; 4867 4868 newmsg = mtod(n, struct sadb_msg *); 4869 newmsg->sadb_msg_seq = newsav->seq; 4870 newmsg->sadb_msg_errno = 0; 4871 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 4872 4873 m_freem(m); 4874 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 4875 } 4876 } 4877 4878 /* 4879 * allocating new SPI 4880 * called by key_getspi(). 4881 * OUT: 4882 * 0: failure. 4883 * others: success. 4884 */ 4885 static u_int32_t 4886 key_do_getnewspi(spirange, saidx) 4887 struct sadb_spirange *spirange; 4888 struct secasindex *saidx; 4889 { 4890 u_int32_t newspi; 4891 u_int32_t min, max; 4892 int count = V_key_spi_trycnt; 4893 4894 /* set spi range to allocate */ 4895 if (spirange != NULL) { 4896 min = spirange->sadb_spirange_min; 4897 max = spirange->sadb_spirange_max; 4898 } else { 4899 min = V_key_spi_minval; 4900 max = V_key_spi_maxval; 4901 } 4902 /* IPCOMP needs 2-byte SPI */ 4903 if (saidx->proto == IPPROTO_IPCOMP) { 4904 u_int32_t t; 4905 if (min >= 0x10000) 4906 min = 0xffff; 4907 if (max >= 0x10000) 4908 max = 0xffff; 4909 if (min > max) { 4910 t = min; min = max; max = t; 4911 } 4912 } 4913 4914 if (min == max) { 4915 if (key_checkspidup(saidx, min) != NULL) { 4916 ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n", 4917 __func__, min)); 4918 return 0; 4919 } 4920 4921 count--; /* taking one cost. */ 4922 newspi = min; 4923 4924 } else { 4925 4926 /* init SPI */ 4927 newspi = 0; 4928 4929 /* when requesting to allocate spi ranged */ 4930 while (count--) { 4931 /* generate pseudo-random SPI value ranged. */ 4932 newspi = min + (key_random() % (max - min + 1)); 4933 4934 if (key_checkspidup(saidx, newspi) == NULL) 4935 break; 4936 } 4937 4938 if (count == 0 || newspi == 0) { 4939 ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n", 4940 __func__)); 4941 return 0; 4942 } 4943 } 4944 4945 /* statistics */ 4946 keystat.getspi_count = 4947 (keystat.getspi_count + V_key_spi_trycnt - count) / 2; 4948 4949 return newspi; 4950 } 4951 4952 /* 4953 * SADB_UPDATE processing 4954 * receive 4955 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4956 * key(AE), (identity(SD),) (sensitivity)> 4957 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. 4958 * and send 4959 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4960 * (identity(SD),) (sensitivity)> 4961 * to the ikmpd. 4962 * 4963 * m will always be freed. 4964 */ 4965 static int 4966 key_update(so, m, mhp) 4967 struct socket *so; 4968 struct mbuf *m; 4969 const struct sadb_msghdr *mhp; 4970 { 4971 struct sadb_sa *sa0; 4972 struct sadb_address *src0, *dst0; 4973 #ifdef IPSEC_NAT_T 4974 struct sadb_x_nat_t_type *type; 4975 struct sadb_x_nat_t_port *sport, *dport; 4976 struct sadb_address *iaddr, *raddr; 4977 struct sadb_x_nat_t_frag *frag; 4978 #endif 4979 struct secasindex saidx; 4980 struct secashead *sah; 4981 struct secasvar *sav; 4982 u_int16_t proto; 4983 u_int8_t mode; 4984 u_int32_t reqid; 4985 int error; 4986 4987 IPSEC_ASSERT(so != NULL, ("null socket")); 4988 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4989 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4990 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4991 4992 /* map satype to proto */ 4993 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4994 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4995 __func__)); 4996 return key_senderror(so, m, EINVAL); 4997 } 4998 4999 if (mhp->ext[SADB_EXT_SA] == NULL || 5000 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5001 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5002 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5003 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5004 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5005 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5006 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5007 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5008 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5009 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5010 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5011 __func__)); 5012 return key_senderror(so, m, EINVAL); 5013 } 5014 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5015 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5016 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5017 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5018 __func__)); 5019 return key_senderror(so, m, EINVAL); 5020 } 5021 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5022 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 5023 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 5024 } else { 5025 mode = IPSEC_MODE_ANY; 5026 reqid = 0; 5027 } 5028 /* XXX boundary checking for other extensions */ 5029 5030 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5031 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5032 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5033 5034 /* XXX boundary check against sa_len */ 5035 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 5036 5037 /* 5038 * Make sure the port numbers are zero. 5039 * In case of NAT-T we will update them later if needed. 5040 */ 5041 KEY_PORTTOSADDR(&saidx.src, 0); 5042 KEY_PORTTOSADDR(&saidx.dst, 0); 5043 5044 #ifdef IPSEC_NAT_T 5045 /* 5046 * Handle NAT-T info if present. 5047 */ 5048 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 5049 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5050 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5051 5052 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 5053 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5054 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5055 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5056 __func__)); 5057 return key_senderror(so, m, EINVAL); 5058 } 5059 5060 type = (struct sadb_x_nat_t_type *) 5061 mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5062 sport = (struct sadb_x_nat_t_port *) 5063 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5064 dport = (struct sadb_x_nat_t_port *) 5065 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5066 } else { 5067 type = 0; 5068 sport = dport = 0; 5069 } 5070 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL && 5071 mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { 5072 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) || 5073 mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { 5074 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5075 __func__)); 5076 return key_senderror(so, m, EINVAL); 5077 } 5078 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5079 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5080 ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__)); 5081 } else { 5082 iaddr = raddr = NULL; 5083 } 5084 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { 5085 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { 5086 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5087 __func__)); 5088 return key_senderror(so, m, EINVAL); 5089 } 5090 frag = (struct sadb_x_nat_t_frag *) 5091 mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 5092 } else { 5093 frag = 0; 5094 } 5095 #endif 5096 5097 /* get a SA header */ 5098 if ((sah = key_getsah(&saidx)) == NULL) { 5099 ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__)); 5100 return key_senderror(so, m, ENOENT); 5101 } 5102 5103 /* set spidx if there */ 5104 /* XXX rewrite */ 5105 error = key_setident(sah, m, mhp); 5106 if (error) 5107 return key_senderror(so, m, error); 5108 5109 /* find a SA with sequence number. */ 5110 #ifdef IPSEC_DOSEQCHECK 5111 if (mhp->msg->sadb_msg_seq != 0 5112 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) { 5113 ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u " 5114 "exists.\n", __func__, mhp->msg->sadb_msg_seq)); 5115 return key_senderror(so, m, ENOENT); 5116 } 5117 #else 5118 SAHTREE_LOCK(); 5119 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5120 SAHTREE_UNLOCK(); 5121 if (sav == NULL) { 5122 ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n", 5123 __func__, (u_int32_t)ntohl(sa0->sadb_sa_spi))); 5124 return key_senderror(so, m, EINVAL); 5125 } 5126 #endif 5127 5128 /* validity check */ 5129 if (sav->sah->saidx.proto != proto) { 5130 ipseclog((LOG_DEBUG, "%s: protocol mismatched " 5131 "(DB=%u param=%u)\n", __func__, 5132 sav->sah->saidx.proto, proto)); 5133 return key_senderror(so, m, EINVAL); 5134 } 5135 #ifdef IPSEC_DOSEQCHECK 5136 if (sav->spi != sa0->sadb_sa_spi) { 5137 ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n", 5138 __func__, 5139 (u_int32_t)ntohl(sav->spi), 5140 (u_int32_t)ntohl(sa0->sadb_sa_spi))); 5141 return key_senderror(so, m, EINVAL); 5142 } 5143 #endif 5144 if (sav->pid != mhp->msg->sadb_msg_pid) { 5145 ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n", 5146 __func__, sav->pid, mhp->msg->sadb_msg_pid)); 5147 return key_senderror(so, m, EINVAL); 5148 } 5149 5150 /* copy sav values */ 5151 error = key_setsaval(sav, m, mhp); 5152 if (error) { 5153 KEY_FREESAV(&sav); 5154 return key_senderror(so, m, error); 5155 } 5156 5157 #ifdef IPSEC_NAT_T 5158 /* 5159 * Handle more NAT-T info if present, 5160 * now that we have a sav to fill. 5161 */ 5162 if (type) 5163 sav->natt_type = type->sadb_x_nat_t_type_type; 5164 5165 if (sport) 5166 KEY_PORTTOSADDR(&sav->sah->saidx.src, 5167 sport->sadb_x_nat_t_port_port); 5168 if (dport) 5169 KEY_PORTTOSADDR(&sav->sah->saidx.dst, 5170 dport->sadb_x_nat_t_port_port); 5171 5172 #if 0 5173 /* 5174 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0. 5175 * We should actually check for a minimum MTU here, if we 5176 * want to support it in ip_output. 5177 */ 5178 if (frag) 5179 sav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen; 5180 #endif 5181 #endif 5182 5183 /* check SA values to be mature. */ 5184 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) { 5185 KEY_FREESAV(&sav); 5186 return key_senderror(so, m, 0); 5187 } 5188 5189 { 5190 struct mbuf *n; 5191 5192 /* set msg buf from mhp */ 5193 n = key_getmsgbuf_x1(m, mhp); 5194 if (n == NULL) { 5195 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5196 return key_senderror(so, m, ENOBUFS); 5197 } 5198 5199 m_freem(m); 5200 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5201 } 5202 } 5203 5204 /* 5205 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL. 5206 * only called by key_update(). 5207 * OUT: 5208 * NULL : not found 5209 * others : found, pointer to a SA. 5210 */ 5211 #ifdef IPSEC_DOSEQCHECK 5212 static struct secasvar * 5213 key_getsavbyseq(sah, seq) 5214 struct secashead *sah; 5215 u_int32_t seq; 5216 { 5217 struct secasvar *sav; 5218 u_int state; 5219 5220 state = SADB_SASTATE_LARVAL; 5221 5222 /* search SAD with sequence number ? */ 5223 LIST_FOREACH(sav, &sah->savtree[state], chain) { 5224 5225 KEY_CHKSASTATE(state, sav->state, __func__); 5226 5227 if (sav->seq == seq) { 5228 sa_addref(sav); 5229 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 5230 printf("DP %s cause refcnt++:%d SA:%p\n", 5231 __func__, sav->refcnt, sav)); 5232 return sav; 5233 } 5234 } 5235 5236 return NULL; 5237 } 5238 #endif 5239 5240 /* 5241 * SADB_ADD processing 5242 * add an entry to SA database, when received 5243 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5244 * key(AE), (identity(SD),) (sensitivity)> 5245 * from the ikmpd, 5246 * and send 5247 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5248 * (identity(SD),) (sensitivity)> 5249 * to the ikmpd. 5250 * 5251 * IGNORE identity and sensitivity messages. 5252 * 5253 * m will always be freed. 5254 */ 5255 static int 5256 key_add(so, m, mhp) 5257 struct socket *so; 5258 struct mbuf *m; 5259 const struct sadb_msghdr *mhp; 5260 { 5261 struct sadb_sa *sa0; 5262 struct sadb_address *src0, *dst0; 5263 #ifdef IPSEC_NAT_T 5264 struct sadb_x_nat_t_type *type; 5265 struct sadb_address *iaddr, *raddr; 5266 struct sadb_x_nat_t_frag *frag; 5267 #endif 5268 struct secasindex saidx; 5269 struct secashead *newsah; 5270 struct secasvar *newsav; 5271 u_int16_t proto; 5272 u_int8_t mode; 5273 u_int32_t reqid; 5274 int error; 5275 5276 IPSEC_ASSERT(so != NULL, ("null socket")); 5277 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5278 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5279 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5280 5281 /* map satype to proto */ 5282 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5283 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5284 __func__)); 5285 return key_senderror(so, m, EINVAL); 5286 } 5287 5288 if (mhp->ext[SADB_EXT_SA] == NULL || 5289 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5290 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5291 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5292 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5293 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5294 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5295 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5296 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5297 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5298 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5299 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5300 __func__)); 5301 return key_senderror(so, m, EINVAL); 5302 } 5303 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5304 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5305 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5306 /* XXX need more */ 5307 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5308 __func__)); 5309 return key_senderror(so, m, EINVAL); 5310 } 5311 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5312 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 5313 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 5314 } else { 5315 mode = IPSEC_MODE_ANY; 5316 reqid = 0; 5317 } 5318 5319 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5320 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5321 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5322 5323 /* XXX boundary check against sa_len */ 5324 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 5325 5326 /* 5327 * Make sure the port numbers are zero. 5328 * In case of NAT-T we will update them later if needed. 5329 */ 5330 KEY_PORTTOSADDR(&saidx.src, 0); 5331 KEY_PORTTOSADDR(&saidx.dst, 0); 5332 5333 #ifdef IPSEC_NAT_T 5334 /* 5335 * Handle NAT-T info if present. 5336 */ 5337 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 5338 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5339 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5340 struct sadb_x_nat_t_port *sport, *dport; 5341 5342 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 5343 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5344 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5345 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5346 __func__)); 5347 return key_senderror(so, m, EINVAL); 5348 } 5349 5350 type = (struct sadb_x_nat_t_type *) 5351 mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5352 sport = (struct sadb_x_nat_t_port *) 5353 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5354 dport = (struct sadb_x_nat_t_port *) 5355 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5356 5357 if (sport) 5358 KEY_PORTTOSADDR(&saidx.src, 5359 sport->sadb_x_nat_t_port_port); 5360 if (dport) 5361 KEY_PORTTOSADDR(&saidx.dst, 5362 dport->sadb_x_nat_t_port_port); 5363 } else { 5364 type = 0; 5365 } 5366 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL && 5367 mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { 5368 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) || 5369 mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { 5370 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5371 __func__)); 5372 return key_senderror(so, m, EINVAL); 5373 } 5374 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5375 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5376 ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__)); 5377 } else { 5378 iaddr = raddr = NULL; 5379 } 5380 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { 5381 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { 5382 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5383 __func__)); 5384 return key_senderror(so, m, EINVAL); 5385 } 5386 frag = (struct sadb_x_nat_t_frag *) 5387 mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 5388 } else { 5389 frag = 0; 5390 } 5391 #endif 5392 5393 /* get a SA header */ 5394 if ((newsah = key_getsah(&saidx)) == NULL) { 5395 /* create a new SA header */ 5396 if ((newsah = key_newsah(&saidx)) == NULL) { 5397 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 5398 return key_senderror(so, m, ENOBUFS); 5399 } 5400 } 5401 5402 /* set spidx if there */ 5403 /* XXX rewrite */ 5404 error = key_setident(newsah, m, mhp); 5405 if (error) { 5406 return key_senderror(so, m, error); 5407 } 5408 5409 /* create new SA entry. */ 5410 /* We can create new SA only if SPI is differenct. */ 5411 SAHTREE_LOCK(); 5412 newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi); 5413 SAHTREE_UNLOCK(); 5414 if (newsav != NULL) { 5415 ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__)); 5416 return key_senderror(so, m, EEXIST); 5417 } 5418 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 5419 if (newsav == NULL) { 5420 return key_senderror(so, m, error); 5421 } 5422 5423 #ifdef IPSEC_NAT_T 5424 /* 5425 * Handle more NAT-T info if present, 5426 * now that we have a sav to fill. 5427 */ 5428 if (type) 5429 newsav->natt_type = type->sadb_x_nat_t_type_type; 5430 5431 #if 0 5432 /* 5433 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0. 5434 * We should actually check for a minimum MTU here, if we 5435 * want to support it in ip_output. 5436 */ 5437 if (frag) 5438 newsav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen; 5439 #endif 5440 #endif 5441 5442 /* check SA values to be mature. */ 5443 if ((error = key_mature(newsav)) != 0) { 5444 KEY_FREESAV(&newsav); 5445 return key_senderror(so, m, error); 5446 } 5447 5448 /* 5449 * don't call key_freesav() here, as we would like to keep the SA 5450 * in the database on success. 5451 */ 5452 5453 { 5454 struct mbuf *n; 5455 5456 /* set msg buf from mhp */ 5457 n = key_getmsgbuf_x1(m, mhp); 5458 if (n == NULL) { 5459 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5460 return key_senderror(so, m, ENOBUFS); 5461 } 5462 5463 m_freem(m); 5464 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5465 } 5466 } 5467 5468 /* m is retained */ 5469 static int 5470 key_setident(sah, m, mhp) 5471 struct secashead *sah; 5472 struct mbuf *m; 5473 const struct sadb_msghdr *mhp; 5474 { 5475 const struct sadb_ident *idsrc, *iddst; 5476 int idsrclen, iddstlen; 5477 5478 IPSEC_ASSERT(sah != NULL, ("null secashead")); 5479 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5480 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5481 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5482 5483 /* don't make buffer if not there */ 5484 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL && 5485 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5486 sah->idents = NULL; 5487 sah->identd = NULL; 5488 return 0; 5489 } 5490 5491 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL || 5492 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5493 ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__)); 5494 return EINVAL; 5495 } 5496 5497 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC]; 5498 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST]; 5499 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC]; 5500 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST]; 5501 5502 /* validity check */ 5503 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { 5504 ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__)); 5505 return EINVAL; 5506 } 5507 5508 switch (idsrc->sadb_ident_type) { 5509 case SADB_IDENTTYPE_PREFIX: 5510 case SADB_IDENTTYPE_FQDN: 5511 case SADB_IDENTTYPE_USERFQDN: 5512 default: 5513 /* XXX do nothing */ 5514 sah->idents = NULL; 5515 sah->identd = NULL; 5516 return 0; 5517 } 5518 5519 /* make structure */ 5520 sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5521 if (sah->idents == NULL) { 5522 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5523 return ENOBUFS; 5524 } 5525 sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5526 if (sah->identd == NULL) { 5527 free(sah->idents, M_IPSEC_MISC); 5528 sah->idents = NULL; 5529 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5530 return ENOBUFS; 5531 } 5532 sah->idents->type = idsrc->sadb_ident_type; 5533 sah->idents->id = idsrc->sadb_ident_id; 5534 5535 sah->identd->type = iddst->sadb_ident_type; 5536 sah->identd->id = iddst->sadb_ident_id; 5537 5538 return 0; 5539 } 5540 5541 /* 5542 * m will not be freed on return. 5543 * it is caller's responsibility to free the result. 5544 */ 5545 static struct mbuf * 5546 key_getmsgbuf_x1(m, mhp) 5547 struct mbuf *m; 5548 const struct sadb_msghdr *mhp; 5549 { 5550 struct mbuf *n; 5551 5552 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5553 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5554 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5555 5556 /* create new sadb_msg to reply. */ 5557 n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED, 5558 SADB_EXT_SA, SADB_X_EXT_SA2, 5559 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, 5560 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 5561 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST); 5562 if (!n) 5563 return NULL; 5564 5565 if (n->m_len < sizeof(struct sadb_msg)) { 5566 n = m_pullup(n, sizeof(struct sadb_msg)); 5567 if (n == NULL) 5568 return NULL; 5569 } 5570 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; 5571 mtod(n, struct sadb_msg *)->sadb_msg_len = 5572 PFKEY_UNIT64(n->m_pkthdr.len); 5573 5574 return n; 5575 } 5576 5577 static int key_delete_all __P((struct socket *, struct mbuf *, 5578 const struct sadb_msghdr *, u_int16_t)); 5579 5580 /* 5581 * SADB_DELETE processing 5582 * receive 5583 * <base, SA(*), address(SD)> 5584 * from the ikmpd, and set SADB_SASTATE_DEAD, 5585 * and send, 5586 * <base, SA(*), address(SD)> 5587 * to the ikmpd. 5588 * 5589 * m will always be freed. 5590 */ 5591 static int 5592 key_delete(so, m, mhp) 5593 struct socket *so; 5594 struct mbuf *m; 5595 const struct sadb_msghdr *mhp; 5596 { 5597 struct sadb_sa *sa0; 5598 struct sadb_address *src0, *dst0; 5599 struct secasindex saidx; 5600 struct secashead *sah; 5601 struct secasvar *sav = NULL; 5602 u_int16_t proto; 5603 5604 IPSEC_ASSERT(so != NULL, ("null socket")); 5605 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5606 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5607 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5608 5609 /* map satype to proto */ 5610 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5611 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5612 __func__)); 5613 return key_senderror(so, m, EINVAL); 5614 } 5615 5616 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5617 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5618 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5619 __func__)); 5620 return key_senderror(so, m, EINVAL); 5621 } 5622 5623 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5624 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5625 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5626 __func__)); 5627 return key_senderror(so, m, EINVAL); 5628 } 5629 5630 if (mhp->ext[SADB_EXT_SA] == NULL) { 5631 /* 5632 * Caller wants us to delete all non-LARVAL SAs 5633 * that match the src/dst. This is used during 5634 * IKE INITIAL-CONTACT. 5635 */ 5636 ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__)); 5637 return key_delete_all(so, m, mhp, proto); 5638 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { 5639 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5640 __func__)); 5641 return key_senderror(so, m, EINVAL); 5642 } 5643 5644 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5645 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5646 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5647 5648 /* XXX boundary check against sa_len */ 5649 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5650 5651 /* 5652 * Make sure the port numbers are zero. 5653 * In case of NAT-T we will update them later if needed. 5654 */ 5655 KEY_PORTTOSADDR(&saidx.src, 0); 5656 KEY_PORTTOSADDR(&saidx.dst, 0); 5657 5658 #ifdef IPSEC_NAT_T 5659 /* 5660 * Handle NAT-T info if present. 5661 */ 5662 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5663 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5664 struct sadb_x_nat_t_port *sport, *dport; 5665 5666 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5667 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5668 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5669 __func__)); 5670 return key_senderror(so, m, EINVAL); 5671 } 5672 5673 sport = (struct sadb_x_nat_t_port *) 5674 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5675 dport = (struct sadb_x_nat_t_port *) 5676 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5677 5678 if (sport) 5679 KEY_PORTTOSADDR(&saidx.src, 5680 sport->sadb_x_nat_t_port_port); 5681 if (dport) 5682 KEY_PORTTOSADDR(&saidx.dst, 5683 dport->sadb_x_nat_t_port_port); 5684 } 5685 #endif 5686 5687 /* get a SA header */ 5688 SAHTREE_LOCK(); 5689 LIST_FOREACH(sah, &V_sahtree, chain) { 5690 if (sah->state == SADB_SASTATE_DEAD) 5691 continue; 5692 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5693 continue; 5694 5695 /* get a SA with SPI. */ 5696 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5697 if (sav) 5698 break; 5699 } 5700 if (sah == NULL) { 5701 SAHTREE_UNLOCK(); 5702 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5703 return key_senderror(so, m, ENOENT); 5704 } 5705 5706 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5707 KEY_FREESAV(&sav); 5708 SAHTREE_UNLOCK(); 5709 5710 { 5711 struct mbuf *n; 5712 struct sadb_msg *newmsg; 5713 5714 /* create new sadb_msg to reply. */ 5715 /* XXX-BZ NAT-T extensions? */ 5716 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 5717 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5718 if (!n) 5719 return key_senderror(so, m, ENOBUFS); 5720 5721 if (n->m_len < sizeof(struct sadb_msg)) { 5722 n = m_pullup(n, sizeof(struct sadb_msg)); 5723 if (n == NULL) 5724 return key_senderror(so, m, ENOBUFS); 5725 } 5726 newmsg = mtod(n, struct sadb_msg *); 5727 newmsg->sadb_msg_errno = 0; 5728 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5729 5730 m_freem(m); 5731 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5732 } 5733 } 5734 5735 /* 5736 * delete all SAs for src/dst. Called from key_delete(). 5737 */ 5738 static int 5739 key_delete_all(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp, 5740 u_int16_t proto) 5741 { 5742 struct sadb_address *src0, *dst0; 5743 struct secasindex saidx; 5744 struct secashead *sah; 5745 struct secasvar *sav, *nextsav; 5746 u_int stateidx, state; 5747 5748 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5749 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5750 5751 /* XXX boundary check against sa_len */ 5752 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5753 5754 /* 5755 * Make sure the port numbers are zero. 5756 * In case of NAT-T we will update them later if needed. 5757 */ 5758 KEY_PORTTOSADDR(&saidx.src, 0); 5759 KEY_PORTTOSADDR(&saidx.dst, 0); 5760 5761 #ifdef IPSEC_NAT_T 5762 /* 5763 * Handle NAT-T info if present. 5764 */ 5765 5766 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5767 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5768 struct sadb_x_nat_t_port *sport, *dport; 5769 5770 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5771 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5772 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5773 __func__)); 5774 return key_senderror(so, m, EINVAL); 5775 } 5776 5777 sport = (struct sadb_x_nat_t_port *) 5778 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5779 dport = (struct sadb_x_nat_t_port *) 5780 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5781 5782 if (sport) 5783 KEY_PORTTOSADDR(&saidx.src, 5784 sport->sadb_x_nat_t_port_port); 5785 if (dport) 5786 KEY_PORTTOSADDR(&saidx.dst, 5787 dport->sadb_x_nat_t_port_port); 5788 } 5789 #endif 5790 5791 SAHTREE_LOCK(); 5792 LIST_FOREACH(sah, &V_sahtree, chain) { 5793 if (sah->state == SADB_SASTATE_DEAD) 5794 continue; 5795 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5796 continue; 5797 5798 /* Delete all non-LARVAL SAs. */ 5799 for (stateidx = 0; 5800 stateidx < _ARRAYLEN(saorder_state_alive); 5801 stateidx++) { 5802 state = saorder_state_alive[stateidx]; 5803 if (state == SADB_SASTATE_LARVAL) 5804 continue; 5805 for (sav = LIST_FIRST(&sah->savtree[state]); 5806 sav != NULL; sav = nextsav) { 5807 nextsav = LIST_NEXT(sav, chain); 5808 /* sanity check */ 5809 if (sav->state != state) { 5810 ipseclog((LOG_DEBUG, "%s: invalid " 5811 "sav->state (queue %d SA %d)\n", 5812 __func__, state, sav->state)); 5813 continue; 5814 } 5815 5816 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5817 KEY_FREESAV(&sav); 5818 } 5819 } 5820 } 5821 SAHTREE_UNLOCK(); 5822 { 5823 struct mbuf *n; 5824 struct sadb_msg *newmsg; 5825 5826 /* create new sadb_msg to reply. */ 5827 /* XXX-BZ NAT-T extensions? */ 5828 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, 5829 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5830 if (!n) 5831 return key_senderror(so, m, ENOBUFS); 5832 5833 if (n->m_len < sizeof(struct sadb_msg)) { 5834 n = m_pullup(n, sizeof(struct sadb_msg)); 5835 if (n == NULL) 5836 return key_senderror(so, m, ENOBUFS); 5837 } 5838 newmsg = mtod(n, struct sadb_msg *); 5839 newmsg->sadb_msg_errno = 0; 5840 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5841 5842 m_freem(m); 5843 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5844 } 5845 } 5846 5847 /* 5848 * SADB_GET processing 5849 * receive 5850 * <base, SA(*), address(SD)> 5851 * from the ikmpd, and get a SP and a SA to respond, 5852 * and send, 5853 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), 5854 * (identity(SD),) (sensitivity)> 5855 * to the ikmpd. 5856 * 5857 * m will always be freed. 5858 */ 5859 static int 5860 key_get(so, m, mhp) 5861 struct socket *so; 5862 struct mbuf *m; 5863 const struct sadb_msghdr *mhp; 5864 { 5865 struct sadb_sa *sa0; 5866 struct sadb_address *src0, *dst0; 5867 struct secasindex saidx; 5868 struct secashead *sah; 5869 struct secasvar *sav = NULL; 5870 u_int16_t proto; 5871 5872 IPSEC_ASSERT(so != NULL, ("null socket")); 5873 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5874 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5875 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5876 5877 /* map satype to proto */ 5878 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5879 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5880 __func__)); 5881 return key_senderror(so, m, EINVAL); 5882 } 5883 5884 if (mhp->ext[SADB_EXT_SA] == NULL || 5885 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5886 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5887 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5888 __func__)); 5889 return key_senderror(so, m, EINVAL); 5890 } 5891 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5892 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5893 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5894 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5895 __func__)); 5896 return key_senderror(so, m, EINVAL); 5897 } 5898 5899 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5900 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5901 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5902 5903 /* XXX boundary check against sa_len */ 5904 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5905 5906 /* 5907 * Make sure the port numbers are zero. 5908 * In case of NAT-T we will update them later if needed. 5909 */ 5910 KEY_PORTTOSADDR(&saidx.src, 0); 5911 KEY_PORTTOSADDR(&saidx.dst, 0); 5912 5913 #ifdef IPSEC_NAT_T 5914 /* 5915 * Handle NAT-T info if present. 5916 */ 5917 5918 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5919 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5920 struct sadb_x_nat_t_port *sport, *dport; 5921 5922 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5923 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5924 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5925 __func__)); 5926 return key_senderror(so, m, EINVAL); 5927 } 5928 5929 sport = (struct sadb_x_nat_t_port *) 5930 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5931 dport = (struct sadb_x_nat_t_port *) 5932 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5933 5934 if (sport) 5935 KEY_PORTTOSADDR(&saidx.src, 5936 sport->sadb_x_nat_t_port_port); 5937 if (dport) 5938 KEY_PORTTOSADDR(&saidx.dst, 5939 dport->sadb_x_nat_t_port_port); 5940 } 5941 #endif 5942 5943 /* get a SA header */ 5944 SAHTREE_LOCK(); 5945 LIST_FOREACH(sah, &V_sahtree, chain) { 5946 if (sah->state == SADB_SASTATE_DEAD) 5947 continue; 5948 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5949 continue; 5950 5951 /* get a SA with SPI. */ 5952 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5953 if (sav) 5954 break; 5955 } 5956 SAHTREE_UNLOCK(); 5957 if (sah == NULL) { 5958 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5959 return key_senderror(so, m, ENOENT); 5960 } 5961 5962 { 5963 struct mbuf *n; 5964 u_int8_t satype; 5965 5966 /* map proto to satype */ 5967 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 5968 ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n", 5969 __func__)); 5970 return key_senderror(so, m, EINVAL); 5971 } 5972 5973 /* create new sadb_msg to reply. */ 5974 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, 5975 mhp->msg->sadb_msg_pid); 5976 if (!n) 5977 return key_senderror(so, m, ENOBUFS); 5978 5979 m_freem(m); 5980 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5981 } 5982 } 5983 5984 /* XXX make it sysctl-configurable? */ 5985 static void 5986 key_getcomb_setlifetime(comb) 5987 struct sadb_comb *comb; 5988 { 5989 5990 comb->sadb_comb_soft_allocations = 1; 5991 comb->sadb_comb_hard_allocations = 1; 5992 comb->sadb_comb_soft_bytes = 0; 5993 comb->sadb_comb_hard_bytes = 0; 5994 comb->sadb_comb_hard_addtime = 86400; /* 1 day */ 5995 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100; 5996 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */ 5997 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100; 5998 } 5999 6000 /* 6001 * XXX reorder combinations by preference 6002 * XXX no idea if the user wants ESP authentication or not 6003 */ 6004 static struct mbuf * 6005 key_getcomb_esp() 6006 { 6007 struct sadb_comb *comb; 6008 struct enc_xform *algo; 6009 struct mbuf *result = NULL, *m, *n; 6010 int encmin; 6011 int i, off, o; 6012 int totlen; 6013 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6014 6015 m = NULL; 6016 for (i = 1; i <= SADB_EALG_MAX; i++) { 6017 algo = esp_algorithm_lookup(i); 6018 if (algo == NULL) 6019 continue; 6020 6021 /* discard algorithms with key size smaller than system min */ 6022 if (_BITS(algo->maxkey) < V_ipsec_esp_keymin) 6023 continue; 6024 if (_BITS(algo->minkey) < V_ipsec_esp_keymin) 6025 encmin = V_ipsec_esp_keymin; 6026 else 6027 encmin = _BITS(algo->minkey); 6028 6029 if (V_ipsec_esp_auth) 6030 m = key_getcomb_ah(); 6031 else { 6032 IPSEC_ASSERT(l <= MLEN, 6033 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6034 MGET(m, M_DONTWAIT, MT_DATA); 6035 if (m) { 6036 M_ALIGN(m, l); 6037 m->m_len = l; 6038 m->m_next = NULL; 6039 bzero(mtod(m, caddr_t), m->m_len); 6040 } 6041 } 6042 if (!m) 6043 goto fail; 6044 6045 totlen = 0; 6046 for (n = m; n; n = n->m_next) 6047 totlen += n->m_len; 6048 IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l)); 6049 6050 for (off = 0; off < totlen; off += l) { 6051 n = m_pulldown(m, off, l, &o); 6052 if (!n) { 6053 /* m is already freed */ 6054 goto fail; 6055 } 6056 comb = (struct sadb_comb *)(mtod(n, caddr_t) + o); 6057 bzero(comb, sizeof(*comb)); 6058 key_getcomb_setlifetime(comb); 6059 comb->sadb_comb_encrypt = i; 6060 comb->sadb_comb_encrypt_minbits = encmin; 6061 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); 6062 } 6063 6064 if (!result) 6065 result = m; 6066 else 6067 m_cat(result, m); 6068 } 6069 6070 return result; 6071 6072 fail: 6073 if (result) 6074 m_freem(result); 6075 return NULL; 6076 } 6077 6078 static void 6079 key_getsizes_ah( 6080 const struct auth_hash *ah, 6081 int alg, 6082 u_int16_t* min, 6083 u_int16_t* max) 6084 { 6085 6086 *min = *max = ah->keysize; 6087 if (ah->keysize == 0) { 6088 /* 6089 * Transform takes arbitrary key size but algorithm 6090 * key size is restricted. Enforce this here. 6091 */ 6092 switch (alg) { 6093 case SADB_X_AALG_MD5: *min = *max = 16; break; 6094 case SADB_X_AALG_SHA: *min = *max = 20; break; 6095 case SADB_X_AALG_NULL: *min = 1; *max = 256; break; 6096 case SADB_X_AALG_SHA2_256: *min = *max = 32; break; 6097 case SADB_X_AALG_SHA2_384: *min = *max = 48; break; 6098 case SADB_X_AALG_SHA2_512: *min = *max = 64; break; 6099 default: 6100 DPRINTF(("%s: unknown AH algorithm %u\n", 6101 __func__, alg)); 6102 break; 6103 } 6104 } 6105 } 6106 6107 /* 6108 * XXX reorder combinations by preference 6109 */ 6110 static struct mbuf * 6111 key_getcomb_ah() 6112 { 6113 struct sadb_comb *comb; 6114 struct auth_hash *algo; 6115 struct mbuf *m; 6116 u_int16_t minkeysize, maxkeysize; 6117 int i; 6118 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6119 6120 m = NULL; 6121 for (i = 1; i <= SADB_AALG_MAX; i++) { 6122 #if 1 6123 /* we prefer HMAC algorithms, not old algorithms */ 6124 if (i != SADB_AALG_SHA1HMAC && 6125 i != SADB_AALG_MD5HMAC && 6126 i != SADB_X_AALG_SHA2_256 && 6127 i != SADB_X_AALG_SHA2_384 && 6128 i != SADB_X_AALG_SHA2_512) 6129 continue; 6130 #endif 6131 algo = ah_algorithm_lookup(i); 6132 if (!algo) 6133 continue; 6134 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); 6135 /* discard algorithms with key size smaller than system min */ 6136 if (_BITS(minkeysize) < V_ipsec_ah_keymin) 6137 continue; 6138 6139 if (!m) { 6140 IPSEC_ASSERT(l <= MLEN, 6141 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6142 MGET(m, M_DONTWAIT, MT_DATA); 6143 if (m) { 6144 M_ALIGN(m, l); 6145 m->m_len = l; 6146 m->m_next = NULL; 6147 } 6148 } else 6149 M_PREPEND(m, l, M_DONTWAIT); 6150 if (!m) 6151 return NULL; 6152 6153 comb = mtod(m, struct sadb_comb *); 6154 bzero(comb, sizeof(*comb)); 6155 key_getcomb_setlifetime(comb); 6156 comb->sadb_comb_auth = i; 6157 comb->sadb_comb_auth_minbits = _BITS(minkeysize); 6158 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); 6159 } 6160 6161 return m; 6162 } 6163 6164 /* 6165 * not really an official behavior. discussed in pf_key@inner.net in Sep2000. 6166 * XXX reorder combinations by preference 6167 */ 6168 static struct mbuf * 6169 key_getcomb_ipcomp() 6170 { 6171 struct sadb_comb *comb; 6172 struct comp_algo *algo; 6173 struct mbuf *m; 6174 int i; 6175 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6176 6177 m = NULL; 6178 for (i = 1; i <= SADB_X_CALG_MAX; i++) { 6179 algo = ipcomp_algorithm_lookup(i); 6180 if (!algo) 6181 continue; 6182 6183 if (!m) { 6184 IPSEC_ASSERT(l <= MLEN, 6185 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6186 MGET(m, M_DONTWAIT, MT_DATA); 6187 if (m) { 6188 M_ALIGN(m, l); 6189 m->m_len = l; 6190 m->m_next = NULL; 6191 } 6192 } else 6193 M_PREPEND(m, l, M_DONTWAIT); 6194 if (!m) 6195 return NULL; 6196 6197 comb = mtod(m, struct sadb_comb *); 6198 bzero(comb, sizeof(*comb)); 6199 key_getcomb_setlifetime(comb); 6200 comb->sadb_comb_encrypt = i; 6201 /* what should we set into sadb_comb_*_{min,max}bits? */ 6202 } 6203 6204 return m; 6205 } 6206 6207 /* 6208 * XXX no way to pass mode (transport/tunnel) to userland 6209 * XXX replay checking? 6210 * XXX sysctl interface to ipsec_{ah,esp}_keymin 6211 */ 6212 static struct mbuf * 6213 key_getprop(saidx) 6214 const struct secasindex *saidx; 6215 { 6216 struct sadb_prop *prop; 6217 struct mbuf *m, *n; 6218 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); 6219 int totlen; 6220 6221 switch (saidx->proto) { 6222 case IPPROTO_ESP: 6223 m = key_getcomb_esp(); 6224 break; 6225 case IPPROTO_AH: 6226 m = key_getcomb_ah(); 6227 break; 6228 case IPPROTO_IPCOMP: 6229 m = key_getcomb_ipcomp(); 6230 break; 6231 default: 6232 return NULL; 6233 } 6234 6235 if (!m) 6236 return NULL; 6237 M_PREPEND(m, l, M_DONTWAIT); 6238 if (!m) 6239 return NULL; 6240 6241 totlen = 0; 6242 for (n = m; n; n = n->m_next) 6243 totlen += n->m_len; 6244 6245 prop = mtod(m, struct sadb_prop *); 6246 bzero(prop, sizeof(*prop)); 6247 prop->sadb_prop_len = PFKEY_UNIT64(totlen); 6248 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 6249 prop->sadb_prop_replay = 32; /* XXX */ 6250 6251 return m; 6252 } 6253 6254 /* 6255 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2(). 6256 * send 6257 * <base, SA, address(SD), (address(P)), x_policy, 6258 * (identity(SD),) (sensitivity,) proposal> 6259 * to KMD, and expect to receive 6260 * <base> with SADB_ACQUIRE if error occured, 6261 * or 6262 * <base, src address, dst address, (SPI range)> with SADB_GETSPI 6263 * from KMD by PF_KEY. 6264 * 6265 * XXX x_policy is outside of RFC2367 (KAME extension). 6266 * XXX sensitivity is not supported. 6267 * XXX for ipcomp, RFC2367 does not define how to fill in proposal. 6268 * see comment for key_getcomb_ipcomp(). 6269 * 6270 * OUT: 6271 * 0 : succeed 6272 * others: error number 6273 */ 6274 static int 6275 key_acquire(const struct secasindex *saidx, struct secpolicy *sp) 6276 { 6277 struct mbuf *result = NULL, *m; 6278 struct secacq *newacq; 6279 u_int8_t satype; 6280 int error = -1; 6281 u_int32_t seq; 6282 6283 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 6284 satype = key_proto2satype(saidx->proto); 6285 IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto)); 6286 6287 /* 6288 * We never do anything about acquirng SA. There is anather 6289 * solution that kernel blocks to send SADB_ACQUIRE message until 6290 * getting something message from IKEd. In later case, to be 6291 * managed with ACQUIRING list. 6292 */ 6293 /* Get an entry to check whether sending message or not. */ 6294 if ((newacq = key_getacq(saidx)) != NULL) { 6295 if (V_key_blockacq_count < newacq->count) { 6296 /* reset counter and do send message. */ 6297 newacq->count = 0; 6298 } else { 6299 /* increment counter and do nothing. */ 6300 newacq->count++; 6301 return 0; 6302 } 6303 } else { 6304 /* make new entry for blocking to send SADB_ACQUIRE. */ 6305 if ((newacq = key_newacq(saidx)) == NULL) 6306 return ENOBUFS; 6307 } 6308 6309 6310 seq = newacq->seq; 6311 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0); 6312 if (!m) { 6313 error = ENOBUFS; 6314 goto fail; 6315 } 6316 result = m; 6317 6318 /* 6319 * No SADB_X_EXT_NAT_T_* here: we do not know 6320 * anything related to NAT-T at this time. 6321 */ 6322 6323 /* set sadb_address for saidx's. */ 6324 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 6325 &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY); 6326 if (!m) { 6327 error = ENOBUFS; 6328 goto fail; 6329 } 6330 m_cat(result, m); 6331 6332 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 6333 &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY); 6334 if (!m) { 6335 error = ENOBUFS; 6336 goto fail; 6337 } 6338 m_cat(result, m); 6339 6340 /* XXX proxy address (optional) */ 6341 6342 /* set sadb_x_policy */ 6343 if (sp) { 6344 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id); 6345 if (!m) { 6346 error = ENOBUFS; 6347 goto fail; 6348 } 6349 m_cat(result, m); 6350 } 6351 6352 /* XXX identity (optional) */ 6353 #if 0 6354 if (idexttype && fqdn) { 6355 /* create identity extension (FQDN) */ 6356 struct sadb_ident *id; 6357 int fqdnlen; 6358 6359 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ 6360 id = (struct sadb_ident *)p; 6361 bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6362 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6363 id->sadb_ident_exttype = idexttype; 6364 id->sadb_ident_type = SADB_IDENTTYPE_FQDN; 6365 bcopy(fqdn, id + 1, fqdnlen); 6366 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); 6367 } 6368 6369 if (idexttype) { 6370 /* create identity extension (USERFQDN) */ 6371 struct sadb_ident *id; 6372 int userfqdnlen; 6373 6374 if (userfqdn) { 6375 /* +1 for terminating-NUL */ 6376 userfqdnlen = strlen(userfqdn) + 1; 6377 } else 6378 userfqdnlen = 0; 6379 id = (struct sadb_ident *)p; 6380 bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6381 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6382 id->sadb_ident_exttype = idexttype; 6383 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; 6384 /* XXX is it correct? */ 6385 if (curproc && curproc->p_cred) 6386 id->sadb_ident_id = curproc->p_cred->p_ruid; 6387 if (userfqdn && userfqdnlen) 6388 bcopy(userfqdn, id + 1, userfqdnlen); 6389 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); 6390 } 6391 #endif 6392 6393 /* XXX sensitivity (optional) */ 6394 6395 /* create proposal/combination extension */ 6396 m = key_getprop(saidx); 6397 #if 0 6398 /* 6399 * spec conformant: always attach proposal/combination extension, 6400 * the problem is that we have no way to attach it for ipcomp, 6401 * due to the way sadb_comb is declared in RFC2367. 6402 */ 6403 if (!m) { 6404 error = ENOBUFS; 6405 goto fail; 6406 } 6407 m_cat(result, m); 6408 #else 6409 /* 6410 * outside of spec; make proposal/combination extension optional. 6411 */ 6412 if (m) 6413 m_cat(result, m); 6414 #endif 6415 6416 if ((result->m_flags & M_PKTHDR) == 0) { 6417 error = EINVAL; 6418 goto fail; 6419 } 6420 6421 if (result->m_len < sizeof(struct sadb_msg)) { 6422 result = m_pullup(result, sizeof(struct sadb_msg)); 6423 if (result == NULL) { 6424 error = ENOBUFS; 6425 goto fail; 6426 } 6427 } 6428 6429 result->m_pkthdr.len = 0; 6430 for (m = result; m; m = m->m_next) 6431 result->m_pkthdr.len += m->m_len; 6432 6433 mtod(result, struct sadb_msg *)->sadb_msg_len = 6434 PFKEY_UNIT64(result->m_pkthdr.len); 6435 6436 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6437 6438 fail: 6439 if (result) 6440 m_freem(result); 6441 return error; 6442 } 6443 6444 static struct secacq * 6445 key_newacq(const struct secasindex *saidx) 6446 { 6447 struct secacq *newacq; 6448 6449 /* get new entry */ 6450 newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 6451 if (newacq == NULL) { 6452 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6453 return NULL; 6454 } 6455 6456 /* copy secindex */ 6457 bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx)); 6458 newacq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq); 6459 newacq->created = time_second; 6460 newacq->count = 0; 6461 6462 /* add to acqtree */ 6463 ACQ_LOCK(); 6464 LIST_INSERT_HEAD(&V_acqtree, newacq, chain); 6465 ACQ_UNLOCK(); 6466 6467 return newacq; 6468 } 6469 6470 static struct secacq * 6471 key_getacq(const struct secasindex *saidx) 6472 { 6473 struct secacq *acq; 6474 6475 ACQ_LOCK(); 6476 LIST_FOREACH(acq, &V_acqtree, chain) { 6477 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY)) 6478 break; 6479 } 6480 ACQ_UNLOCK(); 6481 6482 return acq; 6483 } 6484 6485 static struct secacq * 6486 key_getacqbyseq(seq) 6487 u_int32_t seq; 6488 { 6489 struct secacq *acq; 6490 6491 ACQ_LOCK(); 6492 LIST_FOREACH(acq, &V_acqtree, chain) { 6493 if (acq->seq == seq) 6494 break; 6495 } 6496 ACQ_UNLOCK(); 6497 6498 return acq; 6499 } 6500 6501 static struct secspacq * 6502 key_newspacq(spidx) 6503 struct secpolicyindex *spidx; 6504 { 6505 struct secspacq *acq; 6506 6507 /* get new entry */ 6508 acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 6509 if (acq == NULL) { 6510 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6511 return NULL; 6512 } 6513 6514 /* copy secindex */ 6515 bcopy(spidx, &acq->spidx, sizeof(acq->spidx)); 6516 acq->created = time_second; 6517 acq->count = 0; 6518 6519 /* add to spacqtree */ 6520 SPACQ_LOCK(); 6521 LIST_INSERT_HEAD(&V_spacqtree, acq, chain); 6522 SPACQ_UNLOCK(); 6523 6524 return acq; 6525 } 6526 6527 static struct secspacq * 6528 key_getspacq(spidx) 6529 struct secpolicyindex *spidx; 6530 { 6531 struct secspacq *acq; 6532 6533 SPACQ_LOCK(); 6534 LIST_FOREACH(acq, &V_spacqtree, chain) { 6535 if (key_cmpspidx_exactly(spidx, &acq->spidx)) { 6536 /* NB: return holding spacq_lock */ 6537 return acq; 6538 } 6539 } 6540 SPACQ_UNLOCK(); 6541 6542 return NULL; 6543 } 6544 6545 /* 6546 * SADB_ACQUIRE processing, 6547 * in first situation, is receiving 6548 * <base> 6549 * from the ikmpd, and clear sequence of its secasvar entry. 6550 * 6551 * In second situation, is receiving 6552 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6553 * from a user land process, and return 6554 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6555 * to the socket. 6556 * 6557 * m will always be freed. 6558 */ 6559 static int 6560 key_acquire2(so, m, mhp) 6561 struct socket *so; 6562 struct mbuf *m; 6563 const struct sadb_msghdr *mhp; 6564 { 6565 const struct sadb_address *src0, *dst0; 6566 struct secasindex saidx; 6567 struct secashead *sah; 6568 u_int16_t proto; 6569 int error; 6570 6571 IPSEC_ASSERT(so != NULL, ("null socket")); 6572 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6573 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6574 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6575 6576 /* 6577 * Error message from KMd. 6578 * We assume that if error was occured in IKEd, the length of PFKEY 6579 * message is equal to the size of sadb_msg structure. 6580 * We do not raise error even if error occured in this function. 6581 */ 6582 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { 6583 struct secacq *acq; 6584 6585 /* check sequence number */ 6586 if (mhp->msg->sadb_msg_seq == 0) { 6587 ipseclog((LOG_DEBUG, "%s: must specify sequence " 6588 "number.\n", __func__)); 6589 m_freem(m); 6590 return 0; 6591 } 6592 6593 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) { 6594 /* 6595 * the specified larval SA is already gone, or we got 6596 * a bogus sequence number. we can silently ignore it. 6597 */ 6598 m_freem(m); 6599 return 0; 6600 } 6601 6602 /* reset acq counter in order to deletion by timehander. */ 6603 acq->created = time_second; 6604 acq->count = 0; 6605 m_freem(m); 6606 return 0; 6607 } 6608 6609 /* 6610 * This message is from user land. 6611 */ 6612 6613 /* map satype to proto */ 6614 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6615 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6616 __func__)); 6617 return key_senderror(so, m, EINVAL); 6618 } 6619 6620 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6621 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 6622 mhp->ext[SADB_EXT_PROPOSAL] == NULL) { 6623 /* error */ 6624 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6625 __func__)); 6626 return key_senderror(so, m, EINVAL); 6627 } 6628 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6629 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 6630 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { 6631 /* error */ 6632 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6633 __func__)); 6634 return key_senderror(so, m, EINVAL); 6635 } 6636 6637 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 6638 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 6639 6640 /* XXX boundary check against sa_len */ 6641 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 6642 6643 /* 6644 * Make sure the port numbers are zero. 6645 * In case of NAT-T we will update them later if needed. 6646 */ 6647 KEY_PORTTOSADDR(&saidx.src, 0); 6648 KEY_PORTTOSADDR(&saidx.dst, 0); 6649 6650 #ifndef IPSEC_NAT_T 6651 /* 6652 * Handle NAT-T info if present. 6653 */ 6654 6655 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 6656 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 6657 struct sadb_x_nat_t_port *sport, *dport; 6658 6659 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 6660 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 6661 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 6662 __func__)); 6663 return key_senderror(so, m, EINVAL); 6664 } 6665 6666 sport = (struct sadb_x_nat_t_port *) 6667 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 6668 dport = (struct sadb_x_nat_t_port *) 6669 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 6670 6671 if (sport) 6672 KEY_PORTTOSADDR(&saidx.src, 6673 sport->sadb_x_nat_t_port_port); 6674 if (dport) 6675 KEY_PORTTOSADDR(&saidx.dst, 6676 dport->sadb_x_nat_t_port_port); 6677 } 6678 #endif 6679 6680 /* get a SA index */ 6681 SAHTREE_LOCK(); 6682 LIST_FOREACH(sah, &V_sahtree, chain) { 6683 if (sah->state == SADB_SASTATE_DEAD) 6684 continue; 6685 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID)) 6686 break; 6687 } 6688 SAHTREE_UNLOCK(); 6689 if (sah != NULL) { 6690 ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__)); 6691 return key_senderror(so, m, EEXIST); 6692 } 6693 6694 error = key_acquire(&saidx, NULL); 6695 if (error != 0) { 6696 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 6697 __func__, mhp->msg->sadb_msg_errno)); 6698 return key_senderror(so, m, error); 6699 } 6700 6701 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); 6702 } 6703 6704 /* 6705 * SADB_REGISTER processing. 6706 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. 6707 * receive 6708 * <base> 6709 * from the ikmpd, and register a socket to send PF_KEY messages, 6710 * and send 6711 * <base, supported> 6712 * to KMD by PF_KEY. 6713 * If socket is detached, must free from regnode. 6714 * 6715 * m will always be freed. 6716 */ 6717 static int 6718 key_register(so, m, mhp) 6719 struct socket *so; 6720 struct mbuf *m; 6721 const struct sadb_msghdr *mhp; 6722 { 6723 struct secreg *reg, *newreg = 0; 6724 6725 IPSEC_ASSERT(so != NULL, ("null socket")); 6726 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6727 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6728 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6729 6730 /* check for invalid register message */ 6731 if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0])) 6732 return key_senderror(so, m, EINVAL); 6733 6734 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ 6735 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) 6736 goto setmsg; 6737 6738 /* check whether existing or not */ 6739 REGTREE_LOCK(); 6740 LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) { 6741 if (reg->so == so) { 6742 REGTREE_UNLOCK(); 6743 ipseclog((LOG_DEBUG, "%s: socket exists already.\n", 6744 __func__)); 6745 return key_senderror(so, m, EEXIST); 6746 } 6747 } 6748 6749 /* create regnode */ 6750 newreg = malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO); 6751 if (newreg == NULL) { 6752 REGTREE_UNLOCK(); 6753 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6754 return key_senderror(so, m, ENOBUFS); 6755 } 6756 6757 newreg->so = so; 6758 ((struct keycb *)sotorawcb(so))->kp_registered++; 6759 6760 /* add regnode to regtree. */ 6761 LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain); 6762 REGTREE_UNLOCK(); 6763 6764 setmsg: 6765 { 6766 struct mbuf *n; 6767 struct sadb_msg *newmsg; 6768 struct sadb_supported *sup; 6769 u_int len, alen, elen; 6770 int off; 6771 int i; 6772 struct sadb_alg *alg; 6773 6774 /* create new sadb_msg to reply. */ 6775 alen = 0; 6776 for (i = 1; i <= SADB_AALG_MAX; i++) { 6777 if (ah_algorithm_lookup(i)) 6778 alen += sizeof(struct sadb_alg); 6779 } 6780 if (alen) 6781 alen += sizeof(struct sadb_supported); 6782 elen = 0; 6783 for (i = 1; i <= SADB_EALG_MAX; i++) { 6784 if (esp_algorithm_lookup(i)) 6785 elen += sizeof(struct sadb_alg); 6786 } 6787 if (elen) 6788 elen += sizeof(struct sadb_supported); 6789 6790 len = sizeof(struct sadb_msg) + alen + elen; 6791 6792 if (len > MCLBYTES) 6793 return key_senderror(so, m, ENOBUFS); 6794 6795 MGETHDR(n, M_DONTWAIT, MT_DATA); 6796 if (len > MHLEN) { 6797 MCLGET(n, M_DONTWAIT); 6798 if ((n->m_flags & M_EXT) == 0) { 6799 m_freem(n); 6800 n = NULL; 6801 } 6802 } 6803 if (!n) 6804 return key_senderror(so, m, ENOBUFS); 6805 6806 n->m_pkthdr.len = n->m_len = len; 6807 n->m_next = NULL; 6808 off = 0; 6809 6810 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 6811 newmsg = mtod(n, struct sadb_msg *); 6812 newmsg->sadb_msg_errno = 0; 6813 newmsg->sadb_msg_len = PFKEY_UNIT64(len); 6814 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 6815 6816 /* for authentication algorithm */ 6817 if (alen) { 6818 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6819 sup->sadb_supported_len = PFKEY_UNIT64(alen); 6820 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 6821 off += PFKEY_ALIGN8(sizeof(*sup)); 6822 6823 for (i = 1; i <= SADB_AALG_MAX; i++) { 6824 struct auth_hash *aalgo; 6825 u_int16_t minkeysize, maxkeysize; 6826 6827 aalgo = ah_algorithm_lookup(i); 6828 if (!aalgo) 6829 continue; 6830 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6831 alg->sadb_alg_id = i; 6832 alg->sadb_alg_ivlen = 0; 6833 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); 6834 alg->sadb_alg_minbits = _BITS(minkeysize); 6835 alg->sadb_alg_maxbits = _BITS(maxkeysize); 6836 off += PFKEY_ALIGN8(sizeof(*alg)); 6837 } 6838 } 6839 6840 /* for encryption algorithm */ 6841 if (elen) { 6842 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6843 sup->sadb_supported_len = PFKEY_UNIT64(elen); 6844 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 6845 off += PFKEY_ALIGN8(sizeof(*sup)); 6846 6847 for (i = 1; i <= SADB_EALG_MAX; i++) { 6848 struct enc_xform *ealgo; 6849 6850 ealgo = esp_algorithm_lookup(i); 6851 if (!ealgo) 6852 continue; 6853 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6854 alg->sadb_alg_id = i; 6855 alg->sadb_alg_ivlen = ealgo->blocksize; 6856 alg->sadb_alg_minbits = _BITS(ealgo->minkey); 6857 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); 6858 off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); 6859 } 6860 } 6861 6862 IPSEC_ASSERT(off == len, 6863 ("length assumption failed (off %u len %u)", off, len)); 6864 6865 m_freem(m); 6866 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); 6867 } 6868 } 6869 6870 /* 6871 * free secreg entry registered. 6872 * XXX: I want to do free a socket marked done SADB_RESIGER to socket. 6873 */ 6874 void 6875 key_freereg(struct socket *so) 6876 { 6877 struct secreg *reg; 6878 int i; 6879 6880 IPSEC_ASSERT(so != NULL, ("NULL so")); 6881 6882 /* 6883 * check whether existing or not. 6884 * check all type of SA, because there is a potential that 6885 * one socket is registered to multiple type of SA. 6886 */ 6887 REGTREE_LOCK(); 6888 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 6889 LIST_FOREACH(reg, &V_regtree[i], chain) { 6890 if (reg->so == so && __LIST_CHAINED(reg)) { 6891 LIST_REMOVE(reg, chain); 6892 free(reg, M_IPSEC_SAR); 6893 break; 6894 } 6895 } 6896 } 6897 REGTREE_UNLOCK(); 6898 } 6899 6900 /* 6901 * SADB_EXPIRE processing 6902 * send 6903 * <base, SA, SA2, lifetime(C and one of HS), address(SD)> 6904 * to KMD by PF_KEY. 6905 * NOTE: We send only soft lifetime extension. 6906 * 6907 * OUT: 0 : succeed 6908 * others : error number 6909 */ 6910 static int 6911 key_expire(struct secasvar *sav) 6912 { 6913 int s; 6914 int satype; 6915 struct mbuf *result = NULL, *m; 6916 int len; 6917 int error = -1; 6918 struct sadb_lifetime *lt; 6919 6920 /* XXX: Why do we lock ? */ 6921 s = splnet(); /*called from softclock()*/ 6922 6923 IPSEC_ASSERT (sav != NULL, ("null sav")); 6924 IPSEC_ASSERT (sav->sah != NULL, ("null sa header")); 6925 6926 /* set msg header */ 6927 satype = key_proto2satype(sav->sah->saidx.proto); 6928 IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype)); 6929 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt); 6930 if (!m) { 6931 error = ENOBUFS; 6932 goto fail; 6933 } 6934 result = m; 6935 6936 /* create SA extension */ 6937 m = key_setsadbsa(sav); 6938 if (!m) { 6939 error = ENOBUFS; 6940 goto fail; 6941 } 6942 m_cat(result, m); 6943 6944 /* create SA extension */ 6945 m = key_setsadbxsa2(sav->sah->saidx.mode, 6946 sav->replay ? sav->replay->count : 0, 6947 sav->sah->saidx.reqid); 6948 if (!m) { 6949 error = ENOBUFS; 6950 goto fail; 6951 } 6952 m_cat(result, m); 6953 6954 /* create lifetime extension (current and soft) */ 6955 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 6956 m = key_alloc_mbuf(len); 6957 if (!m || m->m_next) { /*XXX*/ 6958 if (m) 6959 m_freem(m); 6960 error = ENOBUFS; 6961 goto fail; 6962 } 6963 bzero(mtod(m, caddr_t), len); 6964 lt = mtod(m, struct sadb_lifetime *); 6965 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6966 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 6967 lt->sadb_lifetime_allocations = sav->lft_c->allocations; 6968 lt->sadb_lifetime_bytes = sav->lft_c->bytes; 6969 lt->sadb_lifetime_addtime = sav->lft_c->addtime; 6970 lt->sadb_lifetime_usetime = sav->lft_c->usetime; 6971 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 6972 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6973 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; 6974 lt->sadb_lifetime_allocations = sav->lft_s->allocations; 6975 lt->sadb_lifetime_bytes = sav->lft_s->bytes; 6976 lt->sadb_lifetime_addtime = sav->lft_s->addtime; 6977 lt->sadb_lifetime_usetime = sav->lft_s->usetime; 6978 m_cat(result, m); 6979 6980 /* set sadb_address for source */ 6981 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 6982 &sav->sah->saidx.src.sa, 6983 FULLMASK, IPSEC_ULPROTO_ANY); 6984 if (!m) { 6985 error = ENOBUFS; 6986 goto fail; 6987 } 6988 m_cat(result, m); 6989 6990 /* set sadb_address for destination */ 6991 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 6992 &sav->sah->saidx.dst.sa, 6993 FULLMASK, IPSEC_ULPROTO_ANY); 6994 if (!m) { 6995 error = ENOBUFS; 6996 goto fail; 6997 } 6998 m_cat(result, m); 6999 7000 /* 7001 * XXX-BZ Handle NAT-T extensions here. 7002 */ 7003 7004 if ((result->m_flags & M_PKTHDR) == 0) { 7005 error = EINVAL; 7006 goto fail; 7007 } 7008 7009 if (result->m_len < sizeof(struct sadb_msg)) { 7010 result = m_pullup(result, sizeof(struct sadb_msg)); 7011 if (result == NULL) { 7012 error = ENOBUFS; 7013 goto fail; 7014 } 7015 } 7016 7017 result->m_pkthdr.len = 0; 7018 for (m = result; m; m = m->m_next) 7019 result->m_pkthdr.len += m->m_len; 7020 7021 mtod(result, struct sadb_msg *)->sadb_msg_len = 7022 PFKEY_UNIT64(result->m_pkthdr.len); 7023 7024 splx(s); 7025 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 7026 7027 fail: 7028 if (result) 7029 m_freem(result); 7030 splx(s); 7031 return error; 7032 } 7033 7034 /* 7035 * SADB_FLUSH processing 7036 * receive 7037 * <base> 7038 * from the ikmpd, and free all entries in secastree. 7039 * and send, 7040 * <base> 7041 * to the ikmpd. 7042 * NOTE: to do is only marking SADB_SASTATE_DEAD. 7043 * 7044 * m will always be freed. 7045 */ 7046 static int 7047 key_flush(so, m, mhp) 7048 struct socket *so; 7049 struct mbuf *m; 7050 const struct sadb_msghdr *mhp; 7051 { 7052 struct sadb_msg *newmsg; 7053 struct secashead *sah, *nextsah; 7054 struct secasvar *sav, *nextsav; 7055 u_int16_t proto; 7056 u_int8_t state; 7057 u_int stateidx; 7058 7059 IPSEC_ASSERT(so != NULL, ("null socket")); 7060 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7061 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7062 7063 /* map satype to proto */ 7064 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 7065 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 7066 __func__)); 7067 return key_senderror(so, m, EINVAL); 7068 } 7069 7070 /* no SATYPE specified, i.e. flushing all SA. */ 7071 SAHTREE_LOCK(); 7072 for (sah = LIST_FIRST(&V_sahtree); 7073 sah != NULL; 7074 sah = nextsah) { 7075 nextsah = LIST_NEXT(sah, chain); 7076 7077 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 7078 && proto != sah->saidx.proto) 7079 continue; 7080 7081 for (stateidx = 0; 7082 stateidx < _ARRAYLEN(saorder_state_alive); 7083 stateidx++) { 7084 state = saorder_state_any[stateidx]; 7085 for (sav = LIST_FIRST(&sah->savtree[state]); 7086 sav != NULL; 7087 sav = nextsav) { 7088 7089 nextsav = LIST_NEXT(sav, chain); 7090 7091 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 7092 KEY_FREESAV(&sav); 7093 } 7094 } 7095 7096 sah->state = SADB_SASTATE_DEAD; 7097 } 7098 SAHTREE_UNLOCK(); 7099 7100 if (m->m_len < sizeof(struct sadb_msg) || 7101 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 7102 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 7103 return key_senderror(so, m, ENOBUFS); 7104 } 7105 7106 if (m->m_next) 7107 m_freem(m->m_next); 7108 m->m_next = NULL; 7109 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); 7110 newmsg = mtod(m, struct sadb_msg *); 7111 newmsg->sadb_msg_errno = 0; 7112 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 7113 7114 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7115 } 7116 7117 /* 7118 * SADB_DUMP processing 7119 * dump all entries including status of DEAD in SAD. 7120 * receive 7121 * <base> 7122 * from the ikmpd, and dump all secasvar leaves 7123 * and send, 7124 * <base> ..... 7125 * to the ikmpd. 7126 * 7127 * m will always be freed. 7128 */ 7129 static int 7130 key_dump(so, m, mhp) 7131 struct socket *so; 7132 struct mbuf *m; 7133 const struct sadb_msghdr *mhp; 7134 { 7135 struct secashead *sah; 7136 struct secasvar *sav; 7137 u_int16_t proto; 7138 u_int stateidx; 7139 u_int8_t satype; 7140 u_int8_t state; 7141 int cnt; 7142 struct sadb_msg *newmsg; 7143 struct mbuf *n; 7144 7145 IPSEC_ASSERT(so != NULL, ("null socket")); 7146 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7147 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7148 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7149 7150 /* map satype to proto */ 7151 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 7152 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 7153 __func__)); 7154 return key_senderror(so, m, EINVAL); 7155 } 7156 7157 /* count sav entries to be sent to the userland. */ 7158 cnt = 0; 7159 SAHTREE_LOCK(); 7160 LIST_FOREACH(sah, &V_sahtree, chain) { 7161 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 7162 && proto != sah->saidx.proto) 7163 continue; 7164 7165 for (stateidx = 0; 7166 stateidx < _ARRAYLEN(saorder_state_any); 7167 stateidx++) { 7168 state = saorder_state_any[stateidx]; 7169 LIST_FOREACH(sav, &sah->savtree[state], chain) { 7170 cnt++; 7171 } 7172 } 7173 } 7174 7175 if (cnt == 0) { 7176 SAHTREE_UNLOCK(); 7177 return key_senderror(so, m, ENOENT); 7178 } 7179 7180 /* send this to the userland, one at a time. */ 7181 newmsg = NULL; 7182 LIST_FOREACH(sah, &V_sahtree, chain) { 7183 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 7184 && proto != sah->saidx.proto) 7185 continue; 7186 7187 /* map proto to satype */ 7188 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 7189 SAHTREE_UNLOCK(); 7190 ipseclog((LOG_DEBUG, "%s: there was invalid proto in " 7191 "SAD.\n", __func__)); 7192 return key_senderror(so, m, EINVAL); 7193 } 7194 7195 for (stateidx = 0; 7196 stateidx < _ARRAYLEN(saorder_state_any); 7197 stateidx++) { 7198 state = saorder_state_any[stateidx]; 7199 LIST_FOREACH(sav, &sah->savtree[state], chain) { 7200 n = key_setdumpsa(sav, SADB_DUMP, satype, 7201 --cnt, mhp->msg->sadb_msg_pid); 7202 if (!n) { 7203 SAHTREE_UNLOCK(); 7204 return key_senderror(so, m, ENOBUFS); 7205 } 7206 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 7207 } 7208 } 7209 } 7210 SAHTREE_UNLOCK(); 7211 7212 m_freem(m); 7213 return 0; 7214 } 7215 7216 /* 7217 * SADB_X_PROMISC processing 7218 * 7219 * m will always be freed. 7220 */ 7221 static int 7222 key_promisc(so, m, mhp) 7223 struct socket *so; 7224 struct mbuf *m; 7225 const struct sadb_msghdr *mhp; 7226 { 7227 int olen; 7228 7229 IPSEC_ASSERT(so != NULL, ("null socket")); 7230 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7231 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7232 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7233 7234 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7235 7236 if (olen < sizeof(struct sadb_msg)) { 7237 #if 1 7238 return key_senderror(so, m, EINVAL); 7239 #else 7240 m_freem(m); 7241 return 0; 7242 #endif 7243 } else if (olen == sizeof(struct sadb_msg)) { 7244 /* enable/disable promisc mode */ 7245 struct keycb *kp; 7246 7247 if ((kp = (struct keycb *)sotorawcb(so)) == NULL) 7248 return key_senderror(so, m, EINVAL); 7249 mhp->msg->sadb_msg_errno = 0; 7250 switch (mhp->msg->sadb_msg_satype) { 7251 case 0: 7252 case 1: 7253 kp->kp_promisc = mhp->msg->sadb_msg_satype; 7254 break; 7255 default: 7256 return key_senderror(so, m, EINVAL); 7257 } 7258 7259 /* send the original message back to everyone */ 7260 mhp->msg->sadb_msg_errno = 0; 7261 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7262 } else { 7263 /* send packet as is */ 7264 7265 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); 7266 7267 /* TODO: if sadb_msg_seq is specified, send to specific pid */ 7268 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7269 } 7270 } 7271 7272 static int (*key_typesw[]) __P((struct socket *, struct mbuf *, 7273 const struct sadb_msghdr *)) = { 7274 NULL, /* SADB_RESERVED */ 7275 key_getspi, /* SADB_GETSPI */ 7276 key_update, /* SADB_UPDATE */ 7277 key_add, /* SADB_ADD */ 7278 key_delete, /* SADB_DELETE */ 7279 key_get, /* SADB_GET */ 7280 key_acquire2, /* SADB_ACQUIRE */ 7281 key_register, /* SADB_REGISTER */ 7282 NULL, /* SADB_EXPIRE */ 7283 key_flush, /* SADB_FLUSH */ 7284 key_dump, /* SADB_DUMP */ 7285 key_promisc, /* SADB_X_PROMISC */ 7286 NULL, /* SADB_X_PCHANGE */ 7287 key_spdadd, /* SADB_X_SPDUPDATE */ 7288 key_spdadd, /* SADB_X_SPDADD */ 7289 key_spddelete, /* SADB_X_SPDDELETE */ 7290 key_spdget, /* SADB_X_SPDGET */ 7291 NULL, /* SADB_X_SPDACQUIRE */ 7292 key_spddump, /* SADB_X_SPDDUMP */ 7293 key_spdflush, /* SADB_X_SPDFLUSH */ 7294 key_spdadd, /* SADB_X_SPDSETIDX */ 7295 NULL, /* SADB_X_SPDEXPIRE */ 7296 key_spddelete2, /* SADB_X_SPDDELETE2 */ 7297 }; 7298 7299 /* 7300 * parse sadb_msg buffer to process PFKEYv2, 7301 * and create a data to response if needed. 7302 * I think to be dealed with mbuf directly. 7303 * IN: 7304 * msgp : pointer to pointer to a received buffer pulluped. 7305 * This is rewrited to response. 7306 * so : pointer to socket. 7307 * OUT: 7308 * length for buffer to send to user process. 7309 */ 7310 int 7311 key_parse(m, so) 7312 struct mbuf *m; 7313 struct socket *so; 7314 { 7315 struct sadb_msg *msg; 7316 struct sadb_msghdr mh; 7317 u_int orglen; 7318 int error; 7319 int target; 7320 7321 IPSEC_ASSERT(so != NULL, ("null socket")); 7322 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7323 7324 #if 0 /*kdebug_sadb assumes msg in linear buffer*/ 7325 KEYDEBUG(KEYDEBUG_KEY_DUMP, 7326 ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__)); 7327 kdebug_sadb(msg)); 7328 #endif 7329 7330 if (m->m_len < sizeof(struct sadb_msg)) { 7331 m = m_pullup(m, sizeof(struct sadb_msg)); 7332 if (!m) 7333 return ENOBUFS; 7334 } 7335 msg = mtod(m, struct sadb_msg *); 7336 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); 7337 target = KEY_SENDUP_ONE; 7338 7339 if ((m->m_flags & M_PKTHDR) == 0 || 7340 m->m_pkthdr.len != m->m_pkthdr.len) { 7341 ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__)); 7342 V_pfkeystat.out_invlen++; 7343 error = EINVAL; 7344 goto senderror; 7345 } 7346 7347 if (msg->sadb_msg_version != PF_KEY_V2) { 7348 ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n", 7349 __func__, msg->sadb_msg_version)); 7350 V_pfkeystat.out_invver++; 7351 error = EINVAL; 7352 goto senderror; 7353 } 7354 7355 if (msg->sadb_msg_type > SADB_MAX) { 7356 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 7357 __func__, msg->sadb_msg_type)); 7358 V_pfkeystat.out_invmsgtype++; 7359 error = EINVAL; 7360 goto senderror; 7361 } 7362 7363 /* for old-fashioned code - should be nuked */ 7364 if (m->m_pkthdr.len > MCLBYTES) { 7365 m_freem(m); 7366 return ENOBUFS; 7367 } 7368 if (m->m_next) { 7369 struct mbuf *n; 7370 7371 MGETHDR(n, M_DONTWAIT, MT_DATA); 7372 if (n && m->m_pkthdr.len > MHLEN) { 7373 MCLGET(n, M_DONTWAIT); 7374 if ((n->m_flags & M_EXT) == 0) { 7375 m_free(n); 7376 n = NULL; 7377 } 7378 } 7379 if (!n) { 7380 m_freem(m); 7381 return ENOBUFS; 7382 } 7383 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t)); 7384 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; 7385 n->m_next = NULL; 7386 m_freem(m); 7387 m = n; 7388 } 7389 7390 /* align the mbuf chain so that extensions are in contiguous region. */ 7391 error = key_align(m, &mh); 7392 if (error) 7393 return error; 7394 7395 msg = mh.msg; 7396 7397 /* check SA type */ 7398 switch (msg->sadb_msg_satype) { 7399 case SADB_SATYPE_UNSPEC: 7400 switch (msg->sadb_msg_type) { 7401 case SADB_GETSPI: 7402 case SADB_UPDATE: 7403 case SADB_ADD: 7404 case SADB_DELETE: 7405 case SADB_GET: 7406 case SADB_ACQUIRE: 7407 case SADB_EXPIRE: 7408 ipseclog((LOG_DEBUG, "%s: must specify satype " 7409 "when msg type=%u.\n", __func__, 7410 msg->sadb_msg_type)); 7411 V_pfkeystat.out_invsatype++; 7412 error = EINVAL; 7413 goto senderror; 7414 } 7415 break; 7416 case SADB_SATYPE_AH: 7417 case SADB_SATYPE_ESP: 7418 case SADB_X_SATYPE_IPCOMP: 7419 case SADB_X_SATYPE_TCPSIGNATURE: 7420 switch (msg->sadb_msg_type) { 7421 case SADB_X_SPDADD: 7422 case SADB_X_SPDDELETE: 7423 case SADB_X_SPDGET: 7424 case SADB_X_SPDDUMP: 7425 case SADB_X_SPDFLUSH: 7426 case SADB_X_SPDSETIDX: 7427 case SADB_X_SPDUPDATE: 7428 case SADB_X_SPDDELETE2: 7429 ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n", 7430 __func__, msg->sadb_msg_type)); 7431 V_pfkeystat.out_invsatype++; 7432 error = EINVAL; 7433 goto senderror; 7434 } 7435 break; 7436 case SADB_SATYPE_RSVP: 7437 case SADB_SATYPE_OSPFV2: 7438 case SADB_SATYPE_RIPV2: 7439 case SADB_SATYPE_MIP: 7440 ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n", 7441 __func__, msg->sadb_msg_satype)); 7442 V_pfkeystat.out_invsatype++; 7443 error = EOPNOTSUPP; 7444 goto senderror; 7445 case 1: /* XXX: What does it do? */ 7446 if (msg->sadb_msg_type == SADB_X_PROMISC) 7447 break; 7448 /*FALLTHROUGH*/ 7449 default: 7450 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 7451 __func__, msg->sadb_msg_satype)); 7452 V_pfkeystat.out_invsatype++; 7453 error = EINVAL; 7454 goto senderror; 7455 } 7456 7457 /* check field of upper layer protocol and address family */ 7458 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL 7459 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { 7460 struct sadb_address *src0, *dst0; 7461 u_int plen; 7462 7463 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]); 7464 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]); 7465 7466 /* check upper layer protocol */ 7467 if (src0->sadb_address_proto != dst0->sadb_address_proto) { 7468 ipseclog((LOG_DEBUG, "%s: upper layer protocol " 7469 "mismatched.\n", __func__)); 7470 V_pfkeystat.out_invaddr++; 7471 error = EINVAL; 7472 goto senderror; 7473 } 7474 7475 /* check family */ 7476 if (PFKEY_ADDR_SADDR(src0)->sa_family != 7477 PFKEY_ADDR_SADDR(dst0)->sa_family) { 7478 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 7479 __func__)); 7480 V_pfkeystat.out_invaddr++; 7481 error = EINVAL; 7482 goto senderror; 7483 } 7484 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7485 PFKEY_ADDR_SADDR(dst0)->sa_len) { 7486 ipseclog((LOG_DEBUG, "%s: address struct size " 7487 "mismatched.\n", __func__)); 7488 V_pfkeystat.out_invaddr++; 7489 error = EINVAL; 7490 goto senderror; 7491 } 7492 7493 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7494 case AF_INET: 7495 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7496 sizeof(struct sockaddr_in)) { 7497 V_pfkeystat.out_invaddr++; 7498 error = EINVAL; 7499 goto senderror; 7500 } 7501 break; 7502 case AF_INET6: 7503 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7504 sizeof(struct sockaddr_in6)) { 7505 V_pfkeystat.out_invaddr++; 7506 error = EINVAL; 7507 goto senderror; 7508 } 7509 break; 7510 default: 7511 ipseclog((LOG_DEBUG, "%s: unsupported address family\n", 7512 __func__)); 7513 V_pfkeystat.out_invaddr++; 7514 error = EAFNOSUPPORT; 7515 goto senderror; 7516 } 7517 7518 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7519 case AF_INET: 7520 plen = sizeof(struct in_addr) << 3; 7521 break; 7522 case AF_INET6: 7523 plen = sizeof(struct in6_addr) << 3; 7524 break; 7525 default: 7526 plen = 0; /*fool gcc*/ 7527 break; 7528 } 7529 7530 /* check max prefix length */ 7531 if (src0->sadb_address_prefixlen > plen || 7532 dst0->sadb_address_prefixlen > plen) { 7533 ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n", 7534 __func__)); 7535 V_pfkeystat.out_invaddr++; 7536 error = EINVAL; 7537 goto senderror; 7538 } 7539 7540 /* 7541 * prefixlen == 0 is valid because there can be a case when 7542 * all addresses are matched. 7543 */ 7544 } 7545 7546 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) || 7547 key_typesw[msg->sadb_msg_type] == NULL) { 7548 V_pfkeystat.out_invmsgtype++; 7549 error = EINVAL; 7550 goto senderror; 7551 } 7552 7553 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh); 7554 7555 senderror: 7556 msg->sadb_msg_errno = error; 7557 return key_sendup_mbuf(so, m, target); 7558 } 7559 7560 static int 7561 key_senderror(so, m, code) 7562 struct socket *so; 7563 struct mbuf *m; 7564 int code; 7565 { 7566 struct sadb_msg *msg; 7567 7568 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 7569 ("mbuf too small, len %u", m->m_len)); 7570 7571 msg = mtod(m, struct sadb_msg *); 7572 msg->sadb_msg_errno = code; 7573 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 7574 } 7575 7576 /* 7577 * set the pointer to each header into message buffer. 7578 * m will be freed on error. 7579 * XXX larger-than-MCLBYTES extension? 7580 */ 7581 static int 7582 key_align(m, mhp) 7583 struct mbuf *m; 7584 struct sadb_msghdr *mhp; 7585 { 7586 struct mbuf *n; 7587 struct sadb_ext *ext; 7588 size_t off, end; 7589 int extlen; 7590 int toff; 7591 7592 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7593 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7594 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 7595 ("mbuf too small, len %u", m->m_len)); 7596 7597 /* initialize */ 7598 bzero(mhp, sizeof(*mhp)); 7599 7600 mhp->msg = mtod(m, struct sadb_msg *); 7601 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */ 7602 7603 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7604 extlen = end; /*just in case extlen is not updated*/ 7605 for (off = sizeof(struct sadb_msg); off < end; off += extlen) { 7606 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); 7607 if (!n) { 7608 /* m is already freed */ 7609 return ENOBUFS; 7610 } 7611 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 7612 7613 /* set pointer */ 7614 switch (ext->sadb_ext_type) { 7615 case SADB_EXT_SA: 7616 case SADB_EXT_ADDRESS_SRC: 7617 case SADB_EXT_ADDRESS_DST: 7618 case SADB_EXT_ADDRESS_PROXY: 7619 case SADB_EXT_LIFETIME_CURRENT: 7620 case SADB_EXT_LIFETIME_HARD: 7621 case SADB_EXT_LIFETIME_SOFT: 7622 case SADB_EXT_KEY_AUTH: 7623 case SADB_EXT_KEY_ENCRYPT: 7624 case SADB_EXT_IDENTITY_SRC: 7625 case SADB_EXT_IDENTITY_DST: 7626 case SADB_EXT_SENSITIVITY: 7627 case SADB_EXT_PROPOSAL: 7628 case SADB_EXT_SUPPORTED_AUTH: 7629 case SADB_EXT_SUPPORTED_ENCRYPT: 7630 case SADB_EXT_SPIRANGE: 7631 case SADB_X_EXT_POLICY: 7632 case SADB_X_EXT_SA2: 7633 #ifdef IPSEC_NAT_T 7634 case SADB_X_EXT_NAT_T_TYPE: 7635 case SADB_X_EXT_NAT_T_SPORT: 7636 case SADB_X_EXT_NAT_T_DPORT: 7637 case SADB_X_EXT_NAT_T_OAI: 7638 case SADB_X_EXT_NAT_T_OAR: 7639 case SADB_X_EXT_NAT_T_FRAG: 7640 #endif 7641 /* duplicate check */ 7642 /* 7643 * XXX Are there duplication payloads of either 7644 * KEY_AUTH or KEY_ENCRYPT ? 7645 */ 7646 if (mhp->ext[ext->sadb_ext_type] != NULL) { 7647 ipseclog((LOG_DEBUG, "%s: duplicate ext_type " 7648 "%u\n", __func__, ext->sadb_ext_type)); 7649 m_freem(m); 7650 V_pfkeystat.out_dupext++; 7651 return EINVAL; 7652 } 7653 break; 7654 default: 7655 ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n", 7656 __func__, ext->sadb_ext_type)); 7657 m_freem(m); 7658 V_pfkeystat.out_invexttype++; 7659 return EINVAL; 7660 } 7661 7662 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); 7663 7664 if (key_validate_ext(ext, extlen)) { 7665 m_freem(m); 7666 V_pfkeystat.out_invlen++; 7667 return EINVAL; 7668 } 7669 7670 n = m_pulldown(m, off, extlen, &toff); 7671 if (!n) { 7672 /* m is already freed */ 7673 return ENOBUFS; 7674 } 7675 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 7676 7677 mhp->ext[ext->sadb_ext_type] = ext; 7678 mhp->extoff[ext->sadb_ext_type] = off; 7679 mhp->extlen[ext->sadb_ext_type] = extlen; 7680 } 7681 7682 if (off != end) { 7683 m_freem(m); 7684 V_pfkeystat.out_invlen++; 7685 return EINVAL; 7686 } 7687 7688 return 0; 7689 } 7690 7691 static int 7692 key_validate_ext(ext, len) 7693 const struct sadb_ext *ext; 7694 int len; 7695 { 7696 const struct sockaddr *sa; 7697 enum { NONE, ADDR } checktype = NONE; 7698 int baselen = 0; 7699 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); 7700 7701 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) 7702 return EINVAL; 7703 7704 /* if it does not match minimum/maximum length, bail */ 7705 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) || 7706 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0])) 7707 return EINVAL; 7708 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) 7709 return EINVAL; 7710 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) 7711 return EINVAL; 7712 7713 /* more checks based on sadb_ext_type XXX need more */ 7714 switch (ext->sadb_ext_type) { 7715 case SADB_EXT_ADDRESS_SRC: 7716 case SADB_EXT_ADDRESS_DST: 7717 case SADB_EXT_ADDRESS_PROXY: 7718 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); 7719 checktype = ADDR; 7720 break; 7721 case SADB_EXT_IDENTITY_SRC: 7722 case SADB_EXT_IDENTITY_DST: 7723 if (((const struct sadb_ident *)ext)->sadb_ident_type == 7724 SADB_X_IDENTTYPE_ADDR) { 7725 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); 7726 checktype = ADDR; 7727 } else 7728 checktype = NONE; 7729 break; 7730 default: 7731 checktype = NONE; 7732 break; 7733 } 7734 7735 switch (checktype) { 7736 case NONE: 7737 break; 7738 case ADDR: 7739 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); 7740 if (len < baselen + sal) 7741 return EINVAL; 7742 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) 7743 return EINVAL; 7744 break; 7745 } 7746 7747 return 0; 7748 } 7749 7750 void 7751 key_init(void) 7752 { 7753 int i; 7754 7755 for (i = 0; i < IPSEC_DIR_MAX; i++) 7756 LIST_INIT(&V_sptree[i]); 7757 7758 LIST_INIT(&V_sahtree); 7759 7760 for (i = 0; i <= SADB_SATYPE_MAX; i++) 7761 LIST_INIT(&V_regtree[i]); 7762 7763 LIST_INIT(&V_acqtree); 7764 LIST_INIT(&V_spacqtree); 7765 7766 /* system default */ 7767 V_ip4_def_policy.policy = IPSEC_POLICY_NONE; 7768 V_ip4_def_policy.refcnt++; /*never reclaim this*/ 7769 7770 if (!IS_DEFAULT_VNET(curvnet)) 7771 return; 7772 7773 SPTREE_LOCK_INIT(); 7774 REGTREE_LOCK_INIT(); 7775 SAHTREE_LOCK_INIT(); 7776 ACQ_LOCK_INIT(); 7777 SPACQ_LOCK_INIT(); 7778 7779 #ifndef IPSEC_DEBUG2 7780 timeout((void *)key_timehandler, (void *)0, hz); 7781 #endif /*IPSEC_DEBUG2*/ 7782 7783 /* initialize key statistics */ 7784 keystat.getspi_count = 1; 7785 7786 printf("IPsec: Initialized Security Association Processing.\n"); 7787 } 7788 7789 #ifdef VIMAGE 7790 void 7791 key_destroy(void) 7792 { 7793 struct secpolicy *sp, *nextsp; 7794 struct secacq *acq, *nextacq; 7795 struct secspacq *spacq, *nextspacq; 7796 struct secashead *sah, *nextsah; 7797 struct secreg *reg; 7798 int i; 7799 7800 SPTREE_LOCK(); 7801 for (i = 0; i < IPSEC_DIR_MAX; i++) { 7802 for (sp = LIST_FIRST(&V_sptree[i]); 7803 sp != NULL; sp = nextsp) { 7804 nextsp = LIST_NEXT(sp, chain); 7805 if (__LIST_CHAINED(sp)) { 7806 LIST_REMOVE(sp, chain); 7807 free(sp, M_IPSEC_SP); 7808 } 7809 } 7810 } 7811 SPTREE_UNLOCK(); 7812 7813 SAHTREE_LOCK(); 7814 for (sah = LIST_FIRST(&V_sahtree); sah != NULL; sah = nextsah) { 7815 nextsah = LIST_NEXT(sah, chain); 7816 if (__LIST_CHAINED(sah)) { 7817 LIST_REMOVE(sah, chain); 7818 free(sah, M_IPSEC_SAH); 7819 } 7820 } 7821 SAHTREE_UNLOCK(); 7822 7823 REGTREE_LOCK(); 7824 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 7825 LIST_FOREACH(reg, &V_regtree[i], chain) { 7826 if (__LIST_CHAINED(reg)) { 7827 LIST_REMOVE(reg, chain); 7828 free(reg, M_IPSEC_SAR); 7829 break; 7830 } 7831 } 7832 } 7833 REGTREE_UNLOCK(); 7834 7835 ACQ_LOCK(); 7836 for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) { 7837 nextacq = LIST_NEXT(acq, chain); 7838 if (__LIST_CHAINED(acq)) { 7839 LIST_REMOVE(acq, chain); 7840 free(acq, M_IPSEC_SAQ); 7841 } 7842 } 7843 ACQ_UNLOCK(); 7844 7845 SPACQ_LOCK(); 7846 for (spacq = LIST_FIRST(&V_spacqtree); spacq != NULL; 7847 spacq = nextspacq) { 7848 nextspacq = LIST_NEXT(spacq, chain); 7849 if (__LIST_CHAINED(spacq)) { 7850 LIST_REMOVE(spacq, chain); 7851 free(spacq, M_IPSEC_SAQ); 7852 } 7853 } 7854 SPACQ_UNLOCK(); 7855 } 7856 #endif 7857 7858 /* 7859 * XXX: maybe This function is called after INBOUND IPsec processing. 7860 * 7861 * Special check for tunnel-mode packets. 7862 * We must make some checks for consistency between inner and outer IP header. 7863 * 7864 * xxx more checks to be provided 7865 */ 7866 int 7867 key_checktunnelsanity(sav, family, src, dst) 7868 struct secasvar *sav; 7869 u_int family; 7870 caddr_t src; 7871 caddr_t dst; 7872 { 7873 IPSEC_ASSERT(sav->sah != NULL, ("null SA header")); 7874 7875 /* XXX: check inner IP header */ 7876 7877 return 1; 7878 } 7879 7880 /* record data transfer on SA, and update timestamps */ 7881 void 7882 key_sa_recordxfer(sav, m) 7883 struct secasvar *sav; 7884 struct mbuf *m; 7885 { 7886 IPSEC_ASSERT(sav != NULL, ("Null secasvar")); 7887 IPSEC_ASSERT(m != NULL, ("Null mbuf")); 7888 if (!sav->lft_c) 7889 return; 7890 7891 /* 7892 * XXX Currently, there is a difference of bytes size 7893 * between inbound and outbound processing. 7894 */ 7895 sav->lft_c->bytes += m->m_pkthdr.len; 7896 /* to check bytes lifetime is done in key_timehandler(). */ 7897 7898 /* 7899 * We use the number of packets as the unit of 7900 * allocations. We increment the variable 7901 * whenever {esp,ah}_{in,out}put is called. 7902 */ 7903 sav->lft_c->allocations++; 7904 /* XXX check for expires? */ 7905 7906 /* 7907 * NOTE: We record CURRENT usetime by using wall clock, 7908 * in seconds. HARD and SOFT lifetime are measured by the time 7909 * difference (again in seconds) from usetime. 7910 * 7911 * usetime 7912 * v expire expire 7913 * -----+-----+--------+---> t 7914 * <--------------> HARD 7915 * <-----> SOFT 7916 */ 7917 sav->lft_c->usetime = time_second; 7918 /* XXX check for expires? */ 7919 7920 return; 7921 } 7922 7923 /* dumb version */ 7924 void 7925 key_sa_routechange(dst) 7926 struct sockaddr *dst; 7927 { 7928 struct secashead *sah; 7929 struct route *ro; 7930 7931 SAHTREE_LOCK(); 7932 LIST_FOREACH(sah, &V_sahtree, chain) { 7933 ro = &sah->route_cache.sa_route; 7934 if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len 7935 && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) { 7936 RTFREE(ro->ro_rt); 7937 ro->ro_rt = (struct rtentry *)NULL; 7938 } 7939 } 7940 SAHTREE_UNLOCK(); 7941 } 7942 7943 static void 7944 key_sa_chgstate(struct secasvar *sav, u_int8_t state) 7945 { 7946 IPSEC_ASSERT(sav != NULL, ("NULL sav")); 7947 SAHTREE_LOCK_ASSERT(); 7948 7949 if (sav->state != state) { 7950 if (__LIST_CHAINED(sav)) 7951 LIST_REMOVE(sav, chain); 7952 sav->state = state; 7953 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain); 7954 } 7955 } 7956 7957 void 7958 key_sa_stir_iv(sav) 7959 struct secasvar *sav; 7960 { 7961 7962 IPSEC_ASSERT(sav->iv != NULL, ("null IV")); 7963 key_randomfill(sav->iv, sav->ivlen); 7964 } 7965 7966 /* XXX too much? */ 7967 static struct mbuf * 7968 key_alloc_mbuf(l) 7969 int l; 7970 { 7971 struct mbuf *m = NULL, *n; 7972 int len, t; 7973 7974 len = l; 7975 while (len > 0) { 7976 MGET(n, M_DONTWAIT, MT_DATA); 7977 if (n && len > MLEN) 7978 MCLGET(n, M_DONTWAIT); 7979 if (!n) { 7980 m_freem(m); 7981 return NULL; 7982 } 7983 7984 n->m_next = NULL; 7985 n->m_len = 0; 7986 n->m_len = M_TRAILINGSPACE(n); 7987 /* use the bottom of mbuf, hoping we can prepend afterwards */ 7988 if (n->m_len > len) { 7989 t = (n->m_len - len) & ~(sizeof(long) - 1); 7990 n->m_data += t; 7991 n->m_len = len; 7992 } 7993 7994 len -= n->m_len; 7995 7996 if (m) 7997 m_cat(m, n); 7998 else 7999 m = n; 8000 } 8001 8002 return m; 8003 } 8004 8005 /* 8006 * Take one of the kernel's security keys and convert it into a PF_KEY 8007 * structure within an mbuf, suitable for sending up to a waiting 8008 * application in user land. 8009 * 8010 * IN: 8011 * src: A pointer to a kernel security key. 8012 * exttype: Which type of key this is. Refer to the PF_KEY data structures. 8013 * OUT: 8014 * a valid mbuf or NULL indicating an error 8015 * 8016 */ 8017 8018 static struct mbuf * 8019 key_setkey(struct seckey *src, u_int16_t exttype) 8020 { 8021 struct mbuf *m; 8022 struct sadb_key *p; 8023 int len; 8024 8025 if (src == NULL) 8026 return NULL; 8027 8028 len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src)); 8029 m = key_alloc_mbuf(len); 8030 if (m == NULL) 8031 return NULL; 8032 p = mtod(m, struct sadb_key *); 8033 bzero(p, len); 8034 p->sadb_key_len = PFKEY_UNIT64(len); 8035 p->sadb_key_exttype = exttype; 8036 p->sadb_key_bits = src->bits; 8037 bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src)); 8038 8039 return m; 8040 } 8041 8042 /* 8043 * Take one of the kernel's lifetime data structures and convert it 8044 * into a PF_KEY structure within an mbuf, suitable for sending up to 8045 * a waiting application in user land. 8046 * 8047 * IN: 8048 * src: A pointer to a kernel lifetime structure. 8049 * exttype: Which type of lifetime this is. Refer to the PF_KEY 8050 * data structures for more information. 8051 * OUT: 8052 * a valid mbuf or NULL indicating an error 8053 * 8054 */ 8055 8056 static struct mbuf * 8057 key_setlifetime(struct seclifetime *src, u_int16_t exttype) 8058 { 8059 struct mbuf *m = NULL; 8060 struct sadb_lifetime *p; 8061 int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime)); 8062 8063 if (src == NULL) 8064 return NULL; 8065 8066 m = key_alloc_mbuf(len); 8067 if (m == NULL) 8068 return m; 8069 p = mtod(m, struct sadb_lifetime *); 8070 8071 bzero(p, len); 8072 p->sadb_lifetime_len = PFKEY_UNIT64(len); 8073 p->sadb_lifetime_exttype = exttype; 8074 p->sadb_lifetime_allocations = src->allocations; 8075 p->sadb_lifetime_bytes = src->bytes; 8076 p->sadb_lifetime_addtime = src->addtime; 8077 p->sadb_lifetime_usetime = src->usetime; 8078 8079 return m; 8080 8081 } 8082