xref: /freebsd/sys/netipsec/key.c (revision f374ba41f55c1a127303d92d830dd58eef2f5243)
1 /*	$FreeBSD$	*/
2 /*	$KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $	*/
3 
4 /*-
5  * SPDX-License-Identifier: BSD-3-Clause
6  *
7  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the project nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * This code is referd to RFC 2367
37  */
38 
39 #include "opt_inet.h"
40 #include "opt_inet6.h"
41 #include "opt_ipsec.h"
42 
43 #include <sys/types.h>
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/fnv_hash.h>
48 #include <sys/lock.h>
49 #include <sys/mutex.h>
50 #include <sys/mbuf.h>
51 #include <sys/domain.h>
52 #include <sys/protosw.h>
53 #include <sys/malloc.h>
54 #include <sys/rmlock.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/errno.h>
59 #include <sys/proc.h>
60 #include <sys/queue.h>
61 #include <sys/refcount.h>
62 #include <sys/syslog.h>
63 
64 #include <vm/uma.h>
65 
66 #include <net/if.h>
67 #include <net/if_var.h>
68 #include <net/vnet.h>
69 
70 #include <netinet/in.h>
71 #include <netinet/in_systm.h>
72 #include <netinet/ip.h>
73 #include <netinet/in_var.h>
74 #include <netinet/udp.h>
75 
76 #ifdef INET6
77 #include <netinet/ip6.h>
78 #include <netinet6/in6_var.h>
79 #include <netinet6/ip6_var.h>
80 #endif /* INET6 */
81 
82 #include <net/pfkeyv2.h>
83 #include <netipsec/keydb.h>
84 #include <netipsec/key.h>
85 #include <netipsec/keysock.h>
86 #include <netipsec/key_debug.h>
87 
88 #include <netipsec/ipsec.h>
89 #ifdef INET6
90 #include <netipsec/ipsec6.h>
91 #endif
92 
93 #include <netipsec/xform.h>
94 #include <machine/in_cksum.h>
95 #include <machine/stdarg.h>
96 
97 /* randomness */
98 #include <sys/random.h>
99 
100 #define FULLMASK	0xff
101 #define	_BITS(bytes)	((bytes) << 3)
102 
103 #define	UINT32_80PCT	0xcccccccc
104 /*
105  * Note on SA reference counting:
106  * - SAs that are not in DEAD state will have (total external reference + 1)
107  *   following value in reference count field.  they cannot be freed and are
108  *   referenced from SA header.
109  * - SAs that are in DEAD state will have (total external reference)
110  *   in reference count field.  they are ready to be freed.  reference from
111  *   SA header will be removed in key_delsav(), when the reference count
112  *   field hits 0 (= no external reference other than from SA header.
113  */
114 
115 VNET_DEFINE(u_int32_t, key_debug_level) = 0;
116 VNET_DEFINE_STATIC(u_int, key_spi_trycnt) = 1000;
117 VNET_DEFINE_STATIC(u_int32_t, key_spi_minval) = 0x100;
118 VNET_DEFINE_STATIC(u_int32_t, key_spi_maxval) = 0x0fffffff;	/* XXX */
119 VNET_DEFINE_STATIC(u_int32_t, policy_id) = 0;
120 /*interval to initialize randseed,1(m)*/
121 VNET_DEFINE_STATIC(u_int, key_int_random) = 60;
122 /* interval to expire acquiring, 30(s)*/
123 VNET_DEFINE_STATIC(u_int, key_larval_lifetime) = 30;
124 /* counter for blocking SADB_ACQUIRE.*/
125 VNET_DEFINE_STATIC(int, key_blockacq_count) = 10;
126 /* lifetime for blocking SADB_ACQUIRE.*/
127 VNET_DEFINE_STATIC(int, key_blockacq_lifetime) = 20;
128 /* preferred old sa rather than new sa.*/
129 VNET_DEFINE_STATIC(int, key_preferred_oldsa) = 1;
130 #define	V_key_spi_trycnt	VNET(key_spi_trycnt)
131 #define	V_key_spi_minval	VNET(key_spi_minval)
132 #define	V_key_spi_maxval	VNET(key_spi_maxval)
133 #define	V_policy_id		VNET(policy_id)
134 #define	V_key_int_random	VNET(key_int_random)
135 #define	V_key_larval_lifetime	VNET(key_larval_lifetime)
136 #define	V_key_blockacq_count	VNET(key_blockacq_count)
137 #define	V_key_blockacq_lifetime	VNET(key_blockacq_lifetime)
138 #define	V_key_preferred_oldsa	VNET(key_preferred_oldsa)
139 
140 VNET_DEFINE_STATIC(u_int32_t, acq_seq) = 0;
141 #define	V_acq_seq		VNET(acq_seq)
142 
143 VNET_DEFINE_STATIC(uint32_t, sp_genid) = 0;
144 #define	V_sp_genid		VNET(sp_genid)
145 
146 /* SPD */
147 TAILQ_HEAD(secpolicy_queue, secpolicy);
148 LIST_HEAD(secpolicy_list, secpolicy);
149 VNET_DEFINE_STATIC(struct secpolicy_queue, sptree[IPSEC_DIR_MAX]);
150 VNET_DEFINE_STATIC(struct secpolicy_queue, sptree_ifnet[IPSEC_DIR_MAX]);
151 static struct rmlock sptree_lock;
152 #define	V_sptree		VNET(sptree)
153 #define	V_sptree_ifnet		VNET(sptree_ifnet)
154 #define	SPTREE_LOCK_INIT()      rm_init(&sptree_lock, "sptree")
155 #define	SPTREE_LOCK_DESTROY()   rm_destroy(&sptree_lock)
156 #define	SPTREE_RLOCK_TRACKER    struct rm_priotracker sptree_tracker
157 #define	SPTREE_RLOCK()          rm_rlock(&sptree_lock, &sptree_tracker)
158 #define	SPTREE_RUNLOCK()        rm_runlock(&sptree_lock, &sptree_tracker)
159 #define	SPTREE_RLOCK_ASSERT()   rm_assert(&sptree_lock, RA_RLOCKED)
160 #define	SPTREE_WLOCK()          rm_wlock(&sptree_lock)
161 #define	SPTREE_WUNLOCK()        rm_wunlock(&sptree_lock)
162 #define	SPTREE_WLOCK_ASSERT()   rm_assert(&sptree_lock, RA_WLOCKED)
163 #define	SPTREE_UNLOCK_ASSERT()  rm_assert(&sptree_lock, RA_UNLOCKED)
164 
165 /* Hash table for lookup SP using unique id */
166 VNET_DEFINE_STATIC(struct secpolicy_list *, sphashtbl);
167 VNET_DEFINE_STATIC(u_long, sphash_mask);
168 #define	V_sphashtbl		VNET(sphashtbl)
169 #define	V_sphash_mask		VNET(sphash_mask)
170 
171 #define	SPHASH_NHASH_LOG2	7
172 #define	SPHASH_NHASH		(1 << SPHASH_NHASH_LOG2)
173 #define	SPHASH_HASHVAL(id)	(key_u32hash(id) & V_sphash_mask)
174 #define	SPHASH_HASH(id)		&V_sphashtbl[SPHASH_HASHVAL(id)]
175 
176 /* SPD cache */
177 struct spdcache_entry {
178    struct secpolicyindex spidx;	/* secpolicyindex */
179    struct secpolicy *sp;	/* cached policy to be used */
180 
181    LIST_ENTRY(spdcache_entry) chain;
182 };
183 LIST_HEAD(spdcache_entry_list, spdcache_entry);
184 
185 #define	SPDCACHE_MAX_ENTRIES_PER_HASH	8
186 
187 VNET_DEFINE_STATIC(u_int, key_spdcache_maxentries) = 0;
188 #define	V_key_spdcache_maxentries	VNET(key_spdcache_maxentries)
189 VNET_DEFINE_STATIC(u_int, key_spdcache_threshold) = 32;
190 #define	V_key_spdcache_threshold	VNET(key_spdcache_threshold)
191 VNET_DEFINE_STATIC(unsigned long, spd_size) = 0;
192 #define	V_spd_size		VNET(spd_size)
193 
194 #define SPDCACHE_ENABLED()	(V_key_spdcache_maxentries != 0)
195 #define SPDCACHE_ACTIVE() \
196 	(SPDCACHE_ENABLED() && V_spd_size >= V_key_spdcache_threshold)
197 
198 VNET_DEFINE_STATIC(struct spdcache_entry_list *, spdcachehashtbl);
199 VNET_DEFINE_STATIC(u_long, spdcachehash_mask);
200 #define	V_spdcachehashtbl	VNET(spdcachehashtbl)
201 #define	V_spdcachehash_mask	VNET(spdcachehash_mask)
202 
203 #define	SPDCACHE_HASHVAL(idx) \
204 	(key_addrprotohash(&(idx)->src, &(idx)->dst, &(idx)->ul_proto) &  \
205 	    V_spdcachehash_mask)
206 
207 /* Each cache line is protected by a mutex */
208 VNET_DEFINE_STATIC(struct mtx *, spdcache_lock);
209 #define	V_spdcache_lock		VNET(spdcache_lock)
210 
211 #define	SPDCACHE_LOCK_INIT(a) \
212 	mtx_init(&V_spdcache_lock[a], "spdcache", \
213 	    "fast ipsec SPD cache", MTX_DEF|MTX_DUPOK)
214 #define	SPDCACHE_LOCK_DESTROY(a)	mtx_destroy(&V_spdcache_lock[a])
215 #define	SPDCACHE_LOCK(a)		mtx_lock(&V_spdcache_lock[a]);
216 #define	SPDCACHE_UNLOCK(a)		mtx_unlock(&V_spdcache_lock[a]);
217 
218 static struct sx spi_alloc_lock;
219 #define	SPI_ALLOC_LOCK_INIT()		sx_init(&spi_alloc_lock, "spialloc")
220 #define	SPI_ALLOC_LOCK_DESTROY()	sx_destroy(&spi_alloc_lock)
221 #define	SPI_ALLOC_LOCK()          	sx_xlock(&spi_alloc_lock)
222 #define	SPI_ALLOC_UNLOCK()        	sx_unlock(&spi_alloc_lock)
223 #define	SPI_ALLOC_LOCK_ASSERT()   	sx_assert(&spi_alloc_lock, SA_XLOCKED)
224 
225 /* SAD */
226 TAILQ_HEAD(secashead_queue, secashead);
227 LIST_HEAD(secashead_list, secashead);
228 VNET_DEFINE_STATIC(struct secashead_queue, sahtree);
229 static struct rmlock sahtree_lock;
230 #define	V_sahtree		VNET(sahtree)
231 #define	SAHTREE_LOCK_INIT()	rm_init(&sahtree_lock, "sahtree")
232 #define	SAHTREE_LOCK_DESTROY()	rm_destroy(&sahtree_lock)
233 #define	SAHTREE_RLOCK_TRACKER	struct rm_priotracker sahtree_tracker
234 #define	SAHTREE_RLOCK()		rm_rlock(&sahtree_lock, &sahtree_tracker)
235 #define	SAHTREE_RUNLOCK()	rm_runlock(&sahtree_lock, &sahtree_tracker)
236 #define	SAHTREE_RLOCK_ASSERT()	rm_assert(&sahtree_lock, RA_RLOCKED)
237 #define	SAHTREE_WLOCK()		rm_wlock(&sahtree_lock)
238 #define	SAHTREE_WUNLOCK()	rm_wunlock(&sahtree_lock)
239 #define	SAHTREE_WLOCK_ASSERT()	rm_assert(&sahtree_lock, RA_WLOCKED)
240 #define	SAHTREE_UNLOCK_ASSERT()	rm_assert(&sahtree_lock, RA_UNLOCKED)
241 
242 /* Hash table for lookup in SAD using SA addresses */
243 VNET_DEFINE_STATIC(struct secashead_list *, sahaddrhashtbl);
244 VNET_DEFINE_STATIC(u_long, sahaddrhash_mask);
245 #define	V_sahaddrhashtbl	VNET(sahaddrhashtbl)
246 #define	V_sahaddrhash_mask	VNET(sahaddrhash_mask)
247 
248 #define	SAHHASH_NHASH_LOG2	7
249 #define	SAHHASH_NHASH		(1 << SAHHASH_NHASH_LOG2)
250 #define	SAHADDRHASH_HASHVAL(idx)	\
251 	(key_addrprotohash(&(idx)->src, &(idx)->dst, &(idx)->proto) & \
252 	    V_sahaddrhash_mask)
253 #define	SAHADDRHASH_HASH(saidx)		\
254     &V_sahaddrhashtbl[SAHADDRHASH_HASHVAL(saidx)]
255 
256 /* Hash table for lookup in SAD using SPI */
257 LIST_HEAD(secasvar_list, secasvar);
258 VNET_DEFINE_STATIC(struct secasvar_list *, savhashtbl);
259 VNET_DEFINE_STATIC(u_long, savhash_mask);
260 #define	V_savhashtbl		VNET(savhashtbl)
261 #define	V_savhash_mask		VNET(savhash_mask)
262 #define	SAVHASH_NHASH_LOG2	7
263 #define	SAVHASH_NHASH		(1 << SAVHASH_NHASH_LOG2)
264 #define	SAVHASH_HASHVAL(spi)	(key_u32hash(spi) & V_savhash_mask)
265 #define	SAVHASH_HASH(spi)	&V_savhashtbl[SAVHASH_HASHVAL(spi)]
266 
267 static uint32_t
268 key_addrprotohash(const union sockaddr_union *src,
269     const union sockaddr_union *dst, const uint8_t *proto)
270 {
271 	uint32_t hval;
272 
273 	hval = fnv_32_buf(proto, sizeof(*proto),
274 	    FNV1_32_INIT);
275 	switch (dst->sa.sa_family) {
276 #ifdef INET
277 	case AF_INET:
278 		hval = fnv_32_buf(&src->sin.sin_addr,
279 		    sizeof(in_addr_t), hval);
280 		hval = fnv_32_buf(&dst->sin.sin_addr,
281 		    sizeof(in_addr_t), hval);
282 		break;
283 #endif
284 #ifdef INET6
285 	case AF_INET6:
286 		hval = fnv_32_buf(&src->sin6.sin6_addr,
287 		    sizeof(struct in6_addr), hval);
288 		hval = fnv_32_buf(&dst->sin6.sin6_addr,
289 		    sizeof(struct in6_addr), hval);
290 		break;
291 #endif
292 	default:
293 		hval = 0;
294 		ipseclog((LOG_DEBUG, "%s: unknown address family %d\n",
295 		    __func__, dst->sa.sa_family));
296 	}
297 	return (hval);
298 }
299 
300 static uint32_t
301 key_u32hash(uint32_t val)
302 {
303 
304 	return (fnv_32_buf(&val, sizeof(val), FNV1_32_INIT));
305 }
306 
307 							/* registed list */
308 VNET_DEFINE_STATIC(LIST_HEAD(_regtree, secreg), regtree[SADB_SATYPE_MAX + 1]);
309 #define	V_regtree		VNET(regtree)
310 static struct mtx regtree_lock;
311 #define	REGTREE_LOCK_INIT() \
312 	mtx_init(&regtree_lock, "regtree", "fast ipsec regtree", MTX_DEF)
313 #define	REGTREE_LOCK_DESTROY()	mtx_destroy(&regtree_lock)
314 #define	REGTREE_LOCK()		mtx_lock(&regtree_lock)
315 #define	REGTREE_UNLOCK()	mtx_unlock(&regtree_lock)
316 #define	REGTREE_LOCK_ASSERT()	mtx_assert(&regtree_lock, MA_OWNED)
317 
318 /* Acquiring list */
319 LIST_HEAD(secacq_list, secacq);
320 VNET_DEFINE_STATIC(struct secacq_list, acqtree);
321 #define	V_acqtree		VNET(acqtree)
322 static struct mtx acq_lock;
323 #define	ACQ_LOCK_INIT() \
324     mtx_init(&acq_lock, "acqtree", "ipsec SA acquiring list", MTX_DEF)
325 #define	ACQ_LOCK_DESTROY()	mtx_destroy(&acq_lock)
326 #define	ACQ_LOCK()		mtx_lock(&acq_lock)
327 #define	ACQ_UNLOCK()		mtx_unlock(&acq_lock)
328 #define	ACQ_LOCK_ASSERT()	mtx_assert(&acq_lock, MA_OWNED)
329 
330 /* Hash table for lookup in ACQ list using SA addresses */
331 VNET_DEFINE_STATIC(struct secacq_list *, acqaddrhashtbl);
332 VNET_DEFINE_STATIC(u_long, acqaddrhash_mask);
333 #define	V_acqaddrhashtbl	VNET(acqaddrhashtbl)
334 #define	V_acqaddrhash_mask	VNET(acqaddrhash_mask)
335 
336 /* Hash table for lookup in ACQ list using SEQ number */
337 VNET_DEFINE_STATIC(struct secacq_list *, acqseqhashtbl);
338 VNET_DEFINE_STATIC(u_long, acqseqhash_mask);
339 #define	V_acqseqhashtbl		VNET(acqseqhashtbl)
340 #define	V_acqseqhash_mask	VNET(acqseqhash_mask)
341 
342 #define	ACQHASH_NHASH_LOG2	7
343 #define	ACQHASH_NHASH		(1 << ACQHASH_NHASH_LOG2)
344 #define	ACQADDRHASH_HASHVAL(idx)	\
345 	(key_addrprotohash(&(idx)->src, &(idx)->dst, &(idx)->proto) & \
346 	    V_acqaddrhash_mask)
347 #define	ACQSEQHASH_HASHVAL(seq)		\
348     (key_u32hash(seq) & V_acqseqhash_mask)
349 #define	ACQADDRHASH_HASH(saidx)	\
350     &V_acqaddrhashtbl[ACQADDRHASH_HASHVAL(saidx)]
351 #define	ACQSEQHASH_HASH(seq)	\
352     &V_acqseqhashtbl[ACQSEQHASH_HASHVAL(seq)]
353 							/* SP acquiring list */
354 VNET_DEFINE_STATIC(LIST_HEAD(_spacqtree, secspacq), spacqtree);
355 #define	V_spacqtree		VNET(spacqtree)
356 static struct mtx spacq_lock;
357 #define	SPACQ_LOCK_INIT() \
358 	mtx_init(&spacq_lock, "spacqtree", \
359 		"fast ipsec security policy acquire list", MTX_DEF)
360 #define	SPACQ_LOCK_DESTROY()	mtx_destroy(&spacq_lock)
361 #define	SPACQ_LOCK()		mtx_lock(&spacq_lock)
362 #define	SPACQ_UNLOCK()		mtx_unlock(&spacq_lock)
363 #define	SPACQ_LOCK_ASSERT()	mtx_assert(&spacq_lock, MA_OWNED)
364 
365 static const int minsize[] = {
366 	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
367 	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
368 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
369 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
370 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
371 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_SRC */
372 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_DST */
373 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_PROXY */
374 	sizeof(struct sadb_key),	/* SADB_EXT_KEY_AUTH */
375 	sizeof(struct sadb_key),	/* SADB_EXT_KEY_ENCRYPT */
376 	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_SRC */
377 	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_DST */
378 	sizeof(struct sadb_sens),	/* SADB_EXT_SENSITIVITY */
379 	sizeof(struct sadb_prop),	/* SADB_EXT_PROPOSAL */
380 	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_AUTH */
381 	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_ENCRYPT */
382 	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
383 	0,				/* SADB_X_EXT_KMPRIVATE */
384 	sizeof(struct sadb_x_policy),	/* SADB_X_EXT_POLICY */
385 	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
386 	sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */
387 	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */
388 	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */
389 	sizeof(struct sadb_address),	/* SADB_X_EXT_NAT_T_OAI */
390 	sizeof(struct sadb_address),	/* SADB_X_EXT_NAT_T_OAR */
391 	sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */
392 	sizeof(struct sadb_x_sa_replay), /* SADB_X_EXT_SA_REPLAY */
393 	sizeof(struct sadb_address),	/* SADB_X_EXT_NEW_ADDRESS_SRC */
394 	sizeof(struct sadb_address),	/* SADB_X_EXT_NEW_ADDRESS_DST */
395 };
396 _Static_assert(sizeof(minsize)/sizeof(int) == SADB_EXT_MAX + 1, "minsize size mismatch");
397 
398 static const int maxsize[] = {
399 	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
400 	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
401 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
402 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
403 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
404 	0,				/* SADB_EXT_ADDRESS_SRC */
405 	0,				/* SADB_EXT_ADDRESS_DST */
406 	0,				/* SADB_EXT_ADDRESS_PROXY */
407 	0,				/* SADB_EXT_KEY_AUTH */
408 	0,				/* SADB_EXT_KEY_ENCRYPT */
409 	0,				/* SADB_EXT_IDENTITY_SRC */
410 	0,				/* SADB_EXT_IDENTITY_DST */
411 	0,				/* SADB_EXT_SENSITIVITY */
412 	0,				/* SADB_EXT_PROPOSAL */
413 	0,				/* SADB_EXT_SUPPORTED_AUTH */
414 	0,				/* SADB_EXT_SUPPORTED_ENCRYPT */
415 	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
416 	0,				/* SADB_X_EXT_KMPRIVATE */
417 	0,				/* SADB_X_EXT_POLICY */
418 	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
419 	sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */
420 	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */
421 	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */
422 	0,				/* SADB_X_EXT_NAT_T_OAI */
423 	0,				/* SADB_X_EXT_NAT_T_OAR */
424 	sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */
425 	sizeof(struct sadb_x_sa_replay), /* SADB_X_EXT_SA_REPLAY */
426 	0,				/* SADB_X_EXT_NEW_ADDRESS_SRC */
427 	0,				/* SADB_X_EXT_NEW_ADDRESS_DST */
428 };
429 _Static_assert(sizeof(maxsize)/sizeof(int) == SADB_EXT_MAX + 1, "minsize size mismatch");
430 
431 /*
432  * Internal values for SA flags:
433  * SADB_X_EXT_F_CLONED means that SA was cloned by key_updateaddresses,
434  *	thus we will not free the most of SA content in key_delsav().
435  */
436 #define	SADB_X_EXT_F_CLONED	0x80000000
437 
438 #define	SADB_CHECKLEN(_mhp, _ext)			\
439     ((_mhp)->extlen[(_ext)] < minsize[(_ext)] || (maxsize[(_ext)] != 0 && \
440 	((_mhp)->extlen[(_ext)] > maxsize[(_ext)])))
441 #define	SADB_CHECKHDR(_mhp, _ext)	((_mhp)->ext[(_ext)] == NULL)
442 
443 VNET_DEFINE_STATIC(int, ipsec_esp_keymin) = 256;
444 VNET_DEFINE_STATIC(int, ipsec_esp_auth) = 0;
445 VNET_DEFINE_STATIC(int, ipsec_ah_keymin) = 128;
446 
447 #define	V_ipsec_esp_keymin	VNET(ipsec_esp_keymin)
448 #define	V_ipsec_esp_auth	VNET(ipsec_esp_auth)
449 #define	V_ipsec_ah_keymin	VNET(ipsec_ah_keymin)
450 
451 #ifdef IPSEC_DEBUG
452 VNET_DEFINE(int, ipsec_debug) = 1;
453 #else
454 VNET_DEFINE(int, ipsec_debug) = 0;
455 #endif
456 
457 #ifdef INET
458 SYSCTL_DECL(_net_inet_ipsec);
459 SYSCTL_INT(_net_inet_ipsec, IPSECCTL_DEBUG, debug,
460     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_debug), 0,
461     "Enable IPsec debugging output when set.");
462 #endif
463 #ifdef INET6
464 SYSCTL_DECL(_net_inet6_ipsec6);
465 SYSCTL_INT(_net_inet6_ipsec6, IPSECCTL_DEBUG, debug,
466     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_debug), 0,
467     "Enable IPsec debugging output when set.");
468 #endif
469 
470 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL,	debug,
471 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_debug_level), 0, "");
472 
473 /* max count of trial for the decision of spi value */
474 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt,
475 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_trycnt), 0, "");
476 
477 /* minimum spi value to allocate automatically. */
478 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval,
479 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_minval), 0, "");
480 
481 /* maximun spi value to allocate automatically. */
482 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval,
483 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_maxval), 0, "");
484 
485 /* interval to initialize randseed */
486 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random,
487 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_int_random), 0, "");
488 
489 /* lifetime for larval SA */
490 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime,
491 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_larval_lifetime), 0, "");
492 
493 /* counter for blocking to send SADB_ACQUIRE to IKEd */
494 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count,
495 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_count), 0, "");
496 
497 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
498 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime,
499 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_lifetime), 0, "");
500 
501 /* ESP auth */
502 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth,
503 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_auth), 0, "");
504 
505 /* minimum ESP key length */
506 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin,
507 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_keymin), 0, "");
508 
509 /* minimum AH key length */
510 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin,
511 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_ah_keymin), 0, "");
512 
513 /* perfered old SA rather than new SA */
514 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, preferred_oldsa,
515 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_preferred_oldsa), 0, "");
516 
517 SYSCTL_NODE(_net_key, OID_AUTO, spdcache, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
518     "SPD cache");
519 
520 SYSCTL_UINT(_net_key_spdcache, OID_AUTO, maxentries,
521 	CTLFLAG_VNET | CTLFLAG_RDTUN, &VNET_NAME(key_spdcache_maxentries), 0,
522 	"Maximum number of entries in the SPD cache"
523 	" (power of 2, 0 to disable)");
524 
525 SYSCTL_UINT(_net_key_spdcache, OID_AUTO, threshold,
526 	CTLFLAG_VNET | CTLFLAG_RDTUN, &VNET_NAME(key_spdcache_threshold), 0,
527 	"Number of SPs that make the SPD cache active");
528 
529 #define __LIST_CHAINED(elm) \
530 	(!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
531 
532 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association");
533 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head");
534 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy");
535 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request");
536 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous");
537 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire");
538 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire");
539 MALLOC_DEFINE(M_IPSEC_SPDCACHE, "ipsec-spdcache", "ipsec SPD cache");
540 
541 static uma_zone_t __read_mostly ipsec_key_lft_zone;
542 
543 /*
544  * set parameters into secpolicyindex buffer.
545  * Must allocate secpolicyindex buffer passed to this function.
546  */
547 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
548 do { \
549 	bzero((idx), sizeof(struct secpolicyindex));                         \
550 	(idx)->dir = (_dir);                                                 \
551 	(idx)->prefs = (ps);                                                 \
552 	(idx)->prefd = (pd);                                                 \
553 	(idx)->ul_proto = (ulp);                                             \
554 	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
555 	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
556 } while (0)
557 
558 /*
559  * set parameters into secasindex buffer.
560  * Must allocate secasindex buffer before calling this function.
561  */
562 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \
563 do { \
564 	bzero((idx), sizeof(struct secasindex));                             \
565 	(idx)->proto = (p);                                                  \
566 	(idx)->mode = (m);                                                   \
567 	(idx)->reqid = (r);                                                  \
568 	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
569 	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
570 	key_porttosaddr(&(idx)->src.sa, 0);				     \
571 	key_porttosaddr(&(idx)->dst.sa, 0);				     \
572 } while (0)
573 
574 /* key statistics */
575 struct _keystat {
576 	u_long getspi_count; /* the avarage of count to try to get new SPI */
577 } keystat;
578 
579 struct sadb_msghdr {
580 	struct sadb_msg *msg;
581 	struct sadb_ext *ext[SADB_EXT_MAX + 1];
582 	int extoff[SADB_EXT_MAX + 1];
583 	int extlen[SADB_EXT_MAX + 1];
584 };
585 
586 static struct supported_ealgs {
587 	int sadb_alg;
588 	const struct enc_xform *xform;
589 } supported_ealgs[] = {
590 	{ SADB_X_EALG_AES,		&enc_xform_aes_cbc },
591 	{ SADB_EALG_NULL,		&enc_xform_null },
592 	{ SADB_X_EALG_AESCTR,		&enc_xform_aes_icm },
593 	{ SADB_X_EALG_AESGCM16,		&enc_xform_aes_nist_gcm },
594 	{ SADB_X_EALG_AESGMAC,		&enc_xform_aes_nist_gmac },
595 	{ SADB_X_EALG_CHACHA20POLY1305,	&enc_xform_chacha20_poly1305 },
596 };
597 
598 static struct supported_aalgs {
599 	int sadb_alg;
600 	const struct auth_hash *xform;
601 } supported_aalgs[] = {
602 	{ SADB_X_AALG_NULL,		&auth_hash_null },
603 	{ SADB_AALG_SHA1HMAC,		&auth_hash_hmac_sha1 },
604 	{ SADB_X_AALG_SHA2_256,		&auth_hash_hmac_sha2_256 },
605 	{ SADB_X_AALG_SHA2_384,		&auth_hash_hmac_sha2_384 },
606 	{ SADB_X_AALG_SHA2_512,		&auth_hash_hmac_sha2_512 },
607 	{ SADB_X_AALG_AES128GMAC,	&auth_hash_nist_gmac_aes_128 },
608 	{ SADB_X_AALG_AES192GMAC,	&auth_hash_nist_gmac_aes_192 },
609 	{ SADB_X_AALG_AES256GMAC,	&auth_hash_nist_gmac_aes_256 },
610 	{ SADB_X_AALG_CHACHA20POLY1305,	&auth_hash_poly1305 },
611 };
612 
613 static struct supported_calgs {
614 	int sadb_alg;
615 	const struct comp_algo *xform;
616 } supported_calgs[] = {
617 	{ SADB_X_CALG_DEFLATE,		&comp_algo_deflate },
618 };
619 
620 #ifndef IPSEC_DEBUG2
621 static struct callout key_timer;
622 #endif
623 
624 static void key_unlink(struct secpolicy *);
625 static void key_detach(struct secpolicy *);
626 static struct secpolicy *key_do_allocsp(struct secpolicyindex *spidx, u_int dir);
627 static struct secpolicy *key_getsp(struct secpolicyindex *);
628 static struct secpolicy *key_getspbyid(u_int32_t);
629 static struct mbuf *key_gather_mbuf(struct mbuf *,
630 	const struct sadb_msghdr *, int, int, ...);
631 static int key_spdadd(struct socket *, struct mbuf *,
632 	const struct sadb_msghdr *);
633 static uint32_t key_getnewspid(void);
634 static int key_spddelete(struct socket *, struct mbuf *,
635 	const struct sadb_msghdr *);
636 static int key_spddelete2(struct socket *, struct mbuf *,
637 	const struct sadb_msghdr *);
638 static int key_spdget(struct socket *, struct mbuf *,
639 	const struct sadb_msghdr *);
640 static int key_spdflush(struct socket *, struct mbuf *,
641 	const struct sadb_msghdr *);
642 static int key_spddump(struct socket *, struct mbuf *,
643 	const struct sadb_msghdr *);
644 static struct mbuf *key_setdumpsp(struct secpolicy *,
645 	u_int8_t, u_int32_t, u_int32_t);
646 static struct mbuf *key_sp2mbuf(struct secpolicy *);
647 static size_t key_getspreqmsglen(struct secpolicy *);
648 static int key_spdexpire(struct secpolicy *);
649 static struct secashead *key_newsah(struct secasindex *);
650 static void key_freesah(struct secashead **);
651 static void key_delsah(struct secashead *);
652 static struct secasvar *key_newsav(const struct sadb_msghdr *,
653     struct secasindex *, uint32_t, int *);
654 static void key_delsav(struct secasvar *);
655 static void key_unlinksav(struct secasvar *);
656 static struct secashead *key_getsah(struct secasindex *);
657 static int key_checkspidup(uint32_t);
658 static struct secasvar *key_getsavbyspi(uint32_t);
659 static int key_setnatt(struct secasvar *, const struct sadb_msghdr *);
660 static int key_setsaval(struct secasvar *, const struct sadb_msghdr *);
661 static int key_updatelifetimes(struct secasvar *, const struct sadb_msghdr *);
662 static int key_updateaddresses(struct socket *, struct mbuf *,
663     const struct sadb_msghdr *, struct secasvar *, struct secasindex *);
664 
665 static struct mbuf *key_setdumpsa(struct secasvar *, u_int8_t,
666 	u_int8_t, u_int32_t, u_int32_t);
667 static struct mbuf *key_setsadbmsg(u_int8_t, u_int16_t, u_int8_t,
668 	u_int32_t, pid_t, u_int16_t);
669 static struct mbuf *key_setsadbsa(struct secasvar *);
670 static struct mbuf *key_setsadbaddr(u_int16_t,
671 	const struct sockaddr *, u_int8_t, u_int16_t);
672 static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t);
673 static struct mbuf *key_setsadbxtype(u_int16_t);
674 static struct mbuf *key_setsadbxsa2(u_int8_t, u_int32_t, u_int32_t);
675 static struct mbuf *key_setsadbxsareplay(u_int32_t);
676 static struct mbuf *key_setsadbxpolicy(u_int16_t, u_int8_t,
677 	u_int32_t, u_int32_t);
678 static struct seckey *key_dup_keymsg(const struct sadb_key *, size_t,
679     struct malloc_type *);
680 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src,
681     struct malloc_type *);
682 
683 /* flags for key_cmpsaidx() */
684 #define CMP_HEAD	1	/* protocol, addresses. */
685 #define CMP_MODE_REQID	2	/* additionally HEAD, reqid, mode. */
686 #define CMP_REQID	3	/* additionally HEAD, reaid. */
687 #define CMP_EXACTLY	4	/* all elements. */
688 static int key_cmpsaidx(const struct secasindex *,
689     const struct secasindex *, int);
690 static int key_cmpspidx_exactly(struct secpolicyindex *,
691     struct secpolicyindex *);
692 static int key_cmpspidx_withmask(struct secpolicyindex *,
693     struct secpolicyindex *);
694 static int key_bbcmp(const void *, const void *, u_int);
695 static uint8_t key_satype2proto(uint8_t);
696 static uint8_t key_proto2satype(uint8_t);
697 
698 static int key_getspi(struct socket *, struct mbuf *,
699 	const struct sadb_msghdr *);
700 static uint32_t key_do_getnewspi(struct sadb_spirange *, struct secasindex *);
701 static int key_update(struct socket *, struct mbuf *,
702 	const struct sadb_msghdr *);
703 static int key_add(struct socket *, struct mbuf *,
704 	const struct sadb_msghdr *);
705 static int key_setident(struct secashead *, const struct sadb_msghdr *);
706 static struct mbuf *key_getmsgbuf_x1(struct mbuf *,
707 	const struct sadb_msghdr *);
708 static int key_delete(struct socket *, struct mbuf *,
709 	const struct sadb_msghdr *);
710 static int key_delete_all(struct socket *, struct mbuf *,
711 	const struct sadb_msghdr *, struct secasindex *);
712 static int key_get(struct socket *, struct mbuf *,
713 	const struct sadb_msghdr *);
714 
715 static void key_getcomb_setlifetime(struct sadb_comb *);
716 static struct mbuf *key_getcomb_ealg(void);
717 static struct mbuf *key_getcomb_ah(void);
718 static struct mbuf *key_getcomb_ipcomp(void);
719 static struct mbuf *key_getprop(const struct secasindex *);
720 
721 static int key_acquire(const struct secasindex *, struct secpolicy *);
722 static uint32_t key_newacq(const struct secasindex *, int *);
723 static uint32_t key_getacq(const struct secasindex *, int *);
724 static int key_acqdone(const struct secasindex *, uint32_t);
725 static int key_acqreset(uint32_t);
726 static struct secspacq *key_newspacq(struct secpolicyindex *);
727 static struct secspacq *key_getspacq(struct secpolicyindex *);
728 static int key_acquire2(struct socket *, struct mbuf *,
729 	const struct sadb_msghdr *);
730 static int key_register(struct socket *, struct mbuf *,
731 	const struct sadb_msghdr *);
732 static int key_expire(struct secasvar *, int);
733 static int key_flush(struct socket *, struct mbuf *,
734 	const struct sadb_msghdr *);
735 static int key_dump(struct socket *, struct mbuf *,
736 	const struct sadb_msghdr *);
737 static int key_promisc(struct socket *, struct mbuf *,
738 	const struct sadb_msghdr *);
739 static int key_senderror(struct socket *, struct mbuf *, int);
740 static int key_validate_ext(const struct sadb_ext *, int);
741 static int key_align(struct mbuf *, struct sadb_msghdr *);
742 static struct mbuf *key_setlifetime(struct seclifetime *, uint16_t);
743 static struct mbuf *key_setkey(struct seckey *, uint16_t);
744 
745 static void spdcache_init(void);
746 static void spdcache_clear(void);
747 static struct spdcache_entry *spdcache_entry_alloc(
748 	const struct secpolicyindex *spidx,
749 	struct secpolicy *policy);
750 static void spdcache_entry_free(struct spdcache_entry *entry);
751 #ifdef VIMAGE
752 static void spdcache_destroy(void);
753 #endif
754 
755 #define	DBG_IPSEC_INITREF(t, p)	do {				\
756 	refcount_init(&(p)->refcnt, 1);				\
757 	KEYDBG(KEY_STAMP,					\
758 	    printf("%s: Initialize refcnt %s(%p) = %u\n",	\
759 	    __func__, #t, (p), (p)->refcnt));			\
760 } while (0)
761 #define	DBG_IPSEC_ADDREF(t, p)	do {				\
762 	refcount_acquire(&(p)->refcnt);				\
763 	KEYDBG(KEY_STAMP,					\
764 	    printf("%s: Acquire refcnt %s(%p) -> %u\n",		\
765 	    __func__, #t, (p), (p)->refcnt));			\
766 } while (0)
767 #define	DBG_IPSEC_DELREF(t, p)	do {				\
768 	KEYDBG(KEY_STAMP,					\
769 	    printf("%s: Release refcnt %s(%p) -> %u\n",		\
770 	    __func__, #t, (p), (p)->refcnt - 1));		\
771 	refcount_release(&(p)->refcnt);				\
772 } while (0)
773 
774 #define	IPSEC_INITREF(t, p)	refcount_init(&(p)->refcnt, 1)
775 #define	IPSEC_ADDREF(t, p)	refcount_acquire(&(p)->refcnt)
776 #define	IPSEC_DELREF(t, p)	refcount_release(&(p)->refcnt)
777 
778 #define	SP_INITREF(p)	IPSEC_INITREF(SP, p)
779 #define	SP_ADDREF(p)	IPSEC_ADDREF(SP, p)
780 #define	SP_DELREF(p)	IPSEC_DELREF(SP, p)
781 
782 #define	SAH_INITREF(p)	IPSEC_INITREF(SAH, p)
783 #define	SAH_ADDREF(p)	IPSEC_ADDREF(SAH, p)
784 #define	SAH_DELREF(p)	IPSEC_DELREF(SAH, p)
785 
786 #define	SAV_INITREF(p)	IPSEC_INITREF(SAV, p)
787 #define	SAV_ADDREF(p)	IPSEC_ADDREF(SAV, p)
788 #define	SAV_DELREF(p)	IPSEC_DELREF(SAV, p)
789 
790 /*
791  * Update the refcnt while holding the SPTREE lock.
792  */
793 void
794 key_addref(struct secpolicy *sp)
795 {
796 
797 	SP_ADDREF(sp);
798 }
799 
800 /*
801  * Return 0 when there are known to be no SP's for the specified
802  * direction.  Otherwise return 1.  This is used by IPsec code
803  * to optimize performance.
804  */
805 int
806 key_havesp(u_int dir)
807 {
808 
809 	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
810 		("invalid direction %u", dir));
811 	return (TAILQ_FIRST(&V_sptree[dir]) != NULL);
812 }
813 
814 int
815 key_havesp_any(void)
816 {
817 
818 	return (V_spd_size != 0);
819 }
820 
821 /*
822  * Allocate a single mbuf with a buffer of the desired length.  The buffer is
823  * pre-zeroed to help ensure that uninitialized pad bytes are not leaked.
824  */
825 static struct mbuf *
826 key_mget(u_int len)
827 {
828 	struct mbuf *m;
829 
830 	KASSERT(len <= MCLBYTES,
831 	    ("%s: invalid buffer length %u", __func__, len));
832 
833 	m = m_get2(len, M_NOWAIT, MT_DATA, M_PKTHDR);
834 	if (m == NULL)
835 		return (NULL);
836 	memset(mtod(m, void *), 0, len);
837 	return (m);
838 }
839 
840 /* %%% IPsec policy management */
841 /*
842  * Return current SPDB generation.
843  */
844 uint32_t
845 key_getspgen(void)
846 {
847 
848 	return (V_sp_genid);
849 }
850 
851 void
852 key_bumpspgen(void)
853 {
854 
855 	V_sp_genid++;
856 }
857 
858 static int
859 key_checksockaddrs(struct sockaddr *src, struct sockaddr *dst)
860 {
861 
862 	/* family match */
863 	if (src->sa_family != dst->sa_family)
864 		return (EINVAL);
865 	/* sa_len match */
866 	if (src->sa_len != dst->sa_len)
867 		return (EINVAL);
868 	switch (src->sa_family) {
869 #ifdef INET
870 	case AF_INET:
871 		if (src->sa_len != sizeof(struct sockaddr_in))
872 			return (EINVAL);
873 		break;
874 #endif
875 #ifdef INET6
876 	case AF_INET6:
877 		if (src->sa_len != sizeof(struct sockaddr_in6))
878 			return (EINVAL);
879 		break;
880 #endif
881 	default:
882 		return (EAFNOSUPPORT);
883 	}
884 	return (0);
885 }
886 
887 struct secpolicy *
888 key_do_allocsp(struct secpolicyindex *spidx, u_int dir)
889 {
890 	SPTREE_RLOCK_TRACKER;
891 	struct secpolicy *sp;
892 
893 	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
894 	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
895 		("invalid direction %u", dir));
896 
897 	SPTREE_RLOCK();
898 	TAILQ_FOREACH(sp, &V_sptree[dir], chain) {
899 		if (key_cmpspidx_withmask(&sp->spidx, spidx)) {
900 			SP_ADDREF(sp);
901 			break;
902 		}
903 	}
904 	SPTREE_RUNLOCK();
905 	return (sp);
906 }
907 
908 /*
909  * allocating a SP for OUTBOUND or INBOUND packet.
910  * Must call key_freesp() later.
911  * OUT:	NULL:	not found
912  *	others:	found and return the pointer.
913  */
914 struct secpolicy *
915 key_allocsp(struct secpolicyindex *spidx, u_int dir)
916 {
917 	struct spdcache_entry *entry, *lastentry, *tmpentry;
918 	struct secpolicy *sp;
919 	uint32_t hashv;
920 	int nb_entries;
921 
922 	if (!SPDCACHE_ACTIVE()) {
923 		sp = key_do_allocsp(spidx, dir);
924 		goto out;
925 	}
926 
927 	hashv = SPDCACHE_HASHVAL(spidx);
928 	SPDCACHE_LOCK(hashv);
929 	nb_entries = 0;
930 	LIST_FOREACH_SAFE(entry, &V_spdcachehashtbl[hashv], chain, tmpentry) {
931 		/* Removed outdated entries */
932 		if (entry->sp != NULL &&
933 		    entry->sp->state == IPSEC_SPSTATE_DEAD) {
934 			LIST_REMOVE(entry, chain);
935 			spdcache_entry_free(entry);
936 			continue;
937 		}
938 
939 		nb_entries++;
940 		if (!key_cmpspidx_exactly(&entry->spidx, spidx)) {
941 			lastentry = entry;
942 			continue;
943 		}
944 
945 		sp = entry->sp;
946 		if (entry->sp != NULL)
947 			SP_ADDREF(sp);
948 
949 		/* IPSECSTAT_INC(ips_spdcache_hits); */
950 
951 		SPDCACHE_UNLOCK(hashv);
952 		goto out;
953 	}
954 
955 	/* IPSECSTAT_INC(ips_spdcache_misses); */
956 
957 	sp = key_do_allocsp(spidx, dir);
958 	entry = spdcache_entry_alloc(spidx, sp);
959 	if (entry != NULL) {
960 		if (nb_entries >= SPDCACHE_MAX_ENTRIES_PER_HASH) {
961 			LIST_REMOVE(lastentry, chain);
962 			spdcache_entry_free(lastentry);
963 		}
964 
965 		LIST_INSERT_HEAD(&V_spdcachehashtbl[hashv], entry, chain);
966 	}
967 
968 	SPDCACHE_UNLOCK(hashv);
969 
970 out:
971 	if (sp != NULL) {	/* found a SPD entry */
972 		sp->lastused = time_second;
973 		KEYDBG(IPSEC_STAMP,
974 		    printf("%s: return SP(%p)\n", __func__, sp));
975 		KEYDBG(IPSEC_DATA, kdebug_secpolicy(sp));
976 	} else {
977 		KEYDBG(IPSEC_DATA,
978 		    printf("%s: lookup failed for ", __func__);
979 		    kdebug_secpolicyindex(spidx, NULL));
980 	}
981 	return (sp);
982 }
983 
984 /*
985  * Allocating an SA entry for an *INBOUND* or *OUTBOUND* TCP packet, signed
986  * or should be signed by MD5 signature.
987  * We don't use key_allocsa() for such lookups, because we don't know SPI.
988  * Unlike ESP and AH protocols, SPI isn't transmitted in the TCP header with
989  * signed packet. We use SADB only as storage for password.
990  * OUT:	positive:	corresponding SA for given saidx found.
991  *	NULL:		SA not found
992  */
993 struct secasvar *
994 key_allocsa_tcpmd5(struct secasindex *saidx)
995 {
996 	SAHTREE_RLOCK_TRACKER;
997 	struct secashead *sah;
998 	struct secasvar *sav;
999 
1000 	IPSEC_ASSERT(saidx->proto == IPPROTO_TCP,
1001 	    ("unexpected security protocol %u", saidx->proto));
1002 	IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TCPMD5,
1003 	    ("unexpected mode %u", saidx->mode));
1004 
1005 	SAHTREE_RLOCK();
1006 	LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) {
1007 		KEYDBG(IPSEC_DUMP,
1008 		    printf("%s: checking SAH\n", __func__);
1009 		    kdebug_secash(sah, "  "));
1010 		if (sah->saidx.proto != IPPROTO_TCP)
1011 			continue;
1012 		if (!key_sockaddrcmp(&saidx->dst.sa, &sah->saidx.dst.sa, 0) &&
1013 		    !key_sockaddrcmp(&saidx->src.sa, &sah->saidx.src.sa, 0))
1014 			break;
1015 	}
1016 	if (sah != NULL) {
1017 		if (V_key_preferred_oldsa)
1018 			sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue);
1019 		else
1020 			sav = TAILQ_FIRST(&sah->savtree_alive);
1021 		if (sav != NULL)
1022 			SAV_ADDREF(sav);
1023 	} else
1024 		sav = NULL;
1025 	SAHTREE_RUNLOCK();
1026 
1027 	if (sav != NULL) {
1028 		KEYDBG(IPSEC_STAMP,
1029 		    printf("%s: return SA(%p)\n", __func__, sav));
1030 		KEYDBG(IPSEC_DATA, kdebug_secasv(sav));
1031 	} else {
1032 		KEYDBG(IPSEC_STAMP,
1033 		    printf("%s: SA not found\n", __func__));
1034 		KEYDBG(IPSEC_DATA, kdebug_secasindex(saidx, NULL));
1035 	}
1036 	return (sav);
1037 }
1038 
1039 /*
1040  * Allocating an SA entry for an *OUTBOUND* packet.
1041  * OUT:	positive:	corresponding SA for given saidx found.
1042  *	NULL:		SA not found, but will be acquired, check *error
1043  *			for acquiring status.
1044  */
1045 struct secasvar *
1046 key_allocsa_policy(struct secpolicy *sp, const struct secasindex *saidx,
1047     int *error)
1048 {
1049 	SAHTREE_RLOCK_TRACKER;
1050 	struct secashead *sah;
1051 	struct secasvar *sav;
1052 
1053 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
1054 	IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT ||
1055 		saidx->mode == IPSEC_MODE_TUNNEL,
1056 		("unexpected policy %u", saidx->mode));
1057 
1058 	/*
1059 	 * We check new SA in the IPsec request because a different
1060 	 * SA may be involved each time this request is checked, either
1061 	 * because new SAs are being configured, or this request is
1062 	 * associated with an unconnected datagram socket, or this request
1063 	 * is associated with a system default policy.
1064 	 */
1065 	SAHTREE_RLOCK();
1066 	LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) {
1067 		KEYDBG(IPSEC_DUMP,
1068 		    printf("%s: checking SAH\n", __func__);
1069 		    kdebug_secash(sah, "  "));
1070 		if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID))
1071 			break;
1072 	}
1073 	if (sah != NULL) {
1074 		/*
1075 		 * Allocate the oldest SA available according to
1076 		 * draft-jenkins-ipsec-rekeying-03.
1077 		 */
1078 		if (V_key_preferred_oldsa)
1079 			sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue);
1080 		else
1081 			sav = TAILQ_FIRST(&sah->savtree_alive);
1082 		if (sav != NULL)
1083 			SAV_ADDREF(sav);
1084 	} else
1085 		sav = NULL;
1086 	SAHTREE_RUNLOCK();
1087 
1088 	if (sav != NULL) {
1089 		*error = 0;
1090 		KEYDBG(IPSEC_STAMP,
1091 		    printf("%s: chosen SA(%p) for SP(%p)\n", __func__,
1092 			sav, sp));
1093 		KEYDBG(IPSEC_DATA, kdebug_secasv(sav));
1094 		return (sav); /* return referenced SA */
1095 	}
1096 
1097 	/* there is no SA */
1098 	*error = key_acquire(saidx, sp);
1099 	if ((*error) != 0)
1100 		ipseclog((LOG_DEBUG,
1101 		    "%s: error %d returned from key_acquire()\n",
1102 			__func__, *error));
1103 	KEYDBG(IPSEC_STAMP,
1104 	    printf("%s: acquire SA for SP(%p), error %d\n",
1105 		__func__, sp, *error));
1106 	KEYDBG(IPSEC_DATA, kdebug_secasindex(saidx, NULL));
1107 	return (NULL);
1108 }
1109 
1110 /*
1111  * allocating a usable SA entry for a *INBOUND* packet.
1112  * Must call key_freesav() later.
1113  * OUT: positive:	pointer to a usable sav (i.e. MATURE or DYING state).
1114  *	NULL:		not found, or error occurred.
1115  *
1116  * According to RFC 2401 SA is uniquely identified by a triple SPI,
1117  * destination address, and security protocol. But according to RFC 4301,
1118  * SPI by itself suffices to specify an SA.
1119  *
1120  * Note that, however, we do need to keep source address in IPsec SA.
1121  * IKE specification and PF_KEY specification do assume that we
1122  * keep source address in IPsec SA.  We see a tricky situation here.
1123  */
1124 struct secasvar *
1125 key_allocsa(union sockaddr_union *dst, uint8_t proto, uint32_t spi)
1126 {
1127 	SAHTREE_RLOCK_TRACKER;
1128 	struct secasvar *sav;
1129 
1130 	IPSEC_ASSERT(proto == IPPROTO_ESP || proto == IPPROTO_AH ||
1131 	    proto == IPPROTO_IPCOMP, ("unexpected security protocol %u",
1132 	    proto));
1133 
1134 	SAHTREE_RLOCK();
1135 	LIST_FOREACH(sav, SAVHASH_HASH(spi), spihash) {
1136 		if (sav->spi == spi)
1137 			break;
1138 	}
1139 	/*
1140 	 * We use single SPI namespace for all protocols, so it is
1141 	 * impossible to have SPI duplicates in the SAVHASH.
1142 	 */
1143 	if (sav != NULL) {
1144 		if (sav->state != SADB_SASTATE_LARVAL &&
1145 		    sav->sah->saidx.proto == proto &&
1146 		    key_sockaddrcmp(&dst->sa,
1147 			&sav->sah->saidx.dst.sa, 0) == 0)
1148 			SAV_ADDREF(sav);
1149 		else
1150 			sav = NULL;
1151 	}
1152 	SAHTREE_RUNLOCK();
1153 
1154 	if (sav == NULL) {
1155 		KEYDBG(IPSEC_STAMP,
1156 		    char buf[IPSEC_ADDRSTRLEN];
1157 		    printf("%s: SA not found for spi %u proto %u dst %s\n",
1158 			__func__, ntohl(spi), proto, ipsec_address(dst, buf,
1159 			sizeof(buf))));
1160 	} else {
1161 		KEYDBG(IPSEC_STAMP,
1162 		    printf("%s: return SA(%p)\n", __func__, sav));
1163 		KEYDBG(IPSEC_DATA, kdebug_secasv(sav));
1164 	}
1165 	return (sav);
1166 }
1167 
1168 struct secasvar *
1169 key_allocsa_tunnel(union sockaddr_union *src, union sockaddr_union *dst,
1170     uint8_t proto)
1171 {
1172 	SAHTREE_RLOCK_TRACKER;
1173 	struct secasindex saidx;
1174 	struct secashead *sah;
1175 	struct secasvar *sav;
1176 
1177 	IPSEC_ASSERT(src != NULL, ("null src address"));
1178 	IPSEC_ASSERT(dst != NULL, ("null dst address"));
1179 
1180 	KEY_SETSECASIDX(proto, IPSEC_MODE_TUNNEL, 0, &src->sa,
1181 	    &dst->sa, &saidx);
1182 
1183 	sav = NULL;
1184 	SAHTREE_RLOCK();
1185 	LIST_FOREACH(sah, SAHADDRHASH_HASH(&saidx), addrhash) {
1186 		if (IPSEC_MODE_TUNNEL != sah->saidx.mode)
1187 			continue;
1188 		if (proto != sah->saidx.proto)
1189 			continue;
1190 		if (key_sockaddrcmp(&src->sa, &sah->saidx.src.sa, 0) != 0)
1191 			continue;
1192 		if (key_sockaddrcmp(&dst->sa, &sah->saidx.dst.sa, 0) != 0)
1193 			continue;
1194 		/* XXXAE: is key_preferred_oldsa reasonably?*/
1195 		if (V_key_preferred_oldsa)
1196 			sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue);
1197 		else
1198 			sav = TAILQ_FIRST(&sah->savtree_alive);
1199 		if (sav != NULL) {
1200 			SAV_ADDREF(sav);
1201 			break;
1202 		}
1203 	}
1204 	SAHTREE_RUNLOCK();
1205 	KEYDBG(IPSEC_STAMP,
1206 	    printf("%s: return SA(%p)\n", __func__, sav));
1207 	if (sav != NULL)
1208 		KEYDBG(IPSEC_DATA, kdebug_secasv(sav));
1209 	return (sav);
1210 }
1211 
1212 /*
1213  * Must be called after calling key_allocsp().
1214  */
1215 void
1216 key_freesp(struct secpolicy **spp)
1217 {
1218 	struct secpolicy *sp = *spp;
1219 
1220 	IPSEC_ASSERT(sp != NULL, ("null sp"));
1221 	if (SP_DELREF(sp) == 0)
1222 		return;
1223 
1224 	KEYDBG(IPSEC_STAMP,
1225 	    printf("%s: last reference to SP(%p)\n", __func__, sp));
1226 	KEYDBG(IPSEC_DATA, kdebug_secpolicy(sp));
1227 
1228 	*spp = NULL;
1229 	while (sp->tcount > 0)
1230 		ipsec_delisr(sp->req[--sp->tcount]);
1231 	free(sp, M_IPSEC_SP);
1232 }
1233 
1234 static void
1235 key_unlink(struct secpolicy *sp)
1236 {
1237 	SPTREE_WLOCK();
1238 	key_detach(sp);
1239 	SPTREE_WUNLOCK();
1240 	if (SPDCACHE_ENABLED())
1241 		spdcache_clear();
1242 	key_freesp(&sp);
1243 }
1244 
1245 static void
1246 key_detach(struct secpolicy *sp)
1247 {
1248 	IPSEC_ASSERT(sp->spidx.dir == IPSEC_DIR_INBOUND ||
1249 	    sp->spidx.dir == IPSEC_DIR_OUTBOUND,
1250 	    ("invalid direction %u", sp->spidx.dir));
1251 	SPTREE_WLOCK_ASSERT();
1252 
1253 	KEYDBG(KEY_STAMP,
1254 	    printf("%s: SP(%p)\n", __func__, sp));
1255 	if (sp->state != IPSEC_SPSTATE_ALIVE) {
1256 		/* SP is already unlinked */
1257 		return;
1258 	}
1259 	sp->state = IPSEC_SPSTATE_DEAD;
1260 	TAILQ_REMOVE(&V_sptree[sp->spidx.dir], sp, chain);
1261 	V_spd_size--;
1262 	LIST_REMOVE(sp, idhash);
1263 	V_sp_genid++;
1264 }
1265 
1266 /*
1267  * insert a secpolicy into the SP database. Lower priorities first
1268  */
1269 static void
1270 key_insertsp(struct secpolicy *newsp)
1271 {
1272 	struct secpolicy *sp;
1273 
1274 	SPTREE_WLOCK_ASSERT();
1275 	TAILQ_FOREACH(sp, &V_sptree[newsp->spidx.dir], chain) {
1276 		if (newsp->priority < sp->priority) {
1277 			TAILQ_INSERT_BEFORE(sp, newsp, chain);
1278 			goto done;
1279 		}
1280 	}
1281 	TAILQ_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, chain);
1282 done:
1283 	LIST_INSERT_HEAD(SPHASH_HASH(newsp->id), newsp, idhash);
1284 	newsp->state = IPSEC_SPSTATE_ALIVE;
1285 	V_spd_size++;
1286 	V_sp_genid++;
1287 }
1288 
1289 /*
1290  * Insert a bunch of VTI secpolicies into the SPDB.
1291  * We keep VTI policies in the separate list due to following reasons:
1292  * 1) they should be immutable to user's or some deamon's attempts to
1293  *    delete. The only way delete such policies - destroy or unconfigure
1294  *    corresponding virtual inteface.
1295  * 2) such policies have traffic selector that matches all traffic per
1296  *    address family.
1297  * Since all VTI policies have the same priority, we don't care about
1298  * policies order.
1299  */
1300 int
1301 key_register_ifnet(struct secpolicy **spp, u_int count)
1302 {
1303 	struct mbuf *m;
1304 	u_int i;
1305 
1306 	SPTREE_WLOCK();
1307 	/*
1308 	 * First of try to acquire id for each SP.
1309 	 */
1310 	for (i = 0; i < count; i++) {
1311 		IPSEC_ASSERT(spp[i]->spidx.dir == IPSEC_DIR_INBOUND ||
1312 		    spp[i]->spidx.dir == IPSEC_DIR_OUTBOUND,
1313 		    ("invalid direction %u", spp[i]->spidx.dir));
1314 
1315 		if ((spp[i]->id = key_getnewspid()) == 0) {
1316 			SPTREE_WUNLOCK();
1317 			return (EAGAIN);
1318 		}
1319 	}
1320 	for (i = 0; i < count; i++) {
1321 		TAILQ_INSERT_TAIL(&V_sptree_ifnet[spp[i]->spidx.dir],
1322 		    spp[i], chain);
1323 		/*
1324 		 * NOTE: despite the fact that we keep VTI SP in the
1325 		 * separate list, SPHASH contains policies from both
1326 		 * sources. Thus SADB_X_SPDGET will correctly return
1327 		 * SP by id, because it uses SPHASH for lookups.
1328 		 */
1329 		LIST_INSERT_HEAD(SPHASH_HASH(spp[i]->id), spp[i], idhash);
1330 		spp[i]->state = IPSEC_SPSTATE_IFNET;
1331 	}
1332 	SPTREE_WUNLOCK();
1333 	/*
1334 	 * Notify user processes about new SP.
1335 	 */
1336 	for (i = 0; i < count; i++) {
1337 		m = key_setdumpsp(spp[i], SADB_X_SPDADD, 0, 0);
1338 		if (m != NULL)
1339 			key_sendup_mbuf(NULL, m, KEY_SENDUP_ALL);
1340 	}
1341 	return (0);
1342 }
1343 
1344 void
1345 key_unregister_ifnet(struct secpolicy **spp, u_int count)
1346 {
1347 	struct mbuf *m;
1348 	u_int i;
1349 
1350 	SPTREE_WLOCK();
1351 	for (i = 0; i < count; i++) {
1352 		IPSEC_ASSERT(spp[i]->spidx.dir == IPSEC_DIR_INBOUND ||
1353 		    spp[i]->spidx.dir == IPSEC_DIR_OUTBOUND,
1354 		    ("invalid direction %u", spp[i]->spidx.dir));
1355 
1356 		if (spp[i]->state != IPSEC_SPSTATE_IFNET)
1357 			continue;
1358 		spp[i]->state = IPSEC_SPSTATE_DEAD;
1359 		TAILQ_REMOVE(&V_sptree_ifnet[spp[i]->spidx.dir],
1360 		    spp[i], chain);
1361 		V_spd_size--;
1362 		LIST_REMOVE(spp[i], idhash);
1363 	}
1364 	SPTREE_WUNLOCK();
1365 	if (SPDCACHE_ENABLED())
1366 		spdcache_clear();
1367 
1368 	for (i = 0; i < count; i++) {
1369 		m = key_setdumpsp(spp[i], SADB_X_SPDDELETE, 0, 0);
1370 		if (m != NULL)
1371 			key_sendup_mbuf(NULL, m, KEY_SENDUP_ALL);
1372 	}
1373 }
1374 
1375 /*
1376  * Must be called after calling key_allocsa().
1377  * This function is called by key_freesp() to free some SA allocated
1378  * for a policy.
1379  */
1380 void
1381 key_freesav(struct secasvar **psav)
1382 {
1383 	struct secasvar *sav = *psav;
1384 
1385 	IPSEC_ASSERT(sav != NULL, ("null sav"));
1386 	CURVNET_ASSERT_SET();
1387 	if (SAV_DELREF(sav) == 0)
1388 		return;
1389 
1390 	KEYDBG(IPSEC_STAMP,
1391 	    printf("%s: last reference to SA(%p)\n", __func__, sav));
1392 
1393 	*psav = NULL;
1394 	key_delsav(sav);
1395 }
1396 
1397 /*
1398  * Unlink SA from SAH and SPI hash under SAHTREE_WLOCK.
1399  * Expect that SA has extra reference due to lookup.
1400  * Release this references, also release SAH reference after unlink.
1401  */
1402 static void
1403 key_unlinksav(struct secasvar *sav)
1404 {
1405 	struct secashead *sah;
1406 
1407 	KEYDBG(KEY_STAMP,
1408 	    printf("%s: SA(%p)\n", __func__, sav));
1409 
1410 	CURVNET_ASSERT_SET();
1411 	SAHTREE_UNLOCK_ASSERT();
1412 	SAHTREE_WLOCK();
1413 	if (sav->state == SADB_SASTATE_DEAD) {
1414 		/* SA is already unlinked */
1415 		SAHTREE_WUNLOCK();
1416 		return;
1417 	}
1418 	/* Unlink from SAH */
1419 	if (sav->state == SADB_SASTATE_LARVAL)
1420 		TAILQ_REMOVE(&sav->sah->savtree_larval, sav, chain);
1421 	else
1422 		TAILQ_REMOVE(&sav->sah->savtree_alive, sav, chain);
1423 	/* Unlink from SPI hash */
1424 	LIST_REMOVE(sav, spihash);
1425 	sav->state = SADB_SASTATE_DEAD;
1426 	sah = sav->sah;
1427 	SAHTREE_WUNLOCK();
1428 	key_freesav(&sav);
1429 	/* Since we are unlinked, release reference to SAH */
1430 	key_freesah(&sah);
1431 }
1432 
1433 /* %%% SPD management */
1434 /*
1435  * search SPD
1436  * OUT:	NULL	: not found
1437  *	others	: found, pointer to a SP.
1438  */
1439 static struct secpolicy *
1440 key_getsp(struct secpolicyindex *spidx)
1441 {
1442 	SPTREE_RLOCK_TRACKER;
1443 	struct secpolicy *sp;
1444 
1445 	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
1446 
1447 	SPTREE_RLOCK();
1448 	TAILQ_FOREACH(sp, &V_sptree[spidx->dir], chain) {
1449 		if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1450 			SP_ADDREF(sp);
1451 			break;
1452 		}
1453 	}
1454 	SPTREE_RUNLOCK();
1455 
1456 	return sp;
1457 }
1458 
1459 /*
1460  * get SP by index.
1461  * OUT:	NULL	: not found
1462  *	others	: found, pointer to referenced SP.
1463  */
1464 static struct secpolicy *
1465 key_getspbyid(uint32_t id)
1466 {
1467 	SPTREE_RLOCK_TRACKER;
1468 	struct secpolicy *sp;
1469 
1470 	SPTREE_RLOCK();
1471 	LIST_FOREACH(sp, SPHASH_HASH(id), idhash) {
1472 		if (sp->id == id) {
1473 			SP_ADDREF(sp);
1474 			break;
1475 		}
1476 	}
1477 	SPTREE_RUNLOCK();
1478 	return (sp);
1479 }
1480 
1481 struct secpolicy *
1482 key_newsp(void)
1483 {
1484 	struct secpolicy *sp;
1485 
1486 	sp = malloc(sizeof(*sp), M_IPSEC_SP, M_NOWAIT | M_ZERO);
1487 	if (sp != NULL)
1488 		SP_INITREF(sp);
1489 	return (sp);
1490 }
1491 
1492 struct ipsecrequest *
1493 ipsec_newisr(void)
1494 {
1495 
1496 	return (malloc(sizeof(struct ipsecrequest), M_IPSEC_SR,
1497 	    M_NOWAIT | M_ZERO));
1498 }
1499 
1500 void
1501 ipsec_delisr(struct ipsecrequest *p)
1502 {
1503 
1504 	free(p, M_IPSEC_SR);
1505 }
1506 
1507 /*
1508  * create secpolicy structure from sadb_x_policy structure.
1509  * NOTE: `state', `secpolicyindex' and 'id' in secpolicy structure
1510  * are not set, so must be set properly later.
1511  */
1512 struct secpolicy *
1513 key_msg2sp(struct sadb_x_policy *xpl0, size_t len, int *error)
1514 {
1515 	struct secpolicy *newsp;
1516 
1517 	IPSEC_ASSERT(xpl0 != NULL, ("null xpl0"));
1518 	IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len));
1519 
1520 	if (len != PFKEY_EXTLEN(xpl0)) {
1521 		ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__));
1522 		*error = EINVAL;
1523 		return NULL;
1524 	}
1525 
1526 	if ((newsp = key_newsp()) == NULL) {
1527 		*error = ENOBUFS;
1528 		return NULL;
1529 	}
1530 
1531 	newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1532 	newsp->policy = xpl0->sadb_x_policy_type;
1533 	newsp->priority = xpl0->sadb_x_policy_priority;
1534 	newsp->tcount = 0;
1535 
1536 	/* check policy */
1537 	switch (xpl0->sadb_x_policy_type) {
1538 	case IPSEC_POLICY_DISCARD:
1539 	case IPSEC_POLICY_NONE:
1540 	case IPSEC_POLICY_ENTRUST:
1541 	case IPSEC_POLICY_BYPASS:
1542 		break;
1543 
1544 	case IPSEC_POLICY_IPSEC:
1545 	    {
1546 		struct sadb_x_ipsecrequest *xisr;
1547 		struct ipsecrequest *isr;
1548 		int tlen;
1549 
1550 		/* validity check */
1551 		if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1552 			ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n",
1553 				__func__));
1554 			key_freesp(&newsp);
1555 			*error = EINVAL;
1556 			return NULL;
1557 		}
1558 
1559 		tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1560 		xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1);
1561 
1562 		while (tlen > 0) {
1563 			/* length check */
1564 			if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr) ||
1565 			    xisr->sadb_x_ipsecrequest_len > tlen) {
1566 				ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest "
1567 					"length.\n", __func__));
1568 				key_freesp(&newsp);
1569 				*error = EINVAL;
1570 				return NULL;
1571 			}
1572 
1573 			if (newsp->tcount >= IPSEC_MAXREQ) {
1574 				ipseclog((LOG_DEBUG,
1575 				    "%s: too many ipsecrequests.\n",
1576 				    __func__));
1577 				key_freesp(&newsp);
1578 				*error = EINVAL;
1579 				return (NULL);
1580 			}
1581 
1582 			/* allocate request buffer */
1583 			/* NB: data structure is zero'd */
1584 			isr = ipsec_newisr();
1585 			if (isr == NULL) {
1586 				ipseclog((LOG_DEBUG,
1587 				    "%s: No more memory.\n", __func__));
1588 				key_freesp(&newsp);
1589 				*error = ENOBUFS;
1590 				return NULL;
1591 			}
1592 
1593 			newsp->req[newsp->tcount++] = isr;
1594 
1595 			/* set values */
1596 			switch (xisr->sadb_x_ipsecrequest_proto) {
1597 			case IPPROTO_ESP:
1598 			case IPPROTO_AH:
1599 			case IPPROTO_IPCOMP:
1600 				break;
1601 			default:
1602 				ipseclog((LOG_DEBUG,
1603 				    "%s: invalid proto type=%u\n", __func__,
1604 				    xisr->sadb_x_ipsecrequest_proto));
1605 				key_freesp(&newsp);
1606 				*error = EPROTONOSUPPORT;
1607 				return NULL;
1608 			}
1609 			isr->saidx.proto =
1610 			    (uint8_t)xisr->sadb_x_ipsecrequest_proto;
1611 
1612 			switch (xisr->sadb_x_ipsecrequest_mode) {
1613 			case IPSEC_MODE_TRANSPORT:
1614 			case IPSEC_MODE_TUNNEL:
1615 				break;
1616 			case IPSEC_MODE_ANY:
1617 			default:
1618 				ipseclog((LOG_DEBUG,
1619 				    "%s: invalid mode=%u\n", __func__,
1620 				    xisr->sadb_x_ipsecrequest_mode));
1621 				key_freesp(&newsp);
1622 				*error = EINVAL;
1623 				return NULL;
1624 			}
1625 			isr->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1626 
1627 			switch (xisr->sadb_x_ipsecrequest_level) {
1628 			case IPSEC_LEVEL_DEFAULT:
1629 			case IPSEC_LEVEL_USE:
1630 			case IPSEC_LEVEL_REQUIRE:
1631 				break;
1632 			case IPSEC_LEVEL_UNIQUE:
1633 				/* validity check */
1634 				/*
1635 				 * If range violation of reqid, kernel will
1636 				 * update it, don't refuse it.
1637 				 */
1638 				if (xisr->sadb_x_ipsecrequest_reqid
1639 						> IPSEC_MANUAL_REQID_MAX) {
1640 					ipseclog((LOG_DEBUG,
1641 					    "%s: reqid=%d range "
1642 					    "violation, updated by kernel.\n",
1643 					    __func__,
1644 					    xisr->sadb_x_ipsecrequest_reqid));
1645 					xisr->sadb_x_ipsecrequest_reqid = 0;
1646 				}
1647 
1648 				/* allocate new reqid id if reqid is zero. */
1649 				if (xisr->sadb_x_ipsecrequest_reqid == 0) {
1650 					u_int32_t reqid;
1651 					if ((reqid = key_newreqid()) == 0) {
1652 						key_freesp(&newsp);
1653 						*error = ENOBUFS;
1654 						return NULL;
1655 					}
1656 					isr->saidx.reqid = reqid;
1657 					xisr->sadb_x_ipsecrequest_reqid = reqid;
1658 				} else {
1659 				/* set it for manual keying. */
1660 					isr->saidx.reqid =
1661 					    xisr->sadb_x_ipsecrequest_reqid;
1662 				}
1663 				break;
1664 
1665 			default:
1666 				ipseclog((LOG_DEBUG, "%s: invalid level=%u\n",
1667 					__func__,
1668 					xisr->sadb_x_ipsecrequest_level));
1669 				key_freesp(&newsp);
1670 				*error = EINVAL;
1671 				return NULL;
1672 			}
1673 			isr->level = xisr->sadb_x_ipsecrequest_level;
1674 
1675 			/* set IP addresses if there */
1676 			if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1677 				struct sockaddr *paddr;
1678 
1679 				len = tlen - sizeof(*xisr);
1680 				paddr = (struct sockaddr *)(xisr + 1);
1681 				/* validity check */
1682 				if (len < sizeof(struct sockaddr) ||
1683 				    len < 2 * paddr->sa_len ||
1684 				    paddr->sa_len > sizeof(isr->saidx.src)) {
1685 					ipseclog((LOG_DEBUG, "%s: invalid "
1686 						"request address length.\n",
1687 						__func__));
1688 					key_freesp(&newsp);
1689 					*error = EINVAL;
1690 					return NULL;
1691 				}
1692 				/*
1693 				 * Request length should be enough to keep
1694 				 * source and destination addresses.
1695 				 */
1696 				if (xisr->sadb_x_ipsecrequest_len <
1697 				    sizeof(*xisr) + 2 * paddr->sa_len) {
1698 					ipseclog((LOG_DEBUG, "%s: invalid "
1699 					    "ipsecrequest length.\n",
1700 					    __func__));
1701 					key_freesp(&newsp);
1702 					*error = EINVAL;
1703 					return (NULL);
1704 				}
1705 				bcopy(paddr, &isr->saidx.src, paddr->sa_len);
1706 				paddr = (struct sockaddr *)((caddr_t)paddr +
1707 				    paddr->sa_len);
1708 
1709 				/* validity check */
1710 				if (paddr->sa_len !=
1711 				    isr->saidx.src.sa.sa_len) {
1712 					ipseclog((LOG_DEBUG, "%s: invalid "
1713 						"request address length.\n",
1714 						__func__));
1715 					key_freesp(&newsp);
1716 					*error = EINVAL;
1717 					return NULL;
1718 				}
1719 				/* AF family should match */
1720 				if (paddr->sa_family !=
1721 				    isr->saidx.src.sa.sa_family) {
1722 					ipseclog((LOG_DEBUG, "%s: address "
1723 					    "family doesn't match.\n",
1724 						__func__));
1725 					key_freesp(&newsp);
1726 					*error = EINVAL;
1727 					return (NULL);
1728 				}
1729 				bcopy(paddr, &isr->saidx.dst, paddr->sa_len);
1730 			} else {
1731 				/*
1732 				 * Addresses for TUNNEL mode requests are
1733 				 * mandatory.
1734 				 */
1735 				if (isr->saidx.mode == IPSEC_MODE_TUNNEL) {
1736 					ipseclog((LOG_DEBUG, "%s: missing "
1737 					    "request addresses.\n", __func__));
1738 					key_freesp(&newsp);
1739 					*error = EINVAL;
1740 					return (NULL);
1741 				}
1742 			}
1743 			tlen -= xisr->sadb_x_ipsecrequest_len;
1744 
1745 			/* validity check */
1746 			if (tlen < 0) {
1747 				ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n",
1748 					__func__));
1749 				key_freesp(&newsp);
1750 				*error = EINVAL;
1751 				return NULL;
1752 			}
1753 
1754 			xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr
1755 			                 + xisr->sadb_x_ipsecrequest_len);
1756 		}
1757 		/* XXXAE: LARVAL SP */
1758 		if (newsp->tcount < 1) {
1759 			ipseclog((LOG_DEBUG, "%s: valid IPSEC transforms "
1760 			    "not found.\n", __func__));
1761 			key_freesp(&newsp);
1762 			*error = EINVAL;
1763 			return (NULL);
1764 		}
1765 	    }
1766 		break;
1767 	default:
1768 		ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__));
1769 		key_freesp(&newsp);
1770 		*error = EINVAL;
1771 		return NULL;
1772 	}
1773 
1774 	*error = 0;
1775 	return (newsp);
1776 }
1777 
1778 uint32_t
1779 key_newreqid(void)
1780 {
1781 	static uint32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1782 
1783 	if (auto_reqid == ~0)
1784 		auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1785 	else
1786 		auto_reqid++;
1787 
1788 	/* XXX should be unique check */
1789 	return (auto_reqid);
1790 }
1791 
1792 /*
1793  * copy secpolicy struct to sadb_x_policy structure indicated.
1794  */
1795 static struct mbuf *
1796 key_sp2mbuf(struct secpolicy *sp)
1797 {
1798 	struct mbuf *m;
1799 	size_t tlen;
1800 
1801 	tlen = key_getspreqmsglen(sp);
1802 	m = m_get2(tlen, M_NOWAIT, MT_DATA, 0);
1803 	if (m == NULL)
1804 		return (NULL);
1805 	m_align(m, tlen);
1806 	m->m_len = tlen;
1807 	if (key_sp2msg(sp, m->m_data, &tlen) != 0) {
1808 		m_freem(m);
1809 		return (NULL);
1810 	}
1811 	return (m);
1812 }
1813 
1814 int
1815 key_sp2msg(struct secpolicy *sp, void *request, size_t *len)
1816 {
1817 	struct sadb_x_ipsecrequest *xisr;
1818 	struct sadb_x_policy *xpl;
1819 	struct ipsecrequest *isr;
1820 	size_t xlen, ilen;
1821 	caddr_t p;
1822 	int error, i;
1823 
1824 	IPSEC_ASSERT(sp != NULL, ("null policy"));
1825 
1826 	xlen = sizeof(*xpl);
1827 	if (*len < xlen)
1828 		return (EINVAL);
1829 
1830 	error = 0;
1831 	bzero(request, *len);
1832 	xpl = (struct sadb_x_policy *)request;
1833 	xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1834 	xpl->sadb_x_policy_type = sp->policy;
1835 	xpl->sadb_x_policy_dir = sp->spidx.dir;
1836 	xpl->sadb_x_policy_id = sp->id;
1837 	xpl->sadb_x_policy_priority = sp->priority;
1838 	switch (sp->state) {
1839 	case IPSEC_SPSTATE_IFNET:
1840 		xpl->sadb_x_policy_scope = IPSEC_POLICYSCOPE_IFNET;
1841 		break;
1842 	case IPSEC_SPSTATE_PCB:
1843 		xpl->sadb_x_policy_scope = IPSEC_POLICYSCOPE_PCB;
1844 		break;
1845 	default:
1846 		xpl->sadb_x_policy_scope = IPSEC_POLICYSCOPE_GLOBAL;
1847 	}
1848 
1849 	/* if is the policy for ipsec ? */
1850 	if (sp->policy == IPSEC_POLICY_IPSEC) {
1851 		p = (caddr_t)xpl + sizeof(*xpl);
1852 		for (i = 0; i < sp->tcount; i++) {
1853 			isr = sp->req[i];
1854 			ilen = PFKEY_ALIGN8(sizeof(*xisr) +
1855 			    isr->saidx.src.sa.sa_len +
1856 			    isr->saidx.dst.sa.sa_len);
1857 			xlen += ilen;
1858 			if (xlen > *len) {
1859 				error = ENOBUFS;
1860 				/* Calculate needed size */
1861 				continue;
1862 			}
1863 			xisr = (struct sadb_x_ipsecrequest *)p;
1864 			xisr->sadb_x_ipsecrequest_len = ilen;
1865 			xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1866 			xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1867 			xisr->sadb_x_ipsecrequest_level = isr->level;
1868 			xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1869 
1870 			p += sizeof(*xisr);
1871 			bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len);
1872 			p += isr->saidx.src.sa.sa_len;
1873 			bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len);
1874 			p += isr->saidx.dst.sa.sa_len;
1875 		}
1876 	}
1877 	xpl->sadb_x_policy_len = PFKEY_UNIT64(xlen);
1878 	if (error == 0)
1879 		*len = xlen;
1880 	else
1881 		*len = sizeof(*xpl);
1882 	return (error);
1883 }
1884 
1885 /* m will not be freed nor modified */
1886 static struct mbuf *
1887 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1888     int ndeep, int nitem, ...)
1889 {
1890 	va_list ap;
1891 	int idx;
1892 	int i;
1893 	struct mbuf *result = NULL, *n;
1894 	int len;
1895 
1896 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1897 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1898 
1899 	va_start(ap, nitem);
1900 	for (i = 0; i < nitem; i++) {
1901 		idx = va_arg(ap, int);
1902 		if (idx < 0 || idx > SADB_EXT_MAX)
1903 			goto fail;
1904 		/* don't attempt to pull empty extension */
1905 		if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1906 			continue;
1907 		if (idx != SADB_EXT_RESERVED  &&
1908 		    (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1909 			continue;
1910 
1911 		if (idx == SADB_EXT_RESERVED) {
1912 			len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1913 
1914 			IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len));
1915 
1916 			MGETHDR(n, M_NOWAIT, MT_DATA);
1917 			if (!n)
1918 				goto fail;
1919 			n->m_len = len;
1920 			n->m_next = NULL;
1921 			m_copydata(m, 0, sizeof(struct sadb_msg),
1922 			    mtod(n, caddr_t));
1923 		} else if (i < ndeep) {
1924 			len = mhp->extlen[idx];
1925 			n = m_get2(len, M_NOWAIT, MT_DATA, 0);
1926 			if (n == NULL)
1927 				goto fail;
1928 			m_align(n, len);
1929 			n->m_len = len;
1930 			m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1931 			    mtod(n, caddr_t));
1932 		} else {
1933 			n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1934 			    M_NOWAIT);
1935 		}
1936 		if (n == NULL)
1937 			goto fail;
1938 
1939 		if (result)
1940 			m_cat(result, n);
1941 		else
1942 			result = n;
1943 	}
1944 	va_end(ap);
1945 
1946 	if ((result->m_flags & M_PKTHDR) != 0) {
1947 		result->m_pkthdr.len = 0;
1948 		for (n = result; n; n = n->m_next)
1949 			result->m_pkthdr.len += n->m_len;
1950 	}
1951 
1952 	return result;
1953 
1954 fail:
1955 	m_freem(result);
1956 	va_end(ap);
1957 	return NULL;
1958 }
1959 
1960 /*
1961  * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1962  * add an entry to SP database, when received
1963  *   <base, address(SD), (lifetime(H),) policy>
1964  * from the user(?).
1965  * Adding to SP database,
1966  * and send
1967  *   <base, address(SD), (lifetime(H),) policy>
1968  * to the socket which was send.
1969  *
1970  * SPDADD set a unique policy entry.
1971  * SPDSETIDX like SPDADD without a part of policy requests.
1972  * SPDUPDATE replace a unique policy entry.
1973  *
1974  * XXXAE: serialize this in PF_KEY to avoid races.
1975  * m will always be freed.
1976  */
1977 static int
1978 key_spdadd(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
1979 {
1980 	struct secpolicyindex spidx;
1981 	struct sadb_address *src0, *dst0;
1982 	struct sadb_x_policy *xpl0, *xpl;
1983 	struct sadb_lifetime *lft = NULL;
1984 	struct secpolicy *newsp, *oldsp;
1985 	int error;
1986 
1987 	IPSEC_ASSERT(so != NULL, ("null socket"));
1988 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1989 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1990 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
1991 
1992 	if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) ||
1993 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) ||
1994 	    SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY)) {
1995 		ipseclog((LOG_DEBUG,
1996 		    "%s: invalid message: missing required header.\n",
1997 		    __func__));
1998 		return key_senderror(so, m, EINVAL);
1999 	}
2000 	if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) ||
2001 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST) ||
2002 	    SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) {
2003 		ipseclog((LOG_DEBUG,
2004 		    "%s: invalid message: wrong header size.\n", __func__));
2005 		return key_senderror(so, m, EINVAL);
2006 	}
2007 	if (!SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD)) {
2008 		if (SADB_CHECKLEN(mhp, SADB_EXT_LIFETIME_HARD)) {
2009 			ipseclog((LOG_DEBUG,
2010 			    "%s: invalid message: wrong header size.\n",
2011 			    __func__));
2012 			return key_senderror(so, m, EINVAL);
2013 		}
2014 		lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
2015 	}
2016 
2017 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2018 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2019 	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2020 
2021 	/* check the direciton */
2022 	switch (xpl0->sadb_x_policy_dir) {
2023 	case IPSEC_DIR_INBOUND:
2024 	case IPSEC_DIR_OUTBOUND:
2025 		break;
2026 	default:
2027 		ipseclog((LOG_DEBUG, "%s: invalid SP direction.\n", __func__));
2028 		return key_senderror(so, m, EINVAL);
2029 	}
2030 	/* key_spdadd() accepts DISCARD, NONE and IPSEC. */
2031 	if (xpl0->sadb_x_policy_type != IPSEC_POLICY_DISCARD &&
2032 	    xpl0->sadb_x_policy_type != IPSEC_POLICY_NONE &&
2033 	    xpl0->sadb_x_policy_type != IPSEC_POLICY_IPSEC) {
2034 		ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__));
2035 		return key_senderror(so, m, EINVAL);
2036 	}
2037 
2038 	/* policy requests are mandatory when action is ipsec. */
2039 	if (xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
2040 	    mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
2041 		ipseclog((LOG_DEBUG,
2042 		    "%s: policy requests required.\n", __func__));
2043 		return key_senderror(so, m, EINVAL);
2044 	}
2045 
2046 	error = key_checksockaddrs((struct sockaddr *)(src0 + 1),
2047 	    (struct sockaddr *)(dst0 + 1));
2048 	if (error != 0 ||
2049 	    src0->sadb_address_proto != dst0->sadb_address_proto) {
2050 		ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__));
2051 		return key_senderror(so, m, error);
2052 	}
2053 	/* make secindex */
2054 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2055 	                src0 + 1,
2056 	                dst0 + 1,
2057 	                src0->sadb_address_prefixlen,
2058 	                dst0->sadb_address_prefixlen,
2059 	                src0->sadb_address_proto,
2060 	                &spidx);
2061 	/* Checking there is SP already or not. */
2062 	oldsp = key_getsp(&spidx);
2063 	if (oldsp != NULL) {
2064 		if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
2065 			KEYDBG(KEY_STAMP,
2066 			    printf("%s: unlink SP(%p) for SPDUPDATE\n",
2067 				__func__, oldsp));
2068 			KEYDBG(KEY_DATA, kdebug_secpolicy(oldsp));
2069 		} else {
2070 			key_freesp(&oldsp);
2071 			ipseclog((LOG_DEBUG,
2072 			    "%s: a SP entry exists already.\n", __func__));
2073 			return (key_senderror(so, m, EEXIST));
2074 		}
2075 	}
2076 
2077 	/* allocate new SP entry */
2078 	if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
2079 		if (oldsp != NULL) {
2080 			key_unlink(oldsp);
2081 			key_freesp(&oldsp); /* second for our reference */
2082 		}
2083 		return key_senderror(so, m, error);
2084 	}
2085 
2086 	newsp->lastused = newsp->created = time_second;
2087 	newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
2088 	newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
2089 	bcopy(&spidx, &newsp->spidx, sizeof(spidx));
2090 
2091 	SPTREE_WLOCK();
2092 	if ((newsp->id = key_getnewspid()) == 0) {
2093 		if (oldsp != NULL)
2094 			key_detach(oldsp);
2095 		SPTREE_WUNLOCK();
2096 		if (oldsp != NULL) {
2097 			key_freesp(&oldsp); /* first for key_detach */
2098 			IPSEC_ASSERT(oldsp != NULL, ("null oldsp: refcount bug"));
2099 			key_freesp(&oldsp); /* second for our reference */
2100 			if (SPDCACHE_ENABLED()) /* refresh cache because of key_detach */
2101 				spdcache_clear();
2102 		}
2103 		key_freesp(&newsp);
2104 		return key_senderror(so, m, ENOBUFS);
2105 	}
2106 	if (oldsp != NULL)
2107 		key_detach(oldsp);
2108 	key_insertsp(newsp);
2109 	SPTREE_WUNLOCK();
2110 	if (oldsp != NULL) {
2111 		key_freesp(&oldsp); /* first for key_detach */
2112 		IPSEC_ASSERT(oldsp != NULL, ("null oldsp: refcount bug"));
2113 		key_freesp(&oldsp); /* second for our reference */
2114 	}
2115 	if (SPDCACHE_ENABLED())
2116 		spdcache_clear();
2117 	KEYDBG(KEY_STAMP,
2118 	    printf("%s: SP(%p)\n", __func__, newsp));
2119 	KEYDBG(KEY_DATA, kdebug_secpolicy(newsp));
2120 
2121     {
2122 	struct mbuf *n, *mpolicy;
2123 	struct sadb_msg *newmsg;
2124 	int off;
2125 
2126 	/* create new sadb_msg to reply. */
2127 	if (lft) {
2128 		n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
2129 		    SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
2130 		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2131 	} else {
2132 		n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
2133 		    SADB_X_EXT_POLICY,
2134 		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2135 	}
2136 	if (!n)
2137 		return key_senderror(so, m, ENOBUFS);
2138 
2139 	if (n->m_len < sizeof(*newmsg)) {
2140 		n = m_pullup(n, sizeof(*newmsg));
2141 		if (!n)
2142 			return key_senderror(so, m, ENOBUFS);
2143 	}
2144 	newmsg = mtod(n, struct sadb_msg *);
2145 	newmsg->sadb_msg_errno = 0;
2146 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2147 
2148 	off = 0;
2149 	mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
2150 	    sizeof(*xpl), &off);
2151 	if (mpolicy == NULL) {
2152 		/* n is already freed */
2153 		return key_senderror(so, m, ENOBUFS);
2154 	}
2155 	xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off);
2156 	if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
2157 		m_freem(n);
2158 		return key_senderror(so, m, EINVAL);
2159 	}
2160 	xpl->sadb_x_policy_id = newsp->id;
2161 
2162 	m_freem(m);
2163 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2164     }
2165 }
2166 
2167 /*
2168  * get new policy id.
2169  * OUT:
2170  *	0:	failure.
2171  *	others: success.
2172  */
2173 static uint32_t
2174 key_getnewspid(void)
2175 {
2176 	struct secpolicy *sp;
2177 	uint32_t newid = 0;
2178 	int tries, limit;
2179 
2180 	SPTREE_WLOCK_ASSERT();
2181 
2182 	limit = atomic_load_int(&V_key_spi_trycnt);
2183 	for (tries = 0; tries < limit; tries++) {
2184 		if (V_policy_id == ~0) /* overflowed */
2185 			newid = V_policy_id = 1;
2186 		else
2187 			newid = ++V_policy_id;
2188 		LIST_FOREACH(sp, SPHASH_HASH(newid), idhash) {
2189 			if (sp->id == newid)
2190 				break;
2191 		}
2192 		if (sp == NULL)
2193 			break;
2194 	}
2195 	if (tries == limit || newid == 0) {
2196 		ipseclog((LOG_DEBUG, "%s: failed to allocate policy id.\n",
2197 		    __func__));
2198 		return (0);
2199 	}
2200 	return (newid);
2201 }
2202 
2203 /*
2204  * SADB_SPDDELETE processing
2205  * receive
2206  *   <base, address(SD), policy(*)>
2207  * from the user(?), and set SADB_SASTATE_DEAD,
2208  * and send,
2209  *   <base, address(SD), policy(*)>
2210  * to the ikmpd.
2211  * policy(*) including direction of policy.
2212  *
2213  * m will always be freed.
2214  */
2215 static int
2216 key_spddelete(struct socket *so, struct mbuf *m,
2217     const struct sadb_msghdr *mhp)
2218 {
2219 	struct secpolicyindex spidx;
2220 	struct sadb_address *src0, *dst0;
2221 	struct sadb_x_policy *xpl0;
2222 	struct secpolicy *sp;
2223 
2224 	IPSEC_ASSERT(so != NULL, ("null so"));
2225 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2226 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2227 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2228 
2229 	if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) ||
2230 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) ||
2231 	    SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY)) {
2232 		ipseclog((LOG_DEBUG,
2233 		    "%s: invalid message: missing required header.\n",
2234 		    __func__));
2235 		return key_senderror(so, m, EINVAL);
2236 	}
2237 	if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) ||
2238 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST) ||
2239 	    SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) {
2240 		ipseclog((LOG_DEBUG,
2241 		    "%s: invalid message: wrong header size.\n", __func__));
2242 		return key_senderror(so, m, EINVAL);
2243 	}
2244 
2245 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2246 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2247 	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2248 
2249 	/* check the direciton */
2250 	switch (xpl0->sadb_x_policy_dir) {
2251 	case IPSEC_DIR_INBOUND:
2252 	case IPSEC_DIR_OUTBOUND:
2253 		break;
2254 	default:
2255 		ipseclog((LOG_DEBUG, "%s: invalid SP direction.\n", __func__));
2256 		return key_senderror(so, m, EINVAL);
2257 	}
2258 	/* Only DISCARD, NONE and IPSEC are allowed */
2259 	if (xpl0->sadb_x_policy_type != IPSEC_POLICY_DISCARD &&
2260 	    xpl0->sadb_x_policy_type != IPSEC_POLICY_NONE &&
2261 	    xpl0->sadb_x_policy_type != IPSEC_POLICY_IPSEC) {
2262 		ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__));
2263 		return key_senderror(so, m, EINVAL);
2264 	}
2265 	if (key_checksockaddrs((struct sockaddr *)(src0 + 1),
2266 	    (struct sockaddr *)(dst0 + 1)) != 0 ||
2267 	    src0->sadb_address_proto != dst0->sadb_address_proto) {
2268 		ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__));
2269 		return key_senderror(so, m, EINVAL);
2270 	}
2271 	/* make secindex */
2272 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2273 	                src0 + 1,
2274 	                dst0 + 1,
2275 	                src0->sadb_address_prefixlen,
2276 	                dst0->sadb_address_prefixlen,
2277 	                src0->sadb_address_proto,
2278 	                &spidx);
2279 
2280 	/* Is there SP in SPD ? */
2281 	if ((sp = key_getsp(&spidx)) == NULL) {
2282 		ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__));
2283 		return key_senderror(so, m, EINVAL);
2284 	}
2285 
2286 	/* save policy id to buffer to be returned. */
2287 	xpl0->sadb_x_policy_id = sp->id;
2288 
2289 	KEYDBG(KEY_STAMP,
2290 	    printf("%s: SP(%p)\n", __func__, sp));
2291 	KEYDBG(KEY_DATA, kdebug_secpolicy(sp));
2292 	key_unlink(sp);
2293 	key_freesp(&sp);
2294 
2295     {
2296 	struct mbuf *n;
2297 	struct sadb_msg *newmsg;
2298 
2299 	/* create new sadb_msg to reply. */
2300 	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2301 	    SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2302 	if (!n)
2303 		return key_senderror(so, m, ENOBUFS);
2304 
2305 	newmsg = mtod(n, struct sadb_msg *);
2306 	newmsg->sadb_msg_errno = 0;
2307 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2308 
2309 	m_freem(m);
2310 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2311     }
2312 }
2313 
2314 /*
2315  * SADB_SPDDELETE2 processing
2316  * receive
2317  *   <base, policy(*)>
2318  * from the user(?), and set SADB_SASTATE_DEAD,
2319  * and send,
2320  *   <base, policy(*)>
2321  * to the ikmpd.
2322  * policy(*) including direction of policy.
2323  *
2324  * m will always be freed.
2325  */
2326 static int
2327 key_spddelete2(struct socket *so, struct mbuf *m,
2328     const struct sadb_msghdr *mhp)
2329 {
2330 	struct secpolicy *sp;
2331 	uint32_t id;
2332 
2333 	IPSEC_ASSERT(so != NULL, ("null socket"));
2334 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2335 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2336 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2337 
2338 	if (SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY) ||
2339 	    SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) {
2340 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2341 		    __func__));
2342 		return key_senderror(so, m, EINVAL);
2343 	}
2344 
2345 	id = ((struct sadb_x_policy *)
2346 	    mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2347 
2348 	/* Is there SP in SPD ? */
2349 	if ((sp = key_getspbyid(id)) == NULL) {
2350 		ipseclog((LOG_DEBUG, "%s: no SP found for id %u.\n",
2351 		    __func__, id));
2352 		return key_senderror(so, m, EINVAL);
2353 	}
2354 
2355 	KEYDBG(KEY_STAMP,
2356 	    printf("%s: SP(%p)\n", __func__, sp));
2357 	KEYDBG(KEY_DATA, kdebug_secpolicy(sp));
2358 	key_unlink(sp);
2359 	if (sp->state != IPSEC_SPSTATE_DEAD) {
2360 		ipseclog((LOG_DEBUG, "%s: failed to delete SP with id %u.\n",
2361 		    __func__, id));
2362 		key_freesp(&sp);
2363 		return (key_senderror(so, m, EACCES));
2364 	}
2365 	key_freesp(&sp);
2366 
2367     {
2368 	struct mbuf *n, *nn;
2369 	struct sadb_msg *newmsg;
2370 	int off, len;
2371 
2372 	/* create new sadb_msg to reply. */
2373 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2374 
2375 	n = key_mget(len);
2376 	if (n == NULL)
2377 		return key_senderror(so, m, ENOBUFS);
2378 
2379 	n->m_len = len;
2380 	n->m_next = NULL;
2381 	off = 0;
2382 
2383 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
2384 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2385 
2386 	IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)",
2387 		off, len));
2388 
2389 	n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2390 	    mhp->extlen[SADB_X_EXT_POLICY], M_NOWAIT);
2391 	if (!n->m_next) {
2392 		m_freem(n);
2393 		return key_senderror(so, m, ENOBUFS);
2394 	}
2395 
2396 	n->m_pkthdr.len = 0;
2397 	for (nn = n; nn; nn = nn->m_next)
2398 		n->m_pkthdr.len += nn->m_len;
2399 
2400 	newmsg = mtod(n, struct sadb_msg *);
2401 	newmsg->sadb_msg_errno = 0;
2402 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2403 
2404 	m_freem(m);
2405 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2406     }
2407 }
2408 
2409 /*
2410  * SADB_X_SPDGET processing
2411  * receive
2412  *   <base, policy(*)>
2413  * from the user(?),
2414  * and send,
2415  *   <base, address(SD), policy>
2416  * to the ikmpd.
2417  * policy(*) including direction of policy.
2418  *
2419  * m will always be freed.
2420  */
2421 static int
2422 key_spdget(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
2423 {
2424 	struct secpolicy *sp;
2425 	struct mbuf *n;
2426 	uint32_t id;
2427 
2428 	IPSEC_ASSERT(so != NULL, ("null socket"));
2429 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2430 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2431 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2432 
2433 	if (SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY) ||
2434 	    SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) {
2435 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2436 		    __func__));
2437 		return key_senderror(so, m, EINVAL);
2438 	}
2439 
2440 	id = ((struct sadb_x_policy *)
2441 	    mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2442 
2443 	/* Is there SP in SPD ? */
2444 	if ((sp = key_getspbyid(id)) == NULL) {
2445 		ipseclog((LOG_DEBUG, "%s: no SP found for id %u.\n",
2446 		    __func__, id));
2447 		return key_senderror(so, m, ENOENT);
2448 	}
2449 
2450 	n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq,
2451 	    mhp->msg->sadb_msg_pid);
2452 	key_freesp(&sp);
2453 	if (n != NULL) {
2454 		m_freem(m);
2455 		return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2456 	} else
2457 		return key_senderror(so, m, ENOBUFS);
2458 }
2459 
2460 /*
2461  * SADB_X_SPDACQUIRE processing.
2462  * Acquire policy and SA(s) for a *OUTBOUND* packet.
2463  * send
2464  *   <base, policy(*)>
2465  * to KMD, and expect to receive
2466  *   <base> with SADB_X_SPDACQUIRE if error occurred,
2467  * or
2468  *   <base, policy>
2469  * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2470  * policy(*) is without policy requests.
2471  *
2472  *    0     : succeed
2473  *    others: error number
2474  */
2475 int
2476 key_spdacquire(struct secpolicy *sp)
2477 {
2478 	struct mbuf *result = NULL, *m;
2479 	struct secspacq *newspacq;
2480 
2481 	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2482 	IPSEC_ASSERT(sp->req == NULL, ("policy exists"));
2483 	IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC,
2484 		("policy not IPSEC %u", sp->policy));
2485 
2486 	/* Get an entry to check whether sent message or not. */
2487 	newspacq = key_getspacq(&sp->spidx);
2488 	if (newspacq != NULL) {
2489 		if (V_key_blockacq_count < newspacq->count) {
2490 			/* reset counter and do send message. */
2491 			newspacq->count = 0;
2492 		} else {
2493 			/* increment counter and do nothing. */
2494 			newspacq->count++;
2495 			SPACQ_UNLOCK();
2496 			return (0);
2497 		}
2498 		SPACQ_UNLOCK();
2499 	} else {
2500 		/* make new entry for blocking to send SADB_ACQUIRE. */
2501 		newspacq = key_newspacq(&sp->spidx);
2502 		if (newspacq == NULL)
2503 			return ENOBUFS;
2504 	}
2505 
2506 	/* create new sadb_msg to reply. */
2507 	m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2508 	if (!m)
2509 		return ENOBUFS;
2510 
2511 	result = m;
2512 
2513 	result->m_pkthdr.len = 0;
2514 	for (m = result; m; m = m->m_next)
2515 		result->m_pkthdr.len += m->m_len;
2516 
2517 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2518 	    PFKEY_UNIT64(result->m_pkthdr.len);
2519 
2520 	return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2521 }
2522 
2523 /*
2524  * SADB_SPDFLUSH processing
2525  * receive
2526  *   <base>
2527  * from the user, and free all entries in secpctree.
2528  * and send,
2529  *   <base>
2530  * to the user.
2531  * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2532  *
2533  * m will always be freed.
2534  */
2535 static int
2536 key_spdflush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
2537 {
2538 	struct secpolicy_queue drainq;
2539 	struct sadb_msg *newmsg;
2540 	struct secpolicy *sp, *nextsp;
2541 	u_int dir;
2542 
2543 	IPSEC_ASSERT(so != NULL, ("null socket"));
2544 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2545 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2546 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2547 
2548 	if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2549 		return key_senderror(so, m, EINVAL);
2550 
2551 	TAILQ_INIT(&drainq);
2552 	SPTREE_WLOCK();
2553 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2554 		TAILQ_CONCAT(&drainq, &V_sptree[dir], chain);
2555 	}
2556 	/*
2557 	 * We need to set state to DEAD for each policy to be sure,
2558 	 * that another thread won't try to unlink it.
2559 	 * Also remove SP from sphash.
2560 	 */
2561 	TAILQ_FOREACH(sp, &drainq, chain) {
2562 		sp->state = IPSEC_SPSTATE_DEAD;
2563 		LIST_REMOVE(sp, idhash);
2564 	}
2565 	V_sp_genid++;
2566 	V_spd_size = 0;
2567 	SPTREE_WUNLOCK();
2568 	if (SPDCACHE_ENABLED())
2569 		spdcache_clear();
2570 	sp = TAILQ_FIRST(&drainq);
2571 	while (sp != NULL) {
2572 		nextsp = TAILQ_NEXT(sp, chain);
2573 		key_freesp(&sp);
2574 		sp = nextsp;
2575 	}
2576 
2577 	if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2578 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2579 		return key_senderror(so, m, ENOBUFS);
2580 	}
2581 
2582 	if (m->m_next)
2583 		m_freem(m->m_next);
2584 	m->m_next = NULL;
2585 	m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2586 	newmsg = mtod(m, struct sadb_msg *);
2587 	newmsg->sadb_msg_errno = 0;
2588 	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2589 
2590 	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2591 }
2592 
2593 static uint8_t
2594 key_satype2scopemask(uint8_t satype)
2595 {
2596 
2597 	if (satype == IPSEC_POLICYSCOPE_ANY)
2598 		return (0xff);
2599 	return (satype);
2600 }
2601 /*
2602  * SADB_SPDDUMP processing
2603  * receive
2604  *   <base>
2605  * from the user, and dump all SP leaves and send,
2606  *   <base> .....
2607  * to the ikmpd.
2608  *
2609  * NOTE:
2610  *   sadb_msg_satype is considered as mask of policy scopes.
2611  *   m will always be freed.
2612  */
2613 static int
2614 key_spddump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
2615 {
2616 	SPTREE_RLOCK_TRACKER;
2617 	struct secpolicy *sp;
2618 	struct mbuf *n;
2619 	int cnt;
2620 	u_int dir, scope;
2621 
2622 	IPSEC_ASSERT(so != NULL, ("null socket"));
2623 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2624 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2625 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2626 
2627 	/* search SPD entry and get buffer size. */
2628 	cnt = 0;
2629 	scope = key_satype2scopemask(mhp->msg->sadb_msg_satype);
2630 	SPTREE_RLOCK();
2631 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2632 		if (scope & IPSEC_POLICYSCOPE_GLOBAL) {
2633 			TAILQ_FOREACH(sp, &V_sptree[dir], chain)
2634 				cnt++;
2635 		}
2636 		if (scope & IPSEC_POLICYSCOPE_IFNET) {
2637 			TAILQ_FOREACH(sp, &V_sptree_ifnet[dir], chain)
2638 				cnt++;
2639 		}
2640 	}
2641 
2642 	if (cnt == 0) {
2643 		SPTREE_RUNLOCK();
2644 		return key_senderror(so, m, ENOENT);
2645 	}
2646 
2647 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2648 		if (scope & IPSEC_POLICYSCOPE_GLOBAL) {
2649 			TAILQ_FOREACH(sp, &V_sptree[dir], chain) {
2650 				--cnt;
2651 				n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt,
2652 				    mhp->msg->sadb_msg_pid);
2653 
2654 				if (n != NULL)
2655 					key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2656 			}
2657 		}
2658 		if (scope & IPSEC_POLICYSCOPE_IFNET) {
2659 			TAILQ_FOREACH(sp, &V_sptree_ifnet[dir], chain) {
2660 				--cnt;
2661 				n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt,
2662 				    mhp->msg->sadb_msg_pid);
2663 
2664 				if (n != NULL)
2665 					key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2666 			}
2667 		}
2668 	}
2669 
2670 	SPTREE_RUNLOCK();
2671 	m_freem(m);
2672 	return (0);
2673 }
2674 
2675 static struct mbuf *
2676 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq,
2677     u_int32_t pid)
2678 {
2679 	struct mbuf *result = NULL, *m;
2680 	struct seclifetime lt;
2681 
2682 	m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2683 	if (!m)
2684 		goto fail;
2685 	result = m;
2686 
2687 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2688 	    &sp->spidx.src.sa, sp->spidx.prefs,
2689 	    sp->spidx.ul_proto);
2690 	if (!m)
2691 		goto fail;
2692 	m_cat(result, m);
2693 
2694 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2695 	    &sp->spidx.dst.sa, sp->spidx.prefd,
2696 	    sp->spidx.ul_proto);
2697 	if (!m)
2698 		goto fail;
2699 	m_cat(result, m);
2700 
2701 	m = key_sp2mbuf(sp);
2702 	if (!m)
2703 		goto fail;
2704 	m_cat(result, m);
2705 
2706 	if(sp->lifetime){
2707 		lt.addtime=sp->created;
2708 		lt.usetime= sp->lastused;
2709 		m = key_setlifetime(&lt, SADB_EXT_LIFETIME_CURRENT);
2710 		if (!m)
2711 			goto fail;
2712 		m_cat(result, m);
2713 
2714 		lt.addtime=sp->lifetime;
2715 		lt.usetime= sp->validtime;
2716 		m = key_setlifetime(&lt, SADB_EXT_LIFETIME_HARD);
2717 		if (!m)
2718 			goto fail;
2719 		m_cat(result, m);
2720 	}
2721 
2722 	if ((result->m_flags & M_PKTHDR) == 0)
2723 		goto fail;
2724 
2725 	if (result->m_len < sizeof(struct sadb_msg)) {
2726 		result = m_pullup(result, sizeof(struct sadb_msg));
2727 		if (result == NULL)
2728 			goto fail;
2729 	}
2730 
2731 	result->m_pkthdr.len = 0;
2732 	for (m = result; m; m = m->m_next)
2733 		result->m_pkthdr.len += m->m_len;
2734 
2735 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2736 	    PFKEY_UNIT64(result->m_pkthdr.len);
2737 
2738 	return result;
2739 
2740 fail:
2741 	m_freem(result);
2742 	return NULL;
2743 }
2744 /*
2745  * get PFKEY message length for security policy and request.
2746  */
2747 static size_t
2748 key_getspreqmsglen(struct secpolicy *sp)
2749 {
2750 	size_t tlen, len;
2751 	int i;
2752 
2753 	tlen = sizeof(struct sadb_x_policy);
2754 	/* if is the policy for ipsec ? */
2755 	if (sp->policy != IPSEC_POLICY_IPSEC)
2756 		return (tlen);
2757 
2758 	/* get length of ipsec requests */
2759 	for (i = 0; i < sp->tcount; i++) {
2760 		len = sizeof(struct sadb_x_ipsecrequest)
2761 			+ sp->req[i]->saidx.src.sa.sa_len
2762 			+ sp->req[i]->saidx.dst.sa.sa_len;
2763 
2764 		tlen += PFKEY_ALIGN8(len);
2765 	}
2766 	return (tlen);
2767 }
2768 
2769 /*
2770  * SADB_SPDEXPIRE processing
2771  * send
2772  *   <base, address(SD), lifetime(CH), policy>
2773  * to KMD by PF_KEY.
2774  *
2775  * OUT:	0	: succeed
2776  *	others	: error number
2777  */
2778 static int
2779 key_spdexpire(struct secpolicy *sp)
2780 {
2781 	struct sadb_lifetime *lt;
2782 	struct mbuf *result = NULL, *m;
2783 	int len, error = -1;
2784 
2785 	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2786 
2787 	KEYDBG(KEY_STAMP,
2788 	    printf("%s: SP(%p)\n", __func__, sp));
2789 	KEYDBG(KEY_DATA, kdebug_secpolicy(sp));
2790 
2791 	/* set msg header */
2792 	m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2793 	if (!m) {
2794 		error = ENOBUFS;
2795 		goto fail;
2796 	}
2797 	result = m;
2798 
2799 	/* create lifetime extension (current and hard) */
2800 	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2801 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
2802 	if (m == NULL) {
2803 		error = ENOBUFS;
2804 		goto fail;
2805 	}
2806 	m_align(m, len);
2807 	m->m_len = len;
2808 	bzero(mtod(m, caddr_t), len);
2809 	lt = mtod(m, struct sadb_lifetime *);
2810 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2811 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2812 	lt->sadb_lifetime_allocations = 0;
2813 	lt->sadb_lifetime_bytes = 0;
2814 	lt->sadb_lifetime_addtime = sp->created;
2815 	lt->sadb_lifetime_usetime = sp->lastused;
2816 	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
2817 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2818 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2819 	lt->sadb_lifetime_allocations = 0;
2820 	lt->sadb_lifetime_bytes = 0;
2821 	lt->sadb_lifetime_addtime = sp->lifetime;
2822 	lt->sadb_lifetime_usetime = sp->validtime;
2823 	m_cat(result, m);
2824 
2825 	/* set sadb_address for source */
2826 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2827 	    &sp->spidx.src.sa,
2828 	    sp->spidx.prefs, sp->spidx.ul_proto);
2829 	if (!m) {
2830 		error = ENOBUFS;
2831 		goto fail;
2832 	}
2833 	m_cat(result, m);
2834 
2835 	/* set sadb_address for destination */
2836 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2837 	    &sp->spidx.dst.sa,
2838 	    sp->spidx.prefd, sp->spidx.ul_proto);
2839 	if (!m) {
2840 		error = ENOBUFS;
2841 		goto fail;
2842 	}
2843 	m_cat(result, m);
2844 
2845 	/* set secpolicy */
2846 	m = key_sp2mbuf(sp);
2847 	if (!m) {
2848 		error = ENOBUFS;
2849 		goto fail;
2850 	}
2851 	m_cat(result, m);
2852 
2853 	if ((result->m_flags & M_PKTHDR) == 0) {
2854 		error = EINVAL;
2855 		goto fail;
2856 	}
2857 
2858 	if (result->m_len < sizeof(struct sadb_msg)) {
2859 		result = m_pullup(result, sizeof(struct sadb_msg));
2860 		if (result == NULL) {
2861 			error = ENOBUFS;
2862 			goto fail;
2863 		}
2864 	}
2865 
2866 	result->m_pkthdr.len = 0;
2867 	for (m = result; m; m = m->m_next)
2868 		result->m_pkthdr.len += m->m_len;
2869 
2870 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2871 	    PFKEY_UNIT64(result->m_pkthdr.len);
2872 
2873 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2874 
2875  fail:
2876 	if (result)
2877 		m_freem(result);
2878 	return error;
2879 }
2880 
2881 /* %%% SAD management */
2882 /*
2883  * allocating and initialize new SA head.
2884  * OUT:	NULL	: failure due to the lack of memory.
2885  *	others	: pointer to new SA head.
2886  */
2887 static struct secashead *
2888 key_newsah(struct secasindex *saidx)
2889 {
2890 	struct secashead *sah;
2891 
2892 	sah = malloc(sizeof(struct secashead), M_IPSEC_SAH,
2893 	    M_NOWAIT | M_ZERO);
2894 	if (sah == NULL) {
2895 		PFKEYSTAT_INC(in_nomem);
2896 		return (NULL);
2897 	}
2898 	TAILQ_INIT(&sah->savtree_larval);
2899 	TAILQ_INIT(&sah->savtree_alive);
2900 	sah->saidx = *saidx;
2901 	sah->state = SADB_SASTATE_DEAD;
2902 	SAH_INITREF(sah);
2903 
2904 	KEYDBG(KEY_STAMP,
2905 	    printf("%s: SAH(%p)\n", __func__, sah));
2906 	KEYDBG(KEY_DATA, kdebug_secash(sah, NULL));
2907 	return (sah);
2908 }
2909 
2910 static void
2911 key_freesah(struct secashead **psah)
2912 {
2913 	struct secashead *sah = *psah;
2914 
2915 	CURVNET_ASSERT_SET();
2916 
2917 	if (SAH_DELREF(sah) == 0)
2918 		return;
2919 
2920 	KEYDBG(KEY_STAMP,
2921 	    printf("%s: last reference to SAH(%p)\n", __func__, sah));
2922 	KEYDBG(KEY_DATA, kdebug_secash(sah, NULL));
2923 
2924 	*psah = NULL;
2925 	key_delsah(sah);
2926 }
2927 
2928 static void
2929 key_delsah(struct secashead *sah)
2930 {
2931 	IPSEC_ASSERT(sah != NULL, ("NULL sah"));
2932 	IPSEC_ASSERT(sah->state == SADB_SASTATE_DEAD,
2933 	    ("Attempt to free non DEAD SAH %p", sah));
2934 	IPSEC_ASSERT(TAILQ_EMPTY(&sah->savtree_larval),
2935 	    ("Attempt to free SAH %p with LARVAL SA", sah));
2936 	IPSEC_ASSERT(TAILQ_EMPTY(&sah->savtree_alive),
2937 	    ("Attempt to free SAH %p with ALIVE SA", sah));
2938 
2939 	free(sah, M_IPSEC_SAH);
2940 }
2941 
2942 /*
2943  * allocating a new SA for key_add() and key_getspi() call,
2944  * and copy the values of mhp into new buffer.
2945  * When SAD message type is SADB_GETSPI set SA state to LARVAL.
2946  * For SADB_ADD create and initialize SA with MATURE state.
2947  * OUT:	NULL	: fail
2948  *	others	: pointer to new secasvar.
2949  */
2950 static struct secasvar *
2951 key_newsav(const struct sadb_msghdr *mhp, struct secasindex *saidx,
2952     uint32_t spi, int *errp)
2953 {
2954 	struct secashead *sah;
2955 	struct secasvar *sav;
2956 	int isnew;
2957 
2958 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2959 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2960 	IPSEC_ASSERT(mhp->msg->sadb_msg_type == SADB_GETSPI ||
2961 	    mhp->msg->sadb_msg_type == SADB_ADD, ("wrong message type"));
2962 
2963 	sav = NULL;
2964 	sah = NULL;
2965 	/* check SPI value */
2966 	switch (saidx->proto) {
2967 	case IPPROTO_ESP:
2968 	case IPPROTO_AH:
2969 		/*
2970 		 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values
2971 		 * 1-255 reserved by IANA for future use,
2972 		 * 0 for implementation specific, local use.
2973 		 */
2974 		if (ntohl(spi) <= 255) {
2975 			ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n",
2976 			    __func__, ntohl(spi)));
2977 			*errp = EINVAL;
2978 			goto done;
2979 		}
2980 		break;
2981 	}
2982 
2983 	sav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT | M_ZERO);
2984 	if (sav == NULL) {
2985 		*errp = ENOBUFS;
2986 		goto done;
2987 	}
2988 	sav->lock = malloc_aligned(max(sizeof(struct rmlock),
2989 	    CACHE_LINE_SIZE), CACHE_LINE_SIZE, M_IPSEC_MISC,
2990 	    M_NOWAIT | M_ZERO);
2991 	if (sav->lock == NULL) {
2992 		*errp = ENOBUFS;
2993 		goto done;
2994 	}
2995 	rm_init(sav->lock, "ipsec association");
2996 	sav->lft_c = uma_zalloc_pcpu(ipsec_key_lft_zone, M_NOWAIT | M_ZERO);
2997 	if (sav->lft_c == NULL) {
2998 		*errp = ENOBUFS;
2999 		goto done;
3000 	}
3001 
3002 	sav->spi = spi;
3003 	sav->seq = mhp->msg->sadb_msg_seq;
3004 	sav->state = SADB_SASTATE_LARVAL;
3005 	sav->pid = (pid_t)mhp->msg->sadb_msg_pid;
3006 	SAV_INITREF(sav);
3007 again:
3008 	sah = key_getsah(saidx);
3009 	if (sah == NULL) {
3010 		/* create a new SA index */
3011 		sah = key_newsah(saidx);
3012 		if (sah == NULL) {
3013 			ipseclog((LOG_DEBUG,
3014 			    "%s: No more memory.\n", __func__));
3015 			*errp = ENOBUFS;
3016 			goto done;
3017 		}
3018 		isnew = 1;
3019 	} else
3020 		isnew = 0;
3021 
3022 	sav->sah = sah;
3023 	if (mhp->msg->sadb_msg_type == SADB_GETSPI) {
3024 		sav->created = time_second;
3025 	} else if (sav->state == SADB_SASTATE_LARVAL) {
3026 		/*
3027 		 * Do not call key_setsaval() second time in case
3028 		 * of `goto again`. We will have MATURE state.
3029 		 */
3030 		*errp = key_setsaval(sav, mhp);
3031 		if (*errp != 0)
3032 			goto done;
3033 		sav->state = SADB_SASTATE_MATURE;
3034 	}
3035 
3036 	SAHTREE_WLOCK();
3037 	/*
3038 	 * Check that existing SAH wasn't unlinked.
3039 	 * Since we didn't hold the SAHTREE lock, it is possible,
3040 	 * that callout handler or key_flush() or key_delete() could
3041 	 * unlink this SAH.
3042 	 */
3043 	if (isnew == 0 && sah->state == SADB_SASTATE_DEAD) {
3044 		SAHTREE_WUNLOCK();
3045 		key_freesah(&sah);	/* reference from key_getsah() */
3046 		goto again;
3047 	}
3048 	if (isnew != 0) {
3049 		/*
3050 		 * Add new SAH into SADB.
3051 		 *
3052 		 * XXXAE: we can serialize key_add and key_getspi calls, so
3053 		 * several threads will not fight in the race.
3054 		 * Otherwise we should check under SAHTREE lock, that this
3055 		 * SAH would not added twice.
3056 		 */
3057 		TAILQ_INSERT_HEAD(&V_sahtree, sah, chain);
3058 		/* Add new SAH into hash by addresses */
3059 		LIST_INSERT_HEAD(SAHADDRHASH_HASH(saidx), sah, addrhash);
3060 		/* Now we are linked in the chain */
3061 		sah->state = SADB_SASTATE_MATURE;
3062 		/*
3063 		 * SAV references this new SAH.
3064 		 * In case of existing SAH we reuse reference
3065 		 * from key_getsah().
3066 		 */
3067 		SAH_ADDREF(sah);
3068 	}
3069 	/* Link SAV with SAH */
3070 	if (sav->state == SADB_SASTATE_MATURE)
3071 		TAILQ_INSERT_HEAD(&sah->savtree_alive, sav, chain);
3072 	else
3073 		TAILQ_INSERT_HEAD(&sah->savtree_larval, sav, chain);
3074 	/* Add SAV into SPI hash */
3075 	LIST_INSERT_HEAD(SAVHASH_HASH(sav->spi), sav, spihash);
3076 	SAHTREE_WUNLOCK();
3077 	*errp = 0;	/* success */
3078 done:
3079 	if (*errp != 0) {
3080 		if (sav != NULL) {
3081 			if (sav->lock != NULL) {
3082 				rm_destroy(sav->lock);
3083 				free(sav->lock, M_IPSEC_MISC);
3084 			}
3085 			if (sav->lft_c != NULL)
3086 				uma_zfree_pcpu(ipsec_key_lft_zone, sav->lft_c);
3087 			free(sav, M_IPSEC_SA), sav = NULL;
3088 		}
3089 		if (sah != NULL)
3090 			key_freesah(&sah);
3091 		if (*errp == ENOBUFS) {
3092 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3093 			    __func__));
3094 			PFKEYSTAT_INC(in_nomem);
3095 		}
3096 	}
3097 	return (sav);
3098 }
3099 
3100 /*
3101  * free() SA variable entry.
3102  */
3103 static void
3104 key_cleansav(struct secasvar *sav)
3105 {
3106 
3107 	if (sav->natt != NULL) {
3108 		free(sav->natt, M_IPSEC_MISC);
3109 		sav->natt = NULL;
3110 	}
3111 	if (sav->flags & SADB_X_EXT_F_CLONED)
3112 		return;
3113 	if (sav->tdb_xform != NULL) {
3114 		sav->tdb_xform->xf_cleanup(sav);
3115 		sav->tdb_xform = NULL;
3116 	}
3117 	if (sav->key_auth != NULL) {
3118 		zfree(sav->key_auth->key_data, M_IPSEC_MISC);
3119 		free(sav->key_auth, M_IPSEC_MISC);
3120 		sav->key_auth = NULL;
3121 	}
3122 	if (sav->key_enc != NULL) {
3123 		zfree(sav->key_enc->key_data, M_IPSEC_MISC);
3124 		free(sav->key_enc, M_IPSEC_MISC);
3125 		sav->key_enc = NULL;
3126 	}
3127 	if (sav->replay != NULL) {
3128 		mtx_destroy(&sav->replay->lock);
3129 		if (sav->replay->bitmap != NULL)
3130 			free(sav->replay->bitmap, M_IPSEC_MISC);
3131 		free(sav->replay, M_IPSEC_MISC);
3132 		sav->replay = NULL;
3133 	}
3134 	if (sav->lft_h != NULL) {
3135 		free(sav->lft_h, M_IPSEC_MISC);
3136 		sav->lft_h = NULL;
3137 	}
3138 	if (sav->lft_s != NULL) {
3139 		free(sav->lft_s, M_IPSEC_MISC);
3140 		sav->lft_s = NULL;
3141 	}
3142 }
3143 
3144 /*
3145  * free() SA variable entry.
3146  */
3147 static void
3148 key_delsav(struct secasvar *sav)
3149 {
3150 	IPSEC_ASSERT(sav != NULL, ("null sav"));
3151 	IPSEC_ASSERT(sav->state == SADB_SASTATE_DEAD,
3152 	    ("attempt to free non DEAD SA %p", sav));
3153 	IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0",
3154 	    sav->refcnt));
3155 
3156 	/*
3157 	 * SA must be unlinked from the chain and hashtbl.
3158 	 * If SA was cloned, we leave all fields untouched,
3159 	 * except NAT-T config.
3160 	 */
3161 	key_cleansav(sav);
3162 	if ((sav->flags & SADB_X_EXT_F_CLONED) == 0) {
3163 		rm_destroy(sav->lock);
3164 		free(sav->lock, M_IPSEC_MISC);
3165 		uma_zfree_pcpu(ipsec_key_lft_zone, sav->lft_c);
3166 	}
3167 	free(sav, M_IPSEC_SA);
3168 }
3169 
3170 /*
3171  * search SAH.
3172  * OUT:
3173  *	NULL	: not found
3174  *	others	: found, referenced pointer to a SAH.
3175  */
3176 static struct secashead *
3177 key_getsah(struct secasindex *saidx)
3178 {
3179 	SAHTREE_RLOCK_TRACKER;
3180 	struct secashead *sah;
3181 
3182 	SAHTREE_RLOCK();
3183 	LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) {
3184 	    if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID) != 0) {
3185 		    SAH_ADDREF(sah);
3186 		    break;
3187 	    }
3188 	}
3189 	SAHTREE_RUNLOCK();
3190 	return (sah);
3191 }
3192 
3193 /*
3194  * Check not to be duplicated SPI.
3195  * OUT:
3196  *	0	: not found
3197  *	1	: found SA with given SPI.
3198  */
3199 static int
3200 key_checkspidup(uint32_t spi)
3201 {
3202 	SAHTREE_RLOCK_TRACKER;
3203 	struct secasvar *sav;
3204 
3205 	/* Assume SPI is in network byte order */
3206 	SAHTREE_RLOCK();
3207 	LIST_FOREACH(sav, SAVHASH_HASH(spi), spihash) {
3208 		if (sav->spi == spi)
3209 			break;
3210 	}
3211 	SAHTREE_RUNLOCK();
3212 	return (sav != NULL);
3213 }
3214 
3215 /*
3216  * Search SA by SPI.
3217  * OUT:
3218  *	NULL	: not found
3219  *	others	: found, referenced pointer to a SA.
3220  */
3221 static struct secasvar *
3222 key_getsavbyspi(uint32_t spi)
3223 {
3224 	SAHTREE_RLOCK_TRACKER;
3225 	struct secasvar *sav;
3226 
3227 	/* Assume SPI is in network byte order */
3228 	SAHTREE_RLOCK();
3229 	LIST_FOREACH(sav, SAVHASH_HASH(spi), spihash) {
3230 		if (sav->spi != spi)
3231 			continue;
3232 		SAV_ADDREF(sav);
3233 		break;
3234 	}
3235 	SAHTREE_RUNLOCK();
3236 	return (sav);
3237 }
3238 
3239 static int
3240 key_updatelifetimes(struct secasvar *sav, const struct sadb_msghdr *mhp)
3241 {
3242 	struct seclifetime *lft_h, *lft_s, *tmp;
3243 
3244 	/* Lifetime extension is optional, check that it is present. */
3245 	if (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) &&
3246 	    SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) {
3247 		/*
3248 		 * In case of SADB_UPDATE we may need to change
3249 		 * existing lifetimes.
3250 		 */
3251 		if (sav->state == SADB_SASTATE_MATURE) {
3252 			lft_h = lft_s = NULL;
3253 			goto reset;
3254 		}
3255 		return (0);
3256 	}
3257 	/* Both HARD and SOFT extensions must present */
3258 	if ((SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) &&
3259 	    !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) ||
3260 	    (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT) &&
3261 	    !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD))) {
3262 		ipseclog((LOG_DEBUG,
3263 		    "%s: invalid message: missing required header.\n",
3264 		    __func__));
3265 		return (EINVAL);
3266 	}
3267 	if (SADB_CHECKLEN(mhp, SADB_EXT_LIFETIME_HARD) ||
3268 	    SADB_CHECKLEN(mhp, SADB_EXT_LIFETIME_SOFT)) {
3269 		ipseclog((LOG_DEBUG,
3270 		    "%s: invalid message: wrong header size.\n", __func__));
3271 		return (EINVAL);
3272 	}
3273 	lft_h = key_dup_lifemsg((const struct sadb_lifetime *)
3274 	    mhp->ext[SADB_EXT_LIFETIME_HARD], M_IPSEC_MISC);
3275 	if (lft_h == NULL) {
3276 		PFKEYSTAT_INC(in_nomem);
3277 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3278 		return (ENOBUFS);
3279 	}
3280 	lft_s = key_dup_lifemsg((const struct sadb_lifetime *)
3281 	    mhp->ext[SADB_EXT_LIFETIME_SOFT], M_IPSEC_MISC);
3282 	if (lft_s == NULL) {
3283 		PFKEYSTAT_INC(in_nomem);
3284 		free(lft_h, M_IPSEC_MISC);
3285 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3286 		return (ENOBUFS);
3287 	}
3288 reset:
3289 	if (sav->state != SADB_SASTATE_LARVAL) {
3290 		/*
3291 		 * key_update() holds reference to this SA,
3292 		 * so it won't be deleted in meanwhile.
3293 		 */
3294 		SECASVAR_WLOCK(sav);
3295 		tmp = sav->lft_h;
3296 		sav->lft_h = lft_h;
3297 		lft_h = tmp;
3298 
3299 		tmp = sav->lft_s;
3300 		sav->lft_s = lft_s;
3301 		lft_s = tmp;
3302 		SECASVAR_WUNLOCK(sav);
3303 		if (lft_h != NULL)
3304 			free(lft_h, M_IPSEC_MISC);
3305 		if (lft_s != NULL)
3306 			free(lft_s, M_IPSEC_MISC);
3307 		return (0);
3308 	}
3309 	/* We can update lifetime without holding a lock */
3310 	IPSEC_ASSERT(sav->lft_h == NULL, ("lft_h is already initialized\n"));
3311 	IPSEC_ASSERT(sav->lft_s == NULL, ("lft_s is already initialized\n"));
3312 	sav->lft_h = lft_h;
3313 	sav->lft_s = lft_s;
3314 	return (0);
3315 }
3316 
3317 /*
3318  * copy SA values from PF_KEY message except *SPI, SEQ, PID and TYPE*.
3319  * You must update these if need. Expects only LARVAL SAs.
3320  * OUT:	0:	success.
3321  *	!0:	failure.
3322  */
3323 static int
3324 key_setsaval(struct secasvar *sav, const struct sadb_msghdr *mhp)
3325 {
3326 	const struct sadb_sa *sa0;
3327 	const struct sadb_key *key0;
3328 	uint32_t replay;
3329 	size_t len;
3330 	int error;
3331 
3332 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
3333 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
3334 	IPSEC_ASSERT(sav->state == SADB_SASTATE_LARVAL,
3335 	    ("Attempt to update non LARVAL SA"));
3336 
3337 	/* XXX rewrite */
3338 	error = key_setident(sav->sah, mhp);
3339 	if (error != 0)
3340 		goto fail;
3341 
3342 	/* SA */
3343 	if (!SADB_CHECKHDR(mhp, SADB_EXT_SA)) {
3344 		if (SADB_CHECKLEN(mhp, SADB_EXT_SA)) {
3345 			error = EINVAL;
3346 			goto fail;
3347 		}
3348 		sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3349 		sav->alg_auth = sa0->sadb_sa_auth;
3350 		sav->alg_enc = sa0->sadb_sa_encrypt;
3351 		sav->flags = sa0->sadb_sa_flags;
3352 		if ((sav->flags & SADB_KEY_FLAGS_MAX) != sav->flags) {
3353 			ipseclog((LOG_DEBUG,
3354 			    "%s: invalid sa_flags 0x%08x.\n", __func__,
3355 			    sav->flags));
3356 			error = EINVAL;
3357 			goto fail;
3358 		}
3359 
3360 		/* Optional replay window */
3361 		replay = 0;
3362 		if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0)
3363 			replay = sa0->sadb_sa_replay;
3364 		if (!SADB_CHECKHDR(mhp, SADB_X_EXT_SA_REPLAY)) {
3365 			if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA_REPLAY)) {
3366 				error = EINVAL;
3367 				goto fail;
3368 			}
3369 			replay = ((const struct sadb_x_sa_replay *)
3370 			    mhp->ext[SADB_X_EXT_SA_REPLAY])->sadb_x_sa_replay_replay;
3371 
3372 			if (replay > UINT32_MAX - 32) {
3373 				ipseclog((LOG_DEBUG,
3374 				    "%s: replay window too big.\n", __func__));
3375 				error = EINVAL;
3376 				goto fail;
3377 			}
3378 
3379 			replay = (replay + 7) >> 3;
3380 		}
3381 
3382 		sav->replay = malloc(sizeof(struct secreplay), M_IPSEC_MISC,
3383 		    M_NOWAIT | M_ZERO);
3384 		if (sav->replay == NULL) {
3385 			PFKEYSTAT_INC(in_nomem);
3386 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3387 			    __func__));
3388 			error = ENOBUFS;
3389 			goto fail;
3390 		}
3391 		mtx_init(&sav->replay->lock, "ipsec replay", NULL, MTX_DEF);
3392 
3393 		if (replay != 0) {
3394 			/* number of 32b blocks to be allocated */
3395 			uint32_t bitmap_size;
3396 
3397 			/* RFC 6479:
3398 			 * - the allocated replay window size must be
3399 			 *   a power of two.
3400 			 * - use an extra 32b block as a redundant window.
3401 			 */
3402 			bitmap_size = 1;
3403 			while (replay + 4 > bitmap_size)
3404 				bitmap_size <<= 1;
3405 			bitmap_size = bitmap_size / 4;
3406 
3407 			sav->replay->bitmap = malloc(
3408 			    bitmap_size * sizeof(uint32_t), M_IPSEC_MISC,
3409 			    M_NOWAIT | M_ZERO);
3410 			if (sav->replay->bitmap == NULL) {
3411 				PFKEYSTAT_INC(in_nomem);
3412 				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3413 					__func__));
3414 				error = ENOBUFS;
3415 				goto fail;
3416 			}
3417 			sav->replay->bitmap_size = bitmap_size;
3418 			sav->replay->wsize = replay;
3419 		}
3420 	}
3421 
3422 	/* Authentication keys */
3423 	if (!SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH)) {
3424 		if (SADB_CHECKLEN(mhp, SADB_EXT_KEY_AUTH)) {
3425 			error = EINVAL;
3426 			goto fail;
3427 		}
3428 		error = 0;
3429 		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3430 		len = mhp->extlen[SADB_EXT_KEY_AUTH];
3431 		switch (mhp->msg->sadb_msg_satype) {
3432 		case SADB_SATYPE_AH:
3433 		case SADB_SATYPE_ESP:
3434 		case SADB_X_SATYPE_TCPSIGNATURE:
3435 			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3436 			    sav->alg_auth != SADB_X_AALG_NULL)
3437 				error = EINVAL;
3438 			break;
3439 		case SADB_X_SATYPE_IPCOMP:
3440 		default:
3441 			error = EINVAL;
3442 			break;
3443 		}
3444 		if (error) {
3445 			ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n",
3446 				__func__));
3447 			goto fail;
3448 		}
3449 
3450 		sav->key_auth = key_dup_keymsg(key0, len, M_IPSEC_MISC);
3451 		if (sav->key_auth == NULL ) {
3452 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3453 				  __func__));
3454 			PFKEYSTAT_INC(in_nomem);
3455 			error = ENOBUFS;
3456 			goto fail;
3457 		}
3458 	}
3459 
3460 	/* Encryption key */
3461 	if (!SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT)) {
3462 		if (SADB_CHECKLEN(mhp, SADB_EXT_KEY_ENCRYPT)) {
3463 			error = EINVAL;
3464 			goto fail;
3465 		}
3466 		error = 0;
3467 		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3468 		len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3469 		switch (mhp->msg->sadb_msg_satype) {
3470 		case SADB_SATYPE_ESP:
3471 			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3472 			    sav->alg_enc != SADB_EALG_NULL) {
3473 				error = EINVAL;
3474 				break;
3475 			}
3476 			sav->key_enc = key_dup_keymsg(key0, len, M_IPSEC_MISC);
3477 			if (sav->key_enc == NULL) {
3478 				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3479 					__func__));
3480 				PFKEYSTAT_INC(in_nomem);
3481 				error = ENOBUFS;
3482 				goto fail;
3483 			}
3484 			break;
3485 		case SADB_X_SATYPE_IPCOMP:
3486 			if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3487 				error = EINVAL;
3488 			sav->key_enc = NULL;	/*just in case*/
3489 			break;
3490 		case SADB_SATYPE_AH:
3491 		case SADB_X_SATYPE_TCPSIGNATURE:
3492 		default:
3493 			error = EINVAL;
3494 			break;
3495 		}
3496 		if (error) {
3497 			ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n",
3498 				__func__));
3499 			goto fail;
3500 		}
3501 	}
3502 
3503 	/* set iv */
3504 	sav->ivlen = 0;
3505 	switch (mhp->msg->sadb_msg_satype) {
3506 	case SADB_SATYPE_AH:
3507 		if (sav->flags & SADB_X_EXT_DERIV) {
3508 			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3509 			    "given to AH SA.\n", __func__));
3510 			error = EINVAL;
3511 			goto fail;
3512 		}
3513 		if (sav->alg_enc != SADB_EALG_NONE) {
3514 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3515 			    "mismated.\n", __func__));
3516 			error = EINVAL;
3517 			goto fail;
3518 		}
3519 		error = xform_init(sav, XF_AH);
3520 		break;
3521 	case SADB_SATYPE_ESP:
3522 		if ((sav->flags & (SADB_X_EXT_OLD | SADB_X_EXT_DERIV)) ==
3523 		    (SADB_X_EXT_OLD | SADB_X_EXT_DERIV)) {
3524 			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3525 			    "given to old-esp.\n", __func__));
3526 			error = EINVAL;
3527 			goto fail;
3528 		}
3529 		error = xform_init(sav, XF_ESP);
3530 		break;
3531 	case SADB_X_SATYPE_IPCOMP:
3532 		if (sav->alg_auth != SADB_AALG_NONE) {
3533 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3534 			    "mismated.\n", __func__));
3535 			error = EINVAL;
3536 			goto fail;
3537 		}
3538 		if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 &&
3539 		    ntohl(sav->spi) >= 0x10000) {
3540 			ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n",
3541 			    __func__));
3542 			error = EINVAL;
3543 			goto fail;
3544 		}
3545 		error = xform_init(sav, XF_IPCOMP);
3546 		break;
3547 	case SADB_X_SATYPE_TCPSIGNATURE:
3548 		if (sav->alg_enc != SADB_EALG_NONE) {
3549 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3550 			    "mismated.\n", __func__));
3551 			error = EINVAL;
3552 			goto fail;
3553 		}
3554 		error = xform_init(sav, XF_TCPSIGNATURE);
3555 		break;
3556 	default:
3557 		ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__));
3558 		error = EPROTONOSUPPORT;
3559 		goto fail;
3560 	}
3561 	if (error) {
3562 		ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n",
3563 		    __func__, mhp->msg->sadb_msg_satype));
3564 		goto fail;
3565 	}
3566 
3567 	/* Handle NAT-T headers */
3568 	error = key_setnatt(sav, mhp);
3569 	if (error != 0)
3570 		goto fail;
3571 
3572 	/* Initialize lifetime for CURRENT */
3573 	sav->firstused = 0;
3574 	sav->created = time_second;
3575 
3576 	/* lifetimes for HARD and SOFT */
3577 	error = key_updatelifetimes(sav, mhp);
3578 	if (error == 0)
3579 		return (0);
3580 fail:
3581 	key_cleansav(sav);
3582 	return (error);
3583 }
3584 
3585 /*
3586  * subroutine for SADB_GET and SADB_DUMP.
3587  */
3588 static struct mbuf *
3589 key_setdumpsa(struct secasvar *sav, uint8_t type, uint8_t satype,
3590     uint32_t seq, uint32_t pid)
3591 {
3592 	struct seclifetime lft_c;
3593 	struct mbuf *result = NULL, *tres = NULL, *m;
3594 	int i, dumporder[] = {
3595 		SADB_EXT_SA, SADB_X_EXT_SA2, SADB_X_EXT_SA_REPLAY,
3596 		SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3597 		SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3598 		SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY,
3599 		SADB_EXT_KEY_AUTH, SADB_EXT_KEY_ENCRYPT,
3600 		SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST,
3601 		SADB_EXT_SENSITIVITY,
3602 		SADB_X_EXT_NAT_T_TYPE,
3603 		SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3604 		SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3605 		SADB_X_EXT_NAT_T_FRAG,
3606 	};
3607 	uint32_t replay_count;
3608 
3609 	SECASVAR_RLOCK_TRACKER;
3610 
3611 	m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3612 	if (m == NULL)
3613 		goto fail;
3614 	result = m;
3615 
3616 	for (i = nitems(dumporder) - 1; i >= 0; i--) {
3617 		m = NULL;
3618 		switch (dumporder[i]) {
3619 		case SADB_EXT_SA:
3620 			m = key_setsadbsa(sav);
3621 			if (!m)
3622 				goto fail;
3623 			break;
3624 
3625 		case SADB_X_EXT_SA2: {
3626 			SECASVAR_RLOCK(sav);
3627 			replay_count = sav->replay ? sav->replay->count : 0;
3628 			SECASVAR_RUNLOCK(sav);
3629 			m = key_setsadbxsa2(sav->sah->saidx.mode, replay_count,
3630 					sav->sah->saidx.reqid);
3631 			if (!m)
3632 				goto fail;
3633 			break;
3634 		}
3635 		case SADB_X_EXT_SA_REPLAY:
3636 			if (sav->replay == NULL ||
3637 			    sav->replay->wsize <= UINT8_MAX)
3638 				continue;
3639 
3640 			m = key_setsadbxsareplay(sav->replay->wsize);
3641 			if (!m)
3642 				goto fail;
3643 			break;
3644 
3645 		case SADB_EXT_ADDRESS_SRC:
3646 			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3647 			    &sav->sah->saidx.src.sa,
3648 			    FULLMASK, IPSEC_ULPROTO_ANY);
3649 			if (!m)
3650 				goto fail;
3651 			break;
3652 
3653 		case SADB_EXT_ADDRESS_DST:
3654 			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3655 			    &sav->sah->saidx.dst.sa,
3656 			    FULLMASK, IPSEC_ULPROTO_ANY);
3657 			if (!m)
3658 				goto fail;
3659 			break;
3660 
3661 		case SADB_EXT_KEY_AUTH:
3662 			if (!sav->key_auth)
3663 				continue;
3664 			m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH);
3665 			if (!m)
3666 				goto fail;
3667 			break;
3668 
3669 		case SADB_EXT_KEY_ENCRYPT:
3670 			if (!sav->key_enc)
3671 				continue;
3672 			m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT);
3673 			if (!m)
3674 				goto fail;
3675 			break;
3676 
3677 		case SADB_EXT_LIFETIME_CURRENT:
3678 			lft_c.addtime = sav->created;
3679 			lft_c.allocations = (uint32_t)counter_u64_fetch(
3680 			    sav->lft_c_allocations);
3681 			lft_c.bytes = counter_u64_fetch(sav->lft_c_bytes);
3682 			lft_c.usetime = sav->firstused;
3683 			m = key_setlifetime(&lft_c, SADB_EXT_LIFETIME_CURRENT);
3684 			if (!m)
3685 				goto fail;
3686 			break;
3687 
3688 		case SADB_EXT_LIFETIME_HARD:
3689 			if (!sav->lft_h)
3690 				continue;
3691 			m = key_setlifetime(sav->lft_h,
3692 					    SADB_EXT_LIFETIME_HARD);
3693 			if (!m)
3694 				goto fail;
3695 			break;
3696 
3697 		case SADB_EXT_LIFETIME_SOFT:
3698 			if (!sav->lft_s)
3699 				continue;
3700 			m = key_setlifetime(sav->lft_s,
3701 					    SADB_EXT_LIFETIME_SOFT);
3702 
3703 			if (!m)
3704 				goto fail;
3705 			break;
3706 
3707 		case SADB_X_EXT_NAT_T_TYPE:
3708 			if (sav->natt == NULL)
3709 				continue;
3710 			m = key_setsadbxtype(UDP_ENCAP_ESPINUDP);
3711 			if (!m)
3712 				goto fail;
3713 			break;
3714 
3715 		case SADB_X_EXT_NAT_T_DPORT:
3716 			if (sav->natt == NULL)
3717 				continue;
3718 			m = key_setsadbxport(sav->natt->dport,
3719 			    SADB_X_EXT_NAT_T_DPORT);
3720 			if (!m)
3721 				goto fail;
3722 			break;
3723 
3724 		case SADB_X_EXT_NAT_T_SPORT:
3725 			if (sav->natt == NULL)
3726 				continue;
3727 			m = key_setsadbxport(sav->natt->sport,
3728 			    SADB_X_EXT_NAT_T_SPORT);
3729 			if (!m)
3730 				goto fail;
3731 			break;
3732 
3733 		case SADB_X_EXT_NAT_T_OAI:
3734 			if (sav->natt == NULL ||
3735 			    (sav->natt->flags & IPSEC_NATT_F_OAI) == 0)
3736 				continue;
3737 			m = key_setsadbaddr(SADB_X_EXT_NAT_T_OAI,
3738 			    &sav->natt->oai.sa, FULLMASK, IPSEC_ULPROTO_ANY);
3739 			if (!m)
3740 				goto fail;
3741 			break;
3742 		case SADB_X_EXT_NAT_T_OAR:
3743 			if (sav->natt == NULL ||
3744 			    (sav->natt->flags & IPSEC_NATT_F_OAR) == 0)
3745 				continue;
3746 			m = key_setsadbaddr(SADB_X_EXT_NAT_T_OAR,
3747 			    &sav->natt->oar.sa, FULLMASK, IPSEC_ULPROTO_ANY);
3748 			if (!m)
3749 				goto fail;
3750 			break;
3751 		case SADB_X_EXT_NAT_T_FRAG:
3752 			/* We do not (yet) support those. */
3753 			continue;
3754 
3755 		case SADB_EXT_ADDRESS_PROXY:
3756 		case SADB_EXT_IDENTITY_SRC:
3757 		case SADB_EXT_IDENTITY_DST:
3758 			/* XXX: should we brought from SPD ? */
3759 		case SADB_EXT_SENSITIVITY:
3760 		default:
3761 			continue;
3762 		}
3763 
3764 		if (!m)
3765 			goto fail;
3766 		if (tres)
3767 			m_cat(m, tres);
3768 		tres = m;
3769 	}
3770 
3771 	m_cat(result, tres);
3772 	tres = NULL;
3773 	if (result->m_len < sizeof(struct sadb_msg)) {
3774 		result = m_pullup(result, sizeof(struct sadb_msg));
3775 		if (result == NULL)
3776 			goto fail;
3777 	}
3778 
3779 	result->m_pkthdr.len = 0;
3780 	for (m = result; m; m = m->m_next)
3781 		result->m_pkthdr.len += m->m_len;
3782 
3783 	mtod(result, struct sadb_msg *)->sadb_msg_len =
3784 	    PFKEY_UNIT64(result->m_pkthdr.len);
3785 
3786 	return result;
3787 
3788 fail:
3789 	m_freem(result);
3790 	m_freem(tres);
3791 	return NULL;
3792 }
3793 
3794 /*
3795  * set data into sadb_msg.
3796  */
3797 static struct mbuf *
3798 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq,
3799     pid_t pid, u_int16_t reserved)
3800 {
3801 	struct mbuf *m;
3802 	struct sadb_msg *p;
3803 	int len;
3804 
3805 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3806 	if (len > MCLBYTES)
3807 		return NULL;
3808 	m = key_mget(len);
3809 	if (m == NULL)
3810 		return NULL;
3811 	m->m_pkthdr.len = m->m_len = len;
3812 	m->m_next = NULL;
3813 
3814 	p = mtod(m, struct sadb_msg *);
3815 
3816 	bzero(p, len);
3817 	p->sadb_msg_version = PF_KEY_V2;
3818 	p->sadb_msg_type = type;
3819 	p->sadb_msg_errno = 0;
3820 	p->sadb_msg_satype = satype;
3821 	p->sadb_msg_len = PFKEY_UNIT64(tlen);
3822 	p->sadb_msg_reserved = reserved;
3823 	p->sadb_msg_seq = seq;
3824 	p->sadb_msg_pid = (u_int32_t)pid;
3825 
3826 	return m;
3827 }
3828 
3829 /*
3830  * copy secasvar data into sadb_address.
3831  */
3832 static struct mbuf *
3833 key_setsadbsa(struct secasvar *sav)
3834 {
3835 	struct mbuf *m;
3836 	struct sadb_sa *p;
3837 	int len;
3838 
3839 	len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3840 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3841 	if (m == NULL)
3842 		return (NULL);
3843 	m_align(m, len);
3844 	m->m_len = len;
3845 	p = mtod(m, struct sadb_sa *);
3846 	bzero(p, len);
3847 	p->sadb_sa_len = PFKEY_UNIT64(len);
3848 	p->sadb_sa_exttype = SADB_EXT_SA;
3849 	p->sadb_sa_spi = sav->spi;
3850 	p->sadb_sa_replay = sav->replay ?
3851 	    (sav->replay->wsize > UINT8_MAX ? UINT8_MAX :
3852 		sav->replay->wsize): 0;
3853 	p->sadb_sa_state = sav->state;
3854 	p->sadb_sa_auth = sav->alg_auth;
3855 	p->sadb_sa_encrypt = sav->alg_enc;
3856 	p->sadb_sa_flags = sav->flags & SADB_KEY_FLAGS_MAX;
3857 	return (m);
3858 }
3859 
3860 /*
3861  * set data into sadb_address.
3862  */
3863 static struct mbuf *
3864 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
3865     u_int8_t prefixlen, u_int16_t ul_proto)
3866 {
3867 	struct mbuf *m;
3868 	struct sadb_address *p;
3869 	size_t len;
3870 
3871 	len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3872 	    PFKEY_ALIGN8(saddr->sa_len);
3873 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3874 	if (m == NULL)
3875 		return (NULL);
3876 	m_align(m, len);
3877 	m->m_len = len;
3878 	p = mtod(m, struct sadb_address *);
3879 
3880 	bzero(p, len);
3881 	p->sadb_address_len = PFKEY_UNIT64(len);
3882 	p->sadb_address_exttype = exttype;
3883 	p->sadb_address_proto = ul_proto;
3884 	if (prefixlen == FULLMASK) {
3885 		switch (saddr->sa_family) {
3886 		case AF_INET:
3887 			prefixlen = sizeof(struct in_addr) << 3;
3888 			break;
3889 		case AF_INET6:
3890 			prefixlen = sizeof(struct in6_addr) << 3;
3891 			break;
3892 		default:
3893 			; /*XXX*/
3894 		}
3895 	}
3896 	p->sadb_address_prefixlen = prefixlen;
3897 	p->sadb_address_reserved = 0;
3898 
3899 	bcopy(saddr,
3900 	    mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3901 	    saddr->sa_len);
3902 
3903 	return m;
3904 }
3905 
3906 /*
3907  * set data into sadb_x_sa2.
3908  */
3909 static struct mbuf *
3910 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid)
3911 {
3912 	struct mbuf *m;
3913 	struct sadb_x_sa2 *p;
3914 	size_t len;
3915 
3916 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3917 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3918 	if (m == NULL)
3919 		return (NULL);
3920 	m_align(m, len);
3921 	m->m_len = len;
3922 	p = mtod(m, struct sadb_x_sa2 *);
3923 
3924 	bzero(p, len);
3925 	p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3926 	p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3927 	p->sadb_x_sa2_mode = mode;
3928 	p->sadb_x_sa2_reserved1 = 0;
3929 	p->sadb_x_sa2_reserved2 = 0;
3930 	p->sadb_x_sa2_sequence = seq;
3931 	p->sadb_x_sa2_reqid = reqid;
3932 
3933 	return m;
3934 }
3935 
3936 /*
3937  * Set data into sadb_x_sa_replay.
3938  */
3939 static struct mbuf *
3940 key_setsadbxsareplay(u_int32_t replay)
3941 {
3942 	struct mbuf *m;
3943 	struct sadb_x_sa_replay *p;
3944 	size_t len;
3945 
3946 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa_replay));
3947 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3948 	if (m == NULL)
3949 		return (NULL);
3950 	m_align(m, len);
3951 	m->m_len = len;
3952 	p = mtod(m, struct sadb_x_sa_replay *);
3953 
3954 	bzero(p, len);
3955 	p->sadb_x_sa_replay_len = PFKEY_UNIT64(len);
3956 	p->sadb_x_sa_replay_exttype = SADB_X_EXT_SA_REPLAY;
3957 	p->sadb_x_sa_replay_replay = (replay << 3);
3958 
3959 	return m;
3960 }
3961 
3962 /*
3963  * Set a type in sadb_x_nat_t_type.
3964  */
3965 static struct mbuf *
3966 key_setsadbxtype(u_int16_t type)
3967 {
3968 	struct mbuf *m;
3969 	size_t len;
3970 	struct sadb_x_nat_t_type *p;
3971 
3972 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3973 
3974 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3975 	if (m == NULL)
3976 		return (NULL);
3977 	m_align(m, len);
3978 	m->m_len = len;
3979 	p = mtod(m, struct sadb_x_nat_t_type *);
3980 
3981 	bzero(p, len);
3982 	p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3983 	p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3984 	p->sadb_x_nat_t_type_type = type;
3985 
3986 	return (m);
3987 }
3988 /*
3989  * Set a port in sadb_x_nat_t_port.
3990  * In contrast to default RFC 2367 behaviour, port is in network byte order.
3991  */
3992 static struct mbuf *
3993 key_setsadbxport(u_int16_t port, u_int16_t type)
3994 {
3995 	struct mbuf *m;
3996 	size_t len;
3997 	struct sadb_x_nat_t_port *p;
3998 
3999 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
4000 
4001 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
4002 	if (m == NULL)
4003 		return (NULL);
4004 	m_align(m, len);
4005 	m->m_len = len;
4006 	p = mtod(m, struct sadb_x_nat_t_port *);
4007 
4008 	bzero(p, len);
4009 	p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
4010 	p->sadb_x_nat_t_port_exttype = type;
4011 	p->sadb_x_nat_t_port_port = port;
4012 
4013 	return (m);
4014 }
4015 
4016 /*
4017  * Get port from sockaddr. Port is in network byte order.
4018  */
4019 uint16_t
4020 key_portfromsaddr(struct sockaddr *sa)
4021 {
4022 
4023 	switch (sa->sa_family) {
4024 #ifdef INET
4025 	case AF_INET:
4026 		return ((struct sockaddr_in *)sa)->sin_port;
4027 #endif
4028 #ifdef INET6
4029 	case AF_INET6:
4030 		return ((struct sockaddr_in6 *)sa)->sin6_port;
4031 #endif
4032 	}
4033 	return (0);
4034 }
4035 
4036 /*
4037  * Set port in struct sockaddr. Port is in network byte order.
4038  */
4039 void
4040 key_porttosaddr(struct sockaddr *sa, uint16_t port)
4041 {
4042 
4043 	switch (sa->sa_family) {
4044 #ifdef INET
4045 	case AF_INET:
4046 		((struct sockaddr_in *)sa)->sin_port = port;
4047 		break;
4048 #endif
4049 #ifdef INET6
4050 	case AF_INET6:
4051 		((struct sockaddr_in6 *)sa)->sin6_port = port;
4052 		break;
4053 #endif
4054 	default:
4055 		ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n",
4056 			__func__, sa->sa_family));
4057 		break;
4058 	}
4059 }
4060 
4061 /*
4062  * set data into sadb_x_policy
4063  */
4064 static struct mbuf *
4065 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id, u_int32_t priority)
4066 {
4067 	struct mbuf *m;
4068 	struct sadb_x_policy *p;
4069 	size_t len;
4070 
4071 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
4072 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
4073 	if (m == NULL)
4074 		return (NULL);
4075 	m_align(m, len);
4076 	m->m_len = len;
4077 	p = mtod(m, struct sadb_x_policy *);
4078 
4079 	bzero(p, len);
4080 	p->sadb_x_policy_len = PFKEY_UNIT64(len);
4081 	p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
4082 	p->sadb_x_policy_type = type;
4083 	p->sadb_x_policy_dir = dir;
4084 	p->sadb_x_policy_id = id;
4085 	p->sadb_x_policy_priority = priority;
4086 
4087 	return m;
4088 }
4089 
4090 /* %%% utilities */
4091 /* Take a key message (sadb_key) from the socket and turn it into one
4092  * of the kernel's key structures (seckey).
4093  *
4094  * IN: pointer to the src
4095  * OUT: NULL no more memory
4096  */
4097 struct seckey *
4098 key_dup_keymsg(const struct sadb_key *src, size_t len,
4099     struct malloc_type *type)
4100 {
4101 	struct seckey *dst;
4102 
4103 	dst = malloc(sizeof(*dst), type, M_NOWAIT);
4104 	if (dst != NULL) {
4105 		dst->bits = src->sadb_key_bits;
4106 		dst->key_data = malloc(len, type, M_NOWAIT);
4107 		if (dst->key_data != NULL) {
4108 			bcopy((const char *)(src + 1), dst->key_data, len);
4109 		} else {
4110 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
4111 			    __func__));
4112 			free(dst, type);
4113 			dst = NULL;
4114 		}
4115 	} else {
4116 		ipseclog((LOG_DEBUG, "%s: No more memory.\n",
4117 		    __func__));
4118 	}
4119 	return (dst);
4120 }
4121 
4122 /* Take a lifetime message (sadb_lifetime) passed in on a socket and
4123  * turn it into one of the kernel's lifetime structures (seclifetime).
4124  *
4125  * IN: pointer to the destination, source and malloc type
4126  * OUT: NULL, no more memory
4127  */
4128 
4129 static struct seclifetime *
4130 key_dup_lifemsg(const struct sadb_lifetime *src, struct malloc_type *type)
4131 {
4132 	struct seclifetime *dst;
4133 
4134 	dst = malloc(sizeof(*dst), type, M_NOWAIT);
4135 	if (dst == NULL) {
4136 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
4137 		return (NULL);
4138 	}
4139 	dst->allocations = src->sadb_lifetime_allocations;
4140 	dst->bytes = src->sadb_lifetime_bytes;
4141 	dst->addtime = src->sadb_lifetime_addtime;
4142 	dst->usetime = src->sadb_lifetime_usetime;
4143 	return (dst);
4144 }
4145 
4146 /*
4147  * compare two secasindex structure.
4148  * flag can specify to compare 2 saidxes.
4149  * compare two secasindex structure without both mode and reqid.
4150  * don't compare port.
4151  * IN:
4152  *      saidx0: source, it can be in SAD.
4153  *      saidx1: object.
4154  * OUT:
4155  *      1 : equal
4156  *      0 : not equal
4157  */
4158 static int
4159 key_cmpsaidx(const struct secasindex *saidx0, const struct secasindex *saidx1,
4160     int flag)
4161 {
4162 
4163 	/* sanity */
4164 	if (saidx0 == NULL && saidx1 == NULL)
4165 		return 1;
4166 
4167 	if (saidx0 == NULL || saidx1 == NULL)
4168 		return 0;
4169 
4170 	if (saidx0->proto != saidx1->proto)
4171 		return 0;
4172 
4173 	if (flag == CMP_EXACTLY) {
4174 		if (saidx0->mode != saidx1->mode)
4175 			return 0;
4176 		if (saidx0->reqid != saidx1->reqid)
4177 			return 0;
4178 		if (bcmp(&saidx0->src, &saidx1->src,
4179 		    saidx0->src.sa.sa_len) != 0 ||
4180 		    bcmp(&saidx0->dst, &saidx1->dst,
4181 		    saidx0->dst.sa.sa_len) != 0)
4182 			return 0;
4183 	} else {
4184 		/* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4185 		if (flag == CMP_MODE_REQID || flag == CMP_REQID) {
4186 			/*
4187 			 * If reqid of SPD is non-zero, unique SA is required.
4188 			 * The result must be of same reqid in this case.
4189 			 */
4190 			if (saidx1->reqid != 0 &&
4191 			    saidx0->reqid != saidx1->reqid)
4192 				return 0;
4193 		}
4194 
4195 		if (flag == CMP_MODE_REQID) {
4196 			if (saidx0->mode != IPSEC_MODE_ANY
4197 			 && saidx0->mode != saidx1->mode)
4198 				return 0;
4199 		}
4200 
4201 		if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, 0) != 0)
4202 			return 0;
4203 		if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, 0) != 0)
4204 			return 0;
4205 	}
4206 
4207 	return 1;
4208 }
4209 
4210 /*
4211  * compare two secindex structure exactly.
4212  * IN:
4213  *	spidx0: source, it is often in SPD.
4214  *	spidx1: object, it is often from PFKEY message.
4215  * OUT:
4216  *	1 : equal
4217  *	0 : not equal
4218  */
4219 static int
4220 key_cmpspidx_exactly(struct secpolicyindex *spidx0,
4221     struct secpolicyindex *spidx1)
4222 {
4223 	/* sanity */
4224 	if (spidx0 == NULL && spidx1 == NULL)
4225 		return 1;
4226 
4227 	if (spidx0 == NULL || spidx1 == NULL)
4228 		return 0;
4229 
4230 	if (spidx0->prefs != spidx1->prefs
4231 	 || spidx0->prefd != spidx1->prefd
4232 	 || spidx0->ul_proto != spidx1->ul_proto
4233 	 || spidx0->dir != spidx1->dir)
4234 		return 0;
4235 
4236 	return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 &&
4237 	       key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0;
4238 }
4239 
4240 /*
4241  * compare two secindex structure with mask.
4242  * IN:
4243  *	spidx0: source, it is often in SPD.
4244  *	spidx1: object, it is often from IP header.
4245  * OUT:
4246  *	1 : equal
4247  *	0 : not equal
4248  */
4249 static int
4250 key_cmpspidx_withmask(struct secpolicyindex *spidx0,
4251     struct secpolicyindex *spidx1)
4252 {
4253 	/* sanity */
4254 	if (spidx0 == NULL && spidx1 == NULL)
4255 		return 1;
4256 
4257 	if (spidx0 == NULL || spidx1 == NULL)
4258 		return 0;
4259 
4260 	if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4261 	    spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4262 	    spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4263 	    spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4264 		return 0;
4265 
4266 	/* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4267 	if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
4268 	 && spidx0->ul_proto != spidx1->ul_proto)
4269 		return 0;
4270 
4271 	switch (spidx0->src.sa.sa_family) {
4272 	case AF_INET:
4273 		if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
4274 		 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4275 			return 0;
4276 		if (!key_bbcmp(&spidx0->src.sin.sin_addr,
4277 		    &spidx1->src.sin.sin_addr, spidx0->prefs))
4278 			return 0;
4279 		break;
4280 	case AF_INET6:
4281 		if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
4282 		 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4283 			return 0;
4284 		/*
4285 		 * scope_id check. if sin6_scope_id is 0, we regard it
4286 		 * as a wildcard scope, which matches any scope zone ID.
4287 		 */
4288 		if (spidx0->src.sin6.sin6_scope_id &&
4289 		    spidx1->src.sin6.sin6_scope_id &&
4290 		    spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4291 			return 0;
4292 		if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
4293 		    &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4294 			return 0;
4295 		break;
4296 	default:
4297 		/* XXX */
4298 		if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4299 			return 0;
4300 		break;
4301 	}
4302 
4303 	switch (spidx0->dst.sa.sa_family) {
4304 	case AF_INET:
4305 		if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
4306 		 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4307 			return 0;
4308 		if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
4309 		    &spidx1->dst.sin.sin_addr, spidx0->prefd))
4310 			return 0;
4311 		break;
4312 	case AF_INET6:
4313 		if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
4314 		 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4315 			return 0;
4316 		/*
4317 		 * scope_id check. if sin6_scope_id is 0, we regard it
4318 		 * as a wildcard scope, which matches any scope zone ID.
4319 		 */
4320 		if (spidx0->dst.sin6.sin6_scope_id &&
4321 		    spidx1->dst.sin6.sin6_scope_id &&
4322 		    spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4323 			return 0;
4324 		if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
4325 		    &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4326 			return 0;
4327 		break;
4328 	default:
4329 		/* XXX */
4330 		if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4331 			return 0;
4332 		break;
4333 	}
4334 
4335 	/* XXX Do we check other field ?  e.g. flowinfo */
4336 
4337 	return 1;
4338 }
4339 
4340 #ifdef satosin
4341 #undef satosin
4342 #endif
4343 #define satosin(s) ((const struct sockaddr_in *)s)
4344 #ifdef satosin6
4345 #undef satosin6
4346 #endif
4347 #define satosin6(s) ((const struct sockaddr_in6 *)s)
4348 /* returns 0 on match */
4349 int
4350 key_sockaddrcmp(const struct sockaddr *sa1, const struct sockaddr *sa2,
4351     int port)
4352 {
4353 	if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
4354 		return 1;
4355 
4356 	switch (sa1->sa_family) {
4357 #ifdef INET
4358 	case AF_INET:
4359 		if (sa1->sa_len != sizeof(struct sockaddr_in))
4360 			return 1;
4361 		if (satosin(sa1)->sin_addr.s_addr !=
4362 		    satosin(sa2)->sin_addr.s_addr) {
4363 			return 1;
4364 		}
4365 		if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port)
4366 			return 1;
4367 		break;
4368 #endif
4369 #ifdef INET6
4370 	case AF_INET6:
4371 		if (sa1->sa_len != sizeof(struct sockaddr_in6))
4372 			return 1;	/*EINVAL*/
4373 		if (satosin6(sa1)->sin6_scope_id !=
4374 		    satosin6(sa2)->sin6_scope_id) {
4375 			return 1;
4376 		}
4377 		if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr,
4378 		    &satosin6(sa2)->sin6_addr)) {
4379 			return 1;
4380 		}
4381 		if (port &&
4382 		    satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) {
4383 			return 1;
4384 		}
4385 		break;
4386 #endif
4387 	default:
4388 		if (bcmp(sa1, sa2, sa1->sa_len) != 0)
4389 			return 1;
4390 		break;
4391 	}
4392 
4393 	return 0;
4394 }
4395 
4396 /* returns 0 on match */
4397 int
4398 key_sockaddrcmp_withmask(const struct sockaddr *sa1,
4399     const struct sockaddr *sa2, size_t mask)
4400 {
4401 	if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
4402 		return (1);
4403 
4404 	switch (sa1->sa_family) {
4405 #ifdef INET
4406 	case AF_INET:
4407 		return (!key_bbcmp(&satosin(sa1)->sin_addr,
4408 		    &satosin(sa2)->sin_addr, mask));
4409 #endif
4410 #ifdef INET6
4411 	case AF_INET6:
4412 		if (satosin6(sa1)->sin6_scope_id !=
4413 		    satosin6(sa2)->sin6_scope_id)
4414 			return (1);
4415 		return (!key_bbcmp(&satosin6(sa1)->sin6_addr,
4416 		    &satosin6(sa2)->sin6_addr, mask));
4417 #endif
4418 	}
4419 	return (1);
4420 }
4421 #undef satosin
4422 #undef satosin6
4423 
4424 /*
4425  * compare two buffers with mask.
4426  * IN:
4427  *	addr1: source
4428  *	addr2: object
4429  *	bits:  Number of bits to compare
4430  * OUT:
4431  *	1 : equal
4432  *	0 : not equal
4433  */
4434 static int
4435 key_bbcmp(const void *a1, const void *a2, u_int bits)
4436 {
4437 	const unsigned char *p1 = a1;
4438 	const unsigned char *p2 = a2;
4439 
4440 	/* XXX: This could be considerably faster if we compare a word
4441 	 * at a time, but it is complicated on LSB Endian machines */
4442 
4443 	/* Handle null pointers */
4444 	if (p1 == NULL || p2 == NULL)
4445 		return (p1 == p2);
4446 
4447 	while (bits >= 8) {
4448 		if (*p1++ != *p2++)
4449 			return 0;
4450 		bits -= 8;
4451 	}
4452 
4453 	if (bits > 0) {
4454 		u_int8_t mask = ~((1<<(8-bits))-1);
4455 		if ((*p1 & mask) != (*p2 & mask))
4456 			return 0;
4457 	}
4458 	return 1;	/* Match! */
4459 }
4460 
4461 static void
4462 key_flush_spd(time_t now)
4463 {
4464 	SPTREE_RLOCK_TRACKER;
4465 	struct secpolicy_list drainq;
4466 	struct secpolicy *sp, *nextsp;
4467 	u_int dir;
4468 
4469 	LIST_INIT(&drainq);
4470 	SPTREE_RLOCK();
4471 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4472 		TAILQ_FOREACH(sp, &V_sptree[dir], chain) {
4473 			if (sp->lifetime == 0 && sp->validtime == 0)
4474 				continue;
4475 			if ((sp->lifetime &&
4476 			    now - sp->created > sp->lifetime) ||
4477 			    (sp->validtime &&
4478 			    now - sp->lastused > sp->validtime)) {
4479 				/* Hold extra reference to send SPDEXPIRE */
4480 				SP_ADDREF(sp);
4481 				LIST_INSERT_HEAD(&drainq, sp, drainq);
4482 			}
4483 		}
4484 	}
4485 	SPTREE_RUNLOCK();
4486 	if (LIST_EMPTY(&drainq))
4487 		return;
4488 
4489 	SPTREE_WLOCK();
4490 	sp = LIST_FIRST(&drainq);
4491 	while (sp != NULL) {
4492 		nextsp = LIST_NEXT(sp, drainq);
4493 		/* Check that SP is still linked */
4494 		if (sp->state != IPSEC_SPSTATE_ALIVE) {
4495 			LIST_REMOVE(sp, drainq);
4496 			key_freesp(&sp); /* release extra reference */
4497 			sp = nextsp;
4498 			continue;
4499 		}
4500 		TAILQ_REMOVE(&V_sptree[sp->spidx.dir], sp, chain);
4501 		V_spd_size--;
4502 		LIST_REMOVE(sp, idhash);
4503 		sp->state = IPSEC_SPSTATE_DEAD;
4504 		sp = nextsp;
4505 	}
4506 	V_sp_genid++;
4507 	SPTREE_WUNLOCK();
4508 	if (SPDCACHE_ENABLED())
4509 		spdcache_clear();
4510 
4511 	sp = LIST_FIRST(&drainq);
4512 	while (sp != NULL) {
4513 		nextsp = LIST_NEXT(sp, drainq);
4514 		key_spdexpire(sp);
4515 		key_freesp(&sp); /* release extra reference */
4516 		key_freesp(&sp); /* release last reference */
4517 		sp = nextsp;
4518 	}
4519 }
4520 
4521 static void
4522 key_flush_sad(time_t now)
4523 {
4524 	SAHTREE_RLOCK_TRACKER;
4525 	struct secashead_list emptyq;
4526 	struct secasvar_list drainq, hexpireq, sexpireq, freeq;
4527 	struct secashead *sah, *nextsah;
4528 	struct secasvar *sav, *nextsav;
4529 
4530 	SECASVAR_RLOCK_TRACKER;
4531 
4532 	LIST_INIT(&drainq);
4533 	LIST_INIT(&hexpireq);
4534 	LIST_INIT(&sexpireq);
4535 	LIST_INIT(&emptyq);
4536 
4537 	SAHTREE_RLOCK();
4538 	TAILQ_FOREACH(sah, &V_sahtree, chain) {
4539 		/* Check for empty SAH */
4540 		if (TAILQ_EMPTY(&sah->savtree_larval) &&
4541 		    TAILQ_EMPTY(&sah->savtree_alive)) {
4542 			SAH_ADDREF(sah);
4543 			LIST_INSERT_HEAD(&emptyq, sah, drainq);
4544 			continue;
4545 		}
4546 		/* Add all stale LARVAL SAs into drainq */
4547 		TAILQ_FOREACH(sav, &sah->savtree_larval, chain) {
4548 			if (now - sav->created < V_key_larval_lifetime)
4549 				continue;
4550 			SAV_ADDREF(sav);
4551 			LIST_INSERT_HEAD(&drainq, sav, drainq);
4552 		}
4553 		TAILQ_FOREACH(sav, &sah->savtree_alive, chain) {
4554 			/* lifetimes aren't specified */
4555 			if (sav->lft_h == NULL)
4556 				continue;
4557 			SECASVAR_RLOCK(sav);
4558 			/*
4559 			 * Check again with lock held, because it may
4560 			 * be updated by SADB_UPDATE.
4561 			 */
4562 			if (sav->lft_h == NULL) {
4563 				SECASVAR_RUNLOCK(sav);
4564 				continue;
4565 			}
4566 			/*
4567 			 * RFC 2367:
4568 			 * HARD lifetimes MUST take precedence over SOFT
4569 			 * lifetimes, meaning if the HARD and SOFT lifetimes
4570 			 * are the same, the HARD lifetime will appear on the
4571 			 * EXPIRE message.
4572 			 */
4573 			/* check HARD lifetime */
4574 			if ((sav->lft_h->addtime != 0 &&
4575 			    now - sav->created > sav->lft_h->addtime) ||
4576 			    (sav->lft_h->usetime != 0 && sav->firstused &&
4577 			    now - sav->firstused > sav->lft_h->usetime) ||
4578 			    (sav->lft_h->bytes != 0 && counter_u64_fetch(
4579 			        sav->lft_c_bytes) > sav->lft_h->bytes)) {
4580 				SECASVAR_RUNLOCK(sav);
4581 				SAV_ADDREF(sav);
4582 				LIST_INSERT_HEAD(&hexpireq, sav, drainq);
4583 				continue;
4584 			}
4585 			/* check SOFT lifetime (only for MATURE SAs) */
4586 			if (sav->state == SADB_SASTATE_MATURE && (
4587 			    (sav->lft_s->addtime != 0 &&
4588 			    now - sav->created > sav->lft_s->addtime) ||
4589 			    (sav->lft_s->usetime != 0 && sav->firstused &&
4590 			    now - sav->firstused > sav->lft_s->usetime) ||
4591 			    (sav->lft_s->bytes != 0 && counter_u64_fetch(
4592 				sav->lft_c_bytes) > sav->lft_s->bytes) ||
4593 			    (!(sav->flags & SADB_X_SAFLAGS_ESN) &&
4594 			    (sav->replay != NULL) && (
4595 			    (sav->replay->count > UINT32_80PCT) ||
4596 			    (sav->replay->last > UINT32_80PCT))))) {
4597 				SECASVAR_RUNLOCK(sav);
4598 				SAV_ADDREF(sav);
4599 				LIST_INSERT_HEAD(&sexpireq, sav, drainq);
4600 				continue;
4601 			}
4602 			SECASVAR_RUNLOCK(sav);
4603 		}
4604 	}
4605 	SAHTREE_RUNLOCK();
4606 
4607 	if (LIST_EMPTY(&emptyq) && LIST_EMPTY(&drainq) &&
4608 	    LIST_EMPTY(&hexpireq) && LIST_EMPTY(&sexpireq))
4609 		return;
4610 
4611 	LIST_INIT(&freeq);
4612 	SAHTREE_WLOCK();
4613 	/* Unlink stale LARVAL SAs */
4614 	sav = LIST_FIRST(&drainq);
4615 	while (sav != NULL) {
4616 		nextsav = LIST_NEXT(sav, drainq);
4617 		/* Check that SA is still LARVAL */
4618 		if (sav->state != SADB_SASTATE_LARVAL) {
4619 			LIST_REMOVE(sav, drainq);
4620 			LIST_INSERT_HEAD(&freeq, sav, drainq);
4621 			sav = nextsav;
4622 			continue;
4623 		}
4624 		TAILQ_REMOVE(&sav->sah->savtree_larval, sav, chain);
4625 		LIST_REMOVE(sav, spihash);
4626 		sav->state = SADB_SASTATE_DEAD;
4627 		sav = nextsav;
4628 	}
4629 	/* Unlink all SAs with expired HARD lifetime */
4630 	sav = LIST_FIRST(&hexpireq);
4631 	while (sav != NULL) {
4632 		nextsav = LIST_NEXT(sav, drainq);
4633 		/* Check that SA is not unlinked */
4634 		if (sav->state == SADB_SASTATE_DEAD) {
4635 			LIST_REMOVE(sav, drainq);
4636 			LIST_INSERT_HEAD(&freeq, sav, drainq);
4637 			sav = nextsav;
4638 			continue;
4639 		}
4640 		TAILQ_REMOVE(&sav->sah->savtree_alive, sav, chain);
4641 		LIST_REMOVE(sav, spihash);
4642 		sav->state = SADB_SASTATE_DEAD;
4643 		sav = nextsav;
4644 	}
4645 	/* Mark all SAs with expired SOFT lifetime as DYING */
4646 	sav = LIST_FIRST(&sexpireq);
4647 	while (sav != NULL) {
4648 		nextsav = LIST_NEXT(sav, drainq);
4649 		/* Check that SA is not unlinked */
4650 		if (sav->state == SADB_SASTATE_DEAD) {
4651 			LIST_REMOVE(sav, drainq);
4652 			LIST_INSERT_HEAD(&freeq, sav, drainq);
4653 			sav = nextsav;
4654 			continue;
4655 		}
4656 		/*
4657 		 * NOTE: this doesn't change SA order in the chain.
4658 		 */
4659 		sav->state = SADB_SASTATE_DYING;
4660 		sav = nextsav;
4661 	}
4662 	/* Unlink empty SAHs */
4663 	sah = LIST_FIRST(&emptyq);
4664 	while (sah != NULL) {
4665 		nextsah = LIST_NEXT(sah, drainq);
4666 		/* Check that SAH is still empty and not unlinked */
4667 		if (sah->state == SADB_SASTATE_DEAD ||
4668 		    !TAILQ_EMPTY(&sah->savtree_larval) ||
4669 		    !TAILQ_EMPTY(&sah->savtree_alive)) {
4670 			LIST_REMOVE(sah, drainq);
4671 			key_freesah(&sah); /* release extra reference */
4672 			sah = nextsah;
4673 			continue;
4674 		}
4675 		TAILQ_REMOVE(&V_sahtree, sah, chain);
4676 		LIST_REMOVE(sah, addrhash);
4677 		sah->state = SADB_SASTATE_DEAD;
4678 		sah = nextsah;
4679 	}
4680 	SAHTREE_WUNLOCK();
4681 
4682 	/* Send SPDEXPIRE messages */
4683 	sav = LIST_FIRST(&hexpireq);
4684 	while (sav != NULL) {
4685 		nextsav = LIST_NEXT(sav, drainq);
4686 		key_expire(sav, 1);
4687 		key_freesah(&sav->sah); /* release reference from SAV */
4688 		key_freesav(&sav); /* release extra reference */
4689 		key_freesav(&sav); /* release last reference */
4690 		sav = nextsav;
4691 	}
4692 	sav = LIST_FIRST(&sexpireq);
4693 	while (sav != NULL) {
4694 		nextsav = LIST_NEXT(sav, drainq);
4695 		key_expire(sav, 0);
4696 		key_freesav(&sav); /* release extra reference */
4697 		sav = nextsav;
4698 	}
4699 	/* Free stale LARVAL SAs */
4700 	sav = LIST_FIRST(&drainq);
4701 	while (sav != NULL) {
4702 		nextsav = LIST_NEXT(sav, drainq);
4703 		key_freesah(&sav->sah); /* release reference from SAV */
4704 		key_freesav(&sav); /* release extra reference */
4705 		key_freesav(&sav); /* release last reference */
4706 		sav = nextsav;
4707 	}
4708 	/* Free SAs that were unlinked/changed by someone else */
4709 	sav = LIST_FIRST(&freeq);
4710 	while (sav != NULL) {
4711 		nextsav = LIST_NEXT(sav, drainq);
4712 		key_freesav(&sav); /* release extra reference */
4713 		sav = nextsav;
4714 	}
4715 	/* Free empty SAH */
4716 	sah = LIST_FIRST(&emptyq);
4717 	while (sah != NULL) {
4718 		nextsah = LIST_NEXT(sah, drainq);
4719 		key_freesah(&sah); /* release extra reference */
4720 		key_freesah(&sah); /* release last reference */
4721 		sah = nextsah;
4722 	}
4723 }
4724 
4725 static void
4726 key_flush_acq(time_t now)
4727 {
4728 	struct secacq *acq, *nextacq;
4729 
4730 	/* ACQ tree */
4731 	ACQ_LOCK();
4732 	acq = LIST_FIRST(&V_acqtree);
4733 	while (acq != NULL) {
4734 		nextacq = LIST_NEXT(acq, chain);
4735 		if (now - acq->created > V_key_blockacq_lifetime) {
4736 			LIST_REMOVE(acq, chain);
4737 			LIST_REMOVE(acq, addrhash);
4738 			LIST_REMOVE(acq, seqhash);
4739 			free(acq, M_IPSEC_SAQ);
4740 		}
4741 		acq = nextacq;
4742 	}
4743 	ACQ_UNLOCK();
4744 }
4745 
4746 static void
4747 key_flush_spacq(time_t now)
4748 {
4749 	struct secspacq *acq, *nextacq;
4750 
4751 	/* SP ACQ tree */
4752 	SPACQ_LOCK();
4753 	for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) {
4754 		nextacq = LIST_NEXT(acq, chain);
4755 		if (now - acq->created > V_key_blockacq_lifetime
4756 		 && __LIST_CHAINED(acq)) {
4757 			LIST_REMOVE(acq, chain);
4758 			free(acq, M_IPSEC_SAQ);
4759 		}
4760 	}
4761 	SPACQ_UNLOCK();
4762 }
4763 
4764 /*
4765  * time handler.
4766  * scanning SPD and SAD to check status for each entries,
4767  * and do to remove or to expire.
4768  * XXX: year 2038 problem may remain.
4769  */
4770 static void
4771 key_timehandler(void *arg)
4772 {
4773 	VNET_ITERATOR_DECL(vnet_iter);
4774 	time_t now = time_second;
4775 
4776 	VNET_LIST_RLOCK_NOSLEEP();
4777 	VNET_FOREACH(vnet_iter) {
4778 		CURVNET_SET(vnet_iter);
4779 		key_flush_spd(now);
4780 		key_flush_sad(now);
4781 		key_flush_acq(now);
4782 		key_flush_spacq(now);
4783 		CURVNET_RESTORE();
4784 	}
4785 	VNET_LIST_RUNLOCK_NOSLEEP();
4786 
4787 #ifndef IPSEC_DEBUG2
4788 	/* do exchange to tick time !! */
4789 	callout_schedule(&key_timer, hz);
4790 #endif /* IPSEC_DEBUG2 */
4791 }
4792 
4793 u_long
4794 key_random(void)
4795 {
4796 	u_long value;
4797 
4798 	arc4random_buf(&value, sizeof(value));
4799 	return value;
4800 }
4801 
4802 /*
4803  * map SADB_SATYPE_* to IPPROTO_*.
4804  * if satype == SADB_SATYPE then satype is mapped to ~0.
4805  * OUT:
4806  *	0: invalid satype.
4807  */
4808 static uint8_t
4809 key_satype2proto(uint8_t satype)
4810 {
4811 	switch (satype) {
4812 	case SADB_SATYPE_UNSPEC:
4813 		return IPSEC_PROTO_ANY;
4814 	case SADB_SATYPE_AH:
4815 		return IPPROTO_AH;
4816 	case SADB_SATYPE_ESP:
4817 		return IPPROTO_ESP;
4818 	case SADB_X_SATYPE_IPCOMP:
4819 		return IPPROTO_IPCOMP;
4820 	case SADB_X_SATYPE_TCPSIGNATURE:
4821 		return IPPROTO_TCP;
4822 	default:
4823 		return 0;
4824 	}
4825 	/* NOTREACHED */
4826 }
4827 
4828 /*
4829  * map IPPROTO_* to SADB_SATYPE_*
4830  * OUT:
4831  *	0: invalid protocol type.
4832  */
4833 static uint8_t
4834 key_proto2satype(uint8_t proto)
4835 {
4836 	switch (proto) {
4837 	case IPPROTO_AH:
4838 		return SADB_SATYPE_AH;
4839 	case IPPROTO_ESP:
4840 		return SADB_SATYPE_ESP;
4841 	case IPPROTO_IPCOMP:
4842 		return SADB_X_SATYPE_IPCOMP;
4843 	case IPPROTO_TCP:
4844 		return SADB_X_SATYPE_TCPSIGNATURE;
4845 	default:
4846 		return 0;
4847 	}
4848 	/* NOTREACHED */
4849 }
4850 
4851 /* %%% PF_KEY */
4852 /*
4853  * SADB_GETSPI processing is to receive
4854  *	<base, (SA2), src address, dst address, (SPI range)>
4855  * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4856  * tree with the status of LARVAL, and send
4857  *	<base, SA(*), address(SD)>
4858  * to the IKMPd.
4859  *
4860  * IN:	mhp: pointer to the pointer to each header.
4861  * OUT:	NULL if fail.
4862  *	other if success, return pointer to the message to send.
4863  */
4864 static int
4865 key_getspi(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
4866 {
4867 	struct secasindex saidx;
4868 	struct sadb_address *src0, *dst0;
4869 	struct secasvar *sav;
4870 	uint32_t reqid, spi;
4871 	int error;
4872 	uint8_t mode, proto;
4873 
4874 	IPSEC_ASSERT(so != NULL, ("null socket"));
4875 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4876 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4877 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4878 
4879 	if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) ||
4880 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST)
4881 #ifdef PFKEY_STRICT_CHECKS
4882 	    || SADB_CHECKHDR(mhp, SADB_EXT_SPIRANGE)
4883 #endif
4884 	    ) {
4885 		ipseclog((LOG_DEBUG,
4886 		    "%s: invalid message: missing required header.\n",
4887 		    __func__));
4888 		error = EINVAL;
4889 		goto fail;
4890 	}
4891 	if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) ||
4892 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)
4893 #ifdef PFKEY_STRICT_CHECKS
4894 	    || SADB_CHECKLEN(mhp, SADB_EXT_SPIRANGE)
4895 #endif
4896 	    ) {
4897 		ipseclog((LOG_DEBUG,
4898 		    "%s: invalid message: wrong header size.\n", __func__));
4899 		error = EINVAL;
4900 		goto fail;
4901 	}
4902 	if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) {
4903 		mode = IPSEC_MODE_ANY;
4904 		reqid = 0;
4905 	} else {
4906 		if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) {
4907 			ipseclog((LOG_DEBUG,
4908 			    "%s: invalid message: wrong header size.\n",
4909 			    __func__));
4910 			error = EINVAL;
4911 			goto fail;
4912 		}
4913 		mode = ((struct sadb_x_sa2 *)
4914 		    mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4915 		reqid = ((struct sadb_x_sa2 *)
4916 		    mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4917 	}
4918 
4919 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4920 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4921 
4922 	/* map satype to proto */
4923 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4924 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4925 			__func__));
4926 		error = EINVAL;
4927 		goto fail;
4928 	}
4929 	error = key_checksockaddrs((struct sockaddr *)(src0 + 1),
4930 	    (struct sockaddr *)(dst0 + 1));
4931 	if (error != 0) {
4932 		ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__));
4933 		error = EINVAL;
4934 		goto fail;
4935 	}
4936 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4937 
4938 	/* SPI allocation */
4939 	SPI_ALLOC_LOCK();
4940 	spi = key_do_getnewspi(
4941 	    (struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE], &saidx);
4942 	if (spi == 0) {
4943 		/*
4944 		 * Requested SPI or SPI range is not available or
4945 		 * already used.
4946 		 */
4947 		SPI_ALLOC_UNLOCK();
4948 		error = EEXIST;
4949 		goto fail;
4950 	}
4951 	sav = key_newsav(mhp, &saidx, spi, &error);
4952 	SPI_ALLOC_UNLOCK();
4953 	if (sav == NULL)
4954 		goto fail;
4955 
4956 	if (sav->seq != 0) {
4957 		/*
4958 		 * RFC2367:
4959 		 * If the SADB_GETSPI message is in response to a
4960 		 * kernel-generated SADB_ACQUIRE, the sadb_msg_seq
4961 		 * MUST be the same as the SADB_ACQUIRE message.
4962 		 *
4963 		 * XXXAE: However it doesn't definethe behaviour how to
4964 		 * check this and what to do if it doesn't match.
4965 		 * Also what we should do if it matches?
4966 		 *
4967 		 * We can compare saidx used in SADB_ACQUIRE with saidx
4968 		 * used in SADB_GETSPI, but this probably can break
4969 		 * existing software. For now just warn if it doesn't match.
4970 		 *
4971 		 * XXXAE: anyway it looks useless.
4972 		 */
4973 		key_acqdone(&saidx, sav->seq);
4974 	}
4975 	KEYDBG(KEY_STAMP,
4976 	    printf("%s: SA(%p)\n", __func__, sav));
4977 	KEYDBG(KEY_DATA, kdebug_secasv(sav));
4978 
4979     {
4980 	struct mbuf *n, *nn;
4981 	struct sadb_sa *m_sa;
4982 	struct sadb_msg *newmsg;
4983 	int off, len;
4984 
4985 	/* create new sadb_msg to reply. */
4986 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4987 	    PFKEY_ALIGN8(sizeof(struct sadb_sa));
4988 
4989 	n = key_mget(len);
4990 	if (n == NULL) {
4991 		error = ENOBUFS;
4992 		goto fail;
4993 	}
4994 
4995 	n->m_len = len;
4996 	n->m_next = NULL;
4997 	off = 0;
4998 
4999 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
5000 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
5001 
5002 	m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off);
5003 	m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
5004 	m_sa->sadb_sa_exttype = SADB_EXT_SA;
5005 	m_sa->sadb_sa_spi = spi; /* SPI is already in network byte order */
5006 	off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
5007 
5008 	IPSEC_ASSERT(off == len,
5009 		("length inconsistency (off %u len %u)", off, len));
5010 
5011 	n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
5012 	    SADB_EXT_ADDRESS_DST);
5013 	if (!n->m_next) {
5014 		m_freem(n);
5015 		error = ENOBUFS;
5016 		goto fail;
5017 	}
5018 
5019 	if (n->m_len < sizeof(struct sadb_msg)) {
5020 		n = m_pullup(n, sizeof(struct sadb_msg));
5021 		if (n == NULL)
5022 			return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
5023 	}
5024 
5025 	n->m_pkthdr.len = 0;
5026 	for (nn = n; nn; nn = nn->m_next)
5027 		n->m_pkthdr.len += nn->m_len;
5028 
5029 	newmsg = mtod(n, struct sadb_msg *);
5030 	newmsg->sadb_msg_seq = sav->seq;
5031 	newmsg->sadb_msg_errno = 0;
5032 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5033 
5034 	m_freem(m);
5035 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5036     }
5037 
5038 fail:
5039 	return (key_senderror(so, m, error));
5040 }
5041 
5042 /*
5043  * allocating new SPI
5044  * called by key_getspi().
5045  * OUT:
5046  *	0:	failure.
5047  *	others: success, SPI in network byte order.
5048  */
5049 static uint32_t
5050 key_do_getnewspi(struct sadb_spirange *spirange, struct secasindex *saidx)
5051 {
5052 	uint32_t min, max, newspi, t;
5053 	int tries, limit;
5054 
5055 	SPI_ALLOC_LOCK_ASSERT();
5056 
5057 	/* set spi range to allocate */
5058 	if (spirange != NULL) {
5059 		min = spirange->sadb_spirange_min;
5060 		max = spirange->sadb_spirange_max;
5061 	} else {
5062 		min = V_key_spi_minval;
5063 		max = V_key_spi_maxval;
5064 	}
5065 	/* IPCOMP needs 2-byte SPI */
5066 	if (saidx->proto == IPPROTO_IPCOMP) {
5067 		if (min >= 0x10000)
5068 			min = 0xffff;
5069 		if (max >= 0x10000)
5070 			max = 0xffff;
5071 		if (min > max) {
5072 			t = min; min = max; max = t;
5073 		}
5074 	}
5075 
5076 	if (min == max) {
5077 		if (key_checkspidup(htonl(min))) {
5078 			ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n",
5079 			    __func__, min));
5080 			return 0;
5081 		}
5082 
5083 		tries = 1;
5084 		newspi = min;
5085 	} else {
5086 		/* init SPI */
5087 		newspi = 0;
5088 
5089 		limit = atomic_load_int(&V_key_spi_trycnt);
5090 		/* when requesting to allocate spi ranged */
5091 		for (tries = 0; tries < limit; tries++) {
5092 			/* generate pseudo-random SPI value ranged. */
5093 			newspi = min + (key_random() % (max - min + 1));
5094 			if (!key_checkspidup(htonl(newspi)))
5095 				break;
5096 		}
5097 
5098 		if (tries == limit || newspi == 0) {
5099 			ipseclog((LOG_DEBUG,
5100 			    "%s: failed to allocate SPI.\n", __func__));
5101 			return 0;
5102 		}
5103 	}
5104 
5105 	/* statistics */
5106 	keystat.getspi_count =
5107 	    (keystat.getspi_count + tries) / 2;
5108 
5109 	return (htonl(newspi));
5110 }
5111 
5112 /*
5113  * Find TCP-MD5 SA with corresponding secasindex.
5114  * If not found, return NULL and fill SPI with usable value if needed.
5115  */
5116 static struct secasvar *
5117 key_getsav_tcpmd5(struct secasindex *saidx, uint32_t *spi)
5118 {
5119 	SAHTREE_RLOCK_TRACKER;
5120 	struct secashead *sah;
5121 	struct secasvar *sav;
5122 
5123 	IPSEC_ASSERT(saidx->proto == IPPROTO_TCP, ("wrong proto"));
5124 	SAHTREE_RLOCK();
5125 	LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) {
5126 		if (sah->saidx.proto != IPPROTO_TCP)
5127 			continue;
5128 		if (!key_sockaddrcmp(&saidx->dst.sa, &sah->saidx.dst.sa, 0) &&
5129 		    !key_sockaddrcmp(&saidx->src.sa, &sah->saidx.src.sa, 0))
5130 			break;
5131 	}
5132 	if (sah != NULL) {
5133 		if (V_key_preferred_oldsa)
5134 			sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue);
5135 		else
5136 			sav = TAILQ_FIRST(&sah->savtree_alive);
5137 		if (sav != NULL) {
5138 			SAV_ADDREF(sav);
5139 			SAHTREE_RUNLOCK();
5140 			return (sav);
5141 		}
5142 	}
5143 	if (spi == NULL) {
5144 		/* No SPI required */
5145 		SAHTREE_RUNLOCK();
5146 		return (NULL);
5147 	}
5148 	/* Check that SPI is unique */
5149 	LIST_FOREACH(sav, SAVHASH_HASH(*spi), spihash) {
5150 		if (sav->spi == *spi)
5151 			break;
5152 	}
5153 	if (sav == NULL) {
5154 		SAHTREE_RUNLOCK();
5155 		/* SPI is already unique */
5156 		return (NULL);
5157 	}
5158 	SAHTREE_RUNLOCK();
5159 	/* XXX: not optimal */
5160 	*spi = key_do_getnewspi(NULL, saidx);
5161 	return (NULL);
5162 }
5163 
5164 static int
5165 key_updateaddresses(struct socket *so, struct mbuf *m,
5166     const struct sadb_msghdr *mhp, struct secasvar *sav,
5167     struct secasindex *saidx)
5168 {
5169 	struct sockaddr *newaddr;
5170 	struct secashead *sah;
5171 	struct secasvar *newsav, *tmp;
5172 	struct mbuf *n;
5173 	int error, isnew;
5174 
5175 	/* Check that we need to change SAH */
5176 	if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_SRC)) {
5177 		newaddr = (struct sockaddr *)(
5178 		    ((struct sadb_address *)
5179 		    mhp->ext[SADB_X_EXT_NEW_ADDRESS_SRC]) + 1);
5180 		bcopy(newaddr, &saidx->src, newaddr->sa_len);
5181 		key_porttosaddr(&saidx->src.sa, 0);
5182 	}
5183 	if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_DST)) {
5184 		newaddr = (struct sockaddr *)(
5185 		    ((struct sadb_address *)
5186 		    mhp->ext[SADB_X_EXT_NEW_ADDRESS_DST]) + 1);
5187 		bcopy(newaddr, &saidx->dst, newaddr->sa_len);
5188 		key_porttosaddr(&saidx->dst.sa, 0);
5189 	}
5190 	if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_SRC) ||
5191 	    !SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_DST)) {
5192 		error = key_checksockaddrs(&saidx->src.sa, &saidx->dst.sa);
5193 		if (error != 0) {
5194 			ipseclog((LOG_DEBUG, "%s: invalid new sockaddr.\n",
5195 			    __func__));
5196 			return (error);
5197 		}
5198 
5199 		sah = key_getsah(saidx);
5200 		if (sah == NULL) {
5201 			/* create a new SA index */
5202 			sah = key_newsah(saidx);
5203 			if (sah == NULL) {
5204 				ipseclog((LOG_DEBUG,
5205 				    "%s: No more memory.\n", __func__));
5206 				return (ENOBUFS);
5207 			}
5208 			isnew = 2; /* SAH is new */
5209 		} else
5210 			isnew = 1; /* existing SAH is referenced */
5211 	} else {
5212 		/*
5213 		 * src and dst addresses are still the same.
5214 		 * Do we want to change NAT-T config?
5215 		 */
5216 		if (sav->sah->saidx.proto != IPPROTO_ESP ||
5217 		    SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_TYPE) ||
5218 		    SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_SPORT) ||
5219 		    SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_DPORT)) {
5220 			ipseclog((LOG_DEBUG,
5221 			    "%s: invalid message: missing required header.\n",
5222 			    __func__));
5223 			return (EINVAL);
5224 		}
5225 		/* We hold reference to SA, thus SAH will be referenced too. */
5226 		sah = sav->sah;
5227 		isnew = 0;
5228 	}
5229 
5230 	newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA,
5231 	    M_NOWAIT | M_ZERO);
5232 	if (newsav == NULL) {
5233 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5234 		error = ENOBUFS;
5235 		goto fail;
5236 	}
5237 
5238 	/* Clone SA's content into newsav */
5239 	SAV_INITREF(newsav);
5240 	bcopy(sav, newsav, offsetof(struct secasvar, chain));
5241 	/*
5242 	 * We create new NAT-T config if it is needed.
5243 	 * Old NAT-T config will be freed by key_cleansav() when
5244 	 * last reference to SA will be released.
5245 	 */
5246 	newsav->natt = NULL;
5247 	newsav->sah = sah;
5248 	newsav->state = SADB_SASTATE_MATURE;
5249 	error = key_setnatt(newsav, mhp);
5250 	if (error != 0)
5251 		goto fail;
5252 
5253 	SAHTREE_WLOCK();
5254 	/* Check that SA is still alive */
5255 	if (sav->state == SADB_SASTATE_DEAD) {
5256 		/* SA was unlinked */
5257 		SAHTREE_WUNLOCK();
5258 		error = ESRCH;
5259 		goto fail;
5260 	}
5261 
5262 	/* Unlink SA from SAH and SPI hash */
5263 	IPSEC_ASSERT((sav->flags & SADB_X_EXT_F_CLONED) == 0,
5264 	    ("SA is already cloned"));
5265 	IPSEC_ASSERT(sav->state == SADB_SASTATE_MATURE ||
5266 	    sav->state == SADB_SASTATE_DYING,
5267 	    ("Wrong SA state %u\n", sav->state));
5268 	TAILQ_REMOVE(&sav->sah->savtree_alive, sav, chain);
5269 	LIST_REMOVE(sav, spihash);
5270 	sav->state = SADB_SASTATE_DEAD;
5271 
5272 	/*
5273 	 * Link new SA with SAH. Keep SAs ordered by
5274 	 * create time (newer are first).
5275 	 */
5276 	TAILQ_FOREACH(tmp, &sah->savtree_alive, chain) {
5277 		if (newsav->created > tmp->created) {
5278 			TAILQ_INSERT_BEFORE(tmp, newsav, chain);
5279 			break;
5280 		}
5281 	}
5282 	if (tmp == NULL)
5283 		TAILQ_INSERT_TAIL(&sah->savtree_alive, newsav, chain);
5284 
5285 	/* Add new SA into SPI hash. */
5286 	LIST_INSERT_HEAD(SAVHASH_HASH(newsav->spi), newsav, spihash);
5287 
5288 	/* Add new SAH into SADB. */
5289 	if (isnew == 2) {
5290 		TAILQ_INSERT_HEAD(&V_sahtree, sah, chain);
5291 		LIST_INSERT_HEAD(SAHADDRHASH_HASH(saidx), sah, addrhash);
5292 		sah->state = SADB_SASTATE_MATURE;
5293 		SAH_ADDREF(sah); /* newsav references new SAH */
5294 	}
5295 	/*
5296 	 * isnew == 1 -> @sah was referenced by key_getsah().
5297 	 * isnew == 0 -> we use the same @sah, that was used by @sav,
5298 	 *	and we use its reference for @newsav.
5299 	 */
5300 	SECASVAR_WLOCK(sav);
5301 	/* XXX: replace cntr with pointer? */
5302 	newsav->cntr = sav->cntr;
5303 	sav->flags |= SADB_X_EXT_F_CLONED;
5304 	SECASVAR_WUNLOCK(sav);
5305 
5306 	SAHTREE_WUNLOCK();
5307 
5308 	KEYDBG(KEY_STAMP,
5309 	    printf("%s: SA(%p) cloned into SA(%p)\n",
5310 	    __func__, sav, newsav));
5311 	KEYDBG(KEY_DATA, kdebug_secasv(newsav));
5312 
5313 	key_freesav(&sav); /* release last reference */
5314 
5315 	/* set msg buf from mhp */
5316 	n = key_getmsgbuf_x1(m, mhp);
5317 	if (n == NULL) {
5318 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5319 		return (ENOBUFS);
5320 	}
5321 	m_freem(m);
5322 	key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5323 	return (0);
5324 fail:
5325 	if (isnew != 0)
5326 		key_freesah(&sah);
5327 	if (newsav != NULL) {
5328 		if (newsav->natt != NULL)
5329 			free(newsav->natt, M_IPSEC_MISC);
5330 		free(newsav, M_IPSEC_SA);
5331 	}
5332 	return (error);
5333 }
5334 
5335 /*
5336  * SADB_UPDATE processing
5337  * receive
5338  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5339  *       key(AE), (identity(SD),) (sensitivity)>
5340  * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
5341  * and send
5342  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5343  *       (identity(SD),) (sensitivity)>
5344  * to the ikmpd.
5345  *
5346  * m will always be freed.
5347  */
5348 static int
5349 key_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5350 {
5351 	struct secasindex saidx;
5352 	struct sadb_address *src0, *dst0;
5353 	struct sadb_sa *sa0;
5354 	struct secasvar *sav;
5355 	uint32_t reqid;
5356 	int error;
5357 	uint8_t mode, proto;
5358 
5359 	IPSEC_ASSERT(so != NULL, ("null socket"));
5360 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5361 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5362 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5363 
5364 	/* map satype to proto */
5365 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5366 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5367 		    __func__));
5368 		return key_senderror(so, m, EINVAL);
5369 	}
5370 
5371 	if (SADB_CHECKHDR(mhp, SADB_EXT_SA) ||
5372 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) ||
5373 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) ||
5374 	    (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) &&
5375 		!SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) ||
5376 	    (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT) &&
5377 		!SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD))) {
5378 		ipseclog((LOG_DEBUG,
5379 		    "%s: invalid message: missing required header.\n",
5380 		    __func__));
5381 		return key_senderror(so, m, EINVAL);
5382 	}
5383 	if (SADB_CHECKLEN(mhp, SADB_EXT_SA) ||
5384 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) ||
5385 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) {
5386 		ipseclog((LOG_DEBUG,
5387 		    "%s: invalid message: wrong header size.\n", __func__));
5388 		return key_senderror(so, m, EINVAL);
5389 	}
5390 	if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) {
5391 		mode = IPSEC_MODE_ANY;
5392 		reqid = 0;
5393 	} else {
5394 		if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) {
5395 			ipseclog((LOG_DEBUG,
5396 			    "%s: invalid message: wrong header size.\n",
5397 			    __func__));
5398 			return key_senderror(so, m, EINVAL);
5399 		}
5400 		mode = ((struct sadb_x_sa2 *)
5401 		    mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5402 		reqid = ((struct sadb_x_sa2 *)
5403 		    mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5404 	}
5405 
5406 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5407 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5408 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5409 
5410 	/*
5411 	 * Only SADB_SASTATE_MATURE SAs may be submitted in an
5412 	 * SADB_UPDATE message.
5413 	 */
5414 	if (sa0->sadb_sa_state != SADB_SASTATE_MATURE) {
5415 		ipseclog((LOG_DEBUG, "%s: invalid state.\n", __func__));
5416 #ifdef PFKEY_STRICT_CHECKS
5417 		return key_senderror(so, m, EINVAL);
5418 #endif
5419 	}
5420 	error = key_checksockaddrs((struct sockaddr *)(src0 + 1),
5421 	    (struct sockaddr *)(dst0 + 1));
5422 	if (error != 0) {
5423 		ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__));
5424 		return key_senderror(so, m, error);
5425 	}
5426 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5427 	sav = key_getsavbyspi(sa0->sadb_sa_spi);
5428 	if (sav == NULL) {
5429 		ipseclog((LOG_DEBUG, "%s: no SA found for SPI %u\n",
5430 		    __func__, ntohl(sa0->sadb_sa_spi)));
5431 		return key_senderror(so, m, EINVAL);
5432 	}
5433 	/*
5434 	 * Check that SADB_UPDATE issued by the same process that did
5435 	 * SADB_GETSPI or SADB_ADD.
5436 	 */
5437 	if (sav->pid != mhp->msg->sadb_msg_pid) {
5438 		ipseclog((LOG_DEBUG,
5439 		    "%s: pid mismatched (SPI %u, pid %u vs. %u)\n", __func__,
5440 		    ntohl(sav->spi), sav->pid, mhp->msg->sadb_msg_pid));
5441 		key_freesav(&sav);
5442 		return key_senderror(so, m, EINVAL);
5443 	}
5444 	/* saidx should match with SA. */
5445 	if (key_cmpsaidx(&sav->sah->saidx, &saidx, CMP_MODE_REQID) == 0) {
5446 		ipseclog((LOG_DEBUG, "%s: saidx mismatched for SPI %u\n",
5447 		    __func__, ntohl(sav->spi)));
5448 		key_freesav(&sav);
5449 		return key_senderror(so, m, ESRCH);
5450 	}
5451 
5452 	if (sav->state == SADB_SASTATE_LARVAL) {
5453 		if ((mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5454 		    SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT)) ||
5455 		    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5456 		    SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH))) {
5457 			ipseclog((LOG_DEBUG,
5458 			    "%s: invalid message: missing required header.\n",
5459 			    __func__));
5460 			key_freesav(&sav);
5461 			return key_senderror(so, m, EINVAL);
5462 		}
5463 		/*
5464 		 * We can set any values except src, dst and SPI.
5465 		 */
5466 		error = key_setsaval(sav, mhp);
5467 		if (error != 0) {
5468 			key_freesav(&sav);
5469 			return (key_senderror(so, m, error));
5470 		}
5471 		/* Change SA state to MATURE */
5472 		SAHTREE_WLOCK();
5473 		if (sav->state != SADB_SASTATE_LARVAL) {
5474 			/* SA was deleted or another thread made it MATURE. */
5475 			SAHTREE_WUNLOCK();
5476 			key_freesav(&sav);
5477 			return (key_senderror(so, m, ESRCH));
5478 		}
5479 		/*
5480 		 * NOTE: we keep SAs in savtree_alive ordered by created
5481 		 * time. When SA's state changed from LARVAL to MATURE,
5482 		 * we update its created time in key_setsaval() and move
5483 		 * it into head of savtree_alive.
5484 		 */
5485 		TAILQ_REMOVE(&sav->sah->savtree_larval, sav, chain);
5486 		TAILQ_INSERT_HEAD(&sav->sah->savtree_alive, sav, chain);
5487 		sav->state = SADB_SASTATE_MATURE;
5488 		SAHTREE_WUNLOCK();
5489 	} else {
5490 		/*
5491 		 * For DYING and MATURE SA we can change only state
5492 		 * and lifetimes. Report EINVAL if something else attempted
5493 		 * to change.
5494 		 */
5495 		if (!SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT) ||
5496 		    !SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH)) {
5497 			key_freesav(&sav);
5498 			return (key_senderror(so, m, EINVAL));
5499 		}
5500 		error = key_updatelifetimes(sav, mhp);
5501 		if (error != 0) {
5502 			key_freesav(&sav);
5503 			return (key_senderror(so, m, error));
5504 		}
5505 		/*
5506 		 * This is FreeBSD extension to RFC2367.
5507 		 * IKEd can specify SADB_X_EXT_NEW_ADDRESS_SRC and/or
5508 		 * SADB_X_EXT_NEW_ADDRESS_DST when it wants to change
5509 		 * SA addresses (for example to implement MOBIKE protocol
5510 		 * as described in RFC4555). Also we allow to change
5511 		 * NAT-T config.
5512 		 */
5513 		if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_SRC) ||
5514 		    !SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_DST) ||
5515 		    !SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_TYPE) ||
5516 		    sav->natt != NULL) {
5517 			error = key_updateaddresses(so, m, mhp, sav, &saidx);
5518 			key_freesav(&sav);
5519 			if (error != 0)
5520 				return (key_senderror(so, m, error));
5521 			return (0);
5522 		}
5523 		/* Check that SA is still alive */
5524 		SAHTREE_WLOCK();
5525 		if (sav->state == SADB_SASTATE_DEAD) {
5526 			/* SA was unlinked */
5527 			SAHTREE_WUNLOCK();
5528 			key_freesav(&sav);
5529 			return (key_senderror(so, m, ESRCH));
5530 		}
5531 		/*
5532 		 * NOTE: there is possible state moving from DYING to MATURE,
5533 		 * but this doesn't change created time, so we won't reorder
5534 		 * this SA.
5535 		 */
5536 		sav->state = SADB_SASTATE_MATURE;
5537 		SAHTREE_WUNLOCK();
5538 	}
5539 	KEYDBG(KEY_STAMP,
5540 	    printf("%s: SA(%p)\n", __func__, sav));
5541 	KEYDBG(KEY_DATA, kdebug_secasv(sav));
5542 	key_freesav(&sav);
5543 
5544     {
5545 	struct mbuf *n;
5546 
5547 	/* set msg buf from mhp */
5548 	n = key_getmsgbuf_x1(m, mhp);
5549 	if (n == NULL) {
5550 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5551 		return key_senderror(so, m, ENOBUFS);
5552 	}
5553 
5554 	m_freem(m);
5555 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5556     }
5557 }
5558 
5559 /*
5560  * SADB_ADD processing
5561  * add an entry to SA database, when received
5562  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5563  *       key(AE), (identity(SD),) (sensitivity)>
5564  * from the ikmpd,
5565  * and send
5566  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5567  *       (identity(SD),) (sensitivity)>
5568  * to the ikmpd.
5569  *
5570  * IGNORE identity and sensitivity messages.
5571  *
5572  * m will always be freed.
5573  */
5574 static int
5575 key_add(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5576 {
5577 	struct secasindex saidx;
5578 	struct sadb_address *src0, *dst0;
5579 	struct sadb_sa *sa0;
5580 	struct secasvar *sav;
5581 	uint32_t reqid, spi;
5582 	uint8_t mode, proto;
5583 	int error;
5584 
5585 	IPSEC_ASSERT(so != NULL, ("null socket"));
5586 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5587 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5588 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5589 
5590 	/* map satype to proto */
5591 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5592 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5593 		    __func__));
5594 		return key_senderror(so, m, EINVAL);
5595 	}
5596 
5597 	if (SADB_CHECKHDR(mhp, SADB_EXT_SA) ||
5598 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) ||
5599 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) ||
5600 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && (
5601 		SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT) ||
5602 		SADB_CHECKLEN(mhp, SADB_EXT_KEY_ENCRYPT))) ||
5603 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && (
5604 		SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH) ||
5605 		SADB_CHECKLEN(mhp, SADB_EXT_KEY_AUTH))) ||
5606 	    (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) &&
5607 		!SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) ||
5608 	    (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT) &&
5609 		!SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD))) {
5610 		ipseclog((LOG_DEBUG,
5611 		    "%s: invalid message: missing required header.\n",
5612 		    __func__));
5613 		return key_senderror(so, m, EINVAL);
5614 	}
5615 	if (SADB_CHECKLEN(mhp, SADB_EXT_SA) ||
5616 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) ||
5617 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) {
5618 		ipseclog((LOG_DEBUG,
5619 		    "%s: invalid message: wrong header size.\n", __func__));
5620 		return key_senderror(so, m, EINVAL);
5621 	}
5622 	if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) {
5623 		mode = IPSEC_MODE_ANY;
5624 		reqid = 0;
5625 	} else {
5626 		if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) {
5627 			ipseclog((LOG_DEBUG,
5628 			    "%s: invalid message: wrong header size.\n",
5629 			    __func__));
5630 			return key_senderror(so, m, EINVAL);
5631 		}
5632 		mode = ((struct sadb_x_sa2 *)
5633 		    mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5634 		reqid = ((struct sadb_x_sa2 *)
5635 		    mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5636 	}
5637 
5638 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5639 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5640 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5641 
5642 	/*
5643 	 * Only SADB_SASTATE_MATURE SAs may be submitted in an
5644 	 * SADB_ADD message.
5645 	 */
5646 	if (sa0->sadb_sa_state != SADB_SASTATE_MATURE) {
5647 		ipseclog((LOG_DEBUG, "%s: invalid state.\n", __func__));
5648 #ifdef PFKEY_STRICT_CHECKS
5649 		return key_senderror(so, m, EINVAL);
5650 #endif
5651 	}
5652 	error = key_checksockaddrs((struct sockaddr *)(src0 + 1),
5653 	    (struct sockaddr *)(dst0 + 1));
5654 	if (error != 0) {
5655 		ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__));
5656 		return key_senderror(so, m, error);
5657 	}
5658 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5659 	spi = sa0->sadb_sa_spi;
5660 	/*
5661 	 * For TCP-MD5 SAs we don't use SPI. Check the uniqueness using
5662 	 * secasindex.
5663 	 * XXXAE: IPComp seems also doesn't use SPI.
5664 	 */
5665 	SPI_ALLOC_LOCK();
5666 	if (proto == IPPROTO_TCP) {
5667 		sav = key_getsav_tcpmd5(&saidx, &spi);
5668 		if (sav == NULL && spi == 0) {
5669 			SPI_ALLOC_UNLOCK();
5670 			/* Failed to allocate SPI */
5671 			ipseclog((LOG_DEBUG, "%s: SA already exists.\n",
5672 			    __func__));
5673 			return key_senderror(so, m, EEXIST);
5674 		}
5675 		/* XXX: SPI that we report back can have another value */
5676 	} else {
5677 		/* We can create new SA only if SPI is different. */
5678 		sav = key_getsavbyspi(spi);
5679 	}
5680 	if (sav != NULL) {
5681 		SPI_ALLOC_UNLOCK();
5682 		key_freesav(&sav);
5683 		ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__));
5684 		return key_senderror(so, m, EEXIST);
5685 	}
5686 
5687 	sav = key_newsav(mhp, &saidx, spi, &error);
5688 	SPI_ALLOC_UNLOCK();
5689 	if (sav == NULL)
5690 		return key_senderror(so, m, error);
5691 	KEYDBG(KEY_STAMP,
5692 	    printf("%s: return SA(%p)\n", __func__, sav));
5693 	KEYDBG(KEY_DATA, kdebug_secasv(sav));
5694 	/*
5695 	 * If SADB_ADD was in response to SADB_ACQUIRE, we need to schedule
5696 	 * ACQ for deletion.
5697 	 */
5698 	if (sav->seq != 0)
5699 		key_acqdone(&saidx, sav->seq);
5700 
5701     {
5702 	/*
5703 	 * Don't call key_freesav() on error here, as we would like to
5704 	 * keep the SA in the database.
5705 	 */
5706 	struct mbuf *n;
5707 
5708 	/* set msg buf from mhp */
5709 	n = key_getmsgbuf_x1(m, mhp);
5710 	if (n == NULL) {
5711 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5712 		return key_senderror(so, m, ENOBUFS);
5713 	}
5714 
5715 	m_freem(m);
5716 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5717     }
5718 }
5719 
5720 /*
5721  * NAT-T support.
5722  * IKEd may request the use ESP in UDP encapsulation when it detects the
5723  * presence of NAT. It uses NAT-T extension headers for such SAs to specify
5724  * parameters needed for encapsulation and decapsulation. These PF_KEY
5725  * extension headers are not standardized, so this comment addresses our
5726  * implementation.
5727  * SADB_X_EXT_NAT_T_TYPE specifies type of encapsulation, we support only
5728  * UDP_ENCAP_ESPINUDP as described in RFC3948.
5729  * SADB_X_EXT_NAT_T_SPORT/DPORT specifies source and destination ports for
5730  * UDP header. We use these ports in UDP encapsulation procedure, also we
5731  * can check them in UDP decapsulation procedure.
5732  * SADB_X_EXT_NAT_T_OA[IR] specifies original address of initiator or
5733  * responder. These addresses can be used for transport mode to adjust
5734  * checksum after decapsulation and decryption. Since original IP addresses
5735  * used by peer usually different (we detected presence of NAT), TCP/UDP
5736  * pseudo header checksum and IP header checksum was calculated using original
5737  * addresses. After decapsulation and decryption we need to adjust checksum
5738  * to have correct datagram.
5739  *
5740  * We expect presence of NAT-T extension headers only in SADB_ADD and
5741  * SADB_UPDATE messages. We report NAT-T extension headers in replies
5742  * to SADB_ADD, SADB_UPDATE, SADB_GET, and SADB_DUMP messages.
5743  */
5744 static int
5745 key_setnatt(struct secasvar *sav, const struct sadb_msghdr *mhp)
5746 {
5747 	struct sadb_x_nat_t_port *port;
5748 	struct sadb_x_nat_t_type *type;
5749 	struct sadb_address *oai, *oar;
5750 	struct sockaddr *sa;
5751 	uint32_t addr;
5752 	uint16_t cksum;
5753 
5754 	IPSEC_ASSERT(sav->natt == NULL, ("natt is already initialized"));
5755 	/*
5756 	 * Ignore NAT-T headers if sproto isn't ESP.
5757 	 */
5758 	if (sav->sah->saidx.proto != IPPROTO_ESP)
5759 		return (0);
5760 
5761 	if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_TYPE) &&
5762 	    !SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_SPORT) &&
5763 	    !SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_DPORT)) {
5764 		if (SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_TYPE) ||
5765 		    SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_SPORT) ||
5766 		    SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_DPORT)) {
5767 			ipseclog((LOG_DEBUG,
5768 			    "%s: invalid message: wrong header size.\n",
5769 			    __func__));
5770 			return (EINVAL);
5771 		}
5772 	} else
5773 		return (0);
5774 
5775 	type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5776 	if (type->sadb_x_nat_t_type_type != UDP_ENCAP_ESPINUDP) {
5777 		ipseclog((LOG_DEBUG, "%s: unsupported NAT-T type %u.\n",
5778 		    __func__, type->sadb_x_nat_t_type_type));
5779 		return (EINVAL);
5780 	}
5781 	/*
5782 	 * Allocate storage for NAT-T config.
5783 	 * On error it will be released by key_cleansav().
5784 	 */
5785 	sav->natt = malloc(sizeof(struct secnatt), M_IPSEC_MISC,
5786 	    M_NOWAIT | M_ZERO);
5787 	if (sav->natt == NULL) {
5788 		PFKEYSTAT_INC(in_nomem);
5789 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5790 		return (ENOBUFS);
5791 	}
5792 	port = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5793 	if (port->sadb_x_nat_t_port_port == 0) {
5794 		ipseclog((LOG_DEBUG, "%s: invalid NAT-T sport specified.\n",
5795 		    __func__));
5796 		return (EINVAL);
5797 	}
5798 	sav->natt->sport = port->sadb_x_nat_t_port_port;
5799 	port = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5800 	if (port->sadb_x_nat_t_port_port == 0) {
5801 		ipseclog((LOG_DEBUG, "%s: invalid NAT-T dport specified.\n",
5802 		    __func__));
5803 		return (EINVAL);
5804 	}
5805 	sav->natt->dport = port->sadb_x_nat_t_port_port;
5806 
5807 	/*
5808 	 * SADB_X_EXT_NAT_T_OAI and SADB_X_EXT_NAT_T_OAR are optional
5809 	 * and needed only for transport mode IPsec.
5810 	 * Usually NAT translates only one address, but it is possible,
5811 	 * that both addresses could be translated.
5812 	 * NOTE: Value of SADB_X_EXT_NAT_T_OAI is equal to SADB_X_EXT_NAT_T_OA.
5813 	 */
5814 	if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_OAI)) {
5815 		if (SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_OAI)) {
5816 			ipseclog((LOG_DEBUG,
5817 			    "%s: invalid message: wrong header size.\n",
5818 			    __func__));
5819 			return (EINVAL);
5820 		}
5821 		oai = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5822 	} else
5823 		oai = NULL;
5824 	if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_OAR)) {
5825 		if (SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_OAR)) {
5826 			ipseclog((LOG_DEBUG,
5827 			    "%s: invalid message: wrong header size.\n",
5828 			    __func__));
5829 			return (EINVAL);
5830 		}
5831 		oar = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5832 	} else
5833 		oar = NULL;
5834 
5835 	/* Initialize addresses only for transport mode */
5836 	if (sav->sah->saidx.mode != IPSEC_MODE_TUNNEL) {
5837 		cksum = 0;
5838 		if (oai != NULL) {
5839 			/* Currently we support only AF_INET */
5840 			sa = (struct sockaddr *)(oai + 1);
5841 			if (sa->sa_family != AF_INET ||
5842 			    sa->sa_len != sizeof(struct sockaddr_in)) {
5843 				ipseclog((LOG_DEBUG,
5844 				    "%s: wrong NAT-OAi header.\n",
5845 				    __func__));
5846 				return (EINVAL);
5847 			}
5848 			/* Ignore address if it the same */
5849 			if (((struct sockaddr_in *)sa)->sin_addr.s_addr !=
5850 			    sav->sah->saidx.src.sin.sin_addr.s_addr) {
5851 				bcopy(sa, &sav->natt->oai.sa, sa->sa_len);
5852 				sav->natt->flags |= IPSEC_NATT_F_OAI;
5853 				/* Calculate checksum delta */
5854 				addr = sav->sah->saidx.src.sin.sin_addr.s_addr;
5855 				cksum = in_addword(cksum, ~addr >> 16);
5856 				cksum = in_addword(cksum, ~addr & 0xffff);
5857 				addr = sav->natt->oai.sin.sin_addr.s_addr;
5858 				cksum = in_addword(cksum, addr >> 16);
5859 				cksum = in_addword(cksum, addr & 0xffff);
5860 			}
5861 		}
5862 		if (oar != NULL) {
5863 			/* Currently we support only AF_INET */
5864 			sa = (struct sockaddr *)(oar + 1);
5865 			if (sa->sa_family != AF_INET ||
5866 			    sa->sa_len != sizeof(struct sockaddr_in)) {
5867 				ipseclog((LOG_DEBUG,
5868 				    "%s: wrong NAT-OAr header.\n",
5869 				    __func__));
5870 				return (EINVAL);
5871 			}
5872 			/* Ignore address if it the same */
5873 			if (((struct sockaddr_in *)sa)->sin_addr.s_addr !=
5874 			    sav->sah->saidx.dst.sin.sin_addr.s_addr) {
5875 				bcopy(sa, &sav->natt->oar.sa, sa->sa_len);
5876 				sav->natt->flags |= IPSEC_NATT_F_OAR;
5877 				/* Calculate checksum delta */
5878 				addr = sav->sah->saidx.dst.sin.sin_addr.s_addr;
5879 				cksum = in_addword(cksum, ~addr >> 16);
5880 				cksum = in_addword(cksum, ~addr & 0xffff);
5881 				addr = sav->natt->oar.sin.sin_addr.s_addr;
5882 				cksum = in_addword(cksum, addr >> 16);
5883 				cksum = in_addword(cksum, addr & 0xffff);
5884 			}
5885 		}
5886 		sav->natt->cksum = cksum;
5887 	}
5888 	return (0);
5889 }
5890 
5891 static int
5892 key_setident(struct secashead *sah, const struct sadb_msghdr *mhp)
5893 {
5894 	const struct sadb_ident *idsrc, *iddst;
5895 
5896 	IPSEC_ASSERT(sah != NULL, ("null secashead"));
5897 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5898 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5899 
5900 	/* don't make buffer if not there */
5901 	if (SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_SRC) &&
5902 	    SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_DST)) {
5903 		sah->idents = NULL;
5904 		sah->identd = NULL;
5905 		return (0);
5906 	}
5907 
5908 	if (SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_SRC) ||
5909 	    SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_DST)) {
5910 		ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__));
5911 		return (EINVAL);
5912 	}
5913 
5914 	idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5915 	iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5916 
5917 	/* validity check */
5918 	if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5919 		ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__));
5920 		return EINVAL;
5921 	}
5922 
5923 	switch (idsrc->sadb_ident_type) {
5924 	case SADB_IDENTTYPE_PREFIX:
5925 	case SADB_IDENTTYPE_FQDN:
5926 	case SADB_IDENTTYPE_USERFQDN:
5927 	default:
5928 		/* XXX do nothing */
5929 		sah->idents = NULL;
5930 		sah->identd = NULL;
5931 	 	return 0;
5932 	}
5933 
5934 	/* make structure */
5935 	sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5936 	if (sah->idents == NULL) {
5937 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5938 		return ENOBUFS;
5939 	}
5940 	sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5941 	if (sah->identd == NULL) {
5942 		free(sah->idents, M_IPSEC_MISC);
5943 		sah->idents = NULL;
5944 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5945 		return ENOBUFS;
5946 	}
5947 	sah->idents->type = idsrc->sadb_ident_type;
5948 	sah->idents->id = idsrc->sadb_ident_id;
5949 
5950 	sah->identd->type = iddst->sadb_ident_type;
5951 	sah->identd->id = iddst->sadb_ident_id;
5952 
5953 	return 0;
5954 }
5955 
5956 /*
5957  * m will not be freed on return.
5958  * it is caller's responsibility to free the result.
5959  *
5960  * Called from SADB_ADD and SADB_UPDATE. Reply will contain headers
5961  * from the request in defined order.
5962  */
5963 static struct mbuf *
5964 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
5965 {
5966 	struct mbuf *n;
5967 
5968 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5969 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5970 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5971 
5972 	/* create new sadb_msg to reply. */
5973 	n = key_gather_mbuf(m, mhp, 1, 16, SADB_EXT_RESERVED,
5974 	    SADB_EXT_SA, SADB_X_EXT_SA2,
5975 	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5976 	    SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5977 	    SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST,
5978 	    SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT,
5979 	    SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI,
5980 	    SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NEW_ADDRESS_SRC,
5981 	    SADB_X_EXT_NEW_ADDRESS_DST);
5982 	if (!n)
5983 		return NULL;
5984 
5985 	if (n->m_len < sizeof(struct sadb_msg)) {
5986 		n = m_pullup(n, sizeof(struct sadb_msg));
5987 		if (n == NULL)
5988 			return NULL;
5989 	}
5990 	mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5991 	mtod(n, struct sadb_msg *)->sadb_msg_len =
5992 	    PFKEY_UNIT64(n->m_pkthdr.len);
5993 
5994 	return n;
5995 }
5996 
5997 /*
5998  * SADB_DELETE processing
5999  * receive
6000  *   <base, SA(*), address(SD)>
6001  * from the ikmpd, and set SADB_SASTATE_DEAD,
6002  * and send,
6003  *   <base, SA(*), address(SD)>
6004  * to the ikmpd.
6005  *
6006  * m will always be freed.
6007  */
6008 static int
6009 key_delete(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
6010 {
6011 	struct secasindex saidx;
6012 	struct sadb_address *src0, *dst0;
6013 	struct secasvar *sav;
6014 	struct sadb_sa *sa0;
6015 	uint8_t proto;
6016 
6017 	IPSEC_ASSERT(so != NULL, ("null socket"));
6018 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6019 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6020 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6021 
6022 	/* map satype to proto */
6023 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6024 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6025 		    __func__));
6026 		return key_senderror(so, m, EINVAL);
6027 	}
6028 
6029 	if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) ||
6030 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) ||
6031 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) ||
6032 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) {
6033 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
6034 		    __func__));
6035 		return key_senderror(so, m, EINVAL);
6036 	}
6037 
6038 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
6039 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
6040 
6041 	if (key_checksockaddrs((struct sockaddr *)(src0 + 1),
6042 	    (struct sockaddr *)(dst0 + 1)) != 0) {
6043 		ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__));
6044 		return (key_senderror(so, m, EINVAL));
6045 	}
6046 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
6047 	if (SADB_CHECKHDR(mhp, SADB_EXT_SA)) {
6048 		/*
6049 		 * Caller wants us to delete all non-LARVAL SAs
6050 		 * that match the src/dst.  This is used during
6051 		 * IKE INITIAL-CONTACT.
6052 		 * XXXAE: this looks like some extension to RFC2367.
6053 		 */
6054 		ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__));
6055 		return (key_delete_all(so, m, mhp, &saidx));
6056 	}
6057 	if (SADB_CHECKLEN(mhp, SADB_EXT_SA)) {
6058 		ipseclog((LOG_DEBUG,
6059 		    "%s: invalid message: wrong header size.\n", __func__));
6060 		return (key_senderror(so, m, EINVAL));
6061 	}
6062 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
6063 	SPI_ALLOC_LOCK();
6064 	if (proto == IPPROTO_TCP)
6065 		sav = key_getsav_tcpmd5(&saidx, NULL);
6066 	else
6067 		sav = key_getsavbyspi(sa0->sadb_sa_spi);
6068 	SPI_ALLOC_UNLOCK();
6069 	if (sav == NULL) {
6070 		ipseclog((LOG_DEBUG, "%s: no SA found for SPI %u.\n",
6071 		    __func__, ntohl(sa0->sadb_sa_spi)));
6072 		return (key_senderror(so, m, ESRCH));
6073 	}
6074 	if (key_cmpsaidx(&sav->sah->saidx, &saidx, CMP_HEAD) == 0) {
6075 		ipseclog((LOG_DEBUG, "%s: saidx mismatched for SPI %u.\n",
6076 		    __func__, ntohl(sav->spi)));
6077 		key_freesav(&sav);
6078 		return (key_senderror(so, m, ESRCH));
6079 	}
6080 	KEYDBG(KEY_STAMP,
6081 	    printf("%s: SA(%p)\n", __func__, sav));
6082 	KEYDBG(KEY_DATA, kdebug_secasv(sav));
6083 	key_unlinksav(sav);
6084 	key_freesav(&sav);
6085 
6086     {
6087 	struct mbuf *n;
6088 	struct sadb_msg *newmsg;
6089 
6090 	/* create new sadb_msg to reply. */
6091 	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
6092 	    SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
6093 	if (!n)
6094 		return key_senderror(so, m, ENOBUFS);
6095 
6096 	if (n->m_len < sizeof(struct sadb_msg)) {
6097 		n = m_pullup(n, sizeof(struct sadb_msg));
6098 		if (n == NULL)
6099 			return key_senderror(so, m, ENOBUFS);
6100 	}
6101 	newmsg = mtod(n, struct sadb_msg *);
6102 	newmsg->sadb_msg_errno = 0;
6103 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
6104 
6105 	m_freem(m);
6106 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
6107     }
6108 }
6109 
6110 /*
6111  * delete all SAs for src/dst.  Called from key_delete().
6112  */
6113 static int
6114 key_delete_all(struct socket *so, struct mbuf *m,
6115     const struct sadb_msghdr *mhp, struct secasindex *saidx)
6116 {
6117 	struct secasvar_queue drainq;
6118 	struct secashead *sah;
6119 	struct secasvar *sav, *nextsav;
6120 
6121 	TAILQ_INIT(&drainq);
6122 	SAHTREE_WLOCK();
6123 	LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) {
6124 		if (key_cmpsaidx(&sah->saidx, saidx, CMP_HEAD) == 0)
6125 			continue;
6126 		/* Move all ALIVE SAs into drainq */
6127 		TAILQ_CONCAT(&drainq, &sah->savtree_alive, chain);
6128 	}
6129 	/* Unlink all queued SAs from SPI hash */
6130 	TAILQ_FOREACH(sav, &drainq, chain) {
6131 		sav->state = SADB_SASTATE_DEAD;
6132 		LIST_REMOVE(sav, spihash);
6133 	}
6134 	SAHTREE_WUNLOCK();
6135 	/* Now we can release reference for all SAs in drainq */
6136 	sav = TAILQ_FIRST(&drainq);
6137 	while (sav != NULL) {
6138 		KEYDBG(KEY_STAMP,
6139 		    printf("%s: SA(%p)\n", __func__, sav));
6140 		KEYDBG(KEY_DATA, kdebug_secasv(sav));
6141 		nextsav = TAILQ_NEXT(sav, chain);
6142 		key_freesah(&sav->sah); /* release reference from SAV */
6143 		key_freesav(&sav); /* release last reference */
6144 		sav = nextsav;
6145 	}
6146 
6147     {
6148 	struct mbuf *n;
6149 	struct sadb_msg *newmsg;
6150 
6151 	/* create new sadb_msg to reply. */
6152 	n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
6153 	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
6154 	if (!n)
6155 		return key_senderror(so, m, ENOBUFS);
6156 
6157 	if (n->m_len < sizeof(struct sadb_msg)) {
6158 		n = m_pullup(n, sizeof(struct sadb_msg));
6159 		if (n == NULL)
6160 			return key_senderror(so, m, ENOBUFS);
6161 	}
6162 	newmsg = mtod(n, struct sadb_msg *);
6163 	newmsg->sadb_msg_errno = 0;
6164 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
6165 
6166 	m_freem(m);
6167 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
6168     }
6169 }
6170 
6171 /*
6172  * Delete all alive SAs for corresponding xform.
6173  * Larval SAs have not initialized tdb_xform, so it is safe to leave them
6174  * here when xform disappears.
6175  */
6176 void
6177 key_delete_xform(const struct xformsw *xsp)
6178 {
6179 	struct secasvar_queue drainq;
6180 	struct secashead *sah;
6181 	struct secasvar *sav, *nextsav;
6182 
6183 	TAILQ_INIT(&drainq);
6184 	SAHTREE_WLOCK();
6185 	TAILQ_FOREACH(sah, &V_sahtree, chain) {
6186 		sav = TAILQ_FIRST(&sah->savtree_alive);
6187 		if (sav == NULL)
6188 			continue;
6189 		if (sav->tdb_xform != xsp)
6190 			continue;
6191 		/*
6192 		 * It is supposed that all SAs in the chain are related to
6193 		 * one xform.
6194 		 */
6195 		TAILQ_CONCAT(&drainq, &sah->savtree_alive, chain);
6196 	}
6197 	/* Unlink all queued SAs from SPI hash */
6198 	TAILQ_FOREACH(sav, &drainq, chain) {
6199 		sav->state = SADB_SASTATE_DEAD;
6200 		LIST_REMOVE(sav, spihash);
6201 	}
6202 	SAHTREE_WUNLOCK();
6203 
6204 	/* Now we can release reference for all SAs in drainq */
6205 	sav = TAILQ_FIRST(&drainq);
6206 	while (sav != NULL) {
6207 		KEYDBG(KEY_STAMP,
6208 		    printf("%s: SA(%p)\n", __func__, sav));
6209 		KEYDBG(KEY_DATA, kdebug_secasv(sav));
6210 		nextsav = TAILQ_NEXT(sav, chain);
6211 		key_freesah(&sav->sah); /* release reference from SAV */
6212 		key_freesav(&sav); /* release last reference */
6213 		sav = nextsav;
6214 	}
6215 }
6216 
6217 /*
6218  * SADB_GET processing
6219  * receive
6220  *   <base, SA(*), address(SD)>
6221  * from the ikmpd, and get a SP and a SA to respond,
6222  * and send,
6223  *   <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
6224  *       (identity(SD),) (sensitivity)>
6225  * to the ikmpd.
6226  *
6227  * m will always be freed.
6228  */
6229 static int
6230 key_get(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
6231 {
6232 	struct secasindex saidx;
6233 	struct sadb_address *src0, *dst0;
6234 	struct sadb_sa *sa0;
6235 	struct secasvar *sav;
6236 	uint8_t proto;
6237 
6238 	IPSEC_ASSERT(so != NULL, ("null socket"));
6239 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6240 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6241 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6242 
6243 	/* map satype to proto */
6244 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6245 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6246 			__func__));
6247 		return key_senderror(so, m, EINVAL);
6248 	}
6249 
6250 	if (SADB_CHECKHDR(mhp, SADB_EXT_SA) ||
6251 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) ||
6252 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST)) {
6253 		ipseclog((LOG_DEBUG,
6254 		    "%s: invalid message: missing required header.\n",
6255 		    __func__));
6256 		return key_senderror(so, m, EINVAL);
6257 	}
6258 	if (SADB_CHECKLEN(mhp, SADB_EXT_SA) ||
6259 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) ||
6260 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) {
6261 		ipseclog((LOG_DEBUG,
6262 		    "%s: invalid message: wrong header size.\n", __func__));
6263 		return key_senderror(so, m, EINVAL);
6264 	}
6265 
6266 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
6267 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
6268 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
6269 
6270 	if (key_checksockaddrs((struct sockaddr *)(src0 + 1),
6271 	    (struct sockaddr *)(dst0 + 1)) != 0) {
6272 		ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__));
6273 		return key_senderror(so, m, EINVAL);
6274 	}
6275 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
6276 
6277 	SPI_ALLOC_LOCK();
6278 	if (proto == IPPROTO_TCP)
6279 		sav = key_getsav_tcpmd5(&saidx, NULL);
6280 	else
6281 		sav = key_getsavbyspi(sa0->sadb_sa_spi);
6282 	SPI_ALLOC_UNLOCK();
6283 	if (sav == NULL) {
6284 		ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
6285 		return key_senderror(so, m, ESRCH);
6286 	}
6287 	if (key_cmpsaidx(&sav->sah->saidx, &saidx, CMP_HEAD) == 0) {
6288 		ipseclog((LOG_DEBUG, "%s: saidx mismatched for SPI %u.\n",
6289 		    __func__, ntohl(sa0->sadb_sa_spi)));
6290 		key_freesav(&sav);
6291 		return (key_senderror(so, m, ESRCH));
6292 	}
6293 
6294     {
6295 	struct mbuf *n;
6296 	uint8_t satype;
6297 
6298 	/* map proto to satype */
6299 	if ((satype = key_proto2satype(sav->sah->saidx.proto)) == 0) {
6300 		ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n",
6301 		    __func__));
6302 		key_freesav(&sav);
6303 		return key_senderror(so, m, EINVAL);
6304 	}
6305 
6306 	/* create new sadb_msg to reply. */
6307 	n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
6308 	    mhp->msg->sadb_msg_pid);
6309 
6310 	key_freesav(&sav);
6311 	if (!n)
6312 		return key_senderror(so, m, ENOBUFS);
6313 
6314 	m_freem(m);
6315 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
6316     }
6317 }
6318 
6319 /* XXX make it sysctl-configurable? */
6320 static void
6321 key_getcomb_setlifetime(struct sadb_comb *comb)
6322 {
6323 
6324 	comb->sadb_comb_soft_allocations = 1;
6325 	comb->sadb_comb_hard_allocations = 1;
6326 	comb->sadb_comb_soft_bytes = 0;
6327 	comb->sadb_comb_hard_bytes = 0;
6328 	comb->sadb_comb_hard_addtime = 86400;	/* 1 day */
6329 	comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
6330 	comb->sadb_comb_soft_usetime = 28800;	/* 8 hours */
6331 	comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
6332 }
6333 
6334 /*
6335  * XXX reorder combinations by preference
6336  * XXX no idea if the user wants ESP authentication or not
6337  */
6338 static struct mbuf *
6339 key_getcomb_ealg(void)
6340 {
6341 	struct sadb_comb *comb;
6342 	const struct enc_xform *algo;
6343 	struct mbuf *result = NULL, *m, *n;
6344 	int encmin;
6345 	int i, off, o;
6346 	int totlen;
6347 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6348 
6349 	m = NULL;
6350 	for (i = 1; i <= SADB_EALG_MAX; i++) {
6351 		algo = enc_algorithm_lookup(i);
6352 		if (algo == NULL)
6353 			continue;
6354 
6355 		/* discard algorithms with key size smaller than system min */
6356 		if (_BITS(algo->maxkey) < V_ipsec_esp_keymin)
6357 			continue;
6358 		if (_BITS(algo->minkey) < V_ipsec_esp_keymin)
6359 			encmin = V_ipsec_esp_keymin;
6360 		else
6361 			encmin = _BITS(algo->minkey);
6362 
6363 		if (V_ipsec_esp_auth)
6364 			m = key_getcomb_ah();
6365 		else {
6366 			IPSEC_ASSERT(l <= MLEN,
6367 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
6368 			MGET(m, M_NOWAIT, MT_DATA);
6369 			if (m) {
6370 				M_ALIGN(m, l);
6371 				m->m_len = l;
6372 				m->m_next = NULL;
6373 				bzero(mtod(m, caddr_t), m->m_len);
6374 			}
6375 		}
6376 		if (!m)
6377 			goto fail;
6378 
6379 		totlen = 0;
6380 		for (n = m; n; n = n->m_next)
6381 			totlen += n->m_len;
6382 		IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l));
6383 
6384 		for (off = 0; off < totlen; off += l) {
6385 			n = m_pulldown(m, off, l, &o);
6386 			if (!n) {
6387 				/* m is already freed */
6388 				goto fail;
6389 			}
6390 			comb = (struct sadb_comb *)(mtod(n, caddr_t) + o);
6391 			bzero(comb, sizeof(*comb));
6392 			key_getcomb_setlifetime(comb);
6393 			comb->sadb_comb_encrypt = i;
6394 			comb->sadb_comb_encrypt_minbits = encmin;
6395 			comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
6396 		}
6397 
6398 		if (!result)
6399 			result = m;
6400 		else
6401 			m_cat(result, m);
6402 	}
6403 
6404 	return result;
6405 
6406  fail:
6407 	if (result)
6408 		m_freem(result);
6409 	return NULL;
6410 }
6411 
6412 static void
6413 key_getsizes_ah(const struct auth_hash *ah, int alg, u_int16_t* min,
6414     u_int16_t* max)
6415 {
6416 
6417 	*min = *max = ah->hashsize;
6418 	if (ah->keysize == 0) {
6419 		/*
6420 		 * Transform takes arbitrary key size but algorithm
6421 		 * key size is restricted.  Enforce this here.
6422 		 */
6423 		switch (alg) {
6424 		case SADB_X_AALG_NULL:	*min = 1; *max = 256; break;
6425 		case SADB_X_AALG_SHA2_256: *min = *max = 32; break;
6426 		case SADB_X_AALG_SHA2_384: *min = *max = 48; break;
6427 		case SADB_X_AALG_SHA2_512: *min = *max = 64; break;
6428 		default:
6429 			DPRINTF(("%s: unknown AH algorithm %u\n",
6430 				__func__, alg));
6431 			break;
6432 		}
6433 	}
6434 }
6435 
6436 /*
6437  * XXX reorder combinations by preference
6438  */
6439 static struct mbuf *
6440 key_getcomb_ah(void)
6441 {
6442 	const struct auth_hash *algo;
6443 	struct sadb_comb *comb;
6444 	struct mbuf *m;
6445 	u_int16_t minkeysize, maxkeysize;
6446 	int i;
6447 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6448 
6449 	m = NULL;
6450 	for (i = 1; i <= SADB_AALG_MAX; i++) {
6451 #if 1
6452 		/* we prefer HMAC algorithms, not old algorithms */
6453 		if (i != SADB_AALG_SHA1HMAC &&
6454 		    i != SADB_X_AALG_SHA2_256 &&
6455 		    i != SADB_X_AALG_SHA2_384 &&
6456 		    i != SADB_X_AALG_SHA2_512)
6457 			continue;
6458 #endif
6459 		algo = auth_algorithm_lookup(i);
6460 		if (!algo)
6461 			continue;
6462 		key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6463 		/* discard algorithms with key size smaller than system min */
6464 		if (_BITS(minkeysize) < V_ipsec_ah_keymin)
6465 			continue;
6466 
6467 		if (!m) {
6468 			IPSEC_ASSERT(l <= MLEN,
6469 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
6470 			MGET(m, M_NOWAIT, MT_DATA);
6471 			if (m) {
6472 				M_ALIGN(m, l);
6473 				m->m_len = l;
6474 				m->m_next = NULL;
6475 			}
6476 		} else
6477 			M_PREPEND(m, l, M_NOWAIT);
6478 		if (!m)
6479 			return NULL;
6480 
6481 		comb = mtod(m, struct sadb_comb *);
6482 		bzero(comb, sizeof(*comb));
6483 		key_getcomb_setlifetime(comb);
6484 		comb->sadb_comb_auth = i;
6485 		comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6486 		comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6487 	}
6488 
6489 	return m;
6490 }
6491 
6492 /*
6493  * not really an official behavior.  discussed in pf_key@inner.net in Sep2000.
6494  * XXX reorder combinations by preference
6495  */
6496 static struct mbuf *
6497 key_getcomb_ipcomp(void)
6498 {
6499 	const struct comp_algo *algo;
6500 	struct sadb_comb *comb;
6501 	struct mbuf *m;
6502 	int i;
6503 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6504 
6505 	m = NULL;
6506 	for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6507 		algo = comp_algorithm_lookup(i);
6508 		if (!algo)
6509 			continue;
6510 
6511 		if (!m) {
6512 			IPSEC_ASSERT(l <= MLEN,
6513 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
6514 			MGET(m, M_NOWAIT, MT_DATA);
6515 			if (m) {
6516 				M_ALIGN(m, l);
6517 				m->m_len = l;
6518 				m->m_next = NULL;
6519 			}
6520 		} else
6521 			M_PREPEND(m, l, M_NOWAIT);
6522 		if (!m)
6523 			return NULL;
6524 
6525 		comb = mtod(m, struct sadb_comb *);
6526 		bzero(comb, sizeof(*comb));
6527 		key_getcomb_setlifetime(comb);
6528 		comb->sadb_comb_encrypt = i;
6529 		/* what should we set into sadb_comb_*_{min,max}bits? */
6530 	}
6531 
6532 	return m;
6533 }
6534 
6535 /*
6536  * XXX no way to pass mode (transport/tunnel) to userland
6537  * XXX replay checking?
6538  * XXX sysctl interface to ipsec_{ah,esp}_keymin
6539  */
6540 static struct mbuf *
6541 key_getprop(const struct secasindex *saidx)
6542 {
6543 	struct sadb_prop *prop;
6544 	struct mbuf *m, *n;
6545 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6546 	int totlen;
6547 
6548 	switch (saidx->proto)  {
6549 	case IPPROTO_ESP:
6550 		m = key_getcomb_ealg();
6551 		break;
6552 	case IPPROTO_AH:
6553 		m = key_getcomb_ah();
6554 		break;
6555 	case IPPROTO_IPCOMP:
6556 		m = key_getcomb_ipcomp();
6557 		break;
6558 	default:
6559 		return NULL;
6560 	}
6561 
6562 	if (!m)
6563 		return NULL;
6564 	M_PREPEND(m, l, M_NOWAIT);
6565 	if (!m)
6566 		return NULL;
6567 
6568 	totlen = 0;
6569 	for (n = m; n; n = n->m_next)
6570 		totlen += n->m_len;
6571 
6572 	prop = mtod(m, struct sadb_prop *);
6573 	bzero(prop, sizeof(*prop));
6574 	prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6575 	prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6576 	prop->sadb_prop_replay = 32;	/* XXX */
6577 
6578 	return m;
6579 }
6580 
6581 /*
6582  * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
6583  * send
6584  *   <base, SA, address(SD), (address(P)), x_policy,
6585  *       (identity(SD),) (sensitivity,) proposal>
6586  * to KMD, and expect to receive
6587  *   <base> with SADB_ACQUIRE if error occurred,
6588  * or
6589  *   <base, src address, dst address, (SPI range)> with SADB_GETSPI
6590  * from KMD by PF_KEY.
6591  *
6592  * XXX x_policy is outside of RFC2367 (KAME extension).
6593  * XXX sensitivity is not supported.
6594  * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6595  * see comment for key_getcomb_ipcomp().
6596  *
6597  * OUT:
6598  *    0     : succeed
6599  *    others: error number
6600  */
6601 static int
6602 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6603 {
6604 	union sockaddr_union addr;
6605 	struct mbuf *result, *m;
6606 	uint32_t seq;
6607 	int error;
6608 	uint16_t ul_proto;
6609 	uint8_t mask, satype;
6610 
6611 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
6612 	satype = key_proto2satype(saidx->proto);
6613 	IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto));
6614 
6615 	error = -1;
6616 	result = NULL;
6617 	ul_proto = IPSEC_ULPROTO_ANY;
6618 
6619 	/* Get seq number to check whether sending message or not. */
6620 	seq = key_getacq(saidx, &error);
6621 	if (seq == 0)
6622 		return (error);
6623 
6624 	m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6625 	if (!m) {
6626 		error = ENOBUFS;
6627 		goto fail;
6628 	}
6629 	result = m;
6630 
6631 	/*
6632 	 * set sadb_address for saidx's.
6633 	 *
6634 	 * Note that if sp is supplied, then we're being called from
6635 	 * key_allocsa_policy() and should supply port and protocol
6636 	 * information.
6637 	 * XXXAE: why only TCP and UDP? ICMP and SCTP looks applicable too.
6638 	 * XXXAE: probably we can handle this in the ipsec[46]_allocsa().
6639 	 * XXXAE: it looks like we should save this info in the ACQ entry.
6640 	 */
6641 	if (sp != NULL && (sp->spidx.ul_proto == IPPROTO_TCP ||
6642 	    sp->spidx.ul_proto == IPPROTO_UDP))
6643 		ul_proto = sp->spidx.ul_proto;
6644 
6645 	addr = saidx->src;
6646 	mask = FULLMASK;
6647 	if (ul_proto != IPSEC_ULPROTO_ANY) {
6648 		switch (sp->spidx.src.sa.sa_family) {
6649 		case AF_INET:
6650 			if (sp->spidx.src.sin.sin_port != IPSEC_PORT_ANY) {
6651 				addr.sin.sin_port = sp->spidx.src.sin.sin_port;
6652 				mask = sp->spidx.prefs;
6653 			}
6654 			break;
6655 		case AF_INET6:
6656 			if (sp->spidx.src.sin6.sin6_port != IPSEC_PORT_ANY) {
6657 				addr.sin6.sin6_port =
6658 				    sp->spidx.src.sin6.sin6_port;
6659 				mask = sp->spidx.prefs;
6660 			}
6661 			break;
6662 		default:
6663 			break;
6664 		}
6665 	}
6666 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &addr.sa, mask, ul_proto);
6667 	if (!m) {
6668 		error = ENOBUFS;
6669 		goto fail;
6670 	}
6671 	m_cat(result, m);
6672 
6673 	addr = saidx->dst;
6674 	mask = FULLMASK;
6675 	if (ul_proto != IPSEC_ULPROTO_ANY) {
6676 		switch (sp->spidx.dst.sa.sa_family) {
6677 		case AF_INET:
6678 			if (sp->spidx.dst.sin.sin_port != IPSEC_PORT_ANY) {
6679 				addr.sin.sin_port = sp->spidx.dst.sin.sin_port;
6680 				mask = sp->spidx.prefd;
6681 			}
6682 			break;
6683 		case AF_INET6:
6684 			if (sp->spidx.dst.sin6.sin6_port != IPSEC_PORT_ANY) {
6685 				addr.sin6.sin6_port =
6686 				    sp->spidx.dst.sin6.sin6_port;
6687 				mask = sp->spidx.prefd;
6688 			}
6689 			break;
6690 		default:
6691 			break;
6692 		}
6693 	}
6694 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &addr.sa, mask, ul_proto);
6695 	if (!m) {
6696 		error = ENOBUFS;
6697 		goto fail;
6698 	}
6699 	m_cat(result, m);
6700 
6701 	/* XXX proxy address (optional) */
6702 
6703 	/*
6704 	 * Set sadb_x_policy. This is KAME extension to RFC2367.
6705 	 */
6706 	if (sp != NULL) {
6707 		m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id,
6708 		    sp->priority);
6709 		if (!m) {
6710 			error = ENOBUFS;
6711 			goto fail;
6712 		}
6713 		m_cat(result, m);
6714 	}
6715 
6716 	/*
6717 	 * Set sadb_x_sa2 extension if saidx->reqid is not zero.
6718 	 * This is FreeBSD extension to RFC2367.
6719 	 */
6720 	if (saidx->reqid != 0) {
6721 		m = key_setsadbxsa2(saidx->mode, 0, saidx->reqid);
6722 		if (m == NULL) {
6723 			error = ENOBUFS;
6724 			goto fail;
6725 		}
6726 		m_cat(result, m);
6727 	}
6728 	/* XXX identity (optional) */
6729 #if 0
6730 	if (idexttype && fqdn) {
6731 		/* create identity extension (FQDN) */
6732 		struct sadb_ident *id;
6733 		int fqdnlen;
6734 
6735 		fqdnlen = strlen(fqdn) + 1;	/* +1 for terminating-NUL */
6736 		id = (struct sadb_ident *)p;
6737 		bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6738 		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6739 		id->sadb_ident_exttype = idexttype;
6740 		id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6741 		bcopy(fqdn, id + 1, fqdnlen);
6742 		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6743 	}
6744 
6745 	if (idexttype) {
6746 		/* create identity extension (USERFQDN) */
6747 		struct sadb_ident *id;
6748 		int userfqdnlen;
6749 
6750 		if (userfqdn) {
6751 			/* +1 for terminating-NUL */
6752 			userfqdnlen = strlen(userfqdn) + 1;
6753 		} else
6754 			userfqdnlen = 0;
6755 		id = (struct sadb_ident *)p;
6756 		bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6757 		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6758 		id->sadb_ident_exttype = idexttype;
6759 		id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6760 		/* XXX is it correct? */
6761 		if (curproc && curproc->p_cred)
6762 			id->sadb_ident_id = curproc->p_cred->p_ruid;
6763 		if (userfqdn && userfqdnlen)
6764 			bcopy(userfqdn, id + 1, userfqdnlen);
6765 		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6766 	}
6767 #endif
6768 
6769 	/* XXX sensitivity (optional) */
6770 
6771 	/* create proposal/combination extension */
6772 	m = key_getprop(saidx);
6773 #if 0
6774 	/*
6775 	 * spec conformant: always attach proposal/combination extension,
6776 	 * the problem is that we have no way to attach it for ipcomp,
6777 	 * due to the way sadb_comb is declared in RFC2367.
6778 	 */
6779 	if (!m) {
6780 		error = ENOBUFS;
6781 		goto fail;
6782 	}
6783 	m_cat(result, m);
6784 #else
6785 	/*
6786 	 * outside of spec; make proposal/combination extension optional.
6787 	 */
6788 	if (m)
6789 		m_cat(result, m);
6790 #endif
6791 
6792 	if ((result->m_flags & M_PKTHDR) == 0) {
6793 		error = EINVAL;
6794 		goto fail;
6795 	}
6796 
6797 	if (result->m_len < sizeof(struct sadb_msg)) {
6798 		result = m_pullup(result, sizeof(struct sadb_msg));
6799 		if (result == NULL) {
6800 			error = ENOBUFS;
6801 			goto fail;
6802 		}
6803 	}
6804 
6805 	result->m_pkthdr.len = 0;
6806 	for (m = result; m; m = m->m_next)
6807 		result->m_pkthdr.len += m->m_len;
6808 
6809 	mtod(result, struct sadb_msg *)->sadb_msg_len =
6810 	    PFKEY_UNIT64(result->m_pkthdr.len);
6811 
6812 	KEYDBG(KEY_STAMP,
6813 	    printf("%s: SP(%p)\n", __func__, sp));
6814 	KEYDBG(KEY_DATA, kdebug_secasindex(saidx, NULL));
6815 
6816 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6817 
6818  fail:
6819 	if (result)
6820 		m_freem(result);
6821 	return error;
6822 }
6823 
6824 static uint32_t
6825 key_newacq(const struct secasindex *saidx, int *perror)
6826 {
6827 	struct secacq *acq;
6828 	uint32_t seq;
6829 
6830 	acq = malloc(sizeof(*acq), M_IPSEC_SAQ, M_NOWAIT | M_ZERO);
6831 	if (acq == NULL) {
6832 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6833 		*perror = ENOBUFS;
6834 		return (0);
6835 	}
6836 
6837 	/* copy secindex */
6838 	bcopy(saidx, &acq->saidx, sizeof(acq->saidx));
6839 	acq->created = time_second;
6840 	acq->count = 0;
6841 
6842 	/* add to acqtree */
6843 	ACQ_LOCK();
6844 	seq = acq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq);
6845 	LIST_INSERT_HEAD(&V_acqtree, acq, chain);
6846 	LIST_INSERT_HEAD(ACQADDRHASH_HASH(saidx), acq, addrhash);
6847 	LIST_INSERT_HEAD(ACQSEQHASH_HASH(seq), acq, seqhash);
6848 	ACQ_UNLOCK();
6849 	*perror = 0;
6850 	return (seq);
6851 }
6852 
6853 static uint32_t
6854 key_getacq(const struct secasindex *saidx, int *perror)
6855 {
6856 	struct secacq *acq;
6857 	uint32_t seq;
6858 
6859 	ACQ_LOCK();
6860 	LIST_FOREACH(acq, ACQADDRHASH_HASH(saidx), addrhash) {
6861 		if (key_cmpsaidx(&acq->saidx, saidx, CMP_EXACTLY)) {
6862 			if (acq->count > V_key_blockacq_count) {
6863 				/*
6864 				 * Reset counter and send message.
6865 				 * Also reset created time to keep ACQ for
6866 				 * this saidx.
6867 				 */
6868 				acq->created = time_second;
6869 				acq->count = 0;
6870 				seq = acq->seq;
6871 			} else {
6872 				/*
6873 				 * Increment counter and do nothing.
6874 				 * We send SADB_ACQUIRE message only
6875 				 * for each V_key_blockacq_count packet.
6876 				 */
6877 				acq->count++;
6878 				seq = 0;
6879 			}
6880 			break;
6881 		}
6882 	}
6883 	ACQ_UNLOCK();
6884 	if (acq != NULL) {
6885 		*perror = 0;
6886 		return (seq);
6887 	}
6888 	/* allocate new  entry */
6889 	return (key_newacq(saidx, perror));
6890 }
6891 
6892 static int
6893 key_acqreset(uint32_t seq)
6894 {
6895 	struct secacq *acq;
6896 
6897 	ACQ_LOCK();
6898 	LIST_FOREACH(acq, ACQSEQHASH_HASH(seq), seqhash) {
6899 		if (acq->seq == seq) {
6900 			acq->count = 0;
6901 			acq->created = time_second;
6902 			break;
6903 		}
6904 	}
6905 	ACQ_UNLOCK();
6906 	if (acq == NULL)
6907 		return (ESRCH);
6908 	return (0);
6909 }
6910 /*
6911  * Mark ACQ entry as stale to remove it in key_flush_acq().
6912  * Called after successful SADB_GETSPI message.
6913  */
6914 static int
6915 key_acqdone(const struct secasindex *saidx, uint32_t seq)
6916 {
6917 	struct secacq *acq;
6918 
6919 	ACQ_LOCK();
6920 	LIST_FOREACH(acq, ACQSEQHASH_HASH(seq), seqhash) {
6921 		if (acq->seq == seq)
6922 			break;
6923 	}
6924 	if (acq != NULL) {
6925 		if (key_cmpsaidx(&acq->saidx, saidx, CMP_EXACTLY) == 0) {
6926 			ipseclog((LOG_DEBUG,
6927 			    "%s: Mismatched saidx for ACQ %u\n", __func__, seq));
6928 			acq = NULL;
6929 		} else {
6930 			acq->created = 0;
6931 		}
6932 	} else {
6933 		ipseclog((LOG_DEBUG,
6934 		    "%s: ACQ %u is not found.\n", __func__, seq));
6935 	}
6936 	ACQ_UNLOCK();
6937 	if (acq == NULL)
6938 		return (ESRCH);
6939 	return (0);
6940 }
6941 
6942 static struct secspacq *
6943 key_newspacq(struct secpolicyindex *spidx)
6944 {
6945 	struct secspacq *acq;
6946 
6947 	/* get new entry */
6948 	acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
6949 	if (acq == NULL) {
6950 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6951 		return NULL;
6952 	}
6953 
6954 	/* copy secindex */
6955 	bcopy(spidx, &acq->spidx, sizeof(acq->spidx));
6956 	acq->created = time_second;
6957 	acq->count = 0;
6958 
6959 	/* add to spacqtree */
6960 	SPACQ_LOCK();
6961 	LIST_INSERT_HEAD(&V_spacqtree, acq, chain);
6962 	SPACQ_UNLOCK();
6963 
6964 	return acq;
6965 }
6966 
6967 static struct secspacq *
6968 key_getspacq(struct secpolicyindex *spidx)
6969 {
6970 	struct secspacq *acq;
6971 
6972 	SPACQ_LOCK();
6973 	LIST_FOREACH(acq, &V_spacqtree, chain) {
6974 		if (key_cmpspidx_exactly(spidx, &acq->spidx)) {
6975 			/* NB: return holding spacq_lock */
6976 			return acq;
6977 		}
6978 	}
6979 	SPACQ_UNLOCK();
6980 
6981 	return NULL;
6982 }
6983 
6984 /*
6985  * SADB_ACQUIRE processing,
6986  * in first situation, is receiving
6987  *   <base>
6988  * from the ikmpd, and clear sequence of its secasvar entry.
6989  *
6990  * In second situation, is receiving
6991  *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6992  * from a user land process, and return
6993  *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6994  * to the socket.
6995  *
6996  * m will always be freed.
6997  */
6998 static int
6999 key_acquire2(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
7000 {
7001 	SAHTREE_RLOCK_TRACKER;
7002 	struct sadb_address *src0, *dst0;
7003 	struct secasindex saidx;
7004 	struct secashead *sah;
7005 	uint32_t reqid;
7006 	int error;
7007 	uint8_t mode, proto;
7008 
7009 	IPSEC_ASSERT(so != NULL, ("null socket"));
7010 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7011 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7012 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7013 
7014 	/*
7015 	 * Error message from KMd.
7016 	 * We assume that if error was occurred in IKEd, the length of PFKEY
7017 	 * message is equal to the size of sadb_msg structure.
7018 	 * We do not raise error even if error occurred in this function.
7019 	 */
7020 	if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
7021 		/* check sequence number */
7022 		if (mhp->msg->sadb_msg_seq == 0 ||
7023 		    mhp->msg->sadb_msg_errno == 0) {
7024 			ipseclog((LOG_DEBUG, "%s: must specify sequence "
7025 				"number and errno.\n", __func__));
7026 		} else {
7027 			/*
7028 			 * IKEd reported that error occurred.
7029 			 * XXXAE: what it expects from the kernel?
7030 			 * Probably we should send SADB_ACQUIRE again?
7031 			 * If so, reset ACQ's state.
7032 			 * XXXAE: it looks useless.
7033 			 */
7034 			key_acqreset(mhp->msg->sadb_msg_seq);
7035 		}
7036 		m_freem(m);
7037 		return (0);
7038 	}
7039 
7040 	/*
7041 	 * This message is from user land.
7042 	 */
7043 
7044 	/* map satype to proto */
7045 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
7046 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
7047 		    __func__));
7048 		return key_senderror(so, m, EINVAL);
7049 	}
7050 
7051 	if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) ||
7052 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) ||
7053 	    SADB_CHECKHDR(mhp, SADB_EXT_PROPOSAL)) {
7054 		ipseclog((LOG_DEBUG,
7055 		    "%s: invalid message: missing required header.\n",
7056 		    __func__));
7057 		return key_senderror(so, m, EINVAL);
7058 	}
7059 	if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) ||
7060 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST) ||
7061 	    SADB_CHECKLEN(mhp, SADB_EXT_PROPOSAL)) {
7062 		ipseclog((LOG_DEBUG,
7063 		    "%s: invalid message: wrong header size.\n", __func__));
7064 		return key_senderror(so, m, EINVAL);
7065 	}
7066 
7067 	if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) {
7068 		mode = IPSEC_MODE_ANY;
7069 		reqid = 0;
7070 	} else {
7071 		if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) {
7072 			ipseclog((LOG_DEBUG,
7073 			    "%s: invalid message: wrong header size.\n",
7074 			    __func__));
7075 			return key_senderror(so, m, EINVAL);
7076 		}
7077 		mode = ((struct sadb_x_sa2 *)
7078 		    mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
7079 		reqid = ((struct sadb_x_sa2 *)
7080 		    mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
7081 	}
7082 
7083 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
7084 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
7085 
7086 	error = key_checksockaddrs((struct sockaddr *)(src0 + 1),
7087 	    (struct sockaddr *)(dst0 + 1));
7088 	if (error != 0) {
7089 		ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__));
7090 		return key_senderror(so, m, EINVAL);
7091 	}
7092 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
7093 
7094 	/* get a SA index */
7095 	SAHTREE_RLOCK();
7096 	LIST_FOREACH(sah, SAHADDRHASH_HASH(&saidx), addrhash) {
7097 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID))
7098 			break;
7099 	}
7100 	SAHTREE_RUNLOCK();
7101 	if (sah != NULL) {
7102 		ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__));
7103 		return key_senderror(so, m, EEXIST);
7104 	}
7105 
7106 	error = key_acquire(&saidx, NULL);
7107 	if (error != 0) {
7108 		ipseclog((LOG_DEBUG,
7109 		    "%s: error %d returned from key_acquire()\n",
7110 			__func__, error));
7111 		return key_senderror(so, m, error);
7112 	}
7113 	m_freem(m);
7114 	return (0);
7115 }
7116 
7117 /*
7118  * SADB_REGISTER processing.
7119  * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
7120  * receive
7121  *   <base>
7122  * from the ikmpd, and register a socket to send PF_KEY messages,
7123  * and send
7124  *   <base, supported>
7125  * to KMD by PF_KEY.
7126  * If socket is detached, must free from regnode.
7127  *
7128  * m will always be freed.
7129  */
7130 static int
7131 key_register(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
7132 {
7133 	struct secreg *reg, *newreg = NULL;
7134 
7135 	IPSEC_ASSERT(so != NULL, ("null socket"));
7136 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7137 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7138 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7139 
7140 	/* check for invalid register message */
7141 	if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0]))
7142 		return key_senderror(so, m, EINVAL);
7143 
7144 	/* When SATYPE_UNSPEC is specified, only return sabd_supported. */
7145 	if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
7146 		goto setmsg;
7147 
7148 	/* check whether existing or not */
7149 	REGTREE_LOCK();
7150 	LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) {
7151 		if (reg->so == so) {
7152 			REGTREE_UNLOCK();
7153 			ipseclog((LOG_DEBUG, "%s: socket exists already.\n",
7154 				__func__));
7155 			return key_senderror(so, m, EEXIST);
7156 		}
7157 	}
7158 
7159 	/* create regnode */
7160 	newreg =  malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO);
7161 	if (newreg == NULL) {
7162 		REGTREE_UNLOCK();
7163 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
7164 		return key_senderror(so, m, ENOBUFS);
7165 	}
7166 
7167 	newreg->so = so;
7168 	((struct keycb *)(so->so_pcb))->kp_registered++;
7169 
7170 	/* add regnode to regtree. */
7171 	LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain);
7172 	REGTREE_UNLOCK();
7173 
7174   setmsg:
7175     {
7176 	struct mbuf *n;
7177 	struct sadb_msg *newmsg;
7178 	struct sadb_supported *sup;
7179 	u_int len, alen, elen;
7180 	int off;
7181 	int i;
7182 	struct sadb_alg *alg;
7183 
7184 	/* create new sadb_msg to reply. */
7185 	alen = 0;
7186 	for (i = 1; i <= SADB_AALG_MAX; i++) {
7187 		if (auth_algorithm_lookup(i))
7188 			alen += sizeof(struct sadb_alg);
7189 	}
7190 	if (alen)
7191 		alen += sizeof(struct sadb_supported);
7192 	elen = 0;
7193 	for (i = 1; i <= SADB_EALG_MAX; i++) {
7194 		if (enc_algorithm_lookup(i))
7195 			elen += sizeof(struct sadb_alg);
7196 	}
7197 	if (elen)
7198 		elen += sizeof(struct sadb_supported);
7199 
7200 	len = sizeof(struct sadb_msg) + alen + elen;
7201 
7202 	if (len > MCLBYTES)
7203 		return key_senderror(so, m, ENOBUFS);
7204 
7205 	n = key_mget(len);
7206 	if (n == NULL)
7207 		return key_senderror(so, m, ENOBUFS);
7208 
7209 	n->m_pkthdr.len = n->m_len = len;
7210 	n->m_next = NULL;
7211 	off = 0;
7212 
7213 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
7214 	newmsg = mtod(n, struct sadb_msg *);
7215 	newmsg->sadb_msg_errno = 0;
7216 	newmsg->sadb_msg_len = PFKEY_UNIT64(len);
7217 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
7218 
7219 	/* for authentication algorithm */
7220 	if (alen) {
7221 		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
7222 		sup->sadb_supported_len = PFKEY_UNIT64(alen);
7223 		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
7224 		off += PFKEY_ALIGN8(sizeof(*sup));
7225 
7226 		for (i = 1; i <= SADB_AALG_MAX; i++) {
7227 			const struct auth_hash *aalgo;
7228 			u_int16_t minkeysize, maxkeysize;
7229 
7230 			aalgo = auth_algorithm_lookup(i);
7231 			if (!aalgo)
7232 				continue;
7233 			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
7234 			alg->sadb_alg_id = i;
7235 			alg->sadb_alg_ivlen = 0;
7236 			key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
7237 			alg->sadb_alg_minbits = _BITS(minkeysize);
7238 			alg->sadb_alg_maxbits = _BITS(maxkeysize);
7239 			off += PFKEY_ALIGN8(sizeof(*alg));
7240 		}
7241 	}
7242 
7243 	/* for encryption algorithm */
7244 	if (elen) {
7245 		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
7246 		sup->sadb_supported_len = PFKEY_UNIT64(elen);
7247 		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
7248 		off += PFKEY_ALIGN8(sizeof(*sup));
7249 
7250 		for (i = 1; i <= SADB_EALG_MAX; i++) {
7251 			const struct enc_xform *ealgo;
7252 
7253 			ealgo = enc_algorithm_lookup(i);
7254 			if (!ealgo)
7255 				continue;
7256 			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
7257 			alg->sadb_alg_id = i;
7258 			alg->sadb_alg_ivlen = ealgo->ivsize;
7259 			alg->sadb_alg_minbits = _BITS(ealgo->minkey);
7260 			alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
7261 			off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
7262 		}
7263 	}
7264 
7265 	IPSEC_ASSERT(off == len,
7266 		("length assumption failed (off %u len %u)", off, len));
7267 
7268 	m_freem(m);
7269 	return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
7270     }
7271 }
7272 
7273 /*
7274  * free secreg entry registered.
7275  * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
7276  */
7277 void
7278 key_freereg(struct socket *so)
7279 {
7280 	struct secreg *reg;
7281 	int i;
7282 
7283 	IPSEC_ASSERT(so != NULL, ("NULL so"));
7284 
7285 	/*
7286 	 * check whether existing or not.
7287 	 * check all type of SA, because there is a potential that
7288 	 * one socket is registered to multiple type of SA.
7289 	 */
7290 	REGTREE_LOCK();
7291 	for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7292 		LIST_FOREACH(reg, &V_regtree[i], chain) {
7293 			if (reg->so == so && __LIST_CHAINED(reg)) {
7294 				LIST_REMOVE(reg, chain);
7295 				free(reg, M_IPSEC_SAR);
7296 				break;
7297 			}
7298 		}
7299 	}
7300 	REGTREE_UNLOCK();
7301 }
7302 
7303 /*
7304  * SADB_EXPIRE processing
7305  * send
7306  *   <base, SA, SA2, lifetime(C and one of HS), address(SD)>
7307  * to KMD by PF_KEY.
7308  * NOTE: We send only soft lifetime extension.
7309  *
7310  * OUT:	0	: succeed
7311  *	others	: error number
7312  */
7313 static int
7314 key_expire(struct secasvar *sav, int hard)
7315 {
7316 	struct mbuf *result = NULL, *m;
7317 	struct sadb_lifetime *lt;
7318 	uint32_t replay_count;
7319 	int error, len;
7320 	uint8_t satype;
7321 
7322 	SECASVAR_RLOCK_TRACKER;
7323 
7324 	IPSEC_ASSERT (sav != NULL, ("null sav"));
7325 	IPSEC_ASSERT (sav->sah != NULL, ("null sa header"));
7326 
7327 	KEYDBG(KEY_STAMP,
7328 	    printf("%s: SA(%p) expired %s lifetime\n", __func__,
7329 		sav, hard ? "hard": "soft"));
7330 	KEYDBG(KEY_DATA, kdebug_secasv(sav));
7331 	/* set msg header */
7332 	satype = key_proto2satype(sav->sah->saidx.proto);
7333 	IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype));
7334 	m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
7335 	if (!m) {
7336 		error = ENOBUFS;
7337 		goto fail;
7338 	}
7339 	result = m;
7340 
7341 	/* create SA extension */
7342 	m = key_setsadbsa(sav);
7343 	if (!m) {
7344 		error = ENOBUFS;
7345 		goto fail;
7346 	}
7347 	m_cat(result, m);
7348 
7349 	/* create SA extension */
7350 	SECASVAR_RLOCK(sav);
7351 	replay_count = sav->replay ? sav->replay->count : 0;
7352 	SECASVAR_RUNLOCK(sav);
7353 
7354 	m = key_setsadbxsa2(sav->sah->saidx.mode, replay_count,
7355 			sav->sah->saidx.reqid);
7356 	if (!m) {
7357 		error = ENOBUFS;
7358 		goto fail;
7359 	}
7360 	m_cat(result, m);
7361 
7362 	if (sav->replay && sav->replay->wsize > UINT8_MAX) {
7363 		m = key_setsadbxsareplay(sav->replay->wsize);
7364 		if (!m) {
7365 			error = ENOBUFS;
7366 			goto fail;
7367 		}
7368 		m_cat(result, m);
7369 	}
7370 
7371 	/* create lifetime extension (current and soft) */
7372 	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
7373 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
7374 	if (m == NULL) {
7375 		error = ENOBUFS;
7376 		goto fail;
7377 	}
7378 	m_align(m, len);
7379 	m->m_len = len;
7380 	bzero(mtod(m, caddr_t), len);
7381 	lt = mtod(m, struct sadb_lifetime *);
7382 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
7383 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
7384 	lt->sadb_lifetime_allocations =
7385 	    (uint32_t)counter_u64_fetch(sav->lft_c_allocations);
7386 	lt->sadb_lifetime_bytes =
7387 	    counter_u64_fetch(sav->lft_c_bytes);
7388 	lt->sadb_lifetime_addtime = sav->created;
7389 	lt->sadb_lifetime_usetime = sav->firstused;
7390 	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
7391 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
7392 	if (hard) {
7393 		lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
7394 		lt->sadb_lifetime_allocations = sav->lft_h->allocations;
7395 		lt->sadb_lifetime_bytes = sav->lft_h->bytes;
7396 		lt->sadb_lifetime_addtime = sav->lft_h->addtime;
7397 		lt->sadb_lifetime_usetime = sav->lft_h->usetime;
7398 	} else {
7399 		lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
7400 		lt->sadb_lifetime_allocations = sav->lft_s->allocations;
7401 		lt->sadb_lifetime_bytes = sav->lft_s->bytes;
7402 		lt->sadb_lifetime_addtime = sav->lft_s->addtime;
7403 		lt->sadb_lifetime_usetime = sav->lft_s->usetime;
7404 	}
7405 	m_cat(result, m);
7406 
7407 	/* set sadb_address for source */
7408 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
7409 	    &sav->sah->saidx.src.sa,
7410 	    FULLMASK, IPSEC_ULPROTO_ANY);
7411 	if (!m) {
7412 		error = ENOBUFS;
7413 		goto fail;
7414 	}
7415 	m_cat(result, m);
7416 
7417 	/* set sadb_address for destination */
7418 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
7419 	    &sav->sah->saidx.dst.sa,
7420 	    FULLMASK, IPSEC_ULPROTO_ANY);
7421 	if (!m) {
7422 		error = ENOBUFS;
7423 		goto fail;
7424 	}
7425 	m_cat(result, m);
7426 
7427 	/*
7428 	 * XXX-BZ Handle NAT-T extensions here.
7429 	 * XXXAE: it doesn't seem quite useful. IKEs should not depend on
7430 	 * this information, we report only significant SA fields.
7431 	 */
7432 
7433 	if ((result->m_flags & M_PKTHDR) == 0) {
7434 		error = EINVAL;
7435 		goto fail;
7436 	}
7437 
7438 	if (result->m_len < sizeof(struct sadb_msg)) {
7439 		result = m_pullup(result, sizeof(struct sadb_msg));
7440 		if (result == NULL) {
7441 			error = ENOBUFS;
7442 			goto fail;
7443 		}
7444 	}
7445 
7446 	result->m_pkthdr.len = 0;
7447 	for (m = result; m; m = m->m_next)
7448 		result->m_pkthdr.len += m->m_len;
7449 
7450 	mtod(result, struct sadb_msg *)->sadb_msg_len =
7451 	    PFKEY_UNIT64(result->m_pkthdr.len);
7452 
7453 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
7454 
7455  fail:
7456 	if (result)
7457 		m_freem(result);
7458 	return error;
7459 }
7460 
7461 static void
7462 key_freesah_flushed(struct secashead_queue *flushq)
7463 {
7464 	struct secashead *sah, *nextsah;
7465 	struct secasvar *sav, *nextsav;
7466 
7467 	sah = TAILQ_FIRST(flushq);
7468 	while (sah != NULL) {
7469 		sav = TAILQ_FIRST(&sah->savtree_larval);
7470 		while (sav != NULL) {
7471 			nextsav = TAILQ_NEXT(sav, chain);
7472 			TAILQ_REMOVE(&sah->savtree_larval, sav, chain);
7473 			key_freesav(&sav); /* release last reference */
7474 			key_freesah(&sah); /* release reference from SAV */
7475 			sav = nextsav;
7476 		}
7477 		sav = TAILQ_FIRST(&sah->savtree_alive);
7478 		while (sav != NULL) {
7479 			nextsav = TAILQ_NEXT(sav, chain);
7480 			TAILQ_REMOVE(&sah->savtree_alive, sav, chain);
7481 			key_freesav(&sav); /* release last reference */
7482 			key_freesah(&sah); /* release reference from SAV */
7483 			sav = nextsav;
7484 		}
7485 		nextsah = TAILQ_NEXT(sah, chain);
7486 		key_freesah(&sah);	/* release last reference */
7487 		sah = nextsah;
7488 	}
7489 }
7490 
7491 /*
7492  * SADB_FLUSH processing
7493  * receive
7494  *   <base>
7495  * from the ikmpd, and free all entries in secastree.
7496  * and send,
7497  *   <base>
7498  * to the ikmpd.
7499  * NOTE: to do is only marking SADB_SASTATE_DEAD.
7500  *
7501  * m will always be freed.
7502  */
7503 static int
7504 key_flush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
7505 {
7506 	struct secashead_queue flushq;
7507 	struct sadb_msg *newmsg;
7508 	struct secashead *sah, *nextsah;
7509 	struct secasvar *sav;
7510 	uint8_t proto;
7511 	int i;
7512 
7513 	IPSEC_ASSERT(so != NULL, ("null socket"));
7514 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7515 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7516 
7517 	/* map satype to proto */
7518 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
7519 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
7520 			__func__));
7521 		return key_senderror(so, m, EINVAL);
7522 	}
7523 	KEYDBG(KEY_STAMP,
7524 	    printf("%s: proto %u\n", __func__, proto));
7525 
7526 	TAILQ_INIT(&flushq);
7527 	if (proto == IPSEC_PROTO_ANY) {
7528 		/* no SATYPE specified, i.e. flushing all SA. */
7529 		SAHTREE_WLOCK();
7530 		/* Move all SAHs into flushq */
7531 		TAILQ_CONCAT(&flushq, &V_sahtree, chain);
7532 		/* Flush all buckets in SPI hash */
7533 		for (i = 0; i < V_savhash_mask + 1; i++)
7534 			LIST_INIT(&V_savhashtbl[i]);
7535 		/* Flush all buckets in SAHADDRHASH */
7536 		for (i = 0; i < V_sahaddrhash_mask + 1; i++)
7537 			LIST_INIT(&V_sahaddrhashtbl[i]);
7538 		/* Mark all SAHs as unlinked */
7539 		TAILQ_FOREACH(sah, &flushq, chain) {
7540 			sah->state = SADB_SASTATE_DEAD;
7541 			/*
7542 			 * Callout handler makes its job using
7543 			 * RLOCK and drain queues. In case, when this
7544 			 * function will be called just before it
7545 			 * acquires WLOCK, we need to mark SAs as
7546 			 * unlinked to prevent second unlink.
7547 			 */
7548 			TAILQ_FOREACH(sav, &sah->savtree_larval, chain) {
7549 				sav->state = SADB_SASTATE_DEAD;
7550 			}
7551 			TAILQ_FOREACH(sav, &sah->savtree_alive, chain) {
7552 				sav->state = SADB_SASTATE_DEAD;
7553 			}
7554 		}
7555 		SAHTREE_WUNLOCK();
7556 	} else {
7557 		SAHTREE_WLOCK();
7558 		sah = TAILQ_FIRST(&V_sahtree);
7559 		while (sah != NULL) {
7560 			IPSEC_ASSERT(sah->state != SADB_SASTATE_DEAD,
7561 			    ("DEAD SAH %p in SADB_FLUSH", sah));
7562 			nextsah = TAILQ_NEXT(sah, chain);
7563 			if (sah->saidx.proto != proto) {
7564 				sah = nextsah;
7565 				continue;
7566 			}
7567 			sah->state = SADB_SASTATE_DEAD;
7568 			TAILQ_REMOVE(&V_sahtree, sah, chain);
7569 			LIST_REMOVE(sah, addrhash);
7570 			/* Unlink all SAs from SPI hash */
7571 			TAILQ_FOREACH(sav, &sah->savtree_larval, chain) {
7572 				LIST_REMOVE(sav, spihash);
7573 				sav->state = SADB_SASTATE_DEAD;
7574 			}
7575 			TAILQ_FOREACH(sav, &sah->savtree_alive, chain) {
7576 				LIST_REMOVE(sav, spihash);
7577 				sav->state = SADB_SASTATE_DEAD;
7578 			}
7579 			/* Add SAH into flushq */
7580 			TAILQ_INSERT_HEAD(&flushq, sah, chain);
7581 			sah = nextsah;
7582 		}
7583 		SAHTREE_WUNLOCK();
7584 	}
7585 
7586 	key_freesah_flushed(&flushq);
7587 	/* Free all queued SAs and SAHs */
7588 	if (m->m_len < sizeof(struct sadb_msg) ||
7589 	    sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
7590 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
7591 		return key_senderror(so, m, ENOBUFS);
7592 	}
7593 
7594 	if (m->m_next)
7595 		m_freem(m->m_next);
7596 	m->m_next = NULL;
7597 	m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
7598 	newmsg = mtod(m, struct sadb_msg *);
7599 	newmsg->sadb_msg_errno = 0;
7600 	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
7601 
7602 	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7603 }
7604 
7605 /*
7606  * SADB_DUMP processing
7607  * dump all entries including status of DEAD in SAD.
7608  * receive
7609  *   <base>
7610  * from the ikmpd, and dump all secasvar leaves
7611  * and send,
7612  *   <base> .....
7613  * to the ikmpd.
7614  *
7615  * m will always be freed.
7616  */
7617 static int
7618 key_dump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
7619 {
7620 	SAHTREE_RLOCK_TRACKER;
7621 	struct secashead *sah;
7622 	struct secasvar *sav;
7623 	struct mbuf *n;
7624 	uint32_t cnt;
7625 	uint8_t proto, satype;
7626 
7627 	IPSEC_ASSERT(so != NULL, ("null socket"));
7628 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7629 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7630 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7631 
7632 	/* map satype to proto */
7633 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
7634 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
7635 		    __func__));
7636 		return key_senderror(so, m, EINVAL);
7637 	}
7638 
7639 	/* count sav entries to be sent to the userland. */
7640 	cnt = 0;
7641 	SAHTREE_RLOCK();
7642 	TAILQ_FOREACH(sah, &V_sahtree, chain) {
7643 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC &&
7644 		    proto != sah->saidx.proto)
7645 			continue;
7646 
7647 		TAILQ_FOREACH(sav, &sah->savtree_larval, chain)
7648 			cnt++;
7649 		TAILQ_FOREACH(sav, &sah->savtree_alive, chain)
7650 			cnt++;
7651 	}
7652 
7653 	if (cnt == 0) {
7654 		SAHTREE_RUNLOCK();
7655 		return key_senderror(so, m, ENOENT);
7656 	}
7657 
7658 	/* send this to the userland, one at a time. */
7659 	TAILQ_FOREACH(sah, &V_sahtree, chain) {
7660 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC &&
7661 		    proto != sah->saidx.proto)
7662 			continue;
7663 
7664 		/* map proto to satype */
7665 		if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
7666 			SAHTREE_RUNLOCK();
7667 			ipseclog((LOG_DEBUG, "%s: there was invalid proto in "
7668 			    "SAD.\n", __func__));
7669 			return key_senderror(so, m, EINVAL);
7670 		}
7671 		TAILQ_FOREACH(sav, &sah->savtree_larval, chain) {
7672 			n = key_setdumpsa(sav, SADB_DUMP, satype,
7673 			    --cnt, mhp->msg->sadb_msg_pid);
7674 			if (n == NULL) {
7675 				SAHTREE_RUNLOCK();
7676 				return key_senderror(so, m, ENOBUFS);
7677 			}
7678 			key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
7679 		}
7680 		TAILQ_FOREACH(sav, &sah->savtree_alive, chain) {
7681 			n = key_setdumpsa(sav, SADB_DUMP, satype,
7682 			    --cnt, mhp->msg->sadb_msg_pid);
7683 			if (n == NULL) {
7684 				SAHTREE_RUNLOCK();
7685 				return key_senderror(so, m, ENOBUFS);
7686 			}
7687 			key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
7688 		}
7689 	}
7690 	SAHTREE_RUNLOCK();
7691 	m_freem(m);
7692 	return (0);
7693 }
7694 /*
7695  * SADB_X_PROMISC processing
7696  *
7697  * m will always be freed.
7698  */
7699 static int
7700 key_promisc(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
7701 {
7702 	int olen;
7703 
7704 	IPSEC_ASSERT(so != NULL, ("null socket"));
7705 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7706 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7707 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7708 
7709 	olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7710 
7711 	if (olen < sizeof(struct sadb_msg)) {
7712 #if 1
7713 		return key_senderror(so, m, EINVAL);
7714 #else
7715 		m_freem(m);
7716 		return 0;
7717 #endif
7718 	} else if (olen == sizeof(struct sadb_msg)) {
7719 		/* enable/disable promisc mode */
7720 		struct keycb *kp;
7721 
7722 		if ((kp = so->so_pcb) == NULL)
7723 			return key_senderror(so, m, EINVAL);
7724 		mhp->msg->sadb_msg_errno = 0;
7725 		switch (mhp->msg->sadb_msg_satype) {
7726 		case 0:
7727 		case 1:
7728 			kp->kp_promisc = mhp->msg->sadb_msg_satype;
7729 			break;
7730 		default:
7731 			return key_senderror(so, m, EINVAL);
7732 		}
7733 
7734 		/* send the original message back to everyone */
7735 		mhp->msg->sadb_msg_errno = 0;
7736 		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7737 	} else {
7738 		/* send packet as is */
7739 
7740 		m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7741 
7742 		/* TODO: if sadb_msg_seq is specified, send to specific pid */
7743 		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7744 	}
7745 }
7746 
7747 static int (*key_typesw[])(struct socket *, struct mbuf *,
7748 		const struct sadb_msghdr *) = {
7749 	NULL,		/* SADB_RESERVED */
7750 	key_getspi,	/* SADB_GETSPI */
7751 	key_update,	/* SADB_UPDATE */
7752 	key_add,	/* SADB_ADD */
7753 	key_delete,	/* SADB_DELETE */
7754 	key_get,	/* SADB_GET */
7755 	key_acquire2,	/* SADB_ACQUIRE */
7756 	key_register,	/* SADB_REGISTER */
7757 	NULL,		/* SADB_EXPIRE */
7758 	key_flush,	/* SADB_FLUSH */
7759 	key_dump,	/* SADB_DUMP */
7760 	key_promisc,	/* SADB_X_PROMISC */
7761 	NULL,		/* SADB_X_PCHANGE */
7762 	key_spdadd,	/* SADB_X_SPDUPDATE */
7763 	key_spdadd,	/* SADB_X_SPDADD */
7764 	key_spddelete,	/* SADB_X_SPDDELETE */
7765 	key_spdget,	/* SADB_X_SPDGET */
7766 	NULL,		/* SADB_X_SPDACQUIRE */
7767 	key_spddump,	/* SADB_X_SPDDUMP */
7768 	key_spdflush,	/* SADB_X_SPDFLUSH */
7769 	key_spdadd,	/* SADB_X_SPDSETIDX */
7770 	NULL,		/* SADB_X_SPDEXPIRE */
7771 	key_spddelete2,	/* SADB_X_SPDDELETE2 */
7772 };
7773 
7774 /*
7775  * parse sadb_msg buffer to process PFKEYv2,
7776  * and create a data to response if needed.
7777  * I think to be dealed with mbuf directly.
7778  * IN:
7779  *     msgp  : pointer to pointer to a received buffer pulluped.
7780  *             This is rewrited to response.
7781  *     so    : pointer to socket.
7782  * OUT:
7783  *    length for buffer to send to user process.
7784  */
7785 int
7786 key_parse(struct mbuf *m, struct socket *so)
7787 {
7788 	struct sadb_msg *msg;
7789 	struct sadb_msghdr mh;
7790 	u_int orglen;
7791 	int error;
7792 	int target;
7793 
7794 	IPSEC_ASSERT(so != NULL, ("null socket"));
7795 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7796 
7797 	if (m->m_len < sizeof(struct sadb_msg)) {
7798 		m = m_pullup(m, sizeof(struct sadb_msg));
7799 		if (!m)
7800 			return ENOBUFS;
7801 	}
7802 	msg = mtod(m, struct sadb_msg *);
7803 	orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7804 	target = KEY_SENDUP_ONE;
7805 
7806 	if ((m->m_flags & M_PKTHDR) == 0 || m->m_pkthdr.len != orglen) {
7807 		ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__));
7808 		PFKEYSTAT_INC(out_invlen);
7809 		error = EINVAL;
7810 		goto senderror;
7811 	}
7812 
7813 	if (msg->sadb_msg_version != PF_KEY_V2) {
7814 		ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n",
7815 		    __func__, msg->sadb_msg_version));
7816 		PFKEYSTAT_INC(out_invver);
7817 		error = EINVAL;
7818 		goto senderror;
7819 	}
7820 
7821 	if (msg->sadb_msg_type > SADB_MAX) {
7822 		ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
7823 		    __func__, msg->sadb_msg_type));
7824 		PFKEYSTAT_INC(out_invmsgtype);
7825 		error = EINVAL;
7826 		goto senderror;
7827 	}
7828 
7829 	/* for old-fashioned code - should be nuked */
7830 	if (m->m_pkthdr.len > MCLBYTES) {
7831 		m_freem(m);
7832 		return ENOBUFS;
7833 	}
7834 	if (m->m_next) {
7835 		struct mbuf *n;
7836 
7837 		n = key_mget(m->m_pkthdr.len);
7838 		if (n == NULL) {
7839 			m_freem(m);
7840 			return ENOBUFS;
7841 		}
7842 		m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t));
7843 		n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7844 		n->m_next = NULL;
7845 		m_freem(m);
7846 		m = n;
7847 	}
7848 
7849 	/* align the mbuf chain so that extensions are in contiguous region. */
7850 	error = key_align(m, &mh);
7851 	if (error)
7852 		return error;
7853 
7854 	msg = mh.msg;
7855 
7856 	/* We use satype as scope mask for spddump */
7857 	if (msg->sadb_msg_type == SADB_X_SPDDUMP) {
7858 		switch (msg->sadb_msg_satype) {
7859 		case IPSEC_POLICYSCOPE_ANY:
7860 		case IPSEC_POLICYSCOPE_GLOBAL:
7861 		case IPSEC_POLICYSCOPE_IFNET:
7862 		case IPSEC_POLICYSCOPE_PCB:
7863 			break;
7864 		default:
7865 			ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n",
7866 			    __func__, msg->sadb_msg_type));
7867 			PFKEYSTAT_INC(out_invsatype);
7868 			error = EINVAL;
7869 			goto senderror;
7870 		}
7871 	} else {
7872 		switch (msg->sadb_msg_satype) { /* check SA type */
7873 		case SADB_SATYPE_UNSPEC:
7874 			switch (msg->sadb_msg_type) {
7875 			case SADB_GETSPI:
7876 			case SADB_UPDATE:
7877 			case SADB_ADD:
7878 			case SADB_DELETE:
7879 			case SADB_GET:
7880 			case SADB_ACQUIRE:
7881 			case SADB_EXPIRE:
7882 				ipseclog((LOG_DEBUG, "%s: must specify satype "
7883 				    "when msg type=%u.\n", __func__,
7884 				    msg->sadb_msg_type));
7885 				PFKEYSTAT_INC(out_invsatype);
7886 				error = EINVAL;
7887 				goto senderror;
7888 			}
7889 			break;
7890 		case SADB_SATYPE_AH:
7891 		case SADB_SATYPE_ESP:
7892 		case SADB_X_SATYPE_IPCOMP:
7893 		case SADB_X_SATYPE_TCPSIGNATURE:
7894 			switch (msg->sadb_msg_type) {
7895 			case SADB_X_SPDADD:
7896 			case SADB_X_SPDDELETE:
7897 			case SADB_X_SPDGET:
7898 			case SADB_X_SPDFLUSH:
7899 			case SADB_X_SPDSETIDX:
7900 			case SADB_X_SPDUPDATE:
7901 			case SADB_X_SPDDELETE2:
7902 				ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n",
7903 				    __func__, msg->sadb_msg_type));
7904 				PFKEYSTAT_INC(out_invsatype);
7905 				error = EINVAL;
7906 				goto senderror;
7907 			}
7908 			break;
7909 		case SADB_SATYPE_RSVP:
7910 		case SADB_SATYPE_OSPFV2:
7911 		case SADB_SATYPE_RIPV2:
7912 		case SADB_SATYPE_MIP:
7913 			ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n",
7914 			    __func__, msg->sadb_msg_satype));
7915 			PFKEYSTAT_INC(out_invsatype);
7916 			error = EOPNOTSUPP;
7917 			goto senderror;
7918 		case 1:	/* XXX: What does it do? */
7919 			if (msg->sadb_msg_type == SADB_X_PROMISC)
7920 				break;
7921 			/*FALLTHROUGH*/
7922 		default:
7923 			ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
7924 			    __func__, msg->sadb_msg_satype));
7925 			PFKEYSTAT_INC(out_invsatype);
7926 			error = EINVAL;
7927 			goto senderror;
7928 		}
7929 	}
7930 
7931 	/* check field of upper layer protocol and address family */
7932 	if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL
7933 	 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7934 		struct sadb_address *src0, *dst0;
7935 		u_int plen;
7936 
7937 		src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7938 		dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7939 
7940 		/* check upper layer protocol */
7941 		if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7942 			ipseclog((LOG_DEBUG, "%s: upper layer protocol "
7943 				"mismatched.\n", __func__));
7944 			PFKEYSTAT_INC(out_invaddr);
7945 			error = EINVAL;
7946 			goto senderror;
7947 		}
7948 
7949 		/* check family */
7950 		if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7951 		    PFKEY_ADDR_SADDR(dst0)->sa_family) {
7952 			ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
7953 				__func__));
7954 			PFKEYSTAT_INC(out_invaddr);
7955 			error = EINVAL;
7956 			goto senderror;
7957 		}
7958 		if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7959 		    PFKEY_ADDR_SADDR(dst0)->sa_len) {
7960 			ipseclog((LOG_DEBUG, "%s: address struct size "
7961 				"mismatched.\n", __func__));
7962 			PFKEYSTAT_INC(out_invaddr);
7963 			error = EINVAL;
7964 			goto senderror;
7965 		}
7966 
7967 		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7968 		case AF_INET:
7969 			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7970 			    sizeof(struct sockaddr_in)) {
7971 				PFKEYSTAT_INC(out_invaddr);
7972 				error = EINVAL;
7973 				goto senderror;
7974 			}
7975 			break;
7976 		case AF_INET6:
7977 			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7978 			    sizeof(struct sockaddr_in6)) {
7979 				PFKEYSTAT_INC(out_invaddr);
7980 				error = EINVAL;
7981 				goto senderror;
7982 			}
7983 			break;
7984 		default:
7985 			ipseclog((LOG_DEBUG, "%s: unsupported address family\n",
7986 				__func__));
7987 			PFKEYSTAT_INC(out_invaddr);
7988 			error = EAFNOSUPPORT;
7989 			goto senderror;
7990 		}
7991 
7992 		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7993 		case AF_INET:
7994 			plen = sizeof(struct in_addr) << 3;
7995 			break;
7996 		case AF_INET6:
7997 			plen = sizeof(struct in6_addr) << 3;
7998 			break;
7999 		default:
8000 			plen = 0;	/*fool gcc*/
8001 			break;
8002 		}
8003 
8004 		/* check max prefix length */
8005 		if (src0->sadb_address_prefixlen > plen ||
8006 		    dst0->sadb_address_prefixlen > plen) {
8007 			ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n",
8008 				__func__));
8009 			PFKEYSTAT_INC(out_invaddr);
8010 			error = EINVAL;
8011 			goto senderror;
8012 		}
8013 
8014 		/*
8015 		 * prefixlen == 0 is valid because there can be a case when
8016 		 * all addresses are matched.
8017 		 */
8018 	}
8019 
8020 	if (msg->sadb_msg_type >= nitems(key_typesw) ||
8021 	    key_typesw[msg->sadb_msg_type] == NULL) {
8022 		PFKEYSTAT_INC(out_invmsgtype);
8023 		error = EINVAL;
8024 		goto senderror;
8025 	}
8026 
8027 	return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
8028 
8029 senderror:
8030 	msg->sadb_msg_errno = error;
8031 	return key_sendup_mbuf(so, m, target);
8032 }
8033 
8034 static int
8035 key_senderror(struct socket *so, struct mbuf *m, int code)
8036 {
8037 	struct sadb_msg *msg;
8038 
8039 	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
8040 		("mbuf too small, len %u", m->m_len));
8041 
8042 	msg = mtod(m, struct sadb_msg *);
8043 	msg->sadb_msg_errno = code;
8044 	return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
8045 }
8046 
8047 /*
8048  * set the pointer to each header into message buffer.
8049  * m will be freed on error.
8050  * XXX larger-than-MCLBYTES extension?
8051  */
8052 static int
8053 key_align(struct mbuf *m, struct sadb_msghdr *mhp)
8054 {
8055 	struct mbuf *n;
8056 	struct sadb_ext *ext;
8057 	size_t off, end;
8058 	int extlen;
8059 	int toff;
8060 
8061 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
8062 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
8063 	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
8064 		("mbuf too small, len %u", m->m_len));
8065 
8066 	/* initialize */
8067 	bzero(mhp, sizeof(*mhp));
8068 
8069 	mhp->msg = mtod(m, struct sadb_msg *);
8070 	mhp->ext[0] = (struct sadb_ext *)mhp->msg;	/*XXX backward compat */
8071 
8072 	end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
8073 	extlen = end;	/*just in case extlen is not updated*/
8074 	for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
8075 		n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
8076 		if (!n) {
8077 			/* m is already freed */
8078 			return ENOBUFS;
8079 		}
8080 		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
8081 
8082 		/* set pointer */
8083 		switch (ext->sadb_ext_type) {
8084 		case SADB_EXT_SA:
8085 		case SADB_EXT_ADDRESS_SRC:
8086 		case SADB_EXT_ADDRESS_DST:
8087 		case SADB_EXT_ADDRESS_PROXY:
8088 		case SADB_EXT_LIFETIME_CURRENT:
8089 		case SADB_EXT_LIFETIME_HARD:
8090 		case SADB_EXT_LIFETIME_SOFT:
8091 		case SADB_EXT_KEY_AUTH:
8092 		case SADB_EXT_KEY_ENCRYPT:
8093 		case SADB_EXT_IDENTITY_SRC:
8094 		case SADB_EXT_IDENTITY_DST:
8095 		case SADB_EXT_SENSITIVITY:
8096 		case SADB_EXT_PROPOSAL:
8097 		case SADB_EXT_SUPPORTED_AUTH:
8098 		case SADB_EXT_SUPPORTED_ENCRYPT:
8099 		case SADB_EXT_SPIRANGE:
8100 		case SADB_X_EXT_POLICY:
8101 		case SADB_X_EXT_SA2:
8102 		case SADB_X_EXT_NAT_T_TYPE:
8103 		case SADB_X_EXT_NAT_T_SPORT:
8104 		case SADB_X_EXT_NAT_T_DPORT:
8105 		case SADB_X_EXT_NAT_T_OAI:
8106 		case SADB_X_EXT_NAT_T_OAR:
8107 		case SADB_X_EXT_NAT_T_FRAG:
8108 		case SADB_X_EXT_SA_REPLAY:
8109 		case SADB_X_EXT_NEW_ADDRESS_SRC:
8110 		case SADB_X_EXT_NEW_ADDRESS_DST:
8111 			/* duplicate check */
8112 			/*
8113 			 * XXX Are there duplication payloads of either
8114 			 * KEY_AUTH or KEY_ENCRYPT ?
8115 			 */
8116 			if (mhp->ext[ext->sadb_ext_type] != NULL) {
8117 				ipseclog((LOG_DEBUG, "%s: duplicate ext_type "
8118 					"%u\n", __func__, ext->sadb_ext_type));
8119 				m_freem(m);
8120 				PFKEYSTAT_INC(out_dupext);
8121 				return EINVAL;
8122 			}
8123 			break;
8124 		default:
8125 			ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n",
8126 				__func__, ext->sadb_ext_type));
8127 			m_freem(m);
8128 			PFKEYSTAT_INC(out_invexttype);
8129 			return EINVAL;
8130 		}
8131 
8132 		extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
8133 
8134 		if (key_validate_ext(ext, extlen)) {
8135 			m_freem(m);
8136 			PFKEYSTAT_INC(out_invlen);
8137 			return EINVAL;
8138 		}
8139 
8140 		n = m_pulldown(m, off, extlen, &toff);
8141 		if (!n) {
8142 			/* m is already freed */
8143 			return ENOBUFS;
8144 		}
8145 		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
8146 
8147 		mhp->ext[ext->sadb_ext_type] = ext;
8148 		mhp->extoff[ext->sadb_ext_type] = off;
8149 		mhp->extlen[ext->sadb_ext_type] = extlen;
8150 	}
8151 
8152 	if (off != end) {
8153 		m_freem(m);
8154 		PFKEYSTAT_INC(out_invlen);
8155 		return EINVAL;
8156 	}
8157 
8158 	return 0;
8159 }
8160 
8161 static int
8162 key_validate_ext(const struct sadb_ext *ext, int len)
8163 {
8164 	const struct sockaddr *sa;
8165 	enum { NONE, ADDR } checktype = NONE;
8166 	int baselen = 0;
8167 	const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
8168 
8169 	if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
8170 		return EINVAL;
8171 
8172 	/* if it does not match minimum/maximum length, bail */
8173 	if (ext->sadb_ext_type >= nitems(minsize) ||
8174 	    ext->sadb_ext_type >= nitems(maxsize))
8175 		return EINVAL;
8176 	if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
8177 		return EINVAL;
8178 	if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
8179 		return EINVAL;
8180 
8181 	/* more checks based on sadb_ext_type XXX need more */
8182 	switch (ext->sadb_ext_type) {
8183 	case SADB_EXT_ADDRESS_SRC:
8184 	case SADB_EXT_ADDRESS_DST:
8185 	case SADB_EXT_ADDRESS_PROXY:
8186 	case SADB_X_EXT_NAT_T_OAI:
8187 	case SADB_X_EXT_NAT_T_OAR:
8188 	case SADB_X_EXT_NEW_ADDRESS_SRC:
8189 	case SADB_X_EXT_NEW_ADDRESS_DST:
8190 		baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
8191 		checktype = ADDR;
8192 		break;
8193 	case SADB_EXT_IDENTITY_SRC:
8194 	case SADB_EXT_IDENTITY_DST:
8195 		if (((const struct sadb_ident *)ext)->sadb_ident_type ==
8196 		    SADB_X_IDENTTYPE_ADDR) {
8197 			baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
8198 			checktype = ADDR;
8199 		} else
8200 			checktype = NONE;
8201 		break;
8202 	default:
8203 		checktype = NONE;
8204 		break;
8205 	}
8206 
8207 	switch (checktype) {
8208 	case NONE:
8209 		break;
8210 	case ADDR:
8211 		sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
8212 		if (len < baselen + sal)
8213 			return EINVAL;
8214 		if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
8215 			return EINVAL;
8216 		break;
8217 	}
8218 
8219 	return 0;
8220 }
8221 
8222 void
8223 spdcache_init(void)
8224 {
8225 	int i;
8226 
8227 	TUNABLE_INT_FETCH("net.key.spdcache.maxentries",
8228 	    &V_key_spdcache_maxentries);
8229 	TUNABLE_INT_FETCH("net.key.spdcache.threshold",
8230 	    &V_key_spdcache_threshold);
8231 
8232 	if (V_key_spdcache_maxentries) {
8233 		V_key_spdcache_maxentries = MAX(V_key_spdcache_maxentries,
8234 		    SPDCACHE_MAX_ENTRIES_PER_HASH);
8235 		V_spdcachehashtbl = hashinit(V_key_spdcache_maxentries /
8236 		    SPDCACHE_MAX_ENTRIES_PER_HASH,
8237 		    M_IPSEC_SPDCACHE, &V_spdcachehash_mask);
8238 		V_key_spdcache_maxentries = (V_spdcachehash_mask + 1)
8239 		    * SPDCACHE_MAX_ENTRIES_PER_HASH;
8240 
8241 		V_spdcache_lock = malloc(sizeof(struct mtx) *
8242 		    (V_spdcachehash_mask + 1),
8243 		    M_IPSEC_SPDCACHE, M_WAITOK|M_ZERO);
8244 
8245 		for (i = 0; i < V_spdcachehash_mask + 1; ++i)
8246 			SPDCACHE_LOCK_INIT(i);
8247 	}
8248 }
8249 
8250 struct spdcache_entry *
8251 spdcache_entry_alloc(const struct secpolicyindex *spidx, struct secpolicy *sp)
8252 {
8253 	struct spdcache_entry *entry;
8254 
8255 	entry = malloc(sizeof(struct spdcache_entry),
8256 		    M_IPSEC_SPDCACHE, M_NOWAIT|M_ZERO);
8257 	if (entry == NULL)
8258 		return NULL;
8259 
8260 	if (sp != NULL)
8261 		SP_ADDREF(sp);
8262 
8263 	entry->spidx = *spidx;
8264 	entry->sp = sp;
8265 
8266 	return (entry);
8267 }
8268 
8269 void
8270 spdcache_entry_free(struct spdcache_entry *entry)
8271 {
8272 
8273 	if (entry->sp != NULL)
8274 		key_freesp(&entry->sp);
8275 	free(entry, M_IPSEC_SPDCACHE);
8276 }
8277 
8278 void
8279 spdcache_clear(void)
8280 {
8281 	struct spdcache_entry *entry;
8282 	int i;
8283 
8284 	for (i = 0; i < V_spdcachehash_mask + 1; ++i) {
8285 		SPDCACHE_LOCK(i);
8286 		while (!LIST_EMPTY(&V_spdcachehashtbl[i])) {
8287 			entry = LIST_FIRST(&V_spdcachehashtbl[i]);
8288 			LIST_REMOVE(entry, chain);
8289 			spdcache_entry_free(entry);
8290 		}
8291 		SPDCACHE_UNLOCK(i);
8292 	}
8293 }
8294 
8295 #ifdef VIMAGE
8296 void
8297 spdcache_destroy(void)
8298 {
8299 	int i;
8300 
8301 	if (SPDCACHE_ENABLED()) {
8302 		spdcache_clear();
8303 		hashdestroy(V_spdcachehashtbl, M_IPSEC_SPDCACHE, V_spdcachehash_mask);
8304 
8305 		for (i = 0; i < V_spdcachehash_mask + 1; ++i)
8306 			SPDCACHE_LOCK_DESTROY(i);
8307 
8308 		free(V_spdcache_lock, M_IPSEC_SPDCACHE);
8309 	}
8310 }
8311 #endif
8312 
8313 static void
8314 key_vnet_init(void *arg __unused)
8315 {
8316 	int i;
8317 
8318 	for (i = 0; i < IPSEC_DIR_MAX; i++) {
8319 		TAILQ_INIT(&V_sptree[i]);
8320 		TAILQ_INIT(&V_sptree_ifnet[i]);
8321 	}
8322 
8323 	TAILQ_INIT(&V_sahtree);
8324 	V_sphashtbl = hashinit(SPHASH_NHASH, M_IPSEC_SP, &V_sphash_mask);
8325 	V_savhashtbl = hashinit(SAVHASH_NHASH, M_IPSEC_SA, &V_savhash_mask);
8326 	V_sahaddrhashtbl = hashinit(SAHHASH_NHASH, M_IPSEC_SAH,
8327 	    &V_sahaddrhash_mask);
8328 	V_acqaddrhashtbl = hashinit(ACQHASH_NHASH, M_IPSEC_SAQ,
8329 	    &V_acqaddrhash_mask);
8330 	V_acqseqhashtbl = hashinit(ACQHASH_NHASH, M_IPSEC_SAQ,
8331 	    &V_acqseqhash_mask);
8332 
8333 	spdcache_init();
8334 
8335 	for (i = 0; i <= SADB_SATYPE_MAX; i++)
8336 		LIST_INIT(&V_regtree[i]);
8337 
8338 	LIST_INIT(&V_acqtree);
8339 	LIST_INIT(&V_spacqtree);
8340 }
8341 VNET_SYSINIT(key_vnet_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_SECOND,
8342     key_vnet_init, NULL);
8343 
8344 static void
8345 key_init(void *arg __unused)
8346 {
8347 
8348 	ipsec_key_lft_zone = uma_zcreate("IPsec SA lft_c",
8349 	    sizeof(uint64_t) * 2, NULL, NULL, NULL, NULL,
8350 	    UMA_ALIGN_PTR, UMA_ZONE_PCPU);
8351 
8352 	SPTREE_LOCK_INIT();
8353 	REGTREE_LOCK_INIT();
8354 	SAHTREE_LOCK_INIT();
8355 	ACQ_LOCK_INIT();
8356 	SPACQ_LOCK_INIT();
8357 	SPI_ALLOC_LOCK_INIT();
8358 
8359 #ifndef IPSEC_DEBUG2
8360 	callout_init(&key_timer, 1);
8361 	callout_reset(&key_timer, hz, key_timehandler, NULL);
8362 #endif /*IPSEC_DEBUG2*/
8363 
8364 	/* initialize key statistics */
8365 	keystat.getspi_count = 1;
8366 
8367 	if (bootverbose)
8368 		printf("IPsec: Initialized Security Association Processing.\n");
8369 }
8370 SYSINIT(key_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, key_init, NULL);
8371 
8372 #ifdef VIMAGE
8373 static void
8374 key_vnet_destroy(void *arg __unused)
8375 {
8376 	struct secashead_queue sahdrainq;
8377 	struct secpolicy_queue drainq;
8378 	struct secpolicy *sp, *nextsp;
8379 	struct secacq *acq, *nextacq;
8380 	struct secspacq *spacq, *nextspacq;
8381 	struct secashead *sah;
8382 	struct secasvar *sav;
8383 	struct secreg *reg;
8384 	int i;
8385 
8386 	/*
8387 	 * XXX: can we just call free() for each object without
8388 	 * walking through safe way with releasing references?
8389 	 */
8390 	TAILQ_INIT(&drainq);
8391 	SPTREE_WLOCK();
8392 	for (i = 0; i < IPSEC_DIR_MAX; i++) {
8393 		TAILQ_CONCAT(&drainq, &V_sptree[i], chain);
8394 		TAILQ_CONCAT(&drainq, &V_sptree_ifnet[i], chain);
8395 	}
8396 	for (i = 0; i < V_sphash_mask + 1; i++)
8397 		LIST_INIT(&V_sphashtbl[i]);
8398 	SPTREE_WUNLOCK();
8399 	spdcache_destroy();
8400 
8401 	sp = TAILQ_FIRST(&drainq);
8402 	while (sp != NULL) {
8403 		nextsp = TAILQ_NEXT(sp, chain);
8404 		key_freesp(&sp);
8405 		sp = nextsp;
8406 	}
8407 
8408 	TAILQ_INIT(&sahdrainq);
8409 	SAHTREE_WLOCK();
8410 	TAILQ_CONCAT(&sahdrainq, &V_sahtree, chain);
8411 	for (i = 0; i < V_savhash_mask + 1; i++)
8412 		LIST_INIT(&V_savhashtbl[i]);
8413 	for (i = 0; i < V_sahaddrhash_mask + 1; i++)
8414 		LIST_INIT(&V_sahaddrhashtbl[i]);
8415 	TAILQ_FOREACH(sah, &sahdrainq, chain) {
8416 		sah->state = SADB_SASTATE_DEAD;
8417 		TAILQ_FOREACH(sav, &sah->savtree_larval, chain) {
8418 			sav->state = SADB_SASTATE_DEAD;
8419 		}
8420 		TAILQ_FOREACH(sav, &sah->savtree_alive, chain) {
8421 			sav->state = SADB_SASTATE_DEAD;
8422 		}
8423 	}
8424 	SAHTREE_WUNLOCK();
8425 
8426 	key_freesah_flushed(&sahdrainq);
8427 	hashdestroy(V_sphashtbl, M_IPSEC_SP, V_sphash_mask);
8428 	hashdestroy(V_savhashtbl, M_IPSEC_SA, V_savhash_mask);
8429 	hashdestroy(V_sahaddrhashtbl, M_IPSEC_SAH, V_sahaddrhash_mask);
8430 
8431 	REGTREE_LOCK();
8432 	for (i = 0; i <= SADB_SATYPE_MAX; i++) {
8433 		LIST_FOREACH(reg, &V_regtree[i], chain) {
8434 			if (__LIST_CHAINED(reg)) {
8435 				LIST_REMOVE(reg, chain);
8436 				free(reg, M_IPSEC_SAR);
8437 				break;
8438 			}
8439 		}
8440 	}
8441 	REGTREE_UNLOCK();
8442 
8443 	ACQ_LOCK();
8444 	acq = LIST_FIRST(&V_acqtree);
8445 	while (acq != NULL) {
8446 		nextacq = LIST_NEXT(acq, chain);
8447 		LIST_REMOVE(acq, chain);
8448 		free(acq, M_IPSEC_SAQ);
8449 		acq = nextacq;
8450 	}
8451 	for (i = 0; i < V_acqaddrhash_mask + 1; i++)
8452 		LIST_INIT(&V_acqaddrhashtbl[i]);
8453 	for (i = 0; i < V_acqseqhash_mask + 1; i++)
8454 		LIST_INIT(&V_acqseqhashtbl[i]);
8455 	ACQ_UNLOCK();
8456 
8457 	SPACQ_LOCK();
8458 	for (spacq = LIST_FIRST(&V_spacqtree); spacq != NULL;
8459 	    spacq = nextspacq) {
8460 		nextspacq = LIST_NEXT(spacq, chain);
8461 		if (__LIST_CHAINED(spacq)) {
8462 			LIST_REMOVE(spacq, chain);
8463 			free(spacq, M_IPSEC_SAQ);
8464 		}
8465 	}
8466 	SPACQ_UNLOCK();
8467 	hashdestroy(V_acqaddrhashtbl, M_IPSEC_SAQ, V_acqaddrhash_mask);
8468 	hashdestroy(V_acqseqhashtbl, M_IPSEC_SAQ, V_acqseqhash_mask);
8469 }
8470 VNET_SYSUNINIT(key_vnet_destroy, SI_SUB_PROTO_DOMAIN, SI_ORDER_SECOND,
8471     key_vnet_destroy, NULL);
8472 #endif
8473 
8474 /*
8475  * XXX: as long as domains are not unloadable, this function is never called,
8476  * provided for consistensy and future unload support.
8477  */
8478 static void
8479 key_destroy(void *arg __unused)
8480 {
8481 	uma_zdestroy(ipsec_key_lft_zone);
8482 
8483 #ifndef IPSEC_DEBUG2
8484 	callout_drain(&key_timer);
8485 #endif
8486 	SPTREE_LOCK_DESTROY();
8487 	REGTREE_LOCK_DESTROY();
8488 	SAHTREE_LOCK_DESTROY();
8489 	ACQ_LOCK_DESTROY();
8490 	SPACQ_LOCK_DESTROY();
8491 	SPI_ALLOC_LOCK_DESTROY();
8492 }
8493 SYSUNINIT(key_destroy, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, key_destroy, NULL);
8494 
8495 /* record data transfer on SA, and update timestamps */
8496 void
8497 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m)
8498 {
8499 	IPSEC_ASSERT(sav != NULL, ("Null secasvar"));
8500 	IPSEC_ASSERT(m != NULL, ("Null mbuf"));
8501 
8502 	/*
8503 	 * XXX Currently, there is a difference of bytes size
8504 	 * between inbound and outbound processing.
8505 	 */
8506 	counter_u64_add(sav->lft_c_bytes, m->m_pkthdr.len);
8507 
8508 	/*
8509 	 * We use the number of packets as the unit of
8510 	 * allocations.  We increment the variable
8511 	 * whenever {esp,ah}_{in,out}put is called.
8512 	 */
8513 	counter_u64_add(sav->lft_c_allocations, 1);
8514 
8515 	/*
8516 	 * NOTE: We record CURRENT usetime by using wall clock,
8517 	 * in seconds.  HARD and SOFT lifetime are measured by the time
8518 	 * difference (again in seconds) from usetime.
8519 	 *
8520 	 *	usetime
8521 	 *	v     expire   expire
8522 	 * -----+-----+--------+---> t
8523 	 *	<--------------> HARD
8524 	 *	<-----> SOFT
8525 	 */
8526 	if (sav->firstused == 0)
8527 		sav->firstused = time_second;
8528 }
8529 
8530 /*
8531  * Take one of the kernel's security keys and convert it into a PF_KEY
8532  * structure within an mbuf, suitable for sending up to a waiting
8533  * application in user land.
8534  *
8535  * IN:
8536  *    src: A pointer to a kernel security key.
8537  *    exttype: Which type of key this is. Refer to the PF_KEY data structures.
8538  * OUT:
8539  *    a valid mbuf or NULL indicating an error
8540  *
8541  */
8542 
8543 static struct mbuf *
8544 key_setkey(struct seckey *src, uint16_t exttype)
8545 {
8546 	struct mbuf *m;
8547 	struct sadb_key *p;
8548 	int len;
8549 
8550 	if (src == NULL)
8551 		return NULL;
8552 
8553 	len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src));
8554 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
8555 	if (m == NULL)
8556 		return NULL;
8557 	m_align(m, len);
8558 	m->m_len = len;
8559 	p = mtod(m, struct sadb_key *);
8560 	bzero(p, len);
8561 	p->sadb_key_len = PFKEY_UNIT64(len);
8562 	p->sadb_key_exttype = exttype;
8563 	p->sadb_key_bits = src->bits;
8564 	bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src));
8565 
8566 	return m;
8567 }
8568 
8569 /*
8570  * Take one of the kernel's lifetime data structures and convert it
8571  * into a PF_KEY structure within an mbuf, suitable for sending up to
8572  * a waiting application in user land.
8573  *
8574  * IN:
8575  *    src: A pointer to a kernel lifetime structure.
8576  *    exttype: Which type of lifetime this is. Refer to the PF_KEY
8577  *             data structures for more information.
8578  * OUT:
8579  *    a valid mbuf or NULL indicating an error
8580  *
8581  */
8582 
8583 static struct mbuf *
8584 key_setlifetime(struct seclifetime *src, uint16_t exttype)
8585 {
8586 	struct mbuf *m = NULL;
8587 	struct sadb_lifetime *p;
8588 	int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime));
8589 
8590 	if (src == NULL)
8591 		return NULL;
8592 
8593 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
8594 	if (m == NULL)
8595 		return m;
8596 	m_align(m, len);
8597 	m->m_len = len;
8598 	p = mtod(m, struct sadb_lifetime *);
8599 
8600 	bzero(p, len);
8601 	p->sadb_lifetime_len = PFKEY_UNIT64(len);
8602 	p->sadb_lifetime_exttype = exttype;
8603 	p->sadb_lifetime_allocations = src->allocations;
8604 	p->sadb_lifetime_bytes = src->bytes;
8605 	p->sadb_lifetime_addtime = src->addtime;
8606 	p->sadb_lifetime_usetime = src->usetime;
8607 
8608 	return m;
8609 
8610 }
8611 
8612 const struct enc_xform *
8613 enc_algorithm_lookup(int alg)
8614 {
8615 	int i;
8616 
8617 	for (i = 0; i < nitems(supported_ealgs); i++)
8618 		if (alg == supported_ealgs[i].sadb_alg)
8619 			return (supported_ealgs[i].xform);
8620 	return (NULL);
8621 }
8622 
8623 const struct auth_hash *
8624 auth_algorithm_lookup(int alg)
8625 {
8626 	int i;
8627 
8628 	for (i = 0; i < nitems(supported_aalgs); i++)
8629 		if (alg == supported_aalgs[i].sadb_alg)
8630 			return (supported_aalgs[i].xform);
8631 	return (NULL);
8632 }
8633 
8634 const struct comp_algo *
8635 comp_algorithm_lookup(int alg)
8636 {
8637 	int i;
8638 
8639 	for (i = 0; i < nitems(supported_calgs); i++)
8640 		if (alg == supported_calgs[i].sadb_alg)
8641 			return (supported_calgs[i].xform);
8642 	return (NULL);
8643 }
8644