1 /* $FreeBSD$ */ 2 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * This code is referd to RFC 2367 35 */ 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 #include "opt_ipsec.h" 40 41 #include <sys/types.h> 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/mutex.h> 47 #include <sys/mbuf.h> 48 #include <sys/domain.h> 49 #include <sys/protosw.h> 50 #include <sys/malloc.h> 51 #include <sys/socket.h> 52 #include <sys/socketvar.h> 53 #include <sys/sysctl.h> 54 #include <sys/errno.h> 55 #include <sys/proc.h> 56 #include <sys/queue.h> 57 #include <sys/syslog.h> 58 59 #include <net/if.h> 60 #include <net/route.h> 61 #include <net/raw_cb.h> 62 63 #include <netinet/in.h> 64 #include <netinet/in_systm.h> 65 #include <netinet/ip.h> 66 #include <netinet/in_var.h> 67 68 #ifdef INET6 69 #include <netinet/ip6.h> 70 #include <netinet6/in6_var.h> 71 #include <netinet6/ip6_var.h> 72 #endif /* INET6 */ 73 74 #ifdef INET 75 #include <netinet/in_pcb.h> 76 #endif 77 #ifdef INET6 78 #include <netinet6/in6_pcb.h> 79 #endif /* INET6 */ 80 81 #include <net/pfkeyv2.h> 82 #include <netipsec/keydb.h> 83 #include <netipsec/key.h> 84 #include <netipsec/keysock.h> 85 #include <netipsec/key_debug.h> 86 87 #include <netipsec/ipsec.h> 88 #ifdef INET6 89 #include <netipsec/ipsec6.h> 90 #endif 91 92 #include <netipsec/xform.h> 93 94 #include <machine/stdarg.h> 95 96 /* randomness */ 97 #include <sys/random.h> 98 99 #define FULLMASK 0xff 100 #define _BITS(bytes) ((bytes) << 3) 101 102 /* 103 * Note on SA reference counting: 104 * - SAs that are not in DEAD state will have (total external reference + 1) 105 * following value in reference count field. they cannot be freed and are 106 * referenced from SA header. 107 * - SAs that are in DEAD state will have (total external reference) 108 * in reference count field. they are ready to be freed. reference from 109 * SA header will be removed in key_delsav(), when the reference count 110 * field hits 0 (= no external reference other than from SA header. 111 */ 112 113 u_int32_t key_debug_level = 0; 114 static u_int key_spi_trycnt = 1000; 115 static u_int32_t key_spi_minval = 0x100; 116 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */ 117 static u_int32_t policy_id = 0; 118 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/ 119 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/ 120 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/ 121 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/ 122 static int key_preferred_oldsa = 1; /* preferred old sa rather than new sa.*/ 123 124 static u_int32_t acq_seq = 0; 125 126 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */ 127 static struct mtx sptree_lock; 128 #define SPTREE_LOCK_INIT() \ 129 mtx_init(&sptree_lock, "sptree", \ 130 "fast ipsec security policy database", MTX_DEF) 131 #define SPTREE_LOCK_DESTROY() mtx_destroy(&sptree_lock) 132 #define SPTREE_LOCK() mtx_lock(&sptree_lock) 133 #define SPTREE_UNLOCK() mtx_unlock(&sptree_lock) 134 #define SPTREE_LOCK_ASSERT() mtx_assert(&sptree_lock, MA_OWNED) 135 136 static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */ 137 static struct mtx sahtree_lock; 138 #define SAHTREE_LOCK_INIT() \ 139 mtx_init(&sahtree_lock, "sahtree", \ 140 "fast ipsec security association database", MTX_DEF) 141 #define SAHTREE_LOCK_DESTROY() mtx_destroy(&sahtree_lock) 142 #define SAHTREE_LOCK() mtx_lock(&sahtree_lock) 143 #define SAHTREE_UNLOCK() mtx_unlock(&sahtree_lock) 144 #define SAHTREE_LOCK_ASSERT() mtx_assert(&sahtree_lock, MA_OWNED) 145 146 /* registed list */ 147 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1]; 148 static struct mtx regtree_lock; 149 #define REGTREE_LOCK_INIT() \ 150 mtx_init(®tree_lock, "regtree", "fast ipsec regtree", MTX_DEF) 151 #define REGTREE_LOCK_DESTROY() mtx_destroy(®tree_lock) 152 #define REGTREE_LOCK() mtx_lock(®tree_lock) 153 #define REGTREE_UNLOCK() mtx_unlock(®tree_lock) 154 #define REGTREE_LOCK_ASSERT() mtx_assert(®tree_lock, MA_OWNED) 155 156 static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */ 157 static struct mtx acq_lock; 158 #define ACQ_LOCK_INIT() \ 159 mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF) 160 #define ACQ_LOCK_DESTROY() mtx_destroy(&acq_lock) 161 #define ACQ_LOCK() mtx_lock(&acq_lock) 162 #define ACQ_UNLOCK() mtx_unlock(&acq_lock) 163 #define ACQ_LOCK_ASSERT() mtx_assert(&acq_lock, MA_OWNED) 164 165 static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */ 166 static struct mtx spacq_lock; 167 #define SPACQ_LOCK_INIT() \ 168 mtx_init(&spacq_lock, "spacqtree", \ 169 "fast ipsec security policy acquire list", MTX_DEF) 170 #define SPACQ_LOCK_DESTROY() mtx_destroy(&spacq_lock) 171 #define SPACQ_LOCK() mtx_lock(&spacq_lock) 172 #define SPACQ_UNLOCK() mtx_unlock(&spacq_lock) 173 #define SPACQ_LOCK_ASSERT() mtx_assert(&spacq_lock, MA_OWNED) 174 175 /* search order for SAs */ 176 static const u_int saorder_state_valid_prefer_old[] = { 177 SADB_SASTATE_DYING, SADB_SASTATE_MATURE, 178 }; 179 static const u_int saorder_state_valid_prefer_new[] = { 180 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 181 }; 182 static u_int saorder_state_alive[] = { 183 /* except DEAD */ 184 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL 185 }; 186 static u_int saorder_state_any[] = { 187 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 188 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD 189 }; 190 191 static const int minsize[] = { 192 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 193 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 194 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 195 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 196 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 197 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ 198 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ 199 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ 200 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ 201 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ 202 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ 203 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ 204 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ 205 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ 206 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ 207 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ 208 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 209 0, /* SADB_X_EXT_KMPRIVATE */ 210 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ 211 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 212 }; 213 static const int maxsize[] = { 214 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 215 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 216 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 217 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 218 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 219 0, /* SADB_EXT_ADDRESS_SRC */ 220 0, /* SADB_EXT_ADDRESS_DST */ 221 0, /* SADB_EXT_ADDRESS_PROXY */ 222 0, /* SADB_EXT_KEY_AUTH */ 223 0, /* SADB_EXT_KEY_ENCRYPT */ 224 0, /* SADB_EXT_IDENTITY_SRC */ 225 0, /* SADB_EXT_IDENTITY_DST */ 226 0, /* SADB_EXT_SENSITIVITY */ 227 0, /* SADB_EXT_PROPOSAL */ 228 0, /* SADB_EXT_SUPPORTED_AUTH */ 229 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ 230 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 231 0, /* SADB_X_EXT_KMPRIVATE */ 232 0, /* SADB_X_EXT_POLICY */ 233 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 234 }; 235 236 static int ipsec_esp_keymin = 256; 237 static int ipsec_esp_auth = 0; 238 static int ipsec_ah_keymin = 128; 239 240 #ifdef SYSCTL_DECL 241 SYSCTL_DECL(_net_key); 242 #endif 243 244 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \ 245 &key_debug_level, 0, ""); 246 247 /* max count of trial for the decision of spi value */ 248 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \ 249 &key_spi_trycnt, 0, ""); 250 251 /* minimum spi value to allocate automatically. */ 252 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \ 253 &key_spi_minval, 0, ""); 254 255 /* maximun spi value to allocate automatically. */ 256 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \ 257 &key_spi_maxval, 0, ""); 258 259 /* interval to initialize randseed */ 260 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \ 261 &key_int_random, 0, ""); 262 263 /* lifetime for larval SA */ 264 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \ 265 &key_larval_lifetime, 0, ""); 266 267 /* counter for blocking to send SADB_ACQUIRE to IKEd */ 268 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \ 269 &key_blockacq_count, 0, ""); 270 271 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ 272 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \ 273 &key_blockacq_lifetime, 0, ""); 274 275 /* ESP auth */ 276 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \ 277 &ipsec_esp_auth, 0, ""); 278 279 /* minimum ESP key length */ 280 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \ 281 &ipsec_esp_keymin, 0, ""); 282 283 /* minimum AH key length */ 284 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \ 285 &ipsec_ah_keymin, 0, ""); 286 287 /* perfered old SA rather than new SA */ 288 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, preferred_oldsa, CTLFLAG_RW,\ 289 &key_preferred_oldsa, 0, ""); 290 291 #define __LIST_CHAINED(elm) \ 292 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) 293 #define LIST_INSERT_TAIL(head, elm, type, field) \ 294 do {\ 295 struct type *curelm = LIST_FIRST(head); \ 296 if (curelm == NULL) {\ 297 LIST_INSERT_HEAD(head, elm, field); \ 298 } else { \ 299 while (LIST_NEXT(curelm, field)) \ 300 curelm = LIST_NEXT(curelm, field);\ 301 LIST_INSERT_AFTER(curelm, elm, field);\ 302 }\ 303 } while (0) 304 305 #define KEY_CHKSASTATE(head, sav, name) \ 306 do { \ 307 if ((head) != (sav)) { \ 308 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \ 309 (name), (head), (sav))); \ 310 continue; \ 311 } \ 312 } while (0) 313 314 #define KEY_CHKSPDIR(head, sp, name) \ 315 do { \ 316 if ((head) != (sp)) { \ 317 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \ 318 "anyway continue.\n", \ 319 (name), (head), (sp))); \ 320 } \ 321 } while (0) 322 323 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association"); 324 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head"); 325 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy"); 326 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request"); 327 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous"); 328 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire"); 329 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire"); 330 331 /* 332 * set parameters into secpolicyindex buffer. 333 * Must allocate secpolicyindex buffer passed to this function. 334 */ 335 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \ 336 do { \ 337 bzero((idx), sizeof(struct secpolicyindex)); \ 338 (idx)->dir = (_dir); \ 339 (idx)->prefs = (ps); \ 340 (idx)->prefd = (pd); \ 341 (idx)->ul_proto = (ulp); \ 342 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 343 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 344 } while (0) 345 346 /* 347 * set parameters into secasindex buffer. 348 * Must allocate secasindex buffer before calling this function. 349 */ 350 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \ 351 do { \ 352 bzero((idx), sizeof(struct secasindex)); \ 353 (idx)->proto = (p); \ 354 (idx)->mode = (m); \ 355 (idx)->reqid = (r); \ 356 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 357 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 358 } while (0) 359 360 /* key statistics */ 361 struct _keystat { 362 u_long getspi_count; /* the avarage of count to try to get new SPI */ 363 } keystat; 364 365 struct sadb_msghdr { 366 struct sadb_msg *msg; 367 struct sadb_ext *ext[SADB_EXT_MAX + 1]; 368 int extoff[SADB_EXT_MAX + 1]; 369 int extlen[SADB_EXT_MAX + 1]; 370 }; 371 372 static struct secasvar *key_allocsa_policy __P((const struct secasindex *)); 373 static void key_freesp_so __P((struct secpolicy **)); 374 static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int)); 375 static void key_delsp __P((struct secpolicy *)); 376 static struct secpolicy *key_getsp __P((struct secpolicyindex *)); 377 static void _key_delsp(struct secpolicy *sp); 378 static struct secpolicy *key_getspbyid __P((u_int32_t)); 379 static u_int32_t key_newreqid __P((void)); 380 static struct mbuf *key_gather_mbuf __P((struct mbuf *, 381 const struct sadb_msghdr *, int, int, ...)); 382 static int key_spdadd __P((struct socket *, struct mbuf *, 383 const struct sadb_msghdr *)); 384 static u_int32_t key_getnewspid __P((void)); 385 static int key_spddelete __P((struct socket *, struct mbuf *, 386 const struct sadb_msghdr *)); 387 static int key_spddelete2 __P((struct socket *, struct mbuf *, 388 const struct sadb_msghdr *)); 389 static int key_spdget __P((struct socket *, struct mbuf *, 390 const struct sadb_msghdr *)); 391 static int key_spdflush __P((struct socket *, struct mbuf *, 392 const struct sadb_msghdr *)); 393 static int key_spddump __P((struct socket *, struct mbuf *, 394 const struct sadb_msghdr *)); 395 static struct mbuf *key_setdumpsp __P((struct secpolicy *, 396 u_int8_t, u_int32_t, u_int32_t)); 397 static u_int key_getspreqmsglen __P((struct secpolicy *)); 398 static int key_spdexpire __P((struct secpolicy *)); 399 static struct secashead *key_newsah __P((struct secasindex *)); 400 static void key_delsah __P((struct secashead *)); 401 static struct secasvar *key_newsav __P((struct mbuf *, 402 const struct sadb_msghdr *, struct secashead *, int *, 403 const char*, int)); 404 #define KEY_NEWSAV(m, sadb, sah, e) \ 405 key_newsav(m, sadb, sah, e, __FILE__, __LINE__) 406 static void key_delsav __P((struct secasvar *)); 407 static struct secashead *key_getsah __P((struct secasindex *)); 408 static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t)); 409 static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t)); 410 static int key_setsaval __P((struct secasvar *, struct mbuf *, 411 const struct sadb_msghdr *)); 412 static int key_mature __P((struct secasvar *)); 413 static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t, 414 u_int8_t, u_int32_t, u_int32_t)); 415 static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t, 416 u_int32_t, pid_t, u_int16_t)); 417 static struct mbuf *key_setsadbsa __P((struct secasvar *)); 418 static struct mbuf *key_setsadbaddr __P((u_int16_t, 419 const struct sockaddr *, u_int8_t, u_int16_t)); 420 static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t)); 421 static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t, 422 u_int32_t)); 423 static void *key_dup(const void *, u_int, struct malloc_type *); 424 #ifdef INET6 425 static int key_ismyaddr6 __P((struct sockaddr_in6 *)); 426 #endif 427 428 /* flags for key_cmpsaidx() */ 429 #define CMP_HEAD 1 /* protocol, addresses. */ 430 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ 431 #define CMP_REQID 3 /* additionally HEAD, reaid. */ 432 #define CMP_EXACTLY 4 /* all elements. */ 433 static int key_cmpsaidx 434 __P((const struct secasindex *, const struct secasindex *, int)); 435 436 static int key_cmpspidx_exactly 437 __P((struct secpolicyindex *, struct secpolicyindex *)); 438 static int key_cmpspidx_withmask 439 __P((struct secpolicyindex *, struct secpolicyindex *)); 440 static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int)); 441 static int key_bbcmp __P((const void *, const void *, u_int)); 442 static u_int16_t key_satype2proto __P((u_int8_t)); 443 static u_int8_t key_proto2satype __P((u_int16_t)); 444 445 static int key_getspi __P((struct socket *, struct mbuf *, 446 const struct sadb_msghdr *)); 447 static u_int32_t key_do_getnewspi __P((struct sadb_spirange *, 448 struct secasindex *)); 449 static int key_update __P((struct socket *, struct mbuf *, 450 const struct sadb_msghdr *)); 451 #ifdef IPSEC_DOSEQCHECK 452 static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t)); 453 #endif 454 static int key_add __P((struct socket *, struct mbuf *, 455 const struct sadb_msghdr *)); 456 static int key_setident __P((struct secashead *, struct mbuf *, 457 const struct sadb_msghdr *)); 458 static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *, 459 const struct sadb_msghdr *)); 460 static int key_delete __P((struct socket *, struct mbuf *, 461 const struct sadb_msghdr *)); 462 static int key_get __P((struct socket *, struct mbuf *, 463 const struct sadb_msghdr *)); 464 465 static void key_getcomb_setlifetime __P((struct sadb_comb *)); 466 static struct mbuf *key_getcomb_esp __P((void)); 467 static struct mbuf *key_getcomb_ah __P((void)); 468 static struct mbuf *key_getcomb_ipcomp __P((void)); 469 static struct mbuf *key_getprop __P((const struct secasindex *)); 470 471 static int key_acquire __P((const struct secasindex *, struct secpolicy *)); 472 static struct secacq *key_newacq __P((const struct secasindex *)); 473 static struct secacq *key_getacq __P((const struct secasindex *)); 474 static struct secacq *key_getacqbyseq __P((u_int32_t)); 475 static struct secspacq *key_newspacq __P((struct secpolicyindex *)); 476 static struct secspacq *key_getspacq __P((struct secpolicyindex *)); 477 static int key_acquire2 __P((struct socket *, struct mbuf *, 478 const struct sadb_msghdr *)); 479 static int key_register __P((struct socket *, struct mbuf *, 480 const struct sadb_msghdr *)); 481 static int key_expire __P((struct secasvar *)); 482 static int key_flush __P((struct socket *, struct mbuf *, 483 const struct sadb_msghdr *)); 484 static int key_dump __P((struct socket *, struct mbuf *, 485 const struct sadb_msghdr *)); 486 static int key_promisc __P((struct socket *, struct mbuf *, 487 const struct sadb_msghdr *)); 488 static int key_senderror __P((struct socket *, struct mbuf *, int)); 489 static int key_validate_ext __P((const struct sadb_ext *, int)); 490 static int key_align __P((struct mbuf *, struct sadb_msghdr *)); 491 #if 0 492 static const char *key_getfqdn __P((void)); 493 static const char *key_getuserfqdn __P((void)); 494 #endif 495 static void key_sa_chgstate __P((struct secasvar *, u_int8_t)); 496 static struct mbuf *key_alloc_mbuf __P((int)); 497 498 #define SA_ADDREF(p) do { \ 499 (p)->refcnt++; \ 500 IPSEC_ASSERT((p)->refcnt != 0, ("SA refcnt overflow")); \ 501 } while (0) 502 #define SA_DELREF(p) do { \ 503 IPSEC_ASSERT((p)->refcnt > 0, ("SA refcnt underflow")); \ 504 (p)->refcnt--; \ 505 } while (0) 506 507 #define SP_ADDREF(p) do { \ 508 (p)->refcnt++; \ 509 IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow")); \ 510 } while (0) 511 #define SP_DELREF(p) do { \ 512 IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow")); \ 513 (p)->refcnt--; \ 514 } while (0) 515 516 /* 517 * Return 0 when there are known to be no SP's for the specified 518 * direction. Otherwise return 1. This is used by IPsec code 519 * to optimize performance. 520 */ 521 int 522 key_havesp(u_int dir) 523 { 524 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? 525 LIST_FIRST(&sptree[dir]) != NULL : 1); 526 } 527 528 /* %%% IPsec policy management */ 529 /* 530 * allocating a SP for OUTBOUND or INBOUND packet. 531 * Must call key_freesp() later. 532 * OUT: NULL: not found 533 * others: found and return the pointer. 534 */ 535 struct secpolicy * 536 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag) 537 { 538 struct secpolicy *sp; 539 540 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 541 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 542 ("invalid direction %u", dir)); 543 544 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 545 printf("DP %s from %s:%u\n", __func__, where, tag)); 546 547 /* get a SP entry */ 548 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 549 printf("*** objects\n"); 550 kdebug_secpolicyindex(spidx)); 551 552 SPTREE_LOCK(); 553 LIST_FOREACH(sp, &sptree[dir], chain) { 554 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 555 printf("*** in SPD\n"); 556 kdebug_secpolicyindex(&sp->spidx)); 557 558 if (sp->state == IPSEC_SPSTATE_DEAD) 559 continue; 560 if (key_cmpspidx_withmask(&sp->spidx, spidx)) 561 goto found; 562 } 563 sp = NULL; 564 found: 565 if (sp) { 566 /* sanity check */ 567 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 568 569 /* found a SPD entry */ 570 sp->lastused = time_second; 571 SP_ADDREF(sp); 572 } 573 SPTREE_UNLOCK(); 574 575 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 576 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 577 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 578 return sp; 579 } 580 581 /* 582 * allocating a SP for OUTBOUND or INBOUND packet. 583 * Must call key_freesp() later. 584 * OUT: NULL: not found 585 * others: found and return the pointer. 586 */ 587 struct secpolicy * 588 key_allocsp2(u_int32_t spi, 589 union sockaddr_union *dst, 590 u_int8_t proto, 591 u_int dir, 592 const char* where, int tag) 593 { 594 struct secpolicy *sp; 595 596 IPSEC_ASSERT(dst != NULL, ("null dst")); 597 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 598 ("invalid direction %u", dir)); 599 600 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 601 printf("DP %s from %s:%u\n", __func__, where, tag)); 602 603 /* get a SP entry */ 604 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 605 printf("*** objects\n"); 606 printf("spi %u proto %u dir %u\n", spi, proto, dir); 607 kdebug_sockaddr(&dst->sa)); 608 609 SPTREE_LOCK(); 610 LIST_FOREACH(sp, &sptree[dir], chain) { 611 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 612 printf("*** in SPD\n"); 613 kdebug_secpolicyindex(&sp->spidx)); 614 615 if (sp->state == IPSEC_SPSTATE_DEAD) 616 continue; 617 /* compare simple values, then dst address */ 618 if (sp->spidx.ul_proto != proto) 619 continue; 620 /* NB: spi's must exist and match */ 621 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi) 622 continue; 623 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0) 624 goto found; 625 } 626 sp = NULL; 627 found: 628 if (sp) { 629 /* sanity check */ 630 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 631 632 /* found a SPD entry */ 633 sp->lastused = time_second; 634 SP_ADDREF(sp); 635 } 636 SPTREE_UNLOCK(); 637 638 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 639 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 640 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 641 return sp; 642 } 643 644 /* 645 * return a policy that matches this particular inbound packet. 646 * XXX slow 647 */ 648 struct secpolicy * 649 key_gettunnel(const struct sockaddr *osrc, 650 const struct sockaddr *odst, 651 const struct sockaddr *isrc, 652 const struct sockaddr *idst, 653 const char* where, int tag) 654 { 655 struct secpolicy *sp; 656 const int dir = IPSEC_DIR_INBOUND; 657 struct ipsecrequest *r1, *r2, *p; 658 struct secpolicyindex spidx; 659 660 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 661 printf("DP %s from %s:%u\n", __func__, where, tag)); 662 663 if (isrc->sa_family != idst->sa_family) { 664 ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.", 665 __func__, isrc->sa_family, idst->sa_family)); 666 sp = NULL; 667 goto done; 668 } 669 670 SPTREE_LOCK(); 671 LIST_FOREACH(sp, &sptree[dir], chain) { 672 if (sp->state == IPSEC_SPSTATE_DEAD) 673 continue; 674 675 r1 = r2 = NULL; 676 for (p = sp->req; p; p = p->next) { 677 if (p->saidx.mode != IPSEC_MODE_TUNNEL) 678 continue; 679 680 r1 = r2; 681 r2 = p; 682 683 if (!r1) { 684 /* here we look at address matches only */ 685 spidx = sp->spidx; 686 if (isrc->sa_len > sizeof(spidx.src) || 687 idst->sa_len > sizeof(spidx.dst)) 688 continue; 689 bcopy(isrc, &spidx.src, isrc->sa_len); 690 bcopy(idst, &spidx.dst, idst->sa_len); 691 if (!key_cmpspidx_withmask(&sp->spidx, &spidx)) 692 continue; 693 } else { 694 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) || 695 key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0)) 696 continue; 697 } 698 699 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) || 700 key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0)) 701 continue; 702 703 goto found; 704 } 705 } 706 sp = NULL; 707 found: 708 if (sp) { 709 sp->lastused = time_second; 710 SP_ADDREF(sp); 711 } 712 SPTREE_UNLOCK(); 713 done: 714 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 715 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 716 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 717 return sp; 718 } 719 720 /* 721 * allocating an SA entry for an *OUTBOUND* packet. 722 * checking each request entries in SP, and acquire an SA if need. 723 * OUT: 0: there are valid requests. 724 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. 725 */ 726 int 727 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx) 728 { 729 u_int level; 730 int error; 731 732 IPSEC_ASSERT(isr != NULL, ("null isr")); 733 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 734 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT || 735 saidx->mode == IPSEC_MODE_TUNNEL, 736 ("unexpected policy %u", saidx->mode)); 737 738 /* 739 * XXX guard against protocol callbacks from the crypto 740 * thread as they reference ipsecrequest.sav which we 741 * temporarily null out below. Need to rethink how we 742 * handle bundled SA's in the callback thread. 743 */ 744 IPSECREQUEST_LOCK_ASSERT(isr); 745 746 /* get current level */ 747 level = ipsec_get_reqlevel(isr); 748 #if 0 749 /* 750 * We do allocate new SA only if the state of SA in the holder is 751 * SADB_SASTATE_DEAD. The SA for outbound must be the oldest. 752 */ 753 if (isr->sav != NULL) { 754 if (isr->sav->sah == NULL) 755 panic("%s: sah is null.\n", __func__); 756 if (isr->sav == (struct secasvar *)LIST_FIRST( 757 &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) { 758 KEY_FREESAV(&isr->sav); 759 isr->sav = NULL; 760 } 761 } 762 #else 763 /* 764 * we free any SA stashed in the IPsec request because a different 765 * SA may be involved each time this request is checked, either 766 * because new SAs are being configured, or this request is 767 * associated with an unconnected datagram socket, or this request 768 * is associated with a system default policy. 769 * 770 * The operation may have negative impact to performance. We may 771 * want to check cached SA carefully, rather than picking new SA 772 * every time. 773 */ 774 if (isr->sav != NULL) { 775 KEY_FREESAV(&isr->sav); 776 isr->sav = NULL; 777 } 778 #endif 779 780 /* 781 * new SA allocation if no SA found. 782 * key_allocsa_policy should allocate the oldest SA available. 783 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt. 784 */ 785 if (isr->sav == NULL) 786 isr->sav = key_allocsa_policy(saidx); 787 788 /* When there is SA. */ 789 if (isr->sav != NULL) { 790 if (isr->sav->state != SADB_SASTATE_MATURE && 791 isr->sav->state != SADB_SASTATE_DYING) 792 return EINVAL; 793 return 0; 794 } 795 796 /* there is no SA */ 797 error = key_acquire(saidx, isr->sp); 798 if (error != 0) { 799 /* XXX What should I do ? */ 800 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 801 __func__, error)); 802 return error; 803 } 804 805 if (level != IPSEC_LEVEL_REQUIRE) { 806 /* XXX sigh, the interface to this routine is botched */ 807 IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA")); 808 return 0; 809 } else { 810 return ENOENT; 811 } 812 } 813 814 /* 815 * allocating a SA for policy entry from SAD. 816 * NOTE: searching SAD of aliving state. 817 * OUT: NULL: not found. 818 * others: found and return the pointer. 819 */ 820 static struct secasvar * 821 key_allocsa_policy(const struct secasindex *saidx) 822 { 823 #define N(a) _ARRAYLEN(a) 824 struct secashead *sah; 825 struct secasvar *sav; 826 u_int stateidx, arraysize; 827 const u_int *state_valid; 828 829 SAHTREE_LOCK(); 830 LIST_FOREACH(sah, &sahtree, chain) { 831 if (sah->state == SADB_SASTATE_DEAD) 832 continue; 833 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) { 834 if (key_preferred_oldsa) { 835 state_valid = saorder_state_valid_prefer_old; 836 arraysize = N(saorder_state_valid_prefer_old); 837 } else { 838 state_valid = saorder_state_valid_prefer_new; 839 arraysize = N(saorder_state_valid_prefer_new); 840 } 841 SAHTREE_UNLOCK(); 842 goto found; 843 } 844 } 845 SAHTREE_UNLOCK(); 846 847 return NULL; 848 849 found: 850 /* search valid state */ 851 for (stateidx = 0; stateidx < arraysize; stateidx++) { 852 sav = key_do_allocsa_policy(sah, state_valid[stateidx]); 853 if (sav != NULL) 854 return sav; 855 } 856 857 return NULL; 858 #undef N 859 } 860 861 /* 862 * searching SAD with direction, protocol, mode and state. 863 * called by key_allocsa_policy(). 864 * OUT: 865 * NULL : not found 866 * others : found, pointer to a SA. 867 */ 868 static struct secasvar * 869 key_do_allocsa_policy(struct secashead *sah, u_int state) 870 { 871 struct secasvar *sav, *nextsav, *candidate, *d; 872 873 /* initilize */ 874 candidate = NULL; 875 876 SAHTREE_LOCK(); 877 for (sav = LIST_FIRST(&sah->savtree[state]); 878 sav != NULL; 879 sav = nextsav) { 880 881 nextsav = LIST_NEXT(sav, chain); 882 883 /* sanity check */ 884 KEY_CHKSASTATE(sav->state, state, __func__); 885 886 /* initialize */ 887 if (candidate == NULL) { 888 candidate = sav; 889 continue; 890 } 891 892 /* Which SA is the better ? */ 893 894 IPSEC_ASSERT(candidate->lft_c != NULL, 895 ("null candidate lifetime")); 896 IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime")); 897 898 /* What the best method is to compare ? */ 899 if (key_preferred_oldsa) { 900 if (candidate->lft_c->sadb_lifetime_addtime > 901 sav->lft_c->sadb_lifetime_addtime) { 902 candidate = sav; 903 } 904 continue; 905 /*NOTREACHED*/ 906 } 907 908 /* preferred new sa rather than old sa */ 909 if (candidate->lft_c->sadb_lifetime_addtime < 910 sav->lft_c->sadb_lifetime_addtime) { 911 d = candidate; 912 candidate = sav; 913 } else 914 d = sav; 915 916 /* 917 * prepared to delete the SA when there is more 918 * suitable candidate and the lifetime of the SA is not 919 * permanent. 920 */ 921 if (d->lft_c->sadb_lifetime_addtime != 0) { 922 struct mbuf *m, *result; 923 u_int8_t satype; 924 925 key_sa_chgstate(d, SADB_SASTATE_DEAD); 926 927 IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count")); 928 929 satype = key_proto2satype(d->sah->saidx.proto); 930 if (satype == 0) 931 goto msgfail; 932 933 m = key_setsadbmsg(SADB_DELETE, 0, 934 satype, 0, 0, d->refcnt - 1); 935 if (!m) 936 goto msgfail; 937 result = m; 938 939 /* set sadb_address for saidx's. */ 940 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 941 &d->sah->saidx.src.sa, 942 d->sah->saidx.src.sa.sa_len << 3, 943 IPSEC_ULPROTO_ANY); 944 if (!m) 945 goto msgfail; 946 m_cat(result, m); 947 948 /* set sadb_address for saidx's. */ 949 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 950 &d->sah->saidx.dst.sa, 951 d->sah->saidx.dst.sa.sa_len << 3, 952 IPSEC_ULPROTO_ANY); 953 if (!m) 954 goto msgfail; 955 m_cat(result, m); 956 957 /* create SA extension */ 958 m = key_setsadbsa(d); 959 if (!m) 960 goto msgfail; 961 m_cat(result, m); 962 963 if (result->m_len < sizeof(struct sadb_msg)) { 964 result = m_pullup(result, 965 sizeof(struct sadb_msg)); 966 if (result == NULL) 967 goto msgfail; 968 } 969 970 result->m_pkthdr.len = 0; 971 for (m = result; m; m = m->m_next) 972 result->m_pkthdr.len += m->m_len; 973 mtod(result, struct sadb_msg *)->sadb_msg_len = 974 PFKEY_UNIT64(result->m_pkthdr.len); 975 976 if (key_sendup_mbuf(NULL, result, 977 KEY_SENDUP_REGISTERED)) 978 goto msgfail; 979 msgfail: 980 KEY_FREESAV(&d); 981 } 982 } 983 if (candidate) { 984 SA_ADDREF(candidate); 985 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 986 printf("DP %s cause refcnt++:%d SA:%p\n", 987 __func__, candidate->refcnt, candidate)); 988 } 989 SAHTREE_UNLOCK(); 990 991 return candidate; 992 } 993 994 /* 995 * allocating a usable SA entry for a *INBOUND* packet. 996 * Must call key_freesav() later. 997 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). 998 * NULL: not found, or error occured. 999 * 1000 * In the comparison, no source address is used--for RFC2401 conformance. 1001 * To quote, from section 4.1: 1002 * A security association is uniquely identified by a triple consisting 1003 * of a Security Parameter Index (SPI), an IP Destination Address, and a 1004 * security protocol (AH or ESP) identifier. 1005 * Note that, however, we do need to keep source address in IPsec SA. 1006 * IKE specification and PF_KEY specification do assume that we 1007 * keep source address in IPsec SA. We see a tricky situation here. 1008 */ 1009 struct secasvar * 1010 key_allocsa( 1011 union sockaddr_union *dst, 1012 u_int proto, 1013 u_int32_t spi, 1014 const char* where, int tag) 1015 { 1016 struct secashead *sah; 1017 struct secasvar *sav; 1018 u_int stateidx, arraysize, state; 1019 const u_int *saorder_state_valid; 1020 1021 IPSEC_ASSERT(dst != NULL, ("null dst address")); 1022 1023 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1024 printf("DP %s from %s:%u\n", __func__, where, tag)); 1025 1026 /* 1027 * searching SAD. 1028 * XXX: to be checked internal IP header somewhere. Also when 1029 * IPsec tunnel packet is received. But ESP tunnel mode is 1030 * encrypted so we can't check internal IP header. 1031 */ 1032 SAHTREE_LOCK(); 1033 if (key_preferred_oldsa) { 1034 saorder_state_valid = saorder_state_valid_prefer_old; 1035 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); 1036 } else { 1037 saorder_state_valid = saorder_state_valid_prefer_new; 1038 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); 1039 } 1040 LIST_FOREACH(sah, &sahtree, chain) { 1041 /* search valid state */ 1042 for (stateidx = 0; stateidx < arraysize; stateidx++) { 1043 state = saorder_state_valid[stateidx]; 1044 LIST_FOREACH(sav, &sah->savtree[state], chain) { 1045 /* sanity check */ 1046 KEY_CHKSASTATE(sav->state, state, __func__); 1047 /* do not return entries w/ unusable state */ 1048 if (sav->state != SADB_SASTATE_MATURE && 1049 sav->state != SADB_SASTATE_DYING) 1050 continue; 1051 if (proto != sav->sah->saidx.proto) 1052 continue; 1053 if (spi != sav->spi) 1054 continue; 1055 #if 0 /* don't check src */ 1056 /* check src address */ 1057 if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, 0) != 0) 1058 continue; 1059 #endif 1060 /* check dst address */ 1061 if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, 0) != 0) 1062 continue; 1063 SA_ADDREF(sav); 1064 goto done; 1065 } 1066 } 1067 } 1068 sav = NULL; 1069 done: 1070 SAHTREE_UNLOCK(); 1071 1072 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1073 printf("DP %s return SA:%p; refcnt %u\n", __func__, 1074 sav, sav ? sav->refcnt : 0)); 1075 return sav; 1076 } 1077 1078 /* 1079 * Must be called after calling key_allocsp(). 1080 * For both the packet without socket and key_freeso(). 1081 */ 1082 void 1083 _key_freesp(struct secpolicy **spp, const char* where, int tag) 1084 { 1085 struct secpolicy *sp = *spp; 1086 1087 IPSEC_ASSERT(sp != NULL, ("null sp")); 1088 1089 SPTREE_LOCK(); 1090 SP_DELREF(sp); 1091 1092 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1093 printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n", 1094 __func__, sp, sp->id, where, tag, sp->refcnt)); 1095 1096 if (sp->refcnt == 0) { 1097 *spp = NULL; 1098 key_delsp(sp); 1099 } 1100 SPTREE_UNLOCK(); 1101 } 1102 1103 /* 1104 * Must be called after calling key_allocsp(). 1105 * For the packet with socket. 1106 */ 1107 void 1108 key_freeso(struct socket *so) 1109 { 1110 IPSEC_ASSERT(so != NULL, ("null so")); 1111 1112 switch (so->so_proto->pr_domain->dom_family) { 1113 #ifdef INET 1114 case PF_INET: 1115 { 1116 struct inpcb *pcb = sotoinpcb(so); 1117 1118 /* Does it have a PCB ? */ 1119 if (pcb == NULL) 1120 return; 1121 key_freesp_so(&pcb->inp_sp->sp_in); 1122 key_freesp_so(&pcb->inp_sp->sp_out); 1123 } 1124 break; 1125 #endif 1126 #ifdef INET6 1127 case PF_INET6: 1128 { 1129 #ifdef HAVE_NRL_INPCB 1130 struct inpcb *pcb = sotoinpcb(so); 1131 1132 /* Does it have a PCB ? */ 1133 if (pcb == NULL) 1134 return; 1135 key_freesp_so(&pcb->inp_sp->sp_in); 1136 key_freesp_so(&pcb->inp_sp->sp_out); 1137 #else 1138 struct in6pcb *pcb = sotoin6pcb(so); 1139 1140 /* Does it have a PCB ? */ 1141 if (pcb == NULL) 1142 return; 1143 key_freesp_so(&pcb->in6p_sp->sp_in); 1144 key_freesp_so(&pcb->in6p_sp->sp_out); 1145 #endif 1146 } 1147 break; 1148 #endif /* INET6 */ 1149 default: 1150 ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n", 1151 __func__, so->so_proto->pr_domain->dom_family)); 1152 return; 1153 } 1154 } 1155 1156 static void 1157 key_freesp_so(struct secpolicy **sp) 1158 { 1159 IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp")); 1160 1161 if ((*sp)->policy == IPSEC_POLICY_ENTRUST || 1162 (*sp)->policy == IPSEC_POLICY_BYPASS) 1163 return; 1164 1165 IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC, 1166 ("invalid policy %u", (*sp)->policy)); 1167 KEY_FREESP(sp); 1168 } 1169 1170 /* 1171 * Must be called after calling key_allocsa(). 1172 * This function is called by key_freesp() to free some SA allocated 1173 * for a policy. 1174 */ 1175 void 1176 key_freesav(struct secasvar **psav, const char* where, int tag) 1177 { 1178 struct secasvar *sav = *psav; 1179 1180 IPSEC_ASSERT(sav != NULL, ("null sav")); 1181 1182 /* XXX unguarded? */ 1183 SA_DELREF(sav); 1184 1185 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1186 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1187 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1188 1189 if (sav->refcnt == 0) { 1190 *psav = NULL; 1191 key_delsav(sav); 1192 } 1193 } 1194 1195 /* %%% SPD management */ 1196 /* 1197 * free security policy entry. 1198 */ 1199 static void 1200 key_delsp(struct secpolicy *sp) 1201 { 1202 struct ipsecrequest *isr, *nextisr; 1203 1204 IPSEC_ASSERT(sp != NULL, ("null sp")); 1205 SPTREE_LOCK_ASSERT(); 1206 1207 sp->state = IPSEC_SPSTATE_DEAD; 1208 1209 IPSEC_ASSERT(sp->refcnt == 0, 1210 ("SP with references deleted (refcnt %u)", sp->refcnt)); 1211 1212 /* remove from SP index */ 1213 if (__LIST_CHAINED(sp)) 1214 LIST_REMOVE(sp, chain); 1215 1216 for (isr = sp->req; isr != NULL; isr = nextisr) { 1217 if (isr->sav != NULL) { 1218 KEY_FREESAV(&isr->sav); 1219 isr->sav = NULL; 1220 } 1221 1222 nextisr = isr->next; 1223 ipsec_delisr(isr); 1224 } 1225 _key_delsp(sp); 1226 } 1227 1228 /* 1229 * search SPD 1230 * OUT: NULL : not found 1231 * others : found, pointer to a SP. 1232 */ 1233 static struct secpolicy * 1234 key_getsp(struct secpolicyindex *spidx) 1235 { 1236 struct secpolicy *sp; 1237 1238 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 1239 1240 SPTREE_LOCK(); 1241 LIST_FOREACH(sp, &sptree[spidx->dir], chain) { 1242 if (sp->state == IPSEC_SPSTATE_DEAD) 1243 continue; 1244 if (key_cmpspidx_exactly(spidx, &sp->spidx)) { 1245 SP_ADDREF(sp); 1246 break; 1247 } 1248 } 1249 SPTREE_UNLOCK(); 1250 1251 return sp; 1252 } 1253 1254 /* 1255 * get SP by index. 1256 * OUT: NULL : not found 1257 * others : found, pointer to a SP. 1258 */ 1259 static struct secpolicy * 1260 key_getspbyid(u_int32_t id) 1261 { 1262 struct secpolicy *sp; 1263 1264 SPTREE_LOCK(); 1265 LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) { 1266 if (sp->state == IPSEC_SPSTATE_DEAD) 1267 continue; 1268 if (sp->id == id) { 1269 SP_ADDREF(sp); 1270 goto done; 1271 } 1272 } 1273 1274 LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) { 1275 if (sp->state == IPSEC_SPSTATE_DEAD) 1276 continue; 1277 if (sp->id == id) { 1278 SP_ADDREF(sp); 1279 goto done; 1280 } 1281 } 1282 done: 1283 SPTREE_UNLOCK(); 1284 1285 return sp; 1286 } 1287 1288 struct secpolicy * 1289 key_newsp(const char* where, int tag) 1290 { 1291 struct secpolicy *newsp = NULL; 1292 1293 newsp = (struct secpolicy *) 1294 malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO); 1295 if (newsp) { 1296 SECPOLICY_LOCK_INIT(newsp); 1297 newsp->refcnt = 1; 1298 newsp->req = NULL; 1299 } 1300 1301 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1302 printf("DP %s from %s:%u return SP:%p\n", __func__, 1303 where, tag, newsp)); 1304 return newsp; 1305 } 1306 1307 static void 1308 _key_delsp(struct secpolicy *sp) 1309 { 1310 SECPOLICY_LOCK_DESTROY(sp); 1311 free(sp, M_IPSEC_SP); 1312 } 1313 1314 /* 1315 * create secpolicy structure from sadb_x_policy structure. 1316 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, 1317 * so must be set properly later. 1318 */ 1319 struct secpolicy * 1320 key_msg2sp(xpl0, len, error) 1321 struct sadb_x_policy *xpl0; 1322 size_t len; 1323 int *error; 1324 { 1325 struct secpolicy *newsp; 1326 1327 IPSEC_ASSERT(xpl0 != NULL, ("null xpl0")); 1328 IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len)); 1329 1330 if (len != PFKEY_EXTLEN(xpl0)) { 1331 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__)); 1332 *error = EINVAL; 1333 return NULL; 1334 } 1335 1336 if ((newsp = KEY_NEWSP()) == NULL) { 1337 *error = ENOBUFS; 1338 return NULL; 1339 } 1340 1341 newsp->spidx.dir = xpl0->sadb_x_policy_dir; 1342 newsp->policy = xpl0->sadb_x_policy_type; 1343 1344 /* check policy */ 1345 switch (xpl0->sadb_x_policy_type) { 1346 case IPSEC_POLICY_DISCARD: 1347 case IPSEC_POLICY_NONE: 1348 case IPSEC_POLICY_ENTRUST: 1349 case IPSEC_POLICY_BYPASS: 1350 newsp->req = NULL; 1351 break; 1352 1353 case IPSEC_POLICY_IPSEC: 1354 { 1355 int tlen; 1356 struct sadb_x_ipsecrequest *xisr; 1357 struct ipsecrequest **p_isr = &newsp->req; 1358 1359 /* validity check */ 1360 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { 1361 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", 1362 __func__)); 1363 KEY_FREESP(&newsp); 1364 *error = EINVAL; 1365 return NULL; 1366 } 1367 1368 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); 1369 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1); 1370 1371 while (tlen > 0) { 1372 /* length check */ 1373 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { 1374 ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest " 1375 "length.\n", __func__)); 1376 KEY_FREESP(&newsp); 1377 *error = EINVAL; 1378 return NULL; 1379 } 1380 1381 /* allocate request buffer */ 1382 /* NB: data structure is zero'd */ 1383 *p_isr = ipsec_newisr(); 1384 if ((*p_isr) == NULL) { 1385 ipseclog((LOG_DEBUG, 1386 "%s: No more memory.\n", __func__)); 1387 KEY_FREESP(&newsp); 1388 *error = ENOBUFS; 1389 return NULL; 1390 } 1391 1392 /* set values */ 1393 switch (xisr->sadb_x_ipsecrequest_proto) { 1394 case IPPROTO_ESP: 1395 case IPPROTO_AH: 1396 case IPPROTO_IPCOMP: 1397 break; 1398 default: 1399 ipseclog((LOG_DEBUG, 1400 "%s: invalid proto type=%u\n", __func__, 1401 xisr->sadb_x_ipsecrequest_proto)); 1402 KEY_FREESP(&newsp); 1403 *error = EPROTONOSUPPORT; 1404 return NULL; 1405 } 1406 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; 1407 1408 switch (xisr->sadb_x_ipsecrequest_mode) { 1409 case IPSEC_MODE_TRANSPORT: 1410 case IPSEC_MODE_TUNNEL: 1411 break; 1412 case IPSEC_MODE_ANY: 1413 default: 1414 ipseclog((LOG_DEBUG, 1415 "%s: invalid mode=%u\n", __func__, 1416 xisr->sadb_x_ipsecrequest_mode)); 1417 KEY_FREESP(&newsp); 1418 *error = EINVAL; 1419 return NULL; 1420 } 1421 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; 1422 1423 switch (xisr->sadb_x_ipsecrequest_level) { 1424 case IPSEC_LEVEL_DEFAULT: 1425 case IPSEC_LEVEL_USE: 1426 case IPSEC_LEVEL_REQUIRE: 1427 break; 1428 case IPSEC_LEVEL_UNIQUE: 1429 /* validity check */ 1430 /* 1431 * If range violation of reqid, kernel will 1432 * update it, don't refuse it. 1433 */ 1434 if (xisr->sadb_x_ipsecrequest_reqid 1435 > IPSEC_MANUAL_REQID_MAX) { 1436 ipseclog((LOG_DEBUG, 1437 "%s: reqid=%d range " 1438 "violation, updated by kernel.\n", 1439 __func__, 1440 xisr->sadb_x_ipsecrequest_reqid)); 1441 xisr->sadb_x_ipsecrequest_reqid = 0; 1442 } 1443 1444 /* allocate new reqid id if reqid is zero. */ 1445 if (xisr->sadb_x_ipsecrequest_reqid == 0) { 1446 u_int32_t reqid; 1447 if ((reqid = key_newreqid()) == 0) { 1448 KEY_FREESP(&newsp); 1449 *error = ENOBUFS; 1450 return NULL; 1451 } 1452 (*p_isr)->saidx.reqid = reqid; 1453 xisr->sadb_x_ipsecrequest_reqid = reqid; 1454 } else { 1455 /* set it for manual keying. */ 1456 (*p_isr)->saidx.reqid = 1457 xisr->sadb_x_ipsecrequest_reqid; 1458 } 1459 break; 1460 1461 default: 1462 ipseclog((LOG_DEBUG, "%s: invalid level=%u\n", 1463 __func__, 1464 xisr->sadb_x_ipsecrequest_level)); 1465 KEY_FREESP(&newsp); 1466 *error = EINVAL; 1467 return NULL; 1468 } 1469 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; 1470 1471 /* set IP addresses if there */ 1472 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { 1473 struct sockaddr *paddr; 1474 1475 paddr = (struct sockaddr *)(xisr + 1); 1476 1477 /* validity check */ 1478 if (paddr->sa_len 1479 > sizeof((*p_isr)->saidx.src)) { 1480 ipseclog((LOG_DEBUG, "%s: invalid " 1481 "request address length.\n", 1482 __func__)); 1483 KEY_FREESP(&newsp); 1484 *error = EINVAL; 1485 return NULL; 1486 } 1487 bcopy(paddr, &(*p_isr)->saidx.src, 1488 paddr->sa_len); 1489 1490 paddr = (struct sockaddr *)((caddr_t)paddr 1491 + paddr->sa_len); 1492 1493 /* validity check */ 1494 if (paddr->sa_len 1495 > sizeof((*p_isr)->saidx.dst)) { 1496 ipseclog((LOG_DEBUG, "%s: invalid " 1497 "request address length.\n", 1498 __func__)); 1499 KEY_FREESP(&newsp); 1500 *error = EINVAL; 1501 return NULL; 1502 } 1503 bcopy(paddr, &(*p_isr)->saidx.dst, 1504 paddr->sa_len); 1505 } 1506 1507 (*p_isr)->sp = newsp; 1508 1509 /* initialization for the next. */ 1510 p_isr = &(*p_isr)->next; 1511 tlen -= xisr->sadb_x_ipsecrequest_len; 1512 1513 /* validity check */ 1514 if (tlen < 0) { 1515 ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n", 1516 __func__)); 1517 KEY_FREESP(&newsp); 1518 *error = EINVAL; 1519 return NULL; 1520 } 1521 1522 xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr 1523 + xisr->sadb_x_ipsecrequest_len); 1524 } 1525 } 1526 break; 1527 default: 1528 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); 1529 KEY_FREESP(&newsp); 1530 *error = EINVAL; 1531 return NULL; 1532 } 1533 1534 *error = 0; 1535 return newsp; 1536 } 1537 1538 static u_int32_t 1539 key_newreqid() 1540 { 1541 static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 1542 1543 auto_reqid = (auto_reqid == ~0 1544 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); 1545 1546 /* XXX should be unique check */ 1547 1548 return auto_reqid; 1549 } 1550 1551 /* 1552 * copy secpolicy struct to sadb_x_policy structure indicated. 1553 */ 1554 struct mbuf * 1555 key_sp2msg(sp) 1556 struct secpolicy *sp; 1557 { 1558 struct sadb_x_policy *xpl; 1559 int tlen; 1560 caddr_t p; 1561 struct mbuf *m; 1562 1563 IPSEC_ASSERT(sp != NULL, ("null policy")); 1564 1565 tlen = key_getspreqmsglen(sp); 1566 1567 m = key_alloc_mbuf(tlen); 1568 if (!m || m->m_next) { /*XXX*/ 1569 if (m) 1570 m_freem(m); 1571 return NULL; 1572 } 1573 1574 m->m_len = tlen; 1575 m->m_next = NULL; 1576 xpl = mtod(m, struct sadb_x_policy *); 1577 bzero(xpl, tlen); 1578 1579 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen); 1580 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 1581 xpl->sadb_x_policy_type = sp->policy; 1582 xpl->sadb_x_policy_dir = sp->spidx.dir; 1583 xpl->sadb_x_policy_id = sp->id; 1584 p = (caddr_t)xpl + sizeof(*xpl); 1585 1586 /* if is the policy for ipsec ? */ 1587 if (sp->policy == IPSEC_POLICY_IPSEC) { 1588 struct sadb_x_ipsecrequest *xisr; 1589 struct ipsecrequest *isr; 1590 1591 for (isr = sp->req; isr != NULL; isr = isr->next) { 1592 1593 xisr = (struct sadb_x_ipsecrequest *)p; 1594 1595 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; 1596 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; 1597 xisr->sadb_x_ipsecrequest_level = isr->level; 1598 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; 1599 1600 p += sizeof(*xisr); 1601 bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len); 1602 p += isr->saidx.src.sa.sa_len; 1603 bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len); 1604 p += isr->saidx.src.sa.sa_len; 1605 1606 xisr->sadb_x_ipsecrequest_len = 1607 PFKEY_ALIGN8(sizeof(*xisr) 1608 + isr->saidx.src.sa.sa_len 1609 + isr->saidx.dst.sa.sa_len); 1610 } 1611 } 1612 1613 return m; 1614 } 1615 1616 /* m will not be freed nor modified */ 1617 static struct mbuf * 1618 #ifdef __STDC__ 1619 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, 1620 int ndeep, int nitem, ...) 1621 #else 1622 key_gather_mbuf(m, mhp, ndeep, nitem, va_alist) 1623 struct mbuf *m; 1624 const struct sadb_msghdr *mhp; 1625 int ndeep; 1626 int nitem; 1627 va_dcl 1628 #endif 1629 { 1630 va_list ap; 1631 int idx; 1632 int i; 1633 struct mbuf *result = NULL, *n; 1634 int len; 1635 1636 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1637 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1638 1639 va_start(ap, nitem); 1640 for (i = 0; i < nitem; i++) { 1641 idx = va_arg(ap, int); 1642 if (idx < 0 || idx > SADB_EXT_MAX) 1643 goto fail; 1644 /* don't attempt to pull empty extension */ 1645 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) 1646 continue; 1647 if (idx != SADB_EXT_RESERVED && 1648 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) 1649 continue; 1650 1651 if (idx == SADB_EXT_RESERVED) { 1652 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 1653 1654 IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len)); 1655 1656 MGETHDR(n, M_DONTWAIT, MT_DATA); 1657 if (!n) 1658 goto fail; 1659 n->m_len = len; 1660 n->m_next = NULL; 1661 m_copydata(m, 0, sizeof(struct sadb_msg), 1662 mtod(n, caddr_t)); 1663 } else if (i < ndeep) { 1664 len = mhp->extlen[idx]; 1665 n = key_alloc_mbuf(len); 1666 if (!n || n->m_next) { /*XXX*/ 1667 if (n) 1668 m_freem(n); 1669 goto fail; 1670 } 1671 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], 1672 mtod(n, caddr_t)); 1673 } else { 1674 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], 1675 M_DONTWAIT); 1676 } 1677 if (n == NULL) 1678 goto fail; 1679 1680 if (result) 1681 m_cat(result, n); 1682 else 1683 result = n; 1684 } 1685 va_end(ap); 1686 1687 if ((result->m_flags & M_PKTHDR) != 0) { 1688 result->m_pkthdr.len = 0; 1689 for (n = result; n; n = n->m_next) 1690 result->m_pkthdr.len += n->m_len; 1691 } 1692 1693 return result; 1694 1695 fail: 1696 m_freem(result); 1697 return NULL; 1698 } 1699 1700 /* 1701 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing 1702 * add an entry to SP database, when received 1703 * <base, address(SD), (lifetime(H),) policy> 1704 * from the user(?). 1705 * Adding to SP database, 1706 * and send 1707 * <base, address(SD), (lifetime(H),) policy> 1708 * to the socket which was send. 1709 * 1710 * SPDADD set a unique policy entry. 1711 * SPDSETIDX like SPDADD without a part of policy requests. 1712 * SPDUPDATE replace a unique policy entry. 1713 * 1714 * m will always be freed. 1715 */ 1716 static int 1717 key_spdadd(so, m, mhp) 1718 struct socket *so; 1719 struct mbuf *m; 1720 const struct sadb_msghdr *mhp; 1721 { 1722 struct sadb_address *src0, *dst0; 1723 struct sadb_x_policy *xpl0, *xpl; 1724 struct sadb_lifetime *lft = NULL; 1725 struct secpolicyindex spidx; 1726 struct secpolicy *newsp; 1727 int error; 1728 1729 IPSEC_ASSERT(so != NULL, ("null socket")); 1730 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1731 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1732 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 1733 1734 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 1735 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 1736 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 1737 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n")); 1738 return key_senderror(so, m, EINVAL); 1739 } 1740 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 1741 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 1742 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 1743 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1744 __func__)); 1745 return key_senderror(so, m, EINVAL); 1746 } 1747 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { 1748 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] 1749 < sizeof(struct sadb_lifetime)) { 1750 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1751 __func__)); 1752 return key_senderror(so, m, EINVAL); 1753 } 1754 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 1755 } 1756 1757 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 1758 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 1759 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 1760 1761 /* make secindex */ 1762 /* XXX boundary check against sa_len */ 1763 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1764 src0 + 1, 1765 dst0 + 1, 1766 src0->sadb_address_prefixlen, 1767 dst0->sadb_address_prefixlen, 1768 src0->sadb_address_proto, 1769 &spidx); 1770 1771 /* checking the direciton. */ 1772 switch (xpl0->sadb_x_policy_dir) { 1773 case IPSEC_DIR_INBOUND: 1774 case IPSEC_DIR_OUTBOUND: 1775 break; 1776 default: 1777 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 1778 mhp->msg->sadb_msg_errno = EINVAL; 1779 return 0; 1780 } 1781 1782 /* check policy */ 1783 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */ 1784 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST 1785 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { 1786 ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__)); 1787 return key_senderror(so, m, EINVAL); 1788 } 1789 1790 /* policy requests are mandatory when action is ipsec. */ 1791 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX 1792 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC 1793 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { 1794 ipseclog((LOG_DEBUG, "%s: some policy requests part required\n", 1795 __func__)); 1796 return key_senderror(so, m, EINVAL); 1797 } 1798 1799 /* 1800 * checking there is SP already or not. 1801 * SPDUPDATE doesn't depend on whether there is a SP or not. 1802 * If the type is either SPDADD or SPDSETIDX AND a SP is found, 1803 * then error. 1804 */ 1805 newsp = key_getsp(&spidx); 1806 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1807 if (newsp) { 1808 newsp->state = IPSEC_SPSTATE_DEAD; 1809 KEY_FREESP(&newsp); 1810 } 1811 } else { 1812 if (newsp != NULL) { 1813 KEY_FREESP(&newsp); 1814 ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n", 1815 __func__)); 1816 return key_senderror(so, m, EEXIST); 1817 } 1818 } 1819 1820 /* allocation new SP entry */ 1821 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) { 1822 return key_senderror(so, m, error); 1823 } 1824 1825 if ((newsp->id = key_getnewspid()) == 0) { 1826 _key_delsp(newsp); 1827 return key_senderror(so, m, ENOBUFS); 1828 } 1829 1830 /* XXX boundary check against sa_len */ 1831 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1832 src0 + 1, 1833 dst0 + 1, 1834 src0->sadb_address_prefixlen, 1835 dst0->sadb_address_prefixlen, 1836 src0->sadb_address_proto, 1837 &newsp->spidx); 1838 1839 /* sanity check on addr pair */ 1840 if (((struct sockaddr *)(src0 + 1))->sa_family != 1841 ((struct sockaddr *)(dst0+ 1))->sa_family) { 1842 _key_delsp(newsp); 1843 return key_senderror(so, m, EINVAL); 1844 } 1845 if (((struct sockaddr *)(src0 + 1))->sa_len != 1846 ((struct sockaddr *)(dst0+ 1))->sa_len) { 1847 _key_delsp(newsp); 1848 return key_senderror(so, m, EINVAL); 1849 } 1850 #if 1 1851 if (newsp->req && newsp->req->saidx.src.sa.sa_family) { 1852 struct sockaddr *sa; 1853 sa = (struct sockaddr *)(src0 + 1); 1854 if (sa->sa_family != newsp->req->saidx.src.sa.sa_family) { 1855 _key_delsp(newsp); 1856 return key_senderror(so, m, EINVAL); 1857 } 1858 } 1859 if (newsp->req && newsp->req->saidx.dst.sa.sa_family) { 1860 struct sockaddr *sa; 1861 sa = (struct sockaddr *)(dst0 + 1); 1862 if (sa->sa_family != newsp->req->saidx.dst.sa.sa_family) { 1863 _key_delsp(newsp); 1864 return key_senderror(so, m, EINVAL); 1865 } 1866 } 1867 #endif 1868 1869 newsp->created = time_second; 1870 newsp->lastused = newsp->created; 1871 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; 1872 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; 1873 1874 newsp->refcnt = 1; /* do not reclaim until I say I do */ 1875 newsp->state = IPSEC_SPSTATE_ALIVE; 1876 LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain); 1877 1878 /* delete the entry in spacqtree */ 1879 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1880 struct secspacq *spacq = key_getspacq(&spidx); 1881 if (spacq != NULL) { 1882 /* reset counter in order to deletion by timehandler. */ 1883 spacq->created = time_second; 1884 spacq->count = 0; 1885 SPACQ_UNLOCK(); 1886 } 1887 } 1888 1889 { 1890 struct mbuf *n, *mpolicy; 1891 struct sadb_msg *newmsg; 1892 int off; 1893 1894 /* create new sadb_msg to reply. */ 1895 if (lft) { 1896 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, 1897 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, 1898 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1899 } else { 1900 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, 1901 SADB_X_EXT_POLICY, 1902 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1903 } 1904 if (!n) 1905 return key_senderror(so, m, ENOBUFS); 1906 1907 if (n->m_len < sizeof(*newmsg)) { 1908 n = m_pullup(n, sizeof(*newmsg)); 1909 if (!n) 1910 return key_senderror(so, m, ENOBUFS); 1911 } 1912 newmsg = mtod(n, struct sadb_msg *); 1913 newmsg->sadb_msg_errno = 0; 1914 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 1915 1916 off = 0; 1917 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), 1918 sizeof(*xpl), &off); 1919 if (mpolicy == NULL) { 1920 /* n is already freed */ 1921 return key_senderror(so, m, ENOBUFS); 1922 } 1923 xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off); 1924 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { 1925 m_freem(n); 1926 return key_senderror(so, m, EINVAL); 1927 } 1928 xpl->sadb_x_policy_id = newsp->id; 1929 1930 m_freem(m); 1931 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 1932 } 1933 } 1934 1935 /* 1936 * get new policy id. 1937 * OUT: 1938 * 0: failure. 1939 * others: success. 1940 */ 1941 static u_int32_t 1942 key_getnewspid() 1943 { 1944 u_int32_t newid = 0; 1945 int count = key_spi_trycnt; /* XXX */ 1946 struct secpolicy *sp; 1947 1948 /* when requesting to allocate spi ranged */ 1949 while (count--) { 1950 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1)); 1951 1952 if ((sp = key_getspbyid(newid)) == NULL) 1953 break; 1954 1955 KEY_FREESP(&sp); 1956 } 1957 1958 if (count == 0 || newid == 0) { 1959 ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n", 1960 __func__)); 1961 return 0; 1962 } 1963 1964 return newid; 1965 } 1966 1967 /* 1968 * SADB_SPDDELETE processing 1969 * receive 1970 * <base, address(SD), policy(*)> 1971 * from the user(?), and set SADB_SASTATE_DEAD, 1972 * and send, 1973 * <base, address(SD), policy(*)> 1974 * to the ikmpd. 1975 * policy(*) including direction of policy. 1976 * 1977 * m will always be freed. 1978 */ 1979 static int 1980 key_spddelete(so, m, mhp) 1981 struct socket *so; 1982 struct mbuf *m; 1983 const struct sadb_msghdr *mhp; 1984 { 1985 struct sadb_address *src0, *dst0; 1986 struct sadb_x_policy *xpl0; 1987 struct secpolicyindex spidx; 1988 struct secpolicy *sp; 1989 1990 IPSEC_ASSERT(so != NULL, ("null so")); 1991 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1992 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1993 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 1994 1995 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 1996 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 1997 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 1998 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1999 __func__)); 2000 return key_senderror(so, m, EINVAL); 2001 } 2002 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2003 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2004 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2005 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2006 __func__)); 2007 return key_senderror(so, m, EINVAL); 2008 } 2009 2010 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 2011 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 2012 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 2013 2014 /* make secindex */ 2015 /* XXX boundary check against sa_len */ 2016 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 2017 src0 + 1, 2018 dst0 + 1, 2019 src0->sadb_address_prefixlen, 2020 dst0->sadb_address_prefixlen, 2021 src0->sadb_address_proto, 2022 &spidx); 2023 2024 /* checking the direciton. */ 2025 switch (xpl0->sadb_x_policy_dir) { 2026 case IPSEC_DIR_INBOUND: 2027 case IPSEC_DIR_OUTBOUND: 2028 break; 2029 default: 2030 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 2031 return key_senderror(so, m, EINVAL); 2032 } 2033 2034 /* Is there SP in SPD ? */ 2035 if ((sp = key_getsp(&spidx)) == NULL) { 2036 ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__)); 2037 return key_senderror(so, m, EINVAL); 2038 } 2039 2040 /* save policy id to buffer to be returned. */ 2041 xpl0->sadb_x_policy_id = sp->id; 2042 2043 sp->state = IPSEC_SPSTATE_DEAD; 2044 SECPOLICY_LOCK_DESTROY(sp); 2045 KEY_FREESP(&sp); 2046 2047 { 2048 struct mbuf *n; 2049 struct sadb_msg *newmsg; 2050 2051 /* create new sadb_msg to reply. */ 2052 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 2053 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2054 if (!n) 2055 return key_senderror(so, m, ENOBUFS); 2056 2057 newmsg = mtod(n, struct sadb_msg *); 2058 newmsg->sadb_msg_errno = 0; 2059 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2060 2061 m_freem(m); 2062 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2063 } 2064 } 2065 2066 /* 2067 * SADB_SPDDELETE2 processing 2068 * receive 2069 * <base, policy(*)> 2070 * from the user(?), and set SADB_SASTATE_DEAD, 2071 * and send, 2072 * <base, policy(*)> 2073 * to the ikmpd. 2074 * policy(*) including direction of policy. 2075 * 2076 * m will always be freed. 2077 */ 2078 static int 2079 key_spddelete2(so, m, mhp) 2080 struct socket *so; 2081 struct mbuf *m; 2082 const struct sadb_msghdr *mhp; 2083 { 2084 u_int32_t id; 2085 struct secpolicy *sp; 2086 2087 IPSEC_ASSERT(so != NULL, ("null socket")); 2088 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2089 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2090 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2091 2092 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2093 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2094 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); 2095 key_senderror(so, m, EINVAL); 2096 return 0; 2097 } 2098 2099 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2100 2101 /* Is there SP in SPD ? */ 2102 if ((sp = key_getspbyid(id)) == NULL) { 2103 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2104 key_senderror(so, m, EINVAL); 2105 } 2106 2107 sp->state = IPSEC_SPSTATE_DEAD; 2108 SECPOLICY_LOCK_DESTROY(sp); 2109 KEY_FREESP(&sp); 2110 2111 { 2112 struct mbuf *n, *nn; 2113 struct sadb_msg *newmsg; 2114 int off, len; 2115 2116 /* create new sadb_msg to reply. */ 2117 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2118 2119 if (len > MCLBYTES) 2120 return key_senderror(so, m, ENOBUFS); 2121 MGETHDR(n, M_DONTWAIT, MT_DATA); 2122 if (n && len > MHLEN) { 2123 MCLGET(n, M_DONTWAIT); 2124 if ((n->m_flags & M_EXT) == 0) { 2125 m_freem(n); 2126 n = NULL; 2127 } 2128 } 2129 if (!n) 2130 return key_senderror(so, m, ENOBUFS); 2131 2132 n->m_len = len; 2133 n->m_next = NULL; 2134 off = 0; 2135 2136 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 2137 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2138 2139 IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)", 2140 off, len)); 2141 2142 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], 2143 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT); 2144 if (!n->m_next) { 2145 m_freem(n); 2146 return key_senderror(so, m, ENOBUFS); 2147 } 2148 2149 n->m_pkthdr.len = 0; 2150 for (nn = n; nn; nn = nn->m_next) 2151 n->m_pkthdr.len += nn->m_len; 2152 2153 newmsg = mtod(n, struct sadb_msg *); 2154 newmsg->sadb_msg_errno = 0; 2155 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2156 2157 m_freem(m); 2158 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2159 } 2160 } 2161 2162 /* 2163 * SADB_X_GET processing 2164 * receive 2165 * <base, policy(*)> 2166 * from the user(?), 2167 * and send, 2168 * <base, address(SD), policy> 2169 * to the ikmpd. 2170 * policy(*) including direction of policy. 2171 * 2172 * m will always be freed. 2173 */ 2174 static int 2175 key_spdget(so, m, mhp) 2176 struct socket *so; 2177 struct mbuf *m; 2178 const struct sadb_msghdr *mhp; 2179 { 2180 u_int32_t id; 2181 struct secpolicy *sp; 2182 struct mbuf *n; 2183 2184 IPSEC_ASSERT(so != NULL, ("null socket")); 2185 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2186 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2187 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2188 2189 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2190 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2191 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2192 __func__)); 2193 return key_senderror(so, m, EINVAL); 2194 } 2195 2196 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2197 2198 /* Is there SP in SPD ? */ 2199 if ((sp = key_getspbyid(id)) == NULL) { 2200 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2201 return key_senderror(so, m, ENOENT); 2202 } 2203 2204 n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid); 2205 if (n != NULL) { 2206 m_freem(m); 2207 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2208 } else 2209 return key_senderror(so, m, ENOBUFS); 2210 } 2211 2212 /* 2213 * SADB_X_SPDACQUIRE processing. 2214 * Acquire policy and SA(s) for a *OUTBOUND* packet. 2215 * send 2216 * <base, policy(*)> 2217 * to KMD, and expect to receive 2218 * <base> with SADB_X_SPDACQUIRE if error occured, 2219 * or 2220 * <base, policy> 2221 * with SADB_X_SPDUPDATE from KMD by PF_KEY. 2222 * policy(*) is without policy requests. 2223 * 2224 * 0 : succeed 2225 * others: error number 2226 */ 2227 int 2228 key_spdacquire(sp) 2229 struct secpolicy *sp; 2230 { 2231 struct mbuf *result = NULL, *m; 2232 struct secspacq *newspacq; 2233 int error; 2234 2235 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2236 IPSEC_ASSERT(sp->req == NULL, ("policy exists")); 2237 IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC, 2238 ("policy not IPSEC %u", sp->policy)); 2239 2240 /* Get an entry to check whether sent message or not. */ 2241 newspacq = key_getspacq(&sp->spidx); 2242 if (newspacq != NULL) { 2243 if (key_blockacq_count < newspacq->count) { 2244 /* reset counter and do send message. */ 2245 newspacq->count = 0; 2246 } else { 2247 /* increment counter and do nothing. */ 2248 newspacq->count++; 2249 return 0; 2250 } 2251 SPACQ_UNLOCK(); 2252 } else { 2253 /* make new entry for blocking to send SADB_ACQUIRE. */ 2254 newspacq = key_newspacq(&sp->spidx); 2255 if (newspacq == NULL) 2256 return ENOBUFS; 2257 } 2258 2259 /* create new sadb_msg to reply. */ 2260 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); 2261 if (!m) { 2262 error = ENOBUFS; 2263 goto fail; 2264 } 2265 result = m; 2266 2267 result->m_pkthdr.len = 0; 2268 for (m = result; m; m = m->m_next) 2269 result->m_pkthdr.len += m->m_len; 2270 2271 mtod(result, struct sadb_msg *)->sadb_msg_len = 2272 PFKEY_UNIT64(result->m_pkthdr.len); 2273 2274 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 2275 2276 fail: 2277 if (result) 2278 m_freem(result); 2279 return error; 2280 } 2281 2282 /* 2283 * SADB_SPDFLUSH processing 2284 * receive 2285 * <base> 2286 * from the user, and free all entries in secpctree. 2287 * and send, 2288 * <base> 2289 * to the user. 2290 * NOTE: what to do is only marking SADB_SASTATE_DEAD. 2291 * 2292 * m will always be freed. 2293 */ 2294 static int 2295 key_spdflush(so, m, mhp) 2296 struct socket *so; 2297 struct mbuf *m; 2298 const struct sadb_msghdr *mhp; 2299 { 2300 struct sadb_msg *newmsg; 2301 struct secpolicy *sp; 2302 u_int dir; 2303 2304 IPSEC_ASSERT(so != NULL, ("null socket")); 2305 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2306 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2307 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2308 2309 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) 2310 return key_senderror(so, m, EINVAL); 2311 2312 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2313 SPTREE_LOCK(); 2314 LIST_FOREACH(sp, &sptree[dir], chain) 2315 sp->state = IPSEC_SPSTATE_DEAD; 2316 SPTREE_UNLOCK(); 2317 } 2318 2319 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 2320 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2321 return key_senderror(so, m, ENOBUFS); 2322 } 2323 2324 if (m->m_next) 2325 m_freem(m->m_next); 2326 m->m_next = NULL; 2327 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2328 newmsg = mtod(m, struct sadb_msg *); 2329 newmsg->sadb_msg_errno = 0; 2330 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 2331 2332 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 2333 } 2334 2335 /* 2336 * SADB_SPDDUMP processing 2337 * receive 2338 * <base> 2339 * from the user, and dump all SP leaves 2340 * and send, 2341 * <base> ..... 2342 * to the ikmpd. 2343 * 2344 * m will always be freed. 2345 */ 2346 static int 2347 key_spddump(so, m, mhp) 2348 struct socket *so; 2349 struct mbuf *m; 2350 const struct sadb_msghdr *mhp; 2351 { 2352 struct secpolicy *sp; 2353 int cnt; 2354 u_int dir; 2355 struct mbuf *n; 2356 2357 IPSEC_ASSERT(so != NULL, ("null socket")); 2358 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2359 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2360 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2361 2362 /* search SPD entry and get buffer size. */ 2363 cnt = 0; 2364 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2365 LIST_FOREACH(sp, &sptree[dir], chain) { 2366 cnt++; 2367 } 2368 } 2369 2370 if (cnt == 0) 2371 return key_senderror(so, m, ENOENT); 2372 2373 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2374 LIST_FOREACH(sp, &sptree[dir], chain) { 2375 --cnt; 2376 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, 2377 mhp->msg->sadb_msg_pid); 2378 2379 if (n) 2380 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2381 } 2382 } 2383 2384 m_freem(m); 2385 return 0; 2386 } 2387 2388 static struct mbuf * 2389 key_setdumpsp(sp, type, seq, pid) 2390 struct secpolicy *sp; 2391 u_int8_t type; 2392 u_int32_t seq, pid; 2393 { 2394 struct mbuf *result = NULL, *m; 2395 2396 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt); 2397 if (!m) 2398 goto fail; 2399 result = m; 2400 2401 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2402 &sp->spidx.src.sa, sp->spidx.prefs, 2403 sp->spidx.ul_proto); 2404 if (!m) 2405 goto fail; 2406 m_cat(result, m); 2407 2408 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2409 &sp->spidx.dst.sa, sp->spidx.prefd, 2410 sp->spidx.ul_proto); 2411 if (!m) 2412 goto fail; 2413 m_cat(result, m); 2414 2415 m = key_sp2msg(sp); 2416 if (!m) 2417 goto fail; 2418 m_cat(result, m); 2419 2420 if ((result->m_flags & M_PKTHDR) == 0) 2421 goto fail; 2422 2423 if (result->m_len < sizeof(struct sadb_msg)) { 2424 result = m_pullup(result, sizeof(struct sadb_msg)); 2425 if (result == NULL) 2426 goto fail; 2427 } 2428 2429 result->m_pkthdr.len = 0; 2430 for (m = result; m; m = m->m_next) 2431 result->m_pkthdr.len += m->m_len; 2432 2433 mtod(result, struct sadb_msg *)->sadb_msg_len = 2434 PFKEY_UNIT64(result->m_pkthdr.len); 2435 2436 return result; 2437 2438 fail: 2439 m_freem(result); 2440 return NULL; 2441 } 2442 2443 /* 2444 * get PFKEY message length for security policy and request. 2445 */ 2446 static u_int 2447 key_getspreqmsglen(sp) 2448 struct secpolicy *sp; 2449 { 2450 u_int tlen; 2451 2452 tlen = sizeof(struct sadb_x_policy); 2453 2454 /* if is the policy for ipsec ? */ 2455 if (sp->policy != IPSEC_POLICY_IPSEC) 2456 return tlen; 2457 2458 /* get length of ipsec requests */ 2459 { 2460 struct ipsecrequest *isr; 2461 int len; 2462 2463 for (isr = sp->req; isr != NULL; isr = isr->next) { 2464 len = sizeof(struct sadb_x_ipsecrequest) 2465 + isr->saidx.src.sa.sa_len 2466 + isr->saidx.dst.sa.sa_len; 2467 2468 tlen += PFKEY_ALIGN8(len); 2469 } 2470 } 2471 2472 return tlen; 2473 } 2474 2475 /* 2476 * SADB_SPDEXPIRE processing 2477 * send 2478 * <base, address(SD), lifetime(CH), policy> 2479 * to KMD by PF_KEY. 2480 * 2481 * OUT: 0 : succeed 2482 * others : error number 2483 */ 2484 static int 2485 key_spdexpire(sp) 2486 struct secpolicy *sp; 2487 { 2488 struct mbuf *result = NULL, *m; 2489 int len; 2490 int error = -1; 2491 struct sadb_lifetime *lt; 2492 2493 /* XXX: Why do we lock ? */ 2494 2495 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2496 2497 /* set msg header */ 2498 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0); 2499 if (!m) { 2500 error = ENOBUFS; 2501 goto fail; 2502 } 2503 result = m; 2504 2505 /* create lifetime extension (current and hard) */ 2506 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 2507 m = key_alloc_mbuf(len); 2508 if (!m || m->m_next) { /*XXX*/ 2509 if (m) 2510 m_freem(m); 2511 error = ENOBUFS; 2512 goto fail; 2513 } 2514 bzero(mtod(m, caddr_t), len); 2515 lt = mtod(m, struct sadb_lifetime *); 2516 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2517 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 2518 lt->sadb_lifetime_allocations = 0; 2519 lt->sadb_lifetime_bytes = 0; 2520 lt->sadb_lifetime_addtime = sp->created; 2521 lt->sadb_lifetime_usetime = sp->lastused; 2522 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 2523 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2524 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 2525 lt->sadb_lifetime_allocations = 0; 2526 lt->sadb_lifetime_bytes = 0; 2527 lt->sadb_lifetime_addtime = sp->lifetime; 2528 lt->sadb_lifetime_usetime = sp->validtime; 2529 m_cat(result, m); 2530 2531 /* set sadb_address for source */ 2532 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2533 &sp->spidx.src.sa, 2534 sp->spidx.prefs, sp->spidx.ul_proto); 2535 if (!m) { 2536 error = ENOBUFS; 2537 goto fail; 2538 } 2539 m_cat(result, m); 2540 2541 /* set sadb_address for destination */ 2542 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2543 &sp->spidx.dst.sa, 2544 sp->spidx.prefd, sp->spidx.ul_proto); 2545 if (!m) { 2546 error = ENOBUFS; 2547 goto fail; 2548 } 2549 m_cat(result, m); 2550 2551 /* set secpolicy */ 2552 m = key_sp2msg(sp); 2553 if (!m) { 2554 error = ENOBUFS; 2555 goto fail; 2556 } 2557 m_cat(result, m); 2558 2559 if ((result->m_flags & M_PKTHDR) == 0) { 2560 error = EINVAL; 2561 goto fail; 2562 } 2563 2564 if (result->m_len < sizeof(struct sadb_msg)) { 2565 result = m_pullup(result, sizeof(struct sadb_msg)); 2566 if (result == NULL) { 2567 error = ENOBUFS; 2568 goto fail; 2569 } 2570 } 2571 2572 result->m_pkthdr.len = 0; 2573 for (m = result; m; m = m->m_next) 2574 result->m_pkthdr.len += m->m_len; 2575 2576 mtod(result, struct sadb_msg *)->sadb_msg_len = 2577 PFKEY_UNIT64(result->m_pkthdr.len); 2578 2579 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 2580 2581 fail: 2582 if (result) 2583 m_freem(result); 2584 return error; 2585 } 2586 2587 /* %%% SAD management */ 2588 /* 2589 * allocating a memory for new SA head, and copy from the values of mhp. 2590 * OUT: NULL : failure due to the lack of memory. 2591 * others : pointer to new SA head. 2592 */ 2593 static struct secashead * 2594 key_newsah(saidx) 2595 struct secasindex *saidx; 2596 { 2597 struct secashead *newsah; 2598 2599 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 2600 2601 newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO); 2602 if (newsah != NULL) { 2603 int i; 2604 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++) 2605 LIST_INIT(&newsah->savtree[i]); 2606 newsah->saidx = *saidx; 2607 2608 /* add to saidxtree */ 2609 newsah->state = SADB_SASTATE_MATURE; 2610 2611 SAHTREE_LOCK(); 2612 LIST_INSERT_HEAD(&sahtree, newsah, chain); 2613 SAHTREE_UNLOCK(); 2614 } 2615 return(newsah); 2616 } 2617 2618 /* 2619 * delete SA index and all SA registerd. 2620 */ 2621 static void 2622 key_delsah(sah) 2623 struct secashead *sah; 2624 { 2625 struct secasvar *sav, *nextsav; 2626 u_int stateidx; 2627 int zombie = 0; 2628 2629 IPSEC_ASSERT(sah != NULL, ("NULL sah")); 2630 SAHTREE_LOCK_ASSERT(); 2631 2632 /* searching all SA registerd in the secindex. */ 2633 for (stateidx = 0; 2634 stateidx < _ARRAYLEN(saorder_state_any); 2635 stateidx++) { 2636 u_int state = saorder_state_any[stateidx]; 2637 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) { 2638 if (sav->refcnt == 0) { 2639 /* sanity check */ 2640 KEY_CHKSASTATE(state, sav->state, __func__); 2641 KEY_FREESAV(&sav); 2642 } else { 2643 /* give up to delete this sa */ 2644 zombie++; 2645 } 2646 } 2647 } 2648 if (!zombie) { /* delete only if there are savs */ 2649 /* remove from tree of SA index */ 2650 if (__LIST_CHAINED(sah)) 2651 LIST_REMOVE(sah, chain); 2652 if (sah->sa_route.ro_rt) { 2653 RTFREE(sah->sa_route.ro_rt); 2654 sah->sa_route.ro_rt = (struct rtentry *)NULL; 2655 } 2656 free(sah, M_IPSEC_SAH); 2657 } 2658 } 2659 2660 /* 2661 * allocating a new SA with LARVAL state. key_add() and key_getspi() call, 2662 * and copy the values of mhp into new buffer. 2663 * When SAD message type is GETSPI: 2664 * to set sequence number from acq_seq++, 2665 * to set zero to SPI. 2666 * not to call key_setsava(). 2667 * OUT: NULL : fail 2668 * others : pointer to new secasvar. 2669 * 2670 * does not modify mbuf. does not free mbuf on error. 2671 */ 2672 static struct secasvar * 2673 key_newsav(m, mhp, sah, errp, where, tag) 2674 struct mbuf *m; 2675 const struct sadb_msghdr *mhp; 2676 struct secashead *sah; 2677 int *errp; 2678 const char* where; 2679 int tag; 2680 { 2681 struct secasvar *newsav; 2682 const struct sadb_sa *xsa; 2683 2684 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2685 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2686 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2687 IPSEC_ASSERT(sah != NULL, ("null secashead")); 2688 2689 newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO); 2690 if (newsav == NULL) { 2691 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2692 *errp = ENOBUFS; 2693 goto done; 2694 } 2695 2696 switch (mhp->msg->sadb_msg_type) { 2697 case SADB_GETSPI: 2698 newsav->spi = 0; 2699 2700 #ifdef IPSEC_DOSEQCHECK 2701 /* sync sequence number */ 2702 if (mhp->msg->sadb_msg_seq == 0) 2703 newsav->seq = 2704 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq)); 2705 else 2706 #endif 2707 newsav->seq = mhp->msg->sadb_msg_seq; 2708 break; 2709 2710 case SADB_ADD: 2711 /* sanity check */ 2712 if (mhp->ext[SADB_EXT_SA] == NULL) { 2713 free(newsav, M_IPSEC_SA); 2714 newsav = NULL; 2715 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2716 __func__)); 2717 *errp = EINVAL; 2718 goto done; 2719 } 2720 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 2721 newsav->spi = xsa->sadb_sa_spi; 2722 newsav->seq = mhp->msg->sadb_msg_seq; 2723 break; 2724 default: 2725 free(newsav, M_IPSEC_SA); 2726 newsav = NULL; 2727 *errp = EINVAL; 2728 goto done; 2729 } 2730 2731 2732 /* copy sav values */ 2733 if (mhp->msg->sadb_msg_type != SADB_GETSPI) { 2734 *errp = key_setsaval(newsav, m, mhp); 2735 if (*errp) { 2736 free(newsav, M_IPSEC_SA); 2737 newsav = NULL; 2738 goto done; 2739 } 2740 } 2741 2742 SECASVAR_LOCK_INIT(newsav); 2743 2744 /* reset created */ 2745 newsav->created = time_second; 2746 newsav->pid = mhp->msg->sadb_msg_pid; 2747 2748 /* add to satree */ 2749 newsav->sah = sah; 2750 newsav->refcnt = 1; 2751 newsav->state = SADB_SASTATE_LARVAL; 2752 2753 /* XXX locking??? */ 2754 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav, 2755 secasvar, chain); 2756 done: 2757 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 2758 printf("DP %s from %s:%u return SP:%p\n", __func__, 2759 where, tag, newsav)); 2760 2761 return newsav; 2762 } 2763 2764 /* 2765 * free() SA variable entry. 2766 */ 2767 static void 2768 key_cleansav(struct secasvar *sav) 2769 { 2770 /* 2771 * Cleanup xform state. Note that zeroize'ing causes the 2772 * keys to be cleared; otherwise we must do it ourself. 2773 */ 2774 if (sav->tdb_xform != NULL) { 2775 sav->tdb_xform->xf_zeroize(sav); 2776 sav->tdb_xform = NULL; 2777 } else { 2778 KASSERT(sav->iv == NULL, ("iv but no xform")); 2779 if (sav->key_auth != NULL) 2780 bzero(_KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth)); 2781 if (sav->key_enc != NULL) 2782 bzero(_KEYBUF(sav->key_enc), _KEYLEN(sav->key_enc)); 2783 } 2784 if (sav->key_auth != NULL) { 2785 free(sav->key_auth, M_IPSEC_MISC); 2786 sav->key_auth = NULL; 2787 } 2788 if (sav->key_enc != NULL) { 2789 free(sav->key_enc, M_IPSEC_MISC); 2790 sav->key_enc = NULL; 2791 } 2792 if (sav->sched) { 2793 bzero(sav->sched, sav->schedlen); 2794 free(sav->sched, M_IPSEC_MISC); 2795 sav->sched = NULL; 2796 } 2797 if (sav->replay != NULL) { 2798 free(sav->replay, M_IPSEC_MISC); 2799 sav->replay = NULL; 2800 } 2801 if (sav->lft_c != NULL) { 2802 free(sav->lft_c, M_IPSEC_MISC); 2803 sav->lft_c = NULL; 2804 } 2805 if (sav->lft_h != NULL) { 2806 free(sav->lft_h, M_IPSEC_MISC); 2807 sav->lft_h = NULL; 2808 } 2809 if (sav->lft_s != NULL) { 2810 free(sav->lft_s, M_IPSEC_MISC); 2811 sav->lft_s = NULL; 2812 } 2813 } 2814 2815 /* 2816 * free() SA variable entry. 2817 */ 2818 static void 2819 key_delsav(sav) 2820 struct secasvar *sav; 2821 { 2822 IPSEC_ASSERT(sav != NULL, ("null sav")); 2823 IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt)); 2824 2825 /* remove from SA header */ 2826 if (__LIST_CHAINED(sav)) 2827 LIST_REMOVE(sav, chain); 2828 key_cleansav(sav); 2829 SECASVAR_LOCK_DESTROY(sav); 2830 free(sav, M_IPSEC_SA); 2831 } 2832 2833 /* 2834 * search SAD. 2835 * OUT: 2836 * NULL : not found 2837 * others : found, pointer to a SA. 2838 */ 2839 static struct secashead * 2840 key_getsah(saidx) 2841 struct secasindex *saidx; 2842 { 2843 struct secashead *sah; 2844 2845 SAHTREE_LOCK(); 2846 LIST_FOREACH(sah, &sahtree, chain) { 2847 if (sah->state == SADB_SASTATE_DEAD) 2848 continue; 2849 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID)) 2850 break; 2851 } 2852 SAHTREE_UNLOCK(); 2853 2854 return sah; 2855 } 2856 2857 /* 2858 * check not to be duplicated SPI. 2859 * NOTE: this function is too slow due to searching all SAD. 2860 * OUT: 2861 * NULL : not found 2862 * others : found, pointer to a SA. 2863 */ 2864 static struct secasvar * 2865 key_checkspidup(saidx, spi) 2866 struct secasindex *saidx; 2867 u_int32_t spi; 2868 { 2869 struct secashead *sah; 2870 struct secasvar *sav; 2871 2872 /* check address family */ 2873 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) { 2874 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 2875 __func__)); 2876 return NULL; 2877 } 2878 2879 sav = NULL; 2880 /* check all SAD */ 2881 SAHTREE_LOCK(); 2882 LIST_FOREACH(sah, &sahtree, chain) { 2883 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst)) 2884 continue; 2885 sav = key_getsavbyspi(sah, spi); 2886 if (sav != NULL) 2887 break; 2888 } 2889 SAHTREE_UNLOCK(); 2890 2891 return sav; 2892 } 2893 2894 /* 2895 * search SAD litmited alive SA, protocol, SPI. 2896 * OUT: 2897 * NULL : not found 2898 * others : found, pointer to a SA. 2899 */ 2900 static struct secasvar * 2901 key_getsavbyspi(sah, spi) 2902 struct secashead *sah; 2903 u_int32_t spi; 2904 { 2905 struct secasvar *sav; 2906 u_int stateidx, state; 2907 2908 sav = NULL; 2909 SAHTREE_LOCK_ASSERT(); 2910 /* search all status */ 2911 for (stateidx = 0; 2912 stateidx < _ARRAYLEN(saorder_state_alive); 2913 stateidx++) { 2914 2915 state = saorder_state_alive[stateidx]; 2916 LIST_FOREACH(sav, &sah->savtree[state], chain) { 2917 2918 /* sanity check */ 2919 if (sav->state != state) { 2920 ipseclog((LOG_DEBUG, "%s: " 2921 "invalid sav->state (queue: %d SA: %d)\n", 2922 __func__, state, sav->state)); 2923 continue; 2924 } 2925 2926 if (sav->spi == spi) 2927 return sav; 2928 } 2929 } 2930 2931 return NULL; 2932 } 2933 2934 /* 2935 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. 2936 * You must update these if need. 2937 * OUT: 0: success. 2938 * !0: failure. 2939 * 2940 * does not modify mbuf. does not free mbuf on error. 2941 */ 2942 static int 2943 key_setsaval(sav, m, mhp) 2944 struct secasvar *sav; 2945 struct mbuf *m; 2946 const struct sadb_msghdr *mhp; 2947 { 2948 int error = 0; 2949 2950 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2951 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2952 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2953 2954 /* initialization */ 2955 sav->replay = NULL; 2956 sav->key_auth = NULL; 2957 sav->key_enc = NULL; 2958 sav->sched = NULL; 2959 sav->schedlen = 0; 2960 sav->iv = NULL; 2961 sav->lft_c = NULL; 2962 sav->lft_h = NULL; 2963 sav->lft_s = NULL; 2964 sav->tdb_xform = NULL; /* transform */ 2965 sav->tdb_encalgxform = NULL; /* encoding algorithm */ 2966 sav->tdb_authalgxform = NULL; /* authentication algorithm */ 2967 sav->tdb_compalgxform = NULL; /* compression algorithm */ 2968 2969 /* SA */ 2970 if (mhp->ext[SADB_EXT_SA] != NULL) { 2971 const struct sadb_sa *sa0; 2972 2973 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 2974 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { 2975 error = EINVAL; 2976 goto fail; 2977 } 2978 2979 sav->alg_auth = sa0->sadb_sa_auth; 2980 sav->alg_enc = sa0->sadb_sa_encrypt; 2981 sav->flags = sa0->sadb_sa_flags; 2982 2983 /* replay window */ 2984 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { 2985 sav->replay = (struct secreplay *) 2986 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO); 2987 if (sav->replay == NULL) { 2988 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 2989 __func__)); 2990 error = ENOBUFS; 2991 goto fail; 2992 } 2993 if (sa0->sadb_sa_replay != 0) 2994 sav->replay->bitmap = (caddr_t)(sav->replay+1); 2995 sav->replay->wsize = sa0->sadb_sa_replay; 2996 } 2997 } 2998 2999 /* Authentication keys */ 3000 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { 3001 const struct sadb_key *key0; 3002 int len; 3003 3004 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH]; 3005 len = mhp->extlen[SADB_EXT_KEY_AUTH]; 3006 3007 error = 0; 3008 if (len < sizeof(*key0)) { 3009 error = EINVAL; 3010 goto fail; 3011 } 3012 switch (mhp->msg->sadb_msg_satype) { 3013 case SADB_SATYPE_AH: 3014 case SADB_SATYPE_ESP: 3015 case SADB_X_SATYPE_TCPSIGNATURE: 3016 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3017 sav->alg_auth != SADB_X_AALG_NULL) 3018 error = EINVAL; 3019 break; 3020 case SADB_X_SATYPE_IPCOMP: 3021 default: 3022 error = EINVAL; 3023 break; 3024 } 3025 if (error) { 3026 ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n", 3027 __func__)); 3028 goto fail; 3029 } 3030 3031 sav->key_auth = key_dup(key0, len, M_IPSEC_MISC); 3032 if (sav->key_auth == NULL) { 3033 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3034 error = ENOBUFS; 3035 goto fail; 3036 } 3037 } 3038 3039 /* Encryption key */ 3040 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { 3041 const struct sadb_key *key0; 3042 int len; 3043 3044 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT]; 3045 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; 3046 3047 error = 0; 3048 if (len < sizeof(*key0)) { 3049 error = EINVAL; 3050 goto fail; 3051 } 3052 switch (mhp->msg->sadb_msg_satype) { 3053 case SADB_SATYPE_ESP: 3054 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3055 sav->alg_enc != SADB_EALG_NULL) { 3056 error = EINVAL; 3057 break; 3058 } 3059 sav->key_enc = key_dup(key0, len, M_IPSEC_MISC); 3060 if (sav->key_enc == NULL) { 3061 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3062 __func__)); 3063 error = ENOBUFS; 3064 goto fail; 3065 } 3066 break; 3067 case SADB_X_SATYPE_IPCOMP: 3068 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) 3069 error = EINVAL; 3070 sav->key_enc = NULL; /*just in case*/ 3071 break; 3072 case SADB_SATYPE_AH: 3073 case SADB_X_SATYPE_TCPSIGNATURE: 3074 default: 3075 error = EINVAL; 3076 break; 3077 } 3078 if (error) { 3079 ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n", 3080 __func__)); 3081 goto fail; 3082 } 3083 } 3084 3085 /* set iv */ 3086 sav->ivlen = 0; 3087 3088 switch (mhp->msg->sadb_msg_satype) { 3089 case SADB_SATYPE_AH: 3090 error = xform_init(sav, XF_AH); 3091 break; 3092 case SADB_SATYPE_ESP: 3093 error = xform_init(sav, XF_ESP); 3094 break; 3095 case SADB_X_SATYPE_IPCOMP: 3096 error = xform_init(sav, XF_IPCOMP); 3097 break; 3098 case SADB_X_SATYPE_TCPSIGNATURE: 3099 error = xform_init(sav, XF_TCPSIGNATURE); 3100 break; 3101 } 3102 if (error) { 3103 ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n", 3104 __func__, mhp->msg->sadb_msg_satype)); 3105 goto fail; 3106 } 3107 3108 /* reset created */ 3109 sav->created = time_second; 3110 3111 /* make lifetime for CURRENT */ 3112 sav->lft_c = malloc(sizeof(struct sadb_lifetime), M_IPSEC_MISC, M_NOWAIT); 3113 if (sav->lft_c == NULL) { 3114 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3115 error = ENOBUFS; 3116 goto fail; 3117 } 3118 3119 sav->lft_c->sadb_lifetime_len = 3120 PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 3121 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 3122 sav->lft_c->sadb_lifetime_allocations = 0; 3123 sav->lft_c->sadb_lifetime_bytes = 0; 3124 sav->lft_c->sadb_lifetime_addtime = time_second; 3125 sav->lft_c->sadb_lifetime_usetime = 0; 3126 3127 /* lifetimes for HARD and SOFT */ 3128 { 3129 const struct sadb_lifetime *lft0; 3130 3131 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 3132 if (lft0 != NULL) { 3133 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { 3134 error = EINVAL; 3135 goto fail; 3136 } 3137 sav->lft_h = key_dup(lft0, sizeof(*lft0), M_IPSEC_MISC); 3138 if (sav->lft_h == NULL) { 3139 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3140 error = ENOBUFS; 3141 goto fail; 3142 } 3143 /* to be initialize ? */ 3144 } 3145 3146 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT]; 3147 if (lft0 != NULL) { 3148 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { 3149 error = EINVAL; 3150 goto fail; 3151 } 3152 sav->lft_s = key_dup(lft0, sizeof(*lft0), M_IPSEC_MISC); 3153 if (sav->lft_s == NULL) { 3154 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3155 error = ENOBUFS; 3156 goto fail; 3157 } 3158 /* to be initialize ? */ 3159 } 3160 } 3161 3162 return 0; 3163 3164 fail: 3165 /* initialization */ 3166 key_cleansav(sav); 3167 3168 return error; 3169 } 3170 3171 /* 3172 * validation with a secasvar entry, and set SADB_SATYPE_MATURE. 3173 * OUT: 0: valid 3174 * other: errno 3175 */ 3176 static int 3177 key_mature(struct secasvar *sav) 3178 { 3179 int error; 3180 3181 /* check SPI value */ 3182 switch (sav->sah->saidx.proto) { 3183 case IPPROTO_ESP: 3184 case IPPROTO_AH: 3185 if (ntohl(sav->spi) >= 0 && ntohl(sav->spi) <= 255) { 3186 ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n", 3187 __func__, (u_int32_t)ntohl(sav->spi))); 3188 return EINVAL; 3189 } 3190 break; 3191 } 3192 3193 /* check satype */ 3194 switch (sav->sah->saidx.proto) { 3195 case IPPROTO_ESP: 3196 /* check flags */ 3197 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) == 3198 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) { 3199 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3200 "given to old-esp.\n", __func__)); 3201 return EINVAL; 3202 } 3203 error = xform_init(sav, XF_ESP); 3204 break; 3205 case IPPROTO_AH: 3206 /* check flags */ 3207 if (sav->flags & SADB_X_EXT_DERIV) { 3208 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3209 "given to AH SA.\n", __func__)); 3210 return EINVAL; 3211 } 3212 if (sav->alg_enc != SADB_EALG_NONE) { 3213 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3214 "mismated.\n", __func__)); 3215 return(EINVAL); 3216 } 3217 error = xform_init(sav, XF_AH); 3218 break; 3219 case IPPROTO_IPCOMP: 3220 if (sav->alg_auth != SADB_AALG_NONE) { 3221 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3222 "mismated.\n", __func__)); 3223 return(EINVAL); 3224 } 3225 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 3226 && ntohl(sav->spi) >= 0x10000) { 3227 ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n", 3228 __func__)); 3229 return(EINVAL); 3230 } 3231 error = xform_init(sav, XF_IPCOMP); 3232 break; 3233 case IPPROTO_TCP: 3234 if (sav->alg_enc != SADB_EALG_NONE) { 3235 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3236 "mismated.\n", __func__)); 3237 return(EINVAL); 3238 } 3239 error = xform_init(sav, XF_TCPSIGNATURE); 3240 break; 3241 default: 3242 ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__)); 3243 error = EPROTONOSUPPORT; 3244 break; 3245 } 3246 if (error == 0) { 3247 SAHTREE_LOCK(); 3248 key_sa_chgstate(sav, SADB_SASTATE_MATURE); 3249 SAHTREE_UNLOCK(); 3250 } 3251 return (error); 3252 } 3253 3254 /* 3255 * subroutine for SADB_GET and SADB_DUMP. 3256 */ 3257 static struct mbuf * 3258 key_setdumpsa(sav, type, satype, seq, pid) 3259 struct secasvar *sav; 3260 u_int8_t type, satype; 3261 u_int32_t seq, pid; 3262 { 3263 struct mbuf *result = NULL, *tres = NULL, *m; 3264 int l = 0; 3265 int i; 3266 void *p; 3267 int dumporder[] = { 3268 SADB_EXT_SA, SADB_X_EXT_SA2, 3269 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 3270 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, 3271 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, 3272 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, 3273 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, 3274 }; 3275 3276 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt); 3277 if (m == NULL) 3278 goto fail; 3279 result = m; 3280 3281 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) { 3282 m = NULL; 3283 p = NULL; 3284 switch (dumporder[i]) { 3285 case SADB_EXT_SA: 3286 m = key_setsadbsa(sav); 3287 if (!m) 3288 goto fail; 3289 break; 3290 3291 case SADB_X_EXT_SA2: 3292 m = key_setsadbxsa2(sav->sah->saidx.mode, 3293 sav->replay ? sav->replay->count : 0, 3294 sav->sah->saidx.reqid); 3295 if (!m) 3296 goto fail; 3297 break; 3298 3299 case SADB_EXT_ADDRESS_SRC: 3300 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3301 &sav->sah->saidx.src.sa, 3302 FULLMASK, IPSEC_ULPROTO_ANY); 3303 if (!m) 3304 goto fail; 3305 break; 3306 3307 case SADB_EXT_ADDRESS_DST: 3308 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3309 &sav->sah->saidx.dst.sa, 3310 FULLMASK, IPSEC_ULPROTO_ANY); 3311 if (!m) 3312 goto fail; 3313 break; 3314 3315 case SADB_EXT_KEY_AUTH: 3316 if (!sav->key_auth) 3317 continue; 3318 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len); 3319 p = sav->key_auth; 3320 break; 3321 3322 case SADB_EXT_KEY_ENCRYPT: 3323 if (!sav->key_enc) 3324 continue; 3325 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len); 3326 p = sav->key_enc; 3327 break; 3328 3329 case SADB_EXT_LIFETIME_CURRENT: 3330 if (!sav->lft_c) 3331 continue; 3332 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len); 3333 p = sav->lft_c; 3334 break; 3335 3336 case SADB_EXT_LIFETIME_HARD: 3337 if (!sav->lft_h) 3338 continue; 3339 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len); 3340 p = sav->lft_h; 3341 break; 3342 3343 case SADB_EXT_LIFETIME_SOFT: 3344 if (!sav->lft_s) 3345 continue; 3346 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len); 3347 p = sav->lft_s; 3348 break; 3349 3350 case SADB_EXT_ADDRESS_PROXY: 3351 case SADB_EXT_IDENTITY_SRC: 3352 case SADB_EXT_IDENTITY_DST: 3353 /* XXX: should we brought from SPD ? */ 3354 case SADB_EXT_SENSITIVITY: 3355 default: 3356 continue; 3357 } 3358 3359 if ((!m && !p) || (m && p)) 3360 goto fail; 3361 if (p && tres) { 3362 M_PREPEND(tres, l, M_DONTWAIT); 3363 if (!tres) 3364 goto fail; 3365 bcopy(p, mtod(tres, caddr_t), l); 3366 continue; 3367 } 3368 if (p) { 3369 m = key_alloc_mbuf(l); 3370 if (!m) 3371 goto fail; 3372 m_copyback(m, 0, l, p); 3373 } 3374 3375 if (tres) 3376 m_cat(m, tres); 3377 tres = m; 3378 } 3379 3380 m_cat(result, tres); 3381 3382 if (result->m_len < sizeof(struct sadb_msg)) { 3383 result = m_pullup(result, sizeof(struct sadb_msg)); 3384 if (result == NULL) 3385 goto fail; 3386 } 3387 3388 result->m_pkthdr.len = 0; 3389 for (m = result; m; m = m->m_next) 3390 result->m_pkthdr.len += m->m_len; 3391 3392 mtod(result, struct sadb_msg *)->sadb_msg_len = 3393 PFKEY_UNIT64(result->m_pkthdr.len); 3394 3395 return result; 3396 3397 fail: 3398 m_freem(result); 3399 m_freem(tres); 3400 return NULL; 3401 } 3402 3403 /* 3404 * set data into sadb_msg. 3405 */ 3406 static struct mbuf * 3407 key_setsadbmsg(type, tlen, satype, seq, pid, reserved) 3408 u_int8_t type, satype; 3409 u_int16_t tlen; 3410 u_int32_t seq; 3411 pid_t pid; 3412 u_int16_t reserved; 3413 { 3414 struct mbuf *m; 3415 struct sadb_msg *p; 3416 int len; 3417 3418 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 3419 if (len > MCLBYTES) 3420 return NULL; 3421 MGETHDR(m, M_DONTWAIT, MT_DATA); 3422 if (m && len > MHLEN) { 3423 MCLGET(m, M_DONTWAIT); 3424 if ((m->m_flags & M_EXT) == 0) { 3425 m_freem(m); 3426 m = NULL; 3427 } 3428 } 3429 if (!m) 3430 return NULL; 3431 m->m_pkthdr.len = m->m_len = len; 3432 m->m_next = NULL; 3433 3434 p = mtod(m, struct sadb_msg *); 3435 3436 bzero(p, len); 3437 p->sadb_msg_version = PF_KEY_V2; 3438 p->sadb_msg_type = type; 3439 p->sadb_msg_errno = 0; 3440 p->sadb_msg_satype = satype; 3441 p->sadb_msg_len = PFKEY_UNIT64(tlen); 3442 p->sadb_msg_reserved = reserved; 3443 p->sadb_msg_seq = seq; 3444 p->sadb_msg_pid = (u_int32_t)pid; 3445 3446 return m; 3447 } 3448 3449 /* 3450 * copy secasvar data into sadb_address. 3451 */ 3452 static struct mbuf * 3453 key_setsadbsa(sav) 3454 struct secasvar *sav; 3455 { 3456 struct mbuf *m; 3457 struct sadb_sa *p; 3458 int len; 3459 3460 len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); 3461 m = key_alloc_mbuf(len); 3462 if (!m || m->m_next) { /*XXX*/ 3463 if (m) 3464 m_freem(m); 3465 return NULL; 3466 } 3467 3468 p = mtod(m, struct sadb_sa *); 3469 3470 bzero(p, len); 3471 p->sadb_sa_len = PFKEY_UNIT64(len); 3472 p->sadb_sa_exttype = SADB_EXT_SA; 3473 p->sadb_sa_spi = sav->spi; 3474 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0); 3475 p->sadb_sa_state = sav->state; 3476 p->sadb_sa_auth = sav->alg_auth; 3477 p->sadb_sa_encrypt = sav->alg_enc; 3478 p->sadb_sa_flags = sav->flags; 3479 3480 return m; 3481 } 3482 3483 /* 3484 * set data into sadb_address. 3485 */ 3486 static struct mbuf * 3487 key_setsadbaddr(exttype, saddr, prefixlen, ul_proto) 3488 u_int16_t exttype; 3489 const struct sockaddr *saddr; 3490 u_int8_t prefixlen; 3491 u_int16_t ul_proto; 3492 { 3493 struct mbuf *m; 3494 struct sadb_address *p; 3495 size_t len; 3496 3497 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + 3498 PFKEY_ALIGN8(saddr->sa_len); 3499 m = key_alloc_mbuf(len); 3500 if (!m || m->m_next) { /*XXX*/ 3501 if (m) 3502 m_freem(m); 3503 return NULL; 3504 } 3505 3506 p = mtod(m, struct sadb_address *); 3507 3508 bzero(p, len); 3509 p->sadb_address_len = PFKEY_UNIT64(len); 3510 p->sadb_address_exttype = exttype; 3511 p->sadb_address_proto = ul_proto; 3512 if (prefixlen == FULLMASK) { 3513 switch (saddr->sa_family) { 3514 case AF_INET: 3515 prefixlen = sizeof(struct in_addr) << 3; 3516 break; 3517 case AF_INET6: 3518 prefixlen = sizeof(struct in6_addr) << 3; 3519 break; 3520 default: 3521 ; /*XXX*/ 3522 } 3523 } 3524 p->sadb_address_prefixlen = prefixlen; 3525 p->sadb_address_reserved = 0; 3526 3527 bcopy(saddr, 3528 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)), 3529 saddr->sa_len); 3530 3531 return m; 3532 } 3533 3534 /* 3535 * set data into sadb_x_sa2. 3536 */ 3537 static struct mbuf * 3538 key_setsadbxsa2(mode, seq, reqid) 3539 u_int8_t mode; 3540 u_int32_t seq, reqid; 3541 { 3542 struct mbuf *m; 3543 struct sadb_x_sa2 *p; 3544 size_t len; 3545 3546 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); 3547 m = key_alloc_mbuf(len); 3548 if (!m || m->m_next) { /*XXX*/ 3549 if (m) 3550 m_freem(m); 3551 return NULL; 3552 } 3553 3554 p = mtod(m, struct sadb_x_sa2 *); 3555 3556 bzero(p, len); 3557 p->sadb_x_sa2_len = PFKEY_UNIT64(len); 3558 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 3559 p->sadb_x_sa2_mode = mode; 3560 p->sadb_x_sa2_reserved1 = 0; 3561 p->sadb_x_sa2_reserved2 = 0; 3562 p->sadb_x_sa2_sequence = seq; 3563 p->sadb_x_sa2_reqid = reqid; 3564 3565 return m; 3566 } 3567 3568 /* 3569 * set data into sadb_x_policy 3570 */ 3571 static struct mbuf * 3572 key_setsadbxpolicy(type, dir, id) 3573 u_int16_t type; 3574 u_int8_t dir; 3575 u_int32_t id; 3576 { 3577 struct mbuf *m; 3578 struct sadb_x_policy *p; 3579 size_t len; 3580 3581 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); 3582 m = key_alloc_mbuf(len); 3583 if (!m || m->m_next) { /*XXX*/ 3584 if (m) 3585 m_freem(m); 3586 return NULL; 3587 } 3588 3589 p = mtod(m, struct sadb_x_policy *); 3590 3591 bzero(p, len); 3592 p->sadb_x_policy_len = PFKEY_UNIT64(len); 3593 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 3594 p->sadb_x_policy_type = type; 3595 p->sadb_x_policy_dir = dir; 3596 p->sadb_x_policy_id = id; 3597 3598 return m; 3599 } 3600 3601 /* %%% utilities */ 3602 /* 3603 * copy a buffer into the new buffer allocated. 3604 */ 3605 static void * 3606 key_dup(const void *src, u_int len, struct malloc_type *type) 3607 { 3608 void *copy; 3609 3610 copy = malloc(len, type, M_NOWAIT); 3611 if (copy == NULL) { 3612 /* XXX counter */ 3613 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3614 } else 3615 bcopy(src, copy, len); 3616 return copy; 3617 } 3618 3619 /* compare my own address 3620 * OUT: 1: true, i.e. my address. 3621 * 0: false 3622 */ 3623 int 3624 key_ismyaddr(sa) 3625 struct sockaddr *sa; 3626 { 3627 #ifdef INET 3628 struct sockaddr_in *sin; 3629 struct in_ifaddr *ia; 3630 #endif 3631 3632 IPSEC_ASSERT(sa != NULL, ("null sockaddr")); 3633 3634 switch (sa->sa_family) { 3635 #ifdef INET 3636 case AF_INET: 3637 sin = (struct sockaddr_in *)sa; 3638 for (ia = in_ifaddrhead.tqh_first; ia; 3639 ia = ia->ia_link.tqe_next) 3640 { 3641 if (sin->sin_family == ia->ia_addr.sin_family && 3642 sin->sin_len == ia->ia_addr.sin_len && 3643 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr) 3644 { 3645 return 1; 3646 } 3647 } 3648 break; 3649 #endif 3650 #ifdef INET6 3651 case AF_INET6: 3652 return key_ismyaddr6((struct sockaddr_in6 *)sa); 3653 #endif 3654 } 3655 3656 return 0; 3657 } 3658 3659 #ifdef INET6 3660 /* 3661 * compare my own address for IPv6. 3662 * 1: ours 3663 * 0: other 3664 * NOTE: derived ip6_input() in KAME. This is necessary to modify more. 3665 */ 3666 #include <netinet6/in6_var.h> 3667 3668 static int 3669 key_ismyaddr6(sin6) 3670 struct sockaddr_in6 *sin6; 3671 { 3672 struct in6_ifaddr *ia; 3673 struct in6_multi *in6m; 3674 3675 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 3676 if (key_sockaddrcmp((struct sockaddr *)&sin6, 3677 (struct sockaddr *)&ia->ia_addr, 0) == 0) 3678 return 1; 3679 3680 /* 3681 * XXX Multicast 3682 * XXX why do we care about multlicast here while we don't care 3683 * about IPv4 multicast?? 3684 * XXX scope 3685 */ 3686 in6m = NULL; 3687 IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m); 3688 if (in6m) 3689 return 1; 3690 } 3691 3692 /* loopback, just for safety */ 3693 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) 3694 return 1; 3695 3696 return 0; 3697 } 3698 #endif /*INET6*/ 3699 3700 /* 3701 * compare two secasindex structure. 3702 * flag can specify to compare 2 saidxes. 3703 * compare two secasindex structure without both mode and reqid. 3704 * don't compare port. 3705 * IN: 3706 * saidx0: source, it can be in SAD. 3707 * saidx1: object. 3708 * OUT: 3709 * 1 : equal 3710 * 0 : not equal 3711 */ 3712 static int 3713 key_cmpsaidx( 3714 const struct secasindex *saidx0, 3715 const struct secasindex *saidx1, 3716 int flag) 3717 { 3718 /* sanity */ 3719 if (saidx0 == NULL && saidx1 == NULL) 3720 return 1; 3721 3722 if (saidx0 == NULL || saidx1 == NULL) 3723 return 0; 3724 3725 if (saidx0->proto != saidx1->proto) 3726 return 0; 3727 3728 if (flag == CMP_EXACTLY) { 3729 if (saidx0->mode != saidx1->mode) 3730 return 0; 3731 if (saidx0->reqid != saidx1->reqid) 3732 return 0; 3733 if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 || 3734 bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0) 3735 return 0; 3736 } else { 3737 3738 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ 3739 if (flag == CMP_MODE_REQID 3740 ||flag == CMP_REQID) { 3741 /* 3742 * If reqid of SPD is non-zero, unique SA is required. 3743 * The result must be of same reqid in this case. 3744 */ 3745 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) 3746 return 0; 3747 } 3748 3749 if (flag == CMP_MODE_REQID) { 3750 if (saidx0->mode != IPSEC_MODE_ANY 3751 && saidx0->mode != saidx1->mode) 3752 return 0; 3753 } 3754 3755 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, 0) != 0) { 3756 return 0; 3757 } 3758 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, 0) != 0) { 3759 return 0; 3760 } 3761 } 3762 3763 return 1; 3764 } 3765 3766 /* 3767 * compare two secindex structure exactly. 3768 * IN: 3769 * spidx0: source, it is often in SPD. 3770 * spidx1: object, it is often from PFKEY message. 3771 * OUT: 3772 * 1 : equal 3773 * 0 : not equal 3774 */ 3775 static int 3776 key_cmpspidx_exactly( 3777 struct secpolicyindex *spidx0, 3778 struct secpolicyindex *spidx1) 3779 { 3780 /* sanity */ 3781 if (spidx0 == NULL && spidx1 == NULL) 3782 return 1; 3783 3784 if (spidx0 == NULL || spidx1 == NULL) 3785 return 0; 3786 3787 if (spidx0->prefs != spidx1->prefs 3788 || spidx0->prefd != spidx1->prefd 3789 || spidx0->ul_proto != spidx1->ul_proto) 3790 return 0; 3791 3792 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 && 3793 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0; 3794 } 3795 3796 /* 3797 * compare two secindex structure with mask. 3798 * IN: 3799 * spidx0: source, it is often in SPD. 3800 * spidx1: object, it is often from IP header. 3801 * OUT: 3802 * 1 : equal 3803 * 0 : not equal 3804 */ 3805 static int 3806 key_cmpspidx_withmask( 3807 struct secpolicyindex *spidx0, 3808 struct secpolicyindex *spidx1) 3809 { 3810 /* sanity */ 3811 if (spidx0 == NULL && spidx1 == NULL) 3812 return 1; 3813 3814 if (spidx0 == NULL || spidx1 == NULL) 3815 return 0; 3816 3817 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || 3818 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || 3819 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || 3820 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) 3821 return 0; 3822 3823 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ 3824 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY 3825 && spidx0->ul_proto != spidx1->ul_proto) 3826 return 0; 3827 3828 switch (spidx0->src.sa.sa_family) { 3829 case AF_INET: 3830 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY 3831 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) 3832 return 0; 3833 if (!key_bbcmp(&spidx0->src.sin.sin_addr, 3834 &spidx1->src.sin.sin_addr, spidx0->prefs)) 3835 return 0; 3836 break; 3837 case AF_INET6: 3838 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY 3839 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) 3840 return 0; 3841 /* 3842 * scope_id check. if sin6_scope_id is 0, we regard it 3843 * as a wildcard scope, which matches any scope zone ID. 3844 */ 3845 if (spidx0->src.sin6.sin6_scope_id && 3846 spidx1->src.sin6.sin6_scope_id && 3847 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) 3848 return 0; 3849 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr, 3850 &spidx1->src.sin6.sin6_addr, spidx0->prefs)) 3851 return 0; 3852 break; 3853 default: 3854 /* XXX */ 3855 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) 3856 return 0; 3857 break; 3858 } 3859 3860 switch (spidx0->dst.sa.sa_family) { 3861 case AF_INET: 3862 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY 3863 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) 3864 return 0; 3865 if (!key_bbcmp(&spidx0->dst.sin.sin_addr, 3866 &spidx1->dst.sin.sin_addr, spidx0->prefd)) 3867 return 0; 3868 break; 3869 case AF_INET6: 3870 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY 3871 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) 3872 return 0; 3873 /* 3874 * scope_id check. if sin6_scope_id is 0, we regard it 3875 * as a wildcard scope, which matches any scope zone ID. 3876 */ 3877 if (spidx0->dst.sin6.sin6_scope_id && 3878 spidx1->dst.sin6.sin6_scope_id && 3879 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) 3880 return 0; 3881 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr, 3882 &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) 3883 return 0; 3884 break; 3885 default: 3886 /* XXX */ 3887 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) 3888 return 0; 3889 break; 3890 } 3891 3892 /* XXX Do we check other field ? e.g. flowinfo */ 3893 3894 return 1; 3895 } 3896 3897 /* returns 0 on match */ 3898 static int 3899 key_sockaddrcmp( 3900 const struct sockaddr *sa1, 3901 const struct sockaddr *sa2, 3902 int port) 3903 { 3904 #ifdef satosin 3905 #undef satosin 3906 #endif 3907 #define satosin(s) ((const struct sockaddr_in *)s) 3908 #ifdef satosin6 3909 #undef satosin6 3910 #endif 3911 #define satosin6(s) ((const struct sockaddr_in6 *)s) 3912 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) 3913 return 1; 3914 3915 switch (sa1->sa_family) { 3916 case AF_INET: 3917 if (sa1->sa_len != sizeof(struct sockaddr_in)) 3918 return 1; 3919 if (satosin(sa1)->sin_addr.s_addr != 3920 satosin(sa2)->sin_addr.s_addr) { 3921 return 1; 3922 } 3923 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port) 3924 return 1; 3925 break; 3926 case AF_INET6: 3927 if (sa1->sa_len != sizeof(struct sockaddr_in6)) 3928 return 1; /*EINVAL*/ 3929 if (satosin6(sa1)->sin6_scope_id != 3930 satosin6(sa2)->sin6_scope_id) { 3931 return 1; 3932 } 3933 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr, 3934 &satosin6(sa2)->sin6_addr)) { 3935 return 1; 3936 } 3937 if (port && 3938 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) { 3939 return 1; 3940 } 3941 default: 3942 if (bcmp(sa1, sa2, sa1->sa_len) != 0) 3943 return 1; 3944 break; 3945 } 3946 3947 return 0; 3948 #undef satosin 3949 #undef satosin6 3950 } 3951 3952 /* 3953 * compare two buffers with mask. 3954 * IN: 3955 * addr1: source 3956 * addr2: object 3957 * bits: Number of bits to compare 3958 * OUT: 3959 * 1 : equal 3960 * 0 : not equal 3961 */ 3962 static int 3963 key_bbcmp(const void *a1, const void *a2, u_int bits) 3964 { 3965 const unsigned char *p1 = a1; 3966 const unsigned char *p2 = a2; 3967 3968 /* XXX: This could be considerably faster if we compare a word 3969 * at a time, but it is complicated on LSB Endian machines */ 3970 3971 /* Handle null pointers */ 3972 if (p1 == NULL || p2 == NULL) 3973 return (p1 == p2); 3974 3975 while (bits >= 8) { 3976 if (*p1++ != *p2++) 3977 return 0; 3978 bits -= 8; 3979 } 3980 3981 if (bits > 0) { 3982 u_int8_t mask = ~((1<<(8-bits))-1); 3983 if ((*p1 & mask) != (*p2 & mask)) 3984 return 0; 3985 } 3986 return 1; /* Match! */ 3987 } 3988 3989 static void 3990 key_flush_spd(time_t now) 3991 { 3992 static u_int16_t sptree_scangen = 0; 3993 u_int16_t gen = sptree_scangen++; 3994 struct secpolicy *sp; 3995 u_int dir; 3996 3997 /* SPD */ 3998 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 3999 restart: 4000 SPTREE_LOCK(); 4001 LIST_FOREACH(sp, &sptree[dir], chain) { 4002 if (sp->scangen == gen) /* previously handled */ 4003 continue; 4004 sp->scangen = gen; 4005 if (sp->state == IPSEC_SPSTATE_DEAD) { 4006 /* NB: clean entries created by key_spdflush */ 4007 SPTREE_UNLOCK(); 4008 KEY_FREESP(&sp); 4009 goto restart; 4010 } 4011 if (sp->lifetime == 0 && sp->validtime == 0) 4012 continue; 4013 if ((sp->lifetime && now - sp->created > sp->lifetime) 4014 || (sp->validtime && now - sp->lastused > sp->validtime)) { 4015 sp->state = IPSEC_SPSTATE_DEAD; 4016 SPTREE_UNLOCK(); 4017 key_spdexpire(sp); 4018 KEY_FREESP(&sp); 4019 goto restart; 4020 } 4021 } 4022 SPTREE_UNLOCK(); 4023 } 4024 } 4025 4026 static void 4027 key_flush_sad(time_t now) 4028 { 4029 struct secashead *sah, *nextsah; 4030 struct secasvar *sav, *nextsav; 4031 4032 /* SAD */ 4033 SAHTREE_LOCK(); 4034 LIST_FOREACH_SAFE(sah, &sahtree, chain, nextsah) { 4035 /* if sah has been dead, then delete it and process next sah. */ 4036 if (sah->state == SADB_SASTATE_DEAD) { 4037 key_delsah(sah); 4038 continue; 4039 } 4040 4041 /* if LARVAL entry doesn't become MATURE, delete it. */ 4042 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) { 4043 if (now - sav->created > key_larval_lifetime) 4044 KEY_FREESAV(&sav); 4045 } 4046 4047 /* 4048 * check MATURE entry to start to send expire message 4049 * whether or not. 4050 */ 4051 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) { 4052 /* we don't need to check. */ 4053 if (sav->lft_s == NULL) 4054 continue; 4055 4056 /* sanity check */ 4057 if (sav->lft_c == NULL) { 4058 ipseclog((LOG_DEBUG,"%s: there is no CURRENT " 4059 "time, why?\n", __func__)); 4060 continue; 4061 } 4062 4063 /* check SOFT lifetime */ 4064 if (sav->lft_s->sadb_lifetime_addtime != 0 && 4065 now - sav->created > sav->lft_s->sadb_lifetime_addtime) { 4066 /* 4067 * check SA to be used whether or not. 4068 * when SA hasn't been used, delete it. 4069 */ 4070 if (sav->lft_c->sadb_lifetime_usetime == 0) { 4071 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4072 KEY_FREESAV(&sav); 4073 } else { 4074 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4075 /* 4076 * XXX If we keep to send expire 4077 * message in the status of 4078 * DYING. Do remove below code. 4079 */ 4080 key_expire(sav); 4081 } 4082 } 4083 /* check SOFT lifetime by bytes */ 4084 /* 4085 * XXX I don't know the way to delete this SA 4086 * when new SA is installed. Caution when it's 4087 * installed too big lifetime by time. 4088 */ 4089 else if (sav->lft_s->sadb_lifetime_bytes != 0 && 4090 sav->lft_s->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) { 4091 4092 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4093 /* 4094 * XXX If we keep to send expire 4095 * message in the status of 4096 * DYING. Do remove below code. 4097 */ 4098 key_expire(sav); 4099 } 4100 } 4101 4102 /* check DYING entry to change status to DEAD. */ 4103 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) { 4104 /* we don't need to check. */ 4105 if (sav->lft_h == NULL) 4106 continue; 4107 4108 /* sanity check */ 4109 if (sav->lft_c == NULL) { 4110 ipseclog((LOG_DEBUG, "%s: there is no CURRENT " 4111 "time, why?\n", __func__)); 4112 continue; 4113 } 4114 4115 if (sav->lft_h->sadb_lifetime_addtime != 0 && 4116 now - sav->created > sav->lft_h->sadb_lifetime_addtime) { 4117 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4118 KEY_FREESAV(&sav); 4119 } 4120 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */ 4121 else if (sav->lft_s != NULL 4122 && sav->lft_s->sadb_lifetime_addtime != 0 4123 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) { 4124 /* 4125 * XXX: should be checked to be 4126 * installed the valid SA. 4127 */ 4128 4129 /* 4130 * If there is no SA then sending 4131 * expire message. 4132 */ 4133 key_expire(sav); 4134 } 4135 #endif 4136 /* check HARD lifetime by bytes */ 4137 else if (sav->lft_h->sadb_lifetime_bytes != 0 && 4138 sav->lft_h->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) { 4139 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4140 KEY_FREESAV(&sav); 4141 } 4142 } 4143 4144 /* delete entry in DEAD */ 4145 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) { 4146 /* sanity check */ 4147 if (sav->state != SADB_SASTATE_DEAD) { 4148 ipseclog((LOG_DEBUG, "%s: invalid sav->state " 4149 "(queue: %d SA: %d): kill it anyway\n", 4150 __func__, 4151 SADB_SASTATE_DEAD, sav->state)); 4152 } 4153 /* 4154 * do not call key_freesav() here. 4155 * sav should already be freed, and sav->refcnt 4156 * shows other references to sav 4157 * (such as from SPD). 4158 */ 4159 } 4160 } 4161 SAHTREE_UNLOCK(); 4162 } 4163 4164 static void 4165 key_flush_acq(time_t now) 4166 { 4167 struct secacq *acq, *nextacq; 4168 4169 /* ACQ tree */ 4170 ACQ_LOCK(); 4171 for (acq = LIST_FIRST(&acqtree); acq != NULL; acq = nextacq) { 4172 nextacq = LIST_NEXT(acq, chain); 4173 if (now - acq->created > key_blockacq_lifetime 4174 && __LIST_CHAINED(acq)) { 4175 LIST_REMOVE(acq, chain); 4176 free(acq, M_IPSEC_SAQ); 4177 } 4178 } 4179 ACQ_UNLOCK(); 4180 } 4181 4182 static void 4183 key_flush_spacq(time_t now) 4184 { 4185 struct secspacq *acq, *nextacq; 4186 4187 /* SP ACQ tree */ 4188 SPACQ_LOCK(); 4189 for (acq = LIST_FIRST(&spacqtree); acq != NULL; acq = nextacq) { 4190 nextacq = LIST_NEXT(acq, chain); 4191 if (now - acq->created > key_blockacq_lifetime 4192 && __LIST_CHAINED(acq)) { 4193 LIST_REMOVE(acq, chain); 4194 free(acq, M_IPSEC_SAQ); 4195 } 4196 } 4197 SPACQ_UNLOCK(); 4198 } 4199 4200 /* 4201 * time handler. 4202 * scanning SPD and SAD to check status for each entries, 4203 * and do to remove or to expire. 4204 * XXX: year 2038 problem may remain. 4205 */ 4206 void 4207 key_timehandler(void) 4208 { 4209 time_t now = time_second; 4210 4211 key_flush_spd(now); 4212 key_flush_sad(now); 4213 key_flush_acq(now); 4214 key_flush_spacq(now); 4215 4216 #ifndef IPSEC_DEBUG2 4217 /* do exchange to tick time !! */ 4218 (void)timeout((void *)key_timehandler, (void *)0, hz); 4219 #endif /* IPSEC_DEBUG2 */ 4220 } 4221 4222 u_long 4223 key_random() 4224 { 4225 u_long value; 4226 4227 key_randomfill(&value, sizeof(value)); 4228 return value; 4229 } 4230 4231 void 4232 key_randomfill(p, l) 4233 void *p; 4234 size_t l; 4235 { 4236 size_t n; 4237 u_long v; 4238 static int warn = 1; 4239 4240 n = 0; 4241 n = (size_t)read_random(p, (u_int)l); 4242 /* last resort */ 4243 while (n < l) { 4244 v = random(); 4245 bcopy(&v, (u_int8_t *)p + n, 4246 l - n < sizeof(v) ? l - n : sizeof(v)); 4247 n += sizeof(v); 4248 4249 if (warn) { 4250 printf("WARNING: pseudo-random number generator " 4251 "used for IPsec processing\n"); 4252 warn = 0; 4253 } 4254 } 4255 } 4256 4257 /* 4258 * map SADB_SATYPE_* to IPPROTO_*. 4259 * if satype == SADB_SATYPE then satype is mapped to ~0. 4260 * OUT: 4261 * 0: invalid satype. 4262 */ 4263 static u_int16_t 4264 key_satype2proto(satype) 4265 u_int8_t satype; 4266 { 4267 switch (satype) { 4268 case SADB_SATYPE_UNSPEC: 4269 return IPSEC_PROTO_ANY; 4270 case SADB_SATYPE_AH: 4271 return IPPROTO_AH; 4272 case SADB_SATYPE_ESP: 4273 return IPPROTO_ESP; 4274 case SADB_X_SATYPE_IPCOMP: 4275 return IPPROTO_IPCOMP; 4276 case SADB_X_SATYPE_TCPSIGNATURE: 4277 return IPPROTO_TCP; 4278 default: 4279 return 0; 4280 } 4281 /* NOTREACHED */ 4282 } 4283 4284 /* 4285 * map IPPROTO_* to SADB_SATYPE_* 4286 * OUT: 4287 * 0: invalid protocol type. 4288 */ 4289 static u_int8_t 4290 key_proto2satype(proto) 4291 u_int16_t proto; 4292 { 4293 switch (proto) { 4294 case IPPROTO_AH: 4295 return SADB_SATYPE_AH; 4296 case IPPROTO_ESP: 4297 return SADB_SATYPE_ESP; 4298 case IPPROTO_IPCOMP: 4299 return SADB_X_SATYPE_IPCOMP; 4300 case IPPROTO_TCP: 4301 return SADB_X_SATYPE_TCPSIGNATURE; 4302 default: 4303 return 0; 4304 } 4305 /* NOTREACHED */ 4306 } 4307 4308 /* %%% PF_KEY */ 4309 /* 4310 * SADB_GETSPI processing is to receive 4311 * <base, (SA2), src address, dst address, (SPI range)> 4312 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND 4313 * tree with the status of LARVAL, and send 4314 * <base, SA(*), address(SD)> 4315 * to the IKMPd. 4316 * 4317 * IN: mhp: pointer to the pointer to each header. 4318 * OUT: NULL if fail. 4319 * other if success, return pointer to the message to send. 4320 */ 4321 static int 4322 key_getspi(so, m, mhp) 4323 struct socket *so; 4324 struct mbuf *m; 4325 const struct sadb_msghdr *mhp; 4326 { 4327 struct sadb_address *src0, *dst0; 4328 struct secasindex saidx; 4329 struct secashead *newsah; 4330 struct secasvar *newsav; 4331 u_int8_t proto; 4332 u_int32_t spi; 4333 u_int8_t mode; 4334 u_int32_t reqid; 4335 int error; 4336 4337 IPSEC_ASSERT(so != NULL, ("null socket")); 4338 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4339 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4340 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4341 4342 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4343 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 4344 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4345 __func__)); 4346 return key_senderror(so, m, EINVAL); 4347 } 4348 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4349 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4350 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4351 __func__)); 4352 return key_senderror(so, m, EINVAL); 4353 } 4354 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4355 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4356 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4357 } else { 4358 mode = IPSEC_MODE_ANY; 4359 reqid = 0; 4360 } 4361 4362 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4363 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4364 4365 /* map satype to proto */ 4366 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4367 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4368 __func__)); 4369 return key_senderror(so, m, EINVAL); 4370 } 4371 4372 /* make sure if port number is zero. */ 4373 switch (((struct sockaddr *)(src0 + 1))->sa_family) { 4374 case AF_INET: 4375 if (((struct sockaddr *)(src0 + 1))->sa_len != 4376 sizeof(struct sockaddr_in)) 4377 return key_senderror(so, m, EINVAL); 4378 ((struct sockaddr_in *)(src0 + 1))->sin_port = 0; 4379 break; 4380 case AF_INET6: 4381 if (((struct sockaddr *)(src0 + 1))->sa_len != 4382 sizeof(struct sockaddr_in6)) 4383 return key_senderror(so, m, EINVAL); 4384 ((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0; 4385 break; 4386 default: 4387 ; /*???*/ 4388 } 4389 switch (((struct sockaddr *)(dst0 + 1))->sa_family) { 4390 case AF_INET: 4391 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4392 sizeof(struct sockaddr_in)) 4393 return key_senderror(so, m, EINVAL); 4394 ((struct sockaddr_in *)(dst0 + 1))->sin_port = 0; 4395 break; 4396 case AF_INET6: 4397 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4398 sizeof(struct sockaddr_in6)) 4399 return key_senderror(so, m, EINVAL); 4400 ((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0; 4401 break; 4402 default: 4403 ; /*???*/ 4404 } 4405 4406 /* XXX boundary check against sa_len */ 4407 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4408 4409 /* SPI allocation */ 4410 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE], 4411 &saidx); 4412 if (spi == 0) 4413 return key_senderror(so, m, EINVAL); 4414 4415 /* get a SA index */ 4416 if ((newsah = key_getsah(&saidx)) == NULL) { 4417 /* create a new SA index */ 4418 if ((newsah = key_newsah(&saidx)) == NULL) { 4419 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 4420 return key_senderror(so, m, ENOBUFS); 4421 } 4422 } 4423 4424 /* get a new SA */ 4425 /* XXX rewrite */ 4426 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 4427 if (newsav == NULL) { 4428 /* XXX don't free new SA index allocated in above. */ 4429 return key_senderror(so, m, error); 4430 } 4431 4432 /* set spi */ 4433 newsav->spi = htonl(spi); 4434 4435 /* delete the entry in acqtree */ 4436 if (mhp->msg->sadb_msg_seq != 0) { 4437 struct secacq *acq; 4438 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) { 4439 /* reset counter in order to deletion by timehandler. */ 4440 acq->created = time_second; 4441 acq->count = 0; 4442 } 4443 } 4444 4445 { 4446 struct mbuf *n, *nn; 4447 struct sadb_sa *m_sa; 4448 struct sadb_msg *newmsg; 4449 int off, len; 4450 4451 /* create new sadb_msg to reply. */ 4452 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 4453 PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4454 if (len > MCLBYTES) 4455 return key_senderror(so, m, ENOBUFS); 4456 4457 MGETHDR(n, M_DONTWAIT, MT_DATA); 4458 if (len > MHLEN) { 4459 MCLGET(n, M_DONTWAIT); 4460 if ((n->m_flags & M_EXT) == 0) { 4461 m_freem(n); 4462 n = NULL; 4463 } 4464 } 4465 if (!n) 4466 return key_senderror(so, m, ENOBUFS); 4467 4468 n->m_len = len; 4469 n->m_next = NULL; 4470 off = 0; 4471 4472 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 4473 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 4474 4475 m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off); 4476 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); 4477 m_sa->sadb_sa_exttype = SADB_EXT_SA; 4478 m_sa->sadb_sa_spi = htonl(spi); 4479 off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4480 4481 IPSEC_ASSERT(off == len, 4482 ("length inconsistency (off %u len %u)", off, len)); 4483 4484 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, 4485 SADB_EXT_ADDRESS_DST); 4486 if (!n->m_next) { 4487 m_freem(n); 4488 return key_senderror(so, m, ENOBUFS); 4489 } 4490 4491 if (n->m_len < sizeof(struct sadb_msg)) { 4492 n = m_pullup(n, sizeof(struct sadb_msg)); 4493 if (n == NULL) 4494 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 4495 } 4496 4497 n->m_pkthdr.len = 0; 4498 for (nn = n; nn; nn = nn->m_next) 4499 n->m_pkthdr.len += nn->m_len; 4500 4501 newmsg = mtod(n, struct sadb_msg *); 4502 newmsg->sadb_msg_seq = newsav->seq; 4503 newmsg->sadb_msg_errno = 0; 4504 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 4505 4506 m_freem(m); 4507 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 4508 } 4509 } 4510 4511 /* 4512 * allocating new SPI 4513 * called by key_getspi(). 4514 * OUT: 4515 * 0: failure. 4516 * others: success. 4517 */ 4518 static u_int32_t 4519 key_do_getnewspi(spirange, saidx) 4520 struct sadb_spirange *spirange; 4521 struct secasindex *saidx; 4522 { 4523 u_int32_t newspi; 4524 u_int32_t min, max; 4525 int count = key_spi_trycnt; 4526 4527 /* set spi range to allocate */ 4528 if (spirange != NULL) { 4529 min = spirange->sadb_spirange_min; 4530 max = spirange->sadb_spirange_max; 4531 } else { 4532 min = key_spi_minval; 4533 max = key_spi_maxval; 4534 } 4535 /* IPCOMP needs 2-byte SPI */ 4536 if (saidx->proto == IPPROTO_IPCOMP) { 4537 u_int32_t t; 4538 if (min >= 0x10000) 4539 min = 0xffff; 4540 if (max >= 0x10000) 4541 max = 0xffff; 4542 if (min > max) { 4543 t = min; min = max; max = t; 4544 } 4545 } 4546 4547 if (min == max) { 4548 if (key_checkspidup(saidx, min) != NULL) { 4549 ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n", 4550 __func__, min)); 4551 return 0; 4552 } 4553 4554 count--; /* taking one cost. */ 4555 newspi = min; 4556 4557 } else { 4558 4559 /* init SPI */ 4560 newspi = 0; 4561 4562 /* when requesting to allocate spi ranged */ 4563 while (count--) { 4564 /* generate pseudo-random SPI value ranged. */ 4565 newspi = min + (key_random() % (max - min + 1)); 4566 4567 if (key_checkspidup(saidx, newspi) == NULL) 4568 break; 4569 } 4570 4571 if (count == 0 || newspi == 0) { 4572 ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n", 4573 __func__)); 4574 return 0; 4575 } 4576 } 4577 4578 /* statistics */ 4579 keystat.getspi_count = 4580 (keystat.getspi_count + key_spi_trycnt - count) / 2; 4581 4582 return newspi; 4583 } 4584 4585 /* 4586 * SADB_UPDATE processing 4587 * receive 4588 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4589 * key(AE), (identity(SD),) (sensitivity)> 4590 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. 4591 * and send 4592 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4593 * (identity(SD),) (sensitivity)> 4594 * to the ikmpd. 4595 * 4596 * m will always be freed. 4597 */ 4598 static int 4599 key_update(so, m, mhp) 4600 struct socket *so; 4601 struct mbuf *m; 4602 const struct sadb_msghdr *mhp; 4603 { 4604 struct sadb_sa *sa0; 4605 struct sadb_address *src0, *dst0; 4606 struct secasindex saidx; 4607 struct secashead *sah; 4608 struct secasvar *sav; 4609 u_int16_t proto; 4610 u_int8_t mode; 4611 u_int32_t reqid; 4612 int error; 4613 4614 IPSEC_ASSERT(so != NULL, ("null socket")); 4615 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4616 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4617 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4618 4619 /* map satype to proto */ 4620 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4621 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4622 __func__)); 4623 return key_senderror(so, m, EINVAL); 4624 } 4625 4626 if (mhp->ext[SADB_EXT_SA] == NULL || 4627 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4628 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 4629 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 4630 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 4631 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 4632 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 4633 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 4634 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 4635 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 4636 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 4637 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4638 __func__)); 4639 return key_senderror(so, m, EINVAL); 4640 } 4641 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 4642 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4643 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4644 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4645 __func__)); 4646 return key_senderror(so, m, EINVAL); 4647 } 4648 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4649 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4650 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4651 } else { 4652 mode = IPSEC_MODE_ANY; 4653 reqid = 0; 4654 } 4655 /* XXX boundary checking for other extensions */ 4656 4657 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 4658 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4659 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4660 4661 /* XXX boundary check against sa_len */ 4662 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4663 4664 /* get a SA header */ 4665 if ((sah = key_getsah(&saidx)) == NULL) { 4666 ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__)); 4667 return key_senderror(so, m, ENOENT); 4668 } 4669 4670 /* set spidx if there */ 4671 /* XXX rewrite */ 4672 error = key_setident(sah, m, mhp); 4673 if (error) 4674 return key_senderror(so, m, error); 4675 4676 /* find a SA with sequence number. */ 4677 #ifdef IPSEC_DOSEQCHECK 4678 if (mhp->msg->sadb_msg_seq != 0 4679 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) { 4680 ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u " 4681 "exists.\n", __func__, mhp->msg->sadb_msg_seq)); 4682 return key_senderror(so, m, ENOENT); 4683 } 4684 #else 4685 SAHTREE_LOCK(); 4686 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 4687 SAHTREE_UNLOCK(); 4688 if (sav == NULL) { 4689 ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n", 4690 __func__, (u_int32_t)ntohl(sa0->sadb_sa_spi))); 4691 return key_senderror(so, m, EINVAL); 4692 } 4693 #endif 4694 4695 /* validity check */ 4696 if (sav->sah->saidx.proto != proto) { 4697 ipseclog((LOG_DEBUG, "%s: protocol mismatched " 4698 "(DB=%u param=%u)\n", __func__, 4699 sav->sah->saidx.proto, proto)); 4700 return key_senderror(so, m, EINVAL); 4701 } 4702 #ifdef IPSEC_DOSEQCHECK 4703 if (sav->spi != sa0->sadb_sa_spi) { 4704 ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n", 4705 __func__, 4706 (u_int32_t)ntohl(sav->spi), 4707 (u_int32_t)ntohl(sa0->sadb_sa_spi))); 4708 return key_senderror(so, m, EINVAL); 4709 } 4710 #endif 4711 if (sav->pid != mhp->msg->sadb_msg_pid) { 4712 ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n", 4713 __func__, sav->pid, mhp->msg->sadb_msg_pid)); 4714 return key_senderror(so, m, EINVAL); 4715 } 4716 4717 /* copy sav values */ 4718 error = key_setsaval(sav, m, mhp); 4719 if (error) { 4720 KEY_FREESAV(&sav); 4721 return key_senderror(so, m, error); 4722 } 4723 4724 /* check SA values to be mature. */ 4725 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) { 4726 KEY_FREESAV(&sav); 4727 return key_senderror(so, m, 0); 4728 } 4729 4730 { 4731 struct mbuf *n; 4732 4733 /* set msg buf from mhp */ 4734 n = key_getmsgbuf_x1(m, mhp); 4735 if (n == NULL) { 4736 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 4737 return key_senderror(so, m, ENOBUFS); 4738 } 4739 4740 m_freem(m); 4741 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 4742 } 4743 } 4744 4745 /* 4746 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL. 4747 * only called by key_update(). 4748 * OUT: 4749 * NULL : not found 4750 * others : found, pointer to a SA. 4751 */ 4752 #ifdef IPSEC_DOSEQCHECK 4753 static struct secasvar * 4754 key_getsavbyseq(sah, seq) 4755 struct secashead *sah; 4756 u_int32_t seq; 4757 { 4758 struct secasvar *sav; 4759 u_int state; 4760 4761 state = SADB_SASTATE_LARVAL; 4762 4763 /* search SAD with sequence number ? */ 4764 LIST_FOREACH(sav, &sah->savtree[state], chain) { 4765 4766 KEY_CHKSASTATE(state, sav->state, __func__); 4767 4768 if (sav->seq == seq) { 4769 SA_ADDREF(sav); 4770 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 4771 printf("DP %s cause refcnt++:%d SA:%p\n", 4772 __func__, sav->refcnt, sav)); 4773 return sav; 4774 } 4775 } 4776 4777 return NULL; 4778 } 4779 #endif 4780 4781 /* 4782 * SADB_ADD processing 4783 * add an entry to SA database, when received 4784 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4785 * key(AE), (identity(SD),) (sensitivity)> 4786 * from the ikmpd, 4787 * and send 4788 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4789 * (identity(SD),) (sensitivity)> 4790 * to the ikmpd. 4791 * 4792 * IGNORE identity and sensitivity messages. 4793 * 4794 * m will always be freed. 4795 */ 4796 static int 4797 key_add(so, m, mhp) 4798 struct socket *so; 4799 struct mbuf *m; 4800 const struct sadb_msghdr *mhp; 4801 { 4802 struct sadb_sa *sa0; 4803 struct sadb_address *src0, *dst0; 4804 struct secasindex saidx; 4805 struct secashead *newsah; 4806 struct secasvar *newsav; 4807 u_int16_t proto; 4808 u_int8_t mode; 4809 u_int32_t reqid; 4810 int error; 4811 4812 IPSEC_ASSERT(so != NULL, ("null socket")); 4813 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4814 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4815 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4816 4817 /* map satype to proto */ 4818 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4819 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4820 __func__)); 4821 return key_senderror(so, m, EINVAL); 4822 } 4823 4824 if (mhp->ext[SADB_EXT_SA] == NULL || 4825 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4826 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 4827 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 4828 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 4829 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 4830 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 4831 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 4832 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 4833 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 4834 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 4835 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4836 __func__)); 4837 return key_senderror(so, m, EINVAL); 4838 } 4839 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 4840 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4841 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4842 /* XXX need more */ 4843 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4844 __func__)); 4845 return key_senderror(so, m, EINVAL); 4846 } 4847 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4848 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4849 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4850 } else { 4851 mode = IPSEC_MODE_ANY; 4852 reqid = 0; 4853 } 4854 4855 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 4856 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 4857 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 4858 4859 /* XXX boundary check against sa_len */ 4860 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4861 4862 /* get a SA header */ 4863 if ((newsah = key_getsah(&saidx)) == NULL) { 4864 /* create a new SA header */ 4865 if ((newsah = key_newsah(&saidx)) == NULL) { 4866 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 4867 return key_senderror(so, m, ENOBUFS); 4868 } 4869 } 4870 4871 /* set spidx if there */ 4872 /* XXX rewrite */ 4873 error = key_setident(newsah, m, mhp); 4874 if (error) { 4875 return key_senderror(so, m, error); 4876 } 4877 4878 /* create new SA entry. */ 4879 /* We can create new SA only if SPI is differenct. */ 4880 SAHTREE_LOCK(); 4881 newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi); 4882 SAHTREE_UNLOCK(); 4883 if (newsav != NULL) { 4884 ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__)); 4885 return key_senderror(so, m, EEXIST); 4886 } 4887 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 4888 if (newsav == NULL) { 4889 return key_senderror(so, m, error); 4890 } 4891 4892 /* check SA values to be mature. */ 4893 if ((error = key_mature(newsav)) != 0) { 4894 KEY_FREESAV(&newsav); 4895 return key_senderror(so, m, error); 4896 } 4897 4898 /* 4899 * don't call key_freesav() here, as we would like to keep the SA 4900 * in the database on success. 4901 */ 4902 4903 { 4904 struct mbuf *n; 4905 4906 /* set msg buf from mhp */ 4907 n = key_getmsgbuf_x1(m, mhp); 4908 if (n == NULL) { 4909 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 4910 return key_senderror(so, m, ENOBUFS); 4911 } 4912 4913 m_freem(m); 4914 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 4915 } 4916 } 4917 4918 /* m is retained */ 4919 static int 4920 key_setident(sah, m, mhp) 4921 struct secashead *sah; 4922 struct mbuf *m; 4923 const struct sadb_msghdr *mhp; 4924 { 4925 const struct sadb_ident *idsrc, *iddst; 4926 int idsrclen, iddstlen; 4927 4928 IPSEC_ASSERT(sah != NULL, ("null secashead")); 4929 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4930 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4931 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4932 4933 /* don't make buffer if not there */ 4934 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL && 4935 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 4936 sah->idents = NULL; 4937 sah->identd = NULL; 4938 return 0; 4939 } 4940 4941 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL || 4942 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 4943 ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__)); 4944 return EINVAL; 4945 } 4946 4947 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC]; 4948 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST]; 4949 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC]; 4950 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST]; 4951 4952 /* validity check */ 4953 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { 4954 ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__)); 4955 return EINVAL; 4956 } 4957 4958 switch (idsrc->sadb_ident_type) { 4959 case SADB_IDENTTYPE_PREFIX: 4960 case SADB_IDENTTYPE_FQDN: 4961 case SADB_IDENTTYPE_USERFQDN: 4962 default: 4963 /* XXX do nothing */ 4964 sah->idents = NULL; 4965 sah->identd = NULL; 4966 return 0; 4967 } 4968 4969 /* make structure */ 4970 sah->idents = malloc(idsrclen, M_IPSEC_MISC, M_NOWAIT); 4971 if (sah->idents == NULL) { 4972 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 4973 return ENOBUFS; 4974 } 4975 sah->identd = malloc(iddstlen, M_IPSEC_MISC, M_NOWAIT); 4976 if (sah->identd == NULL) { 4977 free(sah->idents, M_IPSEC_MISC); 4978 sah->idents = NULL; 4979 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 4980 return ENOBUFS; 4981 } 4982 bcopy(idsrc, sah->idents, idsrclen); 4983 bcopy(iddst, sah->identd, iddstlen); 4984 4985 return 0; 4986 } 4987 4988 /* 4989 * m will not be freed on return. 4990 * it is caller's responsibility to free the result. 4991 */ 4992 static struct mbuf * 4993 key_getmsgbuf_x1(m, mhp) 4994 struct mbuf *m; 4995 const struct sadb_msghdr *mhp; 4996 { 4997 struct mbuf *n; 4998 4999 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5000 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5001 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5002 5003 /* create new sadb_msg to reply. */ 5004 n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED, 5005 SADB_EXT_SA, SADB_X_EXT_SA2, 5006 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, 5007 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 5008 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST); 5009 if (!n) 5010 return NULL; 5011 5012 if (n->m_len < sizeof(struct sadb_msg)) { 5013 n = m_pullup(n, sizeof(struct sadb_msg)); 5014 if (n == NULL) 5015 return NULL; 5016 } 5017 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; 5018 mtod(n, struct sadb_msg *)->sadb_msg_len = 5019 PFKEY_UNIT64(n->m_pkthdr.len); 5020 5021 return n; 5022 } 5023 5024 static int key_delete_all __P((struct socket *, struct mbuf *, 5025 const struct sadb_msghdr *, u_int16_t)); 5026 5027 /* 5028 * SADB_DELETE processing 5029 * receive 5030 * <base, SA(*), address(SD)> 5031 * from the ikmpd, and set SADB_SASTATE_DEAD, 5032 * and send, 5033 * <base, SA(*), address(SD)> 5034 * to the ikmpd. 5035 * 5036 * m will always be freed. 5037 */ 5038 static int 5039 key_delete(so, m, mhp) 5040 struct socket *so; 5041 struct mbuf *m; 5042 const struct sadb_msghdr *mhp; 5043 { 5044 struct sadb_sa *sa0; 5045 struct sadb_address *src0, *dst0; 5046 struct secasindex saidx; 5047 struct secashead *sah; 5048 struct secasvar *sav = NULL; 5049 u_int16_t proto; 5050 5051 IPSEC_ASSERT(so != NULL, ("null socket")); 5052 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5053 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5054 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5055 5056 /* map satype to proto */ 5057 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5058 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5059 __func__)); 5060 return key_senderror(so, m, EINVAL); 5061 } 5062 5063 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5064 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5065 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5066 __func__)); 5067 return key_senderror(so, m, EINVAL); 5068 } 5069 5070 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5071 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5072 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5073 __func__)); 5074 return key_senderror(so, m, EINVAL); 5075 } 5076 5077 if (mhp->ext[SADB_EXT_SA] == NULL) { 5078 /* 5079 * Caller wants us to delete all non-LARVAL SAs 5080 * that match the src/dst. This is used during 5081 * IKE INITIAL-CONTACT. 5082 */ 5083 ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__)); 5084 return key_delete_all(so, m, mhp, proto); 5085 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { 5086 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5087 __func__)); 5088 return key_senderror(so, m, EINVAL); 5089 } 5090 5091 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5092 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5093 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5094 5095 /* XXX boundary check against sa_len */ 5096 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5097 5098 /* get a SA header */ 5099 SAHTREE_LOCK(); 5100 LIST_FOREACH(sah, &sahtree, chain) { 5101 if (sah->state == SADB_SASTATE_DEAD) 5102 continue; 5103 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5104 continue; 5105 5106 /* get a SA with SPI. */ 5107 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5108 if (sav) 5109 break; 5110 } 5111 if (sah == NULL) { 5112 SAHTREE_UNLOCK(); 5113 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5114 return key_senderror(so, m, ENOENT); 5115 } 5116 5117 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5118 SAHTREE_UNLOCK(); 5119 KEY_FREESAV(&sav); 5120 5121 { 5122 struct mbuf *n; 5123 struct sadb_msg *newmsg; 5124 5125 /* create new sadb_msg to reply. */ 5126 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 5127 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5128 if (!n) 5129 return key_senderror(so, m, ENOBUFS); 5130 5131 if (n->m_len < sizeof(struct sadb_msg)) { 5132 n = m_pullup(n, sizeof(struct sadb_msg)); 5133 if (n == NULL) 5134 return key_senderror(so, m, ENOBUFS); 5135 } 5136 newmsg = mtod(n, struct sadb_msg *); 5137 newmsg->sadb_msg_errno = 0; 5138 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5139 5140 m_freem(m); 5141 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5142 } 5143 } 5144 5145 /* 5146 * delete all SAs for src/dst. Called from key_delete(). 5147 */ 5148 static int 5149 key_delete_all(so, m, mhp, proto) 5150 struct socket *so; 5151 struct mbuf *m; 5152 const struct sadb_msghdr *mhp; 5153 u_int16_t proto; 5154 { 5155 struct sadb_address *src0, *dst0; 5156 struct secasindex saidx; 5157 struct secashead *sah; 5158 struct secasvar *sav, *nextsav; 5159 u_int stateidx, state; 5160 5161 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5162 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5163 5164 /* XXX boundary check against sa_len */ 5165 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5166 5167 SAHTREE_LOCK(); 5168 LIST_FOREACH(sah, &sahtree, chain) { 5169 if (sah->state == SADB_SASTATE_DEAD) 5170 continue; 5171 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5172 continue; 5173 5174 /* Delete all non-LARVAL SAs. */ 5175 for (stateidx = 0; 5176 stateidx < _ARRAYLEN(saorder_state_alive); 5177 stateidx++) { 5178 state = saorder_state_alive[stateidx]; 5179 if (state == SADB_SASTATE_LARVAL) 5180 continue; 5181 for (sav = LIST_FIRST(&sah->savtree[state]); 5182 sav != NULL; sav = nextsav) { 5183 nextsav = LIST_NEXT(sav, chain); 5184 /* sanity check */ 5185 if (sav->state != state) { 5186 ipseclog((LOG_DEBUG, "%s: invalid " 5187 "sav->state (queue %d SA %d)\n", 5188 __func__, state, sav->state)); 5189 continue; 5190 } 5191 5192 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5193 KEY_FREESAV(&sav); 5194 } 5195 } 5196 } 5197 SAHTREE_UNLOCK(); 5198 { 5199 struct mbuf *n; 5200 struct sadb_msg *newmsg; 5201 5202 /* create new sadb_msg to reply. */ 5203 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, 5204 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5205 if (!n) 5206 return key_senderror(so, m, ENOBUFS); 5207 5208 if (n->m_len < sizeof(struct sadb_msg)) { 5209 n = m_pullup(n, sizeof(struct sadb_msg)); 5210 if (n == NULL) 5211 return key_senderror(so, m, ENOBUFS); 5212 } 5213 newmsg = mtod(n, struct sadb_msg *); 5214 newmsg->sadb_msg_errno = 0; 5215 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5216 5217 m_freem(m); 5218 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5219 } 5220 } 5221 5222 /* 5223 * SADB_GET processing 5224 * receive 5225 * <base, SA(*), address(SD)> 5226 * from the ikmpd, and get a SP and a SA to respond, 5227 * and send, 5228 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), 5229 * (identity(SD),) (sensitivity)> 5230 * to the ikmpd. 5231 * 5232 * m will always be freed. 5233 */ 5234 static int 5235 key_get(so, m, mhp) 5236 struct socket *so; 5237 struct mbuf *m; 5238 const struct sadb_msghdr *mhp; 5239 { 5240 struct sadb_sa *sa0; 5241 struct sadb_address *src0, *dst0; 5242 struct secasindex saidx; 5243 struct secashead *sah; 5244 struct secasvar *sav = NULL; 5245 u_int16_t proto; 5246 5247 IPSEC_ASSERT(so != NULL, ("null socket")); 5248 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5249 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5250 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5251 5252 /* map satype to proto */ 5253 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5254 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5255 __func__)); 5256 return key_senderror(so, m, EINVAL); 5257 } 5258 5259 if (mhp->ext[SADB_EXT_SA] == NULL || 5260 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5261 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5262 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5263 __func__)); 5264 return key_senderror(so, m, EINVAL); 5265 } 5266 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5267 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5268 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5269 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5270 __func__)); 5271 return key_senderror(so, m, EINVAL); 5272 } 5273 5274 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5275 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5276 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5277 5278 /* XXX boundary check against sa_len */ 5279 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5280 5281 /* get a SA header */ 5282 SAHTREE_LOCK(); 5283 LIST_FOREACH(sah, &sahtree, chain) { 5284 if (sah->state == SADB_SASTATE_DEAD) 5285 continue; 5286 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5287 continue; 5288 5289 /* get a SA with SPI. */ 5290 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5291 if (sav) 5292 break; 5293 } 5294 SAHTREE_UNLOCK(); 5295 if (sah == NULL) { 5296 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5297 return key_senderror(so, m, ENOENT); 5298 } 5299 5300 { 5301 struct mbuf *n; 5302 u_int8_t satype; 5303 5304 /* map proto to satype */ 5305 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 5306 ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n", 5307 __func__)); 5308 return key_senderror(so, m, EINVAL); 5309 } 5310 5311 /* create new sadb_msg to reply. */ 5312 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, 5313 mhp->msg->sadb_msg_pid); 5314 if (!n) 5315 return key_senderror(so, m, ENOBUFS); 5316 5317 m_freem(m); 5318 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5319 } 5320 } 5321 5322 /* XXX make it sysctl-configurable? */ 5323 static void 5324 key_getcomb_setlifetime(comb) 5325 struct sadb_comb *comb; 5326 { 5327 5328 comb->sadb_comb_soft_allocations = 1; 5329 comb->sadb_comb_hard_allocations = 1; 5330 comb->sadb_comb_soft_bytes = 0; 5331 comb->sadb_comb_hard_bytes = 0; 5332 comb->sadb_comb_hard_addtime = 86400; /* 1 day */ 5333 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100; 5334 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */ 5335 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100; 5336 } 5337 5338 /* 5339 * XXX reorder combinations by preference 5340 * XXX no idea if the user wants ESP authentication or not 5341 */ 5342 static struct mbuf * 5343 key_getcomb_esp() 5344 { 5345 struct sadb_comb *comb; 5346 struct enc_xform *algo; 5347 struct mbuf *result = NULL, *m, *n; 5348 int encmin; 5349 int i, off, o; 5350 int totlen; 5351 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5352 5353 m = NULL; 5354 for (i = 1; i <= SADB_EALG_MAX; i++) { 5355 algo = esp_algorithm_lookup(i); 5356 if (algo == NULL) 5357 continue; 5358 5359 /* discard algorithms with key size smaller than system min */ 5360 if (_BITS(algo->maxkey) < ipsec_esp_keymin) 5361 continue; 5362 if (_BITS(algo->minkey) < ipsec_esp_keymin) 5363 encmin = ipsec_esp_keymin; 5364 else 5365 encmin = _BITS(algo->minkey); 5366 5367 if (ipsec_esp_auth) 5368 m = key_getcomb_ah(); 5369 else { 5370 IPSEC_ASSERT(l <= MLEN, 5371 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 5372 MGET(m, M_DONTWAIT, MT_DATA); 5373 if (m) { 5374 M_ALIGN(m, l); 5375 m->m_len = l; 5376 m->m_next = NULL; 5377 bzero(mtod(m, caddr_t), m->m_len); 5378 } 5379 } 5380 if (!m) 5381 goto fail; 5382 5383 totlen = 0; 5384 for (n = m; n; n = n->m_next) 5385 totlen += n->m_len; 5386 IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l)); 5387 5388 for (off = 0; off < totlen; off += l) { 5389 n = m_pulldown(m, off, l, &o); 5390 if (!n) { 5391 /* m is already freed */ 5392 goto fail; 5393 } 5394 comb = (struct sadb_comb *)(mtod(n, caddr_t) + o); 5395 bzero(comb, sizeof(*comb)); 5396 key_getcomb_setlifetime(comb); 5397 comb->sadb_comb_encrypt = i; 5398 comb->sadb_comb_encrypt_minbits = encmin; 5399 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); 5400 } 5401 5402 if (!result) 5403 result = m; 5404 else 5405 m_cat(result, m); 5406 } 5407 5408 return result; 5409 5410 fail: 5411 if (result) 5412 m_freem(result); 5413 return NULL; 5414 } 5415 5416 static void 5417 key_getsizes_ah( 5418 const struct auth_hash *ah, 5419 int alg, 5420 u_int16_t* min, 5421 u_int16_t* max) 5422 { 5423 *min = *max = ah->keysize; 5424 if (ah->keysize == 0) { 5425 /* 5426 * Transform takes arbitrary key size but algorithm 5427 * key size is restricted. Enforce this here. 5428 */ 5429 switch (alg) { 5430 case SADB_X_AALG_MD5: *min = *max = 16; break; 5431 case SADB_X_AALG_SHA: *min = *max = 20; break; 5432 case SADB_X_AALG_NULL: *min = 1; *max = 256; break; 5433 default: 5434 DPRINTF(("%s: unknown AH algorithm %u\n", 5435 __func__, alg)); 5436 break; 5437 } 5438 } 5439 } 5440 5441 /* 5442 * XXX reorder combinations by preference 5443 */ 5444 static struct mbuf * 5445 key_getcomb_ah() 5446 { 5447 struct sadb_comb *comb; 5448 struct auth_hash *algo; 5449 struct mbuf *m; 5450 u_int16_t minkeysize, maxkeysize; 5451 int i; 5452 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5453 5454 m = NULL; 5455 for (i = 1; i <= SADB_AALG_MAX; i++) { 5456 #if 1 5457 /* we prefer HMAC algorithms, not old algorithms */ 5458 if (i != SADB_AALG_SHA1HMAC && i != SADB_AALG_MD5HMAC) 5459 continue; 5460 #endif 5461 algo = ah_algorithm_lookup(i); 5462 if (!algo) 5463 continue; 5464 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); 5465 /* discard algorithms with key size smaller than system min */ 5466 if (_BITS(minkeysize) < ipsec_ah_keymin) 5467 continue; 5468 5469 if (!m) { 5470 IPSEC_ASSERT(l <= MLEN, 5471 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 5472 MGET(m, M_DONTWAIT, MT_DATA); 5473 if (m) { 5474 M_ALIGN(m, l); 5475 m->m_len = l; 5476 m->m_next = NULL; 5477 } 5478 } else 5479 M_PREPEND(m, l, M_DONTWAIT); 5480 if (!m) 5481 return NULL; 5482 5483 comb = mtod(m, struct sadb_comb *); 5484 bzero(comb, sizeof(*comb)); 5485 key_getcomb_setlifetime(comb); 5486 comb->sadb_comb_auth = i; 5487 comb->sadb_comb_auth_minbits = _BITS(minkeysize); 5488 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); 5489 } 5490 5491 return m; 5492 } 5493 5494 /* 5495 * not really an official behavior. discussed in pf_key@inner.net in Sep2000. 5496 * XXX reorder combinations by preference 5497 */ 5498 static struct mbuf * 5499 key_getcomb_ipcomp() 5500 { 5501 struct sadb_comb *comb; 5502 struct comp_algo *algo; 5503 struct mbuf *m; 5504 int i; 5505 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5506 5507 m = NULL; 5508 for (i = 1; i <= SADB_X_CALG_MAX; i++) { 5509 algo = ipcomp_algorithm_lookup(i); 5510 if (!algo) 5511 continue; 5512 5513 if (!m) { 5514 IPSEC_ASSERT(l <= MLEN, 5515 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 5516 MGET(m, M_DONTWAIT, MT_DATA); 5517 if (m) { 5518 M_ALIGN(m, l); 5519 m->m_len = l; 5520 m->m_next = NULL; 5521 } 5522 } else 5523 M_PREPEND(m, l, M_DONTWAIT); 5524 if (!m) 5525 return NULL; 5526 5527 comb = mtod(m, struct sadb_comb *); 5528 bzero(comb, sizeof(*comb)); 5529 key_getcomb_setlifetime(comb); 5530 comb->sadb_comb_encrypt = i; 5531 /* what should we set into sadb_comb_*_{min,max}bits? */ 5532 } 5533 5534 return m; 5535 } 5536 5537 /* 5538 * XXX no way to pass mode (transport/tunnel) to userland 5539 * XXX replay checking? 5540 * XXX sysctl interface to ipsec_{ah,esp}_keymin 5541 */ 5542 static struct mbuf * 5543 key_getprop(saidx) 5544 const struct secasindex *saidx; 5545 { 5546 struct sadb_prop *prop; 5547 struct mbuf *m, *n; 5548 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); 5549 int totlen; 5550 5551 switch (saidx->proto) { 5552 case IPPROTO_ESP: 5553 m = key_getcomb_esp(); 5554 break; 5555 case IPPROTO_AH: 5556 m = key_getcomb_ah(); 5557 break; 5558 case IPPROTO_IPCOMP: 5559 m = key_getcomb_ipcomp(); 5560 break; 5561 default: 5562 return NULL; 5563 } 5564 5565 if (!m) 5566 return NULL; 5567 M_PREPEND(m, l, M_DONTWAIT); 5568 if (!m) 5569 return NULL; 5570 5571 totlen = 0; 5572 for (n = m; n; n = n->m_next) 5573 totlen += n->m_len; 5574 5575 prop = mtod(m, struct sadb_prop *); 5576 bzero(prop, sizeof(*prop)); 5577 prop->sadb_prop_len = PFKEY_UNIT64(totlen); 5578 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 5579 prop->sadb_prop_replay = 32; /* XXX */ 5580 5581 return m; 5582 } 5583 5584 /* 5585 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2(). 5586 * send 5587 * <base, SA, address(SD), (address(P)), x_policy, 5588 * (identity(SD),) (sensitivity,) proposal> 5589 * to KMD, and expect to receive 5590 * <base> with SADB_ACQUIRE if error occured, 5591 * or 5592 * <base, src address, dst address, (SPI range)> with SADB_GETSPI 5593 * from KMD by PF_KEY. 5594 * 5595 * XXX x_policy is outside of RFC2367 (KAME extension). 5596 * XXX sensitivity is not supported. 5597 * XXX for ipcomp, RFC2367 does not define how to fill in proposal. 5598 * see comment for key_getcomb_ipcomp(). 5599 * 5600 * OUT: 5601 * 0 : succeed 5602 * others: error number 5603 */ 5604 static int 5605 key_acquire(const struct secasindex *saidx, struct secpolicy *sp) 5606 { 5607 struct mbuf *result = NULL, *m; 5608 struct secacq *newacq; 5609 u_int8_t satype; 5610 int error = -1; 5611 u_int32_t seq; 5612 5613 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 5614 satype = key_proto2satype(saidx->proto); 5615 IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto)); 5616 5617 /* 5618 * We never do anything about acquirng SA. There is anather 5619 * solution that kernel blocks to send SADB_ACQUIRE message until 5620 * getting something message from IKEd. In later case, to be 5621 * managed with ACQUIRING list. 5622 */ 5623 /* Get an entry to check whether sending message or not. */ 5624 if ((newacq = key_getacq(saidx)) != NULL) { 5625 if (key_blockacq_count < newacq->count) { 5626 /* reset counter and do send message. */ 5627 newacq->count = 0; 5628 } else { 5629 /* increment counter and do nothing. */ 5630 newacq->count++; 5631 return 0; 5632 } 5633 } else { 5634 /* make new entry for blocking to send SADB_ACQUIRE. */ 5635 if ((newacq = key_newacq(saidx)) == NULL) 5636 return ENOBUFS; 5637 } 5638 5639 5640 seq = newacq->seq; 5641 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0); 5642 if (!m) { 5643 error = ENOBUFS; 5644 goto fail; 5645 } 5646 result = m; 5647 5648 /* set sadb_address for saidx's. */ 5649 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 5650 &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY); 5651 if (!m) { 5652 error = ENOBUFS; 5653 goto fail; 5654 } 5655 m_cat(result, m); 5656 5657 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 5658 &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY); 5659 if (!m) { 5660 error = ENOBUFS; 5661 goto fail; 5662 } 5663 m_cat(result, m); 5664 5665 /* XXX proxy address (optional) */ 5666 5667 /* set sadb_x_policy */ 5668 if (sp) { 5669 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id); 5670 if (!m) { 5671 error = ENOBUFS; 5672 goto fail; 5673 } 5674 m_cat(result, m); 5675 } 5676 5677 /* XXX identity (optional) */ 5678 #if 0 5679 if (idexttype && fqdn) { 5680 /* create identity extension (FQDN) */ 5681 struct sadb_ident *id; 5682 int fqdnlen; 5683 5684 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ 5685 id = (struct sadb_ident *)p; 5686 bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 5687 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 5688 id->sadb_ident_exttype = idexttype; 5689 id->sadb_ident_type = SADB_IDENTTYPE_FQDN; 5690 bcopy(fqdn, id + 1, fqdnlen); 5691 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); 5692 } 5693 5694 if (idexttype) { 5695 /* create identity extension (USERFQDN) */ 5696 struct sadb_ident *id; 5697 int userfqdnlen; 5698 5699 if (userfqdn) { 5700 /* +1 for terminating-NUL */ 5701 userfqdnlen = strlen(userfqdn) + 1; 5702 } else 5703 userfqdnlen = 0; 5704 id = (struct sadb_ident *)p; 5705 bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 5706 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 5707 id->sadb_ident_exttype = idexttype; 5708 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; 5709 /* XXX is it correct? */ 5710 if (curproc && curproc->p_cred) 5711 id->sadb_ident_id = curproc->p_cred->p_ruid; 5712 if (userfqdn && userfqdnlen) 5713 bcopy(userfqdn, id + 1, userfqdnlen); 5714 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); 5715 } 5716 #endif 5717 5718 /* XXX sensitivity (optional) */ 5719 5720 /* create proposal/combination extension */ 5721 m = key_getprop(saidx); 5722 #if 0 5723 /* 5724 * spec conformant: always attach proposal/combination extension, 5725 * the problem is that we have no way to attach it for ipcomp, 5726 * due to the way sadb_comb is declared in RFC2367. 5727 */ 5728 if (!m) { 5729 error = ENOBUFS; 5730 goto fail; 5731 } 5732 m_cat(result, m); 5733 #else 5734 /* 5735 * outside of spec; make proposal/combination extension optional. 5736 */ 5737 if (m) 5738 m_cat(result, m); 5739 #endif 5740 5741 if ((result->m_flags & M_PKTHDR) == 0) { 5742 error = EINVAL; 5743 goto fail; 5744 } 5745 5746 if (result->m_len < sizeof(struct sadb_msg)) { 5747 result = m_pullup(result, sizeof(struct sadb_msg)); 5748 if (result == NULL) { 5749 error = ENOBUFS; 5750 goto fail; 5751 } 5752 } 5753 5754 result->m_pkthdr.len = 0; 5755 for (m = result; m; m = m->m_next) 5756 result->m_pkthdr.len += m->m_len; 5757 5758 mtod(result, struct sadb_msg *)->sadb_msg_len = 5759 PFKEY_UNIT64(result->m_pkthdr.len); 5760 5761 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 5762 5763 fail: 5764 if (result) 5765 m_freem(result); 5766 return error; 5767 } 5768 5769 static struct secacq * 5770 key_newacq(const struct secasindex *saidx) 5771 { 5772 struct secacq *newacq; 5773 5774 /* get new entry */ 5775 newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 5776 if (newacq == NULL) { 5777 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5778 return NULL; 5779 } 5780 5781 /* copy secindex */ 5782 bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx)); 5783 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq); 5784 newacq->created = time_second; 5785 newacq->count = 0; 5786 5787 /* add to acqtree */ 5788 ACQ_LOCK(); 5789 LIST_INSERT_HEAD(&acqtree, newacq, chain); 5790 ACQ_UNLOCK(); 5791 5792 return newacq; 5793 } 5794 5795 static struct secacq * 5796 key_getacq(const struct secasindex *saidx) 5797 { 5798 struct secacq *acq; 5799 5800 ACQ_LOCK(); 5801 LIST_FOREACH(acq, &acqtree, chain) { 5802 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY)) 5803 break; 5804 } 5805 ACQ_UNLOCK(); 5806 5807 return acq; 5808 } 5809 5810 static struct secacq * 5811 key_getacqbyseq(seq) 5812 u_int32_t seq; 5813 { 5814 struct secacq *acq; 5815 5816 ACQ_LOCK(); 5817 LIST_FOREACH(acq, &acqtree, chain) { 5818 if (acq->seq == seq) 5819 break; 5820 } 5821 ACQ_UNLOCK(); 5822 5823 return acq; 5824 } 5825 5826 static struct secspacq * 5827 key_newspacq(spidx) 5828 struct secpolicyindex *spidx; 5829 { 5830 struct secspacq *acq; 5831 5832 /* get new entry */ 5833 acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 5834 if (acq == NULL) { 5835 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5836 return NULL; 5837 } 5838 5839 /* copy secindex */ 5840 bcopy(spidx, &acq->spidx, sizeof(acq->spidx)); 5841 acq->created = time_second; 5842 acq->count = 0; 5843 5844 /* add to spacqtree */ 5845 SPACQ_LOCK(); 5846 LIST_INSERT_HEAD(&spacqtree, acq, chain); 5847 SPACQ_UNLOCK(); 5848 5849 return acq; 5850 } 5851 5852 static struct secspacq * 5853 key_getspacq(spidx) 5854 struct secpolicyindex *spidx; 5855 { 5856 struct secspacq *acq; 5857 5858 SPACQ_LOCK(); 5859 LIST_FOREACH(acq, &spacqtree, chain) { 5860 if (key_cmpspidx_exactly(spidx, &acq->spidx)) { 5861 /* NB: return holding spacq_lock */ 5862 return acq; 5863 } 5864 } 5865 SPACQ_UNLOCK(); 5866 5867 return NULL; 5868 } 5869 5870 /* 5871 * SADB_ACQUIRE processing, 5872 * in first situation, is receiving 5873 * <base> 5874 * from the ikmpd, and clear sequence of its secasvar entry. 5875 * 5876 * In second situation, is receiving 5877 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 5878 * from a user land process, and return 5879 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 5880 * to the socket. 5881 * 5882 * m will always be freed. 5883 */ 5884 static int 5885 key_acquire2(so, m, mhp) 5886 struct socket *so; 5887 struct mbuf *m; 5888 const struct sadb_msghdr *mhp; 5889 { 5890 const struct sadb_address *src0, *dst0; 5891 struct secasindex saidx; 5892 struct secashead *sah; 5893 u_int16_t proto; 5894 int error; 5895 5896 IPSEC_ASSERT(so != NULL, ("null socket")); 5897 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5898 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5899 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5900 5901 /* 5902 * Error message from KMd. 5903 * We assume that if error was occured in IKEd, the length of PFKEY 5904 * message is equal to the size of sadb_msg structure. 5905 * We do not raise error even if error occured in this function. 5906 */ 5907 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { 5908 struct secacq *acq; 5909 5910 /* check sequence number */ 5911 if (mhp->msg->sadb_msg_seq == 0) { 5912 ipseclog((LOG_DEBUG, "%s: must specify sequence " 5913 "number.\n", __func__)); 5914 m_freem(m); 5915 return 0; 5916 } 5917 5918 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) { 5919 /* 5920 * the specified larval SA is already gone, or we got 5921 * a bogus sequence number. we can silently ignore it. 5922 */ 5923 m_freem(m); 5924 return 0; 5925 } 5926 5927 /* reset acq counter in order to deletion by timehander. */ 5928 acq->created = time_second; 5929 acq->count = 0; 5930 m_freem(m); 5931 return 0; 5932 } 5933 5934 /* 5935 * This message is from user land. 5936 */ 5937 5938 /* map satype to proto */ 5939 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5940 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5941 __func__)); 5942 return key_senderror(so, m, EINVAL); 5943 } 5944 5945 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5946 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5947 mhp->ext[SADB_EXT_PROPOSAL] == NULL) { 5948 /* error */ 5949 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5950 __func__)); 5951 return key_senderror(so, m, EINVAL); 5952 } 5953 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5954 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 5955 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { 5956 /* error */ 5957 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5958 __func__)); 5959 return key_senderror(so, m, EINVAL); 5960 } 5961 5962 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5963 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5964 5965 /* XXX boundary check against sa_len */ 5966 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5967 5968 /* get a SA index */ 5969 SAHTREE_LOCK(); 5970 LIST_FOREACH(sah, &sahtree, chain) { 5971 if (sah->state == SADB_SASTATE_DEAD) 5972 continue; 5973 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID)) 5974 break; 5975 } 5976 SAHTREE_UNLOCK(); 5977 if (sah != NULL) { 5978 ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__)); 5979 return key_senderror(so, m, EEXIST); 5980 } 5981 5982 error = key_acquire(&saidx, NULL); 5983 if (error != 0) { 5984 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 5985 __func__, mhp->msg->sadb_msg_errno)); 5986 return key_senderror(so, m, error); 5987 } 5988 5989 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); 5990 } 5991 5992 /* 5993 * SADB_REGISTER processing. 5994 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. 5995 * receive 5996 * <base> 5997 * from the ikmpd, and register a socket to send PF_KEY messages, 5998 * and send 5999 * <base, supported> 6000 * to KMD by PF_KEY. 6001 * If socket is detached, must free from regnode. 6002 * 6003 * m will always be freed. 6004 */ 6005 static int 6006 key_register(so, m, mhp) 6007 struct socket *so; 6008 struct mbuf *m; 6009 const struct sadb_msghdr *mhp; 6010 { 6011 struct secreg *reg, *newreg = 0; 6012 6013 IPSEC_ASSERT(so != NULL, ("null socket")); 6014 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6015 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6016 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6017 6018 /* check for invalid register message */ 6019 if (mhp->msg->sadb_msg_satype >= sizeof(regtree)/sizeof(regtree[0])) 6020 return key_senderror(so, m, EINVAL); 6021 6022 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ 6023 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) 6024 goto setmsg; 6025 6026 /* check whether existing or not */ 6027 REGTREE_LOCK(); 6028 LIST_FOREACH(reg, ®tree[mhp->msg->sadb_msg_satype], chain) { 6029 if (reg->so == so) { 6030 REGTREE_UNLOCK(); 6031 ipseclog((LOG_DEBUG, "%s: socket exists already.\n", 6032 __func__)); 6033 return key_senderror(so, m, EEXIST); 6034 } 6035 } 6036 6037 /* create regnode */ 6038 newreg = malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO); 6039 if (newreg == NULL) { 6040 REGTREE_UNLOCK(); 6041 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6042 return key_senderror(so, m, ENOBUFS); 6043 } 6044 6045 newreg->so = so; 6046 ((struct keycb *)sotorawcb(so))->kp_registered++; 6047 6048 /* add regnode to regtree. */ 6049 LIST_INSERT_HEAD(®tree[mhp->msg->sadb_msg_satype], newreg, chain); 6050 REGTREE_UNLOCK(); 6051 6052 setmsg: 6053 { 6054 struct mbuf *n; 6055 struct sadb_msg *newmsg; 6056 struct sadb_supported *sup; 6057 u_int len, alen, elen; 6058 int off; 6059 int i; 6060 struct sadb_alg *alg; 6061 6062 /* create new sadb_msg to reply. */ 6063 alen = 0; 6064 for (i = 1; i <= SADB_AALG_MAX; i++) { 6065 if (ah_algorithm_lookup(i)) 6066 alen += sizeof(struct sadb_alg); 6067 } 6068 if (alen) 6069 alen += sizeof(struct sadb_supported); 6070 elen = 0; 6071 for (i = 1; i <= SADB_EALG_MAX; i++) { 6072 if (esp_algorithm_lookup(i)) 6073 elen += sizeof(struct sadb_alg); 6074 } 6075 if (elen) 6076 elen += sizeof(struct sadb_supported); 6077 6078 len = sizeof(struct sadb_msg) + alen + elen; 6079 6080 if (len > MCLBYTES) 6081 return key_senderror(so, m, ENOBUFS); 6082 6083 MGETHDR(n, M_DONTWAIT, MT_DATA); 6084 if (len > MHLEN) { 6085 MCLGET(n, M_DONTWAIT); 6086 if ((n->m_flags & M_EXT) == 0) { 6087 m_freem(n); 6088 n = NULL; 6089 } 6090 } 6091 if (!n) 6092 return key_senderror(so, m, ENOBUFS); 6093 6094 n->m_pkthdr.len = n->m_len = len; 6095 n->m_next = NULL; 6096 off = 0; 6097 6098 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 6099 newmsg = mtod(n, struct sadb_msg *); 6100 newmsg->sadb_msg_errno = 0; 6101 newmsg->sadb_msg_len = PFKEY_UNIT64(len); 6102 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 6103 6104 /* for authentication algorithm */ 6105 if (alen) { 6106 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6107 sup->sadb_supported_len = PFKEY_UNIT64(alen); 6108 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 6109 off += PFKEY_ALIGN8(sizeof(*sup)); 6110 6111 for (i = 1; i <= SADB_AALG_MAX; i++) { 6112 struct auth_hash *aalgo; 6113 u_int16_t minkeysize, maxkeysize; 6114 6115 aalgo = ah_algorithm_lookup(i); 6116 if (!aalgo) 6117 continue; 6118 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6119 alg->sadb_alg_id = i; 6120 alg->sadb_alg_ivlen = 0; 6121 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); 6122 alg->sadb_alg_minbits = _BITS(minkeysize); 6123 alg->sadb_alg_maxbits = _BITS(maxkeysize); 6124 off += PFKEY_ALIGN8(sizeof(*alg)); 6125 } 6126 } 6127 6128 /* for encryption algorithm */ 6129 if (elen) { 6130 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6131 sup->sadb_supported_len = PFKEY_UNIT64(elen); 6132 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 6133 off += PFKEY_ALIGN8(sizeof(*sup)); 6134 6135 for (i = 1; i <= SADB_EALG_MAX; i++) { 6136 struct enc_xform *ealgo; 6137 6138 ealgo = esp_algorithm_lookup(i); 6139 if (!ealgo) 6140 continue; 6141 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6142 alg->sadb_alg_id = i; 6143 alg->sadb_alg_ivlen = ealgo->blocksize; 6144 alg->sadb_alg_minbits = _BITS(ealgo->minkey); 6145 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); 6146 off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); 6147 } 6148 } 6149 6150 IPSEC_ASSERT(off == len, 6151 ("length assumption failed (off %u len %u)", off, len)); 6152 6153 m_freem(m); 6154 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); 6155 } 6156 } 6157 6158 /* 6159 * free secreg entry registered. 6160 * XXX: I want to do free a socket marked done SADB_RESIGER to socket. 6161 */ 6162 void 6163 key_freereg(struct socket *so) 6164 { 6165 struct secreg *reg; 6166 int i; 6167 6168 IPSEC_ASSERT(so != NULL, ("NULL so")); 6169 6170 /* 6171 * check whether existing or not. 6172 * check all type of SA, because there is a potential that 6173 * one socket is registered to multiple type of SA. 6174 */ 6175 REGTREE_LOCK(); 6176 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 6177 LIST_FOREACH(reg, ®tree[i], chain) { 6178 if (reg->so == so && __LIST_CHAINED(reg)) { 6179 LIST_REMOVE(reg, chain); 6180 free(reg, M_IPSEC_SAR); 6181 break; 6182 } 6183 } 6184 } 6185 REGTREE_UNLOCK(); 6186 } 6187 6188 /* 6189 * SADB_EXPIRE processing 6190 * send 6191 * <base, SA, SA2, lifetime(C and one of HS), address(SD)> 6192 * to KMD by PF_KEY. 6193 * NOTE: We send only soft lifetime extension. 6194 * 6195 * OUT: 0 : succeed 6196 * others : error number 6197 */ 6198 static int 6199 key_expire(struct secasvar *sav) 6200 { 6201 int s; 6202 int satype; 6203 struct mbuf *result = NULL, *m; 6204 int len; 6205 int error = -1; 6206 struct sadb_lifetime *lt; 6207 6208 /* XXX: Why do we lock ? */ 6209 s = splnet(); /*called from softclock()*/ 6210 6211 IPSEC_ASSERT (sav != NULL, ("null sav")); 6212 IPSEC_ASSERT (sav->sah != NULL, ("null sa header")); 6213 6214 /* set msg header */ 6215 satype = key_proto2satype(sav->sah->saidx.proto); 6216 IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype)); 6217 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt); 6218 if (!m) { 6219 error = ENOBUFS; 6220 goto fail; 6221 } 6222 result = m; 6223 6224 /* create SA extension */ 6225 m = key_setsadbsa(sav); 6226 if (!m) { 6227 error = ENOBUFS; 6228 goto fail; 6229 } 6230 m_cat(result, m); 6231 6232 /* create SA extension */ 6233 m = key_setsadbxsa2(sav->sah->saidx.mode, 6234 sav->replay ? sav->replay->count : 0, 6235 sav->sah->saidx.reqid); 6236 if (!m) { 6237 error = ENOBUFS; 6238 goto fail; 6239 } 6240 m_cat(result, m); 6241 6242 /* create lifetime extension (current and soft) */ 6243 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 6244 m = key_alloc_mbuf(len); 6245 if (!m || m->m_next) { /*XXX*/ 6246 if (m) 6247 m_freem(m); 6248 error = ENOBUFS; 6249 goto fail; 6250 } 6251 bzero(mtod(m, caddr_t), len); 6252 lt = mtod(m, struct sadb_lifetime *); 6253 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6254 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 6255 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations; 6256 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes; 6257 lt->sadb_lifetime_addtime = sav->lft_c->sadb_lifetime_addtime; 6258 lt->sadb_lifetime_usetime = sav->lft_c->sadb_lifetime_usetime; 6259 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 6260 bcopy(sav->lft_s, lt, sizeof(*lt)); 6261 m_cat(result, m); 6262 6263 /* set sadb_address for source */ 6264 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 6265 &sav->sah->saidx.src.sa, 6266 FULLMASK, IPSEC_ULPROTO_ANY); 6267 if (!m) { 6268 error = ENOBUFS; 6269 goto fail; 6270 } 6271 m_cat(result, m); 6272 6273 /* set sadb_address for destination */ 6274 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 6275 &sav->sah->saidx.dst.sa, 6276 FULLMASK, IPSEC_ULPROTO_ANY); 6277 if (!m) { 6278 error = ENOBUFS; 6279 goto fail; 6280 } 6281 m_cat(result, m); 6282 6283 if ((result->m_flags & M_PKTHDR) == 0) { 6284 error = EINVAL; 6285 goto fail; 6286 } 6287 6288 if (result->m_len < sizeof(struct sadb_msg)) { 6289 result = m_pullup(result, sizeof(struct sadb_msg)); 6290 if (result == NULL) { 6291 error = ENOBUFS; 6292 goto fail; 6293 } 6294 } 6295 6296 result->m_pkthdr.len = 0; 6297 for (m = result; m; m = m->m_next) 6298 result->m_pkthdr.len += m->m_len; 6299 6300 mtod(result, struct sadb_msg *)->sadb_msg_len = 6301 PFKEY_UNIT64(result->m_pkthdr.len); 6302 6303 splx(s); 6304 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6305 6306 fail: 6307 if (result) 6308 m_freem(result); 6309 splx(s); 6310 return error; 6311 } 6312 6313 /* 6314 * SADB_FLUSH processing 6315 * receive 6316 * <base> 6317 * from the ikmpd, and free all entries in secastree. 6318 * and send, 6319 * <base> 6320 * to the ikmpd. 6321 * NOTE: to do is only marking SADB_SASTATE_DEAD. 6322 * 6323 * m will always be freed. 6324 */ 6325 static int 6326 key_flush(so, m, mhp) 6327 struct socket *so; 6328 struct mbuf *m; 6329 const struct sadb_msghdr *mhp; 6330 { 6331 struct sadb_msg *newmsg; 6332 struct secashead *sah, *nextsah; 6333 struct secasvar *sav, *nextsav; 6334 u_int16_t proto; 6335 u_int8_t state; 6336 u_int stateidx; 6337 6338 IPSEC_ASSERT(so != NULL, ("null socket")); 6339 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6340 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6341 6342 /* map satype to proto */ 6343 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6344 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6345 __func__)); 6346 return key_senderror(so, m, EINVAL); 6347 } 6348 6349 /* no SATYPE specified, i.e. flushing all SA. */ 6350 SAHTREE_LOCK(); 6351 for (sah = LIST_FIRST(&sahtree); 6352 sah != NULL; 6353 sah = nextsah) { 6354 nextsah = LIST_NEXT(sah, chain); 6355 6356 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 6357 && proto != sah->saidx.proto) 6358 continue; 6359 6360 for (stateidx = 0; 6361 stateidx < _ARRAYLEN(saorder_state_alive); 6362 stateidx++) { 6363 state = saorder_state_any[stateidx]; 6364 for (sav = LIST_FIRST(&sah->savtree[state]); 6365 sav != NULL; 6366 sav = nextsav) { 6367 6368 nextsav = LIST_NEXT(sav, chain); 6369 6370 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 6371 KEY_FREESAV(&sav); 6372 } 6373 } 6374 6375 sah->state = SADB_SASTATE_DEAD; 6376 } 6377 SAHTREE_UNLOCK(); 6378 6379 if (m->m_len < sizeof(struct sadb_msg) || 6380 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 6381 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6382 return key_senderror(so, m, ENOBUFS); 6383 } 6384 6385 if (m->m_next) 6386 m_freem(m->m_next); 6387 m->m_next = NULL; 6388 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); 6389 newmsg = mtod(m, struct sadb_msg *); 6390 newmsg->sadb_msg_errno = 0; 6391 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 6392 6393 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 6394 } 6395 6396 /* 6397 * SADB_DUMP processing 6398 * dump all entries including status of DEAD in SAD. 6399 * receive 6400 * <base> 6401 * from the ikmpd, and dump all secasvar leaves 6402 * and send, 6403 * <base> ..... 6404 * to the ikmpd. 6405 * 6406 * m will always be freed. 6407 */ 6408 static int 6409 key_dump(so, m, mhp) 6410 struct socket *so; 6411 struct mbuf *m; 6412 const struct sadb_msghdr *mhp; 6413 { 6414 struct secashead *sah; 6415 struct secasvar *sav; 6416 u_int16_t proto; 6417 u_int stateidx; 6418 u_int8_t satype; 6419 u_int8_t state; 6420 int cnt; 6421 struct sadb_msg *newmsg; 6422 struct mbuf *n; 6423 6424 IPSEC_ASSERT(so != NULL, ("null socket")); 6425 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6426 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6427 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6428 6429 /* map satype to proto */ 6430 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6431 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6432 __func__)); 6433 return key_senderror(so, m, EINVAL); 6434 } 6435 6436 /* count sav entries to be sent to the userland. */ 6437 cnt = 0; 6438 SAHTREE_LOCK(); 6439 LIST_FOREACH(sah, &sahtree, chain) { 6440 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 6441 && proto != sah->saidx.proto) 6442 continue; 6443 6444 for (stateidx = 0; 6445 stateidx < _ARRAYLEN(saorder_state_any); 6446 stateidx++) { 6447 state = saorder_state_any[stateidx]; 6448 LIST_FOREACH(sav, &sah->savtree[state], chain) { 6449 cnt++; 6450 } 6451 } 6452 } 6453 6454 if (cnt == 0) { 6455 SAHTREE_UNLOCK(); 6456 return key_senderror(so, m, ENOENT); 6457 } 6458 6459 /* send this to the userland, one at a time. */ 6460 newmsg = NULL; 6461 LIST_FOREACH(sah, &sahtree, chain) { 6462 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 6463 && proto != sah->saidx.proto) 6464 continue; 6465 6466 /* map proto to satype */ 6467 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 6468 SAHTREE_UNLOCK(); 6469 ipseclog((LOG_DEBUG, "%s: there was invalid proto in " 6470 "SAD.\n", __func__)); 6471 return key_senderror(so, m, EINVAL); 6472 } 6473 6474 for (stateidx = 0; 6475 stateidx < _ARRAYLEN(saorder_state_any); 6476 stateidx++) { 6477 state = saorder_state_any[stateidx]; 6478 LIST_FOREACH(sav, &sah->savtree[state], chain) { 6479 n = key_setdumpsa(sav, SADB_DUMP, satype, 6480 --cnt, mhp->msg->sadb_msg_pid); 6481 if (!n) { 6482 SAHTREE_UNLOCK(); 6483 return key_senderror(so, m, ENOBUFS); 6484 } 6485 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 6486 } 6487 } 6488 } 6489 SAHTREE_UNLOCK(); 6490 6491 m_freem(m); 6492 return 0; 6493 } 6494 6495 /* 6496 * SADB_X_PROMISC processing 6497 * 6498 * m will always be freed. 6499 */ 6500 static int 6501 key_promisc(so, m, mhp) 6502 struct socket *so; 6503 struct mbuf *m; 6504 const struct sadb_msghdr *mhp; 6505 { 6506 int olen; 6507 6508 IPSEC_ASSERT(so != NULL, ("null socket")); 6509 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6510 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6511 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6512 6513 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 6514 6515 if (olen < sizeof(struct sadb_msg)) { 6516 #if 1 6517 return key_senderror(so, m, EINVAL); 6518 #else 6519 m_freem(m); 6520 return 0; 6521 #endif 6522 } else if (olen == sizeof(struct sadb_msg)) { 6523 /* enable/disable promisc mode */ 6524 struct keycb *kp; 6525 6526 if ((kp = (struct keycb *)sotorawcb(so)) == NULL) 6527 return key_senderror(so, m, EINVAL); 6528 mhp->msg->sadb_msg_errno = 0; 6529 switch (mhp->msg->sadb_msg_satype) { 6530 case 0: 6531 case 1: 6532 kp->kp_promisc = mhp->msg->sadb_msg_satype; 6533 break; 6534 default: 6535 return key_senderror(so, m, EINVAL); 6536 } 6537 6538 /* send the original message back to everyone */ 6539 mhp->msg->sadb_msg_errno = 0; 6540 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 6541 } else { 6542 /* send packet as is */ 6543 6544 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); 6545 6546 /* TODO: if sadb_msg_seq is specified, send to specific pid */ 6547 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 6548 } 6549 } 6550 6551 static int (*key_typesw[]) __P((struct socket *, struct mbuf *, 6552 const struct sadb_msghdr *)) = { 6553 NULL, /* SADB_RESERVED */ 6554 key_getspi, /* SADB_GETSPI */ 6555 key_update, /* SADB_UPDATE */ 6556 key_add, /* SADB_ADD */ 6557 key_delete, /* SADB_DELETE */ 6558 key_get, /* SADB_GET */ 6559 key_acquire2, /* SADB_ACQUIRE */ 6560 key_register, /* SADB_REGISTER */ 6561 NULL, /* SADB_EXPIRE */ 6562 key_flush, /* SADB_FLUSH */ 6563 key_dump, /* SADB_DUMP */ 6564 key_promisc, /* SADB_X_PROMISC */ 6565 NULL, /* SADB_X_PCHANGE */ 6566 key_spdadd, /* SADB_X_SPDUPDATE */ 6567 key_spdadd, /* SADB_X_SPDADD */ 6568 key_spddelete, /* SADB_X_SPDDELETE */ 6569 key_spdget, /* SADB_X_SPDGET */ 6570 NULL, /* SADB_X_SPDACQUIRE */ 6571 key_spddump, /* SADB_X_SPDDUMP */ 6572 key_spdflush, /* SADB_X_SPDFLUSH */ 6573 key_spdadd, /* SADB_X_SPDSETIDX */ 6574 NULL, /* SADB_X_SPDEXPIRE */ 6575 key_spddelete2, /* SADB_X_SPDDELETE2 */ 6576 }; 6577 6578 /* 6579 * parse sadb_msg buffer to process PFKEYv2, 6580 * and create a data to response if needed. 6581 * I think to be dealed with mbuf directly. 6582 * IN: 6583 * msgp : pointer to pointer to a received buffer pulluped. 6584 * This is rewrited to response. 6585 * so : pointer to socket. 6586 * OUT: 6587 * length for buffer to send to user process. 6588 */ 6589 int 6590 key_parse(m, so) 6591 struct mbuf *m; 6592 struct socket *so; 6593 { 6594 struct sadb_msg *msg; 6595 struct sadb_msghdr mh; 6596 u_int orglen; 6597 int error; 6598 int target; 6599 6600 IPSEC_ASSERT(so != NULL, ("null socket")); 6601 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6602 6603 #if 0 /*kdebug_sadb assumes msg in linear buffer*/ 6604 KEYDEBUG(KEYDEBUG_KEY_DUMP, 6605 ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__)); 6606 kdebug_sadb(msg)); 6607 #endif 6608 6609 if (m->m_len < sizeof(struct sadb_msg)) { 6610 m = m_pullup(m, sizeof(struct sadb_msg)); 6611 if (!m) 6612 return ENOBUFS; 6613 } 6614 msg = mtod(m, struct sadb_msg *); 6615 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); 6616 target = KEY_SENDUP_ONE; 6617 6618 if ((m->m_flags & M_PKTHDR) == 0 || 6619 m->m_pkthdr.len != m->m_pkthdr.len) { 6620 ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__)); 6621 pfkeystat.out_invlen++; 6622 error = EINVAL; 6623 goto senderror; 6624 } 6625 6626 if (msg->sadb_msg_version != PF_KEY_V2) { 6627 ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n", 6628 __func__, msg->sadb_msg_version)); 6629 pfkeystat.out_invver++; 6630 error = EINVAL; 6631 goto senderror; 6632 } 6633 6634 if (msg->sadb_msg_type > SADB_MAX) { 6635 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 6636 __func__, msg->sadb_msg_type)); 6637 pfkeystat.out_invmsgtype++; 6638 error = EINVAL; 6639 goto senderror; 6640 } 6641 6642 /* for old-fashioned code - should be nuked */ 6643 if (m->m_pkthdr.len > MCLBYTES) { 6644 m_freem(m); 6645 return ENOBUFS; 6646 } 6647 if (m->m_next) { 6648 struct mbuf *n; 6649 6650 MGETHDR(n, M_DONTWAIT, MT_DATA); 6651 if (n && m->m_pkthdr.len > MHLEN) { 6652 MCLGET(n, M_DONTWAIT); 6653 if ((n->m_flags & M_EXT) == 0) { 6654 m_free(n); 6655 n = NULL; 6656 } 6657 } 6658 if (!n) { 6659 m_freem(m); 6660 return ENOBUFS; 6661 } 6662 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t)); 6663 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; 6664 n->m_next = NULL; 6665 m_freem(m); 6666 m = n; 6667 } 6668 6669 /* align the mbuf chain so that extensions are in contiguous region. */ 6670 error = key_align(m, &mh); 6671 if (error) 6672 return error; 6673 6674 if (m->m_next) { /*XXX*/ 6675 m_freem(m); 6676 return ENOBUFS; 6677 } 6678 6679 msg = mh.msg; 6680 6681 /* check SA type */ 6682 switch (msg->sadb_msg_satype) { 6683 case SADB_SATYPE_UNSPEC: 6684 switch (msg->sadb_msg_type) { 6685 case SADB_GETSPI: 6686 case SADB_UPDATE: 6687 case SADB_ADD: 6688 case SADB_DELETE: 6689 case SADB_GET: 6690 case SADB_ACQUIRE: 6691 case SADB_EXPIRE: 6692 ipseclog((LOG_DEBUG, "%s: must specify satype " 6693 "when msg type=%u.\n", __func__, 6694 msg->sadb_msg_type)); 6695 pfkeystat.out_invsatype++; 6696 error = EINVAL; 6697 goto senderror; 6698 } 6699 break; 6700 case SADB_SATYPE_AH: 6701 case SADB_SATYPE_ESP: 6702 case SADB_X_SATYPE_IPCOMP: 6703 case SADB_X_SATYPE_TCPSIGNATURE: 6704 switch (msg->sadb_msg_type) { 6705 case SADB_X_SPDADD: 6706 case SADB_X_SPDDELETE: 6707 case SADB_X_SPDGET: 6708 case SADB_X_SPDDUMP: 6709 case SADB_X_SPDFLUSH: 6710 case SADB_X_SPDSETIDX: 6711 case SADB_X_SPDUPDATE: 6712 case SADB_X_SPDDELETE2: 6713 ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n", 6714 __func__, msg->sadb_msg_type)); 6715 pfkeystat.out_invsatype++; 6716 error = EINVAL; 6717 goto senderror; 6718 } 6719 break; 6720 case SADB_SATYPE_RSVP: 6721 case SADB_SATYPE_OSPFV2: 6722 case SADB_SATYPE_RIPV2: 6723 case SADB_SATYPE_MIP: 6724 ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n", 6725 __func__, msg->sadb_msg_satype)); 6726 pfkeystat.out_invsatype++; 6727 error = EOPNOTSUPP; 6728 goto senderror; 6729 case 1: /* XXX: What does it do? */ 6730 if (msg->sadb_msg_type == SADB_X_PROMISC) 6731 break; 6732 /*FALLTHROUGH*/ 6733 default: 6734 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 6735 __func__, msg->sadb_msg_satype)); 6736 pfkeystat.out_invsatype++; 6737 error = EINVAL; 6738 goto senderror; 6739 } 6740 6741 /* check field of upper layer protocol and address family */ 6742 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL 6743 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { 6744 struct sadb_address *src0, *dst0; 6745 u_int plen; 6746 6747 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]); 6748 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]); 6749 6750 /* check upper layer protocol */ 6751 if (src0->sadb_address_proto != dst0->sadb_address_proto) { 6752 ipseclog((LOG_DEBUG, "%s: upper layer protocol " 6753 "mismatched.\n", __func__)); 6754 pfkeystat.out_invaddr++; 6755 error = EINVAL; 6756 goto senderror; 6757 } 6758 6759 /* check family */ 6760 if (PFKEY_ADDR_SADDR(src0)->sa_family != 6761 PFKEY_ADDR_SADDR(dst0)->sa_family) { 6762 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 6763 __func__)); 6764 pfkeystat.out_invaddr++; 6765 error = EINVAL; 6766 goto senderror; 6767 } 6768 if (PFKEY_ADDR_SADDR(src0)->sa_len != 6769 PFKEY_ADDR_SADDR(dst0)->sa_len) { 6770 ipseclog((LOG_DEBUG, "%s: address struct size " 6771 "mismatched.\n", __func__)); 6772 pfkeystat.out_invaddr++; 6773 error = EINVAL; 6774 goto senderror; 6775 } 6776 6777 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 6778 case AF_INET: 6779 if (PFKEY_ADDR_SADDR(src0)->sa_len != 6780 sizeof(struct sockaddr_in)) { 6781 pfkeystat.out_invaddr++; 6782 error = EINVAL; 6783 goto senderror; 6784 } 6785 break; 6786 case AF_INET6: 6787 if (PFKEY_ADDR_SADDR(src0)->sa_len != 6788 sizeof(struct sockaddr_in6)) { 6789 pfkeystat.out_invaddr++; 6790 error = EINVAL; 6791 goto senderror; 6792 } 6793 break; 6794 default: 6795 ipseclog((LOG_DEBUG, "%s: unsupported address family\n", 6796 __func__)); 6797 pfkeystat.out_invaddr++; 6798 error = EAFNOSUPPORT; 6799 goto senderror; 6800 } 6801 6802 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 6803 case AF_INET: 6804 plen = sizeof(struct in_addr) << 3; 6805 break; 6806 case AF_INET6: 6807 plen = sizeof(struct in6_addr) << 3; 6808 break; 6809 default: 6810 plen = 0; /*fool gcc*/ 6811 break; 6812 } 6813 6814 /* check max prefix length */ 6815 if (src0->sadb_address_prefixlen > plen || 6816 dst0->sadb_address_prefixlen > plen) { 6817 ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n", 6818 __func__)); 6819 pfkeystat.out_invaddr++; 6820 error = EINVAL; 6821 goto senderror; 6822 } 6823 6824 /* 6825 * prefixlen == 0 is valid because there can be a case when 6826 * all addresses are matched. 6827 */ 6828 } 6829 6830 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) || 6831 key_typesw[msg->sadb_msg_type] == NULL) { 6832 pfkeystat.out_invmsgtype++; 6833 error = EINVAL; 6834 goto senderror; 6835 } 6836 6837 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh); 6838 6839 senderror: 6840 msg->sadb_msg_errno = error; 6841 return key_sendup_mbuf(so, m, target); 6842 } 6843 6844 static int 6845 key_senderror(so, m, code) 6846 struct socket *so; 6847 struct mbuf *m; 6848 int code; 6849 { 6850 struct sadb_msg *msg; 6851 6852 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 6853 ("mbuf too small, len %u", m->m_len)); 6854 6855 msg = mtod(m, struct sadb_msg *); 6856 msg->sadb_msg_errno = code; 6857 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 6858 } 6859 6860 /* 6861 * set the pointer to each header into message buffer. 6862 * m will be freed on error. 6863 * XXX larger-than-MCLBYTES extension? 6864 */ 6865 static int 6866 key_align(m, mhp) 6867 struct mbuf *m; 6868 struct sadb_msghdr *mhp; 6869 { 6870 struct mbuf *n; 6871 struct sadb_ext *ext; 6872 size_t off, end; 6873 int extlen; 6874 int toff; 6875 6876 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6877 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6878 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 6879 ("mbuf too small, len %u", m->m_len)); 6880 6881 /* initialize */ 6882 bzero(mhp, sizeof(*mhp)); 6883 6884 mhp->msg = mtod(m, struct sadb_msg *); 6885 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */ 6886 6887 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 6888 extlen = end; /*just in case extlen is not updated*/ 6889 for (off = sizeof(struct sadb_msg); off < end; off += extlen) { 6890 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); 6891 if (!n) { 6892 /* m is already freed */ 6893 return ENOBUFS; 6894 } 6895 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 6896 6897 /* set pointer */ 6898 switch (ext->sadb_ext_type) { 6899 case SADB_EXT_SA: 6900 case SADB_EXT_ADDRESS_SRC: 6901 case SADB_EXT_ADDRESS_DST: 6902 case SADB_EXT_ADDRESS_PROXY: 6903 case SADB_EXT_LIFETIME_CURRENT: 6904 case SADB_EXT_LIFETIME_HARD: 6905 case SADB_EXT_LIFETIME_SOFT: 6906 case SADB_EXT_KEY_AUTH: 6907 case SADB_EXT_KEY_ENCRYPT: 6908 case SADB_EXT_IDENTITY_SRC: 6909 case SADB_EXT_IDENTITY_DST: 6910 case SADB_EXT_SENSITIVITY: 6911 case SADB_EXT_PROPOSAL: 6912 case SADB_EXT_SUPPORTED_AUTH: 6913 case SADB_EXT_SUPPORTED_ENCRYPT: 6914 case SADB_EXT_SPIRANGE: 6915 case SADB_X_EXT_POLICY: 6916 case SADB_X_EXT_SA2: 6917 /* duplicate check */ 6918 /* 6919 * XXX Are there duplication payloads of either 6920 * KEY_AUTH or KEY_ENCRYPT ? 6921 */ 6922 if (mhp->ext[ext->sadb_ext_type] != NULL) { 6923 ipseclog((LOG_DEBUG, "%s: duplicate ext_type " 6924 "%u\n", __func__, ext->sadb_ext_type)); 6925 m_freem(m); 6926 pfkeystat.out_dupext++; 6927 return EINVAL; 6928 } 6929 break; 6930 default: 6931 ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n", 6932 __func__, ext->sadb_ext_type)); 6933 m_freem(m); 6934 pfkeystat.out_invexttype++; 6935 return EINVAL; 6936 } 6937 6938 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); 6939 6940 if (key_validate_ext(ext, extlen)) { 6941 m_freem(m); 6942 pfkeystat.out_invlen++; 6943 return EINVAL; 6944 } 6945 6946 n = m_pulldown(m, off, extlen, &toff); 6947 if (!n) { 6948 /* m is already freed */ 6949 return ENOBUFS; 6950 } 6951 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 6952 6953 mhp->ext[ext->sadb_ext_type] = ext; 6954 mhp->extoff[ext->sadb_ext_type] = off; 6955 mhp->extlen[ext->sadb_ext_type] = extlen; 6956 } 6957 6958 if (off != end) { 6959 m_freem(m); 6960 pfkeystat.out_invlen++; 6961 return EINVAL; 6962 } 6963 6964 return 0; 6965 } 6966 6967 static int 6968 key_validate_ext(ext, len) 6969 const struct sadb_ext *ext; 6970 int len; 6971 { 6972 const struct sockaddr *sa; 6973 enum { NONE, ADDR } checktype = NONE; 6974 int baselen = 0; 6975 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); 6976 6977 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) 6978 return EINVAL; 6979 6980 /* if it does not match minimum/maximum length, bail */ 6981 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) || 6982 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0])) 6983 return EINVAL; 6984 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) 6985 return EINVAL; 6986 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) 6987 return EINVAL; 6988 6989 /* more checks based on sadb_ext_type XXX need more */ 6990 switch (ext->sadb_ext_type) { 6991 case SADB_EXT_ADDRESS_SRC: 6992 case SADB_EXT_ADDRESS_DST: 6993 case SADB_EXT_ADDRESS_PROXY: 6994 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); 6995 checktype = ADDR; 6996 break; 6997 case SADB_EXT_IDENTITY_SRC: 6998 case SADB_EXT_IDENTITY_DST: 6999 if (((const struct sadb_ident *)ext)->sadb_ident_type == 7000 SADB_X_IDENTTYPE_ADDR) { 7001 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); 7002 checktype = ADDR; 7003 } else 7004 checktype = NONE; 7005 break; 7006 default: 7007 checktype = NONE; 7008 break; 7009 } 7010 7011 switch (checktype) { 7012 case NONE: 7013 break; 7014 case ADDR: 7015 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); 7016 if (len < baselen + sal) 7017 return EINVAL; 7018 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) 7019 return EINVAL; 7020 break; 7021 } 7022 7023 return 0; 7024 } 7025 7026 void 7027 key_init() 7028 { 7029 int i; 7030 7031 SPTREE_LOCK_INIT(); 7032 REGTREE_LOCK_INIT(); 7033 SAHTREE_LOCK_INIT(); 7034 ACQ_LOCK_INIT(); 7035 SPACQ_LOCK_INIT(); 7036 7037 for (i = 0; i < IPSEC_DIR_MAX; i++) 7038 LIST_INIT(&sptree[i]); 7039 7040 LIST_INIT(&sahtree); 7041 7042 for (i = 0; i <= SADB_SATYPE_MAX; i++) 7043 LIST_INIT(®tree[i]); 7044 7045 LIST_INIT(&acqtree); 7046 LIST_INIT(&spacqtree); 7047 7048 /* system default */ 7049 ip4_def_policy.policy = IPSEC_POLICY_NONE; 7050 ip4_def_policy.refcnt++; /*never reclaim this*/ 7051 7052 #ifndef IPSEC_DEBUG2 7053 timeout((void *)key_timehandler, (void *)0, hz); 7054 #endif /*IPSEC_DEBUG2*/ 7055 7056 /* initialize key statistics */ 7057 keystat.getspi_count = 1; 7058 7059 printf("Fast IPsec: Initialized Security Association Processing.\n"); 7060 7061 return; 7062 } 7063 7064 /* 7065 * XXX: maybe This function is called after INBOUND IPsec processing. 7066 * 7067 * Special check for tunnel-mode packets. 7068 * We must make some checks for consistency between inner and outer IP header. 7069 * 7070 * xxx more checks to be provided 7071 */ 7072 int 7073 key_checktunnelsanity(sav, family, src, dst) 7074 struct secasvar *sav; 7075 u_int family; 7076 caddr_t src; 7077 caddr_t dst; 7078 { 7079 IPSEC_ASSERT(sav->sah != NULL, ("null SA header")); 7080 7081 /* XXX: check inner IP header */ 7082 7083 return 1; 7084 } 7085 7086 /* record data transfer on SA, and update timestamps */ 7087 void 7088 key_sa_recordxfer(sav, m) 7089 struct secasvar *sav; 7090 struct mbuf *m; 7091 { 7092 IPSEC_ASSERT(sav != NULL, ("Null secasvar")); 7093 IPSEC_ASSERT(m != NULL, ("Null mbuf")); 7094 if (!sav->lft_c) 7095 return; 7096 7097 /* 7098 * XXX Currently, there is a difference of bytes size 7099 * between inbound and outbound processing. 7100 */ 7101 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len; 7102 /* to check bytes lifetime is done in key_timehandler(). */ 7103 7104 /* 7105 * We use the number of packets as the unit of 7106 * sadb_lifetime_allocations. We increment the variable 7107 * whenever {esp,ah}_{in,out}put is called. 7108 */ 7109 sav->lft_c->sadb_lifetime_allocations++; 7110 /* XXX check for expires? */ 7111 7112 /* 7113 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock, 7114 * in seconds. HARD and SOFT lifetime are measured by the time 7115 * difference (again in seconds) from sadb_lifetime_usetime. 7116 * 7117 * usetime 7118 * v expire expire 7119 * -----+-----+--------+---> t 7120 * <--------------> HARD 7121 * <-----> SOFT 7122 */ 7123 sav->lft_c->sadb_lifetime_usetime = time_second; 7124 /* XXX check for expires? */ 7125 7126 return; 7127 } 7128 7129 /* dumb version */ 7130 void 7131 key_sa_routechange(dst) 7132 struct sockaddr *dst; 7133 { 7134 struct secashead *sah; 7135 struct route *ro; 7136 7137 SAHTREE_LOCK(); 7138 LIST_FOREACH(sah, &sahtree, chain) { 7139 ro = &sah->sa_route; 7140 if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len 7141 && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) { 7142 RTFREE(ro->ro_rt); 7143 ro->ro_rt = (struct rtentry *)NULL; 7144 } 7145 } 7146 SAHTREE_UNLOCK(); 7147 } 7148 7149 static void 7150 key_sa_chgstate(sav, state) 7151 struct secasvar *sav; 7152 u_int8_t state; 7153 { 7154 IPSEC_ASSERT(sav != NULL, ("NULL sav")); 7155 SAHTREE_LOCK_ASSERT(); 7156 7157 if (sav->state != state) { 7158 if (__LIST_CHAINED(sav)) 7159 LIST_REMOVE(sav, chain); 7160 sav->state = state; 7161 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain); 7162 } 7163 } 7164 7165 void 7166 key_sa_stir_iv(sav) 7167 struct secasvar *sav; 7168 { 7169 7170 IPSEC_ASSERT(sav->iv != NULL, ("null IV")); 7171 key_randomfill(sav->iv, sav->ivlen); 7172 } 7173 7174 /* XXX too much? */ 7175 static struct mbuf * 7176 key_alloc_mbuf(l) 7177 int l; 7178 { 7179 struct mbuf *m = NULL, *n; 7180 int len, t; 7181 7182 len = l; 7183 while (len > 0) { 7184 MGET(n, M_DONTWAIT, MT_DATA); 7185 if (n && len > MLEN) 7186 MCLGET(n, M_DONTWAIT); 7187 if (!n) { 7188 m_freem(m); 7189 return NULL; 7190 } 7191 7192 n->m_next = NULL; 7193 n->m_len = 0; 7194 n->m_len = M_TRAILINGSPACE(n); 7195 /* use the bottom of mbuf, hoping we can prepend afterwards */ 7196 if (n->m_len > len) { 7197 t = (n->m_len - len) & ~(sizeof(long) - 1); 7198 n->m_data += t; 7199 n->m_len = len; 7200 } 7201 7202 len -= n->m_len; 7203 7204 if (m) 7205 m_cat(m, n); 7206 else 7207 m = n; 7208 } 7209 7210 return m; 7211 } 7212