xref: /freebsd/sys/netipsec/key.c (revision dcc3a33188bceb5b6e819efdb9c5f72d059084b6)
1 /*	$FreeBSD$	*/
2 /*	$KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $	*/
3 
4 /*-
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * This code is referd to RFC 2367
35  */
36 
37 #include "opt_inet.h"
38 #include "opt_inet6.h"
39 #include "opt_ipsec.h"
40 
41 #include <sys/types.h>
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/mbuf.h>
48 #include <sys/domain.h>
49 #include <sys/protosw.h>
50 #include <sys/malloc.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/sysctl.h>
54 #include <sys/errno.h>
55 #include <sys/proc.h>
56 #include <sys/queue.h>
57 #include <sys/refcount.h>
58 #include <sys/syslog.h>
59 
60 #include <net/if.h>
61 #include <net/route.h>
62 #include <net/raw_cb.h>
63 #include <net/vnet.h>
64 
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/ip.h>
68 #include <netinet/in_var.h>
69 
70 #ifdef INET6
71 #include <netinet/ip6.h>
72 #include <netinet6/in6_var.h>
73 #include <netinet6/ip6_var.h>
74 #endif /* INET6 */
75 
76 #ifdef INET
77 #include <netinet/in_pcb.h>
78 #endif
79 #ifdef INET6
80 #include <netinet6/in6_pcb.h>
81 #endif /* INET6 */
82 
83 #include <net/pfkeyv2.h>
84 #include <netipsec/keydb.h>
85 #include <netipsec/key.h>
86 #include <netipsec/keysock.h>
87 #include <netipsec/key_debug.h>
88 
89 #include <netipsec/ipsec.h>
90 #ifdef INET6
91 #include <netipsec/ipsec6.h>
92 #endif
93 
94 #include <netipsec/xform.h>
95 
96 #include <machine/stdarg.h>
97 
98 /* randomness */
99 #include <sys/random.h>
100 
101 #define FULLMASK	0xff
102 #define	_BITS(bytes)	((bytes) << 3)
103 
104 /*
105  * Note on SA reference counting:
106  * - SAs that are not in DEAD state will have (total external reference + 1)
107  *   following value in reference count field.  they cannot be freed and are
108  *   referenced from SA header.
109  * - SAs that are in DEAD state will have (total external reference)
110  *   in reference count field.  they are ready to be freed.  reference from
111  *   SA header will be removed in key_delsav(), when the reference count
112  *   field hits 0 (= no external reference other than from SA header.
113  */
114 
115 VNET_DEFINE(u_int32_t, key_debug_level) = 0;
116 static VNET_DEFINE(u_int, key_spi_trycnt) = 1000;
117 #define	V_key_spi_trycnt	VNET(key_spi_trycnt)
118 static VNET_DEFINE(u_int32_t, key_spi_minval) = 0x100;
119 #define	V_key_spi_minval	VNET(key_spi_minval)
120 static VNET_DEFINE(u_int32_t, key_spi_maxval) = 0x0fffffff;	/* XXX */
121 #define	V_key_spi_maxval	VNET(key_spi_maxval)
122 static VNET_DEFINE(u_int32_t, policy_id) = 0;
123 #define	V_policy_id		VNET(policy_id)
124 /*interval to initialize randseed,1(m)*/
125 static VNET_DEFINE(u_int, key_int_random) = 60;
126 #define	V_key_int_random	VNET(key_int_random)
127 /* interval to expire acquiring, 30(s)*/
128 static VNET_DEFINE(u_int, key_larval_lifetime) = 30;
129 #define	V_key_larval_lifetime	VNET(key_larval_lifetime)
130 /* counter for blocking SADB_ACQUIRE.*/
131 static VNET_DEFINE(int, key_blockacq_count) = 10;
132 #define	V_key_blockacq_count	VNET(key_blockacq_count)
133 /* lifetime for blocking SADB_ACQUIRE.*/
134 static VNET_DEFINE(int, key_blockacq_lifetime) = 20;
135 #define	V_key_blockacq_lifetime	VNET(key_blockacq_lifetime)
136 /* preferred old sa rather than new sa.*/
137 static VNET_DEFINE(int, key_preferred_oldsa) = 1;
138 #define	V_key_preferred_oldsa	VNET(key_preferred_oldsa)
139 
140 static VNET_DEFINE(u_int32_t, acq_seq) = 0;
141 #define	V_acq_seq		VNET(acq_seq)
142 
143 								/* SPD */
144 static VNET_DEFINE(LIST_HEAD(_sptree, secpolicy), sptree[IPSEC_DIR_MAX]);
145 #define	V_sptree		VNET(sptree)
146 static struct mtx sptree_lock;
147 #define	SPTREE_LOCK_INIT() \
148 	mtx_init(&sptree_lock, "sptree", \
149 		"fast ipsec security policy database", MTX_DEF)
150 #define	SPTREE_LOCK_DESTROY()	mtx_destroy(&sptree_lock)
151 #define	SPTREE_LOCK()		mtx_lock(&sptree_lock)
152 #define	SPTREE_UNLOCK()	mtx_unlock(&sptree_lock)
153 #define	SPTREE_LOCK_ASSERT()	mtx_assert(&sptree_lock, MA_OWNED)
154 
155 static VNET_DEFINE(LIST_HEAD(_sahtree, secashead), sahtree);	/* SAD */
156 #define	V_sahtree		VNET(sahtree)
157 static struct mtx sahtree_lock;
158 #define	SAHTREE_LOCK_INIT() \
159 	mtx_init(&sahtree_lock, "sahtree", \
160 		"fast ipsec security association database", MTX_DEF)
161 #define	SAHTREE_LOCK_DESTROY()	mtx_destroy(&sahtree_lock)
162 #define	SAHTREE_LOCK()		mtx_lock(&sahtree_lock)
163 #define	SAHTREE_UNLOCK()	mtx_unlock(&sahtree_lock)
164 #define	SAHTREE_LOCK_ASSERT()	mtx_assert(&sahtree_lock, MA_OWNED)
165 
166 							/* registed list */
167 static VNET_DEFINE(LIST_HEAD(_regtree, secreg), regtree[SADB_SATYPE_MAX + 1]);
168 #define	V_regtree		VNET(regtree)
169 static struct mtx regtree_lock;
170 #define	REGTREE_LOCK_INIT() \
171 	mtx_init(&regtree_lock, "regtree", "fast ipsec regtree", MTX_DEF)
172 #define	REGTREE_LOCK_DESTROY()	mtx_destroy(&regtree_lock)
173 #define	REGTREE_LOCK()		mtx_lock(&regtree_lock)
174 #define	REGTREE_UNLOCK()	mtx_unlock(&regtree_lock)
175 #define	REGTREE_LOCK_ASSERT()	mtx_assert(&regtree_lock, MA_OWNED)
176 
177 static VNET_DEFINE(LIST_HEAD(_acqtree, secacq), acqtree); /* acquiring list */
178 #define	V_acqtree		VNET(acqtree)
179 static struct mtx acq_lock;
180 #define	ACQ_LOCK_INIT() \
181 	mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF)
182 #define	ACQ_LOCK_DESTROY()	mtx_destroy(&acq_lock)
183 #define	ACQ_LOCK()		mtx_lock(&acq_lock)
184 #define	ACQ_UNLOCK()		mtx_unlock(&acq_lock)
185 #define	ACQ_LOCK_ASSERT()	mtx_assert(&acq_lock, MA_OWNED)
186 
187 							/* SP acquiring list */
188 static VNET_DEFINE(LIST_HEAD(_spacqtree, secspacq), spacqtree);
189 #define	V_spacqtree		VNET(spacqtree)
190 static struct mtx spacq_lock;
191 #define	SPACQ_LOCK_INIT() \
192 	mtx_init(&spacq_lock, "spacqtree", \
193 		"fast ipsec security policy acquire list", MTX_DEF)
194 #define	SPACQ_LOCK_DESTROY()	mtx_destroy(&spacq_lock)
195 #define	SPACQ_LOCK()		mtx_lock(&spacq_lock)
196 #define	SPACQ_UNLOCK()		mtx_unlock(&spacq_lock)
197 #define	SPACQ_LOCK_ASSERT()	mtx_assert(&spacq_lock, MA_OWNED)
198 
199 /* search order for SAs */
200 static const u_int saorder_state_valid_prefer_old[] = {
201 	SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
202 };
203 static const u_int saorder_state_valid_prefer_new[] = {
204 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
205 };
206 static const u_int saorder_state_alive[] = {
207 	/* except DEAD */
208 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
209 };
210 static const u_int saorder_state_any[] = {
211 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
212 	SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
213 };
214 
215 static const int minsize[] = {
216 	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
217 	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
218 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
219 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
220 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
221 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_SRC */
222 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_DST */
223 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_PROXY */
224 	sizeof(struct sadb_key),	/* SADB_EXT_KEY_AUTH */
225 	sizeof(struct sadb_key),	/* SADB_EXT_KEY_ENCRYPT */
226 	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_SRC */
227 	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_DST */
228 	sizeof(struct sadb_sens),	/* SADB_EXT_SENSITIVITY */
229 	sizeof(struct sadb_prop),	/* SADB_EXT_PROPOSAL */
230 	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_AUTH */
231 	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_ENCRYPT */
232 	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
233 	0,				/* SADB_X_EXT_KMPRIVATE */
234 	sizeof(struct sadb_x_policy),	/* SADB_X_EXT_POLICY */
235 	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
236 	sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */
237 	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */
238 	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */
239 	sizeof(struct sadb_address),	/* SADB_X_EXT_NAT_T_OAI */
240 	sizeof(struct sadb_address),	/* SADB_X_EXT_NAT_T_OAR */
241 	sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */
242 };
243 static const int maxsize[] = {
244 	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
245 	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
246 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
247 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
248 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
249 	0,				/* SADB_EXT_ADDRESS_SRC */
250 	0,				/* SADB_EXT_ADDRESS_DST */
251 	0,				/* SADB_EXT_ADDRESS_PROXY */
252 	0,				/* SADB_EXT_KEY_AUTH */
253 	0,				/* SADB_EXT_KEY_ENCRYPT */
254 	0,				/* SADB_EXT_IDENTITY_SRC */
255 	0,				/* SADB_EXT_IDENTITY_DST */
256 	0,				/* SADB_EXT_SENSITIVITY */
257 	0,				/* SADB_EXT_PROPOSAL */
258 	0,				/* SADB_EXT_SUPPORTED_AUTH */
259 	0,				/* SADB_EXT_SUPPORTED_ENCRYPT */
260 	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
261 	0,				/* SADB_X_EXT_KMPRIVATE */
262 	0,				/* SADB_X_EXT_POLICY */
263 	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
264 	sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */
265 	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */
266 	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */
267 	0,				/* SADB_X_EXT_NAT_T_OAI */
268 	0,				/* SADB_X_EXT_NAT_T_OAR */
269 	sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */
270 };
271 
272 static VNET_DEFINE(int, ipsec_esp_keymin) = 256;
273 #define	V_ipsec_esp_keymin	VNET(ipsec_esp_keymin)
274 static VNET_DEFINE(int, ipsec_esp_auth) = 0;
275 #define	V_ipsec_esp_auth	VNET(ipsec_esp_auth)
276 static VNET_DEFINE(int, ipsec_ah_keymin) = 128;
277 #define	V_ipsec_ah_keymin	VNET(ipsec_ah_keymin)
278 
279 #ifdef SYSCTL_DECL
280 SYSCTL_DECL(_net_key);
281 #endif
282 
283 SYSCTL_VNET_INT(_net_key, KEYCTL_DEBUG_LEVEL,	debug,
284 	CTLFLAG_RW, &VNET_NAME(key_debug_level),	0,	"");
285 
286 /* max count of trial for the decision of spi value */
287 SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt,
288 	CTLFLAG_RW, &VNET_NAME(key_spi_trycnt),	0,	"");
289 
290 /* minimum spi value to allocate automatically. */
291 SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_MIN_VALUE,
292 	spi_minval,	CTLFLAG_RW, &VNET_NAME(key_spi_minval),	0,	"");
293 
294 /* maximun spi value to allocate automatically. */
295 SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_MAX_VALUE,
296 	spi_maxval,	CTLFLAG_RW, &VNET_NAME(key_spi_maxval),	0,	"");
297 
298 /* interval to initialize randseed */
299 SYSCTL_VNET_INT(_net_key, KEYCTL_RANDOM_INT,
300 	int_random,	CTLFLAG_RW, &VNET_NAME(key_int_random),	0,	"");
301 
302 /* lifetime for larval SA */
303 SYSCTL_VNET_INT(_net_key, KEYCTL_LARVAL_LIFETIME,
304 	larval_lifetime, CTLFLAG_RW, &VNET_NAME(key_larval_lifetime),	0, "");
305 
306 /* counter for blocking to send SADB_ACQUIRE to IKEd */
307 SYSCTL_VNET_INT(_net_key, KEYCTL_BLOCKACQ_COUNT,
308 	blockacq_count,	CTLFLAG_RW, &VNET_NAME(key_blockacq_count),	0, "");
309 
310 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
311 SYSCTL_VNET_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME,
312 	blockacq_lifetime, CTLFLAG_RW, &VNET_NAME(key_blockacq_lifetime), 0, "");
313 
314 /* ESP auth */
315 SYSCTL_VNET_INT(_net_key, KEYCTL_ESP_AUTH,	esp_auth,
316 	CTLFLAG_RW, &VNET_NAME(ipsec_esp_auth),	0,	"");
317 
318 /* minimum ESP key length */
319 SYSCTL_VNET_INT(_net_key, KEYCTL_ESP_KEYMIN,
320 	esp_keymin, CTLFLAG_RW, &VNET_NAME(ipsec_esp_keymin),	0,	"");
321 
322 /* minimum AH key length */
323 SYSCTL_VNET_INT(_net_key, KEYCTL_AH_KEYMIN,	ah_keymin,
324 	CTLFLAG_RW, &VNET_NAME(ipsec_ah_keymin),	0,	"");
325 
326 /* perfered old SA rather than new SA */
327 SYSCTL_VNET_INT(_net_key, KEYCTL_PREFERED_OLDSA,
328 	preferred_oldsa, CTLFLAG_RW, &VNET_NAME(key_preferred_oldsa),	0, "");
329 
330 #define __LIST_CHAINED(elm) \
331 	(!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
332 #define LIST_INSERT_TAIL(head, elm, type, field) \
333 do {\
334 	struct type *curelm = LIST_FIRST(head); \
335 	if (curelm == NULL) {\
336 		LIST_INSERT_HEAD(head, elm, field); \
337 	} else { \
338 		while (LIST_NEXT(curelm, field)) \
339 			curelm = LIST_NEXT(curelm, field);\
340 		LIST_INSERT_AFTER(curelm, elm, field);\
341 	}\
342 } while (0)
343 
344 #define KEY_CHKSASTATE(head, sav, name) \
345 do { \
346 	if ((head) != (sav)) {						\
347 		ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \
348 			(name), (head), (sav)));			\
349 		continue;						\
350 	}								\
351 } while (0)
352 
353 #define KEY_CHKSPDIR(head, sp, name) \
354 do { \
355 	if ((head) != (sp)) {						\
356 		ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \
357 			"anyway continue.\n",				\
358 			(name), (head), (sp)));				\
359 	}								\
360 } while (0)
361 
362 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association");
363 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head");
364 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy");
365 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request");
366 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous");
367 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire");
368 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire");
369 
370 /*
371  * set parameters into secpolicyindex buffer.
372  * Must allocate secpolicyindex buffer passed to this function.
373  */
374 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
375 do { \
376 	bzero((idx), sizeof(struct secpolicyindex));                         \
377 	(idx)->dir = (_dir);                                                 \
378 	(idx)->prefs = (ps);                                                 \
379 	(idx)->prefd = (pd);                                                 \
380 	(idx)->ul_proto = (ulp);                                             \
381 	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
382 	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
383 } while (0)
384 
385 /*
386  * set parameters into secasindex buffer.
387  * Must allocate secasindex buffer before calling this function.
388  */
389 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \
390 do { \
391 	bzero((idx), sizeof(struct secasindex));                             \
392 	(idx)->proto = (p);                                                  \
393 	(idx)->mode = (m);                                                   \
394 	(idx)->reqid = (r);                                                  \
395 	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
396 	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
397 } while (0)
398 
399 /* key statistics */
400 struct _keystat {
401 	u_long getspi_count; /* the avarage of count to try to get new SPI */
402 } keystat;
403 
404 struct sadb_msghdr {
405 	struct sadb_msg *msg;
406 	struct sadb_ext *ext[SADB_EXT_MAX + 1];
407 	int extoff[SADB_EXT_MAX + 1];
408 	int extlen[SADB_EXT_MAX + 1];
409 };
410 
411 static struct secasvar *key_allocsa_policy __P((const struct secasindex *));
412 static void key_freesp_so __P((struct secpolicy **));
413 static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int));
414 static void key_delsp __P((struct secpolicy *));
415 static struct secpolicy *key_getsp __P((struct secpolicyindex *));
416 static void _key_delsp(struct secpolicy *sp);
417 static struct secpolicy *key_getspbyid __P((u_int32_t));
418 static u_int32_t key_newreqid __P((void));
419 static struct mbuf *key_gather_mbuf __P((struct mbuf *,
420 	const struct sadb_msghdr *, int, int, ...));
421 static int key_spdadd __P((struct socket *, struct mbuf *,
422 	const struct sadb_msghdr *));
423 static u_int32_t key_getnewspid __P((void));
424 static int key_spddelete __P((struct socket *, struct mbuf *,
425 	const struct sadb_msghdr *));
426 static int key_spddelete2 __P((struct socket *, struct mbuf *,
427 	const struct sadb_msghdr *));
428 static int key_spdget __P((struct socket *, struct mbuf *,
429 	const struct sadb_msghdr *));
430 static int key_spdflush __P((struct socket *, struct mbuf *,
431 	const struct sadb_msghdr *));
432 static int key_spddump __P((struct socket *, struct mbuf *,
433 	const struct sadb_msghdr *));
434 static struct mbuf *key_setdumpsp __P((struct secpolicy *,
435 	u_int8_t, u_int32_t, u_int32_t));
436 static u_int key_getspreqmsglen __P((struct secpolicy *));
437 static int key_spdexpire __P((struct secpolicy *));
438 static struct secashead *key_newsah __P((struct secasindex *));
439 static void key_delsah __P((struct secashead *));
440 static struct secasvar *key_newsav __P((struct mbuf *,
441 	const struct sadb_msghdr *, struct secashead *, int *,
442 	const char*, int));
443 #define	KEY_NEWSAV(m, sadb, sah, e)				\
444 	key_newsav(m, sadb, sah, e, __FILE__, __LINE__)
445 static void key_delsav __P((struct secasvar *));
446 static struct secashead *key_getsah __P((struct secasindex *));
447 static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t));
448 static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t));
449 static int key_setsaval __P((struct secasvar *, struct mbuf *,
450 	const struct sadb_msghdr *));
451 static int key_mature __P((struct secasvar *));
452 static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t,
453 	u_int8_t, u_int32_t, u_int32_t));
454 static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t,
455 	u_int32_t, pid_t, u_int16_t));
456 static struct mbuf *key_setsadbsa __P((struct secasvar *));
457 static struct mbuf *key_setsadbaddr __P((u_int16_t,
458 	const struct sockaddr *, u_int8_t, u_int16_t));
459 #ifdef IPSEC_NAT_T
460 static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t);
461 static struct mbuf *key_setsadbxtype(u_int16_t);
462 #endif
463 static void key_porttosaddr(struct sockaddr *, u_int16_t);
464 #define	KEY_PORTTOSADDR(saddr, port)				\
465 	key_porttosaddr((struct sockaddr *)(saddr), (port))
466 static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t));
467 static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t,
468 	u_int32_t));
469 static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int,
470 				     struct malloc_type *);
471 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src,
472 					    struct malloc_type *type);
473 #ifdef INET6
474 static int key_ismyaddr6 __P((struct sockaddr_in6 *));
475 #endif
476 
477 /* flags for key_cmpsaidx() */
478 #define CMP_HEAD	1	/* protocol, addresses. */
479 #define CMP_MODE_REQID	2	/* additionally HEAD, reqid, mode. */
480 #define CMP_REQID	3	/* additionally HEAD, reaid. */
481 #define CMP_EXACTLY	4	/* all elements. */
482 static int key_cmpsaidx
483 	__P((const struct secasindex *, const struct secasindex *, int));
484 
485 static int key_cmpspidx_exactly
486 	__P((struct secpolicyindex *, struct secpolicyindex *));
487 static int key_cmpspidx_withmask
488 	__P((struct secpolicyindex *, struct secpolicyindex *));
489 static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int));
490 static int key_bbcmp __P((const void *, const void *, u_int));
491 static u_int16_t key_satype2proto __P((u_int8_t));
492 static u_int8_t key_proto2satype __P((u_int16_t));
493 
494 static int key_getspi __P((struct socket *, struct mbuf *,
495 	const struct sadb_msghdr *));
496 static u_int32_t key_do_getnewspi __P((struct sadb_spirange *,
497 					struct secasindex *));
498 static int key_update __P((struct socket *, struct mbuf *,
499 	const struct sadb_msghdr *));
500 #ifdef IPSEC_DOSEQCHECK
501 static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t));
502 #endif
503 static int key_add __P((struct socket *, struct mbuf *,
504 	const struct sadb_msghdr *));
505 static int key_setident __P((struct secashead *, struct mbuf *,
506 	const struct sadb_msghdr *));
507 static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *,
508 	const struct sadb_msghdr *));
509 static int key_delete __P((struct socket *, struct mbuf *,
510 	const struct sadb_msghdr *));
511 static int key_get __P((struct socket *, struct mbuf *,
512 	const struct sadb_msghdr *));
513 
514 static void key_getcomb_setlifetime __P((struct sadb_comb *));
515 static struct mbuf *key_getcomb_esp __P((void));
516 static struct mbuf *key_getcomb_ah __P((void));
517 static struct mbuf *key_getcomb_ipcomp __P((void));
518 static struct mbuf *key_getprop __P((const struct secasindex *));
519 
520 static int key_acquire __P((const struct secasindex *, struct secpolicy *));
521 static struct secacq *key_newacq __P((const struct secasindex *));
522 static struct secacq *key_getacq __P((const struct secasindex *));
523 static struct secacq *key_getacqbyseq __P((u_int32_t));
524 static struct secspacq *key_newspacq __P((struct secpolicyindex *));
525 static struct secspacq *key_getspacq __P((struct secpolicyindex *));
526 static int key_acquire2 __P((struct socket *, struct mbuf *,
527 	const struct sadb_msghdr *));
528 static int key_register __P((struct socket *, struct mbuf *,
529 	const struct sadb_msghdr *));
530 static int key_expire __P((struct secasvar *));
531 static int key_flush __P((struct socket *, struct mbuf *,
532 	const struct sadb_msghdr *));
533 static int key_dump __P((struct socket *, struct mbuf *,
534 	const struct sadb_msghdr *));
535 static int key_promisc __P((struct socket *, struct mbuf *,
536 	const struct sadb_msghdr *));
537 static int key_senderror __P((struct socket *, struct mbuf *, int));
538 static int key_validate_ext __P((const struct sadb_ext *, int));
539 static int key_align __P((struct mbuf *, struct sadb_msghdr *));
540 static struct mbuf *key_setlifetime(struct seclifetime *src,
541 				     u_int16_t exttype);
542 static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype);
543 
544 #if 0
545 static const char *key_getfqdn __P((void));
546 static const char *key_getuserfqdn __P((void));
547 #endif
548 static void key_sa_chgstate __P((struct secasvar *, u_int8_t));
549 static struct mbuf *key_alloc_mbuf __P((int));
550 
551 static __inline void
552 sa_initref(struct secasvar *sav)
553 {
554 
555 	refcount_init(&sav->refcnt, 1);
556 }
557 static __inline void
558 sa_addref(struct secasvar *sav)
559 {
560 
561 	refcount_acquire(&sav->refcnt);
562 	IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow"));
563 }
564 static __inline int
565 sa_delref(struct secasvar *sav)
566 {
567 
568 	IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow"));
569 	return (refcount_release(&sav->refcnt));
570 }
571 
572 #define	SP_ADDREF(p) do {						\
573 	(p)->refcnt++;							\
574 	IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow"));		\
575 } while (0)
576 #define	SP_DELREF(p) do {						\
577 	IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow"));		\
578 	(p)->refcnt--;							\
579 } while (0)
580 
581 
582 /*
583  * Update the refcnt while holding the SPTREE lock.
584  */
585 void
586 key_addref(struct secpolicy *sp)
587 {
588 	SPTREE_LOCK();
589 	SP_ADDREF(sp);
590 	SPTREE_UNLOCK();
591 }
592 
593 /*
594  * Return 0 when there are known to be no SP's for the specified
595  * direction.  Otherwise return 1.  This is used by IPsec code
596  * to optimize performance.
597  */
598 int
599 key_havesp(u_int dir)
600 {
601 
602 	return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
603 		LIST_FIRST(&V_sptree[dir]) != NULL : 1);
604 }
605 
606 /* %%% IPsec policy management */
607 /*
608  * allocating a SP for OUTBOUND or INBOUND packet.
609  * Must call key_freesp() later.
610  * OUT:	NULL:	not found
611  *	others:	found and return the pointer.
612  */
613 struct secpolicy *
614 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag)
615 {
616 	struct secpolicy *sp;
617 
618 	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
619 	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
620 		("invalid direction %u", dir));
621 
622 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
623 		printf("DP %s from %s:%u\n", __func__, where, tag));
624 
625 	/* get a SP entry */
626 	KEYDEBUG(KEYDEBUG_IPSEC_DATA,
627 		printf("*** objects\n");
628 		kdebug_secpolicyindex(spidx));
629 
630 	SPTREE_LOCK();
631 	LIST_FOREACH(sp, &V_sptree[dir], chain) {
632 		KEYDEBUG(KEYDEBUG_IPSEC_DATA,
633 			printf("*** in SPD\n");
634 			kdebug_secpolicyindex(&sp->spidx));
635 
636 		if (sp->state == IPSEC_SPSTATE_DEAD)
637 			continue;
638 		if (key_cmpspidx_withmask(&sp->spidx, spidx))
639 			goto found;
640 	}
641 	sp = NULL;
642 found:
643 	if (sp) {
644 		/* sanity check */
645 		KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
646 
647 		/* found a SPD entry */
648 		sp->lastused = time_second;
649 		SP_ADDREF(sp);
650 	}
651 	SPTREE_UNLOCK();
652 
653 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
654 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
655 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
656 	return sp;
657 }
658 
659 /*
660  * allocating a SP for OUTBOUND or INBOUND packet.
661  * Must call key_freesp() later.
662  * OUT:	NULL:	not found
663  *	others:	found and return the pointer.
664  */
665 struct secpolicy *
666 key_allocsp2(u_int32_t spi,
667 	     union sockaddr_union *dst,
668 	     u_int8_t proto,
669 	     u_int dir,
670 	     const char* where, int tag)
671 {
672 	struct secpolicy *sp;
673 
674 	IPSEC_ASSERT(dst != NULL, ("null dst"));
675 	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
676 		("invalid direction %u", dir));
677 
678 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
679 		printf("DP %s from %s:%u\n", __func__, where, tag));
680 
681 	/* get a SP entry */
682 	KEYDEBUG(KEYDEBUG_IPSEC_DATA,
683 		printf("*** objects\n");
684 		printf("spi %u proto %u dir %u\n", spi, proto, dir);
685 		kdebug_sockaddr(&dst->sa));
686 
687 	SPTREE_LOCK();
688 	LIST_FOREACH(sp, &V_sptree[dir], chain) {
689 		KEYDEBUG(KEYDEBUG_IPSEC_DATA,
690 			printf("*** in SPD\n");
691 			kdebug_secpolicyindex(&sp->spidx));
692 
693 		if (sp->state == IPSEC_SPSTATE_DEAD)
694 			continue;
695 		/* compare simple values, then dst address */
696 		if (sp->spidx.ul_proto != proto)
697 			continue;
698 		/* NB: spi's must exist and match */
699 		if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
700 			continue;
701 		if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0)
702 			goto found;
703 	}
704 	sp = NULL;
705 found:
706 	if (sp) {
707 		/* sanity check */
708 		KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
709 
710 		/* found a SPD entry */
711 		sp->lastused = time_second;
712 		SP_ADDREF(sp);
713 	}
714 	SPTREE_UNLOCK();
715 
716 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
717 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
718 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
719 	return sp;
720 }
721 
722 #if 0
723 /*
724  * return a policy that matches this particular inbound packet.
725  * XXX slow
726  */
727 struct secpolicy *
728 key_gettunnel(const struct sockaddr *osrc,
729 	      const struct sockaddr *odst,
730 	      const struct sockaddr *isrc,
731 	      const struct sockaddr *idst,
732 	      const char* where, int tag)
733 {
734 	struct secpolicy *sp;
735 	const int dir = IPSEC_DIR_INBOUND;
736 	struct ipsecrequest *r1, *r2, *p;
737 	struct secpolicyindex spidx;
738 
739 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
740 		printf("DP %s from %s:%u\n", __func__, where, tag));
741 
742 	if (isrc->sa_family != idst->sa_family) {
743 		ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.",
744 			__func__, isrc->sa_family, idst->sa_family));
745 		sp = NULL;
746 		goto done;
747 	}
748 
749 	SPTREE_LOCK();
750 	LIST_FOREACH(sp, &V_sptree[dir], chain) {
751 		if (sp->state == IPSEC_SPSTATE_DEAD)
752 			continue;
753 
754 		r1 = r2 = NULL;
755 		for (p = sp->req; p; p = p->next) {
756 			if (p->saidx.mode != IPSEC_MODE_TUNNEL)
757 				continue;
758 
759 			r1 = r2;
760 			r2 = p;
761 
762 			if (!r1) {
763 				/* here we look at address matches only */
764 				spidx = sp->spidx;
765 				if (isrc->sa_len > sizeof(spidx.src) ||
766 				    idst->sa_len > sizeof(spidx.dst))
767 					continue;
768 				bcopy(isrc, &spidx.src, isrc->sa_len);
769 				bcopy(idst, &spidx.dst, idst->sa_len);
770 				if (!key_cmpspidx_withmask(&sp->spidx, &spidx))
771 					continue;
772 			} else {
773 				if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) ||
774 				    key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0))
775 					continue;
776 			}
777 
778 			if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) ||
779 			    key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0))
780 				continue;
781 
782 			goto found;
783 		}
784 	}
785 	sp = NULL;
786 found:
787 	if (sp) {
788 		sp->lastused = time_second;
789 		SP_ADDREF(sp);
790 	}
791 	SPTREE_UNLOCK();
792 done:
793 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
794 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
795 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
796 	return sp;
797 }
798 #endif
799 
800 /*
801  * allocating an SA entry for an *OUTBOUND* packet.
802  * checking each request entries in SP, and acquire an SA if need.
803  * OUT:	0: there are valid requests.
804  *	ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
805  */
806 int
807 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
808 {
809 	u_int level;
810 	int error;
811 
812 	IPSEC_ASSERT(isr != NULL, ("null isr"));
813 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
814 	IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT ||
815 		saidx->mode == IPSEC_MODE_TUNNEL,
816 		("unexpected policy %u", saidx->mode));
817 
818 	/*
819 	 * XXX guard against protocol callbacks from the crypto
820 	 * thread as they reference ipsecrequest.sav which we
821 	 * temporarily null out below.  Need to rethink how we
822 	 * handle bundled SA's in the callback thread.
823 	 */
824 	IPSECREQUEST_LOCK_ASSERT(isr);
825 
826 	/* get current level */
827 	level = ipsec_get_reqlevel(isr);
828 #if 0
829 	/*
830 	 * We do allocate new SA only if the state of SA in the holder is
831 	 * SADB_SASTATE_DEAD.  The SA for outbound must be the oldest.
832 	 */
833 	if (isr->sav != NULL) {
834 		if (isr->sav->sah == NULL)
835 			panic("%s: sah is null.\n", __func__);
836 		if (isr->sav == (struct secasvar *)LIST_FIRST(
837 			    &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) {
838 			KEY_FREESAV(&isr->sav);
839 			isr->sav = NULL;
840 		}
841 	}
842 #else
843 	/*
844 	 * we free any SA stashed in the IPsec request because a different
845 	 * SA may be involved each time this request is checked, either
846 	 * because new SAs are being configured, or this request is
847 	 * associated with an unconnected datagram socket, or this request
848 	 * is associated with a system default policy.
849 	 *
850 	 * The operation may have negative impact to performance.  We may
851 	 * want to check cached SA carefully, rather than picking new SA
852 	 * every time.
853 	 */
854 	if (isr->sav != NULL) {
855 		KEY_FREESAV(&isr->sav);
856 		isr->sav = NULL;
857 	}
858 #endif
859 
860 	/*
861 	 * new SA allocation if no SA found.
862 	 * key_allocsa_policy should allocate the oldest SA available.
863 	 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
864 	 */
865 	if (isr->sav == NULL)
866 		isr->sav = key_allocsa_policy(saidx);
867 
868 	/* When there is SA. */
869 	if (isr->sav != NULL) {
870 		if (isr->sav->state != SADB_SASTATE_MATURE &&
871 		    isr->sav->state != SADB_SASTATE_DYING)
872 			return EINVAL;
873 		return 0;
874 	}
875 
876 	/* there is no SA */
877 	error = key_acquire(saidx, isr->sp);
878 	if (error != 0) {
879 		/* XXX What should I do ? */
880 		ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
881 			__func__, error));
882 		return error;
883 	}
884 
885 	if (level != IPSEC_LEVEL_REQUIRE) {
886 		/* XXX sigh, the interface to this routine is botched */
887 		IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA"));
888 		return 0;
889 	} else {
890 		return ENOENT;
891 	}
892 }
893 
894 /*
895  * allocating a SA for policy entry from SAD.
896  * NOTE: searching SAD of aliving state.
897  * OUT:	NULL:	not found.
898  *	others:	found and return the pointer.
899  */
900 static struct secasvar *
901 key_allocsa_policy(const struct secasindex *saidx)
902 {
903 #define	N(a)	_ARRAYLEN(a)
904 	struct secashead *sah;
905 	struct secasvar *sav;
906 	u_int stateidx, arraysize;
907 	const u_int *state_valid;
908 
909 	state_valid = NULL;	/* silence gcc */
910 	arraysize = 0;		/* silence gcc */
911 
912 	SAHTREE_LOCK();
913 	LIST_FOREACH(sah, &V_sahtree, chain) {
914 		if (sah->state == SADB_SASTATE_DEAD)
915 			continue;
916 		if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) {
917 			if (V_key_preferred_oldsa) {
918 				state_valid = saorder_state_valid_prefer_old;
919 				arraysize = N(saorder_state_valid_prefer_old);
920 			} else {
921 				state_valid = saorder_state_valid_prefer_new;
922 				arraysize = N(saorder_state_valid_prefer_new);
923 			}
924 			break;
925 		}
926 	}
927 	SAHTREE_UNLOCK();
928 	if (sah == NULL)
929 		return NULL;
930 
931 	/* search valid state */
932 	for (stateidx = 0; stateidx < arraysize; stateidx++) {
933 		sav = key_do_allocsa_policy(sah, state_valid[stateidx]);
934 		if (sav != NULL)
935 			return sav;
936 	}
937 
938 	return NULL;
939 #undef N
940 }
941 
942 /*
943  * searching SAD with direction, protocol, mode and state.
944  * called by key_allocsa_policy().
945  * OUT:
946  *	NULL	: not found
947  *	others	: found, pointer to a SA.
948  */
949 static struct secasvar *
950 key_do_allocsa_policy(struct secashead *sah, u_int state)
951 {
952 	struct secasvar *sav, *nextsav, *candidate, *d;
953 
954 	/* initilize */
955 	candidate = NULL;
956 
957 	SAHTREE_LOCK();
958 	for (sav = LIST_FIRST(&sah->savtree[state]);
959 	     sav != NULL;
960 	     sav = nextsav) {
961 
962 		nextsav = LIST_NEXT(sav, chain);
963 
964 		/* sanity check */
965 		KEY_CHKSASTATE(sav->state, state, __func__);
966 
967 		/* initialize */
968 		if (candidate == NULL) {
969 			candidate = sav;
970 			continue;
971 		}
972 
973 		/* Which SA is the better ? */
974 
975 		IPSEC_ASSERT(candidate->lft_c != NULL,
976 			("null candidate lifetime"));
977 		IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime"));
978 
979 		/* What the best method is to compare ? */
980 		if (V_key_preferred_oldsa) {
981 			if (candidate->lft_c->addtime >
982 					sav->lft_c->addtime) {
983 				candidate = sav;
984 			}
985 			continue;
986 			/*NOTREACHED*/
987 		}
988 
989 		/* preferred new sa rather than old sa */
990 		if (candidate->lft_c->addtime <
991 				sav->lft_c->addtime) {
992 			d = candidate;
993 			candidate = sav;
994 		} else
995 			d = sav;
996 
997 		/*
998 		 * prepared to delete the SA when there is more
999 		 * suitable candidate and the lifetime of the SA is not
1000 		 * permanent.
1001 		 */
1002 		if (d->lft_h->addtime != 0) {
1003 			struct mbuf *m, *result;
1004 			u_int8_t satype;
1005 
1006 			key_sa_chgstate(d, SADB_SASTATE_DEAD);
1007 
1008 			IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count"));
1009 
1010 			satype = key_proto2satype(d->sah->saidx.proto);
1011 			if (satype == 0)
1012 				goto msgfail;
1013 
1014 			m = key_setsadbmsg(SADB_DELETE, 0,
1015 			    satype, 0, 0, d->refcnt - 1);
1016 			if (!m)
1017 				goto msgfail;
1018 			result = m;
1019 
1020 			/* set sadb_address for saidx's. */
1021 			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
1022 				&d->sah->saidx.src.sa,
1023 				d->sah->saidx.src.sa.sa_len << 3,
1024 				IPSEC_ULPROTO_ANY);
1025 			if (!m)
1026 				goto msgfail;
1027 			m_cat(result, m);
1028 
1029 			/* set sadb_address for saidx's. */
1030 			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
1031 				&d->sah->saidx.dst.sa,
1032 				d->sah->saidx.dst.sa.sa_len << 3,
1033 				IPSEC_ULPROTO_ANY);
1034 			if (!m)
1035 				goto msgfail;
1036 			m_cat(result, m);
1037 
1038 			/* create SA extension */
1039 			m = key_setsadbsa(d);
1040 			if (!m)
1041 				goto msgfail;
1042 			m_cat(result, m);
1043 
1044 			if (result->m_len < sizeof(struct sadb_msg)) {
1045 				result = m_pullup(result,
1046 						sizeof(struct sadb_msg));
1047 				if (result == NULL)
1048 					goto msgfail;
1049 			}
1050 
1051 			result->m_pkthdr.len = 0;
1052 			for (m = result; m; m = m->m_next)
1053 				result->m_pkthdr.len += m->m_len;
1054 			mtod(result, struct sadb_msg *)->sadb_msg_len =
1055 				PFKEY_UNIT64(result->m_pkthdr.len);
1056 
1057 			if (key_sendup_mbuf(NULL, result,
1058 					KEY_SENDUP_REGISTERED))
1059 				goto msgfail;
1060 		 msgfail:
1061 			KEY_FREESAV(&d);
1062 		}
1063 	}
1064 	if (candidate) {
1065 		sa_addref(candidate);
1066 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1067 			printf("DP %s cause refcnt++:%d SA:%p\n",
1068 				__func__, candidate->refcnt, candidate));
1069 	}
1070 	SAHTREE_UNLOCK();
1071 
1072 	return candidate;
1073 }
1074 
1075 /*
1076  * allocating a usable SA entry for a *INBOUND* packet.
1077  * Must call key_freesav() later.
1078  * OUT: positive:	pointer to a usable sav (i.e. MATURE or DYING state).
1079  *	NULL:		not found, or error occured.
1080  *
1081  * In the comparison, no source address is used--for RFC2401 conformance.
1082  * To quote, from section 4.1:
1083  *	A security association is uniquely identified by a triple consisting
1084  *	of a Security Parameter Index (SPI), an IP Destination Address, and a
1085  *	security protocol (AH or ESP) identifier.
1086  * Note that, however, we do need to keep source address in IPsec SA.
1087  * IKE specification and PF_KEY specification do assume that we
1088  * keep source address in IPsec SA.  We see a tricky situation here.
1089  */
1090 struct secasvar *
1091 key_allocsa(
1092 	union sockaddr_union *dst,
1093 	u_int proto,
1094 	u_int32_t spi,
1095 	const char* where, int tag)
1096 {
1097 	struct secashead *sah;
1098 	struct secasvar *sav;
1099 	u_int stateidx, arraysize, state;
1100 	const u_int *saorder_state_valid;
1101 	int chkport;
1102 
1103 	IPSEC_ASSERT(dst != NULL, ("null dst address"));
1104 
1105 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1106 		printf("DP %s from %s:%u\n", __func__, where, tag));
1107 
1108 #ifdef IPSEC_NAT_T
1109         chkport = (dst->sa.sa_family == AF_INET &&
1110 	    dst->sa.sa_len == sizeof(struct sockaddr_in) &&
1111 	    dst->sin.sin_port != 0);
1112 #else
1113 	chkport = 0;
1114 #endif
1115 
1116 	/*
1117 	 * searching SAD.
1118 	 * XXX: to be checked internal IP header somewhere.  Also when
1119 	 * IPsec tunnel packet is received.  But ESP tunnel mode is
1120 	 * encrypted so we can't check internal IP header.
1121 	 */
1122 	SAHTREE_LOCK();
1123 	if (V_key_preferred_oldsa) {
1124 		saorder_state_valid = saorder_state_valid_prefer_old;
1125 		arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1126 	} else {
1127 		saorder_state_valid = saorder_state_valid_prefer_new;
1128 		arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1129 	}
1130 	LIST_FOREACH(sah, &V_sahtree, chain) {
1131 		/* search valid state */
1132 		for (stateidx = 0; stateidx < arraysize; stateidx++) {
1133 			state = saorder_state_valid[stateidx];
1134 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
1135 				/* sanity check */
1136 				KEY_CHKSASTATE(sav->state, state, __func__);
1137 				/* do not return entries w/ unusable state */
1138 				if (sav->state != SADB_SASTATE_MATURE &&
1139 				    sav->state != SADB_SASTATE_DYING)
1140 					continue;
1141 				if (proto != sav->sah->saidx.proto)
1142 					continue;
1143 				if (spi != sav->spi)
1144 					continue;
1145 #if 0	/* don't check src */
1146 				/* check src address */
1147 				if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, chkport) != 0)
1148 					continue;
1149 #endif
1150 				/* check dst address */
1151 				if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, chkport) != 0)
1152 					continue;
1153 				sa_addref(sav);
1154 				goto done;
1155 			}
1156 		}
1157 	}
1158 	sav = NULL;
1159 done:
1160 	SAHTREE_UNLOCK();
1161 
1162 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1163 		printf("DP %s return SA:%p; refcnt %u\n", __func__,
1164 			sav, sav ? sav->refcnt : 0));
1165 	return sav;
1166 }
1167 
1168 /*
1169  * Must be called after calling key_allocsp().
1170  * For both the packet without socket and key_freeso().
1171  */
1172 void
1173 _key_freesp(struct secpolicy **spp, const char* where, int tag)
1174 {
1175 	struct secpolicy *sp = *spp;
1176 
1177 	IPSEC_ASSERT(sp != NULL, ("null sp"));
1178 
1179 	SPTREE_LOCK();
1180 	SP_DELREF(sp);
1181 
1182 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1183 		printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1184 			__func__, sp, sp->id, where, tag, sp->refcnt));
1185 
1186 	if (sp->refcnt == 0) {
1187 		*spp = NULL;
1188 		key_delsp(sp);
1189 	}
1190 	SPTREE_UNLOCK();
1191 }
1192 
1193 /*
1194  * Must be called after calling key_allocsp().
1195  * For the packet with socket.
1196  */
1197 void
1198 key_freeso(struct socket *so)
1199 {
1200 	IPSEC_ASSERT(so != NULL, ("null so"));
1201 
1202 	switch (so->so_proto->pr_domain->dom_family) {
1203 #if defined(INET) || defined(INET6)
1204 #ifdef INET
1205 	case PF_INET:
1206 #endif
1207 #ifdef INET6
1208 	case PF_INET6:
1209 #endif
1210 	    {
1211 		struct inpcb *pcb = sotoinpcb(so);
1212 
1213 		/* Does it have a PCB ? */
1214 		if (pcb == NULL)
1215 			return;
1216 		key_freesp_so(&pcb->inp_sp->sp_in);
1217 		key_freesp_so(&pcb->inp_sp->sp_out);
1218 	    }
1219 		break;
1220 #endif /* INET || INET6 */
1221 	default:
1222 		ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n",
1223 		    __func__, so->so_proto->pr_domain->dom_family));
1224 		return;
1225 	}
1226 }
1227 
1228 static void
1229 key_freesp_so(struct secpolicy **sp)
1230 {
1231 	IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp"));
1232 
1233 	if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1234 	    (*sp)->policy == IPSEC_POLICY_BYPASS)
1235 		return;
1236 
1237 	IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC,
1238 		("invalid policy %u", (*sp)->policy));
1239 	KEY_FREESP(sp);
1240 }
1241 
1242 /*
1243  * Must be called after calling key_allocsa().
1244  * This function is called by key_freesp() to free some SA allocated
1245  * for a policy.
1246  */
1247 void
1248 key_freesav(struct secasvar **psav, const char* where, int tag)
1249 {
1250 	struct secasvar *sav = *psav;
1251 
1252 	IPSEC_ASSERT(sav != NULL, ("null sav"));
1253 
1254 	if (sa_delref(sav)) {
1255 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1256 			printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1257 				__func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1258 		*psav = NULL;
1259 		key_delsav(sav);
1260 	} else {
1261 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1262 			printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1263 				__func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1264 	}
1265 }
1266 
1267 /* %%% SPD management */
1268 /*
1269  * free security policy entry.
1270  */
1271 static void
1272 key_delsp(struct secpolicy *sp)
1273 {
1274 	struct ipsecrequest *isr, *nextisr;
1275 
1276 	IPSEC_ASSERT(sp != NULL, ("null sp"));
1277 	SPTREE_LOCK_ASSERT();
1278 
1279 	sp->state = IPSEC_SPSTATE_DEAD;
1280 
1281 	IPSEC_ASSERT(sp->refcnt == 0,
1282 		("SP with references deleted (refcnt %u)", sp->refcnt));
1283 
1284 	/* remove from SP index */
1285 	if (__LIST_CHAINED(sp))
1286 		LIST_REMOVE(sp, chain);
1287 
1288 	for (isr = sp->req; isr != NULL; isr = nextisr) {
1289 		if (isr->sav != NULL) {
1290 			KEY_FREESAV(&isr->sav);
1291 			isr->sav = NULL;
1292 		}
1293 
1294 		nextisr = isr->next;
1295 		ipsec_delisr(isr);
1296 	}
1297 	_key_delsp(sp);
1298 }
1299 
1300 /*
1301  * search SPD
1302  * OUT:	NULL	: not found
1303  *	others	: found, pointer to a SP.
1304  */
1305 static struct secpolicy *
1306 key_getsp(struct secpolicyindex *spidx)
1307 {
1308 	struct secpolicy *sp;
1309 
1310 	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
1311 
1312 	SPTREE_LOCK();
1313 	LIST_FOREACH(sp, &V_sptree[spidx->dir], chain) {
1314 		if (sp->state == IPSEC_SPSTATE_DEAD)
1315 			continue;
1316 		if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1317 			SP_ADDREF(sp);
1318 			break;
1319 		}
1320 	}
1321 	SPTREE_UNLOCK();
1322 
1323 	return sp;
1324 }
1325 
1326 /*
1327  * get SP by index.
1328  * OUT:	NULL	: not found
1329  *	others	: found, pointer to a SP.
1330  */
1331 static struct secpolicy *
1332 key_getspbyid(u_int32_t id)
1333 {
1334 	struct secpolicy *sp;
1335 
1336 	SPTREE_LOCK();
1337 	LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_INBOUND], chain) {
1338 		if (sp->state == IPSEC_SPSTATE_DEAD)
1339 			continue;
1340 		if (sp->id == id) {
1341 			SP_ADDREF(sp);
1342 			goto done;
1343 		}
1344 	}
1345 
1346 	LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_OUTBOUND], chain) {
1347 		if (sp->state == IPSEC_SPSTATE_DEAD)
1348 			continue;
1349 		if (sp->id == id) {
1350 			SP_ADDREF(sp);
1351 			goto done;
1352 		}
1353 	}
1354 done:
1355 	SPTREE_UNLOCK();
1356 
1357 	return sp;
1358 }
1359 
1360 struct secpolicy *
1361 key_newsp(const char* where, int tag)
1362 {
1363 	struct secpolicy *newsp = NULL;
1364 
1365 	newsp = (struct secpolicy *)
1366 		malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO);
1367 	if (newsp) {
1368 		SECPOLICY_LOCK_INIT(newsp);
1369 		newsp->refcnt = 1;
1370 		newsp->req = NULL;
1371 	}
1372 
1373 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1374 		printf("DP %s from %s:%u return SP:%p\n", __func__,
1375 			where, tag, newsp));
1376 	return newsp;
1377 }
1378 
1379 static void
1380 _key_delsp(struct secpolicy *sp)
1381 {
1382 	SECPOLICY_LOCK_DESTROY(sp);
1383 	free(sp, M_IPSEC_SP);
1384 }
1385 
1386 /*
1387  * create secpolicy structure from sadb_x_policy structure.
1388  * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1389  * so must be set properly later.
1390  */
1391 struct secpolicy *
1392 key_msg2sp(xpl0, len, error)
1393 	struct sadb_x_policy *xpl0;
1394 	size_t len;
1395 	int *error;
1396 {
1397 	struct secpolicy *newsp;
1398 
1399 	IPSEC_ASSERT(xpl0 != NULL, ("null xpl0"));
1400 	IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len));
1401 
1402 	if (len != PFKEY_EXTLEN(xpl0)) {
1403 		ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__));
1404 		*error = EINVAL;
1405 		return NULL;
1406 	}
1407 
1408 	if ((newsp = KEY_NEWSP()) == NULL) {
1409 		*error = ENOBUFS;
1410 		return NULL;
1411 	}
1412 
1413 	newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1414 	newsp->policy = xpl0->sadb_x_policy_type;
1415 
1416 	/* check policy */
1417 	switch (xpl0->sadb_x_policy_type) {
1418 	case IPSEC_POLICY_DISCARD:
1419 	case IPSEC_POLICY_NONE:
1420 	case IPSEC_POLICY_ENTRUST:
1421 	case IPSEC_POLICY_BYPASS:
1422 		newsp->req = NULL;
1423 		break;
1424 
1425 	case IPSEC_POLICY_IPSEC:
1426 	    {
1427 		int tlen;
1428 		struct sadb_x_ipsecrequest *xisr;
1429 		struct ipsecrequest **p_isr = &newsp->req;
1430 
1431 		/* validity check */
1432 		if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1433 			ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n",
1434 				__func__));
1435 			KEY_FREESP(&newsp);
1436 			*error = EINVAL;
1437 			return NULL;
1438 		}
1439 
1440 		tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1441 		xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1);
1442 
1443 		while (tlen > 0) {
1444 			/* length check */
1445 			if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1446 				ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest "
1447 					"length.\n", __func__));
1448 				KEY_FREESP(&newsp);
1449 				*error = EINVAL;
1450 				return NULL;
1451 			}
1452 
1453 			/* allocate request buffer */
1454 			/* NB: data structure is zero'd */
1455 			*p_isr = ipsec_newisr();
1456 			if ((*p_isr) == NULL) {
1457 				ipseclog((LOG_DEBUG,
1458 				    "%s: No more memory.\n", __func__));
1459 				KEY_FREESP(&newsp);
1460 				*error = ENOBUFS;
1461 				return NULL;
1462 			}
1463 
1464 			/* set values */
1465 			switch (xisr->sadb_x_ipsecrequest_proto) {
1466 			case IPPROTO_ESP:
1467 			case IPPROTO_AH:
1468 			case IPPROTO_IPCOMP:
1469 				break;
1470 			default:
1471 				ipseclog((LOG_DEBUG,
1472 				    "%s: invalid proto type=%u\n", __func__,
1473 				    xisr->sadb_x_ipsecrequest_proto));
1474 				KEY_FREESP(&newsp);
1475 				*error = EPROTONOSUPPORT;
1476 				return NULL;
1477 			}
1478 			(*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1479 
1480 			switch (xisr->sadb_x_ipsecrequest_mode) {
1481 			case IPSEC_MODE_TRANSPORT:
1482 			case IPSEC_MODE_TUNNEL:
1483 				break;
1484 			case IPSEC_MODE_ANY:
1485 			default:
1486 				ipseclog((LOG_DEBUG,
1487 				    "%s: invalid mode=%u\n", __func__,
1488 				    xisr->sadb_x_ipsecrequest_mode));
1489 				KEY_FREESP(&newsp);
1490 				*error = EINVAL;
1491 				return NULL;
1492 			}
1493 			(*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1494 
1495 			switch (xisr->sadb_x_ipsecrequest_level) {
1496 			case IPSEC_LEVEL_DEFAULT:
1497 			case IPSEC_LEVEL_USE:
1498 			case IPSEC_LEVEL_REQUIRE:
1499 				break;
1500 			case IPSEC_LEVEL_UNIQUE:
1501 				/* validity check */
1502 				/*
1503 				 * If range violation of reqid, kernel will
1504 				 * update it, don't refuse it.
1505 				 */
1506 				if (xisr->sadb_x_ipsecrequest_reqid
1507 						> IPSEC_MANUAL_REQID_MAX) {
1508 					ipseclog((LOG_DEBUG,
1509 					    "%s: reqid=%d range "
1510 					    "violation, updated by kernel.\n",
1511 					    __func__,
1512 					    xisr->sadb_x_ipsecrequest_reqid));
1513 					xisr->sadb_x_ipsecrequest_reqid = 0;
1514 				}
1515 
1516 				/* allocate new reqid id if reqid is zero. */
1517 				if (xisr->sadb_x_ipsecrequest_reqid == 0) {
1518 					u_int32_t reqid;
1519 					if ((reqid = key_newreqid()) == 0) {
1520 						KEY_FREESP(&newsp);
1521 						*error = ENOBUFS;
1522 						return NULL;
1523 					}
1524 					(*p_isr)->saidx.reqid = reqid;
1525 					xisr->sadb_x_ipsecrequest_reqid = reqid;
1526 				} else {
1527 				/* set it for manual keying. */
1528 					(*p_isr)->saidx.reqid =
1529 						xisr->sadb_x_ipsecrequest_reqid;
1530 				}
1531 				break;
1532 
1533 			default:
1534 				ipseclog((LOG_DEBUG, "%s: invalid level=%u\n",
1535 					__func__,
1536 					xisr->sadb_x_ipsecrequest_level));
1537 				KEY_FREESP(&newsp);
1538 				*error = EINVAL;
1539 				return NULL;
1540 			}
1541 			(*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1542 
1543 			/* set IP addresses if there */
1544 			if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1545 				struct sockaddr *paddr;
1546 
1547 				paddr = (struct sockaddr *)(xisr + 1);
1548 
1549 				/* validity check */
1550 				if (paddr->sa_len
1551 				    > sizeof((*p_isr)->saidx.src)) {
1552 					ipseclog((LOG_DEBUG, "%s: invalid "
1553 						"request address length.\n",
1554 						__func__));
1555 					KEY_FREESP(&newsp);
1556 					*error = EINVAL;
1557 					return NULL;
1558 				}
1559 				bcopy(paddr, &(*p_isr)->saidx.src,
1560 					paddr->sa_len);
1561 
1562 				paddr = (struct sockaddr *)((caddr_t)paddr
1563 							+ paddr->sa_len);
1564 
1565 				/* validity check */
1566 				if (paddr->sa_len
1567 				    > sizeof((*p_isr)->saidx.dst)) {
1568 					ipseclog((LOG_DEBUG, "%s: invalid "
1569 						"request address length.\n",
1570 						__func__));
1571 					KEY_FREESP(&newsp);
1572 					*error = EINVAL;
1573 					return NULL;
1574 				}
1575 				bcopy(paddr, &(*p_isr)->saidx.dst,
1576 					paddr->sa_len);
1577 			}
1578 
1579 			(*p_isr)->sp = newsp;
1580 
1581 			/* initialization for the next. */
1582 			p_isr = &(*p_isr)->next;
1583 			tlen -= xisr->sadb_x_ipsecrequest_len;
1584 
1585 			/* validity check */
1586 			if (tlen < 0) {
1587 				ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n",
1588 					__func__));
1589 				KEY_FREESP(&newsp);
1590 				*error = EINVAL;
1591 				return NULL;
1592 			}
1593 
1594 			xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr
1595 			                 + xisr->sadb_x_ipsecrequest_len);
1596 		}
1597 	    }
1598 		break;
1599 	default:
1600 		ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__));
1601 		KEY_FREESP(&newsp);
1602 		*error = EINVAL;
1603 		return NULL;
1604 	}
1605 
1606 	*error = 0;
1607 	return newsp;
1608 }
1609 
1610 static u_int32_t
1611 key_newreqid()
1612 {
1613 	static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1614 
1615 	auto_reqid = (auto_reqid == ~0
1616 			? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1617 
1618 	/* XXX should be unique check */
1619 
1620 	return auto_reqid;
1621 }
1622 
1623 /*
1624  * copy secpolicy struct to sadb_x_policy structure indicated.
1625  */
1626 struct mbuf *
1627 key_sp2msg(sp)
1628 	struct secpolicy *sp;
1629 {
1630 	struct sadb_x_policy *xpl;
1631 	int tlen;
1632 	caddr_t p;
1633 	struct mbuf *m;
1634 
1635 	IPSEC_ASSERT(sp != NULL, ("null policy"));
1636 
1637 	tlen = key_getspreqmsglen(sp);
1638 
1639 	m = key_alloc_mbuf(tlen);
1640 	if (!m || m->m_next) {	/*XXX*/
1641 		if (m)
1642 			m_freem(m);
1643 		return NULL;
1644 	}
1645 
1646 	m->m_len = tlen;
1647 	m->m_next = NULL;
1648 	xpl = mtod(m, struct sadb_x_policy *);
1649 	bzero(xpl, tlen);
1650 
1651 	xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1652 	xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1653 	xpl->sadb_x_policy_type = sp->policy;
1654 	xpl->sadb_x_policy_dir = sp->spidx.dir;
1655 	xpl->sadb_x_policy_id = sp->id;
1656 	p = (caddr_t)xpl + sizeof(*xpl);
1657 
1658 	/* if is the policy for ipsec ? */
1659 	if (sp->policy == IPSEC_POLICY_IPSEC) {
1660 		struct sadb_x_ipsecrequest *xisr;
1661 		struct ipsecrequest *isr;
1662 
1663 		for (isr = sp->req; isr != NULL; isr = isr->next) {
1664 
1665 			xisr = (struct sadb_x_ipsecrequest *)p;
1666 
1667 			xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1668 			xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1669 			xisr->sadb_x_ipsecrequest_level = isr->level;
1670 			xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1671 
1672 			p += sizeof(*xisr);
1673 			bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len);
1674 			p += isr->saidx.src.sa.sa_len;
1675 			bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len);
1676 			p += isr->saidx.src.sa.sa_len;
1677 
1678 			xisr->sadb_x_ipsecrequest_len =
1679 				PFKEY_ALIGN8(sizeof(*xisr)
1680 					+ isr->saidx.src.sa.sa_len
1681 					+ isr->saidx.dst.sa.sa_len);
1682 		}
1683 	}
1684 
1685 	return m;
1686 }
1687 
1688 /* m will not be freed nor modified */
1689 static struct mbuf *
1690 #ifdef __STDC__
1691 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1692 	int ndeep, int nitem, ...)
1693 #else
1694 key_gather_mbuf(m, mhp, ndeep, nitem, va_alist)
1695 	struct mbuf *m;
1696 	const struct sadb_msghdr *mhp;
1697 	int ndeep;
1698 	int nitem;
1699 	va_dcl
1700 #endif
1701 {
1702 	va_list ap;
1703 	int idx;
1704 	int i;
1705 	struct mbuf *result = NULL, *n;
1706 	int len;
1707 
1708 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1709 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1710 
1711 	va_start(ap, nitem);
1712 	for (i = 0; i < nitem; i++) {
1713 		idx = va_arg(ap, int);
1714 		if (idx < 0 || idx > SADB_EXT_MAX)
1715 			goto fail;
1716 		/* don't attempt to pull empty extension */
1717 		if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1718 			continue;
1719 		if (idx != SADB_EXT_RESERVED  &&
1720 		    (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1721 			continue;
1722 
1723 		if (idx == SADB_EXT_RESERVED) {
1724 			len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1725 
1726 			IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len));
1727 
1728 			MGETHDR(n, M_DONTWAIT, MT_DATA);
1729 			if (!n)
1730 				goto fail;
1731 			n->m_len = len;
1732 			n->m_next = NULL;
1733 			m_copydata(m, 0, sizeof(struct sadb_msg),
1734 			    mtod(n, caddr_t));
1735 		} else if (i < ndeep) {
1736 			len = mhp->extlen[idx];
1737 			n = key_alloc_mbuf(len);
1738 			if (!n || n->m_next) {	/*XXX*/
1739 				if (n)
1740 					m_freem(n);
1741 				goto fail;
1742 			}
1743 			m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1744 			    mtod(n, caddr_t));
1745 		} else {
1746 			n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1747 			    M_DONTWAIT);
1748 		}
1749 		if (n == NULL)
1750 			goto fail;
1751 
1752 		if (result)
1753 			m_cat(result, n);
1754 		else
1755 			result = n;
1756 	}
1757 	va_end(ap);
1758 
1759 	if ((result->m_flags & M_PKTHDR) != 0) {
1760 		result->m_pkthdr.len = 0;
1761 		for (n = result; n; n = n->m_next)
1762 			result->m_pkthdr.len += n->m_len;
1763 	}
1764 
1765 	return result;
1766 
1767 fail:
1768 	m_freem(result);
1769 	return NULL;
1770 }
1771 
1772 /*
1773  * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1774  * add an entry to SP database, when received
1775  *   <base, address(SD), (lifetime(H),) policy>
1776  * from the user(?).
1777  * Adding to SP database,
1778  * and send
1779  *   <base, address(SD), (lifetime(H),) policy>
1780  * to the socket which was send.
1781  *
1782  * SPDADD set a unique policy entry.
1783  * SPDSETIDX like SPDADD without a part of policy requests.
1784  * SPDUPDATE replace a unique policy entry.
1785  *
1786  * m will always be freed.
1787  */
1788 static int
1789 key_spdadd(so, m, mhp)
1790 	struct socket *so;
1791 	struct mbuf *m;
1792 	const struct sadb_msghdr *mhp;
1793 {
1794 	struct sadb_address *src0, *dst0;
1795 	struct sadb_x_policy *xpl0, *xpl;
1796 	struct sadb_lifetime *lft = NULL;
1797 	struct secpolicyindex spidx;
1798 	struct secpolicy *newsp;
1799 	int error;
1800 
1801 	IPSEC_ASSERT(so != NULL, ("null socket"));
1802 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1803 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1804 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
1805 
1806 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1807 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1808 	    mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1809 		ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1810 		return key_senderror(so, m, EINVAL);
1811 	}
1812 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1813 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1814 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1815 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1816 			__func__));
1817 		return key_senderror(so, m, EINVAL);
1818 	}
1819 	if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1820 		if (mhp->extlen[SADB_EXT_LIFETIME_HARD]
1821 			< sizeof(struct sadb_lifetime)) {
1822 			ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1823 				__func__));
1824 			return key_senderror(so, m, EINVAL);
1825 		}
1826 		lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1827 	}
1828 
1829 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1830 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1831 	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1832 
1833 	/*
1834 	 * Note: do not parse SADB_X_EXT_NAT_T_* here:
1835 	 * we are processing traffic endpoints.
1836 	 */
1837 
1838 	/* make secindex */
1839 	/* XXX boundary check against sa_len */
1840 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1841 	                src0 + 1,
1842 	                dst0 + 1,
1843 	                src0->sadb_address_prefixlen,
1844 	                dst0->sadb_address_prefixlen,
1845 	                src0->sadb_address_proto,
1846 	                &spidx);
1847 
1848 	/* checking the direciton. */
1849 	switch (xpl0->sadb_x_policy_dir) {
1850 	case IPSEC_DIR_INBOUND:
1851 	case IPSEC_DIR_OUTBOUND:
1852 		break;
1853 	default:
1854 		ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
1855 		mhp->msg->sadb_msg_errno = EINVAL;
1856 		return 0;
1857 	}
1858 
1859 	/* check policy */
1860 	/* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1861 	if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST
1862 	 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1863 		ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__));
1864 		return key_senderror(so, m, EINVAL);
1865 	}
1866 
1867 	/* policy requests are mandatory when action is ipsec. */
1868         if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX
1869 	 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC
1870 	 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1871 		ipseclog((LOG_DEBUG, "%s: some policy requests part required\n",
1872 			__func__));
1873 		return key_senderror(so, m, EINVAL);
1874 	}
1875 
1876 	/*
1877 	 * checking there is SP already or not.
1878 	 * SPDUPDATE doesn't depend on whether there is a SP or not.
1879 	 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1880 	 * then error.
1881 	 */
1882 	newsp = key_getsp(&spidx);
1883 	if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1884 		if (newsp) {
1885 			newsp->state = IPSEC_SPSTATE_DEAD;
1886 			KEY_FREESP(&newsp);
1887 		}
1888 	} else {
1889 		if (newsp != NULL) {
1890 			KEY_FREESP(&newsp);
1891 			ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n",
1892 				__func__));
1893 			return key_senderror(so, m, EEXIST);
1894 		}
1895 	}
1896 
1897 	/* allocation new SP entry */
1898 	if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
1899 		return key_senderror(so, m, error);
1900 	}
1901 
1902 	if ((newsp->id = key_getnewspid()) == 0) {
1903 		_key_delsp(newsp);
1904 		return key_senderror(so, m, ENOBUFS);
1905 	}
1906 
1907 	/* XXX boundary check against sa_len */
1908 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1909 	                src0 + 1,
1910 	                dst0 + 1,
1911 	                src0->sadb_address_prefixlen,
1912 	                dst0->sadb_address_prefixlen,
1913 	                src0->sadb_address_proto,
1914 	                &newsp->spidx);
1915 
1916 	/* sanity check on addr pair */
1917 	if (((struct sockaddr *)(src0 + 1))->sa_family !=
1918 			((struct sockaddr *)(dst0+ 1))->sa_family) {
1919 		_key_delsp(newsp);
1920 		return key_senderror(so, m, EINVAL);
1921 	}
1922 	if (((struct sockaddr *)(src0 + 1))->sa_len !=
1923 			((struct sockaddr *)(dst0+ 1))->sa_len) {
1924 		_key_delsp(newsp);
1925 		return key_senderror(so, m, EINVAL);
1926 	}
1927 #if 1
1928 	if (newsp->req && newsp->req->saidx.src.sa.sa_family) {
1929 		struct sockaddr *sa;
1930 		sa = (struct sockaddr *)(src0 + 1);
1931 		if (sa->sa_family != newsp->req->saidx.src.sa.sa_family) {
1932 			_key_delsp(newsp);
1933 			return key_senderror(so, m, EINVAL);
1934 		}
1935 	}
1936 	if (newsp->req && newsp->req->saidx.dst.sa.sa_family) {
1937 		struct sockaddr *sa;
1938 		sa = (struct sockaddr *)(dst0 + 1);
1939 		if (sa->sa_family != newsp->req->saidx.dst.sa.sa_family) {
1940 			_key_delsp(newsp);
1941 			return key_senderror(so, m, EINVAL);
1942 		}
1943 	}
1944 #endif
1945 
1946 	newsp->created = time_second;
1947 	newsp->lastused = newsp->created;
1948 	newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1949 	newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1950 
1951 	newsp->refcnt = 1;	/* do not reclaim until I say I do */
1952 	newsp->state = IPSEC_SPSTATE_ALIVE;
1953 	LIST_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1954 
1955 	/* delete the entry in spacqtree */
1956 	if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1957 		struct secspacq *spacq = key_getspacq(&spidx);
1958 		if (spacq != NULL) {
1959 			/* reset counter in order to deletion by timehandler. */
1960 			spacq->created = time_second;
1961 			spacq->count = 0;
1962 			SPACQ_UNLOCK();
1963 		}
1964     	}
1965 
1966     {
1967 	struct mbuf *n, *mpolicy;
1968 	struct sadb_msg *newmsg;
1969 	int off;
1970 
1971 	/*
1972 	 * Note: do not send SADB_X_EXT_NAT_T_* here:
1973 	 * we are sending traffic endpoints.
1974 	 */
1975 
1976 	/* create new sadb_msg to reply. */
1977 	if (lft) {
1978 		n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
1979 		    SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
1980 		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1981 	} else {
1982 		n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
1983 		    SADB_X_EXT_POLICY,
1984 		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1985 	}
1986 	if (!n)
1987 		return key_senderror(so, m, ENOBUFS);
1988 
1989 	if (n->m_len < sizeof(*newmsg)) {
1990 		n = m_pullup(n, sizeof(*newmsg));
1991 		if (!n)
1992 			return key_senderror(so, m, ENOBUFS);
1993 	}
1994 	newmsg = mtod(n, struct sadb_msg *);
1995 	newmsg->sadb_msg_errno = 0;
1996 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
1997 
1998 	off = 0;
1999 	mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
2000 	    sizeof(*xpl), &off);
2001 	if (mpolicy == NULL) {
2002 		/* n is already freed */
2003 		return key_senderror(so, m, ENOBUFS);
2004 	}
2005 	xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off);
2006 	if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
2007 		m_freem(n);
2008 		return key_senderror(so, m, EINVAL);
2009 	}
2010 	xpl->sadb_x_policy_id = newsp->id;
2011 
2012 	m_freem(m);
2013 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2014     }
2015 }
2016 
2017 /*
2018  * get new policy id.
2019  * OUT:
2020  *	0:	failure.
2021  *	others: success.
2022  */
2023 static u_int32_t
2024 key_getnewspid()
2025 {
2026 	u_int32_t newid = 0;
2027 	int count = V_key_spi_trycnt;	/* XXX */
2028 	struct secpolicy *sp;
2029 
2030 	/* when requesting to allocate spi ranged */
2031 	while (count--) {
2032 		newid = (V_policy_id = (V_policy_id == ~0 ? 1 : V_policy_id + 1));
2033 
2034 		if ((sp = key_getspbyid(newid)) == NULL)
2035 			break;
2036 
2037 		KEY_FREESP(&sp);
2038 	}
2039 
2040 	if (count == 0 || newid == 0) {
2041 		ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n",
2042 			__func__));
2043 		return 0;
2044 	}
2045 
2046 	return newid;
2047 }
2048 
2049 /*
2050  * SADB_SPDDELETE processing
2051  * receive
2052  *   <base, address(SD), policy(*)>
2053  * from the user(?), and set SADB_SASTATE_DEAD,
2054  * and send,
2055  *   <base, address(SD), policy(*)>
2056  * to the ikmpd.
2057  * policy(*) including direction of policy.
2058  *
2059  * m will always be freed.
2060  */
2061 static int
2062 key_spddelete(so, m, mhp)
2063 	struct socket *so;
2064 	struct mbuf *m;
2065 	const struct sadb_msghdr *mhp;
2066 {
2067 	struct sadb_address *src0, *dst0;
2068 	struct sadb_x_policy *xpl0;
2069 	struct secpolicyindex spidx;
2070 	struct secpolicy *sp;
2071 
2072 	IPSEC_ASSERT(so != NULL, ("null so"));
2073 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2074 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2075 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2076 
2077 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2078 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2079 	    mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2080 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2081 			__func__));
2082 		return key_senderror(so, m, EINVAL);
2083 	}
2084 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2085 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2086 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2087 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2088 			__func__));
2089 		return key_senderror(so, m, EINVAL);
2090 	}
2091 
2092 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2093 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2094 	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2095 
2096 	/*
2097 	 * Note: do not parse SADB_X_EXT_NAT_T_* here:
2098 	 * we are processing traffic endpoints.
2099 	 */
2100 
2101 	/* make secindex */
2102 	/* XXX boundary check against sa_len */
2103 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2104 	                src0 + 1,
2105 	                dst0 + 1,
2106 	                src0->sadb_address_prefixlen,
2107 	                dst0->sadb_address_prefixlen,
2108 	                src0->sadb_address_proto,
2109 	                &spidx);
2110 
2111 	/* checking the direciton. */
2112 	switch (xpl0->sadb_x_policy_dir) {
2113 	case IPSEC_DIR_INBOUND:
2114 	case IPSEC_DIR_OUTBOUND:
2115 		break;
2116 	default:
2117 		ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
2118 		return key_senderror(so, m, EINVAL);
2119 	}
2120 
2121 	/* Is there SP in SPD ? */
2122 	if ((sp = key_getsp(&spidx)) == NULL) {
2123 		ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__));
2124 		return key_senderror(so, m, EINVAL);
2125 	}
2126 
2127 	/* save policy id to buffer to be returned. */
2128 	xpl0->sadb_x_policy_id = sp->id;
2129 
2130 	sp->state = IPSEC_SPSTATE_DEAD;
2131 	KEY_FREESP(&sp);
2132 
2133     {
2134 	struct mbuf *n;
2135 	struct sadb_msg *newmsg;
2136 
2137 	/*
2138 	 * Note: do not send SADB_X_EXT_NAT_T_* here:
2139 	 * we are sending traffic endpoints.
2140 	 */
2141 
2142 	/* create new sadb_msg to reply. */
2143 	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2144 	    SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2145 	if (!n)
2146 		return key_senderror(so, m, ENOBUFS);
2147 
2148 	newmsg = mtod(n, struct sadb_msg *);
2149 	newmsg->sadb_msg_errno = 0;
2150 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2151 
2152 	m_freem(m);
2153 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2154     }
2155 }
2156 
2157 /*
2158  * SADB_SPDDELETE2 processing
2159  * receive
2160  *   <base, policy(*)>
2161  * from the user(?), and set SADB_SASTATE_DEAD,
2162  * and send,
2163  *   <base, policy(*)>
2164  * to the ikmpd.
2165  * policy(*) including direction of policy.
2166  *
2167  * m will always be freed.
2168  */
2169 static int
2170 key_spddelete2(so, m, mhp)
2171 	struct socket *so;
2172 	struct mbuf *m;
2173 	const struct sadb_msghdr *mhp;
2174 {
2175 	u_int32_t id;
2176 	struct secpolicy *sp;
2177 
2178 	IPSEC_ASSERT(so != NULL, ("null socket"));
2179 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2180 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2181 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2182 
2183 	if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2184 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2185 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__));
2186 		return key_senderror(so, m, EINVAL);
2187 	}
2188 
2189 	id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2190 
2191 	/* Is there SP in SPD ? */
2192 	if ((sp = key_getspbyid(id)) == NULL) {
2193 		ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2194 		return key_senderror(so, m, EINVAL);
2195 	}
2196 
2197 	sp->state = IPSEC_SPSTATE_DEAD;
2198 	KEY_FREESP(&sp);
2199 
2200     {
2201 	struct mbuf *n, *nn;
2202 	struct sadb_msg *newmsg;
2203 	int off, len;
2204 
2205 	/* create new sadb_msg to reply. */
2206 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2207 
2208 	MGETHDR(n, M_DONTWAIT, MT_DATA);
2209 	if (n && len > MHLEN) {
2210 		MCLGET(n, M_DONTWAIT);
2211 		if ((n->m_flags & M_EXT) == 0) {
2212 			m_freem(n);
2213 			n = NULL;
2214 		}
2215 	}
2216 	if (!n)
2217 		return key_senderror(so, m, ENOBUFS);
2218 
2219 	n->m_len = len;
2220 	n->m_next = NULL;
2221 	off = 0;
2222 
2223 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
2224 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2225 
2226 	IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)",
2227 		off, len));
2228 
2229 	n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2230 	    mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2231 	if (!n->m_next) {
2232 		m_freem(n);
2233 		return key_senderror(so, m, ENOBUFS);
2234 	}
2235 
2236 	n->m_pkthdr.len = 0;
2237 	for (nn = n; nn; nn = nn->m_next)
2238 		n->m_pkthdr.len += nn->m_len;
2239 
2240 	newmsg = mtod(n, struct sadb_msg *);
2241 	newmsg->sadb_msg_errno = 0;
2242 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2243 
2244 	m_freem(m);
2245 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2246     }
2247 }
2248 
2249 /*
2250  * SADB_X_GET processing
2251  * receive
2252  *   <base, policy(*)>
2253  * from the user(?),
2254  * and send,
2255  *   <base, address(SD), policy>
2256  * to the ikmpd.
2257  * policy(*) including direction of policy.
2258  *
2259  * m will always be freed.
2260  */
2261 static int
2262 key_spdget(so, m, mhp)
2263 	struct socket *so;
2264 	struct mbuf *m;
2265 	const struct sadb_msghdr *mhp;
2266 {
2267 	u_int32_t id;
2268 	struct secpolicy *sp;
2269 	struct mbuf *n;
2270 
2271 	IPSEC_ASSERT(so != NULL, ("null socket"));
2272 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2273 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2274 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2275 
2276 	if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2277 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2278 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2279 			__func__));
2280 		return key_senderror(so, m, EINVAL);
2281 	}
2282 
2283 	id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2284 
2285 	/* Is there SP in SPD ? */
2286 	if ((sp = key_getspbyid(id)) == NULL) {
2287 		ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2288 		return key_senderror(so, m, ENOENT);
2289 	}
2290 
2291 	n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid);
2292 	if (n != NULL) {
2293 		m_freem(m);
2294 		return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2295 	} else
2296 		return key_senderror(so, m, ENOBUFS);
2297 }
2298 
2299 /*
2300  * SADB_X_SPDACQUIRE processing.
2301  * Acquire policy and SA(s) for a *OUTBOUND* packet.
2302  * send
2303  *   <base, policy(*)>
2304  * to KMD, and expect to receive
2305  *   <base> with SADB_X_SPDACQUIRE if error occured,
2306  * or
2307  *   <base, policy>
2308  * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2309  * policy(*) is without policy requests.
2310  *
2311  *    0     : succeed
2312  *    others: error number
2313  */
2314 int
2315 key_spdacquire(sp)
2316 	struct secpolicy *sp;
2317 {
2318 	struct mbuf *result = NULL, *m;
2319 	struct secspacq *newspacq;
2320 
2321 	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2322 	IPSEC_ASSERT(sp->req == NULL, ("policy exists"));
2323 	IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC,
2324 		("policy not IPSEC %u", sp->policy));
2325 
2326 	/* Get an entry to check whether sent message or not. */
2327 	newspacq = key_getspacq(&sp->spidx);
2328 	if (newspacq != NULL) {
2329 		if (V_key_blockacq_count < newspacq->count) {
2330 			/* reset counter and do send message. */
2331 			newspacq->count = 0;
2332 		} else {
2333 			/* increment counter and do nothing. */
2334 			newspacq->count++;
2335 			return 0;
2336 		}
2337 		SPACQ_UNLOCK();
2338 	} else {
2339 		/* make new entry for blocking to send SADB_ACQUIRE. */
2340 		newspacq = key_newspacq(&sp->spidx);
2341 		if (newspacq == NULL)
2342 			return ENOBUFS;
2343 	}
2344 
2345 	/* create new sadb_msg to reply. */
2346 	m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2347 	if (!m)
2348 		return ENOBUFS;
2349 
2350 	result = m;
2351 
2352 	result->m_pkthdr.len = 0;
2353 	for (m = result; m; m = m->m_next)
2354 		result->m_pkthdr.len += m->m_len;
2355 
2356 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2357 	    PFKEY_UNIT64(result->m_pkthdr.len);
2358 
2359 	return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2360 }
2361 
2362 /*
2363  * SADB_SPDFLUSH processing
2364  * receive
2365  *   <base>
2366  * from the user, and free all entries in secpctree.
2367  * and send,
2368  *   <base>
2369  * to the user.
2370  * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2371  *
2372  * m will always be freed.
2373  */
2374 static int
2375 key_spdflush(so, m, mhp)
2376 	struct socket *so;
2377 	struct mbuf *m;
2378 	const struct sadb_msghdr *mhp;
2379 {
2380 	struct sadb_msg *newmsg;
2381 	struct secpolicy *sp;
2382 	u_int dir;
2383 
2384 	IPSEC_ASSERT(so != NULL, ("null socket"));
2385 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2386 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2387 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2388 
2389 	if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2390 		return key_senderror(so, m, EINVAL);
2391 
2392 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2393 		SPTREE_LOCK();
2394 		LIST_FOREACH(sp, &V_sptree[dir], chain)
2395 			sp->state = IPSEC_SPSTATE_DEAD;
2396 		SPTREE_UNLOCK();
2397 	}
2398 
2399 	if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2400 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2401 		return key_senderror(so, m, ENOBUFS);
2402 	}
2403 
2404 	if (m->m_next)
2405 		m_freem(m->m_next);
2406 	m->m_next = NULL;
2407 	m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2408 	newmsg = mtod(m, struct sadb_msg *);
2409 	newmsg->sadb_msg_errno = 0;
2410 	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2411 
2412 	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2413 }
2414 
2415 /*
2416  * SADB_SPDDUMP processing
2417  * receive
2418  *   <base>
2419  * from the user, and dump all SP leaves
2420  * and send,
2421  *   <base> .....
2422  * to the ikmpd.
2423  *
2424  * m will always be freed.
2425  */
2426 static int
2427 key_spddump(so, m, mhp)
2428 	struct socket *so;
2429 	struct mbuf *m;
2430 	const struct sadb_msghdr *mhp;
2431 {
2432 	struct secpolicy *sp;
2433 	int cnt;
2434 	u_int dir;
2435 	struct mbuf *n;
2436 
2437 	IPSEC_ASSERT(so != NULL, ("null socket"));
2438 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2439 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2440 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2441 
2442 	/* search SPD entry and get buffer size. */
2443 	cnt = 0;
2444 	SPTREE_LOCK();
2445 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2446 		LIST_FOREACH(sp, &V_sptree[dir], chain) {
2447 			cnt++;
2448 		}
2449 	}
2450 
2451 	if (cnt == 0) {
2452 		SPTREE_UNLOCK();
2453 		return key_senderror(so, m, ENOENT);
2454 	}
2455 
2456 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2457 		LIST_FOREACH(sp, &V_sptree[dir], chain) {
2458 			--cnt;
2459 			n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt,
2460 			    mhp->msg->sadb_msg_pid);
2461 
2462 			if (n)
2463 				key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2464 		}
2465 	}
2466 
2467 	SPTREE_UNLOCK();
2468 	m_freem(m);
2469 	return 0;
2470 }
2471 
2472 static struct mbuf *
2473 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, u_int32_t pid)
2474 {
2475 	struct mbuf *result = NULL, *m;
2476 	struct seclifetime lt;
2477 
2478 	m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2479 	if (!m)
2480 		goto fail;
2481 	result = m;
2482 
2483 	/*
2484 	 * Note: do not send SADB_X_EXT_NAT_T_* here:
2485 	 * we are sending traffic endpoints.
2486 	 */
2487 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2488 	    &sp->spidx.src.sa, sp->spidx.prefs,
2489 	    sp->spidx.ul_proto);
2490 	if (!m)
2491 		goto fail;
2492 	m_cat(result, m);
2493 
2494 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2495 	    &sp->spidx.dst.sa, sp->spidx.prefd,
2496 	    sp->spidx.ul_proto);
2497 	if (!m)
2498 		goto fail;
2499 	m_cat(result, m);
2500 
2501 	m = key_sp2msg(sp);
2502 	if (!m)
2503 		goto fail;
2504 	m_cat(result, m);
2505 
2506 	if(sp->lifetime){
2507 		lt.addtime=sp->created;
2508 		lt.usetime= sp->lastused;
2509 		m = key_setlifetime(&lt, SADB_EXT_LIFETIME_CURRENT);
2510 		if (!m)
2511 			goto fail;
2512 		m_cat(result, m);
2513 
2514 		lt.addtime=sp->lifetime;
2515 		lt.usetime= sp->validtime;
2516 		m = key_setlifetime(&lt, SADB_EXT_LIFETIME_HARD);
2517 		if (!m)
2518 			goto fail;
2519 		m_cat(result, m);
2520 	}
2521 
2522 	if ((result->m_flags & M_PKTHDR) == 0)
2523 		goto fail;
2524 
2525 	if (result->m_len < sizeof(struct sadb_msg)) {
2526 		result = m_pullup(result, sizeof(struct sadb_msg));
2527 		if (result == NULL)
2528 			goto fail;
2529 	}
2530 
2531 	result->m_pkthdr.len = 0;
2532 	for (m = result; m; m = m->m_next)
2533 		result->m_pkthdr.len += m->m_len;
2534 
2535 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2536 	    PFKEY_UNIT64(result->m_pkthdr.len);
2537 
2538 	return result;
2539 
2540 fail:
2541 	m_freem(result);
2542 	return NULL;
2543 }
2544 
2545 /*
2546  * get PFKEY message length for security policy and request.
2547  */
2548 static u_int
2549 key_getspreqmsglen(sp)
2550 	struct secpolicy *sp;
2551 {
2552 	u_int tlen;
2553 
2554 	tlen = sizeof(struct sadb_x_policy);
2555 
2556 	/* if is the policy for ipsec ? */
2557 	if (sp->policy != IPSEC_POLICY_IPSEC)
2558 		return tlen;
2559 
2560 	/* get length of ipsec requests */
2561     {
2562 	struct ipsecrequest *isr;
2563 	int len;
2564 
2565 	for (isr = sp->req; isr != NULL; isr = isr->next) {
2566 		len = sizeof(struct sadb_x_ipsecrequest)
2567 			+ isr->saidx.src.sa.sa_len
2568 			+ isr->saidx.dst.sa.sa_len;
2569 
2570 		tlen += PFKEY_ALIGN8(len);
2571 	}
2572     }
2573 
2574 	return tlen;
2575 }
2576 
2577 /*
2578  * SADB_SPDEXPIRE processing
2579  * send
2580  *   <base, address(SD), lifetime(CH), policy>
2581  * to KMD by PF_KEY.
2582  *
2583  * OUT:	0	: succeed
2584  *	others	: error number
2585  */
2586 static int
2587 key_spdexpire(sp)
2588 	struct secpolicy *sp;
2589 {
2590 	struct mbuf *result = NULL, *m;
2591 	int len;
2592 	int error = -1;
2593 	struct sadb_lifetime *lt;
2594 
2595 	/* XXX: Why do we lock ? */
2596 
2597 	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2598 
2599 	/* set msg header */
2600 	m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2601 	if (!m) {
2602 		error = ENOBUFS;
2603 		goto fail;
2604 	}
2605 	result = m;
2606 
2607 	/* create lifetime extension (current and hard) */
2608 	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2609 	m = key_alloc_mbuf(len);
2610 	if (!m || m->m_next) {	/*XXX*/
2611 		if (m)
2612 			m_freem(m);
2613 		error = ENOBUFS;
2614 		goto fail;
2615 	}
2616 	bzero(mtod(m, caddr_t), len);
2617 	lt = mtod(m, struct sadb_lifetime *);
2618 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2619 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2620 	lt->sadb_lifetime_allocations = 0;
2621 	lt->sadb_lifetime_bytes = 0;
2622 	lt->sadb_lifetime_addtime = sp->created;
2623 	lt->sadb_lifetime_usetime = sp->lastused;
2624 	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
2625 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2626 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2627 	lt->sadb_lifetime_allocations = 0;
2628 	lt->sadb_lifetime_bytes = 0;
2629 	lt->sadb_lifetime_addtime = sp->lifetime;
2630 	lt->sadb_lifetime_usetime = sp->validtime;
2631 	m_cat(result, m);
2632 
2633 	/*
2634 	 * Note: do not send SADB_X_EXT_NAT_T_* here:
2635 	 * we are sending traffic endpoints.
2636 	 */
2637 
2638 	/* set sadb_address for source */
2639 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2640 	    &sp->spidx.src.sa,
2641 	    sp->spidx.prefs, sp->spidx.ul_proto);
2642 	if (!m) {
2643 		error = ENOBUFS;
2644 		goto fail;
2645 	}
2646 	m_cat(result, m);
2647 
2648 	/* set sadb_address for destination */
2649 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2650 	    &sp->spidx.dst.sa,
2651 	    sp->spidx.prefd, sp->spidx.ul_proto);
2652 	if (!m) {
2653 		error = ENOBUFS;
2654 		goto fail;
2655 	}
2656 	m_cat(result, m);
2657 
2658 	/* set secpolicy */
2659 	m = key_sp2msg(sp);
2660 	if (!m) {
2661 		error = ENOBUFS;
2662 		goto fail;
2663 	}
2664 	m_cat(result, m);
2665 
2666 	if ((result->m_flags & M_PKTHDR) == 0) {
2667 		error = EINVAL;
2668 		goto fail;
2669 	}
2670 
2671 	if (result->m_len < sizeof(struct sadb_msg)) {
2672 		result = m_pullup(result, sizeof(struct sadb_msg));
2673 		if (result == NULL) {
2674 			error = ENOBUFS;
2675 			goto fail;
2676 		}
2677 	}
2678 
2679 	result->m_pkthdr.len = 0;
2680 	for (m = result; m; m = m->m_next)
2681 		result->m_pkthdr.len += m->m_len;
2682 
2683 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2684 	    PFKEY_UNIT64(result->m_pkthdr.len);
2685 
2686 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2687 
2688  fail:
2689 	if (result)
2690 		m_freem(result);
2691 	return error;
2692 }
2693 
2694 /* %%% SAD management */
2695 /*
2696  * allocating a memory for new SA head, and copy from the values of mhp.
2697  * OUT:	NULL	: failure due to the lack of memory.
2698  *	others	: pointer to new SA head.
2699  */
2700 static struct secashead *
2701 key_newsah(saidx)
2702 	struct secasindex *saidx;
2703 {
2704 	struct secashead *newsah;
2705 
2706 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
2707 
2708 	newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO);
2709 	if (newsah != NULL) {
2710 		int i;
2711 		for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++)
2712 			LIST_INIT(&newsah->savtree[i]);
2713 		newsah->saidx = *saidx;
2714 
2715 		/* add to saidxtree */
2716 		newsah->state = SADB_SASTATE_MATURE;
2717 
2718 		SAHTREE_LOCK();
2719 		LIST_INSERT_HEAD(&V_sahtree, newsah, chain);
2720 		SAHTREE_UNLOCK();
2721 	}
2722 	return(newsah);
2723 }
2724 
2725 /*
2726  * delete SA index and all SA registerd.
2727  */
2728 static void
2729 key_delsah(sah)
2730 	struct secashead *sah;
2731 {
2732 	struct secasvar *sav, *nextsav;
2733 	u_int stateidx;
2734 	int zombie = 0;
2735 
2736 	IPSEC_ASSERT(sah != NULL, ("NULL sah"));
2737 	SAHTREE_LOCK_ASSERT();
2738 
2739 	/* searching all SA registerd in the secindex. */
2740 	for (stateidx = 0;
2741 	     stateidx < _ARRAYLEN(saorder_state_any);
2742 	     stateidx++) {
2743 		u_int state = saorder_state_any[stateidx];
2744 		LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) {
2745 			if (sav->refcnt == 0) {
2746 				/* sanity check */
2747 				KEY_CHKSASTATE(state, sav->state, __func__);
2748 				/*
2749 				 * do NOT call KEY_FREESAV here:
2750 				 * it will only delete the sav if refcnt == 1,
2751 				 * where we already know that refcnt == 0
2752 				 */
2753 				key_delsav(sav);
2754 			} else {
2755 				/* give up to delete this sa */
2756 				zombie++;
2757 			}
2758 		}
2759 	}
2760 	if (!zombie) {		/* delete only if there are savs */
2761 		/* remove from tree of SA index */
2762 		if (__LIST_CHAINED(sah))
2763 			LIST_REMOVE(sah, chain);
2764 		if (sah->sa_route.ro_rt) {
2765 			RTFREE(sah->sa_route.ro_rt);
2766 			sah->sa_route.ro_rt = (struct rtentry *)NULL;
2767 		}
2768 		free(sah, M_IPSEC_SAH);
2769 	}
2770 }
2771 
2772 /*
2773  * allocating a new SA with LARVAL state.  key_add() and key_getspi() call,
2774  * and copy the values of mhp into new buffer.
2775  * When SAD message type is GETSPI:
2776  *	to set sequence number from acq_seq++,
2777  *	to set zero to SPI.
2778  *	not to call key_setsava().
2779  * OUT:	NULL	: fail
2780  *	others	: pointer to new secasvar.
2781  *
2782  * does not modify mbuf.  does not free mbuf on error.
2783  */
2784 static struct secasvar *
2785 key_newsav(m, mhp, sah, errp, where, tag)
2786 	struct mbuf *m;
2787 	const struct sadb_msghdr *mhp;
2788 	struct secashead *sah;
2789 	int *errp;
2790 	const char* where;
2791 	int tag;
2792 {
2793 	struct secasvar *newsav;
2794 	const struct sadb_sa *xsa;
2795 
2796 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2797 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2798 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2799 	IPSEC_ASSERT(sah != NULL, ("null secashead"));
2800 
2801 	newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO);
2802 	if (newsav == NULL) {
2803 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2804 		*errp = ENOBUFS;
2805 		goto done;
2806 	}
2807 
2808 	switch (mhp->msg->sadb_msg_type) {
2809 	case SADB_GETSPI:
2810 		newsav->spi = 0;
2811 
2812 #ifdef IPSEC_DOSEQCHECK
2813 		/* sync sequence number */
2814 		if (mhp->msg->sadb_msg_seq == 0)
2815 			newsav->seq =
2816 				(V_acq_seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq));
2817 		else
2818 #endif
2819 			newsav->seq = mhp->msg->sadb_msg_seq;
2820 		break;
2821 
2822 	case SADB_ADD:
2823 		/* sanity check */
2824 		if (mhp->ext[SADB_EXT_SA] == NULL) {
2825 			free(newsav, M_IPSEC_SA);
2826 			newsav = NULL;
2827 			ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2828 				__func__));
2829 			*errp = EINVAL;
2830 			goto done;
2831 		}
2832 		xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2833 		newsav->spi = xsa->sadb_sa_spi;
2834 		newsav->seq = mhp->msg->sadb_msg_seq;
2835 		break;
2836 	default:
2837 		free(newsav, M_IPSEC_SA);
2838 		newsav = NULL;
2839 		*errp = EINVAL;
2840 		goto done;
2841 	}
2842 
2843 
2844 	/* copy sav values */
2845 	if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2846 		*errp = key_setsaval(newsav, m, mhp);
2847 		if (*errp) {
2848 			free(newsav, M_IPSEC_SA);
2849 			newsav = NULL;
2850 			goto done;
2851 		}
2852 	}
2853 
2854 	SECASVAR_LOCK_INIT(newsav);
2855 
2856 	/* reset created */
2857 	newsav->created = time_second;
2858 	newsav->pid = mhp->msg->sadb_msg_pid;
2859 
2860 	/* add to satree */
2861 	newsav->sah = sah;
2862 	sa_initref(newsav);
2863 	newsav->state = SADB_SASTATE_LARVAL;
2864 
2865 	/* XXX locking??? */
2866 	LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
2867 			secasvar, chain);
2868 done:
2869 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
2870 		printf("DP %s from %s:%u return SP:%p\n", __func__,
2871 			where, tag, newsav));
2872 
2873 	return newsav;
2874 }
2875 
2876 /*
2877  * free() SA variable entry.
2878  */
2879 static void
2880 key_cleansav(struct secasvar *sav)
2881 {
2882 	/*
2883 	 * Cleanup xform state.  Note that zeroize'ing causes the
2884 	 * keys to be cleared; otherwise we must do it ourself.
2885 	 */
2886 	if (sav->tdb_xform != NULL) {
2887 		sav->tdb_xform->xf_zeroize(sav);
2888 		sav->tdb_xform = NULL;
2889 	} else {
2890 		KASSERT(sav->iv == NULL, ("iv but no xform"));
2891 		if (sav->key_auth != NULL)
2892 			bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2893 		if (sav->key_enc != NULL)
2894 			bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc));
2895 	}
2896 	if (sav->key_auth != NULL) {
2897 		if (sav->key_auth->key_data != NULL)
2898 			free(sav->key_auth->key_data, M_IPSEC_MISC);
2899 		free(sav->key_auth, M_IPSEC_MISC);
2900 		sav->key_auth = NULL;
2901 	}
2902 	if (sav->key_enc != NULL) {
2903 		if (sav->key_enc->key_data != NULL)
2904 			free(sav->key_enc->key_data, M_IPSEC_MISC);
2905 		free(sav->key_enc, M_IPSEC_MISC);
2906 		sav->key_enc = NULL;
2907 	}
2908 	if (sav->sched) {
2909 		bzero(sav->sched, sav->schedlen);
2910 		free(sav->sched, M_IPSEC_MISC);
2911 		sav->sched = NULL;
2912 	}
2913 	if (sav->replay != NULL) {
2914 		free(sav->replay, M_IPSEC_MISC);
2915 		sav->replay = NULL;
2916 	}
2917 	if (sav->lft_c != NULL) {
2918 		free(sav->lft_c, M_IPSEC_MISC);
2919 		sav->lft_c = NULL;
2920 	}
2921 	if (sav->lft_h != NULL) {
2922 		free(sav->lft_h, M_IPSEC_MISC);
2923 		sav->lft_h = NULL;
2924 	}
2925 	if (sav->lft_s != NULL) {
2926 		free(sav->lft_s, M_IPSEC_MISC);
2927 		sav->lft_s = NULL;
2928 	}
2929 }
2930 
2931 /*
2932  * free() SA variable entry.
2933  */
2934 static void
2935 key_delsav(sav)
2936 	struct secasvar *sav;
2937 {
2938 	IPSEC_ASSERT(sav != NULL, ("null sav"));
2939 	IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt));
2940 
2941 	/* remove from SA header */
2942 	if (__LIST_CHAINED(sav))
2943 		LIST_REMOVE(sav, chain);
2944 	key_cleansav(sav);
2945 	SECASVAR_LOCK_DESTROY(sav);
2946 	free(sav, M_IPSEC_SA);
2947 }
2948 
2949 /*
2950  * search SAD.
2951  * OUT:
2952  *	NULL	: not found
2953  *	others	: found, pointer to a SA.
2954  */
2955 static struct secashead *
2956 key_getsah(saidx)
2957 	struct secasindex *saidx;
2958 {
2959 	struct secashead *sah;
2960 
2961 	SAHTREE_LOCK();
2962 	LIST_FOREACH(sah, &V_sahtree, chain) {
2963 		if (sah->state == SADB_SASTATE_DEAD)
2964 			continue;
2965 		if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID))
2966 			break;
2967 	}
2968 	SAHTREE_UNLOCK();
2969 
2970 	return sah;
2971 }
2972 
2973 /*
2974  * check not to be duplicated SPI.
2975  * NOTE: this function is too slow due to searching all SAD.
2976  * OUT:
2977  *	NULL	: not found
2978  *	others	: found, pointer to a SA.
2979  */
2980 static struct secasvar *
2981 key_checkspidup(saidx, spi)
2982 	struct secasindex *saidx;
2983 	u_int32_t spi;
2984 {
2985 	struct secashead *sah;
2986 	struct secasvar *sav;
2987 
2988 	/* check address family */
2989 	if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
2990 		ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
2991 			__func__));
2992 		return NULL;
2993 	}
2994 
2995 	sav = NULL;
2996 	/* check all SAD */
2997 	SAHTREE_LOCK();
2998 	LIST_FOREACH(sah, &V_sahtree, chain) {
2999 		if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
3000 			continue;
3001 		sav = key_getsavbyspi(sah, spi);
3002 		if (sav != NULL)
3003 			break;
3004 	}
3005 	SAHTREE_UNLOCK();
3006 
3007 	return sav;
3008 }
3009 
3010 /*
3011  * search SAD litmited alive SA, protocol, SPI.
3012  * OUT:
3013  *	NULL	: not found
3014  *	others	: found, pointer to a SA.
3015  */
3016 static struct secasvar *
3017 key_getsavbyspi(sah, spi)
3018 	struct secashead *sah;
3019 	u_int32_t spi;
3020 {
3021 	struct secasvar *sav;
3022 	u_int stateidx, state;
3023 
3024 	sav = NULL;
3025 	SAHTREE_LOCK_ASSERT();
3026 	/* search all status */
3027 	for (stateidx = 0;
3028 	     stateidx < _ARRAYLEN(saorder_state_alive);
3029 	     stateidx++) {
3030 
3031 		state = saorder_state_alive[stateidx];
3032 		LIST_FOREACH(sav, &sah->savtree[state], chain) {
3033 
3034 			/* sanity check */
3035 			if (sav->state != state) {
3036 				ipseclog((LOG_DEBUG, "%s: "
3037 				    "invalid sav->state (queue: %d SA: %d)\n",
3038 				    __func__, state, sav->state));
3039 				continue;
3040 			}
3041 
3042 			if (sav->spi == spi)
3043 				return sav;
3044 		}
3045 	}
3046 
3047 	return NULL;
3048 }
3049 
3050 /*
3051  * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3052  * You must update these if need.
3053  * OUT:	0:	success.
3054  *	!0:	failure.
3055  *
3056  * does not modify mbuf.  does not free mbuf on error.
3057  */
3058 static int
3059 key_setsaval(sav, m, mhp)
3060 	struct secasvar *sav;
3061 	struct mbuf *m;
3062 	const struct sadb_msghdr *mhp;
3063 {
3064 	int error = 0;
3065 
3066 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
3067 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
3068 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
3069 
3070 	/* initialization */
3071 	sav->replay = NULL;
3072 	sav->key_auth = NULL;
3073 	sav->key_enc = NULL;
3074 	sav->sched = NULL;
3075 	sav->schedlen = 0;
3076 	sav->iv = NULL;
3077 	sav->lft_c = NULL;
3078 	sav->lft_h = NULL;
3079 	sav->lft_s = NULL;
3080 	sav->tdb_xform = NULL;		/* transform */
3081 	sav->tdb_encalgxform = NULL;	/* encoding algorithm */
3082 	sav->tdb_authalgxform = NULL;	/* authentication algorithm */
3083 	sav->tdb_compalgxform = NULL;	/* compression algorithm */
3084 	/*  Initialize even if NAT-T not compiled in: */
3085 	sav->natt_type = 0;
3086 	sav->natt_esp_frag_len = 0;
3087 
3088 	/* SA */
3089 	if (mhp->ext[SADB_EXT_SA] != NULL) {
3090 		const struct sadb_sa *sa0;
3091 
3092 		sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3093 		if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3094 			error = EINVAL;
3095 			goto fail;
3096 		}
3097 
3098 		sav->alg_auth = sa0->sadb_sa_auth;
3099 		sav->alg_enc = sa0->sadb_sa_encrypt;
3100 		sav->flags = sa0->sadb_sa_flags;
3101 
3102 		/* replay window */
3103 		if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3104 			sav->replay = (struct secreplay *)
3105 				malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO);
3106 			if (sav->replay == NULL) {
3107 				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3108 					__func__));
3109 				error = ENOBUFS;
3110 				goto fail;
3111 			}
3112 			if (sa0->sadb_sa_replay != 0)
3113 				sav->replay->bitmap = (caddr_t)(sav->replay+1);
3114 			sav->replay->wsize = sa0->sadb_sa_replay;
3115 		}
3116 	}
3117 
3118 	/* Authentication keys */
3119 	if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3120 		const struct sadb_key *key0;
3121 		int len;
3122 
3123 		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3124 		len = mhp->extlen[SADB_EXT_KEY_AUTH];
3125 
3126 		error = 0;
3127 		if (len < sizeof(*key0)) {
3128 			error = EINVAL;
3129 			goto fail;
3130 		}
3131 		switch (mhp->msg->sadb_msg_satype) {
3132 		case SADB_SATYPE_AH:
3133 		case SADB_SATYPE_ESP:
3134 		case SADB_X_SATYPE_TCPSIGNATURE:
3135 			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3136 			    sav->alg_auth != SADB_X_AALG_NULL)
3137 				error = EINVAL;
3138 			break;
3139 		case SADB_X_SATYPE_IPCOMP:
3140 		default:
3141 			error = EINVAL;
3142 			break;
3143 		}
3144 		if (error) {
3145 			ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n",
3146 				__func__));
3147 			goto fail;
3148 		}
3149 
3150 		sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len,
3151 								M_IPSEC_MISC);
3152 		if (sav->key_auth == NULL ) {
3153 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3154 				  __func__));
3155 			error = ENOBUFS;
3156 			goto fail;
3157 		}
3158 	}
3159 
3160 	/* Encryption key */
3161 	if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3162 		const struct sadb_key *key0;
3163 		int len;
3164 
3165 		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3166 		len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3167 
3168 		error = 0;
3169 		if (len < sizeof(*key0)) {
3170 			error = EINVAL;
3171 			goto fail;
3172 		}
3173 		switch (mhp->msg->sadb_msg_satype) {
3174 		case SADB_SATYPE_ESP:
3175 			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3176 			    sav->alg_enc != SADB_EALG_NULL) {
3177 				error = EINVAL;
3178 				break;
3179 			}
3180 			sav->key_enc = (struct seckey *)key_dup_keymsg(key0,
3181 								       len,
3182 								       M_IPSEC_MISC);
3183 			if (sav->key_enc == NULL) {
3184 				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3185 					__func__));
3186 				error = ENOBUFS;
3187 				goto fail;
3188 			}
3189 			break;
3190 		case SADB_X_SATYPE_IPCOMP:
3191 			if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3192 				error = EINVAL;
3193 			sav->key_enc = NULL;	/*just in case*/
3194 			break;
3195 		case SADB_SATYPE_AH:
3196 		case SADB_X_SATYPE_TCPSIGNATURE:
3197 		default:
3198 			error = EINVAL;
3199 			break;
3200 		}
3201 		if (error) {
3202 			ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n",
3203 				__func__));
3204 			goto fail;
3205 		}
3206 	}
3207 
3208 	/* set iv */
3209 	sav->ivlen = 0;
3210 
3211 	switch (mhp->msg->sadb_msg_satype) {
3212 	case SADB_SATYPE_AH:
3213 		error = xform_init(sav, XF_AH);
3214 		break;
3215 	case SADB_SATYPE_ESP:
3216 		error = xform_init(sav, XF_ESP);
3217 		break;
3218 	case SADB_X_SATYPE_IPCOMP:
3219 		error = xform_init(sav, XF_IPCOMP);
3220 		break;
3221 	case SADB_X_SATYPE_TCPSIGNATURE:
3222 		error = xform_init(sav, XF_TCPSIGNATURE);
3223 		break;
3224 	}
3225 	if (error) {
3226 		ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n",
3227 		        __func__, mhp->msg->sadb_msg_satype));
3228 		goto fail;
3229 	}
3230 
3231 	/* reset created */
3232 	sav->created = time_second;
3233 
3234 	/* make lifetime for CURRENT */
3235 	sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT);
3236 	if (sav->lft_c == NULL) {
3237 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3238 		error = ENOBUFS;
3239 		goto fail;
3240 	}
3241 
3242 	sav->lft_c->allocations = 0;
3243 	sav->lft_c->bytes = 0;
3244 	sav->lft_c->addtime = time_second;
3245 	sav->lft_c->usetime = 0;
3246 
3247 	/* lifetimes for HARD and SOFT */
3248     {
3249 	const struct sadb_lifetime *lft0;
3250 
3251 	lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3252 	if (lft0 != NULL) {
3253 		if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3254 			error = EINVAL;
3255 			goto fail;
3256 		}
3257 		sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC);
3258 		if (sav->lft_h == NULL) {
3259 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3260 			error = ENOBUFS;
3261 			goto fail;
3262 		}
3263 		/* to be initialize ? */
3264 	}
3265 
3266 	lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3267 	if (lft0 != NULL) {
3268 		if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3269 			error = EINVAL;
3270 			goto fail;
3271 		}
3272 		sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC);
3273 		if (sav->lft_s == NULL) {
3274 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3275 			error = ENOBUFS;
3276 			goto fail;
3277 		}
3278 		/* to be initialize ? */
3279 	}
3280     }
3281 
3282 	return 0;
3283 
3284  fail:
3285 	/* initialization */
3286 	key_cleansav(sav);
3287 
3288 	return error;
3289 }
3290 
3291 /*
3292  * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3293  * OUT:	0:	valid
3294  *	other:	errno
3295  */
3296 static int
3297 key_mature(struct secasvar *sav)
3298 {
3299 	int error;
3300 
3301 	/* check SPI value */
3302 	switch (sav->sah->saidx.proto) {
3303 	case IPPROTO_ESP:
3304 	case IPPROTO_AH:
3305 		/*
3306 		 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values
3307 		 * 1-255 reserved by IANA for future use,
3308 		 * 0 for implementation specific, local use.
3309 		 */
3310 		if (ntohl(sav->spi) <= 255) {
3311 			ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n",
3312 			    __func__, (u_int32_t)ntohl(sav->spi)));
3313 			return EINVAL;
3314 		}
3315 		break;
3316 	}
3317 
3318 	/* check satype */
3319 	switch (sav->sah->saidx.proto) {
3320 	case IPPROTO_ESP:
3321 		/* check flags */
3322 		if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3323 		    (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3324 			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3325 				"given to old-esp.\n", __func__));
3326 			return EINVAL;
3327 		}
3328 		error = xform_init(sav, XF_ESP);
3329 		break;
3330 	case IPPROTO_AH:
3331 		/* check flags */
3332 		if (sav->flags & SADB_X_EXT_DERIV) {
3333 			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3334 				"given to AH SA.\n", __func__));
3335 			return EINVAL;
3336 		}
3337 		if (sav->alg_enc != SADB_EALG_NONE) {
3338 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3339 				"mismated.\n", __func__));
3340 			return(EINVAL);
3341 		}
3342 		error = xform_init(sav, XF_AH);
3343 		break;
3344 	case IPPROTO_IPCOMP:
3345 		if (sav->alg_auth != SADB_AALG_NONE) {
3346 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3347 				"mismated.\n", __func__));
3348 			return(EINVAL);
3349 		}
3350 		if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3351 		 && ntohl(sav->spi) >= 0x10000) {
3352 			ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n",
3353 				__func__));
3354 			return(EINVAL);
3355 		}
3356 		error = xform_init(sav, XF_IPCOMP);
3357 		break;
3358 	case IPPROTO_TCP:
3359 		if (sav->alg_enc != SADB_EALG_NONE) {
3360 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3361 				"mismated.\n", __func__));
3362 			return(EINVAL);
3363 		}
3364 		error = xform_init(sav, XF_TCPSIGNATURE);
3365 		break;
3366 	default:
3367 		ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__));
3368 		error = EPROTONOSUPPORT;
3369 		break;
3370 	}
3371 	if (error == 0) {
3372 		SAHTREE_LOCK();
3373 		key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3374 		SAHTREE_UNLOCK();
3375 	}
3376 	return (error);
3377 }
3378 
3379 /*
3380  * subroutine for SADB_GET and SADB_DUMP.
3381  */
3382 static struct mbuf *
3383 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3384     u_int32_t seq, u_int32_t pid)
3385 {
3386 	struct mbuf *result = NULL, *tres = NULL, *m;
3387 	int i;
3388 	int dumporder[] = {
3389 		SADB_EXT_SA, SADB_X_EXT_SA2,
3390 		SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3391 		SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3392 		SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3393 		SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3394 		SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3395 #ifdef IPSEC_NAT_T
3396 		SADB_X_EXT_NAT_T_TYPE,
3397 		SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3398 		SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3399 		SADB_X_EXT_NAT_T_FRAG,
3400 #endif
3401 	};
3402 
3403 	m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3404 	if (m == NULL)
3405 		goto fail;
3406 	result = m;
3407 
3408 	for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) {
3409 		m = NULL;
3410 		switch (dumporder[i]) {
3411 		case SADB_EXT_SA:
3412 			m = key_setsadbsa(sav);
3413 			if (!m)
3414 				goto fail;
3415 			break;
3416 
3417 		case SADB_X_EXT_SA2:
3418 			m = key_setsadbxsa2(sav->sah->saidx.mode,
3419 					sav->replay ? sav->replay->count : 0,
3420 					sav->sah->saidx.reqid);
3421 			if (!m)
3422 				goto fail;
3423 			break;
3424 
3425 		case SADB_EXT_ADDRESS_SRC:
3426 			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3427 			    &sav->sah->saidx.src.sa,
3428 			    FULLMASK, IPSEC_ULPROTO_ANY);
3429 			if (!m)
3430 				goto fail;
3431 			break;
3432 
3433 		case SADB_EXT_ADDRESS_DST:
3434 			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3435 			    &sav->sah->saidx.dst.sa,
3436 			    FULLMASK, IPSEC_ULPROTO_ANY);
3437 			if (!m)
3438 				goto fail;
3439 			break;
3440 
3441 		case SADB_EXT_KEY_AUTH:
3442 			if (!sav->key_auth)
3443 				continue;
3444 			m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH);
3445 			if (!m)
3446 				goto fail;
3447 			break;
3448 
3449 		case SADB_EXT_KEY_ENCRYPT:
3450 			if (!sav->key_enc)
3451 				continue;
3452 			m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT);
3453 			if (!m)
3454 				goto fail;
3455 			break;
3456 
3457 		case SADB_EXT_LIFETIME_CURRENT:
3458 			if (!sav->lft_c)
3459 				continue;
3460 			m = key_setlifetime(sav->lft_c,
3461 					    SADB_EXT_LIFETIME_CURRENT);
3462 			if (!m)
3463 				goto fail;
3464 			break;
3465 
3466 		case SADB_EXT_LIFETIME_HARD:
3467 			if (!sav->lft_h)
3468 				continue;
3469 			m = key_setlifetime(sav->lft_h,
3470 					    SADB_EXT_LIFETIME_HARD);
3471 			if (!m)
3472 				goto fail;
3473 			break;
3474 
3475 		case SADB_EXT_LIFETIME_SOFT:
3476 			if (!sav->lft_s)
3477 				continue;
3478 			m = key_setlifetime(sav->lft_s,
3479 					    SADB_EXT_LIFETIME_SOFT);
3480 
3481 			if (!m)
3482 				goto fail;
3483 			break;
3484 
3485 #ifdef IPSEC_NAT_T
3486 		case SADB_X_EXT_NAT_T_TYPE:
3487 			m = key_setsadbxtype(sav->natt_type);
3488 			if (!m)
3489 				goto fail;
3490 			break;
3491 
3492 		case SADB_X_EXT_NAT_T_DPORT:
3493 			m = key_setsadbxport(
3494 			    KEY_PORTFROMSADDR(&sav->sah->saidx.dst),
3495 			    SADB_X_EXT_NAT_T_DPORT);
3496 			if (!m)
3497 				goto fail;
3498 			break;
3499 
3500 		case SADB_X_EXT_NAT_T_SPORT:
3501 			m = key_setsadbxport(
3502 			    KEY_PORTFROMSADDR(&sav->sah->saidx.src),
3503 			    SADB_X_EXT_NAT_T_SPORT);
3504 			if (!m)
3505 				goto fail;
3506 			break;
3507 
3508 		case SADB_X_EXT_NAT_T_OAI:
3509 		case SADB_X_EXT_NAT_T_OAR:
3510 		case SADB_X_EXT_NAT_T_FRAG:
3511 			/* We do not (yet) support those. */
3512 			continue;
3513 #endif
3514 
3515 		case SADB_EXT_ADDRESS_PROXY:
3516 		case SADB_EXT_IDENTITY_SRC:
3517 		case SADB_EXT_IDENTITY_DST:
3518 			/* XXX: should we brought from SPD ? */
3519 		case SADB_EXT_SENSITIVITY:
3520 		default:
3521 			continue;
3522 		}
3523 
3524 		if (!m)
3525 			goto fail;
3526 		if (tres)
3527 			m_cat(m, tres);
3528 		tres = m;
3529 
3530 	}
3531 
3532 	m_cat(result, tres);
3533 	if (result->m_len < sizeof(struct sadb_msg)) {
3534 		result = m_pullup(result, sizeof(struct sadb_msg));
3535 		if (result == NULL)
3536 			goto fail;
3537 	}
3538 
3539 	result->m_pkthdr.len = 0;
3540 	for (m = result; m; m = m->m_next)
3541 		result->m_pkthdr.len += m->m_len;
3542 
3543 	mtod(result, struct sadb_msg *)->sadb_msg_len =
3544 	    PFKEY_UNIT64(result->m_pkthdr.len);
3545 
3546 	return result;
3547 
3548 fail:
3549 	m_freem(result);
3550 	m_freem(tres);
3551 	return NULL;
3552 }
3553 
3554 /*
3555  * set data into sadb_msg.
3556  */
3557 static struct mbuf *
3558 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq,
3559     pid_t pid, u_int16_t reserved)
3560 {
3561 	struct mbuf *m;
3562 	struct sadb_msg *p;
3563 	int len;
3564 
3565 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3566 	if (len > MCLBYTES)
3567 		return NULL;
3568 	MGETHDR(m, M_DONTWAIT, MT_DATA);
3569 	if (m && len > MHLEN) {
3570 		MCLGET(m, M_DONTWAIT);
3571 		if ((m->m_flags & M_EXT) == 0) {
3572 			m_freem(m);
3573 			m = NULL;
3574 		}
3575 	}
3576 	if (!m)
3577 		return NULL;
3578 	m->m_pkthdr.len = m->m_len = len;
3579 	m->m_next = NULL;
3580 
3581 	p = mtod(m, struct sadb_msg *);
3582 
3583 	bzero(p, len);
3584 	p->sadb_msg_version = PF_KEY_V2;
3585 	p->sadb_msg_type = type;
3586 	p->sadb_msg_errno = 0;
3587 	p->sadb_msg_satype = satype;
3588 	p->sadb_msg_len = PFKEY_UNIT64(tlen);
3589 	p->sadb_msg_reserved = reserved;
3590 	p->sadb_msg_seq = seq;
3591 	p->sadb_msg_pid = (u_int32_t)pid;
3592 
3593 	return m;
3594 }
3595 
3596 /*
3597  * copy secasvar data into sadb_address.
3598  */
3599 static struct mbuf *
3600 key_setsadbsa(sav)
3601 	struct secasvar *sav;
3602 {
3603 	struct mbuf *m;
3604 	struct sadb_sa *p;
3605 	int len;
3606 
3607 	len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3608 	m = key_alloc_mbuf(len);
3609 	if (!m || m->m_next) {	/*XXX*/
3610 		if (m)
3611 			m_freem(m);
3612 		return NULL;
3613 	}
3614 
3615 	p = mtod(m, struct sadb_sa *);
3616 
3617 	bzero(p, len);
3618 	p->sadb_sa_len = PFKEY_UNIT64(len);
3619 	p->sadb_sa_exttype = SADB_EXT_SA;
3620 	p->sadb_sa_spi = sav->spi;
3621 	p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3622 	p->sadb_sa_state = sav->state;
3623 	p->sadb_sa_auth = sav->alg_auth;
3624 	p->sadb_sa_encrypt = sav->alg_enc;
3625 	p->sadb_sa_flags = sav->flags;
3626 
3627 	return m;
3628 }
3629 
3630 /*
3631  * set data into sadb_address.
3632  */
3633 static struct mbuf *
3634 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, u_int8_t prefixlen, u_int16_t ul_proto)
3635 {
3636 	struct mbuf *m;
3637 	struct sadb_address *p;
3638 	size_t len;
3639 
3640 	len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3641 	    PFKEY_ALIGN8(saddr->sa_len);
3642 	m = key_alloc_mbuf(len);
3643 	if (!m || m->m_next) {	/*XXX*/
3644 		if (m)
3645 			m_freem(m);
3646 		return NULL;
3647 	}
3648 
3649 	p = mtod(m, struct sadb_address *);
3650 
3651 	bzero(p, len);
3652 	p->sadb_address_len = PFKEY_UNIT64(len);
3653 	p->sadb_address_exttype = exttype;
3654 	p->sadb_address_proto = ul_proto;
3655 	if (prefixlen == FULLMASK) {
3656 		switch (saddr->sa_family) {
3657 		case AF_INET:
3658 			prefixlen = sizeof(struct in_addr) << 3;
3659 			break;
3660 		case AF_INET6:
3661 			prefixlen = sizeof(struct in6_addr) << 3;
3662 			break;
3663 		default:
3664 			; /*XXX*/
3665 		}
3666 	}
3667 	p->sadb_address_prefixlen = prefixlen;
3668 	p->sadb_address_reserved = 0;
3669 
3670 	bcopy(saddr,
3671 	    mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3672 	    saddr->sa_len);
3673 
3674 	return m;
3675 }
3676 
3677 /*
3678  * set data into sadb_x_sa2.
3679  */
3680 static struct mbuf *
3681 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid)
3682 {
3683 	struct mbuf *m;
3684 	struct sadb_x_sa2 *p;
3685 	size_t len;
3686 
3687 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3688 	m = key_alloc_mbuf(len);
3689 	if (!m || m->m_next) {	/*XXX*/
3690 		if (m)
3691 			m_freem(m);
3692 		return NULL;
3693 	}
3694 
3695 	p = mtod(m, struct sadb_x_sa2 *);
3696 
3697 	bzero(p, len);
3698 	p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3699 	p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3700 	p->sadb_x_sa2_mode = mode;
3701 	p->sadb_x_sa2_reserved1 = 0;
3702 	p->sadb_x_sa2_reserved2 = 0;
3703 	p->sadb_x_sa2_sequence = seq;
3704 	p->sadb_x_sa2_reqid = reqid;
3705 
3706 	return m;
3707 }
3708 
3709 #ifdef IPSEC_NAT_T
3710 /*
3711  * Set a type in sadb_x_nat_t_type.
3712  */
3713 static struct mbuf *
3714 key_setsadbxtype(u_int16_t type)
3715 {
3716 	struct mbuf *m;
3717 	size_t len;
3718 	struct sadb_x_nat_t_type *p;
3719 
3720 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3721 
3722 	m = key_alloc_mbuf(len);
3723 	if (!m || m->m_next) {	/*XXX*/
3724 		if (m)
3725 			m_freem(m);
3726 		return (NULL);
3727 	}
3728 
3729 	p = mtod(m, struct sadb_x_nat_t_type *);
3730 
3731 	bzero(p, len);
3732 	p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3733 	p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3734 	p->sadb_x_nat_t_type_type = type;
3735 
3736 	return (m);
3737 }
3738 /*
3739  * Set a port in sadb_x_nat_t_port.
3740  * In contrast to default RFC 2367 behaviour, port is in network byte order.
3741  */
3742 static struct mbuf *
3743 key_setsadbxport(u_int16_t port, u_int16_t type)
3744 {
3745 	struct mbuf *m;
3746 	size_t len;
3747 	struct sadb_x_nat_t_port *p;
3748 
3749 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3750 
3751 	m = key_alloc_mbuf(len);
3752 	if (!m || m->m_next) {	/*XXX*/
3753 		if (m)
3754 			m_freem(m);
3755 		return (NULL);
3756 	}
3757 
3758 	p = mtod(m, struct sadb_x_nat_t_port *);
3759 
3760 	bzero(p, len);
3761 	p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3762 	p->sadb_x_nat_t_port_exttype = type;
3763 	p->sadb_x_nat_t_port_port = port;
3764 
3765 	return (m);
3766 }
3767 
3768 /*
3769  * Get port from sockaddr. Port is in network byte order.
3770  */
3771 u_int16_t
3772 key_portfromsaddr(struct sockaddr *sa)
3773 {
3774 
3775 	switch (sa->sa_family) {
3776 #ifdef INET
3777 	case AF_INET:
3778 		return ((struct sockaddr_in *)sa)->sin_port;
3779 #endif
3780 #ifdef INET6
3781 	case AF_INET6:
3782 		return ((struct sockaddr_in6 *)sa)->sin6_port;
3783 #endif
3784 	}
3785 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
3786 		printf("DP %s unexpected address family %d\n",
3787 			__func__, sa->sa_family));
3788 	return (0);
3789 }
3790 #endif /* IPSEC_NAT_T */
3791 
3792 /*
3793  * Set port in struct sockaddr. Port is in network byte order.
3794  */
3795 static void
3796 key_porttosaddr(struct sockaddr *sa, u_int16_t port)
3797 {
3798 
3799 	switch (sa->sa_family) {
3800 #ifdef INET
3801 	case AF_INET:
3802 		((struct sockaddr_in *)sa)->sin_port = port;
3803 		break;
3804 #endif
3805 #ifdef INET6
3806 	case AF_INET6:
3807 		((struct sockaddr_in6 *)sa)->sin6_port = port;
3808 		break;
3809 #endif
3810 	default:
3811 		ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n",
3812 			__func__, sa->sa_family));
3813 		break;
3814 	}
3815 }
3816 
3817 /*
3818  * set data into sadb_x_policy
3819  */
3820 static struct mbuf *
3821 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
3822 {
3823 	struct mbuf *m;
3824 	struct sadb_x_policy *p;
3825 	size_t len;
3826 
3827 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
3828 	m = key_alloc_mbuf(len);
3829 	if (!m || m->m_next) {	/*XXX*/
3830 		if (m)
3831 			m_freem(m);
3832 		return NULL;
3833 	}
3834 
3835 	p = mtod(m, struct sadb_x_policy *);
3836 
3837 	bzero(p, len);
3838 	p->sadb_x_policy_len = PFKEY_UNIT64(len);
3839 	p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
3840 	p->sadb_x_policy_type = type;
3841 	p->sadb_x_policy_dir = dir;
3842 	p->sadb_x_policy_id = id;
3843 
3844 	return m;
3845 }
3846 
3847 /* %%% utilities */
3848 /* Take a key message (sadb_key) from the socket and turn it into one
3849  * of the kernel's key structures (seckey).
3850  *
3851  * IN: pointer to the src
3852  * OUT: NULL no more memory
3853  */
3854 struct seckey *
3855 key_dup_keymsg(const struct sadb_key *src, u_int len,
3856 	       struct malloc_type *type)
3857 {
3858 	struct seckey *dst;
3859 	dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT);
3860 	if (dst != NULL) {
3861 		dst->bits = src->sadb_key_bits;
3862 		dst->key_data = (char *)malloc(len, type, M_NOWAIT);
3863 		if (dst->key_data != NULL) {
3864 			bcopy((const char *)src + sizeof(struct sadb_key),
3865 			      dst->key_data, len);
3866 		} else {
3867 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3868 				  __func__));
3869 			free(dst, type);
3870 			dst = NULL;
3871 		}
3872 	} else {
3873 		ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3874 			  __func__));
3875 
3876 	}
3877 	return dst;
3878 }
3879 
3880 /* Take a lifetime message (sadb_lifetime) passed in on a socket and
3881  * turn it into one of the kernel's lifetime structures (seclifetime).
3882  *
3883  * IN: pointer to the destination, source and malloc type
3884  * OUT: NULL, no more memory
3885  */
3886 
3887 static struct seclifetime *
3888 key_dup_lifemsg(const struct sadb_lifetime *src,
3889 		 struct malloc_type *type)
3890 {
3891 	struct seclifetime *dst = NULL;
3892 
3893 	dst = (struct seclifetime *)malloc(sizeof(struct seclifetime),
3894 					   type, M_NOWAIT);
3895 	if (dst == NULL) {
3896 		/* XXX counter */
3897 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3898 	} else {
3899 		dst->allocations = src->sadb_lifetime_allocations;
3900 		dst->bytes = src->sadb_lifetime_bytes;
3901 		dst->addtime = src->sadb_lifetime_addtime;
3902 		dst->usetime = src->sadb_lifetime_usetime;
3903 	}
3904 	return dst;
3905 }
3906 
3907 /* compare my own address
3908  * OUT:	1: true, i.e. my address.
3909  *	0: false
3910  */
3911 int
3912 key_ismyaddr(sa)
3913 	struct sockaddr *sa;
3914 {
3915 #ifdef INET
3916 	struct sockaddr_in *sin;
3917 	struct in_ifaddr *ia;
3918 #endif
3919 
3920 	IPSEC_ASSERT(sa != NULL, ("null sockaddr"));
3921 
3922 	switch (sa->sa_family) {
3923 #ifdef INET
3924 	case AF_INET:
3925 		sin = (struct sockaddr_in *)sa;
3926 		IN_IFADDR_RLOCK();
3927 		for (ia = V_in_ifaddrhead.tqh_first; ia;
3928 		     ia = ia->ia_link.tqe_next)
3929 		{
3930 			if (sin->sin_family == ia->ia_addr.sin_family &&
3931 			    sin->sin_len == ia->ia_addr.sin_len &&
3932 			    sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
3933 			{
3934 				IN_IFADDR_RUNLOCK();
3935 				return 1;
3936 			}
3937 		}
3938 		IN_IFADDR_RUNLOCK();
3939 		break;
3940 #endif
3941 #ifdef INET6
3942 	case AF_INET6:
3943 		return key_ismyaddr6((struct sockaddr_in6 *)sa);
3944 #endif
3945 	}
3946 
3947 	return 0;
3948 }
3949 
3950 #ifdef INET6
3951 /*
3952  * compare my own address for IPv6.
3953  * 1: ours
3954  * 0: other
3955  * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
3956  */
3957 #include <netinet6/in6_var.h>
3958 
3959 static int
3960 key_ismyaddr6(sin6)
3961 	struct sockaddr_in6 *sin6;
3962 {
3963 	struct in6_ifaddr *ia;
3964 #if 0
3965 	struct in6_multi *in6m;
3966 #endif
3967 
3968 	IN6_IFADDR_RLOCK();
3969 	TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) {
3970 		if (key_sockaddrcmp((struct sockaddr *)&sin6,
3971 		    (struct sockaddr *)&ia->ia_addr, 0) == 0) {
3972 			IN6_IFADDR_RUNLOCK();
3973 			return 1;
3974 		}
3975 
3976 #if 0
3977 		/*
3978 		 * XXX Multicast
3979 		 * XXX why do we care about multlicast here while we don't care
3980 		 * about IPv4 multicast??
3981 		 * XXX scope
3982 		 */
3983 		in6m = NULL;
3984 		IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m);
3985 		if (in6m) {
3986 			IN6_IFADDR_RUNLOCK();
3987 			return 1;
3988 		}
3989 #endif
3990 	}
3991 	IN6_IFADDR_RUNLOCK();
3992 
3993 	/* loopback, just for safety */
3994 	if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
3995 		return 1;
3996 
3997 	return 0;
3998 }
3999 #endif /*INET6*/
4000 
4001 /*
4002  * compare two secasindex structure.
4003  * flag can specify to compare 2 saidxes.
4004  * compare two secasindex structure without both mode and reqid.
4005  * don't compare port.
4006  * IN:
4007  *      saidx0: source, it can be in SAD.
4008  *      saidx1: object.
4009  * OUT:
4010  *      1 : equal
4011  *      0 : not equal
4012  */
4013 static int
4014 key_cmpsaidx(
4015 	const struct secasindex *saidx0,
4016 	const struct secasindex *saidx1,
4017 	int flag)
4018 {
4019 	int chkport = 0;
4020 
4021 	/* sanity */
4022 	if (saidx0 == NULL && saidx1 == NULL)
4023 		return 1;
4024 
4025 	if (saidx0 == NULL || saidx1 == NULL)
4026 		return 0;
4027 
4028 	if (saidx0->proto != saidx1->proto)
4029 		return 0;
4030 
4031 	if (flag == CMP_EXACTLY) {
4032 		if (saidx0->mode != saidx1->mode)
4033 			return 0;
4034 		if (saidx0->reqid != saidx1->reqid)
4035 			return 0;
4036 		if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
4037 		    bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
4038 			return 0;
4039 	} else {
4040 
4041 		/* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4042 		if (flag == CMP_MODE_REQID
4043 		  ||flag == CMP_REQID) {
4044 			/*
4045 			 * If reqid of SPD is non-zero, unique SA is required.
4046 			 * The result must be of same reqid in this case.
4047 			 */
4048 			if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
4049 				return 0;
4050 		}
4051 
4052 		if (flag == CMP_MODE_REQID) {
4053 			if (saidx0->mode != IPSEC_MODE_ANY
4054 			 && saidx0->mode != saidx1->mode)
4055 				return 0;
4056 		}
4057 
4058 #ifdef IPSEC_NAT_T
4059 		/*
4060 		 * If NAT-T is enabled, check ports for tunnel mode.
4061 		 * Do not check ports if they are set to zero in the SPD.
4062 		 * Also do not do it for transport mode, as there is no
4063 		 * port information available in the SP.
4064 		 */
4065 		if (saidx1->mode == IPSEC_MODE_TUNNEL &&
4066 		    saidx1->src.sa.sa_family == AF_INET &&
4067 		    saidx1->dst.sa.sa_family == AF_INET &&
4068 		    ((const struct sockaddr_in *)(&saidx1->src))->sin_port &&
4069 		    ((const struct sockaddr_in *)(&saidx1->dst))->sin_port)
4070 			chkport = 1;
4071 #endif /* IPSEC_NAT_T */
4072 
4073 		if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, chkport) != 0) {
4074 			return 0;
4075 		}
4076 		if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, chkport) != 0) {
4077 			return 0;
4078 		}
4079 	}
4080 
4081 	return 1;
4082 }
4083 
4084 /*
4085  * compare two secindex structure exactly.
4086  * IN:
4087  *	spidx0: source, it is often in SPD.
4088  *	spidx1: object, it is often from PFKEY message.
4089  * OUT:
4090  *	1 : equal
4091  *	0 : not equal
4092  */
4093 static int
4094 key_cmpspidx_exactly(
4095 	struct secpolicyindex *spidx0,
4096 	struct secpolicyindex *spidx1)
4097 {
4098 	/* sanity */
4099 	if (spidx0 == NULL && spidx1 == NULL)
4100 		return 1;
4101 
4102 	if (spidx0 == NULL || spidx1 == NULL)
4103 		return 0;
4104 
4105 	if (spidx0->prefs != spidx1->prefs
4106 	 || spidx0->prefd != spidx1->prefd
4107 	 || spidx0->ul_proto != spidx1->ul_proto)
4108 		return 0;
4109 
4110 	return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 &&
4111 	       key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0;
4112 }
4113 
4114 /*
4115  * compare two secindex structure with mask.
4116  * IN:
4117  *	spidx0: source, it is often in SPD.
4118  *	spidx1: object, it is often from IP header.
4119  * OUT:
4120  *	1 : equal
4121  *	0 : not equal
4122  */
4123 static int
4124 key_cmpspidx_withmask(
4125 	struct secpolicyindex *spidx0,
4126 	struct secpolicyindex *spidx1)
4127 {
4128 	/* sanity */
4129 	if (spidx0 == NULL && spidx1 == NULL)
4130 		return 1;
4131 
4132 	if (spidx0 == NULL || spidx1 == NULL)
4133 		return 0;
4134 
4135 	if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4136 	    spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4137 	    spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4138 	    spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4139 		return 0;
4140 
4141 	/* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4142 	if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
4143 	 && spidx0->ul_proto != spidx1->ul_proto)
4144 		return 0;
4145 
4146 	switch (spidx0->src.sa.sa_family) {
4147 	case AF_INET:
4148 		if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
4149 		 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4150 			return 0;
4151 		if (!key_bbcmp(&spidx0->src.sin.sin_addr,
4152 		    &spidx1->src.sin.sin_addr, spidx0->prefs))
4153 			return 0;
4154 		break;
4155 	case AF_INET6:
4156 		if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
4157 		 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4158 			return 0;
4159 		/*
4160 		 * scope_id check. if sin6_scope_id is 0, we regard it
4161 		 * as a wildcard scope, which matches any scope zone ID.
4162 		 */
4163 		if (spidx0->src.sin6.sin6_scope_id &&
4164 		    spidx1->src.sin6.sin6_scope_id &&
4165 		    spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4166 			return 0;
4167 		if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
4168 		    &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4169 			return 0;
4170 		break;
4171 	default:
4172 		/* XXX */
4173 		if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4174 			return 0;
4175 		break;
4176 	}
4177 
4178 	switch (spidx0->dst.sa.sa_family) {
4179 	case AF_INET:
4180 		if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
4181 		 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4182 			return 0;
4183 		if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
4184 		    &spidx1->dst.sin.sin_addr, spidx0->prefd))
4185 			return 0;
4186 		break;
4187 	case AF_INET6:
4188 		if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
4189 		 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4190 			return 0;
4191 		/*
4192 		 * scope_id check. if sin6_scope_id is 0, we regard it
4193 		 * as a wildcard scope, which matches any scope zone ID.
4194 		 */
4195 		if (spidx0->dst.sin6.sin6_scope_id &&
4196 		    spidx1->dst.sin6.sin6_scope_id &&
4197 		    spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4198 			return 0;
4199 		if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
4200 		    &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4201 			return 0;
4202 		break;
4203 	default:
4204 		/* XXX */
4205 		if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4206 			return 0;
4207 		break;
4208 	}
4209 
4210 	/* XXX Do we check other field ?  e.g. flowinfo */
4211 
4212 	return 1;
4213 }
4214 
4215 /* returns 0 on match */
4216 static int
4217 key_sockaddrcmp(
4218 	const struct sockaddr *sa1,
4219 	const struct sockaddr *sa2,
4220 	int port)
4221 {
4222 #ifdef satosin
4223 #undef satosin
4224 #endif
4225 #define satosin(s) ((const struct sockaddr_in *)s)
4226 #ifdef satosin6
4227 #undef satosin6
4228 #endif
4229 #define satosin6(s) ((const struct sockaddr_in6 *)s)
4230 	if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
4231 		return 1;
4232 
4233 	switch (sa1->sa_family) {
4234 	case AF_INET:
4235 		if (sa1->sa_len != sizeof(struct sockaddr_in))
4236 			return 1;
4237 		if (satosin(sa1)->sin_addr.s_addr !=
4238 		    satosin(sa2)->sin_addr.s_addr) {
4239 			return 1;
4240 		}
4241 		if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port)
4242 			return 1;
4243 		break;
4244 	case AF_INET6:
4245 		if (sa1->sa_len != sizeof(struct sockaddr_in6))
4246 			return 1;	/*EINVAL*/
4247 		if (satosin6(sa1)->sin6_scope_id !=
4248 		    satosin6(sa2)->sin6_scope_id) {
4249 			return 1;
4250 		}
4251 		if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr,
4252 		    &satosin6(sa2)->sin6_addr)) {
4253 			return 1;
4254 		}
4255 		if (port &&
4256 		    satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) {
4257 			return 1;
4258 		}
4259 		break;
4260 	default:
4261 		if (bcmp(sa1, sa2, sa1->sa_len) != 0)
4262 			return 1;
4263 		break;
4264 	}
4265 
4266 	return 0;
4267 #undef satosin
4268 #undef satosin6
4269 }
4270 
4271 /*
4272  * compare two buffers with mask.
4273  * IN:
4274  *	addr1: source
4275  *	addr2: object
4276  *	bits:  Number of bits to compare
4277  * OUT:
4278  *	1 : equal
4279  *	0 : not equal
4280  */
4281 static int
4282 key_bbcmp(const void *a1, const void *a2, u_int bits)
4283 {
4284 	const unsigned char *p1 = a1;
4285 	const unsigned char *p2 = a2;
4286 
4287 	/* XXX: This could be considerably faster if we compare a word
4288 	 * at a time, but it is complicated on LSB Endian machines */
4289 
4290 	/* Handle null pointers */
4291 	if (p1 == NULL || p2 == NULL)
4292 		return (p1 == p2);
4293 
4294 	while (bits >= 8) {
4295 		if (*p1++ != *p2++)
4296 			return 0;
4297 		bits -= 8;
4298 	}
4299 
4300 	if (bits > 0) {
4301 		u_int8_t mask = ~((1<<(8-bits))-1);
4302 		if ((*p1 & mask) != (*p2 & mask))
4303 			return 0;
4304 	}
4305 	return 1;	/* Match! */
4306 }
4307 
4308 static void
4309 key_flush_spd(time_t now)
4310 {
4311 	static u_int16_t sptree_scangen = 0;
4312 	u_int16_t gen = sptree_scangen++;
4313 	struct secpolicy *sp;
4314 	u_int dir;
4315 
4316 	/* SPD */
4317 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4318 restart:
4319 		SPTREE_LOCK();
4320 		LIST_FOREACH(sp, &V_sptree[dir], chain) {
4321 			if (sp->scangen == gen)		/* previously handled */
4322 				continue;
4323 			sp->scangen = gen;
4324 			if (sp->state == IPSEC_SPSTATE_DEAD &&
4325 			    sp->refcnt == 1) {
4326 				/*
4327 				 * Ensure that we only decrease refcnt once,
4328 				 * when we're the last consumer.
4329 				 * Directly call SP_DELREF/key_delsp instead
4330 				 * of KEY_FREESP to avoid unlocking/relocking
4331 				 * SPTREE_LOCK before key_delsp: may refcnt
4332 				 * be increased again during that time ?
4333 				 * NB: also clean entries created by
4334 				 * key_spdflush
4335 				 */
4336 				SP_DELREF(sp);
4337 				key_delsp(sp);
4338 				SPTREE_UNLOCK();
4339 				goto restart;
4340 			}
4341 			if (sp->lifetime == 0 && sp->validtime == 0)
4342 				continue;
4343 			if ((sp->lifetime && now - sp->created > sp->lifetime)
4344 			 || (sp->validtime && now - sp->lastused > sp->validtime)) {
4345 				sp->state = IPSEC_SPSTATE_DEAD;
4346 				SPTREE_UNLOCK();
4347 				key_spdexpire(sp);
4348 				goto restart;
4349 			}
4350 		}
4351 		SPTREE_UNLOCK();
4352 	}
4353 }
4354 
4355 static void
4356 key_flush_sad(time_t now)
4357 {
4358 	struct secashead *sah, *nextsah;
4359 	struct secasvar *sav, *nextsav;
4360 
4361 	/* SAD */
4362 	SAHTREE_LOCK();
4363 	LIST_FOREACH_SAFE(sah, &V_sahtree, chain, nextsah) {
4364 		/* if sah has been dead, then delete it and process next sah. */
4365 		if (sah->state == SADB_SASTATE_DEAD) {
4366 			key_delsah(sah);
4367 			continue;
4368 		}
4369 
4370 		/* if LARVAL entry doesn't become MATURE, delete it. */
4371 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) {
4372 			/* Need to also check refcnt for a larval SA ??? */
4373 			if (now - sav->created > V_key_larval_lifetime)
4374 				KEY_FREESAV(&sav);
4375 		}
4376 
4377 		/*
4378 		 * check MATURE entry to start to send expire message
4379 		 * whether or not.
4380 		 */
4381 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) {
4382 			/* we don't need to check. */
4383 			if (sav->lft_s == NULL)
4384 				continue;
4385 
4386 			/* sanity check */
4387 			if (sav->lft_c == NULL) {
4388 				ipseclog((LOG_DEBUG,"%s: there is no CURRENT "
4389 					"time, why?\n", __func__));
4390 				continue;
4391 			}
4392 
4393 			/* check SOFT lifetime */
4394 			if (sav->lft_s->addtime != 0 &&
4395 			    now - sav->created > sav->lft_s->addtime) {
4396 				key_sa_chgstate(sav, SADB_SASTATE_DYING);
4397 				/*
4398 				 * Actually, only send expire message if
4399 				 * SA has been used, as it was done before,
4400 				 * but should we always send such message,
4401 				 * and let IKE daemon decide if it should be
4402 				 * renegotiated or not ?
4403 				 * XXX expire message will actually NOT be
4404 				 * sent if SA is only used after soft
4405 				 * lifetime has been reached, see below
4406 				 * (DYING state)
4407 				 */
4408 				if (sav->lft_c->usetime != 0)
4409 					key_expire(sav);
4410 			}
4411 			/* check SOFT lifetime by bytes */
4412 			/*
4413 			 * XXX I don't know the way to delete this SA
4414 			 * when new SA is installed.  Caution when it's
4415 			 * installed too big lifetime by time.
4416 			 */
4417 			else if (sav->lft_s->bytes != 0 &&
4418 			    sav->lft_s->bytes < sav->lft_c->bytes) {
4419 
4420 				key_sa_chgstate(sav, SADB_SASTATE_DYING);
4421 				/*
4422 				 * XXX If we keep to send expire
4423 				 * message in the status of
4424 				 * DYING. Do remove below code.
4425 				 */
4426 				key_expire(sav);
4427 			}
4428 		}
4429 
4430 		/* check DYING entry to change status to DEAD. */
4431 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) {
4432 			/* we don't need to check. */
4433 			if (sav->lft_h == NULL)
4434 				continue;
4435 
4436 			/* sanity check */
4437 			if (sav->lft_c == NULL) {
4438 				ipseclog((LOG_DEBUG, "%s: there is no CURRENT "
4439 					"time, why?\n", __func__));
4440 				continue;
4441 			}
4442 
4443 			if (sav->lft_h->addtime != 0 &&
4444 			    now - sav->created > sav->lft_h->addtime) {
4445 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4446 				KEY_FREESAV(&sav);
4447 			}
4448 #if 0	/* XXX Should we keep to send expire message until HARD lifetime ? */
4449 			else if (sav->lft_s != NULL
4450 			      && sav->lft_s->addtime != 0
4451 			      && now - sav->created > sav->lft_s->addtime) {
4452 				/*
4453 				 * XXX: should be checked to be
4454 				 * installed the valid SA.
4455 				 */
4456 
4457 				/*
4458 				 * If there is no SA then sending
4459 				 * expire message.
4460 				 */
4461 				key_expire(sav);
4462 			}
4463 #endif
4464 			/* check HARD lifetime by bytes */
4465 			else if (sav->lft_h->bytes != 0 &&
4466 			    sav->lft_h->bytes < sav->lft_c->bytes) {
4467 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4468 				KEY_FREESAV(&sav);
4469 			}
4470 		}
4471 
4472 		/* delete entry in DEAD */
4473 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) {
4474 			/* sanity check */
4475 			if (sav->state != SADB_SASTATE_DEAD) {
4476 				ipseclog((LOG_DEBUG, "%s: invalid sav->state "
4477 					"(queue: %d SA: %d): kill it anyway\n",
4478 					__func__,
4479 					SADB_SASTATE_DEAD, sav->state));
4480 			}
4481 			/*
4482 			 * do not call key_freesav() here.
4483 			 * sav should already be freed, and sav->refcnt
4484 			 * shows other references to sav
4485 			 * (such as from SPD).
4486 			 */
4487 		}
4488 	}
4489 	SAHTREE_UNLOCK();
4490 }
4491 
4492 static void
4493 key_flush_acq(time_t now)
4494 {
4495 	struct secacq *acq, *nextacq;
4496 
4497 	/* ACQ tree */
4498 	ACQ_LOCK();
4499 	for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) {
4500 		nextacq = LIST_NEXT(acq, chain);
4501 		if (now - acq->created > V_key_blockacq_lifetime
4502 		 && __LIST_CHAINED(acq)) {
4503 			LIST_REMOVE(acq, chain);
4504 			free(acq, M_IPSEC_SAQ);
4505 		}
4506 	}
4507 	ACQ_UNLOCK();
4508 }
4509 
4510 static void
4511 key_flush_spacq(time_t now)
4512 {
4513 	struct secspacq *acq, *nextacq;
4514 
4515 	/* SP ACQ tree */
4516 	SPACQ_LOCK();
4517 	for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) {
4518 		nextacq = LIST_NEXT(acq, chain);
4519 		if (now - acq->created > V_key_blockacq_lifetime
4520 		 && __LIST_CHAINED(acq)) {
4521 			LIST_REMOVE(acq, chain);
4522 			free(acq, M_IPSEC_SAQ);
4523 		}
4524 	}
4525 	SPACQ_UNLOCK();
4526 }
4527 
4528 /*
4529  * time handler.
4530  * scanning SPD and SAD to check status for each entries,
4531  * and do to remove or to expire.
4532  * XXX: year 2038 problem may remain.
4533  */
4534 void
4535 key_timehandler(void)
4536 {
4537 	VNET_ITERATOR_DECL(vnet_iter);
4538 	time_t now = time_second;
4539 
4540 	VNET_LIST_RLOCK_NOSLEEP();
4541 	VNET_FOREACH(vnet_iter) {
4542 		CURVNET_SET(vnet_iter);
4543 		key_flush_spd(now);
4544 		key_flush_sad(now);
4545 		key_flush_acq(now);
4546 		key_flush_spacq(now);
4547 		CURVNET_RESTORE();
4548 	}
4549 	VNET_LIST_RUNLOCK_NOSLEEP();
4550 
4551 #ifndef IPSEC_DEBUG2
4552 	/* do exchange to tick time !! */
4553 	(void)timeout((void *)key_timehandler, (void *)0, hz);
4554 #endif /* IPSEC_DEBUG2 */
4555 }
4556 
4557 u_long
4558 key_random()
4559 {
4560 	u_long value;
4561 
4562 	key_randomfill(&value, sizeof(value));
4563 	return value;
4564 }
4565 
4566 void
4567 key_randomfill(p, l)
4568 	void *p;
4569 	size_t l;
4570 {
4571 	size_t n;
4572 	u_long v;
4573 	static int warn = 1;
4574 
4575 	n = 0;
4576 	n = (size_t)read_random(p, (u_int)l);
4577 	/* last resort */
4578 	while (n < l) {
4579 		v = random();
4580 		bcopy(&v, (u_int8_t *)p + n,
4581 		    l - n < sizeof(v) ? l - n : sizeof(v));
4582 		n += sizeof(v);
4583 
4584 		if (warn) {
4585 			printf("WARNING: pseudo-random number generator "
4586 			    "used for IPsec processing\n");
4587 			warn = 0;
4588 		}
4589 	}
4590 }
4591 
4592 /*
4593  * map SADB_SATYPE_* to IPPROTO_*.
4594  * if satype == SADB_SATYPE then satype is mapped to ~0.
4595  * OUT:
4596  *	0: invalid satype.
4597  */
4598 static u_int16_t
4599 key_satype2proto(u_int8_t satype)
4600 {
4601 	switch (satype) {
4602 	case SADB_SATYPE_UNSPEC:
4603 		return IPSEC_PROTO_ANY;
4604 	case SADB_SATYPE_AH:
4605 		return IPPROTO_AH;
4606 	case SADB_SATYPE_ESP:
4607 		return IPPROTO_ESP;
4608 	case SADB_X_SATYPE_IPCOMP:
4609 		return IPPROTO_IPCOMP;
4610 	case SADB_X_SATYPE_TCPSIGNATURE:
4611 		return IPPROTO_TCP;
4612 	default:
4613 		return 0;
4614 	}
4615 	/* NOTREACHED */
4616 }
4617 
4618 /*
4619  * map IPPROTO_* to SADB_SATYPE_*
4620  * OUT:
4621  *	0: invalid protocol type.
4622  */
4623 static u_int8_t
4624 key_proto2satype(u_int16_t proto)
4625 {
4626 	switch (proto) {
4627 	case IPPROTO_AH:
4628 		return SADB_SATYPE_AH;
4629 	case IPPROTO_ESP:
4630 		return SADB_SATYPE_ESP;
4631 	case IPPROTO_IPCOMP:
4632 		return SADB_X_SATYPE_IPCOMP;
4633 	case IPPROTO_TCP:
4634 		return SADB_X_SATYPE_TCPSIGNATURE;
4635 	default:
4636 		return 0;
4637 	}
4638 	/* NOTREACHED */
4639 }
4640 
4641 /* %%% PF_KEY */
4642 /*
4643  * SADB_GETSPI processing is to receive
4644  *	<base, (SA2), src address, dst address, (SPI range)>
4645  * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4646  * tree with the status of LARVAL, and send
4647  *	<base, SA(*), address(SD)>
4648  * to the IKMPd.
4649  *
4650  * IN:	mhp: pointer to the pointer to each header.
4651  * OUT:	NULL if fail.
4652  *	other if success, return pointer to the message to send.
4653  */
4654 static int
4655 key_getspi(so, m, mhp)
4656 	struct socket *so;
4657 	struct mbuf *m;
4658 	const struct sadb_msghdr *mhp;
4659 {
4660 	struct sadb_address *src0, *dst0;
4661 	struct secasindex saidx;
4662 	struct secashead *newsah;
4663 	struct secasvar *newsav;
4664 	u_int8_t proto;
4665 	u_int32_t spi;
4666 	u_int8_t mode;
4667 	u_int32_t reqid;
4668 	int error;
4669 
4670 	IPSEC_ASSERT(so != NULL, ("null socket"));
4671 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4672 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4673 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4674 
4675 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4676 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4677 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4678 			__func__));
4679 		return key_senderror(so, m, EINVAL);
4680 	}
4681 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4682 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4683 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4684 			__func__));
4685 		return key_senderror(so, m, EINVAL);
4686 	}
4687 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4688 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4689 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4690 	} else {
4691 		mode = IPSEC_MODE_ANY;
4692 		reqid = 0;
4693 	}
4694 
4695 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4696 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4697 
4698 	/* map satype to proto */
4699 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4700 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4701 			__func__));
4702 		return key_senderror(so, m, EINVAL);
4703 	}
4704 
4705 	/*
4706 	 * Make sure the port numbers are zero.
4707 	 * In case of NAT-T we will update them later if needed.
4708 	 */
4709 	switch (((struct sockaddr *)(src0 + 1))->sa_family) {
4710 	case AF_INET:
4711 		if (((struct sockaddr *)(src0 + 1))->sa_len !=
4712 		    sizeof(struct sockaddr_in))
4713 			return key_senderror(so, m, EINVAL);
4714 		((struct sockaddr_in *)(src0 + 1))->sin_port = 0;
4715 		break;
4716 	case AF_INET6:
4717 		if (((struct sockaddr *)(src0 + 1))->sa_len !=
4718 		    sizeof(struct sockaddr_in6))
4719 			return key_senderror(so, m, EINVAL);
4720 		((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0;
4721 		break;
4722 	default:
4723 		; /*???*/
4724 	}
4725 	switch (((struct sockaddr *)(dst0 + 1))->sa_family) {
4726 	case AF_INET:
4727 		if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4728 		    sizeof(struct sockaddr_in))
4729 			return key_senderror(so, m, EINVAL);
4730 		((struct sockaddr_in *)(dst0 + 1))->sin_port = 0;
4731 		break;
4732 	case AF_INET6:
4733 		if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4734 		    sizeof(struct sockaddr_in6))
4735 			return key_senderror(so, m, EINVAL);
4736 		((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0;
4737 		break;
4738 	default:
4739 		; /*???*/
4740 	}
4741 
4742 	/* XXX boundary check against sa_len */
4743 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4744 
4745 #ifdef IPSEC_NAT_T
4746 	/*
4747 	 * Handle NAT-T info if present.
4748 	 * We made sure the port numbers are zero above, so we do
4749 	 * not have to worry in case we do not update them.
4750 	 */
4751 	if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
4752 		ipseclog((LOG_DEBUG, "%s: NAT-T OAi present\n", __func__));
4753 	if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
4754 		ipseclog((LOG_DEBUG, "%s: NAT-T OAr present\n", __func__));
4755 
4756 	if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
4757 	    mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
4758 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
4759 		struct sadb_x_nat_t_type *type;
4760 		struct sadb_x_nat_t_port *sport, *dport;
4761 
4762 		if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
4763 		    mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
4764 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
4765 			ipseclog((LOG_DEBUG, "%s: invalid nat-t message "
4766 			    "passed.\n", __func__));
4767 			return key_senderror(so, m, EINVAL);
4768 		}
4769 
4770 		sport = (struct sadb_x_nat_t_port *)
4771 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
4772 		dport = (struct sadb_x_nat_t_port *)
4773 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
4774 
4775 		if (sport)
4776 			KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port);
4777 		if (dport)
4778 			KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port);
4779 	}
4780 #endif
4781 
4782 	/* SPI allocation */
4783 	spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4784 	                       &saidx);
4785 	if (spi == 0)
4786 		return key_senderror(so, m, EINVAL);
4787 
4788 	/* get a SA index */
4789 	if ((newsah = key_getsah(&saidx)) == NULL) {
4790 		/* create a new SA index */
4791 		if ((newsah = key_newsah(&saidx)) == NULL) {
4792 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
4793 			return key_senderror(so, m, ENOBUFS);
4794 		}
4795 	}
4796 
4797 	/* get a new SA */
4798 	/* XXX rewrite */
4799 	newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4800 	if (newsav == NULL) {
4801 		/* XXX don't free new SA index allocated in above. */
4802 		return key_senderror(so, m, error);
4803 	}
4804 
4805 	/* set spi */
4806 	newsav->spi = htonl(spi);
4807 
4808 	/* delete the entry in acqtree */
4809 	if (mhp->msg->sadb_msg_seq != 0) {
4810 		struct secacq *acq;
4811 		if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) {
4812 			/* reset counter in order to deletion by timehandler. */
4813 			acq->created = time_second;
4814 			acq->count = 0;
4815 		}
4816     	}
4817 
4818     {
4819 	struct mbuf *n, *nn;
4820 	struct sadb_sa *m_sa;
4821 	struct sadb_msg *newmsg;
4822 	int off, len;
4823 
4824 	/* create new sadb_msg to reply. */
4825 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4826 	    PFKEY_ALIGN8(sizeof(struct sadb_sa));
4827 
4828 	MGETHDR(n, M_DONTWAIT, MT_DATA);
4829 	if (len > MHLEN) {
4830 		MCLGET(n, M_DONTWAIT);
4831 		if ((n->m_flags & M_EXT) == 0) {
4832 			m_freem(n);
4833 			n = NULL;
4834 		}
4835 	}
4836 	if (!n)
4837 		return key_senderror(so, m, ENOBUFS);
4838 
4839 	n->m_len = len;
4840 	n->m_next = NULL;
4841 	off = 0;
4842 
4843 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
4844 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4845 
4846 	m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off);
4847 	m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4848 	m_sa->sadb_sa_exttype = SADB_EXT_SA;
4849 	m_sa->sadb_sa_spi = htonl(spi);
4850 	off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4851 
4852 	IPSEC_ASSERT(off == len,
4853 		("length inconsistency (off %u len %u)", off, len));
4854 
4855 	n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4856 	    SADB_EXT_ADDRESS_DST);
4857 	if (!n->m_next) {
4858 		m_freem(n);
4859 		return key_senderror(so, m, ENOBUFS);
4860 	}
4861 
4862 	if (n->m_len < sizeof(struct sadb_msg)) {
4863 		n = m_pullup(n, sizeof(struct sadb_msg));
4864 		if (n == NULL)
4865 			return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
4866 	}
4867 
4868 	n->m_pkthdr.len = 0;
4869 	for (nn = n; nn; nn = nn->m_next)
4870 		n->m_pkthdr.len += nn->m_len;
4871 
4872 	newmsg = mtod(n, struct sadb_msg *);
4873 	newmsg->sadb_msg_seq = newsav->seq;
4874 	newmsg->sadb_msg_errno = 0;
4875 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
4876 
4877 	m_freem(m);
4878 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
4879     }
4880 }
4881 
4882 /*
4883  * allocating new SPI
4884  * called by key_getspi().
4885  * OUT:
4886  *	0:	failure.
4887  *	others: success.
4888  */
4889 static u_int32_t
4890 key_do_getnewspi(spirange, saidx)
4891 	struct sadb_spirange *spirange;
4892 	struct secasindex *saidx;
4893 {
4894 	u_int32_t newspi;
4895 	u_int32_t min, max;
4896 	int count = V_key_spi_trycnt;
4897 
4898 	/* set spi range to allocate */
4899 	if (spirange != NULL) {
4900 		min = spirange->sadb_spirange_min;
4901 		max = spirange->sadb_spirange_max;
4902 	} else {
4903 		min = V_key_spi_minval;
4904 		max = V_key_spi_maxval;
4905 	}
4906 	/* IPCOMP needs 2-byte SPI */
4907 	if (saidx->proto == IPPROTO_IPCOMP) {
4908 		u_int32_t t;
4909 		if (min >= 0x10000)
4910 			min = 0xffff;
4911 		if (max >= 0x10000)
4912 			max = 0xffff;
4913 		if (min > max) {
4914 			t = min; min = max; max = t;
4915 		}
4916 	}
4917 
4918 	if (min == max) {
4919 		if (key_checkspidup(saidx, min) != NULL) {
4920 			ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n",
4921 				__func__, min));
4922 			return 0;
4923 		}
4924 
4925 		count--; /* taking one cost. */
4926 		newspi = min;
4927 
4928 	} else {
4929 
4930 		/* init SPI */
4931 		newspi = 0;
4932 
4933 		/* when requesting to allocate spi ranged */
4934 		while (count--) {
4935 			/* generate pseudo-random SPI value ranged. */
4936 			newspi = min + (key_random() % (max - min + 1));
4937 
4938 			if (key_checkspidup(saidx, newspi) == NULL)
4939 				break;
4940 		}
4941 
4942 		if (count == 0 || newspi == 0) {
4943 			ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n",
4944 				__func__));
4945 			return 0;
4946 		}
4947 	}
4948 
4949 	/* statistics */
4950 	keystat.getspi_count =
4951 		(keystat.getspi_count + V_key_spi_trycnt - count) / 2;
4952 
4953 	return newspi;
4954 }
4955 
4956 /*
4957  * SADB_UPDATE processing
4958  * receive
4959  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4960  *       key(AE), (identity(SD),) (sensitivity)>
4961  * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
4962  * and send
4963  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4964  *       (identity(SD),) (sensitivity)>
4965  * to the ikmpd.
4966  *
4967  * m will always be freed.
4968  */
4969 static int
4970 key_update(so, m, mhp)
4971 	struct socket *so;
4972 	struct mbuf *m;
4973 	const struct sadb_msghdr *mhp;
4974 {
4975 	struct sadb_sa *sa0;
4976 	struct sadb_address *src0, *dst0;
4977 #ifdef IPSEC_NAT_T
4978 	struct sadb_x_nat_t_type *type;
4979 	struct sadb_x_nat_t_port *sport, *dport;
4980 	struct sadb_address *iaddr, *raddr;
4981 	struct sadb_x_nat_t_frag *frag;
4982 #endif
4983 	struct secasindex saidx;
4984 	struct secashead *sah;
4985 	struct secasvar *sav;
4986 	u_int16_t proto;
4987 	u_int8_t mode;
4988 	u_int32_t reqid;
4989 	int error;
4990 
4991 	IPSEC_ASSERT(so != NULL, ("null socket"));
4992 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4993 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4994 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4995 
4996 	/* map satype to proto */
4997 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4998 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4999 			__func__));
5000 		return key_senderror(so, m, EINVAL);
5001 	}
5002 
5003 	if (mhp->ext[SADB_EXT_SA] == NULL ||
5004 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5005 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5006 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5007 	     mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5008 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5009 	     mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5010 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5011 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5012 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5013 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5014 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5015 			__func__));
5016 		return key_senderror(so, m, EINVAL);
5017 	}
5018 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5019 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5020 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5021 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5022 			__func__));
5023 		return key_senderror(so, m, EINVAL);
5024 	}
5025 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5026 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5027 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5028 	} else {
5029 		mode = IPSEC_MODE_ANY;
5030 		reqid = 0;
5031 	}
5032 	/* XXX boundary checking for other extensions */
5033 
5034 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5035 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5036 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5037 
5038 	/* XXX boundary check against sa_len */
5039 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5040 
5041 	/*
5042 	 * Make sure the port numbers are zero.
5043 	 * In case of NAT-T we will update them later if needed.
5044 	 */
5045 	KEY_PORTTOSADDR(&saidx.src, 0);
5046 	KEY_PORTTOSADDR(&saidx.dst, 0);
5047 
5048 #ifdef IPSEC_NAT_T
5049 	/*
5050 	 * Handle NAT-T info if present.
5051 	 */
5052 	if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
5053 	    mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5054 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5055 
5056 		if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
5057 		    mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5058 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5059 			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5060 			    __func__));
5061 			return key_senderror(so, m, EINVAL);
5062 		}
5063 
5064 		type = (struct sadb_x_nat_t_type *)
5065 		    mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5066 		sport = (struct sadb_x_nat_t_port *)
5067 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5068 		dport = (struct sadb_x_nat_t_port *)
5069 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5070 	} else {
5071 		type = 0;
5072 		sport = dport = 0;
5073 	}
5074 	if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL &&
5075 	    mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5076 		if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) ||
5077 		    mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5078 			ipseclog((LOG_DEBUG, "%s: invalid message\n",
5079 			    __func__));
5080 			return key_senderror(so, m, EINVAL);
5081 		}
5082 		iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5083 		raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5084 		ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__));
5085 	} else {
5086 		iaddr = raddr = NULL;
5087 	}
5088 	if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5089 		if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5090 			ipseclog((LOG_DEBUG, "%s: invalid message\n",
5091 			    __func__));
5092 			return key_senderror(so, m, EINVAL);
5093 		}
5094 		frag = (struct sadb_x_nat_t_frag *)
5095 		    mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5096 	} else {
5097 		frag = 0;
5098 	}
5099 #endif
5100 
5101 	/* get a SA header */
5102 	if ((sah = key_getsah(&saidx)) == NULL) {
5103 		ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__));
5104 		return key_senderror(so, m, ENOENT);
5105 	}
5106 
5107 	/* set spidx if there */
5108 	/* XXX rewrite */
5109 	error = key_setident(sah, m, mhp);
5110 	if (error)
5111 		return key_senderror(so, m, error);
5112 
5113 	/* find a SA with sequence number. */
5114 #ifdef IPSEC_DOSEQCHECK
5115 	if (mhp->msg->sadb_msg_seq != 0
5116 	 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) {
5117 		ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u "
5118 			"exists.\n", __func__, mhp->msg->sadb_msg_seq));
5119 		return key_senderror(so, m, ENOENT);
5120 	}
5121 #else
5122 	SAHTREE_LOCK();
5123 	sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5124 	SAHTREE_UNLOCK();
5125 	if (sav == NULL) {
5126 		ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n",
5127 			__func__, (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5128 		return key_senderror(so, m, EINVAL);
5129 	}
5130 #endif
5131 
5132 	/* validity check */
5133 	if (sav->sah->saidx.proto != proto) {
5134 		ipseclog((LOG_DEBUG, "%s: protocol mismatched "
5135 			"(DB=%u param=%u)\n", __func__,
5136 			sav->sah->saidx.proto, proto));
5137 		return key_senderror(so, m, EINVAL);
5138 	}
5139 #ifdef IPSEC_DOSEQCHECK
5140 	if (sav->spi != sa0->sadb_sa_spi) {
5141 		ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n",
5142 		    __func__,
5143 		    (u_int32_t)ntohl(sav->spi),
5144 		    (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5145 		return key_senderror(so, m, EINVAL);
5146 	}
5147 #endif
5148 	if (sav->pid != mhp->msg->sadb_msg_pid) {
5149 		ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n",
5150 		    __func__, sav->pid, mhp->msg->sadb_msg_pid));
5151 		return key_senderror(so, m, EINVAL);
5152 	}
5153 
5154 	/* copy sav values */
5155 	error = key_setsaval(sav, m, mhp);
5156 	if (error) {
5157 		KEY_FREESAV(&sav);
5158 		return key_senderror(so, m, error);
5159 	}
5160 
5161 	/* check SA values to be mature. */
5162 	if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) {
5163 		KEY_FREESAV(&sav);
5164 		return key_senderror(so, m, 0);
5165 	}
5166 
5167 #ifdef IPSEC_NAT_T
5168 	/*
5169 	 * Handle more NAT-T info if present,
5170 	 * now that we have a sav to fill.
5171 	 */
5172 	if (type)
5173 		sav->natt_type = type->sadb_x_nat_t_type_type;
5174 
5175 	if (sport)
5176 		KEY_PORTTOSADDR(&sav->sah->saidx.src,
5177 		    sport->sadb_x_nat_t_port_port);
5178 	if (dport)
5179 		KEY_PORTTOSADDR(&sav->sah->saidx.dst,
5180 		    dport->sadb_x_nat_t_port_port);
5181 
5182 #if 0
5183 	/*
5184 	 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0.
5185 	 * We should actually check for a minimum MTU here, if we
5186 	 * want to support it in ip_output.
5187 	 */
5188 	if (frag)
5189 		sav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen;
5190 #endif
5191 #endif
5192 
5193     {
5194 	struct mbuf *n;
5195 
5196 	/* set msg buf from mhp */
5197 	n = key_getmsgbuf_x1(m, mhp);
5198 	if (n == NULL) {
5199 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5200 		return key_senderror(so, m, ENOBUFS);
5201 	}
5202 
5203 	m_freem(m);
5204 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5205     }
5206 }
5207 
5208 /*
5209  * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5210  * only called by key_update().
5211  * OUT:
5212  *	NULL	: not found
5213  *	others	: found, pointer to a SA.
5214  */
5215 #ifdef IPSEC_DOSEQCHECK
5216 static struct secasvar *
5217 key_getsavbyseq(sah, seq)
5218 	struct secashead *sah;
5219 	u_int32_t seq;
5220 {
5221 	struct secasvar *sav;
5222 	u_int state;
5223 
5224 	state = SADB_SASTATE_LARVAL;
5225 
5226 	/* search SAD with sequence number ? */
5227 	LIST_FOREACH(sav, &sah->savtree[state], chain) {
5228 
5229 		KEY_CHKSASTATE(state, sav->state, __func__);
5230 
5231 		if (sav->seq == seq) {
5232 			sa_addref(sav);
5233 			KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
5234 				printf("DP %s cause refcnt++:%d SA:%p\n",
5235 					__func__, sav->refcnt, sav));
5236 			return sav;
5237 		}
5238 	}
5239 
5240 	return NULL;
5241 }
5242 #endif
5243 
5244 /*
5245  * SADB_ADD processing
5246  * add an entry to SA database, when received
5247  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5248  *       key(AE), (identity(SD),) (sensitivity)>
5249  * from the ikmpd,
5250  * and send
5251  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5252  *       (identity(SD),) (sensitivity)>
5253  * to the ikmpd.
5254  *
5255  * IGNORE identity and sensitivity messages.
5256  *
5257  * m will always be freed.
5258  */
5259 static int
5260 key_add(so, m, mhp)
5261 	struct socket *so;
5262 	struct mbuf *m;
5263 	const struct sadb_msghdr *mhp;
5264 {
5265 	struct sadb_sa *sa0;
5266 	struct sadb_address *src0, *dst0;
5267 #ifdef IPSEC_NAT_T
5268 	struct sadb_x_nat_t_type *type;
5269 	struct sadb_address *iaddr, *raddr;
5270 	struct sadb_x_nat_t_frag *frag;
5271 #endif
5272 	struct secasindex saidx;
5273 	struct secashead *newsah;
5274 	struct secasvar *newsav;
5275 	u_int16_t proto;
5276 	u_int8_t mode;
5277 	u_int32_t reqid;
5278 	int error;
5279 
5280 	IPSEC_ASSERT(so != NULL, ("null socket"));
5281 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5282 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5283 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5284 
5285 	/* map satype to proto */
5286 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5287 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5288 			__func__));
5289 		return key_senderror(so, m, EINVAL);
5290 	}
5291 
5292 	if (mhp->ext[SADB_EXT_SA] == NULL ||
5293 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5294 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5295 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5296 	     mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5297 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5298 	     mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5299 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5300 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5301 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5302 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5303 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5304 			__func__));
5305 		return key_senderror(so, m, EINVAL);
5306 	}
5307 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5308 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5309 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5310 		/* XXX need more */
5311 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5312 			__func__));
5313 		return key_senderror(so, m, EINVAL);
5314 	}
5315 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5316 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5317 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5318 	} else {
5319 		mode = IPSEC_MODE_ANY;
5320 		reqid = 0;
5321 	}
5322 
5323 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5324 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5325 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5326 
5327 	/* XXX boundary check against sa_len */
5328 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5329 
5330 	/*
5331 	 * Make sure the port numbers are zero.
5332 	 * In case of NAT-T we will update them later if needed.
5333 	 */
5334 	KEY_PORTTOSADDR(&saidx.src, 0);
5335 	KEY_PORTTOSADDR(&saidx.dst, 0);
5336 
5337 #ifdef IPSEC_NAT_T
5338 	/*
5339 	 * Handle NAT-T info if present.
5340 	 */
5341 	if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
5342 	    mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5343 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5344 		struct sadb_x_nat_t_port *sport, *dport;
5345 
5346 		if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
5347 		    mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5348 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5349 			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5350 			    __func__));
5351 			return key_senderror(so, m, EINVAL);
5352 		}
5353 
5354 		type = (struct sadb_x_nat_t_type *)
5355 		    mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5356 		sport = (struct sadb_x_nat_t_port *)
5357 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5358 		dport = (struct sadb_x_nat_t_port *)
5359 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5360 
5361 		if (sport)
5362 			KEY_PORTTOSADDR(&saidx.src,
5363 			    sport->sadb_x_nat_t_port_port);
5364 		if (dport)
5365 			KEY_PORTTOSADDR(&saidx.dst,
5366 			    dport->sadb_x_nat_t_port_port);
5367 	} else {
5368 		type = 0;
5369 	}
5370 	if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL &&
5371 	    mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5372 		if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) ||
5373 		    mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5374 			ipseclog((LOG_DEBUG, "%s: invalid message\n",
5375 			    __func__));
5376 			return key_senderror(so, m, EINVAL);
5377 		}
5378 		iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5379 		raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5380 		ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__));
5381 	} else {
5382 		iaddr = raddr = NULL;
5383 	}
5384 	if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5385 		if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5386 			ipseclog((LOG_DEBUG, "%s: invalid message\n",
5387 			    __func__));
5388 			return key_senderror(so, m, EINVAL);
5389 		}
5390 		frag = (struct sadb_x_nat_t_frag *)
5391 		    mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5392 	} else {
5393 		frag = 0;
5394 	}
5395 #endif
5396 
5397 	/* get a SA header */
5398 	if ((newsah = key_getsah(&saidx)) == NULL) {
5399 		/* create a new SA header */
5400 		if ((newsah = key_newsah(&saidx)) == NULL) {
5401 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
5402 			return key_senderror(so, m, ENOBUFS);
5403 		}
5404 	}
5405 
5406 	/* set spidx if there */
5407 	/* XXX rewrite */
5408 	error = key_setident(newsah, m, mhp);
5409 	if (error) {
5410 		return key_senderror(so, m, error);
5411 	}
5412 
5413 	/* create new SA entry. */
5414 	/* We can create new SA only if SPI is differenct. */
5415 	SAHTREE_LOCK();
5416 	newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi);
5417 	SAHTREE_UNLOCK();
5418 	if (newsav != NULL) {
5419 		ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__));
5420 		return key_senderror(so, m, EEXIST);
5421 	}
5422 	newsav = KEY_NEWSAV(m, mhp, newsah, &error);
5423 	if (newsav == NULL) {
5424 		return key_senderror(so, m, error);
5425 	}
5426 
5427 	/* check SA values to be mature. */
5428 	if ((error = key_mature(newsav)) != 0) {
5429 		KEY_FREESAV(&newsav);
5430 		return key_senderror(so, m, error);
5431 	}
5432 
5433 #ifdef IPSEC_NAT_T
5434 	/*
5435 	 * Handle more NAT-T info if present,
5436 	 * now that we have a sav to fill.
5437 	 */
5438 	if (type)
5439 		newsav->natt_type = type->sadb_x_nat_t_type_type;
5440 
5441 #if 0
5442 	/*
5443 	 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0.
5444 	 * We should actually check for a minimum MTU here, if we
5445 	 * want to support it in ip_output.
5446 	 */
5447 	if (frag)
5448 		newsav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen;
5449 #endif
5450 #endif
5451 
5452 	/*
5453 	 * don't call key_freesav() here, as we would like to keep the SA
5454 	 * in the database on success.
5455 	 */
5456 
5457     {
5458 	struct mbuf *n;
5459 
5460 	/* set msg buf from mhp */
5461 	n = key_getmsgbuf_x1(m, mhp);
5462 	if (n == NULL) {
5463 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5464 		return key_senderror(so, m, ENOBUFS);
5465 	}
5466 
5467 	m_freem(m);
5468 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5469     }
5470 }
5471 
5472 /* m is retained */
5473 static int
5474 key_setident(sah, m, mhp)
5475 	struct secashead *sah;
5476 	struct mbuf *m;
5477 	const struct sadb_msghdr *mhp;
5478 {
5479 	const struct sadb_ident *idsrc, *iddst;
5480 	int idsrclen, iddstlen;
5481 
5482 	IPSEC_ASSERT(sah != NULL, ("null secashead"));
5483 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5484 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5485 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5486 
5487 	/* don't make buffer if not there */
5488 	if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5489 	    mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5490 		sah->idents = NULL;
5491 		sah->identd = NULL;
5492 		return 0;
5493 	}
5494 
5495 	if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5496 	    mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5497 		ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__));
5498 		return EINVAL;
5499 	}
5500 
5501 	idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5502 	iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5503 	idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5504 	iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5505 
5506 	/* validity check */
5507 	if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5508 		ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__));
5509 		return EINVAL;
5510 	}
5511 
5512 	switch (idsrc->sadb_ident_type) {
5513 	case SADB_IDENTTYPE_PREFIX:
5514 	case SADB_IDENTTYPE_FQDN:
5515 	case SADB_IDENTTYPE_USERFQDN:
5516 	default:
5517 		/* XXX do nothing */
5518 		sah->idents = NULL;
5519 		sah->identd = NULL;
5520 	 	return 0;
5521 	}
5522 
5523 	/* make structure */
5524 	sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5525 	if (sah->idents == NULL) {
5526 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5527 		return ENOBUFS;
5528 	}
5529 	sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5530 	if (sah->identd == NULL) {
5531 		free(sah->idents, M_IPSEC_MISC);
5532 		sah->idents = NULL;
5533 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5534 		return ENOBUFS;
5535 	}
5536 	sah->idents->type = idsrc->sadb_ident_type;
5537 	sah->idents->id = idsrc->sadb_ident_id;
5538 
5539 	sah->identd->type = iddst->sadb_ident_type;
5540 	sah->identd->id = iddst->sadb_ident_id;
5541 
5542 	return 0;
5543 }
5544 
5545 /*
5546  * m will not be freed on return.
5547  * it is caller's responsibility to free the result.
5548  */
5549 static struct mbuf *
5550 key_getmsgbuf_x1(m, mhp)
5551 	struct mbuf *m;
5552 	const struct sadb_msghdr *mhp;
5553 {
5554 	struct mbuf *n;
5555 
5556 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5557 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5558 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5559 
5560 	/* create new sadb_msg to reply. */
5561 	n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED,
5562 	    SADB_EXT_SA, SADB_X_EXT_SA2,
5563 	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5564 	    SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5565 	    SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST);
5566 	if (!n)
5567 		return NULL;
5568 
5569 	if (n->m_len < sizeof(struct sadb_msg)) {
5570 		n = m_pullup(n, sizeof(struct sadb_msg));
5571 		if (n == NULL)
5572 			return NULL;
5573 	}
5574 	mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5575 	mtod(n, struct sadb_msg *)->sadb_msg_len =
5576 	    PFKEY_UNIT64(n->m_pkthdr.len);
5577 
5578 	return n;
5579 }
5580 
5581 static int key_delete_all __P((struct socket *, struct mbuf *,
5582 	const struct sadb_msghdr *, u_int16_t));
5583 
5584 /*
5585  * SADB_DELETE processing
5586  * receive
5587  *   <base, SA(*), address(SD)>
5588  * from the ikmpd, and set SADB_SASTATE_DEAD,
5589  * and send,
5590  *   <base, SA(*), address(SD)>
5591  * to the ikmpd.
5592  *
5593  * m will always be freed.
5594  */
5595 static int
5596 key_delete(so, m, mhp)
5597 	struct socket *so;
5598 	struct mbuf *m;
5599 	const struct sadb_msghdr *mhp;
5600 {
5601 	struct sadb_sa *sa0;
5602 	struct sadb_address *src0, *dst0;
5603 	struct secasindex saidx;
5604 	struct secashead *sah;
5605 	struct secasvar *sav = NULL;
5606 	u_int16_t proto;
5607 
5608 	IPSEC_ASSERT(so != NULL, ("null socket"));
5609 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5610 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5611 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5612 
5613 	/* map satype to proto */
5614 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5615 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5616 			__func__));
5617 		return key_senderror(so, m, EINVAL);
5618 	}
5619 
5620 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5621 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5622 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5623 			__func__));
5624 		return key_senderror(so, m, EINVAL);
5625 	}
5626 
5627 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5628 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5629 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5630 			__func__));
5631 		return key_senderror(so, m, EINVAL);
5632 	}
5633 
5634 	if (mhp->ext[SADB_EXT_SA] == NULL) {
5635 		/*
5636 		 * Caller wants us to delete all non-LARVAL SAs
5637 		 * that match the src/dst.  This is used during
5638 		 * IKE INITIAL-CONTACT.
5639 		 */
5640 		ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__));
5641 		return key_delete_all(so, m, mhp, proto);
5642 	} else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5643 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5644 			__func__));
5645 		return key_senderror(so, m, EINVAL);
5646 	}
5647 
5648 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5649 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5650 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5651 
5652 	/* XXX boundary check against sa_len */
5653 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5654 
5655 	/*
5656 	 * Make sure the port numbers are zero.
5657 	 * In case of NAT-T we will update them later if needed.
5658 	 */
5659 	KEY_PORTTOSADDR(&saidx.src, 0);
5660 	KEY_PORTTOSADDR(&saidx.dst, 0);
5661 
5662 #ifdef IPSEC_NAT_T
5663 	/*
5664 	 * Handle NAT-T info if present.
5665 	 */
5666 	if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5667 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5668 		struct sadb_x_nat_t_port *sport, *dport;
5669 
5670 		if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5671 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5672 			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5673 			    __func__));
5674 			return key_senderror(so, m, EINVAL);
5675 		}
5676 
5677 		sport = (struct sadb_x_nat_t_port *)
5678 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5679 		dport = (struct sadb_x_nat_t_port *)
5680 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5681 
5682 		if (sport)
5683 			KEY_PORTTOSADDR(&saidx.src,
5684 			    sport->sadb_x_nat_t_port_port);
5685 		if (dport)
5686 			KEY_PORTTOSADDR(&saidx.dst,
5687 			    dport->sadb_x_nat_t_port_port);
5688 	}
5689 #endif
5690 
5691 	/* get a SA header */
5692 	SAHTREE_LOCK();
5693 	LIST_FOREACH(sah, &V_sahtree, chain) {
5694 		if (sah->state == SADB_SASTATE_DEAD)
5695 			continue;
5696 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5697 			continue;
5698 
5699 		/* get a SA with SPI. */
5700 		sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5701 		if (sav)
5702 			break;
5703 	}
5704 	if (sah == NULL) {
5705 		SAHTREE_UNLOCK();
5706 		ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5707 		return key_senderror(so, m, ENOENT);
5708 	}
5709 
5710 	key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5711 	SAHTREE_UNLOCK();
5712 	KEY_FREESAV(&sav);
5713 
5714     {
5715 	struct mbuf *n;
5716 	struct sadb_msg *newmsg;
5717 
5718 	/* create new sadb_msg to reply. */
5719 	/* XXX-BZ NAT-T extensions? */
5720 	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5721 	    SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5722 	if (!n)
5723 		return key_senderror(so, m, ENOBUFS);
5724 
5725 	if (n->m_len < sizeof(struct sadb_msg)) {
5726 		n = m_pullup(n, sizeof(struct sadb_msg));
5727 		if (n == NULL)
5728 			return key_senderror(so, m, ENOBUFS);
5729 	}
5730 	newmsg = mtod(n, struct sadb_msg *);
5731 	newmsg->sadb_msg_errno = 0;
5732 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5733 
5734 	m_freem(m);
5735 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5736     }
5737 }
5738 
5739 /*
5740  * delete all SAs for src/dst.  Called from key_delete().
5741  */
5742 static int
5743 key_delete_all(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp,
5744     u_int16_t proto)
5745 {
5746 	struct sadb_address *src0, *dst0;
5747 	struct secasindex saidx;
5748 	struct secashead *sah;
5749 	struct secasvar *sav, *nextsav;
5750 	u_int stateidx, state;
5751 
5752 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5753 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5754 
5755 	/* XXX boundary check against sa_len */
5756 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5757 
5758 	/*
5759 	 * Make sure the port numbers are zero.
5760 	 * In case of NAT-T we will update them later if needed.
5761 	 */
5762 	KEY_PORTTOSADDR(&saidx.src, 0);
5763 	KEY_PORTTOSADDR(&saidx.dst, 0);
5764 
5765 #ifdef IPSEC_NAT_T
5766 	/*
5767 	 * Handle NAT-T info if present.
5768 	 */
5769 
5770 	if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5771 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5772 		struct sadb_x_nat_t_port *sport, *dport;
5773 
5774 		if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5775 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5776 			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5777 			    __func__));
5778 			return key_senderror(so, m, EINVAL);
5779 		}
5780 
5781 		sport = (struct sadb_x_nat_t_port *)
5782 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5783 		dport = (struct sadb_x_nat_t_port *)
5784 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5785 
5786 		if (sport)
5787 			KEY_PORTTOSADDR(&saidx.src,
5788 			    sport->sadb_x_nat_t_port_port);
5789 		if (dport)
5790 			KEY_PORTTOSADDR(&saidx.dst,
5791 			    dport->sadb_x_nat_t_port_port);
5792 	}
5793 #endif
5794 
5795 	SAHTREE_LOCK();
5796 	LIST_FOREACH(sah, &V_sahtree, chain) {
5797 		if (sah->state == SADB_SASTATE_DEAD)
5798 			continue;
5799 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5800 			continue;
5801 
5802 		/* Delete all non-LARVAL SAs. */
5803 		for (stateidx = 0;
5804 		     stateidx < _ARRAYLEN(saorder_state_alive);
5805 		     stateidx++) {
5806 			state = saorder_state_alive[stateidx];
5807 			if (state == SADB_SASTATE_LARVAL)
5808 				continue;
5809 			for (sav = LIST_FIRST(&sah->savtree[state]);
5810 			     sav != NULL; sav = nextsav) {
5811 				nextsav = LIST_NEXT(sav, chain);
5812 				/* sanity check */
5813 				if (sav->state != state) {
5814 					ipseclog((LOG_DEBUG, "%s: invalid "
5815 						"sav->state (queue %d SA %d)\n",
5816 						__func__, state, sav->state));
5817 					continue;
5818 				}
5819 
5820 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5821 				KEY_FREESAV(&sav);
5822 			}
5823 		}
5824 	}
5825 	SAHTREE_UNLOCK();
5826     {
5827 	struct mbuf *n;
5828 	struct sadb_msg *newmsg;
5829 
5830 	/* create new sadb_msg to reply. */
5831 	/* XXX-BZ NAT-T extensions? */
5832 	n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5833 	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5834 	if (!n)
5835 		return key_senderror(so, m, ENOBUFS);
5836 
5837 	if (n->m_len < sizeof(struct sadb_msg)) {
5838 		n = m_pullup(n, sizeof(struct sadb_msg));
5839 		if (n == NULL)
5840 			return key_senderror(so, m, ENOBUFS);
5841 	}
5842 	newmsg = mtod(n, struct sadb_msg *);
5843 	newmsg->sadb_msg_errno = 0;
5844 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5845 
5846 	m_freem(m);
5847 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5848     }
5849 }
5850 
5851 /*
5852  * SADB_GET processing
5853  * receive
5854  *   <base, SA(*), address(SD)>
5855  * from the ikmpd, and get a SP and a SA to respond,
5856  * and send,
5857  *   <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5858  *       (identity(SD),) (sensitivity)>
5859  * to the ikmpd.
5860  *
5861  * m will always be freed.
5862  */
5863 static int
5864 key_get(so, m, mhp)
5865 	struct socket *so;
5866 	struct mbuf *m;
5867 	const struct sadb_msghdr *mhp;
5868 {
5869 	struct sadb_sa *sa0;
5870 	struct sadb_address *src0, *dst0;
5871 	struct secasindex saidx;
5872 	struct secashead *sah;
5873 	struct secasvar *sav = NULL;
5874 	u_int16_t proto;
5875 
5876 	IPSEC_ASSERT(so != NULL, ("null socket"));
5877 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5878 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5879 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5880 
5881 	/* map satype to proto */
5882 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5883 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5884 			__func__));
5885 		return key_senderror(so, m, EINVAL);
5886 	}
5887 
5888 	if (mhp->ext[SADB_EXT_SA] == NULL ||
5889 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5890 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5891 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5892 			__func__));
5893 		return key_senderror(so, m, EINVAL);
5894 	}
5895 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5896 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5897 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5898 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5899 			__func__));
5900 		return key_senderror(so, m, EINVAL);
5901 	}
5902 
5903 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5904 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5905 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5906 
5907 	/* XXX boundary check against sa_len */
5908 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5909 
5910 	/*
5911 	 * Make sure the port numbers are zero.
5912 	 * In case of NAT-T we will update them later if needed.
5913 	 */
5914 	KEY_PORTTOSADDR(&saidx.src, 0);
5915 	KEY_PORTTOSADDR(&saidx.dst, 0);
5916 
5917 #ifdef IPSEC_NAT_T
5918 	/*
5919 	 * Handle NAT-T info if present.
5920 	 */
5921 
5922 	if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5923 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5924 		struct sadb_x_nat_t_port *sport, *dport;
5925 
5926 		if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5927 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5928 			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5929 			    __func__));
5930 			return key_senderror(so, m, EINVAL);
5931 		}
5932 
5933 		sport = (struct sadb_x_nat_t_port *)
5934 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5935 		dport = (struct sadb_x_nat_t_port *)
5936 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5937 
5938 		if (sport)
5939 			KEY_PORTTOSADDR(&saidx.src,
5940 			    sport->sadb_x_nat_t_port_port);
5941 		if (dport)
5942 			KEY_PORTTOSADDR(&saidx.dst,
5943 			    dport->sadb_x_nat_t_port_port);
5944 	}
5945 #endif
5946 
5947 	/* get a SA header */
5948 	SAHTREE_LOCK();
5949 	LIST_FOREACH(sah, &V_sahtree, chain) {
5950 		if (sah->state == SADB_SASTATE_DEAD)
5951 			continue;
5952 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5953 			continue;
5954 
5955 		/* get a SA with SPI. */
5956 		sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5957 		if (sav)
5958 			break;
5959 	}
5960 	SAHTREE_UNLOCK();
5961 	if (sah == NULL) {
5962 		ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5963 		return key_senderror(so, m, ENOENT);
5964 	}
5965 
5966     {
5967 	struct mbuf *n;
5968 	u_int8_t satype;
5969 
5970 	/* map proto to satype */
5971 	if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
5972 		ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n",
5973 			__func__));
5974 		return key_senderror(so, m, EINVAL);
5975 	}
5976 
5977 	/* create new sadb_msg to reply. */
5978 	n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5979 	    mhp->msg->sadb_msg_pid);
5980 	if (!n)
5981 		return key_senderror(so, m, ENOBUFS);
5982 
5983 	m_freem(m);
5984 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5985     }
5986 }
5987 
5988 /* XXX make it sysctl-configurable? */
5989 static void
5990 key_getcomb_setlifetime(comb)
5991 	struct sadb_comb *comb;
5992 {
5993 
5994 	comb->sadb_comb_soft_allocations = 1;
5995 	comb->sadb_comb_hard_allocations = 1;
5996 	comb->sadb_comb_soft_bytes = 0;
5997 	comb->sadb_comb_hard_bytes = 0;
5998 	comb->sadb_comb_hard_addtime = 86400;	/* 1 day */
5999 	comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
6000 	comb->sadb_comb_soft_usetime = 28800;	/* 8 hours */
6001 	comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
6002 }
6003 
6004 /*
6005  * XXX reorder combinations by preference
6006  * XXX no idea if the user wants ESP authentication or not
6007  */
6008 static struct mbuf *
6009 key_getcomb_esp()
6010 {
6011 	struct sadb_comb *comb;
6012 	struct enc_xform *algo;
6013 	struct mbuf *result = NULL, *m, *n;
6014 	int encmin;
6015 	int i, off, o;
6016 	int totlen;
6017 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6018 
6019 	m = NULL;
6020 	for (i = 1; i <= SADB_EALG_MAX; i++) {
6021 		algo = esp_algorithm_lookup(i);
6022 		if (algo == NULL)
6023 			continue;
6024 
6025 		/* discard algorithms with key size smaller than system min */
6026 		if (_BITS(algo->maxkey) < V_ipsec_esp_keymin)
6027 			continue;
6028 		if (_BITS(algo->minkey) < V_ipsec_esp_keymin)
6029 			encmin = V_ipsec_esp_keymin;
6030 		else
6031 			encmin = _BITS(algo->minkey);
6032 
6033 		if (V_ipsec_esp_auth)
6034 			m = key_getcomb_ah();
6035 		else {
6036 			IPSEC_ASSERT(l <= MLEN,
6037 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
6038 			MGET(m, M_DONTWAIT, MT_DATA);
6039 			if (m) {
6040 				M_ALIGN(m, l);
6041 				m->m_len = l;
6042 				m->m_next = NULL;
6043 				bzero(mtod(m, caddr_t), m->m_len);
6044 			}
6045 		}
6046 		if (!m)
6047 			goto fail;
6048 
6049 		totlen = 0;
6050 		for (n = m; n; n = n->m_next)
6051 			totlen += n->m_len;
6052 		IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l));
6053 
6054 		for (off = 0; off < totlen; off += l) {
6055 			n = m_pulldown(m, off, l, &o);
6056 			if (!n) {
6057 				/* m is already freed */
6058 				goto fail;
6059 			}
6060 			comb = (struct sadb_comb *)(mtod(n, caddr_t) + o);
6061 			bzero(comb, sizeof(*comb));
6062 			key_getcomb_setlifetime(comb);
6063 			comb->sadb_comb_encrypt = i;
6064 			comb->sadb_comb_encrypt_minbits = encmin;
6065 			comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
6066 		}
6067 
6068 		if (!result)
6069 			result = m;
6070 		else
6071 			m_cat(result, m);
6072 	}
6073 
6074 	return result;
6075 
6076  fail:
6077 	if (result)
6078 		m_freem(result);
6079 	return NULL;
6080 }
6081 
6082 static void
6083 key_getsizes_ah(
6084 	const struct auth_hash *ah,
6085 	int alg,
6086 	u_int16_t* min,
6087 	u_int16_t* max)
6088 {
6089 
6090 	*min = *max = ah->keysize;
6091 	if (ah->keysize == 0) {
6092 		/*
6093 		 * Transform takes arbitrary key size but algorithm
6094 		 * key size is restricted.  Enforce this here.
6095 		 */
6096 		switch (alg) {
6097 		case SADB_X_AALG_MD5:	*min = *max = 16; break;
6098 		case SADB_X_AALG_SHA:	*min = *max = 20; break;
6099 		case SADB_X_AALG_NULL:	*min = 1; *max = 256; break;
6100 		default:
6101 			DPRINTF(("%s: unknown AH algorithm %u\n",
6102 				__func__, alg));
6103 			break;
6104 		}
6105 	}
6106 }
6107 
6108 /*
6109  * XXX reorder combinations by preference
6110  */
6111 static struct mbuf *
6112 key_getcomb_ah()
6113 {
6114 	struct sadb_comb *comb;
6115 	struct auth_hash *algo;
6116 	struct mbuf *m;
6117 	u_int16_t minkeysize, maxkeysize;
6118 	int i;
6119 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6120 
6121 	m = NULL;
6122 	for (i = 1; i <= SADB_AALG_MAX; i++) {
6123 #if 1
6124 		/* we prefer HMAC algorithms, not old algorithms */
6125 		if (i != SADB_AALG_SHA1HMAC && i != SADB_AALG_MD5HMAC)
6126 			continue;
6127 #endif
6128 		algo = ah_algorithm_lookup(i);
6129 		if (!algo)
6130 			continue;
6131 		key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6132 		/* discard algorithms with key size smaller than system min */
6133 		if (_BITS(minkeysize) < V_ipsec_ah_keymin)
6134 			continue;
6135 
6136 		if (!m) {
6137 			IPSEC_ASSERT(l <= MLEN,
6138 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
6139 			MGET(m, M_DONTWAIT, MT_DATA);
6140 			if (m) {
6141 				M_ALIGN(m, l);
6142 				m->m_len = l;
6143 				m->m_next = NULL;
6144 			}
6145 		} else
6146 			M_PREPEND(m, l, M_DONTWAIT);
6147 		if (!m)
6148 			return NULL;
6149 
6150 		comb = mtod(m, struct sadb_comb *);
6151 		bzero(comb, sizeof(*comb));
6152 		key_getcomb_setlifetime(comb);
6153 		comb->sadb_comb_auth = i;
6154 		comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6155 		comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6156 	}
6157 
6158 	return m;
6159 }
6160 
6161 /*
6162  * not really an official behavior.  discussed in pf_key@inner.net in Sep2000.
6163  * XXX reorder combinations by preference
6164  */
6165 static struct mbuf *
6166 key_getcomb_ipcomp()
6167 {
6168 	struct sadb_comb *comb;
6169 	struct comp_algo *algo;
6170 	struct mbuf *m;
6171 	int i;
6172 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6173 
6174 	m = NULL;
6175 	for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6176 		algo = ipcomp_algorithm_lookup(i);
6177 		if (!algo)
6178 			continue;
6179 
6180 		if (!m) {
6181 			IPSEC_ASSERT(l <= MLEN,
6182 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
6183 			MGET(m, M_DONTWAIT, MT_DATA);
6184 			if (m) {
6185 				M_ALIGN(m, l);
6186 				m->m_len = l;
6187 				m->m_next = NULL;
6188 			}
6189 		} else
6190 			M_PREPEND(m, l, M_DONTWAIT);
6191 		if (!m)
6192 			return NULL;
6193 
6194 		comb = mtod(m, struct sadb_comb *);
6195 		bzero(comb, sizeof(*comb));
6196 		key_getcomb_setlifetime(comb);
6197 		comb->sadb_comb_encrypt = i;
6198 		/* what should we set into sadb_comb_*_{min,max}bits? */
6199 	}
6200 
6201 	return m;
6202 }
6203 
6204 /*
6205  * XXX no way to pass mode (transport/tunnel) to userland
6206  * XXX replay checking?
6207  * XXX sysctl interface to ipsec_{ah,esp}_keymin
6208  */
6209 static struct mbuf *
6210 key_getprop(saidx)
6211 	const struct secasindex *saidx;
6212 {
6213 	struct sadb_prop *prop;
6214 	struct mbuf *m, *n;
6215 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6216 	int totlen;
6217 
6218 	switch (saidx->proto)  {
6219 	case IPPROTO_ESP:
6220 		m = key_getcomb_esp();
6221 		break;
6222 	case IPPROTO_AH:
6223 		m = key_getcomb_ah();
6224 		break;
6225 	case IPPROTO_IPCOMP:
6226 		m = key_getcomb_ipcomp();
6227 		break;
6228 	default:
6229 		return NULL;
6230 	}
6231 
6232 	if (!m)
6233 		return NULL;
6234 	M_PREPEND(m, l, M_DONTWAIT);
6235 	if (!m)
6236 		return NULL;
6237 
6238 	totlen = 0;
6239 	for (n = m; n; n = n->m_next)
6240 		totlen += n->m_len;
6241 
6242 	prop = mtod(m, struct sadb_prop *);
6243 	bzero(prop, sizeof(*prop));
6244 	prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6245 	prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6246 	prop->sadb_prop_replay = 32;	/* XXX */
6247 
6248 	return m;
6249 }
6250 
6251 /*
6252  * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
6253  * send
6254  *   <base, SA, address(SD), (address(P)), x_policy,
6255  *       (identity(SD),) (sensitivity,) proposal>
6256  * to KMD, and expect to receive
6257  *   <base> with SADB_ACQUIRE if error occured,
6258  * or
6259  *   <base, src address, dst address, (SPI range)> with SADB_GETSPI
6260  * from KMD by PF_KEY.
6261  *
6262  * XXX x_policy is outside of RFC2367 (KAME extension).
6263  * XXX sensitivity is not supported.
6264  * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6265  * see comment for key_getcomb_ipcomp().
6266  *
6267  * OUT:
6268  *    0     : succeed
6269  *    others: error number
6270  */
6271 static int
6272 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6273 {
6274 	struct mbuf *result = NULL, *m;
6275 	struct secacq *newacq;
6276 	u_int8_t satype;
6277 	int error = -1;
6278 	u_int32_t seq;
6279 
6280 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
6281 	satype = key_proto2satype(saidx->proto);
6282 	IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto));
6283 
6284 	/*
6285 	 * We never do anything about acquirng SA.  There is anather
6286 	 * solution that kernel blocks to send SADB_ACQUIRE message until
6287 	 * getting something message from IKEd.  In later case, to be
6288 	 * managed with ACQUIRING list.
6289 	 */
6290 	/* Get an entry to check whether sending message or not. */
6291 	if ((newacq = key_getacq(saidx)) != NULL) {
6292 		if (V_key_blockacq_count < newacq->count) {
6293 			/* reset counter and do send message. */
6294 			newacq->count = 0;
6295 		} else {
6296 			/* increment counter and do nothing. */
6297 			newacq->count++;
6298 			return 0;
6299 		}
6300 	} else {
6301 		/* make new entry for blocking to send SADB_ACQUIRE. */
6302 		if ((newacq = key_newacq(saidx)) == NULL)
6303 			return ENOBUFS;
6304 	}
6305 
6306 
6307 	seq = newacq->seq;
6308 	m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6309 	if (!m) {
6310 		error = ENOBUFS;
6311 		goto fail;
6312 	}
6313 	result = m;
6314 
6315 	/*
6316 	 * No SADB_X_EXT_NAT_T_* here: we do not know
6317 	 * anything related to NAT-T at this time.
6318 	 */
6319 
6320 	/* set sadb_address for saidx's. */
6321 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6322 	    &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY);
6323 	if (!m) {
6324 		error = ENOBUFS;
6325 		goto fail;
6326 	}
6327 	m_cat(result, m);
6328 
6329 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6330 	    &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY);
6331 	if (!m) {
6332 		error = ENOBUFS;
6333 		goto fail;
6334 	}
6335 	m_cat(result, m);
6336 
6337 	/* XXX proxy address (optional) */
6338 
6339 	/* set sadb_x_policy */
6340 	if (sp) {
6341 		m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6342 		if (!m) {
6343 			error = ENOBUFS;
6344 			goto fail;
6345 		}
6346 		m_cat(result, m);
6347 	}
6348 
6349 	/* XXX identity (optional) */
6350 #if 0
6351 	if (idexttype && fqdn) {
6352 		/* create identity extension (FQDN) */
6353 		struct sadb_ident *id;
6354 		int fqdnlen;
6355 
6356 		fqdnlen = strlen(fqdn) + 1;	/* +1 for terminating-NUL */
6357 		id = (struct sadb_ident *)p;
6358 		bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6359 		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6360 		id->sadb_ident_exttype = idexttype;
6361 		id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6362 		bcopy(fqdn, id + 1, fqdnlen);
6363 		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6364 	}
6365 
6366 	if (idexttype) {
6367 		/* create identity extension (USERFQDN) */
6368 		struct sadb_ident *id;
6369 		int userfqdnlen;
6370 
6371 		if (userfqdn) {
6372 			/* +1 for terminating-NUL */
6373 			userfqdnlen = strlen(userfqdn) + 1;
6374 		} else
6375 			userfqdnlen = 0;
6376 		id = (struct sadb_ident *)p;
6377 		bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6378 		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6379 		id->sadb_ident_exttype = idexttype;
6380 		id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6381 		/* XXX is it correct? */
6382 		if (curproc && curproc->p_cred)
6383 			id->sadb_ident_id = curproc->p_cred->p_ruid;
6384 		if (userfqdn && userfqdnlen)
6385 			bcopy(userfqdn, id + 1, userfqdnlen);
6386 		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6387 	}
6388 #endif
6389 
6390 	/* XXX sensitivity (optional) */
6391 
6392 	/* create proposal/combination extension */
6393 	m = key_getprop(saidx);
6394 #if 0
6395 	/*
6396 	 * spec conformant: always attach proposal/combination extension,
6397 	 * the problem is that we have no way to attach it for ipcomp,
6398 	 * due to the way sadb_comb is declared in RFC2367.
6399 	 */
6400 	if (!m) {
6401 		error = ENOBUFS;
6402 		goto fail;
6403 	}
6404 	m_cat(result, m);
6405 #else
6406 	/*
6407 	 * outside of spec; make proposal/combination extension optional.
6408 	 */
6409 	if (m)
6410 		m_cat(result, m);
6411 #endif
6412 
6413 	if ((result->m_flags & M_PKTHDR) == 0) {
6414 		error = EINVAL;
6415 		goto fail;
6416 	}
6417 
6418 	if (result->m_len < sizeof(struct sadb_msg)) {
6419 		result = m_pullup(result, sizeof(struct sadb_msg));
6420 		if (result == NULL) {
6421 			error = ENOBUFS;
6422 			goto fail;
6423 		}
6424 	}
6425 
6426 	result->m_pkthdr.len = 0;
6427 	for (m = result; m; m = m->m_next)
6428 		result->m_pkthdr.len += m->m_len;
6429 
6430 	mtod(result, struct sadb_msg *)->sadb_msg_len =
6431 	    PFKEY_UNIT64(result->m_pkthdr.len);
6432 
6433 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6434 
6435  fail:
6436 	if (result)
6437 		m_freem(result);
6438 	return error;
6439 }
6440 
6441 static struct secacq *
6442 key_newacq(const struct secasindex *saidx)
6443 {
6444 	struct secacq *newacq;
6445 
6446 	/* get new entry */
6447 	newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
6448 	if (newacq == NULL) {
6449 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6450 		return NULL;
6451 	}
6452 
6453 	/* copy secindex */
6454 	bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx));
6455 	newacq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq);
6456 	newacq->created = time_second;
6457 	newacq->count = 0;
6458 
6459 	/* add to acqtree */
6460 	ACQ_LOCK();
6461 	LIST_INSERT_HEAD(&V_acqtree, newacq, chain);
6462 	ACQ_UNLOCK();
6463 
6464 	return newacq;
6465 }
6466 
6467 static struct secacq *
6468 key_getacq(const struct secasindex *saidx)
6469 {
6470 	struct secacq *acq;
6471 
6472 	ACQ_LOCK();
6473 	LIST_FOREACH(acq, &V_acqtree, chain) {
6474 		if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY))
6475 			break;
6476 	}
6477 	ACQ_UNLOCK();
6478 
6479 	return acq;
6480 }
6481 
6482 static struct secacq *
6483 key_getacqbyseq(seq)
6484 	u_int32_t seq;
6485 {
6486 	struct secacq *acq;
6487 
6488 	ACQ_LOCK();
6489 	LIST_FOREACH(acq, &V_acqtree, chain) {
6490 		if (acq->seq == seq)
6491 			break;
6492 	}
6493 	ACQ_UNLOCK();
6494 
6495 	return acq;
6496 }
6497 
6498 static struct secspacq *
6499 key_newspacq(spidx)
6500 	struct secpolicyindex *spidx;
6501 {
6502 	struct secspacq *acq;
6503 
6504 	/* get new entry */
6505 	acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
6506 	if (acq == NULL) {
6507 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6508 		return NULL;
6509 	}
6510 
6511 	/* copy secindex */
6512 	bcopy(spidx, &acq->spidx, sizeof(acq->spidx));
6513 	acq->created = time_second;
6514 	acq->count = 0;
6515 
6516 	/* add to spacqtree */
6517 	SPACQ_LOCK();
6518 	LIST_INSERT_HEAD(&V_spacqtree, acq, chain);
6519 	SPACQ_UNLOCK();
6520 
6521 	return acq;
6522 }
6523 
6524 static struct secspacq *
6525 key_getspacq(spidx)
6526 	struct secpolicyindex *spidx;
6527 {
6528 	struct secspacq *acq;
6529 
6530 	SPACQ_LOCK();
6531 	LIST_FOREACH(acq, &V_spacqtree, chain) {
6532 		if (key_cmpspidx_exactly(spidx, &acq->spidx)) {
6533 			/* NB: return holding spacq_lock */
6534 			return acq;
6535 		}
6536 	}
6537 	SPACQ_UNLOCK();
6538 
6539 	return NULL;
6540 }
6541 
6542 /*
6543  * SADB_ACQUIRE processing,
6544  * in first situation, is receiving
6545  *   <base>
6546  * from the ikmpd, and clear sequence of its secasvar entry.
6547  *
6548  * In second situation, is receiving
6549  *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6550  * from a user land process, and return
6551  *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6552  * to the socket.
6553  *
6554  * m will always be freed.
6555  */
6556 static int
6557 key_acquire2(so, m, mhp)
6558 	struct socket *so;
6559 	struct mbuf *m;
6560 	const struct sadb_msghdr *mhp;
6561 {
6562 	const struct sadb_address *src0, *dst0;
6563 	struct secasindex saidx;
6564 	struct secashead *sah;
6565 	u_int16_t proto;
6566 	int error;
6567 
6568 	IPSEC_ASSERT(so != NULL, ("null socket"));
6569 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6570 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6571 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6572 
6573 	/*
6574 	 * Error message from KMd.
6575 	 * We assume that if error was occured in IKEd, the length of PFKEY
6576 	 * message is equal to the size of sadb_msg structure.
6577 	 * We do not raise error even if error occured in this function.
6578 	 */
6579 	if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6580 		struct secacq *acq;
6581 
6582 		/* check sequence number */
6583 		if (mhp->msg->sadb_msg_seq == 0) {
6584 			ipseclog((LOG_DEBUG, "%s: must specify sequence "
6585 				"number.\n", __func__));
6586 			m_freem(m);
6587 			return 0;
6588 		}
6589 
6590 		if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) {
6591 			/*
6592 			 * the specified larval SA is already gone, or we got
6593 			 * a bogus sequence number.  we can silently ignore it.
6594 			 */
6595 			m_freem(m);
6596 			return 0;
6597 		}
6598 
6599 		/* reset acq counter in order to deletion by timehander. */
6600 		acq->created = time_second;
6601 		acq->count = 0;
6602 		m_freem(m);
6603 		return 0;
6604 	}
6605 
6606 	/*
6607 	 * This message is from user land.
6608 	 */
6609 
6610 	/* map satype to proto */
6611 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6612 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6613 			__func__));
6614 		return key_senderror(so, m, EINVAL);
6615 	}
6616 
6617 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6618 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6619 	    mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6620 		/* error */
6621 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
6622 			__func__));
6623 		return key_senderror(so, m, EINVAL);
6624 	}
6625 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6626 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6627 	    mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6628 		/* error */
6629 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
6630 			__func__));
6631 		return key_senderror(so, m, EINVAL);
6632 	}
6633 
6634 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
6635 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
6636 
6637 	/* XXX boundary check against sa_len */
6638 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
6639 
6640 	/*
6641 	 * Make sure the port numbers are zero.
6642 	 * In case of NAT-T we will update them later if needed.
6643 	 */
6644 	KEY_PORTTOSADDR(&saidx.src, 0);
6645 	KEY_PORTTOSADDR(&saidx.dst, 0);
6646 
6647 #ifndef IPSEC_NAT_T
6648 	/*
6649 	 * Handle NAT-T info if present.
6650 	 */
6651 
6652 	if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
6653 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
6654 		struct sadb_x_nat_t_port *sport, *dport;
6655 
6656 		if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
6657 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
6658 			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
6659 			    __func__));
6660 			return key_senderror(so, m, EINVAL);
6661 		}
6662 
6663 		sport = (struct sadb_x_nat_t_port *)
6664 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
6665 		dport = (struct sadb_x_nat_t_port *)
6666 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
6667 
6668 		if (sport)
6669 			KEY_PORTTOSADDR(&saidx.src,
6670 			    sport->sadb_x_nat_t_port_port);
6671 		if (dport)
6672 			KEY_PORTTOSADDR(&saidx.dst,
6673 			    dport->sadb_x_nat_t_port_port);
6674 	}
6675 #endif
6676 
6677 	/* get a SA index */
6678 	SAHTREE_LOCK();
6679 	LIST_FOREACH(sah, &V_sahtree, chain) {
6680 		if (sah->state == SADB_SASTATE_DEAD)
6681 			continue;
6682 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID))
6683 			break;
6684 	}
6685 	SAHTREE_UNLOCK();
6686 	if (sah != NULL) {
6687 		ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__));
6688 		return key_senderror(so, m, EEXIST);
6689 	}
6690 
6691 	error = key_acquire(&saidx, NULL);
6692 	if (error != 0) {
6693 		ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
6694 			__func__, mhp->msg->sadb_msg_errno));
6695 		return key_senderror(so, m, error);
6696 	}
6697 
6698 	return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6699 }
6700 
6701 /*
6702  * SADB_REGISTER processing.
6703  * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6704  * receive
6705  *   <base>
6706  * from the ikmpd, and register a socket to send PF_KEY messages,
6707  * and send
6708  *   <base, supported>
6709  * to KMD by PF_KEY.
6710  * If socket is detached, must free from regnode.
6711  *
6712  * m will always be freed.
6713  */
6714 static int
6715 key_register(so, m, mhp)
6716 	struct socket *so;
6717 	struct mbuf *m;
6718 	const struct sadb_msghdr *mhp;
6719 {
6720 	struct secreg *reg, *newreg = 0;
6721 
6722 	IPSEC_ASSERT(so != NULL, ("null socket"));
6723 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6724 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6725 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6726 
6727 	/* check for invalid register message */
6728 	if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0]))
6729 		return key_senderror(so, m, EINVAL);
6730 
6731 	/* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6732 	if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6733 		goto setmsg;
6734 
6735 	/* check whether existing or not */
6736 	REGTREE_LOCK();
6737 	LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) {
6738 		if (reg->so == so) {
6739 			REGTREE_UNLOCK();
6740 			ipseclog((LOG_DEBUG, "%s: socket exists already.\n",
6741 				__func__));
6742 			return key_senderror(so, m, EEXIST);
6743 		}
6744 	}
6745 
6746 	/* create regnode */
6747 	newreg =  malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO);
6748 	if (newreg == NULL) {
6749 		REGTREE_UNLOCK();
6750 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6751 		return key_senderror(so, m, ENOBUFS);
6752 	}
6753 
6754 	newreg->so = so;
6755 	((struct keycb *)sotorawcb(so))->kp_registered++;
6756 
6757 	/* add regnode to regtree. */
6758 	LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain);
6759 	REGTREE_UNLOCK();
6760 
6761   setmsg:
6762     {
6763 	struct mbuf *n;
6764 	struct sadb_msg *newmsg;
6765 	struct sadb_supported *sup;
6766 	u_int len, alen, elen;
6767 	int off;
6768 	int i;
6769 	struct sadb_alg *alg;
6770 
6771 	/* create new sadb_msg to reply. */
6772 	alen = 0;
6773 	for (i = 1; i <= SADB_AALG_MAX; i++) {
6774 		if (ah_algorithm_lookup(i))
6775 			alen += sizeof(struct sadb_alg);
6776 	}
6777 	if (alen)
6778 		alen += sizeof(struct sadb_supported);
6779 	elen = 0;
6780 	for (i = 1; i <= SADB_EALG_MAX; i++) {
6781 		if (esp_algorithm_lookup(i))
6782 			elen += sizeof(struct sadb_alg);
6783 	}
6784 	if (elen)
6785 		elen += sizeof(struct sadb_supported);
6786 
6787 	len = sizeof(struct sadb_msg) + alen + elen;
6788 
6789 	if (len > MCLBYTES)
6790 		return key_senderror(so, m, ENOBUFS);
6791 
6792 	MGETHDR(n, M_DONTWAIT, MT_DATA);
6793 	if (len > MHLEN) {
6794 		MCLGET(n, M_DONTWAIT);
6795 		if ((n->m_flags & M_EXT) == 0) {
6796 			m_freem(n);
6797 			n = NULL;
6798 		}
6799 	}
6800 	if (!n)
6801 		return key_senderror(so, m, ENOBUFS);
6802 
6803 	n->m_pkthdr.len = n->m_len = len;
6804 	n->m_next = NULL;
6805 	off = 0;
6806 
6807 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
6808 	newmsg = mtod(n, struct sadb_msg *);
6809 	newmsg->sadb_msg_errno = 0;
6810 	newmsg->sadb_msg_len = PFKEY_UNIT64(len);
6811 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6812 
6813 	/* for authentication algorithm */
6814 	if (alen) {
6815 		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6816 		sup->sadb_supported_len = PFKEY_UNIT64(alen);
6817 		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6818 		off += PFKEY_ALIGN8(sizeof(*sup));
6819 
6820 		for (i = 1; i <= SADB_AALG_MAX; i++) {
6821 			struct auth_hash *aalgo;
6822 			u_int16_t minkeysize, maxkeysize;
6823 
6824 			aalgo = ah_algorithm_lookup(i);
6825 			if (!aalgo)
6826 				continue;
6827 			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6828 			alg->sadb_alg_id = i;
6829 			alg->sadb_alg_ivlen = 0;
6830 			key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6831 			alg->sadb_alg_minbits = _BITS(minkeysize);
6832 			alg->sadb_alg_maxbits = _BITS(maxkeysize);
6833 			off += PFKEY_ALIGN8(sizeof(*alg));
6834 		}
6835 	}
6836 
6837 	/* for encryption algorithm */
6838 	if (elen) {
6839 		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6840 		sup->sadb_supported_len = PFKEY_UNIT64(elen);
6841 		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6842 		off += PFKEY_ALIGN8(sizeof(*sup));
6843 
6844 		for (i = 1; i <= SADB_EALG_MAX; i++) {
6845 			struct enc_xform *ealgo;
6846 
6847 			ealgo = esp_algorithm_lookup(i);
6848 			if (!ealgo)
6849 				continue;
6850 			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6851 			alg->sadb_alg_id = i;
6852 			alg->sadb_alg_ivlen = ealgo->blocksize;
6853 			alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6854 			alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6855 			off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6856 		}
6857 	}
6858 
6859 	IPSEC_ASSERT(off == len,
6860 		("length assumption failed (off %u len %u)", off, len));
6861 
6862 	m_freem(m);
6863 	return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6864     }
6865 }
6866 
6867 /*
6868  * free secreg entry registered.
6869  * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6870  */
6871 void
6872 key_freereg(struct socket *so)
6873 {
6874 	struct secreg *reg;
6875 	int i;
6876 
6877 	IPSEC_ASSERT(so != NULL, ("NULL so"));
6878 
6879 	/*
6880 	 * check whether existing or not.
6881 	 * check all type of SA, because there is a potential that
6882 	 * one socket is registered to multiple type of SA.
6883 	 */
6884 	REGTREE_LOCK();
6885 	for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6886 		LIST_FOREACH(reg, &V_regtree[i], chain) {
6887 			if (reg->so == so && __LIST_CHAINED(reg)) {
6888 				LIST_REMOVE(reg, chain);
6889 				free(reg, M_IPSEC_SAR);
6890 				break;
6891 			}
6892 		}
6893 	}
6894 	REGTREE_UNLOCK();
6895 }
6896 
6897 /*
6898  * SADB_EXPIRE processing
6899  * send
6900  *   <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6901  * to KMD by PF_KEY.
6902  * NOTE: We send only soft lifetime extension.
6903  *
6904  * OUT:	0	: succeed
6905  *	others	: error number
6906  */
6907 static int
6908 key_expire(struct secasvar *sav)
6909 {
6910 	int s;
6911 	int satype;
6912 	struct mbuf *result = NULL, *m;
6913 	int len;
6914 	int error = -1;
6915 	struct sadb_lifetime *lt;
6916 
6917 	/* XXX: Why do we lock ? */
6918 	s = splnet();	/*called from softclock()*/
6919 
6920 	IPSEC_ASSERT (sav != NULL, ("null sav"));
6921 	IPSEC_ASSERT (sav->sah != NULL, ("null sa header"));
6922 
6923 	/* set msg header */
6924 	satype = key_proto2satype(sav->sah->saidx.proto);
6925 	IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype));
6926 	m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6927 	if (!m) {
6928 		error = ENOBUFS;
6929 		goto fail;
6930 	}
6931 	result = m;
6932 
6933 	/* create SA extension */
6934 	m = key_setsadbsa(sav);
6935 	if (!m) {
6936 		error = ENOBUFS;
6937 		goto fail;
6938 	}
6939 	m_cat(result, m);
6940 
6941 	/* create SA extension */
6942 	m = key_setsadbxsa2(sav->sah->saidx.mode,
6943 			sav->replay ? sav->replay->count : 0,
6944 			sav->sah->saidx.reqid);
6945 	if (!m) {
6946 		error = ENOBUFS;
6947 		goto fail;
6948 	}
6949 	m_cat(result, m);
6950 
6951 	/* create lifetime extension (current and soft) */
6952 	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6953 	m = key_alloc_mbuf(len);
6954 	if (!m || m->m_next) {	/*XXX*/
6955 		if (m)
6956 			m_freem(m);
6957 		error = ENOBUFS;
6958 		goto fail;
6959 	}
6960 	bzero(mtod(m, caddr_t), len);
6961 	lt = mtod(m, struct sadb_lifetime *);
6962 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6963 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6964 	lt->sadb_lifetime_allocations = sav->lft_c->allocations;
6965 	lt->sadb_lifetime_bytes = sav->lft_c->bytes;
6966 	lt->sadb_lifetime_addtime = sav->lft_c->addtime;
6967 	lt->sadb_lifetime_usetime = sav->lft_c->usetime;
6968 	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
6969 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6970 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
6971 	lt->sadb_lifetime_allocations = sav->lft_s->allocations;
6972 	lt->sadb_lifetime_bytes = sav->lft_s->bytes;
6973 	lt->sadb_lifetime_addtime = sav->lft_s->addtime;
6974 	lt->sadb_lifetime_usetime = sav->lft_s->usetime;
6975 	m_cat(result, m);
6976 
6977 	/* set sadb_address for source */
6978 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6979 	    &sav->sah->saidx.src.sa,
6980 	    FULLMASK, IPSEC_ULPROTO_ANY);
6981 	if (!m) {
6982 		error = ENOBUFS;
6983 		goto fail;
6984 	}
6985 	m_cat(result, m);
6986 
6987 	/* set sadb_address for destination */
6988 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6989 	    &sav->sah->saidx.dst.sa,
6990 	    FULLMASK, IPSEC_ULPROTO_ANY);
6991 	if (!m) {
6992 		error = ENOBUFS;
6993 		goto fail;
6994 	}
6995 	m_cat(result, m);
6996 
6997 	/*
6998 	 * XXX-BZ Handle NAT-T extensions here.
6999 	 */
7000 
7001 	if ((result->m_flags & M_PKTHDR) == 0) {
7002 		error = EINVAL;
7003 		goto fail;
7004 	}
7005 
7006 	if (result->m_len < sizeof(struct sadb_msg)) {
7007 		result = m_pullup(result, sizeof(struct sadb_msg));
7008 		if (result == NULL) {
7009 			error = ENOBUFS;
7010 			goto fail;
7011 		}
7012 	}
7013 
7014 	result->m_pkthdr.len = 0;
7015 	for (m = result; m; m = m->m_next)
7016 		result->m_pkthdr.len += m->m_len;
7017 
7018 	mtod(result, struct sadb_msg *)->sadb_msg_len =
7019 	    PFKEY_UNIT64(result->m_pkthdr.len);
7020 
7021 	splx(s);
7022 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
7023 
7024  fail:
7025 	if (result)
7026 		m_freem(result);
7027 	splx(s);
7028 	return error;
7029 }
7030 
7031 /*
7032  * SADB_FLUSH processing
7033  * receive
7034  *   <base>
7035  * from the ikmpd, and free all entries in secastree.
7036  * and send,
7037  *   <base>
7038  * to the ikmpd.
7039  * NOTE: to do is only marking SADB_SASTATE_DEAD.
7040  *
7041  * m will always be freed.
7042  */
7043 static int
7044 key_flush(so, m, mhp)
7045 	struct socket *so;
7046 	struct mbuf *m;
7047 	const struct sadb_msghdr *mhp;
7048 {
7049 	struct sadb_msg *newmsg;
7050 	struct secashead *sah, *nextsah;
7051 	struct secasvar *sav, *nextsav;
7052 	u_int16_t proto;
7053 	u_int8_t state;
7054 	u_int stateidx;
7055 
7056 	IPSEC_ASSERT(so != NULL, ("null socket"));
7057 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7058 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7059 
7060 	/* map satype to proto */
7061 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
7062 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
7063 			__func__));
7064 		return key_senderror(so, m, EINVAL);
7065 	}
7066 
7067 	/* no SATYPE specified, i.e. flushing all SA. */
7068 	SAHTREE_LOCK();
7069 	for (sah = LIST_FIRST(&V_sahtree);
7070 	     sah != NULL;
7071 	     sah = nextsah) {
7072 		nextsah = LIST_NEXT(sah, chain);
7073 
7074 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
7075 		 && proto != sah->saidx.proto)
7076 			continue;
7077 
7078 		for (stateidx = 0;
7079 		     stateidx < _ARRAYLEN(saorder_state_alive);
7080 		     stateidx++) {
7081 			state = saorder_state_any[stateidx];
7082 			for (sav = LIST_FIRST(&sah->savtree[state]);
7083 			     sav != NULL;
7084 			     sav = nextsav) {
7085 
7086 				nextsav = LIST_NEXT(sav, chain);
7087 
7088 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
7089 				KEY_FREESAV(&sav);
7090 			}
7091 		}
7092 
7093 		sah->state = SADB_SASTATE_DEAD;
7094 	}
7095 	SAHTREE_UNLOCK();
7096 
7097 	if (m->m_len < sizeof(struct sadb_msg) ||
7098 	    sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
7099 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
7100 		return key_senderror(so, m, ENOBUFS);
7101 	}
7102 
7103 	if (m->m_next)
7104 		m_freem(m->m_next);
7105 	m->m_next = NULL;
7106 	m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
7107 	newmsg = mtod(m, struct sadb_msg *);
7108 	newmsg->sadb_msg_errno = 0;
7109 	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
7110 
7111 	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7112 }
7113 
7114 /*
7115  * SADB_DUMP processing
7116  * dump all entries including status of DEAD in SAD.
7117  * receive
7118  *   <base>
7119  * from the ikmpd, and dump all secasvar leaves
7120  * and send,
7121  *   <base> .....
7122  * to the ikmpd.
7123  *
7124  * m will always be freed.
7125  */
7126 static int
7127 key_dump(so, m, mhp)
7128 	struct socket *so;
7129 	struct mbuf *m;
7130 	const struct sadb_msghdr *mhp;
7131 {
7132 	struct secashead *sah;
7133 	struct secasvar *sav;
7134 	u_int16_t proto;
7135 	u_int stateidx;
7136 	u_int8_t satype;
7137 	u_int8_t state;
7138 	int cnt;
7139 	struct sadb_msg *newmsg;
7140 	struct mbuf *n;
7141 
7142 	IPSEC_ASSERT(so != NULL, ("null socket"));
7143 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7144 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7145 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7146 
7147 	/* map satype to proto */
7148 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
7149 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
7150 			__func__));
7151 		return key_senderror(so, m, EINVAL);
7152 	}
7153 
7154 	/* count sav entries to be sent to the userland. */
7155 	cnt = 0;
7156 	SAHTREE_LOCK();
7157 	LIST_FOREACH(sah, &V_sahtree, chain) {
7158 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
7159 		 && proto != sah->saidx.proto)
7160 			continue;
7161 
7162 		for (stateidx = 0;
7163 		     stateidx < _ARRAYLEN(saorder_state_any);
7164 		     stateidx++) {
7165 			state = saorder_state_any[stateidx];
7166 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
7167 				cnt++;
7168 			}
7169 		}
7170 	}
7171 
7172 	if (cnt == 0) {
7173 		SAHTREE_UNLOCK();
7174 		return key_senderror(so, m, ENOENT);
7175 	}
7176 
7177 	/* send this to the userland, one at a time. */
7178 	newmsg = NULL;
7179 	LIST_FOREACH(sah, &V_sahtree, chain) {
7180 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
7181 		 && proto != sah->saidx.proto)
7182 			continue;
7183 
7184 		/* map proto to satype */
7185 		if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
7186 			SAHTREE_UNLOCK();
7187 			ipseclog((LOG_DEBUG, "%s: there was invalid proto in "
7188 				"SAD.\n", __func__));
7189 			return key_senderror(so, m, EINVAL);
7190 		}
7191 
7192 		for (stateidx = 0;
7193 		     stateidx < _ARRAYLEN(saorder_state_any);
7194 		     stateidx++) {
7195 			state = saorder_state_any[stateidx];
7196 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
7197 				n = key_setdumpsa(sav, SADB_DUMP, satype,
7198 				    --cnt, mhp->msg->sadb_msg_pid);
7199 				if (!n) {
7200 					SAHTREE_UNLOCK();
7201 					return key_senderror(so, m, ENOBUFS);
7202 				}
7203 				key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
7204 			}
7205 		}
7206 	}
7207 	SAHTREE_UNLOCK();
7208 
7209 	m_freem(m);
7210 	return 0;
7211 }
7212 
7213 /*
7214  * SADB_X_PROMISC processing
7215  *
7216  * m will always be freed.
7217  */
7218 static int
7219 key_promisc(so, m, mhp)
7220 	struct socket *so;
7221 	struct mbuf *m;
7222 	const struct sadb_msghdr *mhp;
7223 {
7224 	int olen;
7225 
7226 	IPSEC_ASSERT(so != NULL, ("null socket"));
7227 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7228 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7229 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7230 
7231 	olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7232 
7233 	if (olen < sizeof(struct sadb_msg)) {
7234 #if 1
7235 		return key_senderror(so, m, EINVAL);
7236 #else
7237 		m_freem(m);
7238 		return 0;
7239 #endif
7240 	} else if (olen == sizeof(struct sadb_msg)) {
7241 		/* enable/disable promisc mode */
7242 		struct keycb *kp;
7243 
7244 		if ((kp = (struct keycb *)sotorawcb(so)) == NULL)
7245 			return key_senderror(so, m, EINVAL);
7246 		mhp->msg->sadb_msg_errno = 0;
7247 		switch (mhp->msg->sadb_msg_satype) {
7248 		case 0:
7249 		case 1:
7250 			kp->kp_promisc = mhp->msg->sadb_msg_satype;
7251 			break;
7252 		default:
7253 			return key_senderror(so, m, EINVAL);
7254 		}
7255 
7256 		/* send the original message back to everyone */
7257 		mhp->msg->sadb_msg_errno = 0;
7258 		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7259 	} else {
7260 		/* send packet as is */
7261 
7262 		m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7263 
7264 		/* TODO: if sadb_msg_seq is specified, send to specific pid */
7265 		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7266 	}
7267 }
7268 
7269 static int (*key_typesw[]) __P((struct socket *, struct mbuf *,
7270 		const struct sadb_msghdr *)) = {
7271 	NULL,		/* SADB_RESERVED */
7272 	key_getspi,	/* SADB_GETSPI */
7273 	key_update,	/* SADB_UPDATE */
7274 	key_add,	/* SADB_ADD */
7275 	key_delete,	/* SADB_DELETE */
7276 	key_get,	/* SADB_GET */
7277 	key_acquire2,	/* SADB_ACQUIRE */
7278 	key_register,	/* SADB_REGISTER */
7279 	NULL,		/* SADB_EXPIRE */
7280 	key_flush,	/* SADB_FLUSH */
7281 	key_dump,	/* SADB_DUMP */
7282 	key_promisc,	/* SADB_X_PROMISC */
7283 	NULL,		/* SADB_X_PCHANGE */
7284 	key_spdadd,	/* SADB_X_SPDUPDATE */
7285 	key_spdadd,	/* SADB_X_SPDADD */
7286 	key_spddelete,	/* SADB_X_SPDDELETE */
7287 	key_spdget,	/* SADB_X_SPDGET */
7288 	NULL,		/* SADB_X_SPDACQUIRE */
7289 	key_spddump,	/* SADB_X_SPDDUMP */
7290 	key_spdflush,	/* SADB_X_SPDFLUSH */
7291 	key_spdadd,	/* SADB_X_SPDSETIDX */
7292 	NULL,		/* SADB_X_SPDEXPIRE */
7293 	key_spddelete2,	/* SADB_X_SPDDELETE2 */
7294 };
7295 
7296 /*
7297  * parse sadb_msg buffer to process PFKEYv2,
7298  * and create a data to response if needed.
7299  * I think to be dealed with mbuf directly.
7300  * IN:
7301  *     msgp  : pointer to pointer to a received buffer pulluped.
7302  *             This is rewrited to response.
7303  *     so    : pointer to socket.
7304  * OUT:
7305  *    length for buffer to send to user process.
7306  */
7307 int
7308 key_parse(m, so)
7309 	struct mbuf *m;
7310 	struct socket *so;
7311 {
7312 	struct sadb_msg *msg;
7313 	struct sadb_msghdr mh;
7314 	u_int orglen;
7315 	int error;
7316 	int target;
7317 
7318 	IPSEC_ASSERT(so != NULL, ("null socket"));
7319 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7320 
7321 #if 0	/*kdebug_sadb assumes msg in linear buffer*/
7322 	KEYDEBUG(KEYDEBUG_KEY_DUMP,
7323 		ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__));
7324 		kdebug_sadb(msg));
7325 #endif
7326 
7327 	if (m->m_len < sizeof(struct sadb_msg)) {
7328 		m = m_pullup(m, sizeof(struct sadb_msg));
7329 		if (!m)
7330 			return ENOBUFS;
7331 	}
7332 	msg = mtod(m, struct sadb_msg *);
7333 	orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7334 	target = KEY_SENDUP_ONE;
7335 
7336 	if ((m->m_flags & M_PKTHDR) == 0 ||
7337 	    m->m_pkthdr.len != m->m_pkthdr.len) {
7338 		ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__));
7339 		V_pfkeystat.out_invlen++;
7340 		error = EINVAL;
7341 		goto senderror;
7342 	}
7343 
7344 	if (msg->sadb_msg_version != PF_KEY_V2) {
7345 		ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n",
7346 		    __func__, msg->sadb_msg_version));
7347 		V_pfkeystat.out_invver++;
7348 		error = EINVAL;
7349 		goto senderror;
7350 	}
7351 
7352 	if (msg->sadb_msg_type > SADB_MAX) {
7353 		ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
7354 		    __func__, msg->sadb_msg_type));
7355 		V_pfkeystat.out_invmsgtype++;
7356 		error = EINVAL;
7357 		goto senderror;
7358 	}
7359 
7360 	/* for old-fashioned code - should be nuked */
7361 	if (m->m_pkthdr.len > MCLBYTES) {
7362 		m_freem(m);
7363 		return ENOBUFS;
7364 	}
7365 	if (m->m_next) {
7366 		struct mbuf *n;
7367 
7368 		MGETHDR(n, M_DONTWAIT, MT_DATA);
7369 		if (n && m->m_pkthdr.len > MHLEN) {
7370 			MCLGET(n, M_DONTWAIT);
7371 			if ((n->m_flags & M_EXT) == 0) {
7372 				m_free(n);
7373 				n = NULL;
7374 			}
7375 		}
7376 		if (!n) {
7377 			m_freem(m);
7378 			return ENOBUFS;
7379 		}
7380 		m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t));
7381 		n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7382 		n->m_next = NULL;
7383 		m_freem(m);
7384 		m = n;
7385 	}
7386 
7387 	/* align the mbuf chain so that extensions are in contiguous region. */
7388 	error = key_align(m, &mh);
7389 	if (error)
7390 		return error;
7391 
7392 	msg = mh.msg;
7393 
7394 	/* check SA type */
7395 	switch (msg->sadb_msg_satype) {
7396 	case SADB_SATYPE_UNSPEC:
7397 		switch (msg->sadb_msg_type) {
7398 		case SADB_GETSPI:
7399 		case SADB_UPDATE:
7400 		case SADB_ADD:
7401 		case SADB_DELETE:
7402 		case SADB_GET:
7403 		case SADB_ACQUIRE:
7404 		case SADB_EXPIRE:
7405 			ipseclog((LOG_DEBUG, "%s: must specify satype "
7406 			    "when msg type=%u.\n", __func__,
7407 			    msg->sadb_msg_type));
7408 			V_pfkeystat.out_invsatype++;
7409 			error = EINVAL;
7410 			goto senderror;
7411 		}
7412 		break;
7413 	case SADB_SATYPE_AH:
7414 	case SADB_SATYPE_ESP:
7415 	case SADB_X_SATYPE_IPCOMP:
7416 	case SADB_X_SATYPE_TCPSIGNATURE:
7417 		switch (msg->sadb_msg_type) {
7418 		case SADB_X_SPDADD:
7419 		case SADB_X_SPDDELETE:
7420 		case SADB_X_SPDGET:
7421 		case SADB_X_SPDDUMP:
7422 		case SADB_X_SPDFLUSH:
7423 		case SADB_X_SPDSETIDX:
7424 		case SADB_X_SPDUPDATE:
7425 		case SADB_X_SPDDELETE2:
7426 			ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n",
7427 				__func__, msg->sadb_msg_type));
7428 			V_pfkeystat.out_invsatype++;
7429 			error = EINVAL;
7430 			goto senderror;
7431 		}
7432 		break;
7433 	case SADB_SATYPE_RSVP:
7434 	case SADB_SATYPE_OSPFV2:
7435 	case SADB_SATYPE_RIPV2:
7436 	case SADB_SATYPE_MIP:
7437 		ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n",
7438 			__func__, msg->sadb_msg_satype));
7439 		V_pfkeystat.out_invsatype++;
7440 		error = EOPNOTSUPP;
7441 		goto senderror;
7442 	case 1:	/* XXX: What does it do? */
7443 		if (msg->sadb_msg_type == SADB_X_PROMISC)
7444 			break;
7445 		/*FALLTHROUGH*/
7446 	default:
7447 		ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
7448 			__func__, msg->sadb_msg_satype));
7449 		V_pfkeystat.out_invsatype++;
7450 		error = EINVAL;
7451 		goto senderror;
7452 	}
7453 
7454 	/* check field of upper layer protocol and address family */
7455 	if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL
7456 	 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7457 		struct sadb_address *src0, *dst0;
7458 		u_int plen;
7459 
7460 		src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7461 		dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7462 
7463 		/* check upper layer protocol */
7464 		if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7465 			ipseclog((LOG_DEBUG, "%s: upper layer protocol "
7466 				"mismatched.\n", __func__));
7467 			V_pfkeystat.out_invaddr++;
7468 			error = EINVAL;
7469 			goto senderror;
7470 		}
7471 
7472 		/* check family */
7473 		if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7474 		    PFKEY_ADDR_SADDR(dst0)->sa_family) {
7475 			ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
7476 				__func__));
7477 			V_pfkeystat.out_invaddr++;
7478 			error = EINVAL;
7479 			goto senderror;
7480 		}
7481 		if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7482 		    PFKEY_ADDR_SADDR(dst0)->sa_len) {
7483 			ipseclog((LOG_DEBUG, "%s: address struct size "
7484 				"mismatched.\n", __func__));
7485 			V_pfkeystat.out_invaddr++;
7486 			error = EINVAL;
7487 			goto senderror;
7488 		}
7489 
7490 		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7491 		case AF_INET:
7492 			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7493 			    sizeof(struct sockaddr_in)) {
7494 				V_pfkeystat.out_invaddr++;
7495 				error = EINVAL;
7496 				goto senderror;
7497 			}
7498 			break;
7499 		case AF_INET6:
7500 			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7501 			    sizeof(struct sockaddr_in6)) {
7502 				V_pfkeystat.out_invaddr++;
7503 				error = EINVAL;
7504 				goto senderror;
7505 			}
7506 			break;
7507 		default:
7508 			ipseclog((LOG_DEBUG, "%s: unsupported address family\n",
7509 				__func__));
7510 			V_pfkeystat.out_invaddr++;
7511 			error = EAFNOSUPPORT;
7512 			goto senderror;
7513 		}
7514 
7515 		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7516 		case AF_INET:
7517 			plen = sizeof(struct in_addr) << 3;
7518 			break;
7519 		case AF_INET6:
7520 			plen = sizeof(struct in6_addr) << 3;
7521 			break;
7522 		default:
7523 			plen = 0;	/*fool gcc*/
7524 			break;
7525 		}
7526 
7527 		/* check max prefix length */
7528 		if (src0->sadb_address_prefixlen > plen ||
7529 		    dst0->sadb_address_prefixlen > plen) {
7530 			ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n",
7531 				__func__));
7532 			V_pfkeystat.out_invaddr++;
7533 			error = EINVAL;
7534 			goto senderror;
7535 		}
7536 
7537 		/*
7538 		 * prefixlen == 0 is valid because there can be a case when
7539 		 * all addresses are matched.
7540 		 */
7541 	}
7542 
7543 	if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) ||
7544 	    key_typesw[msg->sadb_msg_type] == NULL) {
7545 		V_pfkeystat.out_invmsgtype++;
7546 		error = EINVAL;
7547 		goto senderror;
7548 	}
7549 
7550 	return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
7551 
7552 senderror:
7553 	msg->sadb_msg_errno = error;
7554 	return key_sendup_mbuf(so, m, target);
7555 }
7556 
7557 static int
7558 key_senderror(so, m, code)
7559 	struct socket *so;
7560 	struct mbuf *m;
7561 	int code;
7562 {
7563 	struct sadb_msg *msg;
7564 
7565 	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
7566 		("mbuf too small, len %u", m->m_len));
7567 
7568 	msg = mtod(m, struct sadb_msg *);
7569 	msg->sadb_msg_errno = code;
7570 	return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7571 }
7572 
7573 /*
7574  * set the pointer to each header into message buffer.
7575  * m will be freed on error.
7576  * XXX larger-than-MCLBYTES extension?
7577  */
7578 static int
7579 key_align(m, mhp)
7580 	struct mbuf *m;
7581 	struct sadb_msghdr *mhp;
7582 {
7583 	struct mbuf *n;
7584 	struct sadb_ext *ext;
7585 	size_t off, end;
7586 	int extlen;
7587 	int toff;
7588 
7589 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7590 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7591 	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
7592 		("mbuf too small, len %u", m->m_len));
7593 
7594 	/* initialize */
7595 	bzero(mhp, sizeof(*mhp));
7596 
7597 	mhp->msg = mtod(m, struct sadb_msg *);
7598 	mhp->ext[0] = (struct sadb_ext *)mhp->msg;	/*XXX backward compat */
7599 
7600 	end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7601 	extlen = end;	/*just in case extlen is not updated*/
7602 	for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7603 		n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7604 		if (!n) {
7605 			/* m is already freed */
7606 			return ENOBUFS;
7607 		}
7608 		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
7609 
7610 		/* set pointer */
7611 		switch (ext->sadb_ext_type) {
7612 		case SADB_EXT_SA:
7613 		case SADB_EXT_ADDRESS_SRC:
7614 		case SADB_EXT_ADDRESS_DST:
7615 		case SADB_EXT_ADDRESS_PROXY:
7616 		case SADB_EXT_LIFETIME_CURRENT:
7617 		case SADB_EXT_LIFETIME_HARD:
7618 		case SADB_EXT_LIFETIME_SOFT:
7619 		case SADB_EXT_KEY_AUTH:
7620 		case SADB_EXT_KEY_ENCRYPT:
7621 		case SADB_EXT_IDENTITY_SRC:
7622 		case SADB_EXT_IDENTITY_DST:
7623 		case SADB_EXT_SENSITIVITY:
7624 		case SADB_EXT_PROPOSAL:
7625 		case SADB_EXT_SUPPORTED_AUTH:
7626 		case SADB_EXT_SUPPORTED_ENCRYPT:
7627 		case SADB_EXT_SPIRANGE:
7628 		case SADB_X_EXT_POLICY:
7629 		case SADB_X_EXT_SA2:
7630 #ifdef IPSEC_NAT_T
7631 		case SADB_X_EXT_NAT_T_TYPE:
7632 		case SADB_X_EXT_NAT_T_SPORT:
7633 		case SADB_X_EXT_NAT_T_DPORT:
7634 		case SADB_X_EXT_NAT_T_OAI:
7635 		case SADB_X_EXT_NAT_T_OAR:
7636 		case SADB_X_EXT_NAT_T_FRAG:
7637 #endif
7638 			/* duplicate check */
7639 			/*
7640 			 * XXX Are there duplication payloads of either
7641 			 * KEY_AUTH or KEY_ENCRYPT ?
7642 			 */
7643 			if (mhp->ext[ext->sadb_ext_type] != NULL) {
7644 				ipseclog((LOG_DEBUG, "%s: duplicate ext_type "
7645 					"%u\n", __func__, ext->sadb_ext_type));
7646 				m_freem(m);
7647 				V_pfkeystat.out_dupext++;
7648 				return EINVAL;
7649 			}
7650 			break;
7651 		default:
7652 			ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n",
7653 				__func__, ext->sadb_ext_type));
7654 			m_freem(m);
7655 			V_pfkeystat.out_invexttype++;
7656 			return EINVAL;
7657 		}
7658 
7659 		extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7660 
7661 		if (key_validate_ext(ext, extlen)) {
7662 			m_freem(m);
7663 			V_pfkeystat.out_invlen++;
7664 			return EINVAL;
7665 		}
7666 
7667 		n = m_pulldown(m, off, extlen, &toff);
7668 		if (!n) {
7669 			/* m is already freed */
7670 			return ENOBUFS;
7671 		}
7672 		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
7673 
7674 		mhp->ext[ext->sadb_ext_type] = ext;
7675 		mhp->extoff[ext->sadb_ext_type] = off;
7676 		mhp->extlen[ext->sadb_ext_type] = extlen;
7677 	}
7678 
7679 	if (off != end) {
7680 		m_freem(m);
7681 		V_pfkeystat.out_invlen++;
7682 		return EINVAL;
7683 	}
7684 
7685 	return 0;
7686 }
7687 
7688 static int
7689 key_validate_ext(ext, len)
7690 	const struct sadb_ext *ext;
7691 	int len;
7692 {
7693 	const struct sockaddr *sa;
7694 	enum { NONE, ADDR } checktype = NONE;
7695 	int baselen = 0;
7696 	const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7697 
7698 	if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7699 		return EINVAL;
7700 
7701 	/* if it does not match minimum/maximum length, bail */
7702 	if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) ||
7703 	    ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0]))
7704 		return EINVAL;
7705 	if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7706 		return EINVAL;
7707 	if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7708 		return EINVAL;
7709 
7710 	/* more checks based on sadb_ext_type XXX need more */
7711 	switch (ext->sadb_ext_type) {
7712 	case SADB_EXT_ADDRESS_SRC:
7713 	case SADB_EXT_ADDRESS_DST:
7714 	case SADB_EXT_ADDRESS_PROXY:
7715 		baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7716 		checktype = ADDR;
7717 		break;
7718 	case SADB_EXT_IDENTITY_SRC:
7719 	case SADB_EXT_IDENTITY_DST:
7720 		if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7721 		    SADB_X_IDENTTYPE_ADDR) {
7722 			baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7723 			checktype = ADDR;
7724 		} else
7725 			checktype = NONE;
7726 		break;
7727 	default:
7728 		checktype = NONE;
7729 		break;
7730 	}
7731 
7732 	switch (checktype) {
7733 	case NONE:
7734 		break;
7735 	case ADDR:
7736 		sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7737 		if (len < baselen + sal)
7738 			return EINVAL;
7739 		if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7740 			return EINVAL;
7741 		break;
7742 	}
7743 
7744 	return 0;
7745 }
7746 
7747 void
7748 key_init(void)
7749 {
7750 	int i;
7751 
7752 	for (i = 0; i < IPSEC_DIR_MAX; i++)
7753 		LIST_INIT(&V_sptree[i]);
7754 
7755 	LIST_INIT(&V_sahtree);
7756 
7757 	for (i = 0; i <= SADB_SATYPE_MAX; i++)
7758 		LIST_INIT(&V_regtree[i]);
7759 
7760 	LIST_INIT(&V_acqtree);
7761 	LIST_INIT(&V_spacqtree);
7762 
7763 	/* system default */
7764 	V_ip4_def_policy.policy = IPSEC_POLICY_NONE;
7765 	V_ip4_def_policy.refcnt++;	/*never reclaim this*/
7766 
7767 	if (!IS_DEFAULT_VNET(curvnet))
7768 		return;
7769 
7770 	SPTREE_LOCK_INIT();
7771 	REGTREE_LOCK_INIT();
7772 	SAHTREE_LOCK_INIT();
7773 	ACQ_LOCK_INIT();
7774 	SPACQ_LOCK_INIT();
7775 
7776 #ifndef IPSEC_DEBUG2
7777 	timeout((void *)key_timehandler, (void *)0, hz);
7778 #endif /*IPSEC_DEBUG2*/
7779 
7780 	/* initialize key statistics */
7781 	keystat.getspi_count = 1;
7782 
7783 	printf("IPsec: Initialized Security Association Processing.\n");
7784 }
7785 
7786 #ifdef VIMAGE
7787 void
7788 key_destroy(void)
7789 {
7790 	struct secpolicy *sp, *nextsp;
7791 	struct secspacq *acq, *nextacq;
7792 	struct secashead *sah, *nextsah;
7793 	struct secreg *reg;
7794 	int i;
7795 
7796 	SPTREE_LOCK();
7797 	for (i = 0; i < IPSEC_DIR_MAX; i++) {
7798 		for (sp = LIST_FIRST(&V_sptree[i]);
7799 		    sp != NULL; sp = nextsp) {
7800 			nextsp = LIST_NEXT(sp, chain);
7801 			if (__LIST_CHAINED(sp)) {
7802 				LIST_REMOVE(sp, chain);
7803 				free(sp, M_IPSEC_SP);
7804 			}
7805 		}
7806 	}
7807 	SPTREE_UNLOCK();
7808 
7809 	SAHTREE_LOCK();
7810 	for (sah = LIST_FIRST(&V_sahtree); sah != NULL; sah = nextsah) {
7811 		nextsah = LIST_NEXT(sah, chain);
7812 		if (__LIST_CHAINED(sah)) {
7813 			LIST_REMOVE(sah, chain);
7814 			free(sah, M_IPSEC_SAH);
7815 		}
7816 	}
7817 	SAHTREE_UNLOCK();
7818 
7819 	REGTREE_LOCK();
7820 	for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7821 		LIST_FOREACH(reg, &V_regtree[i], chain) {
7822 			if (__LIST_CHAINED(reg)) {
7823 				LIST_REMOVE(reg, chain);
7824 				free(reg, M_IPSEC_SAR);
7825 				break;
7826 			}
7827 		}
7828 	}
7829 	REGTREE_UNLOCK();
7830 
7831 	ACQ_LOCK();
7832 	for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) {
7833 		nextacq = LIST_NEXT(acq, chain);
7834 		if (__LIST_CHAINED(acq)) {
7835 			LIST_REMOVE(acq, chain);
7836 			free(acq, M_IPSEC_SAQ);
7837 		}
7838 	}
7839 	ACQ_UNLOCK();
7840 
7841 	SPACQ_LOCK();
7842 	for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) {
7843 		nextacq = LIST_NEXT(acq, chain);
7844 		if (__LIST_CHAINED(acq)) {
7845 			LIST_REMOVE(acq, chain);
7846 			free(acq, M_IPSEC_SAQ);
7847 		}
7848 	}
7849 	SPACQ_UNLOCK();
7850 }
7851 #endif
7852 
7853 /*
7854  * XXX: maybe This function is called after INBOUND IPsec processing.
7855  *
7856  * Special check for tunnel-mode packets.
7857  * We must make some checks for consistency between inner and outer IP header.
7858  *
7859  * xxx more checks to be provided
7860  */
7861 int
7862 key_checktunnelsanity(sav, family, src, dst)
7863 	struct secasvar *sav;
7864 	u_int family;
7865 	caddr_t src;
7866 	caddr_t dst;
7867 {
7868 	IPSEC_ASSERT(sav->sah != NULL, ("null SA header"));
7869 
7870 	/* XXX: check inner IP header */
7871 
7872 	return 1;
7873 }
7874 
7875 /* record data transfer on SA, and update timestamps */
7876 void
7877 key_sa_recordxfer(sav, m)
7878 	struct secasvar *sav;
7879 	struct mbuf *m;
7880 {
7881 	IPSEC_ASSERT(sav != NULL, ("Null secasvar"));
7882 	IPSEC_ASSERT(m != NULL, ("Null mbuf"));
7883 	if (!sav->lft_c)
7884 		return;
7885 
7886 	/*
7887 	 * XXX Currently, there is a difference of bytes size
7888 	 * between inbound and outbound processing.
7889 	 */
7890 	sav->lft_c->bytes += m->m_pkthdr.len;
7891 	/* to check bytes lifetime is done in key_timehandler(). */
7892 
7893 	/*
7894 	 * We use the number of packets as the unit of
7895 	 * allocations.  We increment the variable
7896 	 * whenever {esp,ah}_{in,out}put is called.
7897 	 */
7898 	sav->lft_c->allocations++;
7899 	/* XXX check for expires? */
7900 
7901 	/*
7902 	 * NOTE: We record CURRENT usetime by using wall clock,
7903 	 * in seconds.  HARD and SOFT lifetime are measured by the time
7904 	 * difference (again in seconds) from usetime.
7905 	 *
7906 	 *	usetime
7907 	 *	v     expire   expire
7908 	 * -----+-----+--------+---> t
7909 	 *	<--------------> HARD
7910 	 *	<-----> SOFT
7911 	 */
7912 	sav->lft_c->usetime = time_second;
7913 	/* XXX check for expires? */
7914 
7915 	return;
7916 }
7917 
7918 /* dumb version */
7919 void
7920 key_sa_routechange(dst)
7921 	struct sockaddr *dst;
7922 {
7923 	struct secashead *sah;
7924 	struct route *ro;
7925 
7926 	SAHTREE_LOCK();
7927 	LIST_FOREACH(sah, &V_sahtree, chain) {
7928 		ro = &sah->sa_route;
7929 		if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len
7930 		 && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) {
7931 			RTFREE(ro->ro_rt);
7932 			ro->ro_rt = (struct rtentry *)NULL;
7933 		}
7934 	}
7935 	SAHTREE_UNLOCK();
7936 }
7937 
7938 static void
7939 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
7940 {
7941 	IPSEC_ASSERT(sav != NULL, ("NULL sav"));
7942 	SAHTREE_LOCK_ASSERT();
7943 
7944 	if (sav->state != state) {
7945 		if (__LIST_CHAINED(sav))
7946 			LIST_REMOVE(sav, chain);
7947 		sav->state = state;
7948 		LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7949 	}
7950 }
7951 
7952 void
7953 key_sa_stir_iv(sav)
7954 	struct secasvar *sav;
7955 {
7956 
7957 	IPSEC_ASSERT(sav->iv != NULL, ("null IV"));
7958 	key_randomfill(sav->iv, sav->ivlen);
7959 }
7960 
7961 /* XXX too much? */
7962 static struct mbuf *
7963 key_alloc_mbuf(l)
7964 	int l;
7965 {
7966 	struct mbuf *m = NULL, *n;
7967 	int len, t;
7968 
7969 	len = l;
7970 	while (len > 0) {
7971 		MGET(n, M_DONTWAIT, MT_DATA);
7972 		if (n && len > MLEN)
7973 			MCLGET(n, M_DONTWAIT);
7974 		if (!n) {
7975 			m_freem(m);
7976 			return NULL;
7977 		}
7978 
7979 		n->m_next = NULL;
7980 		n->m_len = 0;
7981 		n->m_len = M_TRAILINGSPACE(n);
7982 		/* use the bottom of mbuf, hoping we can prepend afterwards */
7983 		if (n->m_len > len) {
7984 			t = (n->m_len - len) & ~(sizeof(long) - 1);
7985 			n->m_data += t;
7986 			n->m_len = len;
7987 		}
7988 
7989 		len -= n->m_len;
7990 
7991 		if (m)
7992 			m_cat(m, n);
7993 		else
7994 			m = n;
7995 	}
7996 
7997 	return m;
7998 }
7999 
8000 /*
8001  * Take one of the kernel's security keys and convert it into a PF_KEY
8002  * structure within an mbuf, suitable for sending up to a waiting
8003  * application in user land.
8004  *
8005  * IN:
8006  *    src: A pointer to a kernel security key.
8007  *    exttype: Which type of key this is. Refer to the PF_KEY data structures.
8008  * OUT:
8009  *    a valid mbuf or NULL indicating an error
8010  *
8011  */
8012 
8013 static struct mbuf *
8014 key_setkey(struct seckey *src, u_int16_t exttype)
8015 {
8016 	struct mbuf *m;
8017 	struct sadb_key *p;
8018 	int len;
8019 
8020 	if (src == NULL)
8021 		return NULL;
8022 
8023 	len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src));
8024 	m = key_alloc_mbuf(len);
8025 	if (m == NULL)
8026 		return NULL;
8027 	p = mtod(m, struct sadb_key *);
8028 	bzero(p, len);
8029 	p->sadb_key_len = PFKEY_UNIT64(len);
8030 	p->sadb_key_exttype = exttype;
8031 	p->sadb_key_bits = src->bits;
8032 	bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src));
8033 
8034 	return m;
8035 }
8036 
8037 /*
8038  * Take one of the kernel's lifetime data structures and convert it
8039  * into a PF_KEY structure within an mbuf, suitable for sending up to
8040  * a waiting application in user land.
8041  *
8042  * IN:
8043  *    src: A pointer to a kernel lifetime structure.
8044  *    exttype: Which type of lifetime this is. Refer to the PF_KEY
8045  *             data structures for more information.
8046  * OUT:
8047  *    a valid mbuf or NULL indicating an error
8048  *
8049  */
8050 
8051 static struct mbuf *
8052 key_setlifetime(struct seclifetime *src, u_int16_t exttype)
8053 {
8054 	struct mbuf *m = NULL;
8055 	struct sadb_lifetime *p;
8056 	int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime));
8057 
8058 	if (src == NULL)
8059 		return NULL;
8060 
8061 	m = key_alloc_mbuf(len);
8062 	if (m == NULL)
8063 		return m;
8064 	p = mtod(m, struct sadb_lifetime *);
8065 
8066 	bzero(p, len);
8067 	p->sadb_lifetime_len = PFKEY_UNIT64(len);
8068 	p->sadb_lifetime_exttype = exttype;
8069 	p->sadb_lifetime_allocations = src->allocations;
8070 	p->sadb_lifetime_bytes = src->bytes;
8071 	p->sadb_lifetime_addtime = src->addtime;
8072 	p->sadb_lifetime_usetime = src->usetime;
8073 
8074 	return m;
8075 
8076 }
8077