1 /* $FreeBSD$ */ 2 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ 3 4 /*- 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * This code is referd to RFC 2367 35 */ 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 #include "opt_ipsec.h" 40 41 #include <sys/types.h> 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/mutex.h> 47 #include <sys/mbuf.h> 48 #include <sys/domain.h> 49 #include <sys/protosw.h> 50 #include <sys/malloc.h> 51 #include <sys/socket.h> 52 #include <sys/socketvar.h> 53 #include <sys/sysctl.h> 54 #include <sys/errno.h> 55 #include <sys/proc.h> 56 #include <sys/queue.h> 57 #include <sys/refcount.h> 58 #include <sys/syslog.h> 59 60 #include <net/if.h> 61 #include <net/route.h> 62 #include <net/raw_cb.h> 63 #include <net/vnet.h> 64 65 #include <netinet/in.h> 66 #include <netinet/in_systm.h> 67 #include <netinet/ip.h> 68 #include <netinet/in_var.h> 69 70 #ifdef INET6 71 #include <netinet/ip6.h> 72 #include <netinet6/in6_var.h> 73 #include <netinet6/ip6_var.h> 74 #endif /* INET6 */ 75 76 #ifdef INET 77 #include <netinet/in_pcb.h> 78 #endif 79 #ifdef INET6 80 #include <netinet6/in6_pcb.h> 81 #endif /* INET6 */ 82 83 #include <net/pfkeyv2.h> 84 #include <netipsec/keydb.h> 85 #include <netipsec/key.h> 86 #include <netipsec/keysock.h> 87 #include <netipsec/key_debug.h> 88 89 #include <netipsec/ipsec.h> 90 #ifdef INET6 91 #include <netipsec/ipsec6.h> 92 #endif 93 94 #include <netipsec/xform.h> 95 96 #include <machine/stdarg.h> 97 98 /* randomness */ 99 #include <sys/random.h> 100 101 #define FULLMASK 0xff 102 #define _BITS(bytes) ((bytes) << 3) 103 104 /* 105 * Note on SA reference counting: 106 * - SAs that are not in DEAD state will have (total external reference + 1) 107 * following value in reference count field. they cannot be freed and are 108 * referenced from SA header. 109 * - SAs that are in DEAD state will have (total external reference) 110 * in reference count field. they are ready to be freed. reference from 111 * SA header will be removed in key_delsav(), when the reference count 112 * field hits 0 (= no external reference other than from SA header. 113 */ 114 115 VNET_DEFINE(u_int32_t, key_debug_level) = 0; 116 static VNET_DEFINE(u_int, key_spi_trycnt) = 1000; 117 #define V_key_spi_trycnt VNET(key_spi_trycnt) 118 static VNET_DEFINE(u_int32_t, key_spi_minval) = 0x100; 119 #define V_key_spi_minval VNET(key_spi_minval) 120 static VNET_DEFINE(u_int32_t, key_spi_maxval) = 0x0fffffff; /* XXX */ 121 #define V_key_spi_maxval VNET(key_spi_maxval) 122 static VNET_DEFINE(u_int32_t, policy_id) = 0; 123 #define V_policy_id VNET(policy_id) 124 /*interval to initialize randseed,1(m)*/ 125 static VNET_DEFINE(u_int, key_int_random) = 60; 126 #define V_key_int_random VNET(key_int_random) 127 /* interval to expire acquiring, 30(s)*/ 128 static VNET_DEFINE(u_int, key_larval_lifetime) = 30; 129 #define V_key_larval_lifetime VNET(key_larval_lifetime) 130 /* counter for blocking SADB_ACQUIRE.*/ 131 static VNET_DEFINE(int, key_blockacq_count) = 10; 132 #define V_key_blockacq_count VNET(key_blockacq_count) 133 /* lifetime for blocking SADB_ACQUIRE.*/ 134 static VNET_DEFINE(int, key_blockacq_lifetime) = 20; 135 #define V_key_blockacq_lifetime VNET(key_blockacq_lifetime) 136 /* preferred old sa rather than new sa.*/ 137 static VNET_DEFINE(int, key_preferred_oldsa) = 1; 138 #define V_key_preferred_oldsa VNET(key_preferred_oldsa) 139 140 static VNET_DEFINE(u_int32_t, acq_seq) = 0; 141 #define V_acq_seq VNET(acq_seq) 142 143 /* SPD */ 144 static VNET_DEFINE(LIST_HEAD(_sptree, secpolicy), sptree[IPSEC_DIR_MAX]); 145 #define V_sptree VNET(sptree) 146 static struct mtx sptree_lock; 147 #define SPTREE_LOCK_INIT() \ 148 mtx_init(&sptree_lock, "sptree", \ 149 "fast ipsec security policy database", MTX_DEF) 150 #define SPTREE_LOCK_DESTROY() mtx_destroy(&sptree_lock) 151 #define SPTREE_LOCK() mtx_lock(&sptree_lock) 152 #define SPTREE_UNLOCK() mtx_unlock(&sptree_lock) 153 #define SPTREE_LOCK_ASSERT() mtx_assert(&sptree_lock, MA_OWNED) 154 155 static VNET_DEFINE(LIST_HEAD(_sahtree, secashead), sahtree); /* SAD */ 156 #define V_sahtree VNET(sahtree) 157 static struct mtx sahtree_lock; 158 #define SAHTREE_LOCK_INIT() \ 159 mtx_init(&sahtree_lock, "sahtree", \ 160 "fast ipsec security association database", MTX_DEF) 161 #define SAHTREE_LOCK_DESTROY() mtx_destroy(&sahtree_lock) 162 #define SAHTREE_LOCK() mtx_lock(&sahtree_lock) 163 #define SAHTREE_UNLOCK() mtx_unlock(&sahtree_lock) 164 #define SAHTREE_LOCK_ASSERT() mtx_assert(&sahtree_lock, MA_OWNED) 165 166 /* registed list */ 167 static VNET_DEFINE(LIST_HEAD(_regtree, secreg), regtree[SADB_SATYPE_MAX + 1]); 168 #define V_regtree VNET(regtree) 169 static struct mtx regtree_lock; 170 #define REGTREE_LOCK_INIT() \ 171 mtx_init(®tree_lock, "regtree", "fast ipsec regtree", MTX_DEF) 172 #define REGTREE_LOCK_DESTROY() mtx_destroy(®tree_lock) 173 #define REGTREE_LOCK() mtx_lock(®tree_lock) 174 #define REGTREE_UNLOCK() mtx_unlock(®tree_lock) 175 #define REGTREE_LOCK_ASSERT() mtx_assert(®tree_lock, MA_OWNED) 176 177 static VNET_DEFINE(LIST_HEAD(_acqtree, secacq), acqtree); /* acquiring list */ 178 #define V_acqtree VNET(acqtree) 179 static struct mtx acq_lock; 180 #define ACQ_LOCK_INIT() \ 181 mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF) 182 #define ACQ_LOCK_DESTROY() mtx_destroy(&acq_lock) 183 #define ACQ_LOCK() mtx_lock(&acq_lock) 184 #define ACQ_UNLOCK() mtx_unlock(&acq_lock) 185 #define ACQ_LOCK_ASSERT() mtx_assert(&acq_lock, MA_OWNED) 186 187 /* SP acquiring list */ 188 static VNET_DEFINE(LIST_HEAD(_spacqtree, secspacq), spacqtree); 189 #define V_spacqtree VNET(spacqtree) 190 static struct mtx spacq_lock; 191 #define SPACQ_LOCK_INIT() \ 192 mtx_init(&spacq_lock, "spacqtree", \ 193 "fast ipsec security policy acquire list", MTX_DEF) 194 #define SPACQ_LOCK_DESTROY() mtx_destroy(&spacq_lock) 195 #define SPACQ_LOCK() mtx_lock(&spacq_lock) 196 #define SPACQ_UNLOCK() mtx_unlock(&spacq_lock) 197 #define SPACQ_LOCK_ASSERT() mtx_assert(&spacq_lock, MA_OWNED) 198 199 /* search order for SAs */ 200 static const u_int saorder_state_valid_prefer_old[] = { 201 SADB_SASTATE_DYING, SADB_SASTATE_MATURE, 202 }; 203 static const u_int saorder_state_valid_prefer_new[] = { 204 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 205 }; 206 static const u_int saorder_state_alive[] = { 207 /* except DEAD */ 208 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL 209 }; 210 static const u_int saorder_state_any[] = { 211 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 212 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD 213 }; 214 215 static const int minsize[] = { 216 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 217 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 218 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 219 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 220 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 221 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ 222 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ 223 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ 224 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ 225 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ 226 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ 227 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ 228 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ 229 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ 230 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ 231 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ 232 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 233 0, /* SADB_X_EXT_KMPRIVATE */ 234 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ 235 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 236 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ 237 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ 238 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ 239 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */ 240 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */ 241 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ 242 }; 243 static const int maxsize[] = { 244 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 245 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 246 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 247 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 248 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 249 0, /* SADB_EXT_ADDRESS_SRC */ 250 0, /* SADB_EXT_ADDRESS_DST */ 251 0, /* SADB_EXT_ADDRESS_PROXY */ 252 0, /* SADB_EXT_KEY_AUTH */ 253 0, /* SADB_EXT_KEY_ENCRYPT */ 254 0, /* SADB_EXT_IDENTITY_SRC */ 255 0, /* SADB_EXT_IDENTITY_DST */ 256 0, /* SADB_EXT_SENSITIVITY */ 257 0, /* SADB_EXT_PROPOSAL */ 258 0, /* SADB_EXT_SUPPORTED_AUTH */ 259 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ 260 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 261 0, /* SADB_X_EXT_KMPRIVATE */ 262 0, /* SADB_X_EXT_POLICY */ 263 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 264 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ 265 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ 266 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ 267 0, /* SADB_X_EXT_NAT_T_OAI */ 268 0, /* SADB_X_EXT_NAT_T_OAR */ 269 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ 270 }; 271 272 static VNET_DEFINE(int, ipsec_esp_keymin) = 256; 273 #define V_ipsec_esp_keymin VNET(ipsec_esp_keymin) 274 static VNET_DEFINE(int, ipsec_esp_auth) = 0; 275 #define V_ipsec_esp_auth VNET(ipsec_esp_auth) 276 static VNET_DEFINE(int, ipsec_ah_keymin) = 128; 277 #define V_ipsec_ah_keymin VNET(ipsec_ah_keymin) 278 279 #ifdef SYSCTL_DECL 280 SYSCTL_DECL(_net_key); 281 #endif 282 283 SYSCTL_VNET_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, 284 CTLFLAG_RW, &VNET_NAME(key_debug_level), 0, ""); 285 286 /* max count of trial for the decision of spi value */ 287 SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, 288 CTLFLAG_RW, &VNET_NAME(key_spi_trycnt), 0, ""); 289 290 /* minimum spi value to allocate automatically. */ 291 SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_MIN_VALUE, 292 spi_minval, CTLFLAG_RW, &VNET_NAME(key_spi_minval), 0, ""); 293 294 /* maximun spi value to allocate automatically. */ 295 SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_MAX_VALUE, 296 spi_maxval, CTLFLAG_RW, &VNET_NAME(key_spi_maxval), 0, ""); 297 298 /* interval to initialize randseed */ 299 SYSCTL_VNET_INT(_net_key, KEYCTL_RANDOM_INT, 300 int_random, CTLFLAG_RW, &VNET_NAME(key_int_random), 0, ""); 301 302 /* lifetime for larval SA */ 303 SYSCTL_VNET_INT(_net_key, KEYCTL_LARVAL_LIFETIME, 304 larval_lifetime, CTLFLAG_RW, &VNET_NAME(key_larval_lifetime), 0, ""); 305 306 /* counter for blocking to send SADB_ACQUIRE to IKEd */ 307 SYSCTL_VNET_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, 308 blockacq_count, CTLFLAG_RW, &VNET_NAME(key_blockacq_count), 0, ""); 309 310 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ 311 SYSCTL_VNET_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, 312 blockacq_lifetime, CTLFLAG_RW, &VNET_NAME(key_blockacq_lifetime), 0, ""); 313 314 /* ESP auth */ 315 SYSCTL_VNET_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, 316 CTLFLAG_RW, &VNET_NAME(ipsec_esp_auth), 0, ""); 317 318 /* minimum ESP key length */ 319 SYSCTL_VNET_INT(_net_key, KEYCTL_ESP_KEYMIN, 320 esp_keymin, CTLFLAG_RW, &VNET_NAME(ipsec_esp_keymin), 0, ""); 321 322 /* minimum AH key length */ 323 SYSCTL_VNET_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, 324 CTLFLAG_RW, &VNET_NAME(ipsec_ah_keymin), 0, ""); 325 326 /* perfered old SA rather than new SA */ 327 SYSCTL_VNET_INT(_net_key, KEYCTL_PREFERED_OLDSA, 328 preferred_oldsa, CTLFLAG_RW, &VNET_NAME(key_preferred_oldsa), 0, ""); 329 330 #define __LIST_CHAINED(elm) \ 331 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) 332 #define LIST_INSERT_TAIL(head, elm, type, field) \ 333 do {\ 334 struct type *curelm = LIST_FIRST(head); \ 335 if (curelm == NULL) {\ 336 LIST_INSERT_HEAD(head, elm, field); \ 337 } else { \ 338 while (LIST_NEXT(curelm, field)) \ 339 curelm = LIST_NEXT(curelm, field);\ 340 LIST_INSERT_AFTER(curelm, elm, field);\ 341 }\ 342 } while (0) 343 344 #define KEY_CHKSASTATE(head, sav, name) \ 345 do { \ 346 if ((head) != (sav)) { \ 347 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \ 348 (name), (head), (sav))); \ 349 continue; \ 350 } \ 351 } while (0) 352 353 #define KEY_CHKSPDIR(head, sp, name) \ 354 do { \ 355 if ((head) != (sp)) { \ 356 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \ 357 "anyway continue.\n", \ 358 (name), (head), (sp))); \ 359 } \ 360 } while (0) 361 362 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association"); 363 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head"); 364 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy"); 365 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request"); 366 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous"); 367 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire"); 368 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire"); 369 370 /* 371 * set parameters into secpolicyindex buffer. 372 * Must allocate secpolicyindex buffer passed to this function. 373 */ 374 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \ 375 do { \ 376 bzero((idx), sizeof(struct secpolicyindex)); \ 377 (idx)->dir = (_dir); \ 378 (idx)->prefs = (ps); \ 379 (idx)->prefd = (pd); \ 380 (idx)->ul_proto = (ulp); \ 381 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 382 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 383 } while (0) 384 385 /* 386 * set parameters into secasindex buffer. 387 * Must allocate secasindex buffer before calling this function. 388 */ 389 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \ 390 do { \ 391 bzero((idx), sizeof(struct secasindex)); \ 392 (idx)->proto = (p); \ 393 (idx)->mode = (m); \ 394 (idx)->reqid = (r); \ 395 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 396 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 397 } while (0) 398 399 /* key statistics */ 400 struct _keystat { 401 u_long getspi_count; /* the avarage of count to try to get new SPI */ 402 } keystat; 403 404 struct sadb_msghdr { 405 struct sadb_msg *msg; 406 struct sadb_ext *ext[SADB_EXT_MAX + 1]; 407 int extoff[SADB_EXT_MAX + 1]; 408 int extlen[SADB_EXT_MAX + 1]; 409 }; 410 411 static struct secasvar *key_allocsa_policy __P((const struct secasindex *)); 412 static void key_freesp_so __P((struct secpolicy **)); 413 static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int)); 414 static void key_delsp __P((struct secpolicy *)); 415 static struct secpolicy *key_getsp __P((struct secpolicyindex *)); 416 static void _key_delsp(struct secpolicy *sp); 417 static struct secpolicy *key_getspbyid __P((u_int32_t)); 418 static u_int32_t key_newreqid __P((void)); 419 static struct mbuf *key_gather_mbuf __P((struct mbuf *, 420 const struct sadb_msghdr *, int, int, ...)); 421 static int key_spdadd __P((struct socket *, struct mbuf *, 422 const struct sadb_msghdr *)); 423 static u_int32_t key_getnewspid __P((void)); 424 static int key_spddelete __P((struct socket *, struct mbuf *, 425 const struct sadb_msghdr *)); 426 static int key_spddelete2 __P((struct socket *, struct mbuf *, 427 const struct sadb_msghdr *)); 428 static int key_spdget __P((struct socket *, struct mbuf *, 429 const struct sadb_msghdr *)); 430 static int key_spdflush __P((struct socket *, struct mbuf *, 431 const struct sadb_msghdr *)); 432 static int key_spddump __P((struct socket *, struct mbuf *, 433 const struct sadb_msghdr *)); 434 static struct mbuf *key_setdumpsp __P((struct secpolicy *, 435 u_int8_t, u_int32_t, u_int32_t)); 436 static u_int key_getspreqmsglen __P((struct secpolicy *)); 437 static int key_spdexpire __P((struct secpolicy *)); 438 static struct secashead *key_newsah __P((struct secasindex *)); 439 static void key_delsah __P((struct secashead *)); 440 static struct secasvar *key_newsav __P((struct mbuf *, 441 const struct sadb_msghdr *, struct secashead *, int *, 442 const char*, int)); 443 #define KEY_NEWSAV(m, sadb, sah, e) \ 444 key_newsav(m, sadb, sah, e, __FILE__, __LINE__) 445 static void key_delsav __P((struct secasvar *)); 446 static struct secashead *key_getsah __P((struct secasindex *)); 447 static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t)); 448 static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t)); 449 static int key_setsaval __P((struct secasvar *, struct mbuf *, 450 const struct sadb_msghdr *)); 451 static int key_mature __P((struct secasvar *)); 452 static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t, 453 u_int8_t, u_int32_t, u_int32_t)); 454 static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t, 455 u_int32_t, pid_t, u_int16_t)); 456 static struct mbuf *key_setsadbsa __P((struct secasvar *)); 457 static struct mbuf *key_setsadbaddr __P((u_int16_t, 458 const struct sockaddr *, u_int8_t, u_int16_t)); 459 #ifdef IPSEC_NAT_T 460 static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t); 461 static struct mbuf *key_setsadbxtype(u_int16_t); 462 #endif 463 static void key_porttosaddr(struct sockaddr *, u_int16_t); 464 #define KEY_PORTTOSADDR(saddr, port) \ 465 key_porttosaddr((struct sockaddr *)(saddr), (port)) 466 static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t)); 467 static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t, 468 u_int32_t)); 469 static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int, 470 struct malloc_type *); 471 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src, 472 struct malloc_type *type); 473 #ifdef INET6 474 static int key_ismyaddr6 __P((struct sockaddr_in6 *)); 475 #endif 476 477 /* flags for key_cmpsaidx() */ 478 #define CMP_HEAD 1 /* protocol, addresses. */ 479 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ 480 #define CMP_REQID 3 /* additionally HEAD, reaid. */ 481 #define CMP_EXACTLY 4 /* all elements. */ 482 static int key_cmpsaidx 483 __P((const struct secasindex *, const struct secasindex *, int)); 484 485 static int key_cmpspidx_exactly 486 __P((struct secpolicyindex *, struct secpolicyindex *)); 487 static int key_cmpspidx_withmask 488 __P((struct secpolicyindex *, struct secpolicyindex *)); 489 static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int)); 490 static int key_bbcmp __P((const void *, const void *, u_int)); 491 static u_int16_t key_satype2proto __P((u_int8_t)); 492 static u_int8_t key_proto2satype __P((u_int16_t)); 493 494 static int key_getspi __P((struct socket *, struct mbuf *, 495 const struct sadb_msghdr *)); 496 static u_int32_t key_do_getnewspi __P((struct sadb_spirange *, 497 struct secasindex *)); 498 static int key_update __P((struct socket *, struct mbuf *, 499 const struct sadb_msghdr *)); 500 #ifdef IPSEC_DOSEQCHECK 501 static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t)); 502 #endif 503 static int key_add __P((struct socket *, struct mbuf *, 504 const struct sadb_msghdr *)); 505 static int key_setident __P((struct secashead *, struct mbuf *, 506 const struct sadb_msghdr *)); 507 static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *, 508 const struct sadb_msghdr *)); 509 static int key_delete __P((struct socket *, struct mbuf *, 510 const struct sadb_msghdr *)); 511 static int key_get __P((struct socket *, struct mbuf *, 512 const struct sadb_msghdr *)); 513 514 static void key_getcomb_setlifetime __P((struct sadb_comb *)); 515 static struct mbuf *key_getcomb_esp __P((void)); 516 static struct mbuf *key_getcomb_ah __P((void)); 517 static struct mbuf *key_getcomb_ipcomp __P((void)); 518 static struct mbuf *key_getprop __P((const struct secasindex *)); 519 520 static int key_acquire __P((const struct secasindex *, struct secpolicy *)); 521 static struct secacq *key_newacq __P((const struct secasindex *)); 522 static struct secacq *key_getacq __P((const struct secasindex *)); 523 static struct secacq *key_getacqbyseq __P((u_int32_t)); 524 static struct secspacq *key_newspacq __P((struct secpolicyindex *)); 525 static struct secspacq *key_getspacq __P((struct secpolicyindex *)); 526 static int key_acquire2 __P((struct socket *, struct mbuf *, 527 const struct sadb_msghdr *)); 528 static int key_register __P((struct socket *, struct mbuf *, 529 const struct sadb_msghdr *)); 530 static int key_expire __P((struct secasvar *)); 531 static int key_flush __P((struct socket *, struct mbuf *, 532 const struct sadb_msghdr *)); 533 static int key_dump __P((struct socket *, struct mbuf *, 534 const struct sadb_msghdr *)); 535 static int key_promisc __P((struct socket *, struct mbuf *, 536 const struct sadb_msghdr *)); 537 static int key_senderror __P((struct socket *, struct mbuf *, int)); 538 static int key_validate_ext __P((const struct sadb_ext *, int)); 539 static int key_align __P((struct mbuf *, struct sadb_msghdr *)); 540 static struct mbuf *key_setlifetime(struct seclifetime *src, 541 u_int16_t exttype); 542 static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype); 543 544 #if 0 545 static const char *key_getfqdn __P((void)); 546 static const char *key_getuserfqdn __P((void)); 547 #endif 548 static void key_sa_chgstate __P((struct secasvar *, u_int8_t)); 549 static struct mbuf *key_alloc_mbuf __P((int)); 550 551 static __inline void 552 sa_initref(struct secasvar *sav) 553 { 554 555 refcount_init(&sav->refcnt, 1); 556 } 557 static __inline void 558 sa_addref(struct secasvar *sav) 559 { 560 561 refcount_acquire(&sav->refcnt); 562 IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow")); 563 } 564 static __inline int 565 sa_delref(struct secasvar *sav) 566 { 567 568 IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow")); 569 return (refcount_release(&sav->refcnt)); 570 } 571 572 #define SP_ADDREF(p) do { \ 573 (p)->refcnt++; \ 574 IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow")); \ 575 } while (0) 576 #define SP_DELREF(p) do { \ 577 IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow")); \ 578 (p)->refcnt--; \ 579 } while (0) 580 581 582 /* 583 * Update the refcnt while holding the SPTREE lock. 584 */ 585 void 586 key_addref(struct secpolicy *sp) 587 { 588 SPTREE_LOCK(); 589 SP_ADDREF(sp); 590 SPTREE_UNLOCK(); 591 } 592 593 /* 594 * Return 0 when there are known to be no SP's for the specified 595 * direction. Otherwise return 1. This is used by IPsec code 596 * to optimize performance. 597 */ 598 int 599 key_havesp(u_int dir) 600 { 601 602 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? 603 LIST_FIRST(&V_sptree[dir]) != NULL : 1); 604 } 605 606 /* %%% IPsec policy management */ 607 /* 608 * allocating a SP for OUTBOUND or INBOUND packet. 609 * Must call key_freesp() later. 610 * OUT: NULL: not found 611 * others: found and return the pointer. 612 */ 613 struct secpolicy * 614 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag) 615 { 616 struct secpolicy *sp; 617 618 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 619 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 620 ("invalid direction %u", dir)); 621 622 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 623 printf("DP %s from %s:%u\n", __func__, where, tag)); 624 625 /* get a SP entry */ 626 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 627 printf("*** objects\n"); 628 kdebug_secpolicyindex(spidx)); 629 630 SPTREE_LOCK(); 631 LIST_FOREACH(sp, &V_sptree[dir], chain) { 632 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 633 printf("*** in SPD\n"); 634 kdebug_secpolicyindex(&sp->spidx)); 635 636 if (sp->state == IPSEC_SPSTATE_DEAD) 637 continue; 638 if (key_cmpspidx_withmask(&sp->spidx, spidx)) 639 goto found; 640 } 641 sp = NULL; 642 found: 643 if (sp) { 644 /* sanity check */ 645 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 646 647 /* found a SPD entry */ 648 sp->lastused = time_second; 649 SP_ADDREF(sp); 650 } 651 SPTREE_UNLOCK(); 652 653 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 654 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 655 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 656 return sp; 657 } 658 659 /* 660 * allocating a SP for OUTBOUND or INBOUND packet. 661 * Must call key_freesp() later. 662 * OUT: NULL: not found 663 * others: found and return the pointer. 664 */ 665 struct secpolicy * 666 key_allocsp2(u_int32_t spi, 667 union sockaddr_union *dst, 668 u_int8_t proto, 669 u_int dir, 670 const char* where, int tag) 671 { 672 struct secpolicy *sp; 673 674 IPSEC_ASSERT(dst != NULL, ("null dst")); 675 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 676 ("invalid direction %u", dir)); 677 678 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 679 printf("DP %s from %s:%u\n", __func__, where, tag)); 680 681 /* get a SP entry */ 682 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 683 printf("*** objects\n"); 684 printf("spi %u proto %u dir %u\n", spi, proto, dir); 685 kdebug_sockaddr(&dst->sa)); 686 687 SPTREE_LOCK(); 688 LIST_FOREACH(sp, &V_sptree[dir], chain) { 689 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 690 printf("*** in SPD\n"); 691 kdebug_secpolicyindex(&sp->spidx)); 692 693 if (sp->state == IPSEC_SPSTATE_DEAD) 694 continue; 695 /* compare simple values, then dst address */ 696 if (sp->spidx.ul_proto != proto) 697 continue; 698 /* NB: spi's must exist and match */ 699 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi) 700 continue; 701 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0) 702 goto found; 703 } 704 sp = NULL; 705 found: 706 if (sp) { 707 /* sanity check */ 708 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 709 710 /* found a SPD entry */ 711 sp->lastused = time_second; 712 SP_ADDREF(sp); 713 } 714 SPTREE_UNLOCK(); 715 716 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 717 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 718 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 719 return sp; 720 } 721 722 #if 0 723 /* 724 * return a policy that matches this particular inbound packet. 725 * XXX slow 726 */ 727 struct secpolicy * 728 key_gettunnel(const struct sockaddr *osrc, 729 const struct sockaddr *odst, 730 const struct sockaddr *isrc, 731 const struct sockaddr *idst, 732 const char* where, int tag) 733 { 734 struct secpolicy *sp; 735 const int dir = IPSEC_DIR_INBOUND; 736 struct ipsecrequest *r1, *r2, *p; 737 struct secpolicyindex spidx; 738 739 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 740 printf("DP %s from %s:%u\n", __func__, where, tag)); 741 742 if (isrc->sa_family != idst->sa_family) { 743 ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.", 744 __func__, isrc->sa_family, idst->sa_family)); 745 sp = NULL; 746 goto done; 747 } 748 749 SPTREE_LOCK(); 750 LIST_FOREACH(sp, &V_sptree[dir], chain) { 751 if (sp->state == IPSEC_SPSTATE_DEAD) 752 continue; 753 754 r1 = r2 = NULL; 755 for (p = sp->req; p; p = p->next) { 756 if (p->saidx.mode != IPSEC_MODE_TUNNEL) 757 continue; 758 759 r1 = r2; 760 r2 = p; 761 762 if (!r1) { 763 /* here we look at address matches only */ 764 spidx = sp->spidx; 765 if (isrc->sa_len > sizeof(spidx.src) || 766 idst->sa_len > sizeof(spidx.dst)) 767 continue; 768 bcopy(isrc, &spidx.src, isrc->sa_len); 769 bcopy(idst, &spidx.dst, idst->sa_len); 770 if (!key_cmpspidx_withmask(&sp->spidx, &spidx)) 771 continue; 772 } else { 773 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) || 774 key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0)) 775 continue; 776 } 777 778 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) || 779 key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0)) 780 continue; 781 782 goto found; 783 } 784 } 785 sp = NULL; 786 found: 787 if (sp) { 788 sp->lastused = time_second; 789 SP_ADDREF(sp); 790 } 791 SPTREE_UNLOCK(); 792 done: 793 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 794 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 795 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 796 return sp; 797 } 798 #endif 799 800 /* 801 * allocating an SA entry for an *OUTBOUND* packet. 802 * checking each request entries in SP, and acquire an SA if need. 803 * OUT: 0: there are valid requests. 804 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. 805 */ 806 int 807 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx) 808 { 809 u_int level; 810 int error; 811 812 IPSEC_ASSERT(isr != NULL, ("null isr")); 813 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 814 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT || 815 saidx->mode == IPSEC_MODE_TUNNEL, 816 ("unexpected policy %u", saidx->mode)); 817 818 /* 819 * XXX guard against protocol callbacks from the crypto 820 * thread as they reference ipsecrequest.sav which we 821 * temporarily null out below. Need to rethink how we 822 * handle bundled SA's in the callback thread. 823 */ 824 IPSECREQUEST_LOCK_ASSERT(isr); 825 826 /* get current level */ 827 level = ipsec_get_reqlevel(isr); 828 #if 0 829 /* 830 * We do allocate new SA only if the state of SA in the holder is 831 * SADB_SASTATE_DEAD. The SA for outbound must be the oldest. 832 */ 833 if (isr->sav != NULL) { 834 if (isr->sav->sah == NULL) 835 panic("%s: sah is null.\n", __func__); 836 if (isr->sav == (struct secasvar *)LIST_FIRST( 837 &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) { 838 KEY_FREESAV(&isr->sav); 839 isr->sav = NULL; 840 } 841 } 842 #else 843 /* 844 * we free any SA stashed in the IPsec request because a different 845 * SA may be involved each time this request is checked, either 846 * because new SAs are being configured, or this request is 847 * associated with an unconnected datagram socket, or this request 848 * is associated with a system default policy. 849 * 850 * The operation may have negative impact to performance. We may 851 * want to check cached SA carefully, rather than picking new SA 852 * every time. 853 */ 854 if (isr->sav != NULL) { 855 KEY_FREESAV(&isr->sav); 856 isr->sav = NULL; 857 } 858 #endif 859 860 /* 861 * new SA allocation if no SA found. 862 * key_allocsa_policy should allocate the oldest SA available. 863 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt. 864 */ 865 if (isr->sav == NULL) 866 isr->sav = key_allocsa_policy(saidx); 867 868 /* When there is SA. */ 869 if (isr->sav != NULL) { 870 if (isr->sav->state != SADB_SASTATE_MATURE && 871 isr->sav->state != SADB_SASTATE_DYING) 872 return EINVAL; 873 return 0; 874 } 875 876 /* there is no SA */ 877 error = key_acquire(saidx, isr->sp); 878 if (error != 0) { 879 /* XXX What should I do ? */ 880 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 881 __func__, error)); 882 return error; 883 } 884 885 if (level != IPSEC_LEVEL_REQUIRE) { 886 /* XXX sigh, the interface to this routine is botched */ 887 IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA")); 888 return 0; 889 } else { 890 return ENOENT; 891 } 892 } 893 894 /* 895 * allocating a SA for policy entry from SAD. 896 * NOTE: searching SAD of aliving state. 897 * OUT: NULL: not found. 898 * others: found and return the pointer. 899 */ 900 static struct secasvar * 901 key_allocsa_policy(const struct secasindex *saidx) 902 { 903 #define N(a) _ARRAYLEN(a) 904 struct secashead *sah; 905 struct secasvar *sav; 906 u_int stateidx, arraysize; 907 const u_int *state_valid; 908 909 state_valid = NULL; /* silence gcc */ 910 arraysize = 0; /* silence gcc */ 911 912 SAHTREE_LOCK(); 913 LIST_FOREACH(sah, &V_sahtree, chain) { 914 if (sah->state == SADB_SASTATE_DEAD) 915 continue; 916 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) { 917 if (V_key_preferred_oldsa) { 918 state_valid = saorder_state_valid_prefer_old; 919 arraysize = N(saorder_state_valid_prefer_old); 920 } else { 921 state_valid = saorder_state_valid_prefer_new; 922 arraysize = N(saorder_state_valid_prefer_new); 923 } 924 break; 925 } 926 } 927 SAHTREE_UNLOCK(); 928 if (sah == NULL) 929 return NULL; 930 931 /* search valid state */ 932 for (stateidx = 0; stateidx < arraysize; stateidx++) { 933 sav = key_do_allocsa_policy(sah, state_valid[stateidx]); 934 if (sav != NULL) 935 return sav; 936 } 937 938 return NULL; 939 #undef N 940 } 941 942 /* 943 * searching SAD with direction, protocol, mode and state. 944 * called by key_allocsa_policy(). 945 * OUT: 946 * NULL : not found 947 * others : found, pointer to a SA. 948 */ 949 static struct secasvar * 950 key_do_allocsa_policy(struct secashead *sah, u_int state) 951 { 952 struct secasvar *sav, *nextsav, *candidate, *d; 953 954 /* initilize */ 955 candidate = NULL; 956 957 SAHTREE_LOCK(); 958 for (sav = LIST_FIRST(&sah->savtree[state]); 959 sav != NULL; 960 sav = nextsav) { 961 962 nextsav = LIST_NEXT(sav, chain); 963 964 /* sanity check */ 965 KEY_CHKSASTATE(sav->state, state, __func__); 966 967 /* initialize */ 968 if (candidate == NULL) { 969 candidate = sav; 970 continue; 971 } 972 973 /* Which SA is the better ? */ 974 975 IPSEC_ASSERT(candidate->lft_c != NULL, 976 ("null candidate lifetime")); 977 IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime")); 978 979 /* What the best method is to compare ? */ 980 if (V_key_preferred_oldsa) { 981 if (candidate->lft_c->addtime > 982 sav->lft_c->addtime) { 983 candidate = sav; 984 } 985 continue; 986 /*NOTREACHED*/ 987 } 988 989 /* preferred new sa rather than old sa */ 990 if (candidate->lft_c->addtime < 991 sav->lft_c->addtime) { 992 d = candidate; 993 candidate = sav; 994 } else 995 d = sav; 996 997 /* 998 * prepared to delete the SA when there is more 999 * suitable candidate and the lifetime of the SA is not 1000 * permanent. 1001 */ 1002 if (d->lft_h->addtime != 0) { 1003 struct mbuf *m, *result; 1004 u_int8_t satype; 1005 1006 key_sa_chgstate(d, SADB_SASTATE_DEAD); 1007 1008 IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count")); 1009 1010 satype = key_proto2satype(d->sah->saidx.proto); 1011 if (satype == 0) 1012 goto msgfail; 1013 1014 m = key_setsadbmsg(SADB_DELETE, 0, 1015 satype, 0, 0, d->refcnt - 1); 1016 if (!m) 1017 goto msgfail; 1018 result = m; 1019 1020 /* set sadb_address for saidx's. */ 1021 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 1022 &d->sah->saidx.src.sa, 1023 d->sah->saidx.src.sa.sa_len << 3, 1024 IPSEC_ULPROTO_ANY); 1025 if (!m) 1026 goto msgfail; 1027 m_cat(result, m); 1028 1029 /* set sadb_address for saidx's. */ 1030 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 1031 &d->sah->saidx.dst.sa, 1032 d->sah->saidx.dst.sa.sa_len << 3, 1033 IPSEC_ULPROTO_ANY); 1034 if (!m) 1035 goto msgfail; 1036 m_cat(result, m); 1037 1038 /* create SA extension */ 1039 m = key_setsadbsa(d); 1040 if (!m) 1041 goto msgfail; 1042 m_cat(result, m); 1043 1044 if (result->m_len < sizeof(struct sadb_msg)) { 1045 result = m_pullup(result, 1046 sizeof(struct sadb_msg)); 1047 if (result == NULL) 1048 goto msgfail; 1049 } 1050 1051 result->m_pkthdr.len = 0; 1052 for (m = result; m; m = m->m_next) 1053 result->m_pkthdr.len += m->m_len; 1054 mtod(result, struct sadb_msg *)->sadb_msg_len = 1055 PFKEY_UNIT64(result->m_pkthdr.len); 1056 1057 if (key_sendup_mbuf(NULL, result, 1058 KEY_SENDUP_REGISTERED)) 1059 goto msgfail; 1060 msgfail: 1061 KEY_FREESAV(&d); 1062 } 1063 } 1064 if (candidate) { 1065 sa_addref(candidate); 1066 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1067 printf("DP %s cause refcnt++:%d SA:%p\n", 1068 __func__, candidate->refcnt, candidate)); 1069 } 1070 SAHTREE_UNLOCK(); 1071 1072 return candidate; 1073 } 1074 1075 /* 1076 * allocating a usable SA entry for a *INBOUND* packet. 1077 * Must call key_freesav() later. 1078 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). 1079 * NULL: not found, or error occured. 1080 * 1081 * In the comparison, no source address is used--for RFC2401 conformance. 1082 * To quote, from section 4.1: 1083 * A security association is uniquely identified by a triple consisting 1084 * of a Security Parameter Index (SPI), an IP Destination Address, and a 1085 * security protocol (AH or ESP) identifier. 1086 * Note that, however, we do need to keep source address in IPsec SA. 1087 * IKE specification and PF_KEY specification do assume that we 1088 * keep source address in IPsec SA. We see a tricky situation here. 1089 */ 1090 struct secasvar * 1091 key_allocsa( 1092 union sockaddr_union *dst, 1093 u_int proto, 1094 u_int32_t spi, 1095 const char* where, int tag) 1096 { 1097 struct secashead *sah; 1098 struct secasvar *sav; 1099 u_int stateidx, arraysize, state; 1100 const u_int *saorder_state_valid; 1101 int chkport; 1102 1103 IPSEC_ASSERT(dst != NULL, ("null dst address")); 1104 1105 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1106 printf("DP %s from %s:%u\n", __func__, where, tag)); 1107 1108 #ifdef IPSEC_NAT_T 1109 chkport = (dst->sa.sa_family == AF_INET && 1110 dst->sa.sa_len == sizeof(struct sockaddr_in) && 1111 dst->sin.sin_port != 0); 1112 #else 1113 chkport = 0; 1114 #endif 1115 1116 /* 1117 * searching SAD. 1118 * XXX: to be checked internal IP header somewhere. Also when 1119 * IPsec tunnel packet is received. But ESP tunnel mode is 1120 * encrypted so we can't check internal IP header. 1121 */ 1122 SAHTREE_LOCK(); 1123 if (V_key_preferred_oldsa) { 1124 saorder_state_valid = saorder_state_valid_prefer_old; 1125 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); 1126 } else { 1127 saorder_state_valid = saorder_state_valid_prefer_new; 1128 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); 1129 } 1130 LIST_FOREACH(sah, &V_sahtree, chain) { 1131 /* search valid state */ 1132 for (stateidx = 0; stateidx < arraysize; stateidx++) { 1133 state = saorder_state_valid[stateidx]; 1134 LIST_FOREACH(sav, &sah->savtree[state], chain) { 1135 /* sanity check */ 1136 KEY_CHKSASTATE(sav->state, state, __func__); 1137 /* do not return entries w/ unusable state */ 1138 if (sav->state != SADB_SASTATE_MATURE && 1139 sav->state != SADB_SASTATE_DYING) 1140 continue; 1141 if (proto != sav->sah->saidx.proto) 1142 continue; 1143 if (spi != sav->spi) 1144 continue; 1145 #if 0 /* don't check src */ 1146 /* check src address */ 1147 if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, chkport) != 0) 1148 continue; 1149 #endif 1150 /* check dst address */ 1151 if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, chkport) != 0) 1152 continue; 1153 sa_addref(sav); 1154 goto done; 1155 } 1156 } 1157 } 1158 sav = NULL; 1159 done: 1160 SAHTREE_UNLOCK(); 1161 1162 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1163 printf("DP %s return SA:%p; refcnt %u\n", __func__, 1164 sav, sav ? sav->refcnt : 0)); 1165 return sav; 1166 } 1167 1168 /* 1169 * Must be called after calling key_allocsp(). 1170 * For both the packet without socket and key_freeso(). 1171 */ 1172 void 1173 _key_freesp(struct secpolicy **spp, const char* where, int tag) 1174 { 1175 struct secpolicy *sp = *spp; 1176 1177 IPSEC_ASSERT(sp != NULL, ("null sp")); 1178 1179 SPTREE_LOCK(); 1180 SP_DELREF(sp); 1181 1182 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1183 printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n", 1184 __func__, sp, sp->id, where, tag, sp->refcnt)); 1185 1186 if (sp->refcnt == 0) { 1187 *spp = NULL; 1188 key_delsp(sp); 1189 } 1190 SPTREE_UNLOCK(); 1191 } 1192 1193 /* 1194 * Must be called after calling key_allocsp(). 1195 * For the packet with socket. 1196 */ 1197 void 1198 key_freeso(struct socket *so) 1199 { 1200 IPSEC_ASSERT(so != NULL, ("null so")); 1201 1202 switch (so->so_proto->pr_domain->dom_family) { 1203 #if defined(INET) || defined(INET6) 1204 #ifdef INET 1205 case PF_INET: 1206 #endif 1207 #ifdef INET6 1208 case PF_INET6: 1209 #endif 1210 { 1211 struct inpcb *pcb = sotoinpcb(so); 1212 1213 /* Does it have a PCB ? */ 1214 if (pcb == NULL) 1215 return; 1216 key_freesp_so(&pcb->inp_sp->sp_in); 1217 key_freesp_so(&pcb->inp_sp->sp_out); 1218 } 1219 break; 1220 #endif /* INET || INET6 */ 1221 default: 1222 ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n", 1223 __func__, so->so_proto->pr_domain->dom_family)); 1224 return; 1225 } 1226 } 1227 1228 static void 1229 key_freesp_so(struct secpolicy **sp) 1230 { 1231 IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp")); 1232 1233 if ((*sp)->policy == IPSEC_POLICY_ENTRUST || 1234 (*sp)->policy == IPSEC_POLICY_BYPASS) 1235 return; 1236 1237 IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC, 1238 ("invalid policy %u", (*sp)->policy)); 1239 KEY_FREESP(sp); 1240 } 1241 1242 /* 1243 * Must be called after calling key_allocsa(). 1244 * This function is called by key_freesp() to free some SA allocated 1245 * for a policy. 1246 */ 1247 void 1248 key_freesav(struct secasvar **psav, const char* where, int tag) 1249 { 1250 struct secasvar *sav = *psav; 1251 1252 IPSEC_ASSERT(sav != NULL, ("null sav")); 1253 1254 if (sa_delref(sav)) { 1255 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1256 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1257 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1258 *psav = NULL; 1259 key_delsav(sav); 1260 } else { 1261 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1262 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1263 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1264 } 1265 } 1266 1267 /* %%% SPD management */ 1268 /* 1269 * free security policy entry. 1270 */ 1271 static void 1272 key_delsp(struct secpolicy *sp) 1273 { 1274 struct ipsecrequest *isr, *nextisr; 1275 1276 IPSEC_ASSERT(sp != NULL, ("null sp")); 1277 SPTREE_LOCK_ASSERT(); 1278 1279 sp->state = IPSEC_SPSTATE_DEAD; 1280 1281 IPSEC_ASSERT(sp->refcnt == 0, 1282 ("SP with references deleted (refcnt %u)", sp->refcnt)); 1283 1284 /* remove from SP index */ 1285 if (__LIST_CHAINED(sp)) 1286 LIST_REMOVE(sp, chain); 1287 1288 for (isr = sp->req; isr != NULL; isr = nextisr) { 1289 if (isr->sav != NULL) { 1290 KEY_FREESAV(&isr->sav); 1291 isr->sav = NULL; 1292 } 1293 1294 nextisr = isr->next; 1295 ipsec_delisr(isr); 1296 } 1297 _key_delsp(sp); 1298 } 1299 1300 /* 1301 * search SPD 1302 * OUT: NULL : not found 1303 * others : found, pointer to a SP. 1304 */ 1305 static struct secpolicy * 1306 key_getsp(struct secpolicyindex *spidx) 1307 { 1308 struct secpolicy *sp; 1309 1310 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 1311 1312 SPTREE_LOCK(); 1313 LIST_FOREACH(sp, &V_sptree[spidx->dir], chain) { 1314 if (sp->state == IPSEC_SPSTATE_DEAD) 1315 continue; 1316 if (key_cmpspidx_exactly(spidx, &sp->spidx)) { 1317 SP_ADDREF(sp); 1318 break; 1319 } 1320 } 1321 SPTREE_UNLOCK(); 1322 1323 return sp; 1324 } 1325 1326 /* 1327 * get SP by index. 1328 * OUT: NULL : not found 1329 * others : found, pointer to a SP. 1330 */ 1331 static struct secpolicy * 1332 key_getspbyid(u_int32_t id) 1333 { 1334 struct secpolicy *sp; 1335 1336 SPTREE_LOCK(); 1337 LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_INBOUND], chain) { 1338 if (sp->state == IPSEC_SPSTATE_DEAD) 1339 continue; 1340 if (sp->id == id) { 1341 SP_ADDREF(sp); 1342 goto done; 1343 } 1344 } 1345 1346 LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_OUTBOUND], chain) { 1347 if (sp->state == IPSEC_SPSTATE_DEAD) 1348 continue; 1349 if (sp->id == id) { 1350 SP_ADDREF(sp); 1351 goto done; 1352 } 1353 } 1354 done: 1355 SPTREE_UNLOCK(); 1356 1357 return sp; 1358 } 1359 1360 struct secpolicy * 1361 key_newsp(const char* where, int tag) 1362 { 1363 struct secpolicy *newsp = NULL; 1364 1365 newsp = (struct secpolicy *) 1366 malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO); 1367 if (newsp) { 1368 SECPOLICY_LOCK_INIT(newsp); 1369 newsp->refcnt = 1; 1370 newsp->req = NULL; 1371 } 1372 1373 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1374 printf("DP %s from %s:%u return SP:%p\n", __func__, 1375 where, tag, newsp)); 1376 return newsp; 1377 } 1378 1379 static void 1380 _key_delsp(struct secpolicy *sp) 1381 { 1382 SECPOLICY_LOCK_DESTROY(sp); 1383 free(sp, M_IPSEC_SP); 1384 } 1385 1386 /* 1387 * create secpolicy structure from sadb_x_policy structure. 1388 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, 1389 * so must be set properly later. 1390 */ 1391 struct secpolicy * 1392 key_msg2sp(xpl0, len, error) 1393 struct sadb_x_policy *xpl0; 1394 size_t len; 1395 int *error; 1396 { 1397 struct secpolicy *newsp; 1398 1399 IPSEC_ASSERT(xpl0 != NULL, ("null xpl0")); 1400 IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len)); 1401 1402 if (len != PFKEY_EXTLEN(xpl0)) { 1403 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__)); 1404 *error = EINVAL; 1405 return NULL; 1406 } 1407 1408 if ((newsp = KEY_NEWSP()) == NULL) { 1409 *error = ENOBUFS; 1410 return NULL; 1411 } 1412 1413 newsp->spidx.dir = xpl0->sadb_x_policy_dir; 1414 newsp->policy = xpl0->sadb_x_policy_type; 1415 1416 /* check policy */ 1417 switch (xpl0->sadb_x_policy_type) { 1418 case IPSEC_POLICY_DISCARD: 1419 case IPSEC_POLICY_NONE: 1420 case IPSEC_POLICY_ENTRUST: 1421 case IPSEC_POLICY_BYPASS: 1422 newsp->req = NULL; 1423 break; 1424 1425 case IPSEC_POLICY_IPSEC: 1426 { 1427 int tlen; 1428 struct sadb_x_ipsecrequest *xisr; 1429 struct ipsecrequest **p_isr = &newsp->req; 1430 1431 /* validity check */ 1432 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { 1433 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", 1434 __func__)); 1435 KEY_FREESP(&newsp); 1436 *error = EINVAL; 1437 return NULL; 1438 } 1439 1440 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); 1441 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1); 1442 1443 while (tlen > 0) { 1444 /* length check */ 1445 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { 1446 ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest " 1447 "length.\n", __func__)); 1448 KEY_FREESP(&newsp); 1449 *error = EINVAL; 1450 return NULL; 1451 } 1452 1453 /* allocate request buffer */ 1454 /* NB: data structure is zero'd */ 1455 *p_isr = ipsec_newisr(); 1456 if ((*p_isr) == NULL) { 1457 ipseclog((LOG_DEBUG, 1458 "%s: No more memory.\n", __func__)); 1459 KEY_FREESP(&newsp); 1460 *error = ENOBUFS; 1461 return NULL; 1462 } 1463 1464 /* set values */ 1465 switch (xisr->sadb_x_ipsecrequest_proto) { 1466 case IPPROTO_ESP: 1467 case IPPROTO_AH: 1468 case IPPROTO_IPCOMP: 1469 break; 1470 default: 1471 ipseclog((LOG_DEBUG, 1472 "%s: invalid proto type=%u\n", __func__, 1473 xisr->sadb_x_ipsecrequest_proto)); 1474 KEY_FREESP(&newsp); 1475 *error = EPROTONOSUPPORT; 1476 return NULL; 1477 } 1478 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; 1479 1480 switch (xisr->sadb_x_ipsecrequest_mode) { 1481 case IPSEC_MODE_TRANSPORT: 1482 case IPSEC_MODE_TUNNEL: 1483 break; 1484 case IPSEC_MODE_ANY: 1485 default: 1486 ipseclog((LOG_DEBUG, 1487 "%s: invalid mode=%u\n", __func__, 1488 xisr->sadb_x_ipsecrequest_mode)); 1489 KEY_FREESP(&newsp); 1490 *error = EINVAL; 1491 return NULL; 1492 } 1493 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; 1494 1495 switch (xisr->sadb_x_ipsecrequest_level) { 1496 case IPSEC_LEVEL_DEFAULT: 1497 case IPSEC_LEVEL_USE: 1498 case IPSEC_LEVEL_REQUIRE: 1499 break; 1500 case IPSEC_LEVEL_UNIQUE: 1501 /* validity check */ 1502 /* 1503 * If range violation of reqid, kernel will 1504 * update it, don't refuse it. 1505 */ 1506 if (xisr->sadb_x_ipsecrequest_reqid 1507 > IPSEC_MANUAL_REQID_MAX) { 1508 ipseclog((LOG_DEBUG, 1509 "%s: reqid=%d range " 1510 "violation, updated by kernel.\n", 1511 __func__, 1512 xisr->sadb_x_ipsecrequest_reqid)); 1513 xisr->sadb_x_ipsecrequest_reqid = 0; 1514 } 1515 1516 /* allocate new reqid id if reqid is zero. */ 1517 if (xisr->sadb_x_ipsecrequest_reqid == 0) { 1518 u_int32_t reqid; 1519 if ((reqid = key_newreqid()) == 0) { 1520 KEY_FREESP(&newsp); 1521 *error = ENOBUFS; 1522 return NULL; 1523 } 1524 (*p_isr)->saidx.reqid = reqid; 1525 xisr->sadb_x_ipsecrequest_reqid = reqid; 1526 } else { 1527 /* set it for manual keying. */ 1528 (*p_isr)->saidx.reqid = 1529 xisr->sadb_x_ipsecrequest_reqid; 1530 } 1531 break; 1532 1533 default: 1534 ipseclog((LOG_DEBUG, "%s: invalid level=%u\n", 1535 __func__, 1536 xisr->sadb_x_ipsecrequest_level)); 1537 KEY_FREESP(&newsp); 1538 *error = EINVAL; 1539 return NULL; 1540 } 1541 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; 1542 1543 /* set IP addresses if there */ 1544 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { 1545 struct sockaddr *paddr; 1546 1547 paddr = (struct sockaddr *)(xisr + 1); 1548 1549 /* validity check */ 1550 if (paddr->sa_len 1551 > sizeof((*p_isr)->saidx.src)) { 1552 ipseclog((LOG_DEBUG, "%s: invalid " 1553 "request address length.\n", 1554 __func__)); 1555 KEY_FREESP(&newsp); 1556 *error = EINVAL; 1557 return NULL; 1558 } 1559 bcopy(paddr, &(*p_isr)->saidx.src, 1560 paddr->sa_len); 1561 1562 paddr = (struct sockaddr *)((caddr_t)paddr 1563 + paddr->sa_len); 1564 1565 /* validity check */ 1566 if (paddr->sa_len 1567 > sizeof((*p_isr)->saidx.dst)) { 1568 ipseclog((LOG_DEBUG, "%s: invalid " 1569 "request address length.\n", 1570 __func__)); 1571 KEY_FREESP(&newsp); 1572 *error = EINVAL; 1573 return NULL; 1574 } 1575 bcopy(paddr, &(*p_isr)->saidx.dst, 1576 paddr->sa_len); 1577 } 1578 1579 (*p_isr)->sp = newsp; 1580 1581 /* initialization for the next. */ 1582 p_isr = &(*p_isr)->next; 1583 tlen -= xisr->sadb_x_ipsecrequest_len; 1584 1585 /* validity check */ 1586 if (tlen < 0) { 1587 ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n", 1588 __func__)); 1589 KEY_FREESP(&newsp); 1590 *error = EINVAL; 1591 return NULL; 1592 } 1593 1594 xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr 1595 + xisr->sadb_x_ipsecrequest_len); 1596 } 1597 } 1598 break; 1599 default: 1600 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); 1601 KEY_FREESP(&newsp); 1602 *error = EINVAL; 1603 return NULL; 1604 } 1605 1606 *error = 0; 1607 return newsp; 1608 } 1609 1610 static u_int32_t 1611 key_newreqid() 1612 { 1613 static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 1614 1615 auto_reqid = (auto_reqid == ~0 1616 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); 1617 1618 /* XXX should be unique check */ 1619 1620 return auto_reqid; 1621 } 1622 1623 /* 1624 * copy secpolicy struct to sadb_x_policy structure indicated. 1625 */ 1626 struct mbuf * 1627 key_sp2msg(sp) 1628 struct secpolicy *sp; 1629 { 1630 struct sadb_x_policy *xpl; 1631 int tlen; 1632 caddr_t p; 1633 struct mbuf *m; 1634 1635 IPSEC_ASSERT(sp != NULL, ("null policy")); 1636 1637 tlen = key_getspreqmsglen(sp); 1638 1639 m = key_alloc_mbuf(tlen); 1640 if (!m || m->m_next) { /*XXX*/ 1641 if (m) 1642 m_freem(m); 1643 return NULL; 1644 } 1645 1646 m->m_len = tlen; 1647 m->m_next = NULL; 1648 xpl = mtod(m, struct sadb_x_policy *); 1649 bzero(xpl, tlen); 1650 1651 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen); 1652 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 1653 xpl->sadb_x_policy_type = sp->policy; 1654 xpl->sadb_x_policy_dir = sp->spidx.dir; 1655 xpl->sadb_x_policy_id = sp->id; 1656 p = (caddr_t)xpl + sizeof(*xpl); 1657 1658 /* if is the policy for ipsec ? */ 1659 if (sp->policy == IPSEC_POLICY_IPSEC) { 1660 struct sadb_x_ipsecrequest *xisr; 1661 struct ipsecrequest *isr; 1662 1663 for (isr = sp->req; isr != NULL; isr = isr->next) { 1664 1665 xisr = (struct sadb_x_ipsecrequest *)p; 1666 1667 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; 1668 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; 1669 xisr->sadb_x_ipsecrequest_level = isr->level; 1670 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; 1671 1672 p += sizeof(*xisr); 1673 bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len); 1674 p += isr->saidx.src.sa.sa_len; 1675 bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len); 1676 p += isr->saidx.src.sa.sa_len; 1677 1678 xisr->sadb_x_ipsecrequest_len = 1679 PFKEY_ALIGN8(sizeof(*xisr) 1680 + isr->saidx.src.sa.sa_len 1681 + isr->saidx.dst.sa.sa_len); 1682 } 1683 } 1684 1685 return m; 1686 } 1687 1688 /* m will not be freed nor modified */ 1689 static struct mbuf * 1690 #ifdef __STDC__ 1691 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, 1692 int ndeep, int nitem, ...) 1693 #else 1694 key_gather_mbuf(m, mhp, ndeep, nitem, va_alist) 1695 struct mbuf *m; 1696 const struct sadb_msghdr *mhp; 1697 int ndeep; 1698 int nitem; 1699 va_dcl 1700 #endif 1701 { 1702 va_list ap; 1703 int idx; 1704 int i; 1705 struct mbuf *result = NULL, *n; 1706 int len; 1707 1708 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1709 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1710 1711 va_start(ap, nitem); 1712 for (i = 0; i < nitem; i++) { 1713 idx = va_arg(ap, int); 1714 if (idx < 0 || idx > SADB_EXT_MAX) 1715 goto fail; 1716 /* don't attempt to pull empty extension */ 1717 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) 1718 continue; 1719 if (idx != SADB_EXT_RESERVED && 1720 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) 1721 continue; 1722 1723 if (idx == SADB_EXT_RESERVED) { 1724 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 1725 1726 IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len)); 1727 1728 MGETHDR(n, M_DONTWAIT, MT_DATA); 1729 if (!n) 1730 goto fail; 1731 n->m_len = len; 1732 n->m_next = NULL; 1733 m_copydata(m, 0, sizeof(struct sadb_msg), 1734 mtod(n, caddr_t)); 1735 } else if (i < ndeep) { 1736 len = mhp->extlen[idx]; 1737 n = key_alloc_mbuf(len); 1738 if (!n || n->m_next) { /*XXX*/ 1739 if (n) 1740 m_freem(n); 1741 goto fail; 1742 } 1743 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], 1744 mtod(n, caddr_t)); 1745 } else { 1746 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], 1747 M_DONTWAIT); 1748 } 1749 if (n == NULL) 1750 goto fail; 1751 1752 if (result) 1753 m_cat(result, n); 1754 else 1755 result = n; 1756 } 1757 va_end(ap); 1758 1759 if ((result->m_flags & M_PKTHDR) != 0) { 1760 result->m_pkthdr.len = 0; 1761 for (n = result; n; n = n->m_next) 1762 result->m_pkthdr.len += n->m_len; 1763 } 1764 1765 return result; 1766 1767 fail: 1768 m_freem(result); 1769 return NULL; 1770 } 1771 1772 /* 1773 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing 1774 * add an entry to SP database, when received 1775 * <base, address(SD), (lifetime(H),) policy> 1776 * from the user(?). 1777 * Adding to SP database, 1778 * and send 1779 * <base, address(SD), (lifetime(H),) policy> 1780 * to the socket which was send. 1781 * 1782 * SPDADD set a unique policy entry. 1783 * SPDSETIDX like SPDADD without a part of policy requests. 1784 * SPDUPDATE replace a unique policy entry. 1785 * 1786 * m will always be freed. 1787 */ 1788 static int 1789 key_spdadd(so, m, mhp) 1790 struct socket *so; 1791 struct mbuf *m; 1792 const struct sadb_msghdr *mhp; 1793 { 1794 struct sadb_address *src0, *dst0; 1795 struct sadb_x_policy *xpl0, *xpl; 1796 struct sadb_lifetime *lft = NULL; 1797 struct secpolicyindex spidx; 1798 struct secpolicy *newsp; 1799 int error; 1800 1801 IPSEC_ASSERT(so != NULL, ("null socket")); 1802 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1803 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1804 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 1805 1806 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 1807 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 1808 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 1809 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n")); 1810 return key_senderror(so, m, EINVAL); 1811 } 1812 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 1813 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 1814 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 1815 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1816 __func__)); 1817 return key_senderror(so, m, EINVAL); 1818 } 1819 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { 1820 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] 1821 < sizeof(struct sadb_lifetime)) { 1822 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1823 __func__)); 1824 return key_senderror(so, m, EINVAL); 1825 } 1826 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 1827 } 1828 1829 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 1830 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 1831 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 1832 1833 /* 1834 * Note: do not parse SADB_X_EXT_NAT_T_* here: 1835 * we are processing traffic endpoints. 1836 */ 1837 1838 /* make secindex */ 1839 /* XXX boundary check against sa_len */ 1840 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1841 src0 + 1, 1842 dst0 + 1, 1843 src0->sadb_address_prefixlen, 1844 dst0->sadb_address_prefixlen, 1845 src0->sadb_address_proto, 1846 &spidx); 1847 1848 /* checking the direciton. */ 1849 switch (xpl0->sadb_x_policy_dir) { 1850 case IPSEC_DIR_INBOUND: 1851 case IPSEC_DIR_OUTBOUND: 1852 break; 1853 default: 1854 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 1855 mhp->msg->sadb_msg_errno = EINVAL; 1856 return 0; 1857 } 1858 1859 /* check policy */ 1860 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */ 1861 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST 1862 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { 1863 ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__)); 1864 return key_senderror(so, m, EINVAL); 1865 } 1866 1867 /* policy requests are mandatory when action is ipsec. */ 1868 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX 1869 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC 1870 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { 1871 ipseclog((LOG_DEBUG, "%s: some policy requests part required\n", 1872 __func__)); 1873 return key_senderror(so, m, EINVAL); 1874 } 1875 1876 /* 1877 * checking there is SP already or not. 1878 * SPDUPDATE doesn't depend on whether there is a SP or not. 1879 * If the type is either SPDADD or SPDSETIDX AND a SP is found, 1880 * then error. 1881 */ 1882 newsp = key_getsp(&spidx); 1883 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1884 if (newsp) { 1885 SPTREE_LOCK(); 1886 newsp->state = IPSEC_SPSTATE_DEAD; 1887 SPTREE_UNLOCK(); 1888 KEY_FREESP(&newsp); 1889 } 1890 } else { 1891 if (newsp != NULL) { 1892 KEY_FREESP(&newsp); 1893 ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n", 1894 __func__)); 1895 return key_senderror(so, m, EEXIST); 1896 } 1897 } 1898 1899 /* allocation new SP entry */ 1900 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) { 1901 return key_senderror(so, m, error); 1902 } 1903 1904 if ((newsp->id = key_getnewspid()) == 0) { 1905 _key_delsp(newsp); 1906 return key_senderror(so, m, ENOBUFS); 1907 } 1908 1909 /* XXX boundary check against sa_len */ 1910 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1911 src0 + 1, 1912 dst0 + 1, 1913 src0->sadb_address_prefixlen, 1914 dst0->sadb_address_prefixlen, 1915 src0->sadb_address_proto, 1916 &newsp->spidx); 1917 1918 /* sanity check on addr pair */ 1919 if (((struct sockaddr *)(src0 + 1))->sa_family != 1920 ((struct sockaddr *)(dst0+ 1))->sa_family) { 1921 _key_delsp(newsp); 1922 return key_senderror(so, m, EINVAL); 1923 } 1924 if (((struct sockaddr *)(src0 + 1))->sa_len != 1925 ((struct sockaddr *)(dst0+ 1))->sa_len) { 1926 _key_delsp(newsp); 1927 return key_senderror(so, m, EINVAL); 1928 } 1929 #if 1 1930 if (newsp->req && newsp->req->saidx.src.sa.sa_family && newsp->req->saidx.dst.sa.sa_family) { 1931 if (newsp->req->saidx.src.sa.sa_family != newsp->req->saidx.dst.sa.sa_family) { 1932 _key_delsp(newsp); 1933 return key_senderror(so, m, EINVAL); 1934 } 1935 } 1936 #endif 1937 1938 newsp->created = time_second; 1939 newsp->lastused = newsp->created; 1940 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; 1941 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; 1942 1943 newsp->refcnt = 1; /* do not reclaim until I say I do */ 1944 newsp->state = IPSEC_SPSTATE_ALIVE; 1945 LIST_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, secpolicy, chain); 1946 1947 /* delete the entry in spacqtree */ 1948 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1949 struct secspacq *spacq = key_getspacq(&spidx); 1950 if (spacq != NULL) { 1951 /* reset counter in order to deletion by timehandler. */ 1952 spacq->created = time_second; 1953 spacq->count = 0; 1954 SPACQ_UNLOCK(); 1955 } 1956 } 1957 1958 { 1959 struct mbuf *n, *mpolicy; 1960 struct sadb_msg *newmsg; 1961 int off; 1962 1963 /* 1964 * Note: do not send SADB_X_EXT_NAT_T_* here: 1965 * we are sending traffic endpoints. 1966 */ 1967 1968 /* create new sadb_msg to reply. */ 1969 if (lft) { 1970 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, 1971 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, 1972 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1973 } else { 1974 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, 1975 SADB_X_EXT_POLICY, 1976 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1977 } 1978 if (!n) 1979 return key_senderror(so, m, ENOBUFS); 1980 1981 if (n->m_len < sizeof(*newmsg)) { 1982 n = m_pullup(n, sizeof(*newmsg)); 1983 if (!n) 1984 return key_senderror(so, m, ENOBUFS); 1985 } 1986 newmsg = mtod(n, struct sadb_msg *); 1987 newmsg->sadb_msg_errno = 0; 1988 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 1989 1990 off = 0; 1991 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), 1992 sizeof(*xpl), &off); 1993 if (mpolicy == NULL) { 1994 /* n is already freed */ 1995 return key_senderror(so, m, ENOBUFS); 1996 } 1997 xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off); 1998 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { 1999 m_freem(n); 2000 return key_senderror(so, m, EINVAL); 2001 } 2002 xpl->sadb_x_policy_id = newsp->id; 2003 2004 m_freem(m); 2005 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2006 } 2007 } 2008 2009 /* 2010 * get new policy id. 2011 * OUT: 2012 * 0: failure. 2013 * others: success. 2014 */ 2015 static u_int32_t 2016 key_getnewspid() 2017 { 2018 u_int32_t newid = 0; 2019 int count = V_key_spi_trycnt; /* XXX */ 2020 struct secpolicy *sp; 2021 2022 /* when requesting to allocate spi ranged */ 2023 while (count--) { 2024 newid = (V_policy_id = (V_policy_id == ~0 ? 1 : V_policy_id + 1)); 2025 2026 if ((sp = key_getspbyid(newid)) == NULL) 2027 break; 2028 2029 KEY_FREESP(&sp); 2030 } 2031 2032 if (count == 0 || newid == 0) { 2033 ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n", 2034 __func__)); 2035 return 0; 2036 } 2037 2038 return newid; 2039 } 2040 2041 /* 2042 * SADB_SPDDELETE processing 2043 * receive 2044 * <base, address(SD), policy(*)> 2045 * from the user(?), and set SADB_SASTATE_DEAD, 2046 * and send, 2047 * <base, address(SD), policy(*)> 2048 * to the ikmpd. 2049 * policy(*) including direction of policy. 2050 * 2051 * m will always be freed. 2052 */ 2053 static int 2054 key_spddelete(so, m, mhp) 2055 struct socket *so; 2056 struct mbuf *m; 2057 const struct sadb_msghdr *mhp; 2058 { 2059 struct sadb_address *src0, *dst0; 2060 struct sadb_x_policy *xpl0; 2061 struct secpolicyindex spidx; 2062 struct secpolicy *sp; 2063 2064 IPSEC_ASSERT(so != NULL, ("null so")); 2065 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2066 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2067 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2068 2069 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2070 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2071 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2072 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2073 __func__)); 2074 return key_senderror(so, m, EINVAL); 2075 } 2076 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2077 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2078 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2079 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2080 __func__)); 2081 return key_senderror(so, m, EINVAL); 2082 } 2083 2084 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 2085 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 2086 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 2087 2088 /* 2089 * Note: do not parse SADB_X_EXT_NAT_T_* here: 2090 * we are processing traffic endpoints. 2091 */ 2092 2093 /* make secindex */ 2094 /* XXX boundary check against sa_len */ 2095 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 2096 src0 + 1, 2097 dst0 + 1, 2098 src0->sadb_address_prefixlen, 2099 dst0->sadb_address_prefixlen, 2100 src0->sadb_address_proto, 2101 &spidx); 2102 2103 /* checking the direciton. */ 2104 switch (xpl0->sadb_x_policy_dir) { 2105 case IPSEC_DIR_INBOUND: 2106 case IPSEC_DIR_OUTBOUND: 2107 break; 2108 default: 2109 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 2110 return key_senderror(so, m, EINVAL); 2111 } 2112 2113 /* Is there SP in SPD ? */ 2114 if ((sp = key_getsp(&spidx)) == NULL) { 2115 ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__)); 2116 return key_senderror(so, m, EINVAL); 2117 } 2118 2119 /* save policy id to buffer to be returned. */ 2120 xpl0->sadb_x_policy_id = sp->id; 2121 2122 SPTREE_LOCK(); 2123 sp->state = IPSEC_SPSTATE_DEAD; 2124 SPTREE_UNLOCK(); 2125 KEY_FREESP(&sp); 2126 2127 { 2128 struct mbuf *n; 2129 struct sadb_msg *newmsg; 2130 2131 /* 2132 * Note: do not send SADB_X_EXT_NAT_T_* here: 2133 * we are sending traffic endpoints. 2134 */ 2135 2136 /* create new sadb_msg to reply. */ 2137 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 2138 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2139 if (!n) 2140 return key_senderror(so, m, ENOBUFS); 2141 2142 newmsg = mtod(n, struct sadb_msg *); 2143 newmsg->sadb_msg_errno = 0; 2144 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2145 2146 m_freem(m); 2147 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2148 } 2149 } 2150 2151 /* 2152 * SADB_SPDDELETE2 processing 2153 * receive 2154 * <base, policy(*)> 2155 * from the user(?), and set SADB_SASTATE_DEAD, 2156 * and send, 2157 * <base, policy(*)> 2158 * to the ikmpd. 2159 * policy(*) including direction of policy. 2160 * 2161 * m will always be freed. 2162 */ 2163 static int 2164 key_spddelete2(so, m, mhp) 2165 struct socket *so; 2166 struct mbuf *m; 2167 const struct sadb_msghdr *mhp; 2168 { 2169 u_int32_t id; 2170 struct secpolicy *sp; 2171 2172 IPSEC_ASSERT(so != NULL, ("null socket")); 2173 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2174 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2175 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2176 2177 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2178 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2179 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); 2180 return key_senderror(so, m, EINVAL); 2181 } 2182 2183 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2184 2185 /* Is there SP in SPD ? */ 2186 if ((sp = key_getspbyid(id)) == NULL) { 2187 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2188 return key_senderror(so, m, EINVAL); 2189 } 2190 2191 SPTREE_LOCK(); 2192 sp->state = IPSEC_SPSTATE_DEAD; 2193 SPTREE_UNLOCK(); 2194 KEY_FREESP(&sp); 2195 2196 { 2197 struct mbuf *n, *nn; 2198 struct sadb_msg *newmsg; 2199 int off, len; 2200 2201 /* create new sadb_msg to reply. */ 2202 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2203 2204 MGETHDR(n, M_DONTWAIT, MT_DATA); 2205 if (n && len > MHLEN) { 2206 MCLGET(n, M_DONTWAIT); 2207 if ((n->m_flags & M_EXT) == 0) { 2208 m_freem(n); 2209 n = NULL; 2210 } 2211 } 2212 if (!n) 2213 return key_senderror(so, m, ENOBUFS); 2214 2215 n->m_len = len; 2216 n->m_next = NULL; 2217 off = 0; 2218 2219 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 2220 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2221 2222 IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)", 2223 off, len)); 2224 2225 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], 2226 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT); 2227 if (!n->m_next) { 2228 m_freem(n); 2229 return key_senderror(so, m, ENOBUFS); 2230 } 2231 2232 n->m_pkthdr.len = 0; 2233 for (nn = n; nn; nn = nn->m_next) 2234 n->m_pkthdr.len += nn->m_len; 2235 2236 newmsg = mtod(n, struct sadb_msg *); 2237 newmsg->sadb_msg_errno = 0; 2238 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2239 2240 m_freem(m); 2241 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2242 } 2243 } 2244 2245 /* 2246 * SADB_X_GET processing 2247 * receive 2248 * <base, policy(*)> 2249 * from the user(?), 2250 * and send, 2251 * <base, address(SD), policy> 2252 * to the ikmpd. 2253 * policy(*) including direction of policy. 2254 * 2255 * m will always be freed. 2256 */ 2257 static int 2258 key_spdget(so, m, mhp) 2259 struct socket *so; 2260 struct mbuf *m; 2261 const struct sadb_msghdr *mhp; 2262 { 2263 u_int32_t id; 2264 struct secpolicy *sp; 2265 struct mbuf *n; 2266 2267 IPSEC_ASSERT(so != NULL, ("null socket")); 2268 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2269 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2270 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2271 2272 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2273 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2274 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2275 __func__)); 2276 return key_senderror(so, m, EINVAL); 2277 } 2278 2279 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2280 2281 /* Is there SP in SPD ? */ 2282 if ((sp = key_getspbyid(id)) == NULL) { 2283 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2284 return key_senderror(so, m, ENOENT); 2285 } 2286 2287 n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid); 2288 if (n != NULL) { 2289 m_freem(m); 2290 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2291 } else 2292 return key_senderror(so, m, ENOBUFS); 2293 } 2294 2295 /* 2296 * SADB_X_SPDACQUIRE processing. 2297 * Acquire policy and SA(s) for a *OUTBOUND* packet. 2298 * send 2299 * <base, policy(*)> 2300 * to KMD, and expect to receive 2301 * <base> with SADB_X_SPDACQUIRE if error occured, 2302 * or 2303 * <base, policy> 2304 * with SADB_X_SPDUPDATE from KMD by PF_KEY. 2305 * policy(*) is without policy requests. 2306 * 2307 * 0 : succeed 2308 * others: error number 2309 */ 2310 int 2311 key_spdacquire(sp) 2312 struct secpolicy *sp; 2313 { 2314 struct mbuf *result = NULL, *m; 2315 struct secspacq *newspacq; 2316 2317 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2318 IPSEC_ASSERT(sp->req == NULL, ("policy exists")); 2319 IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC, 2320 ("policy not IPSEC %u", sp->policy)); 2321 2322 /* Get an entry to check whether sent message or not. */ 2323 newspacq = key_getspacq(&sp->spidx); 2324 if (newspacq != NULL) { 2325 if (V_key_blockacq_count < newspacq->count) { 2326 /* reset counter and do send message. */ 2327 newspacq->count = 0; 2328 } else { 2329 /* increment counter and do nothing. */ 2330 newspacq->count++; 2331 return 0; 2332 } 2333 SPACQ_UNLOCK(); 2334 } else { 2335 /* make new entry for blocking to send SADB_ACQUIRE. */ 2336 newspacq = key_newspacq(&sp->spidx); 2337 if (newspacq == NULL) 2338 return ENOBUFS; 2339 } 2340 2341 /* create new sadb_msg to reply. */ 2342 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); 2343 if (!m) 2344 return ENOBUFS; 2345 2346 result = m; 2347 2348 result->m_pkthdr.len = 0; 2349 for (m = result; m; m = m->m_next) 2350 result->m_pkthdr.len += m->m_len; 2351 2352 mtod(result, struct sadb_msg *)->sadb_msg_len = 2353 PFKEY_UNIT64(result->m_pkthdr.len); 2354 2355 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 2356 } 2357 2358 /* 2359 * SADB_SPDFLUSH processing 2360 * receive 2361 * <base> 2362 * from the user, and free all entries in secpctree. 2363 * and send, 2364 * <base> 2365 * to the user. 2366 * NOTE: what to do is only marking SADB_SASTATE_DEAD. 2367 * 2368 * m will always be freed. 2369 */ 2370 static int 2371 key_spdflush(so, m, mhp) 2372 struct socket *so; 2373 struct mbuf *m; 2374 const struct sadb_msghdr *mhp; 2375 { 2376 struct sadb_msg *newmsg; 2377 struct secpolicy *sp; 2378 u_int dir; 2379 2380 IPSEC_ASSERT(so != NULL, ("null socket")); 2381 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2382 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2383 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2384 2385 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) 2386 return key_senderror(so, m, EINVAL); 2387 2388 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2389 SPTREE_LOCK(); 2390 LIST_FOREACH(sp, &V_sptree[dir], chain) 2391 sp->state = IPSEC_SPSTATE_DEAD; 2392 SPTREE_UNLOCK(); 2393 } 2394 2395 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 2396 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2397 return key_senderror(so, m, ENOBUFS); 2398 } 2399 2400 if (m->m_next) 2401 m_freem(m->m_next); 2402 m->m_next = NULL; 2403 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2404 newmsg = mtod(m, struct sadb_msg *); 2405 newmsg->sadb_msg_errno = 0; 2406 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 2407 2408 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 2409 } 2410 2411 /* 2412 * SADB_SPDDUMP processing 2413 * receive 2414 * <base> 2415 * from the user, and dump all SP leaves 2416 * and send, 2417 * <base> ..... 2418 * to the ikmpd. 2419 * 2420 * m will always be freed. 2421 */ 2422 static int 2423 key_spddump(so, m, mhp) 2424 struct socket *so; 2425 struct mbuf *m; 2426 const struct sadb_msghdr *mhp; 2427 { 2428 struct secpolicy *sp; 2429 int cnt; 2430 u_int dir; 2431 struct mbuf *n; 2432 2433 IPSEC_ASSERT(so != NULL, ("null socket")); 2434 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2435 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2436 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2437 2438 /* search SPD entry and get buffer size. */ 2439 cnt = 0; 2440 SPTREE_LOCK(); 2441 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2442 LIST_FOREACH(sp, &V_sptree[dir], chain) { 2443 cnt++; 2444 } 2445 } 2446 2447 if (cnt == 0) { 2448 SPTREE_UNLOCK(); 2449 return key_senderror(so, m, ENOENT); 2450 } 2451 2452 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2453 LIST_FOREACH(sp, &V_sptree[dir], chain) { 2454 --cnt; 2455 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, 2456 mhp->msg->sadb_msg_pid); 2457 2458 if (n) 2459 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2460 } 2461 } 2462 2463 SPTREE_UNLOCK(); 2464 m_freem(m); 2465 return 0; 2466 } 2467 2468 static struct mbuf * 2469 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, u_int32_t pid) 2470 { 2471 struct mbuf *result = NULL, *m; 2472 struct seclifetime lt; 2473 2474 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt); 2475 if (!m) 2476 goto fail; 2477 result = m; 2478 2479 /* 2480 * Note: do not send SADB_X_EXT_NAT_T_* here: 2481 * we are sending traffic endpoints. 2482 */ 2483 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2484 &sp->spidx.src.sa, sp->spidx.prefs, 2485 sp->spidx.ul_proto); 2486 if (!m) 2487 goto fail; 2488 m_cat(result, m); 2489 2490 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2491 &sp->spidx.dst.sa, sp->spidx.prefd, 2492 sp->spidx.ul_proto); 2493 if (!m) 2494 goto fail; 2495 m_cat(result, m); 2496 2497 m = key_sp2msg(sp); 2498 if (!m) 2499 goto fail; 2500 m_cat(result, m); 2501 2502 if(sp->lifetime){ 2503 lt.addtime=sp->created; 2504 lt.usetime= sp->lastused; 2505 m = key_setlifetime(<, SADB_EXT_LIFETIME_CURRENT); 2506 if (!m) 2507 goto fail; 2508 m_cat(result, m); 2509 2510 lt.addtime=sp->lifetime; 2511 lt.usetime= sp->validtime; 2512 m = key_setlifetime(<, SADB_EXT_LIFETIME_HARD); 2513 if (!m) 2514 goto fail; 2515 m_cat(result, m); 2516 } 2517 2518 if ((result->m_flags & M_PKTHDR) == 0) 2519 goto fail; 2520 2521 if (result->m_len < sizeof(struct sadb_msg)) { 2522 result = m_pullup(result, sizeof(struct sadb_msg)); 2523 if (result == NULL) 2524 goto fail; 2525 } 2526 2527 result->m_pkthdr.len = 0; 2528 for (m = result; m; m = m->m_next) 2529 result->m_pkthdr.len += m->m_len; 2530 2531 mtod(result, struct sadb_msg *)->sadb_msg_len = 2532 PFKEY_UNIT64(result->m_pkthdr.len); 2533 2534 return result; 2535 2536 fail: 2537 m_freem(result); 2538 return NULL; 2539 } 2540 2541 /* 2542 * get PFKEY message length for security policy and request. 2543 */ 2544 static u_int 2545 key_getspreqmsglen(sp) 2546 struct secpolicy *sp; 2547 { 2548 u_int tlen; 2549 2550 tlen = sizeof(struct sadb_x_policy); 2551 2552 /* if is the policy for ipsec ? */ 2553 if (sp->policy != IPSEC_POLICY_IPSEC) 2554 return tlen; 2555 2556 /* get length of ipsec requests */ 2557 { 2558 struct ipsecrequest *isr; 2559 int len; 2560 2561 for (isr = sp->req; isr != NULL; isr = isr->next) { 2562 len = sizeof(struct sadb_x_ipsecrequest) 2563 + isr->saidx.src.sa.sa_len 2564 + isr->saidx.dst.sa.sa_len; 2565 2566 tlen += PFKEY_ALIGN8(len); 2567 } 2568 } 2569 2570 return tlen; 2571 } 2572 2573 /* 2574 * SADB_SPDEXPIRE processing 2575 * send 2576 * <base, address(SD), lifetime(CH), policy> 2577 * to KMD by PF_KEY. 2578 * 2579 * OUT: 0 : succeed 2580 * others : error number 2581 */ 2582 static int 2583 key_spdexpire(sp) 2584 struct secpolicy *sp; 2585 { 2586 struct mbuf *result = NULL, *m; 2587 int len; 2588 int error = -1; 2589 struct sadb_lifetime *lt; 2590 2591 /* XXX: Why do we lock ? */ 2592 2593 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2594 2595 /* set msg header */ 2596 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0); 2597 if (!m) { 2598 error = ENOBUFS; 2599 goto fail; 2600 } 2601 result = m; 2602 2603 /* create lifetime extension (current and hard) */ 2604 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 2605 m = key_alloc_mbuf(len); 2606 if (!m || m->m_next) { /*XXX*/ 2607 if (m) 2608 m_freem(m); 2609 error = ENOBUFS; 2610 goto fail; 2611 } 2612 bzero(mtod(m, caddr_t), len); 2613 lt = mtod(m, struct sadb_lifetime *); 2614 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2615 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 2616 lt->sadb_lifetime_allocations = 0; 2617 lt->sadb_lifetime_bytes = 0; 2618 lt->sadb_lifetime_addtime = sp->created; 2619 lt->sadb_lifetime_usetime = sp->lastused; 2620 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 2621 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2622 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 2623 lt->sadb_lifetime_allocations = 0; 2624 lt->sadb_lifetime_bytes = 0; 2625 lt->sadb_lifetime_addtime = sp->lifetime; 2626 lt->sadb_lifetime_usetime = sp->validtime; 2627 m_cat(result, m); 2628 2629 /* 2630 * Note: do not send SADB_X_EXT_NAT_T_* here: 2631 * we are sending traffic endpoints. 2632 */ 2633 2634 /* set sadb_address for source */ 2635 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2636 &sp->spidx.src.sa, 2637 sp->spidx.prefs, sp->spidx.ul_proto); 2638 if (!m) { 2639 error = ENOBUFS; 2640 goto fail; 2641 } 2642 m_cat(result, m); 2643 2644 /* set sadb_address for destination */ 2645 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2646 &sp->spidx.dst.sa, 2647 sp->spidx.prefd, sp->spidx.ul_proto); 2648 if (!m) { 2649 error = ENOBUFS; 2650 goto fail; 2651 } 2652 m_cat(result, m); 2653 2654 /* set secpolicy */ 2655 m = key_sp2msg(sp); 2656 if (!m) { 2657 error = ENOBUFS; 2658 goto fail; 2659 } 2660 m_cat(result, m); 2661 2662 if ((result->m_flags & M_PKTHDR) == 0) { 2663 error = EINVAL; 2664 goto fail; 2665 } 2666 2667 if (result->m_len < sizeof(struct sadb_msg)) { 2668 result = m_pullup(result, sizeof(struct sadb_msg)); 2669 if (result == NULL) { 2670 error = ENOBUFS; 2671 goto fail; 2672 } 2673 } 2674 2675 result->m_pkthdr.len = 0; 2676 for (m = result; m; m = m->m_next) 2677 result->m_pkthdr.len += m->m_len; 2678 2679 mtod(result, struct sadb_msg *)->sadb_msg_len = 2680 PFKEY_UNIT64(result->m_pkthdr.len); 2681 2682 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 2683 2684 fail: 2685 if (result) 2686 m_freem(result); 2687 return error; 2688 } 2689 2690 /* %%% SAD management */ 2691 /* 2692 * allocating a memory for new SA head, and copy from the values of mhp. 2693 * OUT: NULL : failure due to the lack of memory. 2694 * others : pointer to new SA head. 2695 */ 2696 static struct secashead * 2697 key_newsah(saidx) 2698 struct secasindex *saidx; 2699 { 2700 struct secashead *newsah; 2701 2702 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 2703 2704 newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO); 2705 if (newsah != NULL) { 2706 int i; 2707 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++) 2708 LIST_INIT(&newsah->savtree[i]); 2709 newsah->saidx = *saidx; 2710 2711 /* add to saidxtree */ 2712 newsah->state = SADB_SASTATE_MATURE; 2713 2714 SAHTREE_LOCK(); 2715 LIST_INSERT_HEAD(&V_sahtree, newsah, chain); 2716 SAHTREE_UNLOCK(); 2717 } 2718 return(newsah); 2719 } 2720 2721 /* 2722 * delete SA index and all SA registerd. 2723 */ 2724 static void 2725 key_delsah(sah) 2726 struct secashead *sah; 2727 { 2728 struct secasvar *sav, *nextsav; 2729 u_int stateidx; 2730 int zombie = 0; 2731 2732 IPSEC_ASSERT(sah != NULL, ("NULL sah")); 2733 SAHTREE_LOCK_ASSERT(); 2734 2735 /* searching all SA registerd in the secindex. */ 2736 for (stateidx = 0; 2737 stateidx < _ARRAYLEN(saorder_state_any); 2738 stateidx++) { 2739 u_int state = saorder_state_any[stateidx]; 2740 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) { 2741 if (sav->refcnt == 0) { 2742 /* sanity check */ 2743 KEY_CHKSASTATE(state, sav->state, __func__); 2744 /* 2745 * do NOT call KEY_FREESAV here: 2746 * it will only delete the sav if refcnt == 1, 2747 * where we already know that refcnt == 0 2748 */ 2749 key_delsav(sav); 2750 } else { 2751 /* give up to delete this sa */ 2752 zombie++; 2753 } 2754 } 2755 } 2756 if (!zombie) { /* delete only if there are savs */ 2757 /* remove from tree of SA index */ 2758 if (__LIST_CHAINED(sah)) 2759 LIST_REMOVE(sah, chain); 2760 if (sah->sa_route.ro_rt) { 2761 RTFREE(sah->sa_route.ro_rt); 2762 sah->sa_route.ro_rt = (struct rtentry *)NULL; 2763 } 2764 free(sah, M_IPSEC_SAH); 2765 } 2766 } 2767 2768 /* 2769 * allocating a new SA with LARVAL state. key_add() and key_getspi() call, 2770 * and copy the values of mhp into new buffer. 2771 * When SAD message type is GETSPI: 2772 * to set sequence number from acq_seq++, 2773 * to set zero to SPI. 2774 * not to call key_setsava(). 2775 * OUT: NULL : fail 2776 * others : pointer to new secasvar. 2777 * 2778 * does not modify mbuf. does not free mbuf on error. 2779 */ 2780 static struct secasvar * 2781 key_newsav(m, mhp, sah, errp, where, tag) 2782 struct mbuf *m; 2783 const struct sadb_msghdr *mhp; 2784 struct secashead *sah; 2785 int *errp; 2786 const char* where; 2787 int tag; 2788 { 2789 struct secasvar *newsav; 2790 const struct sadb_sa *xsa; 2791 2792 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2793 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2794 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2795 IPSEC_ASSERT(sah != NULL, ("null secashead")); 2796 2797 newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO); 2798 if (newsav == NULL) { 2799 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2800 *errp = ENOBUFS; 2801 goto done; 2802 } 2803 2804 switch (mhp->msg->sadb_msg_type) { 2805 case SADB_GETSPI: 2806 newsav->spi = 0; 2807 2808 #ifdef IPSEC_DOSEQCHECK 2809 /* sync sequence number */ 2810 if (mhp->msg->sadb_msg_seq == 0) 2811 newsav->seq = 2812 (V_acq_seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq)); 2813 else 2814 #endif 2815 newsav->seq = mhp->msg->sadb_msg_seq; 2816 break; 2817 2818 case SADB_ADD: 2819 /* sanity check */ 2820 if (mhp->ext[SADB_EXT_SA] == NULL) { 2821 free(newsav, M_IPSEC_SA); 2822 newsav = NULL; 2823 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2824 __func__)); 2825 *errp = EINVAL; 2826 goto done; 2827 } 2828 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 2829 newsav->spi = xsa->sadb_sa_spi; 2830 newsav->seq = mhp->msg->sadb_msg_seq; 2831 break; 2832 default: 2833 free(newsav, M_IPSEC_SA); 2834 newsav = NULL; 2835 *errp = EINVAL; 2836 goto done; 2837 } 2838 2839 2840 /* copy sav values */ 2841 if (mhp->msg->sadb_msg_type != SADB_GETSPI) { 2842 *errp = key_setsaval(newsav, m, mhp); 2843 if (*errp) { 2844 free(newsav, M_IPSEC_SA); 2845 newsav = NULL; 2846 goto done; 2847 } 2848 } 2849 2850 SECASVAR_LOCK_INIT(newsav); 2851 2852 /* reset created */ 2853 newsav->created = time_second; 2854 newsav->pid = mhp->msg->sadb_msg_pid; 2855 2856 /* add to satree */ 2857 newsav->sah = sah; 2858 sa_initref(newsav); 2859 newsav->state = SADB_SASTATE_LARVAL; 2860 2861 SAHTREE_LOCK(); 2862 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav, 2863 secasvar, chain); 2864 SAHTREE_UNLOCK(); 2865 done: 2866 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 2867 printf("DP %s from %s:%u return SP:%p\n", __func__, 2868 where, tag, newsav)); 2869 2870 return newsav; 2871 } 2872 2873 /* 2874 * free() SA variable entry. 2875 */ 2876 static void 2877 key_cleansav(struct secasvar *sav) 2878 { 2879 /* 2880 * Cleanup xform state. Note that zeroize'ing causes the 2881 * keys to be cleared; otherwise we must do it ourself. 2882 */ 2883 if (sav->tdb_xform != NULL) { 2884 sav->tdb_xform->xf_zeroize(sav); 2885 sav->tdb_xform = NULL; 2886 } else { 2887 KASSERT(sav->iv == NULL, ("iv but no xform")); 2888 if (sav->key_auth != NULL) 2889 bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth)); 2890 if (sav->key_enc != NULL) 2891 bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc)); 2892 } 2893 if (sav->key_auth != NULL) { 2894 if (sav->key_auth->key_data != NULL) 2895 free(sav->key_auth->key_data, M_IPSEC_MISC); 2896 free(sav->key_auth, M_IPSEC_MISC); 2897 sav->key_auth = NULL; 2898 } 2899 if (sav->key_enc != NULL) { 2900 if (sav->key_enc->key_data != NULL) 2901 free(sav->key_enc->key_data, M_IPSEC_MISC); 2902 free(sav->key_enc, M_IPSEC_MISC); 2903 sav->key_enc = NULL; 2904 } 2905 if (sav->sched) { 2906 bzero(sav->sched, sav->schedlen); 2907 free(sav->sched, M_IPSEC_MISC); 2908 sav->sched = NULL; 2909 } 2910 if (sav->replay != NULL) { 2911 free(sav->replay, M_IPSEC_MISC); 2912 sav->replay = NULL; 2913 } 2914 if (sav->lft_c != NULL) { 2915 free(sav->lft_c, M_IPSEC_MISC); 2916 sav->lft_c = NULL; 2917 } 2918 if (sav->lft_h != NULL) { 2919 free(sav->lft_h, M_IPSEC_MISC); 2920 sav->lft_h = NULL; 2921 } 2922 if (sav->lft_s != NULL) { 2923 free(sav->lft_s, M_IPSEC_MISC); 2924 sav->lft_s = NULL; 2925 } 2926 } 2927 2928 /* 2929 * free() SA variable entry. 2930 */ 2931 static void 2932 key_delsav(sav) 2933 struct secasvar *sav; 2934 { 2935 IPSEC_ASSERT(sav != NULL, ("null sav")); 2936 IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt)); 2937 2938 /* remove from SA header */ 2939 if (__LIST_CHAINED(sav)) 2940 LIST_REMOVE(sav, chain); 2941 key_cleansav(sav); 2942 SECASVAR_LOCK_DESTROY(sav); 2943 free(sav, M_IPSEC_SA); 2944 } 2945 2946 /* 2947 * search SAD. 2948 * OUT: 2949 * NULL : not found 2950 * others : found, pointer to a SA. 2951 */ 2952 static struct secashead * 2953 key_getsah(saidx) 2954 struct secasindex *saidx; 2955 { 2956 struct secashead *sah; 2957 2958 SAHTREE_LOCK(); 2959 LIST_FOREACH(sah, &V_sahtree, chain) { 2960 if (sah->state == SADB_SASTATE_DEAD) 2961 continue; 2962 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID)) 2963 break; 2964 } 2965 SAHTREE_UNLOCK(); 2966 2967 return sah; 2968 } 2969 2970 /* 2971 * check not to be duplicated SPI. 2972 * NOTE: this function is too slow due to searching all SAD. 2973 * OUT: 2974 * NULL : not found 2975 * others : found, pointer to a SA. 2976 */ 2977 static struct secasvar * 2978 key_checkspidup(saidx, spi) 2979 struct secasindex *saidx; 2980 u_int32_t spi; 2981 { 2982 struct secashead *sah; 2983 struct secasvar *sav; 2984 2985 /* check address family */ 2986 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) { 2987 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 2988 __func__)); 2989 return NULL; 2990 } 2991 2992 sav = NULL; 2993 /* check all SAD */ 2994 SAHTREE_LOCK(); 2995 LIST_FOREACH(sah, &V_sahtree, chain) { 2996 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst)) 2997 continue; 2998 sav = key_getsavbyspi(sah, spi); 2999 if (sav != NULL) 3000 break; 3001 } 3002 SAHTREE_UNLOCK(); 3003 3004 return sav; 3005 } 3006 3007 /* 3008 * search SAD litmited alive SA, protocol, SPI. 3009 * OUT: 3010 * NULL : not found 3011 * others : found, pointer to a SA. 3012 */ 3013 static struct secasvar * 3014 key_getsavbyspi(sah, spi) 3015 struct secashead *sah; 3016 u_int32_t spi; 3017 { 3018 struct secasvar *sav; 3019 u_int stateidx, state; 3020 3021 sav = NULL; 3022 SAHTREE_LOCK_ASSERT(); 3023 /* search all status */ 3024 for (stateidx = 0; 3025 stateidx < _ARRAYLEN(saorder_state_alive); 3026 stateidx++) { 3027 3028 state = saorder_state_alive[stateidx]; 3029 LIST_FOREACH(sav, &sah->savtree[state], chain) { 3030 3031 /* sanity check */ 3032 if (sav->state != state) { 3033 ipseclog((LOG_DEBUG, "%s: " 3034 "invalid sav->state (queue: %d SA: %d)\n", 3035 __func__, state, sav->state)); 3036 continue; 3037 } 3038 3039 if (sav->spi == spi) 3040 return sav; 3041 } 3042 } 3043 3044 return NULL; 3045 } 3046 3047 /* 3048 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. 3049 * You must update these if need. 3050 * OUT: 0: success. 3051 * !0: failure. 3052 * 3053 * does not modify mbuf. does not free mbuf on error. 3054 */ 3055 static int 3056 key_setsaval(sav, m, mhp) 3057 struct secasvar *sav; 3058 struct mbuf *m; 3059 const struct sadb_msghdr *mhp; 3060 { 3061 int error = 0; 3062 3063 IPSEC_ASSERT(m != NULL, ("null mbuf")); 3064 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 3065 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 3066 3067 /* initialization */ 3068 sav->replay = NULL; 3069 sav->key_auth = NULL; 3070 sav->key_enc = NULL; 3071 sav->sched = NULL; 3072 sav->schedlen = 0; 3073 sav->iv = NULL; 3074 sav->lft_c = NULL; 3075 sav->lft_h = NULL; 3076 sav->lft_s = NULL; 3077 sav->tdb_xform = NULL; /* transform */ 3078 sav->tdb_encalgxform = NULL; /* encoding algorithm */ 3079 sav->tdb_authalgxform = NULL; /* authentication algorithm */ 3080 sav->tdb_compalgxform = NULL; /* compression algorithm */ 3081 /* Initialize even if NAT-T not compiled in: */ 3082 sav->natt_type = 0; 3083 sav->natt_esp_frag_len = 0; 3084 3085 /* SA */ 3086 if (mhp->ext[SADB_EXT_SA] != NULL) { 3087 const struct sadb_sa *sa0; 3088 3089 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 3090 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { 3091 error = EINVAL; 3092 goto fail; 3093 } 3094 3095 sav->alg_auth = sa0->sadb_sa_auth; 3096 sav->alg_enc = sa0->sadb_sa_encrypt; 3097 sav->flags = sa0->sadb_sa_flags; 3098 3099 /* replay window */ 3100 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { 3101 sav->replay = (struct secreplay *) 3102 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO); 3103 if (sav->replay == NULL) { 3104 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3105 __func__)); 3106 error = ENOBUFS; 3107 goto fail; 3108 } 3109 if (sa0->sadb_sa_replay != 0) 3110 sav->replay->bitmap = (caddr_t)(sav->replay+1); 3111 sav->replay->wsize = sa0->sadb_sa_replay; 3112 } 3113 } 3114 3115 /* Authentication keys */ 3116 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { 3117 const struct sadb_key *key0; 3118 int len; 3119 3120 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH]; 3121 len = mhp->extlen[SADB_EXT_KEY_AUTH]; 3122 3123 error = 0; 3124 if (len < sizeof(*key0)) { 3125 error = EINVAL; 3126 goto fail; 3127 } 3128 switch (mhp->msg->sadb_msg_satype) { 3129 case SADB_SATYPE_AH: 3130 case SADB_SATYPE_ESP: 3131 case SADB_X_SATYPE_TCPSIGNATURE: 3132 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3133 sav->alg_auth != SADB_X_AALG_NULL) 3134 error = EINVAL; 3135 break; 3136 case SADB_X_SATYPE_IPCOMP: 3137 default: 3138 error = EINVAL; 3139 break; 3140 } 3141 if (error) { 3142 ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n", 3143 __func__)); 3144 goto fail; 3145 } 3146 3147 sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len, 3148 M_IPSEC_MISC); 3149 if (sav->key_auth == NULL ) { 3150 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3151 __func__)); 3152 error = ENOBUFS; 3153 goto fail; 3154 } 3155 } 3156 3157 /* Encryption key */ 3158 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { 3159 const struct sadb_key *key0; 3160 int len; 3161 3162 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT]; 3163 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; 3164 3165 error = 0; 3166 if (len < sizeof(*key0)) { 3167 error = EINVAL; 3168 goto fail; 3169 } 3170 switch (mhp->msg->sadb_msg_satype) { 3171 case SADB_SATYPE_ESP: 3172 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3173 sav->alg_enc != SADB_EALG_NULL) { 3174 error = EINVAL; 3175 break; 3176 } 3177 sav->key_enc = (struct seckey *)key_dup_keymsg(key0, 3178 len, 3179 M_IPSEC_MISC); 3180 if (sav->key_enc == NULL) { 3181 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3182 __func__)); 3183 error = ENOBUFS; 3184 goto fail; 3185 } 3186 break; 3187 case SADB_X_SATYPE_IPCOMP: 3188 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) 3189 error = EINVAL; 3190 sav->key_enc = NULL; /*just in case*/ 3191 break; 3192 case SADB_SATYPE_AH: 3193 case SADB_X_SATYPE_TCPSIGNATURE: 3194 default: 3195 error = EINVAL; 3196 break; 3197 } 3198 if (error) { 3199 ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n", 3200 __func__)); 3201 goto fail; 3202 } 3203 } 3204 3205 /* set iv */ 3206 sav->ivlen = 0; 3207 3208 switch (mhp->msg->sadb_msg_satype) { 3209 case SADB_SATYPE_AH: 3210 error = xform_init(sav, XF_AH); 3211 break; 3212 case SADB_SATYPE_ESP: 3213 error = xform_init(sav, XF_ESP); 3214 break; 3215 case SADB_X_SATYPE_IPCOMP: 3216 error = xform_init(sav, XF_IPCOMP); 3217 break; 3218 case SADB_X_SATYPE_TCPSIGNATURE: 3219 error = xform_init(sav, XF_TCPSIGNATURE); 3220 break; 3221 } 3222 if (error) { 3223 ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n", 3224 __func__, mhp->msg->sadb_msg_satype)); 3225 goto fail; 3226 } 3227 3228 /* reset created */ 3229 sav->created = time_second; 3230 3231 /* make lifetime for CURRENT */ 3232 sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT); 3233 if (sav->lft_c == NULL) { 3234 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3235 error = ENOBUFS; 3236 goto fail; 3237 } 3238 3239 sav->lft_c->allocations = 0; 3240 sav->lft_c->bytes = 0; 3241 sav->lft_c->addtime = time_second; 3242 sav->lft_c->usetime = 0; 3243 3244 /* lifetimes for HARD and SOFT */ 3245 { 3246 const struct sadb_lifetime *lft0; 3247 3248 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 3249 if (lft0 != NULL) { 3250 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { 3251 error = EINVAL; 3252 goto fail; 3253 } 3254 sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3255 if (sav->lft_h == NULL) { 3256 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3257 error = ENOBUFS; 3258 goto fail; 3259 } 3260 /* to be initialize ? */ 3261 } 3262 3263 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT]; 3264 if (lft0 != NULL) { 3265 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { 3266 error = EINVAL; 3267 goto fail; 3268 } 3269 sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3270 if (sav->lft_s == NULL) { 3271 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3272 error = ENOBUFS; 3273 goto fail; 3274 } 3275 /* to be initialize ? */ 3276 } 3277 } 3278 3279 return 0; 3280 3281 fail: 3282 /* initialization */ 3283 key_cleansav(sav); 3284 3285 return error; 3286 } 3287 3288 /* 3289 * validation with a secasvar entry, and set SADB_SATYPE_MATURE. 3290 * OUT: 0: valid 3291 * other: errno 3292 */ 3293 static int 3294 key_mature(struct secasvar *sav) 3295 { 3296 int error; 3297 3298 /* check SPI value */ 3299 switch (sav->sah->saidx.proto) { 3300 case IPPROTO_ESP: 3301 case IPPROTO_AH: 3302 /* 3303 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values 3304 * 1-255 reserved by IANA for future use, 3305 * 0 for implementation specific, local use. 3306 */ 3307 if (ntohl(sav->spi) <= 255) { 3308 ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n", 3309 __func__, (u_int32_t)ntohl(sav->spi))); 3310 return EINVAL; 3311 } 3312 break; 3313 } 3314 3315 /* check satype */ 3316 switch (sav->sah->saidx.proto) { 3317 case IPPROTO_ESP: 3318 /* check flags */ 3319 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) == 3320 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) { 3321 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3322 "given to old-esp.\n", __func__)); 3323 return EINVAL; 3324 } 3325 error = xform_init(sav, XF_ESP); 3326 break; 3327 case IPPROTO_AH: 3328 /* check flags */ 3329 if (sav->flags & SADB_X_EXT_DERIV) { 3330 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3331 "given to AH SA.\n", __func__)); 3332 return EINVAL; 3333 } 3334 if (sav->alg_enc != SADB_EALG_NONE) { 3335 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3336 "mismated.\n", __func__)); 3337 return(EINVAL); 3338 } 3339 error = xform_init(sav, XF_AH); 3340 break; 3341 case IPPROTO_IPCOMP: 3342 if (sav->alg_auth != SADB_AALG_NONE) { 3343 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3344 "mismated.\n", __func__)); 3345 return(EINVAL); 3346 } 3347 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 3348 && ntohl(sav->spi) >= 0x10000) { 3349 ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n", 3350 __func__)); 3351 return(EINVAL); 3352 } 3353 error = xform_init(sav, XF_IPCOMP); 3354 break; 3355 case IPPROTO_TCP: 3356 if (sav->alg_enc != SADB_EALG_NONE) { 3357 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3358 "mismated.\n", __func__)); 3359 return(EINVAL); 3360 } 3361 error = xform_init(sav, XF_TCPSIGNATURE); 3362 break; 3363 default: 3364 ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__)); 3365 error = EPROTONOSUPPORT; 3366 break; 3367 } 3368 if (error == 0) { 3369 SAHTREE_LOCK(); 3370 key_sa_chgstate(sav, SADB_SASTATE_MATURE); 3371 SAHTREE_UNLOCK(); 3372 } 3373 return (error); 3374 } 3375 3376 /* 3377 * subroutine for SADB_GET and SADB_DUMP. 3378 */ 3379 static struct mbuf * 3380 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype, 3381 u_int32_t seq, u_int32_t pid) 3382 { 3383 struct mbuf *result = NULL, *tres = NULL, *m; 3384 int i; 3385 int dumporder[] = { 3386 SADB_EXT_SA, SADB_X_EXT_SA2, 3387 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 3388 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, 3389 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, 3390 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, 3391 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, 3392 #ifdef IPSEC_NAT_T 3393 SADB_X_EXT_NAT_T_TYPE, 3394 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT, 3395 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR, 3396 SADB_X_EXT_NAT_T_FRAG, 3397 #endif 3398 }; 3399 3400 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt); 3401 if (m == NULL) 3402 goto fail; 3403 result = m; 3404 3405 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) { 3406 m = NULL; 3407 switch (dumporder[i]) { 3408 case SADB_EXT_SA: 3409 m = key_setsadbsa(sav); 3410 if (!m) 3411 goto fail; 3412 break; 3413 3414 case SADB_X_EXT_SA2: 3415 m = key_setsadbxsa2(sav->sah->saidx.mode, 3416 sav->replay ? sav->replay->count : 0, 3417 sav->sah->saidx.reqid); 3418 if (!m) 3419 goto fail; 3420 break; 3421 3422 case SADB_EXT_ADDRESS_SRC: 3423 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3424 &sav->sah->saidx.src.sa, 3425 FULLMASK, IPSEC_ULPROTO_ANY); 3426 if (!m) 3427 goto fail; 3428 break; 3429 3430 case SADB_EXT_ADDRESS_DST: 3431 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3432 &sav->sah->saidx.dst.sa, 3433 FULLMASK, IPSEC_ULPROTO_ANY); 3434 if (!m) 3435 goto fail; 3436 break; 3437 3438 case SADB_EXT_KEY_AUTH: 3439 if (!sav->key_auth) 3440 continue; 3441 m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH); 3442 if (!m) 3443 goto fail; 3444 break; 3445 3446 case SADB_EXT_KEY_ENCRYPT: 3447 if (!sav->key_enc) 3448 continue; 3449 m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT); 3450 if (!m) 3451 goto fail; 3452 break; 3453 3454 case SADB_EXT_LIFETIME_CURRENT: 3455 if (!sav->lft_c) 3456 continue; 3457 m = key_setlifetime(sav->lft_c, 3458 SADB_EXT_LIFETIME_CURRENT); 3459 if (!m) 3460 goto fail; 3461 break; 3462 3463 case SADB_EXT_LIFETIME_HARD: 3464 if (!sav->lft_h) 3465 continue; 3466 m = key_setlifetime(sav->lft_h, 3467 SADB_EXT_LIFETIME_HARD); 3468 if (!m) 3469 goto fail; 3470 break; 3471 3472 case SADB_EXT_LIFETIME_SOFT: 3473 if (!sav->lft_s) 3474 continue; 3475 m = key_setlifetime(sav->lft_s, 3476 SADB_EXT_LIFETIME_SOFT); 3477 3478 if (!m) 3479 goto fail; 3480 break; 3481 3482 #ifdef IPSEC_NAT_T 3483 case SADB_X_EXT_NAT_T_TYPE: 3484 m = key_setsadbxtype(sav->natt_type); 3485 if (!m) 3486 goto fail; 3487 break; 3488 3489 case SADB_X_EXT_NAT_T_DPORT: 3490 m = key_setsadbxport( 3491 KEY_PORTFROMSADDR(&sav->sah->saidx.dst), 3492 SADB_X_EXT_NAT_T_DPORT); 3493 if (!m) 3494 goto fail; 3495 break; 3496 3497 case SADB_X_EXT_NAT_T_SPORT: 3498 m = key_setsadbxport( 3499 KEY_PORTFROMSADDR(&sav->sah->saidx.src), 3500 SADB_X_EXT_NAT_T_SPORT); 3501 if (!m) 3502 goto fail; 3503 break; 3504 3505 case SADB_X_EXT_NAT_T_OAI: 3506 case SADB_X_EXT_NAT_T_OAR: 3507 case SADB_X_EXT_NAT_T_FRAG: 3508 /* We do not (yet) support those. */ 3509 continue; 3510 #endif 3511 3512 case SADB_EXT_ADDRESS_PROXY: 3513 case SADB_EXT_IDENTITY_SRC: 3514 case SADB_EXT_IDENTITY_DST: 3515 /* XXX: should we brought from SPD ? */ 3516 case SADB_EXT_SENSITIVITY: 3517 default: 3518 continue; 3519 } 3520 3521 if (!m) 3522 goto fail; 3523 if (tres) 3524 m_cat(m, tres); 3525 tres = m; 3526 3527 } 3528 3529 m_cat(result, tres); 3530 if (result->m_len < sizeof(struct sadb_msg)) { 3531 result = m_pullup(result, sizeof(struct sadb_msg)); 3532 if (result == NULL) 3533 goto fail; 3534 } 3535 3536 result->m_pkthdr.len = 0; 3537 for (m = result; m; m = m->m_next) 3538 result->m_pkthdr.len += m->m_len; 3539 3540 mtod(result, struct sadb_msg *)->sadb_msg_len = 3541 PFKEY_UNIT64(result->m_pkthdr.len); 3542 3543 return result; 3544 3545 fail: 3546 m_freem(result); 3547 m_freem(tres); 3548 return NULL; 3549 } 3550 3551 /* 3552 * set data into sadb_msg. 3553 */ 3554 static struct mbuf * 3555 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq, 3556 pid_t pid, u_int16_t reserved) 3557 { 3558 struct mbuf *m; 3559 struct sadb_msg *p; 3560 int len; 3561 3562 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 3563 if (len > MCLBYTES) 3564 return NULL; 3565 MGETHDR(m, M_DONTWAIT, MT_DATA); 3566 if (m && len > MHLEN) { 3567 MCLGET(m, M_DONTWAIT); 3568 if ((m->m_flags & M_EXT) == 0) { 3569 m_freem(m); 3570 m = NULL; 3571 } 3572 } 3573 if (!m) 3574 return NULL; 3575 m->m_pkthdr.len = m->m_len = len; 3576 m->m_next = NULL; 3577 3578 p = mtod(m, struct sadb_msg *); 3579 3580 bzero(p, len); 3581 p->sadb_msg_version = PF_KEY_V2; 3582 p->sadb_msg_type = type; 3583 p->sadb_msg_errno = 0; 3584 p->sadb_msg_satype = satype; 3585 p->sadb_msg_len = PFKEY_UNIT64(tlen); 3586 p->sadb_msg_reserved = reserved; 3587 p->sadb_msg_seq = seq; 3588 p->sadb_msg_pid = (u_int32_t)pid; 3589 3590 return m; 3591 } 3592 3593 /* 3594 * copy secasvar data into sadb_address. 3595 */ 3596 static struct mbuf * 3597 key_setsadbsa(sav) 3598 struct secasvar *sav; 3599 { 3600 struct mbuf *m; 3601 struct sadb_sa *p; 3602 int len; 3603 3604 len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); 3605 m = key_alloc_mbuf(len); 3606 if (!m || m->m_next) { /*XXX*/ 3607 if (m) 3608 m_freem(m); 3609 return NULL; 3610 } 3611 3612 p = mtod(m, struct sadb_sa *); 3613 3614 bzero(p, len); 3615 p->sadb_sa_len = PFKEY_UNIT64(len); 3616 p->sadb_sa_exttype = SADB_EXT_SA; 3617 p->sadb_sa_spi = sav->spi; 3618 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0); 3619 p->sadb_sa_state = sav->state; 3620 p->sadb_sa_auth = sav->alg_auth; 3621 p->sadb_sa_encrypt = sav->alg_enc; 3622 p->sadb_sa_flags = sav->flags; 3623 3624 return m; 3625 } 3626 3627 /* 3628 * set data into sadb_address. 3629 */ 3630 static struct mbuf * 3631 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, u_int8_t prefixlen, u_int16_t ul_proto) 3632 { 3633 struct mbuf *m; 3634 struct sadb_address *p; 3635 size_t len; 3636 3637 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + 3638 PFKEY_ALIGN8(saddr->sa_len); 3639 m = key_alloc_mbuf(len); 3640 if (!m || m->m_next) { /*XXX*/ 3641 if (m) 3642 m_freem(m); 3643 return NULL; 3644 } 3645 3646 p = mtod(m, struct sadb_address *); 3647 3648 bzero(p, len); 3649 p->sadb_address_len = PFKEY_UNIT64(len); 3650 p->sadb_address_exttype = exttype; 3651 p->sadb_address_proto = ul_proto; 3652 if (prefixlen == FULLMASK) { 3653 switch (saddr->sa_family) { 3654 case AF_INET: 3655 prefixlen = sizeof(struct in_addr) << 3; 3656 break; 3657 case AF_INET6: 3658 prefixlen = sizeof(struct in6_addr) << 3; 3659 break; 3660 default: 3661 ; /*XXX*/ 3662 } 3663 } 3664 p->sadb_address_prefixlen = prefixlen; 3665 p->sadb_address_reserved = 0; 3666 3667 bcopy(saddr, 3668 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)), 3669 saddr->sa_len); 3670 3671 return m; 3672 } 3673 3674 /* 3675 * set data into sadb_x_sa2. 3676 */ 3677 static struct mbuf * 3678 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid) 3679 { 3680 struct mbuf *m; 3681 struct sadb_x_sa2 *p; 3682 size_t len; 3683 3684 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); 3685 m = key_alloc_mbuf(len); 3686 if (!m || m->m_next) { /*XXX*/ 3687 if (m) 3688 m_freem(m); 3689 return NULL; 3690 } 3691 3692 p = mtod(m, struct sadb_x_sa2 *); 3693 3694 bzero(p, len); 3695 p->sadb_x_sa2_len = PFKEY_UNIT64(len); 3696 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 3697 p->sadb_x_sa2_mode = mode; 3698 p->sadb_x_sa2_reserved1 = 0; 3699 p->sadb_x_sa2_reserved2 = 0; 3700 p->sadb_x_sa2_sequence = seq; 3701 p->sadb_x_sa2_reqid = reqid; 3702 3703 return m; 3704 } 3705 3706 #ifdef IPSEC_NAT_T 3707 /* 3708 * Set a type in sadb_x_nat_t_type. 3709 */ 3710 static struct mbuf * 3711 key_setsadbxtype(u_int16_t type) 3712 { 3713 struct mbuf *m; 3714 size_t len; 3715 struct sadb_x_nat_t_type *p; 3716 3717 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type)); 3718 3719 m = key_alloc_mbuf(len); 3720 if (!m || m->m_next) { /*XXX*/ 3721 if (m) 3722 m_freem(m); 3723 return (NULL); 3724 } 3725 3726 p = mtod(m, struct sadb_x_nat_t_type *); 3727 3728 bzero(p, len); 3729 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len); 3730 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; 3731 p->sadb_x_nat_t_type_type = type; 3732 3733 return (m); 3734 } 3735 /* 3736 * Set a port in sadb_x_nat_t_port. 3737 * In contrast to default RFC 2367 behaviour, port is in network byte order. 3738 */ 3739 static struct mbuf * 3740 key_setsadbxport(u_int16_t port, u_int16_t type) 3741 { 3742 struct mbuf *m; 3743 size_t len; 3744 struct sadb_x_nat_t_port *p; 3745 3746 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port)); 3747 3748 m = key_alloc_mbuf(len); 3749 if (!m || m->m_next) { /*XXX*/ 3750 if (m) 3751 m_freem(m); 3752 return (NULL); 3753 } 3754 3755 p = mtod(m, struct sadb_x_nat_t_port *); 3756 3757 bzero(p, len); 3758 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len); 3759 p->sadb_x_nat_t_port_exttype = type; 3760 p->sadb_x_nat_t_port_port = port; 3761 3762 return (m); 3763 } 3764 3765 /* 3766 * Get port from sockaddr. Port is in network byte order. 3767 */ 3768 u_int16_t 3769 key_portfromsaddr(struct sockaddr *sa) 3770 { 3771 3772 switch (sa->sa_family) { 3773 #ifdef INET 3774 case AF_INET: 3775 return ((struct sockaddr_in *)sa)->sin_port; 3776 #endif 3777 #ifdef INET6 3778 case AF_INET6: 3779 return ((struct sockaddr_in6 *)sa)->sin6_port; 3780 #endif 3781 } 3782 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 3783 printf("DP %s unexpected address family %d\n", 3784 __func__, sa->sa_family)); 3785 return (0); 3786 } 3787 #endif /* IPSEC_NAT_T */ 3788 3789 /* 3790 * Set port in struct sockaddr. Port is in network byte order. 3791 */ 3792 static void 3793 key_porttosaddr(struct sockaddr *sa, u_int16_t port) 3794 { 3795 3796 switch (sa->sa_family) { 3797 #ifdef INET 3798 case AF_INET: 3799 ((struct sockaddr_in *)sa)->sin_port = port; 3800 break; 3801 #endif 3802 #ifdef INET6 3803 case AF_INET6: 3804 ((struct sockaddr_in6 *)sa)->sin6_port = port; 3805 break; 3806 #endif 3807 default: 3808 ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n", 3809 __func__, sa->sa_family)); 3810 break; 3811 } 3812 } 3813 3814 /* 3815 * set data into sadb_x_policy 3816 */ 3817 static struct mbuf * 3818 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id) 3819 { 3820 struct mbuf *m; 3821 struct sadb_x_policy *p; 3822 size_t len; 3823 3824 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); 3825 m = key_alloc_mbuf(len); 3826 if (!m || m->m_next) { /*XXX*/ 3827 if (m) 3828 m_freem(m); 3829 return NULL; 3830 } 3831 3832 p = mtod(m, struct sadb_x_policy *); 3833 3834 bzero(p, len); 3835 p->sadb_x_policy_len = PFKEY_UNIT64(len); 3836 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 3837 p->sadb_x_policy_type = type; 3838 p->sadb_x_policy_dir = dir; 3839 p->sadb_x_policy_id = id; 3840 3841 return m; 3842 } 3843 3844 /* %%% utilities */ 3845 /* Take a key message (sadb_key) from the socket and turn it into one 3846 * of the kernel's key structures (seckey). 3847 * 3848 * IN: pointer to the src 3849 * OUT: NULL no more memory 3850 */ 3851 struct seckey * 3852 key_dup_keymsg(const struct sadb_key *src, u_int len, 3853 struct malloc_type *type) 3854 { 3855 struct seckey *dst; 3856 dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT); 3857 if (dst != NULL) { 3858 dst->bits = src->sadb_key_bits; 3859 dst->key_data = (char *)malloc(len, type, M_NOWAIT); 3860 if (dst->key_data != NULL) { 3861 bcopy((const char *)src + sizeof(struct sadb_key), 3862 dst->key_data, len); 3863 } else { 3864 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3865 __func__)); 3866 free(dst, type); 3867 dst = NULL; 3868 } 3869 } else { 3870 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3871 __func__)); 3872 3873 } 3874 return dst; 3875 } 3876 3877 /* Take a lifetime message (sadb_lifetime) passed in on a socket and 3878 * turn it into one of the kernel's lifetime structures (seclifetime). 3879 * 3880 * IN: pointer to the destination, source and malloc type 3881 * OUT: NULL, no more memory 3882 */ 3883 3884 static struct seclifetime * 3885 key_dup_lifemsg(const struct sadb_lifetime *src, 3886 struct malloc_type *type) 3887 { 3888 struct seclifetime *dst = NULL; 3889 3890 dst = (struct seclifetime *)malloc(sizeof(struct seclifetime), 3891 type, M_NOWAIT); 3892 if (dst == NULL) { 3893 /* XXX counter */ 3894 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3895 } else { 3896 dst->allocations = src->sadb_lifetime_allocations; 3897 dst->bytes = src->sadb_lifetime_bytes; 3898 dst->addtime = src->sadb_lifetime_addtime; 3899 dst->usetime = src->sadb_lifetime_usetime; 3900 } 3901 return dst; 3902 } 3903 3904 /* compare my own address 3905 * OUT: 1: true, i.e. my address. 3906 * 0: false 3907 */ 3908 int 3909 key_ismyaddr(sa) 3910 struct sockaddr *sa; 3911 { 3912 #ifdef INET 3913 struct sockaddr_in *sin; 3914 struct in_ifaddr *ia; 3915 #endif 3916 3917 IPSEC_ASSERT(sa != NULL, ("null sockaddr")); 3918 3919 switch (sa->sa_family) { 3920 #ifdef INET 3921 case AF_INET: 3922 sin = (struct sockaddr_in *)sa; 3923 IN_IFADDR_RLOCK(); 3924 for (ia = V_in_ifaddrhead.tqh_first; ia; 3925 ia = ia->ia_link.tqe_next) 3926 { 3927 if (sin->sin_family == ia->ia_addr.sin_family && 3928 sin->sin_len == ia->ia_addr.sin_len && 3929 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr) 3930 { 3931 IN_IFADDR_RUNLOCK(); 3932 return 1; 3933 } 3934 } 3935 IN_IFADDR_RUNLOCK(); 3936 break; 3937 #endif 3938 #ifdef INET6 3939 case AF_INET6: 3940 return key_ismyaddr6((struct sockaddr_in6 *)sa); 3941 #endif 3942 } 3943 3944 return 0; 3945 } 3946 3947 #ifdef INET6 3948 /* 3949 * compare my own address for IPv6. 3950 * 1: ours 3951 * 0: other 3952 * NOTE: derived ip6_input() in KAME. This is necessary to modify more. 3953 */ 3954 #include <netinet6/in6_var.h> 3955 3956 static int 3957 key_ismyaddr6(sin6) 3958 struct sockaddr_in6 *sin6; 3959 { 3960 struct in6_ifaddr *ia; 3961 #if 0 3962 struct in6_multi *in6m; 3963 #endif 3964 3965 IN6_IFADDR_RLOCK(); 3966 TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) { 3967 if (key_sockaddrcmp((struct sockaddr *)&sin6, 3968 (struct sockaddr *)&ia->ia_addr, 0) == 0) { 3969 IN6_IFADDR_RUNLOCK(); 3970 return 1; 3971 } 3972 3973 #if 0 3974 /* 3975 * XXX Multicast 3976 * XXX why do we care about multlicast here while we don't care 3977 * about IPv4 multicast?? 3978 * XXX scope 3979 */ 3980 in6m = NULL; 3981 IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m); 3982 if (in6m) { 3983 IN6_IFADDR_RUNLOCK(); 3984 return 1; 3985 } 3986 #endif 3987 } 3988 IN6_IFADDR_RUNLOCK(); 3989 3990 /* loopback, just for safety */ 3991 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) 3992 return 1; 3993 3994 return 0; 3995 } 3996 #endif /*INET6*/ 3997 3998 /* 3999 * compare two secasindex structure. 4000 * flag can specify to compare 2 saidxes. 4001 * compare two secasindex structure without both mode and reqid. 4002 * don't compare port. 4003 * IN: 4004 * saidx0: source, it can be in SAD. 4005 * saidx1: object. 4006 * OUT: 4007 * 1 : equal 4008 * 0 : not equal 4009 */ 4010 static int 4011 key_cmpsaidx( 4012 const struct secasindex *saidx0, 4013 const struct secasindex *saidx1, 4014 int flag) 4015 { 4016 int chkport = 0; 4017 4018 /* sanity */ 4019 if (saidx0 == NULL && saidx1 == NULL) 4020 return 1; 4021 4022 if (saidx0 == NULL || saidx1 == NULL) 4023 return 0; 4024 4025 if (saidx0->proto != saidx1->proto) 4026 return 0; 4027 4028 if (flag == CMP_EXACTLY) { 4029 if (saidx0->mode != saidx1->mode) 4030 return 0; 4031 if (saidx0->reqid != saidx1->reqid) 4032 return 0; 4033 if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 || 4034 bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0) 4035 return 0; 4036 } else { 4037 4038 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ 4039 if (flag == CMP_MODE_REQID 4040 ||flag == CMP_REQID) { 4041 /* 4042 * If reqid of SPD is non-zero, unique SA is required. 4043 * The result must be of same reqid in this case. 4044 */ 4045 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) 4046 return 0; 4047 } 4048 4049 if (flag == CMP_MODE_REQID) { 4050 if (saidx0->mode != IPSEC_MODE_ANY 4051 && saidx0->mode != saidx1->mode) 4052 return 0; 4053 } 4054 4055 #ifdef IPSEC_NAT_T 4056 /* 4057 * If NAT-T is enabled, check ports for tunnel mode. 4058 * Do not check ports if they are set to zero in the SPD. 4059 * Also do not do it for transport mode, as there is no 4060 * port information available in the SP. 4061 */ 4062 if (saidx1->mode == IPSEC_MODE_TUNNEL && 4063 saidx1->src.sa.sa_family == AF_INET && 4064 saidx1->dst.sa.sa_family == AF_INET && 4065 ((const struct sockaddr_in *)(&saidx1->src))->sin_port && 4066 ((const struct sockaddr_in *)(&saidx1->dst))->sin_port) 4067 chkport = 1; 4068 #endif /* IPSEC_NAT_T */ 4069 4070 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, chkport) != 0) { 4071 return 0; 4072 } 4073 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, chkport) != 0) { 4074 return 0; 4075 } 4076 } 4077 4078 return 1; 4079 } 4080 4081 /* 4082 * compare two secindex structure exactly. 4083 * IN: 4084 * spidx0: source, it is often in SPD. 4085 * spidx1: object, it is often from PFKEY message. 4086 * OUT: 4087 * 1 : equal 4088 * 0 : not equal 4089 */ 4090 static int 4091 key_cmpspidx_exactly( 4092 struct secpolicyindex *spidx0, 4093 struct secpolicyindex *spidx1) 4094 { 4095 /* sanity */ 4096 if (spidx0 == NULL && spidx1 == NULL) 4097 return 1; 4098 4099 if (spidx0 == NULL || spidx1 == NULL) 4100 return 0; 4101 4102 if (spidx0->prefs != spidx1->prefs 4103 || spidx0->prefd != spidx1->prefd 4104 || spidx0->ul_proto != spidx1->ul_proto) 4105 return 0; 4106 4107 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 && 4108 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0; 4109 } 4110 4111 /* 4112 * compare two secindex structure with mask. 4113 * IN: 4114 * spidx0: source, it is often in SPD. 4115 * spidx1: object, it is often from IP header. 4116 * OUT: 4117 * 1 : equal 4118 * 0 : not equal 4119 */ 4120 static int 4121 key_cmpspidx_withmask( 4122 struct secpolicyindex *spidx0, 4123 struct secpolicyindex *spidx1) 4124 { 4125 /* sanity */ 4126 if (spidx0 == NULL && spidx1 == NULL) 4127 return 1; 4128 4129 if (spidx0 == NULL || spidx1 == NULL) 4130 return 0; 4131 4132 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || 4133 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || 4134 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || 4135 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) 4136 return 0; 4137 4138 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ 4139 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY 4140 && spidx0->ul_proto != spidx1->ul_proto) 4141 return 0; 4142 4143 switch (spidx0->src.sa.sa_family) { 4144 case AF_INET: 4145 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY 4146 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) 4147 return 0; 4148 if (!key_bbcmp(&spidx0->src.sin.sin_addr, 4149 &spidx1->src.sin.sin_addr, spidx0->prefs)) 4150 return 0; 4151 break; 4152 case AF_INET6: 4153 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY 4154 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) 4155 return 0; 4156 /* 4157 * scope_id check. if sin6_scope_id is 0, we regard it 4158 * as a wildcard scope, which matches any scope zone ID. 4159 */ 4160 if (spidx0->src.sin6.sin6_scope_id && 4161 spidx1->src.sin6.sin6_scope_id && 4162 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) 4163 return 0; 4164 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr, 4165 &spidx1->src.sin6.sin6_addr, spidx0->prefs)) 4166 return 0; 4167 break; 4168 default: 4169 /* XXX */ 4170 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) 4171 return 0; 4172 break; 4173 } 4174 4175 switch (spidx0->dst.sa.sa_family) { 4176 case AF_INET: 4177 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY 4178 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) 4179 return 0; 4180 if (!key_bbcmp(&spidx0->dst.sin.sin_addr, 4181 &spidx1->dst.sin.sin_addr, spidx0->prefd)) 4182 return 0; 4183 break; 4184 case AF_INET6: 4185 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY 4186 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) 4187 return 0; 4188 /* 4189 * scope_id check. if sin6_scope_id is 0, we regard it 4190 * as a wildcard scope, which matches any scope zone ID. 4191 */ 4192 if (spidx0->dst.sin6.sin6_scope_id && 4193 spidx1->dst.sin6.sin6_scope_id && 4194 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) 4195 return 0; 4196 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr, 4197 &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) 4198 return 0; 4199 break; 4200 default: 4201 /* XXX */ 4202 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) 4203 return 0; 4204 break; 4205 } 4206 4207 /* XXX Do we check other field ? e.g. flowinfo */ 4208 4209 return 1; 4210 } 4211 4212 /* returns 0 on match */ 4213 static int 4214 key_sockaddrcmp( 4215 const struct sockaddr *sa1, 4216 const struct sockaddr *sa2, 4217 int port) 4218 { 4219 #ifdef satosin 4220 #undef satosin 4221 #endif 4222 #define satosin(s) ((const struct sockaddr_in *)s) 4223 #ifdef satosin6 4224 #undef satosin6 4225 #endif 4226 #define satosin6(s) ((const struct sockaddr_in6 *)s) 4227 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) 4228 return 1; 4229 4230 switch (sa1->sa_family) { 4231 case AF_INET: 4232 if (sa1->sa_len != sizeof(struct sockaddr_in)) 4233 return 1; 4234 if (satosin(sa1)->sin_addr.s_addr != 4235 satosin(sa2)->sin_addr.s_addr) { 4236 return 1; 4237 } 4238 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port) 4239 return 1; 4240 break; 4241 case AF_INET6: 4242 if (sa1->sa_len != sizeof(struct sockaddr_in6)) 4243 return 1; /*EINVAL*/ 4244 if (satosin6(sa1)->sin6_scope_id != 4245 satosin6(sa2)->sin6_scope_id) { 4246 return 1; 4247 } 4248 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr, 4249 &satosin6(sa2)->sin6_addr)) { 4250 return 1; 4251 } 4252 if (port && 4253 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) { 4254 return 1; 4255 } 4256 break; 4257 default: 4258 if (bcmp(sa1, sa2, sa1->sa_len) != 0) 4259 return 1; 4260 break; 4261 } 4262 4263 return 0; 4264 #undef satosin 4265 #undef satosin6 4266 } 4267 4268 /* 4269 * compare two buffers with mask. 4270 * IN: 4271 * addr1: source 4272 * addr2: object 4273 * bits: Number of bits to compare 4274 * OUT: 4275 * 1 : equal 4276 * 0 : not equal 4277 */ 4278 static int 4279 key_bbcmp(const void *a1, const void *a2, u_int bits) 4280 { 4281 const unsigned char *p1 = a1; 4282 const unsigned char *p2 = a2; 4283 4284 /* XXX: This could be considerably faster if we compare a word 4285 * at a time, but it is complicated on LSB Endian machines */ 4286 4287 /* Handle null pointers */ 4288 if (p1 == NULL || p2 == NULL) 4289 return (p1 == p2); 4290 4291 while (bits >= 8) { 4292 if (*p1++ != *p2++) 4293 return 0; 4294 bits -= 8; 4295 } 4296 4297 if (bits > 0) { 4298 u_int8_t mask = ~((1<<(8-bits))-1); 4299 if ((*p1 & mask) != (*p2 & mask)) 4300 return 0; 4301 } 4302 return 1; /* Match! */ 4303 } 4304 4305 static void 4306 key_flush_spd(time_t now) 4307 { 4308 static u_int16_t sptree_scangen = 0; 4309 u_int16_t gen = sptree_scangen++; 4310 struct secpolicy *sp; 4311 u_int dir; 4312 4313 /* SPD */ 4314 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 4315 restart: 4316 SPTREE_LOCK(); 4317 LIST_FOREACH(sp, &V_sptree[dir], chain) { 4318 if (sp->scangen == gen) /* previously handled */ 4319 continue; 4320 sp->scangen = gen; 4321 if (sp->state == IPSEC_SPSTATE_DEAD && 4322 sp->refcnt == 1) { 4323 /* 4324 * Ensure that we only decrease refcnt once, 4325 * when we're the last consumer. 4326 * Directly call SP_DELREF/key_delsp instead 4327 * of KEY_FREESP to avoid unlocking/relocking 4328 * SPTREE_LOCK before key_delsp: may refcnt 4329 * be increased again during that time ? 4330 * NB: also clean entries created by 4331 * key_spdflush 4332 */ 4333 SP_DELREF(sp); 4334 key_delsp(sp); 4335 SPTREE_UNLOCK(); 4336 goto restart; 4337 } 4338 if (sp->lifetime == 0 && sp->validtime == 0) 4339 continue; 4340 if ((sp->lifetime && now - sp->created > sp->lifetime) 4341 || (sp->validtime && now - sp->lastused > sp->validtime)) { 4342 sp->state = IPSEC_SPSTATE_DEAD; 4343 SPTREE_UNLOCK(); 4344 key_spdexpire(sp); 4345 goto restart; 4346 } 4347 } 4348 SPTREE_UNLOCK(); 4349 } 4350 } 4351 4352 static void 4353 key_flush_sad(time_t now) 4354 { 4355 struct secashead *sah, *nextsah; 4356 struct secasvar *sav, *nextsav; 4357 4358 /* SAD */ 4359 SAHTREE_LOCK(); 4360 LIST_FOREACH_SAFE(sah, &V_sahtree, chain, nextsah) { 4361 /* if sah has been dead, then delete it and process next sah. */ 4362 if (sah->state == SADB_SASTATE_DEAD) { 4363 key_delsah(sah); 4364 continue; 4365 } 4366 4367 /* if LARVAL entry doesn't become MATURE, delete it. */ 4368 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) { 4369 /* Need to also check refcnt for a larval SA ??? */ 4370 if (now - sav->created > V_key_larval_lifetime) 4371 KEY_FREESAV(&sav); 4372 } 4373 4374 /* 4375 * check MATURE entry to start to send expire message 4376 * whether or not. 4377 */ 4378 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) { 4379 /* we don't need to check. */ 4380 if (sav->lft_s == NULL) 4381 continue; 4382 4383 /* sanity check */ 4384 if (sav->lft_c == NULL) { 4385 ipseclog((LOG_DEBUG,"%s: there is no CURRENT " 4386 "time, why?\n", __func__)); 4387 continue; 4388 } 4389 4390 /* check SOFT lifetime */ 4391 if (sav->lft_s->addtime != 0 && 4392 now - sav->created > sav->lft_s->addtime) { 4393 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4394 /* 4395 * Actually, only send expire message if 4396 * SA has been used, as it was done before, 4397 * but should we always send such message, 4398 * and let IKE daemon decide if it should be 4399 * renegotiated or not ? 4400 * XXX expire message will actually NOT be 4401 * sent if SA is only used after soft 4402 * lifetime has been reached, see below 4403 * (DYING state) 4404 */ 4405 if (sav->lft_c->usetime != 0) 4406 key_expire(sav); 4407 } 4408 /* check SOFT lifetime by bytes */ 4409 /* 4410 * XXX I don't know the way to delete this SA 4411 * when new SA is installed. Caution when it's 4412 * installed too big lifetime by time. 4413 */ 4414 else if (sav->lft_s->bytes != 0 && 4415 sav->lft_s->bytes < sav->lft_c->bytes) { 4416 4417 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4418 /* 4419 * XXX If we keep to send expire 4420 * message in the status of 4421 * DYING. Do remove below code. 4422 */ 4423 key_expire(sav); 4424 } 4425 } 4426 4427 /* check DYING entry to change status to DEAD. */ 4428 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) { 4429 /* we don't need to check. */ 4430 if (sav->lft_h == NULL) 4431 continue; 4432 4433 /* sanity check */ 4434 if (sav->lft_c == NULL) { 4435 ipseclog((LOG_DEBUG, "%s: there is no CURRENT " 4436 "time, why?\n", __func__)); 4437 continue; 4438 } 4439 4440 if (sav->lft_h->addtime != 0 && 4441 now - sav->created > sav->lft_h->addtime) { 4442 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4443 KEY_FREESAV(&sav); 4444 } 4445 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */ 4446 else if (sav->lft_s != NULL 4447 && sav->lft_s->addtime != 0 4448 && now - sav->created > sav->lft_s->addtime) { 4449 /* 4450 * XXX: should be checked to be 4451 * installed the valid SA. 4452 */ 4453 4454 /* 4455 * If there is no SA then sending 4456 * expire message. 4457 */ 4458 key_expire(sav); 4459 } 4460 #endif 4461 /* check HARD lifetime by bytes */ 4462 else if (sav->lft_h->bytes != 0 && 4463 sav->lft_h->bytes < sav->lft_c->bytes) { 4464 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4465 KEY_FREESAV(&sav); 4466 } 4467 } 4468 4469 /* delete entry in DEAD */ 4470 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) { 4471 /* sanity check */ 4472 if (sav->state != SADB_SASTATE_DEAD) { 4473 ipseclog((LOG_DEBUG, "%s: invalid sav->state " 4474 "(queue: %d SA: %d): kill it anyway\n", 4475 __func__, 4476 SADB_SASTATE_DEAD, sav->state)); 4477 } 4478 /* 4479 * do not call key_freesav() here. 4480 * sav should already be freed, and sav->refcnt 4481 * shows other references to sav 4482 * (such as from SPD). 4483 */ 4484 } 4485 } 4486 SAHTREE_UNLOCK(); 4487 } 4488 4489 static void 4490 key_flush_acq(time_t now) 4491 { 4492 struct secacq *acq, *nextacq; 4493 4494 /* ACQ tree */ 4495 ACQ_LOCK(); 4496 for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) { 4497 nextacq = LIST_NEXT(acq, chain); 4498 if (now - acq->created > V_key_blockacq_lifetime 4499 && __LIST_CHAINED(acq)) { 4500 LIST_REMOVE(acq, chain); 4501 free(acq, M_IPSEC_SAQ); 4502 } 4503 } 4504 ACQ_UNLOCK(); 4505 } 4506 4507 static void 4508 key_flush_spacq(time_t now) 4509 { 4510 struct secspacq *acq, *nextacq; 4511 4512 /* SP ACQ tree */ 4513 SPACQ_LOCK(); 4514 for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) { 4515 nextacq = LIST_NEXT(acq, chain); 4516 if (now - acq->created > V_key_blockacq_lifetime 4517 && __LIST_CHAINED(acq)) { 4518 LIST_REMOVE(acq, chain); 4519 free(acq, M_IPSEC_SAQ); 4520 } 4521 } 4522 SPACQ_UNLOCK(); 4523 } 4524 4525 /* 4526 * time handler. 4527 * scanning SPD and SAD to check status for each entries, 4528 * and do to remove or to expire. 4529 * XXX: year 2038 problem may remain. 4530 */ 4531 void 4532 key_timehandler(void) 4533 { 4534 VNET_ITERATOR_DECL(vnet_iter); 4535 time_t now = time_second; 4536 4537 VNET_LIST_RLOCK_NOSLEEP(); 4538 VNET_FOREACH(vnet_iter) { 4539 CURVNET_SET(vnet_iter); 4540 key_flush_spd(now); 4541 key_flush_sad(now); 4542 key_flush_acq(now); 4543 key_flush_spacq(now); 4544 CURVNET_RESTORE(); 4545 } 4546 VNET_LIST_RUNLOCK_NOSLEEP(); 4547 4548 #ifndef IPSEC_DEBUG2 4549 /* do exchange to tick time !! */ 4550 (void)timeout((void *)key_timehandler, (void *)0, hz); 4551 #endif /* IPSEC_DEBUG2 */ 4552 } 4553 4554 u_long 4555 key_random() 4556 { 4557 u_long value; 4558 4559 key_randomfill(&value, sizeof(value)); 4560 return value; 4561 } 4562 4563 void 4564 key_randomfill(p, l) 4565 void *p; 4566 size_t l; 4567 { 4568 size_t n; 4569 u_long v; 4570 static int warn = 1; 4571 4572 n = 0; 4573 n = (size_t)read_random(p, (u_int)l); 4574 /* last resort */ 4575 while (n < l) { 4576 v = random(); 4577 bcopy(&v, (u_int8_t *)p + n, 4578 l - n < sizeof(v) ? l - n : sizeof(v)); 4579 n += sizeof(v); 4580 4581 if (warn) { 4582 printf("WARNING: pseudo-random number generator " 4583 "used for IPsec processing\n"); 4584 warn = 0; 4585 } 4586 } 4587 } 4588 4589 /* 4590 * map SADB_SATYPE_* to IPPROTO_*. 4591 * if satype == SADB_SATYPE then satype is mapped to ~0. 4592 * OUT: 4593 * 0: invalid satype. 4594 */ 4595 static u_int16_t 4596 key_satype2proto(u_int8_t satype) 4597 { 4598 switch (satype) { 4599 case SADB_SATYPE_UNSPEC: 4600 return IPSEC_PROTO_ANY; 4601 case SADB_SATYPE_AH: 4602 return IPPROTO_AH; 4603 case SADB_SATYPE_ESP: 4604 return IPPROTO_ESP; 4605 case SADB_X_SATYPE_IPCOMP: 4606 return IPPROTO_IPCOMP; 4607 case SADB_X_SATYPE_TCPSIGNATURE: 4608 return IPPROTO_TCP; 4609 default: 4610 return 0; 4611 } 4612 /* NOTREACHED */ 4613 } 4614 4615 /* 4616 * map IPPROTO_* to SADB_SATYPE_* 4617 * OUT: 4618 * 0: invalid protocol type. 4619 */ 4620 static u_int8_t 4621 key_proto2satype(u_int16_t proto) 4622 { 4623 switch (proto) { 4624 case IPPROTO_AH: 4625 return SADB_SATYPE_AH; 4626 case IPPROTO_ESP: 4627 return SADB_SATYPE_ESP; 4628 case IPPROTO_IPCOMP: 4629 return SADB_X_SATYPE_IPCOMP; 4630 case IPPROTO_TCP: 4631 return SADB_X_SATYPE_TCPSIGNATURE; 4632 default: 4633 return 0; 4634 } 4635 /* NOTREACHED */ 4636 } 4637 4638 /* %%% PF_KEY */ 4639 /* 4640 * SADB_GETSPI processing is to receive 4641 * <base, (SA2), src address, dst address, (SPI range)> 4642 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND 4643 * tree with the status of LARVAL, and send 4644 * <base, SA(*), address(SD)> 4645 * to the IKMPd. 4646 * 4647 * IN: mhp: pointer to the pointer to each header. 4648 * OUT: NULL if fail. 4649 * other if success, return pointer to the message to send. 4650 */ 4651 static int 4652 key_getspi(so, m, mhp) 4653 struct socket *so; 4654 struct mbuf *m; 4655 const struct sadb_msghdr *mhp; 4656 { 4657 struct sadb_address *src0, *dst0; 4658 struct secasindex saidx; 4659 struct secashead *newsah; 4660 struct secasvar *newsav; 4661 u_int8_t proto; 4662 u_int32_t spi; 4663 u_int8_t mode; 4664 u_int32_t reqid; 4665 int error; 4666 4667 IPSEC_ASSERT(so != NULL, ("null socket")); 4668 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4669 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4670 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4671 4672 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4673 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 4674 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4675 __func__)); 4676 return key_senderror(so, m, EINVAL); 4677 } 4678 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4679 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4680 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4681 __func__)); 4682 return key_senderror(so, m, EINVAL); 4683 } 4684 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4685 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4686 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4687 } else { 4688 mode = IPSEC_MODE_ANY; 4689 reqid = 0; 4690 } 4691 4692 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4693 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4694 4695 /* map satype to proto */ 4696 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4697 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4698 __func__)); 4699 return key_senderror(so, m, EINVAL); 4700 } 4701 4702 /* 4703 * Make sure the port numbers are zero. 4704 * In case of NAT-T we will update them later if needed. 4705 */ 4706 switch (((struct sockaddr *)(src0 + 1))->sa_family) { 4707 case AF_INET: 4708 if (((struct sockaddr *)(src0 + 1))->sa_len != 4709 sizeof(struct sockaddr_in)) 4710 return key_senderror(so, m, EINVAL); 4711 ((struct sockaddr_in *)(src0 + 1))->sin_port = 0; 4712 break; 4713 case AF_INET6: 4714 if (((struct sockaddr *)(src0 + 1))->sa_len != 4715 sizeof(struct sockaddr_in6)) 4716 return key_senderror(so, m, EINVAL); 4717 ((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0; 4718 break; 4719 default: 4720 ; /*???*/ 4721 } 4722 switch (((struct sockaddr *)(dst0 + 1))->sa_family) { 4723 case AF_INET: 4724 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4725 sizeof(struct sockaddr_in)) 4726 return key_senderror(so, m, EINVAL); 4727 ((struct sockaddr_in *)(dst0 + 1))->sin_port = 0; 4728 break; 4729 case AF_INET6: 4730 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4731 sizeof(struct sockaddr_in6)) 4732 return key_senderror(so, m, EINVAL); 4733 ((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0; 4734 break; 4735 default: 4736 ; /*???*/ 4737 } 4738 4739 /* XXX boundary check against sa_len */ 4740 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4741 4742 #ifdef IPSEC_NAT_T 4743 /* 4744 * Handle NAT-T info if present. 4745 * We made sure the port numbers are zero above, so we do 4746 * not have to worry in case we do not update them. 4747 */ 4748 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) 4749 ipseclog((LOG_DEBUG, "%s: NAT-T OAi present\n", __func__)); 4750 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) 4751 ipseclog((LOG_DEBUG, "%s: NAT-T OAr present\n", __func__)); 4752 4753 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 4754 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 4755 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 4756 struct sadb_x_nat_t_type *type; 4757 struct sadb_x_nat_t_port *sport, *dport; 4758 4759 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 4760 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 4761 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 4762 ipseclog((LOG_DEBUG, "%s: invalid nat-t message " 4763 "passed.\n", __func__)); 4764 return key_senderror(so, m, EINVAL); 4765 } 4766 4767 sport = (struct sadb_x_nat_t_port *) 4768 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 4769 dport = (struct sadb_x_nat_t_port *) 4770 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 4771 4772 if (sport) 4773 KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port); 4774 if (dport) 4775 KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port); 4776 } 4777 #endif 4778 4779 /* SPI allocation */ 4780 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE], 4781 &saidx); 4782 if (spi == 0) 4783 return key_senderror(so, m, EINVAL); 4784 4785 /* get a SA index */ 4786 if ((newsah = key_getsah(&saidx)) == NULL) { 4787 /* create a new SA index */ 4788 if ((newsah = key_newsah(&saidx)) == NULL) { 4789 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 4790 return key_senderror(so, m, ENOBUFS); 4791 } 4792 } 4793 4794 /* get a new SA */ 4795 /* XXX rewrite */ 4796 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 4797 if (newsav == NULL) { 4798 /* XXX don't free new SA index allocated in above. */ 4799 return key_senderror(so, m, error); 4800 } 4801 4802 /* set spi */ 4803 newsav->spi = htonl(spi); 4804 4805 /* delete the entry in acqtree */ 4806 if (mhp->msg->sadb_msg_seq != 0) { 4807 struct secacq *acq; 4808 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) { 4809 /* reset counter in order to deletion by timehandler. */ 4810 acq->created = time_second; 4811 acq->count = 0; 4812 } 4813 } 4814 4815 { 4816 struct mbuf *n, *nn; 4817 struct sadb_sa *m_sa; 4818 struct sadb_msg *newmsg; 4819 int off, len; 4820 4821 /* create new sadb_msg to reply. */ 4822 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 4823 PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4824 4825 MGETHDR(n, M_DONTWAIT, MT_DATA); 4826 if (len > MHLEN) { 4827 MCLGET(n, M_DONTWAIT); 4828 if ((n->m_flags & M_EXT) == 0) { 4829 m_freem(n); 4830 n = NULL; 4831 } 4832 } 4833 if (!n) 4834 return key_senderror(so, m, ENOBUFS); 4835 4836 n->m_len = len; 4837 n->m_next = NULL; 4838 off = 0; 4839 4840 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 4841 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 4842 4843 m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off); 4844 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); 4845 m_sa->sadb_sa_exttype = SADB_EXT_SA; 4846 m_sa->sadb_sa_spi = htonl(spi); 4847 off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4848 4849 IPSEC_ASSERT(off == len, 4850 ("length inconsistency (off %u len %u)", off, len)); 4851 4852 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, 4853 SADB_EXT_ADDRESS_DST); 4854 if (!n->m_next) { 4855 m_freem(n); 4856 return key_senderror(so, m, ENOBUFS); 4857 } 4858 4859 if (n->m_len < sizeof(struct sadb_msg)) { 4860 n = m_pullup(n, sizeof(struct sadb_msg)); 4861 if (n == NULL) 4862 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 4863 } 4864 4865 n->m_pkthdr.len = 0; 4866 for (nn = n; nn; nn = nn->m_next) 4867 n->m_pkthdr.len += nn->m_len; 4868 4869 newmsg = mtod(n, struct sadb_msg *); 4870 newmsg->sadb_msg_seq = newsav->seq; 4871 newmsg->sadb_msg_errno = 0; 4872 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 4873 4874 m_freem(m); 4875 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 4876 } 4877 } 4878 4879 /* 4880 * allocating new SPI 4881 * called by key_getspi(). 4882 * OUT: 4883 * 0: failure. 4884 * others: success. 4885 */ 4886 static u_int32_t 4887 key_do_getnewspi(spirange, saidx) 4888 struct sadb_spirange *spirange; 4889 struct secasindex *saidx; 4890 { 4891 u_int32_t newspi; 4892 u_int32_t min, max; 4893 int count = V_key_spi_trycnt; 4894 4895 /* set spi range to allocate */ 4896 if (spirange != NULL) { 4897 min = spirange->sadb_spirange_min; 4898 max = spirange->sadb_spirange_max; 4899 } else { 4900 min = V_key_spi_minval; 4901 max = V_key_spi_maxval; 4902 } 4903 /* IPCOMP needs 2-byte SPI */ 4904 if (saidx->proto == IPPROTO_IPCOMP) { 4905 u_int32_t t; 4906 if (min >= 0x10000) 4907 min = 0xffff; 4908 if (max >= 0x10000) 4909 max = 0xffff; 4910 if (min > max) { 4911 t = min; min = max; max = t; 4912 } 4913 } 4914 4915 if (min == max) { 4916 if (key_checkspidup(saidx, min) != NULL) { 4917 ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n", 4918 __func__, min)); 4919 return 0; 4920 } 4921 4922 count--; /* taking one cost. */ 4923 newspi = min; 4924 4925 } else { 4926 4927 /* init SPI */ 4928 newspi = 0; 4929 4930 /* when requesting to allocate spi ranged */ 4931 while (count--) { 4932 /* generate pseudo-random SPI value ranged. */ 4933 newspi = min + (key_random() % (max - min + 1)); 4934 4935 if (key_checkspidup(saidx, newspi) == NULL) 4936 break; 4937 } 4938 4939 if (count == 0 || newspi == 0) { 4940 ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n", 4941 __func__)); 4942 return 0; 4943 } 4944 } 4945 4946 /* statistics */ 4947 keystat.getspi_count = 4948 (keystat.getspi_count + V_key_spi_trycnt - count) / 2; 4949 4950 return newspi; 4951 } 4952 4953 /* 4954 * SADB_UPDATE processing 4955 * receive 4956 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4957 * key(AE), (identity(SD),) (sensitivity)> 4958 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. 4959 * and send 4960 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4961 * (identity(SD),) (sensitivity)> 4962 * to the ikmpd. 4963 * 4964 * m will always be freed. 4965 */ 4966 static int 4967 key_update(so, m, mhp) 4968 struct socket *so; 4969 struct mbuf *m; 4970 const struct sadb_msghdr *mhp; 4971 { 4972 struct sadb_sa *sa0; 4973 struct sadb_address *src0, *dst0; 4974 #ifdef IPSEC_NAT_T 4975 struct sadb_x_nat_t_type *type; 4976 struct sadb_x_nat_t_port *sport, *dport; 4977 struct sadb_address *iaddr, *raddr; 4978 struct sadb_x_nat_t_frag *frag; 4979 #endif 4980 struct secasindex saidx; 4981 struct secashead *sah; 4982 struct secasvar *sav; 4983 u_int16_t proto; 4984 u_int8_t mode; 4985 u_int32_t reqid; 4986 int error; 4987 4988 IPSEC_ASSERT(so != NULL, ("null socket")); 4989 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4990 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4991 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4992 4993 /* map satype to proto */ 4994 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4995 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4996 __func__)); 4997 return key_senderror(so, m, EINVAL); 4998 } 4999 5000 if (mhp->ext[SADB_EXT_SA] == NULL || 5001 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5002 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5003 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5004 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5005 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5006 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5007 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5008 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5009 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5010 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5011 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5012 __func__)); 5013 return key_senderror(so, m, EINVAL); 5014 } 5015 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5016 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5017 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5018 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5019 __func__)); 5020 return key_senderror(so, m, EINVAL); 5021 } 5022 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5023 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 5024 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 5025 } else { 5026 mode = IPSEC_MODE_ANY; 5027 reqid = 0; 5028 } 5029 /* XXX boundary checking for other extensions */ 5030 5031 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5032 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5033 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5034 5035 /* XXX boundary check against sa_len */ 5036 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 5037 5038 /* 5039 * Make sure the port numbers are zero. 5040 * In case of NAT-T we will update them later if needed. 5041 */ 5042 KEY_PORTTOSADDR(&saidx.src, 0); 5043 KEY_PORTTOSADDR(&saidx.dst, 0); 5044 5045 #ifdef IPSEC_NAT_T 5046 /* 5047 * Handle NAT-T info if present. 5048 */ 5049 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 5050 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5051 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5052 5053 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 5054 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5055 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5056 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5057 __func__)); 5058 return key_senderror(so, m, EINVAL); 5059 } 5060 5061 type = (struct sadb_x_nat_t_type *) 5062 mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5063 sport = (struct sadb_x_nat_t_port *) 5064 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5065 dport = (struct sadb_x_nat_t_port *) 5066 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5067 } else { 5068 type = 0; 5069 sport = dport = 0; 5070 } 5071 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL && 5072 mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { 5073 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) || 5074 mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { 5075 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5076 __func__)); 5077 return key_senderror(so, m, EINVAL); 5078 } 5079 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5080 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5081 ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__)); 5082 } else { 5083 iaddr = raddr = NULL; 5084 } 5085 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { 5086 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { 5087 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5088 __func__)); 5089 return key_senderror(so, m, EINVAL); 5090 } 5091 frag = (struct sadb_x_nat_t_frag *) 5092 mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 5093 } else { 5094 frag = 0; 5095 } 5096 #endif 5097 5098 /* get a SA header */ 5099 if ((sah = key_getsah(&saidx)) == NULL) { 5100 ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__)); 5101 return key_senderror(so, m, ENOENT); 5102 } 5103 5104 /* set spidx if there */ 5105 /* XXX rewrite */ 5106 error = key_setident(sah, m, mhp); 5107 if (error) 5108 return key_senderror(so, m, error); 5109 5110 /* find a SA with sequence number. */ 5111 #ifdef IPSEC_DOSEQCHECK 5112 if (mhp->msg->sadb_msg_seq != 0 5113 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) { 5114 ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u " 5115 "exists.\n", __func__, mhp->msg->sadb_msg_seq)); 5116 return key_senderror(so, m, ENOENT); 5117 } 5118 #else 5119 SAHTREE_LOCK(); 5120 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5121 SAHTREE_UNLOCK(); 5122 if (sav == NULL) { 5123 ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n", 5124 __func__, (u_int32_t)ntohl(sa0->sadb_sa_spi))); 5125 return key_senderror(so, m, EINVAL); 5126 } 5127 #endif 5128 5129 /* validity check */ 5130 if (sav->sah->saidx.proto != proto) { 5131 ipseclog((LOG_DEBUG, "%s: protocol mismatched " 5132 "(DB=%u param=%u)\n", __func__, 5133 sav->sah->saidx.proto, proto)); 5134 return key_senderror(so, m, EINVAL); 5135 } 5136 #ifdef IPSEC_DOSEQCHECK 5137 if (sav->spi != sa0->sadb_sa_spi) { 5138 ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n", 5139 __func__, 5140 (u_int32_t)ntohl(sav->spi), 5141 (u_int32_t)ntohl(sa0->sadb_sa_spi))); 5142 return key_senderror(so, m, EINVAL); 5143 } 5144 #endif 5145 if (sav->pid != mhp->msg->sadb_msg_pid) { 5146 ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n", 5147 __func__, sav->pid, mhp->msg->sadb_msg_pid)); 5148 return key_senderror(so, m, EINVAL); 5149 } 5150 5151 /* copy sav values */ 5152 error = key_setsaval(sav, m, mhp); 5153 if (error) { 5154 KEY_FREESAV(&sav); 5155 return key_senderror(so, m, error); 5156 } 5157 5158 /* check SA values to be mature. */ 5159 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) { 5160 KEY_FREESAV(&sav); 5161 return key_senderror(so, m, 0); 5162 } 5163 5164 #ifdef IPSEC_NAT_T 5165 /* 5166 * Handle more NAT-T info if present, 5167 * now that we have a sav to fill. 5168 */ 5169 if (type) 5170 sav->natt_type = type->sadb_x_nat_t_type_type; 5171 5172 if (sport) 5173 KEY_PORTTOSADDR(&sav->sah->saidx.src, 5174 sport->sadb_x_nat_t_port_port); 5175 if (dport) 5176 KEY_PORTTOSADDR(&sav->sah->saidx.dst, 5177 dport->sadb_x_nat_t_port_port); 5178 5179 #if 0 5180 /* 5181 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0. 5182 * We should actually check for a minimum MTU here, if we 5183 * want to support it in ip_output. 5184 */ 5185 if (frag) 5186 sav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen; 5187 #endif 5188 #endif 5189 5190 { 5191 struct mbuf *n; 5192 5193 /* set msg buf from mhp */ 5194 n = key_getmsgbuf_x1(m, mhp); 5195 if (n == NULL) { 5196 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5197 return key_senderror(so, m, ENOBUFS); 5198 } 5199 5200 m_freem(m); 5201 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5202 } 5203 } 5204 5205 /* 5206 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL. 5207 * only called by key_update(). 5208 * OUT: 5209 * NULL : not found 5210 * others : found, pointer to a SA. 5211 */ 5212 #ifdef IPSEC_DOSEQCHECK 5213 static struct secasvar * 5214 key_getsavbyseq(sah, seq) 5215 struct secashead *sah; 5216 u_int32_t seq; 5217 { 5218 struct secasvar *sav; 5219 u_int state; 5220 5221 state = SADB_SASTATE_LARVAL; 5222 5223 /* search SAD with sequence number ? */ 5224 LIST_FOREACH(sav, &sah->savtree[state], chain) { 5225 5226 KEY_CHKSASTATE(state, sav->state, __func__); 5227 5228 if (sav->seq == seq) { 5229 sa_addref(sav); 5230 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 5231 printf("DP %s cause refcnt++:%d SA:%p\n", 5232 __func__, sav->refcnt, sav)); 5233 return sav; 5234 } 5235 } 5236 5237 return NULL; 5238 } 5239 #endif 5240 5241 /* 5242 * SADB_ADD processing 5243 * add an entry to SA database, when received 5244 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5245 * key(AE), (identity(SD),) (sensitivity)> 5246 * from the ikmpd, 5247 * and send 5248 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5249 * (identity(SD),) (sensitivity)> 5250 * to the ikmpd. 5251 * 5252 * IGNORE identity and sensitivity messages. 5253 * 5254 * m will always be freed. 5255 */ 5256 static int 5257 key_add(so, m, mhp) 5258 struct socket *so; 5259 struct mbuf *m; 5260 const struct sadb_msghdr *mhp; 5261 { 5262 struct sadb_sa *sa0; 5263 struct sadb_address *src0, *dst0; 5264 #ifdef IPSEC_NAT_T 5265 struct sadb_x_nat_t_type *type; 5266 struct sadb_address *iaddr, *raddr; 5267 struct sadb_x_nat_t_frag *frag; 5268 #endif 5269 struct secasindex saidx; 5270 struct secashead *newsah; 5271 struct secasvar *newsav; 5272 u_int16_t proto; 5273 u_int8_t mode; 5274 u_int32_t reqid; 5275 int error; 5276 5277 IPSEC_ASSERT(so != NULL, ("null socket")); 5278 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5279 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5280 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5281 5282 /* map satype to proto */ 5283 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5284 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5285 __func__)); 5286 return key_senderror(so, m, EINVAL); 5287 } 5288 5289 if (mhp->ext[SADB_EXT_SA] == NULL || 5290 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5291 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5292 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5293 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5294 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5295 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5296 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5297 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5298 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5299 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5300 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5301 __func__)); 5302 return key_senderror(so, m, EINVAL); 5303 } 5304 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5305 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5306 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5307 /* XXX need more */ 5308 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5309 __func__)); 5310 return key_senderror(so, m, EINVAL); 5311 } 5312 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5313 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 5314 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 5315 } else { 5316 mode = IPSEC_MODE_ANY; 5317 reqid = 0; 5318 } 5319 5320 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5321 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5322 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5323 5324 /* XXX boundary check against sa_len */ 5325 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 5326 5327 /* 5328 * Make sure the port numbers are zero. 5329 * In case of NAT-T we will update them later if needed. 5330 */ 5331 KEY_PORTTOSADDR(&saidx.src, 0); 5332 KEY_PORTTOSADDR(&saidx.dst, 0); 5333 5334 #ifdef IPSEC_NAT_T 5335 /* 5336 * Handle NAT-T info if present. 5337 */ 5338 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 5339 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5340 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5341 struct sadb_x_nat_t_port *sport, *dport; 5342 5343 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 5344 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5345 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5346 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5347 __func__)); 5348 return key_senderror(so, m, EINVAL); 5349 } 5350 5351 type = (struct sadb_x_nat_t_type *) 5352 mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5353 sport = (struct sadb_x_nat_t_port *) 5354 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5355 dport = (struct sadb_x_nat_t_port *) 5356 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5357 5358 if (sport) 5359 KEY_PORTTOSADDR(&saidx.src, 5360 sport->sadb_x_nat_t_port_port); 5361 if (dport) 5362 KEY_PORTTOSADDR(&saidx.dst, 5363 dport->sadb_x_nat_t_port_port); 5364 } else { 5365 type = 0; 5366 } 5367 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL && 5368 mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { 5369 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) || 5370 mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { 5371 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5372 __func__)); 5373 return key_senderror(so, m, EINVAL); 5374 } 5375 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5376 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5377 ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__)); 5378 } else { 5379 iaddr = raddr = NULL; 5380 } 5381 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { 5382 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { 5383 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5384 __func__)); 5385 return key_senderror(so, m, EINVAL); 5386 } 5387 frag = (struct sadb_x_nat_t_frag *) 5388 mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 5389 } else { 5390 frag = 0; 5391 } 5392 #endif 5393 5394 /* get a SA header */ 5395 if ((newsah = key_getsah(&saidx)) == NULL) { 5396 /* create a new SA header */ 5397 if ((newsah = key_newsah(&saidx)) == NULL) { 5398 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 5399 return key_senderror(so, m, ENOBUFS); 5400 } 5401 } 5402 5403 /* set spidx if there */ 5404 /* XXX rewrite */ 5405 error = key_setident(newsah, m, mhp); 5406 if (error) { 5407 return key_senderror(so, m, error); 5408 } 5409 5410 /* create new SA entry. */ 5411 /* We can create new SA only if SPI is differenct. */ 5412 SAHTREE_LOCK(); 5413 newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi); 5414 SAHTREE_UNLOCK(); 5415 if (newsav != NULL) { 5416 ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__)); 5417 return key_senderror(so, m, EEXIST); 5418 } 5419 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 5420 if (newsav == NULL) { 5421 return key_senderror(so, m, error); 5422 } 5423 5424 /* check SA values to be mature. */ 5425 if ((error = key_mature(newsav)) != 0) { 5426 KEY_FREESAV(&newsav); 5427 return key_senderror(so, m, error); 5428 } 5429 5430 #ifdef IPSEC_NAT_T 5431 /* 5432 * Handle more NAT-T info if present, 5433 * now that we have a sav to fill. 5434 */ 5435 if (type) 5436 newsav->natt_type = type->sadb_x_nat_t_type_type; 5437 5438 #if 0 5439 /* 5440 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0. 5441 * We should actually check for a minimum MTU here, if we 5442 * want to support it in ip_output. 5443 */ 5444 if (frag) 5445 newsav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen; 5446 #endif 5447 #endif 5448 5449 /* 5450 * don't call key_freesav() here, as we would like to keep the SA 5451 * in the database on success. 5452 */ 5453 5454 { 5455 struct mbuf *n; 5456 5457 /* set msg buf from mhp */ 5458 n = key_getmsgbuf_x1(m, mhp); 5459 if (n == NULL) { 5460 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5461 return key_senderror(so, m, ENOBUFS); 5462 } 5463 5464 m_freem(m); 5465 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5466 } 5467 } 5468 5469 /* m is retained */ 5470 static int 5471 key_setident(sah, m, mhp) 5472 struct secashead *sah; 5473 struct mbuf *m; 5474 const struct sadb_msghdr *mhp; 5475 { 5476 const struct sadb_ident *idsrc, *iddst; 5477 int idsrclen, iddstlen; 5478 5479 IPSEC_ASSERT(sah != NULL, ("null secashead")); 5480 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5481 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5482 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5483 5484 /* don't make buffer if not there */ 5485 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL && 5486 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5487 sah->idents = NULL; 5488 sah->identd = NULL; 5489 return 0; 5490 } 5491 5492 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL || 5493 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5494 ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__)); 5495 return EINVAL; 5496 } 5497 5498 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC]; 5499 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST]; 5500 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC]; 5501 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST]; 5502 5503 /* validity check */ 5504 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { 5505 ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__)); 5506 return EINVAL; 5507 } 5508 5509 switch (idsrc->sadb_ident_type) { 5510 case SADB_IDENTTYPE_PREFIX: 5511 case SADB_IDENTTYPE_FQDN: 5512 case SADB_IDENTTYPE_USERFQDN: 5513 default: 5514 /* XXX do nothing */ 5515 sah->idents = NULL; 5516 sah->identd = NULL; 5517 return 0; 5518 } 5519 5520 /* make structure */ 5521 sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5522 if (sah->idents == NULL) { 5523 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5524 return ENOBUFS; 5525 } 5526 sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5527 if (sah->identd == NULL) { 5528 free(sah->idents, M_IPSEC_MISC); 5529 sah->idents = NULL; 5530 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5531 return ENOBUFS; 5532 } 5533 sah->idents->type = idsrc->sadb_ident_type; 5534 sah->idents->id = idsrc->sadb_ident_id; 5535 5536 sah->identd->type = iddst->sadb_ident_type; 5537 sah->identd->id = iddst->sadb_ident_id; 5538 5539 return 0; 5540 } 5541 5542 /* 5543 * m will not be freed on return. 5544 * it is caller's responsibility to free the result. 5545 */ 5546 static struct mbuf * 5547 key_getmsgbuf_x1(m, mhp) 5548 struct mbuf *m; 5549 const struct sadb_msghdr *mhp; 5550 { 5551 struct mbuf *n; 5552 5553 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5554 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5555 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5556 5557 /* create new sadb_msg to reply. */ 5558 n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED, 5559 SADB_EXT_SA, SADB_X_EXT_SA2, 5560 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, 5561 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 5562 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST); 5563 if (!n) 5564 return NULL; 5565 5566 if (n->m_len < sizeof(struct sadb_msg)) { 5567 n = m_pullup(n, sizeof(struct sadb_msg)); 5568 if (n == NULL) 5569 return NULL; 5570 } 5571 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; 5572 mtod(n, struct sadb_msg *)->sadb_msg_len = 5573 PFKEY_UNIT64(n->m_pkthdr.len); 5574 5575 return n; 5576 } 5577 5578 static int key_delete_all __P((struct socket *, struct mbuf *, 5579 const struct sadb_msghdr *, u_int16_t)); 5580 5581 /* 5582 * SADB_DELETE processing 5583 * receive 5584 * <base, SA(*), address(SD)> 5585 * from the ikmpd, and set SADB_SASTATE_DEAD, 5586 * and send, 5587 * <base, SA(*), address(SD)> 5588 * to the ikmpd. 5589 * 5590 * m will always be freed. 5591 */ 5592 static int 5593 key_delete(so, m, mhp) 5594 struct socket *so; 5595 struct mbuf *m; 5596 const struct sadb_msghdr *mhp; 5597 { 5598 struct sadb_sa *sa0; 5599 struct sadb_address *src0, *dst0; 5600 struct secasindex saidx; 5601 struct secashead *sah; 5602 struct secasvar *sav = NULL; 5603 u_int16_t proto; 5604 5605 IPSEC_ASSERT(so != NULL, ("null socket")); 5606 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5607 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5608 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5609 5610 /* map satype to proto */ 5611 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5612 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5613 __func__)); 5614 return key_senderror(so, m, EINVAL); 5615 } 5616 5617 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5618 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5619 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5620 __func__)); 5621 return key_senderror(so, m, EINVAL); 5622 } 5623 5624 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5625 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5626 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5627 __func__)); 5628 return key_senderror(so, m, EINVAL); 5629 } 5630 5631 if (mhp->ext[SADB_EXT_SA] == NULL) { 5632 /* 5633 * Caller wants us to delete all non-LARVAL SAs 5634 * that match the src/dst. This is used during 5635 * IKE INITIAL-CONTACT. 5636 */ 5637 ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__)); 5638 return key_delete_all(so, m, mhp, proto); 5639 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { 5640 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5641 __func__)); 5642 return key_senderror(so, m, EINVAL); 5643 } 5644 5645 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5646 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5647 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5648 5649 /* XXX boundary check against sa_len */ 5650 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5651 5652 /* 5653 * Make sure the port numbers are zero. 5654 * In case of NAT-T we will update them later if needed. 5655 */ 5656 KEY_PORTTOSADDR(&saidx.src, 0); 5657 KEY_PORTTOSADDR(&saidx.dst, 0); 5658 5659 #ifdef IPSEC_NAT_T 5660 /* 5661 * Handle NAT-T info if present. 5662 */ 5663 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5664 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5665 struct sadb_x_nat_t_port *sport, *dport; 5666 5667 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5668 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5669 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5670 __func__)); 5671 return key_senderror(so, m, EINVAL); 5672 } 5673 5674 sport = (struct sadb_x_nat_t_port *) 5675 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5676 dport = (struct sadb_x_nat_t_port *) 5677 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5678 5679 if (sport) 5680 KEY_PORTTOSADDR(&saidx.src, 5681 sport->sadb_x_nat_t_port_port); 5682 if (dport) 5683 KEY_PORTTOSADDR(&saidx.dst, 5684 dport->sadb_x_nat_t_port_port); 5685 } 5686 #endif 5687 5688 /* get a SA header */ 5689 SAHTREE_LOCK(); 5690 LIST_FOREACH(sah, &V_sahtree, chain) { 5691 if (sah->state == SADB_SASTATE_DEAD) 5692 continue; 5693 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5694 continue; 5695 5696 /* get a SA with SPI. */ 5697 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5698 if (sav) 5699 break; 5700 } 5701 if (sah == NULL) { 5702 SAHTREE_UNLOCK(); 5703 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5704 return key_senderror(so, m, ENOENT); 5705 } 5706 5707 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5708 KEY_FREESAV(&sav); 5709 SAHTREE_UNLOCK(); 5710 5711 { 5712 struct mbuf *n; 5713 struct sadb_msg *newmsg; 5714 5715 /* create new sadb_msg to reply. */ 5716 /* XXX-BZ NAT-T extensions? */ 5717 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 5718 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5719 if (!n) 5720 return key_senderror(so, m, ENOBUFS); 5721 5722 if (n->m_len < sizeof(struct sadb_msg)) { 5723 n = m_pullup(n, sizeof(struct sadb_msg)); 5724 if (n == NULL) 5725 return key_senderror(so, m, ENOBUFS); 5726 } 5727 newmsg = mtod(n, struct sadb_msg *); 5728 newmsg->sadb_msg_errno = 0; 5729 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5730 5731 m_freem(m); 5732 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5733 } 5734 } 5735 5736 /* 5737 * delete all SAs for src/dst. Called from key_delete(). 5738 */ 5739 static int 5740 key_delete_all(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp, 5741 u_int16_t proto) 5742 { 5743 struct sadb_address *src0, *dst0; 5744 struct secasindex saidx; 5745 struct secashead *sah; 5746 struct secasvar *sav, *nextsav; 5747 u_int stateidx, state; 5748 5749 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5750 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5751 5752 /* XXX boundary check against sa_len */ 5753 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5754 5755 /* 5756 * Make sure the port numbers are zero. 5757 * In case of NAT-T we will update them later if needed. 5758 */ 5759 KEY_PORTTOSADDR(&saidx.src, 0); 5760 KEY_PORTTOSADDR(&saidx.dst, 0); 5761 5762 #ifdef IPSEC_NAT_T 5763 /* 5764 * Handle NAT-T info if present. 5765 */ 5766 5767 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5768 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5769 struct sadb_x_nat_t_port *sport, *dport; 5770 5771 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5772 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5773 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5774 __func__)); 5775 return key_senderror(so, m, EINVAL); 5776 } 5777 5778 sport = (struct sadb_x_nat_t_port *) 5779 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5780 dport = (struct sadb_x_nat_t_port *) 5781 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5782 5783 if (sport) 5784 KEY_PORTTOSADDR(&saidx.src, 5785 sport->sadb_x_nat_t_port_port); 5786 if (dport) 5787 KEY_PORTTOSADDR(&saidx.dst, 5788 dport->sadb_x_nat_t_port_port); 5789 } 5790 #endif 5791 5792 SAHTREE_LOCK(); 5793 LIST_FOREACH(sah, &V_sahtree, chain) { 5794 if (sah->state == SADB_SASTATE_DEAD) 5795 continue; 5796 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5797 continue; 5798 5799 /* Delete all non-LARVAL SAs. */ 5800 for (stateidx = 0; 5801 stateidx < _ARRAYLEN(saorder_state_alive); 5802 stateidx++) { 5803 state = saorder_state_alive[stateidx]; 5804 if (state == SADB_SASTATE_LARVAL) 5805 continue; 5806 for (sav = LIST_FIRST(&sah->savtree[state]); 5807 sav != NULL; sav = nextsav) { 5808 nextsav = LIST_NEXT(sav, chain); 5809 /* sanity check */ 5810 if (sav->state != state) { 5811 ipseclog((LOG_DEBUG, "%s: invalid " 5812 "sav->state (queue %d SA %d)\n", 5813 __func__, state, sav->state)); 5814 continue; 5815 } 5816 5817 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5818 KEY_FREESAV(&sav); 5819 } 5820 } 5821 } 5822 SAHTREE_UNLOCK(); 5823 { 5824 struct mbuf *n; 5825 struct sadb_msg *newmsg; 5826 5827 /* create new sadb_msg to reply. */ 5828 /* XXX-BZ NAT-T extensions? */ 5829 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, 5830 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5831 if (!n) 5832 return key_senderror(so, m, ENOBUFS); 5833 5834 if (n->m_len < sizeof(struct sadb_msg)) { 5835 n = m_pullup(n, sizeof(struct sadb_msg)); 5836 if (n == NULL) 5837 return key_senderror(so, m, ENOBUFS); 5838 } 5839 newmsg = mtod(n, struct sadb_msg *); 5840 newmsg->sadb_msg_errno = 0; 5841 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5842 5843 m_freem(m); 5844 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5845 } 5846 } 5847 5848 /* 5849 * SADB_GET processing 5850 * receive 5851 * <base, SA(*), address(SD)> 5852 * from the ikmpd, and get a SP and a SA to respond, 5853 * and send, 5854 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), 5855 * (identity(SD),) (sensitivity)> 5856 * to the ikmpd. 5857 * 5858 * m will always be freed. 5859 */ 5860 static int 5861 key_get(so, m, mhp) 5862 struct socket *so; 5863 struct mbuf *m; 5864 const struct sadb_msghdr *mhp; 5865 { 5866 struct sadb_sa *sa0; 5867 struct sadb_address *src0, *dst0; 5868 struct secasindex saidx; 5869 struct secashead *sah; 5870 struct secasvar *sav = NULL; 5871 u_int16_t proto; 5872 5873 IPSEC_ASSERT(so != NULL, ("null socket")); 5874 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5875 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5876 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5877 5878 /* map satype to proto */ 5879 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5880 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5881 __func__)); 5882 return key_senderror(so, m, EINVAL); 5883 } 5884 5885 if (mhp->ext[SADB_EXT_SA] == NULL || 5886 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5887 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5888 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5889 __func__)); 5890 return key_senderror(so, m, EINVAL); 5891 } 5892 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5893 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5894 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5895 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5896 __func__)); 5897 return key_senderror(so, m, EINVAL); 5898 } 5899 5900 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5901 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5902 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5903 5904 /* XXX boundary check against sa_len */ 5905 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5906 5907 /* 5908 * Make sure the port numbers are zero. 5909 * In case of NAT-T we will update them later if needed. 5910 */ 5911 KEY_PORTTOSADDR(&saidx.src, 0); 5912 KEY_PORTTOSADDR(&saidx.dst, 0); 5913 5914 #ifdef IPSEC_NAT_T 5915 /* 5916 * Handle NAT-T info if present. 5917 */ 5918 5919 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5920 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5921 struct sadb_x_nat_t_port *sport, *dport; 5922 5923 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5924 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5925 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5926 __func__)); 5927 return key_senderror(so, m, EINVAL); 5928 } 5929 5930 sport = (struct sadb_x_nat_t_port *) 5931 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5932 dport = (struct sadb_x_nat_t_port *) 5933 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5934 5935 if (sport) 5936 KEY_PORTTOSADDR(&saidx.src, 5937 sport->sadb_x_nat_t_port_port); 5938 if (dport) 5939 KEY_PORTTOSADDR(&saidx.dst, 5940 dport->sadb_x_nat_t_port_port); 5941 } 5942 #endif 5943 5944 /* get a SA header */ 5945 SAHTREE_LOCK(); 5946 LIST_FOREACH(sah, &V_sahtree, chain) { 5947 if (sah->state == SADB_SASTATE_DEAD) 5948 continue; 5949 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5950 continue; 5951 5952 /* get a SA with SPI. */ 5953 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5954 if (sav) 5955 break; 5956 } 5957 SAHTREE_UNLOCK(); 5958 if (sah == NULL) { 5959 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5960 return key_senderror(so, m, ENOENT); 5961 } 5962 5963 { 5964 struct mbuf *n; 5965 u_int8_t satype; 5966 5967 /* map proto to satype */ 5968 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 5969 ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n", 5970 __func__)); 5971 return key_senderror(so, m, EINVAL); 5972 } 5973 5974 /* create new sadb_msg to reply. */ 5975 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, 5976 mhp->msg->sadb_msg_pid); 5977 if (!n) 5978 return key_senderror(so, m, ENOBUFS); 5979 5980 m_freem(m); 5981 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5982 } 5983 } 5984 5985 /* XXX make it sysctl-configurable? */ 5986 static void 5987 key_getcomb_setlifetime(comb) 5988 struct sadb_comb *comb; 5989 { 5990 5991 comb->sadb_comb_soft_allocations = 1; 5992 comb->sadb_comb_hard_allocations = 1; 5993 comb->sadb_comb_soft_bytes = 0; 5994 comb->sadb_comb_hard_bytes = 0; 5995 comb->sadb_comb_hard_addtime = 86400; /* 1 day */ 5996 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100; 5997 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */ 5998 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100; 5999 } 6000 6001 /* 6002 * XXX reorder combinations by preference 6003 * XXX no idea if the user wants ESP authentication or not 6004 */ 6005 static struct mbuf * 6006 key_getcomb_esp() 6007 { 6008 struct sadb_comb *comb; 6009 struct enc_xform *algo; 6010 struct mbuf *result = NULL, *m, *n; 6011 int encmin; 6012 int i, off, o; 6013 int totlen; 6014 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6015 6016 m = NULL; 6017 for (i = 1; i <= SADB_EALG_MAX; i++) { 6018 algo = esp_algorithm_lookup(i); 6019 if (algo == NULL) 6020 continue; 6021 6022 /* discard algorithms with key size smaller than system min */ 6023 if (_BITS(algo->maxkey) < V_ipsec_esp_keymin) 6024 continue; 6025 if (_BITS(algo->minkey) < V_ipsec_esp_keymin) 6026 encmin = V_ipsec_esp_keymin; 6027 else 6028 encmin = _BITS(algo->minkey); 6029 6030 if (V_ipsec_esp_auth) 6031 m = key_getcomb_ah(); 6032 else { 6033 IPSEC_ASSERT(l <= MLEN, 6034 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6035 MGET(m, M_DONTWAIT, MT_DATA); 6036 if (m) { 6037 M_ALIGN(m, l); 6038 m->m_len = l; 6039 m->m_next = NULL; 6040 bzero(mtod(m, caddr_t), m->m_len); 6041 } 6042 } 6043 if (!m) 6044 goto fail; 6045 6046 totlen = 0; 6047 for (n = m; n; n = n->m_next) 6048 totlen += n->m_len; 6049 IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l)); 6050 6051 for (off = 0; off < totlen; off += l) { 6052 n = m_pulldown(m, off, l, &o); 6053 if (!n) { 6054 /* m is already freed */ 6055 goto fail; 6056 } 6057 comb = (struct sadb_comb *)(mtod(n, caddr_t) + o); 6058 bzero(comb, sizeof(*comb)); 6059 key_getcomb_setlifetime(comb); 6060 comb->sadb_comb_encrypt = i; 6061 comb->sadb_comb_encrypt_minbits = encmin; 6062 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); 6063 } 6064 6065 if (!result) 6066 result = m; 6067 else 6068 m_cat(result, m); 6069 } 6070 6071 return result; 6072 6073 fail: 6074 if (result) 6075 m_freem(result); 6076 return NULL; 6077 } 6078 6079 static void 6080 key_getsizes_ah( 6081 const struct auth_hash *ah, 6082 int alg, 6083 u_int16_t* min, 6084 u_int16_t* max) 6085 { 6086 6087 *min = *max = ah->keysize; 6088 if (ah->keysize == 0) { 6089 /* 6090 * Transform takes arbitrary key size but algorithm 6091 * key size is restricted. Enforce this here. 6092 */ 6093 switch (alg) { 6094 case SADB_X_AALG_MD5: *min = *max = 16; break; 6095 case SADB_X_AALG_SHA: *min = *max = 20; break; 6096 case SADB_X_AALG_NULL: *min = 1; *max = 256; break; 6097 default: 6098 DPRINTF(("%s: unknown AH algorithm %u\n", 6099 __func__, alg)); 6100 break; 6101 } 6102 } 6103 } 6104 6105 /* 6106 * XXX reorder combinations by preference 6107 */ 6108 static struct mbuf * 6109 key_getcomb_ah() 6110 { 6111 struct sadb_comb *comb; 6112 struct auth_hash *algo; 6113 struct mbuf *m; 6114 u_int16_t minkeysize, maxkeysize; 6115 int i; 6116 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6117 6118 m = NULL; 6119 for (i = 1; i <= SADB_AALG_MAX; i++) { 6120 #if 1 6121 /* we prefer HMAC algorithms, not old algorithms */ 6122 if (i != SADB_AALG_SHA1HMAC && i != SADB_AALG_MD5HMAC) 6123 continue; 6124 #endif 6125 algo = ah_algorithm_lookup(i); 6126 if (!algo) 6127 continue; 6128 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); 6129 /* discard algorithms with key size smaller than system min */ 6130 if (_BITS(minkeysize) < V_ipsec_ah_keymin) 6131 continue; 6132 6133 if (!m) { 6134 IPSEC_ASSERT(l <= MLEN, 6135 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6136 MGET(m, M_DONTWAIT, MT_DATA); 6137 if (m) { 6138 M_ALIGN(m, l); 6139 m->m_len = l; 6140 m->m_next = NULL; 6141 } 6142 } else 6143 M_PREPEND(m, l, M_DONTWAIT); 6144 if (!m) 6145 return NULL; 6146 6147 comb = mtod(m, struct sadb_comb *); 6148 bzero(comb, sizeof(*comb)); 6149 key_getcomb_setlifetime(comb); 6150 comb->sadb_comb_auth = i; 6151 comb->sadb_comb_auth_minbits = _BITS(minkeysize); 6152 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); 6153 } 6154 6155 return m; 6156 } 6157 6158 /* 6159 * not really an official behavior. discussed in pf_key@inner.net in Sep2000. 6160 * XXX reorder combinations by preference 6161 */ 6162 static struct mbuf * 6163 key_getcomb_ipcomp() 6164 { 6165 struct sadb_comb *comb; 6166 struct comp_algo *algo; 6167 struct mbuf *m; 6168 int i; 6169 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6170 6171 m = NULL; 6172 for (i = 1; i <= SADB_X_CALG_MAX; i++) { 6173 algo = ipcomp_algorithm_lookup(i); 6174 if (!algo) 6175 continue; 6176 6177 if (!m) { 6178 IPSEC_ASSERT(l <= MLEN, 6179 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6180 MGET(m, M_DONTWAIT, MT_DATA); 6181 if (m) { 6182 M_ALIGN(m, l); 6183 m->m_len = l; 6184 m->m_next = NULL; 6185 } 6186 } else 6187 M_PREPEND(m, l, M_DONTWAIT); 6188 if (!m) 6189 return NULL; 6190 6191 comb = mtod(m, struct sadb_comb *); 6192 bzero(comb, sizeof(*comb)); 6193 key_getcomb_setlifetime(comb); 6194 comb->sadb_comb_encrypt = i; 6195 /* what should we set into sadb_comb_*_{min,max}bits? */ 6196 } 6197 6198 return m; 6199 } 6200 6201 /* 6202 * XXX no way to pass mode (transport/tunnel) to userland 6203 * XXX replay checking? 6204 * XXX sysctl interface to ipsec_{ah,esp}_keymin 6205 */ 6206 static struct mbuf * 6207 key_getprop(saidx) 6208 const struct secasindex *saidx; 6209 { 6210 struct sadb_prop *prop; 6211 struct mbuf *m, *n; 6212 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); 6213 int totlen; 6214 6215 switch (saidx->proto) { 6216 case IPPROTO_ESP: 6217 m = key_getcomb_esp(); 6218 break; 6219 case IPPROTO_AH: 6220 m = key_getcomb_ah(); 6221 break; 6222 case IPPROTO_IPCOMP: 6223 m = key_getcomb_ipcomp(); 6224 break; 6225 default: 6226 return NULL; 6227 } 6228 6229 if (!m) 6230 return NULL; 6231 M_PREPEND(m, l, M_DONTWAIT); 6232 if (!m) 6233 return NULL; 6234 6235 totlen = 0; 6236 for (n = m; n; n = n->m_next) 6237 totlen += n->m_len; 6238 6239 prop = mtod(m, struct sadb_prop *); 6240 bzero(prop, sizeof(*prop)); 6241 prop->sadb_prop_len = PFKEY_UNIT64(totlen); 6242 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 6243 prop->sadb_prop_replay = 32; /* XXX */ 6244 6245 return m; 6246 } 6247 6248 /* 6249 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2(). 6250 * send 6251 * <base, SA, address(SD), (address(P)), x_policy, 6252 * (identity(SD),) (sensitivity,) proposal> 6253 * to KMD, and expect to receive 6254 * <base> with SADB_ACQUIRE if error occured, 6255 * or 6256 * <base, src address, dst address, (SPI range)> with SADB_GETSPI 6257 * from KMD by PF_KEY. 6258 * 6259 * XXX x_policy is outside of RFC2367 (KAME extension). 6260 * XXX sensitivity is not supported. 6261 * XXX for ipcomp, RFC2367 does not define how to fill in proposal. 6262 * see comment for key_getcomb_ipcomp(). 6263 * 6264 * OUT: 6265 * 0 : succeed 6266 * others: error number 6267 */ 6268 static int 6269 key_acquire(const struct secasindex *saidx, struct secpolicy *sp) 6270 { 6271 struct mbuf *result = NULL, *m; 6272 struct secacq *newacq; 6273 u_int8_t satype; 6274 int error = -1; 6275 u_int32_t seq; 6276 6277 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 6278 satype = key_proto2satype(saidx->proto); 6279 IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto)); 6280 6281 /* 6282 * We never do anything about acquirng SA. There is anather 6283 * solution that kernel blocks to send SADB_ACQUIRE message until 6284 * getting something message from IKEd. In later case, to be 6285 * managed with ACQUIRING list. 6286 */ 6287 /* Get an entry to check whether sending message or not. */ 6288 if ((newacq = key_getacq(saidx)) != NULL) { 6289 if (V_key_blockacq_count < newacq->count) { 6290 /* reset counter and do send message. */ 6291 newacq->count = 0; 6292 } else { 6293 /* increment counter and do nothing. */ 6294 newacq->count++; 6295 return 0; 6296 } 6297 } else { 6298 /* make new entry for blocking to send SADB_ACQUIRE. */ 6299 if ((newacq = key_newacq(saidx)) == NULL) 6300 return ENOBUFS; 6301 } 6302 6303 6304 seq = newacq->seq; 6305 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0); 6306 if (!m) { 6307 error = ENOBUFS; 6308 goto fail; 6309 } 6310 result = m; 6311 6312 /* 6313 * No SADB_X_EXT_NAT_T_* here: we do not know 6314 * anything related to NAT-T at this time. 6315 */ 6316 6317 /* set sadb_address for saidx's. */ 6318 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 6319 &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY); 6320 if (!m) { 6321 error = ENOBUFS; 6322 goto fail; 6323 } 6324 m_cat(result, m); 6325 6326 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 6327 &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY); 6328 if (!m) { 6329 error = ENOBUFS; 6330 goto fail; 6331 } 6332 m_cat(result, m); 6333 6334 /* XXX proxy address (optional) */ 6335 6336 /* set sadb_x_policy */ 6337 if (sp) { 6338 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id); 6339 if (!m) { 6340 error = ENOBUFS; 6341 goto fail; 6342 } 6343 m_cat(result, m); 6344 } 6345 6346 /* XXX identity (optional) */ 6347 #if 0 6348 if (idexttype && fqdn) { 6349 /* create identity extension (FQDN) */ 6350 struct sadb_ident *id; 6351 int fqdnlen; 6352 6353 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ 6354 id = (struct sadb_ident *)p; 6355 bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6356 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6357 id->sadb_ident_exttype = idexttype; 6358 id->sadb_ident_type = SADB_IDENTTYPE_FQDN; 6359 bcopy(fqdn, id + 1, fqdnlen); 6360 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); 6361 } 6362 6363 if (idexttype) { 6364 /* create identity extension (USERFQDN) */ 6365 struct sadb_ident *id; 6366 int userfqdnlen; 6367 6368 if (userfqdn) { 6369 /* +1 for terminating-NUL */ 6370 userfqdnlen = strlen(userfqdn) + 1; 6371 } else 6372 userfqdnlen = 0; 6373 id = (struct sadb_ident *)p; 6374 bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6375 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6376 id->sadb_ident_exttype = idexttype; 6377 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; 6378 /* XXX is it correct? */ 6379 if (curproc && curproc->p_cred) 6380 id->sadb_ident_id = curproc->p_cred->p_ruid; 6381 if (userfqdn && userfqdnlen) 6382 bcopy(userfqdn, id + 1, userfqdnlen); 6383 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); 6384 } 6385 #endif 6386 6387 /* XXX sensitivity (optional) */ 6388 6389 /* create proposal/combination extension */ 6390 m = key_getprop(saidx); 6391 #if 0 6392 /* 6393 * spec conformant: always attach proposal/combination extension, 6394 * the problem is that we have no way to attach it for ipcomp, 6395 * due to the way sadb_comb is declared in RFC2367. 6396 */ 6397 if (!m) { 6398 error = ENOBUFS; 6399 goto fail; 6400 } 6401 m_cat(result, m); 6402 #else 6403 /* 6404 * outside of spec; make proposal/combination extension optional. 6405 */ 6406 if (m) 6407 m_cat(result, m); 6408 #endif 6409 6410 if ((result->m_flags & M_PKTHDR) == 0) { 6411 error = EINVAL; 6412 goto fail; 6413 } 6414 6415 if (result->m_len < sizeof(struct sadb_msg)) { 6416 result = m_pullup(result, sizeof(struct sadb_msg)); 6417 if (result == NULL) { 6418 error = ENOBUFS; 6419 goto fail; 6420 } 6421 } 6422 6423 result->m_pkthdr.len = 0; 6424 for (m = result; m; m = m->m_next) 6425 result->m_pkthdr.len += m->m_len; 6426 6427 mtod(result, struct sadb_msg *)->sadb_msg_len = 6428 PFKEY_UNIT64(result->m_pkthdr.len); 6429 6430 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6431 6432 fail: 6433 if (result) 6434 m_freem(result); 6435 return error; 6436 } 6437 6438 static struct secacq * 6439 key_newacq(const struct secasindex *saidx) 6440 { 6441 struct secacq *newacq; 6442 6443 /* get new entry */ 6444 newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 6445 if (newacq == NULL) { 6446 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6447 return NULL; 6448 } 6449 6450 /* copy secindex */ 6451 bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx)); 6452 newacq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq); 6453 newacq->created = time_second; 6454 newacq->count = 0; 6455 6456 /* add to acqtree */ 6457 ACQ_LOCK(); 6458 LIST_INSERT_HEAD(&V_acqtree, newacq, chain); 6459 ACQ_UNLOCK(); 6460 6461 return newacq; 6462 } 6463 6464 static struct secacq * 6465 key_getacq(const struct secasindex *saidx) 6466 { 6467 struct secacq *acq; 6468 6469 ACQ_LOCK(); 6470 LIST_FOREACH(acq, &V_acqtree, chain) { 6471 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY)) 6472 break; 6473 } 6474 ACQ_UNLOCK(); 6475 6476 return acq; 6477 } 6478 6479 static struct secacq * 6480 key_getacqbyseq(seq) 6481 u_int32_t seq; 6482 { 6483 struct secacq *acq; 6484 6485 ACQ_LOCK(); 6486 LIST_FOREACH(acq, &V_acqtree, chain) { 6487 if (acq->seq == seq) 6488 break; 6489 } 6490 ACQ_UNLOCK(); 6491 6492 return acq; 6493 } 6494 6495 static struct secspacq * 6496 key_newspacq(spidx) 6497 struct secpolicyindex *spidx; 6498 { 6499 struct secspacq *acq; 6500 6501 /* get new entry */ 6502 acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 6503 if (acq == NULL) { 6504 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6505 return NULL; 6506 } 6507 6508 /* copy secindex */ 6509 bcopy(spidx, &acq->spidx, sizeof(acq->spidx)); 6510 acq->created = time_second; 6511 acq->count = 0; 6512 6513 /* add to spacqtree */ 6514 SPACQ_LOCK(); 6515 LIST_INSERT_HEAD(&V_spacqtree, acq, chain); 6516 SPACQ_UNLOCK(); 6517 6518 return acq; 6519 } 6520 6521 static struct secspacq * 6522 key_getspacq(spidx) 6523 struct secpolicyindex *spidx; 6524 { 6525 struct secspacq *acq; 6526 6527 SPACQ_LOCK(); 6528 LIST_FOREACH(acq, &V_spacqtree, chain) { 6529 if (key_cmpspidx_exactly(spidx, &acq->spidx)) { 6530 /* NB: return holding spacq_lock */ 6531 return acq; 6532 } 6533 } 6534 SPACQ_UNLOCK(); 6535 6536 return NULL; 6537 } 6538 6539 /* 6540 * SADB_ACQUIRE processing, 6541 * in first situation, is receiving 6542 * <base> 6543 * from the ikmpd, and clear sequence of its secasvar entry. 6544 * 6545 * In second situation, is receiving 6546 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6547 * from a user land process, and return 6548 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6549 * to the socket. 6550 * 6551 * m will always be freed. 6552 */ 6553 static int 6554 key_acquire2(so, m, mhp) 6555 struct socket *so; 6556 struct mbuf *m; 6557 const struct sadb_msghdr *mhp; 6558 { 6559 const struct sadb_address *src0, *dst0; 6560 struct secasindex saidx; 6561 struct secashead *sah; 6562 u_int16_t proto; 6563 int error; 6564 6565 IPSEC_ASSERT(so != NULL, ("null socket")); 6566 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6567 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6568 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6569 6570 /* 6571 * Error message from KMd. 6572 * We assume that if error was occured in IKEd, the length of PFKEY 6573 * message is equal to the size of sadb_msg structure. 6574 * We do not raise error even if error occured in this function. 6575 */ 6576 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { 6577 struct secacq *acq; 6578 6579 /* check sequence number */ 6580 if (mhp->msg->sadb_msg_seq == 0) { 6581 ipseclog((LOG_DEBUG, "%s: must specify sequence " 6582 "number.\n", __func__)); 6583 m_freem(m); 6584 return 0; 6585 } 6586 6587 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) { 6588 /* 6589 * the specified larval SA is already gone, or we got 6590 * a bogus sequence number. we can silently ignore it. 6591 */ 6592 m_freem(m); 6593 return 0; 6594 } 6595 6596 /* reset acq counter in order to deletion by timehander. */ 6597 acq->created = time_second; 6598 acq->count = 0; 6599 m_freem(m); 6600 return 0; 6601 } 6602 6603 /* 6604 * This message is from user land. 6605 */ 6606 6607 /* map satype to proto */ 6608 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6609 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6610 __func__)); 6611 return key_senderror(so, m, EINVAL); 6612 } 6613 6614 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6615 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 6616 mhp->ext[SADB_EXT_PROPOSAL] == NULL) { 6617 /* error */ 6618 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6619 __func__)); 6620 return key_senderror(so, m, EINVAL); 6621 } 6622 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6623 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 6624 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { 6625 /* error */ 6626 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6627 __func__)); 6628 return key_senderror(so, m, EINVAL); 6629 } 6630 6631 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 6632 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 6633 6634 /* XXX boundary check against sa_len */ 6635 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 6636 6637 /* 6638 * Make sure the port numbers are zero. 6639 * In case of NAT-T we will update them later if needed. 6640 */ 6641 KEY_PORTTOSADDR(&saidx.src, 0); 6642 KEY_PORTTOSADDR(&saidx.dst, 0); 6643 6644 #ifndef IPSEC_NAT_T 6645 /* 6646 * Handle NAT-T info if present. 6647 */ 6648 6649 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 6650 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 6651 struct sadb_x_nat_t_port *sport, *dport; 6652 6653 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 6654 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 6655 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 6656 __func__)); 6657 return key_senderror(so, m, EINVAL); 6658 } 6659 6660 sport = (struct sadb_x_nat_t_port *) 6661 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 6662 dport = (struct sadb_x_nat_t_port *) 6663 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 6664 6665 if (sport) 6666 KEY_PORTTOSADDR(&saidx.src, 6667 sport->sadb_x_nat_t_port_port); 6668 if (dport) 6669 KEY_PORTTOSADDR(&saidx.dst, 6670 dport->sadb_x_nat_t_port_port); 6671 } 6672 #endif 6673 6674 /* get a SA index */ 6675 SAHTREE_LOCK(); 6676 LIST_FOREACH(sah, &V_sahtree, chain) { 6677 if (sah->state == SADB_SASTATE_DEAD) 6678 continue; 6679 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID)) 6680 break; 6681 } 6682 SAHTREE_UNLOCK(); 6683 if (sah != NULL) { 6684 ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__)); 6685 return key_senderror(so, m, EEXIST); 6686 } 6687 6688 error = key_acquire(&saidx, NULL); 6689 if (error != 0) { 6690 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 6691 __func__, mhp->msg->sadb_msg_errno)); 6692 return key_senderror(so, m, error); 6693 } 6694 6695 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); 6696 } 6697 6698 /* 6699 * SADB_REGISTER processing. 6700 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. 6701 * receive 6702 * <base> 6703 * from the ikmpd, and register a socket to send PF_KEY messages, 6704 * and send 6705 * <base, supported> 6706 * to KMD by PF_KEY. 6707 * If socket is detached, must free from regnode. 6708 * 6709 * m will always be freed. 6710 */ 6711 static int 6712 key_register(so, m, mhp) 6713 struct socket *so; 6714 struct mbuf *m; 6715 const struct sadb_msghdr *mhp; 6716 { 6717 struct secreg *reg, *newreg = 0; 6718 6719 IPSEC_ASSERT(so != NULL, ("null socket")); 6720 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6721 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6722 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6723 6724 /* check for invalid register message */ 6725 if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0])) 6726 return key_senderror(so, m, EINVAL); 6727 6728 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ 6729 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) 6730 goto setmsg; 6731 6732 /* check whether existing or not */ 6733 REGTREE_LOCK(); 6734 LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) { 6735 if (reg->so == so) { 6736 REGTREE_UNLOCK(); 6737 ipseclog((LOG_DEBUG, "%s: socket exists already.\n", 6738 __func__)); 6739 return key_senderror(so, m, EEXIST); 6740 } 6741 } 6742 6743 /* create regnode */ 6744 newreg = malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO); 6745 if (newreg == NULL) { 6746 REGTREE_UNLOCK(); 6747 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6748 return key_senderror(so, m, ENOBUFS); 6749 } 6750 6751 newreg->so = so; 6752 ((struct keycb *)sotorawcb(so))->kp_registered++; 6753 6754 /* add regnode to regtree. */ 6755 LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain); 6756 REGTREE_UNLOCK(); 6757 6758 setmsg: 6759 { 6760 struct mbuf *n; 6761 struct sadb_msg *newmsg; 6762 struct sadb_supported *sup; 6763 u_int len, alen, elen; 6764 int off; 6765 int i; 6766 struct sadb_alg *alg; 6767 6768 /* create new sadb_msg to reply. */ 6769 alen = 0; 6770 for (i = 1; i <= SADB_AALG_MAX; i++) { 6771 if (ah_algorithm_lookup(i)) 6772 alen += sizeof(struct sadb_alg); 6773 } 6774 if (alen) 6775 alen += sizeof(struct sadb_supported); 6776 elen = 0; 6777 for (i = 1; i <= SADB_EALG_MAX; i++) { 6778 if (esp_algorithm_lookup(i)) 6779 elen += sizeof(struct sadb_alg); 6780 } 6781 if (elen) 6782 elen += sizeof(struct sadb_supported); 6783 6784 len = sizeof(struct sadb_msg) + alen + elen; 6785 6786 if (len > MCLBYTES) 6787 return key_senderror(so, m, ENOBUFS); 6788 6789 MGETHDR(n, M_DONTWAIT, MT_DATA); 6790 if (len > MHLEN) { 6791 MCLGET(n, M_DONTWAIT); 6792 if ((n->m_flags & M_EXT) == 0) { 6793 m_freem(n); 6794 n = NULL; 6795 } 6796 } 6797 if (!n) 6798 return key_senderror(so, m, ENOBUFS); 6799 6800 n->m_pkthdr.len = n->m_len = len; 6801 n->m_next = NULL; 6802 off = 0; 6803 6804 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 6805 newmsg = mtod(n, struct sadb_msg *); 6806 newmsg->sadb_msg_errno = 0; 6807 newmsg->sadb_msg_len = PFKEY_UNIT64(len); 6808 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 6809 6810 /* for authentication algorithm */ 6811 if (alen) { 6812 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6813 sup->sadb_supported_len = PFKEY_UNIT64(alen); 6814 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 6815 off += PFKEY_ALIGN8(sizeof(*sup)); 6816 6817 for (i = 1; i <= SADB_AALG_MAX; i++) { 6818 struct auth_hash *aalgo; 6819 u_int16_t minkeysize, maxkeysize; 6820 6821 aalgo = ah_algorithm_lookup(i); 6822 if (!aalgo) 6823 continue; 6824 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6825 alg->sadb_alg_id = i; 6826 alg->sadb_alg_ivlen = 0; 6827 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); 6828 alg->sadb_alg_minbits = _BITS(minkeysize); 6829 alg->sadb_alg_maxbits = _BITS(maxkeysize); 6830 off += PFKEY_ALIGN8(sizeof(*alg)); 6831 } 6832 } 6833 6834 /* for encryption algorithm */ 6835 if (elen) { 6836 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6837 sup->sadb_supported_len = PFKEY_UNIT64(elen); 6838 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 6839 off += PFKEY_ALIGN8(sizeof(*sup)); 6840 6841 for (i = 1; i <= SADB_EALG_MAX; i++) { 6842 struct enc_xform *ealgo; 6843 6844 ealgo = esp_algorithm_lookup(i); 6845 if (!ealgo) 6846 continue; 6847 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6848 alg->sadb_alg_id = i; 6849 alg->sadb_alg_ivlen = ealgo->blocksize; 6850 alg->sadb_alg_minbits = _BITS(ealgo->minkey); 6851 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); 6852 off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); 6853 } 6854 } 6855 6856 IPSEC_ASSERT(off == len, 6857 ("length assumption failed (off %u len %u)", off, len)); 6858 6859 m_freem(m); 6860 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); 6861 } 6862 } 6863 6864 /* 6865 * free secreg entry registered. 6866 * XXX: I want to do free a socket marked done SADB_RESIGER to socket. 6867 */ 6868 void 6869 key_freereg(struct socket *so) 6870 { 6871 struct secreg *reg; 6872 int i; 6873 6874 IPSEC_ASSERT(so != NULL, ("NULL so")); 6875 6876 /* 6877 * check whether existing or not. 6878 * check all type of SA, because there is a potential that 6879 * one socket is registered to multiple type of SA. 6880 */ 6881 REGTREE_LOCK(); 6882 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 6883 LIST_FOREACH(reg, &V_regtree[i], chain) { 6884 if (reg->so == so && __LIST_CHAINED(reg)) { 6885 LIST_REMOVE(reg, chain); 6886 free(reg, M_IPSEC_SAR); 6887 break; 6888 } 6889 } 6890 } 6891 REGTREE_UNLOCK(); 6892 } 6893 6894 /* 6895 * SADB_EXPIRE processing 6896 * send 6897 * <base, SA, SA2, lifetime(C and one of HS), address(SD)> 6898 * to KMD by PF_KEY. 6899 * NOTE: We send only soft lifetime extension. 6900 * 6901 * OUT: 0 : succeed 6902 * others : error number 6903 */ 6904 static int 6905 key_expire(struct secasvar *sav) 6906 { 6907 int s; 6908 int satype; 6909 struct mbuf *result = NULL, *m; 6910 int len; 6911 int error = -1; 6912 struct sadb_lifetime *lt; 6913 6914 /* XXX: Why do we lock ? */ 6915 s = splnet(); /*called from softclock()*/ 6916 6917 IPSEC_ASSERT (sav != NULL, ("null sav")); 6918 IPSEC_ASSERT (sav->sah != NULL, ("null sa header")); 6919 6920 /* set msg header */ 6921 satype = key_proto2satype(sav->sah->saidx.proto); 6922 IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype)); 6923 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt); 6924 if (!m) { 6925 error = ENOBUFS; 6926 goto fail; 6927 } 6928 result = m; 6929 6930 /* create SA extension */ 6931 m = key_setsadbsa(sav); 6932 if (!m) { 6933 error = ENOBUFS; 6934 goto fail; 6935 } 6936 m_cat(result, m); 6937 6938 /* create SA extension */ 6939 m = key_setsadbxsa2(sav->sah->saidx.mode, 6940 sav->replay ? sav->replay->count : 0, 6941 sav->sah->saidx.reqid); 6942 if (!m) { 6943 error = ENOBUFS; 6944 goto fail; 6945 } 6946 m_cat(result, m); 6947 6948 /* create lifetime extension (current and soft) */ 6949 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 6950 m = key_alloc_mbuf(len); 6951 if (!m || m->m_next) { /*XXX*/ 6952 if (m) 6953 m_freem(m); 6954 error = ENOBUFS; 6955 goto fail; 6956 } 6957 bzero(mtod(m, caddr_t), len); 6958 lt = mtod(m, struct sadb_lifetime *); 6959 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6960 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 6961 lt->sadb_lifetime_allocations = sav->lft_c->allocations; 6962 lt->sadb_lifetime_bytes = sav->lft_c->bytes; 6963 lt->sadb_lifetime_addtime = sav->lft_c->addtime; 6964 lt->sadb_lifetime_usetime = sav->lft_c->usetime; 6965 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 6966 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6967 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; 6968 lt->sadb_lifetime_allocations = sav->lft_s->allocations; 6969 lt->sadb_lifetime_bytes = sav->lft_s->bytes; 6970 lt->sadb_lifetime_addtime = sav->lft_s->addtime; 6971 lt->sadb_lifetime_usetime = sav->lft_s->usetime; 6972 m_cat(result, m); 6973 6974 /* set sadb_address for source */ 6975 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 6976 &sav->sah->saidx.src.sa, 6977 FULLMASK, IPSEC_ULPROTO_ANY); 6978 if (!m) { 6979 error = ENOBUFS; 6980 goto fail; 6981 } 6982 m_cat(result, m); 6983 6984 /* set sadb_address for destination */ 6985 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 6986 &sav->sah->saidx.dst.sa, 6987 FULLMASK, IPSEC_ULPROTO_ANY); 6988 if (!m) { 6989 error = ENOBUFS; 6990 goto fail; 6991 } 6992 m_cat(result, m); 6993 6994 /* 6995 * XXX-BZ Handle NAT-T extensions here. 6996 */ 6997 6998 if ((result->m_flags & M_PKTHDR) == 0) { 6999 error = EINVAL; 7000 goto fail; 7001 } 7002 7003 if (result->m_len < sizeof(struct sadb_msg)) { 7004 result = m_pullup(result, sizeof(struct sadb_msg)); 7005 if (result == NULL) { 7006 error = ENOBUFS; 7007 goto fail; 7008 } 7009 } 7010 7011 result->m_pkthdr.len = 0; 7012 for (m = result; m; m = m->m_next) 7013 result->m_pkthdr.len += m->m_len; 7014 7015 mtod(result, struct sadb_msg *)->sadb_msg_len = 7016 PFKEY_UNIT64(result->m_pkthdr.len); 7017 7018 splx(s); 7019 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 7020 7021 fail: 7022 if (result) 7023 m_freem(result); 7024 splx(s); 7025 return error; 7026 } 7027 7028 /* 7029 * SADB_FLUSH processing 7030 * receive 7031 * <base> 7032 * from the ikmpd, and free all entries in secastree. 7033 * and send, 7034 * <base> 7035 * to the ikmpd. 7036 * NOTE: to do is only marking SADB_SASTATE_DEAD. 7037 * 7038 * m will always be freed. 7039 */ 7040 static int 7041 key_flush(so, m, mhp) 7042 struct socket *so; 7043 struct mbuf *m; 7044 const struct sadb_msghdr *mhp; 7045 { 7046 struct sadb_msg *newmsg; 7047 struct secashead *sah, *nextsah; 7048 struct secasvar *sav, *nextsav; 7049 u_int16_t proto; 7050 u_int8_t state; 7051 u_int stateidx; 7052 7053 IPSEC_ASSERT(so != NULL, ("null socket")); 7054 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7055 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7056 7057 /* map satype to proto */ 7058 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 7059 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 7060 __func__)); 7061 return key_senderror(so, m, EINVAL); 7062 } 7063 7064 /* no SATYPE specified, i.e. flushing all SA. */ 7065 SAHTREE_LOCK(); 7066 for (sah = LIST_FIRST(&V_sahtree); 7067 sah != NULL; 7068 sah = nextsah) { 7069 nextsah = LIST_NEXT(sah, chain); 7070 7071 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 7072 && proto != sah->saidx.proto) 7073 continue; 7074 7075 for (stateidx = 0; 7076 stateidx < _ARRAYLEN(saorder_state_alive); 7077 stateidx++) { 7078 state = saorder_state_any[stateidx]; 7079 for (sav = LIST_FIRST(&sah->savtree[state]); 7080 sav != NULL; 7081 sav = nextsav) { 7082 7083 nextsav = LIST_NEXT(sav, chain); 7084 7085 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 7086 KEY_FREESAV(&sav); 7087 } 7088 } 7089 7090 sah->state = SADB_SASTATE_DEAD; 7091 } 7092 SAHTREE_UNLOCK(); 7093 7094 if (m->m_len < sizeof(struct sadb_msg) || 7095 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 7096 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 7097 return key_senderror(so, m, ENOBUFS); 7098 } 7099 7100 if (m->m_next) 7101 m_freem(m->m_next); 7102 m->m_next = NULL; 7103 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); 7104 newmsg = mtod(m, struct sadb_msg *); 7105 newmsg->sadb_msg_errno = 0; 7106 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 7107 7108 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7109 } 7110 7111 /* 7112 * SADB_DUMP processing 7113 * dump all entries including status of DEAD in SAD. 7114 * receive 7115 * <base> 7116 * from the ikmpd, and dump all secasvar leaves 7117 * and send, 7118 * <base> ..... 7119 * to the ikmpd. 7120 * 7121 * m will always be freed. 7122 */ 7123 static int 7124 key_dump(so, m, mhp) 7125 struct socket *so; 7126 struct mbuf *m; 7127 const struct sadb_msghdr *mhp; 7128 { 7129 struct secashead *sah; 7130 struct secasvar *sav; 7131 u_int16_t proto; 7132 u_int stateidx; 7133 u_int8_t satype; 7134 u_int8_t state; 7135 int cnt; 7136 struct sadb_msg *newmsg; 7137 struct mbuf *n; 7138 7139 IPSEC_ASSERT(so != NULL, ("null socket")); 7140 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7141 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7142 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7143 7144 /* map satype to proto */ 7145 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 7146 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 7147 __func__)); 7148 return key_senderror(so, m, EINVAL); 7149 } 7150 7151 /* count sav entries to be sent to the userland. */ 7152 cnt = 0; 7153 SAHTREE_LOCK(); 7154 LIST_FOREACH(sah, &V_sahtree, chain) { 7155 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 7156 && proto != sah->saidx.proto) 7157 continue; 7158 7159 for (stateidx = 0; 7160 stateidx < _ARRAYLEN(saorder_state_any); 7161 stateidx++) { 7162 state = saorder_state_any[stateidx]; 7163 LIST_FOREACH(sav, &sah->savtree[state], chain) { 7164 cnt++; 7165 } 7166 } 7167 } 7168 7169 if (cnt == 0) { 7170 SAHTREE_UNLOCK(); 7171 return key_senderror(so, m, ENOENT); 7172 } 7173 7174 /* send this to the userland, one at a time. */ 7175 newmsg = NULL; 7176 LIST_FOREACH(sah, &V_sahtree, chain) { 7177 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 7178 && proto != sah->saidx.proto) 7179 continue; 7180 7181 /* map proto to satype */ 7182 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 7183 SAHTREE_UNLOCK(); 7184 ipseclog((LOG_DEBUG, "%s: there was invalid proto in " 7185 "SAD.\n", __func__)); 7186 return key_senderror(so, m, EINVAL); 7187 } 7188 7189 for (stateidx = 0; 7190 stateidx < _ARRAYLEN(saorder_state_any); 7191 stateidx++) { 7192 state = saorder_state_any[stateidx]; 7193 LIST_FOREACH(sav, &sah->savtree[state], chain) { 7194 n = key_setdumpsa(sav, SADB_DUMP, satype, 7195 --cnt, mhp->msg->sadb_msg_pid); 7196 if (!n) { 7197 SAHTREE_UNLOCK(); 7198 return key_senderror(so, m, ENOBUFS); 7199 } 7200 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 7201 } 7202 } 7203 } 7204 SAHTREE_UNLOCK(); 7205 7206 m_freem(m); 7207 return 0; 7208 } 7209 7210 /* 7211 * SADB_X_PROMISC processing 7212 * 7213 * m will always be freed. 7214 */ 7215 static int 7216 key_promisc(so, m, mhp) 7217 struct socket *so; 7218 struct mbuf *m; 7219 const struct sadb_msghdr *mhp; 7220 { 7221 int olen; 7222 7223 IPSEC_ASSERT(so != NULL, ("null socket")); 7224 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7225 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7226 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7227 7228 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7229 7230 if (olen < sizeof(struct sadb_msg)) { 7231 #if 1 7232 return key_senderror(so, m, EINVAL); 7233 #else 7234 m_freem(m); 7235 return 0; 7236 #endif 7237 } else if (olen == sizeof(struct sadb_msg)) { 7238 /* enable/disable promisc mode */ 7239 struct keycb *kp; 7240 7241 if ((kp = (struct keycb *)sotorawcb(so)) == NULL) 7242 return key_senderror(so, m, EINVAL); 7243 mhp->msg->sadb_msg_errno = 0; 7244 switch (mhp->msg->sadb_msg_satype) { 7245 case 0: 7246 case 1: 7247 kp->kp_promisc = mhp->msg->sadb_msg_satype; 7248 break; 7249 default: 7250 return key_senderror(so, m, EINVAL); 7251 } 7252 7253 /* send the original message back to everyone */ 7254 mhp->msg->sadb_msg_errno = 0; 7255 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7256 } else { 7257 /* send packet as is */ 7258 7259 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); 7260 7261 /* TODO: if sadb_msg_seq is specified, send to specific pid */ 7262 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7263 } 7264 } 7265 7266 static int (*key_typesw[]) __P((struct socket *, struct mbuf *, 7267 const struct sadb_msghdr *)) = { 7268 NULL, /* SADB_RESERVED */ 7269 key_getspi, /* SADB_GETSPI */ 7270 key_update, /* SADB_UPDATE */ 7271 key_add, /* SADB_ADD */ 7272 key_delete, /* SADB_DELETE */ 7273 key_get, /* SADB_GET */ 7274 key_acquire2, /* SADB_ACQUIRE */ 7275 key_register, /* SADB_REGISTER */ 7276 NULL, /* SADB_EXPIRE */ 7277 key_flush, /* SADB_FLUSH */ 7278 key_dump, /* SADB_DUMP */ 7279 key_promisc, /* SADB_X_PROMISC */ 7280 NULL, /* SADB_X_PCHANGE */ 7281 key_spdadd, /* SADB_X_SPDUPDATE */ 7282 key_spdadd, /* SADB_X_SPDADD */ 7283 key_spddelete, /* SADB_X_SPDDELETE */ 7284 key_spdget, /* SADB_X_SPDGET */ 7285 NULL, /* SADB_X_SPDACQUIRE */ 7286 key_spddump, /* SADB_X_SPDDUMP */ 7287 key_spdflush, /* SADB_X_SPDFLUSH */ 7288 key_spdadd, /* SADB_X_SPDSETIDX */ 7289 NULL, /* SADB_X_SPDEXPIRE */ 7290 key_spddelete2, /* SADB_X_SPDDELETE2 */ 7291 }; 7292 7293 /* 7294 * parse sadb_msg buffer to process PFKEYv2, 7295 * and create a data to response if needed. 7296 * I think to be dealed with mbuf directly. 7297 * IN: 7298 * msgp : pointer to pointer to a received buffer pulluped. 7299 * This is rewrited to response. 7300 * so : pointer to socket. 7301 * OUT: 7302 * length for buffer to send to user process. 7303 */ 7304 int 7305 key_parse(m, so) 7306 struct mbuf *m; 7307 struct socket *so; 7308 { 7309 struct sadb_msg *msg; 7310 struct sadb_msghdr mh; 7311 u_int orglen; 7312 int error; 7313 int target; 7314 7315 IPSEC_ASSERT(so != NULL, ("null socket")); 7316 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7317 7318 #if 0 /*kdebug_sadb assumes msg in linear buffer*/ 7319 KEYDEBUG(KEYDEBUG_KEY_DUMP, 7320 ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__)); 7321 kdebug_sadb(msg)); 7322 #endif 7323 7324 if (m->m_len < sizeof(struct sadb_msg)) { 7325 m = m_pullup(m, sizeof(struct sadb_msg)); 7326 if (!m) 7327 return ENOBUFS; 7328 } 7329 msg = mtod(m, struct sadb_msg *); 7330 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); 7331 target = KEY_SENDUP_ONE; 7332 7333 if ((m->m_flags & M_PKTHDR) == 0 || 7334 m->m_pkthdr.len != m->m_pkthdr.len) { 7335 ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__)); 7336 V_pfkeystat.out_invlen++; 7337 error = EINVAL; 7338 goto senderror; 7339 } 7340 7341 if (msg->sadb_msg_version != PF_KEY_V2) { 7342 ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n", 7343 __func__, msg->sadb_msg_version)); 7344 V_pfkeystat.out_invver++; 7345 error = EINVAL; 7346 goto senderror; 7347 } 7348 7349 if (msg->sadb_msg_type > SADB_MAX) { 7350 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 7351 __func__, msg->sadb_msg_type)); 7352 V_pfkeystat.out_invmsgtype++; 7353 error = EINVAL; 7354 goto senderror; 7355 } 7356 7357 /* for old-fashioned code - should be nuked */ 7358 if (m->m_pkthdr.len > MCLBYTES) { 7359 m_freem(m); 7360 return ENOBUFS; 7361 } 7362 if (m->m_next) { 7363 struct mbuf *n; 7364 7365 MGETHDR(n, M_DONTWAIT, MT_DATA); 7366 if (n && m->m_pkthdr.len > MHLEN) { 7367 MCLGET(n, M_DONTWAIT); 7368 if ((n->m_flags & M_EXT) == 0) { 7369 m_free(n); 7370 n = NULL; 7371 } 7372 } 7373 if (!n) { 7374 m_freem(m); 7375 return ENOBUFS; 7376 } 7377 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t)); 7378 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; 7379 n->m_next = NULL; 7380 m_freem(m); 7381 m = n; 7382 } 7383 7384 /* align the mbuf chain so that extensions are in contiguous region. */ 7385 error = key_align(m, &mh); 7386 if (error) 7387 return error; 7388 7389 msg = mh.msg; 7390 7391 /* check SA type */ 7392 switch (msg->sadb_msg_satype) { 7393 case SADB_SATYPE_UNSPEC: 7394 switch (msg->sadb_msg_type) { 7395 case SADB_GETSPI: 7396 case SADB_UPDATE: 7397 case SADB_ADD: 7398 case SADB_DELETE: 7399 case SADB_GET: 7400 case SADB_ACQUIRE: 7401 case SADB_EXPIRE: 7402 ipseclog((LOG_DEBUG, "%s: must specify satype " 7403 "when msg type=%u.\n", __func__, 7404 msg->sadb_msg_type)); 7405 V_pfkeystat.out_invsatype++; 7406 error = EINVAL; 7407 goto senderror; 7408 } 7409 break; 7410 case SADB_SATYPE_AH: 7411 case SADB_SATYPE_ESP: 7412 case SADB_X_SATYPE_IPCOMP: 7413 case SADB_X_SATYPE_TCPSIGNATURE: 7414 switch (msg->sadb_msg_type) { 7415 case SADB_X_SPDADD: 7416 case SADB_X_SPDDELETE: 7417 case SADB_X_SPDGET: 7418 case SADB_X_SPDDUMP: 7419 case SADB_X_SPDFLUSH: 7420 case SADB_X_SPDSETIDX: 7421 case SADB_X_SPDUPDATE: 7422 case SADB_X_SPDDELETE2: 7423 ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n", 7424 __func__, msg->sadb_msg_type)); 7425 V_pfkeystat.out_invsatype++; 7426 error = EINVAL; 7427 goto senderror; 7428 } 7429 break; 7430 case SADB_SATYPE_RSVP: 7431 case SADB_SATYPE_OSPFV2: 7432 case SADB_SATYPE_RIPV2: 7433 case SADB_SATYPE_MIP: 7434 ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n", 7435 __func__, msg->sadb_msg_satype)); 7436 V_pfkeystat.out_invsatype++; 7437 error = EOPNOTSUPP; 7438 goto senderror; 7439 case 1: /* XXX: What does it do? */ 7440 if (msg->sadb_msg_type == SADB_X_PROMISC) 7441 break; 7442 /*FALLTHROUGH*/ 7443 default: 7444 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 7445 __func__, msg->sadb_msg_satype)); 7446 V_pfkeystat.out_invsatype++; 7447 error = EINVAL; 7448 goto senderror; 7449 } 7450 7451 /* check field of upper layer protocol and address family */ 7452 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL 7453 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { 7454 struct sadb_address *src0, *dst0; 7455 u_int plen; 7456 7457 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]); 7458 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]); 7459 7460 /* check upper layer protocol */ 7461 if (src0->sadb_address_proto != dst0->sadb_address_proto) { 7462 ipseclog((LOG_DEBUG, "%s: upper layer protocol " 7463 "mismatched.\n", __func__)); 7464 V_pfkeystat.out_invaddr++; 7465 error = EINVAL; 7466 goto senderror; 7467 } 7468 7469 /* check family */ 7470 if (PFKEY_ADDR_SADDR(src0)->sa_family != 7471 PFKEY_ADDR_SADDR(dst0)->sa_family) { 7472 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 7473 __func__)); 7474 V_pfkeystat.out_invaddr++; 7475 error = EINVAL; 7476 goto senderror; 7477 } 7478 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7479 PFKEY_ADDR_SADDR(dst0)->sa_len) { 7480 ipseclog((LOG_DEBUG, "%s: address struct size " 7481 "mismatched.\n", __func__)); 7482 V_pfkeystat.out_invaddr++; 7483 error = EINVAL; 7484 goto senderror; 7485 } 7486 7487 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7488 case AF_INET: 7489 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7490 sizeof(struct sockaddr_in)) { 7491 V_pfkeystat.out_invaddr++; 7492 error = EINVAL; 7493 goto senderror; 7494 } 7495 break; 7496 case AF_INET6: 7497 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7498 sizeof(struct sockaddr_in6)) { 7499 V_pfkeystat.out_invaddr++; 7500 error = EINVAL; 7501 goto senderror; 7502 } 7503 break; 7504 default: 7505 ipseclog((LOG_DEBUG, "%s: unsupported address family\n", 7506 __func__)); 7507 V_pfkeystat.out_invaddr++; 7508 error = EAFNOSUPPORT; 7509 goto senderror; 7510 } 7511 7512 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7513 case AF_INET: 7514 plen = sizeof(struct in_addr) << 3; 7515 break; 7516 case AF_INET6: 7517 plen = sizeof(struct in6_addr) << 3; 7518 break; 7519 default: 7520 plen = 0; /*fool gcc*/ 7521 break; 7522 } 7523 7524 /* check max prefix length */ 7525 if (src0->sadb_address_prefixlen > plen || 7526 dst0->sadb_address_prefixlen > plen) { 7527 ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n", 7528 __func__)); 7529 V_pfkeystat.out_invaddr++; 7530 error = EINVAL; 7531 goto senderror; 7532 } 7533 7534 /* 7535 * prefixlen == 0 is valid because there can be a case when 7536 * all addresses are matched. 7537 */ 7538 } 7539 7540 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) || 7541 key_typesw[msg->sadb_msg_type] == NULL) { 7542 V_pfkeystat.out_invmsgtype++; 7543 error = EINVAL; 7544 goto senderror; 7545 } 7546 7547 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh); 7548 7549 senderror: 7550 msg->sadb_msg_errno = error; 7551 return key_sendup_mbuf(so, m, target); 7552 } 7553 7554 static int 7555 key_senderror(so, m, code) 7556 struct socket *so; 7557 struct mbuf *m; 7558 int code; 7559 { 7560 struct sadb_msg *msg; 7561 7562 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 7563 ("mbuf too small, len %u", m->m_len)); 7564 7565 msg = mtod(m, struct sadb_msg *); 7566 msg->sadb_msg_errno = code; 7567 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 7568 } 7569 7570 /* 7571 * set the pointer to each header into message buffer. 7572 * m will be freed on error. 7573 * XXX larger-than-MCLBYTES extension? 7574 */ 7575 static int 7576 key_align(m, mhp) 7577 struct mbuf *m; 7578 struct sadb_msghdr *mhp; 7579 { 7580 struct mbuf *n; 7581 struct sadb_ext *ext; 7582 size_t off, end; 7583 int extlen; 7584 int toff; 7585 7586 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7587 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7588 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 7589 ("mbuf too small, len %u", m->m_len)); 7590 7591 /* initialize */ 7592 bzero(mhp, sizeof(*mhp)); 7593 7594 mhp->msg = mtod(m, struct sadb_msg *); 7595 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */ 7596 7597 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7598 extlen = end; /*just in case extlen is not updated*/ 7599 for (off = sizeof(struct sadb_msg); off < end; off += extlen) { 7600 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); 7601 if (!n) { 7602 /* m is already freed */ 7603 return ENOBUFS; 7604 } 7605 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 7606 7607 /* set pointer */ 7608 switch (ext->sadb_ext_type) { 7609 case SADB_EXT_SA: 7610 case SADB_EXT_ADDRESS_SRC: 7611 case SADB_EXT_ADDRESS_DST: 7612 case SADB_EXT_ADDRESS_PROXY: 7613 case SADB_EXT_LIFETIME_CURRENT: 7614 case SADB_EXT_LIFETIME_HARD: 7615 case SADB_EXT_LIFETIME_SOFT: 7616 case SADB_EXT_KEY_AUTH: 7617 case SADB_EXT_KEY_ENCRYPT: 7618 case SADB_EXT_IDENTITY_SRC: 7619 case SADB_EXT_IDENTITY_DST: 7620 case SADB_EXT_SENSITIVITY: 7621 case SADB_EXT_PROPOSAL: 7622 case SADB_EXT_SUPPORTED_AUTH: 7623 case SADB_EXT_SUPPORTED_ENCRYPT: 7624 case SADB_EXT_SPIRANGE: 7625 case SADB_X_EXT_POLICY: 7626 case SADB_X_EXT_SA2: 7627 #ifdef IPSEC_NAT_T 7628 case SADB_X_EXT_NAT_T_TYPE: 7629 case SADB_X_EXT_NAT_T_SPORT: 7630 case SADB_X_EXT_NAT_T_DPORT: 7631 case SADB_X_EXT_NAT_T_OAI: 7632 case SADB_X_EXT_NAT_T_OAR: 7633 case SADB_X_EXT_NAT_T_FRAG: 7634 #endif 7635 /* duplicate check */ 7636 /* 7637 * XXX Are there duplication payloads of either 7638 * KEY_AUTH or KEY_ENCRYPT ? 7639 */ 7640 if (mhp->ext[ext->sadb_ext_type] != NULL) { 7641 ipseclog((LOG_DEBUG, "%s: duplicate ext_type " 7642 "%u\n", __func__, ext->sadb_ext_type)); 7643 m_freem(m); 7644 V_pfkeystat.out_dupext++; 7645 return EINVAL; 7646 } 7647 break; 7648 default: 7649 ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n", 7650 __func__, ext->sadb_ext_type)); 7651 m_freem(m); 7652 V_pfkeystat.out_invexttype++; 7653 return EINVAL; 7654 } 7655 7656 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); 7657 7658 if (key_validate_ext(ext, extlen)) { 7659 m_freem(m); 7660 V_pfkeystat.out_invlen++; 7661 return EINVAL; 7662 } 7663 7664 n = m_pulldown(m, off, extlen, &toff); 7665 if (!n) { 7666 /* m is already freed */ 7667 return ENOBUFS; 7668 } 7669 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 7670 7671 mhp->ext[ext->sadb_ext_type] = ext; 7672 mhp->extoff[ext->sadb_ext_type] = off; 7673 mhp->extlen[ext->sadb_ext_type] = extlen; 7674 } 7675 7676 if (off != end) { 7677 m_freem(m); 7678 V_pfkeystat.out_invlen++; 7679 return EINVAL; 7680 } 7681 7682 return 0; 7683 } 7684 7685 static int 7686 key_validate_ext(ext, len) 7687 const struct sadb_ext *ext; 7688 int len; 7689 { 7690 const struct sockaddr *sa; 7691 enum { NONE, ADDR } checktype = NONE; 7692 int baselen = 0; 7693 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); 7694 7695 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) 7696 return EINVAL; 7697 7698 /* if it does not match minimum/maximum length, bail */ 7699 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) || 7700 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0])) 7701 return EINVAL; 7702 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) 7703 return EINVAL; 7704 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) 7705 return EINVAL; 7706 7707 /* more checks based on sadb_ext_type XXX need more */ 7708 switch (ext->sadb_ext_type) { 7709 case SADB_EXT_ADDRESS_SRC: 7710 case SADB_EXT_ADDRESS_DST: 7711 case SADB_EXT_ADDRESS_PROXY: 7712 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); 7713 checktype = ADDR; 7714 break; 7715 case SADB_EXT_IDENTITY_SRC: 7716 case SADB_EXT_IDENTITY_DST: 7717 if (((const struct sadb_ident *)ext)->sadb_ident_type == 7718 SADB_X_IDENTTYPE_ADDR) { 7719 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); 7720 checktype = ADDR; 7721 } else 7722 checktype = NONE; 7723 break; 7724 default: 7725 checktype = NONE; 7726 break; 7727 } 7728 7729 switch (checktype) { 7730 case NONE: 7731 break; 7732 case ADDR: 7733 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); 7734 if (len < baselen + sal) 7735 return EINVAL; 7736 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) 7737 return EINVAL; 7738 break; 7739 } 7740 7741 return 0; 7742 } 7743 7744 void 7745 key_init(void) 7746 { 7747 int i; 7748 7749 for (i = 0; i < IPSEC_DIR_MAX; i++) 7750 LIST_INIT(&V_sptree[i]); 7751 7752 LIST_INIT(&V_sahtree); 7753 7754 for (i = 0; i <= SADB_SATYPE_MAX; i++) 7755 LIST_INIT(&V_regtree[i]); 7756 7757 LIST_INIT(&V_acqtree); 7758 LIST_INIT(&V_spacqtree); 7759 7760 /* system default */ 7761 V_ip4_def_policy.policy = IPSEC_POLICY_NONE; 7762 V_ip4_def_policy.refcnt++; /*never reclaim this*/ 7763 7764 if (!IS_DEFAULT_VNET(curvnet)) 7765 return; 7766 7767 SPTREE_LOCK_INIT(); 7768 REGTREE_LOCK_INIT(); 7769 SAHTREE_LOCK_INIT(); 7770 ACQ_LOCK_INIT(); 7771 SPACQ_LOCK_INIT(); 7772 7773 #ifndef IPSEC_DEBUG2 7774 timeout((void *)key_timehandler, (void *)0, hz); 7775 #endif /*IPSEC_DEBUG2*/ 7776 7777 /* initialize key statistics */ 7778 keystat.getspi_count = 1; 7779 7780 printf("IPsec: Initialized Security Association Processing.\n"); 7781 } 7782 7783 #ifdef VIMAGE 7784 void 7785 key_destroy(void) 7786 { 7787 struct secpolicy *sp, *nextsp; 7788 struct secacq *acq, *nextacq; 7789 struct secspacq *spacq, *nextspacq; 7790 struct secashead *sah, *nextsah; 7791 struct secreg *reg; 7792 int i; 7793 7794 SPTREE_LOCK(); 7795 for (i = 0; i < IPSEC_DIR_MAX; i++) { 7796 for (sp = LIST_FIRST(&V_sptree[i]); 7797 sp != NULL; sp = nextsp) { 7798 nextsp = LIST_NEXT(sp, chain); 7799 if (__LIST_CHAINED(sp)) { 7800 LIST_REMOVE(sp, chain); 7801 free(sp, M_IPSEC_SP); 7802 } 7803 } 7804 } 7805 SPTREE_UNLOCK(); 7806 7807 SAHTREE_LOCK(); 7808 for (sah = LIST_FIRST(&V_sahtree); sah != NULL; sah = nextsah) { 7809 nextsah = LIST_NEXT(sah, chain); 7810 if (__LIST_CHAINED(sah)) { 7811 LIST_REMOVE(sah, chain); 7812 free(sah, M_IPSEC_SAH); 7813 } 7814 } 7815 SAHTREE_UNLOCK(); 7816 7817 REGTREE_LOCK(); 7818 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 7819 LIST_FOREACH(reg, &V_regtree[i], chain) { 7820 if (__LIST_CHAINED(reg)) { 7821 LIST_REMOVE(reg, chain); 7822 free(reg, M_IPSEC_SAR); 7823 break; 7824 } 7825 } 7826 } 7827 REGTREE_UNLOCK(); 7828 7829 ACQ_LOCK(); 7830 for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) { 7831 nextacq = LIST_NEXT(acq, chain); 7832 if (__LIST_CHAINED(acq)) { 7833 LIST_REMOVE(acq, chain); 7834 free(acq, M_IPSEC_SAQ); 7835 } 7836 } 7837 ACQ_UNLOCK(); 7838 7839 SPACQ_LOCK(); 7840 for (spacq = LIST_FIRST(&V_spacqtree); spacq != NULL; 7841 spacq = nextspacq) { 7842 nextspacq = LIST_NEXT(spacq, chain); 7843 if (__LIST_CHAINED(spacq)) { 7844 LIST_REMOVE(spacq, chain); 7845 free(spacq, M_IPSEC_SAQ); 7846 } 7847 } 7848 SPACQ_UNLOCK(); 7849 } 7850 #endif 7851 7852 /* 7853 * XXX: maybe This function is called after INBOUND IPsec processing. 7854 * 7855 * Special check for tunnel-mode packets. 7856 * We must make some checks for consistency between inner and outer IP header. 7857 * 7858 * xxx more checks to be provided 7859 */ 7860 int 7861 key_checktunnelsanity(sav, family, src, dst) 7862 struct secasvar *sav; 7863 u_int family; 7864 caddr_t src; 7865 caddr_t dst; 7866 { 7867 IPSEC_ASSERT(sav->sah != NULL, ("null SA header")); 7868 7869 /* XXX: check inner IP header */ 7870 7871 return 1; 7872 } 7873 7874 /* record data transfer on SA, and update timestamps */ 7875 void 7876 key_sa_recordxfer(sav, m) 7877 struct secasvar *sav; 7878 struct mbuf *m; 7879 { 7880 IPSEC_ASSERT(sav != NULL, ("Null secasvar")); 7881 IPSEC_ASSERT(m != NULL, ("Null mbuf")); 7882 if (!sav->lft_c) 7883 return; 7884 7885 /* 7886 * XXX Currently, there is a difference of bytes size 7887 * between inbound and outbound processing. 7888 */ 7889 sav->lft_c->bytes += m->m_pkthdr.len; 7890 /* to check bytes lifetime is done in key_timehandler(). */ 7891 7892 /* 7893 * We use the number of packets as the unit of 7894 * allocations. We increment the variable 7895 * whenever {esp,ah}_{in,out}put is called. 7896 */ 7897 sav->lft_c->allocations++; 7898 /* XXX check for expires? */ 7899 7900 /* 7901 * NOTE: We record CURRENT usetime by using wall clock, 7902 * in seconds. HARD and SOFT lifetime are measured by the time 7903 * difference (again in seconds) from usetime. 7904 * 7905 * usetime 7906 * v expire expire 7907 * -----+-----+--------+---> t 7908 * <--------------> HARD 7909 * <-----> SOFT 7910 */ 7911 sav->lft_c->usetime = time_second; 7912 /* XXX check for expires? */ 7913 7914 return; 7915 } 7916 7917 /* dumb version */ 7918 void 7919 key_sa_routechange(dst) 7920 struct sockaddr *dst; 7921 { 7922 struct secashead *sah; 7923 struct route *ro; 7924 7925 SAHTREE_LOCK(); 7926 LIST_FOREACH(sah, &V_sahtree, chain) { 7927 ro = &sah->sa_route; 7928 if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len 7929 && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) { 7930 RTFREE(ro->ro_rt); 7931 ro->ro_rt = (struct rtentry *)NULL; 7932 } 7933 } 7934 SAHTREE_UNLOCK(); 7935 } 7936 7937 static void 7938 key_sa_chgstate(struct secasvar *sav, u_int8_t state) 7939 { 7940 IPSEC_ASSERT(sav != NULL, ("NULL sav")); 7941 SAHTREE_LOCK_ASSERT(); 7942 7943 if (sav->state != state) { 7944 if (__LIST_CHAINED(sav)) 7945 LIST_REMOVE(sav, chain); 7946 sav->state = state; 7947 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain); 7948 } 7949 } 7950 7951 void 7952 key_sa_stir_iv(sav) 7953 struct secasvar *sav; 7954 { 7955 7956 IPSEC_ASSERT(sav->iv != NULL, ("null IV")); 7957 key_randomfill(sav->iv, sav->ivlen); 7958 } 7959 7960 /* XXX too much? */ 7961 static struct mbuf * 7962 key_alloc_mbuf(l) 7963 int l; 7964 { 7965 struct mbuf *m = NULL, *n; 7966 int len, t; 7967 7968 len = l; 7969 while (len > 0) { 7970 MGET(n, M_DONTWAIT, MT_DATA); 7971 if (n && len > MLEN) 7972 MCLGET(n, M_DONTWAIT); 7973 if (!n) { 7974 m_freem(m); 7975 return NULL; 7976 } 7977 7978 n->m_next = NULL; 7979 n->m_len = 0; 7980 n->m_len = M_TRAILINGSPACE(n); 7981 /* use the bottom of mbuf, hoping we can prepend afterwards */ 7982 if (n->m_len > len) { 7983 t = (n->m_len - len) & ~(sizeof(long) - 1); 7984 n->m_data += t; 7985 n->m_len = len; 7986 } 7987 7988 len -= n->m_len; 7989 7990 if (m) 7991 m_cat(m, n); 7992 else 7993 m = n; 7994 } 7995 7996 return m; 7997 } 7998 7999 /* 8000 * Take one of the kernel's security keys and convert it into a PF_KEY 8001 * structure within an mbuf, suitable for sending up to a waiting 8002 * application in user land. 8003 * 8004 * IN: 8005 * src: A pointer to a kernel security key. 8006 * exttype: Which type of key this is. Refer to the PF_KEY data structures. 8007 * OUT: 8008 * a valid mbuf or NULL indicating an error 8009 * 8010 */ 8011 8012 static struct mbuf * 8013 key_setkey(struct seckey *src, u_int16_t exttype) 8014 { 8015 struct mbuf *m; 8016 struct sadb_key *p; 8017 int len; 8018 8019 if (src == NULL) 8020 return NULL; 8021 8022 len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src)); 8023 m = key_alloc_mbuf(len); 8024 if (m == NULL) 8025 return NULL; 8026 p = mtod(m, struct sadb_key *); 8027 bzero(p, len); 8028 p->sadb_key_len = PFKEY_UNIT64(len); 8029 p->sadb_key_exttype = exttype; 8030 p->sadb_key_bits = src->bits; 8031 bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src)); 8032 8033 return m; 8034 } 8035 8036 /* 8037 * Take one of the kernel's lifetime data structures and convert it 8038 * into a PF_KEY structure within an mbuf, suitable for sending up to 8039 * a waiting application in user land. 8040 * 8041 * IN: 8042 * src: A pointer to a kernel lifetime structure. 8043 * exttype: Which type of lifetime this is. Refer to the PF_KEY 8044 * data structures for more information. 8045 * OUT: 8046 * a valid mbuf or NULL indicating an error 8047 * 8048 */ 8049 8050 static struct mbuf * 8051 key_setlifetime(struct seclifetime *src, u_int16_t exttype) 8052 { 8053 struct mbuf *m = NULL; 8054 struct sadb_lifetime *p; 8055 int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime)); 8056 8057 if (src == NULL) 8058 return NULL; 8059 8060 m = key_alloc_mbuf(len); 8061 if (m == NULL) 8062 return m; 8063 p = mtod(m, struct sadb_lifetime *); 8064 8065 bzero(p, len); 8066 p->sadb_lifetime_len = PFKEY_UNIT64(len); 8067 p->sadb_lifetime_exttype = exttype; 8068 p->sadb_lifetime_allocations = src->allocations; 8069 p->sadb_lifetime_bytes = src->bytes; 8070 p->sadb_lifetime_addtime = src->addtime; 8071 p->sadb_lifetime_usetime = src->usetime; 8072 8073 return m; 8074 8075 } 8076