xref: /freebsd/sys/netipsec/key.c (revision d2387d42b8da231a5b95cbc313825fb2aadf26f6)
1 /*	$FreeBSD$	*/
2 /*	$KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $	*/
3 
4 /*
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * This code is referd to RFC 2367
35  */
36 
37 #include "opt_inet.h"
38 #include "opt_inet6.h"
39 #include "opt_ipsec.h"
40 
41 #include <sys/types.h>
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/mbuf.h>
48 #include <sys/domain.h>
49 #include <sys/protosw.h>
50 #include <sys/malloc.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/sysctl.h>
54 #include <sys/errno.h>
55 #include <sys/proc.h>
56 #include <sys/queue.h>
57 #include <sys/syslog.h>
58 
59 #include <net/if.h>
60 #include <net/route.h>
61 #include <net/raw_cb.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/ip.h>
66 #include <netinet/in_var.h>
67 
68 #ifdef INET6
69 #include <netinet/ip6.h>
70 #include <netinet6/in6_var.h>
71 #include <netinet6/ip6_var.h>
72 #endif /* INET6 */
73 
74 #ifdef INET
75 #include <netinet/in_pcb.h>
76 #endif
77 #ifdef INET6
78 #include <netinet6/in6_pcb.h>
79 #endif /* INET6 */
80 
81 #include <net/pfkeyv2.h>
82 #include <netipsec/keydb.h>
83 #include <netipsec/key.h>
84 #include <netipsec/keysock.h>
85 #include <netipsec/key_debug.h>
86 
87 #include <netipsec/ipsec.h>
88 #ifdef INET6
89 #include <netipsec/ipsec6.h>
90 #endif
91 
92 #include <netipsec/xform.h>
93 
94 #include <machine/stdarg.h>
95 
96 /* randomness */
97 #include <sys/random.h>
98 
99 #define FULLMASK	0xff
100 #define	_BITS(bytes)	((bytes) << 3)
101 
102 /*
103  * Note on SA reference counting:
104  * - SAs that are not in DEAD state will have (total external reference + 1)
105  *   following value in reference count field.  they cannot be freed and are
106  *   referenced from SA header.
107  * - SAs that are in DEAD state will have (total external reference)
108  *   in reference count field.  they are ready to be freed.  reference from
109  *   SA header will be removed in key_delsav(), when the reference count
110  *   field hits 0 (= no external reference other than from SA header.
111  */
112 
113 u_int32_t key_debug_level = 0;
114 static u_int key_spi_trycnt = 1000;
115 static u_int32_t key_spi_minval = 0x100;
116 static u_int32_t key_spi_maxval = 0x0fffffff;	/* XXX */
117 static u_int32_t policy_id = 0;
118 static u_int key_int_random = 60;	/*interval to initialize randseed,1(m)*/
119 static u_int key_larval_lifetime = 30;	/* interval to expire acquiring, 30(s)*/
120 static int key_blockacq_count = 10;	/* counter for blocking SADB_ACQUIRE.*/
121 static int key_blockacq_lifetime = 20;	/* lifetime for blocking SADB_ACQUIRE.*/
122 static int key_preferred_oldsa = 1;	/* preferred old sa rather than new sa.*/
123 
124 static u_int32_t acq_seq = 0;
125 
126 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX];	/* SPD */
127 static struct mtx sptree_lock;
128 #define	SPTREE_LOCK_INIT() \
129 	mtx_init(&sptree_lock, "sptree", \
130 		"fast ipsec security policy database", MTX_DEF)
131 #define	SPTREE_LOCK_DESTROY()	mtx_destroy(&sptree_lock)
132 #define	SPTREE_LOCK()		mtx_lock(&sptree_lock)
133 #define	SPTREE_UNLOCK()	mtx_unlock(&sptree_lock)
134 #define	SPTREE_LOCK_ASSERT()	mtx_assert(&sptree_lock, MA_OWNED)
135 
136 static LIST_HEAD(_sahtree, secashead) sahtree;			/* SAD */
137 static struct mtx sahtree_lock;
138 #define	SAHTREE_LOCK_INIT() \
139 	mtx_init(&sahtree_lock, "sahtree", \
140 		"fast ipsec security association database", MTX_DEF)
141 #define	SAHTREE_LOCK_DESTROY()	mtx_destroy(&sahtree_lock)
142 #define	SAHTREE_LOCK()		mtx_lock(&sahtree_lock)
143 #define	SAHTREE_UNLOCK()	mtx_unlock(&sahtree_lock)
144 #define	SAHTREE_LOCK_ASSERT()	mtx_assert(&sahtree_lock, MA_OWNED)
145 
146 							/* registed list */
147 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1];
148 static struct mtx regtree_lock;
149 #define	REGTREE_LOCK_INIT() \
150 	mtx_init(&regtree_lock, "regtree", "fast ipsec regtree", MTX_DEF)
151 #define	REGTREE_LOCK_DESTROY()	mtx_destroy(&regtree_lock)
152 #define	REGTREE_LOCK()		mtx_lock(&regtree_lock)
153 #define	REGTREE_UNLOCK()	mtx_unlock(&regtree_lock)
154 #define	REGTREE_LOCK_ASSERT()	mtx_assert(&regtree_lock, MA_OWNED)
155 
156 static LIST_HEAD(_acqtree, secacq) acqtree;		/* acquiring list */
157 static struct mtx acq_lock;
158 #define	ACQ_LOCK_INIT() \
159 	mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF)
160 #define	ACQ_LOCK_DESTROY()	mtx_destroy(&acq_lock)
161 #define	ACQ_LOCK()		mtx_lock(&acq_lock)
162 #define	ACQ_UNLOCK()		mtx_unlock(&acq_lock)
163 #define	ACQ_LOCK_ASSERT()	mtx_assert(&acq_lock, MA_OWNED)
164 
165 static LIST_HEAD(_spacqtree, secspacq) spacqtree;	/* SP acquiring list */
166 static struct mtx spacq_lock;
167 #define	SPACQ_LOCK_INIT() \
168 	mtx_init(&spacq_lock, "spacqtree", \
169 		"fast ipsec security policy acquire list", MTX_DEF)
170 #define	SPACQ_LOCK_DESTROY()	mtx_destroy(&spacq_lock)
171 #define	SPACQ_LOCK()		mtx_lock(&spacq_lock)
172 #define	SPACQ_UNLOCK()		mtx_unlock(&spacq_lock)
173 #define	SPACQ_LOCK_ASSERT()	mtx_assert(&spacq_lock, MA_OWNED)
174 
175 /* search order for SAs */
176 static u_int saorder_state_valid[] = {
177 	SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
178 	/*
179 	 * This order is important because we must select the oldest SA
180 	 * for outbound processing.  For inbound, This is not important.
181 	 */
182 };
183 static u_int saorder_state_alive[] = {
184 	/* except DEAD */
185 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
186 };
187 static u_int saorder_state_any[] = {
188 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
189 	SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
190 };
191 
192 static const int minsize[] = {
193 	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
194 	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
195 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
196 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
197 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
198 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_SRC */
199 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_DST */
200 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_PROXY */
201 	sizeof(struct sadb_key),	/* SADB_EXT_KEY_AUTH */
202 	sizeof(struct sadb_key),	/* SADB_EXT_KEY_ENCRYPT */
203 	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_SRC */
204 	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_DST */
205 	sizeof(struct sadb_sens),	/* SADB_EXT_SENSITIVITY */
206 	sizeof(struct sadb_prop),	/* SADB_EXT_PROPOSAL */
207 	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_AUTH */
208 	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_ENCRYPT */
209 	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
210 	0,				/* SADB_X_EXT_KMPRIVATE */
211 	sizeof(struct sadb_x_policy),	/* SADB_X_EXT_POLICY */
212 	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
213 };
214 static const int maxsize[] = {
215 	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
216 	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
217 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
218 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
219 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
220 	0,				/* SADB_EXT_ADDRESS_SRC */
221 	0,				/* SADB_EXT_ADDRESS_DST */
222 	0,				/* SADB_EXT_ADDRESS_PROXY */
223 	0,				/* SADB_EXT_KEY_AUTH */
224 	0,				/* SADB_EXT_KEY_ENCRYPT */
225 	0,				/* SADB_EXT_IDENTITY_SRC */
226 	0,				/* SADB_EXT_IDENTITY_DST */
227 	0,				/* SADB_EXT_SENSITIVITY */
228 	0,				/* SADB_EXT_PROPOSAL */
229 	0,				/* SADB_EXT_SUPPORTED_AUTH */
230 	0,				/* SADB_EXT_SUPPORTED_ENCRYPT */
231 	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
232 	0,				/* SADB_X_EXT_KMPRIVATE */
233 	0,				/* SADB_X_EXT_POLICY */
234 	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
235 };
236 
237 static int ipsec_esp_keymin = 256;
238 static int ipsec_esp_auth = 0;
239 static int ipsec_ah_keymin = 128;
240 
241 #ifdef SYSCTL_DECL
242 SYSCTL_DECL(_net_key);
243 #endif
244 
245 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL,	debug,	CTLFLAG_RW, \
246 	&key_debug_level,	0,	"");
247 
248 /* max count of trial for the decision of spi value */
249 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY,		spi_trycnt,	CTLFLAG_RW, \
250 	&key_spi_trycnt,	0,	"");
251 
252 /* minimum spi value to allocate automatically. */
253 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE,	spi_minval,	CTLFLAG_RW, \
254 	&key_spi_minval,	0,	"");
255 
256 /* maximun spi value to allocate automatically. */
257 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE,	spi_maxval,	CTLFLAG_RW, \
258 	&key_spi_maxval,	0,	"");
259 
260 /* interval to initialize randseed */
261 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT,	int_random,	CTLFLAG_RW, \
262 	&key_int_random,	0,	"");
263 
264 /* lifetime for larval SA */
265 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME,	larval_lifetime, CTLFLAG_RW, \
266 	&key_larval_lifetime,	0,	"");
267 
268 /* counter for blocking to send SADB_ACQUIRE to IKEd */
269 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT,	blockacq_count,	CTLFLAG_RW, \
270 	&key_blockacq_count,	0,	"");
271 
272 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
273 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME,	blockacq_lifetime, CTLFLAG_RW, \
274 	&key_blockacq_lifetime,	0,	"");
275 
276 /* ESP auth */
277 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH,	esp_auth, CTLFLAG_RW, \
278 	&ipsec_esp_auth,	0,	"");
279 
280 /* minimum ESP key length */
281 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN,	esp_keymin, CTLFLAG_RW, \
282 	&ipsec_esp_keymin,	0,	"");
283 
284 /* minimum AH key length */
285 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN,	ah_keymin, CTLFLAG_RW, \
286 	&ipsec_ah_keymin,	0,	"");
287 
288 /* perfered old SA rather than new SA */
289 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA,	preferred_oldsa, CTLFLAG_RW,\
290 	&key_preferred_oldsa,	0,	"");
291 
292 #define __LIST_CHAINED(elm) \
293 	(!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
294 #define LIST_INSERT_TAIL(head, elm, type, field) \
295 do {\
296 	struct type *curelm = LIST_FIRST(head); \
297 	if (curelm == NULL) {\
298 		LIST_INSERT_HEAD(head, elm, field); \
299 	} else { \
300 		while (LIST_NEXT(curelm, field)) \
301 			curelm = LIST_NEXT(curelm, field);\
302 		LIST_INSERT_AFTER(curelm, elm, field);\
303 	}\
304 } while (0)
305 
306 #define KEY_CHKSASTATE(head, sav, name) \
307 do { \
308 	if ((head) != (sav)) {						\
309 		ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \
310 			(name), (head), (sav)));			\
311 		continue;						\
312 	}								\
313 } while (0)
314 
315 #define KEY_CHKSPDIR(head, sp, name) \
316 do { \
317 	if ((head) != (sp)) {						\
318 		ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \
319 			"anyway continue.\n",				\
320 			(name), (head), (sp)));				\
321 	}								\
322 } while (0)
323 
324 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association");
325 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head");
326 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy");
327 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request");
328 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous");
329 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire");
330 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire");
331 
332 /*
333  * set parameters into secpolicyindex buffer.
334  * Must allocate secpolicyindex buffer passed to this function.
335  */
336 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
337 do { \
338 	bzero((idx), sizeof(struct secpolicyindex));                         \
339 	(idx)->dir = (_dir);                                                 \
340 	(idx)->prefs = (ps);                                                 \
341 	(idx)->prefd = (pd);                                                 \
342 	(idx)->ul_proto = (ulp);                                             \
343 	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
344 	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
345 } while (0)
346 
347 /*
348  * set parameters into secasindex buffer.
349  * Must allocate secasindex buffer before calling this function.
350  */
351 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \
352 do { \
353 	bzero((idx), sizeof(struct secasindex));                             \
354 	(idx)->proto = (p);                                                  \
355 	(idx)->mode = (m);                                                   \
356 	(idx)->reqid = (r);                                                  \
357 	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
358 	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
359 } while (0)
360 
361 /* key statistics */
362 struct _keystat {
363 	u_long getspi_count; /* the avarage of count to try to get new SPI */
364 } keystat;
365 
366 struct sadb_msghdr {
367 	struct sadb_msg *msg;
368 	struct sadb_ext *ext[SADB_EXT_MAX + 1];
369 	int extoff[SADB_EXT_MAX + 1];
370 	int extlen[SADB_EXT_MAX + 1];
371 };
372 
373 static struct secasvar *key_allocsa_policy __P((const struct secasindex *));
374 static void key_freesp_so __P((struct secpolicy **));
375 static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int));
376 static void key_delsp __P((struct secpolicy *));
377 static struct secpolicy *key_getsp __P((struct secpolicyindex *));
378 static void _key_delsp(struct secpolicy *sp);
379 static struct secpolicy *key_getspbyid __P((u_int32_t));
380 static u_int32_t key_newreqid __P((void));
381 static struct mbuf *key_gather_mbuf __P((struct mbuf *,
382 	const struct sadb_msghdr *, int, int, ...));
383 static int key_spdadd __P((struct socket *, struct mbuf *,
384 	const struct sadb_msghdr *));
385 static u_int32_t key_getnewspid __P((void));
386 static int key_spddelete __P((struct socket *, struct mbuf *,
387 	const struct sadb_msghdr *));
388 static int key_spddelete2 __P((struct socket *, struct mbuf *,
389 	const struct sadb_msghdr *));
390 static int key_spdget __P((struct socket *, struct mbuf *,
391 	const struct sadb_msghdr *));
392 static int key_spdflush __P((struct socket *, struct mbuf *,
393 	const struct sadb_msghdr *));
394 static int key_spddump __P((struct socket *, struct mbuf *,
395 	const struct sadb_msghdr *));
396 static struct mbuf *key_setdumpsp __P((struct secpolicy *,
397 	u_int8_t, u_int32_t, u_int32_t));
398 static u_int key_getspreqmsglen __P((struct secpolicy *));
399 static int key_spdexpire __P((struct secpolicy *));
400 static struct secashead *key_newsah __P((struct secasindex *));
401 static void key_delsah __P((struct secashead *));
402 static struct secasvar *key_newsav __P((struct mbuf *,
403 	const struct sadb_msghdr *, struct secashead *, int *,
404 	const char*, int));
405 #define	KEY_NEWSAV(m, sadb, sah, e)				\
406 	key_newsav(m, sadb, sah, e, __FILE__, __LINE__)
407 static void key_delsav __P((struct secasvar *));
408 static struct secashead *key_getsah __P((struct secasindex *));
409 static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t));
410 static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t));
411 static int key_setsaval __P((struct secasvar *, struct mbuf *,
412 	const struct sadb_msghdr *));
413 static int key_mature __P((struct secasvar *));
414 static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t,
415 	u_int8_t, u_int32_t, u_int32_t));
416 static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t,
417 	u_int32_t, pid_t, u_int16_t));
418 static struct mbuf *key_setsadbsa __P((struct secasvar *));
419 static struct mbuf *key_setsadbaddr __P((u_int16_t,
420 	const struct sockaddr *, u_int8_t, u_int16_t));
421 static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t));
422 static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t,
423 	u_int32_t));
424 static void *key_dup(const void *, u_int, struct malloc_type *);
425 #ifdef INET6
426 static int key_ismyaddr6 __P((struct sockaddr_in6 *));
427 #endif
428 
429 /* flags for key_cmpsaidx() */
430 #define CMP_HEAD	1	/* protocol, addresses. */
431 #define CMP_MODE_REQID	2	/* additionally HEAD, reqid, mode. */
432 #define CMP_REQID	3	/* additionally HEAD, reaid. */
433 #define CMP_EXACTLY	4	/* all elements. */
434 static int key_cmpsaidx
435 	__P((const struct secasindex *, const struct secasindex *, int));
436 
437 static int key_cmpspidx_exactly
438 	__P((struct secpolicyindex *, struct secpolicyindex *));
439 static int key_cmpspidx_withmask
440 	__P((struct secpolicyindex *, struct secpolicyindex *));
441 static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int));
442 static int key_bbcmp __P((const void *, const void *, u_int));
443 static u_int16_t key_satype2proto __P((u_int8_t));
444 static u_int8_t key_proto2satype __P((u_int16_t));
445 
446 static int key_getspi __P((struct socket *, struct mbuf *,
447 	const struct sadb_msghdr *));
448 static u_int32_t key_do_getnewspi __P((struct sadb_spirange *,
449 					struct secasindex *));
450 static int key_update __P((struct socket *, struct mbuf *,
451 	const struct sadb_msghdr *));
452 #ifdef IPSEC_DOSEQCHECK
453 static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t));
454 #endif
455 static int key_add __P((struct socket *, struct mbuf *,
456 	const struct sadb_msghdr *));
457 static int key_setident __P((struct secashead *, struct mbuf *,
458 	const struct sadb_msghdr *));
459 static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *,
460 	const struct sadb_msghdr *));
461 static int key_delete __P((struct socket *, struct mbuf *,
462 	const struct sadb_msghdr *));
463 static int key_get __P((struct socket *, struct mbuf *,
464 	const struct sadb_msghdr *));
465 
466 static void key_getcomb_setlifetime __P((struct sadb_comb *));
467 static struct mbuf *key_getcomb_esp __P((void));
468 static struct mbuf *key_getcomb_ah __P((void));
469 static struct mbuf *key_getcomb_ipcomp __P((void));
470 static struct mbuf *key_getprop __P((const struct secasindex *));
471 
472 static int key_acquire __P((const struct secasindex *, struct secpolicy *));
473 static struct secacq *key_newacq __P((const struct secasindex *));
474 static struct secacq *key_getacq __P((const struct secasindex *));
475 static struct secacq *key_getacqbyseq __P((u_int32_t));
476 static struct secspacq *key_newspacq __P((struct secpolicyindex *));
477 static struct secspacq *key_getspacq __P((struct secpolicyindex *));
478 static int key_acquire2 __P((struct socket *, struct mbuf *,
479 	const struct sadb_msghdr *));
480 static int key_register __P((struct socket *, struct mbuf *,
481 	const struct sadb_msghdr *));
482 static int key_expire __P((struct secasvar *));
483 static int key_flush __P((struct socket *, struct mbuf *,
484 	const struct sadb_msghdr *));
485 static int key_dump __P((struct socket *, struct mbuf *,
486 	const struct sadb_msghdr *));
487 static int key_promisc __P((struct socket *, struct mbuf *,
488 	const struct sadb_msghdr *));
489 static int key_senderror __P((struct socket *, struct mbuf *, int));
490 static int key_validate_ext __P((const struct sadb_ext *, int));
491 static int key_align __P((struct mbuf *, struct sadb_msghdr *));
492 #if 0
493 static const char *key_getfqdn __P((void));
494 static const char *key_getuserfqdn __P((void));
495 #endif
496 static void key_sa_chgstate __P((struct secasvar *, u_int8_t));
497 static struct mbuf *key_alloc_mbuf __P((int));
498 
499 #define	SA_ADDREF(p) do {						\
500 	(p)->refcnt++;							\
501 	IPSEC_ASSERT((p)->refcnt != 0, ("SA refcnt overflow"));		\
502 } while (0)
503 #define	SA_DELREF(p) do {						\
504 	IPSEC_ASSERT((p)->refcnt > 0, ("SA refcnt underflow"));		\
505 	(p)->refcnt--;							\
506 } while (0)
507 
508 #define	SP_ADDREF(p) do {						\
509 	(p)->refcnt++;							\
510 	IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow"));		\
511 } while (0)
512 #define	SP_DELREF(p) do {						\
513 	IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow"));		\
514 	(p)->refcnt--;							\
515 } while (0)
516 
517 /*
518  * Return 0 when there are known to be no SP's for the specified
519  * direction.  Otherwise return 1.  This is used by IPsec code
520  * to optimize performance.
521  */
522 int
523 key_havesp(u_int dir)
524 {
525 	return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
526 		LIST_FIRST(&sptree[dir]) != NULL : 1);
527 }
528 
529 /* %%% IPsec policy management */
530 /*
531  * allocating a SP for OUTBOUND or INBOUND packet.
532  * Must call key_freesp() later.
533  * OUT:	NULL:	not found
534  *	others:	found and return the pointer.
535  */
536 struct secpolicy *
537 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag)
538 {
539 	struct secpolicy *sp;
540 
541 	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
542 	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
543 		("invalid direction %u", dir));
544 
545 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
546 		printf("DP %s from %s:%u\n", __func__, where, tag));
547 
548 	/* get a SP entry */
549 	KEYDEBUG(KEYDEBUG_IPSEC_DATA,
550 		printf("*** objects\n");
551 		kdebug_secpolicyindex(spidx));
552 
553 	SPTREE_LOCK();
554 	LIST_FOREACH(sp, &sptree[dir], chain) {
555 		KEYDEBUG(KEYDEBUG_IPSEC_DATA,
556 			printf("*** in SPD\n");
557 			kdebug_secpolicyindex(&sp->spidx));
558 
559 		if (sp->state == IPSEC_SPSTATE_DEAD)
560 			continue;
561 		if (key_cmpspidx_withmask(&sp->spidx, spidx))
562 			goto found;
563 	}
564 	sp = NULL;
565 found:
566 	if (sp) {
567 		/* sanity check */
568 		KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
569 
570 		/* found a SPD entry */
571 		sp->lastused = time_second;
572 		SP_ADDREF(sp);
573 	}
574 	SPTREE_UNLOCK();
575 
576 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
577 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
578 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
579 	return sp;
580 }
581 
582 /*
583  * allocating a SP for OUTBOUND or INBOUND packet.
584  * Must call key_freesp() later.
585  * OUT:	NULL:	not found
586  *	others:	found and return the pointer.
587  */
588 struct secpolicy *
589 key_allocsp2(u_int32_t spi,
590 	     union sockaddr_union *dst,
591 	     u_int8_t proto,
592 	     u_int dir,
593 	     const char* where, int tag)
594 {
595 	struct secpolicy *sp;
596 
597 	IPSEC_ASSERT(dst != NULL, ("null dst"));
598 	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
599 		("invalid direction %u", dir));
600 
601 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
602 		printf("DP %s from %s:%u\n", __func__, where, tag));
603 
604 	/* get a SP entry */
605 	KEYDEBUG(KEYDEBUG_IPSEC_DATA,
606 		printf("*** objects\n");
607 		printf("spi %u proto %u dir %u\n", spi, proto, dir);
608 		kdebug_sockaddr(&dst->sa));
609 
610 	SPTREE_LOCK();
611 	LIST_FOREACH(sp, &sptree[dir], chain) {
612 		KEYDEBUG(KEYDEBUG_IPSEC_DATA,
613 			printf("*** in SPD\n");
614 			kdebug_secpolicyindex(&sp->spidx));
615 
616 		if (sp->state == IPSEC_SPSTATE_DEAD)
617 			continue;
618 		/* compare simple values, then dst address */
619 		if (sp->spidx.ul_proto != proto)
620 			continue;
621 		/* NB: spi's must exist and match */
622 		if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
623 			continue;
624 		if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0)
625 			goto found;
626 	}
627 	sp = NULL;
628 found:
629 	if (sp) {
630 		/* sanity check */
631 		KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
632 
633 		/* found a SPD entry */
634 		sp->lastused = time_second;
635 		SP_ADDREF(sp);
636 	}
637 	SPTREE_UNLOCK();
638 
639 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
640 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
641 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
642 	return sp;
643 }
644 
645 /*
646  * return a policy that matches this particular inbound packet.
647  * XXX slow
648  */
649 struct secpolicy *
650 key_gettunnel(const struct sockaddr *osrc,
651 	      const struct sockaddr *odst,
652 	      const struct sockaddr *isrc,
653 	      const struct sockaddr *idst,
654 	      const char* where, int tag)
655 {
656 	struct secpolicy *sp;
657 	const int dir = IPSEC_DIR_INBOUND;
658 	struct ipsecrequest *r1, *r2, *p;
659 	struct secpolicyindex spidx;
660 
661 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
662 		printf("DP %s from %s:%u\n", __func__, where, tag));
663 
664 	if (isrc->sa_family != idst->sa_family) {
665 		ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.",
666 			__func__, isrc->sa_family, idst->sa_family));
667 		sp = NULL;
668 		goto done;
669 	}
670 
671 	SPTREE_LOCK();
672 	LIST_FOREACH(sp, &sptree[dir], chain) {
673 		if (sp->state == IPSEC_SPSTATE_DEAD)
674 			continue;
675 
676 		r1 = r2 = NULL;
677 		for (p = sp->req; p; p = p->next) {
678 			if (p->saidx.mode != IPSEC_MODE_TUNNEL)
679 				continue;
680 
681 			r1 = r2;
682 			r2 = p;
683 
684 			if (!r1) {
685 				/* here we look at address matches only */
686 				spidx = sp->spidx;
687 				if (isrc->sa_len > sizeof(spidx.src) ||
688 				    idst->sa_len > sizeof(spidx.dst))
689 					continue;
690 				bcopy(isrc, &spidx.src, isrc->sa_len);
691 				bcopy(idst, &spidx.dst, idst->sa_len);
692 				if (!key_cmpspidx_withmask(&sp->spidx, &spidx))
693 					continue;
694 			} else {
695 				if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) ||
696 				    key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0))
697 					continue;
698 			}
699 
700 			if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) ||
701 			    key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0))
702 				continue;
703 
704 			goto found;
705 		}
706 	}
707 	sp = NULL;
708 found:
709 	if (sp) {
710 		sp->lastused = time_second;
711 		SP_ADDREF(sp);
712 	}
713 	SPTREE_UNLOCK();
714 done:
715 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
716 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
717 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
718 	return sp;
719 }
720 
721 /*
722  * allocating an SA entry for an *OUTBOUND* packet.
723  * checking each request entries in SP, and acquire an SA if need.
724  * OUT:	0: there are valid requests.
725  *	ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
726  */
727 int
728 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
729 {
730 	u_int level;
731 	int error;
732 
733 	IPSEC_ASSERT(isr != NULL, ("null isr"));
734 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
735 	IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT ||
736 		saidx->mode == IPSEC_MODE_TUNNEL,
737 		("unexpected policy %u", saidx->mode));
738 
739 	/*
740 	 * XXX guard against protocol callbacks from the crypto
741 	 * thread as they reference ipsecrequest.sav which we
742 	 * temporarily null out below.  Need to rethink how we
743 	 * handle bundled SA's in the callback thread.
744 	 */
745 	IPSECREQUEST_LOCK_ASSERT(isr);
746 
747 	/* get current level */
748 	level = ipsec_get_reqlevel(isr);
749 #if 0
750 	/*
751 	 * We do allocate new SA only if the state of SA in the holder is
752 	 * SADB_SASTATE_DEAD.  The SA for outbound must be the oldest.
753 	 */
754 	if (isr->sav != NULL) {
755 		if (isr->sav->sah == NULL)
756 			panic("%s: sah is null.\n", __func__);
757 		if (isr->sav == (struct secasvar *)LIST_FIRST(
758 			    &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) {
759 			KEY_FREESAV(&isr->sav);
760 			isr->sav = NULL;
761 		}
762 	}
763 #else
764 	/*
765 	 * we free any SA stashed in the IPsec request because a different
766 	 * SA may be involved each time this request is checked, either
767 	 * because new SAs are being configured, or this request is
768 	 * associated with an unconnected datagram socket, or this request
769 	 * is associated with a system default policy.
770 	 *
771 	 * The operation may have negative impact to performance.  We may
772 	 * want to check cached SA carefully, rather than picking new SA
773 	 * every time.
774 	 */
775 	if (isr->sav != NULL) {
776 		KEY_FREESAV(&isr->sav);
777 		isr->sav = NULL;
778 	}
779 #endif
780 
781 	/*
782 	 * new SA allocation if no SA found.
783 	 * key_allocsa_policy should allocate the oldest SA available.
784 	 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
785 	 */
786 	if (isr->sav == NULL)
787 		isr->sav = key_allocsa_policy(saidx);
788 
789 	/* When there is SA. */
790 	if (isr->sav != NULL) {
791 		if (isr->sav->state != SADB_SASTATE_MATURE &&
792 		    isr->sav->state != SADB_SASTATE_DYING)
793 			return EINVAL;
794 		return 0;
795 	}
796 
797 	/* there is no SA */
798 	error = key_acquire(saidx, isr->sp);
799 	if (error != 0) {
800 		/* XXX What should I do ? */
801 		ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
802 			__func__, error));
803 		return error;
804 	}
805 
806 	if (level != IPSEC_LEVEL_REQUIRE) {
807 		/* XXX sigh, the interface to this routine is botched */
808 		IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA"));
809 		return 0;
810 	} else {
811 		return ENOENT;
812 	}
813 }
814 
815 /*
816  * allocating a SA for policy entry from SAD.
817  * NOTE: searching SAD of aliving state.
818  * OUT:	NULL:	not found.
819  *	others:	found and return the pointer.
820  */
821 static struct secasvar *
822 key_allocsa_policy(const struct secasindex *saidx)
823 {
824 	struct secashead *sah;
825 	struct secasvar *sav;
826 	u_int stateidx, state;
827 
828 	SAHTREE_LOCK();
829 	LIST_FOREACH(sah, &sahtree, chain) {
830 		if (sah->state == SADB_SASTATE_DEAD)
831 			continue;
832 		if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) {
833 			SAHTREE_UNLOCK();
834 			goto found;
835 		}
836 	}
837 	SAHTREE_UNLOCK();
838 
839 	return NULL;
840 
841     found:
842 
843 	/* search valid state */
844 	for (stateidx = 0;
845 	     stateidx < _ARRAYLEN(saorder_state_valid);
846 	     stateidx++) {
847 
848 		state = saorder_state_valid[stateidx];
849 
850 		sav = key_do_allocsa_policy(sah, state);
851 		if (sav != NULL)
852 			return sav;
853 	}
854 
855 	return NULL;
856 }
857 
858 /*
859  * searching SAD with direction, protocol, mode and state.
860  * called by key_allocsa_policy().
861  * OUT:
862  *	NULL	: not found
863  *	others	: found, pointer to a SA.
864  */
865 static struct secasvar *
866 key_do_allocsa_policy(struct secashead *sah, u_int state)
867 {
868 	struct secasvar *sav, *nextsav, *candidate, *d;
869 
870 	/* initilize */
871 	candidate = NULL;
872 
873 	SAHTREE_LOCK();
874 	for (sav = LIST_FIRST(&sah->savtree[state]);
875 	     sav != NULL;
876 	     sav = nextsav) {
877 
878 		nextsav = LIST_NEXT(sav, chain);
879 
880 		/* sanity check */
881 		KEY_CHKSASTATE(sav->state, state, __func__);
882 
883 		/* initialize */
884 		if (candidate == NULL) {
885 			candidate = sav;
886 			continue;
887 		}
888 
889 		/* Which SA is the better ? */
890 
891 		IPSEC_ASSERT(candidate->lft_c != NULL,
892 			("null candidate lifetime"));
893 		IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime"));
894 
895 		/* What the best method is to compare ? */
896 		if (key_preferred_oldsa) {
897 			if (candidate->lft_c->sadb_lifetime_addtime >
898 					sav->lft_c->sadb_lifetime_addtime) {
899 				candidate = sav;
900 			}
901 			continue;
902 			/*NOTREACHED*/
903 		}
904 
905 		/* preferred new sa rather than old sa */
906 		if (candidate->lft_c->sadb_lifetime_addtime <
907 				sav->lft_c->sadb_lifetime_addtime) {
908 			d = candidate;
909 			candidate = sav;
910 		} else
911 			d = sav;
912 
913 		/*
914 		 * prepared to delete the SA when there is more
915 		 * suitable candidate and the lifetime of the SA is not
916 		 * permanent.
917 		 */
918 		if (d->lft_c->sadb_lifetime_addtime != 0) {
919 			struct mbuf *m, *result;
920 			u_int8_t satype;
921 
922 			key_sa_chgstate(d, SADB_SASTATE_DEAD);
923 
924 			IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count"));
925 
926 			satype = key_proto2satype(d->sah->saidx.proto);
927 			if (satype == 0)
928 				goto msgfail;
929 
930 			m = key_setsadbmsg(SADB_DELETE, 0,
931 			    satype, 0, 0, d->refcnt - 1);
932 			if (!m)
933 				goto msgfail;
934 			result = m;
935 
936 			/* set sadb_address for saidx's. */
937 			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
938 				&d->sah->saidx.src.sa,
939 				d->sah->saidx.src.sa.sa_len << 3,
940 				IPSEC_ULPROTO_ANY);
941 			if (!m)
942 				goto msgfail;
943 			m_cat(result, m);
944 
945 			/* set sadb_address for saidx's. */
946 			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
947 				&d->sah->saidx.src.sa,
948 				d->sah->saidx.src.sa.sa_len << 3,
949 				IPSEC_ULPROTO_ANY);
950 			if (!m)
951 				goto msgfail;
952 			m_cat(result, m);
953 
954 			/* create SA extension */
955 			m = key_setsadbsa(d);
956 			if (!m)
957 				goto msgfail;
958 			m_cat(result, m);
959 
960 			if (result->m_len < sizeof(struct sadb_msg)) {
961 				result = m_pullup(result,
962 						sizeof(struct sadb_msg));
963 				if (result == NULL)
964 					goto msgfail;
965 			}
966 
967 			result->m_pkthdr.len = 0;
968 			for (m = result; m; m = m->m_next)
969 				result->m_pkthdr.len += m->m_len;
970 			mtod(result, struct sadb_msg *)->sadb_msg_len =
971 				PFKEY_UNIT64(result->m_pkthdr.len);
972 
973 			if (key_sendup_mbuf(NULL, result,
974 					KEY_SENDUP_REGISTERED))
975 				goto msgfail;
976 		 msgfail:
977 			KEY_FREESAV(&d);
978 		}
979 	}
980 	if (candidate) {
981 		SA_ADDREF(candidate);
982 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
983 			printf("DP %s cause refcnt++:%d SA:%p\n",
984 				__func__, candidate->refcnt, candidate));
985 	}
986 	SAHTREE_UNLOCK();
987 
988 	return candidate;
989 }
990 
991 /*
992  * allocating a usable SA entry for a *INBOUND* packet.
993  * Must call key_freesav() later.
994  * OUT: positive:	pointer to a usable sav (i.e. MATURE or DYING state).
995  *	NULL:		not found, or error occured.
996  *
997  * In the comparison, no source address is used--for RFC2401 conformance.
998  * To quote, from section 4.1:
999  *	A security association is uniquely identified by a triple consisting
1000  *	of a Security Parameter Index (SPI), an IP Destination Address, and a
1001  *	security protocol (AH or ESP) identifier.
1002  * Note that, however, we do need to keep source address in IPsec SA.
1003  * IKE specification and PF_KEY specification do assume that we
1004  * keep source address in IPsec SA.  We see a tricky situation here.
1005  */
1006 struct secasvar *
1007 key_allocsa(
1008 	union sockaddr_union *dst,
1009 	u_int proto,
1010 	u_int32_t spi,
1011 	const char* where, int tag)
1012 {
1013 	struct secashead *sah;
1014 	struct secasvar *sav;
1015 	u_int stateidx, state;
1016 
1017 	IPSEC_ASSERT(dst != NULL, ("null dst address"));
1018 
1019 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1020 		printf("DP %s from %s:%u\n", __func__, where, tag));
1021 
1022 	/*
1023 	 * searching SAD.
1024 	 * XXX: to be checked internal IP header somewhere.  Also when
1025 	 * IPsec tunnel packet is received.  But ESP tunnel mode is
1026 	 * encrypted so we can't check internal IP header.
1027 	 */
1028 	SAHTREE_LOCK();
1029 	LIST_FOREACH(sah, &sahtree, chain) {
1030 		/* search valid state */
1031 		for (stateidx = 0;
1032 		     stateidx < _ARRAYLEN(saorder_state_valid);
1033 		     stateidx++) {
1034 			state = saorder_state_valid[stateidx];
1035 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
1036 				/* sanity check */
1037 				KEY_CHKSASTATE(sav->state, state, __func__);
1038 				/* do not return entries w/ unusable state */
1039 				if (sav->state != SADB_SASTATE_MATURE &&
1040 				    sav->state != SADB_SASTATE_DYING)
1041 					continue;
1042 				if (proto != sav->sah->saidx.proto)
1043 					continue;
1044 				if (spi != sav->spi)
1045 					continue;
1046 #if 0	/* don't check src */
1047 				/* check src address */
1048 				if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, 0) != 0)
1049 					continue;
1050 #endif
1051 				/* check dst address */
1052 				if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, 0) != 0)
1053 					continue;
1054 				SA_ADDREF(sav);
1055 				goto done;
1056 			}
1057 		}
1058 	}
1059 	sav = NULL;
1060 done:
1061 	SAHTREE_UNLOCK();
1062 
1063 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1064 		printf("DP %s return SA:%p; refcnt %u\n", __func__,
1065 			sav, sav ? sav->refcnt : 0));
1066 	return sav;
1067 }
1068 
1069 /*
1070  * Must be called after calling key_allocsp().
1071  * For both the packet without socket and key_freeso().
1072  */
1073 void
1074 _key_freesp(struct secpolicy **spp, const char* where, int tag)
1075 {
1076 	struct secpolicy *sp = *spp;
1077 
1078 	IPSEC_ASSERT(sp != NULL, ("null sp"));
1079 
1080 	SPTREE_LOCK();
1081 	SP_DELREF(sp);
1082 
1083 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1084 		printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1085 			__func__, sp, sp->id, where, tag, sp->refcnt));
1086 
1087 	if (sp->refcnt == 0) {
1088 		*spp = NULL;
1089 		key_delsp(sp);
1090 	}
1091 	SPTREE_UNLOCK();
1092 }
1093 
1094 /*
1095  * Must be called after calling key_allocsp().
1096  * For the packet with socket.
1097  */
1098 void
1099 key_freeso(struct socket *so)
1100 {
1101 	IPSEC_ASSERT(so != NULL, ("null so"));
1102 
1103 	switch (so->so_proto->pr_domain->dom_family) {
1104 #ifdef INET
1105 	case PF_INET:
1106 	    {
1107 		struct inpcb *pcb = sotoinpcb(so);
1108 
1109 		/* Does it have a PCB ? */
1110 		if (pcb == NULL)
1111 			return;
1112 		key_freesp_so(&pcb->inp_sp->sp_in);
1113 		key_freesp_so(&pcb->inp_sp->sp_out);
1114 	    }
1115 		break;
1116 #endif
1117 #ifdef INET6
1118 	case PF_INET6:
1119 	    {
1120 #ifdef HAVE_NRL_INPCB
1121 		struct inpcb *pcb  = sotoinpcb(so);
1122 
1123 		/* Does it have a PCB ? */
1124 		if (pcb == NULL)
1125 			return;
1126 		key_freesp_so(&pcb->inp_sp->sp_in);
1127 		key_freesp_so(&pcb->inp_sp->sp_out);
1128 #else
1129 		struct in6pcb *pcb  = sotoin6pcb(so);
1130 
1131 		/* Does it have a PCB ? */
1132 		if (pcb == NULL)
1133 			return;
1134 		key_freesp_so(&pcb->in6p_sp->sp_in);
1135 		key_freesp_so(&pcb->in6p_sp->sp_out);
1136 #endif
1137 	    }
1138 		break;
1139 #endif /* INET6 */
1140 	default:
1141 		ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n",
1142 		    __func__, so->so_proto->pr_domain->dom_family));
1143 		return;
1144 	}
1145 }
1146 
1147 static void
1148 key_freesp_so(struct secpolicy **sp)
1149 {
1150 	IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp"));
1151 
1152 	if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1153 	    (*sp)->policy == IPSEC_POLICY_BYPASS)
1154 		return;
1155 
1156 	IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC,
1157 		("invalid policy %u", (*sp)->policy));
1158 	KEY_FREESP(sp);
1159 }
1160 
1161 /*
1162  * Must be called after calling key_allocsa().
1163  * This function is called by key_freesp() to free some SA allocated
1164  * for a policy.
1165  */
1166 void
1167 key_freesav(struct secasvar **psav, const char* where, int tag)
1168 {
1169 	struct secasvar *sav = *psav;
1170 
1171 	IPSEC_ASSERT(sav != NULL, ("null sav"));
1172 
1173 	/* XXX unguarded? */
1174 	SA_DELREF(sav);
1175 
1176 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1177 		printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1178 			__func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1179 
1180 	if (sav->refcnt == 0) {
1181 		*psav = NULL;
1182 		key_delsav(sav);
1183 	}
1184 }
1185 
1186 /* %%% SPD management */
1187 /*
1188  * free security policy entry.
1189  */
1190 static void
1191 key_delsp(struct secpolicy *sp)
1192 {
1193 	struct ipsecrequest *isr, *nextisr;
1194 
1195 	IPSEC_ASSERT(sp != NULL, ("null sp"));
1196 	SPTREE_LOCK_ASSERT();
1197 
1198 	sp->state = IPSEC_SPSTATE_DEAD;
1199 
1200 	IPSEC_ASSERT(sp->refcnt == 0,
1201 		("SP with references deleted (refcnt %u)", sp->refcnt));
1202 
1203 	/* remove from SP index */
1204 	if (__LIST_CHAINED(sp))
1205 		LIST_REMOVE(sp, chain);
1206 
1207 	for (isr = sp->req; isr != NULL; isr = nextisr) {
1208 		if (isr->sav != NULL) {
1209 			KEY_FREESAV(&isr->sav);
1210 			isr->sav = NULL;
1211 		}
1212 
1213 		nextisr = isr->next;
1214 		ipsec_delisr(isr);
1215 	}
1216 	_key_delsp(sp);
1217 }
1218 
1219 /*
1220  * search SPD
1221  * OUT:	NULL	: not found
1222  *	others	: found, pointer to a SP.
1223  */
1224 static struct secpolicy *
1225 key_getsp(struct secpolicyindex *spidx)
1226 {
1227 	struct secpolicy *sp;
1228 
1229 	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
1230 
1231 	SPTREE_LOCK();
1232 	LIST_FOREACH(sp, &sptree[spidx->dir], chain) {
1233 		if (sp->state == IPSEC_SPSTATE_DEAD)
1234 			continue;
1235 		if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1236 			SP_ADDREF(sp);
1237 			break;
1238 		}
1239 	}
1240 	SPTREE_UNLOCK();
1241 
1242 	return sp;
1243 }
1244 
1245 /*
1246  * get SP by index.
1247  * OUT:	NULL	: not found
1248  *	others	: found, pointer to a SP.
1249  */
1250 static struct secpolicy *
1251 key_getspbyid(u_int32_t id)
1252 {
1253 	struct secpolicy *sp;
1254 
1255 	SPTREE_LOCK();
1256 	LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) {
1257 		if (sp->state == IPSEC_SPSTATE_DEAD)
1258 			continue;
1259 		if (sp->id == id) {
1260 			SP_ADDREF(sp);
1261 			goto done;
1262 		}
1263 	}
1264 
1265 	LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) {
1266 		if (sp->state == IPSEC_SPSTATE_DEAD)
1267 			continue;
1268 		if (sp->id == id) {
1269 			SP_ADDREF(sp);
1270 			goto done;
1271 		}
1272 	}
1273 done:
1274 	SPTREE_UNLOCK();
1275 
1276 	return sp;
1277 }
1278 
1279 struct secpolicy *
1280 key_newsp(const char* where, int tag)
1281 {
1282 	struct secpolicy *newsp = NULL;
1283 
1284 	newsp = (struct secpolicy *)
1285 		malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO);
1286 	if (newsp) {
1287 		SECPOLICY_LOCK_INIT(newsp);
1288 		newsp->refcnt = 1;
1289 		newsp->req = NULL;
1290 	}
1291 
1292 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1293 		printf("DP %s from %s:%u return SP:%p\n", __func__,
1294 			where, tag, newsp));
1295 	return newsp;
1296 }
1297 
1298 static void
1299 _key_delsp(struct secpolicy *sp)
1300 {
1301 	SECPOLICY_LOCK_DESTROY(sp);
1302 	free(sp, M_IPSEC_SP);
1303 }
1304 
1305 /*
1306  * create secpolicy structure from sadb_x_policy structure.
1307  * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1308  * so must be set properly later.
1309  */
1310 struct secpolicy *
1311 key_msg2sp(xpl0, len, error)
1312 	struct sadb_x_policy *xpl0;
1313 	size_t len;
1314 	int *error;
1315 {
1316 	struct secpolicy *newsp;
1317 
1318 	IPSEC_ASSERT(xpl0 != NULL, ("null xpl0"));
1319 	IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %u", len));
1320 
1321 	if (len != PFKEY_EXTLEN(xpl0)) {
1322 		ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__));
1323 		*error = EINVAL;
1324 		return NULL;
1325 	}
1326 
1327 	if ((newsp = KEY_NEWSP()) == NULL) {
1328 		*error = ENOBUFS;
1329 		return NULL;
1330 	}
1331 
1332 	newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1333 	newsp->policy = xpl0->sadb_x_policy_type;
1334 
1335 	/* check policy */
1336 	switch (xpl0->sadb_x_policy_type) {
1337 	case IPSEC_POLICY_DISCARD:
1338 	case IPSEC_POLICY_NONE:
1339 	case IPSEC_POLICY_ENTRUST:
1340 	case IPSEC_POLICY_BYPASS:
1341 		newsp->req = NULL;
1342 		break;
1343 
1344 	case IPSEC_POLICY_IPSEC:
1345 	    {
1346 		int tlen;
1347 		struct sadb_x_ipsecrequest *xisr;
1348 		struct ipsecrequest **p_isr = &newsp->req;
1349 
1350 		/* validity check */
1351 		if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1352 			ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n",
1353 				__func__));
1354 			KEY_FREESP(&newsp);
1355 			*error = EINVAL;
1356 			return NULL;
1357 		}
1358 
1359 		tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1360 		xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1);
1361 
1362 		while (tlen > 0) {
1363 			/* length check */
1364 			if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1365 				ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest "
1366 					"length.\n", __func__));
1367 				KEY_FREESP(&newsp);
1368 				*error = EINVAL;
1369 				return NULL;
1370 			}
1371 
1372 			/* allocate request buffer */
1373 			/* NB: data structure is zero'd */
1374 			*p_isr = ipsec_newisr();
1375 			if ((*p_isr) == NULL) {
1376 				ipseclog((LOG_DEBUG,
1377 				    "%s: No more memory.\n", __func__));
1378 				KEY_FREESP(&newsp);
1379 				*error = ENOBUFS;
1380 				return NULL;
1381 			}
1382 
1383 			/* set values */
1384 			switch (xisr->sadb_x_ipsecrequest_proto) {
1385 			case IPPROTO_ESP:
1386 			case IPPROTO_AH:
1387 			case IPPROTO_IPCOMP:
1388 				break;
1389 			default:
1390 				ipseclog((LOG_DEBUG,
1391 				    "%s: invalid proto type=%u\n", __func__,
1392 				    xisr->sadb_x_ipsecrequest_proto));
1393 				KEY_FREESP(&newsp);
1394 				*error = EPROTONOSUPPORT;
1395 				return NULL;
1396 			}
1397 			(*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1398 
1399 			switch (xisr->sadb_x_ipsecrequest_mode) {
1400 			case IPSEC_MODE_TRANSPORT:
1401 			case IPSEC_MODE_TUNNEL:
1402 				break;
1403 			case IPSEC_MODE_ANY:
1404 			default:
1405 				ipseclog((LOG_DEBUG,
1406 				    "%s: invalid mode=%u\n", __func__,
1407 				    xisr->sadb_x_ipsecrequest_mode));
1408 				KEY_FREESP(&newsp);
1409 				*error = EINVAL;
1410 				return NULL;
1411 			}
1412 			(*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1413 
1414 			switch (xisr->sadb_x_ipsecrequest_level) {
1415 			case IPSEC_LEVEL_DEFAULT:
1416 			case IPSEC_LEVEL_USE:
1417 			case IPSEC_LEVEL_REQUIRE:
1418 				break;
1419 			case IPSEC_LEVEL_UNIQUE:
1420 				/* validity check */
1421 				/*
1422 				 * If range violation of reqid, kernel will
1423 				 * update it, don't refuse it.
1424 				 */
1425 				if (xisr->sadb_x_ipsecrequest_reqid
1426 						> IPSEC_MANUAL_REQID_MAX) {
1427 					ipseclog((LOG_DEBUG,
1428 					    "%s: reqid=%d range "
1429 					    "violation, updated by kernel.\n",
1430 					    __func__,
1431 					    xisr->sadb_x_ipsecrequest_reqid));
1432 					xisr->sadb_x_ipsecrequest_reqid = 0;
1433 				}
1434 
1435 				/* allocate new reqid id if reqid is zero. */
1436 				if (xisr->sadb_x_ipsecrequest_reqid == 0) {
1437 					u_int32_t reqid;
1438 					if ((reqid = key_newreqid()) == 0) {
1439 						KEY_FREESP(&newsp);
1440 						*error = ENOBUFS;
1441 						return NULL;
1442 					}
1443 					(*p_isr)->saidx.reqid = reqid;
1444 					xisr->sadb_x_ipsecrequest_reqid = reqid;
1445 				} else {
1446 				/* set it for manual keying. */
1447 					(*p_isr)->saidx.reqid =
1448 						xisr->sadb_x_ipsecrequest_reqid;
1449 				}
1450 				break;
1451 
1452 			default:
1453 				ipseclog((LOG_DEBUG, "%s: invalid level=%u\n",
1454 					__func__,
1455 					xisr->sadb_x_ipsecrequest_level));
1456 				KEY_FREESP(&newsp);
1457 				*error = EINVAL;
1458 				return NULL;
1459 			}
1460 			(*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1461 
1462 			/* set IP addresses if there */
1463 			if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1464 				struct sockaddr *paddr;
1465 
1466 				paddr = (struct sockaddr *)(xisr + 1);
1467 
1468 				/* validity check */
1469 				if (paddr->sa_len
1470 				    > sizeof((*p_isr)->saidx.src)) {
1471 					ipseclog((LOG_DEBUG, "%s: invalid "
1472 						"request address length.\n",
1473 						__func__));
1474 					KEY_FREESP(&newsp);
1475 					*error = EINVAL;
1476 					return NULL;
1477 				}
1478 				bcopy(paddr, &(*p_isr)->saidx.src,
1479 					paddr->sa_len);
1480 
1481 				paddr = (struct sockaddr *)((caddr_t)paddr
1482 							+ paddr->sa_len);
1483 
1484 				/* validity check */
1485 				if (paddr->sa_len
1486 				    > sizeof((*p_isr)->saidx.dst)) {
1487 					ipseclog((LOG_DEBUG, "%s: invalid "
1488 						"request address length.\n",
1489 						__func__));
1490 					KEY_FREESP(&newsp);
1491 					*error = EINVAL;
1492 					return NULL;
1493 				}
1494 				bcopy(paddr, &(*p_isr)->saidx.dst,
1495 					paddr->sa_len);
1496 			}
1497 
1498 			(*p_isr)->sp = newsp;
1499 
1500 			/* initialization for the next. */
1501 			p_isr = &(*p_isr)->next;
1502 			tlen -= xisr->sadb_x_ipsecrequest_len;
1503 
1504 			/* validity check */
1505 			if (tlen < 0) {
1506 				ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n",
1507 					__func__));
1508 				KEY_FREESP(&newsp);
1509 				*error = EINVAL;
1510 				return NULL;
1511 			}
1512 
1513 			xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr
1514 			                 + xisr->sadb_x_ipsecrequest_len);
1515 		}
1516 	    }
1517 		break;
1518 	default:
1519 		ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__));
1520 		KEY_FREESP(&newsp);
1521 		*error = EINVAL;
1522 		return NULL;
1523 	}
1524 
1525 	*error = 0;
1526 	return newsp;
1527 }
1528 
1529 static u_int32_t
1530 key_newreqid()
1531 {
1532 	static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1533 
1534 	auto_reqid = (auto_reqid == ~0
1535 			? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1536 
1537 	/* XXX should be unique check */
1538 
1539 	return auto_reqid;
1540 }
1541 
1542 /*
1543  * copy secpolicy struct to sadb_x_policy structure indicated.
1544  */
1545 struct mbuf *
1546 key_sp2msg(sp)
1547 	struct secpolicy *sp;
1548 {
1549 	struct sadb_x_policy *xpl;
1550 	int tlen;
1551 	caddr_t p;
1552 	struct mbuf *m;
1553 
1554 	IPSEC_ASSERT(sp != NULL, ("null policy"));
1555 
1556 	tlen = key_getspreqmsglen(sp);
1557 
1558 	m = key_alloc_mbuf(tlen);
1559 	if (!m || m->m_next) {	/*XXX*/
1560 		if (m)
1561 			m_freem(m);
1562 		return NULL;
1563 	}
1564 
1565 	m->m_len = tlen;
1566 	m->m_next = NULL;
1567 	xpl = mtod(m, struct sadb_x_policy *);
1568 	bzero(xpl, tlen);
1569 
1570 	xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1571 	xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1572 	xpl->sadb_x_policy_type = sp->policy;
1573 	xpl->sadb_x_policy_dir = sp->spidx.dir;
1574 	xpl->sadb_x_policy_id = sp->id;
1575 	p = (caddr_t)xpl + sizeof(*xpl);
1576 
1577 	/* if is the policy for ipsec ? */
1578 	if (sp->policy == IPSEC_POLICY_IPSEC) {
1579 		struct sadb_x_ipsecrequest *xisr;
1580 		struct ipsecrequest *isr;
1581 
1582 		for (isr = sp->req; isr != NULL; isr = isr->next) {
1583 
1584 			xisr = (struct sadb_x_ipsecrequest *)p;
1585 
1586 			xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1587 			xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1588 			xisr->sadb_x_ipsecrequest_level = isr->level;
1589 			xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1590 
1591 			p += sizeof(*xisr);
1592 			bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len);
1593 			p += isr->saidx.src.sa.sa_len;
1594 			bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len);
1595 			p += isr->saidx.src.sa.sa_len;
1596 
1597 			xisr->sadb_x_ipsecrequest_len =
1598 				PFKEY_ALIGN8(sizeof(*xisr)
1599 					+ isr->saidx.src.sa.sa_len
1600 					+ isr->saidx.dst.sa.sa_len);
1601 		}
1602 	}
1603 
1604 	return m;
1605 }
1606 
1607 /* m will not be freed nor modified */
1608 static struct mbuf *
1609 #ifdef __STDC__
1610 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1611 	int ndeep, int nitem, ...)
1612 #else
1613 key_gather_mbuf(m, mhp, ndeep, nitem, va_alist)
1614 	struct mbuf *m;
1615 	const struct sadb_msghdr *mhp;
1616 	int ndeep;
1617 	int nitem;
1618 	va_dcl
1619 #endif
1620 {
1621 	va_list ap;
1622 	int idx;
1623 	int i;
1624 	struct mbuf *result = NULL, *n;
1625 	int len;
1626 
1627 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1628 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1629 
1630 	va_start(ap, nitem);
1631 	for (i = 0; i < nitem; i++) {
1632 		idx = va_arg(ap, int);
1633 		if (idx < 0 || idx > SADB_EXT_MAX)
1634 			goto fail;
1635 		/* don't attempt to pull empty extension */
1636 		if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1637 			continue;
1638 		if (idx != SADB_EXT_RESERVED  &&
1639 		    (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1640 			continue;
1641 
1642 		if (idx == SADB_EXT_RESERVED) {
1643 			len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1644 
1645 			IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len));
1646 
1647 			MGETHDR(n, M_DONTWAIT, MT_DATA);
1648 			if (!n)
1649 				goto fail;
1650 			n->m_len = len;
1651 			n->m_next = NULL;
1652 			m_copydata(m, 0, sizeof(struct sadb_msg),
1653 			    mtod(n, caddr_t));
1654 		} else if (i < ndeep) {
1655 			len = mhp->extlen[idx];
1656 			n = key_alloc_mbuf(len);
1657 			if (!n || n->m_next) {	/*XXX*/
1658 				if (n)
1659 					m_freem(n);
1660 				goto fail;
1661 			}
1662 			m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1663 			    mtod(n, caddr_t));
1664 		} else {
1665 			n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1666 			    M_DONTWAIT);
1667 		}
1668 		if (n == NULL)
1669 			goto fail;
1670 
1671 		if (result)
1672 			m_cat(result, n);
1673 		else
1674 			result = n;
1675 	}
1676 	va_end(ap);
1677 
1678 	if ((result->m_flags & M_PKTHDR) != 0) {
1679 		result->m_pkthdr.len = 0;
1680 		for (n = result; n; n = n->m_next)
1681 			result->m_pkthdr.len += n->m_len;
1682 	}
1683 
1684 	return result;
1685 
1686 fail:
1687 	m_freem(result);
1688 	return NULL;
1689 }
1690 
1691 /*
1692  * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1693  * add an entry to SP database, when received
1694  *   <base, address(SD), (lifetime(H),) policy>
1695  * from the user(?).
1696  * Adding to SP database,
1697  * and send
1698  *   <base, address(SD), (lifetime(H),) policy>
1699  * to the socket which was send.
1700  *
1701  * SPDADD set a unique policy entry.
1702  * SPDSETIDX like SPDADD without a part of policy requests.
1703  * SPDUPDATE replace a unique policy entry.
1704  *
1705  * m will always be freed.
1706  */
1707 static int
1708 key_spdadd(so, m, mhp)
1709 	struct socket *so;
1710 	struct mbuf *m;
1711 	const struct sadb_msghdr *mhp;
1712 {
1713 	struct sadb_address *src0, *dst0;
1714 	struct sadb_x_policy *xpl0, *xpl;
1715 	struct sadb_lifetime *lft = NULL;
1716 	struct secpolicyindex spidx;
1717 	struct secpolicy *newsp;
1718 	int error;
1719 
1720 	IPSEC_ASSERT(so != NULL, ("null socket"));
1721 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1722 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1723 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
1724 
1725 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1726 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1727 	    mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1728 		ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1729 		return key_senderror(so, m, EINVAL);
1730 	}
1731 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1732 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1733 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1734 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1735 			__func__));
1736 		return key_senderror(so, m, EINVAL);
1737 	}
1738 	if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1739 		if (mhp->extlen[SADB_EXT_LIFETIME_HARD]
1740 			< sizeof(struct sadb_lifetime)) {
1741 			ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1742 				__func__));
1743 			return key_senderror(so, m, EINVAL);
1744 		}
1745 		lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1746 	}
1747 
1748 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1749 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1750 	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1751 
1752 	/* make secindex */
1753 	/* XXX boundary check against sa_len */
1754 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1755 	                src0 + 1,
1756 	                dst0 + 1,
1757 	                src0->sadb_address_prefixlen,
1758 	                dst0->sadb_address_prefixlen,
1759 	                src0->sadb_address_proto,
1760 	                &spidx);
1761 
1762 	/* checking the direciton. */
1763 	switch (xpl0->sadb_x_policy_dir) {
1764 	case IPSEC_DIR_INBOUND:
1765 	case IPSEC_DIR_OUTBOUND:
1766 		break;
1767 	default:
1768 		ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
1769 		mhp->msg->sadb_msg_errno = EINVAL;
1770 		return 0;
1771 	}
1772 
1773 	/* check policy */
1774 	/* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1775 	if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST
1776 	 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1777 		ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__));
1778 		return key_senderror(so, m, EINVAL);
1779 	}
1780 
1781 	/* policy requests are mandatory when action is ipsec. */
1782         if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX
1783 	 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC
1784 	 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1785 		ipseclog((LOG_DEBUG, "%s: some policy requests part required\n",
1786 			__func__));
1787 		return key_senderror(so, m, EINVAL);
1788 	}
1789 
1790 	/*
1791 	 * checking there is SP already or not.
1792 	 * SPDUPDATE doesn't depend on whether there is a SP or not.
1793 	 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1794 	 * then error.
1795 	 */
1796 	newsp = key_getsp(&spidx);
1797 	if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1798 		if (newsp) {
1799 			newsp->state = IPSEC_SPSTATE_DEAD;
1800 			KEY_FREESP(&newsp);
1801 		}
1802 	} else {
1803 		if (newsp != NULL) {
1804 			KEY_FREESP(&newsp);
1805 			ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n",
1806 				__func__));
1807 			return key_senderror(so, m, EEXIST);
1808 		}
1809 	}
1810 
1811 	/* allocation new SP entry */
1812 	if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
1813 		return key_senderror(so, m, error);
1814 	}
1815 
1816 	if ((newsp->id = key_getnewspid()) == 0) {
1817 		_key_delsp(newsp);
1818 		return key_senderror(so, m, ENOBUFS);
1819 	}
1820 
1821 	/* XXX boundary check against sa_len */
1822 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1823 	                src0 + 1,
1824 	                dst0 + 1,
1825 	                src0->sadb_address_prefixlen,
1826 	                dst0->sadb_address_prefixlen,
1827 	                src0->sadb_address_proto,
1828 	                &newsp->spidx);
1829 
1830 	/* sanity check on addr pair */
1831 	if (((struct sockaddr *)(src0 + 1))->sa_family !=
1832 			((struct sockaddr *)(dst0+ 1))->sa_family) {
1833 		_key_delsp(newsp);
1834 		return key_senderror(so, m, EINVAL);
1835 	}
1836 	if (((struct sockaddr *)(src0 + 1))->sa_len !=
1837 			((struct sockaddr *)(dst0+ 1))->sa_len) {
1838 		_key_delsp(newsp);
1839 		return key_senderror(so, m, EINVAL);
1840 	}
1841 #if 1
1842 	if (newsp->req && newsp->req->saidx.src.sa.sa_family) {
1843 		struct sockaddr *sa;
1844 		sa = (struct sockaddr *)(src0 + 1);
1845 		if (sa->sa_family != newsp->req->saidx.src.sa.sa_family) {
1846 			_key_delsp(newsp);
1847 			return key_senderror(so, m, EINVAL);
1848 		}
1849 	}
1850 	if (newsp->req && newsp->req->saidx.dst.sa.sa_family) {
1851 		struct sockaddr *sa;
1852 		sa = (struct sockaddr *)(dst0 + 1);
1853 		if (sa->sa_family != newsp->req->saidx.dst.sa.sa_family) {
1854 			_key_delsp(newsp);
1855 			return key_senderror(so, m, EINVAL);
1856 		}
1857 	}
1858 #endif
1859 
1860 	newsp->created = time_second;
1861 	newsp->lastused = newsp->created;
1862 	newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1863 	newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1864 
1865 	newsp->refcnt = 1;	/* do not reclaim until I say I do */
1866 	newsp->state = IPSEC_SPSTATE_ALIVE;
1867 	LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1868 
1869 	/* delete the entry in spacqtree */
1870 	if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1871 		struct secspacq *spacq = key_getspacq(&spidx);
1872 		if (spacq != NULL) {
1873 			/* reset counter in order to deletion by timehandler. */
1874 			spacq->created = time_second;
1875 			spacq->count = 0;
1876 			SPACQ_UNLOCK();
1877 		}
1878     	}
1879 
1880     {
1881 	struct mbuf *n, *mpolicy;
1882 	struct sadb_msg *newmsg;
1883 	int off;
1884 
1885 	/* create new sadb_msg to reply. */
1886 	if (lft) {
1887 		n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
1888 		    SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
1889 		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1890 	} else {
1891 		n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
1892 		    SADB_X_EXT_POLICY,
1893 		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1894 	}
1895 	if (!n)
1896 		return key_senderror(so, m, ENOBUFS);
1897 
1898 	if (n->m_len < sizeof(*newmsg)) {
1899 		n = m_pullup(n, sizeof(*newmsg));
1900 		if (!n)
1901 			return key_senderror(so, m, ENOBUFS);
1902 	}
1903 	newmsg = mtod(n, struct sadb_msg *);
1904 	newmsg->sadb_msg_errno = 0;
1905 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
1906 
1907 	off = 0;
1908 	mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
1909 	    sizeof(*xpl), &off);
1910 	if (mpolicy == NULL) {
1911 		/* n is already freed */
1912 		return key_senderror(so, m, ENOBUFS);
1913 	}
1914 	xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off);
1915 	if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
1916 		m_freem(n);
1917 		return key_senderror(so, m, EINVAL);
1918 	}
1919 	xpl->sadb_x_policy_id = newsp->id;
1920 
1921 	m_freem(m);
1922 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
1923     }
1924 }
1925 
1926 /*
1927  * get new policy id.
1928  * OUT:
1929  *	0:	failure.
1930  *	others: success.
1931  */
1932 static u_int32_t
1933 key_getnewspid()
1934 {
1935 	u_int32_t newid = 0;
1936 	int count = key_spi_trycnt;	/* XXX */
1937 	struct secpolicy *sp;
1938 
1939 	/* when requesting to allocate spi ranged */
1940 	while (count--) {
1941 		newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
1942 
1943 		if ((sp = key_getspbyid(newid)) == NULL)
1944 			break;
1945 
1946 		KEY_FREESP(&sp);
1947 	}
1948 
1949 	if (count == 0 || newid == 0) {
1950 		ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n",
1951 			__func__));
1952 		return 0;
1953 	}
1954 
1955 	return newid;
1956 }
1957 
1958 /*
1959  * SADB_SPDDELETE processing
1960  * receive
1961  *   <base, address(SD), policy(*)>
1962  * from the user(?), and set SADB_SASTATE_DEAD,
1963  * and send,
1964  *   <base, address(SD), policy(*)>
1965  * to the ikmpd.
1966  * policy(*) including direction of policy.
1967  *
1968  * m will always be freed.
1969  */
1970 static int
1971 key_spddelete(so, m, mhp)
1972 	struct socket *so;
1973 	struct mbuf *m;
1974 	const struct sadb_msghdr *mhp;
1975 {
1976 	struct sadb_address *src0, *dst0;
1977 	struct sadb_x_policy *xpl0;
1978 	struct secpolicyindex spidx;
1979 	struct secpolicy *sp;
1980 
1981 	IPSEC_ASSERT(so != NULL, ("null so"));
1982 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1983 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1984 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
1985 
1986 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1987 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1988 	    mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1989 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1990 			__func__));
1991 		return key_senderror(so, m, EINVAL);
1992 	}
1993 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1994 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1995 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1996 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1997 			__func__));
1998 		return key_senderror(so, m, EINVAL);
1999 	}
2000 
2001 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2002 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2003 	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2004 
2005 	/* make secindex */
2006 	/* XXX boundary check against sa_len */
2007 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2008 	                src0 + 1,
2009 	                dst0 + 1,
2010 	                src0->sadb_address_prefixlen,
2011 	                dst0->sadb_address_prefixlen,
2012 	                src0->sadb_address_proto,
2013 	                &spidx);
2014 
2015 	/* checking the direciton. */
2016 	switch (xpl0->sadb_x_policy_dir) {
2017 	case IPSEC_DIR_INBOUND:
2018 	case IPSEC_DIR_OUTBOUND:
2019 		break;
2020 	default:
2021 		ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
2022 		return key_senderror(so, m, EINVAL);
2023 	}
2024 
2025 	/* Is there SP in SPD ? */
2026 	if ((sp = key_getsp(&spidx)) == NULL) {
2027 		ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__));
2028 		return key_senderror(so, m, EINVAL);
2029 	}
2030 
2031 	/* save policy id to buffer to be returned. */
2032 	xpl0->sadb_x_policy_id = sp->id;
2033 
2034 	sp->state = IPSEC_SPSTATE_DEAD;
2035 	SECPOLICY_LOCK_DESTROY(sp);
2036 	KEY_FREESP(&sp);
2037 
2038     {
2039 	struct mbuf *n;
2040 	struct sadb_msg *newmsg;
2041 
2042 	/* create new sadb_msg to reply. */
2043 	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2044 	    SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2045 	if (!n)
2046 		return key_senderror(so, m, ENOBUFS);
2047 
2048 	newmsg = mtod(n, struct sadb_msg *);
2049 	newmsg->sadb_msg_errno = 0;
2050 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2051 
2052 	m_freem(m);
2053 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2054     }
2055 }
2056 
2057 /*
2058  * SADB_SPDDELETE2 processing
2059  * receive
2060  *   <base, policy(*)>
2061  * from the user(?), and set SADB_SASTATE_DEAD,
2062  * and send,
2063  *   <base, policy(*)>
2064  * to the ikmpd.
2065  * policy(*) including direction of policy.
2066  *
2067  * m will always be freed.
2068  */
2069 static int
2070 key_spddelete2(so, m, mhp)
2071 	struct socket *so;
2072 	struct mbuf *m;
2073 	const struct sadb_msghdr *mhp;
2074 {
2075 	u_int32_t id;
2076 	struct secpolicy *sp;
2077 
2078 	IPSEC_ASSERT(so != NULL, ("null socket"));
2079 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2080 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2081 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2082 
2083 	if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2084 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2085 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__));
2086 		key_senderror(so, m, EINVAL);
2087 		return 0;
2088 	}
2089 
2090 	id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2091 
2092 	/* Is there SP in SPD ? */
2093 	if ((sp = key_getspbyid(id)) == NULL) {
2094 		ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2095 		key_senderror(so, m, EINVAL);
2096 	}
2097 
2098 	sp->state = IPSEC_SPSTATE_DEAD;
2099 	SECPOLICY_LOCK_DESTROY(sp);
2100 	KEY_FREESP(&sp);
2101 
2102     {
2103 	struct mbuf *n, *nn;
2104 	struct sadb_msg *newmsg;
2105 	int off, len;
2106 
2107 	/* create new sadb_msg to reply. */
2108 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2109 
2110 	if (len > MCLBYTES)
2111 		return key_senderror(so, m, ENOBUFS);
2112 	MGETHDR(n, M_DONTWAIT, MT_DATA);
2113 	if (n && len > MHLEN) {
2114 		MCLGET(n, M_DONTWAIT);
2115 		if ((n->m_flags & M_EXT) == 0) {
2116 			m_freem(n);
2117 			n = NULL;
2118 		}
2119 	}
2120 	if (!n)
2121 		return key_senderror(so, m, ENOBUFS);
2122 
2123 	n->m_len = len;
2124 	n->m_next = NULL;
2125 	off = 0;
2126 
2127 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
2128 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2129 
2130 	IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)",
2131 		off, len));
2132 
2133 	n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2134 	    mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2135 	if (!n->m_next) {
2136 		m_freem(n);
2137 		return key_senderror(so, m, ENOBUFS);
2138 	}
2139 
2140 	n->m_pkthdr.len = 0;
2141 	for (nn = n; nn; nn = nn->m_next)
2142 		n->m_pkthdr.len += nn->m_len;
2143 
2144 	newmsg = mtod(n, struct sadb_msg *);
2145 	newmsg->sadb_msg_errno = 0;
2146 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2147 
2148 	m_freem(m);
2149 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2150     }
2151 }
2152 
2153 /*
2154  * SADB_X_GET processing
2155  * receive
2156  *   <base, policy(*)>
2157  * from the user(?),
2158  * and send,
2159  *   <base, address(SD), policy>
2160  * to the ikmpd.
2161  * policy(*) including direction of policy.
2162  *
2163  * m will always be freed.
2164  */
2165 static int
2166 key_spdget(so, m, mhp)
2167 	struct socket *so;
2168 	struct mbuf *m;
2169 	const struct sadb_msghdr *mhp;
2170 {
2171 	u_int32_t id;
2172 	struct secpolicy *sp;
2173 	struct mbuf *n;
2174 
2175 	IPSEC_ASSERT(so != NULL, ("null socket"));
2176 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2177 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2178 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2179 
2180 	if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2181 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2182 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2183 			__func__));
2184 		return key_senderror(so, m, EINVAL);
2185 	}
2186 
2187 	id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2188 
2189 	/* Is there SP in SPD ? */
2190 	if ((sp = key_getspbyid(id)) == NULL) {
2191 		ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2192 		return key_senderror(so, m, ENOENT);
2193 	}
2194 
2195 	n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid);
2196 	if (n != NULL) {
2197 		m_freem(m);
2198 		return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2199 	} else
2200 		return key_senderror(so, m, ENOBUFS);
2201 }
2202 
2203 /*
2204  * SADB_X_SPDACQUIRE processing.
2205  * Acquire policy and SA(s) for a *OUTBOUND* packet.
2206  * send
2207  *   <base, policy(*)>
2208  * to KMD, and expect to receive
2209  *   <base> with SADB_X_SPDACQUIRE if error occured,
2210  * or
2211  *   <base, policy>
2212  * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2213  * policy(*) is without policy requests.
2214  *
2215  *    0     : succeed
2216  *    others: error number
2217  */
2218 int
2219 key_spdacquire(sp)
2220 	struct secpolicy *sp;
2221 {
2222 	struct mbuf *result = NULL, *m;
2223 	struct secspacq *newspacq;
2224 	int error;
2225 
2226 	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2227 	IPSEC_ASSERT(sp->req == NULL, ("policy exists"));
2228 	IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC,
2229 		("policy not IPSEC %u", sp->policy));
2230 
2231 	/* Get an entry to check whether sent message or not. */
2232 	newspacq = key_getspacq(&sp->spidx);
2233 	if (newspacq != NULL) {
2234 		if (key_blockacq_count < newspacq->count) {
2235 			/* reset counter and do send message. */
2236 			newspacq->count = 0;
2237 		} else {
2238 			/* increment counter and do nothing. */
2239 			newspacq->count++;
2240 			return 0;
2241 		}
2242 		SPACQ_UNLOCK();
2243 	} else {
2244 		/* make new entry for blocking to send SADB_ACQUIRE. */
2245 		newspacq = key_newspacq(&sp->spidx);
2246 		if (newspacq == NULL)
2247 			return ENOBUFS;
2248 	}
2249 
2250 	/* create new sadb_msg to reply. */
2251 	m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2252 	if (!m) {
2253 		error = ENOBUFS;
2254 		goto fail;
2255 	}
2256 	result = m;
2257 
2258 	result->m_pkthdr.len = 0;
2259 	for (m = result; m; m = m->m_next)
2260 		result->m_pkthdr.len += m->m_len;
2261 
2262 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2263 	    PFKEY_UNIT64(result->m_pkthdr.len);
2264 
2265 	return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2266 
2267 fail:
2268 	if (result)
2269 		m_freem(result);
2270 	return error;
2271 }
2272 
2273 /*
2274  * SADB_SPDFLUSH processing
2275  * receive
2276  *   <base>
2277  * from the user, and free all entries in secpctree.
2278  * and send,
2279  *   <base>
2280  * to the user.
2281  * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2282  *
2283  * m will always be freed.
2284  */
2285 static int
2286 key_spdflush(so, m, mhp)
2287 	struct socket *so;
2288 	struct mbuf *m;
2289 	const struct sadb_msghdr *mhp;
2290 {
2291 	struct sadb_msg *newmsg;
2292 	struct secpolicy *sp;
2293 	u_int dir;
2294 
2295 	IPSEC_ASSERT(so != NULL, ("null socket"));
2296 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2297 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2298 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2299 
2300 	if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2301 		return key_senderror(so, m, EINVAL);
2302 
2303 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2304 		SPTREE_LOCK();
2305 		LIST_FOREACH(sp, &sptree[dir], chain)
2306 			sp->state = IPSEC_SPSTATE_DEAD;
2307 		SPTREE_UNLOCK();
2308 	}
2309 
2310 	if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2311 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2312 		return key_senderror(so, m, ENOBUFS);
2313 	}
2314 
2315 	if (m->m_next)
2316 		m_freem(m->m_next);
2317 	m->m_next = NULL;
2318 	m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2319 	newmsg = mtod(m, struct sadb_msg *);
2320 	newmsg->sadb_msg_errno = 0;
2321 	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2322 
2323 	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2324 }
2325 
2326 /*
2327  * SADB_SPDDUMP processing
2328  * receive
2329  *   <base>
2330  * from the user, and dump all SP leaves
2331  * and send,
2332  *   <base> .....
2333  * to the ikmpd.
2334  *
2335  * m will always be freed.
2336  */
2337 static int
2338 key_spddump(so, m, mhp)
2339 	struct socket *so;
2340 	struct mbuf *m;
2341 	const struct sadb_msghdr *mhp;
2342 {
2343 	struct secpolicy *sp;
2344 	int cnt;
2345 	u_int dir;
2346 	struct mbuf *n;
2347 
2348 	IPSEC_ASSERT(so != NULL, ("null socket"));
2349 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2350 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2351 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2352 
2353 	/* search SPD entry and get buffer size. */
2354 	cnt = 0;
2355 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2356 		LIST_FOREACH(sp, &sptree[dir], chain) {
2357 			cnt++;
2358 		}
2359 	}
2360 
2361 	if (cnt == 0)
2362 		return key_senderror(so, m, ENOENT);
2363 
2364 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2365 		LIST_FOREACH(sp, &sptree[dir], chain) {
2366 			--cnt;
2367 			n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt,
2368 			    mhp->msg->sadb_msg_pid);
2369 
2370 			if (n)
2371 				key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2372 		}
2373 	}
2374 
2375 	m_freem(m);
2376 	return 0;
2377 }
2378 
2379 static struct mbuf *
2380 key_setdumpsp(sp, type, seq, pid)
2381 	struct secpolicy *sp;
2382 	u_int8_t type;
2383 	u_int32_t seq, pid;
2384 {
2385 	struct mbuf *result = NULL, *m;
2386 
2387 	m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2388 	if (!m)
2389 		goto fail;
2390 	result = m;
2391 
2392 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2393 	    &sp->spidx.src.sa, sp->spidx.prefs,
2394 	    sp->spidx.ul_proto);
2395 	if (!m)
2396 		goto fail;
2397 	m_cat(result, m);
2398 
2399 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2400 	    &sp->spidx.dst.sa, sp->spidx.prefd,
2401 	    sp->spidx.ul_proto);
2402 	if (!m)
2403 		goto fail;
2404 	m_cat(result, m);
2405 
2406 	m = key_sp2msg(sp);
2407 	if (!m)
2408 		goto fail;
2409 	m_cat(result, m);
2410 
2411 	if ((result->m_flags & M_PKTHDR) == 0)
2412 		goto fail;
2413 
2414 	if (result->m_len < sizeof(struct sadb_msg)) {
2415 		result = m_pullup(result, sizeof(struct sadb_msg));
2416 		if (result == NULL)
2417 			goto fail;
2418 	}
2419 
2420 	result->m_pkthdr.len = 0;
2421 	for (m = result; m; m = m->m_next)
2422 		result->m_pkthdr.len += m->m_len;
2423 
2424 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2425 	    PFKEY_UNIT64(result->m_pkthdr.len);
2426 
2427 	return result;
2428 
2429 fail:
2430 	m_freem(result);
2431 	return NULL;
2432 }
2433 
2434 /*
2435  * get PFKEY message length for security policy and request.
2436  */
2437 static u_int
2438 key_getspreqmsglen(sp)
2439 	struct secpolicy *sp;
2440 {
2441 	u_int tlen;
2442 
2443 	tlen = sizeof(struct sadb_x_policy);
2444 
2445 	/* if is the policy for ipsec ? */
2446 	if (sp->policy != IPSEC_POLICY_IPSEC)
2447 		return tlen;
2448 
2449 	/* get length of ipsec requests */
2450     {
2451 	struct ipsecrequest *isr;
2452 	int len;
2453 
2454 	for (isr = sp->req; isr != NULL; isr = isr->next) {
2455 		len = sizeof(struct sadb_x_ipsecrequest)
2456 			+ isr->saidx.src.sa.sa_len
2457 			+ isr->saidx.dst.sa.sa_len;
2458 
2459 		tlen += PFKEY_ALIGN8(len);
2460 	}
2461     }
2462 
2463 	return tlen;
2464 }
2465 
2466 /*
2467  * SADB_SPDEXPIRE processing
2468  * send
2469  *   <base, address(SD), lifetime(CH), policy>
2470  * to KMD by PF_KEY.
2471  *
2472  * OUT:	0	: succeed
2473  *	others	: error number
2474  */
2475 static int
2476 key_spdexpire(sp)
2477 	struct secpolicy *sp;
2478 {
2479 	struct mbuf *result = NULL, *m;
2480 	int len;
2481 	int error = -1;
2482 	struct sadb_lifetime *lt;
2483 
2484 	/* XXX: Why do we lock ? */
2485 
2486 	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2487 
2488 	/* set msg header */
2489 	m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2490 	if (!m) {
2491 		error = ENOBUFS;
2492 		goto fail;
2493 	}
2494 	result = m;
2495 
2496 	/* create lifetime extension (current and hard) */
2497 	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2498 	m = key_alloc_mbuf(len);
2499 	if (!m || m->m_next) {	/*XXX*/
2500 		if (m)
2501 			m_freem(m);
2502 		error = ENOBUFS;
2503 		goto fail;
2504 	}
2505 	bzero(mtod(m, caddr_t), len);
2506 	lt = mtod(m, struct sadb_lifetime *);
2507 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2508 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2509 	lt->sadb_lifetime_allocations = 0;
2510 	lt->sadb_lifetime_bytes = 0;
2511 	lt->sadb_lifetime_addtime = sp->created;
2512 	lt->sadb_lifetime_usetime = sp->lastused;
2513 	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
2514 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2515 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2516 	lt->sadb_lifetime_allocations = 0;
2517 	lt->sadb_lifetime_bytes = 0;
2518 	lt->sadb_lifetime_addtime = sp->lifetime;
2519 	lt->sadb_lifetime_usetime = sp->validtime;
2520 	m_cat(result, m);
2521 
2522 	/* set sadb_address for source */
2523 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2524 	    &sp->spidx.src.sa,
2525 	    sp->spidx.prefs, sp->spidx.ul_proto);
2526 	if (!m) {
2527 		error = ENOBUFS;
2528 		goto fail;
2529 	}
2530 	m_cat(result, m);
2531 
2532 	/* set sadb_address for destination */
2533 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2534 	    &sp->spidx.dst.sa,
2535 	    sp->spidx.prefd, sp->spidx.ul_proto);
2536 	if (!m) {
2537 		error = ENOBUFS;
2538 		goto fail;
2539 	}
2540 	m_cat(result, m);
2541 
2542 	/* set secpolicy */
2543 	m = key_sp2msg(sp);
2544 	if (!m) {
2545 		error = ENOBUFS;
2546 		goto fail;
2547 	}
2548 	m_cat(result, m);
2549 
2550 	if ((result->m_flags & M_PKTHDR) == 0) {
2551 		error = EINVAL;
2552 		goto fail;
2553 	}
2554 
2555 	if (result->m_len < sizeof(struct sadb_msg)) {
2556 		result = m_pullup(result, sizeof(struct sadb_msg));
2557 		if (result == NULL) {
2558 			error = ENOBUFS;
2559 			goto fail;
2560 		}
2561 	}
2562 
2563 	result->m_pkthdr.len = 0;
2564 	for (m = result; m; m = m->m_next)
2565 		result->m_pkthdr.len += m->m_len;
2566 
2567 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2568 	    PFKEY_UNIT64(result->m_pkthdr.len);
2569 
2570 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2571 
2572  fail:
2573 	if (result)
2574 		m_freem(result);
2575 	return error;
2576 }
2577 
2578 /* %%% SAD management */
2579 /*
2580  * allocating a memory for new SA head, and copy from the values of mhp.
2581  * OUT:	NULL	: failure due to the lack of memory.
2582  *	others	: pointer to new SA head.
2583  */
2584 static struct secashead *
2585 key_newsah(saidx)
2586 	struct secasindex *saidx;
2587 {
2588 	struct secashead *newsah;
2589 
2590 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
2591 
2592 	newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO);
2593 	if (newsah != NULL) {
2594 		int i;
2595 		for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++)
2596 			LIST_INIT(&newsah->savtree[i]);
2597 		newsah->saidx = *saidx;
2598 
2599 		/* add to saidxtree */
2600 		newsah->state = SADB_SASTATE_MATURE;
2601 
2602 		SAHTREE_LOCK();
2603 		LIST_INSERT_HEAD(&sahtree, newsah, chain);
2604 		SAHTREE_UNLOCK();
2605 	}
2606 	return(newsah);
2607 }
2608 
2609 /*
2610  * delete SA index and all SA registerd.
2611  */
2612 static void
2613 key_delsah(sah)
2614 	struct secashead *sah;
2615 {
2616 	struct secasvar *sav, *nextsav;
2617 	u_int stateidx;
2618 	int zombie = 0;
2619 
2620 	IPSEC_ASSERT(sah != NULL, ("NULL sah"));
2621 	SAHTREE_LOCK_ASSERT();
2622 
2623 	/* searching all SA registerd in the secindex. */
2624 	for (stateidx = 0;
2625 	     stateidx < _ARRAYLEN(saorder_state_any);
2626 	     stateidx++) {
2627 		u_int state = saorder_state_any[stateidx];
2628 		LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) {
2629 			if (sav->refcnt == 0) {
2630 				/* sanity check */
2631 				KEY_CHKSASTATE(state, sav->state, __func__);
2632 				KEY_FREESAV(&sav);
2633 			} else {
2634 				/* give up to delete this sa */
2635 				zombie++;
2636 			}
2637 		}
2638 	}
2639 	if (!zombie) {		/* delete only if there are savs */
2640 		/* remove from tree of SA index */
2641 		if (__LIST_CHAINED(sah))
2642 			LIST_REMOVE(sah, chain);
2643 		if (sah->sa_route.ro_rt) {
2644 			RTFREE(sah->sa_route.ro_rt);
2645 			sah->sa_route.ro_rt = (struct rtentry *)NULL;
2646 		}
2647 		free(sah, M_IPSEC_SAH);
2648 	}
2649 }
2650 
2651 /*
2652  * allocating a new SA with LARVAL state.  key_add() and key_getspi() call,
2653  * and copy the values of mhp into new buffer.
2654  * When SAD message type is GETSPI:
2655  *	to set sequence number from acq_seq++,
2656  *	to set zero to SPI.
2657  *	not to call key_setsava().
2658  * OUT:	NULL	: fail
2659  *	others	: pointer to new secasvar.
2660  *
2661  * does not modify mbuf.  does not free mbuf on error.
2662  */
2663 static struct secasvar *
2664 key_newsav(m, mhp, sah, errp, where, tag)
2665 	struct mbuf *m;
2666 	const struct sadb_msghdr *mhp;
2667 	struct secashead *sah;
2668 	int *errp;
2669 	const char* where;
2670 	int tag;
2671 {
2672 	struct secasvar *newsav;
2673 	const struct sadb_sa *xsa;
2674 
2675 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2676 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2677 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2678 	IPSEC_ASSERT(sah != NULL, ("null secashead"));
2679 
2680 	newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO);
2681 	if (newsav == NULL) {
2682 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2683 		*errp = ENOBUFS;
2684 		goto done;
2685 	}
2686 
2687 	switch (mhp->msg->sadb_msg_type) {
2688 	case SADB_GETSPI:
2689 		newsav->spi = 0;
2690 
2691 #ifdef IPSEC_DOSEQCHECK
2692 		/* sync sequence number */
2693 		if (mhp->msg->sadb_msg_seq == 0)
2694 			newsav->seq =
2695 				(acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
2696 		else
2697 #endif
2698 			newsav->seq = mhp->msg->sadb_msg_seq;
2699 		break;
2700 
2701 	case SADB_ADD:
2702 		/* sanity check */
2703 		if (mhp->ext[SADB_EXT_SA] == NULL) {
2704 			free(newsav, M_IPSEC_SA);
2705 			newsav = NULL;
2706 			ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2707 				__func__));
2708 			*errp = EINVAL;
2709 			goto done;
2710 		}
2711 		xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2712 		newsav->spi = xsa->sadb_sa_spi;
2713 		newsav->seq = mhp->msg->sadb_msg_seq;
2714 		break;
2715 	default:
2716 		free(newsav, M_IPSEC_SA);
2717 		newsav = NULL;
2718 		*errp = EINVAL;
2719 		goto done;
2720 	}
2721 
2722 
2723 	/* copy sav values */
2724 	if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2725 		*errp = key_setsaval(newsav, m, mhp);
2726 		if (*errp) {
2727 			free(newsav, M_IPSEC_SA);
2728 			newsav = NULL;
2729 			goto done;
2730 		}
2731 	}
2732 
2733 	SECASVAR_LOCK_INIT(newsav);
2734 
2735 	/* reset created */
2736 	newsav->created = time_second;
2737 	newsav->pid = mhp->msg->sadb_msg_pid;
2738 
2739 	/* add to satree */
2740 	newsav->sah = sah;
2741 	newsav->refcnt = 1;
2742 	newsav->state = SADB_SASTATE_LARVAL;
2743 
2744 	/* XXX locking??? */
2745 	LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
2746 			secasvar, chain);
2747 done:
2748 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
2749 		printf("DP %s from %s:%u return SP:%p\n", __func__,
2750 			where, tag, newsav));
2751 
2752 	return newsav;
2753 }
2754 
2755 /*
2756  * free() SA variable entry.
2757  */
2758 static void
2759 key_cleansav(struct secasvar *sav)
2760 {
2761 	/*
2762 	 * Cleanup xform state.  Note that zeroize'ing causes the
2763 	 * keys to be cleared; otherwise we must do it ourself.
2764 	 */
2765 	if (sav->tdb_xform != NULL) {
2766 		sav->tdb_xform->xf_zeroize(sav);
2767 		sav->tdb_xform = NULL;
2768 	} else {
2769 		KASSERT(sav->iv == NULL, ("iv but no xform"));
2770 		if (sav->key_auth != NULL)
2771 			bzero(_KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2772 		if (sav->key_enc != NULL)
2773 			bzero(_KEYBUF(sav->key_enc), _KEYLEN(sav->key_enc));
2774 	}
2775 	if (sav->key_auth != NULL) {
2776 		free(sav->key_auth, M_IPSEC_MISC);
2777 		sav->key_auth = NULL;
2778 	}
2779 	if (sav->key_enc != NULL) {
2780 		free(sav->key_enc, M_IPSEC_MISC);
2781 		sav->key_enc = NULL;
2782 	}
2783 	if (sav->sched) {
2784 		bzero(sav->sched, sav->schedlen);
2785 		free(sav->sched, M_IPSEC_MISC);
2786 		sav->sched = NULL;
2787 	}
2788 	if (sav->replay != NULL) {
2789 		free(sav->replay, M_IPSEC_MISC);
2790 		sav->replay = NULL;
2791 	}
2792 	if (sav->lft_c != NULL) {
2793 		free(sav->lft_c, M_IPSEC_MISC);
2794 		sav->lft_c = NULL;
2795 	}
2796 	if (sav->lft_h != NULL) {
2797 		free(sav->lft_h, M_IPSEC_MISC);
2798 		sav->lft_h = NULL;
2799 	}
2800 	if (sav->lft_s != NULL) {
2801 		free(sav->lft_s, M_IPSEC_MISC);
2802 		sav->lft_s = NULL;
2803 	}
2804 }
2805 
2806 /*
2807  * free() SA variable entry.
2808  */
2809 static void
2810 key_delsav(sav)
2811 	struct secasvar *sav;
2812 {
2813 	IPSEC_ASSERT(sav != NULL, ("null sav"));
2814 	IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt));
2815 
2816 	/* remove from SA header */
2817 	if (__LIST_CHAINED(sav))
2818 		LIST_REMOVE(sav, chain);
2819 	key_cleansav(sav);
2820 	SECASVAR_LOCK_DESTROY(sav);
2821 	free(sav, M_IPSEC_SA);
2822 }
2823 
2824 /*
2825  * search SAD.
2826  * OUT:
2827  *	NULL	: not found
2828  *	others	: found, pointer to a SA.
2829  */
2830 static struct secashead *
2831 key_getsah(saidx)
2832 	struct secasindex *saidx;
2833 {
2834 	struct secashead *sah;
2835 
2836 	SAHTREE_LOCK();
2837 	LIST_FOREACH(sah, &sahtree, chain) {
2838 		if (sah->state == SADB_SASTATE_DEAD)
2839 			continue;
2840 		if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID))
2841 			break;
2842 	}
2843 	SAHTREE_UNLOCK();
2844 
2845 	return sah;
2846 }
2847 
2848 /*
2849  * check not to be duplicated SPI.
2850  * NOTE: this function is too slow due to searching all SAD.
2851  * OUT:
2852  *	NULL	: not found
2853  *	others	: found, pointer to a SA.
2854  */
2855 static struct secasvar *
2856 key_checkspidup(saidx, spi)
2857 	struct secasindex *saidx;
2858 	u_int32_t spi;
2859 {
2860 	struct secashead *sah;
2861 	struct secasvar *sav;
2862 
2863 	/* check address family */
2864 	if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
2865 		ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
2866 			__func__));
2867 		return NULL;
2868 	}
2869 
2870 	sav = NULL;
2871 	/* check all SAD */
2872 	SAHTREE_LOCK();
2873 	LIST_FOREACH(sah, &sahtree, chain) {
2874 		if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
2875 			continue;
2876 		sav = key_getsavbyspi(sah, spi);
2877 		if (sav != NULL)
2878 			break;
2879 	}
2880 	SAHTREE_UNLOCK();
2881 
2882 	return sav;
2883 }
2884 
2885 /*
2886  * search SAD litmited alive SA, protocol, SPI.
2887  * OUT:
2888  *	NULL	: not found
2889  *	others	: found, pointer to a SA.
2890  */
2891 static struct secasvar *
2892 key_getsavbyspi(sah, spi)
2893 	struct secashead *sah;
2894 	u_int32_t spi;
2895 {
2896 	struct secasvar *sav;
2897 	u_int stateidx, state;
2898 
2899 	sav = NULL;
2900 	SAHTREE_LOCK_ASSERT();
2901 	/* search all status */
2902 	for (stateidx = 0;
2903 	     stateidx < _ARRAYLEN(saorder_state_alive);
2904 	     stateidx++) {
2905 
2906 		state = saorder_state_alive[stateidx];
2907 		LIST_FOREACH(sav, &sah->savtree[state], chain) {
2908 
2909 			/* sanity check */
2910 			if (sav->state != state) {
2911 				ipseclog((LOG_DEBUG, "%s: "
2912 				    "invalid sav->state (queue: %d SA: %d)\n",
2913 				    __func__, state, sav->state));
2914 				continue;
2915 			}
2916 
2917 			if (sav->spi == spi)
2918 				break;
2919 		}
2920 	}
2921 
2922 	return sav;
2923 }
2924 
2925 /*
2926  * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
2927  * You must update these if need.
2928  * OUT:	0:	success.
2929  *	!0:	failure.
2930  *
2931  * does not modify mbuf.  does not free mbuf on error.
2932  */
2933 static int
2934 key_setsaval(sav, m, mhp)
2935 	struct secasvar *sav;
2936 	struct mbuf *m;
2937 	const struct sadb_msghdr *mhp;
2938 {
2939 	int error = 0;
2940 
2941 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2942 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2943 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2944 
2945 	/* initialization */
2946 	sav->replay = NULL;
2947 	sav->key_auth = NULL;
2948 	sav->key_enc = NULL;
2949 	sav->sched = NULL;
2950 	sav->schedlen = 0;
2951 	sav->iv = NULL;
2952 	sav->lft_c = NULL;
2953 	sav->lft_h = NULL;
2954 	sav->lft_s = NULL;
2955 	sav->tdb_xform = NULL;		/* transform */
2956 	sav->tdb_encalgxform = NULL;	/* encoding algorithm */
2957 	sav->tdb_authalgxform = NULL;	/* authentication algorithm */
2958 	sav->tdb_compalgxform = NULL;	/* compression algorithm */
2959 
2960 	/* SA */
2961 	if (mhp->ext[SADB_EXT_SA] != NULL) {
2962 		const struct sadb_sa *sa0;
2963 
2964 		sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2965 		if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
2966 			error = EINVAL;
2967 			goto fail;
2968 		}
2969 
2970 		sav->alg_auth = sa0->sadb_sa_auth;
2971 		sav->alg_enc = sa0->sadb_sa_encrypt;
2972 		sav->flags = sa0->sadb_sa_flags;
2973 
2974 		/* replay window */
2975 		if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
2976 			sav->replay = (struct secreplay *)
2977 				malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO);
2978 			if (sav->replay == NULL) {
2979 				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
2980 					__func__));
2981 				error = ENOBUFS;
2982 				goto fail;
2983 			}
2984 			if (sa0->sadb_sa_replay != 0)
2985 				sav->replay->bitmap = (caddr_t)(sav->replay+1);
2986 			sav->replay->wsize = sa0->sadb_sa_replay;
2987 		}
2988 	}
2989 
2990 	/* Authentication keys */
2991 	if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
2992 		const struct sadb_key *key0;
2993 		int len;
2994 
2995 		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
2996 		len = mhp->extlen[SADB_EXT_KEY_AUTH];
2997 
2998 		error = 0;
2999 		if (len < sizeof(*key0)) {
3000 			error = EINVAL;
3001 			goto fail;
3002 		}
3003 		switch (mhp->msg->sadb_msg_satype) {
3004 		case SADB_SATYPE_AH:
3005 		case SADB_SATYPE_ESP:
3006 		case SADB_X_SATYPE_TCPSIGNATURE:
3007 			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3008 			    sav->alg_auth != SADB_X_AALG_NULL)
3009 				error = EINVAL;
3010 			break;
3011 		case SADB_X_SATYPE_IPCOMP:
3012 		default:
3013 			error = EINVAL;
3014 			break;
3015 		}
3016 		if (error) {
3017 			ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n",
3018 				__func__));
3019 			goto fail;
3020 		}
3021 
3022 		sav->key_auth = key_dup(key0, len, M_IPSEC_MISC);
3023 		if (sav->key_auth == NULL) {
3024 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3025 			error = ENOBUFS;
3026 			goto fail;
3027 		}
3028 	}
3029 
3030 	/* Encryption key */
3031 	if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3032 		const struct sadb_key *key0;
3033 		int len;
3034 
3035 		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3036 		len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3037 
3038 		error = 0;
3039 		if (len < sizeof(*key0)) {
3040 			error = EINVAL;
3041 			goto fail;
3042 		}
3043 		switch (mhp->msg->sadb_msg_satype) {
3044 		case SADB_SATYPE_ESP:
3045 			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3046 			    sav->alg_enc != SADB_EALG_NULL) {
3047 				error = EINVAL;
3048 				break;
3049 			}
3050 			sav->key_enc = key_dup(key0, len, M_IPSEC_MISC);
3051 			if (sav->key_enc == NULL) {
3052 				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3053 					__func__));
3054 				error = ENOBUFS;
3055 				goto fail;
3056 			}
3057 			break;
3058 		case SADB_X_SATYPE_IPCOMP:
3059 			if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3060 				error = EINVAL;
3061 			sav->key_enc = NULL;	/*just in case*/
3062 			break;
3063 		case SADB_SATYPE_AH:
3064 		case SADB_X_SATYPE_TCPSIGNATURE:
3065 		default:
3066 			error = EINVAL;
3067 			break;
3068 		}
3069 		if (error) {
3070 			ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n",
3071 				__func__));
3072 			goto fail;
3073 		}
3074 	}
3075 
3076 	/* set iv */
3077 	sav->ivlen = 0;
3078 
3079 	switch (mhp->msg->sadb_msg_satype) {
3080 	case SADB_SATYPE_AH:
3081 		error = xform_init(sav, XF_AH);
3082 		break;
3083 	case SADB_SATYPE_ESP:
3084 		error = xform_init(sav, XF_ESP);
3085 		break;
3086 	case SADB_X_SATYPE_IPCOMP:
3087 		error = xform_init(sav, XF_IPCOMP);
3088 		break;
3089 	case SADB_X_SATYPE_TCPSIGNATURE:
3090 		error = xform_init(sav, XF_TCPSIGNATURE);
3091 		break;
3092 	}
3093 	if (error) {
3094 		ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n",
3095 		        __func__, mhp->msg->sadb_msg_satype));
3096 		goto fail;
3097 	}
3098 
3099 	/* reset created */
3100 	sav->created = time_second;
3101 
3102 	/* make lifetime for CURRENT */
3103 	sav->lft_c = malloc(sizeof(struct sadb_lifetime), M_IPSEC_MISC, M_NOWAIT);
3104 	if (sav->lft_c == NULL) {
3105 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3106 		error = ENOBUFS;
3107 		goto fail;
3108 	}
3109 
3110 	sav->lft_c->sadb_lifetime_len =
3111 	    PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3112 	sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3113 	sav->lft_c->sadb_lifetime_allocations = 0;
3114 	sav->lft_c->sadb_lifetime_bytes = 0;
3115 	sav->lft_c->sadb_lifetime_addtime = time_second;
3116 	sav->lft_c->sadb_lifetime_usetime = 0;
3117 
3118 	/* lifetimes for HARD and SOFT */
3119     {
3120 	const struct sadb_lifetime *lft0;
3121 
3122 	lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3123 	if (lft0 != NULL) {
3124 		if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3125 			error = EINVAL;
3126 			goto fail;
3127 		}
3128 		sav->lft_h = key_dup(lft0, sizeof(*lft0), M_IPSEC_MISC);
3129 		if (sav->lft_h == NULL) {
3130 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3131 			error = ENOBUFS;
3132 			goto fail;
3133 		}
3134 		/* to be initialize ? */
3135 	}
3136 
3137 	lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3138 	if (lft0 != NULL) {
3139 		if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3140 			error = EINVAL;
3141 			goto fail;
3142 		}
3143 		sav->lft_s = key_dup(lft0, sizeof(*lft0), M_IPSEC_MISC);
3144 		if (sav->lft_s == NULL) {
3145 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3146 			error = ENOBUFS;
3147 			goto fail;
3148 		}
3149 		/* to be initialize ? */
3150 	}
3151     }
3152 
3153 	return 0;
3154 
3155  fail:
3156 	/* initialization */
3157 	key_cleansav(sav);
3158 
3159 	return error;
3160 }
3161 
3162 /*
3163  * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3164  * OUT:	0:	valid
3165  *	other:	errno
3166  */
3167 static int
3168 key_mature(struct secasvar *sav)
3169 {
3170 	int error;
3171 
3172 	/* check SPI value */
3173 	switch (sav->sah->saidx.proto) {
3174 	case IPPROTO_ESP:
3175 	case IPPROTO_AH:
3176 		if (ntohl(sav->spi) >= 0 && ntohl(sav->spi) <= 255) {
3177 			ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n",
3178 			    __func__, (u_int32_t)ntohl(sav->spi)));
3179 			return EINVAL;
3180 		}
3181 		break;
3182 	}
3183 
3184 	/* check satype */
3185 	switch (sav->sah->saidx.proto) {
3186 	case IPPROTO_ESP:
3187 		/* check flags */
3188 		if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3189 		    (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3190 			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3191 				"given to old-esp.\n", __func__));
3192 			return EINVAL;
3193 		}
3194 		error = xform_init(sav, XF_ESP);
3195 		break;
3196 	case IPPROTO_AH:
3197 		/* check flags */
3198 		if (sav->flags & SADB_X_EXT_DERIV) {
3199 			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3200 				"given to AH SA.\n", __func__));
3201 			return EINVAL;
3202 		}
3203 		if (sav->alg_enc != SADB_EALG_NONE) {
3204 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3205 				"mismated.\n", __func__));
3206 			return(EINVAL);
3207 		}
3208 		error = xform_init(sav, XF_AH);
3209 		break;
3210 	case IPPROTO_IPCOMP:
3211 		if (sav->alg_auth != SADB_AALG_NONE) {
3212 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3213 				"mismated.\n", __func__));
3214 			return(EINVAL);
3215 		}
3216 		if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3217 		 && ntohl(sav->spi) >= 0x10000) {
3218 			ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n",
3219 				__func__));
3220 			return(EINVAL);
3221 		}
3222 		error = xform_init(sav, XF_IPCOMP);
3223 		break;
3224 	case IPPROTO_TCP:
3225 		if (sav->alg_enc != SADB_EALG_NONE) {
3226 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3227 				"mismated.\n", __func__));
3228 			return(EINVAL);
3229 		}
3230 		error = xform_init(sav, XF_TCPSIGNATURE);
3231 		break;
3232 	default:
3233 		ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__));
3234 		error = EPROTONOSUPPORT;
3235 		break;
3236 	}
3237 	if (error == 0) {
3238 		SAHTREE_LOCK();
3239 		key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3240 		SAHTREE_UNLOCK();
3241 	}
3242 	return (error);
3243 }
3244 
3245 /*
3246  * subroutine for SADB_GET and SADB_DUMP.
3247  */
3248 static struct mbuf *
3249 key_setdumpsa(sav, type, satype, seq, pid)
3250 	struct secasvar *sav;
3251 	u_int8_t type, satype;
3252 	u_int32_t seq, pid;
3253 {
3254 	struct mbuf *result = NULL, *tres = NULL, *m;
3255 	int l = 0;
3256 	int i;
3257 	void *p;
3258 	int dumporder[] = {
3259 		SADB_EXT_SA, SADB_X_EXT_SA2,
3260 		SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3261 		SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3262 		SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3263 		SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3264 		SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3265 	};
3266 
3267 	m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3268 	if (m == NULL)
3269 		goto fail;
3270 	result = m;
3271 
3272 	for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) {
3273 		m = NULL;
3274 		p = NULL;
3275 		switch (dumporder[i]) {
3276 		case SADB_EXT_SA:
3277 			m = key_setsadbsa(sav);
3278 			if (!m)
3279 				goto fail;
3280 			break;
3281 
3282 		case SADB_X_EXT_SA2:
3283 			m = key_setsadbxsa2(sav->sah->saidx.mode,
3284 					sav->replay ? sav->replay->count : 0,
3285 					sav->sah->saidx.reqid);
3286 			if (!m)
3287 				goto fail;
3288 			break;
3289 
3290 		case SADB_EXT_ADDRESS_SRC:
3291 			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3292 			    &sav->sah->saidx.src.sa,
3293 			    FULLMASK, IPSEC_ULPROTO_ANY);
3294 			if (!m)
3295 				goto fail;
3296 			break;
3297 
3298 		case SADB_EXT_ADDRESS_DST:
3299 			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3300 			    &sav->sah->saidx.dst.sa,
3301 			    FULLMASK, IPSEC_ULPROTO_ANY);
3302 			if (!m)
3303 				goto fail;
3304 			break;
3305 
3306 		case SADB_EXT_KEY_AUTH:
3307 			if (!sav->key_auth)
3308 				continue;
3309 			l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
3310 			p = sav->key_auth;
3311 			break;
3312 
3313 		case SADB_EXT_KEY_ENCRYPT:
3314 			if (!sav->key_enc)
3315 				continue;
3316 			l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
3317 			p = sav->key_enc;
3318 			break;
3319 
3320 		case SADB_EXT_LIFETIME_CURRENT:
3321 			if (!sav->lft_c)
3322 				continue;
3323 			l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
3324 			p = sav->lft_c;
3325 			break;
3326 
3327 		case SADB_EXT_LIFETIME_HARD:
3328 			if (!sav->lft_h)
3329 				continue;
3330 			l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
3331 			p = sav->lft_h;
3332 			break;
3333 
3334 		case SADB_EXT_LIFETIME_SOFT:
3335 			if (!sav->lft_s)
3336 				continue;
3337 			l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
3338 			p = sav->lft_s;
3339 			break;
3340 
3341 		case SADB_EXT_ADDRESS_PROXY:
3342 		case SADB_EXT_IDENTITY_SRC:
3343 		case SADB_EXT_IDENTITY_DST:
3344 			/* XXX: should we brought from SPD ? */
3345 		case SADB_EXT_SENSITIVITY:
3346 		default:
3347 			continue;
3348 		}
3349 
3350 		if ((!m && !p) || (m && p))
3351 			goto fail;
3352 		if (p && tres) {
3353 			M_PREPEND(tres, l, M_DONTWAIT);
3354 			if (!tres)
3355 				goto fail;
3356 			bcopy(p, mtod(tres, caddr_t), l);
3357 			continue;
3358 		}
3359 		if (p) {
3360 			m = key_alloc_mbuf(l);
3361 			if (!m)
3362 				goto fail;
3363 			m_copyback(m, 0, l, p);
3364 		}
3365 
3366 		if (tres)
3367 			m_cat(m, tres);
3368 		tres = m;
3369 	}
3370 
3371 	m_cat(result, tres);
3372 
3373 	if (result->m_len < sizeof(struct sadb_msg)) {
3374 		result = m_pullup(result, sizeof(struct sadb_msg));
3375 		if (result == NULL)
3376 			goto fail;
3377 	}
3378 
3379 	result->m_pkthdr.len = 0;
3380 	for (m = result; m; m = m->m_next)
3381 		result->m_pkthdr.len += m->m_len;
3382 
3383 	mtod(result, struct sadb_msg *)->sadb_msg_len =
3384 	    PFKEY_UNIT64(result->m_pkthdr.len);
3385 
3386 	return result;
3387 
3388 fail:
3389 	m_freem(result);
3390 	m_freem(tres);
3391 	return NULL;
3392 }
3393 
3394 /*
3395  * set data into sadb_msg.
3396  */
3397 static struct mbuf *
3398 key_setsadbmsg(type, tlen, satype, seq, pid, reserved)
3399 	u_int8_t type, satype;
3400 	u_int16_t tlen;
3401 	u_int32_t seq;
3402 	pid_t pid;
3403 	u_int16_t reserved;
3404 {
3405 	struct mbuf *m;
3406 	struct sadb_msg *p;
3407 	int len;
3408 
3409 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3410 	if (len > MCLBYTES)
3411 		return NULL;
3412 	MGETHDR(m, M_DONTWAIT, MT_DATA);
3413 	if (m && len > MHLEN) {
3414 		MCLGET(m, M_DONTWAIT);
3415 		if ((m->m_flags & M_EXT) == 0) {
3416 			m_freem(m);
3417 			m = NULL;
3418 		}
3419 	}
3420 	if (!m)
3421 		return NULL;
3422 	m->m_pkthdr.len = m->m_len = len;
3423 	m->m_next = NULL;
3424 
3425 	p = mtod(m, struct sadb_msg *);
3426 
3427 	bzero(p, len);
3428 	p->sadb_msg_version = PF_KEY_V2;
3429 	p->sadb_msg_type = type;
3430 	p->sadb_msg_errno = 0;
3431 	p->sadb_msg_satype = satype;
3432 	p->sadb_msg_len = PFKEY_UNIT64(tlen);
3433 	p->sadb_msg_reserved = reserved;
3434 	p->sadb_msg_seq = seq;
3435 	p->sadb_msg_pid = (u_int32_t)pid;
3436 
3437 	return m;
3438 }
3439 
3440 /*
3441  * copy secasvar data into sadb_address.
3442  */
3443 static struct mbuf *
3444 key_setsadbsa(sav)
3445 	struct secasvar *sav;
3446 {
3447 	struct mbuf *m;
3448 	struct sadb_sa *p;
3449 	int len;
3450 
3451 	len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3452 	m = key_alloc_mbuf(len);
3453 	if (!m || m->m_next) {	/*XXX*/
3454 		if (m)
3455 			m_freem(m);
3456 		return NULL;
3457 	}
3458 
3459 	p = mtod(m, struct sadb_sa *);
3460 
3461 	bzero(p, len);
3462 	p->sadb_sa_len = PFKEY_UNIT64(len);
3463 	p->sadb_sa_exttype = SADB_EXT_SA;
3464 	p->sadb_sa_spi = sav->spi;
3465 	p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3466 	p->sadb_sa_state = sav->state;
3467 	p->sadb_sa_auth = sav->alg_auth;
3468 	p->sadb_sa_encrypt = sav->alg_enc;
3469 	p->sadb_sa_flags = sav->flags;
3470 
3471 	return m;
3472 }
3473 
3474 /*
3475  * set data into sadb_address.
3476  */
3477 static struct mbuf *
3478 key_setsadbaddr(exttype, saddr, prefixlen, ul_proto)
3479 	u_int16_t exttype;
3480 	const struct sockaddr *saddr;
3481 	u_int8_t prefixlen;
3482 	u_int16_t ul_proto;
3483 {
3484 	struct mbuf *m;
3485 	struct sadb_address *p;
3486 	size_t len;
3487 
3488 	len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3489 	    PFKEY_ALIGN8(saddr->sa_len);
3490 	m = key_alloc_mbuf(len);
3491 	if (!m || m->m_next) {	/*XXX*/
3492 		if (m)
3493 			m_freem(m);
3494 		return NULL;
3495 	}
3496 
3497 	p = mtod(m, struct sadb_address *);
3498 
3499 	bzero(p, len);
3500 	p->sadb_address_len = PFKEY_UNIT64(len);
3501 	p->sadb_address_exttype = exttype;
3502 	p->sadb_address_proto = ul_proto;
3503 	if (prefixlen == FULLMASK) {
3504 		switch (saddr->sa_family) {
3505 		case AF_INET:
3506 			prefixlen = sizeof(struct in_addr) << 3;
3507 			break;
3508 		case AF_INET6:
3509 			prefixlen = sizeof(struct in6_addr) << 3;
3510 			break;
3511 		default:
3512 			; /*XXX*/
3513 		}
3514 	}
3515 	p->sadb_address_prefixlen = prefixlen;
3516 	p->sadb_address_reserved = 0;
3517 
3518 	bcopy(saddr,
3519 	    mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3520 	    saddr->sa_len);
3521 
3522 	return m;
3523 }
3524 
3525 /*
3526  * set data into sadb_x_sa2.
3527  */
3528 static struct mbuf *
3529 key_setsadbxsa2(mode, seq, reqid)
3530 	u_int8_t mode;
3531 	u_int32_t seq, reqid;
3532 {
3533 	struct mbuf *m;
3534 	struct sadb_x_sa2 *p;
3535 	size_t len;
3536 
3537 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3538 	m = key_alloc_mbuf(len);
3539 	if (!m || m->m_next) {	/*XXX*/
3540 		if (m)
3541 			m_freem(m);
3542 		return NULL;
3543 	}
3544 
3545 	p = mtod(m, struct sadb_x_sa2 *);
3546 
3547 	bzero(p, len);
3548 	p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3549 	p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3550 	p->sadb_x_sa2_mode = mode;
3551 	p->sadb_x_sa2_reserved1 = 0;
3552 	p->sadb_x_sa2_reserved2 = 0;
3553 	p->sadb_x_sa2_sequence = seq;
3554 	p->sadb_x_sa2_reqid = reqid;
3555 
3556 	return m;
3557 }
3558 
3559 /*
3560  * set data into sadb_x_policy
3561  */
3562 static struct mbuf *
3563 key_setsadbxpolicy(type, dir, id)
3564 	u_int16_t type;
3565 	u_int8_t dir;
3566 	u_int32_t id;
3567 {
3568 	struct mbuf *m;
3569 	struct sadb_x_policy *p;
3570 	size_t len;
3571 
3572 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
3573 	m = key_alloc_mbuf(len);
3574 	if (!m || m->m_next) {	/*XXX*/
3575 		if (m)
3576 			m_freem(m);
3577 		return NULL;
3578 	}
3579 
3580 	p = mtod(m, struct sadb_x_policy *);
3581 
3582 	bzero(p, len);
3583 	p->sadb_x_policy_len = PFKEY_UNIT64(len);
3584 	p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
3585 	p->sadb_x_policy_type = type;
3586 	p->sadb_x_policy_dir = dir;
3587 	p->sadb_x_policy_id = id;
3588 
3589 	return m;
3590 }
3591 
3592 /* %%% utilities */
3593 /*
3594  * copy a buffer into the new buffer allocated.
3595  */
3596 static void *
3597 key_dup(const void *src, u_int len, struct malloc_type *type)
3598 {
3599 	void *copy;
3600 
3601 	copy = malloc(len, type, M_NOWAIT);
3602 	if (copy == NULL) {
3603 		/* XXX counter */
3604 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3605 	} else
3606 		bcopy(src, copy, len);
3607 	return copy;
3608 }
3609 
3610 /* compare my own address
3611  * OUT:	1: true, i.e. my address.
3612  *	0: false
3613  */
3614 int
3615 key_ismyaddr(sa)
3616 	struct sockaddr *sa;
3617 {
3618 #ifdef INET
3619 	struct sockaddr_in *sin;
3620 	struct in_ifaddr *ia;
3621 #endif
3622 
3623 	IPSEC_ASSERT(sa != NULL, ("null sockaddr"));
3624 
3625 	switch (sa->sa_family) {
3626 #ifdef INET
3627 	case AF_INET:
3628 		sin = (struct sockaddr_in *)sa;
3629 		for (ia = in_ifaddrhead.tqh_first; ia;
3630 		     ia = ia->ia_link.tqe_next)
3631 		{
3632 			if (sin->sin_family == ia->ia_addr.sin_family &&
3633 			    sin->sin_len == ia->ia_addr.sin_len &&
3634 			    sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
3635 			{
3636 				return 1;
3637 			}
3638 		}
3639 		break;
3640 #endif
3641 #ifdef INET6
3642 	case AF_INET6:
3643 		return key_ismyaddr6((struct sockaddr_in6 *)sa);
3644 #endif
3645 	}
3646 
3647 	return 0;
3648 }
3649 
3650 #ifdef INET6
3651 /*
3652  * compare my own address for IPv6.
3653  * 1: ours
3654  * 0: other
3655  * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
3656  */
3657 #include <netinet6/in6_var.h>
3658 
3659 static int
3660 key_ismyaddr6(sin6)
3661 	struct sockaddr_in6 *sin6;
3662 {
3663 	struct in6_ifaddr *ia;
3664 	struct in6_multi *in6m;
3665 
3666 	for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
3667 		if (key_sockaddrcmp((struct sockaddr *)&sin6,
3668 		    (struct sockaddr *)&ia->ia_addr, 0) == 0)
3669 			return 1;
3670 
3671 		/*
3672 		 * XXX Multicast
3673 		 * XXX why do we care about multlicast here while we don't care
3674 		 * about IPv4 multicast??
3675 		 * XXX scope
3676 		 */
3677 		in6m = NULL;
3678 		IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m);
3679 		if (in6m)
3680 			return 1;
3681 	}
3682 
3683 	/* loopback, just for safety */
3684 	if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
3685 		return 1;
3686 
3687 	return 0;
3688 }
3689 #endif /*INET6*/
3690 
3691 /*
3692  * compare two secasindex structure.
3693  * flag can specify to compare 2 saidxes.
3694  * compare two secasindex structure without both mode and reqid.
3695  * don't compare port.
3696  * IN:
3697  *      saidx0: source, it can be in SAD.
3698  *      saidx1: object.
3699  * OUT:
3700  *      1 : equal
3701  *      0 : not equal
3702  */
3703 static int
3704 key_cmpsaidx(
3705 	const struct secasindex *saidx0,
3706 	const struct secasindex *saidx1,
3707 	int flag)
3708 {
3709 	/* sanity */
3710 	if (saidx0 == NULL && saidx1 == NULL)
3711 		return 1;
3712 
3713 	if (saidx0 == NULL || saidx1 == NULL)
3714 		return 0;
3715 
3716 	if (saidx0->proto != saidx1->proto)
3717 		return 0;
3718 
3719 	if (flag == CMP_EXACTLY) {
3720 		if (saidx0->mode != saidx1->mode)
3721 			return 0;
3722 		if (saidx0->reqid != saidx1->reqid)
3723 			return 0;
3724 		if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
3725 		    bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
3726 			return 0;
3727 	} else {
3728 
3729 		/* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
3730 		if (flag == CMP_MODE_REQID
3731 		  ||flag == CMP_REQID) {
3732 			/*
3733 			 * If reqid of SPD is non-zero, unique SA is required.
3734 			 * The result must be of same reqid in this case.
3735 			 */
3736 			if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
3737 				return 0;
3738 		}
3739 
3740 		if (flag == CMP_MODE_REQID) {
3741 			if (saidx0->mode != IPSEC_MODE_ANY
3742 			 && saidx0->mode != saidx1->mode)
3743 				return 0;
3744 		}
3745 
3746 		if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, 0) != 0) {
3747 			return 0;
3748 		}
3749 		if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, 0) != 0) {
3750 			return 0;
3751 		}
3752 	}
3753 
3754 	return 1;
3755 }
3756 
3757 /*
3758  * compare two secindex structure exactly.
3759  * IN:
3760  *	spidx0: source, it is often in SPD.
3761  *	spidx1: object, it is often from PFKEY message.
3762  * OUT:
3763  *	1 : equal
3764  *	0 : not equal
3765  */
3766 static int
3767 key_cmpspidx_exactly(
3768 	struct secpolicyindex *spidx0,
3769 	struct secpolicyindex *spidx1)
3770 {
3771 	/* sanity */
3772 	if (spidx0 == NULL && spidx1 == NULL)
3773 		return 1;
3774 
3775 	if (spidx0 == NULL || spidx1 == NULL)
3776 		return 0;
3777 
3778 	if (spidx0->prefs != spidx1->prefs
3779 	 || spidx0->prefd != spidx1->prefd
3780 	 || spidx0->ul_proto != spidx1->ul_proto)
3781 		return 0;
3782 
3783 	return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 &&
3784 	       key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0;
3785 }
3786 
3787 /*
3788  * compare two secindex structure with mask.
3789  * IN:
3790  *	spidx0: source, it is often in SPD.
3791  *	spidx1: object, it is often from IP header.
3792  * OUT:
3793  *	1 : equal
3794  *	0 : not equal
3795  */
3796 static int
3797 key_cmpspidx_withmask(
3798 	struct secpolicyindex *spidx0,
3799 	struct secpolicyindex *spidx1)
3800 {
3801 	/* sanity */
3802 	if (spidx0 == NULL && spidx1 == NULL)
3803 		return 1;
3804 
3805 	if (spidx0 == NULL || spidx1 == NULL)
3806 		return 0;
3807 
3808 	if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
3809 	    spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
3810 	    spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
3811 	    spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
3812 		return 0;
3813 
3814 	/* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
3815 	if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
3816 	 && spidx0->ul_proto != spidx1->ul_proto)
3817 		return 0;
3818 
3819 	switch (spidx0->src.sa.sa_family) {
3820 	case AF_INET:
3821 		if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
3822 		 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
3823 			return 0;
3824 		if (!key_bbcmp(&spidx0->src.sin.sin_addr,
3825 		    &spidx1->src.sin.sin_addr, spidx0->prefs))
3826 			return 0;
3827 		break;
3828 	case AF_INET6:
3829 		if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
3830 		 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
3831 			return 0;
3832 		/*
3833 		 * scope_id check. if sin6_scope_id is 0, we regard it
3834 		 * as a wildcard scope, which matches any scope zone ID.
3835 		 */
3836 		if (spidx0->src.sin6.sin6_scope_id &&
3837 		    spidx1->src.sin6.sin6_scope_id &&
3838 		    spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
3839 			return 0;
3840 		if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
3841 		    &spidx1->src.sin6.sin6_addr, spidx0->prefs))
3842 			return 0;
3843 		break;
3844 	default:
3845 		/* XXX */
3846 		if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
3847 			return 0;
3848 		break;
3849 	}
3850 
3851 	switch (spidx0->dst.sa.sa_family) {
3852 	case AF_INET:
3853 		if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
3854 		 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
3855 			return 0;
3856 		if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
3857 		    &spidx1->dst.sin.sin_addr, spidx0->prefd))
3858 			return 0;
3859 		break;
3860 	case AF_INET6:
3861 		if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
3862 		 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
3863 			return 0;
3864 		/*
3865 		 * scope_id check. if sin6_scope_id is 0, we regard it
3866 		 * as a wildcard scope, which matches any scope zone ID.
3867 		 */
3868 		if (spidx0->src.sin6.sin6_scope_id &&
3869 		    spidx1->src.sin6.sin6_scope_id &&
3870 		    spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
3871 			return 0;
3872 		if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
3873 		    &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
3874 			return 0;
3875 		break;
3876 	default:
3877 		/* XXX */
3878 		if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
3879 			return 0;
3880 		break;
3881 	}
3882 
3883 	/* XXX Do we check other field ?  e.g. flowinfo */
3884 
3885 	return 1;
3886 }
3887 
3888 /* returns 0 on match */
3889 static int
3890 key_sockaddrcmp(
3891 	const struct sockaddr *sa1,
3892 	const struct sockaddr *sa2,
3893 	int port)
3894 {
3895 #ifdef satosin
3896 #undef satosin
3897 #endif
3898 #define satosin(s) ((const struct sockaddr_in *)s)
3899 #ifdef satosin6
3900 #undef satosin6
3901 #endif
3902 #define satosin6(s) ((const struct sockaddr_in6 *)s)
3903 	if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
3904 		return 1;
3905 
3906 	switch (sa1->sa_family) {
3907 	case AF_INET:
3908 		if (sa1->sa_len != sizeof(struct sockaddr_in))
3909 			return 1;
3910 		if (satosin(sa1)->sin_addr.s_addr !=
3911 		    satosin(sa2)->sin_addr.s_addr) {
3912 			return 1;
3913 		}
3914 		if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port)
3915 			return 1;
3916 		break;
3917 	case AF_INET6:
3918 		if (sa1->sa_len != sizeof(struct sockaddr_in6))
3919 			return 1;	/*EINVAL*/
3920 		if (satosin6(sa1)->sin6_scope_id !=
3921 		    satosin6(sa2)->sin6_scope_id) {
3922 			return 1;
3923 		}
3924 		if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr,
3925 		    &satosin6(sa2)->sin6_addr)) {
3926 			return 1;
3927 		}
3928 		if (port &&
3929 		    satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) {
3930 			return 1;
3931 		}
3932 	default:
3933 		if (bcmp(sa1, sa2, sa1->sa_len) != 0)
3934 			return 1;
3935 		break;
3936 	}
3937 
3938 	return 0;
3939 #undef satosin
3940 #undef satosin6
3941 }
3942 
3943 /*
3944  * compare two buffers with mask.
3945  * IN:
3946  *	addr1: source
3947  *	addr2: object
3948  *	bits:  Number of bits to compare
3949  * OUT:
3950  *	1 : equal
3951  *	0 : not equal
3952  */
3953 static int
3954 key_bbcmp(const void *a1, const void *a2, u_int bits)
3955 {
3956 	const unsigned char *p1 = a1;
3957 	const unsigned char *p2 = a2;
3958 
3959 	/* XXX: This could be considerably faster if we compare a word
3960 	 * at a time, but it is complicated on LSB Endian machines */
3961 
3962 	/* Handle null pointers */
3963 	if (p1 == NULL || p2 == NULL)
3964 		return (p1 == p2);
3965 
3966 	while (bits >= 8) {
3967 		if (*p1++ != *p2++)
3968 			return 0;
3969 		bits -= 8;
3970 	}
3971 
3972 	if (bits > 0) {
3973 		u_int8_t mask = ~((1<<(8-bits))-1);
3974 		if ((*p1 & mask) != (*p2 & mask))
3975 			return 0;
3976 	}
3977 	return 1;	/* Match! */
3978 }
3979 
3980 static void
3981 key_flush_spd(time_t now)
3982 {
3983 	static u_int16_t sptree_scangen = 0;
3984 	u_int16_t gen = sptree_scangen++;
3985 	struct secpolicy *sp;
3986 	u_int dir;
3987 
3988 	/* SPD */
3989 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
3990 restart:
3991 		SPTREE_LOCK();
3992 		LIST_FOREACH(sp, &sptree[dir], chain) {
3993 			if (sp->scangen == gen)		/* previously handled */
3994 				continue;
3995 			sp->scangen = gen;
3996 			if (sp->state == IPSEC_SPSTATE_DEAD) {
3997 				/* NB: clean entries created by key_spdflush */
3998 				SPTREE_UNLOCK();
3999 				KEY_FREESP(&sp);
4000 				goto restart;
4001 			}
4002 			if (sp->lifetime == 0 && sp->validtime == 0)
4003 				continue;
4004 			if ((sp->lifetime && now - sp->created > sp->lifetime)
4005 			 || (sp->validtime && now - sp->lastused > sp->validtime)) {
4006 				sp->state = IPSEC_SPSTATE_DEAD;
4007 				SPTREE_UNLOCK();
4008 				key_spdexpire(sp);
4009 				KEY_FREESP(&sp);
4010 				goto restart;
4011 			}
4012 		}
4013 		SPTREE_UNLOCK();
4014 	}
4015 }
4016 
4017 static void
4018 key_flush_sad(time_t now)
4019 {
4020 	struct secashead *sah, *nextsah;
4021 	struct secasvar *sav, *nextsav;
4022 
4023 	/* SAD */
4024 	SAHTREE_LOCK();
4025 	LIST_FOREACH_SAFE(sah, &sahtree, chain, nextsah) {
4026 		/* if sah has been dead, then delete it and process next sah. */
4027 		if (sah->state == SADB_SASTATE_DEAD) {
4028 			key_delsah(sah);
4029 			continue;
4030 		}
4031 
4032 		/* if LARVAL entry doesn't become MATURE, delete it. */
4033 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) {
4034 			if (now - sav->created > key_larval_lifetime)
4035 				KEY_FREESAV(&sav);
4036 		}
4037 
4038 		/*
4039 		 * check MATURE entry to start to send expire message
4040 		 * whether or not.
4041 		 */
4042 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) {
4043 			/* we don't need to check. */
4044 			if (sav->lft_s == NULL)
4045 				continue;
4046 
4047 			/* sanity check */
4048 			if (sav->lft_c == NULL) {
4049 				ipseclog((LOG_DEBUG,"%s: there is no CURRENT "
4050 					"time, why?\n", __func__));
4051 				continue;
4052 			}
4053 
4054 			/* check SOFT lifetime */
4055 			if (sav->lft_s->sadb_lifetime_addtime != 0 &&
4056 			    now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4057 				/*
4058 				 * check SA to be used whether or not.
4059 				 * when SA hasn't been used, delete it.
4060 				 */
4061 				if (sav->lft_c->sadb_lifetime_usetime == 0) {
4062 					key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4063 					KEY_FREESAV(&sav);
4064 				} else {
4065 					key_sa_chgstate(sav, SADB_SASTATE_DYING);
4066 					/*
4067 					 * XXX If we keep to send expire
4068 					 * message in the status of
4069 					 * DYING. Do remove below code.
4070 					 */
4071 					key_expire(sav);
4072 				}
4073 			}
4074 			/* check SOFT lifetime by bytes */
4075 			/*
4076 			 * XXX I don't know the way to delete this SA
4077 			 * when new SA is installed.  Caution when it's
4078 			 * installed too big lifetime by time.
4079 			 */
4080 			else if (sav->lft_s->sadb_lifetime_bytes != 0 &&
4081 			    sav->lft_s->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) {
4082 
4083 				key_sa_chgstate(sav, SADB_SASTATE_DYING);
4084 				/*
4085 				 * XXX If we keep to send expire
4086 				 * message in the status of
4087 				 * DYING. Do remove below code.
4088 				 */
4089 				key_expire(sav);
4090 			}
4091 		}
4092 
4093 		/* check DYING entry to change status to DEAD. */
4094 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) {
4095 			/* we don't need to check. */
4096 			if (sav->lft_h == NULL)
4097 				continue;
4098 
4099 			/* sanity check */
4100 			if (sav->lft_c == NULL) {
4101 				ipseclog((LOG_DEBUG, "%s: there is no CURRENT "
4102 					"time, why?\n", __func__));
4103 				continue;
4104 			}
4105 
4106 			if (sav->lft_h->sadb_lifetime_addtime != 0 &&
4107 			    now - sav->created > sav->lft_h->sadb_lifetime_addtime) {
4108 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4109 				KEY_FREESAV(&sav);
4110 			}
4111 #if 0	/* XXX Should we keep to send expire message until HARD lifetime ? */
4112 			else if (sav->lft_s != NULL
4113 			      && sav->lft_s->sadb_lifetime_addtime != 0
4114 			      && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4115 				/*
4116 				 * XXX: should be checked to be
4117 				 * installed the valid SA.
4118 				 */
4119 
4120 				/*
4121 				 * If there is no SA then sending
4122 				 * expire message.
4123 				 */
4124 				key_expire(sav);
4125 			}
4126 #endif
4127 			/* check HARD lifetime by bytes */
4128 			else if (sav->lft_h->sadb_lifetime_bytes != 0 &&
4129 			    sav->lft_h->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) {
4130 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4131 				KEY_FREESAV(&sav);
4132 			}
4133 		}
4134 
4135 		/* delete entry in DEAD */
4136 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) {
4137 			/* sanity check */
4138 			if (sav->state != SADB_SASTATE_DEAD) {
4139 				ipseclog((LOG_DEBUG, "%s: invalid sav->state "
4140 					"(queue: %d SA: %d): kill it anyway\n",
4141 					__func__,
4142 					SADB_SASTATE_DEAD, sav->state));
4143 			}
4144 			/*
4145 			 * do not call key_freesav() here.
4146 			 * sav should already be freed, and sav->refcnt
4147 			 * shows other references to sav
4148 			 * (such as from SPD).
4149 			 */
4150 		}
4151 	}
4152 	SAHTREE_UNLOCK();
4153 }
4154 
4155 static void
4156 key_flush_acq(time_t now)
4157 {
4158 	struct secacq *acq, *nextacq;
4159 
4160 	/* ACQ tree */
4161 	ACQ_LOCK();
4162 	for (acq = LIST_FIRST(&acqtree); acq != NULL; acq = nextacq) {
4163 		nextacq = LIST_NEXT(acq, chain);
4164 		if (now - acq->created > key_blockacq_lifetime
4165 		 && __LIST_CHAINED(acq)) {
4166 			LIST_REMOVE(acq, chain);
4167 			free(acq, M_IPSEC_SAQ);
4168 		}
4169 	}
4170 	ACQ_UNLOCK();
4171 }
4172 
4173 static void
4174 key_flush_spacq(time_t now)
4175 {
4176 	struct secspacq *acq, *nextacq;
4177 
4178 	/* SP ACQ tree */
4179 	SPACQ_LOCK();
4180 	for (acq = LIST_FIRST(&spacqtree); acq != NULL; acq = nextacq) {
4181 		nextacq = LIST_NEXT(acq, chain);
4182 		if (now - acq->created > key_blockacq_lifetime
4183 		 && __LIST_CHAINED(acq)) {
4184 			LIST_REMOVE(acq, chain);
4185 			free(acq, M_IPSEC_SAQ);
4186 		}
4187 	}
4188 	SPACQ_UNLOCK();
4189 }
4190 
4191 /*
4192  * time handler.
4193  * scanning SPD and SAD to check status for each entries,
4194  * and do to remove or to expire.
4195  * XXX: year 2038 problem may remain.
4196  */
4197 void
4198 key_timehandler(void)
4199 {
4200 	time_t now = time_second;
4201 
4202 	key_flush_spd(now);
4203 	key_flush_sad(now);
4204 	key_flush_acq(now);
4205 	key_flush_spacq(now);
4206 
4207 #ifndef IPSEC_DEBUG2
4208 	/* do exchange to tick time !! */
4209 	(void)timeout((void *)key_timehandler, (void *)0, hz);
4210 #endif /* IPSEC_DEBUG2 */
4211 }
4212 
4213 u_long
4214 key_random()
4215 {
4216 	u_long value;
4217 
4218 	key_randomfill(&value, sizeof(value));
4219 	return value;
4220 }
4221 
4222 void
4223 key_randomfill(p, l)
4224 	void *p;
4225 	size_t l;
4226 {
4227 	size_t n;
4228 	u_long v;
4229 	static int warn = 1;
4230 
4231 	n = 0;
4232 	n = (size_t)read_random(p, (u_int)l);
4233 	/* last resort */
4234 	while (n < l) {
4235 		v = random();
4236 		bcopy(&v, (u_int8_t *)p + n,
4237 		    l - n < sizeof(v) ? l - n : sizeof(v));
4238 		n += sizeof(v);
4239 
4240 		if (warn) {
4241 			printf("WARNING: pseudo-random number generator "
4242 			    "used for IPsec processing\n");
4243 			warn = 0;
4244 		}
4245 	}
4246 }
4247 
4248 /*
4249  * map SADB_SATYPE_* to IPPROTO_*.
4250  * if satype == SADB_SATYPE then satype is mapped to ~0.
4251  * OUT:
4252  *	0: invalid satype.
4253  */
4254 static u_int16_t
4255 key_satype2proto(satype)
4256 	u_int8_t satype;
4257 {
4258 	switch (satype) {
4259 	case SADB_SATYPE_UNSPEC:
4260 		return IPSEC_PROTO_ANY;
4261 	case SADB_SATYPE_AH:
4262 		return IPPROTO_AH;
4263 	case SADB_SATYPE_ESP:
4264 		return IPPROTO_ESP;
4265 	case SADB_X_SATYPE_IPCOMP:
4266 		return IPPROTO_IPCOMP;
4267 	case SADB_X_SATYPE_TCPSIGNATURE:
4268 		return IPPROTO_TCP;
4269 	default:
4270 		return 0;
4271 	}
4272 	/* NOTREACHED */
4273 }
4274 
4275 /*
4276  * map IPPROTO_* to SADB_SATYPE_*
4277  * OUT:
4278  *	0: invalid protocol type.
4279  */
4280 static u_int8_t
4281 key_proto2satype(proto)
4282 	u_int16_t proto;
4283 {
4284 	switch (proto) {
4285 	case IPPROTO_AH:
4286 		return SADB_SATYPE_AH;
4287 	case IPPROTO_ESP:
4288 		return SADB_SATYPE_ESP;
4289 	case IPPROTO_IPCOMP:
4290 		return SADB_X_SATYPE_IPCOMP;
4291 	case IPPROTO_TCP:
4292 		return SADB_X_SATYPE_TCPSIGNATURE;
4293 	default:
4294 		return 0;
4295 	}
4296 	/* NOTREACHED */
4297 }
4298 
4299 /* %%% PF_KEY */
4300 /*
4301  * SADB_GETSPI processing is to receive
4302  *	<base, (SA2), src address, dst address, (SPI range)>
4303  * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4304  * tree with the status of LARVAL, and send
4305  *	<base, SA(*), address(SD)>
4306  * to the IKMPd.
4307  *
4308  * IN:	mhp: pointer to the pointer to each header.
4309  * OUT:	NULL if fail.
4310  *	other if success, return pointer to the message to send.
4311  */
4312 static int
4313 key_getspi(so, m, mhp)
4314 	struct socket *so;
4315 	struct mbuf *m;
4316 	const struct sadb_msghdr *mhp;
4317 {
4318 	struct sadb_address *src0, *dst0;
4319 	struct secasindex saidx;
4320 	struct secashead *newsah;
4321 	struct secasvar *newsav;
4322 	u_int8_t proto;
4323 	u_int32_t spi;
4324 	u_int8_t mode;
4325 	u_int32_t reqid;
4326 	int error;
4327 
4328 	IPSEC_ASSERT(so != NULL, ("null socket"));
4329 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4330 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4331 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4332 
4333 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4334 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4335 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4336 			__func__));
4337 		return key_senderror(so, m, EINVAL);
4338 	}
4339 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4340 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4341 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4342 			__func__));
4343 		return key_senderror(so, m, EINVAL);
4344 	}
4345 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4346 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4347 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4348 	} else {
4349 		mode = IPSEC_MODE_ANY;
4350 		reqid = 0;
4351 	}
4352 
4353 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4354 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4355 
4356 	/* map satype to proto */
4357 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4358 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4359 			__func__));
4360 		return key_senderror(so, m, EINVAL);
4361 	}
4362 
4363 	/* make sure if port number is zero. */
4364 	switch (((struct sockaddr *)(src0 + 1))->sa_family) {
4365 	case AF_INET:
4366 		if (((struct sockaddr *)(src0 + 1))->sa_len !=
4367 		    sizeof(struct sockaddr_in))
4368 			return key_senderror(so, m, EINVAL);
4369 		((struct sockaddr_in *)(src0 + 1))->sin_port = 0;
4370 		break;
4371 	case AF_INET6:
4372 		if (((struct sockaddr *)(src0 + 1))->sa_len !=
4373 		    sizeof(struct sockaddr_in6))
4374 			return key_senderror(so, m, EINVAL);
4375 		((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0;
4376 		break;
4377 	default:
4378 		; /*???*/
4379 	}
4380 	switch (((struct sockaddr *)(dst0 + 1))->sa_family) {
4381 	case AF_INET:
4382 		if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4383 		    sizeof(struct sockaddr_in))
4384 			return key_senderror(so, m, EINVAL);
4385 		((struct sockaddr_in *)(dst0 + 1))->sin_port = 0;
4386 		break;
4387 	case AF_INET6:
4388 		if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4389 		    sizeof(struct sockaddr_in6))
4390 			return key_senderror(so, m, EINVAL);
4391 		((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0;
4392 		break;
4393 	default:
4394 		; /*???*/
4395 	}
4396 
4397 	/* XXX boundary check against sa_len */
4398 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4399 
4400 	/* SPI allocation */
4401 	spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4402 	                       &saidx);
4403 	if (spi == 0)
4404 		return key_senderror(so, m, EINVAL);
4405 
4406 	/* get a SA index */
4407 	if ((newsah = key_getsah(&saidx)) == NULL) {
4408 		/* create a new SA index */
4409 		if ((newsah = key_newsah(&saidx)) == NULL) {
4410 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
4411 			return key_senderror(so, m, ENOBUFS);
4412 		}
4413 	}
4414 
4415 	/* get a new SA */
4416 	/* XXX rewrite */
4417 	newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4418 	if (newsav == NULL) {
4419 		/* XXX don't free new SA index allocated in above. */
4420 		return key_senderror(so, m, error);
4421 	}
4422 
4423 	/* set spi */
4424 	newsav->spi = htonl(spi);
4425 
4426 	/* delete the entry in acqtree */
4427 	if (mhp->msg->sadb_msg_seq != 0) {
4428 		struct secacq *acq;
4429 		if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) {
4430 			/* reset counter in order to deletion by timehandler. */
4431 			acq->created = time_second;
4432 			acq->count = 0;
4433 		}
4434     	}
4435 
4436     {
4437 	struct mbuf *n, *nn;
4438 	struct sadb_sa *m_sa;
4439 	struct sadb_msg *newmsg;
4440 	int off, len;
4441 
4442 	/* create new sadb_msg to reply. */
4443 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4444 	    PFKEY_ALIGN8(sizeof(struct sadb_sa));
4445 	if (len > MCLBYTES)
4446 		return key_senderror(so, m, ENOBUFS);
4447 
4448 	MGETHDR(n, M_DONTWAIT, MT_DATA);
4449 	if (len > MHLEN) {
4450 		MCLGET(n, M_DONTWAIT);
4451 		if ((n->m_flags & M_EXT) == 0) {
4452 			m_freem(n);
4453 			n = NULL;
4454 		}
4455 	}
4456 	if (!n)
4457 		return key_senderror(so, m, ENOBUFS);
4458 
4459 	n->m_len = len;
4460 	n->m_next = NULL;
4461 	off = 0;
4462 
4463 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
4464 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4465 
4466 	m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off);
4467 	m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4468 	m_sa->sadb_sa_exttype = SADB_EXT_SA;
4469 	m_sa->sadb_sa_spi = htonl(spi);
4470 	off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4471 
4472 	IPSEC_ASSERT(off == len,
4473 		("length inconsistency (off %u len %u)", off, len));
4474 
4475 	n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4476 	    SADB_EXT_ADDRESS_DST);
4477 	if (!n->m_next) {
4478 		m_freem(n);
4479 		return key_senderror(so, m, ENOBUFS);
4480 	}
4481 
4482 	if (n->m_len < sizeof(struct sadb_msg)) {
4483 		n = m_pullup(n, sizeof(struct sadb_msg));
4484 		if (n == NULL)
4485 			return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
4486 	}
4487 
4488 	n->m_pkthdr.len = 0;
4489 	for (nn = n; nn; nn = nn->m_next)
4490 		n->m_pkthdr.len += nn->m_len;
4491 
4492 	newmsg = mtod(n, struct sadb_msg *);
4493 	newmsg->sadb_msg_seq = newsav->seq;
4494 	newmsg->sadb_msg_errno = 0;
4495 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
4496 
4497 	m_freem(m);
4498 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
4499     }
4500 }
4501 
4502 /*
4503  * allocating new SPI
4504  * called by key_getspi().
4505  * OUT:
4506  *	0:	failure.
4507  *	others: success.
4508  */
4509 static u_int32_t
4510 key_do_getnewspi(spirange, saidx)
4511 	struct sadb_spirange *spirange;
4512 	struct secasindex *saidx;
4513 {
4514 	u_int32_t newspi;
4515 	u_int32_t min, max;
4516 	int count = key_spi_trycnt;
4517 
4518 	/* set spi range to allocate */
4519 	if (spirange != NULL) {
4520 		min = spirange->sadb_spirange_min;
4521 		max = spirange->sadb_spirange_max;
4522 	} else {
4523 		min = key_spi_minval;
4524 		max = key_spi_maxval;
4525 	}
4526 	/* IPCOMP needs 2-byte SPI */
4527 	if (saidx->proto == IPPROTO_IPCOMP) {
4528 		u_int32_t t;
4529 		if (min >= 0x10000)
4530 			min = 0xffff;
4531 		if (max >= 0x10000)
4532 			max = 0xffff;
4533 		if (min > max) {
4534 			t = min; min = max; max = t;
4535 		}
4536 	}
4537 
4538 	if (min == max) {
4539 		if (key_checkspidup(saidx, min) != NULL) {
4540 			ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n",
4541 				__func__, min));
4542 			return 0;
4543 		}
4544 
4545 		count--; /* taking one cost. */
4546 		newspi = min;
4547 
4548 	} else {
4549 
4550 		/* init SPI */
4551 		newspi = 0;
4552 
4553 		/* when requesting to allocate spi ranged */
4554 		while (count--) {
4555 			/* generate pseudo-random SPI value ranged. */
4556 			newspi = min + (key_random() % (max - min + 1));
4557 
4558 			if (key_checkspidup(saidx, newspi) == NULL)
4559 				break;
4560 		}
4561 
4562 		if (count == 0 || newspi == 0) {
4563 			ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n",
4564 				__func__));
4565 			return 0;
4566 		}
4567 	}
4568 
4569 	/* statistics */
4570 	keystat.getspi_count =
4571 		(keystat.getspi_count + key_spi_trycnt - count) / 2;
4572 
4573 	return newspi;
4574 }
4575 
4576 /*
4577  * SADB_UPDATE processing
4578  * receive
4579  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4580  *       key(AE), (identity(SD),) (sensitivity)>
4581  * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
4582  * and send
4583  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4584  *       (identity(SD),) (sensitivity)>
4585  * to the ikmpd.
4586  *
4587  * m will always be freed.
4588  */
4589 static int
4590 key_update(so, m, mhp)
4591 	struct socket *so;
4592 	struct mbuf *m;
4593 	const struct sadb_msghdr *mhp;
4594 {
4595 	struct sadb_sa *sa0;
4596 	struct sadb_address *src0, *dst0;
4597 	struct secasindex saidx;
4598 	struct secashead *sah;
4599 	struct secasvar *sav;
4600 	u_int16_t proto;
4601 	u_int8_t mode;
4602 	u_int32_t reqid;
4603 	int error;
4604 
4605 	IPSEC_ASSERT(so != NULL, ("null socket"));
4606 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4607 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4608 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4609 
4610 	/* map satype to proto */
4611 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4612 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4613 			__func__));
4614 		return key_senderror(so, m, EINVAL);
4615 	}
4616 
4617 	if (mhp->ext[SADB_EXT_SA] == NULL ||
4618 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4619 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
4620 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
4621 	     mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
4622 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
4623 	     mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
4624 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
4625 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
4626 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
4627 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
4628 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4629 			__func__));
4630 		return key_senderror(so, m, EINVAL);
4631 	}
4632 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
4633 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4634 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4635 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4636 			__func__));
4637 		return key_senderror(so, m, EINVAL);
4638 	}
4639 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4640 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4641 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4642 	} else {
4643 		mode = IPSEC_MODE_ANY;
4644 		reqid = 0;
4645 	}
4646 	/* XXX boundary checking for other extensions */
4647 
4648 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
4649 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4650 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4651 
4652 	/* XXX boundary check against sa_len */
4653 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4654 
4655 	/* get a SA header */
4656 	if ((sah = key_getsah(&saidx)) == NULL) {
4657 		ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__));
4658 		return key_senderror(so, m, ENOENT);
4659 	}
4660 
4661 	/* set spidx if there */
4662 	/* XXX rewrite */
4663 	error = key_setident(sah, m, mhp);
4664 	if (error)
4665 		return key_senderror(so, m, error);
4666 
4667 	/* find a SA with sequence number. */
4668 #ifdef IPSEC_DOSEQCHECK
4669 	if (mhp->msg->sadb_msg_seq != 0
4670 	 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) {
4671 		ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u "
4672 			"exists.\n", __func__, mhp->msg->sadb_msg_seq));
4673 		return key_senderror(so, m, ENOENT);
4674 	}
4675 #else
4676 	SAHTREE_LOCK();
4677 	sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
4678 	SAHTREE_UNLOCK();
4679 	if (sav == NULL) {
4680 		ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n",
4681 			__func__, (u_int32_t)ntohl(sa0->sadb_sa_spi)));
4682 		return key_senderror(so, m, EINVAL);
4683 	}
4684 #endif
4685 
4686 	/* validity check */
4687 	if (sav->sah->saidx.proto != proto) {
4688 		ipseclog((LOG_DEBUG, "%s: protocol mismatched "
4689 			"(DB=%u param=%u)\n", __func__,
4690 			sav->sah->saidx.proto, proto));
4691 		return key_senderror(so, m, EINVAL);
4692 	}
4693 #ifdef IPSEC_DOSEQCHECK
4694 	if (sav->spi != sa0->sadb_sa_spi) {
4695 		ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n",
4696 		    __func__,
4697 		    (u_int32_t)ntohl(sav->spi),
4698 		    (u_int32_t)ntohl(sa0->sadb_sa_spi)));
4699 		return key_senderror(so, m, EINVAL);
4700 	}
4701 #endif
4702 	if (sav->pid != mhp->msg->sadb_msg_pid) {
4703 		ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n",
4704 		    __func__, sav->pid, mhp->msg->sadb_msg_pid));
4705 		return key_senderror(so, m, EINVAL);
4706 	}
4707 
4708 	/* copy sav values */
4709 	error = key_setsaval(sav, m, mhp);
4710 	if (error) {
4711 		KEY_FREESAV(&sav);
4712 		return key_senderror(so, m, error);
4713 	}
4714 
4715 	/* check SA values to be mature. */
4716 	if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) {
4717 		KEY_FREESAV(&sav);
4718 		return key_senderror(so, m, 0);
4719 	}
4720 
4721     {
4722 	struct mbuf *n;
4723 
4724 	/* set msg buf from mhp */
4725 	n = key_getmsgbuf_x1(m, mhp);
4726 	if (n == NULL) {
4727 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
4728 		return key_senderror(so, m, ENOBUFS);
4729 	}
4730 
4731 	m_freem(m);
4732 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
4733     }
4734 }
4735 
4736 /*
4737  * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
4738  * only called by key_update().
4739  * OUT:
4740  *	NULL	: not found
4741  *	others	: found, pointer to a SA.
4742  */
4743 #ifdef IPSEC_DOSEQCHECK
4744 static struct secasvar *
4745 key_getsavbyseq(sah, seq)
4746 	struct secashead *sah;
4747 	u_int32_t seq;
4748 {
4749 	struct secasvar *sav;
4750 	u_int state;
4751 
4752 	state = SADB_SASTATE_LARVAL;
4753 
4754 	/* search SAD with sequence number ? */
4755 	LIST_FOREACH(sav, &sah->savtree[state], chain) {
4756 
4757 		KEY_CHKSASTATE(state, sav->state, __func__);
4758 
4759 		if (sav->seq == seq) {
4760 			SA_ADDREF(sav);
4761 			KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
4762 				printf("DP %s cause refcnt++:%d SA:%p\n",
4763 					__func__, sav->refcnt, sav));
4764 			return sav;
4765 		}
4766 	}
4767 
4768 	return NULL;
4769 }
4770 #endif
4771 
4772 /*
4773  * SADB_ADD processing
4774  * add an entry to SA database, when received
4775  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4776  *       key(AE), (identity(SD),) (sensitivity)>
4777  * from the ikmpd,
4778  * and send
4779  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4780  *       (identity(SD),) (sensitivity)>
4781  * to the ikmpd.
4782  *
4783  * IGNORE identity and sensitivity messages.
4784  *
4785  * m will always be freed.
4786  */
4787 static int
4788 key_add(so, m, mhp)
4789 	struct socket *so;
4790 	struct mbuf *m;
4791 	const struct sadb_msghdr *mhp;
4792 {
4793 	struct sadb_sa *sa0;
4794 	struct sadb_address *src0, *dst0;
4795 	struct secasindex saidx;
4796 	struct secashead *newsah;
4797 	struct secasvar *newsav;
4798 	u_int16_t proto;
4799 	u_int8_t mode;
4800 	u_int32_t reqid;
4801 	int error;
4802 
4803 	IPSEC_ASSERT(so != NULL, ("null socket"));
4804 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4805 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4806 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4807 
4808 	/* map satype to proto */
4809 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4810 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4811 			__func__));
4812 		return key_senderror(so, m, EINVAL);
4813 	}
4814 
4815 	if (mhp->ext[SADB_EXT_SA] == NULL ||
4816 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4817 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
4818 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
4819 	     mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
4820 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
4821 	     mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
4822 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
4823 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
4824 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
4825 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
4826 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4827 			__func__));
4828 		return key_senderror(so, m, EINVAL);
4829 	}
4830 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
4831 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4832 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4833 		/* XXX need more */
4834 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4835 			__func__));
4836 		return key_senderror(so, m, EINVAL);
4837 	}
4838 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4839 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4840 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4841 	} else {
4842 		mode = IPSEC_MODE_ANY;
4843 		reqid = 0;
4844 	}
4845 
4846 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
4847 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
4848 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
4849 
4850 	/* XXX boundary check against sa_len */
4851 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4852 
4853 	/* get a SA header */
4854 	if ((newsah = key_getsah(&saidx)) == NULL) {
4855 		/* create a new SA header */
4856 		if ((newsah = key_newsah(&saidx)) == NULL) {
4857 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
4858 			return key_senderror(so, m, ENOBUFS);
4859 		}
4860 	}
4861 
4862 	/* set spidx if there */
4863 	/* XXX rewrite */
4864 	error = key_setident(newsah, m, mhp);
4865 	if (error) {
4866 		return key_senderror(so, m, error);
4867 	}
4868 
4869 	/* create new SA entry. */
4870 	/* We can create new SA only if SPI is differenct. */
4871 	SAHTREE_LOCK();
4872 	newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi);
4873 	SAHTREE_UNLOCK();
4874 	if (newsav != NULL) {
4875 		ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__));
4876 		return key_senderror(so, m, EEXIST);
4877 	}
4878 	newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4879 	if (newsav == NULL) {
4880 		return key_senderror(so, m, error);
4881 	}
4882 
4883 	/* check SA values to be mature. */
4884 	if ((error = key_mature(newsav)) != 0) {
4885 		KEY_FREESAV(&newsav);
4886 		return key_senderror(so, m, error);
4887 	}
4888 
4889 	/*
4890 	 * don't call key_freesav() here, as we would like to keep the SA
4891 	 * in the database on success.
4892 	 */
4893 
4894     {
4895 	struct mbuf *n;
4896 
4897 	/* set msg buf from mhp */
4898 	n = key_getmsgbuf_x1(m, mhp);
4899 	if (n == NULL) {
4900 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
4901 		return key_senderror(so, m, ENOBUFS);
4902 	}
4903 
4904 	m_freem(m);
4905 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
4906     }
4907 }
4908 
4909 /* m is retained */
4910 static int
4911 key_setident(sah, m, mhp)
4912 	struct secashead *sah;
4913 	struct mbuf *m;
4914 	const struct sadb_msghdr *mhp;
4915 {
4916 	const struct sadb_ident *idsrc, *iddst;
4917 	int idsrclen, iddstlen;
4918 
4919 	IPSEC_ASSERT(sah != NULL, ("null secashead"));
4920 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4921 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4922 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4923 
4924 	/* don't make buffer if not there */
4925 	if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
4926 	    mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
4927 		sah->idents = NULL;
4928 		sah->identd = NULL;
4929 		return 0;
4930 	}
4931 
4932 	if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
4933 	    mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
4934 		ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__));
4935 		return EINVAL;
4936 	}
4937 
4938 	idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
4939 	iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
4940 	idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
4941 	iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
4942 
4943 	/* validity check */
4944 	if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
4945 		ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__));
4946 		return EINVAL;
4947 	}
4948 
4949 	switch (idsrc->sadb_ident_type) {
4950 	case SADB_IDENTTYPE_PREFIX:
4951 	case SADB_IDENTTYPE_FQDN:
4952 	case SADB_IDENTTYPE_USERFQDN:
4953 	default:
4954 		/* XXX do nothing */
4955 		sah->idents = NULL;
4956 		sah->identd = NULL;
4957 	 	return 0;
4958 	}
4959 
4960 	/* make structure */
4961 	sah->idents = malloc(idsrclen, M_IPSEC_MISC, M_NOWAIT);
4962 	if (sah->idents == NULL) {
4963 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
4964 		return ENOBUFS;
4965 	}
4966 	sah->identd = malloc(iddstlen, M_IPSEC_MISC, M_NOWAIT);
4967 	if (sah->identd == NULL) {
4968 		free(sah->idents, M_IPSEC_MISC);
4969 		sah->idents = NULL;
4970 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
4971 		return ENOBUFS;
4972 	}
4973 	bcopy(idsrc, sah->idents, idsrclen);
4974 	bcopy(iddst, sah->identd, iddstlen);
4975 
4976 	return 0;
4977 }
4978 
4979 /*
4980  * m will not be freed on return.
4981  * it is caller's responsibility to free the result.
4982  */
4983 static struct mbuf *
4984 key_getmsgbuf_x1(m, mhp)
4985 	struct mbuf *m;
4986 	const struct sadb_msghdr *mhp;
4987 {
4988 	struct mbuf *n;
4989 
4990 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4991 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4992 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4993 
4994 	/* create new sadb_msg to reply. */
4995 	n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED,
4996 	    SADB_EXT_SA, SADB_X_EXT_SA2,
4997 	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
4998 	    SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
4999 	    SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST);
5000 	if (!n)
5001 		return NULL;
5002 
5003 	if (n->m_len < sizeof(struct sadb_msg)) {
5004 		n = m_pullup(n, sizeof(struct sadb_msg));
5005 		if (n == NULL)
5006 			return NULL;
5007 	}
5008 	mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5009 	mtod(n, struct sadb_msg *)->sadb_msg_len =
5010 	    PFKEY_UNIT64(n->m_pkthdr.len);
5011 
5012 	return n;
5013 }
5014 
5015 static int key_delete_all __P((struct socket *, struct mbuf *,
5016 	const struct sadb_msghdr *, u_int16_t));
5017 
5018 /*
5019  * SADB_DELETE processing
5020  * receive
5021  *   <base, SA(*), address(SD)>
5022  * from the ikmpd, and set SADB_SASTATE_DEAD,
5023  * and send,
5024  *   <base, SA(*), address(SD)>
5025  * to the ikmpd.
5026  *
5027  * m will always be freed.
5028  */
5029 static int
5030 key_delete(so, m, mhp)
5031 	struct socket *so;
5032 	struct mbuf *m;
5033 	const struct sadb_msghdr *mhp;
5034 {
5035 	struct sadb_sa *sa0;
5036 	struct sadb_address *src0, *dst0;
5037 	struct secasindex saidx;
5038 	struct secashead *sah;
5039 	struct secasvar *sav = NULL;
5040 	u_int16_t proto;
5041 
5042 	IPSEC_ASSERT(so != NULL, ("null socket"));
5043 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5044 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5045 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5046 
5047 	/* map satype to proto */
5048 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5049 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5050 			__func__));
5051 		return key_senderror(so, m, EINVAL);
5052 	}
5053 
5054 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5055 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5056 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5057 			__func__));
5058 		return key_senderror(so, m, EINVAL);
5059 	}
5060 
5061 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5062 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5063 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5064 			__func__));
5065 		return key_senderror(so, m, EINVAL);
5066 	}
5067 
5068 	if (mhp->ext[SADB_EXT_SA] == NULL) {
5069 		/*
5070 		 * Caller wants us to delete all non-LARVAL SAs
5071 		 * that match the src/dst.  This is used during
5072 		 * IKE INITIAL-CONTACT.
5073 		 */
5074 		ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__));
5075 		return key_delete_all(so, m, mhp, proto);
5076 	} else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5077 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5078 			__func__));
5079 		return key_senderror(so, m, EINVAL);
5080 	}
5081 
5082 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5083 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5084 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5085 
5086 	/* XXX boundary check against sa_len */
5087 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5088 
5089 	/* get a SA header */
5090 	SAHTREE_LOCK();
5091 	LIST_FOREACH(sah, &sahtree, chain) {
5092 		if (sah->state == SADB_SASTATE_DEAD)
5093 			continue;
5094 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5095 			continue;
5096 
5097 		/* get a SA with SPI. */
5098 		sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5099 		if (sav)
5100 			break;
5101 	}
5102 	if (sah == NULL) {
5103 		SAHTREE_UNLOCK();
5104 		ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5105 		return key_senderror(so, m, ENOENT);
5106 	}
5107 
5108 	key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5109 	SAHTREE_UNLOCK();
5110 	KEY_FREESAV(&sav);
5111 
5112     {
5113 	struct mbuf *n;
5114 	struct sadb_msg *newmsg;
5115 
5116 	/* create new sadb_msg to reply. */
5117 	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5118 	    SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5119 	if (!n)
5120 		return key_senderror(so, m, ENOBUFS);
5121 
5122 	if (n->m_len < sizeof(struct sadb_msg)) {
5123 		n = m_pullup(n, sizeof(struct sadb_msg));
5124 		if (n == NULL)
5125 			return key_senderror(so, m, ENOBUFS);
5126 	}
5127 	newmsg = mtod(n, struct sadb_msg *);
5128 	newmsg->sadb_msg_errno = 0;
5129 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5130 
5131 	m_freem(m);
5132 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5133     }
5134 }
5135 
5136 /*
5137  * delete all SAs for src/dst.  Called from key_delete().
5138  */
5139 static int
5140 key_delete_all(so, m, mhp, proto)
5141 	struct socket *so;
5142 	struct mbuf *m;
5143 	const struct sadb_msghdr *mhp;
5144 	u_int16_t proto;
5145 {
5146 	struct sadb_address *src0, *dst0;
5147 	struct secasindex saidx;
5148 	struct secashead *sah;
5149 	struct secasvar *sav, *nextsav;
5150 	u_int stateidx, state;
5151 
5152 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5153 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5154 
5155 	/* XXX boundary check against sa_len */
5156 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5157 
5158 	SAHTREE_LOCK();
5159 	LIST_FOREACH(sah, &sahtree, chain) {
5160 		if (sah->state == SADB_SASTATE_DEAD)
5161 			continue;
5162 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5163 			continue;
5164 
5165 		/* Delete all non-LARVAL SAs. */
5166 		for (stateidx = 0;
5167 		     stateidx < _ARRAYLEN(saorder_state_alive);
5168 		     stateidx++) {
5169 			state = saorder_state_alive[stateidx];
5170 			if (state == SADB_SASTATE_LARVAL)
5171 				continue;
5172 			for (sav = LIST_FIRST(&sah->savtree[state]);
5173 			     sav != NULL; sav = nextsav) {
5174 				nextsav = LIST_NEXT(sav, chain);
5175 				/* sanity check */
5176 				if (sav->state != state) {
5177 					ipseclog((LOG_DEBUG, "%s: invalid "
5178 						"sav->state (queue %d SA %d)\n",
5179 						__func__, state, sav->state));
5180 					continue;
5181 				}
5182 
5183 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5184 				KEY_FREESAV(&sav);
5185 			}
5186 		}
5187 	}
5188 	SAHTREE_UNLOCK();
5189     {
5190 	struct mbuf *n;
5191 	struct sadb_msg *newmsg;
5192 
5193 	/* create new sadb_msg to reply. */
5194 	n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5195 	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5196 	if (!n)
5197 		return key_senderror(so, m, ENOBUFS);
5198 
5199 	if (n->m_len < sizeof(struct sadb_msg)) {
5200 		n = m_pullup(n, sizeof(struct sadb_msg));
5201 		if (n == NULL)
5202 			return key_senderror(so, m, ENOBUFS);
5203 	}
5204 	newmsg = mtod(n, struct sadb_msg *);
5205 	newmsg->sadb_msg_errno = 0;
5206 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5207 
5208 	m_freem(m);
5209 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5210     }
5211 }
5212 
5213 /*
5214  * SADB_GET processing
5215  * receive
5216  *   <base, SA(*), address(SD)>
5217  * from the ikmpd, and get a SP and a SA to respond,
5218  * and send,
5219  *   <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5220  *       (identity(SD),) (sensitivity)>
5221  * to the ikmpd.
5222  *
5223  * m will always be freed.
5224  */
5225 static int
5226 key_get(so, m, mhp)
5227 	struct socket *so;
5228 	struct mbuf *m;
5229 	const struct sadb_msghdr *mhp;
5230 {
5231 	struct sadb_sa *sa0;
5232 	struct sadb_address *src0, *dst0;
5233 	struct secasindex saidx;
5234 	struct secashead *sah;
5235 	struct secasvar *sav = NULL;
5236 	u_int16_t proto;
5237 
5238 	IPSEC_ASSERT(so != NULL, ("null socket"));
5239 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5240 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5241 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5242 
5243 	/* map satype to proto */
5244 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5245 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5246 			__func__));
5247 		return key_senderror(so, m, EINVAL);
5248 	}
5249 
5250 	if (mhp->ext[SADB_EXT_SA] == NULL ||
5251 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5252 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5253 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5254 			__func__));
5255 		return key_senderror(so, m, EINVAL);
5256 	}
5257 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5258 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5259 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5260 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5261 			__func__));
5262 		return key_senderror(so, m, EINVAL);
5263 	}
5264 
5265 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5266 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5267 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5268 
5269 	/* XXX boundary check against sa_len */
5270 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5271 
5272 	/* get a SA header */
5273 	SAHTREE_LOCK();
5274 	LIST_FOREACH(sah, &sahtree, chain) {
5275 		if (sah->state == SADB_SASTATE_DEAD)
5276 			continue;
5277 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5278 			continue;
5279 
5280 		/* get a SA with SPI. */
5281 		sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5282 		if (sav)
5283 			break;
5284 	}
5285 	SAHTREE_UNLOCK();
5286 	if (sah == NULL) {
5287 		ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5288 		return key_senderror(so, m, ENOENT);
5289 	}
5290 
5291     {
5292 	struct mbuf *n;
5293 	u_int8_t satype;
5294 
5295 	/* map proto to satype */
5296 	if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
5297 		ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n",
5298 			__func__));
5299 		return key_senderror(so, m, EINVAL);
5300 	}
5301 
5302 	/* create new sadb_msg to reply. */
5303 	n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5304 	    mhp->msg->sadb_msg_pid);
5305 	if (!n)
5306 		return key_senderror(so, m, ENOBUFS);
5307 
5308 	m_freem(m);
5309 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5310     }
5311 }
5312 
5313 /* XXX make it sysctl-configurable? */
5314 static void
5315 key_getcomb_setlifetime(comb)
5316 	struct sadb_comb *comb;
5317 {
5318 
5319 	comb->sadb_comb_soft_allocations = 1;
5320 	comb->sadb_comb_hard_allocations = 1;
5321 	comb->sadb_comb_soft_bytes = 0;
5322 	comb->sadb_comb_hard_bytes = 0;
5323 	comb->sadb_comb_hard_addtime = 86400;	/* 1 day */
5324 	comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5325 	comb->sadb_comb_soft_usetime = 28800;	/* 8 hours */
5326 	comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
5327 }
5328 
5329 /*
5330  * XXX reorder combinations by preference
5331  * XXX no idea if the user wants ESP authentication or not
5332  */
5333 static struct mbuf *
5334 key_getcomb_esp()
5335 {
5336 	struct sadb_comb *comb;
5337 	struct enc_xform *algo;
5338 	struct mbuf *result = NULL, *m, *n;
5339 	int encmin;
5340 	int i, off, o;
5341 	int totlen;
5342 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5343 
5344 	m = NULL;
5345 	for (i = 1; i <= SADB_EALG_MAX; i++) {
5346 		algo = esp_algorithm_lookup(i);
5347 		if (algo == NULL)
5348 			continue;
5349 
5350 		/* discard algorithms with key size smaller than system min */
5351 		if (_BITS(algo->maxkey) < ipsec_esp_keymin)
5352 			continue;
5353 		if (_BITS(algo->minkey) < ipsec_esp_keymin)
5354 			encmin = ipsec_esp_keymin;
5355 		else
5356 			encmin = _BITS(algo->minkey);
5357 
5358 		if (ipsec_esp_auth)
5359 			m = key_getcomb_ah();
5360 		else {
5361 			IPSEC_ASSERT(l <= MLEN,
5362 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
5363 			MGET(m, M_DONTWAIT, MT_DATA);
5364 			if (m) {
5365 				M_ALIGN(m, l);
5366 				m->m_len = l;
5367 				m->m_next = NULL;
5368 				bzero(mtod(m, caddr_t), m->m_len);
5369 			}
5370 		}
5371 		if (!m)
5372 			goto fail;
5373 
5374 		totlen = 0;
5375 		for (n = m; n; n = n->m_next)
5376 			totlen += n->m_len;
5377 		IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l));
5378 
5379 		for (off = 0; off < totlen; off += l) {
5380 			n = m_pulldown(m, off, l, &o);
5381 			if (!n) {
5382 				/* m is already freed */
5383 				goto fail;
5384 			}
5385 			comb = (struct sadb_comb *)(mtod(n, caddr_t) + o);
5386 			bzero(comb, sizeof(*comb));
5387 			key_getcomb_setlifetime(comb);
5388 			comb->sadb_comb_encrypt = i;
5389 			comb->sadb_comb_encrypt_minbits = encmin;
5390 			comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
5391 		}
5392 
5393 		if (!result)
5394 			result = m;
5395 		else
5396 			m_cat(result, m);
5397 	}
5398 
5399 	return result;
5400 
5401  fail:
5402 	if (result)
5403 		m_freem(result);
5404 	return NULL;
5405 }
5406 
5407 static void
5408 key_getsizes_ah(
5409 	const struct auth_hash *ah,
5410 	int alg,
5411 	u_int16_t* min,
5412 	u_int16_t* max)
5413 {
5414 	*min = *max = ah->keysize;
5415 	if (ah->keysize == 0) {
5416 		/*
5417 		 * Transform takes arbitrary key size but algorithm
5418 		 * key size is restricted.  Enforce this here.
5419 		 */
5420 		switch (alg) {
5421 		case SADB_X_AALG_MD5:	*min = *max = 16; break;
5422 		case SADB_X_AALG_SHA:	*min = *max = 20; break;
5423 		case SADB_X_AALG_NULL:	*min = 1; *max = 256; break;
5424 		default:
5425 			DPRINTF(("%s: unknown AH algorithm %u\n",
5426 				__func__, alg));
5427 			break;
5428 		}
5429 	}
5430 }
5431 
5432 /*
5433  * XXX reorder combinations by preference
5434  */
5435 static struct mbuf *
5436 key_getcomb_ah()
5437 {
5438 	struct sadb_comb *comb;
5439 	struct auth_hash *algo;
5440 	struct mbuf *m;
5441 	u_int16_t minkeysize, maxkeysize;
5442 	int i;
5443 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5444 
5445 	m = NULL;
5446 	for (i = 1; i <= SADB_AALG_MAX; i++) {
5447 #if 1
5448 		/* we prefer HMAC algorithms, not old algorithms */
5449 		if (i != SADB_AALG_SHA1HMAC && i != SADB_AALG_MD5HMAC)
5450 			continue;
5451 #endif
5452 		algo = ah_algorithm_lookup(i);
5453 		if (!algo)
5454 			continue;
5455 		key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
5456 		/* discard algorithms with key size smaller than system min */
5457 		if (_BITS(minkeysize) < ipsec_ah_keymin)
5458 			continue;
5459 
5460 		if (!m) {
5461 			IPSEC_ASSERT(l <= MLEN,
5462 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
5463 			MGET(m, M_DONTWAIT, MT_DATA);
5464 			if (m) {
5465 				M_ALIGN(m, l);
5466 				m->m_len = l;
5467 				m->m_next = NULL;
5468 			}
5469 		} else
5470 			M_PREPEND(m, l, M_DONTWAIT);
5471 		if (!m)
5472 			return NULL;
5473 
5474 		comb = mtod(m, struct sadb_comb *);
5475 		bzero(comb, sizeof(*comb));
5476 		key_getcomb_setlifetime(comb);
5477 		comb->sadb_comb_auth = i;
5478 		comb->sadb_comb_auth_minbits = _BITS(minkeysize);
5479 		comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
5480 	}
5481 
5482 	return m;
5483 }
5484 
5485 /*
5486  * not really an official behavior.  discussed in pf_key@inner.net in Sep2000.
5487  * XXX reorder combinations by preference
5488  */
5489 static struct mbuf *
5490 key_getcomb_ipcomp()
5491 {
5492 	struct sadb_comb *comb;
5493 	struct comp_algo *algo;
5494 	struct mbuf *m;
5495 	int i;
5496 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5497 
5498 	m = NULL;
5499 	for (i = 1; i <= SADB_X_CALG_MAX; i++) {
5500 		algo = ipcomp_algorithm_lookup(i);
5501 		if (!algo)
5502 			continue;
5503 
5504 		if (!m) {
5505 			IPSEC_ASSERT(l <= MLEN,
5506 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
5507 			MGET(m, M_DONTWAIT, MT_DATA);
5508 			if (m) {
5509 				M_ALIGN(m, l);
5510 				m->m_len = l;
5511 				m->m_next = NULL;
5512 			}
5513 		} else
5514 			M_PREPEND(m, l, M_DONTWAIT);
5515 		if (!m)
5516 			return NULL;
5517 
5518 		comb = mtod(m, struct sadb_comb *);
5519 		bzero(comb, sizeof(*comb));
5520 		key_getcomb_setlifetime(comb);
5521 		comb->sadb_comb_encrypt = i;
5522 		/* what should we set into sadb_comb_*_{min,max}bits? */
5523 	}
5524 
5525 	return m;
5526 }
5527 
5528 /*
5529  * XXX no way to pass mode (transport/tunnel) to userland
5530  * XXX replay checking?
5531  * XXX sysctl interface to ipsec_{ah,esp}_keymin
5532  */
5533 static struct mbuf *
5534 key_getprop(saidx)
5535 	const struct secasindex *saidx;
5536 {
5537 	struct sadb_prop *prop;
5538 	struct mbuf *m, *n;
5539 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
5540 	int totlen;
5541 
5542 	switch (saidx->proto)  {
5543 	case IPPROTO_ESP:
5544 		m = key_getcomb_esp();
5545 		break;
5546 	case IPPROTO_AH:
5547 		m = key_getcomb_ah();
5548 		break;
5549 	case IPPROTO_IPCOMP:
5550 		m = key_getcomb_ipcomp();
5551 		break;
5552 	default:
5553 		return NULL;
5554 	}
5555 
5556 	if (!m)
5557 		return NULL;
5558 	M_PREPEND(m, l, M_DONTWAIT);
5559 	if (!m)
5560 		return NULL;
5561 
5562 	totlen = 0;
5563 	for (n = m; n; n = n->m_next)
5564 		totlen += n->m_len;
5565 
5566 	prop = mtod(m, struct sadb_prop *);
5567 	bzero(prop, sizeof(*prop));
5568 	prop->sadb_prop_len = PFKEY_UNIT64(totlen);
5569 	prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
5570 	prop->sadb_prop_replay = 32;	/* XXX */
5571 
5572 	return m;
5573 }
5574 
5575 /*
5576  * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
5577  * send
5578  *   <base, SA, address(SD), (address(P)), x_policy,
5579  *       (identity(SD),) (sensitivity,) proposal>
5580  * to KMD, and expect to receive
5581  *   <base> with SADB_ACQUIRE if error occured,
5582  * or
5583  *   <base, src address, dst address, (SPI range)> with SADB_GETSPI
5584  * from KMD by PF_KEY.
5585  *
5586  * XXX x_policy is outside of RFC2367 (KAME extension).
5587  * XXX sensitivity is not supported.
5588  * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
5589  * see comment for key_getcomb_ipcomp().
5590  *
5591  * OUT:
5592  *    0     : succeed
5593  *    others: error number
5594  */
5595 static int
5596 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
5597 {
5598 	struct mbuf *result = NULL, *m;
5599 	struct secacq *newacq;
5600 	u_int8_t satype;
5601 	int error = -1;
5602 	u_int32_t seq;
5603 
5604 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
5605 	satype = key_proto2satype(saidx->proto);
5606 	IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto));
5607 
5608 	/*
5609 	 * We never do anything about acquirng SA.  There is anather
5610 	 * solution that kernel blocks to send SADB_ACQUIRE message until
5611 	 * getting something message from IKEd.  In later case, to be
5612 	 * managed with ACQUIRING list.
5613 	 */
5614 	/* Get an entry to check whether sending message or not. */
5615 	if ((newacq = key_getacq(saidx)) != NULL) {
5616 		if (key_blockacq_count < newacq->count) {
5617 			/* reset counter and do send message. */
5618 			newacq->count = 0;
5619 		} else {
5620 			/* increment counter and do nothing. */
5621 			newacq->count++;
5622 			return 0;
5623 		}
5624 	} else {
5625 		/* make new entry for blocking to send SADB_ACQUIRE. */
5626 		if ((newacq = key_newacq(saidx)) == NULL)
5627 			return ENOBUFS;
5628 	}
5629 
5630 
5631 	seq = newacq->seq;
5632 	m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
5633 	if (!m) {
5634 		error = ENOBUFS;
5635 		goto fail;
5636 	}
5637 	result = m;
5638 
5639 	/* set sadb_address for saidx's. */
5640 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
5641 	    &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY);
5642 	if (!m) {
5643 		error = ENOBUFS;
5644 		goto fail;
5645 	}
5646 	m_cat(result, m);
5647 
5648 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
5649 	    &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY);
5650 	if (!m) {
5651 		error = ENOBUFS;
5652 		goto fail;
5653 	}
5654 	m_cat(result, m);
5655 
5656 	/* XXX proxy address (optional) */
5657 
5658 	/* set sadb_x_policy */
5659 	if (sp) {
5660 		m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
5661 		if (!m) {
5662 			error = ENOBUFS;
5663 			goto fail;
5664 		}
5665 		m_cat(result, m);
5666 	}
5667 
5668 	/* XXX identity (optional) */
5669 #if 0
5670 	if (idexttype && fqdn) {
5671 		/* create identity extension (FQDN) */
5672 		struct sadb_ident *id;
5673 		int fqdnlen;
5674 
5675 		fqdnlen = strlen(fqdn) + 1;	/* +1 for terminating-NUL */
5676 		id = (struct sadb_ident *)p;
5677 		bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
5678 		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
5679 		id->sadb_ident_exttype = idexttype;
5680 		id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
5681 		bcopy(fqdn, id + 1, fqdnlen);
5682 		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
5683 	}
5684 
5685 	if (idexttype) {
5686 		/* create identity extension (USERFQDN) */
5687 		struct sadb_ident *id;
5688 		int userfqdnlen;
5689 
5690 		if (userfqdn) {
5691 			/* +1 for terminating-NUL */
5692 			userfqdnlen = strlen(userfqdn) + 1;
5693 		} else
5694 			userfqdnlen = 0;
5695 		id = (struct sadb_ident *)p;
5696 		bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
5697 		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
5698 		id->sadb_ident_exttype = idexttype;
5699 		id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
5700 		/* XXX is it correct? */
5701 		if (curproc && curproc->p_cred)
5702 			id->sadb_ident_id = curproc->p_cred->p_ruid;
5703 		if (userfqdn && userfqdnlen)
5704 			bcopy(userfqdn, id + 1, userfqdnlen);
5705 		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
5706 	}
5707 #endif
5708 
5709 	/* XXX sensitivity (optional) */
5710 
5711 	/* create proposal/combination extension */
5712 	m = key_getprop(saidx);
5713 #if 0
5714 	/*
5715 	 * spec conformant: always attach proposal/combination extension,
5716 	 * the problem is that we have no way to attach it for ipcomp,
5717 	 * due to the way sadb_comb is declared in RFC2367.
5718 	 */
5719 	if (!m) {
5720 		error = ENOBUFS;
5721 		goto fail;
5722 	}
5723 	m_cat(result, m);
5724 #else
5725 	/*
5726 	 * outside of spec; make proposal/combination extension optional.
5727 	 */
5728 	if (m)
5729 		m_cat(result, m);
5730 #endif
5731 
5732 	if ((result->m_flags & M_PKTHDR) == 0) {
5733 		error = EINVAL;
5734 		goto fail;
5735 	}
5736 
5737 	if (result->m_len < sizeof(struct sadb_msg)) {
5738 		result = m_pullup(result, sizeof(struct sadb_msg));
5739 		if (result == NULL) {
5740 			error = ENOBUFS;
5741 			goto fail;
5742 		}
5743 	}
5744 
5745 	result->m_pkthdr.len = 0;
5746 	for (m = result; m; m = m->m_next)
5747 		result->m_pkthdr.len += m->m_len;
5748 
5749 	mtod(result, struct sadb_msg *)->sadb_msg_len =
5750 	    PFKEY_UNIT64(result->m_pkthdr.len);
5751 
5752 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
5753 
5754  fail:
5755 	if (result)
5756 		m_freem(result);
5757 	return error;
5758 }
5759 
5760 static struct secacq *
5761 key_newacq(const struct secasindex *saidx)
5762 {
5763 	struct secacq *newacq;
5764 
5765 	/* get new entry */
5766 	newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
5767 	if (newacq == NULL) {
5768 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5769 		return NULL;
5770 	}
5771 
5772 	/* copy secindex */
5773 	bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx));
5774 	newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
5775 	newacq->created = time_second;
5776 	newacq->count = 0;
5777 
5778 	/* add to acqtree */
5779 	ACQ_LOCK();
5780 	LIST_INSERT_HEAD(&acqtree, newacq, chain);
5781 	ACQ_UNLOCK();
5782 
5783 	return newacq;
5784 }
5785 
5786 static struct secacq *
5787 key_getacq(const struct secasindex *saidx)
5788 {
5789 	struct secacq *acq;
5790 
5791 	ACQ_LOCK();
5792 	LIST_FOREACH(acq, &acqtree, chain) {
5793 		if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY))
5794 			break;
5795 	}
5796 	ACQ_UNLOCK();
5797 
5798 	return acq;
5799 }
5800 
5801 static struct secacq *
5802 key_getacqbyseq(seq)
5803 	u_int32_t seq;
5804 {
5805 	struct secacq *acq;
5806 
5807 	ACQ_LOCK();
5808 	LIST_FOREACH(acq, &acqtree, chain) {
5809 		if (acq->seq == seq)
5810 			break;
5811 	}
5812 	ACQ_UNLOCK();
5813 
5814 	return acq;
5815 }
5816 
5817 static struct secspacq *
5818 key_newspacq(spidx)
5819 	struct secpolicyindex *spidx;
5820 {
5821 	struct secspacq *acq;
5822 
5823 	/* get new entry */
5824 	acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
5825 	if (acq == NULL) {
5826 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5827 		return NULL;
5828 	}
5829 
5830 	/* copy secindex */
5831 	bcopy(spidx, &acq->spidx, sizeof(acq->spidx));
5832 	acq->created = time_second;
5833 	acq->count = 0;
5834 
5835 	/* add to spacqtree */
5836 	SPACQ_LOCK();
5837 	LIST_INSERT_HEAD(&spacqtree, acq, chain);
5838 	SPACQ_UNLOCK();
5839 
5840 	return acq;
5841 }
5842 
5843 static struct secspacq *
5844 key_getspacq(spidx)
5845 	struct secpolicyindex *spidx;
5846 {
5847 	struct secspacq *acq;
5848 
5849 	SPACQ_LOCK();
5850 	LIST_FOREACH(acq, &spacqtree, chain) {
5851 		if (key_cmpspidx_exactly(spidx, &acq->spidx)) {
5852 			/* NB: return holding spacq_lock */
5853 			return acq;
5854 		}
5855 	}
5856 	SPACQ_UNLOCK();
5857 
5858 	return NULL;
5859 }
5860 
5861 /*
5862  * SADB_ACQUIRE processing,
5863  * in first situation, is receiving
5864  *   <base>
5865  * from the ikmpd, and clear sequence of its secasvar entry.
5866  *
5867  * In second situation, is receiving
5868  *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
5869  * from a user land process, and return
5870  *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
5871  * to the socket.
5872  *
5873  * m will always be freed.
5874  */
5875 static int
5876 key_acquire2(so, m, mhp)
5877 	struct socket *so;
5878 	struct mbuf *m;
5879 	const struct sadb_msghdr *mhp;
5880 {
5881 	const struct sadb_address *src0, *dst0;
5882 	struct secasindex saidx;
5883 	struct secashead *sah;
5884 	u_int16_t proto;
5885 	int error;
5886 
5887 	IPSEC_ASSERT(so != NULL, ("null socket"));
5888 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5889 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5890 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5891 
5892 	/*
5893 	 * Error message from KMd.
5894 	 * We assume that if error was occured in IKEd, the length of PFKEY
5895 	 * message is equal to the size of sadb_msg structure.
5896 	 * We do not raise error even if error occured in this function.
5897 	 */
5898 	if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
5899 		struct secacq *acq;
5900 
5901 		/* check sequence number */
5902 		if (mhp->msg->sadb_msg_seq == 0) {
5903 			ipseclog((LOG_DEBUG, "%s: must specify sequence "
5904 				"number.\n", __func__));
5905 			m_freem(m);
5906 			return 0;
5907 		}
5908 
5909 		if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) {
5910 			/*
5911 			 * the specified larval SA is already gone, or we got
5912 			 * a bogus sequence number.  we can silently ignore it.
5913 			 */
5914 			m_freem(m);
5915 			return 0;
5916 		}
5917 
5918 		/* reset acq counter in order to deletion by timehander. */
5919 		acq->created = time_second;
5920 		acq->count = 0;
5921 		m_freem(m);
5922 		return 0;
5923 	}
5924 
5925 	/*
5926 	 * This message is from user land.
5927 	 */
5928 
5929 	/* map satype to proto */
5930 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5931 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5932 			__func__));
5933 		return key_senderror(so, m, EINVAL);
5934 	}
5935 
5936 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5937 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5938 	    mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
5939 		/* error */
5940 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5941 			__func__));
5942 		return key_senderror(so, m, EINVAL);
5943 	}
5944 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5945 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
5946 	    mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
5947 		/* error */
5948 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5949 			__func__));
5950 		return key_senderror(so, m, EINVAL);
5951 	}
5952 
5953 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5954 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5955 
5956 	/* XXX boundary check against sa_len */
5957 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5958 
5959 	/* get a SA index */
5960 	SAHTREE_LOCK();
5961 	LIST_FOREACH(sah, &sahtree, chain) {
5962 		if (sah->state == SADB_SASTATE_DEAD)
5963 			continue;
5964 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID))
5965 			break;
5966 	}
5967 	SAHTREE_UNLOCK();
5968 	if (sah != NULL) {
5969 		ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__));
5970 		return key_senderror(so, m, EEXIST);
5971 	}
5972 
5973 	error = key_acquire(&saidx, NULL);
5974 	if (error != 0) {
5975 		ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
5976 			__func__, mhp->msg->sadb_msg_errno));
5977 		return key_senderror(so, m, error);
5978 	}
5979 
5980 	return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
5981 }
5982 
5983 /*
5984  * SADB_REGISTER processing.
5985  * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
5986  * receive
5987  *   <base>
5988  * from the ikmpd, and register a socket to send PF_KEY messages,
5989  * and send
5990  *   <base, supported>
5991  * to KMD by PF_KEY.
5992  * If socket is detached, must free from regnode.
5993  *
5994  * m will always be freed.
5995  */
5996 static int
5997 key_register(so, m, mhp)
5998 	struct socket *so;
5999 	struct mbuf *m;
6000 	const struct sadb_msghdr *mhp;
6001 {
6002 	struct secreg *reg, *newreg = 0;
6003 
6004 	IPSEC_ASSERT(so != NULL, ("null socket"));
6005 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6006 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6007 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6008 
6009 	/* check for invalid register message */
6010 	if (mhp->msg->sadb_msg_satype >= sizeof(regtree)/sizeof(regtree[0]))
6011 		return key_senderror(so, m, EINVAL);
6012 
6013 	/* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6014 	if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6015 		goto setmsg;
6016 
6017 	/* check whether existing or not */
6018 	REGTREE_LOCK();
6019 	LIST_FOREACH(reg, &regtree[mhp->msg->sadb_msg_satype], chain) {
6020 		if (reg->so == so) {
6021 			REGTREE_UNLOCK();
6022 			ipseclog((LOG_DEBUG, "%s: socket exists already.\n",
6023 				__func__));
6024 			return key_senderror(so, m, EEXIST);
6025 		}
6026 	}
6027 
6028 	/* create regnode */
6029 	newreg =  malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO);
6030 	if (newreg == NULL) {
6031 		REGTREE_UNLOCK();
6032 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6033 		return key_senderror(so, m, ENOBUFS);
6034 	}
6035 
6036 	newreg->so = so;
6037 	((struct keycb *)sotorawcb(so))->kp_registered++;
6038 
6039 	/* add regnode to regtree. */
6040 	LIST_INSERT_HEAD(&regtree[mhp->msg->sadb_msg_satype], newreg, chain);
6041 	REGTREE_UNLOCK();
6042 
6043   setmsg:
6044     {
6045 	struct mbuf *n;
6046 	struct sadb_msg *newmsg;
6047 	struct sadb_supported *sup;
6048 	u_int len, alen, elen;
6049 	int off;
6050 	int i;
6051 	struct sadb_alg *alg;
6052 
6053 	/* create new sadb_msg to reply. */
6054 	alen = 0;
6055 	for (i = 1; i <= SADB_AALG_MAX; i++) {
6056 		if (ah_algorithm_lookup(i))
6057 			alen += sizeof(struct sadb_alg);
6058 	}
6059 	if (alen)
6060 		alen += sizeof(struct sadb_supported);
6061 	elen = 0;
6062 	for (i = 1; i <= SADB_EALG_MAX; i++) {
6063 		if (esp_algorithm_lookup(i))
6064 			elen += sizeof(struct sadb_alg);
6065 	}
6066 	if (elen)
6067 		elen += sizeof(struct sadb_supported);
6068 
6069 	len = sizeof(struct sadb_msg) + alen + elen;
6070 
6071 	if (len > MCLBYTES)
6072 		return key_senderror(so, m, ENOBUFS);
6073 
6074 	MGETHDR(n, M_DONTWAIT, MT_DATA);
6075 	if (len > MHLEN) {
6076 		MCLGET(n, M_DONTWAIT);
6077 		if ((n->m_flags & M_EXT) == 0) {
6078 			m_freem(n);
6079 			n = NULL;
6080 		}
6081 	}
6082 	if (!n)
6083 		return key_senderror(so, m, ENOBUFS);
6084 
6085 	n->m_pkthdr.len = n->m_len = len;
6086 	n->m_next = NULL;
6087 	off = 0;
6088 
6089 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
6090 	newmsg = mtod(n, struct sadb_msg *);
6091 	newmsg->sadb_msg_errno = 0;
6092 	newmsg->sadb_msg_len = PFKEY_UNIT64(len);
6093 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6094 
6095 	/* for authentication algorithm */
6096 	if (alen) {
6097 		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6098 		sup->sadb_supported_len = PFKEY_UNIT64(alen);
6099 		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6100 		off += PFKEY_ALIGN8(sizeof(*sup));
6101 
6102 		for (i = 1; i <= SADB_AALG_MAX; i++) {
6103 			struct auth_hash *aalgo;
6104 			u_int16_t minkeysize, maxkeysize;
6105 
6106 			aalgo = ah_algorithm_lookup(i);
6107 			if (!aalgo)
6108 				continue;
6109 			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6110 			alg->sadb_alg_id = i;
6111 			alg->sadb_alg_ivlen = 0;
6112 			key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6113 			alg->sadb_alg_minbits = _BITS(minkeysize);
6114 			alg->sadb_alg_maxbits = _BITS(maxkeysize);
6115 			off += PFKEY_ALIGN8(sizeof(*alg));
6116 		}
6117 	}
6118 
6119 	/* for encryption algorithm */
6120 	if (elen) {
6121 		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6122 		sup->sadb_supported_len = PFKEY_UNIT64(elen);
6123 		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6124 		off += PFKEY_ALIGN8(sizeof(*sup));
6125 
6126 		for (i = 1; i <= SADB_EALG_MAX; i++) {
6127 			struct enc_xform *ealgo;
6128 
6129 			ealgo = esp_algorithm_lookup(i);
6130 			if (!ealgo)
6131 				continue;
6132 			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6133 			alg->sadb_alg_id = i;
6134 			alg->sadb_alg_ivlen = ealgo->blocksize;
6135 			alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6136 			alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6137 			off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6138 		}
6139 	}
6140 
6141 	IPSEC_ASSERT(off == len,
6142 		("length assumption failed (off %u len %u)", off, len));
6143 
6144 	m_freem(m);
6145 	return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6146     }
6147 }
6148 
6149 /*
6150  * free secreg entry registered.
6151  * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6152  */
6153 void
6154 key_freereg(struct socket *so)
6155 {
6156 	struct secreg *reg;
6157 	int i;
6158 
6159 	IPSEC_ASSERT(so != NULL, ("NULL so"));
6160 
6161 	/*
6162 	 * check whether existing or not.
6163 	 * check all type of SA, because there is a potential that
6164 	 * one socket is registered to multiple type of SA.
6165 	 */
6166 	REGTREE_LOCK();
6167 	for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6168 		LIST_FOREACH(reg, &regtree[i], chain) {
6169 			if (reg->so == so && __LIST_CHAINED(reg)) {
6170 				LIST_REMOVE(reg, chain);
6171 				free(reg, M_IPSEC_SAR);
6172 				break;
6173 			}
6174 		}
6175 	}
6176 	REGTREE_UNLOCK();
6177 }
6178 
6179 /*
6180  * SADB_EXPIRE processing
6181  * send
6182  *   <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6183  * to KMD by PF_KEY.
6184  * NOTE: We send only soft lifetime extension.
6185  *
6186  * OUT:	0	: succeed
6187  *	others	: error number
6188  */
6189 static int
6190 key_expire(struct secasvar *sav)
6191 {
6192 	int s;
6193 	int satype;
6194 	struct mbuf *result = NULL, *m;
6195 	int len;
6196 	int error = -1;
6197 	struct sadb_lifetime *lt;
6198 
6199 	/* XXX: Why do we lock ? */
6200 	s = splnet();	/*called from softclock()*/
6201 
6202 	IPSEC_ASSERT (sav != NULL, ("null sav"));
6203 	IPSEC_ASSERT (sav->sah != NULL, ("null sa header"));
6204 
6205 	/* set msg header */
6206 	satype = key_proto2satype(sav->sah->saidx.proto);
6207 	IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype));
6208 	m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6209 	if (!m) {
6210 		error = ENOBUFS;
6211 		goto fail;
6212 	}
6213 	result = m;
6214 
6215 	/* create SA extension */
6216 	m = key_setsadbsa(sav);
6217 	if (!m) {
6218 		error = ENOBUFS;
6219 		goto fail;
6220 	}
6221 	m_cat(result, m);
6222 
6223 	/* create SA extension */
6224 	m = key_setsadbxsa2(sav->sah->saidx.mode,
6225 			sav->replay ? sav->replay->count : 0,
6226 			sav->sah->saidx.reqid);
6227 	if (!m) {
6228 		error = ENOBUFS;
6229 		goto fail;
6230 	}
6231 	m_cat(result, m);
6232 
6233 	/* create lifetime extension (current and soft) */
6234 	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6235 	m = key_alloc_mbuf(len);
6236 	if (!m || m->m_next) {	/*XXX*/
6237 		if (m)
6238 			m_freem(m);
6239 		error = ENOBUFS;
6240 		goto fail;
6241 	}
6242 	bzero(mtod(m, caddr_t), len);
6243 	lt = mtod(m, struct sadb_lifetime *);
6244 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6245 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6246 	lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations;
6247 	lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes;
6248 	lt->sadb_lifetime_addtime = sav->lft_c->sadb_lifetime_addtime;
6249 	lt->sadb_lifetime_usetime = sav->lft_c->sadb_lifetime_usetime;
6250 	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
6251 	bcopy(sav->lft_s, lt, sizeof(*lt));
6252 	m_cat(result, m);
6253 
6254 	/* set sadb_address for source */
6255 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6256 	    &sav->sah->saidx.src.sa,
6257 	    FULLMASK, IPSEC_ULPROTO_ANY);
6258 	if (!m) {
6259 		error = ENOBUFS;
6260 		goto fail;
6261 	}
6262 	m_cat(result, m);
6263 
6264 	/* set sadb_address for destination */
6265 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6266 	    &sav->sah->saidx.dst.sa,
6267 	    FULLMASK, IPSEC_ULPROTO_ANY);
6268 	if (!m) {
6269 		error = ENOBUFS;
6270 		goto fail;
6271 	}
6272 	m_cat(result, m);
6273 
6274 	if ((result->m_flags & M_PKTHDR) == 0) {
6275 		error = EINVAL;
6276 		goto fail;
6277 	}
6278 
6279 	if (result->m_len < sizeof(struct sadb_msg)) {
6280 		result = m_pullup(result, sizeof(struct sadb_msg));
6281 		if (result == NULL) {
6282 			error = ENOBUFS;
6283 			goto fail;
6284 		}
6285 	}
6286 
6287 	result->m_pkthdr.len = 0;
6288 	for (m = result; m; m = m->m_next)
6289 		result->m_pkthdr.len += m->m_len;
6290 
6291 	mtod(result, struct sadb_msg *)->sadb_msg_len =
6292 	    PFKEY_UNIT64(result->m_pkthdr.len);
6293 
6294 	splx(s);
6295 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6296 
6297  fail:
6298 	if (result)
6299 		m_freem(result);
6300 	splx(s);
6301 	return error;
6302 }
6303 
6304 /*
6305  * SADB_FLUSH processing
6306  * receive
6307  *   <base>
6308  * from the ikmpd, and free all entries in secastree.
6309  * and send,
6310  *   <base>
6311  * to the ikmpd.
6312  * NOTE: to do is only marking SADB_SASTATE_DEAD.
6313  *
6314  * m will always be freed.
6315  */
6316 static int
6317 key_flush(so, m, mhp)
6318 	struct socket *so;
6319 	struct mbuf *m;
6320 	const struct sadb_msghdr *mhp;
6321 {
6322 	struct sadb_msg *newmsg;
6323 	struct secashead *sah, *nextsah;
6324 	struct secasvar *sav, *nextsav;
6325 	u_int16_t proto;
6326 	u_int8_t state;
6327 	u_int stateidx;
6328 
6329 	IPSEC_ASSERT(so != NULL, ("null socket"));
6330 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6331 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6332 
6333 	/* map satype to proto */
6334 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6335 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6336 			__func__));
6337 		return key_senderror(so, m, EINVAL);
6338 	}
6339 
6340 	/* no SATYPE specified, i.e. flushing all SA. */
6341 	SAHTREE_LOCK();
6342 	for (sah = LIST_FIRST(&sahtree);
6343 	     sah != NULL;
6344 	     sah = nextsah) {
6345 		nextsah = LIST_NEXT(sah, chain);
6346 
6347 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6348 		 && proto != sah->saidx.proto)
6349 			continue;
6350 
6351 		for (stateidx = 0;
6352 		     stateidx < _ARRAYLEN(saorder_state_alive);
6353 		     stateidx++) {
6354 			state = saorder_state_any[stateidx];
6355 			for (sav = LIST_FIRST(&sah->savtree[state]);
6356 			     sav != NULL;
6357 			     sav = nextsav) {
6358 
6359 				nextsav = LIST_NEXT(sav, chain);
6360 
6361 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
6362 				KEY_FREESAV(&sav);
6363 			}
6364 		}
6365 
6366 		sah->state = SADB_SASTATE_DEAD;
6367 	}
6368 	SAHTREE_UNLOCK();
6369 
6370 	if (m->m_len < sizeof(struct sadb_msg) ||
6371 	    sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
6372 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6373 		return key_senderror(so, m, ENOBUFS);
6374 	}
6375 
6376 	if (m->m_next)
6377 		m_freem(m->m_next);
6378 	m->m_next = NULL;
6379 	m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
6380 	newmsg = mtod(m, struct sadb_msg *);
6381 	newmsg->sadb_msg_errno = 0;
6382 	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
6383 
6384 	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6385 }
6386 
6387 /*
6388  * SADB_DUMP processing
6389  * dump all entries including status of DEAD in SAD.
6390  * receive
6391  *   <base>
6392  * from the ikmpd, and dump all secasvar leaves
6393  * and send,
6394  *   <base> .....
6395  * to the ikmpd.
6396  *
6397  * m will always be freed.
6398  */
6399 static int
6400 key_dump(so, m, mhp)
6401 	struct socket *so;
6402 	struct mbuf *m;
6403 	const struct sadb_msghdr *mhp;
6404 {
6405 	struct secashead *sah;
6406 	struct secasvar *sav;
6407 	u_int16_t proto;
6408 	u_int stateidx;
6409 	u_int8_t satype;
6410 	u_int8_t state;
6411 	int cnt;
6412 	struct sadb_msg *newmsg;
6413 	struct mbuf *n;
6414 
6415 	IPSEC_ASSERT(so != NULL, ("null socket"));
6416 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6417 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6418 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6419 
6420 	/* map satype to proto */
6421 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6422 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6423 			__func__));
6424 		return key_senderror(so, m, EINVAL);
6425 	}
6426 
6427 	/* count sav entries to be sent to the userland. */
6428 	cnt = 0;
6429 	SAHTREE_LOCK();
6430 	LIST_FOREACH(sah, &sahtree, chain) {
6431 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6432 		 && proto != sah->saidx.proto)
6433 			continue;
6434 
6435 		for (stateidx = 0;
6436 		     stateidx < _ARRAYLEN(saorder_state_any);
6437 		     stateidx++) {
6438 			state = saorder_state_any[stateidx];
6439 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
6440 				cnt++;
6441 			}
6442 		}
6443 	}
6444 
6445 	if (cnt == 0) {
6446 		SAHTREE_UNLOCK();
6447 		return key_senderror(so, m, ENOENT);
6448 	}
6449 
6450 	/* send this to the userland, one at a time. */
6451 	newmsg = NULL;
6452 	LIST_FOREACH(sah, &sahtree, chain) {
6453 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6454 		 && proto != sah->saidx.proto)
6455 			continue;
6456 
6457 		/* map proto to satype */
6458 		if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
6459 			SAHTREE_UNLOCK();
6460 			ipseclog((LOG_DEBUG, "%s: there was invalid proto in "
6461 				"SAD.\n", __func__));
6462 			return key_senderror(so, m, EINVAL);
6463 		}
6464 
6465 		for (stateidx = 0;
6466 		     stateidx < _ARRAYLEN(saorder_state_any);
6467 		     stateidx++) {
6468 			state = saorder_state_any[stateidx];
6469 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
6470 				n = key_setdumpsa(sav, SADB_DUMP, satype,
6471 				    --cnt, mhp->msg->sadb_msg_pid);
6472 				if (!n) {
6473 					SAHTREE_UNLOCK();
6474 					return key_senderror(so, m, ENOBUFS);
6475 				}
6476 				key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
6477 			}
6478 		}
6479 	}
6480 	SAHTREE_UNLOCK();
6481 
6482 	m_freem(m);
6483 	return 0;
6484 }
6485 
6486 /*
6487  * SADB_X_PROMISC processing
6488  *
6489  * m will always be freed.
6490  */
6491 static int
6492 key_promisc(so, m, mhp)
6493 	struct socket *so;
6494 	struct mbuf *m;
6495 	const struct sadb_msghdr *mhp;
6496 {
6497 	int olen;
6498 
6499 	IPSEC_ASSERT(so != NULL, ("null socket"));
6500 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6501 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6502 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6503 
6504 	olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
6505 
6506 	if (olen < sizeof(struct sadb_msg)) {
6507 #if 1
6508 		return key_senderror(so, m, EINVAL);
6509 #else
6510 		m_freem(m);
6511 		return 0;
6512 #endif
6513 	} else if (olen == sizeof(struct sadb_msg)) {
6514 		/* enable/disable promisc mode */
6515 		struct keycb *kp;
6516 
6517 		if ((kp = (struct keycb *)sotorawcb(so)) == NULL)
6518 			return key_senderror(so, m, EINVAL);
6519 		mhp->msg->sadb_msg_errno = 0;
6520 		switch (mhp->msg->sadb_msg_satype) {
6521 		case 0:
6522 		case 1:
6523 			kp->kp_promisc = mhp->msg->sadb_msg_satype;
6524 			break;
6525 		default:
6526 			return key_senderror(so, m, EINVAL);
6527 		}
6528 
6529 		/* send the original message back to everyone */
6530 		mhp->msg->sadb_msg_errno = 0;
6531 		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6532 	} else {
6533 		/* send packet as is */
6534 
6535 		m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
6536 
6537 		/* TODO: if sadb_msg_seq is specified, send to specific pid */
6538 		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6539 	}
6540 }
6541 
6542 static int (*key_typesw[]) __P((struct socket *, struct mbuf *,
6543 		const struct sadb_msghdr *)) = {
6544 	NULL,		/* SADB_RESERVED */
6545 	key_getspi,	/* SADB_GETSPI */
6546 	key_update,	/* SADB_UPDATE */
6547 	key_add,	/* SADB_ADD */
6548 	key_delete,	/* SADB_DELETE */
6549 	key_get,	/* SADB_GET */
6550 	key_acquire2,	/* SADB_ACQUIRE */
6551 	key_register,	/* SADB_REGISTER */
6552 	NULL,		/* SADB_EXPIRE */
6553 	key_flush,	/* SADB_FLUSH */
6554 	key_dump,	/* SADB_DUMP */
6555 	key_promisc,	/* SADB_X_PROMISC */
6556 	NULL,		/* SADB_X_PCHANGE */
6557 	key_spdadd,	/* SADB_X_SPDUPDATE */
6558 	key_spdadd,	/* SADB_X_SPDADD */
6559 	key_spddelete,	/* SADB_X_SPDDELETE */
6560 	key_spdget,	/* SADB_X_SPDGET */
6561 	NULL,		/* SADB_X_SPDACQUIRE */
6562 	key_spddump,	/* SADB_X_SPDDUMP */
6563 	key_spdflush,	/* SADB_X_SPDFLUSH */
6564 	key_spdadd,	/* SADB_X_SPDSETIDX */
6565 	NULL,		/* SADB_X_SPDEXPIRE */
6566 	key_spddelete2,	/* SADB_X_SPDDELETE2 */
6567 };
6568 
6569 /*
6570  * parse sadb_msg buffer to process PFKEYv2,
6571  * and create a data to response if needed.
6572  * I think to be dealed with mbuf directly.
6573  * IN:
6574  *     msgp  : pointer to pointer to a received buffer pulluped.
6575  *             This is rewrited to response.
6576  *     so    : pointer to socket.
6577  * OUT:
6578  *    length for buffer to send to user process.
6579  */
6580 int
6581 key_parse(m, so)
6582 	struct mbuf *m;
6583 	struct socket *so;
6584 {
6585 	struct sadb_msg *msg;
6586 	struct sadb_msghdr mh;
6587 	u_int orglen;
6588 	int error;
6589 	int target;
6590 
6591 	IPSEC_ASSERT(so != NULL, ("null socket"));
6592 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6593 
6594 #if 0	/*kdebug_sadb assumes msg in linear buffer*/
6595 	KEYDEBUG(KEYDEBUG_KEY_DUMP,
6596 		ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__));
6597 		kdebug_sadb(msg));
6598 #endif
6599 
6600 	if (m->m_len < sizeof(struct sadb_msg)) {
6601 		m = m_pullup(m, sizeof(struct sadb_msg));
6602 		if (!m)
6603 			return ENOBUFS;
6604 	}
6605 	msg = mtod(m, struct sadb_msg *);
6606 	orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
6607 	target = KEY_SENDUP_ONE;
6608 
6609 	if ((m->m_flags & M_PKTHDR) == 0 ||
6610 	    m->m_pkthdr.len != m->m_pkthdr.len) {
6611 		ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__));
6612 		pfkeystat.out_invlen++;
6613 		error = EINVAL;
6614 		goto senderror;
6615 	}
6616 
6617 	if (msg->sadb_msg_version != PF_KEY_V2) {
6618 		ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n",
6619 		    __func__, msg->sadb_msg_version));
6620 		pfkeystat.out_invver++;
6621 		error = EINVAL;
6622 		goto senderror;
6623 	}
6624 
6625 	if (msg->sadb_msg_type > SADB_MAX) {
6626 		ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
6627 		    __func__, msg->sadb_msg_type));
6628 		pfkeystat.out_invmsgtype++;
6629 		error = EINVAL;
6630 		goto senderror;
6631 	}
6632 
6633 	/* for old-fashioned code - should be nuked */
6634 	if (m->m_pkthdr.len > MCLBYTES) {
6635 		m_freem(m);
6636 		return ENOBUFS;
6637 	}
6638 	if (m->m_next) {
6639 		struct mbuf *n;
6640 
6641 		MGETHDR(n, M_DONTWAIT, MT_DATA);
6642 		if (n && m->m_pkthdr.len > MHLEN) {
6643 			MCLGET(n, M_DONTWAIT);
6644 			if ((n->m_flags & M_EXT) == 0) {
6645 				m_free(n);
6646 				n = NULL;
6647 			}
6648 		}
6649 		if (!n) {
6650 			m_freem(m);
6651 			return ENOBUFS;
6652 		}
6653 		m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t));
6654 		n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
6655 		n->m_next = NULL;
6656 		m_freem(m);
6657 		m = n;
6658 	}
6659 
6660 	/* align the mbuf chain so that extensions are in contiguous region. */
6661 	error = key_align(m, &mh);
6662 	if (error)
6663 		return error;
6664 
6665 	if (m->m_next) {	/*XXX*/
6666 		m_freem(m);
6667 		return ENOBUFS;
6668 	}
6669 
6670 	msg = mh.msg;
6671 
6672 	/* check SA type */
6673 	switch (msg->sadb_msg_satype) {
6674 	case SADB_SATYPE_UNSPEC:
6675 		switch (msg->sadb_msg_type) {
6676 		case SADB_GETSPI:
6677 		case SADB_UPDATE:
6678 		case SADB_ADD:
6679 		case SADB_DELETE:
6680 		case SADB_GET:
6681 		case SADB_ACQUIRE:
6682 		case SADB_EXPIRE:
6683 			ipseclog((LOG_DEBUG, "%s: must specify satype "
6684 			    "when msg type=%u.\n", __func__,
6685 			    msg->sadb_msg_type));
6686 			pfkeystat.out_invsatype++;
6687 			error = EINVAL;
6688 			goto senderror;
6689 		}
6690 		break;
6691 	case SADB_SATYPE_AH:
6692 	case SADB_SATYPE_ESP:
6693 	case SADB_X_SATYPE_IPCOMP:
6694 	case SADB_X_SATYPE_TCPSIGNATURE:
6695 		switch (msg->sadb_msg_type) {
6696 		case SADB_X_SPDADD:
6697 		case SADB_X_SPDDELETE:
6698 		case SADB_X_SPDGET:
6699 		case SADB_X_SPDDUMP:
6700 		case SADB_X_SPDFLUSH:
6701 		case SADB_X_SPDSETIDX:
6702 		case SADB_X_SPDUPDATE:
6703 		case SADB_X_SPDDELETE2:
6704 			ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n",
6705 				__func__, msg->sadb_msg_type));
6706 			pfkeystat.out_invsatype++;
6707 			error = EINVAL;
6708 			goto senderror;
6709 		}
6710 		break;
6711 	case SADB_SATYPE_RSVP:
6712 	case SADB_SATYPE_OSPFV2:
6713 	case SADB_SATYPE_RIPV2:
6714 	case SADB_SATYPE_MIP:
6715 		ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n",
6716 			__func__, msg->sadb_msg_satype));
6717 		pfkeystat.out_invsatype++;
6718 		error = EOPNOTSUPP;
6719 		goto senderror;
6720 	case 1:	/* XXX: What does it do? */
6721 		if (msg->sadb_msg_type == SADB_X_PROMISC)
6722 			break;
6723 		/*FALLTHROUGH*/
6724 	default:
6725 		ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
6726 			__func__, msg->sadb_msg_satype));
6727 		pfkeystat.out_invsatype++;
6728 		error = EINVAL;
6729 		goto senderror;
6730 	}
6731 
6732 	/* check field of upper layer protocol and address family */
6733 	if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL
6734 	 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
6735 		struct sadb_address *src0, *dst0;
6736 		u_int plen;
6737 
6738 		src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
6739 		dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
6740 
6741 		/* check upper layer protocol */
6742 		if (src0->sadb_address_proto != dst0->sadb_address_proto) {
6743 			ipseclog((LOG_DEBUG, "%s: upper layer protocol "
6744 				"mismatched.\n", __func__));
6745 			pfkeystat.out_invaddr++;
6746 			error = EINVAL;
6747 			goto senderror;
6748 		}
6749 
6750 		/* check family */
6751 		if (PFKEY_ADDR_SADDR(src0)->sa_family !=
6752 		    PFKEY_ADDR_SADDR(dst0)->sa_family) {
6753 			ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
6754 				__func__));
6755 			pfkeystat.out_invaddr++;
6756 			error = EINVAL;
6757 			goto senderror;
6758 		}
6759 		if (PFKEY_ADDR_SADDR(src0)->sa_len !=
6760 		    PFKEY_ADDR_SADDR(dst0)->sa_len) {
6761 			ipseclog((LOG_DEBUG, "%s: address struct size "
6762 				"mismatched.\n", __func__));
6763 			pfkeystat.out_invaddr++;
6764 			error = EINVAL;
6765 			goto senderror;
6766 		}
6767 
6768 		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
6769 		case AF_INET:
6770 			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
6771 			    sizeof(struct sockaddr_in)) {
6772 				pfkeystat.out_invaddr++;
6773 				error = EINVAL;
6774 				goto senderror;
6775 			}
6776 			break;
6777 		case AF_INET6:
6778 			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
6779 			    sizeof(struct sockaddr_in6)) {
6780 				pfkeystat.out_invaddr++;
6781 				error = EINVAL;
6782 				goto senderror;
6783 			}
6784 			break;
6785 		default:
6786 			ipseclog((LOG_DEBUG, "%s: unsupported address family\n",
6787 				__func__));
6788 			pfkeystat.out_invaddr++;
6789 			error = EAFNOSUPPORT;
6790 			goto senderror;
6791 		}
6792 
6793 		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
6794 		case AF_INET:
6795 			plen = sizeof(struct in_addr) << 3;
6796 			break;
6797 		case AF_INET6:
6798 			plen = sizeof(struct in6_addr) << 3;
6799 			break;
6800 		default:
6801 			plen = 0;	/*fool gcc*/
6802 			break;
6803 		}
6804 
6805 		/* check max prefix length */
6806 		if (src0->sadb_address_prefixlen > plen ||
6807 		    dst0->sadb_address_prefixlen > plen) {
6808 			ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n",
6809 				__func__));
6810 			pfkeystat.out_invaddr++;
6811 			error = EINVAL;
6812 			goto senderror;
6813 		}
6814 
6815 		/*
6816 		 * prefixlen == 0 is valid because there can be a case when
6817 		 * all addresses are matched.
6818 		 */
6819 	}
6820 
6821 	if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) ||
6822 	    key_typesw[msg->sadb_msg_type] == NULL) {
6823 		pfkeystat.out_invmsgtype++;
6824 		error = EINVAL;
6825 		goto senderror;
6826 	}
6827 
6828 	return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
6829 
6830 senderror:
6831 	msg->sadb_msg_errno = error;
6832 	return key_sendup_mbuf(so, m, target);
6833 }
6834 
6835 static int
6836 key_senderror(so, m, code)
6837 	struct socket *so;
6838 	struct mbuf *m;
6839 	int code;
6840 {
6841 	struct sadb_msg *msg;
6842 
6843 	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
6844 		("mbuf too small, len %u", m->m_len));
6845 
6846 	msg = mtod(m, struct sadb_msg *);
6847 	msg->sadb_msg_errno = code;
6848 	return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
6849 }
6850 
6851 /*
6852  * set the pointer to each header into message buffer.
6853  * m will be freed on error.
6854  * XXX larger-than-MCLBYTES extension?
6855  */
6856 static int
6857 key_align(m, mhp)
6858 	struct mbuf *m;
6859 	struct sadb_msghdr *mhp;
6860 {
6861 	struct mbuf *n;
6862 	struct sadb_ext *ext;
6863 	size_t off, end;
6864 	int extlen;
6865 	int toff;
6866 
6867 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6868 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6869 	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
6870 		("mbuf too small, len %u", m->m_len));
6871 
6872 	/* initialize */
6873 	bzero(mhp, sizeof(*mhp));
6874 
6875 	mhp->msg = mtod(m, struct sadb_msg *);
6876 	mhp->ext[0] = (struct sadb_ext *)mhp->msg;	/*XXX backward compat */
6877 
6878 	end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
6879 	extlen = end;	/*just in case extlen is not updated*/
6880 	for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
6881 		n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
6882 		if (!n) {
6883 			/* m is already freed */
6884 			return ENOBUFS;
6885 		}
6886 		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
6887 
6888 		/* set pointer */
6889 		switch (ext->sadb_ext_type) {
6890 		case SADB_EXT_SA:
6891 		case SADB_EXT_ADDRESS_SRC:
6892 		case SADB_EXT_ADDRESS_DST:
6893 		case SADB_EXT_ADDRESS_PROXY:
6894 		case SADB_EXT_LIFETIME_CURRENT:
6895 		case SADB_EXT_LIFETIME_HARD:
6896 		case SADB_EXT_LIFETIME_SOFT:
6897 		case SADB_EXT_KEY_AUTH:
6898 		case SADB_EXT_KEY_ENCRYPT:
6899 		case SADB_EXT_IDENTITY_SRC:
6900 		case SADB_EXT_IDENTITY_DST:
6901 		case SADB_EXT_SENSITIVITY:
6902 		case SADB_EXT_PROPOSAL:
6903 		case SADB_EXT_SUPPORTED_AUTH:
6904 		case SADB_EXT_SUPPORTED_ENCRYPT:
6905 		case SADB_EXT_SPIRANGE:
6906 		case SADB_X_EXT_POLICY:
6907 		case SADB_X_EXT_SA2:
6908 			/* duplicate check */
6909 			/*
6910 			 * XXX Are there duplication payloads of either
6911 			 * KEY_AUTH or KEY_ENCRYPT ?
6912 			 */
6913 			if (mhp->ext[ext->sadb_ext_type] != NULL) {
6914 				ipseclog((LOG_DEBUG, "%s: duplicate ext_type "
6915 					"%u\n", __func__, ext->sadb_ext_type));
6916 				m_freem(m);
6917 				pfkeystat.out_dupext++;
6918 				return EINVAL;
6919 			}
6920 			break;
6921 		default:
6922 			ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n",
6923 				__func__, ext->sadb_ext_type));
6924 			m_freem(m);
6925 			pfkeystat.out_invexttype++;
6926 			return EINVAL;
6927 		}
6928 
6929 		extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
6930 
6931 		if (key_validate_ext(ext, extlen)) {
6932 			m_freem(m);
6933 			pfkeystat.out_invlen++;
6934 			return EINVAL;
6935 		}
6936 
6937 		n = m_pulldown(m, off, extlen, &toff);
6938 		if (!n) {
6939 			/* m is already freed */
6940 			return ENOBUFS;
6941 		}
6942 		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
6943 
6944 		mhp->ext[ext->sadb_ext_type] = ext;
6945 		mhp->extoff[ext->sadb_ext_type] = off;
6946 		mhp->extlen[ext->sadb_ext_type] = extlen;
6947 	}
6948 
6949 	if (off != end) {
6950 		m_freem(m);
6951 		pfkeystat.out_invlen++;
6952 		return EINVAL;
6953 	}
6954 
6955 	return 0;
6956 }
6957 
6958 static int
6959 key_validate_ext(ext, len)
6960 	const struct sadb_ext *ext;
6961 	int len;
6962 {
6963 	const struct sockaddr *sa;
6964 	enum { NONE, ADDR } checktype = NONE;
6965 	int baselen = 0;
6966 	const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
6967 
6968 	if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
6969 		return EINVAL;
6970 
6971 	/* if it does not match minimum/maximum length, bail */
6972 	if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) ||
6973 	    ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0]))
6974 		return EINVAL;
6975 	if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
6976 		return EINVAL;
6977 	if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
6978 		return EINVAL;
6979 
6980 	/* more checks based on sadb_ext_type XXX need more */
6981 	switch (ext->sadb_ext_type) {
6982 	case SADB_EXT_ADDRESS_SRC:
6983 	case SADB_EXT_ADDRESS_DST:
6984 	case SADB_EXT_ADDRESS_PROXY:
6985 		baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
6986 		checktype = ADDR;
6987 		break;
6988 	case SADB_EXT_IDENTITY_SRC:
6989 	case SADB_EXT_IDENTITY_DST:
6990 		if (((const struct sadb_ident *)ext)->sadb_ident_type ==
6991 		    SADB_X_IDENTTYPE_ADDR) {
6992 			baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
6993 			checktype = ADDR;
6994 		} else
6995 			checktype = NONE;
6996 		break;
6997 	default:
6998 		checktype = NONE;
6999 		break;
7000 	}
7001 
7002 	switch (checktype) {
7003 	case NONE:
7004 		break;
7005 	case ADDR:
7006 		sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7007 		if (len < baselen + sal)
7008 			return EINVAL;
7009 		if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7010 			return EINVAL;
7011 		break;
7012 	}
7013 
7014 	return 0;
7015 }
7016 
7017 void
7018 key_init()
7019 {
7020 	int i;
7021 
7022 	SPTREE_LOCK_INIT();
7023 	REGTREE_LOCK_INIT();
7024 	SAHTREE_LOCK_INIT();
7025 	ACQ_LOCK_INIT();
7026 	SPACQ_LOCK_INIT();
7027 
7028 	for (i = 0; i < IPSEC_DIR_MAX; i++)
7029 		LIST_INIT(&sptree[i]);
7030 
7031 	LIST_INIT(&sahtree);
7032 
7033 	for (i = 0; i <= SADB_SATYPE_MAX; i++)
7034 		LIST_INIT(&regtree[i]);
7035 
7036 	LIST_INIT(&acqtree);
7037 	LIST_INIT(&spacqtree);
7038 
7039 	/* system default */
7040 	ip4_def_policy.policy = IPSEC_POLICY_NONE;
7041 	ip4_def_policy.refcnt++;	/*never reclaim this*/
7042 
7043 #ifndef IPSEC_DEBUG2
7044 	timeout((void *)key_timehandler, (void *)0, hz);
7045 #endif /*IPSEC_DEBUG2*/
7046 
7047 	/* initialize key statistics */
7048 	keystat.getspi_count = 1;
7049 
7050 	printf("Fast IPsec: Initialized Security Association Processing.\n");
7051 
7052 	return;
7053 }
7054 
7055 /*
7056  * XXX: maybe This function is called after INBOUND IPsec processing.
7057  *
7058  * Special check for tunnel-mode packets.
7059  * We must make some checks for consistency between inner and outer IP header.
7060  *
7061  * xxx more checks to be provided
7062  */
7063 int
7064 key_checktunnelsanity(sav, family, src, dst)
7065 	struct secasvar *sav;
7066 	u_int family;
7067 	caddr_t src;
7068 	caddr_t dst;
7069 {
7070 	IPSEC_ASSERT(sav->sah != NULL, ("null SA header"));
7071 
7072 	/* XXX: check inner IP header */
7073 
7074 	return 1;
7075 }
7076 
7077 /* record data transfer on SA, and update timestamps */
7078 void
7079 key_sa_recordxfer(sav, m)
7080 	struct secasvar *sav;
7081 	struct mbuf *m;
7082 {
7083 	IPSEC_ASSERT(sav != NULL, ("Null secasvar"));
7084 	IPSEC_ASSERT(m != NULL, ("Null mbuf"));
7085 	if (!sav->lft_c)
7086 		return;
7087 
7088 	/*
7089 	 * XXX Currently, there is a difference of bytes size
7090 	 * between inbound and outbound processing.
7091 	 */
7092 	sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len;
7093 	/* to check bytes lifetime is done in key_timehandler(). */
7094 
7095 	/*
7096 	 * We use the number of packets as the unit of
7097 	 * sadb_lifetime_allocations.  We increment the variable
7098 	 * whenever {esp,ah}_{in,out}put is called.
7099 	 */
7100 	sav->lft_c->sadb_lifetime_allocations++;
7101 	/* XXX check for expires? */
7102 
7103 	/*
7104 	 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock,
7105 	 * in seconds.  HARD and SOFT lifetime are measured by the time
7106 	 * difference (again in seconds) from sadb_lifetime_usetime.
7107 	 *
7108 	 *	usetime
7109 	 *	v     expire   expire
7110 	 * -----+-----+--------+---> t
7111 	 *	<--------------> HARD
7112 	 *	<-----> SOFT
7113 	 */
7114 	sav->lft_c->sadb_lifetime_usetime = time_second;
7115 	/* XXX check for expires? */
7116 
7117 	return;
7118 }
7119 
7120 /* dumb version */
7121 void
7122 key_sa_routechange(dst)
7123 	struct sockaddr *dst;
7124 {
7125 	struct secashead *sah;
7126 	struct route *ro;
7127 
7128 	SAHTREE_LOCK();
7129 	LIST_FOREACH(sah, &sahtree, chain) {
7130 		ro = &sah->sa_route;
7131 		if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len
7132 		 && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) {
7133 			RTFREE(ro->ro_rt);
7134 			ro->ro_rt = (struct rtentry *)NULL;
7135 		}
7136 	}
7137 	SAHTREE_UNLOCK();
7138 }
7139 
7140 static void
7141 key_sa_chgstate(sav, state)
7142 	struct secasvar *sav;
7143 	u_int8_t state;
7144 {
7145 	IPSEC_ASSERT(sav != NULL, ("NULL sav"));
7146 	SAHTREE_LOCK_ASSERT();
7147 
7148 	if (sav->state != state) {
7149 		if (__LIST_CHAINED(sav))
7150 			LIST_REMOVE(sav, chain);
7151 		sav->state = state;
7152 		LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7153 	}
7154 }
7155 
7156 void
7157 key_sa_stir_iv(sav)
7158 	struct secasvar *sav;
7159 {
7160 
7161 	IPSEC_ASSERT(sav->iv != NULL, ("null IV"));
7162 	key_randomfill(sav->iv, sav->ivlen);
7163 }
7164 
7165 /* XXX too much? */
7166 static struct mbuf *
7167 key_alloc_mbuf(l)
7168 	int l;
7169 {
7170 	struct mbuf *m = NULL, *n;
7171 	int len, t;
7172 
7173 	len = l;
7174 	while (len > 0) {
7175 		MGET(n, M_DONTWAIT, MT_DATA);
7176 		if (n && len > MLEN)
7177 			MCLGET(n, M_DONTWAIT);
7178 		if (!n) {
7179 			m_freem(m);
7180 			return NULL;
7181 		}
7182 
7183 		n->m_next = NULL;
7184 		n->m_len = 0;
7185 		n->m_len = M_TRAILINGSPACE(n);
7186 		/* use the bottom of mbuf, hoping we can prepend afterwards */
7187 		if (n->m_len > len) {
7188 			t = (n->m_len - len) & ~(sizeof(long) - 1);
7189 			n->m_data += t;
7190 			n->m_len = len;
7191 		}
7192 
7193 		len -= n->m_len;
7194 
7195 		if (m)
7196 			m_cat(m, n);
7197 		else
7198 			m = n;
7199 	}
7200 
7201 	return m;
7202 }
7203