1 /* $FreeBSD$ */ 2 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ 3 4 /*- 5 * SPDX-License-Identifier: BSD-3-Clause 6 * 7 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the project nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 /* 36 * This code is referd to RFC 2367 37 */ 38 39 #include "opt_inet.h" 40 #include "opt_inet6.h" 41 #include "opt_ipsec.h" 42 43 #include <sys/types.h> 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/kernel.h> 47 #include <sys/fnv_hash.h> 48 #include <sys/lock.h> 49 #include <sys/mutex.h> 50 #include <sys/mbuf.h> 51 #include <sys/domain.h> 52 #include <sys/protosw.h> 53 #include <sys/malloc.h> 54 #include <sys/rmlock.h> 55 #include <sys/socket.h> 56 #include <sys/socketvar.h> 57 #include <sys/sysctl.h> 58 #include <sys/errno.h> 59 #include <sys/proc.h> 60 #include <sys/queue.h> 61 #include <sys/refcount.h> 62 #include <sys/syslog.h> 63 64 #include <vm/uma.h> 65 66 #include <net/if.h> 67 #include <net/if_var.h> 68 #include <net/vnet.h> 69 #include <net/raw_cb.h> 70 71 #include <netinet/in.h> 72 #include <netinet/in_systm.h> 73 #include <netinet/ip.h> 74 #include <netinet/in_var.h> 75 #include <netinet/udp.h> 76 77 #ifdef INET6 78 #include <netinet/ip6.h> 79 #include <netinet6/in6_var.h> 80 #include <netinet6/ip6_var.h> 81 #endif /* INET6 */ 82 83 #include <net/pfkeyv2.h> 84 #include <netipsec/keydb.h> 85 #include <netipsec/key.h> 86 #include <netipsec/keysock.h> 87 #include <netipsec/key_debug.h> 88 89 #include <netipsec/ipsec.h> 90 #ifdef INET6 91 #include <netipsec/ipsec6.h> 92 #endif 93 94 #include <netipsec/xform.h> 95 #include <machine/in_cksum.h> 96 #include <machine/stdarg.h> 97 98 /* randomness */ 99 #include <sys/random.h> 100 101 #define FULLMASK 0xff 102 #define _BITS(bytes) ((bytes) << 3) 103 104 /* 105 * Note on SA reference counting: 106 * - SAs that are not in DEAD state will have (total external reference + 1) 107 * following value in reference count field. they cannot be freed and are 108 * referenced from SA header. 109 * - SAs that are in DEAD state will have (total external reference) 110 * in reference count field. they are ready to be freed. reference from 111 * SA header will be removed in key_delsav(), when the reference count 112 * field hits 0 (= no external reference other than from SA header. 113 */ 114 115 VNET_DEFINE(u_int32_t, key_debug_level) = 0; 116 static VNET_DEFINE(u_int, key_spi_trycnt) = 1000; 117 static VNET_DEFINE(u_int32_t, key_spi_minval) = 0x100; 118 static VNET_DEFINE(u_int32_t, key_spi_maxval) = 0x0fffffff; /* XXX */ 119 static VNET_DEFINE(u_int32_t, policy_id) = 0; 120 /*interval to initialize randseed,1(m)*/ 121 static VNET_DEFINE(u_int, key_int_random) = 60; 122 /* interval to expire acquiring, 30(s)*/ 123 static VNET_DEFINE(u_int, key_larval_lifetime) = 30; 124 /* counter for blocking SADB_ACQUIRE.*/ 125 static VNET_DEFINE(int, key_blockacq_count) = 10; 126 /* lifetime for blocking SADB_ACQUIRE.*/ 127 static VNET_DEFINE(int, key_blockacq_lifetime) = 20; 128 /* preferred old sa rather than new sa.*/ 129 static VNET_DEFINE(int, key_preferred_oldsa) = 1; 130 #define V_key_spi_trycnt VNET(key_spi_trycnt) 131 #define V_key_spi_minval VNET(key_spi_minval) 132 #define V_key_spi_maxval VNET(key_spi_maxval) 133 #define V_policy_id VNET(policy_id) 134 #define V_key_int_random VNET(key_int_random) 135 #define V_key_larval_lifetime VNET(key_larval_lifetime) 136 #define V_key_blockacq_count VNET(key_blockacq_count) 137 #define V_key_blockacq_lifetime VNET(key_blockacq_lifetime) 138 #define V_key_preferred_oldsa VNET(key_preferred_oldsa) 139 140 static VNET_DEFINE(u_int32_t, acq_seq) = 0; 141 #define V_acq_seq VNET(acq_seq) 142 143 static VNET_DEFINE(uint32_t, sp_genid) = 0; 144 #define V_sp_genid VNET(sp_genid) 145 146 /* SPD */ 147 TAILQ_HEAD(secpolicy_queue, secpolicy); 148 LIST_HEAD(secpolicy_list, secpolicy); 149 static VNET_DEFINE(struct secpolicy_queue, sptree[IPSEC_DIR_MAX]); 150 static VNET_DEFINE(struct secpolicy_queue, sptree_ifnet[IPSEC_DIR_MAX]); 151 static struct rmlock sptree_lock; 152 #define V_sptree VNET(sptree) 153 #define V_sptree_ifnet VNET(sptree_ifnet) 154 #define SPTREE_LOCK_INIT() rm_init(&sptree_lock, "sptree") 155 #define SPTREE_LOCK_DESTROY() rm_destroy(&sptree_lock) 156 #define SPTREE_RLOCK_TRACKER struct rm_priotracker sptree_tracker 157 #define SPTREE_RLOCK() rm_rlock(&sptree_lock, &sptree_tracker) 158 #define SPTREE_RUNLOCK() rm_runlock(&sptree_lock, &sptree_tracker) 159 #define SPTREE_RLOCK_ASSERT() rm_assert(&sptree_lock, RA_RLOCKED) 160 #define SPTREE_WLOCK() rm_wlock(&sptree_lock) 161 #define SPTREE_WUNLOCK() rm_wunlock(&sptree_lock) 162 #define SPTREE_WLOCK_ASSERT() rm_assert(&sptree_lock, RA_WLOCKED) 163 #define SPTREE_UNLOCK_ASSERT() rm_assert(&sptree_lock, RA_UNLOCKED) 164 165 /* Hash table for lookup SP using unique id */ 166 static VNET_DEFINE(struct secpolicy_list *, sphashtbl); 167 static VNET_DEFINE(u_long, sphash_mask); 168 #define V_sphashtbl VNET(sphashtbl) 169 #define V_sphash_mask VNET(sphash_mask) 170 171 #define SPHASH_NHASH_LOG2 7 172 #define SPHASH_NHASH (1 << SPHASH_NHASH_LOG2) 173 #define SPHASH_HASHVAL(id) (key_u32hash(id) & V_sphash_mask) 174 #define SPHASH_HASH(id) &V_sphashtbl[SPHASH_HASHVAL(id)] 175 176 /* SPD cache */ 177 struct spdcache_entry { 178 struct secpolicyindex spidx; /* secpolicyindex */ 179 struct secpolicy *sp; /* cached policy to be used */ 180 181 LIST_ENTRY(spdcache_entry) chain; 182 }; 183 LIST_HEAD(spdcache_entry_list, spdcache_entry); 184 185 #define SPDCACHE_MAX_ENTRIES_PER_HASH 8 186 187 static VNET_DEFINE(u_int, key_spdcache_maxentries) = 0; 188 #define V_key_spdcache_maxentries VNET(key_spdcache_maxentries) 189 static VNET_DEFINE(u_int, key_spdcache_threshold) = 32; 190 #define V_key_spdcache_threshold VNET(key_spdcache_threshold) 191 static VNET_DEFINE(unsigned long, spd_size) = 0; 192 #define V_spd_size VNET(spd_size) 193 194 #define SPDCACHE_ENABLED() (V_key_spdcache_maxentries != 0) 195 #define SPDCACHE_ACTIVE() \ 196 (SPDCACHE_ENABLED() && V_spd_size >= V_key_spdcache_threshold) 197 198 static VNET_DEFINE(struct spdcache_entry_list *, spdcachehashtbl); 199 static VNET_DEFINE(u_long, spdcachehash_mask); 200 #define V_spdcachehashtbl VNET(spdcachehashtbl) 201 #define V_spdcachehash_mask VNET(spdcachehash_mask) 202 203 #define SPDCACHE_HASHVAL(idx) \ 204 (key_addrprotohash(&(idx)->src, &(idx)->dst, &(idx)->ul_proto) & \ 205 V_spdcachehash_mask) 206 207 /* Each cache line is protected by a mutex */ 208 static VNET_DEFINE(struct mtx *, spdcache_lock); 209 #define V_spdcache_lock VNET(spdcache_lock) 210 211 #define SPDCACHE_LOCK_INIT(a) \ 212 mtx_init(&V_spdcache_lock[a], "spdcache", \ 213 "fast ipsec SPD cache", MTX_DEF|MTX_DUPOK) 214 #define SPDCACHE_LOCK_DESTROY(a) mtx_destroy(&V_spdcache_lock[a]) 215 #define SPDCACHE_LOCK(a) mtx_lock(&V_spdcache_lock[a]); 216 #define SPDCACHE_UNLOCK(a) mtx_unlock(&V_spdcache_lock[a]); 217 218 /* SAD */ 219 TAILQ_HEAD(secashead_queue, secashead); 220 LIST_HEAD(secashead_list, secashead); 221 static VNET_DEFINE(struct secashead_queue, sahtree); 222 static struct rmlock sahtree_lock; 223 #define V_sahtree VNET(sahtree) 224 #define SAHTREE_LOCK_INIT() rm_init(&sahtree_lock, "sahtree") 225 #define SAHTREE_LOCK_DESTROY() rm_destroy(&sahtree_lock) 226 #define SAHTREE_RLOCK_TRACKER struct rm_priotracker sahtree_tracker 227 #define SAHTREE_RLOCK() rm_rlock(&sahtree_lock, &sahtree_tracker) 228 #define SAHTREE_RUNLOCK() rm_runlock(&sahtree_lock, &sahtree_tracker) 229 #define SAHTREE_RLOCK_ASSERT() rm_assert(&sahtree_lock, RA_RLOCKED) 230 #define SAHTREE_WLOCK() rm_wlock(&sahtree_lock) 231 #define SAHTREE_WUNLOCK() rm_wunlock(&sahtree_lock) 232 #define SAHTREE_WLOCK_ASSERT() rm_assert(&sahtree_lock, RA_WLOCKED) 233 #define SAHTREE_UNLOCK_ASSERT() rm_assert(&sahtree_lock, RA_UNLOCKED) 234 235 /* Hash table for lookup in SAD using SA addresses */ 236 static VNET_DEFINE(struct secashead_list *, sahaddrhashtbl); 237 static VNET_DEFINE(u_long, sahaddrhash_mask); 238 #define V_sahaddrhashtbl VNET(sahaddrhashtbl) 239 #define V_sahaddrhash_mask VNET(sahaddrhash_mask) 240 241 #define SAHHASH_NHASH_LOG2 7 242 #define SAHHASH_NHASH (1 << SAHHASH_NHASH_LOG2) 243 #define SAHADDRHASH_HASHVAL(idx) \ 244 (key_addrprotohash(&(idx)->src, &(idx)->dst, &(idx)->proto) & \ 245 V_sahaddrhash_mask) 246 #define SAHADDRHASH_HASH(saidx) \ 247 &V_sahaddrhashtbl[SAHADDRHASH_HASHVAL(saidx)] 248 249 /* Hash table for lookup in SAD using SPI */ 250 LIST_HEAD(secasvar_list, secasvar); 251 static VNET_DEFINE(struct secasvar_list *, savhashtbl); 252 static VNET_DEFINE(u_long, savhash_mask); 253 #define V_savhashtbl VNET(savhashtbl) 254 #define V_savhash_mask VNET(savhash_mask) 255 #define SAVHASH_NHASH_LOG2 7 256 #define SAVHASH_NHASH (1 << SAVHASH_NHASH_LOG2) 257 #define SAVHASH_HASHVAL(spi) (key_u32hash(spi) & V_savhash_mask) 258 #define SAVHASH_HASH(spi) &V_savhashtbl[SAVHASH_HASHVAL(spi)] 259 260 static uint32_t 261 key_addrprotohash(const union sockaddr_union *src, 262 const union sockaddr_union *dst, const uint8_t *proto) 263 { 264 uint32_t hval; 265 266 hval = fnv_32_buf(proto, sizeof(*proto), 267 FNV1_32_INIT); 268 switch (dst->sa.sa_family) { 269 #ifdef INET 270 case AF_INET: 271 hval = fnv_32_buf(&src->sin.sin_addr, 272 sizeof(in_addr_t), hval); 273 hval = fnv_32_buf(&dst->sin.sin_addr, 274 sizeof(in_addr_t), hval); 275 break; 276 #endif 277 #ifdef INET6 278 case AF_INET6: 279 hval = fnv_32_buf(&src->sin6.sin6_addr, 280 sizeof(struct in6_addr), hval); 281 hval = fnv_32_buf(&dst->sin6.sin6_addr, 282 sizeof(struct in6_addr), hval); 283 break; 284 #endif 285 default: 286 hval = 0; 287 ipseclog((LOG_DEBUG, "%s: unknown address family %d", 288 __func__, dst->sa.sa_family)); 289 } 290 return (hval); 291 } 292 293 static uint32_t 294 key_u32hash(uint32_t val) 295 { 296 297 return (fnv_32_buf(&val, sizeof(val), FNV1_32_INIT)); 298 } 299 300 /* registed list */ 301 static VNET_DEFINE(LIST_HEAD(_regtree, secreg), regtree[SADB_SATYPE_MAX + 1]); 302 #define V_regtree VNET(regtree) 303 static struct mtx regtree_lock; 304 #define REGTREE_LOCK_INIT() \ 305 mtx_init(®tree_lock, "regtree", "fast ipsec regtree", MTX_DEF) 306 #define REGTREE_LOCK_DESTROY() mtx_destroy(®tree_lock) 307 #define REGTREE_LOCK() mtx_lock(®tree_lock) 308 #define REGTREE_UNLOCK() mtx_unlock(®tree_lock) 309 #define REGTREE_LOCK_ASSERT() mtx_assert(®tree_lock, MA_OWNED) 310 311 /* Acquiring list */ 312 LIST_HEAD(secacq_list, secacq); 313 static VNET_DEFINE(struct secacq_list, acqtree); 314 #define V_acqtree VNET(acqtree) 315 static struct mtx acq_lock; 316 #define ACQ_LOCK_INIT() \ 317 mtx_init(&acq_lock, "acqtree", "ipsec SA acquiring list", MTX_DEF) 318 #define ACQ_LOCK_DESTROY() mtx_destroy(&acq_lock) 319 #define ACQ_LOCK() mtx_lock(&acq_lock) 320 #define ACQ_UNLOCK() mtx_unlock(&acq_lock) 321 #define ACQ_LOCK_ASSERT() mtx_assert(&acq_lock, MA_OWNED) 322 323 /* Hash table for lookup in ACQ list using SA addresses */ 324 static VNET_DEFINE(struct secacq_list *, acqaddrhashtbl); 325 static VNET_DEFINE(u_long, acqaddrhash_mask); 326 #define V_acqaddrhashtbl VNET(acqaddrhashtbl) 327 #define V_acqaddrhash_mask VNET(acqaddrhash_mask) 328 329 /* Hash table for lookup in ACQ list using SEQ number */ 330 static VNET_DEFINE(struct secacq_list *, acqseqhashtbl); 331 static VNET_DEFINE(u_long, acqseqhash_mask); 332 #define V_acqseqhashtbl VNET(acqseqhashtbl) 333 #define V_acqseqhash_mask VNET(acqseqhash_mask) 334 335 #define ACQHASH_NHASH_LOG2 7 336 #define ACQHASH_NHASH (1 << ACQHASH_NHASH_LOG2) 337 #define ACQADDRHASH_HASHVAL(idx) \ 338 (key_addrprotohash(&(idx)->src, &(idx)->dst, &(idx)->proto) & \ 339 V_acqaddrhash_mask) 340 #define ACQSEQHASH_HASHVAL(seq) \ 341 (key_u32hash(seq) & V_acqseqhash_mask) 342 #define ACQADDRHASH_HASH(saidx) \ 343 &V_acqaddrhashtbl[ACQADDRHASH_HASHVAL(saidx)] 344 #define ACQSEQHASH_HASH(seq) \ 345 &V_acqseqhashtbl[ACQSEQHASH_HASHVAL(seq)] 346 /* SP acquiring list */ 347 static VNET_DEFINE(LIST_HEAD(_spacqtree, secspacq), spacqtree); 348 #define V_spacqtree VNET(spacqtree) 349 static struct mtx spacq_lock; 350 #define SPACQ_LOCK_INIT() \ 351 mtx_init(&spacq_lock, "spacqtree", \ 352 "fast ipsec security policy acquire list", MTX_DEF) 353 #define SPACQ_LOCK_DESTROY() mtx_destroy(&spacq_lock) 354 #define SPACQ_LOCK() mtx_lock(&spacq_lock) 355 #define SPACQ_UNLOCK() mtx_unlock(&spacq_lock) 356 #define SPACQ_LOCK_ASSERT() mtx_assert(&spacq_lock, MA_OWNED) 357 358 static const int minsize[] = { 359 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 360 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 361 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 362 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 363 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 364 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ 365 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ 366 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ 367 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ 368 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ 369 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ 370 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ 371 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ 372 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ 373 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ 374 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ 375 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 376 0, /* SADB_X_EXT_KMPRIVATE */ 377 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ 378 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 379 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ 380 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ 381 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ 382 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */ 383 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */ 384 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ 385 sizeof(struct sadb_x_sa_replay), /* SADB_X_EXT_SA_REPLAY */ 386 sizeof(struct sadb_address), /* SADB_X_EXT_NEW_ADDRESS_SRC */ 387 sizeof(struct sadb_address), /* SADB_X_EXT_NEW_ADDRESS_DST */ 388 }; 389 _Static_assert(sizeof(minsize)/sizeof(int) == SADB_EXT_MAX + 1, "minsize size mismatch"); 390 391 static const int maxsize[] = { 392 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 393 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 394 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 395 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 396 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 397 0, /* SADB_EXT_ADDRESS_SRC */ 398 0, /* SADB_EXT_ADDRESS_DST */ 399 0, /* SADB_EXT_ADDRESS_PROXY */ 400 0, /* SADB_EXT_KEY_AUTH */ 401 0, /* SADB_EXT_KEY_ENCRYPT */ 402 0, /* SADB_EXT_IDENTITY_SRC */ 403 0, /* SADB_EXT_IDENTITY_DST */ 404 0, /* SADB_EXT_SENSITIVITY */ 405 0, /* SADB_EXT_PROPOSAL */ 406 0, /* SADB_EXT_SUPPORTED_AUTH */ 407 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ 408 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 409 0, /* SADB_X_EXT_KMPRIVATE */ 410 0, /* SADB_X_EXT_POLICY */ 411 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 412 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ 413 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ 414 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ 415 0, /* SADB_X_EXT_NAT_T_OAI */ 416 0, /* SADB_X_EXT_NAT_T_OAR */ 417 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ 418 sizeof(struct sadb_x_sa_replay), /* SADB_X_EXT_SA_REPLAY */ 419 0, /* SADB_X_EXT_NEW_ADDRESS_SRC */ 420 0, /* SADB_X_EXT_NEW_ADDRESS_DST */ 421 }; 422 _Static_assert(sizeof(maxsize)/sizeof(int) == SADB_EXT_MAX + 1, "minsize size mismatch"); 423 424 /* 425 * Internal values for SA flags: 426 * SADB_X_EXT_F_CLONED means that SA was cloned by key_updateaddresses, 427 * thus we will not free the most of SA content in key_delsav(). 428 */ 429 #define SADB_X_EXT_F_CLONED 0x80000000 430 431 #define SADB_CHECKLEN(_mhp, _ext) \ 432 ((_mhp)->extlen[(_ext)] < minsize[(_ext)] || (maxsize[(_ext)] != 0 && \ 433 ((_mhp)->extlen[(_ext)] > maxsize[(_ext)]))) 434 #define SADB_CHECKHDR(_mhp, _ext) ((_mhp)->ext[(_ext)] == NULL) 435 436 static VNET_DEFINE(int, ipsec_esp_keymin) = 256; 437 static VNET_DEFINE(int, ipsec_esp_auth) = 0; 438 static VNET_DEFINE(int, ipsec_ah_keymin) = 128; 439 440 #define V_ipsec_esp_keymin VNET(ipsec_esp_keymin) 441 #define V_ipsec_esp_auth VNET(ipsec_esp_auth) 442 #define V_ipsec_ah_keymin VNET(ipsec_ah_keymin) 443 444 #ifdef IPSEC_DEBUG 445 VNET_DEFINE(int, ipsec_debug) = 1; 446 #else 447 VNET_DEFINE(int, ipsec_debug) = 0; 448 #endif 449 450 #ifdef INET 451 SYSCTL_DECL(_net_inet_ipsec); 452 SYSCTL_INT(_net_inet_ipsec, IPSECCTL_DEBUG, debug, 453 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_debug), 0, 454 "Enable IPsec debugging output when set."); 455 #endif 456 #ifdef INET6 457 SYSCTL_DECL(_net_inet6_ipsec6); 458 SYSCTL_INT(_net_inet6_ipsec6, IPSECCTL_DEBUG, debug, 459 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_debug), 0, 460 "Enable IPsec debugging output when set."); 461 #endif 462 463 SYSCTL_DECL(_net_key); 464 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, 465 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_debug_level), 0, ""); 466 467 /* max count of trial for the decision of spi value */ 468 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, 469 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_trycnt), 0, ""); 470 471 /* minimum spi value to allocate automatically. */ 472 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, 473 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_minval), 0, ""); 474 475 /* maximun spi value to allocate automatically. */ 476 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, 477 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_maxval), 0, ""); 478 479 /* interval to initialize randseed */ 480 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, 481 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_int_random), 0, ""); 482 483 /* lifetime for larval SA */ 484 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, 485 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_larval_lifetime), 0, ""); 486 487 /* counter for blocking to send SADB_ACQUIRE to IKEd */ 488 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, 489 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_count), 0, ""); 490 491 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ 492 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, 493 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_lifetime), 0, ""); 494 495 /* ESP auth */ 496 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, 497 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_auth), 0, ""); 498 499 /* minimum ESP key length */ 500 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, 501 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_keymin), 0, ""); 502 503 /* minimum AH key length */ 504 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, 505 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_ah_keymin), 0, ""); 506 507 /* perfered old SA rather than new SA */ 508 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, preferred_oldsa, 509 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_preferred_oldsa), 0, ""); 510 511 static SYSCTL_NODE(_net_key, OID_AUTO, spdcache, CTLFLAG_RW, 0, "SPD cache"); 512 513 SYSCTL_UINT(_net_key_spdcache, OID_AUTO, maxentries, 514 CTLFLAG_VNET | CTLFLAG_RDTUN, &VNET_NAME(key_spdcache_maxentries), 0, 515 "Maximum number of entries in the SPD cache" 516 " (power of 2, 0 to disable)"); 517 518 SYSCTL_UINT(_net_key_spdcache, OID_AUTO, threshold, 519 CTLFLAG_VNET | CTLFLAG_RDTUN, &VNET_NAME(key_spdcache_threshold), 0, 520 "Number of SPs that make the SPD cache active"); 521 522 #define __LIST_CHAINED(elm) \ 523 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) 524 525 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association"); 526 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head"); 527 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy"); 528 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request"); 529 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous"); 530 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire"); 531 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire"); 532 MALLOC_DEFINE(M_IPSEC_SPDCACHE, "ipsec-spdcache", "ipsec SPD cache"); 533 534 static VNET_DEFINE(uma_zone_t, key_lft_zone); 535 #define V_key_lft_zone VNET(key_lft_zone) 536 537 static LIST_HEAD(xforms_list, xformsw) xforms = LIST_HEAD_INITIALIZER(); 538 static struct mtx xforms_lock; 539 #define XFORMS_LOCK_INIT() \ 540 mtx_init(&xforms_lock, "xforms_list", "IPsec transforms list", MTX_DEF) 541 #define XFORMS_LOCK_DESTROY() mtx_destroy(&xforms_lock) 542 #define XFORMS_LOCK() mtx_lock(&xforms_lock) 543 #define XFORMS_UNLOCK() mtx_unlock(&xforms_lock) 544 545 /* 546 * set parameters into secpolicyindex buffer. 547 * Must allocate secpolicyindex buffer passed to this function. 548 */ 549 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \ 550 do { \ 551 bzero((idx), sizeof(struct secpolicyindex)); \ 552 (idx)->dir = (_dir); \ 553 (idx)->prefs = (ps); \ 554 (idx)->prefd = (pd); \ 555 (idx)->ul_proto = (ulp); \ 556 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 557 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 558 } while (0) 559 560 /* 561 * set parameters into secasindex buffer. 562 * Must allocate secasindex buffer before calling this function. 563 */ 564 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \ 565 do { \ 566 bzero((idx), sizeof(struct secasindex)); \ 567 (idx)->proto = (p); \ 568 (idx)->mode = (m); \ 569 (idx)->reqid = (r); \ 570 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 571 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 572 key_porttosaddr(&(idx)->src.sa, 0); \ 573 key_porttosaddr(&(idx)->dst.sa, 0); \ 574 } while (0) 575 576 /* key statistics */ 577 struct _keystat { 578 u_long getspi_count; /* the avarage of count to try to get new SPI */ 579 } keystat; 580 581 struct sadb_msghdr { 582 struct sadb_msg *msg; 583 struct sadb_ext *ext[SADB_EXT_MAX + 1]; 584 int extoff[SADB_EXT_MAX + 1]; 585 int extlen[SADB_EXT_MAX + 1]; 586 }; 587 588 static struct supported_ealgs { 589 int sadb_alg; 590 const struct enc_xform *xform; 591 } supported_ealgs[] = { 592 { SADB_EALG_DESCBC, &enc_xform_des }, 593 { SADB_EALG_3DESCBC, &enc_xform_3des }, 594 { SADB_X_EALG_AES, &enc_xform_rijndael128 }, 595 { SADB_X_EALG_BLOWFISHCBC, &enc_xform_blf }, 596 { SADB_X_EALG_CAST128CBC, &enc_xform_cast5 }, 597 { SADB_EALG_NULL, &enc_xform_null }, 598 { SADB_X_EALG_CAMELLIACBC, &enc_xform_camellia }, 599 { SADB_X_EALG_AESCTR, &enc_xform_aes_icm }, 600 { SADB_X_EALG_AESGCM16, &enc_xform_aes_nist_gcm }, 601 { SADB_X_EALG_AESGMAC, &enc_xform_aes_nist_gmac }, 602 }; 603 604 static struct supported_aalgs { 605 int sadb_alg; 606 const struct auth_hash *xform; 607 } supported_aalgs[] = { 608 { SADB_X_AALG_NULL, &auth_hash_null }, 609 { SADB_AALG_MD5HMAC, &auth_hash_hmac_md5 }, 610 { SADB_AALG_SHA1HMAC, &auth_hash_hmac_sha1 }, 611 { SADB_X_AALG_RIPEMD160HMAC, &auth_hash_hmac_ripemd_160 }, 612 { SADB_X_AALG_MD5, &auth_hash_key_md5 }, 613 { SADB_X_AALG_SHA, &auth_hash_key_sha1 }, 614 { SADB_X_AALG_SHA2_256, &auth_hash_hmac_sha2_256 }, 615 { SADB_X_AALG_SHA2_384, &auth_hash_hmac_sha2_384 }, 616 { SADB_X_AALG_SHA2_512, &auth_hash_hmac_sha2_512 }, 617 { SADB_X_AALG_AES128GMAC, &auth_hash_nist_gmac_aes_128 }, 618 { SADB_X_AALG_AES192GMAC, &auth_hash_nist_gmac_aes_192 }, 619 { SADB_X_AALG_AES256GMAC, &auth_hash_nist_gmac_aes_256 }, 620 }; 621 622 static struct supported_calgs { 623 int sadb_alg; 624 const struct comp_algo *xform; 625 } supported_calgs[] = { 626 { SADB_X_CALG_DEFLATE, &comp_algo_deflate }, 627 }; 628 629 #ifndef IPSEC_DEBUG2 630 static struct callout key_timer; 631 #endif 632 633 static void key_unlink(struct secpolicy *); 634 static struct secpolicy *key_do_allocsp(struct secpolicyindex *spidx, u_int dir); 635 static struct secpolicy *key_getsp(struct secpolicyindex *); 636 static struct secpolicy *key_getspbyid(u_int32_t); 637 static struct mbuf *key_gather_mbuf(struct mbuf *, 638 const struct sadb_msghdr *, int, int, ...); 639 static int key_spdadd(struct socket *, struct mbuf *, 640 const struct sadb_msghdr *); 641 static uint32_t key_getnewspid(void); 642 static int key_spddelete(struct socket *, struct mbuf *, 643 const struct sadb_msghdr *); 644 static int key_spddelete2(struct socket *, struct mbuf *, 645 const struct sadb_msghdr *); 646 static int key_spdget(struct socket *, struct mbuf *, 647 const struct sadb_msghdr *); 648 static int key_spdflush(struct socket *, struct mbuf *, 649 const struct sadb_msghdr *); 650 static int key_spddump(struct socket *, struct mbuf *, 651 const struct sadb_msghdr *); 652 static struct mbuf *key_setdumpsp(struct secpolicy *, 653 u_int8_t, u_int32_t, u_int32_t); 654 static struct mbuf *key_sp2mbuf(struct secpolicy *); 655 static size_t key_getspreqmsglen(struct secpolicy *); 656 static int key_spdexpire(struct secpolicy *); 657 static struct secashead *key_newsah(struct secasindex *); 658 static void key_freesah(struct secashead **); 659 static void key_delsah(struct secashead *); 660 static struct secasvar *key_newsav(const struct sadb_msghdr *, 661 struct secasindex *, uint32_t, int *); 662 static void key_delsav(struct secasvar *); 663 static void key_unlinksav(struct secasvar *); 664 static struct secashead *key_getsah(struct secasindex *); 665 static int key_checkspidup(uint32_t); 666 static struct secasvar *key_getsavbyspi(uint32_t); 667 static int key_setnatt(struct secasvar *, const struct sadb_msghdr *); 668 static int key_setsaval(struct secasvar *, const struct sadb_msghdr *); 669 static int key_updatelifetimes(struct secasvar *, const struct sadb_msghdr *); 670 static int key_updateaddresses(struct socket *, struct mbuf *, 671 const struct sadb_msghdr *, struct secasvar *, struct secasindex *); 672 673 static struct mbuf *key_setdumpsa(struct secasvar *, u_int8_t, 674 u_int8_t, u_int32_t, u_int32_t); 675 static struct mbuf *key_setsadbmsg(u_int8_t, u_int16_t, u_int8_t, 676 u_int32_t, pid_t, u_int16_t); 677 static struct mbuf *key_setsadbsa(struct secasvar *); 678 static struct mbuf *key_setsadbaddr(u_int16_t, 679 const struct sockaddr *, u_int8_t, u_int16_t); 680 static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t); 681 static struct mbuf *key_setsadbxtype(u_int16_t); 682 static struct mbuf *key_setsadbxsa2(u_int8_t, u_int32_t, u_int32_t); 683 static struct mbuf *key_setsadbxsareplay(u_int32_t); 684 static struct mbuf *key_setsadbxpolicy(u_int16_t, u_int8_t, 685 u_int32_t, u_int32_t); 686 static struct seckey *key_dup_keymsg(const struct sadb_key *, size_t, 687 struct malloc_type *); 688 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src, 689 struct malloc_type *); 690 691 /* flags for key_cmpsaidx() */ 692 #define CMP_HEAD 1 /* protocol, addresses. */ 693 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ 694 #define CMP_REQID 3 /* additionally HEAD, reaid. */ 695 #define CMP_EXACTLY 4 /* all elements. */ 696 static int key_cmpsaidx(const struct secasindex *, 697 const struct secasindex *, int); 698 static int key_cmpspidx_exactly(struct secpolicyindex *, 699 struct secpolicyindex *); 700 static int key_cmpspidx_withmask(struct secpolicyindex *, 701 struct secpolicyindex *); 702 static int key_bbcmp(const void *, const void *, u_int); 703 static uint8_t key_satype2proto(uint8_t); 704 static uint8_t key_proto2satype(uint8_t); 705 706 static int key_getspi(struct socket *, struct mbuf *, 707 const struct sadb_msghdr *); 708 static uint32_t key_do_getnewspi(struct sadb_spirange *, struct secasindex *); 709 static int key_update(struct socket *, struct mbuf *, 710 const struct sadb_msghdr *); 711 static int key_add(struct socket *, struct mbuf *, 712 const struct sadb_msghdr *); 713 static int key_setident(struct secashead *, const struct sadb_msghdr *); 714 static struct mbuf *key_getmsgbuf_x1(struct mbuf *, 715 const struct sadb_msghdr *); 716 static int key_delete(struct socket *, struct mbuf *, 717 const struct sadb_msghdr *); 718 static int key_delete_all(struct socket *, struct mbuf *, 719 const struct sadb_msghdr *, struct secasindex *); 720 static void key_delete_xform(const struct xformsw *); 721 static int key_get(struct socket *, struct mbuf *, 722 const struct sadb_msghdr *); 723 724 static void key_getcomb_setlifetime(struct sadb_comb *); 725 static struct mbuf *key_getcomb_ealg(void); 726 static struct mbuf *key_getcomb_ah(void); 727 static struct mbuf *key_getcomb_ipcomp(void); 728 static struct mbuf *key_getprop(const struct secasindex *); 729 730 static int key_acquire(const struct secasindex *, struct secpolicy *); 731 static uint32_t key_newacq(const struct secasindex *, int *); 732 static uint32_t key_getacq(const struct secasindex *, int *); 733 static int key_acqdone(const struct secasindex *, uint32_t); 734 static int key_acqreset(uint32_t); 735 static struct secspacq *key_newspacq(struct secpolicyindex *); 736 static struct secspacq *key_getspacq(struct secpolicyindex *); 737 static int key_acquire2(struct socket *, struct mbuf *, 738 const struct sadb_msghdr *); 739 static int key_register(struct socket *, struct mbuf *, 740 const struct sadb_msghdr *); 741 static int key_expire(struct secasvar *, int); 742 static int key_flush(struct socket *, struct mbuf *, 743 const struct sadb_msghdr *); 744 static int key_dump(struct socket *, struct mbuf *, 745 const struct sadb_msghdr *); 746 static int key_promisc(struct socket *, struct mbuf *, 747 const struct sadb_msghdr *); 748 static int key_senderror(struct socket *, struct mbuf *, int); 749 static int key_validate_ext(const struct sadb_ext *, int); 750 static int key_align(struct mbuf *, struct sadb_msghdr *); 751 static struct mbuf *key_setlifetime(struct seclifetime *, uint16_t); 752 static struct mbuf *key_setkey(struct seckey *, uint16_t); 753 static int xform_init(struct secasvar *, u_short); 754 755 static void spdcache_init(void); 756 static void spdcache_clear(void); 757 static struct spdcache_entry *spdcache_entry_alloc( 758 const struct secpolicyindex *spidx, 759 struct secpolicy *policy); 760 static void spdcache_entry_free(struct spdcache_entry *entry); 761 #ifdef VIMAGE 762 static void spdcache_destroy(void); 763 #endif 764 765 #define DBG_IPSEC_INITREF(t, p) do { \ 766 refcount_init(&(p)->refcnt, 1); \ 767 KEYDBG(KEY_STAMP, \ 768 printf("%s: Initialize refcnt %s(%p) = %u\n", \ 769 __func__, #t, (p), (p)->refcnt)); \ 770 } while (0) 771 #define DBG_IPSEC_ADDREF(t, p) do { \ 772 refcount_acquire(&(p)->refcnt); \ 773 KEYDBG(KEY_STAMP, \ 774 printf("%s: Acquire refcnt %s(%p) -> %u\n", \ 775 __func__, #t, (p), (p)->refcnt)); \ 776 } while (0) 777 #define DBG_IPSEC_DELREF(t, p) do { \ 778 KEYDBG(KEY_STAMP, \ 779 printf("%s: Release refcnt %s(%p) -> %u\n", \ 780 __func__, #t, (p), (p)->refcnt - 1)); \ 781 refcount_release(&(p)->refcnt); \ 782 } while (0) 783 784 #define IPSEC_INITREF(t, p) refcount_init(&(p)->refcnt, 1) 785 #define IPSEC_ADDREF(t, p) refcount_acquire(&(p)->refcnt) 786 #define IPSEC_DELREF(t, p) refcount_release(&(p)->refcnt) 787 788 #define SP_INITREF(p) IPSEC_INITREF(SP, p) 789 #define SP_ADDREF(p) IPSEC_ADDREF(SP, p) 790 #define SP_DELREF(p) IPSEC_DELREF(SP, p) 791 792 #define SAH_INITREF(p) IPSEC_INITREF(SAH, p) 793 #define SAH_ADDREF(p) IPSEC_ADDREF(SAH, p) 794 #define SAH_DELREF(p) IPSEC_DELREF(SAH, p) 795 796 #define SAV_INITREF(p) IPSEC_INITREF(SAV, p) 797 #define SAV_ADDREF(p) IPSEC_ADDREF(SAV, p) 798 #define SAV_DELREF(p) IPSEC_DELREF(SAV, p) 799 800 /* 801 * Update the refcnt while holding the SPTREE lock. 802 */ 803 void 804 key_addref(struct secpolicy *sp) 805 { 806 807 SP_ADDREF(sp); 808 } 809 810 /* 811 * Return 0 when there are known to be no SP's for the specified 812 * direction. Otherwise return 1. This is used by IPsec code 813 * to optimize performance. 814 */ 815 int 816 key_havesp(u_int dir) 817 { 818 819 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? 820 TAILQ_FIRST(&V_sptree[dir]) != NULL : 1); 821 } 822 823 /* %%% IPsec policy management */ 824 /* 825 * Return current SPDB generation. 826 */ 827 uint32_t 828 key_getspgen(void) 829 { 830 831 return (V_sp_genid); 832 } 833 834 void 835 key_bumpspgen(void) 836 { 837 838 V_sp_genid++; 839 } 840 841 static int 842 key_checksockaddrs(struct sockaddr *src, struct sockaddr *dst) 843 { 844 845 /* family match */ 846 if (src->sa_family != dst->sa_family) 847 return (EINVAL); 848 /* sa_len match */ 849 if (src->sa_len != dst->sa_len) 850 return (EINVAL); 851 switch (src->sa_family) { 852 #ifdef INET 853 case AF_INET: 854 if (src->sa_len != sizeof(struct sockaddr_in)) 855 return (EINVAL); 856 break; 857 #endif 858 #ifdef INET6 859 case AF_INET6: 860 if (src->sa_len != sizeof(struct sockaddr_in6)) 861 return (EINVAL); 862 break; 863 #endif 864 default: 865 return (EAFNOSUPPORT); 866 } 867 return (0); 868 } 869 870 struct secpolicy * 871 key_do_allocsp(struct secpolicyindex *spidx, u_int dir) 872 { 873 SPTREE_RLOCK_TRACKER; 874 struct secpolicy *sp; 875 876 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 877 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 878 ("invalid direction %u", dir)); 879 880 SPTREE_RLOCK(); 881 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 882 if (key_cmpspidx_withmask(&sp->spidx, spidx)) { 883 SP_ADDREF(sp); 884 break; 885 } 886 } 887 SPTREE_RUNLOCK(); 888 return (sp); 889 } 890 891 892 /* 893 * allocating a SP for OUTBOUND or INBOUND packet. 894 * Must call key_freesp() later. 895 * OUT: NULL: not found 896 * others: found and return the pointer. 897 */ 898 struct secpolicy * 899 key_allocsp(struct secpolicyindex *spidx, u_int dir) 900 { 901 struct spdcache_entry *entry, *lastentry, *tmpentry; 902 struct secpolicy *sp; 903 uint32_t hashv; 904 int nb_entries; 905 906 if (!SPDCACHE_ACTIVE()) { 907 sp = key_do_allocsp(spidx, dir); 908 goto out; 909 } 910 911 hashv = SPDCACHE_HASHVAL(spidx); 912 SPDCACHE_LOCK(hashv); 913 nb_entries = 0; 914 LIST_FOREACH_SAFE(entry, &V_spdcachehashtbl[hashv], chain, tmpentry) { 915 /* Removed outdated entries */ 916 if (entry->sp != NULL && 917 entry->sp->state == IPSEC_SPSTATE_DEAD) { 918 LIST_REMOVE(entry, chain); 919 spdcache_entry_free(entry); 920 continue; 921 } 922 923 nb_entries++; 924 if (!key_cmpspidx_exactly(&entry->spidx, spidx)) { 925 lastentry = entry; 926 continue; 927 } 928 929 sp = entry->sp; 930 if (entry->sp != NULL) 931 SP_ADDREF(sp); 932 933 /* IPSECSTAT_INC(ips_spdcache_hits); */ 934 935 SPDCACHE_UNLOCK(hashv); 936 goto out; 937 } 938 939 /* IPSECSTAT_INC(ips_spdcache_misses); */ 940 941 sp = key_do_allocsp(spidx, dir); 942 entry = spdcache_entry_alloc(spidx, sp); 943 if (entry != NULL) { 944 if (nb_entries >= SPDCACHE_MAX_ENTRIES_PER_HASH) { 945 LIST_REMOVE(lastentry, chain); 946 spdcache_entry_free(lastentry); 947 } 948 949 LIST_INSERT_HEAD(&V_spdcachehashtbl[hashv], entry, chain); 950 } 951 952 SPDCACHE_UNLOCK(hashv); 953 954 out: 955 if (sp != NULL) { /* found a SPD entry */ 956 sp->lastused = time_second; 957 KEYDBG(IPSEC_STAMP, 958 printf("%s: return SP(%p)\n", __func__, sp)); 959 KEYDBG(IPSEC_DATA, kdebug_secpolicy(sp)); 960 } else { 961 KEYDBG(IPSEC_DATA, 962 printf("%s: lookup failed for ", __func__); 963 kdebug_secpolicyindex(spidx, NULL)); 964 } 965 return (sp); 966 } 967 968 /* 969 * Allocating an SA entry for an *INBOUND* or *OUTBOUND* TCP packet, signed 970 * or should be signed by MD5 signature. 971 * We don't use key_allocsa() for such lookups, because we don't know SPI. 972 * Unlike ESP and AH protocols, SPI isn't transmitted in the TCP header with 973 * signed packet. We use SADB only as storage for password. 974 * OUT: positive: corresponding SA for given saidx found. 975 * NULL: SA not found 976 */ 977 struct secasvar * 978 key_allocsa_tcpmd5(struct secasindex *saidx) 979 { 980 SAHTREE_RLOCK_TRACKER; 981 struct secashead *sah; 982 struct secasvar *sav; 983 984 IPSEC_ASSERT(saidx->proto == IPPROTO_TCP, 985 ("unexpected security protocol %u", saidx->proto)); 986 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TCPMD5, 987 ("unexpected mode %u", saidx->mode)); 988 989 SAHTREE_RLOCK(); 990 LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) { 991 KEYDBG(IPSEC_DUMP, 992 printf("%s: checking SAH\n", __func__); 993 kdebug_secash(sah, " ")); 994 if (sah->saidx.proto != IPPROTO_TCP) 995 continue; 996 if (!key_sockaddrcmp(&saidx->dst.sa, &sah->saidx.dst.sa, 0) && 997 !key_sockaddrcmp(&saidx->src.sa, &sah->saidx.src.sa, 0)) 998 break; 999 } 1000 if (sah != NULL) { 1001 if (V_key_preferred_oldsa) 1002 sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue); 1003 else 1004 sav = TAILQ_FIRST(&sah->savtree_alive); 1005 if (sav != NULL) 1006 SAV_ADDREF(sav); 1007 } else 1008 sav = NULL; 1009 SAHTREE_RUNLOCK(); 1010 1011 if (sav != NULL) { 1012 KEYDBG(IPSEC_STAMP, 1013 printf("%s: return SA(%p)\n", __func__, sav)); 1014 KEYDBG(IPSEC_DATA, kdebug_secasv(sav)); 1015 } else { 1016 KEYDBG(IPSEC_STAMP, 1017 printf("%s: SA not found\n", __func__)); 1018 KEYDBG(IPSEC_DATA, kdebug_secasindex(saidx, NULL)); 1019 } 1020 return (sav); 1021 } 1022 1023 /* 1024 * Allocating an SA entry for an *OUTBOUND* packet. 1025 * OUT: positive: corresponding SA for given saidx found. 1026 * NULL: SA not found, but will be acquired, check *error 1027 * for acquiring status. 1028 */ 1029 struct secasvar * 1030 key_allocsa_policy(struct secpolicy *sp, const struct secasindex *saidx, 1031 int *error) 1032 { 1033 SAHTREE_RLOCK_TRACKER; 1034 struct secashead *sah; 1035 struct secasvar *sav; 1036 1037 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 1038 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT || 1039 saidx->mode == IPSEC_MODE_TUNNEL, 1040 ("unexpected policy %u", saidx->mode)); 1041 1042 /* 1043 * We check new SA in the IPsec request because a different 1044 * SA may be involved each time this request is checked, either 1045 * because new SAs are being configured, or this request is 1046 * associated with an unconnected datagram socket, or this request 1047 * is associated with a system default policy. 1048 */ 1049 SAHTREE_RLOCK(); 1050 LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) { 1051 KEYDBG(IPSEC_DUMP, 1052 printf("%s: checking SAH\n", __func__); 1053 kdebug_secash(sah, " ")); 1054 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) 1055 break; 1056 1057 } 1058 if (sah != NULL) { 1059 /* 1060 * Allocate the oldest SA available according to 1061 * draft-jenkins-ipsec-rekeying-03. 1062 */ 1063 if (V_key_preferred_oldsa) 1064 sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue); 1065 else 1066 sav = TAILQ_FIRST(&sah->savtree_alive); 1067 if (sav != NULL) 1068 SAV_ADDREF(sav); 1069 } else 1070 sav = NULL; 1071 SAHTREE_RUNLOCK(); 1072 1073 if (sav != NULL) { 1074 *error = 0; 1075 KEYDBG(IPSEC_STAMP, 1076 printf("%s: chosen SA(%p) for SP(%p)\n", __func__, 1077 sav, sp)); 1078 KEYDBG(IPSEC_DATA, kdebug_secasv(sav)); 1079 return (sav); /* return referenced SA */ 1080 } 1081 1082 /* there is no SA */ 1083 *error = key_acquire(saidx, sp); 1084 if ((*error) != 0) 1085 ipseclog((LOG_DEBUG, 1086 "%s: error %d returned from key_acquire()\n", 1087 __func__, *error)); 1088 KEYDBG(IPSEC_STAMP, 1089 printf("%s: acquire SA for SP(%p), error %d\n", 1090 __func__, sp, *error)); 1091 KEYDBG(IPSEC_DATA, kdebug_secasindex(saidx, NULL)); 1092 return (NULL); 1093 } 1094 1095 /* 1096 * allocating a usable SA entry for a *INBOUND* packet. 1097 * Must call key_freesav() later. 1098 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). 1099 * NULL: not found, or error occurred. 1100 * 1101 * According to RFC 2401 SA is uniquely identified by a triple SPI, 1102 * destination address, and security protocol. But according to RFC 4301, 1103 * SPI by itself suffices to specify an SA. 1104 * 1105 * Note that, however, we do need to keep source address in IPsec SA. 1106 * IKE specification and PF_KEY specification do assume that we 1107 * keep source address in IPsec SA. We see a tricky situation here. 1108 */ 1109 struct secasvar * 1110 key_allocsa(union sockaddr_union *dst, uint8_t proto, uint32_t spi) 1111 { 1112 SAHTREE_RLOCK_TRACKER; 1113 struct secasvar *sav; 1114 1115 IPSEC_ASSERT(proto == IPPROTO_ESP || proto == IPPROTO_AH || 1116 proto == IPPROTO_IPCOMP, ("unexpected security protocol %u", 1117 proto)); 1118 1119 SAHTREE_RLOCK(); 1120 LIST_FOREACH(sav, SAVHASH_HASH(spi), spihash) { 1121 if (sav->spi == spi) 1122 break; 1123 } 1124 /* 1125 * We use single SPI namespace for all protocols, so it is 1126 * impossible to have SPI duplicates in the SAVHASH. 1127 */ 1128 if (sav != NULL) { 1129 if (sav->state != SADB_SASTATE_LARVAL && 1130 sav->sah->saidx.proto == proto && 1131 key_sockaddrcmp(&dst->sa, 1132 &sav->sah->saidx.dst.sa, 0) == 0) 1133 SAV_ADDREF(sav); 1134 else 1135 sav = NULL; 1136 } 1137 SAHTREE_RUNLOCK(); 1138 1139 if (sav == NULL) { 1140 KEYDBG(IPSEC_STAMP, 1141 char buf[IPSEC_ADDRSTRLEN]; 1142 printf("%s: SA not found for spi %u proto %u dst %s\n", 1143 __func__, ntohl(spi), proto, ipsec_address(dst, buf, 1144 sizeof(buf)))); 1145 } else { 1146 KEYDBG(IPSEC_STAMP, 1147 printf("%s: return SA(%p)\n", __func__, sav)); 1148 KEYDBG(IPSEC_DATA, kdebug_secasv(sav)); 1149 } 1150 return (sav); 1151 } 1152 1153 struct secasvar * 1154 key_allocsa_tunnel(union sockaddr_union *src, union sockaddr_union *dst, 1155 uint8_t proto) 1156 { 1157 SAHTREE_RLOCK_TRACKER; 1158 struct secasindex saidx; 1159 struct secashead *sah; 1160 struct secasvar *sav; 1161 1162 IPSEC_ASSERT(src != NULL, ("null src address")); 1163 IPSEC_ASSERT(dst != NULL, ("null dst address")); 1164 1165 KEY_SETSECASIDX(proto, IPSEC_MODE_TUNNEL, 0, &src->sa, 1166 &dst->sa, &saidx); 1167 1168 sav = NULL; 1169 SAHTREE_RLOCK(); 1170 LIST_FOREACH(sah, SAHADDRHASH_HASH(&saidx), addrhash) { 1171 if (IPSEC_MODE_TUNNEL != sah->saidx.mode) 1172 continue; 1173 if (proto != sah->saidx.proto) 1174 continue; 1175 if (key_sockaddrcmp(&src->sa, &sah->saidx.src.sa, 0) != 0) 1176 continue; 1177 if (key_sockaddrcmp(&dst->sa, &sah->saidx.dst.sa, 0) != 0) 1178 continue; 1179 /* XXXAE: is key_preferred_oldsa reasonably?*/ 1180 if (V_key_preferred_oldsa) 1181 sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue); 1182 else 1183 sav = TAILQ_FIRST(&sah->savtree_alive); 1184 if (sav != NULL) { 1185 SAV_ADDREF(sav); 1186 break; 1187 } 1188 } 1189 SAHTREE_RUNLOCK(); 1190 KEYDBG(IPSEC_STAMP, 1191 printf("%s: return SA(%p)\n", __func__, sav)); 1192 if (sav != NULL) 1193 KEYDBG(IPSEC_DATA, kdebug_secasv(sav)); 1194 return (sav); 1195 } 1196 1197 /* 1198 * Must be called after calling key_allocsp(). 1199 */ 1200 void 1201 key_freesp(struct secpolicy **spp) 1202 { 1203 struct secpolicy *sp = *spp; 1204 1205 IPSEC_ASSERT(sp != NULL, ("null sp")); 1206 if (SP_DELREF(sp) == 0) 1207 return; 1208 1209 KEYDBG(IPSEC_STAMP, 1210 printf("%s: last reference to SP(%p)\n", __func__, sp)); 1211 KEYDBG(IPSEC_DATA, kdebug_secpolicy(sp)); 1212 1213 *spp = NULL; 1214 while (sp->tcount > 0) 1215 ipsec_delisr(sp->req[--sp->tcount]); 1216 free(sp, M_IPSEC_SP); 1217 } 1218 1219 static void 1220 key_unlink(struct secpolicy *sp) 1221 { 1222 1223 IPSEC_ASSERT(sp->spidx.dir == IPSEC_DIR_INBOUND || 1224 sp->spidx.dir == IPSEC_DIR_OUTBOUND, 1225 ("invalid direction %u", sp->spidx.dir)); 1226 SPTREE_UNLOCK_ASSERT(); 1227 1228 KEYDBG(KEY_STAMP, 1229 printf("%s: SP(%p)\n", __func__, sp)); 1230 SPTREE_WLOCK(); 1231 if (sp->state != IPSEC_SPSTATE_ALIVE) { 1232 /* SP is already unlinked */ 1233 SPTREE_WUNLOCK(); 1234 return; 1235 } 1236 sp->state = IPSEC_SPSTATE_DEAD; 1237 TAILQ_REMOVE(&V_sptree[sp->spidx.dir], sp, chain); 1238 V_spd_size--; 1239 LIST_REMOVE(sp, idhash); 1240 V_sp_genid++; 1241 SPTREE_WUNLOCK(); 1242 if (SPDCACHE_ENABLED()) 1243 spdcache_clear(); 1244 key_freesp(&sp); 1245 } 1246 1247 /* 1248 * insert a secpolicy into the SP database. Lower priorities first 1249 */ 1250 static void 1251 key_insertsp(struct secpolicy *newsp) 1252 { 1253 struct secpolicy *sp; 1254 1255 SPTREE_WLOCK_ASSERT(); 1256 TAILQ_FOREACH(sp, &V_sptree[newsp->spidx.dir], chain) { 1257 if (newsp->priority < sp->priority) { 1258 TAILQ_INSERT_BEFORE(sp, newsp, chain); 1259 goto done; 1260 } 1261 } 1262 TAILQ_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, chain); 1263 done: 1264 LIST_INSERT_HEAD(SPHASH_HASH(newsp->id), newsp, idhash); 1265 newsp->state = IPSEC_SPSTATE_ALIVE; 1266 V_spd_size++; 1267 V_sp_genid++; 1268 } 1269 1270 /* 1271 * Insert a bunch of VTI secpolicies into the SPDB. 1272 * We keep VTI policies in the separate list due to following reasons: 1273 * 1) they should be immutable to user's or some deamon's attempts to 1274 * delete. The only way delete such policies - destroy or unconfigure 1275 * corresponding virtual inteface. 1276 * 2) such policies have traffic selector that matches all traffic per 1277 * address family. 1278 * Since all VTI policies have the same priority, we don't care about 1279 * policies order. 1280 */ 1281 int 1282 key_register_ifnet(struct secpolicy **spp, u_int count) 1283 { 1284 struct mbuf *m; 1285 u_int i; 1286 1287 SPTREE_WLOCK(); 1288 /* 1289 * First of try to acquire id for each SP. 1290 */ 1291 for (i = 0; i < count; i++) { 1292 IPSEC_ASSERT(spp[i]->spidx.dir == IPSEC_DIR_INBOUND || 1293 spp[i]->spidx.dir == IPSEC_DIR_OUTBOUND, 1294 ("invalid direction %u", spp[i]->spidx.dir)); 1295 1296 if ((spp[i]->id = key_getnewspid()) == 0) { 1297 SPTREE_WUNLOCK(); 1298 return (EAGAIN); 1299 } 1300 } 1301 for (i = 0; i < count; i++) { 1302 TAILQ_INSERT_TAIL(&V_sptree_ifnet[spp[i]->spidx.dir], 1303 spp[i], chain); 1304 /* 1305 * NOTE: despite the fact that we keep VTI SP in the 1306 * separate list, SPHASH contains policies from both 1307 * sources. Thus SADB_X_SPDGET will correctly return 1308 * SP by id, because it uses SPHASH for lookups. 1309 */ 1310 LIST_INSERT_HEAD(SPHASH_HASH(spp[i]->id), spp[i], idhash); 1311 spp[i]->state = IPSEC_SPSTATE_IFNET; 1312 } 1313 SPTREE_WUNLOCK(); 1314 /* 1315 * Notify user processes about new SP. 1316 */ 1317 for (i = 0; i < count; i++) { 1318 m = key_setdumpsp(spp[i], SADB_X_SPDADD, 0, 0); 1319 if (m != NULL) 1320 key_sendup_mbuf(NULL, m, KEY_SENDUP_ALL); 1321 } 1322 return (0); 1323 } 1324 1325 void 1326 key_unregister_ifnet(struct secpolicy **spp, u_int count) 1327 { 1328 struct mbuf *m; 1329 u_int i; 1330 1331 SPTREE_WLOCK(); 1332 for (i = 0; i < count; i++) { 1333 IPSEC_ASSERT(spp[i]->spidx.dir == IPSEC_DIR_INBOUND || 1334 spp[i]->spidx.dir == IPSEC_DIR_OUTBOUND, 1335 ("invalid direction %u", spp[i]->spidx.dir)); 1336 1337 if (spp[i]->state != IPSEC_SPSTATE_IFNET) 1338 continue; 1339 spp[i]->state = IPSEC_SPSTATE_DEAD; 1340 TAILQ_REMOVE(&V_sptree_ifnet[spp[i]->spidx.dir], 1341 spp[i], chain); 1342 V_spd_size--; 1343 LIST_REMOVE(spp[i], idhash); 1344 } 1345 SPTREE_WUNLOCK(); 1346 if (SPDCACHE_ENABLED()) 1347 spdcache_clear(); 1348 1349 for (i = 0; i < count; i++) { 1350 m = key_setdumpsp(spp[i], SADB_X_SPDDELETE, 0, 0); 1351 if (m != NULL) 1352 key_sendup_mbuf(NULL, m, KEY_SENDUP_ALL); 1353 } 1354 } 1355 1356 /* 1357 * Must be called after calling key_allocsa(). 1358 * This function is called by key_freesp() to free some SA allocated 1359 * for a policy. 1360 */ 1361 void 1362 key_freesav(struct secasvar **psav) 1363 { 1364 struct secasvar *sav = *psav; 1365 1366 IPSEC_ASSERT(sav != NULL, ("null sav")); 1367 if (SAV_DELREF(sav) == 0) 1368 return; 1369 1370 KEYDBG(IPSEC_STAMP, 1371 printf("%s: last reference to SA(%p)\n", __func__, sav)); 1372 1373 *psav = NULL; 1374 key_delsav(sav); 1375 } 1376 1377 /* 1378 * Unlink SA from SAH and SPI hash under SAHTREE_WLOCK. 1379 * Expect that SA has extra reference due to lookup. 1380 * Release this references, also release SAH reference after unlink. 1381 */ 1382 static void 1383 key_unlinksav(struct secasvar *sav) 1384 { 1385 struct secashead *sah; 1386 1387 KEYDBG(KEY_STAMP, 1388 printf("%s: SA(%p)\n", __func__, sav)); 1389 1390 SAHTREE_UNLOCK_ASSERT(); 1391 SAHTREE_WLOCK(); 1392 if (sav->state == SADB_SASTATE_DEAD) { 1393 /* SA is already unlinked */ 1394 SAHTREE_WUNLOCK(); 1395 return; 1396 } 1397 /* Unlink from SAH */ 1398 if (sav->state == SADB_SASTATE_LARVAL) 1399 TAILQ_REMOVE(&sav->sah->savtree_larval, sav, chain); 1400 else 1401 TAILQ_REMOVE(&sav->sah->savtree_alive, sav, chain); 1402 /* Unlink from SPI hash */ 1403 LIST_REMOVE(sav, spihash); 1404 sav->state = SADB_SASTATE_DEAD; 1405 sah = sav->sah; 1406 SAHTREE_WUNLOCK(); 1407 key_freesav(&sav); 1408 /* Since we are unlinked, release reference to SAH */ 1409 key_freesah(&sah); 1410 } 1411 1412 /* %%% SPD management */ 1413 /* 1414 * search SPD 1415 * OUT: NULL : not found 1416 * others : found, pointer to a SP. 1417 */ 1418 static struct secpolicy * 1419 key_getsp(struct secpolicyindex *spidx) 1420 { 1421 SPTREE_RLOCK_TRACKER; 1422 struct secpolicy *sp; 1423 1424 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 1425 1426 SPTREE_RLOCK(); 1427 TAILQ_FOREACH(sp, &V_sptree[spidx->dir], chain) { 1428 if (key_cmpspidx_exactly(spidx, &sp->spidx)) { 1429 SP_ADDREF(sp); 1430 break; 1431 } 1432 } 1433 SPTREE_RUNLOCK(); 1434 1435 return sp; 1436 } 1437 1438 /* 1439 * get SP by index. 1440 * OUT: NULL : not found 1441 * others : found, pointer to referenced SP. 1442 */ 1443 static struct secpolicy * 1444 key_getspbyid(uint32_t id) 1445 { 1446 SPTREE_RLOCK_TRACKER; 1447 struct secpolicy *sp; 1448 1449 SPTREE_RLOCK(); 1450 LIST_FOREACH(sp, SPHASH_HASH(id), idhash) { 1451 if (sp->id == id) { 1452 SP_ADDREF(sp); 1453 break; 1454 } 1455 } 1456 SPTREE_RUNLOCK(); 1457 return (sp); 1458 } 1459 1460 struct secpolicy * 1461 key_newsp(void) 1462 { 1463 struct secpolicy *sp; 1464 1465 sp = malloc(sizeof(*sp), M_IPSEC_SP, M_NOWAIT | M_ZERO); 1466 if (sp != NULL) 1467 SP_INITREF(sp); 1468 return (sp); 1469 } 1470 1471 struct ipsecrequest * 1472 ipsec_newisr(void) 1473 { 1474 1475 return (malloc(sizeof(struct ipsecrequest), M_IPSEC_SR, 1476 M_NOWAIT | M_ZERO)); 1477 } 1478 1479 void 1480 ipsec_delisr(struct ipsecrequest *p) 1481 { 1482 1483 free(p, M_IPSEC_SR); 1484 } 1485 1486 /* 1487 * create secpolicy structure from sadb_x_policy structure. 1488 * NOTE: `state', `secpolicyindex' and 'id' in secpolicy structure 1489 * are not set, so must be set properly later. 1490 */ 1491 struct secpolicy * 1492 key_msg2sp(struct sadb_x_policy *xpl0, size_t len, int *error) 1493 { 1494 struct secpolicy *newsp; 1495 1496 IPSEC_ASSERT(xpl0 != NULL, ("null xpl0")); 1497 IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len)); 1498 1499 if (len != PFKEY_EXTLEN(xpl0)) { 1500 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__)); 1501 *error = EINVAL; 1502 return NULL; 1503 } 1504 1505 if ((newsp = key_newsp()) == NULL) { 1506 *error = ENOBUFS; 1507 return NULL; 1508 } 1509 1510 newsp->spidx.dir = xpl0->sadb_x_policy_dir; 1511 newsp->policy = xpl0->sadb_x_policy_type; 1512 newsp->priority = xpl0->sadb_x_policy_priority; 1513 newsp->tcount = 0; 1514 1515 /* check policy */ 1516 switch (xpl0->sadb_x_policy_type) { 1517 case IPSEC_POLICY_DISCARD: 1518 case IPSEC_POLICY_NONE: 1519 case IPSEC_POLICY_ENTRUST: 1520 case IPSEC_POLICY_BYPASS: 1521 break; 1522 1523 case IPSEC_POLICY_IPSEC: 1524 { 1525 struct sadb_x_ipsecrequest *xisr; 1526 struct ipsecrequest *isr; 1527 int tlen; 1528 1529 /* validity check */ 1530 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { 1531 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", 1532 __func__)); 1533 key_freesp(&newsp); 1534 *error = EINVAL; 1535 return NULL; 1536 } 1537 1538 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); 1539 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1); 1540 1541 while (tlen > 0) { 1542 /* length check */ 1543 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr) || 1544 xisr->sadb_x_ipsecrequest_len > tlen) { 1545 ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest " 1546 "length.\n", __func__)); 1547 key_freesp(&newsp); 1548 *error = EINVAL; 1549 return NULL; 1550 } 1551 1552 if (newsp->tcount >= IPSEC_MAXREQ) { 1553 ipseclog((LOG_DEBUG, 1554 "%s: too many ipsecrequests.\n", 1555 __func__)); 1556 key_freesp(&newsp); 1557 *error = EINVAL; 1558 return (NULL); 1559 } 1560 1561 /* allocate request buffer */ 1562 /* NB: data structure is zero'd */ 1563 isr = ipsec_newisr(); 1564 if (isr == NULL) { 1565 ipseclog((LOG_DEBUG, 1566 "%s: No more memory.\n", __func__)); 1567 key_freesp(&newsp); 1568 *error = ENOBUFS; 1569 return NULL; 1570 } 1571 1572 newsp->req[newsp->tcount++] = isr; 1573 1574 /* set values */ 1575 switch (xisr->sadb_x_ipsecrequest_proto) { 1576 case IPPROTO_ESP: 1577 case IPPROTO_AH: 1578 case IPPROTO_IPCOMP: 1579 break; 1580 default: 1581 ipseclog((LOG_DEBUG, 1582 "%s: invalid proto type=%u\n", __func__, 1583 xisr->sadb_x_ipsecrequest_proto)); 1584 key_freesp(&newsp); 1585 *error = EPROTONOSUPPORT; 1586 return NULL; 1587 } 1588 isr->saidx.proto = 1589 (uint8_t)xisr->sadb_x_ipsecrequest_proto; 1590 1591 switch (xisr->sadb_x_ipsecrequest_mode) { 1592 case IPSEC_MODE_TRANSPORT: 1593 case IPSEC_MODE_TUNNEL: 1594 break; 1595 case IPSEC_MODE_ANY: 1596 default: 1597 ipseclog((LOG_DEBUG, 1598 "%s: invalid mode=%u\n", __func__, 1599 xisr->sadb_x_ipsecrequest_mode)); 1600 key_freesp(&newsp); 1601 *error = EINVAL; 1602 return NULL; 1603 } 1604 isr->saidx.mode = xisr->sadb_x_ipsecrequest_mode; 1605 1606 switch (xisr->sadb_x_ipsecrequest_level) { 1607 case IPSEC_LEVEL_DEFAULT: 1608 case IPSEC_LEVEL_USE: 1609 case IPSEC_LEVEL_REQUIRE: 1610 break; 1611 case IPSEC_LEVEL_UNIQUE: 1612 /* validity check */ 1613 /* 1614 * If range violation of reqid, kernel will 1615 * update it, don't refuse it. 1616 */ 1617 if (xisr->sadb_x_ipsecrequest_reqid 1618 > IPSEC_MANUAL_REQID_MAX) { 1619 ipseclog((LOG_DEBUG, 1620 "%s: reqid=%d range " 1621 "violation, updated by kernel.\n", 1622 __func__, 1623 xisr->sadb_x_ipsecrequest_reqid)); 1624 xisr->sadb_x_ipsecrequest_reqid = 0; 1625 } 1626 1627 /* allocate new reqid id if reqid is zero. */ 1628 if (xisr->sadb_x_ipsecrequest_reqid == 0) { 1629 u_int32_t reqid; 1630 if ((reqid = key_newreqid()) == 0) { 1631 key_freesp(&newsp); 1632 *error = ENOBUFS; 1633 return NULL; 1634 } 1635 isr->saidx.reqid = reqid; 1636 xisr->sadb_x_ipsecrequest_reqid = reqid; 1637 } else { 1638 /* set it for manual keying. */ 1639 isr->saidx.reqid = 1640 xisr->sadb_x_ipsecrequest_reqid; 1641 } 1642 break; 1643 1644 default: 1645 ipseclog((LOG_DEBUG, "%s: invalid level=%u\n", 1646 __func__, 1647 xisr->sadb_x_ipsecrequest_level)); 1648 key_freesp(&newsp); 1649 *error = EINVAL; 1650 return NULL; 1651 } 1652 isr->level = xisr->sadb_x_ipsecrequest_level; 1653 1654 /* set IP addresses if there */ 1655 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { 1656 struct sockaddr *paddr; 1657 1658 len = tlen - sizeof(*xisr); 1659 paddr = (struct sockaddr *)(xisr + 1); 1660 /* validity check */ 1661 if (len < sizeof(struct sockaddr) || 1662 len < 2 * paddr->sa_len || 1663 paddr->sa_len > sizeof(isr->saidx.src)) { 1664 ipseclog((LOG_DEBUG, "%s: invalid " 1665 "request address length.\n", 1666 __func__)); 1667 key_freesp(&newsp); 1668 *error = EINVAL; 1669 return NULL; 1670 } 1671 /* 1672 * Request length should be enough to keep 1673 * source and destination addresses. 1674 */ 1675 if (xisr->sadb_x_ipsecrequest_len < 1676 sizeof(*xisr) + 2 * paddr->sa_len) { 1677 ipseclog((LOG_DEBUG, "%s: invalid " 1678 "ipsecrequest length.\n", 1679 __func__)); 1680 key_freesp(&newsp); 1681 *error = EINVAL; 1682 return (NULL); 1683 } 1684 bcopy(paddr, &isr->saidx.src, paddr->sa_len); 1685 paddr = (struct sockaddr *)((caddr_t)paddr + 1686 paddr->sa_len); 1687 1688 /* validity check */ 1689 if (paddr->sa_len != 1690 isr->saidx.src.sa.sa_len) { 1691 ipseclog((LOG_DEBUG, "%s: invalid " 1692 "request address length.\n", 1693 __func__)); 1694 key_freesp(&newsp); 1695 *error = EINVAL; 1696 return NULL; 1697 } 1698 /* AF family should match */ 1699 if (paddr->sa_family != 1700 isr->saidx.src.sa.sa_family) { 1701 ipseclog((LOG_DEBUG, "%s: address " 1702 "family doesn't match.\n", 1703 __func__)); 1704 key_freesp(&newsp); 1705 *error = EINVAL; 1706 return (NULL); 1707 } 1708 bcopy(paddr, &isr->saidx.dst, paddr->sa_len); 1709 } else { 1710 /* 1711 * Addresses for TUNNEL mode requests are 1712 * mandatory. 1713 */ 1714 if (isr->saidx.mode == IPSEC_MODE_TUNNEL) { 1715 ipseclog((LOG_DEBUG, "%s: missing " 1716 "request addresses.\n", __func__)); 1717 key_freesp(&newsp); 1718 *error = EINVAL; 1719 return (NULL); 1720 } 1721 } 1722 tlen -= xisr->sadb_x_ipsecrequest_len; 1723 1724 /* validity check */ 1725 if (tlen < 0) { 1726 ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n", 1727 __func__)); 1728 key_freesp(&newsp); 1729 *error = EINVAL; 1730 return NULL; 1731 } 1732 1733 xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr 1734 + xisr->sadb_x_ipsecrequest_len); 1735 } 1736 /* XXXAE: LARVAL SP */ 1737 if (newsp->tcount < 1) { 1738 ipseclog((LOG_DEBUG, "%s: valid IPSEC transforms " 1739 "not found.\n", __func__)); 1740 key_freesp(&newsp); 1741 *error = EINVAL; 1742 return (NULL); 1743 } 1744 } 1745 break; 1746 default: 1747 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); 1748 key_freesp(&newsp); 1749 *error = EINVAL; 1750 return NULL; 1751 } 1752 1753 *error = 0; 1754 return (newsp); 1755 } 1756 1757 uint32_t 1758 key_newreqid(void) 1759 { 1760 static uint32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 1761 1762 if (auto_reqid == ~0) 1763 auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 1764 else 1765 auto_reqid++; 1766 1767 /* XXX should be unique check */ 1768 return (auto_reqid); 1769 } 1770 1771 /* 1772 * copy secpolicy struct to sadb_x_policy structure indicated. 1773 */ 1774 static struct mbuf * 1775 key_sp2mbuf(struct secpolicy *sp) 1776 { 1777 struct mbuf *m; 1778 size_t tlen; 1779 1780 tlen = key_getspreqmsglen(sp); 1781 m = m_get2(tlen, M_NOWAIT, MT_DATA, 0); 1782 if (m == NULL) 1783 return (NULL); 1784 m_align(m, tlen); 1785 m->m_len = tlen; 1786 if (key_sp2msg(sp, m->m_data, &tlen) != 0) { 1787 m_freem(m); 1788 return (NULL); 1789 } 1790 return (m); 1791 } 1792 1793 int 1794 key_sp2msg(struct secpolicy *sp, void *request, size_t *len) 1795 { 1796 struct sadb_x_ipsecrequest *xisr; 1797 struct sadb_x_policy *xpl; 1798 struct ipsecrequest *isr; 1799 size_t xlen, ilen; 1800 caddr_t p; 1801 int error, i; 1802 1803 IPSEC_ASSERT(sp != NULL, ("null policy")); 1804 1805 xlen = sizeof(*xpl); 1806 if (*len < xlen) 1807 return (EINVAL); 1808 1809 error = 0; 1810 bzero(request, *len); 1811 xpl = (struct sadb_x_policy *)request; 1812 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 1813 xpl->sadb_x_policy_type = sp->policy; 1814 xpl->sadb_x_policy_dir = sp->spidx.dir; 1815 xpl->sadb_x_policy_id = sp->id; 1816 xpl->sadb_x_policy_priority = sp->priority; 1817 switch (sp->state) { 1818 case IPSEC_SPSTATE_IFNET: 1819 xpl->sadb_x_policy_scope = IPSEC_POLICYSCOPE_IFNET; 1820 break; 1821 case IPSEC_SPSTATE_PCB: 1822 xpl->sadb_x_policy_scope = IPSEC_POLICYSCOPE_PCB; 1823 break; 1824 default: 1825 xpl->sadb_x_policy_scope = IPSEC_POLICYSCOPE_GLOBAL; 1826 } 1827 1828 /* if is the policy for ipsec ? */ 1829 if (sp->policy == IPSEC_POLICY_IPSEC) { 1830 p = (caddr_t)xpl + sizeof(*xpl); 1831 for (i = 0; i < sp->tcount; i++) { 1832 isr = sp->req[i]; 1833 ilen = PFKEY_ALIGN8(sizeof(*xisr) + 1834 isr->saidx.src.sa.sa_len + 1835 isr->saidx.dst.sa.sa_len); 1836 xlen += ilen; 1837 if (xlen > *len) { 1838 error = ENOBUFS; 1839 /* Calculate needed size */ 1840 continue; 1841 } 1842 xisr = (struct sadb_x_ipsecrequest *)p; 1843 xisr->sadb_x_ipsecrequest_len = ilen; 1844 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; 1845 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; 1846 xisr->sadb_x_ipsecrequest_level = isr->level; 1847 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; 1848 1849 p += sizeof(*xisr); 1850 bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len); 1851 p += isr->saidx.src.sa.sa_len; 1852 bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len); 1853 p += isr->saidx.dst.sa.sa_len; 1854 } 1855 } 1856 xpl->sadb_x_policy_len = PFKEY_UNIT64(xlen); 1857 if (error == 0) 1858 *len = xlen; 1859 else 1860 *len = sizeof(*xpl); 1861 return (error); 1862 } 1863 1864 /* m will not be freed nor modified */ 1865 static struct mbuf * 1866 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, 1867 int ndeep, int nitem, ...) 1868 { 1869 va_list ap; 1870 int idx; 1871 int i; 1872 struct mbuf *result = NULL, *n; 1873 int len; 1874 1875 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1876 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1877 1878 va_start(ap, nitem); 1879 for (i = 0; i < nitem; i++) { 1880 idx = va_arg(ap, int); 1881 if (idx < 0 || idx > SADB_EXT_MAX) 1882 goto fail; 1883 /* don't attempt to pull empty extension */ 1884 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) 1885 continue; 1886 if (idx != SADB_EXT_RESERVED && 1887 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) 1888 continue; 1889 1890 if (idx == SADB_EXT_RESERVED) { 1891 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 1892 1893 IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len)); 1894 1895 MGETHDR(n, M_NOWAIT, MT_DATA); 1896 if (!n) 1897 goto fail; 1898 n->m_len = len; 1899 n->m_next = NULL; 1900 m_copydata(m, 0, sizeof(struct sadb_msg), 1901 mtod(n, caddr_t)); 1902 } else if (i < ndeep) { 1903 len = mhp->extlen[idx]; 1904 n = m_get2(len, M_NOWAIT, MT_DATA, 0); 1905 if (n == NULL) 1906 goto fail; 1907 m_align(n, len); 1908 n->m_len = len; 1909 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], 1910 mtod(n, caddr_t)); 1911 } else { 1912 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], 1913 M_NOWAIT); 1914 } 1915 if (n == NULL) 1916 goto fail; 1917 1918 if (result) 1919 m_cat(result, n); 1920 else 1921 result = n; 1922 } 1923 va_end(ap); 1924 1925 if ((result->m_flags & M_PKTHDR) != 0) { 1926 result->m_pkthdr.len = 0; 1927 for (n = result; n; n = n->m_next) 1928 result->m_pkthdr.len += n->m_len; 1929 } 1930 1931 return result; 1932 1933 fail: 1934 m_freem(result); 1935 va_end(ap); 1936 return NULL; 1937 } 1938 1939 /* 1940 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing 1941 * add an entry to SP database, when received 1942 * <base, address(SD), (lifetime(H),) policy> 1943 * from the user(?). 1944 * Adding to SP database, 1945 * and send 1946 * <base, address(SD), (lifetime(H),) policy> 1947 * to the socket which was send. 1948 * 1949 * SPDADD set a unique policy entry. 1950 * SPDSETIDX like SPDADD without a part of policy requests. 1951 * SPDUPDATE replace a unique policy entry. 1952 * 1953 * XXXAE: serialize this in PF_KEY to avoid races. 1954 * m will always be freed. 1955 */ 1956 static int 1957 key_spdadd(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 1958 { 1959 struct secpolicyindex spidx; 1960 struct sadb_address *src0, *dst0; 1961 struct sadb_x_policy *xpl0, *xpl; 1962 struct sadb_lifetime *lft = NULL; 1963 struct secpolicy *newsp; 1964 int error; 1965 1966 IPSEC_ASSERT(so != NULL, ("null socket")); 1967 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1968 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1969 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 1970 1971 if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || 1972 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) || 1973 SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY)) { 1974 ipseclog((LOG_DEBUG, 1975 "%s: invalid message: missing required header.\n", 1976 __func__)); 1977 return key_senderror(so, m, EINVAL); 1978 } 1979 if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || 1980 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST) || 1981 SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) { 1982 ipseclog((LOG_DEBUG, 1983 "%s: invalid message: wrong header size.\n", __func__)); 1984 return key_senderror(so, m, EINVAL); 1985 } 1986 if (!SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD)) { 1987 if (SADB_CHECKLEN(mhp, SADB_EXT_LIFETIME_HARD)) { 1988 ipseclog((LOG_DEBUG, 1989 "%s: invalid message: wrong header size.\n", 1990 __func__)); 1991 return key_senderror(so, m, EINVAL); 1992 } 1993 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 1994 } 1995 1996 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 1997 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 1998 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 1999 2000 /* check the direciton */ 2001 switch (xpl0->sadb_x_policy_dir) { 2002 case IPSEC_DIR_INBOUND: 2003 case IPSEC_DIR_OUTBOUND: 2004 break; 2005 default: 2006 ipseclog((LOG_DEBUG, "%s: invalid SP direction.\n", __func__)); 2007 return key_senderror(so, m, EINVAL); 2008 } 2009 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */ 2010 if (xpl0->sadb_x_policy_type != IPSEC_POLICY_DISCARD && 2011 xpl0->sadb_x_policy_type != IPSEC_POLICY_NONE && 2012 xpl0->sadb_x_policy_type != IPSEC_POLICY_IPSEC) { 2013 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); 2014 return key_senderror(so, m, EINVAL); 2015 } 2016 2017 /* policy requests are mandatory when action is ipsec. */ 2018 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC && 2019 mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { 2020 ipseclog((LOG_DEBUG, 2021 "%s: policy requests required.\n", __func__)); 2022 return key_senderror(so, m, EINVAL); 2023 } 2024 2025 error = key_checksockaddrs((struct sockaddr *)(src0 + 1), 2026 (struct sockaddr *)(dst0 + 1)); 2027 if (error != 0 || 2028 src0->sadb_address_proto != dst0->sadb_address_proto) { 2029 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); 2030 return key_senderror(so, m, error); 2031 } 2032 /* make secindex */ 2033 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 2034 src0 + 1, 2035 dst0 + 1, 2036 src0->sadb_address_prefixlen, 2037 dst0->sadb_address_prefixlen, 2038 src0->sadb_address_proto, 2039 &spidx); 2040 /* Checking there is SP already or not. */ 2041 newsp = key_getsp(&spidx); 2042 if (newsp != NULL) { 2043 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 2044 KEYDBG(KEY_STAMP, 2045 printf("%s: unlink SP(%p) for SPDUPDATE\n", 2046 __func__, newsp)); 2047 KEYDBG(KEY_DATA, kdebug_secpolicy(newsp)); 2048 key_unlink(newsp); 2049 key_freesp(&newsp); 2050 } else { 2051 key_freesp(&newsp); 2052 ipseclog((LOG_DEBUG, "%s: a SP entry exists already.", 2053 __func__)); 2054 return (key_senderror(so, m, EEXIST)); 2055 } 2056 } 2057 2058 /* allocate new SP entry */ 2059 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) { 2060 return key_senderror(so, m, error); 2061 } 2062 2063 newsp->lastused = newsp->created = time_second; 2064 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; 2065 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; 2066 bcopy(&spidx, &newsp->spidx, sizeof(spidx)); 2067 2068 /* XXXAE: there is race between key_getsp() and key_insertsp() */ 2069 SPTREE_WLOCK(); 2070 if ((newsp->id = key_getnewspid()) == 0) { 2071 SPTREE_WUNLOCK(); 2072 key_freesp(&newsp); 2073 return key_senderror(so, m, ENOBUFS); 2074 } 2075 key_insertsp(newsp); 2076 SPTREE_WUNLOCK(); 2077 if (SPDCACHE_ENABLED()) 2078 spdcache_clear(); 2079 2080 KEYDBG(KEY_STAMP, 2081 printf("%s: SP(%p)\n", __func__, newsp)); 2082 KEYDBG(KEY_DATA, kdebug_secpolicy(newsp)); 2083 2084 { 2085 struct mbuf *n, *mpolicy; 2086 struct sadb_msg *newmsg; 2087 int off; 2088 2089 /* create new sadb_msg to reply. */ 2090 if (lft) { 2091 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, 2092 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, 2093 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2094 } else { 2095 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, 2096 SADB_X_EXT_POLICY, 2097 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2098 } 2099 if (!n) 2100 return key_senderror(so, m, ENOBUFS); 2101 2102 if (n->m_len < sizeof(*newmsg)) { 2103 n = m_pullup(n, sizeof(*newmsg)); 2104 if (!n) 2105 return key_senderror(so, m, ENOBUFS); 2106 } 2107 newmsg = mtod(n, struct sadb_msg *); 2108 newmsg->sadb_msg_errno = 0; 2109 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2110 2111 off = 0; 2112 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), 2113 sizeof(*xpl), &off); 2114 if (mpolicy == NULL) { 2115 /* n is already freed */ 2116 return key_senderror(so, m, ENOBUFS); 2117 } 2118 xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off); 2119 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { 2120 m_freem(n); 2121 return key_senderror(so, m, EINVAL); 2122 } 2123 xpl->sadb_x_policy_id = newsp->id; 2124 2125 m_freem(m); 2126 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2127 } 2128 } 2129 2130 /* 2131 * get new policy id. 2132 * OUT: 2133 * 0: failure. 2134 * others: success. 2135 */ 2136 static uint32_t 2137 key_getnewspid(void) 2138 { 2139 struct secpolicy *sp; 2140 uint32_t newid = 0; 2141 int count = V_key_spi_trycnt; /* XXX */ 2142 2143 SPTREE_WLOCK_ASSERT(); 2144 while (count--) { 2145 if (V_policy_id == ~0) /* overflowed */ 2146 newid = V_policy_id = 1; 2147 else 2148 newid = ++V_policy_id; 2149 LIST_FOREACH(sp, SPHASH_HASH(newid), idhash) { 2150 if (sp->id == newid) 2151 break; 2152 } 2153 if (sp == NULL) 2154 break; 2155 } 2156 if (count == 0 || newid == 0) { 2157 ipseclog((LOG_DEBUG, "%s: failed to allocate policy id.\n", 2158 __func__)); 2159 return (0); 2160 } 2161 return (newid); 2162 } 2163 2164 /* 2165 * SADB_SPDDELETE processing 2166 * receive 2167 * <base, address(SD), policy(*)> 2168 * from the user(?), and set SADB_SASTATE_DEAD, 2169 * and send, 2170 * <base, address(SD), policy(*)> 2171 * to the ikmpd. 2172 * policy(*) including direction of policy. 2173 * 2174 * m will always be freed. 2175 */ 2176 static int 2177 key_spddelete(struct socket *so, struct mbuf *m, 2178 const struct sadb_msghdr *mhp) 2179 { 2180 struct secpolicyindex spidx; 2181 struct sadb_address *src0, *dst0; 2182 struct sadb_x_policy *xpl0; 2183 struct secpolicy *sp; 2184 2185 IPSEC_ASSERT(so != NULL, ("null so")); 2186 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2187 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2188 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2189 2190 if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || 2191 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) || 2192 SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY)) { 2193 ipseclog((LOG_DEBUG, 2194 "%s: invalid message: missing required header.\n", 2195 __func__)); 2196 return key_senderror(so, m, EINVAL); 2197 } 2198 if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || 2199 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST) || 2200 SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) { 2201 ipseclog((LOG_DEBUG, 2202 "%s: invalid message: wrong header size.\n", __func__)); 2203 return key_senderror(so, m, EINVAL); 2204 } 2205 2206 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 2207 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 2208 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 2209 2210 /* check the direciton */ 2211 switch (xpl0->sadb_x_policy_dir) { 2212 case IPSEC_DIR_INBOUND: 2213 case IPSEC_DIR_OUTBOUND: 2214 break; 2215 default: 2216 ipseclog((LOG_DEBUG, "%s: invalid SP direction.\n", __func__)); 2217 return key_senderror(so, m, EINVAL); 2218 } 2219 /* Only DISCARD, NONE and IPSEC are allowed */ 2220 if (xpl0->sadb_x_policy_type != IPSEC_POLICY_DISCARD && 2221 xpl0->sadb_x_policy_type != IPSEC_POLICY_NONE && 2222 xpl0->sadb_x_policy_type != IPSEC_POLICY_IPSEC) { 2223 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); 2224 return key_senderror(so, m, EINVAL); 2225 } 2226 if (key_checksockaddrs((struct sockaddr *)(src0 + 1), 2227 (struct sockaddr *)(dst0 + 1)) != 0 || 2228 src0->sadb_address_proto != dst0->sadb_address_proto) { 2229 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); 2230 return key_senderror(so, m, EINVAL); 2231 } 2232 /* make secindex */ 2233 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 2234 src0 + 1, 2235 dst0 + 1, 2236 src0->sadb_address_prefixlen, 2237 dst0->sadb_address_prefixlen, 2238 src0->sadb_address_proto, 2239 &spidx); 2240 2241 /* Is there SP in SPD ? */ 2242 if ((sp = key_getsp(&spidx)) == NULL) { 2243 ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__)); 2244 return key_senderror(so, m, EINVAL); 2245 } 2246 2247 /* save policy id to buffer to be returned. */ 2248 xpl0->sadb_x_policy_id = sp->id; 2249 2250 KEYDBG(KEY_STAMP, 2251 printf("%s: SP(%p)\n", __func__, sp)); 2252 KEYDBG(KEY_DATA, kdebug_secpolicy(sp)); 2253 key_unlink(sp); 2254 key_freesp(&sp); 2255 2256 { 2257 struct mbuf *n; 2258 struct sadb_msg *newmsg; 2259 2260 /* create new sadb_msg to reply. */ 2261 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 2262 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2263 if (!n) 2264 return key_senderror(so, m, ENOBUFS); 2265 2266 newmsg = mtod(n, struct sadb_msg *); 2267 newmsg->sadb_msg_errno = 0; 2268 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2269 2270 m_freem(m); 2271 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2272 } 2273 } 2274 2275 /* 2276 * SADB_SPDDELETE2 processing 2277 * receive 2278 * <base, policy(*)> 2279 * from the user(?), and set SADB_SASTATE_DEAD, 2280 * and send, 2281 * <base, policy(*)> 2282 * to the ikmpd. 2283 * policy(*) including direction of policy. 2284 * 2285 * m will always be freed. 2286 */ 2287 static int 2288 key_spddelete2(struct socket *so, struct mbuf *m, 2289 const struct sadb_msghdr *mhp) 2290 { 2291 struct secpolicy *sp; 2292 uint32_t id; 2293 2294 IPSEC_ASSERT(so != NULL, ("null socket")); 2295 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2296 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2297 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2298 2299 if (SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY) || 2300 SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) { 2301 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2302 __func__)); 2303 return key_senderror(so, m, EINVAL); 2304 } 2305 2306 id = ((struct sadb_x_policy *) 2307 mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2308 2309 /* Is there SP in SPD ? */ 2310 if ((sp = key_getspbyid(id)) == NULL) { 2311 ipseclog((LOG_DEBUG, "%s: no SP found for id %u.\n", 2312 __func__, id)); 2313 return key_senderror(so, m, EINVAL); 2314 } 2315 2316 KEYDBG(KEY_STAMP, 2317 printf("%s: SP(%p)\n", __func__, sp)); 2318 KEYDBG(KEY_DATA, kdebug_secpolicy(sp)); 2319 key_unlink(sp); 2320 if (sp->state != IPSEC_SPSTATE_DEAD) { 2321 ipseclog((LOG_DEBUG, "%s: failed to delete SP with id %u.\n", 2322 __func__, id)); 2323 key_freesp(&sp); 2324 return (key_senderror(so, m, EACCES)); 2325 } 2326 key_freesp(&sp); 2327 2328 { 2329 struct mbuf *n, *nn; 2330 struct sadb_msg *newmsg; 2331 int off, len; 2332 2333 /* create new sadb_msg to reply. */ 2334 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2335 2336 MGETHDR(n, M_NOWAIT, MT_DATA); 2337 if (n && len > MHLEN) { 2338 if (!(MCLGET(n, M_NOWAIT))) { 2339 m_freem(n); 2340 n = NULL; 2341 } 2342 } 2343 if (!n) 2344 return key_senderror(so, m, ENOBUFS); 2345 2346 n->m_len = len; 2347 n->m_next = NULL; 2348 off = 0; 2349 2350 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 2351 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2352 2353 IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)", 2354 off, len)); 2355 2356 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], 2357 mhp->extlen[SADB_X_EXT_POLICY], M_NOWAIT); 2358 if (!n->m_next) { 2359 m_freem(n); 2360 return key_senderror(so, m, ENOBUFS); 2361 } 2362 2363 n->m_pkthdr.len = 0; 2364 for (nn = n; nn; nn = nn->m_next) 2365 n->m_pkthdr.len += nn->m_len; 2366 2367 newmsg = mtod(n, struct sadb_msg *); 2368 newmsg->sadb_msg_errno = 0; 2369 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2370 2371 m_freem(m); 2372 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2373 } 2374 } 2375 2376 /* 2377 * SADB_X_SPDGET processing 2378 * receive 2379 * <base, policy(*)> 2380 * from the user(?), 2381 * and send, 2382 * <base, address(SD), policy> 2383 * to the ikmpd. 2384 * policy(*) including direction of policy. 2385 * 2386 * m will always be freed. 2387 */ 2388 static int 2389 key_spdget(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 2390 { 2391 struct secpolicy *sp; 2392 struct mbuf *n; 2393 uint32_t id; 2394 2395 IPSEC_ASSERT(so != NULL, ("null socket")); 2396 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2397 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2398 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2399 2400 if (SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY) || 2401 SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) { 2402 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2403 __func__)); 2404 return key_senderror(so, m, EINVAL); 2405 } 2406 2407 id = ((struct sadb_x_policy *) 2408 mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2409 2410 /* Is there SP in SPD ? */ 2411 if ((sp = key_getspbyid(id)) == NULL) { 2412 ipseclog((LOG_DEBUG, "%s: no SP found for id %u.\n", 2413 __func__, id)); 2414 return key_senderror(so, m, ENOENT); 2415 } 2416 2417 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq, 2418 mhp->msg->sadb_msg_pid); 2419 key_freesp(&sp); 2420 if (n != NULL) { 2421 m_freem(m); 2422 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2423 } else 2424 return key_senderror(so, m, ENOBUFS); 2425 } 2426 2427 /* 2428 * SADB_X_SPDACQUIRE processing. 2429 * Acquire policy and SA(s) for a *OUTBOUND* packet. 2430 * send 2431 * <base, policy(*)> 2432 * to KMD, and expect to receive 2433 * <base> with SADB_X_SPDACQUIRE if error occurred, 2434 * or 2435 * <base, policy> 2436 * with SADB_X_SPDUPDATE from KMD by PF_KEY. 2437 * policy(*) is without policy requests. 2438 * 2439 * 0 : succeed 2440 * others: error number 2441 */ 2442 int 2443 key_spdacquire(struct secpolicy *sp) 2444 { 2445 struct mbuf *result = NULL, *m; 2446 struct secspacq *newspacq; 2447 2448 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2449 IPSEC_ASSERT(sp->req == NULL, ("policy exists")); 2450 IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC, 2451 ("policy not IPSEC %u", sp->policy)); 2452 2453 /* Get an entry to check whether sent message or not. */ 2454 newspacq = key_getspacq(&sp->spidx); 2455 if (newspacq != NULL) { 2456 if (V_key_blockacq_count < newspacq->count) { 2457 /* reset counter and do send message. */ 2458 newspacq->count = 0; 2459 } else { 2460 /* increment counter and do nothing. */ 2461 newspacq->count++; 2462 SPACQ_UNLOCK(); 2463 return (0); 2464 } 2465 SPACQ_UNLOCK(); 2466 } else { 2467 /* make new entry for blocking to send SADB_ACQUIRE. */ 2468 newspacq = key_newspacq(&sp->spidx); 2469 if (newspacq == NULL) 2470 return ENOBUFS; 2471 } 2472 2473 /* create new sadb_msg to reply. */ 2474 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); 2475 if (!m) 2476 return ENOBUFS; 2477 2478 result = m; 2479 2480 result->m_pkthdr.len = 0; 2481 for (m = result; m; m = m->m_next) 2482 result->m_pkthdr.len += m->m_len; 2483 2484 mtod(result, struct sadb_msg *)->sadb_msg_len = 2485 PFKEY_UNIT64(result->m_pkthdr.len); 2486 2487 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 2488 } 2489 2490 /* 2491 * SADB_SPDFLUSH processing 2492 * receive 2493 * <base> 2494 * from the user, and free all entries in secpctree. 2495 * and send, 2496 * <base> 2497 * to the user. 2498 * NOTE: what to do is only marking SADB_SASTATE_DEAD. 2499 * 2500 * m will always be freed. 2501 */ 2502 static int 2503 key_spdflush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 2504 { 2505 struct secpolicy_queue drainq; 2506 struct sadb_msg *newmsg; 2507 struct secpolicy *sp, *nextsp; 2508 u_int dir; 2509 2510 IPSEC_ASSERT(so != NULL, ("null socket")); 2511 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2512 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2513 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2514 2515 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) 2516 return key_senderror(so, m, EINVAL); 2517 2518 TAILQ_INIT(&drainq); 2519 SPTREE_WLOCK(); 2520 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2521 TAILQ_CONCAT(&drainq, &V_sptree[dir], chain); 2522 } 2523 /* 2524 * We need to set state to DEAD for each policy to be sure, 2525 * that another thread won't try to unlink it. 2526 * Also remove SP from sphash. 2527 */ 2528 TAILQ_FOREACH(sp, &drainq, chain) { 2529 sp->state = IPSEC_SPSTATE_DEAD; 2530 LIST_REMOVE(sp, idhash); 2531 } 2532 V_sp_genid++; 2533 V_spd_size = 0; 2534 SPTREE_WUNLOCK(); 2535 if (SPDCACHE_ENABLED()) 2536 spdcache_clear(); 2537 sp = TAILQ_FIRST(&drainq); 2538 while (sp != NULL) { 2539 nextsp = TAILQ_NEXT(sp, chain); 2540 key_freesp(&sp); 2541 sp = nextsp; 2542 } 2543 2544 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 2545 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2546 return key_senderror(so, m, ENOBUFS); 2547 } 2548 2549 if (m->m_next) 2550 m_freem(m->m_next); 2551 m->m_next = NULL; 2552 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2553 newmsg = mtod(m, struct sadb_msg *); 2554 newmsg->sadb_msg_errno = 0; 2555 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 2556 2557 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 2558 } 2559 2560 static uint8_t 2561 key_satype2scopemask(uint8_t satype) 2562 { 2563 2564 if (satype == IPSEC_POLICYSCOPE_ANY) 2565 return (0xff); 2566 return (satype); 2567 } 2568 /* 2569 * SADB_SPDDUMP processing 2570 * receive 2571 * <base> 2572 * from the user, and dump all SP leaves and send, 2573 * <base> ..... 2574 * to the ikmpd. 2575 * 2576 * NOTE: 2577 * sadb_msg_satype is considered as mask of policy scopes. 2578 * m will always be freed. 2579 */ 2580 static int 2581 key_spddump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 2582 { 2583 SPTREE_RLOCK_TRACKER; 2584 struct secpolicy *sp; 2585 struct mbuf *n; 2586 int cnt; 2587 u_int dir, scope; 2588 2589 IPSEC_ASSERT(so != NULL, ("null socket")); 2590 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2591 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2592 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2593 2594 /* search SPD entry and get buffer size. */ 2595 cnt = 0; 2596 scope = key_satype2scopemask(mhp->msg->sadb_msg_satype); 2597 SPTREE_RLOCK(); 2598 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2599 if (scope & IPSEC_POLICYSCOPE_GLOBAL) { 2600 TAILQ_FOREACH(sp, &V_sptree[dir], chain) 2601 cnt++; 2602 } 2603 if (scope & IPSEC_POLICYSCOPE_IFNET) { 2604 TAILQ_FOREACH(sp, &V_sptree_ifnet[dir], chain) 2605 cnt++; 2606 } 2607 } 2608 2609 if (cnt == 0) { 2610 SPTREE_RUNLOCK(); 2611 return key_senderror(so, m, ENOENT); 2612 } 2613 2614 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2615 if (scope & IPSEC_POLICYSCOPE_GLOBAL) { 2616 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 2617 --cnt; 2618 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, 2619 mhp->msg->sadb_msg_pid); 2620 2621 if (n != NULL) 2622 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2623 } 2624 } 2625 if (scope & IPSEC_POLICYSCOPE_IFNET) { 2626 TAILQ_FOREACH(sp, &V_sptree_ifnet[dir], chain) { 2627 --cnt; 2628 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, 2629 mhp->msg->sadb_msg_pid); 2630 2631 if (n != NULL) 2632 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2633 } 2634 } 2635 } 2636 2637 SPTREE_RUNLOCK(); 2638 m_freem(m); 2639 return (0); 2640 } 2641 2642 static struct mbuf * 2643 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, 2644 u_int32_t pid) 2645 { 2646 struct mbuf *result = NULL, *m; 2647 struct seclifetime lt; 2648 2649 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt); 2650 if (!m) 2651 goto fail; 2652 result = m; 2653 2654 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2655 &sp->spidx.src.sa, sp->spidx.prefs, 2656 sp->spidx.ul_proto); 2657 if (!m) 2658 goto fail; 2659 m_cat(result, m); 2660 2661 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2662 &sp->spidx.dst.sa, sp->spidx.prefd, 2663 sp->spidx.ul_proto); 2664 if (!m) 2665 goto fail; 2666 m_cat(result, m); 2667 2668 m = key_sp2mbuf(sp); 2669 if (!m) 2670 goto fail; 2671 m_cat(result, m); 2672 2673 if(sp->lifetime){ 2674 lt.addtime=sp->created; 2675 lt.usetime= sp->lastused; 2676 m = key_setlifetime(<, SADB_EXT_LIFETIME_CURRENT); 2677 if (!m) 2678 goto fail; 2679 m_cat(result, m); 2680 2681 lt.addtime=sp->lifetime; 2682 lt.usetime= sp->validtime; 2683 m = key_setlifetime(<, SADB_EXT_LIFETIME_HARD); 2684 if (!m) 2685 goto fail; 2686 m_cat(result, m); 2687 } 2688 2689 if ((result->m_flags & M_PKTHDR) == 0) 2690 goto fail; 2691 2692 if (result->m_len < sizeof(struct sadb_msg)) { 2693 result = m_pullup(result, sizeof(struct sadb_msg)); 2694 if (result == NULL) 2695 goto fail; 2696 } 2697 2698 result->m_pkthdr.len = 0; 2699 for (m = result; m; m = m->m_next) 2700 result->m_pkthdr.len += m->m_len; 2701 2702 mtod(result, struct sadb_msg *)->sadb_msg_len = 2703 PFKEY_UNIT64(result->m_pkthdr.len); 2704 2705 return result; 2706 2707 fail: 2708 m_freem(result); 2709 return NULL; 2710 } 2711 /* 2712 * get PFKEY message length for security policy and request. 2713 */ 2714 static size_t 2715 key_getspreqmsglen(struct secpolicy *sp) 2716 { 2717 size_t tlen, len; 2718 int i; 2719 2720 tlen = sizeof(struct sadb_x_policy); 2721 /* if is the policy for ipsec ? */ 2722 if (sp->policy != IPSEC_POLICY_IPSEC) 2723 return (tlen); 2724 2725 /* get length of ipsec requests */ 2726 for (i = 0; i < sp->tcount; i++) { 2727 len = sizeof(struct sadb_x_ipsecrequest) 2728 + sp->req[i]->saidx.src.sa.sa_len 2729 + sp->req[i]->saidx.dst.sa.sa_len; 2730 2731 tlen += PFKEY_ALIGN8(len); 2732 } 2733 return (tlen); 2734 } 2735 2736 /* 2737 * SADB_SPDEXPIRE processing 2738 * send 2739 * <base, address(SD), lifetime(CH), policy> 2740 * to KMD by PF_KEY. 2741 * 2742 * OUT: 0 : succeed 2743 * others : error number 2744 */ 2745 static int 2746 key_spdexpire(struct secpolicy *sp) 2747 { 2748 struct sadb_lifetime *lt; 2749 struct mbuf *result = NULL, *m; 2750 int len, error = -1; 2751 2752 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2753 2754 KEYDBG(KEY_STAMP, 2755 printf("%s: SP(%p)\n", __func__, sp)); 2756 KEYDBG(KEY_DATA, kdebug_secpolicy(sp)); 2757 2758 /* set msg header */ 2759 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0); 2760 if (!m) { 2761 error = ENOBUFS; 2762 goto fail; 2763 } 2764 result = m; 2765 2766 /* create lifetime extension (current and hard) */ 2767 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 2768 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 2769 if (m == NULL) { 2770 error = ENOBUFS; 2771 goto fail; 2772 } 2773 m_align(m, len); 2774 m->m_len = len; 2775 bzero(mtod(m, caddr_t), len); 2776 lt = mtod(m, struct sadb_lifetime *); 2777 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2778 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 2779 lt->sadb_lifetime_allocations = 0; 2780 lt->sadb_lifetime_bytes = 0; 2781 lt->sadb_lifetime_addtime = sp->created; 2782 lt->sadb_lifetime_usetime = sp->lastused; 2783 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 2784 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2785 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 2786 lt->sadb_lifetime_allocations = 0; 2787 lt->sadb_lifetime_bytes = 0; 2788 lt->sadb_lifetime_addtime = sp->lifetime; 2789 lt->sadb_lifetime_usetime = sp->validtime; 2790 m_cat(result, m); 2791 2792 /* set sadb_address for source */ 2793 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2794 &sp->spidx.src.sa, 2795 sp->spidx.prefs, sp->spidx.ul_proto); 2796 if (!m) { 2797 error = ENOBUFS; 2798 goto fail; 2799 } 2800 m_cat(result, m); 2801 2802 /* set sadb_address for destination */ 2803 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2804 &sp->spidx.dst.sa, 2805 sp->spidx.prefd, sp->spidx.ul_proto); 2806 if (!m) { 2807 error = ENOBUFS; 2808 goto fail; 2809 } 2810 m_cat(result, m); 2811 2812 /* set secpolicy */ 2813 m = key_sp2mbuf(sp); 2814 if (!m) { 2815 error = ENOBUFS; 2816 goto fail; 2817 } 2818 m_cat(result, m); 2819 2820 if ((result->m_flags & M_PKTHDR) == 0) { 2821 error = EINVAL; 2822 goto fail; 2823 } 2824 2825 if (result->m_len < sizeof(struct sadb_msg)) { 2826 result = m_pullup(result, sizeof(struct sadb_msg)); 2827 if (result == NULL) { 2828 error = ENOBUFS; 2829 goto fail; 2830 } 2831 } 2832 2833 result->m_pkthdr.len = 0; 2834 for (m = result; m; m = m->m_next) 2835 result->m_pkthdr.len += m->m_len; 2836 2837 mtod(result, struct sadb_msg *)->sadb_msg_len = 2838 PFKEY_UNIT64(result->m_pkthdr.len); 2839 2840 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 2841 2842 fail: 2843 if (result) 2844 m_freem(result); 2845 return error; 2846 } 2847 2848 /* %%% SAD management */ 2849 /* 2850 * allocating and initialize new SA head. 2851 * OUT: NULL : failure due to the lack of memory. 2852 * others : pointer to new SA head. 2853 */ 2854 static struct secashead * 2855 key_newsah(struct secasindex *saidx) 2856 { 2857 struct secashead *sah; 2858 2859 sah = malloc(sizeof(struct secashead), M_IPSEC_SAH, 2860 M_NOWAIT | M_ZERO); 2861 if (sah == NULL) { 2862 PFKEYSTAT_INC(in_nomem); 2863 return (NULL); 2864 } 2865 TAILQ_INIT(&sah->savtree_larval); 2866 TAILQ_INIT(&sah->savtree_alive); 2867 sah->saidx = *saidx; 2868 sah->state = SADB_SASTATE_DEAD; 2869 SAH_INITREF(sah); 2870 2871 KEYDBG(KEY_STAMP, 2872 printf("%s: SAH(%p)\n", __func__, sah)); 2873 KEYDBG(KEY_DATA, kdebug_secash(sah, NULL)); 2874 return (sah); 2875 } 2876 2877 static void 2878 key_freesah(struct secashead **psah) 2879 { 2880 struct secashead *sah = *psah; 2881 2882 if (SAH_DELREF(sah) == 0) 2883 return; 2884 2885 KEYDBG(KEY_STAMP, 2886 printf("%s: last reference to SAH(%p)\n", __func__, sah)); 2887 KEYDBG(KEY_DATA, kdebug_secash(sah, NULL)); 2888 2889 *psah = NULL; 2890 key_delsah(sah); 2891 } 2892 2893 static void 2894 key_delsah(struct secashead *sah) 2895 { 2896 IPSEC_ASSERT(sah != NULL, ("NULL sah")); 2897 IPSEC_ASSERT(sah->state == SADB_SASTATE_DEAD, 2898 ("Attempt to free non DEAD SAH %p", sah)); 2899 IPSEC_ASSERT(TAILQ_EMPTY(&sah->savtree_larval), 2900 ("Attempt to free SAH %p with LARVAL SA", sah)); 2901 IPSEC_ASSERT(TAILQ_EMPTY(&sah->savtree_alive), 2902 ("Attempt to free SAH %p with ALIVE SA", sah)); 2903 2904 free(sah, M_IPSEC_SAH); 2905 } 2906 2907 /* 2908 * allocating a new SA for key_add() and key_getspi() call, 2909 * and copy the values of mhp into new buffer. 2910 * When SAD message type is SADB_GETSPI set SA state to LARVAL. 2911 * For SADB_ADD create and initialize SA with MATURE state. 2912 * OUT: NULL : fail 2913 * others : pointer to new secasvar. 2914 */ 2915 static struct secasvar * 2916 key_newsav(const struct sadb_msghdr *mhp, struct secasindex *saidx, 2917 uint32_t spi, int *errp) 2918 { 2919 struct secashead *sah; 2920 struct secasvar *sav; 2921 int isnew; 2922 2923 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2924 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2925 IPSEC_ASSERT(mhp->msg->sadb_msg_type == SADB_GETSPI || 2926 mhp->msg->sadb_msg_type == SADB_ADD, ("wrong message type")); 2927 2928 sav = NULL; 2929 sah = NULL; 2930 /* check SPI value */ 2931 switch (saidx->proto) { 2932 case IPPROTO_ESP: 2933 case IPPROTO_AH: 2934 /* 2935 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values 2936 * 1-255 reserved by IANA for future use, 2937 * 0 for implementation specific, local use. 2938 */ 2939 if (ntohl(spi) <= 255) { 2940 ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n", 2941 __func__, ntohl(spi))); 2942 *errp = EINVAL; 2943 goto done; 2944 } 2945 break; 2946 } 2947 2948 sav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT | M_ZERO); 2949 if (sav == NULL) { 2950 *errp = ENOBUFS; 2951 goto done; 2952 } 2953 sav->lock = malloc(sizeof(struct mtx), M_IPSEC_MISC, 2954 M_NOWAIT | M_ZERO); 2955 if (sav->lock == NULL) { 2956 *errp = ENOBUFS; 2957 goto done; 2958 } 2959 mtx_init(sav->lock, "ipsec association", NULL, MTX_DEF); 2960 sav->lft_c = uma_zalloc_pcpu(V_key_lft_zone, M_NOWAIT); 2961 if (sav->lft_c == NULL) { 2962 *errp = ENOBUFS; 2963 goto done; 2964 } 2965 counter_u64_zero(sav->lft_c_allocations); 2966 counter_u64_zero(sav->lft_c_bytes); 2967 2968 sav->spi = spi; 2969 sav->seq = mhp->msg->sadb_msg_seq; 2970 sav->state = SADB_SASTATE_LARVAL; 2971 sav->pid = (pid_t)mhp->msg->sadb_msg_pid; 2972 SAV_INITREF(sav); 2973 again: 2974 sah = key_getsah(saidx); 2975 if (sah == NULL) { 2976 /* create a new SA index */ 2977 sah = key_newsah(saidx); 2978 if (sah == NULL) { 2979 ipseclog((LOG_DEBUG, 2980 "%s: No more memory.\n", __func__)); 2981 *errp = ENOBUFS; 2982 goto done; 2983 } 2984 isnew = 1; 2985 } else 2986 isnew = 0; 2987 2988 sav->sah = sah; 2989 if (mhp->msg->sadb_msg_type == SADB_GETSPI) { 2990 sav->created = time_second; 2991 } else if (sav->state == SADB_SASTATE_LARVAL) { 2992 /* 2993 * Do not call key_setsaval() second time in case 2994 * of `goto again`. We will have MATURE state. 2995 */ 2996 *errp = key_setsaval(sav, mhp); 2997 if (*errp != 0) 2998 goto done; 2999 sav->state = SADB_SASTATE_MATURE; 3000 } 3001 3002 SAHTREE_WLOCK(); 3003 /* 3004 * Check that existing SAH wasn't unlinked. 3005 * Since we didn't hold the SAHTREE lock, it is possible, 3006 * that callout handler or key_flush() or key_delete() could 3007 * unlink this SAH. 3008 */ 3009 if (isnew == 0 && sah->state == SADB_SASTATE_DEAD) { 3010 SAHTREE_WUNLOCK(); 3011 key_freesah(&sah); /* reference from key_getsah() */ 3012 goto again; 3013 } 3014 if (isnew != 0) { 3015 /* 3016 * Add new SAH into SADB. 3017 * 3018 * XXXAE: we can serialize key_add and key_getspi calls, so 3019 * several threads will not fight in the race. 3020 * Otherwise we should check under SAHTREE lock, that this 3021 * SAH would not added twice. 3022 */ 3023 TAILQ_INSERT_HEAD(&V_sahtree, sah, chain); 3024 /* Add new SAH into hash by addresses */ 3025 LIST_INSERT_HEAD(SAHADDRHASH_HASH(saidx), sah, addrhash); 3026 /* Now we are linked in the chain */ 3027 sah->state = SADB_SASTATE_MATURE; 3028 /* 3029 * SAV references this new SAH. 3030 * In case of existing SAH we reuse reference 3031 * from key_getsah(). 3032 */ 3033 SAH_ADDREF(sah); 3034 } 3035 /* Link SAV with SAH */ 3036 if (sav->state == SADB_SASTATE_MATURE) 3037 TAILQ_INSERT_HEAD(&sah->savtree_alive, sav, chain); 3038 else 3039 TAILQ_INSERT_HEAD(&sah->savtree_larval, sav, chain); 3040 /* Add SAV into SPI hash */ 3041 LIST_INSERT_HEAD(SAVHASH_HASH(sav->spi), sav, spihash); 3042 SAHTREE_WUNLOCK(); 3043 *errp = 0; /* success */ 3044 done: 3045 if (*errp != 0) { 3046 if (sav != NULL) { 3047 if (sav->lock != NULL) { 3048 mtx_destroy(sav->lock); 3049 free(sav->lock, M_IPSEC_MISC); 3050 } 3051 if (sav->lft_c != NULL) 3052 uma_zfree_pcpu(V_key_lft_zone, sav->lft_c); 3053 free(sav, M_IPSEC_SA), sav = NULL; 3054 } 3055 if (sah != NULL) 3056 key_freesah(&sah); 3057 if (*errp == ENOBUFS) { 3058 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3059 __func__)); 3060 PFKEYSTAT_INC(in_nomem); 3061 } 3062 } 3063 return (sav); 3064 } 3065 3066 /* 3067 * free() SA variable entry. 3068 */ 3069 static void 3070 key_cleansav(struct secasvar *sav) 3071 { 3072 3073 if (sav->natt != NULL) { 3074 free(sav->natt, M_IPSEC_MISC); 3075 sav->natt = NULL; 3076 } 3077 if (sav->flags & SADB_X_EXT_F_CLONED) 3078 return; 3079 /* 3080 * Cleanup xform state. Note that zeroize'ing causes the 3081 * keys to be cleared; otherwise we must do it ourself. 3082 */ 3083 if (sav->tdb_xform != NULL) { 3084 sav->tdb_xform->xf_zeroize(sav); 3085 sav->tdb_xform = NULL; 3086 } else { 3087 if (sav->key_auth != NULL) 3088 bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth)); 3089 if (sav->key_enc != NULL) 3090 bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc)); 3091 } 3092 if (sav->key_auth != NULL) { 3093 if (sav->key_auth->key_data != NULL) 3094 free(sav->key_auth->key_data, M_IPSEC_MISC); 3095 free(sav->key_auth, M_IPSEC_MISC); 3096 sav->key_auth = NULL; 3097 } 3098 if (sav->key_enc != NULL) { 3099 if (sav->key_enc->key_data != NULL) 3100 free(sav->key_enc->key_data, M_IPSEC_MISC); 3101 free(sav->key_enc, M_IPSEC_MISC); 3102 sav->key_enc = NULL; 3103 } 3104 if (sav->replay != NULL) { 3105 if (sav->replay->bitmap != NULL) 3106 free(sav->replay->bitmap, M_IPSEC_MISC); 3107 free(sav->replay, M_IPSEC_MISC); 3108 sav->replay = NULL; 3109 } 3110 if (sav->lft_h != NULL) { 3111 free(sav->lft_h, M_IPSEC_MISC); 3112 sav->lft_h = NULL; 3113 } 3114 if (sav->lft_s != NULL) { 3115 free(sav->lft_s, M_IPSEC_MISC); 3116 sav->lft_s = NULL; 3117 } 3118 } 3119 3120 /* 3121 * free() SA variable entry. 3122 */ 3123 static void 3124 key_delsav(struct secasvar *sav) 3125 { 3126 IPSEC_ASSERT(sav != NULL, ("null sav")); 3127 IPSEC_ASSERT(sav->state == SADB_SASTATE_DEAD, 3128 ("attempt to free non DEAD SA %p", sav)); 3129 IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", 3130 sav->refcnt)); 3131 3132 /* 3133 * SA must be unlinked from the chain and hashtbl. 3134 * If SA was cloned, we leave all fields untouched, 3135 * except NAT-T config. 3136 */ 3137 key_cleansav(sav); 3138 if ((sav->flags & SADB_X_EXT_F_CLONED) == 0) { 3139 mtx_destroy(sav->lock); 3140 free(sav->lock, M_IPSEC_MISC); 3141 uma_zfree(V_key_lft_zone, sav->lft_c); 3142 } 3143 free(sav, M_IPSEC_SA); 3144 } 3145 3146 /* 3147 * search SAH. 3148 * OUT: 3149 * NULL : not found 3150 * others : found, referenced pointer to a SAH. 3151 */ 3152 static struct secashead * 3153 key_getsah(struct secasindex *saidx) 3154 { 3155 SAHTREE_RLOCK_TRACKER; 3156 struct secashead *sah; 3157 3158 SAHTREE_RLOCK(); 3159 LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) { 3160 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID) != 0) { 3161 SAH_ADDREF(sah); 3162 break; 3163 } 3164 } 3165 SAHTREE_RUNLOCK(); 3166 return (sah); 3167 } 3168 3169 /* 3170 * Check not to be duplicated SPI. 3171 * OUT: 3172 * 0 : not found 3173 * 1 : found SA with given SPI. 3174 */ 3175 static int 3176 key_checkspidup(uint32_t spi) 3177 { 3178 SAHTREE_RLOCK_TRACKER; 3179 struct secasvar *sav; 3180 3181 /* Assume SPI is in network byte order */ 3182 SAHTREE_RLOCK(); 3183 LIST_FOREACH(sav, SAVHASH_HASH(spi), spihash) { 3184 if (sav->spi == spi) 3185 break; 3186 } 3187 SAHTREE_RUNLOCK(); 3188 return (sav != NULL); 3189 } 3190 3191 /* 3192 * Search SA by SPI. 3193 * OUT: 3194 * NULL : not found 3195 * others : found, referenced pointer to a SA. 3196 */ 3197 static struct secasvar * 3198 key_getsavbyspi(uint32_t spi) 3199 { 3200 SAHTREE_RLOCK_TRACKER; 3201 struct secasvar *sav; 3202 3203 /* Assume SPI is in network byte order */ 3204 SAHTREE_RLOCK(); 3205 LIST_FOREACH(sav, SAVHASH_HASH(spi), spihash) { 3206 if (sav->spi != spi) 3207 continue; 3208 SAV_ADDREF(sav); 3209 break; 3210 } 3211 SAHTREE_RUNLOCK(); 3212 return (sav); 3213 } 3214 3215 static int 3216 key_updatelifetimes(struct secasvar *sav, const struct sadb_msghdr *mhp) 3217 { 3218 struct seclifetime *lft_h, *lft_s, *tmp; 3219 3220 /* Lifetime extension is optional, check that it is present. */ 3221 if (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) && 3222 SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) { 3223 /* 3224 * In case of SADB_UPDATE we may need to change 3225 * existing lifetimes. 3226 */ 3227 if (sav->state == SADB_SASTATE_MATURE) { 3228 lft_h = lft_s = NULL; 3229 goto reset; 3230 } 3231 return (0); 3232 } 3233 /* Both HARD and SOFT extensions must present */ 3234 if ((SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) && 3235 !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) || 3236 (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT) && 3237 !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD))) { 3238 ipseclog((LOG_DEBUG, 3239 "%s: invalid message: missing required header.\n", 3240 __func__)); 3241 return (EINVAL); 3242 } 3243 if (SADB_CHECKLEN(mhp, SADB_EXT_LIFETIME_HARD) || 3244 SADB_CHECKLEN(mhp, SADB_EXT_LIFETIME_SOFT)) { 3245 ipseclog((LOG_DEBUG, 3246 "%s: invalid message: wrong header size.\n", __func__)); 3247 return (EINVAL); 3248 } 3249 lft_h = key_dup_lifemsg((const struct sadb_lifetime *) 3250 mhp->ext[SADB_EXT_LIFETIME_HARD], M_IPSEC_MISC); 3251 if (lft_h == NULL) { 3252 PFKEYSTAT_INC(in_nomem); 3253 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3254 return (ENOBUFS); 3255 } 3256 lft_s = key_dup_lifemsg((const struct sadb_lifetime *) 3257 mhp->ext[SADB_EXT_LIFETIME_SOFT], M_IPSEC_MISC); 3258 if (lft_s == NULL) { 3259 PFKEYSTAT_INC(in_nomem); 3260 free(lft_h, M_IPSEC_MISC); 3261 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3262 return (ENOBUFS); 3263 } 3264 reset: 3265 if (sav->state != SADB_SASTATE_LARVAL) { 3266 /* 3267 * key_update() holds reference to this SA, 3268 * so it won't be deleted in meanwhile. 3269 */ 3270 SECASVAR_LOCK(sav); 3271 tmp = sav->lft_h; 3272 sav->lft_h = lft_h; 3273 lft_h = tmp; 3274 3275 tmp = sav->lft_s; 3276 sav->lft_s = lft_s; 3277 lft_s = tmp; 3278 SECASVAR_UNLOCK(sav); 3279 if (lft_h != NULL) 3280 free(lft_h, M_IPSEC_MISC); 3281 if (lft_s != NULL) 3282 free(lft_s, M_IPSEC_MISC); 3283 return (0); 3284 } 3285 /* We can update lifetime without holding a lock */ 3286 IPSEC_ASSERT(sav->lft_h == NULL, ("lft_h is already initialized\n")); 3287 IPSEC_ASSERT(sav->lft_s == NULL, ("lft_s is already initialized\n")); 3288 sav->lft_h = lft_h; 3289 sav->lft_s = lft_s; 3290 return (0); 3291 } 3292 3293 /* 3294 * copy SA values from PF_KEY message except *SPI, SEQ, PID and TYPE*. 3295 * You must update these if need. Expects only LARVAL SAs. 3296 * OUT: 0: success. 3297 * !0: failure. 3298 */ 3299 static int 3300 key_setsaval(struct secasvar *sav, const struct sadb_msghdr *mhp) 3301 { 3302 const struct sadb_sa *sa0; 3303 const struct sadb_key *key0; 3304 uint32_t replay; 3305 size_t len; 3306 int error; 3307 3308 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 3309 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 3310 IPSEC_ASSERT(sav->state == SADB_SASTATE_LARVAL, 3311 ("Attempt to update non LARVAL SA")); 3312 3313 /* XXX rewrite */ 3314 error = key_setident(sav->sah, mhp); 3315 if (error != 0) 3316 goto fail; 3317 3318 /* SA */ 3319 if (!SADB_CHECKHDR(mhp, SADB_EXT_SA)) { 3320 if (SADB_CHECKLEN(mhp, SADB_EXT_SA)) { 3321 error = EINVAL; 3322 goto fail; 3323 } 3324 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 3325 sav->alg_auth = sa0->sadb_sa_auth; 3326 sav->alg_enc = sa0->sadb_sa_encrypt; 3327 sav->flags = sa0->sadb_sa_flags; 3328 if ((sav->flags & SADB_KEY_FLAGS_MAX) != sav->flags) { 3329 ipseclog((LOG_DEBUG, 3330 "%s: invalid sa_flags 0x%08x.\n", __func__, 3331 sav->flags)); 3332 error = EINVAL; 3333 goto fail; 3334 } 3335 3336 /* Optional replay window */ 3337 replay = 0; 3338 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) 3339 replay = sa0->sadb_sa_replay; 3340 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_SA_REPLAY)) { 3341 if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA_REPLAY)) { 3342 error = EINVAL; 3343 goto fail; 3344 } 3345 replay = ((const struct sadb_x_sa_replay *) 3346 mhp->ext[SADB_X_EXT_SA_REPLAY])->sadb_x_sa_replay_replay; 3347 3348 if (replay > UINT32_MAX - 32) { 3349 ipseclog((LOG_DEBUG, 3350 "%s: replay window too big.\n", __func__)); 3351 error = EINVAL; 3352 goto fail; 3353 } 3354 3355 replay = (replay + 7) >> 3; 3356 } 3357 3358 sav->replay = malloc(sizeof(struct secreplay), M_IPSEC_MISC, 3359 M_NOWAIT | M_ZERO); 3360 if (sav->replay == NULL) { 3361 PFKEYSTAT_INC(in_nomem); 3362 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3363 __func__)); 3364 error = ENOBUFS; 3365 goto fail; 3366 } 3367 3368 if (replay != 0) { 3369 /* number of 32b blocks to be allocated */ 3370 uint32_t bitmap_size; 3371 3372 /* RFC 6479: 3373 * - the allocated replay window size must be 3374 * a power of two. 3375 * - use an extra 32b block as a redundant window. 3376 */ 3377 bitmap_size = 1; 3378 while (replay + 4 > bitmap_size) 3379 bitmap_size <<= 1; 3380 bitmap_size = bitmap_size / 4; 3381 3382 sav->replay->bitmap = malloc( 3383 bitmap_size * sizeof(uint32_t), M_IPSEC_MISC, 3384 M_NOWAIT | M_ZERO); 3385 if (sav->replay->bitmap == NULL) { 3386 PFKEYSTAT_INC(in_nomem); 3387 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3388 __func__)); 3389 error = ENOBUFS; 3390 goto fail; 3391 } 3392 sav->replay->bitmap_size = bitmap_size; 3393 sav->replay->wsize = replay; 3394 } 3395 } 3396 3397 /* Authentication keys */ 3398 if (!SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH)) { 3399 if (SADB_CHECKLEN(mhp, SADB_EXT_KEY_AUTH)) { 3400 error = EINVAL; 3401 goto fail; 3402 } 3403 error = 0; 3404 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH]; 3405 len = mhp->extlen[SADB_EXT_KEY_AUTH]; 3406 switch (mhp->msg->sadb_msg_satype) { 3407 case SADB_SATYPE_AH: 3408 case SADB_SATYPE_ESP: 3409 case SADB_X_SATYPE_TCPSIGNATURE: 3410 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3411 sav->alg_auth != SADB_X_AALG_NULL) 3412 error = EINVAL; 3413 break; 3414 case SADB_X_SATYPE_IPCOMP: 3415 default: 3416 error = EINVAL; 3417 break; 3418 } 3419 if (error) { 3420 ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n", 3421 __func__)); 3422 goto fail; 3423 } 3424 3425 sav->key_auth = key_dup_keymsg(key0, len, M_IPSEC_MISC); 3426 if (sav->key_auth == NULL ) { 3427 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3428 __func__)); 3429 PFKEYSTAT_INC(in_nomem); 3430 error = ENOBUFS; 3431 goto fail; 3432 } 3433 } 3434 3435 /* Encryption key */ 3436 if (!SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT)) { 3437 if (SADB_CHECKLEN(mhp, SADB_EXT_KEY_ENCRYPT)) { 3438 error = EINVAL; 3439 goto fail; 3440 } 3441 error = 0; 3442 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT]; 3443 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; 3444 switch (mhp->msg->sadb_msg_satype) { 3445 case SADB_SATYPE_ESP: 3446 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3447 sav->alg_enc != SADB_EALG_NULL) { 3448 error = EINVAL; 3449 break; 3450 } 3451 sav->key_enc = key_dup_keymsg(key0, len, M_IPSEC_MISC); 3452 if (sav->key_enc == NULL) { 3453 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3454 __func__)); 3455 PFKEYSTAT_INC(in_nomem); 3456 error = ENOBUFS; 3457 goto fail; 3458 } 3459 break; 3460 case SADB_X_SATYPE_IPCOMP: 3461 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) 3462 error = EINVAL; 3463 sav->key_enc = NULL; /*just in case*/ 3464 break; 3465 case SADB_SATYPE_AH: 3466 case SADB_X_SATYPE_TCPSIGNATURE: 3467 default: 3468 error = EINVAL; 3469 break; 3470 } 3471 if (error) { 3472 ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n", 3473 __func__)); 3474 goto fail; 3475 } 3476 } 3477 3478 /* set iv */ 3479 sav->ivlen = 0; 3480 switch (mhp->msg->sadb_msg_satype) { 3481 case SADB_SATYPE_AH: 3482 if (sav->flags & SADB_X_EXT_DERIV) { 3483 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3484 "given to AH SA.\n", __func__)); 3485 error = EINVAL; 3486 goto fail; 3487 } 3488 if (sav->alg_enc != SADB_EALG_NONE) { 3489 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3490 "mismated.\n", __func__)); 3491 error = EINVAL; 3492 goto fail; 3493 } 3494 error = xform_init(sav, XF_AH); 3495 break; 3496 case SADB_SATYPE_ESP: 3497 if ((sav->flags & (SADB_X_EXT_OLD | SADB_X_EXT_DERIV)) == 3498 (SADB_X_EXT_OLD | SADB_X_EXT_DERIV)) { 3499 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3500 "given to old-esp.\n", __func__)); 3501 error = EINVAL; 3502 goto fail; 3503 } 3504 error = xform_init(sav, XF_ESP); 3505 break; 3506 case SADB_X_SATYPE_IPCOMP: 3507 if (sav->alg_auth != SADB_AALG_NONE) { 3508 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3509 "mismated.\n", __func__)); 3510 error = EINVAL; 3511 goto fail; 3512 } 3513 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 && 3514 ntohl(sav->spi) >= 0x10000) { 3515 ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n", 3516 __func__)); 3517 error = EINVAL; 3518 goto fail; 3519 } 3520 error = xform_init(sav, XF_IPCOMP); 3521 break; 3522 case SADB_X_SATYPE_TCPSIGNATURE: 3523 if (sav->alg_enc != SADB_EALG_NONE) { 3524 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3525 "mismated.\n", __func__)); 3526 error = EINVAL; 3527 goto fail; 3528 } 3529 error = xform_init(sav, XF_TCPSIGNATURE); 3530 break; 3531 default: 3532 ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__)); 3533 error = EPROTONOSUPPORT; 3534 goto fail; 3535 } 3536 if (error) { 3537 ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n", 3538 __func__, mhp->msg->sadb_msg_satype)); 3539 goto fail; 3540 } 3541 3542 /* Handle NAT-T headers */ 3543 error = key_setnatt(sav, mhp); 3544 if (error != 0) 3545 goto fail; 3546 3547 /* Initialize lifetime for CURRENT */ 3548 sav->firstused = 0; 3549 sav->created = time_second; 3550 3551 /* lifetimes for HARD and SOFT */ 3552 error = key_updatelifetimes(sav, mhp); 3553 if (error == 0) 3554 return (0); 3555 fail: 3556 key_cleansav(sav); 3557 return (error); 3558 } 3559 3560 /* 3561 * subroutine for SADB_GET and SADB_DUMP. 3562 */ 3563 static struct mbuf * 3564 key_setdumpsa(struct secasvar *sav, uint8_t type, uint8_t satype, 3565 uint32_t seq, uint32_t pid) 3566 { 3567 struct seclifetime lft_c; 3568 struct mbuf *result = NULL, *tres = NULL, *m; 3569 int i, dumporder[] = { 3570 SADB_EXT_SA, SADB_X_EXT_SA2, SADB_X_EXT_SA_REPLAY, 3571 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 3572 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, 3573 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, 3574 SADB_EXT_KEY_AUTH, SADB_EXT_KEY_ENCRYPT, 3575 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST, 3576 SADB_EXT_SENSITIVITY, 3577 SADB_X_EXT_NAT_T_TYPE, 3578 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT, 3579 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR, 3580 SADB_X_EXT_NAT_T_FRAG, 3581 }; 3582 uint32_t replay_count; 3583 3584 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt); 3585 if (m == NULL) 3586 goto fail; 3587 result = m; 3588 3589 for (i = nitems(dumporder) - 1; i >= 0; i--) { 3590 m = NULL; 3591 switch (dumporder[i]) { 3592 case SADB_EXT_SA: 3593 m = key_setsadbsa(sav); 3594 if (!m) 3595 goto fail; 3596 break; 3597 3598 case SADB_X_EXT_SA2: 3599 SECASVAR_LOCK(sav); 3600 replay_count = sav->replay ? sav->replay->count : 0; 3601 SECASVAR_UNLOCK(sav); 3602 m = key_setsadbxsa2(sav->sah->saidx.mode, replay_count, 3603 sav->sah->saidx.reqid); 3604 if (!m) 3605 goto fail; 3606 break; 3607 3608 case SADB_X_EXT_SA_REPLAY: 3609 if (sav->replay == NULL || 3610 sav->replay->wsize <= UINT8_MAX) 3611 continue; 3612 3613 m = key_setsadbxsareplay(sav->replay->wsize); 3614 if (!m) 3615 goto fail; 3616 break; 3617 3618 case SADB_EXT_ADDRESS_SRC: 3619 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3620 &sav->sah->saidx.src.sa, 3621 FULLMASK, IPSEC_ULPROTO_ANY); 3622 if (!m) 3623 goto fail; 3624 break; 3625 3626 case SADB_EXT_ADDRESS_DST: 3627 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3628 &sav->sah->saidx.dst.sa, 3629 FULLMASK, IPSEC_ULPROTO_ANY); 3630 if (!m) 3631 goto fail; 3632 break; 3633 3634 case SADB_EXT_KEY_AUTH: 3635 if (!sav->key_auth) 3636 continue; 3637 m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH); 3638 if (!m) 3639 goto fail; 3640 break; 3641 3642 case SADB_EXT_KEY_ENCRYPT: 3643 if (!sav->key_enc) 3644 continue; 3645 m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT); 3646 if (!m) 3647 goto fail; 3648 break; 3649 3650 case SADB_EXT_LIFETIME_CURRENT: 3651 lft_c.addtime = sav->created; 3652 lft_c.allocations = (uint32_t)counter_u64_fetch( 3653 sav->lft_c_allocations); 3654 lft_c.bytes = counter_u64_fetch(sav->lft_c_bytes); 3655 lft_c.usetime = sav->firstused; 3656 m = key_setlifetime(&lft_c, SADB_EXT_LIFETIME_CURRENT); 3657 if (!m) 3658 goto fail; 3659 break; 3660 3661 case SADB_EXT_LIFETIME_HARD: 3662 if (!sav->lft_h) 3663 continue; 3664 m = key_setlifetime(sav->lft_h, 3665 SADB_EXT_LIFETIME_HARD); 3666 if (!m) 3667 goto fail; 3668 break; 3669 3670 case SADB_EXT_LIFETIME_SOFT: 3671 if (!sav->lft_s) 3672 continue; 3673 m = key_setlifetime(sav->lft_s, 3674 SADB_EXT_LIFETIME_SOFT); 3675 3676 if (!m) 3677 goto fail; 3678 break; 3679 3680 case SADB_X_EXT_NAT_T_TYPE: 3681 if (sav->natt == NULL) 3682 continue; 3683 m = key_setsadbxtype(UDP_ENCAP_ESPINUDP); 3684 if (!m) 3685 goto fail; 3686 break; 3687 3688 case SADB_X_EXT_NAT_T_DPORT: 3689 if (sav->natt == NULL) 3690 continue; 3691 m = key_setsadbxport(sav->natt->dport, 3692 SADB_X_EXT_NAT_T_DPORT); 3693 if (!m) 3694 goto fail; 3695 break; 3696 3697 case SADB_X_EXT_NAT_T_SPORT: 3698 if (sav->natt == NULL) 3699 continue; 3700 m = key_setsadbxport(sav->natt->sport, 3701 SADB_X_EXT_NAT_T_SPORT); 3702 if (!m) 3703 goto fail; 3704 break; 3705 3706 case SADB_X_EXT_NAT_T_OAI: 3707 if (sav->natt == NULL || 3708 (sav->natt->flags & IPSEC_NATT_F_OAI) == 0) 3709 continue; 3710 m = key_setsadbaddr(SADB_X_EXT_NAT_T_OAI, 3711 &sav->natt->oai.sa, FULLMASK, IPSEC_ULPROTO_ANY); 3712 if (!m) 3713 goto fail; 3714 break; 3715 case SADB_X_EXT_NAT_T_OAR: 3716 if (sav->natt == NULL || 3717 (sav->natt->flags & IPSEC_NATT_F_OAR) == 0) 3718 continue; 3719 m = key_setsadbaddr(SADB_X_EXT_NAT_T_OAR, 3720 &sav->natt->oar.sa, FULLMASK, IPSEC_ULPROTO_ANY); 3721 if (!m) 3722 goto fail; 3723 break; 3724 case SADB_X_EXT_NAT_T_FRAG: 3725 /* We do not (yet) support those. */ 3726 continue; 3727 3728 case SADB_EXT_ADDRESS_PROXY: 3729 case SADB_EXT_IDENTITY_SRC: 3730 case SADB_EXT_IDENTITY_DST: 3731 /* XXX: should we brought from SPD ? */ 3732 case SADB_EXT_SENSITIVITY: 3733 default: 3734 continue; 3735 } 3736 3737 if (!m) 3738 goto fail; 3739 if (tres) 3740 m_cat(m, tres); 3741 tres = m; 3742 } 3743 3744 m_cat(result, tres); 3745 tres = NULL; 3746 if (result->m_len < sizeof(struct sadb_msg)) { 3747 result = m_pullup(result, sizeof(struct sadb_msg)); 3748 if (result == NULL) 3749 goto fail; 3750 } 3751 3752 result->m_pkthdr.len = 0; 3753 for (m = result; m; m = m->m_next) 3754 result->m_pkthdr.len += m->m_len; 3755 3756 mtod(result, struct sadb_msg *)->sadb_msg_len = 3757 PFKEY_UNIT64(result->m_pkthdr.len); 3758 3759 return result; 3760 3761 fail: 3762 m_freem(result); 3763 m_freem(tres); 3764 return NULL; 3765 } 3766 3767 /* 3768 * set data into sadb_msg. 3769 */ 3770 static struct mbuf * 3771 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq, 3772 pid_t pid, u_int16_t reserved) 3773 { 3774 struct mbuf *m; 3775 struct sadb_msg *p; 3776 int len; 3777 3778 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 3779 if (len > MCLBYTES) 3780 return NULL; 3781 MGETHDR(m, M_NOWAIT, MT_DATA); 3782 if (m && len > MHLEN) { 3783 if (!(MCLGET(m, M_NOWAIT))) { 3784 m_freem(m); 3785 m = NULL; 3786 } 3787 } 3788 if (!m) 3789 return NULL; 3790 m->m_pkthdr.len = m->m_len = len; 3791 m->m_next = NULL; 3792 3793 p = mtod(m, struct sadb_msg *); 3794 3795 bzero(p, len); 3796 p->sadb_msg_version = PF_KEY_V2; 3797 p->sadb_msg_type = type; 3798 p->sadb_msg_errno = 0; 3799 p->sadb_msg_satype = satype; 3800 p->sadb_msg_len = PFKEY_UNIT64(tlen); 3801 p->sadb_msg_reserved = reserved; 3802 p->sadb_msg_seq = seq; 3803 p->sadb_msg_pid = (u_int32_t)pid; 3804 3805 return m; 3806 } 3807 3808 /* 3809 * copy secasvar data into sadb_address. 3810 */ 3811 static struct mbuf * 3812 key_setsadbsa(struct secasvar *sav) 3813 { 3814 struct mbuf *m; 3815 struct sadb_sa *p; 3816 int len; 3817 3818 len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); 3819 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3820 if (m == NULL) 3821 return (NULL); 3822 m_align(m, len); 3823 m->m_len = len; 3824 p = mtod(m, struct sadb_sa *); 3825 bzero(p, len); 3826 p->sadb_sa_len = PFKEY_UNIT64(len); 3827 p->sadb_sa_exttype = SADB_EXT_SA; 3828 p->sadb_sa_spi = sav->spi; 3829 p->sadb_sa_replay = sav->replay ? 3830 (sav->replay->wsize > UINT8_MAX ? UINT8_MAX : 3831 sav->replay->wsize): 0; 3832 p->sadb_sa_state = sav->state; 3833 p->sadb_sa_auth = sav->alg_auth; 3834 p->sadb_sa_encrypt = sav->alg_enc; 3835 p->sadb_sa_flags = sav->flags & SADB_KEY_FLAGS_MAX; 3836 return (m); 3837 } 3838 3839 /* 3840 * set data into sadb_address. 3841 */ 3842 static struct mbuf * 3843 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, 3844 u_int8_t prefixlen, u_int16_t ul_proto) 3845 { 3846 struct mbuf *m; 3847 struct sadb_address *p; 3848 size_t len; 3849 3850 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + 3851 PFKEY_ALIGN8(saddr->sa_len); 3852 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3853 if (m == NULL) 3854 return (NULL); 3855 m_align(m, len); 3856 m->m_len = len; 3857 p = mtod(m, struct sadb_address *); 3858 3859 bzero(p, len); 3860 p->sadb_address_len = PFKEY_UNIT64(len); 3861 p->sadb_address_exttype = exttype; 3862 p->sadb_address_proto = ul_proto; 3863 if (prefixlen == FULLMASK) { 3864 switch (saddr->sa_family) { 3865 case AF_INET: 3866 prefixlen = sizeof(struct in_addr) << 3; 3867 break; 3868 case AF_INET6: 3869 prefixlen = sizeof(struct in6_addr) << 3; 3870 break; 3871 default: 3872 ; /*XXX*/ 3873 } 3874 } 3875 p->sadb_address_prefixlen = prefixlen; 3876 p->sadb_address_reserved = 0; 3877 3878 bcopy(saddr, 3879 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)), 3880 saddr->sa_len); 3881 3882 return m; 3883 } 3884 3885 /* 3886 * set data into sadb_x_sa2. 3887 */ 3888 static struct mbuf * 3889 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid) 3890 { 3891 struct mbuf *m; 3892 struct sadb_x_sa2 *p; 3893 size_t len; 3894 3895 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); 3896 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3897 if (m == NULL) 3898 return (NULL); 3899 m_align(m, len); 3900 m->m_len = len; 3901 p = mtod(m, struct sadb_x_sa2 *); 3902 3903 bzero(p, len); 3904 p->sadb_x_sa2_len = PFKEY_UNIT64(len); 3905 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 3906 p->sadb_x_sa2_mode = mode; 3907 p->sadb_x_sa2_reserved1 = 0; 3908 p->sadb_x_sa2_reserved2 = 0; 3909 p->sadb_x_sa2_sequence = seq; 3910 p->sadb_x_sa2_reqid = reqid; 3911 3912 return m; 3913 } 3914 3915 /* 3916 * Set data into sadb_x_sa_replay. 3917 */ 3918 static struct mbuf * 3919 key_setsadbxsareplay(u_int32_t replay) 3920 { 3921 struct mbuf *m; 3922 struct sadb_x_sa_replay *p; 3923 size_t len; 3924 3925 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa_replay)); 3926 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3927 if (m == NULL) 3928 return (NULL); 3929 m_align(m, len); 3930 m->m_len = len; 3931 p = mtod(m, struct sadb_x_sa_replay *); 3932 3933 bzero(p, len); 3934 p->sadb_x_sa_replay_len = PFKEY_UNIT64(len); 3935 p->sadb_x_sa_replay_exttype = SADB_X_EXT_SA_REPLAY; 3936 p->sadb_x_sa_replay_replay = (replay << 3); 3937 3938 return m; 3939 } 3940 3941 /* 3942 * Set a type in sadb_x_nat_t_type. 3943 */ 3944 static struct mbuf * 3945 key_setsadbxtype(u_int16_t type) 3946 { 3947 struct mbuf *m; 3948 size_t len; 3949 struct sadb_x_nat_t_type *p; 3950 3951 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type)); 3952 3953 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3954 if (m == NULL) 3955 return (NULL); 3956 m_align(m, len); 3957 m->m_len = len; 3958 p = mtod(m, struct sadb_x_nat_t_type *); 3959 3960 bzero(p, len); 3961 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len); 3962 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; 3963 p->sadb_x_nat_t_type_type = type; 3964 3965 return (m); 3966 } 3967 /* 3968 * Set a port in sadb_x_nat_t_port. 3969 * In contrast to default RFC 2367 behaviour, port is in network byte order. 3970 */ 3971 static struct mbuf * 3972 key_setsadbxport(u_int16_t port, u_int16_t type) 3973 { 3974 struct mbuf *m; 3975 size_t len; 3976 struct sadb_x_nat_t_port *p; 3977 3978 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port)); 3979 3980 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3981 if (m == NULL) 3982 return (NULL); 3983 m_align(m, len); 3984 m->m_len = len; 3985 p = mtod(m, struct sadb_x_nat_t_port *); 3986 3987 bzero(p, len); 3988 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len); 3989 p->sadb_x_nat_t_port_exttype = type; 3990 p->sadb_x_nat_t_port_port = port; 3991 3992 return (m); 3993 } 3994 3995 /* 3996 * Get port from sockaddr. Port is in network byte order. 3997 */ 3998 uint16_t 3999 key_portfromsaddr(struct sockaddr *sa) 4000 { 4001 4002 switch (sa->sa_family) { 4003 #ifdef INET 4004 case AF_INET: 4005 return ((struct sockaddr_in *)sa)->sin_port; 4006 #endif 4007 #ifdef INET6 4008 case AF_INET6: 4009 return ((struct sockaddr_in6 *)sa)->sin6_port; 4010 #endif 4011 } 4012 return (0); 4013 } 4014 4015 /* 4016 * Set port in struct sockaddr. Port is in network byte order. 4017 */ 4018 void 4019 key_porttosaddr(struct sockaddr *sa, uint16_t port) 4020 { 4021 4022 switch (sa->sa_family) { 4023 #ifdef INET 4024 case AF_INET: 4025 ((struct sockaddr_in *)sa)->sin_port = port; 4026 break; 4027 #endif 4028 #ifdef INET6 4029 case AF_INET6: 4030 ((struct sockaddr_in6 *)sa)->sin6_port = port; 4031 break; 4032 #endif 4033 default: 4034 ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n", 4035 __func__, sa->sa_family)); 4036 break; 4037 } 4038 } 4039 4040 /* 4041 * set data into sadb_x_policy 4042 */ 4043 static struct mbuf * 4044 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id, u_int32_t priority) 4045 { 4046 struct mbuf *m; 4047 struct sadb_x_policy *p; 4048 size_t len; 4049 4050 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); 4051 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 4052 if (m == NULL) 4053 return (NULL); 4054 m_align(m, len); 4055 m->m_len = len; 4056 p = mtod(m, struct sadb_x_policy *); 4057 4058 bzero(p, len); 4059 p->sadb_x_policy_len = PFKEY_UNIT64(len); 4060 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 4061 p->sadb_x_policy_type = type; 4062 p->sadb_x_policy_dir = dir; 4063 p->sadb_x_policy_id = id; 4064 p->sadb_x_policy_priority = priority; 4065 4066 return m; 4067 } 4068 4069 /* %%% utilities */ 4070 /* Take a key message (sadb_key) from the socket and turn it into one 4071 * of the kernel's key structures (seckey). 4072 * 4073 * IN: pointer to the src 4074 * OUT: NULL no more memory 4075 */ 4076 struct seckey * 4077 key_dup_keymsg(const struct sadb_key *src, size_t len, 4078 struct malloc_type *type) 4079 { 4080 struct seckey *dst; 4081 4082 dst = malloc(sizeof(*dst), type, M_NOWAIT); 4083 if (dst != NULL) { 4084 dst->bits = src->sadb_key_bits; 4085 dst->key_data = malloc(len, type, M_NOWAIT); 4086 if (dst->key_data != NULL) { 4087 bcopy((const char *)(src + 1), dst->key_data, len); 4088 } else { 4089 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 4090 __func__)); 4091 free(dst, type); 4092 dst = NULL; 4093 } 4094 } else { 4095 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 4096 __func__)); 4097 4098 } 4099 return (dst); 4100 } 4101 4102 /* Take a lifetime message (sadb_lifetime) passed in on a socket and 4103 * turn it into one of the kernel's lifetime structures (seclifetime). 4104 * 4105 * IN: pointer to the destination, source and malloc type 4106 * OUT: NULL, no more memory 4107 */ 4108 4109 static struct seclifetime * 4110 key_dup_lifemsg(const struct sadb_lifetime *src, struct malloc_type *type) 4111 { 4112 struct seclifetime *dst; 4113 4114 dst = malloc(sizeof(*dst), type, M_NOWAIT); 4115 if (dst == NULL) { 4116 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 4117 return (NULL); 4118 } 4119 dst->allocations = src->sadb_lifetime_allocations; 4120 dst->bytes = src->sadb_lifetime_bytes; 4121 dst->addtime = src->sadb_lifetime_addtime; 4122 dst->usetime = src->sadb_lifetime_usetime; 4123 return (dst); 4124 } 4125 4126 /* 4127 * compare two secasindex structure. 4128 * flag can specify to compare 2 saidxes. 4129 * compare two secasindex structure without both mode and reqid. 4130 * don't compare port. 4131 * IN: 4132 * saidx0: source, it can be in SAD. 4133 * saidx1: object. 4134 * OUT: 4135 * 1 : equal 4136 * 0 : not equal 4137 */ 4138 static int 4139 key_cmpsaidx(const struct secasindex *saidx0, const struct secasindex *saidx1, 4140 int flag) 4141 { 4142 4143 /* sanity */ 4144 if (saidx0 == NULL && saidx1 == NULL) 4145 return 1; 4146 4147 if (saidx0 == NULL || saidx1 == NULL) 4148 return 0; 4149 4150 if (saidx0->proto != saidx1->proto) 4151 return 0; 4152 4153 if (flag == CMP_EXACTLY) { 4154 if (saidx0->mode != saidx1->mode) 4155 return 0; 4156 if (saidx0->reqid != saidx1->reqid) 4157 return 0; 4158 if (bcmp(&saidx0->src, &saidx1->src, 4159 saidx0->src.sa.sa_len) != 0 || 4160 bcmp(&saidx0->dst, &saidx1->dst, 4161 saidx0->dst.sa.sa_len) != 0) 4162 return 0; 4163 } else { 4164 4165 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ 4166 if (flag == CMP_MODE_REQID || flag == CMP_REQID) { 4167 /* 4168 * If reqid of SPD is non-zero, unique SA is required. 4169 * The result must be of same reqid in this case. 4170 */ 4171 if (saidx1->reqid != 0 && 4172 saidx0->reqid != saidx1->reqid) 4173 return 0; 4174 } 4175 4176 if (flag == CMP_MODE_REQID) { 4177 if (saidx0->mode != IPSEC_MODE_ANY 4178 && saidx0->mode != saidx1->mode) 4179 return 0; 4180 } 4181 4182 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, 0) != 0) 4183 return 0; 4184 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, 0) != 0) 4185 return 0; 4186 } 4187 4188 return 1; 4189 } 4190 4191 /* 4192 * compare two secindex structure exactly. 4193 * IN: 4194 * spidx0: source, it is often in SPD. 4195 * spidx1: object, it is often from PFKEY message. 4196 * OUT: 4197 * 1 : equal 4198 * 0 : not equal 4199 */ 4200 static int 4201 key_cmpspidx_exactly(struct secpolicyindex *spidx0, 4202 struct secpolicyindex *spidx1) 4203 { 4204 /* sanity */ 4205 if (spidx0 == NULL && spidx1 == NULL) 4206 return 1; 4207 4208 if (spidx0 == NULL || spidx1 == NULL) 4209 return 0; 4210 4211 if (spidx0->prefs != spidx1->prefs 4212 || spidx0->prefd != spidx1->prefd 4213 || spidx0->ul_proto != spidx1->ul_proto 4214 || spidx0->dir != spidx1->dir) 4215 return 0; 4216 4217 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 && 4218 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0; 4219 } 4220 4221 /* 4222 * compare two secindex structure with mask. 4223 * IN: 4224 * spidx0: source, it is often in SPD. 4225 * spidx1: object, it is often from IP header. 4226 * OUT: 4227 * 1 : equal 4228 * 0 : not equal 4229 */ 4230 static int 4231 key_cmpspidx_withmask(struct secpolicyindex *spidx0, 4232 struct secpolicyindex *spidx1) 4233 { 4234 /* sanity */ 4235 if (spidx0 == NULL && spidx1 == NULL) 4236 return 1; 4237 4238 if (spidx0 == NULL || spidx1 == NULL) 4239 return 0; 4240 4241 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || 4242 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || 4243 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || 4244 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) 4245 return 0; 4246 4247 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ 4248 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY 4249 && spidx0->ul_proto != spidx1->ul_proto) 4250 return 0; 4251 4252 switch (spidx0->src.sa.sa_family) { 4253 case AF_INET: 4254 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY 4255 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) 4256 return 0; 4257 if (!key_bbcmp(&spidx0->src.sin.sin_addr, 4258 &spidx1->src.sin.sin_addr, spidx0->prefs)) 4259 return 0; 4260 break; 4261 case AF_INET6: 4262 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY 4263 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) 4264 return 0; 4265 /* 4266 * scope_id check. if sin6_scope_id is 0, we regard it 4267 * as a wildcard scope, which matches any scope zone ID. 4268 */ 4269 if (spidx0->src.sin6.sin6_scope_id && 4270 spidx1->src.sin6.sin6_scope_id && 4271 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) 4272 return 0; 4273 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr, 4274 &spidx1->src.sin6.sin6_addr, spidx0->prefs)) 4275 return 0; 4276 break; 4277 default: 4278 /* XXX */ 4279 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) 4280 return 0; 4281 break; 4282 } 4283 4284 switch (spidx0->dst.sa.sa_family) { 4285 case AF_INET: 4286 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY 4287 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) 4288 return 0; 4289 if (!key_bbcmp(&spidx0->dst.sin.sin_addr, 4290 &spidx1->dst.sin.sin_addr, spidx0->prefd)) 4291 return 0; 4292 break; 4293 case AF_INET6: 4294 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY 4295 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) 4296 return 0; 4297 /* 4298 * scope_id check. if sin6_scope_id is 0, we regard it 4299 * as a wildcard scope, which matches any scope zone ID. 4300 */ 4301 if (spidx0->dst.sin6.sin6_scope_id && 4302 spidx1->dst.sin6.sin6_scope_id && 4303 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) 4304 return 0; 4305 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr, 4306 &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) 4307 return 0; 4308 break; 4309 default: 4310 /* XXX */ 4311 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) 4312 return 0; 4313 break; 4314 } 4315 4316 /* XXX Do we check other field ? e.g. flowinfo */ 4317 4318 return 1; 4319 } 4320 4321 #ifdef satosin 4322 #undef satosin 4323 #endif 4324 #define satosin(s) ((const struct sockaddr_in *)s) 4325 #ifdef satosin6 4326 #undef satosin6 4327 #endif 4328 #define satosin6(s) ((const struct sockaddr_in6 *)s) 4329 /* returns 0 on match */ 4330 int 4331 key_sockaddrcmp(const struct sockaddr *sa1, const struct sockaddr *sa2, 4332 int port) 4333 { 4334 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) 4335 return 1; 4336 4337 switch (sa1->sa_family) { 4338 #ifdef INET 4339 case AF_INET: 4340 if (sa1->sa_len != sizeof(struct sockaddr_in)) 4341 return 1; 4342 if (satosin(sa1)->sin_addr.s_addr != 4343 satosin(sa2)->sin_addr.s_addr) { 4344 return 1; 4345 } 4346 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port) 4347 return 1; 4348 break; 4349 #endif 4350 #ifdef INET6 4351 case AF_INET6: 4352 if (sa1->sa_len != sizeof(struct sockaddr_in6)) 4353 return 1; /*EINVAL*/ 4354 if (satosin6(sa1)->sin6_scope_id != 4355 satosin6(sa2)->sin6_scope_id) { 4356 return 1; 4357 } 4358 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr, 4359 &satosin6(sa2)->sin6_addr)) { 4360 return 1; 4361 } 4362 if (port && 4363 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) { 4364 return 1; 4365 } 4366 break; 4367 #endif 4368 default: 4369 if (bcmp(sa1, sa2, sa1->sa_len) != 0) 4370 return 1; 4371 break; 4372 } 4373 4374 return 0; 4375 } 4376 4377 /* returns 0 on match */ 4378 int 4379 key_sockaddrcmp_withmask(const struct sockaddr *sa1, 4380 const struct sockaddr *sa2, size_t mask) 4381 { 4382 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) 4383 return (1); 4384 4385 switch (sa1->sa_family) { 4386 #ifdef INET 4387 case AF_INET: 4388 return (!key_bbcmp(&satosin(sa1)->sin_addr, 4389 &satosin(sa2)->sin_addr, mask)); 4390 #endif 4391 #ifdef INET6 4392 case AF_INET6: 4393 if (satosin6(sa1)->sin6_scope_id != 4394 satosin6(sa2)->sin6_scope_id) 4395 return (1); 4396 return (!key_bbcmp(&satosin6(sa1)->sin6_addr, 4397 &satosin6(sa2)->sin6_addr, mask)); 4398 #endif 4399 } 4400 return (1); 4401 } 4402 #undef satosin 4403 #undef satosin6 4404 4405 /* 4406 * compare two buffers with mask. 4407 * IN: 4408 * addr1: source 4409 * addr2: object 4410 * bits: Number of bits to compare 4411 * OUT: 4412 * 1 : equal 4413 * 0 : not equal 4414 */ 4415 static int 4416 key_bbcmp(const void *a1, const void *a2, u_int bits) 4417 { 4418 const unsigned char *p1 = a1; 4419 const unsigned char *p2 = a2; 4420 4421 /* XXX: This could be considerably faster if we compare a word 4422 * at a time, but it is complicated on LSB Endian machines */ 4423 4424 /* Handle null pointers */ 4425 if (p1 == NULL || p2 == NULL) 4426 return (p1 == p2); 4427 4428 while (bits >= 8) { 4429 if (*p1++ != *p2++) 4430 return 0; 4431 bits -= 8; 4432 } 4433 4434 if (bits > 0) { 4435 u_int8_t mask = ~((1<<(8-bits))-1); 4436 if ((*p1 & mask) != (*p2 & mask)) 4437 return 0; 4438 } 4439 return 1; /* Match! */ 4440 } 4441 4442 static void 4443 key_flush_spd(time_t now) 4444 { 4445 SPTREE_RLOCK_TRACKER; 4446 struct secpolicy_list drainq; 4447 struct secpolicy *sp, *nextsp; 4448 u_int dir; 4449 4450 LIST_INIT(&drainq); 4451 SPTREE_RLOCK(); 4452 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 4453 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 4454 if (sp->lifetime == 0 && sp->validtime == 0) 4455 continue; 4456 if ((sp->lifetime && 4457 now - sp->created > sp->lifetime) || 4458 (sp->validtime && 4459 now - sp->lastused > sp->validtime)) { 4460 /* Hold extra reference to send SPDEXPIRE */ 4461 SP_ADDREF(sp); 4462 LIST_INSERT_HEAD(&drainq, sp, drainq); 4463 } 4464 } 4465 } 4466 SPTREE_RUNLOCK(); 4467 if (LIST_EMPTY(&drainq)) 4468 return; 4469 4470 SPTREE_WLOCK(); 4471 sp = LIST_FIRST(&drainq); 4472 while (sp != NULL) { 4473 nextsp = LIST_NEXT(sp, drainq); 4474 /* Check that SP is still linked */ 4475 if (sp->state != IPSEC_SPSTATE_ALIVE) { 4476 LIST_REMOVE(sp, drainq); 4477 key_freesp(&sp); /* release extra reference */ 4478 sp = nextsp; 4479 continue; 4480 } 4481 TAILQ_REMOVE(&V_sptree[sp->spidx.dir], sp, chain); 4482 V_spd_size--; 4483 LIST_REMOVE(sp, idhash); 4484 sp->state = IPSEC_SPSTATE_DEAD; 4485 sp = nextsp; 4486 } 4487 V_sp_genid++; 4488 SPTREE_WUNLOCK(); 4489 if (SPDCACHE_ENABLED()) 4490 spdcache_clear(); 4491 4492 sp = LIST_FIRST(&drainq); 4493 while (sp != NULL) { 4494 nextsp = LIST_NEXT(sp, drainq); 4495 key_spdexpire(sp); 4496 key_freesp(&sp); /* release extra reference */ 4497 key_freesp(&sp); /* release last reference */ 4498 sp = nextsp; 4499 } 4500 } 4501 4502 static void 4503 key_flush_sad(time_t now) 4504 { 4505 SAHTREE_RLOCK_TRACKER; 4506 struct secashead_list emptyq; 4507 struct secasvar_list drainq, hexpireq, sexpireq, freeq; 4508 struct secashead *sah, *nextsah; 4509 struct secasvar *sav, *nextsav; 4510 4511 LIST_INIT(&drainq); 4512 LIST_INIT(&hexpireq); 4513 LIST_INIT(&sexpireq); 4514 LIST_INIT(&emptyq); 4515 4516 SAHTREE_RLOCK(); 4517 TAILQ_FOREACH(sah, &V_sahtree, chain) { 4518 /* Check for empty SAH */ 4519 if (TAILQ_EMPTY(&sah->savtree_larval) && 4520 TAILQ_EMPTY(&sah->savtree_alive)) { 4521 SAH_ADDREF(sah); 4522 LIST_INSERT_HEAD(&emptyq, sah, drainq); 4523 continue; 4524 } 4525 /* Add all stale LARVAL SAs into drainq */ 4526 TAILQ_FOREACH(sav, &sah->savtree_larval, chain) { 4527 if (now - sav->created < V_key_larval_lifetime) 4528 continue; 4529 SAV_ADDREF(sav); 4530 LIST_INSERT_HEAD(&drainq, sav, drainq); 4531 } 4532 TAILQ_FOREACH(sav, &sah->savtree_alive, chain) { 4533 /* lifetimes aren't specified */ 4534 if (sav->lft_h == NULL) 4535 continue; 4536 SECASVAR_LOCK(sav); 4537 /* 4538 * Check again with lock held, because it may 4539 * be updated by SADB_UPDATE. 4540 */ 4541 if (sav->lft_h == NULL) { 4542 SECASVAR_UNLOCK(sav); 4543 continue; 4544 } 4545 /* 4546 * RFC 2367: 4547 * HARD lifetimes MUST take precedence over SOFT 4548 * lifetimes, meaning if the HARD and SOFT lifetimes 4549 * are the same, the HARD lifetime will appear on the 4550 * EXPIRE message. 4551 */ 4552 /* check HARD lifetime */ 4553 if ((sav->lft_h->addtime != 0 && 4554 now - sav->created > sav->lft_h->addtime) || 4555 (sav->lft_h->usetime != 0 && sav->firstused && 4556 now - sav->firstused > sav->lft_h->usetime) || 4557 (sav->lft_h->bytes != 0 && counter_u64_fetch( 4558 sav->lft_c_bytes) > sav->lft_h->bytes)) { 4559 SECASVAR_UNLOCK(sav); 4560 SAV_ADDREF(sav); 4561 LIST_INSERT_HEAD(&hexpireq, sav, drainq); 4562 continue; 4563 } 4564 /* check SOFT lifetime (only for MATURE SAs) */ 4565 if (sav->state == SADB_SASTATE_MATURE && ( 4566 (sav->lft_s->addtime != 0 && 4567 now - sav->created > sav->lft_s->addtime) || 4568 (sav->lft_s->usetime != 0 && sav->firstused && 4569 now - sav->firstused > sav->lft_s->usetime) || 4570 (sav->lft_s->bytes != 0 && counter_u64_fetch( 4571 sav->lft_c_bytes) > sav->lft_s->bytes))) { 4572 SECASVAR_UNLOCK(sav); 4573 SAV_ADDREF(sav); 4574 LIST_INSERT_HEAD(&sexpireq, sav, drainq); 4575 continue; 4576 } 4577 SECASVAR_UNLOCK(sav); 4578 } 4579 } 4580 SAHTREE_RUNLOCK(); 4581 4582 if (LIST_EMPTY(&emptyq) && LIST_EMPTY(&drainq) && 4583 LIST_EMPTY(&hexpireq) && LIST_EMPTY(&sexpireq)) 4584 return; 4585 4586 LIST_INIT(&freeq); 4587 SAHTREE_WLOCK(); 4588 /* Unlink stale LARVAL SAs */ 4589 sav = LIST_FIRST(&drainq); 4590 while (sav != NULL) { 4591 nextsav = LIST_NEXT(sav, drainq); 4592 /* Check that SA is still LARVAL */ 4593 if (sav->state != SADB_SASTATE_LARVAL) { 4594 LIST_REMOVE(sav, drainq); 4595 LIST_INSERT_HEAD(&freeq, sav, drainq); 4596 sav = nextsav; 4597 continue; 4598 } 4599 TAILQ_REMOVE(&sav->sah->savtree_larval, sav, chain); 4600 LIST_REMOVE(sav, spihash); 4601 sav->state = SADB_SASTATE_DEAD; 4602 sav = nextsav; 4603 } 4604 /* Unlink all SAs with expired HARD lifetime */ 4605 sav = LIST_FIRST(&hexpireq); 4606 while (sav != NULL) { 4607 nextsav = LIST_NEXT(sav, drainq); 4608 /* Check that SA is not unlinked */ 4609 if (sav->state == SADB_SASTATE_DEAD) { 4610 LIST_REMOVE(sav, drainq); 4611 LIST_INSERT_HEAD(&freeq, sav, drainq); 4612 sav = nextsav; 4613 continue; 4614 } 4615 TAILQ_REMOVE(&sav->sah->savtree_alive, sav, chain); 4616 LIST_REMOVE(sav, spihash); 4617 sav->state = SADB_SASTATE_DEAD; 4618 sav = nextsav; 4619 } 4620 /* Mark all SAs with expired SOFT lifetime as DYING */ 4621 sav = LIST_FIRST(&sexpireq); 4622 while (sav != NULL) { 4623 nextsav = LIST_NEXT(sav, drainq); 4624 /* Check that SA is not unlinked */ 4625 if (sav->state == SADB_SASTATE_DEAD) { 4626 LIST_REMOVE(sav, drainq); 4627 LIST_INSERT_HEAD(&freeq, sav, drainq); 4628 sav = nextsav; 4629 continue; 4630 } 4631 /* 4632 * NOTE: this doesn't change SA order in the chain. 4633 */ 4634 sav->state = SADB_SASTATE_DYING; 4635 sav = nextsav; 4636 } 4637 /* Unlink empty SAHs */ 4638 sah = LIST_FIRST(&emptyq); 4639 while (sah != NULL) { 4640 nextsah = LIST_NEXT(sah, drainq); 4641 /* Check that SAH is still empty and not unlinked */ 4642 if (sah->state == SADB_SASTATE_DEAD || 4643 !TAILQ_EMPTY(&sah->savtree_larval) || 4644 !TAILQ_EMPTY(&sah->savtree_alive)) { 4645 LIST_REMOVE(sah, drainq); 4646 key_freesah(&sah); /* release extra reference */ 4647 sah = nextsah; 4648 continue; 4649 } 4650 TAILQ_REMOVE(&V_sahtree, sah, chain); 4651 LIST_REMOVE(sah, addrhash); 4652 sah->state = SADB_SASTATE_DEAD; 4653 sah = nextsah; 4654 } 4655 SAHTREE_WUNLOCK(); 4656 4657 /* Send SPDEXPIRE messages */ 4658 sav = LIST_FIRST(&hexpireq); 4659 while (sav != NULL) { 4660 nextsav = LIST_NEXT(sav, drainq); 4661 key_expire(sav, 1); 4662 key_freesah(&sav->sah); /* release reference from SAV */ 4663 key_freesav(&sav); /* release extra reference */ 4664 key_freesav(&sav); /* release last reference */ 4665 sav = nextsav; 4666 } 4667 sav = LIST_FIRST(&sexpireq); 4668 while (sav != NULL) { 4669 nextsav = LIST_NEXT(sav, drainq); 4670 key_expire(sav, 0); 4671 key_freesav(&sav); /* release extra reference */ 4672 sav = nextsav; 4673 } 4674 /* Free stale LARVAL SAs */ 4675 sav = LIST_FIRST(&drainq); 4676 while (sav != NULL) { 4677 nextsav = LIST_NEXT(sav, drainq); 4678 key_freesah(&sav->sah); /* release reference from SAV */ 4679 key_freesav(&sav); /* release extra reference */ 4680 key_freesav(&sav); /* release last reference */ 4681 sav = nextsav; 4682 } 4683 /* Free SAs that were unlinked/changed by someone else */ 4684 sav = LIST_FIRST(&freeq); 4685 while (sav != NULL) { 4686 nextsav = LIST_NEXT(sav, drainq); 4687 key_freesav(&sav); /* release extra reference */ 4688 sav = nextsav; 4689 } 4690 /* Free empty SAH */ 4691 sah = LIST_FIRST(&emptyq); 4692 while (sah != NULL) { 4693 nextsah = LIST_NEXT(sah, drainq); 4694 key_freesah(&sah); /* release extra reference */ 4695 key_freesah(&sah); /* release last reference */ 4696 sah = nextsah; 4697 } 4698 } 4699 4700 static void 4701 key_flush_acq(time_t now) 4702 { 4703 struct secacq *acq, *nextacq; 4704 4705 /* ACQ tree */ 4706 ACQ_LOCK(); 4707 acq = LIST_FIRST(&V_acqtree); 4708 while (acq != NULL) { 4709 nextacq = LIST_NEXT(acq, chain); 4710 if (now - acq->created > V_key_blockacq_lifetime) { 4711 LIST_REMOVE(acq, chain); 4712 LIST_REMOVE(acq, addrhash); 4713 LIST_REMOVE(acq, seqhash); 4714 free(acq, M_IPSEC_SAQ); 4715 } 4716 acq = nextacq; 4717 } 4718 ACQ_UNLOCK(); 4719 } 4720 4721 static void 4722 key_flush_spacq(time_t now) 4723 { 4724 struct secspacq *acq, *nextacq; 4725 4726 /* SP ACQ tree */ 4727 SPACQ_LOCK(); 4728 for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) { 4729 nextacq = LIST_NEXT(acq, chain); 4730 if (now - acq->created > V_key_blockacq_lifetime 4731 && __LIST_CHAINED(acq)) { 4732 LIST_REMOVE(acq, chain); 4733 free(acq, M_IPSEC_SAQ); 4734 } 4735 } 4736 SPACQ_UNLOCK(); 4737 } 4738 4739 /* 4740 * time handler. 4741 * scanning SPD and SAD to check status for each entries, 4742 * and do to remove or to expire. 4743 * XXX: year 2038 problem may remain. 4744 */ 4745 static void 4746 key_timehandler(void *arg) 4747 { 4748 VNET_ITERATOR_DECL(vnet_iter); 4749 time_t now = time_second; 4750 4751 VNET_LIST_RLOCK_NOSLEEP(); 4752 VNET_FOREACH(vnet_iter) { 4753 CURVNET_SET(vnet_iter); 4754 key_flush_spd(now); 4755 key_flush_sad(now); 4756 key_flush_acq(now); 4757 key_flush_spacq(now); 4758 CURVNET_RESTORE(); 4759 } 4760 VNET_LIST_RUNLOCK_NOSLEEP(); 4761 4762 #ifndef IPSEC_DEBUG2 4763 /* do exchange to tick time !! */ 4764 callout_schedule(&key_timer, hz); 4765 #endif /* IPSEC_DEBUG2 */ 4766 } 4767 4768 u_long 4769 key_random() 4770 { 4771 u_long value; 4772 4773 key_randomfill(&value, sizeof(value)); 4774 return value; 4775 } 4776 4777 void 4778 key_randomfill(void *p, size_t l) 4779 { 4780 size_t n; 4781 u_long v; 4782 static int warn = 1; 4783 4784 n = 0; 4785 n = (size_t)read_random(p, (u_int)l); 4786 /* last resort */ 4787 while (n < l) { 4788 v = random(); 4789 bcopy(&v, (u_int8_t *)p + n, 4790 l - n < sizeof(v) ? l - n : sizeof(v)); 4791 n += sizeof(v); 4792 4793 if (warn) { 4794 printf("WARNING: pseudo-random number generator " 4795 "used for IPsec processing\n"); 4796 warn = 0; 4797 } 4798 } 4799 } 4800 4801 /* 4802 * map SADB_SATYPE_* to IPPROTO_*. 4803 * if satype == SADB_SATYPE then satype is mapped to ~0. 4804 * OUT: 4805 * 0: invalid satype. 4806 */ 4807 static uint8_t 4808 key_satype2proto(uint8_t satype) 4809 { 4810 switch (satype) { 4811 case SADB_SATYPE_UNSPEC: 4812 return IPSEC_PROTO_ANY; 4813 case SADB_SATYPE_AH: 4814 return IPPROTO_AH; 4815 case SADB_SATYPE_ESP: 4816 return IPPROTO_ESP; 4817 case SADB_X_SATYPE_IPCOMP: 4818 return IPPROTO_IPCOMP; 4819 case SADB_X_SATYPE_TCPSIGNATURE: 4820 return IPPROTO_TCP; 4821 default: 4822 return 0; 4823 } 4824 /* NOTREACHED */ 4825 } 4826 4827 /* 4828 * map IPPROTO_* to SADB_SATYPE_* 4829 * OUT: 4830 * 0: invalid protocol type. 4831 */ 4832 static uint8_t 4833 key_proto2satype(uint8_t proto) 4834 { 4835 switch (proto) { 4836 case IPPROTO_AH: 4837 return SADB_SATYPE_AH; 4838 case IPPROTO_ESP: 4839 return SADB_SATYPE_ESP; 4840 case IPPROTO_IPCOMP: 4841 return SADB_X_SATYPE_IPCOMP; 4842 case IPPROTO_TCP: 4843 return SADB_X_SATYPE_TCPSIGNATURE; 4844 default: 4845 return 0; 4846 } 4847 /* NOTREACHED */ 4848 } 4849 4850 /* %%% PF_KEY */ 4851 /* 4852 * SADB_GETSPI processing is to receive 4853 * <base, (SA2), src address, dst address, (SPI range)> 4854 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND 4855 * tree with the status of LARVAL, and send 4856 * <base, SA(*), address(SD)> 4857 * to the IKMPd. 4858 * 4859 * IN: mhp: pointer to the pointer to each header. 4860 * OUT: NULL if fail. 4861 * other if success, return pointer to the message to send. 4862 */ 4863 static int 4864 key_getspi(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 4865 { 4866 struct secasindex saidx; 4867 struct sadb_address *src0, *dst0; 4868 struct secasvar *sav; 4869 uint32_t reqid, spi; 4870 int error; 4871 uint8_t mode, proto; 4872 4873 IPSEC_ASSERT(so != NULL, ("null socket")); 4874 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4875 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4876 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4877 4878 if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || 4879 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) 4880 #ifdef PFKEY_STRICT_CHECKS 4881 || SADB_CHECKHDR(mhp, SADB_EXT_SPIRANGE) 4882 #endif 4883 ) { 4884 ipseclog((LOG_DEBUG, 4885 "%s: invalid message: missing required header.\n", 4886 __func__)); 4887 error = EINVAL; 4888 goto fail; 4889 } 4890 if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || 4891 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST) 4892 #ifdef PFKEY_STRICT_CHECKS 4893 || SADB_CHECKLEN(mhp, SADB_EXT_SPIRANGE) 4894 #endif 4895 ) { 4896 ipseclog((LOG_DEBUG, 4897 "%s: invalid message: wrong header size.\n", __func__)); 4898 error = EINVAL; 4899 goto fail; 4900 } 4901 if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) { 4902 mode = IPSEC_MODE_ANY; 4903 reqid = 0; 4904 } else { 4905 if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) { 4906 ipseclog((LOG_DEBUG, 4907 "%s: invalid message: wrong header size.\n", 4908 __func__)); 4909 error = EINVAL; 4910 goto fail; 4911 } 4912 mode = ((struct sadb_x_sa2 *) 4913 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4914 reqid = ((struct sadb_x_sa2 *) 4915 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4916 } 4917 4918 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4919 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4920 4921 /* map satype to proto */ 4922 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4923 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4924 __func__)); 4925 error = EINVAL; 4926 goto fail; 4927 } 4928 error = key_checksockaddrs((struct sockaddr *)(src0 + 1), 4929 (struct sockaddr *)(dst0 + 1)); 4930 if (error != 0) { 4931 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); 4932 error = EINVAL; 4933 goto fail; 4934 } 4935 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4936 4937 /* SPI allocation */ 4938 spi = key_do_getnewspi( 4939 (struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE], &saidx); 4940 if (spi == 0) { 4941 /* 4942 * Requested SPI or SPI range is not available or 4943 * already used. 4944 */ 4945 error = EEXIST; 4946 goto fail; 4947 } 4948 sav = key_newsav(mhp, &saidx, spi, &error); 4949 if (sav == NULL) 4950 goto fail; 4951 4952 if (sav->seq != 0) { 4953 /* 4954 * RFC2367: 4955 * If the SADB_GETSPI message is in response to a 4956 * kernel-generated SADB_ACQUIRE, the sadb_msg_seq 4957 * MUST be the same as the SADB_ACQUIRE message. 4958 * 4959 * XXXAE: However it doesn't definethe behaviour how to 4960 * check this and what to do if it doesn't match. 4961 * Also what we should do if it matches? 4962 * 4963 * We can compare saidx used in SADB_ACQUIRE with saidx 4964 * used in SADB_GETSPI, but this probably can break 4965 * existing software. For now just warn if it doesn't match. 4966 * 4967 * XXXAE: anyway it looks useless. 4968 */ 4969 key_acqdone(&saidx, sav->seq); 4970 } 4971 KEYDBG(KEY_STAMP, 4972 printf("%s: SA(%p)\n", __func__, sav)); 4973 KEYDBG(KEY_DATA, kdebug_secasv(sav)); 4974 4975 { 4976 struct mbuf *n, *nn; 4977 struct sadb_sa *m_sa; 4978 struct sadb_msg *newmsg; 4979 int off, len; 4980 4981 /* create new sadb_msg to reply. */ 4982 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 4983 PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4984 4985 MGETHDR(n, M_NOWAIT, MT_DATA); 4986 if (len > MHLEN) { 4987 if (!(MCLGET(n, M_NOWAIT))) { 4988 m_freem(n); 4989 n = NULL; 4990 } 4991 } 4992 if (!n) { 4993 error = ENOBUFS; 4994 goto fail; 4995 } 4996 4997 n->m_len = len; 4998 n->m_next = NULL; 4999 off = 0; 5000 5001 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 5002 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 5003 5004 m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off); 5005 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); 5006 m_sa->sadb_sa_exttype = SADB_EXT_SA; 5007 m_sa->sadb_sa_spi = spi; /* SPI is already in network byte order */ 5008 off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); 5009 5010 IPSEC_ASSERT(off == len, 5011 ("length inconsistency (off %u len %u)", off, len)); 5012 5013 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, 5014 SADB_EXT_ADDRESS_DST); 5015 if (!n->m_next) { 5016 m_freem(n); 5017 error = ENOBUFS; 5018 goto fail; 5019 } 5020 5021 if (n->m_len < sizeof(struct sadb_msg)) { 5022 n = m_pullup(n, sizeof(struct sadb_msg)); 5023 if (n == NULL) 5024 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 5025 } 5026 5027 n->m_pkthdr.len = 0; 5028 for (nn = n; nn; nn = nn->m_next) 5029 n->m_pkthdr.len += nn->m_len; 5030 5031 newmsg = mtod(n, struct sadb_msg *); 5032 newmsg->sadb_msg_seq = sav->seq; 5033 newmsg->sadb_msg_errno = 0; 5034 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5035 5036 m_freem(m); 5037 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5038 } 5039 5040 fail: 5041 return (key_senderror(so, m, error)); 5042 } 5043 5044 /* 5045 * allocating new SPI 5046 * called by key_getspi(). 5047 * OUT: 5048 * 0: failure. 5049 * others: success, SPI in network byte order. 5050 */ 5051 static uint32_t 5052 key_do_getnewspi(struct sadb_spirange *spirange, struct secasindex *saidx) 5053 { 5054 uint32_t min, max, newspi, t; 5055 int count = V_key_spi_trycnt; 5056 5057 /* set spi range to allocate */ 5058 if (spirange != NULL) { 5059 min = spirange->sadb_spirange_min; 5060 max = spirange->sadb_spirange_max; 5061 } else { 5062 min = V_key_spi_minval; 5063 max = V_key_spi_maxval; 5064 } 5065 /* IPCOMP needs 2-byte SPI */ 5066 if (saidx->proto == IPPROTO_IPCOMP) { 5067 if (min >= 0x10000) 5068 min = 0xffff; 5069 if (max >= 0x10000) 5070 max = 0xffff; 5071 if (min > max) { 5072 t = min; min = max; max = t; 5073 } 5074 } 5075 5076 if (min == max) { 5077 if (!key_checkspidup(htonl(min))) { 5078 ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n", 5079 __func__, min)); 5080 return 0; 5081 } 5082 5083 count--; /* taking one cost. */ 5084 newspi = min; 5085 } else { 5086 5087 /* init SPI */ 5088 newspi = 0; 5089 5090 /* when requesting to allocate spi ranged */ 5091 while (count--) { 5092 /* generate pseudo-random SPI value ranged. */ 5093 newspi = min + (key_random() % (max - min + 1)); 5094 if (!key_checkspidup(htonl(newspi))) 5095 break; 5096 } 5097 5098 if (count == 0 || newspi == 0) { 5099 ipseclog((LOG_DEBUG, 5100 "%s: failed to allocate SPI.\n", __func__)); 5101 return 0; 5102 } 5103 } 5104 5105 /* statistics */ 5106 keystat.getspi_count = 5107 (keystat.getspi_count + V_key_spi_trycnt - count) / 2; 5108 5109 return (htonl(newspi)); 5110 } 5111 5112 /* 5113 * Find TCP-MD5 SA with corresponding secasindex. 5114 * If not found, return NULL and fill SPI with usable value if needed. 5115 */ 5116 static struct secasvar * 5117 key_getsav_tcpmd5(struct secasindex *saidx, uint32_t *spi) 5118 { 5119 SAHTREE_RLOCK_TRACKER; 5120 struct secashead *sah; 5121 struct secasvar *sav; 5122 5123 IPSEC_ASSERT(saidx->proto == IPPROTO_TCP, ("wrong proto")); 5124 SAHTREE_RLOCK(); 5125 LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) { 5126 if (sah->saidx.proto != IPPROTO_TCP) 5127 continue; 5128 if (!key_sockaddrcmp(&saidx->dst.sa, &sah->saidx.dst.sa, 0) && 5129 !key_sockaddrcmp(&saidx->src.sa, &sah->saidx.src.sa, 0)) 5130 break; 5131 } 5132 if (sah != NULL) { 5133 if (V_key_preferred_oldsa) 5134 sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue); 5135 else 5136 sav = TAILQ_FIRST(&sah->savtree_alive); 5137 if (sav != NULL) { 5138 SAV_ADDREF(sav); 5139 SAHTREE_RUNLOCK(); 5140 return (sav); 5141 } 5142 } 5143 if (spi == NULL) { 5144 /* No SPI required */ 5145 SAHTREE_RUNLOCK(); 5146 return (NULL); 5147 } 5148 /* Check that SPI is unique */ 5149 LIST_FOREACH(sav, SAVHASH_HASH(*spi), spihash) { 5150 if (sav->spi == *spi) 5151 break; 5152 } 5153 if (sav == NULL) { 5154 SAHTREE_RUNLOCK(); 5155 /* SPI is already unique */ 5156 return (NULL); 5157 } 5158 SAHTREE_RUNLOCK(); 5159 /* XXX: not optimal */ 5160 *spi = key_do_getnewspi(NULL, saidx); 5161 return (NULL); 5162 } 5163 5164 static int 5165 key_updateaddresses(struct socket *so, struct mbuf *m, 5166 const struct sadb_msghdr *mhp, struct secasvar *sav, 5167 struct secasindex *saidx) 5168 { 5169 struct sockaddr *newaddr; 5170 struct secashead *sah; 5171 struct secasvar *newsav, *tmp; 5172 struct mbuf *n; 5173 int error, isnew; 5174 5175 /* Check that we need to change SAH */ 5176 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_SRC)) { 5177 newaddr = (struct sockaddr *)( 5178 ((struct sadb_address *) 5179 mhp->ext[SADB_X_EXT_NEW_ADDRESS_SRC]) + 1); 5180 bcopy(newaddr, &saidx->src, newaddr->sa_len); 5181 key_porttosaddr(&saidx->src.sa, 0); 5182 } 5183 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_DST)) { 5184 newaddr = (struct sockaddr *)( 5185 ((struct sadb_address *) 5186 mhp->ext[SADB_X_EXT_NEW_ADDRESS_DST]) + 1); 5187 bcopy(newaddr, &saidx->dst, newaddr->sa_len); 5188 key_porttosaddr(&saidx->dst.sa, 0); 5189 } 5190 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_SRC) || 5191 !SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_DST)) { 5192 error = key_checksockaddrs(&saidx->src.sa, &saidx->dst.sa); 5193 if (error != 0) { 5194 ipseclog((LOG_DEBUG, "%s: invalid new sockaddr.\n", 5195 __func__)); 5196 return (error); 5197 } 5198 5199 sah = key_getsah(saidx); 5200 if (sah == NULL) { 5201 /* create a new SA index */ 5202 sah = key_newsah(saidx); 5203 if (sah == NULL) { 5204 ipseclog((LOG_DEBUG, 5205 "%s: No more memory.\n", __func__)); 5206 return (ENOBUFS); 5207 } 5208 isnew = 2; /* SAH is new */ 5209 } else 5210 isnew = 1; /* existing SAH is referenced */ 5211 } else { 5212 /* 5213 * src and dst addresses are still the same. 5214 * Do we want to change NAT-T config? 5215 */ 5216 if (sav->sah->saidx.proto != IPPROTO_ESP || 5217 SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_TYPE) || 5218 SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_SPORT) || 5219 SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_DPORT)) { 5220 ipseclog((LOG_DEBUG, 5221 "%s: invalid message: missing required header.\n", 5222 __func__)); 5223 return (EINVAL); 5224 } 5225 /* We hold reference to SA, thus SAH will be referenced too. */ 5226 sah = sav->sah; 5227 isnew = 0; 5228 } 5229 5230 newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, 5231 M_NOWAIT | M_ZERO); 5232 if (newsav == NULL) { 5233 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5234 error = ENOBUFS; 5235 goto fail; 5236 } 5237 5238 /* Clone SA's content into newsav */ 5239 SAV_INITREF(newsav); 5240 bcopy(sav, newsav, offsetof(struct secasvar, chain)); 5241 /* 5242 * We create new NAT-T config if it is needed. 5243 * Old NAT-T config will be freed by key_cleansav() when 5244 * last reference to SA will be released. 5245 */ 5246 newsav->natt = NULL; 5247 newsav->sah = sah; 5248 newsav->state = SADB_SASTATE_MATURE; 5249 error = key_setnatt(newsav, mhp); 5250 if (error != 0) 5251 goto fail; 5252 5253 SAHTREE_WLOCK(); 5254 /* Check that SA is still alive */ 5255 if (sav->state == SADB_SASTATE_DEAD) { 5256 /* SA was unlinked */ 5257 SAHTREE_WUNLOCK(); 5258 error = ESRCH; 5259 goto fail; 5260 } 5261 5262 /* Unlink SA from SAH and SPI hash */ 5263 IPSEC_ASSERT((sav->flags & SADB_X_EXT_F_CLONED) == 0, 5264 ("SA is already cloned")); 5265 IPSEC_ASSERT(sav->state == SADB_SASTATE_MATURE || 5266 sav->state == SADB_SASTATE_DYING, 5267 ("Wrong SA state %u\n", sav->state)); 5268 TAILQ_REMOVE(&sav->sah->savtree_alive, sav, chain); 5269 LIST_REMOVE(sav, spihash); 5270 sav->state = SADB_SASTATE_DEAD; 5271 5272 /* 5273 * Link new SA with SAH. Keep SAs ordered by 5274 * create time (newer are first). 5275 */ 5276 TAILQ_FOREACH(tmp, &sah->savtree_alive, chain) { 5277 if (newsav->created > tmp->created) { 5278 TAILQ_INSERT_BEFORE(tmp, newsav, chain); 5279 break; 5280 } 5281 } 5282 if (tmp == NULL) 5283 TAILQ_INSERT_TAIL(&sah->savtree_alive, newsav, chain); 5284 5285 /* Add new SA into SPI hash. */ 5286 LIST_INSERT_HEAD(SAVHASH_HASH(newsav->spi), newsav, spihash); 5287 5288 /* Add new SAH into SADB. */ 5289 if (isnew == 2) { 5290 TAILQ_INSERT_HEAD(&V_sahtree, sah, chain); 5291 LIST_INSERT_HEAD(SAHADDRHASH_HASH(saidx), sah, addrhash); 5292 sah->state = SADB_SASTATE_MATURE; 5293 SAH_ADDREF(sah); /* newsav references new SAH */ 5294 } 5295 /* 5296 * isnew == 1 -> @sah was referenced by key_getsah(). 5297 * isnew == 0 -> we use the same @sah, that was used by @sav, 5298 * and we use its reference for @newsav. 5299 */ 5300 SECASVAR_LOCK(sav); 5301 /* XXX: replace cntr with pointer? */ 5302 newsav->cntr = sav->cntr; 5303 sav->flags |= SADB_X_EXT_F_CLONED; 5304 SECASVAR_UNLOCK(sav); 5305 5306 SAHTREE_WUNLOCK(); 5307 5308 KEYDBG(KEY_STAMP, 5309 printf("%s: SA(%p) cloned into SA(%p)\n", 5310 __func__, sav, newsav)); 5311 KEYDBG(KEY_DATA, kdebug_secasv(newsav)); 5312 5313 key_freesav(&sav); /* release last reference */ 5314 5315 /* set msg buf from mhp */ 5316 n = key_getmsgbuf_x1(m, mhp); 5317 if (n == NULL) { 5318 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5319 return (ENOBUFS); 5320 } 5321 m_freem(m); 5322 key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5323 return (0); 5324 fail: 5325 if (isnew != 0) 5326 key_freesah(&sah); 5327 if (newsav != NULL) { 5328 if (newsav->natt != NULL) 5329 free(newsav->natt, M_IPSEC_MISC); 5330 free(newsav, M_IPSEC_SA); 5331 } 5332 return (error); 5333 } 5334 5335 /* 5336 * SADB_UPDATE processing 5337 * receive 5338 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5339 * key(AE), (identity(SD),) (sensitivity)> 5340 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. 5341 * and send 5342 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5343 * (identity(SD),) (sensitivity)> 5344 * to the ikmpd. 5345 * 5346 * m will always be freed. 5347 */ 5348 static int 5349 key_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5350 { 5351 struct secasindex saidx; 5352 struct sadb_address *src0, *dst0; 5353 struct sadb_sa *sa0; 5354 struct secasvar *sav; 5355 uint32_t reqid; 5356 int error; 5357 uint8_t mode, proto; 5358 5359 IPSEC_ASSERT(so != NULL, ("null socket")); 5360 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5361 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5362 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5363 5364 /* map satype to proto */ 5365 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5366 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5367 __func__)); 5368 return key_senderror(so, m, EINVAL); 5369 } 5370 5371 if (SADB_CHECKHDR(mhp, SADB_EXT_SA) || 5372 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || 5373 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) || 5374 (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) && 5375 !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) || 5376 (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT) && 5377 !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD))) { 5378 ipseclog((LOG_DEBUG, 5379 "%s: invalid message: missing required header.\n", 5380 __func__)); 5381 return key_senderror(so, m, EINVAL); 5382 } 5383 if (SADB_CHECKLEN(mhp, SADB_EXT_SA) || 5384 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || 5385 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) { 5386 ipseclog((LOG_DEBUG, 5387 "%s: invalid message: wrong header size.\n", __func__)); 5388 return key_senderror(so, m, EINVAL); 5389 } 5390 if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) { 5391 mode = IPSEC_MODE_ANY; 5392 reqid = 0; 5393 } else { 5394 if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) { 5395 ipseclog((LOG_DEBUG, 5396 "%s: invalid message: wrong header size.\n", 5397 __func__)); 5398 return key_senderror(so, m, EINVAL); 5399 } 5400 mode = ((struct sadb_x_sa2 *) 5401 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 5402 reqid = ((struct sadb_x_sa2 *) 5403 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 5404 } 5405 5406 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5407 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5408 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5409 5410 /* 5411 * Only SADB_SASTATE_MATURE SAs may be submitted in an 5412 * SADB_UPDATE message. 5413 */ 5414 if (sa0->sadb_sa_state != SADB_SASTATE_MATURE) { 5415 ipseclog((LOG_DEBUG, "%s: invalid state.\n", __func__)); 5416 #ifdef PFKEY_STRICT_CHECKS 5417 return key_senderror(so, m, EINVAL); 5418 #endif 5419 } 5420 error = key_checksockaddrs((struct sockaddr *)(src0 + 1), 5421 (struct sockaddr *)(dst0 + 1)); 5422 if (error != 0) { 5423 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); 5424 return key_senderror(so, m, error); 5425 } 5426 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 5427 sav = key_getsavbyspi(sa0->sadb_sa_spi); 5428 if (sav == NULL) { 5429 ipseclog((LOG_DEBUG, "%s: no SA found for SPI %u\n", 5430 __func__, ntohl(sa0->sadb_sa_spi))); 5431 return key_senderror(so, m, EINVAL); 5432 } 5433 /* 5434 * Check that SADB_UPDATE issued by the same process that did 5435 * SADB_GETSPI or SADB_ADD. 5436 */ 5437 if (sav->pid != mhp->msg->sadb_msg_pid) { 5438 ipseclog((LOG_DEBUG, 5439 "%s: pid mismatched (SPI %u, pid %u vs. %u)\n", __func__, 5440 ntohl(sav->spi), sav->pid, mhp->msg->sadb_msg_pid)); 5441 key_freesav(&sav); 5442 return key_senderror(so, m, EINVAL); 5443 } 5444 /* saidx should match with SA. */ 5445 if (key_cmpsaidx(&sav->sah->saidx, &saidx, CMP_MODE_REQID) == 0) { 5446 ipseclog((LOG_DEBUG, "%s: saidx mismatched for SPI %u", 5447 __func__, ntohl(sav->spi))); 5448 key_freesav(&sav); 5449 return key_senderror(so, m, ESRCH); 5450 } 5451 5452 if (sav->state == SADB_SASTATE_LARVAL) { 5453 if ((mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5454 SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT)) || 5455 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5456 SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH))) { 5457 ipseclog((LOG_DEBUG, 5458 "%s: invalid message: missing required header.\n", 5459 __func__)); 5460 key_freesav(&sav); 5461 return key_senderror(so, m, EINVAL); 5462 } 5463 /* 5464 * We can set any values except src, dst and SPI. 5465 */ 5466 error = key_setsaval(sav, mhp); 5467 if (error != 0) { 5468 key_freesav(&sav); 5469 return (key_senderror(so, m, error)); 5470 } 5471 /* Change SA state to MATURE */ 5472 SAHTREE_WLOCK(); 5473 if (sav->state != SADB_SASTATE_LARVAL) { 5474 /* SA was deleted or another thread made it MATURE. */ 5475 SAHTREE_WUNLOCK(); 5476 key_freesav(&sav); 5477 return (key_senderror(so, m, ESRCH)); 5478 } 5479 /* 5480 * NOTE: we keep SAs in savtree_alive ordered by created 5481 * time. When SA's state changed from LARVAL to MATURE, 5482 * we update its created time in key_setsaval() and move 5483 * it into head of savtree_alive. 5484 */ 5485 TAILQ_REMOVE(&sav->sah->savtree_larval, sav, chain); 5486 TAILQ_INSERT_HEAD(&sav->sah->savtree_alive, sav, chain); 5487 sav->state = SADB_SASTATE_MATURE; 5488 SAHTREE_WUNLOCK(); 5489 } else { 5490 /* 5491 * For DYING and MATURE SA we can change only state 5492 * and lifetimes. Report EINVAL if something else attempted 5493 * to change. 5494 */ 5495 if (!SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT) || 5496 !SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH)) { 5497 key_freesav(&sav); 5498 return (key_senderror(so, m, EINVAL)); 5499 } 5500 error = key_updatelifetimes(sav, mhp); 5501 if (error != 0) { 5502 key_freesav(&sav); 5503 return (key_senderror(so, m, error)); 5504 } 5505 /* 5506 * This is FreeBSD extension to RFC2367. 5507 * IKEd can specify SADB_X_EXT_NEW_ADDRESS_SRC and/or 5508 * SADB_X_EXT_NEW_ADDRESS_DST when it wants to change 5509 * SA addresses (for example to implement MOBIKE protocol 5510 * as described in RFC4555). Also we allow to change 5511 * NAT-T config. 5512 */ 5513 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_SRC) || 5514 !SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_DST) || 5515 !SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_TYPE) || 5516 sav->natt != NULL) { 5517 error = key_updateaddresses(so, m, mhp, sav, &saidx); 5518 key_freesav(&sav); 5519 if (error != 0) 5520 return (key_senderror(so, m, error)); 5521 return (0); 5522 } 5523 /* Check that SA is still alive */ 5524 SAHTREE_WLOCK(); 5525 if (sav->state == SADB_SASTATE_DEAD) { 5526 /* SA was unlinked */ 5527 SAHTREE_WUNLOCK(); 5528 key_freesav(&sav); 5529 return (key_senderror(so, m, ESRCH)); 5530 } 5531 /* 5532 * NOTE: there is possible state moving from DYING to MATURE, 5533 * but this doesn't change created time, so we won't reorder 5534 * this SA. 5535 */ 5536 sav->state = SADB_SASTATE_MATURE; 5537 SAHTREE_WUNLOCK(); 5538 } 5539 KEYDBG(KEY_STAMP, 5540 printf("%s: SA(%p)\n", __func__, sav)); 5541 KEYDBG(KEY_DATA, kdebug_secasv(sav)); 5542 key_freesav(&sav); 5543 5544 { 5545 struct mbuf *n; 5546 5547 /* set msg buf from mhp */ 5548 n = key_getmsgbuf_x1(m, mhp); 5549 if (n == NULL) { 5550 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5551 return key_senderror(so, m, ENOBUFS); 5552 } 5553 5554 m_freem(m); 5555 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5556 } 5557 } 5558 5559 /* 5560 * SADB_ADD processing 5561 * add an entry to SA database, when received 5562 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5563 * key(AE), (identity(SD),) (sensitivity)> 5564 * from the ikmpd, 5565 * and send 5566 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5567 * (identity(SD),) (sensitivity)> 5568 * to the ikmpd. 5569 * 5570 * IGNORE identity and sensitivity messages. 5571 * 5572 * m will always be freed. 5573 */ 5574 static int 5575 key_add(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5576 { 5577 struct secasindex saidx; 5578 struct sadb_address *src0, *dst0; 5579 struct sadb_sa *sa0; 5580 struct secasvar *sav; 5581 uint32_t reqid, spi; 5582 uint8_t mode, proto; 5583 int error; 5584 5585 IPSEC_ASSERT(so != NULL, ("null socket")); 5586 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5587 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5588 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5589 5590 /* map satype to proto */ 5591 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5592 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5593 __func__)); 5594 return key_senderror(so, m, EINVAL); 5595 } 5596 5597 if (SADB_CHECKHDR(mhp, SADB_EXT_SA) || 5598 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || 5599 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) || 5600 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && ( 5601 SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT) || 5602 SADB_CHECKLEN(mhp, SADB_EXT_KEY_ENCRYPT))) || 5603 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && ( 5604 SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH) || 5605 SADB_CHECKLEN(mhp, SADB_EXT_KEY_AUTH))) || 5606 (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) && 5607 !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) || 5608 (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT) && 5609 !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD))) { 5610 ipseclog((LOG_DEBUG, 5611 "%s: invalid message: missing required header.\n", 5612 __func__)); 5613 return key_senderror(so, m, EINVAL); 5614 } 5615 if (SADB_CHECKLEN(mhp, SADB_EXT_SA) || 5616 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || 5617 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) { 5618 ipseclog((LOG_DEBUG, 5619 "%s: invalid message: wrong header size.\n", __func__)); 5620 return key_senderror(so, m, EINVAL); 5621 } 5622 if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) { 5623 mode = IPSEC_MODE_ANY; 5624 reqid = 0; 5625 } else { 5626 if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) { 5627 ipseclog((LOG_DEBUG, 5628 "%s: invalid message: wrong header size.\n", 5629 __func__)); 5630 return key_senderror(so, m, EINVAL); 5631 } 5632 mode = ((struct sadb_x_sa2 *) 5633 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 5634 reqid = ((struct sadb_x_sa2 *) 5635 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 5636 } 5637 5638 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5639 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5640 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5641 5642 /* 5643 * Only SADB_SASTATE_MATURE SAs may be submitted in an 5644 * SADB_ADD message. 5645 */ 5646 if (sa0->sadb_sa_state != SADB_SASTATE_MATURE) { 5647 ipseclog((LOG_DEBUG, "%s: invalid state.\n", __func__)); 5648 #ifdef PFKEY_STRICT_CHECKS 5649 return key_senderror(so, m, EINVAL); 5650 #endif 5651 } 5652 error = key_checksockaddrs((struct sockaddr *)(src0 + 1), 5653 (struct sockaddr *)(dst0 + 1)); 5654 if (error != 0) { 5655 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); 5656 return key_senderror(so, m, error); 5657 } 5658 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 5659 spi = sa0->sadb_sa_spi; 5660 /* 5661 * For TCP-MD5 SAs we don't use SPI. Check the uniqueness using 5662 * secasindex. 5663 * XXXAE: IPComp seems also doesn't use SPI. 5664 */ 5665 if (proto == IPPROTO_TCP) { 5666 sav = key_getsav_tcpmd5(&saidx, &spi); 5667 if (sav == NULL && spi == 0) { 5668 /* Failed to allocate SPI */ 5669 ipseclog((LOG_DEBUG, "%s: SA already exists.\n", 5670 __func__)); 5671 return key_senderror(so, m, EEXIST); 5672 } 5673 /* XXX: SPI that we report back can have another value */ 5674 } else { 5675 /* We can create new SA only if SPI is different. */ 5676 sav = key_getsavbyspi(spi); 5677 } 5678 if (sav != NULL) { 5679 key_freesav(&sav); 5680 ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__)); 5681 return key_senderror(so, m, EEXIST); 5682 } 5683 5684 sav = key_newsav(mhp, &saidx, spi, &error); 5685 if (sav == NULL) 5686 return key_senderror(so, m, error); 5687 KEYDBG(KEY_STAMP, 5688 printf("%s: return SA(%p)\n", __func__, sav)); 5689 KEYDBG(KEY_DATA, kdebug_secasv(sav)); 5690 /* 5691 * If SADB_ADD was in response to SADB_ACQUIRE, we need to schedule 5692 * ACQ for deletion. 5693 */ 5694 if (sav->seq != 0) 5695 key_acqdone(&saidx, sav->seq); 5696 5697 { 5698 /* 5699 * Don't call key_freesav() on error here, as we would like to 5700 * keep the SA in the database. 5701 */ 5702 struct mbuf *n; 5703 5704 /* set msg buf from mhp */ 5705 n = key_getmsgbuf_x1(m, mhp); 5706 if (n == NULL) { 5707 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5708 return key_senderror(so, m, ENOBUFS); 5709 } 5710 5711 m_freem(m); 5712 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5713 } 5714 } 5715 5716 /* 5717 * NAT-T support. 5718 * IKEd may request the use ESP in UDP encapsulation when it detects the 5719 * presence of NAT. It uses NAT-T extension headers for such SAs to specify 5720 * parameters needed for encapsulation and decapsulation. These PF_KEY 5721 * extension headers are not standardized, so this comment addresses our 5722 * implementation. 5723 * SADB_X_EXT_NAT_T_TYPE specifies type of encapsulation, we support only 5724 * UDP_ENCAP_ESPINUDP as described in RFC3948. 5725 * SADB_X_EXT_NAT_T_SPORT/DPORT specifies source and destination ports for 5726 * UDP header. We use these ports in UDP encapsulation procedure, also we 5727 * can check them in UDP decapsulation procedure. 5728 * SADB_X_EXT_NAT_T_OA[IR] specifies original address of initiator or 5729 * responder. These addresses can be used for transport mode to adjust 5730 * checksum after decapsulation and decryption. Since original IP addresses 5731 * used by peer usually different (we detected presence of NAT), TCP/UDP 5732 * pseudo header checksum and IP header checksum was calculated using original 5733 * addresses. After decapsulation and decryption we need to adjust checksum 5734 * to have correct datagram. 5735 * 5736 * We expect presence of NAT-T extension headers only in SADB_ADD and 5737 * SADB_UPDATE messages. We report NAT-T extension headers in replies 5738 * to SADB_ADD, SADB_UPDATE, SADB_GET, and SADB_DUMP messages. 5739 */ 5740 static int 5741 key_setnatt(struct secasvar *sav, const struct sadb_msghdr *mhp) 5742 { 5743 struct sadb_x_nat_t_port *port; 5744 struct sadb_x_nat_t_type *type; 5745 struct sadb_address *oai, *oar; 5746 struct sockaddr *sa; 5747 uint32_t addr; 5748 uint16_t cksum; 5749 5750 IPSEC_ASSERT(sav->natt == NULL, ("natt is already initialized")); 5751 /* 5752 * Ignore NAT-T headers if sproto isn't ESP. 5753 */ 5754 if (sav->sah->saidx.proto != IPPROTO_ESP) 5755 return (0); 5756 5757 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_TYPE) && 5758 !SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_SPORT) && 5759 !SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_DPORT)) { 5760 if (SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_TYPE) || 5761 SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_SPORT) || 5762 SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_DPORT)) { 5763 ipseclog((LOG_DEBUG, 5764 "%s: invalid message: wrong header size.\n", 5765 __func__)); 5766 return (EINVAL); 5767 } 5768 } else 5769 return (0); 5770 5771 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5772 if (type->sadb_x_nat_t_type_type != UDP_ENCAP_ESPINUDP) { 5773 ipseclog((LOG_DEBUG, "%s: unsupported NAT-T type %u.\n", 5774 __func__, type->sadb_x_nat_t_type_type)); 5775 return (EINVAL); 5776 } 5777 /* 5778 * Allocate storage for NAT-T config. 5779 * On error it will be released by key_cleansav(). 5780 */ 5781 sav->natt = malloc(sizeof(struct secnatt), M_IPSEC_MISC, 5782 M_NOWAIT | M_ZERO); 5783 if (sav->natt == NULL) { 5784 PFKEYSTAT_INC(in_nomem); 5785 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5786 return (ENOBUFS); 5787 } 5788 port = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5789 if (port->sadb_x_nat_t_port_port == 0) { 5790 ipseclog((LOG_DEBUG, "%s: invalid NAT-T sport specified.\n", 5791 __func__)); 5792 return (EINVAL); 5793 } 5794 sav->natt->sport = port->sadb_x_nat_t_port_port; 5795 port = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5796 if (port->sadb_x_nat_t_port_port == 0) { 5797 ipseclog((LOG_DEBUG, "%s: invalid NAT-T dport specified.\n", 5798 __func__)); 5799 return (EINVAL); 5800 } 5801 sav->natt->dport = port->sadb_x_nat_t_port_port; 5802 5803 /* 5804 * SADB_X_EXT_NAT_T_OAI and SADB_X_EXT_NAT_T_OAR are optional 5805 * and needed only for transport mode IPsec. 5806 * Usually NAT translates only one address, but it is possible, 5807 * that both addresses could be translated. 5808 * NOTE: Value of SADB_X_EXT_NAT_T_OAI is equal to SADB_X_EXT_NAT_T_OA. 5809 */ 5810 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_OAI)) { 5811 if (SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_OAI)) { 5812 ipseclog((LOG_DEBUG, 5813 "%s: invalid message: wrong header size.\n", 5814 __func__)); 5815 return (EINVAL); 5816 } 5817 oai = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5818 } else 5819 oai = NULL; 5820 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_OAR)) { 5821 if (SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_OAR)) { 5822 ipseclog((LOG_DEBUG, 5823 "%s: invalid message: wrong header size.\n", 5824 __func__)); 5825 return (EINVAL); 5826 } 5827 oar = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5828 } else 5829 oar = NULL; 5830 5831 /* Initialize addresses only for transport mode */ 5832 if (sav->sah->saidx.mode != IPSEC_MODE_TUNNEL) { 5833 cksum = 0; 5834 if (oai != NULL) { 5835 /* Currently we support only AF_INET */ 5836 sa = (struct sockaddr *)(oai + 1); 5837 if (sa->sa_family != AF_INET || 5838 sa->sa_len != sizeof(struct sockaddr_in)) { 5839 ipseclog((LOG_DEBUG, 5840 "%s: wrong NAT-OAi header.\n", 5841 __func__)); 5842 return (EINVAL); 5843 } 5844 /* Ignore address if it the same */ 5845 if (((struct sockaddr_in *)sa)->sin_addr.s_addr != 5846 sav->sah->saidx.src.sin.sin_addr.s_addr) { 5847 bcopy(sa, &sav->natt->oai.sa, sa->sa_len); 5848 sav->natt->flags |= IPSEC_NATT_F_OAI; 5849 /* Calculate checksum delta */ 5850 addr = sav->sah->saidx.src.sin.sin_addr.s_addr; 5851 cksum = in_addword(cksum, ~addr >> 16); 5852 cksum = in_addword(cksum, ~addr & 0xffff); 5853 addr = sav->natt->oai.sin.sin_addr.s_addr; 5854 cksum = in_addword(cksum, addr >> 16); 5855 cksum = in_addword(cksum, addr & 0xffff); 5856 } 5857 } 5858 if (oar != NULL) { 5859 /* Currently we support only AF_INET */ 5860 sa = (struct sockaddr *)(oar + 1); 5861 if (sa->sa_family != AF_INET || 5862 sa->sa_len != sizeof(struct sockaddr_in)) { 5863 ipseclog((LOG_DEBUG, 5864 "%s: wrong NAT-OAr header.\n", 5865 __func__)); 5866 return (EINVAL); 5867 } 5868 /* Ignore address if it the same */ 5869 if (((struct sockaddr_in *)sa)->sin_addr.s_addr != 5870 sav->sah->saidx.dst.sin.sin_addr.s_addr) { 5871 bcopy(sa, &sav->natt->oar.sa, sa->sa_len); 5872 sav->natt->flags |= IPSEC_NATT_F_OAR; 5873 /* Calculate checksum delta */ 5874 addr = sav->sah->saidx.dst.sin.sin_addr.s_addr; 5875 cksum = in_addword(cksum, ~addr >> 16); 5876 cksum = in_addword(cksum, ~addr & 0xffff); 5877 addr = sav->natt->oar.sin.sin_addr.s_addr; 5878 cksum = in_addword(cksum, addr >> 16); 5879 cksum = in_addword(cksum, addr & 0xffff); 5880 } 5881 } 5882 sav->natt->cksum = cksum; 5883 } 5884 return (0); 5885 } 5886 5887 static int 5888 key_setident(struct secashead *sah, const struct sadb_msghdr *mhp) 5889 { 5890 const struct sadb_ident *idsrc, *iddst; 5891 5892 IPSEC_ASSERT(sah != NULL, ("null secashead")); 5893 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5894 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5895 5896 /* don't make buffer if not there */ 5897 if (SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_SRC) && 5898 SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_DST)) { 5899 sah->idents = NULL; 5900 sah->identd = NULL; 5901 return (0); 5902 } 5903 5904 if (SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_SRC) || 5905 SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_DST)) { 5906 ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__)); 5907 return (EINVAL); 5908 } 5909 5910 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC]; 5911 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST]; 5912 5913 /* validity check */ 5914 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { 5915 ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__)); 5916 return EINVAL; 5917 } 5918 5919 switch (idsrc->sadb_ident_type) { 5920 case SADB_IDENTTYPE_PREFIX: 5921 case SADB_IDENTTYPE_FQDN: 5922 case SADB_IDENTTYPE_USERFQDN: 5923 default: 5924 /* XXX do nothing */ 5925 sah->idents = NULL; 5926 sah->identd = NULL; 5927 return 0; 5928 } 5929 5930 /* make structure */ 5931 sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5932 if (sah->idents == NULL) { 5933 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5934 return ENOBUFS; 5935 } 5936 sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5937 if (sah->identd == NULL) { 5938 free(sah->idents, M_IPSEC_MISC); 5939 sah->idents = NULL; 5940 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5941 return ENOBUFS; 5942 } 5943 sah->idents->type = idsrc->sadb_ident_type; 5944 sah->idents->id = idsrc->sadb_ident_id; 5945 5946 sah->identd->type = iddst->sadb_ident_type; 5947 sah->identd->id = iddst->sadb_ident_id; 5948 5949 return 0; 5950 } 5951 5952 /* 5953 * m will not be freed on return. 5954 * it is caller's responsibility to free the result. 5955 * 5956 * Called from SADB_ADD and SADB_UPDATE. Reply will contain headers 5957 * from the request in defined order. 5958 */ 5959 static struct mbuf * 5960 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp) 5961 { 5962 struct mbuf *n; 5963 5964 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5965 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5966 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5967 5968 /* create new sadb_msg to reply. */ 5969 n = key_gather_mbuf(m, mhp, 1, 16, SADB_EXT_RESERVED, 5970 SADB_EXT_SA, SADB_X_EXT_SA2, 5971 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, 5972 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 5973 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST, 5974 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT, 5975 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI, 5976 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NEW_ADDRESS_SRC, 5977 SADB_X_EXT_NEW_ADDRESS_DST); 5978 if (!n) 5979 return NULL; 5980 5981 if (n->m_len < sizeof(struct sadb_msg)) { 5982 n = m_pullup(n, sizeof(struct sadb_msg)); 5983 if (n == NULL) 5984 return NULL; 5985 } 5986 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; 5987 mtod(n, struct sadb_msg *)->sadb_msg_len = 5988 PFKEY_UNIT64(n->m_pkthdr.len); 5989 5990 return n; 5991 } 5992 5993 /* 5994 * SADB_DELETE processing 5995 * receive 5996 * <base, SA(*), address(SD)> 5997 * from the ikmpd, and set SADB_SASTATE_DEAD, 5998 * and send, 5999 * <base, SA(*), address(SD)> 6000 * to the ikmpd. 6001 * 6002 * m will always be freed. 6003 */ 6004 static int 6005 key_delete(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 6006 { 6007 struct secasindex saidx; 6008 struct sadb_address *src0, *dst0; 6009 struct secasvar *sav; 6010 struct sadb_sa *sa0; 6011 uint8_t proto; 6012 6013 IPSEC_ASSERT(so != NULL, ("null socket")); 6014 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6015 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6016 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6017 6018 /* map satype to proto */ 6019 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6020 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6021 __func__)); 6022 return key_senderror(so, m, EINVAL); 6023 } 6024 6025 if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || 6026 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) || 6027 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || 6028 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) { 6029 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6030 __func__)); 6031 return key_senderror(so, m, EINVAL); 6032 } 6033 6034 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 6035 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 6036 6037 if (key_checksockaddrs((struct sockaddr *)(src0 + 1), 6038 (struct sockaddr *)(dst0 + 1)) != 0) { 6039 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); 6040 return (key_senderror(so, m, EINVAL)); 6041 } 6042 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 6043 if (SADB_CHECKHDR(mhp, SADB_EXT_SA)) { 6044 /* 6045 * Caller wants us to delete all non-LARVAL SAs 6046 * that match the src/dst. This is used during 6047 * IKE INITIAL-CONTACT. 6048 * XXXAE: this looks like some extension to RFC2367. 6049 */ 6050 ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__)); 6051 return (key_delete_all(so, m, mhp, &saidx)); 6052 } 6053 if (SADB_CHECKLEN(mhp, SADB_EXT_SA)) { 6054 ipseclog((LOG_DEBUG, 6055 "%s: invalid message: wrong header size.\n", __func__)); 6056 return (key_senderror(so, m, EINVAL)); 6057 } 6058 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 6059 if (proto == IPPROTO_TCP) 6060 sav = key_getsav_tcpmd5(&saidx, NULL); 6061 else 6062 sav = key_getsavbyspi(sa0->sadb_sa_spi); 6063 if (sav == NULL) { 6064 ipseclog((LOG_DEBUG, "%s: no SA found for SPI %u.\n", 6065 __func__, ntohl(sa0->sadb_sa_spi))); 6066 return (key_senderror(so, m, ESRCH)); 6067 } 6068 if (key_cmpsaidx(&sav->sah->saidx, &saidx, CMP_HEAD) == 0) { 6069 ipseclog((LOG_DEBUG, "%s: saidx mismatched for SPI %u.\n", 6070 __func__, ntohl(sav->spi))); 6071 key_freesav(&sav); 6072 return (key_senderror(so, m, ESRCH)); 6073 } 6074 KEYDBG(KEY_STAMP, 6075 printf("%s: SA(%p)\n", __func__, sav)); 6076 KEYDBG(KEY_DATA, kdebug_secasv(sav)); 6077 key_unlinksav(sav); 6078 key_freesav(&sav); 6079 6080 { 6081 struct mbuf *n; 6082 struct sadb_msg *newmsg; 6083 6084 /* create new sadb_msg to reply. */ 6085 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 6086 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 6087 if (!n) 6088 return key_senderror(so, m, ENOBUFS); 6089 6090 if (n->m_len < sizeof(struct sadb_msg)) { 6091 n = m_pullup(n, sizeof(struct sadb_msg)); 6092 if (n == NULL) 6093 return key_senderror(so, m, ENOBUFS); 6094 } 6095 newmsg = mtod(n, struct sadb_msg *); 6096 newmsg->sadb_msg_errno = 0; 6097 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 6098 6099 m_freem(m); 6100 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 6101 } 6102 } 6103 6104 /* 6105 * delete all SAs for src/dst. Called from key_delete(). 6106 */ 6107 static int 6108 key_delete_all(struct socket *so, struct mbuf *m, 6109 const struct sadb_msghdr *mhp, struct secasindex *saidx) 6110 { 6111 struct secasvar_queue drainq; 6112 struct secashead *sah; 6113 struct secasvar *sav, *nextsav; 6114 6115 TAILQ_INIT(&drainq); 6116 SAHTREE_WLOCK(); 6117 LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) { 6118 if (key_cmpsaidx(&sah->saidx, saidx, CMP_HEAD) == 0) 6119 continue; 6120 /* Move all ALIVE SAs into drainq */ 6121 TAILQ_CONCAT(&drainq, &sah->savtree_alive, chain); 6122 } 6123 /* Unlink all queued SAs from SPI hash */ 6124 TAILQ_FOREACH(sav, &drainq, chain) { 6125 sav->state = SADB_SASTATE_DEAD; 6126 LIST_REMOVE(sav, spihash); 6127 } 6128 SAHTREE_WUNLOCK(); 6129 /* Now we can release reference for all SAs in drainq */ 6130 sav = TAILQ_FIRST(&drainq); 6131 while (sav != NULL) { 6132 KEYDBG(KEY_STAMP, 6133 printf("%s: SA(%p)\n", __func__, sav)); 6134 KEYDBG(KEY_DATA, kdebug_secasv(sav)); 6135 nextsav = TAILQ_NEXT(sav, chain); 6136 key_freesah(&sav->sah); /* release reference from SAV */ 6137 key_freesav(&sav); /* release last reference */ 6138 sav = nextsav; 6139 } 6140 6141 { 6142 struct mbuf *n; 6143 struct sadb_msg *newmsg; 6144 6145 /* create new sadb_msg to reply. */ 6146 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, 6147 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 6148 if (!n) 6149 return key_senderror(so, m, ENOBUFS); 6150 6151 if (n->m_len < sizeof(struct sadb_msg)) { 6152 n = m_pullup(n, sizeof(struct sadb_msg)); 6153 if (n == NULL) 6154 return key_senderror(so, m, ENOBUFS); 6155 } 6156 newmsg = mtod(n, struct sadb_msg *); 6157 newmsg->sadb_msg_errno = 0; 6158 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 6159 6160 m_freem(m); 6161 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 6162 } 6163 } 6164 6165 /* 6166 * Delete all alive SAs for corresponding xform. 6167 * Larval SAs have not initialized tdb_xform, so it is safe to leave them 6168 * here when xform disappears. 6169 */ 6170 static void 6171 key_delete_xform(const struct xformsw *xsp) 6172 { 6173 struct secasvar_queue drainq; 6174 struct secashead *sah; 6175 struct secasvar *sav, *nextsav; 6176 6177 TAILQ_INIT(&drainq); 6178 SAHTREE_WLOCK(); 6179 TAILQ_FOREACH(sah, &V_sahtree, chain) { 6180 sav = TAILQ_FIRST(&sah->savtree_alive); 6181 if (sav == NULL) 6182 continue; 6183 if (sav->tdb_xform != xsp) 6184 continue; 6185 /* 6186 * It is supposed that all SAs in the chain are related to 6187 * one xform. 6188 */ 6189 TAILQ_CONCAT(&drainq, &sah->savtree_alive, chain); 6190 } 6191 /* Unlink all queued SAs from SPI hash */ 6192 TAILQ_FOREACH(sav, &drainq, chain) { 6193 sav->state = SADB_SASTATE_DEAD; 6194 LIST_REMOVE(sav, spihash); 6195 } 6196 SAHTREE_WUNLOCK(); 6197 6198 /* Now we can release reference for all SAs in drainq */ 6199 sav = TAILQ_FIRST(&drainq); 6200 while (sav != NULL) { 6201 KEYDBG(KEY_STAMP, 6202 printf("%s: SA(%p)\n", __func__, sav)); 6203 KEYDBG(KEY_DATA, kdebug_secasv(sav)); 6204 nextsav = TAILQ_NEXT(sav, chain); 6205 key_freesah(&sav->sah); /* release reference from SAV */ 6206 key_freesav(&sav); /* release last reference */ 6207 sav = nextsav; 6208 } 6209 } 6210 6211 /* 6212 * SADB_GET processing 6213 * receive 6214 * <base, SA(*), address(SD)> 6215 * from the ikmpd, and get a SP and a SA to respond, 6216 * and send, 6217 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), 6218 * (identity(SD),) (sensitivity)> 6219 * to the ikmpd. 6220 * 6221 * m will always be freed. 6222 */ 6223 static int 6224 key_get(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 6225 { 6226 struct secasindex saidx; 6227 struct sadb_address *src0, *dst0; 6228 struct sadb_sa *sa0; 6229 struct secasvar *sav; 6230 uint8_t proto; 6231 6232 IPSEC_ASSERT(so != NULL, ("null socket")); 6233 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6234 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6235 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6236 6237 /* map satype to proto */ 6238 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6239 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6240 __func__)); 6241 return key_senderror(so, m, EINVAL); 6242 } 6243 6244 if (SADB_CHECKHDR(mhp, SADB_EXT_SA) || 6245 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || 6246 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST)) { 6247 ipseclog((LOG_DEBUG, 6248 "%s: invalid message: missing required header.\n", 6249 __func__)); 6250 return key_senderror(so, m, EINVAL); 6251 } 6252 if (SADB_CHECKLEN(mhp, SADB_EXT_SA) || 6253 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || 6254 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) { 6255 ipseclog((LOG_DEBUG, 6256 "%s: invalid message: wrong header size.\n", __func__)); 6257 return key_senderror(so, m, EINVAL); 6258 } 6259 6260 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 6261 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 6262 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 6263 6264 if (key_checksockaddrs((struct sockaddr *)(src0 + 1), 6265 (struct sockaddr *)(dst0 + 1)) != 0) { 6266 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); 6267 return key_senderror(so, m, EINVAL); 6268 } 6269 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 6270 6271 if (proto == IPPROTO_TCP) 6272 sav = key_getsav_tcpmd5(&saidx, NULL); 6273 else 6274 sav = key_getsavbyspi(sa0->sadb_sa_spi); 6275 if (sav == NULL) { 6276 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 6277 return key_senderror(so, m, ESRCH); 6278 } 6279 if (key_cmpsaidx(&sav->sah->saidx, &saidx, CMP_HEAD) == 0) { 6280 ipseclog((LOG_DEBUG, "%s: saidx mismatched for SPI %u.\n", 6281 __func__, ntohl(sa0->sadb_sa_spi))); 6282 key_freesav(&sav); 6283 return (key_senderror(so, m, ESRCH)); 6284 } 6285 6286 { 6287 struct mbuf *n; 6288 uint8_t satype; 6289 6290 /* map proto to satype */ 6291 if ((satype = key_proto2satype(sav->sah->saidx.proto)) == 0) { 6292 ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n", 6293 __func__)); 6294 key_freesav(&sav); 6295 return key_senderror(so, m, EINVAL); 6296 } 6297 6298 /* create new sadb_msg to reply. */ 6299 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, 6300 mhp->msg->sadb_msg_pid); 6301 6302 key_freesav(&sav); 6303 if (!n) 6304 return key_senderror(so, m, ENOBUFS); 6305 6306 m_freem(m); 6307 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 6308 } 6309 } 6310 6311 /* XXX make it sysctl-configurable? */ 6312 static void 6313 key_getcomb_setlifetime(struct sadb_comb *comb) 6314 { 6315 6316 comb->sadb_comb_soft_allocations = 1; 6317 comb->sadb_comb_hard_allocations = 1; 6318 comb->sadb_comb_soft_bytes = 0; 6319 comb->sadb_comb_hard_bytes = 0; 6320 comb->sadb_comb_hard_addtime = 86400; /* 1 day */ 6321 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100; 6322 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */ 6323 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100; 6324 } 6325 6326 /* 6327 * XXX reorder combinations by preference 6328 * XXX no idea if the user wants ESP authentication or not 6329 */ 6330 static struct mbuf * 6331 key_getcomb_ealg(void) 6332 { 6333 struct sadb_comb *comb; 6334 const struct enc_xform *algo; 6335 struct mbuf *result = NULL, *m, *n; 6336 int encmin; 6337 int i, off, o; 6338 int totlen; 6339 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6340 6341 m = NULL; 6342 for (i = 1; i <= SADB_EALG_MAX; i++) { 6343 algo = enc_algorithm_lookup(i); 6344 if (algo == NULL) 6345 continue; 6346 6347 /* discard algorithms with key size smaller than system min */ 6348 if (_BITS(algo->maxkey) < V_ipsec_esp_keymin) 6349 continue; 6350 if (_BITS(algo->minkey) < V_ipsec_esp_keymin) 6351 encmin = V_ipsec_esp_keymin; 6352 else 6353 encmin = _BITS(algo->minkey); 6354 6355 if (V_ipsec_esp_auth) 6356 m = key_getcomb_ah(); 6357 else { 6358 IPSEC_ASSERT(l <= MLEN, 6359 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6360 MGET(m, M_NOWAIT, MT_DATA); 6361 if (m) { 6362 M_ALIGN(m, l); 6363 m->m_len = l; 6364 m->m_next = NULL; 6365 bzero(mtod(m, caddr_t), m->m_len); 6366 } 6367 } 6368 if (!m) 6369 goto fail; 6370 6371 totlen = 0; 6372 for (n = m; n; n = n->m_next) 6373 totlen += n->m_len; 6374 IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l)); 6375 6376 for (off = 0; off < totlen; off += l) { 6377 n = m_pulldown(m, off, l, &o); 6378 if (!n) { 6379 /* m is already freed */ 6380 goto fail; 6381 } 6382 comb = (struct sadb_comb *)(mtod(n, caddr_t) + o); 6383 bzero(comb, sizeof(*comb)); 6384 key_getcomb_setlifetime(comb); 6385 comb->sadb_comb_encrypt = i; 6386 comb->sadb_comb_encrypt_minbits = encmin; 6387 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); 6388 } 6389 6390 if (!result) 6391 result = m; 6392 else 6393 m_cat(result, m); 6394 } 6395 6396 return result; 6397 6398 fail: 6399 if (result) 6400 m_freem(result); 6401 return NULL; 6402 } 6403 6404 static void 6405 key_getsizes_ah(const struct auth_hash *ah, int alg, u_int16_t* min, 6406 u_int16_t* max) 6407 { 6408 6409 *min = *max = ah->hashsize; 6410 if (ah->keysize == 0) { 6411 /* 6412 * Transform takes arbitrary key size but algorithm 6413 * key size is restricted. Enforce this here. 6414 */ 6415 switch (alg) { 6416 case SADB_X_AALG_MD5: *min = *max = 16; break; 6417 case SADB_X_AALG_SHA: *min = *max = 20; break; 6418 case SADB_X_AALG_NULL: *min = 1; *max = 256; break; 6419 case SADB_X_AALG_SHA2_256: *min = *max = 32; break; 6420 case SADB_X_AALG_SHA2_384: *min = *max = 48; break; 6421 case SADB_X_AALG_SHA2_512: *min = *max = 64; break; 6422 default: 6423 DPRINTF(("%s: unknown AH algorithm %u\n", 6424 __func__, alg)); 6425 break; 6426 } 6427 } 6428 } 6429 6430 /* 6431 * XXX reorder combinations by preference 6432 */ 6433 static struct mbuf * 6434 key_getcomb_ah() 6435 { 6436 const struct auth_hash *algo; 6437 struct sadb_comb *comb; 6438 struct mbuf *m; 6439 u_int16_t minkeysize, maxkeysize; 6440 int i; 6441 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6442 6443 m = NULL; 6444 for (i = 1; i <= SADB_AALG_MAX; i++) { 6445 #if 1 6446 /* we prefer HMAC algorithms, not old algorithms */ 6447 if (i != SADB_AALG_SHA1HMAC && 6448 i != SADB_AALG_MD5HMAC && 6449 i != SADB_X_AALG_SHA2_256 && 6450 i != SADB_X_AALG_SHA2_384 && 6451 i != SADB_X_AALG_SHA2_512) 6452 continue; 6453 #endif 6454 algo = auth_algorithm_lookup(i); 6455 if (!algo) 6456 continue; 6457 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); 6458 /* discard algorithms with key size smaller than system min */ 6459 if (_BITS(minkeysize) < V_ipsec_ah_keymin) 6460 continue; 6461 6462 if (!m) { 6463 IPSEC_ASSERT(l <= MLEN, 6464 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6465 MGET(m, M_NOWAIT, MT_DATA); 6466 if (m) { 6467 M_ALIGN(m, l); 6468 m->m_len = l; 6469 m->m_next = NULL; 6470 } 6471 } else 6472 M_PREPEND(m, l, M_NOWAIT); 6473 if (!m) 6474 return NULL; 6475 6476 comb = mtod(m, struct sadb_comb *); 6477 bzero(comb, sizeof(*comb)); 6478 key_getcomb_setlifetime(comb); 6479 comb->sadb_comb_auth = i; 6480 comb->sadb_comb_auth_minbits = _BITS(minkeysize); 6481 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); 6482 } 6483 6484 return m; 6485 } 6486 6487 /* 6488 * not really an official behavior. discussed in pf_key@inner.net in Sep2000. 6489 * XXX reorder combinations by preference 6490 */ 6491 static struct mbuf * 6492 key_getcomb_ipcomp() 6493 { 6494 const struct comp_algo *algo; 6495 struct sadb_comb *comb; 6496 struct mbuf *m; 6497 int i; 6498 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6499 6500 m = NULL; 6501 for (i = 1; i <= SADB_X_CALG_MAX; i++) { 6502 algo = comp_algorithm_lookup(i); 6503 if (!algo) 6504 continue; 6505 6506 if (!m) { 6507 IPSEC_ASSERT(l <= MLEN, 6508 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6509 MGET(m, M_NOWAIT, MT_DATA); 6510 if (m) { 6511 M_ALIGN(m, l); 6512 m->m_len = l; 6513 m->m_next = NULL; 6514 } 6515 } else 6516 M_PREPEND(m, l, M_NOWAIT); 6517 if (!m) 6518 return NULL; 6519 6520 comb = mtod(m, struct sadb_comb *); 6521 bzero(comb, sizeof(*comb)); 6522 key_getcomb_setlifetime(comb); 6523 comb->sadb_comb_encrypt = i; 6524 /* what should we set into sadb_comb_*_{min,max}bits? */ 6525 } 6526 6527 return m; 6528 } 6529 6530 /* 6531 * XXX no way to pass mode (transport/tunnel) to userland 6532 * XXX replay checking? 6533 * XXX sysctl interface to ipsec_{ah,esp}_keymin 6534 */ 6535 static struct mbuf * 6536 key_getprop(const struct secasindex *saidx) 6537 { 6538 struct sadb_prop *prop; 6539 struct mbuf *m, *n; 6540 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); 6541 int totlen; 6542 6543 switch (saidx->proto) { 6544 case IPPROTO_ESP: 6545 m = key_getcomb_ealg(); 6546 break; 6547 case IPPROTO_AH: 6548 m = key_getcomb_ah(); 6549 break; 6550 case IPPROTO_IPCOMP: 6551 m = key_getcomb_ipcomp(); 6552 break; 6553 default: 6554 return NULL; 6555 } 6556 6557 if (!m) 6558 return NULL; 6559 M_PREPEND(m, l, M_NOWAIT); 6560 if (!m) 6561 return NULL; 6562 6563 totlen = 0; 6564 for (n = m; n; n = n->m_next) 6565 totlen += n->m_len; 6566 6567 prop = mtod(m, struct sadb_prop *); 6568 bzero(prop, sizeof(*prop)); 6569 prop->sadb_prop_len = PFKEY_UNIT64(totlen); 6570 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 6571 prop->sadb_prop_replay = 32; /* XXX */ 6572 6573 return m; 6574 } 6575 6576 /* 6577 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2(). 6578 * send 6579 * <base, SA, address(SD), (address(P)), x_policy, 6580 * (identity(SD),) (sensitivity,) proposal> 6581 * to KMD, and expect to receive 6582 * <base> with SADB_ACQUIRE if error occurred, 6583 * or 6584 * <base, src address, dst address, (SPI range)> with SADB_GETSPI 6585 * from KMD by PF_KEY. 6586 * 6587 * XXX x_policy is outside of RFC2367 (KAME extension). 6588 * XXX sensitivity is not supported. 6589 * XXX for ipcomp, RFC2367 does not define how to fill in proposal. 6590 * see comment for key_getcomb_ipcomp(). 6591 * 6592 * OUT: 6593 * 0 : succeed 6594 * others: error number 6595 */ 6596 static int 6597 key_acquire(const struct secasindex *saidx, struct secpolicy *sp) 6598 { 6599 union sockaddr_union addr; 6600 struct mbuf *result, *m; 6601 uint32_t seq; 6602 int error; 6603 uint16_t ul_proto; 6604 uint8_t mask, satype; 6605 6606 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 6607 satype = key_proto2satype(saidx->proto); 6608 IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto)); 6609 6610 error = -1; 6611 result = NULL; 6612 ul_proto = IPSEC_ULPROTO_ANY; 6613 6614 /* Get seq number to check whether sending message or not. */ 6615 seq = key_getacq(saidx, &error); 6616 if (seq == 0) 6617 return (error); 6618 6619 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0); 6620 if (!m) { 6621 error = ENOBUFS; 6622 goto fail; 6623 } 6624 result = m; 6625 6626 /* 6627 * set sadb_address for saidx's. 6628 * 6629 * Note that if sp is supplied, then we're being called from 6630 * key_allocsa_policy() and should supply port and protocol 6631 * information. 6632 * XXXAE: why only TCP and UDP? ICMP and SCTP looks applicable too. 6633 * XXXAE: probably we can handle this in the ipsec[46]_allocsa(). 6634 * XXXAE: it looks like we should save this info in the ACQ entry. 6635 */ 6636 if (sp != NULL && (sp->spidx.ul_proto == IPPROTO_TCP || 6637 sp->spidx.ul_proto == IPPROTO_UDP)) 6638 ul_proto = sp->spidx.ul_proto; 6639 6640 addr = saidx->src; 6641 mask = FULLMASK; 6642 if (ul_proto != IPSEC_ULPROTO_ANY) { 6643 switch (sp->spidx.src.sa.sa_family) { 6644 case AF_INET: 6645 if (sp->spidx.src.sin.sin_port != IPSEC_PORT_ANY) { 6646 addr.sin.sin_port = sp->spidx.src.sin.sin_port; 6647 mask = sp->spidx.prefs; 6648 } 6649 break; 6650 case AF_INET6: 6651 if (sp->spidx.src.sin6.sin6_port != IPSEC_PORT_ANY) { 6652 addr.sin6.sin6_port = 6653 sp->spidx.src.sin6.sin6_port; 6654 mask = sp->spidx.prefs; 6655 } 6656 break; 6657 default: 6658 break; 6659 } 6660 } 6661 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &addr.sa, mask, ul_proto); 6662 if (!m) { 6663 error = ENOBUFS; 6664 goto fail; 6665 } 6666 m_cat(result, m); 6667 6668 addr = saidx->dst; 6669 mask = FULLMASK; 6670 if (ul_proto != IPSEC_ULPROTO_ANY) { 6671 switch (sp->spidx.dst.sa.sa_family) { 6672 case AF_INET: 6673 if (sp->spidx.dst.sin.sin_port != IPSEC_PORT_ANY) { 6674 addr.sin.sin_port = sp->spidx.dst.sin.sin_port; 6675 mask = sp->spidx.prefd; 6676 } 6677 break; 6678 case AF_INET6: 6679 if (sp->spidx.dst.sin6.sin6_port != IPSEC_PORT_ANY) { 6680 addr.sin6.sin6_port = 6681 sp->spidx.dst.sin6.sin6_port; 6682 mask = sp->spidx.prefd; 6683 } 6684 break; 6685 default: 6686 break; 6687 } 6688 } 6689 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &addr.sa, mask, ul_proto); 6690 if (!m) { 6691 error = ENOBUFS; 6692 goto fail; 6693 } 6694 m_cat(result, m); 6695 6696 /* XXX proxy address (optional) */ 6697 6698 /* set sadb_x_policy */ 6699 if (sp != NULL) { 6700 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id, 6701 sp->priority); 6702 if (!m) { 6703 error = ENOBUFS; 6704 goto fail; 6705 } 6706 m_cat(result, m); 6707 } 6708 6709 /* XXX identity (optional) */ 6710 #if 0 6711 if (idexttype && fqdn) { 6712 /* create identity extension (FQDN) */ 6713 struct sadb_ident *id; 6714 int fqdnlen; 6715 6716 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ 6717 id = (struct sadb_ident *)p; 6718 bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6719 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6720 id->sadb_ident_exttype = idexttype; 6721 id->sadb_ident_type = SADB_IDENTTYPE_FQDN; 6722 bcopy(fqdn, id + 1, fqdnlen); 6723 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); 6724 } 6725 6726 if (idexttype) { 6727 /* create identity extension (USERFQDN) */ 6728 struct sadb_ident *id; 6729 int userfqdnlen; 6730 6731 if (userfqdn) { 6732 /* +1 for terminating-NUL */ 6733 userfqdnlen = strlen(userfqdn) + 1; 6734 } else 6735 userfqdnlen = 0; 6736 id = (struct sadb_ident *)p; 6737 bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6738 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6739 id->sadb_ident_exttype = idexttype; 6740 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; 6741 /* XXX is it correct? */ 6742 if (curproc && curproc->p_cred) 6743 id->sadb_ident_id = curproc->p_cred->p_ruid; 6744 if (userfqdn && userfqdnlen) 6745 bcopy(userfqdn, id + 1, userfqdnlen); 6746 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); 6747 } 6748 #endif 6749 6750 /* XXX sensitivity (optional) */ 6751 6752 /* create proposal/combination extension */ 6753 m = key_getprop(saidx); 6754 #if 0 6755 /* 6756 * spec conformant: always attach proposal/combination extension, 6757 * the problem is that we have no way to attach it for ipcomp, 6758 * due to the way sadb_comb is declared in RFC2367. 6759 */ 6760 if (!m) { 6761 error = ENOBUFS; 6762 goto fail; 6763 } 6764 m_cat(result, m); 6765 #else 6766 /* 6767 * outside of spec; make proposal/combination extension optional. 6768 */ 6769 if (m) 6770 m_cat(result, m); 6771 #endif 6772 6773 if ((result->m_flags & M_PKTHDR) == 0) { 6774 error = EINVAL; 6775 goto fail; 6776 } 6777 6778 if (result->m_len < sizeof(struct sadb_msg)) { 6779 result = m_pullup(result, sizeof(struct sadb_msg)); 6780 if (result == NULL) { 6781 error = ENOBUFS; 6782 goto fail; 6783 } 6784 } 6785 6786 result->m_pkthdr.len = 0; 6787 for (m = result; m; m = m->m_next) 6788 result->m_pkthdr.len += m->m_len; 6789 6790 mtod(result, struct sadb_msg *)->sadb_msg_len = 6791 PFKEY_UNIT64(result->m_pkthdr.len); 6792 6793 KEYDBG(KEY_STAMP, 6794 printf("%s: SP(%p)\n", __func__, sp)); 6795 KEYDBG(KEY_DATA, kdebug_secasindex(saidx, NULL)); 6796 6797 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6798 6799 fail: 6800 if (result) 6801 m_freem(result); 6802 return error; 6803 } 6804 6805 static uint32_t 6806 key_newacq(const struct secasindex *saidx, int *perror) 6807 { 6808 struct secacq *acq; 6809 uint32_t seq; 6810 6811 acq = malloc(sizeof(*acq), M_IPSEC_SAQ, M_NOWAIT | M_ZERO); 6812 if (acq == NULL) { 6813 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6814 *perror = ENOBUFS; 6815 return (0); 6816 } 6817 6818 /* copy secindex */ 6819 bcopy(saidx, &acq->saidx, sizeof(acq->saidx)); 6820 acq->created = time_second; 6821 acq->count = 0; 6822 6823 /* add to acqtree */ 6824 ACQ_LOCK(); 6825 seq = acq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq); 6826 LIST_INSERT_HEAD(&V_acqtree, acq, chain); 6827 LIST_INSERT_HEAD(ACQADDRHASH_HASH(saidx), acq, addrhash); 6828 LIST_INSERT_HEAD(ACQSEQHASH_HASH(seq), acq, seqhash); 6829 ACQ_UNLOCK(); 6830 *perror = 0; 6831 return (seq); 6832 } 6833 6834 static uint32_t 6835 key_getacq(const struct secasindex *saidx, int *perror) 6836 { 6837 struct secacq *acq; 6838 uint32_t seq; 6839 6840 ACQ_LOCK(); 6841 LIST_FOREACH(acq, ACQADDRHASH_HASH(saidx), addrhash) { 6842 if (key_cmpsaidx(&acq->saidx, saidx, CMP_EXACTLY)) { 6843 if (acq->count > V_key_blockacq_count) { 6844 /* 6845 * Reset counter and send message. 6846 * Also reset created time to keep ACQ for 6847 * this saidx. 6848 */ 6849 acq->created = time_second; 6850 acq->count = 0; 6851 seq = acq->seq; 6852 } else { 6853 /* 6854 * Increment counter and do nothing. 6855 * We send SADB_ACQUIRE message only 6856 * for each V_key_blockacq_count packet. 6857 */ 6858 acq->count++; 6859 seq = 0; 6860 } 6861 break; 6862 } 6863 } 6864 ACQ_UNLOCK(); 6865 if (acq != NULL) { 6866 *perror = 0; 6867 return (seq); 6868 } 6869 /* allocate new entry */ 6870 return (key_newacq(saidx, perror)); 6871 } 6872 6873 static int 6874 key_acqreset(uint32_t seq) 6875 { 6876 struct secacq *acq; 6877 6878 ACQ_LOCK(); 6879 LIST_FOREACH(acq, ACQSEQHASH_HASH(seq), seqhash) { 6880 if (acq->seq == seq) { 6881 acq->count = 0; 6882 acq->created = time_second; 6883 break; 6884 } 6885 } 6886 ACQ_UNLOCK(); 6887 if (acq == NULL) 6888 return (ESRCH); 6889 return (0); 6890 } 6891 /* 6892 * Mark ACQ entry as stale to remove it in key_flush_acq(). 6893 * Called after successful SADB_GETSPI message. 6894 */ 6895 static int 6896 key_acqdone(const struct secasindex *saidx, uint32_t seq) 6897 { 6898 struct secacq *acq; 6899 6900 ACQ_LOCK(); 6901 LIST_FOREACH(acq, ACQSEQHASH_HASH(seq), seqhash) { 6902 if (acq->seq == seq) 6903 break; 6904 } 6905 if (acq != NULL) { 6906 if (key_cmpsaidx(&acq->saidx, saidx, CMP_EXACTLY) == 0) { 6907 ipseclog((LOG_DEBUG, 6908 "%s: Mismatched saidx for ACQ %u", __func__, seq)); 6909 acq = NULL; 6910 } else { 6911 acq->created = 0; 6912 } 6913 } else { 6914 ipseclog((LOG_DEBUG, 6915 "%s: ACQ %u is not found.", __func__, seq)); 6916 } 6917 ACQ_UNLOCK(); 6918 if (acq == NULL) 6919 return (ESRCH); 6920 return (0); 6921 } 6922 6923 static struct secspacq * 6924 key_newspacq(struct secpolicyindex *spidx) 6925 { 6926 struct secspacq *acq; 6927 6928 /* get new entry */ 6929 acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 6930 if (acq == NULL) { 6931 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6932 return NULL; 6933 } 6934 6935 /* copy secindex */ 6936 bcopy(spidx, &acq->spidx, sizeof(acq->spidx)); 6937 acq->created = time_second; 6938 acq->count = 0; 6939 6940 /* add to spacqtree */ 6941 SPACQ_LOCK(); 6942 LIST_INSERT_HEAD(&V_spacqtree, acq, chain); 6943 SPACQ_UNLOCK(); 6944 6945 return acq; 6946 } 6947 6948 static struct secspacq * 6949 key_getspacq(struct secpolicyindex *spidx) 6950 { 6951 struct secspacq *acq; 6952 6953 SPACQ_LOCK(); 6954 LIST_FOREACH(acq, &V_spacqtree, chain) { 6955 if (key_cmpspidx_exactly(spidx, &acq->spidx)) { 6956 /* NB: return holding spacq_lock */ 6957 return acq; 6958 } 6959 } 6960 SPACQ_UNLOCK(); 6961 6962 return NULL; 6963 } 6964 6965 /* 6966 * SADB_ACQUIRE processing, 6967 * in first situation, is receiving 6968 * <base> 6969 * from the ikmpd, and clear sequence of its secasvar entry. 6970 * 6971 * In second situation, is receiving 6972 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6973 * from a user land process, and return 6974 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6975 * to the socket. 6976 * 6977 * m will always be freed. 6978 */ 6979 static int 6980 key_acquire2(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 6981 { 6982 SAHTREE_RLOCK_TRACKER; 6983 struct sadb_address *src0, *dst0; 6984 struct secasindex saidx; 6985 struct secashead *sah; 6986 uint32_t reqid; 6987 int error; 6988 uint8_t mode, proto; 6989 6990 IPSEC_ASSERT(so != NULL, ("null socket")); 6991 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6992 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6993 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6994 6995 /* 6996 * Error message from KMd. 6997 * We assume that if error was occurred in IKEd, the length of PFKEY 6998 * message is equal to the size of sadb_msg structure. 6999 * We do not raise error even if error occurred in this function. 7000 */ 7001 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { 7002 /* check sequence number */ 7003 if (mhp->msg->sadb_msg_seq == 0 || 7004 mhp->msg->sadb_msg_errno == 0) { 7005 ipseclog((LOG_DEBUG, "%s: must specify sequence " 7006 "number and errno.\n", __func__)); 7007 } else { 7008 /* 7009 * IKEd reported that error occurred. 7010 * XXXAE: what it expects from the kernel? 7011 * Probably we should send SADB_ACQUIRE again? 7012 * If so, reset ACQ's state. 7013 * XXXAE: it looks useless. 7014 */ 7015 key_acqreset(mhp->msg->sadb_msg_seq); 7016 } 7017 m_freem(m); 7018 return (0); 7019 } 7020 7021 /* 7022 * This message is from user land. 7023 */ 7024 7025 /* map satype to proto */ 7026 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 7027 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 7028 __func__)); 7029 return key_senderror(so, m, EINVAL); 7030 } 7031 7032 if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || 7033 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) || 7034 SADB_CHECKHDR(mhp, SADB_EXT_PROPOSAL)) { 7035 ipseclog((LOG_DEBUG, 7036 "%s: invalid message: missing required header.\n", 7037 __func__)); 7038 return key_senderror(so, m, EINVAL); 7039 } 7040 if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || 7041 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST) || 7042 SADB_CHECKLEN(mhp, SADB_EXT_PROPOSAL)) { 7043 ipseclog((LOG_DEBUG, 7044 "%s: invalid message: wrong header size.\n", __func__)); 7045 return key_senderror(so, m, EINVAL); 7046 } 7047 7048 if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) { 7049 mode = IPSEC_MODE_ANY; 7050 reqid = 0; 7051 } else { 7052 if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) { 7053 ipseclog((LOG_DEBUG, 7054 "%s: invalid message: wrong header size.\n", 7055 __func__)); 7056 return key_senderror(so, m, EINVAL); 7057 } 7058 mode = ((struct sadb_x_sa2 *) 7059 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 7060 reqid = ((struct sadb_x_sa2 *) 7061 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 7062 } 7063 7064 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 7065 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 7066 7067 error = key_checksockaddrs((struct sockaddr *)(src0 + 1), 7068 (struct sockaddr *)(dst0 + 1)); 7069 if (error != 0) { 7070 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); 7071 return key_senderror(so, m, EINVAL); 7072 } 7073 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 7074 7075 /* get a SA index */ 7076 SAHTREE_RLOCK(); 7077 LIST_FOREACH(sah, SAHADDRHASH_HASH(&saidx), addrhash) { 7078 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID)) 7079 break; 7080 } 7081 SAHTREE_RUNLOCK(); 7082 if (sah != NULL) { 7083 ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__)); 7084 return key_senderror(so, m, EEXIST); 7085 } 7086 7087 error = key_acquire(&saidx, NULL); 7088 if (error != 0) { 7089 ipseclog((LOG_DEBUG, 7090 "%s: error %d returned from key_acquire()\n", 7091 __func__, error)); 7092 return key_senderror(so, m, error); 7093 } 7094 m_freem(m); 7095 return (0); 7096 } 7097 7098 /* 7099 * SADB_REGISTER processing. 7100 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. 7101 * receive 7102 * <base> 7103 * from the ikmpd, and register a socket to send PF_KEY messages, 7104 * and send 7105 * <base, supported> 7106 * to KMD by PF_KEY. 7107 * If socket is detached, must free from regnode. 7108 * 7109 * m will always be freed. 7110 */ 7111 static int 7112 key_register(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 7113 { 7114 struct secreg *reg, *newreg = NULL; 7115 7116 IPSEC_ASSERT(so != NULL, ("null socket")); 7117 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7118 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7119 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7120 7121 /* check for invalid register message */ 7122 if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0])) 7123 return key_senderror(so, m, EINVAL); 7124 7125 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ 7126 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) 7127 goto setmsg; 7128 7129 /* check whether existing or not */ 7130 REGTREE_LOCK(); 7131 LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) { 7132 if (reg->so == so) { 7133 REGTREE_UNLOCK(); 7134 ipseclog((LOG_DEBUG, "%s: socket exists already.\n", 7135 __func__)); 7136 return key_senderror(so, m, EEXIST); 7137 } 7138 } 7139 7140 /* create regnode */ 7141 newreg = malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO); 7142 if (newreg == NULL) { 7143 REGTREE_UNLOCK(); 7144 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 7145 return key_senderror(so, m, ENOBUFS); 7146 } 7147 7148 newreg->so = so; 7149 ((struct keycb *)sotorawcb(so))->kp_registered++; 7150 7151 /* add regnode to regtree. */ 7152 LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain); 7153 REGTREE_UNLOCK(); 7154 7155 setmsg: 7156 { 7157 struct mbuf *n; 7158 struct sadb_msg *newmsg; 7159 struct sadb_supported *sup; 7160 u_int len, alen, elen; 7161 int off; 7162 int i; 7163 struct sadb_alg *alg; 7164 7165 /* create new sadb_msg to reply. */ 7166 alen = 0; 7167 for (i = 1; i <= SADB_AALG_MAX; i++) { 7168 if (auth_algorithm_lookup(i)) 7169 alen += sizeof(struct sadb_alg); 7170 } 7171 if (alen) 7172 alen += sizeof(struct sadb_supported); 7173 elen = 0; 7174 for (i = 1; i <= SADB_EALG_MAX; i++) { 7175 if (enc_algorithm_lookup(i)) 7176 elen += sizeof(struct sadb_alg); 7177 } 7178 if (elen) 7179 elen += sizeof(struct sadb_supported); 7180 7181 len = sizeof(struct sadb_msg) + alen + elen; 7182 7183 if (len > MCLBYTES) 7184 return key_senderror(so, m, ENOBUFS); 7185 7186 MGETHDR(n, M_NOWAIT, MT_DATA); 7187 if (len > MHLEN) { 7188 if (!(MCLGET(n, M_NOWAIT))) { 7189 m_freem(n); 7190 n = NULL; 7191 } 7192 } 7193 if (!n) 7194 return key_senderror(so, m, ENOBUFS); 7195 7196 n->m_pkthdr.len = n->m_len = len; 7197 n->m_next = NULL; 7198 off = 0; 7199 7200 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 7201 newmsg = mtod(n, struct sadb_msg *); 7202 newmsg->sadb_msg_errno = 0; 7203 newmsg->sadb_msg_len = PFKEY_UNIT64(len); 7204 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 7205 7206 /* for authentication algorithm */ 7207 if (alen) { 7208 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 7209 sup->sadb_supported_len = PFKEY_UNIT64(alen); 7210 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 7211 off += PFKEY_ALIGN8(sizeof(*sup)); 7212 7213 for (i = 1; i <= SADB_AALG_MAX; i++) { 7214 const struct auth_hash *aalgo; 7215 u_int16_t minkeysize, maxkeysize; 7216 7217 aalgo = auth_algorithm_lookup(i); 7218 if (!aalgo) 7219 continue; 7220 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 7221 alg->sadb_alg_id = i; 7222 alg->sadb_alg_ivlen = 0; 7223 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); 7224 alg->sadb_alg_minbits = _BITS(minkeysize); 7225 alg->sadb_alg_maxbits = _BITS(maxkeysize); 7226 off += PFKEY_ALIGN8(sizeof(*alg)); 7227 } 7228 } 7229 7230 /* for encryption algorithm */ 7231 if (elen) { 7232 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 7233 sup->sadb_supported_len = PFKEY_UNIT64(elen); 7234 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 7235 off += PFKEY_ALIGN8(sizeof(*sup)); 7236 7237 for (i = 1; i <= SADB_EALG_MAX; i++) { 7238 const struct enc_xform *ealgo; 7239 7240 ealgo = enc_algorithm_lookup(i); 7241 if (!ealgo) 7242 continue; 7243 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 7244 alg->sadb_alg_id = i; 7245 alg->sadb_alg_ivlen = ealgo->ivsize; 7246 alg->sadb_alg_minbits = _BITS(ealgo->minkey); 7247 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); 7248 off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); 7249 } 7250 } 7251 7252 IPSEC_ASSERT(off == len, 7253 ("length assumption failed (off %u len %u)", off, len)); 7254 7255 m_freem(m); 7256 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); 7257 } 7258 } 7259 7260 /* 7261 * free secreg entry registered. 7262 * XXX: I want to do free a socket marked done SADB_RESIGER to socket. 7263 */ 7264 void 7265 key_freereg(struct socket *so) 7266 { 7267 struct secreg *reg; 7268 int i; 7269 7270 IPSEC_ASSERT(so != NULL, ("NULL so")); 7271 7272 /* 7273 * check whether existing or not. 7274 * check all type of SA, because there is a potential that 7275 * one socket is registered to multiple type of SA. 7276 */ 7277 REGTREE_LOCK(); 7278 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 7279 LIST_FOREACH(reg, &V_regtree[i], chain) { 7280 if (reg->so == so && __LIST_CHAINED(reg)) { 7281 LIST_REMOVE(reg, chain); 7282 free(reg, M_IPSEC_SAR); 7283 break; 7284 } 7285 } 7286 } 7287 REGTREE_UNLOCK(); 7288 } 7289 7290 /* 7291 * SADB_EXPIRE processing 7292 * send 7293 * <base, SA, SA2, lifetime(C and one of HS), address(SD)> 7294 * to KMD by PF_KEY. 7295 * NOTE: We send only soft lifetime extension. 7296 * 7297 * OUT: 0 : succeed 7298 * others : error number 7299 */ 7300 static int 7301 key_expire(struct secasvar *sav, int hard) 7302 { 7303 struct mbuf *result = NULL, *m; 7304 struct sadb_lifetime *lt; 7305 uint32_t replay_count; 7306 int error, len; 7307 uint8_t satype; 7308 7309 IPSEC_ASSERT (sav != NULL, ("null sav")); 7310 IPSEC_ASSERT (sav->sah != NULL, ("null sa header")); 7311 7312 KEYDBG(KEY_STAMP, 7313 printf("%s: SA(%p) expired %s lifetime\n", __func__, 7314 sav, hard ? "hard": "soft")); 7315 KEYDBG(KEY_DATA, kdebug_secasv(sav)); 7316 /* set msg header */ 7317 satype = key_proto2satype(sav->sah->saidx.proto); 7318 IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype)); 7319 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt); 7320 if (!m) { 7321 error = ENOBUFS; 7322 goto fail; 7323 } 7324 result = m; 7325 7326 /* create SA extension */ 7327 m = key_setsadbsa(sav); 7328 if (!m) { 7329 error = ENOBUFS; 7330 goto fail; 7331 } 7332 m_cat(result, m); 7333 7334 /* create SA extension */ 7335 SECASVAR_LOCK(sav); 7336 replay_count = sav->replay ? sav->replay->count : 0; 7337 SECASVAR_UNLOCK(sav); 7338 7339 m = key_setsadbxsa2(sav->sah->saidx.mode, replay_count, 7340 sav->sah->saidx.reqid); 7341 if (!m) { 7342 error = ENOBUFS; 7343 goto fail; 7344 } 7345 m_cat(result, m); 7346 7347 if (sav->replay && sav->replay->wsize > UINT8_MAX) { 7348 m = key_setsadbxsareplay(sav->replay->wsize); 7349 if (!m) { 7350 error = ENOBUFS; 7351 goto fail; 7352 } 7353 m_cat(result, m); 7354 } 7355 7356 /* create lifetime extension (current and soft) */ 7357 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 7358 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 7359 if (m == NULL) { 7360 error = ENOBUFS; 7361 goto fail; 7362 } 7363 m_align(m, len); 7364 m->m_len = len; 7365 bzero(mtod(m, caddr_t), len); 7366 lt = mtod(m, struct sadb_lifetime *); 7367 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 7368 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 7369 lt->sadb_lifetime_allocations = 7370 (uint32_t)counter_u64_fetch(sav->lft_c_allocations); 7371 lt->sadb_lifetime_bytes = 7372 counter_u64_fetch(sav->lft_c_bytes); 7373 lt->sadb_lifetime_addtime = sav->created; 7374 lt->sadb_lifetime_usetime = sav->firstused; 7375 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 7376 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 7377 if (hard) { 7378 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 7379 lt->sadb_lifetime_allocations = sav->lft_h->allocations; 7380 lt->sadb_lifetime_bytes = sav->lft_h->bytes; 7381 lt->sadb_lifetime_addtime = sav->lft_h->addtime; 7382 lt->sadb_lifetime_usetime = sav->lft_h->usetime; 7383 } else { 7384 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; 7385 lt->sadb_lifetime_allocations = sav->lft_s->allocations; 7386 lt->sadb_lifetime_bytes = sav->lft_s->bytes; 7387 lt->sadb_lifetime_addtime = sav->lft_s->addtime; 7388 lt->sadb_lifetime_usetime = sav->lft_s->usetime; 7389 } 7390 m_cat(result, m); 7391 7392 /* set sadb_address for source */ 7393 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 7394 &sav->sah->saidx.src.sa, 7395 FULLMASK, IPSEC_ULPROTO_ANY); 7396 if (!m) { 7397 error = ENOBUFS; 7398 goto fail; 7399 } 7400 m_cat(result, m); 7401 7402 /* set sadb_address for destination */ 7403 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 7404 &sav->sah->saidx.dst.sa, 7405 FULLMASK, IPSEC_ULPROTO_ANY); 7406 if (!m) { 7407 error = ENOBUFS; 7408 goto fail; 7409 } 7410 m_cat(result, m); 7411 7412 /* 7413 * XXX-BZ Handle NAT-T extensions here. 7414 * XXXAE: it doesn't seem quite useful. IKEs should not depend on 7415 * this information, we report only significant SA fields. 7416 */ 7417 7418 if ((result->m_flags & M_PKTHDR) == 0) { 7419 error = EINVAL; 7420 goto fail; 7421 } 7422 7423 if (result->m_len < sizeof(struct sadb_msg)) { 7424 result = m_pullup(result, sizeof(struct sadb_msg)); 7425 if (result == NULL) { 7426 error = ENOBUFS; 7427 goto fail; 7428 } 7429 } 7430 7431 result->m_pkthdr.len = 0; 7432 for (m = result; m; m = m->m_next) 7433 result->m_pkthdr.len += m->m_len; 7434 7435 mtod(result, struct sadb_msg *)->sadb_msg_len = 7436 PFKEY_UNIT64(result->m_pkthdr.len); 7437 7438 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 7439 7440 fail: 7441 if (result) 7442 m_freem(result); 7443 return error; 7444 } 7445 7446 static void 7447 key_freesah_flushed(struct secashead_queue *flushq) 7448 { 7449 struct secashead *sah, *nextsah; 7450 struct secasvar *sav, *nextsav; 7451 7452 sah = TAILQ_FIRST(flushq); 7453 while (sah != NULL) { 7454 sav = TAILQ_FIRST(&sah->savtree_larval); 7455 while (sav != NULL) { 7456 nextsav = TAILQ_NEXT(sav, chain); 7457 TAILQ_REMOVE(&sah->savtree_larval, sav, chain); 7458 key_freesav(&sav); /* release last reference */ 7459 key_freesah(&sah); /* release reference from SAV */ 7460 sav = nextsav; 7461 } 7462 sav = TAILQ_FIRST(&sah->savtree_alive); 7463 while (sav != NULL) { 7464 nextsav = TAILQ_NEXT(sav, chain); 7465 TAILQ_REMOVE(&sah->savtree_alive, sav, chain); 7466 key_freesav(&sav); /* release last reference */ 7467 key_freesah(&sah); /* release reference from SAV */ 7468 sav = nextsav; 7469 } 7470 nextsah = TAILQ_NEXT(sah, chain); 7471 key_freesah(&sah); /* release last reference */ 7472 sah = nextsah; 7473 } 7474 } 7475 7476 /* 7477 * SADB_FLUSH processing 7478 * receive 7479 * <base> 7480 * from the ikmpd, and free all entries in secastree. 7481 * and send, 7482 * <base> 7483 * to the ikmpd. 7484 * NOTE: to do is only marking SADB_SASTATE_DEAD. 7485 * 7486 * m will always be freed. 7487 */ 7488 static int 7489 key_flush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 7490 { 7491 struct secashead_queue flushq; 7492 struct sadb_msg *newmsg; 7493 struct secashead *sah, *nextsah; 7494 struct secasvar *sav; 7495 uint8_t proto; 7496 int i; 7497 7498 IPSEC_ASSERT(so != NULL, ("null socket")); 7499 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7500 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7501 7502 /* map satype to proto */ 7503 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 7504 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 7505 __func__)); 7506 return key_senderror(so, m, EINVAL); 7507 } 7508 KEYDBG(KEY_STAMP, 7509 printf("%s: proto %u\n", __func__, proto)); 7510 7511 TAILQ_INIT(&flushq); 7512 if (proto == IPSEC_PROTO_ANY) { 7513 /* no SATYPE specified, i.e. flushing all SA. */ 7514 SAHTREE_WLOCK(); 7515 /* Move all SAHs into flushq */ 7516 TAILQ_CONCAT(&flushq, &V_sahtree, chain); 7517 /* Flush all buckets in SPI hash */ 7518 for (i = 0; i < V_savhash_mask + 1; i++) 7519 LIST_INIT(&V_savhashtbl[i]); 7520 /* Flush all buckets in SAHADDRHASH */ 7521 for (i = 0; i < V_sahaddrhash_mask + 1; i++) 7522 LIST_INIT(&V_sahaddrhashtbl[i]); 7523 /* Mark all SAHs as unlinked */ 7524 TAILQ_FOREACH(sah, &flushq, chain) { 7525 sah->state = SADB_SASTATE_DEAD; 7526 /* 7527 * Callout handler makes its job using 7528 * RLOCK and drain queues. In case, when this 7529 * function will be called just before it 7530 * acquires WLOCK, we need to mark SAs as 7531 * unlinked to prevent second unlink. 7532 */ 7533 TAILQ_FOREACH(sav, &sah->savtree_larval, chain) { 7534 sav->state = SADB_SASTATE_DEAD; 7535 } 7536 TAILQ_FOREACH(sav, &sah->savtree_alive, chain) { 7537 sav->state = SADB_SASTATE_DEAD; 7538 } 7539 } 7540 SAHTREE_WUNLOCK(); 7541 } else { 7542 SAHTREE_WLOCK(); 7543 sah = TAILQ_FIRST(&V_sahtree); 7544 while (sah != NULL) { 7545 IPSEC_ASSERT(sah->state != SADB_SASTATE_DEAD, 7546 ("DEAD SAH %p in SADB_FLUSH", sah)); 7547 nextsah = TAILQ_NEXT(sah, chain); 7548 if (sah->saidx.proto != proto) { 7549 sah = nextsah; 7550 continue; 7551 } 7552 sah->state = SADB_SASTATE_DEAD; 7553 TAILQ_REMOVE(&V_sahtree, sah, chain); 7554 LIST_REMOVE(sah, addrhash); 7555 /* Unlink all SAs from SPI hash */ 7556 TAILQ_FOREACH(sav, &sah->savtree_larval, chain) { 7557 LIST_REMOVE(sav, spihash); 7558 sav->state = SADB_SASTATE_DEAD; 7559 } 7560 TAILQ_FOREACH(sav, &sah->savtree_alive, chain) { 7561 LIST_REMOVE(sav, spihash); 7562 sav->state = SADB_SASTATE_DEAD; 7563 } 7564 /* Add SAH into flushq */ 7565 TAILQ_INSERT_HEAD(&flushq, sah, chain); 7566 sah = nextsah; 7567 } 7568 SAHTREE_WUNLOCK(); 7569 } 7570 7571 key_freesah_flushed(&flushq); 7572 /* Free all queued SAs and SAHs */ 7573 if (m->m_len < sizeof(struct sadb_msg) || 7574 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 7575 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 7576 return key_senderror(so, m, ENOBUFS); 7577 } 7578 7579 if (m->m_next) 7580 m_freem(m->m_next); 7581 m->m_next = NULL; 7582 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); 7583 newmsg = mtod(m, struct sadb_msg *); 7584 newmsg->sadb_msg_errno = 0; 7585 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 7586 7587 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7588 } 7589 7590 /* 7591 * SADB_DUMP processing 7592 * dump all entries including status of DEAD in SAD. 7593 * receive 7594 * <base> 7595 * from the ikmpd, and dump all secasvar leaves 7596 * and send, 7597 * <base> ..... 7598 * to the ikmpd. 7599 * 7600 * m will always be freed. 7601 */ 7602 static int 7603 key_dump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 7604 { 7605 SAHTREE_RLOCK_TRACKER; 7606 struct secashead *sah; 7607 struct secasvar *sav; 7608 struct mbuf *n; 7609 uint32_t cnt; 7610 uint8_t proto, satype; 7611 7612 IPSEC_ASSERT(so != NULL, ("null socket")); 7613 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7614 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7615 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7616 7617 /* map satype to proto */ 7618 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 7619 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 7620 __func__)); 7621 return key_senderror(so, m, EINVAL); 7622 } 7623 7624 /* count sav entries to be sent to the userland. */ 7625 cnt = 0; 7626 SAHTREE_RLOCK(); 7627 TAILQ_FOREACH(sah, &V_sahtree, chain) { 7628 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC && 7629 proto != sah->saidx.proto) 7630 continue; 7631 7632 TAILQ_FOREACH(sav, &sah->savtree_larval, chain) 7633 cnt++; 7634 TAILQ_FOREACH(sav, &sah->savtree_alive, chain) 7635 cnt++; 7636 } 7637 7638 if (cnt == 0) { 7639 SAHTREE_RUNLOCK(); 7640 return key_senderror(so, m, ENOENT); 7641 } 7642 7643 /* send this to the userland, one at a time. */ 7644 TAILQ_FOREACH(sah, &V_sahtree, chain) { 7645 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC && 7646 proto != sah->saidx.proto) 7647 continue; 7648 7649 /* map proto to satype */ 7650 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 7651 SAHTREE_RUNLOCK(); 7652 ipseclog((LOG_DEBUG, "%s: there was invalid proto in " 7653 "SAD.\n", __func__)); 7654 return key_senderror(so, m, EINVAL); 7655 } 7656 TAILQ_FOREACH(sav, &sah->savtree_larval, chain) { 7657 n = key_setdumpsa(sav, SADB_DUMP, satype, 7658 --cnt, mhp->msg->sadb_msg_pid); 7659 if (n == NULL) { 7660 SAHTREE_RUNLOCK(); 7661 return key_senderror(so, m, ENOBUFS); 7662 } 7663 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 7664 } 7665 TAILQ_FOREACH(sav, &sah->savtree_alive, chain) { 7666 n = key_setdumpsa(sav, SADB_DUMP, satype, 7667 --cnt, mhp->msg->sadb_msg_pid); 7668 if (n == NULL) { 7669 SAHTREE_RUNLOCK(); 7670 return key_senderror(so, m, ENOBUFS); 7671 } 7672 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 7673 } 7674 } 7675 SAHTREE_RUNLOCK(); 7676 m_freem(m); 7677 return (0); 7678 } 7679 /* 7680 * SADB_X_PROMISC processing 7681 * 7682 * m will always be freed. 7683 */ 7684 static int 7685 key_promisc(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 7686 { 7687 int olen; 7688 7689 IPSEC_ASSERT(so != NULL, ("null socket")); 7690 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7691 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7692 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7693 7694 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7695 7696 if (olen < sizeof(struct sadb_msg)) { 7697 #if 1 7698 return key_senderror(so, m, EINVAL); 7699 #else 7700 m_freem(m); 7701 return 0; 7702 #endif 7703 } else if (olen == sizeof(struct sadb_msg)) { 7704 /* enable/disable promisc mode */ 7705 struct keycb *kp; 7706 7707 if ((kp = (struct keycb *)sotorawcb(so)) == NULL) 7708 return key_senderror(so, m, EINVAL); 7709 mhp->msg->sadb_msg_errno = 0; 7710 switch (mhp->msg->sadb_msg_satype) { 7711 case 0: 7712 case 1: 7713 kp->kp_promisc = mhp->msg->sadb_msg_satype; 7714 break; 7715 default: 7716 return key_senderror(so, m, EINVAL); 7717 } 7718 7719 /* send the original message back to everyone */ 7720 mhp->msg->sadb_msg_errno = 0; 7721 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7722 } else { 7723 /* send packet as is */ 7724 7725 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); 7726 7727 /* TODO: if sadb_msg_seq is specified, send to specific pid */ 7728 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7729 } 7730 } 7731 7732 static int (*key_typesw[])(struct socket *, struct mbuf *, 7733 const struct sadb_msghdr *) = { 7734 NULL, /* SADB_RESERVED */ 7735 key_getspi, /* SADB_GETSPI */ 7736 key_update, /* SADB_UPDATE */ 7737 key_add, /* SADB_ADD */ 7738 key_delete, /* SADB_DELETE */ 7739 key_get, /* SADB_GET */ 7740 key_acquire2, /* SADB_ACQUIRE */ 7741 key_register, /* SADB_REGISTER */ 7742 NULL, /* SADB_EXPIRE */ 7743 key_flush, /* SADB_FLUSH */ 7744 key_dump, /* SADB_DUMP */ 7745 key_promisc, /* SADB_X_PROMISC */ 7746 NULL, /* SADB_X_PCHANGE */ 7747 key_spdadd, /* SADB_X_SPDUPDATE */ 7748 key_spdadd, /* SADB_X_SPDADD */ 7749 key_spddelete, /* SADB_X_SPDDELETE */ 7750 key_spdget, /* SADB_X_SPDGET */ 7751 NULL, /* SADB_X_SPDACQUIRE */ 7752 key_spddump, /* SADB_X_SPDDUMP */ 7753 key_spdflush, /* SADB_X_SPDFLUSH */ 7754 key_spdadd, /* SADB_X_SPDSETIDX */ 7755 NULL, /* SADB_X_SPDEXPIRE */ 7756 key_spddelete2, /* SADB_X_SPDDELETE2 */ 7757 }; 7758 7759 /* 7760 * parse sadb_msg buffer to process PFKEYv2, 7761 * and create a data to response if needed. 7762 * I think to be dealed with mbuf directly. 7763 * IN: 7764 * msgp : pointer to pointer to a received buffer pulluped. 7765 * This is rewrited to response. 7766 * so : pointer to socket. 7767 * OUT: 7768 * length for buffer to send to user process. 7769 */ 7770 int 7771 key_parse(struct mbuf *m, struct socket *so) 7772 { 7773 struct sadb_msg *msg; 7774 struct sadb_msghdr mh; 7775 u_int orglen; 7776 int error; 7777 int target; 7778 7779 IPSEC_ASSERT(so != NULL, ("null socket")); 7780 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7781 7782 if (m->m_len < sizeof(struct sadb_msg)) { 7783 m = m_pullup(m, sizeof(struct sadb_msg)); 7784 if (!m) 7785 return ENOBUFS; 7786 } 7787 msg = mtod(m, struct sadb_msg *); 7788 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); 7789 target = KEY_SENDUP_ONE; 7790 7791 if ((m->m_flags & M_PKTHDR) == 0 || m->m_pkthdr.len != orglen) { 7792 ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__)); 7793 PFKEYSTAT_INC(out_invlen); 7794 error = EINVAL; 7795 goto senderror; 7796 } 7797 7798 if (msg->sadb_msg_version != PF_KEY_V2) { 7799 ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n", 7800 __func__, msg->sadb_msg_version)); 7801 PFKEYSTAT_INC(out_invver); 7802 error = EINVAL; 7803 goto senderror; 7804 } 7805 7806 if (msg->sadb_msg_type > SADB_MAX) { 7807 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 7808 __func__, msg->sadb_msg_type)); 7809 PFKEYSTAT_INC(out_invmsgtype); 7810 error = EINVAL; 7811 goto senderror; 7812 } 7813 7814 /* for old-fashioned code - should be nuked */ 7815 if (m->m_pkthdr.len > MCLBYTES) { 7816 m_freem(m); 7817 return ENOBUFS; 7818 } 7819 if (m->m_next) { 7820 struct mbuf *n; 7821 7822 MGETHDR(n, M_NOWAIT, MT_DATA); 7823 if (n && m->m_pkthdr.len > MHLEN) { 7824 if (!(MCLGET(n, M_NOWAIT))) { 7825 m_free(n); 7826 n = NULL; 7827 } 7828 } 7829 if (!n) { 7830 m_freem(m); 7831 return ENOBUFS; 7832 } 7833 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t)); 7834 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; 7835 n->m_next = NULL; 7836 m_freem(m); 7837 m = n; 7838 } 7839 7840 /* align the mbuf chain so that extensions are in contiguous region. */ 7841 error = key_align(m, &mh); 7842 if (error) 7843 return error; 7844 7845 msg = mh.msg; 7846 7847 /* We use satype as scope mask for spddump */ 7848 if (msg->sadb_msg_type == SADB_X_SPDDUMP) { 7849 switch (msg->sadb_msg_satype) { 7850 case IPSEC_POLICYSCOPE_ANY: 7851 case IPSEC_POLICYSCOPE_GLOBAL: 7852 case IPSEC_POLICYSCOPE_IFNET: 7853 case IPSEC_POLICYSCOPE_PCB: 7854 break; 7855 default: 7856 ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n", 7857 __func__, msg->sadb_msg_type)); 7858 PFKEYSTAT_INC(out_invsatype); 7859 error = EINVAL; 7860 goto senderror; 7861 } 7862 } else { 7863 switch (msg->sadb_msg_satype) { /* check SA type */ 7864 case SADB_SATYPE_UNSPEC: 7865 switch (msg->sadb_msg_type) { 7866 case SADB_GETSPI: 7867 case SADB_UPDATE: 7868 case SADB_ADD: 7869 case SADB_DELETE: 7870 case SADB_GET: 7871 case SADB_ACQUIRE: 7872 case SADB_EXPIRE: 7873 ipseclog((LOG_DEBUG, "%s: must specify satype " 7874 "when msg type=%u.\n", __func__, 7875 msg->sadb_msg_type)); 7876 PFKEYSTAT_INC(out_invsatype); 7877 error = EINVAL; 7878 goto senderror; 7879 } 7880 break; 7881 case SADB_SATYPE_AH: 7882 case SADB_SATYPE_ESP: 7883 case SADB_X_SATYPE_IPCOMP: 7884 case SADB_X_SATYPE_TCPSIGNATURE: 7885 switch (msg->sadb_msg_type) { 7886 case SADB_X_SPDADD: 7887 case SADB_X_SPDDELETE: 7888 case SADB_X_SPDGET: 7889 case SADB_X_SPDFLUSH: 7890 case SADB_X_SPDSETIDX: 7891 case SADB_X_SPDUPDATE: 7892 case SADB_X_SPDDELETE2: 7893 ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n", 7894 __func__, msg->sadb_msg_type)); 7895 PFKEYSTAT_INC(out_invsatype); 7896 error = EINVAL; 7897 goto senderror; 7898 } 7899 break; 7900 case SADB_SATYPE_RSVP: 7901 case SADB_SATYPE_OSPFV2: 7902 case SADB_SATYPE_RIPV2: 7903 case SADB_SATYPE_MIP: 7904 ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n", 7905 __func__, msg->sadb_msg_satype)); 7906 PFKEYSTAT_INC(out_invsatype); 7907 error = EOPNOTSUPP; 7908 goto senderror; 7909 case 1: /* XXX: What does it do? */ 7910 if (msg->sadb_msg_type == SADB_X_PROMISC) 7911 break; 7912 /*FALLTHROUGH*/ 7913 default: 7914 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 7915 __func__, msg->sadb_msg_satype)); 7916 PFKEYSTAT_INC(out_invsatype); 7917 error = EINVAL; 7918 goto senderror; 7919 } 7920 } 7921 7922 /* check field of upper layer protocol and address family */ 7923 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL 7924 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { 7925 struct sadb_address *src0, *dst0; 7926 u_int plen; 7927 7928 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]); 7929 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]); 7930 7931 /* check upper layer protocol */ 7932 if (src0->sadb_address_proto != dst0->sadb_address_proto) { 7933 ipseclog((LOG_DEBUG, "%s: upper layer protocol " 7934 "mismatched.\n", __func__)); 7935 PFKEYSTAT_INC(out_invaddr); 7936 error = EINVAL; 7937 goto senderror; 7938 } 7939 7940 /* check family */ 7941 if (PFKEY_ADDR_SADDR(src0)->sa_family != 7942 PFKEY_ADDR_SADDR(dst0)->sa_family) { 7943 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 7944 __func__)); 7945 PFKEYSTAT_INC(out_invaddr); 7946 error = EINVAL; 7947 goto senderror; 7948 } 7949 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7950 PFKEY_ADDR_SADDR(dst0)->sa_len) { 7951 ipseclog((LOG_DEBUG, "%s: address struct size " 7952 "mismatched.\n", __func__)); 7953 PFKEYSTAT_INC(out_invaddr); 7954 error = EINVAL; 7955 goto senderror; 7956 } 7957 7958 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7959 case AF_INET: 7960 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7961 sizeof(struct sockaddr_in)) { 7962 PFKEYSTAT_INC(out_invaddr); 7963 error = EINVAL; 7964 goto senderror; 7965 } 7966 break; 7967 case AF_INET6: 7968 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7969 sizeof(struct sockaddr_in6)) { 7970 PFKEYSTAT_INC(out_invaddr); 7971 error = EINVAL; 7972 goto senderror; 7973 } 7974 break; 7975 default: 7976 ipseclog((LOG_DEBUG, "%s: unsupported address family\n", 7977 __func__)); 7978 PFKEYSTAT_INC(out_invaddr); 7979 error = EAFNOSUPPORT; 7980 goto senderror; 7981 } 7982 7983 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7984 case AF_INET: 7985 plen = sizeof(struct in_addr) << 3; 7986 break; 7987 case AF_INET6: 7988 plen = sizeof(struct in6_addr) << 3; 7989 break; 7990 default: 7991 plen = 0; /*fool gcc*/ 7992 break; 7993 } 7994 7995 /* check max prefix length */ 7996 if (src0->sadb_address_prefixlen > plen || 7997 dst0->sadb_address_prefixlen > plen) { 7998 ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n", 7999 __func__)); 8000 PFKEYSTAT_INC(out_invaddr); 8001 error = EINVAL; 8002 goto senderror; 8003 } 8004 8005 /* 8006 * prefixlen == 0 is valid because there can be a case when 8007 * all addresses are matched. 8008 */ 8009 } 8010 8011 if (msg->sadb_msg_type >= nitems(key_typesw) || 8012 key_typesw[msg->sadb_msg_type] == NULL) { 8013 PFKEYSTAT_INC(out_invmsgtype); 8014 error = EINVAL; 8015 goto senderror; 8016 } 8017 8018 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh); 8019 8020 senderror: 8021 msg->sadb_msg_errno = error; 8022 return key_sendup_mbuf(so, m, target); 8023 } 8024 8025 static int 8026 key_senderror(struct socket *so, struct mbuf *m, int code) 8027 { 8028 struct sadb_msg *msg; 8029 8030 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 8031 ("mbuf too small, len %u", m->m_len)); 8032 8033 msg = mtod(m, struct sadb_msg *); 8034 msg->sadb_msg_errno = code; 8035 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 8036 } 8037 8038 /* 8039 * set the pointer to each header into message buffer. 8040 * m will be freed on error. 8041 * XXX larger-than-MCLBYTES extension? 8042 */ 8043 static int 8044 key_align(struct mbuf *m, struct sadb_msghdr *mhp) 8045 { 8046 struct mbuf *n; 8047 struct sadb_ext *ext; 8048 size_t off, end; 8049 int extlen; 8050 int toff; 8051 8052 IPSEC_ASSERT(m != NULL, ("null mbuf")); 8053 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 8054 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 8055 ("mbuf too small, len %u", m->m_len)); 8056 8057 /* initialize */ 8058 bzero(mhp, sizeof(*mhp)); 8059 8060 mhp->msg = mtod(m, struct sadb_msg *); 8061 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */ 8062 8063 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 8064 extlen = end; /*just in case extlen is not updated*/ 8065 for (off = sizeof(struct sadb_msg); off < end; off += extlen) { 8066 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); 8067 if (!n) { 8068 /* m is already freed */ 8069 return ENOBUFS; 8070 } 8071 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 8072 8073 /* set pointer */ 8074 switch (ext->sadb_ext_type) { 8075 case SADB_EXT_SA: 8076 case SADB_EXT_ADDRESS_SRC: 8077 case SADB_EXT_ADDRESS_DST: 8078 case SADB_EXT_ADDRESS_PROXY: 8079 case SADB_EXT_LIFETIME_CURRENT: 8080 case SADB_EXT_LIFETIME_HARD: 8081 case SADB_EXT_LIFETIME_SOFT: 8082 case SADB_EXT_KEY_AUTH: 8083 case SADB_EXT_KEY_ENCRYPT: 8084 case SADB_EXT_IDENTITY_SRC: 8085 case SADB_EXT_IDENTITY_DST: 8086 case SADB_EXT_SENSITIVITY: 8087 case SADB_EXT_PROPOSAL: 8088 case SADB_EXT_SUPPORTED_AUTH: 8089 case SADB_EXT_SUPPORTED_ENCRYPT: 8090 case SADB_EXT_SPIRANGE: 8091 case SADB_X_EXT_POLICY: 8092 case SADB_X_EXT_SA2: 8093 case SADB_X_EXT_NAT_T_TYPE: 8094 case SADB_X_EXT_NAT_T_SPORT: 8095 case SADB_X_EXT_NAT_T_DPORT: 8096 case SADB_X_EXT_NAT_T_OAI: 8097 case SADB_X_EXT_NAT_T_OAR: 8098 case SADB_X_EXT_NAT_T_FRAG: 8099 case SADB_X_EXT_SA_REPLAY: 8100 case SADB_X_EXT_NEW_ADDRESS_SRC: 8101 case SADB_X_EXT_NEW_ADDRESS_DST: 8102 /* duplicate check */ 8103 /* 8104 * XXX Are there duplication payloads of either 8105 * KEY_AUTH or KEY_ENCRYPT ? 8106 */ 8107 if (mhp->ext[ext->sadb_ext_type] != NULL) { 8108 ipseclog((LOG_DEBUG, "%s: duplicate ext_type " 8109 "%u\n", __func__, ext->sadb_ext_type)); 8110 m_freem(m); 8111 PFKEYSTAT_INC(out_dupext); 8112 return EINVAL; 8113 } 8114 break; 8115 default: 8116 ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n", 8117 __func__, ext->sadb_ext_type)); 8118 m_freem(m); 8119 PFKEYSTAT_INC(out_invexttype); 8120 return EINVAL; 8121 } 8122 8123 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); 8124 8125 if (key_validate_ext(ext, extlen)) { 8126 m_freem(m); 8127 PFKEYSTAT_INC(out_invlen); 8128 return EINVAL; 8129 } 8130 8131 n = m_pulldown(m, off, extlen, &toff); 8132 if (!n) { 8133 /* m is already freed */ 8134 return ENOBUFS; 8135 } 8136 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 8137 8138 mhp->ext[ext->sadb_ext_type] = ext; 8139 mhp->extoff[ext->sadb_ext_type] = off; 8140 mhp->extlen[ext->sadb_ext_type] = extlen; 8141 } 8142 8143 if (off != end) { 8144 m_freem(m); 8145 PFKEYSTAT_INC(out_invlen); 8146 return EINVAL; 8147 } 8148 8149 return 0; 8150 } 8151 8152 static int 8153 key_validate_ext(const struct sadb_ext *ext, int len) 8154 { 8155 const struct sockaddr *sa; 8156 enum { NONE, ADDR } checktype = NONE; 8157 int baselen = 0; 8158 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); 8159 8160 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) 8161 return EINVAL; 8162 8163 /* if it does not match minimum/maximum length, bail */ 8164 if (ext->sadb_ext_type >= nitems(minsize) || 8165 ext->sadb_ext_type >= nitems(maxsize)) 8166 return EINVAL; 8167 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) 8168 return EINVAL; 8169 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) 8170 return EINVAL; 8171 8172 /* more checks based on sadb_ext_type XXX need more */ 8173 switch (ext->sadb_ext_type) { 8174 case SADB_EXT_ADDRESS_SRC: 8175 case SADB_EXT_ADDRESS_DST: 8176 case SADB_EXT_ADDRESS_PROXY: 8177 case SADB_X_EXT_NAT_T_OAI: 8178 case SADB_X_EXT_NAT_T_OAR: 8179 case SADB_X_EXT_NEW_ADDRESS_SRC: 8180 case SADB_X_EXT_NEW_ADDRESS_DST: 8181 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); 8182 checktype = ADDR; 8183 break; 8184 case SADB_EXT_IDENTITY_SRC: 8185 case SADB_EXT_IDENTITY_DST: 8186 if (((const struct sadb_ident *)ext)->sadb_ident_type == 8187 SADB_X_IDENTTYPE_ADDR) { 8188 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); 8189 checktype = ADDR; 8190 } else 8191 checktype = NONE; 8192 break; 8193 default: 8194 checktype = NONE; 8195 break; 8196 } 8197 8198 switch (checktype) { 8199 case NONE: 8200 break; 8201 case ADDR: 8202 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); 8203 if (len < baselen + sal) 8204 return EINVAL; 8205 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) 8206 return EINVAL; 8207 break; 8208 } 8209 8210 return 0; 8211 } 8212 8213 void 8214 spdcache_init(void) 8215 { 8216 int i; 8217 8218 TUNABLE_INT_FETCH("net.key.spdcache.maxentries", 8219 &V_key_spdcache_maxentries); 8220 TUNABLE_INT_FETCH("net.key.spdcache.threshold", 8221 &V_key_spdcache_threshold); 8222 8223 if (V_key_spdcache_maxentries) { 8224 V_key_spdcache_maxentries = MAX(V_key_spdcache_maxentries, 8225 SPDCACHE_MAX_ENTRIES_PER_HASH); 8226 V_spdcachehashtbl = hashinit(V_key_spdcache_maxentries / 8227 SPDCACHE_MAX_ENTRIES_PER_HASH, 8228 M_IPSEC_SPDCACHE, &V_spdcachehash_mask); 8229 V_key_spdcache_maxentries = (V_spdcachehash_mask + 1) 8230 * SPDCACHE_MAX_ENTRIES_PER_HASH; 8231 8232 V_spdcache_lock = malloc(sizeof(struct mtx) * 8233 (V_spdcachehash_mask + 1), 8234 M_IPSEC_SPDCACHE, M_WAITOK|M_ZERO); 8235 8236 for (i = 0; i < V_spdcachehash_mask + 1; ++i) 8237 SPDCACHE_LOCK_INIT(i); 8238 } 8239 } 8240 8241 struct spdcache_entry * 8242 spdcache_entry_alloc(const struct secpolicyindex *spidx, struct secpolicy *sp) 8243 { 8244 struct spdcache_entry *entry; 8245 8246 entry = malloc(sizeof(struct spdcache_entry), 8247 M_IPSEC_SPDCACHE, M_NOWAIT|M_ZERO); 8248 if (entry == NULL) 8249 return NULL; 8250 8251 if (sp != NULL) 8252 SP_ADDREF(sp); 8253 8254 entry->spidx = *spidx; 8255 entry->sp = sp; 8256 8257 return (entry); 8258 } 8259 8260 void 8261 spdcache_entry_free(struct spdcache_entry *entry) 8262 { 8263 8264 if (entry->sp != NULL) 8265 key_freesp(&entry->sp); 8266 free(entry, M_IPSEC_SPDCACHE); 8267 } 8268 8269 void 8270 spdcache_clear(void) 8271 { 8272 struct spdcache_entry *entry; 8273 int i; 8274 8275 for (i = 0; i < V_spdcachehash_mask + 1; ++i) { 8276 SPDCACHE_LOCK(i); 8277 while (!LIST_EMPTY(&V_spdcachehashtbl[i])) { 8278 entry = LIST_FIRST(&V_spdcachehashtbl[i]); 8279 LIST_REMOVE(entry, chain); 8280 spdcache_entry_free(entry); 8281 } 8282 SPDCACHE_UNLOCK(i); 8283 } 8284 } 8285 8286 #ifdef VIMAGE 8287 void 8288 spdcache_destroy(void) 8289 { 8290 int i; 8291 8292 if (SPDCACHE_ENABLED()) { 8293 spdcache_clear(); 8294 hashdestroy(V_spdcachehashtbl, M_IPSEC_SPDCACHE, V_spdcachehash_mask); 8295 8296 for (i = 0; i < V_spdcachehash_mask + 1; ++i) 8297 SPDCACHE_LOCK_DESTROY(i); 8298 8299 free(V_spdcache_lock, M_IPSEC_SPDCACHE); 8300 } 8301 } 8302 #endif 8303 void 8304 key_init(void) 8305 { 8306 int i; 8307 8308 for (i = 0; i < IPSEC_DIR_MAX; i++) { 8309 TAILQ_INIT(&V_sptree[i]); 8310 TAILQ_INIT(&V_sptree_ifnet[i]); 8311 } 8312 8313 V_key_lft_zone = uma_zcreate("IPsec SA lft_c", 8314 sizeof(uint64_t) * 2, NULL, NULL, NULL, NULL, 8315 UMA_ALIGN_PTR, UMA_ZONE_PCPU); 8316 8317 TAILQ_INIT(&V_sahtree); 8318 V_sphashtbl = hashinit(SPHASH_NHASH, M_IPSEC_SP, &V_sphash_mask); 8319 V_savhashtbl = hashinit(SAVHASH_NHASH, M_IPSEC_SA, &V_savhash_mask); 8320 V_sahaddrhashtbl = hashinit(SAHHASH_NHASH, M_IPSEC_SAH, 8321 &V_sahaddrhash_mask); 8322 V_acqaddrhashtbl = hashinit(ACQHASH_NHASH, M_IPSEC_SAQ, 8323 &V_acqaddrhash_mask); 8324 V_acqseqhashtbl = hashinit(ACQHASH_NHASH, M_IPSEC_SAQ, 8325 &V_acqseqhash_mask); 8326 8327 spdcache_init(); 8328 8329 for (i = 0; i <= SADB_SATYPE_MAX; i++) 8330 LIST_INIT(&V_regtree[i]); 8331 8332 LIST_INIT(&V_acqtree); 8333 LIST_INIT(&V_spacqtree); 8334 8335 if (!IS_DEFAULT_VNET(curvnet)) 8336 return; 8337 8338 XFORMS_LOCK_INIT(); 8339 SPTREE_LOCK_INIT(); 8340 REGTREE_LOCK_INIT(); 8341 SAHTREE_LOCK_INIT(); 8342 ACQ_LOCK_INIT(); 8343 SPACQ_LOCK_INIT(); 8344 8345 #ifndef IPSEC_DEBUG2 8346 callout_init(&key_timer, 1); 8347 callout_reset(&key_timer, hz, key_timehandler, NULL); 8348 #endif /*IPSEC_DEBUG2*/ 8349 8350 /* initialize key statistics */ 8351 keystat.getspi_count = 1; 8352 8353 if (bootverbose) 8354 printf("IPsec: Initialized Security Association Processing.\n"); 8355 } 8356 8357 #ifdef VIMAGE 8358 void 8359 key_destroy(void) 8360 { 8361 struct secashead_queue sahdrainq; 8362 struct secpolicy_queue drainq; 8363 struct secpolicy *sp, *nextsp; 8364 struct secacq *acq, *nextacq; 8365 struct secspacq *spacq, *nextspacq; 8366 struct secashead *sah; 8367 struct secasvar *sav; 8368 struct secreg *reg; 8369 int i; 8370 8371 /* 8372 * XXX: can we just call free() for each object without 8373 * walking through safe way with releasing references? 8374 */ 8375 TAILQ_INIT(&drainq); 8376 SPTREE_WLOCK(); 8377 for (i = 0; i < IPSEC_DIR_MAX; i++) { 8378 TAILQ_CONCAT(&drainq, &V_sptree[i], chain); 8379 TAILQ_CONCAT(&drainq, &V_sptree_ifnet[i], chain); 8380 } 8381 for (i = 0; i < V_sphash_mask + 1; i++) 8382 LIST_INIT(&V_sphashtbl[i]); 8383 SPTREE_WUNLOCK(); 8384 spdcache_destroy(); 8385 8386 sp = TAILQ_FIRST(&drainq); 8387 while (sp != NULL) { 8388 nextsp = TAILQ_NEXT(sp, chain); 8389 key_freesp(&sp); 8390 sp = nextsp; 8391 } 8392 8393 TAILQ_INIT(&sahdrainq); 8394 SAHTREE_WLOCK(); 8395 TAILQ_CONCAT(&sahdrainq, &V_sahtree, chain); 8396 for (i = 0; i < V_savhash_mask + 1; i++) 8397 LIST_INIT(&V_savhashtbl[i]); 8398 for (i = 0; i < V_sahaddrhash_mask + 1; i++) 8399 LIST_INIT(&V_sahaddrhashtbl[i]); 8400 TAILQ_FOREACH(sah, &sahdrainq, chain) { 8401 sah->state = SADB_SASTATE_DEAD; 8402 TAILQ_FOREACH(sav, &sah->savtree_larval, chain) { 8403 sav->state = SADB_SASTATE_DEAD; 8404 } 8405 TAILQ_FOREACH(sav, &sah->savtree_alive, chain) { 8406 sav->state = SADB_SASTATE_DEAD; 8407 } 8408 } 8409 SAHTREE_WUNLOCK(); 8410 8411 key_freesah_flushed(&sahdrainq); 8412 hashdestroy(V_sphashtbl, M_IPSEC_SP, V_sphash_mask); 8413 hashdestroy(V_savhashtbl, M_IPSEC_SA, V_savhash_mask); 8414 hashdestroy(V_sahaddrhashtbl, M_IPSEC_SAH, V_sahaddrhash_mask); 8415 8416 REGTREE_LOCK(); 8417 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 8418 LIST_FOREACH(reg, &V_regtree[i], chain) { 8419 if (__LIST_CHAINED(reg)) { 8420 LIST_REMOVE(reg, chain); 8421 free(reg, M_IPSEC_SAR); 8422 break; 8423 } 8424 } 8425 } 8426 REGTREE_UNLOCK(); 8427 8428 ACQ_LOCK(); 8429 acq = LIST_FIRST(&V_acqtree); 8430 while (acq != NULL) { 8431 nextacq = LIST_NEXT(acq, chain); 8432 LIST_REMOVE(acq, chain); 8433 free(acq, M_IPSEC_SAQ); 8434 acq = nextacq; 8435 } 8436 for (i = 0; i < V_acqaddrhash_mask + 1; i++) 8437 LIST_INIT(&V_acqaddrhashtbl[i]); 8438 for (i = 0; i < V_acqseqhash_mask + 1; i++) 8439 LIST_INIT(&V_acqseqhashtbl[i]); 8440 ACQ_UNLOCK(); 8441 8442 SPACQ_LOCK(); 8443 for (spacq = LIST_FIRST(&V_spacqtree); spacq != NULL; 8444 spacq = nextspacq) { 8445 nextspacq = LIST_NEXT(spacq, chain); 8446 if (__LIST_CHAINED(spacq)) { 8447 LIST_REMOVE(spacq, chain); 8448 free(spacq, M_IPSEC_SAQ); 8449 } 8450 } 8451 SPACQ_UNLOCK(); 8452 hashdestroy(V_acqaddrhashtbl, M_IPSEC_SAQ, V_acqaddrhash_mask); 8453 hashdestroy(V_acqseqhashtbl, M_IPSEC_SAQ, V_acqseqhash_mask); 8454 uma_zdestroy(V_key_lft_zone); 8455 8456 if (!IS_DEFAULT_VNET(curvnet)) 8457 return; 8458 #ifndef IPSEC_DEBUG2 8459 callout_drain(&key_timer); 8460 #endif 8461 XFORMS_LOCK_DESTROY(); 8462 SPTREE_LOCK_DESTROY(); 8463 REGTREE_LOCK_DESTROY(); 8464 SAHTREE_LOCK_DESTROY(); 8465 ACQ_LOCK_DESTROY(); 8466 SPACQ_LOCK_DESTROY(); 8467 } 8468 #endif 8469 8470 /* record data transfer on SA, and update timestamps */ 8471 void 8472 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m) 8473 { 8474 IPSEC_ASSERT(sav != NULL, ("Null secasvar")); 8475 IPSEC_ASSERT(m != NULL, ("Null mbuf")); 8476 8477 /* 8478 * XXX Currently, there is a difference of bytes size 8479 * between inbound and outbound processing. 8480 */ 8481 counter_u64_add(sav->lft_c_bytes, m->m_pkthdr.len); 8482 8483 /* 8484 * We use the number of packets as the unit of 8485 * allocations. We increment the variable 8486 * whenever {esp,ah}_{in,out}put is called. 8487 */ 8488 counter_u64_add(sav->lft_c_allocations, 1); 8489 8490 /* 8491 * NOTE: We record CURRENT usetime by using wall clock, 8492 * in seconds. HARD and SOFT lifetime are measured by the time 8493 * difference (again in seconds) from usetime. 8494 * 8495 * usetime 8496 * v expire expire 8497 * -----+-----+--------+---> t 8498 * <--------------> HARD 8499 * <-----> SOFT 8500 */ 8501 if (sav->firstused == 0) 8502 sav->firstused = time_second; 8503 } 8504 8505 /* 8506 * Take one of the kernel's security keys and convert it into a PF_KEY 8507 * structure within an mbuf, suitable for sending up to a waiting 8508 * application in user land. 8509 * 8510 * IN: 8511 * src: A pointer to a kernel security key. 8512 * exttype: Which type of key this is. Refer to the PF_KEY data structures. 8513 * OUT: 8514 * a valid mbuf or NULL indicating an error 8515 * 8516 */ 8517 8518 static struct mbuf * 8519 key_setkey(struct seckey *src, uint16_t exttype) 8520 { 8521 struct mbuf *m; 8522 struct sadb_key *p; 8523 int len; 8524 8525 if (src == NULL) 8526 return NULL; 8527 8528 len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src)); 8529 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 8530 if (m == NULL) 8531 return NULL; 8532 m_align(m, len); 8533 m->m_len = len; 8534 p = mtod(m, struct sadb_key *); 8535 bzero(p, len); 8536 p->sadb_key_len = PFKEY_UNIT64(len); 8537 p->sadb_key_exttype = exttype; 8538 p->sadb_key_bits = src->bits; 8539 bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src)); 8540 8541 return m; 8542 } 8543 8544 /* 8545 * Take one of the kernel's lifetime data structures and convert it 8546 * into a PF_KEY structure within an mbuf, suitable for sending up to 8547 * a waiting application in user land. 8548 * 8549 * IN: 8550 * src: A pointer to a kernel lifetime structure. 8551 * exttype: Which type of lifetime this is. Refer to the PF_KEY 8552 * data structures for more information. 8553 * OUT: 8554 * a valid mbuf or NULL indicating an error 8555 * 8556 */ 8557 8558 static struct mbuf * 8559 key_setlifetime(struct seclifetime *src, uint16_t exttype) 8560 { 8561 struct mbuf *m = NULL; 8562 struct sadb_lifetime *p; 8563 int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime)); 8564 8565 if (src == NULL) 8566 return NULL; 8567 8568 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 8569 if (m == NULL) 8570 return m; 8571 m_align(m, len); 8572 m->m_len = len; 8573 p = mtod(m, struct sadb_lifetime *); 8574 8575 bzero(p, len); 8576 p->sadb_lifetime_len = PFKEY_UNIT64(len); 8577 p->sadb_lifetime_exttype = exttype; 8578 p->sadb_lifetime_allocations = src->allocations; 8579 p->sadb_lifetime_bytes = src->bytes; 8580 p->sadb_lifetime_addtime = src->addtime; 8581 p->sadb_lifetime_usetime = src->usetime; 8582 8583 return m; 8584 8585 } 8586 8587 const struct enc_xform * 8588 enc_algorithm_lookup(int alg) 8589 { 8590 int i; 8591 8592 for (i = 0; i < nitems(supported_ealgs); i++) 8593 if (alg == supported_ealgs[i].sadb_alg) 8594 return (supported_ealgs[i].xform); 8595 return (NULL); 8596 } 8597 8598 const struct auth_hash * 8599 auth_algorithm_lookup(int alg) 8600 { 8601 int i; 8602 8603 for (i = 0; i < nitems(supported_aalgs); i++) 8604 if (alg == supported_aalgs[i].sadb_alg) 8605 return (supported_aalgs[i].xform); 8606 return (NULL); 8607 } 8608 8609 const struct comp_algo * 8610 comp_algorithm_lookup(int alg) 8611 { 8612 int i; 8613 8614 for (i = 0; i < nitems(supported_calgs); i++) 8615 if (alg == supported_calgs[i].sadb_alg) 8616 return (supported_calgs[i].xform); 8617 return (NULL); 8618 } 8619 8620 /* 8621 * Register a transform. 8622 */ 8623 static int 8624 xform_register(struct xformsw* xsp) 8625 { 8626 struct xformsw *entry; 8627 8628 XFORMS_LOCK(); 8629 LIST_FOREACH(entry, &xforms, chain) { 8630 if (entry->xf_type == xsp->xf_type) { 8631 XFORMS_UNLOCK(); 8632 return (EEXIST); 8633 } 8634 } 8635 LIST_INSERT_HEAD(&xforms, xsp, chain); 8636 XFORMS_UNLOCK(); 8637 return (0); 8638 } 8639 8640 void 8641 xform_attach(void *data) 8642 { 8643 struct xformsw *xsp = (struct xformsw *)data; 8644 8645 if (xform_register(xsp) != 0) 8646 printf("%s: failed to register %s xform\n", __func__, 8647 xsp->xf_name); 8648 } 8649 8650 void 8651 xform_detach(void *data) 8652 { 8653 struct xformsw *xsp = (struct xformsw *)data; 8654 8655 XFORMS_LOCK(); 8656 LIST_REMOVE(xsp, chain); 8657 XFORMS_UNLOCK(); 8658 8659 /* Delete all SAs related to this xform. */ 8660 key_delete_xform(xsp); 8661 } 8662 8663 /* 8664 * Initialize transform support in an sav. 8665 */ 8666 static int 8667 xform_init(struct secasvar *sav, u_short xftype) 8668 { 8669 struct xformsw *entry; 8670 int ret; 8671 8672 IPSEC_ASSERT(sav->tdb_xform == NULL, 8673 ("tdb_xform is already initialized")); 8674 8675 ret = EINVAL; 8676 XFORMS_LOCK(); 8677 LIST_FOREACH(entry, &xforms, chain) { 8678 if (entry->xf_type == xftype) { 8679 ret = (*entry->xf_init)(sav, entry); 8680 break; 8681 } 8682 } 8683 XFORMS_UNLOCK(); 8684 return (ret); 8685 } 8686 8687