1 /* $FreeBSD$ */ 2 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ 3 4 /*- 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * This code is referd to RFC 2367 35 */ 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 #include "opt_ipsec.h" 40 41 #include <sys/types.h> 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/mutex.h> 47 #include <sys/mbuf.h> 48 #include <sys/domain.h> 49 #include <sys/protosw.h> 50 #include <sys/malloc.h> 51 #include <sys/socket.h> 52 #include <sys/socketvar.h> 53 #include <sys/sysctl.h> 54 #include <sys/errno.h> 55 #include <sys/proc.h> 56 #include <sys/queue.h> 57 #include <sys/refcount.h> 58 #include <sys/syslog.h> 59 60 #include <net/if.h> 61 #include <net/route.h> 62 #include <net/raw_cb.h> 63 64 #include <netinet/in.h> 65 #include <netinet/in_systm.h> 66 #include <netinet/ip.h> 67 #include <netinet/in_var.h> 68 69 #ifdef INET6 70 #include <netinet/ip6.h> 71 #include <netinet6/in6_var.h> 72 #include <netinet6/ip6_var.h> 73 #endif /* INET6 */ 74 75 #ifdef INET 76 #include <netinet/in_pcb.h> 77 #endif 78 #ifdef INET6 79 #include <netinet6/in6_pcb.h> 80 #endif /* INET6 */ 81 82 #include <net/pfkeyv2.h> 83 #include <netipsec/keydb.h> 84 #include <netipsec/key.h> 85 #include <netipsec/keysock.h> 86 #include <netipsec/key_debug.h> 87 88 #include <netipsec/ipsec.h> 89 #ifdef INET6 90 #include <netipsec/ipsec6.h> 91 #endif 92 93 #include <netipsec/xform.h> 94 95 #include <machine/stdarg.h> 96 97 /* randomness */ 98 #include <sys/random.h> 99 100 #define FULLMASK 0xff 101 #define _BITS(bytes) ((bytes) << 3) 102 103 /* 104 * Note on SA reference counting: 105 * - SAs that are not in DEAD state will have (total external reference + 1) 106 * following value in reference count field. they cannot be freed and are 107 * referenced from SA header. 108 * - SAs that are in DEAD state will have (total external reference) 109 * in reference count field. they are ready to be freed. reference from 110 * SA header will be removed in key_delsav(), when the reference count 111 * field hits 0 (= no external reference other than from SA header. 112 */ 113 114 u_int32_t key_debug_level = 0; 115 static u_int key_spi_trycnt = 1000; 116 static u_int32_t key_spi_minval = 0x100; 117 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */ 118 static u_int32_t policy_id = 0; 119 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/ 120 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/ 121 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/ 122 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/ 123 static int key_preferred_oldsa = 1; /* preferred old sa rather than new sa.*/ 124 125 static u_int32_t acq_seq = 0; 126 127 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */ 128 static struct mtx sptree_lock; 129 #define SPTREE_LOCK_INIT() \ 130 mtx_init(&sptree_lock, "sptree", \ 131 "fast ipsec security policy database", MTX_DEF) 132 #define SPTREE_LOCK_DESTROY() mtx_destroy(&sptree_lock) 133 #define SPTREE_LOCK() mtx_lock(&sptree_lock) 134 #define SPTREE_UNLOCK() mtx_unlock(&sptree_lock) 135 #define SPTREE_LOCK_ASSERT() mtx_assert(&sptree_lock, MA_OWNED) 136 137 static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */ 138 static struct mtx sahtree_lock; 139 #define SAHTREE_LOCK_INIT() \ 140 mtx_init(&sahtree_lock, "sahtree", \ 141 "fast ipsec security association database", MTX_DEF) 142 #define SAHTREE_LOCK_DESTROY() mtx_destroy(&sahtree_lock) 143 #define SAHTREE_LOCK() mtx_lock(&sahtree_lock) 144 #define SAHTREE_UNLOCK() mtx_unlock(&sahtree_lock) 145 #define SAHTREE_LOCK_ASSERT() mtx_assert(&sahtree_lock, MA_OWNED) 146 147 /* registed list */ 148 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1]; 149 static struct mtx regtree_lock; 150 #define REGTREE_LOCK_INIT() \ 151 mtx_init(®tree_lock, "regtree", "fast ipsec regtree", MTX_DEF) 152 #define REGTREE_LOCK_DESTROY() mtx_destroy(®tree_lock) 153 #define REGTREE_LOCK() mtx_lock(®tree_lock) 154 #define REGTREE_UNLOCK() mtx_unlock(®tree_lock) 155 #define REGTREE_LOCK_ASSERT() mtx_assert(®tree_lock, MA_OWNED) 156 157 static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */ 158 static struct mtx acq_lock; 159 #define ACQ_LOCK_INIT() \ 160 mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF) 161 #define ACQ_LOCK_DESTROY() mtx_destroy(&acq_lock) 162 #define ACQ_LOCK() mtx_lock(&acq_lock) 163 #define ACQ_UNLOCK() mtx_unlock(&acq_lock) 164 #define ACQ_LOCK_ASSERT() mtx_assert(&acq_lock, MA_OWNED) 165 166 static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */ 167 static struct mtx spacq_lock; 168 #define SPACQ_LOCK_INIT() \ 169 mtx_init(&spacq_lock, "spacqtree", \ 170 "fast ipsec security policy acquire list", MTX_DEF) 171 #define SPACQ_LOCK_DESTROY() mtx_destroy(&spacq_lock) 172 #define SPACQ_LOCK() mtx_lock(&spacq_lock) 173 #define SPACQ_UNLOCK() mtx_unlock(&spacq_lock) 174 #define SPACQ_LOCK_ASSERT() mtx_assert(&spacq_lock, MA_OWNED) 175 176 /* search order for SAs */ 177 static const u_int saorder_state_valid_prefer_old[] = { 178 SADB_SASTATE_DYING, SADB_SASTATE_MATURE, 179 }; 180 static const u_int saorder_state_valid_prefer_new[] = { 181 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 182 }; 183 static u_int saorder_state_alive[] = { 184 /* except DEAD */ 185 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL 186 }; 187 static u_int saorder_state_any[] = { 188 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 189 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD 190 }; 191 192 static const int minsize[] = { 193 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 194 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 195 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 196 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 197 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 198 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ 199 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ 200 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ 201 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ 202 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ 203 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ 204 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ 205 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ 206 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ 207 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ 208 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ 209 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 210 0, /* SADB_X_EXT_KMPRIVATE */ 211 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ 212 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 213 }; 214 static const int maxsize[] = { 215 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 216 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 217 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 218 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 219 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 220 0, /* SADB_EXT_ADDRESS_SRC */ 221 0, /* SADB_EXT_ADDRESS_DST */ 222 0, /* SADB_EXT_ADDRESS_PROXY */ 223 0, /* SADB_EXT_KEY_AUTH */ 224 0, /* SADB_EXT_KEY_ENCRYPT */ 225 0, /* SADB_EXT_IDENTITY_SRC */ 226 0, /* SADB_EXT_IDENTITY_DST */ 227 0, /* SADB_EXT_SENSITIVITY */ 228 0, /* SADB_EXT_PROPOSAL */ 229 0, /* SADB_EXT_SUPPORTED_AUTH */ 230 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ 231 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 232 0, /* SADB_X_EXT_KMPRIVATE */ 233 0, /* SADB_X_EXT_POLICY */ 234 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 235 }; 236 237 static int ipsec_esp_keymin = 256; 238 static int ipsec_esp_auth = 0; 239 static int ipsec_ah_keymin = 128; 240 241 #ifdef SYSCTL_DECL 242 SYSCTL_DECL(_net_key); 243 #endif 244 245 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \ 246 &key_debug_level, 0, ""); 247 248 /* max count of trial for the decision of spi value */ 249 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \ 250 &key_spi_trycnt, 0, ""); 251 252 /* minimum spi value to allocate automatically. */ 253 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \ 254 &key_spi_minval, 0, ""); 255 256 /* maximun spi value to allocate automatically. */ 257 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \ 258 &key_spi_maxval, 0, ""); 259 260 /* interval to initialize randseed */ 261 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \ 262 &key_int_random, 0, ""); 263 264 /* lifetime for larval SA */ 265 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \ 266 &key_larval_lifetime, 0, ""); 267 268 /* counter for blocking to send SADB_ACQUIRE to IKEd */ 269 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \ 270 &key_blockacq_count, 0, ""); 271 272 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ 273 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \ 274 &key_blockacq_lifetime, 0, ""); 275 276 /* ESP auth */ 277 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \ 278 &ipsec_esp_auth, 0, ""); 279 280 /* minimum ESP key length */ 281 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \ 282 &ipsec_esp_keymin, 0, ""); 283 284 /* minimum AH key length */ 285 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \ 286 &ipsec_ah_keymin, 0, ""); 287 288 /* perfered old SA rather than new SA */ 289 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, preferred_oldsa, CTLFLAG_RW,\ 290 &key_preferred_oldsa, 0, ""); 291 292 #define __LIST_CHAINED(elm) \ 293 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) 294 #define LIST_INSERT_TAIL(head, elm, type, field) \ 295 do {\ 296 struct type *curelm = LIST_FIRST(head); \ 297 if (curelm == NULL) {\ 298 LIST_INSERT_HEAD(head, elm, field); \ 299 } else { \ 300 while (LIST_NEXT(curelm, field)) \ 301 curelm = LIST_NEXT(curelm, field);\ 302 LIST_INSERT_AFTER(curelm, elm, field);\ 303 }\ 304 } while (0) 305 306 #define KEY_CHKSASTATE(head, sav, name) \ 307 do { \ 308 if ((head) != (sav)) { \ 309 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \ 310 (name), (head), (sav))); \ 311 continue; \ 312 } \ 313 } while (0) 314 315 #define KEY_CHKSPDIR(head, sp, name) \ 316 do { \ 317 if ((head) != (sp)) { \ 318 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \ 319 "anyway continue.\n", \ 320 (name), (head), (sp))); \ 321 } \ 322 } while (0) 323 324 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association"); 325 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head"); 326 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy"); 327 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request"); 328 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous"); 329 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire"); 330 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire"); 331 332 /* 333 * set parameters into secpolicyindex buffer. 334 * Must allocate secpolicyindex buffer passed to this function. 335 */ 336 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \ 337 do { \ 338 bzero((idx), sizeof(struct secpolicyindex)); \ 339 (idx)->dir = (_dir); \ 340 (idx)->prefs = (ps); \ 341 (idx)->prefd = (pd); \ 342 (idx)->ul_proto = (ulp); \ 343 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 344 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 345 } while (0) 346 347 /* 348 * set parameters into secasindex buffer. 349 * Must allocate secasindex buffer before calling this function. 350 */ 351 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \ 352 do { \ 353 bzero((idx), sizeof(struct secasindex)); \ 354 (idx)->proto = (p); \ 355 (idx)->mode = (m); \ 356 (idx)->reqid = (r); \ 357 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 358 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 359 } while (0) 360 361 /* key statistics */ 362 struct _keystat { 363 u_long getspi_count; /* the avarage of count to try to get new SPI */ 364 } keystat; 365 366 struct sadb_msghdr { 367 struct sadb_msg *msg; 368 struct sadb_ext *ext[SADB_EXT_MAX + 1]; 369 int extoff[SADB_EXT_MAX + 1]; 370 int extlen[SADB_EXT_MAX + 1]; 371 }; 372 373 static struct secasvar *key_allocsa_policy __P((const struct secasindex *)); 374 static void key_freesp_so __P((struct secpolicy **)); 375 static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int)); 376 static void key_delsp __P((struct secpolicy *)); 377 static struct secpolicy *key_getsp __P((struct secpolicyindex *)); 378 static void _key_delsp(struct secpolicy *sp); 379 static struct secpolicy *key_getspbyid __P((u_int32_t)); 380 static u_int32_t key_newreqid __P((void)); 381 static struct mbuf *key_gather_mbuf __P((struct mbuf *, 382 const struct sadb_msghdr *, int, int, ...)); 383 static int key_spdadd __P((struct socket *, struct mbuf *, 384 const struct sadb_msghdr *)); 385 static u_int32_t key_getnewspid __P((void)); 386 static int key_spddelete __P((struct socket *, struct mbuf *, 387 const struct sadb_msghdr *)); 388 static int key_spddelete2 __P((struct socket *, struct mbuf *, 389 const struct sadb_msghdr *)); 390 static int key_spdget __P((struct socket *, struct mbuf *, 391 const struct sadb_msghdr *)); 392 static int key_spdflush __P((struct socket *, struct mbuf *, 393 const struct sadb_msghdr *)); 394 static int key_spddump __P((struct socket *, struct mbuf *, 395 const struct sadb_msghdr *)); 396 static struct mbuf *key_setdumpsp __P((struct secpolicy *, 397 u_int8_t, u_int32_t, u_int32_t)); 398 static u_int key_getspreqmsglen __P((struct secpolicy *)); 399 static int key_spdexpire __P((struct secpolicy *)); 400 static struct secashead *key_newsah __P((struct secasindex *)); 401 static void key_delsah __P((struct secashead *)); 402 static struct secasvar *key_newsav __P((struct mbuf *, 403 const struct sadb_msghdr *, struct secashead *, int *, 404 const char*, int)); 405 #define KEY_NEWSAV(m, sadb, sah, e) \ 406 key_newsav(m, sadb, sah, e, __FILE__, __LINE__) 407 static void key_delsav __P((struct secasvar *)); 408 static struct secashead *key_getsah __P((struct secasindex *)); 409 static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t)); 410 static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t)); 411 static int key_setsaval __P((struct secasvar *, struct mbuf *, 412 const struct sadb_msghdr *)); 413 static int key_mature __P((struct secasvar *)); 414 static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t, 415 u_int8_t, u_int32_t, u_int32_t)); 416 static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t, 417 u_int32_t, pid_t, u_int16_t)); 418 static struct mbuf *key_setsadbsa __P((struct secasvar *)); 419 static struct mbuf *key_setsadbaddr __P((u_int16_t, 420 const struct sockaddr *, u_int8_t, u_int16_t)); 421 static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t)); 422 static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t, 423 u_int32_t)); 424 static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int, 425 struct malloc_type *); 426 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src, 427 struct malloc_type *type); 428 #ifdef INET6 429 static int key_ismyaddr6 __P((struct sockaddr_in6 *)); 430 #endif 431 432 /* flags for key_cmpsaidx() */ 433 #define CMP_HEAD 1 /* protocol, addresses. */ 434 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ 435 #define CMP_REQID 3 /* additionally HEAD, reaid. */ 436 #define CMP_EXACTLY 4 /* all elements. */ 437 static int key_cmpsaidx 438 __P((const struct secasindex *, const struct secasindex *, int)); 439 440 static int key_cmpspidx_exactly 441 __P((struct secpolicyindex *, struct secpolicyindex *)); 442 static int key_cmpspidx_withmask 443 __P((struct secpolicyindex *, struct secpolicyindex *)); 444 static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int)); 445 static int key_bbcmp __P((const void *, const void *, u_int)); 446 static u_int16_t key_satype2proto __P((u_int8_t)); 447 static u_int8_t key_proto2satype __P((u_int16_t)); 448 449 static int key_getspi __P((struct socket *, struct mbuf *, 450 const struct sadb_msghdr *)); 451 static u_int32_t key_do_getnewspi __P((struct sadb_spirange *, 452 struct secasindex *)); 453 static int key_update __P((struct socket *, struct mbuf *, 454 const struct sadb_msghdr *)); 455 #ifdef IPSEC_DOSEQCHECK 456 static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t)); 457 #endif 458 static int key_add __P((struct socket *, struct mbuf *, 459 const struct sadb_msghdr *)); 460 static int key_setident __P((struct secashead *, struct mbuf *, 461 const struct sadb_msghdr *)); 462 static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *, 463 const struct sadb_msghdr *)); 464 static int key_delete __P((struct socket *, struct mbuf *, 465 const struct sadb_msghdr *)); 466 static int key_get __P((struct socket *, struct mbuf *, 467 const struct sadb_msghdr *)); 468 469 static void key_getcomb_setlifetime __P((struct sadb_comb *)); 470 static struct mbuf *key_getcomb_esp __P((void)); 471 static struct mbuf *key_getcomb_ah __P((void)); 472 static struct mbuf *key_getcomb_ipcomp __P((void)); 473 static struct mbuf *key_getprop __P((const struct secasindex *)); 474 475 static int key_acquire __P((const struct secasindex *, struct secpolicy *)); 476 static struct secacq *key_newacq __P((const struct secasindex *)); 477 static struct secacq *key_getacq __P((const struct secasindex *)); 478 static struct secacq *key_getacqbyseq __P((u_int32_t)); 479 static struct secspacq *key_newspacq __P((struct secpolicyindex *)); 480 static struct secspacq *key_getspacq __P((struct secpolicyindex *)); 481 static int key_acquire2 __P((struct socket *, struct mbuf *, 482 const struct sadb_msghdr *)); 483 static int key_register __P((struct socket *, struct mbuf *, 484 const struct sadb_msghdr *)); 485 static int key_expire __P((struct secasvar *)); 486 static int key_flush __P((struct socket *, struct mbuf *, 487 const struct sadb_msghdr *)); 488 static int key_dump __P((struct socket *, struct mbuf *, 489 const struct sadb_msghdr *)); 490 static int key_promisc __P((struct socket *, struct mbuf *, 491 const struct sadb_msghdr *)); 492 static int key_senderror __P((struct socket *, struct mbuf *, int)); 493 static int key_validate_ext __P((const struct sadb_ext *, int)); 494 static int key_align __P((struct mbuf *, struct sadb_msghdr *)); 495 static struct mbuf *key_setlifetime(struct seclifetime *src, 496 u_int16_t exttype); 497 static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype); 498 499 #if 0 500 static const char *key_getfqdn __P((void)); 501 static const char *key_getuserfqdn __P((void)); 502 #endif 503 static void key_sa_chgstate __P((struct secasvar *, u_int8_t)); 504 static struct mbuf *key_alloc_mbuf __P((int)); 505 506 static __inline void 507 sa_initref(struct secasvar *sav) 508 { 509 510 refcount_init(&sav->refcnt, 1); 511 } 512 static __inline void 513 sa_addref(struct secasvar *sav) 514 { 515 516 refcount_acquire(&sav->refcnt); 517 IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow")); 518 } 519 static __inline int 520 sa_delref(struct secasvar *sav) 521 { 522 523 IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow")); 524 return (refcount_release(&sav->refcnt)); 525 } 526 527 #define SP_ADDREF(p) do { \ 528 (p)->refcnt++; \ 529 IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow")); \ 530 } while (0) 531 #define SP_DELREF(p) do { \ 532 IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow")); \ 533 (p)->refcnt--; \ 534 } while (0) 535 536 537 /* 538 * Update the refcnt while holding the SPTREE lock. 539 */ 540 void 541 key_addref(struct secpolicy *sp) 542 { 543 SPTREE_LOCK(); 544 SP_ADDREF(sp); 545 SPTREE_UNLOCK(); 546 } 547 548 /* 549 * Return 0 when there are known to be no SP's for the specified 550 * direction. Otherwise return 1. This is used by IPsec code 551 * to optimize performance. 552 */ 553 int 554 key_havesp(u_int dir) 555 { 556 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? 557 LIST_FIRST(&sptree[dir]) != NULL : 1); 558 } 559 560 /* %%% IPsec policy management */ 561 /* 562 * allocating a SP for OUTBOUND or INBOUND packet. 563 * Must call key_freesp() later. 564 * OUT: NULL: not found 565 * others: found and return the pointer. 566 */ 567 struct secpolicy * 568 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag) 569 { 570 struct secpolicy *sp; 571 572 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 573 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 574 ("invalid direction %u", dir)); 575 576 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 577 printf("DP %s from %s:%u\n", __func__, where, tag)); 578 579 /* get a SP entry */ 580 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 581 printf("*** objects\n"); 582 kdebug_secpolicyindex(spidx)); 583 584 SPTREE_LOCK(); 585 LIST_FOREACH(sp, &sptree[dir], chain) { 586 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 587 printf("*** in SPD\n"); 588 kdebug_secpolicyindex(&sp->spidx)); 589 590 if (sp->state == IPSEC_SPSTATE_DEAD) 591 continue; 592 if (key_cmpspidx_withmask(&sp->spidx, spidx)) 593 goto found; 594 } 595 sp = NULL; 596 found: 597 if (sp) { 598 /* sanity check */ 599 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 600 601 /* found a SPD entry */ 602 sp->lastused = time_second; 603 SP_ADDREF(sp); 604 } 605 SPTREE_UNLOCK(); 606 607 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 608 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 609 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 610 return sp; 611 } 612 613 /* 614 * allocating a SP for OUTBOUND or INBOUND packet. 615 * Must call key_freesp() later. 616 * OUT: NULL: not found 617 * others: found and return the pointer. 618 */ 619 struct secpolicy * 620 key_allocsp2(u_int32_t spi, 621 union sockaddr_union *dst, 622 u_int8_t proto, 623 u_int dir, 624 const char* where, int tag) 625 { 626 struct secpolicy *sp; 627 628 IPSEC_ASSERT(dst != NULL, ("null dst")); 629 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 630 ("invalid direction %u", dir)); 631 632 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 633 printf("DP %s from %s:%u\n", __func__, where, tag)); 634 635 /* get a SP entry */ 636 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 637 printf("*** objects\n"); 638 printf("spi %u proto %u dir %u\n", spi, proto, dir); 639 kdebug_sockaddr(&dst->sa)); 640 641 SPTREE_LOCK(); 642 LIST_FOREACH(sp, &sptree[dir], chain) { 643 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 644 printf("*** in SPD\n"); 645 kdebug_secpolicyindex(&sp->spidx)); 646 647 if (sp->state == IPSEC_SPSTATE_DEAD) 648 continue; 649 /* compare simple values, then dst address */ 650 if (sp->spidx.ul_proto != proto) 651 continue; 652 /* NB: spi's must exist and match */ 653 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi) 654 continue; 655 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0) 656 goto found; 657 } 658 sp = NULL; 659 found: 660 if (sp) { 661 /* sanity check */ 662 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 663 664 /* found a SPD entry */ 665 sp->lastused = time_second; 666 SP_ADDREF(sp); 667 } 668 SPTREE_UNLOCK(); 669 670 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 671 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 672 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 673 return sp; 674 } 675 676 /* 677 * return a policy that matches this particular inbound packet. 678 * XXX slow 679 */ 680 struct secpolicy * 681 key_gettunnel(const struct sockaddr *osrc, 682 const struct sockaddr *odst, 683 const struct sockaddr *isrc, 684 const struct sockaddr *idst, 685 const char* where, int tag) 686 { 687 struct secpolicy *sp; 688 const int dir = IPSEC_DIR_INBOUND; 689 struct ipsecrequest *r1, *r2, *p; 690 struct secpolicyindex spidx; 691 692 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 693 printf("DP %s from %s:%u\n", __func__, where, tag)); 694 695 if (isrc->sa_family != idst->sa_family) { 696 ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.", 697 __func__, isrc->sa_family, idst->sa_family)); 698 sp = NULL; 699 goto done; 700 } 701 702 SPTREE_LOCK(); 703 LIST_FOREACH(sp, &sptree[dir], chain) { 704 if (sp->state == IPSEC_SPSTATE_DEAD) 705 continue; 706 707 r1 = r2 = NULL; 708 for (p = sp->req; p; p = p->next) { 709 if (p->saidx.mode != IPSEC_MODE_TUNNEL) 710 continue; 711 712 r1 = r2; 713 r2 = p; 714 715 if (!r1) { 716 /* here we look at address matches only */ 717 spidx = sp->spidx; 718 if (isrc->sa_len > sizeof(spidx.src) || 719 idst->sa_len > sizeof(spidx.dst)) 720 continue; 721 bcopy(isrc, &spidx.src, isrc->sa_len); 722 bcopy(idst, &spidx.dst, idst->sa_len); 723 if (!key_cmpspidx_withmask(&sp->spidx, &spidx)) 724 continue; 725 } else { 726 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) || 727 key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0)) 728 continue; 729 } 730 731 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) || 732 key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0)) 733 continue; 734 735 goto found; 736 } 737 } 738 sp = NULL; 739 found: 740 if (sp) { 741 sp->lastused = time_second; 742 SP_ADDREF(sp); 743 } 744 SPTREE_UNLOCK(); 745 done: 746 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 747 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 748 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 749 return sp; 750 } 751 752 /* 753 * allocating an SA entry for an *OUTBOUND* packet. 754 * checking each request entries in SP, and acquire an SA if need. 755 * OUT: 0: there are valid requests. 756 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. 757 */ 758 int 759 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx) 760 { 761 u_int level; 762 int error; 763 764 IPSEC_ASSERT(isr != NULL, ("null isr")); 765 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 766 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT || 767 saidx->mode == IPSEC_MODE_TUNNEL, 768 ("unexpected policy %u", saidx->mode)); 769 770 /* 771 * XXX guard against protocol callbacks from the crypto 772 * thread as they reference ipsecrequest.sav which we 773 * temporarily null out below. Need to rethink how we 774 * handle bundled SA's in the callback thread. 775 */ 776 IPSECREQUEST_LOCK_ASSERT(isr); 777 778 /* get current level */ 779 level = ipsec_get_reqlevel(isr); 780 #if 0 781 /* 782 * We do allocate new SA only if the state of SA in the holder is 783 * SADB_SASTATE_DEAD. The SA for outbound must be the oldest. 784 */ 785 if (isr->sav != NULL) { 786 if (isr->sav->sah == NULL) 787 panic("%s: sah is null.\n", __func__); 788 if (isr->sav == (struct secasvar *)LIST_FIRST( 789 &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) { 790 KEY_FREESAV(&isr->sav); 791 isr->sav = NULL; 792 } 793 } 794 #else 795 /* 796 * we free any SA stashed in the IPsec request because a different 797 * SA may be involved each time this request is checked, either 798 * because new SAs are being configured, or this request is 799 * associated with an unconnected datagram socket, or this request 800 * is associated with a system default policy. 801 * 802 * The operation may have negative impact to performance. We may 803 * want to check cached SA carefully, rather than picking new SA 804 * every time. 805 */ 806 if (isr->sav != NULL) { 807 KEY_FREESAV(&isr->sav); 808 isr->sav = NULL; 809 } 810 #endif 811 812 /* 813 * new SA allocation if no SA found. 814 * key_allocsa_policy should allocate the oldest SA available. 815 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt. 816 */ 817 if (isr->sav == NULL) 818 isr->sav = key_allocsa_policy(saidx); 819 820 /* When there is SA. */ 821 if (isr->sav != NULL) { 822 if (isr->sav->state != SADB_SASTATE_MATURE && 823 isr->sav->state != SADB_SASTATE_DYING) 824 return EINVAL; 825 return 0; 826 } 827 828 /* there is no SA */ 829 error = key_acquire(saidx, isr->sp); 830 if (error != 0) { 831 /* XXX What should I do ? */ 832 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 833 __func__, error)); 834 return error; 835 } 836 837 if (level != IPSEC_LEVEL_REQUIRE) { 838 /* XXX sigh, the interface to this routine is botched */ 839 IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA")); 840 return 0; 841 } else { 842 return ENOENT; 843 } 844 } 845 846 /* 847 * allocating a SA for policy entry from SAD. 848 * NOTE: searching SAD of aliving state. 849 * OUT: NULL: not found. 850 * others: found and return the pointer. 851 */ 852 static struct secasvar * 853 key_allocsa_policy(const struct secasindex *saidx) 854 { 855 #define N(a) _ARRAYLEN(a) 856 struct secashead *sah; 857 struct secasvar *sav; 858 u_int stateidx, arraysize; 859 const u_int *state_valid; 860 861 SAHTREE_LOCK(); 862 LIST_FOREACH(sah, &sahtree, chain) { 863 if (sah->state == SADB_SASTATE_DEAD) 864 continue; 865 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) { 866 if (key_preferred_oldsa) { 867 state_valid = saorder_state_valid_prefer_old; 868 arraysize = N(saorder_state_valid_prefer_old); 869 } else { 870 state_valid = saorder_state_valid_prefer_new; 871 arraysize = N(saorder_state_valid_prefer_new); 872 } 873 SAHTREE_UNLOCK(); 874 goto found; 875 } 876 } 877 SAHTREE_UNLOCK(); 878 879 return NULL; 880 881 found: 882 /* search valid state */ 883 for (stateidx = 0; stateidx < arraysize; stateidx++) { 884 sav = key_do_allocsa_policy(sah, state_valid[stateidx]); 885 if (sav != NULL) 886 return sav; 887 } 888 889 return NULL; 890 #undef N 891 } 892 893 /* 894 * searching SAD with direction, protocol, mode and state. 895 * called by key_allocsa_policy(). 896 * OUT: 897 * NULL : not found 898 * others : found, pointer to a SA. 899 */ 900 static struct secasvar * 901 key_do_allocsa_policy(struct secashead *sah, u_int state) 902 { 903 struct secasvar *sav, *nextsav, *candidate, *d; 904 905 /* initilize */ 906 candidate = NULL; 907 908 SAHTREE_LOCK(); 909 for (sav = LIST_FIRST(&sah->savtree[state]); 910 sav != NULL; 911 sav = nextsav) { 912 913 nextsav = LIST_NEXT(sav, chain); 914 915 /* sanity check */ 916 KEY_CHKSASTATE(sav->state, state, __func__); 917 918 /* initialize */ 919 if (candidate == NULL) { 920 candidate = sav; 921 continue; 922 } 923 924 /* Which SA is the better ? */ 925 926 IPSEC_ASSERT(candidate->lft_c != NULL, 927 ("null candidate lifetime")); 928 IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime")); 929 930 /* What the best method is to compare ? */ 931 if (key_preferred_oldsa) { 932 if (candidate->lft_c->addtime > 933 sav->lft_c->addtime) { 934 candidate = sav; 935 } 936 continue; 937 /*NOTREACHED*/ 938 } 939 940 /* preferred new sa rather than old sa */ 941 if (candidate->lft_c->addtime < 942 sav->lft_c->addtime) { 943 d = candidate; 944 candidate = sav; 945 } else 946 d = sav; 947 948 /* 949 * prepared to delete the SA when there is more 950 * suitable candidate and the lifetime of the SA is not 951 * permanent. 952 */ 953 if (d->lft_c->addtime != 0) { 954 struct mbuf *m, *result; 955 u_int8_t satype; 956 957 key_sa_chgstate(d, SADB_SASTATE_DEAD); 958 959 IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count")); 960 961 satype = key_proto2satype(d->sah->saidx.proto); 962 if (satype == 0) 963 goto msgfail; 964 965 m = key_setsadbmsg(SADB_DELETE, 0, 966 satype, 0, 0, d->refcnt - 1); 967 if (!m) 968 goto msgfail; 969 result = m; 970 971 /* set sadb_address for saidx's. */ 972 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 973 &d->sah->saidx.src.sa, 974 d->sah->saidx.src.sa.sa_len << 3, 975 IPSEC_ULPROTO_ANY); 976 if (!m) 977 goto msgfail; 978 m_cat(result, m); 979 980 /* set sadb_address for saidx's. */ 981 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 982 &d->sah->saidx.dst.sa, 983 d->sah->saidx.dst.sa.sa_len << 3, 984 IPSEC_ULPROTO_ANY); 985 if (!m) 986 goto msgfail; 987 m_cat(result, m); 988 989 /* create SA extension */ 990 m = key_setsadbsa(d); 991 if (!m) 992 goto msgfail; 993 m_cat(result, m); 994 995 if (result->m_len < sizeof(struct sadb_msg)) { 996 result = m_pullup(result, 997 sizeof(struct sadb_msg)); 998 if (result == NULL) 999 goto msgfail; 1000 } 1001 1002 result->m_pkthdr.len = 0; 1003 for (m = result; m; m = m->m_next) 1004 result->m_pkthdr.len += m->m_len; 1005 mtod(result, struct sadb_msg *)->sadb_msg_len = 1006 PFKEY_UNIT64(result->m_pkthdr.len); 1007 1008 if (key_sendup_mbuf(NULL, result, 1009 KEY_SENDUP_REGISTERED)) 1010 goto msgfail; 1011 msgfail: 1012 KEY_FREESAV(&d); 1013 } 1014 } 1015 if (candidate) { 1016 sa_addref(candidate); 1017 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1018 printf("DP %s cause refcnt++:%d SA:%p\n", 1019 __func__, candidate->refcnt, candidate)); 1020 } 1021 SAHTREE_UNLOCK(); 1022 1023 return candidate; 1024 } 1025 1026 /* 1027 * allocating a usable SA entry for a *INBOUND* packet. 1028 * Must call key_freesav() later. 1029 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). 1030 * NULL: not found, or error occured. 1031 * 1032 * In the comparison, no source address is used--for RFC2401 conformance. 1033 * To quote, from section 4.1: 1034 * A security association is uniquely identified by a triple consisting 1035 * of a Security Parameter Index (SPI), an IP Destination Address, and a 1036 * security protocol (AH or ESP) identifier. 1037 * Note that, however, we do need to keep source address in IPsec SA. 1038 * IKE specification and PF_KEY specification do assume that we 1039 * keep source address in IPsec SA. We see a tricky situation here. 1040 */ 1041 struct secasvar * 1042 key_allocsa( 1043 union sockaddr_union *dst, 1044 u_int proto, 1045 u_int32_t spi, 1046 const char* where, int tag) 1047 { 1048 struct secashead *sah; 1049 struct secasvar *sav; 1050 u_int stateidx, arraysize, state; 1051 const u_int *saorder_state_valid; 1052 1053 IPSEC_ASSERT(dst != NULL, ("null dst address")); 1054 1055 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1056 printf("DP %s from %s:%u\n", __func__, where, tag)); 1057 1058 /* 1059 * searching SAD. 1060 * XXX: to be checked internal IP header somewhere. Also when 1061 * IPsec tunnel packet is received. But ESP tunnel mode is 1062 * encrypted so we can't check internal IP header. 1063 */ 1064 SAHTREE_LOCK(); 1065 if (key_preferred_oldsa) { 1066 saorder_state_valid = saorder_state_valid_prefer_old; 1067 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); 1068 } else { 1069 saorder_state_valid = saorder_state_valid_prefer_new; 1070 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); 1071 } 1072 LIST_FOREACH(sah, &sahtree, chain) { 1073 /* search valid state */ 1074 for (stateidx = 0; stateidx < arraysize; stateidx++) { 1075 state = saorder_state_valid[stateidx]; 1076 LIST_FOREACH(sav, &sah->savtree[state], chain) { 1077 /* sanity check */ 1078 KEY_CHKSASTATE(sav->state, state, __func__); 1079 /* do not return entries w/ unusable state */ 1080 if (sav->state != SADB_SASTATE_MATURE && 1081 sav->state != SADB_SASTATE_DYING) 1082 continue; 1083 if (proto != sav->sah->saidx.proto) 1084 continue; 1085 if (spi != sav->spi) 1086 continue; 1087 #if 0 /* don't check src */ 1088 /* check src address */ 1089 if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, 0) != 0) 1090 continue; 1091 #endif 1092 /* check dst address */ 1093 if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, 0) != 0) 1094 continue; 1095 sa_addref(sav); 1096 goto done; 1097 } 1098 } 1099 } 1100 sav = NULL; 1101 done: 1102 SAHTREE_UNLOCK(); 1103 1104 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1105 printf("DP %s return SA:%p; refcnt %u\n", __func__, 1106 sav, sav ? sav->refcnt : 0)); 1107 return sav; 1108 } 1109 1110 /* 1111 * Must be called after calling key_allocsp(). 1112 * For both the packet without socket and key_freeso(). 1113 */ 1114 void 1115 _key_freesp(struct secpolicy **spp, const char* where, int tag) 1116 { 1117 struct secpolicy *sp = *spp; 1118 1119 IPSEC_ASSERT(sp != NULL, ("null sp")); 1120 1121 SPTREE_LOCK(); 1122 SP_DELREF(sp); 1123 1124 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1125 printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n", 1126 __func__, sp, sp->id, where, tag, sp->refcnt)); 1127 1128 if (sp->refcnt == 0) { 1129 *spp = NULL; 1130 key_delsp(sp); 1131 } 1132 SPTREE_UNLOCK(); 1133 } 1134 1135 /* 1136 * Must be called after calling key_allocsp(). 1137 * For the packet with socket. 1138 */ 1139 void 1140 key_freeso(struct socket *so) 1141 { 1142 IPSEC_ASSERT(so != NULL, ("null so")); 1143 1144 switch (so->so_proto->pr_domain->dom_family) { 1145 #ifdef INET 1146 case PF_INET: 1147 { 1148 struct inpcb *pcb = sotoinpcb(so); 1149 1150 /* Does it have a PCB ? */ 1151 if (pcb == NULL) 1152 return; 1153 key_freesp_so(&pcb->inp_sp->sp_in); 1154 key_freesp_so(&pcb->inp_sp->sp_out); 1155 } 1156 break; 1157 #endif 1158 #ifdef INET6 1159 case PF_INET6: 1160 { 1161 #ifdef HAVE_NRL_INPCB 1162 struct inpcb *pcb = sotoinpcb(so); 1163 1164 /* Does it have a PCB ? */ 1165 if (pcb == NULL) 1166 return; 1167 key_freesp_so(&pcb->inp_sp->sp_in); 1168 key_freesp_so(&pcb->inp_sp->sp_out); 1169 #else 1170 struct in6pcb *pcb = sotoin6pcb(so); 1171 1172 /* Does it have a PCB ? */ 1173 if (pcb == NULL) 1174 return; 1175 key_freesp_so(&pcb->in6p_sp->sp_in); 1176 key_freesp_so(&pcb->in6p_sp->sp_out); 1177 #endif 1178 } 1179 break; 1180 #endif /* INET6 */ 1181 default: 1182 ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n", 1183 __func__, so->so_proto->pr_domain->dom_family)); 1184 return; 1185 } 1186 } 1187 1188 static void 1189 key_freesp_so(struct secpolicy **sp) 1190 { 1191 IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp")); 1192 1193 if ((*sp)->policy == IPSEC_POLICY_ENTRUST || 1194 (*sp)->policy == IPSEC_POLICY_BYPASS) 1195 return; 1196 1197 IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC, 1198 ("invalid policy %u", (*sp)->policy)); 1199 KEY_FREESP(sp); 1200 } 1201 1202 /* 1203 * Must be called after calling key_allocsa(). 1204 * This function is called by key_freesp() to free some SA allocated 1205 * for a policy. 1206 */ 1207 void 1208 key_freesav(struct secasvar **psav, const char* where, int tag) 1209 { 1210 struct secasvar *sav = *psav; 1211 1212 IPSEC_ASSERT(sav != NULL, ("null sav")); 1213 1214 if (sa_delref(sav)) { 1215 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1216 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1217 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1218 *psav = NULL; 1219 key_delsav(sav); 1220 } else { 1221 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1222 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1223 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1224 } 1225 } 1226 1227 /* %%% SPD management */ 1228 /* 1229 * free security policy entry. 1230 */ 1231 static void 1232 key_delsp(struct secpolicy *sp) 1233 { 1234 struct ipsecrequest *isr, *nextisr; 1235 1236 IPSEC_ASSERT(sp != NULL, ("null sp")); 1237 SPTREE_LOCK_ASSERT(); 1238 1239 sp->state = IPSEC_SPSTATE_DEAD; 1240 1241 IPSEC_ASSERT(sp->refcnt == 0, 1242 ("SP with references deleted (refcnt %u)", sp->refcnt)); 1243 1244 /* remove from SP index */ 1245 if (__LIST_CHAINED(sp)) 1246 LIST_REMOVE(sp, chain); 1247 1248 for (isr = sp->req; isr != NULL; isr = nextisr) { 1249 if (isr->sav != NULL) { 1250 KEY_FREESAV(&isr->sav); 1251 isr->sav = NULL; 1252 } 1253 1254 nextisr = isr->next; 1255 ipsec_delisr(isr); 1256 } 1257 _key_delsp(sp); 1258 } 1259 1260 /* 1261 * search SPD 1262 * OUT: NULL : not found 1263 * others : found, pointer to a SP. 1264 */ 1265 static struct secpolicy * 1266 key_getsp(struct secpolicyindex *spidx) 1267 { 1268 struct secpolicy *sp; 1269 1270 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 1271 1272 SPTREE_LOCK(); 1273 LIST_FOREACH(sp, &sptree[spidx->dir], chain) { 1274 if (sp->state == IPSEC_SPSTATE_DEAD) 1275 continue; 1276 if (key_cmpspidx_exactly(spidx, &sp->spidx)) { 1277 SP_ADDREF(sp); 1278 break; 1279 } 1280 } 1281 SPTREE_UNLOCK(); 1282 1283 return sp; 1284 } 1285 1286 /* 1287 * get SP by index. 1288 * OUT: NULL : not found 1289 * others : found, pointer to a SP. 1290 */ 1291 static struct secpolicy * 1292 key_getspbyid(u_int32_t id) 1293 { 1294 struct secpolicy *sp; 1295 1296 SPTREE_LOCK(); 1297 LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) { 1298 if (sp->state == IPSEC_SPSTATE_DEAD) 1299 continue; 1300 if (sp->id == id) { 1301 SP_ADDREF(sp); 1302 goto done; 1303 } 1304 } 1305 1306 LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) { 1307 if (sp->state == IPSEC_SPSTATE_DEAD) 1308 continue; 1309 if (sp->id == id) { 1310 SP_ADDREF(sp); 1311 goto done; 1312 } 1313 } 1314 done: 1315 SPTREE_UNLOCK(); 1316 1317 return sp; 1318 } 1319 1320 struct secpolicy * 1321 key_newsp(const char* where, int tag) 1322 { 1323 struct secpolicy *newsp = NULL; 1324 1325 newsp = (struct secpolicy *) 1326 malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO); 1327 if (newsp) { 1328 SECPOLICY_LOCK_INIT(newsp); 1329 newsp->refcnt = 1; 1330 newsp->req = NULL; 1331 } 1332 1333 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1334 printf("DP %s from %s:%u return SP:%p\n", __func__, 1335 where, tag, newsp)); 1336 return newsp; 1337 } 1338 1339 static void 1340 _key_delsp(struct secpolicy *sp) 1341 { 1342 SECPOLICY_LOCK_DESTROY(sp); 1343 free(sp, M_IPSEC_SP); 1344 } 1345 1346 /* 1347 * create secpolicy structure from sadb_x_policy structure. 1348 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, 1349 * so must be set properly later. 1350 */ 1351 struct secpolicy * 1352 key_msg2sp(xpl0, len, error) 1353 struct sadb_x_policy *xpl0; 1354 size_t len; 1355 int *error; 1356 { 1357 struct secpolicy *newsp; 1358 1359 IPSEC_ASSERT(xpl0 != NULL, ("null xpl0")); 1360 IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len)); 1361 1362 if (len != PFKEY_EXTLEN(xpl0)) { 1363 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__)); 1364 *error = EINVAL; 1365 return NULL; 1366 } 1367 1368 if ((newsp = KEY_NEWSP()) == NULL) { 1369 *error = ENOBUFS; 1370 return NULL; 1371 } 1372 1373 newsp->spidx.dir = xpl0->sadb_x_policy_dir; 1374 newsp->policy = xpl0->sadb_x_policy_type; 1375 1376 /* check policy */ 1377 switch (xpl0->sadb_x_policy_type) { 1378 case IPSEC_POLICY_DISCARD: 1379 case IPSEC_POLICY_NONE: 1380 case IPSEC_POLICY_ENTRUST: 1381 case IPSEC_POLICY_BYPASS: 1382 newsp->req = NULL; 1383 break; 1384 1385 case IPSEC_POLICY_IPSEC: 1386 { 1387 int tlen; 1388 struct sadb_x_ipsecrequest *xisr; 1389 struct ipsecrequest **p_isr = &newsp->req; 1390 1391 /* validity check */ 1392 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { 1393 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", 1394 __func__)); 1395 KEY_FREESP(&newsp); 1396 *error = EINVAL; 1397 return NULL; 1398 } 1399 1400 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); 1401 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1); 1402 1403 while (tlen > 0) { 1404 /* length check */ 1405 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { 1406 ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest " 1407 "length.\n", __func__)); 1408 KEY_FREESP(&newsp); 1409 *error = EINVAL; 1410 return NULL; 1411 } 1412 1413 /* allocate request buffer */ 1414 /* NB: data structure is zero'd */ 1415 *p_isr = ipsec_newisr(); 1416 if ((*p_isr) == NULL) { 1417 ipseclog((LOG_DEBUG, 1418 "%s: No more memory.\n", __func__)); 1419 KEY_FREESP(&newsp); 1420 *error = ENOBUFS; 1421 return NULL; 1422 } 1423 1424 /* set values */ 1425 switch (xisr->sadb_x_ipsecrequest_proto) { 1426 case IPPROTO_ESP: 1427 case IPPROTO_AH: 1428 case IPPROTO_IPCOMP: 1429 break; 1430 default: 1431 ipseclog((LOG_DEBUG, 1432 "%s: invalid proto type=%u\n", __func__, 1433 xisr->sadb_x_ipsecrequest_proto)); 1434 KEY_FREESP(&newsp); 1435 *error = EPROTONOSUPPORT; 1436 return NULL; 1437 } 1438 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; 1439 1440 switch (xisr->sadb_x_ipsecrequest_mode) { 1441 case IPSEC_MODE_TRANSPORT: 1442 case IPSEC_MODE_TUNNEL: 1443 break; 1444 case IPSEC_MODE_ANY: 1445 default: 1446 ipseclog((LOG_DEBUG, 1447 "%s: invalid mode=%u\n", __func__, 1448 xisr->sadb_x_ipsecrequest_mode)); 1449 KEY_FREESP(&newsp); 1450 *error = EINVAL; 1451 return NULL; 1452 } 1453 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; 1454 1455 switch (xisr->sadb_x_ipsecrequest_level) { 1456 case IPSEC_LEVEL_DEFAULT: 1457 case IPSEC_LEVEL_USE: 1458 case IPSEC_LEVEL_REQUIRE: 1459 break; 1460 case IPSEC_LEVEL_UNIQUE: 1461 /* validity check */ 1462 /* 1463 * If range violation of reqid, kernel will 1464 * update it, don't refuse it. 1465 */ 1466 if (xisr->sadb_x_ipsecrequest_reqid 1467 > IPSEC_MANUAL_REQID_MAX) { 1468 ipseclog((LOG_DEBUG, 1469 "%s: reqid=%d range " 1470 "violation, updated by kernel.\n", 1471 __func__, 1472 xisr->sadb_x_ipsecrequest_reqid)); 1473 xisr->sadb_x_ipsecrequest_reqid = 0; 1474 } 1475 1476 /* allocate new reqid id if reqid is zero. */ 1477 if (xisr->sadb_x_ipsecrequest_reqid == 0) { 1478 u_int32_t reqid; 1479 if ((reqid = key_newreqid()) == 0) { 1480 KEY_FREESP(&newsp); 1481 *error = ENOBUFS; 1482 return NULL; 1483 } 1484 (*p_isr)->saidx.reqid = reqid; 1485 xisr->sadb_x_ipsecrequest_reqid = reqid; 1486 } else { 1487 /* set it for manual keying. */ 1488 (*p_isr)->saidx.reqid = 1489 xisr->sadb_x_ipsecrequest_reqid; 1490 } 1491 break; 1492 1493 default: 1494 ipseclog((LOG_DEBUG, "%s: invalid level=%u\n", 1495 __func__, 1496 xisr->sadb_x_ipsecrequest_level)); 1497 KEY_FREESP(&newsp); 1498 *error = EINVAL; 1499 return NULL; 1500 } 1501 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; 1502 1503 /* set IP addresses if there */ 1504 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { 1505 struct sockaddr *paddr; 1506 1507 paddr = (struct sockaddr *)(xisr + 1); 1508 1509 /* validity check */ 1510 if (paddr->sa_len 1511 > sizeof((*p_isr)->saidx.src)) { 1512 ipseclog((LOG_DEBUG, "%s: invalid " 1513 "request address length.\n", 1514 __func__)); 1515 KEY_FREESP(&newsp); 1516 *error = EINVAL; 1517 return NULL; 1518 } 1519 bcopy(paddr, &(*p_isr)->saidx.src, 1520 paddr->sa_len); 1521 1522 paddr = (struct sockaddr *)((caddr_t)paddr 1523 + paddr->sa_len); 1524 1525 /* validity check */ 1526 if (paddr->sa_len 1527 > sizeof((*p_isr)->saidx.dst)) { 1528 ipseclog((LOG_DEBUG, "%s: invalid " 1529 "request address length.\n", 1530 __func__)); 1531 KEY_FREESP(&newsp); 1532 *error = EINVAL; 1533 return NULL; 1534 } 1535 bcopy(paddr, &(*p_isr)->saidx.dst, 1536 paddr->sa_len); 1537 } 1538 1539 (*p_isr)->sp = newsp; 1540 1541 /* initialization for the next. */ 1542 p_isr = &(*p_isr)->next; 1543 tlen -= xisr->sadb_x_ipsecrequest_len; 1544 1545 /* validity check */ 1546 if (tlen < 0) { 1547 ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n", 1548 __func__)); 1549 KEY_FREESP(&newsp); 1550 *error = EINVAL; 1551 return NULL; 1552 } 1553 1554 xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr 1555 + xisr->sadb_x_ipsecrequest_len); 1556 } 1557 } 1558 break; 1559 default: 1560 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); 1561 KEY_FREESP(&newsp); 1562 *error = EINVAL; 1563 return NULL; 1564 } 1565 1566 *error = 0; 1567 return newsp; 1568 } 1569 1570 static u_int32_t 1571 key_newreqid() 1572 { 1573 static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 1574 1575 auto_reqid = (auto_reqid == ~0 1576 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); 1577 1578 /* XXX should be unique check */ 1579 1580 return auto_reqid; 1581 } 1582 1583 /* 1584 * copy secpolicy struct to sadb_x_policy structure indicated. 1585 */ 1586 struct mbuf * 1587 key_sp2msg(sp) 1588 struct secpolicy *sp; 1589 { 1590 struct sadb_x_policy *xpl; 1591 int tlen; 1592 caddr_t p; 1593 struct mbuf *m; 1594 1595 IPSEC_ASSERT(sp != NULL, ("null policy")); 1596 1597 tlen = key_getspreqmsglen(sp); 1598 1599 m = key_alloc_mbuf(tlen); 1600 if (!m || m->m_next) { /*XXX*/ 1601 if (m) 1602 m_freem(m); 1603 return NULL; 1604 } 1605 1606 m->m_len = tlen; 1607 m->m_next = NULL; 1608 xpl = mtod(m, struct sadb_x_policy *); 1609 bzero(xpl, tlen); 1610 1611 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen); 1612 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 1613 xpl->sadb_x_policy_type = sp->policy; 1614 xpl->sadb_x_policy_dir = sp->spidx.dir; 1615 xpl->sadb_x_policy_id = sp->id; 1616 p = (caddr_t)xpl + sizeof(*xpl); 1617 1618 /* if is the policy for ipsec ? */ 1619 if (sp->policy == IPSEC_POLICY_IPSEC) { 1620 struct sadb_x_ipsecrequest *xisr; 1621 struct ipsecrequest *isr; 1622 1623 for (isr = sp->req; isr != NULL; isr = isr->next) { 1624 1625 xisr = (struct sadb_x_ipsecrequest *)p; 1626 1627 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; 1628 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; 1629 xisr->sadb_x_ipsecrequest_level = isr->level; 1630 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; 1631 1632 p += sizeof(*xisr); 1633 bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len); 1634 p += isr->saidx.src.sa.sa_len; 1635 bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len); 1636 p += isr->saidx.src.sa.sa_len; 1637 1638 xisr->sadb_x_ipsecrequest_len = 1639 PFKEY_ALIGN8(sizeof(*xisr) 1640 + isr->saidx.src.sa.sa_len 1641 + isr->saidx.dst.sa.sa_len); 1642 } 1643 } 1644 1645 return m; 1646 } 1647 1648 /* m will not be freed nor modified */ 1649 static struct mbuf * 1650 #ifdef __STDC__ 1651 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, 1652 int ndeep, int nitem, ...) 1653 #else 1654 key_gather_mbuf(m, mhp, ndeep, nitem, va_alist) 1655 struct mbuf *m; 1656 const struct sadb_msghdr *mhp; 1657 int ndeep; 1658 int nitem; 1659 va_dcl 1660 #endif 1661 { 1662 va_list ap; 1663 int idx; 1664 int i; 1665 struct mbuf *result = NULL, *n; 1666 int len; 1667 1668 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1669 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1670 1671 va_start(ap, nitem); 1672 for (i = 0; i < nitem; i++) { 1673 idx = va_arg(ap, int); 1674 if (idx < 0 || idx > SADB_EXT_MAX) 1675 goto fail; 1676 /* don't attempt to pull empty extension */ 1677 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) 1678 continue; 1679 if (idx != SADB_EXT_RESERVED && 1680 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) 1681 continue; 1682 1683 if (idx == SADB_EXT_RESERVED) { 1684 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 1685 1686 IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len)); 1687 1688 MGETHDR(n, M_DONTWAIT, MT_DATA); 1689 if (!n) 1690 goto fail; 1691 n->m_len = len; 1692 n->m_next = NULL; 1693 m_copydata(m, 0, sizeof(struct sadb_msg), 1694 mtod(n, caddr_t)); 1695 } else if (i < ndeep) { 1696 len = mhp->extlen[idx]; 1697 n = key_alloc_mbuf(len); 1698 if (!n || n->m_next) { /*XXX*/ 1699 if (n) 1700 m_freem(n); 1701 goto fail; 1702 } 1703 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], 1704 mtod(n, caddr_t)); 1705 } else { 1706 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], 1707 M_DONTWAIT); 1708 } 1709 if (n == NULL) 1710 goto fail; 1711 1712 if (result) 1713 m_cat(result, n); 1714 else 1715 result = n; 1716 } 1717 va_end(ap); 1718 1719 if ((result->m_flags & M_PKTHDR) != 0) { 1720 result->m_pkthdr.len = 0; 1721 for (n = result; n; n = n->m_next) 1722 result->m_pkthdr.len += n->m_len; 1723 } 1724 1725 return result; 1726 1727 fail: 1728 m_freem(result); 1729 return NULL; 1730 } 1731 1732 /* 1733 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing 1734 * add an entry to SP database, when received 1735 * <base, address(SD), (lifetime(H),) policy> 1736 * from the user(?). 1737 * Adding to SP database, 1738 * and send 1739 * <base, address(SD), (lifetime(H),) policy> 1740 * to the socket which was send. 1741 * 1742 * SPDADD set a unique policy entry. 1743 * SPDSETIDX like SPDADD without a part of policy requests. 1744 * SPDUPDATE replace a unique policy entry. 1745 * 1746 * m will always be freed. 1747 */ 1748 static int 1749 key_spdadd(so, m, mhp) 1750 struct socket *so; 1751 struct mbuf *m; 1752 const struct sadb_msghdr *mhp; 1753 { 1754 struct sadb_address *src0, *dst0; 1755 struct sadb_x_policy *xpl0, *xpl; 1756 struct sadb_lifetime *lft = NULL; 1757 struct secpolicyindex spidx; 1758 struct secpolicy *newsp; 1759 int error; 1760 1761 IPSEC_ASSERT(so != NULL, ("null socket")); 1762 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1763 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1764 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 1765 1766 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 1767 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 1768 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 1769 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n")); 1770 return key_senderror(so, m, EINVAL); 1771 } 1772 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 1773 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 1774 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 1775 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1776 __func__)); 1777 return key_senderror(so, m, EINVAL); 1778 } 1779 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { 1780 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] 1781 < sizeof(struct sadb_lifetime)) { 1782 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1783 __func__)); 1784 return key_senderror(so, m, EINVAL); 1785 } 1786 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 1787 } 1788 1789 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 1790 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 1791 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 1792 1793 /* make secindex */ 1794 /* XXX boundary check against sa_len */ 1795 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1796 src0 + 1, 1797 dst0 + 1, 1798 src0->sadb_address_prefixlen, 1799 dst0->sadb_address_prefixlen, 1800 src0->sadb_address_proto, 1801 &spidx); 1802 1803 /* checking the direciton. */ 1804 switch (xpl0->sadb_x_policy_dir) { 1805 case IPSEC_DIR_INBOUND: 1806 case IPSEC_DIR_OUTBOUND: 1807 break; 1808 default: 1809 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 1810 mhp->msg->sadb_msg_errno = EINVAL; 1811 return 0; 1812 } 1813 1814 /* check policy */ 1815 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */ 1816 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST 1817 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { 1818 ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__)); 1819 return key_senderror(so, m, EINVAL); 1820 } 1821 1822 /* policy requests are mandatory when action is ipsec. */ 1823 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX 1824 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC 1825 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { 1826 ipseclog((LOG_DEBUG, "%s: some policy requests part required\n", 1827 __func__)); 1828 return key_senderror(so, m, EINVAL); 1829 } 1830 1831 /* 1832 * checking there is SP already or not. 1833 * SPDUPDATE doesn't depend on whether there is a SP or not. 1834 * If the type is either SPDADD or SPDSETIDX AND a SP is found, 1835 * then error. 1836 */ 1837 newsp = key_getsp(&spidx); 1838 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1839 if (newsp) { 1840 newsp->state = IPSEC_SPSTATE_DEAD; 1841 KEY_FREESP(&newsp); 1842 } 1843 } else { 1844 if (newsp != NULL) { 1845 KEY_FREESP(&newsp); 1846 ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n", 1847 __func__)); 1848 return key_senderror(so, m, EEXIST); 1849 } 1850 } 1851 1852 /* allocation new SP entry */ 1853 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) { 1854 return key_senderror(so, m, error); 1855 } 1856 1857 if ((newsp->id = key_getnewspid()) == 0) { 1858 _key_delsp(newsp); 1859 return key_senderror(so, m, ENOBUFS); 1860 } 1861 1862 /* XXX boundary check against sa_len */ 1863 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1864 src0 + 1, 1865 dst0 + 1, 1866 src0->sadb_address_prefixlen, 1867 dst0->sadb_address_prefixlen, 1868 src0->sadb_address_proto, 1869 &newsp->spidx); 1870 1871 /* sanity check on addr pair */ 1872 if (((struct sockaddr *)(src0 + 1))->sa_family != 1873 ((struct sockaddr *)(dst0+ 1))->sa_family) { 1874 _key_delsp(newsp); 1875 return key_senderror(so, m, EINVAL); 1876 } 1877 if (((struct sockaddr *)(src0 + 1))->sa_len != 1878 ((struct sockaddr *)(dst0+ 1))->sa_len) { 1879 _key_delsp(newsp); 1880 return key_senderror(so, m, EINVAL); 1881 } 1882 #if 1 1883 if (newsp->req && newsp->req->saidx.src.sa.sa_family) { 1884 struct sockaddr *sa; 1885 sa = (struct sockaddr *)(src0 + 1); 1886 if (sa->sa_family != newsp->req->saidx.src.sa.sa_family) { 1887 _key_delsp(newsp); 1888 return key_senderror(so, m, EINVAL); 1889 } 1890 } 1891 if (newsp->req && newsp->req->saidx.dst.sa.sa_family) { 1892 struct sockaddr *sa; 1893 sa = (struct sockaddr *)(dst0 + 1); 1894 if (sa->sa_family != newsp->req->saidx.dst.sa.sa_family) { 1895 _key_delsp(newsp); 1896 return key_senderror(so, m, EINVAL); 1897 } 1898 } 1899 #endif 1900 1901 newsp->created = time_second; 1902 newsp->lastused = newsp->created; 1903 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; 1904 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; 1905 1906 newsp->refcnt = 1; /* do not reclaim until I say I do */ 1907 newsp->state = IPSEC_SPSTATE_ALIVE; 1908 LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain); 1909 1910 /* delete the entry in spacqtree */ 1911 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1912 struct secspacq *spacq = key_getspacq(&spidx); 1913 if (spacq != NULL) { 1914 /* reset counter in order to deletion by timehandler. */ 1915 spacq->created = time_second; 1916 spacq->count = 0; 1917 SPACQ_UNLOCK(); 1918 } 1919 } 1920 1921 { 1922 struct mbuf *n, *mpolicy; 1923 struct sadb_msg *newmsg; 1924 int off; 1925 1926 /* create new sadb_msg to reply. */ 1927 if (lft) { 1928 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, 1929 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, 1930 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1931 } else { 1932 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, 1933 SADB_X_EXT_POLICY, 1934 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1935 } 1936 if (!n) 1937 return key_senderror(so, m, ENOBUFS); 1938 1939 if (n->m_len < sizeof(*newmsg)) { 1940 n = m_pullup(n, sizeof(*newmsg)); 1941 if (!n) 1942 return key_senderror(so, m, ENOBUFS); 1943 } 1944 newmsg = mtod(n, struct sadb_msg *); 1945 newmsg->sadb_msg_errno = 0; 1946 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 1947 1948 off = 0; 1949 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), 1950 sizeof(*xpl), &off); 1951 if (mpolicy == NULL) { 1952 /* n is already freed */ 1953 return key_senderror(so, m, ENOBUFS); 1954 } 1955 xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off); 1956 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { 1957 m_freem(n); 1958 return key_senderror(so, m, EINVAL); 1959 } 1960 xpl->sadb_x_policy_id = newsp->id; 1961 1962 m_freem(m); 1963 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 1964 } 1965 } 1966 1967 /* 1968 * get new policy id. 1969 * OUT: 1970 * 0: failure. 1971 * others: success. 1972 */ 1973 static u_int32_t 1974 key_getnewspid() 1975 { 1976 u_int32_t newid = 0; 1977 int count = key_spi_trycnt; /* XXX */ 1978 struct secpolicy *sp; 1979 1980 /* when requesting to allocate spi ranged */ 1981 while (count--) { 1982 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1)); 1983 1984 if ((sp = key_getspbyid(newid)) == NULL) 1985 break; 1986 1987 KEY_FREESP(&sp); 1988 } 1989 1990 if (count == 0 || newid == 0) { 1991 ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n", 1992 __func__)); 1993 return 0; 1994 } 1995 1996 return newid; 1997 } 1998 1999 /* 2000 * SADB_SPDDELETE processing 2001 * receive 2002 * <base, address(SD), policy(*)> 2003 * from the user(?), and set SADB_SASTATE_DEAD, 2004 * and send, 2005 * <base, address(SD), policy(*)> 2006 * to the ikmpd. 2007 * policy(*) including direction of policy. 2008 * 2009 * m will always be freed. 2010 */ 2011 static int 2012 key_spddelete(so, m, mhp) 2013 struct socket *so; 2014 struct mbuf *m; 2015 const struct sadb_msghdr *mhp; 2016 { 2017 struct sadb_address *src0, *dst0; 2018 struct sadb_x_policy *xpl0; 2019 struct secpolicyindex spidx; 2020 struct secpolicy *sp; 2021 2022 IPSEC_ASSERT(so != NULL, ("null so")); 2023 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2024 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2025 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2026 2027 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2028 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2029 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2030 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2031 __func__)); 2032 return key_senderror(so, m, EINVAL); 2033 } 2034 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2035 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2036 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2037 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2038 __func__)); 2039 return key_senderror(so, m, EINVAL); 2040 } 2041 2042 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 2043 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 2044 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 2045 2046 /* make secindex */ 2047 /* XXX boundary check against sa_len */ 2048 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 2049 src0 + 1, 2050 dst0 + 1, 2051 src0->sadb_address_prefixlen, 2052 dst0->sadb_address_prefixlen, 2053 src0->sadb_address_proto, 2054 &spidx); 2055 2056 /* checking the direciton. */ 2057 switch (xpl0->sadb_x_policy_dir) { 2058 case IPSEC_DIR_INBOUND: 2059 case IPSEC_DIR_OUTBOUND: 2060 break; 2061 default: 2062 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 2063 return key_senderror(so, m, EINVAL); 2064 } 2065 2066 /* Is there SP in SPD ? */ 2067 if ((sp = key_getsp(&spidx)) == NULL) { 2068 ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__)); 2069 return key_senderror(so, m, EINVAL); 2070 } 2071 2072 /* save policy id to buffer to be returned. */ 2073 xpl0->sadb_x_policy_id = sp->id; 2074 2075 sp->state = IPSEC_SPSTATE_DEAD; 2076 KEY_FREESP(&sp); 2077 2078 { 2079 struct mbuf *n; 2080 struct sadb_msg *newmsg; 2081 2082 /* create new sadb_msg to reply. */ 2083 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 2084 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2085 if (!n) 2086 return key_senderror(so, m, ENOBUFS); 2087 2088 newmsg = mtod(n, struct sadb_msg *); 2089 newmsg->sadb_msg_errno = 0; 2090 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2091 2092 m_freem(m); 2093 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2094 } 2095 } 2096 2097 /* 2098 * SADB_SPDDELETE2 processing 2099 * receive 2100 * <base, policy(*)> 2101 * from the user(?), and set SADB_SASTATE_DEAD, 2102 * and send, 2103 * <base, policy(*)> 2104 * to the ikmpd. 2105 * policy(*) including direction of policy. 2106 * 2107 * m will always be freed. 2108 */ 2109 static int 2110 key_spddelete2(so, m, mhp) 2111 struct socket *so; 2112 struct mbuf *m; 2113 const struct sadb_msghdr *mhp; 2114 { 2115 u_int32_t id; 2116 struct secpolicy *sp; 2117 2118 IPSEC_ASSERT(so != NULL, ("null socket")); 2119 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2120 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2121 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2122 2123 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2124 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2125 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); 2126 key_senderror(so, m, EINVAL); 2127 return 0; 2128 } 2129 2130 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2131 2132 /* Is there SP in SPD ? */ 2133 if ((sp = key_getspbyid(id)) == NULL) { 2134 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2135 key_senderror(so, m, EINVAL); 2136 } 2137 2138 sp->state = IPSEC_SPSTATE_DEAD; 2139 KEY_FREESP(&sp); 2140 2141 { 2142 struct mbuf *n, *nn; 2143 struct sadb_msg *newmsg; 2144 int off, len; 2145 2146 /* create new sadb_msg to reply. */ 2147 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2148 2149 if (len > MCLBYTES) 2150 return key_senderror(so, m, ENOBUFS); 2151 MGETHDR(n, M_DONTWAIT, MT_DATA); 2152 if (n && len > MHLEN) { 2153 MCLGET(n, M_DONTWAIT); 2154 if ((n->m_flags & M_EXT) == 0) { 2155 m_freem(n); 2156 n = NULL; 2157 } 2158 } 2159 if (!n) 2160 return key_senderror(so, m, ENOBUFS); 2161 2162 n->m_len = len; 2163 n->m_next = NULL; 2164 off = 0; 2165 2166 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 2167 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2168 2169 IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)", 2170 off, len)); 2171 2172 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], 2173 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT); 2174 if (!n->m_next) { 2175 m_freem(n); 2176 return key_senderror(so, m, ENOBUFS); 2177 } 2178 2179 n->m_pkthdr.len = 0; 2180 for (nn = n; nn; nn = nn->m_next) 2181 n->m_pkthdr.len += nn->m_len; 2182 2183 newmsg = mtod(n, struct sadb_msg *); 2184 newmsg->sadb_msg_errno = 0; 2185 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2186 2187 m_freem(m); 2188 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2189 } 2190 } 2191 2192 /* 2193 * SADB_X_GET processing 2194 * receive 2195 * <base, policy(*)> 2196 * from the user(?), 2197 * and send, 2198 * <base, address(SD), policy> 2199 * to the ikmpd. 2200 * policy(*) including direction of policy. 2201 * 2202 * m will always be freed. 2203 */ 2204 static int 2205 key_spdget(so, m, mhp) 2206 struct socket *so; 2207 struct mbuf *m; 2208 const struct sadb_msghdr *mhp; 2209 { 2210 u_int32_t id; 2211 struct secpolicy *sp; 2212 struct mbuf *n; 2213 2214 IPSEC_ASSERT(so != NULL, ("null socket")); 2215 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2216 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2217 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2218 2219 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2220 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2221 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2222 __func__)); 2223 return key_senderror(so, m, EINVAL); 2224 } 2225 2226 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2227 2228 /* Is there SP in SPD ? */ 2229 if ((sp = key_getspbyid(id)) == NULL) { 2230 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2231 return key_senderror(so, m, ENOENT); 2232 } 2233 2234 n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid); 2235 if (n != NULL) { 2236 m_freem(m); 2237 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2238 } else 2239 return key_senderror(so, m, ENOBUFS); 2240 } 2241 2242 /* 2243 * SADB_X_SPDACQUIRE processing. 2244 * Acquire policy and SA(s) for a *OUTBOUND* packet. 2245 * send 2246 * <base, policy(*)> 2247 * to KMD, and expect to receive 2248 * <base> with SADB_X_SPDACQUIRE if error occured, 2249 * or 2250 * <base, policy> 2251 * with SADB_X_SPDUPDATE from KMD by PF_KEY. 2252 * policy(*) is without policy requests. 2253 * 2254 * 0 : succeed 2255 * others: error number 2256 */ 2257 int 2258 key_spdacquire(sp) 2259 struct secpolicy *sp; 2260 { 2261 struct mbuf *result = NULL, *m; 2262 struct secspacq *newspacq; 2263 int error; 2264 2265 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2266 IPSEC_ASSERT(sp->req == NULL, ("policy exists")); 2267 IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC, 2268 ("policy not IPSEC %u", sp->policy)); 2269 2270 /* Get an entry to check whether sent message or not. */ 2271 newspacq = key_getspacq(&sp->spidx); 2272 if (newspacq != NULL) { 2273 if (key_blockacq_count < newspacq->count) { 2274 /* reset counter and do send message. */ 2275 newspacq->count = 0; 2276 } else { 2277 /* increment counter and do nothing. */ 2278 newspacq->count++; 2279 return 0; 2280 } 2281 SPACQ_UNLOCK(); 2282 } else { 2283 /* make new entry for blocking to send SADB_ACQUIRE. */ 2284 newspacq = key_newspacq(&sp->spidx); 2285 if (newspacq == NULL) 2286 return ENOBUFS; 2287 } 2288 2289 /* create new sadb_msg to reply. */ 2290 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); 2291 if (!m) { 2292 error = ENOBUFS; 2293 goto fail; 2294 } 2295 result = m; 2296 2297 result->m_pkthdr.len = 0; 2298 for (m = result; m; m = m->m_next) 2299 result->m_pkthdr.len += m->m_len; 2300 2301 mtod(result, struct sadb_msg *)->sadb_msg_len = 2302 PFKEY_UNIT64(result->m_pkthdr.len); 2303 2304 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 2305 2306 fail: 2307 if (result) 2308 m_freem(result); 2309 return error; 2310 } 2311 2312 /* 2313 * SADB_SPDFLUSH processing 2314 * receive 2315 * <base> 2316 * from the user, and free all entries in secpctree. 2317 * and send, 2318 * <base> 2319 * to the user. 2320 * NOTE: what to do is only marking SADB_SASTATE_DEAD. 2321 * 2322 * m will always be freed. 2323 */ 2324 static int 2325 key_spdflush(so, m, mhp) 2326 struct socket *so; 2327 struct mbuf *m; 2328 const struct sadb_msghdr *mhp; 2329 { 2330 struct sadb_msg *newmsg; 2331 struct secpolicy *sp; 2332 u_int dir; 2333 2334 IPSEC_ASSERT(so != NULL, ("null socket")); 2335 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2336 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2337 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2338 2339 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) 2340 return key_senderror(so, m, EINVAL); 2341 2342 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2343 SPTREE_LOCK(); 2344 LIST_FOREACH(sp, &sptree[dir], chain) 2345 sp->state = IPSEC_SPSTATE_DEAD; 2346 SPTREE_UNLOCK(); 2347 } 2348 2349 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 2350 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2351 return key_senderror(so, m, ENOBUFS); 2352 } 2353 2354 if (m->m_next) 2355 m_freem(m->m_next); 2356 m->m_next = NULL; 2357 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2358 newmsg = mtod(m, struct sadb_msg *); 2359 newmsg->sadb_msg_errno = 0; 2360 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 2361 2362 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 2363 } 2364 2365 /* 2366 * SADB_SPDDUMP processing 2367 * receive 2368 * <base> 2369 * from the user, and dump all SP leaves 2370 * and send, 2371 * <base> ..... 2372 * to the ikmpd. 2373 * 2374 * m will always be freed. 2375 */ 2376 static int 2377 key_spddump(so, m, mhp) 2378 struct socket *so; 2379 struct mbuf *m; 2380 const struct sadb_msghdr *mhp; 2381 { 2382 struct secpolicy *sp; 2383 int cnt; 2384 u_int dir; 2385 struct mbuf *n; 2386 2387 IPSEC_ASSERT(so != NULL, ("null socket")); 2388 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2389 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2390 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2391 2392 /* search SPD entry and get buffer size. */ 2393 cnt = 0; 2394 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2395 LIST_FOREACH(sp, &sptree[dir], chain) { 2396 cnt++; 2397 } 2398 } 2399 2400 if (cnt == 0) 2401 return key_senderror(so, m, ENOENT); 2402 2403 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2404 LIST_FOREACH(sp, &sptree[dir], chain) { 2405 --cnt; 2406 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, 2407 mhp->msg->sadb_msg_pid); 2408 2409 if (n) 2410 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2411 } 2412 } 2413 2414 m_freem(m); 2415 return 0; 2416 } 2417 2418 static struct mbuf * 2419 key_setdumpsp(sp, type, seq, pid) 2420 struct secpolicy *sp; 2421 u_int8_t type; 2422 u_int32_t seq, pid; 2423 { 2424 struct mbuf *result = NULL, *m; 2425 2426 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt); 2427 if (!m) 2428 goto fail; 2429 result = m; 2430 2431 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2432 &sp->spidx.src.sa, sp->spidx.prefs, 2433 sp->spidx.ul_proto); 2434 if (!m) 2435 goto fail; 2436 m_cat(result, m); 2437 2438 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2439 &sp->spidx.dst.sa, sp->spidx.prefd, 2440 sp->spidx.ul_proto); 2441 if (!m) 2442 goto fail; 2443 m_cat(result, m); 2444 2445 m = key_sp2msg(sp); 2446 if (!m) 2447 goto fail; 2448 m_cat(result, m); 2449 2450 if ((result->m_flags & M_PKTHDR) == 0) 2451 goto fail; 2452 2453 if (result->m_len < sizeof(struct sadb_msg)) { 2454 result = m_pullup(result, sizeof(struct sadb_msg)); 2455 if (result == NULL) 2456 goto fail; 2457 } 2458 2459 result->m_pkthdr.len = 0; 2460 for (m = result; m; m = m->m_next) 2461 result->m_pkthdr.len += m->m_len; 2462 2463 mtod(result, struct sadb_msg *)->sadb_msg_len = 2464 PFKEY_UNIT64(result->m_pkthdr.len); 2465 2466 return result; 2467 2468 fail: 2469 m_freem(result); 2470 return NULL; 2471 } 2472 2473 /* 2474 * get PFKEY message length for security policy and request. 2475 */ 2476 static u_int 2477 key_getspreqmsglen(sp) 2478 struct secpolicy *sp; 2479 { 2480 u_int tlen; 2481 2482 tlen = sizeof(struct sadb_x_policy); 2483 2484 /* if is the policy for ipsec ? */ 2485 if (sp->policy != IPSEC_POLICY_IPSEC) 2486 return tlen; 2487 2488 /* get length of ipsec requests */ 2489 { 2490 struct ipsecrequest *isr; 2491 int len; 2492 2493 for (isr = sp->req; isr != NULL; isr = isr->next) { 2494 len = sizeof(struct sadb_x_ipsecrequest) 2495 + isr->saidx.src.sa.sa_len 2496 + isr->saidx.dst.sa.sa_len; 2497 2498 tlen += PFKEY_ALIGN8(len); 2499 } 2500 } 2501 2502 return tlen; 2503 } 2504 2505 /* 2506 * SADB_SPDEXPIRE processing 2507 * send 2508 * <base, address(SD), lifetime(CH), policy> 2509 * to KMD by PF_KEY. 2510 * 2511 * OUT: 0 : succeed 2512 * others : error number 2513 */ 2514 static int 2515 key_spdexpire(sp) 2516 struct secpolicy *sp; 2517 { 2518 struct mbuf *result = NULL, *m; 2519 int len; 2520 int error = -1; 2521 struct sadb_lifetime *lt; 2522 2523 /* XXX: Why do we lock ? */ 2524 2525 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2526 2527 /* set msg header */ 2528 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0); 2529 if (!m) { 2530 error = ENOBUFS; 2531 goto fail; 2532 } 2533 result = m; 2534 2535 /* create lifetime extension (current and hard) */ 2536 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 2537 m = key_alloc_mbuf(len); 2538 if (!m || m->m_next) { /*XXX*/ 2539 if (m) 2540 m_freem(m); 2541 error = ENOBUFS; 2542 goto fail; 2543 } 2544 bzero(mtod(m, caddr_t), len); 2545 lt = mtod(m, struct sadb_lifetime *); 2546 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2547 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 2548 lt->sadb_lifetime_allocations = 0; 2549 lt->sadb_lifetime_bytes = 0; 2550 lt->sadb_lifetime_addtime = sp->created; 2551 lt->sadb_lifetime_usetime = sp->lastused; 2552 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 2553 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2554 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 2555 lt->sadb_lifetime_allocations = 0; 2556 lt->sadb_lifetime_bytes = 0; 2557 lt->sadb_lifetime_addtime = sp->lifetime; 2558 lt->sadb_lifetime_usetime = sp->validtime; 2559 m_cat(result, m); 2560 2561 /* set sadb_address for source */ 2562 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2563 &sp->spidx.src.sa, 2564 sp->spidx.prefs, sp->spidx.ul_proto); 2565 if (!m) { 2566 error = ENOBUFS; 2567 goto fail; 2568 } 2569 m_cat(result, m); 2570 2571 /* set sadb_address for destination */ 2572 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2573 &sp->spidx.dst.sa, 2574 sp->spidx.prefd, sp->spidx.ul_proto); 2575 if (!m) { 2576 error = ENOBUFS; 2577 goto fail; 2578 } 2579 m_cat(result, m); 2580 2581 /* set secpolicy */ 2582 m = key_sp2msg(sp); 2583 if (!m) { 2584 error = ENOBUFS; 2585 goto fail; 2586 } 2587 m_cat(result, m); 2588 2589 if ((result->m_flags & M_PKTHDR) == 0) { 2590 error = EINVAL; 2591 goto fail; 2592 } 2593 2594 if (result->m_len < sizeof(struct sadb_msg)) { 2595 result = m_pullup(result, sizeof(struct sadb_msg)); 2596 if (result == NULL) { 2597 error = ENOBUFS; 2598 goto fail; 2599 } 2600 } 2601 2602 result->m_pkthdr.len = 0; 2603 for (m = result; m; m = m->m_next) 2604 result->m_pkthdr.len += m->m_len; 2605 2606 mtod(result, struct sadb_msg *)->sadb_msg_len = 2607 PFKEY_UNIT64(result->m_pkthdr.len); 2608 2609 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 2610 2611 fail: 2612 if (result) 2613 m_freem(result); 2614 return error; 2615 } 2616 2617 /* %%% SAD management */ 2618 /* 2619 * allocating a memory for new SA head, and copy from the values of mhp. 2620 * OUT: NULL : failure due to the lack of memory. 2621 * others : pointer to new SA head. 2622 */ 2623 static struct secashead * 2624 key_newsah(saidx) 2625 struct secasindex *saidx; 2626 { 2627 struct secashead *newsah; 2628 2629 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 2630 2631 newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO); 2632 if (newsah != NULL) { 2633 int i; 2634 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++) 2635 LIST_INIT(&newsah->savtree[i]); 2636 newsah->saidx = *saidx; 2637 2638 /* add to saidxtree */ 2639 newsah->state = SADB_SASTATE_MATURE; 2640 2641 SAHTREE_LOCK(); 2642 LIST_INSERT_HEAD(&sahtree, newsah, chain); 2643 SAHTREE_UNLOCK(); 2644 } 2645 return(newsah); 2646 } 2647 2648 /* 2649 * delete SA index and all SA registerd. 2650 */ 2651 static void 2652 key_delsah(sah) 2653 struct secashead *sah; 2654 { 2655 struct secasvar *sav, *nextsav; 2656 u_int stateidx; 2657 int zombie = 0; 2658 2659 IPSEC_ASSERT(sah != NULL, ("NULL sah")); 2660 SAHTREE_LOCK_ASSERT(); 2661 2662 /* searching all SA registerd in the secindex. */ 2663 for (stateidx = 0; 2664 stateidx < _ARRAYLEN(saorder_state_any); 2665 stateidx++) { 2666 u_int state = saorder_state_any[stateidx]; 2667 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) { 2668 if (sav->refcnt == 0) { 2669 /* sanity check */ 2670 KEY_CHKSASTATE(state, sav->state, __func__); 2671 KEY_FREESAV(&sav); 2672 } else { 2673 /* give up to delete this sa */ 2674 zombie++; 2675 } 2676 } 2677 } 2678 if (!zombie) { /* delete only if there are savs */ 2679 /* remove from tree of SA index */ 2680 if (__LIST_CHAINED(sah)) 2681 LIST_REMOVE(sah, chain); 2682 if (sah->sa_route.ro_rt) { 2683 RTFREE(sah->sa_route.ro_rt); 2684 sah->sa_route.ro_rt = (struct rtentry *)NULL; 2685 } 2686 free(sah, M_IPSEC_SAH); 2687 } 2688 } 2689 2690 /* 2691 * allocating a new SA with LARVAL state. key_add() and key_getspi() call, 2692 * and copy the values of mhp into new buffer. 2693 * When SAD message type is GETSPI: 2694 * to set sequence number from acq_seq++, 2695 * to set zero to SPI. 2696 * not to call key_setsava(). 2697 * OUT: NULL : fail 2698 * others : pointer to new secasvar. 2699 * 2700 * does not modify mbuf. does not free mbuf on error. 2701 */ 2702 static struct secasvar * 2703 key_newsav(m, mhp, sah, errp, where, tag) 2704 struct mbuf *m; 2705 const struct sadb_msghdr *mhp; 2706 struct secashead *sah; 2707 int *errp; 2708 const char* where; 2709 int tag; 2710 { 2711 struct secasvar *newsav; 2712 const struct sadb_sa *xsa; 2713 2714 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2715 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2716 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2717 IPSEC_ASSERT(sah != NULL, ("null secashead")); 2718 2719 newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO); 2720 if (newsav == NULL) { 2721 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2722 *errp = ENOBUFS; 2723 goto done; 2724 } 2725 2726 switch (mhp->msg->sadb_msg_type) { 2727 case SADB_GETSPI: 2728 newsav->spi = 0; 2729 2730 #ifdef IPSEC_DOSEQCHECK 2731 /* sync sequence number */ 2732 if (mhp->msg->sadb_msg_seq == 0) 2733 newsav->seq = 2734 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq)); 2735 else 2736 #endif 2737 newsav->seq = mhp->msg->sadb_msg_seq; 2738 break; 2739 2740 case SADB_ADD: 2741 /* sanity check */ 2742 if (mhp->ext[SADB_EXT_SA] == NULL) { 2743 free(newsav, M_IPSEC_SA); 2744 newsav = NULL; 2745 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2746 __func__)); 2747 *errp = EINVAL; 2748 goto done; 2749 } 2750 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 2751 newsav->spi = xsa->sadb_sa_spi; 2752 newsav->seq = mhp->msg->sadb_msg_seq; 2753 break; 2754 default: 2755 free(newsav, M_IPSEC_SA); 2756 newsav = NULL; 2757 *errp = EINVAL; 2758 goto done; 2759 } 2760 2761 2762 /* copy sav values */ 2763 if (mhp->msg->sadb_msg_type != SADB_GETSPI) { 2764 *errp = key_setsaval(newsav, m, mhp); 2765 if (*errp) { 2766 free(newsav, M_IPSEC_SA); 2767 newsav = NULL; 2768 goto done; 2769 } 2770 } 2771 2772 SECASVAR_LOCK_INIT(newsav); 2773 2774 /* reset created */ 2775 newsav->created = time_second; 2776 newsav->pid = mhp->msg->sadb_msg_pid; 2777 2778 /* add to satree */ 2779 newsav->sah = sah; 2780 sa_initref(newsav); 2781 newsav->state = SADB_SASTATE_LARVAL; 2782 2783 /* XXX locking??? */ 2784 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav, 2785 secasvar, chain); 2786 done: 2787 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 2788 printf("DP %s from %s:%u return SP:%p\n", __func__, 2789 where, tag, newsav)); 2790 2791 return newsav; 2792 } 2793 2794 /* 2795 * free() SA variable entry. 2796 */ 2797 static void 2798 key_cleansav(struct secasvar *sav) 2799 { 2800 /* 2801 * Cleanup xform state. Note that zeroize'ing causes the 2802 * keys to be cleared; otherwise we must do it ourself. 2803 */ 2804 if (sav->tdb_xform != NULL) { 2805 sav->tdb_xform->xf_zeroize(sav); 2806 sav->tdb_xform = NULL; 2807 } else { 2808 KASSERT(sav->iv == NULL, ("iv but no xform")); 2809 if (sav->key_auth != NULL) 2810 bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth)); 2811 if (sav->key_enc != NULL) 2812 bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc)); 2813 } 2814 if (sav->key_auth != NULL) { 2815 if (sav->key_auth->key_data != NULL) 2816 free(sav->key_auth->key_data, M_IPSEC_MISC); 2817 free(sav->key_auth, M_IPSEC_MISC); 2818 sav->key_auth = NULL; 2819 } 2820 if (sav->key_enc != NULL) { 2821 if (sav->key_enc->key_data != NULL) 2822 free(sav->key_enc->key_data, M_IPSEC_MISC); 2823 free(sav->key_enc, M_IPSEC_MISC); 2824 sav->key_enc = NULL; 2825 } 2826 if (sav->sched) { 2827 bzero(sav->sched, sav->schedlen); 2828 free(sav->sched, M_IPSEC_MISC); 2829 sav->sched = NULL; 2830 } 2831 if (sav->replay != NULL) { 2832 free(sav->replay, M_IPSEC_MISC); 2833 sav->replay = NULL; 2834 } 2835 if (sav->lft_c != NULL) { 2836 free(sav->lft_c, M_IPSEC_MISC); 2837 sav->lft_c = NULL; 2838 } 2839 if (sav->lft_h != NULL) { 2840 free(sav->lft_h, M_IPSEC_MISC); 2841 sav->lft_h = NULL; 2842 } 2843 if (sav->lft_s != NULL) { 2844 free(sav->lft_s, M_IPSEC_MISC); 2845 sav->lft_s = NULL; 2846 } 2847 } 2848 2849 /* 2850 * free() SA variable entry. 2851 */ 2852 static void 2853 key_delsav(sav) 2854 struct secasvar *sav; 2855 { 2856 IPSEC_ASSERT(sav != NULL, ("null sav")); 2857 IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt)); 2858 2859 /* remove from SA header */ 2860 if (__LIST_CHAINED(sav)) 2861 LIST_REMOVE(sav, chain); 2862 key_cleansav(sav); 2863 SECASVAR_LOCK_DESTROY(sav); 2864 free(sav, M_IPSEC_SA); 2865 } 2866 2867 /* 2868 * search SAD. 2869 * OUT: 2870 * NULL : not found 2871 * others : found, pointer to a SA. 2872 */ 2873 static struct secashead * 2874 key_getsah(saidx) 2875 struct secasindex *saidx; 2876 { 2877 struct secashead *sah; 2878 2879 SAHTREE_LOCK(); 2880 LIST_FOREACH(sah, &sahtree, chain) { 2881 if (sah->state == SADB_SASTATE_DEAD) 2882 continue; 2883 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID)) 2884 break; 2885 } 2886 SAHTREE_UNLOCK(); 2887 2888 return sah; 2889 } 2890 2891 /* 2892 * check not to be duplicated SPI. 2893 * NOTE: this function is too slow due to searching all SAD. 2894 * OUT: 2895 * NULL : not found 2896 * others : found, pointer to a SA. 2897 */ 2898 static struct secasvar * 2899 key_checkspidup(saidx, spi) 2900 struct secasindex *saidx; 2901 u_int32_t spi; 2902 { 2903 struct secashead *sah; 2904 struct secasvar *sav; 2905 2906 /* check address family */ 2907 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) { 2908 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 2909 __func__)); 2910 return NULL; 2911 } 2912 2913 sav = NULL; 2914 /* check all SAD */ 2915 SAHTREE_LOCK(); 2916 LIST_FOREACH(sah, &sahtree, chain) { 2917 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst)) 2918 continue; 2919 sav = key_getsavbyspi(sah, spi); 2920 if (sav != NULL) 2921 break; 2922 } 2923 SAHTREE_UNLOCK(); 2924 2925 return sav; 2926 } 2927 2928 /* 2929 * search SAD litmited alive SA, protocol, SPI. 2930 * OUT: 2931 * NULL : not found 2932 * others : found, pointer to a SA. 2933 */ 2934 static struct secasvar * 2935 key_getsavbyspi(sah, spi) 2936 struct secashead *sah; 2937 u_int32_t spi; 2938 { 2939 struct secasvar *sav; 2940 u_int stateidx, state; 2941 2942 sav = NULL; 2943 SAHTREE_LOCK_ASSERT(); 2944 /* search all status */ 2945 for (stateidx = 0; 2946 stateidx < _ARRAYLEN(saorder_state_alive); 2947 stateidx++) { 2948 2949 state = saorder_state_alive[stateidx]; 2950 LIST_FOREACH(sav, &sah->savtree[state], chain) { 2951 2952 /* sanity check */ 2953 if (sav->state != state) { 2954 ipseclog((LOG_DEBUG, "%s: " 2955 "invalid sav->state (queue: %d SA: %d)\n", 2956 __func__, state, sav->state)); 2957 continue; 2958 } 2959 2960 if (sav->spi == spi) 2961 return sav; 2962 } 2963 } 2964 2965 return NULL; 2966 } 2967 2968 /* 2969 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. 2970 * You must update these if need. 2971 * OUT: 0: success. 2972 * !0: failure. 2973 * 2974 * does not modify mbuf. does not free mbuf on error. 2975 */ 2976 static int 2977 key_setsaval(sav, m, mhp) 2978 struct secasvar *sav; 2979 struct mbuf *m; 2980 const struct sadb_msghdr *mhp; 2981 { 2982 int error = 0; 2983 2984 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2985 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2986 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2987 2988 /* initialization */ 2989 sav->replay = NULL; 2990 sav->key_auth = NULL; 2991 sav->key_enc = NULL; 2992 sav->sched = NULL; 2993 sav->schedlen = 0; 2994 sav->iv = NULL; 2995 sav->lft_c = NULL; 2996 sav->lft_h = NULL; 2997 sav->lft_s = NULL; 2998 sav->tdb_xform = NULL; /* transform */ 2999 sav->tdb_encalgxform = NULL; /* encoding algorithm */ 3000 sav->tdb_authalgxform = NULL; /* authentication algorithm */ 3001 sav->tdb_compalgxform = NULL; /* compression algorithm */ 3002 3003 /* SA */ 3004 if (mhp->ext[SADB_EXT_SA] != NULL) { 3005 const struct sadb_sa *sa0; 3006 3007 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 3008 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { 3009 error = EINVAL; 3010 goto fail; 3011 } 3012 3013 sav->alg_auth = sa0->sadb_sa_auth; 3014 sav->alg_enc = sa0->sadb_sa_encrypt; 3015 sav->flags = sa0->sadb_sa_flags; 3016 3017 /* replay window */ 3018 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { 3019 sav->replay = (struct secreplay *) 3020 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO); 3021 if (sav->replay == NULL) { 3022 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3023 __func__)); 3024 error = ENOBUFS; 3025 goto fail; 3026 } 3027 if (sa0->sadb_sa_replay != 0) 3028 sav->replay->bitmap = (caddr_t)(sav->replay+1); 3029 sav->replay->wsize = sa0->sadb_sa_replay; 3030 } 3031 } 3032 3033 /* Authentication keys */ 3034 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { 3035 const struct sadb_key *key0; 3036 int len; 3037 3038 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH]; 3039 len = mhp->extlen[SADB_EXT_KEY_AUTH]; 3040 3041 error = 0; 3042 if (len < sizeof(*key0)) { 3043 error = EINVAL; 3044 goto fail; 3045 } 3046 switch (mhp->msg->sadb_msg_satype) { 3047 case SADB_SATYPE_AH: 3048 case SADB_SATYPE_ESP: 3049 case SADB_X_SATYPE_TCPSIGNATURE: 3050 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3051 sav->alg_auth != SADB_X_AALG_NULL) 3052 error = EINVAL; 3053 break; 3054 case SADB_X_SATYPE_IPCOMP: 3055 default: 3056 error = EINVAL; 3057 break; 3058 } 3059 if (error) { 3060 ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n", 3061 __func__)); 3062 goto fail; 3063 } 3064 3065 sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len, 3066 M_IPSEC_MISC); 3067 if (sav->key_auth == NULL ) { 3068 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3069 __func__)); 3070 error = ENOBUFS; 3071 goto fail; 3072 } 3073 } 3074 3075 /* Encryption key */ 3076 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { 3077 const struct sadb_key *key0; 3078 int len; 3079 3080 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT]; 3081 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; 3082 3083 error = 0; 3084 if (len < sizeof(*key0)) { 3085 error = EINVAL; 3086 goto fail; 3087 } 3088 switch (mhp->msg->sadb_msg_satype) { 3089 case SADB_SATYPE_ESP: 3090 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3091 sav->alg_enc != SADB_EALG_NULL) { 3092 error = EINVAL; 3093 break; 3094 } 3095 sav->key_enc = (struct seckey *)key_dup_keymsg(key0, 3096 len, 3097 M_IPSEC_MISC); 3098 if (sav->key_enc == NULL) { 3099 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3100 __func__)); 3101 error = ENOBUFS; 3102 goto fail; 3103 } 3104 break; 3105 case SADB_X_SATYPE_IPCOMP: 3106 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) 3107 error = EINVAL; 3108 sav->key_enc = NULL; /*just in case*/ 3109 break; 3110 case SADB_SATYPE_AH: 3111 case SADB_X_SATYPE_TCPSIGNATURE: 3112 default: 3113 error = EINVAL; 3114 break; 3115 } 3116 if (error) { 3117 ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n", 3118 __func__)); 3119 goto fail; 3120 } 3121 } 3122 3123 /* set iv */ 3124 sav->ivlen = 0; 3125 3126 switch (mhp->msg->sadb_msg_satype) { 3127 case SADB_SATYPE_AH: 3128 error = xform_init(sav, XF_AH); 3129 break; 3130 case SADB_SATYPE_ESP: 3131 error = xform_init(sav, XF_ESP); 3132 break; 3133 case SADB_X_SATYPE_IPCOMP: 3134 error = xform_init(sav, XF_IPCOMP); 3135 break; 3136 case SADB_X_SATYPE_TCPSIGNATURE: 3137 error = xform_init(sav, XF_TCPSIGNATURE); 3138 break; 3139 } 3140 if (error) { 3141 ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n", 3142 __func__, mhp->msg->sadb_msg_satype)); 3143 goto fail; 3144 } 3145 3146 /* reset created */ 3147 sav->created = time_second; 3148 3149 /* make lifetime for CURRENT */ 3150 sav->lft_c = malloc(sizeof(struct sadb_lifetime), M_IPSEC_MISC, M_NOWAIT); 3151 if (sav->lft_c == NULL) { 3152 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3153 error = ENOBUFS; 3154 goto fail; 3155 } 3156 3157 sav->lft_c->allocations = 0; 3158 sav->lft_c->bytes = 0; 3159 sav->lft_c->addtime = time_second; 3160 sav->lft_c->usetime = 0; 3161 3162 /* lifetimes for HARD and SOFT */ 3163 { 3164 const struct sadb_lifetime *lft0; 3165 3166 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 3167 if (lft0 != NULL) { 3168 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { 3169 error = EINVAL; 3170 goto fail; 3171 } 3172 sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3173 if (sav->lft_h == NULL) { 3174 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3175 error = ENOBUFS; 3176 goto fail; 3177 } 3178 /* to be initialize ? */ 3179 } 3180 3181 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT]; 3182 if (lft0 != NULL) { 3183 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { 3184 error = EINVAL; 3185 goto fail; 3186 } 3187 sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3188 if (sav->lft_s == NULL) { 3189 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3190 error = ENOBUFS; 3191 goto fail; 3192 } 3193 /* to be initialize ? */ 3194 } 3195 } 3196 3197 return 0; 3198 3199 fail: 3200 /* initialization */ 3201 key_cleansav(sav); 3202 3203 return error; 3204 } 3205 3206 /* 3207 * validation with a secasvar entry, and set SADB_SATYPE_MATURE. 3208 * OUT: 0: valid 3209 * other: errno 3210 */ 3211 static int 3212 key_mature(struct secasvar *sav) 3213 { 3214 int error; 3215 3216 /* check SPI value */ 3217 switch (sav->sah->saidx.proto) { 3218 case IPPROTO_ESP: 3219 case IPPROTO_AH: 3220 if (ntohl(sav->spi) >= 0 && ntohl(sav->spi) <= 255) { 3221 ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n", 3222 __func__, (u_int32_t)ntohl(sav->spi))); 3223 return EINVAL; 3224 } 3225 break; 3226 } 3227 3228 /* check satype */ 3229 switch (sav->sah->saidx.proto) { 3230 case IPPROTO_ESP: 3231 /* check flags */ 3232 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) == 3233 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) { 3234 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3235 "given to old-esp.\n", __func__)); 3236 return EINVAL; 3237 } 3238 error = xform_init(sav, XF_ESP); 3239 break; 3240 case IPPROTO_AH: 3241 /* check flags */ 3242 if (sav->flags & SADB_X_EXT_DERIV) { 3243 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3244 "given to AH SA.\n", __func__)); 3245 return EINVAL; 3246 } 3247 if (sav->alg_enc != SADB_EALG_NONE) { 3248 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3249 "mismated.\n", __func__)); 3250 return(EINVAL); 3251 } 3252 error = xform_init(sav, XF_AH); 3253 break; 3254 case IPPROTO_IPCOMP: 3255 if (sav->alg_auth != SADB_AALG_NONE) { 3256 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3257 "mismated.\n", __func__)); 3258 return(EINVAL); 3259 } 3260 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 3261 && ntohl(sav->spi) >= 0x10000) { 3262 ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n", 3263 __func__)); 3264 return(EINVAL); 3265 } 3266 error = xform_init(sav, XF_IPCOMP); 3267 break; 3268 case IPPROTO_TCP: 3269 if (sav->alg_enc != SADB_EALG_NONE) { 3270 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3271 "mismated.\n", __func__)); 3272 return(EINVAL); 3273 } 3274 error = xform_init(sav, XF_TCPSIGNATURE); 3275 break; 3276 default: 3277 ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__)); 3278 error = EPROTONOSUPPORT; 3279 break; 3280 } 3281 if (error == 0) { 3282 SAHTREE_LOCK(); 3283 key_sa_chgstate(sav, SADB_SASTATE_MATURE); 3284 SAHTREE_UNLOCK(); 3285 } 3286 return (error); 3287 } 3288 3289 /* 3290 * subroutine for SADB_GET and SADB_DUMP. 3291 */ 3292 static struct mbuf * 3293 key_setdumpsa(sav, type, satype, seq, pid) 3294 struct secasvar *sav; 3295 u_int8_t type, satype; 3296 u_int32_t seq, pid; 3297 { 3298 struct mbuf *result = NULL, *tres = NULL, *m; 3299 int i; 3300 int dumporder[] = { 3301 SADB_EXT_SA, SADB_X_EXT_SA2, 3302 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 3303 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, 3304 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, 3305 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, 3306 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, 3307 }; 3308 3309 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt); 3310 if (m == NULL) 3311 goto fail; 3312 result = m; 3313 3314 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) { 3315 m = NULL; 3316 switch (dumporder[i]) { 3317 case SADB_EXT_SA: 3318 m = key_setsadbsa(sav); 3319 if (!m) 3320 goto fail; 3321 break; 3322 3323 case SADB_X_EXT_SA2: 3324 m = key_setsadbxsa2(sav->sah->saidx.mode, 3325 sav->replay ? sav->replay->count : 0, 3326 sav->sah->saidx.reqid); 3327 if (!m) 3328 goto fail; 3329 break; 3330 3331 case SADB_EXT_ADDRESS_SRC: 3332 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3333 &sav->sah->saidx.src.sa, 3334 FULLMASK, IPSEC_ULPROTO_ANY); 3335 if (!m) 3336 goto fail; 3337 break; 3338 3339 case SADB_EXT_ADDRESS_DST: 3340 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3341 &sav->sah->saidx.dst.sa, 3342 FULLMASK, IPSEC_ULPROTO_ANY); 3343 if (!m) 3344 goto fail; 3345 break; 3346 3347 case SADB_EXT_KEY_AUTH: 3348 if (!sav->key_auth) 3349 continue; 3350 m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH); 3351 if (!m) 3352 goto fail; 3353 break; 3354 3355 case SADB_EXT_KEY_ENCRYPT: 3356 if (!sav->key_enc) 3357 continue; 3358 m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT); 3359 if (!m) 3360 goto fail; 3361 break; 3362 3363 case SADB_EXT_LIFETIME_CURRENT: 3364 if (!sav->lft_c) 3365 continue; 3366 m = key_setlifetime(sav->lft_c, 3367 SADB_EXT_LIFETIME_CURRENT); 3368 if (!m) 3369 goto fail; 3370 break; 3371 3372 case SADB_EXT_LIFETIME_HARD: 3373 if (!sav->lft_h) 3374 continue; 3375 m = key_setlifetime(sav->lft_h, 3376 SADB_EXT_LIFETIME_HARD); 3377 if (!m) 3378 goto fail; 3379 break; 3380 3381 case SADB_EXT_LIFETIME_SOFT: 3382 if (!sav->lft_s) 3383 continue; 3384 m = key_setlifetime(sav->lft_h, 3385 SADB_EXT_LIFETIME_SOFT); 3386 3387 if (!m) 3388 goto fail; 3389 break; 3390 3391 case SADB_EXT_ADDRESS_PROXY: 3392 case SADB_EXT_IDENTITY_SRC: 3393 case SADB_EXT_IDENTITY_DST: 3394 /* XXX: should we brought from SPD ? */ 3395 case SADB_EXT_SENSITIVITY: 3396 default: 3397 continue; 3398 } 3399 3400 if (!m) 3401 goto fail; 3402 if (tres) 3403 m_cat(m, tres); 3404 tres = m; 3405 3406 } 3407 3408 m_cat(result, tres); 3409 if (result->m_len < sizeof(struct sadb_msg)) { 3410 result = m_pullup(result, sizeof(struct sadb_msg)); 3411 if (result == NULL) 3412 goto fail; 3413 } 3414 3415 result->m_pkthdr.len = 0; 3416 for (m = result; m; m = m->m_next) 3417 result->m_pkthdr.len += m->m_len; 3418 3419 mtod(result, struct sadb_msg *)->sadb_msg_len = 3420 PFKEY_UNIT64(result->m_pkthdr.len); 3421 3422 return result; 3423 3424 fail: 3425 m_freem(result); 3426 m_freem(tres); 3427 return NULL; 3428 } 3429 3430 /* 3431 * set data into sadb_msg. 3432 */ 3433 static struct mbuf * 3434 key_setsadbmsg(type, tlen, satype, seq, pid, reserved) 3435 u_int8_t type, satype; 3436 u_int16_t tlen; 3437 u_int32_t seq; 3438 pid_t pid; 3439 u_int16_t reserved; 3440 { 3441 struct mbuf *m; 3442 struct sadb_msg *p; 3443 int len; 3444 3445 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 3446 if (len > MCLBYTES) 3447 return NULL; 3448 MGETHDR(m, M_DONTWAIT, MT_DATA); 3449 if (m && len > MHLEN) { 3450 MCLGET(m, M_DONTWAIT); 3451 if ((m->m_flags & M_EXT) == 0) { 3452 m_freem(m); 3453 m = NULL; 3454 } 3455 } 3456 if (!m) 3457 return NULL; 3458 m->m_pkthdr.len = m->m_len = len; 3459 m->m_next = NULL; 3460 3461 p = mtod(m, struct sadb_msg *); 3462 3463 bzero(p, len); 3464 p->sadb_msg_version = PF_KEY_V2; 3465 p->sadb_msg_type = type; 3466 p->sadb_msg_errno = 0; 3467 p->sadb_msg_satype = satype; 3468 p->sadb_msg_len = PFKEY_UNIT64(tlen); 3469 p->sadb_msg_reserved = reserved; 3470 p->sadb_msg_seq = seq; 3471 p->sadb_msg_pid = (u_int32_t)pid; 3472 3473 return m; 3474 } 3475 3476 /* 3477 * copy secasvar data into sadb_address. 3478 */ 3479 static struct mbuf * 3480 key_setsadbsa(sav) 3481 struct secasvar *sav; 3482 { 3483 struct mbuf *m; 3484 struct sadb_sa *p; 3485 int len; 3486 3487 len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); 3488 m = key_alloc_mbuf(len); 3489 if (!m || m->m_next) { /*XXX*/ 3490 if (m) 3491 m_freem(m); 3492 return NULL; 3493 } 3494 3495 p = mtod(m, struct sadb_sa *); 3496 3497 bzero(p, len); 3498 p->sadb_sa_len = PFKEY_UNIT64(len); 3499 p->sadb_sa_exttype = SADB_EXT_SA; 3500 p->sadb_sa_spi = sav->spi; 3501 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0); 3502 p->sadb_sa_state = sav->state; 3503 p->sadb_sa_auth = sav->alg_auth; 3504 p->sadb_sa_encrypt = sav->alg_enc; 3505 p->sadb_sa_flags = sav->flags; 3506 3507 return m; 3508 } 3509 3510 /* 3511 * set data into sadb_address. 3512 */ 3513 static struct mbuf * 3514 key_setsadbaddr(exttype, saddr, prefixlen, ul_proto) 3515 u_int16_t exttype; 3516 const struct sockaddr *saddr; 3517 u_int8_t prefixlen; 3518 u_int16_t ul_proto; 3519 { 3520 struct mbuf *m; 3521 struct sadb_address *p; 3522 size_t len; 3523 3524 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + 3525 PFKEY_ALIGN8(saddr->sa_len); 3526 m = key_alloc_mbuf(len); 3527 if (!m || m->m_next) { /*XXX*/ 3528 if (m) 3529 m_freem(m); 3530 return NULL; 3531 } 3532 3533 p = mtod(m, struct sadb_address *); 3534 3535 bzero(p, len); 3536 p->sadb_address_len = PFKEY_UNIT64(len); 3537 p->sadb_address_exttype = exttype; 3538 p->sadb_address_proto = ul_proto; 3539 if (prefixlen == FULLMASK) { 3540 switch (saddr->sa_family) { 3541 case AF_INET: 3542 prefixlen = sizeof(struct in_addr) << 3; 3543 break; 3544 case AF_INET6: 3545 prefixlen = sizeof(struct in6_addr) << 3; 3546 break; 3547 default: 3548 ; /*XXX*/ 3549 } 3550 } 3551 p->sadb_address_prefixlen = prefixlen; 3552 p->sadb_address_reserved = 0; 3553 3554 bcopy(saddr, 3555 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)), 3556 saddr->sa_len); 3557 3558 return m; 3559 } 3560 3561 /* 3562 * set data into sadb_x_sa2. 3563 */ 3564 static struct mbuf * 3565 key_setsadbxsa2(mode, seq, reqid) 3566 u_int8_t mode; 3567 u_int32_t seq, reqid; 3568 { 3569 struct mbuf *m; 3570 struct sadb_x_sa2 *p; 3571 size_t len; 3572 3573 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); 3574 m = key_alloc_mbuf(len); 3575 if (!m || m->m_next) { /*XXX*/ 3576 if (m) 3577 m_freem(m); 3578 return NULL; 3579 } 3580 3581 p = mtod(m, struct sadb_x_sa2 *); 3582 3583 bzero(p, len); 3584 p->sadb_x_sa2_len = PFKEY_UNIT64(len); 3585 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 3586 p->sadb_x_sa2_mode = mode; 3587 p->sadb_x_sa2_reserved1 = 0; 3588 p->sadb_x_sa2_reserved2 = 0; 3589 p->sadb_x_sa2_sequence = seq; 3590 p->sadb_x_sa2_reqid = reqid; 3591 3592 return m; 3593 } 3594 3595 /* 3596 * set data into sadb_x_policy 3597 */ 3598 static struct mbuf * 3599 key_setsadbxpolicy(type, dir, id) 3600 u_int16_t type; 3601 u_int8_t dir; 3602 u_int32_t id; 3603 { 3604 struct mbuf *m; 3605 struct sadb_x_policy *p; 3606 size_t len; 3607 3608 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); 3609 m = key_alloc_mbuf(len); 3610 if (!m || m->m_next) { /*XXX*/ 3611 if (m) 3612 m_freem(m); 3613 return NULL; 3614 } 3615 3616 p = mtod(m, struct sadb_x_policy *); 3617 3618 bzero(p, len); 3619 p->sadb_x_policy_len = PFKEY_UNIT64(len); 3620 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 3621 p->sadb_x_policy_type = type; 3622 p->sadb_x_policy_dir = dir; 3623 p->sadb_x_policy_id = id; 3624 3625 return m; 3626 } 3627 3628 /* %%% utilities */ 3629 /* Take a key message (sadb_key) from the socket and turn it into one 3630 * of the kernel's key structures (seckey). 3631 * 3632 * IN: pointer to the src 3633 * OUT: NULL no more memory 3634 */ 3635 struct seckey * 3636 key_dup_keymsg(const struct sadb_key *src, u_int len, 3637 struct malloc_type *type) 3638 { 3639 struct seckey *dst; 3640 dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT); 3641 if (dst != NULL) { 3642 dst->bits = src->sadb_key_bits; 3643 dst->key_data = (char *)malloc(len, type, M_NOWAIT); 3644 if (dst->key_data != NULL) { 3645 bcopy((const char *)src + sizeof(struct sadb_key), 3646 dst->key_data, len); 3647 } else { 3648 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3649 __func__)); 3650 free(dst, type); 3651 dst = NULL; 3652 } 3653 } else { 3654 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3655 __func__)); 3656 3657 } 3658 return dst; 3659 } 3660 3661 /* Take a lifetime message (sadb_lifetime) passed in on a socket and 3662 * turn it into one of the kernel's lifetime structures (seclifetime). 3663 * 3664 * IN: pointer to the destination, source and malloc type 3665 * OUT: NULL, no more memory 3666 */ 3667 3668 static struct seclifetime * 3669 key_dup_lifemsg(const struct sadb_lifetime *src, 3670 struct malloc_type *type) 3671 { 3672 struct seclifetime *dst = NULL; 3673 3674 dst = (struct seclifetime *)malloc(sizeof(struct seclifetime), 3675 type, M_NOWAIT); 3676 if (dst == NULL) { 3677 /* XXX counter */ 3678 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3679 } else { 3680 dst->allocations = src->sadb_lifetime_allocations; 3681 dst->bytes = src->sadb_lifetime_bytes; 3682 dst->addtime = src->sadb_lifetime_addtime; 3683 dst->usetime = src->sadb_lifetime_usetime; 3684 } 3685 return dst; 3686 } 3687 3688 /* compare my own address 3689 * OUT: 1: true, i.e. my address. 3690 * 0: false 3691 */ 3692 int 3693 key_ismyaddr(sa) 3694 struct sockaddr *sa; 3695 { 3696 #ifdef INET 3697 struct sockaddr_in *sin; 3698 struct in_ifaddr *ia; 3699 #endif 3700 3701 IPSEC_ASSERT(sa != NULL, ("null sockaddr")); 3702 3703 switch (sa->sa_family) { 3704 #ifdef INET 3705 case AF_INET: 3706 sin = (struct sockaddr_in *)sa; 3707 for (ia = in_ifaddrhead.tqh_first; ia; 3708 ia = ia->ia_link.tqe_next) 3709 { 3710 if (sin->sin_family == ia->ia_addr.sin_family && 3711 sin->sin_len == ia->ia_addr.sin_len && 3712 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr) 3713 { 3714 return 1; 3715 } 3716 } 3717 break; 3718 #endif 3719 #ifdef INET6 3720 case AF_INET6: 3721 return key_ismyaddr6((struct sockaddr_in6 *)sa); 3722 #endif 3723 } 3724 3725 return 0; 3726 } 3727 3728 #ifdef INET6 3729 /* 3730 * compare my own address for IPv6. 3731 * 1: ours 3732 * 0: other 3733 * NOTE: derived ip6_input() in KAME. This is necessary to modify more. 3734 */ 3735 #include <netinet6/in6_var.h> 3736 3737 static int 3738 key_ismyaddr6(sin6) 3739 struct sockaddr_in6 *sin6; 3740 { 3741 struct in6_ifaddr *ia; 3742 struct in6_multi *in6m; 3743 3744 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 3745 if (key_sockaddrcmp((struct sockaddr *)&sin6, 3746 (struct sockaddr *)&ia->ia_addr, 0) == 0) 3747 return 1; 3748 3749 /* 3750 * XXX Multicast 3751 * XXX why do we care about multlicast here while we don't care 3752 * about IPv4 multicast?? 3753 * XXX scope 3754 */ 3755 in6m = NULL; 3756 IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m); 3757 if (in6m) 3758 return 1; 3759 } 3760 3761 /* loopback, just for safety */ 3762 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) 3763 return 1; 3764 3765 return 0; 3766 } 3767 #endif /*INET6*/ 3768 3769 /* 3770 * compare two secasindex structure. 3771 * flag can specify to compare 2 saidxes. 3772 * compare two secasindex structure without both mode and reqid. 3773 * don't compare port. 3774 * IN: 3775 * saidx0: source, it can be in SAD. 3776 * saidx1: object. 3777 * OUT: 3778 * 1 : equal 3779 * 0 : not equal 3780 */ 3781 static int 3782 key_cmpsaidx( 3783 const struct secasindex *saidx0, 3784 const struct secasindex *saidx1, 3785 int flag) 3786 { 3787 /* sanity */ 3788 if (saidx0 == NULL && saidx1 == NULL) 3789 return 1; 3790 3791 if (saidx0 == NULL || saidx1 == NULL) 3792 return 0; 3793 3794 if (saidx0->proto != saidx1->proto) 3795 return 0; 3796 3797 if (flag == CMP_EXACTLY) { 3798 if (saidx0->mode != saidx1->mode) 3799 return 0; 3800 if (saidx0->reqid != saidx1->reqid) 3801 return 0; 3802 if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 || 3803 bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0) 3804 return 0; 3805 } else { 3806 3807 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ 3808 if (flag == CMP_MODE_REQID 3809 ||flag == CMP_REQID) { 3810 /* 3811 * If reqid of SPD is non-zero, unique SA is required. 3812 * The result must be of same reqid in this case. 3813 */ 3814 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) 3815 return 0; 3816 } 3817 3818 if (flag == CMP_MODE_REQID) { 3819 if (saidx0->mode != IPSEC_MODE_ANY 3820 && saidx0->mode != saidx1->mode) 3821 return 0; 3822 } 3823 3824 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, 0) != 0) { 3825 return 0; 3826 } 3827 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, 0) != 0) { 3828 return 0; 3829 } 3830 } 3831 3832 return 1; 3833 } 3834 3835 /* 3836 * compare two secindex structure exactly. 3837 * IN: 3838 * spidx0: source, it is often in SPD. 3839 * spidx1: object, it is often from PFKEY message. 3840 * OUT: 3841 * 1 : equal 3842 * 0 : not equal 3843 */ 3844 static int 3845 key_cmpspidx_exactly( 3846 struct secpolicyindex *spidx0, 3847 struct secpolicyindex *spidx1) 3848 { 3849 /* sanity */ 3850 if (spidx0 == NULL && spidx1 == NULL) 3851 return 1; 3852 3853 if (spidx0 == NULL || spidx1 == NULL) 3854 return 0; 3855 3856 if (spidx0->prefs != spidx1->prefs 3857 || spidx0->prefd != spidx1->prefd 3858 || spidx0->ul_proto != spidx1->ul_proto) 3859 return 0; 3860 3861 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 && 3862 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0; 3863 } 3864 3865 /* 3866 * compare two secindex structure with mask. 3867 * IN: 3868 * spidx0: source, it is often in SPD. 3869 * spidx1: object, it is often from IP header. 3870 * OUT: 3871 * 1 : equal 3872 * 0 : not equal 3873 */ 3874 static int 3875 key_cmpspidx_withmask( 3876 struct secpolicyindex *spidx0, 3877 struct secpolicyindex *spidx1) 3878 { 3879 /* sanity */ 3880 if (spidx0 == NULL && spidx1 == NULL) 3881 return 1; 3882 3883 if (spidx0 == NULL || spidx1 == NULL) 3884 return 0; 3885 3886 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || 3887 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || 3888 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || 3889 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) 3890 return 0; 3891 3892 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ 3893 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY 3894 && spidx0->ul_proto != spidx1->ul_proto) 3895 return 0; 3896 3897 switch (spidx0->src.sa.sa_family) { 3898 case AF_INET: 3899 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY 3900 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) 3901 return 0; 3902 if (!key_bbcmp(&spidx0->src.sin.sin_addr, 3903 &spidx1->src.sin.sin_addr, spidx0->prefs)) 3904 return 0; 3905 break; 3906 case AF_INET6: 3907 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY 3908 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) 3909 return 0; 3910 /* 3911 * scope_id check. if sin6_scope_id is 0, we regard it 3912 * as a wildcard scope, which matches any scope zone ID. 3913 */ 3914 if (spidx0->src.sin6.sin6_scope_id && 3915 spidx1->src.sin6.sin6_scope_id && 3916 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) 3917 return 0; 3918 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr, 3919 &spidx1->src.sin6.sin6_addr, spidx0->prefs)) 3920 return 0; 3921 break; 3922 default: 3923 /* XXX */ 3924 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) 3925 return 0; 3926 break; 3927 } 3928 3929 switch (spidx0->dst.sa.sa_family) { 3930 case AF_INET: 3931 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY 3932 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) 3933 return 0; 3934 if (!key_bbcmp(&spidx0->dst.sin.sin_addr, 3935 &spidx1->dst.sin.sin_addr, spidx0->prefd)) 3936 return 0; 3937 break; 3938 case AF_INET6: 3939 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY 3940 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) 3941 return 0; 3942 /* 3943 * scope_id check. if sin6_scope_id is 0, we regard it 3944 * as a wildcard scope, which matches any scope zone ID. 3945 */ 3946 if (spidx0->dst.sin6.sin6_scope_id && 3947 spidx1->dst.sin6.sin6_scope_id && 3948 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) 3949 return 0; 3950 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr, 3951 &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) 3952 return 0; 3953 break; 3954 default: 3955 /* XXX */ 3956 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) 3957 return 0; 3958 break; 3959 } 3960 3961 /* XXX Do we check other field ? e.g. flowinfo */ 3962 3963 return 1; 3964 } 3965 3966 /* returns 0 on match */ 3967 static int 3968 key_sockaddrcmp( 3969 const struct sockaddr *sa1, 3970 const struct sockaddr *sa2, 3971 int port) 3972 { 3973 #ifdef satosin 3974 #undef satosin 3975 #endif 3976 #define satosin(s) ((const struct sockaddr_in *)s) 3977 #ifdef satosin6 3978 #undef satosin6 3979 #endif 3980 #define satosin6(s) ((const struct sockaddr_in6 *)s) 3981 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) 3982 return 1; 3983 3984 switch (sa1->sa_family) { 3985 case AF_INET: 3986 if (sa1->sa_len != sizeof(struct sockaddr_in)) 3987 return 1; 3988 if (satosin(sa1)->sin_addr.s_addr != 3989 satosin(sa2)->sin_addr.s_addr) { 3990 return 1; 3991 } 3992 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port) 3993 return 1; 3994 break; 3995 case AF_INET6: 3996 if (sa1->sa_len != sizeof(struct sockaddr_in6)) 3997 return 1; /*EINVAL*/ 3998 if (satosin6(sa1)->sin6_scope_id != 3999 satosin6(sa2)->sin6_scope_id) { 4000 return 1; 4001 } 4002 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr, 4003 &satosin6(sa2)->sin6_addr)) { 4004 return 1; 4005 } 4006 if (port && 4007 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) { 4008 return 1; 4009 } 4010 default: 4011 if (bcmp(sa1, sa2, sa1->sa_len) != 0) 4012 return 1; 4013 break; 4014 } 4015 4016 return 0; 4017 #undef satosin 4018 #undef satosin6 4019 } 4020 4021 /* 4022 * compare two buffers with mask. 4023 * IN: 4024 * addr1: source 4025 * addr2: object 4026 * bits: Number of bits to compare 4027 * OUT: 4028 * 1 : equal 4029 * 0 : not equal 4030 */ 4031 static int 4032 key_bbcmp(const void *a1, const void *a2, u_int bits) 4033 { 4034 const unsigned char *p1 = a1; 4035 const unsigned char *p2 = a2; 4036 4037 /* XXX: This could be considerably faster if we compare a word 4038 * at a time, but it is complicated on LSB Endian machines */ 4039 4040 /* Handle null pointers */ 4041 if (p1 == NULL || p2 == NULL) 4042 return (p1 == p2); 4043 4044 while (bits >= 8) { 4045 if (*p1++ != *p2++) 4046 return 0; 4047 bits -= 8; 4048 } 4049 4050 if (bits > 0) { 4051 u_int8_t mask = ~((1<<(8-bits))-1); 4052 if ((*p1 & mask) != (*p2 & mask)) 4053 return 0; 4054 } 4055 return 1; /* Match! */ 4056 } 4057 4058 static void 4059 key_flush_spd(time_t now) 4060 { 4061 static u_int16_t sptree_scangen = 0; 4062 u_int16_t gen = sptree_scangen++; 4063 struct secpolicy *sp; 4064 u_int dir; 4065 4066 /* SPD */ 4067 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 4068 restart: 4069 SPTREE_LOCK(); 4070 LIST_FOREACH(sp, &sptree[dir], chain) { 4071 if (sp->scangen == gen) /* previously handled */ 4072 continue; 4073 sp->scangen = gen; 4074 if (sp->state == IPSEC_SPSTATE_DEAD) { 4075 /* NB: clean entries created by key_spdflush */ 4076 SPTREE_UNLOCK(); 4077 KEY_FREESP(&sp); 4078 goto restart; 4079 } 4080 if (sp->lifetime == 0 && sp->validtime == 0) 4081 continue; 4082 if ((sp->lifetime && now - sp->created > sp->lifetime) 4083 || (sp->validtime && now - sp->lastused > sp->validtime)) { 4084 sp->state = IPSEC_SPSTATE_DEAD; 4085 SPTREE_UNLOCK(); 4086 key_spdexpire(sp); 4087 KEY_FREESP(&sp); 4088 goto restart; 4089 } 4090 } 4091 SPTREE_UNLOCK(); 4092 } 4093 } 4094 4095 static void 4096 key_flush_sad(time_t now) 4097 { 4098 struct secashead *sah, *nextsah; 4099 struct secasvar *sav, *nextsav; 4100 4101 /* SAD */ 4102 SAHTREE_LOCK(); 4103 LIST_FOREACH_SAFE(sah, &sahtree, chain, nextsah) { 4104 /* if sah has been dead, then delete it and process next sah. */ 4105 if (sah->state == SADB_SASTATE_DEAD) { 4106 key_delsah(sah); 4107 continue; 4108 } 4109 4110 /* if LARVAL entry doesn't become MATURE, delete it. */ 4111 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) { 4112 if (now - sav->created > key_larval_lifetime) 4113 KEY_FREESAV(&sav); 4114 } 4115 4116 /* 4117 * check MATURE entry to start to send expire message 4118 * whether or not. 4119 */ 4120 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) { 4121 /* we don't need to check. */ 4122 if (sav->lft_s == NULL) 4123 continue; 4124 4125 /* sanity check */ 4126 if (sav->lft_c == NULL) { 4127 ipseclog((LOG_DEBUG,"%s: there is no CURRENT " 4128 "time, why?\n", __func__)); 4129 continue; 4130 } 4131 4132 /* check SOFT lifetime */ 4133 if (sav->lft_s->addtime != 0 && 4134 now - sav->created > sav->lft_s->addtime) { 4135 /* 4136 * check SA to be used whether or not. 4137 * when SA hasn't been used, delete it. 4138 */ 4139 if (sav->lft_c->usetime == 0) { 4140 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4141 KEY_FREESAV(&sav); 4142 } else { 4143 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4144 /* 4145 * XXX If we keep to send expire 4146 * message in the status of 4147 * DYING. Do remove below code. 4148 */ 4149 key_expire(sav); 4150 } 4151 } 4152 /* check SOFT lifetime by bytes */ 4153 /* 4154 * XXX I don't know the way to delete this SA 4155 * when new SA is installed. Caution when it's 4156 * installed too big lifetime by time. 4157 */ 4158 else if (sav->lft_s->bytes != 0 && 4159 sav->lft_s->bytes < sav->lft_c->bytes) { 4160 4161 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4162 /* 4163 * XXX If we keep to send expire 4164 * message in the status of 4165 * DYING. Do remove below code. 4166 */ 4167 key_expire(sav); 4168 } 4169 } 4170 4171 /* check DYING entry to change status to DEAD. */ 4172 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) { 4173 /* we don't need to check. */ 4174 if (sav->lft_h == NULL) 4175 continue; 4176 4177 /* sanity check */ 4178 if (sav->lft_c == NULL) { 4179 ipseclog((LOG_DEBUG, "%s: there is no CURRENT " 4180 "time, why?\n", __func__)); 4181 continue; 4182 } 4183 4184 if (sav->lft_h->addtime != 0 && 4185 now - sav->created > sav->lft_h->addtime) { 4186 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4187 KEY_FREESAV(&sav); 4188 } 4189 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */ 4190 else if (sav->lft_s != NULL 4191 && sav->lft_s->addtime != 0 4192 && now - sav->created > sav->lft_s->addtime) { 4193 /* 4194 * XXX: should be checked to be 4195 * installed the valid SA. 4196 */ 4197 4198 /* 4199 * If there is no SA then sending 4200 * expire message. 4201 */ 4202 key_expire(sav); 4203 } 4204 #endif 4205 /* check HARD lifetime by bytes */ 4206 else if (sav->lft_h->bytes != 0 && 4207 sav->lft_h->bytes < sav->lft_c->bytes) { 4208 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4209 KEY_FREESAV(&sav); 4210 } 4211 } 4212 4213 /* delete entry in DEAD */ 4214 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) { 4215 /* sanity check */ 4216 if (sav->state != SADB_SASTATE_DEAD) { 4217 ipseclog((LOG_DEBUG, "%s: invalid sav->state " 4218 "(queue: %d SA: %d): kill it anyway\n", 4219 __func__, 4220 SADB_SASTATE_DEAD, sav->state)); 4221 } 4222 /* 4223 * do not call key_freesav() here. 4224 * sav should already be freed, and sav->refcnt 4225 * shows other references to sav 4226 * (such as from SPD). 4227 */ 4228 } 4229 } 4230 SAHTREE_UNLOCK(); 4231 } 4232 4233 static void 4234 key_flush_acq(time_t now) 4235 { 4236 struct secacq *acq, *nextacq; 4237 4238 /* ACQ tree */ 4239 ACQ_LOCK(); 4240 for (acq = LIST_FIRST(&acqtree); acq != NULL; acq = nextacq) { 4241 nextacq = LIST_NEXT(acq, chain); 4242 if (now - acq->created > key_blockacq_lifetime 4243 && __LIST_CHAINED(acq)) { 4244 LIST_REMOVE(acq, chain); 4245 free(acq, M_IPSEC_SAQ); 4246 } 4247 } 4248 ACQ_UNLOCK(); 4249 } 4250 4251 static void 4252 key_flush_spacq(time_t now) 4253 { 4254 struct secspacq *acq, *nextacq; 4255 4256 /* SP ACQ tree */ 4257 SPACQ_LOCK(); 4258 for (acq = LIST_FIRST(&spacqtree); acq != NULL; acq = nextacq) { 4259 nextacq = LIST_NEXT(acq, chain); 4260 if (now - acq->created > key_blockacq_lifetime 4261 && __LIST_CHAINED(acq)) { 4262 LIST_REMOVE(acq, chain); 4263 free(acq, M_IPSEC_SAQ); 4264 } 4265 } 4266 SPACQ_UNLOCK(); 4267 } 4268 4269 /* 4270 * time handler. 4271 * scanning SPD and SAD to check status for each entries, 4272 * and do to remove or to expire. 4273 * XXX: year 2038 problem may remain. 4274 */ 4275 void 4276 key_timehandler(void) 4277 { 4278 time_t now = time_second; 4279 4280 key_flush_spd(now); 4281 key_flush_sad(now); 4282 key_flush_acq(now); 4283 key_flush_spacq(now); 4284 4285 #ifndef IPSEC_DEBUG2 4286 /* do exchange to tick time !! */ 4287 (void)timeout((void *)key_timehandler, (void *)0, hz); 4288 #endif /* IPSEC_DEBUG2 */ 4289 } 4290 4291 u_long 4292 key_random() 4293 { 4294 u_long value; 4295 4296 key_randomfill(&value, sizeof(value)); 4297 return value; 4298 } 4299 4300 void 4301 key_randomfill(p, l) 4302 void *p; 4303 size_t l; 4304 { 4305 size_t n; 4306 u_long v; 4307 static int warn = 1; 4308 4309 n = 0; 4310 n = (size_t)read_random(p, (u_int)l); 4311 /* last resort */ 4312 while (n < l) { 4313 v = random(); 4314 bcopy(&v, (u_int8_t *)p + n, 4315 l - n < sizeof(v) ? l - n : sizeof(v)); 4316 n += sizeof(v); 4317 4318 if (warn) { 4319 printf("WARNING: pseudo-random number generator " 4320 "used for IPsec processing\n"); 4321 warn = 0; 4322 } 4323 } 4324 } 4325 4326 /* 4327 * map SADB_SATYPE_* to IPPROTO_*. 4328 * if satype == SADB_SATYPE then satype is mapped to ~0. 4329 * OUT: 4330 * 0: invalid satype. 4331 */ 4332 static u_int16_t 4333 key_satype2proto(satype) 4334 u_int8_t satype; 4335 { 4336 switch (satype) { 4337 case SADB_SATYPE_UNSPEC: 4338 return IPSEC_PROTO_ANY; 4339 case SADB_SATYPE_AH: 4340 return IPPROTO_AH; 4341 case SADB_SATYPE_ESP: 4342 return IPPROTO_ESP; 4343 case SADB_X_SATYPE_IPCOMP: 4344 return IPPROTO_IPCOMP; 4345 case SADB_X_SATYPE_TCPSIGNATURE: 4346 return IPPROTO_TCP; 4347 default: 4348 return 0; 4349 } 4350 /* NOTREACHED */ 4351 } 4352 4353 /* 4354 * map IPPROTO_* to SADB_SATYPE_* 4355 * OUT: 4356 * 0: invalid protocol type. 4357 */ 4358 static u_int8_t 4359 key_proto2satype(proto) 4360 u_int16_t proto; 4361 { 4362 switch (proto) { 4363 case IPPROTO_AH: 4364 return SADB_SATYPE_AH; 4365 case IPPROTO_ESP: 4366 return SADB_SATYPE_ESP; 4367 case IPPROTO_IPCOMP: 4368 return SADB_X_SATYPE_IPCOMP; 4369 case IPPROTO_TCP: 4370 return SADB_X_SATYPE_TCPSIGNATURE; 4371 default: 4372 return 0; 4373 } 4374 /* NOTREACHED */ 4375 } 4376 4377 /* %%% PF_KEY */ 4378 /* 4379 * SADB_GETSPI processing is to receive 4380 * <base, (SA2), src address, dst address, (SPI range)> 4381 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND 4382 * tree with the status of LARVAL, and send 4383 * <base, SA(*), address(SD)> 4384 * to the IKMPd. 4385 * 4386 * IN: mhp: pointer to the pointer to each header. 4387 * OUT: NULL if fail. 4388 * other if success, return pointer to the message to send. 4389 */ 4390 static int 4391 key_getspi(so, m, mhp) 4392 struct socket *so; 4393 struct mbuf *m; 4394 const struct sadb_msghdr *mhp; 4395 { 4396 struct sadb_address *src0, *dst0; 4397 struct secasindex saidx; 4398 struct secashead *newsah; 4399 struct secasvar *newsav; 4400 u_int8_t proto; 4401 u_int32_t spi; 4402 u_int8_t mode; 4403 u_int32_t reqid; 4404 int error; 4405 4406 IPSEC_ASSERT(so != NULL, ("null socket")); 4407 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4408 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4409 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4410 4411 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4412 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 4413 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4414 __func__)); 4415 return key_senderror(so, m, EINVAL); 4416 } 4417 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4418 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4419 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4420 __func__)); 4421 return key_senderror(so, m, EINVAL); 4422 } 4423 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4424 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4425 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4426 } else { 4427 mode = IPSEC_MODE_ANY; 4428 reqid = 0; 4429 } 4430 4431 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4432 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4433 4434 /* map satype to proto */ 4435 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4436 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4437 __func__)); 4438 return key_senderror(so, m, EINVAL); 4439 } 4440 4441 /* make sure if port number is zero. */ 4442 switch (((struct sockaddr *)(src0 + 1))->sa_family) { 4443 case AF_INET: 4444 if (((struct sockaddr *)(src0 + 1))->sa_len != 4445 sizeof(struct sockaddr_in)) 4446 return key_senderror(so, m, EINVAL); 4447 ((struct sockaddr_in *)(src0 + 1))->sin_port = 0; 4448 break; 4449 case AF_INET6: 4450 if (((struct sockaddr *)(src0 + 1))->sa_len != 4451 sizeof(struct sockaddr_in6)) 4452 return key_senderror(so, m, EINVAL); 4453 ((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0; 4454 break; 4455 default: 4456 ; /*???*/ 4457 } 4458 switch (((struct sockaddr *)(dst0 + 1))->sa_family) { 4459 case AF_INET: 4460 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4461 sizeof(struct sockaddr_in)) 4462 return key_senderror(so, m, EINVAL); 4463 ((struct sockaddr_in *)(dst0 + 1))->sin_port = 0; 4464 break; 4465 case AF_INET6: 4466 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4467 sizeof(struct sockaddr_in6)) 4468 return key_senderror(so, m, EINVAL); 4469 ((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0; 4470 break; 4471 default: 4472 ; /*???*/ 4473 } 4474 4475 /* XXX boundary check against sa_len */ 4476 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4477 4478 /* SPI allocation */ 4479 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE], 4480 &saidx); 4481 if (spi == 0) 4482 return key_senderror(so, m, EINVAL); 4483 4484 /* get a SA index */ 4485 if ((newsah = key_getsah(&saidx)) == NULL) { 4486 /* create a new SA index */ 4487 if ((newsah = key_newsah(&saidx)) == NULL) { 4488 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 4489 return key_senderror(so, m, ENOBUFS); 4490 } 4491 } 4492 4493 /* get a new SA */ 4494 /* XXX rewrite */ 4495 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 4496 if (newsav == NULL) { 4497 /* XXX don't free new SA index allocated in above. */ 4498 return key_senderror(so, m, error); 4499 } 4500 4501 /* set spi */ 4502 newsav->spi = htonl(spi); 4503 4504 /* delete the entry in acqtree */ 4505 if (mhp->msg->sadb_msg_seq != 0) { 4506 struct secacq *acq; 4507 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) { 4508 /* reset counter in order to deletion by timehandler. */ 4509 acq->created = time_second; 4510 acq->count = 0; 4511 } 4512 } 4513 4514 { 4515 struct mbuf *n, *nn; 4516 struct sadb_sa *m_sa; 4517 struct sadb_msg *newmsg; 4518 int off, len; 4519 4520 /* create new sadb_msg to reply. */ 4521 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 4522 PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4523 if (len > MCLBYTES) 4524 return key_senderror(so, m, ENOBUFS); 4525 4526 MGETHDR(n, M_DONTWAIT, MT_DATA); 4527 if (len > MHLEN) { 4528 MCLGET(n, M_DONTWAIT); 4529 if ((n->m_flags & M_EXT) == 0) { 4530 m_freem(n); 4531 n = NULL; 4532 } 4533 } 4534 if (!n) 4535 return key_senderror(so, m, ENOBUFS); 4536 4537 n->m_len = len; 4538 n->m_next = NULL; 4539 off = 0; 4540 4541 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 4542 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 4543 4544 m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off); 4545 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); 4546 m_sa->sadb_sa_exttype = SADB_EXT_SA; 4547 m_sa->sadb_sa_spi = htonl(spi); 4548 off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4549 4550 IPSEC_ASSERT(off == len, 4551 ("length inconsistency (off %u len %u)", off, len)); 4552 4553 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, 4554 SADB_EXT_ADDRESS_DST); 4555 if (!n->m_next) { 4556 m_freem(n); 4557 return key_senderror(so, m, ENOBUFS); 4558 } 4559 4560 if (n->m_len < sizeof(struct sadb_msg)) { 4561 n = m_pullup(n, sizeof(struct sadb_msg)); 4562 if (n == NULL) 4563 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 4564 } 4565 4566 n->m_pkthdr.len = 0; 4567 for (nn = n; nn; nn = nn->m_next) 4568 n->m_pkthdr.len += nn->m_len; 4569 4570 newmsg = mtod(n, struct sadb_msg *); 4571 newmsg->sadb_msg_seq = newsav->seq; 4572 newmsg->sadb_msg_errno = 0; 4573 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 4574 4575 m_freem(m); 4576 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 4577 } 4578 } 4579 4580 /* 4581 * allocating new SPI 4582 * called by key_getspi(). 4583 * OUT: 4584 * 0: failure. 4585 * others: success. 4586 */ 4587 static u_int32_t 4588 key_do_getnewspi(spirange, saidx) 4589 struct sadb_spirange *spirange; 4590 struct secasindex *saidx; 4591 { 4592 u_int32_t newspi; 4593 u_int32_t min, max; 4594 int count = key_spi_trycnt; 4595 4596 /* set spi range to allocate */ 4597 if (spirange != NULL) { 4598 min = spirange->sadb_spirange_min; 4599 max = spirange->sadb_spirange_max; 4600 } else { 4601 min = key_spi_minval; 4602 max = key_spi_maxval; 4603 } 4604 /* IPCOMP needs 2-byte SPI */ 4605 if (saidx->proto == IPPROTO_IPCOMP) { 4606 u_int32_t t; 4607 if (min >= 0x10000) 4608 min = 0xffff; 4609 if (max >= 0x10000) 4610 max = 0xffff; 4611 if (min > max) { 4612 t = min; min = max; max = t; 4613 } 4614 } 4615 4616 if (min == max) { 4617 if (key_checkspidup(saidx, min) != NULL) { 4618 ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n", 4619 __func__, min)); 4620 return 0; 4621 } 4622 4623 count--; /* taking one cost. */ 4624 newspi = min; 4625 4626 } else { 4627 4628 /* init SPI */ 4629 newspi = 0; 4630 4631 /* when requesting to allocate spi ranged */ 4632 while (count--) { 4633 /* generate pseudo-random SPI value ranged. */ 4634 newspi = min + (key_random() % (max - min + 1)); 4635 4636 if (key_checkspidup(saidx, newspi) == NULL) 4637 break; 4638 } 4639 4640 if (count == 0 || newspi == 0) { 4641 ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n", 4642 __func__)); 4643 return 0; 4644 } 4645 } 4646 4647 /* statistics */ 4648 keystat.getspi_count = 4649 (keystat.getspi_count + key_spi_trycnt - count) / 2; 4650 4651 return newspi; 4652 } 4653 4654 /* 4655 * SADB_UPDATE processing 4656 * receive 4657 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4658 * key(AE), (identity(SD),) (sensitivity)> 4659 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. 4660 * and send 4661 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4662 * (identity(SD),) (sensitivity)> 4663 * to the ikmpd. 4664 * 4665 * m will always be freed. 4666 */ 4667 static int 4668 key_update(so, m, mhp) 4669 struct socket *so; 4670 struct mbuf *m; 4671 const struct sadb_msghdr *mhp; 4672 { 4673 struct sadb_sa *sa0; 4674 struct sadb_address *src0, *dst0; 4675 struct secasindex saidx; 4676 struct secashead *sah; 4677 struct secasvar *sav; 4678 u_int16_t proto; 4679 u_int8_t mode; 4680 u_int32_t reqid; 4681 int error; 4682 4683 IPSEC_ASSERT(so != NULL, ("null socket")); 4684 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4685 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4686 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4687 4688 /* map satype to proto */ 4689 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4690 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4691 __func__)); 4692 return key_senderror(so, m, EINVAL); 4693 } 4694 4695 if (mhp->ext[SADB_EXT_SA] == NULL || 4696 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4697 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 4698 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 4699 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 4700 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 4701 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 4702 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 4703 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 4704 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 4705 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 4706 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4707 __func__)); 4708 return key_senderror(so, m, EINVAL); 4709 } 4710 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 4711 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4712 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4713 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4714 __func__)); 4715 return key_senderror(so, m, EINVAL); 4716 } 4717 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4718 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4719 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4720 } else { 4721 mode = IPSEC_MODE_ANY; 4722 reqid = 0; 4723 } 4724 /* XXX boundary checking for other extensions */ 4725 4726 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 4727 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4728 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4729 4730 /* XXX boundary check against sa_len */ 4731 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4732 4733 /* get a SA header */ 4734 if ((sah = key_getsah(&saidx)) == NULL) { 4735 ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__)); 4736 return key_senderror(so, m, ENOENT); 4737 } 4738 4739 /* set spidx if there */ 4740 /* XXX rewrite */ 4741 error = key_setident(sah, m, mhp); 4742 if (error) 4743 return key_senderror(so, m, error); 4744 4745 /* find a SA with sequence number. */ 4746 #ifdef IPSEC_DOSEQCHECK 4747 if (mhp->msg->sadb_msg_seq != 0 4748 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) { 4749 ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u " 4750 "exists.\n", __func__, mhp->msg->sadb_msg_seq)); 4751 return key_senderror(so, m, ENOENT); 4752 } 4753 #else 4754 SAHTREE_LOCK(); 4755 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 4756 SAHTREE_UNLOCK(); 4757 if (sav == NULL) { 4758 ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n", 4759 __func__, (u_int32_t)ntohl(sa0->sadb_sa_spi))); 4760 return key_senderror(so, m, EINVAL); 4761 } 4762 #endif 4763 4764 /* validity check */ 4765 if (sav->sah->saidx.proto != proto) { 4766 ipseclog((LOG_DEBUG, "%s: protocol mismatched " 4767 "(DB=%u param=%u)\n", __func__, 4768 sav->sah->saidx.proto, proto)); 4769 return key_senderror(so, m, EINVAL); 4770 } 4771 #ifdef IPSEC_DOSEQCHECK 4772 if (sav->spi != sa0->sadb_sa_spi) { 4773 ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n", 4774 __func__, 4775 (u_int32_t)ntohl(sav->spi), 4776 (u_int32_t)ntohl(sa0->sadb_sa_spi))); 4777 return key_senderror(so, m, EINVAL); 4778 } 4779 #endif 4780 if (sav->pid != mhp->msg->sadb_msg_pid) { 4781 ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n", 4782 __func__, sav->pid, mhp->msg->sadb_msg_pid)); 4783 return key_senderror(so, m, EINVAL); 4784 } 4785 4786 /* copy sav values */ 4787 error = key_setsaval(sav, m, mhp); 4788 if (error) { 4789 KEY_FREESAV(&sav); 4790 return key_senderror(so, m, error); 4791 } 4792 4793 /* check SA values to be mature. */ 4794 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) { 4795 KEY_FREESAV(&sav); 4796 return key_senderror(so, m, 0); 4797 } 4798 4799 { 4800 struct mbuf *n; 4801 4802 /* set msg buf from mhp */ 4803 n = key_getmsgbuf_x1(m, mhp); 4804 if (n == NULL) { 4805 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 4806 return key_senderror(so, m, ENOBUFS); 4807 } 4808 4809 m_freem(m); 4810 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 4811 } 4812 } 4813 4814 /* 4815 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL. 4816 * only called by key_update(). 4817 * OUT: 4818 * NULL : not found 4819 * others : found, pointer to a SA. 4820 */ 4821 #ifdef IPSEC_DOSEQCHECK 4822 static struct secasvar * 4823 key_getsavbyseq(sah, seq) 4824 struct secashead *sah; 4825 u_int32_t seq; 4826 { 4827 struct secasvar *sav; 4828 u_int state; 4829 4830 state = SADB_SASTATE_LARVAL; 4831 4832 /* search SAD with sequence number ? */ 4833 LIST_FOREACH(sav, &sah->savtree[state], chain) { 4834 4835 KEY_CHKSASTATE(state, sav->state, __func__); 4836 4837 if (sav->seq == seq) { 4838 sa_addref(sav); 4839 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 4840 printf("DP %s cause refcnt++:%d SA:%p\n", 4841 __func__, sav->refcnt, sav)); 4842 return sav; 4843 } 4844 } 4845 4846 return NULL; 4847 } 4848 #endif 4849 4850 /* 4851 * SADB_ADD processing 4852 * add an entry to SA database, when received 4853 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4854 * key(AE), (identity(SD),) (sensitivity)> 4855 * from the ikmpd, 4856 * and send 4857 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4858 * (identity(SD),) (sensitivity)> 4859 * to the ikmpd. 4860 * 4861 * IGNORE identity and sensitivity messages. 4862 * 4863 * m will always be freed. 4864 */ 4865 static int 4866 key_add(so, m, mhp) 4867 struct socket *so; 4868 struct mbuf *m; 4869 const struct sadb_msghdr *mhp; 4870 { 4871 struct sadb_sa *sa0; 4872 struct sadb_address *src0, *dst0; 4873 struct secasindex saidx; 4874 struct secashead *newsah; 4875 struct secasvar *newsav; 4876 u_int16_t proto; 4877 u_int8_t mode; 4878 u_int32_t reqid; 4879 int error; 4880 4881 IPSEC_ASSERT(so != NULL, ("null socket")); 4882 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4883 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4884 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4885 4886 /* map satype to proto */ 4887 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4888 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4889 __func__)); 4890 return key_senderror(so, m, EINVAL); 4891 } 4892 4893 if (mhp->ext[SADB_EXT_SA] == NULL || 4894 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4895 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 4896 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 4897 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 4898 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 4899 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 4900 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 4901 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 4902 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 4903 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 4904 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4905 __func__)); 4906 return key_senderror(so, m, EINVAL); 4907 } 4908 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 4909 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4910 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4911 /* XXX need more */ 4912 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4913 __func__)); 4914 return key_senderror(so, m, EINVAL); 4915 } 4916 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4917 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4918 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4919 } else { 4920 mode = IPSEC_MODE_ANY; 4921 reqid = 0; 4922 } 4923 4924 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 4925 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 4926 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 4927 4928 /* XXX boundary check against sa_len */ 4929 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4930 4931 /* get a SA header */ 4932 if ((newsah = key_getsah(&saidx)) == NULL) { 4933 /* create a new SA header */ 4934 if ((newsah = key_newsah(&saidx)) == NULL) { 4935 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 4936 return key_senderror(so, m, ENOBUFS); 4937 } 4938 } 4939 4940 /* set spidx if there */ 4941 /* XXX rewrite */ 4942 error = key_setident(newsah, m, mhp); 4943 if (error) { 4944 return key_senderror(so, m, error); 4945 } 4946 4947 /* create new SA entry. */ 4948 /* We can create new SA only if SPI is differenct. */ 4949 SAHTREE_LOCK(); 4950 newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi); 4951 SAHTREE_UNLOCK(); 4952 if (newsav != NULL) { 4953 ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__)); 4954 return key_senderror(so, m, EEXIST); 4955 } 4956 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 4957 if (newsav == NULL) { 4958 return key_senderror(so, m, error); 4959 } 4960 4961 /* check SA values to be mature. */ 4962 if ((error = key_mature(newsav)) != 0) { 4963 KEY_FREESAV(&newsav); 4964 return key_senderror(so, m, error); 4965 } 4966 4967 /* 4968 * don't call key_freesav() here, as we would like to keep the SA 4969 * in the database on success. 4970 */ 4971 4972 { 4973 struct mbuf *n; 4974 4975 /* set msg buf from mhp */ 4976 n = key_getmsgbuf_x1(m, mhp); 4977 if (n == NULL) { 4978 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 4979 return key_senderror(so, m, ENOBUFS); 4980 } 4981 4982 m_freem(m); 4983 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 4984 } 4985 } 4986 4987 /* m is retained */ 4988 static int 4989 key_setident(sah, m, mhp) 4990 struct secashead *sah; 4991 struct mbuf *m; 4992 const struct sadb_msghdr *mhp; 4993 { 4994 const struct sadb_ident *idsrc, *iddst; 4995 int idsrclen, iddstlen; 4996 4997 IPSEC_ASSERT(sah != NULL, ("null secashead")); 4998 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4999 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5000 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5001 5002 /* don't make buffer if not there */ 5003 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL && 5004 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5005 sah->idents = NULL; 5006 sah->identd = NULL; 5007 return 0; 5008 } 5009 5010 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL || 5011 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5012 ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__)); 5013 return EINVAL; 5014 } 5015 5016 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC]; 5017 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST]; 5018 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC]; 5019 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST]; 5020 5021 /* validity check */ 5022 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { 5023 ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__)); 5024 return EINVAL; 5025 } 5026 5027 switch (idsrc->sadb_ident_type) { 5028 case SADB_IDENTTYPE_PREFIX: 5029 case SADB_IDENTTYPE_FQDN: 5030 case SADB_IDENTTYPE_USERFQDN: 5031 default: 5032 /* XXX do nothing */ 5033 sah->idents = NULL; 5034 sah->identd = NULL; 5035 return 0; 5036 } 5037 5038 /* make structure */ 5039 sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5040 if (sah->idents == NULL) { 5041 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5042 return ENOBUFS; 5043 } 5044 sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5045 if (sah->identd == NULL) { 5046 free(sah->idents, M_IPSEC_MISC); 5047 sah->idents = NULL; 5048 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5049 return ENOBUFS; 5050 } 5051 sah->idents->type = idsrc->sadb_ident_type; 5052 sah->idents->id = idsrc->sadb_ident_id; 5053 5054 sah->identd->type = iddst->sadb_ident_type; 5055 sah->identd->id = iddst->sadb_ident_id; 5056 5057 return 0; 5058 } 5059 5060 /* 5061 * m will not be freed on return. 5062 * it is caller's responsibility to free the result. 5063 */ 5064 static struct mbuf * 5065 key_getmsgbuf_x1(m, mhp) 5066 struct mbuf *m; 5067 const struct sadb_msghdr *mhp; 5068 { 5069 struct mbuf *n; 5070 5071 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5072 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5073 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5074 5075 /* create new sadb_msg to reply. */ 5076 n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED, 5077 SADB_EXT_SA, SADB_X_EXT_SA2, 5078 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, 5079 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 5080 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST); 5081 if (!n) 5082 return NULL; 5083 5084 if (n->m_len < sizeof(struct sadb_msg)) { 5085 n = m_pullup(n, sizeof(struct sadb_msg)); 5086 if (n == NULL) 5087 return NULL; 5088 } 5089 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; 5090 mtod(n, struct sadb_msg *)->sadb_msg_len = 5091 PFKEY_UNIT64(n->m_pkthdr.len); 5092 5093 return n; 5094 } 5095 5096 static int key_delete_all __P((struct socket *, struct mbuf *, 5097 const struct sadb_msghdr *, u_int16_t)); 5098 5099 /* 5100 * SADB_DELETE processing 5101 * receive 5102 * <base, SA(*), address(SD)> 5103 * from the ikmpd, and set SADB_SASTATE_DEAD, 5104 * and send, 5105 * <base, SA(*), address(SD)> 5106 * to the ikmpd. 5107 * 5108 * m will always be freed. 5109 */ 5110 static int 5111 key_delete(so, m, mhp) 5112 struct socket *so; 5113 struct mbuf *m; 5114 const struct sadb_msghdr *mhp; 5115 { 5116 struct sadb_sa *sa0; 5117 struct sadb_address *src0, *dst0; 5118 struct secasindex saidx; 5119 struct secashead *sah; 5120 struct secasvar *sav = NULL; 5121 u_int16_t proto; 5122 5123 IPSEC_ASSERT(so != NULL, ("null socket")); 5124 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5125 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5126 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5127 5128 /* map satype to proto */ 5129 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5130 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5131 __func__)); 5132 return key_senderror(so, m, EINVAL); 5133 } 5134 5135 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5136 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5137 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5138 __func__)); 5139 return key_senderror(so, m, EINVAL); 5140 } 5141 5142 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5143 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5144 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5145 __func__)); 5146 return key_senderror(so, m, EINVAL); 5147 } 5148 5149 if (mhp->ext[SADB_EXT_SA] == NULL) { 5150 /* 5151 * Caller wants us to delete all non-LARVAL SAs 5152 * that match the src/dst. This is used during 5153 * IKE INITIAL-CONTACT. 5154 */ 5155 ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__)); 5156 return key_delete_all(so, m, mhp, proto); 5157 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { 5158 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5159 __func__)); 5160 return key_senderror(so, m, EINVAL); 5161 } 5162 5163 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5164 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5165 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5166 5167 /* XXX boundary check against sa_len */ 5168 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5169 5170 /* get a SA header */ 5171 SAHTREE_LOCK(); 5172 LIST_FOREACH(sah, &sahtree, chain) { 5173 if (sah->state == SADB_SASTATE_DEAD) 5174 continue; 5175 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5176 continue; 5177 5178 /* get a SA with SPI. */ 5179 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5180 if (sav) 5181 break; 5182 } 5183 if (sah == NULL) { 5184 SAHTREE_UNLOCK(); 5185 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5186 return key_senderror(so, m, ENOENT); 5187 } 5188 5189 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5190 SAHTREE_UNLOCK(); 5191 KEY_FREESAV(&sav); 5192 5193 { 5194 struct mbuf *n; 5195 struct sadb_msg *newmsg; 5196 5197 /* create new sadb_msg to reply. */ 5198 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 5199 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5200 if (!n) 5201 return key_senderror(so, m, ENOBUFS); 5202 5203 if (n->m_len < sizeof(struct sadb_msg)) { 5204 n = m_pullup(n, sizeof(struct sadb_msg)); 5205 if (n == NULL) 5206 return key_senderror(so, m, ENOBUFS); 5207 } 5208 newmsg = mtod(n, struct sadb_msg *); 5209 newmsg->sadb_msg_errno = 0; 5210 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5211 5212 m_freem(m); 5213 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5214 } 5215 } 5216 5217 /* 5218 * delete all SAs for src/dst. Called from key_delete(). 5219 */ 5220 static int 5221 key_delete_all(so, m, mhp, proto) 5222 struct socket *so; 5223 struct mbuf *m; 5224 const struct sadb_msghdr *mhp; 5225 u_int16_t proto; 5226 { 5227 struct sadb_address *src0, *dst0; 5228 struct secasindex saidx; 5229 struct secashead *sah; 5230 struct secasvar *sav, *nextsav; 5231 u_int stateidx, state; 5232 5233 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5234 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5235 5236 /* XXX boundary check against sa_len */ 5237 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5238 5239 SAHTREE_LOCK(); 5240 LIST_FOREACH(sah, &sahtree, chain) { 5241 if (sah->state == SADB_SASTATE_DEAD) 5242 continue; 5243 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5244 continue; 5245 5246 /* Delete all non-LARVAL SAs. */ 5247 for (stateidx = 0; 5248 stateidx < _ARRAYLEN(saorder_state_alive); 5249 stateidx++) { 5250 state = saorder_state_alive[stateidx]; 5251 if (state == SADB_SASTATE_LARVAL) 5252 continue; 5253 for (sav = LIST_FIRST(&sah->savtree[state]); 5254 sav != NULL; sav = nextsav) { 5255 nextsav = LIST_NEXT(sav, chain); 5256 /* sanity check */ 5257 if (sav->state != state) { 5258 ipseclog((LOG_DEBUG, "%s: invalid " 5259 "sav->state (queue %d SA %d)\n", 5260 __func__, state, sav->state)); 5261 continue; 5262 } 5263 5264 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5265 KEY_FREESAV(&sav); 5266 } 5267 } 5268 } 5269 SAHTREE_UNLOCK(); 5270 { 5271 struct mbuf *n; 5272 struct sadb_msg *newmsg; 5273 5274 /* create new sadb_msg to reply. */ 5275 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, 5276 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5277 if (!n) 5278 return key_senderror(so, m, ENOBUFS); 5279 5280 if (n->m_len < sizeof(struct sadb_msg)) { 5281 n = m_pullup(n, sizeof(struct sadb_msg)); 5282 if (n == NULL) 5283 return key_senderror(so, m, ENOBUFS); 5284 } 5285 newmsg = mtod(n, struct sadb_msg *); 5286 newmsg->sadb_msg_errno = 0; 5287 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5288 5289 m_freem(m); 5290 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5291 } 5292 } 5293 5294 /* 5295 * SADB_GET processing 5296 * receive 5297 * <base, SA(*), address(SD)> 5298 * from the ikmpd, and get a SP and a SA to respond, 5299 * and send, 5300 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), 5301 * (identity(SD),) (sensitivity)> 5302 * to the ikmpd. 5303 * 5304 * m will always be freed. 5305 */ 5306 static int 5307 key_get(so, m, mhp) 5308 struct socket *so; 5309 struct mbuf *m; 5310 const struct sadb_msghdr *mhp; 5311 { 5312 struct sadb_sa *sa0; 5313 struct sadb_address *src0, *dst0; 5314 struct secasindex saidx; 5315 struct secashead *sah; 5316 struct secasvar *sav = NULL; 5317 u_int16_t proto; 5318 5319 IPSEC_ASSERT(so != NULL, ("null socket")); 5320 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5321 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5322 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5323 5324 /* map satype to proto */ 5325 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5326 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5327 __func__)); 5328 return key_senderror(so, m, EINVAL); 5329 } 5330 5331 if (mhp->ext[SADB_EXT_SA] == NULL || 5332 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5333 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5334 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5335 __func__)); 5336 return key_senderror(so, m, EINVAL); 5337 } 5338 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5339 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5340 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5341 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5342 __func__)); 5343 return key_senderror(so, m, EINVAL); 5344 } 5345 5346 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5347 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5348 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5349 5350 /* XXX boundary check against sa_len */ 5351 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5352 5353 /* get a SA header */ 5354 SAHTREE_LOCK(); 5355 LIST_FOREACH(sah, &sahtree, chain) { 5356 if (sah->state == SADB_SASTATE_DEAD) 5357 continue; 5358 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5359 continue; 5360 5361 /* get a SA with SPI. */ 5362 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5363 if (sav) 5364 break; 5365 } 5366 SAHTREE_UNLOCK(); 5367 if (sah == NULL) { 5368 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5369 return key_senderror(so, m, ENOENT); 5370 } 5371 5372 { 5373 struct mbuf *n; 5374 u_int8_t satype; 5375 5376 /* map proto to satype */ 5377 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 5378 ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n", 5379 __func__)); 5380 return key_senderror(so, m, EINVAL); 5381 } 5382 5383 /* create new sadb_msg to reply. */ 5384 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, 5385 mhp->msg->sadb_msg_pid); 5386 if (!n) 5387 return key_senderror(so, m, ENOBUFS); 5388 5389 m_freem(m); 5390 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5391 } 5392 } 5393 5394 /* XXX make it sysctl-configurable? */ 5395 static void 5396 key_getcomb_setlifetime(comb) 5397 struct sadb_comb *comb; 5398 { 5399 5400 comb->sadb_comb_soft_allocations = 1; 5401 comb->sadb_comb_hard_allocations = 1; 5402 comb->sadb_comb_soft_bytes = 0; 5403 comb->sadb_comb_hard_bytes = 0; 5404 comb->sadb_comb_hard_addtime = 86400; /* 1 day */ 5405 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100; 5406 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */ 5407 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100; 5408 } 5409 5410 /* 5411 * XXX reorder combinations by preference 5412 * XXX no idea if the user wants ESP authentication or not 5413 */ 5414 static struct mbuf * 5415 key_getcomb_esp() 5416 { 5417 struct sadb_comb *comb; 5418 struct enc_xform *algo; 5419 struct mbuf *result = NULL, *m, *n; 5420 int encmin; 5421 int i, off, o; 5422 int totlen; 5423 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5424 5425 m = NULL; 5426 for (i = 1; i <= SADB_EALG_MAX; i++) { 5427 algo = esp_algorithm_lookup(i); 5428 if (algo == NULL) 5429 continue; 5430 5431 /* discard algorithms with key size smaller than system min */ 5432 if (_BITS(algo->maxkey) < ipsec_esp_keymin) 5433 continue; 5434 if (_BITS(algo->minkey) < ipsec_esp_keymin) 5435 encmin = ipsec_esp_keymin; 5436 else 5437 encmin = _BITS(algo->minkey); 5438 5439 if (ipsec_esp_auth) 5440 m = key_getcomb_ah(); 5441 else { 5442 IPSEC_ASSERT(l <= MLEN, 5443 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 5444 MGET(m, M_DONTWAIT, MT_DATA); 5445 if (m) { 5446 M_ALIGN(m, l); 5447 m->m_len = l; 5448 m->m_next = NULL; 5449 bzero(mtod(m, caddr_t), m->m_len); 5450 } 5451 } 5452 if (!m) 5453 goto fail; 5454 5455 totlen = 0; 5456 for (n = m; n; n = n->m_next) 5457 totlen += n->m_len; 5458 IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l)); 5459 5460 for (off = 0; off < totlen; off += l) { 5461 n = m_pulldown(m, off, l, &o); 5462 if (!n) { 5463 /* m is already freed */ 5464 goto fail; 5465 } 5466 comb = (struct sadb_comb *)(mtod(n, caddr_t) + o); 5467 bzero(comb, sizeof(*comb)); 5468 key_getcomb_setlifetime(comb); 5469 comb->sadb_comb_encrypt = i; 5470 comb->sadb_comb_encrypt_minbits = encmin; 5471 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); 5472 } 5473 5474 if (!result) 5475 result = m; 5476 else 5477 m_cat(result, m); 5478 } 5479 5480 return result; 5481 5482 fail: 5483 if (result) 5484 m_freem(result); 5485 return NULL; 5486 } 5487 5488 static void 5489 key_getsizes_ah( 5490 const struct auth_hash *ah, 5491 int alg, 5492 u_int16_t* min, 5493 u_int16_t* max) 5494 { 5495 *min = *max = ah->keysize; 5496 if (ah->keysize == 0) { 5497 /* 5498 * Transform takes arbitrary key size but algorithm 5499 * key size is restricted. Enforce this here. 5500 */ 5501 switch (alg) { 5502 case SADB_X_AALG_MD5: *min = *max = 16; break; 5503 case SADB_X_AALG_SHA: *min = *max = 20; break; 5504 case SADB_X_AALG_NULL: *min = 1; *max = 256; break; 5505 default: 5506 DPRINTF(("%s: unknown AH algorithm %u\n", 5507 __func__, alg)); 5508 break; 5509 } 5510 } 5511 } 5512 5513 /* 5514 * XXX reorder combinations by preference 5515 */ 5516 static struct mbuf * 5517 key_getcomb_ah() 5518 { 5519 struct sadb_comb *comb; 5520 struct auth_hash *algo; 5521 struct mbuf *m; 5522 u_int16_t minkeysize, maxkeysize; 5523 int i; 5524 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5525 5526 m = NULL; 5527 for (i = 1; i <= SADB_AALG_MAX; i++) { 5528 #if 1 5529 /* we prefer HMAC algorithms, not old algorithms */ 5530 if (i != SADB_AALG_SHA1HMAC && i != SADB_AALG_MD5HMAC) 5531 continue; 5532 #endif 5533 algo = ah_algorithm_lookup(i); 5534 if (!algo) 5535 continue; 5536 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); 5537 /* discard algorithms with key size smaller than system min */ 5538 if (_BITS(minkeysize) < ipsec_ah_keymin) 5539 continue; 5540 5541 if (!m) { 5542 IPSEC_ASSERT(l <= MLEN, 5543 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 5544 MGET(m, M_DONTWAIT, MT_DATA); 5545 if (m) { 5546 M_ALIGN(m, l); 5547 m->m_len = l; 5548 m->m_next = NULL; 5549 } 5550 } else 5551 M_PREPEND(m, l, M_DONTWAIT); 5552 if (!m) 5553 return NULL; 5554 5555 comb = mtod(m, struct sadb_comb *); 5556 bzero(comb, sizeof(*comb)); 5557 key_getcomb_setlifetime(comb); 5558 comb->sadb_comb_auth = i; 5559 comb->sadb_comb_auth_minbits = _BITS(minkeysize); 5560 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); 5561 } 5562 5563 return m; 5564 } 5565 5566 /* 5567 * not really an official behavior. discussed in pf_key@inner.net in Sep2000. 5568 * XXX reorder combinations by preference 5569 */ 5570 static struct mbuf * 5571 key_getcomb_ipcomp() 5572 { 5573 struct sadb_comb *comb; 5574 struct comp_algo *algo; 5575 struct mbuf *m; 5576 int i; 5577 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5578 5579 m = NULL; 5580 for (i = 1; i <= SADB_X_CALG_MAX; i++) { 5581 algo = ipcomp_algorithm_lookup(i); 5582 if (!algo) 5583 continue; 5584 5585 if (!m) { 5586 IPSEC_ASSERT(l <= MLEN, 5587 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 5588 MGET(m, M_DONTWAIT, MT_DATA); 5589 if (m) { 5590 M_ALIGN(m, l); 5591 m->m_len = l; 5592 m->m_next = NULL; 5593 } 5594 } else 5595 M_PREPEND(m, l, M_DONTWAIT); 5596 if (!m) 5597 return NULL; 5598 5599 comb = mtod(m, struct sadb_comb *); 5600 bzero(comb, sizeof(*comb)); 5601 key_getcomb_setlifetime(comb); 5602 comb->sadb_comb_encrypt = i; 5603 /* what should we set into sadb_comb_*_{min,max}bits? */ 5604 } 5605 5606 return m; 5607 } 5608 5609 /* 5610 * XXX no way to pass mode (transport/tunnel) to userland 5611 * XXX replay checking? 5612 * XXX sysctl interface to ipsec_{ah,esp}_keymin 5613 */ 5614 static struct mbuf * 5615 key_getprop(saidx) 5616 const struct secasindex *saidx; 5617 { 5618 struct sadb_prop *prop; 5619 struct mbuf *m, *n; 5620 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); 5621 int totlen; 5622 5623 switch (saidx->proto) { 5624 case IPPROTO_ESP: 5625 m = key_getcomb_esp(); 5626 break; 5627 case IPPROTO_AH: 5628 m = key_getcomb_ah(); 5629 break; 5630 case IPPROTO_IPCOMP: 5631 m = key_getcomb_ipcomp(); 5632 break; 5633 default: 5634 return NULL; 5635 } 5636 5637 if (!m) 5638 return NULL; 5639 M_PREPEND(m, l, M_DONTWAIT); 5640 if (!m) 5641 return NULL; 5642 5643 totlen = 0; 5644 for (n = m; n; n = n->m_next) 5645 totlen += n->m_len; 5646 5647 prop = mtod(m, struct sadb_prop *); 5648 bzero(prop, sizeof(*prop)); 5649 prop->sadb_prop_len = PFKEY_UNIT64(totlen); 5650 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 5651 prop->sadb_prop_replay = 32; /* XXX */ 5652 5653 return m; 5654 } 5655 5656 /* 5657 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2(). 5658 * send 5659 * <base, SA, address(SD), (address(P)), x_policy, 5660 * (identity(SD),) (sensitivity,) proposal> 5661 * to KMD, and expect to receive 5662 * <base> with SADB_ACQUIRE if error occured, 5663 * or 5664 * <base, src address, dst address, (SPI range)> with SADB_GETSPI 5665 * from KMD by PF_KEY. 5666 * 5667 * XXX x_policy is outside of RFC2367 (KAME extension). 5668 * XXX sensitivity is not supported. 5669 * XXX for ipcomp, RFC2367 does not define how to fill in proposal. 5670 * see comment for key_getcomb_ipcomp(). 5671 * 5672 * OUT: 5673 * 0 : succeed 5674 * others: error number 5675 */ 5676 static int 5677 key_acquire(const struct secasindex *saidx, struct secpolicy *sp) 5678 { 5679 struct mbuf *result = NULL, *m; 5680 struct secacq *newacq; 5681 u_int8_t satype; 5682 int error = -1; 5683 u_int32_t seq; 5684 5685 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 5686 satype = key_proto2satype(saidx->proto); 5687 IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto)); 5688 5689 /* 5690 * We never do anything about acquirng SA. There is anather 5691 * solution that kernel blocks to send SADB_ACQUIRE message until 5692 * getting something message from IKEd. In later case, to be 5693 * managed with ACQUIRING list. 5694 */ 5695 /* Get an entry to check whether sending message or not. */ 5696 if ((newacq = key_getacq(saidx)) != NULL) { 5697 if (key_blockacq_count < newacq->count) { 5698 /* reset counter and do send message. */ 5699 newacq->count = 0; 5700 } else { 5701 /* increment counter and do nothing. */ 5702 newacq->count++; 5703 return 0; 5704 } 5705 } else { 5706 /* make new entry for blocking to send SADB_ACQUIRE. */ 5707 if ((newacq = key_newacq(saidx)) == NULL) 5708 return ENOBUFS; 5709 } 5710 5711 5712 seq = newacq->seq; 5713 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0); 5714 if (!m) { 5715 error = ENOBUFS; 5716 goto fail; 5717 } 5718 result = m; 5719 5720 /* set sadb_address for saidx's. */ 5721 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 5722 &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY); 5723 if (!m) { 5724 error = ENOBUFS; 5725 goto fail; 5726 } 5727 m_cat(result, m); 5728 5729 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 5730 &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY); 5731 if (!m) { 5732 error = ENOBUFS; 5733 goto fail; 5734 } 5735 m_cat(result, m); 5736 5737 /* XXX proxy address (optional) */ 5738 5739 /* set sadb_x_policy */ 5740 if (sp) { 5741 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id); 5742 if (!m) { 5743 error = ENOBUFS; 5744 goto fail; 5745 } 5746 m_cat(result, m); 5747 } 5748 5749 /* XXX identity (optional) */ 5750 #if 0 5751 if (idexttype && fqdn) { 5752 /* create identity extension (FQDN) */ 5753 struct sadb_ident *id; 5754 int fqdnlen; 5755 5756 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ 5757 id = (struct sadb_ident *)p; 5758 bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 5759 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 5760 id->sadb_ident_exttype = idexttype; 5761 id->sadb_ident_type = SADB_IDENTTYPE_FQDN; 5762 bcopy(fqdn, id + 1, fqdnlen); 5763 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); 5764 } 5765 5766 if (idexttype) { 5767 /* create identity extension (USERFQDN) */ 5768 struct sadb_ident *id; 5769 int userfqdnlen; 5770 5771 if (userfqdn) { 5772 /* +1 for terminating-NUL */ 5773 userfqdnlen = strlen(userfqdn) + 1; 5774 } else 5775 userfqdnlen = 0; 5776 id = (struct sadb_ident *)p; 5777 bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 5778 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 5779 id->sadb_ident_exttype = idexttype; 5780 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; 5781 /* XXX is it correct? */ 5782 if (curproc && curproc->p_cred) 5783 id->sadb_ident_id = curproc->p_cred->p_ruid; 5784 if (userfqdn && userfqdnlen) 5785 bcopy(userfqdn, id + 1, userfqdnlen); 5786 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); 5787 } 5788 #endif 5789 5790 /* XXX sensitivity (optional) */ 5791 5792 /* create proposal/combination extension */ 5793 m = key_getprop(saidx); 5794 #if 0 5795 /* 5796 * spec conformant: always attach proposal/combination extension, 5797 * the problem is that we have no way to attach it for ipcomp, 5798 * due to the way sadb_comb is declared in RFC2367. 5799 */ 5800 if (!m) { 5801 error = ENOBUFS; 5802 goto fail; 5803 } 5804 m_cat(result, m); 5805 #else 5806 /* 5807 * outside of spec; make proposal/combination extension optional. 5808 */ 5809 if (m) 5810 m_cat(result, m); 5811 #endif 5812 5813 if ((result->m_flags & M_PKTHDR) == 0) { 5814 error = EINVAL; 5815 goto fail; 5816 } 5817 5818 if (result->m_len < sizeof(struct sadb_msg)) { 5819 result = m_pullup(result, sizeof(struct sadb_msg)); 5820 if (result == NULL) { 5821 error = ENOBUFS; 5822 goto fail; 5823 } 5824 } 5825 5826 result->m_pkthdr.len = 0; 5827 for (m = result; m; m = m->m_next) 5828 result->m_pkthdr.len += m->m_len; 5829 5830 mtod(result, struct sadb_msg *)->sadb_msg_len = 5831 PFKEY_UNIT64(result->m_pkthdr.len); 5832 5833 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 5834 5835 fail: 5836 if (result) 5837 m_freem(result); 5838 return error; 5839 } 5840 5841 static struct secacq * 5842 key_newacq(const struct secasindex *saidx) 5843 { 5844 struct secacq *newacq; 5845 5846 /* get new entry */ 5847 newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 5848 if (newacq == NULL) { 5849 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5850 return NULL; 5851 } 5852 5853 /* copy secindex */ 5854 bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx)); 5855 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq); 5856 newacq->created = time_second; 5857 newacq->count = 0; 5858 5859 /* add to acqtree */ 5860 ACQ_LOCK(); 5861 LIST_INSERT_HEAD(&acqtree, newacq, chain); 5862 ACQ_UNLOCK(); 5863 5864 return newacq; 5865 } 5866 5867 static struct secacq * 5868 key_getacq(const struct secasindex *saidx) 5869 { 5870 struct secacq *acq; 5871 5872 ACQ_LOCK(); 5873 LIST_FOREACH(acq, &acqtree, chain) { 5874 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY)) 5875 break; 5876 } 5877 ACQ_UNLOCK(); 5878 5879 return acq; 5880 } 5881 5882 static struct secacq * 5883 key_getacqbyseq(seq) 5884 u_int32_t seq; 5885 { 5886 struct secacq *acq; 5887 5888 ACQ_LOCK(); 5889 LIST_FOREACH(acq, &acqtree, chain) { 5890 if (acq->seq == seq) 5891 break; 5892 } 5893 ACQ_UNLOCK(); 5894 5895 return acq; 5896 } 5897 5898 static struct secspacq * 5899 key_newspacq(spidx) 5900 struct secpolicyindex *spidx; 5901 { 5902 struct secspacq *acq; 5903 5904 /* get new entry */ 5905 acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 5906 if (acq == NULL) { 5907 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5908 return NULL; 5909 } 5910 5911 /* copy secindex */ 5912 bcopy(spidx, &acq->spidx, sizeof(acq->spidx)); 5913 acq->created = time_second; 5914 acq->count = 0; 5915 5916 /* add to spacqtree */ 5917 SPACQ_LOCK(); 5918 LIST_INSERT_HEAD(&spacqtree, acq, chain); 5919 SPACQ_UNLOCK(); 5920 5921 return acq; 5922 } 5923 5924 static struct secspacq * 5925 key_getspacq(spidx) 5926 struct secpolicyindex *spidx; 5927 { 5928 struct secspacq *acq; 5929 5930 SPACQ_LOCK(); 5931 LIST_FOREACH(acq, &spacqtree, chain) { 5932 if (key_cmpspidx_exactly(spidx, &acq->spidx)) { 5933 /* NB: return holding spacq_lock */ 5934 return acq; 5935 } 5936 } 5937 SPACQ_UNLOCK(); 5938 5939 return NULL; 5940 } 5941 5942 /* 5943 * SADB_ACQUIRE processing, 5944 * in first situation, is receiving 5945 * <base> 5946 * from the ikmpd, and clear sequence of its secasvar entry. 5947 * 5948 * In second situation, is receiving 5949 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 5950 * from a user land process, and return 5951 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 5952 * to the socket. 5953 * 5954 * m will always be freed. 5955 */ 5956 static int 5957 key_acquire2(so, m, mhp) 5958 struct socket *so; 5959 struct mbuf *m; 5960 const struct sadb_msghdr *mhp; 5961 { 5962 const struct sadb_address *src0, *dst0; 5963 struct secasindex saidx; 5964 struct secashead *sah; 5965 u_int16_t proto; 5966 int error; 5967 5968 IPSEC_ASSERT(so != NULL, ("null socket")); 5969 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5970 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5971 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5972 5973 /* 5974 * Error message from KMd. 5975 * We assume that if error was occured in IKEd, the length of PFKEY 5976 * message is equal to the size of sadb_msg structure. 5977 * We do not raise error even if error occured in this function. 5978 */ 5979 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { 5980 struct secacq *acq; 5981 5982 /* check sequence number */ 5983 if (mhp->msg->sadb_msg_seq == 0) { 5984 ipseclog((LOG_DEBUG, "%s: must specify sequence " 5985 "number.\n", __func__)); 5986 m_freem(m); 5987 return 0; 5988 } 5989 5990 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) { 5991 /* 5992 * the specified larval SA is already gone, or we got 5993 * a bogus sequence number. we can silently ignore it. 5994 */ 5995 m_freem(m); 5996 return 0; 5997 } 5998 5999 /* reset acq counter in order to deletion by timehander. */ 6000 acq->created = time_second; 6001 acq->count = 0; 6002 m_freem(m); 6003 return 0; 6004 } 6005 6006 /* 6007 * This message is from user land. 6008 */ 6009 6010 /* map satype to proto */ 6011 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6012 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6013 __func__)); 6014 return key_senderror(so, m, EINVAL); 6015 } 6016 6017 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6018 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 6019 mhp->ext[SADB_EXT_PROPOSAL] == NULL) { 6020 /* error */ 6021 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6022 __func__)); 6023 return key_senderror(so, m, EINVAL); 6024 } 6025 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6026 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 6027 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { 6028 /* error */ 6029 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6030 __func__)); 6031 return key_senderror(so, m, EINVAL); 6032 } 6033 6034 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 6035 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 6036 6037 /* XXX boundary check against sa_len */ 6038 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 6039 6040 /* get a SA index */ 6041 SAHTREE_LOCK(); 6042 LIST_FOREACH(sah, &sahtree, chain) { 6043 if (sah->state == SADB_SASTATE_DEAD) 6044 continue; 6045 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID)) 6046 break; 6047 } 6048 SAHTREE_UNLOCK(); 6049 if (sah != NULL) { 6050 ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__)); 6051 return key_senderror(so, m, EEXIST); 6052 } 6053 6054 error = key_acquire(&saidx, NULL); 6055 if (error != 0) { 6056 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 6057 __func__, mhp->msg->sadb_msg_errno)); 6058 return key_senderror(so, m, error); 6059 } 6060 6061 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); 6062 } 6063 6064 /* 6065 * SADB_REGISTER processing. 6066 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. 6067 * receive 6068 * <base> 6069 * from the ikmpd, and register a socket to send PF_KEY messages, 6070 * and send 6071 * <base, supported> 6072 * to KMD by PF_KEY. 6073 * If socket is detached, must free from regnode. 6074 * 6075 * m will always be freed. 6076 */ 6077 static int 6078 key_register(so, m, mhp) 6079 struct socket *so; 6080 struct mbuf *m; 6081 const struct sadb_msghdr *mhp; 6082 { 6083 struct secreg *reg, *newreg = 0; 6084 6085 IPSEC_ASSERT(so != NULL, ("null socket")); 6086 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6087 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6088 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6089 6090 /* check for invalid register message */ 6091 if (mhp->msg->sadb_msg_satype >= sizeof(regtree)/sizeof(regtree[0])) 6092 return key_senderror(so, m, EINVAL); 6093 6094 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ 6095 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) 6096 goto setmsg; 6097 6098 /* check whether existing or not */ 6099 REGTREE_LOCK(); 6100 LIST_FOREACH(reg, ®tree[mhp->msg->sadb_msg_satype], chain) { 6101 if (reg->so == so) { 6102 REGTREE_UNLOCK(); 6103 ipseclog((LOG_DEBUG, "%s: socket exists already.\n", 6104 __func__)); 6105 return key_senderror(so, m, EEXIST); 6106 } 6107 } 6108 6109 /* create regnode */ 6110 newreg = malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO); 6111 if (newreg == NULL) { 6112 REGTREE_UNLOCK(); 6113 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6114 return key_senderror(so, m, ENOBUFS); 6115 } 6116 6117 newreg->so = so; 6118 ((struct keycb *)sotorawcb(so))->kp_registered++; 6119 6120 /* add regnode to regtree. */ 6121 LIST_INSERT_HEAD(®tree[mhp->msg->sadb_msg_satype], newreg, chain); 6122 REGTREE_UNLOCK(); 6123 6124 setmsg: 6125 { 6126 struct mbuf *n; 6127 struct sadb_msg *newmsg; 6128 struct sadb_supported *sup; 6129 u_int len, alen, elen; 6130 int off; 6131 int i; 6132 struct sadb_alg *alg; 6133 6134 /* create new sadb_msg to reply. */ 6135 alen = 0; 6136 for (i = 1; i <= SADB_AALG_MAX; i++) { 6137 if (ah_algorithm_lookup(i)) 6138 alen += sizeof(struct sadb_alg); 6139 } 6140 if (alen) 6141 alen += sizeof(struct sadb_supported); 6142 elen = 0; 6143 for (i = 1; i <= SADB_EALG_MAX; i++) { 6144 if (esp_algorithm_lookup(i)) 6145 elen += sizeof(struct sadb_alg); 6146 } 6147 if (elen) 6148 elen += sizeof(struct sadb_supported); 6149 6150 len = sizeof(struct sadb_msg) + alen + elen; 6151 6152 if (len > MCLBYTES) 6153 return key_senderror(so, m, ENOBUFS); 6154 6155 MGETHDR(n, M_DONTWAIT, MT_DATA); 6156 if (len > MHLEN) { 6157 MCLGET(n, M_DONTWAIT); 6158 if ((n->m_flags & M_EXT) == 0) { 6159 m_freem(n); 6160 n = NULL; 6161 } 6162 } 6163 if (!n) 6164 return key_senderror(so, m, ENOBUFS); 6165 6166 n->m_pkthdr.len = n->m_len = len; 6167 n->m_next = NULL; 6168 off = 0; 6169 6170 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 6171 newmsg = mtod(n, struct sadb_msg *); 6172 newmsg->sadb_msg_errno = 0; 6173 newmsg->sadb_msg_len = PFKEY_UNIT64(len); 6174 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 6175 6176 /* for authentication algorithm */ 6177 if (alen) { 6178 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6179 sup->sadb_supported_len = PFKEY_UNIT64(alen); 6180 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 6181 off += PFKEY_ALIGN8(sizeof(*sup)); 6182 6183 for (i = 1; i <= SADB_AALG_MAX; i++) { 6184 struct auth_hash *aalgo; 6185 u_int16_t minkeysize, maxkeysize; 6186 6187 aalgo = ah_algorithm_lookup(i); 6188 if (!aalgo) 6189 continue; 6190 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6191 alg->sadb_alg_id = i; 6192 alg->sadb_alg_ivlen = 0; 6193 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); 6194 alg->sadb_alg_minbits = _BITS(minkeysize); 6195 alg->sadb_alg_maxbits = _BITS(maxkeysize); 6196 off += PFKEY_ALIGN8(sizeof(*alg)); 6197 } 6198 } 6199 6200 /* for encryption algorithm */ 6201 if (elen) { 6202 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6203 sup->sadb_supported_len = PFKEY_UNIT64(elen); 6204 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 6205 off += PFKEY_ALIGN8(sizeof(*sup)); 6206 6207 for (i = 1; i <= SADB_EALG_MAX; i++) { 6208 struct enc_xform *ealgo; 6209 6210 ealgo = esp_algorithm_lookup(i); 6211 if (!ealgo) 6212 continue; 6213 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6214 alg->sadb_alg_id = i; 6215 alg->sadb_alg_ivlen = ealgo->blocksize; 6216 alg->sadb_alg_minbits = _BITS(ealgo->minkey); 6217 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); 6218 off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); 6219 } 6220 } 6221 6222 IPSEC_ASSERT(off == len, 6223 ("length assumption failed (off %u len %u)", off, len)); 6224 6225 m_freem(m); 6226 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); 6227 } 6228 } 6229 6230 /* 6231 * free secreg entry registered. 6232 * XXX: I want to do free a socket marked done SADB_RESIGER to socket. 6233 */ 6234 void 6235 key_freereg(struct socket *so) 6236 { 6237 struct secreg *reg; 6238 int i; 6239 6240 IPSEC_ASSERT(so != NULL, ("NULL so")); 6241 6242 /* 6243 * check whether existing or not. 6244 * check all type of SA, because there is a potential that 6245 * one socket is registered to multiple type of SA. 6246 */ 6247 REGTREE_LOCK(); 6248 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 6249 LIST_FOREACH(reg, ®tree[i], chain) { 6250 if (reg->so == so && __LIST_CHAINED(reg)) { 6251 LIST_REMOVE(reg, chain); 6252 free(reg, M_IPSEC_SAR); 6253 break; 6254 } 6255 } 6256 } 6257 REGTREE_UNLOCK(); 6258 } 6259 6260 /* 6261 * SADB_EXPIRE processing 6262 * send 6263 * <base, SA, SA2, lifetime(C and one of HS), address(SD)> 6264 * to KMD by PF_KEY. 6265 * NOTE: We send only soft lifetime extension. 6266 * 6267 * OUT: 0 : succeed 6268 * others : error number 6269 */ 6270 static int 6271 key_expire(struct secasvar *sav) 6272 { 6273 int s; 6274 int satype; 6275 struct mbuf *result = NULL, *m; 6276 int len; 6277 int error = -1; 6278 struct sadb_lifetime *lt; 6279 6280 /* XXX: Why do we lock ? */ 6281 s = splnet(); /*called from softclock()*/ 6282 6283 IPSEC_ASSERT (sav != NULL, ("null sav")); 6284 IPSEC_ASSERT (sav->sah != NULL, ("null sa header")); 6285 6286 /* set msg header */ 6287 satype = key_proto2satype(sav->sah->saidx.proto); 6288 IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype)); 6289 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt); 6290 if (!m) { 6291 error = ENOBUFS; 6292 goto fail; 6293 } 6294 result = m; 6295 6296 /* create SA extension */ 6297 m = key_setsadbsa(sav); 6298 if (!m) { 6299 error = ENOBUFS; 6300 goto fail; 6301 } 6302 m_cat(result, m); 6303 6304 /* create SA extension */ 6305 m = key_setsadbxsa2(sav->sah->saidx.mode, 6306 sav->replay ? sav->replay->count : 0, 6307 sav->sah->saidx.reqid); 6308 if (!m) { 6309 error = ENOBUFS; 6310 goto fail; 6311 } 6312 m_cat(result, m); 6313 6314 /* create lifetime extension (current and soft) */ 6315 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 6316 m = key_alloc_mbuf(len); 6317 if (!m || m->m_next) { /*XXX*/ 6318 if (m) 6319 m_freem(m); 6320 error = ENOBUFS; 6321 goto fail; 6322 } 6323 bzero(mtod(m, caddr_t), len); 6324 lt = mtod(m, struct sadb_lifetime *); 6325 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6326 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 6327 lt->sadb_lifetime_allocations = sav->lft_c->allocations; 6328 lt->sadb_lifetime_bytes = sav->lft_c->bytes; 6329 lt->sadb_lifetime_addtime = sav->lft_c->addtime; 6330 lt->sadb_lifetime_usetime = sav->lft_c->usetime; 6331 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 6332 bcopy(sav->lft_s, lt, sizeof(*lt)); 6333 m_cat(result, m); 6334 6335 /* set sadb_address for source */ 6336 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 6337 &sav->sah->saidx.src.sa, 6338 FULLMASK, IPSEC_ULPROTO_ANY); 6339 if (!m) { 6340 error = ENOBUFS; 6341 goto fail; 6342 } 6343 m_cat(result, m); 6344 6345 /* set sadb_address for destination */ 6346 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 6347 &sav->sah->saidx.dst.sa, 6348 FULLMASK, IPSEC_ULPROTO_ANY); 6349 if (!m) { 6350 error = ENOBUFS; 6351 goto fail; 6352 } 6353 m_cat(result, m); 6354 6355 if ((result->m_flags & M_PKTHDR) == 0) { 6356 error = EINVAL; 6357 goto fail; 6358 } 6359 6360 if (result->m_len < sizeof(struct sadb_msg)) { 6361 result = m_pullup(result, sizeof(struct sadb_msg)); 6362 if (result == NULL) { 6363 error = ENOBUFS; 6364 goto fail; 6365 } 6366 } 6367 6368 result->m_pkthdr.len = 0; 6369 for (m = result; m; m = m->m_next) 6370 result->m_pkthdr.len += m->m_len; 6371 6372 mtod(result, struct sadb_msg *)->sadb_msg_len = 6373 PFKEY_UNIT64(result->m_pkthdr.len); 6374 6375 splx(s); 6376 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6377 6378 fail: 6379 if (result) 6380 m_freem(result); 6381 splx(s); 6382 return error; 6383 } 6384 6385 /* 6386 * SADB_FLUSH processing 6387 * receive 6388 * <base> 6389 * from the ikmpd, and free all entries in secastree. 6390 * and send, 6391 * <base> 6392 * to the ikmpd. 6393 * NOTE: to do is only marking SADB_SASTATE_DEAD. 6394 * 6395 * m will always be freed. 6396 */ 6397 static int 6398 key_flush(so, m, mhp) 6399 struct socket *so; 6400 struct mbuf *m; 6401 const struct sadb_msghdr *mhp; 6402 { 6403 struct sadb_msg *newmsg; 6404 struct secashead *sah, *nextsah; 6405 struct secasvar *sav, *nextsav; 6406 u_int16_t proto; 6407 u_int8_t state; 6408 u_int stateidx; 6409 6410 IPSEC_ASSERT(so != NULL, ("null socket")); 6411 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6412 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6413 6414 /* map satype to proto */ 6415 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6416 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6417 __func__)); 6418 return key_senderror(so, m, EINVAL); 6419 } 6420 6421 /* no SATYPE specified, i.e. flushing all SA. */ 6422 SAHTREE_LOCK(); 6423 for (sah = LIST_FIRST(&sahtree); 6424 sah != NULL; 6425 sah = nextsah) { 6426 nextsah = LIST_NEXT(sah, chain); 6427 6428 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 6429 && proto != sah->saidx.proto) 6430 continue; 6431 6432 for (stateidx = 0; 6433 stateidx < _ARRAYLEN(saorder_state_alive); 6434 stateidx++) { 6435 state = saorder_state_any[stateidx]; 6436 for (sav = LIST_FIRST(&sah->savtree[state]); 6437 sav != NULL; 6438 sav = nextsav) { 6439 6440 nextsav = LIST_NEXT(sav, chain); 6441 6442 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 6443 KEY_FREESAV(&sav); 6444 } 6445 } 6446 6447 sah->state = SADB_SASTATE_DEAD; 6448 } 6449 SAHTREE_UNLOCK(); 6450 6451 if (m->m_len < sizeof(struct sadb_msg) || 6452 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 6453 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6454 return key_senderror(so, m, ENOBUFS); 6455 } 6456 6457 if (m->m_next) 6458 m_freem(m->m_next); 6459 m->m_next = NULL; 6460 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); 6461 newmsg = mtod(m, struct sadb_msg *); 6462 newmsg->sadb_msg_errno = 0; 6463 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 6464 6465 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 6466 } 6467 6468 /* 6469 * SADB_DUMP processing 6470 * dump all entries including status of DEAD in SAD. 6471 * receive 6472 * <base> 6473 * from the ikmpd, and dump all secasvar leaves 6474 * and send, 6475 * <base> ..... 6476 * to the ikmpd. 6477 * 6478 * m will always be freed. 6479 */ 6480 static int 6481 key_dump(so, m, mhp) 6482 struct socket *so; 6483 struct mbuf *m; 6484 const struct sadb_msghdr *mhp; 6485 { 6486 struct secashead *sah; 6487 struct secasvar *sav; 6488 u_int16_t proto; 6489 u_int stateidx; 6490 u_int8_t satype; 6491 u_int8_t state; 6492 int cnt; 6493 struct sadb_msg *newmsg; 6494 struct mbuf *n; 6495 6496 IPSEC_ASSERT(so != NULL, ("null socket")); 6497 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6498 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6499 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6500 6501 /* map satype to proto */ 6502 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6503 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6504 __func__)); 6505 return key_senderror(so, m, EINVAL); 6506 } 6507 6508 /* count sav entries to be sent to the userland. */ 6509 cnt = 0; 6510 SAHTREE_LOCK(); 6511 LIST_FOREACH(sah, &sahtree, chain) { 6512 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 6513 && proto != sah->saidx.proto) 6514 continue; 6515 6516 for (stateidx = 0; 6517 stateidx < _ARRAYLEN(saorder_state_any); 6518 stateidx++) { 6519 state = saorder_state_any[stateidx]; 6520 LIST_FOREACH(sav, &sah->savtree[state], chain) { 6521 cnt++; 6522 } 6523 } 6524 } 6525 6526 if (cnt == 0) { 6527 SAHTREE_UNLOCK(); 6528 return key_senderror(so, m, ENOENT); 6529 } 6530 6531 /* send this to the userland, one at a time. */ 6532 newmsg = NULL; 6533 LIST_FOREACH(sah, &sahtree, chain) { 6534 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 6535 && proto != sah->saidx.proto) 6536 continue; 6537 6538 /* map proto to satype */ 6539 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 6540 SAHTREE_UNLOCK(); 6541 ipseclog((LOG_DEBUG, "%s: there was invalid proto in " 6542 "SAD.\n", __func__)); 6543 return key_senderror(so, m, EINVAL); 6544 } 6545 6546 for (stateidx = 0; 6547 stateidx < _ARRAYLEN(saorder_state_any); 6548 stateidx++) { 6549 state = saorder_state_any[stateidx]; 6550 LIST_FOREACH(sav, &sah->savtree[state], chain) { 6551 n = key_setdumpsa(sav, SADB_DUMP, satype, 6552 --cnt, mhp->msg->sadb_msg_pid); 6553 if (!n) { 6554 SAHTREE_UNLOCK(); 6555 return key_senderror(so, m, ENOBUFS); 6556 } 6557 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 6558 } 6559 } 6560 } 6561 SAHTREE_UNLOCK(); 6562 6563 m_freem(m); 6564 return 0; 6565 } 6566 6567 /* 6568 * SADB_X_PROMISC processing 6569 * 6570 * m will always be freed. 6571 */ 6572 static int 6573 key_promisc(so, m, mhp) 6574 struct socket *so; 6575 struct mbuf *m; 6576 const struct sadb_msghdr *mhp; 6577 { 6578 int olen; 6579 6580 IPSEC_ASSERT(so != NULL, ("null socket")); 6581 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6582 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6583 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6584 6585 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 6586 6587 if (olen < sizeof(struct sadb_msg)) { 6588 #if 1 6589 return key_senderror(so, m, EINVAL); 6590 #else 6591 m_freem(m); 6592 return 0; 6593 #endif 6594 } else if (olen == sizeof(struct sadb_msg)) { 6595 /* enable/disable promisc mode */ 6596 struct keycb *kp; 6597 6598 if ((kp = (struct keycb *)sotorawcb(so)) == NULL) 6599 return key_senderror(so, m, EINVAL); 6600 mhp->msg->sadb_msg_errno = 0; 6601 switch (mhp->msg->sadb_msg_satype) { 6602 case 0: 6603 case 1: 6604 kp->kp_promisc = mhp->msg->sadb_msg_satype; 6605 break; 6606 default: 6607 return key_senderror(so, m, EINVAL); 6608 } 6609 6610 /* send the original message back to everyone */ 6611 mhp->msg->sadb_msg_errno = 0; 6612 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 6613 } else { 6614 /* send packet as is */ 6615 6616 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); 6617 6618 /* TODO: if sadb_msg_seq is specified, send to specific pid */ 6619 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 6620 } 6621 } 6622 6623 static int (*key_typesw[]) __P((struct socket *, struct mbuf *, 6624 const struct sadb_msghdr *)) = { 6625 NULL, /* SADB_RESERVED */ 6626 key_getspi, /* SADB_GETSPI */ 6627 key_update, /* SADB_UPDATE */ 6628 key_add, /* SADB_ADD */ 6629 key_delete, /* SADB_DELETE */ 6630 key_get, /* SADB_GET */ 6631 key_acquire2, /* SADB_ACQUIRE */ 6632 key_register, /* SADB_REGISTER */ 6633 NULL, /* SADB_EXPIRE */ 6634 key_flush, /* SADB_FLUSH */ 6635 key_dump, /* SADB_DUMP */ 6636 key_promisc, /* SADB_X_PROMISC */ 6637 NULL, /* SADB_X_PCHANGE */ 6638 key_spdadd, /* SADB_X_SPDUPDATE */ 6639 key_spdadd, /* SADB_X_SPDADD */ 6640 key_spddelete, /* SADB_X_SPDDELETE */ 6641 key_spdget, /* SADB_X_SPDGET */ 6642 NULL, /* SADB_X_SPDACQUIRE */ 6643 key_spddump, /* SADB_X_SPDDUMP */ 6644 key_spdflush, /* SADB_X_SPDFLUSH */ 6645 key_spdadd, /* SADB_X_SPDSETIDX */ 6646 NULL, /* SADB_X_SPDEXPIRE */ 6647 key_spddelete2, /* SADB_X_SPDDELETE2 */ 6648 }; 6649 6650 /* 6651 * parse sadb_msg buffer to process PFKEYv2, 6652 * and create a data to response if needed. 6653 * I think to be dealed with mbuf directly. 6654 * IN: 6655 * msgp : pointer to pointer to a received buffer pulluped. 6656 * This is rewrited to response. 6657 * so : pointer to socket. 6658 * OUT: 6659 * length for buffer to send to user process. 6660 */ 6661 int 6662 key_parse(m, so) 6663 struct mbuf *m; 6664 struct socket *so; 6665 { 6666 struct sadb_msg *msg; 6667 struct sadb_msghdr mh; 6668 u_int orglen; 6669 int error; 6670 int target; 6671 6672 IPSEC_ASSERT(so != NULL, ("null socket")); 6673 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6674 6675 #if 0 /*kdebug_sadb assumes msg in linear buffer*/ 6676 KEYDEBUG(KEYDEBUG_KEY_DUMP, 6677 ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__)); 6678 kdebug_sadb(msg)); 6679 #endif 6680 6681 if (m->m_len < sizeof(struct sadb_msg)) { 6682 m = m_pullup(m, sizeof(struct sadb_msg)); 6683 if (!m) 6684 return ENOBUFS; 6685 } 6686 msg = mtod(m, struct sadb_msg *); 6687 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); 6688 target = KEY_SENDUP_ONE; 6689 6690 if ((m->m_flags & M_PKTHDR) == 0 || 6691 m->m_pkthdr.len != m->m_pkthdr.len) { 6692 ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__)); 6693 pfkeystat.out_invlen++; 6694 error = EINVAL; 6695 goto senderror; 6696 } 6697 6698 if (msg->sadb_msg_version != PF_KEY_V2) { 6699 ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n", 6700 __func__, msg->sadb_msg_version)); 6701 pfkeystat.out_invver++; 6702 error = EINVAL; 6703 goto senderror; 6704 } 6705 6706 if (msg->sadb_msg_type > SADB_MAX) { 6707 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 6708 __func__, msg->sadb_msg_type)); 6709 pfkeystat.out_invmsgtype++; 6710 error = EINVAL; 6711 goto senderror; 6712 } 6713 6714 /* for old-fashioned code - should be nuked */ 6715 if (m->m_pkthdr.len > MCLBYTES) { 6716 m_freem(m); 6717 return ENOBUFS; 6718 } 6719 if (m->m_next) { 6720 struct mbuf *n; 6721 6722 MGETHDR(n, M_DONTWAIT, MT_DATA); 6723 if (n && m->m_pkthdr.len > MHLEN) { 6724 MCLGET(n, M_DONTWAIT); 6725 if ((n->m_flags & M_EXT) == 0) { 6726 m_free(n); 6727 n = NULL; 6728 } 6729 } 6730 if (!n) { 6731 m_freem(m); 6732 return ENOBUFS; 6733 } 6734 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t)); 6735 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; 6736 n->m_next = NULL; 6737 m_freem(m); 6738 m = n; 6739 } 6740 6741 /* align the mbuf chain so that extensions are in contiguous region. */ 6742 error = key_align(m, &mh); 6743 if (error) 6744 return error; 6745 6746 msg = mh.msg; 6747 6748 /* check SA type */ 6749 switch (msg->sadb_msg_satype) { 6750 case SADB_SATYPE_UNSPEC: 6751 switch (msg->sadb_msg_type) { 6752 case SADB_GETSPI: 6753 case SADB_UPDATE: 6754 case SADB_ADD: 6755 case SADB_DELETE: 6756 case SADB_GET: 6757 case SADB_ACQUIRE: 6758 case SADB_EXPIRE: 6759 ipseclog((LOG_DEBUG, "%s: must specify satype " 6760 "when msg type=%u.\n", __func__, 6761 msg->sadb_msg_type)); 6762 pfkeystat.out_invsatype++; 6763 error = EINVAL; 6764 goto senderror; 6765 } 6766 break; 6767 case SADB_SATYPE_AH: 6768 case SADB_SATYPE_ESP: 6769 case SADB_X_SATYPE_IPCOMP: 6770 case SADB_X_SATYPE_TCPSIGNATURE: 6771 switch (msg->sadb_msg_type) { 6772 case SADB_X_SPDADD: 6773 case SADB_X_SPDDELETE: 6774 case SADB_X_SPDGET: 6775 case SADB_X_SPDDUMP: 6776 case SADB_X_SPDFLUSH: 6777 case SADB_X_SPDSETIDX: 6778 case SADB_X_SPDUPDATE: 6779 case SADB_X_SPDDELETE2: 6780 ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n", 6781 __func__, msg->sadb_msg_type)); 6782 pfkeystat.out_invsatype++; 6783 error = EINVAL; 6784 goto senderror; 6785 } 6786 break; 6787 case SADB_SATYPE_RSVP: 6788 case SADB_SATYPE_OSPFV2: 6789 case SADB_SATYPE_RIPV2: 6790 case SADB_SATYPE_MIP: 6791 ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n", 6792 __func__, msg->sadb_msg_satype)); 6793 pfkeystat.out_invsatype++; 6794 error = EOPNOTSUPP; 6795 goto senderror; 6796 case 1: /* XXX: What does it do? */ 6797 if (msg->sadb_msg_type == SADB_X_PROMISC) 6798 break; 6799 /*FALLTHROUGH*/ 6800 default: 6801 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 6802 __func__, msg->sadb_msg_satype)); 6803 pfkeystat.out_invsatype++; 6804 error = EINVAL; 6805 goto senderror; 6806 } 6807 6808 /* check field of upper layer protocol and address family */ 6809 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL 6810 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { 6811 struct sadb_address *src0, *dst0; 6812 u_int plen; 6813 6814 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]); 6815 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]); 6816 6817 /* check upper layer protocol */ 6818 if (src0->sadb_address_proto != dst0->sadb_address_proto) { 6819 ipseclog((LOG_DEBUG, "%s: upper layer protocol " 6820 "mismatched.\n", __func__)); 6821 pfkeystat.out_invaddr++; 6822 error = EINVAL; 6823 goto senderror; 6824 } 6825 6826 /* check family */ 6827 if (PFKEY_ADDR_SADDR(src0)->sa_family != 6828 PFKEY_ADDR_SADDR(dst0)->sa_family) { 6829 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 6830 __func__)); 6831 pfkeystat.out_invaddr++; 6832 error = EINVAL; 6833 goto senderror; 6834 } 6835 if (PFKEY_ADDR_SADDR(src0)->sa_len != 6836 PFKEY_ADDR_SADDR(dst0)->sa_len) { 6837 ipseclog((LOG_DEBUG, "%s: address struct size " 6838 "mismatched.\n", __func__)); 6839 pfkeystat.out_invaddr++; 6840 error = EINVAL; 6841 goto senderror; 6842 } 6843 6844 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 6845 case AF_INET: 6846 if (PFKEY_ADDR_SADDR(src0)->sa_len != 6847 sizeof(struct sockaddr_in)) { 6848 pfkeystat.out_invaddr++; 6849 error = EINVAL; 6850 goto senderror; 6851 } 6852 break; 6853 case AF_INET6: 6854 if (PFKEY_ADDR_SADDR(src0)->sa_len != 6855 sizeof(struct sockaddr_in6)) { 6856 pfkeystat.out_invaddr++; 6857 error = EINVAL; 6858 goto senderror; 6859 } 6860 break; 6861 default: 6862 ipseclog((LOG_DEBUG, "%s: unsupported address family\n", 6863 __func__)); 6864 pfkeystat.out_invaddr++; 6865 error = EAFNOSUPPORT; 6866 goto senderror; 6867 } 6868 6869 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 6870 case AF_INET: 6871 plen = sizeof(struct in_addr) << 3; 6872 break; 6873 case AF_INET6: 6874 plen = sizeof(struct in6_addr) << 3; 6875 break; 6876 default: 6877 plen = 0; /*fool gcc*/ 6878 break; 6879 } 6880 6881 /* check max prefix length */ 6882 if (src0->sadb_address_prefixlen > plen || 6883 dst0->sadb_address_prefixlen > plen) { 6884 ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n", 6885 __func__)); 6886 pfkeystat.out_invaddr++; 6887 error = EINVAL; 6888 goto senderror; 6889 } 6890 6891 /* 6892 * prefixlen == 0 is valid because there can be a case when 6893 * all addresses are matched. 6894 */ 6895 } 6896 6897 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) || 6898 key_typesw[msg->sadb_msg_type] == NULL) { 6899 pfkeystat.out_invmsgtype++; 6900 error = EINVAL; 6901 goto senderror; 6902 } 6903 6904 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh); 6905 6906 senderror: 6907 msg->sadb_msg_errno = error; 6908 return key_sendup_mbuf(so, m, target); 6909 } 6910 6911 static int 6912 key_senderror(so, m, code) 6913 struct socket *so; 6914 struct mbuf *m; 6915 int code; 6916 { 6917 struct sadb_msg *msg; 6918 6919 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 6920 ("mbuf too small, len %u", m->m_len)); 6921 6922 msg = mtod(m, struct sadb_msg *); 6923 msg->sadb_msg_errno = code; 6924 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 6925 } 6926 6927 /* 6928 * set the pointer to each header into message buffer. 6929 * m will be freed on error. 6930 * XXX larger-than-MCLBYTES extension? 6931 */ 6932 static int 6933 key_align(m, mhp) 6934 struct mbuf *m; 6935 struct sadb_msghdr *mhp; 6936 { 6937 struct mbuf *n; 6938 struct sadb_ext *ext; 6939 size_t off, end; 6940 int extlen; 6941 int toff; 6942 6943 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6944 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6945 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 6946 ("mbuf too small, len %u", m->m_len)); 6947 6948 /* initialize */ 6949 bzero(mhp, sizeof(*mhp)); 6950 6951 mhp->msg = mtod(m, struct sadb_msg *); 6952 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */ 6953 6954 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 6955 extlen = end; /*just in case extlen is not updated*/ 6956 for (off = sizeof(struct sadb_msg); off < end; off += extlen) { 6957 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); 6958 if (!n) { 6959 /* m is already freed */ 6960 return ENOBUFS; 6961 } 6962 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 6963 6964 /* set pointer */ 6965 switch (ext->sadb_ext_type) { 6966 case SADB_EXT_SA: 6967 case SADB_EXT_ADDRESS_SRC: 6968 case SADB_EXT_ADDRESS_DST: 6969 case SADB_EXT_ADDRESS_PROXY: 6970 case SADB_EXT_LIFETIME_CURRENT: 6971 case SADB_EXT_LIFETIME_HARD: 6972 case SADB_EXT_LIFETIME_SOFT: 6973 case SADB_EXT_KEY_AUTH: 6974 case SADB_EXT_KEY_ENCRYPT: 6975 case SADB_EXT_IDENTITY_SRC: 6976 case SADB_EXT_IDENTITY_DST: 6977 case SADB_EXT_SENSITIVITY: 6978 case SADB_EXT_PROPOSAL: 6979 case SADB_EXT_SUPPORTED_AUTH: 6980 case SADB_EXT_SUPPORTED_ENCRYPT: 6981 case SADB_EXT_SPIRANGE: 6982 case SADB_X_EXT_POLICY: 6983 case SADB_X_EXT_SA2: 6984 /* duplicate check */ 6985 /* 6986 * XXX Are there duplication payloads of either 6987 * KEY_AUTH or KEY_ENCRYPT ? 6988 */ 6989 if (mhp->ext[ext->sadb_ext_type] != NULL) { 6990 ipseclog((LOG_DEBUG, "%s: duplicate ext_type " 6991 "%u\n", __func__, ext->sadb_ext_type)); 6992 m_freem(m); 6993 pfkeystat.out_dupext++; 6994 return EINVAL; 6995 } 6996 break; 6997 default: 6998 ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n", 6999 __func__, ext->sadb_ext_type)); 7000 m_freem(m); 7001 pfkeystat.out_invexttype++; 7002 return EINVAL; 7003 } 7004 7005 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); 7006 7007 if (key_validate_ext(ext, extlen)) { 7008 m_freem(m); 7009 pfkeystat.out_invlen++; 7010 return EINVAL; 7011 } 7012 7013 n = m_pulldown(m, off, extlen, &toff); 7014 if (!n) { 7015 /* m is already freed */ 7016 return ENOBUFS; 7017 } 7018 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 7019 7020 mhp->ext[ext->sadb_ext_type] = ext; 7021 mhp->extoff[ext->sadb_ext_type] = off; 7022 mhp->extlen[ext->sadb_ext_type] = extlen; 7023 } 7024 7025 if (off != end) { 7026 m_freem(m); 7027 pfkeystat.out_invlen++; 7028 return EINVAL; 7029 } 7030 7031 return 0; 7032 } 7033 7034 static int 7035 key_validate_ext(ext, len) 7036 const struct sadb_ext *ext; 7037 int len; 7038 { 7039 const struct sockaddr *sa; 7040 enum { NONE, ADDR } checktype = NONE; 7041 int baselen = 0; 7042 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); 7043 7044 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) 7045 return EINVAL; 7046 7047 /* if it does not match minimum/maximum length, bail */ 7048 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) || 7049 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0])) 7050 return EINVAL; 7051 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) 7052 return EINVAL; 7053 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) 7054 return EINVAL; 7055 7056 /* more checks based on sadb_ext_type XXX need more */ 7057 switch (ext->sadb_ext_type) { 7058 case SADB_EXT_ADDRESS_SRC: 7059 case SADB_EXT_ADDRESS_DST: 7060 case SADB_EXT_ADDRESS_PROXY: 7061 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); 7062 checktype = ADDR; 7063 break; 7064 case SADB_EXT_IDENTITY_SRC: 7065 case SADB_EXT_IDENTITY_DST: 7066 if (((const struct sadb_ident *)ext)->sadb_ident_type == 7067 SADB_X_IDENTTYPE_ADDR) { 7068 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); 7069 checktype = ADDR; 7070 } else 7071 checktype = NONE; 7072 break; 7073 default: 7074 checktype = NONE; 7075 break; 7076 } 7077 7078 switch (checktype) { 7079 case NONE: 7080 break; 7081 case ADDR: 7082 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); 7083 if (len < baselen + sal) 7084 return EINVAL; 7085 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) 7086 return EINVAL; 7087 break; 7088 } 7089 7090 return 0; 7091 } 7092 7093 void 7094 key_init() 7095 { 7096 int i; 7097 7098 SPTREE_LOCK_INIT(); 7099 REGTREE_LOCK_INIT(); 7100 SAHTREE_LOCK_INIT(); 7101 ACQ_LOCK_INIT(); 7102 SPACQ_LOCK_INIT(); 7103 7104 for (i = 0; i < IPSEC_DIR_MAX; i++) 7105 LIST_INIT(&sptree[i]); 7106 7107 LIST_INIT(&sahtree); 7108 7109 for (i = 0; i <= SADB_SATYPE_MAX; i++) 7110 LIST_INIT(®tree[i]); 7111 7112 LIST_INIT(&acqtree); 7113 LIST_INIT(&spacqtree); 7114 7115 /* system default */ 7116 ip4_def_policy.policy = IPSEC_POLICY_NONE; 7117 ip4_def_policy.refcnt++; /*never reclaim this*/ 7118 7119 #ifndef IPSEC_DEBUG2 7120 timeout((void *)key_timehandler, (void *)0, hz); 7121 #endif /*IPSEC_DEBUG2*/ 7122 7123 /* initialize key statistics */ 7124 keystat.getspi_count = 1; 7125 7126 printf("Fast IPsec: Initialized Security Association Processing.\n"); 7127 7128 return; 7129 } 7130 7131 /* 7132 * XXX: maybe This function is called after INBOUND IPsec processing. 7133 * 7134 * Special check for tunnel-mode packets. 7135 * We must make some checks for consistency between inner and outer IP header. 7136 * 7137 * xxx more checks to be provided 7138 */ 7139 int 7140 key_checktunnelsanity(sav, family, src, dst) 7141 struct secasvar *sav; 7142 u_int family; 7143 caddr_t src; 7144 caddr_t dst; 7145 { 7146 IPSEC_ASSERT(sav->sah != NULL, ("null SA header")); 7147 7148 /* XXX: check inner IP header */ 7149 7150 return 1; 7151 } 7152 7153 /* record data transfer on SA, and update timestamps */ 7154 void 7155 key_sa_recordxfer(sav, m) 7156 struct secasvar *sav; 7157 struct mbuf *m; 7158 { 7159 IPSEC_ASSERT(sav != NULL, ("Null secasvar")); 7160 IPSEC_ASSERT(m != NULL, ("Null mbuf")); 7161 if (!sav->lft_c) 7162 return; 7163 7164 /* 7165 * XXX Currently, there is a difference of bytes size 7166 * between inbound and outbound processing. 7167 */ 7168 sav->lft_c->bytes += m->m_pkthdr.len; 7169 /* to check bytes lifetime is done in key_timehandler(). */ 7170 7171 /* 7172 * We use the number of packets as the unit of 7173 * allocations. We increment the variable 7174 * whenever {esp,ah}_{in,out}put is called. 7175 */ 7176 sav->lft_c->allocations++; 7177 /* XXX check for expires? */ 7178 7179 /* 7180 * NOTE: We record CURRENT usetime by using wall clock, 7181 * in seconds. HARD and SOFT lifetime are measured by the time 7182 * difference (again in seconds) from usetime. 7183 * 7184 * usetime 7185 * v expire expire 7186 * -----+-----+--------+---> t 7187 * <--------------> HARD 7188 * <-----> SOFT 7189 */ 7190 sav->lft_c->usetime = time_second; 7191 /* XXX check for expires? */ 7192 7193 return; 7194 } 7195 7196 /* dumb version */ 7197 void 7198 key_sa_routechange(dst) 7199 struct sockaddr *dst; 7200 { 7201 struct secashead *sah; 7202 struct route *ro; 7203 7204 SAHTREE_LOCK(); 7205 LIST_FOREACH(sah, &sahtree, chain) { 7206 ro = &sah->sa_route; 7207 if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len 7208 && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) { 7209 RTFREE(ro->ro_rt); 7210 ro->ro_rt = (struct rtentry *)NULL; 7211 } 7212 } 7213 SAHTREE_UNLOCK(); 7214 } 7215 7216 static void 7217 key_sa_chgstate(sav, state) 7218 struct secasvar *sav; 7219 u_int8_t state; 7220 { 7221 IPSEC_ASSERT(sav != NULL, ("NULL sav")); 7222 SAHTREE_LOCK_ASSERT(); 7223 7224 if (sav->state != state) { 7225 if (__LIST_CHAINED(sav)) 7226 LIST_REMOVE(sav, chain); 7227 sav->state = state; 7228 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain); 7229 } 7230 } 7231 7232 void 7233 key_sa_stir_iv(sav) 7234 struct secasvar *sav; 7235 { 7236 7237 IPSEC_ASSERT(sav->iv != NULL, ("null IV")); 7238 key_randomfill(sav->iv, sav->ivlen); 7239 } 7240 7241 /* XXX too much? */ 7242 static struct mbuf * 7243 key_alloc_mbuf(l) 7244 int l; 7245 { 7246 struct mbuf *m = NULL, *n; 7247 int len, t; 7248 7249 len = l; 7250 while (len > 0) { 7251 MGET(n, M_DONTWAIT, MT_DATA); 7252 if (n && len > MLEN) 7253 MCLGET(n, M_DONTWAIT); 7254 if (!n) { 7255 m_freem(m); 7256 return NULL; 7257 } 7258 7259 n->m_next = NULL; 7260 n->m_len = 0; 7261 n->m_len = M_TRAILINGSPACE(n); 7262 /* use the bottom of mbuf, hoping we can prepend afterwards */ 7263 if (n->m_len > len) { 7264 t = (n->m_len - len) & ~(sizeof(long) - 1); 7265 n->m_data += t; 7266 n->m_len = len; 7267 } 7268 7269 len -= n->m_len; 7270 7271 if (m) 7272 m_cat(m, n); 7273 else 7274 m = n; 7275 } 7276 7277 return m; 7278 } 7279 7280 /* 7281 * Take one of the kernel's security keys and convert it into a PF_KEY 7282 * structure within an mbuf, suitable for sending up to a waiting 7283 * application in user land. 7284 * 7285 * IN: 7286 * src: A pointer to a kernel security key. 7287 * exttype: Which type of key this is. Refer to the PF_KEY data structures. 7288 * OUT: 7289 * a valid mbuf or NULL indicating an error 7290 * 7291 */ 7292 7293 static struct mbuf * 7294 key_setkey(struct seckey *src, u_int16_t exttype) 7295 { 7296 struct mbuf *m; 7297 struct sadb_key *p; 7298 int len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src)); 7299 7300 if (src == NULL) 7301 return NULL; 7302 7303 m = key_alloc_mbuf(len); 7304 if (m == NULL) 7305 return NULL; 7306 p = mtod(m, struct sadb_key *); 7307 bzero(p, len); 7308 p->sadb_key_len = PFKEY_UNIT64(len); 7309 p->sadb_key_exttype = exttype; 7310 p->sadb_key_bits = src->bits; 7311 bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src)); 7312 7313 return m; 7314 } 7315 7316 /* 7317 * Take one of the kernel's lifetime data structures and convert it 7318 * into a PF_KEY structure within an mbuf, suitable for sending up to 7319 * a waiting application in user land. 7320 * 7321 * IN: 7322 * src: A pointer to a kernel lifetime structure. 7323 * exttype: Which type of lifetime this is. Refer to the PF_KEY 7324 * data structures for more information. 7325 * OUT: 7326 * a valid mbuf or NULL indicating an error 7327 * 7328 */ 7329 7330 static struct mbuf * 7331 key_setlifetime(struct seclifetime *src, u_int16_t exttype) 7332 { 7333 struct mbuf *m = NULL; 7334 struct sadb_lifetime *p; 7335 int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime)); 7336 7337 if (src == NULL) 7338 return NULL; 7339 7340 m = key_alloc_mbuf(len); 7341 if (m == NULL) 7342 return m; 7343 p = mtod(m, struct sadb_lifetime *); 7344 7345 bzero(p, len); 7346 p->sadb_lifetime_len = PFKEY_UNIT64(len); 7347 p->sadb_lifetime_exttype = exttype; 7348 p->sadb_lifetime_allocations = src->allocations; 7349 p->sadb_lifetime_bytes = src->bytes; 7350 p->sadb_lifetime_addtime = src->addtime; 7351 p->sadb_lifetime_usetime = src->usetime; 7352 7353 return m; 7354 7355 } 7356