1 /* $FreeBSD$ */ 2 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ 3 4 /*- 5 * SPDX-License-Identifier: BSD-3-Clause 6 * 7 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the project nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 /* 36 * This code is referd to RFC 2367 37 */ 38 39 #include "opt_inet.h" 40 #include "opt_inet6.h" 41 #include "opt_ipsec.h" 42 43 #include <sys/types.h> 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/kernel.h> 47 #include <sys/fnv_hash.h> 48 #include <sys/lock.h> 49 #include <sys/mutex.h> 50 #include <sys/mbuf.h> 51 #include <sys/domain.h> 52 #include <sys/protosw.h> 53 #include <sys/malloc.h> 54 #include <sys/rmlock.h> 55 #include <sys/socket.h> 56 #include <sys/socketvar.h> 57 #include <sys/sysctl.h> 58 #include <sys/errno.h> 59 #include <sys/proc.h> 60 #include <sys/queue.h> 61 #include <sys/refcount.h> 62 #include <sys/syslog.h> 63 64 #include <vm/uma.h> 65 66 #include <net/if.h> 67 #include <net/if_var.h> 68 #include <net/vnet.h> 69 #include <net/raw_cb.h> 70 71 #include <netinet/in.h> 72 #include <netinet/in_systm.h> 73 #include <netinet/ip.h> 74 #include <netinet/in_var.h> 75 #include <netinet/udp.h> 76 77 #ifdef INET6 78 #include <netinet/ip6.h> 79 #include <netinet6/in6_var.h> 80 #include <netinet6/ip6_var.h> 81 #endif /* INET6 */ 82 83 #include <net/pfkeyv2.h> 84 #include <netipsec/keydb.h> 85 #include <netipsec/key.h> 86 #include <netipsec/keysock.h> 87 #include <netipsec/key_debug.h> 88 89 #include <netipsec/ipsec.h> 90 #ifdef INET6 91 #include <netipsec/ipsec6.h> 92 #endif 93 94 #include <netipsec/xform.h> 95 #include <machine/in_cksum.h> 96 #include <machine/stdarg.h> 97 98 /* randomness */ 99 #include <sys/random.h> 100 101 #define FULLMASK 0xff 102 #define _BITS(bytes) ((bytes) << 3) 103 104 #define UINT32_80PCT 0xcccccccc 105 /* 106 * Note on SA reference counting: 107 * - SAs that are not in DEAD state will have (total external reference + 1) 108 * following value in reference count field. they cannot be freed and are 109 * referenced from SA header. 110 * - SAs that are in DEAD state will have (total external reference) 111 * in reference count field. they are ready to be freed. reference from 112 * SA header will be removed in key_delsav(), when the reference count 113 * field hits 0 (= no external reference other than from SA header. 114 */ 115 116 VNET_DEFINE(u_int32_t, key_debug_level) = 0; 117 VNET_DEFINE_STATIC(u_int, key_spi_trycnt) = 1000; 118 VNET_DEFINE_STATIC(u_int32_t, key_spi_minval) = 0x100; 119 VNET_DEFINE_STATIC(u_int32_t, key_spi_maxval) = 0x0fffffff; /* XXX */ 120 VNET_DEFINE_STATIC(u_int32_t, policy_id) = 0; 121 /*interval to initialize randseed,1(m)*/ 122 VNET_DEFINE_STATIC(u_int, key_int_random) = 60; 123 /* interval to expire acquiring, 30(s)*/ 124 VNET_DEFINE_STATIC(u_int, key_larval_lifetime) = 30; 125 /* counter for blocking SADB_ACQUIRE.*/ 126 VNET_DEFINE_STATIC(int, key_blockacq_count) = 10; 127 /* lifetime for blocking SADB_ACQUIRE.*/ 128 VNET_DEFINE_STATIC(int, key_blockacq_lifetime) = 20; 129 /* preferred old sa rather than new sa.*/ 130 VNET_DEFINE_STATIC(int, key_preferred_oldsa) = 1; 131 #define V_key_spi_trycnt VNET(key_spi_trycnt) 132 #define V_key_spi_minval VNET(key_spi_minval) 133 #define V_key_spi_maxval VNET(key_spi_maxval) 134 #define V_policy_id VNET(policy_id) 135 #define V_key_int_random VNET(key_int_random) 136 #define V_key_larval_lifetime VNET(key_larval_lifetime) 137 #define V_key_blockacq_count VNET(key_blockacq_count) 138 #define V_key_blockacq_lifetime VNET(key_blockacq_lifetime) 139 #define V_key_preferred_oldsa VNET(key_preferred_oldsa) 140 141 VNET_DEFINE_STATIC(u_int32_t, acq_seq) = 0; 142 #define V_acq_seq VNET(acq_seq) 143 144 VNET_DEFINE_STATIC(uint32_t, sp_genid) = 0; 145 #define V_sp_genid VNET(sp_genid) 146 147 /* SPD */ 148 TAILQ_HEAD(secpolicy_queue, secpolicy); 149 LIST_HEAD(secpolicy_list, secpolicy); 150 VNET_DEFINE_STATIC(struct secpolicy_queue, sptree[IPSEC_DIR_MAX]); 151 VNET_DEFINE_STATIC(struct secpolicy_queue, sptree_ifnet[IPSEC_DIR_MAX]); 152 static struct rmlock sptree_lock; 153 #define V_sptree VNET(sptree) 154 #define V_sptree_ifnet VNET(sptree_ifnet) 155 #define SPTREE_LOCK_INIT() rm_init(&sptree_lock, "sptree") 156 #define SPTREE_LOCK_DESTROY() rm_destroy(&sptree_lock) 157 #define SPTREE_RLOCK_TRACKER struct rm_priotracker sptree_tracker 158 #define SPTREE_RLOCK() rm_rlock(&sptree_lock, &sptree_tracker) 159 #define SPTREE_RUNLOCK() rm_runlock(&sptree_lock, &sptree_tracker) 160 #define SPTREE_RLOCK_ASSERT() rm_assert(&sptree_lock, RA_RLOCKED) 161 #define SPTREE_WLOCK() rm_wlock(&sptree_lock) 162 #define SPTREE_WUNLOCK() rm_wunlock(&sptree_lock) 163 #define SPTREE_WLOCK_ASSERT() rm_assert(&sptree_lock, RA_WLOCKED) 164 #define SPTREE_UNLOCK_ASSERT() rm_assert(&sptree_lock, RA_UNLOCKED) 165 166 /* Hash table for lookup SP using unique id */ 167 VNET_DEFINE_STATIC(struct secpolicy_list *, sphashtbl); 168 VNET_DEFINE_STATIC(u_long, sphash_mask); 169 #define V_sphashtbl VNET(sphashtbl) 170 #define V_sphash_mask VNET(sphash_mask) 171 172 #define SPHASH_NHASH_LOG2 7 173 #define SPHASH_NHASH (1 << SPHASH_NHASH_LOG2) 174 #define SPHASH_HASHVAL(id) (key_u32hash(id) & V_sphash_mask) 175 #define SPHASH_HASH(id) &V_sphashtbl[SPHASH_HASHVAL(id)] 176 177 /* SPD cache */ 178 struct spdcache_entry { 179 struct secpolicyindex spidx; /* secpolicyindex */ 180 struct secpolicy *sp; /* cached policy to be used */ 181 182 LIST_ENTRY(spdcache_entry) chain; 183 }; 184 LIST_HEAD(spdcache_entry_list, spdcache_entry); 185 186 #define SPDCACHE_MAX_ENTRIES_PER_HASH 8 187 188 VNET_DEFINE_STATIC(u_int, key_spdcache_maxentries) = 0; 189 #define V_key_spdcache_maxentries VNET(key_spdcache_maxentries) 190 VNET_DEFINE_STATIC(u_int, key_spdcache_threshold) = 32; 191 #define V_key_spdcache_threshold VNET(key_spdcache_threshold) 192 VNET_DEFINE_STATIC(unsigned long, spd_size) = 0; 193 #define V_spd_size VNET(spd_size) 194 195 #define SPDCACHE_ENABLED() (V_key_spdcache_maxentries != 0) 196 #define SPDCACHE_ACTIVE() \ 197 (SPDCACHE_ENABLED() && V_spd_size >= V_key_spdcache_threshold) 198 199 VNET_DEFINE_STATIC(struct spdcache_entry_list *, spdcachehashtbl); 200 VNET_DEFINE_STATIC(u_long, spdcachehash_mask); 201 #define V_spdcachehashtbl VNET(spdcachehashtbl) 202 #define V_spdcachehash_mask VNET(spdcachehash_mask) 203 204 #define SPDCACHE_HASHVAL(idx) \ 205 (key_addrprotohash(&(idx)->src, &(idx)->dst, &(idx)->ul_proto) & \ 206 V_spdcachehash_mask) 207 208 /* Each cache line is protected by a mutex */ 209 VNET_DEFINE_STATIC(struct mtx *, spdcache_lock); 210 #define V_spdcache_lock VNET(spdcache_lock) 211 212 #define SPDCACHE_LOCK_INIT(a) \ 213 mtx_init(&V_spdcache_lock[a], "spdcache", \ 214 "fast ipsec SPD cache", MTX_DEF|MTX_DUPOK) 215 #define SPDCACHE_LOCK_DESTROY(a) mtx_destroy(&V_spdcache_lock[a]) 216 #define SPDCACHE_LOCK(a) mtx_lock(&V_spdcache_lock[a]); 217 #define SPDCACHE_UNLOCK(a) mtx_unlock(&V_spdcache_lock[a]); 218 219 /* SAD */ 220 TAILQ_HEAD(secashead_queue, secashead); 221 LIST_HEAD(secashead_list, secashead); 222 VNET_DEFINE_STATIC(struct secashead_queue, sahtree); 223 static struct rmlock sahtree_lock; 224 #define V_sahtree VNET(sahtree) 225 #define SAHTREE_LOCK_INIT() rm_init(&sahtree_lock, "sahtree") 226 #define SAHTREE_LOCK_DESTROY() rm_destroy(&sahtree_lock) 227 #define SAHTREE_RLOCK_TRACKER struct rm_priotracker sahtree_tracker 228 #define SAHTREE_RLOCK() rm_rlock(&sahtree_lock, &sahtree_tracker) 229 #define SAHTREE_RUNLOCK() rm_runlock(&sahtree_lock, &sahtree_tracker) 230 #define SAHTREE_RLOCK_ASSERT() rm_assert(&sahtree_lock, RA_RLOCKED) 231 #define SAHTREE_WLOCK() rm_wlock(&sahtree_lock) 232 #define SAHTREE_WUNLOCK() rm_wunlock(&sahtree_lock) 233 #define SAHTREE_WLOCK_ASSERT() rm_assert(&sahtree_lock, RA_WLOCKED) 234 #define SAHTREE_UNLOCK_ASSERT() rm_assert(&sahtree_lock, RA_UNLOCKED) 235 236 /* Hash table for lookup in SAD using SA addresses */ 237 VNET_DEFINE_STATIC(struct secashead_list *, sahaddrhashtbl); 238 VNET_DEFINE_STATIC(u_long, sahaddrhash_mask); 239 #define V_sahaddrhashtbl VNET(sahaddrhashtbl) 240 #define V_sahaddrhash_mask VNET(sahaddrhash_mask) 241 242 #define SAHHASH_NHASH_LOG2 7 243 #define SAHHASH_NHASH (1 << SAHHASH_NHASH_LOG2) 244 #define SAHADDRHASH_HASHVAL(idx) \ 245 (key_addrprotohash(&(idx)->src, &(idx)->dst, &(idx)->proto) & \ 246 V_sahaddrhash_mask) 247 #define SAHADDRHASH_HASH(saidx) \ 248 &V_sahaddrhashtbl[SAHADDRHASH_HASHVAL(saidx)] 249 250 /* Hash table for lookup in SAD using SPI */ 251 LIST_HEAD(secasvar_list, secasvar); 252 VNET_DEFINE_STATIC(struct secasvar_list *, savhashtbl); 253 VNET_DEFINE_STATIC(u_long, savhash_mask); 254 #define V_savhashtbl VNET(savhashtbl) 255 #define V_savhash_mask VNET(savhash_mask) 256 #define SAVHASH_NHASH_LOG2 7 257 #define SAVHASH_NHASH (1 << SAVHASH_NHASH_LOG2) 258 #define SAVHASH_HASHVAL(spi) (key_u32hash(spi) & V_savhash_mask) 259 #define SAVHASH_HASH(spi) &V_savhashtbl[SAVHASH_HASHVAL(spi)] 260 261 static uint32_t 262 key_addrprotohash(const union sockaddr_union *src, 263 const union sockaddr_union *dst, const uint8_t *proto) 264 { 265 uint32_t hval; 266 267 hval = fnv_32_buf(proto, sizeof(*proto), 268 FNV1_32_INIT); 269 switch (dst->sa.sa_family) { 270 #ifdef INET 271 case AF_INET: 272 hval = fnv_32_buf(&src->sin.sin_addr, 273 sizeof(in_addr_t), hval); 274 hval = fnv_32_buf(&dst->sin.sin_addr, 275 sizeof(in_addr_t), hval); 276 break; 277 #endif 278 #ifdef INET6 279 case AF_INET6: 280 hval = fnv_32_buf(&src->sin6.sin6_addr, 281 sizeof(struct in6_addr), hval); 282 hval = fnv_32_buf(&dst->sin6.sin6_addr, 283 sizeof(struct in6_addr), hval); 284 break; 285 #endif 286 default: 287 hval = 0; 288 ipseclog((LOG_DEBUG, "%s: unknown address family %d\n", 289 __func__, dst->sa.sa_family)); 290 } 291 return (hval); 292 } 293 294 static uint32_t 295 key_u32hash(uint32_t val) 296 { 297 298 return (fnv_32_buf(&val, sizeof(val), FNV1_32_INIT)); 299 } 300 301 /* registed list */ 302 VNET_DEFINE_STATIC(LIST_HEAD(_regtree, secreg), regtree[SADB_SATYPE_MAX + 1]); 303 #define V_regtree VNET(regtree) 304 static struct mtx regtree_lock; 305 #define REGTREE_LOCK_INIT() \ 306 mtx_init(®tree_lock, "regtree", "fast ipsec regtree", MTX_DEF) 307 #define REGTREE_LOCK_DESTROY() mtx_destroy(®tree_lock) 308 #define REGTREE_LOCK() mtx_lock(®tree_lock) 309 #define REGTREE_UNLOCK() mtx_unlock(®tree_lock) 310 #define REGTREE_LOCK_ASSERT() mtx_assert(®tree_lock, MA_OWNED) 311 312 /* Acquiring list */ 313 LIST_HEAD(secacq_list, secacq); 314 VNET_DEFINE_STATIC(struct secacq_list, acqtree); 315 #define V_acqtree VNET(acqtree) 316 static struct mtx acq_lock; 317 #define ACQ_LOCK_INIT() \ 318 mtx_init(&acq_lock, "acqtree", "ipsec SA acquiring list", MTX_DEF) 319 #define ACQ_LOCK_DESTROY() mtx_destroy(&acq_lock) 320 #define ACQ_LOCK() mtx_lock(&acq_lock) 321 #define ACQ_UNLOCK() mtx_unlock(&acq_lock) 322 #define ACQ_LOCK_ASSERT() mtx_assert(&acq_lock, MA_OWNED) 323 324 /* Hash table for lookup in ACQ list using SA addresses */ 325 VNET_DEFINE_STATIC(struct secacq_list *, acqaddrhashtbl); 326 VNET_DEFINE_STATIC(u_long, acqaddrhash_mask); 327 #define V_acqaddrhashtbl VNET(acqaddrhashtbl) 328 #define V_acqaddrhash_mask VNET(acqaddrhash_mask) 329 330 /* Hash table for lookup in ACQ list using SEQ number */ 331 VNET_DEFINE_STATIC(struct secacq_list *, acqseqhashtbl); 332 VNET_DEFINE_STATIC(u_long, acqseqhash_mask); 333 #define V_acqseqhashtbl VNET(acqseqhashtbl) 334 #define V_acqseqhash_mask VNET(acqseqhash_mask) 335 336 #define ACQHASH_NHASH_LOG2 7 337 #define ACQHASH_NHASH (1 << ACQHASH_NHASH_LOG2) 338 #define ACQADDRHASH_HASHVAL(idx) \ 339 (key_addrprotohash(&(idx)->src, &(idx)->dst, &(idx)->proto) & \ 340 V_acqaddrhash_mask) 341 #define ACQSEQHASH_HASHVAL(seq) \ 342 (key_u32hash(seq) & V_acqseqhash_mask) 343 #define ACQADDRHASH_HASH(saidx) \ 344 &V_acqaddrhashtbl[ACQADDRHASH_HASHVAL(saidx)] 345 #define ACQSEQHASH_HASH(seq) \ 346 &V_acqseqhashtbl[ACQSEQHASH_HASHVAL(seq)] 347 /* SP acquiring list */ 348 VNET_DEFINE_STATIC(LIST_HEAD(_spacqtree, secspacq), spacqtree); 349 #define V_spacqtree VNET(spacqtree) 350 static struct mtx spacq_lock; 351 #define SPACQ_LOCK_INIT() \ 352 mtx_init(&spacq_lock, "spacqtree", \ 353 "fast ipsec security policy acquire list", MTX_DEF) 354 #define SPACQ_LOCK_DESTROY() mtx_destroy(&spacq_lock) 355 #define SPACQ_LOCK() mtx_lock(&spacq_lock) 356 #define SPACQ_UNLOCK() mtx_unlock(&spacq_lock) 357 #define SPACQ_LOCK_ASSERT() mtx_assert(&spacq_lock, MA_OWNED) 358 359 static const int minsize[] = { 360 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 361 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 362 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 363 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 364 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 365 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ 366 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ 367 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ 368 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ 369 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ 370 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ 371 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ 372 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ 373 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ 374 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ 375 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ 376 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 377 0, /* SADB_X_EXT_KMPRIVATE */ 378 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ 379 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 380 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ 381 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ 382 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ 383 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */ 384 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */ 385 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ 386 sizeof(struct sadb_x_sa_replay), /* SADB_X_EXT_SA_REPLAY */ 387 sizeof(struct sadb_address), /* SADB_X_EXT_NEW_ADDRESS_SRC */ 388 sizeof(struct sadb_address), /* SADB_X_EXT_NEW_ADDRESS_DST */ 389 }; 390 _Static_assert(sizeof(minsize)/sizeof(int) == SADB_EXT_MAX + 1, "minsize size mismatch"); 391 392 static const int maxsize[] = { 393 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 394 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 395 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 396 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 397 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 398 0, /* SADB_EXT_ADDRESS_SRC */ 399 0, /* SADB_EXT_ADDRESS_DST */ 400 0, /* SADB_EXT_ADDRESS_PROXY */ 401 0, /* SADB_EXT_KEY_AUTH */ 402 0, /* SADB_EXT_KEY_ENCRYPT */ 403 0, /* SADB_EXT_IDENTITY_SRC */ 404 0, /* SADB_EXT_IDENTITY_DST */ 405 0, /* SADB_EXT_SENSITIVITY */ 406 0, /* SADB_EXT_PROPOSAL */ 407 0, /* SADB_EXT_SUPPORTED_AUTH */ 408 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ 409 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 410 0, /* SADB_X_EXT_KMPRIVATE */ 411 0, /* SADB_X_EXT_POLICY */ 412 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 413 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ 414 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ 415 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ 416 0, /* SADB_X_EXT_NAT_T_OAI */ 417 0, /* SADB_X_EXT_NAT_T_OAR */ 418 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ 419 sizeof(struct sadb_x_sa_replay), /* SADB_X_EXT_SA_REPLAY */ 420 0, /* SADB_X_EXT_NEW_ADDRESS_SRC */ 421 0, /* SADB_X_EXT_NEW_ADDRESS_DST */ 422 }; 423 _Static_assert(sizeof(maxsize)/sizeof(int) == SADB_EXT_MAX + 1, "minsize size mismatch"); 424 425 /* 426 * Internal values for SA flags: 427 * SADB_X_EXT_F_CLONED means that SA was cloned by key_updateaddresses, 428 * thus we will not free the most of SA content in key_delsav(). 429 */ 430 #define SADB_X_EXT_F_CLONED 0x80000000 431 432 #define SADB_CHECKLEN(_mhp, _ext) \ 433 ((_mhp)->extlen[(_ext)] < minsize[(_ext)] || (maxsize[(_ext)] != 0 && \ 434 ((_mhp)->extlen[(_ext)] > maxsize[(_ext)]))) 435 #define SADB_CHECKHDR(_mhp, _ext) ((_mhp)->ext[(_ext)] == NULL) 436 437 VNET_DEFINE_STATIC(int, ipsec_esp_keymin) = 256; 438 VNET_DEFINE_STATIC(int, ipsec_esp_auth) = 0; 439 VNET_DEFINE_STATIC(int, ipsec_ah_keymin) = 128; 440 441 #define V_ipsec_esp_keymin VNET(ipsec_esp_keymin) 442 #define V_ipsec_esp_auth VNET(ipsec_esp_auth) 443 #define V_ipsec_ah_keymin VNET(ipsec_ah_keymin) 444 445 #ifdef IPSEC_DEBUG 446 VNET_DEFINE(int, ipsec_debug) = 1; 447 #else 448 VNET_DEFINE(int, ipsec_debug) = 0; 449 #endif 450 451 #ifdef INET 452 SYSCTL_DECL(_net_inet_ipsec); 453 SYSCTL_INT(_net_inet_ipsec, IPSECCTL_DEBUG, debug, 454 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_debug), 0, 455 "Enable IPsec debugging output when set."); 456 #endif 457 #ifdef INET6 458 SYSCTL_DECL(_net_inet6_ipsec6); 459 SYSCTL_INT(_net_inet6_ipsec6, IPSECCTL_DEBUG, debug, 460 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_debug), 0, 461 "Enable IPsec debugging output when set."); 462 #endif 463 464 SYSCTL_DECL(_net_key); 465 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, 466 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_debug_level), 0, ""); 467 468 /* max count of trial for the decision of spi value */ 469 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, 470 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_trycnt), 0, ""); 471 472 /* minimum spi value to allocate automatically. */ 473 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, 474 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_minval), 0, ""); 475 476 /* maximun spi value to allocate automatically. */ 477 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, 478 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_maxval), 0, ""); 479 480 /* interval to initialize randseed */ 481 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, 482 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_int_random), 0, ""); 483 484 /* lifetime for larval SA */ 485 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, 486 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_larval_lifetime), 0, ""); 487 488 /* counter for blocking to send SADB_ACQUIRE to IKEd */ 489 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, 490 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_count), 0, ""); 491 492 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ 493 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, 494 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_lifetime), 0, ""); 495 496 /* ESP auth */ 497 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, 498 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_auth), 0, ""); 499 500 /* minimum ESP key length */ 501 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, 502 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_keymin), 0, ""); 503 504 /* minimum AH key length */ 505 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, 506 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_ah_keymin), 0, ""); 507 508 /* perfered old SA rather than new SA */ 509 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, preferred_oldsa, 510 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_preferred_oldsa), 0, ""); 511 512 static SYSCTL_NODE(_net_key, OID_AUTO, spdcache, 513 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 514 "SPD cache"); 515 516 SYSCTL_UINT(_net_key_spdcache, OID_AUTO, maxentries, 517 CTLFLAG_VNET | CTLFLAG_RDTUN, &VNET_NAME(key_spdcache_maxentries), 0, 518 "Maximum number of entries in the SPD cache" 519 " (power of 2, 0 to disable)"); 520 521 SYSCTL_UINT(_net_key_spdcache, OID_AUTO, threshold, 522 CTLFLAG_VNET | CTLFLAG_RDTUN, &VNET_NAME(key_spdcache_threshold), 0, 523 "Number of SPs that make the SPD cache active"); 524 525 #define __LIST_CHAINED(elm) \ 526 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) 527 528 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association"); 529 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head"); 530 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy"); 531 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request"); 532 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous"); 533 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire"); 534 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire"); 535 MALLOC_DEFINE(M_IPSEC_SPDCACHE, "ipsec-spdcache", "ipsec SPD cache"); 536 537 static uma_zone_t __read_mostly ipsec_key_lft_zone; 538 539 /* 540 * set parameters into secpolicyindex buffer. 541 * Must allocate secpolicyindex buffer passed to this function. 542 */ 543 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \ 544 do { \ 545 bzero((idx), sizeof(struct secpolicyindex)); \ 546 (idx)->dir = (_dir); \ 547 (idx)->prefs = (ps); \ 548 (idx)->prefd = (pd); \ 549 (idx)->ul_proto = (ulp); \ 550 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 551 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 552 } while (0) 553 554 /* 555 * set parameters into secasindex buffer. 556 * Must allocate secasindex buffer before calling this function. 557 */ 558 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \ 559 do { \ 560 bzero((idx), sizeof(struct secasindex)); \ 561 (idx)->proto = (p); \ 562 (idx)->mode = (m); \ 563 (idx)->reqid = (r); \ 564 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 565 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 566 key_porttosaddr(&(idx)->src.sa, 0); \ 567 key_porttosaddr(&(idx)->dst.sa, 0); \ 568 } while (0) 569 570 /* key statistics */ 571 struct _keystat { 572 u_long getspi_count; /* the avarage of count to try to get new SPI */ 573 } keystat; 574 575 struct sadb_msghdr { 576 struct sadb_msg *msg; 577 struct sadb_ext *ext[SADB_EXT_MAX + 1]; 578 int extoff[SADB_EXT_MAX + 1]; 579 int extlen[SADB_EXT_MAX + 1]; 580 }; 581 582 static struct supported_ealgs { 583 int sadb_alg; 584 const struct enc_xform *xform; 585 } supported_ealgs[] = { 586 { SADB_X_EALG_AES, &enc_xform_rijndael128 }, 587 { SADB_EALG_NULL, &enc_xform_null }, 588 { SADB_X_EALG_AESCTR, &enc_xform_aes_icm }, 589 { SADB_X_EALG_AESGCM16, &enc_xform_aes_nist_gcm }, 590 { SADB_X_EALG_AESGMAC, &enc_xform_aes_nist_gmac }, 591 }; 592 593 static struct supported_aalgs { 594 int sadb_alg; 595 const struct auth_hash *xform; 596 } supported_aalgs[] = { 597 { SADB_X_AALG_NULL, &auth_hash_null }, 598 { SADB_AALG_SHA1HMAC, &auth_hash_hmac_sha1 }, 599 { SADB_X_AALG_SHA2_256, &auth_hash_hmac_sha2_256 }, 600 { SADB_X_AALG_SHA2_384, &auth_hash_hmac_sha2_384 }, 601 { SADB_X_AALG_SHA2_512, &auth_hash_hmac_sha2_512 }, 602 { SADB_X_AALG_AES128GMAC, &auth_hash_nist_gmac_aes_128 }, 603 { SADB_X_AALG_AES192GMAC, &auth_hash_nist_gmac_aes_192 }, 604 { SADB_X_AALG_AES256GMAC, &auth_hash_nist_gmac_aes_256 }, 605 }; 606 607 static struct supported_calgs { 608 int sadb_alg; 609 const struct comp_algo *xform; 610 } supported_calgs[] = { 611 { SADB_X_CALG_DEFLATE, &comp_algo_deflate }, 612 }; 613 614 #ifndef IPSEC_DEBUG2 615 static struct callout key_timer; 616 #endif 617 618 static void key_unlink(struct secpolicy *); 619 static void key_detach(struct secpolicy *); 620 static struct secpolicy *key_do_allocsp(struct secpolicyindex *spidx, u_int dir); 621 static struct secpolicy *key_getsp(struct secpolicyindex *); 622 static struct secpolicy *key_getspbyid(u_int32_t); 623 static struct mbuf *key_gather_mbuf(struct mbuf *, 624 const struct sadb_msghdr *, int, int, ...); 625 static int key_spdadd(struct socket *, struct mbuf *, 626 const struct sadb_msghdr *); 627 static uint32_t key_getnewspid(void); 628 static int key_spddelete(struct socket *, struct mbuf *, 629 const struct sadb_msghdr *); 630 static int key_spddelete2(struct socket *, struct mbuf *, 631 const struct sadb_msghdr *); 632 static int key_spdget(struct socket *, struct mbuf *, 633 const struct sadb_msghdr *); 634 static int key_spdflush(struct socket *, struct mbuf *, 635 const struct sadb_msghdr *); 636 static int key_spddump(struct socket *, struct mbuf *, 637 const struct sadb_msghdr *); 638 static struct mbuf *key_setdumpsp(struct secpolicy *, 639 u_int8_t, u_int32_t, u_int32_t); 640 static struct mbuf *key_sp2mbuf(struct secpolicy *); 641 static size_t key_getspreqmsglen(struct secpolicy *); 642 static int key_spdexpire(struct secpolicy *); 643 static struct secashead *key_newsah(struct secasindex *); 644 static void key_freesah(struct secashead **); 645 static void key_delsah(struct secashead *); 646 static struct secasvar *key_newsav(const struct sadb_msghdr *, 647 struct secasindex *, uint32_t, int *); 648 static void key_delsav(struct secasvar *); 649 static void key_unlinksav(struct secasvar *); 650 static struct secashead *key_getsah(struct secasindex *); 651 static int key_checkspidup(uint32_t); 652 static struct secasvar *key_getsavbyspi(uint32_t); 653 static int key_setnatt(struct secasvar *, const struct sadb_msghdr *); 654 static int key_setsaval(struct secasvar *, const struct sadb_msghdr *); 655 static int key_updatelifetimes(struct secasvar *, const struct sadb_msghdr *); 656 static int key_updateaddresses(struct socket *, struct mbuf *, 657 const struct sadb_msghdr *, struct secasvar *, struct secasindex *); 658 659 static struct mbuf *key_setdumpsa(struct secasvar *, u_int8_t, 660 u_int8_t, u_int32_t, u_int32_t); 661 static struct mbuf *key_setsadbmsg(u_int8_t, u_int16_t, u_int8_t, 662 u_int32_t, pid_t, u_int16_t); 663 static struct mbuf *key_setsadbsa(struct secasvar *); 664 static struct mbuf *key_setsadbaddr(u_int16_t, 665 const struct sockaddr *, u_int8_t, u_int16_t); 666 static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t); 667 static struct mbuf *key_setsadbxtype(u_int16_t); 668 static struct mbuf *key_setsadbxsa2(u_int8_t, u_int32_t, u_int32_t); 669 static struct mbuf *key_setsadbxsareplay(u_int32_t); 670 static struct mbuf *key_setsadbxpolicy(u_int16_t, u_int8_t, 671 u_int32_t, u_int32_t); 672 static struct seckey *key_dup_keymsg(const struct sadb_key *, size_t, 673 struct malloc_type *); 674 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src, 675 struct malloc_type *); 676 677 /* flags for key_cmpsaidx() */ 678 #define CMP_HEAD 1 /* protocol, addresses. */ 679 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ 680 #define CMP_REQID 3 /* additionally HEAD, reaid. */ 681 #define CMP_EXACTLY 4 /* all elements. */ 682 static int key_cmpsaidx(const struct secasindex *, 683 const struct secasindex *, int); 684 static int key_cmpspidx_exactly(struct secpolicyindex *, 685 struct secpolicyindex *); 686 static int key_cmpspidx_withmask(struct secpolicyindex *, 687 struct secpolicyindex *); 688 static int key_bbcmp(const void *, const void *, u_int); 689 static uint8_t key_satype2proto(uint8_t); 690 static uint8_t key_proto2satype(uint8_t); 691 692 static int key_getspi(struct socket *, struct mbuf *, 693 const struct sadb_msghdr *); 694 static uint32_t key_do_getnewspi(struct sadb_spirange *, struct secasindex *); 695 static int key_update(struct socket *, struct mbuf *, 696 const struct sadb_msghdr *); 697 static int key_add(struct socket *, struct mbuf *, 698 const struct sadb_msghdr *); 699 static int key_setident(struct secashead *, const struct sadb_msghdr *); 700 static struct mbuf *key_getmsgbuf_x1(struct mbuf *, 701 const struct sadb_msghdr *); 702 static int key_delete(struct socket *, struct mbuf *, 703 const struct sadb_msghdr *); 704 static int key_delete_all(struct socket *, struct mbuf *, 705 const struct sadb_msghdr *, struct secasindex *); 706 static int key_get(struct socket *, struct mbuf *, 707 const struct sadb_msghdr *); 708 709 static void key_getcomb_setlifetime(struct sadb_comb *); 710 static struct mbuf *key_getcomb_ealg(void); 711 static struct mbuf *key_getcomb_ah(void); 712 static struct mbuf *key_getcomb_ipcomp(void); 713 static struct mbuf *key_getprop(const struct secasindex *); 714 715 static int key_acquire(const struct secasindex *, struct secpolicy *); 716 static uint32_t key_newacq(const struct secasindex *, int *); 717 static uint32_t key_getacq(const struct secasindex *, int *); 718 static int key_acqdone(const struct secasindex *, uint32_t); 719 static int key_acqreset(uint32_t); 720 static struct secspacq *key_newspacq(struct secpolicyindex *); 721 static struct secspacq *key_getspacq(struct secpolicyindex *); 722 static int key_acquire2(struct socket *, struct mbuf *, 723 const struct sadb_msghdr *); 724 static int key_register(struct socket *, struct mbuf *, 725 const struct sadb_msghdr *); 726 static int key_expire(struct secasvar *, int); 727 static int key_flush(struct socket *, struct mbuf *, 728 const struct sadb_msghdr *); 729 static int key_dump(struct socket *, struct mbuf *, 730 const struct sadb_msghdr *); 731 static int key_promisc(struct socket *, struct mbuf *, 732 const struct sadb_msghdr *); 733 static int key_senderror(struct socket *, struct mbuf *, int); 734 static int key_validate_ext(const struct sadb_ext *, int); 735 static int key_align(struct mbuf *, struct sadb_msghdr *); 736 static struct mbuf *key_setlifetime(struct seclifetime *, uint16_t); 737 static struct mbuf *key_setkey(struct seckey *, uint16_t); 738 739 static void spdcache_init(void); 740 static void spdcache_clear(void); 741 static struct spdcache_entry *spdcache_entry_alloc( 742 const struct secpolicyindex *spidx, 743 struct secpolicy *policy); 744 static void spdcache_entry_free(struct spdcache_entry *entry); 745 #ifdef VIMAGE 746 static void spdcache_destroy(void); 747 #endif 748 749 #define DBG_IPSEC_INITREF(t, p) do { \ 750 refcount_init(&(p)->refcnt, 1); \ 751 KEYDBG(KEY_STAMP, \ 752 printf("%s: Initialize refcnt %s(%p) = %u\n", \ 753 __func__, #t, (p), (p)->refcnt)); \ 754 } while (0) 755 #define DBG_IPSEC_ADDREF(t, p) do { \ 756 refcount_acquire(&(p)->refcnt); \ 757 KEYDBG(KEY_STAMP, \ 758 printf("%s: Acquire refcnt %s(%p) -> %u\n", \ 759 __func__, #t, (p), (p)->refcnt)); \ 760 } while (0) 761 #define DBG_IPSEC_DELREF(t, p) do { \ 762 KEYDBG(KEY_STAMP, \ 763 printf("%s: Release refcnt %s(%p) -> %u\n", \ 764 __func__, #t, (p), (p)->refcnt - 1)); \ 765 refcount_release(&(p)->refcnt); \ 766 } while (0) 767 768 #define IPSEC_INITREF(t, p) refcount_init(&(p)->refcnt, 1) 769 #define IPSEC_ADDREF(t, p) refcount_acquire(&(p)->refcnt) 770 #define IPSEC_DELREF(t, p) refcount_release(&(p)->refcnt) 771 772 #define SP_INITREF(p) IPSEC_INITREF(SP, p) 773 #define SP_ADDREF(p) IPSEC_ADDREF(SP, p) 774 #define SP_DELREF(p) IPSEC_DELREF(SP, p) 775 776 #define SAH_INITREF(p) IPSEC_INITREF(SAH, p) 777 #define SAH_ADDREF(p) IPSEC_ADDREF(SAH, p) 778 #define SAH_DELREF(p) IPSEC_DELREF(SAH, p) 779 780 #define SAV_INITREF(p) IPSEC_INITREF(SAV, p) 781 #define SAV_ADDREF(p) IPSEC_ADDREF(SAV, p) 782 #define SAV_DELREF(p) IPSEC_DELREF(SAV, p) 783 784 /* 785 * Update the refcnt while holding the SPTREE lock. 786 */ 787 void 788 key_addref(struct secpolicy *sp) 789 { 790 791 SP_ADDREF(sp); 792 } 793 794 /* 795 * Return 0 when there are known to be no SP's for the specified 796 * direction. Otherwise return 1. This is used by IPsec code 797 * to optimize performance. 798 */ 799 int 800 key_havesp(u_int dir) 801 { 802 803 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? 804 TAILQ_FIRST(&V_sptree[dir]) != NULL : 1); 805 } 806 807 /* %%% IPsec policy management */ 808 /* 809 * Return current SPDB generation. 810 */ 811 uint32_t 812 key_getspgen(void) 813 { 814 815 return (V_sp_genid); 816 } 817 818 void 819 key_bumpspgen(void) 820 { 821 822 V_sp_genid++; 823 } 824 825 static int 826 key_checksockaddrs(struct sockaddr *src, struct sockaddr *dst) 827 { 828 829 /* family match */ 830 if (src->sa_family != dst->sa_family) 831 return (EINVAL); 832 /* sa_len match */ 833 if (src->sa_len != dst->sa_len) 834 return (EINVAL); 835 switch (src->sa_family) { 836 #ifdef INET 837 case AF_INET: 838 if (src->sa_len != sizeof(struct sockaddr_in)) 839 return (EINVAL); 840 break; 841 #endif 842 #ifdef INET6 843 case AF_INET6: 844 if (src->sa_len != sizeof(struct sockaddr_in6)) 845 return (EINVAL); 846 break; 847 #endif 848 default: 849 return (EAFNOSUPPORT); 850 } 851 return (0); 852 } 853 854 struct secpolicy * 855 key_do_allocsp(struct secpolicyindex *spidx, u_int dir) 856 { 857 SPTREE_RLOCK_TRACKER; 858 struct secpolicy *sp; 859 860 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 861 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 862 ("invalid direction %u", dir)); 863 864 SPTREE_RLOCK(); 865 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 866 if (key_cmpspidx_withmask(&sp->spidx, spidx)) { 867 SP_ADDREF(sp); 868 break; 869 } 870 } 871 SPTREE_RUNLOCK(); 872 return (sp); 873 } 874 875 /* 876 * allocating a SP for OUTBOUND or INBOUND packet. 877 * Must call key_freesp() later. 878 * OUT: NULL: not found 879 * others: found and return the pointer. 880 */ 881 struct secpolicy * 882 key_allocsp(struct secpolicyindex *spidx, u_int dir) 883 { 884 struct spdcache_entry *entry, *lastentry, *tmpentry; 885 struct secpolicy *sp; 886 uint32_t hashv; 887 int nb_entries; 888 889 if (!SPDCACHE_ACTIVE()) { 890 sp = key_do_allocsp(spidx, dir); 891 goto out; 892 } 893 894 hashv = SPDCACHE_HASHVAL(spidx); 895 SPDCACHE_LOCK(hashv); 896 nb_entries = 0; 897 LIST_FOREACH_SAFE(entry, &V_spdcachehashtbl[hashv], chain, tmpentry) { 898 /* Removed outdated entries */ 899 if (entry->sp != NULL && 900 entry->sp->state == IPSEC_SPSTATE_DEAD) { 901 LIST_REMOVE(entry, chain); 902 spdcache_entry_free(entry); 903 continue; 904 } 905 906 nb_entries++; 907 if (!key_cmpspidx_exactly(&entry->spidx, spidx)) { 908 lastentry = entry; 909 continue; 910 } 911 912 sp = entry->sp; 913 if (entry->sp != NULL) 914 SP_ADDREF(sp); 915 916 /* IPSECSTAT_INC(ips_spdcache_hits); */ 917 918 SPDCACHE_UNLOCK(hashv); 919 goto out; 920 } 921 922 /* IPSECSTAT_INC(ips_spdcache_misses); */ 923 924 sp = key_do_allocsp(spidx, dir); 925 entry = spdcache_entry_alloc(spidx, sp); 926 if (entry != NULL) { 927 if (nb_entries >= SPDCACHE_MAX_ENTRIES_PER_HASH) { 928 LIST_REMOVE(lastentry, chain); 929 spdcache_entry_free(lastentry); 930 } 931 932 LIST_INSERT_HEAD(&V_spdcachehashtbl[hashv], entry, chain); 933 } 934 935 SPDCACHE_UNLOCK(hashv); 936 937 out: 938 if (sp != NULL) { /* found a SPD entry */ 939 sp->lastused = time_second; 940 KEYDBG(IPSEC_STAMP, 941 printf("%s: return SP(%p)\n", __func__, sp)); 942 KEYDBG(IPSEC_DATA, kdebug_secpolicy(sp)); 943 } else { 944 KEYDBG(IPSEC_DATA, 945 printf("%s: lookup failed for ", __func__); 946 kdebug_secpolicyindex(spidx, NULL)); 947 } 948 return (sp); 949 } 950 951 /* 952 * Allocating an SA entry for an *INBOUND* or *OUTBOUND* TCP packet, signed 953 * or should be signed by MD5 signature. 954 * We don't use key_allocsa() for such lookups, because we don't know SPI. 955 * Unlike ESP and AH protocols, SPI isn't transmitted in the TCP header with 956 * signed packet. We use SADB only as storage for password. 957 * OUT: positive: corresponding SA for given saidx found. 958 * NULL: SA not found 959 */ 960 struct secasvar * 961 key_allocsa_tcpmd5(struct secasindex *saidx) 962 { 963 SAHTREE_RLOCK_TRACKER; 964 struct secashead *sah; 965 struct secasvar *sav; 966 967 IPSEC_ASSERT(saidx->proto == IPPROTO_TCP, 968 ("unexpected security protocol %u", saidx->proto)); 969 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TCPMD5, 970 ("unexpected mode %u", saidx->mode)); 971 972 SAHTREE_RLOCK(); 973 LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) { 974 KEYDBG(IPSEC_DUMP, 975 printf("%s: checking SAH\n", __func__); 976 kdebug_secash(sah, " ")); 977 if (sah->saidx.proto != IPPROTO_TCP) 978 continue; 979 if (!key_sockaddrcmp(&saidx->dst.sa, &sah->saidx.dst.sa, 0) && 980 !key_sockaddrcmp(&saidx->src.sa, &sah->saidx.src.sa, 0)) 981 break; 982 } 983 if (sah != NULL) { 984 if (V_key_preferred_oldsa) 985 sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue); 986 else 987 sav = TAILQ_FIRST(&sah->savtree_alive); 988 if (sav != NULL) 989 SAV_ADDREF(sav); 990 } else 991 sav = NULL; 992 SAHTREE_RUNLOCK(); 993 994 if (sav != NULL) { 995 KEYDBG(IPSEC_STAMP, 996 printf("%s: return SA(%p)\n", __func__, sav)); 997 KEYDBG(IPSEC_DATA, kdebug_secasv(sav)); 998 } else { 999 KEYDBG(IPSEC_STAMP, 1000 printf("%s: SA not found\n", __func__)); 1001 KEYDBG(IPSEC_DATA, kdebug_secasindex(saidx, NULL)); 1002 } 1003 return (sav); 1004 } 1005 1006 /* 1007 * Allocating an SA entry for an *OUTBOUND* packet. 1008 * OUT: positive: corresponding SA for given saidx found. 1009 * NULL: SA not found, but will be acquired, check *error 1010 * for acquiring status. 1011 */ 1012 struct secasvar * 1013 key_allocsa_policy(struct secpolicy *sp, const struct secasindex *saidx, 1014 int *error) 1015 { 1016 SAHTREE_RLOCK_TRACKER; 1017 struct secashead *sah; 1018 struct secasvar *sav; 1019 1020 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 1021 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT || 1022 saidx->mode == IPSEC_MODE_TUNNEL, 1023 ("unexpected policy %u", saidx->mode)); 1024 1025 /* 1026 * We check new SA in the IPsec request because a different 1027 * SA may be involved each time this request is checked, either 1028 * because new SAs are being configured, or this request is 1029 * associated with an unconnected datagram socket, or this request 1030 * is associated with a system default policy. 1031 */ 1032 SAHTREE_RLOCK(); 1033 LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) { 1034 KEYDBG(IPSEC_DUMP, 1035 printf("%s: checking SAH\n", __func__); 1036 kdebug_secash(sah, " ")); 1037 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) 1038 break; 1039 } 1040 if (sah != NULL) { 1041 /* 1042 * Allocate the oldest SA available according to 1043 * draft-jenkins-ipsec-rekeying-03. 1044 */ 1045 if (V_key_preferred_oldsa) 1046 sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue); 1047 else 1048 sav = TAILQ_FIRST(&sah->savtree_alive); 1049 if (sav != NULL) 1050 SAV_ADDREF(sav); 1051 } else 1052 sav = NULL; 1053 SAHTREE_RUNLOCK(); 1054 1055 if (sav != NULL) { 1056 *error = 0; 1057 KEYDBG(IPSEC_STAMP, 1058 printf("%s: chosen SA(%p) for SP(%p)\n", __func__, 1059 sav, sp)); 1060 KEYDBG(IPSEC_DATA, kdebug_secasv(sav)); 1061 return (sav); /* return referenced SA */ 1062 } 1063 1064 /* there is no SA */ 1065 *error = key_acquire(saidx, sp); 1066 if ((*error) != 0) 1067 ipseclog((LOG_DEBUG, 1068 "%s: error %d returned from key_acquire()\n", 1069 __func__, *error)); 1070 KEYDBG(IPSEC_STAMP, 1071 printf("%s: acquire SA for SP(%p), error %d\n", 1072 __func__, sp, *error)); 1073 KEYDBG(IPSEC_DATA, kdebug_secasindex(saidx, NULL)); 1074 return (NULL); 1075 } 1076 1077 /* 1078 * allocating a usable SA entry for a *INBOUND* packet. 1079 * Must call key_freesav() later. 1080 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). 1081 * NULL: not found, or error occurred. 1082 * 1083 * According to RFC 2401 SA is uniquely identified by a triple SPI, 1084 * destination address, and security protocol. But according to RFC 4301, 1085 * SPI by itself suffices to specify an SA. 1086 * 1087 * Note that, however, we do need to keep source address in IPsec SA. 1088 * IKE specification and PF_KEY specification do assume that we 1089 * keep source address in IPsec SA. We see a tricky situation here. 1090 */ 1091 struct secasvar * 1092 key_allocsa(union sockaddr_union *dst, uint8_t proto, uint32_t spi) 1093 { 1094 SAHTREE_RLOCK_TRACKER; 1095 struct secasvar *sav; 1096 1097 IPSEC_ASSERT(proto == IPPROTO_ESP || proto == IPPROTO_AH || 1098 proto == IPPROTO_IPCOMP, ("unexpected security protocol %u", 1099 proto)); 1100 1101 SAHTREE_RLOCK(); 1102 LIST_FOREACH(sav, SAVHASH_HASH(spi), spihash) { 1103 if (sav->spi == spi) 1104 break; 1105 } 1106 /* 1107 * We use single SPI namespace for all protocols, so it is 1108 * impossible to have SPI duplicates in the SAVHASH. 1109 */ 1110 if (sav != NULL) { 1111 if (sav->state != SADB_SASTATE_LARVAL && 1112 sav->sah->saidx.proto == proto && 1113 key_sockaddrcmp(&dst->sa, 1114 &sav->sah->saidx.dst.sa, 0) == 0) 1115 SAV_ADDREF(sav); 1116 else 1117 sav = NULL; 1118 } 1119 SAHTREE_RUNLOCK(); 1120 1121 if (sav == NULL) { 1122 KEYDBG(IPSEC_STAMP, 1123 char buf[IPSEC_ADDRSTRLEN]; 1124 printf("%s: SA not found for spi %u proto %u dst %s\n", 1125 __func__, ntohl(spi), proto, ipsec_address(dst, buf, 1126 sizeof(buf)))); 1127 } else { 1128 KEYDBG(IPSEC_STAMP, 1129 printf("%s: return SA(%p)\n", __func__, sav)); 1130 KEYDBG(IPSEC_DATA, kdebug_secasv(sav)); 1131 } 1132 return (sav); 1133 } 1134 1135 struct secasvar * 1136 key_allocsa_tunnel(union sockaddr_union *src, union sockaddr_union *dst, 1137 uint8_t proto) 1138 { 1139 SAHTREE_RLOCK_TRACKER; 1140 struct secasindex saidx; 1141 struct secashead *sah; 1142 struct secasvar *sav; 1143 1144 IPSEC_ASSERT(src != NULL, ("null src address")); 1145 IPSEC_ASSERT(dst != NULL, ("null dst address")); 1146 1147 KEY_SETSECASIDX(proto, IPSEC_MODE_TUNNEL, 0, &src->sa, 1148 &dst->sa, &saidx); 1149 1150 sav = NULL; 1151 SAHTREE_RLOCK(); 1152 LIST_FOREACH(sah, SAHADDRHASH_HASH(&saidx), addrhash) { 1153 if (IPSEC_MODE_TUNNEL != sah->saidx.mode) 1154 continue; 1155 if (proto != sah->saidx.proto) 1156 continue; 1157 if (key_sockaddrcmp(&src->sa, &sah->saidx.src.sa, 0) != 0) 1158 continue; 1159 if (key_sockaddrcmp(&dst->sa, &sah->saidx.dst.sa, 0) != 0) 1160 continue; 1161 /* XXXAE: is key_preferred_oldsa reasonably?*/ 1162 if (V_key_preferred_oldsa) 1163 sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue); 1164 else 1165 sav = TAILQ_FIRST(&sah->savtree_alive); 1166 if (sav != NULL) { 1167 SAV_ADDREF(sav); 1168 break; 1169 } 1170 } 1171 SAHTREE_RUNLOCK(); 1172 KEYDBG(IPSEC_STAMP, 1173 printf("%s: return SA(%p)\n", __func__, sav)); 1174 if (sav != NULL) 1175 KEYDBG(IPSEC_DATA, kdebug_secasv(sav)); 1176 return (sav); 1177 } 1178 1179 /* 1180 * Must be called after calling key_allocsp(). 1181 */ 1182 void 1183 key_freesp(struct secpolicy **spp) 1184 { 1185 struct secpolicy *sp = *spp; 1186 1187 IPSEC_ASSERT(sp != NULL, ("null sp")); 1188 if (SP_DELREF(sp) == 0) 1189 return; 1190 1191 KEYDBG(IPSEC_STAMP, 1192 printf("%s: last reference to SP(%p)\n", __func__, sp)); 1193 KEYDBG(IPSEC_DATA, kdebug_secpolicy(sp)); 1194 1195 *spp = NULL; 1196 while (sp->tcount > 0) 1197 ipsec_delisr(sp->req[--sp->tcount]); 1198 free(sp, M_IPSEC_SP); 1199 } 1200 1201 static void 1202 key_unlink(struct secpolicy *sp) 1203 { 1204 SPTREE_WLOCK(); 1205 key_detach(sp); 1206 SPTREE_WUNLOCK(); 1207 if (SPDCACHE_ENABLED()) 1208 spdcache_clear(); 1209 key_freesp(&sp); 1210 } 1211 1212 static void 1213 key_detach(struct secpolicy *sp) 1214 { 1215 IPSEC_ASSERT(sp->spidx.dir == IPSEC_DIR_INBOUND || 1216 sp->spidx.dir == IPSEC_DIR_OUTBOUND, 1217 ("invalid direction %u", sp->spidx.dir)); 1218 SPTREE_WLOCK_ASSERT(); 1219 1220 KEYDBG(KEY_STAMP, 1221 printf("%s: SP(%p)\n", __func__, sp)); 1222 if (sp->state != IPSEC_SPSTATE_ALIVE) { 1223 /* SP is already unlinked */ 1224 return; 1225 } 1226 sp->state = IPSEC_SPSTATE_DEAD; 1227 TAILQ_REMOVE(&V_sptree[sp->spidx.dir], sp, chain); 1228 V_spd_size--; 1229 LIST_REMOVE(sp, idhash); 1230 V_sp_genid++; 1231 } 1232 1233 /* 1234 * insert a secpolicy into the SP database. Lower priorities first 1235 */ 1236 static void 1237 key_insertsp(struct secpolicy *newsp) 1238 { 1239 struct secpolicy *sp; 1240 1241 SPTREE_WLOCK_ASSERT(); 1242 TAILQ_FOREACH(sp, &V_sptree[newsp->spidx.dir], chain) { 1243 if (newsp->priority < sp->priority) { 1244 TAILQ_INSERT_BEFORE(sp, newsp, chain); 1245 goto done; 1246 } 1247 } 1248 TAILQ_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, chain); 1249 done: 1250 LIST_INSERT_HEAD(SPHASH_HASH(newsp->id), newsp, idhash); 1251 newsp->state = IPSEC_SPSTATE_ALIVE; 1252 V_spd_size++; 1253 V_sp_genid++; 1254 } 1255 1256 /* 1257 * Insert a bunch of VTI secpolicies into the SPDB. 1258 * We keep VTI policies in the separate list due to following reasons: 1259 * 1) they should be immutable to user's or some deamon's attempts to 1260 * delete. The only way delete such policies - destroy or unconfigure 1261 * corresponding virtual inteface. 1262 * 2) such policies have traffic selector that matches all traffic per 1263 * address family. 1264 * Since all VTI policies have the same priority, we don't care about 1265 * policies order. 1266 */ 1267 int 1268 key_register_ifnet(struct secpolicy **spp, u_int count) 1269 { 1270 struct mbuf *m; 1271 u_int i; 1272 1273 SPTREE_WLOCK(); 1274 /* 1275 * First of try to acquire id for each SP. 1276 */ 1277 for (i = 0; i < count; i++) { 1278 IPSEC_ASSERT(spp[i]->spidx.dir == IPSEC_DIR_INBOUND || 1279 spp[i]->spidx.dir == IPSEC_DIR_OUTBOUND, 1280 ("invalid direction %u", spp[i]->spidx.dir)); 1281 1282 if ((spp[i]->id = key_getnewspid()) == 0) { 1283 SPTREE_WUNLOCK(); 1284 return (EAGAIN); 1285 } 1286 } 1287 for (i = 0; i < count; i++) { 1288 TAILQ_INSERT_TAIL(&V_sptree_ifnet[spp[i]->spidx.dir], 1289 spp[i], chain); 1290 /* 1291 * NOTE: despite the fact that we keep VTI SP in the 1292 * separate list, SPHASH contains policies from both 1293 * sources. Thus SADB_X_SPDGET will correctly return 1294 * SP by id, because it uses SPHASH for lookups. 1295 */ 1296 LIST_INSERT_HEAD(SPHASH_HASH(spp[i]->id), spp[i], idhash); 1297 spp[i]->state = IPSEC_SPSTATE_IFNET; 1298 } 1299 SPTREE_WUNLOCK(); 1300 /* 1301 * Notify user processes about new SP. 1302 */ 1303 for (i = 0; i < count; i++) { 1304 m = key_setdumpsp(spp[i], SADB_X_SPDADD, 0, 0); 1305 if (m != NULL) 1306 key_sendup_mbuf(NULL, m, KEY_SENDUP_ALL); 1307 } 1308 return (0); 1309 } 1310 1311 void 1312 key_unregister_ifnet(struct secpolicy **spp, u_int count) 1313 { 1314 struct mbuf *m; 1315 u_int i; 1316 1317 SPTREE_WLOCK(); 1318 for (i = 0; i < count; i++) { 1319 IPSEC_ASSERT(spp[i]->spidx.dir == IPSEC_DIR_INBOUND || 1320 spp[i]->spidx.dir == IPSEC_DIR_OUTBOUND, 1321 ("invalid direction %u", spp[i]->spidx.dir)); 1322 1323 if (spp[i]->state != IPSEC_SPSTATE_IFNET) 1324 continue; 1325 spp[i]->state = IPSEC_SPSTATE_DEAD; 1326 TAILQ_REMOVE(&V_sptree_ifnet[spp[i]->spidx.dir], 1327 spp[i], chain); 1328 V_spd_size--; 1329 LIST_REMOVE(spp[i], idhash); 1330 } 1331 SPTREE_WUNLOCK(); 1332 if (SPDCACHE_ENABLED()) 1333 spdcache_clear(); 1334 1335 for (i = 0; i < count; i++) { 1336 m = key_setdumpsp(spp[i], SADB_X_SPDDELETE, 0, 0); 1337 if (m != NULL) 1338 key_sendup_mbuf(NULL, m, KEY_SENDUP_ALL); 1339 } 1340 } 1341 1342 /* 1343 * Must be called after calling key_allocsa(). 1344 * This function is called by key_freesp() to free some SA allocated 1345 * for a policy. 1346 */ 1347 void 1348 key_freesav(struct secasvar **psav) 1349 { 1350 struct secasvar *sav = *psav; 1351 1352 IPSEC_ASSERT(sav != NULL, ("null sav")); 1353 if (SAV_DELREF(sav) == 0) 1354 return; 1355 1356 KEYDBG(IPSEC_STAMP, 1357 printf("%s: last reference to SA(%p)\n", __func__, sav)); 1358 1359 *psav = NULL; 1360 key_delsav(sav); 1361 } 1362 1363 /* 1364 * Unlink SA from SAH and SPI hash under SAHTREE_WLOCK. 1365 * Expect that SA has extra reference due to lookup. 1366 * Release this references, also release SAH reference after unlink. 1367 */ 1368 static void 1369 key_unlinksav(struct secasvar *sav) 1370 { 1371 struct secashead *sah; 1372 1373 KEYDBG(KEY_STAMP, 1374 printf("%s: SA(%p)\n", __func__, sav)); 1375 1376 SAHTREE_UNLOCK_ASSERT(); 1377 SAHTREE_WLOCK(); 1378 if (sav->state == SADB_SASTATE_DEAD) { 1379 /* SA is already unlinked */ 1380 SAHTREE_WUNLOCK(); 1381 return; 1382 } 1383 /* Unlink from SAH */ 1384 if (sav->state == SADB_SASTATE_LARVAL) 1385 TAILQ_REMOVE(&sav->sah->savtree_larval, sav, chain); 1386 else 1387 TAILQ_REMOVE(&sav->sah->savtree_alive, sav, chain); 1388 /* Unlink from SPI hash */ 1389 LIST_REMOVE(sav, spihash); 1390 sav->state = SADB_SASTATE_DEAD; 1391 sah = sav->sah; 1392 SAHTREE_WUNLOCK(); 1393 key_freesav(&sav); 1394 /* Since we are unlinked, release reference to SAH */ 1395 key_freesah(&sah); 1396 } 1397 1398 /* %%% SPD management */ 1399 /* 1400 * search SPD 1401 * OUT: NULL : not found 1402 * others : found, pointer to a SP. 1403 */ 1404 static struct secpolicy * 1405 key_getsp(struct secpolicyindex *spidx) 1406 { 1407 SPTREE_RLOCK_TRACKER; 1408 struct secpolicy *sp; 1409 1410 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 1411 1412 SPTREE_RLOCK(); 1413 TAILQ_FOREACH(sp, &V_sptree[spidx->dir], chain) { 1414 if (key_cmpspidx_exactly(spidx, &sp->spidx)) { 1415 SP_ADDREF(sp); 1416 break; 1417 } 1418 } 1419 SPTREE_RUNLOCK(); 1420 1421 return sp; 1422 } 1423 1424 /* 1425 * get SP by index. 1426 * OUT: NULL : not found 1427 * others : found, pointer to referenced SP. 1428 */ 1429 static struct secpolicy * 1430 key_getspbyid(uint32_t id) 1431 { 1432 SPTREE_RLOCK_TRACKER; 1433 struct secpolicy *sp; 1434 1435 SPTREE_RLOCK(); 1436 LIST_FOREACH(sp, SPHASH_HASH(id), idhash) { 1437 if (sp->id == id) { 1438 SP_ADDREF(sp); 1439 break; 1440 } 1441 } 1442 SPTREE_RUNLOCK(); 1443 return (sp); 1444 } 1445 1446 struct secpolicy * 1447 key_newsp(void) 1448 { 1449 struct secpolicy *sp; 1450 1451 sp = malloc(sizeof(*sp), M_IPSEC_SP, M_NOWAIT | M_ZERO); 1452 if (sp != NULL) 1453 SP_INITREF(sp); 1454 return (sp); 1455 } 1456 1457 struct ipsecrequest * 1458 ipsec_newisr(void) 1459 { 1460 1461 return (malloc(sizeof(struct ipsecrequest), M_IPSEC_SR, 1462 M_NOWAIT | M_ZERO)); 1463 } 1464 1465 void 1466 ipsec_delisr(struct ipsecrequest *p) 1467 { 1468 1469 free(p, M_IPSEC_SR); 1470 } 1471 1472 /* 1473 * create secpolicy structure from sadb_x_policy structure. 1474 * NOTE: `state', `secpolicyindex' and 'id' in secpolicy structure 1475 * are not set, so must be set properly later. 1476 */ 1477 struct secpolicy * 1478 key_msg2sp(struct sadb_x_policy *xpl0, size_t len, int *error) 1479 { 1480 struct secpolicy *newsp; 1481 1482 IPSEC_ASSERT(xpl0 != NULL, ("null xpl0")); 1483 IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len)); 1484 1485 if (len != PFKEY_EXTLEN(xpl0)) { 1486 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__)); 1487 *error = EINVAL; 1488 return NULL; 1489 } 1490 1491 if ((newsp = key_newsp()) == NULL) { 1492 *error = ENOBUFS; 1493 return NULL; 1494 } 1495 1496 newsp->spidx.dir = xpl0->sadb_x_policy_dir; 1497 newsp->policy = xpl0->sadb_x_policy_type; 1498 newsp->priority = xpl0->sadb_x_policy_priority; 1499 newsp->tcount = 0; 1500 1501 /* check policy */ 1502 switch (xpl0->sadb_x_policy_type) { 1503 case IPSEC_POLICY_DISCARD: 1504 case IPSEC_POLICY_NONE: 1505 case IPSEC_POLICY_ENTRUST: 1506 case IPSEC_POLICY_BYPASS: 1507 break; 1508 1509 case IPSEC_POLICY_IPSEC: 1510 { 1511 struct sadb_x_ipsecrequest *xisr; 1512 struct ipsecrequest *isr; 1513 int tlen; 1514 1515 /* validity check */ 1516 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { 1517 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", 1518 __func__)); 1519 key_freesp(&newsp); 1520 *error = EINVAL; 1521 return NULL; 1522 } 1523 1524 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); 1525 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1); 1526 1527 while (tlen > 0) { 1528 /* length check */ 1529 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr) || 1530 xisr->sadb_x_ipsecrequest_len > tlen) { 1531 ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest " 1532 "length.\n", __func__)); 1533 key_freesp(&newsp); 1534 *error = EINVAL; 1535 return NULL; 1536 } 1537 1538 if (newsp->tcount >= IPSEC_MAXREQ) { 1539 ipseclog((LOG_DEBUG, 1540 "%s: too many ipsecrequests.\n", 1541 __func__)); 1542 key_freesp(&newsp); 1543 *error = EINVAL; 1544 return (NULL); 1545 } 1546 1547 /* allocate request buffer */ 1548 /* NB: data structure is zero'd */ 1549 isr = ipsec_newisr(); 1550 if (isr == NULL) { 1551 ipseclog((LOG_DEBUG, 1552 "%s: No more memory.\n", __func__)); 1553 key_freesp(&newsp); 1554 *error = ENOBUFS; 1555 return NULL; 1556 } 1557 1558 newsp->req[newsp->tcount++] = isr; 1559 1560 /* set values */ 1561 switch (xisr->sadb_x_ipsecrequest_proto) { 1562 case IPPROTO_ESP: 1563 case IPPROTO_AH: 1564 case IPPROTO_IPCOMP: 1565 break; 1566 default: 1567 ipseclog((LOG_DEBUG, 1568 "%s: invalid proto type=%u\n", __func__, 1569 xisr->sadb_x_ipsecrequest_proto)); 1570 key_freesp(&newsp); 1571 *error = EPROTONOSUPPORT; 1572 return NULL; 1573 } 1574 isr->saidx.proto = 1575 (uint8_t)xisr->sadb_x_ipsecrequest_proto; 1576 1577 switch (xisr->sadb_x_ipsecrequest_mode) { 1578 case IPSEC_MODE_TRANSPORT: 1579 case IPSEC_MODE_TUNNEL: 1580 break; 1581 case IPSEC_MODE_ANY: 1582 default: 1583 ipseclog((LOG_DEBUG, 1584 "%s: invalid mode=%u\n", __func__, 1585 xisr->sadb_x_ipsecrequest_mode)); 1586 key_freesp(&newsp); 1587 *error = EINVAL; 1588 return NULL; 1589 } 1590 isr->saidx.mode = xisr->sadb_x_ipsecrequest_mode; 1591 1592 switch (xisr->sadb_x_ipsecrequest_level) { 1593 case IPSEC_LEVEL_DEFAULT: 1594 case IPSEC_LEVEL_USE: 1595 case IPSEC_LEVEL_REQUIRE: 1596 break; 1597 case IPSEC_LEVEL_UNIQUE: 1598 /* validity check */ 1599 /* 1600 * If range violation of reqid, kernel will 1601 * update it, don't refuse it. 1602 */ 1603 if (xisr->sadb_x_ipsecrequest_reqid 1604 > IPSEC_MANUAL_REQID_MAX) { 1605 ipseclog((LOG_DEBUG, 1606 "%s: reqid=%d range " 1607 "violation, updated by kernel.\n", 1608 __func__, 1609 xisr->sadb_x_ipsecrequest_reqid)); 1610 xisr->sadb_x_ipsecrequest_reqid = 0; 1611 } 1612 1613 /* allocate new reqid id if reqid is zero. */ 1614 if (xisr->sadb_x_ipsecrequest_reqid == 0) { 1615 u_int32_t reqid; 1616 if ((reqid = key_newreqid()) == 0) { 1617 key_freesp(&newsp); 1618 *error = ENOBUFS; 1619 return NULL; 1620 } 1621 isr->saidx.reqid = reqid; 1622 xisr->sadb_x_ipsecrequest_reqid = reqid; 1623 } else { 1624 /* set it for manual keying. */ 1625 isr->saidx.reqid = 1626 xisr->sadb_x_ipsecrequest_reqid; 1627 } 1628 break; 1629 1630 default: 1631 ipseclog((LOG_DEBUG, "%s: invalid level=%u\n", 1632 __func__, 1633 xisr->sadb_x_ipsecrequest_level)); 1634 key_freesp(&newsp); 1635 *error = EINVAL; 1636 return NULL; 1637 } 1638 isr->level = xisr->sadb_x_ipsecrequest_level; 1639 1640 /* set IP addresses if there */ 1641 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { 1642 struct sockaddr *paddr; 1643 1644 len = tlen - sizeof(*xisr); 1645 paddr = (struct sockaddr *)(xisr + 1); 1646 /* validity check */ 1647 if (len < sizeof(struct sockaddr) || 1648 len < 2 * paddr->sa_len || 1649 paddr->sa_len > sizeof(isr->saidx.src)) { 1650 ipseclog((LOG_DEBUG, "%s: invalid " 1651 "request address length.\n", 1652 __func__)); 1653 key_freesp(&newsp); 1654 *error = EINVAL; 1655 return NULL; 1656 } 1657 /* 1658 * Request length should be enough to keep 1659 * source and destination addresses. 1660 */ 1661 if (xisr->sadb_x_ipsecrequest_len < 1662 sizeof(*xisr) + 2 * paddr->sa_len) { 1663 ipseclog((LOG_DEBUG, "%s: invalid " 1664 "ipsecrequest length.\n", 1665 __func__)); 1666 key_freesp(&newsp); 1667 *error = EINVAL; 1668 return (NULL); 1669 } 1670 bcopy(paddr, &isr->saidx.src, paddr->sa_len); 1671 paddr = (struct sockaddr *)((caddr_t)paddr + 1672 paddr->sa_len); 1673 1674 /* validity check */ 1675 if (paddr->sa_len != 1676 isr->saidx.src.sa.sa_len) { 1677 ipseclog((LOG_DEBUG, "%s: invalid " 1678 "request address length.\n", 1679 __func__)); 1680 key_freesp(&newsp); 1681 *error = EINVAL; 1682 return NULL; 1683 } 1684 /* AF family should match */ 1685 if (paddr->sa_family != 1686 isr->saidx.src.sa.sa_family) { 1687 ipseclog((LOG_DEBUG, "%s: address " 1688 "family doesn't match.\n", 1689 __func__)); 1690 key_freesp(&newsp); 1691 *error = EINVAL; 1692 return (NULL); 1693 } 1694 bcopy(paddr, &isr->saidx.dst, paddr->sa_len); 1695 } else { 1696 /* 1697 * Addresses for TUNNEL mode requests are 1698 * mandatory. 1699 */ 1700 if (isr->saidx.mode == IPSEC_MODE_TUNNEL) { 1701 ipseclog((LOG_DEBUG, "%s: missing " 1702 "request addresses.\n", __func__)); 1703 key_freesp(&newsp); 1704 *error = EINVAL; 1705 return (NULL); 1706 } 1707 } 1708 tlen -= xisr->sadb_x_ipsecrequest_len; 1709 1710 /* validity check */ 1711 if (tlen < 0) { 1712 ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n", 1713 __func__)); 1714 key_freesp(&newsp); 1715 *error = EINVAL; 1716 return NULL; 1717 } 1718 1719 xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr 1720 + xisr->sadb_x_ipsecrequest_len); 1721 } 1722 /* XXXAE: LARVAL SP */ 1723 if (newsp->tcount < 1) { 1724 ipseclog((LOG_DEBUG, "%s: valid IPSEC transforms " 1725 "not found.\n", __func__)); 1726 key_freesp(&newsp); 1727 *error = EINVAL; 1728 return (NULL); 1729 } 1730 } 1731 break; 1732 default: 1733 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); 1734 key_freesp(&newsp); 1735 *error = EINVAL; 1736 return NULL; 1737 } 1738 1739 *error = 0; 1740 return (newsp); 1741 } 1742 1743 uint32_t 1744 key_newreqid(void) 1745 { 1746 static uint32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 1747 1748 if (auto_reqid == ~0) 1749 auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 1750 else 1751 auto_reqid++; 1752 1753 /* XXX should be unique check */ 1754 return (auto_reqid); 1755 } 1756 1757 /* 1758 * copy secpolicy struct to sadb_x_policy structure indicated. 1759 */ 1760 static struct mbuf * 1761 key_sp2mbuf(struct secpolicy *sp) 1762 { 1763 struct mbuf *m; 1764 size_t tlen; 1765 1766 tlen = key_getspreqmsglen(sp); 1767 m = m_get2(tlen, M_NOWAIT, MT_DATA, 0); 1768 if (m == NULL) 1769 return (NULL); 1770 m_align(m, tlen); 1771 m->m_len = tlen; 1772 if (key_sp2msg(sp, m->m_data, &tlen) != 0) { 1773 m_freem(m); 1774 return (NULL); 1775 } 1776 return (m); 1777 } 1778 1779 int 1780 key_sp2msg(struct secpolicy *sp, void *request, size_t *len) 1781 { 1782 struct sadb_x_ipsecrequest *xisr; 1783 struct sadb_x_policy *xpl; 1784 struct ipsecrequest *isr; 1785 size_t xlen, ilen; 1786 caddr_t p; 1787 int error, i; 1788 1789 IPSEC_ASSERT(sp != NULL, ("null policy")); 1790 1791 xlen = sizeof(*xpl); 1792 if (*len < xlen) 1793 return (EINVAL); 1794 1795 error = 0; 1796 bzero(request, *len); 1797 xpl = (struct sadb_x_policy *)request; 1798 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 1799 xpl->sadb_x_policy_type = sp->policy; 1800 xpl->sadb_x_policy_dir = sp->spidx.dir; 1801 xpl->sadb_x_policy_id = sp->id; 1802 xpl->sadb_x_policy_priority = sp->priority; 1803 switch (sp->state) { 1804 case IPSEC_SPSTATE_IFNET: 1805 xpl->sadb_x_policy_scope = IPSEC_POLICYSCOPE_IFNET; 1806 break; 1807 case IPSEC_SPSTATE_PCB: 1808 xpl->sadb_x_policy_scope = IPSEC_POLICYSCOPE_PCB; 1809 break; 1810 default: 1811 xpl->sadb_x_policy_scope = IPSEC_POLICYSCOPE_GLOBAL; 1812 } 1813 1814 /* if is the policy for ipsec ? */ 1815 if (sp->policy == IPSEC_POLICY_IPSEC) { 1816 p = (caddr_t)xpl + sizeof(*xpl); 1817 for (i = 0; i < sp->tcount; i++) { 1818 isr = sp->req[i]; 1819 ilen = PFKEY_ALIGN8(sizeof(*xisr) + 1820 isr->saidx.src.sa.sa_len + 1821 isr->saidx.dst.sa.sa_len); 1822 xlen += ilen; 1823 if (xlen > *len) { 1824 error = ENOBUFS; 1825 /* Calculate needed size */ 1826 continue; 1827 } 1828 xisr = (struct sadb_x_ipsecrequest *)p; 1829 xisr->sadb_x_ipsecrequest_len = ilen; 1830 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; 1831 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; 1832 xisr->sadb_x_ipsecrequest_level = isr->level; 1833 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; 1834 1835 p += sizeof(*xisr); 1836 bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len); 1837 p += isr->saidx.src.sa.sa_len; 1838 bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len); 1839 p += isr->saidx.dst.sa.sa_len; 1840 } 1841 } 1842 xpl->sadb_x_policy_len = PFKEY_UNIT64(xlen); 1843 if (error == 0) 1844 *len = xlen; 1845 else 1846 *len = sizeof(*xpl); 1847 return (error); 1848 } 1849 1850 /* m will not be freed nor modified */ 1851 static struct mbuf * 1852 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, 1853 int ndeep, int nitem, ...) 1854 { 1855 va_list ap; 1856 int idx; 1857 int i; 1858 struct mbuf *result = NULL, *n; 1859 int len; 1860 1861 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1862 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1863 1864 va_start(ap, nitem); 1865 for (i = 0; i < nitem; i++) { 1866 idx = va_arg(ap, int); 1867 if (idx < 0 || idx > SADB_EXT_MAX) 1868 goto fail; 1869 /* don't attempt to pull empty extension */ 1870 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) 1871 continue; 1872 if (idx != SADB_EXT_RESERVED && 1873 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) 1874 continue; 1875 1876 if (idx == SADB_EXT_RESERVED) { 1877 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 1878 1879 IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len)); 1880 1881 MGETHDR(n, M_NOWAIT, MT_DATA); 1882 if (!n) 1883 goto fail; 1884 n->m_len = len; 1885 n->m_next = NULL; 1886 m_copydata(m, 0, sizeof(struct sadb_msg), 1887 mtod(n, caddr_t)); 1888 } else if (i < ndeep) { 1889 len = mhp->extlen[idx]; 1890 n = m_get2(len, M_NOWAIT, MT_DATA, 0); 1891 if (n == NULL) 1892 goto fail; 1893 m_align(n, len); 1894 n->m_len = len; 1895 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], 1896 mtod(n, caddr_t)); 1897 } else { 1898 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], 1899 M_NOWAIT); 1900 } 1901 if (n == NULL) 1902 goto fail; 1903 1904 if (result) 1905 m_cat(result, n); 1906 else 1907 result = n; 1908 } 1909 va_end(ap); 1910 1911 if ((result->m_flags & M_PKTHDR) != 0) { 1912 result->m_pkthdr.len = 0; 1913 for (n = result; n; n = n->m_next) 1914 result->m_pkthdr.len += n->m_len; 1915 } 1916 1917 return result; 1918 1919 fail: 1920 m_freem(result); 1921 va_end(ap); 1922 return NULL; 1923 } 1924 1925 /* 1926 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing 1927 * add an entry to SP database, when received 1928 * <base, address(SD), (lifetime(H),) policy> 1929 * from the user(?). 1930 * Adding to SP database, 1931 * and send 1932 * <base, address(SD), (lifetime(H),) policy> 1933 * to the socket which was send. 1934 * 1935 * SPDADD set a unique policy entry. 1936 * SPDSETIDX like SPDADD without a part of policy requests. 1937 * SPDUPDATE replace a unique policy entry. 1938 * 1939 * XXXAE: serialize this in PF_KEY to avoid races. 1940 * m will always be freed. 1941 */ 1942 static int 1943 key_spdadd(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 1944 { 1945 struct secpolicyindex spidx; 1946 struct sadb_address *src0, *dst0; 1947 struct sadb_x_policy *xpl0, *xpl; 1948 struct sadb_lifetime *lft = NULL; 1949 struct secpolicy *newsp, *oldsp; 1950 int error; 1951 1952 IPSEC_ASSERT(so != NULL, ("null socket")); 1953 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1954 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1955 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 1956 1957 if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || 1958 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) || 1959 SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY)) { 1960 ipseclog((LOG_DEBUG, 1961 "%s: invalid message: missing required header.\n", 1962 __func__)); 1963 return key_senderror(so, m, EINVAL); 1964 } 1965 if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || 1966 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST) || 1967 SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) { 1968 ipseclog((LOG_DEBUG, 1969 "%s: invalid message: wrong header size.\n", __func__)); 1970 return key_senderror(so, m, EINVAL); 1971 } 1972 if (!SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD)) { 1973 if (SADB_CHECKLEN(mhp, SADB_EXT_LIFETIME_HARD)) { 1974 ipseclog((LOG_DEBUG, 1975 "%s: invalid message: wrong header size.\n", 1976 __func__)); 1977 return key_senderror(so, m, EINVAL); 1978 } 1979 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 1980 } 1981 1982 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 1983 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 1984 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 1985 1986 /* check the direciton */ 1987 switch (xpl0->sadb_x_policy_dir) { 1988 case IPSEC_DIR_INBOUND: 1989 case IPSEC_DIR_OUTBOUND: 1990 break; 1991 default: 1992 ipseclog((LOG_DEBUG, "%s: invalid SP direction.\n", __func__)); 1993 return key_senderror(so, m, EINVAL); 1994 } 1995 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */ 1996 if (xpl0->sadb_x_policy_type != IPSEC_POLICY_DISCARD && 1997 xpl0->sadb_x_policy_type != IPSEC_POLICY_NONE && 1998 xpl0->sadb_x_policy_type != IPSEC_POLICY_IPSEC) { 1999 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); 2000 return key_senderror(so, m, EINVAL); 2001 } 2002 2003 /* policy requests are mandatory when action is ipsec. */ 2004 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC && 2005 mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { 2006 ipseclog((LOG_DEBUG, 2007 "%s: policy requests required.\n", __func__)); 2008 return key_senderror(so, m, EINVAL); 2009 } 2010 2011 error = key_checksockaddrs((struct sockaddr *)(src0 + 1), 2012 (struct sockaddr *)(dst0 + 1)); 2013 if (error != 0 || 2014 src0->sadb_address_proto != dst0->sadb_address_proto) { 2015 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); 2016 return key_senderror(so, m, error); 2017 } 2018 /* make secindex */ 2019 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 2020 src0 + 1, 2021 dst0 + 1, 2022 src0->sadb_address_prefixlen, 2023 dst0->sadb_address_prefixlen, 2024 src0->sadb_address_proto, 2025 &spidx); 2026 /* Checking there is SP already or not. */ 2027 oldsp = key_getsp(&spidx); 2028 if (oldsp != NULL) { 2029 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 2030 KEYDBG(KEY_STAMP, 2031 printf("%s: unlink SP(%p) for SPDUPDATE\n", 2032 __func__, oldsp)); 2033 KEYDBG(KEY_DATA, kdebug_secpolicy(oldsp)); 2034 } else { 2035 key_freesp(&newsp); 2036 ipseclog((LOG_DEBUG, 2037 "%s: a SP entry exists already.\n", __func__)); 2038 return (key_senderror(so, m, EEXIST)); 2039 } 2040 } 2041 2042 /* allocate new SP entry */ 2043 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) { 2044 if (oldsp != NULL) { 2045 key_unlink(oldsp); 2046 key_freesp(&oldsp); /* second for our reference */ 2047 } 2048 return key_senderror(so, m, error); 2049 } 2050 2051 newsp->lastused = newsp->created = time_second; 2052 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; 2053 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; 2054 bcopy(&spidx, &newsp->spidx, sizeof(spidx)); 2055 2056 SPTREE_WLOCK(); 2057 if ((newsp->id = key_getnewspid()) == 0) { 2058 if (oldsp != NULL) 2059 key_detach(oldsp); 2060 SPTREE_WUNLOCK(); 2061 if (oldsp != NULL) { 2062 key_freesp(&oldsp); /* first for key_detach */ 2063 IPSEC_ASSERT(oldsp != NULL, ("null oldsp: refcount bug")); 2064 key_freesp(&oldsp); /* second for our reference */ 2065 if (SPDCACHE_ENABLED()) /* refresh cache because of key_detach */ 2066 spdcache_clear(); 2067 } 2068 key_freesp(&newsp); 2069 return key_senderror(so, m, ENOBUFS); 2070 } 2071 if (oldsp != NULL) 2072 key_detach(oldsp); 2073 key_insertsp(newsp); 2074 SPTREE_WUNLOCK(); 2075 if (oldsp != NULL) { 2076 key_freesp(&oldsp); /* first for key_detach */ 2077 IPSEC_ASSERT(oldsp != NULL, ("null oldsp: refcount bug")); 2078 key_freesp(&oldsp); /* second for our reference */ 2079 } 2080 if (SPDCACHE_ENABLED()) 2081 spdcache_clear(); 2082 KEYDBG(KEY_STAMP, 2083 printf("%s: SP(%p)\n", __func__, newsp)); 2084 KEYDBG(KEY_DATA, kdebug_secpolicy(newsp)); 2085 2086 { 2087 struct mbuf *n, *mpolicy; 2088 struct sadb_msg *newmsg; 2089 int off; 2090 2091 /* create new sadb_msg to reply. */ 2092 if (lft) { 2093 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, 2094 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, 2095 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2096 } else { 2097 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, 2098 SADB_X_EXT_POLICY, 2099 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2100 } 2101 if (!n) 2102 return key_senderror(so, m, ENOBUFS); 2103 2104 if (n->m_len < sizeof(*newmsg)) { 2105 n = m_pullup(n, sizeof(*newmsg)); 2106 if (!n) 2107 return key_senderror(so, m, ENOBUFS); 2108 } 2109 newmsg = mtod(n, struct sadb_msg *); 2110 newmsg->sadb_msg_errno = 0; 2111 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2112 2113 off = 0; 2114 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), 2115 sizeof(*xpl), &off); 2116 if (mpolicy == NULL) { 2117 /* n is already freed */ 2118 return key_senderror(so, m, ENOBUFS); 2119 } 2120 xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off); 2121 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { 2122 m_freem(n); 2123 return key_senderror(so, m, EINVAL); 2124 } 2125 xpl->sadb_x_policy_id = newsp->id; 2126 2127 m_freem(m); 2128 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2129 } 2130 } 2131 2132 /* 2133 * get new policy id. 2134 * OUT: 2135 * 0: failure. 2136 * others: success. 2137 */ 2138 static uint32_t 2139 key_getnewspid(void) 2140 { 2141 struct secpolicy *sp; 2142 uint32_t newid = 0; 2143 int count = V_key_spi_trycnt; /* XXX */ 2144 2145 SPTREE_WLOCK_ASSERT(); 2146 while (count--) { 2147 if (V_policy_id == ~0) /* overflowed */ 2148 newid = V_policy_id = 1; 2149 else 2150 newid = ++V_policy_id; 2151 LIST_FOREACH(sp, SPHASH_HASH(newid), idhash) { 2152 if (sp->id == newid) 2153 break; 2154 } 2155 if (sp == NULL) 2156 break; 2157 } 2158 if (count == 0 || newid == 0) { 2159 ipseclog((LOG_DEBUG, "%s: failed to allocate policy id.\n", 2160 __func__)); 2161 return (0); 2162 } 2163 return (newid); 2164 } 2165 2166 /* 2167 * SADB_SPDDELETE processing 2168 * receive 2169 * <base, address(SD), policy(*)> 2170 * from the user(?), and set SADB_SASTATE_DEAD, 2171 * and send, 2172 * <base, address(SD), policy(*)> 2173 * to the ikmpd. 2174 * policy(*) including direction of policy. 2175 * 2176 * m will always be freed. 2177 */ 2178 static int 2179 key_spddelete(struct socket *so, struct mbuf *m, 2180 const struct sadb_msghdr *mhp) 2181 { 2182 struct secpolicyindex spidx; 2183 struct sadb_address *src0, *dst0; 2184 struct sadb_x_policy *xpl0; 2185 struct secpolicy *sp; 2186 2187 IPSEC_ASSERT(so != NULL, ("null so")); 2188 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2189 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2190 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2191 2192 if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || 2193 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) || 2194 SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY)) { 2195 ipseclog((LOG_DEBUG, 2196 "%s: invalid message: missing required header.\n", 2197 __func__)); 2198 return key_senderror(so, m, EINVAL); 2199 } 2200 if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || 2201 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST) || 2202 SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) { 2203 ipseclog((LOG_DEBUG, 2204 "%s: invalid message: wrong header size.\n", __func__)); 2205 return key_senderror(so, m, EINVAL); 2206 } 2207 2208 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 2209 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 2210 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 2211 2212 /* check the direciton */ 2213 switch (xpl0->sadb_x_policy_dir) { 2214 case IPSEC_DIR_INBOUND: 2215 case IPSEC_DIR_OUTBOUND: 2216 break; 2217 default: 2218 ipseclog((LOG_DEBUG, "%s: invalid SP direction.\n", __func__)); 2219 return key_senderror(so, m, EINVAL); 2220 } 2221 /* Only DISCARD, NONE and IPSEC are allowed */ 2222 if (xpl0->sadb_x_policy_type != IPSEC_POLICY_DISCARD && 2223 xpl0->sadb_x_policy_type != IPSEC_POLICY_NONE && 2224 xpl0->sadb_x_policy_type != IPSEC_POLICY_IPSEC) { 2225 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); 2226 return key_senderror(so, m, EINVAL); 2227 } 2228 if (key_checksockaddrs((struct sockaddr *)(src0 + 1), 2229 (struct sockaddr *)(dst0 + 1)) != 0 || 2230 src0->sadb_address_proto != dst0->sadb_address_proto) { 2231 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); 2232 return key_senderror(so, m, EINVAL); 2233 } 2234 /* make secindex */ 2235 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 2236 src0 + 1, 2237 dst0 + 1, 2238 src0->sadb_address_prefixlen, 2239 dst0->sadb_address_prefixlen, 2240 src0->sadb_address_proto, 2241 &spidx); 2242 2243 /* Is there SP in SPD ? */ 2244 if ((sp = key_getsp(&spidx)) == NULL) { 2245 ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__)); 2246 return key_senderror(so, m, EINVAL); 2247 } 2248 2249 /* save policy id to buffer to be returned. */ 2250 xpl0->sadb_x_policy_id = sp->id; 2251 2252 KEYDBG(KEY_STAMP, 2253 printf("%s: SP(%p)\n", __func__, sp)); 2254 KEYDBG(KEY_DATA, kdebug_secpolicy(sp)); 2255 key_unlink(sp); 2256 key_freesp(&sp); 2257 2258 { 2259 struct mbuf *n; 2260 struct sadb_msg *newmsg; 2261 2262 /* create new sadb_msg to reply. */ 2263 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 2264 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2265 if (!n) 2266 return key_senderror(so, m, ENOBUFS); 2267 2268 newmsg = mtod(n, struct sadb_msg *); 2269 newmsg->sadb_msg_errno = 0; 2270 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2271 2272 m_freem(m); 2273 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2274 } 2275 } 2276 2277 /* 2278 * SADB_SPDDELETE2 processing 2279 * receive 2280 * <base, policy(*)> 2281 * from the user(?), and set SADB_SASTATE_DEAD, 2282 * and send, 2283 * <base, policy(*)> 2284 * to the ikmpd. 2285 * policy(*) including direction of policy. 2286 * 2287 * m will always be freed. 2288 */ 2289 static int 2290 key_spddelete2(struct socket *so, struct mbuf *m, 2291 const struct sadb_msghdr *mhp) 2292 { 2293 struct secpolicy *sp; 2294 uint32_t id; 2295 2296 IPSEC_ASSERT(so != NULL, ("null socket")); 2297 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2298 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2299 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2300 2301 if (SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY) || 2302 SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) { 2303 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2304 __func__)); 2305 return key_senderror(so, m, EINVAL); 2306 } 2307 2308 id = ((struct sadb_x_policy *) 2309 mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2310 2311 /* Is there SP in SPD ? */ 2312 if ((sp = key_getspbyid(id)) == NULL) { 2313 ipseclog((LOG_DEBUG, "%s: no SP found for id %u.\n", 2314 __func__, id)); 2315 return key_senderror(so, m, EINVAL); 2316 } 2317 2318 KEYDBG(KEY_STAMP, 2319 printf("%s: SP(%p)\n", __func__, sp)); 2320 KEYDBG(KEY_DATA, kdebug_secpolicy(sp)); 2321 key_unlink(sp); 2322 if (sp->state != IPSEC_SPSTATE_DEAD) { 2323 ipseclog((LOG_DEBUG, "%s: failed to delete SP with id %u.\n", 2324 __func__, id)); 2325 key_freesp(&sp); 2326 return (key_senderror(so, m, EACCES)); 2327 } 2328 key_freesp(&sp); 2329 2330 { 2331 struct mbuf *n, *nn; 2332 struct sadb_msg *newmsg; 2333 int off, len; 2334 2335 /* create new sadb_msg to reply. */ 2336 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2337 2338 MGETHDR(n, M_NOWAIT, MT_DATA); 2339 if (n && len > MHLEN) { 2340 if (!(MCLGET(n, M_NOWAIT))) { 2341 m_freem(n); 2342 n = NULL; 2343 } 2344 } 2345 if (!n) 2346 return key_senderror(so, m, ENOBUFS); 2347 2348 n->m_len = len; 2349 n->m_next = NULL; 2350 off = 0; 2351 2352 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 2353 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2354 2355 IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)", 2356 off, len)); 2357 2358 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], 2359 mhp->extlen[SADB_X_EXT_POLICY], M_NOWAIT); 2360 if (!n->m_next) { 2361 m_freem(n); 2362 return key_senderror(so, m, ENOBUFS); 2363 } 2364 2365 n->m_pkthdr.len = 0; 2366 for (nn = n; nn; nn = nn->m_next) 2367 n->m_pkthdr.len += nn->m_len; 2368 2369 newmsg = mtod(n, struct sadb_msg *); 2370 newmsg->sadb_msg_errno = 0; 2371 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2372 2373 m_freem(m); 2374 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2375 } 2376 } 2377 2378 /* 2379 * SADB_X_SPDGET processing 2380 * receive 2381 * <base, policy(*)> 2382 * from the user(?), 2383 * and send, 2384 * <base, address(SD), policy> 2385 * to the ikmpd. 2386 * policy(*) including direction of policy. 2387 * 2388 * m will always be freed. 2389 */ 2390 static int 2391 key_spdget(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 2392 { 2393 struct secpolicy *sp; 2394 struct mbuf *n; 2395 uint32_t id; 2396 2397 IPSEC_ASSERT(so != NULL, ("null socket")); 2398 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2399 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2400 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2401 2402 if (SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY) || 2403 SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) { 2404 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2405 __func__)); 2406 return key_senderror(so, m, EINVAL); 2407 } 2408 2409 id = ((struct sadb_x_policy *) 2410 mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2411 2412 /* Is there SP in SPD ? */ 2413 if ((sp = key_getspbyid(id)) == NULL) { 2414 ipseclog((LOG_DEBUG, "%s: no SP found for id %u.\n", 2415 __func__, id)); 2416 return key_senderror(so, m, ENOENT); 2417 } 2418 2419 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq, 2420 mhp->msg->sadb_msg_pid); 2421 key_freesp(&sp); 2422 if (n != NULL) { 2423 m_freem(m); 2424 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2425 } else 2426 return key_senderror(so, m, ENOBUFS); 2427 } 2428 2429 /* 2430 * SADB_X_SPDACQUIRE processing. 2431 * Acquire policy and SA(s) for a *OUTBOUND* packet. 2432 * send 2433 * <base, policy(*)> 2434 * to KMD, and expect to receive 2435 * <base> with SADB_X_SPDACQUIRE if error occurred, 2436 * or 2437 * <base, policy> 2438 * with SADB_X_SPDUPDATE from KMD by PF_KEY. 2439 * policy(*) is without policy requests. 2440 * 2441 * 0 : succeed 2442 * others: error number 2443 */ 2444 int 2445 key_spdacquire(struct secpolicy *sp) 2446 { 2447 struct mbuf *result = NULL, *m; 2448 struct secspacq *newspacq; 2449 2450 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2451 IPSEC_ASSERT(sp->req == NULL, ("policy exists")); 2452 IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC, 2453 ("policy not IPSEC %u", sp->policy)); 2454 2455 /* Get an entry to check whether sent message or not. */ 2456 newspacq = key_getspacq(&sp->spidx); 2457 if (newspacq != NULL) { 2458 if (V_key_blockacq_count < newspacq->count) { 2459 /* reset counter and do send message. */ 2460 newspacq->count = 0; 2461 } else { 2462 /* increment counter and do nothing. */ 2463 newspacq->count++; 2464 SPACQ_UNLOCK(); 2465 return (0); 2466 } 2467 SPACQ_UNLOCK(); 2468 } else { 2469 /* make new entry for blocking to send SADB_ACQUIRE. */ 2470 newspacq = key_newspacq(&sp->spidx); 2471 if (newspacq == NULL) 2472 return ENOBUFS; 2473 } 2474 2475 /* create new sadb_msg to reply. */ 2476 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); 2477 if (!m) 2478 return ENOBUFS; 2479 2480 result = m; 2481 2482 result->m_pkthdr.len = 0; 2483 for (m = result; m; m = m->m_next) 2484 result->m_pkthdr.len += m->m_len; 2485 2486 mtod(result, struct sadb_msg *)->sadb_msg_len = 2487 PFKEY_UNIT64(result->m_pkthdr.len); 2488 2489 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 2490 } 2491 2492 /* 2493 * SADB_SPDFLUSH processing 2494 * receive 2495 * <base> 2496 * from the user, and free all entries in secpctree. 2497 * and send, 2498 * <base> 2499 * to the user. 2500 * NOTE: what to do is only marking SADB_SASTATE_DEAD. 2501 * 2502 * m will always be freed. 2503 */ 2504 static int 2505 key_spdflush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 2506 { 2507 struct secpolicy_queue drainq; 2508 struct sadb_msg *newmsg; 2509 struct secpolicy *sp, *nextsp; 2510 u_int dir; 2511 2512 IPSEC_ASSERT(so != NULL, ("null socket")); 2513 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2514 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2515 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2516 2517 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) 2518 return key_senderror(so, m, EINVAL); 2519 2520 TAILQ_INIT(&drainq); 2521 SPTREE_WLOCK(); 2522 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2523 TAILQ_CONCAT(&drainq, &V_sptree[dir], chain); 2524 } 2525 /* 2526 * We need to set state to DEAD for each policy to be sure, 2527 * that another thread won't try to unlink it. 2528 * Also remove SP from sphash. 2529 */ 2530 TAILQ_FOREACH(sp, &drainq, chain) { 2531 sp->state = IPSEC_SPSTATE_DEAD; 2532 LIST_REMOVE(sp, idhash); 2533 } 2534 V_sp_genid++; 2535 V_spd_size = 0; 2536 SPTREE_WUNLOCK(); 2537 if (SPDCACHE_ENABLED()) 2538 spdcache_clear(); 2539 sp = TAILQ_FIRST(&drainq); 2540 while (sp != NULL) { 2541 nextsp = TAILQ_NEXT(sp, chain); 2542 key_freesp(&sp); 2543 sp = nextsp; 2544 } 2545 2546 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 2547 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2548 return key_senderror(so, m, ENOBUFS); 2549 } 2550 2551 if (m->m_next) 2552 m_freem(m->m_next); 2553 m->m_next = NULL; 2554 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2555 newmsg = mtod(m, struct sadb_msg *); 2556 newmsg->sadb_msg_errno = 0; 2557 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 2558 2559 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 2560 } 2561 2562 static uint8_t 2563 key_satype2scopemask(uint8_t satype) 2564 { 2565 2566 if (satype == IPSEC_POLICYSCOPE_ANY) 2567 return (0xff); 2568 return (satype); 2569 } 2570 /* 2571 * SADB_SPDDUMP processing 2572 * receive 2573 * <base> 2574 * from the user, and dump all SP leaves and send, 2575 * <base> ..... 2576 * to the ikmpd. 2577 * 2578 * NOTE: 2579 * sadb_msg_satype is considered as mask of policy scopes. 2580 * m will always be freed. 2581 */ 2582 static int 2583 key_spddump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 2584 { 2585 SPTREE_RLOCK_TRACKER; 2586 struct secpolicy *sp; 2587 struct mbuf *n; 2588 int cnt; 2589 u_int dir, scope; 2590 2591 IPSEC_ASSERT(so != NULL, ("null socket")); 2592 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2593 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2594 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2595 2596 /* search SPD entry and get buffer size. */ 2597 cnt = 0; 2598 scope = key_satype2scopemask(mhp->msg->sadb_msg_satype); 2599 SPTREE_RLOCK(); 2600 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2601 if (scope & IPSEC_POLICYSCOPE_GLOBAL) { 2602 TAILQ_FOREACH(sp, &V_sptree[dir], chain) 2603 cnt++; 2604 } 2605 if (scope & IPSEC_POLICYSCOPE_IFNET) { 2606 TAILQ_FOREACH(sp, &V_sptree_ifnet[dir], chain) 2607 cnt++; 2608 } 2609 } 2610 2611 if (cnt == 0) { 2612 SPTREE_RUNLOCK(); 2613 return key_senderror(so, m, ENOENT); 2614 } 2615 2616 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2617 if (scope & IPSEC_POLICYSCOPE_GLOBAL) { 2618 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 2619 --cnt; 2620 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, 2621 mhp->msg->sadb_msg_pid); 2622 2623 if (n != NULL) 2624 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2625 } 2626 } 2627 if (scope & IPSEC_POLICYSCOPE_IFNET) { 2628 TAILQ_FOREACH(sp, &V_sptree_ifnet[dir], chain) { 2629 --cnt; 2630 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, 2631 mhp->msg->sadb_msg_pid); 2632 2633 if (n != NULL) 2634 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2635 } 2636 } 2637 } 2638 2639 SPTREE_RUNLOCK(); 2640 m_freem(m); 2641 return (0); 2642 } 2643 2644 static struct mbuf * 2645 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, 2646 u_int32_t pid) 2647 { 2648 struct mbuf *result = NULL, *m; 2649 struct seclifetime lt; 2650 2651 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt); 2652 if (!m) 2653 goto fail; 2654 result = m; 2655 2656 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2657 &sp->spidx.src.sa, sp->spidx.prefs, 2658 sp->spidx.ul_proto); 2659 if (!m) 2660 goto fail; 2661 m_cat(result, m); 2662 2663 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2664 &sp->spidx.dst.sa, sp->spidx.prefd, 2665 sp->spidx.ul_proto); 2666 if (!m) 2667 goto fail; 2668 m_cat(result, m); 2669 2670 m = key_sp2mbuf(sp); 2671 if (!m) 2672 goto fail; 2673 m_cat(result, m); 2674 2675 if(sp->lifetime){ 2676 lt.addtime=sp->created; 2677 lt.usetime= sp->lastused; 2678 m = key_setlifetime(<, SADB_EXT_LIFETIME_CURRENT); 2679 if (!m) 2680 goto fail; 2681 m_cat(result, m); 2682 2683 lt.addtime=sp->lifetime; 2684 lt.usetime= sp->validtime; 2685 m = key_setlifetime(<, SADB_EXT_LIFETIME_HARD); 2686 if (!m) 2687 goto fail; 2688 m_cat(result, m); 2689 } 2690 2691 if ((result->m_flags & M_PKTHDR) == 0) 2692 goto fail; 2693 2694 if (result->m_len < sizeof(struct sadb_msg)) { 2695 result = m_pullup(result, sizeof(struct sadb_msg)); 2696 if (result == NULL) 2697 goto fail; 2698 } 2699 2700 result->m_pkthdr.len = 0; 2701 for (m = result; m; m = m->m_next) 2702 result->m_pkthdr.len += m->m_len; 2703 2704 mtod(result, struct sadb_msg *)->sadb_msg_len = 2705 PFKEY_UNIT64(result->m_pkthdr.len); 2706 2707 return result; 2708 2709 fail: 2710 m_freem(result); 2711 return NULL; 2712 } 2713 /* 2714 * get PFKEY message length for security policy and request. 2715 */ 2716 static size_t 2717 key_getspreqmsglen(struct secpolicy *sp) 2718 { 2719 size_t tlen, len; 2720 int i; 2721 2722 tlen = sizeof(struct sadb_x_policy); 2723 /* if is the policy for ipsec ? */ 2724 if (sp->policy != IPSEC_POLICY_IPSEC) 2725 return (tlen); 2726 2727 /* get length of ipsec requests */ 2728 for (i = 0; i < sp->tcount; i++) { 2729 len = sizeof(struct sadb_x_ipsecrequest) 2730 + sp->req[i]->saidx.src.sa.sa_len 2731 + sp->req[i]->saidx.dst.sa.sa_len; 2732 2733 tlen += PFKEY_ALIGN8(len); 2734 } 2735 return (tlen); 2736 } 2737 2738 /* 2739 * SADB_SPDEXPIRE processing 2740 * send 2741 * <base, address(SD), lifetime(CH), policy> 2742 * to KMD by PF_KEY. 2743 * 2744 * OUT: 0 : succeed 2745 * others : error number 2746 */ 2747 static int 2748 key_spdexpire(struct secpolicy *sp) 2749 { 2750 struct sadb_lifetime *lt; 2751 struct mbuf *result = NULL, *m; 2752 int len, error = -1; 2753 2754 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2755 2756 KEYDBG(KEY_STAMP, 2757 printf("%s: SP(%p)\n", __func__, sp)); 2758 KEYDBG(KEY_DATA, kdebug_secpolicy(sp)); 2759 2760 /* set msg header */ 2761 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0); 2762 if (!m) { 2763 error = ENOBUFS; 2764 goto fail; 2765 } 2766 result = m; 2767 2768 /* create lifetime extension (current and hard) */ 2769 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 2770 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 2771 if (m == NULL) { 2772 error = ENOBUFS; 2773 goto fail; 2774 } 2775 m_align(m, len); 2776 m->m_len = len; 2777 bzero(mtod(m, caddr_t), len); 2778 lt = mtod(m, struct sadb_lifetime *); 2779 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2780 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 2781 lt->sadb_lifetime_allocations = 0; 2782 lt->sadb_lifetime_bytes = 0; 2783 lt->sadb_lifetime_addtime = sp->created; 2784 lt->sadb_lifetime_usetime = sp->lastused; 2785 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 2786 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2787 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 2788 lt->sadb_lifetime_allocations = 0; 2789 lt->sadb_lifetime_bytes = 0; 2790 lt->sadb_lifetime_addtime = sp->lifetime; 2791 lt->sadb_lifetime_usetime = sp->validtime; 2792 m_cat(result, m); 2793 2794 /* set sadb_address for source */ 2795 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2796 &sp->spidx.src.sa, 2797 sp->spidx.prefs, sp->spidx.ul_proto); 2798 if (!m) { 2799 error = ENOBUFS; 2800 goto fail; 2801 } 2802 m_cat(result, m); 2803 2804 /* set sadb_address for destination */ 2805 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2806 &sp->spidx.dst.sa, 2807 sp->spidx.prefd, sp->spidx.ul_proto); 2808 if (!m) { 2809 error = ENOBUFS; 2810 goto fail; 2811 } 2812 m_cat(result, m); 2813 2814 /* set secpolicy */ 2815 m = key_sp2mbuf(sp); 2816 if (!m) { 2817 error = ENOBUFS; 2818 goto fail; 2819 } 2820 m_cat(result, m); 2821 2822 if ((result->m_flags & M_PKTHDR) == 0) { 2823 error = EINVAL; 2824 goto fail; 2825 } 2826 2827 if (result->m_len < sizeof(struct sadb_msg)) { 2828 result = m_pullup(result, sizeof(struct sadb_msg)); 2829 if (result == NULL) { 2830 error = ENOBUFS; 2831 goto fail; 2832 } 2833 } 2834 2835 result->m_pkthdr.len = 0; 2836 for (m = result; m; m = m->m_next) 2837 result->m_pkthdr.len += m->m_len; 2838 2839 mtod(result, struct sadb_msg *)->sadb_msg_len = 2840 PFKEY_UNIT64(result->m_pkthdr.len); 2841 2842 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 2843 2844 fail: 2845 if (result) 2846 m_freem(result); 2847 return error; 2848 } 2849 2850 /* %%% SAD management */ 2851 /* 2852 * allocating and initialize new SA head. 2853 * OUT: NULL : failure due to the lack of memory. 2854 * others : pointer to new SA head. 2855 */ 2856 static struct secashead * 2857 key_newsah(struct secasindex *saidx) 2858 { 2859 struct secashead *sah; 2860 2861 sah = malloc(sizeof(struct secashead), M_IPSEC_SAH, 2862 M_NOWAIT | M_ZERO); 2863 if (sah == NULL) { 2864 PFKEYSTAT_INC(in_nomem); 2865 return (NULL); 2866 } 2867 TAILQ_INIT(&sah->savtree_larval); 2868 TAILQ_INIT(&sah->savtree_alive); 2869 sah->saidx = *saidx; 2870 sah->state = SADB_SASTATE_DEAD; 2871 SAH_INITREF(sah); 2872 2873 KEYDBG(KEY_STAMP, 2874 printf("%s: SAH(%p)\n", __func__, sah)); 2875 KEYDBG(KEY_DATA, kdebug_secash(sah, NULL)); 2876 return (sah); 2877 } 2878 2879 static void 2880 key_freesah(struct secashead **psah) 2881 { 2882 struct secashead *sah = *psah; 2883 2884 if (SAH_DELREF(sah) == 0) 2885 return; 2886 2887 KEYDBG(KEY_STAMP, 2888 printf("%s: last reference to SAH(%p)\n", __func__, sah)); 2889 KEYDBG(KEY_DATA, kdebug_secash(sah, NULL)); 2890 2891 *psah = NULL; 2892 key_delsah(sah); 2893 } 2894 2895 static void 2896 key_delsah(struct secashead *sah) 2897 { 2898 IPSEC_ASSERT(sah != NULL, ("NULL sah")); 2899 IPSEC_ASSERT(sah->state == SADB_SASTATE_DEAD, 2900 ("Attempt to free non DEAD SAH %p", sah)); 2901 IPSEC_ASSERT(TAILQ_EMPTY(&sah->savtree_larval), 2902 ("Attempt to free SAH %p with LARVAL SA", sah)); 2903 IPSEC_ASSERT(TAILQ_EMPTY(&sah->savtree_alive), 2904 ("Attempt to free SAH %p with ALIVE SA", sah)); 2905 2906 free(sah, M_IPSEC_SAH); 2907 } 2908 2909 /* 2910 * allocating a new SA for key_add() and key_getspi() call, 2911 * and copy the values of mhp into new buffer. 2912 * When SAD message type is SADB_GETSPI set SA state to LARVAL. 2913 * For SADB_ADD create and initialize SA with MATURE state. 2914 * OUT: NULL : fail 2915 * others : pointer to new secasvar. 2916 */ 2917 static struct secasvar * 2918 key_newsav(const struct sadb_msghdr *mhp, struct secasindex *saidx, 2919 uint32_t spi, int *errp) 2920 { 2921 struct secashead *sah; 2922 struct secasvar *sav; 2923 int isnew; 2924 2925 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2926 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2927 IPSEC_ASSERT(mhp->msg->sadb_msg_type == SADB_GETSPI || 2928 mhp->msg->sadb_msg_type == SADB_ADD, ("wrong message type")); 2929 2930 sav = NULL; 2931 sah = NULL; 2932 /* check SPI value */ 2933 switch (saidx->proto) { 2934 case IPPROTO_ESP: 2935 case IPPROTO_AH: 2936 /* 2937 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values 2938 * 1-255 reserved by IANA for future use, 2939 * 0 for implementation specific, local use. 2940 */ 2941 if (ntohl(spi) <= 255) { 2942 ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n", 2943 __func__, ntohl(spi))); 2944 *errp = EINVAL; 2945 goto done; 2946 } 2947 break; 2948 } 2949 2950 sav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT | M_ZERO); 2951 if (sav == NULL) { 2952 *errp = ENOBUFS; 2953 goto done; 2954 } 2955 sav->lock = malloc(sizeof(struct mtx), M_IPSEC_MISC, 2956 M_NOWAIT | M_ZERO); 2957 if (sav->lock == NULL) { 2958 *errp = ENOBUFS; 2959 goto done; 2960 } 2961 mtx_init(sav->lock, "ipsec association", NULL, MTX_DEF); 2962 sav->lft_c = uma_zalloc_pcpu(ipsec_key_lft_zone, M_NOWAIT | M_ZERO); 2963 if (sav->lft_c == NULL) { 2964 *errp = ENOBUFS; 2965 goto done; 2966 } 2967 2968 sav->spi = spi; 2969 sav->seq = mhp->msg->sadb_msg_seq; 2970 sav->state = SADB_SASTATE_LARVAL; 2971 sav->pid = (pid_t)mhp->msg->sadb_msg_pid; 2972 SAV_INITREF(sav); 2973 again: 2974 sah = key_getsah(saidx); 2975 if (sah == NULL) { 2976 /* create a new SA index */ 2977 sah = key_newsah(saidx); 2978 if (sah == NULL) { 2979 ipseclog((LOG_DEBUG, 2980 "%s: No more memory.\n", __func__)); 2981 *errp = ENOBUFS; 2982 goto done; 2983 } 2984 isnew = 1; 2985 } else 2986 isnew = 0; 2987 2988 sav->sah = sah; 2989 if (mhp->msg->sadb_msg_type == SADB_GETSPI) { 2990 sav->created = time_second; 2991 } else if (sav->state == SADB_SASTATE_LARVAL) { 2992 /* 2993 * Do not call key_setsaval() second time in case 2994 * of `goto again`. We will have MATURE state. 2995 */ 2996 *errp = key_setsaval(sav, mhp); 2997 if (*errp != 0) 2998 goto done; 2999 sav->state = SADB_SASTATE_MATURE; 3000 } 3001 3002 SAHTREE_WLOCK(); 3003 /* 3004 * Check that existing SAH wasn't unlinked. 3005 * Since we didn't hold the SAHTREE lock, it is possible, 3006 * that callout handler or key_flush() or key_delete() could 3007 * unlink this SAH. 3008 */ 3009 if (isnew == 0 && sah->state == SADB_SASTATE_DEAD) { 3010 SAHTREE_WUNLOCK(); 3011 key_freesah(&sah); /* reference from key_getsah() */ 3012 goto again; 3013 } 3014 if (isnew != 0) { 3015 /* 3016 * Add new SAH into SADB. 3017 * 3018 * XXXAE: we can serialize key_add and key_getspi calls, so 3019 * several threads will not fight in the race. 3020 * Otherwise we should check under SAHTREE lock, that this 3021 * SAH would not added twice. 3022 */ 3023 TAILQ_INSERT_HEAD(&V_sahtree, sah, chain); 3024 /* Add new SAH into hash by addresses */ 3025 LIST_INSERT_HEAD(SAHADDRHASH_HASH(saidx), sah, addrhash); 3026 /* Now we are linked in the chain */ 3027 sah->state = SADB_SASTATE_MATURE; 3028 /* 3029 * SAV references this new SAH. 3030 * In case of existing SAH we reuse reference 3031 * from key_getsah(). 3032 */ 3033 SAH_ADDREF(sah); 3034 } 3035 /* Link SAV with SAH */ 3036 if (sav->state == SADB_SASTATE_MATURE) 3037 TAILQ_INSERT_HEAD(&sah->savtree_alive, sav, chain); 3038 else 3039 TAILQ_INSERT_HEAD(&sah->savtree_larval, sav, chain); 3040 /* Add SAV into SPI hash */ 3041 LIST_INSERT_HEAD(SAVHASH_HASH(sav->spi), sav, spihash); 3042 SAHTREE_WUNLOCK(); 3043 *errp = 0; /* success */ 3044 done: 3045 if (*errp != 0) { 3046 if (sav != NULL) { 3047 if (sav->lock != NULL) { 3048 mtx_destroy(sav->lock); 3049 free(sav->lock, M_IPSEC_MISC); 3050 } 3051 if (sav->lft_c != NULL) 3052 uma_zfree_pcpu(ipsec_key_lft_zone, sav->lft_c); 3053 free(sav, M_IPSEC_SA), sav = NULL; 3054 } 3055 if (sah != NULL) 3056 key_freesah(&sah); 3057 if (*errp == ENOBUFS) { 3058 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3059 __func__)); 3060 PFKEYSTAT_INC(in_nomem); 3061 } 3062 } 3063 return (sav); 3064 } 3065 3066 /* 3067 * free() SA variable entry. 3068 */ 3069 static void 3070 key_cleansav(struct secasvar *sav) 3071 { 3072 3073 if (sav->natt != NULL) { 3074 free(sav->natt, M_IPSEC_MISC); 3075 sav->natt = NULL; 3076 } 3077 if (sav->flags & SADB_X_EXT_F_CLONED) 3078 return; 3079 if (sav->tdb_xform != NULL) { 3080 sav->tdb_xform->xf_cleanup(sav); 3081 sav->tdb_xform = NULL; 3082 } 3083 if (sav->key_auth != NULL) { 3084 zfree(sav->key_auth->key_data, M_IPSEC_MISC); 3085 free(sav->key_auth, M_IPSEC_MISC); 3086 sav->key_auth = NULL; 3087 } 3088 if (sav->key_enc != NULL) { 3089 zfree(sav->key_enc->key_data, M_IPSEC_MISC); 3090 free(sav->key_enc, M_IPSEC_MISC); 3091 sav->key_enc = NULL; 3092 } 3093 if (sav->replay != NULL) { 3094 if (sav->replay->bitmap != NULL) 3095 free(sav->replay->bitmap, M_IPSEC_MISC); 3096 free(sav->replay, M_IPSEC_MISC); 3097 sav->replay = NULL; 3098 } 3099 if (sav->lft_h != NULL) { 3100 free(sav->lft_h, M_IPSEC_MISC); 3101 sav->lft_h = NULL; 3102 } 3103 if (sav->lft_s != NULL) { 3104 free(sav->lft_s, M_IPSEC_MISC); 3105 sav->lft_s = NULL; 3106 } 3107 } 3108 3109 /* 3110 * free() SA variable entry. 3111 */ 3112 static void 3113 key_delsav(struct secasvar *sav) 3114 { 3115 IPSEC_ASSERT(sav != NULL, ("null sav")); 3116 IPSEC_ASSERT(sav->state == SADB_SASTATE_DEAD, 3117 ("attempt to free non DEAD SA %p", sav)); 3118 IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", 3119 sav->refcnt)); 3120 3121 /* 3122 * SA must be unlinked from the chain and hashtbl. 3123 * If SA was cloned, we leave all fields untouched, 3124 * except NAT-T config. 3125 */ 3126 key_cleansav(sav); 3127 if ((sav->flags & SADB_X_EXT_F_CLONED) == 0) { 3128 mtx_destroy(sav->lock); 3129 free(sav->lock, M_IPSEC_MISC); 3130 uma_zfree_pcpu(ipsec_key_lft_zone, sav->lft_c); 3131 } 3132 free(sav, M_IPSEC_SA); 3133 } 3134 3135 /* 3136 * search SAH. 3137 * OUT: 3138 * NULL : not found 3139 * others : found, referenced pointer to a SAH. 3140 */ 3141 static struct secashead * 3142 key_getsah(struct secasindex *saidx) 3143 { 3144 SAHTREE_RLOCK_TRACKER; 3145 struct secashead *sah; 3146 3147 SAHTREE_RLOCK(); 3148 LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) { 3149 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID) != 0) { 3150 SAH_ADDREF(sah); 3151 break; 3152 } 3153 } 3154 SAHTREE_RUNLOCK(); 3155 return (sah); 3156 } 3157 3158 /* 3159 * Check not to be duplicated SPI. 3160 * OUT: 3161 * 0 : not found 3162 * 1 : found SA with given SPI. 3163 */ 3164 static int 3165 key_checkspidup(uint32_t spi) 3166 { 3167 SAHTREE_RLOCK_TRACKER; 3168 struct secasvar *sav; 3169 3170 /* Assume SPI is in network byte order */ 3171 SAHTREE_RLOCK(); 3172 LIST_FOREACH(sav, SAVHASH_HASH(spi), spihash) { 3173 if (sav->spi == spi) 3174 break; 3175 } 3176 SAHTREE_RUNLOCK(); 3177 return (sav != NULL); 3178 } 3179 3180 /* 3181 * Search SA by SPI. 3182 * OUT: 3183 * NULL : not found 3184 * others : found, referenced pointer to a SA. 3185 */ 3186 static struct secasvar * 3187 key_getsavbyspi(uint32_t spi) 3188 { 3189 SAHTREE_RLOCK_TRACKER; 3190 struct secasvar *sav; 3191 3192 /* Assume SPI is in network byte order */ 3193 SAHTREE_RLOCK(); 3194 LIST_FOREACH(sav, SAVHASH_HASH(spi), spihash) { 3195 if (sav->spi != spi) 3196 continue; 3197 SAV_ADDREF(sav); 3198 break; 3199 } 3200 SAHTREE_RUNLOCK(); 3201 return (sav); 3202 } 3203 3204 static int 3205 key_updatelifetimes(struct secasvar *sav, const struct sadb_msghdr *mhp) 3206 { 3207 struct seclifetime *lft_h, *lft_s, *tmp; 3208 3209 /* Lifetime extension is optional, check that it is present. */ 3210 if (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) && 3211 SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) { 3212 /* 3213 * In case of SADB_UPDATE we may need to change 3214 * existing lifetimes. 3215 */ 3216 if (sav->state == SADB_SASTATE_MATURE) { 3217 lft_h = lft_s = NULL; 3218 goto reset; 3219 } 3220 return (0); 3221 } 3222 /* Both HARD and SOFT extensions must present */ 3223 if ((SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) && 3224 !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) || 3225 (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT) && 3226 !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD))) { 3227 ipseclog((LOG_DEBUG, 3228 "%s: invalid message: missing required header.\n", 3229 __func__)); 3230 return (EINVAL); 3231 } 3232 if (SADB_CHECKLEN(mhp, SADB_EXT_LIFETIME_HARD) || 3233 SADB_CHECKLEN(mhp, SADB_EXT_LIFETIME_SOFT)) { 3234 ipseclog((LOG_DEBUG, 3235 "%s: invalid message: wrong header size.\n", __func__)); 3236 return (EINVAL); 3237 } 3238 lft_h = key_dup_lifemsg((const struct sadb_lifetime *) 3239 mhp->ext[SADB_EXT_LIFETIME_HARD], M_IPSEC_MISC); 3240 if (lft_h == NULL) { 3241 PFKEYSTAT_INC(in_nomem); 3242 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3243 return (ENOBUFS); 3244 } 3245 lft_s = key_dup_lifemsg((const struct sadb_lifetime *) 3246 mhp->ext[SADB_EXT_LIFETIME_SOFT], M_IPSEC_MISC); 3247 if (lft_s == NULL) { 3248 PFKEYSTAT_INC(in_nomem); 3249 free(lft_h, M_IPSEC_MISC); 3250 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3251 return (ENOBUFS); 3252 } 3253 reset: 3254 if (sav->state != SADB_SASTATE_LARVAL) { 3255 /* 3256 * key_update() holds reference to this SA, 3257 * so it won't be deleted in meanwhile. 3258 */ 3259 SECASVAR_LOCK(sav); 3260 tmp = sav->lft_h; 3261 sav->lft_h = lft_h; 3262 lft_h = tmp; 3263 3264 tmp = sav->lft_s; 3265 sav->lft_s = lft_s; 3266 lft_s = tmp; 3267 SECASVAR_UNLOCK(sav); 3268 if (lft_h != NULL) 3269 free(lft_h, M_IPSEC_MISC); 3270 if (lft_s != NULL) 3271 free(lft_s, M_IPSEC_MISC); 3272 return (0); 3273 } 3274 /* We can update lifetime without holding a lock */ 3275 IPSEC_ASSERT(sav->lft_h == NULL, ("lft_h is already initialized\n")); 3276 IPSEC_ASSERT(sav->lft_s == NULL, ("lft_s is already initialized\n")); 3277 sav->lft_h = lft_h; 3278 sav->lft_s = lft_s; 3279 return (0); 3280 } 3281 3282 /* 3283 * copy SA values from PF_KEY message except *SPI, SEQ, PID and TYPE*. 3284 * You must update these if need. Expects only LARVAL SAs. 3285 * OUT: 0: success. 3286 * !0: failure. 3287 */ 3288 static int 3289 key_setsaval(struct secasvar *sav, const struct sadb_msghdr *mhp) 3290 { 3291 const struct sadb_sa *sa0; 3292 const struct sadb_key *key0; 3293 uint32_t replay; 3294 size_t len; 3295 int error; 3296 3297 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 3298 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 3299 IPSEC_ASSERT(sav->state == SADB_SASTATE_LARVAL, 3300 ("Attempt to update non LARVAL SA")); 3301 3302 /* XXX rewrite */ 3303 error = key_setident(sav->sah, mhp); 3304 if (error != 0) 3305 goto fail; 3306 3307 /* SA */ 3308 if (!SADB_CHECKHDR(mhp, SADB_EXT_SA)) { 3309 if (SADB_CHECKLEN(mhp, SADB_EXT_SA)) { 3310 error = EINVAL; 3311 goto fail; 3312 } 3313 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 3314 sav->alg_auth = sa0->sadb_sa_auth; 3315 sav->alg_enc = sa0->sadb_sa_encrypt; 3316 sav->flags = sa0->sadb_sa_flags; 3317 if ((sav->flags & SADB_KEY_FLAGS_MAX) != sav->flags) { 3318 ipseclog((LOG_DEBUG, 3319 "%s: invalid sa_flags 0x%08x.\n", __func__, 3320 sav->flags)); 3321 error = EINVAL; 3322 goto fail; 3323 } 3324 3325 /* Optional replay window */ 3326 replay = 0; 3327 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) 3328 replay = sa0->sadb_sa_replay; 3329 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_SA_REPLAY)) { 3330 if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA_REPLAY)) { 3331 error = EINVAL; 3332 goto fail; 3333 } 3334 replay = ((const struct sadb_x_sa_replay *) 3335 mhp->ext[SADB_X_EXT_SA_REPLAY])->sadb_x_sa_replay_replay; 3336 3337 if (replay > UINT32_MAX - 32) { 3338 ipseclog((LOG_DEBUG, 3339 "%s: replay window too big.\n", __func__)); 3340 error = EINVAL; 3341 goto fail; 3342 } 3343 3344 replay = (replay + 7) >> 3; 3345 } 3346 3347 sav->replay = malloc(sizeof(struct secreplay), M_IPSEC_MISC, 3348 M_NOWAIT | M_ZERO); 3349 if (sav->replay == NULL) { 3350 PFKEYSTAT_INC(in_nomem); 3351 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3352 __func__)); 3353 error = ENOBUFS; 3354 goto fail; 3355 } 3356 3357 if (replay != 0) { 3358 /* number of 32b blocks to be allocated */ 3359 uint32_t bitmap_size; 3360 3361 /* RFC 6479: 3362 * - the allocated replay window size must be 3363 * a power of two. 3364 * - use an extra 32b block as a redundant window. 3365 */ 3366 bitmap_size = 1; 3367 while (replay + 4 > bitmap_size) 3368 bitmap_size <<= 1; 3369 bitmap_size = bitmap_size / 4; 3370 3371 sav->replay->bitmap = malloc( 3372 bitmap_size * sizeof(uint32_t), M_IPSEC_MISC, 3373 M_NOWAIT | M_ZERO); 3374 if (sav->replay->bitmap == NULL) { 3375 PFKEYSTAT_INC(in_nomem); 3376 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3377 __func__)); 3378 error = ENOBUFS; 3379 goto fail; 3380 } 3381 sav->replay->bitmap_size = bitmap_size; 3382 sav->replay->wsize = replay; 3383 } 3384 } 3385 3386 /* Authentication keys */ 3387 if (!SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH)) { 3388 if (SADB_CHECKLEN(mhp, SADB_EXT_KEY_AUTH)) { 3389 error = EINVAL; 3390 goto fail; 3391 } 3392 error = 0; 3393 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH]; 3394 len = mhp->extlen[SADB_EXT_KEY_AUTH]; 3395 switch (mhp->msg->sadb_msg_satype) { 3396 case SADB_SATYPE_AH: 3397 case SADB_SATYPE_ESP: 3398 case SADB_X_SATYPE_TCPSIGNATURE: 3399 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3400 sav->alg_auth != SADB_X_AALG_NULL) 3401 error = EINVAL; 3402 break; 3403 case SADB_X_SATYPE_IPCOMP: 3404 default: 3405 error = EINVAL; 3406 break; 3407 } 3408 if (error) { 3409 ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n", 3410 __func__)); 3411 goto fail; 3412 } 3413 3414 sav->key_auth = key_dup_keymsg(key0, len, M_IPSEC_MISC); 3415 if (sav->key_auth == NULL ) { 3416 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3417 __func__)); 3418 PFKEYSTAT_INC(in_nomem); 3419 error = ENOBUFS; 3420 goto fail; 3421 } 3422 } 3423 3424 /* Encryption key */ 3425 if (!SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT)) { 3426 if (SADB_CHECKLEN(mhp, SADB_EXT_KEY_ENCRYPT)) { 3427 error = EINVAL; 3428 goto fail; 3429 } 3430 error = 0; 3431 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT]; 3432 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; 3433 switch (mhp->msg->sadb_msg_satype) { 3434 case SADB_SATYPE_ESP: 3435 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3436 sav->alg_enc != SADB_EALG_NULL) { 3437 error = EINVAL; 3438 break; 3439 } 3440 sav->key_enc = key_dup_keymsg(key0, len, M_IPSEC_MISC); 3441 if (sav->key_enc == NULL) { 3442 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3443 __func__)); 3444 PFKEYSTAT_INC(in_nomem); 3445 error = ENOBUFS; 3446 goto fail; 3447 } 3448 break; 3449 case SADB_X_SATYPE_IPCOMP: 3450 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) 3451 error = EINVAL; 3452 sav->key_enc = NULL; /*just in case*/ 3453 break; 3454 case SADB_SATYPE_AH: 3455 case SADB_X_SATYPE_TCPSIGNATURE: 3456 default: 3457 error = EINVAL; 3458 break; 3459 } 3460 if (error) { 3461 ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n", 3462 __func__)); 3463 goto fail; 3464 } 3465 } 3466 3467 /* set iv */ 3468 sav->ivlen = 0; 3469 switch (mhp->msg->sadb_msg_satype) { 3470 case SADB_SATYPE_AH: 3471 if (sav->flags & SADB_X_EXT_DERIV) { 3472 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3473 "given to AH SA.\n", __func__)); 3474 error = EINVAL; 3475 goto fail; 3476 } 3477 if (sav->alg_enc != SADB_EALG_NONE) { 3478 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3479 "mismated.\n", __func__)); 3480 error = EINVAL; 3481 goto fail; 3482 } 3483 error = xform_init(sav, XF_AH); 3484 break; 3485 case SADB_SATYPE_ESP: 3486 if ((sav->flags & (SADB_X_EXT_OLD | SADB_X_EXT_DERIV)) == 3487 (SADB_X_EXT_OLD | SADB_X_EXT_DERIV)) { 3488 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3489 "given to old-esp.\n", __func__)); 3490 error = EINVAL; 3491 goto fail; 3492 } 3493 error = xform_init(sav, XF_ESP); 3494 break; 3495 case SADB_X_SATYPE_IPCOMP: 3496 if (sav->alg_auth != SADB_AALG_NONE) { 3497 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3498 "mismated.\n", __func__)); 3499 error = EINVAL; 3500 goto fail; 3501 } 3502 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 && 3503 ntohl(sav->spi) >= 0x10000) { 3504 ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n", 3505 __func__)); 3506 error = EINVAL; 3507 goto fail; 3508 } 3509 error = xform_init(sav, XF_IPCOMP); 3510 break; 3511 case SADB_X_SATYPE_TCPSIGNATURE: 3512 if (sav->alg_enc != SADB_EALG_NONE) { 3513 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3514 "mismated.\n", __func__)); 3515 error = EINVAL; 3516 goto fail; 3517 } 3518 error = xform_init(sav, XF_TCPSIGNATURE); 3519 break; 3520 default: 3521 ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__)); 3522 error = EPROTONOSUPPORT; 3523 goto fail; 3524 } 3525 if (error) { 3526 ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n", 3527 __func__, mhp->msg->sadb_msg_satype)); 3528 goto fail; 3529 } 3530 3531 /* Handle NAT-T headers */ 3532 error = key_setnatt(sav, mhp); 3533 if (error != 0) 3534 goto fail; 3535 3536 /* Initialize lifetime for CURRENT */ 3537 sav->firstused = 0; 3538 sav->created = time_second; 3539 3540 /* lifetimes for HARD and SOFT */ 3541 error = key_updatelifetimes(sav, mhp); 3542 if (error == 0) 3543 return (0); 3544 fail: 3545 key_cleansav(sav); 3546 return (error); 3547 } 3548 3549 /* 3550 * subroutine for SADB_GET and SADB_DUMP. 3551 */ 3552 static struct mbuf * 3553 key_setdumpsa(struct secasvar *sav, uint8_t type, uint8_t satype, 3554 uint32_t seq, uint32_t pid) 3555 { 3556 struct seclifetime lft_c; 3557 struct mbuf *result = NULL, *tres = NULL, *m; 3558 int i, dumporder[] = { 3559 SADB_EXT_SA, SADB_X_EXT_SA2, SADB_X_EXT_SA_REPLAY, 3560 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 3561 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, 3562 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, 3563 SADB_EXT_KEY_AUTH, SADB_EXT_KEY_ENCRYPT, 3564 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST, 3565 SADB_EXT_SENSITIVITY, 3566 SADB_X_EXT_NAT_T_TYPE, 3567 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT, 3568 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR, 3569 SADB_X_EXT_NAT_T_FRAG, 3570 }; 3571 uint32_t replay_count; 3572 3573 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt); 3574 if (m == NULL) 3575 goto fail; 3576 result = m; 3577 3578 for (i = nitems(dumporder) - 1; i >= 0; i--) { 3579 m = NULL; 3580 switch (dumporder[i]) { 3581 case SADB_EXT_SA: 3582 m = key_setsadbsa(sav); 3583 if (!m) 3584 goto fail; 3585 break; 3586 3587 case SADB_X_EXT_SA2: 3588 SECASVAR_LOCK(sav); 3589 replay_count = sav->replay ? sav->replay->count : 0; 3590 SECASVAR_UNLOCK(sav); 3591 m = key_setsadbxsa2(sav->sah->saidx.mode, replay_count, 3592 sav->sah->saidx.reqid); 3593 if (!m) 3594 goto fail; 3595 break; 3596 3597 case SADB_X_EXT_SA_REPLAY: 3598 if (sav->replay == NULL || 3599 sav->replay->wsize <= UINT8_MAX) 3600 continue; 3601 3602 m = key_setsadbxsareplay(sav->replay->wsize); 3603 if (!m) 3604 goto fail; 3605 break; 3606 3607 case SADB_EXT_ADDRESS_SRC: 3608 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3609 &sav->sah->saidx.src.sa, 3610 FULLMASK, IPSEC_ULPROTO_ANY); 3611 if (!m) 3612 goto fail; 3613 break; 3614 3615 case SADB_EXT_ADDRESS_DST: 3616 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3617 &sav->sah->saidx.dst.sa, 3618 FULLMASK, IPSEC_ULPROTO_ANY); 3619 if (!m) 3620 goto fail; 3621 break; 3622 3623 case SADB_EXT_KEY_AUTH: 3624 if (!sav->key_auth) 3625 continue; 3626 m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH); 3627 if (!m) 3628 goto fail; 3629 break; 3630 3631 case SADB_EXT_KEY_ENCRYPT: 3632 if (!sav->key_enc) 3633 continue; 3634 m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT); 3635 if (!m) 3636 goto fail; 3637 break; 3638 3639 case SADB_EXT_LIFETIME_CURRENT: 3640 lft_c.addtime = sav->created; 3641 lft_c.allocations = (uint32_t)counter_u64_fetch( 3642 sav->lft_c_allocations); 3643 lft_c.bytes = counter_u64_fetch(sav->lft_c_bytes); 3644 lft_c.usetime = sav->firstused; 3645 m = key_setlifetime(&lft_c, SADB_EXT_LIFETIME_CURRENT); 3646 if (!m) 3647 goto fail; 3648 break; 3649 3650 case SADB_EXT_LIFETIME_HARD: 3651 if (!sav->lft_h) 3652 continue; 3653 m = key_setlifetime(sav->lft_h, 3654 SADB_EXT_LIFETIME_HARD); 3655 if (!m) 3656 goto fail; 3657 break; 3658 3659 case SADB_EXT_LIFETIME_SOFT: 3660 if (!sav->lft_s) 3661 continue; 3662 m = key_setlifetime(sav->lft_s, 3663 SADB_EXT_LIFETIME_SOFT); 3664 3665 if (!m) 3666 goto fail; 3667 break; 3668 3669 case SADB_X_EXT_NAT_T_TYPE: 3670 if (sav->natt == NULL) 3671 continue; 3672 m = key_setsadbxtype(UDP_ENCAP_ESPINUDP); 3673 if (!m) 3674 goto fail; 3675 break; 3676 3677 case SADB_X_EXT_NAT_T_DPORT: 3678 if (sav->natt == NULL) 3679 continue; 3680 m = key_setsadbxport(sav->natt->dport, 3681 SADB_X_EXT_NAT_T_DPORT); 3682 if (!m) 3683 goto fail; 3684 break; 3685 3686 case SADB_X_EXT_NAT_T_SPORT: 3687 if (sav->natt == NULL) 3688 continue; 3689 m = key_setsadbxport(sav->natt->sport, 3690 SADB_X_EXT_NAT_T_SPORT); 3691 if (!m) 3692 goto fail; 3693 break; 3694 3695 case SADB_X_EXT_NAT_T_OAI: 3696 if (sav->natt == NULL || 3697 (sav->natt->flags & IPSEC_NATT_F_OAI) == 0) 3698 continue; 3699 m = key_setsadbaddr(SADB_X_EXT_NAT_T_OAI, 3700 &sav->natt->oai.sa, FULLMASK, IPSEC_ULPROTO_ANY); 3701 if (!m) 3702 goto fail; 3703 break; 3704 case SADB_X_EXT_NAT_T_OAR: 3705 if (sav->natt == NULL || 3706 (sav->natt->flags & IPSEC_NATT_F_OAR) == 0) 3707 continue; 3708 m = key_setsadbaddr(SADB_X_EXT_NAT_T_OAR, 3709 &sav->natt->oar.sa, FULLMASK, IPSEC_ULPROTO_ANY); 3710 if (!m) 3711 goto fail; 3712 break; 3713 case SADB_X_EXT_NAT_T_FRAG: 3714 /* We do not (yet) support those. */ 3715 continue; 3716 3717 case SADB_EXT_ADDRESS_PROXY: 3718 case SADB_EXT_IDENTITY_SRC: 3719 case SADB_EXT_IDENTITY_DST: 3720 /* XXX: should we brought from SPD ? */ 3721 case SADB_EXT_SENSITIVITY: 3722 default: 3723 continue; 3724 } 3725 3726 if (!m) 3727 goto fail; 3728 if (tres) 3729 m_cat(m, tres); 3730 tres = m; 3731 } 3732 3733 m_cat(result, tres); 3734 tres = NULL; 3735 if (result->m_len < sizeof(struct sadb_msg)) { 3736 result = m_pullup(result, sizeof(struct sadb_msg)); 3737 if (result == NULL) 3738 goto fail; 3739 } 3740 3741 result->m_pkthdr.len = 0; 3742 for (m = result; m; m = m->m_next) 3743 result->m_pkthdr.len += m->m_len; 3744 3745 mtod(result, struct sadb_msg *)->sadb_msg_len = 3746 PFKEY_UNIT64(result->m_pkthdr.len); 3747 3748 return result; 3749 3750 fail: 3751 m_freem(result); 3752 m_freem(tres); 3753 return NULL; 3754 } 3755 3756 /* 3757 * set data into sadb_msg. 3758 */ 3759 static struct mbuf * 3760 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq, 3761 pid_t pid, u_int16_t reserved) 3762 { 3763 struct mbuf *m; 3764 struct sadb_msg *p; 3765 int len; 3766 3767 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 3768 if (len > MCLBYTES) 3769 return NULL; 3770 MGETHDR(m, M_NOWAIT, MT_DATA); 3771 if (m && len > MHLEN) { 3772 if (!(MCLGET(m, M_NOWAIT))) { 3773 m_freem(m); 3774 m = NULL; 3775 } 3776 } 3777 if (!m) 3778 return NULL; 3779 m->m_pkthdr.len = m->m_len = len; 3780 m->m_next = NULL; 3781 3782 p = mtod(m, struct sadb_msg *); 3783 3784 bzero(p, len); 3785 p->sadb_msg_version = PF_KEY_V2; 3786 p->sadb_msg_type = type; 3787 p->sadb_msg_errno = 0; 3788 p->sadb_msg_satype = satype; 3789 p->sadb_msg_len = PFKEY_UNIT64(tlen); 3790 p->sadb_msg_reserved = reserved; 3791 p->sadb_msg_seq = seq; 3792 p->sadb_msg_pid = (u_int32_t)pid; 3793 3794 return m; 3795 } 3796 3797 /* 3798 * copy secasvar data into sadb_address. 3799 */ 3800 static struct mbuf * 3801 key_setsadbsa(struct secasvar *sav) 3802 { 3803 struct mbuf *m; 3804 struct sadb_sa *p; 3805 int len; 3806 3807 len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); 3808 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3809 if (m == NULL) 3810 return (NULL); 3811 m_align(m, len); 3812 m->m_len = len; 3813 p = mtod(m, struct sadb_sa *); 3814 bzero(p, len); 3815 p->sadb_sa_len = PFKEY_UNIT64(len); 3816 p->sadb_sa_exttype = SADB_EXT_SA; 3817 p->sadb_sa_spi = sav->spi; 3818 p->sadb_sa_replay = sav->replay ? 3819 (sav->replay->wsize > UINT8_MAX ? UINT8_MAX : 3820 sav->replay->wsize): 0; 3821 p->sadb_sa_state = sav->state; 3822 p->sadb_sa_auth = sav->alg_auth; 3823 p->sadb_sa_encrypt = sav->alg_enc; 3824 p->sadb_sa_flags = sav->flags & SADB_KEY_FLAGS_MAX; 3825 return (m); 3826 } 3827 3828 /* 3829 * set data into sadb_address. 3830 */ 3831 static struct mbuf * 3832 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, 3833 u_int8_t prefixlen, u_int16_t ul_proto) 3834 { 3835 struct mbuf *m; 3836 struct sadb_address *p; 3837 size_t len; 3838 3839 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + 3840 PFKEY_ALIGN8(saddr->sa_len); 3841 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3842 if (m == NULL) 3843 return (NULL); 3844 m_align(m, len); 3845 m->m_len = len; 3846 p = mtod(m, struct sadb_address *); 3847 3848 bzero(p, len); 3849 p->sadb_address_len = PFKEY_UNIT64(len); 3850 p->sadb_address_exttype = exttype; 3851 p->sadb_address_proto = ul_proto; 3852 if (prefixlen == FULLMASK) { 3853 switch (saddr->sa_family) { 3854 case AF_INET: 3855 prefixlen = sizeof(struct in_addr) << 3; 3856 break; 3857 case AF_INET6: 3858 prefixlen = sizeof(struct in6_addr) << 3; 3859 break; 3860 default: 3861 ; /*XXX*/ 3862 } 3863 } 3864 p->sadb_address_prefixlen = prefixlen; 3865 p->sadb_address_reserved = 0; 3866 3867 bcopy(saddr, 3868 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)), 3869 saddr->sa_len); 3870 3871 return m; 3872 } 3873 3874 /* 3875 * set data into sadb_x_sa2. 3876 */ 3877 static struct mbuf * 3878 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid) 3879 { 3880 struct mbuf *m; 3881 struct sadb_x_sa2 *p; 3882 size_t len; 3883 3884 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); 3885 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3886 if (m == NULL) 3887 return (NULL); 3888 m_align(m, len); 3889 m->m_len = len; 3890 p = mtod(m, struct sadb_x_sa2 *); 3891 3892 bzero(p, len); 3893 p->sadb_x_sa2_len = PFKEY_UNIT64(len); 3894 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 3895 p->sadb_x_sa2_mode = mode; 3896 p->sadb_x_sa2_reserved1 = 0; 3897 p->sadb_x_sa2_reserved2 = 0; 3898 p->sadb_x_sa2_sequence = seq; 3899 p->sadb_x_sa2_reqid = reqid; 3900 3901 return m; 3902 } 3903 3904 /* 3905 * Set data into sadb_x_sa_replay. 3906 */ 3907 static struct mbuf * 3908 key_setsadbxsareplay(u_int32_t replay) 3909 { 3910 struct mbuf *m; 3911 struct sadb_x_sa_replay *p; 3912 size_t len; 3913 3914 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa_replay)); 3915 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3916 if (m == NULL) 3917 return (NULL); 3918 m_align(m, len); 3919 m->m_len = len; 3920 p = mtod(m, struct sadb_x_sa_replay *); 3921 3922 bzero(p, len); 3923 p->sadb_x_sa_replay_len = PFKEY_UNIT64(len); 3924 p->sadb_x_sa_replay_exttype = SADB_X_EXT_SA_REPLAY; 3925 p->sadb_x_sa_replay_replay = (replay << 3); 3926 3927 return m; 3928 } 3929 3930 /* 3931 * Set a type in sadb_x_nat_t_type. 3932 */ 3933 static struct mbuf * 3934 key_setsadbxtype(u_int16_t type) 3935 { 3936 struct mbuf *m; 3937 size_t len; 3938 struct sadb_x_nat_t_type *p; 3939 3940 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type)); 3941 3942 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3943 if (m == NULL) 3944 return (NULL); 3945 m_align(m, len); 3946 m->m_len = len; 3947 p = mtod(m, struct sadb_x_nat_t_type *); 3948 3949 bzero(p, len); 3950 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len); 3951 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; 3952 p->sadb_x_nat_t_type_type = type; 3953 3954 return (m); 3955 } 3956 /* 3957 * Set a port in sadb_x_nat_t_port. 3958 * In contrast to default RFC 2367 behaviour, port is in network byte order. 3959 */ 3960 static struct mbuf * 3961 key_setsadbxport(u_int16_t port, u_int16_t type) 3962 { 3963 struct mbuf *m; 3964 size_t len; 3965 struct sadb_x_nat_t_port *p; 3966 3967 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port)); 3968 3969 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3970 if (m == NULL) 3971 return (NULL); 3972 m_align(m, len); 3973 m->m_len = len; 3974 p = mtod(m, struct sadb_x_nat_t_port *); 3975 3976 bzero(p, len); 3977 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len); 3978 p->sadb_x_nat_t_port_exttype = type; 3979 p->sadb_x_nat_t_port_port = port; 3980 3981 return (m); 3982 } 3983 3984 /* 3985 * Get port from sockaddr. Port is in network byte order. 3986 */ 3987 uint16_t 3988 key_portfromsaddr(struct sockaddr *sa) 3989 { 3990 3991 switch (sa->sa_family) { 3992 #ifdef INET 3993 case AF_INET: 3994 return ((struct sockaddr_in *)sa)->sin_port; 3995 #endif 3996 #ifdef INET6 3997 case AF_INET6: 3998 return ((struct sockaddr_in6 *)sa)->sin6_port; 3999 #endif 4000 } 4001 return (0); 4002 } 4003 4004 /* 4005 * Set port in struct sockaddr. Port is in network byte order. 4006 */ 4007 void 4008 key_porttosaddr(struct sockaddr *sa, uint16_t port) 4009 { 4010 4011 switch (sa->sa_family) { 4012 #ifdef INET 4013 case AF_INET: 4014 ((struct sockaddr_in *)sa)->sin_port = port; 4015 break; 4016 #endif 4017 #ifdef INET6 4018 case AF_INET6: 4019 ((struct sockaddr_in6 *)sa)->sin6_port = port; 4020 break; 4021 #endif 4022 default: 4023 ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n", 4024 __func__, sa->sa_family)); 4025 break; 4026 } 4027 } 4028 4029 /* 4030 * set data into sadb_x_policy 4031 */ 4032 static struct mbuf * 4033 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id, u_int32_t priority) 4034 { 4035 struct mbuf *m; 4036 struct sadb_x_policy *p; 4037 size_t len; 4038 4039 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); 4040 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 4041 if (m == NULL) 4042 return (NULL); 4043 m_align(m, len); 4044 m->m_len = len; 4045 p = mtod(m, struct sadb_x_policy *); 4046 4047 bzero(p, len); 4048 p->sadb_x_policy_len = PFKEY_UNIT64(len); 4049 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 4050 p->sadb_x_policy_type = type; 4051 p->sadb_x_policy_dir = dir; 4052 p->sadb_x_policy_id = id; 4053 p->sadb_x_policy_priority = priority; 4054 4055 return m; 4056 } 4057 4058 /* %%% utilities */ 4059 /* Take a key message (sadb_key) from the socket and turn it into one 4060 * of the kernel's key structures (seckey). 4061 * 4062 * IN: pointer to the src 4063 * OUT: NULL no more memory 4064 */ 4065 struct seckey * 4066 key_dup_keymsg(const struct sadb_key *src, size_t len, 4067 struct malloc_type *type) 4068 { 4069 struct seckey *dst; 4070 4071 dst = malloc(sizeof(*dst), type, M_NOWAIT); 4072 if (dst != NULL) { 4073 dst->bits = src->sadb_key_bits; 4074 dst->key_data = malloc(len, type, M_NOWAIT); 4075 if (dst->key_data != NULL) { 4076 bcopy((const char *)(src + 1), dst->key_data, len); 4077 } else { 4078 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 4079 __func__)); 4080 free(dst, type); 4081 dst = NULL; 4082 } 4083 } else { 4084 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 4085 __func__)); 4086 } 4087 return (dst); 4088 } 4089 4090 /* Take a lifetime message (sadb_lifetime) passed in on a socket and 4091 * turn it into one of the kernel's lifetime structures (seclifetime). 4092 * 4093 * IN: pointer to the destination, source and malloc type 4094 * OUT: NULL, no more memory 4095 */ 4096 4097 static struct seclifetime * 4098 key_dup_lifemsg(const struct sadb_lifetime *src, struct malloc_type *type) 4099 { 4100 struct seclifetime *dst; 4101 4102 dst = malloc(sizeof(*dst), type, M_NOWAIT); 4103 if (dst == NULL) { 4104 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 4105 return (NULL); 4106 } 4107 dst->allocations = src->sadb_lifetime_allocations; 4108 dst->bytes = src->sadb_lifetime_bytes; 4109 dst->addtime = src->sadb_lifetime_addtime; 4110 dst->usetime = src->sadb_lifetime_usetime; 4111 return (dst); 4112 } 4113 4114 /* 4115 * compare two secasindex structure. 4116 * flag can specify to compare 2 saidxes. 4117 * compare two secasindex structure without both mode and reqid. 4118 * don't compare port. 4119 * IN: 4120 * saidx0: source, it can be in SAD. 4121 * saidx1: object. 4122 * OUT: 4123 * 1 : equal 4124 * 0 : not equal 4125 */ 4126 static int 4127 key_cmpsaidx(const struct secasindex *saidx0, const struct secasindex *saidx1, 4128 int flag) 4129 { 4130 4131 /* sanity */ 4132 if (saidx0 == NULL && saidx1 == NULL) 4133 return 1; 4134 4135 if (saidx0 == NULL || saidx1 == NULL) 4136 return 0; 4137 4138 if (saidx0->proto != saidx1->proto) 4139 return 0; 4140 4141 if (flag == CMP_EXACTLY) { 4142 if (saidx0->mode != saidx1->mode) 4143 return 0; 4144 if (saidx0->reqid != saidx1->reqid) 4145 return 0; 4146 if (bcmp(&saidx0->src, &saidx1->src, 4147 saidx0->src.sa.sa_len) != 0 || 4148 bcmp(&saidx0->dst, &saidx1->dst, 4149 saidx0->dst.sa.sa_len) != 0) 4150 return 0; 4151 } else { 4152 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ 4153 if (flag == CMP_MODE_REQID || flag == CMP_REQID) { 4154 /* 4155 * If reqid of SPD is non-zero, unique SA is required. 4156 * The result must be of same reqid in this case. 4157 */ 4158 if (saidx1->reqid != 0 && 4159 saidx0->reqid != saidx1->reqid) 4160 return 0; 4161 } 4162 4163 if (flag == CMP_MODE_REQID) { 4164 if (saidx0->mode != IPSEC_MODE_ANY 4165 && saidx0->mode != saidx1->mode) 4166 return 0; 4167 } 4168 4169 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, 0) != 0) 4170 return 0; 4171 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, 0) != 0) 4172 return 0; 4173 } 4174 4175 return 1; 4176 } 4177 4178 /* 4179 * compare two secindex structure exactly. 4180 * IN: 4181 * spidx0: source, it is often in SPD. 4182 * spidx1: object, it is often from PFKEY message. 4183 * OUT: 4184 * 1 : equal 4185 * 0 : not equal 4186 */ 4187 static int 4188 key_cmpspidx_exactly(struct secpolicyindex *spidx0, 4189 struct secpolicyindex *spidx1) 4190 { 4191 /* sanity */ 4192 if (spidx0 == NULL && spidx1 == NULL) 4193 return 1; 4194 4195 if (spidx0 == NULL || spidx1 == NULL) 4196 return 0; 4197 4198 if (spidx0->prefs != spidx1->prefs 4199 || spidx0->prefd != spidx1->prefd 4200 || spidx0->ul_proto != spidx1->ul_proto 4201 || spidx0->dir != spidx1->dir) 4202 return 0; 4203 4204 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 && 4205 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0; 4206 } 4207 4208 /* 4209 * compare two secindex structure with mask. 4210 * IN: 4211 * spidx0: source, it is often in SPD. 4212 * spidx1: object, it is often from IP header. 4213 * OUT: 4214 * 1 : equal 4215 * 0 : not equal 4216 */ 4217 static int 4218 key_cmpspidx_withmask(struct secpolicyindex *spidx0, 4219 struct secpolicyindex *spidx1) 4220 { 4221 /* sanity */ 4222 if (spidx0 == NULL && spidx1 == NULL) 4223 return 1; 4224 4225 if (spidx0 == NULL || spidx1 == NULL) 4226 return 0; 4227 4228 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || 4229 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || 4230 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || 4231 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) 4232 return 0; 4233 4234 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ 4235 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY 4236 && spidx0->ul_proto != spidx1->ul_proto) 4237 return 0; 4238 4239 switch (spidx0->src.sa.sa_family) { 4240 case AF_INET: 4241 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY 4242 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) 4243 return 0; 4244 if (!key_bbcmp(&spidx0->src.sin.sin_addr, 4245 &spidx1->src.sin.sin_addr, spidx0->prefs)) 4246 return 0; 4247 break; 4248 case AF_INET6: 4249 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY 4250 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) 4251 return 0; 4252 /* 4253 * scope_id check. if sin6_scope_id is 0, we regard it 4254 * as a wildcard scope, which matches any scope zone ID. 4255 */ 4256 if (spidx0->src.sin6.sin6_scope_id && 4257 spidx1->src.sin6.sin6_scope_id && 4258 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) 4259 return 0; 4260 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr, 4261 &spidx1->src.sin6.sin6_addr, spidx0->prefs)) 4262 return 0; 4263 break; 4264 default: 4265 /* XXX */ 4266 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) 4267 return 0; 4268 break; 4269 } 4270 4271 switch (spidx0->dst.sa.sa_family) { 4272 case AF_INET: 4273 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY 4274 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) 4275 return 0; 4276 if (!key_bbcmp(&spidx0->dst.sin.sin_addr, 4277 &spidx1->dst.sin.sin_addr, spidx0->prefd)) 4278 return 0; 4279 break; 4280 case AF_INET6: 4281 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY 4282 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) 4283 return 0; 4284 /* 4285 * scope_id check. if sin6_scope_id is 0, we regard it 4286 * as a wildcard scope, which matches any scope zone ID. 4287 */ 4288 if (spidx0->dst.sin6.sin6_scope_id && 4289 spidx1->dst.sin6.sin6_scope_id && 4290 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) 4291 return 0; 4292 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr, 4293 &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) 4294 return 0; 4295 break; 4296 default: 4297 /* XXX */ 4298 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) 4299 return 0; 4300 break; 4301 } 4302 4303 /* XXX Do we check other field ? e.g. flowinfo */ 4304 4305 return 1; 4306 } 4307 4308 #ifdef satosin 4309 #undef satosin 4310 #endif 4311 #define satosin(s) ((const struct sockaddr_in *)s) 4312 #ifdef satosin6 4313 #undef satosin6 4314 #endif 4315 #define satosin6(s) ((const struct sockaddr_in6 *)s) 4316 /* returns 0 on match */ 4317 int 4318 key_sockaddrcmp(const struct sockaddr *sa1, const struct sockaddr *sa2, 4319 int port) 4320 { 4321 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) 4322 return 1; 4323 4324 switch (sa1->sa_family) { 4325 #ifdef INET 4326 case AF_INET: 4327 if (sa1->sa_len != sizeof(struct sockaddr_in)) 4328 return 1; 4329 if (satosin(sa1)->sin_addr.s_addr != 4330 satosin(sa2)->sin_addr.s_addr) { 4331 return 1; 4332 } 4333 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port) 4334 return 1; 4335 break; 4336 #endif 4337 #ifdef INET6 4338 case AF_INET6: 4339 if (sa1->sa_len != sizeof(struct sockaddr_in6)) 4340 return 1; /*EINVAL*/ 4341 if (satosin6(sa1)->sin6_scope_id != 4342 satosin6(sa2)->sin6_scope_id) { 4343 return 1; 4344 } 4345 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr, 4346 &satosin6(sa2)->sin6_addr)) { 4347 return 1; 4348 } 4349 if (port && 4350 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) { 4351 return 1; 4352 } 4353 break; 4354 #endif 4355 default: 4356 if (bcmp(sa1, sa2, sa1->sa_len) != 0) 4357 return 1; 4358 break; 4359 } 4360 4361 return 0; 4362 } 4363 4364 /* returns 0 on match */ 4365 int 4366 key_sockaddrcmp_withmask(const struct sockaddr *sa1, 4367 const struct sockaddr *sa2, size_t mask) 4368 { 4369 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) 4370 return (1); 4371 4372 switch (sa1->sa_family) { 4373 #ifdef INET 4374 case AF_INET: 4375 return (!key_bbcmp(&satosin(sa1)->sin_addr, 4376 &satosin(sa2)->sin_addr, mask)); 4377 #endif 4378 #ifdef INET6 4379 case AF_INET6: 4380 if (satosin6(sa1)->sin6_scope_id != 4381 satosin6(sa2)->sin6_scope_id) 4382 return (1); 4383 return (!key_bbcmp(&satosin6(sa1)->sin6_addr, 4384 &satosin6(sa2)->sin6_addr, mask)); 4385 #endif 4386 } 4387 return (1); 4388 } 4389 #undef satosin 4390 #undef satosin6 4391 4392 /* 4393 * compare two buffers with mask. 4394 * IN: 4395 * addr1: source 4396 * addr2: object 4397 * bits: Number of bits to compare 4398 * OUT: 4399 * 1 : equal 4400 * 0 : not equal 4401 */ 4402 static int 4403 key_bbcmp(const void *a1, const void *a2, u_int bits) 4404 { 4405 const unsigned char *p1 = a1; 4406 const unsigned char *p2 = a2; 4407 4408 /* XXX: This could be considerably faster if we compare a word 4409 * at a time, but it is complicated on LSB Endian machines */ 4410 4411 /* Handle null pointers */ 4412 if (p1 == NULL || p2 == NULL) 4413 return (p1 == p2); 4414 4415 while (bits >= 8) { 4416 if (*p1++ != *p2++) 4417 return 0; 4418 bits -= 8; 4419 } 4420 4421 if (bits > 0) { 4422 u_int8_t mask = ~((1<<(8-bits))-1); 4423 if ((*p1 & mask) != (*p2 & mask)) 4424 return 0; 4425 } 4426 return 1; /* Match! */ 4427 } 4428 4429 static void 4430 key_flush_spd(time_t now) 4431 { 4432 SPTREE_RLOCK_TRACKER; 4433 struct secpolicy_list drainq; 4434 struct secpolicy *sp, *nextsp; 4435 u_int dir; 4436 4437 LIST_INIT(&drainq); 4438 SPTREE_RLOCK(); 4439 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 4440 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 4441 if (sp->lifetime == 0 && sp->validtime == 0) 4442 continue; 4443 if ((sp->lifetime && 4444 now - sp->created > sp->lifetime) || 4445 (sp->validtime && 4446 now - sp->lastused > sp->validtime)) { 4447 /* Hold extra reference to send SPDEXPIRE */ 4448 SP_ADDREF(sp); 4449 LIST_INSERT_HEAD(&drainq, sp, drainq); 4450 } 4451 } 4452 } 4453 SPTREE_RUNLOCK(); 4454 if (LIST_EMPTY(&drainq)) 4455 return; 4456 4457 SPTREE_WLOCK(); 4458 sp = LIST_FIRST(&drainq); 4459 while (sp != NULL) { 4460 nextsp = LIST_NEXT(sp, drainq); 4461 /* Check that SP is still linked */ 4462 if (sp->state != IPSEC_SPSTATE_ALIVE) { 4463 LIST_REMOVE(sp, drainq); 4464 key_freesp(&sp); /* release extra reference */ 4465 sp = nextsp; 4466 continue; 4467 } 4468 TAILQ_REMOVE(&V_sptree[sp->spidx.dir], sp, chain); 4469 V_spd_size--; 4470 LIST_REMOVE(sp, idhash); 4471 sp->state = IPSEC_SPSTATE_DEAD; 4472 sp = nextsp; 4473 } 4474 V_sp_genid++; 4475 SPTREE_WUNLOCK(); 4476 if (SPDCACHE_ENABLED()) 4477 spdcache_clear(); 4478 4479 sp = LIST_FIRST(&drainq); 4480 while (sp != NULL) { 4481 nextsp = LIST_NEXT(sp, drainq); 4482 key_spdexpire(sp); 4483 key_freesp(&sp); /* release extra reference */ 4484 key_freesp(&sp); /* release last reference */ 4485 sp = nextsp; 4486 } 4487 } 4488 4489 static void 4490 key_flush_sad(time_t now) 4491 { 4492 SAHTREE_RLOCK_TRACKER; 4493 struct secashead_list emptyq; 4494 struct secasvar_list drainq, hexpireq, sexpireq, freeq; 4495 struct secashead *sah, *nextsah; 4496 struct secasvar *sav, *nextsav; 4497 4498 LIST_INIT(&drainq); 4499 LIST_INIT(&hexpireq); 4500 LIST_INIT(&sexpireq); 4501 LIST_INIT(&emptyq); 4502 4503 SAHTREE_RLOCK(); 4504 TAILQ_FOREACH(sah, &V_sahtree, chain) { 4505 /* Check for empty SAH */ 4506 if (TAILQ_EMPTY(&sah->savtree_larval) && 4507 TAILQ_EMPTY(&sah->savtree_alive)) { 4508 SAH_ADDREF(sah); 4509 LIST_INSERT_HEAD(&emptyq, sah, drainq); 4510 continue; 4511 } 4512 /* Add all stale LARVAL SAs into drainq */ 4513 TAILQ_FOREACH(sav, &sah->savtree_larval, chain) { 4514 if (now - sav->created < V_key_larval_lifetime) 4515 continue; 4516 SAV_ADDREF(sav); 4517 LIST_INSERT_HEAD(&drainq, sav, drainq); 4518 } 4519 TAILQ_FOREACH(sav, &sah->savtree_alive, chain) { 4520 /* lifetimes aren't specified */ 4521 if (sav->lft_h == NULL) 4522 continue; 4523 SECASVAR_LOCK(sav); 4524 /* 4525 * Check again with lock held, because it may 4526 * be updated by SADB_UPDATE. 4527 */ 4528 if (sav->lft_h == NULL) { 4529 SECASVAR_UNLOCK(sav); 4530 continue; 4531 } 4532 /* 4533 * RFC 2367: 4534 * HARD lifetimes MUST take precedence over SOFT 4535 * lifetimes, meaning if the HARD and SOFT lifetimes 4536 * are the same, the HARD lifetime will appear on the 4537 * EXPIRE message. 4538 */ 4539 /* check HARD lifetime */ 4540 if ((sav->lft_h->addtime != 0 && 4541 now - sav->created > sav->lft_h->addtime) || 4542 (sav->lft_h->usetime != 0 && sav->firstused && 4543 now - sav->firstused > sav->lft_h->usetime) || 4544 (sav->lft_h->bytes != 0 && counter_u64_fetch( 4545 sav->lft_c_bytes) > sav->lft_h->bytes)) { 4546 SECASVAR_UNLOCK(sav); 4547 SAV_ADDREF(sav); 4548 LIST_INSERT_HEAD(&hexpireq, sav, drainq); 4549 continue; 4550 } 4551 /* check SOFT lifetime (only for MATURE SAs) */ 4552 if (sav->state == SADB_SASTATE_MATURE && ( 4553 (sav->lft_s->addtime != 0 && 4554 now - sav->created > sav->lft_s->addtime) || 4555 (sav->lft_s->usetime != 0 && sav->firstused && 4556 now - sav->firstused > sav->lft_s->usetime) || 4557 (sav->lft_s->bytes != 0 && counter_u64_fetch( 4558 sav->lft_c_bytes) > sav->lft_s->bytes) || 4559 (!(sav->flags & SADB_X_SAFLAGS_ESN) && 4560 (sav->replay != NULL) && ( 4561 (sav->replay->count > UINT32_80PCT) || 4562 (sav->replay->last > UINT32_80PCT))))) { 4563 SECASVAR_UNLOCK(sav); 4564 SAV_ADDREF(sav); 4565 LIST_INSERT_HEAD(&sexpireq, sav, drainq); 4566 continue; 4567 } 4568 SECASVAR_UNLOCK(sav); 4569 } 4570 } 4571 SAHTREE_RUNLOCK(); 4572 4573 if (LIST_EMPTY(&emptyq) && LIST_EMPTY(&drainq) && 4574 LIST_EMPTY(&hexpireq) && LIST_EMPTY(&sexpireq)) 4575 return; 4576 4577 LIST_INIT(&freeq); 4578 SAHTREE_WLOCK(); 4579 /* Unlink stale LARVAL SAs */ 4580 sav = LIST_FIRST(&drainq); 4581 while (sav != NULL) { 4582 nextsav = LIST_NEXT(sav, drainq); 4583 /* Check that SA is still LARVAL */ 4584 if (sav->state != SADB_SASTATE_LARVAL) { 4585 LIST_REMOVE(sav, drainq); 4586 LIST_INSERT_HEAD(&freeq, sav, drainq); 4587 sav = nextsav; 4588 continue; 4589 } 4590 TAILQ_REMOVE(&sav->sah->savtree_larval, sav, chain); 4591 LIST_REMOVE(sav, spihash); 4592 sav->state = SADB_SASTATE_DEAD; 4593 sav = nextsav; 4594 } 4595 /* Unlink all SAs with expired HARD lifetime */ 4596 sav = LIST_FIRST(&hexpireq); 4597 while (sav != NULL) { 4598 nextsav = LIST_NEXT(sav, drainq); 4599 /* Check that SA is not unlinked */ 4600 if (sav->state == SADB_SASTATE_DEAD) { 4601 LIST_REMOVE(sav, drainq); 4602 LIST_INSERT_HEAD(&freeq, sav, drainq); 4603 sav = nextsav; 4604 continue; 4605 } 4606 TAILQ_REMOVE(&sav->sah->savtree_alive, sav, chain); 4607 LIST_REMOVE(sav, spihash); 4608 sav->state = SADB_SASTATE_DEAD; 4609 sav = nextsav; 4610 } 4611 /* Mark all SAs with expired SOFT lifetime as DYING */ 4612 sav = LIST_FIRST(&sexpireq); 4613 while (sav != NULL) { 4614 nextsav = LIST_NEXT(sav, drainq); 4615 /* Check that SA is not unlinked */ 4616 if (sav->state == SADB_SASTATE_DEAD) { 4617 LIST_REMOVE(sav, drainq); 4618 LIST_INSERT_HEAD(&freeq, sav, drainq); 4619 sav = nextsav; 4620 continue; 4621 } 4622 /* 4623 * NOTE: this doesn't change SA order in the chain. 4624 */ 4625 sav->state = SADB_SASTATE_DYING; 4626 sav = nextsav; 4627 } 4628 /* Unlink empty SAHs */ 4629 sah = LIST_FIRST(&emptyq); 4630 while (sah != NULL) { 4631 nextsah = LIST_NEXT(sah, drainq); 4632 /* Check that SAH is still empty and not unlinked */ 4633 if (sah->state == SADB_SASTATE_DEAD || 4634 !TAILQ_EMPTY(&sah->savtree_larval) || 4635 !TAILQ_EMPTY(&sah->savtree_alive)) { 4636 LIST_REMOVE(sah, drainq); 4637 key_freesah(&sah); /* release extra reference */ 4638 sah = nextsah; 4639 continue; 4640 } 4641 TAILQ_REMOVE(&V_sahtree, sah, chain); 4642 LIST_REMOVE(sah, addrhash); 4643 sah->state = SADB_SASTATE_DEAD; 4644 sah = nextsah; 4645 } 4646 SAHTREE_WUNLOCK(); 4647 4648 /* Send SPDEXPIRE messages */ 4649 sav = LIST_FIRST(&hexpireq); 4650 while (sav != NULL) { 4651 nextsav = LIST_NEXT(sav, drainq); 4652 key_expire(sav, 1); 4653 key_freesah(&sav->sah); /* release reference from SAV */ 4654 key_freesav(&sav); /* release extra reference */ 4655 key_freesav(&sav); /* release last reference */ 4656 sav = nextsav; 4657 } 4658 sav = LIST_FIRST(&sexpireq); 4659 while (sav != NULL) { 4660 nextsav = LIST_NEXT(sav, drainq); 4661 key_expire(sav, 0); 4662 key_freesav(&sav); /* release extra reference */ 4663 sav = nextsav; 4664 } 4665 /* Free stale LARVAL SAs */ 4666 sav = LIST_FIRST(&drainq); 4667 while (sav != NULL) { 4668 nextsav = LIST_NEXT(sav, drainq); 4669 key_freesah(&sav->sah); /* release reference from SAV */ 4670 key_freesav(&sav); /* release extra reference */ 4671 key_freesav(&sav); /* release last reference */ 4672 sav = nextsav; 4673 } 4674 /* Free SAs that were unlinked/changed by someone else */ 4675 sav = LIST_FIRST(&freeq); 4676 while (sav != NULL) { 4677 nextsav = LIST_NEXT(sav, drainq); 4678 key_freesav(&sav); /* release extra reference */ 4679 sav = nextsav; 4680 } 4681 /* Free empty SAH */ 4682 sah = LIST_FIRST(&emptyq); 4683 while (sah != NULL) { 4684 nextsah = LIST_NEXT(sah, drainq); 4685 key_freesah(&sah); /* release extra reference */ 4686 key_freesah(&sah); /* release last reference */ 4687 sah = nextsah; 4688 } 4689 } 4690 4691 static void 4692 key_flush_acq(time_t now) 4693 { 4694 struct secacq *acq, *nextacq; 4695 4696 /* ACQ tree */ 4697 ACQ_LOCK(); 4698 acq = LIST_FIRST(&V_acqtree); 4699 while (acq != NULL) { 4700 nextacq = LIST_NEXT(acq, chain); 4701 if (now - acq->created > V_key_blockacq_lifetime) { 4702 LIST_REMOVE(acq, chain); 4703 LIST_REMOVE(acq, addrhash); 4704 LIST_REMOVE(acq, seqhash); 4705 free(acq, M_IPSEC_SAQ); 4706 } 4707 acq = nextacq; 4708 } 4709 ACQ_UNLOCK(); 4710 } 4711 4712 static void 4713 key_flush_spacq(time_t now) 4714 { 4715 struct secspacq *acq, *nextacq; 4716 4717 /* SP ACQ tree */ 4718 SPACQ_LOCK(); 4719 for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) { 4720 nextacq = LIST_NEXT(acq, chain); 4721 if (now - acq->created > V_key_blockacq_lifetime 4722 && __LIST_CHAINED(acq)) { 4723 LIST_REMOVE(acq, chain); 4724 free(acq, M_IPSEC_SAQ); 4725 } 4726 } 4727 SPACQ_UNLOCK(); 4728 } 4729 4730 /* 4731 * time handler. 4732 * scanning SPD and SAD to check status for each entries, 4733 * and do to remove or to expire. 4734 * XXX: year 2038 problem may remain. 4735 */ 4736 static void 4737 key_timehandler(void *arg) 4738 { 4739 VNET_ITERATOR_DECL(vnet_iter); 4740 time_t now = time_second; 4741 4742 VNET_LIST_RLOCK_NOSLEEP(); 4743 VNET_FOREACH(vnet_iter) { 4744 CURVNET_SET(vnet_iter); 4745 key_flush_spd(now); 4746 key_flush_sad(now); 4747 key_flush_acq(now); 4748 key_flush_spacq(now); 4749 CURVNET_RESTORE(); 4750 } 4751 VNET_LIST_RUNLOCK_NOSLEEP(); 4752 4753 #ifndef IPSEC_DEBUG2 4754 /* do exchange to tick time !! */ 4755 callout_schedule(&key_timer, hz); 4756 #endif /* IPSEC_DEBUG2 */ 4757 } 4758 4759 u_long 4760 key_random(void) 4761 { 4762 u_long value; 4763 4764 arc4random_buf(&value, sizeof(value)); 4765 return value; 4766 } 4767 4768 /* 4769 * map SADB_SATYPE_* to IPPROTO_*. 4770 * if satype == SADB_SATYPE then satype is mapped to ~0. 4771 * OUT: 4772 * 0: invalid satype. 4773 */ 4774 static uint8_t 4775 key_satype2proto(uint8_t satype) 4776 { 4777 switch (satype) { 4778 case SADB_SATYPE_UNSPEC: 4779 return IPSEC_PROTO_ANY; 4780 case SADB_SATYPE_AH: 4781 return IPPROTO_AH; 4782 case SADB_SATYPE_ESP: 4783 return IPPROTO_ESP; 4784 case SADB_X_SATYPE_IPCOMP: 4785 return IPPROTO_IPCOMP; 4786 case SADB_X_SATYPE_TCPSIGNATURE: 4787 return IPPROTO_TCP; 4788 default: 4789 return 0; 4790 } 4791 /* NOTREACHED */ 4792 } 4793 4794 /* 4795 * map IPPROTO_* to SADB_SATYPE_* 4796 * OUT: 4797 * 0: invalid protocol type. 4798 */ 4799 static uint8_t 4800 key_proto2satype(uint8_t proto) 4801 { 4802 switch (proto) { 4803 case IPPROTO_AH: 4804 return SADB_SATYPE_AH; 4805 case IPPROTO_ESP: 4806 return SADB_SATYPE_ESP; 4807 case IPPROTO_IPCOMP: 4808 return SADB_X_SATYPE_IPCOMP; 4809 case IPPROTO_TCP: 4810 return SADB_X_SATYPE_TCPSIGNATURE; 4811 default: 4812 return 0; 4813 } 4814 /* NOTREACHED */ 4815 } 4816 4817 /* %%% PF_KEY */ 4818 /* 4819 * SADB_GETSPI processing is to receive 4820 * <base, (SA2), src address, dst address, (SPI range)> 4821 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND 4822 * tree with the status of LARVAL, and send 4823 * <base, SA(*), address(SD)> 4824 * to the IKMPd. 4825 * 4826 * IN: mhp: pointer to the pointer to each header. 4827 * OUT: NULL if fail. 4828 * other if success, return pointer to the message to send. 4829 */ 4830 static int 4831 key_getspi(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 4832 { 4833 struct secasindex saidx; 4834 struct sadb_address *src0, *dst0; 4835 struct secasvar *sav; 4836 uint32_t reqid, spi; 4837 int error; 4838 uint8_t mode, proto; 4839 4840 IPSEC_ASSERT(so != NULL, ("null socket")); 4841 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4842 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4843 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4844 4845 if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || 4846 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) 4847 #ifdef PFKEY_STRICT_CHECKS 4848 || SADB_CHECKHDR(mhp, SADB_EXT_SPIRANGE) 4849 #endif 4850 ) { 4851 ipseclog((LOG_DEBUG, 4852 "%s: invalid message: missing required header.\n", 4853 __func__)); 4854 error = EINVAL; 4855 goto fail; 4856 } 4857 if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || 4858 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST) 4859 #ifdef PFKEY_STRICT_CHECKS 4860 || SADB_CHECKLEN(mhp, SADB_EXT_SPIRANGE) 4861 #endif 4862 ) { 4863 ipseclog((LOG_DEBUG, 4864 "%s: invalid message: wrong header size.\n", __func__)); 4865 error = EINVAL; 4866 goto fail; 4867 } 4868 if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) { 4869 mode = IPSEC_MODE_ANY; 4870 reqid = 0; 4871 } else { 4872 if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) { 4873 ipseclog((LOG_DEBUG, 4874 "%s: invalid message: wrong header size.\n", 4875 __func__)); 4876 error = EINVAL; 4877 goto fail; 4878 } 4879 mode = ((struct sadb_x_sa2 *) 4880 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4881 reqid = ((struct sadb_x_sa2 *) 4882 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4883 } 4884 4885 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4886 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4887 4888 /* map satype to proto */ 4889 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4890 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4891 __func__)); 4892 error = EINVAL; 4893 goto fail; 4894 } 4895 error = key_checksockaddrs((struct sockaddr *)(src0 + 1), 4896 (struct sockaddr *)(dst0 + 1)); 4897 if (error != 0) { 4898 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); 4899 error = EINVAL; 4900 goto fail; 4901 } 4902 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4903 4904 /* SPI allocation */ 4905 spi = key_do_getnewspi( 4906 (struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE], &saidx); 4907 if (spi == 0) { 4908 /* 4909 * Requested SPI or SPI range is not available or 4910 * already used. 4911 */ 4912 error = EEXIST; 4913 goto fail; 4914 } 4915 sav = key_newsav(mhp, &saidx, spi, &error); 4916 if (sav == NULL) 4917 goto fail; 4918 4919 if (sav->seq != 0) { 4920 /* 4921 * RFC2367: 4922 * If the SADB_GETSPI message is in response to a 4923 * kernel-generated SADB_ACQUIRE, the sadb_msg_seq 4924 * MUST be the same as the SADB_ACQUIRE message. 4925 * 4926 * XXXAE: However it doesn't definethe behaviour how to 4927 * check this and what to do if it doesn't match. 4928 * Also what we should do if it matches? 4929 * 4930 * We can compare saidx used in SADB_ACQUIRE with saidx 4931 * used in SADB_GETSPI, but this probably can break 4932 * existing software. For now just warn if it doesn't match. 4933 * 4934 * XXXAE: anyway it looks useless. 4935 */ 4936 key_acqdone(&saidx, sav->seq); 4937 } 4938 KEYDBG(KEY_STAMP, 4939 printf("%s: SA(%p)\n", __func__, sav)); 4940 KEYDBG(KEY_DATA, kdebug_secasv(sav)); 4941 4942 { 4943 struct mbuf *n, *nn; 4944 struct sadb_sa *m_sa; 4945 struct sadb_msg *newmsg; 4946 int off, len; 4947 4948 /* create new sadb_msg to reply. */ 4949 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 4950 PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4951 4952 MGETHDR(n, M_NOWAIT, MT_DATA); 4953 if (len > MHLEN) { 4954 if (!(MCLGET(n, M_NOWAIT))) { 4955 m_freem(n); 4956 n = NULL; 4957 } 4958 } 4959 if (!n) { 4960 error = ENOBUFS; 4961 goto fail; 4962 } 4963 4964 n->m_len = len; 4965 n->m_next = NULL; 4966 off = 0; 4967 4968 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 4969 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 4970 4971 m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off); 4972 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); 4973 m_sa->sadb_sa_exttype = SADB_EXT_SA; 4974 m_sa->sadb_sa_spi = spi; /* SPI is already in network byte order */ 4975 off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4976 4977 IPSEC_ASSERT(off == len, 4978 ("length inconsistency (off %u len %u)", off, len)); 4979 4980 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, 4981 SADB_EXT_ADDRESS_DST); 4982 if (!n->m_next) { 4983 m_freem(n); 4984 error = ENOBUFS; 4985 goto fail; 4986 } 4987 4988 if (n->m_len < sizeof(struct sadb_msg)) { 4989 n = m_pullup(n, sizeof(struct sadb_msg)); 4990 if (n == NULL) 4991 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 4992 } 4993 4994 n->m_pkthdr.len = 0; 4995 for (nn = n; nn; nn = nn->m_next) 4996 n->m_pkthdr.len += nn->m_len; 4997 4998 newmsg = mtod(n, struct sadb_msg *); 4999 newmsg->sadb_msg_seq = sav->seq; 5000 newmsg->sadb_msg_errno = 0; 5001 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5002 5003 m_freem(m); 5004 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5005 } 5006 5007 fail: 5008 return (key_senderror(so, m, error)); 5009 } 5010 5011 /* 5012 * allocating new SPI 5013 * called by key_getspi(). 5014 * OUT: 5015 * 0: failure. 5016 * others: success, SPI in network byte order. 5017 */ 5018 static uint32_t 5019 key_do_getnewspi(struct sadb_spirange *spirange, struct secasindex *saidx) 5020 { 5021 uint32_t min, max, newspi, t; 5022 int count = V_key_spi_trycnt; 5023 5024 /* set spi range to allocate */ 5025 if (spirange != NULL) { 5026 min = spirange->sadb_spirange_min; 5027 max = spirange->sadb_spirange_max; 5028 } else { 5029 min = V_key_spi_minval; 5030 max = V_key_spi_maxval; 5031 } 5032 /* IPCOMP needs 2-byte SPI */ 5033 if (saidx->proto == IPPROTO_IPCOMP) { 5034 if (min >= 0x10000) 5035 min = 0xffff; 5036 if (max >= 0x10000) 5037 max = 0xffff; 5038 if (min > max) { 5039 t = min; min = max; max = t; 5040 } 5041 } 5042 5043 if (min == max) { 5044 if (!key_checkspidup(htonl(min))) { 5045 ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n", 5046 __func__, min)); 5047 return 0; 5048 } 5049 5050 count--; /* taking one cost. */ 5051 newspi = min; 5052 } else { 5053 /* init SPI */ 5054 newspi = 0; 5055 5056 /* when requesting to allocate spi ranged */ 5057 while (count--) { 5058 /* generate pseudo-random SPI value ranged. */ 5059 newspi = min + (key_random() % (max - min + 1)); 5060 if (!key_checkspidup(htonl(newspi))) 5061 break; 5062 } 5063 5064 if (count == 0 || newspi == 0) { 5065 ipseclog((LOG_DEBUG, 5066 "%s: failed to allocate SPI.\n", __func__)); 5067 return 0; 5068 } 5069 } 5070 5071 /* statistics */ 5072 keystat.getspi_count = 5073 (keystat.getspi_count + V_key_spi_trycnt - count) / 2; 5074 5075 return (htonl(newspi)); 5076 } 5077 5078 /* 5079 * Find TCP-MD5 SA with corresponding secasindex. 5080 * If not found, return NULL and fill SPI with usable value if needed. 5081 */ 5082 static struct secasvar * 5083 key_getsav_tcpmd5(struct secasindex *saidx, uint32_t *spi) 5084 { 5085 SAHTREE_RLOCK_TRACKER; 5086 struct secashead *sah; 5087 struct secasvar *sav; 5088 5089 IPSEC_ASSERT(saidx->proto == IPPROTO_TCP, ("wrong proto")); 5090 SAHTREE_RLOCK(); 5091 LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) { 5092 if (sah->saidx.proto != IPPROTO_TCP) 5093 continue; 5094 if (!key_sockaddrcmp(&saidx->dst.sa, &sah->saidx.dst.sa, 0) && 5095 !key_sockaddrcmp(&saidx->src.sa, &sah->saidx.src.sa, 0)) 5096 break; 5097 } 5098 if (sah != NULL) { 5099 if (V_key_preferred_oldsa) 5100 sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue); 5101 else 5102 sav = TAILQ_FIRST(&sah->savtree_alive); 5103 if (sav != NULL) { 5104 SAV_ADDREF(sav); 5105 SAHTREE_RUNLOCK(); 5106 return (sav); 5107 } 5108 } 5109 if (spi == NULL) { 5110 /* No SPI required */ 5111 SAHTREE_RUNLOCK(); 5112 return (NULL); 5113 } 5114 /* Check that SPI is unique */ 5115 LIST_FOREACH(sav, SAVHASH_HASH(*spi), spihash) { 5116 if (sav->spi == *spi) 5117 break; 5118 } 5119 if (sav == NULL) { 5120 SAHTREE_RUNLOCK(); 5121 /* SPI is already unique */ 5122 return (NULL); 5123 } 5124 SAHTREE_RUNLOCK(); 5125 /* XXX: not optimal */ 5126 *spi = key_do_getnewspi(NULL, saidx); 5127 return (NULL); 5128 } 5129 5130 static int 5131 key_updateaddresses(struct socket *so, struct mbuf *m, 5132 const struct sadb_msghdr *mhp, struct secasvar *sav, 5133 struct secasindex *saidx) 5134 { 5135 struct sockaddr *newaddr; 5136 struct secashead *sah; 5137 struct secasvar *newsav, *tmp; 5138 struct mbuf *n; 5139 int error, isnew; 5140 5141 /* Check that we need to change SAH */ 5142 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_SRC)) { 5143 newaddr = (struct sockaddr *)( 5144 ((struct sadb_address *) 5145 mhp->ext[SADB_X_EXT_NEW_ADDRESS_SRC]) + 1); 5146 bcopy(newaddr, &saidx->src, newaddr->sa_len); 5147 key_porttosaddr(&saidx->src.sa, 0); 5148 } 5149 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_DST)) { 5150 newaddr = (struct sockaddr *)( 5151 ((struct sadb_address *) 5152 mhp->ext[SADB_X_EXT_NEW_ADDRESS_DST]) + 1); 5153 bcopy(newaddr, &saidx->dst, newaddr->sa_len); 5154 key_porttosaddr(&saidx->dst.sa, 0); 5155 } 5156 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_SRC) || 5157 !SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_DST)) { 5158 error = key_checksockaddrs(&saidx->src.sa, &saidx->dst.sa); 5159 if (error != 0) { 5160 ipseclog((LOG_DEBUG, "%s: invalid new sockaddr.\n", 5161 __func__)); 5162 return (error); 5163 } 5164 5165 sah = key_getsah(saidx); 5166 if (sah == NULL) { 5167 /* create a new SA index */ 5168 sah = key_newsah(saidx); 5169 if (sah == NULL) { 5170 ipseclog((LOG_DEBUG, 5171 "%s: No more memory.\n", __func__)); 5172 return (ENOBUFS); 5173 } 5174 isnew = 2; /* SAH is new */ 5175 } else 5176 isnew = 1; /* existing SAH is referenced */ 5177 } else { 5178 /* 5179 * src and dst addresses are still the same. 5180 * Do we want to change NAT-T config? 5181 */ 5182 if (sav->sah->saidx.proto != IPPROTO_ESP || 5183 SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_TYPE) || 5184 SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_SPORT) || 5185 SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_DPORT)) { 5186 ipseclog((LOG_DEBUG, 5187 "%s: invalid message: missing required header.\n", 5188 __func__)); 5189 return (EINVAL); 5190 } 5191 /* We hold reference to SA, thus SAH will be referenced too. */ 5192 sah = sav->sah; 5193 isnew = 0; 5194 } 5195 5196 newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, 5197 M_NOWAIT | M_ZERO); 5198 if (newsav == NULL) { 5199 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5200 error = ENOBUFS; 5201 goto fail; 5202 } 5203 5204 /* Clone SA's content into newsav */ 5205 SAV_INITREF(newsav); 5206 bcopy(sav, newsav, offsetof(struct secasvar, chain)); 5207 /* 5208 * We create new NAT-T config if it is needed. 5209 * Old NAT-T config will be freed by key_cleansav() when 5210 * last reference to SA will be released. 5211 */ 5212 newsav->natt = NULL; 5213 newsav->sah = sah; 5214 newsav->state = SADB_SASTATE_MATURE; 5215 error = key_setnatt(newsav, mhp); 5216 if (error != 0) 5217 goto fail; 5218 5219 SAHTREE_WLOCK(); 5220 /* Check that SA is still alive */ 5221 if (sav->state == SADB_SASTATE_DEAD) { 5222 /* SA was unlinked */ 5223 SAHTREE_WUNLOCK(); 5224 error = ESRCH; 5225 goto fail; 5226 } 5227 5228 /* Unlink SA from SAH and SPI hash */ 5229 IPSEC_ASSERT((sav->flags & SADB_X_EXT_F_CLONED) == 0, 5230 ("SA is already cloned")); 5231 IPSEC_ASSERT(sav->state == SADB_SASTATE_MATURE || 5232 sav->state == SADB_SASTATE_DYING, 5233 ("Wrong SA state %u\n", sav->state)); 5234 TAILQ_REMOVE(&sav->sah->savtree_alive, sav, chain); 5235 LIST_REMOVE(sav, spihash); 5236 sav->state = SADB_SASTATE_DEAD; 5237 5238 /* 5239 * Link new SA with SAH. Keep SAs ordered by 5240 * create time (newer are first). 5241 */ 5242 TAILQ_FOREACH(tmp, &sah->savtree_alive, chain) { 5243 if (newsav->created > tmp->created) { 5244 TAILQ_INSERT_BEFORE(tmp, newsav, chain); 5245 break; 5246 } 5247 } 5248 if (tmp == NULL) 5249 TAILQ_INSERT_TAIL(&sah->savtree_alive, newsav, chain); 5250 5251 /* Add new SA into SPI hash. */ 5252 LIST_INSERT_HEAD(SAVHASH_HASH(newsav->spi), newsav, spihash); 5253 5254 /* Add new SAH into SADB. */ 5255 if (isnew == 2) { 5256 TAILQ_INSERT_HEAD(&V_sahtree, sah, chain); 5257 LIST_INSERT_HEAD(SAHADDRHASH_HASH(saidx), sah, addrhash); 5258 sah->state = SADB_SASTATE_MATURE; 5259 SAH_ADDREF(sah); /* newsav references new SAH */ 5260 } 5261 /* 5262 * isnew == 1 -> @sah was referenced by key_getsah(). 5263 * isnew == 0 -> we use the same @sah, that was used by @sav, 5264 * and we use its reference for @newsav. 5265 */ 5266 SECASVAR_LOCK(sav); 5267 /* XXX: replace cntr with pointer? */ 5268 newsav->cntr = sav->cntr; 5269 sav->flags |= SADB_X_EXT_F_CLONED; 5270 SECASVAR_UNLOCK(sav); 5271 5272 SAHTREE_WUNLOCK(); 5273 5274 KEYDBG(KEY_STAMP, 5275 printf("%s: SA(%p) cloned into SA(%p)\n", 5276 __func__, sav, newsav)); 5277 KEYDBG(KEY_DATA, kdebug_secasv(newsav)); 5278 5279 key_freesav(&sav); /* release last reference */ 5280 5281 /* set msg buf from mhp */ 5282 n = key_getmsgbuf_x1(m, mhp); 5283 if (n == NULL) { 5284 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5285 return (ENOBUFS); 5286 } 5287 m_freem(m); 5288 key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5289 return (0); 5290 fail: 5291 if (isnew != 0) 5292 key_freesah(&sah); 5293 if (newsav != NULL) { 5294 if (newsav->natt != NULL) 5295 free(newsav->natt, M_IPSEC_MISC); 5296 free(newsav, M_IPSEC_SA); 5297 } 5298 return (error); 5299 } 5300 5301 /* 5302 * SADB_UPDATE processing 5303 * receive 5304 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5305 * key(AE), (identity(SD),) (sensitivity)> 5306 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. 5307 * and send 5308 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5309 * (identity(SD),) (sensitivity)> 5310 * to the ikmpd. 5311 * 5312 * m will always be freed. 5313 */ 5314 static int 5315 key_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5316 { 5317 struct secasindex saidx; 5318 struct sadb_address *src0, *dst0; 5319 struct sadb_sa *sa0; 5320 struct secasvar *sav; 5321 uint32_t reqid; 5322 int error; 5323 uint8_t mode, proto; 5324 5325 IPSEC_ASSERT(so != NULL, ("null socket")); 5326 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5327 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5328 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5329 5330 /* map satype to proto */ 5331 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5332 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5333 __func__)); 5334 return key_senderror(so, m, EINVAL); 5335 } 5336 5337 if (SADB_CHECKHDR(mhp, SADB_EXT_SA) || 5338 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || 5339 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) || 5340 (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) && 5341 !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) || 5342 (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT) && 5343 !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD))) { 5344 ipseclog((LOG_DEBUG, 5345 "%s: invalid message: missing required header.\n", 5346 __func__)); 5347 return key_senderror(so, m, EINVAL); 5348 } 5349 if (SADB_CHECKLEN(mhp, SADB_EXT_SA) || 5350 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || 5351 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) { 5352 ipseclog((LOG_DEBUG, 5353 "%s: invalid message: wrong header size.\n", __func__)); 5354 return key_senderror(so, m, EINVAL); 5355 } 5356 if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) { 5357 mode = IPSEC_MODE_ANY; 5358 reqid = 0; 5359 } else { 5360 if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) { 5361 ipseclog((LOG_DEBUG, 5362 "%s: invalid message: wrong header size.\n", 5363 __func__)); 5364 return key_senderror(so, m, EINVAL); 5365 } 5366 mode = ((struct sadb_x_sa2 *) 5367 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 5368 reqid = ((struct sadb_x_sa2 *) 5369 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 5370 } 5371 5372 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5373 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5374 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5375 5376 /* 5377 * Only SADB_SASTATE_MATURE SAs may be submitted in an 5378 * SADB_UPDATE message. 5379 */ 5380 if (sa0->sadb_sa_state != SADB_SASTATE_MATURE) { 5381 ipseclog((LOG_DEBUG, "%s: invalid state.\n", __func__)); 5382 #ifdef PFKEY_STRICT_CHECKS 5383 return key_senderror(so, m, EINVAL); 5384 #endif 5385 } 5386 error = key_checksockaddrs((struct sockaddr *)(src0 + 1), 5387 (struct sockaddr *)(dst0 + 1)); 5388 if (error != 0) { 5389 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); 5390 return key_senderror(so, m, error); 5391 } 5392 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 5393 sav = key_getsavbyspi(sa0->sadb_sa_spi); 5394 if (sav == NULL) { 5395 ipseclog((LOG_DEBUG, "%s: no SA found for SPI %u\n", 5396 __func__, ntohl(sa0->sadb_sa_spi))); 5397 return key_senderror(so, m, EINVAL); 5398 } 5399 /* 5400 * Check that SADB_UPDATE issued by the same process that did 5401 * SADB_GETSPI or SADB_ADD. 5402 */ 5403 if (sav->pid != mhp->msg->sadb_msg_pid) { 5404 ipseclog((LOG_DEBUG, 5405 "%s: pid mismatched (SPI %u, pid %u vs. %u)\n", __func__, 5406 ntohl(sav->spi), sav->pid, mhp->msg->sadb_msg_pid)); 5407 key_freesav(&sav); 5408 return key_senderror(so, m, EINVAL); 5409 } 5410 /* saidx should match with SA. */ 5411 if (key_cmpsaidx(&sav->sah->saidx, &saidx, CMP_MODE_REQID) == 0) { 5412 ipseclog((LOG_DEBUG, "%s: saidx mismatched for SPI %u\n", 5413 __func__, ntohl(sav->spi))); 5414 key_freesav(&sav); 5415 return key_senderror(so, m, ESRCH); 5416 } 5417 5418 if (sav->state == SADB_SASTATE_LARVAL) { 5419 if ((mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5420 SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT)) || 5421 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5422 SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH))) { 5423 ipseclog((LOG_DEBUG, 5424 "%s: invalid message: missing required header.\n", 5425 __func__)); 5426 key_freesav(&sav); 5427 return key_senderror(so, m, EINVAL); 5428 } 5429 /* 5430 * We can set any values except src, dst and SPI. 5431 */ 5432 error = key_setsaval(sav, mhp); 5433 if (error != 0) { 5434 key_freesav(&sav); 5435 return (key_senderror(so, m, error)); 5436 } 5437 /* Change SA state to MATURE */ 5438 SAHTREE_WLOCK(); 5439 if (sav->state != SADB_SASTATE_LARVAL) { 5440 /* SA was deleted or another thread made it MATURE. */ 5441 SAHTREE_WUNLOCK(); 5442 key_freesav(&sav); 5443 return (key_senderror(so, m, ESRCH)); 5444 } 5445 /* 5446 * NOTE: we keep SAs in savtree_alive ordered by created 5447 * time. When SA's state changed from LARVAL to MATURE, 5448 * we update its created time in key_setsaval() and move 5449 * it into head of savtree_alive. 5450 */ 5451 TAILQ_REMOVE(&sav->sah->savtree_larval, sav, chain); 5452 TAILQ_INSERT_HEAD(&sav->sah->savtree_alive, sav, chain); 5453 sav->state = SADB_SASTATE_MATURE; 5454 SAHTREE_WUNLOCK(); 5455 } else { 5456 /* 5457 * For DYING and MATURE SA we can change only state 5458 * and lifetimes. Report EINVAL if something else attempted 5459 * to change. 5460 */ 5461 if (!SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT) || 5462 !SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH)) { 5463 key_freesav(&sav); 5464 return (key_senderror(so, m, EINVAL)); 5465 } 5466 error = key_updatelifetimes(sav, mhp); 5467 if (error != 0) { 5468 key_freesav(&sav); 5469 return (key_senderror(so, m, error)); 5470 } 5471 /* 5472 * This is FreeBSD extension to RFC2367. 5473 * IKEd can specify SADB_X_EXT_NEW_ADDRESS_SRC and/or 5474 * SADB_X_EXT_NEW_ADDRESS_DST when it wants to change 5475 * SA addresses (for example to implement MOBIKE protocol 5476 * as described in RFC4555). Also we allow to change 5477 * NAT-T config. 5478 */ 5479 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_SRC) || 5480 !SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_DST) || 5481 !SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_TYPE) || 5482 sav->natt != NULL) { 5483 error = key_updateaddresses(so, m, mhp, sav, &saidx); 5484 key_freesav(&sav); 5485 if (error != 0) 5486 return (key_senderror(so, m, error)); 5487 return (0); 5488 } 5489 /* Check that SA is still alive */ 5490 SAHTREE_WLOCK(); 5491 if (sav->state == SADB_SASTATE_DEAD) { 5492 /* SA was unlinked */ 5493 SAHTREE_WUNLOCK(); 5494 key_freesav(&sav); 5495 return (key_senderror(so, m, ESRCH)); 5496 } 5497 /* 5498 * NOTE: there is possible state moving from DYING to MATURE, 5499 * but this doesn't change created time, so we won't reorder 5500 * this SA. 5501 */ 5502 sav->state = SADB_SASTATE_MATURE; 5503 SAHTREE_WUNLOCK(); 5504 } 5505 KEYDBG(KEY_STAMP, 5506 printf("%s: SA(%p)\n", __func__, sav)); 5507 KEYDBG(KEY_DATA, kdebug_secasv(sav)); 5508 key_freesav(&sav); 5509 5510 { 5511 struct mbuf *n; 5512 5513 /* set msg buf from mhp */ 5514 n = key_getmsgbuf_x1(m, mhp); 5515 if (n == NULL) { 5516 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5517 return key_senderror(so, m, ENOBUFS); 5518 } 5519 5520 m_freem(m); 5521 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5522 } 5523 } 5524 5525 /* 5526 * SADB_ADD processing 5527 * add an entry to SA database, when received 5528 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5529 * key(AE), (identity(SD),) (sensitivity)> 5530 * from the ikmpd, 5531 * and send 5532 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5533 * (identity(SD),) (sensitivity)> 5534 * to the ikmpd. 5535 * 5536 * IGNORE identity and sensitivity messages. 5537 * 5538 * m will always be freed. 5539 */ 5540 static int 5541 key_add(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5542 { 5543 struct secasindex saidx; 5544 struct sadb_address *src0, *dst0; 5545 struct sadb_sa *sa0; 5546 struct secasvar *sav; 5547 uint32_t reqid, spi; 5548 uint8_t mode, proto; 5549 int error; 5550 5551 IPSEC_ASSERT(so != NULL, ("null socket")); 5552 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5553 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5554 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5555 5556 /* map satype to proto */ 5557 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5558 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5559 __func__)); 5560 return key_senderror(so, m, EINVAL); 5561 } 5562 5563 if (SADB_CHECKHDR(mhp, SADB_EXT_SA) || 5564 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || 5565 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) || 5566 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && ( 5567 SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT) || 5568 SADB_CHECKLEN(mhp, SADB_EXT_KEY_ENCRYPT))) || 5569 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && ( 5570 SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH) || 5571 SADB_CHECKLEN(mhp, SADB_EXT_KEY_AUTH))) || 5572 (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) && 5573 !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) || 5574 (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT) && 5575 !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD))) { 5576 ipseclog((LOG_DEBUG, 5577 "%s: invalid message: missing required header.\n", 5578 __func__)); 5579 return key_senderror(so, m, EINVAL); 5580 } 5581 if (SADB_CHECKLEN(mhp, SADB_EXT_SA) || 5582 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || 5583 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) { 5584 ipseclog((LOG_DEBUG, 5585 "%s: invalid message: wrong header size.\n", __func__)); 5586 return key_senderror(so, m, EINVAL); 5587 } 5588 if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) { 5589 mode = IPSEC_MODE_ANY; 5590 reqid = 0; 5591 } else { 5592 if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) { 5593 ipseclog((LOG_DEBUG, 5594 "%s: invalid message: wrong header size.\n", 5595 __func__)); 5596 return key_senderror(so, m, EINVAL); 5597 } 5598 mode = ((struct sadb_x_sa2 *) 5599 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 5600 reqid = ((struct sadb_x_sa2 *) 5601 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 5602 } 5603 5604 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5605 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5606 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5607 5608 /* 5609 * Only SADB_SASTATE_MATURE SAs may be submitted in an 5610 * SADB_ADD message. 5611 */ 5612 if (sa0->sadb_sa_state != SADB_SASTATE_MATURE) { 5613 ipseclog((LOG_DEBUG, "%s: invalid state.\n", __func__)); 5614 #ifdef PFKEY_STRICT_CHECKS 5615 return key_senderror(so, m, EINVAL); 5616 #endif 5617 } 5618 error = key_checksockaddrs((struct sockaddr *)(src0 + 1), 5619 (struct sockaddr *)(dst0 + 1)); 5620 if (error != 0) { 5621 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); 5622 return key_senderror(so, m, error); 5623 } 5624 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 5625 spi = sa0->sadb_sa_spi; 5626 /* 5627 * For TCP-MD5 SAs we don't use SPI. Check the uniqueness using 5628 * secasindex. 5629 * XXXAE: IPComp seems also doesn't use SPI. 5630 */ 5631 if (proto == IPPROTO_TCP) { 5632 sav = key_getsav_tcpmd5(&saidx, &spi); 5633 if (sav == NULL && spi == 0) { 5634 /* Failed to allocate SPI */ 5635 ipseclog((LOG_DEBUG, "%s: SA already exists.\n", 5636 __func__)); 5637 return key_senderror(so, m, EEXIST); 5638 } 5639 /* XXX: SPI that we report back can have another value */ 5640 } else { 5641 /* We can create new SA only if SPI is different. */ 5642 sav = key_getsavbyspi(spi); 5643 } 5644 if (sav != NULL) { 5645 key_freesav(&sav); 5646 ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__)); 5647 return key_senderror(so, m, EEXIST); 5648 } 5649 5650 sav = key_newsav(mhp, &saidx, spi, &error); 5651 if (sav == NULL) 5652 return key_senderror(so, m, error); 5653 KEYDBG(KEY_STAMP, 5654 printf("%s: return SA(%p)\n", __func__, sav)); 5655 KEYDBG(KEY_DATA, kdebug_secasv(sav)); 5656 /* 5657 * If SADB_ADD was in response to SADB_ACQUIRE, we need to schedule 5658 * ACQ for deletion. 5659 */ 5660 if (sav->seq != 0) 5661 key_acqdone(&saidx, sav->seq); 5662 5663 { 5664 /* 5665 * Don't call key_freesav() on error here, as we would like to 5666 * keep the SA in the database. 5667 */ 5668 struct mbuf *n; 5669 5670 /* set msg buf from mhp */ 5671 n = key_getmsgbuf_x1(m, mhp); 5672 if (n == NULL) { 5673 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5674 return key_senderror(so, m, ENOBUFS); 5675 } 5676 5677 m_freem(m); 5678 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5679 } 5680 } 5681 5682 /* 5683 * NAT-T support. 5684 * IKEd may request the use ESP in UDP encapsulation when it detects the 5685 * presence of NAT. It uses NAT-T extension headers for such SAs to specify 5686 * parameters needed for encapsulation and decapsulation. These PF_KEY 5687 * extension headers are not standardized, so this comment addresses our 5688 * implementation. 5689 * SADB_X_EXT_NAT_T_TYPE specifies type of encapsulation, we support only 5690 * UDP_ENCAP_ESPINUDP as described in RFC3948. 5691 * SADB_X_EXT_NAT_T_SPORT/DPORT specifies source and destination ports for 5692 * UDP header. We use these ports in UDP encapsulation procedure, also we 5693 * can check them in UDP decapsulation procedure. 5694 * SADB_X_EXT_NAT_T_OA[IR] specifies original address of initiator or 5695 * responder. These addresses can be used for transport mode to adjust 5696 * checksum after decapsulation and decryption. Since original IP addresses 5697 * used by peer usually different (we detected presence of NAT), TCP/UDP 5698 * pseudo header checksum and IP header checksum was calculated using original 5699 * addresses. After decapsulation and decryption we need to adjust checksum 5700 * to have correct datagram. 5701 * 5702 * We expect presence of NAT-T extension headers only in SADB_ADD and 5703 * SADB_UPDATE messages. We report NAT-T extension headers in replies 5704 * to SADB_ADD, SADB_UPDATE, SADB_GET, and SADB_DUMP messages. 5705 */ 5706 static int 5707 key_setnatt(struct secasvar *sav, const struct sadb_msghdr *mhp) 5708 { 5709 struct sadb_x_nat_t_port *port; 5710 struct sadb_x_nat_t_type *type; 5711 struct sadb_address *oai, *oar; 5712 struct sockaddr *sa; 5713 uint32_t addr; 5714 uint16_t cksum; 5715 5716 IPSEC_ASSERT(sav->natt == NULL, ("natt is already initialized")); 5717 /* 5718 * Ignore NAT-T headers if sproto isn't ESP. 5719 */ 5720 if (sav->sah->saidx.proto != IPPROTO_ESP) 5721 return (0); 5722 5723 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_TYPE) && 5724 !SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_SPORT) && 5725 !SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_DPORT)) { 5726 if (SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_TYPE) || 5727 SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_SPORT) || 5728 SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_DPORT)) { 5729 ipseclog((LOG_DEBUG, 5730 "%s: invalid message: wrong header size.\n", 5731 __func__)); 5732 return (EINVAL); 5733 } 5734 } else 5735 return (0); 5736 5737 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5738 if (type->sadb_x_nat_t_type_type != UDP_ENCAP_ESPINUDP) { 5739 ipseclog((LOG_DEBUG, "%s: unsupported NAT-T type %u.\n", 5740 __func__, type->sadb_x_nat_t_type_type)); 5741 return (EINVAL); 5742 } 5743 /* 5744 * Allocate storage for NAT-T config. 5745 * On error it will be released by key_cleansav(). 5746 */ 5747 sav->natt = malloc(sizeof(struct secnatt), M_IPSEC_MISC, 5748 M_NOWAIT | M_ZERO); 5749 if (sav->natt == NULL) { 5750 PFKEYSTAT_INC(in_nomem); 5751 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5752 return (ENOBUFS); 5753 } 5754 port = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5755 if (port->sadb_x_nat_t_port_port == 0) { 5756 ipseclog((LOG_DEBUG, "%s: invalid NAT-T sport specified.\n", 5757 __func__)); 5758 return (EINVAL); 5759 } 5760 sav->natt->sport = port->sadb_x_nat_t_port_port; 5761 port = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5762 if (port->sadb_x_nat_t_port_port == 0) { 5763 ipseclog((LOG_DEBUG, "%s: invalid NAT-T dport specified.\n", 5764 __func__)); 5765 return (EINVAL); 5766 } 5767 sav->natt->dport = port->sadb_x_nat_t_port_port; 5768 5769 /* 5770 * SADB_X_EXT_NAT_T_OAI and SADB_X_EXT_NAT_T_OAR are optional 5771 * and needed only for transport mode IPsec. 5772 * Usually NAT translates only one address, but it is possible, 5773 * that both addresses could be translated. 5774 * NOTE: Value of SADB_X_EXT_NAT_T_OAI is equal to SADB_X_EXT_NAT_T_OA. 5775 */ 5776 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_OAI)) { 5777 if (SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_OAI)) { 5778 ipseclog((LOG_DEBUG, 5779 "%s: invalid message: wrong header size.\n", 5780 __func__)); 5781 return (EINVAL); 5782 } 5783 oai = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5784 } else 5785 oai = NULL; 5786 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_OAR)) { 5787 if (SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_OAR)) { 5788 ipseclog((LOG_DEBUG, 5789 "%s: invalid message: wrong header size.\n", 5790 __func__)); 5791 return (EINVAL); 5792 } 5793 oar = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5794 } else 5795 oar = NULL; 5796 5797 /* Initialize addresses only for transport mode */ 5798 if (sav->sah->saidx.mode != IPSEC_MODE_TUNNEL) { 5799 cksum = 0; 5800 if (oai != NULL) { 5801 /* Currently we support only AF_INET */ 5802 sa = (struct sockaddr *)(oai + 1); 5803 if (sa->sa_family != AF_INET || 5804 sa->sa_len != sizeof(struct sockaddr_in)) { 5805 ipseclog((LOG_DEBUG, 5806 "%s: wrong NAT-OAi header.\n", 5807 __func__)); 5808 return (EINVAL); 5809 } 5810 /* Ignore address if it the same */ 5811 if (((struct sockaddr_in *)sa)->sin_addr.s_addr != 5812 sav->sah->saidx.src.sin.sin_addr.s_addr) { 5813 bcopy(sa, &sav->natt->oai.sa, sa->sa_len); 5814 sav->natt->flags |= IPSEC_NATT_F_OAI; 5815 /* Calculate checksum delta */ 5816 addr = sav->sah->saidx.src.sin.sin_addr.s_addr; 5817 cksum = in_addword(cksum, ~addr >> 16); 5818 cksum = in_addword(cksum, ~addr & 0xffff); 5819 addr = sav->natt->oai.sin.sin_addr.s_addr; 5820 cksum = in_addword(cksum, addr >> 16); 5821 cksum = in_addword(cksum, addr & 0xffff); 5822 } 5823 } 5824 if (oar != NULL) { 5825 /* Currently we support only AF_INET */ 5826 sa = (struct sockaddr *)(oar + 1); 5827 if (sa->sa_family != AF_INET || 5828 sa->sa_len != sizeof(struct sockaddr_in)) { 5829 ipseclog((LOG_DEBUG, 5830 "%s: wrong NAT-OAr header.\n", 5831 __func__)); 5832 return (EINVAL); 5833 } 5834 /* Ignore address if it the same */ 5835 if (((struct sockaddr_in *)sa)->sin_addr.s_addr != 5836 sav->sah->saidx.dst.sin.sin_addr.s_addr) { 5837 bcopy(sa, &sav->natt->oar.sa, sa->sa_len); 5838 sav->natt->flags |= IPSEC_NATT_F_OAR; 5839 /* Calculate checksum delta */ 5840 addr = sav->sah->saidx.dst.sin.sin_addr.s_addr; 5841 cksum = in_addword(cksum, ~addr >> 16); 5842 cksum = in_addword(cksum, ~addr & 0xffff); 5843 addr = sav->natt->oar.sin.sin_addr.s_addr; 5844 cksum = in_addword(cksum, addr >> 16); 5845 cksum = in_addword(cksum, addr & 0xffff); 5846 } 5847 } 5848 sav->natt->cksum = cksum; 5849 } 5850 return (0); 5851 } 5852 5853 static int 5854 key_setident(struct secashead *sah, const struct sadb_msghdr *mhp) 5855 { 5856 const struct sadb_ident *idsrc, *iddst; 5857 5858 IPSEC_ASSERT(sah != NULL, ("null secashead")); 5859 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5860 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5861 5862 /* don't make buffer if not there */ 5863 if (SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_SRC) && 5864 SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_DST)) { 5865 sah->idents = NULL; 5866 sah->identd = NULL; 5867 return (0); 5868 } 5869 5870 if (SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_SRC) || 5871 SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_DST)) { 5872 ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__)); 5873 return (EINVAL); 5874 } 5875 5876 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC]; 5877 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST]; 5878 5879 /* validity check */ 5880 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { 5881 ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__)); 5882 return EINVAL; 5883 } 5884 5885 switch (idsrc->sadb_ident_type) { 5886 case SADB_IDENTTYPE_PREFIX: 5887 case SADB_IDENTTYPE_FQDN: 5888 case SADB_IDENTTYPE_USERFQDN: 5889 default: 5890 /* XXX do nothing */ 5891 sah->idents = NULL; 5892 sah->identd = NULL; 5893 return 0; 5894 } 5895 5896 /* make structure */ 5897 sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5898 if (sah->idents == NULL) { 5899 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5900 return ENOBUFS; 5901 } 5902 sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5903 if (sah->identd == NULL) { 5904 free(sah->idents, M_IPSEC_MISC); 5905 sah->idents = NULL; 5906 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5907 return ENOBUFS; 5908 } 5909 sah->idents->type = idsrc->sadb_ident_type; 5910 sah->idents->id = idsrc->sadb_ident_id; 5911 5912 sah->identd->type = iddst->sadb_ident_type; 5913 sah->identd->id = iddst->sadb_ident_id; 5914 5915 return 0; 5916 } 5917 5918 /* 5919 * m will not be freed on return. 5920 * it is caller's responsibility to free the result. 5921 * 5922 * Called from SADB_ADD and SADB_UPDATE. Reply will contain headers 5923 * from the request in defined order. 5924 */ 5925 static struct mbuf * 5926 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp) 5927 { 5928 struct mbuf *n; 5929 5930 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5931 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5932 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5933 5934 /* create new sadb_msg to reply. */ 5935 n = key_gather_mbuf(m, mhp, 1, 16, SADB_EXT_RESERVED, 5936 SADB_EXT_SA, SADB_X_EXT_SA2, 5937 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, 5938 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 5939 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST, 5940 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT, 5941 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI, 5942 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NEW_ADDRESS_SRC, 5943 SADB_X_EXT_NEW_ADDRESS_DST); 5944 if (!n) 5945 return NULL; 5946 5947 if (n->m_len < sizeof(struct sadb_msg)) { 5948 n = m_pullup(n, sizeof(struct sadb_msg)); 5949 if (n == NULL) 5950 return NULL; 5951 } 5952 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; 5953 mtod(n, struct sadb_msg *)->sadb_msg_len = 5954 PFKEY_UNIT64(n->m_pkthdr.len); 5955 5956 return n; 5957 } 5958 5959 /* 5960 * SADB_DELETE processing 5961 * receive 5962 * <base, SA(*), address(SD)> 5963 * from the ikmpd, and set SADB_SASTATE_DEAD, 5964 * and send, 5965 * <base, SA(*), address(SD)> 5966 * to the ikmpd. 5967 * 5968 * m will always be freed. 5969 */ 5970 static int 5971 key_delete(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5972 { 5973 struct secasindex saidx; 5974 struct sadb_address *src0, *dst0; 5975 struct secasvar *sav; 5976 struct sadb_sa *sa0; 5977 uint8_t proto; 5978 5979 IPSEC_ASSERT(so != NULL, ("null socket")); 5980 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5981 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5982 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5983 5984 /* map satype to proto */ 5985 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5986 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5987 __func__)); 5988 return key_senderror(so, m, EINVAL); 5989 } 5990 5991 if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || 5992 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) || 5993 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || 5994 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) { 5995 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5996 __func__)); 5997 return key_senderror(so, m, EINVAL); 5998 } 5999 6000 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 6001 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 6002 6003 if (key_checksockaddrs((struct sockaddr *)(src0 + 1), 6004 (struct sockaddr *)(dst0 + 1)) != 0) { 6005 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); 6006 return (key_senderror(so, m, EINVAL)); 6007 } 6008 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 6009 if (SADB_CHECKHDR(mhp, SADB_EXT_SA)) { 6010 /* 6011 * Caller wants us to delete all non-LARVAL SAs 6012 * that match the src/dst. This is used during 6013 * IKE INITIAL-CONTACT. 6014 * XXXAE: this looks like some extension to RFC2367. 6015 */ 6016 ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__)); 6017 return (key_delete_all(so, m, mhp, &saidx)); 6018 } 6019 if (SADB_CHECKLEN(mhp, SADB_EXT_SA)) { 6020 ipseclog((LOG_DEBUG, 6021 "%s: invalid message: wrong header size.\n", __func__)); 6022 return (key_senderror(so, m, EINVAL)); 6023 } 6024 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 6025 if (proto == IPPROTO_TCP) 6026 sav = key_getsav_tcpmd5(&saidx, NULL); 6027 else 6028 sav = key_getsavbyspi(sa0->sadb_sa_spi); 6029 if (sav == NULL) { 6030 ipseclog((LOG_DEBUG, "%s: no SA found for SPI %u.\n", 6031 __func__, ntohl(sa0->sadb_sa_spi))); 6032 return (key_senderror(so, m, ESRCH)); 6033 } 6034 if (key_cmpsaidx(&sav->sah->saidx, &saidx, CMP_HEAD) == 0) { 6035 ipseclog((LOG_DEBUG, "%s: saidx mismatched for SPI %u.\n", 6036 __func__, ntohl(sav->spi))); 6037 key_freesav(&sav); 6038 return (key_senderror(so, m, ESRCH)); 6039 } 6040 KEYDBG(KEY_STAMP, 6041 printf("%s: SA(%p)\n", __func__, sav)); 6042 KEYDBG(KEY_DATA, kdebug_secasv(sav)); 6043 key_unlinksav(sav); 6044 key_freesav(&sav); 6045 6046 { 6047 struct mbuf *n; 6048 struct sadb_msg *newmsg; 6049 6050 /* create new sadb_msg to reply. */ 6051 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 6052 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 6053 if (!n) 6054 return key_senderror(so, m, ENOBUFS); 6055 6056 if (n->m_len < sizeof(struct sadb_msg)) { 6057 n = m_pullup(n, sizeof(struct sadb_msg)); 6058 if (n == NULL) 6059 return key_senderror(so, m, ENOBUFS); 6060 } 6061 newmsg = mtod(n, struct sadb_msg *); 6062 newmsg->sadb_msg_errno = 0; 6063 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 6064 6065 m_freem(m); 6066 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 6067 } 6068 } 6069 6070 /* 6071 * delete all SAs for src/dst. Called from key_delete(). 6072 */ 6073 static int 6074 key_delete_all(struct socket *so, struct mbuf *m, 6075 const struct sadb_msghdr *mhp, struct secasindex *saidx) 6076 { 6077 struct secasvar_queue drainq; 6078 struct secashead *sah; 6079 struct secasvar *sav, *nextsav; 6080 6081 TAILQ_INIT(&drainq); 6082 SAHTREE_WLOCK(); 6083 LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) { 6084 if (key_cmpsaidx(&sah->saidx, saidx, CMP_HEAD) == 0) 6085 continue; 6086 /* Move all ALIVE SAs into drainq */ 6087 TAILQ_CONCAT(&drainq, &sah->savtree_alive, chain); 6088 } 6089 /* Unlink all queued SAs from SPI hash */ 6090 TAILQ_FOREACH(sav, &drainq, chain) { 6091 sav->state = SADB_SASTATE_DEAD; 6092 LIST_REMOVE(sav, spihash); 6093 } 6094 SAHTREE_WUNLOCK(); 6095 /* Now we can release reference for all SAs in drainq */ 6096 sav = TAILQ_FIRST(&drainq); 6097 while (sav != NULL) { 6098 KEYDBG(KEY_STAMP, 6099 printf("%s: SA(%p)\n", __func__, sav)); 6100 KEYDBG(KEY_DATA, kdebug_secasv(sav)); 6101 nextsav = TAILQ_NEXT(sav, chain); 6102 key_freesah(&sav->sah); /* release reference from SAV */ 6103 key_freesav(&sav); /* release last reference */ 6104 sav = nextsav; 6105 } 6106 6107 { 6108 struct mbuf *n; 6109 struct sadb_msg *newmsg; 6110 6111 /* create new sadb_msg to reply. */ 6112 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, 6113 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 6114 if (!n) 6115 return key_senderror(so, m, ENOBUFS); 6116 6117 if (n->m_len < sizeof(struct sadb_msg)) { 6118 n = m_pullup(n, sizeof(struct sadb_msg)); 6119 if (n == NULL) 6120 return key_senderror(so, m, ENOBUFS); 6121 } 6122 newmsg = mtod(n, struct sadb_msg *); 6123 newmsg->sadb_msg_errno = 0; 6124 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 6125 6126 m_freem(m); 6127 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 6128 } 6129 } 6130 6131 /* 6132 * Delete all alive SAs for corresponding xform. 6133 * Larval SAs have not initialized tdb_xform, so it is safe to leave them 6134 * here when xform disappears. 6135 */ 6136 void 6137 key_delete_xform(const struct xformsw *xsp) 6138 { 6139 struct secasvar_queue drainq; 6140 struct secashead *sah; 6141 struct secasvar *sav, *nextsav; 6142 6143 TAILQ_INIT(&drainq); 6144 SAHTREE_WLOCK(); 6145 TAILQ_FOREACH(sah, &V_sahtree, chain) { 6146 sav = TAILQ_FIRST(&sah->savtree_alive); 6147 if (sav == NULL) 6148 continue; 6149 if (sav->tdb_xform != xsp) 6150 continue; 6151 /* 6152 * It is supposed that all SAs in the chain are related to 6153 * one xform. 6154 */ 6155 TAILQ_CONCAT(&drainq, &sah->savtree_alive, chain); 6156 } 6157 /* Unlink all queued SAs from SPI hash */ 6158 TAILQ_FOREACH(sav, &drainq, chain) { 6159 sav->state = SADB_SASTATE_DEAD; 6160 LIST_REMOVE(sav, spihash); 6161 } 6162 SAHTREE_WUNLOCK(); 6163 6164 /* Now we can release reference for all SAs in drainq */ 6165 sav = TAILQ_FIRST(&drainq); 6166 while (sav != NULL) { 6167 KEYDBG(KEY_STAMP, 6168 printf("%s: SA(%p)\n", __func__, sav)); 6169 KEYDBG(KEY_DATA, kdebug_secasv(sav)); 6170 nextsav = TAILQ_NEXT(sav, chain); 6171 key_freesah(&sav->sah); /* release reference from SAV */ 6172 key_freesav(&sav); /* release last reference */ 6173 sav = nextsav; 6174 } 6175 } 6176 6177 /* 6178 * SADB_GET processing 6179 * receive 6180 * <base, SA(*), address(SD)> 6181 * from the ikmpd, and get a SP and a SA to respond, 6182 * and send, 6183 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), 6184 * (identity(SD),) (sensitivity)> 6185 * to the ikmpd. 6186 * 6187 * m will always be freed. 6188 */ 6189 static int 6190 key_get(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 6191 { 6192 struct secasindex saidx; 6193 struct sadb_address *src0, *dst0; 6194 struct sadb_sa *sa0; 6195 struct secasvar *sav; 6196 uint8_t proto; 6197 6198 IPSEC_ASSERT(so != NULL, ("null socket")); 6199 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6200 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6201 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6202 6203 /* map satype to proto */ 6204 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6205 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6206 __func__)); 6207 return key_senderror(so, m, EINVAL); 6208 } 6209 6210 if (SADB_CHECKHDR(mhp, SADB_EXT_SA) || 6211 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || 6212 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST)) { 6213 ipseclog((LOG_DEBUG, 6214 "%s: invalid message: missing required header.\n", 6215 __func__)); 6216 return key_senderror(so, m, EINVAL); 6217 } 6218 if (SADB_CHECKLEN(mhp, SADB_EXT_SA) || 6219 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || 6220 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) { 6221 ipseclog((LOG_DEBUG, 6222 "%s: invalid message: wrong header size.\n", __func__)); 6223 return key_senderror(so, m, EINVAL); 6224 } 6225 6226 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 6227 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 6228 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 6229 6230 if (key_checksockaddrs((struct sockaddr *)(src0 + 1), 6231 (struct sockaddr *)(dst0 + 1)) != 0) { 6232 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); 6233 return key_senderror(so, m, EINVAL); 6234 } 6235 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 6236 6237 if (proto == IPPROTO_TCP) 6238 sav = key_getsav_tcpmd5(&saidx, NULL); 6239 else 6240 sav = key_getsavbyspi(sa0->sadb_sa_spi); 6241 if (sav == NULL) { 6242 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 6243 return key_senderror(so, m, ESRCH); 6244 } 6245 if (key_cmpsaidx(&sav->sah->saidx, &saidx, CMP_HEAD) == 0) { 6246 ipseclog((LOG_DEBUG, "%s: saidx mismatched for SPI %u.\n", 6247 __func__, ntohl(sa0->sadb_sa_spi))); 6248 key_freesav(&sav); 6249 return (key_senderror(so, m, ESRCH)); 6250 } 6251 6252 { 6253 struct mbuf *n; 6254 uint8_t satype; 6255 6256 /* map proto to satype */ 6257 if ((satype = key_proto2satype(sav->sah->saidx.proto)) == 0) { 6258 ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n", 6259 __func__)); 6260 key_freesav(&sav); 6261 return key_senderror(so, m, EINVAL); 6262 } 6263 6264 /* create new sadb_msg to reply. */ 6265 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, 6266 mhp->msg->sadb_msg_pid); 6267 6268 key_freesav(&sav); 6269 if (!n) 6270 return key_senderror(so, m, ENOBUFS); 6271 6272 m_freem(m); 6273 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 6274 } 6275 } 6276 6277 /* XXX make it sysctl-configurable? */ 6278 static void 6279 key_getcomb_setlifetime(struct sadb_comb *comb) 6280 { 6281 6282 comb->sadb_comb_soft_allocations = 1; 6283 comb->sadb_comb_hard_allocations = 1; 6284 comb->sadb_comb_soft_bytes = 0; 6285 comb->sadb_comb_hard_bytes = 0; 6286 comb->sadb_comb_hard_addtime = 86400; /* 1 day */ 6287 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100; 6288 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */ 6289 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100; 6290 } 6291 6292 /* 6293 * XXX reorder combinations by preference 6294 * XXX no idea if the user wants ESP authentication or not 6295 */ 6296 static struct mbuf * 6297 key_getcomb_ealg(void) 6298 { 6299 struct sadb_comb *comb; 6300 const struct enc_xform *algo; 6301 struct mbuf *result = NULL, *m, *n; 6302 int encmin; 6303 int i, off, o; 6304 int totlen; 6305 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6306 6307 m = NULL; 6308 for (i = 1; i <= SADB_EALG_MAX; i++) { 6309 algo = enc_algorithm_lookup(i); 6310 if (algo == NULL) 6311 continue; 6312 6313 /* discard algorithms with key size smaller than system min */ 6314 if (_BITS(algo->maxkey) < V_ipsec_esp_keymin) 6315 continue; 6316 if (_BITS(algo->minkey) < V_ipsec_esp_keymin) 6317 encmin = V_ipsec_esp_keymin; 6318 else 6319 encmin = _BITS(algo->minkey); 6320 6321 if (V_ipsec_esp_auth) 6322 m = key_getcomb_ah(); 6323 else { 6324 IPSEC_ASSERT(l <= MLEN, 6325 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6326 MGET(m, M_NOWAIT, MT_DATA); 6327 if (m) { 6328 M_ALIGN(m, l); 6329 m->m_len = l; 6330 m->m_next = NULL; 6331 bzero(mtod(m, caddr_t), m->m_len); 6332 } 6333 } 6334 if (!m) 6335 goto fail; 6336 6337 totlen = 0; 6338 for (n = m; n; n = n->m_next) 6339 totlen += n->m_len; 6340 IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l)); 6341 6342 for (off = 0; off < totlen; off += l) { 6343 n = m_pulldown(m, off, l, &o); 6344 if (!n) { 6345 /* m is already freed */ 6346 goto fail; 6347 } 6348 comb = (struct sadb_comb *)(mtod(n, caddr_t) + o); 6349 bzero(comb, sizeof(*comb)); 6350 key_getcomb_setlifetime(comb); 6351 comb->sadb_comb_encrypt = i; 6352 comb->sadb_comb_encrypt_minbits = encmin; 6353 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); 6354 } 6355 6356 if (!result) 6357 result = m; 6358 else 6359 m_cat(result, m); 6360 } 6361 6362 return result; 6363 6364 fail: 6365 if (result) 6366 m_freem(result); 6367 return NULL; 6368 } 6369 6370 static void 6371 key_getsizes_ah(const struct auth_hash *ah, int alg, u_int16_t* min, 6372 u_int16_t* max) 6373 { 6374 6375 *min = *max = ah->hashsize; 6376 if (ah->keysize == 0) { 6377 /* 6378 * Transform takes arbitrary key size but algorithm 6379 * key size is restricted. Enforce this here. 6380 */ 6381 switch (alg) { 6382 case SADB_X_AALG_NULL: *min = 1; *max = 256; break; 6383 case SADB_X_AALG_SHA2_256: *min = *max = 32; break; 6384 case SADB_X_AALG_SHA2_384: *min = *max = 48; break; 6385 case SADB_X_AALG_SHA2_512: *min = *max = 64; break; 6386 default: 6387 DPRINTF(("%s: unknown AH algorithm %u\n", 6388 __func__, alg)); 6389 break; 6390 } 6391 } 6392 } 6393 6394 /* 6395 * XXX reorder combinations by preference 6396 */ 6397 static struct mbuf * 6398 key_getcomb_ah() 6399 { 6400 const struct auth_hash *algo; 6401 struct sadb_comb *comb; 6402 struct mbuf *m; 6403 u_int16_t minkeysize, maxkeysize; 6404 int i; 6405 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6406 6407 m = NULL; 6408 for (i = 1; i <= SADB_AALG_MAX; i++) { 6409 #if 1 6410 /* we prefer HMAC algorithms, not old algorithms */ 6411 if (i != SADB_AALG_SHA1HMAC && 6412 i != SADB_X_AALG_SHA2_256 && 6413 i != SADB_X_AALG_SHA2_384 && 6414 i != SADB_X_AALG_SHA2_512) 6415 continue; 6416 #endif 6417 algo = auth_algorithm_lookup(i); 6418 if (!algo) 6419 continue; 6420 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); 6421 /* discard algorithms with key size smaller than system min */ 6422 if (_BITS(minkeysize) < V_ipsec_ah_keymin) 6423 continue; 6424 6425 if (!m) { 6426 IPSEC_ASSERT(l <= MLEN, 6427 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6428 MGET(m, M_NOWAIT, MT_DATA); 6429 if (m) { 6430 M_ALIGN(m, l); 6431 m->m_len = l; 6432 m->m_next = NULL; 6433 } 6434 } else 6435 M_PREPEND(m, l, M_NOWAIT); 6436 if (!m) 6437 return NULL; 6438 6439 comb = mtod(m, struct sadb_comb *); 6440 bzero(comb, sizeof(*comb)); 6441 key_getcomb_setlifetime(comb); 6442 comb->sadb_comb_auth = i; 6443 comb->sadb_comb_auth_minbits = _BITS(minkeysize); 6444 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); 6445 } 6446 6447 return m; 6448 } 6449 6450 /* 6451 * not really an official behavior. discussed in pf_key@inner.net in Sep2000. 6452 * XXX reorder combinations by preference 6453 */ 6454 static struct mbuf * 6455 key_getcomb_ipcomp() 6456 { 6457 const struct comp_algo *algo; 6458 struct sadb_comb *comb; 6459 struct mbuf *m; 6460 int i; 6461 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6462 6463 m = NULL; 6464 for (i = 1; i <= SADB_X_CALG_MAX; i++) { 6465 algo = comp_algorithm_lookup(i); 6466 if (!algo) 6467 continue; 6468 6469 if (!m) { 6470 IPSEC_ASSERT(l <= MLEN, 6471 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6472 MGET(m, M_NOWAIT, MT_DATA); 6473 if (m) { 6474 M_ALIGN(m, l); 6475 m->m_len = l; 6476 m->m_next = NULL; 6477 } 6478 } else 6479 M_PREPEND(m, l, M_NOWAIT); 6480 if (!m) 6481 return NULL; 6482 6483 comb = mtod(m, struct sadb_comb *); 6484 bzero(comb, sizeof(*comb)); 6485 key_getcomb_setlifetime(comb); 6486 comb->sadb_comb_encrypt = i; 6487 /* what should we set into sadb_comb_*_{min,max}bits? */ 6488 } 6489 6490 return m; 6491 } 6492 6493 /* 6494 * XXX no way to pass mode (transport/tunnel) to userland 6495 * XXX replay checking? 6496 * XXX sysctl interface to ipsec_{ah,esp}_keymin 6497 */ 6498 static struct mbuf * 6499 key_getprop(const struct secasindex *saidx) 6500 { 6501 struct sadb_prop *prop; 6502 struct mbuf *m, *n; 6503 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); 6504 int totlen; 6505 6506 switch (saidx->proto) { 6507 case IPPROTO_ESP: 6508 m = key_getcomb_ealg(); 6509 break; 6510 case IPPROTO_AH: 6511 m = key_getcomb_ah(); 6512 break; 6513 case IPPROTO_IPCOMP: 6514 m = key_getcomb_ipcomp(); 6515 break; 6516 default: 6517 return NULL; 6518 } 6519 6520 if (!m) 6521 return NULL; 6522 M_PREPEND(m, l, M_NOWAIT); 6523 if (!m) 6524 return NULL; 6525 6526 totlen = 0; 6527 for (n = m; n; n = n->m_next) 6528 totlen += n->m_len; 6529 6530 prop = mtod(m, struct sadb_prop *); 6531 bzero(prop, sizeof(*prop)); 6532 prop->sadb_prop_len = PFKEY_UNIT64(totlen); 6533 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 6534 prop->sadb_prop_replay = 32; /* XXX */ 6535 6536 return m; 6537 } 6538 6539 /* 6540 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2(). 6541 * send 6542 * <base, SA, address(SD), (address(P)), x_policy, 6543 * (identity(SD),) (sensitivity,) proposal> 6544 * to KMD, and expect to receive 6545 * <base> with SADB_ACQUIRE if error occurred, 6546 * or 6547 * <base, src address, dst address, (SPI range)> with SADB_GETSPI 6548 * from KMD by PF_KEY. 6549 * 6550 * XXX x_policy is outside of RFC2367 (KAME extension). 6551 * XXX sensitivity is not supported. 6552 * XXX for ipcomp, RFC2367 does not define how to fill in proposal. 6553 * see comment for key_getcomb_ipcomp(). 6554 * 6555 * OUT: 6556 * 0 : succeed 6557 * others: error number 6558 */ 6559 static int 6560 key_acquire(const struct secasindex *saidx, struct secpolicy *sp) 6561 { 6562 union sockaddr_union addr; 6563 struct mbuf *result, *m; 6564 uint32_t seq; 6565 int error; 6566 uint16_t ul_proto; 6567 uint8_t mask, satype; 6568 6569 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 6570 satype = key_proto2satype(saidx->proto); 6571 IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto)); 6572 6573 error = -1; 6574 result = NULL; 6575 ul_proto = IPSEC_ULPROTO_ANY; 6576 6577 /* Get seq number to check whether sending message or not. */ 6578 seq = key_getacq(saidx, &error); 6579 if (seq == 0) 6580 return (error); 6581 6582 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0); 6583 if (!m) { 6584 error = ENOBUFS; 6585 goto fail; 6586 } 6587 result = m; 6588 6589 /* 6590 * set sadb_address for saidx's. 6591 * 6592 * Note that if sp is supplied, then we're being called from 6593 * key_allocsa_policy() and should supply port and protocol 6594 * information. 6595 * XXXAE: why only TCP and UDP? ICMP and SCTP looks applicable too. 6596 * XXXAE: probably we can handle this in the ipsec[46]_allocsa(). 6597 * XXXAE: it looks like we should save this info in the ACQ entry. 6598 */ 6599 if (sp != NULL && (sp->spidx.ul_proto == IPPROTO_TCP || 6600 sp->spidx.ul_proto == IPPROTO_UDP)) 6601 ul_proto = sp->spidx.ul_proto; 6602 6603 addr = saidx->src; 6604 mask = FULLMASK; 6605 if (ul_proto != IPSEC_ULPROTO_ANY) { 6606 switch (sp->spidx.src.sa.sa_family) { 6607 case AF_INET: 6608 if (sp->spidx.src.sin.sin_port != IPSEC_PORT_ANY) { 6609 addr.sin.sin_port = sp->spidx.src.sin.sin_port; 6610 mask = sp->spidx.prefs; 6611 } 6612 break; 6613 case AF_INET6: 6614 if (sp->spidx.src.sin6.sin6_port != IPSEC_PORT_ANY) { 6615 addr.sin6.sin6_port = 6616 sp->spidx.src.sin6.sin6_port; 6617 mask = sp->spidx.prefs; 6618 } 6619 break; 6620 default: 6621 break; 6622 } 6623 } 6624 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &addr.sa, mask, ul_proto); 6625 if (!m) { 6626 error = ENOBUFS; 6627 goto fail; 6628 } 6629 m_cat(result, m); 6630 6631 addr = saidx->dst; 6632 mask = FULLMASK; 6633 if (ul_proto != IPSEC_ULPROTO_ANY) { 6634 switch (sp->spidx.dst.sa.sa_family) { 6635 case AF_INET: 6636 if (sp->spidx.dst.sin.sin_port != IPSEC_PORT_ANY) { 6637 addr.sin.sin_port = sp->spidx.dst.sin.sin_port; 6638 mask = sp->spidx.prefd; 6639 } 6640 break; 6641 case AF_INET6: 6642 if (sp->spidx.dst.sin6.sin6_port != IPSEC_PORT_ANY) { 6643 addr.sin6.sin6_port = 6644 sp->spidx.dst.sin6.sin6_port; 6645 mask = sp->spidx.prefd; 6646 } 6647 break; 6648 default: 6649 break; 6650 } 6651 } 6652 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &addr.sa, mask, ul_proto); 6653 if (!m) { 6654 error = ENOBUFS; 6655 goto fail; 6656 } 6657 m_cat(result, m); 6658 6659 /* XXX proxy address (optional) */ 6660 6661 /* 6662 * Set sadb_x_policy. This is KAME extension to RFC2367. 6663 */ 6664 if (sp != NULL) { 6665 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id, 6666 sp->priority); 6667 if (!m) { 6668 error = ENOBUFS; 6669 goto fail; 6670 } 6671 m_cat(result, m); 6672 } 6673 6674 /* 6675 * Set sadb_x_sa2 extension if saidx->reqid is not zero. 6676 * This is FreeBSD extension to RFC2367. 6677 */ 6678 if (saidx->reqid != 0) { 6679 m = key_setsadbxsa2(saidx->mode, 0, saidx->reqid); 6680 if (m == NULL) { 6681 error = ENOBUFS; 6682 goto fail; 6683 } 6684 m_cat(result, m); 6685 } 6686 /* XXX identity (optional) */ 6687 #if 0 6688 if (idexttype && fqdn) { 6689 /* create identity extension (FQDN) */ 6690 struct sadb_ident *id; 6691 int fqdnlen; 6692 6693 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ 6694 id = (struct sadb_ident *)p; 6695 bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6696 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6697 id->sadb_ident_exttype = idexttype; 6698 id->sadb_ident_type = SADB_IDENTTYPE_FQDN; 6699 bcopy(fqdn, id + 1, fqdnlen); 6700 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); 6701 } 6702 6703 if (idexttype) { 6704 /* create identity extension (USERFQDN) */ 6705 struct sadb_ident *id; 6706 int userfqdnlen; 6707 6708 if (userfqdn) { 6709 /* +1 for terminating-NUL */ 6710 userfqdnlen = strlen(userfqdn) + 1; 6711 } else 6712 userfqdnlen = 0; 6713 id = (struct sadb_ident *)p; 6714 bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6715 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6716 id->sadb_ident_exttype = idexttype; 6717 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; 6718 /* XXX is it correct? */ 6719 if (curproc && curproc->p_cred) 6720 id->sadb_ident_id = curproc->p_cred->p_ruid; 6721 if (userfqdn && userfqdnlen) 6722 bcopy(userfqdn, id + 1, userfqdnlen); 6723 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); 6724 } 6725 #endif 6726 6727 /* XXX sensitivity (optional) */ 6728 6729 /* create proposal/combination extension */ 6730 m = key_getprop(saidx); 6731 #if 0 6732 /* 6733 * spec conformant: always attach proposal/combination extension, 6734 * the problem is that we have no way to attach it for ipcomp, 6735 * due to the way sadb_comb is declared in RFC2367. 6736 */ 6737 if (!m) { 6738 error = ENOBUFS; 6739 goto fail; 6740 } 6741 m_cat(result, m); 6742 #else 6743 /* 6744 * outside of spec; make proposal/combination extension optional. 6745 */ 6746 if (m) 6747 m_cat(result, m); 6748 #endif 6749 6750 if ((result->m_flags & M_PKTHDR) == 0) { 6751 error = EINVAL; 6752 goto fail; 6753 } 6754 6755 if (result->m_len < sizeof(struct sadb_msg)) { 6756 result = m_pullup(result, sizeof(struct sadb_msg)); 6757 if (result == NULL) { 6758 error = ENOBUFS; 6759 goto fail; 6760 } 6761 } 6762 6763 result->m_pkthdr.len = 0; 6764 for (m = result; m; m = m->m_next) 6765 result->m_pkthdr.len += m->m_len; 6766 6767 mtod(result, struct sadb_msg *)->sadb_msg_len = 6768 PFKEY_UNIT64(result->m_pkthdr.len); 6769 6770 KEYDBG(KEY_STAMP, 6771 printf("%s: SP(%p)\n", __func__, sp)); 6772 KEYDBG(KEY_DATA, kdebug_secasindex(saidx, NULL)); 6773 6774 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6775 6776 fail: 6777 if (result) 6778 m_freem(result); 6779 return error; 6780 } 6781 6782 static uint32_t 6783 key_newacq(const struct secasindex *saidx, int *perror) 6784 { 6785 struct secacq *acq; 6786 uint32_t seq; 6787 6788 acq = malloc(sizeof(*acq), M_IPSEC_SAQ, M_NOWAIT | M_ZERO); 6789 if (acq == NULL) { 6790 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6791 *perror = ENOBUFS; 6792 return (0); 6793 } 6794 6795 /* copy secindex */ 6796 bcopy(saidx, &acq->saidx, sizeof(acq->saidx)); 6797 acq->created = time_second; 6798 acq->count = 0; 6799 6800 /* add to acqtree */ 6801 ACQ_LOCK(); 6802 seq = acq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq); 6803 LIST_INSERT_HEAD(&V_acqtree, acq, chain); 6804 LIST_INSERT_HEAD(ACQADDRHASH_HASH(saidx), acq, addrhash); 6805 LIST_INSERT_HEAD(ACQSEQHASH_HASH(seq), acq, seqhash); 6806 ACQ_UNLOCK(); 6807 *perror = 0; 6808 return (seq); 6809 } 6810 6811 static uint32_t 6812 key_getacq(const struct secasindex *saidx, int *perror) 6813 { 6814 struct secacq *acq; 6815 uint32_t seq; 6816 6817 ACQ_LOCK(); 6818 LIST_FOREACH(acq, ACQADDRHASH_HASH(saidx), addrhash) { 6819 if (key_cmpsaidx(&acq->saidx, saidx, CMP_EXACTLY)) { 6820 if (acq->count > V_key_blockacq_count) { 6821 /* 6822 * Reset counter and send message. 6823 * Also reset created time to keep ACQ for 6824 * this saidx. 6825 */ 6826 acq->created = time_second; 6827 acq->count = 0; 6828 seq = acq->seq; 6829 } else { 6830 /* 6831 * Increment counter and do nothing. 6832 * We send SADB_ACQUIRE message only 6833 * for each V_key_blockacq_count packet. 6834 */ 6835 acq->count++; 6836 seq = 0; 6837 } 6838 break; 6839 } 6840 } 6841 ACQ_UNLOCK(); 6842 if (acq != NULL) { 6843 *perror = 0; 6844 return (seq); 6845 } 6846 /* allocate new entry */ 6847 return (key_newacq(saidx, perror)); 6848 } 6849 6850 static int 6851 key_acqreset(uint32_t seq) 6852 { 6853 struct secacq *acq; 6854 6855 ACQ_LOCK(); 6856 LIST_FOREACH(acq, ACQSEQHASH_HASH(seq), seqhash) { 6857 if (acq->seq == seq) { 6858 acq->count = 0; 6859 acq->created = time_second; 6860 break; 6861 } 6862 } 6863 ACQ_UNLOCK(); 6864 if (acq == NULL) 6865 return (ESRCH); 6866 return (0); 6867 } 6868 /* 6869 * Mark ACQ entry as stale to remove it in key_flush_acq(). 6870 * Called after successful SADB_GETSPI message. 6871 */ 6872 static int 6873 key_acqdone(const struct secasindex *saidx, uint32_t seq) 6874 { 6875 struct secacq *acq; 6876 6877 ACQ_LOCK(); 6878 LIST_FOREACH(acq, ACQSEQHASH_HASH(seq), seqhash) { 6879 if (acq->seq == seq) 6880 break; 6881 } 6882 if (acq != NULL) { 6883 if (key_cmpsaidx(&acq->saidx, saidx, CMP_EXACTLY) == 0) { 6884 ipseclog((LOG_DEBUG, 6885 "%s: Mismatched saidx for ACQ %u\n", __func__, seq)); 6886 acq = NULL; 6887 } else { 6888 acq->created = 0; 6889 } 6890 } else { 6891 ipseclog((LOG_DEBUG, 6892 "%s: ACQ %u is not found.\n", __func__, seq)); 6893 } 6894 ACQ_UNLOCK(); 6895 if (acq == NULL) 6896 return (ESRCH); 6897 return (0); 6898 } 6899 6900 static struct secspacq * 6901 key_newspacq(struct secpolicyindex *spidx) 6902 { 6903 struct secspacq *acq; 6904 6905 /* get new entry */ 6906 acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 6907 if (acq == NULL) { 6908 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6909 return NULL; 6910 } 6911 6912 /* copy secindex */ 6913 bcopy(spidx, &acq->spidx, sizeof(acq->spidx)); 6914 acq->created = time_second; 6915 acq->count = 0; 6916 6917 /* add to spacqtree */ 6918 SPACQ_LOCK(); 6919 LIST_INSERT_HEAD(&V_spacqtree, acq, chain); 6920 SPACQ_UNLOCK(); 6921 6922 return acq; 6923 } 6924 6925 static struct secspacq * 6926 key_getspacq(struct secpolicyindex *spidx) 6927 { 6928 struct secspacq *acq; 6929 6930 SPACQ_LOCK(); 6931 LIST_FOREACH(acq, &V_spacqtree, chain) { 6932 if (key_cmpspidx_exactly(spidx, &acq->spidx)) { 6933 /* NB: return holding spacq_lock */ 6934 return acq; 6935 } 6936 } 6937 SPACQ_UNLOCK(); 6938 6939 return NULL; 6940 } 6941 6942 /* 6943 * SADB_ACQUIRE processing, 6944 * in first situation, is receiving 6945 * <base> 6946 * from the ikmpd, and clear sequence of its secasvar entry. 6947 * 6948 * In second situation, is receiving 6949 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6950 * from a user land process, and return 6951 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6952 * to the socket. 6953 * 6954 * m will always be freed. 6955 */ 6956 static int 6957 key_acquire2(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 6958 { 6959 SAHTREE_RLOCK_TRACKER; 6960 struct sadb_address *src0, *dst0; 6961 struct secasindex saidx; 6962 struct secashead *sah; 6963 uint32_t reqid; 6964 int error; 6965 uint8_t mode, proto; 6966 6967 IPSEC_ASSERT(so != NULL, ("null socket")); 6968 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6969 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6970 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6971 6972 /* 6973 * Error message from KMd. 6974 * We assume that if error was occurred in IKEd, the length of PFKEY 6975 * message is equal to the size of sadb_msg structure. 6976 * We do not raise error even if error occurred in this function. 6977 */ 6978 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { 6979 /* check sequence number */ 6980 if (mhp->msg->sadb_msg_seq == 0 || 6981 mhp->msg->sadb_msg_errno == 0) { 6982 ipseclog((LOG_DEBUG, "%s: must specify sequence " 6983 "number and errno.\n", __func__)); 6984 } else { 6985 /* 6986 * IKEd reported that error occurred. 6987 * XXXAE: what it expects from the kernel? 6988 * Probably we should send SADB_ACQUIRE again? 6989 * If so, reset ACQ's state. 6990 * XXXAE: it looks useless. 6991 */ 6992 key_acqreset(mhp->msg->sadb_msg_seq); 6993 } 6994 m_freem(m); 6995 return (0); 6996 } 6997 6998 /* 6999 * This message is from user land. 7000 */ 7001 7002 /* map satype to proto */ 7003 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 7004 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 7005 __func__)); 7006 return key_senderror(so, m, EINVAL); 7007 } 7008 7009 if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || 7010 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) || 7011 SADB_CHECKHDR(mhp, SADB_EXT_PROPOSAL)) { 7012 ipseclog((LOG_DEBUG, 7013 "%s: invalid message: missing required header.\n", 7014 __func__)); 7015 return key_senderror(so, m, EINVAL); 7016 } 7017 if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || 7018 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST) || 7019 SADB_CHECKLEN(mhp, SADB_EXT_PROPOSAL)) { 7020 ipseclog((LOG_DEBUG, 7021 "%s: invalid message: wrong header size.\n", __func__)); 7022 return key_senderror(so, m, EINVAL); 7023 } 7024 7025 if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) { 7026 mode = IPSEC_MODE_ANY; 7027 reqid = 0; 7028 } else { 7029 if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) { 7030 ipseclog((LOG_DEBUG, 7031 "%s: invalid message: wrong header size.\n", 7032 __func__)); 7033 return key_senderror(so, m, EINVAL); 7034 } 7035 mode = ((struct sadb_x_sa2 *) 7036 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 7037 reqid = ((struct sadb_x_sa2 *) 7038 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 7039 } 7040 7041 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 7042 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 7043 7044 error = key_checksockaddrs((struct sockaddr *)(src0 + 1), 7045 (struct sockaddr *)(dst0 + 1)); 7046 if (error != 0) { 7047 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); 7048 return key_senderror(so, m, EINVAL); 7049 } 7050 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 7051 7052 /* get a SA index */ 7053 SAHTREE_RLOCK(); 7054 LIST_FOREACH(sah, SAHADDRHASH_HASH(&saidx), addrhash) { 7055 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID)) 7056 break; 7057 } 7058 SAHTREE_RUNLOCK(); 7059 if (sah != NULL) { 7060 ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__)); 7061 return key_senderror(so, m, EEXIST); 7062 } 7063 7064 error = key_acquire(&saidx, NULL); 7065 if (error != 0) { 7066 ipseclog((LOG_DEBUG, 7067 "%s: error %d returned from key_acquire()\n", 7068 __func__, error)); 7069 return key_senderror(so, m, error); 7070 } 7071 m_freem(m); 7072 return (0); 7073 } 7074 7075 /* 7076 * SADB_REGISTER processing. 7077 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. 7078 * receive 7079 * <base> 7080 * from the ikmpd, and register a socket to send PF_KEY messages, 7081 * and send 7082 * <base, supported> 7083 * to KMD by PF_KEY. 7084 * If socket is detached, must free from regnode. 7085 * 7086 * m will always be freed. 7087 */ 7088 static int 7089 key_register(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 7090 { 7091 struct secreg *reg, *newreg = NULL; 7092 7093 IPSEC_ASSERT(so != NULL, ("null socket")); 7094 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7095 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7096 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7097 7098 /* check for invalid register message */ 7099 if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0])) 7100 return key_senderror(so, m, EINVAL); 7101 7102 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ 7103 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) 7104 goto setmsg; 7105 7106 /* check whether existing or not */ 7107 REGTREE_LOCK(); 7108 LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) { 7109 if (reg->so == so) { 7110 REGTREE_UNLOCK(); 7111 ipseclog((LOG_DEBUG, "%s: socket exists already.\n", 7112 __func__)); 7113 return key_senderror(so, m, EEXIST); 7114 } 7115 } 7116 7117 /* create regnode */ 7118 newreg = malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO); 7119 if (newreg == NULL) { 7120 REGTREE_UNLOCK(); 7121 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 7122 return key_senderror(so, m, ENOBUFS); 7123 } 7124 7125 newreg->so = so; 7126 ((struct keycb *)sotorawcb(so))->kp_registered++; 7127 7128 /* add regnode to regtree. */ 7129 LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain); 7130 REGTREE_UNLOCK(); 7131 7132 setmsg: 7133 { 7134 struct mbuf *n; 7135 struct sadb_msg *newmsg; 7136 struct sadb_supported *sup; 7137 u_int len, alen, elen; 7138 int off; 7139 int i; 7140 struct sadb_alg *alg; 7141 7142 /* create new sadb_msg to reply. */ 7143 alen = 0; 7144 for (i = 1; i <= SADB_AALG_MAX; i++) { 7145 if (auth_algorithm_lookup(i)) 7146 alen += sizeof(struct sadb_alg); 7147 } 7148 if (alen) 7149 alen += sizeof(struct sadb_supported); 7150 elen = 0; 7151 for (i = 1; i <= SADB_EALG_MAX; i++) { 7152 if (enc_algorithm_lookup(i)) 7153 elen += sizeof(struct sadb_alg); 7154 } 7155 if (elen) 7156 elen += sizeof(struct sadb_supported); 7157 7158 len = sizeof(struct sadb_msg) + alen + elen; 7159 7160 if (len > MCLBYTES) 7161 return key_senderror(so, m, ENOBUFS); 7162 7163 MGETHDR(n, M_NOWAIT, MT_DATA); 7164 if (n != NULL && len > MHLEN) { 7165 if (!(MCLGET(n, M_NOWAIT))) { 7166 m_freem(n); 7167 n = NULL; 7168 } 7169 } 7170 if (!n) 7171 return key_senderror(so, m, ENOBUFS); 7172 7173 n->m_pkthdr.len = n->m_len = len; 7174 n->m_next = NULL; 7175 off = 0; 7176 7177 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 7178 newmsg = mtod(n, struct sadb_msg *); 7179 newmsg->sadb_msg_errno = 0; 7180 newmsg->sadb_msg_len = PFKEY_UNIT64(len); 7181 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 7182 7183 /* for authentication algorithm */ 7184 if (alen) { 7185 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 7186 sup->sadb_supported_len = PFKEY_UNIT64(alen); 7187 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 7188 off += PFKEY_ALIGN8(sizeof(*sup)); 7189 7190 for (i = 1; i <= SADB_AALG_MAX; i++) { 7191 const struct auth_hash *aalgo; 7192 u_int16_t minkeysize, maxkeysize; 7193 7194 aalgo = auth_algorithm_lookup(i); 7195 if (!aalgo) 7196 continue; 7197 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 7198 alg->sadb_alg_id = i; 7199 alg->sadb_alg_ivlen = 0; 7200 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); 7201 alg->sadb_alg_minbits = _BITS(minkeysize); 7202 alg->sadb_alg_maxbits = _BITS(maxkeysize); 7203 off += PFKEY_ALIGN8(sizeof(*alg)); 7204 } 7205 } 7206 7207 /* for encryption algorithm */ 7208 if (elen) { 7209 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 7210 sup->sadb_supported_len = PFKEY_UNIT64(elen); 7211 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 7212 off += PFKEY_ALIGN8(sizeof(*sup)); 7213 7214 for (i = 1; i <= SADB_EALG_MAX; i++) { 7215 const struct enc_xform *ealgo; 7216 7217 ealgo = enc_algorithm_lookup(i); 7218 if (!ealgo) 7219 continue; 7220 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 7221 alg->sadb_alg_id = i; 7222 alg->sadb_alg_ivlen = ealgo->ivsize; 7223 alg->sadb_alg_minbits = _BITS(ealgo->minkey); 7224 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); 7225 off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); 7226 } 7227 } 7228 7229 IPSEC_ASSERT(off == len, 7230 ("length assumption failed (off %u len %u)", off, len)); 7231 7232 m_freem(m); 7233 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); 7234 } 7235 } 7236 7237 /* 7238 * free secreg entry registered. 7239 * XXX: I want to do free a socket marked done SADB_RESIGER to socket. 7240 */ 7241 void 7242 key_freereg(struct socket *so) 7243 { 7244 struct secreg *reg; 7245 int i; 7246 7247 IPSEC_ASSERT(so != NULL, ("NULL so")); 7248 7249 /* 7250 * check whether existing or not. 7251 * check all type of SA, because there is a potential that 7252 * one socket is registered to multiple type of SA. 7253 */ 7254 REGTREE_LOCK(); 7255 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 7256 LIST_FOREACH(reg, &V_regtree[i], chain) { 7257 if (reg->so == so && __LIST_CHAINED(reg)) { 7258 LIST_REMOVE(reg, chain); 7259 free(reg, M_IPSEC_SAR); 7260 break; 7261 } 7262 } 7263 } 7264 REGTREE_UNLOCK(); 7265 } 7266 7267 /* 7268 * SADB_EXPIRE processing 7269 * send 7270 * <base, SA, SA2, lifetime(C and one of HS), address(SD)> 7271 * to KMD by PF_KEY. 7272 * NOTE: We send only soft lifetime extension. 7273 * 7274 * OUT: 0 : succeed 7275 * others : error number 7276 */ 7277 static int 7278 key_expire(struct secasvar *sav, int hard) 7279 { 7280 struct mbuf *result = NULL, *m; 7281 struct sadb_lifetime *lt; 7282 uint32_t replay_count; 7283 int error, len; 7284 uint8_t satype; 7285 7286 IPSEC_ASSERT (sav != NULL, ("null sav")); 7287 IPSEC_ASSERT (sav->sah != NULL, ("null sa header")); 7288 7289 KEYDBG(KEY_STAMP, 7290 printf("%s: SA(%p) expired %s lifetime\n", __func__, 7291 sav, hard ? "hard": "soft")); 7292 KEYDBG(KEY_DATA, kdebug_secasv(sav)); 7293 /* set msg header */ 7294 satype = key_proto2satype(sav->sah->saidx.proto); 7295 IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype)); 7296 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt); 7297 if (!m) { 7298 error = ENOBUFS; 7299 goto fail; 7300 } 7301 result = m; 7302 7303 /* create SA extension */ 7304 m = key_setsadbsa(sav); 7305 if (!m) { 7306 error = ENOBUFS; 7307 goto fail; 7308 } 7309 m_cat(result, m); 7310 7311 /* create SA extension */ 7312 SECASVAR_LOCK(sav); 7313 replay_count = sav->replay ? sav->replay->count : 0; 7314 SECASVAR_UNLOCK(sav); 7315 7316 m = key_setsadbxsa2(sav->sah->saidx.mode, replay_count, 7317 sav->sah->saidx.reqid); 7318 if (!m) { 7319 error = ENOBUFS; 7320 goto fail; 7321 } 7322 m_cat(result, m); 7323 7324 if (sav->replay && sav->replay->wsize > UINT8_MAX) { 7325 m = key_setsadbxsareplay(sav->replay->wsize); 7326 if (!m) { 7327 error = ENOBUFS; 7328 goto fail; 7329 } 7330 m_cat(result, m); 7331 } 7332 7333 /* create lifetime extension (current and soft) */ 7334 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 7335 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 7336 if (m == NULL) { 7337 error = ENOBUFS; 7338 goto fail; 7339 } 7340 m_align(m, len); 7341 m->m_len = len; 7342 bzero(mtod(m, caddr_t), len); 7343 lt = mtod(m, struct sadb_lifetime *); 7344 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 7345 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 7346 lt->sadb_lifetime_allocations = 7347 (uint32_t)counter_u64_fetch(sav->lft_c_allocations); 7348 lt->sadb_lifetime_bytes = 7349 counter_u64_fetch(sav->lft_c_bytes); 7350 lt->sadb_lifetime_addtime = sav->created; 7351 lt->sadb_lifetime_usetime = sav->firstused; 7352 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 7353 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 7354 if (hard) { 7355 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 7356 lt->sadb_lifetime_allocations = sav->lft_h->allocations; 7357 lt->sadb_lifetime_bytes = sav->lft_h->bytes; 7358 lt->sadb_lifetime_addtime = sav->lft_h->addtime; 7359 lt->sadb_lifetime_usetime = sav->lft_h->usetime; 7360 } else { 7361 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; 7362 lt->sadb_lifetime_allocations = sav->lft_s->allocations; 7363 lt->sadb_lifetime_bytes = sav->lft_s->bytes; 7364 lt->sadb_lifetime_addtime = sav->lft_s->addtime; 7365 lt->sadb_lifetime_usetime = sav->lft_s->usetime; 7366 } 7367 m_cat(result, m); 7368 7369 /* set sadb_address for source */ 7370 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 7371 &sav->sah->saidx.src.sa, 7372 FULLMASK, IPSEC_ULPROTO_ANY); 7373 if (!m) { 7374 error = ENOBUFS; 7375 goto fail; 7376 } 7377 m_cat(result, m); 7378 7379 /* set sadb_address for destination */ 7380 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 7381 &sav->sah->saidx.dst.sa, 7382 FULLMASK, IPSEC_ULPROTO_ANY); 7383 if (!m) { 7384 error = ENOBUFS; 7385 goto fail; 7386 } 7387 m_cat(result, m); 7388 7389 /* 7390 * XXX-BZ Handle NAT-T extensions here. 7391 * XXXAE: it doesn't seem quite useful. IKEs should not depend on 7392 * this information, we report only significant SA fields. 7393 */ 7394 7395 if ((result->m_flags & M_PKTHDR) == 0) { 7396 error = EINVAL; 7397 goto fail; 7398 } 7399 7400 if (result->m_len < sizeof(struct sadb_msg)) { 7401 result = m_pullup(result, sizeof(struct sadb_msg)); 7402 if (result == NULL) { 7403 error = ENOBUFS; 7404 goto fail; 7405 } 7406 } 7407 7408 result->m_pkthdr.len = 0; 7409 for (m = result; m; m = m->m_next) 7410 result->m_pkthdr.len += m->m_len; 7411 7412 mtod(result, struct sadb_msg *)->sadb_msg_len = 7413 PFKEY_UNIT64(result->m_pkthdr.len); 7414 7415 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 7416 7417 fail: 7418 if (result) 7419 m_freem(result); 7420 return error; 7421 } 7422 7423 static void 7424 key_freesah_flushed(struct secashead_queue *flushq) 7425 { 7426 struct secashead *sah, *nextsah; 7427 struct secasvar *sav, *nextsav; 7428 7429 sah = TAILQ_FIRST(flushq); 7430 while (sah != NULL) { 7431 sav = TAILQ_FIRST(&sah->savtree_larval); 7432 while (sav != NULL) { 7433 nextsav = TAILQ_NEXT(sav, chain); 7434 TAILQ_REMOVE(&sah->savtree_larval, sav, chain); 7435 key_freesav(&sav); /* release last reference */ 7436 key_freesah(&sah); /* release reference from SAV */ 7437 sav = nextsav; 7438 } 7439 sav = TAILQ_FIRST(&sah->savtree_alive); 7440 while (sav != NULL) { 7441 nextsav = TAILQ_NEXT(sav, chain); 7442 TAILQ_REMOVE(&sah->savtree_alive, sav, chain); 7443 key_freesav(&sav); /* release last reference */ 7444 key_freesah(&sah); /* release reference from SAV */ 7445 sav = nextsav; 7446 } 7447 nextsah = TAILQ_NEXT(sah, chain); 7448 key_freesah(&sah); /* release last reference */ 7449 sah = nextsah; 7450 } 7451 } 7452 7453 /* 7454 * SADB_FLUSH processing 7455 * receive 7456 * <base> 7457 * from the ikmpd, and free all entries in secastree. 7458 * and send, 7459 * <base> 7460 * to the ikmpd. 7461 * NOTE: to do is only marking SADB_SASTATE_DEAD. 7462 * 7463 * m will always be freed. 7464 */ 7465 static int 7466 key_flush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 7467 { 7468 struct secashead_queue flushq; 7469 struct sadb_msg *newmsg; 7470 struct secashead *sah, *nextsah; 7471 struct secasvar *sav; 7472 uint8_t proto; 7473 int i; 7474 7475 IPSEC_ASSERT(so != NULL, ("null socket")); 7476 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7477 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7478 7479 /* map satype to proto */ 7480 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 7481 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 7482 __func__)); 7483 return key_senderror(so, m, EINVAL); 7484 } 7485 KEYDBG(KEY_STAMP, 7486 printf("%s: proto %u\n", __func__, proto)); 7487 7488 TAILQ_INIT(&flushq); 7489 if (proto == IPSEC_PROTO_ANY) { 7490 /* no SATYPE specified, i.e. flushing all SA. */ 7491 SAHTREE_WLOCK(); 7492 /* Move all SAHs into flushq */ 7493 TAILQ_CONCAT(&flushq, &V_sahtree, chain); 7494 /* Flush all buckets in SPI hash */ 7495 for (i = 0; i < V_savhash_mask + 1; i++) 7496 LIST_INIT(&V_savhashtbl[i]); 7497 /* Flush all buckets in SAHADDRHASH */ 7498 for (i = 0; i < V_sahaddrhash_mask + 1; i++) 7499 LIST_INIT(&V_sahaddrhashtbl[i]); 7500 /* Mark all SAHs as unlinked */ 7501 TAILQ_FOREACH(sah, &flushq, chain) { 7502 sah->state = SADB_SASTATE_DEAD; 7503 /* 7504 * Callout handler makes its job using 7505 * RLOCK and drain queues. In case, when this 7506 * function will be called just before it 7507 * acquires WLOCK, we need to mark SAs as 7508 * unlinked to prevent second unlink. 7509 */ 7510 TAILQ_FOREACH(sav, &sah->savtree_larval, chain) { 7511 sav->state = SADB_SASTATE_DEAD; 7512 } 7513 TAILQ_FOREACH(sav, &sah->savtree_alive, chain) { 7514 sav->state = SADB_SASTATE_DEAD; 7515 } 7516 } 7517 SAHTREE_WUNLOCK(); 7518 } else { 7519 SAHTREE_WLOCK(); 7520 sah = TAILQ_FIRST(&V_sahtree); 7521 while (sah != NULL) { 7522 IPSEC_ASSERT(sah->state != SADB_SASTATE_DEAD, 7523 ("DEAD SAH %p in SADB_FLUSH", sah)); 7524 nextsah = TAILQ_NEXT(sah, chain); 7525 if (sah->saidx.proto != proto) { 7526 sah = nextsah; 7527 continue; 7528 } 7529 sah->state = SADB_SASTATE_DEAD; 7530 TAILQ_REMOVE(&V_sahtree, sah, chain); 7531 LIST_REMOVE(sah, addrhash); 7532 /* Unlink all SAs from SPI hash */ 7533 TAILQ_FOREACH(sav, &sah->savtree_larval, chain) { 7534 LIST_REMOVE(sav, spihash); 7535 sav->state = SADB_SASTATE_DEAD; 7536 } 7537 TAILQ_FOREACH(sav, &sah->savtree_alive, chain) { 7538 LIST_REMOVE(sav, spihash); 7539 sav->state = SADB_SASTATE_DEAD; 7540 } 7541 /* Add SAH into flushq */ 7542 TAILQ_INSERT_HEAD(&flushq, sah, chain); 7543 sah = nextsah; 7544 } 7545 SAHTREE_WUNLOCK(); 7546 } 7547 7548 key_freesah_flushed(&flushq); 7549 /* Free all queued SAs and SAHs */ 7550 if (m->m_len < sizeof(struct sadb_msg) || 7551 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 7552 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 7553 return key_senderror(so, m, ENOBUFS); 7554 } 7555 7556 if (m->m_next) 7557 m_freem(m->m_next); 7558 m->m_next = NULL; 7559 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); 7560 newmsg = mtod(m, struct sadb_msg *); 7561 newmsg->sadb_msg_errno = 0; 7562 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 7563 7564 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7565 } 7566 7567 /* 7568 * SADB_DUMP processing 7569 * dump all entries including status of DEAD in SAD. 7570 * receive 7571 * <base> 7572 * from the ikmpd, and dump all secasvar leaves 7573 * and send, 7574 * <base> ..... 7575 * to the ikmpd. 7576 * 7577 * m will always be freed. 7578 */ 7579 static int 7580 key_dump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 7581 { 7582 SAHTREE_RLOCK_TRACKER; 7583 struct secashead *sah; 7584 struct secasvar *sav; 7585 struct mbuf *n; 7586 uint32_t cnt; 7587 uint8_t proto, satype; 7588 7589 IPSEC_ASSERT(so != NULL, ("null socket")); 7590 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7591 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7592 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7593 7594 /* map satype to proto */ 7595 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 7596 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 7597 __func__)); 7598 return key_senderror(so, m, EINVAL); 7599 } 7600 7601 /* count sav entries to be sent to the userland. */ 7602 cnt = 0; 7603 SAHTREE_RLOCK(); 7604 TAILQ_FOREACH(sah, &V_sahtree, chain) { 7605 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC && 7606 proto != sah->saidx.proto) 7607 continue; 7608 7609 TAILQ_FOREACH(sav, &sah->savtree_larval, chain) 7610 cnt++; 7611 TAILQ_FOREACH(sav, &sah->savtree_alive, chain) 7612 cnt++; 7613 } 7614 7615 if (cnt == 0) { 7616 SAHTREE_RUNLOCK(); 7617 return key_senderror(so, m, ENOENT); 7618 } 7619 7620 /* send this to the userland, one at a time. */ 7621 TAILQ_FOREACH(sah, &V_sahtree, chain) { 7622 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC && 7623 proto != sah->saidx.proto) 7624 continue; 7625 7626 /* map proto to satype */ 7627 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 7628 SAHTREE_RUNLOCK(); 7629 ipseclog((LOG_DEBUG, "%s: there was invalid proto in " 7630 "SAD.\n", __func__)); 7631 return key_senderror(so, m, EINVAL); 7632 } 7633 TAILQ_FOREACH(sav, &sah->savtree_larval, chain) { 7634 n = key_setdumpsa(sav, SADB_DUMP, satype, 7635 --cnt, mhp->msg->sadb_msg_pid); 7636 if (n == NULL) { 7637 SAHTREE_RUNLOCK(); 7638 return key_senderror(so, m, ENOBUFS); 7639 } 7640 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 7641 } 7642 TAILQ_FOREACH(sav, &sah->savtree_alive, chain) { 7643 n = key_setdumpsa(sav, SADB_DUMP, satype, 7644 --cnt, mhp->msg->sadb_msg_pid); 7645 if (n == NULL) { 7646 SAHTREE_RUNLOCK(); 7647 return key_senderror(so, m, ENOBUFS); 7648 } 7649 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 7650 } 7651 } 7652 SAHTREE_RUNLOCK(); 7653 m_freem(m); 7654 return (0); 7655 } 7656 /* 7657 * SADB_X_PROMISC processing 7658 * 7659 * m will always be freed. 7660 */ 7661 static int 7662 key_promisc(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 7663 { 7664 int olen; 7665 7666 IPSEC_ASSERT(so != NULL, ("null socket")); 7667 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7668 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7669 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7670 7671 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7672 7673 if (olen < sizeof(struct sadb_msg)) { 7674 #if 1 7675 return key_senderror(so, m, EINVAL); 7676 #else 7677 m_freem(m); 7678 return 0; 7679 #endif 7680 } else if (olen == sizeof(struct sadb_msg)) { 7681 /* enable/disable promisc mode */ 7682 struct keycb *kp; 7683 7684 if ((kp = (struct keycb *)sotorawcb(so)) == NULL) 7685 return key_senderror(so, m, EINVAL); 7686 mhp->msg->sadb_msg_errno = 0; 7687 switch (mhp->msg->sadb_msg_satype) { 7688 case 0: 7689 case 1: 7690 kp->kp_promisc = mhp->msg->sadb_msg_satype; 7691 break; 7692 default: 7693 return key_senderror(so, m, EINVAL); 7694 } 7695 7696 /* send the original message back to everyone */ 7697 mhp->msg->sadb_msg_errno = 0; 7698 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7699 } else { 7700 /* send packet as is */ 7701 7702 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); 7703 7704 /* TODO: if sadb_msg_seq is specified, send to specific pid */ 7705 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7706 } 7707 } 7708 7709 static int (*key_typesw[])(struct socket *, struct mbuf *, 7710 const struct sadb_msghdr *) = { 7711 NULL, /* SADB_RESERVED */ 7712 key_getspi, /* SADB_GETSPI */ 7713 key_update, /* SADB_UPDATE */ 7714 key_add, /* SADB_ADD */ 7715 key_delete, /* SADB_DELETE */ 7716 key_get, /* SADB_GET */ 7717 key_acquire2, /* SADB_ACQUIRE */ 7718 key_register, /* SADB_REGISTER */ 7719 NULL, /* SADB_EXPIRE */ 7720 key_flush, /* SADB_FLUSH */ 7721 key_dump, /* SADB_DUMP */ 7722 key_promisc, /* SADB_X_PROMISC */ 7723 NULL, /* SADB_X_PCHANGE */ 7724 key_spdadd, /* SADB_X_SPDUPDATE */ 7725 key_spdadd, /* SADB_X_SPDADD */ 7726 key_spddelete, /* SADB_X_SPDDELETE */ 7727 key_spdget, /* SADB_X_SPDGET */ 7728 NULL, /* SADB_X_SPDACQUIRE */ 7729 key_spddump, /* SADB_X_SPDDUMP */ 7730 key_spdflush, /* SADB_X_SPDFLUSH */ 7731 key_spdadd, /* SADB_X_SPDSETIDX */ 7732 NULL, /* SADB_X_SPDEXPIRE */ 7733 key_spddelete2, /* SADB_X_SPDDELETE2 */ 7734 }; 7735 7736 /* 7737 * parse sadb_msg buffer to process PFKEYv2, 7738 * and create a data to response if needed. 7739 * I think to be dealed with mbuf directly. 7740 * IN: 7741 * msgp : pointer to pointer to a received buffer pulluped. 7742 * This is rewrited to response. 7743 * so : pointer to socket. 7744 * OUT: 7745 * length for buffer to send to user process. 7746 */ 7747 int 7748 key_parse(struct mbuf *m, struct socket *so) 7749 { 7750 struct sadb_msg *msg; 7751 struct sadb_msghdr mh; 7752 u_int orglen; 7753 int error; 7754 int target; 7755 7756 IPSEC_ASSERT(so != NULL, ("null socket")); 7757 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7758 7759 if (m->m_len < sizeof(struct sadb_msg)) { 7760 m = m_pullup(m, sizeof(struct sadb_msg)); 7761 if (!m) 7762 return ENOBUFS; 7763 } 7764 msg = mtod(m, struct sadb_msg *); 7765 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); 7766 target = KEY_SENDUP_ONE; 7767 7768 if ((m->m_flags & M_PKTHDR) == 0 || m->m_pkthdr.len != orglen) { 7769 ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__)); 7770 PFKEYSTAT_INC(out_invlen); 7771 error = EINVAL; 7772 goto senderror; 7773 } 7774 7775 if (msg->sadb_msg_version != PF_KEY_V2) { 7776 ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n", 7777 __func__, msg->sadb_msg_version)); 7778 PFKEYSTAT_INC(out_invver); 7779 error = EINVAL; 7780 goto senderror; 7781 } 7782 7783 if (msg->sadb_msg_type > SADB_MAX) { 7784 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 7785 __func__, msg->sadb_msg_type)); 7786 PFKEYSTAT_INC(out_invmsgtype); 7787 error = EINVAL; 7788 goto senderror; 7789 } 7790 7791 /* for old-fashioned code - should be nuked */ 7792 if (m->m_pkthdr.len > MCLBYTES) { 7793 m_freem(m); 7794 return ENOBUFS; 7795 } 7796 if (m->m_next) { 7797 struct mbuf *n; 7798 7799 MGETHDR(n, M_NOWAIT, MT_DATA); 7800 if (n && m->m_pkthdr.len > MHLEN) { 7801 if (!(MCLGET(n, M_NOWAIT))) { 7802 m_free(n); 7803 n = NULL; 7804 } 7805 } 7806 if (!n) { 7807 m_freem(m); 7808 return ENOBUFS; 7809 } 7810 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t)); 7811 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; 7812 n->m_next = NULL; 7813 m_freem(m); 7814 m = n; 7815 } 7816 7817 /* align the mbuf chain so that extensions are in contiguous region. */ 7818 error = key_align(m, &mh); 7819 if (error) 7820 return error; 7821 7822 msg = mh.msg; 7823 7824 /* We use satype as scope mask for spddump */ 7825 if (msg->sadb_msg_type == SADB_X_SPDDUMP) { 7826 switch (msg->sadb_msg_satype) { 7827 case IPSEC_POLICYSCOPE_ANY: 7828 case IPSEC_POLICYSCOPE_GLOBAL: 7829 case IPSEC_POLICYSCOPE_IFNET: 7830 case IPSEC_POLICYSCOPE_PCB: 7831 break; 7832 default: 7833 ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n", 7834 __func__, msg->sadb_msg_type)); 7835 PFKEYSTAT_INC(out_invsatype); 7836 error = EINVAL; 7837 goto senderror; 7838 } 7839 } else { 7840 switch (msg->sadb_msg_satype) { /* check SA type */ 7841 case SADB_SATYPE_UNSPEC: 7842 switch (msg->sadb_msg_type) { 7843 case SADB_GETSPI: 7844 case SADB_UPDATE: 7845 case SADB_ADD: 7846 case SADB_DELETE: 7847 case SADB_GET: 7848 case SADB_ACQUIRE: 7849 case SADB_EXPIRE: 7850 ipseclog((LOG_DEBUG, "%s: must specify satype " 7851 "when msg type=%u.\n", __func__, 7852 msg->sadb_msg_type)); 7853 PFKEYSTAT_INC(out_invsatype); 7854 error = EINVAL; 7855 goto senderror; 7856 } 7857 break; 7858 case SADB_SATYPE_AH: 7859 case SADB_SATYPE_ESP: 7860 case SADB_X_SATYPE_IPCOMP: 7861 case SADB_X_SATYPE_TCPSIGNATURE: 7862 switch (msg->sadb_msg_type) { 7863 case SADB_X_SPDADD: 7864 case SADB_X_SPDDELETE: 7865 case SADB_X_SPDGET: 7866 case SADB_X_SPDFLUSH: 7867 case SADB_X_SPDSETIDX: 7868 case SADB_X_SPDUPDATE: 7869 case SADB_X_SPDDELETE2: 7870 ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n", 7871 __func__, msg->sadb_msg_type)); 7872 PFKEYSTAT_INC(out_invsatype); 7873 error = EINVAL; 7874 goto senderror; 7875 } 7876 break; 7877 case SADB_SATYPE_RSVP: 7878 case SADB_SATYPE_OSPFV2: 7879 case SADB_SATYPE_RIPV2: 7880 case SADB_SATYPE_MIP: 7881 ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n", 7882 __func__, msg->sadb_msg_satype)); 7883 PFKEYSTAT_INC(out_invsatype); 7884 error = EOPNOTSUPP; 7885 goto senderror; 7886 case 1: /* XXX: What does it do? */ 7887 if (msg->sadb_msg_type == SADB_X_PROMISC) 7888 break; 7889 /*FALLTHROUGH*/ 7890 default: 7891 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 7892 __func__, msg->sadb_msg_satype)); 7893 PFKEYSTAT_INC(out_invsatype); 7894 error = EINVAL; 7895 goto senderror; 7896 } 7897 } 7898 7899 /* check field of upper layer protocol and address family */ 7900 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL 7901 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { 7902 struct sadb_address *src0, *dst0; 7903 u_int plen; 7904 7905 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]); 7906 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]); 7907 7908 /* check upper layer protocol */ 7909 if (src0->sadb_address_proto != dst0->sadb_address_proto) { 7910 ipseclog((LOG_DEBUG, "%s: upper layer protocol " 7911 "mismatched.\n", __func__)); 7912 PFKEYSTAT_INC(out_invaddr); 7913 error = EINVAL; 7914 goto senderror; 7915 } 7916 7917 /* check family */ 7918 if (PFKEY_ADDR_SADDR(src0)->sa_family != 7919 PFKEY_ADDR_SADDR(dst0)->sa_family) { 7920 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 7921 __func__)); 7922 PFKEYSTAT_INC(out_invaddr); 7923 error = EINVAL; 7924 goto senderror; 7925 } 7926 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7927 PFKEY_ADDR_SADDR(dst0)->sa_len) { 7928 ipseclog((LOG_DEBUG, "%s: address struct size " 7929 "mismatched.\n", __func__)); 7930 PFKEYSTAT_INC(out_invaddr); 7931 error = EINVAL; 7932 goto senderror; 7933 } 7934 7935 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7936 case AF_INET: 7937 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7938 sizeof(struct sockaddr_in)) { 7939 PFKEYSTAT_INC(out_invaddr); 7940 error = EINVAL; 7941 goto senderror; 7942 } 7943 break; 7944 case AF_INET6: 7945 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7946 sizeof(struct sockaddr_in6)) { 7947 PFKEYSTAT_INC(out_invaddr); 7948 error = EINVAL; 7949 goto senderror; 7950 } 7951 break; 7952 default: 7953 ipseclog((LOG_DEBUG, "%s: unsupported address family\n", 7954 __func__)); 7955 PFKEYSTAT_INC(out_invaddr); 7956 error = EAFNOSUPPORT; 7957 goto senderror; 7958 } 7959 7960 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7961 case AF_INET: 7962 plen = sizeof(struct in_addr) << 3; 7963 break; 7964 case AF_INET6: 7965 plen = sizeof(struct in6_addr) << 3; 7966 break; 7967 default: 7968 plen = 0; /*fool gcc*/ 7969 break; 7970 } 7971 7972 /* check max prefix length */ 7973 if (src0->sadb_address_prefixlen > plen || 7974 dst0->sadb_address_prefixlen > plen) { 7975 ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n", 7976 __func__)); 7977 PFKEYSTAT_INC(out_invaddr); 7978 error = EINVAL; 7979 goto senderror; 7980 } 7981 7982 /* 7983 * prefixlen == 0 is valid because there can be a case when 7984 * all addresses are matched. 7985 */ 7986 } 7987 7988 if (msg->sadb_msg_type >= nitems(key_typesw) || 7989 key_typesw[msg->sadb_msg_type] == NULL) { 7990 PFKEYSTAT_INC(out_invmsgtype); 7991 error = EINVAL; 7992 goto senderror; 7993 } 7994 7995 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh); 7996 7997 senderror: 7998 msg->sadb_msg_errno = error; 7999 return key_sendup_mbuf(so, m, target); 8000 } 8001 8002 static int 8003 key_senderror(struct socket *so, struct mbuf *m, int code) 8004 { 8005 struct sadb_msg *msg; 8006 8007 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 8008 ("mbuf too small, len %u", m->m_len)); 8009 8010 msg = mtod(m, struct sadb_msg *); 8011 msg->sadb_msg_errno = code; 8012 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 8013 } 8014 8015 /* 8016 * set the pointer to each header into message buffer. 8017 * m will be freed on error. 8018 * XXX larger-than-MCLBYTES extension? 8019 */ 8020 static int 8021 key_align(struct mbuf *m, struct sadb_msghdr *mhp) 8022 { 8023 struct mbuf *n; 8024 struct sadb_ext *ext; 8025 size_t off, end; 8026 int extlen; 8027 int toff; 8028 8029 IPSEC_ASSERT(m != NULL, ("null mbuf")); 8030 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 8031 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 8032 ("mbuf too small, len %u", m->m_len)); 8033 8034 /* initialize */ 8035 bzero(mhp, sizeof(*mhp)); 8036 8037 mhp->msg = mtod(m, struct sadb_msg *); 8038 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */ 8039 8040 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 8041 extlen = end; /*just in case extlen is not updated*/ 8042 for (off = sizeof(struct sadb_msg); off < end; off += extlen) { 8043 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); 8044 if (!n) { 8045 /* m is already freed */ 8046 return ENOBUFS; 8047 } 8048 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 8049 8050 /* set pointer */ 8051 switch (ext->sadb_ext_type) { 8052 case SADB_EXT_SA: 8053 case SADB_EXT_ADDRESS_SRC: 8054 case SADB_EXT_ADDRESS_DST: 8055 case SADB_EXT_ADDRESS_PROXY: 8056 case SADB_EXT_LIFETIME_CURRENT: 8057 case SADB_EXT_LIFETIME_HARD: 8058 case SADB_EXT_LIFETIME_SOFT: 8059 case SADB_EXT_KEY_AUTH: 8060 case SADB_EXT_KEY_ENCRYPT: 8061 case SADB_EXT_IDENTITY_SRC: 8062 case SADB_EXT_IDENTITY_DST: 8063 case SADB_EXT_SENSITIVITY: 8064 case SADB_EXT_PROPOSAL: 8065 case SADB_EXT_SUPPORTED_AUTH: 8066 case SADB_EXT_SUPPORTED_ENCRYPT: 8067 case SADB_EXT_SPIRANGE: 8068 case SADB_X_EXT_POLICY: 8069 case SADB_X_EXT_SA2: 8070 case SADB_X_EXT_NAT_T_TYPE: 8071 case SADB_X_EXT_NAT_T_SPORT: 8072 case SADB_X_EXT_NAT_T_DPORT: 8073 case SADB_X_EXT_NAT_T_OAI: 8074 case SADB_X_EXT_NAT_T_OAR: 8075 case SADB_X_EXT_NAT_T_FRAG: 8076 case SADB_X_EXT_SA_REPLAY: 8077 case SADB_X_EXT_NEW_ADDRESS_SRC: 8078 case SADB_X_EXT_NEW_ADDRESS_DST: 8079 /* duplicate check */ 8080 /* 8081 * XXX Are there duplication payloads of either 8082 * KEY_AUTH or KEY_ENCRYPT ? 8083 */ 8084 if (mhp->ext[ext->sadb_ext_type] != NULL) { 8085 ipseclog((LOG_DEBUG, "%s: duplicate ext_type " 8086 "%u\n", __func__, ext->sadb_ext_type)); 8087 m_freem(m); 8088 PFKEYSTAT_INC(out_dupext); 8089 return EINVAL; 8090 } 8091 break; 8092 default: 8093 ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n", 8094 __func__, ext->sadb_ext_type)); 8095 m_freem(m); 8096 PFKEYSTAT_INC(out_invexttype); 8097 return EINVAL; 8098 } 8099 8100 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); 8101 8102 if (key_validate_ext(ext, extlen)) { 8103 m_freem(m); 8104 PFKEYSTAT_INC(out_invlen); 8105 return EINVAL; 8106 } 8107 8108 n = m_pulldown(m, off, extlen, &toff); 8109 if (!n) { 8110 /* m is already freed */ 8111 return ENOBUFS; 8112 } 8113 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 8114 8115 mhp->ext[ext->sadb_ext_type] = ext; 8116 mhp->extoff[ext->sadb_ext_type] = off; 8117 mhp->extlen[ext->sadb_ext_type] = extlen; 8118 } 8119 8120 if (off != end) { 8121 m_freem(m); 8122 PFKEYSTAT_INC(out_invlen); 8123 return EINVAL; 8124 } 8125 8126 return 0; 8127 } 8128 8129 static int 8130 key_validate_ext(const struct sadb_ext *ext, int len) 8131 { 8132 const struct sockaddr *sa; 8133 enum { NONE, ADDR } checktype = NONE; 8134 int baselen = 0; 8135 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); 8136 8137 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) 8138 return EINVAL; 8139 8140 /* if it does not match minimum/maximum length, bail */ 8141 if (ext->sadb_ext_type >= nitems(minsize) || 8142 ext->sadb_ext_type >= nitems(maxsize)) 8143 return EINVAL; 8144 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) 8145 return EINVAL; 8146 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) 8147 return EINVAL; 8148 8149 /* more checks based on sadb_ext_type XXX need more */ 8150 switch (ext->sadb_ext_type) { 8151 case SADB_EXT_ADDRESS_SRC: 8152 case SADB_EXT_ADDRESS_DST: 8153 case SADB_EXT_ADDRESS_PROXY: 8154 case SADB_X_EXT_NAT_T_OAI: 8155 case SADB_X_EXT_NAT_T_OAR: 8156 case SADB_X_EXT_NEW_ADDRESS_SRC: 8157 case SADB_X_EXT_NEW_ADDRESS_DST: 8158 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); 8159 checktype = ADDR; 8160 break; 8161 case SADB_EXT_IDENTITY_SRC: 8162 case SADB_EXT_IDENTITY_DST: 8163 if (((const struct sadb_ident *)ext)->sadb_ident_type == 8164 SADB_X_IDENTTYPE_ADDR) { 8165 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); 8166 checktype = ADDR; 8167 } else 8168 checktype = NONE; 8169 break; 8170 default: 8171 checktype = NONE; 8172 break; 8173 } 8174 8175 switch (checktype) { 8176 case NONE: 8177 break; 8178 case ADDR: 8179 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); 8180 if (len < baselen + sal) 8181 return EINVAL; 8182 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) 8183 return EINVAL; 8184 break; 8185 } 8186 8187 return 0; 8188 } 8189 8190 void 8191 spdcache_init(void) 8192 { 8193 int i; 8194 8195 TUNABLE_INT_FETCH("net.key.spdcache.maxentries", 8196 &V_key_spdcache_maxentries); 8197 TUNABLE_INT_FETCH("net.key.spdcache.threshold", 8198 &V_key_spdcache_threshold); 8199 8200 if (V_key_spdcache_maxentries) { 8201 V_key_spdcache_maxentries = MAX(V_key_spdcache_maxentries, 8202 SPDCACHE_MAX_ENTRIES_PER_HASH); 8203 V_spdcachehashtbl = hashinit(V_key_spdcache_maxentries / 8204 SPDCACHE_MAX_ENTRIES_PER_HASH, 8205 M_IPSEC_SPDCACHE, &V_spdcachehash_mask); 8206 V_key_spdcache_maxentries = (V_spdcachehash_mask + 1) 8207 * SPDCACHE_MAX_ENTRIES_PER_HASH; 8208 8209 V_spdcache_lock = malloc(sizeof(struct mtx) * 8210 (V_spdcachehash_mask + 1), 8211 M_IPSEC_SPDCACHE, M_WAITOK|M_ZERO); 8212 8213 for (i = 0; i < V_spdcachehash_mask + 1; ++i) 8214 SPDCACHE_LOCK_INIT(i); 8215 } 8216 } 8217 8218 struct spdcache_entry * 8219 spdcache_entry_alloc(const struct secpolicyindex *spidx, struct secpolicy *sp) 8220 { 8221 struct spdcache_entry *entry; 8222 8223 entry = malloc(sizeof(struct spdcache_entry), 8224 M_IPSEC_SPDCACHE, M_NOWAIT|M_ZERO); 8225 if (entry == NULL) 8226 return NULL; 8227 8228 if (sp != NULL) 8229 SP_ADDREF(sp); 8230 8231 entry->spidx = *spidx; 8232 entry->sp = sp; 8233 8234 return (entry); 8235 } 8236 8237 void 8238 spdcache_entry_free(struct spdcache_entry *entry) 8239 { 8240 8241 if (entry->sp != NULL) 8242 key_freesp(&entry->sp); 8243 free(entry, M_IPSEC_SPDCACHE); 8244 } 8245 8246 void 8247 spdcache_clear(void) 8248 { 8249 struct spdcache_entry *entry; 8250 int i; 8251 8252 for (i = 0; i < V_spdcachehash_mask + 1; ++i) { 8253 SPDCACHE_LOCK(i); 8254 while (!LIST_EMPTY(&V_spdcachehashtbl[i])) { 8255 entry = LIST_FIRST(&V_spdcachehashtbl[i]); 8256 LIST_REMOVE(entry, chain); 8257 spdcache_entry_free(entry); 8258 } 8259 SPDCACHE_UNLOCK(i); 8260 } 8261 } 8262 8263 #ifdef VIMAGE 8264 void 8265 spdcache_destroy(void) 8266 { 8267 int i; 8268 8269 if (SPDCACHE_ENABLED()) { 8270 spdcache_clear(); 8271 hashdestroy(V_spdcachehashtbl, M_IPSEC_SPDCACHE, V_spdcachehash_mask); 8272 8273 for (i = 0; i < V_spdcachehash_mask + 1; ++i) 8274 SPDCACHE_LOCK_DESTROY(i); 8275 8276 free(V_spdcache_lock, M_IPSEC_SPDCACHE); 8277 } 8278 } 8279 #endif 8280 void 8281 key_init(void) 8282 { 8283 int i; 8284 8285 for (i = 0; i < IPSEC_DIR_MAX; i++) { 8286 TAILQ_INIT(&V_sptree[i]); 8287 TAILQ_INIT(&V_sptree_ifnet[i]); 8288 } 8289 8290 TAILQ_INIT(&V_sahtree); 8291 V_sphashtbl = hashinit(SPHASH_NHASH, M_IPSEC_SP, &V_sphash_mask); 8292 V_savhashtbl = hashinit(SAVHASH_NHASH, M_IPSEC_SA, &V_savhash_mask); 8293 V_sahaddrhashtbl = hashinit(SAHHASH_NHASH, M_IPSEC_SAH, 8294 &V_sahaddrhash_mask); 8295 V_acqaddrhashtbl = hashinit(ACQHASH_NHASH, M_IPSEC_SAQ, 8296 &V_acqaddrhash_mask); 8297 V_acqseqhashtbl = hashinit(ACQHASH_NHASH, M_IPSEC_SAQ, 8298 &V_acqseqhash_mask); 8299 8300 spdcache_init(); 8301 8302 for (i = 0; i <= SADB_SATYPE_MAX; i++) 8303 LIST_INIT(&V_regtree[i]); 8304 8305 LIST_INIT(&V_acqtree); 8306 LIST_INIT(&V_spacqtree); 8307 8308 if (!IS_DEFAULT_VNET(curvnet)) 8309 return; 8310 8311 ipsec_key_lft_zone = uma_zcreate("IPsec SA lft_c", 8312 sizeof(uint64_t) * 2, NULL, NULL, NULL, NULL, 8313 UMA_ALIGN_PTR, UMA_ZONE_PCPU); 8314 8315 SPTREE_LOCK_INIT(); 8316 REGTREE_LOCK_INIT(); 8317 SAHTREE_LOCK_INIT(); 8318 ACQ_LOCK_INIT(); 8319 SPACQ_LOCK_INIT(); 8320 8321 #ifndef IPSEC_DEBUG2 8322 callout_init(&key_timer, 1); 8323 callout_reset(&key_timer, hz, key_timehandler, NULL); 8324 #endif /*IPSEC_DEBUG2*/ 8325 8326 /* initialize key statistics */ 8327 keystat.getspi_count = 1; 8328 8329 if (bootverbose) 8330 printf("IPsec: Initialized Security Association Processing.\n"); 8331 } 8332 8333 #ifdef VIMAGE 8334 void 8335 key_destroy(void) 8336 { 8337 struct secashead_queue sahdrainq; 8338 struct secpolicy_queue drainq; 8339 struct secpolicy *sp, *nextsp; 8340 struct secacq *acq, *nextacq; 8341 struct secspacq *spacq, *nextspacq; 8342 struct secashead *sah; 8343 struct secasvar *sav; 8344 struct secreg *reg; 8345 int i; 8346 8347 /* 8348 * XXX: can we just call free() for each object without 8349 * walking through safe way with releasing references? 8350 */ 8351 TAILQ_INIT(&drainq); 8352 SPTREE_WLOCK(); 8353 for (i = 0; i < IPSEC_DIR_MAX; i++) { 8354 TAILQ_CONCAT(&drainq, &V_sptree[i], chain); 8355 TAILQ_CONCAT(&drainq, &V_sptree_ifnet[i], chain); 8356 } 8357 for (i = 0; i < V_sphash_mask + 1; i++) 8358 LIST_INIT(&V_sphashtbl[i]); 8359 SPTREE_WUNLOCK(); 8360 spdcache_destroy(); 8361 8362 sp = TAILQ_FIRST(&drainq); 8363 while (sp != NULL) { 8364 nextsp = TAILQ_NEXT(sp, chain); 8365 key_freesp(&sp); 8366 sp = nextsp; 8367 } 8368 8369 TAILQ_INIT(&sahdrainq); 8370 SAHTREE_WLOCK(); 8371 TAILQ_CONCAT(&sahdrainq, &V_sahtree, chain); 8372 for (i = 0; i < V_savhash_mask + 1; i++) 8373 LIST_INIT(&V_savhashtbl[i]); 8374 for (i = 0; i < V_sahaddrhash_mask + 1; i++) 8375 LIST_INIT(&V_sahaddrhashtbl[i]); 8376 TAILQ_FOREACH(sah, &sahdrainq, chain) { 8377 sah->state = SADB_SASTATE_DEAD; 8378 TAILQ_FOREACH(sav, &sah->savtree_larval, chain) { 8379 sav->state = SADB_SASTATE_DEAD; 8380 } 8381 TAILQ_FOREACH(sav, &sah->savtree_alive, chain) { 8382 sav->state = SADB_SASTATE_DEAD; 8383 } 8384 } 8385 SAHTREE_WUNLOCK(); 8386 8387 key_freesah_flushed(&sahdrainq); 8388 hashdestroy(V_sphashtbl, M_IPSEC_SP, V_sphash_mask); 8389 hashdestroy(V_savhashtbl, M_IPSEC_SA, V_savhash_mask); 8390 hashdestroy(V_sahaddrhashtbl, M_IPSEC_SAH, V_sahaddrhash_mask); 8391 8392 REGTREE_LOCK(); 8393 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 8394 LIST_FOREACH(reg, &V_regtree[i], chain) { 8395 if (__LIST_CHAINED(reg)) { 8396 LIST_REMOVE(reg, chain); 8397 free(reg, M_IPSEC_SAR); 8398 break; 8399 } 8400 } 8401 } 8402 REGTREE_UNLOCK(); 8403 8404 ACQ_LOCK(); 8405 acq = LIST_FIRST(&V_acqtree); 8406 while (acq != NULL) { 8407 nextacq = LIST_NEXT(acq, chain); 8408 LIST_REMOVE(acq, chain); 8409 free(acq, M_IPSEC_SAQ); 8410 acq = nextacq; 8411 } 8412 for (i = 0; i < V_acqaddrhash_mask + 1; i++) 8413 LIST_INIT(&V_acqaddrhashtbl[i]); 8414 for (i = 0; i < V_acqseqhash_mask + 1; i++) 8415 LIST_INIT(&V_acqseqhashtbl[i]); 8416 ACQ_UNLOCK(); 8417 8418 SPACQ_LOCK(); 8419 for (spacq = LIST_FIRST(&V_spacqtree); spacq != NULL; 8420 spacq = nextspacq) { 8421 nextspacq = LIST_NEXT(spacq, chain); 8422 if (__LIST_CHAINED(spacq)) { 8423 LIST_REMOVE(spacq, chain); 8424 free(spacq, M_IPSEC_SAQ); 8425 } 8426 } 8427 SPACQ_UNLOCK(); 8428 hashdestroy(V_acqaddrhashtbl, M_IPSEC_SAQ, V_acqaddrhash_mask); 8429 hashdestroy(V_acqseqhashtbl, M_IPSEC_SAQ, V_acqseqhash_mask); 8430 8431 if (!IS_DEFAULT_VNET(curvnet)) 8432 return; 8433 8434 uma_zdestroy(ipsec_key_lft_zone); 8435 8436 #ifndef IPSEC_DEBUG2 8437 callout_drain(&key_timer); 8438 #endif 8439 SPTREE_LOCK_DESTROY(); 8440 REGTREE_LOCK_DESTROY(); 8441 SAHTREE_LOCK_DESTROY(); 8442 ACQ_LOCK_DESTROY(); 8443 SPACQ_LOCK_DESTROY(); 8444 } 8445 #endif 8446 8447 /* record data transfer on SA, and update timestamps */ 8448 void 8449 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m) 8450 { 8451 IPSEC_ASSERT(sav != NULL, ("Null secasvar")); 8452 IPSEC_ASSERT(m != NULL, ("Null mbuf")); 8453 8454 /* 8455 * XXX Currently, there is a difference of bytes size 8456 * between inbound and outbound processing. 8457 */ 8458 counter_u64_add(sav->lft_c_bytes, m->m_pkthdr.len); 8459 8460 /* 8461 * We use the number of packets as the unit of 8462 * allocations. We increment the variable 8463 * whenever {esp,ah}_{in,out}put is called. 8464 */ 8465 counter_u64_add(sav->lft_c_allocations, 1); 8466 8467 /* 8468 * NOTE: We record CURRENT usetime by using wall clock, 8469 * in seconds. HARD and SOFT lifetime are measured by the time 8470 * difference (again in seconds) from usetime. 8471 * 8472 * usetime 8473 * v expire expire 8474 * -----+-----+--------+---> t 8475 * <--------------> HARD 8476 * <-----> SOFT 8477 */ 8478 if (sav->firstused == 0) 8479 sav->firstused = time_second; 8480 } 8481 8482 /* 8483 * Take one of the kernel's security keys and convert it into a PF_KEY 8484 * structure within an mbuf, suitable for sending up to a waiting 8485 * application in user land. 8486 * 8487 * IN: 8488 * src: A pointer to a kernel security key. 8489 * exttype: Which type of key this is. Refer to the PF_KEY data structures. 8490 * OUT: 8491 * a valid mbuf or NULL indicating an error 8492 * 8493 */ 8494 8495 static struct mbuf * 8496 key_setkey(struct seckey *src, uint16_t exttype) 8497 { 8498 struct mbuf *m; 8499 struct sadb_key *p; 8500 int len; 8501 8502 if (src == NULL) 8503 return NULL; 8504 8505 len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src)); 8506 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 8507 if (m == NULL) 8508 return NULL; 8509 m_align(m, len); 8510 m->m_len = len; 8511 p = mtod(m, struct sadb_key *); 8512 bzero(p, len); 8513 p->sadb_key_len = PFKEY_UNIT64(len); 8514 p->sadb_key_exttype = exttype; 8515 p->sadb_key_bits = src->bits; 8516 bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src)); 8517 8518 return m; 8519 } 8520 8521 /* 8522 * Take one of the kernel's lifetime data structures and convert it 8523 * into a PF_KEY structure within an mbuf, suitable for sending up to 8524 * a waiting application in user land. 8525 * 8526 * IN: 8527 * src: A pointer to a kernel lifetime structure. 8528 * exttype: Which type of lifetime this is. Refer to the PF_KEY 8529 * data structures for more information. 8530 * OUT: 8531 * a valid mbuf or NULL indicating an error 8532 * 8533 */ 8534 8535 static struct mbuf * 8536 key_setlifetime(struct seclifetime *src, uint16_t exttype) 8537 { 8538 struct mbuf *m = NULL; 8539 struct sadb_lifetime *p; 8540 int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime)); 8541 8542 if (src == NULL) 8543 return NULL; 8544 8545 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 8546 if (m == NULL) 8547 return m; 8548 m_align(m, len); 8549 m->m_len = len; 8550 p = mtod(m, struct sadb_lifetime *); 8551 8552 bzero(p, len); 8553 p->sadb_lifetime_len = PFKEY_UNIT64(len); 8554 p->sadb_lifetime_exttype = exttype; 8555 p->sadb_lifetime_allocations = src->allocations; 8556 p->sadb_lifetime_bytes = src->bytes; 8557 p->sadb_lifetime_addtime = src->addtime; 8558 p->sadb_lifetime_usetime = src->usetime; 8559 8560 return m; 8561 8562 } 8563 8564 const struct enc_xform * 8565 enc_algorithm_lookup(int alg) 8566 { 8567 int i; 8568 8569 for (i = 0; i < nitems(supported_ealgs); i++) 8570 if (alg == supported_ealgs[i].sadb_alg) 8571 return (supported_ealgs[i].xform); 8572 return (NULL); 8573 } 8574 8575 const struct auth_hash * 8576 auth_algorithm_lookup(int alg) 8577 { 8578 int i; 8579 8580 for (i = 0; i < nitems(supported_aalgs); i++) 8581 if (alg == supported_aalgs[i].sadb_alg) 8582 return (supported_aalgs[i].xform); 8583 return (NULL); 8584 } 8585 8586 const struct comp_algo * 8587 comp_algorithm_lookup(int alg) 8588 { 8589 int i; 8590 8591 for (i = 0; i < nitems(supported_calgs); i++) 8592 if (alg == supported_calgs[i].sadb_alg) 8593 return (supported_calgs[i].xform); 8594 return (NULL); 8595 } 8596