xref: /freebsd/sys/netipsec/key.c (revision b3aaa0cc21c63d388230c7ef2a80abd631ff20d5)
1 /*	$FreeBSD$	*/
2 /*	$KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $	*/
3 
4 /*-
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * This code is referd to RFC 2367
35  */
36 
37 #include "opt_inet.h"
38 #include "opt_inet6.h"
39 #include "opt_ipsec.h"
40 
41 #include <sys/types.h>
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/mbuf.h>
48 #include <sys/domain.h>
49 #include <sys/protosw.h>
50 #include <sys/malloc.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/sysctl.h>
54 #include <sys/errno.h>
55 #include <sys/proc.h>
56 #include <sys/queue.h>
57 #include <sys/refcount.h>
58 #include <sys/syslog.h>
59 #include <sys/vimage.h>
60 
61 #include <net/if.h>
62 #include <net/route.h>
63 #include <net/raw_cb.h>
64 
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/ip.h>
68 #include <netinet/in_var.h>
69 
70 #ifdef INET6
71 #include <netinet/ip6.h>
72 #include <netinet6/in6_var.h>
73 #include <netinet6/ip6_var.h>
74 #endif /* INET6 */
75 
76 #ifdef INET
77 #include <netinet/in_pcb.h>
78 #include <netinet/vinet.h>
79 #endif
80 #ifdef INET6
81 #include <netinet6/in6_pcb.h>
82 #include <netinet6/vinet6.h>
83 #endif /* INET6 */
84 
85 #include <net/pfkeyv2.h>
86 #include <netipsec/keydb.h>
87 #include <netipsec/key.h>
88 #include <netipsec/keysock.h>
89 #include <netipsec/key_debug.h>
90 
91 #include <netipsec/ipsec.h>
92 #ifdef INET6
93 #include <netipsec/ipsec6.h>
94 #endif
95 
96 #include <netipsec/xform.h>
97 
98 #include <machine/stdarg.h>
99 
100 /* randomness */
101 #include <sys/random.h>
102 #include <sys/vimage.h>
103 
104 #define FULLMASK	0xff
105 #define	_BITS(bytes)	((bytes) << 3)
106 
107 /*
108  * Note on SA reference counting:
109  * - SAs that are not in DEAD state will have (total external reference + 1)
110  *   following value in reference count field.  they cannot be freed and are
111  *   referenced from SA header.
112  * - SAs that are in DEAD state will have (total external reference)
113  *   in reference count field.  they are ready to be freed.  reference from
114  *   SA header will be removed in key_delsav(), when the reference count
115  *   field hits 0 (= no external reference other than from SA header.
116  */
117 
118 #ifdef VIMAGE_GLOBALS
119 u_int32_t key_debug_level;
120 static u_int key_spi_trycnt;
121 static u_int32_t key_spi_minval;
122 static u_int32_t key_spi_maxval;
123 static u_int32_t policy_id;
124 static u_int key_int_random;
125 static u_int key_larval_lifetime;
126 static int key_blockacq_count;
127 static int key_blockacq_lifetime;
128 static int key_preferred_oldsa;
129 
130 static u_int32_t acq_seq;
131 
132 static int ipsec_esp_keymin;
133 static int ipsec_esp_auth;
134 static int ipsec_ah_keymin;
135 
136 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX];	/* SPD */
137 static LIST_HEAD(_sahtree, secashead) sahtree;			/* SAD */
138 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1];
139 static LIST_HEAD(_acqtree, secacq) acqtree;		/* acquiring list */
140 static LIST_HEAD(_spacqtree, secspacq) spacqtree;	/* SP acquiring list */
141 #endif /* VIMAGE_GLOBALS */
142 
143 static struct mtx sptree_lock;
144 #define	SPTREE_LOCK_INIT() \
145 	mtx_init(&sptree_lock, "sptree", \
146 		"fast ipsec security policy database", MTX_DEF)
147 #define	SPTREE_LOCK_DESTROY()	mtx_destroy(&sptree_lock)
148 #define	SPTREE_LOCK()		mtx_lock(&sptree_lock)
149 #define	SPTREE_UNLOCK()	mtx_unlock(&sptree_lock)
150 #define	SPTREE_LOCK_ASSERT()	mtx_assert(&sptree_lock, MA_OWNED)
151 
152 static struct mtx sahtree_lock;
153 #define	SAHTREE_LOCK_INIT() \
154 	mtx_init(&sahtree_lock, "sahtree", \
155 		"fast ipsec security association database", MTX_DEF)
156 #define	SAHTREE_LOCK_DESTROY()	mtx_destroy(&sahtree_lock)
157 #define	SAHTREE_LOCK()		mtx_lock(&sahtree_lock)
158 #define	SAHTREE_UNLOCK()	mtx_unlock(&sahtree_lock)
159 #define	SAHTREE_LOCK_ASSERT()	mtx_assert(&sahtree_lock, MA_OWNED)
160 
161 							/* registed list */
162 static struct mtx regtree_lock;
163 #define	REGTREE_LOCK_INIT() \
164 	mtx_init(&regtree_lock, "regtree", "fast ipsec regtree", MTX_DEF)
165 #define	REGTREE_LOCK_DESTROY()	mtx_destroy(&regtree_lock)
166 #define	REGTREE_LOCK()		mtx_lock(&regtree_lock)
167 #define	REGTREE_UNLOCK()	mtx_unlock(&regtree_lock)
168 #define	REGTREE_LOCK_ASSERT()	mtx_assert(&regtree_lock, MA_OWNED)
169 
170 static struct mtx acq_lock;
171 #define	ACQ_LOCK_INIT() \
172 	mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF)
173 #define	ACQ_LOCK_DESTROY()	mtx_destroy(&acq_lock)
174 #define	ACQ_LOCK()		mtx_lock(&acq_lock)
175 #define	ACQ_UNLOCK()		mtx_unlock(&acq_lock)
176 #define	ACQ_LOCK_ASSERT()	mtx_assert(&acq_lock, MA_OWNED)
177 
178 static struct mtx spacq_lock;
179 #define	SPACQ_LOCK_INIT() \
180 	mtx_init(&spacq_lock, "spacqtree", \
181 		"fast ipsec security policy acquire list", MTX_DEF)
182 #define	SPACQ_LOCK_DESTROY()	mtx_destroy(&spacq_lock)
183 #define	SPACQ_LOCK()		mtx_lock(&spacq_lock)
184 #define	SPACQ_UNLOCK()		mtx_unlock(&spacq_lock)
185 #define	SPACQ_LOCK_ASSERT()	mtx_assert(&spacq_lock, MA_OWNED)
186 
187 /* search order for SAs */
188 static const u_int saorder_state_valid_prefer_old[] = {
189 	SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
190 };
191 static const u_int saorder_state_valid_prefer_new[] = {
192 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
193 };
194 static const u_int saorder_state_alive[] = {
195 	/* except DEAD */
196 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
197 };
198 static const u_int saorder_state_any[] = {
199 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
200 	SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
201 };
202 
203 static const int minsize[] = {
204 	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
205 	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
206 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
207 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
208 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
209 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_SRC */
210 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_DST */
211 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_PROXY */
212 	sizeof(struct sadb_key),	/* SADB_EXT_KEY_AUTH */
213 	sizeof(struct sadb_key),	/* SADB_EXT_KEY_ENCRYPT */
214 	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_SRC */
215 	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_DST */
216 	sizeof(struct sadb_sens),	/* SADB_EXT_SENSITIVITY */
217 	sizeof(struct sadb_prop),	/* SADB_EXT_PROPOSAL */
218 	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_AUTH */
219 	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_ENCRYPT */
220 	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
221 	0,				/* SADB_X_EXT_KMPRIVATE */
222 	sizeof(struct sadb_x_policy),	/* SADB_X_EXT_POLICY */
223 	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
224 };
225 static const int maxsize[] = {
226 	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
227 	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
228 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
229 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
230 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
231 	0,				/* SADB_EXT_ADDRESS_SRC */
232 	0,				/* SADB_EXT_ADDRESS_DST */
233 	0,				/* SADB_EXT_ADDRESS_PROXY */
234 	0,				/* SADB_EXT_KEY_AUTH */
235 	0,				/* SADB_EXT_KEY_ENCRYPT */
236 	0,				/* SADB_EXT_IDENTITY_SRC */
237 	0,				/* SADB_EXT_IDENTITY_DST */
238 	0,				/* SADB_EXT_SENSITIVITY */
239 	0,				/* SADB_EXT_PROPOSAL */
240 	0,				/* SADB_EXT_SUPPORTED_AUTH */
241 	0,				/* SADB_EXT_SUPPORTED_ENCRYPT */
242 	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
243 	0,				/* SADB_X_EXT_KMPRIVATE */
244 	0,				/* SADB_X_EXT_POLICY */
245 	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
246 };
247 
248 #ifdef SYSCTL_DECL
249 SYSCTL_DECL(_net_key);
250 #endif
251 
252 SYSCTL_V_INT(V_NET, vnet_ipsec,_net_key, KEYCTL_DEBUG_LEVEL,	debug,
253 	CTLFLAG_RW, key_debug_level,	0,	"");
254 
255 /* max count of trial for the decision of spi value */
256 SYSCTL_V_INT(V_NET, vnet_ipsec,_net_key, KEYCTL_SPI_TRY, spi_trycnt,
257 	CTLFLAG_RW, key_spi_trycnt,	0,	"");
258 
259 /* minimum spi value to allocate automatically. */
260 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_SPI_MIN_VALUE,
261 	spi_minval,	CTLFLAG_RW, key_spi_minval,	0,	"");
262 
263 /* maximun spi value to allocate automatically. */
264 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_SPI_MAX_VALUE,
265 	spi_maxval,	CTLFLAG_RW, key_spi_maxval,	0,	"");
266 
267 /* interval to initialize randseed */
268 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_RANDOM_INT,
269 	int_random,	CTLFLAG_RW, key_int_random,	0,	"");
270 
271 /* lifetime for larval SA */
272 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_LARVAL_LIFETIME,
273 	larval_lifetime, CTLFLAG_RW, key_larval_lifetime,	0,	"");
274 
275 /* counter for blocking to send SADB_ACQUIRE to IKEd */
276 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_BLOCKACQ_COUNT,
277 	blockacq_count,	CTLFLAG_RW, key_blockacq_count,	0,	"");
278 
279 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
280 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_BLOCKACQ_LIFETIME,
281 	blockacq_lifetime, CTLFLAG_RW, key_blockacq_lifetime,	0, "");
282 
283 /* ESP auth */
284 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_ESP_AUTH,	esp_auth,
285 	CTLFLAG_RW, ipsec_esp_auth,	0,	"");
286 
287 /* minimum ESP key length */
288 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_ESP_KEYMIN,
289 	esp_keymin, CTLFLAG_RW, ipsec_esp_keymin,	0,	"");
290 
291 /* minimum AH key length */
292 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_AH_KEYMIN,	ah_keymin,
293 	CTLFLAG_RW, ipsec_ah_keymin,	0,	"");
294 
295 /* perfered old SA rather than new SA */
296 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_PREFERED_OLDSA,
297 	preferred_oldsa, CTLFLAG_RW, key_preferred_oldsa,	0,	"");
298 
299 #define __LIST_CHAINED(elm) \
300 	(!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
301 #define LIST_INSERT_TAIL(head, elm, type, field) \
302 do {\
303 	struct type *curelm = LIST_FIRST(head); \
304 	if (curelm == NULL) {\
305 		LIST_INSERT_HEAD(head, elm, field); \
306 	} else { \
307 		while (LIST_NEXT(curelm, field)) \
308 			curelm = LIST_NEXT(curelm, field);\
309 		LIST_INSERT_AFTER(curelm, elm, field);\
310 	}\
311 } while (0)
312 
313 #define KEY_CHKSASTATE(head, sav, name) \
314 do { \
315 	if ((head) != (sav)) {						\
316 		ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \
317 			(name), (head), (sav)));			\
318 		continue;						\
319 	}								\
320 } while (0)
321 
322 #define KEY_CHKSPDIR(head, sp, name) \
323 do { \
324 	if ((head) != (sp)) {						\
325 		ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \
326 			"anyway continue.\n",				\
327 			(name), (head), (sp)));				\
328 	}								\
329 } while (0)
330 
331 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association");
332 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head");
333 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy");
334 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request");
335 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous");
336 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire");
337 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire");
338 
339 /*
340  * set parameters into secpolicyindex buffer.
341  * Must allocate secpolicyindex buffer passed to this function.
342  */
343 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
344 do { \
345 	bzero((idx), sizeof(struct secpolicyindex));                         \
346 	(idx)->dir = (_dir);                                                 \
347 	(idx)->prefs = (ps);                                                 \
348 	(idx)->prefd = (pd);                                                 \
349 	(idx)->ul_proto = (ulp);                                             \
350 	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
351 	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
352 } while (0)
353 
354 /*
355  * set parameters into secasindex buffer.
356  * Must allocate secasindex buffer before calling this function.
357  */
358 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \
359 do { \
360 	bzero((idx), sizeof(struct secasindex));                             \
361 	(idx)->proto = (p);                                                  \
362 	(idx)->mode = (m);                                                   \
363 	(idx)->reqid = (r);                                                  \
364 	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
365 	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
366 } while (0)
367 
368 /* key statistics */
369 struct _keystat {
370 	u_long getspi_count; /* the avarage of count to try to get new SPI */
371 } keystat;
372 
373 struct sadb_msghdr {
374 	struct sadb_msg *msg;
375 	struct sadb_ext *ext[SADB_EXT_MAX + 1];
376 	int extoff[SADB_EXT_MAX + 1];
377 	int extlen[SADB_EXT_MAX + 1];
378 };
379 
380 static struct secasvar *key_allocsa_policy __P((const struct secasindex *));
381 static void key_freesp_so __P((struct secpolicy **));
382 static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int));
383 static void key_delsp __P((struct secpolicy *));
384 static struct secpolicy *key_getsp __P((struct secpolicyindex *));
385 static void _key_delsp(struct secpolicy *sp);
386 static struct secpolicy *key_getspbyid __P((u_int32_t));
387 static u_int32_t key_newreqid __P((void));
388 static struct mbuf *key_gather_mbuf __P((struct mbuf *,
389 	const struct sadb_msghdr *, int, int, ...));
390 static int key_spdadd __P((struct socket *, struct mbuf *,
391 	const struct sadb_msghdr *));
392 static u_int32_t key_getnewspid __P((void));
393 static int key_spddelete __P((struct socket *, struct mbuf *,
394 	const struct sadb_msghdr *));
395 static int key_spddelete2 __P((struct socket *, struct mbuf *,
396 	const struct sadb_msghdr *));
397 static int key_spdget __P((struct socket *, struct mbuf *,
398 	const struct sadb_msghdr *));
399 static int key_spdflush __P((struct socket *, struct mbuf *,
400 	const struct sadb_msghdr *));
401 static int key_spddump __P((struct socket *, struct mbuf *,
402 	const struct sadb_msghdr *));
403 static struct mbuf *key_setdumpsp __P((struct secpolicy *,
404 	u_int8_t, u_int32_t, u_int32_t));
405 static u_int key_getspreqmsglen __P((struct secpolicy *));
406 static int key_spdexpire __P((struct secpolicy *));
407 static struct secashead *key_newsah __P((struct secasindex *));
408 static void key_delsah __P((struct secashead *));
409 static struct secasvar *key_newsav __P((struct mbuf *,
410 	const struct sadb_msghdr *, struct secashead *, int *,
411 	const char*, int));
412 #define	KEY_NEWSAV(m, sadb, sah, e)				\
413 	key_newsav(m, sadb, sah, e, __FILE__, __LINE__)
414 static void key_delsav __P((struct secasvar *));
415 static struct secashead *key_getsah __P((struct secasindex *));
416 static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t));
417 static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t));
418 static int key_setsaval __P((struct secasvar *, struct mbuf *,
419 	const struct sadb_msghdr *));
420 static int key_mature __P((struct secasvar *));
421 static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t,
422 	u_int8_t, u_int32_t, u_int32_t));
423 static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t,
424 	u_int32_t, pid_t, u_int16_t));
425 static struct mbuf *key_setsadbsa __P((struct secasvar *));
426 static struct mbuf *key_setsadbaddr __P((u_int16_t,
427 	const struct sockaddr *, u_int8_t, u_int16_t));
428 static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t));
429 static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t,
430 	u_int32_t));
431 static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int,
432 				     struct malloc_type *);
433 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src,
434 					    struct malloc_type *type);
435 #ifdef INET6
436 static int key_ismyaddr6 __P((struct sockaddr_in6 *));
437 #endif
438 
439 /* flags for key_cmpsaidx() */
440 #define CMP_HEAD	1	/* protocol, addresses. */
441 #define CMP_MODE_REQID	2	/* additionally HEAD, reqid, mode. */
442 #define CMP_REQID	3	/* additionally HEAD, reaid. */
443 #define CMP_EXACTLY	4	/* all elements. */
444 static int key_cmpsaidx
445 	__P((const struct secasindex *, const struct secasindex *, int));
446 
447 static int key_cmpspidx_exactly
448 	__P((struct secpolicyindex *, struct secpolicyindex *));
449 static int key_cmpspidx_withmask
450 	__P((struct secpolicyindex *, struct secpolicyindex *));
451 static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int));
452 static int key_bbcmp __P((const void *, const void *, u_int));
453 static u_int16_t key_satype2proto __P((u_int8_t));
454 static u_int8_t key_proto2satype __P((u_int16_t));
455 
456 static int key_getspi __P((struct socket *, struct mbuf *,
457 	const struct sadb_msghdr *));
458 static u_int32_t key_do_getnewspi __P((struct sadb_spirange *,
459 					struct secasindex *));
460 static int key_update __P((struct socket *, struct mbuf *,
461 	const struct sadb_msghdr *));
462 #ifdef IPSEC_DOSEQCHECK
463 static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t));
464 #endif
465 static int key_add __P((struct socket *, struct mbuf *,
466 	const struct sadb_msghdr *));
467 static int key_setident __P((struct secashead *, struct mbuf *,
468 	const struct sadb_msghdr *));
469 static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *,
470 	const struct sadb_msghdr *));
471 static int key_delete __P((struct socket *, struct mbuf *,
472 	const struct sadb_msghdr *));
473 static int key_get __P((struct socket *, struct mbuf *,
474 	const struct sadb_msghdr *));
475 
476 static void key_getcomb_setlifetime __P((struct sadb_comb *));
477 static struct mbuf *key_getcomb_esp __P((void));
478 static struct mbuf *key_getcomb_ah __P((void));
479 static struct mbuf *key_getcomb_ipcomp __P((void));
480 static struct mbuf *key_getprop __P((const struct secasindex *));
481 
482 static int key_acquire __P((const struct secasindex *, struct secpolicy *));
483 static struct secacq *key_newacq __P((const struct secasindex *));
484 static struct secacq *key_getacq __P((const struct secasindex *));
485 static struct secacq *key_getacqbyseq __P((u_int32_t));
486 static struct secspacq *key_newspacq __P((struct secpolicyindex *));
487 static struct secspacq *key_getspacq __P((struct secpolicyindex *));
488 static int key_acquire2 __P((struct socket *, struct mbuf *,
489 	const struct sadb_msghdr *));
490 static int key_register __P((struct socket *, struct mbuf *,
491 	const struct sadb_msghdr *));
492 static int key_expire __P((struct secasvar *));
493 static int key_flush __P((struct socket *, struct mbuf *,
494 	const struct sadb_msghdr *));
495 static int key_dump __P((struct socket *, struct mbuf *,
496 	const struct sadb_msghdr *));
497 static int key_promisc __P((struct socket *, struct mbuf *,
498 	const struct sadb_msghdr *));
499 static int key_senderror __P((struct socket *, struct mbuf *, int));
500 static int key_validate_ext __P((const struct sadb_ext *, int));
501 static int key_align __P((struct mbuf *, struct sadb_msghdr *));
502 static struct mbuf *key_setlifetime(struct seclifetime *src,
503 				     u_int16_t exttype);
504 static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype);
505 
506 #if 0
507 static const char *key_getfqdn __P((void));
508 static const char *key_getuserfqdn __P((void));
509 #endif
510 static void key_sa_chgstate __P((struct secasvar *, u_int8_t));
511 static struct mbuf *key_alloc_mbuf __P((int));
512 
513 static __inline void
514 sa_initref(struct secasvar *sav)
515 {
516 
517 	refcount_init(&sav->refcnt, 1);
518 }
519 static __inline void
520 sa_addref(struct secasvar *sav)
521 {
522 
523 	refcount_acquire(&sav->refcnt);
524 	IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow"));
525 }
526 static __inline int
527 sa_delref(struct secasvar *sav)
528 {
529 
530 	IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow"));
531 	return (refcount_release(&sav->refcnt));
532 }
533 
534 #define	SP_ADDREF(p) do {						\
535 	(p)->refcnt++;							\
536 	IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow"));		\
537 } while (0)
538 #define	SP_DELREF(p) do {						\
539 	IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow"));		\
540 	(p)->refcnt--;							\
541 } while (0)
542 
543 
544 /*
545  * Update the refcnt while holding the SPTREE lock.
546  */
547 void
548 key_addref(struct secpolicy *sp)
549 {
550 	SPTREE_LOCK();
551 	SP_ADDREF(sp);
552 	SPTREE_UNLOCK();
553 }
554 
555 /*
556  * Return 0 when there are known to be no SP's for the specified
557  * direction.  Otherwise return 1.  This is used by IPsec code
558  * to optimize performance.
559  */
560 int
561 key_havesp(u_int dir)
562 {
563 	INIT_VNET_IPSEC(curvnet);
564 
565 	return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
566 		LIST_FIRST(&V_sptree[dir]) != NULL : 1);
567 }
568 
569 /* %%% IPsec policy management */
570 /*
571  * allocating a SP for OUTBOUND or INBOUND packet.
572  * Must call key_freesp() later.
573  * OUT:	NULL:	not found
574  *	others:	found and return the pointer.
575  */
576 struct secpolicy *
577 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag)
578 {
579 	INIT_VNET_IPSEC(curvnet);
580 	struct secpolicy *sp;
581 
582 	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
583 	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
584 		("invalid direction %u", dir));
585 
586 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
587 		printf("DP %s from %s:%u\n", __func__, where, tag));
588 
589 	/* get a SP entry */
590 	KEYDEBUG(KEYDEBUG_IPSEC_DATA,
591 		printf("*** objects\n");
592 		kdebug_secpolicyindex(spidx));
593 
594 	SPTREE_LOCK();
595 	LIST_FOREACH(sp, &V_sptree[dir], chain) {
596 		KEYDEBUG(KEYDEBUG_IPSEC_DATA,
597 			printf("*** in SPD\n");
598 			kdebug_secpolicyindex(&sp->spidx));
599 
600 		if (sp->state == IPSEC_SPSTATE_DEAD)
601 			continue;
602 		if (key_cmpspidx_withmask(&sp->spidx, spidx))
603 			goto found;
604 	}
605 	sp = NULL;
606 found:
607 	if (sp) {
608 		/* sanity check */
609 		KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
610 
611 		/* found a SPD entry */
612 		sp->lastused = time_second;
613 		SP_ADDREF(sp);
614 	}
615 	SPTREE_UNLOCK();
616 
617 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
618 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
619 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
620 	return sp;
621 }
622 
623 /*
624  * allocating a SP for OUTBOUND or INBOUND packet.
625  * Must call key_freesp() later.
626  * OUT:	NULL:	not found
627  *	others:	found and return the pointer.
628  */
629 struct secpolicy *
630 key_allocsp2(u_int32_t spi,
631 	     union sockaddr_union *dst,
632 	     u_int8_t proto,
633 	     u_int dir,
634 	     const char* where, int tag)
635 {
636 	INIT_VNET_IPSEC(curvnet);
637 	struct secpolicy *sp;
638 
639 	IPSEC_ASSERT(dst != NULL, ("null dst"));
640 	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
641 		("invalid direction %u", dir));
642 
643 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
644 		printf("DP %s from %s:%u\n", __func__, where, tag));
645 
646 	/* get a SP entry */
647 	KEYDEBUG(KEYDEBUG_IPSEC_DATA,
648 		printf("*** objects\n");
649 		printf("spi %u proto %u dir %u\n", spi, proto, dir);
650 		kdebug_sockaddr(&dst->sa));
651 
652 	SPTREE_LOCK();
653 	LIST_FOREACH(sp, &V_sptree[dir], chain) {
654 		KEYDEBUG(KEYDEBUG_IPSEC_DATA,
655 			printf("*** in SPD\n");
656 			kdebug_secpolicyindex(&sp->spidx));
657 
658 		if (sp->state == IPSEC_SPSTATE_DEAD)
659 			continue;
660 		/* compare simple values, then dst address */
661 		if (sp->spidx.ul_proto != proto)
662 			continue;
663 		/* NB: spi's must exist and match */
664 		if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
665 			continue;
666 		if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0)
667 			goto found;
668 	}
669 	sp = NULL;
670 found:
671 	if (sp) {
672 		/* sanity check */
673 		KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
674 
675 		/* found a SPD entry */
676 		sp->lastused = time_second;
677 		SP_ADDREF(sp);
678 	}
679 	SPTREE_UNLOCK();
680 
681 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
682 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
683 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
684 	return sp;
685 }
686 
687 /*
688  * return a policy that matches this particular inbound packet.
689  * XXX slow
690  */
691 struct secpolicy *
692 key_gettunnel(const struct sockaddr *osrc,
693 	      const struct sockaddr *odst,
694 	      const struct sockaddr *isrc,
695 	      const struct sockaddr *idst,
696 	      const char* where, int tag)
697 {
698 	INIT_VNET_IPSEC(curvnet);
699 	struct secpolicy *sp;
700 	const int dir = IPSEC_DIR_INBOUND;
701 	struct ipsecrequest *r1, *r2, *p;
702 	struct secpolicyindex spidx;
703 
704 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
705 		printf("DP %s from %s:%u\n", __func__, where, tag));
706 
707 	if (isrc->sa_family != idst->sa_family) {
708 		ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.",
709 			__func__, isrc->sa_family, idst->sa_family));
710 		sp = NULL;
711 		goto done;
712 	}
713 
714 	SPTREE_LOCK();
715 	LIST_FOREACH(sp, &V_sptree[dir], chain) {
716 		if (sp->state == IPSEC_SPSTATE_DEAD)
717 			continue;
718 
719 		r1 = r2 = NULL;
720 		for (p = sp->req; p; p = p->next) {
721 			if (p->saidx.mode != IPSEC_MODE_TUNNEL)
722 				continue;
723 
724 			r1 = r2;
725 			r2 = p;
726 
727 			if (!r1) {
728 				/* here we look at address matches only */
729 				spidx = sp->spidx;
730 				if (isrc->sa_len > sizeof(spidx.src) ||
731 				    idst->sa_len > sizeof(spidx.dst))
732 					continue;
733 				bcopy(isrc, &spidx.src, isrc->sa_len);
734 				bcopy(idst, &spidx.dst, idst->sa_len);
735 				if (!key_cmpspidx_withmask(&sp->spidx, &spidx))
736 					continue;
737 			} else {
738 				if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) ||
739 				    key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0))
740 					continue;
741 			}
742 
743 			if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) ||
744 			    key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0))
745 				continue;
746 
747 			goto found;
748 		}
749 	}
750 	sp = NULL;
751 found:
752 	if (sp) {
753 		sp->lastused = time_second;
754 		SP_ADDREF(sp);
755 	}
756 	SPTREE_UNLOCK();
757 done:
758 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
759 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
760 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
761 	return sp;
762 }
763 
764 /*
765  * allocating an SA entry for an *OUTBOUND* packet.
766  * checking each request entries in SP, and acquire an SA if need.
767  * OUT:	0: there are valid requests.
768  *	ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
769  */
770 int
771 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
772 {
773 	INIT_VNET_IPSEC(curvnet);
774 	u_int level;
775 	int error;
776 
777 	IPSEC_ASSERT(isr != NULL, ("null isr"));
778 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
779 	IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT ||
780 		saidx->mode == IPSEC_MODE_TUNNEL,
781 		("unexpected policy %u", saidx->mode));
782 
783 	/*
784 	 * XXX guard against protocol callbacks from the crypto
785 	 * thread as they reference ipsecrequest.sav which we
786 	 * temporarily null out below.  Need to rethink how we
787 	 * handle bundled SA's in the callback thread.
788 	 */
789 	IPSECREQUEST_LOCK_ASSERT(isr);
790 
791 	/* get current level */
792 	level = ipsec_get_reqlevel(isr);
793 #if 0
794 	/*
795 	 * We do allocate new SA only if the state of SA in the holder is
796 	 * SADB_SASTATE_DEAD.  The SA for outbound must be the oldest.
797 	 */
798 	if (isr->sav != NULL) {
799 		if (isr->sav->sah == NULL)
800 			panic("%s: sah is null.\n", __func__);
801 		if (isr->sav == (struct secasvar *)LIST_FIRST(
802 			    &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) {
803 			KEY_FREESAV(&isr->sav);
804 			isr->sav = NULL;
805 		}
806 	}
807 #else
808 	/*
809 	 * we free any SA stashed in the IPsec request because a different
810 	 * SA may be involved each time this request is checked, either
811 	 * because new SAs are being configured, or this request is
812 	 * associated with an unconnected datagram socket, or this request
813 	 * is associated with a system default policy.
814 	 *
815 	 * The operation may have negative impact to performance.  We may
816 	 * want to check cached SA carefully, rather than picking new SA
817 	 * every time.
818 	 */
819 	if (isr->sav != NULL) {
820 		KEY_FREESAV(&isr->sav);
821 		isr->sav = NULL;
822 	}
823 #endif
824 
825 	/*
826 	 * new SA allocation if no SA found.
827 	 * key_allocsa_policy should allocate the oldest SA available.
828 	 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
829 	 */
830 	if (isr->sav == NULL)
831 		isr->sav = key_allocsa_policy(saidx);
832 
833 	/* When there is SA. */
834 	if (isr->sav != NULL) {
835 		if (isr->sav->state != SADB_SASTATE_MATURE &&
836 		    isr->sav->state != SADB_SASTATE_DYING)
837 			return EINVAL;
838 		return 0;
839 	}
840 
841 	/* there is no SA */
842 	error = key_acquire(saidx, isr->sp);
843 	if (error != 0) {
844 		/* XXX What should I do ? */
845 		ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
846 			__func__, error));
847 		return error;
848 	}
849 
850 	if (level != IPSEC_LEVEL_REQUIRE) {
851 		/* XXX sigh, the interface to this routine is botched */
852 		IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA"));
853 		return 0;
854 	} else {
855 		return ENOENT;
856 	}
857 }
858 
859 /*
860  * allocating a SA for policy entry from SAD.
861  * NOTE: searching SAD of aliving state.
862  * OUT:	NULL:	not found.
863  *	others:	found and return the pointer.
864  */
865 static struct secasvar *
866 key_allocsa_policy(const struct secasindex *saidx)
867 {
868 #define	N(a)	_ARRAYLEN(a)
869 	INIT_VNET_IPSEC(curvnet);
870 	struct secashead *sah;
871 	struct secasvar *sav;
872 	u_int stateidx, arraysize;
873 	const u_int *state_valid;
874 
875 	SAHTREE_LOCK();
876 	LIST_FOREACH(sah, &V_sahtree, chain) {
877 		if (sah->state == SADB_SASTATE_DEAD)
878 			continue;
879 		if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) {
880 			if (V_key_preferred_oldsa) {
881 				state_valid = saorder_state_valid_prefer_old;
882 				arraysize = N(saorder_state_valid_prefer_old);
883 			} else {
884 				state_valid = saorder_state_valid_prefer_new;
885 				arraysize = N(saorder_state_valid_prefer_new);
886 			}
887 			SAHTREE_UNLOCK();
888 			goto found;
889 		}
890 	}
891 	SAHTREE_UNLOCK();
892 
893 	return NULL;
894 
895     found:
896 	/* search valid state */
897 	for (stateidx = 0; stateidx < arraysize; stateidx++) {
898 		sav = key_do_allocsa_policy(sah, state_valid[stateidx]);
899 		if (sav != NULL)
900 			return sav;
901 	}
902 
903 	return NULL;
904 #undef N
905 }
906 
907 /*
908  * searching SAD with direction, protocol, mode and state.
909  * called by key_allocsa_policy().
910  * OUT:
911  *	NULL	: not found
912  *	others	: found, pointer to a SA.
913  */
914 static struct secasvar *
915 key_do_allocsa_policy(struct secashead *sah, u_int state)
916 {
917 	INIT_VNET_IPSEC(curvnet);
918 	struct secasvar *sav, *nextsav, *candidate, *d;
919 
920 	/* initilize */
921 	candidate = NULL;
922 
923 	SAHTREE_LOCK();
924 	for (sav = LIST_FIRST(&sah->savtree[state]);
925 	     sav != NULL;
926 	     sav = nextsav) {
927 
928 		nextsav = LIST_NEXT(sav, chain);
929 
930 		/* sanity check */
931 		KEY_CHKSASTATE(sav->state, state, __func__);
932 
933 		/* initialize */
934 		if (candidate == NULL) {
935 			candidate = sav;
936 			continue;
937 		}
938 
939 		/* Which SA is the better ? */
940 
941 		IPSEC_ASSERT(candidate->lft_c != NULL,
942 			("null candidate lifetime"));
943 		IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime"));
944 
945 		/* What the best method is to compare ? */
946 		if (V_key_preferred_oldsa) {
947 			if (candidate->lft_c->addtime >
948 					sav->lft_c->addtime) {
949 				candidate = sav;
950 			}
951 			continue;
952 			/*NOTREACHED*/
953 		}
954 
955 		/* preferred new sa rather than old sa */
956 		if (candidate->lft_c->addtime <
957 				sav->lft_c->addtime) {
958 			d = candidate;
959 			candidate = sav;
960 		} else
961 			d = sav;
962 
963 		/*
964 		 * prepared to delete the SA when there is more
965 		 * suitable candidate and the lifetime of the SA is not
966 		 * permanent.
967 		 */
968 		if (d->lft_h->addtime != 0) {
969 			struct mbuf *m, *result;
970 			u_int8_t satype;
971 
972 			key_sa_chgstate(d, SADB_SASTATE_DEAD);
973 
974 			IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count"));
975 
976 			satype = key_proto2satype(d->sah->saidx.proto);
977 			if (satype == 0)
978 				goto msgfail;
979 
980 			m = key_setsadbmsg(SADB_DELETE, 0,
981 			    satype, 0, 0, d->refcnt - 1);
982 			if (!m)
983 				goto msgfail;
984 			result = m;
985 
986 			/* set sadb_address for saidx's. */
987 			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
988 				&d->sah->saidx.src.sa,
989 				d->sah->saidx.src.sa.sa_len << 3,
990 				IPSEC_ULPROTO_ANY);
991 			if (!m)
992 				goto msgfail;
993 			m_cat(result, m);
994 
995 			/* set sadb_address for saidx's. */
996 			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
997 				&d->sah->saidx.dst.sa,
998 				d->sah->saidx.dst.sa.sa_len << 3,
999 				IPSEC_ULPROTO_ANY);
1000 			if (!m)
1001 				goto msgfail;
1002 			m_cat(result, m);
1003 
1004 			/* create SA extension */
1005 			m = key_setsadbsa(d);
1006 			if (!m)
1007 				goto msgfail;
1008 			m_cat(result, m);
1009 
1010 			if (result->m_len < sizeof(struct sadb_msg)) {
1011 				result = m_pullup(result,
1012 						sizeof(struct sadb_msg));
1013 				if (result == NULL)
1014 					goto msgfail;
1015 			}
1016 
1017 			result->m_pkthdr.len = 0;
1018 			for (m = result; m; m = m->m_next)
1019 				result->m_pkthdr.len += m->m_len;
1020 			mtod(result, struct sadb_msg *)->sadb_msg_len =
1021 				PFKEY_UNIT64(result->m_pkthdr.len);
1022 
1023 			if (key_sendup_mbuf(NULL, result,
1024 					KEY_SENDUP_REGISTERED))
1025 				goto msgfail;
1026 		 msgfail:
1027 			KEY_FREESAV(&d);
1028 		}
1029 	}
1030 	if (candidate) {
1031 		sa_addref(candidate);
1032 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1033 			printf("DP %s cause refcnt++:%d SA:%p\n",
1034 				__func__, candidate->refcnt, candidate));
1035 	}
1036 	SAHTREE_UNLOCK();
1037 
1038 	return candidate;
1039 }
1040 
1041 /*
1042  * allocating a usable SA entry for a *INBOUND* packet.
1043  * Must call key_freesav() later.
1044  * OUT: positive:	pointer to a usable sav (i.e. MATURE or DYING state).
1045  *	NULL:		not found, or error occured.
1046  *
1047  * In the comparison, no source address is used--for RFC2401 conformance.
1048  * To quote, from section 4.1:
1049  *	A security association is uniquely identified by a triple consisting
1050  *	of a Security Parameter Index (SPI), an IP Destination Address, and a
1051  *	security protocol (AH or ESP) identifier.
1052  * Note that, however, we do need to keep source address in IPsec SA.
1053  * IKE specification and PF_KEY specification do assume that we
1054  * keep source address in IPsec SA.  We see a tricky situation here.
1055  */
1056 struct secasvar *
1057 key_allocsa(
1058 	union sockaddr_union *dst,
1059 	u_int proto,
1060 	u_int32_t spi,
1061 	const char* where, int tag)
1062 {
1063 	INIT_VNET_IPSEC(curvnet);
1064 	struct secashead *sah;
1065 	struct secasvar *sav;
1066 	u_int stateidx, arraysize, state;
1067 	const u_int *saorder_state_valid;
1068 
1069 	IPSEC_ASSERT(dst != NULL, ("null dst address"));
1070 
1071 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1072 		printf("DP %s from %s:%u\n", __func__, where, tag));
1073 
1074 	/*
1075 	 * searching SAD.
1076 	 * XXX: to be checked internal IP header somewhere.  Also when
1077 	 * IPsec tunnel packet is received.  But ESP tunnel mode is
1078 	 * encrypted so we can't check internal IP header.
1079 	 */
1080 	SAHTREE_LOCK();
1081 	if (V_key_preferred_oldsa) {
1082 		saorder_state_valid = saorder_state_valid_prefer_old;
1083 		arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1084 	} else {
1085 		saorder_state_valid = saorder_state_valid_prefer_new;
1086 		arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1087 	}
1088 	LIST_FOREACH(sah, &V_sahtree, chain) {
1089 		/* search valid state */
1090 		for (stateidx = 0; stateidx < arraysize; stateidx++) {
1091 			state = saorder_state_valid[stateidx];
1092 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
1093 				/* sanity check */
1094 				KEY_CHKSASTATE(sav->state, state, __func__);
1095 				/* do not return entries w/ unusable state */
1096 				if (sav->state != SADB_SASTATE_MATURE &&
1097 				    sav->state != SADB_SASTATE_DYING)
1098 					continue;
1099 				if (proto != sav->sah->saidx.proto)
1100 					continue;
1101 				if (spi != sav->spi)
1102 					continue;
1103 #if 0	/* don't check src */
1104 				/* check src address */
1105 				if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, 0) != 0)
1106 					continue;
1107 #endif
1108 				/* check dst address */
1109 				if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, 0) != 0)
1110 					continue;
1111 				sa_addref(sav);
1112 				goto done;
1113 			}
1114 		}
1115 	}
1116 	sav = NULL;
1117 done:
1118 	SAHTREE_UNLOCK();
1119 
1120 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1121 		printf("DP %s return SA:%p; refcnt %u\n", __func__,
1122 			sav, sav ? sav->refcnt : 0));
1123 	return sav;
1124 }
1125 
1126 /*
1127  * Must be called after calling key_allocsp().
1128  * For both the packet without socket and key_freeso().
1129  */
1130 void
1131 _key_freesp(struct secpolicy **spp, const char* where, int tag)
1132 {
1133 	INIT_VNET_IPSEC(curvnet);
1134 	struct secpolicy *sp = *spp;
1135 
1136 	IPSEC_ASSERT(sp != NULL, ("null sp"));
1137 
1138 	SPTREE_LOCK();
1139 	SP_DELREF(sp);
1140 
1141 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1142 		printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1143 			__func__, sp, sp->id, where, tag, sp->refcnt));
1144 
1145 	if (sp->refcnt == 0) {
1146 		*spp = NULL;
1147 		key_delsp(sp);
1148 	}
1149 	SPTREE_UNLOCK();
1150 }
1151 
1152 /*
1153  * Must be called after calling key_allocsp().
1154  * For the packet with socket.
1155  */
1156 void
1157 key_freeso(struct socket *so)
1158 {
1159 	INIT_VNET_IPSEC(curvnet);
1160 	IPSEC_ASSERT(so != NULL, ("null so"));
1161 
1162 	switch (so->so_proto->pr_domain->dom_family) {
1163 #if defined(INET) || defined(INET6)
1164 #ifdef INET
1165 	case PF_INET:
1166 #endif
1167 #ifdef INET6
1168 	case PF_INET6:
1169 #endif
1170 	    {
1171 		struct inpcb *pcb = sotoinpcb(so);
1172 
1173 		/* Does it have a PCB ? */
1174 		if (pcb == NULL)
1175 			return;
1176 		key_freesp_so(&pcb->inp_sp->sp_in);
1177 		key_freesp_so(&pcb->inp_sp->sp_out);
1178 	    }
1179 		break;
1180 #endif /* INET || INET6 */
1181 	default:
1182 		ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n",
1183 		    __func__, so->so_proto->pr_domain->dom_family));
1184 		return;
1185 	}
1186 }
1187 
1188 static void
1189 key_freesp_so(struct secpolicy **sp)
1190 {
1191 	IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp"));
1192 
1193 	if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1194 	    (*sp)->policy == IPSEC_POLICY_BYPASS)
1195 		return;
1196 
1197 	IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC,
1198 		("invalid policy %u", (*sp)->policy));
1199 	KEY_FREESP(sp);
1200 }
1201 
1202 /*
1203  * Must be called after calling key_allocsa().
1204  * This function is called by key_freesp() to free some SA allocated
1205  * for a policy.
1206  */
1207 void
1208 key_freesav(struct secasvar **psav, const char* where, int tag)
1209 {
1210 	INIT_VNET_IPSEC(curvnet);
1211 	struct secasvar *sav = *psav;
1212 
1213 	IPSEC_ASSERT(sav != NULL, ("null sav"));
1214 
1215 	if (sa_delref(sav)) {
1216 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1217 			printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1218 				__func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1219 		*psav = NULL;
1220 		key_delsav(sav);
1221 	} else {
1222 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1223 			printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1224 				__func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1225 	}
1226 }
1227 
1228 /* %%% SPD management */
1229 /*
1230  * free security policy entry.
1231  */
1232 static void
1233 key_delsp(struct secpolicy *sp)
1234 {
1235 	struct ipsecrequest *isr, *nextisr;
1236 
1237 	IPSEC_ASSERT(sp != NULL, ("null sp"));
1238 	SPTREE_LOCK_ASSERT();
1239 
1240 	sp->state = IPSEC_SPSTATE_DEAD;
1241 
1242 	IPSEC_ASSERT(sp->refcnt == 0,
1243 		("SP with references deleted (refcnt %u)", sp->refcnt));
1244 
1245 	/* remove from SP index */
1246 	if (__LIST_CHAINED(sp))
1247 		LIST_REMOVE(sp, chain);
1248 
1249 	for (isr = sp->req; isr != NULL; isr = nextisr) {
1250 		if (isr->sav != NULL) {
1251 			KEY_FREESAV(&isr->sav);
1252 			isr->sav = NULL;
1253 		}
1254 
1255 		nextisr = isr->next;
1256 		ipsec_delisr(isr);
1257 	}
1258 	_key_delsp(sp);
1259 }
1260 
1261 /*
1262  * search SPD
1263  * OUT:	NULL	: not found
1264  *	others	: found, pointer to a SP.
1265  */
1266 static struct secpolicy *
1267 key_getsp(struct secpolicyindex *spidx)
1268 {
1269 	INIT_VNET_IPSEC(curvnet);
1270 	struct secpolicy *sp;
1271 
1272 	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
1273 
1274 	SPTREE_LOCK();
1275 	LIST_FOREACH(sp, &V_sptree[spidx->dir], chain) {
1276 		if (sp->state == IPSEC_SPSTATE_DEAD)
1277 			continue;
1278 		if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1279 			SP_ADDREF(sp);
1280 			break;
1281 		}
1282 	}
1283 	SPTREE_UNLOCK();
1284 
1285 	return sp;
1286 }
1287 
1288 /*
1289  * get SP by index.
1290  * OUT:	NULL	: not found
1291  *	others	: found, pointer to a SP.
1292  */
1293 static struct secpolicy *
1294 key_getspbyid(u_int32_t id)
1295 {
1296 	INIT_VNET_IPSEC(curvnet);
1297 	struct secpolicy *sp;
1298 
1299 	SPTREE_LOCK();
1300 	LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_INBOUND], chain) {
1301 		if (sp->state == IPSEC_SPSTATE_DEAD)
1302 			continue;
1303 		if (sp->id == id) {
1304 			SP_ADDREF(sp);
1305 			goto done;
1306 		}
1307 	}
1308 
1309 	LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_OUTBOUND], chain) {
1310 		if (sp->state == IPSEC_SPSTATE_DEAD)
1311 			continue;
1312 		if (sp->id == id) {
1313 			SP_ADDREF(sp);
1314 			goto done;
1315 		}
1316 	}
1317 done:
1318 	SPTREE_UNLOCK();
1319 
1320 	return sp;
1321 }
1322 
1323 struct secpolicy *
1324 key_newsp(const char* where, int tag)
1325 {
1326 	INIT_VNET_IPSEC(curvnet);
1327 	struct secpolicy *newsp = NULL;
1328 
1329 	newsp = (struct secpolicy *)
1330 		malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO);
1331 	if (newsp) {
1332 		SECPOLICY_LOCK_INIT(newsp);
1333 		newsp->refcnt = 1;
1334 		newsp->req = NULL;
1335 	}
1336 
1337 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1338 		printf("DP %s from %s:%u return SP:%p\n", __func__,
1339 			where, tag, newsp));
1340 	return newsp;
1341 }
1342 
1343 static void
1344 _key_delsp(struct secpolicy *sp)
1345 {
1346 	SECPOLICY_LOCK_DESTROY(sp);
1347 	free(sp, M_IPSEC_SP);
1348 }
1349 
1350 /*
1351  * create secpolicy structure from sadb_x_policy structure.
1352  * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1353  * so must be set properly later.
1354  */
1355 struct secpolicy *
1356 key_msg2sp(xpl0, len, error)
1357 	struct sadb_x_policy *xpl0;
1358 	size_t len;
1359 	int *error;
1360 {
1361 	INIT_VNET_IPSEC(curvnet);
1362 	struct secpolicy *newsp;
1363 
1364 	IPSEC_ASSERT(xpl0 != NULL, ("null xpl0"));
1365 	IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len));
1366 
1367 	if (len != PFKEY_EXTLEN(xpl0)) {
1368 		ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__));
1369 		*error = EINVAL;
1370 		return NULL;
1371 	}
1372 
1373 	if ((newsp = KEY_NEWSP()) == NULL) {
1374 		*error = ENOBUFS;
1375 		return NULL;
1376 	}
1377 
1378 	newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1379 	newsp->policy = xpl0->sadb_x_policy_type;
1380 
1381 	/* check policy */
1382 	switch (xpl0->sadb_x_policy_type) {
1383 	case IPSEC_POLICY_DISCARD:
1384 	case IPSEC_POLICY_NONE:
1385 	case IPSEC_POLICY_ENTRUST:
1386 	case IPSEC_POLICY_BYPASS:
1387 		newsp->req = NULL;
1388 		break;
1389 
1390 	case IPSEC_POLICY_IPSEC:
1391 	    {
1392 		int tlen;
1393 		struct sadb_x_ipsecrequest *xisr;
1394 		struct ipsecrequest **p_isr = &newsp->req;
1395 
1396 		/* validity check */
1397 		if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1398 			ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n",
1399 				__func__));
1400 			KEY_FREESP(&newsp);
1401 			*error = EINVAL;
1402 			return NULL;
1403 		}
1404 
1405 		tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1406 		xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1);
1407 
1408 		while (tlen > 0) {
1409 			/* length check */
1410 			if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1411 				ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest "
1412 					"length.\n", __func__));
1413 				KEY_FREESP(&newsp);
1414 				*error = EINVAL;
1415 				return NULL;
1416 			}
1417 
1418 			/* allocate request buffer */
1419 			/* NB: data structure is zero'd */
1420 			*p_isr = ipsec_newisr();
1421 			if ((*p_isr) == NULL) {
1422 				ipseclog((LOG_DEBUG,
1423 				    "%s: No more memory.\n", __func__));
1424 				KEY_FREESP(&newsp);
1425 				*error = ENOBUFS;
1426 				return NULL;
1427 			}
1428 
1429 			/* set values */
1430 			switch (xisr->sadb_x_ipsecrequest_proto) {
1431 			case IPPROTO_ESP:
1432 			case IPPROTO_AH:
1433 			case IPPROTO_IPCOMP:
1434 				break;
1435 			default:
1436 				ipseclog((LOG_DEBUG,
1437 				    "%s: invalid proto type=%u\n", __func__,
1438 				    xisr->sadb_x_ipsecrequest_proto));
1439 				KEY_FREESP(&newsp);
1440 				*error = EPROTONOSUPPORT;
1441 				return NULL;
1442 			}
1443 			(*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1444 
1445 			switch (xisr->sadb_x_ipsecrequest_mode) {
1446 			case IPSEC_MODE_TRANSPORT:
1447 			case IPSEC_MODE_TUNNEL:
1448 				break;
1449 			case IPSEC_MODE_ANY:
1450 			default:
1451 				ipseclog((LOG_DEBUG,
1452 				    "%s: invalid mode=%u\n", __func__,
1453 				    xisr->sadb_x_ipsecrequest_mode));
1454 				KEY_FREESP(&newsp);
1455 				*error = EINVAL;
1456 				return NULL;
1457 			}
1458 			(*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1459 
1460 			switch (xisr->sadb_x_ipsecrequest_level) {
1461 			case IPSEC_LEVEL_DEFAULT:
1462 			case IPSEC_LEVEL_USE:
1463 			case IPSEC_LEVEL_REQUIRE:
1464 				break;
1465 			case IPSEC_LEVEL_UNIQUE:
1466 				/* validity check */
1467 				/*
1468 				 * If range violation of reqid, kernel will
1469 				 * update it, don't refuse it.
1470 				 */
1471 				if (xisr->sadb_x_ipsecrequest_reqid
1472 						> IPSEC_MANUAL_REQID_MAX) {
1473 					ipseclog((LOG_DEBUG,
1474 					    "%s: reqid=%d range "
1475 					    "violation, updated by kernel.\n",
1476 					    __func__,
1477 					    xisr->sadb_x_ipsecrequest_reqid));
1478 					xisr->sadb_x_ipsecrequest_reqid = 0;
1479 				}
1480 
1481 				/* allocate new reqid id if reqid is zero. */
1482 				if (xisr->sadb_x_ipsecrequest_reqid == 0) {
1483 					u_int32_t reqid;
1484 					if ((reqid = key_newreqid()) == 0) {
1485 						KEY_FREESP(&newsp);
1486 						*error = ENOBUFS;
1487 						return NULL;
1488 					}
1489 					(*p_isr)->saidx.reqid = reqid;
1490 					xisr->sadb_x_ipsecrequest_reqid = reqid;
1491 				} else {
1492 				/* set it for manual keying. */
1493 					(*p_isr)->saidx.reqid =
1494 						xisr->sadb_x_ipsecrequest_reqid;
1495 				}
1496 				break;
1497 
1498 			default:
1499 				ipseclog((LOG_DEBUG, "%s: invalid level=%u\n",
1500 					__func__,
1501 					xisr->sadb_x_ipsecrequest_level));
1502 				KEY_FREESP(&newsp);
1503 				*error = EINVAL;
1504 				return NULL;
1505 			}
1506 			(*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1507 
1508 			/* set IP addresses if there */
1509 			if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1510 				struct sockaddr *paddr;
1511 
1512 				paddr = (struct sockaddr *)(xisr + 1);
1513 
1514 				/* validity check */
1515 				if (paddr->sa_len
1516 				    > sizeof((*p_isr)->saidx.src)) {
1517 					ipseclog((LOG_DEBUG, "%s: invalid "
1518 						"request address length.\n",
1519 						__func__));
1520 					KEY_FREESP(&newsp);
1521 					*error = EINVAL;
1522 					return NULL;
1523 				}
1524 				bcopy(paddr, &(*p_isr)->saidx.src,
1525 					paddr->sa_len);
1526 
1527 				paddr = (struct sockaddr *)((caddr_t)paddr
1528 							+ paddr->sa_len);
1529 
1530 				/* validity check */
1531 				if (paddr->sa_len
1532 				    > sizeof((*p_isr)->saidx.dst)) {
1533 					ipseclog((LOG_DEBUG, "%s: invalid "
1534 						"request address length.\n",
1535 						__func__));
1536 					KEY_FREESP(&newsp);
1537 					*error = EINVAL;
1538 					return NULL;
1539 				}
1540 				bcopy(paddr, &(*p_isr)->saidx.dst,
1541 					paddr->sa_len);
1542 			}
1543 
1544 			(*p_isr)->sp = newsp;
1545 
1546 			/* initialization for the next. */
1547 			p_isr = &(*p_isr)->next;
1548 			tlen -= xisr->sadb_x_ipsecrequest_len;
1549 
1550 			/* validity check */
1551 			if (tlen < 0) {
1552 				ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n",
1553 					__func__));
1554 				KEY_FREESP(&newsp);
1555 				*error = EINVAL;
1556 				return NULL;
1557 			}
1558 
1559 			xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr
1560 			                 + xisr->sadb_x_ipsecrequest_len);
1561 		}
1562 	    }
1563 		break;
1564 	default:
1565 		ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__));
1566 		KEY_FREESP(&newsp);
1567 		*error = EINVAL;
1568 		return NULL;
1569 	}
1570 
1571 	*error = 0;
1572 	return newsp;
1573 }
1574 
1575 static u_int32_t
1576 key_newreqid()
1577 {
1578 	static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1579 
1580 	auto_reqid = (auto_reqid == ~0
1581 			? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1582 
1583 	/* XXX should be unique check */
1584 
1585 	return auto_reqid;
1586 }
1587 
1588 /*
1589  * copy secpolicy struct to sadb_x_policy structure indicated.
1590  */
1591 struct mbuf *
1592 key_sp2msg(sp)
1593 	struct secpolicy *sp;
1594 {
1595 	struct sadb_x_policy *xpl;
1596 	int tlen;
1597 	caddr_t p;
1598 	struct mbuf *m;
1599 
1600 	IPSEC_ASSERT(sp != NULL, ("null policy"));
1601 
1602 	tlen = key_getspreqmsglen(sp);
1603 
1604 	m = key_alloc_mbuf(tlen);
1605 	if (!m || m->m_next) {	/*XXX*/
1606 		if (m)
1607 			m_freem(m);
1608 		return NULL;
1609 	}
1610 
1611 	m->m_len = tlen;
1612 	m->m_next = NULL;
1613 	xpl = mtod(m, struct sadb_x_policy *);
1614 	bzero(xpl, tlen);
1615 
1616 	xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1617 	xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1618 	xpl->sadb_x_policy_type = sp->policy;
1619 	xpl->sadb_x_policy_dir = sp->spidx.dir;
1620 	xpl->sadb_x_policy_id = sp->id;
1621 	p = (caddr_t)xpl + sizeof(*xpl);
1622 
1623 	/* if is the policy for ipsec ? */
1624 	if (sp->policy == IPSEC_POLICY_IPSEC) {
1625 		struct sadb_x_ipsecrequest *xisr;
1626 		struct ipsecrequest *isr;
1627 
1628 		for (isr = sp->req; isr != NULL; isr = isr->next) {
1629 
1630 			xisr = (struct sadb_x_ipsecrequest *)p;
1631 
1632 			xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1633 			xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1634 			xisr->sadb_x_ipsecrequest_level = isr->level;
1635 			xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1636 
1637 			p += sizeof(*xisr);
1638 			bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len);
1639 			p += isr->saidx.src.sa.sa_len;
1640 			bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len);
1641 			p += isr->saidx.src.sa.sa_len;
1642 
1643 			xisr->sadb_x_ipsecrequest_len =
1644 				PFKEY_ALIGN8(sizeof(*xisr)
1645 					+ isr->saidx.src.sa.sa_len
1646 					+ isr->saidx.dst.sa.sa_len);
1647 		}
1648 	}
1649 
1650 	return m;
1651 }
1652 
1653 /* m will not be freed nor modified */
1654 static struct mbuf *
1655 #ifdef __STDC__
1656 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1657 	int ndeep, int nitem, ...)
1658 #else
1659 key_gather_mbuf(m, mhp, ndeep, nitem, va_alist)
1660 	struct mbuf *m;
1661 	const struct sadb_msghdr *mhp;
1662 	int ndeep;
1663 	int nitem;
1664 	va_dcl
1665 #endif
1666 {
1667 	va_list ap;
1668 	int idx;
1669 	int i;
1670 	struct mbuf *result = NULL, *n;
1671 	int len;
1672 
1673 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1674 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1675 
1676 	va_start(ap, nitem);
1677 	for (i = 0; i < nitem; i++) {
1678 		idx = va_arg(ap, int);
1679 		if (idx < 0 || idx > SADB_EXT_MAX)
1680 			goto fail;
1681 		/* don't attempt to pull empty extension */
1682 		if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1683 			continue;
1684 		if (idx != SADB_EXT_RESERVED  &&
1685 		    (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1686 			continue;
1687 
1688 		if (idx == SADB_EXT_RESERVED) {
1689 			len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1690 
1691 			IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len));
1692 
1693 			MGETHDR(n, M_DONTWAIT, MT_DATA);
1694 			if (!n)
1695 				goto fail;
1696 			n->m_len = len;
1697 			n->m_next = NULL;
1698 			m_copydata(m, 0, sizeof(struct sadb_msg),
1699 			    mtod(n, caddr_t));
1700 		} else if (i < ndeep) {
1701 			len = mhp->extlen[idx];
1702 			n = key_alloc_mbuf(len);
1703 			if (!n || n->m_next) {	/*XXX*/
1704 				if (n)
1705 					m_freem(n);
1706 				goto fail;
1707 			}
1708 			m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1709 			    mtod(n, caddr_t));
1710 		} else {
1711 			n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1712 			    M_DONTWAIT);
1713 		}
1714 		if (n == NULL)
1715 			goto fail;
1716 
1717 		if (result)
1718 			m_cat(result, n);
1719 		else
1720 			result = n;
1721 	}
1722 	va_end(ap);
1723 
1724 	if ((result->m_flags & M_PKTHDR) != 0) {
1725 		result->m_pkthdr.len = 0;
1726 		for (n = result; n; n = n->m_next)
1727 			result->m_pkthdr.len += n->m_len;
1728 	}
1729 
1730 	return result;
1731 
1732 fail:
1733 	m_freem(result);
1734 	return NULL;
1735 }
1736 
1737 /*
1738  * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1739  * add an entry to SP database, when received
1740  *   <base, address(SD), (lifetime(H),) policy>
1741  * from the user(?).
1742  * Adding to SP database,
1743  * and send
1744  *   <base, address(SD), (lifetime(H),) policy>
1745  * to the socket which was send.
1746  *
1747  * SPDADD set a unique policy entry.
1748  * SPDSETIDX like SPDADD without a part of policy requests.
1749  * SPDUPDATE replace a unique policy entry.
1750  *
1751  * m will always be freed.
1752  */
1753 static int
1754 key_spdadd(so, m, mhp)
1755 	struct socket *so;
1756 	struct mbuf *m;
1757 	const struct sadb_msghdr *mhp;
1758 {
1759 	INIT_VNET_IPSEC(curvnet);
1760 	struct sadb_address *src0, *dst0;
1761 	struct sadb_x_policy *xpl0, *xpl;
1762 	struct sadb_lifetime *lft = NULL;
1763 	struct secpolicyindex spidx;
1764 	struct secpolicy *newsp;
1765 	int error;
1766 
1767 	IPSEC_ASSERT(so != NULL, ("null socket"));
1768 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1769 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1770 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
1771 
1772 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1773 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1774 	    mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1775 		ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1776 		return key_senderror(so, m, EINVAL);
1777 	}
1778 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1779 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1780 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1781 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1782 			__func__));
1783 		return key_senderror(so, m, EINVAL);
1784 	}
1785 	if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1786 		if (mhp->extlen[SADB_EXT_LIFETIME_HARD]
1787 			< sizeof(struct sadb_lifetime)) {
1788 			ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1789 				__func__));
1790 			return key_senderror(so, m, EINVAL);
1791 		}
1792 		lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1793 	}
1794 
1795 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1796 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1797 	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1798 
1799 	/* make secindex */
1800 	/* XXX boundary check against sa_len */
1801 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1802 	                src0 + 1,
1803 	                dst0 + 1,
1804 	                src0->sadb_address_prefixlen,
1805 	                dst0->sadb_address_prefixlen,
1806 	                src0->sadb_address_proto,
1807 	                &spidx);
1808 
1809 	/* checking the direciton. */
1810 	switch (xpl0->sadb_x_policy_dir) {
1811 	case IPSEC_DIR_INBOUND:
1812 	case IPSEC_DIR_OUTBOUND:
1813 		break;
1814 	default:
1815 		ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
1816 		mhp->msg->sadb_msg_errno = EINVAL;
1817 		return 0;
1818 	}
1819 
1820 	/* check policy */
1821 	/* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1822 	if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST
1823 	 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1824 		ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__));
1825 		return key_senderror(so, m, EINVAL);
1826 	}
1827 
1828 	/* policy requests are mandatory when action is ipsec. */
1829         if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX
1830 	 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC
1831 	 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1832 		ipseclog((LOG_DEBUG, "%s: some policy requests part required\n",
1833 			__func__));
1834 		return key_senderror(so, m, EINVAL);
1835 	}
1836 
1837 	/*
1838 	 * checking there is SP already or not.
1839 	 * SPDUPDATE doesn't depend on whether there is a SP or not.
1840 	 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1841 	 * then error.
1842 	 */
1843 	newsp = key_getsp(&spidx);
1844 	if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1845 		if (newsp) {
1846 			newsp->state = IPSEC_SPSTATE_DEAD;
1847 			KEY_FREESP(&newsp);
1848 		}
1849 	} else {
1850 		if (newsp != NULL) {
1851 			KEY_FREESP(&newsp);
1852 			ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n",
1853 				__func__));
1854 			return key_senderror(so, m, EEXIST);
1855 		}
1856 	}
1857 
1858 	/* allocation new SP entry */
1859 	if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
1860 		return key_senderror(so, m, error);
1861 	}
1862 
1863 	if ((newsp->id = key_getnewspid()) == 0) {
1864 		_key_delsp(newsp);
1865 		return key_senderror(so, m, ENOBUFS);
1866 	}
1867 
1868 	/* XXX boundary check against sa_len */
1869 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1870 	                src0 + 1,
1871 	                dst0 + 1,
1872 	                src0->sadb_address_prefixlen,
1873 	                dst0->sadb_address_prefixlen,
1874 	                src0->sadb_address_proto,
1875 	                &newsp->spidx);
1876 
1877 	/* sanity check on addr pair */
1878 	if (((struct sockaddr *)(src0 + 1))->sa_family !=
1879 			((struct sockaddr *)(dst0+ 1))->sa_family) {
1880 		_key_delsp(newsp);
1881 		return key_senderror(so, m, EINVAL);
1882 	}
1883 	if (((struct sockaddr *)(src0 + 1))->sa_len !=
1884 			((struct sockaddr *)(dst0+ 1))->sa_len) {
1885 		_key_delsp(newsp);
1886 		return key_senderror(so, m, EINVAL);
1887 	}
1888 #if 1
1889 	if (newsp->req && newsp->req->saidx.src.sa.sa_family) {
1890 		struct sockaddr *sa;
1891 		sa = (struct sockaddr *)(src0 + 1);
1892 		if (sa->sa_family != newsp->req->saidx.src.sa.sa_family) {
1893 			_key_delsp(newsp);
1894 			return key_senderror(so, m, EINVAL);
1895 		}
1896 	}
1897 	if (newsp->req && newsp->req->saidx.dst.sa.sa_family) {
1898 		struct sockaddr *sa;
1899 		sa = (struct sockaddr *)(dst0 + 1);
1900 		if (sa->sa_family != newsp->req->saidx.dst.sa.sa_family) {
1901 			_key_delsp(newsp);
1902 			return key_senderror(so, m, EINVAL);
1903 		}
1904 	}
1905 #endif
1906 
1907 	newsp->created = time_second;
1908 	newsp->lastused = newsp->created;
1909 	newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1910 	newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1911 
1912 	newsp->refcnt = 1;	/* do not reclaim until I say I do */
1913 	newsp->state = IPSEC_SPSTATE_ALIVE;
1914 	LIST_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1915 
1916 	/* delete the entry in spacqtree */
1917 	if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1918 		struct secspacq *spacq = key_getspacq(&spidx);
1919 		if (spacq != NULL) {
1920 			/* reset counter in order to deletion by timehandler. */
1921 			spacq->created = time_second;
1922 			spacq->count = 0;
1923 			SPACQ_UNLOCK();
1924 		}
1925     	}
1926 
1927     {
1928 	struct mbuf *n, *mpolicy;
1929 	struct sadb_msg *newmsg;
1930 	int off;
1931 
1932 	/* create new sadb_msg to reply. */
1933 	if (lft) {
1934 		n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
1935 		    SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
1936 		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1937 	} else {
1938 		n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
1939 		    SADB_X_EXT_POLICY,
1940 		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1941 	}
1942 	if (!n)
1943 		return key_senderror(so, m, ENOBUFS);
1944 
1945 	if (n->m_len < sizeof(*newmsg)) {
1946 		n = m_pullup(n, sizeof(*newmsg));
1947 		if (!n)
1948 			return key_senderror(so, m, ENOBUFS);
1949 	}
1950 	newmsg = mtod(n, struct sadb_msg *);
1951 	newmsg->sadb_msg_errno = 0;
1952 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
1953 
1954 	off = 0;
1955 	mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
1956 	    sizeof(*xpl), &off);
1957 	if (mpolicy == NULL) {
1958 		/* n is already freed */
1959 		return key_senderror(so, m, ENOBUFS);
1960 	}
1961 	xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off);
1962 	if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
1963 		m_freem(n);
1964 		return key_senderror(so, m, EINVAL);
1965 	}
1966 	xpl->sadb_x_policy_id = newsp->id;
1967 
1968 	m_freem(m);
1969 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
1970     }
1971 }
1972 
1973 /*
1974  * get new policy id.
1975  * OUT:
1976  *	0:	failure.
1977  *	others: success.
1978  */
1979 static u_int32_t
1980 key_getnewspid()
1981 {
1982 	INIT_VNET_IPSEC(curvnet);
1983 	u_int32_t newid = 0;
1984 	int count = V_key_spi_trycnt;	/* XXX */
1985 	struct secpolicy *sp;
1986 
1987 	/* when requesting to allocate spi ranged */
1988 	while (count--) {
1989 		newid = (V_policy_id = (V_policy_id == ~0 ? 1 : V_policy_id + 1));
1990 
1991 		if ((sp = key_getspbyid(newid)) == NULL)
1992 			break;
1993 
1994 		KEY_FREESP(&sp);
1995 	}
1996 
1997 	if (count == 0 || newid == 0) {
1998 		ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n",
1999 			__func__));
2000 		return 0;
2001 	}
2002 
2003 	return newid;
2004 }
2005 
2006 /*
2007  * SADB_SPDDELETE processing
2008  * receive
2009  *   <base, address(SD), policy(*)>
2010  * from the user(?), and set SADB_SASTATE_DEAD,
2011  * and send,
2012  *   <base, address(SD), policy(*)>
2013  * to the ikmpd.
2014  * policy(*) including direction of policy.
2015  *
2016  * m will always be freed.
2017  */
2018 static int
2019 key_spddelete(so, m, mhp)
2020 	struct socket *so;
2021 	struct mbuf *m;
2022 	const struct sadb_msghdr *mhp;
2023 {
2024 	INIT_VNET_IPSEC(curvnet);
2025 	struct sadb_address *src0, *dst0;
2026 	struct sadb_x_policy *xpl0;
2027 	struct secpolicyindex spidx;
2028 	struct secpolicy *sp;
2029 
2030 	IPSEC_ASSERT(so != NULL, ("null so"));
2031 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2032 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2033 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2034 
2035 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2036 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2037 	    mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2038 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2039 			__func__));
2040 		return key_senderror(so, m, EINVAL);
2041 	}
2042 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2043 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2044 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2045 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2046 			__func__));
2047 		return key_senderror(so, m, EINVAL);
2048 	}
2049 
2050 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2051 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2052 	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2053 
2054 	/* make secindex */
2055 	/* XXX boundary check against sa_len */
2056 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2057 	                src0 + 1,
2058 	                dst0 + 1,
2059 	                src0->sadb_address_prefixlen,
2060 	                dst0->sadb_address_prefixlen,
2061 	                src0->sadb_address_proto,
2062 	                &spidx);
2063 
2064 	/* checking the direciton. */
2065 	switch (xpl0->sadb_x_policy_dir) {
2066 	case IPSEC_DIR_INBOUND:
2067 	case IPSEC_DIR_OUTBOUND:
2068 		break;
2069 	default:
2070 		ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
2071 		return key_senderror(so, m, EINVAL);
2072 	}
2073 
2074 	/* Is there SP in SPD ? */
2075 	if ((sp = key_getsp(&spidx)) == NULL) {
2076 		ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__));
2077 		return key_senderror(so, m, EINVAL);
2078 	}
2079 
2080 	/* save policy id to buffer to be returned. */
2081 	xpl0->sadb_x_policy_id = sp->id;
2082 
2083 	sp->state = IPSEC_SPSTATE_DEAD;
2084 	KEY_FREESP(&sp);
2085 
2086     {
2087 	struct mbuf *n;
2088 	struct sadb_msg *newmsg;
2089 
2090 	/* create new sadb_msg to reply. */
2091 	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2092 	    SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2093 	if (!n)
2094 		return key_senderror(so, m, ENOBUFS);
2095 
2096 	newmsg = mtod(n, struct sadb_msg *);
2097 	newmsg->sadb_msg_errno = 0;
2098 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2099 
2100 	m_freem(m);
2101 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2102     }
2103 }
2104 
2105 /*
2106  * SADB_SPDDELETE2 processing
2107  * receive
2108  *   <base, policy(*)>
2109  * from the user(?), and set SADB_SASTATE_DEAD,
2110  * and send,
2111  *   <base, policy(*)>
2112  * to the ikmpd.
2113  * policy(*) including direction of policy.
2114  *
2115  * m will always be freed.
2116  */
2117 static int
2118 key_spddelete2(so, m, mhp)
2119 	struct socket *so;
2120 	struct mbuf *m;
2121 	const struct sadb_msghdr *mhp;
2122 {
2123 	INIT_VNET_IPSEC(curvnet);
2124 	u_int32_t id;
2125 	struct secpolicy *sp;
2126 
2127 	IPSEC_ASSERT(so != NULL, ("null socket"));
2128 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2129 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2130 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2131 
2132 	if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2133 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2134 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__));
2135 		return key_senderror(so, m, EINVAL);
2136 	}
2137 
2138 	id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2139 
2140 	/* Is there SP in SPD ? */
2141 	if ((sp = key_getspbyid(id)) == NULL) {
2142 		ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2143 		return key_senderror(so, m, EINVAL);
2144 	}
2145 
2146 	sp->state = IPSEC_SPSTATE_DEAD;
2147 	KEY_FREESP(&sp);
2148 
2149     {
2150 	struct mbuf *n, *nn;
2151 	struct sadb_msg *newmsg;
2152 	int off, len;
2153 
2154 	/* create new sadb_msg to reply. */
2155 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2156 
2157 	MGETHDR(n, M_DONTWAIT, MT_DATA);
2158 	if (n && len > MHLEN) {
2159 		MCLGET(n, M_DONTWAIT);
2160 		if ((n->m_flags & M_EXT) == 0) {
2161 			m_freem(n);
2162 			n = NULL;
2163 		}
2164 	}
2165 	if (!n)
2166 		return key_senderror(so, m, ENOBUFS);
2167 
2168 	n->m_len = len;
2169 	n->m_next = NULL;
2170 	off = 0;
2171 
2172 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
2173 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2174 
2175 	IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)",
2176 		off, len));
2177 
2178 	n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2179 	    mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2180 	if (!n->m_next) {
2181 		m_freem(n);
2182 		return key_senderror(so, m, ENOBUFS);
2183 	}
2184 
2185 	n->m_pkthdr.len = 0;
2186 	for (nn = n; nn; nn = nn->m_next)
2187 		n->m_pkthdr.len += nn->m_len;
2188 
2189 	newmsg = mtod(n, struct sadb_msg *);
2190 	newmsg->sadb_msg_errno = 0;
2191 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2192 
2193 	m_freem(m);
2194 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2195     }
2196 }
2197 
2198 /*
2199  * SADB_X_GET processing
2200  * receive
2201  *   <base, policy(*)>
2202  * from the user(?),
2203  * and send,
2204  *   <base, address(SD), policy>
2205  * to the ikmpd.
2206  * policy(*) including direction of policy.
2207  *
2208  * m will always be freed.
2209  */
2210 static int
2211 key_spdget(so, m, mhp)
2212 	struct socket *so;
2213 	struct mbuf *m;
2214 	const struct sadb_msghdr *mhp;
2215 {
2216 	INIT_VNET_IPSEC(curvnet);
2217 	u_int32_t id;
2218 	struct secpolicy *sp;
2219 	struct mbuf *n;
2220 
2221 	IPSEC_ASSERT(so != NULL, ("null socket"));
2222 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2223 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2224 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2225 
2226 	if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2227 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2228 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2229 			__func__));
2230 		return key_senderror(so, m, EINVAL);
2231 	}
2232 
2233 	id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2234 
2235 	/* Is there SP in SPD ? */
2236 	if ((sp = key_getspbyid(id)) == NULL) {
2237 		ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2238 		return key_senderror(so, m, ENOENT);
2239 	}
2240 
2241 	n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid);
2242 	if (n != NULL) {
2243 		m_freem(m);
2244 		return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2245 	} else
2246 		return key_senderror(so, m, ENOBUFS);
2247 }
2248 
2249 /*
2250  * SADB_X_SPDACQUIRE processing.
2251  * Acquire policy and SA(s) for a *OUTBOUND* packet.
2252  * send
2253  *   <base, policy(*)>
2254  * to KMD, and expect to receive
2255  *   <base> with SADB_X_SPDACQUIRE if error occured,
2256  * or
2257  *   <base, policy>
2258  * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2259  * policy(*) is without policy requests.
2260  *
2261  *    0     : succeed
2262  *    others: error number
2263  */
2264 int
2265 key_spdacquire(sp)
2266 	struct secpolicy *sp;
2267 {
2268 	INIT_VNET_IPSEC(curvnet);
2269 	struct mbuf *result = NULL, *m;
2270 	struct secspacq *newspacq;
2271 
2272 	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2273 	IPSEC_ASSERT(sp->req == NULL, ("policy exists"));
2274 	IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC,
2275 		("policy not IPSEC %u", sp->policy));
2276 
2277 	/* Get an entry to check whether sent message or not. */
2278 	newspacq = key_getspacq(&sp->spidx);
2279 	if (newspacq != NULL) {
2280 		if (V_key_blockacq_count < newspacq->count) {
2281 			/* reset counter and do send message. */
2282 			newspacq->count = 0;
2283 		} else {
2284 			/* increment counter and do nothing. */
2285 			newspacq->count++;
2286 			return 0;
2287 		}
2288 		SPACQ_UNLOCK();
2289 	} else {
2290 		/* make new entry for blocking to send SADB_ACQUIRE. */
2291 		newspacq = key_newspacq(&sp->spidx);
2292 		if (newspacq == NULL)
2293 			return ENOBUFS;
2294 	}
2295 
2296 	/* create new sadb_msg to reply. */
2297 	m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2298 	if (!m)
2299 		return ENOBUFS;
2300 
2301 	result = m;
2302 
2303 	result->m_pkthdr.len = 0;
2304 	for (m = result; m; m = m->m_next)
2305 		result->m_pkthdr.len += m->m_len;
2306 
2307 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2308 	    PFKEY_UNIT64(result->m_pkthdr.len);
2309 
2310 	return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2311 }
2312 
2313 /*
2314  * SADB_SPDFLUSH processing
2315  * receive
2316  *   <base>
2317  * from the user, and free all entries in secpctree.
2318  * and send,
2319  *   <base>
2320  * to the user.
2321  * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2322  *
2323  * m will always be freed.
2324  */
2325 static int
2326 key_spdflush(so, m, mhp)
2327 	struct socket *so;
2328 	struct mbuf *m;
2329 	const struct sadb_msghdr *mhp;
2330 {
2331 	INIT_VNET_IPSEC(curvnet);
2332 	struct sadb_msg *newmsg;
2333 	struct secpolicy *sp;
2334 	u_int dir;
2335 
2336 	IPSEC_ASSERT(so != NULL, ("null socket"));
2337 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2338 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2339 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2340 
2341 	if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2342 		return key_senderror(so, m, EINVAL);
2343 
2344 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2345 		SPTREE_LOCK();
2346 		LIST_FOREACH(sp, &V_sptree[dir], chain)
2347 			sp->state = IPSEC_SPSTATE_DEAD;
2348 		SPTREE_UNLOCK();
2349 	}
2350 
2351 	if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2352 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2353 		return key_senderror(so, m, ENOBUFS);
2354 	}
2355 
2356 	if (m->m_next)
2357 		m_freem(m->m_next);
2358 	m->m_next = NULL;
2359 	m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2360 	newmsg = mtod(m, struct sadb_msg *);
2361 	newmsg->sadb_msg_errno = 0;
2362 	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2363 
2364 	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2365 }
2366 
2367 /*
2368  * SADB_SPDDUMP processing
2369  * receive
2370  *   <base>
2371  * from the user, and dump all SP leaves
2372  * and send,
2373  *   <base> .....
2374  * to the ikmpd.
2375  *
2376  * m will always be freed.
2377  */
2378 static int
2379 key_spddump(so, m, mhp)
2380 	struct socket *so;
2381 	struct mbuf *m;
2382 	const struct sadb_msghdr *mhp;
2383 {
2384 	INIT_VNET_IPSEC(curvnet);
2385 	struct secpolicy *sp;
2386 	int cnt;
2387 	u_int dir;
2388 	struct mbuf *n;
2389 
2390 	IPSEC_ASSERT(so != NULL, ("null socket"));
2391 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2392 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2393 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2394 
2395 	/* search SPD entry and get buffer size. */
2396 	cnt = 0;
2397 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2398 		LIST_FOREACH(sp, &V_sptree[dir], chain) {
2399 			cnt++;
2400 		}
2401 	}
2402 
2403 	if (cnt == 0)
2404 		return key_senderror(so, m, ENOENT);
2405 
2406 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2407 		LIST_FOREACH(sp, &V_sptree[dir], chain) {
2408 			--cnt;
2409 			n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt,
2410 			    mhp->msg->sadb_msg_pid);
2411 
2412 			if (n)
2413 				key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2414 		}
2415 	}
2416 
2417 	m_freem(m);
2418 	return 0;
2419 }
2420 
2421 static struct mbuf *
2422 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, u_int32_t pid)
2423 {
2424 	struct mbuf *result = NULL, *m;
2425 	struct seclifetime lt;
2426 
2427 	m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2428 	if (!m)
2429 		goto fail;
2430 	result = m;
2431 
2432 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2433 	    &sp->spidx.src.sa, sp->spidx.prefs,
2434 	    sp->spidx.ul_proto);
2435 	if (!m)
2436 		goto fail;
2437 	m_cat(result, m);
2438 
2439 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2440 	    &sp->spidx.dst.sa, sp->spidx.prefd,
2441 	    sp->spidx.ul_proto);
2442 	if (!m)
2443 		goto fail;
2444 	m_cat(result, m);
2445 
2446 	m = key_sp2msg(sp);
2447 	if (!m)
2448 		goto fail;
2449 	m_cat(result, m);
2450 
2451 	if(sp->lifetime){
2452 		lt.addtime=sp->created;
2453 		lt.usetime= sp->lastused;
2454 		m = key_setlifetime(&lt, SADB_EXT_LIFETIME_CURRENT);
2455 		if (!m)
2456 			goto fail;
2457 		m_cat(result, m);
2458 
2459 		lt.addtime=sp->lifetime;
2460 		lt.usetime= sp->validtime;
2461 		m = key_setlifetime(&lt, SADB_EXT_LIFETIME_HARD);
2462 		if (!m)
2463 			goto fail;
2464 		m_cat(result, m);
2465 	}
2466 
2467 	if ((result->m_flags & M_PKTHDR) == 0)
2468 		goto fail;
2469 
2470 	if (result->m_len < sizeof(struct sadb_msg)) {
2471 		result = m_pullup(result, sizeof(struct sadb_msg));
2472 		if (result == NULL)
2473 			goto fail;
2474 	}
2475 
2476 	result->m_pkthdr.len = 0;
2477 	for (m = result; m; m = m->m_next)
2478 		result->m_pkthdr.len += m->m_len;
2479 
2480 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2481 	    PFKEY_UNIT64(result->m_pkthdr.len);
2482 
2483 	return result;
2484 
2485 fail:
2486 	m_freem(result);
2487 	return NULL;
2488 }
2489 
2490 /*
2491  * get PFKEY message length for security policy and request.
2492  */
2493 static u_int
2494 key_getspreqmsglen(sp)
2495 	struct secpolicy *sp;
2496 {
2497 	u_int tlen;
2498 
2499 	tlen = sizeof(struct sadb_x_policy);
2500 
2501 	/* if is the policy for ipsec ? */
2502 	if (sp->policy != IPSEC_POLICY_IPSEC)
2503 		return tlen;
2504 
2505 	/* get length of ipsec requests */
2506     {
2507 	struct ipsecrequest *isr;
2508 	int len;
2509 
2510 	for (isr = sp->req; isr != NULL; isr = isr->next) {
2511 		len = sizeof(struct sadb_x_ipsecrequest)
2512 			+ isr->saidx.src.sa.sa_len
2513 			+ isr->saidx.dst.sa.sa_len;
2514 
2515 		tlen += PFKEY_ALIGN8(len);
2516 	}
2517     }
2518 
2519 	return tlen;
2520 }
2521 
2522 /*
2523  * SADB_SPDEXPIRE processing
2524  * send
2525  *   <base, address(SD), lifetime(CH), policy>
2526  * to KMD by PF_KEY.
2527  *
2528  * OUT:	0	: succeed
2529  *	others	: error number
2530  */
2531 static int
2532 key_spdexpire(sp)
2533 	struct secpolicy *sp;
2534 {
2535 	struct mbuf *result = NULL, *m;
2536 	int len;
2537 	int error = -1;
2538 	struct sadb_lifetime *lt;
2539 
2540 	/* XXX: Why do we lock ? */
2541 
2542 	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2543 
2544 	/* set msg header */
2545 	m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2546 	if (!m) {
2547 		error = ENOBUFS;
2548 		goto fail;
2549 	}
2550 	result = m;
2551 
2552 	/* create lifetime extension (current and hard) */
2553 	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2554 	m = key_alloc_mbuf(len);
2555 	if (!m || m->m_next) {	/*XXX*/
2556 		if (m)
2557 			m_freem(m);
2558 		error = ENOBUFS;
2559 		goto fail;
2560 	}
2561 	bzero(mtod(m, caddr_t), len);
2562 	lt = mtod(m, struct sadb_lifetime *);
2563 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2564 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2565 	lt->sadb_lifetime_allocations = 0;
2566 	lt->sadb_lifetime_bytes = 0;
2567 	lt->sadb_lifetime_addtime = sp->created;
2568 	lt->sadb_lifetime_usetime = sp->lastused;
2569 	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
2570 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2571 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2572 	lt->sadb_lifetime_allocations = 0;
2573 	lt->sadb_lifetime_bytes = 0;
2574 	lt->sadb_lifetime_addtime = sp->lifetime;
2575 	lt->sadb_lifetime_usetime = sp->validtime;
2576 	m_cat(result, m);
2577 
2578 	/* set sadb_address for source */
2579 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2580 	    &sp->spidx.src.sa,
2581 	    sp->spidx.prefs, sp->spidx.ul_proto);
2582 	if (!m) {
2583 		error = ENOBUFS;
2584 		goto fail;
2585 	}
2586 	m_cat(result, m);
2587 
2588 	/* set sadb_address for destination */
2589 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2590 	    &sp->spidx.dst.sa,
2591 	    sp->spidx.prefd, sp->spidx.ul_proto);
2592 	if (!m) {
2593 		error = ENOBUFS;
2594 		goto fail;
2595 	}
2596 	m_cat(result, m);
2597 
2598 	/* set secpolicy */
2599 	m = key_sp2msg(sp);
2600 	if (!m) {
2601 		error = ENOBUFS;
2602 		goto fail;
2603 	}
2604 	m_cat(result, m);
2605 
2606 	if ((result->m_flags & M_PKTHDR) == 0) {
2607 		error = EINVAL;
2608 		goto fail;
2609 	}
2610 
2611 	if (result->m_len < sizeof(struct sadb_msg)) {
2612 		result = m_pullup(result, sizeof(struct sadb_msg));
2613 		if (result == NULL) {
2614 			error = ENOBUFS;
2615 			goto fail;
2616 		}
2617 	}
2618 
2619 	result->m_pkthdr.len = 0;
2620 	for (m = result; m; m = m->m_next)
2621 		result->m_pkthdr.len += m->m_len;
2622 
2623 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2624 	    PFKEY_UNIT64(result->m_pkthdr.len);
2625 
2626 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2627 
2628  fail:
2629 	if (result)
2630 		m_freem(result);
2631 	return error;
2632 }
2633 
2634 /* %%% SAD management */
2635 /*
2636  * allocating a memory for new SA head, and copy from the values of mhp.
2637  * OUT:	NULL	: failure due to the lack of memory.
2638  *	others	: pointer to new SA head.
2639  */
2640 static struct secashead *
2641 key_newsah(saidx)
2642 	struct secasindex *saidx;
2643 {
2644 	INIT_VNET_IPSEC(curvnet);
2645 	struct secashead *newsah;
2646 
2647 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
2648 
2649 	newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO);
2650 	if (newsah != NULL) {
2651 		int i;
2652 		for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++)
2653 			LIST_INIT(&newsah->savtree[i]);
2654 		newsah->saidx = *saidx;
2655 
2656 		/* add to saidxtree */
2657 		newsah->state = SADB_SASTATE_MATURE;
2658 
2659 		SAHTREE_LOCK();
2660 		LIST_INSERT_HEAD(&V_sahtree, newsah, chain);
2661 		SAHTREE_UNLOCK();
2662 	}
2663 	return(newsah);
2664 }
2665 
2666 /*
2667  * delete SA index and all SA registerd.
2668  */
2669 static void
2670 key_delsah(sah)
2671 	struct secashead *sah;
2672 {
2673 	INIT_VNET_IPSEC(curvnet);
2674 	struct secasvar *sav, *nextsav;
2675 	u_int stateidx;
2676 	int zombie = 0;
2677 
2678 	IPSEC_ASSERT(sah != NULL, ("NULL sah"));
2679 	SAHTREE_LOCK_ASSERT();
2680 
2681 	/* searching all SA registerd in the secindex. */
2682 	for (stateidx = 0;
2683 	     stateidx < _ARRAYLEN(saorder_state_any);
2684 	     stateidx++) {
2685 		u_int state = saorder_state_any[stateidx];
2686 		LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) {
2687 			if (sav->refcnt == 0) {
2688 				/* sanity check */
2689 				KEY_CHKSASTATE(state, sav->state, __func__);
2690 				KEY_FREESAV(&sav);
2691 			} else {
2692 				/* give up to delete this sa */
2693 				zombie++;
2694 			}
2695 		}
2696 	}
2697 	if (!zombie) {		/* delete only if there are savs */
2698 		/* remove from tree of SA index */
2699 		if (__LIST_CHAINED(sah))
2700 			LIST_REMOVE(sah, chain);
2701 		if (sah->sa_route.ro_rt) {
2702 			RTFREE(sah->sa_route.ro_rt);
2703 			sah->sa_route.ro_rt = (struct rtentry *)NULL;
2704 		}
2705 		free(sah, M_IPSEC_SAH);
2706 	}
2707 }
2708 
2709 /*
2710  * allocating a new SA with LARVAL state.  key_add() and key_getspi() call,
2711  * and copy the values of mhp into new buffer.
2712  * When SAD message type is GETSPI:
2713  *	to set sequence number from acq_seq++,
2714  *	to set zero to SPI.
2715  *	not to call key_setsava().
2716  * OUT:	NULL	: fail
2717  *	others	: pointer to new secasvar.
2718  *
2719  * does not modify mbuf.  does not free mbuf on error.
2720  */
2721 static struct secasvar *
2722 key_newsav(m, mhp, sah, errp, where, tag)
2723 	struct mbuf *m;
2724 	const struct sadb_msghdr *mhp;
2725 	struct secashead *sah;
2726 	int *errp;
2727 	const char* where;
2728 	int tag;
2729 {
2730 	INIT_VNET_IPSEC(curvnet);
2731 	struct secasvar *newsav;
2732 	const struct sadb_sa *xsa;
2733 
2734 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2735 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2736 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2737 	IPSEC_ASSERT(sah != NULL, ("null secashead"));
2738 
2739 	newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO);
2740 	if (newsav == NULL) {
2741 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2742 		*errp = ENOBUFS;
2743 		goto done;
2744 	}
2745 
2746 	switch (mhp->msg->sadb_msg_type) {
2747 	case SADB_GETSPI:
2748 		newsav->spi = 0;
2749 
2750 #ifdef IPSEC_DOSEQCHECK
2751 		/* sync sequence number */
2752 		if (mhp->msg->sadb_msg_seq == 0)
2753 			newsav->seq =
2754 				(V_acq_seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq));
2755 		else
2756 #endif
2757 			newsav->seq = mhp->msg->sadb_msg_seq;
2758 		break;
2759 
2760 	case SADB_ADD:
2761 		/* sanity check */
2762 		if (mhp->ext[SADB_EXT_SA] == NULL) {
2763 			free(newsav, M_IPSEC_SA);
2764 			newsav = NULL;
2765 			ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2766 				__func__));
2767 			*errp = EINVAL;
2768 			goto done;
2769 		}
2770 		xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2771 		newsav->spi = xsa->sadb_sa_spi;
2772 		newsav->seq = mhp->msg->sadb_msg_seq;
2773 		break;
2774 	default:
2775 		free(newsav, M_IPSEC_SA);
2776 		newsav = NULL;
2777 		*errp = EINVAL;
2778 		goto done;
2779 	}
2780 
2781 
2782 	/* copy sav values */
2783 	if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2784 		*errp = key_setsaval(newsav, m, mhp);
2785 		if (*errp) {
2786 			free(newsav, M_IPSEC_SA);
2787 			newsav = NULL;
2788 			goto done;
2789 		}
2790 	}
2791 
2792 	SECASVAR_LOCK_INIT(newsav);
2793 
2794 	/* reset created */
2795 	newsav->created = time_second;
2796 	newsav->pid = mhp->msg->sadb_msg_pid;
2797 
2798 	/* add to satree */
2799 	newsav->sah = sah;
2800 	sa_initref(newsav);
2801 	newsav->state = SADB_SASTATE_LARVAL;
2802 
2803 	/* XXX locking??? */
2804 	LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
2805 			secasvar, chain);
2806 done:
2807 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
2808 		printf("DP %s from %s:%u return SP:%p\n", __func__,
2809 			where, tag, newsav));
2810 
2811 	return newsav;
2812 }
2813 
2814 /*
2815  * free() SA variable entry.
2816  */
2817 static void
2818 key_cleansav(struct secasvar *sav)
2819 {
2820 	/*
2821 	 * Cleanup xform state.  Note that zeroize'ing causes the
2822 	 * keys to be cleared; otherwise we must do it ourself.
2823 	 */
2824 	if (sav->tdb_xform != NULL) {
2825 		sav->tdb_xform->xf_zeroize(sav);
2826 		sav->tdb_xform = NULL;
2827 	} else {
2828 		KASSERT(sav->iv == NULL, ("iv but no xform"));
2829 		if (sav->key_auth != NULL)
2830 			bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2831 		if (sav->key_enc != NULL)
2832 			bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc));
2833 	}
2834 	if (sav->key_auth != NULL) {
2835 		if (sav->key_auth->key_data != NULL)
2836 			free(sav->key_auth->key_data, M_IPSEC_MISC);
2837 		free(sav->key_auth, M_IPSEC_MISC);
2838 		sav->key_auth = NULL;
2839 	}
2840 	if (sav->key_enc != NULL) {
2841 		if (sav->key_enc->key_data != NULL)
2842 			free(sav->key_enc->key_data, M_IPSEC_MISC);
2843 		free(sav->key_enc, M_IPSEC_MISC);
2844 		sav->key_enc = NULL;
2845 	}
2846 	if (sav->sched) {
2847 		bzero(sav->sched, sav->schedlen);
2848 		free(sav->sched, M_IPSEC_MISC);
2849 		sav->sched = NULL;
2850 	}
2851 	if (sav->replay != NULL) {
2852 		free(sav->replay, M_IPSEC_MISC);
2853 		sav->replay = NULL;
2854 	}
2855 	if (sav->lft_c != NULL) {
2856 		free(sav->lft_c, M_IPSEC_MISC);
2857 		sav->lft_c = NULL;
2858 	}
2859 	if (sav->lft_h != NULL) {
2860 		free(sav->lft_h, M_IPSEC_MISC);
2861 		sav->lft_h = NULL;
2862 	}
2863 	if (sav->lft_s != NULL) {
2864 		free(sav->lft_s, M_IPSEC_MISC);
2865 		sav->lft_s = NULL;
2866 	}
2867 }
2868 
2869 /*
2870  * free() SA variable entry.
2871  */
2872 static void
2873 key_delsav(sav)
2874 	struct secasvar *sav;
2875 {
2876 	IPSEC_ASSERT(sav != NULL, ("null sav"));
2877 	IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt));
2878 
2879 	/* remove from SA header */
2880 	if (__LIST_CHAINED(sav))
2881 		LIST_REMOVE(sav, chain);
2882 	key_cleansav(sav);
2883 	SECASVAR_LOCK_DESTROY(sav);
2884 	free(sav, M_IPSEC_SA);
2885 }
2886 
2887 /*
2888  * search SAD.
2889  * OUT:
2890  *	NULL	: not found
2891  *	others	: found, pointer to a SA.
2892  */
2893 static struct secashead *
2894 key_getsah(saidx)
2895 	struct secasindex *saidx;
2896 {
2897 	INIT_VNET_IPSEC(curvnet);
2898 	struct secashead *sah;
2899 
2900 	SAHTREE_LOCK();
2901 	LIST_FOREACH(sah, &V_sahtree, chain) {
2902 		if (sah->state == SADB_SASTATE_DEAD)
2903 			continue;
2904 		if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID))
2905 			break;
2906 	}
2907 	SAHTREE_UNLOCK();
2908 
2909 	return sah;
2910 }
2911 
2912 /*
2913  * check not to be duplicated SPI.
2914  * NOTE: this function is too slow due to searching all SAD.
2915  * OUT:
2916  *	NULL	: not found
2917  *	others	: found, pointer to a SA.
2918  */
2919 static struct secasvar *
2920 key_checkspidup(saidx, spi)
2921 	struct secasindex *saidx;
2922 	u_int32_t spi;
2923 {
2924 	INIT_VNET_IPSEC(curvnet);
2925 	struct secashead *sah;
2926 	struct secasvar *sav;
2927 
2928 	/* check address family */
2929 	if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
2930 		ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
2931 			__func__));
2932 		return NULL;
2933 	}
2934 
2935 	sav = NULL;
2936 	/* check all SAD */
2937 	SAHTREE_LOCK();
2938 	LIST_FOREACH(sah, &V_sahtree, chain) {
2939 		if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
2940 			continue;
2941 		sav = key_getsavbyspi(sah, spi);
2942 		if (sav != NULL)
2943 			break;
2944 	}
2945 	SAHTREE_UNLOCK();
2946 
2947 	return sav;
2948 }
2949 
2950 /*
2951  * search SAD litmited alive SA, protocol, SPI.
2952  * OUT:
2953  *	NULL	: not found
2954  *	others	: found, pointer to a SA.
2955  */
2956 static struct secasvar *
2957 key_getsavbyspi(sah, spi)
2958 	struct secashead *sah;
2959 	u_int32_t spi;
2960 {
2961 	INIT_VNET_IPSEC(curvnet);
2962 	struct secasvar *sav;
2963 	u_int stateidx, state;
2964 
2965 	sav = NULL;
2966 	SAHTREE_LOCK_ASSERT();
2967 	/* search all status */
2968 	for (stateidx = 0;
2969 	     stateidx < _ARRAYLEN(saorder_state_alive);
2970 	     stateidx++) {
2971 
2972 		state = saorder_state_alive[stateidx];
2973 		LIST_FOREACH(sav, &sah->savtree[state], chain) {
2974 
2975 			/* sanity check */
2976 			if (sav->state != state) {
2977 				ipseclog((LOG_DEBUG, "%s: "
2978 				    "invalid sav->state (queue: %d SA: %d)\n",
2979 				    __func__, state, sav->state));
2980 				continue;
2981 			}
2982 
2983 			if (sav->spi == spi)
2984 				return sav;
2985 		}
2986 	}
2987 
2988 	return NULL;
2989 }
2990 
2991 /*
2992  * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
2993  * You must update these if need.
2994  * OUT:	0:	success.
2995  *	!0:	failure.
2996  *
2997  * does not modify mbuf.  does not free mbuf on error.
2998  */
2999 static int
3000 key_setsaval(sav, m, mhp)
3001 	struct secasvar *sav;
3002 	struct mbuf *m;
3003 	const struct sadb_msghdr *mhp;
3004 {
3005 	INIT_VNET_IPSEC(curvnet);
3006 	int error = 0;
3007 
3008 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
3009 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
3010 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
3011 
3012 	/* initialization */
3013 	sav->replay = NULL;
3014 	sav->key_auth = NULL;
3015 	sav->key_enc = NULL;
3016 	sav->sched = NULL;
3017 	sav->schedlen = 0;
3018 	sav->iv = NULL;
3019 	sav->lft_c = NULL;
3020 	sav->lft_h = NULL;
3021 	sav->lft_s = NULL;
3022 	sav->tdb_xform = NULL;		/* transform */
3023 	sav->tdb_encalgxform = NULL;	/* encoding algorithm */
3024 	sav->tdb_authalgxform = NULL;	/* authentication algorithm */
3025 	sav->tdb_compalgxform = NULL;	/* compression algorithm */
3026 
3027 	/* SA */
3028 	if (mhp->ext[SADB_EXT_SA] != NULL) {
3029 		const struct sadb_sa *sa0;
3030 
3031 		sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3032 		if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3033 			error = EINVAL;
3034 			goto fail;
3035 		}
3036 
3037 		sav->alg_auth = sa0->sadb_sa_auth;
3038 		sav->alg_enc = sa0->sadb_sa_encrypt;
3039 		sav->flags = sa0->sadb_sa_flags;
3040 
3041 		/* replay window */
3042 		if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3043 			sav->replay = (struct secreplay *)
3044 				malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO);
3045 			if (sav->replay == NULL) {
3046 				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3047 					__func__));
3048 				error = ENOBUFS;
3049 				goto fail;
3050 			}
3051 			if (sa0->sadb_sa_replay != 0)
3052 				sav->replay->bitmap = (caddr_t)(sav->replay+1);
3053 			sav->replay->wsize = sa0->sadb_sa_replay;
3054 		}
3055 	}
3056 
3057 	/* Authentication keys */
3058 	if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3059 		const struct sadb_key *key0;
3060 		int len;
3061 
3062 		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3063 		len = mhp->extlen[SADB_EXT_KEY_AUTH];
3064 
3065 		error = 0;
3066 		if (len < sizeof(*key0)) {
3067 			error = EINVAL;
3068 			goto fail;
3069 		}
3070 		switch (mhp->msg->sadb_msg_satype) {
3071 		case SADB_SATYPE_AH:
3072 		case SADB_SATYPE_ESP:
3073 		case SADB_X_SATYPE_TCPSIGNATURE:
3074 			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3075 			    sav->alg_auth != SADB_X_AALG_NULL)
3076 				error = EINVAL;
3077 			break;
3078 		case SADB_X_SATYPE_IPCOMP:
3079 		default:
3080 			error = EINVAL;
3081 			break;
3082 		}
3083 		if (error) {
3084 			ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n",
3085 				__func__));
3086 			goto fail;
3087 		}
3088 
3089 		sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len,
3090 								M_IPSEC_MISC);
3091 		if (sav->key_auth == NULL ) {
3092 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3093 				  __func__));
3094 			error = ENOBUFS;
3095 			goto fail;
3096 		}
3097 	}
3098 
3099 	/* Encryption key */
3100 	if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3101 		const struct sadb_key *key0;
3102 		int len;
3103 
3104 		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3105 		len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3106 
3107 		error = 0;
3108 		if (len < sizeof(*key0)) {
3109 			error = EINVAL;
3110 			goto fail;
3111 		}
3112 		switch (mhp->msg->sadb_msg_satype) {
3113 		case SADB_SATYPE_ESP:
3114 			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3115 			    sav->alg_enc != SADB_EALG_NULL) {
3116 				error = EINVAL;
3117 				break;
3118 			}
3119 			sav->key_enc = (struct seckey *)key_dup_keymsg(key0,
3120 								       len,
3121 								       M_IPSEC_MISC);
3122 			if (sav->key_enc == NULL) {
3123 				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3124 					__func__));
3125 				error = ENOBUFS;
3126 				goto fail;
3127 			}
3128 			break;
3129 		case SADB_X_SATYPE_IPCOMP:
3130 			if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3131 				error = EINVAL;
3132 			sav->key_enc = NULL;	/*just in case*/
3133 			break;
3134 		case SADB_SATYPE_AH:
3135 		case SADB_X_SATYPE_TCPSIGNATURE:
3136 		default:
3137 			error = EINVAL;
3138 			break;
3139 		}
3140 		if (error) {
3141 			ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n",
3142 				__func__));
3143 			goto fail;
3144 		}
3145 	}
3146 
3147 	/* set iv */
3148 	sav->ivlen = 0;
3149 
3150 	switch (mhp->msg->sadb_msg_satype) {
3151 	case SADB_SATYPE_AH:
3152 		error = xform_init(sav, XF_AH);
3153 		break;
3154 	case SADB_SATYPE_ESP:
3155 		error = xform_init(sav, XF_ESP);
3156 		break;
3157 	case SADB_X_SATYPE_IPCOMP:
3158 		error = xform_init(sav, XF_IPCOMP);
3159 		break;
3160 	case SADB_X_SATYPE_TCPSIGNATURE:
3161 		error = xform_init(sav, XF_TCPSIGNATURE);
3162 		break;
3163 	}
3164 	if (error) {
3165 		ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n",
3166 		        __func__, mhp->msg->sadb_msg_satype));
3167 		goto fail;
3168 	}
3169 
3170 	/* reset created */
3171 	sav->created = time_second;
3172 
3173 	/* make lifetime for CURRENT */
3174 	sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT);
3175 	if (sav->lft_c == NULL) {
3176 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3177 		error = ENOBUFS;
3178 		goto fail;
3179 	}
3180 
3181 	sav->lft_c->allocations = 0;
3182 	sav->lft_c->bytes = 0;
3183 	sav->lft_c->addtime = time_second;
3184 	sav->lft_c->usetime = 0;
3185 
3186 	/* lifetimes for HARD and SOFT */
3187     {
3188 	const struct sadb_lifetime *lft0;
3189 
3190 	lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3191 	if (lft0 != NULL) {
3192 		if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3193 			error = EINVAL;
3194 			goto fail;
3195 		}
3196 		sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC);
3197 		if (sav->lft_h == NULL) {
3198 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3199 			error = ENOBUFS;
3200 			goto fail;
3201 		}
3202 		/* to be initialize ? */
3203 	}
3204 
3205 	lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3206 	if (lft0 != NULL) {
3207 		if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3208 			error = EINVAL;
3209 			goto fail;
3210 		}
3211 		sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC);
3212 		if (sav->lft_s == NULL) {
3213 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3214 			error = ENOBUFS;
3215 			goto fail;
3216 		}
3217 		/* to be initialize ? */
3218 	}
3219     }
3220 
3221 	return 0;
3222 
3223  fail:
3224 	/* initialization */
3225 	key_cleansav(sav);
3226 
3227 	return error;
3228 }
3229 
3230 /*
3231  * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3232  * OUT:	0:	valid
3233  *	other:	errno
3234  */
3235 static int
3236 key_mature(struct secasvar *sav)
3237 {
3238 	INIT_VNET_IPSEC(curvnet);
3239 	int error;
3240 
3241 	/* check SPI value */
3242 	switch (sav->sah->saidx.proto) {
3243 	case IPPROTO_ESP:
3244 	case IPPROTO_AH:
3245 		/*
3246 		 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values
3247 		 * 1-255 reserved by IANA for future use,
3248 		 * 0 for implementation specific, local use.
3249 		 */
3250 		if (ntohl(sav->spi) <= 255) {
3251 			ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n",
3252 			    __func__, (u_int32_t)ntohl(sav->spi)));
3253 			return EINVAL;
3254 		}
3255 		break;
3256 	}
3257 
3258 	/* check satype */
3259 	switch (sav->sah->saidx.proto) {
3260 	case IPPROTO_ESP:
3261 		/* check flags */
3262 		if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3263 		    (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3264 			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3265 				"given to old-esp.\n", __func__));
3266 			return EINVAL;
3267 		}
3268 		error = xform_init(sav, XF_ESP);
3269 		break;
3270 	case IPPROTO_AH:
3271 		/* check flags */
3272 		if (sav->flags & SADB_X_EXT_DERIV) {
3273 			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3274 				"given to AH SA.\n", __func__));
3275 			return EINVAL;
3276 		}
3277 		if (sav->alg_enc != SADB_EALG_NONE) {
3278 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3279 				"mismated.\n", __func__));
3280 			return(EINVAL);
3281 		}
3282 		error = xform_init(sav, XF_AH);
3283 		break;
3284 	case IPPROTO_IPCOMP:
3285 		if (sav->alg_auth != SADB_AALG_NONE) {
3286 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3287 				"mismated.\n", __func__));
3288 			return(EINVAL);
3289 		}
3290 		if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3291 		 && ntohl(sav->spi) >= 0x10000) {
3292 			ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n",
3293 				__func__));
3294 			return(EINVAL);
3295 		}
3296 		error = xform_init(sav, XF_IPCOMP);
3297 		break;
3298 	case IPPROTO_TCP:
3299 		if (sav->alg_enc != SADB_EALG_NONE) {
3300 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3301 				"mismated.\n", __func__));
3302 			return(EINVAL);
3303 		}
3304 		error = xform_init(sav, XF_TCPSIGNATURE);
3305 		break;
3306 	default:
3307 		ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__));
3308 		error = EPROTONOSUPPORT;
3309 		break;
3310 	}
3311 	if (error == 0) {
3312 		SAHTREE_LOCK();
3313 		key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3314 		SAHTREE_UNLOCK();
3315 	}
3316 	return (error);
3317 }
3318 
3319 /*
3320  * subroutine for SADB_GET and SADB_DUMP.
3321  */
3322 static struct mbuf *
3323 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3324     u_int32_t seq, u_int32_t pid)
3325 {
3326 	struct mbuf *result = NULL, *tres = NULL, *m;
3327 	int i;
3328 	int dumporder[] = {
3329 		SADB_EXT_SA, SADB_X_EXT_SA2,
3330 		SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3331 		SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3332 		SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3333 		SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3334 		SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3335 	};
3336 
3337 	m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3338 	if (m == NULL)
3339 		goto fail;
3340 	result = m;
3341 
3342 	for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) {
3343 		m = NULL;
3344 		switch (dumporder[i]) {
3345 		case SADB_EXT_SA:
3346 			m = key_setsadbsa(sav);
3347 			if (!m)
3348 				goto fail;
3349 			break;
3350 
3351 		case SADB_X_EXT_SA2:
3352 			m = key_setsadbxsa2(sav->sah->saidx.mode,
3353 					sav->replay ? sav->replay->count : 0,
3354 					sav->sah->saidx.reqid);
3355 			if (!m)
3356 				goto fail;
3357 			break;
3358 
3359 		case SADB_EXT_ADDRESS_SRC:
3360 			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3361 			    &sav->sah->saidx.src.sa,
3362 			    FULLMASK, IPSEC_ULPROTO_ANY);
3363 			if (!m)
3364 				goto fail;
3365 			break;
3366 
3367 		case SADB_EXT_ADDRESS_DST:
3368 			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3369 			    &sav->sah->saidx.dst.sa,
3370 			    FULLMASK, IPSEC_ULPROTO_ANY);
3371 			if (!m)
3372 				goto fail;
3373 			break;
3374 
3375 		case SADB_EXT_KEY_AUTH:
3376 			if (!sav->key_auth)
3377 				continue;
3378 			m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH);
3379 			if (!m)
3380 				goto fail;
3381 			break;
3382 
3383 		case SADB_EXT_KEY_ENCRYPT:
3384 			if (!sav->key_enc)
3385 				continue;
3386 			m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT);
3387 			if (!m)
3388 				goto fail;
3389 			break;
3390 
3391 		case SADB_EXT_LIFETIME_CURRENT:
3392 			if (!sav->lft_c)
3393 				continue;
3394 			m = key_setlifetime(sav->lft_c,
3395 					    SADB_EXT_LIFETIME_CURRENT);
3396 			if (!m)
3397 				goto fail;
3398 			break;
3399 
3400 		case SADB_EXT_LIFETIME_HARD:
3401 			if (!sav->lft_h)
3402 				continue;
3403 			m = key_setlifetime(sav->lft_h,
3404 					    SADB_EXT_LIFETIME_HARD);
3405 			if (!m)
3406 				goto fail;
3407 			break;
3408 
3409 		case SADB_EXT_LIFETIME_SOFT:
3410 			if (!sav->lft_s)
3411 				continue;
3412 			m = key_setlifetime(sav->lft_s,
3413 					    SADB_EXT_LIFETIME_SOFT);
3414 
3415 			if (!m)
3416 				goto fail;
3417 			break;
3418 
3419 		case SADB_EXT_ADDRESS_PROXY:
3420 		case SADB_EXT_IDENTITY_SRC:
3421 		case SADB_EXT_IDENTITY_DST:
3422 			/* XXX: should we brought from SPD ? */
3423 		case SADB_EXT_SENSITIVITY:
3424 		default:
3425 			continue;
3426 		}
3427 
3428 		if (!m)
3429 			goto fail;
3430 		if (tres)
3431 			m_cat(m, tres);
3432 		tres = m;
3433 
3434 	}
3435 
3436 	m_cat(result, tres);
3437 	if (result->m_len < sizeof(struct sadb_msg)) {
3438 		result = m_pullup(result, sizeof(struct sadb_msg));
3439 		if (result == NULL)
3440 			goto fail;
3441 	}
3442 
3443 	result->m_pkthdr.len = 0;
3444 	for (m = result; m; m = m->m_next)
3445 		result->m_pkthdr.len += m->m_len;
3446 
3447 	mtod(result, struct sadb_msg *)->sadb_msg_len =
3448 	    PFKEY_UNIT64(result->m_pkthdr.len);
3449 
3450 	return result;
3451 
3452 fail:
3453 	m_freem(result);
3454 	m_freem(tres);
3455 	return NULL;
3456 }
3457 
3458 /*
3459  * set data into sadb_msg.
3460  */
3461 static struct mbuf *
3462 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq,
3463     pid_t pid, u_int16_t reserved)
3464 {
3465 	struct mbuf *m;
3466 	struct sadb_msg *p;
3467 	int len;
3468 
3469 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3470 	if (len > MCLBYTES)
3471 		return NULL;
3472 	MGETHDR(m, M_DONTWAIT, MT_DATA);
3473 	if (m && len > MHLEN) {
3474 		MCLGET(m, M_DONTWAIT);
3475 		if ((m->m_flags & M_EXT) == 0) {
3476 			m_freem(m);
3477 			m = NULL;
3478 		}
3479 	}
3480 	if (!m)
3481 		return NULL;
3482 	m->m_pkthdr.len = m->m_len = len;
3483 	m->m_next = NULL;
3484 
3485 	p = mtod(m, struct sadb_msg *);
3486 
3487 	bzero(p, len);
3488 	p->sadb_msg_version = PF_KEY_V2;
3489 	p->sadb_msg_type = type;
3490 	p->sadb_msg_errno = 0;
3491 	p->sadb_msg_satype = satype;
3492 	p->sadb_msg_len = PFKEY_UNIT64(tlen);
3493 	p->sadb_msg_reserved = reserved;
3494 	p->sadb_msg_seq = seq;
3495 	p->sadb_msg_pid = (u_int32_t)pid;
3496 
3497 	return m;
3498 }
3499 
3500 /*
3501  * copy secasvar data into sadb_address.
3502  */
3503 static struct mbuf *
3504 key_setsadbsa(sav)
3505 	struct secasvar *sav;
3506 {
3507 	struct mbuf *m;
3508 	struct sadb_sa *p;
3509 	int len;
3510 
3511 	len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3512 	m = key_alloc_mbuf(len);
3513 	if (!m || m->m_next) {	/*XXX*/
3514 		if (m)
3515 			m_freem(m);
3516 		return NULL;
3517 	}
3518 
3519 	p = mtod(m, struct sadb_sa *);
3520 
3521 	bzero(p, len);
3522 	p->sadb_sa_len = PFKEY_UNIT64(len);
3523 	p->sadb_sa_exttype = SADB_EXT_SA;
3524 	p->sadb_sa_spi = sav->spi;
3525 	p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3526 	p->sadb_sa_state = sav->state;
3527 	p->sadb_sa_auth = sav->alg_auth;
3528 	p->sadb_sa_encrypt = sav->alg_enc;
3529 	p->sadb_sa_flags = sav->flags;
3530 
3531 	return m;
3532 }
3533 
3534 /*
3535  * set data into sadb_address.
3536  */
3537 static struct mbuf *
3538 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, u_int8_t prefixlen, u_int16_t ul_proto)
3539 {
3540 	struct mbuf *m;
3541 	struct sadb_address *p;
3542 	size_t len;
3543 
3544 	len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3545 	    PFKEY_ALIGN8(saddr->sa_len);
3546 	m = key_alloc_mbuf(len);
3547 	if (!m || m->m_next) {	/*XXX*/
3548 		if (m)
3549 			m_freem(m);
3550 		return NULL;
3551 	}
3552 
3553 	p = mtod(m, struct sadb_address *);
3554 
3555 	bzero(p, len);
3556 	p->sadb_address_len = PFKEY_UNIT64(len);
3557 	p->sadb_address_exttype = exttype;
3558 	p->sadb_address_proto = ul_proto;
3559 	if (prefixlen == FULLMASK) {
3560 		switch (saddr->sa_family) {
3561 		case AF_INET:
3562 			prefixlen = sizeof(struct in_addr) << 3;
3563 			break;
3564 		case AF_INET6:
3565 			prefixlen = sizeof(struct in6_addr) << 3;
3566 			break;
3567 		default:
3568 			; /*XXX*/
3569 		}
3570 	}
3571 	p->sadb_address_prefixlen = prefixlen;
3572 	p->sadb_address_reserved = 0;
3573 
3574 	bcopy(saddr,
3575 	    mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3576 	    saddr->sa_len);
3577 
3578 	return m;
3579 }
3580 
3581 /*
3582  * set data into sadb_x_sa2.
3583  */
3584 static struct mbuf *
3585 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid)
3586 {
3587 	struct mbuf *m;
3588 	struct sadb_x_sa2 *p;
3589 	size_t len;
3590 
3591 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3592 	m = key_alloc_mbuf(len);
3593 	if (!m || m->m_next) {	/*XXX*/
3594 		if (m)
3595 			m_freem(m);
3596 		return NULL;
3597 	}
3598 
3599 	p = mtod(m, struct sadb_x_sa2 *);
3600 
3601 	bzero(p, len);
3602 	p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3603 	p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3604 	p->sadb_x_sa2_mode = mode;
3605 	p->sadb_x_sa2_reserved1 = 0;
3606 	p->sadb_x_sa2_reserved2 = 0;
3607 	p->sadb_x_sa2_sequence = seq;
3608 	p->sadb_x_sa2_reqid = reqid;
3609 
3610 	return m;
3611 }
3612 
3613 /*
3614  * set data into sadb_x_policy
3615  */
3616 static struct mbuf *
3617 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
3618 {
3619 	struct mbuf *m;
3620 	struct sadb_x_policy *p;
3621 	size_t len;
3622 
3623 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
3624 	m = key_alloc_mbuf(len);
3625 	if (!m || m->m_next) {	/*XXX*/
3626 		if (m)
3627 			m_freem(m);
3628 		return NULL;
3629 	}
3630 
3631 	p = mtod(m, struct sadb_x_policy *);
3632 
3633 	bzero(p, len);
3634 	p->sadb_x_policy_len = PFKEY_UNIT64(len);
3635 	p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
3636 	p->sadb_x_policy_type = type;
3637 	p->sadb_x_policy_dir = dir;
3638 	p->sadb_x_policy_id = id;
3639 
3640 	return m;
3641 }
3642 
3643 /* %%% utilities */
3644 /* Take a key message (sadb_key) from the socket and turn it into one
3645  * of the kernel's key structures (seckey).
3646  *
3647  * IN: pointer to the src
3648  * OUT: NULL no more memory
3649  */
3650 struct seckey *
3651 key_dup_keymsg(const struct sadb_key *src, u_int len,
3652 	       struct malloc_type *type)
3653 {
3654 	INIT_VNET_IPSEC(curvnet);
3655 	struct seckey *dst;
3656 	dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT);
3657 	if (dst != NULL) {
3658 		dst->bits = src->sadb_key_bits;
3659 		dst->key_data = (char *)malloc(len, type, M_NOWAIT);
3660 		if (dst->key_data != NULL) {
3661 			bcopy((const char *)src + sizeof(struct sadb_key),
3662 			      dst->key_data, len);
3663 		} else {
3664 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3665 				  __func__));
3666 			free(dst, type);
3667 			dst = NULL;
3668 		}
3669 	} else {
3670 		ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3671 			  __func__));
3672 
3673 	}
3674 	return dst;
3675 }
3676 
3677 /* Take a lifetime message (sadb_lifetime) passed in on a socket and
3678  * turn it into one of the kernel's lifetime structures (seclifetime).
3679  *
3680  * IN: pointer to the destination, source and malloc type
3681  * OUT: NULL, no more memory
3682  */
3683 
3684 static struct seclifetime *
3685 key_dup_lifemsg(const struct sadb_lifetime *src,
3686 		 struct malloc_type *type)
3687 {
3688 	INIT_VNET_IPSEC(curvnet);
3689 	struct seclifetime *dst = NULL;
3690 
3691 	dst = (struct seclifetime *)malloc(sizeof(struct seclifetime),
3692 					   type, M_NOWAIT);
3693 	if (dst == NULL) {
3694 		/* XXX counter */
3695 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3696 	} else {
3697 		dst->allocations = src->sadb_lifetime_allocations;
3698 		dst->bytes = src->sadb_lifetime_bytes;
3699 		dst->addtime = src->sadb_lifetime_addtime;
3700 		dst->usetime = src->sadb_lifetime_usetime;
3701 	}
3702 	return dst;
3703 }
3704 
3705 /* compare my own address
3706  * OUT:	1: true, i.e. my address.
3707  *	0: false
3708  */
3709 int
3710 key_ismyaddr(sa)
3711 	struct sockaddr *sa;
3712 {
3713 #ifdef INET
3714 	INIT_VNET_INET(curvnet);
3715 	struct sockaddr_in *sin;
3716 	struct in_ifaddr *ia;
3717 #endif
3718 
3719 	IPSEC_ASSERT(sa != NULL, ("null sockaddr"));
3720 
3721 	switch (sa->sa_family) {
3722 #ifdef INET
3723 	case AF_INET:
3724 		sin = (struct sockaddr_in *)sa;
3725 		for (ia = V_in_ifaddrhead.tqh_first; ia;
3726 		     ia = ia->ia_link.tqe_next)
3727 		{
3728 			if (sin->sin_family == ia->ia_addr.sin_family &&
3729 			    sin->sin_len == ia->ia_addr.sin_len &&
3730 			    sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
3731 			{
3732 				return 1;
3733 			}
3734 		}
3735 		break;
3736 #endif
3737 #ifdef INET6
3738 	case AF_INET6:
3739 		return key_ismyaddr6((struct sockaddr_in6 *)sa);
3740 #endif
3741 	}
3742 
3743 	return 0;
3744 }
3745 
3746 #ifdef INET6
3747 /*
3748  * compare my own address for IPv6.
3749  * 1: ours
3750  * 0: other
3751  * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
3752  */
3753 #include <netinet6/in6_var.h>
3754 
3755 static int
3756 key_ismyaddr6(sin6)
3757 	struct sockaddr_in6 *sin6;
3758 {
3759 	INIT_VNET_INET6(curvnet);
3760 	struct in6_ifaddr *ia;
3761 	struct in6_multi *in6m;
3762 
3763 	for (ia = V_in6_ifaddr; ia; ia = ia->ia_next) {
3764 		if (key_sockaddrcmp((struct sockaddr *)&sin6,
3765 		    (struct sockaddr *)&ia->ia_addr, 0) == 0)
3766 			return 1;
3767 
3768 		/*
3769 		 * XXX Multicast
3770 		 * XXX why do we care about multlicast here while we don't care
3771 		 * about IPv4 multicast??
3772 		 * XXX scope
3773 		 */
3774 		in6m = NULL;
3775 		IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m);
3776 		if (in6m)
3777 			return 1;
3778 	}
3779 
3780 	/* loopback, just for safety */
3781 	if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
3782 		return 1;
3783 
3784 	return 0;
3785 }
3786 #endif /*INET6*/
3787 
3788 /*
3789  * compare two secasindex structure.
3790  * flag can specify to compare 2 saidxes.
3791  * compare two secasindex structure without both mode and reqid.
3792  * don't compare port.
3793  * IN:
3794  *      saidx0: source, it can be in SAD.
3795  *      saidx1: object.
3796  * OUT:
3797  *      1 : equal
3798  *      0 : not equal
3799  */
3800 static int
3801 key_cmpsaidx(
3802 	const struct secasindex *saidx0,
3803 	const struct secasindex *saidx1,
3804 	int flag)
3805 {
3806 	/* sanity */
3807 	if (saidx0 == NULL && saidx1 == NULL)
3808 		return 1;
3809 
3810 	if (saidx0 == NULL || saidx1 == NULL)
3811 		return 0;
3812 
3813 	if (saidx0->proto != saidx1->proto)
3814 		return 0;
3815 
3816 	if (flag == CMP_EXACTLY) {
3817 		if (saidx0->mode != saidx1->mode)
3818 			return 0;
3819 		if (saidx0->reqid != saidx1->reqid)
3820 			return 0;
3821 		if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
3822 		    bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
3823 			return 0;
3824 	} else {
3825 
3826 		/* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
3827 		if (flag == CMP_MODE_REQID
3828 		  ||flag == CMP_REQID) {
3829 			/*
3830 			 * If reqid of SPD is non-zero, unique SA is required.
3831 			 * The result must be of same reqid in this case.
3832 			 */
3833 			if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
3834 				return 0;
3835 		}
3836 
3837 		if (flag == CMP_MODE_REQID) {
3838 			if (saidx0->mode != IPSEC_MODE_ANY
3839 			 && saidx0->mode != saidx1->mode)
3840 				return 0;
3841 		}
3842 
3843 		if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, 0) != 0) {
3844 			return 0;
3845 		}
3846 		if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, 0) != 0) {
3847 			return 0;
3848 		}
3849 	}
3850 
3851 	return 1;
3852 }
3853 
3854 /*
3855  * compare two secindex structure exactly.
3856  * IN:
3857  *	spidx0: source, it is often in SPD.
3858  *	spidx1: object, it is often from PFKEY message.
3859  * OUT:
3860  *	1 : equal
3861  *	0 : not equal
3862  */
3863 static int
3864 key_cmpspidx_exactly(
3865 	struct secpolicyindex *spidx0,
3866 	struct secpolicyindex *spidx1)
3867 {
3868 	/* sanity */
3869 	if (spidx0 == NULL && spidx1 == NULL)
3870 		return 1;
3871 
3872 	if (spidx0 == NULL || spidx1 == NULL)
3873 		return 0;
3874 
3875 	if (spidx0->prefs != spidx1->prefs
3876 	 || spidx0->prefd != spidx1->prefd
3877 	 || spidx0->ul_proto != spidx1->ul_proto)
3878 		return 0;
3879 
3880 	return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 &&
3881 	       key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0;
3882 }
3883 
3884 /*
3885  * compare two secindex structure with mask.
3886  * IN:
3887  *	spidx0: source, it is often in SPD.
3888  *	spidx1: object, it is often from IP header.
3889  * OUT:
3890  *	1 : equal
3891  *	0 : not equal
3892  */
3893 static int
3894 key_cmpspidx_withmask(
3895 	struct secpolicyindex *spidx0,
3896 	struct secpolicyindex *spidx1)
3897 {
3898 	/* sanity */
3899 	if (spidx0 == NULL && spidx1 == NULL)
3900 		return 1;
3901 
3902 	if (spidx0 == NULL || spidx1 == NULL)
3903 		return 0;
3904 
3905 	if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
3906 	    spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
3907 	    spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
3908 	    spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
3909 		return 0;
3910 
3911 	/* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
3912 	if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
3913 	 && spidx0->ul_proto != spidx1->ul_proto)
3914 		return 0;
3915 
3916 	switch (spidx0->src.sa.sa_family) {
3917 	case AF_INET:
3918 		if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
3919 		 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
3920 			return 0;
3921 		if (!key_bbcmp(&spidx0->src.sin.sin_addr,
3922 		    &spidx1->src.sin.sin_addr, spidx0->prefs))
3923 			return 0;
3924 		break;
3925 	case AF_INET6:
3926 		if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
3927 		 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
3928 			return 0;
3929 		/*
3930 		 * scope_id check. if sin6_scope_id is 0, we regard it
3931 		 * as a wildcard scope, which matches any scope zone ID.
3932 		 */
3933 		if (spidx0->src.sin6.sin6_scope_id &&
3934 		    spidx1->src.sin6.sin6_scope_id &&
3935 		    spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
3936 			return 0;
3937 		if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
3938 		    &spidx1->src.sin6.sin6_addr, spidx0->prefs))
3939 			return 0;
3940 		break;
3941 	default:
3942 		/* XXX */
3943 		if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
3944 			return 0;
3945 		break;
3946 	}
3947 
3948 	switch (spidx0->dst.sa.sa_family) {
3949 	case AF_INET:
3950 		if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
3951 		 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
3952 			return 0;
3953 		if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
3954 		    &spidx1->dst.sin.sin_addr, spidx0->prefd))
3955 			return 0;
3956 		break;
3957 	case AF_INET6:
3958 		if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
3959 		 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
3960 			return 0;
3961 		/*
3962 		 * scope_id check. if sin6_scope_id is 0, we regard it
3963 		 * as a wildcard scope, which matches any scope zone ID.
3964 		 */
3965 		if (spidx0->dst.sin6.sin6_scope_id &&
3966 		    spidx1->dst.sin6.sin6_scope_id &&
3967 		    spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
3968 			return 0;
3969 		if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
3970 		    &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
3971 			return 0;
3972 		break;
3973 	default:
3974 		/* XXX */
3975 		if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
3976 			return 0;
3977 		break;
3978 	}
3979 
3980 	/* XXX Do we check other field ?  e.g. flowinfo */
3981 
3982 	return 1;
3983 }
3984 
3985 /* returns 0 on match */
3986 static int
3987 key_sockaddrcmp(
3988 	const struct sockaddr *sa1,
3989 	const struct sockaddr *sa2,
3990 	int port)
3991 {
3992 #ifdef satosin
3993 #undef satosin
3994 #endif
3995 #define satosin(s) ((const struct sockaddr_in *)s)
3996 #ifdef satosin6
3997 #undef satosin6
3998 #endif
3999 #define satosin6(s) ((const struct sockaddr_in6 *)s)
4000 	if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
4001 		return 1;
4002 
4003 	switch (sa1->sa_family) {
4004 	case AF_INET:
4005 		if (sa1->sa_len != sizeof(struct sockaddr_in))
4006 			return 1;
4007 		if (satosin(sa1)->sin_addr.s_addr !=
4008 		    satosin(sa2)->sin_addr.s_addr) {
4009 			return 1;
4010 		}
4011 		if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port)
4012 			return 1;
4013 		break;
4014 	case AF_INET6:
4015 		if (sa1->sa_len != sizeof(struct sockaddr_in6))
4016 			return 1;	/*EINVAL*/
4017 		if (satosin6(sa1)->sin6_scope_id !=
4018 		    satosin6(sa2)->sin6_scope_id) {
4019 			return 1;
4020 		}
4021 		if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr,
4022 		    &satosin6(sa2)->sin6_addr)) {
4023 			return 1;
4024 		}
4025 		if (port &&
4026 		    satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) {
4027 			return 1;
4028 		}
4029 		break;
4030 	default:
4031 		if (bcmp(sa1, sa2, sa1->sa_len) != 0)
4032 			return 1;
4033 		break;
4034 	}
4035 
4036 	return 0;
4037 #undef satosin
4038 #undef satosin6
4039 }
4040 
4041 /*
4042  * compare two buffers with mask.
4043  * IN:
4044  *	addr1: source
4045  *	addr2: object
4046  *	bits:  Number of bits to compare
4047  * OUT:
4048  *	1 : equal
4049  *	0 : not equal
4050  */
4051 static int
4052 key_bbcmp(const void *a1, const void *a2, u_int bits)
4053 {
4054 	const unsigned char *p1 = a1;
4055 	const unsigned char *p2 = a2;
4056 
4057 	/* XXX: This could be considerably faster if we compare a word
4058 	 * at a time, but it is complicated on LSB Endian machines */
4059 
4060 	/* Handle null pointers */
4061 	if (p1 == NULL || p2 == NULL)
4062 		return (p1 == p2);
4063 
4064 	while (bits >= 8) {
4065 		if (*p1++ != *p2++)
4066 			return 0;
4067 		bits -= 8;
4068 	}
4069 
4070 	if (bits > 0) {
4071 		u_int8_t mask = ~((1<<(8-bits))-1);
4072 		if ((*p1 & mask) != (*p2 & mask))
4073 			return 0;
4074 	}
4075 	return 1;	/* Match! */
4076 }
4077 
4078 static void
4079 key_flush_spd(time_t now)
4080 {
4081 	INIT_VNET_IPSEC(curvnet);
4082 	static u_int16_t sptree_scangen = 0;
4083 	u_int16_t gen = sptree_scangen++;
4084 	struct secpolicy *sp;
4085 	u_int dir;
4086 
4087 	/* SPD */
4088 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4089 restart:
4090 		SPTREE_LOCK();
4091 		LIST_FOREACH(sp, &V_sptree[dir], chain) {
4092 			if (sp->scangen == gen)		/* previously handled */
4093 				continue;
4094 			sp->scangen = gen;
4095 			if (sp->state == IPSEC_SPSTATE_DEAD) {
4096 				/* NB: clean entries created by key_spdflush */
4097 				SPTREE_UNLOCK();
4098 				KEY_FREESP(&sp);
4099 				goto restart;
4100 			}
4101 			if (sp->lifetime == 0 && sp->validtime == 0)
4102 				continue;
4103 			if ((sp->lifetime && now - sp->created > sp->lifetime)
4104 			 || (sp->validtime && now - sp->lastused > sp->validtime)) {
4105 				sp->state = IPSEC_SPSTATE_DEAD;
4106 				SPTREE_UNLOCK();
4107 				key_spdexpire(sp);
4108 				KEY_FREESP(&sp);
4109 				goto restart;
4110 			}
4111 		}
4112 		SPTREE_UNLOCK();
4113 	}
4114 }
4115 
4116 static void
4117 key_flush_sad(time_t now)
4118 {
4119 	INIT_VNET_IPSEC(curvnet);
4120 	struct secashead *sah, *nextsah;
4121 	struct secasvar *sav, *nextsav;
4122 
4123 	/* SAD */
4124 	SAHTREE_LOCK();
4125 	LIST_FOREACH_SAFE(sah, &V_sahtree, chain, nextsah) {
4126 		/* if sah has been dead, then delete it and process next sah. */
4127 		if (sah->state == SADB_SASTATE_DEAD) {
4128 			key_delsah(sah);
4129 			continue;
4130 		}
4131 
4132 		/* if LARVAL entry doesn't become MATURE, delete it. */
4133 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) {
4134 			if (now - sav->created > V_key_larval_lifetime)
4135 				KEY_FREESAV(&sav);
4136 		}
4137 
4138 		/*
4139 		 * check MATURE entry to start to send expire message
4140 		 * whether or not.
4141 		 */
4142 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) {
4143 			/* we don't need to check. */
4144 			if (sav->lft_s == NULL)
4145 				continue;
4146 
4147 			/* sanity check */
4148 			if (sav->lft_c == NULL) {
4149 				ipseclog((LOG_DEBUG,"%s: there is no CURRENT "
4150 					"time, why?\n", __func__));
4151 				continue;
4152 			}
4153 
4154 			/* check SOFT lifetime */
4155 			if (sav->lft_s->addtime != 0 &&
4156 			    now - sav->created > sav->lft_s->addtime) {
4157 				/*
4158 				 * check SA to be used whether or not.
4159 				 * when SA hasn't been used, delete it.
4160 				 */
4161 				if (sav->lft_c->usetime == 0) {
4162 					key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4163 					KEY_FREESAV(&sav);
4164 				} else {
4165 					key_sa_chgstate(sav, SADB_SASTATE_DYING);
4166 					/*
4167 					 * XXX If we keep to send expire
4168 					 * message in the status of
4169 					 * DYING. Do remove below code.
4170 					 */
4171 					key_expire(sav);
4172 				}
4173 			}
4174 			/* check SOFT lifetime by bytes */
4175 			/*
4176 			 * XXX I don't know the way to delete this SA
4177 			 * when new SA is installed.  Caution when it's
4178 			 * installed too big lifetime by time.
4179 			 */
4180 			else if (sav->lft_s->bytes != 0 &&
4181 			    sav->lft_s->bytes < sav->lft_c->bytes) {
4182 
4183 				key_sa_chgstate(sav, SADB_SASTATE_DYING);
4184 				/*
4185 				 * XXX If we keep to send expire
4186 				 * message in the status of
4187 				 * DYING. Do remove below code.
4188 				 */
4189 				key_expire(sav);
4190 			}
4191 		}
4192 
4193 		/* check DYING entry to change status to DEAD. */
4194 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) {
4195 			/* we don't need to check. */
4196 			if (sav->lft_h == NULL)
4197 				continue;
4198 
4199 			/* sanity check */
4200 			if (sav->lft_c == NULL) {
4201 				ipseclog((LOG_DEBUG, "%s: there is no CURRENT "
4202 					"time, why?\n", __func__));
4203 				continue;
4204 			}
4205 
4206 			if (sav->lft_h->addtime != 0 &&
4207 			    now - sav->created > sav->lft_h->addtime) {
4208 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4209 				KEY_FREESAV(&sav);
4210 			}
4211 #if 0	/* XXX Should we keep to send expire message until HARD lifetime ? */
4212 			else if (sav->lft_s != NULL
4213 			      && sav->lft_s->addtime != 0
4214 			      && now - sav->created > sav->lft_s->addtime) {
4215 				/*
4216 				 * XXX: should be checked to be
4217 				 * installed the valid SA.
4218 				 */
4219 
4220 				/*
4221 				 * If there is no SA then sending
4222 				 * expire message.
4223 				 */
4224 				key_expire(sav);
4225 			}
4226 #endif
4227 			/* check HARD lifetime by bytes */
4228 			else if (sav->lft_h->bytes != 0 &&
4229 			    sav->lft_h->bytes < sav->lft_c->bytes) {
4230 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4231 				KEY_FREESAV(&sav);
4232 			}
4233 		}
4234 
4235 		/* delete entry in DEAD */
4236 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) {
4237 			/* sanity check */
4238 			if (sav->state != SADB_SASTATE_DEAD) {
4239 				ipseclog((LOG_DEBUG, "%s: invalid sav->state "
4240 					"(queue: %d SA: %d): kill it anyway\n",
4241 					__func__,
4242 					SADB_SASTATE_DEAD, sav->state));
4243 			}
4244 			/*
4245 			 * do not call key_freesav() here.
4246 			 * sav should already be freed, and sav->refcnt
4247 			 * shows other references to sav
4248 			 * (such as from SPD).
4249 			 */
4250 		}
4251 	}
4252 	SAHTREE_UNLOCK();
4253 }
4254 
4255 static void
4256 key_flush_acq(time_t now)
4257 {
4258 	INIT_VNET_IPSEC(curvnet);
4259 	struct secacq *acq, *nextacq;
4260 
4261 	/* ACQ tree */
4262 	ACQ_LOCK();
4263 	for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) {
4264 		nextacq = LIST_NEXT(acq, chain);
4265 		if (now - acq->created > V_key_blockacq_lifetime
4266 		 && __LIST_CHAINED(acq)) {
4267 			LIST_REMOVE(acq, chain);
4268 			free(acq, M_IPSEC_SAQ);
4269 		}
4270 	}
4271 	ACQ_UNLOCK();
4272 }
4273 
4274 static void
4275 key_flush_spacq(time_t now)
4276 {
4277 	INIT_VNET_IPSEC(curvnet);
4278 	struct secspacq *acq, *nextacq;
4279 
4280 	/* SP ACQ tree */
4281 	SPACQ_LOCK();
4282 	for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) {
4283 		nextacq = LIST_NEXT(acq, chain);
4284 		if (now - acq->created > V_key_blockacq_lifetime
4285 		 && __LIST_CHAINED(acq)) {
4286 			LIST_REMOVE(acq, chain);
4287 			free(acq, M_IPSEC_SAQ);
4288 		}
4289 	}
4290 	SPACQ_UNLOCK();
4291 }
4292 
4293 /*
4294  * time handler.
4295  * scanning SPD and SAD to check status for each entries,
4296  * and do to remove or to expire.
4297  * XXX: year 2038 problem may remain.
4298  */
4299 void
4300 key_timehandler(void)
4301 {
4302 	VNET_ITERATOR_DECL(vnet_iter);
4303 	time_t now = time_second;
4304 
4305 	VNET_LIST_RLOCK();
4306 	VNET_FOREACH(vnet_iter) {
4307 		CURVNET_SET(vnet_iter);
4308 		key_flush_spd(now);
4309 		key_flush_sad(now);
4310 		key_flush_acq(now);
4311 		key_flush_spacq(now);
4312 		CURVNET_RESTORE();
4313 	}
4314 	VNET_LIST_RUNLOCK();
4315 
4316 #ifndef IPSEC_DEBUG2
4317 	/* do exchange to tick time !! */
4318 	(void)timeout((void *)key_timehandler, (void *)0, hz);
4319 #endif /* IPSEC_DEBUG2 */
4320 }
4321 
4322 u_long
4323 key_random()
4324 {
4325 	u_long value;
4326 
4327 	key_randomfill(&value, sizeof(value));
4328 	return value;
4329 }
4330 
4331 void
4332 key_randomfill(p, l)
4333 	void *p;
4334 	size_t l;
4335 {
4336 	size_t n;
4337 	u_long v;
4338 	static int warn = 1;
4339 
4340 	n = 0;
4341 	n = (size_t)read_random(p, (u_int)l);
4342 	/* last resort */
4343 	while (n < l) {
4344 		v = random();
4345 		bcopy(&v, (u_int8_t *)p + n,
4346 		    l - n < sizeof(v) ? l - n : sizeof(v));
4347 		n += sizeof(v);
4348 
4349 		if (warn) {
4350 			printf("WARNING: pseudo-random number generator "
4351 			    "used for IPsec processing\n");
4352 			warn = 0;
4353 		}
4354 	}
4355 }
4356 
4357 /*
4358  * map SADB_SATYPE_* to IPPROTO_*.
4359  * if satype == SADB_SATYPE then satype is mapped to ~0.
4360  * OUT:
4361  *	0: invalid satype.
4362  */
4363 static u_int16_t
4364 key_satype2proto(u_int8_t satype)
4365 {
4366 	switch (satype) {
4367 	case SADB_SATYPE_UNSPEC:
4368 		return IPSEC_PROTO_ANY;
4369 	case SADB_SATYPE_AH:
4370 		return IPPROTO_AH;
4371 	case SADB_SATYPE_ESP:
4372 		return IPPROTO_ESP;
4373 	case SADB_X_SATYPE_IPCOMP:
4374 		return IPPROTO_IPCOMP;
4375 	case SADB_X_SATYPE_TCPSIGNATURE:
4376 		return IPPROTO_TCP;
4377 	default:
4378 		return 0;
4379 	}
4380 	/* NOTREACHED */
4381 }
4382 
4383 /*
4384  * map IPPROTO_* to SADB_SATYPE_*
4385  * OUT:
4386  *	0: invalid protocol type.
4387  */
4388 static u_int8_t
4389 key_proto2satype(u_int16_t proto)
4390 {
4391 	switch (proto) {
4392 	case IPPROTO_AH:
4393 		return SADB_SATYPE_AH;
4394 	case IPPROTO_ESP:
4395 		return SADB_SATYPE_ESP;
4396 	case IPPROTO_IPCOMP:
4397 		return SADB_X_SATYPE_IPCOMP;
4398 	case IPPROTO_TCP:
4399 		return SADB_X_SATYPE_TCPSIGNATURE;
4400 	default:
4401 		return 0;
4402 	}
4403 	/* NOTREACHED */
4404 }
4405 
4406 /* %%% PF_KEY */
4407 /*
4408  * SADB_GETSPI processing is to receive
4409  *	<base, (SA2), src address, dst address, (SPI range)>
4410  * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4411  * tree with the status of LARVAL, and send
4412  *	<base, SA(*), address(SD)>
4413  * to the IKMPd.
4414  *
4415  * IN:	mhp: pointer to the pointer to each header.
4416  * OUT:	NULL if fail.
4417  *	other if success, return pointer to the message to send.
4418  */
4419 static int
4420 key_getspi(so, m, mhp)
4421 	struct socket *so;
4422 	struct mbuf *m;
4423 	const struct sadb_msghdr *mhp;
4424 {
4425 	INIT_VNET_IPSEC(curvnet);
4426 	struct sadb_address *src0, *dst0;
4427 	struct secasindex saidx;
4428 	struct secashead *newsah;
4429 	struct secasvar *newsav;
4430 	u_int8_t proto;
4431 	u_int32_t spi;
4432 	u_int8_t mode;
4433 	u_int32_t reqid;
4434 	int error;
4435 
4436 	IPSEC_ASSERT(so != NULL, ("null socket"));
4437 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4438 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4439 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4440 
4441 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4442 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4443 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4444 			__func__));
4445 		return key_senderror(so, m, EINVAL);
4446 	}
4447 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4448 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4449 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4450 			__func__));
4451 		return key_senderror(so, m, EINVAL);
4452 	}
4453 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4454 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4455 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4456 	} else {
4457 		mode = IPSEC_MODE_ANY;
4458 		reqid = 0;
4459 	}
4460 
4461 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4462 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4463 
4464 	/* map satype to proto */
4465 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4466 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4467 			__func__));
4468 		return key_senderror(so, m, EINVAL);
4469 	}
4470 
4471 	/* make sure if port number is zero. */
4472 	switch (((struct sockaddr *)(src0 + 1))->sa_family) {
4473 	case AF_INET:
4474 		if (((struct sockaddr *)(src0 + 1))->sa_len !=
4475 		    sizeof(struct sockaddr_in))
4476 			return key_senderror(so, m, EINVAL);
4477 		((struct sockaddr_in *)(src0 + 1))->sin_port = 0;
4478 		break;
4479 	case AF_INET6:
4480 		if (((struct sockaddr *)(src0 + 1))->sa_len !=
4481 		    sizeof(struct sockaddr_in6))
4482 			return key_senderror(so, m, EINVAL);
4483 		((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0;
4484 		break;
4485 	default:
4486 		; /*???*/
4487 	}
4488 	switch (((struct sockaddr *)(dst0 + 1))->sa_family) {
4489 	case AF_INET:
4490 		if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4491 		    sizeof(struct sockaddr_in))
4492 			return key_senderror(so, m, EINVAL);
4493 		((struct sockaddr_in *)(dst0 + 1))->sin_port = 0;
4494 		break;
4495 	case AF_INET6:
4496 		if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4497 		    sizeof(struct sockaddr_in6))
4498 			return key_senderror(so, m, EINVAL);
4499 		((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0;
4500 		break;
4501 	default:
4502 		; /*???*/
4503 	}
4504 
4505 	/* XXX boundary check against sa_len */
4506 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4507 
4508 	/* SPI allocation */
4509 	spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4510 	                       &saidx);
4511 	if (spi == 0)
4512 		return key_senderror(so, m, EINVAL);
4513 
4514 	/* get a SA index */
4515 	if ((newsah = key_getsah(&saidx)) == NULL) {
4516 		/* create a new SA index */
4517 		if ((newsah = key_newsah(&saidx)) == NULL) {
4518 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
4519 			return key_senderror(so, m, ENOBUFS);
4520 		}
4521 	}
4522 
4523 	/* get a new SA */
4524 	/* XXX rewrite */
4525 	newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4526 	if (newsav == NULL) {
4527 		/* XXX don't free new SA index allocated in above. */
4528 		return key_senderror(so, m, error);
4529 	}
4530 
4531 	/* set spi */
4532 	newsav->spi = htonl(spi);
4533 
4534 	/* delete the entry in acqtree */
4535 	if (mhp->msg->sadb_msg_seq != 0) {
4536 		struct secacq *acq;
4537 		if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) {
4538 			/* reset counter in order to deletion by timehandler. */
4539 			acq->created = time_second;
4540 			acq->count = 0;
4541 		}
4542     	}
4543 
4544     {
4545 	struct mbuf *n, *nn;
4546 	struct sadb_sa *m_sa;
4547 	struct sadb_msg *newmsg;
4548 	int off, len;
4549 
4550 	/* create new sadb_msg to reply. */
4551 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4552 	    PFKEY_ALIGN8(sizeof(struct sadb_sa));
4553 
4554 	MGETHDR(n, M_DONTWAIT, MT_DATA);
4555 	if (len > MHLEN) {
4556 		MCLGET(n, M_DONTWAIT);
4557 		if ((n->m_flags & M_EXT) == 0) {
4558 			m_freem(n);
4559 			n = NULL;
4560 		}
4561 	}
4562 	if (!n)
4563 		return key_senderror(so, m, ENOBUFS);
4564 
4565 	n->m_len = len;
4566 	n->m_next = NULL;
4567 	off = 0;
4568 
4569 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
4570 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4571 
4572 	m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off);
4573 	m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4574 	m_sa->sadb_sa_exttype = SADB_EXT_SA;
4575 	m_sa->sadb_sa_spi = htonl(spi);
4576 	off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4577 
4578 	IPSEC_ASSERT(off == len,
4579 		("length inconsistency (off %u len %u)", off, len));
4580 
4581 	n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4582 	    SADB_EXT_ADDRESS_DST);
4583 	if (!n->m_next) {
4584 		m_freem(n);
4585 		return key_senderror(so, m, ENOBUFS);
4586 	}
4587 
4588 	if (n->m_len < sizeof(struct sadb_msg)) {
4589 		n = m_pullup(n, sizeof(struct sadb_msg));
4590 		if (n == NULL)
4591 			return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
4592 	}
4593 
4594 	n->m_pkthdr.len = 0;
4595 	for (nn = n; nn; nn = nn->m_next)
4596 		n->m_pkthdr.len += nn->m_len;
4597 
4598 	newmsg = mtod(n, struct sadb_msg *);
4599 	newmsg->sadb_msg_seq = newsav->seq;
4600 	newmsg->sadb_msg_errno = 0;
4601 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
4602 
4603 	m_freem(m);
4604 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
4605     }
4606 }
4607 
4608 /*
4609  * allocating new SPI
4610  * called by key_getspi().
4611  * OUT:
4612  *	0:	failure.
4613  *	others: success.
4614  */
4615 static u_int32_t
4616 key_do_getnewspi(spirange, saidx)
4617 	struct sadb_spirange *spirange;
4618 	struct secasindex *saidx;
4619 {
4620 	INIT_VNET_IPSEC(curvnet);
4621 	u_int32_t newspi;
4622 	u_int32_t min, max;
4623 	int count = V_key_spi_trycnt;
4624 
4625 	/* set spi range to allocate */
4626 	if (spirange != NULL) {
4627 		min = spirange->sadb_spirange_min;
4628 		max = spirange->sadb_spirange_max;
4629 	} else {
4630 		min = V_key_spi_minval;
4631 		max = V_key_spi_maxval;
4632 	}
4633 	/* IPCOMP needs 2-byte SPI */
4634 	if (saidx->proto == IPPROTO_IPCOMP) {
4635 		u_int32_t t;
4636 		if (min >= 0x10000)
4637 			min = 0xffff;
4638 		if (max >= 0x10000)
4639 			max = 0xffff;
4640 		if (min > max) {
4641 			t = min; min = max; max = t;
4642 		}
4643 	}
4644 
4645 	if (min == max) {
4646 		if (key_checkspidup(saidx, min) != NULL) {
4647 			ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n",
4648 				__func__, min));
4649 			return 0;
4650 		}
4651 
4652 		count--; /* taking one cost. */
4653 		newspi = min;
4654 
4655 	} else {
4656 
4657 		/* init SPI */
4658 		newspi = 0;
4659 
4660 		/* when requesting to allocate spi ranged */
4661 		while (count--) {
4662 			/* generate pseudo-random SPI value ranged. */
4663 			newspi = min + (key_random() % (max - min + 1));
4664 
4665 			if (key_checkspidup(saidx, newspi) == NULL)
4666 				break;
4667 		}
4668 
4669 		if (count == 0 || newspi == 0) {
4670 			ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n",
4671 				__func__));
4672 			return 0;
4673 		}
4674 	}
4675 
4676 	/* statistics */
4677 	keystat.getspi_count =
4678 		(keystat.getspi_count + V_key_spi_trycnt - count) / 2;
4679 
4680 	return newspi;
4681 }
4682 
4683 /*
4684  * SADB_UPDATE processing
4685  * receive
4686  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4687  *       key(AE), (identity(SD),) (sensitivity)>
4688  * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
4689  * and send
4690  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4691  *       (identity(SD),) (sensitivity)>
4692  * to the ikmpd.
4693  *
4694  * m will always be freed.
4695  */
4696 static int
4697 key_update(so, m, mhp)
4698 	struct socket *so;
4699 	struct mbuf *m;
4700 	const struct sadb_msghdr *mhp;
4701 {
4702 	INIT_VNET_IPSEC(curvnet);
4703 	struct sadb_sa *sa0;
4704 	struct sadb_address *src0, *dst0;
4705 	struct secasindex saidx;
4706 	struct secashead *sah;
4707 	struct secasvar *sav;
4708 	u_int16_t proto;
4709 	u_int8_t mode;
4710 	u_int32_t reqid;
4711 	int error;
4712 
4713 	IPSEC_ASSERT(so != NULL, ("null socket"));
4714 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4715 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4716 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4717 
4718 	/* map satype to proto */
4719 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4720 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4721 			__func__));
4722 		return key_senderror(so, m, EINVAL);
4723 	}
4724 
4725 	if (mhp->ext[SADB_EXT_SA] == NULL ||
4726 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4727 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
4728 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
4729 	     mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
4730 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
4731 	     mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
4732 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
4733 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
4734 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
4735 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
4736 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4737 			__func__));
4738 		return key_senderror(so, m, EINVAL);
4739 	}
4740 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
4741 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4742 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4743 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4744 			__func__));
4745 		return key_senderror(so, m, EINVAL);
4746 	}
4747 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4748 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4749 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4750 	} else {
4751 		mode = IPSEC_MODE_ANY;
4752 		reqid = 0;
4753 	}
4754 	/* XXX boundary checking for other extensions */
4755 
4756 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
4757 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4758 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4759 
4760 	/* XXX boundary check against sa_len */
4761 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4762 
4763 	/* get a SA header */
4764 	if ((sah = key_getsah(&saidx)) == NULL) {
4765 		ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__));
4766 		return key_senderror(so, m, ENOENT);
4767 	}
4768 
4769 	/* set spidx if there */
4770 	/* XXX rewrite */
4771 	error = key_setident(sah, m, mhp);
4772 	if (error)
4773 		return key_senderror(so, m, error);
4774 
4775 	/* find a SA with sequence number. */
4776 #ifdef IPSEC_DOSEQCHECK
4777 	if (mhp->msg->sadb_msg_seq != 0
4778 	 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) {
4779 		ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u "
4780 			"exists.\n", __func__, mhp->msg->sadb_msg_seq));
4781 		return key_senderror(so, m, ENOENT);
4782 	}
4783 #else
4784 	SAHTREE_LOCK();
4785 	sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
4786 	SAHTREE_UNLOCK();
4787 	if (sav == NULL) {
4788 		ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n",
4789 			__func__, (u_int32_t)ntohl(sa0->sadb_sa_spi)));
4790 		return key_senderror(so, m, EINVAL);
4791 	}
4792 #endif
4793 
4794 	/* validity check */
4795 	if (sav->sah->saidx.proto != proto) {
4796 		ipseclog((LOG_DEBUG, "%s: protocol mismatched "
4797 			"(DB=%u param=%u)\n", __func__,
4798 			sav->sah->saidx.proto, proto));
4799 		return key_senderror(so, m, EINVAL);
4800 	}
4801 #ifdef IPSEC_DOSEQCHECK
4802 	if (sav->spi != sa0->sadb_sa_spi) {
4803 		ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n",
4804 		    __func__,
4805 		    (u_int32_t)ntohl(sav->spi),
4806 		    (u_int32_t)ntohl(sa0->sadb_sa_spi)));
4807 		return key_senderror(so, m, EINVAL);
4808 	}
4809 #endif
4810 	if (sav->pid != mhp->msg->sadb_msg_pid) {
4811 		ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n",
4812 		    __func__, sav->pid, mhp->msg->sadb_msg_pid));
4813 		return key_senderror(so, m, EINVAL);
4814 	}
4815 
4816 	/* copy sav values */
4817 	error = key_setsaval(sav, m, mhp);
4818 	if (error) {
4819 		KEY_FREESAV(&sav);
4820 		return key_senderror(so, m, error);
4821 	}
4822 
4823 	/* check SA values to be mature. */
4824 	if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) {
4825 		KEY_FREESAV(&sav);
4826 		return key_senderror(so, m, 0);
4827 	}
4828 
4829     {
4830 	struct mbuf *n;
4831 
4832 	/* set msg buf from mhp */
4833 	n = key_getmsgbuf_x1(m, mhp);
4834 	if (n == NULL) {
4835 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
4836 		return key_senderror(so, m, ENOBUFS);
4837 	}
4838 
4839 	m_freem(m);
4840 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
4841     }
4842 }
4843 
4844 /*
4845  * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
4846  * only called by key_update().
4847  * OUT:
4848  *	NULL	: not found
4849  *	others	: found, pointer to a SA.
4850  */
4851 #ifdef IPSEC_DOSEQCHECK
4852 static struct secasvar *
4853 key_getsavbyseq(sah, seq)
4854 	struct secashead *sah;
4855 	u_int32_t seq;
4856 {
4857 	struct secasvar *sav;
4858 	u_int state;
4859 
4860 	state = SADB_SASTATE_LARVAL;
4861 
4862 	/* search SAD with sequence number ? */
4863 	LIST_FOREACH(sav, &sah->savtree[state], chain) {
4864 
4865 		KEY_CHKSASTATE(state, sav->state, __func__);
4866 
4867 		if (sav->seq == seq) {
4868 			sa_addref(sav);
4869 			KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
4870 				printf("DP %s cause refcnt++:%d SA:%p\n",
4871 					__func__, sav->refcnt, sav));
4872 			return sav;
4873 		}
4874 	}
4875 
4876 	return NULL;
4877 }
4878 #endif
4879 
4880 /*
4881  * SADB_ADD processing
4882  * add an entry to SA database, when received
4883  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4884  *       key(AE), (identity(SD),) (sensitivity)>
4885  * from the ikmpd,
4886  * and send
4887  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4888  *       (identity(SD),) (sensitivity)>
4889  * to the ikmpd.
4890  *
4891  * IGNORE identity and sensitivity messages.
4892  *
4893  * m will always be freed.
4894  */
4895 static int
4896 key_add(so, m, mhp)
4897 	struct socket *so;
4898 	struct mbuf *m;
4899 	const struct sadb_msghdr *mhp;
4900 {
4901 	INIT_VNET_IPSEC(curvnet);
4902 	struct sadb_sa *sa0;
4903 	struct sadb_address *src0, *dst0;
4904 	struct secasindex saidx;
4905 	struct secashead *newsah;
4906 	struct secasvar *newsav;
4907 	u_int16_t proto;
4908 	u_int8_t mode;
4909 	u_int32_t reqid;
4910 	int error;
4911 
4912 	IPSEC_ASSERT(so != NULL, ("null socket"));
4913 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4914 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4915 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4916 
4917 	/* map satype to proto */
4918 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4919 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4920 			__func__));
4921 		return key_senderror(so, m, EINVAL);
4922 	}
4923 
4924 	if (mhp->ext[SADB_EXT_SA] == NULL ||
4925 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4926 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
4927 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
4928 	     mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
4929 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
4930 	     mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
4931 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
4932 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
4933 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
4934 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
4935 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4936 			__func__));
4937 		return key_senderror(so, m, EINVAL);
4938 	}
4939 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
4940 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4941 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4942 		/* XXX need more */
4943 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4944 			__func__));
4945 		return key_senderror(so, m, EINVAL);
4946 	}
4947 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4948 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4949 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4950 	} else {
4951 		mode = IPSEC_MODE_ANY;
4952 		reqid = 0;
4953 	}
4954 
4955 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
4956 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
4957 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
4958 
4959 	/* XXX boundary check against sa_len */
4960 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4961 
4962 	/* get a SA header */
4963 	if ((newsah = key_getsah(&saidx)) == NULL) {
4964 		/* create a new SA header */
4965 		if ((newsah = key_newsah(&saidx)) == NULL) {
4966 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
4967 			return key_senderror(so, m, ENOBUFS);
4968 		}
4969 	}
4970 
4971 	/* set spidx if there */
4972 	/* XXX rewrite */
4973 	error = key_setident(newsah, m, mhp);
4974 	if (error) {
4975 		return key_senderror(so, m, error);
4976 	}
4977 
4978 	/* create new SA entry. */
4979 	/* We can create new SA only if SPI is differenct. */
4980 	SAHTREE_LOCK();
4981 	newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi);
4982 	SAHTREE_UNLOCK();
4983 	if (newsav != NULL) {
4984 		ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__));
4985 		return key_senderror(so, m, EEXIST);
4986 	}
4987 	newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4988 	if (newsav == NULL) {
4989 		return key_senderror(so, m, error);
4990 	}
4991 
4992 	/* check SA values to be mature. */
4993 	if ((error = key_mature(newsav)) != 0) {
4994 		KEY_FREESAV(&newsav);
4995 		return key_senderror(so, m, error);
4996 	}
4997 
4998 	/*
4999 	 * don't call key_freesav() here, as we would like to keep the SA
5000 	 * in the database on success.
5001 	 */
5002 
5003     {
5004 	struct mbuf *n;
5005 
5006 	/* set msg buf from mhp */
5007 	n = key_getmsgbuf_x1(m, mhp);
5008 	if (n == NULL) {
5009 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5010 		return key_senderror(so, m, ENOBUFS);
5011 	}
5012 
5013 	m_freem(m);
5014 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5015     }
5016 }
5017 
5018 /* m is retained */
5019 static int
5020 key_setident(sah, m, mhp)
5021 	struct secashead *sah;
5022 	struct mbuf *m;
5023 	const struct sadb_msghdr *mhp;
5024 {
5025 	INIT_VNET_IPSEC(curvnet);
5026 	const struct sadb_ident *idsrc, *iddst;
5027 	int idsrclen, iddstlen;
5028 
5029 	IPSEC_ASSERT(sah != NULL, ("null secashead"));
5030 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5031 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5032 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5033 
5034 	/* don't make buffer if not there */
5035 	if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5036 	    mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5037 		sah->idents = NULL;
5038 		sah->identd = NULL;
5039 		return 0;
5040 	}
5041 
5042 	if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5043 	    mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5044 		ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__));
5045 		return EINVAL;
5046 	}
5047 
5048 	idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5049 	iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5050 	idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5051 	iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5052 
5053 	/* validity check */
5054 	if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5055 		ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__));
5056 		return EINVAL;
5057 	}
5058 
5059 	switch (idsrc->sadb_ident_type) {
5060 	case SADB_IDENTTYPE_PREFIX:
5061 	case SADB_IDENTTYPE_FQDN:
5062 	case SADB_IDENTTYPE_USERFQDN:
5063 	default:
5064 		/* XXX do nothing */
5065 		sah->idents = NULL;
5066 		sah->identd = NULL;
5067 	 	return 0;
5068 	}
5069 
5070 	/* make structure */
5071 	sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5072 	if (sah->idents == NULL) {
5073 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5074 		return ENOBUFS;
5075 	}
5076 	sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5077 	if (sah->identd == NULL) {
5078 		free(sah->idents, M_IPSEC_MISC);
5079 		sah->idents = NULL;
5080 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5081 		return ENOBUFS;
5082 	}
5083 	sah->idents->type = idsrc->sadb_ident_type;
5084 	sah->idents->id = idsrc->sadb_ident_id;
5085 
5086 	sah->identd->type = iddst->sadb_ident_type;
5087 	sah->identd->id = iddst->sadb_ident_id;
5088 
5089 	return 0;
5090 }
5091 
5092 /*
5093  * m will not be freed on return.
5094  * it is caller's responsibility to free the result.
5095  */
5096 static struct mbuf *
5097 key_getmsgbuf_x1(m, mhp)
5098 	struct mbuf *m;
5099 	const struct sadb_msghdr *mhp;
5100 {
5101 	struct mbuf *n;
5102 
5103 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5104 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5105 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5106 
5107 	/* create new sadb_msg to reply. */
5108 	n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED,
5109 	    SADB_EXT_SA, SADB_X_EXT_SA2,
5110 	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5111 	    SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5112 	    SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST);
5113 	if (!n)
5114 		return NULL;
5115 
5116 	if (n->m_len < sizeof(struct sadb_msg)) {
5117 		n = m_pullup(n, sizeof(struct sadb_msg));
5118 		if (n == NULL)
5119 			return NULL;
5120 	}
5121 	mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5122 	mtod(n, struct sadb_msg *)->sadb_msg_len =
5123 	    PFKEY_UNIT64(n->m_pkthdr.len);
5124 
5125 	return n;
5126 }
5127 
5128 static int key_delete_all __P((struct socket *, struct mbuf *,
5129 	const struct sadb_msghdr *, u_int16_t));
5130 
5131 /*
5132  * SADB_DELETE processing
5133  * receive
5134  *   <base, SA(*), address(SD)>
5135  * from the ikmpd, and set SADB_SASTATE_DEAD,
5136  * and send,
5137  *   <base, SA(*), address(SD)>
5138  * to the ikmpd.
5139  *
5140  * m will always be freed.
5141  */
5142 static int
5143 key_delete(so, m, mhp)
5144 	struct socket *so;
5145 	struct mbuf *m;
5146 	const struct sadb_msghdr *mhp;
5147 {
5148 	INIT_VNET_IPSEC(curvnet);
5149 	struct sadb_sa *sa0;
5150 	struct sadb_address *src0, *dst0;
5151 	struct secasindex saidx;
5152 	struct secashead *sah;
5153 	struct secasvar *sav = NULL;
5154 	u_int16_t proto;
5155 
5156 	IPSEC_ASSERT(so != NULL, ("null socket"));
5157 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5158 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5159 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5160 
5161 	/* map satype to proto */
5162 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5163 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5164 			__func__));
5165 		return key_senderror(so, m, EINVAL);
5166 	}
5167 
5168 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5169 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5170 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5171 			__func__));
5172 		return key_senderror(so, m, EINVAL);
5173 	}
5174 
5175 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5176 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5177 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5178 			__func__));
5179 		return key_senderror(so, m, EINVAL);
5180 	}
5181 
5182 	if (mhp->ext[SADB_EXT_SA] == NULL) {
5183 		/*
5184 		 * Caller wants us to delete all non-LARVAL SAs
5185 		 * that match the src/dst.  This is used during
5186 		 * IKE INITIAL-CONTACT.
5187 		 */
5188 		ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__));
5189 		return key_delete_all(so, m, mhp, proto);
5190 	} else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5191 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5192 			__func__));
5193 		return key_senderror(so, m, EINVAL);
5194 	}
5195 
5196 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5197 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5198 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5199 
5200 	/* XXX boundary check against sa_len */
5201 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5202 
5203 	/* get a SA header */
5204 	SAHTREE_LOCK();
5205 	LIST_FOREACH(sah, &V_sahtree, chain) {
5206 		if (sah->state == SADB_SASTATE_DEAD)
5207 			continue;
5208 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5209 			continue;
5210 
5211 		/* get a SA with SPI. */
5212 		sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5213 		if (sav)
5214 			break;
5215 	}
5216 	if (sah == NULL) {
5217 		SAHTREE_UNLOCK();
5218 		ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5219 		return key_senderror(so, m, ENOENT);
5220 	}
5221 
5222 	key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5223 	SAHTREE_UNLOCK();
5224 	KEY_FREESAV(&sav);
5225 
5226     {
5227 	struct mbuf *n;
5228 	struct sadb_msg *newmsg;
5229 
5230 	/* create new sadb_msg to reply. */
5231 	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5232 	    SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5233 	if (!n)
5234 		return key_senderror(so, m, ENOBUFS);
5235 
5236 	if (n->m_len < sizeof(struct sadb_msg)) {
5237 		n = m_pullup(n, sizeof(struct sadb_msg));
5238 		if (n == NULL)
5239 			return key_senderror(so, m, ENOBUFS);
5240 	}
5241 	newmsg = mtod(n, struct sadb_msg *);
5242 	newmsg->sadb_msg_errno = 0;
5243 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5244 
5245 	m_freem(m);
5246 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5247     }
5248 }
5249 
5250 /*
5251  * delete all SAs for src/dst.  Called from key_delete().
5252  */
5253 static int
5254 key_delete_all(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp,
5255     u_int16_t proto)
5256 {
5257 	INIT_VNET_IPSEC(curvnet);
5258 	struct sadb_address *src0, *dst0;
5259 	struct secasindex saidx;
5260 	struct secashead *sah;
5261 	struct secasvar *sav, *nextsav;
5262 	u_int stateidx, state;
5263 
5264 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5265 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5266 
5267 	/* XXX boundary check against sa_len */
5268 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5269 
5270 	SAHTREE_LOCK();
5271 	LIST_FOREACH(sah, &V_sahtree, chain) {
5272 		if (sah->state == SADB_SASTATE_DEAD)
5273 			continue;
5274 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5275 			continue;
5276 
5277 		/* Delete all non-LARVAL SAs. */
5278 		for (stateidx = 0;
5279 		     stateidx < _ARRAYLEN(saorder_state_alive);
5280 		     stateidx++) {
5281 			state = saorder_state_alive[stateidx];
5282 			if (state == SADB_SASTATE_LARVAL)
5283 				continue;
5284 			for (sav = LIST_FIRST(&sah->savtree[state]);
5285 			     sav != NULL; sav = nextsav) {
5286 				nextsav = LIST_NEXT(sav, chain);
5287 				/* sanity check */
5288 				if (sav->state != state) {
5289 					ipseclog((LOG_DEBUG, "%s: invalid "
5290 						"sav->state (queue %d SA %d)\n",
5291 						__func__, state, sav->state));
5292 					continue;
5293 				}
5294 
5295 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5296 				KEY_FREESAV(&sav);
5297 			}
5298 		}
5299 	}
5300 	SAHTREE_UNLOCK();
5301     {
5302 	struct mbuf *n;
5303 	struct sadb_msg *newmsg;
5304 
5305 	/* create new sadb_msg to reply. */
5306 	n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5307 	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5308 	if (!n)
5309 		return key_senderror(so, m, ENOBUFS);
5310 
5311 	if (n->m_len < sizeof(struct sadb_msg)) {
5312 		n = m_pullup(n, sizeof(struct sadb_msg));
5313 		if (n == NULL)
5314 			return key_senderror(so, m, ENOBUFS);
5315 	}
5316 	newmsg = mtod(n, struct sadb_msg *);
5317 	newmsg->sadb_msg_errno = 0;
5318 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5319 
5320 	m_freem(m);
5321 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5322     }
5323 }
5324 
5325 /*
5326  * SADB_GET processing
5327  * receive
5328  *   <base, SA(*), address(SD)>
5329  * from the ikmpd, and get a SP and a SA to respond,
5330  * and send,
5331  *   <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5332  *       (identity(SD),) (sensitivity)>
5333  * to the ikmpd.
5334  *
5335  * m will always be freed.
5336  */
5337 static int
5338 key_get(so, m, mhp)
5339 	struct socket *so;
5340 	struct mbuf *m;
5341 	const struct sadb_msghdr *mhp;
5342 {
5343 	INIT_VNET_IPSEC(curvnet);
5344 	struct sadb_sa *sa0;
5345 	struct sadb_address *src0, *dst0;
5346 	struct secasindex saidx;
5347 	struct secashead *sah;
5348 	struct secasvar *sav = NULL;
5349 	u_int16_t proto;
5350 
5351 	IPSEC_ASSERT(so != NULL, ("null socket"));
5352 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5353 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5354 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5355 
5356 	/* map satype to proto */
5357 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5358 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5359 			__func__));
5360 		return key_senderror(so, m, EINVAL);
5361 	}
5362 
5363 	if (mhp->ext[SADB_EXT_SA] == NULL ||
5364 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5365 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5366 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5367 			__func__));
5368 		return key_senderror(so, m, EINVAL);
5369 	}
5370 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5371 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5372 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5373 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5374 			__func__));
5375 		return key_senderror(so, m, EINVAL);
5376 	}
5377 
5378 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5379 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5380 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5381 
5382 	/* XXX boundary check against sa_len */
5383 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5384 
5385 	/* get a SA header */
5386 	SAHTREE_LOCK();
5387 	LIST_FOREACH(sah, &V_sahtree, chain) {
5388 		if (sah->state == SADB_SASTATE_DEAD)
5389 			continue;
5390 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5391 			continue;
5392 
5393 		/* get a SA with SPI. */
5394 		sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5395 		if (sav)
5396 			break;
5397 	}
5398 	SAHTREE_UNLOCK();
5399 	if (sah == NULL) {
5400 		ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5401 		return key_senderror(so, m, ENOENT);
5402 	}
5403 
5404     {
5405 	struct mbuf *n;
5406 	u_int8_t satype;
5407 
5408 	/* map proto to satype */
5409 	if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
5410 		ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n",
5411 			__func__));
5412 		return key_senderror(so, m, EINVAL);
5413 	}
5414 
5415 	/* create new sadb_msg to reply. */
5416 	n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5417 	    mhp->msg->sadb_msg_pid);
5418 	if (!n)
5419 		return key_senderror(so, m, ENOBUFS);
5420 
5421 	m_freem(m);
5422 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5423     }
5424 }
5425 
5426 /* XXX make it sysctl-configurable? */
5427 static void
5428 key_getcomb_setlifetime(comb)
5429 	struct sadb_comb *comb;
5430 {
5431 
5432 	comb->sadb_comb_soft_allocations = 1;
5433 	comb->sadb_comb_hard_allocations = 1;
5434 	comb->sadb_comb_soft_bytes = 0;
5435 	comb->sadb_comb_hard_bytes = 0;
5436 	comb->sadb_comb_hard_addtime = 86400;	/* 1 day */
5437 	comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5438 	comb->sadb_comb_soft_usetime = 28800;	/* 8 hours */
5439 	comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
5440 }
5441 
5442 /*
5443  * XXX reorder combinations by preference
5444  * XXX no idea if the user wants ESP authentication or not
5445  */
5446 static struct mbuf *
5447 key_getcomb_esp()
5448 {
5449 	INIT_VNET_IPSEC(curvnet);
5450 	struct sadb_comb *comb;
5451 	struct enc_xform *algo;
5452 	struct mbuf *result = NULL, *m, *n;
5453 	int encmin;
5454 	int i, off, o;
5455 	int totlen;
5456 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5457 
5458 	m = NULL;
5459 	for (i = 1; i <= SADB_EALG_MAX; i++) {
5460 		algo = esp_algorithm_lookup(i);
5461 		if (algo == NULL)
5462 			continue;
5463 
5464 		/* discard algorithms with key size smaller than system min */
5465 		if (_BITS(algo->maxkey) < V_ipsec_esp_keymin)
5466 			continue;
5467 		if (_BITS(algo->minkey) < V_ipsec_esp_keymin)
5468 			encmin = V_ipsec_esp_keymin;
5469 		else
5470 			encmin = _BITS(algo->minkey);
5471 
5472 		if (V_ipsec_esp_auth)
5473 			m = key_getcomb_ah();
5474 		else {
5475 			IPSEC_ASSERT(l <= MLEN,
5476 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
5477 			MGET(m, M_DONTWAIT, MT_DATA);
5478 			if (m) {
5479 				M_ALIGN(m, l);
5480 				m->m_len = l;
5481 				m->m_next = NULL;
5482 				bzero(mtod(m, caddr_t), m->m_len);
5483 			}
5484 		}
5485 		if (!m)
5486 			goto fail;
5487 
5488 		totlen = 0;
5489 		for (n = m; n; n = n->m_next)
5490 			totlen += n->m_len;
5491 		IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l));
5492 
5493 		for (off = 0; off < totlen; off += l) {
5494 			n = m_pulldown(m, off, l, &o);
5495 			if (!n) {
5496 				/* m is already freed */
5497 				goto fail;
5498 			}
5499 			comb = (struct sadb_comb *)(mtod(n, caddr_t) + o);
5500 			bzero(comb, sizeof(*comb));
5501 			key_getcomb_setlifetime(comb);
5502 			comb->sadb_comb_encrypt = i;
5503 			comb->sadb_comb_encrypt_minbits = encmin;
5504 			comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
5505 		}
5506 
5507 		if (!result)
5508 			result = m;
5509 		else
5510 			m_cat(result, m);
5511 	}
5512 
5513 	return result;
5514 
5515  fail:
5516 	if (result)
5517 		m_freem(result);
5518 	return NULL;
5519 }
5520 
5521 static void
5522 key_getsizes_ah(
5523 	const struct auth_hash *ah,
5524 	int alg,
5525 	u_int16_t* min,
5526 	u_int16_t* max)
5527 {
5528 	INIT_VNET_IPSEC(curvnet);
5529 
5530 	*min = *max = ah->keysize;
5531 	if (ah->keysize == 0) {
5532 		/*
5533 		 * Transform takes arbitrary key size but algorithm
5534 		 * key size is restricted.  Enforce this here.
5535 		 */
5536 		switch (alg) {
5537 		case SADB_X_AALG_MD5:	*min = *max = 16; break;
5538 		case SADB_X_AALG_SHA:	*min = *max = 20; break;
5539 		case SADB_X_AALG_NULL:	*min = 1; *max = 256; break;
5540 		default:
5541 			DPRINTF(("%s: unknown AH algorithm %u\n",
5542 				__func__, alg));
5543 			break;
5544 		}
5545 	}
5546 }
5547 
5548 /*
5549  * XXX reorder combinations by preference
5550  */
5551 static struct mbuf *
5552 key_getcomb_ah()
5553 {
5554 	INIT_VNET_IPSEC(curvnet);
5555 	struct sadb_comb *comb;
5556 	struct auth_hash *algo;
5557 	struct mbuf *m;
5558 	u_int16_t minkeysize, maxkeysize;
5559 	int i;
5560 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5561 
5562 	m = NULL;
5563 	for (i = 1; i <= SADB_AALG_MAX; i++) {
5564 #if 1
5565 		/* we prefer HMAC algorithms, not old algorithms */
5566 		if (i != SADB_AALG_SHA1HMAC && i != SADB_AALG_MD5HMAC)
5567 			continue;
5568 #endif
5569 		algo = ah_algorithm_lookup(i);
5570 		if (!algo)
5571 			continue;
5572 		key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
5573 		/* discard algorithms with key size smaller than system min */
5574 		if (_BITS(minkeysize) < V_ipsec_ah_keymin)
5575 			continue;
5576 
5577 		if (!m) {
5578 			IPSEC_ASSERT(l <= MLEN,
5579 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
5580 			MGET(m, M_DONTWAIT, MT_DATA);
5581 			if (m) {
5582 				M_ALIGN(m, l);
5583 				m->m_len = l;
5584 				m->m_next = NULL;
5585 			}
5586 		} else
5587 			M_PREPEND(m, l, M_DONTWAIT);
5588 		if (!m)
5589 			return NULL;
5590 
5591 		comb = mtod(m, struct sadb_comb *);
5592 		bzero(comb, sizeof(*comb));
5593 		key_getcomb_setlifetime(comb);
5594 		comb->sadb_comb_auth = i;
5595 		comb->sadb_comb_auth_minbits = _BITS(minkeysize);
5596 		comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
5597 	}
5598 
5599 	return m;
5600 }
5601 
5602 /*
5603  * not really an official behavior.  discussed in pf_key@inner.net in Sep2000.
5604  * XXX reorder combinations by preference
5605  */
5606 static struct mbuf *
5607 key_getcomb_ipcomp()
5608 {
5609 	struct sadb_comb *comb;
5610 	struct comp_algo *algo;
5611 	struct mbuf *m;
5612 	int i;
5613 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5614 
5615 	m = NULL;
5616 	for (i = 1; i <= SADB_X_CALG_MAX; i++) {
5617 		algo = ipcomp_algorithm_lookup(i);
5618 		if (!algo)
5619 			continue;
5620 
5621 		if (!m) {
5622 			IPSEC_ASSERT(l <= MLEN,
5623 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
5624 			MGET(m, M_DONTWAIT, MT_DATA);
5625 			if (m) {
5626 				M_ALIGN(m, l);
5627 				m->m_len = l;
5628 				m->m_next = NULL;
5629 			}
5630 		} else
5631 			M_PREPEND(m, l, M_DONTWAIT);
5632 		if (!m)
5633 			return NULL;
5634 
5635 		comb = mtod(m, struct sadb_comb *);
5636 		bzero(comb, sizeof(*comb));
5637 		key_getcomb_setlifetime(comb);
5638 		comb->sadb_comb_encrypt = i;
5639 		/* what should we set into sadb_comb_*_{min,max}bits? */
5640 	}
5641 
5642 	return m;
5643 }
5644 
5645 /*
5646  * XXX no way to pass mode (transport/tunnel) to userland
5647  * XXX replay checking?
5648  * XXX sysctl interface to ipsec_{ah,esp}_keymin
5649  */
5650 static struct mbuf *
5651 key_getprop(saidx)
5652 	const struct secasindex *saidx;
5653 {
5654 	struct sadb_prop *prop;
5655 	struct mbuf *m, *n;
5656 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
5657 	int totlen;
5658 
5659 	switch (saidx->proto)  {
5660 	case IPPROTO_ESP:
5661 		m = key_getcomb_esp();
5662 		break;
5663 	case IPPROTO_AH:
5664 		m = key_getcomb_ah();
5665 		break;
5666 	case IPPROTO_IPCOMP:
5667 		m = key_getcomb_ipcomp();
5668 		break;
5669 	default:
5670 		return NULL;
5671 	}
5672 
5673 	if (!m)
5674 		return NULL;
5675 	M_PREPEND(m, l, M_DONTWAIT);
5676 	if (!m)
5677 		return NULL;
5678 
5679 	totlen = 0;
5680 	for (n = m; n; n = n->m_next)
5681 		totlen += n->m_len;
5682 
5683 	prop = mtod(m, struct sadb_prop *);
5684 	bzero(prop, sizeof(*prop));
5685 	prop->sadb_prop_len = PFKEY_UNIT64(totlen);
5686 	prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
5687 	prop->sadb_prop_replay = 32;	/* XXX */
5688 
5689 	return m;
5690 }
5691 
5692 /*
5693  * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
5694  * send
5695  *   <base, SA, address(SD), (address(P)), x_policy,
5696  *       (identity(SD),) (sensitivity,) proposal>
5697  * to KMD, and expect to receive
5698  *   <base> with SADB_ACQUIRE if error occured,
5699  * or
5700  *   <base, src address, dst address, (SPI range)> with SADB_GETSPI
5701  * from KMD by PF_KEY.
5702  *
5703  * XXX x_policy is outside of RFC2367 (KAME extension).
5704  * XXX sensitivity is not supported.
5705  * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
5706  * see comment for key_getcomb_ipcomp().
5707  *
5708  * OUT:
5709  *    0     : succeed
5710  *    others: error number
5711  */
5712 static int
5713 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
5714 {
5715 	INIT_VNET_IPSEC(curvnet);
5716 	struct mbuf *result = NULL, *m;
5717 	struct secacq *newacq;
5718 	u_int8_t satype;
5719 	int error = -1;
5720 	u_int32_t seq;
5721 
5722 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
5723 	satype = key_proto2satype(saidx->proto);
5724 	IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto));
5725 
5726 	/*
5727 	 * We never do anything about acquirng SA.  There is anather
5728 	 * solution that kernel blocks to send SADB_ACQUIRE message until
5729 	 * getting something message from IKEd.  In later case, to be
5730 	 * managed with ACQUIRING list.
5731 	 */
5732 	/* Get an entry to check whether sending message or not. */
5733 	if ((newacq = key_getacq(saidx)) != NULL) {
5734 		if (V_key_blockacq_count < newacq->count) {
5735 			/* reset counter and do send message. */
5736 			newacq->count = 0;
5737 		} else {
5738 			/* increment counter and do nothing. */
5739 			newacq->count++;
5740 			return 0;
5741 		}
5742 	} else {
5743 		/* make new entry for blocking to send SADB_ACQUIRE. */
5744 		if ((newacq = key_newacq(saidx)) == NULL)
5745 			return ENOBUFS;
5746 	}
5747 
5748 
5749 	seq = newacq->seq;
5750 	m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
5751 	if (!m) {
5752 		error = ENOBUFS;
5753 		goto fail;
5754 	}
5755 	result = m;
5756 
5757 	/* set sadb_address for saidx's. */
5758 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
5759 	    &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY);
5760 	if (!m) {
5761 		error = ENOBUFS;
5762 		goto fail;
5763 	}
5764 	m_cat(result, m);
5765 
5766 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
5767 	    &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY);
5768 	if (!m) {
5769 		error = ENOBUFS;
5770 		goto fail;
5771 	}
5772 	m_cat(result, m);
5773 
5774 	/* XXX proxy address (optional) */
5775 
5776 	/* set sadb_x_policy */
5777 	if (sp) {
5778 		m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
5779 		if (!m) {
5780 			error = ENOBUFS;
5781 			goto fail;
5782 		}
5783 		m_cat(result, m);
5784 	}
5785 
5786 	/* XXX identity (optional) */
5787 #if 0
5788 	if (idexttype && fqdn) {
5789 		/* create identity extension (FQDN) */
5790 		struct sadb_ident *id;
5791 		int fqdnlen;
5792 
5793 		fqdnlen = strlen(fqdn) + 1;	/* +1 for terminating-NUL */
5794 		id = (struct sadb_ident *)p;
5795 		bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
5796 		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
5797 		id->sadb_ident_exttype = idexttype;
5798 		id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
5799 		bcopy(fqdn, id + 1, fqdnlen);
5800 		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
5801 	}
5802 
5803 	if (idexttype) {
5804 		/* create identity extension (USERFQDN) */
5805 		struct sadb_ident *id;
5806 		int userfqdnlen;
5807 
5808 		if (userfqdn) {
5809 			/* +1 for terminating-NUL */
5810 			userfqdnlen = strlen(userfqdn) + 1;
5811 		} else
5812 			userfqdnlen = 0;
5813 		id = (struct sadb_ident *)p;
5814 		bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
5815 		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
5816 		id->sadb_ident_exttype = idexttype;
5817 		id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
5818 		/* XXX is it correct? */
5819 		if (curproc && curproc->p_cred)
5820 			id->sadb_ident_id = curproc->p_cred->p_ruid;
5821 		if (userfqdn && userfqdnlen)
5822 			bcopy(userfqdn, id + 1, userfqdnlen);
5823 		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
5824 	}
5825 #endif
5826 
5827 	/* XXX sensitivity (optional) */
5828 
5829 	/* create proposal/combination extension */
5830 	m = key_getprop(saidx);
5831 #if 0
5832 	/*
5833 	 * spec conformant: always attach proposal/combination extension,
5834 	 * the problem is that we have no way to attach it for ipcomp,
5835 	 * due to the way sadb_comb is declared in RFC2367.
5836 	 */
5837 	if (!m) {
5838 		error = ENOBUFS;
5839 		goto fail;
5840 	}
5841 	m_cat(result, m);
5842 #else
5843 	/*
5844 	 * outside of spec; make proposal/combination extension optional.
5845 	 */
5846 	if (m)
5847 		m_cat(result, m);
5848 #endif
5849 
5850 	if ((result->m_flags & M_PKTHDR) == 0) {
5851 		error = EINVAL;
5852 		goto fail;
5853 	}
5854 
5855 	if (result->m_len < sizeof(struct sadb_msg)) {
5856 		result = m_pullup(result, sizeof(struct sadb_msg));
5857 		if (result == NULL) {
5858 			error = ENOBUFS;
5859 			goto fail;
5860 		}
5861 	}
5862 
5863 	result->m_pkthdr.len = 0;
5864 	for (m = result; m; m = m->m_next)
5865 		result->m_pkthdr.len += m->m_len;
5866 
5867 	mtod(result, struct sadb_msg *)->sadb_msg_len =
5868 	    PFKEY_UNIT64(result->m_pkthdr.len);
5869 
5870 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
5871 
5872  fail:
5873 	if (result)
5874 		m_freem(result);
5875 	return error;
5876 }
5877 
5878 static struct secacq *
5879 key_newacq(const struct secasindex *saidx)
5880 {
5881 	INIT_VNET_IPSEC(curvnet);
5882 	struct secacq *newacq;
5883 
5884 	/* get new entry */
5885 	newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
5886 	if (newacq == NULL) {
5887 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5888 		return NULL;
5889 	}
5890 
5891 	/* copy secindex */
5892 	bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx));
5893 	newacq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq);
5894 	newacq->created = time_second;
5895 	newacq->count = 0;
5896 
5897 	/* add to acqtree */
5898 	ACQ_LOCK();
5899 	LIST_INSERT_HEAD(&V_acqtree, newacq, chain);
5900 	ACQ_UNLOCK();
5901 
5902 	return newacq;
5903 }
5904 
5905 static struct secacq *
5906 key_getacq(const struct secasindex *saidx)
5907 {
5908 	INIT_VNET_IPSEC(curvnet);
5909 	struct secacq *acq;
5910 
5911 	ACQ_LOCK();
5912 	LIST_FOREACH(acq, &V_acqtree, chain) {
5913 		if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY))
5914 			break;
5915 	}
5916 	ACQ_UNLOCK();
5917 
5918 	return acq;
5919 }
5920 
5921 static struct secacq *
5922 key_getacqbyseq(seq)
5923 	u_int32_t seq;
5924 {
5925 	INIT_VNET_IPSEC(curvnet);
5926 	struct secacq *acq;
5927 
5928 	ACQ_LOCK();
5929 	LIST_FOREACH(acq, &V_acqtree, chain) {
5930 		if (acq->seq == seq)
5931 			break;
5932 	}
5933 	ACQ_UNLOCK();
5934 
5935 	return acq;
5936 }
5937 
5938 static struct secspacq *
5939 key_newspacq(spidx)
5940 	struct secpolicyindex *spidx;
5941 {
5942 	INIT_VNET_IPSEC(curvnet);
5943 	struct secspacq *acq;
5944 
5945 	/* get new entry */
5946 	acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
5947 	if (acq == NULL) {
5948 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5949 		return NULL;
5950 	}
5951 
5952 	/* copy secindex */
5953 	bcopy(spidx, &acq->spidx, sizeof(acq->spidx));
5954 	acq->created = time_second;
5955 	acq->count = 0;
5956 
5957 	/* add to spacqtree */
5958 	SPACQ_LOCK();
5959 	LIST_INSERT_HEAD(&V_spacqtree, acq, chain);
5960 	SPACQ_UNLOCK();
5961 
5962 	return acq;
5963 }
5964 
5965 static struct secspacq *
5966 key_getspacq(spidx)
5967 	struct secpolicyindex *spidx;
5968 {
5969 	INIT_VNET_IPSEC(curvnet);
5970 	struct secspacq *acq;
5971 
5972 	SPACQ_LOCK();
5973 	LIST_FOREACH(acq, &V_spacqtree, chain) {
5974 		if (key_cmpspidx_exactly(spidx, &acq->spidx)) {
5975 			/* NB: return holding spacq_lock */
5976 			return acq;
5977 		}
5978 	}
5979 	SPACQ_UNLOCK();
5980 
5981 	return NULL;
5982 }
5983 
5984 /*
5985  * SADB_ACQUIRE processing,
5986  * in first situation, is receiving
5987  *   <base>
5988  * from the ikmpd, and clear sequence of its secasvar entry.
5989  *
5990  * In second situation, is receiving
5991  *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
5992  * from a user land process, and return
5993  *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
5994  * to the socket.
5995  *
5996  * m will always be freed.
5997  */
5998 static int
5999 key_acquire2(so, m, mhp)
6000 	struct socket *so;
6001 	struct mbuf *m;
6002 	const struct sadb_msghdr *mhp;
6003 {
6004 	INIT_VNET_IPSEC(curvnet);
6005 	const struct sadb_address *src0, *dst0;
6006 	struct secasindex saidx;
6007 	struct secashead *sah;
6008 	u_int16_t proto;
6009 	int error;
6010 
6011 	IPSEC_ASSERT(so != NULL, ("null socket"));
6012 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6013 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6014 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6015 
6016 	/*
6017 	 * Error message from KMd.
6018 	 * We assume that if error was occured in IKEd, the length of PFKEY
6019 	 * message is equal to the size of sadb_msg structure.
6020 	 * We do not raise error even if error occured in this function.
6021 	 */
6022 	if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6023 		struct secacq *acq;
6024 
6025 		/* check sequence number */
6026 		if (mhp->msg->sadb_msg_seq == 0) {
6027 			ipseclog((LOG_DEBUG, "%s: must specify sequence "
6028 				"number.\n", __func__));
6029 			m_freem(m);
6030 			return 0;
6031 		}
6032 
6033 		if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) {
6034 			/*
6035 			 * the specified larval SA is already gone, or we got
6036 			 * a bogus sequence number.  we can silently ignore it.
6037 			 */
6038 			m_freem(m);
6039 			return 0;
6040 		}
6041 
6042 		/* reset acq counter in order to deletion by timehander. */
6043 		acq->created = time_second;
6044 		acq->count = 0;
6045 		m_freem(m);
6046 		return 0;
6047 	}
6048 
6049 	/*
6050 	 * This message is from user land.
6051 	 */
6052 
6053 	/* map satype to proto */
6054 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6055 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6056 			__func__));
6057 		return key_senderror(so, m, EINVAL);
6058 	}
6059 
6060 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6061 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6062 	    mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6063 		/* error */
6064 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
6065 			__func__));
6066 		return key_senderror(so, m, EINVAL);
6067 	}
6068 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6069 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6070 	    mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6071 		/* error */
6072 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
6073 			__func__));
6074 		return key_senderror(so, m, EINVAL);
6075 	}
6076 
6077 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
6078 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
6079 
6080 	/* XXX boundary check against sa_len */
6081 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
6082 
6083 	/* get a SA index */
6084 	SAHTREE_LOCK();
6085 	LIST_FOREACH(sah, &V_sahtree, chain) {
6086 		if (sah->state == SADB_SASTATE_DEAD)
6087 			continue;
6088 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID))
6089 			break;
6090 	}
6091 	SAHTREE_UNLOCK();
6092 	if (sah != NULL) {
6093 		ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__));
6094 		return key_senderror(so, m, EEXIST);
6095 	}
6096 
6097 	error = key_acquire(&saidx, NULL);
6098 	if (error != 0) {
6099 		ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
6100 			__func__, mhp->msg->sadb_msg_errno));
6101 		return key_senderror(so, m, error);
6102 	}
6103 
6104 	return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6105 }
6106 
6107 /*
6108  * SADB_REGISTER processing.
6109  * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6110  * receive
6111  *   <base>
6112  * from the ikmpd, and register a socket to send PF_KEY messages,
6113  * and send
6114  *   <base, supported>
6115  * to KMD by PF_KEY.
6116  * If socket is detached, must free from regnode.
6117  *
6118  * m will always be freed.
6119  */
6120 static int
6121 key_register(so, m, mhp)
6122 	struct socket *so;
6123 	struct mbuf *m;
6124 	const struct sadb_msghdr *mhp;
6125 {
6126 	INIT_VNET_IPSEC(curvnet);
6127 	struct secreg *reg, *newreg = 0;
6128 
6129 	IPSEC_ASSERT(so != NULL, ("null socket"));
6130 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6131 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6132 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6133 
6134 	/* check for invalid register message */
6135 	if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0]))
6136 		return key_senderror(so, m, EINVAL);
6137 
6138 	/* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6139 	if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6140 		goto setmsg;
6141 
6142 	/* check whether existing or not */
6143 	REGTREE_LOCK();
6144 	LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) {
6145 		if (reg->so == so) {
6146 			REGTREE_UNLOCK();
6147 			ipseclog((LOG_DEBUG, "%s: socket exists already.\n",
6148 				__func__));
6149 			return key_senderror(so, m, EEXIST);
6150 		}
6151 	}
6152 
6153 	/* create regnode */
6154 	newreg =  malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO);
6155 	if (newreg == NULL) {
6156 		REGTREE_UNLOCK();
6157 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6158 		return key_senderror(so, m, ENOBUFS);
6159 	}
6160 
6161 	newreg->so = so;
6162 	((struct keycb *)sotorawcb(so))->kp_registered++;
6163 
6164 	/* add regnode to regtree. */
6165 	LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain);
6166 	REGTREE_UNLOCK();
6167 
6168   setmsg:
6169     {
6170 	struct mbuf *n;
6171 	struct sadb_msg *newmsg;
6172 	struct sadb_supported *sup;
6173 	u_int len, alen, elen;
6174 	int off;
6175 	int i;
6176 	struct sadb_alg *alg;
6177 
6178 	/* create new sadb_msg to reply. */
6179 	alen = 0;
6180 	for (i = 1; i <= SADB_AALG_MAX; i++) {
6181 		if (ah_algorithm_lookup(i))
6182 			alen += sizeof(struct sadb_alg);
6183 	}
6184 	if (alen)
6185 		alen += sizeof(struct sadb_supported);
6186 	elen = 0;
6187 	for (i = 1; i <= SADB_EALG_MAX; i++) {
6188 		if (esp_algorithm_lookup(i))
6189 			elen += sizeof(struct sadb_alg);
6190 	}
6191 	if (elen)
6192 		elen += sizeof(struct sadb_supported);
6193 
6194 	len = sizeof(struct sadb_msg) + alen + elen;
6195 
6196 	if (len > MCLBYTES)
6197 		return key_senderror(so, m, ENOBUFS);
6198 
6199 	MGETHDR(n, M_DONTWAIT, MT_DATA);
6200 	if (len > MHLEN) {
6201 		MCLGET(n, M_DONTWAIT);
6202 		if ((n->m_flags & M_EXT) == 0) {
6203 			m_freem(n);
6204 			n = NULL;
6205 		}
6206 	}
6207 	if (!n)
6208 		return key_senderror(so, m, ENOBUFS);
6209 
6210 	n->m_pkthdr.len = n->m_len = len;
6211 	n->m_next = NULL;
6212 	off = 0;
6213 
6214 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
6215 	newmsg = mtod(n, struct sadb_msg *);
6216 	newmsg->sadb_msg_errno = 0;
6217 	newmsg->sadb_msg_len = PFKEY_UNIT64(len);
6218 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6219 
6220 	/* for authentication algorithm */
6221 	if (alen) {
6222 		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6223 		sup->sadb_supported_len = PFKEY_UNIT64(alen);
6224 		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6225 		off += PFKEY_ALIGN8(sizeof(*sup));
6226 
6227 		for (i = 1; i <= SADB_AALG_MAX; i++) {
6228 			struct auth_hash *aalgo;
6229 			u_int16_t minkeysize, maxkeysize;
6230 
6231 			aalgo = ah_algorithm_lookup(i);
6232 			if (!aalgo)
6233 				continue;
6234 			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6235 			alg->sadb_alg_id = i;
6236 			alg->sadb_alg_ivlen = 0;
6237 			key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6238 			alg->sadb_alg_minbits = _BITS(minkeysize);
6239 			alg->sadb_alg_maxbits = _BITS(maxkeysize);
6240 			off += PFKEY_ALIGN8(sizeof(*alg));
6241 		}
6242 	}
6243 
6244 	/* for encryption algorithm */
6245 	if (elen) {
6246 		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6247 		sup->sadb_supported_len = PFKEY_UNIT64(elen);
6248 		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6249 		off += PFKEY_ALIGN8(sizeof(*sup));
6250 
6251 		for (i = 1; i <= SADB_EALG_MAX; i++) {
6252 			struct enc_xform *ealgo;
6253 
6254 			ealgo = esp_algorithm_lookup(i);
6255 			if (!ealgo)
6256 				continue;
6257 			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6258 			alg->sadb_alg_id = i;
6259 			alg->sadb_alg_ivlen = ealgo->blocksize;
6260 			alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6261 			alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6262 			off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6263 		}
6264 	}
6265 
6266 	IPSEC_ASSERT(off == len,
6267 		("length assumption failed (off %u len %u)", off, len));
6268 
6269 	m_freem(m);
6270 	return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6271     }
6272 }
6273 
6274 /*
6275  * free secreg entry registered.
6276  * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6277  */
6278 void
6279 key_freereg(struct socket *so)
6280 {
6281 	INIT_VNET_IPSEC(curvnet);
6282 	struct secreg *reg;
6283 	int i;
6284 
6285 	IPSEC_ASSERT(so != NULL, ("NULL so"));
6286 
6287 	/*
6288 	 * check whether existing or not.
6289 	 * check all type of SA, because there is a potential that
6290 	 * one socket is registered to multiple type of SA.
6291 	 */
6292 	REGTREE_LOCK();
6293 	for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6294 		LIST_FOREACH(reg, &V_regtree[i], chain) {
6295 			if (reg->so == so && __LIST_CHAINED(reg)) {
6296 				LIST_REMOVE(reg, chain);
6297 				free(reg, M_IPSEC_SAR);
6298 				break;
6299 			}
6300 		}
6301 	}
6302 	REGTREE_UNLOCK();
6303 }
6304 
6305 /*
6306  * SADB_EXPIRE processing
6307  * send
6308  *   <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6309  * to KMD by PF_KEY.
6310  * NOTE: We send only soft lifetime extension.
6311  *
6312  * OUT:	0	: succeed
6313  *	others	: error number
6314  */
6315 static int
6316 key_expire(struct secasvar *sav)
6317 {
6318 	int s;
6319 	int satype;
6320 	struct mbuf *result = NULL, *m;
6321 	int len;
6322 	int error = -1;
6323 	struct sadb_lifetime *lt;
6324 
6325 	/* XXX: Why do we lock ? */
6326 	s = splnet();	/*called from softclock()*/
6327 
6328 	IPSEC_ASSERT (sav != NULL, ("null sav"));
6329 	IPSEC_ASSERT (sav->sah != NULL, ("null sa header"));
6330 
6331 	/* set msg header */
6332 	satype = key_proto2satype(sav->sah->saidx.proto);
6333 	IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype));
6334 	m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6335 	if (!m) {
6336 		error = ENOBUFS;
6337 		goto fail;
6338 	}
6339 	result = m;
6340 
6341 	/* create SA extension */
6342 	m = key_setsadbsa(sav);
6343 	if (!m) {
6344 		error = ENOBUFS;
6345 		goto fail;
6346 	}
6347 	m_cat(result, m);
6348 
6349 	/* create SA extension */
6350 	m = key_setsadbxsa2(sav->sah->saidx.mode,
6351 			sav->replay ? sav->replay->count : 0,
6352 			sav->sah->saidx.reqid);
6353 	if (!m) {
6354 		error = ENOBUFS;
6355 		goto fail;
6356 	}
6357 	m_cat(result, m);
6358 
6359 	/* create lifetime extension (current and soft) */
6360 	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6361 	m = key_alloc_mbuf(len);
6362 	if (!m || m->m_next) {	/*XXX*/
6363 		if (m)
6364 			m_freem(m);
6365 		error = ENOBUFS;
6366 		goto fail;
6367 	}
6368 	bzero(mtod(m, caddr_t), len);
6369 	lt = mtod(m, struct sadb_lifetime *);
6370 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6371 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6372 	lt->sadb_lifetime_allocations = sav->lft_c->allocations;
6373 	lt->sadb_lifetime_bytes = sav->lft_c->bytes;
6374 	lt->sadb_lifetime_addtime = sav->lft_c->addtime;
6375 	lt->sadb_lifetime_usetime = sav->lft_c->usetime;
6376 	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
6377 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6378 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
6379 	lt->sadb_lifetime_allocations = sav->lft_s->allocations;
6380 	lt->sadb_lifetime_bytes = sav->lft_s->bytes;
6381 	lt->sadb_lifetime_addtime = sav->lft_s->addtime;
6382 	lt->sadb_lifetime_usetime = sav->lft_s->usetime;
6383 	m_cat(result, m);
6384 
6385 	/* set sadb_address for source */
6386 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6387 	    &sav->sah->saidx.src.sa,
6388 	    FULLMASK, IPSEC_ULPROTO_ANY);
6389 	if (!m) {
6390 		error = ENOBUFS;
6391 		goto fail;
6392 	}
6393 	m_cat(result, m);
6394 
6395 	/* set sadb_address for destination */
6396 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6397 	    &sav->sah->saidx.dst.sa,
6398 	    FULLMASK, IPSEC_ULPROTO_ANY);
6399 	if (!m) {
6400 		error = ENOBUFS;
6401 		goto fail;
6402 	}
6403 	m_cat(result, m);
6404 
6405 	if ((result->m_flags & M_PKTHDR) == 0) {
6406 		error = EINVAL;
6407 		goto fail;
6408 	}
6409 
6410 	if (result->m_len < sizeof(struct sadb_msg)) {
6411 		result = m_pullup(result, sizeof(struct sadb_msg));
6412 		if (result == NULL) {
6413 			error = ENOBUFS;
6414 			goto fail;
6415 		}
6416 	}
6417 
6418 	result->m_pkthdr.len = 0;
6419 	for (m = result; m; m = m->m_next)
6420 		result->m_pkthdr.len += m->m_len;
6421 
6422 	mtod(result, struct sadb_msg *)->sadb_msg_len =
6423 	    PFKEY_UNIT64(result->m_pkthdr.len);
6424 
6425 	splx(s);
6426 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6427 
6428  fail:
6429 	if (result)
6430 		m_freem(result);
6431 	splx(s);
6432 	return error;
6433 }
6434 
6435 /*
6436  * SADB_FLUSH processing
6437  * receive
6438  *   <base>
6439  * from the ikmpd, and free all entries in secastree.
6440  * and send,
6441  *   <base>
6442  * to the ikmpd.
6443  * NOTE: to do is only marking SADB_SASTATE_DEAD.
6444  *
6445  * m will always be freed.
6446  */
6447 static int
6448 key_flush(so, m, mhp)
6449 	struct socket *so;
6450 	struct mbuf *m;
6451 	const struct sadb_msghdr *mhp;
6452 {
6453 	INIT_VNET_IPSEC(curvnet);
6454 	struct sadb_msg *newmsg;
6455 	struct secashead *sah, *nextsah;
6456 	struct secasvar *sav, *nextsav;
6457 	u_int16_t proto;
6458 	u_int8_t state;
6459 	u_int stateidx;
6460 
6461 	IPSEC_ASSERT(so != NULL, ("null socket"));
6462 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6463 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6464 
6465 	/* map satype to proto */
6466 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6467 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6468 			__func__));
6469 		return key_senderror(so, m, EINVAL);
6470 	}
6471 
6472 	/* no SATYPE specified, i.e. flushing all SA. */
6473 	SAHTREE_LOCK();
6474 	for (sah = LIST_FIRST(&V_sahtree);
6475 	     sah != NULL;
6476 	     sah = nextsah) {
6477 		nextsah = LIST_NEXT(sah, chain);
6478 
6479 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6480 		 && proto != sah->saidx.proto)
6481 			continue;
6482 
6483 		for (stateidx = 0;
6484 		     stateidx < _ARRAYLEN(saorder_state_alive);
6485 		     stateidx++) {
6486 			state = saorder_state_any[stateidx];
6487 			for (sav = LIST_FIRST(&sah->savtree[state]);
6488 			     sav != NULL;
6489 			     sav = nextsav) {
6490 
6491 				nextsav = LIST_NEXT(sav, chain);
6492 
6493 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
6494 				KEY_FREESAV(&sav);
6495 			}
6496 		}
6497 
6498 		sah->state = SADB_SASTATE_DEAD;
6499 	}
6500 	SAHTREE_UNLOCK();
6501 
6502 	if (m->m_len < sizeof(struct sadb_msg) ||
6503 	    sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
6504 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6505 		return key_senderror(so, m, ENOBUFS);
6506 	}
6507 
6508 	if (m->m_next)
6509 		m_freem(m->m_next);
6510 	m->m_next = NULL;
6511 	m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
6512 	newmsg = mtod(m, struct sadb_msg *);
6513 	newmsg->sadb_msg_errno = 0;
6514 	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
6515 
6516 	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6517 }
6518 
6519 /*
6520  * SADB_DUMP processing
6521  * dump all entries including status of DEAD in SAD.
6522  * receive
6523  *   <base>
6524  * from the ikmpd, and dump all secasvar leaves
6525  * and send,
6526  *   <base> .....
6527  * to the ikmpd.
6528  *
6529  * m will always be freed.
6530  */
6531 static int
6532 key_dump(so, m, mhp)
6533 	struct socket *so;
6534 	struct mbuf *m;
6535 	const struct sadb_msghdr *mhp;
6536 {
6537 	INIT_VNET_IPSEC(curvnet);
6538 	struct secashead *sah;
6539 	struct secasvar *sav;
6540 	u_int16_t proto;
6541 	u_int stateidx;
6542 	u_int8_t satype;
6543 	u_int8_t state;
6544 	int cnt;
6545 	struct sadb_msg *newmsg;
6546 	struct mbuf *n;
6547 
6548 	IPSEC_ASSERT(so != NULL, ("null socket"));
6549 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6550 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6551 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6552 
6553 	/* map satype to proto */
6554 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6555 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6556 			__func__));
6557 		return key_senderror(so, m, EINVAL);
6558 	}
6559 
6560 	/* count sav entries to be sent to the userland. */
6561 	cnt = 0;
6562 	SAHTREE_LOCK();
6563 	LIST_FOREACH(sah, &V_sahtree, chain) {
6564 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6565 		 && proto != sah->saidx.proto)
6566 			continue;
6567 
6568 		for (stateidx = 0;
6569 		     stateidx < _ARRAYLEN(saorder_state_any);
6570 		     stateidx++) {
6571 			state = saorder_state_any[stateidx];
6572 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
6573 				cnt++;
6574 			}
6575 		}
6576 	}
6577 
6578 	if (cnt == 0) {
6579 		SAHTREE_UNLOCK();
6580 		return key_senderror(so, m, ENOENT);
6581 	}
6582 
6583 	/* send this to the userland, one at a time. */
6584 	newmsg = NULL;
6585 	LIST_FOREACH(sah, &V_sahtree, chain) {
6586 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6587 		 && proto != sah->saidx.proto)
6588 			continue;
6589 
6590 		/* map proto to satype */
6591 		if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
6592 			SAHTREE_UNLOCK();
6593 			ipseclog((LOG_DEBUG, "%s: there was invalid proto in "
6594 				"SAD.\n", __func__));
6595 			return key_senderror(so, m, EINVAL);
6596 		}
6597 
6598 		for (stateidx = 0;
6599 		     stateidx < _ARRAYLEN(saorder_state_any);
6600 		     stateidx++) {
6601 			state = saorder_state_any[stateidx];
6602 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
6603 				n = key_setdumpsa(sav, SADB_DUMP, satype,
6604 				    --cnt, mhp->msg->sadb_msg_pid);
6605 				if (!n) {
6606 					SAHTREE_UNLOCK();
6607 					return key_senderror(so, m, ENOBUFS);
6608 				}
6609 				key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
6610 			}
6611 		}
6612 	}
6613 	SAHTREE_UNLOCK();
6614 
6615 	m_freem(m);
6616 	return 0;
6617 }
6618 
6619 /*
6620  * SADB_X_PROMISC processing
6621  *
6622  * m will always be freed.
6623  */
6624 static int
6625 key_promisc(so, m, mhp)
6626 	struct socket *so;
6627 	struct mbuf *m;
6628 	const struct sadb_msghdr *mhp;
6629 {
6630 	int olen;
6631 
6632 	IPSEC_ASSERT(so != NULL, ("null socket"));
6633 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6634 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6635 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6636 
6637 	olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
6638 
6639 	if (olen < sizeof(struct sadb_msg)) {
6640 #if 1
6641 		return key_senderror(so, m, EINVAL);
6642 #else
6643 		m_freem(m);
6644 		return 0;
6645 #endif
6646 	} else if (olen == sizeof(struct sadb_msg)) {
6647 		/* enable/disable promisc mode */
6648 		struct keycb *kp;
6649 
6650 		if ((kp = (struct keycb *)sotorawcb(so)) == NULL)
6651 			return key_senderror(so, m, EINVAL);
6652 		mhp->msg->sadb_msg_errno = 0;
6653 		switch (mhp->msg->sadb_msg_satype) {
6654 		case 0:
6655 		case 1:
6656 			kp->kp_promisc = mhp->msg->sadb_msg_satype;
6657 			break;
6658 		default:
6659 			return key_senderror(so, m, EINVAL);
6660 		}
6661 
6662 		/* send the original message back to everyone */
6663 		mhp->msg->sadb_msg_errno = 0;
6664 		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6665 	} else {
6666 		/* send packet as is */
6667 
6668 		m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
6669 
6670 		/* TODO: if sadb_msg_seq is specified, send to specific pid */
6671 		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6672 	}
6673 }
6674 
6675 static int (*key_typesw[]) __P((struct socket *, struct mbuf *,
6676 		const struct sadb_msghdr *)) = {
6677 	NULL,		/* SADB_RESERVED */
6678 	key_getspi,	/* SADB_GETSPI */
6679 	key_update,	/* SADB_UPDATE */
6680 	key_add,	/* SADB_ADD */
6681 	key_delete,	/* SADB_DELETE */
6682 	key_get,	/* SADB_GET */
6683 	key_acquire2,	/* SADB_ACQUIRE */
6684 	key_register,	/* SADB_REGISTER */
6685 	NULL,		/* SADB_EXPIRE */
6686 	key_flush,	/* SADB_FLUSH */
6687 	key_dump,	/* SADB_DUMP */
6688 	key_promisc,	/* SADB_X_PROMISC */
6689 	NULL,		/* SADB_X_PCHANGE */
6690 	key_spdadd,	/* SADB_X_SPDUPDATE */
6691 	key_spdadd,	/* SADB_X_SPDADD */
6692 	key_spddelete,	/* SADB_X_SPDDELETE */
6693 	key_spdget,	/* SADB_X_SPDGET */
6694 	NULL,		/* SADB_X_SPDACQUIRE */
6695 	key_spddump,	/* SADB_X_SPDDUMP */
6696 	key_spdflush,	/* SADB_X_SPDFLUSH */
6697 	key_spdadd,	/* SADB_X_SPDSETIDX */
6698 	NULL,		/* SADB_X_SPDEXPIRE */
6699 	key_spddelete2,	/* SADB_X_SPDDELETE2 */
6700 };
6701 
6702 /*
6703  * parse sadb_msg buffer to process PFKEYv2,
6704  * and create a data to response if needed.
6705  * I think to be dealed with mbuf directly.
6706  * IN:
6707  *     msgp  : pointer to pointer to a received buffer pulluped.
6708  *             This is rewrited to response.
6709  *     so    : pointer to socket.
6710  * OUT:
6711  *    length for buffer to send to user process.
6712  */
6713 int
6714 key_parse(m, so)
6715 	struct mbuf *m;
6716 	struct socket *so;
6717 {
6718 	INIT_VNET_IPSEC(curvnet);
6719 	struct sadb_msg *msg;
6720 	struct sadb_msghdr mh;
6721 	u_int orglen;
6722 	int error;
6723 	int target;
6724 
6725 	IPSEC_ASSERT(so != NULL, ("null socket"));
6726 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6727 
6728 #if 0	/*kdebug_sadb assumes msg in linear buffer*/
6729 	KEYDEBUG(KEYDEBUG_KEY_DUMP,
6730 		ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__));
6731 		kdebug_sadb(msg));
6732 #endif
6733 
6734 	if (m->m_len < sizeof(struct sadb_msg)) {
6735 		m = m_pullup(m, sizeof(struct sadb_msg));
6736 		if (!m)
6737 			return ENOBUFS;
6738 	}
6739 	msg = mtod(m, struct sadb_msg *);
6740 	orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
6741 	target = KEY_SENDUP_ONE;
6742 
6743 	if ((m->m_flags & M_PKTHDR) == 0 ||
6744 	    m->m_pkthdr.len != m->m_pkthdr.len) {
6745 		ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__));
6746 		V_pfkeystat.out_invlen++;
6747 		error = EINVAL;
6748 		goto senderror;
6749 	}
6750 
6751 	if (msg->sadb_msg_version != PF_KEY_V2) {
6752 		ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n",
6753 		    __func__, msg->sadb_msg_version));
6754 		V_pfkeystat.out_invver++;
6755 		error = EINVAL;
6756 		goto senderror;
6757 	}
6758 
6759 	if (msg->sadb_msg_type > SADB_MAX) {
6760 		ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
6761 		    __func__, msg->sadb_msg_type));
6762 		V_pfkeystat.out_invmsgtype++;
6763 		error = EINVAL;
6764 		goto senderror;
6765 	}
6766 
6767 	/* for old-fashioned code - should be nuked */
6768 	if (m->m_pkthdr.len > MCLBYTES) {
6769 		m_freem(m);
6770 		return ENOBUFS;
6771 	}
6772 	if (m->m_next) {
6773 		struct mbuf *n;
6774 
6775 		MGETHDR(n, M_DONTWAIT, MT_DATA);
6776 		if (n && m->m_pkthdr.len > MHLEN) {
6777 			MCLGET(n, M_DONTWAIT);
6778 			if ((n->m_flags & M_EXT) == 0) {
6779 				m_free(n);
6780 				n = NULL;
6781 			}
6782 		}
6783 		if (!n) {
6784 			m_freem(m);
6785 			return ENOBUFS;
6786 		}
6787 		m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t));
6788 		n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
6789 		n->m_next = NULL;
6790 		m_freem(m);
6791 		m = n;
6792 	}
6793 
6794 	/* align the mbuf chain so that extensions are in contiguous region. */
6795 	error = key_align(m, &mh);
6796 	if (error)
6797 		return error;
6798 
6799 	msg = mh.msg;
6800 
6801 	/* check SA type */
6802 	switch (msg->sadb_msg_satype) {
6803 	case SADB_SATYPE_UNSPEC:
6804 		switch (msg->sadb_msg_type) {
6805 		case SADB_GETSPI:
6806 		case SADB_UPDATE:
6807 		case SADB_ADD:
6808 		case SADB_DELETE:
6809 		case SADB_GET:
6810 		case SADB_ACQUIRE:
6811 		case SADB_EXPIRE:
6812 			ipseclog((LOG_DEBUG, "%s: must specify satype "
6813 			    "when msg type=%u.\n", __func__,
6814 			    msg->sadb_msg_type));
6815 			V_pfkeystat.out_invsatype++;
6816 			error = EINVAL;
6817 			goto senderror;
6818 		}
6819 		break;
6820 	case SADB_SATYPE_AH:
6821 	case SADB_SATYPE_ESP:
6822 	case SADB_X_SATYPE_IPCOMP:
6823 	case SADB_X_SATYPE_TCPSIGNATURE:
6824 		switch (msg->sadb_msg_type) {
6825 		case SADB_X_SPDADD:
6826 		case SADB_X_SPDDELETE:
6827 		case SADB_X_SPDGET:
6828 		case SADB_X_SPDDUMP:
6829 		case SADB_X_SPDFLUSH:
6830 		case SADB_X_SPDSETIDX:
6831 		case SADB_X_SPDUPDATE:
6832 		case SADB_X_SPDDELETE2:
6833 			ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n",
6834 				__func__, msg->sadb_msg_type));
6835 			V_pfkeystat.out_invsatype++;
6836 			error = EINVAL;
6837 			goto senderror;
6838 		}
6839 		break;
6840 	case SADB_SATYPE_RSVP:
6841 	case SADB_SATYPE_OSPFV2:
6842 	case SADB_SATYPE_RIPV2:
6843 	case SADB_SATYPE_MIP:
6844 		ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n",
6845 			__func__, msg->sadb_msg_satype));
6846 		V_pfkeystat.out_invsatype++;
6847 		error = EOPNOTSUPP;
6848 		goto senderror;
6849 	case 1:	/* XXX: What does it do? */
6850 		if (msg->sadb_msg_type == SADB_X_PROMISC)
6851 			break;
6852 		/*FALLTHROUGH*/
6853 	default:
6854 		ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
6855 			__func__, msg->sadb_msg_satype));
6856 		V_pfkeystat.out_invsatype++;
6857 		error = EINVAL;
6858 		goto senderror;
6859 	}
6860 
6861 	/* check field of upper layer protocol and address family */
6862 	if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL
6863 	 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
6864 		struct sadb_address *src0, *dst0;
6865 		u_int plen;
6866 
6867 		src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
6868 		dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
6869 
6870 		/* check upper layer protocol */
6871 		if (src0->sadb_address_proto != dst0->sadb_address_proto) {
6872 			ipseclog((LOG_DEBUG, "%s: upper layer protocol "
6873 				"mismatched.\n", __func__));
6874 			V_pfkeystat.out_invaddr++;
6875 			error = EINVAL;
6876 			goto senderror;
6877 		}
6878 
6879 		/* check family */
6880 		if (PFKEY_ADDR_SADDR(src0)->sa_family !=
6881 		    PFKEY_ADDR_SADDR(dst0)->sa_family) {
6882 			ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
6883 				__func__));
6884 			V_pfkeystat.out_invaddr++;
6885 			error = EINVAL;
6886 			goto senderror;
6887 		}
6888 		if (PFKEY_ADDR_SADDR(src0)->sa_len !=
6889 		    PFKEY_ADDR_SADDR(dst0)->sa_len) {
6890 			ipseclog((LOG_DEBUG, "%s: address struct size "
6891 				"mismatched.\n", __func__));
6892 			V_pfkeystat.out_invaddr++;
6893 			error = EINVAL;
6894 			goto senderror;
6895 		}
6896 
6897 		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
6898 		case AF_INET:
6899 			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
6900 			    sizeof(struct sockaddr_in)) {
6901 				V_pfkeystat.out_invaddr++;
6902 				error = EINVAL;
6903 				goto senderror;
6904 			}
6905 			break;
6906 		case AF_INET6:
6907 			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
6908 			    sizeof(struct sockaddr_in6)) {
6909 				V_pfkeystat.out_invaddr++;
6910 				error = EINVAL;
6911 				goto senderror;
6912 			}
6913 			break;
6914 		default:
6915 			ipseclog((LOG_DEBUG, "%s: unsupported address family\n",
6916 				__func__));
6917 			V_pfkeystat.out_invaddr++;
6918 			error = EAFNOSUPPORT;
6919 			goto senderror;
6920 		}
6921 
6922 		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
6923 		case AF_INET:
6924 			plen = sizeof(struct in_addr) << 3;
6925 			break;
6926 		case AF_INET6:
6927 			plen = sizeof(struct in6_addr) << 3;
6928 			break;
6929 		default:
6930 			plen = 0;	/*fool gcc*/
6931 			break;
6932 		}
6933 
6934 		/* check max prefix length */
6935 		if (src0->sadb_address_prefixlen > plen ||
6936 		    dst0->sadb_address_prefixlen > plen) {
6937 			ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n",
6938 				__func__));
6939 			V_pfkeystat.out_invaddr++;
6940 			error = EINVAL;
6941 			goto senderror;
6942 		}
6943 
6944 		/*
6945 		 * prefixlen == 0 is valid because there can be a case when
6946 		 * all addresses are matched.
6947 		 */
6948 	}
6949 
6950 	if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) ||
6951 	    key_typesw[msg->sadb_msg_type] == NULL) {
6952 		V_pfkeystat.out_invmsgtype++;
6953 		error = EINVAL;
6954 		goto senderror;
6955 	}
6956 
6957 	return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
6958 
6959 senderror:
6960 	msg->sadb_msg_errno = error;
6961 	return key_sendup_mbuf(so, m, target);
6962 }
6963 
6964 static int
6965 key_senderror(so, m, code)
6966 	struct socket *so;
6967 	struct mbuf *m;
6968 	int code;
6969 {
6970 	struct sadb_msg *msg;
6971 
6972 	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
6973 		("mbuf too small, len %u", m->m_len));
6974 
6975 	msg = mtod(m, struct sadb_msg *);
6976 	msg->sadb_msg_errno = code;
6977 	return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
6978 }
6979 
6980 /*
6981  * set the pointer to each header into message buffer.
6982  * m will be freed on error.
6983  * XXX larger-than-MCLBYTES extension?
6984  */
6985 static int
6986 key_align(m, mhp)
6987 	struct mbuf *m;
6988 	struct sadb_msghdr *mhp;
6989 {
6990 	INIT_VNET_IPSEC(curvnet);
6991 	struct mbuf *n;
6992 	struct sadb_ext *ext;
6993 	size_t off, end;
6994 	int extlen;
6995 	int toff;
6996 
6997 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6998 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6999 	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
7000 		("mbuf too small, len %u", m->m_len));
7001 
7002 	/* initialize */
7003 	bzero(mhp, sizeof(*mhp));
7004 
7005 	mhp->msg = mtod(m, struct sadb_msg *);
7006 	mhp->ext[0] = (struct sadb_ext *)mhp->msg;	/*XXX backward compat */
7007 
7008 	end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7009 	extlen = end;	/*just in case extlen is not updated*/
7010 	for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7011 		n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7012 		if (!n) {
7013 			/* m is already freed */
7014 			return ENOBUFS;
7015 		}
7016 		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
7017 
7018 		/* set pointer */
7019 		switch (ext->sadb_ext_type) {
7020 		case SADB_EXT_SA:
7021 		case SADB_EXT_ADDRESS_SRC:
7022 		case SADB_EXT_ADDRESS_DST:
7023 		case SADB_EXT_ADDRESS_PROXY:
7024 		case SADB_EXT_LIFETIME_CURRENT:
7025 		case SADB_EXT_LIFETIME_HARD:
7026 		case SADB_EXT_LIFETIME_SOFT:
7027 		case SADB_EXT_KEY_AUTH:
7028 		case SADB_EXT_KEY_ENCRYPT:
7029 		case SADB_EXT_IDENTITY_SRC:
7030 		case SADB_EXT_IDENTITY_DST:
7031 		case SADB_EXT_SENSITIVITY:
7032 		case SADB_EXT_PROPOSAL:
7033 		case SADB_EXT_SUPPORTED_AUTH:
7034 		case SADB_EXT_SUPPORTED_ENCRYPT:
7035 		case SADB_EXT_SPIRANGE:
7036 		case SADB_X_EXT_POLICY:
7037 		case SADB_X_EXT_SA2:
7038 			/* duplicate check */
7039 			/*
7040 			 * XXX Are there duplication payloads of either
7041 			 * KEY_AUTH or KEY_ENCRYPT ?
7042 			 */
7043 			if (mhp->ext[ext->sadb_ext_type] != NULL) {
7044 				ipseclog((LOG_DEBUG, "%s: duplicate ext_type "
7045 					"%u\n", __func__, ext->sadb_ext_type));
7046 				m_freem(m);
7047 				V_pfkeystat.out_dupext++;
7048 				return EINVAL;
7049 			}
7050 			break;
7051 		default:
7052 			ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n",
7053 				__func__, ext->sadb_ext_type));
7054 			m_freem(m);
7055 			V_pfkeystat.out_invexttype++;
7056 			return EINVAL;
7057 		}
7058 
7059 		extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7060 
7061 		if (key_validate_ext(ext, extlen)) {
7062 			m_freem(m);
7063 			V_pfkeystat.out_invlen++;
7064 			return EINVAL;
7065 		}
7066 
7067 		n = m_pulldown(m, off, extlen, &toff);
7068 		if (!n) {
7069 			/* m is already freed */
7070 			return ENOBUFS;
7071 		}
7072 		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
7073 
7074 		mhp->ext[ext->sadb_ext_type] = ext;
7075 		mhp->extoff[ext->sadb_ext_type] = off;
7076 		mhp->extlen[ext->sadb_ext_type] = extlen;
7077 	}
7078 
7079 	if (off != end) {
7080 		m_freem(m);
7081 		V_pfkeystat.out_invlen++;
7082 		return EINVAL;
7083 	}
7084 
7085 	return 0;
7086 }
7087 
7088 static int
7089 key_validate_ext(ext, len)
7090 	const struct sadb_ext *ext;
7091 	int len;
7092 {
7093 	const struct sockaddr *sa;
7094 	enum { NONE, ADDR } checktype = NONE;
7095 	int baselen = 0;
7096 	const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7097 
7098 	if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7099 		return EINVAL;
7100 
7101 	/* if it does not match minimum/maximum length, bail */
7102 	if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) ||
7103 	    ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0]))
7104 		return EINVAL;
7105 	if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7106 		return EINVAL;
7107 	if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7108 		return EINVAL;
7109 
7110 	/* more checks based on sadb_ext_type XXX need more */
7111 	switch (ext->sadb_ext_type) {
7112 	case SADB_EXT_ADDRESS_SRC:
7113 	case SADB_EXT_ADDRESS_DST:
7114 	case SADB_EXT_ADDRESS_PROXY:
7115 		baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7116 		checktype = ADDR;
7117 		break;
7118 	case SADB_EXT_IDENTITY_SRC:
7119 	case SADB_EXT_IDENTITY_DST:
7120 		if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7121 		    SADB_X_IDENTTYPE_ADDR) {
7122 			baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7123 			checktype = ADDR;
7124 		} else
7125 			checktype = NONE;
7126 		break;
7127 	default:
7128 		checktype = NONE;
7129 		break;
7130 	}
7131 
7132 	switch (checktype) {
7133 	case NONE:
7134 		break;
7135 	case ADDR:
7136 		sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7137 		if (len < baselen + sal)
7138 			return EINVAL;
7139 		if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7140 			return EINVAL;
7141 		break;
7142 	}
7143 
7144 	return 0;
7145 }
7146 
7147 void
7148 key_init(void)
7149 {
7150 	INIT_VNET_IPSEC(curvnet);
7151 	int i;
7152 
7153 	V_key_debug_level = 0;
7154 	V_key_spi_trycnt = 1000;
7155 	V_key_spi_minval = 0x100;
7156 	V_key_spi_maxval = 0x0fffffff;	/* XXX */
7157 	V_policy_id = 0;
7158 	V_key_int_random = 60;		/*interval to initialize randseed,1(m)*/
7159 	V_key_larval_lifetime = 30;	/* interval to expire acquiring, 30(s)*/
7160 	V_key_blockacq_count = 10;	/* counter for blocking SADB_ACQUIRE.*/
7161 	V_key_blockacq_lifetime = 20;	/* lifetime for blocking SADB_ACQUIRE.*/
7162 	V_key_preferred_oldsa = 1;	/* preferred old sa rather than new sa*/
7163 
7164 	V_acq_seq = 0;
7165 
7166 	V_ipsec_esp_keymin = 256;
7167 	V_ipsec_esp_auth = 0;
7168 	V_ipsec_ah_keymin = 128;
7169 
7170 	SPTREE_LOCK_INIT();
7171 	REGTREE_LOCK_INIT();
7172 	SAHTREE_LOCK_INIT();
7173 	ACQ_LOCK_INIT();
7174 	SPACQ_LOCK_INIT();
7175 
7176 	for (i = 0; i < IPSEC_DIR_MAX; i++)
7177 		LIST_INIT(&V_sptree[i]);
7178 
7179 	LIST_INIT(&V_sahtree);
7180 
7181 	for (i = 0; i <= SADB_SATYPE_MAX; i++)
7182 		LIST_INIT(&V_regtree[i]);
7183 
7184 	LIST_INIT(&V_acqtree);
7185 	LIST_INIT(&V_spacqtree);
7186 
7187 	/* system default */
7188 	V_ip4_def_policy.policy = IPSEC_POLICY_NONE;
7189 	V_ip4_def_policy.refcnt++;	/*never reclaim this*/
7190 
7191 #ifndef IPSEC_DEBUG2
7192 	timeout((void *)key_timehandler, (void *)0, hz);
7193 #endif /*IPSEC_DEBUG2*/
7194 
7195 	/* initialize key statistics */
7196 	keystat.getspi_count = 1;
7197 
7198 	printf("IPsec: Initialized Security Association Processing.\n");
7199 
7200 	return;
7201 }
7202 
7203 /*
7204  * XXX: maybe This function is called after INBOUND IPsec processing.
7205  *
7206  * Special check for tunnel-mode packets.
7207  * We must make some checks for consistency between inner and outer IP header.
7208  *
7209  * xxx more checks to be provided
7210  */
7211 int
7212 key_checktunnelsanity(sav, family, src, dst)
7213 	struct secasvar *sav;
7214 	u_int family;
7215 	caddr_t src;
7216 	caddr_t dst;
7217 {
7218 	IPSEC_ASSERT(sav->sah != NULL, ("null SA header"));
7219 
7220 	/* XXX: check inner IP header */
7221 
7222 	return 1;
7223 }
7224 
7225 /* record data transfer on SA, and update timestamps */
7226 void
7227 key_sa_recordxfer(sav, m)
7228 	struct secasvar *sav;
7229 	struct mbuf *m;
7230 {
7231 	IPSEC_ASSERT(sav != NULL, ("Null secasvar"));
7232 	IPSEC_ASSERT(m != NULL, ("Null mbuf"));
7233 	if (!sav->lft_c)
7234 		return;
7235 
7236 	/*
7237 	 * XXX Currently, there is a difference of bytes size
7238 	 * between inbound and outbound processing.
7239 	 */
7240 	sav->lft_c->bytes += m->m_pkthdr.len;
7241 	/* to check bytes lifetime is done in key_timehandler(). */
7242 
7243 	/*
7244 	 * We use the number of packets as the unit of
7245 	 * allocations.  We increment the variable
7246 	 * whenever {esp,ah}_{in,out}put is called.
7247 	 */
7248 	sav->lft_c->allocations++;
7249 	/* XXX check for expires? */
7250 
7251 	/*
7252 	 * NOTE: We record CURRENT usetime by using wall clock,
7253 	 * in seconds.  HARD and SOFT lifetime are measured by the time
7254 	 * difference (again in seconds) from usetime.
7255 	 *
7256 	 *	usetime
7257 	 *	v     expire   expire
7258 	 * -----+-----+--------+---> t
7259 	 *	<--------------> HARD
7260 	 *	<-----> SOFT
7261 	 */
7262 	sav->lft_c->usetime = time_second;
7263 	/* XXX check for expires? */
7264 
7265 	return;
7266 }
7267 
7268 /* dumb version */
7269 void
7270 key_sa_routechange(dst)
7271 	struct sockaddr *dst;
7272 {
7273 	INIT_VNET_IPSEC(curvnet);
7274 	struct secashead *sah;
7275 	struct route *ro;
7276 
7277 	SAHTREE_LOCK();
7278 	LIST_FOREACH(sah, &V_sahtree, chain) {
7279 		ro = &sah->sa_route;
7280 		if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len
7281 		 && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) {
7282 			RTFREE(ro->ro_rt);
7283 			ro->ro_rt = (struct rtentry *)NULL;
7284 		}
7285 	}
7286 	SAHTREE_UNLOCK();
7287 }
7288 
7289 static void
7290 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
7291 {
7292 	IPSEC_ASSERT(sav != NULL, ("NULL sav"));
7293 	SAHTREE_LOCK_ASSERT();
7294 
7295 	if (sav->state != state) {
7296 		if (__LIST_CHAINED(sav))
7297 			LIST_REMOVE(sav, chain);
7298 		sav->state = state;
7299 		LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7300 	}
7301 }
7302 
7303 void
7304 key_sa_stir_iv(sav)
7305 	struct secasvar *sav;
7306 {
7307 
7308 	IPSEC_ASSERT(sav->iv != NULL, ("null IV"));
7309 	key_randomfill(sav->iv, sav->ivlen);
7310 }
7311 
7312 /* XXX too much? */
7313 static struct mbuf *
7314 key_alloc_mbuf(l)
7315 	int l;
7316 {
7317 	struct mbuf *m = NULL, *n;
7318 	int len, t;
7319 
7320 	len = l;
7321 	while (len > 0) {
7322 		MGET(n, M_DONTWAIT, MT_DATA);
7323 		if (n && len > MLEN)
7324 			MCLGET(n, M_DONTWAIT);
7325 		if (!n) {
7326 			m_freem(m);
7327 			return NULL;
7328 		}
7329 
7330 		n->m_next = NULL;
7331 		n->m_len = 0;
7332 		n->m_len = M_TRAILINGSPACE(n);
7333 		/* use the bottom of mbuf, hoping we can prepend afterwards */
7334 		if (n->m_len > len) {
7335 			t = (n->m_len - len) & ~(sizeof(long) - 1);
7336 			n->m_data += t;
7337 			n->m_len = len;
7338 		}
7339 
7340 		len -= n->m_len;
7341 
7342 		if (m)
7343 			m_cat(m, n);
7344 		else
7345 			m = n;
7346 	}
7347 
7348 	return m;
7349 }
7350 
7351 /*
7352  * Take one of the kernel's security keys and convert it into a PF_KEY
7353  * structure within an mbuf, suitable for sending up to a waiting
7354  * application in user land.
7355  *
7356  * IN:
7357  *    src: A pointer to a kernel security key.
7358  *    exttype: Which type of key this is. Refer to the PF_KEY data structures.
7359  * OUT:
7360  *    a valid mbuf or NULL indicating an error
7361  *
7362  */
7363 
7364 static struct mbuf *
7365 key_setkey(struct seckey *src, u_int16_t exttype)
7366 {
7367 	struct mbuf *m;
7368 	struct sadb_key *p;
7369 	int len;
7370 
7371 	if (src == NULL)
7372 		return NULL;
7373 
7374 	len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src));
7375 	m = key_alloc_mbuf(len);
7376 	if (m == NULL)
7377 		return NULL;
7378 	p = mtod(m, struct sadb_key *);
7379 	bzero(p, len);
7380 	p->sadb_key_len = PFKEY_UNIT64(len);
7381 	p->sadb_key_exttype = exttype;
7382 	p->sadb_key_bits = src->bits;
7383 	bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src));
7384 
7385 	return m;
7386 }
7387 
7388 /*
7389  * Take one of the kernel's lifetime data structures and convert it
7390  * into a PF_KEY structure within an mbuf, suitable for sending up to
7391  * a waiting application in user land.
7392  *
7393  * IN:
7394  *    src: A pointer to a kernel lifetime structure.
7395  *    exttype: Which type of lifetime this is. Refer to the PF_KEY
7396  *             data structures for more information.
7397  * OUT:
7398  *    a valid mbuf or NULL indicating an error
7399  *
7400  */
7401 
7402 static struct mbuf *
7403 key_setlifetime(struct seclifetime *src, u_int16_t exttype)
7404 {
7405 	struct mbuf *m = NULL;
7406 	struct sadb_lifetime *p;
7407 	int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime));
7408 
7409 	if (src == NULL)
7410 		return NULL;
7411 
7412 	m = key_alloc_mbuf(len);
7413 	if (m == NULL)
7414 		return m;
7415 	p = mtod(m, struct sadb_lifetime *);
7416 
7417 	bzero(p, len);
7418 	p->sadb_lifetime_len = PFKEY_UNIT64(len);
7419 	p->sadb_lifetime_exttype = exttype;
7420 	p->sadb_lifetime_allocations = src->allocations;
7421 	p->sadb_lifetime_bytes = src->bytes;
7422 	p->sadb_lifetime_addtime = src->addtime;
7423 	p->sadb_lifetime_usetime = src->usetime;
7424 
7425 	return m;
7426 
7427 }
7428