1 /* $FreeBSD$ */ 2 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ 3 4 /*- 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * This code is referd to RFC 2367 35 */ 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 #include "opt_ipsec.h" 40 41 #include <sys/types.h> 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/mutex.h> 47 #include <sys/mbuf.h> 48 #include <sys/domain.h> 49 #include <sys/protosw.h> 50 #include <sys/malloc.h> 51 #include <sys/rmlock.h> 52 #include <sys/socket.h> 53 #include <sys/socketvar.h> 54 #include <sys/sysctl.h> 55 #include <sys/errno.h> 56 #include <sys/proc.h> 57 #include <sys/queue.h> 58 #include <sys/refcount.h> 59 #include <sys/syslog.h> 60 61 #include <net/if.h> 62 #include <net/if_var.h> 63 #include <net/vnet.h> 64 #include <net/raw_cb.h> 65 66 #include <netinet/in.h> 67 #include <netinet/in_systm.h> 68 #include <netinet/ip.h> 69 #include <netinet/in_var.h> 70 71 #ifdef INET6 72 #include <netinet/ip6.h> 73 #include <netinet6/in6_var.h> 74 #include <netinet6/ip6_var.h> 75 #endif /* INET6 */ 76 77 #if defined(INET) || defined(INET6) 78 #include <netinet/in_pcb.h> 79 #endif 80 #ifdef INET6 81 #include <netinet6/in6_pcb.h> 82 #endif /* INET6 */ 83 84 #include <net/pfkeyv2.h> 85 #include <netipsec/keydb.h> 86 #include <netipsec/key.h> 87 #include <netipsec/keysock.h> 88 #include <netipsec/key_debug.h> 89 90 #include <netipsec/ipsec.h> 91 #ifdef INET6 92 #include <netipsec/ipsec6.h> 93 #endif 94 95 #include <netipsec/xform.h> 96 97 #include <machine/stdarg.h> 98 99 /* randomness */ 100 #include <sys/random.h> 101 102 #define FULLMASK 0xff 103 #define _BITS(bytes) ((bytes) << 3) 104 105 /* 106 * Note on SA reference counting: 107 * - SAs that are not in DEAD state will have (total external reference + 1) 108 * following value in reference count field. they cannot be freed and are 109 * referenced from SA header. 110 * - SAs that are in DEAD state will have (total external reference) 111 * in reference count field. they are ready to be freed. reference from 112 * SA header will be removed in key_delsav(), when the reference count 113 * field hits 0 (= no external reference other than from SA header. 114 */ 115 116 VNET_DEFINE(u_int32_t, key_debug_level) = 0; 117 static VNET_DEFINE(u_int, key_spi_trycnt) = 1000; 118 static VNET_DEFINE(u_int32_t, key_spi_minval) = 0x100; 119 static VNET_DEFINE(u_int32_t, key_spi_maxval) = 0x0fffffff; /* XXX */ 120 static VNET_DEFINE(u_int32_t, policy_id) = 0; 121 /*interval to initialize randseed,1(m)*/ 122 static VNET_DEFINE(u_int, key_int_random) = 60; 123 /* interval to expire acquiring, 30(s)*/ 124 static VNET_DEFINE(u_int, key_larval_lifetime) = 30; 125 /* counter for blocking SADB_ACQUIRE.*/ 126 static VNET_DEFINE(int, key_blockacq_count) = 10; 127 /* lifetime for blocking SADB_ACQUIRE.*/ 128 static VNET_DEFINE(int, key_blockacq_lifetime) = 20; 129 /* preferred old sa rather than new sa.*/ 130 static VNET_DEFINE(int, key_preferred_oldsa) = 1; 131 #define V_key_spi_trycnt VNET(key_spi_trycnt) 132 #define V_key_spi_minval VNET(key_spi_minval) 133 #define V_key_spi_maxval VNET(key_spi_maxval) 134 #define V_policy_id VNET(policy_id) 135 #define V_key_int_random VNET(key_int_random) 136 #define V_key_larval_lifetime VNET(key_larval_lifetime) 137 #define V_key_blockacq_count VNET(key_blockacq_count) 138 #define V_key_blockacq_lifetime VNET(key_blockacq_lifetime) 139 #define V_key_preferred_oldsa VNET(key_preferred_oldsa) 140 141 static VNET_DEFINE(u_int32_t, acq_seq) = 0; 142 #define V_acq_seq VNET(acq_seq) 143 144 /* SPD */ 145 static VNET_DEFINE(TAILQ_HEAD(_sptree, secpolicy), sptree[IPSEC_DIR_MAX]); 146 static struct rmlock sptree_lock; 147 #define V_sptree VNET(sptree) 148 #define SPTREE_LOCK_INIT() rm_init(&sptree_lock, "sptree") 149 #define SPTREE_LOCK_DESTROY() rm_destroy(&sptree_lock) 150 #define SPTREE_RLOCK_TRACKER struct rm_priotracker sptree_tracker 151 #define SPTREE_RLOCK() rm_rlock(&sptree_lock, &sptree_tracker) 152 #define SPTREE_RUNLOCK() rm_runlock(&sptree_lock, &sptree_tracker) 153 #define SPTREE_RLOCK_ASSERT() rm_assert(&sptree_lock, RA_RLOCKED) 154 #define SPTREE_WLOCK() rm_wlock(&sptree_lock) 155 #define SPTREE_WUNLOCK() rm_wunlock(&sptree_lock) 156 #define SPTREE_WLOCK_ASSERT() rm_assert(&sptree_lock, RA_WLOCKED) 157 #define SPTREE_UNLOCK_ASSERT() rm_assert(&sptree_lock, RA_UNLOCKED) 158 159 static VNET_DEFINE(LIST_HEAD(_sahtree, secashead), sahtree); /* SAD */ 160 #define V_sahtree VNET(sahtree) 161 static struct mtx sahtree_lock; 162 #define SAHTREE_LOCK_INIT() \ 163 mtx_init(&sahtree_lock, "sahtree", \ 164 "fast ipsec security association database", MTX_DEF) 165 #define SAHTREE_LOCK_DESTROY() mtx_destroy(&sahtree_lock) 166 #define SAHTREE_LOCK() mtx_lock(&sahtree_lock) 167 #define SAHTREE_UNLOCK() mtx_unlock(&sahtree_lock) 168 #define SAHTREE_LOCK_ASSERT() mtx_assert(&sahtree_lock, MA_OWNED) 169 170 /* registed list */ 171 static VNET_DEFINE(LIST_HEAD(_regtree, secreg), regtree[SADB_SATYPE_MAX + 1]); 172 #define V_regtree VNET(regtree) 173 static struct mtx regtree_lock; 174 #define REGTREE_LOCK_INIT() \ 175 mtx_init(®tree_lock, "regtree", "fast ipsec regtree", MTX_DEF) 176 #define REGTREE_LOCK_DESTROY() mtx_destroy(®tree_lock) 177 #define REGTREE_LOCK() mtx_lock(®tree_lock) 178 #define REGTREE_UNLOCK() mtx_unlock(®tree_lock) 179 #define REGTREE_LOCK_ASSERT() mtx_assert(®tree_lock, MA_OWNED) 180 181 static VNET_DEFINE(LIST_HEAD(_acqtree, secacq), acqtree); /* acquiring list */ 182 #define V_acqtree VNET(acqtree) 183 static struct mtx acq_lock; 184 #define ACQ_LOCK_INIT() \ 185 mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF) 186 #define ACQ_LOCK_DESTROY() mtx_destroy(&acq_lock) 187 #define ACQ_LOCK() mtx_lock(&acq_lock) 188 #define ACQ_UNLOCK() mtx_unlock(&acq_lock) 189 #define ACQ_LOCK_ASSERT() mtx_assert(&acq_lock, MA_OWNED) 190 191 /* SP acquiring list */ 192 static VNET_DEFINE(LIST_HEAD(_spacqtree, secspacq), spacqtree); 193 #define V_spacqtree VNET(spacqtree) 194 static struct mtx spacq_lock; 195 #define SPACQ_LOCK_INIT() \ 196 mtx_init(&spacq_lock, "spacqtree", \ 197 "fast ipsec security policy acquire list", MTX_DEF) 198 #define SPACQ_LOCK_DESTROY() mtx_destroy(&spacq_lock) 199 #define SPACQ_LOCK() mtx_lock(&spacq_lock) 200 #define SPACQ_UNLOCK() mtx_unlock(&spacq_lock) 201 #define SPACQ_LOCK_ASSERT() mtx_assert(&spacq_lock, MA_OWNED) 202 203 /* search order for SAs */ 204 static const u_int saorder_state_valid_prefer_old[] = { 205 SADB_SASTATE_DYING, SADB_SASTATE_MATURE, 206 }; 207 static const u_int saorder_state_valid_prefer_new[] = { 208 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 209 }; 210 static const u_int saorder_state_alive[] = { 211 /* except DEAD */ 212 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL 213 }; 214 static const u_int saorder_state_any[] = { 215 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 216 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD 217 }; 218 219 static const int minsize[] = { 220 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 221 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 222 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 223 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 224 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 225 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ 226 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ 227 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ 228 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ 229 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ 230 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ 231 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ 232 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ 233 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ 234 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ 235 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ 236 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 237 0, /* SADB_X_EXT_KMPRIVATE */ 238 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ 239 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 240 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ 241 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ 242 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ 243 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */ 244 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */ 245 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ 246 }; 247 static const int maxsize[] = { 248 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 249 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 250 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 251 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 252 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 253 0, /* SADB_EXT_ADDRESS_SRC */ 254 0, /* SADB_EXT_ADDRESS_DST */ 255 0, /* SADB_EXT_ADDRESS_PROXY */ 256 0, /* SADB_EXT_KEY_AUTH */ 257 0, /* SADB_EXT_KEY_ENCRYPT */ 258 0, /* SADB_EXT_IDENTITY_SRC */ 259 0, /* SADB_EXT_IDENTITY_DST */ 260 0, /* SADB_EXT_SENSITIVITY */ 261 0, /* SADB_EXT_PROPOSAL */ 262 0, /* SADB_EXT_SUPPORTED_AUTH */ 263 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ 264 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 265 0, /* SADB_X_EXT_KMPRIVATE */ 266 0, /* SADB_X_EXT_POLICY */ 267 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 268 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ 269 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ 270 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ 271 0, /* SADB_X_EXT_NAT_T_OAI */ 272 0, /* SADB_X_EXT_NAT_T_OAR */ 273 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ 274 }; 275 276 static VNET_DEFINE(int, ipsec_esp_keymin) = 256; 277 static VNET_DEFINE(int, ipsec_esp_auth) = 0; 278 static VNET_DEFINE(int, ipsec_ah_keymin) = 128; 279 280 #define V_ipsec_esp_keymin VNET(ipsec_esp_keymin) 281 #define V_ipsec_esp_auth VNET(ipsec_esp_auth) 282 #define V_ipsec_ah_keymin VNET(ipsec_ah_keymin) 283 284 #ifdef SYSCTL_DECL 285 SYSCTL_DECL(_net_key); 286 #endif 287 288 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, 289 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_debug_level), 0, ""); 290 291 /* max count of trial for the decision of spi value */ 292 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, 293 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_trycnt), 0, ""); 294 295 /* minimum spi value to allocate automatically. */ 296 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, 297 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_minval), 0, ""); 298 299 /* maximun spi value to allocate automatically. */ 300 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, 301 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_maxval), 0, ""); 302 303 /* interval to initialize randseed */ 304 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, 305 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_int_random), 0, ""); 306 307 /* lifetime for larval SA */ 308 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, 309 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_larval_lifetime), 0, ""); 310 311 /* counter for blocking to send SADB_ACQUIRE to IKEd */ 312 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, 313 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_count), 0, ""); 314 315 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ 316 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, 317 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_lifetime), 0, ""); 318 319 /* ESP auth */ 320 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, 321 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_auth), 0, ""); 322 323 /* minimum ESP key length */ 324 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, 325 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_keymin), 0, ""); 326 327 /* minimum AH key length */ 328 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, 329 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_ah_keymin), 0, ""); 330 331 /* perfered old SA rather than new SA */ 332 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, preferred_oldsa, 333 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_preferred_oldsa), 0, ""); 334 335 #define __LIST_CHAINED(elm) \ 336 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) 337 #define LIST_INSERT_TAIL(head, elm, type, field) \ 338 do {\ 339 struct type *curelm = LIST_FIRST(head); \ 340 if (curelm == NULL) {\ 341 LIST_INSERT_HEAD(head, elm, field); \ 342 } else { \ 343 while (LIST_NEXT(curelm, field)) \ 344 curelm = LIST_NEXT(curelm, field);\ 345 LIST_INSERT_AFTER(curelm, elm, field);\ 346 }\ 347 } while (0) 348 349 #define KEY_CHKSASTATE(head, sav, name) \ 350 do { \ 351 if ((head) != (sav)) { \ 352 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \ 353 (name), (head), (sav))); \ 354 continue; \ 355 } \ 356 } while (0) 357 358 #define KEY_CHKSPDIR(head, sp, name) \ 359 do { \ 360 if ((head) != (sp)) { \ 361 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \ 362 "anyway continue.\n", \ 363 (name), (head), (sp))); \ 364 } \ 365 } while (0) 366 367 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association"); 368 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head"); 369 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy"); 370 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request"); 371 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous"); 372 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire"); 373 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire"); 374 375 /* 376 * set parameters into secpolicyindex buffer. 377 * Must allocate secpolicyindex buffer passed to this function. 378 */ 379 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \ 380 do { \ 381 bzero((idx), sizeof(struct secpolicyindex)); \ 382 (idx)->dir = (_dir); \ 383 (idx)->prefs = (ps); \ 384 (idx)->prefd = (pd); \ 385 (idx)->ul_proto = (ulp); \ 386 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 387 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 388 } while (0) 389 390 /* 391 * set parameters into secasindex buffer. 392 * Must allocate secasindex buffer before calling this function. 393 */ 394 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \ 395 do { \ 396 bzero((idx), sizeof(struct secasindex)); \ 397 (idx)->proto = (p); \ 398 (idx)->mode = (m); \ 399 (idx)->reqid = (r); \ 400 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 401 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 402 } while (0) 403 404 /* key statistics */ 405 struct _keystat { 406 u_long getspi_count; /* the avarage of count to try to get new SPI */ 407 } keystat; 408 409 struct sadb_msghdr { 410 struct sadb_msg *msg; 411 struct sadb_ext *ext[SADB_EXT_MAX + 1]; 412 int extoff[SADB_EXT_MAX + 1]; 413 int extlen[SADB_EXT_MAX + 1]; 414 }; 415 416 #ifndef IPSEC_DEBUG2 417 static struct callout key_timer; 418 #endif 419 420 static struct secasvar *key_allocsa_policy(const struct secasindex *); 421 static void key_freesp_so(struct secpolicy **); 422 static struct secasvar *key_do_allocsa_policy(struct secashead *, u_int); 423 static void key_unlink(struct secpolicy *); 424 static struct secpolicy *key_getsp(struct secpolicyindex *); 425 static struct secpolicy *key_getspbyid(u_int32_t); 426 static u_int32_t key_newreqid(void); 427 static struct mbuf *key_gather_mbuf(struct mbuf *, 428 const struct sadb_msghdr *, int, int, ...); 429 static int key_spdadd(struct socket *, struct mbuf *, 430 const struct sadb_msghdr *); 431 static u_int32_t key_getnewspid(void); 432 static int key_spddelete(struct socket *, struct mbuf *, 433 const struct sadb_msghdr *); 434 static int key_spddelete2(struct socket *, struct mbuf *, 435 const struct sadb_msghdr *); 436 static int key_spdget(struct socket *, struct mbuf *, 437 const struct sadb_msghdr *); 438 static int key_spdflush(struct socket *, struct mbuf *, 439 const struct sadb_msghdr *); 440 static int key_spddump(struct socket *, struct mbuf *, 441 const struct sadb_msghdr *); 442 static struct mbuf *key_setdumpsp(struct secpolicy *, 443 u_int8_t, u_int32_t, u_int32_t); 444 static u_int key_getspreqmsglen(struct secpolicy *); 445 static int key_spdexpire(struct secpolicy *); 446 static struct secashead *key_newsah(struct secasindex *); 447 static void key_delsah(struct secashead *); 448 static struct secasvar *key_newsav(struct mbuf *, 449 const struct sadb_msghdr *, struct secashead *, int *, 450 const char*, int); 451 #define KEY_NEWSAV(m, sadb, sah, e) \ 452 key_newsav(m, sadb, sah, e, __FILE__, __LINE__) 453 static void key_delsav(struct secasvar *); 454 static struct secashead *key_getsah(struct secasindex *); 455 static struct secasvar *key_checkspidup(struct secasindex *, u_int32_t); 456 static struct secasvar *key_getsavbyspi(struct secashead *, u_int32_t); 457 static int key_setsaval(struct secasvar *, struct mbuf *, 458 const struct sadb_msghdr *); 459 static int key_mature(struct secasvar *); 460 static struct mbuf *key_setdumpsa(struct secasvar *, u_int8_t, 461 u_int8_t, u_int32_t, u_int32_t); 462 static struct mbuf *key_setsadbmsg(u_int8_t, u_int16_t, u_int8_t, 463 u_int32_t, pid_t, u_int16_t); 464 static struct mbuf *key_setsadbsa(struct secasvar *); 465 static struct mbuf *key_setsadbaddr(u_int16_t, 466 const struct sockaddr *, u_int8_t, u_int16_t); 467 #ifdef IPSEC_NAT_T 468 static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t); 469 static struct mbuf *key_setsadbxtype(u_int16_t); 470 #endif 471 static void key_porttosaddr(struct sockaddr *, u_int16_t); 472 #define KEY_PORTTOSADDR(saddr, port) \ 473 key_porttosaddr((struct sockaddr *)(saddr), (port)) 474 static struct mbuf *key_setsadbxsa2(u_int8_t, u_int32_t, u_int32_t); 475 static struct mbuf *key_setsadbxpolicy(u_int16_t, u_int8_t, 476 u_int32_t); 477 static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int, 478 struct malloc_type *); 479 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src, 480 struct malloc_type *type); 481 #ifdef INET6 482 static int key_ismyaddr6(struct sockaddr_in6 *); 483 #endif 484 485 /* flags for key_cmpsaidx() */ 486 #define CMP_HEAD 1 /* protocol, addresses. */ 487 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ 488 #define CMP_REQID 3 /* additionally HEAD, reaid. */ 489 #define CMP_EXACTLY 4 /* all elements. */ 490 static int key_cmpsaidx(const struct secasindex *, 491 const struct secasindex *, int); 492 static int key_cmpspidx_exactly(struct secpolicyindex *, 493 struct secpolicyindex *); 494 static int key_cmpspidx_withmask(struct secpolicyindex *, 495 struct secpolicyindex *); 496 static int key_sockaddrcmp(const struct sockaddr *, 497 const struct sockaddr *, int); 498 static int key_bbcmp(const void *, const void *, u_int); 499 static u_int16_t key_satype2proto(u_int8_t); 500 static u_int8_t key_proto2satype(u_int16_t); 501 502 static int key_getspi(struct socket *, struct mbuf *, 503 const struct sadb_msghdr *); 504 static u_int32_t key_do_getnewspi(struct sadb_spirange *, 505 struct secasindex *); 506 static int key_update(struct socket *, struct mbuf *, 507 const struct sadb_msghdr *); 508 #ifdef IPSEC_DOSEQCHECK 509 static struct secasvar *key_getsavbyseq(struct secashead *, u_int32_t); 510 #endif 511 static int key_add(struct socket *, struct mbuf *, 512 const struct sadb_msghdr *); 513 static int key_setident(struct secashead *, struct mbuf *, 514 const struct sadb_msghdr *); 515 static struct mbuf *key_getmsgbuf_x1(struct mbuf *, 516 const struct sadb_msghdr *); 517 static int key_delete(struct socket *, struct mbuf *, 518 const struct sadb_msghdr *); 519 static int key_delete_all(struct socket *, struct mbuf *, 520 const struct sadb_msghdr *, u_int16_t); 521 static int key_get(struct socket *, struct mbuf *, 522 const struct sadb_msghdr *); 523 524 static void key_getcomb_setlifetime(struct sadb_comb *); 525 static struct mbuf *key_getcomb_esp(void); 526 static struct mbuf *key_getcomb_ah(void); 527 static struct mbuf *key_getcomb_ipcomp(void); 528 static struct mbuf *key_getprop(const struct secasindex *); 529 530 static int key_acquire(const struct secasindex *, struct secpolicy *); 531 static struct secacq *key_newacq(const struct secasindex *); 532 static struct secacq *key_getacq(const struct secasindex *); 533 static struct secacq *key_getacqbyseq(u_int32_t); 534 static struct secspacq *key_newspacq(struct secpolicyindex *); 535 static struct secspacq *key_getspacq(struct secpolicyindex *); 536 static int key_acquire2(struct socket *, struct mbuf *, 537 const struct sadb_msghdr *); 538 static int key_register(struct socket *, struct mbuf *, 539 const struct sadb_msghdr *); 540 static int key_expire(struct secasvar *, int); 541 static int key_flush(struct socket *, struct mbuf *, 542 const struct sadb_msghdr *); 543 static int key_dump(struct socket *, struct mbuf *, 544 const struct sadb_msghdr *); 545 static int key_promisc(struct socket *, struct mbuf *, 546 const struct sadb_msghdr *); 547 static int key_senderror(struct socket *, struct mbuf *, int); 548 static int key_validate_ext(const struct sadb_ext *, int); 549 static int key_align(struct mbuf *, struct sadb_msghdr *); 550 static struct mbuf *key_setlifetime(struct seclifetime *src, 551 u_int16_t exttype); 552 static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype); 553 554 #if 0 555 static const char *key_getfqdn(void); 556 static const char *key_getuserfqdn(void); 557 #endif 558 static void key_sa_chgstate(struct secasvar *, u_int8_t); 559 560 static __inline void 561 sa_initref(struct secasvar *sav) 562 { 563 564 refcount_init(&sav->refcnt, 1); 565 } 566 static __inline void 567 sa_addref(struct secasvar *sav) 568 { 569 570 refcount_acquire(&sav->refcnt); 571 IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow")); 572 } 573 static __inline int 574 sa_delref(struct secasvar *sav) 575 { 576 577 IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow")); 578 return (refcount_release(&sav->refcnt)); 579 } 580 581 #define SP_ADDREF(p) refcount_acquire(&(p)->refcnt) 582 #define SP_DELREF(p) refcount_release(&(p)->refcnt) 583 584 /* 585 * Update the refcnt while holding the SPTREE lock. 586 */ 587 void 588 key_addref(struct secpolicy *sp) 589 { 590 591 SP_ADDREF(sp); 592 } 593 594 /* 595 * Return 0 when there are known to be no SP's for the specified 596 * direction. Otherwise return 1. This is used by IPsec code 597 * to optimize performance. 598 */ 599 int 600 key_havesp(u_int dir) 601 { 602 603 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? 604 TAILQ_FIRST(&V_sptree[dir]) != NULL : 1); 605 } 606 607 /* %%% IPsec policy management */ 608 /* 609 * allocating a SP for OUTBOUND or INBOUND packet. 610 * Must call key_freesp() later. 611 * OUT: NULL: not found 612 * others: found and return the pointer. 613 */ 614 struct secpolicy * 615 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, 616 int tag) 617 { 618 SPTREE_RLOCK_TRACKER; 619 struct secpolicy *sp; 620 621 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 622 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 623 ("invalid direction %u", dir)); 624 625 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 626 printf("DP %s from %s:%u\n", __func__, where, tag)); 627 628 /* get a SP entry */ 629 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 630 printf("*** objects\n"); 631 kdebug_secpolicyindex(spidx)); 632 633 SPTREE_RLOCK(); 634 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 635 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 636 printf("*** in SPD\n"); 637 kdebug_secpolicyindex(&sp->spidx)); 638 if (key_cmpspidx_withmask(&sp->spidx, spidx)) 639 goto found; 640 } 641 sp = NULL; 642 found: 643 if (sp) { 644 /* sanity check */ 645 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 646 647 /* found a SPD entry */ 648 sp->lastused = time_second; 649 SP_ADDREF(sp); 650 } 651 SPTREE_RUNLOCK(); 652 653 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 654 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 655 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 656 return sp; 657 } 658 659 /* 660 * allocating a SP for OUTBOUND or INBOUND packet. 661 * Must call key_freesp() later. 662 * OUT: NULL: not found 663 * others: found and return the pointer. 664 */ 665 struct secpolicy * 666 key_allocsp2(u_int32_t spi, union sockaddr_union *dst, u_int8_t proto, 667 u_int dir, const char* where, int tag) 668 { 669 SPTREE_RLOCK_TRACKER; 670 struct secpolicy *sp; 671 672 IPSEC_ASSERT(dst != NULL, ("null dst")); 673 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 674 ("invalid direction %u", dir)); 675 676 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 677 printf("DP %s from %s:%u\n", __func__, where, tag)); 678 679 /* get a SP entry */ 680 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 681 printf("*** objects\n"); 682 printf("spi %u proto %u dir %u\n", spi, proto, dir); 683 kdebug_sockaddr(&dst->sa)); 684 685 SPTREE_RLOCK(); 686 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 687 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 688 printf("*** in SPD\n"); 689 kdebug_secpolicyindex(&sp->spidx)); 690 /* compare simple values, then dst address */ 691 if (sp->spidx.ul_proto != proto) 692 continue; 693 /* NB: spi's must exist and match */ 694 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi) 695 continue; 696 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0) 697 goto found; 698 } 699 sp = NULL; 700 found: 701 if (sp) { 702 /* sanity check */ 703 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 704 705 /* found a SPD entry */ 706 sp->lastused = time_second; 707 SP_ADDREF(sp); 708 } 709 SPTREE_RUNLOCK(); 710 711 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 712 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 713 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 714 return sp; 715 } 716 717 #if 0 718 /* 719 * return a policy that matches this particular inbound packet. 720 * XXX slow 721 */ 722 struct secpolicy * 723 key_gettunnel(const struct sockaddr *osrc, 724 const struct sockaddr *odst, 725 const struct sockaddr *isrc, 726 const struct sockaddr *idst, 727 const char* where, int tag) 728 { 729 struct secpolicy *sp; 730 const int dir = IPSEC_DIR_INBOUND; 731 struct ipsecrequest *r1, *r2, *p; 732 struct secpolicyindex spidx; 733 734 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 735 printf("DP %s from %s:%u\n", __func__, where, tag)); 736 737 if (isrc->sa_family != idst->sa_family) { 738 ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.", 739 __func__, isrc->sa_family, idst->sa_family)); 740 sp = NULL; 741 goto done; 742 } 743 744 SPTREE_LOCK(); 745 LIST_FOREACH(sp, &V_sptree[dir], chain) { 746 if (sp->state == IPSEC_SPSTATE_DEAD) 747 continue; 748 749 r1 = r2 = NULL; 750 for (p = sp->req; p; p = p->next) { 751 if (p->saidx.mode != IPSEC_MODE_TUNNEL) 752 continue; 753 754 r1 = r2; 755 r2 = p; 756 757 if (!r1) { 758 /* here we look at address matches only */ 759 spidx = sp->spidx; 760 if (isrc->sa_len > sizeof(spidx.src) || 761 idst->sa_len > sizeof(spidx.dst)) 762 continue; 763 bcopy(isrc, &spidx.src, isrc->sa_len); 764 bcopy(idst, &spidx.dst, idst->sa_len); 765 if (!key_cmpspidx_withmask(&sp->spidx, &spidx)) 766 continue; 767 } else { 768 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) || 769 key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0)) 770 continue; 771 } 772 773 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) || 774 key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0)) 775 continue; 776 777 goto found; 778 } 779 } 780 sp = NULL; 781 found: 782 if (sp) { 783 sp->lastused = time_second; 784 SP_ADDREF(sp); 785 } 786 SPTREE_UNLOCK(); 787 done: 788 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 789 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 790 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 791 return sp; 792 } 793 #endif 794 795 /* 796 * allocating an SA entry for an *OUTBOUND* packet. 797 * checking each request entries in SP, and acquire an SA if need. 798 * OUT: 0: there are valid requests. 799 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. 800 */ 801 int 802 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx) 803 { 804 u_int level; 805 int error; 806 struct secasvar *sav; 807 808 IPSEC_ASSERT(isr != NULL, ("null isr")); 809 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 810 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT || 811 saidx->mode == IPSEC_MODE_TUNNEL, 812 ("unexpected policy %u", saidx->mode)); 813 814 /* 815 * XXX guard against protocol callbacks from the crypto 816 * thread as they reference ipsecrequest.sav which we 817 * temporarily null out below. Need to rethink how we 818 * handle bundled SA's in the callback thread. 819 */ 820 IPSECREQUEST_LOCK_ASSERT(isr); 821 822 /* get current level */ 823 level = ipsec_get_reqlevel(isr); 824 825 /* 826 * We check new SA in the IPsec request because a different 827 * SA may be involved each time this request is checked, either 828 * because new SAs are being configured, or this request is 829 * associated with an unconnected datagram socket, or this request 830 * is associated with a system default policy. 831 * 832 * key_allocsa_policy should allocate the oldest SA available. 833 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt. 834 */ 835 sav = key_allocsa_policy(saidx); 836 if (sav != isr->sav) { 837 /* SA need to be updated. */ 838 if (!IPSECREQUEST_UPGRADE(isr)) { 839 /* Kick everyone off. */ 840 IPSECREQUEST_UNLOCK(isr); 841 IPSECREQUEST_WLOCK(isr); 842 } 843 if (isr->sav != NULL) 844 KEY_FREESAV(&isr->sav); 845 isr->sav = sav; 846 IPSECREQUEST_DOWNGRADE(isr); 847 } else if (sav != NULL) 848 KEY_FREESAV(&sav); 849 850 /* When there is SA. */ 851 if (isr->sav != NULL) { 852 if (isr->sav->state != SADB_SASTATE_MATURE && 853 isr->sav->state != SADB_SASTATE_DYING) 854 return EINVAL; 855 return 0; 856 } 857 858 /* there is no SA */ 859 error = key_acquire(saidx, isr->sp); 860 if (error != 0) { 861 /* XXX What should I do ? */ 862 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 863 __func__, error)); 864 return error; 865 } 866 867 if (level != IPSEC_LEVEL_REQUIRE) { 868 /* XXX sigh, the interface to this routine is botched */ 869 IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA")); 870 return 0; 871 } else { 872 return ENOENT; 873 } 874 } 875 876 /* 877 * allocating a SA for policy entry from SAD. 878 * NOTE: searching SAD of aliving state. 879 * OUT: NULL: not found. 880 * others: found and return the pointer. 881 */ 882 static struct secasvar * 883 key_allocsa_policy(const struct secasindex *saidx) 884 { 885 #define N(a) _ARRAYLEN(a) 886 struct secashead *sah; 887 struct secasvar *sav; 888 u_int stateidx, arraysize; 889 const u_int *state_valid; 890 891 state_valid = NULL; /* silence gcc */ 892 arraysize = 0; /* silence gcc */ 893 894 SAHTREE_LOCK(); 895 LIST_FOREACH(sah, &V_sahtree, chain) { 896 if (sah->state == SADB_SASTATE_DEAD) 897 continue; 898 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) { 899 if (V_key_preferred_oldsa) { 900 state_valid = saorder_state_valid_prefer_old; 901 arraysize = N(saorder_state_valid_prefer_old); 902 } else { 903 state_valid = saorder_state_valid_prefer_new; 904 arraysize = N(saorder_state_valid_prefer_new); 905 } 906 break; 907 } 908 } 909 SAHTREE_UNLOCK(); 910 if (sah == NULL) 911 return NULL; 912 913 /* search valid state */ 914 for (stateidx = 0; stateidx < arraysize; stateidx++) { 915 sav = key_do_allocsa_policy(sah, state_valid[stateidx]); 916 if (sav != NULL) 917 return sav; 918 } 919 920 return NULL; 921 #undef N 922 } 923 924 /* 925 * searching SAD with direction, protocol, mode and state. 926 * called by key_allocsa_policy(). 927 * OUT: 928 * NULL : not found 929 * others : found, pointer to a SA. 930 */ 931 static struct secasvar * 932 key_do_allocsa_policy(struct secashead *sah, u_int state) 933 { 934 struct secasvar *sav, *nextsav, *candidate, *d; 935 936 /* initilize */ 937 candidate = NULL; 938 939 SAHTREE_LOCK(); 940 for (sav = LIST_FIRST(&sah->savtree[state]); 941 sav != NULL; 942 sav = nextsav) { 943 944 nextsav = LIST_NEXT(sav, chain); 945 946 /* sanity check */ 947 KEY_CHKSASTATE(sav->state, state, __func__); 948 949 /* initialize */ 950 if (candidate == NULL) { 951 candidate = sav; 952 continue; 953 } 954 955 /* Which SA is the better ? */ 956 957 IPSEC_ASSERT(candidate->lft_c != NULL, 958 ("null candidate lifetime")); 959 IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime")); 960 961 /* What the best method is to compare ? */ 962 if (V_key_preferred_oldsa) { 963 if (candidate->lft_c->addtime > 964 sav->lft_c->addtime) { 965 candidate = sav; 966 } 967 continue; 968 /*NOTREACHED*/ 969 } 970 971 /* preferred new sa rather than old sa */ 972 if (candidate->lft_c->addtime < 973 sav->lft_c->addtime) { 974 d = candidate; 975 candidate = sav; 976 } else 977 d = sav; 978 979 /* 980 * prepared to delete the SA when there is more 981 * suitable candidate and the lifetime of the SA is not 982 * permanent. 983 */ 984 if (d->lft_h->addtime != 0) { 985 struct mbuf *m, *result; 986 u_int8_t satype; 987 988 key_sa_chgstate(d, SADB_SASTATE_DEAD); 989 990 IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count")); 991 992 satype = key_proto2satype(d->sah->saidx.proto); 993 if (satype == 0) 994 goto msgfail; 995 996 m = key_setsadbmsg(SADB_DELETE, 0, 997 satype, 0, 0, d->refcnt - 1); 998 if (!m) 999 goto msgfail; 1000 result = m; 1001 1002 /* set sadb_address for saidx's. */ 1003 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 1004 &d->sah->saidx.src.sa, 1005 d->sah->saidx.src.sa.sa_len << 3, 1006 IPSEC_ULPROTO_ANY); 1007 if (!m) 1008 goto msgfail; 1009 m_cat(result, m); 1010 1011 /* set sadb_address for saidx's. */ 1012 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 1013 &d->sah->saidx.dst.sa, 1014 d->sah->saidx.dst.sa.sa_len << 3, 1015 IPSEC_ULPROTO_ANY); 1016 if (!m) 1017 goto msgfail; 1018 m_cat(result, m); 1019 1020 /* create SA extension */ 1021 m = key_setsadbsa(d); 1022 if (!m) 1023 goto msgfail; 1024 m_cat(result, m); 1025 1026 if (result->m_len < sizeof(struct sadb_msg)) { 1027 result = m_pullup(result, 1028 sizeof(struct sadb_msg)); 1029 if (result == NULL) 1030 goto msgfail; 1031 } 1032 1033 result->m_pkthdr.len = 0; 1034 for (m = result; m; m = m->m_next) 1035 result->m_pkthdr.len += m->m_len; 1036 mtod(result, struct sadb_msg *)->sadb_msg_len = 1037 PFKEY_UNIT64(result->m_pkthdr.len); 1038 1039 if (key_sendup_mbuf(NULL, result, 1040 KEY_SENDUP_REGISTERED)) 1041 goto msgfail; 1042 msgfail: 1043 KEY_FREESAV(&d); 1044 } 1045 } 1046 if (candidate) { 1047 sa_addref(candidate); 1048 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1049 printf("DP %s cause refcnt++:%d SA:%p\n", 1050 __func__, candidate->refcnt, candidate)); 1051 } 1052 SAHTREE_UNLOCK(); 1053 1054 return candidate; 1055 } 1056 1057 /* 1058 * allocating a usable SA entry for a *INBOUND* packet. 1059 * Must call key_freesav() later. 1060 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). 1061 * NULL: not found, or error occured. 1062 * 1063 * In the comparison, no source address is used--for RFC2401 conformance. 1064 * To quote, from section 4.1: 1065 * A security association is uniquely identified by a triple consisting 1066 * of a Security Parameter Index (SPI), an IP Destination Address, and a 1067 * security protocol (AH or ESP) identifier. 1068 * Note that, however, we do need to keep source address in IPsec SA. 1069 * IKE specification and PF_KEY specification do assume that we 1070 * keep source address in IPsec SA. We see a tricky situation here. 1071 */ 1072 struct secasvar * 1073 key_allocsa(union sockaddr_union *dst, u_int proto, u_int32_t spi, 1074 const char* where, int tag) 1075 { 1076 struct secashead *sah; 1077 struct secasvar *sav; 1078 u_int stateidx, arraysize, state; 1079 const u_int *saorder_state_valid; 1080 #ifdef IPSEC_NAT_T 1081 int natt_chkport; 1082 #endif 1083 1084 IPSEC_ASSERT(dst != NULL, ("null dst address")); 1085 1086 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1087 printf("DP %s from %s:%u\n", __func__, where, tag)); 1088 1089 #ifdef IPSEC_NAT_T 1090 natt_chkport = (dst->sa.sa_family == AF_INET && 1091 dst->sa.sa_len == sizeof(struct sockaddr_in) && 1092 dst->sin.sin_port != 0); 1093 #endif 1094 1095 /* 1096 * searching SAD. 1097 * XXX: to be checked internal IP header somewhere. Also when 1098 * IPsec tunnel packet is received. But ESP tunnel mode is 1099 * encrypted so we can't check internal IP header. 1100 */ 1101 SAHTREE_LOCK(); 1102 if (V_key_preferred_oldsa) { 1103 saorder_state_valid = saorder_state_valid_prefer_old; 1104 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); 1105 } else { 1106 saorder_state_valid = saorder_state_valid_prefer_new; 1107 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); 1108 } 1109 LIST_FOREACH(sah, &V_sahtree, chain) { 1110 int checkport; 1111 1112 /* search valid state */ 1113 for (stateidx = 0; stateidx < arraysize; stateidx++) { 1114 state = saorder_state_valid[stateidx]; 1115 LIST_FOREACH(sav, &sah->savtree[state], chain) { 1116 /* sanity check */ 1117 KEY_CHKSASTATE(sav->state, state, __func__); 1118 /* do not return entries w/ unusable state */ 1119 if (sav->state != SADB_SASTATE_MATURE && 1120 sav->state != SADB_SASTATE_DYING) 1121 continue; 1122 if (proto != sav->sah->saidx.proto) 1123 continue; 1124 if (spi != sav->spi) 1125 continue; 1126 checkport = 0; 1127 #ifdef IPSEC_NAT_T 1128 /* 1129 * Really only check ports when this is a NAT-T 1130 * SA. Otherwise other lookups providing ports 1131 * might suffer. 1132 */ 1133 if (sav->natt_type && natt_chkport) 1134 checkport = 1; 1135 #endif 1136 #if 0 /* don't check src */ 1137 /* check src address */ 1138 if (key_sockaddrcmp(&src->sa, 1139 &sav->sah->saidx.src.sa, checkport) != 0) 1140 continue; 1141 #endif 1142 /* check dst address */ 1143 if (key_sockaddrcmp(&dst->sa, 1144 &sav->sah->saidx.dst.sa, checkport) != 0) 1145 continue; 1146 sa_addref(sav); 1147 goto done; 1148 } 1149 } 1150 } 1151 sav = NULL; 1152 done: 1153 SAHTREE_UNLOCK(); 1154 1155 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1156 printf("DP %s return SA:%p; refcnt %u\n", __func__, 1157 sav, sav ? sav->refcnt : 0)); 1158 return sav; 1159 } 1160 1161 /* 1162 * Must be called after calling key_allocsp(). 1163 * For both the packet without socket and key_freeso(). 1164 */ 1165 void 1166 _key_freesp(struct secpolicy **spp, const char* where, int tag) 1167 { 1168 struct ipsecrequest *isr, *nextisr; 1169 struct secpolicy *sp = *spp; 1170 1171 IPSEC_ASSERT(sp != NULL, ("null sp")); 1172 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1173 printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n", 1174 __func__, sp, sp->id, where, tag, sp->refcnt)); 1175 1176 if (SP_DELREF(sp) == 0) 1177 return; 1178 *spp = NULL; 1179 for (isr = sp->req; isr != NULL; isr = nextisr) { 1180 if (isr->sav != NULL) { 1181 KEY_FREESAV(&isr->sav); 1182 isr->sav = NULL; 1183 } 1184 nextisr = isr->next; 1185 ipsec_delisr(isr); 1186 } 1187 free(sp, M_IPSEC_SP); 1188 } 1189 1190 static void 1191 key_unlink(struct secpolicy *sp) 1192 { 1193 1194 IPSEC_ASSERT(sp != NULL, ("null sp")); 1195 IPSEC_ASSERT(sp->spidx.dir == IPSEC_DIR_INBOUND || 1196 sp->spidx.dir == IPSEC_DIR_OUTBOUND, 1197 ("invalid direction %u", sp->spidx.dir)); 1198 SPTREE_UNLOCK_ASSERT(); 1199 1200 SPTREE_WLOCK(); 1201 if (sp->state == IPSEC_SPSTATE_DEAD) { 1202 SPTREE_WUNLOCK(); 1203 return; 1204 } 1205 sp->state = IPSEC_SPSTATE_DEAD; 1206 TAILQ_REMOVE(&V_sptree[sp->spidx.dir], sp, chain); 1207 SPTREE_WUNLOCK(); 1208 KEY_FREESP(&sp); 1209 } 1210 1211 /* 1212 * Must be called after calling key_allocsp(). 1213 * For the packet with socket. 1214 */ 1215 void 1216 key_freeso(struct socket *so) 1217 { 1218 IPSEC_ASSERT(so != NULL, ("null so")); 1219 1220 switch (so->so_proto->pr_domain->dom_family) { 1221 #if defined(INET) || defined(INET6) 1222 #ifdef INET 1223 case PF_INET: 1224 #endif 1225 #ifdef INET6 1226 case PF_INET6: 1227 #endif 1228 { 1229 struct inpcb *pcb = sotoinpcb(so); 1230 1231 /* Does it have a PCB ? */ 1232 if (pcb == NULL) 1233 return; 1234 key_freesp_so(&pcb->inp_sp->sp_in); 1235 key_freesp_so(&pcb->inp_sp->sp_out); 1236 } 1237 break; 1238 #endif /* INET || INET6 */ 1239 default: 1240 ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n", 1241 __func__, so->so_proto->pr_domain->dom_family)); 1242 return; 1243 } 1244 } 1245 1246 static void 1247 key_freesp_so(struct secpolicy **sp) 1248 { 1249 IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp")); 1250 1251 if ((*sp)->policy == IPSEC_POLICY_ENTRUST || 1252 (*sp)->policy == IPSEC_POLICY_BYPASS) 1253 return; 1254 1255 IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC, 1256 ("invalid policy %u", (*sp)->policy)); 1257 KEY_FREESP(sp); 1258 } 1259 1260 void 1261 key_addrefsa(struct secasvar *sav, const char* where, int tag) 1262 { 1263 1264 IPSEC_ASSERT(sav != NULL, ("null sav")); 1265 IPSEC_ASSERT(sav->refcnt > 0, ("refcount must exist")); 1266 1267 sa_addref(sav); 1268 } 1269 1270 /* 1271 * Must be called after calling key_allocsa(). 1272 * This function is called by key_freesp() to free some SA allocated 1273 * for a policy. 1274 */ 1275 void 1276 key_freesav(struct secasvar **psav, const char* where, int tag) 1277 { 1278 struct secasvar *sav = *psav; 1279 1280 IPSEC_ASSERT(sav != NULL, ("null sav")); 1281 1282 if (sa_delref(sav)) { 1283 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1284 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1285 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1286 *psav = NULL; 1287 key_delsav(sav); 1288 } else { 1289 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1290 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1291 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1292 } 1293 } 1294 1295 /* %%% SPD management */ 1296 /* 1297 * search SPD 1298 * OUT: NULL : not found 1299 * others : found, pointer to a SP. 1300 */ 1301 static struct secpolicy * 1302 key_getsp(struct secpolicyindex *spidx) 1303 { 1304 SPTREE_RLOCK_TRACKER; 1305 struct secpolicy *sp; 1306 1307 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 1308 1309 SPTREE_RLOCK(); 1310 TAILQ_FOREACH(sp, &V_sptree[spidx->dir], chain) { 1311 if (key_cmpspidx_exactly(spidx, &sp->spidx)) { 1312 SP_ADDREF(sp); 1313 break; 1314 } 1315 } 1316 SPTREE_RUNLOCK(); 1317 1318 return sp; 1319 } 1320 1321 /* 1322 * get SP by index. 1323 * OUT: NULL : not found 1324 * others : found, pointer to a SP. 1325 */ 1326 static struct secpolicy * 1327 key_getspbyid(u_int32_t id) 1328 { 1329 SPTREE_RLOCK_TRACKER; 1330 struct secpolicy *sp; 1331 1332 SPTREE_RLOCK(); 1333 TAILQ_FOREACH(sp, &V_sptree[IPSEC_DIR_INBOUND], chain) { 1334 if (sp->id == id) { 1335 SP_ADDREF(sp); 1336 goto done; 1337 } 1338 } 1339 1340 TAILQ_FOREACH(sp, &V_sptree[IPSEC_DIR_OUTBOUND], chain) { 1341 if (sp->id == id) { 1342 SP_ADDREF(sp); 1343 goto done; 1344 } 1345 } 1346 done: 1347 SPTREE_RUNLOCK(); 1348 1349 return sp; 1350 } 1351 1352 struct secpolicy * 1353 key_newsp(const char* where, int tag) 1354 { 1355 struct secpolicy *newsp = NULL; 1356 1357 newsp = (struct secpolicy *) 1358 malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO); 1359 if (newsp) 1360 refcount_init(&newsp->refcnt, 1); 1361 1362 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1363 printf("DP %s from %s:%u return SP:%p\n", __func__, 1364 where, tag, newsp)); 1365 return newsp; 1366 } 1367 1368 /* 1369 * create secpolicy structure from sadb_x_policy structure. 1370 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, 1371 * so must be set properly later. 1372 */ 1373 struct secpolicy * 1374 key_msg2sp(struct sadb_x_policy *xpl0, size_t len, int *error) 1375 { 1376 struct secpolicy *newsp; 1377 1378 IPSEC_ASSERT(xpl0 != NULL, ("null xpl0")); 1379 IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len)); 1380 1381 if (len != PFKEY_EXTLEN(xpl0)) { 1382 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__)); 1383 *error = EINVAL; 1384 return NULL; 1385 } 1386 1387 if ((newsp = KEY_NEWSP()) == NULL) { 1388 *error = ENOBUFS; 1389 return NULL; 1390 } 1391 1392 newsp->spidx.dir = xpl0->sadb_x_policy_dir; 1393 newsp->policy = xpl0->sadb_x_policy_type; 1394 1395 /* check policy */ 1396 switch (xpl0->sadb_x_policy_type) { 1397 case IPSEC_POLICY_DISCARD: 1398 case IPSEC_POLICY_NONE: 1399 case IPSEC_POLICY_ENTRUST: 1400 case IPSEC_POLICY_BYPASS: 1401 newsp->req = NULL; 1402 break; 1403 1404 case IPSEC_POLICY_IPSEC: 1405 { 1406 int tlen; 1407 struct sadb_x_ipsecrequest *xisr; 1408 struct ipsecrequest **p_isr = &newsp->req; 1409 1410 /* validity check */ 1411 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { 1412 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", 1413 __func__)); 1414 KEY_FREESP(&newsp); 1415 *error = EINVAL; 1416 return NULL; 1417 } 1418 1419 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); 1420 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1); 1421 1422 while (tlen > 0) { 1423 /* length check */ 1424 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { 1425 ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest " 1426 "length.\n", __func__)); 1427 KEY_FREESP(&newsp); 1428 *error = EINVAL; 1429 return NULL; 1430 } 1431 1432 /* allocate request buffer */ 1433 /* NB: data structure is zero'd */ 1434 *p_isr = ipsec_newisr(); 1435 if ((*p_isr) == NULL) { 1436 ipseclog((LOG_DEBUG, 1437 "%s: No more memory.\n", __func__)); 1438 KEY_FREESP(&newsp); 1439 *error = ENOBUFS; 1440 return NULL; 1441 } 1442 1443 /* set values */ 1444 switch (xisr->sadb_x_ipsecrequest_proto) { 1445 case IPPROTO_ESP: 1446 case IPPROTO_AH: 1447 case IPPROTO_IPCOMP: 1448 break; 1449 default: 1450 ipseclog((LOG_DEBUG, 1451 "%s: invalid proto type=%u\n", __func__, 1452 xisr->sadb_x_ipsecrequest_proto)); 1453 KEY_FREESP(&newsp); 1454 *error = EPROTONOSUPPORT; 1455 return NULL; 1456 } 1457 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; 1458 1459 switch (xisr->sadb_x_ipsecrequest_mode) { 1460 case IPSEC_MODE_TRANSPORT: 1461 case IPSEC_MODE_TUNNEL: 1462 break; 1463 case IPSEC_MODE_ANY: 1464 default: 1465 ipseclog((LOG_DEBUG, 1466 "%s: invalid mode=%u\n", __func__, 1467 xisr->sadb_x_ipsecrequest_mode)); 1468 KEY_FREESP(&newsp); 1469 *error = EINVAL; 1470 return NULL; 1471 } 1472 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; 1473 1474 switch (xisr->sadb_x_ipsecrequest_level) { 1475 case IPSEC_LEVEL_DEFAULT: 1476 case IPSEC_LEVEL_USE: 1477 case IPSEC_LEVEL_REQUIRE: 1478 break; 1479 case IPSEC_LEVEL_UNIQUE: 1480 /* validity check */ 1481 /* 1482 * If range violation of reqid, kernel will 1483 * update it, don't refuse it. 1484 */ 1485 if (xisr->sadb_x_ipsecrequest_reqid 1486 > IPSEC_MANUAL_REQID_MAX) { 1487 ipseclog((LOG_DEBUG, 1488 "%s: reqid=%d range " 1489 "violation, updated by kernel.\n", 1490 __func__, 1491 xisr->sadb_x_ipsecrequest_reqid)); 1492 xisr->sadb_x_ipsecrequest_reqid = 0; 1493 } 1494 1495 /* allocate new reqid id if reqid is zero. */ 1496 if (xisr->sadb_x_ipsecrequest_reqid == 0) { 1497 u_int32_t reqid; 1498 if ((reqid = key_newreqid()) == 0) { 1499 KEY_FREESP(&newsp); 1500 *error = ENOBUFS; 1501 return NULL; 1502 } 1503 (*p_isr)->saidx.reqid = reqid; 1504 xisr->sadb_x_ipsecrequest_reqid = reqid; 1505 } else { 1506 /* set it for manual keying. */ 1507 (*p_isr)->saidx.reqid = 1508 xisr->sadb_x_ipsecrequest_reqid; 1509 } 1510 break; 1511 1512 default: 1513 ipseclog((LOG_DEBUG, "%s: invalid level=%u\n", 1514 __func__, 1515 xisr->sadb_x_ipsecrequest_level)); 1516 KEY_FREESP(&newsp); 1517 *error = EINVAL; 1518 return NULL; 1519 } 1520 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; 1521 1522 /* set IP addresses if there */ 1523 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { 1524 struct sockaddr *paddr; 1525 1526 paddr = (struct sockaddr *)(xisr + 1); 1527 1528 /* validity check */ 1529 if (paddr->sa_len 1530 > sizeof((*p_isr)->saidx.src)) { 1531 ipseclog((LOG_DEBUG, "%s: invalid " 1532 "request address length.\n", 1533 __func__)); 1534 KEY_FREESP(&newsp); 1535 *error = EINVAL; 1536 return NULL; 1537 } 1538 bcopy(paddr, &(*p_isr)->saidx.src, 1539 paddr->sa_len); 1540 1541 paddr = (struct sockaddr *)((caddr_t)paddr 1542 + paddr->sa_len); 1543 1544 /* validity check */ 1545 if (paddr->sa_len 1546 > sizeof((*p_isr)->saidx.dst)) { 1547 ipseclog((LOG_DEBUG, "%s: invalid " 1548 "request address length.\n", 1549 __func__)); 1550 KEY_FREESP(&newsp); 1551 *error = EINVAL; 1552 return NULL; 1553 } 1554 bcopy(paddr, &(*p_isr)->saidx.dst, 1555 paddr->sa_len); 1556 } 1557 1558 (*p_isr)->sp = newsp; 1559 1560 /* initialization for the next. */ 1561 p_isr = &(*p_isr)->next; 1562 tlen -= xisr->sadb_x_ipsecrequest_len; 1563 1564 /* validity check */ 1565 if (tlen < 0) { 1566 ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n", 1567 __func__)); 1568 KEY_FREESP(&newsp); 1569 *error = EINVAL; 1570 return NULL; 1571 } 1572 1573 xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr 1574 + xisr->sadb_x_ipsecrequest_len); 1575 } 1576 } 1577 break; 1578 default: 1579 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); 1580 KEY_FREESP(&newsp); 1581 *error = EINVAL; 1582 return NULL; 1583 } 1584 1585 *error = 0; 1586 return newsp; 1587 } 1588 1589 static u_int32_t 1590 key_newreqid() 1591 { 1592 static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 1593 1594 auto_reqid = (auto_reqid == ~0 1595 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); 1596 1597 /* XXX should be unique check */ 1598 1599 return auto_reqid; 1600 } 1601 1602 /* 1603 * copy secpolicy struct to sadb_x_policy structure indicated. 1604 */ 1605 struct mbuf * 1606 key_sp2msg(struct secpolicy *sp) 1607 { 1608 struct sadb_x_policy *xpl; 1609 int tlen; 1610 caddr_t p; 1611 struct mbuf *m; 1612 1613 IPSEC_ASSERT(sp != NULL, ("null policy")); 1614 1615 tlen = key_getspreqmsglen(sp); 1616 1617 m = m_get2(tlen, M_NOWAIT, MT_DATA, 0); 1618 if (m == NULL) 1619 return (NULL); 1620 m_align(m, tlen); 1621 m->m_len = tlen; 1622 xpl = mtod(m, struct sadb_x_policy *); 1623 bzero(xpl, tlen); 1624 1625 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen); 1626 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 1627 xpl->sadb_x_policy_type = sp->policy; 1628 xpl->sadb_x_policy_dir = sp->spidx.dir; 1629 xpl->sadb_x_policy_id = sp->id; 1630 p = (caddr_t)xpl + sizeof(*xpl); 1631 1632 /* if is the policy for ipsec ? */ 1633 if (sp->policy == IPSEC_POLICY_IPSEC) { 1634 struct sadb_x_ipsecrequest *xisr; 1635 struct ipsecrequest *isr; 1636 1637 for (isr = sp->req; isr != NULL; isr = isr->next) { 1638 1639 xisr = (struct sadb_x_ipsecrequest *)p; 1640 1641 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; 1642 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; 1643 xisr->sadb_x_ipsecrequest_level = isr->level; 1644 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; 1645 1646 p += sizeof(*xisr); 1647 bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len); 1648 p += isr->saidx.src.sa.sa_len; 1649 bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len); 1650 p += isr->saidx.src.sa.sa_len; 1651 1652 xisr->sadb_x_ipsecrequest_len = 1653 PFKEY_ALIGN8(sizeof(*xisr) 1654 + isr->saidx.src.sa.sa_len 1655 + isr->saidx.dst.sa.sa_len); 1656 } 1657 } 1658 1659 return m; 1660 } 1661 1662 /* m will not be freed nor modified */ 1663 static struct mbuf * 1664 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, 1665 int ndeep, int nitem, ...) 1666 { 1667 va_list ap; 1668 int idx; 1669 int i; 1670 struct mbuf *result = NULL, *n; 1671 int len; 1672 1673 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1674 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1675 1676 va_start(ap, nitem); 1677 for (i = 0; i < nitem; i++) { 1678 idx = va_arg(ap, int); 1679 if (idx < 0 || idx > SADB_EXT_MAX) 1680 goto fail; 1681 /* don't attempt to pull empty extension */ 1682 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) 1683 continue; 1684 if (idx != SADB_EXT_RESERVED && 1685 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) 1686 continue; 1687 1688 if (idx == SADB_EXT_RESERVED) { 1689 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 1690 1691 IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len)); 1692 1693 MGETHDR(n, M_NOWAIT, MT_DATA); 1694 if (!n) 1695 goto fail; 1696 n->m_len = len; 1697 n->m_next = NULL; 1698 m_copydata(m, 0, sizeof(struct sadb_msg), 1699 mtod(n, caddr_t)); 1700 } else if (i < ndeep) { 1701 len = mhp->extlen[idx]; 1702 n = m_get2(len, M_NOWAIT, MT_DATA, 0); 1703 if (n == NULL) 1704 goto fail; 1705 m_align(n, len); 1706 n->m_len = len; 1707 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], 1708 mtod(n, caddr_t)); 1709 } else { 1710 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], 1711 M_NOWAIT); 1712 } 1713 if (n == NULL) 1714 goto fail; 1715 1716 if (result) 1717 m_cat(result, n); 1718 else 1719 result = n; 1720 } 1721 va_end(ap); 1722 1723 if ((result->m_flags & M_PKTHDR) != 0) { 1724 result->m_pkthdr.len = 0; 1725 for (n = result; n; n = n->m_next) 1726 result->m_pkthdr.len += n->m_len; 1727 } 1728 1729 return result; 1730 1731 fail: 1732 m_freem(result); 1733 va_end(ap); 1734 return NULL; 1735 } 1736 1737 /* 1738 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing 1739 * add an entry to SP database, when received 1740 * <base, address(SD), (lifetime(H),) policy> 1741 * from the user(?). 1742 * Adding to SP database, 1743 * and send 1744 * <base, address(SD), (lifetime(H),) policy> 1745 * to the socket which was send. 1746 * 1747 * SPDADD set a unique policy entry. 1748 * SPDSETIDX like SPDADD without a part of policy requests. 1749 * SPDUPDATE replace a unique policy entry. 1750 * 1751 * m will always be freed. 1752 */ 1753 static int 1754 key_spdadd(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 1755 { 1756 struct sadb_address *src0, *dst0; 1757 struct sadb_x_policy *xpl0, *xpl; 1758 struct sadb_lifetime *lft = NULL; 1759 struct secpolicyindex spidx; 1760 struct secpolicy *newsp; 1761 int error; 1762 1763 IPSEC_ASSERT(so != NULL, ("null socket")); 1764 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1765 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1766 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 1767 1768 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 1769 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 1770 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 1771 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n")); 1772 return key_senderror(so, m, EINVAL); 1773 } 1774 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 1775 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 1776 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 1777 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1778 __func__)); 1779 return key_senderror(so, m, EINVAL); 1780 } 1781 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { 1782 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] 1783 < sizeof(struct sadb_lifetime)) { 1784 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1785 __func__)); 1786 return key_senderror(so, m, EINVAL); 1787 } 1788 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 1789 } 1790 1791 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 1792 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 1793 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 1794 1795 /* 1796 * Note: do not parse SADB_X_EXT_NAT_T_* here: 1797 * we are processing traffic endpoints. 1798 */ 1799 1800 /* make secindex */ 1801 /* XXX boundary check against sa_len */ 1802 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1803 src0 + 1, 1804 dst0 + 1, 1805 src0->sadb_address_prefixlen, 1806 dst0->sadb_address_prefixlen, 1807 src0->sadb_address_proto, 1808 &spidx); 1809 1810 /* checking the direciton. */ 1811 switch (xpl0->sadb_x_policy_dir) { 1812 case IPSEC_DIR_INBOUND: 1813 case IPSEC_DIR_OUTBOUND: 1814 break; 1815 default: 1816 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 1817 mhp->msg->sadb_msg_errno = EINVAL; 1818 return 0; 1819 } 1820 1821 /* check policy */ 1822 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */ 1823 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST 1824 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { 1825 ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__)); 1826 return key_senderror(so, m, EINVAL); 1827 } 1828 1829 /* policy requests are mandatory when action is ipsec. */ 1830 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX 1831 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC 1832 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { 1833 ipseclog((LOG_DEBUG, "%s: some policy requests part required\n", 1834 __func__)); 1835 return key_senderror(so, m, EINVAL); 1836 } 1837 1838 /* 1839 * checking there is SP already or not. 1840 * SPDUPDATE doesn't depend on whether there is a SP or not. 1841 * If the type is either SPDADD or SPDSETIDX AND a SP is found, 1842 * then error. 1843 */ 1844 newsp = key_getsp(&spidx); 1845 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1846 if (newsp) { 1847 key_unlink(newsp); 1848 KEY_FREESP(&newsp); 1849 } 1850 } else { 1851 if (newsp != NULL) { 1852 KEY_FREESP(&newsp); 1853 ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n", 1854 __func__)); 1855 return key_senderror(so, m, EEXIST); 1856 } 1857 } 1858 1859 /* XXX: there is race between key_getsp and key_msg2sp. */ 1860 1861 /* allocation new SP entry */ 1862 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) { 1863 return key_senderror(so, m, error); 1864 } 1865 1866 if ((newsp->id = key_getnewspid()) == 0) { 1867 KEY_FREESP(&newsp); 1868 return key_senderror(so, m, ENOBUFS); 1869 } 1870 1871 /* XXX boundary check against sa_len */ 1872 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1873 src0 + 1, 1874 dst0 + 1, 1875 src0->sadb_address_prefixlen, 1876 dst0->sadb_address_prefixlen, 1877 src0->sadb_address_proto, 1878 &newsp->spidx); 1879 1880 /* sanity check on addr pair */ 1881 if (((struct sockaddr *)(src0 + 1))->sa_family != 1882 ((struct sockaddr *)(dst0+ 1))->sa_family) { 1883 KEY_FREESP(&newsp); 1884 return key_senderror(so, m, EINVAL); 1885 } 1886 if (((struct sockaddr *)(src0 + 1))->sa_len != 1887 ((struct sockaddr *)(dst0+ 1))->sa_len) { 1888 KEY_FREESP(&newsp); 1889 return key_senderror(so, m, EINVAL); 1890 } 1891 #if 1 1892 if (newsp->req && newsp->req->saidx.src.sa.sa_family && 1893 newsp->req->saidx.dst.sa.sa_family) { 1894 if (newsp->req->saidx.src.sa.sa_family != 1895 newsp->req->saidx.dst.sa.sa_family) { 1896 KEY_FREESP(&newsp); 1897 return key_senderror(so, m, EINVAL); 1898 } 1899 } 1900 #endif 1901 1902 newsp->created = time_second; 1903 newsp->lastused = newsp->created; 1904 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; 1905 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; 1906 1907 SPTREE_WLOCK(); 1908 TAILQ_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, chain); 1909 newsp->state = IPSEC_SPSTATE_ALIVE; 1910 SPTREE_WUNLOCK(); 1911 1912 /* delete the entry in spacqtree */ 1913 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1914 struct secspacq *spacq = key_getspacq(&spidx); 1915 if (spacq != NULL) { 1916 /* reset counter in order to deletion by timehandler. */ 1917 spacq->created = time_second; 1918 spacq->count = 0; 1919 SPACQ_UNLOCK(); 1920 } 1921 } 1922 1923 { 1924 struct mbuf *n, *mpolicy; 1925 struct sadb_msg *newmsg; 1926 int off; 1927 1928 /* 1929 * Note: do not send SADB_X_EXT_NAT_T_* here: 1930 * we are sending traffic endpoints. 1931 */ 1932 1933 /* create new sadb_msg to reply. */ 1934 if (lft) { 1935 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, 1936 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, 1937 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1938 } else { 1939 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, 1940 SADB_X_EXT_POLICY, 1941 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1942 } 1943 if (!n) 1944 return key_senderror(so, m, ENOBUFS); 1945 1946 if (n->m_len < sizeof(*newmsg)) { 1947 n = m_pullup(n, sizeof(*newmsg)); 1948 if (!n) 1949 return key_senderror(so, m, ENOBUFS); 1950 } 1951 newmsg = mtod(n, struct sadb_msg *); 1952 newmsg->sadb_msg_errno = 0; 1953 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 1954 1955 off = 0; 1956 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), 1957 sizeof(*xpl), &off); 1958 if (mpolicy == NULL) { 1959 /* n is already freed */ 1960 return key_senderror(so, m, ENOBUFS); 1961 } 1962 xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off); 1963 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { 1964 m_freem(n); 1965 return key_senderror(so, m, EINVAL); 1966 } 1967 xpl->sadb_x_policy_id = newsp->id; 1968 1969 m_freem(m); 1970 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 1971 } 1972 } 1973 1974 /* 1975 * get new policy id. 1976 * OUT: 1977 * 0: failure. 1978 * others: success. 1979 */ 1980 static u_int32_t 1981 key_getnewspid() 1982 { 1983 u_int32_t newid = 0; 1984 int count = V_key_spi_trycnt; /* XXX */ 1985 struct secpolicy *sp; 1986 1987 /* when requesting to allocate spi ranged */ 1988 while (count--) { 1989 newid = (V_policy_id = (V_policy_id == ~0 ? 1 : V_policy_id + 1)); 1990 1991 if ((sp = key_getspbyid(newid)) == NULL) 1992 break; 1993 1994 KEY_FREESP(&sp); 1995 } 1996 1997 if (count == 0 || newid == 0) { 1998 ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n", 1999 __func__)); 2000 return 0; 2001 } 2002 2003 return newid; 2004 } 2005 2006 /* 2007 * SADB_SPDDELETE processing 2008 * receive 2009 * <base, address(SD), policy(*)> 2010 * from the user(?), and set SADB_SASTATE_DEAD, 2011 * and send, 2012 * <base, address(SD), policy(*)> 2013 * to the ikmpd. 2014 * policy(*) including direction of policy. 2015 * 2016 * m will always be freed. 2017 */ 2018 static int 2019 key_spddelete(struct socket *so, struct mbuf *m, 2020 const struct sadb_msghdr *mhp) 2021 { 2022 struct sadb_address *src0, *dst0; 2023 struct sadb_x_policy *xpl0; 2024 struct secpolicyindex spidx; 2025 struct secpolicy *sp; 2026 2027 IPSEC_ASSERT(so != NULL, ("null so")); 2028 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2029 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2030 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2031 2032 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2033 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2034 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2035 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2036 __func__)); 2037 return key_senderror(so, m, EINVAL); 2038 } 2039 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2040 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2041 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2042 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2043 __func__)); 2044 return key_senderror(so, m, EINVAL); 2045 } 2046 2047 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 2048 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 2049 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 2050 2051 /* 2052 * Note: do not parse SADB_X_EXT_NAT_T_* here: 2053 * we are processing traffic endpoints. 2054 */ 2055 2056 /* make secindex */ 2057 /* XXX boundary check against sa_len */ 2058 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 2059 src0 + 1, 2060 dst0 + 1, 2061 src0->sadb_address_prefixlen, 2062 dst0->sadb_address_prefixlen, 2063 src0->sadb_address_proto, 2064 &spidx); 2065 2066 /* checking the direciton. */ 2067 switch (xpl0->sadb_x_policy_dir) { 2068 case IPSEC_DIR_INBOUND: 2069 case IPSEC_DIR_OUTBOUND: 2070 break; 2071 default: 2072 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 2073 return key_senderror(so, m, EINVAL); 2074 } 2075 2076 /* Is there SP in SPD ? */ 2077 if ((sp = key_getsp(&spidx)) == NULL) { 2078 ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__)); 2079 return key_senderror(so, m, EINVAL); 2080 } 2081 2082 /* save policy id to buffer to be returned. */ 2083 xpl0->sadb_x_policy_id = sp->id; 2084 2085 key_unlink(sp); 2086 KEY_FREESP(&sp); 2087 2088 { 2089 struct mbuf *n; 2090 struct sadb_msg *newmsg; 2091 2092 /* 2093 * Note: do not send SADB_X_EXT_NAT_T_* here: 2094 * we are sending traffic endpoints. 2095 */ 2096 2097 /* create new sadb_msg to reply. */ 2098 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 2099 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2100 if (!n) 2101 return key_senderror(so, m, ENOBUFS); 2102 2103 newmsg = mtod(n, struct sadb_msg *); 2104 newmsg->sadb_msg_errno = 0; 2105 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2106 2107 m_freem(m); 2108 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2109 } 2110 } 2111 2112 /* 2113 * SADB_SPDDELETE2 processing 2114 * receive 2115 * <base, policy(*)> 2116 * from the user(?), and set SADB_SASTATE_DEAD, 2117 * and send, 2118 * <base, policy(*)> 2119 * to the ikmpd. 2120 * policy(*) including direction of policy. 2121 * 2122 * m will always be freed. 2123 */ 2124 static int 2125 key_spddelete2(struct socket *so, struct mbuf *m, 2126 const struct sadb_msghdr *mhp) 2127 { 2128 u_int32_t id; 2129 struct secpolicy *sp; 2130 2131 IPSEC_ASSERT(so != NULL, ("null socket")); 2132 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2133 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2134 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2135 2136 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2137 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2138 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); 2139 return key_senderror(so, m, EINVAL); 2140 } 2141 2142 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2143 2144 /* Is there SP in SPD ? */ 2145 if ((sp = key_getspbyid(id)) == NULL) { 2146 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2147 return key_senderror(so, m, EINVAL); 2148 } 2149 2150 key_unlink(sp); 2151 KEY_FREESP(&sp); 2152 2153 { 2154 struct mbuf *n, *nn; 2155 struct sadb_msg *newmsg; 2156 int off, len; 2157 2158 /* create new sadb_msg to reply. */ 2159 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2160 2161 MGETHDR(n, M_NOWAIT, MT_DATA); 2162 if (n && len > MHLEN) { 2163 if (!(MCLGET(n, M_NOWAIT))) { 2164 m_freem(n); 2165 n = NULL; 2166 } 2167 } 2168 if (!n) 2169 return key_senderror(so, m, ENOBUFS); 2170 2171 n->m_len = len; 2172 n->m_next = NULL; 2173 off = 0; 2174 2175 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 2176 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2177 2178 IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)", 2179 off, len)); 2180 2181 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], 2182 mhp->extlen[SADB_X_EXT_POLICY], M_NOWAIT); 2183 if (!n->m_next) { 2184 m_freem(n); 2185 return key_senderror(so, m, ENOBUFS); 2186 } 2187 2188 n->m_pkthdr.len = 0; 2189 for (nn = n; nn; nn = nn->m_next) 2190 n->m_pkthdr.len += nn->m_len; 2191 2192 newmsg = mtod(n, struct sadb_msg *); 2193 newmsg->sadb_msg_errno = 0; 2194 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2195 2196 m_freem(m); 2197 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2198 } 2199 } 2200 2201 /* 2202 * SADB_X_SPDGET processing 2203 * receive 2204 * <base, policy(*)> 2205 * from the user(?), 2206 * and send, 2207 * <base, address(SD), policy> 2208 * to the ikmpd. 2209 * policy(*) including direction of policy. 2210 * 2211 * m will always be freed. 2212 */ 2213 static int 2214 key_spdget(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 2215 { 2216 u_int32_t id; 2217 struct secpolicy *sp; 2218 struct mbuf *n; 2219 2220 IPSEC_ASSERT(so != NULL, ("null socket")); 2221 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2222 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2223 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2224 2225 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2226 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2227 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2228 __func__)); 2229 return key_senderror(so, m, EINVAL); 2230 } 2231 2232 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2233 2234 /* Is there SP in SPD ? */ 2235 if ((sp = key_getspbyid(id)) == NULL) { 2236 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2237 return key_senderror(so, m, ENOENT); 2238 } 2239 2240 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq, 2241 mhp->msg->sadb_msg_pid); 2242 KEY_FREESP(&sp); 2243 if (n != NULL) { 2244 m_freem(m); 2245 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2246 } else 2247 return key_senderror(so, m, ENOBUFS); 2248 } 2249 2250 /* 2251 * SADB_X_SPDACQUIRE processing. 2252 * Acquire policy and SA(s) for a *OUTBOUND* packet. 2253 * send 2254 * <base, policy(*)> 2255 * to KMD, and expect to receive 2256 * <base> with SADB_X_SPDACQUIRE if error occured, 2257 * or 2258 * <base, policy> 2259 * with SADB_X_SPDUPDATE from KMD by PF_KEY. 2260 * policy(*) is without policy requests. 2261 * 2262 * 0 : succeed 2263 * others: error number 2264 */ 2265 int 2266 key_spdacquire(struct secpolicy *sp) 2267 { 2268 struct mbuf *result = NULL, *m; 2269 struct secspacq *newspacq; 2270 2271 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2272 IPSEC_ASSERT(sp->req == NULL, ("policy exists")); 2273 IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC, 2274 ("policy not IPSEC %u", sp->policy)); 2275 2276 /* Get an entry to check whether sent message or not. */ 2277 newspacq = key_getspacq(&sp->spidx); 2278 if (newspacq != NULL) { 2279 if (V_key_blockacq_count < newspacq->count) { 2280 /* reset counter and do send message. */ 2281 newspacq->count = 0; 2282 } else { 2283 /* increment counter and do nothing. */ 2284 newspacq->count++; 2285 SPACQ_UNLOCK(); 2286 return (0); 2287 } 2288 SPACQ_UNLOCK(); 2289 } else { 2290 /* make new entry for blocking to send SADB_ACQUIRE. */ 2291 newspacq = key_newspacq(&sp->spidx); 2292 if (newspacq == NULL) 2293 return ENOBUFS; 2294 } 2295 2296 /* create new sadb_msg to reply. */ 2297 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); 2298 if (!m) 2299 return ENOBUFS; 2300 2301 result = m; 2302 2303 result->m_pkthdr.len = 0; 2304 for (m = result; m; m = m->m_next) 2305 result->m_pkthdr.len += m->m_len; 2306 2307 mtod(result, struct sadb_msg *)->sadb_msg_len = 2308 PFKEY_UNIT64(result->m_pkthdr.len); 2309 2310 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 2311 } 2312 2313 /* 2314 * SADB_SPDFLUSH processing 2315 * receive 2316 * <base> 2317 * from the user, and free all entries in secpctree. 2318 * and send, 2319 * <base> 2320 * to the user. 2321 * NOTE: what to do is only marking SADB_SASTATE_DEAD. 2322 * 2323 * m will always be freed. 2324 */ 2325 static int 2326 key_spdflush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 2327 { 2328 TAILQ_HEAD(, secpolicy) drainq; 2329 struct sadb_msg *newmsg; 2330 struct secpolicy *sp, *nextsp; 2331 u_int dir; 2332 2333 IPSEC_ASSERT(so != NULL, ("null socket")); 2334 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2335 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2336 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2337 2338 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) 2339 return key_senderror(so, m, EINVAL); 2340 2341 TAILQ_INIT(&drainq); 2342 SPTREE_WLOCK(); 2343 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2344 TAILQ_CONCAT(&drainq, &V_sptree[dir], chain); 2345 } 2346 /* 2347 * We need to set state to DEAD for each policy to be sure, 2348 * that another thread won't try to unlink it. 2349 */ 2350 TAILQ_FOREACH(sp, &drainq, chain) 2351 sp->state = IPSEC_SPSTATE_DEAD; 2352 SPTREE_WUNLOCK(); 2353 sp = TAILQ_FIRST(&drainq); 2354 while (sp != NULL) { 2355 nextsp = TAILQ_NEXT(sp, chain); 2356 KEY_FREESP(&sp); 2357 sp = nextsp; 2358 } 2359 2360 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 2361 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2362 return key_senderror(so, m, ENOBUFS); 2363 } 2364 2365 if (m->m_next) 2366 m_freem(m->m_next); 2367 m->m_next = NULL; 2368 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2369 newmsg = mtod(m, struct sadb_msg *); 2370 newmsg->sadb_msg_errno = 0; 2371 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 2372 2373 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 2374 } 2375 2376 /* 2377 * SADB_SPDDUMP processing 2378 * receive 2379 * <base> 2380 * from the user, and dump all SP leaves 2381 * and send, 2382 * <base> ..... 2383 * to the ikmpd. 2384 * 2385 * m will always be freed. 2386 */ 2387 static int 2388 key_spddump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 2389 { 2390 SPTREE_RLOCK_TRACKER; 2391 struct secpolicy *sp; 2392 int cnt; 2393 u_int dir; 2394 struct mbuf *n; 2395 2396 IPSEC_ASSERT(so != NULL, ("null socket")); 2397 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2398 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2399 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2400 2401 /* search SPD entry and get buffer size. */ 2402 cnt = 0; 2403 SPTREE_RLOCK(); 2404 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2405 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 2406 cnt++; 2407 } 2408 } 2409 2410 if (cnt == 0) { 2411 SPTREE_RUNLOCK(); 2412 return key_senderror(so, m, ENOENT); 2413 } 2414 2415 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2416 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 2417 --cnt; 2418 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, 2419 mhp->msg->sadb_msg_pid); 2420 2421 if (n) 2422 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2423 } 2424 } 2425 2426 SPTREE_RUNLOCK(); 2427 m_freem(m); 2428 return 0; 2429 } 2430 2431 static struct mbuf * 2432 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, 2433 u_int32_t pid) 2434 { 2435 struct mbuf *result = NULL, *m; 2436 struct seclifetime lt; 2437 2438 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt); 2439 if (!m) 2440 goto fail; 2441 result = m; 2442 2443 /* 2444 * Note: do not send SADB_X_EXT_NAT_T_* here: 2445 * we are sending traffic endpoints. 2446 */ 2447 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2448 &sp->spidx.src.sa, sp->spidx.prefs, 2449 sp->spidx.ul_proto); 2450 if (!m) 2451 goto fail; 2452 m_cat(result, m); 2453 2454 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2455 &sp->spidx.dst.sa, sp->spidx.prefd, 2456 sp->spidx.ul_proto); 2457 if (!m) 2458 goto fail; 2459 m_cat(result, m); 2460 2461 m = key_sp2msg(sp); 2462 if (!m) 2463 goto fail; 2464 m_cat(result, m); 2465 2466 if(sp->lifetime){ 2467 lt.addtime=sp->created; 2468 lt.usetime= sp->lastused; 2469 m = key_setlifetime(<, SADB_EXT_LIFETIME_CURRENT); 2470 if (!m) 2471 goto fail; 2472 m_cat(result, m); 2473 2474 lt.addtime=sp->lifetime; 2475 lt.usetime= sp->validtime; 2476 m = key_setlifetime(<, SADB_EXT_LIFETIME_HARD); 2477 if (!m) 2478 goto fail; 2479 m_cat(result, m); 2480 } 2481 2482 if ((result->m_flags & M_PKTHDR) == 0) 2483 goto fail; 2484 2485 if (result->m_len < sizeof(struct sadb_msg)) { 2486 result = m_pullup(result, sizeof(struct sadb_msg)); 2487 if (result == NULL) 2488 goto fail; 2489 } 2490 2491 result->m_pkthdr.len = 0; 2492 for (m = result; m; m = m->m_next) 2493 result->m_pkthdr.len += m->m_len; 2494 2495 mtod(result, struct sadb_msg *)->sadb_msg_len = 2496 PFKEY_UNIT64(result->m_pkthdr.len); 2497 2498 return result; 2499 2500 fail: 2501 m_freem(result); 2502 return NULL; 2503 } 2504 2505 /* 2506 * get PFKEY message length for security policy and request. 2507 */ 2508 static u_int 2509 key_getspreqmsglen(struct secpolicy *sp) 2510 { 2511 u_int tlen; 2512 2513 tlen = sizeof(struct sadb_x_policy); 2514 2515 /* if is the policy for ipsec ? */ 2516 if (sp->policy != IPSEC_POLICY_IPSEC) 2517 return tlen; 2518 2519 /* get length of ipsec requests */ 2520 { 2521 struct ipsecrequest *isr; 2522 int len; 2523 2524 for (isr = sp->req; isr != NULL; isr = isr->next) { 2525 len = sizeof(struct sadb_x_ipsecrequest) 2526 + isr->saidx.src.sa.sa_len 2527 + isr->saidx.dst.sa.sa_len; 2528 2529 tlen += PFKEY_ALIGN8(len); 2530 } 2531 } 2532 2533 return tlen; 2534 } 2535 2536 /* 2537 * SADB_SPDEXPIRE processing 2538 * send 2539 * <base, address(SD), lifetime(CH), policy> 2540 * to KMD by PF_KEY. 2541 * 2542 * OUT: 0 : succeed 2543 * others : error number 2544 */ 2545 static int 2546 key_spdexpire(struct secpolicy *sp) 2547 { 2548 struct mbuf *result = NULL, *m; 2549 int len; 2550 int error = -1; 2551 struct sadb_lifetime *lt; 2552 2553 /* XXX: Why do we lock ? */ 2554 2555 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2556 2557 /* set msg header */ 2558 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0); 2559 if (!m) { 2560 error = ENOBUFS; 2561 goto fail; 2562 } 2563 result = m; 2564 2565 /* create lifetime extension (current and hard) */ 2566 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 2567 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 2568 if (m == NULL) { 2569 error = ENOBUFS; 2570 goto fail; 2571 } 2572 m_align(m, len); 2573 m->m_len = len; 2574 bzero(mtod(m, caddr_t), len); 2575 lt = mtod(m, struct sadb_lifetime *); 2576 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2577 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 2578 lt->sadb_lifetime_allocations = 0; 2579 lt->sadb_lifetime_bytes = 0; 2580 lt->sadb_lifetime_addtime = sp->created; 2581 lt->sadb_lifetime_usetime = sp->lastused; 2582 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 2583 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2584 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 2585 lt->sadb_lifetime_allocations = 0; 2586 lt->sadb_lifetime_bytes = 0; 2587 lt->sadb_lifetime_addtime = sp->lifetime; 2588 lt->sadb_lifetime_usetime = sp->validtime; 2589 m_cat(result, m); 2590 2591 /* 2592 * Note: do not send SADB_X_EXT_NAT_T_* here: 2593 * we are sending traffic endpoints. 2594 */ 2595 2596 /* set sadb_address for source */ 2597 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2598 &sp->spidx.src.sa, 2599 sp->spidx.prefs, sp->spidx.ul_proto); 2600 if (!m) { 2601 error = ENOBUFS; 2602 goto fail; 2603 } 2604 m_cat(result, m); 2605 2606 /* set sadb_address for destination */ 2607 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2608 &sp->spidx.dst.sa, 2609 sp->spidx.prefd, sp->spidx.ul_proto); 2610 if (!m) { 2611 error = ENOBUFS; 2612 goto fail; 2613 } 2614 m_cat(result, m); 2615 2616 /* set secpolicy */ 2617 m = key_sp2msg(sp); 2618 if (!m) { 2619 error = ENOBUFS; 2620 goto fail; 2621 } 2622 m_cat(result, m); 2623 2624 if ((result->m_flags & M_PKTHDR) == 0) { 2625 error = EINVAL; 2626 goto fail; 2627 } 2628 2629 if (result->m_len < sizeof(struct sadb_msg)) { 2630 result = m_pullup(result, sizeof(struct sadb_msg)); 2631 if (result == NULL) { 2632 error = ENOBUFS; 2633 goto fail; 2634 } 2635 } 2636 2637 result->m_pkthdr.len = 0; 2638 for (m = result; m; m = m->m_next) 2639 result->m_pkthdr.len += m->m_len; 2640 2641 mtod(result, struct sadb_msg *)->sadb_msg_len = 2642 PFKEY_UNIT64(result->m_pkthdr.len); 2643 2644 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 2645 2646 fail: 2647 if (result) 2648 m_freem(result); 2649 return error; 2650 } 2651 2652 /* %%% SAD management */ 2653 /* 2654 * allocating a memory for new SA head, and copy from the values of mhp. 2655 * OUT: NULL : failure due to the lack of memory. 2656 * others : pointer to new SA head. 2657 */ 2658 static struct secashead * 2659 key_newsah(struct secasindex *saidx) 2660 { 2661 struct secashead *newsah; 2662 2663 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 2664 2665 newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO); 2666 if (newsah != NULL) { 2667 int i; 2668 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++) 2669 LIST_INIT(&newsah->savtree[i]); 2670 newsah->saidx = *saidx; 2671 2672 /* add to saidxtree */ 2673 newsah->state = SADB_SASTATE_MATURE; 2674 2675 SAHTREE_LOCK(); 2676 LIST_INSERT_HEAD(&V_sahtree, newsah, chain); 2677 SAHTREE_UNLOCK(); 2678 } 2679 return(newsah); 2680 } 2681 2682 /* 2683 * delete SA index and all SA registerd. 2684 */ 2685 static void 2686 key_delsah(struct secashead *sah) 2687 { 2688 struct secasvar *sav, *nextsav; 2689 u_int stateidx; 2690 int zombie = 0; 2691 2692 IPSEC_ASSERT(sah != NULL, ("NULL sah")); 2693 SAHTREE_LOCK_ASSERT(); 2694 2695 /* searching all SA registerd in the secindex. */ 2696 for (stateidx = 0; 2697 stateidx < _ARRAYLEN(saorder_state_any); 2698 stateidx++) { 2699 u_int state = saorder_state_any[stateidx]; 2700 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) { 2701 if (sav->refcnt == 0) { 2702 /* sanity check */ 2703 KEY_CHKSASTATE(state, sav->state, __func__); 2704 /* 2705 * do NOT call KEY_FREESAV here: 2706 * it will only delete the sav if refcnt == 1, 2707 * where we already know that refcnt == 0 2708 */ 2709 key_delsav(sav); 2710 } else { 2711 /* give up to delete this sa */ 2712 zombie++; 2713 } 2714 } 2715 } 2716 if (!zombie) { /* delete only if there are savs */ 2717 /* remove from tree of SA index */ 2718 if (__LIST_CHAINED(sah)) 2719 LIST_REMOVE(sah, chain); 2720 free(sah, M_IPSEC_SAH); 2721 } 2722 } 2723 2724 /* 2725 * allocating a new SA with LARVAL state. key_add() and key_getspi() call, 2726 * and copy the values of mhp into new buffer. 2727 * When SAD message type is GETSPI: 2728 * to set sequence number from acq_seq++, 2729 * to set zero to SPI. 2730 * not to call key_setsava(). 2731 * OUT: NULL : fail 2732 * others : pointer to new secasvar. 2733 * 2734 * does not modify mbuf. does not free mbuf on error. 2735 */ 2736 static struct secasvar * 2737 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp, 2738 struct secashead *sah, int *errp, const char *where, int tag) 2739 { 2740 struct secasvar *newsav; 2741 const struct sadb_sa *xsa; 2742 2743 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2744 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2745 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2746 IPSEC_ASSERT(sah != NULL, ("null secashead")); 2747 2748 newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO); 2749 if (newsav == NULL) { 2750 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2751 *errp = ENOBUFS; 2752 goto done; 2753 } 2754 2755 switch (mhp->msg->sadb_msg_type) { 2756 case SADB_GETSPI: 2757 newsav->spi = 0; 2758 2759 #ifdef IPSEC_DOSEQCHECK 2760 /* sync sequence number */ 2761 if (mhp->msg->sadb_msg_seq == 0) 2762 newsav->seq = 2763 (V_acq_seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq)); 2764 else 2765 #endif 2766 newsav->seq = mhp->msg->sadb_msg_seq; 2767 break; 2768 2769 case SADB_ADD: 2770 /* sanity check */ 2771 if (mhp->ext[SADB_EXT_SA] == NULL) { 2772 free(newsav, M_IPSEC_SA); 2773 newsav = NULL; 2774 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2775 __func__)); 2776 *errp = EINVAL; 2777 goto done; 2778 } 2779 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 2780 newsav->spi = xsa->sadb_sa_spi; 2781 newsav->seq = mhp->msg->sadb_msg_seq; 2782 break; 2783 default: 2784 free(newsav, M_IPSEC_SA); 2785 newsav = NULL; 2786 *errp = EINVAL; 2787 goto done; 2788 } 2789 2790 2791 /* copy sav values */ 2792 if (mhp->msg->sadb_msg_type != SADB_GETSPI) { 2793 *errp = key_setsaval(newsav, m, mhp); 2794 if (*errp) { 2795 free(newsav, M_IPSEC_SA); 2796 newsav = NULL; 2797 goto done; 2798 } 2799 } 2800 2801 SECASVAR_LOCK_INIT(newsav); 2802 2803 /* reset created */ 2804 newsav->created = time_second; 2805 newsav->pid = mhp->msg->sadb_msg_pid; 2806 2807 /* add to satree */ 2808 newsav->sah = sah; 2809 sa_initref(newsav); 2810 newsav->state = SADB_SASTATE_LARVAL; 2811 2812 SAHTREE_LOCK(); 2813 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav, 2814 secasvar, chain); 2815 SAHTREE_UNLOCK(); 2816 done: 2817 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 2818 printf("DP %s from %s:%u return SP:%p\n", __func__, 2819 where, tag, newsav)); 2820 2821 return newsav; 2822 } 2823 2824 /* 2825 * free() SA variable entry. 2826 */ 2827 static void 2828 key_cleansav(struct secasvar *sav) 2829 { 2830 /* 2831 * Cleanup xform state. Note that zeroize'ing causes the 2832 * keys to be cleared; otherwise we must do it ourself. 2833 */ 2834 if (sav->tdb_xform != NULL) { 2835 sav->tdb_xform->xf_zeroize(sav); 2836 sav->tdb_xform = NULL; 2837 } else { 2838 if (sav->key_auth != NULL) 2839 bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth)); 2840 if (sav->key_enc != NULL) 2841 bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc)); 2842 } 2843 if (sav->key_auth != NULL) { 2844 if (sav->key_auth->key_data != NULL) 2845 free(sav->key_auth->key_data, M_IPSEC_MISC); 2846 free(sav->key_auth, M_IPSEC_MISC); 2847 sav->key_auth = NULL; 2848 } 2849 if (sav->key_enc != NULL) { 2850 if (sav->key_enc->key_data != NULL) 2851 free(sav->key_enc->key_data, M_IPSEC_MISC); 2852 free(sav->key_enc, M_IPSEC_MISC); 2853 sav->key_enc = NULL; 2854 } 2855 if (sav->sched) { 2856 bzero(sav->sched, sav->schedlen); 2857 free(sav->sched, M_IPSEC_MISC); 2858 sav->sched = NULL; 2859 } 2860 if (sav->replay != NULL) { 2861 free(sav->replay, M_IPSEC_MISC); 2862 sav->replay = NULL; 2863 } 2864 if (sav->lft_c != NULL) { 2865 free(sav->lft_c, M_IPSEC_MISC); 2866 sav->lft_c = NULL; 2867 } 2868 if (sav->lft_h != NULL) { 2869 free(sav->lft_h, M_IPSEC_MISC); 2870 sav->lft_h = NULL; 2871 } 2872 if (sav->lft_s != NULL) { 2873 free(sav->lft_s, M_IPSEC_MISC); 2874 sav->lft_s = NULL; 2875 } 2876 } 2877 2878 /* 2879 * free() SA variable entry. 2880 */ 2881 static void 2882 key_delsav(struct secasvar *sav) 2883 { 2884 IPSEC_ASSERT(sav != NULL, ("null sav")); 2885 IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt)); 2886 2887 /* remove from SA header */ 2888 if (__LIST_CHAINED(sav)) 2889 LIST_REMOVE(sav, chain); 2890 key_cleansav(sav); 2891 SECASVAR_LOCK_DESTROY(sav); 2892 free(sav, M_IPSEC_SA); 2893 } 2894 2895 /* 2896 * search SAD. 2897 * OUT: 2898 * NULL : not found 2899 * others : found, pointer to a SA. 2900 */ 2901 static struct secashead * 2902 key_getsah(struct secasindex *saidx) 2903 { 2904 struct secashead *sah; 2905 2906 SAHTREE_LOCK(); 2907 LIST_FOREACH(sah, &V_sahtree, chain) { 2908 if (sah->state == SADB_SASTATE_DEAD) 2909 continue; 2910 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID)) 2911 break; 2912 } 2913 SAHTREE_UNLOCK(); 2914 2915 return sah; 2916 } 2917 2918 /* 2919 * check not to be duplicated SPI. 2920 * NOTE: this function is too slow due to searching all SAD. 2921 * OUT: 2922 * NULL : not found 2923 * others : found, pointer to a SA. 2924 */ 2925 static struct secasvar * 2926 key_checkspidup(struct secasindex *saidx, u_int32_t spi) 2927 { 2928 struct secashead *sah; 2929 struct secasvar *sav; 2930 2931 /* check address family */ 2932 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) { 2933 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 2934 __func__)); 2935 return NULL; 2936 } 2937 2938 sav = NULL; 2939 /* check all SAD */ 2940 SAHTREE_LOCK(); 2941 LIST_FOREACH(sah, &V_sahtree, chain) { 2942 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst)) 2943 continue; 2944 sav = key_getsavbyspi(sah, spi); 2945 if (sav != NULL) 2946 break; 2947 } 2948 SAHTREE_UNLOCK(); 2949 2950 return sav; 2951 } 2952 2953 /* 2954 * search SAD litmited alive SA, protocol, SPI. 2955 * OUT: 2956 * NULL : not found 2957 * others : found, pointer to a SA. 2958 */ 2959 static struct secasvar * 2960 key_getsavbyspi(struct secashead *sah, u_int32_t spi) 2961 { 2962 struct secasvar *sav; 2963 u_int stateidx, state; 2964 2965 sav = NULL; 2966 SAHTREE_LOCK_ASSERT(); 2967 /* search all status */ 2968 for (stateidx = 0; 2969 stateidx < _ARRAYLEN(saorder_state_alive); 2970 stateidx++) { 2971 2972 state = saorder_state_alive[stateidx]; 2973 LIST_FOREACH(sav, &sah->savtree[state], chain) { 2974 2975 /* sanity check */ 2976 if (sav->state != state) { 2977 ipseclog((LOG_DEBUG, "%s: " 2978 "invalid sav->state (queue: %d SA: %d)\n", 2979 __func__, state, sav->state)); 2980 continue; 2981 } 2982 2983 if (sav->spi == spi) 2984 return sav; 2985 } 2986 } 2987 2988 return NULL; 2989 } 2990 2991 /* 2992 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. 2993 * You must update these if need. 2994 * OUT: 0: success. 2995 * !0: failure. 2996 * 2997 * does not modify mbuf. does not free mbuf on error. 2998 */ 2999 static int 3000 key_setsaval(struct secasvar *sav, struct mbuf *m, 3001 const struct sadb_msghdr *mhp) 3002 { 3003 int error = 0; 3004 3005 IPSEC_ASSERT(m != NULL, ("null mbuf")); 3006 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 3007 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 3008 3009 /* initialization */ 3010 sav->replay = NULL; 3011 sav->key_auth = NULL; 3012 sav->key_enc = NULL; 3013 sav->sched = NULL; 3014 sav->schedlen = 0; 3015 sav->lft_c = NULL; 3016 sav->lft_h = NULL; 3017 sav->lft_s = NULL; 3018 sav->tdb_xform = NULL; /* transform */ 3019 sav->tdb_encalgxform = NULL; /* encoding algorithm */ 3020 sav->tdb_authalgxform = NULL; /* authentication algorithm */ 3021 sav->tdb_compalgxform = NULL; /* compression algorithm */ 3022 /* Initialize even if NAT-T not compiled in: */ 3023 sav->natt_type = 0; 3024 sav->natt_esp_frag_len = 0; 3025 3026 /* SA */ 3027 if (mhp->ext[SADB_EXT_SA] != NULL) { 3028 const struct sadb_sa *sa0; 3029 3030 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 3031 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { 3032 error = EINVAL; 3033 goto fail; 3034 } 3035 3036 sav->alg_auth = sa0->sadb_sa_auth; 3037 sav->alg_enc = sa0->sadb_sa_encrypt; 3038 sav->flags = sa0->sadb_sa_flags; 3039 3040 /* replay window */ 3041 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { 3042 sav->replay = (struct secreplay *) 3043 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO); 3044 if (sav->replay == NULL) { 3045 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3046 __func__)); 3047 error = ENOBUFS; 3048 goto fail; 3049 } 3050 if (sa0->sadb_sa_replay != 0) 3051 sav->replay->bitmap = (caddr_t)(sav->replay+1); 3052 sav->replay->wsize = sa0->sadb_sa_replay; 3053 } 3054 } 3055 3056 /* Authentication keys */ 3057 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { 3058 const struct sadb_key *key0; 3059 int len; 3060 3061 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH]; 3062 len = mhp->extlen[SADB_EXT_KEY_AUTH]; 3063 3064 error = 0; 3065 if (len < sizeof(*key0)) { 3066 error = EINVAL; 3067 goto fail; 3068 } 3069 switch (mhp->msg->sadb_msg_satype) { 3070 case SADB_SATYPE_AH: 3071 case SADB_SATYPE_ESP: 3072 case SADB_X_SATYPE_TCPSIGNATURE: 3073 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3074 sav->alg_auth != SADB_X_AALG_NULL) 3075 error = EINVAL; 3076 break; 3077 case SADB_X_SATYPE_IPCOMP: 3078 default: 3079 error = EINVAL; 3080 break; 3081 } 3082 if (error) { 3083 ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n", 3084 __func__)); 3085 goto fail; 3086 } 3087 3088 sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len, 3089 M_IPSEC_MISC); 3090 if (sav->key_auth == NULL ) { 3091 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3092 __func__)); 3093 error = ENOBUFS; 3094 goto fail; 3095 } 3096 } 3097 3098 /* Encryption key */ 3099 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { 3100 const struct sadb_key *key0; 3101 int len; 3102 3103 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT]; 3104 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; 3105 3106 error = 0; 3107 if (len < sizeof(*key0)) { 3108 error = EINVAL; 3109 goto fail; 3110 } 3111 switch (mhp->msg->sadb_msg_satype) { 3112 case SADB_SATYPE_ESP: 3113 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3114 sav->alg_enc != SADB_EALG_NULL) { 3115 error = EINVAL; 3116 break; 3117 } 3118 sav->key_enc = (struct seckey *)key_dup_keymsg(key0, 3119 len, 3120 M_IPSEC_MISC); 3121 if (sav->key_enc == NULL) { 3122 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3123 __func__)); 3124 error = ENOBUFS; 3125 goto fail; 3126 } 3127 break; 3128 case SADB_X_SATYPE_IPCOMP: 3129 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) 3130 error = EINVAL; 3131 sav->key_enc = NULL; /*just in case*/ 3132 break; 3133 case SADB_SATYPE_AH: 3134 case SADB_X_SATYPE_TCPSIGNATURE: 3135 default: 3136 error = EINVAL; 3137 break; 3138 } 3139 if (error) { 3140 ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n", 3141 __func__)); 3142 goto fail; 3143 } 3144 } 3145 3146 /* set iv */ 3147 sav->ivlen = 0; 3148 3149 switch (mhp->msg->sadb_msg_satype) { 3150 case SADB_SATYPE_AH: 3151 error = xform_init(sav, XF_AH); 3152 break; 3153 case SADB_SATYPE_ESP: 3154 error = xform_init(sav, XF_ESP); 3155 break; 3156 case SADB_X_SATYPE_IPCOMP: 3157 error = xform_init(sav, XF_IPCOMP); 3158 break; 3159 case SADB_X_SATYPE_TCPSIGNATURE: 3160 error = xform_init(sav, XF_TCPSIGNATURE); 3161 break; 3162 } 3163 if (error) { 3164 ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n", 3165 __func__, mhp->msg->sadb_msg_satype)); 3166 goto fail; 3167 } 3168 3169 /* reset created */ 3170 sav->created = time_second; 3171 3172 /* make lifetime for CURRENT */ 3173 sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT); 3174 if (sav->lft_c == NULL) { 3175 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3176 error = ENOBUFS; 3177 goto fail; 3178 } 3179 3180 sav->lft_c->allocations = 0; 3181 sav->lft_c->bytes = 0; 3182 sav->lft_c->addtime = time_second; 3183 sav->lft_c->usetime = 0; 3184 3185 /* lifetimes for HARD and SOFT */ 3186 { 3187 const struct sadb_lifetime *lft0; 3188 3189 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 3190 if (lft0 != NULL) { 3191 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { 3192 error = EINVAL; 3193 goto fail; 3194 } 3195 sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3196 if (sav->lft_h == NULL) { 3197 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3198 error = ENOBUFS; 3199 goto fail; 3200 } 3201 /* to be initialize ? */ 3202 } 3203 3204 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT]; 3205 if (lft0 != NULL) { 3206 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { 3207 error = EINVAL; 3208 goto fail; 3209 } 3210 sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3211 if (sav->lft_s == NULL) { 3212 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3213 error = ENOBUFS; 3214 goto fail; 3215 } 3216 /* to be initialize ? */ 3217 } 3218 } 3219 3220 return 0; 3221 3222 fail: 3223 /* initialization */ 3224 key_cleansav(sav); 3225 3226 return error; 3227 } 3228 3229 /* 3230 * validation with a secasvar entry, and set SADB_SATYPE_MATURE. 3231 * OUT: 0: valid 3232 * other: errno 3233 */ 3234 static int 3235 key_mature(struct secasvar *sav) 3236 { 3237 int error; 3238 3239 /* check SPI value */ 3240 switch (sav->sah->saidx.proto) { 3241 case IPPROTO_ESP: 3242 case IPPROTO_AH: 3243 /* 3244 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values 3245 * 1-255 reserved by IANA for future use, 3246 * 0 for implementation specific, local use. 3247 */ 3248 if (ntohl(sav->spi) <= 255) { 3249 ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n", 3250 __func__, (u_int32_t)ntohl(sav->spi))); 3251 return EINVAL; 3252 } 3253 break; 3254 } 3255 3256 /* check satype */ 3257 switch (sav->sah->saidx.proto) { 3258 case IPPROTO_ESP: 3259 /* check flags */ 3260 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) == 3261 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) { 3262 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3263 "given to old-esp.\n", __func__)); 3264 return EINVAL; 3265 } 3266 error = xform_init(sav, XF_ESP); 3267 break; 3268 case IPPROTO_AH: 3269 /* check flags */ 3270 if (sav->flags & SADB_X_EXT_DERIV) { 3271 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3272 "given to AH SA.\n", __func__)); 3273 return EINVAL; 3274 } 3275 if (sav->alg_enc != SADB_EALG_NONE) { 3276 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3277 "mismated.\n", __func__)); 3278 return(EINVAL); 3279 } 3280 error = xform_init(sav, XF_AH); 3281 break; 3282 case IPPROTO_IPCOMP: 3283 if (sav->alg_auth != SADB_AALG_NONE) { 3284 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3285 "mismated.\n", __func__)); 3286 return(EINVAL); 3287 } 3288 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 3289 && ntohl(sav->spi) >= 0x10000) { 3290 ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n", 3291 __func__)); 3292 return(EINVAL); 3293 } 3294 error = xform_init(sav, XF_IPCOMP); 3295 break; 3296 case IPPROTO_TCP: 3297 if (sav->alg_enc != SADB_EALG_NONE) { 3298 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3299 "mismated.\n", __func__)); 3300 return(EINVAL); 3301 } 3302 error = xform_init(sav, XF_TCPSIGNATURE); 3303 break; 3304 default: 3305 ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__)); 3306 error = EPROTONOSUPPORT; 3307 break; 3308 } 3309 if (error == 0) { 3310 SAHTREE_LOCK(); 3311 key_sa_chgstate(sav, SADB_SASTATE_MATURE); 3312 SAHTREE_UNLOCK(); 3313 } 3314 return (error); 3315 } 3316 3317 /* 3318 * subroutine for SADB_GET and SADB_DUMP. 3319 */ 3320 static struct mbuf * 3321 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype, 3322 u_int32_t seq, u_int32_t pid) 3323 { 3324 struct mbuf *result = NULL, *tres = NULL, *m; 3325 int i; 3326 int dumporder[] = { 3327 SADB_EXT_SA, SADB_X_EXT_SA2, 3328 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 3329 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, 3330 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, 3331 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, 3332 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, 3333 #ifdef IPSEC_NAT_T 3334 SADB_X_EXT_NAT_T_TYPE, 3335 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT, 3336 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR, 3337 SADB_X_EXT_NAT_T_FRAG, 3338 #endif 3339 }; 3340 3341 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt); 3342 if (m == NULL) 3343 goto fail; 3344 result = m; 3345 3346 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) { 3347 m = NULL; 3348 switch (dumporder[i]) { 3349 case SADB_EXT_SA: 3350 m = key_setsadbsa(sav); 3351 if (!m) 3352 goto fail; 3353 break; 3354 3355 case SADB_X_EXT_SA2: 3356 m = key_setsadbxsa2(sav->sah->saidx.mode, 3357 sav->replay ? sav->replay->count : 0, 3358 sav->sah->saidx.reqid); 3359 if (!m) 3360 goto fail; 3361 break; 3362 3363 case SADB_EXT_ADDRESS_SRC: 3364 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3365 &sav->sah->saidx.src.sa, 3366 FULLMASK, IPSEC_ULPROTO_ANY); 3367 if (!m) 3368 goto fail; 3369 break; 3370 3371 case SADB_EXT_ADDRESS_DST: 3372 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3373 &sav->sah->saidx.dst.sa, 3374 FULLMASK, IPSEC_ULPROTO_ANY); 3375 if (!m) 3376 goto fail; 3377 break; 3378 3379 case SADB_EXT_KEY_AUTH: 3380 if (!sav->key_auth) 3381 continue; 3382 m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH); 3383 if (!m) 3384 goto fail; 3385 break; 3386 3387 case SADB_EXT_KEY_ENCRYPT: 3388 if (!sav->key_enc) 3389 continue; 3390 m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT); 3391 if (!m) 3392 goto fail; 3393 break; 3394 3395 case SADB_EXT_LIFETIME_CURRENT: 3396 if (!sav->lft_c) 3397 continue; 3398 m = key_setlifetime(sav->lft_c, 3399 SADB_EXT_LIFETIME_CURRENT); 3400 if (!m) 3401 goto fail; 3402 break; 3403 3404 case SADB_EXT_LIFETIME_HARD: 3405 if (!sav->lft_h) 3406 continue; 3407 m = key_setlifetime(sav->lft_h, 3408 SADB_EXT_LIFETIME_HARD); 3409 if (!m) 3410 goto fail; 3411 break; 3412 3413 case SADB_EXT_LIFETIME_SOFT: 3414 if (!sav->lft_s) 3415 continue; 3416 m = key_setlifetime(sav->lft_s, 3417 SADB_EXT_LIFETIME_SOFT); 3418 3419 if (!m) 3420 goto fail; 3421 break; 3422 3423 #ifdef IPSEC_NAT_T 3424 case SADB_X_EXT_NAT_T_TYPE: 3425 m = key_setsadbxtype(sav->natt_type); 3426 if (!m) 3427 goto fail; 3428 break; 3429 3430 case SADB_X_EXT_NAT_T_DPORT: 3431 m = key_setsadbxport( 3432 KEY_PORTFROMSADDR(&sav->sah->saidx.dst), 3433 SADB_X_EXT_NAT_T_DPORT); 3434 if (!m) 3435 goto fail; 3436 break; 3437 3438 case SADB_X_EXT_NAT_T_SPORT: 3439 m = key_setsadbxport( 3440 KEY_PORTFROMSADDR(&sav->sah->saidx.src), 3441 SADB_X_EXT_NAT_T_SPORT); 3442 if (!m) 3443 goto fail; 3444 break; 3445 3446 case SADB_X_EXT_NAT_T_OAI: 3447 case SADB_X_EXT_NAT_T_OAR: 3448 case SADB_X_EXT_NAT_T_FRAG: 3449 /* We do not (yet) support those. */ 3450 continue; 3451 #endif 3452 3453 case SADB_EXT_ADDRESS_PROXY: 3454 case SADB_EXT_IDENTITY_SRC: 3455 case SADB_EXT_IDENTITY_DST: 3456 /* XXX: should we brought from SPD ? */ 3457 case SADB_EXT_SENSITIVITY: 3458 default: 3459 continue; 3460 } 3461 3462 if (!m) 3463 goto fail; 3464 if (tres) 3465 m_cat(m, tres); 3466 tres = m; 3467 3468 } 3469 3470 m_cat(result, tres); 3471 if (result->m_len < sizeof(struct sadb_msg)) { 3472 result = m_pullup(result, sizeof(struct sadb_msg)); 3473 if (result == NULL) 3474 goto fail; 3475 } 3476 3477 result->m_pkthdr.len = 0; 3478 for (m = result; m; m = m->m_next) 3479 result->m_pkthdr.len += m->m_len; 3480 3481 mtod(result, struct sadb_msg *)->sadb_msg_len = 3482 PFKEY_UNIT64(result->m_pkthdr.len); 3483 3484 return result; 3485 3486 fail: 3487 m_freem(result); 3488 m_freem(tres); 3489 return NULL; 3490 } 3491 3492 /* 3493 * set data into sadb_msg. 3494 */ 3495 static struct mbuf * 3496 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq, 3497 pid_t pid, u_int16_t reserved) 3498 { 3499 struct mbuf *m; 3500 struct sadb_msg *p; 3501 int len; 3502 3503 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 3504 if (len > MCLBYTES) 3505 return NULL; 3506 MGETHDR(m, M_NOWAIT, MT_DATA); 3507 if (m && len > MHLEN) { 3508 if (!(MCLGET(m, M_NOWAIT))) { 3509 m_freem(m); 3510 m = NULL; 3511 } 3512 } 3513 if (!m) 3514 return NULL; 3515 m->m_pkthdr.len = m->m_len = len; 3516 m->m_next = NULL; 3517 3518 p = mtod(m, struct sadb_msg *); 3519 3520 bzero(p, len); 3521 p->sadb_msg_version = PF_KEY_V2; 3522 p->sadb_msg_type = type; 3523 p->sadb_msg_errno = 0; 3524 p->sadb_msg_satype = satype; 3525 p->sadb_msg_len = PFKEY_UNIT64(tlen); 3526 p->sadb_msg_reserved = reserved; 3527 p->sadb_msg_seq = seq; 3528 p->sadb_msg_pid = (u_int32_t)pid; 3529 3530 return m; 3531 } 3532 3533 /* 3534 * copy secasvar data into sadb_address. 3535 */ 3536 static struct mbuf * 3537 key_setsadbsa(struct secasvar *sav) 3538 { 3539 struct mbuf *m; 3540 struct sadb_sa *p; 3541 int len; 3542 3543 len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); 3544 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3545 if (m == NULL) 3546 return (NULL); 3547 m_align(m, len); 3548 m->m_len = len; 3549 p = mtod(m, struct sadb_sa *); 3550 bzero(p, len); 3551 p->sadb_sa_len = PFKEY_UNIT64(len); 3552 p->sadb_sa_exttype = SADB_EXT_SA; 3553 p->sadb_sa_spi = sav->spi; 3554 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0); 3555 p->sadb_sa_state = sav->state; 3556 p->sadb_sa_auth = sav->alg_auth; 3557 p->sadb_sa_encrypt = sav->alg_enc; 3558 p->sadb_sa_flags = sav->flags; 3559 3560 return m; 3561 } 3562 3563 /* 3564 * set data into sadb_address. 3565 */ 3566 static struct mbuf * 3567 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, 3568 u_int8_t prefixlen, u_int16_t ul_proto) 3569 { 3570 struct mbuf *m; 3571 struct sadb_address *p; 3572 size_t len; 3573 3574 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + 3575 PFKEY_ALIGN8(saddr->sa_len); 3576 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3577 if (m == NULL) 3578 return (NULL); 3579 m_align(m, len); 3580 m->m_len = len; 3581 p = mtod(m, struct sadb_address *); 3582 3583 bzero(p, len); 3584 p->sadb_address_len = PFKEY_UNIT64(len); 3585 p->sadb_address_exttype = exttype; 3586 p->sadb_address_proto = ul_proto; 3587 if (prefixlen == FULLMASK) { 3588 switch (saddr->sa_family) { 3589 case AF_INET: 3590 prefixlen = sizeof(struct in_addr) << 3; 3591 break; 3592 case AF_INET6: 3593 prefixlen = sizeof(struct in6_addr) << 3; 3594 break; 3595 default: 3596 ; /*XXX*/ 3597 } 3598 } 3599 p->sadb_address_prefixlen = prefixlen; 3600 p->sadb_address_reserved = 0; 3601 3602 bcopy(saddr, 3603 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)), 3604 saddr->sa_len); 3605 3606 return m; 3607 } 3608 3609 /* 3610 * set data into sadb_x_sa2. 3611 */ 3612 static struct mbuf * 3613 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid) 3614 { 3615 struct mbuf *m; 3616 struct sadb_x_sa2 *p; 3617 size_t len; 3618 3619 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); 3620 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3621 if (m == NULL) 3622 return (NULL); 3623 m_align(m, len); 3624 m->m_len = len; 3625 p = mtod(m, struct sadb_x_sa2 *); 3626 3627 bzero(p, len); 3628 p->sadb_x_sa2_len = PFKEY_UNIT64(len); 3629 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 3630 p->sadb_x_sa2_mode = mode; 3631 p->sadb_x_sa2_reserved1 = 0; 3632 p->sadb_x_sa2_reserved2 = 0; 3633 p->sadb_x_sa2_sequence = seq; 3634 p->sadb_x_sa2_reqid = reqid; 3635 3636 return m; 3637 } 3638 3639 #ifdef IPSEC_NAT_T 3640 /* 3641 * Set a type in sadb_x_nat_t_type. 3642 */ 3643 static struct mbuf * 3644 key_setsadbxtype(u_int16_t type) 3645 { 3646 struct mbuf *m; 3647 size_t len; 3648 struct sadb_x_nat_t_type *p; 3649 3650 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type)); 3651 3652 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3653 if (m == NULL) 3654 return (NULL); 3655 m_align(m, len); 3656 m->m_len = len; 3657 p = mtod(m, struct sadb_x_nat_t_type *); 3658 3659 bzero(p, len); 3660 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len); 3661 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; 3662 p->sadb_x_nat_t_type_type = type; 3663 3664 return (m); 3665 } 3666 /* 3667 * Set a port in sadb_x_nat_t_port. 3668 * In contrast to default RFC 2367 behaviour, port is in network byte order. 3669 */ 3670 static struct mbuf * 3671 key_setsadbxport(u_int16_t port, u_int16_t type) 3672 { 3673 struct mbuf *m; 3674 size_t len; 3675 struct sadb_x_nat_t_port *p; 3676 3677 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port)); 3678 3679 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3680 if (m == NULL) 3681 return (NULL); 3682 m_align(m, len); 3683 m->m_len = len; 3684 p = mtod(m, struct sadb_x_nat_t_port *); 3685 3686 bzero(p, len); 3687 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len); 3688 p->sadb_x_nat_t_port_exttype = type; 3689 p->sadb_x_nat_t_port_port = port; 3690 3691 return (m); 3692 } 3693 3694 /* 3695 * Get port from sockaddr. Port is in network byte order. 3696 */ 3697 u_int16_t 3698 key_portfromsaddr(struct sockaddr *sa) 3699 { 3700 3701 switch (sa->sa_family) { 3702 #ifdef INET 3703 case AF_INET: 3704 return ((struct sockaddr_in *)sa)->sin_port; 3705 #endif 3706 #ifdef INET6 3707 case AF_INET6: 3708 return ((struct sockaddr_in6 *)sa)->sin6_port; 3709 #endif 3710 } 3711 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 3712 printf("DP %s unexpected address family %d\n", 3713 __func__, sa->sa_family)); 3714 return (0); 3715 } 3716 #endif /* IPSEC_NAT_T */ 3717 3718 /* 3719 * Set port in struct sockaddr. Port is in network byte order. 3720 */ 3721 static void 3722 key_porttosaddr(struct sockaddr *sa, u_int16_t port) 3723 { 3724 3725 switch (sa->sa_family) { 3726 #ifdef INET 3727 case AF_INET: 3728 ((struct sockaddr_in *)sa)->sin_port = port; 3729 break; 3730 #endif 3731 #ifdef INET6 3732 case AF_INET6: 3733 ((struct sockaddr_in6 *)sa)->sin6_port = port; 3734 break; 3735 #endif 3736 default: 3737 ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n", 3738 __func__, sa->sa_family)); 3739 break; 3740 } 3741 } 3742 3743 /* 3744 * set data into sadb_x_policy 3745 */ 3746 static struct mbuf * 3747 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id) 3748 { 3749 struct mbuf *m; 3750 struct sadb_x_policy *p; 3751 size_t len; 3752 3753 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); 3754 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3755 if (m == NULL) 3756 return (NULL); 3757 m_align(m, len); 3758 m->m_len = len; 3759 p = mtod(m, struct sadb_x_policy *); 3760 3761 bzero(p, len); 3762 p->sadb_x_policy_len = PFKEY_UNIT64(len); 3763 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 3764 p->sadb_x_policy_type = type; 3765 p->sadb_x_policy_dir = dir; 3766 p->sadb_x_policy_id = id; 3767 3768 return m; 3769 } 3770 3771 /* %%% utilities */ 3772 /* Take a key message (sadb_key) from the socket and turn it into one 3773 * of the kernel's key structures (seckey). 3774 * 3775 * IN: pointer to the src 3776 * OUT: NULL no more memory 3777 */ 3778 struct seckey * 3779 key_dup_keymsg(const struct sadb_key *src, u_int len, 3780 struct malloc_type *type) 3781 { 3782 struct seckey *dst; 3783 dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT); 3784 if (dst != NULL) { 3785 dst->bits = src->sadb_key_bits; 3786 dst->key_data = (char *)malloc(len, type, M_NOWAIT); 3787 if (dst->key_data != NULL) { 3788 bcopy((const char *)src + sizeof(struct sadb_key), 3789 dst->key_data, len); 3790 } else { 3791 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3792 __func__)); 3793 free(dst, type); 3794 dst = NULL; 3795 } 3796 } else { 3797 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3798 __func__)); 3799 3800 } 3801 return dst; 3802 } 3803 3804 /* Take a lifetime message (sadb_lifetime) passed in on a socket and 3805 * turn it into one of the kernel's lifetime structures (seclifetime). 3806 * 3807 * IN: pointer to the destination, source and malloc type 3808 * OUT: NULL, no more memory 3809 */ 3810 3811 static struct seclifetime * 3812 key_dup_lifemsg(const struct sadb_lifetime *src, struct malloc_type *type) 3813 { 3814 struct seclifetime *dst = NULL; 3815 3816 dst = (struct seclifetime *)malloc(sizeof(struct seclifetime), 3817 type, M_NOWAIT); 3818 if (dst == NULL) { 3819 /* XXX counter */ 3820 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3821 } else { 3822 dst->allocations = src->sadb_lifetime_allocations; 3823 dst->bytes = src->sadb_lifetime_bytes; 3824 dst->addtime = src->sadb_lifetime_addtime; 3825 dst->usetime = src->sadb_lifetime_usetime; 3826 } 3827 return dst; 3828 } 3829 3830 /* compare my own address 3831 * OUT: 1: true, i.e. my address. 3832 * 0: false 3833 */ 3834 int 3835 key_ismyaddr(struct sockaddr *sa) 3836 { 3837 3838 IPSEC_ASSERT(sa != NULL, ("null sockaddr")); 3839 switch (sa->sa_family) { 3840 #ifdef INET 3841 case AF_INET: 3842 return (in_localip(satosin(sa)->sin_addr)); 3843 #endif 3844 #ifdef INET6 3845 case AF_INET6: 3846 return key_ismyaddr6((struct sockaddr_in6 *)sa); 3847 #endif 3848 } 3849 3850 return 0; 3851 } 3852 3853 #ifdef INET6 3854 /* 3855 * compare my own address for IPv6. 3856 * 1: ours 3857 * 0: other 3858 */ 3859 static int 3860 key_ismyaddr6(struct sockaddr_in6 *sin6) 3861 { 3862 struct in6_addr in6; 3863 3864 if (!IN6_IS_SCOPE_LINKLOCAL(&sin6->sin6_addr)) 3865 return (in6_localip(&sin6->sin6_addr)); 3866 3867 /* Convert address into kernel-internal form */ 3868 in6 = sin6->sin6_addr; 3869 in6.s6_addr16[1] = htons(sin6->sin6_scope_id & 0xffff); 3870 return (in6_localip(&in6)); 3871 } 3872 #endif /*INET6*/ 3873 3874 /* 3875 * compare two secasindex structure. 3876 * flag can specify to compare 2 saidxes. 3877 * compare two secasindex structure without both mode and reqid. 3878 * don't compare port. 3879 * IN: 3880 * saidx0: source, it can be in SAD. 3881 * saidx1: object. 3882 * OUT: 3883 * 1 : equal 3884 * 0 : not equal 3885 */ 3886 static int 3887 key_cmpsaidx(const struct secasindex *saidx0, const struct secasindex *saidx1, 3888 int flag) 3889 { 3890 int chkport = 0; 3891 3892 /* sanity */ 3893 if (saidx0 == NULL && saidx1 == NULL) 3894 return 1; 3895 3896 if (saidx0 == NULL || saidx1 == NULL) 3897 return 0; 3898 3899 if (saidx0->proto != saidx1->proto) 3900 return 0; 3901 3902 if (flag == CMP_EXACTLY) { 3903 if (saidx0->mode != saidx1->mode) 3904 return 0; 3905 if (saidx0->reqid != saidx1->reqid) 3906 return 0; 3907 if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 || 3908 bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0) 3909 return 0; 3910 } else { 3911 3912 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ 3913 if (flag == CMP_MODE_REQID 3914 ||flag == CMP_REQID) { 3915 /* 3916 * If reqid of SPD is non-zero, unique SA is required. 3917 * The result must be of same reqid in this case. 3918 */ 3919 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) 3920 return 0; 3921 } 3922 3923 if (flag == CMP_MODE_REQID) { 3924 if (saidx0->mode != IPSEC_MODE_ANY 3925 && saidx0->mode != saidx1->mode) 3926 return 0; 3927 } 3928 3929 #ifdef IPSEC_NAT_T 3930 /* 3931 * If NAT-T is enabled, check ports for tunnel mode. 3932 * Do not check ports if they are set to zero in the SPD. 3933 * Also do not do it for native transport mode, as there 3934 * is no port information available in the SP. 3935 */ 3936 if ((saidx1->mode == IPSEC_MODE_TUNNEL || 3937 (saidx1->mode == IPSEC_MODE_TRANSPORT && 3938 saidx1->proto == IPPROTO_ESP)) && 3939 saidx1->src.sa.sa_family == AF_INET && 3940 saidx1->dst.sa.sa_family == AF_INET && 3941 ((const struct sockaddr_in *)(&saidx1->src))->sin_port && 3942 ((const struct sockaddr_in *)(&saidx1->dst))->sin_port) 3943 chkport = 1; 3944 #endif /* IPSEC_NAT_T */ 3945 3946 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, chkport) != 0) { 3947 return 0; 3948 } 3949 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, chkport) != 0) { 3950 return 0; 3951 } 3952 } 3953 3954 return 1; 3955 } 3956 3957 /* 3958 * compare two secindex structure exactly. 3959 * IN: 3960 * spidx0: source, it is often in SPD. 3961 * spidx1: object, it is often from PFKEY message. 3962 * OUT: 3963 * 1 : equal 3964 * 0 : not equal 3965 */ 3966 static int 3967 key_cmpspidx_exactly(struct secpolicyindex *spidx0, 3968 struct secpolicyindex *spidx1) 3969 { 3970 /* sanity */ 3971 if (spidx0 == NULL && spidx1 == NULL) 3972 return 1; 3973 3974 if (spidx0 == NULL || spidx1 == NULL) 3975 return 0; 3976 3977 if (spidx0->prefs != spidx1->prefs 3978 || spidx0->prefd != spidx1->prefd 3979 || spidx0->ul_proto != spidx1->ul_proto) 3980 return 0; 3981 3982 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 && 3983 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0; 3984 } 3985 3986 /* 3987 * compare two secindex structure with mask. 3988 * IN: 3989 * spidx0: source, it is often in SPD. 3990 * spidx1: object, it is often from IP header. 3991 * OUT: 3992 * 1 : equal 3993 * 0 : not equal 3994 */ 3995 static int 3996 key_cmpspidx_withmask(struct secpolicyindex *spidx0, 3997 struct secpolicyindex *spidx1) 3998 { 3999 /* sanity */ 4000 if (spidx0 == NULL && spidx1 == NULL) 4001 return 1; 4002 4003 if (spidx0 == NULL || spidx1 == NULL) 4004 return 0; 4005 4006 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || 4007 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || 4008 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || 4009 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) 4010 return 0; 4011 4012 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ 4013 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY 4014 && spidx0->ul_proto != spidx1->ul_proto) 4015 return 0; 4016 4017 switch (spidx0->src.sa.sa_family) { 4018 case AF_INET: 4019 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY 4020 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) 4021 return 0; 4022 if (!key_bbcmp(&spidx0->src.sin.sin_addr, 4023 &spidx1->src.sin.sin_addr, spidx0->prefs)) 4024 return 0; 4025 break; 4026 case AF_INET6: 4027 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY 4028 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) 4029 return 0; 4030 /* 4031 * scope_id check. if sin6_scope_id is 0, we regard it 4032 * as a wildcard scope, which matches any scope zone ID. 4033 */ 4034 if (spidx0->src.sin6.sin6_scope_id && 4035 spidx1->src.sin6.sin6_scope_id && 4036 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) 4037 return 0; 4038 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr, 4039 &spidx1->src.sin6.sin6_addr, spidx0->prefs)) 4040 return 0; 4041 break; 4042 default: 4043 /* XXX */ 4044 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) 4045 return 0; 4046 break; 4047 } 4048 4049 switch (spidx0->dst.sa.sa_family) { 4050 case AF_INET: 4051 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY 4052 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) 4053 return 0; 4054 if (!key_bbcmp(&spidx0->dst.sin.sin_addr, 4055 &spidx1->dst.sin.sin_addr, spidx0->prefd)) 4056 return 0; 4057 break; 4058 case AF_INET6: 4059 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY 4060 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) 4061 return 0; 4062 /* 4063 * scope_id check. if sin6_scope_id is 0, we regard it 4064 * as a wildcard scope, which matches any scope zone ID. 4065 */ 4066 if (spidx0->dst.sin6.sin6_scope_id && 4067 spidx1->dst.sin6.sin6_scope_id && 4068 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) 4069 return 0; 4070 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr, 4071 &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) 4072 return 0; 4073 break; 4074 default: 4075 /* XXX */ 4076 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) 4077 return 0; 4078 break; 4079 } 4080 4081 /* XXX Do we check other field ? e.g. flowinfo */ 4082 4083 return 1; 4084 } 4085 4086 /* returns 0 on match */ 4087 static int 4088 key_sockaddrcmp(const struct sockaddr *sa1, const struct sockaddr *sa2, 4089 int port) 4090 { 4091 #ifdef satosin 4092 #undef satosin 4093 #endif 4094 #define satosin(s) ((const struct sockaddr_in *)s) 4095 #ifdef satosin6 4096 #undef satosin6 4097 #endif 4098 #define satosin6(s) ((const struct sockaddr_in6 *)s) 4099 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) 4100 return 1; 4101 4102 switch (sa1->sa_family) { 4103 case AF_INET: 4104 if (sa1->sa_len != sizeof(struct sockaddr_in)) 4105 return 1; 4106 if (satosin(sa1)->sin_addr.s_addr != 4107 satosin(sa2)->sin_addr.s_addr) { 4108 return 1; 4109 } 4110 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port) 4111 return 1; 4112 break; 4113 case AF_INET6: 4114 if (sa1->sa_len != sizeof(struct sockaddr_in6)) 4115 return 1; /*EINVAL*/ 4116 if (satosin6(sa1)->sin6_scope_id != 4117 satosin6(sa2)->sin6_scope_id) { 4118 return 1; 4119 } 4120 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr, 4121 &satosin6(sa2)->sin6_addr)) { 4122 return 1; 4123 } 4124 if (port && 4125 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) { 4126 return 1; 4127 } 4128 break; 4129 default: 4130 if (bcmp(sa1, sa2, sa1->sa_len) != 0) 4131 return 1; 4132 break; 4133 } 4134 4135 return 0; 4136 #undef satosin 4137 #undef satosin6 4138 } 4139 4140 /* 4141 * compare two buffers with mask. 4142 * IN: 4143 * addr1: source 4144 * addr2: object 4145 * bits: Number of bits to compare 4146 * OUT: 4147 * 1 : equal 4148 * 0 : not equal 4149 */ 4150 static int 4151 key_bbcmp(const void *a1, const void *a2, u_int bits) 4152 { 4153 const unsigned char *p1 = a1; 4154 const unsigned char *p2 = a2; 4155 4156 /* XXX: This could be considerably faster if we compare a word 4157 * at a time, but it is complicated on LSB Endian machines */ 4158 4159 /* Handle null pointers */ 4160 if (p1 == NULL || p2 == NULL) 4161 return (p1 == p2); 4162 4163 while (bits >= 8) { 4164 if (*p1++ != *p2++) 4165 return 0; 4166 bits -= 8; 4167 } 4168 4169 if (bits > 0) { 4170 u_int8_t mask = ~((1<<(8-bits))-1); 4171 if ((*p1 & mask) != (*p2 & mask)) 4172 return 0; 4173 } 4174 return 1; /* Match! */ 4175 } 4176 4177 static void 4178 key_flush_spd(time_t now) 4179 { 4180 SPTREE_RLOCK_TRACKER; 4181 struct secpolicy *sp; 4182 u_int dir; 4183 4184 /* SPD */ 4185 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 4186 restart: 4187 SPTREE_RLOCK(); 4188 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 4189 if (sp->lifetime == 0 && sp->validtime == 0) 4190 continue; 4191 if ((sp->lifetime && 4192 now - sp->created > sp->lifetime) || 4193 (sp->validtime && 4194 now - sp->lastused > sp->validtime)) { 4195 SP_ADDREF(sp); 4196 SPTREE_RUNLOCK(); 4197 key_spdexpire(sp); 4198 key_unlink(sp); 4199 KEY_FREESP(&sp); 4200 goto restart; 4201 } 4202 } 4203 SPTREE_RUNLOCK(); 4204 } 4205 } 4206 4207 static void 4208 key_flush_sad(time_t now) 4209 { 4210 struct secashead *sah, *nextsah; 4211 struct secasvar *sav, *nextsav; 4212 4213 /* SAD */ 4214 SAHTREE_LOCK(); 4215 LIST_FOREACH_SAFE(sah, &V_sahtree, chain, nextsah) { 4216 /* if sah has been dead, then delete it and process next sah. */ 4217 if (sah->state == SADB_SASTATE_DEAD) { 4218 key_delsah(sah); 4219 continue; 4220 } 4221 4222 /* if LARVAL entry doesn't become MATURE, delete it. */ 4223 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) { 4224 /* Need to also check refcnt for a larval SA ??? */ 4225 if (now - sav->created > V_key_larval_lifetime) 4226 KEY_FREESAV(&sav); 4227 } 4228 4229 /* 4230 * check MATURE entry to start to send expire message 4231 * whether or not. 4232 */ 4233 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) { 4234 /* we don't need to check. */ 4235 if (sav->lft_s == NULL) 4236 continue; 4237 4238 /* sanity check */ 4239 if (sav->lft_c == NULL) { 4240 ipseclog((LOG_DEBUG,"%s: there is no CURRENT " 4241 "time, why?\n", __func__)); 4242 continue; 4243 } 4244 /* 4245 * RFC 2367: 4246 * HARD lifetimes MUST take precedence over SOFT 4247 * lifetimes, meaning if the HARD and SOFT lifetimes 4248 * are the same, the HARD lifetime will appear on the 4249 * EXPIRE message. 4250 */ 4251 /* check HARD lifetime */ 4252 if ((sav->lft_h->addtime != 0 && 4253 now - sav->created > sav->lft_h->addtime) || 4254 (sav->lft_h->bytes != 0 && 4255 sav->lft_h->bytes < sav->lft_c->bytes)) { 4256 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4257 key_expire(sav, 1); 4258 KEY_FREESAV(&sav); 4259 } 4260 /* check SOFT lifetime */ 4261 else if ((sav->lft_s->addtime != 0 && 4262 now - sav->created > sav->lft_s->addtime) || 4263 (sav->lft_s->bytes != 0 && 4264 sav->lft_s->bytes < sav->lft_c->bytes)) { 4265 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4266 key_expire(sav, 0); 4267 } 4268 } 4269 4270 /* check DYING entry to change status to DEAD. */ 4271 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) { 4272 /* we don't need to check. */ 4273 if (sav->lft_h == NULL) 4274 continue; 4275 4276 /* sanity check */ 4277 if (sav->lft_c == NULL) { 4278 ipseclog((LOG_DEBUG, "%s: there is no CURRENT " 4279 "time, why?\n", __func__)); 4280 continue; 4281 } 4282 4283 if (sav->lft_h->addtime != 0 && 4284 now - sav->created > sav->lft_h->addtime) { 4285 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4286 key_expire(sav, 1); 4287 KEY_FREESAV(&sav); 4288 } 4289 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */ 4290 else if (sav->lft_s != NULL 4291 && sav->lft_s->addtime != 0 4292 && now - sav->created > sav->lft_s->addtime) { 4293 /* 4294 * XXX: should be checked to be 4295 * installed the valid SA. 4296 */ 4297 4298 /* 4299 * If there is no SA then sending 4300 * expire message. 4301 */ 4302 key_expire(sav, 0); 4303 } 4304 #endif 4305 /* check HARD lifetime by bytes */ 4306 else if (sav->lft_h->bytes != 0 && 4307 sav->lft_h->bytes < sav->lft_c->bytes) { 4308 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4309 key_expire(sav, 1); 4310 KEY_FREESAV(&sav); 4311 } 4312 } 4313 4314 /* delete entry in DEAD */ 4315 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) { 4316 /* sanity check */ 4317 if (sav->state != SADB_SASTATE_DEAD) { 4318 ipseclog((LOG_DEBUG, "%s: invalid sav->state " 4319 "(queue: %d SA: %d): kill it anyway\n", 4320 __func__, 4321 SADB_SASTATE_DEAD, sav->state)); 4322 } 4323 /* 4324 * do not call key_freesav() here. 4325 * sav should already be freed, and sav->refcnt 4326 * shows other references to sav 4327 * (such as from SPD). 4328 */ 4329 } 4330 } 4331 SAHTREE_UNLOCK(); 4332 } 4333 4334 static void 4335 key_flush_acq(time_t now) 4336 { 4337 struct secacq *acq, *nextacq; 4338 4339 /* ACQ tree */ 4340 ACQ_LOCK(); 4341 for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) { 4342 nextacq = LIST_NEXT(acq, chain); 4343 if (now - acq->created > V_key_blockacq_lifetime 4344 && __LIST_CHAINED(acq)) { 4345 LIST_REMOVE(acq, chain); 4346 free(acq, M_IPSEC_SAQ); 4347 } 4348 } 4349 ACQ_UNLOCK(); 4350 } 4351 4352 static void 4353 key_flush_spacq(time_t now) 4354 { 4355 struct secspacq *acq, *nextacq; 4356 4357 /* SP ACQ tree */ 4358 SPACQ_LOCK(); 4359 for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) { 4360 nextacq = LIST_NEXT(acq, chain); 4361 if (now - acq->created > V_key_blockacq_lifetime 4362 && __LIST_CHAINED(acq)) { 4363 LIST_REMOVE(acq, chain); 4364 free(acq, M_IPSEC_SAQ); 4365 } 4366 } 4367 SPACQ_UNLOCK(); 4368 } 4369 4370 /* 4371 * time handler. 4372 * scanning SPD and SAD to check status for each entries, 4373 * and do to remove or to expire. 4374 * XXX: year 2038 problem may remain. 4375 */ 4376 static void 4377 key_timehandler(void *arg) 4378 { 4379 VNET_ITERATOR_DECL(vnet_iter); 4380 time_t now = time_second; 4381 4382 VNET_LIST_RLOCK_NOSLEEP(); 4383 VNET_FOREACH(vnet_iter) { 4384 CURVNET_SET(vnet_iter); 4385 key_flush_spd(now); 4386 key_flush_sad(now); 4387 key_flush_acq(now); 4388 key_flush_spacq(now); 4389 CURVNET_RESTORE(); 4390 } 4391 VNET_LIST_RUNLOCK_NOSLEEP(); 4392 4393 #ifndef IPSEC_DEBUG2 4394 /* do exchange to tick time !! */ 4395 callout_schedule(&key_timer, hz); 4396 #endif /* IPSEC_DEBUG2 */ 4397 } 4398 4399 u_long 4400 key_random() 4401 { 4402 u_long value; 4403 4404 key_randomfill(&value, sizeof(value)); 4405 return value; 4406 } 4407 4408 void 4409 key_randomfill(void *p, size_t l) 4410 { 4411 size_t n; 4412 u_long v; 4413 static int warn = 1; 4414 4415 n = 0; 4416 n = (size_t)read_random(p, (u_int)l); 4417 /* last resort */ 4418 while (n < l) { 4419 v = random(); 4420 bcopy(&v, (u_int8_t *)p + n, 4421 l - n < sizeof(v) ? l - n : sizeof(v)); 4422 n += sizeof(v); 4423 4424 if (warn) { 4425 printf("WARNING: pseudo-random number generator " 4426 "used for IPsec processing\n"); 4427 warn = 0; 4428 } 4429 } 4430 } 4431 4432 /* 4433 * map SADB_SATYPE_* to IPPROTO_*. 4434 * if satype == SADB_SATYPE then satype is mapped to ~0. 4435 * OUT: 4436 * 0: invalid satype. 4437 */ 4438 static u_int16_t 4439 key_satype2proto(u_int8_t satype) 4440 { 4441 switch (satype) { 4442 case SADB_SATYPE_UNSPEC: 4443 return IPSEC_PROTO_ANY; 4444 case SADB_SATYPE_AH: 4445 return IPPROTO_AH; 4446 case SADB_SATYPE_ESP: 4447 return IPPROTO_ESP; 4448 case SADB_X_SATYPE_IPCOMP: 4449 return IPPROTO_IPCOMP; 4450 case SADB_X_SATYPE_TCPSIGNATURE: 4451 return IPPROTO_TCP; 4452 default: 4453 return 0; 4454 } 4455 /* NOTREACHED */ 4456 } 4457 4458 /* 4459 * map IPPROTO_* to SADB_SATYPE_* 4460 * OUT: 4461 * 0: invalid protocol type. 4462 */ 4463 static u_int8_t 4464 key_proto2satype(u_int16_t proto) 4465 { 4466 switch (proto) { 4467 case IPPROTO_AH: 4468 return SADB_SATYPE_AH; 4469 case IPPROTO_ESP: 4470 return SADB_SATYPE_ESP; 4471 case IPPROTO_IPCOMP: 4472 return SADB_X_SATYPE_IPCOMP; 4473 case IPPROTO_TCP: 4474 return SADB_X_SATYPE_TCPSIGNATURE; 4475 default: 4476 return 0; 4477 } 4478 /* NOTREACHED */ 4479 } 4480 4481 /* %%% PF_KEY */ 4482 /* 4483 * SADB_GETSPI processing is to receive 4484 * <base, (SA2), src address, dst address, (SPI range)> 4485 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND 4486 * tree with the status of LARVAL, and send 4487 * <base, SA(*), address(SD)> 4488 * to the IKMPd. 4489 * 4490 * IN: mhp: pointer to the pointer to each header. 4491 * OUT: NULL if fail. 4492 * other if success, return pointer to the message to send. 4493 */ 4494 static int 4495 key_getspi(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 4496 { 4497 struct sadb_address *src0, *dst0; 4498 struct secasindex saidx; 4499 struct secashead *newsah; 4500 struct secasvar *newsav; 4501 u_int8_t proto; 4502 u_int32_t spi; 4503 u_int8_t mode; 4504 u_int32_t reqid; 4505 int error; 4506 4507 IPSEC_ASSERT(so != NULL, ("null socket")); 4508 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4509 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4510 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4511 4512 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4513 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 4514 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4515 __func__)); 4516 return key_senderror(so, m, EINVAL); 4517 } 4518 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4519 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4520 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4521 __func__)); 4522 return key_senderror(so, m, EINVAL); 4523 } 4524 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4525 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4526 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4527 } else { 4528 mode = IPSEC_MODE_ANY; 4529 reqid = 0; 4530 } 4531 4532 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4533 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4534 4535 /* map satype to proto */ 4536 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4537 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4538 __func__)); 4539 return key_senderror(so, m, EINVAL); 4540 } 4541 4542 /* 4543 * Make sure the port numbers are zero. 4544 * In case of NAT-T we will update them later if needed. 4545 */ 4546 switch (((struct sockaddr *)(src0 + 1))->sa_family) { 4547 case AF_INET: 4548 if (((struct sockaddr *)(src0 + 1))->sa_len != 4549 sizeof(struct sockaddr_in)) 4550 return key_senderror(so, m, EINVAL); 4551 ((struct sockaddr_in *)(src0 + 1))->sin_port = 0; 4552 break; 4553 case AF_INET6: 4554 if (((struct sockaddr *)(src0 + 1))->sa_len != 4555 sizeof(struct sockaddr_in6)) 4556 return key_senderror(so, m, EINVAL); 4557 ((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0; 4558 break; 4559 default: 4560 ; /*???*/ 4561 } 4562 switch (((struct sockaddr *)(dst0 + 1))->sa_family) { 4563 case AF_INET: 4564 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4565 sizeof(struct sockaddr_in)) 4566 return key_senderror(so, m, EINVAL); 4567 ((struct sockaddr_in *)(dst0 + 1))->sin_port = 0; 4568 break; 4569 case AF_INET6: 4570 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4571 sizeof(struct sockaddr_in6)) 4572 return key_senderror(so, m, EINVAL); 4573 ((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0; 4574 break; 4575 default: 4576 ; /*???*/ 4577 } 4578 4579 /* XXX boundary check against sa_len */ 4580 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4581 4582 #ifdef IPSEC_NAT_T 4583 /* 4584 * Handle NAT-T info if present. 4585 * We made sure the port numbers are zero above, so we do 4586 * not have to worry in case we do not update them. 4587 */ 4588 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) 4589 ipseclog((LOG_DEBUG, "%s: NAT-T OAi present\n", __func__)); 4590 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) 4591 ipseclog((LOG_DEBUG, "%s: NAT-T OAr present\n", __func__)); 4592 4593 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 4594 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 4595 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 4596 struct sadb_x_nat_t_type *type; 4597 struct sadb_x_nat_t_port *sport, *dport; 4598 4599 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 4600 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 4601 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 4602 ipseclog((LOG_DEBUG, "%s: invalid nat-t message " 4603 "passed.\n", __func__)); 4604 return key_senderror(so, m, EINVAL); 4605 } 4606 4607 sport = (struct sadb_x_nat_t_port *) 4608 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 4609 dport = (struct sadb_x_nat_t_port *) 4610 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 4611 4612 if (sport) 4613 KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port); 4614 if (dport) 4615 KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port); 4616 } 4617 #endif 4618 4619 /* SPI allocation */ 4620 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE], 4621 &saidx); 4622 if (spi == 0) 4623 return key_senderror(so, m, EINVAL); 4624 4625 /* get a SA index */ 4626 if ((newsah = key_getsah(&saidx)) == NULL) { 4627 /* create a new SA index */ 4628 if ((newsah = key_newsah(&saidx)) == NULL) { 4629 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 4630 return key_senderror(so, m, ENOBUFS); 4631 } 4632 } 4633 4634 /* get a new SA */ 4635 /* XXX rewrite */ 4636 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 4637 if (newsav == NULL) { 4638 /* XXX don't free new SA index allocated in above. */ 4639 return key_senderror(so, m, error); 4640 } 4641 4642 /* set spi */ 4643 newsav->spi = htonl(spi); 4644 4645 /* delete the entry in acqtree */ 4646 if (mhp->msg->sadb_msg_seq != 0) { 4647 struct secacq *acq; 4648 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) { 4649 /* reset counter in order to deletion by timehandler. */ 4650 acq->created = time_second; 4651 acq->count = 0; 4652 } 4653 } 4654 4655 { 4656 struct mbuf *n, *nn; 4657 struct sadb_sa *m_sa; 4658 struct sadb_msg *newmsg; 4659 int off, len; 4660 4661 /* create new sadb_msg to reply. */ 4662 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 4663 PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4664 4665 MGETHDR(n, M_NOWAIT, MT_DATA); 4666 if (len > MHLEN) { 4667 if (!(MCLGET(n, M_NOWAIT))) { 4668 m_freem(n); 4669 n = NULL; 4670 } 4671 } 4672 if (!n) 4673 return key_senderror(so, m, ENOBUFS); 4674 4675 n->m_len = len; 4676 n->m_next = NULL; 4677 off = 0; 4678 4679 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 4680 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 4681 4682 m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off); 4683 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); 4684 m_sa->sadb_sa_exttype = SADB_EXT_SA; 4685 m_sa->sadb_sa_spi = htonl(spi); 4686 off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4687 4688 IPSEC_ASSERT(off == len, 4689 ("length inconsistency (off %u len %u)", off, len)); 4690 4691 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, 4692 SADB_EXT_ADDRESS_DST); 4693 if (!n->m_next) { 4694 m_freem(n); 4695 return key_senderror(so, m, ENOBUFS); 4696 } 4697 4698 if (n->m_len < sizeof(struct sadb_msg)) { 4699 n = m_pullup(n, sizeof(struct sadb_msg)); 4700 if (n == NULL) 4701 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 4702 } 4703 4704 n->m_pkthdr.len = 0; 4705 for (nn = n; nn; nn = nn->m_next) 4706 n->m_pkthdr.len += nn->m_len; 4707 4708 newmsg = mtod(n, struct sadb_msg *); 4709 newmsg->sadb_msg_seq = newsav->seq; 4710 newmsg->sadb_msg_errno = 0; 4711 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 4712 4713 m_freem(m); 4714 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 4715 } 4716 } 4717 4718 /* 4719 * allocating new SPI 4720 * called by key_getspi(). 4721 * OUT: 4722 * 0: failure. 4723 * others: success. 4724 */ 4725 static u_int32_t 4726 key_do_getnewspi(struct sadb_spirange *spirange, struct secasindex *saidx) 4727 { 4728 u_int32_t newspi; 4729 u_int32_t min, max; 4730 int count = V_key_spi_trycnt; 4731 4732 /* set spi range to allocate */ 4733 if (spirange != NULL) { 4734 min = spirange->sadb_spirange_min; 4735 max = spirange->sadb_spirange_max; 4736 } else { 4737 min = V_key_spi_minval; 4738 max = V_key_spi_maxval; 4739 } 4740 /* IPCOMP needs 2-byte SPI */ 4741 if (saidx->proto == IPPROTO_IPCOMP) { 4742 u_int32_t t; 4743 if (min >= 0x10000) 4744 min = 0xffff; 4745 if (max >= 0x10000) 4746 max = 0xffff; 4747 if (min > max) { 4748 t = min; min = max; max = t; 4749 } 4750 } 4751 4752 if (min == max) { 4753 if (key_checkspidup(saidx, min) != NULL) { 4754 ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n", 4755 __func__, min)); 4756 return 0; 4757 } 4758 4759 count--; /* taking one cost. */ 4760 newspi = min; 4761 4762 } else { 4763 4764 /* init SPI */ 4765 newspi = 0; 4766 4767 /* when requesting to allocate spi ranged */ 4768 while (count--) { 4769 /* generate pseudo-random SPI value ranged. */ 4770 newspi = min + (key_random() % (max - min + 1)); 4771 4772 if (key_checkspidup(saidx, newspi) == NULL) 4773 break; 4774 } 4775 4776 if (count == 0 || newspi == 0) { 4777 ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n", 4778 __func__)); 4779 return 0; 4780 } 4781 } 4782 4783 /* statistics */ 4784 keystat.getspi_count = 4785 (keystat.getspi_count + V_key_spi_trycnt - count) / 2; 4786 4787 return newspi; 4788 } 4789 4790 /* 4791 * SADB_UPDATE processing 4792 * receive 4793 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4794 * key(AE), (identity(SD),) (sensitivity)> 4795 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. 4796 * and send 4797 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4798 * (identity(SD),) (sensitivity)> 4799 * to the ikmpd. 4800 * 4801 * m will always be freed. 4802 */ 4803 static int 4804 key_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 4805 { 4806 struct sadb_sa *sa0; 4807 struct sadb_address *src0, *dst0; 4808 #ifdef IPSEC_NAT_T 4809 struct sadb_x_nat_t_type *type; 4810 struct sadb_x_nat_t_port *sport, *dport; 4811 struct sadb_address *iaddr, *raddr; 4812 struct sadb_x_nat_t_frag *frag; 4813 #endif 4814 struct secasindex saidx; 4815 struct secashead *sah; 4816 struct secasvar *sav; 4817 u_int16_t proto; 4818 u_int8_t mode; 4819 u_int32_t reqid; 4820 int error; 4821 4822 IPSEC_ASSERT(so != NULL, ("null socket")); 4823 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4824 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4825 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4826 4827 /* map satype to proto */ 4828 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4829 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4830 __func__)); 4831 return key_senderror(so, m, EINVAL); 4832 } 4833 4834 if (mhp->ext[SADB_EXT_SA] == NULL || 4835 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4836 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 4837 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 4838 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 4839 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 4840 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 4841 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 4842 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 4843 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 4844 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 4845 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4846 __func__)); 4847 return key_senderror(so, m, EINVAL); 4848 } 4849 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 4850 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4851 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4852 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4853 __func__)); 4854 return key_senderror(so, m, EINVAL); 4855 } 4856 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4857 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4858 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4859 } else { 4860 mode = IPSEC_MODE_ANY; 4861 reqid = 0; 4862 } 4863 /* XXX boundary checking for other extensions */ 4864 4865 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 4866 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4867 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4868 4869 /* XXX boundary check against sa_len */ 4870 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4871 4872 /* 4873 * Make sure the port numbers are zero. 4874 * In case of NAT-T we will update them later if needed. 4875 */ 4876 KEY_PORTTOSADDR(&saidx.src, 0); 4877 KEY_PORTTOSADDR(&saidx.dst, 0); 4878 4879 #ifdef IPSEC_NAT_T 4880 /* 4881 * Handle NAT-T info if present. 4882 */ 4883 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 4884 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 4885 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 4886 4887 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 4888 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 4889 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 4890 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 4891 __func__)); 4892 return key_senderror(so, m, EINVAL); 4893 } 4894 4895 type = (struct sadb_x_nat_t_type *) 4896 mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 4897 sport = (struct sadb_x_nat_t_port *) 4898 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 4899 dport = (struct sadb_x_nat_t_port *) 4900 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 4901 } else { 4902 type = 0; 4903 sport = dport = 0; 4904 } 4905 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL && 4906 mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { 4907 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) || 4908 mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { 4909 ipseclog((LOG_DEBUG, "%s: invalid message\n", 4910 __func__)); 4911 return key_senderror(so, m, EINVAL); 4912 } 4913 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; 4914 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; 4915 ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__)); 4916 } else { 4917 iaddr = raddr = NULL; 4918 } 4919 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { 4920 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { 4921 ipseclog((LOG_DEBUG, "%s: invalid message\n", 4922 __func__)); 4923 return key_senderror(so, m, EINVAL); 4924 } 4925 frag = (struct sadb_x_nat_t_frag *) 4926 mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 4927 } else { 4928 frag = 0; 4929 } 4930 #endif 4931 4932 /* get a SA header */ 4933 if ((sah = key_getsah(&saidx)) == NULL) { 4934 ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__)); 4935 return key_senderror(so, m, ENOENT); 4936 } 4937 4938 /* set spidx if there */ 4939 /* XXX rewrite */ 4940 error = key_setident(sah, m, mhp); 4941 if (error) 4942 return key_senderror(so, m, error); 4943 4944 /* find a SA with sequence number. */ 4945 #ifdef IPSEC_DOSEQCHECK 4946 if (mhp->msg->sadb_msg_seq != 0 4947 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) { 4948 ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u " 4949 "exists.\n", __func__, mhp->msg->sadb_msg_seq)); 4950 return key_senderror(so, m, ENOENT); 4951 } 4952 #else 4953 SAHTREE_LOCK(); 4954 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 4955 SAHTREE_UNLOCK(); 4956 if (sav == NULL) { 4957 ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n", 4958 __func__, (u_int32_t)ntohl(sa0->sadb_sa_spi))); 4959 return key_senderror(so, m, EINVAL); 4960 } 4961 #endif 4962 4963 /* validity check */ 4964 if (sav->sah->saidx.proto != proto) { 4965 ipseclog((LOG_DEBUG, "%s: protocol mismatched " 4966 "(DB=%u param=%u)\n", __func__, 4967 sav->sah->saidx.proto, proto)); 4968 return key_senderror(so, m, EINVAL); 4969 } 4970 #ifdef IPSEC_DOSEQCHECK 4971 if (sav->spi != sa0->sadb_sa_spi) { 4972 ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n", 4973 __func__, 4974 (u_int32_t)ntohl(sav->spi), 4975 (u_int32_t)ntohl(sa0->sadb_sa_spi))); 4976 return key_senderror(so, m, EINVAL); 4977 } 4978 #endif 4979 if (sav->pid != mhp->msg->sadb_msg_pid) { 4980 ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n", 4981 __func__, sav->pid, mhp->msg->sadb_msg_pid)); 4982 return key_senderror(so, m, EINVAL); 4983 } 4984 4985 /* copy sav values */ 4986 error = key_setsaval(sav, m, mhp); 4987 if (error) { 4988 KEY_FREESAV(&sav); 4989 return key_senderror(so, m, error); 4990 } 4991 4992 #ifdef IPSEC_NAT_T 4993 /* 4994 * Handle more NAT-T info if present, 4995 * now that we have a sav to fill. 4996 */ 4997 if (type) 4998 sav->natt_type = type->sadb_x_nat_t_type_type; 4999 5000 if (sport) 5001 KEY_PORTTOSADDR(&sav->sah->saidx.src, 5002 sport->sadb_x_nat_t_port_port); 5003 if (dport) 5004 KEY_PORTTOSADDR(&sav->sah->saidx.dst, 5005 dport->sadb_x_nat_t_port_port); 5006 5007 #if 0 5008 /* 5009 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0. 5010 * We should actually check for a minimum MTU here, if we 5011 * want to support it in ip_output. 5012 */ 5013 if (frag) 5014 sav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen; 5015 #endif 5016 #endif 5017 5018 /* check SA values to be mature. */ 5019 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) { 5020 KEY_FREESAV(&sav); 5021 return key_senderror(so, m, 0); 5022 } 5023 5024 { 5025 struct mbuf *n; 5026 5027 /* set msg buf from mhp */ 5028 n = key_getmsgbuf_x1(m, mhp); 5029 if (n == NULL) { 5030 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5031 return key_senderror(so, m, ENOBUFS); 5032 } 5033 5034 m_freem(m); 5035 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5036 } 5037 } 5038 5039 /* 5040 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL. 5041 * only called by key_update(). 5042 * OUT: 5043 * NULL : not found 5044 * others : found, pointer to a SA. 5045 */ 5046 #ifdef IPSEC_DOSEQCHECK 5047 static struct secasvar * 5048 key_getsavbyseq(struct secashead *sah, u_int32_t seq) 5049 { 5050 struct secasvar *sav; 5051 u_int state; 5052 5053 state = SADB_SASTATE_LARVAL; 5054 5055 /* search SAD with sequence number ? */ 5056 LIST_FOREACH(sav, &sah->savtree[state], chain) { 5057 5058 KEY_CHKSASTATE(state, sav->state, __func__); 5059 5060 if (sav->seq == seq) { 5061 sa_addref(sav); 5062 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 5063 printf("DP %s cause refcnt++:%d SA:%p\n", 5064 __func__, sav->refcnt, sav)); 5065 return sav; 5066 } 5067 } 5068 5069 return NULL; 5070 } 5071 #endif 5072 5073 /* 5074 * SADB_ADD processing 5075 * add an entry to SA database, when received 5076 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5077 * key(AE), (identity(SD),) (sensitivity)> 5078 * from the ikmpd, 5079 * and send 5080 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5081 * (identity(SD),) (sensitivity)> 5082 * to the ikmpd. 5083 * 5084 * IGNORE identity and sensitivity messages. 5085 * 5086 * m will always be freed. 5087 */ 5088 static int 5089 key_add(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5090 { 5091 struct sadb_sa *sa0; 5092 struct sadb_address *src0, *dst0; 5093 #ifdef IPSEC_NAT_T 5094 struct sadb_x_nat_t_type *type; 5095 struct sadb_address *iaddr, *raddr; 5096 struct sadb_x_nat_t_frag *frag; 5097 #endif 5098 struct secasindex saidx; 5099 struct secashead *newsah; 5100 struct secasvar *newsav; 5101 u_int16_t proto; 5102 u_int8_t mode; 5103 u_int32_t reqid; 5104 int error; 5105 5106 IPSEC_ASSERT(so != NULL, ("null socket")); 5107 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5108 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5109 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5110 5111 /* map satype to proto */ 5112 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5113 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5114 __func__)); 5115 return key_senderror(so, m, EINVAL); 5116 } 5117 5118 if (mhp->ext[SADB_EXT_SA] == NULL || 5119 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5120 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5121 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5122 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5123 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5124 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5125 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5126 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5127 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5128 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5129 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5130 __func__)); 5131 return key_senderror(so, m, EINVAL); 5132 } 5133 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5134 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5135 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5136 /* XXX need more */ 5137 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5138 __func__)); 5139 return key_senderror(so, m, EINVAL); 5140 } 5141 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5142 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 5143 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 5144 } else { 5145 mode = IPSEC_MODE_ANY; 5146 reqid = 0; 5147 } 5148 5149 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5150 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5151 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5152 5153 /* XXX boundary check against sa_len */ 5154 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 5155 5156 /* 5157 * Make sure the port numbers are zero. 5158 * In case of NAT-T we will update them later if needed. 5159 */ 5160 KEY_PORTTOSADDR(&saidx.src, 0); 5161 KEY_PORTTOSADDR(&saidx.dst, 0); 5162 5163 #ifdef IPSEC_NAT_T 5164 /* 5165 * Handle NAT-T info if present. 5166 */ 5167 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 5168 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5169 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5170 struct sadb_x_nat_t_port *sport, *dport; 5171 5172 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 5173 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5174 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5175 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5176 __func__)); 5177 return key_senderror(so, m, EINVAL); 5178 } 5179 5180 type = (struct sadb_x_nat_t_type *) 5181 mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5182 sport = (struct sadb_x_nat_t_port *) 5183 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5184 dport = (struct sadb_x_nat_t_port *) 5185 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5186 5187 if (sport) 5188 KEY_PORTTOSADDR(&saidx.src, 5189 sport->sadb_x_nat_t_port_port); 5190 if (dport) 5191 KEY_PORTTOSADDR(&saidx.dst, 5192 dport->sadb_x_nat_t_port_port); 5193 } else { 5194 type = 0; 5195 } 5196 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL && 5197 mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { 5198 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) || 5199 mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { 5200 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5201 __func__)); 5202 return key_senderror(so, m, EINVAL); 5203 } 5204 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5205 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5206 ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__)); 5207 } else { 5208 iaddr = raddr = NULL; 5209 } 5210 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { 5211 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { 5212 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5213 __func__)); 5214 return key_senderror(so, m, EINVAL); 5215 } 5216 frag = (struct sadb_x_nat_t_frag *) 5217 mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 5218 } else { 5219 frag = 0; 5220 } 5221 #endif 5222 5223 /* get a SA header */ 5224 if ((newsah = key_getsah(&saidx)) == NULL) { 5225 /* create a new SA header */ 5226 if ((newsah = key_newsah(&saidx)) == NULL) { 5227 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 5228 return key_senderror(so, m, ENOBUFS); 5229 } 5230 } 5231 5232 /* set spidx if there */ 5233 /* XXX rewrite */ 5234 error = key_setident(newsah, m, mhp); 5235 if (error) { 5236 return key_senderror(so, m, error); 5237 } 5238 5239 /* create new SA entry. */ 5240 /* We can create new SA only if SPI is differenct. */ 5241 SAHTREE_LOCK(); 5242 newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi); 5243 SAHTREE_UNLOCK(); 5244 if (newsav != NULL) { 5245 ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__)); 5246 return key_senderror(so, m, EEXIST); 5247 } 5248 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 5249 if (newsav == NULL) { 5250 return key_senderror(so, m, error); 5251 } 5252 5253 #ifdef IPSEC_NAT_T 5254 /* 5255 * Handle more NAT-T info if present, 5256 * now that we have a sav to fill. 5257 */ 5258 if (type) 5259 newsav->natt_type = type->sadb_x_nat_t_type_type; 5260 5261 #if 0 5262 /* 5263 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0. 5264 * We should actually check for a minimum MTU here, if we 5265 * want to support it in ip_output. 5266 */ 5267 if (frag) 5268 newsav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen; 5269 #endif 5270 #endif 5271 5272 /* check SA values to be mature. */ 5273 if ((error = key_mature(newsav)) != 0) { 5274 KEY_FREESAV(&newsav); 5275 return key_senderror(so, m, error); 5276 } 5277 5278 /* 5279 * don't call key_freesav() here, as we would like to keep the SA 5280 * in the database on success. 5281 */ 5282 5283 { 5284 struct mbuf *n; 5285 5286 /* set msg buf from mhp */ 5287 n = key_getmsgbuf_x1(m, mhp); 5288 if (n == NULL) { 5289 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5290 return key_senderror(so, m, ENOBUFS); 5291 } 5292 5293 m_freem(m); 5294 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5295 } 5296 } 5297 5298 /* m is retained */ 5299 static int 5300 key_setident(struct secashead *sah, struct mbuf *m, 5301 const struct sadb_msghdr *mhp) 5302 { 5303 const struct sadb_ident *idsrc, *iddst; 5304 int idsrclen, iddstlen; 5305 5306 IPSEC_ASSERT(sah != NULL, ("null secashead")); 5307 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5308 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5309 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5310 5311 /* don't make buffer if not there */ 5312 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL && 5313 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5314 sah->idents = NULL; 5315 sah->identd = NULL; 5316 return 0; 5317 } 5318 5319 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL || 5320 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5321 ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__)); 5322 return EINVAL; 5323 } 5324 5325 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC]; 5326 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST]; 5327 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC]; 5328 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST]; 5329 5330 /* validity check */ 5331 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { 5332 ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__)); 5333 return EINVAL; 5334 } 5335 5336 switch (idsrc->sadb_ident_type) { 5337 case SADB_IDENTTYPE_PREFIX: 5338 case SADB_IDENTTYPE_FQDN: 5339 case SADB_IDENTTYPE_USERFQDN: 5340 default: 5341 /* XXX do nothing */ 5342 sah->idents = NULL; 5343 sah->identd = NULL; 5344 return 0; 5345 } 5346 5347 /* make structure */ 5348 sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5349 if (sah->idents == NULL) { 5350 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5351 return ENOBUFS; 5352 } 5353 sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5354 if (sah->identd == NULL) { 5355 free(sah->idents, M_IPSEC_MISC); 5356 sah->idents = NULL; 5357 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5358 return ENOBUFS; 5359 } 5360 sah->idents->type = idsrc->sadb_ident_type; 5361 sah->idents->id = idsrc->sadb_ident_id; 5362 5363 sah->identd->type = iddst->sadb_ident_type; 5364 sah->identd->id = iddst->sadb_ident_id; 5365 5366 return 0; 5367 } 5368 5369 /* 5370 * m will not be freed on return. 5371 * it is caller's responsibility to free the result. 5372 */ 5373 static struct mbuf * 5374 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp) 5375 { 5376 struct mbuf *n; 5377 5378 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5379 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5380 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5381 5382 /* create new sadb_msg to reply. */ 5383 n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED, 5384 SADB_EXT_SA, SADB_X_EXT_SA2, 5385 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, 5386 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 5387 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST); 5388 if (!n) 5389 return NULL; 5390 5391 if (n->m_len < sizeof(struct sadb_msg)) { 5392 n = m_pullup(n, sizeof(struct sadb_msg)); 5393 if (n == NULL) 5394 return NULL; 5395 } 5396 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; 5397 mtod(n, struct sadb_msg *)->sadb_msg_len = 5398 PFKEY_UNIT64(n->m_pkthdr.len); 5399 5400 return n; 5401 } 5402 5403 /* 5404 * SADB_DELETE processing 5405 * receive 5406 * <base, SA(*), address(SD)> 5407 * from the ikmpd, and set SADB_SASTATE_DEAD, 5408 * and send, 5409 * <base, SA(*), address(SD)> 5410 * to the ikmpd. 5411 * 5412 * m will always be freed. 5413 */ 5414 static int 5415 key_delete(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5416 { 5417 struct sadb_sa *sa0; 5418 struct sadb_address *src0, *dst0; 5419 struct secasindex saidx; 5420 struct secashead *sah; 5421 struct secasvar *sav = NULL; 5422 u_int16_t proto; 5423 5424 IPSEC_ASSERT(so != NULL, ("null socket")); 5425 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5426 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5427 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5428 5429 /* map satype to proto */ 5430 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5431 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5432 __func__)); 5433 return key_senderror(so, m, EINVAL); 5434 } 5435 5436 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5437 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5438 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5439 __func__)); 5440 return key_senderror(so, m, EINVAL); 5441 } 5442 5443 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5444 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5445 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5446 __func__)); 5447 return key_senderror(so, m, EINVAL); 5448 } 5449 5450 if (mhp->ext[SADB_EXT_SA] == NULL) { 5451 /* 5452 * Caller wants us to delete all non-LARVAL SAs 5453 * that match the src/dst. This is used during 5454 * IKE INITIAL-CONTACT. 5455 */ 5456 ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__)); 5457 return key_delete_all(so, m, mhp, proto); 5458 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { 5459 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5460 __func__)); 5461 return key_senderror(so, m, EINVAL); 5462 } 5463 5464 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5465 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5466 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5467 5468 /* XXX boundary check against sa_len */ 5469 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5470 5471 /* 5472 * Make sure the port numbers are zero. 5473 * In case of NAT-T we will update them later if needed. 5474 */ 5475 KEY_PORTTOSADDR(&saidx.src, 0); 5476 KEY_PORTTOSADDR(&saidx.dst, 0); 5477 5478 #ifdef IPSEC_NAT_T 5479 /* 5480 * Handle NAT-T info if present. 5481 */ 5482 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5483 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5484 struct sadb_x_nat_t_port *sport, *dport; 5485 5486 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5487 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5488 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5489 __func__)); 5490 return key_senderror(so, m, EINVAL); 5491 } 5492 5493 sport = (struct sadb_x_nat_t_port *) 5494 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5495 dport = (struct sadb_x_nat_t_port *) 5496 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5497 5498 if (sport) 5499 KEY_PORTTOSADDR(&saidx.src, 5500 sport->sadb_x_nat_t_port_port); 5501 if (dport) 5502 KEY_PORTTOSADDR(&saidx.dst, 5503 dport->sadb_x_nat_t_port_port); 5504 } 5505 #endif 5506 5507 /* get a SA header */ 5508 SAHTREE_LOCK(); 5509 LIST_FOREACH(sah, &V_sahtree, chain) { 5510 if (sah->state == SADB_SASTATE_DEAD) 5511 continue; 5512 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5513 continue; 5514 5515 /* get a SA with SPI. */ 5516 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5517 if (sav) 5518 break; 5519 } 5520 if (sah == NULL) { 5521 SAHTREE_UNLOCK(); 5522 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5523 return key_senderror(so, m, ENOENT); 5524 } 5525 5526 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5527 KEY_FREESAV(&sav); 5528 SAHTREE_UNLOCK(); 5529 5530 { 5531 struct mbuf *n; 5532 struct sadb_msg *newmsg; 5533 5534 /* create new sadb_msg to reply. */ 5535 /* XXX-BZ NAT-T extensions? */ 5536 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 5537 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5538 if (!n) 5539 return key_senderror(so, m, ENOBUFS); 5540 5541 if (n->m_len < sizeof(struct sadb_msg)) { 5542 n = m_pullup(n, sizeof(struct sadb_msg)); 5543 if (n == NULL) 5544 return key_senderror(so, m, ENOBUFS); 5545 } 5546 newmsg = mtod(n, struct sadb_msg *); 5547 newmsg->sadb_msg_errno = 0; 5548 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5549 5550 m_freem(m); 5551 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5552 } 5553 } 5554 5555 /* 5556 * delete all SAs for src/dst. Called from key_delete(). 5557 */ 5558 static int 5559 key_delete_all(struct socket *so, struct mbuf *m, 5560 const struct sadb_msghdr *mhp, u_int16_t proto) 5561 { 5562 struct sadb_address *src0, *dst0; 5563 struct secasindex saidx; 5564 struct secashead *sah; 5565 struct secasvar *sav, *nextsav; 5566 u_int stateidx, state; 5567 5568 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5569 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5570 5571 /* XXX boundary check against sa_len */ 5572 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5573 5574 /* 5575 * Make sure the port numbers are zero. 5576 * In case of NAT-T we will update them later if needed. 5577 */ 5578 KEY_PORTTOSADDR(&saidx.src, 0); 5579 KEY_PORTTOSADDR(&saidx.dst, 0); 5580 5581 #ifdef IPSEC_NAT_T 5582 /* 5583 * Handle NAT-T info if present. 5584 */ 5585 5586 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5587 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5588 struct sadb_x_nat_t_port *sport, *dport; 5589 5590 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5591 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5592 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5593 __func__)); 5594 return key_senderror(so, m, EINVAL); 5595 } 5596 5597 sport = (struct sadb_x_nat_t_port *) 5598 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5599 dport = (struct sadb_x_nat_t_port *) 5600 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5601 5602 if (sport) 5603 KEY_PORTTOSADDR(&saidx.src, 5604 sport->sadb_x_nat_t_port_port); 5605 if (dport) 5606 KEY_PORTTOSADDR(&saidx.dst, 5607 dport->sadb_x_nat_t_port_port); 5608 } 5609 #endif 5610 5611 SAHTREE_LOCK(); 5612 LIST_FOREACH(sah, &V_sahtree, chain) { 5613 if (sah->state == SADB_SASTATE_DEAD) 5614 continue; 5615 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5616 continue; 5617 5618 /* Delete all non-LARVAL SAs. */ 5619 for (stateidx = 0; 5620 stateidx < _ARRAYLEN(saorder_state_alive); 5621 stateidx++) { 5622 state = saorder_state_alive[stateidx]; 5623 if (state == SADB_SASTATE_LARVAL) 5624 continue; 5625 for (sav = LIST_FIRST(&sah->savtree[state]); 5626 sav != NULL; sav = nextsav) { 5627 nextsav = LIST_NEXT(sav, chain); 5628 /* sanity check */ 5629 if (sav->state != state) { 5630 ipseclog((LOG_DEBUG, "%s: invalid " 5631 "sav->state (queue %d SA %d)\n", 5632 __func__, state, sav->state)); 5633 continue; 5634 } 5635 5636 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5637 KEY_FREESAV(&sav); 5638 } 5639 } 5640 } 5641 SAHTREE_UNLOCK(); 5642 { 5643 struct mbuf *n; 5644 struct sadb_msg *newmsg; 5645 5646 /* create new sadb_msg to reply. */ 5647 /* XXX-BZ NAT-T extensions? */ 5648 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, 5649 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5650 if (!n) 5651 return key_senderror(so, m, ENOBUFS); 5652 5653 if (n->m_len < sizeof(struct sadb_msg)) { 5654 n = m_pullup(n, sizeof(struct sadb_msg)); 5655 if (n == NULL) 5656 return key_senderror(so, m, ENOBUFS); 5657 } 5658 newmsg = mtod(n, struct sadb_msg *); 5659 newmsg->sadb_msg_errno = 0; 5660 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5661 5662 m_freem(m); 5663 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5664 } 5665 } 5666 5667 /* 5668 * SADB_GET processing 5669 * receive 5670 * <base, SA(*), address(SD)> 5671 * from the ikmpd, and get a SP and a SA to respond, 5672 * and send, 5673 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), 5674 * (identity(SD),) (sensitivity)> 5675 * to the ikmpd. 5676 * 5677 * m will always be freed. 5678 */ 5679 static int 5680 key_get(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5681 { 5682 struct sadb_sa *sa0; 5683 struct sadb_address *src0, *dst0; 5684 struct secasindex saidx; 5685 struct secashead *sah; 5686 struct secasvar *sav = NULL; 5687 u_int16_t proto; 5688 5689 IPSEC_ASSERT(so != NULL, ("null socket")); 5690 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5691 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5692 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5693 5694 /* map satype to proto */ 5695 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5696 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5697 __func__)); 5698 return key_senderror(so, m, EINVAL); 5699 } 5700 5701 if (mhp->ext[SADB_EXT_SA] == NULL || 5702 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5703 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5704 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5705 __func__)); 5706 return key_senderror(so, m, EINVAL); 5707 } 5708 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5709 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5710 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5711 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5712 __func__)); 5713 return key_senderror(so, m, EINVAL); 5714 } 5715 5716 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5717 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5718 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5719 5720 /* XXX boundary check against sa_len */ 5721 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5722 5723 /* 5724 * Make sure the port numbers are zero. 5725 * In case of NAT-T we will update them later if needed. 5726 */ 5727 KEY_PORTTOSADDR(&saidx.src, 0); 5728 KEY_PORTTOSADDR(&saidx.dst, 0); 5729 5730 #ifdef IPSEC_NAT_T 5731 /* 5732 * Handle NAT-T info if present. 5733 */ 5734 5735 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5736 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5737 struct sadb_x_nat_t_port *sport, *dport; 5738 5739 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5740 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5741 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5742 __func__)); 5743 return key_senderror(so, m, EINVAL); 5744 } 5745 5746 sport = (struct sadb_x_nat_t_port *) 5747 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5748 dport = (struct sadb_x_nat_t_port *) 5749 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5750 5751 if (sport) 5752 KEY_PORTTOSADDR(&saidx.src, 5753 sport->sadb_x_nat_t_port_port); 5754 if (dport) 5755 KEY_PORTTOSADDR(&saidx.dst, 5756 dport->sadb_x_nat_t_port_port); 5757 } 5758 #endif 5759 5760 /* get a SA header */ 5761 SAHTREE_LOCK(); 5762 LIST_FOREACH(sah, &V_sahtree, chain) { 5763 if (sah->state == SADB_SASTATE_DEAD) 5764 continue; 5765 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5766 continue; 5767 5768 /* get a SA with SPI. */ 5769 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5770 if (sav) 5771 break; 5772 } 5773 SAHTREE_UNLOCK(); 5774 if (sah == NULL) { 5775 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5776 return key_senderror(so, m, ENOENT); 5777 } 5778 5779 { 5780 struct mbuf *n; 5781 u_int8_t satype; 5782 5783 /* map proto to satype */ 5784 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 5785 ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n", 5786 __func__)); 5787 return key_senderror(so, m, EINVAL); 5788 } 5789 5790 /* create new sadb_msg to reply. */ 5791 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, 5792 mhp->msg->sadb_msg_pid); 5793 if (!n) 5794 return key_senderror(so, m, ENOBUFS); 5795 5796 m_freem(m); 5797 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5798 } 5799 } 5800 5801 /* XXX make it sysctl-configurable? */ 5802 static void 5803 key_getcomb_setlifetime(struct sadb_comb *comb) 5804 { 5805 5806 comb->sadb_comb_soft_allocations = 1; 5807 comb->sadb_comb_hard_allocations = 1; 5808 comb->sadb_comb_soft_bytes = 0; 5809 comb->sadb_comb_hard_bytes = 0; 5810 comb->sadb_comb_hard_addtime = 86400; /* 1 day */ 5811 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100; 5812 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */ 5813 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100; 5814 } 5815 5816 /* 5817 * XXX reorder combinations by preference 5818 * XXX no idea if the user wants ESP authentication or not 5819 */ 5820 static struct mbuf * 5821 key_getcomb_esp() 5822 { 5823 struct sadb_comb *comb; 5824 struct enc_xform *algo; 5825 struct mbuf *result = NULL, *m, *n; 5826 int encmin; 5827 int i, off, o; 5828 int totlen; 5829 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5830 5831 m = NULL; 5832 for (i = 1; i <= SADB_EALG_MAX; i++) { 5833 algo = esp_algorithm_lookup(i); 5834 if (algo == NULL) 5835 continue; 5836 5837 /* discard algorithms with key size smaller than system min */ 5838 if (_BITS(algo->maxkey) < V_ipsec_esp_keymin) 5839 continue; 5840 if (_BITS(algo->minkey) < V_ipsec_esp_keymin) 5841 encmin = V_ipsec_esp_keymin; 5842 else 5843 encmin = _BITS(algo->minkey); 5844 5845 if (V_ipsec_esp_auth) 5846 m = key_getcomb_ah(); 5847 else { 5848 IPSEC_ASSERT(l <= MLEN, 5849 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 5850 MGET(m, M_NOWAIT, MT_DATA); 5851 if (m) { 5852 M_ALIGN(m, l); 5853 m->m_len = l; 5854 m->m_next = NULL; 5855 bzero(mtod(m, caddr_t), m->m_len); 5856 } 5857 } 5858 if (!m) 5859 goto fail; 5860 5861 totlen = 0; 5862 for (n = m; n; n = n->m_next) 5863 totlen += n->m_len; 5864 IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l)); 5865 5866 for (off = 0; off < totlen; off += l) { 5867 n = m_pulldown(m, off, l, &o); 5868 if (!n) { 5869 /* m is already freed */ 5870 goto fail; 5871 } 5872 comb = (struct sadb_comb *)(mtod(n, caddr_t) + o); 5873 bzero(comb, sizeof(*comb)); 5874 key_getcomb_setlifetime(comb); 5875 comb->sadb_comb_encrypt = i; 5876 comb->sadb_comb_encrypt_minbits = encmin; 5877 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); 5878 } 5879 5880 if (!result) 5881 result = m; 5882 else 5883 m_cat(result, m); 5884 } 5885 5886 return result; 5887 5888 fail: 5889 if (result) 5890 m_freem(result); 5891 return NULL; 5892 } 5893 5894 static void 5895 key_getsizes_ah(const struct auth_hash *ah, int alg, u_int16_t* min, 5896 u_int16_t* max) 5897 { 5898 5899 *min = *max = ah->keysize; 5900 if (ah->keysize == 0) { 5901 /* 5902 * Transform takes arbitrary key size but algorithm 5903 * key size is restricted. Enforce this here. 5904 */ 5905 switch (alg) { 5906 case SADB_X_AALG_MD5: *min = *max = 16; break; 5907 case SADB_X_AALG_SHA: *min = *max = 20; break; 5908 case SADB_X_AALG_NULL: *min = 1; *max = 256; break; 5909 case SADB_X_AALG_SHA2_256: *min = *max = 32; break; 5910 case SADB_X_AALG_SHA2_384: *min = *max = 48; break; 5911 case SADB_X_AALG_SHA2_512: *min = *max = 64; break; 5912 default: 5913 DPRINTF(("%s: unknown AH algorithm %u\n", 5914 __func__, alg)); 5915 break; 5916 } 5917 } 5918 } 5919 5920 /* 5921 * XXX reorder combinations by preference 5922 */ 5923 static struct mbuf * 5924 key_getcomb_ah() 5925 { 5926 struct sadb_comb *comb; 5927 struct auth_hash *algo; 5928 struct mbuf *m; 5929 u_int16_t minkeysize, maxkeysize; 5930 int i; 5931 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5932 5933 m = NULL; 5934 for (i = 1; i <= SADB_AALG_MAX; i++) { 5935 #if 1 5936 /* we prefer HMAC algorithms, not old algorithms */ 5937 if (i != SADB_AALG_SHA1HMAC && 5938 i != SADB_AALG_MD5HMAC && 5939 i != SADB_X_AALG_SHA2_256 && 5940 i != SADB_X_AALG_SHA2_384 && 5941 i != SADB_X_AALG_SHA2_512) 5942 continue; 5943 #endif 5944 algo = ah_algorithm_lookup(i); 5945 if (!algo) 5946 continue; 5947 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); 5948 /* discard algorithms with key size smaller than system min */ 5949 if (_BITS(minkeysize) < V_ipsec_ah_keymin) 5950 continue; 5951 5952 if (!m) { 5953 IPSEC_ASSERT(l <= MLEN, 5954 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 5955 MGET(m, M_NOWAIT, MT_DATA); 5956 if (m) { 5957 M_ALIGN(m, l); 5958 m->m_len = l; 5959 m->m_next = NULL; 5960 } 5961 } else 5962 M_PREPEND(m, l, M_NOWAIT); 5963 if (!m) 5964 return NULL; 5965 5966 comb = mtod(m, struct sadb_comb *); 5967 bzero(comb, sizeof(*comb)); 5968 key_getcomb_setlifetime(comb); 5969 comb->sadb_comb_auth = i; 5970 comb->sadb_comb_auth_minbits = _BITS(minkeysize); 5971 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); 5972 } 5973 5974 return m; 5975 } 5976 5977 /* 5978 * not really an official behavior. discussed in pf_key@inner.net in Sep2000. 5979 * XXX reorder combinations by preference 5980 */ 5981 static struct mbuf * 5982 key_getcomb_ipcomp() 5983 { 5984 struct sadb_comb *comb; 5985 struct comp_algo *algo; 5986 struct mbuf *m; 5987 int i; 5988 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5989 5990 m = NULL; 5991 for (i = 1; i <= SADB_X_CALG_MAX; i++) { 5992 algo = ipcomp_algorithm_lookup(i); 5993 if (!algo) 5994 continue; 5995 5996 if (!m) { 5997 IPSEC_ASSERT(l <= MLEN, 5998 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 5999 MGET(m, M_NOWAIT, MT_DATA); 6000 if (m) { 6001 M_ALIGN(m, l); 6002 m->m_len = l; 6003 m->m_next = NULL; 6004 } 6005 } else 6006 M_PREPEND(m, l, M_NOWAIT); 6007 if (!m) 6008 return NULL; 6009 6010 comb = mtod(m, struct sadb_comb *); 6011 bzero(comb, sizeof(*comb)); 6012 key_getcomb_setlifetime(comb); 6013 comb->sadb_comb_encrypt = i; 6014 /* what should we set into sadb_comb_*_{min,max}bits? */ 6015 } 6016 6017 return m; 6018 } 6019 6020 /* 6021 * XXX no way to pass mode (transport/tunnel) to userland 6022 * XXX replay checking? 6023 * XXX sysctl interface to ipsec_{ah,esp}_keymin 6024 */ 6025 static struct mbuf * 6026 key_getprop(const struct secasindex *saidx) 6027 { 6028 struct sadb_prop *prop; 6029 struct mbuf *m, *n; 6030 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); 6031 int totlen; 6032 6033 switch (saidx->proto) { 6034 case IPPROTO_ESP: 6035 m = key_getcomb_esp(); 6036 break; 6037 case IPPROTO_AH: 6038 m = key_getcomb_ah(); 6039 break; 6040 case IPPROTO_IPCOMP: 6041 m = key_getcomb_ipcomp(); 6042 break; 6043 default: 6044 return NULL; 6045 } 6046 6047 if (!m) 6048 return NULL; 6049 M_PREPEND(m, l, M_NOWAIT); 6050 if (!m) 6051 return NULL; 6052 6053 totlen = 0; 6054 for (n = m; n; n = n->m_next) 6055 totlen += n->m_len; 6056 6057 prop = mtod(m, struct sadb_prop *); 6058 bzero(prop, sizeof(*prop)); 6059 prop->sadb_prop_len = PFKEY_UNIT64(totlen); 6060 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 6061 prop->sadb_prop_replay = 32; /* XXX */ 6062 6063 return m; 6064 } 6065 6066 /* 6067 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2(). 6068 * send 6069 * <base, SA, address(SD), (address(P)), x_policy, 6070 * (identity(SD),) (sensitivity,) proposal> 6071 * to KMD, and expect to receive 6072 * <base> with SADB_ACQUIRE if error occured, 6073 * or 6074 * <base, src address, dst address, (SPI range)> with SADB_GETSPI 6075 * from KMD by PF_KEY. 6076 * 6077 * XXX x_policy is outside of RFC2367 (KAME extension). 6078 * XXX sensitivity is not supported. 6079 * XXX for ipcomp, RFC2367 does not define how to fill in proposal. 6080 * see comment for key_getcomb_ipcomp(). 6081 * 6082 * OUT: 6083 * 0 : succeed 6084 * others: error number 6085 */ 6086 static int 6087 key_acquire(const struct secasindex *saidx, struct secpolicy *sp) 6088 { 6089 union sockaddr_union addr; 6090 struct mbuf *result, *m; 6091 struct secacq *newacq; 6092 u_int32_t seq; 6093 int error; 6094 u_int16_t ul_proto; 6095 u_int8_t mask, satype; 6096 6097 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 6098 satype = key_proto2satype(saidx->proto); 6099 IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto)); 6100 6101 error = -1; 6102 result = NULL; 6103 ul_proto = IPSEC_ULPROTO_ANY; 6104 /* 6105 * We never do anything about acquirng SA. There is anather 6106 * solution that kernel blocks to send SADB_ACQUIRE message until 6107 * getting something message from IKEd. In later case, to be 6108 * managed with ACQUIRING list. 6109 */ 6110 /* Get an entry to check whether sending message or not. */ 6111 if ((newacq = key_getacq(saidx)) != NULL) { 6112 if (V_key_blockacq_count < newacq->count) { 6113 /* reset counter and do send message. */ 6114 newacq->count = 0; 6115 } else { 6116 /* increment counter and do nothing. */ 6117 newacq->count++; 6118 return 0; 6119 } 6120 } else { 6121 /* make new entry for blocking to send SADB_ACQUIRE. */ 6122 if ((newacq = key_newacq(saidx)) == NULL) 6123 return ENOBUFS; 6124 } 6125 6126 6127 seq = newacq->seq; 6128 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0); 6129 if (!m) { 6130 error = ENOBUFS; 6131 goto fail; 6132 } 6133 result = m; 6134 6135 /* 6136 * No SADB_X_EXT_NAT_T_* here: we do not know 6137 * anything related to NAT-T at this time. 6138 */ 6139 6140 /* 6141 * set sadb_address for saidx's. 6142 * 6143 * Note that if sp is supplied, then we're being called from 6144 * key_checkrequest and should supply port and protocol information. 6145 */ 6146 if (sp != NULL && (sp->spidx.ul_proto == IPPROTO_TCP || 6147 sp->spidx.ul_proto == IPPROTO_UDP)) 6148 ul_proto = sp->spidx.ul_proto; 6149 6150 addr = saidx->src; 6151 mask = FULLMASK; 6152 if (ul_proto != IPSEC_ULPROTO_ANY) { 6153 switch (sp->spidx.src.sa.sa_family) { 6154 case AF_INET: 6155 if (sp->spidx.src.sin.sin_port != IPSEC_PORT_ANY) { 6156 addr.sin.sin_port = sp->spidx.src.sin.sin_port; 6157 mask = sp->spidx.prefs; 6158 } 6159 break; 6160 case AF_INET6: 6161 if (sp->spidx.src.sin6.sin6_port != IPSEC_PORT_ANY) { 6162 addr.sin6.sin6_port = sp->spidx.src.sin6.sin6_port; 6163 mask = sp->spidx.prefs; 6164 } 6165 break; 6166 default: 6167 break; 6168 } 6169 } 6170 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &addr.sa, mask, ul_proto); 6171 if (!m) { 6172 error = ENOBUFS; 6173 goto fail; 6174 } 6175 m_cat(result, m); 6176 6177 addr = saidx->dst; 6178 mask = FULLMASK; 6179 if (ul_proto != IPSEC_ULPROTO_ANY) { 6180 switch (sp->spidx.dst.sa.sa_family) { 6181 case AF_INET: 6182 if (sp->spidx.dst.sin.sin_port != IPSEC_PORT_ANY) { 6183 addr.sin.sin_port = sp->spidx.dst.sin.sin_port; 6184 mask = sp->spidx.prefd; 6185 } 6186 break; 6187 case AF_INET6: 6188 if (sp->spidx.dst.sin6.sin6_port != IPSEC_PORT_ANY) { 6189 addr.sin6.sin6_port = sp->spidx.dst.sin6.sin6_port; 6190 mask = sp->spidx.prefd; 6191 } 6192 break; 6193 default: 6194 break; 6195 } 6196 } 6197 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &addr.sa, mask, ul_proto); 6198 if (!m) { 6199 error = ENOBUFS; 6200 goto fail; 6201 } 6202 m_cat(result, m); 6203 6204 /* XXX proxy address (optional) */ 6205 6206 /* set sadb_x_policy */ 6207 if (sp) { 6208 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id); 6209 if (!m) { 6210 error = ENOBUFS; 6211 goto fail; 6212 } 6213 m_cat(result, m); 6214 } 6215 6216 /* XXX identity (optional) */ 6217 #if 0 6218 if (idexttype && fqdn) { 6219 /* create identity extension (FQDN) */ 6220 struct sadb_ident *id; 6221 int fqdnlen; 6222 6223 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ 6224 id = (struct sadb_ident *)p; 6225 bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6226 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6227 id->sadb_ident_exttype = idexttype; 6228 id->sadb_ident_type = SADB_IDENTTYPE_FQDN; 6229 bcopy(fqdn, id + 1, fqdnlen); 6230 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); 6231 } 6232 6233 if (idexttype) { 6234 /* create identity extension (USERFQDN) */ 6235 struct sadb_ident *id; 6236 int userfqdnlen; 6237 6238 if (userfqdn) { 6239 /* +1 for terminating-NUL */ 6240 userfqdnlen = strlen(userfqdn) + 1; 6241 } else 6242 userfqdnlen = 0; 6243 id = (struct sadb_ident *)p; 6244 bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6245 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6246 id->sadb_ident_exttype = idexttype; 6247 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; 6248 /* XXX is it correct? */ 6249 if (curproc && curproc->p_cred) 6250 id->sadb_ident_id = curproc->p_cred->p_ruid; 6251 if (userfqdn && userfqdnlen) 6252 bcopy(userfqdn, id + 1, userfqdnlen); 6253 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); 6254 } 6255 #endif 6256 6257 /* XXX sensitivity (optional) */ 6258 6259 /* create proposal/combination extension */ 6260 m = key_getprop(saidx); 6261 #if 0 6262 /* 6263 * spec conformant: always attach proposal/combination extension, 6264 * the problem is that we have no way to attach it for ipcomp, 6265 * due to the way sadb_comb is declared in RFC2367. 6266 */ 6267 if (!m) { 6268 error = ENOBUFS; 6269 goto fail; 6270 } 6271 m_cat(result, m); 6272 #else 6273 /* 6274 * outside of spec; make proposal/combination extension optional. 6275 */ 6276 if (m) 6277 m_cat(result, m); 6278 #endif 6279 6280 if ((result->m_flags & M_PKTHDR) == 0) { 6281 error = EINVAL; 6282 goto fail; 6283 } 6284 6285 if (result->m_len < sizeof(struct sadb_msg)) { 6286 result = m_pullup(result, sizeof(struct sadb_msg)); 6287 if (result == NULL) { 6288 error = ENOBUFS; 6289 goto fail; 6290 } 6291 } 6292 6293 result->m_pkthdr.len = 0; 6294 for (m = result; m; m = m->m_next) 6295 result->m_pkthdr.len += m->m_len; 6296 6297 mtod(result, struct sadb_msg *)->sadb_msg_len = 6298 PFKEY_UNIT64(result->m_pkthdr.len); 6299 6300 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6301 6302 fail: 6303 if (result) 6304 m_freem(result); 6305 return error; 6306 } 6307 6308 static struct secacq * 6309 key_newacq(const struct secasindex *saidx) 6310 { 6311 struct secacq *newacq; 6312 6313 /* get new entry */ 6314 newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 6315 if (newacq == NULL) { 6316 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6317 return NULL; 6318 } 6319 6320 /* copy secindex */ 6321 bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx)); 6322 newacq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq); 6323 newacq->created = time_second; 6324 newacq->count = 0; 6325 6326 /* add to acqtree */ 6327 ACQ_LOCK(); 6328 LIST_INSERT_HEAD(&V_acqtree, newacq, chain); 6329 ACQ_UNLOCK(); 6330 6331 return newacq; 6332 } 6333 6334 static struct secacq * 6335 key_getacq(const struct secasindex *saidx) 6336 { 6337 struct secacq *acq; 6338 6339 ACQ_LOCK(); 6340 LIST_FOREACH(acq, &V_acqtree, chain) { 6341 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY)) 6342 break; 6343 } 6344 ACQ_UNLOCK(); 6345 6346 return acq; 6347 } 6348 6349 static struct secacq * 6350 key_getacqbyseq(u_int32_t seq) 6351 { 6352 struct secacq *acq; 6353 6354 ACQ_LOCK(); 6355 LIST_FOREACH(acq, &V_acqtree, chain) { 6356 if (acq->seq == seq) 6357 break; 6358 } 6359 ACQ_UNLOCK(); 6360 6361 return acq; 6362 } 6363 6364 static struct secspacq * 6365 key_newspacq(struct secpolicyindex *spidx) 6366 { 6367 struct secspacq *acq; 6368 6369 /* get new entry */ 6370 acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 6371 if (acq == NULL) { 6372 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6373 return NULL; 6374 } 6375 6376 /* copy secindex */ 6377 bcopy(spidx, &acq->spidx, sizeof(acq->spidx)); 6378 acq->created = time_second; 6379 acq->count = 0; 6380 6381 /* add to spacqtree */ 6382 SPACQ_LOCK(); 6383 LIST_INSERT_HEAD(&V_spacqtree, acq, chain); 6384 SPACQ_UNLOCK(); 6385 6386 return acq; 6387 } 6388 6389 static struct secspacq * 6390 key_getspacq(struct secpolicyindex *spidx) 6391 { 6392 struct secspacq *acq; 6393 6394 SPACQ_LOCK(); 6395 LIST_FOREACH(acq, &V_spacqtree, chain) { 6396 if (key_cmpspidx_exactly(spidx, &acq->spidx)) { 6397 /* NB: return holding spacq_lock */ 6398 return acq; 6399 } 6400 } 6401 SPACQ_UNLOCK(); 6402 6403 return NULL; 6404 } 6405 6406 /* 6407 * SADB_ACQUIRE processing, 6408 * in first situation, is receiving 6409 * <base> 6410 * from the ikmpd, and clear sequence of its secasvar entry. 6411 * 6412 * In second situation, is receiving 6413 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6414 * from a user land process, and return 6415 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6416 * to the socket. 6417 * 6418 * m will always be freed. 6419 */ 6420 static int 6421 key_acquire2(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 6422 { 6423 const struct sadb_address *src0, *dst0; 6424 struct secasindex saidx; 6425 struct secashead *sah; 6426 u_int16_t proto; 6427 int error; 6428 6429 IPSEC_ASSERT(so != NULL, ("null socket")); 6430 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6431 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6432 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6433 6434 /* 6435 * Error message from KMd. 6436 * We assume that if error was occured in IKEd, the length of PFKEY 6437 * message is equal to the size of sadb_msg structure. 6438 * We do not raise error even if error occured in this function. 6439 */ 6440 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { 6441 struct secacq *acq; 6442 6443 /* check sequence number */ 6444 if (mhp->msg->sadb_msg_seq == 0) { 6445 ipseclog((LOG_DEBUG, "%s: must specify sequence " 6446 "number.\n", __func__)); 6447 m_freem(m); 6448 return 0; 6449 } 6450 6451 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) { 6452 /* 6453 * the specified larval SA is already gone, or we got 6454 * a bogus sequence number. we can silently ignore it. 6455 */ 6456 m_freem(m); 6457 return 0; 6458 } 6459 6460 /* reset acq counter in order to deletion by timehander. */ 6461 acq->created = time_second; 6462 acq->count = 0; 6463 m_freem(m); 6464 return 0; 6465 } 6466 6467 /* 6468 * This message is from user land. 6469 */ 6470 6471 /* map satype to proto */ 6472 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6473 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6474 __func__)); 6475 return key_senderror(so, m, EINVAL); 6476 } 6477 6478 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6479 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 6480 mhp->ext[SADB_EXT_PROPOSAL] == NULL) { 6481 /* error */ 6482 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6483 __func__)); 6484 return key_senderror(so, m, EINVAL); 6485 } 6486 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6487 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 6488 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { 6489 /* error */ 6490 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6491 __func__)); 6492 return key_senderror(so, m, EINVAL); 6493 } 6494 6495 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 6496 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 6497 6498 /* XXX boundary check against sa_len */ 6499 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 6500 6501 /* 6502 * Make sure the port numbers are zero. 6503 * In case of NAT-T we will update them later if needed. 6504 */ 6505 KEY_PORTTOSADDR(&saidx.src, 0); 6506 KEY_PORTTOSADDR(&saidx.dst, 0); 6507 6508 #ifndef IPSEC_NAT_T 6509 /* 6510 * Handle NAT-T info if present. 6511 */ 6512 6513 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 6514 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 6515 struct sadb_x_nat_t_port *sport, *dport; 6516 6517 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 6518 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 6519 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 6520 __func__)); 6521 return key_senderror(so, m, EINVAL); 6522 } 6523 6524 sport = (struct sadb_x_nat_t_port *) 6525 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 6526 dport = (struct sadb_x_nat_t_port *) 6527 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 6528 6529 if (sport) 6530 KEY_PORTTOSADDR(&saidx.src, 6531 sport->sadb_x_nat_t_port_port); 6532 if (dport) 6533 KEY_PORTTOSADDR(&saidx.dst, 6534 dport->sadb_x_nat_t_port_port); 6535 } 6536 #endif 6537 6538 /* get a SA index */ 6539 SAHTREE_LOCK(); 6540 LIST_FOREACH(sah, &V_sahtree, chain) { 6541 if (sah->state == SADB_SASTATE_DEAD) 6542 continue; 6543 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID)) 6544 break; 6545 } 6546 SAHTREE_UNLOCK(); 6547 if (sah != NULL) { 6548 ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__)); 6549 return key_senderror(so, m, EEXIST); 6550 } 6551 6552 error = key_acquire(&saidx, NULL); 6553 if (error != 0) { 6554 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 6555 __func__, mhp->msg->sadb_msg_errno)); 6556 return key_senderror(so, m, error); 6557 } 6558 6559 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); 6560 } 6561 6562 /* 6563 * SADB_REGISTER processing. 6564 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. 6565 * receive 6566 * <base> 6567 * from the ikmpd, and register a socket to send PF_KEY messages, 6568 * and send 6569 * <base, supported> 6570 * to KMD by PF_KEY. 6571 * If socket is detached, must free from regnode. 6572 * 6573 * m will always be freed. 6574 */ 6575 static int 6576 key_register(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 6577 { 6578 struct secreg *reg, *newreg = 0; 6579 6580 IPSEC_ASSERT(so != NULL, ("null socket")); 6581 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6582 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6583 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6584 6585 /* check for invalid register message */ 6586 if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0])) 6587 return key_senderror(so, m, EINVAL); 6588 6589 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ 6590 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) 6591 goto setmsg; 6592 6593 /* check whether existing or not */ 6594 REGTREE_LOCK(); 6595 LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) { 6596 if (reg->so == so) { 6597 REGTREE_UNLOCK(); 6598 ipseclog((LOG_DEBUG, "%s: socket exists already.\n", 6599 __func__)); 6600 return key_senderror(so, m, EEXIST); 6601 } 6602 } 6603 6604 /* create regnode */ 6605 newreg = malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO); 6606 if (newreg == NULL) { 6607 REGTREE_UNLOCK(); 6608 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6609 return key_senderror(so, m, ENOBUFS); 6610 } 6611 6612 newreg->so = so; 6613 ((struct keycb *)sotorawcb(so))->kp_registered++; 6614 6615 /* add regnode to regtree. */ 6616 LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain); 6617 REGTREE_UNLOCK(); 6618 6619 setmsg: 6620 { 6621 struct mbuf *n; 6622 struct sadb_msg *newmsg; 6623 struct sadb_supported *sup; 6624 u_int len, alen, elen; 6625 int off; 6626 int i; 6627 struct sadb_alg *alg; 6628 6629 /* create new sadb_msg to reply. */ 6630 alen = 0; 6631 for (i = 1; i <= SADB_AALG_MAX; i++) { 6632 if (ah_algorithm_lookup(i)) 6633 alen += sizeof(struct sadb_alg); 6634 } 6635 if (alen) 6636 alen += sizeof(struct sadb_supported); 6637 elen = 0; 6638 for (i = 1; i <= SADB_EALG_MAX; i++) { 6639 if (esp_algorithm_lookup(i)) 6640 elen += sizeof(struct sadb_alg); 6641 } 6642 if (elen) 6643 elen += sizeof(struct sadb_supported); 6644 6645 len = sizeof(struct sadb_msg) + alen + elen; 6646 6647 if (len > MCLBYTES) 6648 return key_senderror(so, m, ENOBUFS); 6649 6650 MGETHDR(n, M_NOWAIT, MT_DATA); 6651 if (len > MHLEN) { 6652 if (!(MCLGET(n, M_NOWAIT))) { 6653 m_freem(n); 6654 n = NULL; 6655 } 6656 } 6657 if (!n) 6658 return key_senderror(so, m, ENOBUFS); 6659 6660 n->m_pkthdr.len = n->m_len = len; 6661 n->m_next = NULL; 6662 off = 0; 6663 6664 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 6665 newmsg = mtod(n, struct sadb_msg *); 6666 newmsg->sadb_msg_errno = 0; 6667 newmsg->sadb_msg_len = PFKEY_UNIT64(len); 6668 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 6669 6670 /* for authentication algorithm */ 6671 if (alen) { 6672 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6673 sup->sadb_supported_len = PFKEY_UNIT64(alen); 6674 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 6675 off += PFKEY_ALIGN8(sizeof(*sup)); 6676 6677 for (i = 1; i <= SADB_AALG_MAX; i++) { 6678 struct auth_hash *aalgo; 6679 u_int16_t minkeysize, maxkeysize; 6680 6681 aalgo = ah_algorithm_lookup(i); 6682 if (!aalgo) 6683 continue; 6684 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6685 alg->sadb_alg_id = i; 6686 alg->sadb_alg_ivlen = 0; 6687 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); 6688 alg->sadb_alg_minbits = _BITS(minkeysize); 6689 alg->sadb_alg_maxbits = _BITS(maxkeysize); 6690 off += PFKEY_ALIGN8(sizeof(*alg)); 6691 } 6692 } 6693 6694 /* for encryption algorithm */ 6695 if (elen) { 6696 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6697 sup->sadb_supported_len = PFKEY_UNIT64(elen); 6698 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 6699 off += PFKEY_ALIGN8(sizeof(*sup)); 6700 6701 for (i = 1; i <= SADB_EALG_MAX; i++) { 6702 struct enc_xform *ealgo; 6703 6704 ealgo = esp_algorithm_lookup(i); 6705 if (!ealgo) 6706 continue; 6707 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6708 alg->sadb_alg_id = i; 6709 alg->sadb_alg_ivlen = ealgo->blocksize; 6710 alg->sadb_alg_minbits = _BITS(ealgo->minkey); 6711 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); 6712 off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); 6713 } 6714 } 6715 6716 IPSEC_ASSERT(off == len, 6717 ("length assumption failed (off %u len %u)", off, len)); 6718 6719 m_freem(m); 6720 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); 6721 } 6722 } 6723 6724 /* 6725 * free secreg entry registered. 6726 * XXX: I want to do free a socket marked done SADB_RESIGER to socket. 6727 */ 6728 void 6729 key_freereg(struct socket *so) 6730 { 6731 struct secreg *reg; 6732 int i; 6733 6734 IPSEC_ASSERT(so != NULL, ("NULL so")); 6735 6736 /* 6737 * check whether existing or not. 6738 * check all type of SA, because there is a potential that 6739 * one socket is registered to multiple type of SA. 6740 */ 6741 REGTREE_LOCK(); 6742 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 6743 LIST_FOREACH(reg, &V_regtree[i], chain) { 6744 if (reg->so == so && __LIST_CHAINED(reg)) { 6745 LIST_REMOVE(reg, chain); 6746 free(reg, M_IPSEC_SAR); 6747 break; 6748 } 6749 } 6750 } 6751 REGTREE_UNLOCK(); 6752 } 6753 6754 /* 6755 * SADB_EXPIRE processing 6756 * send 6757 * <base, SA, SA2, lifetime(C and one of HS), address(SD)> 6758 * to KMD by PF_KEY. 6759 * NOTE: We send only soft lifetime extension. 6760 * 6761 * OUT: 0 : succeed 6762 * others : error number 6763 */ 6764 static int 6765 key_expire(struct secasvar *sav, int hard) 6766 { 6767 int satype; 6768 struct mbuf *result = NULL, *m; 6769 int len; 6770 int error = -1; 6771 struct sadb_lifetime *lt; 6772 6773 IPSEC_ASSERT (sav != NULL, ("null sav")); 6774 IPSEC_ASSERT (sav->sah != NULL, ("null sa header")); 6775 6776 /* set msg header */ 6777 satype = key_proto2satype(sav->sah->saidx.proto); 6778 IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype)); 6779 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt); 6780 if (!m) { 6781 error = ENOBUFS; 6782 goto fail; 6783 } 6784 result = m; 6785 6786 /* create SA extension */ 6787 m = key_setsadbsa(sav); 6788 if (!m) { 6789 error = ENOBUFS; 6790 goto fail; 6791 } 6792 m_cat(result, m); 6793 6794 /* create SA extension */ 6795 m = key_setsadbxsa2(sav->sah->saidx.mode, 6796 sav->replay ? sav->replay->count : 0, 6797 sav->sah->saidx.reqid); 6798 if (!m) { 6799 error = ENOBUFS; 6800 goto fail; 6801 } 6802 m_cat(result, m); 6803 6804 /* create lifetime extension (current and soft) */ 6805 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 6806 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 6807 if (m == NULL) { 6808 error = ENOBUFS; 6809 goto fail; 6810 } 6811 m_align(m, len); 6812 m->m_len = len; 6813 bzero(mtod(m, caddr_t), len); 6814 lt = mtod(m, struct sadb_lifetime *); 6815 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6816 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 6817 lt->sadb_lifetime_allocations = sav->lft_c->allocations; 6818 lt->sadb_lifetime_bytes = sav->lft_c->bytes; 6819 lt->sadb_lifetime_addtime = sav->lft_c->addtime; 6820 lt->sadb_lifetime_usetime = sav->lft_c->usetime; 6821 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 6822 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6823 if (hard) { 6824 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 6825 lt->sadb_lifetime_allocations = sav->lft_h->allocations; 6826 lt->sadb_lifetime_bytes = sav->lft_h->bytes; 6827 lt->sadb_lifetime_addtime = sav->lft_h->addtime; 6828 lt->sadb_lifetime_usetime = sav->lft_h->usetime; 6829 } else { 6830 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; 6831 lt->sadb_lifetime_allocations = sav->lft_s->allocations; 6832 lt->sadb_lifetime_bytes = sav->lft_s->bytes; 6833 lt->sadb_lifetime_addtime = sav->lft_s->addtime; 6834 lt->sadb_lifetime_usetime = sav->lft_s->usetime; 6835 } 6836 m_cat(result, m); 6837 6838 /* set sadb_address for source */ 6839 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 6840 &sav->sah->saidx.src.sa, 6841 FULLMASK, IPSEC_ULPROTO_ANY); 6842 if (!m) { 6843 error = ENOBUFS; 6844 goto fail; 6845 } 6846 m_cat(result, m); 6847 6848 /* set sadb_address for destination */ 6849 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 6850 &sav->sah->saidx.dst.sa, 6851 FULLMASK, IPSEC_ULPROTO_ANY); 6852 if (!m) { 6853 error = ENOBUFS; 6854 goto fail; 6855 } 6856 m_cat(result, m); 6857 6858 /* 6859 * XXX-BZ Handle NAT-T extensions here. 6860 */ 6861 6862 if ((result->m_flags & M_PKTHDR) == 0) { 6863 error = EINVAL; 6864 goto fail; 6865 } 6866 6867 if (result->m_len < sizeof(struct sadb_msg)) { 6868 result = m_pullup(result, sizeof(struct sadb_msg)); 6869 if (result == NULL) { 6870 error = ENOBUFS; 6871 goto fail; 6872 } 6873 } 6874 6875 result->m_pkthdr.len = 0; 6876 for (m = result; m; m = m->m_next) 6877 result->m_pkthdr.len += m->m_len; 6878 6879 mtod(result, struct sadb_msg *)->sadb_msg_len = 6880 PFKEY_UNIT64(result->m_pkthdr.len); 6881 6882 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6883 6884 fail: 6885 if (result) 6886 m_freem(result); 6887 return error; 6888 } 6889 6890 /* 6891 * SADB_FLUSH processing 6892 * receive 6893 * <base> 6894 * from the ikmpd, and free all entries in secastree. 6895 * and send, 6896 * <base> 6897 * to the ikmpd. 6898 * NOTE: to do is only marking SADB_SASTATE_DEAD. 6899 * 6900 * m will always be freed. 6901 */ 6902 static int 6903 key_flush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 6904 { 6905 struct sadb_msg *newmsg; 6906 struct secashead *sah, *nextsah; 6907 struct secasvar *sav, *nextsav; 6908 u_int16_t proto; 6909 u_int8_t state; 6910 u_int stateidx; 6911 6912 IPSEC_ASSERT(so != NULL, ("null socket")); 6913 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6914 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6915 6916 /* map satype to proto */ 6917 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6918 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6919 __func__)); 6920 return key_senderror(so, m, EINVAL); 6921 } 6922 6923 /* no SATYPE specified, i.e. flushing all SA. */ 6924 SAHTREE_LOCK(); 6925 for (sah = LIST_FIRST(&V_sahtree); 6926 sah != NULL; 6927 sah = nextsah) { 6928 nextsah = LIST_NEXT(sah, chain); 6929 6930 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 6931 && proto != sah->saidx.proto) 6932 continue; 6933 6934 for (stateidx = 0; 6935 stateidx < _ARRAYLEN(saorder_state_alive); 6936 stateidx++) { 6937 state = saorder_state_any[stateidx]; 6938 for (sav = LIST_FIRST(&sah->savtree[state]); 6939 sav != NULL; 6940 sav = nextsav) { 6941 6942 nextsav = LIST_NEXT(sav, chain); 6943 6944 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 6945 KEY_FREESAV(&sav); 6946 } 6947 } 6948 6949 sah->state = SADB_SASTATE_DEAD; 6950 } 6951 SAHTREE_UNLOCK(); 6952 6953 if (m->m_len < sizeof(struct sadb_msg) || 6954 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 6955 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6956 return key_senderror(so, m, ENOBUFS); 6957 } 6958 6959 if (m->m_next) 6960 m_freem(m->m_next); 6961 m->m_next = NULL; 6962 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); 6963 newmsg = mtod(m, struct sadb_msg *); 6964 newmsg->sadb_msg_errno = 0; 6965 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 6966 6967 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 6968 } 6969 6970 /* 6971 * SADB_DUMP processing 6972 * dump all entries including status of DEAD in SAD. 6973 * receive 6974 * <base> 6975 * from the ikmpd, and dump all secasvar leaves 6976 * and send, 6977 * <base> ..... 6978 * to the ikmpd. 6979 * 6980 * m will always be freed. 6981 */ 6982 static int 6983 key_dump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 6984 { 6985 struct secashead *sah; 6986 struct secasvar *sav; 6987 u_int16_t proto; 6988 u_int stateidx; 6989 u_int8_t satype; 6990 u_int8_t state; 6991 int cnt; 6992 struct sadb_msg *newmsg; 6993 struct mbuf *n; 6994 6995 IPSEC_ASSERT(so != NULL, ("null socket")); 6996 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6997 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6998 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6999 7000 /* map satype to proto */ 7001 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 7002 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 7003 __func__)); 7004 return key_senderror(so, m, EINVAL); 7005 } 7006 7007 /* count sav entries to be sent to the userland. */ 7008 cnt = 0; 7009 SAHTREE_LOCK(); 7010 LIST_FOREACH(sah, &V_sahtree, chain) { 7011 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 7012 && proto != sah->saidx.proto) 7013 continue; 7014 7015 for (stateidx = 0; 7016 stateidx < _ARRAYLEN(saorder_state_any); 7017 stateidx++) { 7018 state = saorder_state_any[stateidx]; 7019 LIST_FOREACH(sav, &sah->savtree[state], chain) { 7020 cnt++; 7021 } 7022 } 7023 } 7024 7025 if (cnt == 0) { 7026 SAHTREE_UNLOCK(); 7027 return key_senderror(so, m, ENOENT); 7028 } 7029 7030 /* send this to the userland, one at a time. */ 7031 newmsg = NULL; 7032 LIST_FOREACH(sah, &V_sahtree, chain) { 7033 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 7034 && proto != sah->saidx.proto) 7035 continue; 7036 7037 /* map proto to satype */ 7038 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 7039 SAHTREE_UNLOCK(); 7040 ipseclog((LOG_DEBUG, "%s: there was invalid proto in " 7041 "SAD.\n", __func__)); 7042 return key_senderror(so, m, EINVAL); 7043 } 7044 7045 for (stateidx = 0; 7046 stateidx < _ARRAYLEN(saorder_state_any); 7047 stateidx++) { 7048 state = saorder_state_any[stateidx]; 7049 LIST_FOREACH(sav, &sah->savtree[state], chain) { 7050 n = key_setdumpsa(sav, SADB_DUMP, satype, 7051 --cnt, mhp->msg->sadb_msg_pid); 7052 if (!n) { 7053 SAHTREE_UNLOCK(); 7054 return key_senderror(so, m, ENOBUFS); 7055 } 7056 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 7057 } 7058 } 7059 } 7060 SAHTREE_UNLOCK(); 7061 7062 m_freem(m); 7063 return 0; 7064 } 7065 7066 /* 7067 * SADB_X_PROMISC processing 7068 * 7069 * m will always be freed. 7070 */ 7071 static int 7072 key_promisc(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 7073 { 7074 int olen; 7075 7076 IPSEC_ASSERT(so != NULL, ("null socket")); 7077 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7078 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7079 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7080 7081 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7082 7083 if (olen < sizeof(struct sadb_msg)) { 7084 #if 1 7085 return key_senderror(so, m, EINVAL); 7086 #else 7087 m_freem(m); 7088 return 0; 7089 #endif 7090 } else if (olen == sizeof(struct sadb_msg)) { 7091 /* enable/disable promisc mode */ 7092 struct keycb *kp; 7093 7094 if ((kp = (struct keycb *)sotorawcb(so)) == NULL) 7095 return key_senderror(so, m, EINVAL); 7096 mhp->msg->sadb_msg_errno = 0; 7097 switch (mhp->msg->sadb_msg_satype) { 7098 case 0: 7099 case 1: 7100 kp->kp_promisc = mhp->msg->sadb_msg_satype; 7101 break; 7102 default: 7103 return key_senderror(so, m, EINVAL); 7104 } 7105 7106 /* send the original message back to everyone */ 7107 mhp->msg->sadb_msg_errno = 0; 7108 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7109 } else { 7110 /* send packet as is */ 7111 7112 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); 7113 7114 /* TODO: if sadb_msg_seq is specified, send to specific pid */ 7115 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7116 } 7117 } 7118 7119 static int (*key_typesw[])(struct socket *, struct mbuf *, 7120 const struct sadb_msghdr *) = { 7121 NULL, /* SADB_RESERVED */ 7122 key_getspi, /* SADB_GETSPI */ 7123 key_update, /* SADB_UPDATE */ 7124 key_add, /* SADB_ADD */ 7125 key_delete, /* SADB_DELETE */ 7126 key_get, /* SADB_GET */ 7127 key_acquire2, /* SADB_ACQUIRE */ 7128 key_register, /* SADB_REGISTER */ 7129 NULL, /* SADB_EXPIRE */ 7130 key_flush, /* SADB_FLUSH */ 7131 key_dump, /* SADB_DUMP */ 7132 key_promisc, /* SADB_X_PROMISC */ 7133 NULL, /* SADB_X_PCHANGE */ 7134 key_spdadd, /* SADB_X_SPDUPDATE */ 7135 key_spdadd, /* SADB_X_SPDADD */ 7136 key_spddelete, /* SADB_X_SPDDELETE */ 7137 key_spdget, /* SADB_X_SPDGET */ 7138 NULL, /* SADB_X_SPDACQUIRE */ 7139 key_spddump, /* SADB_X_SPDDUMP */ 7140 key_spdflush, /* SADB_X_SPDFLUSH */ 7141 key_spdadd, /* SADB_X_SPDSETIDX */ 7142 NULL, /* SADB_X_SPDEXPIRE */ 7143 key_spddelete2, /* SADB_X_SPDDELETE2 */ 7144 }; 7145 7146 /* 7147 * parse sadb_msg buffer to process PFKEYv2, 7148 * and create a data to response if needed. 7149 * I think to be dealed with mbuf directly. 7150 * IN: 7151 * msgp : pointer to pointer to a received buffer pulluped. 7152 * This is rewrited to response. 7153 * so : pointer to socket. 7154 * OUT: 7155 * length for buffer to send to user process. 7156 */ 7157 int 7158 key_parse(struct mbuf *m, struct socket *so) 7159 { 7160 struct sadb_msg *msg; 7161 struct sadb_msghdr mh; 7162 u_int orglen; 7163 int error; 7164 int target; 7165 7166 IPSEC_ASSERT(so != NULL, ("null socket")); 7167 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7168 7169 #if 0 /*kdebug_sadb assumes msg in linear buffer*/ 7170 KEYDEBUG(KEYDEBUG_KEY_DUMP, 7171 ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__)); 7172 kdebug_sadb(msg)); 7173 #endif 7174 7175 if (m->m_len < sizeof(struct sadb_msg)) { 7176 m = m_pullup(m, sizeof(struct sadb_msg)); 7177 if (!m) 7178 return ENOBUFS; 7179 } 7180 msg = mtod(m, struct sadb_msg *); 7181 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); 7182 target = KEY_SENDUP_ONE; 7183 7184 if ((m->m_flags & M_PKTHDR) == 0 || 7185 m->m_pkthdr.len != m->m_pkthdr.len) { 7186 ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__)); 7187 PFKEYSTAT_INC(out_invlen); 7188 error = EINVAL; 7189 goto senderror; 7190 } 7191 7192 if (msg->sadb_msg_version != PF_KEY_V2) { 7193 ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n", 7194 __func__, msg->sadb_msg_version)); 7195 PFKEYSTAT_INC(out_invver); 7196 error = EINVAL; 7197 goto senderror; 7198 } 7199 7200 if (msg->sadb_msg_type > SADB_MAX) { 7201 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 7202 __func__, msg->sadb_msg_type)); 7203 PFKEYSTAT_INC(out_invmsgtype); 7204 error = EINVAL; 7205 goto senderror; 7206 } 7207 7208 /* for old-fashioned code - should be nuked */ 7209 if (m->m_pkthdr.len > MCLBYTES) { 7210 m_freem(m); 7211 return ENOBUFS; 7212 } 7213 if (m->m_next) { 7214 struct mbuf *n; 7215 7216 MGETHDR(n, M_NOWAIT, MT_DATA); 7217 if (n && m->m_pkthdr.len > MHLEN) { 7218 if (!(MCLGET(n, M_NOWAIT))) { 7219 m_free(n); 7220 n = NULL; 7221 } 7222 } 7223 if (!n) { 7224 m_freem(m); 7225 return ENOBUFS; 7226 } 7227 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t)); 7228 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; 7229 n->m_next = NULL; 7230 m_freem(m); 7231 m = n; 7232 } 7233 7234 /* align the mbuf chain so that extensions are in contiguous region. */ 7235 error = key_align(m, &mh); 7236 if (error) 7237 return error; 7238 7239 msg = mh.msg; 7240 7241 /* check SA type */ 7242 switch (msg->sadb_msg_satype) { 7243 case SADB_SATYPE_UNSPEC: 7244 switch (msg->sadb_msg_type) { 7245 case SADB_GETSPI: 7246 case SADB_UPDATE: 7247 case SADB_ADD: 7248 case SADB_DELETE: 7249 case SADB_GET: 7250 case SADB_ACQUIRE: 7251 case SADB_EXPIRE: 7252 ipseclog((LOG_DEBUG, "%s: must specify satype " 7253 "when msg type=%u.\n", __func__, 7254 msg->sadb_msg_type)); 7255 PFKEYSTAT_INC(out_invsatype); 7256 error = EINVAL; 7257 goto senderror; 7258 } 7259 break; 7260 case SADB_SATYPE_AH: 7261 case SADB_SATYPE_ESP: 7262 case SADB_X_SATYPE_IPCOMP: 7263 case SADB_X_SATYPE_TCPSIGNATURE: 7264 switch (msg->sadb_msg_type) { 7265 case SADB_X_SPDADD: 7266 case SADB_X_SPDDELETE: 7267 case SADB_X_SPDGET: 7268 case SADB_X_SPDDUMP: 7269 case SADB_X_SPDFLUSH: 7270 case SADB_X_SPDSETIDX: 7271 case SADB_X_SPDUPDATE: 7272 case SADB_X_SPDDELETE2: 7273 ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n", 7274 __func__, msg->sadb_msg_type)); 7275 PFKEYSTAT_INC(out_invsatype); 7276 error = EINVAL; 7277 goto senderror; 7278 } 7279 break; 7280 case SADB_SATYPE_RSVP: 7281 case SADB_SATYPE_OSPFV2: 7282 case SADB_SATYPE_RIPV2: 7283 case SADB_SATYPE_MIP: 7284 ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n", 7285 __func__, msg->sadb_msg_satype)); 7286 PFKEYSTAT_INC(out_invsatype); 7287 error = EOPNOTSUPP; 7288 goto senderror; 7289 case 1: /* XXX: What does it do? */ 7290 if (msg->sadb_msg_type == SADB_X_PROMISC) 7291 break; 7292 /*FALLTHROUGH*/ 7293 default: 7294 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 7295 __func__, msg->sadb_msg_satype)); 7296 PFKEYSTAT_INC(out_invsatype); 7297 error = EINVAL; 7298 goto senderror; 7299 } 7300 7301 /* check field of upper layer protocol and address family */ 7302 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL 7303 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { 7304 struct sadb_address *src0, *dst0; 7305 u_int plen; 7306 7307 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]); 7308 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]); 7309 7310 /* check upper layer protocol */ 7311 if (src0->sadb_address_proto != dst0->sadb_address_proto) { 7312 ipseclog((LOG_DEBUG, "%s: upper layer protocol " 7313 "mismatched.\n", __func__)); 7314 PFKEYSTAT_INC(out_invaddr); 7315 error = EINVAL; 7316 goto senderror; 7317 } 7318 7319 /* check family */ 7320 if (PFKEY_ADDR_SADDR(src0)->sa_family != 7321 PFKEY_ADDR_SADDR(dst0)->sa_family) { 7322 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 7323 __func__)); 7324 PFKEYSTAT_INC(out_invaddr); 7325 error = EINVAL; 7326 goto senderror; 7327 } 7328 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7329 PFKEY_ADDR_SADDR(dst0)->sa_len) { 7330 ipseclog((LOG_DEBUG, "%s: address struct size " 7331 "mismatched.\n", __func__)); 7332 PFKEYSTAT_INC(out_invaddr); 7333 error = EINVAL; 7334 goto senderror; 7335 } 7336 7337 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7338 case AF_INET: 7339 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7340 sizeof(struct sockaddr_in)) { 7341 PFKEYSTAT_INC(out_invaddr); 7342 error = EINVAL; 7343 goto senderror; 7344 } 7345 break; 7346 case AF_INET6: 7347 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7348 sizeof(struct sockaddr_in6)) { 7349 PFKEYSTAT_INC(out_invaddr); 7350 error = EINVAL; 7351 goto senderror; 7352 } 7353 break; 7354 default: 7355 ipseclog((LOG_DEBUG, "%s: unsupported address family\n", 7356 __func__)); 7357 PFKEYSTAT_INC(out_invaddr); 7358 error = EAFNOSUPPORT; 7359 goto senderror; 7360 } 7361 7362 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7363 case AF_INET: 7364 plen = sizeof(struct in_addr) << 3; 7365 break; 7366 case AF_INET6: 7367 plen = sizeof(struct in6_addr) << 3; 7368 break; 7369 default: 7370 plen = 0; /*fool gcc*/ 7371 break; 7372 } 7373 7374 /* check max prefix length */ 7375 if (src0->sadb_address_prefixlen > plen || 7376 dst0->sadb_address_prefixlen > plen) { 7377 ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n", 7378 __func__)); 7379 PFKEYSTAT_INC(out_invaddr); 7380 error = EINVAL; 7381 goto senderror; 7382 } 7383 7384 /* 7385 * prefixlen == 0 is valid because there can be a case when 7386 * all addresses are matched. 7387 */ 7388 } 7389 7390 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) || 7391 key_typesw[msg->sadb_msg_type] == NULL) { 7392 PFKEYSTAT_INC(out_invmsgtype); 7393 error = EINVAL; 7394 goto senderror; 7395 } 7396 7397 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh); 7398 7399 senderror: 7400 msg->sadb_msg_errno = error; 7401 return key_sendup_mbuf(so, m, target); 7402 } 7403 7404 static int 7405 key_senderror(struct socket *so, struct mbuf *m, int code) 7406 { 7407 struct sadb_msg *msg; 7408 7409 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 7410 ("mbuf too small, len %u", m->m_len)); 7411 7412 msg = mtod(m, struct sadb_msg *); 7413 msg->sadb_msg_errno = code; 7414 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 7415 } 7416 7417 /* 7418 * set the pointer to each header into message buffer. 7419 * m will be freed on error. 7420 * XXX larger-than-MCLBYTES extension? 7421 */ 7422 static int 7423 key_align(struct mbuf *m, struct sadb_msghdr *mhp) 7424 { 7425 struct mbuf *n; 7426 struct sadb_ext *ext; 7427 size_t off, end; 7428 int extlen; 7429 int toff; 7430 7431 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7432 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7433 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 7434 ("mbuf too small, len %u", m->m_len)); 7435 7436 /* initialize */ 7437 bzero(mhp, sizeof(*mhp)); 7438 7439 mhp->msg = mtod(m, struct sadb_msg *); 7440 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */ 7441 7442 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7443 extlen = end; /*just in case extlen is not updated*/ 7444 for (off = sizeof(struct sadb_msg); off < end; off += extlen) { 7445 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); 7446 if (!n) { 7447 /* m is already freed */ 7448 return ENOBUFS; 7449 } 7450 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 7451 7452 /* set pointer */ 7453 switch (ext->sadb_ext_type) { 7454 case SADB_EXT_SA: 7455 case SADB_EXT_ADDRESS_SRC: 7456 case SADB_EXT_ADDRESS_DST: 7457 case SADB_EXT_ADDRESS_PROXY: 7458 case SADB_EXT_LIFETIME_CURRENT: 7459 case SADB_EXT_LIFETIME_HARD: 7460 case SADB_EXT_LIFETIME_SOFT: 7461 case SADB_EXT_KEY_AUTH: 7462 case SADB_EXT_KEY_ENCRYPT: 7463 case SADB_EXT_IDENTITY_SRC: 7464 case SADB_EXT_IDENTITY_DST: 7465 case SADB_EXT_SENSITIVITY: 7466 case SADB_EXT_PROPOSAL: 7467 case SADB_EXT_SUPPORTED_AUTH: 7468 case SADB_EXT_SUPPORTED_ENCRYPT: 7469 case SADB_EXT_SPIRANGE: 7470 case SADB_X_EXT_POLICY: 7471 case SADB_X_EXT_SA2: 7472 #ifdef IPSEC_NAT_T 7473 case SADB_X_EXT_NAT_T_TYPE: 7474 case SADB_X_EXT_NAT_T_SPORT: 7475 case SADB_X_EXT_NAT_T_DPORT: 7476 case SADB_X_EXT_NAT_T_OAI: 7477 case SADB_X_EXT_NAT_T_OAR: 7478 case SADB_X_EXT_NAT_T_FRAG: 7479 #endif 7480 /* duplicate check */ 7481 /* 7482 * XXX Are there duplication payloads of either 7483 * KEY_AUTH or KEY_ENCRYPT ? 7484 */ 7485 if (mhp->ext[ext->sadb_ext_type] != NULL) { 7486 ipseclog((LOG_DEBUG, "%s: duplicate ext_type " 7487 "%u\n", __func__, ext->sadb_ext_type)); 7488 m_freem(m); 7489 PFKEYSTAT_INC(out_dupext); 7490 return EINVAL; 7491 } 7492 break; 7493 default: 7494 ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n", 7495 __func__, ext->sadb_ext_type)); 7496 m_freem(m); 7497 PFKEYSTAT_INC(out_invexttype); 7498 return EINVAL; 7499 } 7500 7501 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); 7502 7503 if (key_validate_ext(ext, extlen)) { 7504 m_freem(m); 7505 PFKEYSTAT_INC(out_invlen); 7506 return EINVAL; 7507 } 7508 7509 n = m_pulldown(m, off, extlen, &toff); 7510 if (!n) { 7511 /* m is already freed */ 7512 return ENOBUFS; 7513 } 7514 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 7515 7516 mhp->ext[ext->sadb_ext_type] = ext; 7517 mhp->extoff[ext->sadb_ext_type] = off; 7518 mhp->extlen[ext->sadb_ext_type] = extlen; 7519 } 7520 7521 if (off != end) { 7522 m_freem(m); 7523 PFKEYSTAT_INC(out_invlen); 7524 return EINVAL; 7525 } 7526 7527 return 0; 7528 } 7529 7530 static int 7531 key_validate_ext(const struct sadb_ext *ext, int len) 7532 { 7533 const struct sockaddr *sa; 7534 enum { NONE, ADDR } checktype = NONE; 7535 int baselen = 0; 7536 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); 7537 7538 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) 7539 return EINVAL; 7540 7541 /* if it does not match minimum/maximum length, bail */ 7542 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) || 7543 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0])) 7544 return EINVAL; 7545 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) 7546 return EINVAL; 7547 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) 7548 return EINVAL; 7549 7550 /* more checks based on sadb_ext_type XXX need more */ 7551 switch (ext->sadb_ext_type) { 7552 case SADB_EXT_ADDRESS_SRC: 7553 case SADB_EXT_ADDRESS_DST: 7554 case SADB_EXT_ADDRESS_PROXY: 7555 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); 7556 checktype = ADDR; 7557 break; 7558 case SADB_EXT_IDENTITY_SRC: 7559 case SADB_EXT_IDENTITY_DST: 7560 if (((const struct sadb_ident *)ext)->sadb_ident_type == 7561 SADB_X_IDENTTYPE_ADDR) { 7562 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); 7563 checktype = ADDR; 7564 } else 7565 checktype = NONE; 7566 break; 7567 default: 7568 checktype = NONE; 7569 break; 7570 } 7571 7572 switch (checktype) { 7573 case NONE: 7574 break; 7575 case ADDR: 7576 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); 7577 if (len < baselen + sal) 7578 return EINVAL; 7579 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) 7580 return EINVAL; 7581 break; 7582 } 7583 7584 return 0; 7585 } 7586 7587 void 7588 key_init(void) 7589 { 7590 int i; 7591 7592 for (i = 0; i < IPSEC_DIR_MAX; i++) 7593 TAILQ_INIT(&V_sptree[i]); 7594 7595 LIST_INIT(&V_sahtree); 7596 7597 for (i = 0; i <= SADB_SATYPE_MAX; i++) 7598 LIST_INIT(&V_regtree[i]); 7599 7600 LIST_INIT(&V_acqtree); 7601 LIST_INIT(&V_spacqtree); 7602 7603 if (!IS_DEFAULT_VNET(curvnet)) 7604 return; 7605 7606 SPTREE_LOCK_INIT(); 7607 REGTREE_LOCK_INIT(); 7608 SAHTREE_LOCK_INIT(); 7609 ACQ_LOCK_INIT(); 7610 SPACQ_LOCK_INIT(); 7611 7612 #ifndef IPSEC_DEBUG2 7613 callout_init(&key_timer, 1); 7614 callout_reset(&key_timer, hz, key_timehandler, NULL); 7615 #endif /*IPSEC_DEBUG2*/ 7616 7617 /* initialize key statistics */ 7618 keystat.getspi_count = 1; 7619 7620 printf("IPsec: Initialized Security Association Processing.\n"); 7621 } 7622 7623 #ifdef VIMAGE 7624 void 7625 key_destroy(void) 7626 { 7627 TAILQ_HEAD(, secpolicy) drainq; 7628 struct secpolicy *sp, *nextsp; 7629 struct secacq *acq, *nextacq; 7630 struct secspacq *spacq, *nextspacq; 7631 struct secashead *sah, *nextsah; 7632 struct secreg *reg; 7633 int i; 7634 7635 TAILQ_INIT(&drainq); 7636 SPTREE_WLOCK(); 7637 for (i = 0; i < IPSEC_DIR_MAX; i++) { 7638 TAILQ_CONCAT(&drainq, &V_sptree[i], chain); 7639 } 7640 SPTREE_WUNLOCK(); 7641 sp = TAILQ_FIRST(&drainq); 7642 while (sp != NULL) { 7643 nextsp = TAILQ_NEXT(sp, chain); 7644 KEY_FREESP(&sp); 7645 sp = nextsp; 7646 } 7647 7648 SAHTREE_LOCK(); 7649 for (sah = LIST_FIRST(&V_sahtree); sah != NULL; sah = nextsah) { 7650 nextsah = LIST_NEXT(sah, chain); 7651 if (__LIST_CHAINED(sah)) { 7652 LIST_REMOVE(sah, chain); 7653 free(sah, M_IPSEC_SAH); 7654 } 7655 } 7656 SAHTREE_UNLOCK(); 7657 7658 REGTREE_LOCK(); 7659 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 7660 LIST_FOREACH(reg, &V_regtree[i], chain) { 7661 if (__LIST_CHAINED(reg)) { 7662 LIST_REMOVE(reg, chain); 7663 free(reg, M_IPSEC_SAR); 7664 break; 7665 } 7666 } 7667 } 7668 REGTREE_UNLOCK(); 7669 7670 ACQ_LOCK(); 7671 for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) { 7672 nextacq = LIST_NEXT(acq, chain); 7673 if (__LIST_CHAINED(acq)) { 7674 LIST_REMOVE(acq, chain); 7675 free(acq, M_IPSEC_SAQ); 7676 } 7677 } 7678 ACQ_UNLOCK(); 7679 7680 SPACQ_LOCK(); 7681 for (spacq = LIST_FIRST(&V_spacqtree); spacq != NULL; 7682 spacq = nextspacq) { 7683 nextspacq = LIST_NEXT(spacq, chain); 7684 if (__LIST_CHAINED(spacq)) { 7685 LIST_REMOVE(spacq, chain); 7686 free(spacq, M_IPSEC_SAQ); 7687 } 7688 } 7689 SPACQ_UNLOCK(); 7690 } 7691 #endif 7692 7693 /* 7694 * XXX: maybe This function is called after INBOUND IPsec processing. 7695 * 7696 * Special check for tunnel-mode packets. 7697 * We must make some checks for consistency between inner and outer IP header. 7698 * 7699 * xxx more checks to be provided 7700 */ 7701 int 7702 key_checktunnelsanity(struct secasvar *sav, u_int family, caddr_t src, 7703 caddr_t dst) 7704 { 7705 IPSEC_ASSERT(sav->sah != NULL, ("null SA header")); 7706 7707 /* XXX: check inner IP header */ 7708 7709 return 1; 7710 } 7711 7712 /* record data transfer on SA, and update timestamps */ 7713 void 7714 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m) 7715 { 7716 IPSEC_ASSERT(sav != NULL, ("Null secasvar")); 7717 IPSEC_ASSERT(m != NULL, ("Null mbuf")); 7718 if (!sav->lft_c) 7719 return; 7720 7721 /* 7722 * XXX Currently, there is a difference of bytes size 7723 * between inbound and outbound processing. 7724 */ 7725 sav->lft_c->bytes += m->m_pkthdr.len; 7726 /* to check bytes lifetime is done in key_timehandler(). */ 7727 7728 /* 7729 * We use the number of packets as the unit of 7730 * allocations. We increment the variable 7731 * whenever {esp,ah}_{in,out}put is called. 7732 */ 7733 sav->lft_c->allocations++; 7734 /* XXX check for expires? */ 7735 7736 /* 7737 * NOTE: We record CURRENT usetime by using wall clock, 7738 * in seconds. HARD and SOFT lifetime are measured by the time 7739 * difference (again in seconds) from usetime. 7740 * 7741 * usetime 7742 * v expire expire 7743 * -----+-----+--------+---> t 7744 * <--------------> HARD 7745 * <-----> SOFT 7746 */ 7747 sav->lft_c->usetime = time_second; 7748 /* XXX check for expires? */ 7749 7750 return; 7751 } 7752 7753 static void 7754 key_sa_chgstate(struct secasvar *sav, u_int8_t state) 7755 { 7756 IPSEC_ASSERT(sav != NULL, ("NULL sav")); 7757 SAHTREE_LOCK_ASSERT(); 7758 7759 if (sav->state != state) { 7760 if (__LIST_CHAINED(sav)) 7761 LIST_REMOVE(sav, chain); 7762 sav->state = state; 7763 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain); 7764 } 7765 } 7766 7767 /* 7768 * Take one of the kernel's security keys and convert it into a PF_KEY 7769 * structure within an mbuf, suitable for sending up to a waiting 7770 * application in user land. 7771 * 7772 * IN: 7773 * src: A pointer to a kernel security key. 7774 * exttype: Which type of key this is. Refer to the PF_KEY data structures. 7775 * OUT: 7776 * a valid mbuf or NULL indicating an error 7777 * 7778 */ 7779 7780 static struct mbuf * 7781 key_setkey(struct seckey *src, u_int16_t exttype) 7782 { 7783 struct mbuf *m; 7784 struct sadb_key *p; 7785 int len; 7786 7787 if (src == NULL) 7788 return NULL; 7789 7790 len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src)); 7791 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 7792 if (m == NULL) 7793 return NULL; 7794 m_align(m, len); 7795 m->m_len = len; 7796 p = mtod(m, struct sadb_key *); 7797 bzero(p, len); 7798 p->sadb_key_len = PFKEY_UNIT64(len); 7799 p->sadb_key_exttype = exttype; 7800 p->sadb_key_bits = src->bits; 7801 bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src)); 7802 7803 return m; 7804 } 7805 7806 /* 7807 * Take one of the kernel's lifetime data structures and convert it 7808 * into a PF_KEY structure within an mbuf, suitable for sending up to 7809 * a waiting application in user land. 7810 * 7811 * IN: 7812 * src: A pointer to a kernel lifetime structure. 7813 * exttype: Which type of lifetime this is. Refer to the PF_KEY 7814 * data structures for more information. 7815 * OUT: 7816 * a valid mbuf or NULL indicating an error 7817 * 7818 */ 7819 7820 static struct mbuf * 7821 key_setlifetime(struct seclifetime *src, u_int16_t exttype) 7822 { 7823 struct mbuf *m = NULL; 7824 struct sadb_lifetime *p; 7825 int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime)); 7826 7827 if (src == NULL) 7828 return NULL; 7829 7830 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 7831 if (m == NULL) 7832 return m; 7833 m_align(m, len); 7834 m->m_len = len; 7835 p = mtod(m, struct sadb_lifetime *); 7836 7837 bzero(p, len); 7838 p->sadb_lifetime_len = PFKEY_UNIT64(len); 7839 p->sadb_lifetime_exttype = exttype; 7840 p->sadb_lifetime_allocations = src->allocations; 7841 p->sadb_lifetime_bytes = src->bytes; 7842 p->sadb_lifetime_addtime = src->addtime; 7843 p->sadb_lifetime_usetime = src->usetime; 7844 7845 return m; 7846 7847 } 7848