1 /* $FreeBSD$ */ 2 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ 3 4 /*- 5 * SPDX-License-Identifier: BSD-3-Clause 6 * 7 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the project nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 /* 36 * This code is referd to RFC 2367 37 */ 38 39 #include "opt_inet.h" 40 #include "opt_inet6.h" 41 #include "opt_ipsec.h" 42 43 #include <sys/types.h> 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/kernel.h> 47 #include <sys/fnv_hash.h> 48 #include <sys/lock.h> 49 #include <sys/mutex.h> 50 #include <sys/mbuf.h> 51 #include <sys/domain.h> 52 #include <sys/protosw.h> 53 #include <sys/malloc.h> 54 #include <sys/rmlock.h> 55 #include <sys/socket.h> 56 #include <sys/socketvar.h> 57 #include <sys/sysctl.h> 58 #include <sys/errno.h> 59 #include <sys/proc.h> 60 #include <sys/queue.h> 61 #include <sys/refcount.h> 62 #include <sys/syslog.h> 63 64 #include <vm/uma.h> 65 66 #include <net/if.h> 67 #include <net/if_var.h> 68 #include <net/vnet.h> 69 #include <net/raw_cb.h> 70 71 #include <netinet/in.h> 72 #include <netinet/in_systm.h> 73 #include <netinet/ip.h> 74 #include <netinet/in_var.h> 75 #include <netinet/udp.h> 76 77 #ifdef INET6 78 #include <netinet/ip6.h> 79 #include <netinet6/in6_var.h> 80 #include <netinet6/ip6_var.h> 81 #endif /* INET6 */ 82 83 #include <net/pfkeyv2.h> 84 #include <netipsec/keydb.h> 85 #include <netipsec/key.h> 86 #include <netipsec/keysock.h> 87 #include <netipsec/key_debug.h> 88 89 #include <netipsec/ipsec.h> 90 #ifdef INET6 91 #include <netipsec/ipsec6.h> 92 #endif 93 94 #include <netipsec/xform.h> 95 #include <machine/in_cksum.h> 96 #include <machine/stdarg.h> 97 98 /* randomness */ 99 #include <sys/random.h> 100 101 #define FULLMASK 0xff 102 #define _BITS(bytes) ((bytes) << 3) 103 104 #define UINT32_80PCT 0xcccccccc 105 /* 106 * Note on SA reference counting: 107 * - SAs that are not in DEAD state will have (total external reference + 1) 108 * following value in reference count field. they cannot be freed and are 109 * referenced from SA header. 110 * - SAs that are in DEAD state will have (total external reference) 111 * in reference count field. they are ready to be freed. reference from 112 * SA header will be removed in key_delsav(), when the reference count 113 * field hits 0 (= no external reference other than from SA header. 114 */ 115 116 VNET_DEFINE(u_int32_t, key_debug_level) = 0; 117 VNET_DEFINE_STATIC(u_int, key_spi_trycnt) = 1000; 118 VNET_DEFINE_STATIC(u_int32_t, key_spi_minval) = 0x100; 119 VNET_DEFINE_STATIC(u_int32_t, key_spi_maxval) = 0x0fffffff; /* XXX */ 120 VNET_DEFINE_STATIC(u_int32_t, policy_id) = 0; 121 /*interval to initialize randseed,1(m)*/ 122 VNET_DEFINE_STATIC(u_int, key_int_random) = 60; 123 /* interval to expire acquiring, 30(s)*/ 124 VNET_DEFINE_STATIC(u_int, key_larval_lifetime) = 30; 125 /* counter for blocking SADB_ACQUIRE.*/ 126 VNET_DEFINE_STATIC(int, key_blockacq_count) = 10; 127 /* lifetime for blocking SADB_ACQUIRE.*/ 128 VNET_DEFINE_STATIC(int, key_blockacq_lifetime) = 20; 129 /* preferred old sa rather than new sa.*/ 130 VNET_DEFINE_STATIC(int, key_preferred_oldsa) = 1; 131 #define V_key_spi_trycnt VNET(key_spi_trycnt) 132 #define V_key_spi_minval VNET(key_spi_minval) 133 #define V_key_spi_maxval VNET(key_spi_maxval) 134 #define V_policy_id VNET(policy_id) 135 #define V_key_int_random VNET(key_int_random) 136 #define V_key_larval_lifetime VNET(key_larval_lifetime) 137 #define V_key_blockacq_count VNET(key_blockacq_count) 138 #define V_key_blockacq_lifetime VNET(key_blockacq_lifetime) 139 #define V_key_preferred_oldsa VNET(key_preferred_oldsa) 140 141 VNET_DEFINE_STATIC(u_int32_t, acq_seq) = 0; 142 #define V_acq_seq VNET(acq_seq) 143 144 VNET_DEFINE_STATIC(uint32_t, sp_genid) = 0; 145 #define V_sp_genid VNET(sp_genid) 146 147 /* SPD */ 148 TAILQ_HEAD(secpolicy_queue, secpolicy); 149 LIST_HEAD(secpolicy_list, secpolicy); 150 VNET_DEFINE_STATIC(struct secpolicy_queue, sptree[IPSEC_DIR_MAX]); 151 VNET_DEFINE_STATIC(struct secpolicy_queue, sptree_ifnet[IPSEC_DIR_MAX]); 152 static struct rmlock sptree_lock; 153 #define V_sptree VNET(sptree) 154 #define V_sptree_ifnet VNET(sptree_ifnet) 155 #define SPTREE_LOCK_INIT() rm_init(&sptree_lock, "sptree") 156 #define SPTREE_LOCK_DESTROY() rm_destroy(&sptree_lock) 157 #define SPTREE_RLOCK_TRACKER struct rm_priotracker sptree_tracker 158 #define SPTREE_RLOCK() rm_rlock(&sptree_lock, &sptree_tracker) 159 #define SPTREE_RUNLOCK() rm_runlock(&sptree_lock, &sptree_tracker) 160 #define SPTREE_RLOCK_ASSERT() rm_assert(&sptree_lock, RA_RLOCKED) 161 #define SPTREE_WLOCK() rm_wlock(&sptree_lock) 162 #define SPTREE_WUNLOCK() rm_wunlock(&sptree_lock) 163 #define SPTREE_WLOCK_ASSERT() rm_assert(&sptree_lock, RA_WLOCKED) 164 #define SPTREE_UNLOCK_ASSERT() rm_assert(&sptree_lock, RA_UNLOCKED) 165 166 /* Hash table for lookup SP using unique id */ 167 VNET_DEFINE_STATIC(struct secpolicy_list *, sphashtbl); 168 VNET_DEFINE_STATIC(u_long, sphash_mask); 169 #define V_sphashtbl VNET(sphashtbl) 170 #define V_sphash_mask VNET(sphash_mask) 171 172 #define SPHASH_NHASH_LOG2 7 173 #define SPHASH_NHASH (1 << SPHASH_NHASH_LOG2) 174 #define SPHASH_HASHVAL(id) (key_u32hash(id) & V_sphash_mask) 175 #define SPHASH_HASH(id) &V_sphashtbl[SPHASH_HASHVAL(id)] 176 177 /* SPD cache */ 178 struct spdcache_entry { 179 struct secpolicyindex spidx; /* secpolicyindex */ 180 struct secpolicy *sp; /* cached policy to be used */ 181 182 LIST_ENTRY(spdcache_entry) chain; 183 }; 184 LIST_HEAD(spdcache_entry_list, spdcache_entry); 185 186 #define SPDCACHE_MAX_ENTRIES_PER_HASH 8 187 188 VNET_DEFINE_STATIC(u_int, key_spdcache_maxentries) = 0; 189 #define V_key_spdcache_maxentries VNET(key_spdcache_maxentries) 190 VNET_DEFINE_STATIC(u_int, key_spdcache_threshold) = 32; 191 #define V_key_spdcache_threshold VNET(key_spdcache_threshold) 192 VNET_DEFINE_STATIC(unsigned long, spd_size) = 0; 193 #define V_spd_size VNET(spd_size) 194 195 #define SPDCACHE_ENABLED() (V_key_spdcache_maxentries != 0) 196 #define SPDCACHE_ACTIVE() \ 197 (SPDCACHE_ENABLED() && V_spd_size >= V_key_spdcache_threshold) 198 199 VNET_DEFINE_STATIC(struct spdcache_entry_list *, spdcachehashtbl); 200 VNET_DEFINE_STATIC(u_long, spdcachehash_mask); 201 #define V_spdcachehashtbl VNET(spdcachehashtbl) 202 #define V_spdcachehash_mask VNET(spdcachehash_mask) 203 204 #define SPDCACHE_HASHVAL(idx) \ 205 (key_addrprotohash(&(idx)->src, &(idx)->dst, &(idx)->ul_proto) & \ 206 V_spdcachehash_mask) 207 208 /* Each cache line is protected by a mutex */ 209 VNET_DEFINE_STATIC(struct mtx *, spdcache_lock); 210 #define V_spdcache_lock VNET(spdcache_lock) 211 212 #define SPDCACHE_LOCK_INIT(a) \ 213 mtx_init(&V_spdcache_lock[a], "spdcache", \ 214 "fast ipsec SPD cache", MTX_DEF|MTX_DUPOK) 215 #define SPDCACHE_LOCK_DESTROY(a) mtx_destroy(&V_spdcache_lock[a]) 216 #define SPDCACHE_LOCK(a) mtx_lock(&V_spdcache_lock[a]); 217 #define SPDCACHE_UNLOCK(a) mtx_unlock(&V_spdcache_lock[a]); 218 219 static struct sx spi_alloc_lock; 220 #define SPI_ALLOC_LOCK_INIT() sx_init(&spi_alloc_lock, "spialloc") 221 #define SPI_ALLOC_LOCK_DESTROY() sx_destroy(&spi_alloc_lock) 222 #define SPI_ALLOC_LOCK() sx_xlock(&spi_alloc_lock) 223 #define SPI_ALLOC_UNLOCK() sx_unlock(&spi_alloc_lock) 224 #define SPI_ALLOC_LOCK_ASSERT() sx_assert(&spi_alloc_lock, SA_XLOCKED) 225 226 /* SAD */ 227 TAILQ_HEAD(secashead_queue, secashead); 228 LIST_HEAD(secashead_list, secashead); 229 VNET_DEFINE_STATIC(struct secashead_queue, sahtree); 230 static struct rmlock sahtree_lock; 231 #define V_sahtree VNET(sahtree) 232 #define SAHTREE_LOCK_INIT() rm_init(&sahtree_lock, "sahtree") 233 #define SAHTREE_LOCK_DESTROY() rm_destroy(&sahtree_lock) 234 #define SAHTREE_RLOCK_TRACKER struct rm_priotracker sahtree_tracker 235 #define SAHTREE_RLOCK() rm_rlock(&sahtree_lock, &sahtree_tracker) 236 #define SAHTREE_RUNLOCK() rm_runlock(&sahtree_lock, &sahtree_tracker) 237 #define SAHTREE_RLOCK_ASSERT() rm_assert(&sahtree_lock, RA_RLOCKED) 238 #define SAHTREE_WLOCK() rm_wlock(&sahtree_lock) 239 #define SAHTREE_WUNLOCK() rm_wunlock(&sahtree_lock) 240 #define SAHTREE_WLOCK_ASSERT() rm_assert(&sahtree_lock, RA_WLOCKED) 241 #define SAHTREE_UNLOCK_ASSERT() rm_assert(&sahtree_lock, RA_UNLOCKED) 242 243 /* Hash table for lookup in SAD using SA addresses */ 244 VNET_DEFINE_STATIC(struct secashead_list *, sahaddrhashtbl); 245 VNET_DEFINE_STATIC(u_long, sahaddrhash_mask); 246 #define V_sahaddrhashtbl VNET(sahaddrhashtbl) 247 #define V_sahaddrhash_mask VNET(sahaddrhash_mask) 248 249 #define SAHHASH_NHASH_LOG2 7 250 #define SAHHASH_NHASH (1 << SAHHASH_NHASH_LOG2) 251 #define SAHADDRHASH_HASHVAL(idx) \ 252 (key_addrprotohash(&(idx)->src, &(idx)->dst, &(idx)->proto) & \ 253 V_sahaddrhash_mask) 254 #define SAHADDRHASH_HASH(saidx) \ 255 &V_sahaddrhashtbl[SAHADDRHASH_HASHVAL(saidx)] 256 257 /* Hash table for lookup in SAD using SPI */ 258 LIST_HEAD(secasvar_list, secasvar); 259 VNET_DEFINE_STATIC(struct secasvar_list *, savhashtbl); 260 VNET_DEFINE_STATIC(u_long, savhash_mask); 261 #define V_savhashtbl VNET(savhashtbl) 262 #define V_savhash_mask VNET(savhash_mask) 263 #define SAVHASH_NHASH_LOG2 7 264 #define SAVHASH_NHASH (1 << SAVHASH_NHASH_LOG2) 265 #define SAVHASH_HASHVAL(spi) (key_u32hash(spi) & V_savhash_mask) 266 #define SAVHASH_HASH(spi) &V_savhashtbl[SAVHASH_HASHVAL(spi)] 267 268 static uint32_t 269 key_addrprotohash(const union sockaddr_union *src, 270 const union sockaddr_union *dst, const uint8_t *proto) 271 { 272 uint32_t hval; 273 274 hval = fnv_32_buf(proto, sizeof(*proto), 275 FNV1_32_INIT); 276 switch (dst->sa.sa_family) { 277 #ifdef INET 278 case AF_INET: 279 hval = fnv_32_buf(&src->sin.sin_addr, 280 sizeof(in_addr_t), hval); 281 hval = fnv_32_buf(&dst->sin.sin_addr, 282 sizeof(in_addr_t), hval); 283 break; 284 #endif 285 #ifdef INET6 286 case AF_INET6: 287 hval = fnv_32_buf(&src->sin6.sin6_addr, 288 sizeof(struct in6_addr), hval); 289 hval = fnv_32_buf(&dst->sin6.sin6_addr, 290 sizeof(struct in6_addr), hval); 291 break; 292 #endif 293 default: 294 hval = 0; 295 ipseclog((LOG_DEBUG, "%s: unknown address family %d\n", 296 __func__, dst->sa.sa_family)); 297 } 298 return (hval); 299 } 300 301 static uint32_t 302 key_u32hash(uint32_t val) 303 { 304 305 return (fnv_32_buf(&val, sizeof(val), FNV1_32_INIT)); 306 } 307 308 /* registed list */ 309 VNET_DEFINE_STATIC(LIST_HEAD(_regtree, secreg), regtree[SADB_SATYPE_MAX + 1]); 310 #define V_regtree VNET(regtree) 311 static struct mtx regtree_lock; 312 #define REGTREE_LOCK_INIT() \ 313 mtx_init(®tree_lock, "regtree", "fast ipsec regtree", MTX_DEF) 314 #define REGTREE_LOCK_DESTROY() mtx_destroy(®tree_lock) 315 #define REGTREE_LOCK() mtx_lock(®tree_lock) 316 #define REGTREE_UNLOCK() mtx_unlock(®tree_lock) 317 #define REGTREE_LOCK_ASSERT() mtx_assert(®tree_lock, MA_OWNED) 318 319 /* Acquiring list */ 320 LIST_HEAD(secacq_list, secacq); 321 VNET_DEFINE_STATIC(struct secacq_list, acqtree); 322 #define V_acqtree VNET(acqtree) 323 static struct mtx acq_lock; 324 #define ACQ_LOCK_INIT() \ 325 mtx_init(&acq_lock, "acqtree", "ipsec SA acquiring list", MTX_DEF) 326 #define ACQ_LOCK_DESTROY() mtx_destroy(&acq_lock) 327 #define ACQ_LOCK() mtx_lock(&acq_lock) 328 #define ACQ_UNLOCK() mtx_unlock(&acq_lock) 329 #define ACQ_LOCK_ASSERT() mtx_assert(&acq_lock, MA_OWNED) 330 331 /* Hash table for lookup in ACQ list using SA addresses */ 332 VNET_DEFINE_STATIC(struct secacq_list *, acqaddrhashtbl); 333 VNET_DEFINE_STATIC(u_long, acqaddrhash_mask); 334 #define V_acqaddrhashtbl VNET(acqaddrhashtbl) 335 #define V_acqaddrhash_mask VNET(acqaddrhash_mask) 336 337 /* Hash table for lookup in ACQ list using SEQ number */ 338 VNET_DEFINE_STATIC(struct secacq_list *, acqseqhashtbl); 339 VNET_DEFINE_STATIC(u_long, acqseqhash_mask); 340 #define V_acqseqhashtbl VNET(acqseqhashtbl) 341 #define V_acqseqhash_mask VNET(acqseqhash_mask) 342 343 #define ACQHASH_NHASH_LOG2 7 344 #define ACQHASH_NHASH (1 << ACQHASH_NHASH_LOG2) 345 #define ACQADDRHASH_HASHVAL(idx) \ 346 (key_addrprotohash(&(idx)->src, &(idx)->dst, &(idx)->proto) & \ 347 V_acqaddrhash_mask) 348 #define ACQSEQHASH_HASHVAL(seq) \ 349 (key_u32hash(seq) & V_acqseqhash_mask) 350 #define ACQADDRHASH_HASH(saidx) \ 351 &V_acqaddrhashtbl[ACQADDRHASH_HASHVAL(saidx)] 352 #define ACQSEQHASH_HASH(seq) \ 353 &V_acqseqhashtbl[ACQSEQHASH_HASHVAL(seq)] 354 /* SP acquiring list */ 355 VNET_DEFINE_STATIC(LIST_HEAD(_spacqtree, secspacq), spacqtree); 356 #define V_spacqtree VNET(spacqtree) 357 static struct mtx spacq_lock; 358 #define SPACQ_LOCK_INIT() \ 359 mtx_init(&spacq_lock, "spacqtree", \ 360 "fast ipsec security policy acquire list", MTX_DEF) 361 #define SPACQ_LOCK_DESTROY() mtx_destroy(&spacq_lock) 362 #define SPACQ_LOCK() mtx_lock(&spacq_lock) 363 #define SPACQ_UNLOCK() mtx_unlock(&spacq_lock) 364 #define SPACQ_LOCK_ASSERT() mtx_assert(&spacq_lock, MA_OWNED) 365 366 static const int minsize[] = { 367 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 368 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 369 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 370 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 371 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 372 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ 373 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ 374 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ 375 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ 376 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ 377 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ 378 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ 379 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ 380 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ 381 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ 382 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ 383 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 384 0, /* SADB_X_EXT_KMPRIVATE */ 385 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ 386 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 387 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ 388 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ 389 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ 390 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */ 391 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */ 392 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ 393 sizeof(struct sadb_x_sa_replay), /* SADB_X_EXT_SA_REPLAY */ 394 sizeof(struct sadb_address), /* SADB_X_EXT_NEW_ADDRESS_SRC */ 395 sizeof(struct sadb_address), /* SADB_X_EXT_NEW_ADDRESS_DST */ 396 }; 397 _Static_assert(sizeof(minsize)/sizeof(int) == SADB_EXT_MAX + 1, "minsize size mismatch"); 398 399 static const int maxsize[] = { 400 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 401 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 402 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 403 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 404 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 405 0, /* SADB_EXT_ADDRESS_SRC */ 406 0, /* SADB_EXT_ADDRESS_DST */ 407 0, /* SADB_EXT_ADDRESS_PROXY */ 408 0, /* SADB_EXT_KEY_AUTH */ 409 0, /* SADB_EXT_KEY_ENCRYPT */ 410 0, /* SADB_EXT_IDENTITY_SRC */ 411 0, /* SADB_EXT_IDENTITY_DST */ 412 0, /* SADB_EXT_SENSITIVITY */ 413 0, /* SADB_EXT_PROPOSAL */ 414 0, /* SADB_EXT_SUPPORTED_AUTH */ 415 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ 416 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 417 0, /* SADB_X_EXT_KMPRIVATE */ 418 0, /* SADB_X_EXT_POLICY */ 419 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 420 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ 421 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ 422 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ 423 0, /* SADB_X_EXT_NAT_T_OAI */ 424 0, /* SADB_X_EXT_NAT_T_OAR */ 425 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ 426 sizeof(struct sadb_x_sa_replay), /* SADB_X_EXT_SA_REPLAY */ 427 0, /* SADB_X_EXT_NEW_ADDRESS_SRC */ 428 0, /* SADB_X_EXT_NEW_ADDRESS_DST */ 429 }; 430 _Static_assert(sizeof(maxsize)/sizeof(int) == SADB_EXT_MAX + 1, "minsize size mismatch"); 431 432 /* 433 * Internal values for SA flags: 434 * SADB_X_EXT_F_CLONED means that SA was cloned by key_updateaddresses, 435 * thus we will not free the most of SA content in key_delsav(). 436 */ 437 #define SADB_X_EXT_F_CLONED 0x80000000 438 439 #define SADB_CHECKLEN(_mhp, _ext) \ 440 ((_mhp)->extlen[(_ext)] < minsize[(_ext)] || (maxsize[(_ext)] != 0 && \ 441 ((_mhp)->extlen[(_ext)] > maxsize[(_ext)]))) 442 #define SADB_CHECKHDR(_mhp, _ext) ((_mhp)->ext[(_ext)] == NULL) 443 444 VNET_DEFINE_STATIC(int, ipsec_esp_keymin) = 256; 445 VNET_DEFINE_STATIC(int, ipsec_esp_auth) = 0; 446 VNET_DEFINE_STATIC(int, ipsec_ah_keymin) = 128; 447 448 #define V_ipsec_esp_keymin VNET(ipsec_esp_keymin) 449 #define V_ipsec_esp_auth VNET(ipsec_esp_auth) 450 #define V_ipsec_ah_keymin VNET(ipsec_ah_keymin) 451 452 #ifdef IPSEC_DEBUG 453 VNET_DEFINE(int, ipsec_debug) = 1; 454 #else 455 VNET_DEFINE(int, ipsec_debug) = 0; 456 #endif 457 458 #ifdef INET 459 SYSCTL_DECL(_net_inet_ipsec); 460 SYSCTL_INT(_net_inet_ipsec, IPSECCTL_DEBUG, debug, 461 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_debug), 0, 462 "Enable IPsec debugging output when set."); 463 #endif 464 #ifdef INET6 465 SYSCTL_DECL(_net_inet6_ipsec6); 466 SYSCTL_INT(_net_inet6_ipsec6, IPSECCTL_DEBUG, debug, 467 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_debug), 0, 468 "Enable IPsec debugging output when set."); 469 #endif 470 471 SYSCTL_DECL(_net_key); 472 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, 473 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_debug_level), 0, ""); 474 475 /* max count of trial for the decision of spi value */ 476 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, 477 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_trycnt), 0, ""); 478 479 /* minimum spi value to allocate automatically. */ 480 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, 481 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_minval), 0, ""); 482 483 /* maximun spi value to allocate automatically. */ 484 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, 485 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_maxval), 0, ""); 486 487 /* interval to initialize randseed */ 488 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, 489 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_int_random), 0, ""); 490 491 /* lifetime for larval SA */ 492 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, 493 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_larval_lifetime), 0, ""); 494 495 /* counter for blocking to send SADB_ACQUIRE to IKEd */ 496 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, 497 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_count), 0, ""); 498 499 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ 500 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, 501 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_lifetime), 0, ""); 502 503 /* ESP auth */ 504 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, 505 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_auth), 0, ""); 506 507 /* minimum ESP key length */ 508 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, 509 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_keymin), 0, ""); 510 511 /* minimum AH key length */ 512 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, 513 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_ah_keymin), 0, ""); 514 515 /* perfered old SA rather than new SA */ 516 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, preferred_oldsa, 517 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_preferred_oldsa), 0, ""); 518 519 static SYSCTL_NODE(_net_key, OID_AUTO, spdcache, 520 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 521 "SPD cache"); 522 523 SYSCTL_UINT(_net_key_spdcache, OID_AUTO, maxentries, 524 CTLFLAG_VNET | CTLFLAG_RDTUN, &VNET_NAME(key_spdcache_maxentries), 0, 525 "Maximum number of entries in the SPD cache" 526 " (power of 2, 0 to disable)"); 527 528 SYSCTL_UINT(_net_key_spdcache, OID_AUTO, threshold, 529 CTLFLAG_VNET | CTLFLAG_RDTUN, &VNET_NAME(key_spdcache_threshold), 0, 530 "Number of SPs that make the SPD cache active"); 531 532 #define __LIST_CHAINED(elm) \ 533 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) 534 535 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association"); 536 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head"); 537 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy"); 538 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request"); 539 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous"); 540 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire"); 541 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire"); 542 MALLOC_DEFINE(M_IPSEC_SPDCACHE, "ipsec-spdcache", "ipsec SPD cache"); 543 544 static uma_zone_t __read_mostly ipsec_key_lft_zone; 545 546 /* 547 * set parameters into secpolicyindex buffer. 548 * Must allocate secpolicyindex buffer passed to this function. 549 */ 550 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \ 551 do { \ 552 bzero((idx), sizeof(struct secpolicyindex)); \ 553 (idx)->dir = (_dir); \ 554 (idx)->prefs = (ps); \ 555 (idx)->prefd = (pd); \ 556 (idx)->ul_proto = (ulp); \ 557 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 558 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 559 } while (0) 560 561 /* 562 * set parameters into secasindex buffer. 563 * Must allocate secasindex buffer before calling this function. 564 */ 565 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \ 566 do { \ 567 bzero((idx), sizeof(struct secasindex)); \ 568 (idx)->proto = (p); \ 569 (idx)->mode = (m); \ 570 (idx)->reqid = (r); \ 571 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 572 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 573 key_porttosaddr(&(idx)->src.sa, 0); \ 574 key_porttosaddr(&(idx)->dst.sa, 0); \ 575 } while (0) 576 577 /* key statistics */ 578 struct _keystat { 579 u_long getspi_count; /* the avarage of count to try to get new SPI */ 580 } keystat; 581 582 struct sadb_msghdr { 583 struct sadb_msg *msg; 584 struct sadb_ext *ext[SADB_EXT_MAX + 1]; 585 int extoff[SADB_EXT_MAX + 1]; 586 int extlen[SADB_EXT_MAX + 1]; 587 }; 588 589 static struct supported_ealgs { 590 int sadb_alg; 591 const struct enc_xform *xform; 592 } supported_ealgs[] = { 593 { SADB_X_EALG_AES, &enc_xform_rijndael128 }, 594 { SADB_EALG_NULL, &enc_xform_null }, 595 { SADB_X_EALG_AESCTR, &enc_xform_aes_icm }, 596 { SADB_X_EALG_AESGCM16, &enc_xform_aes_nist_gcm }, 597 { SADB_X_EALG_AESGMAC, &enc_xform_aes_nist_gmac }, 598 }; 599 600 static struct supported_aalgs { 601 int sadb_alg; 602 const struct auth_hash *xform; 603 } supported_aalgs[] = { 604 { SADB_X_AALG_NULL, &auth_hash_null }, 605 { SADB_AALG_SHA1HMAC, &auth_hash_hmac_sha1 }, 606 { SADB_X_AALG_SHA2_256, &auth_hash_hmac_sha2_256 }, 607 { SADB_X_AALG_SHA2_384, &auth_hash_hmac_sha2_384 }, 608 { SADB_X_AALG_SHA2_512, &auth_hash_hmac_sha2_512 }, 609 { SADB_X_AALG_AES128GMAC, &auth_hash_nist_gmac_aes_128 }, 610 { SADB_X_AALG_AES192GMAC, &auth_hash_nist_gmac_aes_192 }, 611 { SADB_X_AALG_AES256GMAC, &auth_hash_nist_gmac_aes_256 }, 612 }; 613 614 static struct supported_calgs { 615 int sadb_alg; 616 const struct comp_algo *xform; 617 } supported_calgs[] = { 618 { SADB_X_CALG_DEFLATE, &comp_algo_deflate }, 619 }; 620 621 #ifndef IPSEC_DEBUG2 622 static struct callout key_timer; 623 #endif 624 625 static void key_unlink(struct secpolicy *); 626 static void key_detach(struct secpolicy *); 627 static struct secpolicy *key_do_allocsp(struct secpolicyindex *spidx, u_int dir); 628 static struct secpolicy *key_getsp(struct secpolicyindex *); 629 static struct secpolicy *key_getspbyid(u_int32_t); 630 static struct mbuf *key_gather_mbuf(struct mbuf *, 631 const struct sadb_msghdr *, int, int, ...); 632 static int key_spdadd(struct socket *, struct mbuf *, 633 const struct sadb_msghdr *); 634 static uint32_t key_getnewspid(void); 635 static int key_spddelete(struct socket *, struct mbuf *, 636 const struct sadb_msghdr *); 637 static int key_spddelete2(struct socket *, struct mbuf *, 638 const struct sadb_msghdr *); 639 static int key_spdget(struct socket *, struct mbuf *, 640 const struct sadb_msghdr *); 641 static int key_spdflush(struct socket *, struct mbuf *, 642 const struct sadb_msghdr *); 643 static int key_spddump(struct socket *, struct mbuf *, 644 const struct sadb_msghdr *); 645 static struct mbuf *key_setdumpsp(struct secpolicy *, 646 u_int8_t, u_int32_t, u_int32_t); 647 static struct mbuf *key_sp2mbuf(struct secpolicy *); 648 static size_t key_getspreqmsglen(struct secpolicy *); 649 static int key_spdexpire(struct secpolicy *); 650 static struct secashead *key_newsah(struct secasindex *); 651 static void key_freesah(struct secashead **); 652 static void key_delsah(struct secashead *); 653 static struct secasvar *key_newsav(const struct sadb_msghdr *, 654 struct secasindex *, uint32_t, int *); 655 static void key_delsav(struct secasvar *); 656 static void key_unlinksav(struct secasvar *); 657 static struct secashead *key_getsah(struct secasindex *); 658 static int key_checkspidup(uint32_t); 659 static struct secasvar *key_getsavbyspi(uint32_t); 660 static int key_setnatt(struct secasvar *, const struct sadb_msghdr *); 661 static int key_setsaval(struct secasvar *, const struct sadb_msghdr *); 662 static int key_updatelifetimes(struct secasvar *, const struct sadb_msghdr *); 663 static int key_updateaddresses(struct socket *, struct mbuf *, 664 const struct sadb_msghdr *, struct secasvar *, struct secasindex *); 665 666 static struct mbuf *key_setdumpsa(struct secasvar *, u_int8_t, 667 u_int8_t, u_int32_t, u_int32_t); 668 static struct mbuf *key_setsadbmsg(u_int8_t, u_int16_t, u_int8_t, 669 u_int32_t, pid_t, u_int16_t); 670 static struct mbuf *key_setsadbsa(struct secasvar *); 671 static struct mbuf *key_setsadbaddr(u_int16_t, 672 const struct sockaddr *, u_int8_t, u_int16_t); 673 static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t); 674 static struct mbuf *key_setsadbxtype(u_int16_t); 675 static struct mbuf *key_setsadbxsa2(u_int8_t, u_int32_t, u_int32_t); 676 static struct mbuf *key_setsadbxsareplay(u_int32_t); 677 static struct mbuf *key_setsadbxpolicy(u_int16_t, u_int8_t, 678 u_int32_t, u_int32_t); 679 static struct seckey *key_dup_keymsg(const struct sadb_key *, size_t, 680 struct malloc_type *); 681 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src, 682 struct malloc_type *); 683 684 /* flags for key_cmpsaidx() */ 685 #define CMP_HEAD 1 /* protocol, addresses. */ 686 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ 687 #define CMP_REQID 3 /* additionally HEAD, reaid. */ 688 #define CMP_EXACTLY 4 /* all elements. */ 689 static int key_cmpsaidx(const struct secasindex *, 690 const struct secasindex *, int); 691 static int key_cmpspidx_exactly(struct secpolicyindex *, 692 struct secpolicyindex *); 693 static int key_cmpspidx_withmask(struct secpolicyindex *, 694 struct secpolicyindex *); 695 static int key_bbcmp(const void *, const void *, u_int); 696 static uint8_t key_satype2proto(uint8_t); 697 static uint8_t key_proto2satype(uint8_t); 698 699 static int key_getspi(struct socket *, struct mbuf *, 700 const struct sadb_msghdr *); 701 static uint32_t key_do_getnewspi(struct sadb_spirange *, struct secasindex *); 702 static int key_update(struct socket *, struct mbuf *, 703 const struct sadb_msghdr *); 704 static int key_add(struct socket *, struct mbuf *, 705 const struct sadb_msghdr *); 706 static int key_setident(struct secashead *, const struct sadb_msghdr *); 707 static struct mbuf *key_getmsgbuf_x1(struct mbuf *, 708 const struct sadb_msghdr *); 709 static int key_delete(struct socket *, struct mbuf *, 710 const struct sadb_msghdr *); 711 static int key_delete_all(struct socket *, struct mbuf *, 712 const struct sadb_msghdr *, struct secasindex *); 713 static int key_get(struct socket *, struct mbuf *, 714 const struct sadb_msghdr *); 715 716 static void key_getcomb_setlifetime(struct sadb_comb *); 717 static struct mbuf *key_getcomb_ealg(void); 718 static struct mbuf *key_getcomb_ah(void); 719 static struct mbuf *key_getcomb_ipcomp(void); 720 static struct mbuf *key_getprop(const struct secasindex *); 721 722 static int key_acquire(const struct secasindex *, struct secpolicy *); 723 static uint32_t key_newacq(const struct secasindex *, int *); 724 static uint32_t key_getacq(const struct secasindex *, int *); 725 static int key_acqdone(const struct secasindex *, uint32_t); 726 static int key_acqreset(uint32_t); 727 static struct secspacq *key_newspacq(struct secpolicyindex *); 728 static struct secspacq *key_getspacq(struct secpolicyindex *); 729 static int key_acquire2(struct socket *, struct mbuf *, 730 const struct sadb_msghdr *); 731 static int key_register(struct socket *, struct mbuf *, 732 const struct sadb_msghdr *); 733 static int key_expire(struct secasvar *, int); 734 static int key_flush(struct socket *, struct mbuf *, 735 const struct sadb_msghdr *); 736 static int key_dump(struct socket *, struct mbuf *, 737 const struct sadb_msghdr *); 738 static int key_promisc(struct socket *, struct mbuf *, 739 const struct sadb_msghdr *); 740 static int key_senderror(struct socket *, struct mbuf *, int); 741 static int key_validate_ext(const struct sadb_ext *, int); 742 static int key_align(struct mbuf *, struct sadb_msghdr *); 743 static struct mbuf *key_setlifetime(struct seclifetime *, uint16_t); 744 static struct mbuf *key_setkey(struct seckey *, uint16_t); 745 746 static void spdcache_init(void); 747 static void spdcache_clear(void); 748 static struct spdcache_entry *spdcache_entry_alloc( 749 const struct secpolicyindex *spidx, 750 struct secpolicy *policy); 751 static void spdcache_entry_free(struct spdcache_entry *entry); 752 #ifdef VIMAGE 753 static void spdcache_destroy(void); 754 #endif 755 756 #define DBG_IPSEC_INITREF(t, p) do { \ 757 refcount_init(&(p)->refcnt, 1); \ 758 KEYDBG(KEY_STAMP, \ 759 printf("%s: Initialize refcnt %s(%p) = %u\n", \ 760 __func__, #t, (p), (p)->refcnt)); \ 761 } while (0) 762 #define DBG_IPSEC_ADDREF(t, p) do { \ 763 refcount_acquire(&(p)->refcnt); \ 764 KEYDBG(KEY_STAMP, \ 765 printf("%s: Acquire refcnt %s(%p) -> %u\n", \ 766 __func__, #t, (p), (p)->refcnt)); \ 767 } while (0) 768 #define DBG_IPSEC_DELREF(t, p) do { \ 769 KEYDBG(KEY_STAMP, \ 770 printf("%s: Release refcnt %s(%p) -> %u\n", \ 771 __func__, #t, (p), (p)->refcnt - 1)); \ 772 refcount_release(&(p)->refcnt); \ 773 } while (0) 774 775 #define IPSEC_INITREF(t, p) refcount_init(&(p)->refcnt, 1) 776 #define IPSEC_ADDREF(t, p) refcount_acquire(&(p)->refcnt) 777 #define IPSEC_DELREF(t, p) refcount_release(&(p)->refcnt) 778 779 #define SP_INITREF(p) IPSEC_INITREF(SP, p) 780 #define SP_ADDREF(p) IPSEC_ADDREF(SP, p) 781 #define SP_DELREF(p) IPSEC_DELREF(SP, p) 782 783 #define SAH_INITREF(p) IPSEC_INITREF(SAH, p) 784 #define SAH_ADDREF(p) IPSEC_ADDREF(SAH, p) 785 #define SAH_DELREF(p) IPSEC_DELREF(SAH, p) 786 787 #define SAV_INITREF(p) IPSEC_INITREF(SAV, p) 788 #define SAV_ADDREF(p) IPSEC_ADDREF(SAV, p) 789 #define SAV_DELREF(p) IPSEC_DELREF(SAV, p) 790 791 /* 792 * Update the refcnt while holding the SPTREE lock. 793 */ 794 void 795 key_addref(struct secpolicy *sp) 796 { 797 798 SP_ADDREF(sp); 799 } 800 801 /* 802 * Return 0 when there are known to be no SP's for the specified 803 * direction. Otherwise return 1. This is used by IPsec code 804 * to optimize performance. 805 */ 806 int 807 key_havesp(u_int dir) 808 { 809 810 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? 811 TAILQ_FIRST(&V_sptree[dir]) != NULL : 1); 812 } 813 814 /* %%% IPsec policy management */ 815 /* 816 * Return current SPDB generation. 817 */ 818 uint32_t 819 key_getspgen(void) 820 { 821 822 return (V_sp_genid); 823 } 824 825 void 826 key_bumpspgen(void) 827 { 828 829 V_sp_genid++; 830 } 831 832 static int 833 key_checksockaddrs(struct sockaddr *src, struct sockaddr *dst) 834 { 835 836 /* family match */ 837 if (src->sa_family != dst->sa_family) 838 return (EINVAL); 839 /* sa_len match */ 840 if (src->sa_len != dst->sa_len) 841 return (EINVAL); 842 switch (src->sa_family) { 843 #ifdef INET 844 case AF_INET: 845 if (src->sa_len != sizeof(struct sockaddr_in)) 846 return (EINVAL); 847 break; 848 #endif 849 #ifdef INET6 850 case AF_INET6: 851 if (src->sa_len != sizeof(struct sockaddr_in6)) 852 return (EINVAL); 853 break; 854 #endif 855 default: 856 return (EAFNOSUPPORT); 857 } 858 return (0); 859 } 860 861 struct secpolicy * 862 key_do_allocsp(struct secpolicyindex *spidx, u_int dir) 863 { 864 SPTREE_RLOCK_TRACKER; 865 struct secpolicy *sp; 866 867 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 868 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 869 ("invalid direction %u", dir)); 870 871 SPTREE_RLOCK(); 872 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 873 if (key_cmpspidx_withmask(&sp->spidx, spidx)) { 874 SP_ADDREF(sp); 875 break; 876 } 877 } 878 SPTREE_RUNLOCK(); 879 return (sp); 880 } 881 882 /* 883 * allocating a SP for OUTBOUND or INBOUND packet. 884 * Must call key_freesp() later. 885 * OUT: NULL: not found 886 * others: found and return the pointer. 887 */ 888 struct secpolicy * 889 key_allocsp(struct secpolicyindex *spidx, u_int dir) 890 { 891 struct spdcache_entry *entry, *lastentry, *tmpentry; 892 struct secpolicy *sp; 893 uint32_t hashv; 894 int nb_entries; 895 896 if (!SPDCACHE_ACTIVE()) { 897 sp = key_do_allocsp(spidx, dir); 898 goto out; 899 } 900 901 hashv = SPDCACHE_HASHVAL(spidx); 902 SPDCACHE_LOCK(hashv); 903 nb_entries = 0; 904 LIST_FOREACH_SAFE(entry, &V_spdcachehashtbl[hashv], chain, tmpentry) { 905 /* Removed outdated entries */ 906 if (entry->sp != NULL && 907 entry->sp->state == IPSEC_SPSTATE_DEAD) { 908 LIST_REMOVE(entry, chain); 909 spdcache_entry_free(entry); 910 continue; 911 } 912 913 nb_entries++; 914 if (!key_cmpspidx_exactly(&entry->spidx, spidx)) { 915 lastentry = entry; 916 continue; 917 } 918 919 sp = entry->sp; 920 if (entry->sp != NULL) 921 SP_ADDREF(sp); 922 923 /* IPSECSTAT_INC(ips_spdcache_hits); */ 924 925 SPDCACHE_UNLOCK(hashv); 926 goto out; 927 } 928 929 /* IPSECSTAT_INC(ips_spdcache_misses); */ 930 931 sp = key_do_allocsp(spidx, dir); 932 entry = spdcache_entry_alloc(spidx, sp); 933 if (entry != NULL) { 934 if (nb_entries >= SPDCACHE_MAX_ENTRIES_PER_HASH) { 935 LIST_REMOVE(lastentry, chain); 936 spdcache_entry_free(lastentry); 937 } 938 939 LIST_INSERT_HEAD(&V_spdcachehashtbl[hashv], entry, chain); 940 } 941 942 SPDCACHE_UNLOCK(hashv); 943 944 out: 945 if (sp != NULL) { /* found a SPD entry */ 946 sp->lastused = time_second; 947 KEYDBG(IPSEC_STAMP, 948 printf("%s: return SP(%p)\n", __func__, sp)); 949 KEYDBG(IPSEC_DATA, kdebug_secpolicy(sp)); 950 } else { 951 KEYDBG(IPSEC_DATA, 952 printf("%s: lookup failed for ", __func__); 953 kdebug_secpolicyindex(spidx, NULL)); 954 } 955 return (sp); 956 } 957 958 /* 959 * Allocating an SA entry for an *INBOUND* or *OUTBOUND* TCP packet, signed 960 * or should be signed by MD5 signature. 961 * We don't use key_allocsa() for such lookups, because we don't know SPI. 962 * Unlike ESP and AH protocols, SPI isn't transmitted in the TCP header with 963 * signed packet. We use SADB only as storage for password. 964 * OUT: positive: corresponding SA for given saidx found. 965 * NULL: SA not found 966 */ 967 struct secasvar * 968 key_allocsa_tcpmd5(struct secasindex *saidx) 969 { 970 SAHTREE_RLOCK_TRACKER; 971 struct secashead *sah; 972 struct secasvar *sav; 973 974 IPSEC_ASSERT(saidx->proto == IPPROTO_TCP, 975 ("unexpected security protocol %u", saidx->proto)); 976 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TCPMD5, 977 ("unexpected mode %u", saidx->mode)); 978 979 SAHTREE_RLOCK(); 980 LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) { 981 KEYDBG(IPSEC_DUMP, 982 printf("%s: checking SAH\n", __func__); 983 kdebug_secash(sah, " ")); 984 if (sah->saidx.proto != IPPROTO_TCP) 985 continue; 986 if (!key_sockaddrcmp(&saidx->dst.sa, &sah->saidx.dst.sa, 0) && 987 !key_sockaddrcmp(&saidx->src.sa, &sah->saidx.src.sa, 0)) 988 break; 989 } 990 if (sah != NULL) { 991 if (V_key_preferred_oldsa) 992 sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue); 993 else 994 sav = TAILQ_FIRST(&sah->savtree_alive); 995 if (sav != NULL) 996 SAV_ADDREF(sav); 997 } else 998 sav = NULL; 999 SAHTREE_RUNLOCK(); 1000 1001 if (sav != NULL) { 1002 KEYDBG(IPSEC_STAMP, 1003 printf("%s: return SA(%p)\n", __func__, sav)); 1004 KEYDBG(IPSEC_DATA, kdebug_secasv(sav)); 1005 } else { 1006 KEYDBG(IPSEC_STAMP, 1007 printf("%s: SA not found\n", __func__)); 1008 KEYDBG(IPSEC_DATA, kdebug_secasindex(saidx, NULL)); 1009 } 1010 return (sav); 1011 } 1012 1013 /* 1014 * Allocating an SA entry for an *OUTBOUND* packet. 1015 * OUT: positive: corresponding SA for given saidx found. 1016 * NULL: SA not found, but will be acquired, check *error 1017 * for acquiring status. 1018 */ 1019 struct secasvar * 1020 key_allocsa_policy(struct secpolicy *sp, const struct secasindex *saidx, 1021 int *error) 1022 { 1023 SAHTREE_RLOCK_TRACKER; 1024 struct secashead *sah; 1025 struct secasvar *sav; 1026 1027 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 1028 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT || 1029 saidx->mode == IPSEC_MODE_TUNNEL, 1030 ("unexpected policy %u", saidx->mode)); 1031 1032 /* 1033 * We check new SA in the IPsec request because a different 1034 * SA may be involved each time this request is checked, either 1035 * because new SAs are being configured, or this request is 1036 * associated with an unconnected datagram socket, or this request 1037 * is associated with a system default policy. 1038 */ 1039 SAHTREE_RLOCK(); 1040 LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) { 1041 KEYDBG(IPSEC_DUMP, 1042 printf("%s: checking SAH\n", __func__); 1043 kdebug_secash(sah, " ")); 1044 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) 1045 break; 1046 } 1047 if (sah != NULL) { 1048 /* 1049 * Allocate the oldest SA available according to 1050 * draft-jenkins-ipsec-rekeying-03. 1051 */ 1052 if (V_key_preferred_oldsa) 1053 sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue); 1054 else 1055 sav = TAILQ_FIRST(&sah->savtree_alive); 1056 if (sav != NULL) 1057 SAV_ADDREF(sav); 1058 } else 1059 sav = NULL; 1060 SAHTREE_RUNLOCK(); 1061 1062 if (sav != NULL) { 1063 *error = 0; 1064 KEYDBG(IPSEC_STAMP, 1065 printf("%s: chosen SA(%p) for SP(%p)\n", __func__, 1066 sav, sp)); 1067 KEYDBG(IPSEC_DATA, kdebug_secasv(sav)); 1068 return (sav); /* return referenced SA */ 1069 } 1070 1071 /* there is no SA */ 1072 *error = key_acquire(saidx, sp); 1073 if ((*error) != 0) 1074 ipseclog((LOG_DEBUG, 1075 "%s: error %d returned from key_acquire()\n", 1076 __func__, *error)); 1077 KEYDBG(IPSEC_STAMP, 1078 printf("%s: acquire SA for SP(%p), error %d\n", 1079 __func__, sp, *error)); 1080 KEYDBG(IPSEC_DATA, kdebug_secasindex(saidx, NULL)); 1081 return (NULL); 1082 } 1083 1084 /* 1085 * allocating a usable SA entry for a *INBOUND* packet. 1086 * Must call key_freesav() later. 1087 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). 1088 * NULL: not found, or error occurred. 1089 * 1090 * According to RFC 2401 SA is uniquely identified by a triple SPI, 1091 * destination address, and security protocol. But according to RFC 4301, 1092 * SPI by itself suffices to specify an SA. 1093 * 1094 * Note that, however, we do need to keep source address in IPsec SA. 1095 * IKE specification and PF_KEY specification do assume that we 1096 * keep source address in IPsec SA. We see a tricky situation here. 1097 */ 1098 struct secasvar * 1099 key_allocsa(union sockaddr_union *dst, uint8_t proto, uint32_t spi) 1100 { 1101 SAHTREE_RLOCK_TRACKER; 1102 struct secasvar *sav; 1103 1104 IPSEC_ASSERT(proto == IPPROTO_ESP || proto == IPPROTO_AH || 1105 proto == IPPROTO_IPCOMP, ("unexpected security protocol %u", 1106 proto)); 1107 1108 SAHTREE_RLOCK(); 1109 LIST_FOREACH(sav, SAVHASH_HASH(spi), spihash) { 1110 if (sav->spi == spi) 1111 break; 1112 } 1113 /* 1114 * We use single SPI namespace for all protocols, so it is 1115 * impossible to have SPI duplicates in the SAVHASH. 1116 */ 1117 if (sav != NULL) { 1118 if (sav->state != SADB_SASTATE_LARVAL && 1119 sav->sah->saidx.proto == proto && 1120 key_sockaddrcmp(&dst->sa, 1121 &sav->sah->saidx.dst.sa, 0) == 0) 1122 SAV_ADDREF(sav); 1123 else 1124 sav = NULL; 1125 } 1126 SAHTREE_RUNLOCK(); 1127 1128 if (sav == NULL) { 1129 KEYDBG(IPSEC_STAMP, 1130 char buf[IPSEC_ADDRSTRLEN]; 1131 printf("%s: SA not found for spi %u proto %u dst %s\n", 1132 __func__, ntohl(spi), proto, ipsec_address(dst, buf, 1133 sizeof(buf)))); 1134 } else { 1135 KEYDBG(IPSEC_STAMP, 1136 printf("%s: return SA(%p)\n", __func__, sav)); 1137 KEYDBG(IPSEC_DATA, kdebug_secasv(sav)); 1138 } 1139 return (sav); 1140 } 1141 1142 struct secasvar * 1143 key_allocsa_tunnel(union sockaddr_union *src, union sockaddr_union *dst, 1144 uint8_t proto) 1145 { 1146 SAHTREE_RLOCK_TRACKER; 1147 struct secasindex saidx; 1148 struct secashead *sah; 1149 struct secasvar *sav; 1150 1151 IPSEC_ASSERT(src != NULL, ("null src address")); 1152 IPSEC_ASSERT(dst != NULL, ("null dst address")); 1153 1154 KEY_SETSECASIDX(proto, IPSEC_MODE_TUNNEL, 0, &src->sa, 1155 &dst->sa, &saidx); 1156 1157 sav = NULL; 1158 SAHTREE_RLOCK(); 1159 LIST_FOREACH(sah, SAHADDRHASH_HASH(&saidx), addrhash) { 1160 if (IPSEC_MODE_TUNNEL != sah->saidx.mode) 1161 continue; 1162 if (proto != sah->saidx.proto) 1163 continue; 1164 if (key_sockaddrcmp(&src->sa, &sah->saidx.src.sa, 0) != 0) 1165 continue; 1166 if (key_sockaddrcmp(&dst->sa, &sah->saidx.dst.sa, 0) != 0) 1167 continue; 1168 /* XXXAE: is key_preferred_oldsa reasonably?*/ 1169 if (V_key_preferred_oldsa) 1170 sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue); 1171 else 1172 sav = TAILQ_FIRST(&sah->savtree_alive); 1173 if (sav != NULL) { 1174 SAV_ADDREF(sav); 1175 break; 1176 } 1177 } 1178 SAHTREE_RUNLOCK(); 1179 KEYDBG(IPSEC_STAMP, 1180 printf("%s: return SA(%p)\n", __func__, sav)); 1181 if (sav != NULL) 1182 KEYDBG(IPSEC_DATA, kdebug_secasv(sav)); 1183 return (sav); 1184 } 1185 1186 /* 1187 * Must be called after calling key_allocsp(). 1188 */ 1189 void 1190 key_freesp(struct secpolicy **spp) 1191 { 1192 struct secpolicy *sp = *spp; 1193 1194 IPSEC_ASSERT(sp != NULL, ("null sp")); 1195 if (SP_DELREF(sp) == 0) 1196 return; 1197 1198 KEYDBG(IPSEC_STAMP, 1199 printf("%s: last reference to SP(%p)\n", __func__, sp)); 1200 KEYDBG(IPSEC_DATA, kdebug_secpolicy(sp)); 1201 1202 *spp = NULL; 1203 while (sp->tcount > 0) 1204 ipsec_delisr(sp->req[--sp->tcount]); 1205 free(sp, M_IPSEC_SP); 1206 } 1207 1208 static void 1209 key_unlink(struct secpolicy *sp) 1210 { 1211 SPTREE_WLOCK(); 1212 key_detach(sp); 1213 SPTREE_WUNLOCK(); 1214 if (SPDCACHE_ENABLED()) 1215 spdcache_clear(); 1216 key_freesp(&sp); 1217 } 1218 1219 static void 1220 key_detach(struct secpolicy *sp) 1221 { 1222 IPSEC_ASSERT(sp->spidx.dir == IPSEC_DIR_INBOUND || 1223 sp->spidx.dir == IPSEC_DIR_OUTBOUND, 1224 ("invalid direction %u", sp->spidx.dir)); 1225 SPTREE_WLOCK_ASSERT(); 1226 1227 KEYDBG(KEY_STAMP, 1228 printf("%s: SP(%p)\n", __func__, sp)); 1229 if (sp->state != IPSEC_SPSTATE_ALIVE) { 1230 /* SP is already unlinked */ 1231 return; 1232 } 1233 sp->state = IPSEC_SPSTATE_DEAD; 1234 TAILQ_REMOVE(&V_sptree[sp->spidx.dir], sp, chain); 1235 V_spd_size--; 1236 LIST_REMOVE(sp, idhash); 1237 V_sp_genid++; 1238 } 1239 1240 /* 1241 * insert a secpolicy into the SP database. Lower priorities first 1242 */ 1243 static void 1244 key_insertsp(struct secpolicy *newsp) 1245 { 1246 struct secpolicy *sp; 1247 1248 SPTREE_WLOCK_ASSERT(); 1249 TAILQ_FOREACH(sp, &V_sptree[newsp->spidx.dir], chain) { 1250 if (newsp->priority < sp->priority) { 1251 TAILQ_INSERT_BEFORE(sp, newsp, chain); 1252 goto done; 1253 } 1254 } 1255 TAILQ_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, chain); 1256 done: 1257 LIST_INSERT_HEAD(SPHASH_HASH(newsp->id), newsp, idhash); 1258 newsp->state = IPSEC_SPSTATE_ALIVE; 1259 V_spd_size++; 1260 V_sp_genid++; 1261 } 1262 1263 /* 1264 * Insert a bunch of VTI secpolicies into the SPDB. 1265 * We keep VTI policies in the separate list due to following reasons: 1266 * 1) they should be immutable to user's or some deamon's attempts to 1267 * delete. The only way delete such policies - destroy or unconfigure 1268 * corresponding virtual inteface. 1269 * 2) such policies have traffic selector that matches all traffic per 1270 * address family. 1271 * Since all VTI policies have the same priority, we don't care about 1272 * policies order. 1273 */ 1274 int 1275 key_register_ifnet(struct secpolicy **spp, u_int count) 1276 { 1277 struct mbuf *m; 1278 u_int i; 1279 1280 SPTREE_WLOCK(); 1281 /* 1282 * First of try to acquire id for each SP. 1283 */ 1284 for (i = 0; i < count; i++) { 1285 IPSEC_ASSERT(spp[i]->spidx.dir == IPSEC_DIR_INBOUND || 1286 spp[i]->spidx.dir == IPSEC_DIR_OUTBOUND, 1287 ("invalid direction %u", spp[i]->spidx.dir)); 1288 1289 if ((spp[i]->id = key_getnewspid()) == 0) { 1290 SPTREE_WUNLOCK(); 1291 return (EAGAIN); 1292 } 1293 } 1294 for (i = 0; i < count; i++) { 1295 TAILQ_INSERT_TAIL(&V_sptree_ifnet[spp[i]->spidx.dir], 1296 spp[i], chain); 1297 /* 1298 * NOTE: despite the fact that we keep VTI SP in the 1299 * separate list, SPHASH contains policies from both 1300 * sources. Thus SADB_X_SPDGET will correctly return 1301 * SP by id, because it uses SPHASH for lookups. 1302 */ 1303 LIST_INSERT_HEAD(SPHASH_HASH(spp[i]->id), spp[i], idhash); 1304 spp[i]->state = IPSEC_SPSTATE_IFNET; 1305 } 1306 SPTREE_WUNLOCK(); 1307 /* 1308 * Notify user processes about new SP. 1309 */ 1310 for (i = 0; i < count; i++) { 1311 m = key_setdumpsp(spp[i], SADB_X_SPDADD, 0, 0); 1312 if (m != NULL) 1313 key_sendup_mbuf(NULL, m, KEY_SENDUP_ALL); 1314 } 1315 return (0); 1316 } 1317 1318 void 1319 key_unregister_ifnet(struct secpolicy **spp, u_int count) 1320 { 1321 struct mbuf *m; 1322 u_int i; 1323 1324 SPTREE_WLOCK(); 1325 for (i = 0; i < count; i++) { 1326 IPSEC_ASSERT(spp[i]->spidx.dir == IPSEC_DIR_INBOUND || 1327 spp[i]->spidx.dir == IPSEC_DIR_OUTBOUND, 1328 ("invalid direction %u", spp[i]->spidx.dir)); 1329 1330 if (spp[i]->state != IPSEC_SPSTATE_IFNET) 1331 continue; 1332 spp[i]->state = IPSEC_SPSTATE_DEAD; 1333 TAILQ_REMOVE(&V_sptree_ifnet[spp[i]->spidx.dir], 1334 spp[i], chain); 1335 V_spd_size--; 1336 LIST_REMOVE(spp[i], idhash); 1337 } 1338 SPTREE_WUNLOCK(); 1339 if (SPDCACHE_ENABLED()) 1340 spdcache_clear(); 1341 1342 for (i = 0; i < count; i++) { 1343 m = key_setdumpsp(spp[i], SADB_X_SPDDELETE, 0, 0); 1344 if (m != NULL) 1345 key_sendup_mbuf(NULL, m, KEY_SENDUP_ALL); 1346 } 1347 } 1348 1349 /* 1350 * Must be called after calling key_allocsa(). 1351 * This function is called by key_freesp() to free some SA allocated 1352 * for a policy. 1353 */ 1354 void 1355 key_freesav(struct secasvar **psav) 1356 { 1357 struct secasvar *sav = *psav; 1358 1359 IPSEC_ASSERT(sav != NULL, ("null sav")); 1360 if (SAV_DELREF(sav) == 0) 1361 return; 1362 1363 KEYDBG(IPSEC_STAMP, 1364 printf("%s: last reference to SA(%p)\n", __func__, sav)); 1365 1366 *psav = NULL; 1367 key_delsav(sav); 1368 } 1369 1370 /* 1371 * Unlink SA from SAH and SPI hash under SAHTREE_WLOCK. 1372 * Expect that SA has extra reference due to lookup. 1373 * Release this references, also release SAH reference after unlink. 1374 */ 1375 static void 1376 key_unlinksav(struct secasvar *sav) 1377 { 1378 struct secashead *sah; 1379 1380 KEYDBG(KEY_STAMP, 1381 printf("%s: SA(%p)\n", __func__, sav)); 1382 1383 SAHTREE_UNLOCK_ASSERT(); 1384 SAHTREE_WLOCK(); 1385 if (sav->state == SADB_SASTATE_DEAD) { 1386 /* SA is already unlinked */ 1387 SAHTREE_WUNLOCK(); 1388 return; 1389 } 1390 /* Unlink from SAH */ 1391 if (sav->state == SADB_SASTATE_LARVAL) 1392 TAILQ_REMOVE(&sav->sah->savtree_larval, sav, chain); 1393 else 1394 TAILQ_REMOVE(&sav->sah->savtree_alive, sav, chain); 1395 /* Unlink from SPI hash */ 1396 LIST_REMOVE(sav, spihash); 1397 sav->state = SADB_SASTATE_DEAD; 1398 sah = sav->sah; 1399 SAHTREE_WUNLOCK(); 1400 key_freesav(&sav); 1401 /* Since we are unlinked, release reference to SAH */ 1402 key_freesah(&sah); 1403 } 1404 1405 /* %%% SPD management */ 1406 /* 1407 * search SPD 1408 * OUT: NULL : not found 1409 * others : found, pointer to a SP. 1410 */ 1411 static struct secpolicy * 1412 key_getsp(struct secpolicyindex *spidx) 1413 { 1414 SPTREE_RLOCK_TRACKER; 1415 struct secpolicy *sp; 1416 1417 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 1418 1419 SPTREE_RLOCK(); 1420 TAILQ_FOREACH(sp, &V_sptree[spidx->dir], chain) { 1421 if (key_cmpspidx_exactly(spidx, &sp->spidx)) { 1422 SP_ADDREF(sp); 1423 break; 1424 } 1425 } 1426 SPTREE_RUNLOCK(); 1427 1428 return sp; 1429 } 1430 1431 /* 1432 * get SP by index. 1433 * OUT: NULL : not found 1434 * others : found, pointer to referenced SP. 1435 */ 1436 static struct secpolicy * 1437 key_getspbyid(uint32_t id) 1438 { 1439 SPTREE_RLOCK_TRACKER; 1440 struct secpolicy *sp; 1441 1442 SPTREE_RLOCK(); 1443 LIST_FOREACH(sp, SPHASH_HASH(id), idhash) { 1444 if (sp->id == id) { 1445 SP_ADDREF(sp); 1446 break; 1447 } 1448 } 1449 SPTREE_RUNLOCK(); 1450 return (sp); 1451 } 1452 1453 struct secpolicy * 1454 key_newsp(void) 1455 { 1456 struct secpolicy *sp; 1457 1458 sp = malloc(sizeof(*sp), M_IPSEC_SP, M_NOWAIT | M_ZERO); 1459 if (sp != NULL) 1460 SP_INITREF(sp); 1461 return (sp); 1462 } 1463 1464 struct ipsecrequest * 1465 ipsec_newisr(void) 1466 { 1467 1468 return (malloc(sizeof(struct ipsecrequest), M_IPSEC_SR, 1469 M_NOWAIT | M_ZERO)); 1470 } 1471 1472 void 1473 ipsec_delisr(struct ipsecrequest *p) 1474 { 1475 1476 free(p, M_IPSEC_SR); 1477 } 1478 1479 /* 1480 * create secpolicy structure from sadb_x_policy structure. 1481 * NOTE: `state', `secpolicyindex' and 'id' in secpolicy structure 1482 * are not set, so must be set properly later. 1483 */ 1484 struct secpolicy * 1485 key_msg2sp(struct sadb_x_policy *xpl0, size_t len, int *error) 1486 { 1487 struct secpolicy *newsp; 1488 1489 IPSEC_ASSERT(xpl0 != NULL, ("null xpl0")); 1490 IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len)); 1491 1492 if (len != PFKEY_EXTLEN(xpl0)) { 1493 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__)); 1494 *error = EINVAL; 1495 return NULL; 1496 } 1497 1498 if ((newsp = key_newsp()) == NULL) { 1499 *error = ENOBUFS; 1500 return NULL; 1501 } 1502 1503 newsp->spidx.dir = xpl0->sadb_x_policy_dir; 1504 newsp->policy = xpl0->sadb_x_policy_type; 1505 newsp->priority = xpl0->sadb_x_policy_priority; 1506 newsp->tcount = 0; 1507 1508 /* check policy */ 1509 switch (xpl0->sadb_x_policy_type) { 1510 case IPSEC_POLICY_DISCARD: 1511 case IPSEC_POLICY_NONE: 1512 case IPSEC_POLICY_ENTRUST: 1513 case IPSEC_POLICY_BYPASS: 1514 break; 1515 1516 case IPSEC_POLICY_IPSEC: 1517 { 1518 struct sadb_x_ipsecrequest *xisr; 1519 struct ipsecrequest *isr; 1520 int tlen; 1521 1522 /* validity check */ 1523 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { 1524 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", 1525 __func__)); 1526 key_freesp(&newsp); 1527 *error = EINVAL; 1528 return NULL; 1529 } 1530 1531 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); 1532 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1); 1533 1534 while (tlen > 0) { 1535 /* length check */ 1536 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr) || 1537 xisr->sadb_x_ipsecrequest_len > tlen) { 1538 ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest " 1539 "length.\n", __func__)); 1540 key_freesp(&newsp); 1541 *error = EINVAL; 1542 return NULL; 1543 } 1544 1545 if (newsp->tcount >= IPSEC_MAXREQ) { 1546 ipseclog((LOG_DEBUG, 1547 "%s: too many ipsecrequests.\n", 1548 __func__)); 1549 key_freesp(&newsp); 1550 *error = EINVAL; 1551 return (NULL); 1552 } 1553 1554 /* allocate request buffer */ 1555 /* NB: data structure is zero'd */ 1556 isr = ipsec_newisr(); 1557 if (isr == NULL) { 1558 ipseclog((LOG_DEBUG, 1559 "%s: No more memory.\n", __func__)); 1560 key_freesp(&newsp); 1561 *error = ENOBUFS; 1562 return NULL; 1563 } 1564 1565 newsp->req[newsp->tcount++] = isr; 1566 1567 /* set values */ 1568 switch (xisr->sadb_x_ipsecrequest_proto) { 1569 case IPPROTO_ESP: 1570 case IPPROTO_AH: 1571 case IPPROTO_IPCOMP: 1572 break; 1573 default: 1574 ipseclog((LOG_DEBUG, 1575 "%s: invalid proto type=%u\n", __func__, 1576 xisr->sadb_x_ipsecrequest_proto)); 1577 key_freesp(&newsp); 1578 *error = EPROTONOSUPPORT; 1579 return NULL; 1580 } 1581 isr->saidx.proto = 1582 (uint8_t)xisr->sadb_x_ipsecrequest_proto; 1583 1584 switch (xisr->sadb_x_ipsecrequest_mode) { 1585 case IPSEC_MODE_TRANSPORT: 1586 case IPSEC_MODE_TUNNEL: 1587 break; 1588 case IPSEC_MODE_ANY: 1589 default: 1590 ipseclog((LOG_DEBUG, 1591 "%s: invalid mode=%u\n", __func__, 1592 xisr->sadb_x_ipsecrequest_mode)); 1593 key_freesp(&newsp); 1594 *error = EINVAL; 1595 return NULL; 1596 } 1597 isr->saidx.mode = xisr->sadb_x_ipsecrequest_mode; 1598 1599 switch (xisr->sadb_x_ipsecrequest_level) { 1600 case IPSEC_LEVEL_DEFAULT: 1601 case IPSEC_LEVEL_USE: 1602 case IPSEC_LEVEL_REQUIRE: 1603 break; 1604 case IPSEC_LEVEL_UNIQUE: 1605 /* validity check */ 1606 /* 1607 * If range violation of reqid, kernel will 1608 * update it, don't refuse it. 1609 */ 1610 if (xisr->sadb_x_ipsecrequest_reqid 1611 > IPSEC_MANUAL_REQID_MAX) { 1612 ipseclog((LOG_DEBUG, 1613 "%s: reqid=%d range " 1614 "violation, updated by kernel.\n", 1615 __func__, 1616 xisr->sadb_x_ipsecrequest_reqid)); 1617 xisr->sadb_x_ipsecrequest_reqid = 0; 1618 } 1619 1620 /* allocate new reqid id if reqid is zero. */ 1621 if (xisr->sadb_x_ipsecrequest_reqid == 0) { 1622 u_int32_t reqid; 1623 if ((reqid = key_newreqid()) == 0) { 1624 key_freesp(&newsp); 1625 *error = ENOBUFS; 1626 return NULL; 1627 } 1628 isr->saidx.reqid = reqid; 1629 xisr->sadb_x_ipsecrequest_reqid = reqid; 1630 } else { 1631 /* set it for manual keying. */ 1632 isr->saidx.reqid = 1633 xisr->sadb_x_ipsecrequest_reqid; 1634 } 1635 break; 1636 1637 default: 1638 ipseclog((LOG_DEBUG, "%s: invalid level=%u\n", 1639 __func__, 1640 xisr->sadb_x_ipsecrequest_level)); 1641 key_freesp(&newsp); 1642 *error = EINVAL; 1643 return NULL; 1644 } 1645 isr->level = xisr->sadb_x_ipsecrequest_level; 1646 1647 /* set IP addresses if there */ 1648 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { 1649 struct sockaddr *paddr; 1650 1651 len = tlen - sizeof(*xisr); 1652 paddr = (struct sockaddr *)(xisr + 1); 1653 /* validity check */ 1654 if (len < sizeof(struct sockaddr) || 1655 len < 2 * paddr->sa_len || 1656 paddr->sa_len > sizeof(isr->saidx.src)) { 1657 ipseclog((LOG_DEBUG, "%s: invalid " 1658 "request address length.\n", 1659 __func__)); 1660 key_freesp(&newsp); 1661 *error = EINVAL; 1662 return NULL; 1663 } 1664 /* 1665 * Request length should be enough to keep 1666 * source and destination addresses. 1667 */ 1668 if (xisr->sadb_x_ipsecrequest_len < 1669 sizeof(*xisr) + 2 * paddr->sa_len) { 1670 ipseclog((LOG_DEBUG, "%s: invalid " 1671 "ipsecrequest length.\n", 1672 __func__)); 1673 key_freesp(&newsp); 1674 *error = EINVAL; 1675 return (NULL); 1676 } 1677 bcopy(paddr, &isr->saidx.src, paddr->sa_len); 1678 paddr = (struct sockaddr *)((caddr_t)paddr + 1679 paddr->sa_len); 1680 1681 /* validity check */ 1682 if (paddr->sa_len != 1683 isr->saidx.src.sa.sa_len) { 1684 ipseclog((LOG_DEBUG, "%s: invalid " 1685 "request address length.\n", 1686 __func__)); 1687 key_freesp(&newsp); 1688 *error = EINVAL; 1689 return NULL; 1690 } 1691 /* AF family should match */ 1692 if (paddr->sa_family != 1693 isr->saidx.src.sa.sa_family) { 1694 ipseclog((LOG_DEBUG, "%s: address " 1695 "family doesn't match.\n", 1696 __func__)); 1697 key_freesp(&newsp); 1698 *error = EINVAL; 1699 return (NULL); 1700 } 1701 bcopy(paddr, &isr->saidx.dst, paddr->sa_len); 1702 } else { 1703 /* 1704 * Addresses for TUNNEL mode requests are 1705 * mandatory. 1706 */ 1707 if (isr->saidx.mode == IPSEC_MODE_TUNNEL) { 1708 ipseclog((LOG_DEBUG, "%s: missing " 1709 "request addresses.\n", __func__)); 1710 key_freesp(&newsp); 1711 *error = EINVAL; 1712 return (NULL); 1713 } 1714 } 1715 tlen -= xisr->sadb_x_ipsecrequest_len; 1716 1717 /* validity check */ 1718 if (tlen < 0) { 1719 ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n", 1720 __func__)); 1721 key_freesp(&newsp); 1722 *error = EINVAL; 1723 return NULL; 1724 } 1725 1726 xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr 1727 + xisr->sadb_x_ipsecrequest_len); 1728 } 1729 /* XXXAE: LARVAL SP */ 1730 if (newsp->tcount < 1) { 1731 ipseclog((LOG_DEBUG, "%s: valid IPSEC transforms " 1732 "not found.\n", __func__)); 1733 key_freesp(&newsp); 1734 *error = EINVAL; 1735 return (NULL); 1736 } 1737 } 1738 break; 1739 default: 1740 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); 1741 key_freesp(&newsp); 1742 *error = EINVAL; 1743 return NULL; 1744 } 1745 1746 *error = 0; 1747 return (newsp); 1748 } 1749 1750 uint32_t 1751 key_newreqid(void) 1752 { 1753 static uint32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 1754 1755 if (auto_reqid == ~0) 1756 auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 1757 else 1758 auto_reqid++; 1759 1760 /* XXX should be unique check */ 1761 return (auto_reqid); 1762 } 1763 1764 /* 1765 * copy secpolicy struct to sadb_x_policy structure indicated. 1766 */ 1767 static struct mbuf * 1768 key_sp2mbuf(struct secpolicy *sp) 1769 { 1770 struct mbuf *m; 1771 size_t tlen; 1772 1773 tlen = key_getspreqmsglen(sp); 1774 m = m_get2(tlen, M_NOWAIT, MT_DATA, 0); 1775 if (m == NULL) 1776 return (NULL); 1777 m_align(m, tlen); 1778 m->m_len = tlen; 1779 if (key_sp2msg(sp, m->m_data, &tlen) != 0) { 1780 m_freem(m); 1781 return (NULL); 1782 } 1783 return (m); 1784 } 1785 1786 int 1787 key_sp2msg(struct secpolicy *sp, void *request, size_t *len) 1788 { 1789 struct sadb_x_ipsecrequest *xisr; 1790 struct sadb_x_policy *xpl; 1791 struct ipsecrequest *isr; 1792 size_t xlen, ilen; 1793 caddr_t p; 1794 int error, i; 1795 1796 IPSEC_ASSERT(sp != NULL, ("null policy")); 1797 1798 xlen = sizeof(*xpl); 1799 if (*len < xlen) 1800 return (EINVAL); 1801 1802 error = 0; 1803 bzero(request, *len); 1804 xpl = (struct sadb_x_policy *)request; 1805 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 1806 xpl->sadb_x_policy_type = sp->policy; 1807 xpl->sadb_x_policy_dir = sp->spidx.dir; 1808 xpl->sadb_x_policy_id = sp->id; 1809 xpl->sadb_x_policy_priority = sp->priority; 1810 switch (sp->state) { 1811 case IPSEC_SPSTATE_IFNET: 1812 xpl->sadb_x_policy_scope = IPSEC_POLICYSCOPE_IFNET; 1813 break; 1814 case IPSEC_SPSTATE_PCB: 1815 xpl->sadb_x_policy_scope = IPSEC_POLICYSCOPE_PCB; 1816 break; 1817 default: 1818 xpl->sadb_x_policy_scope = IPSEC_POLICYSCOPE_GLOBAL; 1819 } 1820 1821 /* if is the policy for ipsec ? */ 1822 if (sp->policy == IPSEC_POLICY_IPSEC) { 1823 p = (caddr_t)xpl + sizeof(*xpl); 1824 for (i = 0; i < sp->tcount; i++) { 1825 isr = sp->req[i]; 1826 ilen = PFKEY_ALIGN8(sizeof(*xisr) + 1827 isr->saidx.src.sa.sa_len + 1828 isr->saidx.dst.sa.sa_len); 1829 xlen += ilen; 1830 if (xlen > *len) { 1831 error = ENOBUFS; 1832 /* Calculate needed size */ 1833 continue; 1834 } 1835 xisr = (struct sadb_x_ipsecrequest *)p; 1836 xisr->sadb_x_ipsecrequest_len = ilen; 1837 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; 1838 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; 1839 xisr->sadb_x_ipsecrequest_level = isr->level; 1840 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; 1841 1842 p += sizeof(*xisr); 1843 bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len); 1844 p += isr->saidx.src.sa.sa_len; 1845 bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len); 1846 p += isr->saidx.dst.sa.sa_len; 1847 } 1848 } 1849 xpl->sadb_x_policy_len = PFKEY_UNIT64(xlen); 1850 if (error == 0) 1851 *len = xlen; 1852 else 1853 *len = sizeof(*xpl); 1854 return (error); 1855 } 1856 1857 /* m will not be freed nor modified */ 1858 static struct mbuf * 1859 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, 1860 int ndeep, int nitem, ...) 1861 { 1862 va_list ap; 1863 int idx; 1864 int i; 1865 struct mbuf *result = NULL, *n; 1866 int len; 1867 1868 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1869 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1870 1871 va_start(ap, nitem); 1872 for (i = 0; i < nitem; i++) { 1873 idx = va_arg(ap, int); 1874 if (idx < 0 || idx > SADB_EXT_MAX) 1875 goto fail; 1876 /* don't attempt to pull empty extension */ 1877 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) 1878 continue; 1879 if (idx != SADB_EXT_RESERVED && 1880 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) 1881 continue; 1882 1883 if (idx == SADB_EXT_RESERVED) { 1884 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 1885 1886 IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len)); 1887 1888 MGETHDR(n, M_NOWAIT, MT_DATA); 1889 if (!n) 1890 goto fail; 1891 n->m_len = len; 1892 n->m_next = NULL; 1893 m_copydata(m, 0, sizeof(struct sadb_msg), 1894 mtod(n, caddr_t)); 1895 } else if (i < ndeep) { 1896 len = mhp->extlen[idx]; 1897 n = m_get2(len, M_NOWAIT, MT_DATA, 0); 1898 if (n == NULL) 1899 goto fail; 1900 m_align(n, len); 1901 n->m_len = len; 1902 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], 1903 mtod(n, caddr_t)); 1904 } else { 1905 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], 1906 M_NOWAIT); 1907 } 1908 if (n == NULL) 1909 goto fail; 1910 1911 if (result) 1912 m_cat(result, n); 1913 else 1914 result = n; 1915 } 1916 va_end(ap); 1917 1918 if ((result->m_flags & M_PKTHDR) != 0) { 1919 result->m_pkthdr.len = 0; 1920 for (n = result; n; n = n->m_next) 1921 result->m_pkthdr.len += n->m_len; 1922 } 1923 1924 return result; 1925 1926 fail: 1927 m_freem(result); 1928 va_end(ap); 1929 return NULL; 1930 } 1931 1932 /* 1933 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing 1934 * add an entry to SP database, when received 1935 * <base, address(SD), (lifetime(H),) policy> 1936 * from the user(?). 1937 * Adding to SP database, 1938 * and send 1939 * <base, address(SD), (lifetime(H),) policy> 1940 * to the socket which was send. 1941 * 1942 * SPDADD set a unique policy entry. 1943 * SPDSETIDX like SPDADD without a part of policy requests. 1944 * SPDUPDATE replace a unique policy entry. 1945 * 1946 * XXXAE: serialize this in PF_KEY to avoid races. 1947 * m will always be freed. 1948 */ 1949 static int 1950 key_spdadd(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 1951 { 1952 struct secpolicyindex spidx; 1953 struct sadb_address *src0, *dst0; 1954 struct sadb_x_policy *xpl0, *xpl; 1955 struct sadb_lifetime *lft = NULL; 1956 struct secpolicy *newsp, *oldsp; 1957 int error; 1958 1959 IPSEC_ASSERT(so != NULL, ("null socket")); 1960 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1961 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1962 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 1963 1964 if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || 1965 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) || 1966 SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY)) { 1967 ipseclog((LOG_DEBUG, 1968 "%s: invalid message: missing required header.\n", 1969 __func__)); 1970 return key_senderror(so, m, EINVAL); 1971 } 1972 if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || 1973 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST) || 1974 SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) { 1975 ipseclog((LOG_DEBUG, 1976 "%s: invalid message: wrong header size.\n", __func__)); 1977 return key_senderror(so, m, EINVAL); 1978 } 1979 if (!SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD)) { 1980 if (SADB_CHECKLEN(mhp, SADB_EXT_LIFETIME_HARD)) { 1981 ipseclog((LOG_DEBUG, 1982 "%s: invalid message: wrong header size.\n", 1983 __func__)); 1984 return key_senderror(so, m, EINVAL); 1985 } 1986 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 1987 } 1988 1989 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 1990 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 1991 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 1992 1993 /* check the direciton */ 1994 switch (xpl0->sadb_x_policy_dir) { 1995 case IPSEC_DIR_INBOUND: 1996 case IPSEC_DIR_OUTBOUND: 1997 break; 1998 default: 1999 ipseclog((LOG_DEBUG, "%s: invalid SP direction.\n", __func__)); 2000 return key_senderror(so, m, EINVAL); 2001 } 2002 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */ 2003 if (xpl0->sadb_x_policy_type != IPSEC_POLICY_DISCARD && 2004 xpl0->sadb_x_policy_type != IPSEC_POLICY_NONE && 2005 xpl0->sadb_x_policy_type != IPSEC_POLICY_IPSEC) { 2006 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); 2007 return key_senderror(so, m, EINVAL); 2008 } 2009 2010 /* policy requests are mandatory when action is ipsec. */ 2011 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC && 2012 mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { 2013 ipseclog((LOG_DEBUG, 2014 "%s: policy requests required.\n", __func__)); 2015 return key_senderror(so, m, EINVAL); 2016 } 2017 2018 error = key_checksockaddrs((struct sockaddr *)(src0 + 1), 2019 (struct sockaddr *)(dst0 + 1)); 2020 if (error != 0 || 2021 src0->sadb_address_proto != dst0->sadb_address_proto) { 2022 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); 2023 return key_senderror(so, m, error); 2024 } 2025 /* make secindex */ 2026 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 2027 src0 + 1, 2028 dst0 + 1, 2029 src0->sadb_address_prefixlen, 2030 dst0->sadb_address_prefixlen, 2031 src0->sadb_address_proto, 2032 &spidx); 2033 /* Checking there is SP already or not. */ 2034 oldsp = key_getsp(&spidx); 2035 if (oldsp != NULL) { 2036 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 2037 KEYDBG(KEY_STAMP, 2038 printf("%s: unlink SP(%p) for SPDUPDATE\n", 2039 __func__, oldsp)); 2040 KEYDBG(KEY_DATA, kdebug_secpolicy(oldsp)); 2041 } else { 2042 key_freesp(&oldsp); 2043 ipseclog((LOG_DEBUG, 2044 "%s: a SP entry exists already.\n", __func__)); 2045 return (key_senderror(so, m, EEXIST)); 2046 } 2047 } 2048 2049 /* allocate new SP entry */ 2050 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) { 2051 if (oldsp != NULL) { 2052 key_unlink(oldsp); 2053 key_freesp(&oldsp); /* second for our reference */ 2054 } 2055 return key_senderror(so, m, error); 2056 } 2057 2058 newsp->lastused = newsp->created = time_second; 2059 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; 2060 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; 2061 bcopy(&spidx, &newsp->spidx, sizeof(spidx)); 2062 2063 SPTREE_WLOCK(); 2064 if ((newsp->id = key_getnewspid()) == 0) { 2065 if (oldsp != NULL) 2066 key_detach(oldsp); 2067 SPTREE_WUNLOCK(); 2068 if (oldsp != NULL) { 2069 key_freesp(&oldsp); /* first for key_detach */ 2070 IPSEC_ASSERT(oldsp != NULL, ("null oldsp: refcount bug")); 2071 key_freesp(&oldsp); /* second for our reference */ 2072 if (SPDCACHE_ENABLED()) /* refresh cache because of key_detach */ 2073 spdcache_clear(); 2074 } 2075 key_freesp(&newsp); 2076 return key_senderror(so, m, ENOBUFS); 2077 } 2078 if (oldsp != NULL) 2079 key_detach(oldsp); 2080 key_insertsp(newsp); 2081 SPTREE_WUNLOCK(); 2082 if (oldsp != NULL) { 2083 key_freesp(&oldsp); /* first for key_detach */ 2084 IPSEC_ASSERT(oldsp != NULL, ("null oldsp: refcount bug")); 2085 key_freesp(&oldsp); /* second for our reference */ 2086 } 2087 if (SPDCACHE_ENABLED()) 2088 spdcache_clear(); 2089 KEYDBG(KEY_STAMP, 2090 printf("%s: SP(%p)\n", __func__, newsp)); 2091 KEYDBG(KEY_DATA, kdebug_secpolicy(newsp)); 2092 2093 { 2094 struct mbuf *n, *mpolicy; 2095 struct sadb_msg *newmsg; 2096 int off; 2097 2098 /* create new sadb_msg to reply. */ 2099 if (lft) { 2100 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, 2101 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, 2102 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2103 } else { 2104 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, 2105 SADB_X_EXT_POLICY, 2106 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2107 } 2108 if (!n) 2109 return key_senderror(so, m, ENOBUFS); 2110 2111 if (n->m_len < sizeof(*newmsg)) { 2112 n = m_pullup(n, sizeof(*newmsg)); 2113 if (!n) 2114 return key_senderror(so, m, ENOBUFS); 2115 } 2116 newmsg = mtod(n, struct sadb_msg *); 2117 newmsg->sadb_msg_errno = 0; 2118 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2119 2120 off = 0; 2121 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), 2122 sizeof(*xpl), &off); 2123 if (mpolicy == NULL) { 2124 /* n is already freed */ 2125 return key_senderror(so, m, ENOBUFS); 2126 } 2127 xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off); 2128 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { 2129 m_freem(n); 2130 return key_senderror(so, m, EINVAL); 2131 } 2132 xpl->sadb_x_policy_id = newsp->id; 2133 2134 m_freem(m); 2135 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2136 } 2137 } 2138 2139 /* 2140 * get new policy id. 2141 * OUT: 2142 * 0: failure. 2143 * others: success. 2144 */ 2145 static uint32_t 2146 key_getnewspid(void) 2147 { 2148 struct secpolicy *sp; 2149 uint32_t newid = 0; 2150 int tries, limit; 2151 2152 SPTREE_WLOCK_ASSERT(); 2153 2154 limit = atomic_load_int(&V_key_spi_trycnt); 2155 for (tries = 0; tries < limit; tries++) { 2156 if (V_policy_id == ~0) /* overflowed */ 2157 newid = V_policy_id = 1; 2158 else 2159 newid = ++V_policy_id; 2160 LIST_FOREACH(sp, SPHASH_HASH(newid), idhash) { 2161 if (sp->id == newid) 2162 break; 2163 } 2164 if (sp == NULL) 2165 break; 2166 } 2167 if (tries == limit || newid == 0) { 2168 ipseclog((LOG_DEBUG, "%s: failed to allocate policy id.\n", 2169 __func__)); 2170 return (0); 2171 } 2172 return (newid); 2173 } 2174 2175 /* 2176 * SADB_SPDDELETE processing 2177 * receive 2178 * <base, address(SD), policy(*)> 2179 * from the user(?), and set SADB_SASTATE_DEAD, 2180 * and send, 2181 * <base, address(SD), policy(*)> 2182 * to the ikmpd. 2183 * policy(*) including direction of policy. 2184 * 2185 * m will always be freed. 2186 */ 2187 static int 2188 key_spddelete(struct socket *so, struct mbuf *m, 2189 const struct sadb_msghdr *mhp) 2190 { 2191 struct secpolicyindex spidx; 2192 struct sadb_address *src0, *dst0; 2193 struct sadb_x_policy *xpl0; 2194 struct secpolicy *sp; 2195 2196 IPSEC_ASSERT(so != NULL, ("null so")); 2197 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2198 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2199 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2200 2201 if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || 2202 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) || 2203 SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY)) { 2204 ipseclog((LOG_DEBUG, 2205 "%s: invalid message: missing required header.\n", 2206 __func__)); 2207 return key_senderror(so, m, EINVAL); 2208 } 2209 if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || 2210 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST) || 2211 SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) { 2212 ipseclog((LOG_DEBUG, 2213 "%s: invalid message: wrong header size.\n", __func__)); 2214 return key_senderror(so, m, EINVAL); 2215 } 2216 2217 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 2218 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 2219 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 2220 2221 /* check the direciton */ 2222 switch (xpl0->sadb_x_policy_dir) { 2223 case IPSEC_DIR_INBOUND: 2224 case IPSEC_DIR_OUTBOUND: 2225 break; 2226 default: 2227 ipseclog((LOG_DEBUG, "%s: invalid SP direction.\n", __func__)); 2228 return key_senderror(so, m, EINVAL); 2229 } 2230 /* Only DISCARD, NONE and IPSEC are allowed */ 2231 if (xpl0->sadb_x_policy_type != IPSEC_POLICY_DISCARD && 2232 xpl0->sadb_x_policy_type != IPSEC_POLICY_NONE && 2233 xpl0->sadb_x_policy_type != IPSEC_POLICY_IPSEC) { 2234 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); 2235 return key_senderror(so, m, EINVAL); 2236 } 2237 if (key_checksockaddrs((struct sockaddr *)(src0 + 1), 2238 (struct sockaddr *)(dst0 + 1)) != 0 || 2239 src0->sadb_address_proto != dst0->sadb_address_proto) { 2240 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); 2241 return key_senderror(so, m, EINVAL); 2242 } 2243 /* make secindex */ 2244 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 2245 src0 + 1, 2246 dst0 + 1, 2247 src0->sadb_address_prefixlen, 2248 dst0->sadb_address_prefixlen, 2249 src0->sadb_address_proto, 2250 &spidx); 2251 2252 /* Is there SP in SPD ? */ 2253 if ((sp = key_getsp(&spidx)) == NULL) { 2254 ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__)); 2255 return key_senderror(so, m, EINVAL); 2256 } 2257 2258 /* save policy id to buffer to be returned. */ 2259 xpl0->sadb_x_policy_id = sp->id; 2260 2261 KEYDBG(KEY_STAMP, 2262 printf("%s: SP(%p)\n", __func__, sp)); 2263 KEYDBG(KEY_DATA, kdebug_secpolicy(sp)); 2264 key_unlink(sp); 2265 key_freesp(&sp); 2266 2267 { 2268 struct mbuf *n; 2269 struct sadb_msg *newmsg; 2270 2271 /* create new sadb_msg to reply. */ 2272 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 2273 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2274 if (!n) 2275 return key_senderror(so, m, ENOBUFS); 2276 2277 newmsg = mtod(n, struct sadb_msg *); 2278 newmsg->sadb_msg_errno = 0; 2279 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2280 2281 m_freem(m); 2282 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2283 } 2284 } 2285 2286 /* 2287 * SADB_SPDDELETE2 processing 2288 * receive 2289 * <base, policy(*)> 2290 * from the user(?), and set SADB_SASTATE_DEAD, 2291 * and send, 2292 * <base, policy(*)> 2293 * to the ikmpd. 2294 * policy(*) including direction of policy. 2295 * 2296 * m will always be freed. 2297 */ 2298 static int 2299 key_spddelete2(struct socket *so, struct mbuf *m, 2300 const struct sadb_msghdr *mhp) 2301 { 2302 struct secpolicy *sp; 2303 uint32_t id; 2304 2305 IPSEC_ASSERT(so != NULL, ("null socket")); 2306 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2307 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2308 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2309 2310 if (SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY) || 2311 SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) { 2312 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2313 __func__)); 2314 return key_senderror(so, m, EINVAL); 2315 } 2316 2317 id = ((struct sadb_x_policy *) 2318 mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2319 2320 /* Is there SP in SPD ? */ 2321 if ((sp = key_getspbyid(id)) == NULL) { 2322 ipseclog((LOG_DEBUG, "%s: no SP found for id %u.\n", 2323 __func__, id)); 2324 return key_senderror(so, m, EINVAL); 2325 } 2326 2327 KEYDBG(KEY_STAMP, 2328 printf("%s: SP(%p)\n", __func__, sp)); 2329 KEYDBG(KEY_DATA, kdebug_secpolicy(sp)); 2330 key_unlink(sp); 2331 if (sp->state != IPSEC_SPSTATE_DEAD) { 2332 ipseclog((LOG_DEBUG, "%s: failed to delete SP with id %u.\n", 2333 __func__, id)); 2334 key_freesp(&sp); 2335 return (key_senderror(so, m, EACCES)); 2336 } 2337 key_freesp(&sp); 2338 2339 { 2340 struct mbuf *n, *nn; 2341 struct sadb_msg *newmsg; 2342 int off, len; 2343 2344 /* create new sadb_msg to reply. */ 2345 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2346 2347 MGETHDR(n, M_NOWAIT, MT_DATA); 2348 if (n && len > MHLEN) { 2349 if (!(MCLGET(n, M_NOWAIT))) { 2350 m_freem(n); 2351 n = NULL; 2352 } 2353 } 2354 if (!n) 2355 return key_senderror(so, m, ENOBUFS); 2356 2357 n->m_len = len; 2358 n->m_next = NULL; 2359 off = 0; 2360 2361 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 2362 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2363 2364 IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)", 2365 off, len)); 2366 2367 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], 2368 mhp->extlen[SADB_X_EXT_POLICY], M_NOWAIT); 2369 if (!n->m_next) { 2370 m_freem(n); 2371 return key_senderror(so, m, ENOBUFS); 2372 } 2373 2374 n->m_pkthdr.len = 0; 2375 for (nn = n; nn; nn = nn->m_next) 2376 n->m_pkthdr.len += nn->m_len; 2377 2378 newmsg = mtod(n, struct sadb_msg *); 2379 newmsg->sadb_msg_errno = 0; 2380 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2381 2382 m_freem(m); 2383 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2384 } 2385 } 2386 2387 /* 2388 * SADB_X_SPDGET processing 2389 * receive 2390 * <base, policy(*)> 2391 * from the user(?), 2392 * and send, 2393 * <base, address(SD), policy> 2394 * to the ikmpd. 2395 * policy(*) including direction of policy. 2396 * 2397 * m will always be freed. 2398 */ 2399 static int 2400 key_spdget(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 2401 { 2402 struct secpolicy *sp; 2403 struct mbuf *n; 2404 uint32_t id; 2405 2406 IPSEC_ASSERT(so != NULL, ("null socket")); 2407 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2408 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2409 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2410 2411 if (SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY) || 2412 SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) { 2413 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2414 __func__)); 2415 return key_senderror(so, m, EINVAL); 2416 } 2417 2418 id = ((struct sadb_x_policy *) 2419 mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2420 2421 /* Is there SP in SPD ? */ 2422 if ((sp = key_getspbyid(id)) == NULL) { 2423 ipseclog((LOG_DEBUG, "%s: no SP found for id %u.\n", 2424 __func__, id)); 2425 return key_senderror(so, m, ENOENT); 2426 } 2427 2428 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq, 2429 mhp->msg->sadb_msg_pid); 2430 key_freesp(&sp); 2431 if (n != NULL) { 2432 m_freem(m); 2433 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2434 } else 2435 return key_senderror(so, m, ENOBUFS); 2436 } 2437 2438 /* 2439 * SADB_X_SPDACQUIRE processing. 2440 * Acquire policy and SA(s) for a *OUTBOUND* packet. 2441 * send 2442 * <base, policy(*)> 2443 * to KMD, and expect to receive 2444 * <base> with SADB_X_SPDACQUIRE if error occurred, 2445 * or 2446 * <base, policy> 2447 * with SADB_X_SPDUPDATE from KMD by PF_KEY. 2448 * policy(*) is without policy requests. 2449 * 2450 * 0 : succeed 2451 * others: error number 2452 */ 2453 int 2454 key_spdacquire(struct secpolicy *sp) 2455 { 2456 struct mbuf *result = NULL, *m; 2457 struct secspacq *newspacq; 2458 2459 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2460 IPSEC_ASSERT(sp->req == NULL, ("policy exists")); 2461 IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC, 2462 ("policy not IPSEC %u", sp->policy)); 2463 2464 /* Get an entry to check whether sent message or not. */ 2465 newspacq = key_getspacq(&sp->spidx); 2466 if (newspacq != NULL) { 2467 if (V_key_blockacq_count < newspacq->count) { 2468 /* reset counter and do send message. */ 2469 newspacq->count = 0; 2470 } else { 2471 /* increment counter and do nothing. */ 2472 newspacq->count++; 2473 SPACQ_UNLOCK(); 2474 return (0); 2475 } 2476 SPACQ_UNLOCK(); 2477 } else { 2478 /* make new entry for blocking to send SADB_ACQUIRE. */ 2479 newspacq = key_newspacq(&sp->spidx); 2480 if (newspacq == NULL) 2481 return ENOBUFS; 2482 } 2483 2484 /* create new sadb_msg to reply. */ 2485 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); 2486 if (!m) 2487 return ENOBUFS; 2488 2489 result = m; 2490 2491 result->m_pkthdr.len = 0; 2492 for (m = result; m; m = m->m_next) 2493 result->m_pkthdr.len += m->m_len; 2494 2495 mtod(result, struct sadb_msg *)->sadb_msg_len = 2496 PFKEY_UNIT64(result->m_pkthdr.len); 2497 2498 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 2499 } 2500 2501 /* 2502 * SADB_SPDFLUSH processing 2503 * receive 2504 * <base> 2505 * from the user, and free all entries in secpctree. 2506 * and send, 2507 * <base> 2508 * to the user. 2509 * NOTE: what to do is only marking SADB_SASTATE_DEAD. 2510 * 2511 * m will always be freed. 2512 */ 2513 static int 2514 key_spdflush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 2515 { 2516 struct secpolicy_queue drainq; 2517 struct sadb_msg *newmsg; 2518 struct secpolicy *sp, *nextsp; 2519 u_int dir; 2520 2521 IPSEC_ASSERT(so != NULL, ("null socket")); 2522 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2523 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2524 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2525 2526 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) 2527 return key_senderror(so, m, EINVAL); 2528 2529 TAILQ_INIT(&drainq); 2530 SPTREE_WLOCK(); 2531 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2532 TAILQ_CONCAT(&drainq, &V_sptree[dir], chain); 2533 } 2534 /* 2535 * We need to set state to DEAD for each policy to be sure, 2536 * that another thread won't try to unlink it. 2537 * Also remove SP from sphash. 2538 */ 2539 TAILQ_FOREACH(sp, &drainq, chain) { 2540 sp->state = IPSEC_SPSTATE_DEAD; 2541 LIST_REMOVE(sp, idhash); 2542 } 2543 V_sp_genid++; 2544 V_spd_size = 0; 2545 SPTREE_WUNLOCK(); 2546 if (SPDCACHE_ENABLED()) 2547 spdcache_clear(); 2548 sp = TAILQ_FIRST(&drainq); 2549 while (sp != NULL) { 2550 nextsp = TAILQ_NEXT(sp, chain); 2551 key_freesp(&sp); 2552 sp = nextsp; 2553 } 2554 2555 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 2556 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2557 return key_senderror(so, m, ENOBUFS); 2558 } 2559 2560 if (m->m_next) 2561 m_freem(m->m_next); 2562 m->m_next = NULL; 2563 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2564 newmsg = mtod(m, struct sadb_msg *); 2565 newmsg->sadb_msg_errno = 0; 2566 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 2567 2568 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 2569 } 2570 2571 static uint8_t 2572 key_satype2scopemask(uint8_t satype) 2573 { 2574 2575 if (satype == IPSEC_POLICYSCOPE_ANY) 2576 return (0xff); 2577 return (satype); 2578 } 2579 /* 2580 * SADB_SPDDUMP processing 2581 * receive 2582 * <base> 2583 * from the user, and dump all SP leaves and send, 2584 * <base> ..... 2585 * to the ikmpd. 2586 * 2587 * NOTE: 2588 * sadb_msg_satype is considered as mask of policy scopes. 2589 * m will always be freed. 2590 */ 2591 static int 2592 key_spddump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 2593 { 2594 SPTREE_RLOCK_TRACKER; 2595 struct secpolicy *sp; 2596 struct mbuf *n; 2597 int cnt; 2598 u_int dir, scope; 2599 2600 IPSEC_ASSERT(so != NULL, ("null socket")); 2601 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2602 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2603 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2604 2605 /* search SPD entry and get buffer size. */ 2606 cnt = 0; 2607 scope = key_satype2scopemask(mhp->msg->sadb_msg_satype); 2608 SPTREE_RLOCK(); 2609 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2610 if (scope & IPSEC_POLICYSCOPE_GLOBAL) { 2611 TAILQ_FOREACH(sp, &V_sptree[dir], chain) 2612 cnt++; 2613 } 2614 if (scope & IPSEC_POLICYSCOPE_IFNET) { 2615 TAILQ_FOREACH(sp, &V_sptree_ifnet[dir], chain) 2616 cnt++; 2617 } 2618 } 2619 2620 if (cnt == 0) { 2621 SPTREE_RUNLOCK(); 2622 return key_senderror(so, m, ENOENT); 2623 } 2624 2625 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2626 if (scope & IPSEC_POLICYSCOPE_GLOBAL) { 2627 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 2628 --cnt; 2629 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, 2630 mhp->msg->sadb_msg_pid); 2631 2632 if (n != NULL) 2633 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2634 } 2635 } 2636 if (scope & IPSEC_POLICYSCOPE_IFNET) { 2637 TAILQ_FOREACH(sp, &V_sptree_ifnet[dir], chain) { 2638 --cnt; 2639 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, 2640 mhp->msg->sadb_msg_pid); 2641 2642 if (n != NULL) 2643 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2644 } 2645 } 2646 } 2647 2648 SPTREE_RUNLOCK(); 2649 m_freem(m); 2650 return (0); 2651 } 2652 2653 static struct mbuf * 2654 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, 2655 u_int32_t pid) 2656 { 2657 struct mbuf *result = NULL, *m; 2658 struct seclifetime lt; 2659 2660 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt); 2661 if (!m) 2662 goto fail; 2663 result = m; 2664 2665 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2666 &sp->spidx.src.sa, sp->spidx.prefs, 2667 sp->spidx.ul_proto); 2668 if (!m) 2669 goto fail; 2670 m_cat(result, m); 2671 2672 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2673 &sp->spidx.dst.sa, sp->spidx.prefd, 2674 sp->spidx.ul_proto); 2675 if (!m) 2676 goto fail; 2677 m_cat(result, m); 2678 2679 m = key_sp2mbuf(sp); 2680 if (!m) 2681 goto fail; 2682 m_cat(result, m); 2683 2684 if(sp->lifetime){ 2685 lt.addtime=sp->created; 2686 lt.usetime= sp->lastused; 2687 m = key_setlifetime(<, SADB_EXT_LIFETIME_CURRENT); 2688 if (!m) 2689 goto fail; 2690 m_cat(result, m); 2691 2692 lt.addtime=sp->lifetime; 2693 lt.usetime= sp->validtime; 2694 m = key_setlifetime(<, SADB_EXT_LIFETIME_HARD); 2695 if (!m) 2696 goto fail; 2697 m_cat(result, m); 2698 } 2699 2700 if ((result->m_flags & M_PKTHDR) == 0) 2701 goto fail; 2702 2703 if (result->m_len < sizeof(struct sadb_msg)) { 2704 result = m_pullup(result, sizeof(struct sadb_msg)); 2705 if (result == NULL) 2706 goto fail; 2707 } 2708 2709 result->m_pkthdr.len = 0; 2710 for (m = result; m; m = m->m_next) 2711 result->m_pkthdr.len += m->m_len; 2712 2713 mtod(result, struct sadb_msg *)->sadb_msg_len = 2714 PFKEY_UNIT64(result->m_pkthdr.len); 2715 2716 return result; 2717 2718 fail: 2719 m_freem(result); 2720 return NULL; 2721 } 2722 /* 2723 * get PFKEY message length for security policy and request. 2724 */ 2725 static size_t 2726 key_getspreqmsglen(struct secpolicy *sp) 2727 { 2728 size_t tlen, len; 2729 int i; 2730 2731 tlen = sizeof(struct sadb_x_policy); 2732 /* if is the policy for ipsec ? */ 2733 if (sp->policy != IPSEC_POLICY_IPSEC) 2734 return (tlen); 2735 2736 /* get length of ipsec requests */ 2737 for (i = 0; i < sp->tcount; i++) { 2738 len = sizeof(struct sadb_x_ipsecrequest) 2739 + sp->req[i]->saidx.src.sa.sa_len 2740 + sp->req[i]->saidx.dst.sa.sa_len; 2741 2742 tlen += PFKEY_ALIGN8(len); 2743 } 2744 return (tlen); 2745 } 2746 2747 /* 2748 * SADB_SPDEXPIRE processing 2749 * send 2750 * <base, address(SD), lifetime(CH), policy> 2751 * to KMD by PF_KEY. 2752 * 2753 * OUT: 0 : succeed 2754 * others : error number 2755 */ 2756 static int 2757 key_spdexpire(struct secpolicy *sp) 2758 { 2759 struct sadb_lifetime *lt; 2760 struct mbuf *result = NULL, *m; 2761 int len, error = -1; 2762 2763 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2764 2765 KEYDBG(KEY_STAMP, 2766 printf("%s: SP(%p)\n", __func__, sp)); 2767 KEYDBG(KEY_DATA, kdebug_secpolicy(sp)); 2768 2769 /* set msg header */ 2770 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0); 2771 if (!m) { 2772 error = ENOBUFS; 2773 goto fail; 2774 } 2775 result = m; 2776 2777 /* create lifetime extension (current and hard) */ 2778 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 2779 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 2780 if (m == NULL) { 2781 error = ENOBUFS; 2782 goto fail; 2783 } 2784 m_align(m, len); 2785 m->m_len = len; 2786 bzero(mtod(m, caddr_t), len); 2787 lt = mtod(m, struct sadb_lifetime *); 2788 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2789 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 2790 lt->sadb_lifetime_allocations = 0; 2791 lt->sadb_lifetime_bytes = 0; 2792 lt->sadb_lifetime_addtime = sp->created; 2793 lt->sadb_lifetime_usetime = sp->lastused; 2794 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 2795 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2796 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 2797 lt->sadb_lifetime_allocations = 0; 2798 lt->sadb_lifetime_bytes = 0; 2799 lt->sadb_lifetime_addtime = sp->lifetime; 2800 lt->sadb_lifetime_usetime = sp->validtime; 2801 m_cat(result, m); 2802 2803 /* set sadb_address for source */ 2804 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2805 &sp->spidx.src.sa, 2806 sp->spidx.prefs, sp->spidx.ul_proto); 2807 if (!m) { 2808 error = ENOBUFS; 2809 goto fail; 2810 } 2811 m_cat(result, m); 2812 2813 /* set sadb_address for destination */ 2814 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2815 &sp->spidx.dst.sa, 2816 sp->spidx.prefd, sp->spidx.ul_proto); 2817 if (!m) { 2818 error = ENOBUFS; 2819 goto fail; 2820 } 2821 m_cat(result, m); 2822 2823 /* set secpolicy */ 2824 m = key_sp2mbuf(sp); 2825 if (!m) { 2826 error = ENOBUFS; 2827 goto fail; 2828 } 2829 m_cat(result, m); 2830 2831 if ((result->m_flags & M_PKTHDR) == 0) { 2832 error = EINVAL; 2833 goto fail; 2834 } 2835 2836 if (result->m_len < sizeof(struct sadb_msg)) { 2837 result = m_pullup(result, sizeof(struct sadb_msg)); 2838 if (result == NULL) { 2839 error = ENOBUFS; 2840 goto fail; 2841 } 2842 } 2843 2844 result->m_pkthdr.len = 0; 2845 for (m = result; m; m = m->m_next) 2846 result->m_pkthdr.len += m->m_len; 2847 2848 mtod(result, struct sadb_msg *)->sadb_msg_len = 2849 PFKEY_UNIT64(result->m_pkthdr.len); 2850 2851 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 2852 2853 fail: 2854 if (result) 2855 m_freem(result); 2856 return error; 2857 } 2858 2859 /* %%% SAD management */ 2860 /* 2861 * allocating and initialize new SA head. 2862 * OUT: NULL : failure due to the lack of memory. 2863 * others : pointer to new SA head. 2864 */ 2865 static struct secashead * 2866 key_newsah(struct secasindex *saidx) 2867 { 2868 struct secashead *sah; 2869 2870 sah = malloc(sizeof(struct secashead), M_IPSEC_SAH, 2871 M_NOWAIT | M_ZERO); 2872 if (sah == NULL) { 2873 PFKEYSTAT_INC(in_nomem); 2874 return (NULL); 2875 } 2876 TAILQ_INIT(&sah->savtree_larval); 2877 TAILQ_INIT(&sah->savtree_alive); 2878 sah->saidx = *saidx; 2879 sah->state = SADB_SASTATE_DEAD; 2880 SAH_INITREF(sah); 2881 2882 KEYDBG(KEY_STAMP, 2883 printf("%s: SAH(%p)\n", __func__, sah)); 2884 KEYDBG(KEY_DATA, kdebug_secash(sah, NULL)); 2885 return (sah); 2886 } 2887 2888 static void 2889 key_freesah(struct secashead **psah) 2890 { 2891 struct secashead *sah = *psah; 2892 2893 if (SAH_DELREF(sah) == 0) 2894 return; 2895 2896 KEYDBG(KEY_STAMP, 2897 printf("%s: last reference to SAH(%p)\n", __func__, sah)); 2898 KEYDBG(KEY_DATA, kdebug_secash(sah, NULL)); 2899 2900 *psah = NULL; 2901 key_delsah(sah); 2902 } 2903 2904 static void 2905 key_delsah(struct secashead *sah) 2906 { 2907 IPSEC_ASSERT(sah != NULL, ("NULL sah")); 2908 IPSEC_ASSERT(sah->state == SADB_SASTATE_DEAD, 2909 ("Attempt to free non DEAD SAH %p", sah)); 2910 IPSEC_ASSERT(TAILQ_EMPTY(&sah->savtree_larval), 2911 ("Attempt to free SAH %p with LARVAL SA", sah)); 2912 IPSEC_ASSERT(TAILQ_EMPTY(&sah->savtree_alive), 2913 ("Attempt to free SAH %p with ALIVE SA", sah)); 2914 2915 free(sah, M_IPSEC_SAH); 2916 } 2917 2918 /* 2919 * allocating a new SA for key_add() and key_getspi() call, 2920 * and copy the values of mhp into new buffer. 2921 * When SAD message type is SADB_GETSPI set SA state to LARVAL. 2922 * For SADB_ADD create and initialize SA with MATURE state. 2923 * OUT: NULL : fail 2924 * others : pointer to new secasvar. 2925 */ 2926 static struct secasvar * 2927 key_newsav(const struct sadb_msghdr *mhp, struct secasindex *saidx, 2928 uint32_t spi, int *errp) 2929 { 2930 struct secashead *sah; 2931 struct secasvar *sav; 2932 int isnew; 2933 2934 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2935 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2936 IPSEC_ASSERT(mhp->msg->sadb_msg_type == SADB_GETSPI || 2937 mhp->msg->sadb_msg_type == SADB_ADD, ("wrong message type")); 2938 2939 sav = NULL; 2940 sah = NULL; 2941 /* check SPI value */ 2942 switch (saidx->proto) { 2943 case IPPROTO_ESP: 2944 case IPPROTO_AH: 2945 /* 2946 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values 2947 * 1-255 reserved by IANA for future use, 2948 * 0 for implementation specific, local use. 2949 */ 2950 if (ntohl(spi) <= 255) { 2951 ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n", 2952 __func__, ntohl(spi))); 2953 *errp = EINVAL; 2954 goto done; 2955 } 2956 break; 2957 } 2958 2959 sav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT | M_ZERO); 2960 if (sav == NULL) { 2961 *errp = ENOBUFS; 2962 goto done; 2963 } 2964 sav->lock = malloc_aligned(max(sizeof(struct mtx), CACHE_LINE_SIZE), 2965 CACHE_LINE_SIZE, M_IPSEC_MISC, M_NOWAIT | M_ZERO); 2966 if (sav->lock == NULL) { 2967 *errp = ENOBUFS; 2968 goto done; 2969 } 2970 mtx_init(sav->lock, "ipsec association", NULL, MTX_DEF); 2971 sav->lft_c = uma_zalloc_pcpu(ipsec_key_lft_zone, M_NOWAIT | M_ZERO); 2972 if (sav->lft_c == NULL) { 2973 *errp = ENOBUFS; 2974 goto done; 2975 } 2976 2977 sav->spi = spi; 2978 sav->seq = mhp->msg->sadb_msg_seq; 2979 sav->state = SADB_SASTATE_LARVAL; 2980 sav->pid = (pid_t)mhp->msg->sadb_msg_pid; 2981 SAV_INITREF(sav); 2982 again: 2983 sah = key_getsah(saidx); 2984 if (sah == NULL) { 2985 /* create a new SA index */ 2986 sah = key_newsah(saidx); 2987 if (sah == NULL) { 2988 ipseclog((LOG_DEBUG, 2989 "%s: No more memory.\n", __func__)); 2990 *errp = ENOBUFS; 2991 goto done; 2992 } 2993 isnew = 1; 2994 } else 2995 isnew = 0; 2996 2997 sav->sah = sah; 2998 if (mhp->msg->sadb_msg_type == SADB_GETSPI) { 2999 sav->created = time_second; 3000 } else if (sav->state == SADB_SASTATE_LARVAL) { 3001 /* 3002 * Do not call key_setsaval() second time in case 3003 * of `goto again`. We will have MATURE state. 3004 */ 3005 *errp = key_setsaval(sav, mhp); 3006 if (*errp != 0) 3007 goto done; 3008 sav->state = SADB_SASTATE_MATURE; 3009 } 3010 3011 SAHTREE_WLOCK(); 3012 /* 3013 * Check that existing SAH wasn't unlinked. 3014 * Since we didn't hold the SAHTREE lock, it is possible, 3015 * that callout handler or key_flush() or key_delete() could 3016 * unlink this SAH. 3017 */ 3018 if (isnew == 0 && sah->state == SADB_SASTATE_DEAD) { 3019 SAHTREE_WUNLOCK(); 3020 key_freesah(&sah); /* reference from key_getsah() */ 3021 goto again; 3022 } 3023 if (isnew != 0) { 3024 /* 3025 * Add new SAH into SADB. 3026 * 3027 * XXXAE: we can serialize key_add and key_getspi calls, so 3028 * several threads will not fight in the race. 3029 * Otherwise we should check under SAHTREE lock, that this 3030 * SAH would not added twice. 3031 */ 3032 TAILQ_INSERT_HEAD(&V_sahtree, sah, chain); 3033 /* Add new SAH into hash by addresses */ 3034 LIST_INSERT_HEAD(SAHADDRHASH_HASH(saidx), sah, addrhash); 3035 /* Now we are linked in the chain */ 3036 sah->state = SADB_SASTATE_MATURE; 3037 /* 3038 * SAV references this new SAH. 3039 * In case of existing SAH we reuse reference 3040 * from key_getsah(). 3041 */ 3042 SAH_ADDREF(sah); 3043 } 3044 /* Link SAV with SAH */ 3045 if (sav->state == SADB_SASTATE_MATURE) 3046 TAILQ_INSERT_HEAD(&sah->savtree_alive, sav, chain); 3047 else 3048 TAILQ_INSERT_HEAD(&sah->savtree_larval, sav, chain); 3049 /* Add SAV into SPI hash */ 3050 LIST_INSERT_HEAD(SAVHASH_HASH(sav->spi), sav, spihash); 3051 SAHTREE_WUNLOCK(); 3052 *errp = 0; /* success */ 3053 done: 3054 if (*errp != 0) { 3055 if (sav != NULL) { 3056 if (sav->lock != NULL) { 3057 mtx_destroy(sav->lock); 3058 free(sav->lock, M_IPSEC_MISC); 3059 } 3060 if (sav->lft_c != NULL) 3061 uma_zfree_pcpu(ipsec_key_lft_zone, sav->lft_c); 3062 free(sav, M_IPSEC_SA), sav = NULL; 3063 } 3064 if (sah != NULL) 3065 key_freesah(&sah); 3066 if (*errp == ENOBUFS) { 3067 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3068 __func__)); 3069 PFKEYSTAT_INC(in_nomem); 3070 } 3071 } 3072 return (sav); 3073 } 3074 3075 /* 3076 * free() SA variable entry. 3077 */ 3078 static void 3079 key_cleansav(struct secasvar *sav) 3080 { 3081 3082 if (sav->natt != NULL) { 3083 free(sav->natt, M_IPSEC_MISC); 3084 sav->natt = NULL; 3085 } 3086 if (sav->flags & SADB_X_EXT_F_CLONED) 3087 return; 3088 if (sav->tdb_xform != NULL) { 3089 sav->tdb_xform->xf_cleanup(sav); 3090 sav->tdb_xform = NULL; 3091 } 3092 if (sav->key_auth != NULL) { 3093 zfree(sav->key_auth->key_data, M_IPSEC_MISC); 3094 free(sav->key_auth, M_IPSEC_MISC); 3095 sav->key_auth = NULL; 3096 } 3097 if (sav->key_enc != NULL) { 3098 zfree(sav->key_enc->key_data, M_IPSEC_MISC); 3099 free(sav->key_enc, M_IPSEC_MISC); 3100 sav->key_enc = NULL; 3101 } 3102 if (sav->replay != NULL) { 3103 if (sav->replay->bitmap != NULL) 3104 free(sav->replay->bitmap, M_IPSEC_MISC); 3105 free(sav->replay, M_IPSEC_MISC); 3106 sav->replay = NULL; 3107 } 3108 if (sav->lft_h != NULL) { 3109 free(sav->lft_h, M_IPSEC_MISC); 3110 sav->lft_h = NULL; 3111 } 3112 if (sav->lft_s != NULL) { 3113 free(sav->lft_s, M_IPSEC_MISC); 3114 sav->lft_s = NULL; 3115 } 3116 } 3117 3118 /* 3119 * free() SA variable entry. 3120 */ 3121 static void 3122 key_delsav(struct secasvar *sav) 3123 { 3124 IPSEC_ASSERT(sav != NULL, ("null sav")); 3125 IPSEC_ASSERT(sav->state == SADB_SASTATE_DEAD, 3126 ("attempt to free non DEAD SA %p", sav)); 3127 IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", 3128 sav->refcnt)); 3129 3130 /* 3131 * SA must be unlinked from the chain and hashtbl. 3132 * If SA was cloned, we leave all fields untouched, 3133 * except NAT-T config. 3134 */ 3135 key_cleansav(sav); 3136 if ((sav->flags & SADB_X_EXT_F_CLONED) == 0) { 3137 mtx_destroy(sav->lock); 3138 free(sav->lock, M_IPSEC_MISC); 3139 uma_zfree_pcpu(ipsec_key_lft_zone, sav->lft_c); 3140 } 3141 free(sav, M_IPSEC_SA); 3142 } 3143 3144 /* 3145 * search SAH. 3146 * OUT: 3147 * NULL : not found 3148 * others : found, referenced pointer to a SAH. 3149 */ 3150 static struct secashead * 3151 key_getsah(struct secasindex *saidx) 3152 { 3153 SAHTREE_RLOCK_TRACKER; 3154 struct secashead *sah; 3155 3156 SAHTREE_RLOCK(); 3157 LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) { 3158 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID) != 0) { 3159 SAH_ADDREF(sah); 3160 break; 3161 } 3162 } 3163 SAHTREE_RUNLOCK(); 3164 return (sah); 3165 } 3166 3167 /* 3168 * Check not to be duplicated SPI. 3169 * OUT: 3170 * 0 : not found 3171 * 1 : found SA with given SPI. 3172 */ 3173 static int 3174 key_checkspidup(uint32_t spi) 3175 { 3176 SAHTREE_RLOCK_TRACKER; 3177 struct secasvar *sav; 3178 3179 /* Assume SPI is in network byte order */ 3180 SAHTREE_RLOCK(); 3181 LIST_FOREACH(sav, SAVHASH_HASH(spi), spihash) { 3182 if (sav->spi == spi) 3183 break; 3184 } 3185 SAHTREE_RUNLOCK(); 3186 return (sav != NULL); 3187 } 3188 3189 /* 3190 * Search SA by SPI. 3191 * OUT: 3192 * NULL : not found 3193 * others : found, referenced pointer to a SA. 3194 */ 3195 static struct secasvar * 3196 key_getsavbyspi(uint32_t spi) 3197 { 3198 SAHTREE_RLOCK_TRACKER; 3199 struct secasvar *sav; 3200 3201 /* Assume SPI is in network byte order */ 3202 SAHTREE_RLOCK(); 3203 LIST_FOREACH(sav, SAVHASH_HASH(spi), spihash) { 3204 if (sav->spi != spi) 3205 continue; 3206 SAV_ADDREF(sav); 3207 break; 3208 } 3209 SAHTREE_RUNLOCK(); 3210 return (sav); 3211 } 3212 3213 static int 3214 key_updatelifetimes(struct secasvar *sav, const struct sadb_msghdr *mhp) 3215 { 3216 struct seclifetime *lft_h, *lft_s, *tmp; 3217 3218 /* Lifetime extension is optional, check that it is present. */ 3219 if (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) && 3220 SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) { 3221 /* 3222 * In case of SADB_UPDATE we may need to change 3223 * existing lifetimes. 3224 */ 3225 if (sav->state == SADB_SASTATE_MATURE) { 3226 lft_h = lft_s = NULL; 3227 goto reset; 3228 } 3229 return (0); 3230 } 3231 /* Both HARD and SOFT extensions must present */ 3232 if ((SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) && 3233 !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) || 3234 (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT) && 3235 !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD))) { 3236 ipseclog((LOG_DEBUG, 3237 "%s: invalid message: missing required header.\n", 3238 __func__)); 3239 return (EINVAL); 3240 } 3241 if (SADB_CHECKLEN(mhp, SADB_EXT_LIFETIME_HARD) || 3242 SADB_CHECKLEN(mhp, SADB_EXT_LIFETIME_SOFT)) { 3243 ipseclog((LOG_DEBUG, 3244 "%s: invalid message: wrong header size.\n", __func__)); 3245 return (EINVAL); 3246 } 3247 lft_h = key_dup_lifemsg((const struct sadb_lifetime *) 3248 mhp->ext[SADB_EXT_LIFETIME_HARD], M_IPSEC_MISC); 3249 if (lft_h == NULL) { 3250 PFKEYSTAT_INC(in_nomem); 3251 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3252 return (ENOBUFS); 3253 } 3254 lft_s = key_dup_lifemsg((const struct sadb_lifetime *) 3255 mhp->ext[SADB_EXT_LIFETIME_SOFT], M_IPSEC_MISC); 3256 if (lft_s == NULL) { 3257 PFKEYSTAT_INC(in_nomem); 3258 free(lft_h, M_IPSEC_MISC); 3259 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3260 return (ENOBUFS); 3261 } 3262 reset: 3263 if (sav->state != SADB_SASTATE_LARVAL) { 3264 /* 3265 * key_update() holds reference to this SA, 3266 * so it won't be deleted in meanwhile. 3267 */ 3268 SECASVAR_LOCK(sav); 3269 tmp = sav->lft_h; 3270 sav->lft_h = lft_h; 3271 lft_h = tmp; 3272 3273 tmp = sav->lft_s; 3274 sav->lft_s = lft_s; 3275 lft_s = tmp; 3276 SECASVAR_UNLOCK(sav); 3277 if (lft_h != NULL) 3278 free(lft_h, M_IPSEC_MISC); 3279 if (lft_s != NULL) 3280 free(lft_s, M_IPSEC_MISC); 3281 return (0); 3282 } 3283 /* We can update lifetime without holding a lock */ 3284 IPSEC_ASSERT(sav->lft_h == NULL, ("lft_h is already initialized\n")); 3285 IPSEC_ASSERT(sav->lft_s == NULL, ("lft_s is already initialized\n")); 3286 sav->lft_h = lft_h; 3287 sav->lft_s = lft_s; 3288 return (0); 3289 } 3290 3291 /* 3292 * copy SA values from PF_KEY message except *SPI, SEQ, PID and TYPE*. 3293 * You must update these if need. Expects only LARVAL SAs. 3294 * OUT: 0: success. 3295 * !0: failure. 3296 */ 3297 static int 3298 key_setsaval(struct secasvar *sav, const struct sadb_msghdr *mhp) 3299 { 3300 const struct sadb_sa *sa0; 3301 const struct sadb_key *key0; 3302 uint32_t replay; 3303 size_t len; 3304 int error; 3305 3306 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 3307 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 3308 IPSEC_ASSERT(sav->state == SADB_SASTATE_LARVAL, 3309 ("Attempt to update non LARVAL SA")); 3310 3311 /* XXX rewrite */ 3312 error = key_setident(sav->sah, mhp); 3313 if (error != 0) 3314 goto fail; 3315 3316 /* SA */ 3317 if (!SADB_CHECKHDR(mhp, SADB_EXT_SA)) { 3318 if (SADB_CHECKLEN(mhp, SADB_EXT_SA)) { 3319 error = EINVAL; 3320 goto fail; 3321 } 3322 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 3323 sav->alg_auth = sa0->sadb_sa_auth; 3324 sav->alg_enc = sa0->sadb_sa_encrypt; 3325 sav->flags = sa0->sadb_sa_flags; 3326 if ((sav->flags & SADB_KEY_FLAGS_MAX) != sav->flags) { 3327 ipseclog((LOG_DEBUG, 3328 "%s: invalid sa_flags 0x%08x.\n", __func__, 3329 sav->flags)); 3330 error = EINVAL; 3331 goto fail; 3332 } 3333 3334 /* Optional replay window */ 3335 replay = 0; 3336 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) 3337 replay = sa0->sadb_sa_replay; 3338 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_SA_REPLAY)) { 3339 if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA_REPLAY)) { 3340 error = EINVAL; 3341 goto fail; 3342 } 3343 replay = ((const struct sadb_x_sa_replay *) 3344 mhp->ext[SADB_X_EXT_SA_REPLAY])->sadb_x_sa_replay_replay; 3345 3346 if (replay > UINT32_MAX - 32) { 3347 ipseclog((LOG_DEBUG, 3348 "%s: replay window too big.\n", __func__)); 3349 error = EINVAL; 3350 goto fail; 3351 } 3352 3353 replay = (replay + 7) >> 3; 3354 } 3355 3356 sav->replay = malloc(sizeof(struct secreplay), M_IPSEC_MISC, 3357 M_NOWAIT | M_ZERO); 3358 if (sav->replay == NULL) { 3359 PFKEYSTAT_INC(in_nomem); 3360 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3361 __func__)); 3362 error = ENOBUFS; 3363 goto fail; 3364 } 3365 3366 if (replay != 0) { 3367 /* number of 32b blocks to be allocated */ 3368 uint32_t bitmap_size; 3369 3370 /* RFC 6479: 3371 * - the allocated replay window size must be 3372 * a power of two. 3373 * - use an extra 32b block as a redundant window. 3374 */ 3375 bitmap_size = 1; 3376 while (replay + 4 > bitmap_size) 3377 bitmap_size <<= 1; 3378 bitmap_size = bitmap_size / 4; 3379 3380 sav->replay->bitmap = malloc( 3381 bitmap_size * sizeof(uint32_t), M_IPSEC_MISC, 3382 M_NOWAIT | M_ZERO); 3383 if (sav->replay->bitmap == NULL) { 3384 PFKEYSTAT_INC(in_nomem); 3385 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3386 __func__)); 3387 error = ENOBUFS; 3388 goto fail; 3389 } 3390 sav->replay->bitmap_size = bitmap_size; 3391 sav->replay->wsize = replay; 3392 } 3393 } 3394 3395 /* Authentication keys */ 3396 if (!SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH)) { 3397 if (SADB_CHECKLEN(mhp, SADB_EXT_KEY_AUTH)) { 3398 error = EINVAL; 3399 goto fail; 3400 } 3401 error = 0; 3402 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH]; 3403 len = mhp->extlen[SADB_EXT_KEY_AUTH]; 3404 switch (mhp->msg->sadb_msg_satype) { 3405 case SADB_SATYPE_AH: 3406 case SADB_SATYPE_ESP: 3407 case SADB_X_SATYPE_TCPSIGNATURE: 3408 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3409 sav->alg_auth != SADB_X_AALG_NULL) 3410 error = EINVAL; 3411 break; 3412 case SADB_X_SATYPE_IPCOMP: 3413 default: 3414 error = EINVAL; 3415 break; 3416 } 3417 if (error) { 3418 ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n", 3419 __func__)); 3420 goto fail; 3421 } 3422 3423 sav->key_auth = key_dup_keymsg(key0, len, M_IPSEC_MISC); 3424 if (sav->key_auth == NULL ) { 3425 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3426 __func__)); 3427 PFKEYSTAT_INC(in_nomem); 3428 error = ENOBUFS; 3429 goto fail; 3430 } 3431 } 3432 3433 /* Encryption key */ 3434 if (!SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT)) { 3435 if (SADB_CHECKLEN(mhp, SADB_EXT_KEY_ENCRYPT)) { 3436 error = EINVAL; 3437 goto fail; 3438 } 3439 error = 0; 3440 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT]; 3441 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; 3442 switch (mhp->msg->sadb_msg_satype) { 3443 case SADB_SATYPE_ESP: 3444 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3445 sav->alg_enc != SADB_EALG_NULL) { 3446 error = EINVAL; 3447 break; 3448 } 3449 sav->key_enc = key_dup_keymsg(key0, len, M_IPSEC_MISC); 3450 if (sav->key_enc == NULL) { 3451 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3452 __func__)); 3453 PFKEYSTAT_INC(in_nomem); 3454 error = ENOBUFS; 3455 goto fail; 3456 } 3457 break; 3458 case SADB_X_SATYPE_IPCOMP: 3459 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) 3460 error = EINVAL; 3461 sav->key_enc = NULL; /*just in case*/ 3462 break; 3463 case SADB_SATYPE_AH: 3464 case SADB_X_SATYPE_TCPSIGNATURE: 3465 default: 3466 error = EINVAL; 3467 break; 3468 } 3469 if (error) { 3470 ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n", 3471 __func__)); 3472 goto fail; 3473 } 3474 } 3475 3476 /* set iv */ 3477 sav->ivlen = 0; 3478 switch (mhp->msg->sadb_msg_satype) { 3479 case SADB_SATYPE_AH: 3480 if (sav->flags & SADB_X_EXT_DERIV) { 3481 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3482 "given to AH SA.\n", __func__)); 3483 error = EINVAL; 3484 goto fail; 3485 } 3486 if (sav->alg_enc != SADB_EALG_NONE) { 3487 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3488 "mismated.\n", __func__)); 3489 error = EINVAL; 3490 goto fail; 3491 } 3492 error = xform_init(sav, XF_AH); 3493 break; 3494 case SADB_SATYPE_ESP: 3495 if ((sav->flags & (SADB_X_EXT_OLD | SADB_X_EXT_DERIV)) == 3496 (SADB_X_EXT_OLD | SADB_X_EXT_DERIV)) { 3497 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3498 "given to old-esp.\n", __func__)); 3499 error = EINVAL; 3500 goto fail; 3501 } 3502 error = xform_init(sav, XF_ESP); 3503 break; 3504 case SADB_X_SATYPE_IPCOMP: 3505 if (sav->alg_auth != SADB_AALG_NONE) { 3506 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3507 "mismated.\n", __func__)); 3508 error = EINVAL; 3509 goto fail; 3510 } 3511 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 && 3512 ntohl(sav->spi) >= 0x10000) { 3513 ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n", 3514 __func__)); 3515 error = EINVAL; 3516 goto fail; 3517 } 3518 error = xform_init(sav, XF_IPCOMP); 3519 break; 3520 case SADB_X_SATYPE_TCPSIGNATURE: 3521 if (sav->alg_enc != SADB_EALG_NONE) { 3522 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3523 "mismated.\n", __func__)); 3524 error = EINVAL; 3525 goto fail; 3526 } 3527 error = xform_init(sav, XF_TCPSIGNATURE); 3528 break; 3529 default: 3530 ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__)); 3531 error = EPROTONOSUPPORT; 3532 goto fail; 3533 } 3534 if (error) { 3535 ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n", 3536 __func__, mhp->msg->sadb_msg_satype)); 3537 goto fail; 3538 } 3539 3540 /* Handle NAT-T headers */ 3541 error = key_setnatt(sav, mhp); 3542 if (error != 0) 3543 goto fail; 3544 3545 /* Initialize lifetime for CURRENT */ 3546 sav->firstused = 0; 3547 sav->created = time_second; 3548 3549 /* lifetimes for HARD and SOFT */ 3550 error = key_updatelifetimes(sav, mhp); 3551 if (error == 0) 3552 return (0); 3553 fail: 3554 key_cleansav(sav); 3555 return (error); 3556 } 3557 3558 /* 3559 * subroutine for SADB_GET and SADB_DUMP. 3560 */ 3561 static struct mbuf * 3562 key_setdumpsa(struct secasvar *sav, uint8_t type, uint8_t satype, 3563 uint32_t seq, uint32_t pid) 3564 { 3565 struct seclifetime lft_c; 3566 struct mbuf *result = NULL, *tres = NULL, *m; 3567 int i, dumporder[] = { 3568 SADB_EXT_SA, SADB_X_EXT_SA2, SADB_X_EXT_SA_REPLAY, 3569 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 3570 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, 3571 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, 3572 SADB_EXT_KEY_AUTH, SADB_EXT_KEY_ENCRYPT, 3573 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST, 3574 SADB_EXT_SENSITIVITY, 3575 SADB_X_EXT_NAT_T_TYPE, 3576 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT, 3577 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR, 3578 SADB_X_EXT_NAT_T_FRAG, 3579 }; 3580 uint32_t replay_count; 3581 3582 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt); 3583 if (m == NULL) 3584 goto fail; 3585 result = m; 3586 3587 for (i = nitems(dumporder) - 1; i >= 0; i--) { 3588 m = NULL; 3589 switch (dumporder[i]) { 3590 case SADB_EXT_SA: 3591 m = key_setsadbsa(sav); 3592 if (!m) 3593 goto fail; 3594 break; 3595 3596 case SADB_X_EXT_SA2: 3597 SECASVAR_LOCK(sav); 3598 replay_count = sav->replay ? sav->replay->count : 0; 3599 SECASVAR_UNLOCK(sav); 3600 m = key_setsadbxsa2(sav->sah->saidx.mode, replay_count, 3601 sav->sah->saidx.reqid); 3602 if (!m) 3603 goto fail; 3604 break; 3605 3606 case SADB_X_EXT_SA_REPLAY: 3607 if (sav->replay == NULL || 3608 sav->replay->wsize <= UINT8_MAX) 3609 continue; 3610 3611 m = key_setsadbxsareplay(sav->replay->wsize); 3612 if (!m) 3613 goto fail; 3614 break; 3615 3616 case SADB_EXT_ADDRESS_SRC: 3617 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3618 &sav->sah->saidx.src.sa, 3619 FULLMASK, IPSEC_ULPROTO_ANY); 3620 if (!m) 3621 goto fail; 3622 break; 3623 3624 case SADB_EXT_ADDRESS_DST: 3625 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3626 &sav->sah->saidx.dst.sa, 3627 FULLMASK, IPSEC_ULPROTO_ANY); 3628 if (!m) 3629 goto fail; 3630 break; 3631 3632 case SADB_EXT_KEY_AUTH: 3633 if (!sav->key_auth) 3634 continue; 3635 m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH); 3636 if (!m) 3637 goto fail; 3638 break; 3639 3640 case SADB_EXT_KEY_ENCRYPT: 3641 if (!sav->key_enc) 3642 continue; 3643 m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT); 3644 if (!m) 3645 goto fail; 3646 break; 3647 3648 case SADB_EXT_LIFETIME_CURRENT: 3649 lft_c.addtime = sav->created; 3650 lft_c.allocations = (uint32_t)counter_u64_fetch( 3651 sav->lft_c_allocations); 3652 lft_c.bytes = counter_u64_fetch(sav->lft_c_bytes); 3653 lft_c.usetime = sav->firstused; 3654 m = key_setlifetime(&lft_c, SADB_EXT_LIFETIME_CURRENT); 3655 if (!m) 3656 goto fail; 3657 break; 3658 3659 case SADB_EXT_LIFETIME_HARD: 3660 if (!sav->lft_h) 3661 continue; 3662 m = key_setlifetime(sav->lft_h, 3663 SADB_EXT_LIFETIME_HARD); 3664 if (!m) 3665 goto fail; 3666 break; 3667 3668 case SADB_EXT_LIFETIME_SOFT: 3669 if (!sav->lft_s) 3670 continue; 3671 m = key_setlifetime(sav->lft_s, 3672 SADB_EXT_LIFETIME_SOFT); 3673 3674 if (!m) 3675 goto fail; 3676 break; 3677 3678 case SADB_X_EXT_NAT_T_TYPE: 3679 if (sav->natt == NULL) 3680 continue; 3681 m = key_setsadbxtype(UDP_ENCAP_ESPINUDP); 3682 if (!m) 3683 goto fail; 3684 break; 3685 3686 case SADB_X_EXT_NAT_T_DPORT: 3687 if (sav->natt == NULL) 3688 continue; 3689 m = key_setsadbxport(sav->natt->dport, 3690 SADB_X_EXT_NAT_T_DPORT); 3691 if (!m) 3692 goto fail; 3693 break; 3694 3695 case SADB_X_EXT_NAT_T_SPORT: 3696 if (sav->natt == NULL) 3697 continue; 3698 m = key_setsadbxport(sav->natt->sport, 3699 SADB_X_EXT_NAT_T_SPORT); 3700 if (!m) 3701 goto fail; 3702 break; 3703 3704 case SADB_X_EXT_NAT_T_OAI: 3705 if (sav->natt == NULL || 3706 (sav->natt->flags & IPSEC_NATT_F_OAI) == 0) 3707 continue; 3708 m = key_setsadbaddr(SADB_X_EXT_NAT_T_OAI, 3709 &sav->natt->oai.sa, FULLMASK, IPSEC_ULPROTO_ANY); 3710 if (!m) 3711 goto fail; 3712 break; 3713 case SADB_X_EXT_NAT_T_OAR: 3714 if (sav->natt == NULL || 3715 (sav->natt->flags & IPSEC_NATT_F_OAR) == 0) 3716 continue; 3717 m = key_setsadbaddr(SADB_X_EXT_NAT_T_OAR, 3718 &sav->natt->oar.sa, FULLMASK, IPSEC_ULPROTO_ANY); 3719 if (!m) 3720 goto fail; 3721 break; 3722 case SADB_X_EXT_NAT_T_FRAG: 3723 /* We do not (yet) support those. */ 3724 continue; 3725 3726 case SADB_EXT_ADDRESS_PROXY: 3727 case SADB_EXT_IDENTITY_SRC: 3728 case SADB_EXT_IDENTITY_DST: 3729 /* XXX: should we brought from SPD ? */ 3730 case SADB_EXT_SENSITIVITY: 3731 default: 3732 continue; 3733 } 3734 3735 if (!m) 3736 goto fail; 3737 if (tres) 3738 m_cat(m, tres); 3739 tres = m; 3740 } 3741 3742 m_cat(result, tres); 3743 tres = NULL; 3744 if (result->m_len < sizeof(struct sadb_msg)) { 3745 result = m_pullup(result, sizeof(struct sadb_msg)); 3746 if (result == NULL) 3747 goto fail; 3748 } 3749 3750 result->m_pkthdr.len = 0; 3751 for (m = result; m; m = m->m_next) 3752 result->m_pkthdr.len += m->m_len; 3753 3754 mtod(result, struct sadb_msg *)->sadb_msg_len = 3755 PFKEY_UNIT64(result->m_pkthdr.len); 3756 3757 return result; 3758 3759 fail: 3760 m_freem(result); 3761 m_freem(tres); 3762 return NULL; 3763 } 3764 3765 /* 3766 * set data into sadb_msg. 3767 */ 3768 static struct mbuf * 3769 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq, 3770 pid_t pid, u_int16_t reserved) 3771 { 3772 struct mbuf *m; 3773 struct sadb_msg *p; 3774 int len; 3775 3776 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 3777 if (len > MCLBYTES) 3778 return NULL; 3779 MGETHDR(m, M_NOWAIT, MT_DATA); 3780 if (m && len > MHLEN) { 3781 if (!(MCLGET(m, M_NOWAIT))) { 3782 m_freem(m); 3783 m = NULL; 3784 } 3785 } 3786 if (!m) 3787 return NULL; 3788 m->m_pkthdr.len = m->m_len = len; 3789 m->m_next = NULL; 3790 3791 p = mtod(m, struct sadb_msg *); 3792 3793 bzero(p, len); 3794 p->sadb_msg_version = PF_KEY_V2; 3795 p->sadb_msg_type = type; 3796 p->sadb_msg_errno = 0; 3797 p->sadb_msg_satype = satype; 3798 p->sadb_msg_len = PFKEY_UNIT64(tlen); 3799 p->sadb_msg_reserved = reserved; 3800 p->sadb_msg_seq = seq; 3801 p->sadb_msg_pid = (u_int32_t)pid; 3802 3803 return m; 3804 } 3805 3806 /* 3807 * copy secasvar data into sadb_address. 3808 */ 3809 static struct mbuf * 3810 key_setsadbsa(struct secasvar *sav) 3811 { 3812 struct mbuf *m; 3813 struct sadb_sa *p; 3814 int len; 3815 3816 len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); 3817 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3818 if (m == NULL) 3819 return (NULL); 3820 m_align(m, len); 3821 m->m_len = len; 3822 p = mtod(m, struct sadb_sa *); 3823 bzero(p, len); 3824 p->sadb_sa_len = PFKEY_UNIT64(len); 3825 p->sadb_sa_exttype = SADB_EXT_SA; 3826 p->sadb_sa_spi = sav->spi; 3827 p->sadb_sa_replay = sav->replay ? 3828 (sav->replay->wsize > UINT8_MAX ? UINT8_MAX : 3829 sav->replay->wsize): 0; 3830 p->sadb_sa_state = sav->state; 3831 p->sadb_sa_auth = sav->alg_auth; 3832 p->sadb_sa_encrypt = sav->alg_enc; 3833 p->sadb_sa_flags = sav->flags & SADB_KEY_FLAGS_MAX; 3834 return (m); 3835 } 3836 3837 /* 3838 * set data into sadb_address. 3839 */ 3840 static struct mbuf * 3841 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, 3842 u_int8_t prefixlen, u_int16_t ul_proto) 3843 { 3844 struct mbuf *m; 3845 struct sadb_address *p; 3846 size_t len; 3847 3848 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + 3849 PFKEY_ALIGN8(saddr->sa_len); 3850 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3851 if (m == NULL) 3852 return (NULL); 3853 m_align(m, len); 3854 m->m_len = len; 3855 p = mtod(m, struct sadb_address *); 3856 3857 bzero(p, len); 3858 p->sadb_address_len = PFKEY_UNIT64(len); 3859 p->sadb_address_exttype = exttype; 3860 p->sadb_address_proto = ul_proto; 3861 if (prefixlen == FULLMASK) { 3862 switch (saddr->sa_family) { 3863 case AF_INET: 3864 prefixlen = sizeof(struct in_addr) << 3; 3865 break; 3866 case AF_INET6: 3867 prefixlen = sizeof(struct in6_addr) << 3; 3868 break; 3869 default: 3870 ; /*XXX*/ 3871 } 3872 } 3873 p->sadb_address_prefixlen = prefixlen; 3874 p->sadb_address_reserved = 0; 3875 3876 bcopy(saddr, 3877 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)), 3878 saddr->sa_len); 3879 3880 return m; 3881 } 3882 3883 /* 3884 * set data into sadb_x_sa2. 3885 */ 3886 static struct mbuf * 3887 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid) 3888 { 3889 struct mbuf *m; 3890 struct sadb_x_sa2 *p; 3891 size_t len; 3892 3893 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); 3894 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3895 if (m == NULL) 3896 return (NULL); 3897 m_align(m, len); 3898 m->m_len = len; 3899 p = mtod(m, struct sadb_x_sa2 *); 3900 3901 bzero(p, len); 3902 p->sadb_x_sa2_len = PFKEY_UNIT64(len); 3903 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 3904 p->sadb_x_sa2_mode = mode; 3905 p->sadb_x_sa2_reserved1 = 0; 3906 p->sadb_x_sa2_reserved2 = 0; 3907 p->sadb_x_sa2_sequence = seq; 3908 p->sadb_x_sa2_reqid = reqid; 3909 3910 return m; 3911 } 3912 3913 /* 3914 * Set data into sadb_x_sa_replay. 3915 */ 3916 static struct mbuf * 3917 key_setsadbxsareplay(u_int32_t replay) 3918 { 3919 struct mbuf *m; 3920 struct sadb_x_sa_replay *p; 3921 size_t len; 3922 3923 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa_replay)); 3924 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3925 if (m == NULL) 3926 return (NULL); 3927 m_align(m, len); 3928 m->m_len = len; 3929 p = mtod(m, struct sadb_x_sa_replay *); 3930 3931 bzero(p, len); 3932 p->sadb_x_sa_replay_len = PFKEY_UNIT64(len); 3933 p->sadb_x_sa_replay_exttype = SADB_X_EXT_SA_REPLAY; 3934 p->sadb_x_sa_replay_replay = (replay << 3); 3935 3936 return m; 3937 } 3938 3939 /* 3940 * Set a type in sadb_x_nat_t_type. 3941 */ 3942 static struct mbuf * 3943 key_setsadbxtype(u_int16_t type) 3944 { 3945 struct mbuf *m; 3946 size_t len; 3947 struct sadb_x_nat_t_type *p; 3948 3949 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type)); 3950 3951 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3952 if (m == NULL) 3953 return (NULL); 3954 m_align(m, len); 3955 m->m_len = len; 3956 p = mtod(m, struct sadb_x_nat_t_type *); 3957 3958 bzero(p, len); 3959 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len); 3960 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; 3961 p->sadb_x_nat_t_type_type = type; 3962 3963 return (m); 3964 } 3965 /* 3966 * Set a port in sadb_x_nat_t_port. 3967 * In contrast to default RFC 2367 behaviour, port is in network byte order. 3968 */ 3969 static struct mbuf * 3970 key_setsadbxport(u_int16_t port, u_int16_t type) 3971 { 3972 struct mbuf *m; 3973 size_t len; 3974 struct sadb_x_nat_t_port *p; 3975 3976 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port)); 3977 3978 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3979 if (m == NULL) 3980 return (NULL); 3981 m_align(m, len); 3982 m->m_len = len; 3983 p = mtod(m, struct sadb_x_nat_t_port *); 3984 3985 bzero(p, len); 3986 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len); 3987 p->sadb_x_nat_t_port_exttype = type; 3988 p->sadb_x_nat_t_port_port = port; 3989 3990 return (m); 3991 } 3992 3993 /* 3994 * Get port from sockaddr. Port is in network byte order. 3995 */ 3996 uint16_t 3997 key_portfromsaddr(struct sockaddr *sa) 3998 { 3999 4000 switch (sa->sa_family) { 4001 #ifdef INET 4002 case AF_INET: 4003 return ((struct sockaddr_in *)sa)->sin_port; 4004 #endif 4005 #ifdef INET6 4006 case AF_INET6: 4007 return ((struct sockaddr_in6 *)sa)->sin6_port; 4008 #endif 4009 } 4010 return (0); 4011 } 4012 4013 /* 4014 * Set port in struct sockaddr. Port is in network byte order. 4015 */ 4016 void 4017 key_porttosaddr(struct sockaddr *sa, uint16_t port) 4018 { 4019 4020 switch (sa->sa_family) { 4021 #ifdef INET 4022 case AF_INET: 4023 ((struct sockaddr_in *)sa)->sin_port = port; 4024 break; 4025 #endif 4026 #ifdef INET6 4027 case AF_INET6: 4028 ((struct sockaddr_in6 *)sa)->sin6_port = port; 4029 break; 4030 #endif 4031 default: 4032 ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n", 4033 __func__, sa->sa_family)); 4034 break; 4035 } 4036 } 4037 4038 /* 4039 * set data into sadb_x_policy 4040 */ 4041 static struct mbuf * 4042 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id, u_int32_t priority) 4043 { 4044 struct mbuf *m; 4045 struct sadb_x_policy *p; 4046 size_t len; 4047 4048 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); 4049 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 4050 if (m == NULL) 4051 return (NULL); 4052 m_align(m, len); 4053 m->m_len = len; 4054 p = mtod(m, struct sadb_x_policy *); 4055 4056 bzero(p, len); 4057 p->sadb_x_policy_len = PFKEY_UNIT64(len); 4058 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 4059 p->sadb_x_policy_type = type; 4060 p->sadb_x_policy_dir = dir; 4061 p->sadb_x_policy_id = id; 4062 p->sadb_x_policy_priority = priority; 4063 4064 return m; 4065 } 4066 4067 /* %%% utilities */ 4068 /* Take a key message (sadb_key) from the socket and turn it into one 4069 * of the kernel's key structures (seckey). 4070 * 4071 * IN: pointer to the src 4072 * OUT: NULL no more memory 4073 */ 4074 struct seckey * 4075 key_dup_keymsg(const struct sadb_key *src, size_t len, 4076 struct malloc_type *type) 4077 { 4078 struct seckey *dst; 4079 4080 dst = malloc(sizeof(*dst), type, M_NOWAIT); 4081 if (dst != NULL) { 4082 dst->bits = src->sadb_key_bits; 4083 dst->key_data = malloc(len, type, M_NOWAIT); 4084 if (dst->key_data != NULL) { 4085 bcopy((const char *)(src + 1), dst->key_data, len); 4086 } else { 4087 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 4088 __func__)); 4089 free(dst, type); 4090 dst = NULL; 4091 } 4092 } else { 4093 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 4094 __func__)); 4095 } 4096 return (dst); 4097 } 4098 4099 /* Take a lifetime message (sadb_lifetime) passed in on a socket and 4100 * turn it into one of the kernel's lifetime structures (seclifetime). 4101 * 4102 * IN: pointer to the destination, source and malloc type 4103 * OUT: NULL, no more memory 4104 */ 4105 4106 static struct seclifetime * 4107 key_dup_lifemsg(const struct sadb_lifetime *src, struct malloc_type *type) 4108 { 4109 struct seclifetime *dst; 4110 4111 dst = malloc(sizeof(*dst), type, M_NOWAIT); 4112 if (dst == NULL) { 4113 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 4114 return (NULL); 4115 } 4116 dst->allocations = src->sadb_lifetime_allocations; 4117 dst->bytes = src->sadb_lifetime_bytes; 4118 dst->addtime = src->sadb_lifetime_addtime; 4119 dst->usetime = src->sadb_lifetime_usetime; 4120 return (dst); 4121 } 4122 4123 /* 4124 * compare two secasindex structure. 4125 * flag can specify to compare 2 saidxes. 4126 * compare two secasindex structure without both mode and reqid. 4127 * don't compare port. 4128 * IN: 4129 * saidx0: source, it can be in SAD. 4130 * saidx1: object. 4131 * OUT: 4132 * 1 : equal 4133 * 0 : not equal 4134 */ 4135 static int 4136 key_cmpsaidx(const struct secasindex *saidx0, const struct secasindex *saidx1, 4137 int flag) 4138 { 4139 4140 /* sanity */ 4141 if (saidx0 == NULL && saidx1 == NULL) 4142 return 1; 4143 4144 if (saidx0 == NULL || saidx1 == NULL) 4145 return 0; 4146 4147 if (saidx0->proto != saidx1->proto) 4148 return 0; 4149 4150 if (flag == CMP_EXACTLY) { 4151 if (saidx0->mode != saidx1->mode) 4152 return 0; 4153 if (saidx0->reqid != saidx1->reqid) 4154 return 0; 4155 if (bcmp(&saidx0->src, &saidx1->src, 4156 saidx0->src.sa.sa_len) != 0 || 4157 bcmp(&saidx0->dst, &saidx1->dst, 4158 saidx0->dst.sa.sa_len) != 0) 4159 return 0; 4160 } else { 4161 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ 4162 if (flag == CMP_MODE_REQID || flag == CMP_REQID) { 4163 /* 4164 * If reqid of SPD is non-zero, unique SA is required. 4165 * The result must be of same reqid in this case. 4166 */ 4167 if (saidx1->reqid != 0 && 4168 saidx0->reqid != saidx1->reqid) 4169 return 0; 4170 } 4171 4172 if (flag == CMP_MODE_REQID) { 4173 if (saidx0->mode != IPSEC_MODE_ANY 4174 && saidx0->mode != saidx1->mode) 4175 return 0; 4176 } 4177 4178 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, 0) != 0) 4179 return 0; 4180 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, 0) != 0) 4181 return 0; 4182 } 4183 4184 return 1; 4185 } 4186 4187 /* 4188 * compare two secindex structure exactly. 4189 * IN: 4190 * spidx0: source, it is often in SPD. 4191 * spidx1: object, it is often from PFKEY message. 4192 * OUT: 4193 * 1 : equal 4194 * 0 : not equal 4195 */ 4196 static int 4197 key_cmpspidx_exactly(struct secpolicyindex *spidx0, 4198 struct secpolicyindex *spidx1) 4199 { 4200 /* sanity */ 4201 if (spidx0 == NULL && spidx1 == NULL) 4202 return 1; 4203 4204 if (spidx0 == NULL || spidx1 == NULL) 4205 return 0; 4206 4207 if (spidx0->prefs != spidx1->prefs 4208 || spidx0->prefd != spidx1->prefd 4209 || spidx0->ul_proto != spidx1->ul_proto 4210 || spidx0->dir != spidx1->dir) 4211 return 0; 4212 4213 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 && 4214 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0; 4215 } 4216 4217 /* 4218 * compare two secindex structure with mask. 4219 * IN: 4220 * spidx0: source, it is often in SPD. 4221 * spidx1: object, it is often from IP header. 4222 * OUT: 4223 * 1 : equal 4224 * 0 : not equal 4225 */ 4226 static int 4227 key_cmpspidx_withmask(struct secpolicyindex *spidx0, 4228 struct secpolicyindex *spidx1) 4229 { 4230 /* sanity */ 4231 if (spidx0 == NULL && spidx1 == NULL) 4232 return 1; 4233 4234 if (spidx0 == NULL || spidx1 == NULL) 4235 return 0; 4236 4237 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || 4238 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || 4239 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || 4240 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) 4241 return 0; 4242 4243 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ 4244 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY 4245 && spidx0->ul_proto != spidx1->ul_proto) 4246 return 0; 4247 4248 switch (spidx0->src.sa.sa_family) { 4249 case AF_INET: 4250 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY 4251 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) 4252 return 0; 4253 if (!key_bbcmp(&spidx0->src.sin.sin_addr, 4254 &spidx1->src.sin.sin_addr, spidx0->prefs)) 4255 return 0; 4256 break; 4257 case AF_INET6: 4258 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY 4259 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) 4260 return 0; 4261 /* 4262 * scope_id check. if sin6_scope_id is 0, we regard it 4263 * as a wildcard scope, which matches any scope zone ID. 4264 */ 4265 if (spidx0->src.sin6.sin6_scope_id && 4266 spidx1->src.sin6.sin6_scope_id && 4267 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) 4268 return 0; 4269 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr, 4270 &spidx1->src.sin6.sin6_addr, spidx0->prefs)) 4271 return 0; 4272 break; 4273 default: 4274 /* XXX */ 4275 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) 4276 return 0; 4277 break; 4278 } 4279 4280 switch (spidx0->dst.sa.sa_family) { 4281 case AF_INET: 4282 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY 4283 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) 4284 return 0; 4285 if (!key_bbcmp(&spidx0->dst.sin.sin_addr, 4286 &spidx1->dst.sin.sin_addr, spidx0->prefd)) 4287 return 0; 4288 break; 4289 case AF_INET6: 4290 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY 4291 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) 4292 return 0; 4293 /* 4294 * scope_id check. if sin6_scope_id is 0, we regard it 4295 * as a wildcard scope, which matches any scope zone ID. 4296 */ 4297 if (spidx0->dst.sin6.sin6_scope_id && 4298 spidx1->dst.sin6.sin6_scope_id && 4299 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) 4300 return 0; 4301 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr, 4302 &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) 4303 return 0; 4304 break; 4305 default: 4306 /* XXX */ 4307 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) 4308 return 0; 4309 break; 4310 } 4311 4312 /* XXX Do we check other field ? e.g. flowinfo */ 4313 4314 return 1; 4315 } 4316 4317 #ifdef satosin 4318 #undef satosin 4319 #endif 4320 #define satosin(s) ((const struct sockaddr_in *)s) 4321 #ifdef satosin6 4322 #undef satosin6 4323 #endif 4324 #define satosin6(s) ((const struct sockaddr_in6 *)s) 4325 /* returns 0 on match */ 4326 int 4327 key_sockaddrcmp(const struct sockaddr *sa1, const struct sockaddr *sa2, 4328 int port) 4329 { 4330 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) 4331 return 1; 4332 4333 switch (sa1->sa_family) { 4334 #ifdef INET 4335 case AF_INET: 4336 if (sa1->sa_len != sizeof(struct sockaddr_in)) 4337 return 1; 4338 if (satosin(sa1)->sin_addr.s_addr != 4339 satosin(sa2)->sin_addr.s_addr) { 4340 return 1; 4341 } 4342 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port) 4343 return 1; 4344 break; 4345 #endif 4346 #ifdef INET6 4347 case AF_INET6: 4348 if (sa1->sa_len != sizeof(struct sockaddr_in6)) 4349 return 1; /*EINVAL*/ 4350 if (satosin6(sa1)->sin6_scope_id != 4351 satosin6(sa2)->sin6_scope_id) { 4352 return 1; 4353 } 4354 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr, 4355 &satosin6(sa2)->sin6_addr)) { 4356 return 1; 4357 } 4358 if (port && 4359 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) { 4360 return 1; 4361 } 4362 break; 4363 #endif 4364 default: 4365 if (bcmp(sa1, sa2, sa1->sa_len) != 0) 4366 return 1; 4367 break; 4368 } 4369 4370 return 0; 4371 } 4372 4373 /* returns 0 on match */ 4374 int 4375 key_sockaddrcmp_withmask(const struct sockaddr *sa1, 4376 const struct sockaddr *sa2, size_t mask) 4377 { 4378 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) 4379 return (1); 4380 4381 switch (sa1->sa_family) { 4382 #ifdef INET 4383 case AF_INET: 4384 return (!key_bbcmp(&satosin(sa1)->sin_addr, 4385 &satosin(sa2)->sin_addr, mask)); 4386 #endif 4387 #ifdef INET6 4388 case AF_INET6: 4389 if (satosin6(sa1)->sin6_scope_id != 4390 satosin6(sa2)->sin6_scope_id) 4391 return (1); 4392 return (!key_bbcmp(&satosin6(sa1)->sin6_addr, 4393 &satosin6(sa2)->sin6_addr, mask)); 4394 #endif 4395 } 4396 return (1); 4397 } 4398 #undef satosin 4399 #undef satosin6 4400 4401 /* 4402 * compare two buffers with mask. 4403 * IN: 4404 * addr1: source 4405 * addr2: object 4406 * bits: Number of bits to compare 4407 * OUT: 4408 * 1 : equal 4409 * 0 : not equal 4410 */ 4411 static int 4412 key_bbcmp(const void *a1, const void *a2, u_int bits) 4413 { 4414 const unsigned char *p1 = a1; 4415 const unsigned char *p2 = a2; 4416 4417 /* XXX: This could be considerably faster if we compare a word 4418 * at a time, but it is complicated on LSB Endian machines */ 4419 4420 /* Handle null pointers */ 4421 if (p1 == NULL || p2 == NULL) 4422 return (p1 == p2); 4423 4424 while (bits >= 8) { 4425 if (*p1++ != *p2++) 4426 return 0; 4427 bits -= 8; 4428 } 4429 4430 if (bits > 0) { 4431 u_int8_t mask = ~((1<<(8-bits))-1); 4432 if ((*p1 & mask) != (*p2 & mask)) 4433 return 0; 4434 } 4435 return 1; /* Match! */ 4436 } 4437 4438 static void 4439 key_flush_spd(time_t now) 4440 { 4441 SPTREE_RLOCK_TRACKER; 4442 struct secpolicy_list drainq; 4443 struct secpolicy *sp, *nextsp; 4444 u_int dir; 4445 4446 LIST_INIT(&drainq); 4447 SPTREE_RLOCK(); 4448 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 4449 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 4450 if (sp->lifetime == 0 && sp->validtime == 0) 4451 continue; 4452 if ((sp->lifetime && 4453 now - sp->created > sp->lifetime) || 4454 (sp->validtime && 4455 now - sp->lastused > sp->validtime)) { 4456 /* Hold extra reference to send SPDEXPIRE */ 4457 SP_ADDREF(sp); 4458 LIST_INSERT_HEAD(&drainq, sp, drainq); 4459 } 4460 } 4461 } 4462 SPTREE_RUNLOCK(); 4463 if (LIST_EMPTY(&drainq)) 4464 return; 4465 4466 SPTREE_WLOCK(); 4467 sp = LIST_FIRST(&drainq); 4468 while (sp != NULL) { 4469 nextsp = LIST_NEXT(sp, drainq); 4470 /* Check that SP is still linked */ 4471 if (sp->state != IPSEC_SPSTATE_ALIVE) { 4472 LIST_REMOVE(sp, drainq); 4473 key_freesp(&sp); /* release extra reference */ 4474 sp = nextsp; 4475 continue; 4476 } 4477 TAILQ_REMOVE(&V_sptree[sp->spidx.dir], sp, chain); 4478 V_spd_size--; 4479 LIST_REMOVE(sp, idhash); 4480 sp->state = IPSEC_SPSTATE_DEAD; 4481 sp = nextsp; 4482 } 4483 V_sp_genid++; 4484 SPTREE_WUNLOCK(); 4485 if (SPDCACHE_ENABLED()) 4486 spdcache_clear(); 4487 4488 sp = LIST_FIRST(&drainq); 4489 while (sp != NULL) { 4490 nextsp = LIST_NEXT(sp, drainq); 4491 key_spdexpire(sp); 4492 key_freesp(&sp); /* release extra reference */ 4493 key_freesp(&sp); /* release last reference */ 4494 sp = nextsp; 4495 } 4496 } 4497 4498 static void 4499 key_flush_sad(time_t now) 4500 { 4501 SAHTREE_RLOCK_TRACKER; 4502 struct secashead_list emptyq; 4503 struct secasvar_list drainq, hexpireq, sexpireq, freeq; 4504 struct secashead *sah, *nextsah; 4505 struct secasvar *sav, *nextsav; 4506 4507 LIST_INIT(&drainq); 4508 LIST_INIT(&hexpireq); 4509 LIST_INIT(&sexpireq); 4510 LIST_INIT(&emptyq); 4511 4512 SAHTREE_RLOCK(); 4513 TAILQ_FOREACH(sah, &V_sahtree, chain) { 4514 /* Check for empty SAH */ 4515 if (TAILQ_EMPTY(&sah->savtree_larval) && 4516 TAILQ_EMPTY(&sah->savtree_alive)) { 4517 SAH_ADDREF(sah); 4518 LIST_INSERT_HEAD(&emptyq, sah, drainq); 4519 continue; 4520 } 4521 /* Add all stale LARVAL SAs into drainq */ 4522 TAILQ_FOREACH(sav, &sah->savtree_larval, chain) { 4523 if (now - sav->created < V_key_larval_lifetime) 4524 continue; 4525 SAV_ADDREF(sav); 4526 LIST_INSERT_HEAD(&drainq, sav, drainq); 4527 } 4528 TAILQ_FOREACH(sav, &sah->savtree_alive, chain) { 4529 /* lifetimes aren't specified */ 4530 if (sav->lft_h == NULL) 4531 continue; 4532 SECASVAR_LOCK(sav); 4533 /* 4534 * Check again with lock held, because it may 4535 * be updated by SADB_UPDATE. 4536 */ 4537 if (sav->lft_h == NULL) { 4538 SECASVAR_UNLOCK(sav); 4539 continue; 4540 } 4541 /* 4542 * RFC 2367: 4543 * HARD lifetimes MUST take precedence over SOFT 4544 * lifetimes, meaning if the HARD and SOFT lifetimes 4545 * are the same, the HARD lifetime will appear on the 4546 * EXPIRE message. 4547 */ 4548 /* check HARD lifetime */ 4549 if ((sav->lft_h->addtime != 0 && 4550 now - sav->created > sav->lft_h->addtime) || 4551 (sav->lft_h->usetime != 0 && sav->firstused && 4552 now - sav->firstused > sav->lft_h->usetime) || 4553 (sav->lft_h->bytes != 0 && counter_u64_fetch( 4554 sav->lft_c_bytes) > sav->lft_h->bytes)) { 4555 SECASVAR_UNLOCK(sav); 4556 SAV_ADDREF(sav); 4557 LIST_INSERT_HEAD(&hexpireq, sav, drainq); 4558 continue; 4559 } 4560 /* check SOFT lifetime (only for MATURE SAs) */ 4561 if (sav->state == SADB_SASTATE_MATURE && ( 4562 (sav->lft_s->addtime != 0 && 4563 now - sav->created > sav->lft_s->addtime) || 4564 (sav->lft_s->usetime != 0 && sav->firstused && 4565 now - sav->firstused > sav->lft_s->usetime) || 4566 (sav->lft_s->bytes != 0 && counter_u64_fetch( 4567 sav->lft_c_bytes) > sav->lft_s->bytes) || 4568 (!(sav->flags & SADB_X_SAFLAGS_ESN) && 4569 (sav->replay != NULL) && ( 4570 (sav->replay->count > UINT32_80PCT) || 4571 (sav->replay->last > UINT32_80PCT))))) { 4572 SECASVAR_UNLOCK(sav); 4573 SAV_ADDREF(sav); 4574 LIST_INSERT_HEAD(&sexpireq, sav, drainq); 4575 continue; 4576 } 4577 SECASVAR_UNLOCK(sav); 4578 } 4579 } 4580 SAHTREE_RUNLOCK(); 4581 4582 if (LIST_EMPTY(&emptyq) && LIST_EMPTY(&drainq) && 4583 LIST_EMPTY(&hexpireq) && LIST_EMPTY(&sexpireq)) 4584 return; 4585 4586 LIST_INIT(&freeq); 4587 SAHTREE_WLOCK(); 4588 /* Unlink stale LARVAL SAs */ 4589 sav = LIST_FIRST(&drainq); 4590 while (sav != NULL) { 4591 nextsav = LIST_NEXT(sav, drainq); 4592 /* Check that SA is still LARVAL */ 4593 if (sav->state != SADB_SASTATE_LARVAL) { 4594 LIST_REMOVE(sav, drainq); 4595 LIST_INSERT_HEAD(&freeq, sav, drainq); 4596 sav = nextsav; 4597 continue; 4598 } 4599 TAILQ_REMOVE(&sav->sah->savtree_larval, sav, chain); 4600 LIST_REMOVE(sav, spihash); 4601 sav->state = SADB_SASTATE_DEAD; 4602 sav = nextsav; 4603 } 4604 /* Unlink all SAs with expired HARD lifetime */ 4605 sav = LIST_FIRST(&hexpireq); 4606 while (sav != NULL) { 4607 nextsav = LIST_NEXT(sav, drainq); 4608 /* Check that SA is not unlinked */ 4609 if (sav->state == SADB_SASTATE_DEAD) { 4610 LIST_REMOVE(sav, drainq); 4611 LIST_INSERT_HEAD(&freeq, sav, drainq); 4612 sav = nextsav; 4613 continue; 4614 } 4615 TAILQ_REMOVE(&sav->sah->savtree_alive, sav, chain); 4616 LIST_REMOVE(sav, spihash); 4617 sav->state = SADB_SASTATE_DEAD; 4618 sav = nextsav; 4619 } 4620 /* Mark all SAs with expired SOFT lifetime as DYING */ 4621 sav = LIST_FIRST(&sexpireq); 4622 while (sav != NULL) { 4623 nextsav = LIST_NEXT(sav, drainq); 4624 /* Check that SA is not unlinked */ 4625 if (sav->state == SADB_SASTATE_DEAD) { 4626 LIST_REMOVE(sav, drainq); 4627 LIST_INSERT_HEAD(&freeq, sav, drainq); 4628 sav = nextsav; 4629 continue; 4630 } 4631 /* 4632 * NOTE: this doesn't change SA order in the chain. 4633 */ 4634 sav->state = SADB_SASTATE_DYING; 4635 sav = nextsav; 4636 } 4637 /* Unlink empty SAHs */ 4638 sah = LIST_FIRST(&emptyq); 4639 while (sah != NULL) { 4640 nextsah = LIST_NEXT(sah, drainq); 4641 /* Check that SAH is still empty and not unlinked */ 4642 if (sah->state == SADB_SASTATE_DEAD || 4643 !TAILQ_EMPTY(&sah->savtree_larval) || 4644 !TAILQ_EMPTY(&sah->savtree_alive)) { 4645 LIST_REMOVE(sah, drainq); 4646 key_freesah(&sah); /* release extra reference */ 4647 sah = nextsah; 4648 continue; 4649 } 4650 TAILQ_REMOVE(&V_sahtree, sah, chain); 4651 LIST_REMOVE(sah, addrhash); 4652 sah->state = SADB_SASTATE_DEAD; 4653 sah = nextsah; 4654 } 4655 SAHTREE_WUNLOCK(); 4656 4657 /* Send SPDEXPIRE messages */ 4658 sav = LIST_FIRST(&hexpireq); 4659 while (sav != NULL) { 4660 nextsav = LIST_NEXT(sav, drainq); 4661 key_expire(sav, 1); 4662 key_freesah(&sav->sah); /* release reference from SAV */ 4663 key_freesav(&sav); /* release extra reference */ 4664 key_freesav(&sav); /* release last reference */ 4665 sav = nextsav; 4666 } 4667 sav = LIST_FIRST(&sexpireq); 4668 while (sav != NULL) { 4669 nextsav = LIST_NEXT(sav, drainq); 4670 key_expire(sav, 0); 4671 key_freesav(&sav); /* release extra reference */ 4672 sav = nextsav; 4673 } 4674 /* Free stale LARVAL SAs */ 4675 sav = LIST_FIRST(&drainq); 4676 while (sav != NULL) { 4677 nextsav = LIST_NEXT(sav, drainq); 4678 key_freesah(&sav->sah); /* release reference from SAV */ 4679 key_freesav(&sav); /* release extra reference */ 4680 key_freesav(&sav); /* release last reference */ 4681 sav = nextsav; 4682 } 4683 /* Free SAs that were unlinked/changed by someone else */ 4684 sav = LIST_FIRST(&freeq); 4685 while (sav != NULL) { 4686 nextsav = LIST_NEXT(sav, drainq); 4687 key_freesav(&sav); /* release extra reference */ 4688 sav = nextsav; 4689 } 4690 /* Free empty SAH */ 4691 sah = LIST_FIRST(&emptyq); 4692 while (sah != NULL) { 4693 nextsah = LIST_NEXT(sah, drainq); 4694 key_freesah(&sah); /* release extra reference */ 4695 key_freesah(&sah); /* release last reference */ 4696 sah = nextsah; 4697 } 4698 } 4699 4700 static void 4701 key_flush_acq(time_t now) 4702 { 4703 struct secacq *acq, *nextacq; 4704 4705 /* ACQ tree */ 4706 ACQ_LOCK(); 4707 acq = LIST_FIRST(&V_acqtree); 4708 while (acq != NULL) { 4709 nextacq = LIST_NEXT(acq, chain); 4710 if (now - acq->created > V_key_blockacq_lifetime) { 4711 LIST_REMOVE(acq, chain); 4712 LIST_REMOVE(acq, addrhash); 4713 LIST_REMOVE(acq, seqhash); 4714 free(acq, M_IPSEC_SAQ); 4715 } 4716 acq = nextacq; 4717 } 4718 ACQ_UNLOCK(); 4719 } 4720 4721 static void 4722 key_flush_spacq(time_t now) 4723 { 4724 struct secspacq *acq, *nextacq; 4725 4726 /* SP ACQ tree */ 4727 SPACQ_LOCK(); 4728 for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) { 4729 nextacq = LIST_NEXT(acq, chain); 4730 if (now - acq->created > V_key_blockacq_lifetime 4731 && __LIST_CHAINED(acq)) { 4732 LIST_REMOVE(acq, chain); 4733 free(acq, M_IPSEC_SAQ); 4734 } 4735 } 4736 SPACQ_UNLOCK(); 4737 } 4738 4739 /* 4740 * time handler. 4741 * scanning SPD and SAD to check status for each entries, 4742 * and do to remove or to expire. 4743 * XXX: year 2038 problem may remain. 4744 */ 4745 static void 4746 key_timehandler(void *arg) 4747 { 4748 VNET_ITERATOR_DECL(vnet_iter); 4749 time_t now = time_second; 4750 4751 VNET_LIST_RLOCK_NOSLEEP(); 4752 VNET_FOREACH(vnet_iter) { 4753 CURVNET_SET(vnet_iter); 4754 key_flush_spd(now); 4755 key_flush_sad(now); 4756 key_flush_acq(now); 4757 key_flush_spacq(now); 4758 CURVNET_RESTORE(); 4759 } 4760 VNET_LIST_RUNLOCK_NOSLEEP(); 4761 4762 #ifndef IPSEC_DEBUG2 4763 /* do exchange to tick time !! */ 4764 callout_schedule(&key_timer, hz); 4765 #endif /* IPSEC_DEBUG2 */ 4766 } 4767 4768 u_long 4769 key_random(void) 4770 { 4771 u_long value; 4772 4773 arc4random_buf(&value, sizeof(value)); 4774 return value; 4775 } 4776 4777 /* 4778 * map SADB_SATYPE_* to IPPROTO_*. 4779 * if satype == SADB_SATYPE then satype is mapped to ~0. 4780 * OUT: 4781 * 0: invalid satype. 4782 */ 4783 static uint8_t 4784 key_satype2proto(uint8_t satype) 4785 { 4786 switch (satype) { 4787 case SADB_SATYPE_UNSPEC: 4788 return IPSEC_PROTO_ANY; 4789 case SADB_SATYPE_AH: 4790 return IPPROTO_AH; 4791 case SADB_SATYPE_ESP: 4792 return IPPROTO_ESP; 4793 case SADB_X_SATYPE_IPCOMP: 4794 return IPPROTO_IPCOMP; 4795 case SADB_X_SATYPE_TCPSIGNATURE: 4796 return IPPROTO_TCP; 4797 default: 4798 return 0; 4799 } 4800 /* NOTREACHED */ 4801 } 4802 4803 /* 4804 * map IPPROTO_* to SADB_SATYPE_* 4805 * OUT: 4806 * 0: invalid protocol type. 4807 */ 4808 static uint8_t 4809 key_proto2satype(uint8_t proto) 4810 { 4811 switch (proto) { 4812 case IPPROTO_AH: 4813 return SADB_SATYPE_AH; 4814 case IPPROTO_ESP: 4815 return SADB_SATYPE_ESP; 4816 case IPPROTO_IPCOMP: 4817 return SADB_X_SATYPE_IPCOMP; 4818 case IPPROTO_TCP: 4819 return SADB_X_SATYPE_TCPSIGNATURE; 4820 default: 4821 return 0; 4822 } 4823 /* NOTREACHED */ 4824 } 4825 4826 /* %%% PF_KEY */ 4827 /* 4828 * SADB_GETSPI processing is to receive 4829 * <base, (SA2), src address, dst address, (SPI range)> 4830 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND 4831 * tree with the status of LARVAL, and send 4832 * <base, SA(*), address(SD)> 4833 * to the IKMPd. 4834 * 4835 * IN: mhp: pointer to the pointer to each header. 4836 * OUT: NULL if fail. 4837 * other if success, return pointer to the message to send. 4838 */ 4839 static int 4840 key_getspi(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 4841 { 4842 struct secasindex saidx; 4843 struct sadb_address *src0, *dst0; 4844 struct secasvar *sav; 4845 uint32_t reqid, spi; 4846 int error; 4847 uint8_t mode, proto; 4848 4849 IPSEC_ASSERT(so != NULL, ("null socket")); 4850 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4851 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4852 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4853 4854 if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || 4855 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) 4856 #ifdef PFKEY_STRICT_CHECKS 4857 || SADB_CHECKHDR(mhp, SADB_EXT_SPIRANGE) 4858 #endif 4859 ) { 4860 ipseclog((LOG_DEBUG, 4861 "%s: invalid message: missing required header.\n", 4862 __func__)); 4863 error = EINVAL; 4864 goto fail; 4865 } 4866 if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || 4867 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST) 4868 #ifdef PFKEY_STRICT_CHECKS 4869 || SADB_CHECKLEN(mhp, SADB_EXT_SPIRANGE) 4870 #endif 4871 ) { 4872 ipseclog((LOG_DEBUG, 4873 "%s: invalid message: wrong header size.\n", __func__)); 4874 error = EINVAL; 4875 goto fail; 4876 } 4877 if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) { 4878 mode = IPSEC_MODE_ANY; 4879 reqid = 0; 4880 } else { 4881 if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) { 4882 ipseclog((LOG_DEBUG, 4883 "%s: invalid message: wrong header size.\n", 4884 __func__)); 4885 error = EINVAL; 4886 goto fail; 4887 } 4888 mode = ((struct sadb_x_sa2 *) 4889 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4890 reqid = ((struct sadb_x_sa2 *) 4891 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4892 } 4893 4894 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4895 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4896 4897 /* map satype to proto */ 4898 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4899 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4900 __func__)); 4901 error = EINVAL; 4902 goto fail; 4903 } 4904 error = key_checksockaddrs((struct sockaddr *)(src0 + 1), 4905 (struct sockaddr *)(dst0 + 1)); 4906 if (error != 0) { 4907 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); 4908 error = EINVAL; 4909 goto fail; 4910 } 4911 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4912 4913 /* SPI allocation */ 4914 SPI_ALLOC_LOCK(); 4915 spi = key_do_getnewspi( 4916 (struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE], &saidx); 4917 if (spi == 0) { 4918 /* 4919 * Requested SPI or SPI range is not available or 4920 * already used. 4921 */ 4922 SPI_ALLOC_UNLOCK(); 4923 error = EEXIST; 4924 goto fail; 4925 } 4926 sav = key_newsav(mhp, &saidx, spi, &error); 4927 SPI_ALLOC_UNLOCK(); 4928 if (sav == NULL) 4929 goto fail; 4930 4931 if (sav->seq != 0) { 4932 /* 4933 * RFC2367: 4934 * If the SADB_GETSPI message is in response to a 4935 * kernel-generated SADB_ACQUIRE, the sadb_msg_seq 4936 * MUST be the same as the SADB_ACQUIRE message. 4937 * 4938 * XXXAE: However it doesn't definethe behaviour how to 4939 * check this and what to do if it doesn't match. 4940 * Also what we should do if it matches? 4941 * 4942 * We can compare saidx used in SADB_ACQUIRE with saidx 4943 * used in SADB_GETSPI, but this probably can break 4944 * existing software. For now just warn if it doesn't match. 4945 * 4946 * XXXAE: anyway it looks useless. 4947 */ 4948 key_acqdone(&saidx, sav->seq); 4949 } 4950 KEYDBG(KEY_STAMP, 4951 printf("%s: SA(%p)\n", __func__, sav)); 4952 KEYDBG(KEY_DATA, kdebug_secasv(sav)); 4953 4954 { 4955 struct mbuf *n, *nn; 4956 struct sadb_sa *m_sa; 4957 struct sadb_msg *newmsg; 4958 int off, len; 4959 4960 /* create new sadb_msg to reply. */ 4961 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 4962 PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4963 4964 MGETHDR(n, M_NOWAIT, MT_DATA); 4965 if (len > MHLEN) { 4966 if (!(MCLGET(n, M_NOWAIT))) { 4967 m_freem(n); 4968 n = NULL; 4969 } 4970 } 4971 if (!n) { 4972 error = ENOBUFS; 4973 goto fail; 4974 } 4975 4976 n->m_len = len; 4977 n->m_next = NULL; 4978 off = 0; 4979 4980 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 4981 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 4982 4983 m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off); 4984 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); 4985 m_sa->sadb_sa_exttype = SADB_EXT_SA; 4986 m_sa->sadb_sa_spi = spi; /* SPI is already in network byte order */ 4987 off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4988 4989 IPSEC_ASSERT(off == len, 4990 ("length inconsistency (off %u len %u)", off, len)); 4991 4992 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, 4993 SADB_EXT_ADDRESS_DST); 4994 if (!n->m_next) { 4995 m_freem(n); 4996 error = ENOBUFS; 4997 goto fail; 4998 } 4999 5000 if (n->m_len < sizeof(struct sadb_msg)) { 5001 n = m_pullup(n, sizeof(struct sadb_msg)); 5002 if (n == NULL) 5003 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 5004 } 5005 5006 n->m_pkthdr.len = 0; 5007 for (nn = n; nn; nn = nn->m_next) 5008 n->m_pkthdr.len += nn->m_len; 5009 5010 newmsg = mtod(n, struct sadb_msg *); 5011 newmsg->sadb_msg_seq = sav->seq; 5012 newmsg->sadb_msg_errno = 0; 5013 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5014 5015 m_freem(m); 5016 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5017 } 5018 5019 fail: 5020 return (key_senderror(so, m, error)); 5021 } 5022 5023 /* 5024 * allocating new SPI 5025 * called by key_getspi(). 5026 * OUT: 5027 * 0: failure. 5028 * others: success, SPI in network byte order. 5029 */ 5030 static uint32_t 5031 key_do_getnewspi(struct sadb_spirange *spirange, struct secasindex *saidx) 5032 { 5033 uint32_t min, max, newspi, t; 5034 int tries, limit; 5035 5036 SPI_ALLOC_LOCK_ASSERT(); 5037 5038 /* set spi range to allocate */ 5039 if (spirange != NULL) { 5040 min = spirange->sadb_spirange_min; 5041 max = spirange->sadb_spirange_max; 5042 } else { 5043 min = V_key_spi_minval; 5044 max = V_key_spi_maxval; 5045 } 5046 /* IPCOMP needs 2-byte SPI */ 5047 if (saidx->proto == IPPROTO_IPCOMP) { 5048 if (min >= 0x10000) 5049 min = 0xffff; 5050 if (max >= 0x10000) 5051 max = 0xffff; 5052 if (min > max) { 5053 t = min; min = max; max = t; 5054 } 5055 } 5056 5057 if (min == max) { 5058 if (key_checkspidup(htonl(min))) { 5059 ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n", 5060 __func__, min)); 5061 return 0; 5062 } 5063 5064 tries = 1; 5065 newspi = min; 5066 } else { 5067 /* init SPI */ 5068 newspi = 0; 5069 5070 limit = atomic_load_int(&V_key_spi_trycnt); 5071 /* when requesting to allocate spi ranged */ 5072 for (tries = 0; tries < limit; tries++) { 5073 /* generate pseudo-random SPI value ranged. */ 5074 newspi = min + (key_random() % (max - min + 1)); 5075 if (!key_checkspidup(htonl(newspi))) 5076 break; 5077 } 5078 5079 if (tries == limit || newspi == 0) { 5080 ipseclog((LOG_DEBUG, 5081 "%s: failed to allocate SPI.\n", __func__)); 5082 return 0; 5083 } 5084 } 5085 5086 /* statistics */ 5087 keystat.getspi_count = 5088 (keystat.getspi_count + tries) / 2; 5089 5090 return (htonl(newspi)); 5091 } 5092 5093 /* 5094 * Find TCP-MD5 SA with corresponding secasindex. 5095 * If not found, return NULL and fill SPI with usable value if needed. 5096 */ 5097 static struct secasvar * 5098 key_getsav_tcpmd5(struct secasindex *saidx, uint32_t *spi) 5099 { 5100 SAHTREE_RLOCK_TRACKER; 5101 struct secashead *sah; 5102 struct secasvar *sav; 5103 5104 IPSEC_ASSERT(saidx->proto == IPPROTO_TCP, ("wrong proto")); 5105 SAHTREE_RLOCK(); 5106 LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) { 5107 if (sah->saidx.proto != IPPROTO_TCP) 5108 continue; 5109 if (!key_sockaddrcmp(&saidx->dst.sa, &sah->saidx.dst.sa, 0) && 5110 !key_sockaddrcmp(&saidx->src.sa, &sah->saidx.src.sa, 0)) 5111 break; 5112 } 5113 if (sah != NULL) { 5114 if (V_key_preferred_oldsa) 5115 sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue); 5116 else 5117 sav = TAILQ_FIRST(&sah->savtree_alive); 5118 if (sav != NULL) { 5119 SAV_ADDREF(sav); 5120 SAHTREE_RUNLOCK(); 5121 return (sav); 5122 } 5123 } 5124 if (spi == NULL) { 5125 /* No SPI required */ 5126 SAHTREE_RUNLOCK(); 5127 return (NULL); 5128 } 5129 /* Check that SPI is unique */ 5130 LIST_FOREACH(sav, SAVHASH_HASH(*spi), spihash) { 5131 if (sav->spi == *spi) 5132 break; 5133 } 5134 if (sav == NULL) { 5135 SAHTREE_RUNLOCK(); 5136 /* SPI is already unique */ 5137 return (NULL); 5138 } 5139 SAHTREE_RUNLOCK(); 5140 /* XXX: not optimal */ 5141 *spi = key_do_getnewspi(NULL, saidx); 5142 return (NULL); 5143 } 5144 5145 static int 5146 key_updateaddresses(struct socket *so, struct mbuf *m, 5147 const struct sadb_msghdr *mhp, struct secasvar *sav, 5148 struct secasindex *saidx) 5149 { 5150 struct sockaddr *newaddr; 5151 struct secashead *sah; 5152 struct secasvar *newsav, *tmp; 5153 struct mbuf *n; 5154 int error, isnew; 5155 5156 /* Check that we need to change SAH */ 5157 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_SRC)) { 5158 newaddr = (struct sockaddr *)( 5159 ((struct sadb_address *) 5160 mhp->ext[SADB_X_EXT_NEW_ADDRESS_SRC]) + 1); 5161 bcopy(newaddr, &saidx->src, newaddr->sa_len); 5162 key_porttosaddr(&saidx->src.sa, 0); 5163 } 5164 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_DST)) { 5165 newaddr = (struct sockaddr *)( 5166 ((struct sadb_address *) 5167 mhp->ext[SADB_X_EXT_NEW_ADDRESS_DST]) + 1); 5168 bcopy(newaddr, &saidx->dst, newaddr->sa_len); 5169 key_porttosaddr(&saidx->dst.sa, 0); 5170 } 5171 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_SRC) || 5172 !SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_DST)) { 5173 error = key_checksockaddrs(&saidx->src.sa, &saidx->dst.sa); 5174 if (error != 0) { 5175 ipseclog((LOG_DEBUG, "%s: invalid new sockaddr.\n", 5176 __func__)); 5177 return (error); 5178 } 5179 5180 sah = key_getsah(saidx); 5181 if (sah == NULL) { 5182 /* create a new SA index */ 5183 sah = key_newsah(saidx); 5184 if (sah == NULL) { 5185 ipseclog((LOG_DEBUG, 5186 "%s: No more memory.\n", __func__)); 5187 return (ENOBUFS); 5188 } 5189 isnew = 2; /* SAH is new */ 5190 } else 5191 isnew = 1; /* existing SAH is referenced */ 5192 } else { 5193 /* 5194 * src and dst addresses are still the same. 5195 * Do we want to change NAT-T config? 5196 */ 5197 if (sav->sah->saidx.proto != IPPROTO_ESP || 5198 SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_TYPE) || 5199 SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_SPORT) || 5200 SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_DPORT)) { 5201 ipseclog((LOG_DEBUG, 5202 "%s: invalid message: missing required header.\n", 5203 __func__)); 5204 return (EINVAL); 5205 } 5206 /* We hold reference to SA, thus SAH will be referenced too. */ 5207 sah = sav->sah; 5208 isnew = 0; 5209 } 5210 5211 newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, 5212 M_NOWAIT | M_ZERO); 5213 if (newsav == NULL) { 5214 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5215 error = ENOBUFS; 5216 goto fail; 5217 } 5218 5219 /* Clone SA's content into newsav */ 5220 SAV_INITREF(newsav); 5221 bcopy(sav, newsav, offsetof(struct secasvar, chain)); 5222 /* 5223 * We create new NAT-T config if it is needed. 5224 * Old NAT-T config will be freed by key_cleansav() when 5225 * last reference to SA will be released. 5226 */ 5227 newsav->natt = NULL; 5228 newsav->sah = sah; 5229 newsav->state = SADB_SASTATE_MATURE; 5230 error = key_setnatt(newsav, mhp); 5231 if (error != 0) 5232 goto fail; 5233 5234 SAHTREE_WLOCK(); 5235 /* Check that SA is still alive */ 5236 if (sav->state == SADB_SASTATE_DEAD) { 5237 /* SA was unlinked */ 5238 SAHTREE_WUNLOCK(); 5239 error = ESRCH; 5240 goto fail; 5241 } 5242 5243 /* Unlink SA from SAH and SPI hash */ 5244 IPSEC_ASSERT((sav->flags & SADB_X_EXT_F_CLONED) == 0, 5245 ("SA is already cloned")); 5246 IPSEC_ASSERT(sav->state == SADB_SASTATE_MATURE || 5247 sav->state == SADB_SASTATE_DYING, 5248 ("Wrong SA state %u\n", sav->state)); 5249 TAILQ_REMOVE(&sav->sah->savtree_alive, sav, chain); 5250 LIST_REMOVE(sav, spihash); 5251 sav->state = SADB_SASTATE_DEAD; 5252 5253 /* 5254 * Link new SA with SAH. Keep SAs ordered by 5255 * create time (newer are first). 5256 */ 5257 TAILQ_FOREACH(tmp, &sah->savtree_alive, chain) { 5258 if (newsav->created > tmp->created) { 5259 TAILQ_INSERT_BEFORE(tmp, newsav, chain); 5260 break; 5261 } 5262 } 5263 if (tmp == NULL) 5264 TAILQ_INSERT_TAIL(&sah->savtree_alive, newsav, chain); 5265 5266 /* Add new SA into SPI hash. */ 5267 LIST_INSERT_HEAD(SAVHASH_HASH(newsav->spi), newsav, spihash); 5268 5269 /* Add new SAH into SADB. */ 5270 if (isnew == 2) { 5271 TAILQ_INSERT_HEAD(&V_sahtree, sah, chain); 5272 LIST_INSERT_HEAD(SAHADDRHASH_HASH(saidx), sah, addrhash); 5273 sah->state = SADB_SASTATE_MATURE; 5274 SAH_ADDREF(sah); /* newsav references new SAH */ 5275 } 5276 /* 5277 * isnew == 1 -> @sah was referenced by key_getsah(). 5278 * isnew == 0 -> we use the same @sah, that was used by @sav, 5279 * and we use its reference for @newsav. 5280 */ 5281 SECASVAR_LOCK(sav); 5282 /* XXX: replace cntr with pointer? */ 5283 newsav->cntr = sav->cntr; 5284 sav->flags |= SADB_X_EXT_F_CLONED; 5285 SECASVAR_UNLOCK(sav); 5286 5287 SAHTREE_WUNLOCK(); 5288 5289 KEYDBG(KEY_STAMP, 5290 printf("%s: SA(%p) cloned into SA(%p)\n", 5291 __func__, sav, newsav)); 5292 KEYDBG(KEY_DATA, kdebug_secasv(newsav)); 5293 5294 key_freesav(&sav); /* release last reference */ 5295 5296 /* set msg buf from mhp */ 5297 n = key_getmsgbuf_x1(m, mhp); 5298 if (n == NULL) { 5299 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5300 return (ENOBUFS); 5301 } 5302 m_freem(m); 5303 key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5304 return (0); 5305 fail: 5306 if (isnew != 0) 5307 key_freesah(&sah); 5308 if (newsav != NULL) { 5309 if (newsav->natt != NULL) 5310 free(newsav->natt, M_IPSEC_MISC); 5311 free(newsav, M_IPSEC_SA); 5312 } 5313 return (error); 5314 } 5315 5316 /* 5317 * SADB_UPDATE processing 5318 * receive 5319 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5320 * key(AE), (identity(SD),) (sensitivity)> 5321 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. 5322 * and send 5323 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5324 * (identity(SD),) (sensitivity)> 5325 * to the ikmpd. 5326 * 5327 * m will always be freed. 5328 */ 5329 static int 5330 key_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5331 { 5332 struct secasindex saidx; 5333 struct sadb_address *src0, *dst0; 5334 struct sadb_sa *sa0; 5335 struct secasvar *sav; 5336 uint32_t reqid; 5337 int error; 5338 uint8_t mode, proto; 5339 5340 IPSEC_ASSERT(so != NULL, ("null socket")); 5341 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5342 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5343 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5344 5345 /* map satype to proto */ 5346 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5347 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5348 __func__)); 5349 return key_senderror(so, m, EINVAL); 5350 } 5351 5352 if (SADB_CHECKHDR(mhp, SADB_EXT_SA) || 5353 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || 5354 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) || 5355 (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) && 5356 !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) || 5357 (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT) && 5358 !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD))) { 5359 ipseclog((LOG_DEBUG, 5360 "%s: invalid message: missing required header.\n", 5361 __func__)); 5362 return key_senderror(so, m, EINVAL); 5363 } 5364 if (SADB_CHECKLEN(mhp, SADB_EXT_SA) || 5365 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || 5366 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) { 5367 ipseclog((LOG_DEBUG, 5368 "%s: invalid message: wrong header size.\n", __func__)); 5369 return key_senderror(so, m, EINVAL); 5370 } 5371 if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) { 5372 mode = IPSEC_MODE_ANY; 5373 reqid = 0; 5374 } else { 5375 if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) { 5376 ipseclog((LOG_DEBUG, 5377 "%s: invalid message: wrong header size.\n", 5378 __func__)); 5379 return key_senderror(so, m, EINVAL); 5380 } 5381 mode = ((struct sadb_x_sa2 *) 5382 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 5383 reqid = ((struct sadb_x_sa2 *) 5384 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 5385 } 5386 5387 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5388 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5389 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5390 5391 /* 5392 * Only SADB_SASTATE_MATURE SAs may be submitted in an 5393 * SADB_UPDATE message. 5394 */ 5395 if (sa0->sadb_sa_state != SADB_SASTATE_MATURE) { 5396 ipseclog((LOG_DEBUG, "%s: invalid state.\n", __func__)); 5397 #ifdef PFKEY_STRICT_CHECKS 5398 return key_senderror(so, m, EINVAL); 5399 #endif 5400 } 5401 error = key_checksockaddrs((struct sockaddr *)(src0 + 1), 5402 (struct sockaddr *)(dst0 + 1)); 5403 if (error != 0) { 5404 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); 5405 return key_senderror(so, m, error); 5406 } 5407 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 5408 sav = key_getsavbyspi(sa0->sadb_sa_spi); 5409 if (sav == NULL) { 5410 ipseclog((LOG_DEBUG, "%s: no SA found for SPI %u\n", 5411 __func__, ntohl(sa0->sadb_sa_spi))); 5412 return key_senderror(so, m, EINVAL); 5413 } 5414 /* 5415 * Check that SADB_UPDATE issued by the same process that did 5416 * SADB_GETSPI or SADB_ADD. 5417 */ 5418 if (sav->pid != mhp->msg->sadb_msg_pid) { 5419 ipseclog((LOG_DEBUG, 5420 "%s: pid mismatched (SPI %u, pid %u vs. %u)\n", __func__, 5421 ntohl(sav->spi), sav->pid, mhp->msg->sadb_msg_pid)); 5422 key_freesav(&sav); 5423 return key_senderror(so, m, EINVAL); 5424 } 5425 /* saidx should match with SA. */ 5426 if (key_cmpsaidx(&sav->sah->saidx, &saidx, CMP_MODE_REQID) == 0) { 5427 ipseclog((LOG_DEBUG, "%s: saidx mismatched for SPI %u\n", 5428 __func__, ntohl(sav->spi))); 5429 key_freesav(&sav); 5430 return key_senderror(so, m, ESRCH); 5431 } 5432 5433 if (sav->state == SADB_SASTATE_LARVAL) { 5434 if ((mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5435 SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT)) || 5436 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5437 SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH))) { 5438 ipseclog((LOG_DEBUG, 5439 "%s: invalid message: missing required header.\n", 5440 __func__)); 5441 key_freesav(&sav); 5442 return key_senderror(so, m, EINVAL); 5443 } 5444 /* 5445 * We can set any values except src, dst and SPI. 5446 */ 5447 error = key_setsaval(sav, mhp); 5448 if (error != 0) { 5449 key_freesav(&sav); 5450 return (key_senderror(so, m, error)); 5451 } 5452 /* Change SA state to MATURE */ 5453 SAHTREE_WLOCK(); 5454 if (sav->state != SADB_SASTATE_LARVAL) { 5455 /* SA was deleted or another thread made it MATURE. */ 5456 SAHTREE_WUNLOCK(); 5457 key_freesav(&sav); 5458 return (key_senderror(so, m, ESRCH)); 5459 } 5460 /* 5461 * NOTE: we keep SAs in savtree_alive ordered by created 5462 * time. When SA's state changed from LARVAL to MATURE, 5463 * we update its created time in key_setsaval() and move 5464 * it into head of savtree_alive. 5465 */ 5466 TAILQ_REMOVE(&sav->sah->savtree_larval, sav, chain); 5467 TAILQ_INSERT_HEAD(&sav->sah->savtree_alive, sav, chain); 5468 sav->state = SADB_SASTATE_MATURE; 5469 SAHTREE_WUNLOCK(); 5470 } else { 5471 /* 5472 * For DYING and MATURE SA we can change only state 5473 * and lifetimes. Report EINVAL if something else attempted 5474 * to change. 5475 */ 5476 if (!SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT) || 5477 !SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH)) { 5478 key_freesav(&sav); 5479 return (key_senderror(so, m, EINVAL)); 5480 } 5481 error = key_updatelifetimes(sav, mhp); 5482 if (error != 0) { 5483 key_freesav(&sav); 5484 return (key_senderror(so, m, error)); 5485 } 5486 /* 5487 * This is FreeBSD extension to RFC2367. 5488 * IKEd can specify SADB_X_EXT_NEW_ADDRESS_SRC and/or 5489 * SADB_X_EXT_NEW_ADDRESS_DST when it wants to change 5490 * SA addresses (for example to implement MOBIKE protocol 5491 * as described in RFC4555). Also we allow to change 5492 * NAT-T config. 5493 */ 5494 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_SRC) || 5495 !SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_DST) || 5496 !SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_TYPE) || 5497 sav->natt != NULL) { 5498 error = key_updateaddresses(so, m, mhp, sav, &saidx); 5499 key_freesav(&sav); 5500 if (error != 0) 5501 return (key_senderror(so, m, error)); 5502 return (0); 5503 } 5504 /* Check that SA is still alive */ 5505 SAHTREE_WLOCK(); 5506 if (sav->state == SADB_SASTATE_DEAD) { 5507 /* SA was unlinked */ 5508 SAHTREE_WUNLOCK(); 5509 key_freesav(&sav); 5510 return (key_senderror(so, m, ESRCH)); 5511 } 5512 /* 5513 * NOTE: there is possible state moving from DYING to MATURE, 5514 * but this doesn't change created time, so we won't reorder 5515 * this SA. 5516 */ 5517 sav->state = SADB_SASTATE_MATURE; 5518 SAHTREE_WUNLOCK(); 5519 } 5520 KEYDBG(KEY_STAMP, 5521 printf("%s: SA(%p)\n", __func__, sav)); 5522 KEYDBG(KEY_DATA, kdebug_secasv(sav)); 5523 key_freesav(&sav); 5524 5525 { 5526 struct mbuf *n; 5527 5528 /* set msg buf from mhp */ 5529 n = key_getmsgbuf_x1(m, mhp); 5530 if (n == NULL) { 5531 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5532 return key_senderror(so, m, ENOBUFS); 5533 } 5534 5535 m_freem(m); 5536 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5537 } 5538 } 5539 5540 /* 5541 * SADB_ADD processing 5542 * add an entry to SA database, when received 5543 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5544 * key(AE), (identity(SD),) (sensitivity)> 5545 * from the ikmpd, 5546 * and send 5547 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5548 * (identity(SD),) (sensitivity)> 5549 * to the ikmpd. 5550 * 5551 * IGNORE identity and sensitivity messages. 5552 * 5553 * m will always be freed. 5554 */ 5555 static int 5556 key_add(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5557 { 5558 struct secasindex saidx; 5559 struct sadb_address *src0, *dst0; 5560 struct sadb_sa *sa0; 5561 struct secasvar *sav; 5562 uint32_t reqid, spi; 5563 uint8_t mode, proto; 5564 int error; 5565 5566 IPSEC_ASSERT(so != NULL, ("null socket")); 5567 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5568 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5569 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5570 5571 /* map satype to proto */ 5572 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5573 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5574 __func__)); 5575 return key_senderror(so, m, EINVAL); 5576 } 5577 5578 if (SADB_CHECKHDR(mhp, SADB_EXT_SA) || 5579 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || 5580 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) || 5581 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && ( 5582 SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT) || 5583 SADB_CHECKLEN(mhp, SADB_EXT_KEY_ENCRYPT))) || 5584 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && ( 5585 SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH) || 5586 SADB_CHECKLEN(mhp, SADB_EXT_KEY_AUTH))) || 5587 (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) && 5588 !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) || 5589 (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT) && 5590 !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD))) { 5591 ipseclog((LOG_DEBUG, 5592 "%s: invalid message: missing required header.\n", 5593 __func__)); 5594 return key_senderror(so, m, EINVAL); 5595 } 5596 if (SADB_CHECKLEN(mhp, SADB_EXT_SA) || 5597 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || 5598 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) { 5599 ipseclog((LOG_DEBUG, 5600 "%s: invalid message: wrong header size.\n", __func__)); 5601 return key_senderror(so, m, EINVAL); 5602 } 5603 if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) { 5604 mode = IPSEC_MODE_ANY; 5605 reqid = 0; 5606 } else { 5607 if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) { 5608 ipseclog((LOG_DEBUG, 5609 "%s: invalid message: wrong header size.\n", 5610 __func__)); 5611 return key_senderror(so, m, EINVAL); 5612 } 5613 mode = ((struct sadb_x_sa2 *) 5614 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 5615 reqid = ((struct sadb_x_sa2 *) 5616 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 5617 } 5618 5619 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5620 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5621 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5622 5623 /* 5624 * Only SADB_SASTATE_MATURE SAs may be submitted in an 5625 * SADB_ADD message. 5626 */ 5627 if (sa0->sadb_sa_state != SADB_SASTATE_MATURE) { 5628 ipseclog((LOG_DEBUG, "%s: invalid state.\n", __func__)); 5629 #ifdef PFKEY_STRICT_CHECKS 5630 return key_senderror(so, m, EINVAL); 5631 #endif 5632 } 5633 error = key_checksockaddrs((struct sockaddr *)(src0 + 1), 5634 (struct sockaddr *)(dst0 + 1)); 5635 if (error != 0) { 5636 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); 5637 return key_senderror(so, m, error); 5638 } 5639 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 5640 spi = sa0->sadb_sa_spi; 5641 /* 5642 * For TCP-MD5 SAs we don't use SPI. Check the uniqueness using 5643 * secasindex. 5644 * XXXAE: IPComp seems also doesn't use SPI. 5645 */ 5646 SPI_ALLOC_LOCK(); 5647 if (proto == IPPROTO_TCP) { 5648 sav = key_getsav_tcpmd5(&saidx, &spi); 5649 if (sav == NULL && spi == 0) { 5650 SPI_ALLOC_UNLOCK(); 5651 /* Failed to allocate SPI */ 5652 ipseclog((LOG_DEBUG, "%s: SA already exists.\n", 5653 __func__)); 5654 return key_senderror(so, m, EEXIST); 5655 } 5656 /* XXX: SPI that we report back can have another value */ 5657 } else { 5658 /* We can create new SA only if SPI is different. */ 5659 sav = key_getsavbyspi(spi); 5660 } 5661 if (sav != NULL) { 5662 SPI_ALLOC_UNLOCK(); 5663 key_freesav(&sav); 5664 ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__)); 5665 return key_senderror(so, m, EEXIST); 5666 } 5667 5668 sav = key_newsav(mhp, &saidx, spi, &error); 5669 SPI_ALLOC_UNLOCK(); 5670 if (sav == NULL) 5671 return key_senderror(so, m, error); 5672 KEYDBG(KEY_STAMP, 5673 printf("%s: return SA(%p)\n", __func__, sav)); 5674 KEYDBG(KEY_DATA, kdebug_secasv(sav)); 5675 /* 5676 * If SADB_ADD was in response to SADB_ACQUIRE, we need to schedule 5677 * ACQ for deletion. 5678 */ 5679 if (sav->seq != 0) 5680 key_acqdone(&saidx, sav->seq); 5681 5682 { 5683 /* 5684 * Don't call key_freesav() on error here, as we would like to 5685 * keep the SA in the database. 5686 */ 5687 struct mbuf *n; 5688 5689 /* set msg buf from mhp */ 5690 n = key_getmsgbuf_x1(m, mhp); 5691 if (n == NULL) { 5692 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5693 return key_senderror(so, m, ENOBUFS); 5694 } 5695 5696 m_freem(m); 5697 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5698 } 5699 } 5700 5701 /* 5702 * NAT-T support. 5703 * IKEd may request the use ESP in UDP encapsulation when it detects the 5704 * presence of NAT. It uses NAT-T extension headers for such SAs to specify 5705 * parameters needed for encapsulation and decapsulation. These PF_KEY 5706 * extension headers are not standardized, so this comment addresses our 5707 * implementation. 5708 * SADB_X_EXT_NAT_T_TYPE specifies type of encapsulation, we support only 5709 * UDP_ENCAP_ESPINUDP as described in RFC3948. 5710 * SADB_X_EXT_NAT_T_SPORT/DPORT specifies source and destination ports for 5711 * UDP header. We use these ports in UDP encapsulation procedure, also we 5712 * can check them in UDP decapsulation procedure. 5713 * SADB_X_EXT_NAT_T_OA[IR] specifies original address of initiator or 5714 * responder. These addresses can be used for transport mode to adjust 5715 * checksum after decapsulation and decryption. Since original IP addresses 5716 * used by peer usually different (we detected presence of NAT), TCP/UDP 5717 * pseudo header checksum and IP header checksum was calculated using original 5718 * addresses. After decapsulation and decryption we need to adjust checksum 5719 * to have correct datagram. 5720 * 5721 * We expect presence of NAT-T extension headers only in SADB_ADD and 5722 * SADB_UPDATE messages. We report NAT-T extension headers in replies 5723 * to SADB_ADD, SADB_UPDATE, SADB_GET, and SADB_DUMP messages. 5724 */ 5725 static int 5726 key_setnatt(struct secasvar *sav, const struct sadb_msghdr *mhp) 5727 { 5728 struct sadb_x_nat_t_port *port; 5729 struct sadb_x_nat_t_type *type; 5730 struct sadb_address *oai, *oar; 5731 struct sockaddr *sa; 5732 uint32_t addr; 5733 uint16_t cksum; 5734 5735 IPSEC_ASSERT(sav->natt == NULL, ("natt is already initialized")); 5736 /* 5737 * Ignore NAT-T headers if sproto isn't ESP. 5738 */ 5739 if (sav->sah->saidx.proto != IPPROTO_ESP) 5740 return (0); 5741 5742 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_TYPE) && 5743 !SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_SPORT) && 5744 !SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_DPORT)) { 5745 if (SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_TYPE) || 5746 SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_SPORT) || 5747 SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_DPORT)) { 5748 ipseclog((LOG_DEBUG, 5749 "%s: invalid message: wrong header size.\n", 5750 __func__)); 5751 return (EINVAL); 5752 } 5753 } else 5754 return (0); 5755 5756 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5757 if (type->sadb_x_nat_t_type_type != UDP_ENCAP_ESPINUDP) { 5758 ipseclog((LOG_DEBUG, "%s: unsupported NAT-T type %u.\n", 5759 __func__, type->sadb_x_nat_t_type_type)); 5760 return (EINVAL); 5761 } 5762 /* 5763 * Allocate storage for NAT-T config. 5764 * On error it will be released by key_cleansav(). 5765 */ 5766 sav->natt = malloc(sizeof(struct secnatt), M_IPSEC_MISC, 5767 M_NOWAIT | M_ZERO); 5768 if (sav->natt == NULL) { 5769 PFKEYSTAT_INC(in_nomem); 5770 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5771 return (ENOBUFS); 5772 } 5773 port = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5774 if (port->sadb_x_nat_t_port_port == 0) { 5775 ipseclog((LOG_DEBUG, "%s: invalid NAT-T sport specified.\n", 5776 __func__)); 5777 return (EINVAL); 5778 } 5779 sav->natt->sport = port->sadb_x_nat_t_port_port; 5780 port = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5781 if (port->sadb_x_nat_t_port_port == 0) { 5782 ipseclog((LOG_DEBUG, "%s: invalid NAT-T dport specified.\n", 5783 __func__)); 5784 return (EINVAL); 5785 } 5786 sav->natt->dport = port->sadb_x_nat_t_port_port; 5787 5788 /* 5789 * SADB_X_EXT_NAT_T_OAI and SADB_X_EXT_NAT_T_OAR are optional 5790 * and needed only for transport mode IPsec. 5791 * Usually NAT translates only one address, but it is possible, 5792 * that both addresses could be translated. 5793 * NOTE: Value of SADB_X_EXT_NAT_T_OAI is equal to SADB_X_EXT_NAT_T_OA. 5794 */ 5795 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_OAI)) { 5796 if (SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_OAI)) { 5797 ipseclog((LOG_DEBUG, 5798 "%s: invalid message: wrong header size.\n", 5799 __func__)); 5800 return (EINVAL); 5801 } 5802 oai = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5803 } else 5804 oai = NULL; 5805 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_OAR)) { 5806 if (SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_OAR)) { 5807 ipseclog((LOG_DEBUG, 5808 "%s: invalid message: wrong header size.\n", 5809 __func__)); 5810 return (EINVAL); 5811 } 5812 oar = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5813 } else 5814 oar = NULL; 5815 5816 /* Initialize addresses only for transport mode */ 5817 if (sav->sah->saidx.mode != IPSEC_MODE_TUNNEL) { 5818 cksum = 0; 5819 if (oai != NULL) { 5820 /* Currently we support only AF_INET */ 5821 sa = (struct sockaddr *)(oai + 1); 5822 if (sa->sa_family != AF_INET || 5823 sa->sa_len != sizeof(struct sockaddr_in)) { 5824 ipseclog((LOG_DEBUG, 5825 "%s: wrong NAT-OAi header.\n", 5826 __func__)); 5827 return (EINVAL); 5828 } 5829 /* Ignore address if it the same */ 5830 if (((struct sockaddr_in *)sa)->sin_addr.s_addr != 5831 sav->sah->saidx.src.sin.sin_addr.s_addr) { 5832 bcopy(sa, &sav->natt->oai.sa, sa->sa_len); 5833 sav->natt->flags |= IPSEC_NATT_F_OAI; 5834 /* Calculate checksum delta */ 5835 addr = sav->sah->saidx.src.sin.sin_addr.s_addr; 5836 cksum = in_addword(cksum, ~addr >> 16); 5837 cksum = in_addword(cksum, ~addr & 0xffff); 5838 addr = sav->natt->oai.sin.sin_addr.s_addr; 5839 cksum = in_addword(cksum, addr >> 16); 5840 cksum = in_addword(cksum, addr & 0xffff); 5841 } 5842 } 5843 if (oar != NULL) { 5844 /* Currently we support only AF_INET */ 5845 sa = (struct sockaddr *)(oar + 1); 5846 if (sa->sa_family != AF_INET || 5847 sa->sa_len != sizeof(struct sockaddr_in)) { 5848 ipseclog((LOG_DEBUG, 5849 "%s: wrong NAT-OAr header.\n", 5850 __func__)); 5851 return (EINVAL); 5852 } 5853 /* Ignore address if it the same */ 5854 if (((struct sockaddr_in *)sa)->sin_addr.s_addr != 5855 sav->sah->saidx.dst.sin.sin_addr.s_addr) { 5856 bcopy(sa, &sav->natt->oar.sa, sa->sa_len); 5857 sav->natt->flags |= IPSEC_NATT_F_OAR; 5858 /* Calculate checksum delta */ 5859 addr = sav->sah->saidx.dst.sin.sin_addr.s_addr; 5860 cksum = in_addword(cksum, ~addr >> 16); 5861 cksum = in_addword(cksum, ~addr & 0xffff); 5862 addr = sav->natt->oar.sin.sin_addr.s_addr; 5863 cksum = in_addword(cksum, addr >> 16); 5864 cksum = in_addword(cksum, addr & 0xffff); 5865 } 5866 } 5867 sav->natt->cksum = cksum; 5868 } 5869 return (0); 5870 } 5871 5872 static int 5873 key_setident(struct secashead *sah, const struct sadb_msghdr *mhp) 5874 { 5875 const struct sadb_ident *idsrc, *iddst; 5876 5877 IPSEC_ASSERT(sah != NULL, ("null secashead")); 5878 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5879 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5880 5881 /* don't make buffer if not there */ 5882 if (SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_SRC) && 5883 SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_DST)) { 5884 sah->idents = NULL; 5885 sah->identd = NULL; 5886 return (0); 5887 } 5888 5889 if (SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_SRC) || 5890 SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_DST)) { 5891 ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__)); 5892 return (EINVAL); 5893 } 5894 5895 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC]; 5896 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST]; 5897 5898 /* validity check */ 5899 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { 5900 ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__)); 5901 return EINVAL; 5902 } 5903 5904 switch (idsrc->sadb_ident_type) { 5905 case SADB_IDENTTYPE_PREFIX: 5906 case SADB_IDENTTYPE_FQDN: 5907 case SADB_IDENTTYPE_USERFQDN: 5908 default: 5909 /* XXX do nothing */ 5910 sah->idents = NULL; 5911 sah->identd = NULL; 5912 return 0; 5913 } 5914 5915 /* make structure */ 5916 sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5917 if (sah->idents == NULL) { 5918 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5919 return ENOBUFS; 5920 } 5921 sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5922 if (sah->identd == NULL) { 5923 free(sah->idents, M_IPSEC_MISC); 5924 sah->idents = NULL; 5925 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5926 return ENOBUFS; 5927 } 5928 sah->idents->type = idsrc->sadb_ident_type; 5929 sah->idents->id = idsrc->sadb_ident_id; 5930 5931 sah->identd->type = iddst->sadb_ident_type; 5932 sah->identd->id = iddst->sadb_ident_id; 5933 5934 return 0; 5935 } 5936 5937 /* 5938 * m will not be freed on return. 5939 * it is caller's responsibility to free the result. 5940 * 5941 * Called from SADB_ADD and SADB_UPDATE. Reply will contain headers 5942 * from the request in defined order. 5943 */ 5944 static struct mbuf * 5945 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp) 5946 { 5947 struct mbuf *n; 5948 5949 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5950 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5951 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5952 5953 /* create new sadb_msg to reply. */ 5954 n = key_gather_mbuf(m, mhp, 1, 16, SADB_EXT_RESERVED, 5955 SADB_EXT_SA, SADB_X_EXT_SA2, 5956 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, 5957 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 5958 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST, 5959 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT, 5960 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI, 5961 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NEW_ADDRESS_SRC, 5962 SADB_X_EXT_NEW_ADDRESS_DST); 5963 if (!n) 5964 return NULL; 5965 5966 if (n->m_len < sizeof(struct sadb_msg)) { 5967 n = m_pullup(n, sizeof(struct sadb_msg)); 5968 if (n == NULL) 5969 return NULL; 5970 } 5971 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; 5972 mtod(n, struct sadb_msg *)->sadb_msg_len = 5973 PFKEY_UNIT64(n->m_pkthdr.len); 5974 5975 return n; 5976 } 5977 5978 /* 5979 * SADB_DELETE processing 5980 * receive 5981 * <base, SA(*), address(SD)> 5982 * from the ikmpd, and set SADB_SASTATE_DEAD, 5983 * and send, 5984 * <base, SA(*), address(SD)> 5985 * to the ikmpd. 5986 * 5987 * m will always be freed. 5988 */ 5989 static int 5990 key_delete(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5991 { 5992 struct secasindex saidx; 5993 struct sadb_address *src0, *dst0; 5994 struct secasvar *sav; 5995 struct sadb_sa *sa0; 5996 uint8_t proto; 5997 5998 IPSEC_ASSERT(so != NULL, ("null socket")); 5999 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6000 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6001 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6002 6003 /* map satype to proto */ 6004 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6005 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6006 __func__)); 6007 return key_senderror(so, m, EINVAL); 6008 } 6009 6010 if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || 6011 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) || 6012 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || 6013 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) { 6014 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6015 __func__)); 6016 return key_senderror(so, m, EINVAL); 6017 } 6018 6019 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 6020 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 6021 6022 if (key_checksockaddrs((struct sockaddr *)(src0 + 1), 6023 (struct sockaddr *)(dst0 + 1)) != 0) { 6024 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); 6025 return (key_senderror(so, m, EINVAL)); 6026 } 6027 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 6028 if (SADB_CHECKHDR(mhp, SADB_EXT_SA)) { 6029 /* 6030 * Caller wants us to delete all non-LARVAL SAs 6031 * that match the src/dst. This is used during 6032 * IKE INITIAL-CONTACT. 6033 * XXXAE: this looks like some extension to RFC2367. 6034 */ 6035 ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__)); 6036 return (key_delete_all(so, m, mhp, &saidx)); 6037 } 6038 if (SADB_CHECKLEN(mhp, SADB_EXT_SA)) { 6039 ipseclog((LOG_DEBUG, 6040 "%s: invalid message: wrong header size.\n", __func__)); 6041 return (key_senderror(so, m, EINVAL)); 6042 } 6043 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 6044 SPI_ALLOC_LOCK(); 6045 if (proto == IPPROTO_TCP) 6046 sav = key_getsav_tcpmd5(&saidx, NULL); 6047 else 6048 sav = key_getsavbyspi(sa0->sadb_sa_spi); 6049 SPI_ALLOC_UNLOCK(); 6050 if (sav == NULL) { 6051 ipseclog((LOG_DEBUG, "%s: no SA found for SPI %u.\n", 6052 __func__, ntohl(sa0->sadb_sa_spi))); 6053 return (key_senderror(so, m, ESRCH)); 6054 } 6055 if (key_cmpsaidx(&sav->sah->saidx, &saidx, CMP_HEAD) == 0) { 6056 ipseclog((LOG_DEBUG, "%s: saidx mismatched for SPI %u.\n", 6057 __func__, ntohl(sav->spi))); 6058 key_freesav(&sav); 6059 return (key_senderror(so, m, ESRCH)); 6060 } 6061 KEYDBG(KEY_STAMP, 6062 printf("%s: SA(%p)\n", __func__, sav)); 6063 KEYDBG(KEY_DATA, kdebug_secasv(sav)); 6064 key_unlinksav(sav); 6065 key_freesav(&sav); 6066 6067 { 6068 struct mbuf *n; 6069 struct sadb_msg *newmsg; 6070 6071 /* create new sadb_msg to reply. */ 6072 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 6073 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 6074 if (!n) 6075 return key_senderror(so, m, ENOBUFS); 6076 6077 if (n->m_len < sizeof(struct sadb_msg)) { 6078 n = m_pullup(n, sizeof(struct sadb_msg)); 6079 if (n == NULL) 6080 return key_senderror(so, m, ENOBUFS); 6081 } 6082 newmsg = mtod(n, struct sadb_msg *); 6083 newmsg->sadb_msg_errno = 0; 6084 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 6085 6086 m_freem(m); 6087 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 6088 } 6089 } 6090 6091 /* 6092 * delete all SAs for src/dst. Called from key_delete(). 6093 */ 6094 static int 6095 key_delete_all(struct socket *so, struct mbuf *m, 6096 const struct sadb_msghdr *mhp, struct secasindex *saidx) 6097 { 6098 struct secasvar_queue drainq; 6099 struct secashead *sah; 6100 struct secasvar *sav, *nextsav; 6101 6102 TAILQ_INIT(&drainq); 6103 SAHTREE_WLOCK(); 6104 LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) { 6105 if (key_cmpsaidx(&sah->saidx, saidx, CMP_HEAD) == 0) 6106 continue; 6107 /* Move all ALIVE SAs into drainq */ 6108 TAILQ_CONCAT(&drainq, &sah->savtree_alive, chain); 6109 } 6110 /* Unlink all queued SAs from SPI hash */ 6111 TAILQ_FOREACH(sav, &drainq, chain) { 6112 sav->state = SADB_SASTATE_DEAD; 6113 LIST_REMOVE(sav, spihash); 6114 } 6115 SAHTREE_WUNLOCK(); 6116 /* Now we can release reference for all SAs in drainq */ 6117 sav = TAILQ_FIRST(&drainq); 6118 while (sav != NULL) { 6119 KEYDBG(KEY_STAMP, 6120 printf("%s: SA(%p)\n", __func__, sav)); 6121 KEYDBG(KEY_DATA, kdebug_secasv(sav)); 6122 nextsav = TAILQ_NEXT(sav, chain); 6123 key_freesah(&sav->sah); /* release reference from SAV */ 6124 key_freesav(&sav); /* release last reference */ 6125 sav = nextsav; 6126 } 6127 6128 { 6129 struct mbuf *n; 6130 struct sadb_msg *newmsg; 6131 6132 /* create new sadb_msg to reply. */ 6133 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, 6134 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 6135 if (!n) 6136 return key_senderror(so, m, ENOBUFS); 6137 6138 if (n->m_len < sizeof(struct sadb_msg)) { 6139 n = m_pullup(n, sizeof(struct sadb_msg)); 6140 if (n == NULL) 6141 return key_senderror(so, m, ENOBUFS); 6142 } 6143 newmsg = mtod(n, struct sadb_msg *); 6144 newmsg->sadb_msg_errno = 0; 6145 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 6146 6147 m_freem(m); 6148 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 6149 } 6150 } 6151 6152 /* 6153 * Delete all alive SAs for corresponding xform. 6154 * Larval SAs have not initialized tdb_xform, so it is safe to leave them 6155 * here when xform disappears. 6156 */ 6157 void 6158 key_delete_xform(const struct xformsw *xsp) 6159 { 6160 struct secasvar_queue drainq; 6161 struct secashead *sah; 6162 struct secasvar *sav, *nextsav; 6163 6164 TAILQ_INIT(&drainq); 6165 SAHTREE_WLOCK(); 6166 TAILQ_FOREACH(sah, &V_sahtree, chain) { 6167 sav = TAILQ_FIRST(&sah->savtree_alive); 6168 if (sav == NULL) 6169 continue; 6170 if (sav->tdb_xform != xsp) 6171 continue; 6172 /* 6173 * It is supposed that all SAs in the chain are related to 6174 * one xform. 6175 */ 6176 TAILQ_CONCAT(&drainq, &sah->savtree_alive, chain); 6177 } 6178 /* Unlink all queued SAs from SPI hash */ 6179 TAILQ_FOREACH(sav, &drainq, chain) { 6180 sav->state = SADB_SASTATE_DEAD; 6181 LIST_REMOVE(sav, spihash); 6182 } 6183 SAHTREE_WUNLOCK(); 6184 6185 /* Now we can release reference for all SAs in drainq */ 6186 sav = TAILQ_FIRST(&drainq); 6187 while (sav != NULL) { 6188 KEYDBG(KEY_STAMP, 6189 printf("%s: SA(%p)\n", __func__, sav)); 6190 KEYDBG(KEY_DATA, kdebug_secasv(sav)); 6191 nextsav = TAILQ_NEXT(sav, chain); 6192 key_freesah(&sav->sah); /* release reference from SAV */ 6193 key_freesav(&sav); /* release last reference */ 6194 sav = nextsav; 6195 } 6196 } 6197 6198 /* 6199 * SADB_GET processing 6200 * receive 6201 * <base, SA(*), address(SD)> 6202 * from the ikmpd, and get a SP and a SA to respond, 6203 * and send, 6204 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), 6205 * (identity(SD),) (sensitivity)> 6206 * to the ikmpd. 6207 * 6208 * m will always be freed. 6209 */ 6210 static int 6211 key_get(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 6212 { 6213 struct secasindex saidx; 6214 struct sadb_address *src0, *dst0; 6215 struct sadb_sa *sa0; 6216 struct secasvar *sav; 6217 uint8_t proto; 6218 6219 IPSEC_ASSERT(so != NULL, ("null socket")); 6220 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6221 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6222 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6223 6224 /* map satype to proto */ 6225 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6226 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6227 __func__)); 6228 return key_senderror(so, m, EINVAL); 6229 } 6230 6231 if (SADB_CHECKHDR(mhp, SADB_EXT_SA) || 6232 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || 6233 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST)) { 6234 ipseclog((LOG_DEBUG, 6235 "%s: invalid message: missing required header.\n", 6236 __func__)); 6237 return key_senderror(so, m, EINVAL); 6238 } 6239 if (SADB_CHECKLEN(mhp, SADB_EXT_SA) || 6240 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || 6241 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) { 6242 ipseclog((LOG_DEBUG, 6243 "%s: invalid message: wrong header size.\n", __func__)); 6244 return key_senderror(so, m, EINVAL); 6245 } 6246 6247 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 6248 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 6249 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 6250 6251 if (key_checksockaddrs((struct sockaddr *)(src0 + 1), 6252 (struct sockaddr *)(dst0 + 1)) != 0) { 6253 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); 6254 return key_senderror(so, m, EINVAL); 6255 } 6256 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 6257 6258 SPI_ALLOC_LOCK(); 6259 if (proto == IPPROTO_TCP) 6260 sav = key_getsav_tcpmd5(&saidx, NULL); 6261 else 6262 sav = key_getsavbyspi(sa0->sadb_sa_spi); 6263 SPI_ALLOC_UNLOCK(); 6264 if (sav == NULL) { 6265 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 6266 return key_senderror(so, m, ESRCH); 6267 } 6268 if (key_cmpsaidx(&sav->sah->saidx, &saidx, CMP_HEAD) == 0) { 6269 ipseclog((LOG_DEBUG, "%s: saidx mismatched for SPI %u.\n", 6270 __func__, ntohl(sa0->sadb_sa_spi))); 6271 key_freesav(&sav); 6272 return (key_senderror(so, m, ESRCH)); 6273 } 6274 6275 { 6276 struct mbuf *n; 6277 uint8_t satype; 6278 6279 /* map proto to satype */ 6280 if ((satype = key_proto2satype(sav->sah->saidx.proto)) == 0) { 6281 ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n", 6282 __func__)); 6283 key_freesav(&sav); 6284 return key_senderror(so, m, EINVAL); 6285 } 6286 6287 /* create new sadb_msg to reply. */ 6288 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, 6289 mhp->msg->sadb_msg_pid); 6290 6291 key_freesav(&sav); 6292 if (!n) 6293 return key_senderror(so, m, ENOBUFS); 6294 6295 m_freem(m); 6296 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 6297 } 6298 } 6299 6300 /* XXX make it sysctl-configurable? */ 6301 static void 6302 key_getcomb_setlifetime(struct sadb_comb *comb) 6303 { 6304 6305 comb->sadb_comb_soft_allocations = 1; 6306 comb->sadb_comb_hard_allocations = 1; 6307 comb->sadb_comb_soft_bytes = 0; 6308 comb->sadb_comb_hard_bytes = 0; 6309 comb->sadb_comb_hard_addtime = 86400; /* 1 day */ 6310 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100; 6311 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */ 6312 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100; 6313 } 6314 6315 /* 6316 * XXX reorder combinations by preference 6317 * XXX no idea if the user wants ESP authentication or not 6318 */ 6319 static struct mbuf * 6320 key_getcomb_ealg(void) 6321 { 6322 struct sadb_comb *comb; 6323 const struct enc_xform *algo; 6324 struct mbuf *result = NULL, *m, *n; 6325 int encmin; 6326 int i, off, o; 6327 int totlen; 6328 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6329 6330 m = NULL; 6331 for (i = 1; i <= SADB_EALG_MAX; i++) { 6332 algo = enc_algorithm_lookup(i); 6333 if (algo == NULL) 6334 continue; 6335 6336 /* discard algorithms with key size smaller than system min */ 6337 if (_BITS(algo->maxkey) < V_ipsec_esp_keymin) 6338 continue; 6339 if (_BITS(algo->minkey) < V_ipsec_esp_keymin) 6340 encmin = V_ipsec_esp_keymin; 6341 else 6342 encmin = _BITS(algo->minkey); 6343 6344 if (V_ipsec_esp_auth) 6345 m = key_getcomb_ah(); 6346 else { 6347 IPSEC_ASSERT(l <= MLEN, 6348 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6349 MGET(m, M_NOWAIT, MT_DATA); 6350 if (m) { 6351 M_ALIGN(m, l); 6352 m->m_len = l; 6353 m->m_next = NULL; 6354 bzero(mtod(m, caddr_t), m->m_len); 6355 } 6356 } 6357 if (!m) 6358 goto fail; 6359 6360 totlen = 0; 6361 for (n = m; n; n = n->m_next) 6362 totlen += n->m_len; 6363 IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l)); 6364 6365 for (off = 0; off < totlen; off += l) { 6366 n = m_pulldown(m, off, l, &o); 6367 if (!n) { 6368 /* m is already freed */ 6369 goto fail; 6370 } 6371 comb = (struct sadb_comb *)(mtod(n, caddr_t) + o); 6372 bzero(comb, sizeof(*comb)); 6373 key_getcomb_setlifetime(comb); 6374 comb->sadb_comb_encrypt = i; 6375 comb->sadb_comb_encrypt_minbits = encmin; 6376 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); 6377 } 6378 6379 if (!result) 6380 result = m; 6381 else 6382 m_cat(result, m); 6383 } 6384 6385 return result; 6386 6387 fail: 6388 if (result) 6389 m_freem(result); 6390 return NULL; 6391 } 6392 6393 static void 6394 key_getsizes_ah(const struct auth_hash *ah, int alg, u_int16_t* min, 6395 u_int16_t* max) 6396 { 6397 6398 *min = *max = ah->hashsize; 6399 if (ah->keysize == 0) { 6400 /* 6401 * Transform takes arbitrary key size but algorithm 6402 * key size is restricted. Enforce this here. 6403 */ 6404 switch (alg) { 6405 case SADB_X_AALG_NULL: *min = 1; *max = 256; break; 6406 case SADB_X_AALG_SHA2_256: *min = *max = 32; break; 6407 case SADB_X_AALG_SHA2_384: *min = *max = 48; break; 6408 case SADB_X_AALG_SHA2_512: *min = *max = 64; break; 6409 default: 6410 DPRINTF(("%s: unknown AH algorithm %u\n", 6411 __func__, alg)); 6412 break; 6413 } 6414 } 6415 } 6416 6417 /* 6418 * XXX reorder combinations by preference 6419 */ 6420 static struct mbuf * 6421 key_getcomb_ah() 6422 { 6423 const struct auth_hash *algo; 6424 struct sadb_comb *comb; 6425 struct mbuf *m; 6426 u_int16_t minkeysize, maxkeysize; 6427 int i; 6428 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6429 6430 m = NULL; 6431 for (i = 1; i <= SADB_AALG_MAX; i++) { 6432 #if 1 6433 /* we prefer HMAC algorithms, not old algorithms */ 6434 if (i != SADB_AALG_SHA1HMAC && 6435 i != SADB_X_AALG_SHA2_256 && 6436 i != SADB_X_AALG_SHA2_384 && 6437 i != SADB_X_AALG_SHA2_512) 6438 continue; 6439 #endif 6440 algo = auth_algorithm_lookup(i); 6441 if (!algo) 6442 continue; 6443 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); 6444 /* discard algorithms with key size smaller than system min */ 6445 if (_BITS(minkeysize) < V_ipsec_ah_keymin) 6446 continue; 6447 6448 if (!m) { 6449 IPSEC_ASSERT(l <= MLEN, 6450 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6451 MGET(m, M_NOWAIT, MT_DATA); 6452 if (m) { 6453 M_ALIGN(m, l); 6454 m->m_len = l; 6455 m->m_next = NULL; 6456 } 6457 } else 6458 M_PREPEND(m, l, M_NOWAIT); 6459 if (!m) 6460 return NULL; 6461 6462 comb = mtod(m, struct sadb_comb *); 6463 bzero(comb, sizeof(*comb)); 6464 key_getcomb_setlifetime(comb); 6465 comb->sadb_comb_auth = i; 6466 comb->sadb_comb_auth_minbits = _BITS(minkeysize); 6467 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); 6468 } 6469 6470 return m; 6471 } 6472 6473 /* 6474 * not really an official behavior. discussed in pf_key@inner.net in Sep2000. 6475 * XXX reorder combinations by preference 6476 */ 6477 static struct mbuf * 6478 key_getcomb_ipcomp() 6479 { 6480 const struct comp_algo *algo; 6481 struct sadb_comb *comb; 6482 struct mbuf *m; 6483 int i; 6484 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6485 6486 m = NULL; 6487 for (i = 1; i <= SADB_X_CALG_MAX; i++) { 6488 algo = comp_algorithm_lookup(i); 6489 if (!algo) 6490 continue; 6491 6492 if (!m) { 6493 IPSEC_ASSERT(l <= MLEN, 6494 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6495 MGET(m, M_NOWAIT, MT_DATA); 6496 if (m) { 6497 M_ALIGN(m, l); 6498 m->m_len = l; 6499 m->m_next = NULL; 6500 } 6501 } else 6502 M_PREPEND(m, l, M_NOWAIT); 6503 if (!m) 6504 return NULL; 6505 6506 comb = mtod(m, struct sadb_comb *); 6507 bzero(comb, sizeof(*comb)); 6508 key_getcomb_setlifetime(comb); 6509 comb->sadb_comb_encrypt = i; 6510 /* what should we set into sadb_comb_*_{min,max}bits? */ 6511 } 6512 6513 return m; 6514 } 6515 6516 /* 6517 * XXX no way to pass mode (transport/tunnel) to userland 6518 * XXX replay checking? 6519 * XXX sysctl interface to ipsec_{ah,esp}_keymin 6520 */ 6521 static struct mbuf * 6522 key_getprop(const struct secasindex *saidx) 6523 { 6524 struct sadb_prop *prop; 6525 struct mbuf *m, *n; 6526 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); 6527 int totlen; 6528 6529 switch (saidx->proto) { 6530 case IPPROTO_ESP: 6531 m = key_getcomb_ealg(); 6532 break; 6533 case IPPROTO_AH: 6534 m = key_getcomb_ah(); 6535 break; 6536 case IPPROTO_IPCOMP: 6537 m = key_getcomb_ipcomp(); 6538 break; 6539 default: 6540 return NULL; 6541 } 6542 6543 if (!m) 6544 return NULL; 6545 M_PREPEND(m, l, M_NOWAIT); 6546 if (!m) 6547 return NULL; 6548 6549 totlen = 0; 6550 for (n = m; n; n = n->m_next) 6551 totlen += n->m_len; 6552 6553 prop = mtod(m, struct sadb_prop *); 6554 bzero(prop, sizeof(*prop)); 6555 prop->sadb_prop_len = PFKEY_UNIT64(totlen); 6556 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 6557 prop->sadb_prop_replay = 32; /* XXX */ 6558 6559 return m; 6560 } 6561 6562 /* 6563 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2(). 6564 * send 6565 * <base, SA, address(SD), (address(P)), x_policy, 6566 * (identity(SD),) (sensitivity,) proposal> 6567 * to KMD, and expect to receive 6568 * <base> with SADB_ACQUIRE if error occurred, 6569 * or 6570 * <base, src address, dst address, (SPI range)> with SADB_GETSPI 6571 * from KMD by PF_KEY. 6572 * 6573 * XXX x_policy is outside of RFC2367 (KAME extension). 6574 * XXX sensitivity is not supported. 6575 * XXX for ipcomp, RFC2367 does not define how to fill in proposal. 6576 * see comment for key_getcomb_ipcomp(). 6577 * 6578 * OUT: 6579 * 0 : succeed 6580 * others: error number 6581 */ 6582 static int 6583 key_acquire(const struct secasindex *saidx, struct secpolicy *sp) 6584 { 6585 union sockaddr_union addr; 6586 struct mbuf *result, *m; 6587 uint32_t seq; 6588 int error; 6589 uint16_t ul_proto; 6590 uint8_t mask, satype; 6591 6592 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 6593 satype = key_proto2satype(saidx->proto); 6594 IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto)); 6595 6596 error = -1; 6597 result = NULL; 6598 ul_proto = IPSEC_ULPROTO_ANY; 6599 6600 /* Get seq number to check whether sending message or not. */ 6601 seq = key_getacq(saidx, &error); 6602 if (seq == 0) 6603 return (error); 6604 6605 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0); 6606 if (!m) { 6607 error = ENOBUFS; 6608 goto fail; 6609 } 6610 result = m; 6611 6612 /* 6613 * set sadb_address for saidx's. 6614 * 6615 * Note that if sp is supplied, then we're being called from 6616 * key_allocsa_policy() and should supply port and protocol 6617 * information. 6618 * XXXAE: why only TCP and UDP? ICMP and SCTP looks applicable too. 6619 * XXXAE: probably we can handle this in the ipsec[46]_allocsa(). 6620 * XXXAE: it looks like we should save this info in the ACQ entry. 6621 */ 6622 if (sp != NULL && (sp->spidx.ul_proto == IPPROTO_TCP || 6623 sp->spidx.ul_proto == IPPROTO_UDP)) 6624 ul_proto = sp->spidx.ul_proto; 6625 6626 addr = saidx->src; 6627 mask = FULLMASK; 6628 if (ul_proto != IPSEC_ULPROTO_ANY) { 6629 switch (sp->spidx.src.sa.sa_family) { 6630 case AF_INET: 6631 if (sp->spidx.src.sin.sin_port != IPSEC_PORT_ANY) { 6632 addr.sin.sin_port = sp->spidx.src.sin.sin_port; 6633 mask = sp->spidx.prefs; 6634 } 6635 break; 6636 case AF_INET6: 6637 if (sp->spidx.src.sin6.sin6_port != IPSEC_PORT_ANY) { 6638 addr.sin6.sin6_port = 6639 sp->spidx.src.sin6.sin6_port; 6640 mask = sp->spidx.prefs; 6641 } 6642 break; 6643 default: 6644 break; 6645 } 6646 } 6647 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &addr.sa, mask, ul_proto); 6648 if (!m) { 6649 error = ENOBUFS; 6650 goto fail; 6651 } 6652 m_cat(result, m); 6653 6654 addr = saidx->dst; 6655 mask = FULLMASK; 6656 if (ul_proto != IPSEC_ULPROTO_ANY) { 6657 switch (sp->spidx.dst.sa.sa_family) { 6658 case AF_INET: 6659 if (sp->spidx.dst.sin.sin_port != IPSEC_PORT_ANY) { 6660 addr.sin.sin_port = sp->spidx.dst.sin.sin_port; 6661 mask = sp->spidx.prefd; 6662 } 6663 break; 6664 case AF_INET6: 6665 if (sp->spidx.dst.sin6.sin6_port != IPSEC_PORT_ANY) { 6666 addr.sin6.sin6_port = 6667 sp->spidx.dst.sin6.sin6_port; 6668 mask = sp->spidx.prefd; 6669 } 6670 break; 6671 default: 6672 break; 6673 } 6674 } 6675 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &addr.sa, mask, ul_proto); 6676 if (!m) { 6677 error = ENOBUFS; 6678 goto fail; 6679 } 6680 m_cat(result, m); 6681 6682 /* XXX proxy address (optional) */ 6683 6684 /* 6685 * Set sadb_x_policy. This is KAME extension to RFC2367. 6686 */ 6687 if (sp != NULL) { 6688 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id, 6689 sp->priority); 6690 if (!m) { 6691 error = ENOBUFS; 6692 goto fail; 6693 } 6694 m_cat(result, m); 6695 } 6696 6697 /* 6698 * Set sadb_x_sa2 extension if saidx->reqid is not zero. 6699 * This is FreeBSD extension to RFC2367. 6700 */ 6701 if (saidx->reqid != 0) { 6702 m = key_setsadbxsa2(saidx->mode, 0, saidx->reqid); 6703 if (m == NULL) { 6704 error = ENOBUFS; 6705 goto fail; 6706 } 6707 m_cat(result, m); 6708 } 6709 /* XXX identity (optional) */ 6710 #if 0 6711 if (idexttype && fqdn) { 6712 /* create identity extension (FQDN) */ 6713 struct sadb_ident *id; 6714 int fqdnlen; 6715 6716 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ 6717 id = (struct sadb_ident *)p; 6718 bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6719 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6720 id->sadb_ident_exttype = idexttype; 6721 id->sadb_ident_type = SADB_IDENTTYPE_FQDN; 6722 bcopy(fqdn, id + 1, fqdnlen); 6723 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); 6724 } 6725 6726 if (idexttype) { 6727 /* create identity extension (USERFQDN) */ 6728 struct sadb_ident *id; 6729 int userfqdnlen; 6730 6731 if (userfqdn) { 6732 /* +1 for terminating-NUL */ 6733 userfqdnlen = strlen(userfqdn) + 1; 6734 } else 6735 userfqdnlen = 0; 6736 id = (struct sadb_ident *)p; 6737 bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6738 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6739 id->sadb_ident_exttype = idexttype; 6740 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; 6741 /* XXX is it correct? */ 6742 if (curproc && curproc->p_cred) 6743 id->sadb_ident_id = curproc->p_cred->p_ruid; 6744 if (userfqdn && userfqdnlen) 6745 bcopy(userfqdn, id + 1, userfqdnlen); 6746 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); 6747 } 6748 #endif 6749 6750 /* XXX sensitivity (optional) */ 6751 6752 /* create proposal/combination extension */ 6753 m = key_getprop(saidx); 6754 #if 0 6755 /* 6756 * spec conformant: always attach proposal/combination extension, 6757 * the problem is that we have no way to attach it for ipcomp, 6758 * due to the way sadb_comb is declared in RFC2367. 6759 */ 6760 if (!m) { 6761 error = ENOBUFS; 6762 goto fail; 6763 } 6764 m_cat(result, m); 6765 #else 6766 /* 6767 * outside of spec; make proposal/combination extension optional. 6768 */ 6769 if (m) 6770 m_cat(result, m); 6771 #endif 6772 6773 if ((result->m_flags & M_PKTHDR) == 0) { 6774 error = EINVAL; 6775 goto fail; 6776 } 6777 6778 if (result->m_len < sizeof(struct sadb_msg)) { 6779 result = m_pullup(result, sizeof(struct sadb_msg)); 6780 if (result == NULL) { 6781 error = ENOBUFS; 6782 goto fail; 6783 } 6784 } 6785 6786 result->m_pkthdr.len = 0; 6787 for (m = result; m; m = m->m_next) 6788 result->m_pkthdr.len += m->m_len; 6789 6790 mtod(result, struct sadb_msg *)->sadb_msg_len = 6791 PFKEY_UNIT64(result->m_pkthdr.len); 6792 6793 KEYDBG(KEY_STAMP, 6794 printf("%s: SP(%p)\n", __func__, sp)); 6795 KEYDBG(KEY_DATA, kdebug_secasindex(saidx, NULL)); 6796 6797 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6798 6799 fail: 6800 if (result) 6801 m_freem(result); 6802 return error; 6803 } 6804 6805 static uint32_t 6806 key_newacq(const struct secasindex *saidx, int *perror) 6807 { 6808 struct secacq *acq; 6809 uint32_t seq; 6810 6811 acq = malloc(sizeof(*acq), M_IPSEC_SAQ, M_NOWAIT | M_ZERO); 6812 if (acq == NULL) { 6813 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6814 *perror = ENOBUFS; 6815 return (0); 6816 } 6817 6818 /* copy secindex */ 6819 bcopy(saidx, &acq->saidx, sizeof(acq->saidx)); 6820 acq->created = time_second; 6821 acq->count = 0; 6822 6823 /* add to acqtree */ 6824 ACQ_LOCK(); 6825 seq = acq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq); 6826 LIST_INSERT_HEAD(&V_acqtree, acq, chain); 6827 LIST_INSERT_HEAD(ACQADDRHASH_HASH(saidx), acq, addrhash); 6828 LIST_INSERT_HEAD(ACQSEQHASH_HASH(seq), acq, seqhash); 6829 ACQ_UNLOCK(); 6830 *perror = 0; 6831 return (seq); 6832 } 6833 6834 static uint32_t 6835 key_getacq(const struct secasindex *saidx, int *perror) 6836 { 6837 struct secacq *acq; 6838 uint32_t seq; 6839 6840 ACQ_LOCK(); 6841 LIST_FOREACH(acq, ACQADDRHASH_HASH(saidx), addrhash) { 6842 if (key_cmpsaidx(&acq->saidx, saidx, CMP_EXACTLY)) { 6843 if (acq->count > V_key_blockacq_count) { 6844 /* 6845 * Reset counter and send message. 6846 * Also reset created time to keep ACQ for 6847 * this saidx. 6848 */ 6849 acq->created = time_second; 6850 acq->count = 0; 6851 seq = acq->seq; 6852 } else { 6853 /* 6854 * Increment counter and do nothing. 6855 * We send SADB_ACQUIRE message only 6856 * for each V_key_blockacq_count packet. 6857 */ 6858 acq->count++; 6859 seq = 0; 6860 } 6861 break; 6862 } 6863 } 6864 ACQ_UNLOCK(); 6865 if (acq != NULL) { 6866 *perror = 0; 6867 return (seq); 6868 } 6869 /* allocate new entry */ 6870 return (key_newacq(saidx, perror)); 6871 } 6872 6873 static int 6874 key_acqreset(uint32_t seq) 6875 { 6876 struct secacq *acq; 6877 6878 ACQ_LOCK(); 6879 LIST_FOREACH(acq, ACQSEQHASH_HASH(seq), seqhash) { 6880 if (acq->seq == seq) { 6881 acq->count = 0; 6882 acq->created = time_second; 6883 break; 6884 } 6885 } 6886 ACQ_UNLOCK(); 6887 if (acq == NULL) 6888 return (ESRCH); 6889 return (0); 6890 } 6891 /* 6892 * Mark ACQ entry as stale to remove it in key_flush_acq(). 6893 * Called after successful SADB_GETSPI message. 6894 */ 6895 static int 6896 key_acqdone(const struct secasindex *saidx, uint32_t seq) 6897 { 6898 struct secacq *acq; 6899 6900 ACQ_LOCK(); 6901 LIST_FOREACH(acq, ACQSEQHASH_HASH(seq), seqhash) { 6902 if (acq->seq == seq) 6903 break; 6904 } 6905 if (acq != NULL) { 6906 if (key_cmpsaidx(&acq->saidx, saidx, CMP_EXACTLY) == 0) { 6907 ipseclog((LOG_DEBUG, 6908 "%s: Mismatched saidx for ACQ %u\n", __func__, seq)); 6909 acq = NULL; 6910 } else { 6911 acq->created = 0; 6912 } 6913 } else { 6914 ipseclog((LOG_DEBUG, 6915 "%s: ACQ %u is not found.\n", __func__, seq)); 6916 } 6917 ACQ_UNLOCK(); 6918 if (acq == NULL) 6919 return (ESRCH); 6920 return (0); 6921 } 6922 6923 static struct secspacq * 6924 key_newspacq(struct secpolicyindex *spidx) 6925 { 6926 struct secspacq *acq; 6927 6928 /* get new entry */ 6929 acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 6930 if (acq == NULL) { 6931 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6932 return NULL; 6933 } 6934 6935 /* copy secindex */ 6936 bcopy(spidx, &acq->spidx, sizeof(acq->spidx)); 6937 acq->created = time_second; 6938 acq->count = 0; 6939 6940 /* add to spacqtree */ 6941 SPACQ_LOCK(); 6942 LIST_INSERT_HEAD(&V_spacqtree, acq, chain); 6943 SPACQ_UNLOCK(); 6944 6945 return acq; 6946 } 6947 6948 static struct secspacq * 6949 key_getspacq(struct secpolicyindex *spidx) 6950 { 6951 struct secspacq *acq; 6952 6953 SPACQ_LOCK(); 6954 LIST_FOREACH(acq, &V_spacqtree, chain) { 6955 if (key_cmpspidx_exactly(spidx, &acq->spidx)) { 6956 /* NB: return holding spacq_lock */ 6957 return acq; 6958 } 6959 } 6960 SPACQ_UNLOCK(); 6961 6962 return NULL; 6963 } 6964 6965 /* 6966 * SADB_ACQUIRE processing, 6967 * in first situation, is receiving 6968 * <base> 6969 * from the ikmpd, and clear sequence of its secasvar entry. 6970 * 6971 * In second situation, is receiving 6972 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6973 * from a user land process, and return 6974 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6975 * to the socket. 6976 * 6977 * m will always be freed. 6978 */ 6979 static int 6980 key_acquire2(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 6981 { 6982 SAHTREE_RLOCK_TRACKER; 6983 struct sadb_address *src0, *dst0; 6984 struct secasindex saidx; 6985 struct secashead *sah; 6986 uint32_t reqid; 6987 int error; 6988 uint8_t mode, proto; 6989 6990 IPSEC_ASSERT(so != NULL, ("null socket")); 6991 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6992 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6993 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6994 6995 /* 6996 * Error message from KMd. 6997 * We assume that if error was occurred in IKEd, the length of PFKEY 6998 * message is equal to the size of sadb_msg structure. 6999 * We do not raise error even if error occurred in this function. 7000 */ 7001 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { 7002 /* check sequence number */ 7003 if (mhp->msg->sadb_msg_seq == 0 || 7004 mhp->msg->sadb_msg_errno == 0) { 7005 ipseclog((LOG_DEBUG, "%s: must specify sequence " 7006 "number and errno.\n", __func__)); 7007 } else { 7008 /* 7009 * IKEd reported that error occurred. 7010 * XXXAE: what it expects from the kernel? 7011 * Probably we should send SADB_ACQUIRE again? 7012 * If so, reset ACQ's state. 7013 * XXXAE: it looks useless. 7014 */ 7015 key_acqreset(mhp->msg->sadb_msg_seq); 7016 } 7017 m_freem(m); 7018 return (0); 7019 } 7020 7021 /* 7022 * This message is from user land. 7023 */ 7024 7025 /* map satype to proto */ 7026 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 7027 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 7028 __func__)); 7029 return key_senderror(so, m, EINVAL); 7030 } 7031 7032 if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || 7033 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) || 7034 SADB_CHECKHDR(mhp, SADB_EXT_PROPOSAL)) { 7035 ipseclog((LOG_DEBUG, 7036 "%s: invalid message: missing required header.\n", 7037 __func__)); 7038 return key_senderror(so, m, EINVAL); 7039 } 7040 if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || 7041 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST) || 7042 SADB_CHECKLEN(mhp, SADB_EXT_PROPOSAL)) { 7043 ipseclog((LOG_DEBUG, 7044 "%s: invalid message: wrong header size.\n", __func__)); 7045 return key_senderror(so, m, EINVAL); 7046 } 7047 7048 if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) { 7049 mode = IPSEC_MODE_ANY; 7050 reqid = 0; 7051 } else { 7052 if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) { 7053 ipseclog((LOG_DEBUG, 7054 "%s: invalid message: wrong header size.\n", 7055 __func__)); 7056 return key_senderror(so, m, EINVAL); 7057 } 7058 mode = ((struct sadb_x_sa2 *) 7059 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 7060 reqid = ((struct sadb_x_sa2 *) 7061 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 7062 } 7063 7064 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 7065 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 7066 7067 error = key_checksockaddrs((struct sockaddr *)(src0 + 1), 7068 (struct sockaddr *)(dst0 + 1)); 7069 if (error != 0) { 7070 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); 7071 return key_senderror(so, m, EINVAL); 7072 } 7073 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 7074 7075 /* get a SA index */ 7076 SAHTREE_RLOCK(); 7077 LIST_FOREACH(sah, SAHADDRHASH_HASH(&saidx), addrhash) { 7078 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID)) 7079 break; 7080 } 7081 SAHTREE_RUNLOCK(); 7082 if (sah != NULL) { 7083 ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__)); 7084 return key_senderror(so, m, EEXIST); 7085 } 7086 7087 error = key_acquire(&saidx, NULL); 7088 if (error != 0) { 7089 ipseclog((LOG_DEBUG, 7090 "%s: error %d returned from key_acquire()\n", 7091 __func__, error)); 7092 return key_senderror(so, m, error); 7093 } 7094 m_freem(m); 7095 return (0); 7096 } 7097 7098 /* 7099 * SADB_REGISTER processing. 7100 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. 7101 * receive 7102 * <base> 7103 * from the ikmpd, and register a socket to send PF_KEY messages, 7104 * and send 7105 * <base, supported> 7106 * to KMD by PF_KEY. 7107 * If socket is detached, must free from regnode. 7108 * 7109 * m will always be freed. 7110 */ 7111 static int 7112 key_register(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 7113 { 7114 struct secreg *reg, *newreg = NULL; 7115 7116 IPSEC_ASSERT(so != NULL, ("null socket")); 7117 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7118 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7119 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7120 7121 /* check for invalid register message */ 7122 if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0])) 7123 return key_senderror(so, m, EINVAL); 7124 7125 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ 7126 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) 7127 goto setmsg; 7128 7129 /* check whether existing or not */ 7130 REGTREE_LOCK(); 7131 LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) { 7132 if (reg->so == so) { 7133 REGTREE_UNLOCK(); 7134 ipseclog((LOG_DEBUG, "%s: socket exists already.\n", 7135 __func__)); 7136 return key_senderror(so, m, EEXIST); 7137 } 7138 } 7139 7140 /* create regnode */ 7141 newreg = malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO); 7142 if (newreg == NULL) { 7143 REGTREE_UNLOCK(); 7144 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 7145 return key_senderror(so, m, ENOBUFS); 7146 } 7147 7148 newreg->so = so; 7149 ((struct keycb *)sotorawcb(so))->kp_registered++; 7150 7151 /* add regnode to regtree. */ 7152 LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain); 7153 REGTREE_UNLOCK(); 7154 7155 setmsg: 7156 { 7157 struct mbuf *n; 7158 struct sadb_msg *newmsg; 7159 struct sadb_supported *sup; 7160 u_int len, alen, elen; 7161 int off; 7162 int i; 7163 struct sadb_alg *alg; 7164 7165 /* create new sadb_msg to reply. */ 7166 alen = 0; 7167 for (i = 1; i <= SADB_AALG_MAX; i++) { 7168 if (auth_algorithm_lookup(i)) 7169 alen += sizeof(struct sadb_alg); 7170 } 7171 if (alen) 7172 alen += sizeof(struct sadb_supported); 7173 elen = 0; 7174 for (i = 1; i <= SADB_EALG_MAX; i++) { 7175 if (enc_algorithm_lookup(i)) 7176 elen += sizeof(struct sadb_alg); 7177 } 7178 if (elen) 7179 elen += sizeof(struct sadb_supported); 7180 7181 len = sizeof(struct sadb_msg) + alen + elen; 7182 7183 if (len > MCLBYTES) 7184 return key_senderror(so, m, ENOBUFS); 7185 7186 MGETHDR(n, M_NOWAIT, MT_DATA); 7187 if (n != NULL && len > MHLEN) { 7188 if (!(MCLGET(n, M_NOWAIT))) { 7189 m_freem(n); 7190 n = NULL; 7191 } 7192 } 7193 if (!n) 7194 return key_senderror(so, m, ENOBUFS); 7195 7196 n->m_pkthdr.len = n->m_len = len; 7197 n->m_next = NULL; 7198 off = 0; 7199 7200 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 7201 newmsg = mtod(n, struct sadb_msg *); 7202 newmsg->sadb_msg_errno = 0; 7203 newmsg->sadb_msg_len = PFKEY_UNIT64(len); 7204 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 7205 7206 /* for authentication algorithm */ 7207 if (alen) { 7208 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 7209 sup->sadb_supported_len = PFKEY_UNIT64(alen); 7210 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 7211 off += PFKEY_ALIGN8(sizeof(*sup)); 7212 7213 for (i = 1; i <= SADB_AALG_MAX; i++) { 7214 const struct auth_hash *aalgo; 7215 u_int16_t minkeysize, maxkeysize; 7216 7217 aalgo = auth_algorithm_lookup(i); 7218 if (!aalgo) 7219 continue; 7220 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 7221 alg->sadb_alg_id = i; 7222 alg->sadb_alg_ivlen = 0; 7223 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); 7224 alg->sadb_alg_minbits = _BITS(minkeysize); 7225 alg->sadb_alg_maxbits = _BITS(maxkeysize); 7226 off += PFKEY_ALIGN8(sizeof(*alg)); 7227 } 7228 } 7229 7230 /* for encryption algorithm */ 7231 if (elen) { 7232 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 7233 sup->sadb_supported_len = PFKEY_UNIT64(elen); 7234 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 7235 off += PFKEY_ALIGN8(sizeof(*sup)); 7236 7237 for (i = 1; i <= SADB_EALG_MAX; i++) { 7238 const struct enc_xform *ealgo; 7239 7240 ealgo = enc_algorithm_lookup(i); 7241 if (!ealgo) 7242 continue; 7243 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 7244 alg->sadb_alg_id = i; 7245 alg->sadb_alg_ivlen = ealgo->ivsize; 7246 alg->sadb_alg_minbits = _BITS(ealgo->minkey); 7247 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); 7248 off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); 7249 } 7250 } 7251 7252 IPSEC_ASSERT(off == len, 7253 ("length assumption failed (off %u len %u)", off, len)); 7254 7255 m_freem(m); 7256 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); 7257 } 7258 } 7259 7260 /* 7261 * free secreg entry registered. 7262 * XXX: I want to do free a socket marked done SADB_RESIGER to socket. 7263 */ 7264 void 7265 key_freereg(struct socket *so) 7266 { 7267 struct secreg *reg; 7268 int i; 7269 7270 IPSEC_ASSERT(so != NULL, ("NULL so")); 7271 7272 /* 7273 * check whether existing or not. 7274 * check all type of SA, because there is a potential that 7275 * one socket is registered to multiple type of SA. 7276 */ 7277 REGTREE_LOCK(); 7278 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 7279 LIST_FOREACH(reg, &V_regtree[i], chain) { 7280 if (reg->so == so && __LIST_CHAINED(reg)) { 7281 LIST_REMOVE(reg, chain); 7282 free(reg, M_IPSEC_SAR); 7283 break; 7284 } 7285 } 7286 } 7287 REGTREE_UNLOCK(); 7288 } 7289 7290 /* 7291 * SADB_EXPIRE processing 7292 * send 7293 * <base, SA, SA2, lifetime(C and one of HS), address(SD)> 7294 * to KMD by PF_KEY. 7295 * NOTE: We send only soft lifetime extension. 7296 * 7297 * OUT: 0 : succeed 7298 * others : error number 7299 */ 7300 static int 7301 key_expire(struct secasvar *sav, int hard) 7302 { 7303 struct mbuf *result = NULL, *m; 7304 struct sadb_lifetime *lt; 7305 uint32_t replay_count; 7306 int error, len; 7307 uint8_t satype; 7308 7309 IPSEC_ASSERT (sav != NULL, ("null sav")); 7310 IPSEC_ASSERT (sav->sah != NULL, ("null sa header")); 7311 7312 KEYDBG(KEY_STAMP, 7313 printf("%s: SA(%p) expired %s lifetime\n", __func__, 7314 sav, hard ? "hard": "soft")); 7315 KEYDBG(KEY_DATA, kdebug_secasv(sav)); 7316 /* set msg header */ 7317 satype = key_proto2satype(sav->sah->saidx.proto); 7318 IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype)); 7319 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt); 7320 if (!m) { 7321 error = ENOBUFS; 7322 goto fail; 7323 } 7324 result = m; 7325 7326 /* create SA extension */ 7327 m = key_setsadbsa(sav); 7328 if (!m) { 7329 error = ENOBUFS; 7330 goto fail; 7331 } 7332 m_cat(result, m); 7333 7334 /* create SA extension */ 7335 SECASVAR_LOCK(sav); 7336 replay_count = sav->replay ? sav->replay->count : 0; 7337 SECASVAR_UNLOCK(sav); 7338 7339 m = key_setsadbxsa2(sav->sah->saidx.mode, replay_count, 7340 sav->sah->saidx.reqid); 7341 if (!m) { 7342 error = ENOBUFS; 7343 goto fail; 7344 } 7345 m_cat(result, m); 7346 7347 if (sav->replay && sav->replay->wsize > UINT8_MAX) { 7348 m = key_setsadbxsareplay(sav->replay->wsize); 7349 if (!m) { 7350 error = ENOBUFS; 7351 goto fail; 7352 } 7353 m_cat(result, m); 7354 } 7355 7356 /* create lifetime extension (current and soft) */ 7357 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 7358 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 7359 if (m == NULL) { 7360 error = ENOBUFS; 7361 goto fail; 7362 } 7363 m_align(m, len); 7364 m->m_len = len; 7365 bzero(mtod(m, caddr_t), len); 7366 lt = mtod(m, struct sadb_lifetime *); 7367 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 7368 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 7369 lt->sadb_lifetime_allocations = 7370 (uint32_t)counter_u64_fetch(sav->lft_c_allocations); 7371 lt->sadb_lifetime_bytes = 7372 counter_u64_fetch(sav->lft_c_bytes); 7373 lt->sadb_lifetime_addtime = sav->created; 7374 lt->sadb_lifetime_usetime = sav->firstused; 7375 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 7376 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 7377 if (hard) { 7378 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 7379 lt->sadb_lifetime_allocations = sav->lft_h->allocations; 7380 lt->sadb_lifetime_bytes = sav->lft_h->bytes; 7381 lt->sadb_lifetime_addtime = sav->lft_h->addtime; 7382 lt->sadb_lifetime_usetime = sav->lft_h->usetime; 7383 } else { 7384 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; 7385 lt->sadb_lifetime_allocations = sav->lft_s->allocations; 7386 lt->sadb_lifetime_bytes = sav->lft_s->bytes; 7387 lt->sadb_lifetime_addtime = sav->lft_s->addtime; 7388 lt->sadb_lifetime_usetime = sav->lft_s->usetime; 7389 } 7390 m_cat(result, m); 7391 7392 /* set sadb_address for source */ 7393 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 7394 &sav->sah->saidx.src.sa, 7395 FULLMASK, IPSEC_ULPROTO_ANY); 7396 if (!m) { 7397 error = ENOBUFS; 7398 goto fail; 7399 } 7400 m_cat(result, m); 7401 7402 /* set sadb_address for destination */ 7403 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 7404 &sav->sah->saidx.dst.sa, 7405 FULLMASK, IPSEC_ULPROTO_ANY); 7406 if (!m) { 7407 error = ENOBUFS; 7408 goto fail; 7409 } 7410 m_cat(result, m); 7411 7412 /* 7413 * XXX-BZ Handle NAT-T extensions here. 7414 * XXXAE: it doesn't seem quite useful. IKEs should not depend on 7415 * this information, we report only significant SA fields. 7416 */ 7417 7418 if ((result->m_flags & M_PKTHDR) == 0) { 7419 error = EINVAL; 7420 goto fail; 7421 } 7422 7423 if (result->m_len < sizeof(struct sadb_msg)) { 7424 result = m_pullup(result, sizeof(struct sadb_msg)); 7425 if (result == NULL) { 7426 error = ENOBUFS; 7427 goto fail; 7428 } 7429 } 7430 7431 result->m_pkthdr.len = 0; 7432 for (m = result; m; m = m->m_next) 7433 result->m_pkthdr.len += m->m_len; 7434 7435 mtod(result, struct sadb_msg *)->sadb_msg_len = 7436 PFKEY_UNIT64(result->m_pkthdr.len); 7437 7438 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 7439 7440 fail: 7441 if (result) 7442 m_freem(result); 7443 return error; 7444 } 7445 7446 static void 7447 key_freesah_flushed(struct secashead_queue *flushq) 7448 { 7449 struct secashead *sah, *nextsah; 7450 struct secasvar *sav, *nextsav; 7451 7452 sah = TAILQ_FIRST(flushq); 7453 while (sah != NULL) { 7454 sav = TAILQ_FIRST(&sah->savtree_larval); 7455 while (sav != NULL) { 7456 nextsav = TAILQ_NEXT(sav, chain); 7457 TAILQ_REMOVE(&sah->savtree_larval, sav, chain); 7458 key_freesav(&sav); /* release last reference */ 7459 key_freesah(&sah); /* release reference from SAV */ 7460 sav = nextsav; 7461 } 7462 sav = TAILQ_FIRST(&sah->savtree_alive); 7463 while (sav != NULL) { 7464 nextsav = TAILQ_NEXT(sav, chain); 7465 TAILQ_REMOVE(&sah->savtree_alive, sav, chain); 7466 key_freesav(&sav); /* release last reference */ 7467 key_freesah(&sah); /* release reference from SAV */ 7468 sav = nextsav; 7469 } 7470 nextsah = TAILQ_NEXT(sah, chain); 7471 key_freesah(&sah); /* release last reference */ 7472 sah = nextsah; 7473 } 7474 } 7475 7476 /* 7477 * SADB_FLUSH processing 7478 * receive 7479 * <base> 7480 * from the ikmpd, and free all entries in secastree. 7481 * and send, 7482 * <base> 7483 * to the ikmpd. 7484 * NOTE: to do is only marking SADB_SASTATE_DEAD. 7485 * 7486 * m will always be freed. 7487 */ 7488 static int 7489 key_flush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 7490 { 7491 struct secashead_queue flushq; 7492 struct sadb_msg *newmsg; 7493 struct secashead *sah, *nextsah; 7494 struct secasvar *sav; 7495 uint8_t proto; 7496 int i; 7497 7498 IPSEC_ASSERT(so != NULL, ("null socket")); 7499 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7500 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7501 7502 /* map satype to proto */ 7503 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 7504 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 7505 __func__)); 7506 return key_senderror(so, m, EINVAL); 7507 } 7508 KEYDBG(KEY_STAMP, 7509 printf("%s: proto %u\n", __func__, proto)); 7510 7511 TAILQ_INIT(&flushq); 7512 if (proto == IPSEC_PROTO_ANY) { 7513 /* no SATYPE specified, i.e. flushing all SA. */ 7514 SAHTREE_WLOCK(); 7515 /* Move all SAHs into flushq */ 7516 TAILQ_CONCAT(&flushq, &V_sahtree, chain); 7517 /* Flush all buckets in SPI hash */ 7518 for (i = 0; i < V_savhash_mask + 1; i++) 7519 LIST_INIT(&V_savhashtbl[i]); 7520 /* Flush all buckets in SAHADDRHASH */ 7521 for (i = 0; i < V_sahaddrhash_mask + 1; i++) 7522 LIST_INIT(&V_sahaddrhashtbl[i]); 7523 /* Mark all SAHs as unlinked */ 7524 TAILQ_FOREACH(sah, &flushq, chain) { 7525 sah->state = SADB_SASTATE_DEAD; 7526 /* 7527 * Callout handler makes its job using 7528 * RLOCK and drain queues. In case, when this 7529 * function will be called just before it 7530 * acquires WLOCK, we need to mark SAs as 7531 * unlinked to prevent second unlink. 7532 */ 7533 TAILQ_FOREACH(sav, &sah->savtree_larval, chain) { 7534 sav->state = SADB_SASTATE_DEAD; 7535 } 7536 TAILQ_FOREACH(sav, &sah->savtree_alive, chain) { 7537 sav->state = SADB_SASTATE_DEAD; 7538 } 7539 } 7540 SAHTREE_WUNLOCK(); 7541 } else { 7542 SAHTREE_WLOCK(); 7543 sah = TAILQ_FIRST(&V_sahtree); 7544 while (sah != NULL) { 7545 IPSEC_ASSERT(sah->state != SADB_SASTATE_DEAD, 7546 ("DEAD SAH %p in SADB_FLUSH", sah)); 7547 nextsah = TAILQ_NEXT(sah, chain); 7548 if (sah->saidx.proto != proto) { 7549 sah = nextsah; 7550 continue; 7551 } 7552 sah->state = SADB_SASTATE_DEAD; 7553 TAILQ_REMOVE(&V_sahtree, sah, chain); 7554 LIST_REMOVE(sah, addrhash); 7555 /* Unlink all SAs from SPI hash */ 7556 TAILQ_FOREACH(sav, &sah->savtree_larval, chain) { 7557 LIST_REMOVE(sav, spihash); 7558 sav->state = SADB_SASTATE_DEAD; 7559 } 7560 TAILQ_FOREACH(sav, &sah->savtree_alive, chain) { 7561 LIST_REMOVE(sav, spihash); 7562 sav->state = SADB_SASTATE_DEAD; 7563 } 7564 /* Add SAH into flushq */ 7565 TAILQ_INSERT_HEAD(&flushq, sah, chain); 7566 sah = nextsah; 7567 } 7568 SAHTREE_WUNLOCK(); 7569 } 7570 7571 key_freesah_flushed(&flushq); 7572 /* Free all queued SAs and SAHs */ 7573 if (m->m_len < sizeof(struct sadb_msg) || 7574 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 7575 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 7576 return key_senderror(so, m, ENOBUFS); 7577 } 7578 7579 if (m->m_next) 7580 m_freem(m->m_next); 7581 m->m_next = NULL; 7582 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); 7583 newmsg = mtod(m, struct sadb_msg *); 7584 newmsg->sadb_msg_errno = 0; 7585 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 7586 7587 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7588 } 7589 7590 /* 7591 * SADB_DUMP processing 7592 * dump all entries including status of DEAD in SAD. 7593 * receive 7594 * <base> 7595 * from the ikmpd, and dump all secasvar leaves 7596 * and send, 7597 * <base> ..... 7598 * to the ikmpd. 7599 * 7600 * m will always be freed. 7601 */ 7602 static int 7603 key_dump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 7604 { 7605 SAHTREE_RLOCK_TRACKER; 7606 struct secashead *sah; 7607 struct secasvar *sav; 7608 struct mbuf *n; 7609 uint32_t cnt; 7610 uint8_t proto, satype; 7611 7612 IPSEC_ASSERT(so != NULL, ("null socket")); 7613 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7614 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7615 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7616 7617 /* map satype to proto */ 7618 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 7619 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 7620 __func__)); 7621 return key_senderror(so, m, EINVAL); 7622 } 7623 7624 /* count sav entries to be sent to the userland. */ 7625 cnt = 0; 7626 SAHTREE_RLOCK(); 7627 TAILQ_FOREACH(sah, &V_sahtree, chain) { 7628 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC && 7629 proto != sah->saidx.proto) 7630 continue; 7631 7632 TAILQ_FOREACH(sav, &sah->savtree_larval, chain) 7633 cnt++; 7634 TAILQ_FOREACH(sav, &sah->savtree_alive, chain) 7635 cnt++; 7636 } 7637 7638 if (cnt == 0) { 7639 SAHTREE_RUNLOCK(); 7640 return key_senderror(so, m, ENOENT); 7641 } 7642 7643 /* send this to the userland, one at a time. */ 7644 TAILQ_FOREACH(sah, &V_sahtree, chain) { 7645 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC && 7646 proto != sah->saidx.proto) 7647 continue; 7648 7649 /* map proto to satype */ 7650 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 7651 SAHTREE_RUNLOCK(); 7652 ipseclog((LOG_DEBUG, "%s: there was invalid proto in " 7653 "SAD.\n", __func__)); 7654 return key_senderror(so, m, EINVAL); 7655 } 7656 TAILQ_FOREACH(sav, &sah->savtree_larval, chain) { 7657 n = key_setdumpsa(sav, SADB_DUMP, satype, 7658 --cnt, mhp->msg->sadb_msg_pid); 7659 if (n == NULL) { 7660 SAHTREE_RUNLOCK(); 7661 return key_senderror(so, m, ENOBUFS); 7662 } 7663 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 7664 } 7665 TAILQ_FOREACH(sav, &sah->savtree_alive, chain) { 7666 n = key_setdumpsa(sav, SADB_DUMP, satype, 7667 --cnt, mhp->msg->sadb_msg_pid); 7668 if (n == NULL) { 7669 SAHTREE_RUNLOCK(); 7670 return key_senderror(so, m, ENOBUFS); 7671 } 7672 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 7673 } 7674 } 7675 SAHTREE_RUNLOCK(); 7676 m_freem(m); 7677 return (0); 7678 } 7679 /* 7680 * SADB_X_PROMISC processing 7681 * 7682 * m will always be freed. 7683 */ 7684 static int 7685 key_promisc(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 7686 { 7687 int olen; 7688 7689 IPSEC_ASSERT(so != NULL, ("null socket")); 7690 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7691 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7692 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7693 7694 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7695 7696 if (olen < sizeof(struct sadb_msg)) { 7697 #if 1 7698 return key_senderror(so, m, EINVAL); 7699 #else 7700 m_freem(m); 7701 return 0; 7702 #endif 7703 } else if (olen == sizeof(struct sadb_msg)) { 7704 /* enable/disable promisc mode */ 7705 struct keycb *kp; 7706 7707 if ((kp = (struct keycb *)sotorawcb(so)) == NULL) 7708 return key_senderror(so, m, EINVAL); 7709 mhp->msg->sadb_msg_errno = 0; 7710 switch (mhp->msg->sadb_msg_satype) { 7711 case 0: 7712 case 1: 7713 kp->kp_promisc = mhp->msg->sadb_msg_satype; 7714 break; 7715 default: 7716 return key_senderror(so, m, EINVAL); 7717 } 7718 7719 /* send the original message back to everyone */ 7720 mhp->msg->sadb_msg_errno = 0; 7721 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7722 } else { 7723 /* send packet as is */ 7724 7725 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); 7726 7727 /* TODO: if sadb_msg_seq is specified, send to specific pid */ 7728 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7729 } 7730 } 7731 7732 static int (*key_typesw[])(struct socket *, struct mbuf *, 7733 const struct sadb_msghdr *) = { 7734 NULL, /* SADB_RESERVED */ 7735 key_getspi, /* SADB_GETSPI */ 7736 key_update, /* SADB_UPDATE */ 7737 key_add, /* SADB_ADD */ 7738 key_delete, /* SADB_DELETE */ 7739 key_get, /* SADB_GET */ 7740 key_acquire2, /* SADB_ACQUIRE */ 7741 key_register, /* SADB_REGISTER */ 7742 NULL, /* SADB_EXPIRE */ 7743 key_flush, /* SADB_FLUSH */ 7744 key_dump, /* SADB_DUMP */ 7745 key_promisc, /* SADB_X_PROMISC */ 7746 NULL, /* SADB_X_PCHANGE */ 7747 key_spdadd, /* SADB_X_SPDUPDATE */ 7748 key_spdadd, /* SADB_X_SPDADD */ 7749 key_spddelete, /* SADB_X_SPDDELETE */ 7750 key_spdget, /* SADB_X_SPDGET */ 7751 NULL, /* SADB_X_SPDACQUIRE */ 7752 key_spddump, /* SADB_X_SPDDUMP */ 7753 key_spdflush, /* SADB_X_SPDFLUSH */ 7754 key_spdadd, /* SADB_X_SPDSETIDX */ 7755 NULL, /* SADB_X_SPDEXPIRE */ 7756 key_spddelete2, /* SADB_X_SPDDELETE2 */ 7757 }; 7758 7759 /* 7760 * parse sadb_msg buffer to process PFKEYv2, 7761 * and create a data to response if needed. 7762 * I think to be dealed with mbuf directly. 7763 * IN: 7764 * msgp : pointer to pointer to a received buffer pulluped. 7765 * This is rewrited to response. 7766 * so : pointer to socket. 7767 * OUT: 7768 * length for buffer to send to user process. 7769 */ 7770 int 7771 key_parse(struct mbuf *m, struct socket *so) 7772 { 7773 struct sadb_msg *msg; 7774 struct sadb_msghdr mh; 7775 u_int orglen; 7776 int error; 7777 int target; 7778 7779 IPSEC_ASSERT(so != NULL, ("null socket")); 7780 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7781 7782 if (m->m_len < sizeof(struct sadb_msg)) { 7783 m = m_pullup(m, sizeof(struct sadb_msg)); 7784 if (!m) 7785 return ENOBUFS; 7786 } 7787 msg = mtod(m, struct sadb_msg *); 7788 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); 7789 target = KEY_SENDUP_ONE; 7790 7791 if ((m->m_flags & M_PKTHDR) == 0 || m->m_pkthdr.len != orglen) { 7792 ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__)); 7793 PFKEYSTAT_INC(out_invlen); 7794 error = EINVAL; 7795 goto senderror; 7796 } 7797 7798 if (msg->sadb_msg_version != PF_KEY_V2) { 7799 ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n", 7800 __func__, msg->sadb_msg_version)); 7801 PFKEYSTAT_INC(out_invver); 7802 error = EINVAL; 7803 goto senderror; 7804 } 7805 7806 if (msg->sadb_msg_type > SADB_MAX) { 7807 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 7808 __func__, msg->sadb_msg_type)); 7809 PFKEYSTAT_INC(out_invmsgtype); 7810 error = EINVAL; 7811 goto senderror; 7812 } 7813 7814 /* for old-fashioned code - should be nuked */ 7815 if (m->m_pkthdr.len > MCLBYTES) { 7816 m_freem(m); 7817 return ENOBUFS; 7818 } 7819 if (m->m_next) { 7820 struct mbuf *n; 7821 7822 MGETHDR(n, M_NOWAIT, MT_DATA); 7823 if (n && m->m_pkthdr.len > MHLEN) { 7824 if (!(MCLGET(n, M_NOWAIT))) { 7825 m_free(n); 7826 n = NULL; 7827 } 7828 } 7829 if (!n) { 7830 m_freem(m); 7831 return ENOBUFS; 7832 } 7833 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t)); 7834 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; 7835 n->m_next = NULL; 7836 m_freem(m); 7837 m = n; 7838 } 7839 7840 /* align the mbuf chain so that extensions are in contiguous region. */ 7841 error = key_align(m, &mh); 7842 if (error) 7843 return error; 7844 7845 msg = mh.msg; 7846 7847 /* We use satype as scope mask for spddump */ 7848 if (msg->sadb_msg_type == SADB_X_SPDDUMP) { 7849 switch (msg->sadb_msg_satype) { 7850 case IPSEC_POLICYSCOPE_ANY: 7851 case IPSEC_POLICYSCOPE_GLOBAL: 7852 case IPSEC_POLICYSCOPE_IFNET: 7853 case IPSEC_POLICYSCOPE_PCB: 7854 break; 7855 default: 7856 ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n", 7857 __func__, msg->sadb_msg_type)); 7858 PFKEYSTAT_INC(out_invsatype); 7859 error = EINVAL; 7860 goto senderror; 7861 } 7862 } else { 7863 switch (msg->sadb_msg_satype) { /* check SA type */ 7864 case SADB_SATYPE_UNSPEC: 7865 switch (msg->sadb_msg_type) { 7866 case SADB_GETSPI: 7867 case SADB_UPDATE: 7868 case SADB_ADD: 7869 case SADB_DELETE: 7870 case SADB_GET: 7871 case SADB_ACQUIRE: 7872 case SADB_EXPIRE: 7873 ipseclog((LOG_DEBUG, "%s: must specify satype " 7874 "when msg type=%u.\n", __func__, 7875 msg->sadb_msg_type)); 7876 PFKEYSTAT_INC(out_invsatype); 7877 error = EINVAL; 7878 goto senderror; 7879 } 7880 break; 7881 case SADB_SATYPE_AH: 7882 case SADB_SATYPE_ESP: 7883 case SADB_X_SATYPE_IPCOMP: 7884 case SADB_X_SATYPE_TCPSIGNATURE: 7885 switch (msg->sadb_msg_type) { 7886 case SADB_X_SPDADD: 7887 case SADB_X_SPDDELETE: 7888 case SADB_X_SPDGET: 7889 case SADB_X_SPDFLUSH: 7890 case SADB_X_SPDSETIDX: 7891 case SADB_X_SPDUPDATE: 7892 case SADB_X_SPDDELETE2: 7893 ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n", 7894 __func__, msg->sadb_msg_type)); 7895 PFKEYSTAT_INC(out_invsatype); 7896 error = EINVAL; 7897 goto senderror; 7898 } 7899 break; 7900 case SADB_SATYPE_RSVP: 7901 case SADB_SATYPE_OSPFV2: 7902 case SADB_SATYPE_RIPV2: 7903 case SADB_SATYPE_MIP: 7904 ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n", 7905 __func__, msg->sadb_msg_satype)); 7906 PFKEYSTAT_INC(out_invsatype); 7907 error = EOPNOTSUPP; 7908 goto senderror; 7909 case 1: /* XXX: What does it do? */ 7910 if (msg->sadb_msg_type == SADB_X_PROMISC) 7911 break; 7912 /*FALLTHROUGH*/ 7913 default: 7914 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 7915 __func__, msg->sadb_msg_satype)); 7916 PFKEYSTAT_INC(out_invsatype); 7917 error = EINVAL; 7918 goto senderror; 7919 } 7920 } 7921 7922 /* check field of upper layer protocol and address family */ 7923 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL 7924 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { 7925 struct sadb_address *src0, *dst0; 7926 u_int plen; 7927 7928 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]); 7929 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]); 7930 7931 /* check upper layer protocol */ 7932 if (src0->sadb_address_proto != dst0->sadb_address_proto) { 7933 ipseclog((LOG_DEBUG, "%s: upper layer protocol " 7934 "mismatched.\n", __func__)); 7935 PFKEYSTAT_INC(out_invaddr); 7936 error = EINVAL; 7937 goto senderror; 7938 } 7939 7940 /* check family */ 7941 if (PFKEY_ADDR_SADDR(src0)->sa_family != 7942 PFKEY_ADDR_SADDR(dst0)->sa_family) { 7943 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 7944 __func__)); 7945 PFKEYSTAT_INC(out_invaddr); 7946 error = EINVAL; 7947 goto senderror; 7948 } 7949 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7950 PFKEY_ADDR_SADDR(dst0)->sa_len) { 7951 ipseclog((LOG_DEBUG, "%s: address struct size " 7952 "mismatched.\n", __func__)); 7953 PFKEYSTAT_INC(out_invaddr); 7954 error = EINVAL; 7955 goto senderror; 7956 } 7957 7958 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7959 case AF_INET: 7960 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7961 sizeof(struct sockaddr_in)) { 7962 PFKEYSTAT_INC(out_invaddr); 7963 error = EINVAL; 7964 goto senderror; 7965 } 7966 break; 7967 case AF_INET6: 7968 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7969 sizeof(struct sockaddr_in6)) { 7970 PFKEYSTAT_INC(out_invaddr); 7971 error = EINVAL; 7972 goto senderror; 7973 } 7974 break; 7975 default: 7976 ipseclog((LOG_DEBUG, "%s: unsupported address family\n", 7977 __func__)); 7978 PFKEYSTAT_INC(out_invaddr); 7979 error = EAFNOSUPPORT; 7980 goto senderror; 7981 } 7982 7983 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7984 case AF_INET: 7985 plen = sizeof(struct in_addr) << 3; 7986 break; 7987 case AF_INET6: 7988 plen = sizeof(struct in6_addr) << 3; 7989 break; 7990 default: 7991 plen = 0; /*fool gcc*/ 7992 break; 7993 } 7994 7995 /* check max prefix length */ 7996 if (src0->sadb_address_prefixlen > plen || 7997 dst0->sadb_address_prefixlen > plen) { 7998 ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n", 7999 __func__)); 8000 PFKEYSTAT_INC(out_invaddr); 8001 error = EINVAL; 8002 goto senderror; 8003 } 8004 8005 /* 8006 * prefixlen == 0 is valid because there can be a case when 8007 * all addresses are matched. 8008 */ 8009 } 8010 8011 if (msg->sadb_msg_type >= nitems(key_typesw) || 8012 key_typesw[msg->sadb_msg_type] == NULL) { 8013 PFKEYSTAT_INC(out_invmsgtype); 8014 error = EINVAL; 8015 goto senderror; 8016 } 8017 8018 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh); 8019 8020 senderror: 8021 msg->sadb_msg_errno = error; 8022 return key_sendup_mbuf(so, m, target); 8023 } 8024 8025 static int 8026 key_senderror(struct socket *so, struct mbuf *m, int code) 8027 { 8028 struct sadb_msg *msg; 8029 8030 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 8031 ("mbuf too small, len %u", m->m_len)); 8032 8033 msg = mtod(m, struct sadb_msg *); 8034 msg->sadb_msg_errno = code; 8035 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 8036 } 8037 8038 /* 8039 * set the pointer to each header into message buffer. 8040 * m will be freed on error. 8041 * XXX larger-than-MCLBYTES extension? 8042 */ 8043 static int 8044 key_align(struct mbuf *m, struct sadb_msghdr *mhp) 8045 { 8046 struct mbuf *n; 8047 struct sadb_ext *ext; 8048 size_t off, end; 8049 int extlen; 8050 int toff; 8051 8052 IPSEC_ASSERT(m != NULL, ("null mbuf")); 8053 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 8054 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 8055 ("mbuf too small, len %u", m->m_len)); 8056 8057 /* initialize */ 8058 bzero(mhp, sizeof(*mhp)); 8059 8060 mhp->msg = mtod(m, struct sadb_msg *); 8061 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */ 8062 8063 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 8064 extlen = end; /*just in case extlen is not updated*/ 8065 for (off = sizeof(struct sadb_msg); off < end; off += extlen) { 8066 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); 8067 if (!n) { 8068 /* m is already freed */ 8069 return ENOBUFS; 8070 } 8071 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 8072 8073 /* set pointer */ 8074 switch (ext->sadb_ext_type) { 8075 case SADB_EXT_SA: 8076 case SADB_EXT_ADDRESS_SRC: 8077 case SADB_EXT_ADDRESS_DST: 8078 case SADB_EXT_ADDRESS_PROXY: 8079 case SADB_EXT_LIFETIME_CURRENT: 8080 case SADB_EXT_LIFETIME_HARD: 8081 case SADB_EXT_LIFETIME_SOFT: 8082 case SADB_EXT_KEY_AUTH: 8083 case SADB_EXT_KEY_ENCRYPT: 8084 case SADB_EXT_IDENTITY_SRC: 8085 case SADB_EXT_IDENTITY_DST: 8086 case SADB_EXT_SENSITIVITY: 8087 case SADB_EXT_PROPOSAL: 8088 case SADB_EXT_SUPPORTED_AUTH: 8089 case SADB_EXT_SUPPORTED_ENCRYPT: 8090 case SADB_EXT_SPIRANGE: 8091 case SADB_X_EXT_POLICY: 8092 case SADB_X_EXT_SA2: 8093 case SADB_X_EXT_NAT_T_TYPE: 8094 case SADB_X_EXT_NAT_T_SPORT: 8095 case SADB_X_EXT_NAT_T_DPORT: 8096 case SADB_X_EXT_NAT_T_OAI: 8097 case SADB_X_EXT_NAT_T_OAR: 8098 case SADB_X_EXT_NAT_T_FRAG: 8099 case SADB_X_EXT_SA_REPLAY: 8100 case SADB_X_EXT_NEW_ADDRESS_SRC: 8101 case SADB_X_EXT_NEW_ADDRESS_DST: 8102 /* duplicate check */ 8103 /* 8104 * XXX Are there duplication payloads of either 8105 * KEY_AUTH or KEY_ENCRYPT ? 8106 */ 8107 if (mhp->ext[ext->sadb_ext_type] != NULL) { 8108 ipseclog((LOG_DEBUG, "%s: duplicate ext_type " 8109 "%u\n", __func__, ext->sadb_ext_type)); 8110 m_freem(m); 8111 PFKEYSTAT_INC(out_dupext); 8112 return EINVAL; 8113 } 8114 break; 8115 default: 8116 ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n", 8117 __func__, ext->sadb_ext_type)); 8118 m_freem(m); 8119 PFKEYSTAT_INC(out_invexttype); 8120 return EINVAL; 8121 } 8122 8123 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); 8124 8125 if (key_validate_ext(ext, extlen)) { 8126 m_freem(m); 8127 PFKEYSTAT_INC(out_invlen); 8128 return EINVAL; 8129 } 8130 8131 n = m_pulldown(m, off, extlen, &toff); 8132 if (!n) { 8133 /* m is already freed */ 8134 return ENOBUFS; 8135 } 8136 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 8137 8138 mhp->ext[ext->sadb_ext_type] = ext; 8139 mhp->extoff[ext->sadb_ext_type] = off; 8140 mhp->extlen[ext->sadb_ext_type] = extlen; 8141 } 8142 8143 if (off != end) { 8144 m_freem(m); 8145 PFKEYSTAT_INC(out_invlen); 8146 return EINVAL; 8147 } 8148 8149 return 0; 8150 } 8151 8152 static int 8153 key_validate_ext(const struct sadb_ext *ext, int len) 8154 { 8155 const struct sockaddr *sa; 8156 enum { NONE, ADDR } checktype = NONE; 8157 int baselen = 0; 8158 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); 8159 8160 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) 8161 return EINVAL; 8162 8163 /* if it does not match minimum/maximum length, bail */ 8164 if (ext->sadb_ext_type >= nitems(minsize) || 8165 ext->sadb_ext_type >= nitems(maxsize)) 8166 return EINVAL; 8167 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) 8168 return EINVAL; 8169 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) 8170 return EINVAL; 8171 8172 /* more checks based on sadb_ext_type XXX need more */ 8173 switch (ext->sadb_ext_type) { 8174 case SADB_EXT_ADDRESS_SRC: 8175 case SADB_EXT_ADDRESS_DST: 8176 case SADB_EXT_ADDRESS_PROXY: 8177 case SADB_X_EXT_NAT_T_OAI: 8178 case SADB_X_EXT_NAT_T_OAR: 8179 case SADB_X_EXT_NEW_ADDRESS_SRC: 8180 case SADB_X_EXT_NEW_ADDRESS_DST: 8181 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); 8182 checktype = ADDR; 8183 break; 8184 case SADB_EXT_IDENTITY_SRC: 8185 case SADB_EXT_IDENTITY_DST: 8186 if (((const struct sadb_ident *)ext)->sadb_ident_type == 8187 SADB_X_IDENTTYPE_ADDR) { 8188 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); 8189 checktype = ADDR; 8190 } else 8191 checktype = NONE; 8192 break; 8193 default: 8194 checktype = NONE; 8195 break; 8196 } 8197 8198 switch (checktype) { 8199 case NONE: 8200 break; 8201 case ADDR: 8202 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); 8203 if (len < baselen + sal) 8204 return EINVAL; 8205 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) 8206 return EINVAL; 8207 break; 8208 } 8209 8210 return 0; 8211 } 8212 8213 void 8214 spdcache_init(void) 8215 { 8216 int i; 8217 8218 TUNABLE_INT_FETCH("net.key.spdcache.maxentries", 8219 &V_key_spdcache_maxentries); 8220 TUNABLE_INT_FETCH("net.key.spdcache.threshold", 8221 &V_key_spdcache_threshold); 8222 8223 if (V_key_spdcache_maxentries) { 8224 V_key_spdcache_maxentries = MAX(V_key_spdcache_maxentries, 8225 SPDCACHE_MAX_ENTRIES_PER_HASH); 8226 V_spdcachehashtbl = hashinit(V_key_spdcache_maxentries / 8227 SPDCACHE_MAX_ENTRIES_PER_HASH, 8228 M_IPSEC_SPDCACHE, &V_spdcachehash_mask); 8229 V_key_spdcache_maxentries = (V_spdcachehash_mask + 1) 8230 * SPDCACHE_MAX_ENTRIES_PER_HASH; 8231 8232 V_spdcache_lock = malloc(sizeof(struct mtx) * 8233 (V_spdcachehash_mask + 1), 8234 M_IPSEC_SPDCACHE, M_WAITOK|M_ZERO); 8235 8236 for (i = 0; i < V_spdcachehash_mask + 1; ++i) 8237 SPDCACHE_LOCK_INIT(i); 8238 } 8239 } 8240 8241 struct spdcache_entry * 8242 spdcache_entry_alloc(const struct secpolicyindex *spidx, struct secpolicy *sp) 8243 { 8244 struct spdcache_entry *entry; 8245 8246 entry = malloc(sizeof(struct spdcache_entry), 8247 M_IPSEC_SPDCACHE, M_NOWAIT|M_ZERO); 8248 if (entry == NULL) 8249 return NULL; 8250 8251 if (sp != NULL) 8252 SP_ADDREF(sp); 8253 8254 entry->spidx = *spidx; 8255 entry->sp = sp; 8256 8257 return (entry); 8258 } 8259 8260 void 8261 spdcache_entry_free(struct spdcache_entry *entry) 8262 { 8263 8264 if (entry->sp != NULL) 8265 key_freesp(&entry->sp); 8266 free(entry, M_IPSEC_SPDCACHE); 8267 } 8268 8269 void 8270 spdcache_clear(void) 8271 { 8272 struct spdcache_entry *entry; 8273 int i; 8274 8275 for (i = 0; i < V_spdcachehash_mask + 1; ++i) { 8276 SPDCACHE_LOCK(i); 8277 while (!LIST_EMPTY(&V_spdcachehashtbl[i])) { 8278 entry = LIST_FIRST(&V_spdcachehashtbl[i]); 8279 LIST_REMOVE(entry, chain); 8280 spdcache_entry_free(entry); 8281 } 8282 SPDCACHE_UNLOCK(i); 8283 } 8284 } 8285 8286 #ifdef VIMAGE 8287 void 8288 spdcache_destroy(void) 8289 { 8290 int i; 8291 8292 if (SPDCACHE_ENABLED()) { 8293 spdcache_clear(); 8294 hashdestroy(V_spdcachehashtbl, M_IPSEC_SPDCACHE, V_spdcachehash_mask); 8295 8296 for (i = 0; i < V_spdcachehash_mask + 1; ++i) 8297 SPDCACHE_LOCK_DESTROY(i); 8298 8299 free(V_spdcache_lock, M_IPSEC_SPDCACHE); 8300 } 8301 } 8302 #endif 8303 void 8304 key_init(void) 8305 { 8306 int i; 8307 8308 for (i = 0; i < IPSEC_DIR_MAX; i++) { 8309 TAILQ_INIT(&V_sptree[i]); 8310 TAILQ_INIT(&V_sptree_ifnet[i]); 8311 } 8312 8313 TAILQ_INIT(&V_sahtree); 8314 V_sphashtbl = hashinit(SPHASH_NHASH, M_IPSEC_SP, &V_sphash_mask); 8315 V_savhashtbl = hashinit(SAVHASH_NHASH, M_IPSEC_SA, &V_savhash_mask); 8316 V_sahaddrhashtbl = hashinit(SAHHASH_NHASH, M_IPSEC_SAH, 8317 &V_sahaddrhash_mask); 8318 V_acqaddrhashtbl = hashinit(ACQHASH_NHASH, M_IPSEC_SAQ, 8319 &V_acqaddrhash_mask); 8320 V_acqseqhashtbl = hashinit(ACQHASH_NHASH, M_IPSEC_SAQ, 8321 &V_acqseqhash_mask); 8322 8323 spdcache_init(); 8324 8325 for (i = 0; i <= SADB_SATYPE_MAX; i++) 8326 LIST_INIT(&V_regtree[i]); 8327 8328 LIST_INIT(&V_acqtree); 8329 LIST_INIT(&V_spacqtree); 8330 8331 if (!IS_DEFAULT_VNET(curvnet)) 8332 return; 8333 8334 ipsec_key_lft_zone = uma_zcreate("IPsec SA lft_c", 8335 sizeof(uint64_t) * 2, NULL, NULL, NULL, NULL, 8336 UMA_ALIGN_PTR, UMA_ZONE_PCPU); 8337 8338 SPTREE_LOCK_INIT(); 8339 REGTREE_LOCK_INIT(); 8340 SAHTREE_LOCK_INIT(); 8341 ACQ_LOCK_INIT(); 8342 SPACQ_LOCK_INIT(); 8343 SPI_ALLOC_LOCK_INIT(); 8344 8345 #ifndef IPSEC_DEBUG2 8346 callout_init(&key_timer, 1); 8347 callout_reset(&key_timer, hz, key_timehandler, NULL); 8348 #endif /*IPSEC_DEBUG2*/ 8349 8350 /* initialize key statistics */ 8351 keystat.getspi_count = 1; 8352 8353 if (bootverbose) 8354 printf("IPsec: Initialized Security Association Processing.\n"); 8355 } 8356 8357 #ifdef VIMAGE 8358 void 8359 key_destroy(void) 8360 { 8361 struct secashead_queue sahdrainq; 8362 struct secpolicy_queue drainq; 8363 struct secpolicy *sp, *nextsp; 8364 struct secacq *acq, *nextacq; 8365 struct secspacq *spacq, *nextspacq; 8366 struct secashead *sah; 8367 struct secasvar *sav; 8368 struct secreg *reg; 8369 int i; 8370 8371 /* 8372 * XXX: can we just call free() for each object without 8373 * walking through safe way with releasing references? 8374 */ 8375 TAILQ_INIT(&drainq); 8376 SPTREE_WLOCK(); 8377 for (i = 0; i < IPSEC_DIR_MAX; i++) { 8378 TAILQ_CONCAT(&drainq, &V_sptree[i], chain); 8379 TAILQ_CONCAT(&drainq, &V_sptree_ifnet[i], chain); 8380 } 8381 for (i = 0; i < V_sphash_mask + 1; i++) 8382 LIST_INIT(&V_sphashtbl[i]); 8383 SPTREE_WUNLOCK(); 8384 spdcache_destroy(); 8385 8386 sp = TAILQ_FIRST(&drainq); 8387 while (sp != NULL) { 8388 nextsp = TAILQ_NEXT(sp, chain); 8389 key_freesp(&sp); 8390 sp = nextsp; 8391 } 8392 8393 TAILQ_INIT(&sahdrainq); 8394 SAHTREE_WLOCK(); 8395 TAILQ_CONCAT(&sahdrainq, &V_sahtree, chain); 8396 for (i = 0; i < V_savhash_mask + 1; i++) 8397 LIST_INIT(&V_savhashtbl[i]); 8398 for (i = 0; i < V_sahaddrhash_mask + 1; i++) 8399 LIST_INIT(&V_sahaddrhashtbl[i]); 8400 TAILQ_FOREACH(sah, &sahdrainq, chain) { 8401 sah->state = SADB_SASTATE_DEAD; 8402 TAILQ_FOREACH(sav, &sah->savtree_larval, chain) { 8403 sav->state = SADB_SASTATE_DEAD; 8404 } 8405 TAILQ_FOREACH(sav, &sah->savtree_alive, chain) { 8406 sav->state = SADB_SASTATE_DEAD; 8407 } 8408 } 8409 SAHTREE_WUNLOCK(); 8410 8411 key_freesah_flushed(&sahdrainq); 8412 hashdestroy(V_sphashtbl, M_IPSEC_SP, V_sphash_mask); 8413 hashdestroy(V_savhashtbl, M_IPSEC_SA, V_savhash_mask); 8414 hashdestroy(V_sahaddrhashtbl, M_IPSEC_SAH, V_sahaddrhash_mask); 8415 8416 REGTREE_LOCK(); 8417 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 8418 LIST_FOREACH(reg, &V_regtree[i], chain) { 8419 if (__LIST_CHAINED(reg)) { 8420 LIST_REMOVE(reg, chain); 8421 free(reg, M_IPSEC_SAR); 8422 break; 8423 } 8424 } 8425 } 8426 REGTREE_UNLOCK(); 8427 8428 ACQ_LOCK(); 8429 acq = LIST_FIRST(&V_acqtree); 8430 while (acq != NULL) { 8431 nextacq = LIST_NEXT(acq, chain); 8432 LIST_REMOVE(acq, chain); 8433 free(acq, M_IPSEC_SAQ); 8434 acq = nextacq; 8435 } 8436 for (i = 0; i < V_acqaddrhash_mask + 1; i++) 8437 LIST_INIT(&V_acqaddrhashtbl[i]); 8438 for (i = 0; i < V_acqseqhash_mask + 1; i++) 8439 LIST_INIT(&V_acqseqhashtbl[i]); 8440 ACQ_UNLOCK(); 8441 8442 SPACQ_LOCK(); 8443 for (spacq = LIST_FIRST(&V_spacqtree); spacq != NULL; 8444 spacq = nextspacq) { 8445 nextspacq = LIST_NEXT(spacq, chain); 8446 if (__LIST_CHAINED(spacq)) { 8447 LIST_REMOVE(spacq, chain); 8448 free(spacq, M_IPSEC_SAQ); 8449 } 8450 } 8451 SPACQ_UNLOCK(); 8452 hashdestroy(V_acqaddrhashtbl, M_IPSEC_SAQ, V_acqaddrhash_mask); 8453 hashdestroy(V_acqseqhashtbl, M_IPSEC_SAQ, V_acqseqhash_mask); 8454 8455 if (!IS_DEFAULT_VNET(curvnet)) 8456 return; 8457 8458 uma_zdestroy(ipsec_key_lft_zone); 8459 8460 #ifndef IPSEC_DEBUG2 8461 callout_drain(&key_timer); 8462 #endif 8463 SPTREE_LOCK_DESTROY(); 8464 REGTREE_LOCK_DESTROY(); 8465 SAHTREE_LOCK_DESTROY(); 8466 ACQ_LOCK_DESTROY(); 8467 SPACQ_LOCK_DESTROY(); 8468 SPI_ALLOC_LOCK_DESTROY(); 8469 } 8470 #endif 8471 8472 /* record data transfer on SA, and update timestamps */ 8473 void 8474 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m) 8475 { 8476 IPSEC_ASSERT(sav != NULL, ("Null secasvar")); 8477 IPSEC_ASSERT(m != NULL, ("Null mbuf")); 8478 8479 /* 8480 * XXX Currently, there is a difference of bytes size 8481 * between inbound and outbound processing. 8482 */ 8483 counter_u64_add(sav->lft_c_bytes, m->m_pkthdr.len); 8484 8485 /* 8486 * We use the number of packets as the unit of 8487 * allocations. We increment the variable 8488 * whenever {esp,ah}_{in,out}put is called. 8489 */ 8490 counter_u64_add(sav->lft_c_allocations, 1); 8491 8492 /* 8493 * NOTE: We record CURRENT usetime by using wall clock, 8494 * in seconds. HARD and SOFT lifetime are measured by the time 8495 * difference (again in seconds) from usetime. 8496 * 8497 * usetime 8498 * v expire expire 8499 * -----+-----+--------+---> t 8500 * <--------------> HARD 8501 * <-----> SOFT 8502 */ 8503 if (sav->firstused == 0) 8504 sav->firstused = time_second; 8505 } 8506 8507 /* 8508 * Take one of the kernel's security keys and convert it into a PF_KEY 8509 * structure within an mbuf, suitable for sending up to a waiting 8510 * application in user land. 8511 * 8512 * IN: 8513 * src: A pointer to a kernel security key. 8514 * exttype: Which type of key this is. Refer to the PF_KEY data structures. 8515 * OUT: 8516 * a valid mbuf or NULL indicating an error 8517 * 8518 */ 8519 8520 static struct mbuf * 8521 key_setkey(struct seckey *src, uint16_t exttype) 8522 { 8523 struct mbuf *m; 8524 struct sadb_key *p; 8525 int len; 8526 8527 if (src == NULL) 8528 return NULL; 8529 8530 len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src)); 8531 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 8532 if (m == NULL) 8533 return NULL; 8534 m_align(m, len); 8535 m->m_len = len; 8536 p = mtod(m, struct sadb_key *); 8537 bzero(p, len); 8538 p->sadb_key_len = PFKEY_UNIT64(len); 8539 p->sadb_key_exttype = exttype; 8540 p->sadb_key_bits = src->bits; 8541 bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src)); 8542 8543 return m; 8544 } 8545 8546 /* 8547 * Take one of the kernel's lifetime data structures and convert it 8548 * into a PF_KEY structure within an mbuf, suitable for sending up to 8549 * a waiting application in user land. 8550 * 8551 * IN: 8552 * src: A pointer to a kernel lifetime structure. 8553 * exttype: Which type of lifetime this is. Refer to the PF_KEY 8554 * data structures for more information. 8555 * OUT: 8556 * a valid mbuf or NULL indicating an error 8557 * 8558 */ 8559 8560 static struct mbuf * 8561 key_setlifetime(struct seclifetime *src, uint16_t exttype) 8562 { 8563 struct mbuf *m = NULL; 8564 struct sadb_lifetime *p; 8565 int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime)); 8566 8567 if (src == NULL) 8568 return NULL; 8569 8570 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 8571 if (m == NULL) 8572 return m; 8573 m_align(m, len); 8574 m->m_len = len; 8575 p = mtod(m, struct sadb_lifetime *); 8576 8577 bzero(p, len); 8578 p->sadb_lifetime_len = PFKEY_UNIT64(len); 8579 p->sadb_lifetime_exttype = exttype; 8580 p->sadb_lifetime_allocations = src->allocations; 8581 p->sadb_lifetime_bytes = src->bytes; 8582 p->sadb_lifetime_addtime = src->addtime; 8583 p->sadb_lifetime_usetime = src->usetime; 8584 8585 return m; 8586 8587 } 8588 8589 const struct enc_xform * 8590 enc_algorithm_lookup(int alg) 8591 { 8592 int i; 8593 8594 for (i = 0; i < nitems(supported_ealgs); i++) 8595 if (alg == supported_ealgs[i].sadb_alg) 8596 return (supported_ealgs[i].xform); 8597 return (NULL); 8598 } 8599 8600 const struct auth_hash * 8601 auth_algorithm_lookup(int alg) 8602 { 8603 int i; 8604 8605 for (i = 0; i < nitems(supported_aalgs); i++) 8606 if (alg == supported_aalgs[i].sadb_alg) 8607 return (supported_aalgs[i].xform); 8608 return (NULL); 8609 } 8610 8611 const struct comp_algo * 8612 comp_algorithm_lookup(int alg) 8613 { 8614 int i; 8615 8616 for (i = 0; i < nitems(supported_calgs); i++) 8617 if (alg == supported_calgs[i].sadb_alg) 8618 return (supported_calgs[i].xform); 8619 return (NULL); 8620 } 8621