xref: /freebsd/sys/netipsec/key.c (revision ae2cbf4c649fecd3302a3bea16672345582d2562)
1 /*	$FreeBSD$	*/
2 /*	$KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $	*/
3 
4 /*-
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * This code is referd to RFC 2367
35  */
36 
37 #include "opt_inet.h"
38 #include "opt_inet6.h"
39 #include "opt_ipsec.h"
40 
41 #include <sys/types.h>
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/mbuf.h>
48 #include <sys/domain.h>
49 #include <sys/protosw.h>
50 #include <sys/malloc.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/sysctl.h>
54 #include <sys/errno.h>
55 #include <sys/proc.h>
56 #include <sys/queue.h>
57 #include <sys/refcount.h>
58 #include <sys/syslog.h>
59 
60 #include <net/if.h>
61 #include <net/route.h>
62 #include <net/raw_cb.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/ip.h>
67 #include <netinet/in_var.h>
68 
69 #ifdef INET6
70 #include <netinet/ip6.h>
71 #include <netinet6/in6_var.h>
72 #include <netinet6/ip6_var.h>
73 #endif /* INET6 */
74 
75 #ifdef INET
76 #include <netinet/in_pcb.h>
77 #endif
78 #ifdef INET6
79 #include <netinet6/in6_pcb.h>
80 #endif /* INET6 */
81 
82 #include <net/pfkeyv2.h>
83 #include <netipsec/keydb.h>
84 #include <netipsec/key.h>
85 #include <netipsec/keysock.h>
86 #include <netipsec/key_debug.h>
87 
88 #include <netipsec/ipsec.h>
89 #ifdef INET6
90 #include <netipsec/ipsec6.h>
91 #endif
92 
93 #include <netipsec/xform.h>
94 
95 #include <machine/stdarg.h>
96 
97 /* randomness */
98 #include <sys/random.h>
99 #include <sys/vimage.h>
100 
101 #define FULLMASK	0xff
102 #define	_BITS(bytes)	((bytes) << 3)
103 
104 /*
105  * Note on SA reference counting:
106  * - SAs that are not in DEAD state will have (total external reference + 1)
107  *   following value in reference count field.  they cannot be freed and are
108  *   referenced from SA header.
109  * - SAs that are in DEAD state will have (total external reference)
110  *   in reference count field.  they are ready to be freed.  reference from
111  *   SA header will be removed in key_delsav(), when the reference count
112  *   field hits 0 (= no external reference other than from SA header.
113  */
114 
115 u_int32_t key_debug_level = 0;
116 static u_int key_spi_trycnt = 1000;
117 static u_int32_t key_spi_minval = 0x100;
118 static u_int32_t key_spi_maxval = 0x0fffffff;	/* XXX */
119 static u_int32_t policy_id = 0;
120 static u_int key_int_random = 60;	/*interval to initialize randseed,1(m)*/
121 static u_int key_larval_lifetime = 30;	/* interval to expire acquiring, 30(s)*/
122 static int key_blockacq_count = 10;	/* counter for blocking SADB_ACQUIRE.*/
123 static int key_blockacq_lifetime = 20;	/* lifetime for blocking SADB_ACQUIRE.*/
124 static int key_preferred_oldsa = 1;	/* preferred old sa rather than new sa.*/
125 
126 static u_int32_t acq_seq = 0;
127 
128 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX];	/* SPD */
129 static struct mtx sptree_lock;
130 #define	SPTREE_LOCK_INIT() \
131 	mtx_init(&sptree_lock, "sptree", \
132 		"fast ipsec security policy database", MTX_DEF)
133 #define	SPTREE_LOCK_DESTROY()	mtx_destroy(&sptree_lock)
134 #define	SPTREE_LOCK()		mtx_lock(&sptree_lock)
135 #define	SPTREE_UNLOCK()	mtx_unlock(&sptree_lock)
136 #define	SPTREE_LOCK_ASSERT()	mtx_assert(&sptree_lock, MA_OWNED)
137 
138 static LIST_HEAD(_sahtree, secashead) sahtree;			/* SAD */
139 static struct mtx sahtree_lock;
140 #define	SAHTREE_LOCK_INIT() \
141 	mtx_init(&sahtree_lock, "sahtree", \
142 		"fast ipsec security association database", MTX_DEF)
143 #define	SAHTREE_LOCK_DESTROY()	mtx_destroy(&sahtree_lock)
144 #define	SAHTREE_LOCK()		mtx_lock(&sahtree_lock)
145 #define	SAHTREE_UNLOCK()	mtx_unlock(&sahtree_lock)
146 #define	SAHTREE_LOCK_ASSERT()	mtx_assert(&sahtree_lock, MA_OWNED)
147 
148 							/* registed list */
149 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1];
150 static struct mtx regtree_lock;
151 #define	REGTREE_LOCK_INIT() \
152 	mtx_init(&regtree_lock, "regtree", "fast ipsec regtree", MTX_DEF)
153 #define	REGTREE_LOCK_DESTROY()	mtx_destroy(&regtree_lock)
154 #define	REGTREE_LOCK()		mtx_lock(&regtree_lock)
155 #define	REGTREE_UNLOCK()	mtx_unlock(&regtree_lock)
156 #define	REGTREE_LOCK_ASSERT()	mtx_assert(&regtree_lock, MA_OWNED)
157 
158 static LIST_HEAD(_acqtree, secacq) acqtree;		/* acquiring list */
159 static struct mtx acq_lock;
160 #define	ACQ_LOCK_INIT() \
161 	mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF)
162 #define	ACQ_LOCK_DESTROY()	mtx_destroy(&acq_lock)
163 #define	ACQ_LOCK()		mtx_lock(&acq_lock)
164 #define	ACQ_UNLOCK()		mtx_unlock(&acq_lock)
165 #define	ACQ_LOCK_ASSERT()	mtx_assert(&acq_lock, MA_OWNED)
166 
167 static LIST_HEAD(_spacqtree, secspacq) spacqtree;	/* SP acquiring list */
168 static struct mtx spacq_lock;
169 #define	SPACQ_LOCK_INIT() \
170 	mtx_init(&spacq_lock, "spacqtree", \
171 		"fast ipsec security policy acquire list", MTX_DEF)
172 #define	SPACQ_LOCK_DESTROY()	mtx_destroy(&spacq_lock)
173 #define	SPACQ_LOCK()		mtx_lock(&spacq_lock)
174 #define	SPACQ_UNLOCK()		mtx_unlock(&spacq_lock)
175 #define	SPACQ_LOCK_ASSERT()	mtx_assert(&spacq_lock, MA_OWNED)
176 
177 /* search order for SAs */
178 static const u_int saorder_state_valid_prefer_old[] = {
179 	SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
180 };
181 static const u_int saorder_state_valid_prefer_new[] = {
182 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
183 };
184 static u_int saorder_state_alive[] = {
185 	/* except DEAD */
186 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
187 };
188 static u_int saorder_state_any[] = {
189 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
190 	SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
191 };
192 
193 static const int minsize[] = {
194 	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
195 	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
196 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
197 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
198 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
199 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_SRC */
200 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_DST */
201 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_PROXY */
202 	sizeof(struct sadb_key),	/* SADB_EXT_KEY_AUTH */
203 	sizeof(struct sadb_key),	/* SADB_EXT_KEY_ENCRYPT */
204 	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_SRC */
205 	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_DST */
206 	sizeof(struct sadb_sens),	/* SADB_EXT_SENSITIVITY */
207 	sizeof(struct sadb_prop),	/* SADB_EXT_PROPOSAL */
208 	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_AUTH */
209 	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_ENCRYPT */
210 	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
211 	0,				/* SADB_X_EXT_KMPRIVATE */
212 	sizeof(struct sadb_x_policy),	/* SADB_X_EXT_POLICY */
213 	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
214 };
215 static const int maxsize[] = {
216 	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
217 	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
218 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
219 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
220 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
221 	0,				/* SADB_EXT_ADDRESS_SRC */
222 	0,				/* SADB_EXT_ADDRESS_DST */
223 	0,				/* SADB_EXT_ADDRESS_PROXY */
224 	0,				/* SADB_EXT_KEY_AUTH */
225 	0,				/* SADB_EXT_KEY_ENCRYPT */
226 	0,				/* SADB_EXT_IDENTITY_SRC */
227 	0,				/* SADB_EXT_IDENTITY_DST */
228 	0,				/* SADB_EXT_SENSITIVITY */
229 	0,				/* SADB_EXT_PROPOSAL */
230 	0,				/* SADB_EXT_SUPPORTED_AUTH */
231 	0,				/* SADB_EXT_SUPPORTED_ENCRYPT */
232 	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
233 	0,				/* SADB_X_EXT_KMPRIVATE */
234 	0,				/* SADB_X_EXT_POLICY */
235 	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
236 };
237 
238 static int ipsec_esp_keymin = 256;
239 static int ipsec_esp_auth = 0;
240 static int ipsec_ah_keymin = 128;
241 
242 #ifdef SYSCTL_DECL
243 SYSCTL_DECL(_net_key);
244 #endif
245 
246 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL,	debug,	CTLFLAG_RW, \
247 	&key_debug_level,	0,	"");
248 
249 /* max count of trial for the decision of spi value */
250 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY,		spi_trycnt,	CTLFLAG_RW, \
251 	&key_spi_trycnt,	0,	"");
252 
253 /* minimum spi value to allocate automatically. */
254 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE,	spi_minval,	CTLFLAG_RW, \
255 	&key_spi_minval,	0,	"");
256 
257 /* maximun spi value to allocate automatically. */
258 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE,	spi_maxval,	CTLFLAG_RW, \
259 	&key_spi_maxval,	0,	"");
260 
261 /* interval to initialize randseed */
262 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT,	int_random,	CTLFLAG_RW, \
263 	&key_int_random,	0,	"");
264 
265 /* lifetime for larval SA */
266 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME,	larval_lifetime, CTLFLAG_RW, \
267 	&key_larval_lifetime,	0,	"");
268 
269 /* counter for blocking to send SADB_ACQUIRE to IKEd */
270 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT,	blockacq_count,	CTLFLAG_RW, \
271 	&key_blockacq_count,	0,	"");
272 
273 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
274 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME,	blockacq_lifetime, CTLFLAG_RW, \
275 	&key_blockacq_lifetime,	0,	"");
276 
277 /* ESP auth */
278 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH,	esp_auth, CTLFLAG_RW, \
279 	&ipsec_esp_auth,	0,	"");
280 
281 /* minimum ESP key length */
282 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN,	esp_keymin, CTLFLAG_RW, \
283 	&ipsec_esp_keymin,	0,	"");
284 
285 /* minimum AH key length */
286 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN,	ah_keymin, CTLFLAG_RW, \
287 	&ipsec_ah_keymin,	0,	"");
288 
289 /* perfered old SA rather than new SA */
290 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA,	preferred_oldsa, CTLFLAG_RW,\
291 	&key_preferred_oldsa,	0,	"");
292 
293 #define __LIST_CHAINED(elm) \
294 	(!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
295 #define LIST_INSERT_TAIL(head, elm, type, field) \
296 do {\
297 	struct type *curelm = LIST_FIRST(head); \
298 	if (curelm == NULL) {\
299 		LIST_INSERT_HEAD(head, elm, field); \
300 	} else { \
301 		while (LIST_NEXT(curelm, field)) \
302 			curelm = LIST_NEXT(curelm, field);\
303 		LIST_INSERT_AFTER(curelm, elm, field);\
304 	}\
305 } while (0)
306 
307 #define KEY_CHKSASTATE(head, sav, name) \
308 do { \
309 	if ((head) != (sav)) {						\
310 		ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \
311 			(name), (head), (sav)));			\
312 		continue;						\
313 	}								\
314 } while (0)
315 
316 #define KEY_CHKSPDIR(head, sp, name) \
317 do { \
318 	if ((head) != (sp)) {						\
319 		ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \
320 			"anyway continue.\n",				\
321 			(name), (head), (sp)));				\
322 	}								\
323 } while (0)
324 
325 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association");
326 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head");
327 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy");
328 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request");
329 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous");
330 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire");
331 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire");
332 
333 /*
334  * set parameters into secpolicyindex buffer.
335  * Must allocate secpolicyindex buffer passed to this function.
336  */
337 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
338 do { \
339 	bzero((idx), sizeof(struct secpolicyindex));                         \
340 	(idx)->dir = (_dir);                                                 \
341 	(idx)->prefs = (ps);                                                 \
342 	(idx)->prefd = (pd);                                                 \
343 	(idx)->ul_proto = (ulp);                                             \
344 	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
345 	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
346 } while (0)
347 
348 /*
349  * set parameters into secasindex buffer.
350  * Must allocate secasindex buffer before calling this function.
351  */
352 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \
353 do { \
354 	bzero((idx), sizeof(struct secasindex));                             \
355 	(idx)->proto = (p);                                                  \
356 	(idx)->mode = (m);                                                   \
357 	(idx)->reqid = (r);                                                  \
358 	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
359 	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
360 } while (0)
361 
362 /* key statistics */
363 struct _keystat {
364 	u_long getspi_count; /* the avarage of count to try to get new SPI */
365 } keystat;
366 
367 struct sadb_msghdr {
368 	struct sadb_msg *msg;
369 	struct sadb_ext *ext[SADB_EXT_MAX + 1];
370 	int extoff[SADB_EXT_MAX + 1];
371 	int extlen[SADB_EXT_MAX + 1];
372 };
373 
374 static struct secasvar *key_allocsa_policy __P((const struct secasindex *));
375 static void key_freesp_so __P((struct secpolicy **));
376 static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int));
377 static void key_delsp __P((struct secpolicy *));
378 static struct secpolicy *key_getsp __P((struct secpolicyindex *));
379 static void _key_delsp(struct secpolicy *sp);
380 static struct secpolicy *key_getspbyid __P((u_int32_t));
381 static u_int32_t key_newreqid __P((void));
382 static struct mbuf *key_gather_mbuf __P((struct mbuf *,
383 	const struct sadb_msghdr *, int, int, ...));
384 static int key_spdadd __P((struct socket *, struct mbuf *,
385 	const struct sadb_msghdr *));
386 static u_int32_t key_getnewspid __P((void));
387 static int key_spddelete __P((struct socket *, struct mbuf *,
388 	const struct sadb_msghdr *));
389 static int key_spddelete2 __P((struct socket *, struct mbuf *,
390 	const struct sadb_msghdr *));
391 static int key_spdget __P((struct socket *, struct mbuf *,
392 	const struct sadb_msghdr *));
393 static int key_spdflush __P((struct socket *, struct mbuf *,
394 	const struct sadb_msghdr *));
395 static int key_spddump __P((struct socket *, struct mbuf *,
396 	const struct sadb_msghdr *));
397 static struct mbuf *key_setdumpsp __P((struct secpolicy *,
398 	u_int8_t, u_int32_t, u_int32_t));
399 static u_int key_getspreqmsglen __P((struct secpolicy *));
400 static int key_spdexpire __P((struct secpolicy *));
401 static struct secashead *key_newsah __P((struct secasindex *));
402 static void key_delsah __P((struct secashead *));
403 static struct secasvar *key_newsav __P((struct mbuf *,
404 	const struct sadb_msghdr *, struct secashead *, int *,
405 	const char*, int));
406 #define	KEY_NEWSAV(m, sadb, sah, e)				\
407 	key_newsav(m, sadb, sah, e, __FILE__, __LINE__)
408 static void key_delsav __P((struct secasvar *));
409 static struct secashead *key_getsah __P((struct secasindex *));
410 static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t));
411 static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t));
412 static int key_setsaval __P((struct secasvar *, struct mbuf *,
413 	const struct sadb_msghdr *));
414 static int key_mature __P((struct secasvar *));
415 static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t,
416 	u_int8_t, u_int32_t, u_int32_t));
417 static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t,
418 	u_int32_t, pid_t, u_int16_t));
419 static struct mbuf *key_setsadbsa __P((struct secasvar *));
420 static struct mbuf *key_setsadbaddr __P((u_int16_t,
421 	const struct sockaddr *, u_int8_t, u_int16_t));
422 static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t));
423 static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t,
424 	u_int32_t));
425 static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int,
426 				     struct malloc_type *);
427 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src,
428 					    struct malloc_type *type);
429 #ifdef INET6
430 static int key_ismyaddr6 __P((struct sockaddr_in6 *));
431 #endif
432 
433 /* flags for key_cmpsaidx() */
434 #define CMP_HEAD	1	/* protocol, addresses. */
435 #define CMP_MODE_REQID	2	/* additionally HEAD, reqid, mode. */
436 #define CMP_REQID	3	/* additionally HEAD, reaid. */
437 #define CMP_EXACTLY	4	/* all elements. */
438 static int key_cmpsaidx
439 	__P((const struct secasindex *, const struct secasindex *, int));
440 
441 static int key_cmpspidx_exactly
442 	__P((struct secpolicyindex *, struct secpolicyindex *));
443 static int key_cmpspidx_withmask
444 	__P((struct secpolicyindex *, struct secpolicyindex *));
445 static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int));
446 static int key_bbcmp __P((const void *, const void *, u_int));
447 static u_int16_t key_satype2proto __P((u_int8_t));
448 static u_int8_t key_proto2satype __P((u_int16_t));
449 
450 static int key_getspi __P((struct socket *, struct mbuf *,
451 	const struct sadb_msghdr *));
452 static u_int32_t key_do_getnewspi __P((struct sadb_spirange *,
453 					struct secasindex *));
454 static int key_update __P((struct socket *, struct mbuf *,
455 	const struct sadb_msghdr *));
456 #ifdef IPSEC_DOSEQCHECK
457 static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t));
458 #endif
459 static int key_add __P((struct socket *, struct mbuf *,
460 	const struct sadb_msghdr *));
461 static int key_setident __P((struct secashead *, struct mbuf *,
462 	const struct sadb_msghdr *));
463 static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *,
464 	const struct sadb_msghdr *));
465 static int key_delete __P((struct socket *, struct mbuf *,
466 	const struct sadb_msghdr *));
467 static int key_get __P((struct socket *, struct mbuf *,
468 	const struct sadb_msghdr *));
469 
470 static void key_getcomb_setlifetime __P((struct sadb_comb *));
471 static struct mbuf *key_getcomb_esp __P((void));
472 static struct mbuf *key_getcomb_ah __P((void));
473 static struct mbuf *key_getcomb_ipcomp __P((void));
474 static struct mbuf *key_getprop __P((const struct secasindex *));
475 
476 static int key_acquire __P((const struct secasindex *, struct secpolicy *));
477 static struct secacq *key_newacq __P((const struct secasindex *));
478 static struct secacq *key_getacq __P((const struct secasindex *));
479 static struct secacq *key_getacqbyseq __P((u_int32_t));
480 static struct secspacq *key_newspacq __P((struct secpolicyindex *));
481 static struct secspacq *key_getspacq __P((struct secpolicyindex *));
482 static int key_acquire2 __P((struct socket *, struct mbuf *,
483 	const struct sadb_msghdr *));
484 static int key_register __P((struct socket *, struct mbuf *,
485 	const struct sadb_msghdr *));
486 static int key_expire __P((struct secasvar *));
487 static int key_flush __P((struct socket *, struct mbuf *,
488 	const struct sadb_msghdr *));
489 static int key_dump __P((struct socket *, struct mbuf *,
490 	const struct sadb_msghdr *));
491 static int key_promisc __P((struct socket *, struct mbuf *,
492 	const struct sadb_msghdr *));
493 static int key_senderror __P((struct socket *, struct mbuf *, int));
494 static int key_validate_ext __P((const struct sadb_ext *, int));
495 static int key_align __P((struct mbuf *, struct sadb_msghdr *));
496 static struct mbuf *key_setlifetime(struct seclifetime *src,
497 				     u_int16_t exttype);
498 static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype);
499 
500 #if 0
501 static const char *key_getfqdn __P((void));
502 static const char *key_getuserfqdn __P((void));
503 #endif
504 static void key_sa_chgstate __P((struct secasvar *, u_int8_t));
505 static struct mbuf *key_alloc_mbuf __P((int));
506 
507 static __inline void
508 sa_initref(struct secasvar *sav)
509 {
510 
511 	refcount_init(&sav->refcnt, 1);
512 }
513 static __inline void
514 sa_addref(struct secasvar *sav)
515 {
516 
517 	refcount_acquire(&sav->refcnt);
518 	IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow"));
519 }
520 static __inline int
521 sa_delref(struct secasvar *sav)
522 {
523 
524 	IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow"));
525 	return (refcount_release(&sav->refcnt));
526 }
527 
528 #define	SP_ADDREF(p) do {						\
529 	(p)->refcnt++;							\
530 	IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow"));		\
531 } while (0)
532 #define	SP_DELREF(p) do {						\
533 	IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow"));		\
534 	(p)->refcnt--;							\
535 } while (0)
536 
537 
538 /*
539  * Update the refcnt while holding the SPTREE lock.
540  */
541 void
542 key_addref(struct secpolicy *sp)
543 {
544 	SPTREE_LOCK();
545 	SP_ADDREF(sp);
546 	SPTREE_UNLOCK();
547 }
548 
549 /*
550  * Return 0 when there are known to be no SP's for the specified
551  * direction.  Otherwise return 1.  This is used by IPsec code
552  * to optimize performance.
553  */
554 int
555 key_havesp(u_int dir)
556 {
557 	return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
558 		LIST_FIRST(&V_sptree[dir]) != NULL : 1);
559 }
560 
561 /* %%% IPsec policy management */
562 /*
563  * allocating a SP for OUTBOUND or INBOUND packet.
564  * Must call key_freesp() later.
565  * OUT:	NULL:	not found
566  *	others:	found and return the pointer.
567  */
568 struct secpolicy *
569 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag)
570 {
571 	struct secpolicy *sp;
572 
573 	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
574 	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
575 		("invalid direction %u", dir));
576 
577 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
578 		printf("DP %s from %s:%u\n", __func__, where, tag));
579 
580 	/* get a SP entry */
581 	KEYDEBUG(KEYDEBUG_IPSEC_DATA,
582 		printf("*** objects\n");
583 		kdebug_secpolicyindex(spidx));
584 
585 	SPTREE_LOCK();
586 	LIST_FOREACH(sp, &V_sptree[dir], chain) {
587 		KEYDEBUG(KEYDEBUG_IPSEC_DATA,
588 			printf("*** in SPD\n");
589 			kdebug_secpolicyindex(&sp->spidx));
590 
591 		if (sp->state == IPSEC_SPSTATE_DEAD)
592 			continue;
593 		if (key_cmpspidx_withmask(&sp->spidx, spidx))
594 			goto found;
595 	}
596 	sp = NULL;
597 found:
598 	if (sp) {
599 		/* sanity check */
600 		KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
601 
602 		/* found a SPD entry */
603 		sp->lastused = time_second;
604 		SP_ADDREF(sp);
605 	}
606 	SPTREE_UNLOCK();
607 
608 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
609 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
610 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
611 	return sp;
612 }
613 
614 /*
615  * allocating a SP for OUTBOUND or INBOUND packet.
616  * Must call key_freesp() later.
617  * OUT:	NULL:	not found
618  *	others:	found and return the pointer.
619  */
620 struct secpolicy *
621 key_allocsp2(u_int32_t spi,
622 	     union sockaddr_union *dst,
623 	     u_int8_t proto,
624 	     u_int dir,
625 	     const char* where, int tag)
626 {
627 	struct secpolicy *sp;
628 
629 	IPSEC_ASSERT(dst != NULL, ("null dst"));
630 	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
631 		("invalid direction %u", dir));
632 
633 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
634 		printf("DP %s from %s:%u\n", __func__, where, tag));
635 
636 	/* get a SP entry */
637 	KEYDEBUG(KEYDEBUG_IPSEC_DATA,
638 		printf("*** objects\n");
639 		printf("spi %u proto %u dir %u\n", spi, proto, dir);
640 		kdebug_sockaddr(&dst->sa));
641 
642 	SPTREE_LOCK();
643 	LIST_FOREACH(sp, &V_sptree[dir], chain) {
644 		KEYDEBUG(KEYDEBUG_IPSEC_DATA,
645 			printf("*** in SPD\n");
646 			kdebug_secpolicyindex(&sp->spidx));
647 
648 		if (sp->state == IPSEC_SPSTATE_DEAD)
649 			continue;
650 		/* compare simple values, then dst address */
651 		if (sp->spidx.ul_proto != proto)
652 			continue;
653 		/* NB: spi's must exist and match */
654 		if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
655 			continue;
656 		if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0)
657 			goto found;
658 	}
659 	sp = NULL;
660 found:
661 	if (sp) {
662 		/* sanity check */
663 		KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
664 
665 		/* found a SPD entry */
666 		sp->lastused = time_second;
667 		SP_ADDREF(sp);
668 	}
669 	SPTREE_UNLOCK();
670 
671 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
672 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
673 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
674 	return sp;
675 }
676 
677 /*
678  * return a policy that matches this particular inbound packet.
679  * XXX slow
680  */
681 struct secpolicy *
682 key_gettunnel(const struct sockaddr *osrc,
683 	      const struct sockaddr *odst,
684 	      const struct sockaddr *isrc,
685 	      const struct sockaddr *idst,
686 	      const char* where, int tag)
687 {
688 	struct secpolicy *sp;
689 	const int dir = IPSEC_DIR_INBOUND;
690 	struct ipsecrequest *r1, *r2, *p;
691 	struct secpolicyindex spidx;
692 
693 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
694 		printf("DP %s from %s:%u\n", __func__, where, tag));
695 
696 	if (isrc->sa_family != idst->sa_family) {
697 		ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.",
698 			__func__, isrc->sa_family, idst->sa_family));
699 		sp = NULL;
700 		goto done;
701 	}
702 
703 	SPTREE_LOCK();
704 	LIST_FOREACH(sp, &V_sptree[dir], chain) {
705 		if (sp->state == IPSEC_SPSTATE_DEAD)
706 			continue;
707 
708 		r1 = r2 = NULL;
709 		for (p = sp->req; p; p = p->next) {
710 			if (p->saidx.mode != IPSEC_MODE_TUNNEL)
711 				continue;
712 
713 			r1 = r2;
714 			r2 = p;
715 
716 			if (!r1) {
717 				/* here we look at address matches only */
718 				spidx = sp->spidx;
719 				if (isrc->sa_len > sizeof(spidx.src) ||
720 				    idst->sa_len > sizeof(spidx.dst))
721 					continue;
722 				bcopy(isrc, &spidx.src, isrc->sa_len);
723 				bcopy(idst, &spidx.dst, idst->sa_len);
724 				if (!key_cmpspidx_withmask(&sp->spidx, &spidx))
725 					continue;
726 			} else {
727 				if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) ||
728 				    key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0))
729 					continue;
730 			}
731 
732 			if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) ||
733 			    key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0))
734 				continue;
735 
736 			goto found;
737 		}
738 	}
739 	sp = NULL;
740 found:
741 	if (sp) {
742 		sp->lastused = time_second;
743 		SP_ADDREF(sp);
744 	}
745 	SPTREE_UNLOCK();
746 done:
747 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
748 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
749 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
750 	return sp;
751 }
752 
753 /*
754  * allocating an SA entry for an *OUTBOUND* packet.
755  * checking each request entries in SP, and acquire an SA if need.
756  * OUT:	0: there are valid requests.
757  *	ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
758  */
759 int
760 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
761 {
762 	u_int level;
763 	int error;
764 
765 	IPSEC_ASSERT(isr != NULL, ("null isr"));
766 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
767 	IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT ||
768 		saidx->mode == IPSEC_MODE_TUNNEL,
769 		("unexpected policy %u", saidx->mode));
770 
771 	/*
772 	 * XXX guard against protocol callbacks from the crypto
773 	 * thread as they reference ipsecrequest.sav which we
774 	 * temporarily null out below.  Need to rethink how we
775 	 * handle bundled SA's in the callback thread.
776 	 */
777 	IPSECREQUEST_LOCK_ASSERT(isr);
778 
779 	/* get current level */
780 	level = ipsec_get_reqlevel(isr);
781 #if 0
782 	/*
783 	 * We do allocate new SA only if the state of SA in the holder is
784 	 * SADB_SASTATE_DEAD.  The SA for outbound must be the oldest.
785 	 */
786 	if (isr->sav != NULL) {
787 		if (isr->sav->sah == NULL)
788 			panic("%s: sah is null.\n", __func__);
789 		if (isr->sav == (struct secasvar *)LIST_FIRST(
790 			    &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) {
791 			KEY_FREESAV(&isr->sav);
792 			isr->sav = NULL;
793 		}
794 	}
795 #else
796 	/*
797 	 * we free any SA stashed in the IPsec request because a different
798 	 * SA may be involved each time this request is checked, either
799 	 * because new SAs are being configured, or this request is
800 	 * associated with an unconnected datagram socket, or this request
801 	 * is associated with a system default policy.
802 	 *
803 	 * The operation may have negative impact to performance.  We may
804 	 * want to check cached SA carefully, rather than picking new SA
805 	 * every time.
806 	 */
807 	if (isr->sav != NULL) {
808 		KEY_FREESAV(&isr->sav);
809 		isr->sav = NULL;
810 	}
811 #endif
812 
813 	/*
814 	 * new SA allocation if no SA found.
815 	 * key_allocsa_policy should allocate the oldest SA available.
816 	 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
817 	 */
818 	if (isr->sav == NULL)
819 		isr->sav = key_allocsa_policy(saidx);
820 
821 	/* When there is SA. */
822 	if (isr->sav != NULL) {
823 		if (isr->sav->state != SADB_SASTATE_MATURE &&
824 		    isr->sav->state != SADB_SASTATE_DYING)
825 			return EINVAL;
826 		return 0;
827 	}
828 
829 	/* there is no SA */
830 	error = key_acquire(saidx, isr->sp);
831 	if (error != 0) {
832 		/* XXX What should I do ? */
833 		ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
834 			__func__, error));
835 		return error;
836 	}
837 
838 	if (level != IPSEC_LEVEL_REQUIRE) {
839 		/* XXX sigh, the interface to this routine is botched */
840 		IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA"));
841 		return 0;
842 	} else {
843 		return ENOENT;
844 	}
845 }
846 
847 /*
848  * allocating a SA for policy entry from SAD.
849  * NOTE: searching SAD of aliving state.
850  * OUT:	NULL:	not found.
851  *	others:	found and return the pointer.
852  */
853 static struct secasvar *
854 key_allocsa_policy(const struct secasindex *saidx)
855 {
856 #define	N(a)	_ARRAYLEN(a)
857 	struct secashead *sah;
858 	struct secasvar *sav;
859 	u_int stateidx, arraysize;
860 	const u_int *state_valid;
861 
862 	SAHTREE_LOCK();
863 	LIST_FOREACH(sah, &V_sahtree, chain) {
864 		if (sah->state == SADB_SASTATE_DEAD)
865 			continue;
866 		if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) {
867 			if (V_key_preferred_oldsa) {
868 				state_valid = saorder_state_valid_prefer_old;
869 				arraysize = N(saorder_state_valid_prefer_old);
870 			} else {
871 				state_valid = saorder_state_valid_prefer_new;
872 				arraysize = N(saorder_state_valid_prefer_new);
873 			}
874 			SAHTREE_UNLOCK();
875 			goto found;
876 		}
877 	}
878 	SAHTREE_UNLOCK();
879 
880 	return NULL;
881 
882     found:
883 	/* search valid state */
884 	for (stateidx = 0; stateidx < arraysize; stateidx++) {
885 		sav = key_do_allocsa_policy(sah, state_valid[stateidx]);
886 		if (sav != NULL)
887 			return sav;
888 	}
889 
890 	return NULL;
891 #undef N
892 }
893 
894 /*
895  * searching SAD with direction, protocol, mode and state.
896  * called by key_allocsa_policy().
897  * OUT:
898  *	NULL	: not found
899  *	others	: found, pointer to a SA.
900  */
901 static struct secasvar *
902 key_do_allocsa_policy(struct secashead *sah, u_int state)
903 {
904 	struct secasvar *sav, *nextsav, *candidate, *d;
905 
906 	/* initilize */
907 	candidate = NULL;
908 
909 	SAHTREE_LOCK();
910 	for (sav = LIST_FIRST(&sah->savtree[state]);
911 	     sav != NULL;
912 	     sav = nextsav) {
913 
914 		nextsav = LIST_NEXT(sav, chain);
915 
916 		/* sanity check */
917 		KEY_CHKSASTATE(sav->state, state, __func__);
918 
919 		/* initialize */
920 		if (candidate == NULL) {
921 			candidate = sav;
922 			continue;
923 		}
924 
925 		/* Which SA is the better ? */
926 
927 		IPSEC_ASSERT(candidate->lft_c != NULL,
928 			("null candidate lifetime"));
929 		IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime"));
930 
931 		/* What the best method is to compare ? */
932 		if (V_key_preferred_oldsa) {
933 			if (candidate->lft_c->addtime >
934 					sav->lft_c->addtime) {
935 				candidate = sav;
936 			}
937 			continue;
938 			/*NOTREACHED*/
939 		}
940 
941 		/* preferred new sa rather than old sa */
942 		if (candidate->lft_c->addtime <
943 				sav->lft_c->addtime) {
944 			d = candidate;
945 			candidate = sav;
946 		} else
947 			d = sav;
948 
949 		/*
950 		 * prepared to delete the SA when there is more
951 		 * suitable candidate and the lifetime of the SA is not
952 		 * permanent.
953 		 */
954 		if (d->lft_h->addtime != 0) {
955 			struct mbuf *m, *result;
956 			u_int8_t satype;
957 
958 			key_sa_chgstate(d, SADB_SASTATE_DEAD);
959 
960 			IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count"));
961 
962 			satype = key_proto2satype(d->sah->saidx.proto);
963 			if (satype == 0)
964 				goto msgfail;
965 
966 			m = key_setsadbmsg(SADB_DELETE, 0,
967 			    satype, 0, 0, d->refcnt - 1);
968 			if (!m)
969 				goto msgfail;
970 			result = m;
971 
972 			/* set sadb_address for saidx's. */
973 			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
974 				&d->sah->saidx.src.sa,
975 				d->sah->saidx.src.sa.sa_len << 3,
976 				IPSEC_ULPROTO_ANY);
977 			if (!m)
978 				goto msgfail;
979 			m_cat(result, m);
980 
981 			/* set sadb_address for saidx's. */
982 			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
983 				&d->sah->saidx.dst.sa,
984 				d->sah->saidx.dst.sa.sa_len << 3,
985 				IPSEC_ULPROTO_ANY);
986 			if (!m)
987 				goto msgfail;
988 			m_cat(result, m);
989 
990 			/* create SA extension */
991 			m = key_setsadbsa(d);
992 			if (!m)
993 				goto msgfail;
994 			m_cat(result, m);
995 
996 			if (result->m_len < sizeof(struct sadb_msg)) {
997 				result = m_pullup(result,
998 						sizeof(struct sadb_msg));
999 				if (result == NULL)
1000 					goto msgfail;
1001 			}
1002 
1003 			result->m_pkthdr.len = 0;
1004 			for (m = result; m; m = m->m_next)
1005 				result->m_pkthdr.len += m->m_len;
1006 			mtod(result, struct sadb_msg *)->sadb_msg_len =
1007 				PFKEY_UNIT64(result->m_pkthdr.len);
1008 
1009 			if (key_sendup_mbuf(NULL, result,
1010 					KEY_SENDUP_REGISTERED))
1011 				goto msgfail;
1012 		 msgfail:
1013 			KEY_FREESAV(&d);
1014 		}
1015 	}
1016 	if (candidate) {
1017 		sa_addref(candidate);
1018 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1019 			printf("DP %s cause refcnt++:%d SA:%p\n",
1020 				__func__, candidate->refcnt, candidate));
1021 	}
1022 	SAHTREE_UNLOCK();
1023 
1024 	return candidate;
1025 }
1026 
1027 /*
1028  * allocating a usable SA entry for a *INBOUND* packet.
1029  * Must call key_freesav() later.
1030  * OUT: positive:	pointer to a usable sav (i.e. MATURE or DYING state).
1031  *	NULL:		not found, or error occured.
1032  *
1033  * In the comparison, no source address is used--for RFC2401 conformance.
1034  * To quote, from section 4.1:
1035  *	A security association is uniquely identified by a triple consisting
1036  *	of a Security Parameter Index (SPI), an IP Destination Address, and a
1037  *	security protocol (AH or ESP) identifier.
1038  * Note that, however, we do need to keep source address in IPsec SA.
1039  * IKE specification and PF_KEY specification do assume that we
1040  * keep source address in IPsec SA.  We see a tricky situation here.
1041  */
1042 struct secasvar *
1043 key_allocsa(
1044 	union sockaddr_union *dst,
1045 	u_int proto,
1046 	u_int32_t spi,
1047 	const char* where, int tag)
1048 {
1049 	struct secashead *sah;
1050 	struct secasvar *sav;
1051 	u_int stateidx, arraysize, state;
1052 	const u_int *saorder_state_valid;
1053 
1054 	IPSEC_ASSERT(dst != NULL, ("null dst address"));
1055 
1056 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1057 		printf("DP %s from %s:%u\n", __func__, where, tag));
1058 
1059 	/*
1060 	 * searching SAD.
1061 	 * XXX: to be checked internal IP header somewhere.  Also when
1062 	 * IPsec tunnel packet is received.  But ESP tunnel mode is
1063 	 * encrypted so we can't check internal IP header.
1064 	 */
1065 	SAHTREE_LOCK();
1066 	if (V_key_preferred_oldsa) {
1067 		saorder_state_valid = saorder_state_valid_prefer_old;
1068 		arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1069 	} else {
1070 		saorder_state_valid = saorder_state_valid_prefer_new;
1071 		arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1072 	}
1073 	LIST_FOREACH(sah, &V_sahtree, chain) {
1074 		/* search valid state */
1075 		for (stateidx = 0; stateidx < arraysize; stateidx++) {
1076 			state = saorder_state_valid[stateidx];
1077 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
1078 				/* sanity check */
1079 				KEY_CHKSASTATE(sav->state, state, __func__);
1080 				/* do not return entries w/ unusable state */
1081 				if (sav->state != SADB_SASTATE_MATURE &&
1082 				    sav->state != SADB_SASTATE_DYING)
1083 					continue;
1084 				if (proto != sav->sah->saidx.proto)
1085 					continue;
1086 				if (spi != sav->spi)
1087 					continue;
1088 #if 0	/* don't check src */
1089 				/* check src address */
1090 				if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, 0) != 0)
1091 					continue;
1092 #endif
1093 				/* check dst address */
1094 				if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, 0) != 0)
1095 					continue;
1096 				sa_addref(sav);
1097 				goto done;
1098 			}
1099 		}
1100 	}
1101 	sav = NULL;
1102 done:
1103 	SAHTREE_UNLOCK();
1104 
1105 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1106 		printf("DP %s return SA:%p; refcnt %u\n", __func__,
1107 			sav, sav ? sav->refcnt : 0));
1108 	return sav;
1109 }
1110 
1111 /*
1112  * Must be called after calling key_allocsp().
1113  * For both the packet without socket and key_freeso().
1114  */
1115 void
1116 _key_freesp(struct secpolicy **spp, const char* where, int tag)
1117 {
1118 	struct secpolicy *sp = *spp;
1119 
1120 	IPSEC_ASSERT(sp != NULL, ("null sp"));
1121 
1122 	SPTREE_LOCK();
1123 	SP_DELREF(sp);
1124 
1125 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1126 		printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1127 			__func__, sp, sp->id, where, tag, sp->refcnt));
1128 
1129 	if (sp->refcnt == 0) {
1130 		*spp = NULL;
1131 		key_delsp(sp);
1132 	}
1133 	SPTREE_UNLOCK();
1134 }
1135 
1136 /*
1137  * Must be called after calling key_allocsp().
1138  * For the packet with socket.
1139  */
1140 void
1141 key_freeso(struct socket *so)
1142 {
1143 	IPSEC_ASSERT(so != NULL, ("null so"));
1144 
1145 	switch (so->so_proto->pr_domain->dom_family) {
1146 #ifdef INET
1147 	case PF_INET:
1148 	    {
1149 		struct inpcb *pcb = sotoinpcb(so);
1150 
1151 		/* Does it have a PCB ? */
1152 		if (pcb == NULL)
1153 			return;
1154 		key_freesp_so(&pcb->inp_sp->sp_in);
1155 		key_freesp_so(&pcb->inp_sp->sp_out);
1156 	    }
1157 		break;
1158 #endif
1159 #ifdef INET6
1160 	case PF_INET6:
1161 	    {
1162 #ifdef HAVE_NRL_INPCB
1163 		struct inpcb *pcb  = sotoinpcb(so);
1164 
1165 		/* Does it have a PCB ? */
1166 		if (pcb == NULL)
1167 			return;
1168 		key_freesp_so(&pcb->inp_sp->sp_in);
1169 		key_freesp_so(&pcb->inp_sp->sp_out);
1170 #else
1171 		struct in6pcb *pcb  = sotoin6pcb(so);
1172 
1173 		/* Does it have a PCB ? */
1174 		if (pcb == NULL)
1175 			return;
1176 		key_freesp_so(&pcb->in6p_sp->sp_in);
1177 		key_freesp_so(&pcb->in6p_sp->sp_out);
1178 #endif
1179 	    }
1180 		break;
1181 #endif /* INET6 */
1182 	default:
1183 		ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n",
1184 		    __func__, so->so_proto->pr_domain->dom_family));
1185 		return;
1186 	}
1187 }
1188 
1189 static void
1190 key_freesp_so(struct secpolicy **sp)
1191 {
1192 	IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp"));
1193 
1194 	if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1195 	    (*sp)->policy == IPSEC_POLICY_BYPASS)
1196 		return;
1197 
1198 	IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC,
1199 		("invalid policy %u", (*sp)->policy));
1200 	KEY_FREESP(sp);
1201 }
1202 
1203 /*
1204  * Must be called after calling key_allocsa().
1205  * This function is called by key_freesp() to free some SA allocated
1206  * for a policy.
1207  */
1208 void
1209 key_freesav(struct secasvar **psav, const char* where, int tag)
1210 {
1211 	struct secasvar *sav = *psav;
1212 
1213 	IPSEC_ASSERT(sav != NULL, ("null sav"));
1214 
1215 	if (sa_delref(sav)) {
1216 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1217 			printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1218 				__func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1219 		*psav = NULL;
1220 		key_delsav(sav);
1221 	} else {
1222 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1223 			printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1224 				__func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1225 	}
1226 }
1227 
1228 /* %%% SPD management */
1229 /*
1230  * free security policy entry.
1231  */
1232 static void
1233 key_delsp(struct secpolicy *sp)
1234 {
1235 	struct ipsecrequest *isr, *nextisr;
1236 
1237 	IPSEC_ASSERT(sp != NULL, ("null sp"));
1238 	SPTREE_LOCK_ASSERT();
1239 
1240 	sp->state = IPSEC_SPSTATE_DEAD;
1241 
1242 	IPSEC_ASSERT(sp->refcnt == 0,
1243 		("SP with references deleted (refcnt %u)", sp->refcnt));
1244 
1245 	/* remove from SP index */
1246 	if (__LIST_CHAINED(sp))
1247 		LIST_REMOVE(sp, chain);
1248 
1249 	for (isr = sp->req; isr != NULL; isr = nextisr) {
1250 		if (isr->sav != NULL) {
1251 			KEY_FREESAV(&isr->sav);
1252 			isr->sav = NULL;
1253 		}
1254 
1255 		nextisr = isr->next;
1256 		ipsec_delisr(isr);
1257 	}
1258 	_key_delsp(sp);
1259 }
1260 
1261 /*
1262  * search SPD
1263  * OUT:	NULL	: not found
1264  *	others	: found, pointer to a SP.
1265  */
1266 static struct secpolicy *
1267 key_getsp(struct secpolicyindex *spidx)
1268 {
1269 	struct secpolicy *sp;
1270 
1271 	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
1272 
1273 	SPTREE_LOCK();
1274 	LIST_FOREACH(sp, &V_sptree[spidx->dir], chain) {
1275 		if (sp->state == IPSEC_SPSTATE_DEAD)
1276 			continue;
1277 		if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1278 			SP_ADDREF(sp);
1279 			break;
1280 		}
1281 	}
1282 	SPTREE_UNLOCK();
1283 
1284 	return sp;
1285 }
1286 
1287 /*
1288  * get SP by index.
1289  * OUT:	NULL	: not found
1290  *	others	: found, pointer to a SP.
1291  */
1292 static struct secpolicy *
1293 key_getspbyid(u_int32_t id)
1294 {
1295 	struct secpolicy *sp;
1296 
1297 	SPTREE_LOCK();
1298 	LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_INBOUND], chain) {
1299 		if (sp->state == IPSEC_SPSTATE_DEAD)
1300 			continue;
1301 		if (sp->id == id) {
1302 			SP_ADDREF(sp);
1303 			goto done;
1304 		}
1305 	}
1306 
1307 	LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_OUTBOUND], chain) {
1308 		if (sp->state == IPSEC_SPSTATE_DEAD)
1309 			continue;
1310 		if (sp->id == id) {
1311 			SP_ADDREF(sp);
1312 			goto done;
1313 		}
1314 	}
1315 done:
1316 	SPTREE_UNLOCK();
1317 
1318 	return sp;
1319 }
1320 
1321 struct secpolicy *
1322 key_newsp(const char* where, int tag)
1323 {
1324 	struct secpolicy *newsp = NULL;
1325 
1326 	newsp = (struct secpolicy *)
1327 		malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO);
1328 	if (newsp) {
1329 		SECPOLICY_LOCK_INIT(newsp);
1330 		newsp->refcnt = 1;
1331 		newsp->req = NULL;
1332 	}
1333 
1334 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1335 		printf("DP %s from %s:%u return SP:%p\n", __func__,
1336 			where, tag, newsp));
1337 	return newsp;
1338 }
1339 
1340 static void
1341 _key_delsp(struct secpolicy *sp)
1342 {
1343 	SECPOLICY_LOCK_DESTROY(sp);
1344 	free(sp, M_IPSEC_SP);
1345 }
1346 
1347 /*
1348  * create secpolicy structure from sadb_x_policy structure.
1349  * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1350  * so must be set properly later.
1351  */
1352 struct secpolicy *
1353 key_msg2sp(xpl0, len, error)
1354 	struct sadb_x_policy *xpl0;
1355 	size_t len;
1356 	int *error;
1357 {
1358 	struct secpolicy *newsp;
1359 
1360 	IPSEC_ASSERT(xpl0 != NULL, ("null xpl0"));
1361 	IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len));
1362 
1363 	if (len != PFKEY_EXTLEN(xpl0)) {
1364 		ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__));
1365 		*error = EINVAL;
1366 		return NULL;
1367 	}
1368 
1369 	if ((newsp = KEY_NEWSP()) == NULL) {
1370 		*error = ENOBUFS;
1371 		return NULL;
1372 	}
1373 
1374 	newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1375 	newsp->policy = xpl0->sadb_x_policy_type;
1376 
1377 	/* check policy */
1378 	switch (xpl0->sadb_x_policy_type) {
1379 	case IPSEC_POLICY_DISCARD:
1380 	case IPSEC_POLICY_NONE:
1381 	case IPSEC_POLICY_ENTRUST:
1382 	case IPSEC_POLICY_BYPASS:
1383 		newsp->req = NULL;
1384 		break;
1385 
1386 	case IPSEC_POLICY_IPSEC:
1387 	    {
1388 		int tlen;
1389 		struct sadb_x_ipsecrequest *xisr;
1390 		struct ipsecrequest **p_isr = &newsp->req;
1391 
1392 		/* validity check */
1393 		if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1394 			ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n",
1395 				__func__));
1396 			KEY_FREESP(&newsp);
1397 			*error = EINVAL;
1398 			return NULL;
1399 		}
1400 
1401 		tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1402 		xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1);
1403 
1404 		while (tlen > 0) {
1405 			/* length check */
1406 			if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1407 				ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest "
1408 					"length.\n", __func__));
1409 				KEY_FREESP(&newsp);
1410 				*error = EINVAL;
1411 				return NULL;
1412 			}
1413 
1414 			/* allocate request buffer */
1415 			/* NB: data structure is zero'd */
1416 			*p_isr = ipsec_newisr();
1417 			if ((*p_isr) == NULL) {
1418 				ipseclog((LOG_DEBUG,
1419 				    "%s: No more memory.\n", __func__));
1420 				KEY_FREESP(&newsp);
1421 				*error = ENOBUFS;
1422 				return NULL;
1423 			}
1424 
1425 			/* set values */
1426 			switch (xisr->sadb_x_ipsecrequest_proto) {
1427 			case IPPROTO_ESP:
1428 			case IPPROTO_AH:
1429 			case IPPROTO_IPCOMP:
1430 				break;
1431 			default:
1432 				ipseclog((LOG_DEBUG,
1433 				    "%s: invalid proto type=%u\n", __func__,
1434 				    xisr->sadb_x_ipsecrequest_proto));
1435 				KEY_FREESP(&newsp);
1436 				*error = EPROTONOSUPPORT;
1437 				return NULL;
1438 			}
1439 			(*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1440 
1441 			switch (xisr->sadb_x_ipsecrequest_mode) {
1442 			case IPSEC_MODE_TRANSPORT:
1443 			case IPSEC_MODE_TUNNEL:
1444 				break;
1445 			case IPSEC_MODE_ANY:
1446 			default:
1447 				ipseclog((LOG_DEBUG,
1448 				    "%s: invalid mode=%u\n", __func__,
1449 				    xisr->sadb_x_ipsecrequest_mode));
1450 				KEY_FREESP(&newsp);
1451 				*error = EINVAL;
1452 				return NULL;
1453 			}
1454 			(*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1455 
1456 			switch (xisr->sadb_x_ipsecrequest_level) {
1457 			case IPSEC_LEVEL_DEFAULT:
1458 			case IPSEC_LEVEL_USE:
1459 			case IPSEC_LEVEL_REQUIRE:
1460 				break;
1461 			case IPSEC_LEVEL_UNIQUE:
1462 				/* validity check */
1463 				/*
1464 				 * If range violation of reqid, kernel will
1465 				 * update it, don't refuse it.
1466 				 */
1467 				if (xisr->sadb_x_ipsecrequest_reqid
1468 						> IPSEC_MANUAL_REQID_MAX) {
1469 					ipseclog((LOG_DEBUG,
1470 					    "%s: reqid=%d range "
1471 					    "violation, updated by kernel.\n",
1472 					    __func__,
1473 					    xisr->sadb_x_ipsecrequest_reqid));
1474 					xisr->sadb_x_ipsecrequest_reqid = 0;
1475 				}
1476 
1477 				/* allocate new reqid id if reqid is zero. */
1478 				if (xisr->sadb_x_ipsecrequest_reqid == 0) {
1479 					u_int32_t reqid;
1480 					if ((reqid = key_newreqid()) == 0) {
1481 						KEY_FREESP(&newsp);
1482 						*error = ENOBUFS;
1483 						return NULL;
1484 					}
1485 					(*p_isr)->saidx.reqid = reqid;
1486 					xisr->sadb_x_ipsecrequest_reqid = reqid;
1487 				} else {
1488 				/* set it for manual keying. */
1489 					(*p_isr)->saidx.reqid =
1490 						xisr->sadb_x_ipsecrequest_reqid;
1491 				}
1492 				break;
1493 
1494 			default:
1495 				ipseclog((LOG_DEBUG, "%s: invalid level=%u\n",
1496 					__func__,
1497 					xisr->sadb_x_ipsecrequest_level));
1498 				KEY_FREESP(&newsp);
1499 				*error = EINVAL;
1500 				return NULL;
1501 			}
1502 			(*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1503 
1504 			/* set IP addresses if there */
1505 			if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1506 				struct sockaddr *paddr;
1507 
1508 				paddr = (struct sockaddr *)(xisr + 1);
1509 
1510 				/* validity check */
1511 				if (paddr->sa_len
1512 				    > sizeof((*p_isr)->saidx.src)) {
1513 					ipseclog((LOG_DEBUG, "%s: invalid "
1514 						"request address length.\n",
1515 						__func__));
1516 					KEY_FREESP(&newsp);
1517 					*error = EINVAL;
1518 					return NULL;
1519 				}
1520 				bcopy(paddr, &(*p_isr)->saidx.src,
1521 					paddr->sa_len);
1522 
1523 				paddr = (struct sockaddr *)((caddr_t)paddr
1524 							+ paddr->sa_len);
1525 
1526 				/* validity check */
1527 				if (paddr->sa_len
1528 				    > sizeof((*p_isr)->saidx.dst)) {
1529 					ipseclog((LOG_DEBUG, "%s: invalid "
1530 						"request address length.\n",
1531 						__func__));
1532 					KEY_FREESP(&newsp);
1533 					*error = EINVAL;
1534 					return NULL;
1535 				}
1536 				bcopy(paddr, &(*p_isr)->saidx.dst,
1537 					paddr->sa_len);
1538 			}
1539 
1540 			(*p_isr)->sp = newsp;
1541 
1542 			/* initialization for the next. */
1543 			p_isr = &(*p_isr)->next;
1544 			tlen -= xisr->sadb_x_ipsecrequest_len;
1545 
1546 			/* validity check */
1547 			if (tlen < 0) {
1548 				ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n",
1549 					__func__));
1550 				KEY_FREESP(&newsp);
1551 				*error = EINVAL;
1552 				return NULL;
1553 			}
1554 
1555 			xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr
1556 			                 + xisr->sadb_x_ipsecrequest_len);
1557 		}
1558 	    }
1559 		break;
1560 	default:
1561 		ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__));
1562 		KEY_FREESP(&newsp);
1563 		*error = EINVAL;
1564 		return NULL;
1565 	}
1566 
1567 	*error = 0;
1568 	return newsp;
1569 }
1570 
1571 static u_int32_t
1572 key_newreqid()
1573 {
1574 	static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1575 
1576 	auto_reqid = (auto_reqid == ~0
1577 			? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1578 
1579 	/* XXX should be unique check */
1580 
1581 	return auto_reqid;
1582 }
1583 
1584 /*
1585  * copy secpolicy struct to sadb_x_policy structure indicated.
1586  */
1587 struct mbuf *
1588 key_sp2msg(sp)
1589 	struct secpolicy *sp;
1590 {
1591 	struct sadb_x_policy *xpl;
1592 	int tlen;
1593 	caddr_t p;
1594 	struct mbuf *m;
1595 
1596 	IPSEC_ASSERT(sp != NULL, ("null policy"));
1597 
1598 	tlen = key_getspreqmsglen(sp);
1599 
1600 	m = key_alloc_mbuf(tlen);
1601 	if (!m || m->m_next) {	/*XXX*/
1602 		if (m)
1603 			m_freem(m);
1604 		return NULL;
1605 	}
1606 
1607 	m->m_len = tlen;
1608 	m->m_next = NULL;
1609 	xpl = mtod(m, struct sadb_x_policy *);
1610 	bzero(xpl, tlen);
1611 
1612 	xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1613 	xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1614 	xpl->sadb_x_policy_type = sp->policy;
1615 	xpl->sadb_x_policy_dir = sp->spidx.dir;
1616 	xpl->sadb_x_policy_id = sp->id;
1617 	p = (caddr_t)xpl + sizeof(*xpl);
1618 
1619 	/* if is the policy for ipsec ? */
1620 	if (sp->policy == IPSEC_POLICY_IPSEC) {
1621 		struct sadb_x_ipsecrequest *xisr;
1622 		struct ipsecrequest *isr;
1623 
1624 		for (isr = sp->req; isr != NULL; isr = isr->next) {
1625 
1626 			xisr = (struct sadb_x_ipsecrequest *)p;
1627 
1628 			xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1629 			xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1630 			xisr->sadb_x_ipsecrequest_level = isr->level;
1631 			xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1632 
1633 			p += sizeof(*xisr);
1634 			bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len);
1635 			p += isr->saidx.src.sa.sa_len;
1636 			bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len);
1637 			p += isr->saidx.src.sa.sa_len;
1638 
1639 			xisr->sadb_x_ipsecrequest_len =
1640 				PFKEY_ALIGN8(sizeof(*xisr)
1641 					+ isr->saidx.src.sa.sa_len
1642 					+ isr->saidx.dst.sa.sa_len);
1643 		}
1644 	}
1645 
1646 	return m;
1647 }
1648 
1649 /* m will not be freed nor modified */
1650 static struct mbuf *
1651 #ifdef __STDC__
1652 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1653 	int ndeep, int nitem, ...)
1654 #else
1655 key_gather_mbuf(m, mhp, ndeep, nitem, va_alist)
1656 	struct mbuf *m;
1657 	const struct sadb_msghdr *mhp;
1658 	int ndeep;
1659 	int nitem;
1660 	va_dcl
1661 #endif
1662 {
1663 	va_list ap;
1664 	int idx;
1665 	int i;
1666 	struct mbuf *result = NULL, *n;
1667 	int len;
1668 
1669 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1670 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1671 
1672 	va_start(ap, nitem);
1673 	for (i = 0; i < nitem; i++) {
1674 		idx = va_arg(ap, int);
1675 		if (idx < 0 || idx > SADB_EXT_MAX)
1676 			goto fail;
1677 		/* don't attempt to pull empty extension */
1678 		if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1679 			continue;
1680 		if (idx != SADB_EXT_RESERVED  &&
1681 		    (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1682 			continue;
1683 
1684 		if (idx == SADB_EXT_RESERVED) {
1685 			len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1686 
1687 			IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len));
1688 
1689 			MGETHDR(n, M_DONTWAIT, MT_DATA);
1690 			if (!n)
1691 				goto fail;
1692 			n->m_len = len;
1693 			n->m_next = NULL;
1694 			m_copydata(m, 0, sizeof(struct sadb_msg),
1695 			    mtod(n, caddr_t));
1696 		} else if (i < ndeep) {
1697 			len = mhp->extlen[idx];
1698 			n = key_alloc_mbuf(len);
1699 			if (!n || n->m_next) {	/*XXX*/
1700 				if (n)
1701 					m_freem(n);
1702 				goto fail;
1703 			}
1704 			m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1705 			    mtod(n, caddr_t));
1706 		} else {
1707 			n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1708 			    M_DONTWAIT);
1709 		}
1710 		if (n == NULL)
1711 			goto fail;
1712 
1713 		if (result)
1714 			m_cat(result, n);
1715 		else
1716 			result = n;
1717 	}
1718 	va_end(ap);
1719 
1720 	if ((result->m_flags & M_PKTHDR) != 0) {
1721 		result->m_pkthdr.len = 0;
1722 		for (n = result; n; n = n->m_next)
1723 			result->m_pkthdr.len += n->m_len;
1724 	}
1725 
1726 	return result;
1727 
1728 fail:
1729 	m_freem(result);
1730 	return NULL;
1731 }
1732 
1733 /*
1734  * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1735  * add an entry to SP database, when received
1736  *   <base, address(SD), (lifetime(H),) policy>
1737  * from the user(?).
1738  * Adding to SP database,
1739  * and send
1740  *   <base, address(SD), (lifetime(H),) policy>
1741  * to the socket which was send.
1742  *
1743  * SPDADD set a unique policy entry.
1744  * SPDSETIDX like SPDADD without a part of policy requests.
1745  * SPDUPDATE replace a unique policy entry.
1746  *
1747  * m will always be freed.
1748  */
1749 static int
1750 key_spdadd(so, m, mhp)
1751 	struct socket *so;
1752 	struct mbuf *m;
1753 	const struct sadb_msghdr *mhp;
1754 {
1755 	struct sadb_address *src0, *dst0;
1756 	struct sadb_x_policy *xpl0, *xpl;
1757 	struct sadb_lifetime *lft = NULL;
1758 	struct secpolicyindex spidx;
1759 	struct secpolicy *newsp;
1760 	int error;
1761 
1762 	IPSEC_ASSERT(so != NULL, ("null socket"));
1763 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1764 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1765 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
1766 
1767 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1768 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1769 	    mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1770 		ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1771 		return key_senderror(so, m, EINVAL);
1772 	}
1773 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1774 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1775 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1776 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1777 			__func__));
1778 		return key_senderror(so, m, EINVAL);
1779 	}
1780 	if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1781 		if (mhp->extlen[SADB_EXT_LIFETIME_HARD]
1782 			< sizeof(struct sadb_lifetime)) {
1783 			ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1784 				__func__));
1785 			return key_senderror(so, m, EINVAL);
1786 		}
1787 		lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1788 	}
1789 
1790 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1791 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1792 	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1793 
1794 	/* make secindex */
1795 	/* XXX boundary check against sa_len */
1796 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1797 	                src0 + 1,
1798 	                dst0 + 1,
1799 	                src0->sadb_address_prefixlen,
1800 	                dst0->sadb_address_prefixlen,
1801 	                src0->sadb_address_proto,
1802 	                &spidx);
1803 
1804 	/* checking the direciton. */
1805 	switch (xpl0->sadb_x_policy_dir) {
1806 	case IPSEC_DIR_INBOUND:
1807 	case IPSEC_DIR_OUTBOUND:
1808 		break;
1809 	default:
1810 		ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
1811 		mhp->msg->sadb_msg_errno = EINVAL;
1812 		return 0;
1813 	}
1814 
1815 	/* check policy */
1816 	/* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1817 	if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST
1818 	 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1819 		ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__));
1820 		return key_senderror(so, m, EINVAL);
1821 	}
1822 
1823 	/* policy requests are mandatory when action is ipsec. */
1824         if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX
1825 	 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC
1826 	 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1827 		ipseclog((LOG_DEBUG, "%s: some policy requests part required\n",
1828 			__func__));
1829 		return key_senderror(so, m, EINVAL);
1830 	}
1831 
1832 	/*
1833 	 * checking there is SP already or not.
1834 	 * SPDUPDATE doesn't depend on whether there is a SP or not.
1835 	 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1836 	 * then error.
1837 	 */
1838 	newsp = key_getsp(&spidx);
1839 	if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1840 		if (newsp) {
1841 			newsp->state = IPSEC_SPSTATE_DEAD;
1842 			KEY_FREESP(&newsp);
1843 		}
1844 	} else {
1845 		if (newsp != NULL) {
1846 			KEY_FREESP(&newsp);
1847 			ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n",
1848 				__func__));
1849 			return key_senderror(so, m, EEXIST);
1850 		}
1851 	}
1852 
1853 	/* allocation new SP entry */
1854 	if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
1855 		return key_senderror(so, m, error);
1856 	}
1857 
1858 	if ((newsp->id = key_getnewspid()) == 0) {
1859 		_key_delsp(newsp);
1860 		return key_senderror(so, m, ENOBUFS);
1861 	}
1862 
1863 	/* XXX boundary check against sa_len */
1864 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1865 	                src0 + 1,
1866 	                dst0 + 1,
1867 	                src0->sadb_address_prefixlen,
1868 	                dst0->sadb_address_prefixlen,
1869 	                src0->sadb_address_proto,
1870 	                &newsp->spidx);
1871 
1872 	/* sanity check on addr pair */
1873 	if (((struct sockaddr *)(src0 + 1))->sa_family !=
1874 			((struct sockaddr *)(dst0+ 1))->sa_family) {
1875 		_key_delsp(newsp);
1876 		return key_senderror(so, m, EINVAL);
1877 	}
1878 	if (((struct sockaddr *)(src0 + 1))->sa_len !=
1879 			((struct sockaddr *)(dst0+ 1))->sa_len) {
1880 		_key_delsp(newsp);
1881 		return key_senderror(so, m, EINVAL);
1882 	}
1883 #if 1
1884 	if (newsp->req && newsp->req->saidx.src.sa.sa_family) {
1885 		struct sockaddr *sa;
1886 		sa = (struct sockaddr *)(src0 + 1);
1887 		if (sa->sa_family != newsp->req->saidx.src.sa.sa_family) {
1888 			_key_delsp(newsp);
1889 			return key_senderror(so, m, EINVAL);
1890 		}
1891 	}
1892 	if (newsp->req && newsp->req->saidx.dst.sa.sa_family) {
1893 		struct sockaddr *sa;
1894 		sa = (struct sockaddr *)(dst0 + 1);
1895 		if (sa->sa_family != newsp->req->saidx.dst.sa.sa_family) {
1896 			_key_delsp(newsp);
1897 			return key_senderror(so, m, EINVAL);
1898 		}
1899 	}
1900 #endif
1901 
1902 	newsp->created = time_second;
1903 	newsp->lastused = newsp->created;
1904 	newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1905 	newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1906 
1907 	newsp->refcnt = 1;	/* do not reclaim until I say I do */
1908 	newsp->state = IPSEC_SPSTATE_ALIVE;
1909 	LIST_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1910 
1911 	/* delete the entry in spacqtree */
1912 	if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1913 		struct secspacq *spacq = key_getspacq(&spidx);
1914 		if (spacq != NULL) {
1915 			/* reset counter in order to deletion by timehandler. */
1916 			spacq->created = time_second;
1917 			spacq->count = 0;
1918 			SPACQ_UNLOCK();
1919 		}
1920     	}
1921 
1922     {
1923 	struct mbuf *n, *mpolicy;
1924 	struct sadb_msg *newmsg;
1925 	int off;
1926 
1927 	/* create new sadb_msg to reply. */
1928 	if (lft) {
1929 		n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
1930 		    SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
1931 		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1932 	} else {
1933 		n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
1934 		    SADB_X_EXT_POLICY,
1935 		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1936 	}
1937 	if (!n)
1938 		return key_senderror(so, m, ENOBUFS);
1939 
1940 	if (n->m_len < sizeof(*newmsg)) {
1941 		n = m_pullup(n, sizeof(*newmsg));
1942 		if (!n)
1943 			return key_senderror(so, m, ENOBUFS);
1944 	}
1945 	newmsg = mtod(n, struct sadb_msg *);
1946 	newmsg->sadb_msg_errno = 0;
1947 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
1948 
1949 	off = 0;
1950 	mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
1951 	    sizeof(*xpl), &off);
1952 	if (mpolicy == NULL) {
1953 		/* n is already freed */
1954 		return key_senderror(so, m, ENOBUFS);
1955 	}
1956 	xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off);
1957 	if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
1958 		m_freem(n);
1959 		return key_senderror(so, m, EINVAL);
1960 	}
1961 	xpl->sadb_x_policy_id = newsp->id;
1962 
1963 	m_freem(m);
1964 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
1965     }
1966 }
1967 
1968 /*
1969  * get new policy id.
1970  * OUT:
1971  *	0:	failure.
1972  *	others: success.
1973  */
1974 static u_int32_t
1975 key_getnewspid()
1976 {
1977 	u_int32_t newid = 0;
1978 	int count = V_key_spi_trycnt;	/* XXX */
1979 	struct secpolicy *sp;
1980 
1981 	/* when requesting to allocate spi ranged */
1982 	while (count--) {
1983 		newid = (V_policy_id = (V_policy_id == ~0 ? 1 : V_policy_id + 1));
1984 
1985 		if ((sp = key_getspbyid(newid)) == NULL)
1986 			break;
1987 
1988 		KEY_FREESP(&sp);
1989 	}
1990 
1991 	if (count == 0 || newid == 0) {
1992 		ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n",
1993 			__func__));
1994 		return 0;
1995 	}
1996 
1997 	return newid;
1998 }
1999 
2000 /*
2001  * SADB_SPDDELETE processing
2002  * receive
2003  *   <base, address(SD), policy(*)>
2004  * from the user(?), and set SADB_SASTATE_DEAD,
2005  * and send,
2006  *   <base, address(SD), policy(*)>
2007  * to the ikmpd.
2008  * policy(*) including direction of policy.
2009  *
2010  * m will always be freed.
2011  */
2012 static int
2013 key_spddelete(so, m, mhp)
2014 	struct socket *so;
2015 	struct mbuf *m;
2016 	const struct sadb_msghdr *mhp;
2017 {
2018 	struct sadb_address *src0, *dst0;
2019 	struct sadb_x_policy *xpl0;
2020 	struct secpolicyindex spidx;
2021 	struct secpolicy *sp;
2022 
2023 	IPSEC_ASSERT(so != NULL, ("null so"));
2024 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2025 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2026 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2027 
2028 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2029 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2030 	    mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2031 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2032 			__func__));
2033 		return key_senderror(so, m, EINVAL);
2034 	}
2035 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2036 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2037 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2038 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2039 			__func__));
2040 		return key_senderror(so, m, EINVAL);
2041 	}
2042 
2043 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2044 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2045 	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2046 
2047 	/* make secindex */
2048 	/* XXX boundary check against sa_len */
2049 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2050 	                src0 + 1,
2051 	                dst0 + 1,
2052 	                src0->sadb_address_prefixlen,
2053 	                dst0->sadb_address_prefixlen,
2054 	                src0->sadb_address_proto,
2055 	                &spidx);
2056 
2057 	/* checking the direciton. */
2058 	switch (xpl0->sadb_x_policy_dir) {
2059 	case IPSEC_DIR_INBOUND:
2060 	case IPSEC_DIR_OUTBOUND:
2061 		break;
2062 	default:
2063 		ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
2064 		return key_senderror(so, m, EINVAL);
2065 	}
2066 
2067 	/* Is there SP in SPD ? */
2068 	if ((sp = key_getsp(&spidx)) == NULL) {
2069 		ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__));
2070 		return key_senderror(so, m, EINVAL);
2071 	}
2072 
2073 	/* save policy id to buffer to be returned. */
2074 	xpl0->sadb_x_policy_id = sp->id;
2075 
2076 	sp->state = IPSEC_SPSTATE_DEAD;
2077 	KEY_FREESP(&sp);
2078 
2079     {
2080 	struct mbuf *n;
2081 	struct sadb_msg *newmsg;
2082 
2083 	/* create new sadb_msg to reply. */
2084 	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2085 	    SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2086 	if (!n)
2087 		return key_senderror(so, m, ENOBUFS);
2088 
2089 	newmsg = mtod(n, struct sadb_msg *);
2090 	newmsg->sadb_msg_errno = 0;
2091 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2092 
2093 	m_freem(m);
2094 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2095     }
2096 }
2097 
2098 /*
2099  * SADB_SPDDELETE2 processing
2100  * receive
2101  *   <base, policy(*)>
2102  * from the user(?), and set SADB_SASTATE_DEAD,
2103  * and send,
2104  *   <base, policy(*)>
2105  * to the ikmpd.
2106  * policy(*) including direction of policy.
2107  *
2108  * m will always be freed.
2109  */
2110 static int
2111 key_spddelete2(so, m, mhp)
2112 	struct socket *so;
2113 	struct mbuf *m;
2114 	const struct sadb_msghdr *mhp;
2115 {
2116 	u_int32_t id;
2117 	struct secpolicy *sp;
2118 
2119 	IPSEC_ASSERT(so != NULL, ("null socket"));
2120 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2121 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2122 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2123 
2124 	if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2125 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2126 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__));
2127 		return key_senderror(so, m, EINVAL);
2128 	}
2129 
2130 	id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2131 
2132 	/* Is there SP in SPD ? */
2133 	if ((sp = key_getspbyid(id)) == NULL) {
2134 		ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2135 		return key_senderror(so, m, EINVAL);
2136 	}
2137 
2138 	sp->state = IPSEC_SPSTATE_DEAD;
2139 	KEY_FREESP(&sp);
2140 
2141     {
2142 	struct mbuf *n, *nn;
2143 	struct sadb_msg *newmsg;
2144 	int off, len;
2145 
2146 	/* create new sadb_msg to reply. */
2147 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2148 
2149 	MGETHDR(n, M_DONTWAIT, MT_DATA);
2150 	if (n && len > MHLEN) {
2151 		MCLGET(n, M_DONTWAIT);
2152 		if ((n->m_flags & M_EXT) == 0) {
2153 			m_freem(n);
2154 			n = NULL;
2155 		}
2156 	}
2157 	if (!n)
2158 		return key_senderror(so, m, ENOBUFS);
2159 
2160 	n->m_len = len;
2161 	n->m_next = NULL;
2162 	off = 0;
2163 
2164 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
2165 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2166 
2167 	IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)",
2168 		off, len));
2169 
2170 	n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2171 	    mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2172 	if (!n->m_next) {
2173 		m_freem(n);
2174 		return key_senderror(so, m, ENOBUFS);
2175 	}
2176 
2177 	n->m_pkthdr.len = 0;
2178 	for (nn = n; nn; nn = nn->m_next)
2179 		n->m_pkthdr.len += nn->m_len;
2180 
2181 	newmsg = mtod(n, struct sadb_msg *);
2182 	newmsg->sadb_msg_errno = 0;
2183 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2184 
2185 	m_freem(m);
2186 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2187     }
2188 }
2189 
2190 /*
2191  * SADB_X_GET processing
2192  * receive
2193  *   <base, policy(*)>
2194  * from the user(?),
2195  * and send,
2196  *   <base, address(SD), policy>
2197  * to the ikmpd.
2198  * policy(*) including direction of policy.
2199  *
2200  * m will always be freed.
2201  */
2202 static int
2203 key_spdget(so, m, mhp)
2204 	struct socket *so;
2205 	struct mbuf *m;
2206 	const struct sadb_msghdr *mhp;
2207 {
2208 	u_int32_t id;
2209 	struct secpolicy *sp;
2210 	struct mbuf *n;
2211 
2212 	IPSEC_ASSERT(so != NULL, ("null socket"));
2213 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2214 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2215 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2216 
2217 	if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2218 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2219 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2220 			__func__));
2221 		return key_senderror(so, m, EINVAL);
2222 	}
2223 
2224 	id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2225 
2226 	/* Is there SP in SPD ? */
2227 	if ((sp = key_getspbyid(id)) == NULL) {
2228 		ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2229 		return key_senderror(so, m, ENOENT);
2230 	}
2231 
2232 	n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid);
2233 	if (n != NULL) {
2234 		m_freem(m);
2235 		return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2236 	} else
2237 		return key_senderror(so, m, ENOBUFS);
2238 }
2239 
2240 /*
2241  * SADB_X_SPDACQUIRE processing.
2242  * Acquire policy and SA(s) for a *OUTBOUND* packet.
2243  * send
2244  *   <base, policy(*)>
2245  * to KMD, and expect to receive
2246  *   <base> with SADB_X_SPDACQUIRE if error occured,
2247  * or
2248  *   <base, policy>
2249  * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2250  * policy(*) is without policy requests.
2251  *
2252  *    0     : succeed
2253  *    others: error number
2254  */
2255 int
2256 key_spdacquire(sp)
2257 	struct secpolicy *sp;
2258 {
2259 	struct mbuf *result = NULL, *m;
2260 	struct secspacq *newspacq;
2261 
2262 	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2263 	IPSEC_ASSERT(sp->req == NULL, ("policy exists"));
2264 	IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC,
2265 		("policy not IPSEC %u", sp->policy));
2266 
2267 	/* Get an entry to check whether sent message or not. */
2268 	newspacq = key_getspacq(&sp->spidx);
2269 	if (newspacq != NULL) {
2270 		if (V_key_blockacq_count < newspacq->count) {
2271 			/* reset counter and do send message. */
2272 			newspacq->count = 0;
2273 		} else {
2274 			/* increment counter and do nothing. */
2275 			newspacq->count++;
2276 			return 0;
2277 		}
2278 		SPACQ_UNLOCK();
2279 	} else {
2280 		/* make new entry for blocking to send SADB_ACQUIRE. */
2281 		newspacq = key_newspacq(&sp->spidx);
2282 		if (newspacq == NULL)
2283 			return ENOBUFS;
2284 	}
2285 
2286 	/* create new sadb_msg to reply. */
2287 	m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2288 	if (!m)
2289 		return ENOBUFS;
2290 
2291 	result = m;
2292 
2293 	result->m_pkthdr.len = 0;
2294 	for (m = result; m; m = m->m_next)
2295 		result->m_pkthdr.len += m->m_len;
2296 
2297 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2298 	    PFKEY_UNIT64(result->m_pkthdr.len);
2299 
2300 	return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2301 }
2302 
2303 /*
2304  * SADB_SPDFLUSH processing
2305  * receive
2306  *   <base>
2307  * from the user, and free all entries in secpctree.
2308  * and send,
2309  *   <base>
2310  * to the user.
2311  * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2312  *
2313  * m will always be freed.
2314  */
2315 static int
2316 key_spdflush(so, m, mhp)
2317 	struct socket *so;
2318 	struct mbuf *m;
2319 	const struct sadb_msghdr *mhp;
2320 {
2321 	struct sadb_msg *newmsg;
2322 	struct secpolicy *sp;
2323 	u_int dir;
2324 
2325 	IPSEC_ASSERT(so != NULL, ("null socket"));
2326 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2327 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2328 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2329 
2330 	if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2331 		return key_senderror(so, m, EINVAL);
2332 
2333 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2334 		SPTREE_LOCK();
2335 		LIST_FOREACH(sp, &V_sptree[dir], chain)
2336 			sp->state = IPSEC_SPSTATE_DEAD;
2337 		SPTREE_UNLOCK();
2338 	}
2339 
2340 	if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2341 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2342 		return key_senderror(so, m, ENOBUFS);
2343 	}
2344 
2345 	if (m->m_next)
2346 		m_freem(m->m_next);
2347 	m->m_next = NULL;
2348 	m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2349 	newmsg = mtod(m, struct sadb_msg *);
2350 	newmsg->sadb_msg_errno = 0;
2351 	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2352 
2353 	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2354 }
2355 
2356 /*
2357  * SADB_SPDDUMP processing
2358  * receive
2359  *   <base>
2360  * from the user, and dump all SP leaves
2361  * and send,
2362  *   <base> .....
2363  * to the ikmpd.
2364  *
2365  * m will always be freed.
2366  */
2367 static int
2368 key_spddump(so, m, mhp)
2369 	struct socket *so;
2370 	struct mbuf *m;
2371 	const struct sadb_msghdr *mhp;
2372 {
2373 	struct secpolicy *sp;
2374 	int cnt;
2375 	u_int dir;
2376 	struct mbuf *n;
2377 
2378 	IPSEC_ASSERT(so != NULL, ("null socket"));
2379 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2380 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2381 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2382 
2383 	/* search SPD entry and get buffer size. */
2384 	cnt = 0;
2385 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2386 		LIST_FOREACH(sp, &V_sptree[dir], chain) {
2387 			cnt++;
2388 		}
2389 	}
2390 
2391 	if (cnt == 0)
2392 		return key_senderror(so, m, ENOENT);
2393 
2394 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2395 		LIST_FOREACH(sp, &V_sptree[dir], chain) {
2396 			--cnt;
2397 			n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt,
2398 			    mhp->msg->sadb_msg_pid);
2399 
2400 			if (n)
2401 				key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2402 		}
2403 	}
2404 
2405 	m_freem(m);
2406 	return 0;
2407 }
2408 
2409 static struct mbuf *
2410 key_setdumpsp(sp, type, seq, pid)
2411 	struct secpolicy *sp;
2412 	u_int8_t type;
2413 	u_int32_t seq, pid;
2414 {
2415 	struct mbuf *result = NULL, *m;
2416 	struct seclifetime lt;
2417 
2418 	m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2419 	if (!m)
2420 		goto fail;
2421 	result = m;
2422 
2423 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2424 	    &sp->spidx.src.sa, sp->spidx.prefs,
2425 	    sp->spidx.ul_proto);
2426 	if (!m)
2427 		goto fail;
2428 	m_cat(result, m);
2429 
2430 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2431 	    &sp->spidx.dst.sa, sp->spidx.prefd,
2432 	    sp->spidx.ul_proto);
2433 	if (!m)
2434 		goto fail;
2435 	m_cat(result, m);
2436 
2437 	m = key_sp2msg(sp);
2438 	if (!m)
2439 		goto fail;
2440 	m_cat(result, m);
2441 
2442 	if(sp->lifetime){
2443 		lt.addtime=sp->created;
2444 		lt.usetime= sp->lastused;
2445 		m = key_setlifetime(&lt, SADB_EXT_LIFETIME_CURRENT);
2446 		if (!m)
2447 			goto fail;
2448 		m_cat(result, m);
2449 
2450 		lt.addtime=sp->lifetime;
2451 		lt.usetime= sp->validtime;
2452 		m = key_setlifetime(&lt, SADB_EXT_LIFETIME_HARD);
2453 		if (!m)
2454 			goto fail;
2455 		m_cat(result, m);
2456 	}
2457 
2458 	if ((result->m_flags & M_PKTHDR) == 0)
2459 		goto fail;
2460 
2461 	if (result->m_len < sizeof(struct sadb_msg)) {
2462 		result = m_pullup(result, sizeof(struct sadb_msg));
2463 		if (result == NULL)
2464 			goto fail;
2465 	}
2466 
2467 	result->m_pkthdr.len = 0;
2468 	for (m = result; m; m = m->m_next)
2469 		result->m_pkthdr.len += m->m_len;
2470 
2471 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2472 	    PFKEY_UNIT64(result->m_pkthdr.len);
2473 
2474 	return result;
2475 
2476 fail:
2477 	m_freem(result);
2478 	return NULL;
2479 }
2480 
2481 /*
2482  * get PFKEY message length for security policy and request.
2483  */
2484 static u_int
2485 key_getspreqmsglen(sp)
2486 	struct secpolicy *sp;
2487 {
2488 	u_int tlen;
2489 
2490 	tlen = sizeof(struct sadb_x_policy);
2491 
2492 	/* if is the policy for ipsec ? */
2493 	if (sp->policy != IPSEC_POLICY_IPSEC)
2494 		return tlen;
2495 
2496 	/* get length of ipsec requests */
2497     {
2498 	struct ipsecrequest *isr;
2499 	int len;
2500 
2501 	for (isr = sp->req; isr != NULL; isr = isr->next) {
2502 		len = sizeof(struct sadb_x_ipsecrequest)
2503 			+ isr->saidx.src.sa.sa_len
2504 			+ isr->saidx.dst.sa.sa_len;
2505 
2506 		tlen += PFKEY_ALIGN8(len);
2507 	}
2508     }
2509 
2510 	return tlen;
2511 }
2512 
2513 /*
2514  * SADB_SPDEXPIRE processing
2515  * send
2516  *   <base, address(SD), lifetime(CH), policy>
2517  * to KMD by PF_KEY.
2518  *
2519  * OUT:	0	: succeed
2520  *	others	: error number
2521  */
2522 static int
2523 key_spdexpire(sp)
2524 	struct secpolicy *sp;
2525 {
2526 	struct mbuf *result = NULL, *m;
2527 	int len;
2528 	int error = -1;
2529 	struct sadb_lifetime *lt;
2530 
2531 	/* XXX: Why do we lock ? */
2532 
2533 	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2534 
2535 	/* set msg header */
2536 	m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2537 	if (!m) {
2538 		error = ENOBUFS;
2539 		goto fail;
2540 	}
2541 	result = m;
2542 
2543 	/* create lifetime extension (current and hard) */
2544 	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2545 	m = key_alloc_mbuf(len);
2546 	if (!m || m->m_next) {	/*XXX*/
2547 		if (m)
2548 			m_freem(m);
2549 		error = ENOBUFS;
2550 		goto fail;
2551 	}
2552 	bzero(mtod(m, caddr_t), len);
2553 	lt = mtod(m, struct sadb_lifetime *);
2554 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2555 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2556 	lt->sadb_lifetime_allocations = 0;
2557 	lt->sadb_lifetime_bytes = 0;
2558 	lt->sadb_lifetime_addtime = sp->created;
2559 	lt->sadb_lifetime_usetime = sp->lastused;
2560 	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
2561 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2562 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2563 	lt->sadb_lifetime_allocations = 0;
2564 	lt->sadb_lifetime_bytes = 0;
2565 	lt->sadb_lifetime_addtime = sp->lifetime;
2566 	lt->sadb_lifetime_usetime = sp->validtime;
2567 	m_cat(result, m);
2568 
2569 	/* set sadb_address for source */
2570 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2571 	    &sp->spidx.src.sa,
2572 	    sp->spidx.prefs, sp->spidx.ul_proto);
2573 	if (!m) {
2574 		error = ENOBUFS;
2575 		goto fail;
2576 	}
2577 	m_cat(result, m);
2578 
2579 	/* set sadb_address for destination */
2580 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2581 	    &sp->spidx.dst.sa,
2582 	    sp->spidx.prefd, sp->spidx.ul_proto);
2583 	if (!m) {
2584 		error = ENOBUFS;
2585 		goto fail;
2586 	}
2587 	m_cat(result, m);
2588 
2589 	/* set secpolicy */
2590 	m = key_sp2msg(sp);
2591 	if (!m) {
2592 		error = ENOBUFS;
2593 		goto fail;
2594 	}
2595 	m_cat(result, m);
2596 
2597 	if ((result->m_flags & M_PKTHDR) == 0) {
2598 		error = EINVAL;
2599 		goto fail;
2600 	}
2601 
2602 	if (result->m_len < sizeof(struct sadb_msg)) {
2603 		result = m_pullup(result, sizeof(struct sadb_msg));
2604 		if (result == NULL) {
2605 			error = ENOBUFS;
2606 			goto fail;
2607 		}
2608 	}
2609 
2610 	result->m_pkthdr.len = 0;
2611 	for (m = result; m; m = m->m_next)
2612 		result->m_pkthdr.len += m->m_len;
2613 
2614 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2615 	    PFKEY_UNIT64(result->m_pkthdr.len);
2616 
2617 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2618 
2619  fail:
2620 	if (result)
2621 		m_freem(result);
2622 	return error;
2623 }
2624 
2625 /* %%% SAD management */
2626 /*
2627  * allocating a memory for new SA head, and copy from the values of mhp.
2628  * OUT:	NULL	: failure due to the lack of memory.
2629  *	others	: pointer to new SA head.
2630  */
2631 static struct secashead *
2632 key_newsah(saidx)
2633 	struct secasindex *saidx;
2634 {
2635 	struct secashead *newsah;
2636 
2637 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
2638 
2639 	newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO);
2640 	if (newsah != NULL) {
2641 		int i;
2642 		for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++)
2643 			LIST_INIT(&newsah->savtree[i]);
2644 		newsah->saidx = *saidx;
2645 
2646 		/* add to saidxtree */
2647 		newsah->state = SADB_SASTATE_MATURE;
2648 
2649 		SAHTREE_LOCK();
2650 		LIST_INSERT_HEAD(&V_sahtree, newsah, chain);
2651 		SAHTREE_UNLOCK();
2652 	}
2653 	return(newsah);
2654 }
2655 
2656 /*
2657  * delete SA index and all SA registerd.
2658  */
2659 static void
2660 key_delsah(sah)
2661 	struct secashead *sah;
2662 {
2663 	struct secasvar *sav, *nextsav;
2664 	u_int stateidx;
2665 	int zombie = 0;
2666 
2667 	IPSEC_ASSERT(sah != NULL, ("NULL sah"));
2668 	SAHTREE_LOCK_ASSERT();
2669 
2670 	/* searching all SA registerd in the secindex. */
2671 	for (stateidx = 0;
2672 	     stateidx < _ARRAYLEN(V_saorder_state_any);
2673 	     stateidx++) {
2674 		u_int state = V_saorder_state_any[stateidx];
2675 		LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) {
2676 			if (sav->refcnt == 0) {
2677 				/* sanity check */
2678 				KEY_CHKSASTATE(state, sav->state, __func__);
2679 				KEY_FREESAV(&sav);
2680 			} else {
2681 				/* give up to delete this sa */
2682 				zombie++;
2683 			}
2684 		}
2685 	}
2686 	if (!zombie) {		/* delete only if there are savs */
2687 		/* remove from tree of SA index */
2688 		if (__LIST_CHAINED(sah))
2689 			LIST_REMOVE(sah, chain);
2690 		if (sah->sa_route.ro_rt) {
2691 			RTFREE(sah->sa_route.ro_rt);
2692 			sah->sa_route.ro_rt = (struct rtentry *)NULL;
2693 		}
2694 		free(sah, M_IPSEC_SAH);
2695 	}
2696 }
2697 
2698 /*
2699  * allocating a new SA with LARVAL state.  key_add() and key_getspi() call,
2700  * and copy the values of mhp into new buffer.
2701  * When SAD message type is GETSPI:
2702  *	to set sequence number from acq_seq++,
2703  *	to set zero to SPI.
2704  *	not to call key_setsava().
2705  * OUT:	NULL	: fail
2706  *	others	: pointer to new secasvar.
2707  *
2708  * does not modify mbuf.  does not free mbuf on error.
2709  */
2710 static struct secasvar *
2711 key_newsav(m, mhp, sah, errp, where, tag)
2712 	struct mbuf *m;
2713 	const struct sadb_msghdr *mhp;
2714 	struct secashead *sah;
2715 	int *errp;
2716 	const char* where;
2717 	int tag;
2718 {
2719 	struct secasvar *newsav;
2720 	const struct sadb_sa *xsa;
2721 
2722 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2723 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2724 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2725 	IPSEC_ASSERT(sah != NULL, ("null secashead"));
2726 
2727 	newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO);
2728 	if (newsav == NULL) {
2729 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2730 		*errp = ENOBUFS;
2731 		goto done;
2732 	}
2733 
2734 	switch (mhp->msg->sadb_msg_type) {
2735 	case SADB_GETSPI:
2736 		newsav->spi = 0;
2737 
2738 #ifdef IPSEC_DOSEQCHECK
2739 		/* sync sequence number */
2740 		if (mhp->msg->sadb_msg_seq == 0)
2741 			newsav->seq =
2742 				(V_acq_seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq));
2743 		else
2744 #endif
2745 			newsav->seq = mhp->msg->sadb_msg_seq;
2746 		break;
2747 
2748 	case SADB_ADD:
2749 		/* sanity check */
2750 		if (mhp->ext[SADB_EXT_SA] == NULL) {
2751 			free(newsav, M_IPSEC_SA);
2752 			newsav = NULL;
2753 			ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2754 				__func__));
2755 			*errp = EINVAL;
2756 			goto done;
2757 		}
2758 		xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2759 		newsav->spi = xsa->sadb_sa_spi;
2760 		newsav->seq = mhp->msg->sadb_msg_seq;
2761 		break;
2762 	default:
2763 		free(newsav, M_IPSEC_SA);
2764 		newsav = NULL;
2765 		*errp = EINVAL;
2766 		goto done;
2767 	}
2768 
2769 
2770 	/* copy sav values */
2771 	if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2772 		*errp = key_setsaval(newsav, m, mhp);
2773 		if (*errp) {
2774 			free(newsav, M_IPSEC_SA);
2775 			newsav = NULL;
2776 			goto done;
2777 		}
2778 	}
2779 
2780 	SECASVAR_LOCK_INIT(newsav);
2781 
2782 	/* reset created */
2783 	newsav->created = time_second;
2784 	newsav->pid = mhp->msg->sadb_msg_pid;
2785 
2786 	/* add to satree */
2787 	newsav->sah = sah;
2788 	sa_initref(newsav);
2789 	newsav->state = SADB_SASTATE_LARVAL;
2790 
2791 	/* XXX locking??? */
2792 	LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
2793 			secasvar, chain);
2794 done:
2795 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
2796 		printf("DP %s from %s:%u return SP:%p\n", __func__,
2797 			where, tag, newsav));
2798 
2799 	return newsav;
2800 }
2801 
2802 /*
2803  * free() SA variable entry.
2804  */
2805 static void
2806 key_cleansav(struct secasvar *sav)
2807 {
2808 	/*
2809 	 * Cleanup xform state.  Note that zeroize'ing causes the
2810 	 * keys to be cleared; otherwise we must do it ourself.
2811 	 */
2812 	if (sav->tdb_xform != NULL) {
2813 		sav->tdb_xform->xf_zeroize(sav);
2814 		sav->tdb_xform = NULL;
2815 	} else {
2816 		KASSERT(sav->iv == NULL, ("iv but no xform"));
2817 		if (sav->key_auth != NULL)
2818 			bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2819 		if (sav->key_enc != NULL)
2820 			bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc));
2821 	}
2822 	if (sav->key_auth != NULL) {
2823 		if (sav->key_auth->key_data != NULL)
2824 			free(sav->key_auth->key_data, M_IPSEC_MISC);
2825 		free(sav->key_auth, M_IPSEC_MISC);
2826 		sav->key_auth = NULL;
2827 	}
2828 	if (sav->key_enc != NULL) {
2829 		if (sav->key_enc->key_data != NULL)
2830 			free(sav->key_enc->key_data, M_IPSEC_MISC);
2831 		free(sav->key_enc, M_IPSEC_MISC);
2832 		sav->key_enc = NULL;
2833 	}
2834 	if (sav->sched) {
2835 		bzero(sav->sched, sav->schedlen);
2836 		free(sav->sched, M_IPSEC_MISC);
2837 		sav->sched = NULL;
2838 	}
2839 	if (sav->replay != NULL) {
2840 		free(sav->replay, M_IPSEC_MISC);
2841 		sav->replay = NULL;
2842 	}
2843 	if (sav->lft_c != NULL) {
2844 		free(sav->lft_c, M_IPSEC_MISC);
2845 		sav->lft_c = NULL;
2846 	}
2847 	if (sav->lft_h != NULL) {
2848 		free(sav->lft_h, M_IPSEC_MISC);
2849 		sav->lft_h = NULL;
2850 	}
2851 	if (sav->lft_s != NULL) {
2852 		free(sav->lft_s, M_IPSEC_MISC);
2853 		sav->lft_s = NULL;
2854 	}
2855 }
2856 
2857 /*
2858  * free() SA variable entry.
2859  */
2860 static void
2861 key_delsav(sav)
2862 	struct secasvar *sav;
2863 {
2864 	IPSEC_ASSERT(sav != NULL, ("null sav"));
2865 	IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt));
2866 
2867 	/* remove from SA header */
2868 	if (__LIST_CHAINED(sav))
2869 		LIST_REMOVE(sav, chain);
2870 	key_cleansav(sav);
2871 	SECASVAR_LOCK_DESTROY(sav);
2872 	free(sav, M_IPSEC_SA);
2873 }
2874 
2875 /*
2876  * search SAD.
2877  * OUT:
2878  *	NULL	: not found
2879  *	others	: found, pointer to a SA.
2880  */
2881 static struct secashead *
2882 key_getsah(saidx)
2883 	struct secasindex *saidx;
2884 {
2885 	struct secashead *sah;
2886 
2887 	SAHTREE_LOCK();
2888 	LIST_FOREACH(sah, &V_sahtree, chain) {
2889 		if (sah->state == SADB_SASTATE_DEAD)
2890 			continue;
2891 		if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID))
2892 			break;
2893 	}
2894 	SAHTREE_UNLOCK();
2895 
2896 	return sah;
2897 }
2898 
2899 /*
2900  * check not to be duplicated SPI.
2901  * NOTE: this function is too slow due to searching all SAD.
2902  * OUT:
2903  *	NULL	: not found
2904  *	others	: found, pointer to a SA.
2905  */
2906 static struct secasvar *
2907 key_checkspidup(saidx, spi)
2908 	struct secasindex *saidx;
2909 	u_int32_t spi;
2910 {
2911 	struct secashead *sah;
2912 	struct secasvar *sav;
2913 
2914 	/* check address family */
2915 	if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
2916 		ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
2917 			__func__));
2918 		return NULL;
2919 	}
2920 
2921 	sav = NULL;
2922 	/* check all SAD */
2923 	SAHTREE_LOCK();
2924 	LIST_FOREACH(sah, &V_sahtree, chain) {
2925 		if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
2926 			continue;
2927 		sav = key_getsavbyspi(sah, spi);
2928 		if (sav != NULL)
2929 			break;
2930 	}
2931 	SAHTREE_UNLOCK();
2932 
2933 	return sav;
2934 }
2935 
2936 /*
2937  * search SAD litmited alive SA, protocol, SPI.
2938  * OUT:
2939  *	NULL	: not found
2940  *	others	: found, pointer to a SA.
2941  */
2942 static struct secasvar *
2943 key_getsavbyspi(sah, spi)
2944 	struct secashead *sah;
2945 	u_int32_t spi;
2946 {
2947 	struct secasvar *sav;
2948 	u_int stateidx, state;
2949 
2950 	sav = NULL;
2951 	SAHTREE_LOCK_ASSERT();
2952 	/* search all status */
2953 	for (stateidx = 0;
2954 	     stateidx < _ARRAYLEN(V_saorder_state_alive);
2955 	     stateidx++) {
2956 
2957 		state = V_saorder_state_alive[stateidx];
2958 		LIST_FOREACH(sav, &sah->savtree[state], chain) {
2959 
2960 			/* sanity check */
2961 			if (sav->state != state) {
2962 				ipseclog((LOG_DEBUG, "%s: "
2963 				    "invalid sav->state (queue: %d SA: %d)\n",
2964 				    __func__, state, sav->state));
2965 				continue;
2966 			}
2967 
2968 			if (sav->spi == spi)
2969 				return sav;
2970 		}
2971 	}
2972 
2973 	return NULL;
2974 }
2975 
2976 /*
2977  * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
2978  * You must update these if need.
2979  * OUT:	0:	success.
2980  *	!0:	failure.
2981  *
2982  * does not modify mbuf.  does not free mbuf on error.
2983  */
2984 static int
2985 key_setsaval(sav, m, mhp)
2986 	struct secasvar *sav;
2987 	struct mbuf *m;
2988 	const struct sadb_msghdr *mhp;
2989 {
2990 	int error = 0;
2991 
2992 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2993 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2994 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2995 
2996 	/* initialization */
2997 	sav->replay = NULL;
2998 	sav->key_auth = NULL;
2999 	sav->key_enc = NULL;
3000 	sav->sched = NULL;
3001 	sav->schedlen = 0;
3002 	sav->iv = NULL;
3003 	sav->lft_c = NULL;
3004 	sav->lft_h = NULL;
3005 	sav->lft_s = NULL;
3006 	sav->tdb_xform = NULL;		/* transform */
3007 	sav->tdb_encalgxform = NULL;	/* encoding algorithm */
3008 	sav->tdb_authalgxform = NULL;	/* authentication algorithm */
3009 	sav->tdb_compalgxform = NULL;	/* compression algorithm */
3010 
3011 	/* SA */
3012 	if (mhp->ext[SADB_EXT_SA] != NULL) {
3013 		const struct sadb_sa *sa0;
3014 
3015 		sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3016 		if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3017 			error = EINVAL;
3018 			goto fail;
3019 		}
3020 
3021 		sav->alg_auth = sa0->sadb_sa_auth;
3022 		sav->alg_enc = sa0->sadb_sa_encrypt;
3023 		sav->flags = sa0->sadb_sa_flags;
3024 
3025 		/* replay window */
3026 		if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3027 			sav->replay = (struct secreplay *)
3028 				malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO);
3029 			if (sav->replay == NULL) {
3030 				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3031 					__func__));
3032 				error = ENOBUFS;
3033 				goto fail;
3034 			}
3035 			if (sa0->sadb_sa_replay != 0)
3036 				sav->replay->bitmap = (caddr_t)(sav->replay+1);
3037 			sav->replay->wsize = sa0->sadb_sa_replay;
3038 		}
3039 	}
3040 
3041 	/* Authentication keys */
3042 	if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3043 		const struct sadb_key *key0;
3044 		int len;
3045 
3046 		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3047 		len = mhp->extlen[SADB_EXT_KEY_AUTH];
3048 
3049 		error = 0;
3050 		if (len < sizeof(*key0)) {
3051 			error = EINVAL;
3052 			goto fail;
3053 		}
3054 		switch (mhp->msg->sadb_msg_satype) {
3055 		case SADB_SATYPE_AH:
3056 		case SADB_SATYPE_ESP:
3057 		case SADB_X_SATYPE_TCPSIGNATURE:
3058 			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3059 			    sav->alg_auth != SADB_X_AALG_NULL)
3060 				error = EINVAL;
3061 			break;
3062 		case SADB_X_SATYPE_IPCOMP:
3063 		default:
3064 			error = EINVAL;
3065 			break;
3066 		}
3067 		if (error) {
3068 			ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n",
3069 				__func__));
3070 			goto fail;
3071 		}
3072 
3073 		sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len,
3074 								M_IPSEC_MISC);
3075 		if (sav->key_auth == NULL ) {
3076 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3077 				  __func__));
3078 			error = ENOBUFS;
3079 			goto fail;
3080 		}
3081 	}
3082 
3083 	/* Encryption key */
3084 	if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3085 		const struct sadb_key *key0;
3086 		int len;
3087 
3088 		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3089 		len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3090 
3091 		error = 0;
3092 		if (len < sizeof(*key0)) {
3093 			error = EINVAL;
3094 			goto fail;
3095 		}
3096 		switch (mhp->msg->sadb_msg_satype) {
3097 		case SADB_SATYPE_ESP:
3098 			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3099 			    sav->alg_enc != SADB_EALG_NULL) {
3100 				error = EINVAL;
3101 				break;
3102 			}
3103 			sav->key_enc = (struct seckey *)key_dup_keymsg(key0,
3104 								       len,
3105 								       M_IPSEC_MISC);
3106 			if (sav->key_enc == NULL) {
3107 				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3108 					__func__));
3109 				error = ENOBUFS;
3110 				goto fail;
3111 			}
3112 			break;
3113 		case SADB_X_SATYPE_IPCOMP:
3114 			if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3115 				error = EINVAL;
3116 			sav->key_enc = NULL;	/*just in case*/
3117 			break;
3118 		case SADB_SATYPE_AH:
3119 		case SADB_X_SATYPE_TCPSIGNATURE:
3120 		default:
3121 			error = EINVAL;
3122 			break;
3123 		}
3124 		if (error) {
3125 			ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n",
3126 				__func__));
3127 			goto fail;
3128 		}
3129 	}
3130 
3131 	/* set iv */
3132 	sav->ivlen = 0;
3133 
3134 	switch (mhp->msg->sadb_msg_satype) {
3135 	case SADB_SATYPE_AH:
3136 		error = xform_init(sav, XF_AH);
3137 		break;
3138 	case SADB_SATYPE_ESP:
3139 		error = xform_init(sav, XF_ESP);
3140 		break;
3141 	case SADB_X_SATYPE_IPCOMP:
3142 		error = xform_init(sav, XF_IPCOMP);
3143 		break;
3144 	case SADB_X_SATYPE_TCPSIGNATURE:
3145 		error = xform_init(sav, XF_TCPSIGNATURE);
3146 		break;
3147 	}
3148 	if (error) {
3149 		ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n",
3150 		        __func__, mhp->msg->sadb_msg_satype));
3151 		goto fail;
3152 	}
3153 
3154 	/* reset created */
3155 	sav->created = time_second;
3156 
3157 	/* make lifetime for CURRENT */
3158 	sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT);
3159 	if (sav->lft_c == NULL) {
3160 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3161 		error = ENOBUFS;
3162 		goto fail;
3163 	}
3164 
3165 	sav->lft_c->allocations = 0;
3166 	sav->lft_c->bytes = 0;
3167 	sav->lft_c->addtime = time_second;
3168 	sav->lft_c->usetime = 0;
3169 
3170 	/* lifetimes for HARD and SOFT */
3171     {
3172 	const struct sadb_lifetime *lft0;
3173 
3174 	lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3175 	if (lft0 != NULL) {
3176 		if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3177 			error = EINVAL;
3178 			goto fail;
3179 		}
3180 		sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC);
3181 		if (sav->lft_h == NULL) {
3182 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3183 			error = ENOBUFS;
3184 			goto fail;
3185 		}
3186 		/* to be initialize ? */
3187 	}
3188 
3189 	lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3190 	if (lft0 != NULL) {
3191 		if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3192 			error = EINVAL;
3193 			goto fail;
3194 		}
3195 		sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC);
3196 		if (sav->lft_s == NULL) {
3197 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3198 			error = ENOBUFS;
3199 			goto fail;
3200 		}
3201 		/* to be initialize ? */
3202 	}
3203     }
3204 
3205 	return 0;
3206 
3207  fail:
3208 	/* initialization */
3209 	key_cleansav(sav);
3210 
3211 	return error;
3212 }
3213 
3214 /*
3215  * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3216  * OUT:	0:	valid
3217  *	other:	errno
3218  */
3219 static int
3220 key_mature(struct secasvar *sav)
3221 {
3222 	int error;
3223 
3224 	/* check SPI value */
3225 	switch (sav->sah->saidx.proto) {
3226 	case IPPROTO_ESP:
3227 	case IPPROTO_AH:
3228 		/*
3229 		 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values
3230 		 * 1-255 reserved by IANA for future use,
3231 		 * 0 for implementation specific, local use.
3232 		 */
3233 		if (ntohl(sav->spi) <= 255) {
3234 			ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n",
3235 			    __func__, (u_int32_t)ntohl(sav->spi)));
3236 			return EINVAL;
3237 		}
3238 		break;
3239 	}
3240 
3241 	/* check satype */
3242 	switch (sav->sah->saidx.proto) {
3243 	case IPPROTO_ESP:
3244 		/* check flags */
3245 		if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3246 		    (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3247 			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3248 				"given to old-esp.\n", __func__));
3249 			return EINVAL;
3250 		}
3251 		error = xform_init(sav, XF_ESP);
3252 		break;
3253 	case IPPROTO_AH:
3254 		/* check flags */
3255 		if (sav->flags & SADB_X_EXT_DERIV) {
3256 			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3257 				"given to AH SA.\n", __func__));
3258 			return EINVAL;
3259 		}
3260 		if (sav->alg_enc != SADB_EALG_NONE) {
3261 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3262 				"mismated.\n", __func__));
3263 			return(EINVAL);
3264 		}
3265 		error = xform_init(sav, XF_AH);
3266 		break;
3267 	case IPPROTO_IPCOMP:
3268 		if (sav->alg_auth != SADB_AALG_NONE) {
3269 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3270 				"mismated.\n", __func__));
3271 			return(EINVAL);
3272 		}
3273 		if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3274 		 && ntohl(sav->spi) >= 0x10000) {
3275 			ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n",
3276 				__func__));
3277 			return(EINVAL);
3278 		}
3279 		error = xform_init(sav, XF_IPCOMP);
3280 		break;
3281 	case IPPROTO_TCP:
3282 		if (sav->alg_enc != SADB_EALG_NONE) {
3283 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3284 				"mismated.\n", __func__));
3285 			return(EINVAL);
3286 		}
3287 		error = xform_init(sav, XF_TCPSIGNATURE);
3288 		break;
3289 	default:
3290 		ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__));
3291 		error = EPROTONOSUPPORT;
3292 		break;
3293 	}
3294 	if (error == 0) {
3295 		SAHTREE_LOCK();
3296 		key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3297 		SAHTREE_UNLOCK();
3298 	}
3299 	return (error);
3300 }
3301 
3302 /*
3303  * subroutine for SADB_GET and SADB_DUMP.
3304  */
3305 static struct mbuf *
3306 key_setdumpsa(sav, type, satype, seq, pid)
3307 	struct secasvar *sav;
3308 	u_int8_t type, satype;
3309 	u_int32_t seq, pid;
3310 {
3311 	struct mbuf *result = NULL, *tres = NULL, *m;
3312 	int i;
3313 	int dumporder[] = {
3314 		SADB_EXT_SA, SADB_X_EXT_SA2,
3315 		SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3316 		SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3317 		SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3318 		SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3319 		SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3320 	};
3321 
3322 	m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3323 	if (m == NULL)
3324 		goto fail;
3325 	result = m;
3326 
3327 	for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) {
3328 		m = NULL;
3329 		switch (dumporder[i]) {
3330 		case SADB_EXT_SA:
3331 			m = key_setsadbsa(sav);
3332 			if (!m)
3333 				goto fail;
3334 			break;
3335 
3336 		case SADB_X_EXT_SA2:
3337 			m = key_setsadbxsa2(sav->sah->saidx.mode,
3338 					sav->replay ? sav->replay->count : 0,
3339 					sav->sah->saidx.reqid);
3340 			if (!m)
3341 				goto fail;
3342 			break;
3343 
3344 		case SADB_EXT_ADDRESS_SRC:
3345 			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3346 			    &sav->sah->saidx.src.sa,
3347 			    FULLMASK, IPSEC_ULPROTO_ANY);
3348 			if (!m)
3349 				goto fail;
3350 			break;
3351 
3352 		case SADB_EXT_ADDRESS_DST:
3353 			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3354 			    &sav->sah->saidx.dst.sa,
3355 			    FULLMASK, IPSEC_ULPROTO_ANY);
3356 			if (!m)
3357 				goto fail;
3358 			break;
3359 
3360 		case SADB_EXT_KEY_AUTH:
3361 			if (!sav->key_auth)
3362 				continue;
3363 			m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH);
3364 			if (!m)
3365 				goto fail;
3366 			break;
3367 
3368 		case SADB_EXT_KEY_ENCRYPT:
3369 			if (!sav->key_enc)
3370 				continue;
3371 			m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT);
3372 			if (!m)
3373 				goto fail;
3374 			break;
3375 
3376 		case SADB_EXT_LIFETIME_CURRENT:
3377 			if (!sav->lft_c)
3378 				continue;
3379 			m = key_setlifetime(sav->lft_c,
3380 					    SADB_EXT_LIFETIME_CURRENT);
3381 			if (!m)
3382 				goto fail;
3383 			break;
3384 
3385 		case SADB_EXT_LIFETIME_HARD:
3386 			if (!sav->lft_h)
3387 				continue;
3388 			m = key_setlifetime(sav->lft_h,
3389 					    SADB_EXT_LIFETIME_HARD);
3390 			if (!m)
3391 				goto fail;
3392 			break;
3393 
3394 		case SADB_EXT_LIFETIME_SOFT:
3395 			if (!sav->lft_s)
3396 				continue;
3397 			m = key_setlifetime(sav->lft_s,
3398 					    SADB_EXT_LIFETIME_SOFT);
3399 
3400 			if (!m)
3401 				goto fail;
3402 			break;
3403 
3404 		case SADB_EXT_ADDRESS_PROXY:
3405 		case SADB_EXT_IDENTITY_SRC:
3406 		case SADB_EXT_IDENTITY_DST:
3407 			/* XXX: should we brought from SPD ? */
3408 		case SADB_EXT_SENSITIVITY:
3409 		default:
3410 			continue;
3411 		}
3412 
3413 		if (!m)
3414 			goto fail;
3415 		if (tres)
3416 			m_cat(m, tres);
3417 		tres = m;
3418 
3419 	}
3420 
3421 	m_cat(result, tres);
3422 	if (result->m_len < sizeof(struct sadb_msg)) {
3423 		result = m_pullup(result, sizeof(struct sadb_msg));
3424 		if (result == NULL)
3425 			goto fail;
3426 	}
3427 
3428 	result->m_pkthdr.len = 0;
3429 	for (m = result; m; m = m->m_next)
3430 		result->m_pkthdr.len += m->m_len;
3431 
3432 	mtod(result, struct sadb_msg *)->sadb_msg_len =
3433 	    PFKEY_UNIT64(result->m_pkthdr.len);
3434 
3435 	return result;
3436 
3437 fail:
3438 	m_freem(result);
3439 	m_freem(tres);
3440 	return NULL;
3441 }
3442 
3443 /*
3444  * set data into sadb_msg.
3445  */
3446 static struct mbuf *
3447 key_setsadbmsg(type, tlen, satype, seq, pid, reserved)
3448 	u_int8_t type, satype;
3449 	u_int16_t tlen;
3450 	u_int32_t seq;
3451 	pid_t pid;
3452 	u_int16_t reserved;
3453 {
3454 	struct mbuf *m;
3455 	struct sadb_msg *p;
3456 	int len;
3457 
3458 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3459 	if (len > MCLBYTES)
3460 		return NULL;
3461 	MGETHDR(m, M_DONTWAIT, MT_DATA);
3462 	if (m && len > MHLEN) {
3463 		MCLGET(m, M_DONTWAIT);
3464 		if ((m->m_flags & M_EXT) == 0) {
3465 			m_freem(m);
3466 			m = NULL;
3467 		}
3468 	}
3469 	if (!m)
3470 		return NULL;
3471 	m->m_pkthdr.len = m->m_len = len;
3472 	m->m_next = NULL;
3473 
3474 	p = mtod(m, struct sadb_msg *);
3475 
3476 	bzero(p, len);
3477 	p->sadb_msg_version = PF_KEY_V2;
3478 	p->sadb_msg_type = type;
3479 	p->sadb_msg_errno = 0;
3480 	p->sadb_msg_satype = satype;
3481 	p->sadb_msg_len = PFKEY_UNIT64(tlen);
3482 	p->sadb_msg_reserved = reserved;
3483 	p->sadb_msg_seq = seq;
3484 	p->sadb_msg_pid = (u_int32_t)pid;
3485 
3486 	return m;
3487 }
3488 
3489 /*
3490  * copy secasvar data into sadb_address.
3491  */
3492 static struct mbuf *
3493 key_setsadbsa(sav)
3494 	struct secasvar *sav;
3495 {
3496 	struct mbuf *m;
3497 	struct sadb_sa *p;
3498 	int len;
3499 
3500 	len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3501 	m = key_alloc_mbuf(len);
3502 	if (!m || m->m_next) {	/*XXX*/
3503 		if (m)
3504 			m_freem(m);
3505 		return NULL;
3506 	}
3507 
3508 	p = mtod(m, struct sadb_sa *);
3509 
3510 	bzero(p, len);
3511 	p->sadb_sa_len = PFKEY_UNIT64(len);
3512 	p->sadb_sa_exttype = SADB_EXT_SA;
3513 	p->sadb_sa_spi = sav->spi;
3514 	p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3515 	p->sadb_sa_state = sav->state;
3516 	p->sadb_sa_auth = sav->alg_auth;
3517 	p->sadb_sa_encrypt = sav->alg_enc;
3518 	p->sadb_sa_flags = sav->flags;
3519 
3520 	return m;
3521 }
3522 
3523 /*
3524  * set data into sadb_address.
3525  */
3526 static struct mbuf *
3527 key_setsadbaddr(exttype, saddr, prefixlen, ul_proto)
3528 	u_int16_t exttype;
3529 	const struct sockaddr *saddr;
3530 	u_int8_t prefixlen;
3531 	u_int16_t ul_proto;
3532 {
3533 	struct mbuf *m;
3534 	struct sadb_address *p;
3535 	size_t len;
3536 
3537 	len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3538 	    PFKEY_ALIGN8(saddr->sa_len);
3539 	m = key_alloc_mbuf(len);
3540 	if (!m || m->m_next) {	/*XXX*/
3541 		if (m)
3542 			m_freem(m);
3543 		return NULL;
3544 	}
3545 
3546 	p = mtod(m, struct sadb_address *);
3547 
3548 	bzero(p, len);
3549 	p->sadb_address_len = PFKEY_UNIT64(len);
3550 	p->sadb_address_exttype = exttype;
3551 	p->sadb_address_proto = ul_proto;
3552 	if (prefixlen == FULLMASK) {
3553 		switch (saddr->sa_family) {
3554 		case AF_INET:
3555 			prefixlen = sizeof(struct in_addr) << 3;
3556 			break;
3557 		case AF_INET6:
3558 			prefixlen = sizeof(struct in6_addr) << 3;
3559 			break;
3560 		default:
3561 			; /*XXX*/
3562 		}
3563 	}
3564 	p->sadb_address_prefixlen = prefixlen;
3565 	p->sadb_address_reserved = 0;
3566 
3567 	bcopy(saddr,
3568 	    mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3569 	    saddr->sa_len);
3570 
3571 	return m;
3572 }
3573 
3574 /*
3575  * set data into sadb_x_sa2.
3576  */
3577 static struct mbuf *
3578 key_setsadbxsa2(mode, seq, reqid)
3579 	u_int8_t mode;
3580 	u_int32_t seq, reqid;
3581 {
3582 	struct mbuf *m;
3583 	struct sadb_x_sa2 *p;
3584 	size_t len;
3585 
3586 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3587 	m = key_alloc_mbuf(len);
3588 	if (!m || m->m_next) {	/*XXX*/
3589 		if (m)
3590 			m_freem(m);
3591 		return NULL;
3592 	}
3593 
3594 	p = mtod(m, struct sadb_x_sa2 *);
3595 
3596 	bzero(p, len);
3597 	p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3598 	p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3599 	p->sadb_x_sa2_mode = mode;
3600 	p->sadb_x_sa2_reserved1 = 0;
3601 	p->sadb_x_sa2_reserved2 = 0;
3602 	p->sadb_x_sa2_sequence = seq;
3603 	p->sadb_x_sa2_reqid = reqid;
3604 
3605 	return m;
3606 }
3607 
3608 /*
3609  * set data into sadb_x_policy
3610  */
3611 static struct mbuf *
3612 key_setsadbxpolicy(type, dir, id)
3613 	u_int16_t type;
3614 	u_int8_t dir;
3615 	u_int32_t id;
3616 {
3617 	struct mbuf *m;
3618 	struct sadb_x_policy *p;
3619 	size_t len;
3620 
3621 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
3622 	m = key_alloc_mbuf(len);
3623 	if (!m || m->m_next) {	/*XXX*/
3624 		if (m)
3625 			m_freem(m);
3626 		return NULL;
3627 	}
3628 
3629 	p = mtod(m, struct sadb_x_policy *);
3630 
3631 	bzero(p, len);
3632 	p->sadb_x_policy_len = PFKEY_UNIT64(len);
3633 	p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
3634 	p->sadb_x_policy_type = type;
3635 	p->sadb_x_policy_dir = dir;
3636 	p->sadb_x_policy_id = id;
3637 
3638 	return m;
3639 }
3640 
3641 /* %%% utilities */
3642 /* Take a key message (sadb_key) from the socket and turn it into one
3643  * of the kernel's key structures (seckey).
3644  *
3645  * IN: pointer to the src
3646  * OUT: NULL no more memory
3647  */
3648 struct seckey *
3649 key_dup_keymsg(const struct sadb_key *src, u_int len,
3650 	       struct malloc_type *type)
3651 {
3652 	struct seckey *dst;
3653 	dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT);
3654 	if (dst != NULL) {
3655 		dst->bits = src->sadb_key_bits;
3656 		dst->key_data = (char *)malloc(len, type, M_NOWAIT);
3657 		if (dst->key_data != NULL) {
3658 			bcopy((const char *)src + sizeof(struct sadb_key),
3659 			      dst->key_data, len);
3660 		} else {
3661 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3662 				  __func__));
3663 			free(dst, type);
3664 			dst = NULL;
3665 		}
3666 	} else {
3667 		ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3668 			  __func__));
3669 
3670 	}
3671 	return dst;
3672 }
3673 
3674 /* Take a lifetime message (sadb_lifetime) passed in on a socket and
3675  * turn it into one of the kernel's lifetime structures (seclifetime).
3676  *
3677  * IN: pointer to the destination, source and malloc type
3678  * OUT: NULL, no more memory
3679  */
3680 
3681 static struct seclifetime *
3682 key_dup_lifemsg(const struct sadb_lifetime *src,
3683 		 struct malloc_type *type)
3684 {
3685 	struct seclifetime *dst = NULL;
3686 
3687 	dst = (struct seclifetime *)malloc(sizeof(struct seclifetime),
3688 					   type, M_NOWAIT);
3689 	if (dst == NULL) {
3690 		/* XXX counter */
3691 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3692 	} else {
3693 		dst->allocations = src->sadb_lifetime_allocations;
3694 		dst->bytes = src->sadb_lifetime_bytes;
3695 		dst->addtime = src->sadb_lifetime_addtime;
3696 		dst->usetime = src->sadb_lifetime_usetime;
3697 	}
3698 	return dst;
3699 }
3700 
3701 /* compare my own address
3702  * OUT:	1: true, i.e. my address.
3703  *	0: false
3704  */
3705 int
3706 key_ismyaddr(sa)
3707 	struct sockaddr *sa;
3708 {
3709 #ifdef INET
3710 	struct sockaddr_in *sin;
3711 	struct in_ifaddr *ia;
3712 #endif
3713 
3714 	IPSEC_ASSERT(sa != NULL, ("null sockaddr"));
3715 
3716 	switch (sa->sa_family) {
3717 #ifdef INET
3718 	case AF_INET:
3719 		sin = (struct sockaddr_in *)sa;
3720 		for (ia = V_in_ifaddrhead.tqh_first; ia;
3721 		     ia = ia->ia_link.tqe_next)
3722 		{
3723 			if (sin->sin_family == ia->ia_addr.sin_family &&
3724 			    sin->sin_len == ia->ia_addr.sin_len &&
3725 			    sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
3726 			{
3727 				return 1;
3728 			}
3729 		}
3730 		break;
3731 #endif
3732 #ifdef INET6
3733 	case AF_INET6:
3734 		return key_ismyaddr6((struct sockaddr_in6 *)sa);
3735 #endif
3736 	}
3737 
3738 	return 0;
3739 }
3740 
3741 #ifdef INET6
3742 /*
3743  * compare my own address for IPv6.
3744  * 1: ours
3745  * 0: other
3746  * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
3747  */
3748 #include <netinet6/in6_var.h>
3749 
3750 static int
3751 key_ismyaddr6(sin6)
3752 	struct sockaddr_in6 *sin6;
3753 {
3754 	struct in6_ifaddr *ia;
3755 	struct in6_multi *in6m;
3756 
3757 	for (ia = V_in6_ifaddr; ia; ia = ia->ia_next) {
3758 		if (key_sockaddrcmp((struct sockaddr *)&sin6,
3759 		    (struct sockaddr *)&ia->ia_addr, 0) == 0)
3760 			return 1;
3761 
3762 		/*
3763 		 * XXX Multicast
3764 		 * XXX why do we care about multlicast here while we don't care
3765 		 * about IPv4 multicast??
3766 		 * XXX scope
3767 		 */
3768 		in6m = NULL;
3769 		IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m);
3770 		if (in6m)
3771 			return 1;
3772 	}
3773 
3774 	/* loopback, just for safety */
3775 	if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
3776 		return 1;
3777 
3778 	return 0;
3779 }
3780 #endif /*INET6*/
3781 
3782 /*
3783  * compare two secasindex structure.
3784  * flag can specify to compare 2 saidxes.
3785  * compare two secasindex structure without both mode and reqid.
3786  * don't compare port.
3787  * IN:
3788  *      saidx0: source, it can be in SAD.
3789  *      saidx1: object.
3790  * OUT:
3791  *      1 : equal
3792  *      0 : not equal
3793  */
3794 static int
3795 key_cmpsaidx(
3796 	const struct secasindex *saidx0,
3797 	const struct secasindex *saidx1,
3798 	int flag)
3799 {
3800 	/* sanity */
3801 	if (saidx0 == NULL && saidx1 == NULL)
3802 		return 1;
3803 
3804 	if (saidx0 == NULL || saidx1 == NULL)
3805 		return 0;
3806 
3807 	if (saidx0->proto != saidx1->proto)
3808 		return 0;
3809 
3810 	if (flag == CMP_EXACTLY) {
3811 		if (saidx0->mode != saidx1->mode)
3812 			return 0;
3813 		if (saidx0->reqid != saidx1->reqid)
3814 			return 0;
3815 		if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
3816 		    bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
3817 			return 0;
3818 	} else {
3819 
3820 		/* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
3821 		if (flag == CMP_MODE_REQID
3822 		  ||flag == CMP_REQID) {
3823 			/*
3824 			 * If reqid of SPD is non-zero, unique SA is required.
3825 			 * The result must be of same reqid in this case.
3826 			 */
3827 			if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
3828 				return 0;
3829 		}
3830 
3831 		if (flag == CMP_MODE_REQID) {
3832 			if (saidx0->mode != IPSEC_MODE_ANY
3833 			 && saidx0->mode != saidx1->mode)
3834 				return 0;
3835 		}
3836 
3837 		if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, 0) != 0) {
3838 			return 0;
3839 		}
3840 		if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, 0) != 0) {
3841 			return 0;
3842 		}
3843 	}
3844 
3845 	return 1;
3846 }
3847 
3848 /*
3849  * compare two secindex structure exactly.
3850  * IN:
3851  *	spidx0: source, it is often in SPD.
3852  *	spidx1: object, it is often from PFKEY message.
3853  * OUT:
3854  *	1 : equal
3855  *	0 : not equal
3856  */
3857 static int
3858 key_cmpspidx_exactly(
3859 	struct secpolicyindex *spidx0,
3860 	struct secpolicyindex *spidx1)
3861 {
3862 	/* sanity */
3863 	if (spidx0 == NULL && spidx1 == NULL)
3864 		return 1;
3865 
3866 	if (spidx0 == NULL || spidx1 == NULL)
3867 		return 0;
3868 
3869 	if (spidx0->prefs != spidx1->prefs
3870 	 || spidx0->prefd != spidx1->prefd
3871 	 || spidx0->ul_proto != spidx1->ul_proto)
3872 		return 0;
3873 
3874 	return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 &&
3875 	       key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0;
3876 }
3877 
3878 /*
3879  * compare two secindex structure with mask.
3880  * IN:
3881  *	spidx0: source, it is often in SPD.
3882  *	spidx1: object, it is often from IP header.
3883  * OUT:
3884  *	1 : equal
3885  *	0 : not equal
3886  */
3887 static int
3888 key_cmpspidx_withmask(
3889 	struct secpolicyindex *spidx0,
3890 	struct secpolicyindex *spidx1)
3891 {
3892 	/* sanity */
3893 	if (spidx0 == NULL && spidx1 == NULL)
3894 		return 1;
3895 
3896 	if (spidx0 == NULL || spidx1 == NULL)
3897 		return 0;
3898 
3899 	if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
3900 	    spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
3901 	    spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
3902 	    spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
3903 		return 0;
3904 
3905 	/* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
3906 	if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
3907 	 && spidx0->ul_proto != spidx1->ul_proto)
3908 		return 0;
3909 
3910 	switch (spidx0->src.sa.sa_family) {
3911 	case AF_INET:
3912 		if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
3913 		 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
3914 			return 0;
3915 		if (!key_bbcmp(&spidx0->src.sin.sin_addr,
3916 		    &spidx1->src.sin.sin_addr, spidx0->prefs))
3917 			return 0;
3918 		break;
3919 	case AF_INET6:
3920 		if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
3921 		 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
3922 			return 0;
3923 		/*
3924 		 * scope_id check. if sin6_scope_id is 0, we regard it
3925 		 * as a wildcard scope, which matches any scope zone ID.
3926 		 */
3927 		if (spidx0->src.sin6.sin6_scope_id &&
3928 		    spidx1->src.sin6.sin6_scope_id &&
3929 		    spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
3930 			return 0;
3931 		if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
3932 		    &spidx1->src.sin6.sin6_addr, spidx0->prefs))
3933 			return 0;
3934 		break;
3935 	default:
3936 		/* XXX */
3937 		if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
3938 			return 0;
3939 		break;
3940 	}
3941 
3942 	switch (spidx0->dst.sa.sa_family) {
3943 	case AF_INET:
3944 		if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
3945 		 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
3946 			return 0;
3947 		if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
3948 		    &spidx1->dst.sin.sin_addr, spidx0->prefd))
3949 			return 0;
3950 		break;
3951 	case AF_INET6:
3952 		if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
3953 		 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
3954 			return 0;
3955 		/*
3956 		 * scope_id check. if sin6_scope_id is 0, we regard it
3957 		 * as a wildcard scope, which matches any scope zone ID.
3958 		 */
3959 		if (spidx0->dst.sin6.sin6_scope_id &&
3960 		    spidx1->dst.sin6.sin6_scope_id &&
3961 		    spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
3962 			return 0;
3963 		if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
3964 		    &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
3965 			return 0;
3966 		break;
3967 	default:
3968 		/* XXX */
3969 		if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
3970 			return 0;
3971 		break;
3972 	}
3973 
3974 	/* XXX Do we check other field ?  e.g. flowinfo */
3975 
3976 	return 1;
3977 }
3978 
3979 /* returns 0 on match */
3980 static int
3981 key_sockaddrcmp(
3982 	const struct sockaddr *sa1,
3983 	const struct sockaddr *sa2,
3984 	int port)
3985 {
3986 #ifdef satosin
3987 #undef satosin
3988 #endif
3989 #define satosin(s) ((const struct sockaddr_in *)s)
3990 #ifdef satosin6
3991 #undef satosin6
3992 #endif
3993 #define satosin6(s) ((const struct sockaddr_in6 *)s)
3994 	if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
3995 		return 1;
3996 
3997 	switch (sa1->sa_family) {
3998 	case AF_INET:
3999 		if (sa1->sa_len != sizeof(struct sockaddr_in))
4000 			return 1;
4001 		if (satosin(sa1)->sin_addr.s_addr !=
4002 		    satosin(sa2)->sin_addr.s_addr) {
4003 			return 1;
4004 		}
4005 		if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port)
4006 			return 1;
4007 		break;
4008 	case AF_INET6:
4009 		if (sa1->sa_len != sizeof(struct sockaddr_in6))
4010 			return 1;	/*EINVAL*/
4011 		if (satosin6(sa1)->sin6_scope_id !=
4012 		    satosin6(sa2)->sin6_scope_id) {
4013 			return 1;
4014 		}
4015 		if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr,
4016 		    &satosin6(sa2)->sin6_addr)) {
4017 			return 1;
4018 		}
4019 		if (port &&
4020 		    satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) {
4021 			return 1;
4022 		}
4023 		break;
4024 	default:
4025 		if (bcmp(sa1, sa2, sa1->sa_len) != 0)
4026 			return 1;
4027 		break;
4028 	}
4029 
4030 	return 0;
4031 #undef satosin
4032 #undef satosin6
4033 }
4034 
4035 /*
4036  * compare two buffers with mask.
4037  * IN:
4038  *	addr1: source
4039  *	addr2: object
4040  *	bits:  Number of bits to compare
4041  * OUT:
4042  *	1 : equal
4043  *	0 : not equal
4044  */
4045 static int
4046 key_bbcmp(const void *a1, const void *a2, u_int bits)
4047 {
4048 	const unsigned char *p1 = a1;
4049 	const unsigned char *p2 = a2;
4050 
4051 	/* XXX: This could be considerably faster if we compare a word
4052 	 * at a time, but it is complicated on LSB Endian machines */
4053 
4054 	/* Handle null pointers */
4055 	if (p1 == NULL || p2 == NULL)
4056 		return (p1 == p2);
4057 
4058 	while (bits >= 8) {
4059 		if (*p1++ != *p2++)
4060 			return 0;
4061 		bits -= 8;
4062 	}
4063 
4064 	if (bits > 0) {
4065 		u_int8_t mask = ~((1<<(8-bits))-1);
4066 		if ((*p1 & mask) != (*p2 & mask))
4067 			return 0;
4068 	}
4069 	return 1;	/* Match! */
4070 }
4071 
4072 static void
4073 key_flush_spd(time_t now)
4074 {
4075 	static u_int16_t sptree_scangen = 0;
4076 	u_int16_t gen = sptree_scangen++;
4077 	struct secpolicy *sp;
4078 	u_int dir;
4079 
4080 	/* SPD */
4081 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4082 restart:
4083 		SPTREE_LOCK();
4084 		LIST_FOREACH(sp, &V_sptree[dir], chain) {
4085 			if (sp->scangen == gen)		/* previously handled */
4086 				continue;
4087 			sp->scangen = gen;
4088 			if (sp->state == IPSEC_SPSTATE_DEAD) {
4089 				/* NB: clean entries created by key_spdflush */
4090 				SPTREE_UNLOCK();
4091 				KEY_FREESP(&sp);
4092 				goto restart;
4093 			}
4094 			if (sp->lifetime == 0 && sp->validtime == 0)
4095 				continue;
4096 			if ((sp->lifetime && now - sp->created > sp->lifetime)
4097 			 || (sp->validtime && now - sp->lastused > sp->validtime)) {
4098 				sp->state = IPSEC_SPSTATE_DEAD;
4099 				SPTREE_UNLOCK();
4100 				key_spdexpire(sp);
4101 				KEY_FREESP(&sp);
4102 				goto restart;
4103 			}
4104 		}
4105 		SPTREE_UNLOCK();
4106 	}
4107 }
4108 
4109 static void
4110 key_flush_sad(time_t now)
4111 {
4112 	struct secashead *sah, *nextsah;
4113 	struct secasvar *sav, *nextsav;
4114 
4115 	/* SAD */
4116 	SAHTREE_LOCK();
4117 	LIST_FOREACH_SAFE(sah, &V_sahtree, chain, nextsah) {
4118 		/* if sah has been dead, then delete it and process next sah. */
4119 		if (sah->state == SADB_SASTATE_DEAD) {
4120 			key_delsah(sah);
4121 			continue;
4122 		}
4123 
4124 		/* if LARVAL entry doesn't become MATURE, delete it. */
4125 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) {
4126 			if (now - sav->created > V_key_larval_lifetime)
4127 				KEY_FREESAV(&sav);
4128 		}
4129 
4130 		/*
4131 		 * check MATURE entry to start to send expire message
4132 		 * whether or not.
4133 		 */
4134 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) {
4135 			/* we don't need to check. */
4136 			if (sav->lft_s == NULL)
4137 				continue;
4138 
4139 			/* sanity check */
4140 			if (sav->lft_c == NULL) {
4141 				ipseclog((LOG_DEBUG,"%s: there is no CURRENT "
4142 					"time, why?\n", __func__));
4143 				continue;
4144 			}
4145 
4146 			/* check SOFT lifetime */
4147 			if (sav->lft_s->addtime != 0 &&
4148 			    now - sav->created > sav->lft_s->addtime) {
4149 				/*
4150 				 * check SA to be used whether or not.
4151 				 * when SA hasn't been used, delete it.
4152 				 */
4153 				if (sav->lft_c->usetime == 0) {
4154 					key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4155 					KEY_FREESAV(&sav);
4156 				} else {
4157 					key_sa_chgstate(sav, SADB_SASTATE_DYING);
4158 					/*
4159 					 * XXX If we keep to send expire
4160 					 * message in the status of
4161 					 * DYING. Do remove below code.
4162 					 */
4163 					key_expire(sav);
4164 				}
4165 			}
4166 			/* check SOFT lifetime by bytes */
4167 			/*
4168 			 * XXX I don't know the way to delete this SA
4169 			 * when new SA is installed.  Caution when it's
4170 			 * installed too big lifetime by time.
4171 			 */
4172 			else if (sav->lft_s->bytes != 0 &&
4173 			    sav->lft_s->bytes < sav->lft_c->bytes) {
4174 
4175 				key_sa_chgstate(sav, SADB_SASTATE_DYING);
4176 				/*
4177 				 * XXX If we keep to send expire
4178 				 * message in the status of
4179 				 * DYING. Do remove below code.
4180 				 */
4181 				key_expire(sav);
4182 			}
4183 		}
4184 
4185 		/* check DYING entry to change status to DEAD. */
4186 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) {
4187 			/* we don't need to check. */
4188 			if (sav->lft_h == NULL)
4189 				continue;
4190 
4191 			/* sanity check */
4192 			if (sav->lft_c == NULL) {
4193 				ipseclog((LOG_DEBUG, "%s: there is no CURRENT "
4194 					"time, why?\n", __func__));
4195 				continue;
4196 			}
4197 
4198 			if (sav->lft_h->addtime != 0 &&
4199 			    now - sav->created > sav->lft_h->addtime) {
4200 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4201 				KEY_FREESAV(&sav);
4202 			}
4203 #if 0	/* XXX Should we keep to send expire message until HARD lifetime ? */
4204 			else if (sav->lft_s != NULL
4205 			      && sav->lft_s->addtime != 0
4206 			      && now - sav->created > sav->lft_s->addtime) {
4207 				/*
4208 				 * XXX: should be checked to be
4209 				 * installed the valid SA.
4210 				 */
4211 
4212 				/*
4213 				 * If there is no SA then sending
4214 				 * expire message.
4215 				 */
4216 				key_expire(sav);
4217 			}
4218 #endif
4219 			/* check HARD lifetime by bytes */
4220 			else if (sav->lft_h->bytes != 0 &&
4221 			    sav->lft_h->bytes < sav->lft_c->bytes) {
4222 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4223 				KEY_FREESAV(&sav);
4224 			}
4225 		}
4226 
4227 		/* delete entry in DEAD */
4228 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) {
4229 			/* sanity check */
4230 			if (sav->state != SADB_SASTATE_DEAD) {
4231 				ipseclog((LOG_DEBUG, "%s: invalid sav->state "
4232 					"(queue: %d SA: %d): kill it anyway\n",
4233 					__func__,
4234 					SADB_SASTATE_DEAD, sav->state));
4235 			}
4236 			/*
4237 			 * do not call key_freesav() here.
4238 			 * sav should already be freed, and sav->refcnt
4239 			 * shows other references to sav
4240 			 * (such as from SPD).
4241 			 */
4242 		}
4243 	}
4244 	SAHTREE_UNLOCK();
4245 }
4246 
4247 static void
4248 key_flush_acq(time_t now)
4249 {
4250 	struct secacq *acq, *nextacq;
4251 
4252 	/* ACQ tree */
4253 	ACQ_LOCK();
4254 	for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) {
4255 		nextacq = LIST_NEXT(acq, chain);
4256 		if (now - acq->created > V_key_blockacq_lifetime
4257 		 && __LIST_CHAINED(acq)) {
4258 			LIST_REMOVE(acq, chain);
4259 			free(acq, M_IPSEC_SAQ);
4260 		}
4261 	}
4262 	ACQ_UNLOCK();
4263 }
4264 
4265 static void
4266 key_flush_spacq(time_t now)
4267 {
4268 	struct secspacq *acq, *nextacq;
4269 
4270 	/* SP ACQ tree */
4271 	SPACQ_LOCK();
4272 	for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) {
4273 		nextacq = LIST_NEXT(acq, chain);
4274 		if (now - acq->created > V_key_blockacq_lifetime
4275 		 && __LIST_CHAINED(acq)) {
4276 			LIST_REMOVE(acq, chain);
4277 			free(acq, M_IPSEC_SAQ);
4278 		}
4279 	}
4280 	SPACQ_UNLOCK();
4281 }
4282 
4283 /*
4284  * time handler.
4285  * scanning SPD and SAD to check status for each entries,
4286  * and do to remove or to expire.
4287  * XXX: year 2038 problem may remain.
4288  */
4289 void
4290 key_timehandler(void)
4291 {
4292 	time_t now = time_second;
4293 
4294 	key_flush_spd(now);
4295 	key_flush_sad(now);
4296 	key_flush_acq(now);
4297 	key_flush_spacq(now);
4298 
4299 #ifndef IPSEC_DEBUG2
4300 	/* do exchange to tick time !! */
4301 	(void)timeout((void *)key_timehandler, (void *)0, hz);
4302 #endif /* IPSEC_DEBUG2 */
4303 }
4304 
4305 u_long
4306 key_random()
4307 {
4308 	u_long value;
4309 
4310 	key_randomfill(&value, sizeof(value));
4311 	return value;
4312 }
4313 
4314 void
4315 key_randomfill(p, l)
4316 	void *p;
4317 	size_t l;
4318 {
4319 	size_t n;
4320 	u_long v;
4321 	static int warn = 1;
4322 
4323 	n = 0;
4324 	n = (size_t)read_random(p, (u_int)l);
4325 	/* last resort */
4326 	while (n < l) {
4327 		v = random();
4328 		bcopy(&v, (u_int8_t *)p + n,
4329 		    l - n < sizeof(v) ? l - n : sizeof(v));
4330 		n += sizeof(v);
4331 
4332 		if (warn) {
4333 			printf("WARNING: pseudo-random number generator "
4334 			    "used for IPsec processing\n");
4335 			warn = 0;
4336 		}
4337 	}
4338 }
4339 
4340 /*
4341  * map SADB_SATYPE_* to IPPROTO_*.
4342  * if satype == SADB_SATYPE then satype is mapped to ~0.
4343  * OUT:
4344  *	0: invalid satype.
4345  */
4346 static u_int16_t
4347 key_satype2proto(satype)
4348 	u_int8_t satype;
4349 {
4350 	switch (satype) {
4351 	case SADB_SATYPE_UNSPEC:
4352 		return IPSEC_PROTO_ANY;
4353 	case SADB_SATYPE_AH:
4354 		return IPPROTO_AH;
4355 	case SADB_SATYPE_ESP:
4356 		return IPPROTO_ESP;
4357 	case SADB_X_SATYPE_IPCOMP:
4358 		return IPPROTO_IPCOMP;
4359 	case SADB_X_SATYPE_TCPSIGNATURE:
4360 		return IPPROTO_TCP;
4361 	default:
4362 		return 0;
4363 	}
4364 	/* NOTREACHED */
4365 }
4366 
4367 /*
4368  * map IPPROTO_* to SADB_SATYPE_*
4369  * OUT:
4370  *	0: invalid protocol type.
4371  */
4372 static u_int8_t
4373 key_proto2satype(proto)
4374 	u_int16_t proto;
4375 {
4376 	switch (proto) {
4377 	case IPPROTO_AH:
4378 		return SADB_SATYPE_AH;
4379 	case IPPROTO_ESP:
4380 		return SADB_SATYPE_ESP;
4381 	case IPPROTO_IPCOMP:
4382 		return SADB_X_SATYPE_IPCOMP;
4383 	case IPPROTO_TCP:
4384 		return SADB_X_SATYPE_TCPSIGNATURE;
4385 	default:
4386 		return 0;
4387 	}
4388 	/* NOTREACHED */
4389 }
4390 
4391 /* %%% PF_KEY */
4392 /*
4393  * SADB_GETSPI processing is to receive
4394  *	<base, (SA2), src address, dst address, (SPI range)>
4395  * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4396  * tree with the status of LARVAL, and send
4397  *	<base, SA(*), address(SD)>
4398  * to the IKMPd.
4399  *
4400  * IN:	mhp: pointer to the pointer to each header.
4401  * OUT:	NULL if fail.
4402  *	other if success, return pointer to the message to send.
4403  */
4404 static int
4405 key_getspi(so, m, mhp)
4406 	struct socket *so;
4407 	struct mbuf *m;
4408 	const struct sadb_msghdr *mhp;
4409 {
4410 	struct sadb_address *src0, *dst0;
4411 	struct secasindex saidx;
4412 	struct secashead *newsah;
4413 	struct secasvar *newsav;
4414 	u_int8_t proto;
4415 	u_int32_t spi;
4416 	u_int8_t mode;
4417 	u_int32_t reqid;
4418 	int error;
4419 
4420 	IPSEC_ASSERT(so != NULL, ("null socket"));
4421 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4422 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4423 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4424 
4425 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4426 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4427 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4428 			__func__));
4429 		return key_senderror(so, m, EINVAL);
4430 	}
4431 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4432 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4433 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4434 			__func__));
4435 		return key_senderror(so, m, EINVAL);
4436 	}
4437 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4438 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4439 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4440 	} else {
4441 		mode = IPSEC_MODE_ANY;
4442 		reqid = 0;
4443 	}
4444 
4445 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4446 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4447 
4448 	/* map satype to proto */
4449 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4450 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4451 			__func__));
4452 		return key_senderror(so, m, EINVAL);
4453 	}
4454 
4455 	/* make sure if port number is zero. */
4456 	switch (((struct sockaddr *)(src0 + 1))->sa_family) {
4457 	case AF_INET:
4458 		if (((struct sockaddr *)(src0 + 1))->sa_len !=
4459 		    sizeof(struct sockaddr_in))
4460 			return key_senderror(so, m, EINVAL);
4461 		((struct sockaddr_in *)(src0 + 1))->sin_port = 0;
4462 		break;
4463 	case AF_INET6:
4464 		if (((struct sockaddr *)(src0 + 1))->sa_len !=
4465 		    sizeof(struct sockaddr_in6))
4466 			return key_senderror(so, m, EINVAL);
4467 		((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0;
4468 		break;
4469 	default:
4470 		; /*???*/
4471 	}
4472 	switch (((struct sockaddr *)(dst0 + 1))->sa_family) {
4473 	case AF_INET:
4474 		if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4475 		    sizeof(struct sockaddr_in))
4476 			return key_senderror(so, m, EINVAL);
4477 		((struct sockaddr_in *)(dst0 + 1))->sin_port = 0;
4478 		break;
4479 	case AF_INET6:
4480 		if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4481 		    sizeof(struct sockaddr_in6))
4482 			return key_senderror(so, m, EINVAL);
4483 		((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0;
4484 		break;
4485 	default:
4486 		; /*???*/
4487 	}
4488 
4489 	/* XXX boundary check against sa_len */
4490 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4491 
4492 	/* SPI allocation */
4493 	spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4494 	                       &saidx);
4495 	if (spi == 0)
4496 		return key_senderror(so, m, EINVAL);
4497 
4498 	/* get a SA index */
4499 	if ((newsah = key_getsah(&saidx)) == NULL) {
4500 		/* create a new SA index */
4501 		if ((newsah = key_newsah(&saidx)) == NULL) {
4502 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
4503 			return key_senderror(so, m, ENOBUFS);
4504 		}
4505 	}
4506 
4507 	/* get a new SA */
4508 	/* XXX rewrite */
4509 	newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4510 	if (newsav == NULL) {
4511 		/* XXX don't free new SA index allocated in above. */
4512 		return key_senderror(so, m, error);
4513 	}
4514 
4515 	/* set spi */
4516 	newsav->spi = htonl(spi);
4517 
4518 	/* delete the entry in acqtree */
4519 	if (mhp->msg->sadb_msg_seq != 0) {
4520 		struct secacq *acq;
4521 		if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) {
4522 			/* reset counter in order to deletion by timehandler. */
4523 			acq->created = time_second;
4524 			acq->count = 0;
4525 		}
4526     	}
4527 
4528     {
4529 	struct mbuf *n, *nn;
4530 	struct sadb_sa *m_sa;
4531 	struct sadb_msg *newmsg;
4532 	int off, len;
4533 
4534 	/* create new sadb_msg to reply. */
4535 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4536 	    PFKEY_ALIGN8(sizeof(struct sadb_sa));
4537 
4538 	MGETHDR(n, M_DONTWAIT, MT_DATA);
4539 	if (len > MHLEN) {
4540 		MCLGET(n, M_DONTWAIT);
4541 		if ((n->m_flags & M_EXT) == 0) {
4542 			m_freem(n);
4543 			n = NULL;
4544 		}
4545 	}
4546 	if (!n)
4547 		return key_senderror(so, m, ENOBUFS);
4548 
4549 	n->m_len = len;
4550 	n->m_next = NULL;
4551 	off = 0;
4552 
4553 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
4554 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4555 
4556 	m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off);
4557 	m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4558 	m_sa->sadb_sa_exttype = SADB_EXT_SA;
4559 	m_sa->sadb_sa_spi = htonl(spi);
4560 	off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4561 
4562 	IPSEC_ASSERT(off == len,
4563 		("length inconsistency (off %u len %u)", off, len));
4564 
4565 	n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4566 	    SADB_EXT_ADDRESS_DST);
4567 	if (!n->m_next) {
4568 		m_freem(n);
4569 		return key_senderror(so, m, ENOBUFS);
4570 	}
4571 
4572 	if (n->m_len < sizeof(struct sadb_msg)) {
4573 		n = m_pullup(n, sizeof(struct sadb_msg));
4574 		if (n == NULL)
4575 			return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
4576 	}
4577 
4578 	n->m_pkthdr.len = 0;
4579 	for (nn = n; nn; nn = nn->m_next)
4580 		n->m_pkthdr.len += nn->m_len;
4581 
4582 	newmsg = mtod(n, struct sadb_msg *);
4583 	newmsg->sadb_msg_seq = newsav->seq;
4584 	newmsg->sadb_msg_errno = 0;
4585 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
4586 
4587 	m_freem(m);
4588 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
4589     }
4590 }
4591 
4592 /*
4593  * allocating new SPI
4594  * called by key_getspi().
4595  * OUT:
4596  *	0:	failure.
4597  *	others: success.
4598  */
4599 static u_int32_t
4600 key_do_getnewspi(spirange, saidx)
4601 	struct sadb_spirange *spirange;
4602 	struct secasindex *saidx;
4603 {
4604 	u_int32_t newspi;
4605 	u_int32_t min, max;
4606 	int count = V_key_spi_trycnt;
4607 
4608 	/* set spi range to allocate */
4609 	if (spirange != NULL) {
4610 		min = spirange->sadb_spirange_min;
4611 		max = spirange->sadb_spirange_max;
4612 	} else {
4613 		min = V_key_spi_minval;
4614 		max = V_key_spi_maxval;
4615 	}
4616 	/* IPCOMP needs 2-byte SPI */
4617 	if (saidx->proto == IPPROTO_IPCOMP) {
4618 		u_int32_t t;
4619 		if (min >= 0x10000)
4620 			min = 0xffff;
4621 		if (max >= 0x10000)
4622 			max = 0xffff;
4623 		if (min > max) {
4624 			t = min; min = max; max = t;
4625 		}
4626 	}
4627 
4628 	if (min == max) {
4629 		if (key_checkspidup(saidx, min) != NULL) {
4630 			ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n",
4631 				__func__, min));
4632 			return 0;
4633 		}
4634 
4635 		count--; /* taking one cost. */
4636 		newspi = min;
4637 
4638 	} else {
4639 
4640 		/* init SPI */
4641 		newspi = 0;
4642 
4643 		/* when requesting to allocate spi ranged */
4644 		while (count--) {
4645 			/* generate pseudo-random SPI value ranged. */
4646 			newspi = min + (key_random() % (max - min + 1));
4647 
4648 			if (key_checkspidup(saidx, newspi) == NULL)
4649 				break;
4650 		}
4651 
4652 		if (count == 0 || newspi == 0) {
4653 			ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n",
4654 				__func__));
4655 			return 0;
4656 		}
4657 	}
4658 
4659 	/* statistics */
4660 	keystat.getspi_count =
4661 		(keystat.getspi_count + V_key_spi_trycnt - count) / 2;
4662 
4663 	return newspi;
4664 }
4665 
4666 /*
4667  * SADB_UPDATE processing
4668  * receive
4669  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4670  *       key(AE), (identity(SD),) (sensitivity)>
4671  * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
4672  * and send
4673  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4674  *       (identity(SD),) (sensitivity)>
4675  * to the ikmpd.
4676  *
4677  * m will always be freed.
4678  */
4679 static int
4680 key_update(so, m, mhp)
4681 	struct socket *so;
4682 	struct mbuf *m;
4683 	const struct sadb_msghdr *mhp;
4684 {
4685 	struct sadb_sa *sa0;
4686 	struct sadb_address *src0, *dst0;
4687 	struct secasindex saidx;
4688 	struct secashead *sah;
4689 	struct secasvar *sav;
4690 	u_int16_t proto;
4691 	u_int8_t mode;
4692 	u_int32_t reqid;
4693 	int error;
4694 
4695 	IPSEC_ASSERT(so != NULL, ("null socket"));
4696 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4697 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4698 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4699 
4700 	/* map satype to proto */
4701 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4702 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4703 			__func__));
4704 		return key_senderror(so, m, EINVAL);
4705 	}
4706 
4707 	if (mhp->ext[SADB_EXT_SA] == NULL ||
4708 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4709 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
4710 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
4711 	     mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
4712 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
4713 	     mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
4714 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
4715 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
4716 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
4717 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
4718 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4719 			__func__));
4720 		return key_senderror(so, m, EINVAL);
4721 	}
4722 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
4723 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4724 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4725 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4726 			__func__));
4727 		return key_senderror(so, m, EINVAL);
4728 	}
4729 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4730 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4731 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4732 	} else {
4733 		mode = IPSEC_MODE_ANY;
4734 		reqid = 0;
4735 	}
4736 	/* XXX boundary checking for other extensions */
4737 
4738 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
4739 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4740 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4741 
4742 	/* XXX boundary check against sa_len */
4743 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4744 
4745 	/* get a SA header */
4746 	if ((sah = key_getsah(&saidx)) == NULL) {
4747 		ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__));
4748 		return key_senderror(so, m, ENOENT);
4749 	}
4750 
4751 	/* set spidx if there */
4752 	/* XXX rewrite */
4753 	error = key_setident(sah, m, mhp);
4754 	if (error)
4755 		return key_senderror(so, m, error);
4756 
4757 	/* find a SA with sequence number. */
4758 #ifdef IPSEC_DOSEQCHECK
4759 	if (mhp->msg->sadb_msg_seq != 0
4760 	 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) {
4761 		ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u "
4762 			"exists.\n", __func__, mhp->msg->sadb_msg_seq));
4763 		return key_senderror(so, m, ENOENT);
4764 	}
4765 #else
4766 	SAHTREE_LOCK();
4767 	sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
4768 	SAHTREE_UNLOCK();
4769 	if (sav == NULL) {
4770 		ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n",
4771 			__func__, (u_int32_t)ntohl(sa0->sadb_sa_spi)));
4772 		return key_senderror(so, m, EINVAL);
4773 	}
4774 #endif
4775 
4776 	/* validity check */
4777 	if (sav->sah->saidx.proto != proto) {
4778 		ipseclog((LOG_DEBUG, "%s: protocol mismatched "
4779 			"(DB=%u param=%u)\n", __func__,
4780 			sav->sah->saidx.proto, proto));
4781 		return key_senderror(so, m, EINVAL);
4782 	}
4783 #ifdef IPSEC_DOSEQCHECK
4784 	if (sav->spi != sa0->sadb_sa_spi) {
4785 		ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n",
4786 		    __func__,
4787 		    (u_int32_t)ntohl(sav->spi),
4788 		    (u_int32_t)ntohl(sa0->sadb_sa_spi)));
4789 		return key_senderror(so, m, EINVAL);
4790 	}
4791 #endif
4792 	if (sav->pid != mhp->msg->sadb_msg_pid) {
4793 		ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n",
4794 		    __func__, sav->pid, mhp->msg->sadb_msg_pid));
4795 		return key_senderror(so, m, EINVAL);
4796 	}
4797 
4798 	/* copy sav values */
4799 	error = key_setsaval(sav, m, mhp);
4800 	if (error) {
4801 		KEY_FREESAV(&sav);
4802 		return key_senderror(so, m, error);
4803 	}
4804 
4805 	/* check SA values to be mature. */
4806 	if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) {
4807 		KEY_FREESAV(&sav);
4808 		return key_senderror(so, m, 0);
4809 	}
4810 
4811     {
4812 	struct mbuf *n;
4813 
4814 	/* set msg buf from mhp */
4815 	n = key_getmsgbuf_x1(m, mhp);
4816 	if (n == NULL) {
4817 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
4818 		return key_senderror(so, m, ENOBUFS);
4819 	}
4820 
4821 	m_freem(m);
4822 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
4823     }
4824 }
4825 
4826 /*
4827  * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
4828  * only called by key_update().
4829  * OUT:
4830  *	NULL	: not found
4831  *	others	: found, pointer to a SA.
4832  */
4833 #ifdef IPSEC_DOSEQCHECK
4834 static struct secasvar *
4835 key_getsavbyseq(sah, seq)
4836 	struct secashead *sah;
4837 	u_int32_t seq;
4838 {
4839 	struct secasvar *sav;
4840 	u_int state;
4841 
4842 	state = SADB_SASTATE_LARVAL;
4843 
4844 	/* search SAD with sequence number ? */
4845 	LIST_FOREACH(sav, &sah->savtree[state], chain) {
4846 
4847 		KEY_CHKSASTATE(state, sav->state, __func__);
4848 
4849 		if (sav->seq == seq) {
4850 			sa_addref(sav);
4851 			KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
4852 				printf("DP %s cause refcnt++:%d SA:%p\n",
4853 					__func__, sav->refcnt, sav));
4854 			return sav;
4855 		}
4856 	}
4857 
4858 	return NULL;
4859 }
4860 #endif
4861 
4862 /*
4863  * SADB_ADD processing
4864  * add an entry to SA database, when received
4865  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4866  *       key(AE), (identity(SD),) (sensitivity)>
4867  * from the ikmpd,
4868  * and send
4869  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4870  *       (identity(SD),) (sensitivity)>
4871  * to the ikmpd.
4872  *
4873  * IGNORE identity and sensitivity messages.
4874  *
4875  * m will always be freed.
4876  */
4877 static int
4878 key_add(so, m, mhp)
4879 	struct socket *so;
4880 	struct mbuf *m;
4881 	const struct sadb_msghdr *mhp;
4882 {
4883 	struct sadb_sa *sa0;
4884 	struct sadb_address *src0, *dst0;
4885 	struct secasindex saidx;
4886 	struct secashead *newsah;
4887 	struct secasvar *newsav;
4888 	u_int16_t proto;
4889 	u_int8_t mode;
4890 	u_int32_t reqid;
4891 	int error;
4892 
4893 	IPSEC_ASSERT(so != NULL, ("null socket"));
4894 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4895 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4896 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4897 
4898 	/* map satype to proto */
4899 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4900 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4901 			__func__));
4902 		return key_senderror(so, m, EINVAL);
4903 	}
4904 
4905 	if (mhp->ext[SADB_EXT_SA] == NULL ||
4906 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4907 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
4908 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
4909 	     mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
4910 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
4911 	     mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
4912 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
4913 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
4914 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
4915 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
4916 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4917 			__func__));
4918 		return key_senderror(so, m, EINVAL);
4919 	}
4920 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
4921 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4922 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4923 		/* XXX need more */
4924 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4925 			__func__));
4926 		return key_senderror(so, m, EINVAL);
4927 	}
4928 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4929 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4930 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4931 	} else {
4932 		mode = IPSEC_MODE_ANY;
4933 		reqid = 0;
4934 	}
4935 
4936 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
4937 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
4938 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
4939 
4940 	/* XXX boundary check against sa_len */
4941 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4942 
4943 	/* get a SA header */
4944 	if ((newsah = key_getsah(&saidx)) == NULL) {
4945 		/* create a new SA header */
4946 		if ((newsah = key_newsah(&saidx)) == NULL) {
4947 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
4948 			return key_senderror(so, m, ENOBUFS);
4949 		}
4950 	}
4951 
4952 	/* set spidx if there */
4953 	/* XXX rewrite */
4954 	error = key_setident(newsah, m, mhp);
4955 	if (error) {
4956 		return key_senderror(so, m, error);
4957 	}
4958 
4959 	/* create new SA entry. */
4960 	/* We can create new SA only if SPI is differenct. */
4961 	SAHTREE_LOCK();
4962 	newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi);
4963 	SAHTREE_UNLOCK();
4964 	if (newsav != NULL) {
4965 		ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__));
4966 		return key_senderror(so, m, EEXIST);
4967 	}
4968 	newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4969 	if (newsav == NULL) {
4970 		return key_senderror(so, m, error);
4971 	}
4972 
4973 	/* check SA values to be mature. */
4974 	if ((error = key_mature(newsav)) != 0) {
4975 		KEY_FREESAV(&newsav);
4976 		return key_senderror(so, m, error);
4977 	}
4978 
4979 	/*
4980 	 * don't call key_freesav() here, as we would like to keep the SA
4981 	 * in the database on success.
4982 	 */
4983 
4984     {
4985 	struct mbuf *n;
4986 
4987 	/* set msg buf from mhp */
4988 	n = key_getmsgbuf_x1(m, mhp);
4989 	if (n == NULL) {
4990 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
4991 		return key_senderror(so, m, ENOBUFS);
4992 	}
4993 
4994 	m_freem(m);
4995 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
4996     }
4997 }
4998 
4999 /* m is retained */
5000 static int
5001 key_setident(sah, m, mhp)
5002 	struct secashead *sah;
5003 	struct mbuf *m;
5004 	const struct sadb_msghdr *mhp;
5005 {
5006 	const struct sadb_ident *idsrc, *iddst;
5007 	int idsrclen, iddstlen;
5008 
5009 	IPSEC_ASSERT(sah != NULL, ("null secashead"));
5010 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5011 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5012 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5013 
5014 	/* don't make buffer if not there */
5015 	if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5016 	    mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5017 		sah->idents = NULL;
5018 		sah->identd = NULL;
5019 		return 0;
5020 	}
5021 
5022 	if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5023 	    mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5024 		ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__));
5025 		return EINVAL;
5026 	}
5027 
5028 	idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5029 	iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5030 	idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5031 	iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5032 
5033 	/* validity check */
5034 	if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5035 		ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__));
5036 		return EINVAL;
5037 	}
5038 
5039 	switch (idsrc->sadb_ident_type) {
5040 	case SADB_IDENTTYPE_PREFIX:
5041 	case SADB_IDENTTYPE_FQDN:
5042 	case SADB_IDENTTYPE_USERFQDN:
5043 	default:
5044 		/* XXX do nothing */
5045 		sah->idents = NULL;
5046 		sah->identd = NULL;
5047 	 	return 0;
5048 	}
5049 
5050 	/* make structure */
5051 	sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5052 	if (sah->idents == NULL) {
5053 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5054 		return ENOBUFS;
5055 	}
5056 	sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5057 	if (sah->identd == NULL) {
5058 		free(sah->idents, M_IPSEC_MISC);
5059 		sah->idents = NULL;
5060 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5061 		return ENOBUFS;
5062 	}
5063 	sah->idents->type = idsrc->sadb_ident_type;
5064 	sah->idents->id = idsrc->sadb_ident_id;
5065 
5066 	sah->identd->type = iddst->sadb_ident_type;
5067 	sah->identd->id = iddst->sadb_ident_id;
5068 
5069 	return 0;
5070 }
5071 
5072 /*
5073  * m will not be freed on return.
5074  * it is caller's responsibility to free the result.
5075  */
5076 static struct mbuf *
5077 key_getmsgbuf_x1(m, mhp)
5078 	struct mbuf *m;
5079 	const struct sadb_msghdr *mhp;
5080 {
5081 	struct mbuf *n;
5082 
5083 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5084 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5085 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5086 
5087 	/* create new sadb_msg to reply. */
5088 	n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED,
5089 	    SADB_EXT_SA, SADB_X_EXT_SA2,
5090 	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5091 	    SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5092 	    SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST);
5093 	if (!n)
5094 		return NULL;
5095 
5096 	if (n->m_len < sizeof(struct sadb_msg)) {
5097 		n = m_pullup(n, sizeof(struct sadb_msg));
5098 		if (n == NULL)
5099 			return NULL;
5100 	}
5101 	mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5102 	mtod(n, struct sadb_msg *)->sadb_msg_len =
5103 	    PFKEY_UNIT64(n->m_pkthdr.len);
5104 
5105 	return n;
5106 }
5107 
5108 static int key_delete_all __P((struct socket *, struct mbuf *,
5109 	const struct sadb_msghdr *, u_int16_t));
5110 
5111 /*
5112  * SADB_DELETE processing
5113  * receive
5114  *   <base, SA(*), address(SD)>
5115  * from the ikmpd, and set SADB_SASTATE_DEAD,
5116  * and send,
5117  *   <base, SA(*), address(SD)>
5118  * to the ikmpd.
5119  *
5120  * m will always be freed.
5121  */
5122 static int
5123 key_delete(so, m, mhp)
5124 	struct socket *so;
5125 	struct mbuf *m;
5126 	const struct sadb_msghdr *mhp;
5127 {
5128 	struct sadb_sa *sa0;
5129 	struct sadb_address *src0, *dst0;
5130 	struct secasindex saidx;
5131 	struct secashead *sah;
5132 	struct secasvar *sav = NULL;
5133 	u_int16_t proto;
5134 
5135 	IPSEC_ASSERT(so != NULL, ("null socket"));
5136 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5137 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5138 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5139 
5140 	/* map satype to proto */
5141 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5142 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5143 			__func__));
5144 		return key_senderror(so, m, EINVAL);
5145 	}
5146 
5147 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5148 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5149 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5150 			__func__));
5151 		return key_senderror(so, m, EINVAL);
5152 	}
5153 
5154 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5155 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5156 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5157 			__func__));
5158 		return key_senderror(so, m, EINVAL);
5159 	}
5160 
5161 	if (mhp->ext[SADB_EXT_SA] == NULL) {
5162 		/*
5163 		 * Caller wants us to delete all non-LARVAL SAs
5164 		 * that match the src/dst.  This is used during
5165 		 * IKE INITIAL-CONTACT.
5166 		 */
5167 		ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__));
5168 		return key_delete_all(so, m, mhp, proto);
5169 	} else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5170 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5171 			__func__));
5172 		return key_senderror(so, m, EINVAL);
5173 	}
5174 
5175 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5176 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5177 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5178 
5179 	/* XXX boundary check against sa_len */
5180 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5181 
5182 	/* get a SA header */
5183 	SAHTREE_LOCK();
5184 	LIST_FOREACH(sah, &V_sahtree, chain) {
5185 		if (sah->state == SADB_SASTATE_DEAD)
5186 			continue;
5187 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5188 			continue;
5189 
5190 		/* get a SA with SPI. */
5191 		sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5192 		if (sav)
5193 			break;
5194 	}
5195 	if (sah == NULL) {
5196 		SAHTREE_UNLOCK();
5197 		ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5198 		return key_senderror(so, m, ENOENT);
5199 	}
5200 
5201 	key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5202 	SAHTREE_UNLOCK();
5203 	KEY_FREESAV(&sav);
5204 
5205     {
5206 	struct mbuf *n;
5207 	struct sadb_msg *newmsg;
5208 
5209 	/* create new sadb_msg to reply. */
5210 	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5211 	    SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5212 	if (!n)
5213 		return key_senderror(so, m, ENOBUFS);
5214 
5215 	if (n->m_len < sizeof(struct sadb_msg)) {
5216 		n = m_pullup(n, sizeof(struct sadb_msg));
5217 		if (n == NULL)
5218 			return key_senderror(so, m, ENOBUFS);
5219 	}
5220 	newmsg = mtod(n, struct sadb_msg *);
5221 	newmsg->sadb_msg_errno = 0;
5222 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5223 
5224 	m_freem(m);
5225 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5226     }
5227 }
5228 
5229 /*
5230  * delete all SAs for src/dst.  Called from key_delete().
5231  */
5232 static int
5233 key_delete_all(so, m, mhp, proto)
5234 	struct socket *so;
5235 	struct mbuf *m;
5236 	const struct sadb_msghdr *mhp;
5237 	u_int16_t proto;
5238 {
5239 	struct sadb_address *src0, *dst0;
5240 	struct secasindex saidx;
5241 	struct secashead *sah;
5242 	struct secasvar *sav, *nextsav;
5243 	u_int stateidx, state;
5244 
5245 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5246 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5247 
5248 	/* XXX boundary check against sa_len */
5249 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5250 
5251 	SAHTREE_LOCK();
5252 	LIST_FOREACH(sah, &V_sahtree, chain) {
5253 		if (sah->state == SADB_SASTATE_DEAD)
5254 			continue;
5255 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5256 			continue;
5257 
5258 		/* Delete all non-LARVAL SAs. */
5259 		for (stateidx = 0;
5260 		     stateidx < _ARRAYLEN(V_saorder_state_alive);
5261 		     stateidx++) {
5262 			state = V_saorder_state_alive[stateidx];
5263 			if (state == SADB_SASTATE_LARVAL)
5264 				continue;
5265 			for (sav = LIST_FIRST(&sah->savtree[state]);
5266 			     sav != NULL; sav = nextsav) {
5267 				nextsav = LIST_NEXT(sav, chain);
5268 				/* sanity check */
5269 				if (sav->state != state) {
5270 					ipseclog((LOG_DEBUG, "%s: invalid "
5271 						"sav->state (queue %d SA %d)\n",
5272 						__func__, state, sav->state));
5273 					continue;
5274 				}
5275 
5276 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5277 				KEY_FREESAV(&sav);
5278 			}
5279 		}
5280 	}
5281 	SAHTREE_UNLOCK();
5282     {
5283 	struct mbuf *n;
5284 	struct sadb_msg *newmsg;
5285 
5286 	/* create new sadb_msg to reply. */
5287 	n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5288 	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5289 	if (!n)
5290 		return key_senderror(so, m, ENOBUFS);
5291 
5292 	if (n->m_len < sizeof(struct sadb_msg)) {
5293 		n = m_pullup(n, sizeof(struct sadb_msg));
5294 		if (n == NULL)
5295 			return key_senderror(so, m, ENOBUFS);
5296 	}
5297 	newmsg = mtod(n, struct sadb_msg *);
5298 	newmsg->sadb_msg_errno = 0;
5299 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5300 
5301 	m_freem(m);
5302 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5303     }
5304 }
5305 
5306 /*
5307  * SADB_GET processing
5308  * receive
5309  *   <base, SA(*), address(SD)>
5310  * from the ikmpd, and get a SP and a SA to respond,
5311  * and send,
5312  *   <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5313  *       (identity(SD),) (sensitivity)>
5314  * to the ikmpd.
5315  *
5316  * m will always be freed.
5317  */
5318 static int
5319 key_get(so, m, mhp)
5320 	struct socket *so;
5321 	struct mbuf *m;
5322 	const struct sadb_msghdr *mhp;
5323 {
5324 	struct sadb_sa *sa0;
5325 	struct sadb_address *src0, *dst0;
5326 	struct secasindex saidx;
5327 	struct secashead *sah;
5328 	struct secasvar *sav = NULL;
5329 	u_int16_t proto;
5330 
5331 	IPSEC_ASSERT(so != NULL, ("null socket"));
5332 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5333 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5334 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5335 
5336 	/* map satype to proto */
5337 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5338 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5339 			__func__));
5340 		return key_senderror(so, m, EINVAL);
5341 	}
5342 
5343 	if (mhp->ext[SADB_EXT_SA] == NULL ||
5344 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5345 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5346 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5347 			__func__));
5348 		return key_senderror(so, m, EINVAL);
5349 	}
5350 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5351 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5352 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5353 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5354 			__func__));
5355 		return key_senderror(so, m, EINVAL);
5356 	}
5357 
5358 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5359 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5360 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5361 
5362 	/* XXX boundary check against sa_len */
5363 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5364 
5365 	/* get a SA header */
5366 	SAHTREE_LOCK();
5367 	LIST_FOREACH(sah, &V_sahtree, chain) {
5368 		if (sah->state == SADB_SASTATE_DEAD)
5369 			continue;
5370 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5371 			continue;
5372 
5373 		/* get a SA with SPI. */
5374 		sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5375 		if (sav)
5376 			break;
5377 	}
5378 	SAHTREE_UNLOCK();
5379 	if (sah == NULL) {
5380 		ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5381 		return key_senderror(so, m, ENOENT);
5382 	}
5383 
5384     {
5385 	struct mbuf *n;
5386 	u_int8_t satype;
5387 
5388 	/* map proto to satype */
5389 	if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
5390 		ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n",
5391 			__func__));
5392 		return key_senderror(so, m, EINVAL);
5393 	}
5394 
5395 	/* create new sadb_msg to reply. */
5396 	n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5397 	    mhp->msg->sadb_msg_pid);
5398 	if (!n)
5399 		return key_senderror(so, m, ENOBUFS);
5400 
5401 	m_freem(m);
5402 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5403     }
5404 }
5405 
5406 /* XXX make it sysctl-configurable? */
5407 static void
5408 key_getcomb_setlifetime(comb)
5409 	struct sadb_comb *comb;
5410 {
5411 
5412 	comb->sadb_comb_soft_allocations = 1;
5413 	comb->sadb_comb_hard_allocations = 1;
5414 	comb->sadb_comb_soft_bytes = 0;
5415 	comb->sadb_comb_hard_bytes = 0;
5416 	comb->sadb_comb_hard_addtime = 86400;	/* 1 day */
5417 	comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5418 	comb->sadb_comb_soft_usetime = 28800;	/* 8 hours */
5419 	comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
5420 }
5421 
5422 /*
5423  * XXX reorder combinations by preference
5424  * XXX no idea if the user wants ESP authentication or not
5425  */
5426 static struct mbuf *
5427 key_getcomb_esp()
5428 {
5429 	struct sadb_comb *comb;
5430 	struct enc_xform *algo;
5431 	struct mbuf *result = NULL, *m, *n;
5432 	int encmin;
5433 	int i, off, o;
5434 	int totlen;
5435 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5436 
5437 	m = NULL;
5438 	for (i = 1; i <= SADB_EALG_MAX; i++) {
5439 		algo = esp_algorithm_lookup(i);
5440 		if (algo == NULL)
5441 			continue;
5442 
5443 		/* discard algorithms with key size smaller than system min */
5444 		if (_BITS(algo->maxkey) < V_ipsec_esp_keymin)
5445 			continue;
5446 		if (_BITS(algo->minkey) < V_ipsec_esp_keymin)
5447 			encmin = V_ipsec_esp_keymin;
5448 		else
5449 			encmin = _BITS(algo->minkey);
5450 
5451 		if (V_ipsec_esp_auth)
5452 			m = key_getcomb_ah();
5453 		else {
5454 			IPSEC_ASSERT(l <= MLEN,
5455 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
5456 			MGET(m, M_DONTWAIT, MT_DATA);
5457 			if (m) {
5458 				M_ALIGN(m, l);
5459 				m->m_len = l;
5460 				m->m_next = NULL;
5461 				bzero(mtod(m, caddr_t), m->m_len);
5462 			}
5463 		}
5464 		if (!m)
5465 			goto fail;
5466 
5467 		totlen = 0;
5468 		for (n = m; n; n = n->m_next)
5469 			totlen += n->m_len;
5470 		IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l));
5471 
5472 		for (off = 0; off < totlen; off += l) {
5473 			n = m_pulldown(m, off, l, &o);
5474 			if (!n) {
5475 				/* m is already freed */
5476 				goto fail;
5477 			}
5478 			comb = (struct sadb_comb *)(mtod(n, caddr_t) + o);
5479 			bzero(comb, sizeof(*comb));
5480 			key_getcomb_setlifetime(comb);
5481 			comb->sadb_comb_encrypt = i;
5482 			comb->sadb_comb_encrypt_minbits = encmin;
5483 			comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
5484 		}
5485 
5486 		if (!result)
5487 			result = m;
5488 		else
5489 			m_cat(result, m);
5490 	}
5491 
5492 	return result;
5493 
5494  fail:
5495 	if (result)
5496 		m_freem(result);
5497 	return NULL;
5498 }
5499 
5500 static void
5501 key_getsizes_ah(
5502 	const struct auth_hash *ah,
5503 	int alg,
5504 	u_int16_t* min,
5505 	u_int16_t* max)
5506 {
5507 	*min = *max = ah->keysize;
5508 	if (ah->keysize == 0) {
5509 		/*
5510 		 * Transform takes arbitrary key size but algorithm
5511 		 * key size is restricted.  Enforce this here.
5512 		 */
5513 		switch (alg) {
5514 		case SADB_X_AALG_MD5:	*min = *max = 16; break;
5515 		case SADB_X_AALG_SHA:	*min = *max = 20; break;
5516 		case SADB_X_AALG_NULL:	*min = 1; *max = 256; break;
5517 		default:
5518 			DPRINTF(("%s: unknown AH algorithm %u\n",
5519 				__func__, alg));
5520 			break;
5521 		}
5522 	}
5523 }
5524 
5525 /*
5526  * XXX reorder combinations by preference
5527  */
5528 static struct mbuf *
5529 key_getcomb_ah()
5530 {
5531 	struct sadb_comb *comb;
5532 	struct auth_hash *algo;
5533 	struct mbuf *m;
5534 	u_int16_t minkeysize, maxkeysize;
5535 	int i;
5536 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5537 
5538 	m = NULL;
5539 	for (i = 1; i <= SADB_AALG_MAX; i++) {
5540 #if 1
5541 		/* we prefer HMAC algorithms, not old algorithms */
5542 		if (i != SADB_AALG_SHA1HMAC && i != SADB_AALG_MD5HMAC)
5543 			continue;
5544 #endif
5545 		algo = ah_algorithm_lookup(i);
5546 		if (!algo)
5547 			continue;
5548 		key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
5549 		/* discard algorithms with key size smaller than system min */
5550 		if (_BITS(minkeysize) < V_ipsec_ah_keymin)
5551 			continue;
5552 
5553 		if (!m) {
5554 			IPSEC_ASSERT(l <= MLEN,
5555 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
5556 			MGET(m, M_DONTWAIT, MT_DATA);
5557 			if (m) {
5558 				M_ALIGN(m, l);
5559 				m->m_len = l;
5560 				m->m_next = NULL;
5561 			}
5562 		} else
5563 			M_PREPEND(m, l, M_DONTWAIT);
5564 		if (!m)
5565 			return NULL;
5566 
5567 		comb = mtod(m, struct sadb_comb *);
5568 		bzero(comb, sizeof(*comb));
5569 		key_getcomb_setlifetime(comb);
5570 		comb->sadb_comb_auth = i;
5571 		comb->sadb_comb_auth_minbits = _BITS(minkeysize);
5572 		comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
5573 	}
5574 
5575 	return m;
5576 }
5577 
5578 /*
5579  * not really an official behavior.  discussed in pf_key@inner.net in Sep2000.
5580  * XXX reorder combinations by preference
5581  */
5582 static struct mbuf *
5583 key_getcomb_ipcomp()
5584 {
5585 	struct sadb_comb *comb;
5586 	struct comp_algo *algo;
5587 	struct mbuf *m;
5588 	int i;
5589 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5590 
5591 	m = NULL;
5592 	for (i = 1; i <= SADB_X_CALG_MAX; i++) {
5593 		algo = ipcomp_algorithm_lookup(i);
5594 		if (!algo)
5595 			continue;
5596 
5597 		if (!m) {
5598 			IPSEC_ASSERT(l <= MLEN,
5599 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
5600 			MGET(m, M_DONTWAIT, MT_DATA);
5601 			if (m) {
5602 				M_ALIGN(m, l);
5603 				m->m_len = l;
5604 				m->m_next = NULL;
5605 			}
5606 		} else
5607 			M_PREPEND(m, l, M_DONTWAIT);
5608 		if (!m)
5609 			return NULL;
5610 
5611 		comb = mtod(m, struct sadb_comb *);
5612 		bzero(comb, sizeof(*comb));
5613 		key_getcomb_setlifetime(comb);
5614 		comb->sadb_comb_encrypt = i;
5615 		/* what should we set into sadb_comb_*_{min,max}bits? */
5616 	}
5617 
5618 	return m;
5619 }
5620 
5621 /*
5622  * XXX no way to pass mode (transport/tunnel) to userland
5623  * XXX replay checking?
5624  * XXX sysctl interface to ipsec_{ah,esp}_keymin
5625  */
5626 static struct mbuf *
5627 key_getprop(saidx)
5628 	const struct secasindex *saidx;
5629 {
5630 	struct sadb_prop *prop;
5631 	struct mbuf *m, *n;
5632 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
5633 	int totlen;
5634 
5635 	switch (saidx->proto)  {
5636 	case IPPROTO_ESP:
5637 		m = key_getcomb_esp();
5638 		break;
5639 	case IPPROTO_AH:
5640 		m = key_getcomb_ah();
5641 		break;
5642 	case IPPROTO_IPCOMP:
5643 		m = key_getcomb_ipcomp();
5644 		break;
5645 	default:
5646 		return NULL;
5647 	}
5648 
5649 	if (!m)
5650 		return NULL;
5651 	M_PREPEND(m, l, M_DONTWAIT);
5652 	if (!m)
5653 		return NULL;
5654 
5655 	totlen = 0;
5656 	for (n = m; n; n = n->m_next)
5657 		totlen += n->m_len;
5658 
5659 	prop = mtod(m, struct sadb_prop *);
5660 	bzero(prop, sizeof(*prop));
5661 	prop->sadb_prop_len = PFKEY_UNIT64(totlen);
5662 	prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
5663 	prop->sadb_prop_replay = 32;	/* XXX */
5664 
5665 	return m;
5666 }
5667 
5668 /*
5669  * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
5670  * send
5671  *   <base, SA, address(SD), (address(P)), x_policy,
5672  *       (identity(SD),) (sensitivity,) proposal>
5673  * to KMD, and expect to receive
5674  *   <base> with SADB_ACQUIRE if error occured,
5675  * or
5676  *   <base, src address, dst address, (SPI range)> with SADB_GETSPI
5677  * from KMD by PF_KEY.
5678  *
5679  * XXX x_policy is outside of RFC2367 (KAME extension).
5680  * XXX sensitivity is not supported.
5681  * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
5682  * see comment for key_getcomb_ipcomp().
5683  *
5684  * OUT:
5685  *    0     : succeed
5686  *    others: error number
5687  */
5688 static int
5689 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
5690 {
5691 	struct mbuf *result = NULL, *m;
5692 	struct secacq *newacq;
5693 	u_int8_t satype;
5694 	int error = -1;
5695 	u_int32_t seq;
5696 
5697 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
5698 	satype = key_proto2satype(saidx->proto);
5699 	IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto));
5700 
5701 	/*
5702 	 * We never do anything about acquirng SA.  There is anather
5703 	 * solution that kernel blocks to send SADB_ACQUIRE message until
5704 	 * getting something message from IKEd.  In later case, to be
5705 	 * managed with ACQUIRING list.
5706 	 */
5707 	/* Get an entry to check whether sending message or not. */
5708 	if ((newacq = key_getacq(saidx)) != NULL) {
5709 		if (V_key_blockacq_count < newacq->count) {
5710 			/* reset counter and do send message. */
5711 			newacq->count = 0;
5712 		} else {
5713 			/* increment counter and do nothing. */
5714 			newacq->count++;
5715 			return 0;
5716 		}
5717 	} else {
5718 		/* make new entry for blocking to send SADB_ACQUIRE. */
5719 		if ((newacq = key_newacq(saidx)) == NULL)
5720 			return ENOBUFS;
5721 	}
5722 
5723 
5724 	seq = newacq->seq;
5725 	m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
5726 	if (!m) {
5727 		error = ENOBUFS;
5728 		goto fail;
5729 	}
5730 	result = m;
5731 
5732 	/* set sadb_address for saidx's. */
5733 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
5734 	    &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY);
5735 	if (!m) {
5736 		error = ENOBUFS;
5737 		goto fail;
5738 	}
5739 	m_cat(result, m);
5740 
5741 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
5742 	    &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY);
5743 	if (!m) {
5744 		error = ENOBUFS;
5745 		goto fail;
5746 	}
5747 	m_cat(result, m);
5748 
5749 	/* XXX proxy address (optional) */
5750 
5751 	/* set sadb_x_policy */
5752 	if (sp) {
5753 		m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
5754 		if (!m) {
5755 			error = ENOBUFS;
5756 			goto fail;
5757 		}
5758 		m_cat(result, m);
5759 	}
5760 
5761 	/* XXX identity (optional) */
5762 #if 0
5763 	if (idexttype && fqdn) {
5764 		/* create identity extension (FQDN) */
5765 		struct sadb_ident *id;
5766 		int fqdnlen;
5767 
5768 		fqdnlen = strlen(fqdn) + 1;	/* +1 for terminating-NUL */
5769 		id = (struct sadb_ident *)p;
5770 		bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
5771 		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
5772 		id->sadb_ident_exttype = idexttype;
5773 		id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
5774 		bcopy(fqdn, id + 1, fqdnlen);
5775 		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
5776 	}
5777 
5778 	if (idexttype) {
5779 		/* create identity extension (USERFQDN) */
5780 		struct sadb_ident *id;
5781 		int userfqdnlen;
5782 
5783 		if (userfqdn) {
5784 			/* +1 for terminating-NUL */
5785 			userfqdnlen = strlen(userfqdn) + 1;
5786 		} else
5787 			userfqdnlen = 0;
5788 		id = (struct sadb_ident *)p;
5789 		bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
5790 		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
5791 		id->sadb_ident_exttype = idexttype;
5792 		id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
5793 		/* XXX is it correct? */
5794 		if (curproc && curproc->p_cred)
5795 			id->sadb_ident_id = curproc->p_cred->p_ruid;
5796 		if (userfqdn && userfqdnlen)
5797 			bcopy(userfqdn, id + 1, userfqdnlen);
5798 		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
5799 	}
5800 #endif
5801 
5802 	/* XXX sensitivity (optional) */
5803 
5804 	/* create proposal/combination extension */
5805 	m = key_getprop(saidx);
5806 #if 0
5807 	/*
5808 	 * spec conformant: always attach proposal/combination extension,
5809 	 * the problem is that we have no way to attach it for ipcomp,
5810 	 * due to the way sadb_comb is declared in RFC2367.
5811 	 */
5812 	if (!m) {
5813 		error = ENOBUFS;
5814 		goto fail;
5815 	}
5816 	m_cat(result, m);
5817 #else
5818 	/*
5819 	 * outside of spec; make proposal/combination extension optional.
5820 	 */
5821 	if (m)
5822 		m_cat(result, m);
5823 #endif
5824 
5825 	if ((result->m_flags & M_PKTHDR) == 0) {
5826 		error = EINVAL;
5827 		goto fail;
5828 	}
5829 
5830 	if (result->m_len < sizeof(struct sadb_msg)) {
5831 		result = m_pullup(result, sizeof(struct sadb_msg));
5832 		if (result == NULL) {
5833 			error = ENOBUFS;
5834 			goto fail;
5835 		}
5836 	}
5837 
5838 	result->m_pkthdr.len = 0;
5839 	for (m = result; m; m = m->m_next)
5840 		result->m_pkthdr.len += m->m_len;
5841 
5842 	mtod(result, struct sadb_msg *)->sadb_msg_len =
5843 	    PFKEY_UNIT64(result->m_pkthdr.len);
5844 
5845 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
5846 
5847  fail:
5848 	if (result)
5849 		m_freem(result);
5850 	return error;
5851 }
5852 
5853 static struct secacq *
5854 key_newacq(const struct secasindex *saidx)
5855 {
5856 	struct secacq *newacq;
5857 
5858 	/* get new entry */
5859 	newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
5860 	if (newacq == NULL) {
5861 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5862 		return NULL;
5863 	}
5864 
5865 	/* copy secindex */
5866 	bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx));
5867 	newacq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq);
5868 	newacq->created = time_second;
5869 	newacq->count = 0;
5870 
5871 	/* add to acqtree */
5872 	ACQ_LOCK();
5873 	LIST_INSERT_HEAD(&V_acqtree, newacq, chain);
5874 	ACQ_UNLOCK();
5875 
5876 	return newacq;
5877 }
5878 
5879 static struct secacq *
5880 key_getacq(const struct secasindex *saidx)
5881 {
5882 	struct secacq *acq;
5883 
5884 	ACQ_LOCK();
5885 	LIST_FOREACH(acq, &V_acqtree, chain) {
5886 		if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY))
5887 			break;
5888 	}
5889 	ACQ_UNLOCK();
5890 
5891 	return acq;
5892 }
5893 
5894 static struct secacq *
5895 key_getacqbyseq(seq)
5896 	u_int32_t seq;
5897 {
5898 	struct secacq *acq;
5899 
5900 	ACQ_LOCK();
5901 	LIST_FOREACH(acq, &V_acqtree, chain) {
5902 		if (acq->seq == seq)
5903 			break;
5904 	}
5905 	ACQ_UNLOCK();
5906 
5907 	return acq;
5908 }
5909 
5910 static struct secspacq *
5911 key_newspacq(spidx)
5912 	struct secpolicyindex *spidx;
5913 {
5914 	struct secspacq *acq;
5915 
5916 	/* get new entry */
5917 	acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
5918 	if (acq == NULL) {
5919 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5920 		return NULL;
5921 	}
5922 
5923 	/* copy secindex */
5924 	bcopy(spidx, &acq->spidx, sizeof(acq->spidx));
5925 	acq->created = time_second;
5926 	acq->count = 0;
5927 
5928 	/* add to spacqtree */
5929 	SPACQ_LOCK();
5930 	LIST_INSERT_HEAD(&V_spacqtree, acq, chain);
5931 	SPACQ_UNLOCK();
5932 
5933 	return acq;
5934 }
5935 
5936 static struct secspacq *
5937 key_getspacq(spidx)
5938 	struct secpolicyindex *spidx;
5939 {
5940 	struct secspacq *acq;
5941 
5942 	SPACQ_LOCK();
5943 	LIST_FOREACH(acq, &V_spacqtree, chain) {
5944 		if (key_cmpspidx_exactly(spidx, &acq->spidx)) {
5945 			/* NB: return holding spacq_lock */
5946 			return acq;
5947 		}
5948 	}
5949 	SPACQ_UNLOCK();
5950 
5951 	return NULL;
5952 }
5953 
5954 /*
5955  * SADB_ACQUIRE processing,
5956  * in first situation, is receiving
5957  *   <base>
5958  * from the ikmpd, and clear sequence of its secasvar entry.
5959  *
5960  * In second situation, is receiving
5961  *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
5962  * from a user land process, and return
5963  *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
5964  * to the socket.
5965  *
5966  * m will always be freed.
5967  */
5968 static int
5969 key_acquire2(so, m, mhp)
5970 	struct socket *so;
5971 	struct mbuf *m;
5972 	const struct sadb_msghdr *mhp;
5973 {
5974 	const struct sadb_address *src0, *dst0;
5975 	struct secasindex saidx;
5976 	struct secashead *sah;
5977 	u_int16_t proto;
5978 	int error;
5979 
5980 	IPSEC_ASSERT(so != NULL, ("null socket"));
5981 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5982 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5983 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5984 
5985 	/*
5986 	 * Error message from KMd.
5987 	 * We assume that if error was occured in IKEd, the length of PFKEY
5988 	 * message is equal to the size of sadb_msg structure.
5989 	 * We do not raise error even if error occured in this function.
5990 	 */
5991 	if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
5992 		struct secacq *acq;
5993 
5994 		/* check sequence number */
5995 		if (mhp->msg->sadb_msg_seq == 0) {
5996 			ipseclog((LOG_DEBUG, "%s: must specify sequence "
5997 				"number.\n", __func__));
5998 			m_freem(m);
5999 			return 0;
6000 		}
6001 
6002 		if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) {
6003 			/*
6004 			 * the specified larval SA is already gone, or we got
6005 			 * a bogus sequence number.  we can silently ignore it.
6006 			 */
6007 			m_freem(m);
6008 			return 0;
6009 		}
6010 
6011 		/* reset acq counter in order to deletion by timehander. */
6012 		acq->created = time_second;
6013 		acq->count = 0;
6014 		m_freem(m);
6015 		return 0;
6016 	}
6017 
6018 	/*
6019 	 * This message is from user land.
6020 	 */
6021 
6022 	/* map satype to proto */
6023 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6024 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6025 			__func__));
6026 		return key_senderror(so, m, EINVAL);
6027 	}
6028 
6029 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6030 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6031 	    mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6032 		/* error */
6033 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
6034 			__func__));
6035 		return key_senderror(so, m, EINVAL);
6036 	}
6037 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6038 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6039 	    mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6040 		/* error */
6041 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
6042 			__func__));
6043 		return key_senderror(so, m, EINVAL);
6044 	}
6045 
6046 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
6047 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
6048 
6049 	/* XXX boundary check against sa_len */
6050 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
6051 
6052 	/* get a SA index */
6053 	SAHTREE_LOCK();
6054 	LIST_FOREACH(sah, &V_sahtree, chain) {
6055 		if (sah->state == SADB_SASTATE_DEAD)
6056 			continue;
6057 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID))
6058 			break;
6059 	}
6060 	SAHTREE_UNLOCK();
6061 	if (sah != NULL) {
6062 		ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__));
6063 		return key_senderror(so, m, EEXIST);
6064 	}
6065 
6066 	error = key_acquire(&saidx, NULL);
6067 	if (error != 0) {
6068 		ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
6069 			__func__, mhp->msg->sadb_msg_errno));
6070 		return key_senderror(so, m, error);
6071 	}
6072 
6073 	return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6074 }
6075 
6076 /*
6077  * SADB_REGISTER processing.
6078  * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6079  * receive
6080  *   <base>
6081  * from the ikmpd, and register a socket to send PF_KEY messages,
6082  * and send
6083  *   <base, supported>
6084  * to KMD by PF_KEY.
6085  * If socket is detached, must free from regnode.
6086  *
6087  * m will always be freed.
6088  */
6089 static int
6090 key_register(so, m, mhp)
6091 	struct socket *so;
6092 	struct mbuf *m;
6093 	const struct sadb_msghdr *mhp;
6094 {
6095 	struct secreg *reg, *newreg = 0;
6096 
6097 	IPSEC_ASSERT(so != NULL, ("null socket"));
6098 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6099 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6100 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6101 
6102 	/* check for invalid register message */
6103 	if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0]))
6104 		return key_senderror(so, m, EINVAL);
6105 
6106 	/* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6107 	if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6108 		goto setmsg;
6109 
6110 	/* check whether existing or not */
6111 	REGTREE_LOCK();
6112 	LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) {
6113 		if (reg->so == so) {
6114 			REGTREE_UNLOCK();
6115 			ipseclog((LOG_DEBUG, "%s: socket exists already.\n",
6116 				__func__));
6117 			return key_senderror(so, m, EEXIST);
6118 		}
6119 	}
6120 
6121 	/* create regnode */
6122 	newreg =  malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO);
6123 	if (newreg == NULL) {
6124 		REGTREE_UNLOCK();
6125 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6126 		return key_senderror(so, m, ENOBUFS);
6127 	}
6128 
6129 	newreg->so = so;
6130 	((struct keycb *)sotorawcb(so))->kp_registered++;
6131 
6132 	/* add regnode to regtree. */
6133 	LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain);
6134 	REGTREE_UNLOCK();
6135 
6136   setmsg:
6137     {
6138 	struct mbuf *n;
6139 	struct sadb_msg *newmsg;
6140 	struct sadb_supported *sup;
6141 	u_int len, alen, elen;
6142 	int off;
6143 	int i;
6144 	struct sadb_alg *alg;
6145 
6146 	/* create new sadb_msg to reply. */
6147 	alen = 0;
6148 	for (i = 1; i <= SADB_AALG_MAX; i++) {
6149 		if (ah_algorithm_lookup(i))
6150 			alen += sizeof(struct sadb_alg);
6151 	}
6152 	if (alen)
6153 		alen += sizeof(struct sadb_supported);
6154 	elen = 0;
6155 	for (i = 1; i <= SADB_EALG_MAX; i++) {
6156 		if (esp_algorithm_lookup(i))
6157 			elen += sizeof(struct sadb_alg);
6158 	}
6159 	if (elen)
6160 		elen += sizeof(struct sadb_supported);
6161 
6162 	len = sizeof(struct sadb_msg) + alen + elen;
6163 
6164 	if (len > MCLBYTES)
6165 		return key_senderror(so, m, ENOBUFS);
6166 
6167 	MGETHDR(n, M_DONTWAIT, MT_DATA);
6168 	if (len > MHLEN) {
6169 		MCLGET(n, M_DONTWAIT);
6170 		if ((n->m_flags & M_EXT) == 0) {
6171 			m_freem(n);
6172 			n = NULL;
6173 		}
6174 	}
6175 	if (!n)
6176 		return key_senderror(so, m, ENOBUFS);
6177 
6178 	n->m_pkthdr.len = n->m_len = len;
6179 	n->m_next = NULL;
6180 	off = 0;
6181 
6182 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
6183 	newmsg = mtod(n, struct sadb_msg *);
6184 	newmsg->sadb_msg_errno = 0;
6185 	newmsg->sadb_msg_len = PFKEY_UNIT64(len);
6186 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6187 
6188 	/* for authentication algorithm */
6189 	if (alen) {
6190 		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6191 		sup->sadb_supported_len = PFKEY_UNIT64(alen);
6192 		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6193 		off += PFKEY_ALIGN8(sizeof(*sup));
6194 
6195 		for (i = 1; i <= SADB_AALG_MAX; i++) {
6196 			struct auth_hash *aalgo;
6197 			u_int16_t minkeysize, maxkeysize;
6198 
6199 			aalgo = ah_algorithm_lookup(i);
6200 			if (!aalgo)
6201 				continue;
6202 			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6203 			alg->sadb_alg_id = i;
6204 			alg->sadb_alg_ivlen = 0;
6205 			key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6206 			alg->sadb_alg_minbits = _BITS(minkeysize);
6207 			alg->sadb_alg_maxbits = _BITS(maxkeysize);
6208 			off += PFKEY_ALIGN8(sizeof(*alg));
6209 		}
6210 	}
6211 
6212 	/* for encryption algorithm */
6213 	if (elen) {
6214 		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6215 		sup->sadb_supported_len = PFKEY_UNIT64(elen);
6216 		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6217 		off += PFKEY_ALIGN8(sizeof(*sup));
6218 
6219 		for (i = 1; i <= SADB_EALG_MAX; i++) {
6220 			struct enc_xform *ealgo;
6221 
6222 			ealgo = esp_algorithm_lookup(i);
6223 			if (!ealgo)
6224 				continue;
6225 			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6226 			alg->sadb_alg_id = i;
6227 			alg->sadb_alg_ivlen = ealgo->blocksize;
6228 			alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6229 			alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6230 			off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6231 		}
6232 	}
6233 
6234 	IPSEC_ASSERT(off == len,
6235 		("length assumption failed (off %u len %u)", off, len));
6236 
6237 	m_freem(m);
6238 	return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6239     }
6240 }
6241 
6242 /*
6243  * free secreg entry registered.
6244  * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6245  */
6246 void
6247 key_freereg(struct socket *so)
6248 {
6249 	struct secreg *reg;
6250 	int i;
6251 
6252 	IPSEC_ASSERT(so != NULL, ("NULL so"));
6253 
6254 	/*
6255 	 * check whether existing or not.
6256 	 * check all type of SA, because there is a potential that
6257 	 * one socket is registered to multiple type of SA.
6258 	 */
6259 	REGTREE_LOCK();
6260 	for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6261 		LIST_FOREACH(reg, &V_regtree[i], chain) {
6262 			if (reg->so == so && __LIST_CHAINED(reg)) {
6263 				LIST_REMOVE(reg, chain);
6264 				free(reg, M_IPSEC_SAR);
6265 				break;
6266 			}
6267 		}
6268 	}
6269 	REGTREE_UNLOCK();
6270 }
6271 
6272 /*
6273  * SADB_EXPIRE processing
6274  * send
6275  *   <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6276  * to KMD by PF_KEY.
6277  * NOTE: We send only soft lifetime extension.
6278  *
6279  * OUT:	0	: succeed
6280  *	others	: error number
6281  */
6282 static int
6283 key_expire(struct secasvar *sav)
6284 {
6285 	int s;
6286 	int satype;
6287 	struct mbuf *result = NULL, *m;
6288 	int len;
6289 	int error = -1;
6290 	struct sadb_lifetime *lt;
6291 
6292 	/* XXX: Why do we lock ? */
6293 	s = splnet();	/*called from softclock()*/
6294 
6295 	IPSEC_ASSERT (sav != NULL, ("null sav"));
6296 	IPSEC_ASSERT (sav->sah != NULL, ("null sa header"));
6297 
6298 	/* set msg header */
6299 	satype = key_proto2satype(sav->sah->saidx.proto);
6300 	IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype));
6301 	m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6302 	if (!m) {
6303 		error = ENOBUFS;
6304 		goto fail;
6305 	}
6306 	result = m;
6307 
6308 	/* create SA extension */
6309 	m = key_setsadbsa(sav);
6310 	if (!m) {
6311 		error = ENOBUFS;
6312 		goto fail;
6313 	}
6314 	m_cat(result, m);
6315 
6316 	/* create SA extension */
6317 	m = key_setsadbxsa2(sav->sah->saidx.mode,
6318 			sav->replay ? sav->replay->count : 0,
6319 			sav->sah->saidx.reqid);
6320 	if (!m) {
6321 		error = ENOBUFS;
6322 		goto fail;
6323 	}
6324 	m_cat(result, m);
6325 
6326 	/* create lifetime extension (current and soft) */
6327 	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6328 	m = key_alloc_mbuf(len);
6329 	if (!m || m->m_next) {	/*XXX*/
6330 		if (m)
6331 			m_freem(m);
6332 		error = ENOBUFS;
6333 		goto fail;
6334 	}
6335 	bzero(mtod(m, caddr_t), len);
6336 	lt = mtod(m, struct sadb_lifetime *);
6337 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6338 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6339 	lt->sadb_lifetime_allocations = sav->lft_c->allocations;
6340 	lt->sadb_lifetime_bytes = sav->lft_c->bytes;
6341 	lt->sadb_lifetime_addtime = sav->lft_c->addtime;
6342 	lt->sadb_lifetime_usetime = sav->lft_c->usetime;
6343 	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
6344 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6345 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
6346 	lt->sadb_lifetime_allocations = sav->lft_s->allocations;
6347 	lt->sadb_lifetime_bytes = sav->lft_s->bytes;
6348 	lt->sadb_lifetime_addtime = sav->lft_s->addtime;
6349 	lt->sadb_lifetime_usetime = sav->lft_s->usetime;
6350 	m_cat(result, m);
6351 
6352 	/* set sadb_address for source */
6353 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6354 	    &sav->sah->saidx.src.sa,
6355 	    FULLMASK, IPSEC_ULPROTO_ANY);
6356 	if (!m) {
6357 		error = ENOBUFS;
6358 		goto fail;
6359 	}
6360 	m_cat(result, m);
6361 
6362 	/* set sadb_address for destination */
6363 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6364 	    &sav->sah->saidx.dst.sa,
6365 	    FULLMASK, IPSEC_ULPROTO_ANY);
6366 	if (!m) {
6367 		error = ENOBUFS;
6368 		goto fail;
6369 	}
6370 	m_cat(result, m);
6371 
6372 	if ((result->m_flags & M_PKTHDR) == 0) {
6373 		error = EINVAL;
6374 		goto fail;
6375 	}
6376 
6377 	if (result->m_len < sizeof(struct sadb_msg)) {
6378 		result = m_pullup(result, sizeof(struct sadb_msg));
6379 		if (result == NULL) {
6380 			error = ENOBUFS;
6381 			goto fail;
6382 		}
6383 	}
6384 
6385 	result->m_pkthdr.len = 0;
6386 	for (m = result; m; m = m->m_next)
6387 		result->m_pkthdr.len += m->m_len;
6388 
6389 	mtod(result, struct sadb_msg *)->sadb_msg_len =
6390 	    PFKEY_UNIT64(result->m_pkthdr.len);
6391 
6392 	splx(s);
6393 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6394 
6395  fail:
6396 	if (result)
6397 		m_freem(result);
6398 	splx(s);
6399 	return error;
6400 }
6401 
6402 /*
6403  * SADB_FLUSH processing
6404  * receive
6405  *   <base>
6406  * from the ikmpd, and free all entries in secastree.
6407  * and send,
6408  *   <base>
6409  * to the ikmpd.
6410  * NOTE: to do is only marking SADB_SASTATE_DEAD.
6411  *
6412  * m will always be freed.
6413  */
6414 static int
6415 key_flush(so, m, mhp)
6416 	struct socket *so;
6417 	struct mbuf *m;
6418 	const struct sadb_msghdr *mhp;
6419 {
6420 	struct sadb_msg *newmsg;
6421 	struct secashead *sah, *nextsah;
6422 	struct secasvar *sav, *nextsav;
6423 	u_int16_t proto;
6424 	u_int8_t state;
6425 	u_int stateidx;
6426 
6427 	IPSEC_ASSERT(so != NULL, ("null socket"));
6428 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6429 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6430 
6431 	/* map satype to proto */
6432 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6433 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6434 			__func__));
6435 		return key_senderror(so, m, EINVAL);
6436 	}
6437 
6438 	/* no SATYPE specified, i.e. flushing all SA. */
6439 	SAHTREE_LOCK();
6440 	for (sah = LIST_FIRST(&V_sahtree);
6441 	     sah != NULL;
6442 	     sah = nextsah) {
6443 		nextsah = LIST_NEXT(sah, chain);
6444 
6445 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6446 		 && proto != sah->saidx.proto)
6447 			continue;
6448 
6449 		for (stateidx = 0;
6450 		     stateidx < _ARRAYLEN(V_saorder_state_alive);
6451 		     stateidx++) {
6452 			state = V_saorder_state_any[stateidx];
6453 			for (sav = LIST_FIRST(&sah->savtree[state]);
6454 			     sav != NULL;
6455 			     sav = nextsav) {
6456 
6457 				nextsav = LIST_NEXT(sav, chain);
6458 
6459 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
6460 				KEY_FREESAV(&sav);
6461 			}
6462 		}
6463 
6464 		sah->state = SADB_SASTATE_DEAD;
6465 	}
6466 	SAHTREE_UNLOCK();
6467 
6468 	if (m->m_len < sizeof(struct sadb_msg) ||
6469 	    sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
6470 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6471 		return key_senderror(so, m, ENOBUFS);
6472 	}
6473 
6474 	if (m->m_next)
6475 		m_freem(m->m_next);
6476 	m->m_next = NULL;
6477 	m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
6478 	newmsg = mtod(m, struct sadb_msg *);
6479 	newmsg->sadb_msg_errno = 0;
6480 	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
6481 
6482 	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6483 }
6484 
6485 /*
6486  * SADB_DUMP processing
6487  * dump all entries including status of DEAD in SAD.
6488  * receive
6489  *   <base>
6490  * from the ikmpd, and dump all secasvar leaves
6491  * and send,
6492  *   <base> .....
6493  * to the ikmpd.
6494  *
6495  * m will always be freed.
6496  */
6497 static int
6498 key_dump(so, m, mhp)
6499 	struct socket *so;
6500 	struct mbuf *m;
6501 	const struct sadb_msghdr *mhp;
6502 {
6503 	struct secashead *sah;
6504 	struct secasvar *sav;
6505 	u_int16_t proto;
6506 	u_int stateidx;
6507 	u_int8_t satype;
6508 	u_int8_t state;
6509 	int cnt;
6510 	struct sadb_msg *newmsg;
6511 	struct mbuf *n;
6512 
6513 	IPSEC_ASSERT(so != NULL, ("null socket"));
6514 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6515 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6516 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6517 
6518 	/* map satype to proto */
6519 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6520 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6521 			__func__));
6522 		return key_senderror(so, m, EINVAL);
6523 	}
6524 
6525 	/* count sav entries to be sent to the userland. */
6526 	cnt = 0;
6527 	SAHTREE_LOCK();
6528 	LIST_FOREACH(sah, &V_sahtree, chain) {
6529 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6530 		 && proto != sah->saidx.proto)
6531 			continue;
6532 
6533 		for (stateidx = 0;
6534 		     stateidx < _ARRAYLEN(V_saorder_state_any);
6535 		     stateidx++) {
6536 			state = V_saorder_state_any[stateidx];
6537 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
6538 				cnt++;
6539 			}
6540 		}
6541 	}
6542 
6543 	if (cnt == 0) {
6544 		SAHTREE_UNLOCK();
6545 		return key_senderror(so, m, ENOENT);
6546 	}
6547 
6548 	/* send this to the userland, one at a time. */
6549 	newmsg = NULL;
6550 	LIST_FOREACH(sah, &V_sahtree, chain) {
6551 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6552 		 && proto != sah->saidx.proto)
6553 			continue;
6554 
6555 		/* map proto to satype */
6556 		if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
6557 			SAHTREE_UNLOCK();
6558 			ipseclog((LOG_DEBUG, "%s: there was invalid proto in "
6559 				"SAD.\n", __func__));
6560 			return key_senderror(so, m, EINVAL);
6561 		}
6562 
6563 		for (stateidx = 0;
6564 		     stateidx < _ARRAYLEN(V_saorder_state_any);
6565 		     stateidx++) {
6566 			state = V_saorder_state_any[stateidx];
6567 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
6568 				n = key_setdumpsa(sav, SADB_DUMP, satype,
6569 				    --cnt, mhp->msg->sadb_msg_pid);
6570 				if (!n) {
6571 					SAHTREE_UNLOCK();
6572 					return key_senderror(so, m, ENOBUFS);
6573 				}
6574 				key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
6575 			}
6576 		}
6577 	}
6578 	SAHTREE_UNLOCK();
6579 
6580 	m_freem(m);
6581 	return 0;
6582 }
6583 
6584 /*
6585  * SADB_X_PROMISC processing
6586  *
6587  * m will always be freed.
6588  */
6589 static int
6590 key_promisc(so, m, mhp)
6591 	struct socket *so;
6592 	struct mbuf *m;
6593 	const struct sadb_msghdr *mhp;
6594 {
6595 	int olen;
6596 
6597 	IPSEC_ASSERT(so != NULL, ("null socket"));
6598 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6599 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6600 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6601 
6602 	olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
6603 
6604 	if (olen < sizeof(struct sadb_msg)) {
6605 #if 1
6606 		return key_senderror(so, m, EINVAL);
6607 #else
6608 		m_freem(m);
6609 		return 0;
6610 #endif
6611 	} else if (olen == sizeof(struct sadb_msg)) {
6612 		/* enable/disable promisc mode */
6613 		struct keycb *kp;
6614 
6615 		if ((kp = (struct keycb *)sotorawcb(so)) == NULL)
6616 			return key_senderror(so, m, EINVAL);
6617 		mhp->msg->sadb_msg_errno = 0;
6618 		switch (mhp->msg->sadb_msg_satype) {
6619 		case 0:
6620 		case 1:
6621 			kp->kp_promisc = mhp->msg->sadb_msg_satype;
6622 			break;
6623 		default:
6624 			return key_senderror(so, m, EINVAL);
6625 		}
6626 
6627 		/* send the original message back to everyone */
6628 		mhp->msg->sadb_msg_errno = 0;
6629 		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6630 	} else {
6631 		/* send packet as is */
6632 
6633 		m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
6634 
6635 		/* TODO: if sadb_msg_seq is specified, send to specific pid */
6636 		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6637 	}
6638 }
6639 
6640 static int (*key_typesw[]) __P((struct socket *, struct mbuf *,
6641 		const struct sadb_msghdr *)) = {
6642 	NULL,		/* SADB_RESERVED */
6643 	key_getspi,	/* SADB_GETSPI */
6644 	key_update,	/* SADB_UPDATE */
6645 	key_add,	/* SADB_ADD */
6646 	key_delete,	/* SADB_DELETE */
6647 	key_get,	/* SADB_GET */
6648 	key_acquire2,	/* SADB_ACQUIRE */
6649 	key_register,	/* SADB_REGISTER */
6650 	NULL,		/* SADB_EXPIRE */
6651 	key_flush,	/* SADB_FLUSH */
6652 	key_dump,	/* SADB_DUMP */
6653 	key_promisc,	/* SADB_X_PROMISC */
6654 	NULL,		/* SADB_X_PCHANGE */
6655 	key_spdadd,	/* SADB_X_SPDUPDATE */
6656 	key_spdadd,	/* SADB_X_SPDADD */
6657 	key_spddelete,	/* SADB_X_SPDDELETE */
6658 	key_spdget,	/* SADB_X_SPDGET */
6659 	NULL,		/* SADB_X_SPDACQUIRE */
6660 	key_spddump,	/* SADB_X_SPDDUMP */
6661 	key_spdflush,	/* SADB_X_SPDFLUSH */
6662 	key_spdadd,	/* SADB_X_SPDSETIDX */
6663 	NULL,		/* SADB_X_SPDEXPIRE */
6664 	key_spddelete2,	/* SADB_X_SPDDELETE2 */
6665 };
6666 
6667 /*
6668  * parse sadb_msg buffer to process PFKEYv2,
6669  * and create a data to response if needed.
6670  * I think to be dealed with mbuf directly.
6671  * IN:
6672  *     msgp  : pointer to pointer to a received buffer pulluped.
6673  *             This is rewrited to response.
6674  *     so    : pointer to socket.
6675  * OUT:
6676  *    length for buffer to send to user process.
6677  */
6678 int
6679 key_parse(m, so)
6680 	struct mbuf *m;
6681 	struct socket *so;
6682 {
6683 	struct sadb_msg *msg;
6684 	struct sadb_msghdr mh;
6685 	u_int orglen;
6686 	int error;
6687 	int target;
6688 
6689 	IPSEC_ASSERT(so != NULL, ("null socket"));
6690 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6691 
6692 #if 0	/*kdebug_sadb assumes msg in linear buffer*/
6693 	KEYDEBUG(KEYDEBUG_KEY_DUMP,
6694 		ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__));
6695 		kdebug_sadb(msg));
6696 #endif
6697 
6698 	if (m->m_len < sizeof(struct sadb_msg)) {
6699 		m = m_pullup(m, sizeof(struct sadb_msg));
6700 		if (!m)
6701 			return ENOBUFS;
6702 	}
6703 	msg = mtod(m, struct sadb_msg *);
6704 	orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
6705 	target = KEY_SENDUP_ONE;
6706 
6707 	if ((m->m_flags & M_PKTHDR) == 0 ||
6708 	    m->m_pkthdr.len != m->m_pkthdr.len) {
6709 		ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__));
6710 		V_pfkeystat.out_invlen++;
6711 		error = EINVAL;
6712 		goto senderror;
6713 	}
6714 
6715 	if (msg->sadb_msg_version != PF_KEY_V2) {
6716 		ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n",
6717 		    __func__, msg->sadb_msg_version));
6718 		V_pfkeystat.out_invver++;
6719 		error = EINVAL;
6720 		goto senderror;
6721 	}
6722 
6723 	if (msg->sadb_msg_type > SADB_MAX) {
6724 		ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
6725 		    __func__, msg->sadb_msg_type));
6726 		V_pfkeystat.out_invmsgtype++;
6727 		error = EINVAL;
6728 		goto senderror;
6729 	}
6730 
6731 	/* for old-fashioned code - should be nuked */
6732 	if (m->m_pkthdr.len > MCLBYTES) {
6733 		m_freem(m);
6734 		return ENOBUFS;
6735 	}
6736 	if (m->m_next) {
6737 		struct mbuf *n;
6738 
6739 		MGETHDR(n, M_DONTWAIT, MT_DATA);
6740 		if (n && m->m_pkthdr.len > MHLEN) {
6741 			MCLGET(n, M_DONTWAIT);
6742 			if ((n->m_flags & M_EXT) == 0) {
6743 				m_free(n);
6744 				n = NULL;
6745 			}
6746 		}
6747 		if (!n) {
6748 			m_freem(m);
6749 			return ENOBUFS;
6750 		}
6751 		m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t));
6752 		n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
6753 		n->m_next = NULL;
6754 		m_freem(m);
6755 		m = n;
6756 	}
6757 
6758 	/* align the mbuf chain so that extensions are in contiguous region. */
6759 	error = key_align(m, &mh);
6760 	if (error)
6761 		return error;
6762 
6763 	msg = mh.msg;
6764 
6765 	/* check SA type */
6766 	switch (msg->sadb_msg_satype) {
6767 	case SADB_SATYPE_UNSPEC:
6768 		switch (msg->sadb_msg_type) {
6769 		case SADB_GETSPI:
6770 		case SADB_UPDATE:
6771 		case SADB_ADD:
6772 		case SADB_DELETE:
6773 		case SADB_GET:
6774 		case SADB_ACQUIRE:
6775 		case SADB_EXPIRE:
6776 			ipseclog((LOG_DEBUG, "%s: must specify satype "
6777 			    "when msg type=%u.\n", __func__,
6778 			    msg->sadb_msg_type));
6779 			V_pfkeystat.out_invsatype++;
6780 			error = EINVAL;
6781 			goto senderror;
6782 		}
6783 		break;
6784 	case SADB_SATYPE_AH:
6785 	case SADB_SATYPE_ESP:
6786 	case SADB_X_SATYPE_IPCOMP:
6787 	case SADB_X_SATYPE_TCPSIGNATURE:
6788 		switch (msg->sadb_msg_type) {
6789 		case SADB_X_SPDADD:
6790 		case SADB_X_SPDDELETE:
6791 		case SADB_X_SPDGET:
6792 		case SADB_X_SPDDUMP:
6793 		case SADB_X_SPDFLUSH:
6794 		case SADB_X_SPDSETIDX:
6795 		case SADB_X_SPDUPDATE:
6796 		case SADB_X_SPDDELETE2:
6797 			ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n",
6798 				__func__, msg->sadb_msg_type));
6799 			V_pfkeystat.out_invsatype++;
6800 			error = EINVAL;
6801 			goto senderror;
6802 		}
6803 		break;
6804 	case SADB_SATYPE_RSVP:
6805 	case SADB_SATYPE_OSPFV2:
6806 	case SADB_SATYPE_RIPV2:
6807 	case SADB_SATYPE_MIP:
6808 		ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n",
6809 			__func__, msg->sadb_msg_satype));
6810 		V_pfkeystat.out_invsatype++;
6811 		error = EOPNOTSUPP;
6812 		goto senderror;
6813 	case 1:	/* XXX: What does it do? */
6814 		if (msg->sadb_msg_type == SADB_X_PROMISC)
6815 			break;
6816 		/*FALLTHROUGH*/
6817 	default:
6818 		ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
6819 			__func__, msg->sadb_msg_satype));
6820 		V_pfkeystat.out_invsatype++;
6821 		error = EINVAL;
6822 		goto senderror;
6823 	}
6824 
6825 	/* check field of upper layer protocol and address family */
6826 	if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL
6827 	 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
6828 		struct sadb_address *src0, *dst0;
6829 		u_int plen;
6830 
6831 		src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
6832 		dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
6833 
6834 		/* check upper layer protocol */
6835 		if (src0->sadb_address_proto != dst0->sadb_address_proto) {
6836 			ipseclog((LOG_DEBUG, "%s: upper layer protocol "
6837 				"mismatched.\n", __func__));
6838 			V_pfkeystat.out_invaddr++;
6839 			error = EINVAL;
6840 			goto senderror;
6841 		}
6842 
6843 		/* check family */
6844 		if (PFKEY_ADDR_SADDR(src0)->sa_family !=
6845 		    PFKEY_ADDR_SADDR(dst0)->sa_family) {
6846 			ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
6847 				__func__));
6848 			V_pfkeystat.out_invaddr++;
6849 			error = EINVAL;
6850 			goto senderror;
6851 		}
6852 		if (PFKEY_ADDR_SADDR(src0)->sa_len !=
6853 		    PFKEY_ADDR_SADDR(dst0)->sa_len) {
6854 			ipseclog((LOG_DEBUG, "%s: address struct size "
6855 				"mismatched.\n", __func__));
6856 			V_pfkeystat.out_invaddr++;
6857 			error = EINVAL;
6858 			goto senderror;
6859 		}
6860 
6861 		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
6862 		case AF_INET:
6863 			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
6864 			    sizeof(struct sockaddr_in)) {
6865 				V_pfkeystat.out_invaddr++;
6866 				error = EINVAL;
6867 				goto senderror;
6868 			}
6869 			break;
6870 		case AF_INET6:
6871 			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
6872 			    sizeof(struct sockaddr_in6)) {
6873 				V_pfkeystat.out_invaddr++;
6874 				error = EINVAL;
6875 				goto senderror;
6876 			}
6877 			break;
6878 		default:
6879 			ipseclog((LOG_DEBUG, "%s: unsupported address family\n",
6880 				__func__));
6881 			V_pfkeystat.out_invaddr++;
6882 			error = EAFNOSUPPORT;
6883 			goto senderror;
6884 		}
6885 
6886 		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
6887 		case AF_INET:
6888 			plen = sizeof(struct in_addr) << 3;
6889 			break;
6890 		case AF_INET6:
6891 			plen = sizeof(struct in6_addr) << 3;
6892 			break;
6893 		default:
6894 			plen = 0;	/*fool gcc*/
6895 			break;
6896 		}
6897 
6898 		/* check max prefix length */
6899 		if (src0->sadb_address_prefixlen > plen ||
6900 		    dst0->sadb_address_prefixlen > plen) {
6901 			ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n",
6902 				__func__));
6903 			V_pfkeystat.out_invaddr++;
6904 			error = EINVAL;
6905 			goto senderror;
6906 		}
6907 
6908 		/*
6909 		 * prefixlen == 0 is valid because there can be a case when
6910 		 * all addresses are matched.
6911 		 */
6912 	}
6913 
6914 	if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) ||
6915 	    key_typesw[msg->sadb_msg_type] == NULL) {
6916 		V_pfkeystat.out_invmsgtype++;
6917 		error = EINVAL;
6918 		goto senderror;
6919 	}
6920 
6921 	return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
6922 
6923 senderror:
6924 	msg->sadb_msg_errno = error;
6925 	return key_sendup_mbuf(so, m, target);
6926 }
6927 
6928 static int
6929 key_senderror(so, m, code)
6930 	struct socket *so;
6931 	struct mbuf *m;
6932 	int code;
6933 {
6934 	struct sadb_msg *msg;
6935 
6936 	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
6937 		("mbuf too small, len %u", m->m_len));
6938 
6939 	msg = mtod(m, struct sadb_msg *);
6940 	msg->sadb_msg_errno = code;
6941 	return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
6942 }
6943 
6944 /*
6945  * set the pointer to each header into message buffer.
6946  * m will be freed on error.
6947  * XXX larger-than-MCLBYTES extension?
6948  */
6949 static int
6950 key_align(m, mhp)
6951 	struct mbuf *m;
6952 	struct sadb_msghdr *mhp;
6953 {
6954 	struct mbuf *n;
6955 	struct sadb_ext *ext;
6956 	size_t off, end;
6957 	int extlen;
6958 	int toff;
6959 
6960 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6961 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6962 	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
6963 		("mbuf too small, len %u", m->m_len));
6964 
6965 	/* initialize */
6966 	bzero(mhp, sizeof(*mhp));
6967 
6968 	mhp->msg = mtod(m, struct sadb_msg *);
6969 	mhp->ext[0] = (struct sadb_ext *)mhp->msg;	/*XXX backward compat */
6970 
6971 	end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
6972 	extlen = end;	/*just in case extlen is not updated*/
6973 	for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
6974 		n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
6975 		if (!n) {
6976 			/* m is already freed */
6977 			return ENOBUFS;
6978 		}
6979 		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
6980 
6981 		/* set pointer */
6982 		switch (ext->sadb_ext_type) {
6983 		case SADB_EXT_SA:
6984 		case SADB_EXT_ADDRESS_SRC:
6985 		case SADB_EXT_ADDRESS_DST:
6986 		case SADB_EXT_ADDRESS_PROXY:
6987 		case SADB_EXT_LIFETIME_CURRENT:
6988 		case SADB_EXT_LIFETIME_HARD:
6989 		case SADB_EXT_LIFETIME_SOFT:
6990 		case SADB_EXT_KEY_AUTH:
6991 		case SADB_EXT_KEY_ENCRYPT:
6992 		case SADB_EXT_IDENTITY_SRC:
6993 		case SADB_EXT_IDENTITY_DST:
6994 		case SADB_EXT_SENSITIVITY:
6995 		case SADB_EXT_PROPOSAL:
6996 		case SADB_EXT_SUPPORTED_AUTH:
6997 		case SADB_EXT_SUPPORTED_ENCRYPT:
6998 		case SADB_EXT_SPIRANGE:
6999 		case SADB_X_EXT_POLICY:
7000 		case SADB_X_EXT_SA2:
7001 			/* duplicate check */
7002 			/*
7003 			 * XXX Are there duplication payloads of either
7004 			 * KEY_AUTH or KEY_ENCRYPT ?
7005 			 */
7006 			if (mhp->ext[ext->sadb_ext_type] != NULL) {
7007 				ipseclog((LOG_DEBUG, "%s: duplicate ext_type "
7008 					"%u\n", __func__, ext->sadb_ext_type));
7009 				m_freem(m);
7010 				V_pfkeystat.out_dupext++;
7011 				return EINVAL;
7012 			}
7013 			break;
7014 		default:
7015 			ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n",
7016 				__func__, ext->sadb_ext_type));
7017 			m_freem(m);
7018 			V_pfkeystat.out_invexttype++;
7019 			return EINVAL;
7020 		}
7021 
7022 		extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7023 
7024 		if (key_validate_ext(ext, extlen)) {
7025 			m_freem(m);
7026 			V_pfkeystat.out_invlen++;
7027 			return EINVAL;
7028 		}
7029 
7030 		n = m_pulldown(m, off, extlen, &toff);
7031 		if (!n) {
7032 			/* m is already freed */
7033 			return ENOBUFS;
7034 		}
7035 		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
7036 
7037 		mhp->ext[ext->sadb_ext_type] = ext;
7038 		mhp->extoff[ext->sadb_ext_type] = off;
7039 		mhp->extlen[ext->sadb_ext_type] = extlen;
7040 	}
7041 
7042 	if (off != end) {
7043 		m_freem(m);
7044 		V_pfkeystat.out_invlen++;
7045 		return EINVAL;
7046 	}
7047 
7048 	return 0;
7049 }
7050 
7051 static int
7052 key_validate_ext(ext, len)
7053 	const struct sadb_ext *ext;
7054 	int len;
7055 {
7056 	const struct sockaddr *sa;
7057 	enum { NONE, ADDR } checktype = NONE;
7058 	int baselen = 0;
7059 	const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7060 
7061 	if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7062 		return EINVAL;
7063 
7064 	/* if it does not match minimum/maximum length, bail */
7065 	if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) ||
7066 	    ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0]))
7067 		return EINVAL;
7068 	if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7069 		return EINVAL;
7070 	if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7071 		return EINVAL;
7072 
7073 	/* more checks based on sadb_ext_type XXX need more */
7074 	switch (ext->sadb_ext_type) {
7075 	case SADB_EXT_ADDRESS_SRC:
7076 	case SADB_EXT_ADDRESS_DST:
7077 	case SADB_EXT_ADDRESS_PROXY:
7078 		baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7079 		checktype = ADDR;
7080 		break;
7081 	case SADB_EXT_IDENTITY_SRC:
7082 	case SADB_EXT_IDENTITY_DST:
7083 		if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7084 		    SADB_X_IDENTTYPE_ADDR) {
7085 			baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7086 			checktype = ADDR;
7087 		} else
7088 			checktype = NONE;
7089 		break;
7090 	default:
7091 		checktype = NONE;
7092 		break;
7093 	}
7094 
7095 	switch (checktype) {
7096 	case NONE:
7097 		break;
7098 	case ADDR:
7099 		sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7100 		if (len < baselen + sal)
7101 			return EINVAL;
7102 		if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7103 			return EINVAL;
7104 		break;
7105 	}
7106 
7107 	return 0;
7108 }
7109 
7110 void
7111 key_init(void)
7112 {
7113 	int i;
7114 
7115 	SPTREE_LOCK_INIT();
7116 	REGTREE_LOCK_INIT();
7117 	SAHTREE_LOCK_INIT();
7118 	ACQ_LOCK_INIT();
7119 	SPACQ_LOCK_INIT();
7120 
7121 	for (i = 0; i < IPSEC_DIR_MAX; i++)
7122 		LIST_INIT(&V_sptree[i]);
7123 
7124 	LIST_INIT(&V_sahtree);
7125 
7126 	for (i = 0; i <= SADB_SATYPE_MAX; i++)
7127 		LIST_INIT(&V_regtree[i]);
7128 
7129 	LIST_INIT(&V_acqtree);
7130 	LIST_INIT(&V_spacqtree);
7131 
7132 	/* system default */
7133 	V_ip4_def_policy.policy = IPSEC_POLICY_NONE;
7134 	V_ip4_def_policy.refcnt++;	/*never reclaim this*/
7135 
7136 #ifndef IPSEC_DEBUG2
7137 	timeout((void *)key_timehandler, (void *)0, hz);
7138 #endif /*IPSEC_DEBUG2*/
7139 
7140 	/* initialize key statistics */
7141 	keystat.getspi_count = 1;
7142 
7143 	printf("IPsec: Initialized Security Association Processing.\n");
7144 
7145 	return;
7146 }
7147 
7148 /*
7149  * XXX: maybe This function is called after INBOUND IPsec processing.
7150  *
7151  * Special check for tunnel-mode packets.
7152  * We must make some checks for consistency between inner and outer IP header.
7153  *
7154  * xxx more checks to be provided
7155  */
7156 int
7157 key_checktunnelsanity(sav, family, src, dst)
7158 	struct secasvar *sav;
7159 	u_int family;
7160 	caddr_t src;
7161 	caddr_t dst;
7162 {
7163 	IPSEC_ASSERT(sav->sah != NULL, ("null SA header"));
7164 
7165 	/* XXX: check inner IP header */
7166 
7167 	return 1;
7168 }
7169 
7170 /* record data transfer on SA, and update timestamps */
7171 void
7172 key_sa_recordxfer(sav, m)
7173 	struct secasvar *sav;
7174 	struct mbuf *m;
7175 {
7176 	IPSEC_ASSERT(sav != NULL, ("Null secasvar"));
7177 	IPSEC_ASSERT(m != NULL, ("Null mbuf"));
7178 	if (!sav->lft_c)
7179 		return;
7180 
7181 	/*
7182 	 * XXX Currently, there is a difference of bytes size
7183 	 * between inbound and outbound processing.
7184 	 */
7185 	sav->lft_c->bytes += m->m_pkthdr.len;
7186 	/* to check bytes lifetime is done in key_timehandler(). */
7187 
7188 	/*
7189 	 * We use the number of packets as the unit of
7190 	 * allocations.  We increment the variable
7191 	 * whenever {esp,ah}_{in,out}put is called.
7192 	 */
7193 	sav->lft_c->allocations++;
7194 	/* XXX check for expires? */
7195 
7196 	/*
7197 	 * NOTE: We record CURRENT usetime by using wall clock,
7198 	 * in seconds.  HARD and SOFT lifetime are measured by the time
7199 	 * difference (again in seconds) from usetime.
7200 	 *
7201 	 *	usetime
7202 	 *	v     expire   expire
7203 	 * -----+-----+--------+---> t
7204 	 *	<--------------> HARD
7205 	 *	<-----> SOFT
7206 	 */
7207 	sav->lft_c->usetime = time_second;
7208 	/* XXX check for expires? */
7209 
7210 	return;
7211 }
7212 
7213 /* dumb version */
7214 void
7215 key_sa_routechange(dst)
7216 	struct sockaddr *dst;
7217 {
7218 	struct secashead *sah;
7219 	struct route *ro;
7220 
7221 	SAHTREE_LOCK();
7222 	LIST_FOREACH(sah, &V_sahtree, chain) {
7223 		ro = &sah->sa_route;
7224 		if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len
7225 		 && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) {
7226 			RTFREE(ro->ro_rt);
7227 			ro->ro_rt = (struct rtentry *)NULL;
7228 		}
7229 	}
7230 	SAHTREE_UNLOCK();
7231 }
7232 
7233 static void
7234 key_sa_chgstate(sav, state)
7235 	struct secasvar *sav;
7236 	u_int8_t state;
7237 {
7238 	IPSEC_ASSERT(sav != NULL, ("NULL sav"));
7239 	SAHTREE_LOCK_ASSERT();
7240 
7241 	if (sav->state != state) {
7242 		if (__LIST_CHAINED(sav))
7243 			LIST_REMOVE(sav, chain);
7244 		sav->state = state;
7245 		LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7246 	}
7247 }
7248 
7249 void
7250 key_sa_stir_iv(sav)
7251 	struct secasvar *sav;
7252 {
7253 
7254 	IPSEC_ASSERT(sav->iv != NULL, ("null IV"));
7255 	key_randomfill(sav->iv, sav->ivlen);
7256 }
7257 
7258 /* XXX too much? */
7259 static struct mbuf *
7260 key_alloc_mbuf(l)
7261 	int l;
7262 {
7263 	struct mbuf *m = NULL, *n;
7264 	int len, t;
7265 
7266 	len = l;
7267 	while (len > 0) {
7268 		MGET(n, M_DONTWAIT, MT_DATA);
7269 		if (n && len > MLEN)
7270 			MCLGET(n, M_DONTWAIT);
7271 		if (!n) {
7272 			m_freem(m);
7273 			return NULL;
7274 		}
7275 
7276 		n->m_next = NULL;
7277 		n->m_len = 0;
7278 		n->m_len = M_TRAILINGSPACE(n);
7279 		/* use the bottom of mbuf, hoping we can prepend afterwards */
7280 		if (n->m_len > len) {
7281 			t = (n->m_len - len) & ~(sizeof(long) - 1);
7282 			n->m_data += t;
7283 			n->m_len = len;
7284 		}
7285 
7286 		len -= n->m_len;
7287 
7288 		if (m)
7289 			m_cat(m, n);
7290 		else
7291 			m = n;
7292 	}
7293 
7294 	return m;
7295 }
7296 
7297 /*
7298  * Take one of the kernel's security keys and convert it into a PF_KEY
7299  * structure within an mbuf, suitable for sending up to a waiting
7300  * application in user land.
7301  *
7302  * IN:
7303  *    src: A pointer to a kernel security key.
7304  *    exttype: Which type of key this is. Refer to the PF_KEY data structures.
7305  * OUT:
7306  *    a valid mbuf or NULL indicating an error
7307  *
7308  */
7309 
7310 static struct mbuf *
7311 key_setkey(struct seckey *src, u_int16_t exttype)
7312 {
7313 	struct mbuf *m;
7314 	struct sadb_key *p;
7315 	int len;
7316 
7317 	if (src == NULL)
7318 		return NULL;
7319 
7320 	len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src));
7321 	m = key_alloc_mbuf(len);
7322 	if (m == NULL)
7323 		return NULL;
7324 	p = mtod(m, struct sadb_key *);
7325 	bzero(p, len);
7326 	p->sadb_key_len = PFKEY_UNIT64(len);
7327 	p->sadb_key_exttype = exttype;
7328 	p->sadb_key_bits = src->bits;
7329 	bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src));
7330 
7331 	return m;
7332 }
7333 
7334 /*
7335  * Take one of the kernel's lifetime data structures and convert it
7336  * into a PF_KEY structure within an mbuf, suitable for sending up to
7337  * a waiting application in user land.
7338  *
7339  * IN:
7340  *    src: A pointer to a kernel lifetime structure.
7341  *    exttype: Which type of lifetime this is. Refer to the PF_KEY
7342  *             data structures for more information.
7343  * OUT:
7344  *    a valid mbuf or NULL indicating an error
7345  *
7346  */
7347 
7348 static struct mbuf *
7349 key_setlifetime(struct seclifetime *src, u_int16_t exttype)
7350 {
7351 	struct mbuf *m = NULL;
7352 	struct sadb_lifetime *p;
7353 	int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime));
7354 
7355 	if (src == NULL)
7356 		return NULL;
7357 
7358 	m = key_alloc_mbuf(len);
7359 	if (m == NULL)
7360 		return m;
7361 	p = mtod(m, struct sadb_lifetime *);
7362 
7363 	bzero(p, len);
7364 	p->sadb_lifetime_len = PFKEY_UNIT64(len);
7365 	p->sadb_lifetime_exttype = exttype;
7366 	p->sadb_lifetime_allocations = src->allocations;
7367 	p->sadb_lifetime_bytes = src->bytes;
7368 	p->sadb_lifetime_addtime = src->addtime;
7369 	p->sadb_lifetime_usetime = src->usetime;
7370 
7371 	return m;
7372 
7373 }
7374