1 /* $FreeBSD$ */ 2 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ 3 4 /*- 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * This code is referd to RFC 2367 35 */ 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 #include "opt_ipsec.h" 40 41 #include <sys/types.h> 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/mutex.h> 47 #include <sys/mbuf.h> 48 #include <sys/domain.h> 49 #include <sys/protosw.h> 50 #include <sys/malloc.h> 51 #include <sys/socket.h> 52 #include <sys/socketvar.h> 53 #include <sys/sysctl.h> 54 #include <sys/errno.h> 55 #include <sys/proc.h> 56 #include <sys/queue.h> 57 #include <sys/refcount.h> 58 #include <sys/syslog.h> 59 #include <sys/vimage.h> 60 61 #include <net/if.h> 62 #include <net/route.h> 63 #include <net/raw_cb.h> 64 65 #include <netinet/in.h> 66 #include <netinet/in_systm.h> 67 #include <netinet/ip.h> 68 #include <netinet/in_var.h> 69 70 #ifdef INET6 71 #include <netinet/ip6.h> 72 #include <netinet6/in6_var.h> 73 #include <netinet6/ip6_var.h> 74 #endif /* INET6 */ 75 76 #ifdef INET 77 #include <netinet/in_pcb.h> 78 #endif 79 #ifdef INET6 80 #include <netinet6/in6_pcb.h> 81 #endif /* INET6 */ 82 83 #include <net/pfkeyv2.h> 84 #include <netipsec/keydb.h> 85 #include <netipsec/key.h> 86 #include <netipsec/keysock.h> 87 #include <netipsec/key_debug.h> 88 89 #include <netipsec/ipsec.h> 90 #ifdef INET6 91 #include <netipsec/ipsec6.h> 92 #endif 93 94 #include <netipsec/xform.h> 95 96 #include <machine/stdarg.h> 97 98 /* randomness */ 99 #include <sys/random.h> 100 #include <sys/vimage.h> 101 102 #define FULLMASK 0xff 103 #define _BITS(bytes) ((bytes) << 3) 104 105 /* 106 * Note on SA reference counting: 107 * - SAs that are not in DEAD state will have (total external reference + 1) 108 * following value in reference count field. they cannot be freed and are 109 * referenced from SA header. 110 * - SAs that are in DEAD state will have (total external reference) 111 * in reference count field. they are ready to be freed. reference from 112 * SA header will be removed in key_delsav(), when the reference count 113 * field hits 0 (= no external reference other than from SA header. 114 */ 115 116 u_int32_t key_debug_level = 0; 117 static u_int key_spi_trycnt = 1000; 118 static u_int32_t key_spi_minval = 0x100; 119 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */ 120 static u_int32_t policy_id = 0; 121 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/ 122 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/ 123 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/ 124 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/ 125 static int key_preferred_oldsa = 1; /* preferred old sa rather than new sa.*/ 126 127 static u_int32_t acq_seq = 0; 128 129 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */ 130 static struct mtx sptree_lock; 131 #define SPTREE_LOCK_INIT() \ 132 mtx_init(&sptree_lock, "sptree", \ 133 "fast ipsec security policy database", MTX_DEF) 134 #define SPTREE_LOCK_DESTROY() mtx_destroy(&sptree_lock) 135 #define SPTREE_LOCK() mtx_lock(&sptree_lock) 136 #define SPTREE_UNLOCK() mtx_unlock(&sptree_lock) 137 #define SPTREE_LOCK_ASSERT() mtx_assert(&sptree_lock, MA_OWNED) 138 139 static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */ 140 static struct mtx sahtree_lock; 141 #define SAHTREE_LOCK_INIT() \ 142 mtx_init(&sahtree_lock, "sahtree", \ 143 "fast ipsec security association database", MTX_DEF) 144 #define SAHTREE_LOCK_DESTROY() mtx_destroy(&sahtree_lock) 145 #define SAHTREE_LOCK() mtx_lock(&sahtree_lock) 146 #define SAHTREE_UNLOCK() mtx_unlock(&sahtree_lock) 147 #define SAHTREE_LOCK_ASSERT() mtx_assert(&sahtree_lock, MA_OWNED) 148 149 /* registed list */ 150 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1]; 151 static struct mtx regtree_lock; 152 #define REGTREE_LOCK_INIT() \ 153 mtx_init(®tree_lock, "regtree", "fast ipsec regtree", MTX_DEF) 154 #define REGTREE_LOCK_DESTROY() mtx_destroy(®tree_lock) 155 #define REGTREE_LOCK() mtx_lock(®tree_lock) 156 #define REGTREE_UNLOCK() mtx_unlock(®tree_lock) 157 #define REGTREE_LOCK_ASSERT() mtx_assert(®tree_lock, MA_OWNED) 158 159 static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */ 160 static struct mtx acq_lock; 161 #define ACQ_LOCK_INIT() \ 162 mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF) 163 #define ACQ_LOCK_DESTROY() mtx_destroy(&acq_lock) 164 #define ACQ_LOCK() mtx_lock(&acq_lock) 165 #define ACQ_UNLOCK() mtx_unlock(&acq_lock) 166 #define ACQ_LOCK_ASSERT() mtx_assert(&acq_lock, MA_OWNED) 167 168 static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */ 169 static struct mtx spacq_lock; 170 #define SPACQ_LOCK_INIT() \ 171 mtx_init(&spacq_lock, "spacqtree", \ 172 "fast ipsec security policy acquire list", MTX_DEF) 173 #define SPACQ_LOCK_DESTROY() mtx_destroy(&spacq_lock) 174 #define SPACQ_LOCK() mtx_lock(&spacq_lock) 175 #define SPACQ_UNLOCK() mtx_unlock(&spacq_lock) 176 #define SPACQ_LOCK_ASSERT() mtx_assert(&spacq_lock, MA_OWNED) 177 178 /* search order for SAs */ 179 static const u_int saorder_state_valid_prefer_old[] = { 180 SADB_SASTATE_DYING, SADB_SASTATE_MATURE, 181 }; 182 static const u_int saorder_state_valid_prefer_new[] = { 183 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 184 }; 185 static u_int saorder_state_alive[] = { 186 /* except DEAD */ 187 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL 188 }; 189 static u_int saorder_state_any[] = { 190 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 191 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD 192 }; 193 194 static const int minsize[] = { 195 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 196 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 197 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 198 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 199 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 200 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ 201 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ 202 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ 203 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ 204 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ 205 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ 206 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ 207 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ 208 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ 209 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ 210 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ 211 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 212 0, /* SADB_X_EXT_KMPRIVATE */ 213 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ 214 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 215 }; 216 static const int maxsize[] = { 217 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 218 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 219 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 220 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 221 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 222 0, /* SADB_EXT_ADDRESS_SRC */ 223 0, /* SADB_EXT_ADDRESS_DST */ 224 0, /* SADB_EXT_ADDRESS_PROXY */ 225 0, /* SADB_EXT_KEY_AUTH */ 226 0, /* SADB_EXT_KEY_ENCRYPT */ 227 0, /* SADB_EXT_IDENTITY_SRC */ 228 0, /* SADB_EXT_IDENTITY_DST */ 229 0, /* SADB_EXT_SENSITIVITY */ 230 0, /* SADB_EXT_PROPOSAL */ 231 0, /* SADB_EXT_SUPPORTED_AUTH */ 232 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ 233 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 234 0, /* SADB_X_EXT_KMPRIVATE */ 235 0, /* SADB_X_EXT_POLICY */ 236 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 237 }; 238 239 static int ipsec_esp_keymin = 256; 240 static int ipsec_esp_auth = 0; 241 static int ipsec_ah_keymin = 128; 242 243 #ifdef SYSCTL_DECL 244 SYSCTL_DECL(_net_key); 245 #endif 246 247 SYSCTL_V_INT(V_NET, vnet_ipsec,_net_key, KEYCTL_DEBUG_LEVEL, debug, 248 CTLFLAG_RW, key_debug_level, 0, ""); 249 250 /* max count of trial for the decision of spi value */ 251 SYSCTL_V_INT(V_NET, vnet_ipsec,_net_key, KEYCTL_SPI_TRY, spi_trycnt, 252 CTLFLAG_RW, key_spi_trycnt, 0, ""); 253 254 /* minimum spi value to allocate automatically. */ 255 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_SPI_MIN_VALUE, 256 spi_minval, CTLFLAG_RW, key_spi_minval, 0, ""); 257 258 /* maximun spi value to allocate automatically. */ 259 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_SPI_MAX_VALUE, 260 spi_maxval, CTLFLAG_RW, key_spi_maxval, 0, ""); 261 262 /* interval to initialize randseed */ 263 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_RANDOM_INT, 264 int_random, CTLFLAG_RW, key_int_random, 0, ""); 265 266 /* lifetime for larval SA */ 267 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_LARVAL_LIFETIME, 268 larval_lifetime, CTLFLAG_RW, key_larval_lifetime, 0, ""); 269 270 /* counter for blocking to send SADB_ACQUIRE to IKEd */ 271 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_BLOCKACQ_COUNT, 272 blockacq_count, CTLFLAG_RW, key_blockacq_count, 0, ""); 273 274 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ 275 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_BLOCKACQ_LIFETIME, 276 blockacq_lifetime, CTLFLAG_RW, key_blockacq_lifetime, 0, ""); 277 278 /* ESP auth */ 279 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_ESP_AUTH, esp_auth, 280 CTLFLAG_RW, ipsec_esp_auth, 0, ""); 281 282 /* minimum ESP key length */ 283 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_ESP_KEYMIN, 284 esp_keymin, CTLFLAG_RW, ipsec_esp_keymin, 0, ""); 285 286 /* minimum AH key length */ 287 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_AH_KEYMIN, ah_keymin, 288 CTLFLAG_RW, ipsec_ah_keymin, 0, ""); 289 290 /* perfered old SA rather than new SA */ 291 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_PREFERED_OLDSA, 292 preferred_oldsa, CTLFLAG_RW, key_preferred_oldsa, 0, ""); 293 294 #define __LIST_CHAINED(elm) \ 295 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) 296 #define LIST_INSERT_TAIL(head, elm, type, field) \ 297 do {\ 298 struct type *curelm = LIST_FIRST(head); \ 299 if (curelm == NULL) {\ 300 LIST_INSERT_HEAD(head, elm, field); \ 301 } else { \ 302 while (LIST_NEXT(curelm, field)) \ 303 curelm = LIST_NEXT(curelm, field);\ 304 LIST_INSERT_AFTER(curelm, elm, field);\ 305 }\ 306 } while (0) 307 308 #define KEY_CHKSASTATE(head, sav, name) \ 309 do { \ 310 if ((head) != (sav)) { \ 311 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \ 312 (name), (head), (sav))); \ 313 continue; \ 314 } \ 315 } while (0) 316 317 #define KEY_CHKSPDIR(head, sp, name) \ 318 do { \ 319 if ((head) != (sp)) { \ 320 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \ 321 "anyway continue.\n", \ 322 (name), (head), (sp))); \ 323 } \ 324 } while (0) 325 326 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association"); 327 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head"); 328 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy"); 329 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request"); 330 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous"); 331 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire"); 332 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire"); 333 334 /* 335 * set parameters into secpolicyindex buffer. 336 * Must allocate secpolicyindex buffer passed to this function. 337 */ 338 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \ 339 do { \ 340 bzero((idx), sizeof(struct secpolicyindex)); \ 341 (idx)->dir = (_dir); \ 342 (idx)->prefs = (ps); \ 343 (idx)->prefd = (pd); \ 344 (idx)->ul_proto = (ulp); \ 345 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 346 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 347 } while (0) 348 349 /* 350 * set parameters into secasindex buffer. 351 * Must allocate secasindex buffer before calling this function. 352 */ 353 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \ 354 do { \ 355 bzero((idx), sizeof(struct secasindex)); \ 356 (idx)->proto = (p); \ 357 (idx)->mode = (m); \ 358 (idx)->reqid = (r); \ 359 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 360 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 361 } while (0) 362 363 /* key statistics */ 364 struct _keystat { 365 u_long getspi_count; /* the avarage of count to try to get new SPI */ 366 } keystat; 367 368 struct sadb_msghdr { 369 struct sadb_msg *msg; 370 struct sadb_ext *ext[SADB_EXT_MAX + 1]; 371 int extoff[SADB_EXT_MAX + 1]; 372 int extlen[SADB_EXT_MAX + 1]; 373 }; 374 375 static struct secasvar *key_allocsa_policy __P((const struct secasindex *)); 376 static void key_freesp_so __P((struct secpolicy **)); 377 static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int)); 378 static void key_delsp __P((struct secpolicy *)); 379 static struct secpolicy *key_getsp __P((struct secpolicyindex *)); 380 static void _key_delsp(struct secpolicy *sp); 381 static struct secpolicy *key_getspbyid __P((u_int32_t)); 382 static u_int32_t key_newreqid __P((void)); 383 static struct mbuf *key_gather_mbuf __P((struct mbuf *, 384 const struct sadb_msghdr *, int, int, ...)); 385 static int key_spdadd __P((struct socket *, struct mbuf *, 386 const struct sadb_msghdr *)); 387 static u_int32_t key_getnewspid __P((void)); 388 static int key_spddelete __P((struct socket *, struct mbuf *, 389 const struct sadb_msghdr *)); 390 static int key_spddelete2 __P((struct socket *, struct mbuf *, 391 const struct sadb_msghdr *)); 392 static int key_spdget __P((struct socket *, struct mbuf *, 393 const struct sadb_msghdr *)); 394 static int key_spdflush __P((struct socket *, struct mbuf *, 395 const struct sadb_msghdr *)); 396 static int key_spddump __P((struct socket *, struct mbuf *, 397 const struct sadb_msghdr *)); 398 static struct mbuf *key_setdumpsp __P((struct secpolicy *, 399 u_int8_t, u_int32_t, u_int32_t)); 400 static u_int key_getspreqmsglen __P((struct secpolicy *)); 401 static int key_spdexpire __P((struct secpolicy *)); 402 static struct secashead *key_newsah __P((struct secasindex *)); 403 static void key_delsah __P((struct secashead *)); 404 static struct secasvar *key_newsav __P((struct mbuf *, 405 const struct sadb_msghdr *, struct secashead *, int *, 406 const char*, int)); 407 #define KEY_NEWSAV(m, sadb, sah, e) \ 408 key_newsav(m, sadb, sah, e, __FILE__, __LINE__) 409 static void key_delsav __P((struct secasvar *)); 410 static struct secashead *key_getsah __P((struct secasindex *)); 411 static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t)); 412 static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t)); 413 static int key_setsaval __P((struct secasvar *, struct mbuf *, 414 const struct sadb_msghdr *)); 415 static int key_mature __P((struct secasvar *)); 416 static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t, 417 u_int8_t, u_int32_t, u_int32_t)); 418 static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t, 419 u_int32_t, pid_t, u_int16_t)); 420 static struct mbuf *key_setsadbsa __P((struct secasvar *)); 421 static struct mbuf *key_setsadbaddr __P((u_int16_t, 422 const struct sockaddr *, u_int8_t, u_int16_t)); 423 static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t)); 424 static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t, 425 u_int32_t)); 426 static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int, 427 struct malloc_type *); 428 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src, 429 struct malloc_type *type); 430 #ifdef INET6 431 static int key_ismyaddr6 __P((struct sockaddr_in6 *)); 432 #endif 433 434 /* flags for key_cmpsaidx() */ 435 #define CMP_HEAD 1 /* protocol, addresses. */ 436 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ 437 #define CMP_REQID 3 /* additionally HEAD, reaid. */ 438 #define CMP_EXACTLY 4 /* all elements. */ 439 static int key_cmpsaidx 440 __P((const struct secasindex *, const struct secasindex *, int)); 441 442 static int key_cmpspidx_exactly 443 __P((struct secpolicyindex *, struct secpolicyindex *)); 444 static int key_cmpspidx_withmask 445 __P((struct secpolicyindex *, struct secpolicyindex *)); 446 static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int)); 447 static int key_bbcmp __P((const void *, const void *, u_int)); 448 static u_int16_t key_satype2proto __P((u_int8_t)); 449 static u_int8_t key_proto2satype __P((u_int16_t)); 450 451 static int key_getspi __P((struct socket *, struct mbuf *, 452 const struct sadb_msghdr *)); 453 static u_int32_t key_do_getnewspi __P((struct sadb_spirange *, 454 struct secasindex *)); 455 static int key_update __P((struct socket *, struct mbuf *, 456 const struct sadb_msghdr *)); 457 #ifdef IPSEC_DOSEQCHECK 458 static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t)); 459 #endif 460 static int key_add __P((struct socket *, struct mbuf *, 461 const struct sadb_msghdr *)); 462 static int key_setident __P((struct secashead *, struct mbuf *, 463 const struct sadb_msghdr *)); 464 static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *, 465 const struct sadb_msghdr *)); 466 static int key_delete __P((struct socket *, struct mbuf *, 467 const struct sadb_msghdr *)); 468 static int key_get __P((struct socket *, struct mbuf *, 469 const struct sadb_msghdr *)); 470 471 static void key_getcomb_setlifetime __P((struct sadb_comb *)); 472 static struct mbuf *key_getcomb_esp __P((void)); 473 static struct mbuf *key_getcomb_ah __P((void)); 474 static struct mbuf *key_getcomb_ipcomp __P((void)); 475 static struct mbuf *key_getprop __P((const struct secasindex *)); 476 477 static int key_acquire __P((const struct secasindex *, struct secpolicy *)); 478 static struct secacq *key_newacq __P((const struct secasindex *)); 479 static struct secacq *key_getacq __P((const struct secasindex *)); 480 static struct secacq *key_getacqbyseq __P((u_int32_t)); 481 static struct secspacq *key_newspacq __P((struct secpolicyindex *)); 482 static struct secspacq *key_getspacq __P((struct secpolicyindex *)); 483 static int key_acquire2 __P((struct socket *, struct mbuf *, 484 const struct sadb_msghdr *)); 485 static int key_register __P((struct socket *, struct mbuf *, 486 const struct sadb_msghdr *)); 487 static int key_expire __P((struct secasvar *)); 488 static int key_flush __P((struct socket *, struct mbuf *, 489 const struct sadb_msghdr *)); 490 static int key_dump __P((struct socket *, struct mbuf *, 491 const struct sadb_msghdr *)); 492 static int key_promisc __P((struct socket *, struct mbuf *, 493 const struct sadb_msghdr *)); 494 static int key_senderror __P((struct socket *, struct mbuf *, int)); 495 static int key_validate_ext __P((const struct sadb_ext *, int)); 496 static int key_align __P((struct mbuf *, struct sadb_msghdr *)); 497 static struct mbuf *key_setlifetime(struct seclifetime *src, 498 u_int16_t exttype); 499 static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype); 500 501 #if 0 502 static const char *key_getfqdn __P((void)); 503 static const char *key_getuserfqdn __P((void)); 504 #endif 505 static void key_sa_chgstate __P((struct secasvar *, u_int8_t)); 506 static struct mbuf *key_alloc_mbuf __P((int)); 507 508 static __inline void 509 sa_initref(struct secasvar *sav) 510 { 511 512 refcount_init(&sav->refcnt, 1); 513 } 514 static __inline void 515 sa_addref(struct secasvar *sav) 516 { 517 518 refcount_acquire(&sav->refcnt); 519 IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow")); 520 } 521 static __inline int 522 sa_delref(struct secasvar *sav) 523 { 524 525 IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow")); 526 return (refcount_release(&sav->refcnt)); 527 } 528 529 #define SP_ADDREF(p) do { \ 530 (p)->refcnt++; \ 531 IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow")); \ 532 } while (0) 533 #define SP_DELREF(p) do { \ 534 IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow")); \ 535 (p)->refcnt--; \ 536 } while (0) 537 538 539 /* 540 * Update the refcnt while holding the SPTREE lock. 541 */ 542 void 543 key_addref(struct secpolicy *sp) 544 { 545 SPTREE_LOCK(); 546 SP_ADDREF(sp); 547 SPTREE_UNLOCK(); 548 } 549 550 /* 551 * Return 0 when there are known to be no SP's for the specified 552 * direction. Otherwise return 1. This is used by IPsec code 553 * to optimize performance. 554 */ 555 int 556 key_havesp(u_int dir) 557 { 558 INIT_VNET_IPSEC(curvnet); 559 560 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? 561 LIST_FIRST(&V_sptree[dir]) != NULL : 1); 562 } 563 564 /* %%% IPsec policy management */ 565 /* 566 * allocating a SP for OUTBOUND or INBOUND packet. 567 * Must call key_freesp() later. 568 * OUT: NULL: not found 569 * others: found and return the pointer. 570 */ 571 struct secpolicy * 572 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag) 573 { 574 INIT_VNET_IPSEC(curvnet); 575 struct secpolicy *sp; 576 577 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 578 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 579 ("invalid direction %u", dir)); 580 581 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 582 printf("DP %s from %s:%u\n", __func__, where, tag)); 583 584 /* get a SP entry */ 585 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 586 printf("*** objects\n"); 587 kdebug_secpolicyindex(spidx)); 588 589 SPTREE_LOCK(); 590 LIST_FOREACH(sp, &V_sptree[dir], chain) { 591 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 592 printf("*** in SPD\n"); 593 kdebug_secpolicyindex(&sp->spidx)); 594 595 if (sp->state == IPSEC_SPSTATE_DEAD) 596 continue; 597 if (key_cmpspidx_withmask(&sp->spidx, spidx)) 598 goto found; 599 } 600 sp = NULL; 601 found: 602 if (sp) { 603 /* sanity check */ 604 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 605 606 /* found a SPD entry */ 607 sp->lastused = time_second; 608 SP_ADDREF(sp); 609 } 610 SPTREE_UNLOCK(); 611 612 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 613 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 614 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 615 return sp; 616 } 617 618 /* 619 * allocating a SP for OUTBOUND or INBOUND packet. 620 * Must call key_freesp() later. 621 * OUT: NULL: not found 622 * others: found and return the pointer. 623 */ 624 struct secpolicy * 625 key_allocsp2(u_int32_t spi, 626 union sockaddr_union *dst, 627 u_int8_t proto, 628 u_int dir, 629 const char* where, int tag) 630 { 631 INIT_VNET_IPSEC(curvnet); 632 struct secpolicy *sp; 633 634 IPSEC_ASSERT(dst != NULL, ("null dst")); 635 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 636 ("invalid direction %u", dir)); 637 638 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 639 printf("DP %s from %s:%u\n", __func__, where, tag)); 640 641 /* get a SP entry */ 642 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 643 printf("*** objects\n"); 644 printf("spi %u proto %u dir %u\n", spi, proto, dir); 645 kdebug_sockaddr(&dst->sa)); 646 647 SPTREE_LOCK(); 648 LIST_FOREACH(sp, &V_sptree[dir], chain) { 649 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 650 printf("*** in SPD\n"); 651 kdebug_secpolicyindex(&sp->spidx)); 652 653 if (sp->state == IPSEC_SPSTATE_DEAD) 654 continue; 655 /* compare simple values, then dst address */ 656 if (sp->spidx.ul_proto != proto) 657 continue; 658 /* NB: spi's must exist and match */ 659 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi) 660 continue; 661 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0) 662 goto found; 663 } 664 sp = NULL; 665 found: 666 if (sp) { 667 /* sanity check */ 668 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 669 670 /* found a SPD entry */ 671 sp->lastused = time_second; 672 SP_ADDREF(sp); 673 } 674 SPTREE_UNLOCK(); 675 676 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 677 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 678 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 679 return sp; 680 } 681 682 /* 683 * return a policy that matches this particular inbound packet. 684 * XXX slow 685 */ 686 struct secpolicy * 687 key_gettunnel(const struct sockaddr *osrc, 688 const struct sockaddr *odst, 689 const struct sockaddr *isrc, 690 const struct sockaddr *idst, 691 const char* where, int tag) 692 { 693 INIT_VNET_IPSEC(curvnet); 694 struct secpolicy *sp; 695 const int dir = IPSEC_DIR_INBOUND; 696 struct ipsecrequest *r1, *r2, *p; 697 struct secpolicyindex spidx; 698 699 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 700 printf("DP %s from %s:%u\n", __func__, where, tag)); 701 702 if (isrc->sa_family != idst->sa_family) { 703 ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.", 704 __func__, isrc->sa_family, idst->sa_family)); 705 sp = NULL; 706 goto done; 707 } 708 709 SPTREE_LOCK(); 710 LIST_FOREACH(sp, &V_sptree[dir], chain) { 711 if (sp->state == IPSEC_SPSTATE_DEAD) 712 continue; 713 714 r1 = r2 = NULL; 715 for (p = sp->req; p; p = p->next) { 716 if (p->saidx.mode != IPSEC_MODE_TUNNEL) 717 continue; 718 719 r1 = r2; 720 r2 = p; 721 722 if (!r1) { 723 /* here we look at address matches only */ 724 spidx = sp->spidx; 725 if (isrc->sa_len > sizeof(spidx.src) || 726 idst->sa_len > sizeof(spidx.dst)) 727 continue; 728 bcopy(isrc, &spidx.src, isrc->sa_len); 729 bcopy(idst, &spidx.dst, idst->sa_len); 730 if (!key_cmpspidx_withmask(&sp->spidx, &spidx)) 731 continue; 732 } else { 733 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) || 734 key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0)) 735 continue; 736 } 737 738 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) || 739 key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0)) 740 continue; 741 742 goto found; 743 } 744 } 745 sp = NULL; 746 found: 747 if (sp) { 748 sp->lastused = time_second; 749 SP_ADDREF(sp); 750 } 751 SPTREE_UNLOCK(); 752 done: 753 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 754 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 755 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 756 return sp; 757 } 758 759 /* 760 * allocating an SA entry for an *OUTBOUND* packet. 761 * checking each request entries in SP, and acquire an SA if need. 762 * OUT: 0: there are valid requests. 763 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. 764 */ 765 int 766 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx) 767 { 768 INIT_VNET_IPSEC(curvnet); 769 u_int level; 770 int error; 771 772 IPSEC_ASSERT(isr != NULL, ("null isr")); 773 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 774 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT || 775 saidx->mode == IPSEC_MODE_TUNNEL, 776 ("unexpected policy %u", saidx->mode)); 777 778 /* 779 * XXX guard against protocol callbacks from the crypto 780 * thread as they reference ipsecrequest.sav which we 781 * temporarily null out below. Need to rethink how we 782 * handle bundled SA's in the callback thread. 783 */ 784 IPSECREQUEST_LOCK_ASSERT(isr); 785 786 /* get current level */ 787 level = ipsec_get_reqlevel(isr); 788 #if 0 789 /* 790 * We do allocate new SA only if the state of SA in the holder is 791 * SADB_SASTATE_DEAD. The SA for outbound must be the oldest. 792 */ 793 if (isr->sav != NULL) { 794 if (isr->sav->sah == NULL) 795 panic("%s: sah is null.\n", __func__); 796 if (isr->sav == (struct secasvar *)LIST_FIRST( 797 &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) { 798 KEY_FREESAV(&isr->sav); 799 isr->sav = NULL; 800 } 801 } 802 #else 803 /* 804 * we free any SA stashed in the IPsec request because a different 805 * SA may be involved each time this request is checked, either 806 * because new SAs are being configured, or this request is 807 * associated with an unconnected datagram socket, or this request 808 * is associated with a system default policy. 809 * 810 * The operation may have negative impact to performance. We may 811 * want to check cached SA carefully, rather than picking new SA 812 * every time. 813 */ 814 if (isr->sav != NULL) { 815 KEY_FREESAV(&isr->sav); 816 isr->sav = NULL; 817 } 818 #endif 819 820 /* 821 * new SA allocation if no SA found. 822 * key_allocsa_policy should allocate the oldest SA available. 823 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt. 824 */ 825 if (isr->sav == NULL) 826 isr->sav = key_allocsa_policy(saidx); 827 828 /* When there is SA. */ 829 if (isr->sav != NULL) { 830 if (isr->sav->state != SADB_SASTATE_MATURE && 831 isr->sav->state != SADB_SASTATE_DYING) 832 return EINVAL; 833 return 0; 834 } 835 836 /* there is no SA */ 837 error = key_acquire(saidx, isr->sp); 838 if (error != 0) { 839 /* XXX What should I do ? */ 840 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 841 __func__, error)); 842 return error; 843 } 844 845 if (level != IPSEC_LEVEL_REQUIRE) { 846 /* XXX sigh, the interface to this routine is botched */ 847 IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA")); 848 return 0; 849 } else { 850 return ENOENT; 851 } 852 } 853 854 /* 855 * allocating a SA for policy entry from SAD. 856 * NOTE: searching SAD of aliving state. 857 * OUT: NULL: not found. 858 * others: found and return the pointer. 859 */ 860 static struct secasvar * 861 key_allocsa_policy(const struct secasindex *saidx) 862 { 863 #define N(a) _ARRAYLEN(a) 864 INIT_VNET_IPSEC(curvnet); 865 struct secashead *sah; 866 struct secasvar *sav; 867 u_int stateidx, arraysize; 868 const u_int *state_valid; 869 870 SAHTREE_LOCK(); 871 LIST_FOREACH(sah, &V_sahtree, chain) { 872 if (sah->state == SADB_SASTATE_DEAD) 873 continue; 874 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) { 875 if (V_key_preferred_oldsa) { 876 state_valid = saorder_state_valid_prefer_old; 877 arraysize = N(saorder_state_valid_prefer_old); 878 } else { 879 state_valid = saorder_state_valid_prefer_new; 880 arraysize = N(saorder_state_valid_prefer_new); 881 } 882 SAHTREE_UNLOCK(); 883 goto found; 884 } 885 } 886 SAHTREE_UNLOCK(); 887 888 return NULL; 889 890 found: 891 /* search valid state */ 892 for (stateidx = 0; stateidx < arraysize; stateidx++) { 893 sav = key_do_allocsa_policy(sah, state_valid[stateidx]); 894 if (sav != NULL) 895 return sav; 896 } 897 898 return NULL; 899 #undef N 900 } 901 902 /* 903 * searching SAD with direction, protocol, mode and state. 904 * called by key_allocsa_policy(). 905 * OUT: 906 * NULL : not found 907 * others : found, pointer to a SA. 908 */ 909 static struct secasvar * 910 key_do_allocsa_policy(struct secashead *sah, u_int state) 911 { 912 INIT_VNET_IPSEC(curvnet); 913 struct secasvar *sav, *nextsav, *candidate, *d; 914 915 /* initilize */ 916 candidate = NULL; 917 918 SAHTREE_LOCK(); 919 for (sav = LIST_FIRST(&sah->savtree[state]); 920 sav != NULL; 921 sav = nextsav) { 922 923 nextsav = LIST_NEXT(sav, chain); 924 925 /* sanity check */ 926 KEY_CHKSASTATE(sav->state, state, __func__); 927 928 /* initialize */ 929 if (candidate == NULL) { 930 candidate = sav; 931 continue; 932 } 933 934 /* Which SA is the better ? */ 935 936 IPSEC_ASSERT(candidate->lft_c != NULL, 937 ("null candidate lifetime")); 938 IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime")); 939 940 /* What the best method is to compare ? */ 941 if (V_key_preferred_oldsa) { 942 if (candidate->lft_c->addtime > 943 sav->lft_c->addtime) { 944 candidate = sav; 945 } 946 continue; 947 /*NOTREACHED*/ 948 } 949 950 /* preferred new sa rather than old sa */ 951 if (candidate->lft_c->addtime < 952 sav->lft_c->addtime) { 953 d = candidate; 954 candidate = sav; 955 } else 956 d = sav; 957 958 /* 959 * prepared to delete the SA when there is more 960 * suitable candidate and the lifetime of the SA is not 961 * permanent. 962 */ 963 if (d->lft_h->addtime != 0) { 964 struct mbuf *m, *result; 965 u_int8_t satype; 966 967 key_sa_chgstate(d, SADB_SASTATE_DEAD); 968 969 IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count")); 970 971 satype = key_proto2satype(d->sah->saidx.proto); 972 if (satype == 0) 973 goto msgfail; 974 975 m = key_setsadbmsg(SADB_DELETE, 0, 976 satype, 0, 0, d->refcnt - 1); 977 if (!m) 978 goto msgfail; 979 result = m; 980 981 /* set sadb_address for saidx's. */ 982 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 983 &d->sah->saidx.src.sa, 984 d->sah->saidx.src.sa.sa_len << 3, 985 IPSEC_ULPROTO_ANY); 986 if (!m) 987 goto msgfail; 988 m_cat(result, m); 989 990 /* set sadb_address for saidx's. */ 991 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 992 &d->sah->saidx.dst.sa, 993 d->sah->saidx.dst.sa.sa_len << 3, 994 IPSEC_ULPROTO_ANY); 995 if (!m) 996 goto msgfail; 997 m_cat(result, m); 998 999 /* create SA extension */ 1000 m = key_setsadbsa(d); 1001 if (!m) 1002 goto msgfail; 1003 m_cat(result, m); 1004 1005 if (result->m_len < sizeof(struct sadb_msg)) { 1006 result = m_pullup(result, 1007 sizeof(struct sadb_msg)); 1008 if (result == NULL) 1009 goto msgfail; 1010 } 1011 1012 result->m_pkthdr.len = 0; 1013 for (m = result; m; m = m->m_next) 1014 result->m_pkthdr.len += m->m_len; 1015 mtod(result, struct sadb_msg *)->sadb_msg_len = 1016 PFKEY_UNIT64(result->m_pkthdr.len); 1017 1018 if (key_sendup_mbuf(NULL, result, 1019 KEY_SENDUP_REGISTERED)) 1020 goto msgfail; 1021 msgfail: 1022 KEY_FREESAV(&d); 1023 } 1024 } 1025 if (candidate) { 1026 sa_addref(candidate); 1027 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1028 printf("DP %s cause refcnt++:%d SA:%p\n", 1029 __func__, candidate->refcnt, candidate)); 1030 } 1031 SAHTREE_UNLOCK(); 1032 1033 return candidate; 1034 } 1035 1036 /* 1037 * allocating a usable SA entry for a *INBOUND* packet. 1038 * Must call key_freesav() later. 1039 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). 1040 * NULL: not found, or error occured. 1041 * 1042 * In the comparison, no source address is used--for RFC2401 conformance. 1043 * To quote, from section 4.1: 1044 * A security association is uniquely identified by a triple consisting 1045 * of a Security Parameter Index (SPI), an IP Destination Address, and a 1046 * security protocol (AH or ESP) identifier. 1047 * Note that, however, we do need to keep source address in IPsec SA. 1048 * IKE specification and PF_KEY specification do assume that we 1049 * keep source address in IPsec SA. We see a tricky situation here. 1050 */ 1051 struct secasvar * 1052 key_allocsa( 1053 union sockaddr_union *dst, 1054 u_int proto, 1055 u_int32_t spi, 1056 const char* where, int tag) 1057 { 1058 INIT_VNET_IPSEC(curvnet); 1059 struct secashead *sah; 1060 struct secasvar *sav; 1061 u_int stateidx, arraysize, state; 1062 const u_int *saorder_state_valid; 1063 1064 IPSEC_ASSERT(dst != NULL, ("null dst address")); 1065 1066 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1067 printf("DP %s from %s:%u\n", __func__, where, tag)); 1068 1069 /* 1070 * searching SAD. 1071 * XXX: to be checked internal IP header somewhere. Also when 1072 * IPsec tunnel packet is received. But ESP tunnel mode is 1073 * encrypted so we can't check internal IP header. 1074 */ 1075 SAHTREE_LOCK(); 1076 if (V_key_preferred_oldsa) { 1077 saorder_state_valid = saorder_state_valid_prefer_old; 1078 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); 1079 } else { 1080 saorder_state_valid = saorder_state_valid_prefer_new; 1081 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); 1082 } 1083 LIST_FOREACH(sah, &V_sahtree, chain) { 1084 /* search valid state */ 1085 for (stateidx = 0; stateidx < arraysize; stateidx++) { 1086 state = saorder_state_valid[stateidx]; 1087 LIST_FOREACH(sav, &sah->savtree[state], chain) { 1088 /* sanity check */ 1089 KEY_CHKSASTATE(sav->state, state, __func__); 1090 /* do not return entries w/ unusable state */ 1091 if (sav->state != SADB_SASTATE_MATURE && 1092 sav->state != SADB_SASTATE_DYING) 1093 continue; 1094 if (proto != sav->sah->saidx.proto) 1095 continue; 1096 if (spi != sav->spi) 1097 continue; 1098 #if 0 /* don't check src */ 1099 /* check src address */ 1100 if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, 0) != 0) 1101 continue; 1102 #endif 1103 /* check dst address */ 1104 if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, 0) != 0) 1105 continue; 1106 sa_addref(sav); 1107 goto done; 1108 } 1109 } 1110 } 1111 sav = NULL; 1112 done: 1113 SAHTREE_UNLOCK(); 1114 1115 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1116 printf("DP %s return SA:%p; refcnt %u\n", __func__, 1117 sav, sav ? sav->refcnt : 0)); 1118 return sav; 1119 } 1120 1121 /* 1122 * Must be called after calling key_allocsp(). 1123 * For both the packet without socket and key_freeso(). 1124 */ 1125 void 1126 _key_freesp(struct secpolicy **spp, const char* where, int tag) 1127 { 1128 INIT_VNET_IPSEC(curvnet); 1129 struct secpolicy *sp = *spp; 1130 1131 IPSEC_ASSERT(sp != NULL, ("null sp")); 1132 1133 SPTREE_LOCK(); 1134 SP_DELREF(sp); 1135 1136 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1137 printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n", 1138 __func__, sp, sp->id, where, tag, sp->refcnt)); 1139 1140 if (sp->refcnt == 0) { 1141 *spp = NULL; 1142 key_delsp(sp); 1143 } 1144 SPTREE_UNLOCK(); 1145 } 1146 1147 /* 1148 * Must be called after calling key_allocsp(). 1149 * For the packet with socket. 1150 */ 1151 void 1152 key_freeso(struct socket *so) 1153 { 1154 INIT_VNET_IPSEC(curvnet); 1155 IPSEC_ASSERT(so != NULL, ("null so")); 1156 1157 switch (so->so_proto->pr_domain->dom_family) { 1158 #ifdef INET 1159 case PF_INET: 1160 { 1161 struct inpcb *pcb = sotoinpcb(so); 1162 1163 /* Does it have a PCB ? */ 1164 if (pcb == NULL) 1165 return; 1166 key_freesp_so(&pcb->inp_sp->sp_in); 1167 key_freesp_so(&pcb->inp_sp->sp_out); 1168 } 1169 break; 1170 #endif 1171 #ifdef INET6 1172 case PF_INET6: 1173 { 1174 #ifdef HAVE_NRL_INPCB 1175 struct inpcb *pcb = sotoinpcb(so); 1176 1177 /* Does it have a PCB ? */ 1178 if (pcb == NULL) 1179 return; 1180 key_freesp_so(&pcb->inp_sp->sp_in); 1181 key_freesp_so(&pcb->inp_sp->sp_out); 1182 #else 1183 struct in6pcb *pcb = sotoin6pcb(so); 1184 1185 /* Does it have a PCB ? */ 1186 if (pcb == NULL) 1187 return; 1188 key_freesp_so(&pcb->in6p_sp->sp_in); 1189 key_freesp_so(&pcb->in6p_sp->sp_out); 1190 #endif 1191 } 1192 break; 1193 #endif /* INET6 */ 1194 default: 1195 ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n", 1196 __func__, so->so_proto->pr_domain->dom_family)); 1197 return; 1198 } 1199 } 1200 1201 static void 1202 key_freesp_so(struct secpolicy **sp) 1203 { 1204 IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp")); 1205 1206 if ((*sp)->policy == IPSEC_POLICY_ENTRUST || 1207 (*sp)->policy == IPSEC_POLICY_BYPASS) 1208 return; 1209 1210 IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC, 1211 ("invalid policy %u", (*sp)->policy)); 1212 KEY_FREESP(sp); 1213 } 1214 1215 /* 1216 * Must be called after calling key_allocsa(). 1217 * This function is called by key_freesp() to free some SA allocated 1218 * for a policy. 1219 */ 1220 void 1221 key_freesav(struct secasvar **psav, const char* where, int tag) 1222 { 1223 INIT_VNET_IPSEC(curvnet); 1224 struct secasvar *sav = *psav; 1225 1226 IPSEC_ASSERT(sav != NULL, ("null sav")); 1227 1228 if (sa_delref(sav)) { 1229 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1230 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1231 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1232 *psav = NULL; 1233 key_delsav(sav); 1234 } else { 1235 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1236 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1237 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1238 } 1239 } 1240 1241 /* %%% SPD management */ 1242 /* 1243 * free security policy entry. 1244 */ 1245 static void 1246 key_delsp(struct secpolicy *sp) 1247 { 1248 struct ipsecrequest *isr, *nextisr; 1249 1250 IPSEC_ASSERT(sp != NULL, ("null sp")); 1251 SPTREE_LOCK_ASSERT(); 1252 1253 sp->state = IPSEC_SPSTATE_DEAD; 1254 1255 IPSEC_ASSERT(sp->refcnt == 0, 1256 ("SP with references deleted (refcnt %u)", sp->refcnt)); 1257 1258 /* remove from SP index */ 1259 if (__LIST_CHAINED(sp)) 1260 LIST_REMOVE(sp, chain); 1261 1262 for (isr = sp->req; isr != NULL; isr = nextisr) { 1263 if (isr->sav != NULL) { 1264 KEY_FREESAV(&isr->sav); 1265 isr->sav = NULL; 1266 } 1267 1268 nextisr = isr->next; 1269 ipsec_delisr(isr); 1270 } 1271 _key_delsp(sp); 1272 } 1273 1274 /* 1275 * search SPD 1276 * OUT: NULL : not found 1277 * others : found, pointer to a SP. 1278 */ 1279 static struct secpolicy * 1280 key_getsp(struct secpolicyindex *spidx) 1281 { 1282 INIT_VNET_IPSEC(curvnet); 1283 struct secpolicy *sp; 1284 1285 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 1286 1287 SPTREE_LOCK(); 1288 LIST_FOREACH(sp, &V_sptree[spidx->dir], chain) { 1289 if (sp->state == IPSEC_SPSTATE_DEAD) 1290 continue; 1291 if (key_cmpspidx_exactly(spidx, &sp->spidx)) { 1292 SP_ADDREF(sp); 1293 break; 1294 } 1295 } 1296 SPTREE_UNLOCK(); 1297 1298 return sp; 1299 } 1300 1301 /* 1302 * get SP by index. 1303 * OUT: NULL : not found 1304 * others : found, pointer to a SP. 1305 */ 1306 static struct secpolicy * 1307 key_getspbyid(u_int32_t id) 1308 { 1309 INIT_VNET_IPSEC(curvnet); 1310 struct secpolicy *sp; 1311 1312 SPTREE_LOCK(); 1313 LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_INBOUND], chain) { 1314 if (sp->state == IPSEC_SPSTATE_DEAD) 1315 continue; 1316 if (sp->id == id) { 1317 SP_ADDREF(sp); 1318 goto done; 1319 } 1320 } 1321 1322 LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_OUTBOUND], chain) { 1323 if (sp->state == IPSEC_SPSTATE_DEAD) 1324 continue; 1325 if (sp->id == id) { 1326 SP_ADDREF(sp); 1327 goto done; 1328 } 1329 } 1330 done: 1331 SPTREE_UNLOCK(); 1332 1333 return sp; 1334 } 1335 1336 struct secpolicy * 1337 key_newsp(const char* where, int tag) 1338 { 1339 INIT_VNET_IPSEC(curvnet); 1340 struct secpolicy *newsp = NULL; 1341 1342 newsp = (struct secpolicy *) 1343 malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO); 1344 if (newsp) { 1345 SECPOLICY_LOCK_INIT(newsp); 1346 newsp->refcnt = 1; 1347 newsp->req = NULL; 1348 } 1349 1350 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1351 printf("DP %s from %s:%u return SP:%p\n", __func__, 1352 where, tag, newsp)); 1353 return newsp; 1354 } 1355 1356 static void 1357 _key_delsp(struct secpolicy *sp) 1358 { 1359 SECPOLICY_LOCK_DESTROY(sp); 1360 free(sp, M_IPSEC_SP); 1361 } 1362 1363 /* 1364 * create secpolicy structure from sadb_x_policy structure. 1365 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, 1366 * so must be set properly later. 1367 */ 1368 struct secpolicy * 1369 key_msg2sp(xpl0, len, error) 1370 struct sadb_x_policy *xpl0; 1371 size_t len; 1372 int *error; 1373 { 1374 INIT_VNET_IPSEC(curvnet); 1375 struct secpolicy *newsp; 1376 1377 IPSEC_ASSERT(xpl0 != NULL, ("null xpl0")); 1378 IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len)); 1379 1380 if (len != PFKEY_EXTLEN(xpl0)) { 1381 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__)); 1382 *error = EINVAL; 1383 return NULL; 1384 } 1385 1386 if ((newsp = KEY_NEWSP()) == NULL) { 1387 *error = ENOBUFS; 1388 return NULL; 1389 } 1390 1391 newsp->spidx.dir = xpl0->sadb_x_policy_dir; 1392 newsp->policy = xpl0->sadb_x_policy_type; 1393 1394 /* check policy */ 1395 switch (xpl0->sadb_x_policy_type) { 1396 case IPSEC_POLICY_DISCARD: 1397 case IPSEC_POLICY_NONE: 1398 case IPSEC_POLICY_ENTRUST: 1399 case IPSEC_POLICY_BYPASS: 1400 newsp->req = NULL; 1401 break; 1402 1403 case IPSEC_POLICY_IPSEC: 1404 { 1405 int tlen; 1406 struct sadb_x_ipsecrequest *xisr; 1407 struct ipsecrequest **p_isr = &newsp->req; 1408 1409 /* validity check */ 1410 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { 1411 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", 1412 __func__)); 1413 KEY_FREESP(&newsp); 1414 *error = EINVAL; 1415 return NULL; 1416 } 1417 1418 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); 1419 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1); 1420 1421 while (tlen > 0) { 1422 /* length check */ 1423 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { 1424 ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest " 1425 "length.\n", __func__)); 1426 KEY_FREESP(&newsp); 1427 *error = EINVAL; 1428 return NULL; 1429 } 1430 1431 /* allocate request buffer */ 1432 /* NB: data structure is zero'd */ 1433 *p_isr = ipsec_newisr(); 1434 if ((*p_isr) == NULL) { 1435 ipseclog((LOG_DEBUG, 1436 "%s: No more memory.\n", __func__)); 1437 KEY_FREESP(&newsp); 1438 *error = ENOBUFS; 1439 return NULL; 1440 } 1441 1442 /* set values */ 1443 switch (xisr->sadb_x_ipsecrequest_proto) { 1444 case IPPROTO_ESP: 1445 case IPPROTO_AH: 1446 case IPPROTO_IPCOMP: 1447 break; 1448 default: 1449 ipseclog((LOG_DEBUG, 1450 "%s: invalid proto type=%u\n", __func__, 1451 xisr->sadb_x_ipsecrequest_proto)); 1452 KEY_FREESP(&newsp); 1453 *error = EPROTONOSUPPORT; 1454 return NULL; 1455 } 1456 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; 1457 1458 switch (xisr->sadb_x_ipsecrequest_mode) { 1459 case IPSEC_MODE_TRANSPORT: 1460 case IPSEC_MODE_TUNNEL: 1461 break; 1462 case IPSEC_MODE_ANY: 1463 default: 1464 ipseclog((LOG_DEBUG, 1465 "%s: invalid mode=%u\n", __func__, 1466 xisr->sadb_x_ipsecrequest_mode)); 1467 KEY_FREESP(&newsp); 1468 *error = EINVAL; 1469 return NULL; 1470 } 1471 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; 1472 1473 switch (xisr->sadb_x_ipsecrequest_level) { 1474 case IPSEC_LEVEL_DEFAULT: 1475 case IPSEC_LEVEL_USE: 1476 case IPSEC_LEVEL_REQUIRE: 1477 break; 1478 case IPSEC_LEVEL_UNIQUE: 1479 /* validity check */ 1480 /* 1481 * If range violation of reqid, kernel will 1482 * update it, don't refuse it. 1483 */ 1484 if (xisr->sadb_x_ipsecrequest_reqid 1485 > IPSEC_MANUAL_REQID_MAX) { 1486 ipseclog((LOG_DEBUG, 1487 "%s: reqid=%d range " 1488 "violation, updated by kernel.\n", 1489 __func__, 1490 xisr->sadb_x_ipsecrequest_reqid)); 1491 xisr->sadb_x_ipsecrequest_reqid = 0; 1492 } 1493 1494 /* allocate new reqid id if reqid is zero. */ 1495 if (xisr->sadb_x_ipsecrequest_reqid == 0) { 1496 u_int32_t reqid; 1497 if ((reqid = key_newreqid()) == 0) { 1498 KEY_FREESP(&newsp); 1499 *error = ENOBUFS; 1500 return NULL; 1501 } 1502 (*p_isr)->saidx.reqid = reqid; 1503 xisr->sadb_x_ipsecrequest_reqid = reqid; 1504 } else { 1505 /* set it for manual keying. */ 1506 (*p_isr)->saidx.reqid = 1507 xisr->sadb_x_ipsecrequest_reqid; 1508 } 1509 break; 1510 1511 default: 1512 ipseclog((LOG_DEBUG, "%s: invalid level=%u\n", 1513 __func__, 1514 xisr->sadb_x_ipsecrequest_level)); 1515 KEY_FREESP(&newsp); 1516 *error = EINVAL; 1517 return NULL; 1518 } 1519 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; 1520 1521 /* set IP addresses if there */ 1522 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { 1523 struct sockaddr *paddr; 1524 1525 paddr = (struct sockaddr *)(xisr + 1); 1526 1527 /* validity check */ 1528 if (paddr->sa_len 1529 > sizeof((*p_isr)->saidx.src)) { 1530 ipseclog((LOG_DEBUG, "%s: invalid " 1531 "request address length.\n", 1532 __func__)); 1533 KEY_FREESP(&newsp); 1534 *error = EINVAL; 1535 return NULL; 1536 } 1537 bcopy(paddr, &(*p_isr)->saidx.src, 1538 paddr->sa_len); 1539 1540 paddr = (struct sockaddr *)((caddr_t)paddr 1541 + paddr->sa_len); 1542 1543 /* validity check */ 1544 if (paddr->sa_len 1545 > sizeof((*p_isr)->saidx.dst)) { 1546 ipseclog((LOG_DEBUG, "%s: invalid " 1547 "request address length.\n", 1548 __func__)); 1549 KEY_FREESP(&newsp); 1550 *error = EINVAL; 1551 return NULL; 1552 } 1553 bcopy(paddr, &(*p_isr)->saidx.dst, 1554 paddr->sa_len); 1555 } 1556 1557 (*p_isr)->sp = newsp; 1558 1559 /* initialization for the next. */ 1560 p_isr = &(*p_isr)->next; 1561 tlen -= xisr->sadb_x_ipsecrequest_len; 1562 1563 /* validity check */ 1564 if (tlen < 0) { 1565 ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n", 1566 __func__)); 1567 KEY_FREESP(&newsp); 1568 *error = EINVAL; 1569 return NULL; 1570 } 1571 1572 xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr 1573 + xisr->sadb_x_ipsecrequest_len); 1574 } 1575 } 1576 break; 1577 default: 1578 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); 1579 KEY_FREESP(&newsp); 1580 *error = EINVAL; 1581 return NULL; 1582 } 1583 1584 *error = 0; 1585 return newsp; 1586 } 1587 1588 static u_int32_t 1589 key_newreqid() 1590 { 1591 static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 1592 1593 auto_reqid = (auto_reqid == ~0 1594 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); 1595 1596 /* XXX should be unique check */ 1597 1598 return auto_reqid; 1599 } 1600 1601 /* 1602 * copy secpolicy struct to sadb_x_policy structure indicated. 1603 */ 1604 struct mbuf * 1605 key_sp2msg(sp) 1606 struct secpolicy *sp; 1607 { 1608 struct sadb_x_policy *xpl; 1609 int tlen; 1610 caddr_t p; 1611 struct mbuf *m; 1612 1613 IPSEC_ASSERT(sp != NULL, ("null policy")); 1614 1615 tlen = key_getspreqmsglen(sp); 1616 1617 m = key_alloc_mbuf(tlen); 1618 if (!m || m->m_next) { /*XXX*/ 1619 if (m) 1620 m_freem(m); 1621 return NULL; 1622 } 1623 1624 m->m_len = tlen; 1625 m->m_next = NULL; 1626 xpl = mtod(m, struct sadb_x_policy *); 1627 bzero(xpl, tlen); 1628 1629 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen); 1630 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 1631 xpl->sadb_x_policy_type = sp->policy; 1632 xpl->sadb_x_policy_dir = sp->spidx.dir; 1633 xpl->sadb_x_policy_id = sp->id; 1634 p = (caddr_t)xpl + sizeof(*xpl); 1635 1636 /* if is the policy for ipsec ? */ 1637 if (sp->policy == IPSEC_POLICY_IPSEC) { 1638 struct sadb_x_ipsecrequest *xisr; 1639 struct ipsecrequest *isr; 1640 1641 for (isr = sp->req; isr != NULL; isr = isr->next) { 1642 1643 xisr = (struct sadb_x_ipsecrequest *)p; 1644 1645 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; 1646 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; 1647 xisr->sadb_x_ipsecrequest_level = isr->level; 1648 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; 1649 1650 p += sizeof(*xisr); 1651 bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len); 1652 p += isr->saidx.src.sa.sa_len; 1653 bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len); 1654 p += isr->saidx.src.sa.sa_len; 1655 1656 xisr->sadb_x_ipsecrequest_len = 1657 PFKEY_ALIGN8(sizeof(*xisr) 1658 + isr->saidx.src.sa.sa_len 1659 + isr->saidx.dst.sa.sa_len); 1660 } 1661 } 1662 1663 return m; 1664 } 1665 1666 /* m will not be freed nor modified */ 1667 static struct mbuf * 1668 #ifdef __STDC__ 1669 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, 1670 int ndeep, int nitem, ...) 1671 #else 1672 key_gather_mbuf(m, mhp, ndeep, nitem, va_alist) 1673 struct mbuf *m; 1674 const struct sadb_msghdr *mhp; 1675 int ndeep; 1676 int nitem; 1677 va_dcl 1678 #endif 1679 { 1680 va_list ap; 1681 int idx; 1682 int i; 1683 struct mbuf *result = NULL, *n; 1684 int len; 1685 1686 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1687 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1688 1689 va_start(ap, nitem); 1690 for (i = 0; i < nitem; i++) { 1691 idx = va_arg(ap, int); 1692 if (idx < 0 || idx > SADB_EXT_MAX) 1693 goto fail; 1694 /* don't attempt to pull empty extension */ 1695 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) 1696 continue; 1697 if (idx != SADB_EXT_RESERVED && 1698 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) 1699 continue; 1700 1701 if (idx == SADB_EXT_RESERVED) { 1702 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 1703 1704 IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len)); 1705 1706 MGETHDR(n, M_DONTWAIT, MT_DATA); 1707 if (!n) 1708 goto fail; 1709 n->m_len = len; 1710 n->m_next = NULL; 1711 m_copydata(m, 0, sizeof(struct sadb_msg), 1712 mtod(n, caddr_t)); 1713 } else if (i < ndeep) { 1714 len = mhp->extlen[idx]; 1715 n = key_alloc_mbuf(len); 1716 if (!n || n->m_next) { /*XXX*/ 1717 if (n) 1718 m_freem(n); 1719 goto fail; 1720 } 1721 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], 1722 mtod(n, caddr_t)); 1723 } else { 1724 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], 1725 M_DONTWAIT); 1726 } 1727 if (n == NULL) 1728 goto fail; 1729 1730 if (result) 1731 m_cat(result, n); 1732 else 1733 result = n; 1734 } 1735 va_end(ap); 1736 1737 if ((result->m_flags & M_PKTHDR) != 0) { 1738 result->m_pkthdr.len = 0; 1739 for (n = result; n; n = n->m_next) 1740 result->m_pkthdr.len += n->m_len; 1741 } 1742 1743 return result; 1744 1745 fail: 1746 m_freem(result); 1747 return NULL; 1748 } 1749 1750 /* 1751 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing 1752 * add an entry to SP database, when received 1753 * <base, address(SD), (lifetime(H),) policy> 1754 * from the user(?). 1755 * Adding to SP database, 1756 * and send 1757 * <base, address(SD), (lifetime(H),) policy> 1758 * to the socket which was send. 1759 * 1760 * SPDADD set a unique policy entry. 1761 * SPDSETIDX like SPDADD without a part of policy requests. 1762 * SPDUPDATE replace a unique policy entry. 1763 * 1764 * m will always be freed. 1765 */ 1766 static int 1767 key_spdadd(so, m, mhp) 1768 struct socket *so; 1769 struct mbuf *m; 1770 const struct sadb_msghdr *mhp; 1771 { 1772 INIT_VNET_IPSEC(curvnet); 1773 struct sadb_address *src0, *dst0; 1774 struct sadb_x_policy *xpl0, *xpl; 1775 struct sadb_lifetime *lft = NULL; 1776 struct secpolicyindex spidx; 1777 struct secpolicy *newsp; 1778 int error; 1779 1780 IPSEC_ASSERT(so != NULL, ("null socket")); 1781 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1782 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1783 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 1784 1785 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 1786 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 1787 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 1788 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n")); 1789 return key_senderror(so, m, EINVAL); 1790 } 1791 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 1792 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 1793 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 1794 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1795 __func__)); 1796 return key_senderror(so, m, EINVAL); 1797 } 1798 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { 1799 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] 1800 < sizeof(struct sadb_lifetime)) { 1801 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1802 __func__)); 1803 return key_senderror(so, m, EINVAL); 1804 } 1805 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 1806 } 1807 1808 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 1809 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 1810 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 1811 1812 /* make secindex */ 1813 /* XXX boundary check against sa_len */ 1814 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1815 src0 + 1, 1816 dst0 + 1, 1817 src0->sadb_address_prefixlen, 1818 dst0->sadb_address_prefixlen, 1819 src0->sadb_address_proto, 1820 &spidx); 1821 1822 /* checking the direciton. */ 1823 switch (xpl0->sadb_x_policy_dir) { 1824 case IPSEC_DIR_INBOUND: 1825 case IPSEC_DIR_OUTBOUND: 1826 break; 1827 default: 1828 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 1829 mhp->msg->sadb_msg_errno = EINVAL; 1830 return 0; 1831 } 1832 1833 /* check policy */ 1834 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */ 1835 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST 1836 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { 1837 ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__)); 1838 return key_senderror(so, m, EINVAL); 1839 } 1840 1841 /* policy requests are mandatory when action is ipsec. */ 1842 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX 1843 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC 1844 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { 1845 ipseclog((LOG_DEBUG, "%s: some policy requests part required\n", 1846 __func__)); 1847 return key_senderror(so, m, EINVAL); 1848 } 1849 1850 /* 1851 * checking there is SP already or not. 1852 * SPDUPDATE doesn't depend on whether there is a SP or not. 1853 * If the type is either SPDADD or SPDSETIDX AND a SP is found, 1854 * then error. 1855 */ 1856 newsp = key_getsp(&spidx); 1857 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1858 if (newsp) { 1859 newsp->state = IPSEC_SPSTATE_DEAD; 1860 KEY_FREESP(&newsp); 1861 } 1862 } else { 1863 if (newsp != NULL) { 1864 KEY_FREESP(&newsp); 1865 ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n", 1866 __func__)); 1867 return key_senderror(so, m, EEXIST); 1868 } 1869 } 1870 1871 /* allocation new SP entry */ 1872 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) { 1873 return key_senderror(so, m, error); 1874 } 1875 1876 if ((newsp->id = key_getnewspid()) == 0) { 1877 _key_delsp(newsp); 1878 return key_senderror(so, m, ENOBUFS); 1879 } 1880 1881 /* XXX boundary check against sa_len */ 1882 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1883 src0 + 1, 1884 dst0 + 1, 1885 src0->sadb_address_prefixlen, 1886 dst0->sadb_address_prefixlen, 1887 src0->sadb_address_proto, 1888 &newsp->spidx); 1889 1890 /* sanity check on addr pair */ 1891 if (((struct sockaddr *)(src0 + 1))->sa_family != 1892 ((struct sockaddr *)(dst0+ 1))->sa_family) { 1893 _key_delsp(newsp); 1894 return key_senderror(so, m, EINVAL); 1895 } 1896 if (((struct sockaddr *)(src0 + 1))->sa_len != 1897 ((struct sockaddr *)(dst0+ 1))->sa_len) { 1898 _key_delsp(newsp); 1899 return key_senderror(so, m, EINVAL); 1900 } 1901 #if 1 1902 if (newsp->req && newsp->req->saidx.src.sa.sa_family) { 1903 struct sockaddr *sa; 1904 sa = (struct sockaddr *)(src0 + 1); 1905 if (sa->sa_family != newsp->req->saidx.src.sa.sa_family) { 1906 _key_delsp(newsp); 1907 return key_senderror(so, m, EINVAL); 1908 } 1909 } 1910 if (newsp->req && newsp->req->saidx.dst.sa.sa_family) { 1911 struct sockaddr *sa; 1912 sa = (struct sockaddr *)(dst0 + 1); 1913 if (sa->sa_family != newsp->req->saidx.dst.sa.sa_family) { 1914 _key_delsp(newsp); 1915 return key_senderror(so, m, EINVAL); 1916 } 1917 } 1918 #endif 1919 1920 newsp->created = time_second; 1921 newsp->lastused = newsp->created; 1922 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; 1923 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; 1924 1925 newsp->refcnt = 1; /* do not reclaim until I say I do */ 1926 newsp->state = IPSEC_SPSTATE_ALIVE; 1927 LIST_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, secpolicy, chain); 1928 1929 /* delete the entry in spacqtree */ 1930 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1931 struct secspacq *spacq = key_getspacq(&spidx); 1932 if (spacq != NULL) { 1933 /* reset counter in order to deletion by timehandler. */ 1934 spacq->created = time_second; 1935 spacq->count = 0; 1936 SPACQ_UNLOCK(); 1937 } 1938 } 1939 1940 { 1941 struct mbuf *n, *mpolicy; 1942 struct sadb_msg *newmsg; 1943 int off; 1944 1945 /* create new sadb_msg to reply. */ 1946 if (lft) { 1947 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, 1948 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, 1949 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1950 } else { 1951 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, 1952 SADB_X_EXT_POLICY, 1953 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1954 } 1955 if (!n) 1956 return key_senderror(so, m, ENOBUFS); 1957 1958 if (n->m_len < sizeof(*newmsg)) { 1959 n = m_pullup(n, sizeof(*newmsg)); 1960 if (!n) 1961 return key_senderror(so, m, ENOBUFS); 1962 } 1963 newmsg = mtod(n, struct sadb_msg *); 1964 newmsg->sadb_msg_errno = 0; 1965 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 1966 1967 off = 0; 1968 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), 1969 sizeof(*xpl), &off); 1970 if (mpolicy == NULL) { 1971 /* n is already freed */ 1972 return key_senderror(so, m, ENOBUFS); 1973 } 1974 xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off); 1975 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { 1976 m_freem(n); 1977 return key_senderror(so, m, EINVAL); 1978 } 1979 xpl->sadb_x_policy_id = newsp->id; 1980 1981 m_freem(m); 1982 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 1983 } 1984 } 1985 1986 /* 1987 * get new policy id. 1988 * OUT: 1989 * 0: failure. 1990 * others: success. 1991 */ 1992 static u_int32_t 1993 key_getnewspid() 1994 { 1995 INIT_VNET_IPSEC(curvnet); 1996 u_int32_t newid = 0; 1997 int count = V_key_spi_trycnt; /* XXX */ 1998 struct secpolicy *sp; 1999 2000 /* when requesting to allocate spi ranged */ 2001 while (count--) { 2002 newid = (V_policy_id = (V_policy_id == ~0 ? 1 : V_policy_id + 1)); 2003 2004 if ((sp = key_getspbyid(newid)) == NULL) 2005 break; 2006 2007 KEY_FREESP(&sp); 2008 } 2009 2010 if (count == 0 || newid == 0) { 2011 ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n", 2012 __func__)); 2013 return 0; 2014 } 2015 2016 return newid; 2017 } 2018 2019 /* 2020 * SADB_SPDDELETE processing 2021 * receive 2022 * <base, address(SD), policy(*)> 2023 * from the user(?), and set SADB_SASTATE_DEAD, 2024 * and send, 2025 * <base, address(SD), policy(*)> 2026 * to the ikmpd. 2027 * policy(*) including direction of policy. 2028 * 2029 * m will always be freed. 2030 */ 2031 static int 2032 key_spddelete(so, m, mhp) 2033 struct socket *so; 2034 struct mbuf *m; 2035 const struct sadb_msghdr *mhp; 2036 { 2037 INIT_VNET_IPSEC(curvnet); 2038 struct sadb_address *src0, *dst0; 2039 struct sadb_x_policy *xpl0; 2040 struct secpolicyindex spidx; 2041 struct secpolicy *sp; 2042 2043 IPSEC_ASSERT(so != NULL, ("null so")); 2044 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2045 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2046 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2047 2048 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2049 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2050 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2051 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2052 __func__)); 2053 return key_senderror(so, m, EINVAL); 2054 } 2055 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2056 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2057 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2058 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2059 __func__)); 2060 return key_senderror(so, m, EINVAL); 2061 } 2062 2063 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 2064 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 2065 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 2066 2067 /* make secindex */ 2068 /* XXX boundary check against sa_len */ 2069 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 2070 src0 + 1, 2071 dst0 + 1, 2072 src0->sadb_address_prefixlen, 2073 dst0->sadb_address_prefixlen, 2074 src0->sadb_address_proto, 2075 &spidx); 2076 2077 /* checking the direciton. */ 2078 switch (xpl0->sadb_x_policy_dir) { 2079 case IPSEC_DIR_INBOUND: 2080 case IPSEC_DIR_OUTBOUND: 2081 break; 2082 default: 2083 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 2084 return key_senderror(so, m, EINVAL); 2085 } 2086 2087 /* Is there SP in SPD ? */ 2088 if ((sp = key_getsp(&spidx)) == NULL) { 2089 ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__)); 2090 return key_senderror(so, m, EINVAL); 2091 } 2092 2093 /* save policy id to buffer to be returned. */ 2094 xpl0->sadb_x_policy_id = sp->id; 2095 2096 sp->state = IPSEC_SPSTATE_DEAD; 2097 KEY_FREESP(&sp); 2098 2099 { 2100 struct mbuf *n; 2101 struct sadb_msg *newmsg; 2102 2103 /* create new sadb_msg to reply. */ 2104 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 2105 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2106 if (!n) 2107 return key_senderror(so, m, ENOBUFS); 2108 2109 newmsg = mtod(n, struct sadb_msg *); 2110 newmsg->sadb_msg_errno = 0; 2111 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2112 2113 m_freem(m); 2114 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2115 } 2116 } 2117 2118 /* 2119 * SADB_SPDDELETE2 processing 2120 * receive 2121 * <base, policy(*)> 2122 * from the user(?), and set SADB_SASTATE_DEAD, 2123 * and send, 2124 * <base, policy(*)> 2125 * to the ikmpd. 2126 * policy(*) including direction of policy. 2127 * 2128 * m will always be freed. 2129 */ 2130 static int 2131 key_spddelete2(so, m, mhp) 2132 struct socket *so; 2133 struct mbuf *m; 2134 const struct sadb_msghdr *mhp; 2135 { 2136 INIT_VNET_IPSEC(curvnet); 2137 u_int32_t id; 2138 struct secpolicy *sp; 2139 2140 IPSEC_ASSERT(so != NULL, ("null socket")); 2141 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2142 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2143 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2144 2145 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2146 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2147 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); 2148 return key_senderror(so, m, EINVAL); 2149 } 2150 2151 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2152 2153 /* Is there SP in SPD ? */ 2154 if ((sp = key_getspbyid(id)) == NULL) { 2155 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2156 return key_senderror(so, m, EINVAL); 2157 } 2158 2159 sp->state = IPSEC_SPSTATE_DEAD; 2160 KEY_FREESP(&sp); 2161 2162 { 2163 struct mbuf *n, *nn; 2164 struct sadb_msg *newmsg; 2165 int off, len; 2166 2167 /* create new sadb_msg to reply. */ 2168 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2169 2170 MGETHDR(n, M_DONTWAIT, MT_DATA); 2171 if (n && len > MHLEN) { 2172 MCLGET(n, M_DONTWAIT); 2173 if ((n->m_flags & M_EXT) == 0) { 2174 m_freem(n); 2175 n = NULL; 2176 } 2177 } 2178 if (!n) 2179 return key_senderror(so, m, ENOBUFS); 2180 2181 n->m_len = len; 2182 n->m_next = NULL; 2183 off = 0; 2184 2185 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 2186 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2187 2188 IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)", 2189 off, len)); 2190 2191 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], 2192 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT); 2193 if (!n->m_next) { 2194 m_freem(n); 2195 return key_senderror(so, m, ENOBUFS); 2196 } 2197 2198 n->m_pkthdr.len = 0; 2199 for (nn = n; nn; nn = nn->m_next) 2200 n->m_pkthdr.len += nn->m_len; 2201 2202 newmsg = mtod(n, struct sadb_msg *); 2203 newmsg->sadb_msg_errno = 0; 2204 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2205 2206 m_freem(m); 2207 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2208 } 2209 } 2210 2211 /* 2212 * SADB_X_GET processing 2213 * receive 2214 * <base, policy(*)> 2215 * from the user(?), 2216 * and send, 2217 * <base, address(SD), policy> 2218 * to the ikmpd. 2219 * policy(*) including direction of policy. 2220 * 2221 * m will always be freed. 2222 */ 2223 static int 2224 key_spdget(so, m, mhp) 2225 struct socket *so; 2226 struct mbuf *m; 2227 const struct sadb_msghdr *mhp; 2228 { 2229 INIT_VNET_IPSEC(curvnet); 2230 u_int32_t id; 2231 struct secpolicy *sp; 2232 struct mbuf *n; 2233 2234 IPSEC_ASSERT(so != NULL, ("null socket")); 2235 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2236 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2237 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2238 2239 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2240 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2241 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2242 __func__)); 2243 return key_senderror(so, m, EINVAL); 2244 } 2245 2246 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2247 2248 /* Is there SP in SPD ? */ 2249 if ((sp = key_getspbyid(id)) == NULL) { 2250 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2251 return key_senderror(so, m, ENOENT); 2252 } 2253 2254 n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid); 2255 if (n != NULL) { 2256 m_freem(m); 2257 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2258 } else 2259 return key_senderror(so, m, ENOBUFS); 2260 } 2261 2262 /* 2263 * SADB_X_SPDACQUIRE processing. 2264 * Acquire policy and SA(s) for a *OUTBOUND* packet. 2265 * send 2266 * <base, policy(*)> 2267 * to KMD, and expect to receive 2268 * <base> with SADB_X_SPDACQUIRE if error occured, 2269 * or 2270 * <base, policy> 2271 * with SADB_X_SPDUPDATE from KMD by PF_KEY. 2272 * policy(*) is without policy requests. 2273 * 2274 * 0 : succeed 2275 * others: error number 2276 */ 2277 int 2278 key_spdacquire(sp) 2279 struct secpolicy *sp; 2280 { 2281 INIT_VNET_IPSEC(curvnet); 2282 struct mbuf *result = NULL, *m; 2283 struct secspacq *newspacq; 2284 2285 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2286 IPSEC_ASSERT(sp->req == NULL, ("policy exists")); 2287 IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC, 2288 ("policy not IPSEC %u", sp->policy)); 2289 2290 /* Get an entry to check whether sent message or not. */ 2291 newspacq = key_getspacq(&sp->spidx); 2292 if (newspacq != NULL) { 2293 if (V_key_blockacq_count < newspacq->count) { 2294 /* reset counter and do send message. */ 2295 newspacq->count = 0; 2296 } else { 2297 /* increment counter and do nothing. */ 2298 newspacq->count++; 2299 return 0; 2300 } 2301 SPACQ_UNLOCK(); 2302 } else { 2303 /* make new entry for blocking to send SADB_ACQUIRE. */ 2304 newspacq = key_newspacq(&sp->spidx); 2305 if (newspacq == NULL) 2306 return ENOBUFS; 2307 } 2308 2309 /* create new sadb_msg to reply. */ 2310 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); 2311 if (!m) 2312 return ENOBUFS; 2313 2314 result = m; 2315 2316 result->m_pkthdr.len = 0; 2317 for (m = result; m; m = m->m_next) 2318 result->m_pkthdr.len += m->m_len; 2319 2320 mtod(result, struct sadb_msg *)->sadb_msg_len = 2321 PFKEY_UNIT64(result->m_pkthdr.len); 2322 2323 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 2324 } 2325 2326 /* 2327 * SADB_SPDFLUSH processing 2328 * receive 2329 * <base> 2330 * from the user, and free all entries in secpctree. 2331 * and send, 2332 * <base> 2333 * to the user. 2334 * NOTE: what to do is only marking SADB_SASTATE_DEAD. 2335 * 2336 * m will always be freed. 2337 */ 2338 static int 2339 key_spdflush(so, m, mhp) 2340 struct socket *so; 2341 struct mbuf *m; 2342 const struct sadb_msghdr *mhp; 2343 { 2344 INIT_VNET_IPSEC(curvnet); 2345 struct sadb_msg *newmsg; 2346 struct secpolicy *sp; 2347 u_int dir; 2348 2349 IPSEC_ASSERT(so != NULL, ("null socket")); 2350 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2351 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2352 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2353 2354 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) 2355 return key_senderror(so, m, EINVAL); 2356 2357 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2358 SPTREE_LOCK(); 2359 LIST_FOREACH(sp, &V_sptree[dir], chain) 2360 sp->state = IPSEC_SPSTATE_DEAD; 2361 SPTREE_UNLOCK(); 2362 } 2363 2364 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 2365 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2366 return key_senderror(so, m, ENOBUFS); 2367 } 2368 2369 if (m->m_next) 2370 m_freem(m->m_next); 2371 m->m_next = NULL; 2372 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2373 newmsg = mtod(m, struct sadb_msg *); 2374 newmsg->sadb_msg_errno = 0; 2375 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 2376 2377 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 2378 } 2379 2380 /* 2381 * SADB_SPDDUMP processing 2382 * receive 2383 * <base> 2384 * from the user, and dump all SP leaves 2385 * and send, 2386 * <base> ..... 2387 * to the ikmpd. 2388 * 2389 * m will always be freed. 2390 */ 2391 static int 2392 key_spddump(so, m, mhp) 2393 struct socket *so; 2394 struct mbuf *m; 2395 const struct sadb_msghdr *mhp; 2396 { 2397 INIT_VNET_IPSEC(curvnet); 2398 struct secpolicy *sp; 2399 int cnt; 2400 u_int dir; 2401 struct mbuf *n; 2402 2403 IPSEC_ASSERT(so != NULL, ("null socket")); 2404 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2405 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2406 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2407 2408 /* search SPD entry and get buffer size. */ 2409 cnt = 0; 2410 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2411 LIST_FOREACH(sp, &V_sptree[dir], chain) { 2412 cnt++; 2413 } 2414 } 2415 2416 if (cnt == 0) 2417 return key_senderror(so, m, ENOENT); 2418 2419 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2420 LIST_FOREACH(sp, &V_sptree[dir], chain) { 2421 --cnt; 2422 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, 2423 mhp->msg->sadb_msg_pid); 2424 2425 if (n) 2426 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2427 } 2428 } 2429 2430 m_freem(m); 2431 return 0; 2432 } 2433 2434 static struct mbuf * 2435 key_setdumpsp(sp, type, seq, pid) 2436 struct secpolicy *sp; 2437 u_int8_t type; 2438 u_int32_t seq, pid; 2439 { 2440 struct mbuf *result = NULL, *m; 2441 struct seclifetime lt; 2442 2443 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt); 2444 if (!m) 2445 goto fail; 2446 result = m; 2447 2448 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2449 &sp->spidx.src.sa, sp->spidx.prefs, 2450 sp->spidx.ul_proto); 2451 if (!m) 2452 goto fail; 2453 m_cat(result, m); 2454 2455 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2456 &sp->spidx.dst.sa, sp->spidx.prefd, 2457 sp->spidx.ul_proto); 2458 if (!m) 2459 goto fail; 2460 m_cat(result, m); 2461 2462 m = key_sp2msg(sp); 2463 if (!m) 2464 goto fail; 2465 m_cat(result, m); 2466 2467 if(sp->lifetime){ 2468 lt.addtime=sp->created; 2469 lt.usetime= sp->lastused; 2470 m = key_setlifetime(<, SADB_EXT_LIFETIME_CURRENT); 2471 if (!m) 2472 goto fail; 2473 m_cat(result, m); 2474 2475 lt.addtime=sp->lifetime; 2476 lt.usetime= sp->validtime; 2477 m = key_setlifetime(<, SADB_EXT_LIFETIME_HARD); 2478 if (!m) 2479 goto fail; 2480 m_cat(result, m); 2481 } 2482 2483 if ((result->m_flags & M_PKTHDR) == 0) 2484 goto fail; 2485 2486 if (result->m_len < sizeof(struct sadb_msg)) { 2487 result = m_pullup(result, sizeof(struct sadb_msg)); 2488 if (result == NULL) 2489 goto fail; 2490 } 2491 2492 result->m_pkthdr.len = 0; 2493 for (m = result; m; m = m->m_next) 2494 result->m_pkthdr.len += m->m_len; 2495 2496 mtod(result, struct sadb_msg *)->sadb_msg_len = 2497 PFKEY_UNIT64(result->m_pkthdr.len); 2498 2499 return result; 2500 2501 fail: 2502 m_freem(result); 2503 return NULL; 2504 } 2505 2506 /* 2507 * get PFKEY message length for security policy and request. 2508 */ 2509 static u_int 2510 key_getspreqmsglen(sp) 2511 struct secpolicy *sp; 2512 { 2513 u_int tlen; 2514 2515 tlen = sizeof(struct sadb_x_policy); 2516 2517 /* if is the policy for ipsec ? */ 2518 if (sp->policy != IPSEC_POLICY_IPSEC) 2519 return tlen; 2520 2521 /* get length of ipsec requests */ 2522 { 2523 struct ipsecrequest *isr; 2524 int len; 2525 2526 for (isr = sp->req; isr != NULL; isr = isr->next) { 2527 len = sizeof(struct sadb_x_ipsecrequest) 2528 + isr->saidx.src.sa.sa_len 2529 + isr->saidx.dst.sa.sa_len; 2530 2531 tlen += PFKEY_ALIGN8(len); 2532 } 2533 } 2534 2535 return tlen; 2536 } 2537 2538 /* 2539 * SADB_SPDEXPIRE processing 2540 * send 2541 * <base, address(SD), lifetime(CH), policy> 2542 * to KMD by PF_KEY. 2543 * 2544 * OUT: 0 : succeed 2545 * others : error number 2546 */ 2547 static int 2548 key_spdexpire(sp) 2549 struct secpolicy *sp; 2550 { 2551 struct mbuf *result = NULL, *m; 2552 int len; 2553 int error = -1; 2554 struct sadb_lifetime *lt; 2555 2556 /* XXX: Why do we lock ? */ 2557 2558 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2559 2560 /* set msg header */ 2561 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0); 2562 if (!m) { 2563 error = ENOBUFS; 2564 goto fail; 2565 } 2566 result = m; 2567 2568 /* create lifetime extension (current and hard) */ 2569 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 2570 m = key_alloc_mbuf(len); 2571 if (!m || m->m_next) { /*XXX*/ 2572 if (m) 2573 m_freem(m); 2574 error = ENOBUFS; 2575 goto fail; 2576 } 2577 bzero(mtod(m, caddr_t), len); 2578 lt = mtod(m, struct sadb_lifetime *); 2579 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2580 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 2581 lt->sadb_lifetime_allocations = 0; 2582 lt->sadb_lifetime_bytes = 0; 2583 lt->sadb_lifetime_addtime = sp->created; 2584 lt->sadb_lifetime_usetime = sp->lastused; 2585 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 2586 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2587 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 2588 lt->sadb_lifetime_allocations = 0; 2589 lt->sadb_lifetime_bytes = 0; 2590 lt->sadb_lifetime_addtime = sp->lifetime; 2591 lt->sadb_lifetime_usetime = sp->validtime; 2592 m_cat(result, m); 2593 2594 /* set sadb_address for source */ 2595 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2596 &sp->spidx.src.sa, 2597 sp->spidx.prefs, sp->spidx.ul_proto); 2598 if (!m) { 2599 error = ENOBUFS; 2600 goto fail; 2601 } 2602 m_cat(result, m); 2603 2604 /* set sadb_address for destination */ 2605 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2606 &sp->spidx.dst.sa, 2607 sp->spidx.prefd, sp->spidx.ul_proto); 2608 if (!m) { 2609 error = ENOBUFS; 2610 goto fail; 2611 } 2612 m_cat(result, m); 2613 2614 /* set secpolicy */ 2615 m = key_sp2msg(sp); 2616 if (!m) { 2617 error = ENOBUFS; 2618 goto fail; 2619 } 2620 m_cat(result, m); 2621 2622 if ((result->m_flags & M_PKTHDR) == 0) { 2623 error = EINVAL; 2624 goto fail; 2625 } 2626 2627 if (result->m_len < sizeof(struct sadb_msg)) { 2628 result = m_pullup(result, sizeof(struct sadb_msg)); 2629 if (result == NULL) { 2630 error = ENOBUFS; 2631 goto fail; 2632 } 2633 } 2634 2635 result->m_pkthdr.len = 0; 2636 for (m = result; m; m = m->m_next) 2637 result->m_pkthdr.len += m->m_len; 2638 2639 mtod(result, struct sadb_msg *)->sadb_msg_len = 2640 PFKEY_UNIT64(result->m_pkthdr.len); 2641 2642 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 2643 2644 fail: 2645 if (result) 2646 m_freem(result); 2647 return error; 2648 } 2649 2650 /* %%% SAD management */ 2651 /* 2652 * allocating a memory for new SA head, and copy from the values of mhp. 2653 * OUT: NULL : failure due to the lack of memory. 2654 * others : pointer to new SA head. 2655 */ 2656 static struct secashead * 2657 key_newsah(saidx) 2658 struct secasindex *saidx; 2659 { 2660 INIT_VNET_IPSEC(curvnet); 2661 struct secashead *newsah; 2662 2663 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 2664 2665 newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO); 2666 if (newsah != NULL) { 2667 int i; 2668 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++) 2669 LIST_INIT(&newsah->savtree[i]); 2670 newsah->saidx = *saidx; 2671 2672 /* add to saidxtree */ 2673 newsah->state = SADB_SASTATE_MATURE; 2674 2675 SAHTREE_LOCK(); 2676 LIST_INSERT_HEAD(&V_sahtree, newsah, chain); 2677 SAHTREE_UNLOCK(); 2678 } 2679 return(newsah); 2680 } 2681 2682 /* 2683 * delete SA index and all SA registerd. 2684 */ 2685 static void 2686 key_delsah(sah) 2687 struct secashead *sah; 2688 { 2689 INIT_VNET_IPSEC(curvnet); 2690 struct secasvar *sav, *nextsav; 2691 u_int stateidx; 2692 int zombie = 0; 2693 2694 IPSEC_ASSERT(sah != NULL, ("NULL sah")); 2695 SAHTREE_LOCK_ASSERT(); 2696 2697 /* searching all SA registerd in the secindex. */ 2698 for (stateidx = 0; 2699 stateidx < _ARRAYLEN(V_saorder_state_any); 2700 stateidx++) { 2701 u_int state = V_saorder_state_any[stateidx]; 2702 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) { 2703 if (sav->refcnt == 0) { 2704 /* sanity check */ 2705 KEY_CHKSASTATE(state, sav->state, __func__); 2706 KEY_FREESAV(&sav); 2707 } else { 2708 /* give up to delete this sa */ 2709 zombie++; 2710 } 2711 } 2712 } 2713 if (!zombie) { /* delete only if there are savs */ 2714 /* remove from tree of SA index */ 2715 if (__LIST_CHAINED(sah)) 2716 LIST_REMOVE(sah, chain); 2717 if (sah->sa_route.ro_rt) { 2718 RTFREE(sah->sa_route.ro_rt); 2719 sah->sa_route.ro_rt = (struct rtentry *)NULL; 2720 } 2721 free(sah, M_IPSEC_SAH); 2722 } 2723 } 2724 2725 /* 2726 * allocating a new SA with LARVAL state. key_add() and key_getspi() call, 2727 * and copy the values of mhp into new buffer. 2728 * When SAD message type is GETSPI: 2729 * to set sequence number from acq_seq++, 2730 * to set zero to SPI. 2731 * not to call key_setsava(). 2732 * OUT: NULL : fail 2733 * others : pointer to new secasvar. 2734 * 2735 * does not modify mbuf. does not free mbuf on error. 2736 */ 2737 static struct secasvar * 2738 key_newsav(m, mhp, sah, errp, where, tag) 2739 struct mbuf *m; 2740 const struct sadb_msghdr *mhp; 2741 struct secashead *sah; 2742 int *errp; 2743 const char* where; 2744 int tag; 2745 { 2746 INIT_VNET_IPSEC(curvnet); 2747 struct secasvar *newsav; 2748 const struct sadb_sa *xsa; 2749 2750 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2751 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2752 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2753 IPSEC_ASSERT(sah != NULL, ("null secashead")); 2754 2755 newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO); 2756 if (newsav == NULL) { 2757 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2758 *errp = ENOBUFS; 2759 goto done; 2760 } 2761 2762 switch (mhp->msg->sadb_msg_type) { 2763 case SADB_GETSPI: 2764 newsav->spi = 0; 2765 2766 #ifdef IPSEC_DOSEQCHECK 2767 /* sync sequence number */ 2768 if (mhp->msg->sadb_msg_seq == 0) 2769 newsav->seq = 2770 (V_acq_seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq)); 2771 else 2772 #endif 2773 newsav->seq = mhp->msg->sadb_msg_seq; 2774 break; 2775 2776 case SADB_ADD: 2777 /* sanity check */ 2778 if (mhp->ext[SADB_EXT_SA] == NULL) { 2779 free(newsav, M_IPSEC_SA); 2780 newsav = NULL; 2781 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2782 __func__)); 2783 *errp = EINVAL; 2784 goto done; 2785 } 2786 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 2787 newsav->spi = xsa->sadb_sa_spi; 2788 newsav->seq = mhp->msg->sadb_msg_seq; 2789 break; 2790 default: 2791 free(newsav, M_IPSEC_SA); 2792 newsav = NULL; 2793 *errp = EINVAL; 2794 goto done; 2795 } 2796 2797 2798 /* copy sav values */ 2799 if (mhp->msg->sadb_msg_type != SADB_GETSPI) { 2800 *errp = key_setsaval(newsav, m, mhp); 2801 if (*errp) { 2802 free(newsav, M_IPSEC_SA); 2803 newsav = NULL; 2804 goto done; 2805 } 2806 } 2807 2808 SECASVAR_LOCK_INIT(newsav); 2809 2810 /* reset created */ 2811 newsav->created = time_second; 2812 newsav->pid = mhp->msg->sadb_msg_pid; 2813 2814 /* add to satree */ 2815 newsav->sah = sah; 2816 sa_initref(newsav); 2817 newsav->state = SADB_SASTATE_LARVAL; 2818 2819 /* XXX locking??? */ 2820 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav, 2821 secasvar, chain); 2822 done: 2823 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 2824 printf("DP %s from %s:%u return SP:%p\n", __func__, 2825 where, tag, newsav)); 2826 2827 return newsav; 2828 } 2829 2830 /* 2831 * free() SA variable entry. 2832 */ 2833 static void 2834 key_cleansav(struct secasvar *sav) 2835 { 2836 /* 2837 * Cleanup xform state. Note that zeroize'ing causes the 2838 * keys to be cleared; otherwise we must do it ourself. 2839 */ 2840 if (sav->tdb_xform != NULL) { 2841 sav->tdb_xform->xf_zeroize(sav); 2842 sav->tdb_xform = NULL; 2843 } else { 2844 KASSERT(sav->iv == NULL, ("iv but no xform")); 2845 if (sav->key_auth != NULL) 2846 bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth)); 2847 if (sav->key_enc != NULL) 2848 bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc)); 2849 } 2850 if (sav->key_auth != NULL) { 2851 if (sav->key_auth->key_data != NULL) 2852 free(sav->key_auth->key_data, M_IPSEC_MISC); 2853 free(sav->key_auth, M_IPSEC_MISC); 2854 sav->key_auth = NULL; 2855 } 2856 if (sav->key_enc != NULL) { 2857 if (sav->key_enc->key_data != NULL) 2858 free(sav->key_enc->key_data, M_IPSEC_MISC); 2859 free(sav->key_enc, M_IPSEC_MISC); 2860 sav->key_enc = NULL; 2861 } 2862 if (sav->sched) { 2863 bzero(sav->sched, sav->schedlen); 2864 free(sav->sched, M_IPSEC_MISC); 2865 sav->sched = NULL; 2866 } 2867 if (sav->replay != NULL) { 2868 free(sav->replay, M_IPSEC_MISC); 2869 sav->replay = NULL; 2870 } 2871 if (sav->lft_c != NULL) { 2872 free(sav->lft_c, M_IPSEC_MISC); 2873 sav->lft_c = NULL; 2874 } 2875 if (sav->lft_h != NULL) { 2876 free(sav->lft_h, M_IPSEC_MISC); 2877 sav->lft_h = NULL; 2878 } 2879 if (sav->lft_s != NULL) { 2880 free(sav->lft_s, M_IPSEC_MISC); 2881 sav->lft_s = NULL; 2882 } 2883 } 2884 2885 /* 2886 * free() SA variable entry. 2887 */ 2888 static void 2889 key_delsav(sav) 2890 struct secasvar *sav; 2891 { 2892 IPSEC_ASSERT(sav != NULL, ("null sav")); 2893 IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt)); 2894 2895 /* remove from SA header */ 2896 if (__LIST_CHAINED(sav)) 2897 LIST_REMOVE(sav, chain); 2898 key_cleansav(sav); 2899 SECASVAR_LOCK_DESTROY(sav); 2900 free(sav, M_IPSEC_SA); 2901 } 2902 2903 /* 2904 * search SAD. 2905 * OUT: 2906 * NULL : not found 2907 * others : found, pointer to a SA. 2908 */ 2909 static struct secashead * 2910 key_getsah(saidx) 2911 struct secasindex *saidx; 2912 { 2913 INIT_VNET_IPSEC(curvnet); 2914 struct secashead *sah; 2915 2916 SAHTREE_LOCK(); 2917 LIST_FOREACH(sah, &V_sahtree, chain) { 2918 if (sah->state == SADB_SASTATE_DEAD) 2919 continue; 2920 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID)) 2921 break; 2922 } 2923 SAHTREE_UNLOCK(); 2924 2925 return sah; 2926 } 2927 2928 /* 2929 * check not to be duplicated SPI. 2930 * NOTE: this function is too slow due to searching all SAD. 2931 * OUT: 2932 * NULL : not found 2933 * others : found, pointer to a SA. 2934 */ 2935 static struct secasvar * 2936 key_checkspidup(saidx, spi) 2937 struct secasindex *saidx; 2938 u_int32_t spi; 2939 { 2940 INIT_VNET_IPSEC(curvnet); 2941 struct secashead *sah; 2942 struct secasvar *sav; 2943 2944 /* check address family */ 2945 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) { 2946 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 2947 __func__)); 2948 return NULL; 2949 } 2950 2951 sav = NULL; 2952 /* check all SAD */ 2953 SAHTREE_LOCK(); 2954 LIST_FOREACH(sah, &V_sahtree, chain) { 2955 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst)) 2956 continue; 2957 sav = key_getsavbyspi(sah, spi); 2958 if (sav != NULL) 2959 break; 2960 } 2961 SAHTREE_UNLOCK(); 2962 2963 return sav; 2964 } 2965 2966 /* 2967 * search SAD litmited alive SA, protocol, SPI. 2968 * OUT: 2969 * NULL : not found 2970 * others : found, pointer to a SA. 2971 */ 2972 static struct secasvar * 2973 key_getsavbyspi(sah, spi) 2974 struct secashead *sah; 2975 u_int32_t spi; 2976 { 2977 INIT_VNET_IPSEC(curvnet); 2978 struct secasvar *sav; 2979 u_int stateidx, state; 2980 2981 sav = NULL; 2982 SAHTREE_LOCK_ASSERT(); 2983 /* search all status */ 2984 for (stateidx = 0; 2985 stateidx < _ARRAYLEN(V_saorder_state_alive); 2986 stateidx++) { 2987 2988 state = V_saorder_state_alive[stateidx]; 2989 LIST_FOREACH(sav, &sah->savtree[state], chain) { 2990 2991 /* sanity check */ 2992 if (sav->state != state) { 2993 ipseclog((LOG_DEBUG, "%s: " 2994 "invalid sav->state (queue: %d SA: %d)\n", 2995 __func__, state, sav->state)); 2996 continue; 2997 } 2998 2999 if (sav->spi == spi) 3000 return sav; 3001 } 3002 } 3003 3004 return NULL; 3005 } 3006 3007 /* 3008 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. 3009 * You must update these if need. 3010 * OUT: 0: success. 3011 * !0: failure. 3012 * 3013 * does not modify mbuf. does not free mbuf on error. 3014 */ 3015 static int 3016 key_setsaval(sav, m, mhp) 3017 struct secasvar *sav; 3018 struct mbuf *m; 3019 const struct sadb_msghdr *mhp; 3020 { 3021 INIT_VNET_IPSEC(curvnet); 3022 int error = 0; 3023 3024 IPSEC_ASSERT(m != NULL, ("null mbuf")); 3025 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 3026 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 3027 3028 /* initialization */ 3029 sav->replay = NULL; 3030 sav->key_auth = NULL; 3031 sav->key_enc = NULL; 3032 sav->sched = NULL; 3033 sav->schedlen = 0; 3034 sav->iv = NULL; 3035 sav->lft_c = NULL; 3036 sav->lft_h = NULL; 3037 sav->lft_s = NULL; 3038 sav->tdb_xform = NULL; /* transform */ 3039 sav->tdb_encalgxform = NULL; /* encoding algorithm */ 3040 sav->tdb_authalgxform = NULL; /* authentication algorithm */ 3041 sav->tdb_compalgxform = NULL; /* compression algorithm */ 3042 3043 /* SA */ 3044 if (mhp->ext[SADB_EXT_SA] != NULL) { 3045 const struct sadb_sa *sa0; 3046 3047 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 3048 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { 3049 error = EINVAL; 3050 goto fail; 3051 } 3052 3053 sav->alg_auth = sa0->sadb_sa_auth; 3054 sav->alg_enc = sa0->sadb_sa_encrypt; 3055 sav->flags = sa0->sadb_sa_flags; 3056 3057 /* replay window */ 3058 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { 3059 sav->replay = (struct secreplay *) 3060 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO); 3061 if (sav->replay == NULL) { 3062 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3063 __func__)); 3064 error = ENOBUFS; 3065 goto fail; 3066 } 3067 if (sa0->sadb_sa_replay != 0) 3068 sav->replay->bitmap = (caddr_t)(sav->replay+1); 3069 sav->replay->wsize = sa0->sadb_sa_replay; 3070 } 3071 } 3072 3073 /* Authentication keys */ 3074 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { 3075 const struct sadb_key *key0; 3076 int len; 3077 3078 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH]; 3079 len = mhp->extlen[SADB_EXT_KEY_AUTH]; 3080 3081 error = 0; 3082 if (len < sizeof(*key0)) { 3083 error = EINVAL; 3084 goto fail; 3085 } 3086 switch (mhp->msg->sadb_msg_satype) { 3087 case SADB_SATYPE_AH: 3088 case SADB_SATYPE_ESP: 3089 case SADB_X_SATYPE_TCPSIGNATURE: 3090 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3091 sav->alg_auth != SADB_X_AALG_NULL) 3092 error = EINVAL; 3093 break; 3094 case SADB_X_SATYPE_IPCOMP: 3095 default: 3096 error = EINVAL; 3097 break; 3098 } 3099 if (error) { 3100 ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n", 3101 __func__)); 3102 goto fail; 3103 } 3104 3105 sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len, 3106 M_IPSEC_MISC); 3107 if (sav->key_auth == NULL ) { 3108 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3109 __func__)); 3110 error = ENOBUFS; 3111 goto fail; 3112 } 3113 } 3114 3115 /* Encryption key */ 3116 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { 3117 const struct sadb_key *key0; 3118 int len; 3119 3120 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT]; 3121 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; 3122 3123 error = 0; 3124 if (len < sizeof(*key0)) { 3125 error = EINVAL; 3126 goto fail; 3127 } 3128 switch (mhp->msg->sadb_msg_satype) { 3129 case SADB_SATYPE_ESP: 3130 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3131 sav->alg_enc != SADB_EALG_NULL) { 3132 error = EINVAL; 3133 break; 3134 } 3135 sav->key_enc = (struct seckey *)key_dup_keymsg(key0, 3136 len, 3137 M_IPSEC_MISC); 3138 if (sav->key_enc == NULL) { 3139 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3140 __func__)); 3141 error = ENOBUFS; 3142 goto fail; 3143 } 3144 break; 3145 case SADB_X_SATYPE_IPCOMP: 3146 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) 3147 error = EINVAL; 3148 sav->key_enc = NULL; /*just in case*/ 3149 break; 3150 case SADB_SATYPE_AH: 3151 case SADB_X_SATYPE_TCPSIGNATURE: 3152 default: 3153 error = EINVAL; 3154 break; 3155 } 3156 if (error) { 3157 ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n", 3158 __func__)); 3159 goto fail; 3160 } 3161 } 3162 3163 /* set iv */ 3164 sav->ivlen = 0; 3165 3166 switch (mhp->msg->sadb_msg_satype) { 3167 case SADB_SATYPE_AH: 3168 error = xform_init(sav, XF_AH); 3169 break; 3170 case SADB_SATYPE_ESP: 3171 error = xform_init(sav, XF_ESP); 3172 break; 3173 case SADB_X_SATYPE_IPCOMP: 3174 error = xform_init(sav, XF_IPCOMP); 3175 break; 3176 case SADB_X_SATYPE_TCPSIGNATURE: 3177 error = xform_init(sav, XF_TCPSIGNATURE); 3178 break; 3179 } 3180 if (error) { 3181 ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n", 3182 __func__, mhp->msg->sadb_msg_satype)); 3183 goto fail; 3184 } 3185 3186 /* reset created */ 3187 sav->created = time_second; 3188 3189 /* make lifetime for CURRENT */ 3190 sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT); 3191 if (sav->lft_c == NULL) { 3192 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3193 error = ENOBUFS; 3194 goto fail; 3195 } 3196 3197 sav->lft_c->allocations = 0; 3198 sav->lft_c->bytes = 0; 3199 sav->lft_c->addtime = time_second; 3200 sav->lft_c->usetime = 0; 3201 3202 /* lifetimes for HARD and SOFT */ 3203 { 3204 const struct sadb_lifetime *lft0; 3205 3206 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 3207 if (lft0 != NULL) { 3208 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { 3209 error = EINVAL; 3210 goto fail; 3211 } 3212 sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3213 if (sav->lft_h == NULL) { 3214 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3215 error = ENOBUFS; 3216 goto fail; 3217 } 3218 /* to be initialize ? */ 3219 } 3220 3221 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT]; 3222 if (lft0 != NULL) { 3223 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { 3224 error = EINVAL; 3225 goto fail; 3226 } 3227 sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3228 if (sav->lft_s == NULL) { 3229 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3230 error = ENOBUFS; 3231 goto fail; 3232 } 3233 /* to be initialize ? */ 3234 } 3235 } 3236 3237 return 0; 3238 3239 fail: 3240 /* initialization */ 3241 key_cleansav(sav); 3242 3243 return error; 3244 } 3245 3246 /* 3247 * validation with a secasvar entry, and set SADB_SATYPE_MATURE. 3248 * OUT: 0: valid 3249 * other: errno 3250 */ 3251 static int 3252 key_mature(struct secasvar *sav) 3253 { 3254 INIT_VNET_IPSEC(curvnet); 3255 int error; 3256 3257 /* check SPI value */ 3258 switch (sav->sah->saidx.proto) { 3259 case IPPROTO_ESP: 3260 case IPPROTO_AH: 3261 /* 3262 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values 3263 * 1-255 reserved by IANA for future use, 3264 * 0 for implementation specific, local use. 3265 */ 3266 if (ntohl(sav->spi) <= 255) { 3267 ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n", 3268 __func__, (u_int32_t)ntohl(sav->spi))); 3269 return EINVAL; 3270 } 3271 break; 3272 } 3273 3274 /* check satype */ 3275 switch (sav->sah->saidx.proto) { 3276 case IPPROTO_ESP: 3277 /* check flags */ 3278 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) == 3279 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) { 3280 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3281 "given to old-esp.\n", __func__)); 3282 return EINVAL; 3283 } 3284 error = xform_init(sav, XF_ESP); 3285 break; 3286 case IPPROTO_AH: 3287 /* check flags */ 3288 if (sav->flags & SADB_X_EXT_DERIV) { 3289 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3290 "given to AH SA.\n", __func__)); 3291 return EINVAL; 3292 } 3293 if (sav->alg_enc != SADB_EALG_NONE) { 3294 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3295 "mismated.\n", __func__)); 3296 return(EINVAL); 3297 } 3298 error = xform_init(sav, XF_AH); 3299 break; 3300 case IPPROTO_IPCOMP: 3301 if (sav->alg_auth != SADB_AALG_NONE) { 3302 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3303 "mismated.\n", __func__)); 3304 return(EINVAL); 3305 } 3306 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 3307 && ntohl(sav->spi) >= 0x10000) { 3308 ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n", 3309 __func__)); 3310 return(EINVAL); 3311 } 3312 error = xform_init(sav, XF_IPCOMP); 3313 break; 3314 case IPPROTO_TCP: 3315 if (sav->alg_enc != SADB_EALG_NONE) { 3316 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3317 "mismated.\n", __func__)); 3318 return(EINVAL); 3319 } 3320 error = xform_init(sav, XF_TCPSIGNATURE); 3321 break; 3322 default: 3323 ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__)); 3324 error = EPROTONOSUPPORT; 3325 break; 3326 } 3327 if (error == 0) { 3328 SAHTREE_LOCK(); 3329 key_sa_chgstate(sav, SADB_SASTATE_MATURE); 3330 SAHTREE_UNLOCK(); 3331 } 3332 return (error); 3333 } 3334 3335 /* 3336 * subroutine for SADB_GET and SADB_DUMP. 3337 */ 3338 static struct mbuf * 3339 key_setdumpsa(sav, type, satype, seq, pid) 3340 struct secasvar *sav; 3341 u_int8_t type, satype; 3342 u_int32_t seq, pid; 3343 { 3344 struct mbuf *result = NULL, *tres = NULL, *m; 3345 int i; 3346 int dumporder[] = { 3347 SADB_EXT_SA, SADB_X_EXT_SA2, 3348 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 3349 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, 3350 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, 3351 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, 3352 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, 3353 }; 3354 3355 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt); 3356 if (m == NULL) 3357 goto fail; 3358 result = m; 3359 3360 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) { 3361 m = NULL; 3362 switch (dumporder[i]) { 3363 case SADB_EXT_SA: 3364 m = key_setsadbsa(sav); 3365 if (!m) 3366 goto fail; 3367 break; 3368 3369 case SADB_X_EXT_SA2: 3370 m = key_setsadbxsa2(sav->sah->saidx.mode, 3371 sav->replay ? sav->replay->count : 0, 3372 sav->sah->saidx.reqid); 3373 if (!m) 3374 goto fail; 3375 break; 3376 3377 case SADB_EXT_ADDRESS_SRC: 3378 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3379 &sav->sah->saidx.src.sa, 3380 FULLMASK, IPSEC_ULPROTO_ANY); 3381 if (!m) 3382 goto fail; 3383 break; 3384 3385 case SADB_EXT_ADDRESS_DST: 3386 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3387 &sav->sah->saidx.dst.sa, 3388 FULLMASK, IPSEC_ULPROTO_ANY); 3389 if (!m) 3390 goto fail; 3391 break; 3392 3393 case SADB_EXT_KEY_AUTH: 3394 if (!sav->key_auth) 3395 continue; 3396 m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH); 3397 if (!m) 3398 goto fail; 3399 break; 3400 3401 case SADB_EXT_KEY_ENCRYPT: 3402 if (!sav->key_enc) 3403 continue; 3404 m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT); 3405 if (!m) 3406 goto fail; 3407 break; 3408 3409 case SADB_EXT_LIFETIME_CURRENT: 3410 if (!sav->lft_c) 3411 continue; 3412 m = key_setlifetime(sav->lft_c, 3413 SADB_EXT_LIFETIME_CURRENT); 3414 if (!m) 3415 goto fail; 3416 break; 3417 3418 case SADB_EXT_LIFETIME_HARD: 3419 if (!sav->lft_h) 3420 continue; 3421 m = key_setlifetime(sav->lft_h, 3422 SADB_EXT_LIFETIME_HARD); 3423 if (!m) 3424 goto fail; 3425 break; 3426 3427 case SADB_EXT_LIFETIME_SOFT: 3428 if (!sav->lft_s) 3429 continue; 3430 m = key_setlifetime(sav->lft_s, 3431 SADB_EXT_LIFETIME_SOFT); 3432 3433 if (!m) 3434 goto fail; 3435 break; 3436 3437 case SADB_EXT_ADDRESS_PROXY: 3438 case SADB_EXT_IDENTITY_SRC: 3439 case SADB_EXT_IDENTITY_DST: 3440 /* XXX: should we brought from SPD ? */ 3441 case SADB_EXT_SENSITIVITY: 3442 default: 3443 continue; 3444 } 3445 3446 if (!m) 3447 goto fail; 3448 if (tres) 3449 m_cat(m, tres); 3450 tres = m; 3451 3452 } 3453 3454 m_cat(result, tres); 3455 if (result->m_len < sizeof(struct sadb_msg)) { 3456 result = m_pullup(result, sizeof(struct sadb_msg)); 3457 if (result == NULL) 3458 goto fail; 3459 } 3460 3461 result->m_pkthdr.len = 0; 3462 for (m = result; m; m = m->m_next) 3463 result->m_pkthdr.len += m->m_len; 3464 3465 mtod(result, struct sadb_msg *)->sadb_msg_len = 3466 PFKEY_UNIT64(result->m_pkthdr.len); 3467 3468 return result; 3469 3470 fail: 3471 m_freem(result); 3472 m_freem(tres); 3473 return NULL; 3474 } 3475 3476 /* 3477 * set data into sadb_msg. 3478 */ 3479 static struct mbuf * 3480 key_setsadbmsg(type, tlen, satype, seq, pid, reserved) 3481 u_int8_t type, satype; 3482 u_int16_t tlen; 3483 u_int32_t seq; 3484 pid_t pid; 3485 u_int16_t reserved; 3486 { 3487 struct mbuf *m; 3488 struct sadb_msg *p; 3489 int len; 3490 3491 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 3492 if (len > MCLBYTES) 3493 return NULL; 3494 MGETHDR(m, M_DONTWAIT, MT_DATA); 3495 if (m && len > MHLEN) { 3496 MCLGET(m, M_DONTWAIT); 3497 if ((m->m_flags & M_EXT) == 0) { 3498 m_freem(m); 3499 m = NULL; 3500 } 3501 } 3502 if (!m) 3503 return NULL; 3504 m->m_pkthdr.len = m->m_len = len; 3505 m->m_next = NULL; 3506 3507 p = mtod(m, struct sadb_msg *); 3508 3509 bzero(p, len); 3510 p->sadb_msg_version = PF_KEY_V2; 3511 p->sadb_msg_type = type; 3512 p->sadb_msg_errno = 0; 3513 p->sadb_msg_satype = satype; 3514 p->sadb_msg_len = PFKEY_UNIT64(tlen); 3515 p->sadb_msg_reserved = reserved; 3516 p->sadb_msg_seq = seq; 3517 p->sadb_msg_pid = (u_int32_t)pid; 3518 3519 return m; 3520 } 3521 3522 /* 3523 * copy secasvar data into sadb_address. 3524 */ 3525 static struct mbuf * 3526 key_setsadbsa(sav) 3527 struct secasvar *sav; 3528 { 3529 struct mbuf *m; 3530 struct sadb_sa *p; 3531 int len; 3532 3533 len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); 3534 m = key_alloc_mbuf(len); 3535 if (!m || m->m_next) { /*XXX*/ 3536 if (m) 3537 m_freem(m); 3538 return NULL; 3539 } 3540 3541 p = mtod(m, struct sadb_sa *); 3542 3543 bzero(p, len); 3544 p->sadb_sa_len = PFKEY_UNIT64(len); 3545 p->sadb_sa_exttype = SADB_EXT_SA; 3546 p->sadb_sa_spi = sav->spi; 3547 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0); 3548 p->sadb_sa_state = sav->state; 3549 p->sadb_sa_auth = sav->alg_auth; 3550 p->sadb_sa_encrypt = sav->alg_enc; 3551 p->sadb_sa_flags = sav->flags; 3552 3553 return m; 3554 } 3555 3556 /* 3557 * set data into sadb_address. 3558 */ 3559 static struct mbuf * 3560 key_setsadbaddr(exttype, saddr, prefixlen, ul_proto) 3561 u_int16_t exttype; 3562 const struct sockaddr *saddr; 3563 u_int8_t prefixlen; 3564 u_int16_t ul_proto; 3565 { 3566 struct mbuf *m; 3567 struct sadb_address *p; 3568 size_t len; 3569 3570 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + 3571 PFKEY_ALIGN8(saddr->sa_len); 3572 m = key_alloc_mbuf(len); 3573 if (!m || m->m_next) { /*XXX*/ 3574 if (m) 3575 m_freem(m); 3576 return NULL; 3577 } 3578 3579 p = mtod(m, struct sadb_address *); 3580 3581 bzero(p, len); 3582 p->sadb_address_len = PFKEY_UNIT64(len); 3583 p->sadb_address_exttype = exttype; 3584 p->sadb_address_proto = ul_proto; 3585 if (prefixlen == FULLMASK) { 3586 switch (saddr->sa_family) { 3587 case AF_INET: 3588 prefixlen = sizeof(struct in_addr) << 3; 3589 break; 3590 case AF_INET6: 3591 prefixlen = sizeof(struct in6_addr) << 3; 3592 break; 3593 default: 3594 ; /*XXX*/ 3595 } 3596 } 3597 p->sadb_address_prefixlen = prefixlen; 3598 p->sadb_address_reserved = 0; 3599 3600 bcopy(saddr, 3601 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)), 3602 saddr->sa_len); 3603 3604 return m; 3605 } 3606 3607 /* 3608 * set data into sadb_x_sa2. 3609 */ 3610 static struct mbuf * 3611 key_setsadbxsa2(mode, seq, reqid) 3612 u_int8_t mode; 3613 u_int32_t seq, reqid; 3614 { 3615 struct mbuf *m; 3616 struct sadb_x_sa2 *p; 3617 size_t len; 3618 3619 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); 3620 m = key_alloc_mbuf(len); 3621 if (!m || m->m_next) { /*XXX*/ 3622 if (m) 3623 m_freem(m); 3624 return NULL; 3625 } 3626 3627 p = mtod(m, struct sadb_x_sa2 *); 3628 3629 bzero(p, len); 3630 p->sadb_x_sa2_len = PFKEY_UNIT64(len); 3631 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 3632 p->sadb_x_sa2_mode = mode; 3633 p->sadb_x_sa2_reserved1 = 0; 3634 p->sadb_x_sa2_reserved2 = 0; 3635 p->sadb_x_sa2_sequence = seq; 3636 p->sadb_x_sa2_reqid = reqid; 3637 3638 return m; 3639 } 3640 3641 /* 3642 * set data into sadb_x_policy 3643 */ 3644 static struct mbuf * 3645 key_setsadbxpolicy(type, dir, id) 3646 u_int16_t type; 3647 u_int8_t dir; 3648 u_int32_t id; 3649 { 3650 struct mbuf *m; 3651 struct sadb_x_policy *p; 3652 size_t len; 3653 3654 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); 3655 m = key_alloc_mbuf(len); 3656 if (!m || m->m_next) { /*XXX*/ 3657 if (m) 3658 m_freem(m); 3659 return NULL; 3660 } 3661 3662 p = mtod(m, struct sadb_x_policy *); 3663 3664 bzero(p, len); 3665 p->sadb_x_policy_len = PFKEY_UNIT64(len); 3666 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 3667 p->sadb_x_policy_type = type; 3668 p->sadb_x_policy_dir = dir; 3669 p->sadb_x_policy_id = id; 3670 3671 return m; 3672 } 3673 3674 /* %%% utilities */ 3675 /* Take a key message (sadb_key) from the socket and turn it into one 3676 * of the kernel's key structures (seckey). 3677 * 3678 * IN: pointer to the src 3679 * OUT: NULL no more memory 3680 */ 3681 struct seckey * 3682 key_dup_keymsg(const struct sadb_key *src, u_int len, 3683 struct malloc_type *type) 3684 { 3685 INIT_VNET_IPSEC(curvnet); 3686 struct seckey *dst; 3687 dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT); 3688 if (dst != NULL) { 3689 dst->bits = src->sadb_key_bits; 3690 dst->key_data = (char *)malloc(len, type, M_NOWAIT); 3691 if (dst->key_data != NULL) { 3692 bcopy((const char *)src + sizeof(struct sadb_key), 3693 dst->key_data, len); 3694 } else { 3695 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3696 __func__)); 3697 free(dst, type); 3698 dst = NULL; 3699 } 3700 } else { 3701 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3702 __func__)); 3703 3704 } 3705 return dst; 3706 } 3707 3708 /* Take a lifetime message (sadb_lifetime) passed in on a socket and 3709 * turn it into one of the kernel's lifetime structures (seclifetime). 3710 * 3711 * IN: pointer to the destination, source and malloc type 3712 * OUT: NULL, no more memory 3713 */ 3714 3715 static struct seclifetime * 3716 key_dup_lifemsg(const struct sadb_lifetime *src, 3717 struct malloc_type *type) 3718 { 3719 INIT_VNET_IPSEC(curvnet); 3720 struct seclifetime *dst = NULL; 3721 3722 dst = (struct seclifetime *)malloc(sizeof(struct seclifetime), 3723 type, M_NOWAIT); 3724 if (dst == NULL) { 3725 /* XXX counter */ 3726 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3727 } else { 3728 dst->allocations = src->sadb_lifetime_allocations; 3729 dst->bytes = src->sadb_lifetime_bytes; 3730 dst->addtime = src->sadb_lifetime_addtime; 3731 dst->usetime = src->sadb_lifetime_usetime; 3732 } 3733 return dst; 3734 } 3735 3736 /* compare my own address 3737 * OUT: 1: true, i.e. my address. 3738 * 0: false 3739 */ 3740 int 3741 key_ismyaddr(sa) 3742 struct sockaddr *sa; 3743 { 3744 #ifdef INET 3745 INIT_VNET_INET(curvnet); 3746 struct sockaddr_in *sin; 3747 struct in_ifaddr *ia; 3748 #endif 3749 3750 IPSEC_ASSERT(sa != NULL, ("null sockaddr")); 3751 3752 switch (sa->sa_family) { 3753 #ifdef INET 3754 case AF_INET: 3755 sin = (struct sockaddr_in *)sa; 3756 for (ia = V_in_ifaddrhead.tqh_first; ia; 3757 ia = ia->ia_link.tqe_next) 3758 { 3759 if (sin->sin_family == ia->ia_addr.sin_family && 3760 sin->sin_len == ia->ia_addr.sin_len && 3761 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr) 3762 { 3763 return 1; 3764 } 3765 } 3766 break; 3767 #endif 3768 #ifdef INET6 3769 case AF_INET6: 3770 return key_ismyaddr6((struct sockaddr_in6 *)sa); 3771 #endif 3772 } 3773 3774 return 0; 3775 } 3776 3777 #ifdef INET6 3778 /* 3779 * compare my own address for IPv6. 3780 * 1: ours 3781 * 0: other 3782 * NOTE: derived ip6_input() in KAME. This is necessary to modify more. 3783 */ 3784 #include <netinet6/in6_var.h> 3785 3786 static int 3787 key_ismyaddr6(sin6) 3788 struct sockaddr_in6 *sin6; 3789 { 3790 INIT_VNET_INET6(curvnet); 3791 struct in6_ifaddr *ia; 3792 struct in6_multi *in6m; 3793 3794 for (ia = V_in6_ifaddr; ia; ia = ia->ia_next) { 3795 if (key_sockaddrcmp((struct sockaddr *)&sin6, 3796 (struct sockaddr *)&ia->ia_addr, 0) == 0) 3797 return 1; 3798 3799 /* 3800 * XXX Multicast 3801 * XXX why do we care about multlicast here while we don't care 3802 * about IPv4 multicast?? 3803 * XXX scope 3804 */ 3805 in6m = NULL; 3806 IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m); 3807 if (in6m) 3808 return 1; 3809 } 3810 3811 /* loopback, just for safety */ 3812 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) 3813 return 1; 3814 3815 return 0; 3816 } 3817 #endif /*INET6*/ 3818 3819 /* 3820 * compare two secasindex structure. 3821 * flag can specify to compare 2 saidxes. 3822 * compare two secasindex structure without both mode and reqid. 3823 * don't compare port. 3824 * IN: 3825 * saidx0: source, it can be in SAD. 3826 * saidx1: object. 3827 * OUT: 3828 * 1 : equal 3829 * 0 : not equal 3830 */ 3831 static int 3832 key_cmpsaidx( 3833 const struct secasindex *saidx0, 3834 const struct secasindex *saidx1, 3835 int flag) 3836 { 3837 /* sanity */ 3838 if (saidx0 == NULL && saidx1 == NULL) 3839 return 1; 3840 3841 if (saidx0 == NULL || saidx1 == NULL) 3842 return 0; 3843 3844 if (saidx0->proto != saidx1->proto) 3845 return 0; 3846 3847 if (flag == CMP_EXACTLY) { 3848 if (saidx0->mode != saidx1->mode) 3849 return 0; 3850 if (saidx0->reqid != saidx1->reqid) 3851 return 0; 3852 if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 || 3853 bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0) 3854 return 0; 3855 } else { 3856 3857 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ 3858 if (flag == CMP_MODE_REQID 3859 ||flag == CMP_REQID) { 3860 /* 3861 * If reqid of SPD is non-zero, unique SA is required. 3862 * The result must be of same reqid in this case. 3863 */ 3864 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) 3865 return 0; 3866 } 3867 3868 if (flag == CMP_MODE_REQID) { 3869 if (saidx0->mode != IPSEC_MODE_ANY 3870 && saidx0->mode != saidx1->mode) 3871 return 0; 3872 } 3873 3874 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, 0) != 0) { 3875 return 0; 3876 } 3877 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, 0) != 0) { 3878 return 0; 3879 } 3880 } 3881 3882 return 1; 3883 } 3884 3885 /* 3886 * compare two secindex structure exactly. 3887 * IN: 3888 * spidx0: source, it is often in SPD. 3889 * spidx1: object, it is often from PFKEY message. 3890 * OUT: 3891 * 1 : equal 3892 * 0 : not equal 3893 */ 3894 static int 3895 key_cmpspidx_exactly( 3896 struct secpolicyindex *spidx0, 3897 struct secpolicyindex *spidx1) 3898 { 3899 /* sanity */ 3900 if (spidx0 == NULL && spidx1 == NULL) 3901 return 1; 3902 3903 if (spidx0 == NULL || spidx1 == NULL) 3904 return 0; 3905 3906 if (spidx0->prefs != spidx1->prefs 3907 || spidx0->prefd != spidx1->prefd 3908 || spidx0->ul_proto != spidx1->ul_proto) 3909 return 0; 3910 3911 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 && 3912 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0; 3913 } 3914 3915 /* 3916 * compare two secindex structure with mask. 3917 * IN: 3918 * spidx0: source, it is often in SPD. 3919 * spidx1: object, it is often from IP header. 3920 * OUT: 3921 * 1 : equal 3922 * 0 : not equal 3923 */ 3924 static int 3925 key_cmpspidx_withmask( 3926 struct secpolicyindex *spidx0, 3927 struct secpolicyindex *spidx1) 3928 { 3929 /* sanity */ 3930 if (spidx0 == NULL && spidx1 == NULL) 3931 return 1; 3932 3933 if (spidx0 == NULL || spidx1 == NULL) 3934 return 0; 3935 3936 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || 3937 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || 3938 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || 3939 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) 3940 return 0; 3941 3942 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ 3943 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY 3944 && spidx0->ul_proto != spidx1->ul_proto) 3945 return 0; 3946 3947 switch (spidx0->src.sa.sa_family) { 3948 case AF_INET: 3949 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY 3950 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) 3951 return 0; 3952 if (!key_bbcmp(&spidx0->src.sin.sin_addr, 3953 &spidx1->src.sin.sin_addr, spidx0->prefs)) 3954 return 0; 3955 break; 3956 case AF_INET6: 3957 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY 3958 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) 3959 return 0; 3960 /* 3961 * scope_id check. if sin6_scope_id is 0, we regard it 3962 * as a wildcard scope, which matches any scope zone ID. 3963 */ 3964 if (spidx0->src.sin6.sin6_scope_id && 3965 spidx1->src.sin6.sin6_scope_id && 3966 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) 3967 return 0; 3968 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr, 3969 &spidx1->src.sin6.sin6_addr, spidx0->prefs)) 3970 return 0; 3971 break; 3972 default: 3973 /* XXX */ 3974 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) 3975 return 0; 3976 break; 3977 } 3978 3979 switch (spidx0->dst.sa.sa_family) { 3980 case AF_INET: 3981 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY 3982 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) 3983 return 0; 3984 if (!key_bbcmp(&spidx0->dst.sin.sin_addr, 3985 &spidx1->dst.sin.sin_addr, spidx0->prefd)) 3986 return 0; 3987 break; 3988 case AF_INET6: 3989 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY 3990 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) 3991 return 0; 3992 /* 3993 * scope_id check. if sin6_scope_id is 0, we regard it 3994 * as a wildcard scope, which matches any scope zone ID. 3995 */ 3996 if (spidx0->dst.sin6.sin6_scope_id && 3997 spidx1->dst.sin6.sin6_scope_id && 3998 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) 3999 return 0; 4000 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr, 4001 &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) 4002 return 0; 4003 break; 4004 default: 4005 /* XXX */ 4006 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) 4007 return 0; 4008 break; 4009 } 4010 4011 /* XXX Do we check other field ? e.g. flowinfo */ 4012 4013 return 1; 4014 } 4015 4016 /* returns 0 on match */ 4017 static int 4018 key_sockaddrcmp( 4019 const struct sockaddr *sa1, 4020 const struct sockaddr *sa2, 4021 int port) 4022 { 4023 #ifdef satosin 4024 #undef satosin 4025 #endif 4026 #define satosin(s) ((const struct sockaddr_in *)s) 4027 #ifdef satosin6 4028 #undef satosin6 4029 #endif 4030 #define satosin6(s) ((const struct sockaddr_in6 *)s) 4031 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) 4032 return 1; 4033 4034 switch (sa1->sa_family) { 4035 case AF_INET: 4036 if (sa1->sa_len != sizeof(struct sockaddr_in)) 4037 return 1; 4038 if (satosin(sa1)->sin_addr.s_addr != 4039 satosin(sa2)->sin_addr.s_addr) { 4040 return 1; 4041 } 4042 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port) 4043 return 1; 4044 break; 4045 case AF_INET6: 4046 if (sa1->sa_len != sizeof(struct sockaddr_in6)) 4047 return 1; /*EINVAL*/ 4048 if (satosin6(sa1)->sin6_scope_id != 4049 satosin6(sa2)->sin6_scope_id) { 4050 return 1; 4051 } 4052 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr, 4053 &satosin6(sa2)->sin6_addr)) { 4054 return 1; 4055 } 4056 if (port && 4057 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) { 4058 return 1; 4059 } 4060 break; 4061 default: 4062 if (bcmp(sa1, sa2, sa1->sa_len) != 0) 4063 return 1; 4064 break; 4065 } 4066 4067 return 0; 4068 #undef satosin 4069 #undef satosin6 4070 } 4071 4072 /* 4073 * compare two buffers with mask. 4074 * IN: 4075 * addr1: source 4076 * addr2: object 4077 * bits: Number of bits to compare 4078 * OUT: 4079 * 1 : equal 4080 * 0 : not equal 4081 */ 4082 static int 4083 key_bbcmp(const void *a1, const void *a2, u_int bits) 4084 { 4085 const unsigned char *p1 = a1; 4086 const unsigned char *p2 = a2; 4087 4088 /* XXX: This could be considerably faster if we compare a word 4089 * at a time, but it is complicated on LSB Endian machines */ 4090 4091 /* Handle null pointers */ 4092 if (p1 == NULL || p2 == NULL) 4093 return (p1 == p2); 4094 4095 while (bits >= 8) { 4096 if (*p1++ != *p2++) 4097 return 0; 4098 bits -= 8; 4099 } 4100 4101 if (bits > 0) { 4102 u_int8_t mask = ~((1<<(8-bits))-1); 4103 if ((*p1 & mask) != (*p2 & mask)) 4104 return 0; 4105 } 4106 return 1; /* Match! */ 4107 } 4108 4109 static void 4110 key_flush_spd(time_t now) 4111 { 4112 INIT_VNET_IPSEC(curvnet); 4113 static u_int16_t sptree_scangen = 0; 4114 u_int16_t gen = sptree_scangen++; 4115 struct secpolicy *sp; 4116 u_int dir; 4117 4118 /* SPD */ 4119 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 4120 restart: 4121 SPTREE_LOCK(); 4122 LIST_FOREACH(sp, &V_sptree[dir], chain) { 4123 if (sp->scangen == gen) /* previously handled */ 4124 continue; 4125 sp->scangen = gen; 4126 if (sp->state == IPSEC_SPSTATE_DEAD) { 4127 /* NB: clean entries created by key_spdflush */ 4128 SPTREE_UNLOCK(); 4129 KEY_FREESP(&sp); 4130 goto restart; 4131 } 4132 if (sp->lifetime == 0 && sp->validtime == 0) 4133 continue; 4134 if ((sp->lifetime && now - sp->created > sp->lifetime) 4135 || (sp->validtime && now - sp->lastused > sp->validtime)) { 4136 sp->state = IPSEC_SPSTATE_DEAD; 4137 SPTREE_UNLOCK(); 4138 key_spdexpire(sp); 4139 KEY_FREESP(&sp); 4140 goto restart; 4141 } 4142 } 4143 SPTREE_UNLOCK(); 4144 } 4145 } 4146 4147 static void 4148 key_flush_sad(time_t now) 4149 { 4150 INIT_VNET_IPSEC(curvnet); 4151 struct secashead *sah, *nextsah; 4152 struct secasvar *sav, *nextsav; 4153 4154 /* SAD */ 4155 SAHTREE_LOCK(); 4156 LIST_FOREACH_SAFE(sah, &V_sahtree, chain, nextsah) { 4157 /* if sah has been dead, then delete it and process next sah. */ 4158 if (sah->state == SADB_SASTATE_DEAD) { 4159 key_delsah(sah); 4160 continue; 4161 } 4162 4163 /* if LARVAL entry doesn't become MATURE, delete it. */ 4164 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) { 4165 if (now - sav->created > V_key_larval_lifetime) 4166 KEY_FREESAV(&sav); 4167 } 4168 4169 /* 4170 * check MATURE entry to start to send expire message 4171 * whether or not. 4172 */ 4173 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) { 4174 /* we don't need to check. */ 4175 if (sav->lft_s == NULL) 4176 continue; 4177 4178 /* sanity check */ 4179 if (sav->lft_c == NULL) { 4180 ipseclog((LOG_DEBUG,"%s: there is no CURRENT " 4181 "time, why?\n", __func__)); 4182 continue; 4183 } 4184 4185 /* check SOFT lifetime */ 4186 if (sav->lft_s->addtime != 0 && 4187 now - sav->created > sav->lft_s->addtime) { 4188 /* 4189 * check SA to be used whether or not. 4190 * when SA hasn't been used, delete it. 4191 */ 4192 if (sav->lft_c->usetime == 0) { 4193 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4194 KEY_FREESAV(&sav); 4195 } else { 4196 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4197 /* 4198 * XXX If we keep to send expire 4199 * message in the status of 4200 * DYING. Do remove below code. 4201 */ 4202 key_expire(sav); 4203 } 4204 } 4205 /* check SOFT lifetime by bytes */ 4206 /* 4207 * XXX I don't know the way to delete this SA 4208 * when new SA is installed. Caution when it's 4209 * installed too big lifetime by time. 4210 */ 4211 else if (sav->lft_s->bytes != 0 && 4212 sav->lft_s->bytes < sav->lft_c->bytes) { 4213 4214 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4215 /* 4216 * XXX If we keep to send expire 4217 * message in the status of 4218 * DYING. Do remove below code. 4219 */ 4220 key_expire(sav); 4221 } 4222 } 4223 4224 /* check DYING entry to change status to DEAD. */ 4225 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) { 4226 /* we don't need to check. */ 4227 if (sav->lft_h == NULL) 4228 continue; 4229 4230 /* sanity check */ 4231 if (sav->lft_c == NULL) { 4232 ipseclog((LOG_DEBUG, "%s: there is no CURRENT " 4233 "time, why?\n", __func__)); 4234 continue; 4235 } 4236 4237 if (sav->lft_h->addtime != 0 && 4238 now - sav->created > sav->lft_h->addtime) { 4239 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4240 KEY_FREESAV(&sav); 4241 } 4242 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */ 4243 else if (sav->lft_s != NULL 4244 && sav->lft_s->addtime != 0 4245 && now - sav->created > sav->lft_s->addtime) { 4246 /* 4247 * XXX: should be checked to be 4248 * installed the valid SA. 4249 */ 4250 4251 /* 4252 * If there is no SA then sending 4253 * expire message. 4254 */ 4255 key_expire(sav); 4256 } 4257 #endif 4258 /* check HARD lifetime by bytes */ 4259 else if (sav->lft_h->bytes != 0 && 4260 sav->lft_h->bytes < sav->lft_c->bytes) { 4261 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4262 KEY_FREESAV(&sav); 4263 } 4264 } 4265 4266 /* delete entry in DEAD */ 4267 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) { 4268 /* sanity check */ 4269 if (sav->state != SADB_SASTATE_DEAD) { 4270 ipseclog((LOG_DEBUG, "%s: invalid sav->state " 4271 "(queue: %d SA: %d): kill it anyway\n", 4272 __func__, 4273 SADB_SASTATE_DEAD, sav->state)); 4274 } 4275 /* 4276 * do not call key_freesav() here. 4277 * sav should already be freed, and sav->refcnt 4278 * shows other references to sav 4279 * (such as from SPD). 4280 */ 4281 } 4282 } 4283 SAHTREE_UNLOCK(); 4284 } 4285 4286 static void 4287 key_flush_acq(time_t now) 4288 { 4289 INIT_VNET_IPSEC(curvnet); 4290 struct secacq *acq, *nextacq; 4291 4292 /* ACQ tree */ 4293 ACQ_LOCK(); 4294 for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) { 4295 nextacq = LIST_NEXT(acq, chain); 4296 if (now - acq->created > V_key_blockacq_lifetime 4297 && __LIST_CHAINED(acq)) { 4298 LIST_REMOVE(acq, chain); 4299 free(acq, M_IPSEC_SAQ); 4300 } 4301 } 4302 ACQ_UNLOCK(); 4303 } 4304 4305 static void 4306 key_flush_spacq(time_t now) 4307 { 4308 INIT_VNET_IPSEC(curvnet); 4309 struct secspacq *acq, *nextacq; 4310 4311 /* SP ACQ tree */ 4312 SPACQ_LOCK(); 4313 for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) { 4314 nextacq = LIST_NEXT(acq, chain); 4315 if (now - acq->created > V_key_blockacq_lifetime 4316 && __LIST_CHAINED(acq)) { 4317 LIST_REMOVE(acq, chain); 4318 free(acq, M_IPSEC_SAQ); 4319 } 4320 } 4321 SPACQ_UNLOCK(); 4322 } 4323 4324 /* 4325 * time handler. 4326 * scanning SPD and SAD to check status for each entries, 4327 * and do to remove or to expire. 4328 * XXX: year 2038 problem may remain. 4329 */ 4330 void 4331 key_timehandler(void) 4332 { 4333 VNET_ITERATOR_DECL(vnet_iter); 4334 time_t now = time_second; 4335 4336 VNET_FOREACH(vnet_iter) { 4337 CURVNET_SET(vnet_iter); 4338 key_flush_spd(now); 4339 key_flush_sad(now); 4340 key_flush_acq(now); 4341 key_flush_spacq(now); 4342 CURVNET_RESTORE(); 4343 } 4344 4345 #ifndef IPSEC_DEBUG2 4346 /* do exchange to tick time !! */ 4347 (void)timeout((void *)key_timehandler, (void *)0, hz); 4348 #endif /* IPSEC_DEBUG2 */ 4349 } 4350 4351 u_long 4352 key_random() 4353 { 4354 u_long value; 4355 4356 key_randomfill(&value, sizeof(value)); 4357 return value; 4358 } 4359 4360 void 4361 key_randomfill(p, l) 4362 void *p; 4363 size_t l; 4364 { 4365 size_t n; 4366 u_long v; 4367 static int warn = 1; 4368 4369 n = 0; 4370 n = (size_t)read_random(p, (u_int)l); 4371 /* last resort */ 4372 while (n < l) { 4373 v = random(); 4374 bcopy(&v, (u_int8_t *)p + n, 4375 l - n < sizeof(v) ? l - n : sizeof(v)); 4376 n += sizeof(v); 4377 4378 if (warn) { 4379 printf("WARNING: pseudo-random number generator " 4380 "used for IPsec processing\n"); 4381 warn = 0; 4382 } 4383 } 4384 } 4385 4386 /* 4387 * map SADB_SATYPE_* to IPPROTO_*. 4388 * if satype == SADB_SATYPE then satype is mapped to ~0. 4389 * OUT: 4390 * 0: invalid satype. 4391 */ 4392 static u_int16_t 4393 key_satype2proto(satype) 4394 u_int8_t satype; 4395 { 4396 switch (satype) { 4397 case SADB_SATYPE_UNSPEC: 4398 return IPSEC_PROTO_ANY; 4399 case SADB_SATYPE_AH: 4400 return IPPROTO_AH; 4401 case SADB_SATYPE_ESP: 4402 return IPPROTO_ESP; 4403 case SADB_X_SATYPE_IPCOMP: 4404 return IPPROTO_IPCOMP; 4405 case SADB_X_SATYPE_TCPSIGNATURE: 4406 return IPPROTO_TCP; 4407 default: 4408 return 0; 4409 } 4410 /* NOTREACHED */ 4411 } 4412 4413 /* 4414 * map IPPROTO_* to SADB_SATYPE_* 4415 * OUT: 4416 * 0: invalid protocol type. 4417 */ 4418 static u_int8_t 4419 key_proto2satype(proto) 4420 u_int16_t proto; 4421 { 4422 switch (proto) { 4423 case IPPROTO_AH: 4424 return SADB_SATYPE_AH; 4425 case IPPROTO_ESP: 4426 return SADB_SATYPE_ESP; 4427 case IPPROTO_IPCOMP: 4428 return SADB_X_SATYPE_IPCOMP; 4429 case IPPROTO_TCP: 4430 return SADB_X_SATYPE_TCPSIGNATURE; 4431 default: 4432 return 0; 4433 } 4434 /* NOTREACHED */ 4435 } 4436 4437 /* %%% PF_KEY */ 4438 /* 4439 * SADB_GETSPI processing is to receive 4440 * <base, (SA2), src address, dst address, (SPI range)> 4441 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND 4442 * tree with the status of LARVAL, and send 4443 * <base, SA(*), address(SD)> 4444 * to the IKMPd. 4445 * 4446 * IN: mhp: pointer to the pointer to each header. 4447 * OUT: NULL if fail. 4448 * other if success, return pointer to the message to send. 4449 */ 4450 static int 4451 key_getspi(so, m, mhp) 4452 struct socket *so; 4453 struct mbuf *m; 4454 const struct sadb_msghdr *mhp; 4455 { 4456 INIT_VNET_IPSEC(curvnet); 4457 struct sadb_address *src0, *dst0; 4458 struct secasindex saidx; 4459 struct secashead *newsah; 4460 struct secasvar *newsav; 4461 u_int8_t proto; 4462 u_int32_t spi; 4463 u_int8_t mode; 4464 u_int32_t reqid; 4465 int error; 4466 4467 IPSEC_ASSERT(so != NULL, ("null socket")); 4468 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4469 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4470 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4471 4472 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4473 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 4474 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4475 __func__)); 4476 return key_senderror(so, m, EINVAL); 4477 } 4478 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4479 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4480 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4481 __func__)); 4482 return key_senderror(so, m, EINVAL); 4483 } 4484 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4485 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4486 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4487 } else { 4488 mode = IPSEC_MODE_ANY; 4489 reqid = 0; 4490 } 4491 4492 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4493 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4494 4495 /* map satype to proto */ 4496 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4497 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4498 __func__)); 4499 return key_senderror(so, m, EINVAL); 4500 } 4501 4502 /* make sure if port number is zero. */ 4503 switch (((struct sockaddr *)(src0 + 1))->sa_family) { 4504 case AF_INET: 4505 if (((struct sockaddr *)(src0 + 1))->sa_len != 4506 sizeof(struct sockaddr_in)) 4507 return key_senderror(so, m, EINVAL); 4508 ((struct sockaddr_in *)(src0 + 1))->sin_port = 0; 4509 break; 4510 case AF_INET6: 4511 if (((struct sockaddr *)(src0 + 1))->sa_len != 4512 sizeof(struct sockaddr_in6)) 4513 return key_senderror(so, m, EINVAL); 4514 ((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0; 4515 break; 4516 default: 4517 ; /*???*/ 4518 } 4519 switch (((struct sockaddr *)(dst0 + 1))->sa_family) { 4520 case AF_INET: 4521 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4522 sizeof(struct sockaddr_in)) 4523 return key_senderror(so, m, EINVAL); 4524 ((struct sockaddr_in *)(dst0 + 1))->sin_port = 0; 4525 break; 4526 case AF_INET6: 4527 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4528 sizeof(struct sockaddr_in6)) 4529 return key_senderror(so, m, EINVAL); 4530 ((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0; 4531 break; 4532 default: 4533 ; /*???*/ 4534 } 4535 4536 /* XXX boundary check against sa_len */ 4537 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4538 4539 /* SPI allocation */ 4540 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE], 4541 &saidx); 4542 if (spi == 0) 4543 return key_senderror(so, m, EINVAL); 4544 4545 /* get a SA index */ 4546 if ((newsah = key_getsah(&saidx)) == NULL) { 4547 /* create a new SA index */ 4548 if ((newsah = key_newsah(&saidx)) == NULL) { 4549 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 4550 return key_senderror(so, m, ENOBUFS); 4551 } 4552 } 4553 4554 /* get a new SA */ 4555 /* XXX rewrite */ 4556 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 4557 if (newsav == NULL) { 4558 /* XXX don't free new SA index allocated in above. */ 4559 return key_senderror(so, m, error); 4560 } 4561 4562 /* set spi */ 4563 newsav->spi = htonl(spi); 4564 4565 /* delete the entry in acqtree */ 4566 if (mhp->msg->sadb_msg_seq != 0) { 4567 struct secacq *acq; 4568 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) { 4569 /* reset counter in order to deletion by timehandler. */ 4570 acq->created = time_second; 4571 acq->count = 0; 4572 } 4573 } 4574 4575 { 4576 struct mbuf *n, *nn; 4577 struct sadb_sa *m_sa; 4578 struct sadb_msg *newmsg; 4579 int off, len; 4580 4581 /* create new sadb_msg to reply. */ 4582 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 4583 PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4584 4585 MGETHDR(n, M_DONTWAIT, MT_DATA); 4586 if (len > MHLEN) { 4587 MCLGET(n, M_DONTWAIT); 4588 if ((n->m_flags & M_EXT) == 0) { 4589 m_freem(n); 4590 n = NULL; 4591 } 4592 } 4593 if (!n) 4594 return key_senderror(so, m, ENOBUFS); 4595 4596 n->m_len = len; 4597 n->m_next = NULL; 4598 off = 0; 4599 4600 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 4601 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 4602 4603 m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off); 4604 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); 4605 m_sa->sadb_sa_exttype = SADB_EXT_SA; 4606 m_sa->sadb_sa_spi = htonl(spi); 4607 off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4608 4609 IPSEC_ASSERT(off == len, 4610 ("length inconsistency (off %u len %u)", off, len)); 4611 4612 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, 4613 SADB_EXT_ADDRESS_DST); 4614 if (!n->m_next) { 4615 m_freem(n); 4616 return key_senderror(so, m, ENOBUFS); 4617 } 4618 4619 if (n->m_len < sizeof(struct sadb_msg)) { 4620 n = m_pullup(n, sizeof(struct sadb_msg)); 4621 if (n == NULL) 4622 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 4623 } 4624 4625 n->m_pkthdr.len = 0; 4626 for (nn = n; nn; nn = nn->m_next) 4627 n->m_pkthdr.len += nn->m_len; 4628 4629 newmsg = mtod(n, struct sadb_msg *); 4630 newmsg->sadb_msg_seq = newsav->seq; 4631 newmsg->sadb_msg_errno = 0; 4632 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 4633 4634 m_freem(m); 4635 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 4636 } 4637 } 4638 4639 /* 4640 * allocating new SPI 4641 * called by key_getspi(). 4642 * OUT: 4643 * 0: failure. 4644 * others: success. 4645 */ 4646 static u_int32_t 4647 key_do_getnewspi(spirange, saidx) 4648 struct sadb_spirange *spirange; 4649 struct secasindex *saidx; 4650 { 4651 INIT_VNET_IPSEC(curvnet); 4652 u_int32_t newspi; 4653 u_int32_t min, max; 4654 int count = V_key_spi_trycnt; 4655 4656 /* set spi range to allocate */ 4657 if (spirange != NULL) { 4658 min = spirange->sadb_spirange_min; 4659 max = spirange->sadb_spirange_max; 4660 } else { 4661 min = V_key_spi_minval; 4662 max = V_key_spi_maxval; 4663 } 4664 /* IPCOMP needs 2-byte SPI */ 4665 if (saidx->proto == IPPROTO_IPCOMP) { 4666 u_int32_t t; 4667 if (min >= 0x10000) 4668 min = 0xffff; 4669 if (max >= 0x10000) 4670 max = 0xffff; 4671 if (min > max) { 4672 t = min; min = max; max = t; 4673 } 4674 } 4675 4676 if (min == max) { 4677 if (key_checkspidup(saidx, min) != NULL) { 4678 ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n", 4679 __func__, min)); 4680 return 0; 4681 } 4682 4683 count--; /* taking one cost. */ 4684 newspi = min; 4685 4686 } else { 4687 4688 /* init SPI */ 4689 newspi = 0; 4690 4691 /* when requesting to allocate spi ranged */ 4692 while (count--) { 4693 /* generate pseudo-random SPI value ranged. */ 4694 newspi = min + (key_random() % (max - min + 1)); 4695 4696 if (key_checkspidup(saidx, newspi) == NULL) 4697 break; 4698 } 4699 4700 if (count == 0 || newspi == 0) { 4701 ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n", 4702 __func__)); 4703 return 0; 4704 } 4705 } 4706 4707 /* statistics */ 4708 keystat.getspi_count = 4709 (keystat.getspi_count + V_key_spi_trycnt - count) / 2; 4710 4711 return newspi; 4712 } 4713 4714 /* 4715 * SADB_UPDATE processing 4716 * receive 4717 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4718 * key(AE), (identity(SD),) (sensitivity)> 4719 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. 4720 * and send 4721 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4722 * (identity(SD),) (sensitivity)> 4723 * to the ikmpd. 4724 * 4725 * m will always be freed. 4726 */ 4727 static int 4728 key_update(so, m, mhp) 4729 struct socket *so; 4730 struct mbuf *m; 4731 const struct sadb_msghdr *mhp; 4732 { 4733 INIT_VNET_IPSEC(curvnet); 4734 struct sadb_sa *sa0; 4735 struct sadb_address *src0, *dst0; 4736 struct secasindex saidx; 4737 struct secashead *sah; 4738 struct secasvar *sav; 4739 u_int16_t proto; 4740 u_int8_t mode; 4741 u_int32_t reqid; 4742 int error; 4743 4744 IPSEC_ASSERT(so != NULL, ("null socket")); 4745 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4746 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4747 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4748 4749 /* map satype to proto */ 4750 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4751 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4752 __func__)); 4753 return key_senderror(so, m, EINVAL); 4754 } 4755 4756 if (mhp->ext[SADB_EXT_SA] == NULL || 4757 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4758 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 4759 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 4760 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 4761 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 4762 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 4763 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 4764 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 4765 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 4766 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 4767 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4768 __func__)); 4769 return key_senderror(so, m, EINVAL); 4770 } 4771 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 4772 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4773 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4774 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4775 __func__)); 4776 return key_senderror(so, m, EINVAL); 4777 } 4778 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4779 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4780 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4781 } else { 4782 mode = IPSEC_MODE_ANY; 4783 reqid = 0; 4784 } 4785 /* XXX boundary checking for other extensions */ 4786 4787 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 4788 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4789 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4790 4791 /* XXX boundary check against sa_len */ 4792 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4793 4794 /* get a SA header */ 4795 if ((sah = key_getsah(&saidx)) == NULL) { 4796 ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__)); 4797 return key_senderror(so, m, ENOENT); 4798 } 4799 4800 /* set spidx if there */ 4801 /* XXX rewrite */ 4802 error = key_setident(sah, m, mhp); 4803 if (error) 4804 return key_senderror(so, m, error); 4805 4806 /* find a SA with sequence number. */ 4807 #ifdef IPSEC_DOSEQCHECK 4808 if (mhp->msg->sadb_msg_seq != 0 4809 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) { 4810 ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u " 4811 "exists.\n", __func__, mhp->msg->sadb_msg_seq)); 4812 return key_senderror(so, m, ENOENT); 4813 } 4814 #else 4815 SAHTREE_LOCK(); 4816 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 4817 SAHTREE_UNLOCK(); 4818 if (sav == NULL) { 4819 ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n", 4820 __func__, (u_int32_t)ntohl(sa0->sadb_sa_spi))); 4821 return key_senderror(so, m, EINVAL); 4822 } 4823 #endif 4824 4825 /* validity check */ 4826 if (sav->sah->saidx.proto != proto) { 4827 ipseclog((LOG_DEBUG, "%s: protocol mismatched " 4828 "(DB=%u param=%u)\n", __func__, 4829 sav->sah->saidx.proto, proto)); 4830 return key_senderror(so, m, EINVAL); 4831 } 4832 #ifdef IPSEC_DOSEQCHECK 4833 if (sav->spi != sa0->sadb_sa_spi) { 4834 ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n", 4835 __func__, 4836 (u_int32_t)ntohl(sav->spi), 4837 (u_int32_t)ntohl(sa0->sadb_sa_spi))); 4838 return key_senderror(so, m, EINVAL); 4839 } 4840 #endif 4841 if (sav->pid != mhp->msg->sadb_msg_pid) { 4842 ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n", 4843 __func__, sav->pid, mhp->msg->sadb_msg_pid)); 4844 return key_senderror(so, m, EINVAL); 4845 } 4846 4847 /* copy sav values */ 4848 error = key_setsaval(sav, m, mhp); 4849 if (error) { 4850 KEY_FREESAV(&sav); 4851 return key_senderror(so, m, error); 4852 } 4853 4854 /* check SA values to be mature. */ 4855 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) { 4856 KEY_FREESAV(&sav); 4857 return key_senderror(so, m, 0); 4858 } 4859 4860 { 4861 struct mbuf *n; 4862 4863 /* set msg buf from mhp */ 4864 n = key_getmsgbuf_x1(m, mhp); 4865 if (n == NULL) { 4866 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 4867 return key_senderror(so, m, ENOBUFS); 4868 } 4869 4870 m_freem(m); 4871 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 4872 } 4873 } 4874 4875 /* 4876 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL. 4877 * only called by key_update(). 4878 * OUT: 4879 * NULL : not found 4880 * others : found, pointer to a SA. 4881 */ 4882 #ifdef IPSEC_DOSEQCHECK 4883 static struct secasvar * 4884 key_getsavbyseq(sah, seq) 4885 struct secashead *sah; 4886 u_int32_t seq; 4887 { 4888 struct secasvar *sav; 4889 u_int state; 4890 4891 state = SADB_SASTATE_LARVAL; 4892 4893 /* search SAD with sequence number ? */ 4894 LIST_FOREACH(sav, &sah->savtree[state], chain) { 4895 4896 KEY_CHKSASTATE(state, sav->state, __func__); 4897 4898 if (sav->seq == seq) { 4899 sa_addref(sav); 4900 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 4901 printf("DP %s cause refcnt++:%d SA:%p\n", 4902 __func__, sav->refcnt, sav)); 4903 return sav; 4904 } 4905 } 4906 4907 return NULL; 4908 } 4909 #endif 4910 4911 /* 4912 * SADB_ADD processing 4913 * add an entry to SA database, when received 4914 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4915 * key(AE), (identity(SD),) (sensitivity)> 4916 * from the ikmpd, 4917 * and send 4918 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4919 * (identity(SD),) (sensitivity)> 4920 * to the ikmpd. 4921 * 4922 * IGNORE identity and sensitivity messages. 4923 * 4924 * m will always be freed. 4925 */ 4926 static int 4927 key_add(so, m, mhp) 4928 struct socket *so; 4929 struct mbuf *m; 4930 const struct sadb_msghdr *mhp; 4931 { 4932 INIT_VNET_IPSEC(curvnet); 4933 struct sadb_sa *sa0; 4934 struct sadb_address *src0, *dst0; 4935 struct secasindex saidx; 4936 struct secashead *newsah; 4937 struct secasvar *newsav; 4938 u_int16_t proto; 4939 u_int8_t mode; 4940 u_int32_t reqid; 4941 int error; 4942 4943 IPSEC_ASSERT(so != NULL, ("null socket")); 4944 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4945 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4946 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4947 4948 /* map satype to proto */ 4949 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4950 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4951 __func__)); 4952 return key_senderror(so, m, EINVAL); 4953 } 4954 4955 if (mhp->ext[SADB_EXT_SA] == NULL || 4956 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4957 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 4958 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 4959 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 4960 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 4961 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 4962 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 4963 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 4964 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 4965 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 4966 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4967 __func__)); 4968 return key_senderror(so, m, EINVAL); 4969 } 4970 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 4971 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4972 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4973 /* XXX need more */ 4974 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4975 __func__)); 4976 return key_senderror(so, m, EINVAL); 4977 } 4978 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4979 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4980 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4981 } else { 4982 mode = IPSEC_MODE_ANY; 4983 reqid = 0; 4984 } 4985 4986 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 4987 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 4988 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 4989 4990 /* XXX boundary check against sa_len */ 4991 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4992 4993 /* get a SA header */ 4994 if ((newsah = key_getsah(&saidx)) == NULL) { 4995 /* create a new SA header */ 4996 if ((newsah = key_newsah(&saidx)) == NULL) { 4997 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 4998 return key_senderror(so, m, ENOBUFS); 4999 } 5000 } 5001 5002 /* set spidx if there */ 5003 /* XXX rewrite */ 5004 error = key_setident(newsah, m, mhp); 5005 if (error) { 5006 return key_senderror(so, m, error); 5007 } 5008 5009 /* create new SA entry. */ 5010 /* We can create new SA only if SPI is differenct. */ 5011 SAHTREE_LOCK(); 5012 newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi); 5013 SAHTREE_UNLOCK(); 5014 if (newsav != NULL) { 5015 ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__)); 5016 return key_senderror(so, m, EEXIST); 5017 } 5018 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 5019 if (newsav == NULL) { 5020 return key_senderror(so, m, error); 5021 } 5022 5023 /* check SA values to be mature. */ 5024 if ((error = key_mature(newsav)) != 0) { 5025 KEY_FREESAV(&newsav); 5026 return key_senderror(so, m, error); 5027 } 5028 5029 /* 5030 * don't call key_freesav() here, as we would like to keep the SA 5031 * in the database on success. 5032 */ 5033 5034 { 5035 struct mbuf *n; 5036 5037 /* set msg buf from mhp */ 5038 n = key_getmsgbuf_x1(m, mhp); 5039 if (n == NULL) { 5040 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5041 return key_senderror(so, m, ENOBUFS); 5042 } 5043 5044 m_freem(m); 5045 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5046 } 5047 } 5048 5049 /* m is retained */ 5050 static int 5051 key_setident(sah, m, mhp) 5052 struct secashead *sah; 5053 struct mbuf *m; 5054 const struct sadb_msghdr *mhp; 5055 { 5056 INIT_VNET_IPSEC(curvnet); 5057 const struct sadb_ident *idsrc, *iddst; 5058 int idsrclen, iddstlen; 5059 5060 IPSEC_ASSERT(sah != NULL, ("null secashead")); 5061 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5062 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5063 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5064 5065 /* don't make buffer if not there */ 5066 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL && 5067 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5068 sah->idents = NULL; 5069 sah->identd = NULL; 5070 return 0; 5071 } 5072 5073 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL || 5074 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5075 ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__)); 5076 return EINVAL; 5077 } 5078 5079 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC]; 5080 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST]; 5081 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC]; 5082 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST]; 5083 5084 /* validity check */ 5085 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { 5086 ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__)); 5087 return EINVAL; 5088 } 5089 5090 switch (idsrc->sadb_ident_type) { 5091 case SADB_IDENTTYPE_PREFIX: 5092 case SADB_IDENTTYPE_FQDN: 5093 case SADB_IDENTTYPE_USERFQDN: 5094 default: 5095 /* XXX do nothing */ 5096 sah->idents = NULL; 5097 sah->identd = NULL; 5098 return 0; 5099 } 5100 5101 /* make structure */ 5102 sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5103 if (sah->idents == NULL) { 5104 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5105 return ENOBUFS; 5106 } 5107 sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5108 if (sah->identd == NULL) { 5109 free(sah->idents, M_IPSEC_MISC); 5110 sah->idents = NULL; 5111 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5112 return ENOBUFS; 5113 } 5114 sah->idents->type = idsrc->sadb_ident_type; 5115 sah->idents->id = idsrc->sadb_ident_id; 5116 5117 sah->identd->type = iddst->sadb_ident_type; 5118 sah->identd->id = iddst->sadb_ident_id; 5119 5120 return 0; 5121 } 5122 5123 /* 5124 * m will not be freed on return. 5125 * it is caller's responsibility to free the result. 5126 */ 5127 static struct mbuf * 5128 key_getmsgbuf_x1(m, mhp) 5129 struct mbuf *m; 5130 const struct sadb_msghdr *mhp; 5131 { 5132 struct mbuf *n; 5133 5134 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5135 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5136 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5137 5138 /* create new sadb_msg to reply. */ 5139 n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED, 5140 SADB_EXT_SA, SADB_X_EXT_SA2, 5141 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, 5142 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 5143 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST); 5144 if (!n) 5145 return NULL; 5146 5147 if (n->m_len < sizeof(struct sadb_msg)) { 5148 n = m_pullup(n, sizeof(struct sadb_msg)); 5149 if (n == NULL) 5150 return NULL; 5151 } 5152 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; 5153 mtod(n, struct sadb_msg *)->sadb_msg_len = 5154 PFKEY_UNIT64(n->m_pkthdr.len); 5155 5156 return n; 5157 } 5158 5159 static int key_delete_all __P((struct socket *, struct mbuf *, 5160 const struct sadb_msghdr *, u_int16_t)); 5161 5162 /* 5163 * SADB_DELETE processing 5164 * receive 5165 * <base, SA(*), address(SD)> 5166 * from the ikmpd, and set SADB_SASTATE_DEAD, 5167 * and send, 5168 * <base, SA(*), address(SD)> 5169 * to the ikmpd. 5170 * 5171 * m will always be freed. 5172 */ 5173 static int 5174 key_delete(so, m, mhp) 5175 struct socket *so; 5176 struct mbuf *m; 5177 const struct sadb_msghdr *mhp; 5178 { 5179 INIT_VNET_IPSEC(curvnet); 5180 struct sadb_sa *sa0; 5181 struct sadb_address *src0, *dst0; 5182 struct secasindex saidx; 5183 struct secashead *sah; 5184 struct secasvar *sav = NULL; 5185 u_int16_t proto; 5186 5187 IPSEC_ASSERT(so != NULL, ("null socket")); 5188 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5189 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5190 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5191 5192 /* map satype to proto */ 5193 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5194 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5195 __func__)); 5196 return key_senderror(so, m, EINVAL); 5197 } 5198 5199 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5200 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5201 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5202 __func__)); 5203 return key_senderror(so, m, EINVAL); 5204 } 5205 5206 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5207 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5208 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5209 __func__)); 5210 return key_senderror(so, m, EINVAL); 5211 } 5212 5213 if (mhp->ext[SADB_EXT_SA] == NULL) { 5214 /* 5215 * Caller wants us to delete all non-LARVAL SAs 5216 * that match the src/dst. This is used during 5217 * IKE INITIAL-CONTACT. 5218 */ 5219 ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__)); 5220 return key_delete_all(so, m, mhp, proto); 5221 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { 5222 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5223 __func__)); 5224 return key_senderror(so, m, EINVAL); 5225 } 5226 5227 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5228 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5229 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5230 5231 /* XXX boundary check against sa_len */ 5232 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5233 5234 /* get a SA header */ 5235 SAHTREE_LOCK(); 5236 LIST_FOREACH(sah, &V_sahtree, chain) { 5237 if (sah->state == SADB_SASTATE_DEAD) 5238 continue; 5239 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5240 continue; 5241 5242 /* get a SA with SPI. */ 5243 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5244 if (sav) 5245 break; 5246 } 5247 if (sah == NULL) { 5248 SAHTREE_UNLOCK(); 5249 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5250 return key_senderror(so, m, ENOENT); 5251 } 5252 5253 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5254 SAHTREE_UNLOCK(); 5255 KEY_FREESAV(&sav); 5256 5257 { 5258 struct mbuf *n; 5259 struct sadb_msg *newmsg; 5260 5261 /* create new sadb_msg to reply. */ 5262 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 5263 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5264 if (!n) 5265 return key_senderror(so, m, ENOBUFS); 5266 5267 if (n->m_len < sizeof(struct sadb_msg)) { 5268 n = m_pullup(n, sizeof(struct sadb_msg)); 5269 if (n == NULL) 5270 return key_senderror(so, m, ENOBUFS); 5271 } 5272 newmsg = mtod(n, struct sadb_msg *); 5273 newmsg->sadb_msg_errno = 0; 5274 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5275 5276 m_freem(m); 5277 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5278 } 5279 } 5280 5281 /* 5282 * delete all SAs for src/dst. Called from key_delete(). 5283 */ 5284 static int 5285 key_delete_all(so, m, mhp, proto) 5286 struct socket *so; 5287 struct mbuf *m; 5288 const struct sadb_msghdr *mhp; 5289 u_int16_t proto; 5290 { 5291 INIT_VNET_IPSEC(curvnet); 5292 struct sadb_address *src0, *dst0; 5293 struct secasindex saidx; 5294 struct secashead *sah; 5295 struct secasvar *sav, *nextsav; 5296 u_int stateidx, state; 5297 5298 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5299 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5300 5301 /* XXX boundary check against sa_len */ 5302 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5303 5304 SAHTREE_LOCK(); 5305 LIST_FOREACH(sah, &V_sahtree, chain) { 5306 if (sah->state == SADB_SASTATE_DEAD) 5307 continue; 5308 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5309 continue; 5310 5311 /* Delete all non-LARVAL SAs. */ 5312 for (stateidx = 0; 5313 stateidx < _ARRAYLEN(V_saorder_state_alive); 5314 stateidx++) { 5315 state = V_saorder_state_alive[stateidx]; 5316 if (state == SADB_SASTATE_LARVAL) 5317 continue; 5318 for (sav = LIST_FIRST(&sah->savtree[state]); 5319 sav != NULL; sav = nextsav) { 5320 nextsav = LIST_NEXT(sav, chain); 5321 /* sanity check */ 5322 if (sav->state != state) { 5323 ipseclog((LOG_DEBUG, "%s: invalid " 5324 "sav->state (queue %d SA %d)\n", 5325 __func__, state, sav->state)); 5326 continue; 5327 } 5328 5329 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5330 KEY_FREESAV(&sav); 5331 } 5332 } 5333 } 5334 SAHTREE_UNLOCK(); 5335 { 5336 struct mbuf *n; 5337 struct sadb_msg *newmsg; 5338 5339 /* create new sadb_msg to reply. */ 5340 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, 5341 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5342 if (!n) 5343 return key_senderror(so, m, ENOBUFS); 5344 5345 if (n->m_len < sizeof(struct sadb_msg)) { 5346 n = m_pullup(n, sizeof(struct sadb_msg)); 5347 if (n == NULL) 5348 return key_senderror(so, m, ENOBUFS); 5349 } 5350 newmsg = mtod(n, struct sadb_msg *); 5351 newmsg->sadb_msg_errno = 0; 5352 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5353 5354 m_freem(m); 5355 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5356 } 5357 } 5358 5359 /* 5360 * SADB_GET processing 5361 * receive 5362 * <base, SA(*), address(SD)> 5363 * from the ikmpd, and get a SP and a SA to respond, 5364 * and send, 5365 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), 5366 * (identity(SD),) (sensitivity)> 5367 * to the ikmpd. 5368 * 5369 * m will always be freed. 5370 */ 5371 static int 5372 key_get(so, m, mhp) 5373 struct socket *so; 5374 struct mbuf *m; 5375 const struct sadb_msghdr *mhp; 5376 { 5377 INIT_VNET_IPSEC(curvnet); 5378 struct sadb_sa *sa0; 5379 struct sadb_address *src0, *dst0; 5380 struct secasindex saidx; 5381 struct secashead *sah; 5382 struct secasvar *sav = NULL; 5383 u_int16_t proto; 5384 5385 IPSEC_ASSERT(so != NULL, ("null socket")); 5386 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5387 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5388 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5389 5390 /* map satype to proto */ 5391 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5392 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5393 __func__)); 5394 return key_senderror(so, m, EINVAL); 5395 } 5396 5397 if (mhp->ext[SADB_EXT_SA] == NULL || 5398 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5399 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5400 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5401 __func__)); 5402 return key_senderror(so, m, EINVAL); 5403 } 5404 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5405 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5406 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5407 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5408 __func__)); 5409 return key_senderror(so, m, EINVAL); 5410 } 5411 5412 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5413 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5414 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5415 5416 /* XXX boundary check against sa_len */ 5417 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5418 5419 /* get a SA header */ 5420 SAHTREE_LOCK(); 5421 LIST_FOREACH(sah, &V_sahtree, chain) { 5422 if (sah->state == SADB_SASTATE_DEAD) 5423 continue; 5424 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5425 continue; 5426 5427 /* get a SA with SPI. */ 5428 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5429 if (sav) 5430 break; 5431 } 5432 SAHTREE_UNLOCK(); 5433 if (sah == NULL) { 5434 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5435 return key_senderror(so, m, ENOENT); 5436 } 5437 5438 { 5439 struct mbuf *n; 5440 u_int8_t satype; 5441 5442 /* map proto to satype */ 5443 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 5444 ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n", 5445 __func__)); 5446 return key_senderror(so, m, EINVAL); 5447 } 5448 5449 /* create new sadb_msg to reply. */ 5450 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, 5451 mhp->msg->sadb_msg_pid); 5452 if (!n) 5453 return key_senderror(so, m, ENOBUFS); 5454 5455 m_freem(m); 5456 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5457 } 5458 } 5459 5460 /* XXX make it sysctl-configurable? */ 5461 static void 5462 key_getcomb_setlifetime(comb) 5463 struct sadb_comb *comb; 5464 { 5465 5466 comb->sadb_comb_soft_allocations = 1; 5467 comb->sadb_comb_hard_allocations = 1; 5468 comb->sadb_comb_soft_bytes = 0; 5469 comb->sadb_comb_hard_bytes = 0; 5470 comb->sadb_comb_hard_addtime = 86400; /* 1 day */ 5471 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100; 5472 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */ 5473 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100; 5474 } 5475 5476 /* 5477 * XXX reorder combinations by preference 5478 * XXX no idea if the user wants ESP authentication or not 5479 */ 5480 static struct mbuf * 5481 key_getcomb_esp() 5482 { 5483 INIT_VNET_IPSEC(curvnet); 5484 struct sadb_comb *comb; 5485 struct enc_xform *algo; 5486 struct mbuf *result = NULL, *m, *n; 5487 int encmin; 5488 int i, off, o; 5489 int totlen; 5490 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5491 5492 m = NULL; 5493 for (i = 1; i <= SADB_EALG_MAX; i++) { 5494 algo = esp_algorithm_lookup(i); 5495 if (algo == NULL) 5496 continue; 5497 5498 /* discard algorithms with key size smaller than system min */ 5499 if (_BITS(algo->maxkey) < V_ipsec_esp_keymin) 5500 continue; 5501 if (_BITS(algo->minkey) < V_ipsec_esp_keymin) 5502 encmin = V_ipsec_esp_keymin; 5503 else 5504 encmin = _BITS(algo->minkey); 5505 5506 if (V_ipsec_esp_auth) 5507 m = key_getcomb_ah(); 5508 else { 5509 IPSEC_ASSERT(l <= MLEN, 5510 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 5511 MGET(m, M_DONTWAIT, MT_DATA); 5512 if (m) { 5513 M_ALIGN(m, l); 5514 m->m_len = l; 5515 m->m_next = NULL; 5516 bzero(mtod(m, caddr_t), m->m_len); 5517 } 5518 } 5519 if (!m) 5520 goto fail; 5521 5522 totlen = 0; 5523 for (n = m; n; n = n->m_next) 5524 totlen += n->m_len; 5525 IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l)); 5526 5527 for (off = 0; off < totlen; off += l) { 5528 n = m_pulldown(m, off, l, &o); 5529 if (!n) { 5530 /* m is already freed */ 5531 goto fail; 5532 } 5533 comb = (struct sadb_comb *)(mtod(n, caddr_t) + o); 5534 bzero(comb, sizeof(*comb)); 5535 key_getcomb_setlifetime(comb); 5536 comb->sadb_comb_encrypt = i; 5537 comb->sadb_comb_encrypt_minbits = encmin; 5538 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); 5539 } 5540 5541 if (!result) 5542 result = m; 5543 else 5544 m_cat(result, m); 5545 } 5546 5547 return result; 5548 5549 fail: 5550 if (result) 5551 m_freem(result); 5552 return NULL; 5553 } 5554 5555 static void 5556 key_getsizes_ah( 5557 const struct auth_hash *ah, 5558 int alg, 5559 u_int16_t* min, 5560 u_int16_t* max) 5561 { 5562 INIT_VNET_IPSEC(curvnet); 5563 5564 *min = *max = ah->keysize; 5565 if (ah->keysize == 0) { 5566 /* 5567 * Transform takes arbitrary key size but algorithm 5568 * key size is restricted. Enforce this here. 5569 */ 5570 switch (alg) { 5571 case SADB_X_AALG_MD5: *min = *max = 16; break; 5572 case SADB_X_AALG_SHA: *min = *max = 20; break; 5573 case SADB_X_AALG_NULL: *min = 1; *max = 256; break; 5574 default: 5575 DPRINTF(("%s: unknown AH algorithm %u\n", 5576 __func__, alg)); 5577 break; 5578 } 5579 } 5580 } 5581 5582 /* 5583 * XXX reorder combinations by preference 5584 */ 5585 static struct mbuf * 5586 key_getcomb_ah() 5587 { 5588 INIT_VNET_IPSEC(curvnet); 5589 struct sadb_comb *comb; 5590 struct auth_hash *algo; 5591 struct mbuf *m; 5592 u_int16_t minkeysize, maxkeysize; 5593 int i; 5594 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5595 5596 m = NULL; 5597 for (i = 1; i <= SADB_AALG_MAX; i++) { 5598 #if 1 5599 /* we prefer HMAC algorithms, not old algorithms */ 5600 if (i != SADB_AALG_SHA1HMAC && i != SADB_AALG_MD5HMAC) 5601 continue; 5602 #endif 5603 algo = ah_algorithm_lookup(i); 5604 if (!algo) 5605 continue; 5606 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); 5607 /* discard algorithms with key size smaller than system min */ 5608 if (_BITS(minkeysize) < V_ipsec_ah_keymin) 5609 continue; 5610 5611 if (!m) { 5612 IPSEC_ASSERT(l <= MLEN, 5613 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 5614 MGET(m, M_DONTWAIT, MT_DATA); 5615 if (m) { 5616 M_ALIGN(m, l); 5617 m->m_len = l; 5618 m->m_next = NULL; 5619 } 5620 } else 5621 M_PREPEND(m, l, M_DONTWAIT); 5622 if (!m) 5623 return NULL; 5624 5625 comb = mtod(m, struct sadb_comb *); 5626 bzero(comb, sizeof(*comb)); 5627 key_getcomb_setlifetime(comb); 5628 comb->sadb_comb_auth = i; 5629 comb->sadb_comb_auth_minbits = _BITS(minkeysize); 5630 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); 5631 } 5632 5633 return m; 5634 } 5635 5636 /* 5637 * not really an official behavior. discussed in pf_key@inner.net in Sep2000. 5638 * XXX reorder combinations by preference 5639 */ 5640 static struct mbuf * 5641 key_getcomb_ipcomp() 5642 { 5643 struct sadb_comb *comb; 5644 struct comp_algo *algo; 5645 struct mbuf *m; 5646 int i; 5647 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5648 5649 m = NULL; 5650 for (i = 1; i <= SADB_X_CALG_MAX; i++) { 5651 algo = ipcomp_algorithm_lookup(i); 5652 if (!algo) 5653 continue; 5654 5655 if (!m) { 5656 IPSEC_ASSERT(l <= MLEN, 5657 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 5658 MGET(m, M_DONTWAIT, MT_DATA); 5659 if (m) { 5660 M_ALIGN(m, l); 5661 m->m_len = l; 5662 m->m_next = NULL; 5663 } 5664 } else 5665 M_PREPEND(m, l, M_DONTWAIT); 5666 if (!m) 5667 return NULL; 5668 5669 comb = mtod(m, struct sadb_comb *); 5670 bzero(comb, sizeof(*comb)); 5671 key_getcomb_setlifetime(comb); 5672 comb->sadb_comb_encrypt = i; 5673 /* what should we set into sadb_comb_*_{min,max}bits? */ 5674 } 5675 5676 return m; 5677 } 5678 5679 /* 5680 * XXX no way to pass mode (transport/tunnel) to userland 5681 * XXX replay checking? 5682 * XXX sysctl interface to ipsec_{ah,esp}_keymin 5683 */ 5684 static struct mbuf * 5685 key_getprop(saidx) 5686 const struct secasindex *saidx; 5687 { 5688 struct sadb_prop *prop; 5689 struct mbuf *m, *n; 5690 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); 5691 int totlen; 5692 5693 switch (saidx->proto) { 5694 case IPPROTO_ESP: 5695 m = key_getcomb_esp(); 5696 break; 5697 case IPPROTO_AH: 5698 m = key_getcomb_ah(); 5699 break; 5700 case IPPROTO_IPCOMP: 5701 m = key_getcomb_ipcomp(); 5702 break; 5703 default: 5704 return NULL; 5705 } 5706 5707 if (!m) 5708 return NULL; 5709 M_PREPEND(m, l, M_DONTWAIT); 5710 if (!m) 5711 return NULL; 5712 5713 totlen = 0; 5714 for (n = m; n; n = n->m_next) 5715 totlen += n->m_len; 5716 5717 prop = mtod(m, struct sadb_prop *); 5718 bzero(prop, sizeof(*prop)); 5719 prop->sadb_prop_len = PFKEY_UNIT64(totlen); 5720 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 5721 prop->sadb_prop_replay = 32; /* XXX */ 5722 5723 return m; 5724 } 5725 5726 /* 5727 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2(). 5728 * send 5729 * <base, SA, address(SD), (address(P)), x_policy, 5730 * (identity(SD),) (sensitivity,) proposal> 5731 * to KMD, and expect to receive 5732 * <base> with SADB_ACQUIRE if error occured, 5733 * or 5734 * <base, src address, dst address, (SPI range)> with SADB_GETSPI 5735 * from KMD by PF_KEY. 5736 * 5737 * XXX x_policy is outside of RFC2367 (KAME extension). 5738 * XXX sensitivity is not supported. 5739 * XXX for ipcomp, RFC2367 does not define how to fill in proposal. 5740 * see comment for key_getcomb_ipcomp(). 5741 * 5742 * OUT: 5743 * 0 : succeed 5744 * others: error number 5745 */ 5746 static int 5747 key_acquire(const struct secasindex *saidx, struct secpolicy *sp) 5748 { 5749 INIT_VNET_IPSEC(curvnet); 5750 struct mbuf *result = NULL, *m; 5751 struct secacq *newacq; 5752 u_int8_t satype; 5753 int error = -1; 5754 u_int32_t seq; 5755 5756 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 5757 satype = key_proto2satype(saidx->proto); 5758 IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto)); 5759 5760 /* 5761 * We never do anything about acquirng SA. There is anather 5762 * solution that kernel blocks to send SADB_ACQUIRE message until 5763 * getting something message from IKEd. In later case, to be 5764 * managed with ACQUIRING list. 5765 */ 5766 /* Get an entry to check whether sending message or not. */ 5767 if ((newacq = key_getacq(saidx)) != NULL) { 5768 if (V_key_blockacq_count < newacq->count) { 5769 /* reset counter and do send message. */ 5770 newacq->count = 0; 5771 } else { 5772 /* increment counter and do nothing. */ 5773 newacq->count++; 5774 return 0; 5775 } 5776 } else { 5777 /* make new entry for blocking to send SADB_ACQUIRE. */ 5778 if ((newacq = key_newacq(saidx)) == NULL) 5779 return ENOBUFS; 5780 } 5781 5782 5783 seq = newacq->seq; 5784 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0); 5785 if (!m) { 5786 error = ENOBUFS; 5787 goto fail; 5788 } 5789 result = m; 5790 5791 /* set sadb_address for saidx's. */ 5792 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 5793 &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY); 5794 if (!m) { 5795 error = ENOBUFS; 5796 goto fail; 5797 } 5798 m_cat(result, m); 5799 5800 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 5801 &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY); 5802 if (!m) { 5803 error = ENOBUFS; 5804 goto fail; 5805 } 5806 m_cat(result, m); 5807 5808 /* XXX proxy address (optional) */ 5809 5810 /* set sadb_x_policy */ 5811 if (sp) { 5812 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id); 5813 if (!m) { 5814 error = ENOBUFS; 5815 goto fail; 5816 } 5817 m_cat(result, m); 5818 } 5819 5820 /* XXX identity (optional) */ 5821 #if 0 5822 if (idexttype && fqdn) { 5823 /* create identity extension (FQDN) */ 5824 struct sadb_ident *id; 5825 int fqdnlen; 5826 5827 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ 5828 id = (struct sadb_ident *)p; 5829 bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 5830 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 5831 id->sadb_ident_exttype = idexttype; 5832 id->sadb_ident_type = SADB_IDENTTYPE_FQDN; 5833 bcopy(fqdn, id + 1, fqdnlen); 5834 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); 5835 } 5836 5837 if (idexttype) { 5838 /* create identity extension (USERFQDN) */ 5839 struct sadb_ident *id; 5840 int userfqdnlen; 5841 5842 if (userfqdn) { 5843 /* +1 for terminating-NUL */ 5844 userfqdnlen = strlen(userfqdn) + 1; 5845 } else 5846 userfqdnlen = 0; 5847 id = (struct sadb_ident *)p; 5848 bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 5849 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 5850 id->sadb_ident_exttype = idexttype; 5851 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; 5852 /* XXX is it correct? */ 5853 if (curproc && curproc->p_cred) 5854 id->sadb_ident_id = curproc->p_cred->p_ruid; 5855 if (userfqdn && userfqdnlen) 5856 bcopy(userfqdn, id + 1, userfqdnlen); 5857 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); 5858 } 5859 #endif 5860 5861 /* XXX sensitivity (optional) */ 5862 5863 /* create proposal/combination extension */ 5864 m = key_getprop(saidx); 5865 #if 0 5866 /* 5867 * spec conformant: always attach proposal/combination extension, 5868 * the problem is that we have no way to attach it for ipcomp, 5869 * due to the way sadb_comb is declared in RFC2367. 5870 */ 5871 if (!m) { 5872 error = ENOBUFS; 5873 goto fail; 5874 } 5875 m_cat(result, m); 5876 #else 5877 /* 5878 * outside of spec; make proposal/combination extension optional. 5879 */ 5880 if (m) 5881 m_cat(result, m); 5882 #endif 5883 5884 if ((result->m_flags & M_PKTHDR) == 0) { 5885 error = EINVAL; 5886 goto fail; 5887 } 5888 5889 if (result->m_len < sizeof(struct sadb_msg)) { 5890 result = m_pullup(result, sizeof(struct sadb_msg)); 5891 if (result == NULL) { 5892 error = ENOBUFS; 5893 goto fail; 5894 } 5895 } 5896 5897 result->m_pkthdr.len = 0; 5898 for (m = result; m; m = m->m_next) 5899 result->m_pkthdr.len += m->m_len; 5900 5901 mtod(result, struct sadb_msg *)->sadb_msg_len = 5902 PFKEY_UNIT64(result->m_pkthdr.len); 5903 5904 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 5905 5906 fail: 5907 if (result) 5908 m_freem(result); 5909 return error; 5910 } 5911 5912 static struct secacq * 5913 key_newacq(const struct secasindex *saidx) 5914 { 5915 INIT_VNET_IPSEC(curvnet); 5916 struct secacq *newacq; 5917 5918 /* get new entry */ 5919 newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 5920 if (newacq == NULL) { 5921 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5922 return NULL; 5923 } 5924 5925 /* copy secindex */ 5926 bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx)); 5927 newacq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq); 5928 newacq->created = time_second; 5929 newacq->count = 0; 5930 5931 /* add to acqtree */ 5932 ACQ_LOCK(); 5933 LIST_INSERT_HEAD(&V_acqtree, newacq, chain); 5934 ACQ_UNLOCK(); 5935 5936 return newacq; 5937 } 5938 5939 static struct secacq * 5940 key_getacq(const struct secasindex *saidx) 5941 { 5942 INIT_VNET_IPSEC(curvnet); 5943 struct secacq *acq; 5944 5945 ACQ_LOCK(); 5946 LIST_FOREACH(acq, &V_acqtree, chain) { 5947 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY)) 5948 break; 5949 } 5950 ACQ_UNLOCK(); 5951 5952 return acq; 5953 } 5954 5955 static struct secacq * 5956 key_getacqbyseq(seq) 5957 u_int32_t seq; 5958 { 5959 INIT_VNET_IPSEC(curvnet); 5960 struct secacq *acq; 5961 5962 ACQ_LOCK(); 5963 LIST_FOREACH(acq, &V_acqtree, chain) { 5964 if (acq->seq == seq) 5965 break; 5966 } 5967 ACQ_UNLOCK(); 5968 5969 return acq; 5970 } 5971 5972 static struct secspacq * 5973 key_newspacq(spidx) 5974 struct secpolicyindex *spidx; 5975 { 5976 INIT_VNET_IPSEC(curvnet); 5977 struct secspacq *acq; 5978 5979 /* get new entry */ 5980 acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 5981 if (acq == NULL) { 5982 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5983 return NULL; 5984 } 5985 5986 /* copy secindex */ 5987 bcopy(spidx, &acq->spidx, sizeof(acq->spidx)); 5988 acq->created = time_second; 5989 acq->count = 0; 5990 5991 /* add to spacqtree */ 5992 SPACQ_LOCK(); 5993 LIST_INSERT_HEAD(&V_spacqtree, acq, chain); 5994 SPACQ_UNLOCK(); 5995 5996 return acq; 5997 } 5998 5999 static struct secspacq * 6000 key_getspacq(spidx) 6001 struct secpolicyindex *spidx; 6002 { 6003 INIT_VNET_IPSEC(curvnet); 6004 struct secspacq *acq; 6005 6006 SPACQ_LOCK(); 6007 LIST_FOREACH(acq, &V_spacqtree, chain) { 6008 if (key_cmpspidx_exactly(spidx, &acq->spidx)) { 6009 /* NB: return holding spacq_lock */ 6010 return acq; 6011 } 6012 } 6013 SPACQ_UNLOCK(); 6014 6015 return NULL; 6016 } 6017 6018 /* 6019 * SADB_ACQUIRE processing, 6020 * in first situation, is receiving 6021 * <base> 6022 * from the ikmpd, and clear sequence of its secasvar entry. 6023 * 6024 * In second situation, is receiving 6025 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6026 * from a user land process, and return 6027 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6028 * to the socket. 6029 * 6030 * m will always be freed. 6031 */ 6032 static int 6033 key_acquire2(so, m, mhp) 6034 struct socket *so; 6035 struct mbuf *m; 6036 const struct sadb_msghdr *mhp; 6037 { 6038 INIT_VNET_IPSEC(curvnet); 6039 const struct sadb_address *src0, *dst0; 6040 struct secasindex saidx; 6041 struct secashead *sah; 6042 u_int16_t proto; 6043 int error; 6044 6045 IPSEC_ASSERT(so != NULL, ("null socket")); 6046 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6047 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6048 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6049 6050 /* 6051 * Error message from KMd. 6052 * We assume that if error was occured in IKEd, the length of PFKEY 6053 * message is equal to the size of sadb_msg structure. 6054 * We do not raise error even if error occured in this function. 6055 */ 6056 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { 6057 struct secacq *acq; 6058 6059 /* check sequence number */ 6060 if (mhp->msg->sadb_msg_seq == 0) { 6061 ipseclog((LOG_DEBUG, "%s: must specify sequence " 6062 "number.\n", __func__)); 6063 m_freem(m); 6064 return 0; 6065 } 6066 6067 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) { 6068 /* 6069 * the specified larval SA is already gone, or we got 6070 * a bogus sequence number. we can silently ignore it. 6071 */ 6072 m_freem(m); 6073 return 0; 6074 } 6075 6076 /* reset acq counter in order to deletion by timehander. */ 6077 acq->created = time_second; 6078 acq->count = 0; 6079 m_freem(m); 6080 return 0; 6081 } 6082 6083 /* 6084 * This message is from user land. 6085 */ 6086 6087 /* map satype to proto */ 6088 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6089 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6090 __func__)); 6091 return key_senderror(so, m, EINVAL); 6092 } 6093 6094 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6095 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 6096 mhp->ext[SADB_EXT_PROPOSAL] == NULL) { 6097 /* error */ 6098 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6099 __func__)); 6100 return key_senderror(so, m, EINVAL); 6101 } 6102 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6103 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 6104 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { 6105 /* error */ 6106 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6107 __func__)); 6108 return key_senderror(so, m, EINVAL); 6109 } 6110 6111 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 6112 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 6113 6114 /* XXX boundary check against sa_len */ 6115 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 6116 6117 /* get a SA index */ 6118 SAHTREE_LOCK(); 6119 LIST_FOREACH(sah, &V_sahtree, chain) { 6120 if (sah->state == SADB_SASTATE_DEAD) 6121 continue; 6122 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID)) 6123 break; 6124 } 6125 SAHTREE_UNLOCK(); 6126 if (sah != NULL) { 6127 ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__)); 6128 return key_senderror(so, m, EEXIST); 6129 } 6130 6131 error = key_acquire(&saidx, NULL); 6132 if (error != 0) { 6133 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 6134 __func__, mhp->msg->sadb_msg_errno)); 6135 return key_senderror(so, m, error); 6136 } 6137 6138 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); 6139 } 6140 6141 /* 6142 * SADB_REGISTER processing. 6143 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. 6144 * receive 6145 * <base> 6146 * from the ikmpd, and register a socket to send PF_KEY messages, 6147 * and send 6148 * <base, supported> 6149 * to KMD by PF_KEY. 6150 * If socket is detached, must free from regnode. 6151 * 6152 * m will always be freed. 6153 */ 6154 static int 6155 key_register(so, m, mhp) 6156 struct socket *so; 6157 struct mbuf *m; 6158 const struct sadb_msghdr *mhp; 6159 { 6160 INIT_VNET_IPSEC(curvnet); 6161 struct secreg *reg, *newreg = 0; 6162 6163 IPSEC_ASSERT(so != NULL, ("null socket")); 6164 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6165 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6166 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6167 6168 /* check for invalid register message */ 6169 if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0])) 6170 return key_senderror(so, m, EINVAL); 6171 6172 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ 6173 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) 6174 goto setmsg; 6175 6176 /* check whether existing or not */ 6177 REGTREE_LOCK(); 6178 LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) { 6179 if (reg->so == so) { 6180 REGTREE_UNLOCK(); 6181 ipseclog((LOG_DEBUG, "%s: socket exists already.\n", 6182 __func__)); 6183 return key_senderror(so, m, EEXIST); 6184 } 6185 } 6186 6187 /* create regnode */ 6188 newreg = malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO); 6189 if (newreg == NULL) { 6190 REGTREE_UNLOCK(); 6191 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6192 return key_senderror(so, m, ENOBUFS); 6193 } 6194 6195 newreg->so = so; 6196 ((struct keycb *)sotorawcb(so))->kp_registered++; 6197 6198 /* add regnode to regtree. */ 6199 LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain); 6200 REGTREE_UNLOCK(); 6201 6202 setmsg: 6203 { 6204 struct mbuf *n; 6205 struct sadb_msg *newmsg; 6206 struct sadb_supported *sup; 6207 u_int len, alen, elen; 6208 int off; 6209 int i; 6210 struct sadb_alg *alg; 6211 6212 /* create new sadb_msg to reply. */ 6213 alen = 0; 6214 for (i = 1; i <= SADB_AALG_MAX; i++) { 6215 if (ah_algorithm_lookup(i)) 6216 alen += sizeof(struct sadb_alg); 6217 } 6218 if (alen) 6219 alen += sizeof(struct sadb_supported); 6220 elen = 0; 6221 for (i = 1; i <= SADB_EALG_MAX; i++) { 6222 if (esp_algorithm_lookup(i)) 6223 elen += sizeof(struct sadb_alg); 6224 } 6225 if (elen) 6226 elen += sizeof(struct sadb_supported); 6227 6228 len = sizeof(struct sadb_msg) + alen + elen; 6229 6230 if (len > MCLBYTES) 6231 return key_senderror(so, m, ENOBUFS); 6232 6233 MGETHDR(n, M_DONTWAIT, MT_DATA); 6234 if (len > MHLEN) { 6235 MCLGET(n, M_DONTWAIT); 6236 if ((n->m_flags & M_EXT) == 0) { 6237 m_freem(n); 6238 n = NULL; 6239 } 6240 } 6241 if (!n) 6242 return key_senderror(so, m, ENOBUFS); 6243 6244 n->m_pkthdr.len = n->m_len = len; 6245 n->m_next = NULL; 6246 off = 0; 6247 6248 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 6249 newmsg = mtod(n, struct sadb_msg *); 6250 newmsg->sadb_msg_errno = 0; 6251 newmsg->sadb_msg_len = PFKEY_UNIT64(len); 6252 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 6253 6254 /* for authentication algorithm */ 6255 if (alen) { 6256 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6257 sup->sadb_supported_len = PFKEY_UNIT64(alen); 6258 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 6259 off += PFKEY_ALIGN8(sizeof(*sup)); 6260 6261 for (i = 1; i <= SADB_AALG_MAX; i++) { 6262 struct auth_hash *aalgo; 6263 u_int16_t minkeysize, maxkeysize; 6264 6265 aalgo = ah_algorithm_lookup(i); 6266 if (!aalgo) 6267 continue; 6268 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6269 alg->sadb_alg_id = i; 6270 alg->sadb_alg_ivlen = 0; 6271 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); 6272 alg->sadb_alg_minbits = _BITS(minkeysize); 6273 alg->sadb_alg_maxbits = _BITS(maxkeysize); 6274 off += PFKEY_ALIGN8(sizeof(*alg)); 6275 } 6276 } 6277 6278 /* for encryption algorithm */ 6279 if (elen) { 6280 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6281 sup->sadb_supported_len = PFKEY_UNIT64(elen); 6282 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 6283 off += PFKEY_ALIGN8(sizeof(*sup)); 6284 6285 for (i = 1; i <= SADB_EALG_MAX; i++) { 6286 struct enc_xform *ealgo; 6287 6288 ealgo = esp_algorithm_lookup(i); 6289 if (!ealgo) 6290 continue; 6291 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6292 alg->sadb_alg_id = i; 6293 alg->sadb_alg_ivlen = ealgo->blocksize; 6294 alg->sadb_alg_minbits = _BITS(ealgo->minkey); 6295 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); 6296 off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); 6297 } 6298 } 6299 6300 IPSEC_ASSERT(off == len, 6301 ("length assumption failed (off %u len %u)", off, len)); 6302 6303 m_freem(m); 6304 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); 6305 } 6306 } 6307 6308 /* 6309 * free secreg entry registered. 6310 * XXX: I want to do free a socket marked done SADB_RESIGER to socket. 6311 */ 6312 void 6313 key_freereg(struct socket *so) 6314 { 6315 INIT_VNET_IPSEC(curvnet); 6316 struct secreg *reg; 6317 int i; 6318 6319 IPSEC_ASSERT(so != NULL, ("NULL so")); 6320 6321 /* 6322 * check whether existing or not. 6323 * check all type of SA, because there is a potential that 6324 * one socket is registered to multiple type of SA. 6325 */ 6326 REGTREE_LOCK(); 6327 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 6328 LIST_FOREACH(reg, &V_regtree[i], chain) { 6329 if (reg->so == so && __LIST_CHAINED(reg)) { 6330 LIST_REMOVE(reg, chain); 6331 free(reg, M_IPSEC_SAR); 6332 break; 6333 } 6334 } 6335 } 6336 REGTREE_UNLOCK(); 6337 } 6338 6339 /* 6340 * SADB_EXPIRE processing 6341 * send 6342 * <base, SA, SA2, lifetime(C and one of HS), address(SD)> 6343 * to KMD by PF_KEY. 6344 * NOTE: We send only soft lifetime extension. 6345 * 6346 * OUT: 0 : succeed 6347 * others : error number 6348 */ 6349 static int 6350 key_expire(struct secasvar *sav) 6351 { 6352 int s; 6353 int satype; 6354 struct mbuf *result = NULL, *m; 6355 int len; 6356 int error = -1; 6357 struct sadb_lifetime *lt; 6358 6359 /* XXX: Why do we lock ? */ 6360 s = splnet(); /*called from softclock()*/ 6361 6362 IPSEC_ASSERT (sav != NULL, ("null sav")); 6363 IPSEC_ASSERT (sav->sah != NULL, ("null sa header")); 6364 6365 /* set msg header */ 6366 satype = key_proto2satype(sav->sah->saidx.proto); 6367 IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype)); 6368 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt); 6369 if (!m) { 6370 error = ENOBUFS; 6371 goto fail; 6372 } 6373 result = m; 6374 6375 /* create SA extension */ 6376 m = key_setsadbsa(sav); 6377 if (!m) { 6378 error = ENOBUFS; 6379 goto fail; 6380 } 6381 m_cat(result, m); 6382 6383 /* create SA extension */ 6384 m = key_setsadbxsa2(sav->sah->saidx.mode, 6385 sav->replay ? sav->replay->count : 0, 6386 sav->sah->saidx.reqid); 6387 if (!m) { 6388 error = ENOBUFS; 6389 goto fail; 6390 } 6391 m_cat(result, m); 6392 6393 /* create lifetime extension (current and soft) */ 6394 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 6395 m = key_alloc_mbuf(len); 6396 if (!m || m->m_next) { /*XXX*/ 6397 if (m) 6398 m_freem(m); 6399 error = ENOBUFS; 6400 goto fail; 6401 } 6402 bzero(mtod(m, caddr_t), len); 6403 lt = mtod(m, struct sadb_lifetime *); 6404 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6405 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 6406 lt->sadb_lifetime_allocations = sav->lft_c->allocations; 6407 lt->sadb_lifetime_bytes = sav->lft_c->bytes; 6408 lt->sadb_lifetime_addtime = sav->lft_c->addtime; 6409 lt->sadb_lifetime_usetime = sav->lft_c->usetime; 6410 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 6411 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6412 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; 6413 lt->sadb_lifetime_allocations = sav->lft_s->allocations; 6414 lt->sadb_lifetime_bytes = sav->lft_s->bytes; 6415 lt->sadb_lifetime_addtime = sav->lft_s->addtime; 6416 lt->sadb_lifetime_usetime = sav->lft_s->usetime; 6417 m_cat(result, m); 6418 6419 /* set sadb_address for source */ 6420 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 6421 &sav->sah->saidx.src.sa, 6422 FULLMASK, IPSEC_ULPROTO_ANY); 6423 if (!m) { 6424 error = ENOBUFS; 6425 goto fail; 6426 } 6427 m_cat(result, m); 6428 6429 /* set sadb_address for destination */ 6430 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 6431 &sav->sah->saidx.dst.sa, 6432 FULLMASK, IPSEC_ULPROTO_ANY); 6433 if (!m) { 6434 error = ENOBUFS; 6435 goto fail; 6436 } 6437 m_cat(result, m); 6438 6439 if ((result->m_flags & M_PKTHDR) == 0) { 6440 error = EINVAL; 6441 goto fail; 6442 } 6443 6444 if (result->m_len < sizeof(struct sadb_msg)) { 6445 result = m_pullup(result, sizeof(struct sadb_msg)); 6446 if (result == NULL) { 6447 error = ENOBUFS; 6448 goto fail; 6449 } 6450 } 6451 6452 result->m_pkthdr.len = 0; 6453 for (m = result; m; m = m->m_next) 6454 result->m_pkthdr.len += m->m_len; 6455 6456 mtod(result, struct sadb_msg *)->sadb_msg_len = 6457 PFKEY_UNIT64(result->m_pkthdr.len); 6458 6459 splx(s); 6460 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6461 6462 fail: 6463 if (result) 6464 m_freem(result); 6465 splx(s); 6466 return error; 6467 } 6468 6469 /* 6470 * SADB_FLUSH processing 6471 * receive 6472 * <base> 6473 * from the ikmpd, and free all entries in secastree. 6474 * and send, 6475 * <base> 6476 * to the ikmpd. 6477 * NOTE: to do is only marking SADB_SASTATE_DEAD. 6478 * 6479 * m will always be freed. 6480 */ 6481 static int 6482 key_flush(so, m, mhp) 6483 struct socket *so; 6484 struct mbuf *m; 6485 const struct sadb_msghdr *mhp; 6486 { 6487 INIT_VNET_IPSEC(curvnet); 6488 struct sadb_msg *newmsg; 6489 struct secashead *sah, *nextsah; 6490 struct secasvar *sav, *nextsav; 6491 u_int16_t proto; 6492 u_int8_t state; 6493 u_int stateidx; 6494 6495 IPSEC_ASSERT(so != NULL, ("null socket")); 6496 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6497 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6498 6499 /* map satype to proto */ 6500 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6501 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6502 __func__)); 6503 return key_senderror(so, m, EINVAL); 6504 } 6505 6506 /* no SATYPE specified, i.e. flushing all SA. */ 6507 SAHTREE_LOCK(); 6508 for (sah = LIST_FIRST(&V_sahtree); 6509 sah != NULL; 6510 sah = nextsah) { 6511 nextsah = LIST_NEXT(sah, chain); 6512 6513 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 6514 && proto != sah->saidx.proto) 6515 continue; 6516 6517 for (stateidx = 0; 6518 stateidx < _ARRAYLEN(V_saorder_state_alive); 6519 stateidx++) { 6520 state = V_saorder_state_any[stateidx]; 6521 for (sav = LIST_FIRST(&sah->savtree[state]); 6522 sav != NULL; 6523 sav = nextsav) { 6524 6525 nextsav = LIST_NEXT(sav, chain); 6526 6527 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 6528 KEY_FREESAV(&sav); 6529 } 6530 } 6531 6532 sah->state = SADB_SASTATE_DEAD; 6533 } 6534 SAHTREE_UNLOCK(); 6535 6536 if (m->m_len < sizeof(struct sadb_msg) || 6537 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 6538 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6539 return key_senderror(so, m, ENOBUFS); 6540 } 6541 6542 if (m->m_next) 6543 m_freem(m->m_next); 6544 m->m_next = NULL; 6545 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); 6546 newmsg = mtod(m, struct sadb_msg *); 6547 newmsg->sadb_msg_errno = 0; 6548 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 6549 6550 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 6551 } 6552 6553 /* 6554 * SADB_DUMP processing 6555 * dump all entries including status of DEAD in SAD. 6556 * receive 6557 * <base> 6558 * from the ikmpd, and dump all secasvar leaves 6559 * and send, 6560 * <base> ..... 6561 * to the ikmpd. 6562 * 6563 * m will always be freed. 6564 */ 6565 static int 6566 key_dump(so, m, mhp) 6567 struct socket *so; 6568 struct mbuf *m; 6569 const struct sadb_msghdr *mhp; 6570 { 6571 INIT_VNET_IPSEC(curvnet); 6572 struct secashead *sah; 6573 struct secasvar *sav; 6574 u_int16_t proto; 6575 u_int stateidx; 6576 u_int8_t satype; 6577 u_int8_t state; 6578 int cnt; 6579 struct sadb_msg *newmsg; 6580 struct mbuf *n; 6581 6582 IPSEC_ASSERT(so != NULL, ("null socket")); 6583 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6584 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6585 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6586 6587 /* map satype to proto */ 6588 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6589 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6590 __func__)); 6591 return key_senderror(so, m, EINVAL); 6592 } 6593 6594 /* count sav entries to be sent to the userland. */ 6595 cnt = 0; 6596 SAHTREE_LOCK(); 6597 LIST_FOREACH(sah, &V_sahtree, chain) { 6598 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 6599 && proto != sah->saidx.proto) 6600 continue; 6601 6602 for (stateidx = 0; 6603 stateidx < _ARRAYLEN(V_saorder_state_any); 6604 stateidx++) { 6605 state = V_saorder_state_any[stateidx]; 6606 LIST_FOREACH(sav, &sah->savtree[state], chain) { 6607 cnt++; 6608 } 6609 } 6610 } 6611 6612 if (cnt == 0) { 6613 SAHTREE_UNLOCK(); 6614 return key_senderror(so, m, ENOENT); 6615 } 6616 6617 /* send this to the userland, one at a time. */ 6618 newmsg = NULL; 6619 LIST_FOREACH(sah, &V_sahtree, chain) { 6620 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 6621 && proto != sah->saidx.proto) 6622 continue; 6623 6624 /* map proto to satype */ 6625 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 6626 SAHTREE_UNLOCK(); 6627 ipseclog((LOG_DEBUG, "%s: there was invalid proto in " 6628 "SAD.\n", __func__)); 6629 return key_senderror(so, m, EINVAL); 6630 } 6631 6632 for (stateidx = 0; 6633 stateidx < _ARRAYLEN(V_saorder_state_any); 6634 stateidx++) { 6635 state = V_saorder_state_any[stateidx]; 6636 LIST_FOREACH(sav, &sah->savtree[state], chain) { 6637 n = key_setdumpsa(sav, SADB_DUMP, satype, 6638 --cnt, mhp->msg->sadb_msg_pid); 6639 if (!n) { 6640 SAHTREE_UNLOCK(); 6641 return key_senderror(so, m, ENOBUFS); 6642 } 6643 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 6644 } 6645 } 6646 } 6647 SAHTREE_UNLOCK(); 6648 6649 m_freem(m); 6650 return 0; 6651 } 6652 6653 /* 6654 * SADB_X_PROMISC processing 6655 * 6656 * m will always be freed. 6657 */ 6658 static int 6659 key_promisc(so, m, mhp) 6660 struct socket *so; 6661 struct mbuf *m; 6662 const struct sadb_msghdr *mhp; 6663 { 6664 int olen; 6665 6666 IPSEC_ASSERT(so != NULL, ("null socket")); 6667 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6668 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6669 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6670 6671 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 6672 6673 if (olen < sizeof(struct sadb_msg)) { 6674 #if 1 6675 return key_senderror(so, m, EINVAL); 6676 #else 6677 m_freem(m); 6678 return 0; 6679 #endif 6680 } else if (olen == sizeof(struct sadb_msg)) { 6681 /* enable/disable promisc mode */ 6682 struct keycb *kp; 6683 6684 if ((kp = (struct keycb *)sotorawcb(so)) == NULL) 6685 return key_senderror(so, m, EINVAL); 6686 mhp->msg->sadb_msg_errno = 0; 6687 switch (mhp->msg->sadb_msg_satype) { 6688 case 0: 6689 case 1: 6690 kp->kp_promisc = mhp->msg->sadb_msg_satype; 6691 break; 6692 default: 6693 return key_senderror(so, m, EINVAL); 6694 } 6695 6696 /* send the original message back to everyone */ 6697 mhp->msg->sadb_msg_errno = 0; 6698 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 6699 } else { 6700 /* send packet as is */ 6701 6702 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); 6703 6704 /* TODO: if sadb_msg_seq is specified, send to specific pid */ 6705 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 6706 } 6707 } 6708 6709 static int (*key_typesw[]) __P((struct socket *, struct mbuf *, 6710 const struct sadb_msghdr *)) = { 6711 NULL, /* SADB_RESERVED */ 6712 key_getspi, /* SADB_GETSPI */ 6713 key_update, /* SADB_UPDATE */ 6714 key_add, /* SADB_ADD */ 6715 key_delete, /* SADB_DELETE */ 6716 key_get, /* SADB_GET */ 6717 key_acquire2, /* SADB_ACQUIRE */ 6718 key_register, /* SADB_REGISTER */ 6719 NULL, /* SADB_EXPIRE */ 6720 key_flush, /* SADB_FLUSH */ 6721 key_dump, /* SADB_DUMP */ 6722 key_promisc, /* SADB_X_PROMISC */ 6723 NULL, /* SADB_X_PCHANGE */ 6724 key_spdadd, /* SADB_X_SPDUPDATE */ 6725 key_spdadd, /* SADB_X_SPDADD */ 6726 key_spddelete, /* SADB_X_SPDDELETE */ 6727 key_spdget, /* SADB_X_SPDGET */ 6728 NULL, /* SADB_X_SPDACQUIRE */ 6729 key_spddump, /* SADB_X_SPDDUMP */ 6730 key_spdflush, /* SADB_X_SPDFLUSH */ 6731 key_spdadd, /* SADB_X_SPDSETIDX */ 6732 NULL, /* SADB_X_SPDEXPIRE */ 6733 key_spddelete2, /* SADB_X_SPDDELETE2 */ 6734 }; 6735 6736 /* 6737 * parse sadb_msg buffer to process PFKEYv2, 6738 * and create a data to response if needed. 6739 * I think to be dealed with mbuf directly. 6740 * IN: 6741 * msgp : pointer to pointer to a received buffer pulluped. 6742 * This is rewrited to response. 6743 * so : pointer to socket. 6744 * OUT: 6745 * length for buffer to send to user process. 6746 */ 6747 int 6748 key_parse(m, so) 6749 struct mbuf *m; 6750 struct socket *so; 6751 { 6752 INIT_VNET_IPSEC(curvnet); 6753 struct sadb_msg *msg; 6754 struct sadb_msghdr mh; 6755 u_int orglen; 6756 int error; 6757 int target; 6758 6759 IPSEC_ASSERT(so != NULL, ("null socket")); 6760 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6761 6762 #if 0 /*kdebug_sadb assumes msg in linear buffer*/ 6763 KEYDEBUG(KEYDEBUG_KEY_DUMP, 6764 ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__)); 6765 kdebug_sadb(msg)); 6766 #endif 6767 6768 if (m->m_len < sizeof(struct sadb_msg)) { 6769 m = m_pullup(m, sizeof(struct sadb_msg)); 6770 if (!m) 6771 return ENOBUFS; 6772 } 6773 msg = mtod(m, struct sadb_msg *); 6774 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); 6775 target = KEY_SENDUP_ONE; 6776 6777 if ((m->m_flags & M_PKTHDR) == 0 || 6778 m->m_pkthdr.len != m->m_pkthdr.len) { 6779 ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__)); 6780 V_pfkeystat.out_invlen++; 6781 error = EINVAL; 6782 goto senderror; 6783 } 6784 6785 if (msg->sadb_msg_version != PF_KEY_V2) { 6786 ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n", 6787 __func__, msg->sadb_msg_version)); 6788 V_pfkeystat.out_invver++; 6789 error = EINVAL; 6790 goto senderror; 6791 } 6792 6793 if (msg->sadb_msg_type > SADB_MAX) { 6794 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 6795 __func__, msg->sadb_msg_type)); 6796 V_pfkeystat.out_invmsgtype++; 6797 error = EINVAL; 6798 goto senderror; 6799 } 6800 6801 /* for old-fashioned code - should be nuked */ 6802 if (m->m_pkthdr.len > MCLBYTES) { 6803 m_freem(m); 6804 return ENOBUFS; 6805 } 6806 if (m->m_next) { 6807 struct mbuf *n; 6808 6809 MGETHDR(n, M_DONTWAIT, MT_DATA); 6810 if (n && m->m_pkthdr.len > MHLEN) { 6811 MCLGET(n, M_DONTWAIT); 6812 if ((n->m_flags & M_EXT) == 0) { 6813 m_free(n); 6814 n = NULL; 6815 } 6816 } 6817 if (!n) { 6818 m_freem(m); 6819 return ENOBUFS; 6820 } 6821 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t)); 6822 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; 6823 n->m_next = NULL; 6824 m_freem(m); 6825 m = n; 6826 } 6827 6828 /* align the mbuf chain so that extensions are in contiguous region. */ 6829 error = key_align(m, &mh); 6830 if (error) 6831 return error; 6832 6833 msg = mh.msg; 6834 6835 /* check SA type */ 6836 switch (msg->sadb_msg_satype) { 6837 case SADB_SATYPE_UNSPEC: 6838 switch (msg->sadb_msg_type) { 6839 case SADB_GETSPI: 6840 case SADB_UPDATE: 6841 case SADB_ADD: 6842 case SADB_DELETE: 6843 case SADB_GET: 6844 case SADB_ACQUIRE: 6845 case SADB_EXPIRE: 6846 ipseclog((LOG_DEBUG, "%s: must specify satype " 6847 "when msg type=%u.\n", __func__, 6848 msg->sadb_msg_type)); 6849 V_pfkeystat.out_invsatype++; 6850 error = EINVAL; 6851 goto senderror; 6852 } 6853 break; 6854 case SADB_SATYPE_AH: 6855 case SADB_SATYPE_ESP: 6856 case SADB_X_SATYPE_IPCOMP: 6857 case SADB_X_SATYPE_TCPSIGNATURE: 6858 switch (msg->sadb_msg_type) { 6859 case SADB_X_SPDADD: 6860 case SADB_X_SPDDELETE: 6861 case SADB_X_SPDGET: 6862 case SADB_X_SPDDUMP: 6863 case SADB_X_SPDFLUSH: 6864 case SADB_X_SPDSETIDX: 6865 case SADB_X_SPDUPDATE: 6866 case SADB_X_SPDDELETE2: 6867 ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n", 6868 __func__, msg->sadb_msg_type)); 6869 V_pfkeystat.out_invsatype++; 6870 error = EINVAL; 6871 goto senderror; 6872 } 6873 break; 6874 case SADB_SATYPE_RSVP: 6875 case SADB_SATYPE_OSPFV2: 6876 case SADB_SATYPE_RIPV2: 6877 case SADB_SATYPE_MIP: 6878 ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n", 6879 __func__, msg->sadb_msg_satype)); 6880 V_pfkeystat.out_invsatype++; 6881 error = EOPNOTSUPP; 6882 goto senderror; 6883 case 1: /* XXX: What does it do? */ 6884 if (msg->sadb_msg_type == SADB_X_PROMISC) 6885 break; 6886 /*FALLTHROUGH*/ 6887 default: 6888 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 6889 __func__, msg->sadb_msg_satype)); 6890 V_pfkeystat.out_invsatype++; 6891 error = EINVAL; 6892 goto senderror; 6893 } 6894 6895 /* check field of upper layer protocol and address family */ 6896 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL 6897 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { 6898 struct sadb_address *src0, *dst0; 6899 u_int plen; 6900 6901 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]); 6902 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]); 6903 6904 /* check upper layer protocol */ 6905 if (src0->sadb_address_proto != dst0->sadb_address_proto) { 6906 ipseclog((LOG_DEBUG, "%s: upper layer protocol " 6907 "mismatched.\n", __func__)); 6908 V_pfkeystat.out_invaddr++; 6909 error = EINVAL; 6910 goto senderror; 6911 } 6912 6913 /* check family */ 6914 if (PFKEY_ADDR_SADDR(src0)->sa_family != 6915 PFKEY_ADDR_SADDR(dst0)->sa_family) { 6916 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 6917 __func__)); 6918 V_pfkeystat.out_invaddr++; 6919 error = EINVAL; 6920 goto senderror; 6921 } 6922 if (PFKEY_ADDR_SADDR(src0)->sa_len != 6923 PFKEY_ADDR_SADDR(dst0)->sa_len) { 6924 ipseclog((LOG_DEBUG, "%s: address struct size " 6925 "mismatched.\n", __func__)); 6926 V_pfkeystat.out_invaddr++; 6927 error = EINVAL; 6928 goto senderror; 6929 } 6930 6931 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 6932 case AF_INET: 6933 if (PFKEY_ADDR_SADDR(src0)->sa_len != 6934 sizeof(struct sockaddr_in)) { 6935 V_pfkeystat.out_invaddr++; 6936 error = EINVAL; 6937 goto senderror; 6938 } 6939 break; 6940 case AF_INET6: 6941 if (PFKEY_ADDR_SADDR(src0)->sa_len != 6942 sizeof(struct sockaddr_in6)) { 6943 V_pfkeystat.out_invaddr++; 6944 error = EINVAL; 6945 goto senderror; 6946 } 6947 break; 6948 default: 6949 ipseclog((LOG_DEBUG, "%s: unsupported address family\n", 6950 __func__)); 6951 V_pfkeystat.out_invaddr++; 6952 error = EAFNOSUPPORT; 6953 goto senderror; 6954 } 6955 6956 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 6957 case AF_INET: 6958 plen = sizeof(struct in_addr) << 3; 6959 break; 6960 case AF_INET6: 6961 plen = sizeof(struct in6_addr) << 3; 6962 break; 6963 default: 6964 plen = 0; /*fool gcc*/ 6965 break; 6966 } 6967 6968 /* check max prefix length */ 6969 if (src0->sadb_address_prefixlen > plen || 6970 dst0->sadb_address_prefixlen > plen) { 6971 ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n", 6972 __func__)); 6973 V_pfkeystat.out_invaddr++; 6974 error = EINVAL; 6975 goto senderror; 6976 } 6977 6978 /* 6979 * prefixlen == 0 is valid because there can be a case when 6980 * all addresses are matched. 6981 */ 6982 } 6983 6984 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) || 6985 key_typesw[msg->sadb_msg_type] == NULL) { 6986 V_pfkeystat.out_invmsgtype++; 6987 error = EINVAL; 6988 goto senderror; 6989 } 6990 6991 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh); 6992 6993 senderror: 6994 msg->sadb_msg_errno = error; 6995 return key_sendup_mbuf(so, m, target); 6996 } 6997 6998 static int 6999 key_senderror(so, m, code) 7000 struct socket *so; 7001 struct mbuf *m; 7002 int code; 7003 { 7004 struct sadb_msg *msg; 7005 7006 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 7007 ("mbuf too small, len %u", m->m_len)); 7008 7009 msg = mtod(m, struct sadb_msg *); 7010 msg->sadb_msg_errno = code; 7011 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 7012 } 7013 7014 /* 7015 * set the pointer to each header into message buffer. 7016 * m will be freed on error. 7017 * XXX larger-than-MCLBYTES extension? 7018 */ 7019 static int 7020 key_align(m, mhp) 7021 struct mbuf *m; 7022 struct sadb_msghdr *mhp; 7023 { 7024 INIT_VNET_IPSEC(curvnet); 7025 struct mbuf *n; 7026 struct sadb_ext *ext; 7027 size_t off, end; 7028 int extlen; 7029 int toff; 7030 7031 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7032 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7033 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 7034 ("mbuf too small, len %u", m->m_len)); 7035 7036 /* initialize */ 7037 bzero(mhp, sizeof(*mhp)); 7038 7039 mhp->msg = mtod(m, struct sadb_msg *); 7040 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */ 7041 7042 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7043 extlen = end; /*just in case extlen is not updated*/ 7044 for (off = sizeof(struct sadb_msg); off < end; off += extlen) { 7045 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); 7046 if (!n) { 7047 /* m is already freed */ 7048 return ENOBUFS; 7049 } 7050 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 7051 7052 /* set pointer */ 7053 switch (ext->sadb_ext_type) { 7054 case SADB_EXT_SA: 7055 case SADB_EXT_ADDRESS_SRC: 7056 case SADB_EXT_ADDRESS_DST: 7057 case SADB_EXT_ADDRESS_PROXY: 7058 case SADB_EXT_LIFETIME_CURRENT: 7059 case SADB_EXT_LIFETIME_HARD: 7060 case SADB_EXT_LIFETIME_SOFT: 7061 case SADB_EXT_KEY_AUTH: 7062 case SADB_EXT_KEY_ENCRYPT: 7063 case SADB_EXT_IDENTITY_SRC: 7064 case SADB_EXT_IDENTITY_DST: 7065 case SADB_EXT_SENSITIVITY: 7066 case SADB_EXT_PROPOSAL: 7067 case SADB_EXT_SUPPORTED_AUTH: 7068 case SADB_EXT_SUPPORTED_ENCRYPT: 7069 case SADB_EXT_SPIRANGE: 7070 case SADB_X_EXT_POLICY: 7071 case SADB_X_EXT_SA2: 7072 /* duplicate check */ 7073 /* 7074 * XXX Are there duplication payloads of either 7075 * KEY_AUTH or KEY_ENCRYPT ? 7076 */ 7077 if (mhp->ext[ext->sadb_ext_type] != NULL) { 7078 ipseclog((LOG_DEBUG, "%s: duplicate ext_type " 7079 "%u\n", __func__, ext->sadb_ext_type)); 7080 m_freem(m); 7081 V_pfkeystat.out_dupext++; 7082 return EINVAL; 7083 } 7084 break; 7085 default: 7086 ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n", 7087 __func__, ext->sadb_ext_type)); 7088 m_freem(m); 7089 V_pfkeystat.out_invexttype++; 7090 return EINVAL; 7091 } 7092 7093 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); 7094 7095 if (key_validate_ext(ext, extlen)) { 7096 m_freem(m); 7097 V_pfkeystat.out_invlen++; 7098 return EINVAL; 7099 } 7100 7101 n = m_pulldown(m, off, extlen, &toff); 7102 if (!n) { 7103 /* m is already freed */ 7104 return ENOBUFS; 7105 } 7106 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 7107 7108 mhp->ext[ext->sadb_ext_type] = ext; 7109 mhp->extoff[ext->sadb_ext_type] = off; 7110 mhp->extlen[ext->sadb_ext_type] = extlen; 7111 } 7112 7113 if (off != end) { 7114 m_freem(m); 7115 V_pfkeystat.out_invlen++; 7116 return EINVAL; 7117 } 7118 7119 return 0; 7120 } 7121 7122 static int 7123 key_validate_ext(ext, len) 7124 const struct sadb_ext *ext; 7125 int len; 7126 { 7127 const struct sockaddr *sa; 7128 enum { NONE, ADDR } checktype = NONE; 7129 int baselen = 0; 7130 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); 7131 7132 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) 7133 return EINVAL; 7134 7135 /* if it does not match minimum/maximum length, bail */ 7136 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) || 7137 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0])) 7138 return EINVAL; 7139 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) 7140 return EINVAL; 7141 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) 7142 return EINVAL; 7143 7144 /* more checks based on sadb_ext_type XXX need more */ 7145 switch (ext->sadb_ext_type) { 7146 case SADB_EXT_ADDRESS_SRC: 7147 case SADB_EXT_ADDRESS_DST: 7148 case SADB_EXT_ADDRESS_PROXY: 7149 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); 7150 checktype = ADDR; 7151 break; 7152 case SADB_EXT_IDENTITY_SRC: 7153 case SADB_EXT_IDENTITY_DST: 7154 if (((const struct sadb_ident *)ext)->sadb_ident_type == 7155 SADB_X_IDENTTYPE_ADDR) { 7156 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); 7157 checktype = ADDR; 7158 } else 7159 checktype = NONE; 7160 break; 7161 default: 7162 checktype = NONE; 7163 break; 7164 } 7165 7166 switch (checktype) { 7167 case NONE: 7168 break; 7169 case ADDR: 7170 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); 7171 if (len < baselen + sal) 7172 return EINVAL; 7173 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) 7174 return EINVAL; 7175 break; 7176 } 7177 7178 return 0; 7179 } 7180 7181 void 7182 key_init(void) 7183 { 7184 INIT_VNET_IPSEC(curvnet); 7185 int i; 7186 7187 SPTREE_LOCK_INIT(); 7188 REGTREE_LOCK_INIT(); 7189 SAHTREE_LOCK_INIT(); 7190 ACQ_LOCK_INIT(); 7191 SPACQ_LOCK_INIT(); 7192 7193 for (i = 0; i < IPSEC_DIR_MAX; i++) 7194 LIST_INIT(&V_sptree[i]); 7195 7196 LIST_INIT(&V_sahtree); 7197 7198 for (i = 0; i <= SADB_SATYPE_MAX; i++) 7199 LIST_INIT(&V_regtree[i]); 7200 7201 LIST_INIT(&V_acqtree); 7202 LIST_INIT(&V_spacqtree); 7203 7204 /* system default */ 7205 V_ip4_def_policy.policy = IPSEC_POLICY_NONE; 7206 V_ip4_def_policy.refcnt++; /*never reclaim this*/ 7207 7208 #ifndef IPSEC_DEBUG2 7209 timeout((void *)key_timehandler, (void *)0, hz); 7210 #endif /*IPSEC_DEBUG2*/ 7211 7212 /* initialize key statistics */ 7213 keystat.getspi_count = 1; 7214 7215 printf("IPsec: Initialized Security Association Processing.\n"); 7216 7217 return; 7218 } 7219 7220 /* 7221 * XXX: maybe This function is called after INBOUND IPsec processing. 7222 * 7223 * Special check for tunnel-mode packets. 7224 * We must make some checks for consistency between inner and outer IP header. 7225 * 7226 * xxx more checks to be provided 7227 */ 7228 int 7229 key_checktunnelsanity(sav, family, src, dst) 7230 struct secasvar *sav; 7231 u_int family; 7232 caddr_t src; 7233 caddr_t dst; 7234 { 7235 IPSEC_ASSERT(sav->sah != NULL, ("null SA header")); 7236 7237 /* XXX: check inner IP header */ 7238 7239 return 1; 7240 } 7241 7242 /* record data transfer on SA, and update timestamps */ 7243 void 7244 key_sa_recordxfer(sav, m) 7245 struct secasvar *sav; 7246 struct mbuf *m; 7247 { 7248 IPSEC_ASSERT(sav != NULL, ("Null secasvar")); 7249 IPSEC_ASSERT(m != NULL, ("Null mbuf")); 7250 if (!sav->lft_c) 7251 return; 7252 7253 /* 7254 * XXX Currently, there is a difference of bytes size 7255 * between inbound and outbound processing. 7256 */ 7257 sav->lft_c->bytes += m->m_pkthdr.len; 7258 /* to check bytes lifetime is done in key_timehandler(). */ 7259 7260 /* 7261 * We use the number of packets as the unit of 7262 * allocations. We increment the variable 7263 * whenever {esp,ah}_{in,out}put is called. 7264 */ 7265 sav->lft_c->allocations++; 7266 /* XXX check for expires? */ 7267 7268 /* 7269 * NOTE: We record CURRENT usetime by using wall clock, 7270 * in seconds. HARD and SOFT lifetime are measured by the time 7271 * difference (again in seconds) from usetime. 7272 * 7273 * usetime 7274 * v expire expire 7275 * -----+-----+--------+---> t 7276 * <--------------> HARD 7277 * <-----> SOFT 7278 */ 7279 sav->lft_c->usetime = time_second; 7280 /* XXX check for expires? */ 7281 7282 return; 7283 } 7284 7285 /* dumb version */ 7286 void 7287 key_sa_routechange(dst) 7288 struct sockaddr *dst; 7289 { 7290 INIT_VNET_IPSEC(curvnet); 7291 struct secashead *sah; 7292 struct route *ro; 7293 7294 SAHTREE_LOCK(); 7295 LIST_FOREACH(sah, &V_sahtree, chain) { 7296 ro = &sah->sa_route; 7297 if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len 7298 && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) { 7299 RTFREE(ro->ro_rt); 7300 ro->ro_rt = (struct rtentry *)NULL; 7301 } 7302 } 7303 SAHTREE_UNLOCK(); 7304 } 7305 7306 static void 7307 key_sa_chgstate(sav, state) 7308 struct secasvar *sav; 7309 u_int8_t state; 7310 { 7311 IPSEC_ASSERT(sav != NULL, ("NULL sav")); 7312 SAHTREE_LOCK_ASSERT(); 7313 7314 if (sav->state != state) { 7315 if (__LIST_CHAINED(sav)) 7316 LIST_REMOVE(sav, chain); 7317 sav->state = state; 7318 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain); 7319 } 7320 } 7321 7322 void 7323 key_sa_stir_iv(sav) 7324 struct secasvar *sav; 7325 { 7326 7327 IPSEC_ASSERT(sav->iv != NULL, ("null IV")); 7328 key_randomfill(sav->iv, sav->ivlen); 7329 } 7330 7331 /* XXX too much? */ 7332 static struct mbuf * 7333 key_alloc_mbuf(l) 7334 int l; 7335 { 7336 struct mbuf *m = NULL, *n; 7337 int len, t; 7338 7339 len = l; 7340 while (len > 0) { 7341 MGET(n, M_DONTWAIT, MT_DATA); 7342 if (n && len > MLEN) 7343 MCLGET(n, M_DONTWAIT); 7344 if (!n) { 7345 m_freem(m); 7346 return NULL; 7347 } 7348 7349 n->m_next = NULL; 7350 n->m_len = 0; 7351 n->m_len = M_TRAILINGSPACE(n); 7352 /* use the bottom of mbuf, hoping we can prepend afterwards */ 7353 if (n->m_len > len) { 7354 t = (n->m_len - len) & ~(sizeof(long) - 1); 7355 n->m_data += t; 7356 n->m_len = len; 7357 } 7358 7359 len -= n->m_len; 7360 7361 if (m) 7362 m_cat(m, n); 7363 else 7364 m = n; 7365 } 7366 7367 return m; 7368 } 7369 7370 /* 7371 * Take one of the kernel's security keys and convert it into a PF_KEY 7372 * structure within an mbuf, suitable for sending up to a waiting 7373 * application in user land. 7374 * 7375 * IN: 7376 * src: A pointer to a kernel security key. 7377 * exttype: Which type of key this is. Refer to the PF_KEY data structures. 7378 * OUT: 7379 * a valid mbuf or NULL indicating an error 7380 * 7381 */ 7382 7383 static struct mbuf * 7384 key_setkey(struct seckey *src, u_int16_t exttype) 7385 { 7386 struct mbuf *m; 7387 struct sadb_key *p; 7388 int len; 7389 7390 if (src == NULL) 7391 return NULL; 7392 7393 len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src)); 7394 m = key_alloc_mbuf(len); 7395 if (m == NULL) 7396 return NULL; 7397 p = mtod(m, struct sadb_key *); 7398 bzero(p, len); 7399 p->sadb_key_len = PFKEY_UNIT64(len); 7400 p->sadb_key_exttype = exttype; 7401 p->sadb_key_bits = src->bits; 7402 bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src)); 7403 7404 return m; 7405 } 7406 7407 /* 7408 * Take one of the kernel's lifetime data structures and convert it 7409 * into a PF_KEY structure within an mbuf, suitable for sending up to 7410 * a waiting application in user land. 7411 * 7412 * IN: 7413 * src: A pointer to a kernel lifetime structure. 7414 * exttype: Which type of lifetime this is. Refer to the PF_KEY 7415 * data structures for more information. 7416 * OUT: 7417 * a valid mbuf or NULL indicating an error 7418 * 7419 */ 7420 7421 static struct mbuf * 7422 key_setlifetime(struct seclifetime *src, u_int16_t exttype) 7423 { 7424 struct mbuf *m = NULL; 7425 struct sadb_lifetime *p; 7426 int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime)); 7427 7428 if (src == NULL) 7429 return NULL; 7430 7431 m = key_alloc_mbuf(len); 7432 if (m == NULL) 7433 return m; 7434 p = mtod(m, struct sadb_lifetime *); 7435 7436 bzero(p, len); 7437 p->sadb_lifetime_len = PFKEY_UNIT64(len); 7438 p->sadb_lifetime_exttype = exttype; 7439 p->sadb_lifetime_allocations = src->allocations; 7440 p->sadb_lifetime_bytes = src->bytes; 7441 p->sadb_lifetime_addtime = src->addtime; 7442 p->sadb_lifetime_usetime = src->usetime; 7443 7444 return m; 7445 7446 } 7447