1 /* $FreeBSD$ */ 2 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ 3 4 /*- 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * This code is referd to RFC 2367 35 */ 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 #include "opt_ipsec.h" 40 41 #include <sys/types.h> 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/mutex.h> 47 #include <sys/mbuf.h> 48 #include <sys/domain.h> 49 #include <sys/protosw.h> 50 #include <sys/malloc.h> 51 #include <sys/rmlock.h> 52 #include <sys/socket.h> 53 #include <sys/socketvar.h> 54 #include <sys/sysctl.h> 55 #include <sys/errno.h> 56 #include <sys/proc.h> 57 #include <sys/queue.h> 58 #include <sys/refcount.h> 59 #include <sys/syslog.h> 60 61 #include <net/if.h> 62 #include <net/if_var.h> 63 #include <net/vnet.h> 64 #include <net/raw_cb.h> 65 66 #include <netinet/in.h> 67 #include <netinet/in_systm.h> 68 #include <netinet/ip.h> 69 #include <netinet/in_var.h> 70 71 #ifdef INET6 72 #include <netinet/ip6.h> 73 #include <netinet6/in6_var.h> 74 #include <netinet6/ip6_var.h> 75 #endif /* INET6 */ 76 77 #if defined(INET) || defined(INET6) 78 #include <netinet/in_pcb.h> 79 #endif 80 #ifdef INET6 81 #include <netinet6/in6_pcb.h> 82 #endif /* INET6 */ 83 84 #include <net/pfkeyv2.h> 85 #include <netipsec/keydb.h> 86 #include <netipsec/key.h> 87 #include <netipsec/keysock.h> 88 #include <netipsec/key_debug.h> 89 90 #include <netipsec/ipsec.h> 91 #ifdef INET6 92 #include <netipsec/ipsec6.h> 93 #endif 94 95 #include <netipsec/xform.h> 96 97 #include <machine/stdarg.h> 98 99 /* randomness */ 100 #include <sys/random.h> 101 102 #define FULLMASK 0xff 103 #define _BITS(bytes) ((bytes) << 3) 104 105 /* 106 * Note on SA reference counting: 107 * - SAs that are not in DEAD state will have (total external reference + 1) 108 * following value in reference count field. they cannot be freed and are 109 * referenced from SA header. 110 * - SAs that are in DEAD state will have (total external reference) 111 * in reference count field. they are ready to be freed. reference from 112 * SA header will be removed in key_delsav(), when the reference count 113 * field hits 0 (= no external reference other than from SA header. 114 */ 115 116 VNET_DEFINE(u_int32_t, key_debug_level) = 0; 117 static VNET_DEFINE(u_int, key_spi_trycnt) = 1000; 118 static VNET_DEFINE(u_int32_t, key_spi_minval) = 0x100; 119 static VNET_DEFINE(u_int32_t, key_spi_maxval) = 0x0fffffff; /* XXX */ 120 static VNET_DEFINE(u_int32_t, policy_id) = 0; 121 /*interval to initialize randseed,1(m)*/ 122 static VNET_DEFINE(u_int, key_int_random) = 60; 123 /* interval to expire acquiring, 30(s)*/ 124 static VNET_DEFINE(u_int, key_larval_lifetime) = 30; 125 /* counter for blocking SADB_ACQUIRE.*/ 126 static VNET_DEFINE(int, key_blockacq_count) = 10; 127 /* lifetime for blocking SADB_ACQUIRE.*/ 128 static VNET_DEFINE(int, key_blockacq_lifetime) = 20; 129 /* preferred old sa rather than new sa.*/ 130 static VNET_DEFINE(int, key_preferred_oldsa) = 1; 131 #define V_key_spi_trycnt VNET(key_spi_trycnt) 132 #define V_key_spi_minval VNET(key_spi_minval) 133 #define V_key_spi_maxval VNET(key_spi_maxval) 134 #define V_policy_id VNET(policy_id) 135 #define V_key_int_random VNET(key_int_random) 136 #define V_key_larval_lifetime VNET(key_larval_lifetime) 137 #define V_key_blockacq_count VNET(key_blockacq_count) 138 #define V_key_blockacq_lifetime VNET(key_blockacq_lifetime) 139 #define V_key_preferred_oldsa VNET(key_preferred_oldsa) 140 141 static VNET_DEFINE(u_int32_t, acq_seq) = 0; 142 #define V_acq_seq VNET(acq_seq) 143 144 /* SPD */ 145 static VNET_DEFINE(TAILQ_HEAD(_sptree, secpolicy), sptree[IPSEC_DIR_MAX]); 146 static struct rmlock sptree_lock; 147 #define V_sptree VNET(sptree) 148 #define SPTREE_LOCK_INIT() rm_init(&sptree_lock, "sptree") 149 #define SPTREE_LOCK_DESTROY() rm_destroy(&sptree_lock) 150 #define SPTREE_RLOCK_TRACKER struct rm_priotracker sptree_tracker 151 #define SPTREE_RLOCK() rm_rlock(&sptree_lock, &sptree_tracker) 152 #define SPTREE_RUNLOCK() rm_runlock(&sptree_lock, &sptree_tracker) 153 #define SPTREE_RLOCK_ASSERT() rm_assert(&sptree_lock, RA_RLOCKED) 154 #define SPTREE_WLOCK() rm_wlock(&sptree_lock) 155 #define SPTREE_WUNLOCK() rm_wunlock(&sptree_lock) 156 #define SPTREE_WLOCK_ASSERT() rm_assert(&sptree_lock, RA_WLOCKED) 157 #define SPTREE_UNLOCK_ASSERT() rm_assert(&sptree_lock, RA_UNLOCKED) 158 159 static VNET_DEFINE(LIST_HEAD(_sahtree, secashead), sahtree); /* SAD */ 160 #define V_sahtree VNET(sahtree) 161 static struct mtx sahtree_lock; 162 #define SAHTREE_LOCK_INIT() \ 163 mtx_init(&sahtree_lock, "sahtree", \ 164 "fast ipsec security association database", MTX_DEF) 165 #define SAHTREE_LOCK_DESTROY() mtx_destroy(&sahtree_lock) 166 #define SAHTREE_LOCK() mtx_lock(&sahtree_lock) 167 #define SAHTREE_UNLOCK() mtx_unlock(&sahtree_lock) 168 #define SAHTREE_LOCK_ASSERT() mtx_assert(&sahtree_lock, MA_OWNED) 169 170 /* registed list */ 171 static VNET_DEFINE(LIST_HEAD(_regtree, secreg), regtree[SADB_SATYPE_MAX + 1]); 172 #define V_regtree VNET(regtree) 173 static struct mtx regtree_lock; 174 #define REGTREE_LOCK_INIT() \ 175 mtx_init(®tree_lock, "regtree", "fast ipsec regtree", MTX_DEF) 176 #define REGTREE_LOCK_DESTROY() mtx_destroy(®tree_lock) 177 #define REGTREE_LOCK() mtx_lock(®tree_lock) 178 #define REGTREE_UNLOCK() mtx_unlock(®tree_lock) 179 #define REGTREE_LOCK_ASSERT() mtx_assert(®tree_lock, MA_OWNED) 180 181 static VNET_DEFINE(LIST_HEAD(_acqtree, secacq), acqtree); /* acquiring list */ 182 #define V_acqtree VNET(acqtree) 183 static struct mtx acq_lock; 184 #define ACQ_LOCK_INIT() \ 185 mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF) 186 #define ACQ_LOCK_DESTROY() mtx_destroy(&acq_lock) 187 #define ACQ_LOCK() mtx_lock(&acq_lock) 188 #define ACQ_UNLOCK() mtx_unlock(&acq_lock) 189 #define ACQ_LOCK_ASSERT() mtx_assert(&acq_lock, MA_OWNED) 190 191 /* SP acquiring list */ 192 static VNET_DEFINE(LIST_HEAD(_spacqtree, secspacq), spacqtree); 193 #define V_spacqtree VNET(spacqtree) 194 static struct mtx spacq_lock; 195 #define SPACQ_LOCK_INIT() \ 196 mtx_init(&spacq_lock, "spacqtree", \ 197 "fast ipsec security policy acquire list", MTX_DEF) 198 #define SPACQ_LOCK_DESTROY() mtx_destroy(&spacq_lock) 199 #define SPACQ_LOCK() mtx_lock(&spacq_lock) 200 #define SPACQ_UNLOCK() mtx_unlock(&spacq_lock) 201 #define SPACQ_LOCK_ASSERT() mtx_assert(&spacq_lock, MA_OWNED) 202 203 /* search order for SAs */ 204 static const u_int saorder_state_valid_prefer_old[] = { 205 SADB_SASTATE_DYING, SADB_SASTATE_MATURE, 206 }; 207 static const u_int saorder_state_valid_prefer_new[] = { 208 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 209 }; 210 static const u_int saorder_state_alive[] = { 211 /* except DEAD */ 212 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL 213 }; 214 static const u_int saorder_state_any[] = { 215 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 216 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD 217 }; 218 219 static const int minsize[] = { 220 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 221 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 222 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 223 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 224 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 225 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ 226 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ 227 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ 228 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ 229 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ 230 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ 231 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ 232 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ 233 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ 234 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ 235 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ 236 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 237 0, /* SADB_X_EXT_KMPRIVATE */ 238 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ 239 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 240 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ 241 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ 242 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ 243 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */ 244 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */ 245 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ 246 }; 247 static const int maxsize[] = { 248 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 249 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 250 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 251 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 252 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 253 0, /* SADB_EXT_ADDRESS_SRC */ 254 0, /* SADB_EXT_ADDRESS_DST */ 255 0, /* SADB_EXT_ADDRESS_PROXY */ 256 0, /* SADB_EXT_KEY_AUTH */ 257 0, /* SADB_EXT_KEY_ENCRYPT */ 258 0, /* SADB_EXT_IDENTITY_SRC */ 259 0, /* SADB_EXT_IDENTITY_DST */ 260 0, /* SADB_EXT_SENSITIVITY */ 261 0, /* SADB_EXT_PROPOSAL */ 262 0, /* SADB_EXT_SUPPORTED_AUTH */ 263 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ 264 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 265 0, /* SADB_X_EXT_KMPRIVATE */ 266 0, /* SADB_X_EXT_POLICY */ 267 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 268 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ 269 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ 270 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ 271 0, /* SADB_X_EXT_NAT_T_OAI */ 272 0, /* SADB_X_EXT_NAT_T_OAR */ 273 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ 274 }; 275 276 static VNET_DEFINE(int, ipsec_esp_keymin) = 256; 277 static VNET_DEFINE(int, ipsec_esp_auth) = 0; 278 static VNET_DEFINE(int, ipsec_ah_keymin) = 128; 279 280 #define V_ipsec_esp_keymin VNET(ipsec_esp_keymin) 281 #define V_ipsec_esp_auth VNET(ipsec_esp_auth) 282 #define V_ipsec_ah_keymin VNET(ipsec_ah_keymin) 283 284 #ifdef SYSCTL_DECL 285 SYSCTL_DECL(_net_key); 286 #endif 287 288 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, 289 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_debug_level), 0, ""); 290 291 /* max count of trial for the decision of spi value */ 292 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, 293 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_trycnt), 0, ""); 294 295 /* minimum spi value to allocate automatically. */ 296 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, 297 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_minval), 0, ""); 298 299 /* maximun spi value to allocate automatically. */ 300 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, 301 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_maxval), 0, ""); 302 303 /* interval to initialize randseed */ 304 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, 305 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_int_random), 0, ""); 306 307 /* lifetime for larval SA */ 308 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, 309 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_larval_lifetime), 0, ""); 310 311 /* counter for blocking to send SADB_ACQUIRE to IKEd */ 312 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, 313 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_count), 0, ""); 314 315 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ 316 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, 317 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_lifetime), 0, ""); 318 319 /* ESP auth */ 320 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, 321 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_auth), 0, ""); 322 323 /* minimum ESP key length */ 324 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, 325 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_keymin), 0, ""); 326 327 /* minimum AH key length */ 328 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, 329 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_ah_keymin), 0, ""); 330 331 /* perfered old SA rather than new SA */ 332 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, preferred_oldsa, 333 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_preferred_oldsa), 0, ""); 334 335 #define __LIST_CHAINED(elm) \ 336 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) 337 #define LIST_INSERT_TAIL(head, elm, type, field) \ 338 do {\ 339 struct type *curelm = LIST_FIRST(head); \ 340 if (curelm == NULL) {\ 341 LIST_INSERT_HEAD(head, elm, field); \ 342 } else { \ 343 while (LIST_NEXT(curelm, field)) \ 344 curelm = LIST_NEXT(curelm, field);\ 345 LIST_INSERT_AFTER(curelm, elm, field);\ 346 }\ 347 } while (0) 348 349 #define KEY_CHKSASTATE(head, sav, name) \ 350 do { \ 351 if ((head) != (sav)) { \ 352 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \ 353 (name), (head), (sav))); \ 354 continue; \ 355 } \ 356 } while (0) 357 358 #define KEY_CHKSPDIR(head, sp, name) \ 359 do { \ 360 if ((head) != (sp)) { \ 361 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \ 362 "anyway continue.\n", \ 363 (name), (head), (sp))); \ 364 } \ 365 } while (0) 366 367 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association"); 368 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head"); 369 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy"); 370 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request"); 371 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous"); 372 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire"); 373 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire"); 374 375 /* 376 * set parameters into secpolicyindex buffer. 377 * Must allocate secpolicyindex buffer passed to this function. 378 */ 379 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \ 380 do { \ 381 bzero((idx), sizeof(struct secpolicyindex)); \ 382 (idx)->dir = (_dir); \ 383 (idx)->prefs = (ps); \ 384 (idx)->prefd = (pd); \ 385 (idx)->ul_proto = (ulp); \ 386 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 387 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 388 } while (0) 389 390 /* 391 * set parameters into secasindex buffer. 392 * Must allocate secasindex buffer before calling this function. 393 */ 394 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \ 395 do { \ 396 bzero((idx), sizeof(struct secasindex)); \ 397 (idx)->proto = (p); \ 398 (idx)->mode = (m); \ 399 (idx)->reqid = (r); \ 400 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 401 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 402 } while (0) 403 404 /* key statistics */ 405 struct _keystat { 406 u_long getspi_count; /* the avarage of count to try to get new SPI */ 407 } keystat; 408 409 struct sadb_msghdr { 410 struct sadb_msg *msg; 411 struct sadb_ext *ext[SADB_EXT_MAX + 1]; 412 int extoff[SADB_EXT_MAX + 1]; 413 int extlen[SADB_EXT_MAX + 1]; 414 }; 415 416 #ifndef IPSEC_DEBUG2 417 static struct callout key_timer; 418 #endif 419 420 static struct secasvar *key_allocsa_policy(const struct secasindex *); 421 static void key_freesp_so(struct secpolicy **); 422 static struct secasvar *key_do_allocsa_policy(struct secashead *, u_int); 423 static void key_unlink(struct secpolicy *); 424 static struct secpolicy *key_getsp(struct secpolicyindex *); 425 static struct secpolicy *key_getspbyid(u_int32_t); 426 static u_int32_t key_newreqid(void); 427 static struct mbuf *key_gather_mbuf(struct mbuf *, 428 const struct sadb_msghdr *, int, int, ...); 429 static int key_spdadd(struct socket *, struct mbuf *, 430 const struct sadb_msghdr *); 431 static u_int32_t key_getnewspid(void); 432 static int key_spddelete(struct socket *, struct mbuf *, 433 const struct sadb_msghdr *); 434 static int key_spddelete2(struct socket *, struct mbuf *, 435 const struct sadb_msghdr *); 436 static int key_spdget(struct socket *, struct mbuf *, 437 const struct sadb_msghdr *); 438 static int key_spdflush(struct socket *, struct mbuf *, 439 const struct sadb_msghdr *); 440 static int key_spddump(struct socket *, struct mbuf *, 441 const struct sadb_msghdr *); 442 static struct mbuf *key_setdumpsp(struct secpolicy *, 443 u_int8_t, u_int32_t, u_int32_t); 444 static u_int key_getspreqmsglen(struct secpolicy *); 445 static int key_spdexpire(struct secpolicy *); 446 static struct secashead *key_newsah(struct secasindex *); 447 static void key_delsah(struct secashead *); 448 static struct secasvar *key_newsav(struct mbuf *, 449 const struct sadb_msghdr *, struct secashead *, int *, 450 const char*, int); 451 #define KEY_NEWSAV(m, sadb, sah, e) \ 452 key_newsav(m, sadb, sah, e, __FILE__, __LINE__) 453 static void key_delsav(struct secasvar *); 454 static struct secashead *key_getsah(struct secasindex *); 455 static struct secasvar *key_checkspidup(struct secasindex *, u_int32_t); 456 static struct secasvar *key_getsavbyspi(struct secashead *, u_int32_t); 457 static int key_setsaval(struct secasvar *, struct mbuf *, 458 const struct sadb_msghdr *); 459 static int key_mature(struct secasvar *); 460 static struct mbuf *key_setdumpsa(struct secasvar *, u_int8_t, 461 u_int8_t, u_int32_t, u_int32_t); 462 static struct mbuf *key_setsadbmsg(u_int8_t, u_int16_t, u_int8_t, 463 u_int32_t, pid_t, u_int16_t); 464 static struct mbuf *key_setsadbsa(struct secasvar *); 465 static struct mbuf *key_setsadbaddr(u_int16_t, 466 const struct sockaddr *, u_int8_t, u_int16_t); 467 #ifdef IPSEC_NAT_T 468 static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t); 469 static struct mbuf *key_setsadbxtype(u_int16_t); 470 #endif 471 static void key_porttosaddr(struct sockaddr *, u_int16_t); 472 #define KEY_PORTTOSADDR(saddr, port) \ 473 key_porttosaddr((struct sockaddr *)(saddr), (port)) 474 static struct mbuf *key_setsadbxsa2(u_int8_t, u_int32_t, u_int32_t); 475 static struct mbuf *key_setsadbxpolicy(u_int16_t, u_int8_t, 476 u_int32_t); 477 static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int, 478 struct malloc_type *); 479 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src, 480 struct malloc_type *type); 481 #ifdef INET6 482 static int key_ismyaddr6(struct sockaddr_in6 *); 483 #endif 484 485 /* flags for key_cmpsaidx() */ 486 #define CMP_HEAD 1 /* protocol, addresses. */ 487 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ 488 #define CMP_REQID 3 /* additionally HEAD, reaid. */ 489 #define CMP_EXACTLY 4 /* all elements. */ 490 static int key_cmpsaidx(const struct secasindex *, 491 const struct secasindex *, int); 492 static int key_cmpspidx_exactly(struct secpolicyindex *, 493 struct secpolicyindex *); 494 static int key_cmpspidx_withmask(struct secpolicyindex *, 495 struct secpolicyindex *); 496 static int key_sockaddrcmp(const struct sockaddr *, 497 const struct sockaddr *, int); 498 static int key_bbcmp(const void *, const void *, u_int); 499 static u_int16_t key_satype2proto(u_int8_t); 500 static u_int8_t key_proto2satype(u_int16_t); 501 502 static int key_getspi(struct socket *, struct mbuf *, 503 const struct sadb_msghdr *); 504 static u_int32_t key_do_getnewspi(struct sadb_spirange *, 505 struct secasindex *); 506 static int key_update(struct socket *, struct mbuf *, 507 const struct sadb_msghdr *); 508 #ifdef IPSEC_DOSEQCHECK 509 static struct secasvar *key_getsavbyseq(struct secashead *, u_int32_t); 510 #endif 511 static int key_add(struct socket *, struct mbuf *, 512 const struct sadb_msghdr *); 513 static int key_setident(struct secashead *, struct mbuf *, 514 const struct sadb_msghdr *); 515 static struct mbuf *key_getmsgbuf_x1(struct mbuf *, 516 const struct sadb_msghdr *); 517 static int key_delete(struct socket *, struct mbuf *, 518 const struct sadb_msghdr *); 519 static int key_delete_all(struct socket *, struct mbuf *, 520 const struct sadb_msghdr *, u_int16_t); 521 static int key_get(struct socket *, struct mbuf *, 522 const struct sadb_msghdr *); 523 524 static void key_getcomb_setlifetime(struct sadb_comb *); 525 static struct mbuf *key_getcomb_esp(void); 526 static struct mbuf *key_getcomb_ah(void); 527 static struct mbuf *key_getcomb_ipcomp(void); 528 static struct mbuf *key_getprop(const struct secasindex *); 529 530 static int key_acquire(const struct secasindex *, struct secpolicy *); 531 static struct secacq *key_newacq(const struct secasindex *); 532 static struct secacq *key_getacq(const struct secasindex *); 533 static struct secacq *key_getacqbyseq(u_int32_t); 534 static struct secspacq *key_newspacq(struct secpolicyindex *); 535 static struct secspacq *key_getspacq(struct secpolicyindex *); 536 static int key_acquire2(struct socket *, struct mbuf *, 537 const struct sadb_msghdr *); 538 static int key_register(struct socket *, struct mbuf *, 539 const struct sadb_msghdr *); 540 static int key_expire(struct secasvar *, int); 541 static int key_flush(struct socket *, struct mbuf *, 542 const struct sadb_msghdr *); 543 static int key_dump(struct socket *, struct mbuf *, 544 const struct sadb_msghdr *); 545 static int key_promisc(struct socket *, struct mbuf *, 546 const struct sadb_msghdr *); 547 static int key_senderror(struct socket *, struct mbuf *, int); 548 static int key_validate_ext(const struct sadb_ext *, int); 549 static int key_align(struct mbuf *, struct sadb_msghdr *); 550 static struct mbuf *key_setlifetime(struct seclifetime *src, 551 u_int16_t exttype); 552 static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype); 553 554 #if 0 555 static const char *key_getfqdn(void); 556 static const char *key_getuserfqdn(void); 557 #endif 558 static void key_sa_chgstate(struct secasvar *, u_int8_t); 559 560 static __inline void 561 sa_initref(struct secasvar *sav) 562 { 563 564 refcount_init(&sav->refcnt, 1); 565 } 566 static __inline void 567 sa_addref(struct secasvar *sav) 568 { 569 570 refcount_acquire(&sav->refcnt); 571 IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow")); 572 } 573 static __inline int 574 sa_delref(struct secasvar *sav) 575 { 576 577 IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow")); 578 return (refcount_release(&sav->refcnt)); 579 } 580 581 #define SP_ADDREF(p) refcount_acquire(&(p)->refcnt) 582 #define SP_DELREF(p) refcount_release(&(p)->refcnt) 583 584 /* 585 * Update the refcnt while holding the SPTREE lock. 586 */ 587 void 588 key_addref(struct secpolicy *sp) 589 { 590 591 SP_ADDREF(sp); 592 } 593 594 /* 595 * Return 0 when there are known to be no SP's for the specified 596 * direction. Otherwise return 1. This is used by IPsec code 597 * to optimize performance. 598 */ 599 int 600 key_havesp(u_int dir) 601 { 602 603 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? 604 TAILQ_FIRST(&V_sptree[dir]) != NULL : 1); 605 } 606 607 /* %%% IPsec policy management */ 608 /* 609 * allocating a SP for OUTBOUND or INBOUND packet. 610 * Must call key_freesp() later. 611 * OUT: NULL: not found 612 * others: found and return the pointer. 613 */ 614 struct secpolicy * 615 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, 616 int tag) 617 { 618 SPTREE_RLOCK_TRACKER; 619 struct secpolicy *sp; 620 621 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 622 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 623 ("invalid direction %u", dir)); 624 625 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 626 printf("DP %s from %s:%u\n", __func__, where, tag)); 627 628 /* get a SP entry */ 629 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 630 printf("*** objects\n"); 631 kdebug_secpolicyindex(spidx)); 632 633 SPTREE_RLOCK(); 634 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 635 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 636 printf("*** in SPD\n"); 637 kdebug_secpolicyindex(&sp->spidx)); 638 if (key_cmpspidx_withmask(&sp->spidx, spidx)) 639 goto found; 640 } 641 sp = NULL; 642 found: 643 if (sp) { 644 /* sanity check */ 645 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 646 647 /* found a SPD entry */ 648 sp->lastused = time_second; 649 SP_ADDREF(sp); 650 } 651 SPTREE_RUNLOCK(); 652 653 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 654 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 655 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 656 return sp; 657 } 658 659 /* 660 * allocating a SP for OUTBOUND or INBOUND packet. 661 * Must call key_freesp() later. 662 * OUT: NULL: not found 663 * others: found and return the pointer. 664 */ 665 struct secpolicy * 666 key_allocsp2(u_int32_t spi, union sockaddr_union *dst, u_int8_t proto, 667 u_int dir, const char* where, int tag) 668 { 669 SPTREE_RLOCK_TRACKER; 670 struct secpolicy *sp; 671 672 IPSEC_ASSERT(dst != NULL, ("null dst")); 673 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 674 ("invalid direction %u", dir)); 675 676 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 677 printf("DP %s from %s:%u\n", __func__, where, tag)); 678 679 /* get a SP entry */ 680 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 681 printf("*** objects\n"); 682 printf("spi %u proto %u dir %u\n", spi, proto, dir); 683 kdebug_sockaddr(&dst->sa)); 684 685 SPTREE_RLOCK(); 686 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 687 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 688 printf("*** in SPD\n"); 689 kdebug_secpolicyindex(&sp->spidx)); 690 /* compare simple values, then dst address */ 691 if (sp->spidx.ul_proto != proto) 692 continue; 693 /* NB: spi's must exist and match */ 694 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi) 695 continue; 696 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0) 697 goto found; 698 } 699 sp = NULL; 700 found: 701 if (sp) { 702 /* sanity check */ 703 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 704 705 /* found a SPD entry */ 706 sp->lastused = time_second; 707 SP_ADDREF(sp); 708 } 709 SPTREE_RUNLOCK(); 710 711 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 712 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 713 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 714 return sp; 715 } 716 717 #if 0 718 /* 719 * return a policy that matches this particular inbound packet. 720 * XXX slow 721 */ 722 struct secpolicy * 723 key_gettunnel(const struct sockaddr *osrc, 724 const struct sockaddr *odst, 725 const struct sockaddr *isrc, 726 const struct sockaddr *idst, 727 const char* where, int tag) 728 { 729 struct secpolicy *sp; 730 const int dir = IPSEC_DIR_INBOUND; 731 struct ipsecrequest *r1, *r2, *p; 732 struct secpolicyindex spidx; 733 734 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 735 printf("DP %s from %s:%u\n", __func__, where, tag)); 736 737 if (isrc->sa_family != idst->sa_family) { 738 ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.", 739 __func__, isrc->sa_family, idst->sa_family)); 740 sp = NULL; 741 goto done; 742 } 743 744 SPTREE_LOCK(); 745 LIST_FOREACH(sp, &V_sptree[dir], chain) { 746 if (sp->state == IPSEC_SPSTATE_DEAD) 747 continue; 748 749 r1 = r2 = NULL; 750 for (p = sp->req; p; p = p->next) { 751 if (p->saidx.mode != IPSEC_MODE_TUNNEL) 752 continue; 753 754 r1 = r2; 755 r2 = p; 756 757 if (!r1) { 758 /* here we look at address matches only */ 759 spidx = sp->spidx; 760 if (isrc->sa_len > sizeof(spidx.src) || 761 idst->sa_len > sizeof(spidx.dst)) 762 continue; 763 bcopy(isrc, &spidx.src, isrc->sa_len); 764 bcopy(idst, &spidx.dst, idst->sa_len); 765 if (!key_cmpspidx_withmask(&sp->spidx, &spidx)) 766 continue; 767 } else { 768 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) || 769 key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0)) 770 continue; 771 } 772 773 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) || 774 key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0)) 775 continue; 776 777 goto found; 778 } 779 } 780 sp = NULL; 781 found: 782 if (sp) { 783 sp->lastused = time_second; 784 SP_ADDREF(sp); 785 } 786 SPTREE_UNLOCK(); 787 done: 788 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 789 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 790 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 791 return sp; 792 } 793 #endif 794 795 /* 796 * allocating an SA entry for an *OUTBOUND* packet. 797 * checking each request entries in SP, and acquire an SA if need. 798 * OUT: 0: there are valid requests. 799 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. 800 */ 801 int 802 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx) 803 { 804 u_int level; 805 int error; 806 struct secasvar *sav; 807 808 IPSEC_ASSERT(isr != NULL, ("null isr")); 809 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 810 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT || 811 saidx->mode == IPSEC_MODE_TUNNEL, 812 ("unexpected policy %u", saidx->mode)); 813 814 /* 815 * XXX guard against protocol callbacks from the crypto 816 * thread as they reference ipsecrequest.sav which we 817 * temporarily null out below. Need to rethink how we 818 * handle bundled SA's in the callback thread. 819 */ 820 IPSECREQUEST_LOCK_ASSERT(isr); 821 822 /* get current level */ 823 level = ipsec_get_reqlevel(isr); 824 825 /* 826 * We check new SA in the IPsec request because a different 827 * SA may be involved each time this request is checked, either 828 * because new SAs are being configured, or this request is 829 * associated with an unconnected datagram socket, or this request 830 * is associated with a system default policy. 831 * 832 * key_allocsa_policy should allocate the oldest SA available. 833 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt. 834 */ 835 sav = key_allocsa_policy(saidx); 836 if (sav != isr->sav) { 837 /* SA need to be updated. */ 838 if (!IPSECREQUEST_UPGRADE(isr)) { 839 /* Kick everyone off. */ 840 IPSECREQUEST_UNLOCK(isr); 841 IPSECREQUEST_WLOCK(isr); 842 } 843 if (isr->sav != NULL) 844 KEY_FREESAV(&isr->sav); 845 isr->sav = sav; 846 IPSECREQUEST_DOWNGRADE(isr); 847 } else if (sav != NULL) 848 KEY_FREESAV(&sav); 849 850 /* When there is SA. */ 851 if (isr->sav != NULL) { 852 if (isr->sav->state != SADB_SASTATE_MATURE && 853 isr->sav->state != SADB_SASTATE_DYING) 854 return EINVAL; 855 return 0; 856 } 857 858 /* there is no SA */ 859 error = key_acquire(saidx, isr->sp); 860 if (error != 0) { 861 /* XXX What should I do ? */ 862 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 863 __func__, error)); 864 return error; 865 } 866 867 if (level != IPSEC_LEVEL_REQUIRE) { 868 /* XXX sigh, the interface to this routine is botched */ 869 IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA")); 870 return 0; 871 } else { 872 return ENOENT; 873 } 874 } 875 876 /* 877 * allocating a SA for policy entry from SAD. 878 * NOTE: searching SAD of aliving state. 879 * OUT: NULL: not found. 880 * others: found and return the pointer. 881 */ 882 static struct secasvar * 883 key_allocsa_policy(const struct secasindex *saidx) 884 { 885 #define N(a) _ARRAYLEN(a) 886 struct secashead *sah; 887 struct secasvar *sav; 888 u_int stateidx, arraysize; 889 const u_int *state_valid; 890 891 state_valid = NULL; /* silence gcc */ 892 arraysize = 0; /* silence gcc */ 893 894 SAHTREE_LOCK(); 895 LIST_FOREACH(sah, &V_sahtree, chain) { 896 if (sah->state == SADB_SASTATE_DEAD) 897 continue; 898 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) { 899 if (V_key_preferred_oldsa) { 900 state_valid = saorder_state_valid_prefer_old; 901 arraysize = N(saorder_state_valid_prefer_old); 902 } else { 903 state_valid = saorder_state_valid_prefer_new; 904 arraysize = N(saorder_state_valid_prefer_new); 905 } 906 break; 907 } 908 } 909 SAHTREE_UNLOCK(); 910 if (sah == NULL) 911 return NULL; 912 913 /* search valid state */ 914 for (stateidx = 0; stateidx < arraysize; stateidx++) { 915 sav = key_do_allocsa_policy(sah, state_valid[stateidx]); 916 if (sav != NULL) 917 return sav; 918 } 919 920 return NULL; 921 #undef N 922 } 923 924 /* 925 * searching SAD with direction, protocol, mode and state. 926 * called by key_allocsa_policy(). 927 * OUT: 928 * NULL : not found 929 * others : found, pointer to a SA. 930 */ 931 static struct secasvar * 932 key_do_allocsa_policy(struct secashead *sah, u_int state) 933 { 934 struct secasvar *sav, *nextsav, *candidate, *d; 935 936 /* initilize */ 937 candidate = NULL; 938 939 SAHTREE_LOCK(); 940 for (sav = LIST_FIRST(&sah->savtree[state]); 941 sav != NULL; 942 sav = nextsav) { 943 944 nextsav = LIST_NEXT(sav, chain); 945 946 /* sanity check */ 947 KEY_CHKSASTATE(sav->state, state, __func__); 948 949 /* initialize */ 950 if (candidate == NULL) { 951 candidate = sav; 952 continue; 953 } 954 955 /* Which SA is the better ? */ 956 957 IPSEC_ASSERT(candidate->lft_c != NULL, 958 ("null candidate lifetime")); 959 IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime")); 960 961 /* What the best method is to compare ? */ 962 if (V_key_preferred_oldsa) { 963 if (candidate->lft_c->addtime > 964 sav->lft_c->addtime) { 965 candidate = sav; 966 } 967 continue; 968 /*NOTREACHED*/ 969 } 970 971 /* preferred new sa rather than old sa */ 972 if (candidate->lft_c->addtime < 973 sav->lft_c->addtime) { 974 d = candidate; 975 candidate = sav; 976 } else 977 d = sav; 978 979 /* 980 * prepared to delete the SA when there is more 981 * suitable candidate and the lifetime of the SA is not 982 * permanent. 983 */ 984 if (d->lft_h->addtime != 0) { 985 struct mbuf *m, *result; 986 u_int8_t satype; 987 988 key_sa_chgstate(d, SADB_SASTATE_DEAD); 989 990 IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count")); 991 992 satype = key_proto2satype(d->sah->saidx.proto); 993 if (satype == 0) 994 goto msgfail; 995 996 m = key_setsadbmsg(SADB_DELETE, 0, 997 satype, 0, 0, d->refcnt - 1); 998 if (!m) 999 goto msgfail; 1000 result = m; 1001 1002 /* set sadb_address for saidx's. */ 1003 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 1004 &d->sah->saidx.src.sa, 1005 d->sah->saidx.src.sa.sa_len << 3, 1006 IPSEC_ULPROTO_ANY); 1007 if (!m) 1008 goto msgfail; 1009 m_cat(result, m); 1010 1011 /* set sadb_address for saidx's. */ 1012 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 1013 &d->sah->saidx.dst.sa, 1014 d->sah->saidx.dst.sa.sa_len << 3, 1015 IPSEC_ULPROTO_ANY); 1016 if (!m) 1017 goto msgfail; 1018 m_cat(result, m); 1019 1020 /* create SA extension */ 1021 m = key_setsadbsa(d); 1022 if (!m) 1023 goto msgfail; 1024 m_cat(result, m); 1025 1026 if (result->m_len < sizeof(struct sadb_msg)) { 1027 result = m_pullup(result, 1028 sizeof(struct sadb_msg)); 1029 if (result == NULL) 1030 goto msgfail; 1031 } 1032 1033 result->m_pkthdr.len = 0; 1034 for (m = result; m; m = m->m_next) 1035 result->m_pkthdr.len += m->m_len; 1036 mtod(result, struct sadb_msg *)->sadb_msg_len = 1037 PFKEY_UNIT64(result->m_pkthdr.len); 1038 1039 if (key_sendup_mbuf(NULL, result, 1040 KEY_SENDUP_REGISTERED)) 1041 goto msgfail; 1042 msgfail: 1043 KEY_FREESAV(&d); 1044 } 1045 } 1046 if (candidate) { 1047 sa_addref(candidate); 1048 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1049 printf("DP %s cause refcnt++:%d SA:%p\n", 1050 __func__, candidate->refcnt, candidate)); 1051 } 1052 SAHTREE_UNLOCK(); 1053 1054 return candidate; 1055 } 1056 1057 /* 1058 * allocating a usable SA entry for a *INBOUND* packet. 1059 * Must call key_freesav() later. 1060 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). 1061 * NULL: not found, or error occured. 1062 * 1063 * In the comparison, no source address is used--for RFC2401 conformance. 1064 * To quote, from section 4.1: 1065 * A security association is uniquely identified by a triple consisting 1066 * of a Security Parameter Index (SPI), an IP Destination Address, and a 1067 * security protocol (AH or ESP) identifier. 1068 * Note that, however, we do need to keep source address in IPsec SA. 1069 * IKE specification and PF_KEY specification do assume that we 1070 * keep source address in IPsec SA. We see a tricky situation here. 1071 */ 1072 struct secasvar * 1073 key_allocsa(union sockaddr_union *dst, u_int proto, u_int32_t spi, 1074 const char* where, int tag) 1075 { 1076 struct secashead *sah; 1077 struct secasvar *sav; 1078 u_int stateidx, arraysize, state; 1079 const u_int *saorder_state_valid; 1080 #ifdef IPSEC_NAT_T 1081 int natt_chkport; 1082 #endif 1083 1084 IPSEC_ASSERT(dst != NULL, ("null dst address")); 1085 1086 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1087 printf("DP %s from %s:%u\n", __func__, where, tag)); 1088 1089 #ifdef IPSEC_NAT_T 1090 natt_chkport = (dst->sa.sa_family == AF_INET && 1091 dst->sa.sa_len == sizeof(struct sockaddr_in) && 1092 dst->sin.sin_port != 0); 1093 #endif 1094 1095 /* 1096 * searching SAD. 1097 * XXX: to be checked internal IP header somewhere. Also when 1098 * IPsec tunnel packet is received. But ESP tunnel mode is 1099 * encrypted so we can't check internal IP header. 1100 */ 1101 SAHTREE_LOCK(); 1102 if (V_key_preferred_oldsa) { 1103 saorder_state_valid = saorder_state_valid_prefer_old; 1104 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); 1105 } else { 1106 saorder_state_valid = saorder_state_valid_prefer_new; 1107 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); 1108 } 1109 LIST_FOREACH(sah, &V_sahtree, chain) { 1110 int checkport; 1111 1112 /* search valid state */ 1113 for (stateidx = 0; stateidx < arraysize; stateidx++) { 1114 state = saorder_state_valid[stateidx]; 1115 LIST_FOREACH(sav, &sah->savtree[state], chain) { 1116 /* sanity check */ 1117 KEY_CHKSASTATE(sav->state, state, __func__); 1118 /* do not return entries w/ unusable state */ 1119 if (sav->state != SADB_SASTATE_MATURE && 1120 sav->state != SADB_SASTATE_DYING) 1121 continue; 1122 if (proto != sav->sah->saidx.proto) 1123 continue; 1124 if (spi != sav->spi) 1125 continue; 1126 checkport = 0; 1127 #ifdef IPSEC_NAT_T 1128 /* 1129 * Really only check ports when this is a NAT-T 1130 * SA. Otherwise other lookups providing ports 1131 * might suffer. 1132 */ 1133 if (sav->natt_type && natt_chkport) 1134 checkport = 1; 1135 #endif 1136 #if 0 /* don't check src */ 1137 /* check src address */ 1138 if (key_sockaddrcmp(&src->sa, 1139 &sav->sah->saidx.src.sa, checkport) != 0) 1140 continue; 1141 #endif 1142 /* check dst address */ 1143 if (key_sockaddrcmp(&dst->sa, 1144 &sav->sah->saidx.dst.sa, checkport) != 0) 1145 continue; 1146 sa_addref(sav); 1147 goto done; 1148 } 1149 } 1150 } 1151 sav = NULL; 1152 done: 1153 SAHTREE_UNLOCK(); 1154 1155 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1156 printf("DP %s return SA:%p; refcnt %u\n", __func__, 1157 sav, sav ? sav->refcnt : 0)); 1158 return sav; 1159 } 1160 1161 /* 1162 * Must be called after calling key_allocsp(). 1163 * For both the packet without socket and key_freeso(). 1164 */ 1165 void 1166 _key_freesp(struct secpolicy **spp, const char* where, int tag) 1167 { 1168 struct ipsecrequest *isr, *nextisr; 1169 struct secpolicy *sp = *spp; 1170 1171 IPSEC_ASSERT(sp != NULL, ("null sp")); 1172 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1173 printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n", 1174 __func__, sp, sp->id, where, tag, sp->refcnt)); 1175 1176 if (SP_DELREF(sp) == 0) 1177 return; 1178 *spp = NULL; 1179 for (isr = sp->req; isr != NULL; isr = nextisr) { 1180 if (isr->sav != NULL) { 1181 KEY_FREESAV(&isr->sav); 1182 isr->sav = NULL; 1183 } 1184 nextisr = isr->next; 1185 ipsec_delisr(isr); 1186 } 1187 free(sp, M_IPSEC_SP); 1188 } 1189 1190 static void 1191 key_unlink(struct secpolicy *sp) 1192 { 1193 1194 IPSEC_ASSERT(sp != NULL, ("null sp")); 1195 IPSEC_ASSERT(sp->spidx.dir == IPSEC_DIR_INBOUND || 1196 sp->spidx.dir == IPSEC_DIR_OUTBOUND, 1197 ("invalid direction %u", sp->spidx.dir)); 1198 SPTREE_UNLOCK_ASSERT(); 1199 1200 SPTREE_WLOCK(); 1201 if (sp->state == IPSEC_SPSTATE_DEAD) { 1202 SPTREE_WUNLOCK(); 1203 return; 1204 } 1205 sp->state = IPSEC_SPSTATE_DEAD; 1206 TAILQ_REMOVE(&V_sptree[sp->spidx.dir], sp, chain); 1207 SPTREE_WUNLOCK(); 1208 KEY_FREESP(&sp); 1209 } 1210 1211 /* 1212 * Must be called after calling key_allocsp(). 1213 * For the packet with socket. 1214 */ 1215 void 1216 key_freeso(struct socket *so) 1217 { 1218 IPSEC_ASSERT(so != NULL, ("null so")); 1219 1220 switch (so->so_proto->pr_domain->dom_family) { 1221 #if defined(INET) || defined(INET6) 1222 #ifdef INET 1223 case PF_INET: 1224 #endif 1225 #ifdef INET6 1226 case PF_INET6: 1227 #endif 1228 { 1229 struct inpcb *pcb = sotoinpcb(so); 1230 1231 /* Does it have a PCB ? */ 1232 if (pcb == NULL) 1233 return; 1234 key_freesp_so(&pcb->inp_sp->sp_in); 1235 key_freesp_so(&pcb->inp_sp->sp_out); 1236 } 1237 break; 1238 #endif /* INET || INET6 */ 1239 default: 1240 ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n", 1241 __func__, so->so_proto->pr_domain->dom_family)); 1242 return; 1243 } 1244 } 1245 1246 static void 1247 key_freesp_so(struct secpolicy **sp) 1248 { 1249 IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp")); 1250 1251 if ((*sp)->policy == IPSEC_POLICY_ENTRUST || 1252 (*sp)->policy == IPSEC_POLICY_BYPASS) 1253 return; 1254 1255 IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC, 1256 ("invalid policy %u", (*sp)->policy)); 1257 KEY_FREESP(sp); 1258 } 1259 1260 void 1261 key_addrefsa(struct secasvar *sav, const char* where, int tag) 1262 { 1263 1264 IPSEC_ASSERT(sav != NULL, ("null sav")); 1265 IPSEC_ASSERT(sav->refcnt > 0, ("refcount must exist")); 1266 1267 sa_addref(sav); 1268 } 1269 1270 /* 1271 * Must be called after calling key_allocsa(). 1272 * This function is called by key_freesp() to free some SA allocated 1273 * for a policy. 1274 */ 1275 void 1276 key_freesav(struct secasvar **psav, const char* where, int tag) 1277 { 1278 struct secasvar *sav = *psav; 1279 1280 IPSEC_ASSERT(sav != NULL, ("null sav")); 1281 1282 if (sa_delref(sav)) { 1283 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1284 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1285 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1286 *psav = NULL; 1287 key_delsav(sav); 1288 } else { 1289 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1290 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1291 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1292 } 1293 } 1294 1295 /* %%% SPD management */ 1296 /* 1297 * search SPD 1298 * OUT: NULL : not found 1299 * others : found, pointer to a SP. 1300 */ 1301 static struct secpolicy * 1302 key_getsp(struct secpolicyindex *spidx) 1303 { 1304 SPTREE_RLOCK_TRACKER; 1305 struct secpolicy *sp; 1306 1307 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 1308 1309 SPTREE_RLOCK(); 1310 TAILQ_FOREACH(sp, &V_sptree[spidx->dir], chain) { 1311 if (key_cmpspidx_exactly(spidx, &sp->spidx)) { 1312 SP_ADDREF(sp); 1313 break; 1314 } 1315 } 1316 SPTREE_RUNLOCK(); 1317 1318 return sp; 1319 } 1320 1321 /* 1322 * get SP by index. 1323 * OUT: NULL : not found 1324 * others : found, pointer to a SP. 1325 */ 1326 static struct secpolicy * 1327 key_getspbyid(u_int32_t id) 1328 { 1329 SPTREE_RLOCK_TRACKER; 1330 struct secpolicy *sp; 1331 1332 SPTREE_RLOCK(); 1333 TAILQ_FOREACH(sp, &V_sptree[IPSEC_DIR_INBOUND], chain) { 1334 if (sp->id == id) { 1335 SP_ADDREF(sp); 1336 goto done; 1337 } 1338 } 1339 1340 TAILQ_FOREACH(sp, &V_sptree[IPSEC_DIR_OUTBOUND], chain) { 1341 if (sp->id == id) { 1342 SP_ADDREF(sp); 1343 goto done; 1344 } 1345 } 1346 done: 1347 SPTREE_RUNLOCK(); 1348 1349 return sp; 1350 } 1351 1352 struct secpolicy * 1353 key_newsp(const char* where, int tag) 1354 { 1355 struct secpolicy *newsp = NULL; 1356 1357 newsp = (struct secpolicy *) 1358 malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO); 1359 if (newsp) 1360 refcount_init(&newsp->refcnt, 1); 1361 1362 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1363 printf("DP %s from %s:%u return SP:%p\n", __func__, 1364 where, tag, newsp)); 1365 return newsp; 1366 } 1367 1368 /* 1369 * create secpolicy structure from sadb_x_policy structure. 1370 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, 1371 * so must be set properly later. 1372 */ 1373 struct secpolicy * 1374 key_msg2sp(struct sadb_x_policy *xpl0, size_t len, int *error) 1375 { 1376 struct secpolicy *newsp; 1377 1378 IPSEC_ASSERT(xpl0 != NULL, ("null xpl0")); 1379 IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len)); 1380 1381 if (len != PFKEY_EXTLEN(xpl0)) { 1382 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__)); 1383 *error = EINVAL; 1384 return NULL; 1385 } 1386 1387 if ((newsp = KEY_NEWSP()) == NULL) { 1388 *error = ENOBUFS; 1389 return NULL; 1390 } 1391 1392 newsp->spidx.dir = xpl0->sadb_x_policy_dir; 1393 newsp->policy = xpl0->sadb_x_policy_type; 1394 1395 /* check policy */ 1396 switch (xpl0->sadb_x_policy_type) { 1397 case IPSEC_POLICY_DISCARD: 1398 case IPSEC_POLICY_NONE: 1399 case IPSEC_POLICY_ENTRUST: 1400 case IPSEC_POLICY_BYPASS: 1401 newsp->req = NULL; 1402 break; 1403 1404 case IPSEC_POLICY_IPSEC: 1405 { 1406 int tlen; 1407 struct sadb_x_ipsecrequest *xisr; 1408 struct ipsecrequest **p_isr = &newsp->req; 1409 1410 /* validity check */ 1411 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { 1412 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", 1413 __func__)); 1414 KEY_FREESP(&newsp); 1415 *error = EINVAL; 1416 return NULL; 1417 } 1418 1419 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); 1420 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1); 1421 1422 while (tlen > 0) { 1423 /* length check */ 1424 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { 1425 ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest " 1426 "length.\n", __func__)); 1427 KEY_FREESP(&newsp); 1428 *error = EINVAL; 1429 return NULL; 1430 } 1431 1432 /* allocate request buffer */ 1433 /* NB: data structure is zero'd */ 1434 *p_isr = ipsec_newisr(); 1435 if ((*p_isr) == NULL) { 1436 ipseclog((LOG_DEBUG, 1437 "%s: No more memory.\n", __func__)); 1438 KEY_FREESP(&newsp); 1439 *error = ENOBUFS; 1440 return NULL; 1441 } 1442 1443 /* set values */ 1444 switch (xisr->sadb_x_ipsecrequest_proto) { 1445 case IPPROTO_ESP: 1446 case IPPROTO_AH: 1447 case IPPROTO_IPCOMP: 1448 break; 1449 default: 1450 ipseclog((LOG_DEBUG, 1451 "%s: invalid proto type=%u\n", __func__, 1452 xisr->sadb_x_ipsecrequest_proto)); 1453 KEY_FREESP(&newsp); 1454 *error = EPROTONOSUPPORT; 1455 return NULL; 1456 } 1457 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; 1458 1459 switch (xisr->sadb_x_ipsecrequest_mode) { 1460 case IPSEC_MODE_TRANSPORT: 1461 case IPSEC_MODE_TUNNEL: 1462 break; 1463 case IPSEC_MODE_ANY: 1464 default: 1465 ipseclog((LOG_DEBUG, 1466 "%s: invalid mode=%u\n", __func__, 1467 xisr->sadb_x_ipsecrequest_mode)); 1468 KEY_FREESP(&newsp); 1469 *error = EINVAL; 1470 return NULL; 1471 } 1472 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; 1473 1474 switch (xisr->sadb_x_ipsecrequest_level) { 1475 case IPSEC_LEVEL_DEFAULT: 1476 case IPSEC_LEVEL_USE: 1477 case IPSEC_LEVEL_REQUIRE: 1478 break; 1479 case IPSEC_LEVEL_UNIQUE: 1480 /* validity check */ 1481 /* 1482 * If range violation of reqid, kernel will 1483 * update it, don't refuse it. 1484 */ 1485 if (xisr->sadb_x_ipsecrequest_reqid 1486 > IPSEC_MANUAL_REQID_MAX) { 1487 ipseclog((LOG_DEBUG, 1488 "%s: reqid=%d range " 1489 "violation, updated by kernel.\n", 1490 __func__, 1491 xisr->sadb_x_ipsecrequest_reqid)); 1492 xisr->sadb_x_ipsecrequest_reqid = 0; 1493 } 1494 1495 /* allocate new reqid id if reqid is zero. */ 1496 if (xisr->sadb_x_ipsecrequest_reqid == 0) { 1497 u_int32_t reqid; 1498 if ((reqid = key_newreqid()) == 0) { 1499 KEY_FREESP(&newsp); 1500 *error = ENOBUFS; 1501 return NULL; 1502 } 1503 (*p_isr)->saidx.reqid = reqid; 1504 xisr->sadb_x_ipsecrequest_reqid = reqid; 1505 } else { 1506 /* set it for manual keying. */ 1507 (*p_isr)->saidx.reqid = 1508 xisr->sadb_x_ipsecrequest_reqid; 1509 } 1510 break; 1511 1512 default: 1513 ipseclog((LOG_DEBUG, "%s: invalid level=%u\n", 1514 __func__, 1515 xisr->sadb_x_ipsecrequest_level)); 1516 KEY_FREESP(&newsp); 1517 *error = EINVAL; 1518 return NULL; 1519 } 1520 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; 1521 1522 /* set IP addresses if there */ 1523 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { 1524 struct sockaddr *paddr; 1525 1526 paddr = (struct sockaddr *)(xisr + 1); 1527 1528 /* validity check */ 1529 if (paddr->sa_len 1530 > sizeof((*p_isr)->saidx.src)) { 1531 ipseclog((LOG_DEBUG, "%s: invalid " 1532 "request address length.\n", 1533 __func__)); 1534 KEY_FREESP(&newsp); 1535 *error = EINVAL; 1536 return NULL; 1537 } 1538 bcopy(paddr, &(*p_isr)->saidx.src, 1539 paddr->sa_len); 1540 1541 paddr = (struct sockaddr *)((caddr_t)paddr 1542 + paddr->sa_len); 1543 1544 /* validity check */ 1545 if (paddr->sa_len 1546 > sizeof((*p_isr)->saidx.dst)) { 1547 ipseclog((LOG_DEBUG, "%s: invalid " 1548 "request address length.\n", 1549 __func__)); 1550 KEY_FREESP(&newsp); 1551 *error = EINVAL; 1552 return NULL; 1553 } 1554 bcopy(paddr, &(*p_isr)->saidx.dst, 1555 paddr->sa_len); 1556 } 1557 1558 (*p_isr)->sp = newsp; 1559 1560 /* initialization for the next. */ 1561 p_isr = &(*p_isr)->next; 1562 tlen -= xisr->sadb_x_ipsecrequest_len; 1563 1564 /* validity check */ 1565 if (tlen < 0) { 1566 ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n", 1567 __func__)); 1568 KEY_FREESP(&newsp); 1569 *error = EINVAL; 1570 return NULL; 1571 } 1572 1573 xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr 1574 + xisr->sadb_x_ipsecrequest_len); 1575 } 1576 } 1577 break; 1578 default: 1579 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); 1580 KEY_FREESP(&newsp); 1581 *error = EINVAL; 1582 return NULL; 1583 } 1584 1585 *error = 0; 1586 return newsp; 1587 } 1588 1589 static u_int32_t 1590 key_newreqid() 1591 { 1592 static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 1593 1594 auto_reqid = (auto_reqid == ~0 1595 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); 1596 1597 /* XXX should be unique check */ 1598 1599 return auto_reqid; 1600 } 1601 1602 /* 1603 * copy secpolicy struct to sadb_x_policy structure indicated. 1604 */ 1605 struct mbuf * 1606 key_sp2msg(struct secpolicy *sp) 1607 { 1608 struct sadb_x_policy *xpl; 1609 int tlen; 1610 caddr_t p; 1611 struct mbuf *m; 1612 1613 IPSEC_ASSERT(sp != NULL, ("null policy")); 1614 1615 tlen = key_getspreqmsglen(sp); 1616 1617 m = m_get2(tlen, M_NOWAIT, MT_DATA, 0); 1618 if (m == NULL) 1619 return (NULL); 1620 m_align(m, tlen); 1621 m->m_len = tlen; 1622 xpl = mtod(m, struct sadb_x_policy *); 1623 bzero(xpl, tlen); 1624 1625 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen); 1626 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 1627 xpl->sadb_x_policy_type = sp->policy; 1628 xpl->sadb_x_policy_dir = sp->spidx.dir; 1629 xpl->sadb_x_policy_id = sp->id; 1630 p = (caddr_t)xpl + sizeof(*xpl); 1631 1632 /* if is the policy for ipsec ? */ 1633 if (sp->policy == IPSEC_POLICY_IPSEC) { 1634 struct sadb_x_ipsecrequest *xisr; 1635 struct ipsecrequest *isr; 1636 1637 for (isr = sp->req; isr != NULL; isr = isr->next) { 1638 1639 xisr = (struct sadb_x_ipsecrequest *)p; 1640 1641 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; 1642 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; 1643 xisr->sadb_x_ipsecrequest_level = isr->level; 1644 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; 1645 1646 p += sizeof(*xisr); 1647 bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len); 1648 p += isr->saidx.src.sa.sa_len; 1649 bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len); 1650 p += isr->saidx.src.sa.sa_len; 1651 1652 xisr->sadb_x_ipsecrequest_len = 1653 PFKEY_ALIGN8(sizeof(*xisr) 1654 + isr->saidx.src.sa.sa_len 1655 + isr->saidx.dst.sa.sa_len); 1656 } 1657 } 1658 1659 return m; 1660 } 1661 1662 /* m will not be freed nor modified */ 1663 static struct mbuf * 1664 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, 1665 int ndeep, int nitem, ...) 1666 { 1667 va_list ap; 1668 int idx; 1669 int i; 1670 struct mbuf *result = NULL, *n; 1671 int len; 1672 1673 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1674 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1675 1676 va_start(ap, nitem); 1677 for (i = 0; i < nitem; i++) { 1678 idx = va_arg(ap, int); 1679 if (idx < 0 || idx > SADB_EXT_MAX) 1680 goto fail; 1681 /* don't attempt to pull empty extension */ 1682 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) 1683 continue; 1684 if (idx != SADB_EXT_RESERVED && 1685 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) 1686 continue; 1687 1688 if (idx == SADB_EXT_RESERVED) { 1689 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 1690 1691 IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len)); 1692 1693 MGETHDR(n, M_NOWAIT, MT_DATA); 1694 if (!n) 1695 goto fail; 1696 n->m_len = len; 1697 n->m_next = NULL; 1698 m_copydata(m, 0, sizeof(struct sadb_msg), 1699 mtod(n, caddr_t)); 1700 } else if (i < ndeep) { 1701 len = mhp->extlen[idx]; 1702 n = m_get2(len, M_NOWAIT, MT_DATA, 0); 1703 if (n == NULL) 1704 goto fail; 1705 m_align(n, len); 1706 n->m_len = len; 1707 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], 1708 mtod(n, caddr_t)); 1709 } else { 1710 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], 1711 M_NOWAIT); 1712 } 1713 if (n == NULL) 1714 goto fail; 1715 1716 if (result) 1717 m_cat(result, n); 1718 else 1719 result = n; 1720 } 1721 va_end(ap); 1722 1723 if ((result->m_flags & M_PKTHDR) != 0) { 1724 result->m_pkthdr.len = 0; 1725 for (n = result; n; n = n->m_next) 1726 result->m_pkthdr.len += n->m_len; 1727 } 1728 1729 return result; 1730 1731 fail: 1732 m_freem(result); 1733 va_end(ap); 1734 return NULL; 1735 } 1736 1737 /* 1738 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing 1739 * add an entry to SP database, when received 1740 * <base, address(SD), (lifetime(H),) policy> 1741 * from the user(?). 1742 * Adding to SP database, 1743 * and send 1744 * <base, address(SD), (lifetime(H),) policy> 1745 * to the socket which was send. 1746 * 1747 * SPDADD set a unique policy entry. 1748 * SPDSETIDX like SPDADD without a part of policy requests. 1749 * SPDUPDATE replace a unique policy entry. 1750 * 1751 * m will always be freed. 1752 */ 1753 static int 1754 key_spdadd(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 1755 { 1756 struct sadb_address *src0, *dst0; 1757 struct sadb_x_policy *xpl0, *xpl; 1758 struct sadb_lifetime *lft = NULL; 1759 struct secpolicyindex spidx; 1760 struct secpolicy *newsp; 1761 int error; 1762 1763 IPSEC_ASSERT(so != NULL, ("null socket")); 1764 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1765 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1766 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 1767 1768 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 1769 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 1770 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 1771 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n")); 1772 return key_senderror(so, m, EINVAL); 1773 } 1774 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 1775 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 1776 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 1777 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1778 __func__)); 1779 return key_senderror(so, m, EINVAL); 1780 } 1781 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { 1782 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] 1783 < sizeof(struct sadb_lifetime)) { 1784 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1785 __func__)); 1786 return key_senderror(so, m, EINVAL); 1787 } 1788 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 1789 } 1790 1791 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 1792 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 1793 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 1794 1795 /* 1796 * Note: do not parse SADB_X_EXT_NAT_T_* here: 1797 * we are processing traffic endpoints. 1798 */ 1799 1800 /* make secindex */ 1801 /* XXX boundary check against sa_len */ 1802 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1803 src0 + 1, 1804 dst0 + 1, 1805 src0->sadb_address_prefixlen, 1806 dst0->sadb_address_prefixlen, 1807 src0->sadb_address_proto, 1808 &spidx); 1809 1810 /* checking the direciton. */ 1811 switch (xpl0->sadb_x_policy_dir) { 1812 case IPSEC_DIR_INBOUND: 1813 case IPSEC_DIR_OUTBOUND: 1814 break; 1815 default: 1816 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 1817 mhp->msg->sadb_msg_errno = EINVAL; 1818 return 0; 1819 } 1820 1821 /* check policy */ 1822 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */ 1823 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST 1824 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { 1825 ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__)); 1826 return key_senderror(so, m, EINVAL); 1827 } 1828 1829 /* policy requests are mandatory when action is ipsec. */ 1830 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX 1831 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC 1832 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { 1833 ipseclog((LOG_DEBUG, "%s: some policy requests part required\n", 1834 __func__)); 1835 return key_senderror(so, m, EINVAL); 1836 } 1837 1838 /* 1839 * checking there is SP already or not. 1840 * SPDUPDATE doesn't depend on whether there is a SP or not. 1841 * If the type is either SPDADD or SPDSETIDX AND a SP is found, 1842 * then error. 1843 */ 1844 newsp = key_getsp(&spidx); 1845 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1846 if (newsp) { 1847 key_unlink(newsp); 1848 KEY_FREESP(&newsp); 1849 } 1850 } else { 1851 if (newsp != NULL) { 1852 KEY_FREESP(&newsp); 1853 ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n", 1854 __func__)); 1855 return key_senderror(so, m, EEXIST); 1856 } 1857 } 1858 1859 /* XXX: there is race between key_getsp and key_msg2sp. */ 1860 1861 /* allocation new SP entry */ 1862 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) { 1863 return key_senderror(so, m, error); 1864 } 1865 1866 if ((newsp->id = key_getnewspid()) == 0) { 1867 KEY_FREESP(&newsp); 1868 return key_senderror(so, m, ENOBUFS); 1869 } 1870 1871 /* XXX boundary check against sa_len */ 1872 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1873 src0 + 1, 1874 dst0 + 1, 1875 src0->sadb_address_prefixlen, 1876 dst0->sadb_address_prefixlen, 1877 src0->sadb_address_proto, 1878 &newsp->spidx); 1879 1880 /* sanity check on addr pair */ 1881 if (((struct sockaddr *)(src0 + 1))->sa_family != 1882 ((struct sockaddr *)(dst0+ 1))->sa_family) { 1883 KEY_FREESP(&newsp); 1884 return key_senderror(so, m, EINVAL); 1885 } 1886 if (((struct sockaddr *)(src0 + 1))->sa_len != 1887 ((struct sockaddr *)(dst0+ 1))->sa_len) { 1888 KEY_FREESP(&newsp); 1889 return key_senderror(so, m, EINVAL); 1890 } 1891 #if 1 1892 if (newsp->req && newsp->req->saidx.src.sa.sa_family && 1893 newsp->req->saidx.dst.sa.sa_family) { 1894 if (newsp->req->saidx.src.sa.sa_family != 1895 newsp->req->saidx.dst.sa.sa_family) { 1896 KEY_FREESP(&newsp); 1897 return key_senderror(so, m, EINVAL); 1898 } 1899 } 1900 #endif 1901 1902 newsp->created = time_second; 1903 newsp->lastused = newsp->created; 1904 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; 1905 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; 1906 1907 SPTREE_WLOCK(); 1908 TAILQ_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, chain); 1909 newsp->state = IPSEC_SPSTATE_ALIVE; 1910 SPTREE_WUNLOCK(); 1911 1912 /* delete the entry in spacqtree */ 1913 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1914 struct secspacq *spacq = key_getspacq(&spidx); 1915 if (spacq != NULL) { 1916 /* reset counter in order to deletion by timehandler. */ 1917 spacq->created = time_second; 1918 spacq->count = 0; 1919 SPACQ_UNLOCK(); 1920 } 1921 } 1922 1923 { 1924 struct mbuf *n, *mpolicy; 1925 struct sadb_msg *newmsg; 1926 int off; 1927 1928 /* 1929 * Note: do not send SADB_X_EXT_NAT_T_* here: 1930 * we are sending traffic endpoints. 1931 */ 1932 1933 /* create new sadb_msg to reply. */ 1934 if (lft) { 1935 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, 1936 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, 1937 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1938 } else { 1939 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, 1940 SADB_X_EXT_POLICY, 1941 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1942 } 1943 if (!n) 1944 return key_senderror(so, m, ENOBUFS); 1945 1946 if (n->m_len < sizeof(*newmsg)) { 1947 n = m_pullup(n, sizeof(*newmsg)); 1948 if (!n) 1949 return key_senderror(so, m, ENOBUFS); 1950 } 1951 newmsg = mtod(n, struct sadb_msg *); 1952 newmsg->sadb_msg_errno = 0; 1953 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 1954 1955 off = 0; 1956 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), 1957 sizeof(*xpl), &off); 1958 if (mpolicy == NULL) { 1959 /* n is already freed */ 1960 return key_senderror(so, m, ENOBUFS); 1961 } 1962 xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off); 1963 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { 1964 m_freem(n); 1965 return key_senderror(so, m, EINVAL); 1966 } 1967 xpl->sadb_x_policy_id = newsp->id; 1968 1969 m_freem(m); 1970 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 1971 } 1972 } 1973 1974 /* 1975 * get new policy id. 1976 * OUT: 1977 * 0: failure. 1978 * others: success. 1979 */ 1980 static u_int32_t 1981 key_getnewspid() 1982 { 1983 u_int32_t newid = 0; 1984 int count = V_key_spi_trycnt; /* XXX */ 1985 struct secpolicy *sp; 1986 1987 /* when requesting to allocate spi ranged */ 1988 while (count--) { 1989 newid = (V_policy_id = (V_policy_id == ~0 ? 1 : V_policy_id + 1)); 1990 1991 if ((sp = key_getspbyid(newid)) == NULL) 1992 break; 1993 1994 KEY_FREESP(&sp); 1995 } 1996 1997 if (count == 0 || newid == 0) { 1998 ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n", 1999 __func__)); 2000 return 0; 2001 } 2002 2003 return newid; 2004 } 2005 2006 /* 2007 * SADB_SPDDELETE processing 2008 * receive 2009 * <base, address(SD), policy(*)> 2010 * from the user(?), and set SADB_SASTATE_DEAD, 2011 * and send, 2012 * <base, address(SD), policy(*)> 2013 * to the ikmpd. 2014 * policy(*) including direction of policy. 2015 * 2016 * m will always be freed. 2017 */ 2018 static int 2019 key_spddelete(struct socket *so, struct mbuf *m, 2020 const struct sadb_msghdr *mhp) 2021 { 2022 struct sadb_address *src0, *dst0; 2023 struct sadb_x_policy *xpl0; 2024 struct secpolicyindex spidx; 2025 struct secpolicy *sp; 2026 2027 IPSEC_ASSERT(so != NULL, ("null so")); 2028 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2029 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2030 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2031 2032 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2033 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2034 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2035 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2036 __func__)); 2037 return key_senderror(so, m, EINVAL); 2038 } 2039 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2040 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2041 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2042 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2043 __func__)); 2044 return key_senderror(so, m, EINVAL); 2045 } 2046 2047 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 2048 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 2049 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 2050 2051 /* 2052 * Note: do not parse SADB_X_EXT_NAT_T_* here: 2053 * we are processing traffic endpoints. 2054 */ 2055 2056 /* make secindex */ 2057 /* XXX boundary check against sa_len */ 2058 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 2059 src0 + 1, 2060 dst0 + 1, 2061 src0->sadb_address_prefixlen, 2062 dst0->sadb_address_prefixlen, 2063 src0->sadb_address_proto, 2064 &spidx); 2065 2066 /* checking the direciton. */ 2067 switch (xpl0->sadb_x_policy_dir) { 2068 case IPSEC_DIR_INBOUND: 2069 case IPSEC_DIR_OUTBOUND: 2070 break; 2071 default: 2072 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 2073 return key_senderror(so, m, EINVAL); 2074 } 2075 2076 /* Is there SP in SPD ? */ 2077 if ((sp = key_getsp(&spidx)) == NULL) { 2078 ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__)); 2079 return key_senderror(so, m, EINVAL); 2080 } 2081 2082 /* save policy id to buffer to be returned. */ 2083 xpl0->sadb_x_policy_id = sp->id; 2084 2085 key_unlink(sp); 2086 KEY_FREESP(&sp); 2087 2088 { 2089 struct mbuf *n; 2090 struct sadb_msg *newmsg; 2091 2092 /* 2093 * Note: do not send SADB_X_EXT_NAT_T_* here: 2094 * we are sending traffic endpoints. 2095 */ 2096 2097 /* create new sadb_msg to reply. */ 2098 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 2099 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2100 if (!n) 2101 return key_senderror(so, m, ENOBUFS); 2102 2103 newmsg = mtod(n, struct sadb_msg *); 2104 newmsg->sadb_msg_errno = 0; 2105 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2106 2107 m_freem(m); 2108 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2109 } 2110 } 2111 2112 /* 2113 * SADB_SPDDELETE2 processing 2114 * receive 2115 * <base, policy(*)> 2116 * from the user(?), and set SADB_SASTATE_DEAD, 2117 * and send, 2118 * <base, policy(*)> 2119 * to the ikmpd. 2120 * policy(*) including direction of policy. 2121 * 2122 * m will always be freed. 2123 */ 2124 static int 2125 key_spddelete2(struct socket *so, struct mbuf *m, 2126 const struct sadb_msghdr *mhp) 2127 { 2128 u_int32_t id; 2129 struct secpolicy *sp; 2130 2131 IPSEC_ASSERT(so != NULL, ("null socket")); 2132 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2133 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2134 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2135 2136 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2137 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2138 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); 2139 return key_senderror(so, m, EINVAL); 2140 } 2141 2142 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2143 2144 /* Is there SP in SPD ? */ 2145 if ((sp = key_getspbyid(id)) == NULL) { 2146 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2147 return key_senderror(so, m, EINVAL); 2148 } 2149 2150 key_unlink(sp); 2151 KEY_FREESP(&sp); 2152 2153 { 2154 struct mbuf *n, *nn; 2155 struct sadb_msg *newmsg; 2156 int off, len; 2157 2158 /* create new sadb_msg to reply. */ 2159 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2160 2161 MGETHDR(n, M_NOWAIT, MT_DATA); 2162 if (n && len > MHLEN) { 2163 if (!(MCLGET(n, M_NOWAIT))) { 2164 m_freem(n); 2165 n = NULL; 2166 } 2167 } 2168 if (!n) 2169 return key_senderror(so, m, ENOBUFS); 2170 2171 n->m_len = len; 2172 n->m_next = NULL; 2173 off = 0; 2174 2175 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 2176 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2177 2178 IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)", 2179 off, len)); 2180 2181 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], 2182 mhp->extlen[SADB_X_EXT_POLICY], M_NOWAIT); 2183 if (!n->m_next) { 2184 m_freem(n); 2185 return key_senderror(so, m, ENOBUFS); 2186 } 2187 2188 n->m_pkthdr.len = 0; 2189 for (nn = n; nn; nn = nn->m_next) 2190 n->m_pkthdr.len += nn->m_len; 2191 2192 newmsg = mtod(n, struct sadb_msg *); 2193 newmsg->sadb_msg_errno = 0; 2194 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2195 2196 m_freem(m); 2197 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2198 } 2199 } 2200 2201 /* 2202 * SADB_X_SPDGET processing 2203 * receive 2204 * <base, policy(*)> 2205 * from the user(?), 2206 * and send, 2207 * <base, address(SD), policy> 2208 * to the ikmpd. 2209 * policy(*) including direction of policy. 2210 * 2211 * m will always be freed. 2212 */ 2213 static int 2214 key_spdget(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 2215 { 2216 u_int32_t id; 2217 struct secpolicy *sp; 2218 struct mbuf *n; 2219 2220 IPSEC_ASSERT(so != NULL, ("null socket")); 2221 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2222 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2223 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2224 2225 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2226 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2227 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2228 __func__)); 2229 return key_senderror(so, m, EINVAL); 2230 } 2231 2232 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2233 2234 /* Is there SP in SPD ? */ 2235 if ((sp = key_getspbyid(id)) == NULL) { 2236 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2237 return key_senderror(so, m, ENOENT); 2238 } 2239 2240 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq, 2241 mhp->msg->sadb_msg_pid); 2242 KEY_FREESP(&sp); 2243 if (n != NULL) { 2244 m_freem(m); 2245 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2246 } else 2247 return key_senderror(so, m, ENOBUFS); 2248 } 2249 2250 /* 2251 * SADB_X_SPDACQUIRE processing. 2252 * Acquire policy and SA(s) for a *OUTBOUND* packet. 2253 * send 2254 * <base, policy(*)> 2255 * to KMD, and expect to receive 2256 * <base> with SADB_X_SPDACQUIRE if error occured, 2257 * or 2258 * <base, policy> 2259 * with SADB_X_SPDUPDATE from KMD by PF_KEY. 2260 * policy(*) is without policy requests. 2261 * 2262 * 0 : succeed 2263 * others: error number 2264 */ 2265 int 2266 key_spdacquire(struct secpolicy *sp) 2267 { 2268 struct mbuf *result = NULL, *m; 2269 struct secspacq *newspacq; 2270 2271 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2272 IPSEC_ASSERT(sp->req == NULL, ("policy exists")); 2273 IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC, 2274 ("policy not IPSEC %u", sp->policy)); 2275 2276 /* Get an entry to check whether sent message or not. */ 2277 newspacq = key_getspacq(&sp->spidx); 2278 if (newspacq != NULL) { 2279 if (V_key_blockacq_count < newspacq->count) { 2280 /* reset counter and do send message. */ 2281 newspacq->count = 0; 2282 } else { 2283 /* increment counter and do nothing. */ 2284 newspacq->count++; 2285 SPACQ_UNLOCK(); 2286 return (0); 2287 } 2288 SPACQ_UNLOCK(); 2289 } else { 2290 /* make new entry for blocking to send SADB_ACQUIRE. */ 2291 newspacq = key_newspacq(&sp->spidx); 2292 if (newspacq == NULL) 2293 return ENOBUFS; 2294 } 2295 2296 /* create new sadb_msg to reply. */ 2297 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); 2298 if (!m) 2299 return ENOBUFS; 2300 2301 result = m; 2302 2303 result->m_pkthdr.len = 0; 2304 for (m = result; m; m = m->m_next) 2305 result->m_pkthdr.len += m->m_len; 2306 2307 mtod(result, struct sadb_msg *)->sadb_msg_len = 2308 PFKEY_UNIT64(result->m_pkthdr.len); 2309 2310 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 2311 } 2312 2313 /* 2314 * SADB_SPDFLUSH processing 2315 * receive 2316 * <base> 2317 * from the user, and free all entries in secpctree. 2318 * and send, 2319 * <base> 2320 * to the user. 2321 * NOTE: what to do is only marking SADB_SASTATE_DEAD. 2322 * 2323 * m will always be freed. 2324 */ 2325 static int 2326 key_spdflush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 2327 { 2328 TAILQ_HEAD(, secpolicy) drainq; 2329 struct sadb_msg *newmsg; 2330 struct secpolicy *sp, *nextsp; 2331 u_int dir; 2332 2333 IPSEC_ASSERT(so != NULL, ("null socket")); 2334 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2335 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2336 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2337 2338 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) 2339 return key_senderror(so, m, EINVAL); 2340 2341 TAILQ_INIT(&drainq); 2342 SPTREE_WLOCK(); 2343 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2344 TAILQ_CONCAT(&drainq, &V_sptree[dir], chain); 2345 } 2346 /* 2347 * We need to set state to DEAD for each policy to be sure, 2348 * that another thread won't try to unlink it. 2349 */ 2350 TAILQ_FOREACH(sp, &drainq, chain) 2351 sp->state = IPSEC_SPSTATE_DEAD; 2352 SPTREE_WUNLOCK(); 2353 sp = TAILQ_FIRST(&drainq); 2354 while (sp != NULL) { 2355 nextsp = TAILQ_NEXT(sp, chain); 2356 KEY_FREESP(&sp); 2357 sp = nextsp; 2358 } 2359 2360 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 2361 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2362 return key_senderror(so, m, ENOBUFS); 2363 } 2364 2365 if (m->m_next) 2366 m_freem(m->m_next); 2367 m->m_next = NULL; 2368 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2369 newmsg = mtod(m, struct sadb_msg *); 2370 newmsg->sadb_msg_errno = 0; 2371 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 2372 2373 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 2374 } 2375 2376 /* 2377 * SADB_SPDDUMP processing 2378 * receive 2379 * <base> 2380 * from the user, and dump all SP leaves 2381 * and send, 2382 * <base> ..... 2383 * to the ikmpd. 2384 * 2385 * m will always be freed. 2386 */ 2387 static int 2388 key_spddump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 2389 { 2390 SPTREE_RLOCK_TRACKER; 2391 struct secpolicy *sp; 2392 int cnt; 2393 u_int dir; 2394 struct mbuf *n; 2395 2396 IPSEC_ASSERT(so != NULL, ("null socket")); 2397 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2398 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2399 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2400 2401 /* search SPD entry and get buffer size. */ 2402 cnt = 0; 2403 SPTREE_RLOCK(); 2404 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2405 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 2406 cnt++; 2407 } 2408 } 2409 2410 if (cnt == 0) { 2411 SPTREE_RUNLOCK(); 2412 return key_senderror(so, m, ENOENT); 2413 } 2414 2415 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2416 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 2417 --cnt; 2418 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, 2419 mhp->msg->sadb_msg_pid); 2420 2421 if (n) 2422 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2423 } 2424 } 2425 2426 SPTREE_RUNLOCK(); 2427 m_freem(m); 2428 return 0; 2429 } 2430 2431 static struct mbuf * 2432 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, 2433 u_int32_t pid) 2434 { 2435 struct mbuf *result = NULL, *m; 2436 struct seclifetime lt; 2437 2438 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt); 2439 if (!m) 2440 goto fail; 2441 result = m; 2442 2443 /* 2444 * Note: do not send SADB_X_EXT_NAT_T_* here: 2445 * we are sending traffic endpoints. 2446 */ 2447 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2448 &sp->spidx.src.sa, sp->spidx.prefs, 2449 sp->spidx.ul_proto); 2450 if (!m) 2451 goto fail; 2452 m_cat(result, m); 2453 2454 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2455 &sp->spidx.dst.sa, sp->spidx.prefd, 2456 sp->spidx.ul_proto); 2457 if (!m) 2458 goto fail; 2459 m_cat(result, m); 2460 2461 m = key_sp2msg(sp); 2462 if (!m) 2463 goto fail; 2464 m_cat(result, m); 2465 2466 if(sp->lifetime){ 2467 lt.addtime=sp->created; 2468 lt.usetime= sp->lastused; 2469 m = key_setlifetime(<, SADB_EXT_LIFETIME_CURRENT); 2470 if (!m) 2471 goto fail; 2472 m_cat(result, m); 2473 2474 lt.addtime=sp->lifetime; 2475 lt.usetime= sp->validtime; 2476 m = key_setlifetime(<, SADB_EXT_LIFETIME_HARD); 2477 if (!m) 2478 goto fail; 2479 m_cat(result, m); 2480 } 2481 2482 if ((result->m_flags & M_PKTHDR) == 0) 2483 goto fail; 2484 2485 if (result->m_len < sizeof(struct sadb_msg)) { 2486 result = m_pullup(result, sizeof(struct sadb_msg)); 2487 if (result == NULL) 2488 goto fail; 2489 } 2490 2491 result->m_pkthdr.len = 0; 2492 for (m = result; m; m = m->m_next) 2493 result->m_pkthdr.len += m->m_len; 2494 2495 mtod(result, struct sadb_msg *)->sadb_msg_len = 2496 PFKEY_UNIT64(result->m_pkthdr.len); 2497 2498 return result; 2499 2500 fail: 2501 m_freem(result); 2502 return NULL; 2503 } 2504 2505 /* 2506 * get PFKEY message length for security policy and request. 2507 */ 2508 static u_int 2509 key_getspreqmsglen(struct secpolicy *sp) 2510 { 2511 u_int tlen; 2512 2513 tlen = sizeof(struct sadb_x_policy); 2514 2515 /* if is the policy for ipsec ? */ 2516 if (sp->policy != IPSEC_POLICY_IPSEC) 2517 return tlen; 2518 2519 /* get length of ipsec requests */ 2520 { 2521 struct ipsecrequest *isr; 2522 int len; 2523 2524 for (isr = sp->req; isr != NULL; isr = isr->next) { 2525 len = sizeof(struct sadb_x_ipsecrequest) 2526 + isr->saidx.src.sa.sa_len 2527 + isr->saidx.dst.sa.sa_len; 2528 2529 tlen += PFKEY_ALIGN8(len); 2530 } 2531 } 2532 2533 return tlen; 2534 } 2535 2536 /* 2537 * SADB_SPDEXPIRE processing 2538 * send 2539 * <base, address(SD), lifetime(CH), policy> 2540 * to KMD by PF_KEY. 2541 * 2542 * OUT: 0 : succeed 2543 * others : error number 2544 */ 2545 static int 2546 key_spdexpire(struct secpolicy *sp) 2547 { 2548 struct mbuf *result = NULL, *m; 2549 int len; 2550 int error = -1; 2551 struct sadb_lifetime *lt; 2552 2553 /* XXX: Why do we lock ? */ 2554 2555 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2556 2557 /* set msg header */ 2558 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0); 2559 if (!m) { 2560 error = ENOBUFS; 2561 goto fail; 2562 } 2563 result = m; 2564 2565 /* create lifetime extension (current and hard) */ 2566 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 2567 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 2568 if (m == NULL) { 2569 error = ENOBUFS; 2570 goto fail; 2571 } 2572 m_align(m, len); 2573 m->m_len = len; 2574 bzero(mtod(m, caddr_t), len); 2575 lt = mtod(m, struct sadb_lifetime *); 2576 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2577 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 2578 lt->sadb_lifetime_allocations = 0; 2579 lt->sadb_lifetime_bytes = 0; 2580 lt->sadb_lifetime_addtime = sp->created; 2581 lt->sadb_lifetime_usetime = sp->lastused; 2582 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 2583 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2584 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 2585 lt->sadb_lifetime_allocations = 0; 2586 lt->sadb_lifetime_bytes = 0; 2587 lt->sadb_lifetime_addtime = sp->lifetime; 2588 lt->sadb_lifetime_usetime = sp->validtime; 2589 m_cat(result, m); 2590 2591 /* 2592 * Note: do not send SADB_X_EXT_NAT_T_* here: 2593 * we are sending traffic endpoints. 2594 */ 2595 2596 /* set sadb_address for source */ 2597 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2598 &sp->spidx.src.sa, 2599 sp->spidx.prefs, sp->spidx.ul_proto); 2600 if (!m) { 2601 error = ENOBUFS; 2602 goto fail; 2603 } 2604 m_cat(result, m); 2605 2606 /* set sadb_address for destination */ 2607 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2608 &sp->spidx.dst.sa, 2609 sp->spidx.prefd, sp->spidx.ul_proto); 2610 if (!m) { 2611 error = ENOBUFS; 2612 goto fail; 2613 } 2614 m_cat(result, m); 2615 2616 /* set secpolicy */ 2617 m = key_sp2msg(sp); 2618 if (!m) { 2619 error = ENOBUFS; 2620 goto fail; 2621 } 2622 m_cat(result, m); 2623 2624 if ((result->m_flags & M_PKTHDR) == 0) { 2625 error = EINVAL; 2626 goto fail; 2627 } 2628 2629 if (result->m_len < sizeof(struct sadb_msg)) { 2630 result = m_pullup(result, sizeof(struct sadb_msg)); 2631 if (result == NULL) { 2632 error = ENOBUFS; 2633 goto fail; 2634 } 2635 } 2636 2637 result->m_pkthdr.len = 0; 2638 for (m = result; m; m = m->m_next) 2639 result->m_pkthdr.len += m->m_len; 2640 2641 mtod(result, struct sadb_msg *)->sadb_msg_len = 2642 PFKEY_UNIT64(result->m_pkthdr.len); 2643 2644 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 2645 2646 fail: 2647 if (result) 2648 m_freem(result); 2649 return error; 2650 } 2651 2652 /* %%% SAD management */ 2653 /* 2654 * allocating a memory for new SA head, and copy from the values of mhp. 2655 * OUT: NULL : failure due to the lack of memory. 2656 * others : pointer to new SA head. 2657 */ 2658 static struct secashead * 2659 key_newsah(struct secasindex *saidx) 2660 { 2661 struct secashead *newsah; 2662 2663 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 2664 2665 newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO); 2666 if (newsah != NULL) { 2667 int i; 2668 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++) 2669 LIST_INIT(&newsah->savtree[i]); 2670 newsah->saidx = *saidx; 2671 2672 /* add to saidxtree */ 2673 newsah->state = SADB_SASTATE_MATURE; 2674 2675 SAHTREE_LOCK(); 2676 LIST_INSERT_HEAD(&V_sahtree, newsah, chain); 2677 SAHTREE_UNLOCK(); 2678 } 2679 return(newsah); 2680 } 2681 2682 /* 2683 * delete SA index and all SA registerd. 2684 */ 2685 static void 2686 key_delsah(struct secashead *sah) 2687 { 2688 struct secasvar *sav, *nextsav; 2689 u_int stateidx; 2690 int zombie = 0; 2691 2692 IPSEC_ASSERT(sah != NULL, ("NULL sah")); 2693 SAHTREE_LOCK_ASSERT(); 2694 2695 /* searching all SA registerd in the secindex. */ 2696 for (stateidx = 0; 2697 stateidx < _ARRAYLEN(saorder_state_any); 2698 stateidx++) { 2699 u_int state = saorder_state_any[stateidx]; 2700 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) { 2701 if (sav->refcnt == 0) { 2702 /* sanity check */ 2703 KEY_CHKSASTATE(state, sav->state, __func__); 2704 /* 2705 * do NOT call KEY_FREESAV here: 2706 * it will only delete the sav if refcnt == 1, 2707 * where we already know that refcnt == 0 2708 */ 2709 key_delsav(sav); 2710 } else { 2711 /* give up to delete this sa */ 2712 zombie++; 2713 } 2714 } 2715 } 2716 if (!zombie) { /* delete only if there are savs */ 2717 /* remove from tree of SA index */ 2718 if (__LIST_CHAINED(sah)) 2719 LIST_REMOVE(sah, chain); 2720 free(sah, M_IPSEC_SAH); 2721 } 2722 } 2723 2724 /* 2725 * allocating a new SA with LARVAL state. key_add() and key_getspi() call, 2726 * and copy the values of mhp into new buffer. 2727 * When SAD message type is GETSPI: 2728 * to set sequence number from acq_seq++, 2729 * to set zero to SPI. 2730 * not to call key_setsava(). 2731 * OUT: NULL : fail 2732 * others : pointer to new secasvar. 2733 * 2734 * does not modify mbuf. does not free mbuf on error. 2735 */ 2736 static struct secasvar * 2737 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp, 2738 struct secashead *sah, int *errp, const char *where, int tag) 2739 { 2740 struct secasvar *newsav; 2741 const struct sadb_sa *xsa; 2742 2743 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2744 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2745 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2746 IPSEC_ASSERT(sah != NULL, ("null secashead")); 2747 2748 newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO); 2749 if (newsav == NULL) { 2750 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2751 *errp = ENOBUFS; 2752 goto done; 2753 } 2754 2755 switch (mhp->msg->sadb_msg_type) { 2756 case SADB_GETSPI: 2757 newsav->spi = 0; 2758 2759 #ifdef IPSEC_DOSEQCHECK 2760 /* sync sequence number */ 2761 if (mhp->msg->sadb_msg_seq == 0) 2762 newsav->seq = 2763 (V_acq_seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq)); 2764 else 2765 #endif 2766 newsav->seq = mhp->msg->sadb_msg_seq; 2767 break; 2768 2769 case SADB_ADD: 2770 /* sanity check */ 2771 if (mhp->ext[SADB_EXT_SA] == NULL) { 2772 free(newsav, M_IPSEC_SA); 2773 newsav = NULL; 2774 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2775 __func__)); 2776 *errp = EINVAL; 2777 goto done; 2778 } 2779 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 2780 newsav->spi = xsa->sadb_sa_spi; 2781 newsav->seq = mhp->msg->sadb_msg_seq; 2782 break; 2783 default: 2784 free(newsav, M_IPSEC_SA); 2785 newsav = NULL; 2786 *errp = EINVAL; 2787 goto done; 2788 } 2789 2790 2791 /* copy sav values */ 2792 if (mhp->msg->sadb_msg_type != SADB_GETSPI) { 2793 *errp = key_setsaval(newsav, m, mhp); 2794 if (*errp) { 2795 free(newsav, M_IPSEC_SA); 2796 newsav = NULL; 2797 goto done; 2798 } 2799 } 2800 2801 SECASVAR_LOCK_INIT(newsav); 2802 2803 /* reset created */ 2804 newsav->created = time_second; 2805 newsav->pid = mhp->msg->sadb_msg_pid; 2806 2807 /* add to satree */ 2808 newsav->sah = sah; 2809 sa_initref(newsav); 2810 newsav->state = SADB_SASTATE_LARVAL; 2811 2812 SAHTREE_LOCK(); 2813 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav, 2814 secasvar, chain); 2815 SAHTREE_UNLOCK(); 2816 done: 2817 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 2818 printf("DP %s from %s:%u return SP:%p\n", __func__, 2819 where, tag, newsav)); 2820 2821 return newsav; 2822 } 2823 2824 /* 2825 * free() SA variable entry. 2826 */ 2827 static void 2828 key_cleansav(struct secasvar *sav) 2829 { 2830 /* 2831 * Cleanup xform state. Note that zeroize'ing causes the 2832 * keys to be cleared; otherwise we must do it ourself. 2833 */ 2834 if (sav->tdb_xform != NULL) { 2835 sav->tdb_xform->xf_zeroize(sav); 2836 sav->tdb_xform = NULL; 2837 } else { 2838 KASSERT(sav->iv == NULL, ("iv but no xform")); 2839 if (sav->key_auth != NULL) 2840 bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth)); 2841 if (sav->key_enc != NULL) 2842 bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc)); 2843 } 2844 if (sav->key_auth != NULL) { 2845 if (sav->key_auth->key_data != NULL) 2846 free(sav->key_auth->key_data, M_IPSEC_MISC); 2847 free(sav->key_auth, M_IPSEC_MISC); 2848 sav->key_auth = NULL; 2849 } 2850 if (sav->key_enc != NULL) { 2851 if (sav->key_enc->key_data != NULL) 2852 free(sav->key_enc->key_data, M_IPSEC_MISC); 2853 free(sav->key_enc, M_IPSEC_MISC); 2854 sav->key_enc = NULL; 2855 } 2856 if (sav->sched) { 2857 bzero(sav->sched, sav->schedlen); 2858 free(sav->sched, M_IPSEC_MISC); 2859 sav->sched = NULL; 2860 } 2861 if (sav->replay != NULL) { 2862 free(sav->replay, M_IPSEC_MISC); 2863 sav->replay = NULL; 2864 } 2865 if (sav->lft_c != NULL) { 2866 free(sav->lft_c, M_IPSEC_MISC); 2867 sav->lft_c = NULL; 2868 } 2869 if (sav->lft_h != NULL) { 2870 free(sav->lft_h, M_IPSEC_MISC); 2871 sav->lft_h = NULL; 2872 } 2873 if (sav->lft_s != NULL) { 2874 free(sav->lft_s, M_IPSEC_MISC); 2875 sav->lft_s = NULL; 2876 } 2877 } 2878 2879 /* 2880 * free() SA variable entry. 2881 */ 2882 static void 2883 key_delsav(struct secasvar *sav) 2884 { 2885 IPSEC_ASSERT(sav != NULL, ("null sav")); 2886 IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt)); 2887 2888 /* remove from SA header */ 2889 if (__LIST_CHAINED(sav)) 2890 LIST_REMOVE(sav, chain); 2891 key_cleansav(sav); 2892 SECASVAR_LOCK_DESTROY(sav); 2893 free(sav, M_IPSEC_SA); 2894 } 2895 2896 /* 2897 * search SAD. 2898 * OUT: 2899 * NULL : not found 2900 * others : found, pointer to a SA. 2901 */ 2902 static struct secashead * 2903 key_getsah(struct secasindex *saidx) 2904 { 2905 struct secashead *sah; 2906 2907 SAHTREE_LOCK(); 2908 LIST_FOREACH(sah, &V_sahtree, chain) { 2909 if (sah->state == SADB_SASTATE_DEAD) 2910 continue; 2911 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID)) 2912 break; 2913 } 2914 SAHTREE_UNLOCK(); 2915 2916 return sah; 2917 } 2918 2919 /* 2920 * check not to be duplicated SPI. 2921 * NOTE: this function is too slow due to searching all SAD. 2922 * OUT: 2923 * NULL : not found 2924 * others : found, pointer to a SA. 2925 */ 2926 static struct secasvar * 2927 key_checkspidup(struct secasindex *saidx, u_int32_t spi) 2928 { 2929 struct secashead *sah; 2930 struct secasvar *sav; 2931 2932 /* check address family */ 2933 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) { 2934 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 2935 __func__)); 2936 return NULL; 2937 } 2938 2939 sav = NULL; 2940 /* check all SAD */ 2941 SAHTREE_LOCK(); 2942 LIST_FOREACH(sah, &V_sahtree, chain) { 2943 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst)) 2944 continue; 2945 sav = key_getsavbyspi(sah, spi); 2946 if (sav != NULL) 2947 break; 2948 } 2949 SAHTREE_UNLOCK(); 2950 2951 return sav; 2952 } 2953 2954 /* 2955 * search SAD litmited alive SA, protocol, SPI. 2956 * OUT: 2957 * NULL : not found 2958 * others : found, pointer to a SA. 2959 */ 2960 static struct secasvar * 2961 key_getsavbyspi(struct secashead *sah, u_int32_t spi) 2962 { 2963 struct secasvar *sav; 2964 u_int stateidx, state; 2965 2966 sav = NULL; 2967 SAHTREE_LOCK_ASSERT(); 2968 /* search all status */ 2969 for (stateidx = 0; 2970 stateidx < _ARRAYLEN(saorder_state_alive); 2971 stateidx++) { 2972 2973 state = saorder_state_alive[stateidx]; 2974 LIST_FOREACH(sav, &sah->savtree[state], chain) { 2975 2976 /* sanity check */ 2977 if (sav->state != state) { 2978 ipseclog((LOG_DEBUG, "%s: " 2979 "invalid sav->state (queue: %d SA: %d)\n", 2980 __func__, state, sav->state)); 2981 continue; 2982 } 2983 2984 if (sav->spi == spi) 2985 return sav; 2986 } 2987 } 2988 2989 return NULL; 2990 } 2991 2992 /* 2993 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. 2994 * You must update these if need. 2995 * OUT: 0: success. 2996 * !0: failure. 2997 * 2998 * does not modify mbuf. does not free mbuf on error. 2999 */ 3000 static int 3001 key_setsaval(struct secasvar *sav, struct mbuf *m, 3002 const struct sadb_msghdr *mhp) 3003 { 3004 int error = 0; 3005 3006 IPSEC_ASSERT(m != NULL, ("null mbuf")); 3007 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 3008 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 3009 3010 /* initialization */ 3011 sav->replay = NULL; 3012 sav->key_auth = NULL; 3013 sav->key_enc = NULL; 3014 sav->sched = NULL; 3015 sav->schedlen = 0; 3016 sav->iv = NULL; 3017 sav->lft_c = NULL; 3018 sav->lft_h = NULL; 3019 sav->lft_s = NULL; 3020 sav->tdb_xform = NULL; /* transform */ 3021 sav->tdb_encalgxform = NULL; /* encoding algorithm */ 3022 sav->tdb_authalgxform = NULL; /* authentication algorithm */ 3023 sav->tdb_compalgxform = NULL; /* compression algorithm */ 3024 /* Initialize even if NAT-T not compiled in: */ 3025 sav->natt_type = 0; 3026 sav->natt_esp_frag_len = 0; 3027 3028 /* SA */ 3029 if (mhp->ext[SADB_EXT_SA] != NULL) { 3030 const struct sadb_sa *sa0; 3031 3032 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 3033 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { 3034 error = EINVAL; 3035 goto fail; 3036 } 3037 3038 sav->alg_auth = sa0->sadb_sa_auth; 3039 sav->alg_enc = sa0->sadb_sa_encrypt; 3040 sav->flags = sa0->sadb_sa_flags; 3041 3042 /* replay window */ 3043 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { 3044 sav->replay = (struct secreplay *) 3045 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO); 3046 if (sav->replay == NULL) { 3047 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3048 __func__)); 3049 error = ENOBUFS; 3050 goto fail; 3051 } 3052 if (sa0->sadb_sa_replay != 0) 3053 sav->replay->bitmap = (caddr_t)(sav->replay+1); 3054 sav->replay->wsize = sa0->sadb_sa_replay; 3055 } 3056 } 3057 3058 /* Authentication keys */ 3059 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { 3060 const struct sadb_key *key0; 3061 int len; 3062 3063 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH]; 3064 len = mhp->extlen[SADB_EXT_KEY_AUTH]; 3065 3066 error = 0; 3067 if (len < sizeof(*key0)) { 3068 error = EINVAL; 3069 goto fail; 3070 } 3071 switch (mhp->msg->sadb_msg_satype) { 3072 case SADB_SATYPE_AH: 3073 case SADB_SATYPE_ESP: 3074 case SADB_X_SATYPE_TCPSIGNATURE: 3075 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3076 sav->alg_auth != SADB_X_AALG_NULL) 3077 error = EINVAL; 3078 break; 3079 case SADB_X_SATYPE_IPCOMP: 3080 default: 3081 error = EINVAL; 3082 break; 3083 } 3084 if (error) { 3085 ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n", 3086 __func__)); 3087 goto fail; 3088 } 3089 3090 sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len, 3091 M_IPSEC_MISC); 3092 if (sav->key_auth == NULL ) { 3093 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3094 __func__)); 3095 error = ENOBUFS; 3096 goto fail; 3097 } 3098 } 3099 3100 /* Encryption key */ 3101 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { 3102 const struct sadb_key *key0; 3103 int len; 3104 3105 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT]; 3106 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; 3107 3108 error = 0; 3109 if (len < sizeof(*key0)) { 3110 error = EINVAL; 3111 goto fail; 3112 } 3113 switch (mhp->msg->sadb_msg_satype) { 3114 case SADB_SATYPE_ESP: 3115 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3116 sav->alg_enc != SADB_EALG_NULL) { 3117 error = EINVAL; 3118 break; 3119 } 3120 sav->key_enc = (struct seckey *)key_dup_keymsg(key0, 3121 len, 3122 M_IPSEC_MISC); 3123 if (sav->key_enc == NULL) { 3124 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3125 __func__)); 3126 error = ENOBUFS; 3127 goto fail; 3128 } 3129 break; 3130 case SADB_X_SATYPE_IPCOMP: 3131 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) 3132 error = EINVAL; 3133 sav->key_enc = NULL; /*just in case*/ 3134 break; 3135 case SADB_SATYPE_AH: 3136 case SADB_X_SATYPE_TCPSIGNATURE: 3137 default: 3138 error = EINVAL; 3139 break; 3140 } 3141 if (error) { 3142 ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n", 3143 __func__)); 3144 goto fail; 3145 } 3146 } 3147 3148 /* set iv */ 3149 sav->ivlen = 0; 3150 3151 switch (mhp->msg->sadb_msg_satype) { 3152 case SADB_SATYPE_AH: 3153 error = xform_init(sav, XF_AH); 3154 break; 3155 case SADB_SATYPE_ESP: 3156 error = xform_init(sav, XF_ESP); 3157 break; 3158 case SADB_X_SATYPE_IPCOMP: 3159 error = xform_init(sav, XF_IPCOMP); 3160 break; 3161 case SADB_X_SATYPE_TCPSIGNATURE: 3162 error = xform_init(sav, XF_TCPSIGNATURE); 3163 break; 3164 } 3165 if (error) { 3166 ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n", 3167 __func__, mhp->msg->sadb_msg_satype)); 3168 goto fail; 3169 } 3170 3171 /* reset created */ 3172 sav->created = time_second; 3173 3174 /* make lifetime for CURRENT */ 3175 sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT); 3176 if (sav->lft_c == NULL) { 3177 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3178 error = ENOBUFS; 3179 goto fail; 3180 } 3181 3182 sav->lft_c->allocations = 0; 3183 sav->lft_c->bytes = 0; 3184 sav->lft_c->addtime = time_second; 3185 sav->lft_c->usetime = 0; 3186 3187 /* lifetimes for HARD and SOFT */ 3188 { 3189 const struct sadb_lifetime *lft0; 3190 3191 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 3192 if (lft0 != NULL) { 3193 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { 3194 error = EINVAL; 3195 goto fail; 3196 } 3197 sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3198 if (sav->lft_h == NULL) { 3199 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3200 error = ENOBUFS; 3201 goto fail; 3202 } 3203 /* to be initialize ? */ 3204 } 3205 3206 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT]; 3207 if (lft0 != NULL) { 3208 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { 3209 error = EINVAL; 3210 goto fail; 3211 } 3212 sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3213 if (sav->lft_s == NULL) { 3214 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3215 error = ENOBUFS; 3216 goto fail; 3217 } 3218 /* to be initialize ? */ 3219 } 3220 } 3221 3222 return 0; 3223 3224 fail: 3225 /* initialization */ 3226 key_cleansav(sav); 3227 3228 return error; 3229 } 3230 3231 /* 3232 * validation with a secasvar entry, and set SADB_SATYPE_MATURE. 3233 * OUT: 0: valid 3234 * other: errno 3235 */ 3236 static int 3237 key_mature(struct secasvar *sav) 3238 { 3239 int error; 3240 3241 /* check SPI value */ 3242 switch (sav->sah->saidx.proto) { 3243 case IPPROTO_ESP: 3244 case IPPROTO_AH: 3245 /* 3246 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values 3247 * 1-255 reserved by IANA for future use, 3248 * 0 for implementation specific, local use. 3249 */ 3250 if (ntohl(sav->spi) <= 255) { 3251 ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n", 3252 __func__, (u_int32_t)ntohl(sav->spi))); 3253 return EINVAL; 3254 } 3255 break; 3256 } 3257 3258 /* check satype */ 3259 switch (sav->sah->saidx.proto) { 3260 case IPPROTO_ESP: 3261 /* check flags */ 3262 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) == 3263 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) { 3264 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3265 "given to old-esp.\n", __func__)); 3266 return EINVAL; 3267 } 3268 error = xform_init(sav, XF_ESP); 3269 break; 3270 case IPPROTO_AH: 3271 /* check flags */ 3272 if (sav->flags & SADB_X_EXT_DERIV) { 3273 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3274 "given to AH SA.\n", __func__)); 3275 return EINVAL; 3276 } 3277 if (sav->alg_enc != SADB_EALG_NONE) { 3278 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3279 "mismated.\n", __func__)); 3280 return(EINVAL); 3281 } 3282 error = xform_init(sav, XF_AH); 3283 break; 3284 case IPPROTO_IPCOMP: 3285 if (sav->alg_auth != SADB_AALG_NONE) { 3286 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3287 "mismated.\n", __func__)); 3288 return(EINVAL); 3289 } 3290 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 3291 && ntohl(sav->spi) >= 0x10000) { 3292 ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n", 3293 __func__)); 3294 return(EINVAL); 3295 } 3296 error = xform_init(sav, XF_IPCOMP); 3297 break; 3298 case IPPROTO_TCP: 3299 if (sav->alg_enc != SADB_EALG_NONE) { 3300 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3301 "mismated.\n", __func__)); 3302 return(EINVAL); 3303 } 3304 error = xform_init(sav, XF_TCPSIGNATURE); 3305 break; 3306 default: 3307 ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__)); 3308 error = EPROTONOSUPPORT; 3309 break; 3310 } 3311 if (error == 0) { 3312 SAHTREE_LOCK(); 3313 key_sa_chgstate(sav, SADB_SASTATE_MATURE); 3314 SAHTREE_UNLOCK(); 3315 } 3316 return (error); 3317 } 3318 3319 /* 3320 * subroutine for SADB_GET and SADB_DUMP. 3321 */ 3322 static struct mbuf * 3323 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype, 3324 u_int32_t seq, u_int32_t pid) 3325 { 3326 struct mbuf *result = NULL, *tres = NULL, *m; 3327 int i; 3328 int dumporder[] = { 3329 SADB_EXT_SA, SADB_X_EXT_SA2, 3330 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 3331 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, 3332 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, 3333 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, 3334 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, 3335 #ifdef IPSEC_NAT_T 3336 SADB_X_EXT_NAT_T_TYPE, 3337 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT, 3338 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR, 3339 SADB_X_EXT_NAT_T_FRAG, 3340 #endif 3341 }; 3342 3343 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt); 3344 if (m == NULL) 3345 goto fail; 3346 result = m; 3347 3348 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) { 3349 m = NULL; 3350 switch (dumporder[i]) { 3351 case SADB_EXT_SA: 3352 m = key_setsadbsa(sav); 3353 if (!m) 3354 goto fail; 3355 break; 3356 3357 case SADB_X_EXT_SA2: 3358 m = key_setsadbxsa2(sav->sah->saidx.mode, 3359 sav->replay ? sav->replay->count : 0, 3360 sav->sah->saidx.reqid); 3361 if (!m) 3362 goto fail; 3363 break; 3364 3365 case SADB_EXT_ADDRESS_SRC: 3366 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3367 &sav->sah->saidx.src.sa, 3368 FULLMASK, IPSEC_ULPROTO_ANY); 3369 if (!m) 3370 goto fail; 3371 break; 3372 3373 case SADB_EXT_ADDRESS_DST: 3374 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3375 &sav->sah->saidx.dst.sa, 3376 FULLMASK, IPSEC_ULPROTO_ANY); 3377 if (!m) 3378 goto fail; 3379 break; 3380 3381 case SADB_EXT_KEY_AUTH: 3382 if (!sav->key_auth) 3383 continue; 3384 m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH); 3385 if (!m) 3386 goto fail; 3387 break; 3388 3389 case SADB_EXT_KEY_ENCRYPT: 3390 if (!sav->key_enc) 3391 continue; 3392 m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT); 3393 if (!m) 3394 goto fail; 3395 break; 3396 3397 case SADB_EXT_LIFETIME_CURRENT: 3398 if (!sav->lft_c) 3399 continue; 3400 m = key_setlifetime(sav->lft_c, 3401 SADB_EXT_LIFETIME_CURRENT); 3402 if (!m) 3403 goto fail; 3404 break; 3405 3406 case SADB_EXT_LIFETIME_HARD: 3407 if (!sav->lft_h) 3408 continue; 3409 m = key_setlifetime(sav->lft_h, 3410 SADB_EXT_LIFETIME_HARD); 3411 if (!m) 3412 goto fail; 3413 break; 3414 3415 case SADB_EXT_LIFETIME_SOFT: 3416 if (!sav->lft_s) 3417 continue; 3418 m = key_setlifetime(sav->lft_s, 3419 SADB_EXT_LIFETIME_SOFT); 3420 3421 if (!m) 3422 goto fail; 3423 break; 3424 3425 #ifdef IPSEC_NAT_T 3426 case SADB_X_EXT_NAT_T_TYPE: 3427 m = key_setsadbxtype(sav->natt_type); 3428 if (!m) 3429 goto fail; 3430 break; 3431 3432 case SADB_X_EXT_NAT_T_DPORT: 3433 m = key_setsadbxport( 3434 KEY_PORTFROMSADDR(&sav->sah->saidx.dst), 3435 SADB_X_EXT_NAT_T_DPORT); 3436 if (!m) 3437 goto fail; 3438 break; 3439 3440 case SADB_X_EXT_NAT_T_SPORT: 3441 m = key_setsadbxport( 3442 KEY_PORTFROMSADDR(&sav->sah->saidx.src), 3443 SADB_X_EXT_NAT_T_SPORT); 3444 if (!m) 3445 goto fail; 3446 break; 3447 3448 case SADB_X_EXT_NAT_T_OAI: 3449 case SADB_X_EXT_NAT_T_OAR: 3450 case SADB_X_EXT_NAT_T_FRAG: 3451 /* We do not (yet) support those. */ 3452 continue; 3453 #endif 3454 3455 case SADB_EXT_ADDRESS_PROXY: 3456 case SADB_EXT_IDENTITY_SRC: 3457 case SADB_EXT_IDENTITY_DST: 3458 /* XXX: should we brought from SPD ? */ 3459 case SADB_EXT_SENSITIVITY: 3460 default: 3461 continue; 3462 } 3463 3464 if (!m) 3465 goto fail; 3466 if (tres) 3467 m_cat(m, tres); 3468 tres = m; 3469 3470 } 3471 3472 m_cat(result, tres); 3473 if (result->m_len < sizeof(struct sadb_msg)) { 3474 result = m_pullup(result, sizeof(struct sadb_msg)); 3475 if (result == NULL) 3476 goto fail; 3477 } 3478 3479 result->m_pkthdr.len = 0; 3480 for (m = result; m; m = m->m_next) 3481 result->m_pkthdr.len += m->m_len; 3482 3483 mtod(result, struct sadb_msg *)->sadb_msg_len = 3484 PFKEY_UNIT64(result->m_pkthdr.len); 3485 3486 return result; 3487 3488 fail: 3489 m_freem(result); 3490 m_freem(tres); 3491 return NULL; 3492 } 3493 3494 /* 3495 * set data into sadb_msg. 3496 */ 3497 static struct mbuf * 3498 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq, 3499 pid_t pid, u_int16_t reserved) 3500 { 3501 struct mbuf *m; 3502 struct sadb_msg *p; 3503 int len; 3504 3505 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 3506 if (len > MCLBYTES) 3507 return NULL; 3508 MGETHDR(m, M_NOWAIT, MT_DATA); 3509 if (m && len > MHLEN) { 3510 if (!(MCLGET(m, M_NOWAIT))) { 3511 m_freem(m); 3512 m = NULL; 3513 } 3514 } 3515 if (!m) 3516 return NULL; 3517 m->m_pkthdr.len = m->m_len = len; 3518 m->m_next = NULL; 3519 3520 p = mtod(m, struct sadb_msg *); 3521 3522 bzero(p, len); 3523 p->sadb_msg_version = PF_KEY_V2; 3524 p->sadb_msg_type = type; 3525 p->sadb_msg_errno = 0; 3526 p->sadb_msg_satype = satype; 3527 p->sadb_msg_len = PFKEY_UNIT64(tlen); 3528 p->sadb_msg_reserved = reserved; 3529 p->sadb_msg_seq = seq; 3530 p->sadb_msg_pid = (u_int32_t)pid; 3531 3532 return m; 3533 } 3534 3535 /* 3536 * copy secasvar data into sadb_address. 3537 */ 3538 static struct mbuf * 3539 key_setsadbsa(struct secasvar *sav) 3540 { 3541 struct mbuf *m; 3542 struct sadb_sa *p; 3543 int len; 3544 3545 len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); 3546 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3547 if (m == NULL) 3548 return (NULL); 3549 m_align(m, len); 3550 m->m_len = len; 3551 p = mtod(m, struct sadb_sa *); 3552 bzero(p, len); 3553 p->sadb_sa_len = PFKEY_UNIT64(len); 3554 p->sadb_sa_exttype = SADB_EXT_SA; 3555 p->sadb_sa_spi = sav->spi; 3556 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0); 3557 p->sadb_sa_state = sav->state; 3558 p->sadb_sa_auth = sav->alg_auth; 3559 p->sadb_sa_encrypt = sav->alg_enc; 3560 p->sadb_sa_flags = sav->flags; 3561 3562 return m; 3563 } 3564 3565 /* 3566 * set data into sadb_address. 3567 */ 3568 static struct mbuf * 3569 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, 3570 u_int8_t prefixlen, u_int16_t ul_proto) 3571 { 3572 struct mbuf *m; 3573 struct sadb_address *p; 3574 size_t len; 3575 3576 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + 3577 PFKEY_ALIGN8(saddr->sa_len); 3578 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3579 if (m == NULL) 3580 return (NULL); 3581 m_align(m, len); 3582 m->m_len = len; 3583 p = mtod(m, struct sadb_address *); 3584 3585 bzero(p, len); 3586 p->sadb_address_len = PFKEY_UNIT64(len); 3587 p->sadb_address_exttype = exttype; 3588 p->sadb_address_proto = ul_proto; 3589 if (prefixlen == FULLMASK) { 3590 switch (saddr->sa_family) { 3591 case AF_INET: 3592 prefixlen = sizeof(struct in_addr) << 3; 3593 break; 3594 case AF_INET6: 3595 prefixlen = sizeof(struct in6_addr) << 3; 3596 break; 3597 default: 3598 ; /*XXX*/ 3599 } 3600 } 3601 p->sadb_address_prefixlen = prefixlen; 3602 p->sadb_address_reserved = 0; 3603 3604 bcopy(saddr, 3605 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)), 3606 saddr->sa_len); 3607 3608 return m; 3609 } 3610 3611 /* 3612 * set data into sadb_x_sa2. 3613 */ 3614 static struct mbuf * 3615 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid) 3616 { 3617 struct mbuf *m; 3618 struct sadb_x_sa2 *p; 3619 size_t len; 3620 3621 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); 3622 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3623 if (m == NULL) 3624 return (NULL); 3625 m_align(m, len); 3626 m->m_len = len; 3627 p = mtod(m, struct sadb_x_sa2 *); 3628 3629 bzero(p, len); 3630 p->sadb_x_sa2_len = PFKEY_UNIT64(len); 3631 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 3632 p->sadb_x_sa2_mode = mode; 3633 p->sadb_x_sa2_reserved1 = 0; 3634 p->sadb_x_sa2_reserved2 = 0; 3635 p->sadb_x_sa2_sequence = seq; 3636 p->sadb_x_sa2_reqid = reqid; 3637 3638 return m; 3639 } 3640 3641 #ifdef IPSEC_NAT_T 3642 /* 3643 * Set a type in sadb_x_nat_t_type. 3644 */ 3645 static struct mbuf * 3646 key_setsadbxtype(u_int16_t type) 3647 { 3648 struct mbuf *m; 3649 size_t len; 3650 struct sadb_x_nat_t_type *p; 3651 3652 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type)); 3653 3654 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3655 if (m == NULL) 3656 return (NULL); 3657 m_align(m, len); 3658 m->m_len = len; 3659 p = mtod(m, struct sadb_x_nat_t_type *); 3660 3661 bzero(p, len); 3662 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len); 3663 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; 3664 p->sadb_x_nat_t_type_type = type; 3665 3666 return (m); 3667 } 3668 /* 3669 * Set a port in sadb_x_nat_t_port. 3670 * In contrast to default RFC 2367 behaviour, port is in network byte order. 3671 */ 3672 static struct mbuf * 3673 key_setsadbxport(u_int16_t port, u_int16_t type) 3674 { 3675 struct mbuf *m; 3676 size_t len; 3677 struct sadb_x_nat_t_port *p; 3678 3679 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port)); 3680 3681 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3682 if (m == NULL) 3683 return (NULL); 3684 m_align(m, len); 3685 m->m_len = len; 3686 p = mtod(m, struct sadb_x_nat_t_port *); 3687 3688 bzero(p, len); 3689 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len); 3690 p->sadb_x_nat_t_port_exttype = type; 3691 p->sadb_x_nat_t_port_port = port; 3692 3693 return (m); 3694 } 3695 3696 /* 3697 * Get port from sockaddr. Port is in network byte order. 3698 */ 3699 u_int16_t 3700 key_portfromsaddr(struct sockaddr *sa) 3701 { 3702 3703 switch (sa->sa_family) { 3704 #ifdef INET 3705 case AF_INET: 3706 return ((struct sockaddr_in *)sa)->sin_port; 3707 #endif 3708 #ifdef INET6 3709 case AF_INET6: 3710 return ((struct sockaddr_in6 *)sa)->sin6_port; 3711 #endif 3712 } 3713 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 3714 printf("DP %s unexpected address family %d\n", 3715 __func__, sa->sa_family)); 3716 return (0); 3717 } 3718 #endif /* IPSEC_NAT_T */ 3719 3720 /* 3721 * Set port in struct sockaddr. Port is in network byte order. 3722 */ 3723 static void 3724 key_porttosaddr(struct sockaddr *sa, u_int16_t port) 3725 { 3726 3727 switch (sa->sa_family) { 3728 #ifdef INET 3729 case AF_INET: 3730 ((struct sockaddr_in *)sa)->sin_port = port; 3731 break; 3732 #endif 3733 #ifdef INET6 3734 case AF_INET6: 3735 ((struct sockaddr_in6 *)sa)->sin6_port = port; 3736 break; 3737 #endif 3738 default: 3739 ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n", 3740 __func__, sa->sa_family)); 3741 break; 3742 } 3743 } 3744 3745 /* 3746 * set data into sadb_x_policy 3747 */ 3748 static struct mbuf * 3749 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id) 3750 { 3751 struct mbuf *m; 3752 struct sadb_x_policy *p; 3753 size_t len; 3754 3755 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); 3756 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3757 if (m == NULL) 3758 return (NULL); 3759 m_align(m, len); 3760 m->m_len = len; 3761 p = mtod(m, struct sadb_x_policy *); 3762 3763 bzero(p, len); 3764 p->sadb_x_policy_len = PFKEY_UNIT64(len); 3765 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 3766 p->sadb_x_policy_type = type; 3767 p->sadb_x_policy_dir = dir; 3768 p->sadb_x_policy_id = id; 3769 3770 return m; 3771 } 3772 3773 /* %%% utilities */ 3774 /* Take a key message (sadb_key) from the socket and turn it into one 3775 * of the kernel's key structures (seckey). 3776 * 3777 * IN: pointer to the src 3778 * OUT: NULL no more memory 3779 */ 3780 struct seckey * 3781 key_dup_keymsg(const struct sadb_key *src, u_int len, 3782 struct malloc_type *type) 3783 { 3784 struct seckey *dst; 3785 dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT); 3786 if (dst != NULL) { 3787 dst->bits = src->sadb_key_bits; 3788 dst->key_data = (char *)malloc(len, type, M_NOWAIT); 3789 if (dst->key_data != NULL) { 3790 bcopy((const char *)src + sizeof(struct sadb_key), 3791 dst->key_data, len); 3792 } else { 3793 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3794 __func__)); 3795 free(dst, type); 3796 dst = NULL; 3797 } 3798 } else { 3799 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3800 __func__)); 3801 3802 } 3803 return dst; 3804 } 3805 3806 /* Take a lifetime message (sadb_lifetime) passed in on a socket and 3807 * turn it into one of the kernel's lifetime structures (seclifetime). 3808 * 3809 * IN: pointer to the destination, source and malloc type 3810 * OUT: NULL, no more memory 3811 */ 3812 3813 static struct seclifetime * 3814 key_dup_lifemsg(const struct sadb_lifetime *src, struct malloc_type *type) 3815 { 3816 struct seclifetime *dst = NULL; 3817 3818 dst = (struct seclifetime *)malloc(sizeof(struct seclifetime), 3819 type, M_NOWAIT); 3820 if (dst == NULL) { 3821 /* XXX counter */ 3822 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3823 } else { 3824 dst->allocations = src->sadb_lifetime_allocations; 3825 dst->bytes = src->sadb_lifetime_bytes; 3826 dst->addtime = src->sadb_lifetime_addtime; 3827 dst->usetime = src->sadb_lifetime_usetime; 3828 } 3829 return dst; 3830 } 3831 3832 /* compare my own address 3833 * OUT: 1: true, i.e. my address. 3834 * 0: false 3835 */ 3836 int 3837 key_ismyaddr(struct sockaddr *sa) 3838 { 3839 3840 IPSEC_ASSERT(sa != NULL, ("null sockaddr")); 3841 switch (sa->sa_family) { 3842 #ifdef INET 3843 case AF_INET: 3844 return (in_localip(satosin(sa)->sin_addr)); 3845 #endif 3846 #ifdef INET6 3847 case AF_INET6: 3848 return key_ismyaddr6((struct sockaddr_in6 *)sa); 3849 #endif 3850 } 3851 3852 return 0; 3853 } 3854 3855 #ifdef INET6 3856 /* 3857 * compare my own address for IPv6. 3858 * 1: ours 3859 * 0: other 3860 */ 3861 static int 3862 key_ismyaddr6(struct sockaddr_in6 *sin6) 3863 { 3864 struct in6_addr in6; 3865 3866 if (!IN6_IS_SCOPE_LINKLOCAL(&sin6->sin6_addr)) 3867 return (in6_localip(&sin6->sin6_addr)); 3868 3869 /* Convert address into kernel-internal form */ 3870 in6 = sin6->sin6_addr; 3871 in6.s6_addr16[1] = htons(sin6->sin6_scope_id & 0xffff); 3872 return (in6_localip(&in6)); 3873 } 3874 #endif /*INET6*/ 3875 3876 /* 3877 * compare two secasindex structure. 3878 * flag can specify to compare 2 saidxes. 3879 * compare two secasindex structure without both mode and reqid. 3880 * don't compare port. 3881 * IN: 3882 * saidx0: source, it can be in SAD. 3883 * saidx1: object. 3884 * OUT: 3885 * 1 : equal 3886 * 0 : not equal 3887 */ 3888 static int 3889 key_cmpsaidx(const struct secasindex *saidx0, const struct secasindex *saidx1, 3890 int flag) 3891 { 3892 int chkport = 0; 3893 3894 /* sanity */ 3895 if (saidx0 == NULL && saidx1 == NULL) 3896 return 1; 3897 3898 if (saidx0 == NULL || saidx1 == NULL) 3899 return 0; 3900 3901 if (saidx0->proto != saidx1->proto) 3902 return 0; 3903 3904 if (flag == CMP_EXACTLY) { 3905 if (saidx0->mode != saidx1->mode) 3906 return 0; 3907 if (saidx0->reqid != saidx1->reqid) 3908 return 0; 3909 if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 || 3910 bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0) 3911 return 0; 3912 } else { 3913 3914 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ 3915 if (flag == CMP_MODE_REQID 3916 ||flag == CMP_REQID) { 3917 /* 3918 * If reqid of SPD is non-zero, unique SA is required. 3919 * The result must be of same reqid in this case. 3920 */ 3921 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) 3922 return 0; 3923 } 3924 3925 if (flag == CMP_MODE_REQID) { 3926 if (saidx0->mode != IPSEC_MODE_ANY 3927 && saidx0->mode != saidx1->mode) 3928 return 0; 3929 } 3930 3931 #ifdef IPSEC_NAT_T 3932 /* 3933 * If NAT-T is enabled, check ports for tunnel mode. 3934 * Do not check ports if they are set to zero in the SPD. 3935 * Also do not do it for native transport mode, as there 3936 * is no port information available in the SP. 3937 */ 3938 if ((saidx1->mode == IPSEC_MODE_TUNNEL || 3939 (saidx1->mode == IPSEC_MODE_TRANSPORT && 3940 saidx1->proto == IPPROTO_ESP)) && 3941 saidx1->src.sa.sa_family == AF_INET && 3942 saidx1->dst.sa.sa_family == AF_INET && 3943 ((const struct sockaddr_in *)(&saidx1->src))->sin_port && 3944 ((const struct sockaddr_in *)(&saidx1->dst))->sin_port) 3945 chkport = 1; 3946 #endif /* IPSEC_NAT_T */ 3947 3948 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, chkport) != 0) { 3949 return 0; 3950 } 3951 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, chkport) != 0) { 3952 return 0; 3953 } 3954 } 3955 3956 return 1; 3957 } 3958 3959 /* 3960 * compare two secindex structure exactly. 3961 * IN: 3962 * spidx0: source, it is often in SPD. 3963 * spidx1: object, it is often from PFKEY message. 3964 * OUT: 3965 * 1 : equal 3966 * 0 : not equal 3967 */ 3968 static int 3969 key_cmpspidx_exactly(struct secpolicyindex *spidx0, 3970 struct secpolicyindex *spidx1) 3971 { 3972 /* sanity */ 3973 if (spidx0 == NULL && spidx1 == NULL) 3974 return 1; 3975 3976 if (spidx0 == NULL || spidx1 == NULL) 3977 return 0; 3978 3979 if (spidx0->prefs != spidx1->prefs 3980 || spidx0->prefd != spidx1->prefd 3981 || spidx0->ul_proto != spidx1->ul_proto) 3982 return 0; 3983 3984 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 && 3985 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0; 3986 } 3987 3988 /* 3989 * compare two secindex structure with mask. 3990 * IN: 3991 * spidx0: source, it is often in SPD. 3992 * spidx1: object, it is often from IP header. 3993 * OUT: 3994 * 1 : equal 3995 * 0 : not equal 3996 */ 3997 static int 3998 key_cmpspidx_withmask(struct secpolicyindex *spidx0, 3999 struct secpolicyindex *spidx1) 4000 { 4001 /* sanity */ 4002 if (spidx0 == NULL && spidx1 == NULL) 4003 return 1; 4004 4005 if (spidx0 == NULL || spidx1 == NULL) 4006 return 0; 4007 4008 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || 4009 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || 4010 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || 4011 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) 4012 return 0; 4013 4014 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ 4015 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY 4016 && spidx0->ul_proto != spidx1->ul_proto) 4017 return 0; 4018 4019 switch (spidx0->src.sa.sa_family) { 4020 case AF_INET: 4021 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY 4022 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) 4023 return 0; 4024 if (!key_bbcmp(&spidx0->src.sin.sin_addr, 4025 &spidx1->src.sin.sin_addr, spidx0->prefs)) 4026 return 0; 4027 break; 4028 case AF_INET6: 4029 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY 4030 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) 4031 return 0; 4032 /* 4033 * scope_id check. if sin6_scope_id is 0, we regard it 4034 * as a wildcard scope, which matches any scope zone ID. 4035 */ 4036 if (spidx0->src.sin6.sin6_scope_id && 4037 spidx1->src.sin6.sin6_scope_id && 4038 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) 4039 return 0; 4040 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr, 4041 &spidx1->src.sin6.sin6_addr, spidx0->prefs)) 4042 return 0; 4043 break; 4044 default: 4045 /* XXX */ 4046 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) 4047 return 0; 4048 break; 4049 } 4050 4051 switch (spidx0->dst.sa.sa_family) { 4052 case AF_INET: 4053 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY 4054 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) 4055 return 0; 4056 if (!key_bbcmp(&spidx0->dst.sin.sin_addr, 4057 &spidx1->dst.sin.sin_addr, spidx0->prefd)) 4058 return 0; 4059 break; 4060 case AF_INET6: 4061 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY 4062 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) 4063 return 0; 4064 /* 4065 * scope_id check. if sin6_scope_id is 0, we regard it 4066 * as a wildcard scope, which matches any scope zone ID. 4067 */ 4068 if (spidx0->dst.sin6.sin6_scope_id && 4069 spidx1->dst.sin6.sin6_scope_id && 4070 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) 4071 return 0; 4072 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr, 4073 &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) 4074 return 0; 4075 break; 4076 default: 4077 /* XXX */ 4078 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) 4079 return 0; 4080 break; 4081 } 4082 4083 /* XXX Do we check other field ? e.g. flowinfo */ 4084 4085 return 1; 4086 } 4087 4088 /* returns 0 on match */ 4089 static int 4090 key_sockaddrcmp(const struct sockaddr *sa1, const struct sockaddr *sa2, 4091 int port) 4092 { 4093 #ifdef satosin 4094 #undef satosin 4095 #endif 4096 #define satosin(s) ((const struct sockaddr_in *)s) 4097 #ifdef satosin6 4098 #undef satosin6 4099 #endif 4100 #define satosin6(s) ((const struct sockaddr_in6 *)s) 4101 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) 4102 return 1; 4103 4104 switch (sa1->sa_family) { 4105 case AF_INET: 4106 if (sa1->sa_len != sizeof(struct sockaddr_in)) 4107 return 1; 4108 if (satosin(sa1)->sin_addr.s_addr != 4109 satosin(sa2)->sin_addr.s_addr) { 4110 return 1; 4111 } 4112 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port) 4113 return 1; 4114 break; 4115 case AF_INET6: 4116 if (sa1->sa_len != sizeof(struct sockaddr_in6)) 4117 return 1; /*EINVAL*/ 4118 if (satosin6(sa1)->sin6_scope_id != 4119 satosin6(sa2)->sin6_scope_id) { 4120 return 1; 4121 } 4122 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr, 4123 &satosin6(sa2)->sin6_addr)) { 4124 return 1; 4125 } 4126 if (port && 4127 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) { 4128 return 1; 4129 } 4130 break; 4131 default: 4132 if (bcmp(sa1, sa2, sa1->sa_len) != 0) 4133 return 1; 4134 break; 4135 } 4136 4137 return 0; 4138 #undef satosin 4139 #undef satosin6 4140 } 4141 4142 /* 4143 * compare two buffers with mask. 4144 * IN: 4145 * addr1: source 4146 * addr2: object 4147 * bits: Number of bits to compare 4148 * OUT: 4149 * 1 : equal 4150 * 0 : not equal 4151 */ 4152 static int 4153 key_bbcmp(const void *a1, const void *a2, u_int bits) 4154 { 4155 const unsigned char *p1 = a1; 4156 const unsigned char *p2 = a2; 4157 4158 /* XXX: This could be considerably faster if we compare a word 4159 * at a time, but it is complicated on LSB Endian machines */ 4160 4161 /* Handle null pointers */ 4162 if (p1 == NULL || p2 == NULL) 4163 return (p1 == p2); 4164 4165 while (bits >= 8) { 4166 if (*p1++ != *p2++) 4167 return 0; 4168 bits -= 8; 4169 } 4170 4171 if (bits > 0) { 4172 u_int8_t mask = ~((1<<(8-bits))-1); 4173 if ((*p1 & mask) != (*p2 & mask)) 4174 return 0; 4175 } 4176 return 1; /* Match! */ 4177 } 4178 4179 static void 4180 key_flush_spd(time_t now) 4181 { 4182 SPTREE_RLOCK_TRACKER; 4183 struct secpolicy *sp; 4184 u_int dir; 4185 4186 /* SPD */ 4187 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 4188 restart: 4189 SPTREE_RLOCK(); 4190 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 4191 if (sp->lifetime == 0 && sp->validtime == 0) 4192 continue; 4193 if ((sp->lifetime && 4194 now - sp->created > sp->lifetime) || 4195 (sp->validtime && 4196 now - sp->lastused > sp->validtime)) { 4197 SP_ADDREF(sp); 4198 SPTREE_RUNLOCK(); 4199 key_spdexpire(sp); 4200 key_unlink(sp); 4201 KEY_FREESP(&sp); 4202 goto restart; 4203 } 4204 } 4205 SPTREE_RUNLOCK(); 4206 } 4207 } 4208 4209 static void 4210 key_flush_sad(time_t now) 4211 { 4212 struct secashead *sah, *nextsah; 4213 struct secasvar *sav, *nextsav; 4214 4215 /* SAD */ 4216 SAHTREE_LOCK(); 4217 LIST_FOREACH_SAFE(sah, &V_sahtree, chain, nextsah) { 4218 /* if sah has been dead, then delete it and process next sah. */ 4219 if (sah->state == SADB_SASTATE_DEAD) { 4220 key_delsah(sah); 4221 continue; 4222 } 4223 4224 /* if LARVAL entry doesn't become MATURE, delete it. */ 4225 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) { 4226 /* Need to also check refcnt for a larval SA ??? */ 4227 if (now - sav->created > V_key_larval_lifetime) 4228 KEY_FREESAV(&sav); 4229 } 4230 4231 /* 4232 * check MATURE entry to start to send expire message 4233 * whether or not. 4234 */ 4235 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) { 4236 /* we don't need to check. */ 4237 if (sav->lft_s == NULL) 4238 continue; 4239 4240 /* sanity check */ 4241 if (sav->lft_c == NULL) { 4242 ipseclog((LOG_DEBUG,"%s: there is no CURRENT " 4243 "time, why?\n", __func__)); 4244 continue; 4245 } 4246 /* 4247 * RFC 2367: 4248 * HARD lifetimes MUST take precedence over SOFT 4249 * lifetimes, meaning if the HARD and SOFT lifetimes 4250 * are the same, the HARD lifetime will appear on the 4251 * EXPIRE message. 4252 */ 4253 /* check HARD lifetime */ 4254 if ((sav->lft_h->addtime != 0 && 4255 now - sav->created > sav->lft_h->addtime) || 4256 (sav->lft_h->bytes != 0 && 4257 sav->lft_h->bytes < sav->lft_c->bytes)) { 4258 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4259 key_expire(sav, 1); 4260 KEY_FREESAV(&sav); 4261 } 4262 /* check SOFT lifetime */ 4263 else if ((sav->lft_s->addtime != 0 && 4264 now - sav->created > sav->lft_s->addtime) || 4265 (sav->lft_s->bytes != 0 && 4266 sav->lft_s->bytes < sav->lft_c->bytes)) { 4267 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4268 key_expire(sav, 0); 4269 } 4270 } 4271 4272 /* check DYING entry to change status to DEAD. */ 4273 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) { 4274 /* we don't need to check. */ 4275 if (sav->lft_h == NULL) 4276 continue; 4277 4278 /* sanity check */ 4279 if (sav->lft_c == NULL) { 4280 ipseclog((LOG_DEBUG, "%s: there is no CURRENT " 4281 "time, why?\n", __func__)); 4282 continue; 4283 } 4284 4285 if (sav->lft_h->addtime != 0 && 4286 now - sav->created > sav->lft_h->addtime) { 4287 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4288 key_expire(sav, 1); 4289 KEY_FREESAV(&sav); 4290 } 4291 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */ 4292 else if (sav->lft_s != NULL 4293 && sav->lft_s->addtime != 0 4294 && now - sav->created > sav->lft_s->addtime) { 4295 /* 4296 * XXX: should be checked to be 4297 * installed the valid SA. 4298 */ 4299 4300 /* 4301 * If there is no SA then sending 4302 * expire message. 4303 */ 4304 key_expire(sav, 0); 4305 } 4306 #endif 4307 /* check HARD lifetime by bytes */ 4308 else if (sav->lft_h->bytes != 0 && 4309 sav->lft_h->bytes < sav->lft_c->bytes) { 4310 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4311 key_expire(sav, 1); 4312 KEY_FREESAV(&sav); 4313 } 4314 } 4315 4316 /* delete entry in DEAD */ 4317 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) { 4318 /* sanity check */ 4319 if (sav->state != SADB_SASTATE_DEAD) { 4320 ipseclog((LOG_DEBUG, "%s: invalid sav->state " 4321 "(queue: %d SA: %d): kill it anyway\n", 4322 __func__, 4323 SADB_SASTATE_DEAD, sav->state)); 4324 } 4325 /* 4326 * do not call key_freesav() here. 4327 * sav should already be freed, and sav->refcnt 4328 * shows other references to sav 4329 * (such as from SPD). 4330 */ 4331 } 4332 } 4333 SAHTREE_UNLOCK(); 4334 } 4335 4336 static void 4337 key_flush_acq(time_t now) 4338 { 4339 struct secacq *acq, *nextacq; 4340 4341 /* ACQ tree */ 4342 ACQ_LOCK(); 4343 for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) { 4344 nextacq = LIST_NEXT(acq, chain); 4345 if (now - acq->created > V_key_blockacq_lifetime 4346 && __LIST_CHAINED(acq)) { 4347 LIST_REMOVE(acq, chain); 4348 free(acq, M_IPSEC_SAQ); 4349 } 4350 } 4351 ACQ_UNLOCK(); 4352 } 4353 4354 static void 4355 key_flush_spacq(time_t now) 4356 { 4357 struct secspacq *acq, *nextacq; 4358 4359 /* SP ACQ tree */ 4360 SPACQ_LOCK(); 4361 for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) { 4362 nextacq = LIST_NEXT(acq, chain); 4363 if (now - acq->created > V_key_blockacq_lifetime 4364 && __LIST_CHAINED(acq)) { 4365 LIST_REMOVE(acq, chain); 4366 free(acq, M_IPSEC_SAQ); 4367 } 4368 } 4369 SPACQ_UNLOCK(); 4370 } 4371 4372 /* 4373 * time handler. 4374 * scanning SPD and SAD to check status for each entries, 4375 * and do to remove or to expire. 4376 * XXX: year 2038 problem may remain. 4377 */ 4378 static void 4379 key_timehandler(void *arg) 4380 { 4381 VNET_ITERATOR_DECL(vnet_iter); 4382 time_t now = time_second; 4383 4384 VNET_LIST_RLOCK_NOSLEEP(); 4385 VNET_FOREACH(vnet_iter) { 4386 CURVNET_SET(vnet_iter); 4387 key_flush_spd(now); 4388 key_flush_sad(now); 4389 key_flush_acq(now); 4390 key_flush_spacq(now); 4391 CURVNET_RESTORE(); 4392 } 4393 VNET_LIST_RUNLOCK_NOSLEEP(); 4394 4395 #ifndef IPSEC_DEBUG2 4396 /* do exchange to tick time !! */ 4397 callout_schedule(&key_timer, hz); 4398 #endif /* IPSEC_DEBUG2 */ 4399 } 4400 4401 u_long 4402 key_random() 4403 { 4404 u_long value; 4405 4406 key_randomfill(&value, sizeof(value)); 4407 return value; 4408 } 4409 4410 void 4411 key_randomfill(void *p, size_t l) 4412 { 4413 size_t n; 4414 u_long v; 4415 static int warn = 1; 4416 4417 n = 0; 4418 n = (size_t)read_random(p, (u_int)l); 4419 /* last resort */ 4420 while (n < l) { 4421 v = random(); 4422 bcopy(&v, (u_int8_t *)p + n, 4423 l - n < sizeof(v) ? l - n : sizeof(v)); 4424 n += sizeof(v); 4425 4426 if (warn) { 4427 printf("WARNING: pseudo-random number generator " 4428 "used for IPsec processing\n"); 4429 warn = 0; 4430 } 4431 } 4432 } 4433 4434 /* 4435 * map SADB_SATYPE_* to IPPROTO_*. 4436 * if satype == SADB_SATYPE then satype is mapped to ~0. 4437 * OUT: 4438 * 0: invalid satype. 4439 */ 4440 static u_int16_t 4441 key_satype2proto(u_int8_t satype) 4442 { 4443 switch (satype) { 4444 case SADB_SATYPE_UNSPEC: 4445 return IPSEC_PROTO_ANY; 4446 case SADB_SATYPE_AH: 4447 return IPPROTO_AH; 4448 case SADB_SATYPE_ESP: 4449 return IPPROTO_ESP; 4450 case SADB_X_SATYPE_IPCOMP: 4451 return IPPROTO_IPCOMP; 4452 case SADB_X_SATYPE_TCPSIGNATURE: 4453 return IPPROTO_TCP; 4454 default: 4455 return 0; 4456 } 4457 /* NOTREACHED */ 4458 } 4459 4460 /* 4461 * map IPPROTO_* to SADB_SATYPE_* 4462 * OUT: 4463 * 0: invalid protocol type. 4464 */ 4465 static u_int8_t 4466 key_proto2satype(u_int16_t proto) 4467 { 4468 switch (proto) { 4469 case IPPROTO_AH: 4470 return SADB_SATYPE_AH; 4471 case IPPROTO_ESP: 4472 return SADB_SATYPE_ESP; 4473 case IPPROTO_IPCOMP: 4474 return SADB_X_SATYPE_IPCOMP; 4475 case IPPROTO_TCP: 4476 return SADB_X_SATYPE_TCPSIGNATURE; 4477 default: 4478 return 0; 4479 } 4480 /* NOTREACHED */ 4481 } 4482 4483 /* %%% PF_KEY */ 4484 /* 4485 * SADB_GETSPI processing is to receive 4486 * <base, (SA2), src address, dst address, (SPI range)> 4487 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND 4488 * tree with the status of LARVAL, and send 4489 * <base, SA(*), address(SD)> 4490 * to the IKMPd. 4491 * 4492 * IN: mhp: pointer to the pointer to each header. 4493 * OUT: NULL if fail. 4494 * other if success, return pointer to the message to send. 4495 */ 4496 static int 4497 key_getspi(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 4498 { 4499 struct sadb_address *src0, *dst0; 4500 struct secasindex saidx; 4501 struct secashead *newsah; 4502 struct secasvar *newsav; 4503 u_int8_t proto; 4504 u_int32_t spi; 4505 u_int8_t mode; 4506 u_int32_t reqid; 4507 int error; 4508 4509 IPSEC_ASSERT(so != NULL, ("null socket")); 4510 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4511 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4512 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4513 4514 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4515 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 4516 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4517 __func__)); 4518 return key_senderror(so, m, EINVAL); 4519 } 4520 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4521 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4522 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4523 __func__)); 4524 return key_senderror(so, m, EINVAL); 4525 } 4526 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4527 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4528 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4529 } else { 4530 mode = IPSEC_MODE_ANY; 4531 reqid = 0; 4532 } 4533 4534 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4535 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4536 4537 /* map satype to proto */ 4538 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4539 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4540 __func__)); 4541 return key_senderror(so, m, EINVAL); 4542 } 4543 4544 /* 4545 * Make sure the port numbers are zero. 4546 * In case of NAT-T we will update them later if needed. 4547 */ 4548 switch (((struct sockaddr *)(src0 + 1))->sa_family) { 4549 case AF_INET: 4550 if (((struct sockaddr *)(src0 + 1))->sa_len != 4551 sizeof(struct sockaddr_in)) 4552 return key_senderror(so, m, EINVAL); 4553 ((struct sockaddr_in *)(src0 + 1))->sin_port = 0; 4554 break; 4555 case AF_INET6: 4556 if (((struct sockaddr *)(src0 + 1))->sa_len != 4557 sizeof(struct sockaddr_in6)) 4558 return key_senderror(so, m, EINVAL); 4559 ((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0; 4560 break; 4561 default: 4562 ; /*???*/ 4563 } 4564 switch (((struct sockaddr *)(dst0 + 1))->sa_family) { 4565 case AF_INET: 4566 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4567 sizeof(struct sockaddr_in)) 4568 return key_senderror(so, m, EINVAL); 4569 ((struct sockaddr_in *)(dst0 + 1))->sin_port = 0; 4570 break; 4571 case AF_INET6: 4572 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4573 sizeof(struct sockaddr_in6)) 4574 return key_senderror(so, m, EINVAL); 4575 ((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0; 4576 break; 4577 default: 4578 ; /*???*/ 4579 } 4580 4581 /* XXX boundary check against sa_len */ 4582 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4583 4584 #ifdef IPSEC_NAT_T 4585 /* 4586 * Handle NAT-T info if present. 4587 * We made sure the port numbers are zero above, so we do 4588 * not have to worry in case we do not update them. 4589 */ 4590 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) 4591 ipseclog((LOG_DEBUG, "%s: NAT-T OAi present\n", __func__)); 4592 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) 4593 ipseclog((LOG_DEBUG, "%s: NAT-T OAr present\n", __func__)); 4594 4595 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 4596 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 4597 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 4598 struct sadb_x_nat_t_type *type; 4599 struct sadb_x_nat_t_port *sport, *dport; 4600 4601 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 4602 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 4603 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 4604 ipseclog((LOG_DEBUG, "%s: invalid nat-t message " 4605 "passed.\n", __func__)); 4606 return key_senderror(so, m, EINVAL); 4607 } 4608 4609 sport = (struct sadb_x_nat_t_port *) 4610 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 4611 dport = (struct sadb_x_nat_t_port *) 4612 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 4613 4614 if (sport) 4615 KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port); 4616 if (dport) 4617 KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port); 4618 } 4619 #endif 4620 4621 /* SPI allocation */ 4622 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE], 4623 &saidx); 4624 if (spi == 0) 4625 return key_senderror(so, m, EINVAL); 4626 4627 /* get a SA index */ 4628 if ((newsah = key_getsah(&saidx)) == NULL) { 4629 /* create a new SA index */ 4630 if ((newsah = key_newsah(&saidx)) == NULL) { 4631 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 4632 return key_senderror(so, m, ENOBUFS); 4633 } 4634 } 4635 4636 /* get a new SA */ 4637 /* XXX rewrite */ 4638 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 4639 if (newsav == NULL) { 4640 /* XXX don't free new SA index allocated in above. */ 4641 return key_senderror(so, m, error); 4642 } 4643 4644 /* set spi */ 4645 newsav->spi = htonl(spi); 4646 4647 /* delete the entry in acqtree */ 4648 if (mhp->msg->sadb_msg_seq != 0) { 4649 struct secacq *acq; 4650 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) { 4651 /* reset counter in order to deletion by timehandler. */ 4652 acq->created = time_second; 4653 acq->count = 0; 4654 } 4655 } 4656 4657 { 4658 struct mbuf *n, *nn; 4659 struct sadb_sa *m_sa; 4660 struct sadb_msg *newmsg; 4661 int off, len; 4662 4663 /* create new sadb_msg to reply. */ 4664 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 4665 PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4666 4667 MGETHDR(n, M_NOWAIT, MT_DATA); 4668 if (len > MHLEN) { 4669 if (!(MCLGET(n, M_NOWAIT))) { 4670 m_freem(n); 4671 n = NULL; 4672 } 4673 } 4674 if (!n) 4675 return key_senderror(so, m, ENOBUFS); 4676 4677 n->m_len = len; 4678 n->m_next = NULL; 4679 off = 0; 4680 4681 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 4682 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 4683 4684 m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off); 4685 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); 4686 m_sa->sadb_sa_exttype = SADB_EXT_SA; 4687 m_sa->sadb_sa_spi = htonl(spi); 4688 off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4689 4690 IPSEC_ASSERT(off == len, 4691 ("length inconsistency (off %u len %u)", off, len)); 4692 4693 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, 4694 SADB_EXT_ADDRESS_DST); 4695 if (!n->m_next) { 4696 m_freem(n); 4697 return key_senderror(so, m, ENOBUFS); 4698 } 4699 4700 if (n->m_len < sizeof(struct sadb_msg)) { 4701 n = m_pullup(n, sizeof(struct sadb_msg)); 4702 if (n == NULL) 4703 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 4704 } 4705 4706 n->m_pkthdr.len = 0; 4707 for (nn = n; nn; nn = nn->m_next) 4708 n->m_pkthdr.len += nn->m_len; 4709 4710 newmsg = mtod(n, struct sadb_msg *); 4711 newmsg->sadb_msg_seq = newsav->seq; 4712 newmsg->sadb_msg_errno = 0; 4713 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 4714 4715 m_freem(m); 4716 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 4717 } 4718 } 4719 4720 /* 4721 * allocating new SPI 4722 * called by key_getspi(). 4723 * OUT: 4724 * 0: failure. 4725 * others: success. 4726 */ 4727 static u_int32_t 4728 key_do_getnewspi(struct sadb_spirange *spirange, struct secasindex *saidx) 4729 { 4730 u_int32_t newspi; 4731 u_int32_t min, max; 4732 int count = V_key_spi_trycnt; 4733 4734 /* set spi range to allocate */ 4735 if (spirange != NULL) { 4736 min = spirange->sadb_spirange_min; 4737 max = spirange->sadb_spirange_max; 4738 } else { 4739 min = V_key_spi_minval; 4740 max = V_key_spi_maxval; 4741 } 4742 /* IPCOMP needs 2-byte SPI */ 4743 if (saidx->proto == IPPROTO_IPCOMP) { 4744 u_int32_t t; 4745 if (min >= 0x10000) 4746 min = 0xffff; 4747 if (max >= 0x10000) 4748 max = 0xffff; 4749 if (min > max) { 4750 t = min; min = max; max = t; 4751 } 4752 } 4753 4754 if (min == max) { 4755 if (key_checkspidup(saidx, min) != NULL) { 4756 ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n", 4757 __func__, min)); 4758 return 0; 4759 } 4760 4761 count--; /* taking one cost. */ 4762 newspi = min; 4763 4764 } else { 4765 4766 /* init SPI */ 4767 newspi = 0; 4768 4769 /* when requesting to allocate spi ranged */ 4770 while (count--) { 4771 /* generate pseudo-random SPI value ranged. */ 4772 newspi = min + (key_random() % (max - min + 1)); 4773 4774 if (key_checkspidup(saidx, newspi) == NULL) 4775 break; 4776 } 4777 4778 if (count == 0 || newspi == 0) { 4779 ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n", 4780 __func__)); 4781 return 0; 4782 } 4783 } 4784 4785 /* statistics */ 4786 keystat.getspi_count = 4787 (keystat.getspi_count + V_key_spi_trycnt - count) / 2; 4788 4789 return newspi; 4790 } 4791 4792 /* 4793 * SADB_UPDATE processing 4794 * receive 4795 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4796 * key(AE), (identity(SD),) (sensitivity)> 4797 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. 4798 * and send 4799 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4800 * (identity(SD),) (sensitivity)> 4801 * to the ikmpd. 4802 * 4803 * m will always be freed. 4804 */ 4805 static int 4806 key_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 4807 { 4808 struct sadb_sa *sa0; 4809 struct sadb_address *src0, *dst0; 4810 #ifdef IPSEC_NAT_T 4811 struct sadb_x_nat_t_type *type; 4812 struct sadb_x_nat_t_port *sport, *dport; 4813 struct sadb_address *iaddr, *raddr; 4814 struct sadb_x_nat_t_frag *frag; 4815 #endif 4816 struct secasindex saidx; 4817 struct secashead *sah; 4818 struct secasvar *sav; 4819 u_int16_t proto; 4820 u_int8_t mode; 4821 u_int32_t reqid; 4822 int error; 4823 4824 IPSEC_ASSERT(so != NULL, ("null socket")); 4825 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4826 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4827 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4828 4829 /* map satype to proto */ 4830 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4831 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4832 __func__)); 4833 return key_senderror(so, m, EINVAL); 4834 } 4835 4836 if (mhp->ext[SADB_EXT_SA] == NULL || 4837 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4838 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 4839 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 4840 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 4841 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 4842 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 4843 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 4844 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 4845 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 4846 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 4847 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4848 __func__)); 4849 return key_senderror(so, m, EINVAL); 4850 } 4851 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 4852 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4853 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4854 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4855 __func__)); 4856 return key_senderror(so, m, EINVAL); 4857 } 4858 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4859 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4860 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4861 } else { 4862 mode = IPSEC_MODE_ANY; 4863 reqid = 0; 4864 } 4865 /* XXX boundary checking for other extensions */ 4866 4867 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 4868 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4869 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4870 4871 /* XXX boundary check against sa_len */ 4872 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4873 4874 /* 4875 * Make sure the port numbers are zero. 4876 * In case of NAT-T we will update them later if needed. 4877 */ 4878 KEY_PORTTOSADDR(&saidx.src, 0); 4879 KEY_PORTTOSADDR(&saidx.dst, 0); 4880 4881 #ifdef IPSEC_NAT_T 4882 /* 4883 * Handle NAT-T info if present. 4884 */ 4885 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 4886 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 4887 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 4888 4889 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 4890 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 4891 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 4892 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 4893 __func__)); 4894 return key_senderror(so, m, EINVAL); 4895 } 4896 4897 type = (struct sadb_x_nat_t_type *) 4898 mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 4899 sport = (struct sadb_x_nat_t_port *) 4900 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 4901 dport = (struct sadb_x_nat_t_port *) 4902 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 4903 } else { 4904 type = 0; 4905 sport = dport = 0; 4906 } 4907 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL && 4908 mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { 4909 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) || 4910 mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { 4911 ipseclog((LOG_DEBUG, "%s: invalid message\n", 4912 __func__)); 4913 return key_senderror(so, m, EINVAL); 4914 } 4915 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; 4916 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; 4917 ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__)); 4918 } else { 4919 iaddr = raddr = NULL; 4920 } 4921 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { 4922 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { 4923 ipseclog((LOG_DEBUG, "%s: invalid message\n", 4924 __func__)); 4925 return key_senderror(so, m, EINVAL); 4926 } 4927 frag = (struct sadb_x_nat_t_frag *) 4928 mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 4929 } else { 4930 frag = 0; 4931 } 4932 #endif 4933 4934 /* get a SA header */ 4935 if ((sah = key_getsah(&saidx)) == NULL) { 4936 ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__)); 4937 return key_senderror(so, m, ENOENT); 4938 } 4939 4940 /* set spidx if there */ 4941 /* XXX rewrite */ 4942 error = key_setident(sah, m, mhp); 4943 if (error) 4944 return key_senderror(so, m, error); 4945 4946 /* find a SA with sequence number. */ 4947 #ifdef IPSEC_DOSEQCHECK 4948 if (mhp->msg->sadb_msg_seq != 0 4949 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) { 4950 ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u " 4951 "exists.\n", __func__, mhp->msg->sadb_msg_seq)); 4952 return key_senderror(so, m, ENOENT); 4953 } 4954 #else 4955 SAHTREE_LOCK(); 4956 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 4957 SAHTREE_UNLOCK(); 4958 if (sav == NULL) { 4959 ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n", 4960 __func__, (u_int32_t)ntohl(sa0->sadb_sa_spi))); 4961 return key_senderror(so, m, EINVAL); 4962 } 4963 #endif 4964 4965 /* validity check */ 4966 if (sav->sah->saidx.proto != proto) { 4967 ipseclog((LOG_DEBUG, "%s: protocol mismatched " 4968 "(DB=%u param=%u)\n", __func__, 4969 sav->sah->saidx.proto, proto)); 4970 return key_senderror(so, m, EINVAL); 4971 } 4972 #ifdef IPSEC_DOSEQCHECK 4973 if (sav->spi != sa0->sadb_sa_spi) { 4974 ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n", 4975 __func__, 4976 (u_int32_t)ntohl(sav->spi), 4977 (u_int32_t)ntohl(sa0->sadb_sa_spi))); 4978 return key_senderror(so, m, EINVAL); 4979 } 4980 #endif 4981 if (sav->pid != mhp->msg->sadb_msg_pid) { 4982 ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n", 4983 __func__, sav->pid, mhp->msg->sadb_msg_pid)); 4984 return key_senderror(so, m, EINVAL); 4985 } 4986 4987 /* copy sav values */ 4988 error = key_setsaval(sav, m, mhp); 4989 if (error) { 4990 KEY_FREESAV(&sav); 4991 return key_senderror(so, m, error); 4992 } 4993 4994 #ifdef IPSEC_NAT_T 4995 /* 4996 * Handle more NAT-T info if present, 4997 * now that we have a sav to fill. 4998 */ 4999 if (type) 5000 sav->natt_type = type->sadb_x_nat_t_type_type; 5001 5002 if (sport) 5003 KEY_PORTTOSADDR(&sav->sah->saidx.src, 5004 sport->sadb_x_nat_t_port_port); 5005 if (dport) 5006 KEY_PORTTOSADDR(&sav->sah->saidx.dst, 5007 dport->sadb_x_nat_t_port_port); 5008 5009 #if 0 5010 /* 5011 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0. 5012 * We should actually check for a minimum MTU here, if we 5013 * want to support it in ip_output. 5014 */ 5015 if (frag) 5016 sav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen; 5017 #endif 5018 #endif 5019 5020 /* check SA values to be mature. */ 5021 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) { 5022 KEY_FREESAV(&sav); 5023 return key_senderror(so, m, 0); 5024 } 5025 5026 { 5027 struct mbuf *n; 5028 5029 /* set msg buf from mhp */ 5030 n = key_getmsgbuf_x1(m, mhp); 5031 if (n == NULL) { 5032 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5033 return key_senderror(so, m, ENOBUFS); 5034 } 5035 5036 m_freem(m); 5037 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5038 } 5039 } 5040 5041 /* 5042 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL. 5043 * only called by key_update(). 5044 * OUT: 5045 * NULL : not found 5046 * others : found, pointer to a SA. 5047 */ 5048 #ifdef IPSEC_DOSEQCHECK 5049 static struct secasvar * 5050 key_getsavbyseq(struct secashead *sah, u_int32_t seq) 5051 { 5052 struct secasvar *sav; 5053 u_int state; 5054 5055 state = SADB_SASTATE_LARVAL; 5056 5057 /* search SAD with sequence number ? */ 5058 LIST_FOREACH(sav, &sah->savtree[state], chain) { 5059 5060 KEY_CHKSASTATE(state, sav->state, __func__); 5061 5062 if (sav->seq == seq) { 5063 sa_addref(sav); 5064 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 5065 printf("DP %s cause refcnt++:%d SA:%p\n", 5066 __func__, sav->refcnt, sav)); 5067 return sav; 5068 } 5069 } 5070 5071 return NULL; 5072 } 5073 #endif 5074 5075 /* 5076 * SADB_ADD processing 5077 * add an entry to SA database, when received 5078 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5079 * key(AE), (identity(SD),) (sensitivity)> 5080 * from the ikmpd, 5081 * and send 5082 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5083 * (identity(SD),) (sensitivity)> 5084 * to the ikmpd. 5085 * 5086 * IGNORE identity and sensitivity messages. 5087 * 5088 * m will always be freed. 5089 */ 5090 static int 5091 key_add(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5092 { 5093 struct sadb_sa *sa0; 5094 struct sadb_address *src0, *dst0; 5095 #ifdef IPSEC_NAT_T 5096 struct sadb_x_nat_t_type *type; 5097 struct sadb_address *iaddr, *raddr; 5098 struct sadb_x_nat_t_frag *frag; 5099 #endif 5100 struct secasindex saidx; 5101 struct secashead *newsah; 5102 struct secasvar *newsav; 5103 u_int16_t proto; 5104 u_int8_t mode; 5105 u_int32_t reqid; 5106 int error; 5107 5108 IPSEC_ASSERT(so != NULL, ("null socket")); 5109 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5110 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5111 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5112 5113 /* map satype to proto */ 5114 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5115 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5116 __func__)); 5117 return key_senderror(so, m, EINVAL); 5118 } 5119 5120 if (mhp->ext[SADB_EXT_SA] == NULL || 5121 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5122 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5123 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5124 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5125 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5126 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5127 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5128 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5129 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5130 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5131 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5132 __func__)); 5133 return key_senderror(so, m, EINVAL); 5134 } 5135 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5136 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5137 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5138 /* XXX need more */ 5139 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5140 __func__)); 5141 return key_senderror(so, m, EINVAL); 5142 } 5143 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5144 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 5145 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 5146 } else { 5147 mode = IPSEC_MODE_ANY; 5148 reqid = 0; 5149 } 5150 5151 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5152 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5153 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5154 5155 /* XXX boundary check against sa_len */ 5156 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 5157 5158 /* 5159 * Make sure the port numbers are zero. 5160 * In case of NAT-T we will update them later if needed. 5161 */ 5162 KEY_PORTTOSADDR(&saidx.src, 0); 5163 KEY_PORTTOSADDR(&saidx.dst, 0); 5164 5165 #ifdef IPSEC_NAT_T 5166 /* 5167 * Handle NAT-T info if present. 5168 */ 5169 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 5170 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5171 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5172 struct sadb_x_nat_t_port *sport, *dport; 5173 5174 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 5175 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5176 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5177 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5178 __func__)); 5179 return key_senderror(so, m, EINVAL); 5180 } 5181 5182 type = (struct sadb_x_nat_t_type *) 5183 mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5184 sport = (struct sadb_x_nat_t_port *) 5185 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5186 dport = (struct sadb_x_nat_t_port *) 5187 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5188 5189 if (sport) 5190 KEY_PORTTOSADDR(&saidx.src, 5191 sport->sadb_x_nat_t_port_port); 5192 if (dport) 5193 KEY_PORTTOSADDR(&saidx.dst, 5194 dport->sadb_x_nat_t_port_port); 5195 } else { 5196 type = 0; 5197 } 5198 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL && 5199 mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { 5200 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) || 5201 mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { 5202 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5203 __func__)); 5204 return key_senderror(so, m, EINVAL); 5205 } 5206 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5207 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5208 ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__)); 5209 } else { 5210 iaddr = raddr = NULL; 5211 } 5212 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { 5213 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { 5214 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5215 __func__)); 5216 return key_senderror(so, m, EINVAL); 5217 } 5218 frag = (struct sadb_x_nat_t_frag *) 5219 mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 5220 } else { 5221 frag = 0; 5222 } 5223 #endif 5224 5225 /* get a SA header */ 5226 if ((newsah = key_getsah(&saidx)) == NULL) { 5227 /* create a new SA header */ 5228 if ((newsah = key_newsah(&saidx)) == NULL) { 5229 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 5230 return key_senderror(so, m, ENOBUFS); 5231 } 5232 } 5233 5234 /* set spidx if there */ 5235 /* XXX rewrite */ 5236 error = key_setident(newsah, m, mhp); 5237 if (error) { 5238 return key_senderror(so, m, error); 5239 } 5240 5241 /* create new SA entry. */ 5242 /* We can create new SA only if SPI is differenct. */ 5243 SAHTREE_LOCK(); 5244 newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi); 5245 SAHTREE_UNLOCK(); 5246 if (newsav != NULL) { 5247 ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__)); 5248 return key_senderror(so, m, EEXIST); 5249 } 5250 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 5251 if (newsav == NULL) { 5252 return key_senderror(so, m, error); 5253 } 5254 5255 #ifdef IPSEC_NAT_T 5256 /* 5257 * Handle more NAT-T info if present, 5258 * now that we have a sav to fill. 5259 */ 5260 if (type) 5261 newsav->natt_type = type->sadb_x_nat_t_type_type; 5262 5263 #if 0 5264 /* 5265 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0. 5266 * We should actually check for a minimum MTU here, if we 5267 * want to support it in ip_output. 5268 */ 5269 if (frag) 5270 newsav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen; 5271 #endif 5272 #endif 5273 5274 /* check SA values to be mature. */ 5275 if ((error = key_mature(newsav)) != 0) { 5276 KEY_FREESAV(&newsav); 5277 return key_senderror(so, m, error); 5278 } 5279 5280 /* 5281 * don't call key_freesav() here, as we would like to keep the SA 5282 * in the database on success. 5283 */ 5284 5285 { 5286 struct mbuf *n; 5287 5288 /* set msg buf from mhp */ 5289 n = key_getmsgbuf_x1(m, mhp); 5290 if (n == NULL) { 5291 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5292 return key_senderror(so, m, ENOBUFS); 5293 } 5294 5295 m_freem(m); 5296 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5297 } 5298 } 5299 5300 /* m is retained */ 5301 static int 5302 key_setident(struct secashead *sah, struct mbuf *m, 5303 const struct sadb_msghdr *mhp) 5304 { 5305 const struct sadb_ident *idsrc, *iddst; 5306 int idsrclen, iddstlen; 5307 5308 IPSEC_ASSERT(sah != NULL, ("null secashead")); 5309 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5310 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5311 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5312 5313 /* don't make buffer if not there */ 5314 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL && 5315 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5316 sah->idents = NULL; 5317 sah->identd = NULL; 5318 return 0; 5319 } 5320 5321 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL || 5322 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5323 ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__)); 5324 return EINVAL; 5325 } 5326 5327 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC]; 5328 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST]; 5329 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC]; 5330 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST]; 5331 5332 /* validity check */ 5333 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { 5334 ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__)); 5335 return EINVAL; 5336 } 5337 5338 switch (idsrc->sadb_ident_type) { 5339 case SADB_IDENTTYPE_PREFIX: 5340 case SADB_IDENTTYPE_FQDN: 5341 case SADB_IDENTTYPE_USERFQDN: 5342 default: 5343 /* XXX do nothing */ 5344 sah->idents = NULL; 5345 sah->identd = NULL; 5346 return 0; 5347 } 5348 5349 /* make structure */ 5350 sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5351 if (sah->idents == NULL) { 5352 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5353 return ENOBUFS; 5354 } 5355 sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5356 if (sah->identd == NULL) { 5357 free(sah->idents, M_IPSEC_MISC); 5358 sah->idents = NULL; 5359 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5360 return ENOBUFS; 5361 } 5362 sah->idents->type = idsrc->sadb_ident_type; 5363 sah->idents->id = idsrc->sadb_ident_id; 5364 5365 sah->identd->type = iddst->sadb_ident_type; 5366 sah->identd->id = iddst->sadb_ident_id; 5367 5368 return 0; 5369 } 5370 5371 /* 5372 * m will not be freed on return. 5373 * it is caller's responsibility to free the result. 5374 */ 5375 static struct mbuf * 5376 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp) 5377 { 5378 struct mbuf *n; 5379 5380 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5381 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5382 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5383 5384 /* create new sadb_msg to reply. */ 5385 n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED, 5386 SADB_EXT_SA, SADB_X_EXT_SA2, 5387 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, 5388 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 5389 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST); 5390 if (!n) 5391 return NULL; 5392 5393 if (n->m_len < sizeof(struct sadb_msg)) { 5394 n = m_pullup(n, sizeof(struct sadb_msg)); 5395 if (n == NULL) 5396 return NULL; 5397 } 5398 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; 5399 mtod(n, struct sadb_msg *)->sadb_msg_len = 5400 PFKEY_UNIT64(n->m_pkthdr.len); 5401 5402 return n; 5403 } 5404 5405 /* 5406 * SADB_DELETE processing 5407 * receive 5408 * <base, SA(*), address(SD)> 5409 * from the ikmpd, and set SADB_SASTATE_DEAD, 5410 * and send, 5411 * <base, SA(*), address(SD)> 5412 * to the ikmpd. 5413 * 5414 * m will always be freed. 5415 */ 5416 static int 5417 key_delete(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5418 { 5419 struct sadb_sa *sa0; 5420 struct sadb_address *src0, *dst0; 5421 struct secasindex saidx; 5422 struct secashead *sah; 5423 struct secasvar *sav = NULL; 5424 u_int16_t proto; 5425 5426 IPSEC_ASSERT(so != NULL, ("null socket")); 5427 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5428 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5429 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5430 5431 /* map satype to proto */ 5432 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5433 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5434 __func__)); 5435 return key_senderror(so, m, EINVAL); 5436 } 5437 5438 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5439 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5440 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5441 __func__)); 5442 return key_senderror(so, m, EINVAL); 5443 } 5444 5445 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5446 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5447 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5448 __func__)); 5449 return key_senderror(so, m, EINVAL); 5450 } 5451 5452 if (mhp->ext[SADB_EXT_SA] == NULL) { 5453 /* 5454 * Caller wants us to delete all non-LARVAL SAs 5455 * that match the src/dst. This is used during 5456 * IKE INITIAL-CONTACT. 5457 */ 5458 ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__)); 5459 return key_delete_all(so, m, mhp, proto); 5460 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { 5461 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5462 __func__)); 5463 return key_senderror(so, m, EINVAL); 5464 } 5465 5466 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5467 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5468 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5469 5470 /* XXX boundary check against sa_len */ 5471 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5472 5473 /* 5474 * Make sure the port numbers are zero. 5475 * In case of NAT-T we will update them later if needed. 5476 */ 5477 KEY_PORTTOSADDR(&saidx.src, 0); 5478 KEY_PORTTOSADDR(&saidx.dst, 0); 5479 5480 #ifdef IPSEC_NAT_T 5481 /* 5482 * Handle NAT-T info if present. 5483 */ 5484 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5485 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5486 struct sadb_x_nat_t_port *sport, *dport; 5487 5488 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5489 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5490 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5491 __func__)); 5492 return key_senderror(so, m, EINVAL); 5493 } 5494 5495 sport = (struct sadb_x_nat_t_port *) 5496 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5497 dport = (struct sadb_x_nat_t_port *) 5498 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5499 5500 if (sport) 5501 KEY_PORTTOSADDR(&saidx.src, 5502 sport->sadb_x_nat_t_port_port); 5503 if (dport) 5504 KEY_PORTTOSADDR(&saidx.dst, 5505 dport->sadb_x_nat_t_port_port); 5506 } 5507 #endif 5508 5509 /* get a SA header */ 5510 SAHTREE_LOCK(); 5511 LIST_FOREACH(sah, &V_sahtree, chain) { 5512 if (sah->state == SADB_SASTATE_DEAD) 5513 continue; 5514 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5515 continue; 5516 5517 /* get a SA with SPI. */ 5518 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5519 if (sav) 5520 break; 5521 } 5522 if (sah == NULL) { 5523 SAHTREE_UNLOCK(); 5524 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5525 return key_senderror(so, m, ENOENT); 5526 } 5527 5528 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5529 KEY_FREESAV(&sav); 5530 SAHTREE_UNLOCK(); 5531 5532 { 5533 struct mbuf *n; 5534 struct sadb_msg *newmsg; 5535 5536 /* create new sadb_msg to reply. */ 5537 /* XXX-BZ NAT-T extensions? */ 5538 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 5539 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5540 if (!n) 5541 return key_senderror(so, m, ENOBUFS); 5542 5543 if (n->m_len < sizeof(struct sadb_msg)) { 5544 n = m_pullup(n, sizeof(struct sadb_msg)); 5545 if (n == NULL) 5546 return key_senderror(so, m, ENOBUFS); 5547 } 5548 newmsg = mtod(n, struct sadb_msg *); 5549 newmsg->sadb_msg_errno = 0; 5550 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5551 5552 m_freem(m); 5553 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5554 } 5555 } 5556 5557 /* 5558 * delete all SAs for src/dst. Called from key_delete(). 5559 */ 5560 static int 5561 key_delete_all(struct socket *so, struct mbuf *m, 5562 const struct sadb_msghdr *mhp, u_int16_t proto) 5563 { 5564 struct sadb_address *src0, *dst0; 5565 struct secasindex saidx; 5566 struct secashead *sah; 5567 struct secasvar *sav, *nextsav; 5568 u_int stateidx, state; 5569 5570 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5571 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5572 5573 /* XXX boundary check against sa_len */ 5574 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5575 5576 /* 5577 * Make sure the port numbers are zero. 5578 * In case of NAT-T we will update them later if needed. 5579 */ 5580 KEY_PORTTOSADDR(&saidx.src, 0); 5581 KEY_PORTTOSADDR(&saidx.dst, 0); 5582 5583 #ifdef IPSEC_NAT_T 5584 /* 5585 * Handle NAT-T info if present. 5586 */ 5587 5588 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5589 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5590 struct sadb_x_nat_t_port *sport, *dport; 5591 5592 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5593 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5594 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5595 __func__)); 5596 return key_senderror(so, m, EINVAL); 5597 } 5598 5599 sport = (struct sadb_x_nat_t_port *) 5600 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5601 dport = (struct sadb_x_nat_t_port *) 5602 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5603 5604 if (sport) 5605 KEY_PORTTOSADDR(&saidx.src, 5606 sport->sadb_x_nat_t_port_port); 5607 if (dport) 5608 KEY_PORTTOSADDR(&saidx.dst, 5609 dport->sadb_x_nat_t_port_port); 5610 } 5611 #endif 5612 5613 SAHTREE_LOCK(); 5614 LIST_FOREACH(sah, &V_sahtree, chain) { 5615 if (sah->state == SADB_SASTATE_DEAD) 5616 continue; 5617 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5618 continue; 5619 5620 /* Delete all non-LARVAL SAs. */ 5621 for (stateidx = 0; 5622 stateidx < _ARRAYLEN(saorder_state_alive); 5623 stateidx++) { 5624 state = saorder_state_alive[stateidx]; 5625 if (state == SADB_SASTATE_LARVAL) 5626 continue; 5627 for (sav = LIST_FIRST(&sah->savtree[state]); 5628 sav != NULL; sav = nextsav) { 5629 nextsav = LIST_NEXT(sav, chain); 5630 /* sanity check */ 5631 if (sav->state != state) { 5632 ipseclog((LOG_DEBUG, "%s: invalid " 5633 "sav->state (queue %d SA %d)\n", 5634 __func__, state, sav->state)); 5635 continue; 5636 } 5637 5638 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5639 KEY_FREESAV(&sav); 5640 } 5641 } 5642 } 5643 SAHTREE_UNLOCK(); 5644 { 5645 struct mbuf *n; 5646 struct sadb_msg *newmsg; 5647 5648 /* create new sadb_msg to reply. */ 5649 /* XXX-BZ NAT-T extensions? */ 5650 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, 5651 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5652 if (!n) 5653 return key_senderror(so, m, ENOBUFS); 5654 5655 if (n->m_len < sizeof(struct sadb_msg)) { 5656 n = m_pullup(n, sizeof(struct sadb_msg)); 5657 if (n == NULL) 5658 return key_senderror(so, m, ENOBUFS); 5659 } 5660 newmsg = mtod(n, struct sadb_msg *); 5661 newmsg->sadb_msg_errno = 0; 5662 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5663 5664 m_freem(m); 5665 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5666 } 5667 } 5668 5669 /* 5670 * SADB_GET processing 5671 * receive 5672 * <base, SA(*), address(SD)> 5673 * from the ikmpd, and get a SP and a SA to respond, 5674 * and send, 5675 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), 5676 * (identity(SD),) (sensitivity)> 5677 * to the ikmpd. 5678 * 5679 * m will always be freed. 5680 */ 5681 static int 5682 key_get(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5683 { 5684 struct sadb_sa *sa0; 5685 struct sadb_address *src0, *dst0; 5686 struct secasindex saidx; 5687 struct secashead *sah; 5688 struct secasvar *sav = NULL; 5689 u_int16_t proto; 5690 5691 IPSEC_ASSERT(so != NULL, ("null socket")); 5692 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5693 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5694 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5695 5696 /* map satype to proto */ 5697 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5698 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5699 __func__)); 5700 return key_senderror(so, m, EINVAL); 5701 } 5702 5703 if (mhp->ext[SADB_EXT_SA] == NULL || 5704 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5705 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5706 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5707 __func__)); 5708 return key_senderror(so, m, EINVAL); 5709 } 5710 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5711 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5712 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5713 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5714 __func__)); 5715 return key_senderror(so, m, EINVAL); 5716 } 5717 5718 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5719 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5720 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5721 5722 /* XXX boundary check against sa_len */ 5723 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5724 5725 /* 5726 * Make sure the port numbers are zero. 5727 * In case of NAT-T we will update them later if needed. 5728 */ 5729 KEY_PORTTOSADDR(&saidx.src, 0); 5730 KEY_PORTTOSADDR(&saidx.dst, 0); 5731 5732 #ifdef IPSEC_NAT_T 5733 /* 5734 * Handle NAT-T info if present. 5735 */ 5736 5737 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5738 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5739 struct sadb_x_nat_t_port *sport, *dport; 5740 5741 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5742 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5743 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5744 __func__)); 5745 return key_senderror(so, m, EINVAL); 5746 } 5747 5748 sport = (struct sadb_x_nat_t_port *) 5749 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5750 dport = (struct sadb_x_nat_t_port *) 5751 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5752 5753 if (sport) 5754 KEY_PORTTOSADDR(&saidx.src, 5755 sport->sadb_x_nat_t_port_port); 5756 if (dport) 5757 KEY_PORTTOSADDR(&saidx.dst, 5758 dport->sadb_x_nat_t_port_port); 5759 } 5760 #endif 5761 5762 /* get a SA header */ 5763 SAHTREE_LOCK(); 5764 LIST_FOREACH(sah, &V_sahtree, chain) { 5765 if (sah->state == SADB_SASTATE_DEAD) 5766 continue; 5767 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5768 continue; 5769 5770 /* get a SA with SPI. */ 5771 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5772 if (sav) 5773 break; 5774 } 5775 SAHTREE_UNLOCK(); 5776 if (sah == NULL) { 5777 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5778 return key_senderror(so, m, ENOENT); 5779 } 5780 5781 { 5782 struct mbuf *n; 5783 u_int8_t satype; 5784 5785 /* map proto to satype */ 5786 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 5787 ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n", 5788 __func__)); 5789 return key_senderror(so, m, EINVAL); 5790 } 5791 5792 /* create new sadb_msg to reply. */ 5793 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, 5794 mhp->msg->sadb_msg_pid); 5795 if (!n) 5796 return key_senderror(so, m, ENOBUFS); 5797 5798 m_freem(m); 5799 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5800 } 5801 } 5802 5803 /* XXX make it sysctl-configurable? */ 5804 static void 5805 key_getcomb_setlifetime(struct sadb_comb *comb) 5806 { 5807 5808 comb->sadb_comb_soft_allocations = 1; 5809 comb->sadb_comb_hard_allocations = 1; 5810 comb->sadb_comb_soft_bytes = 0; 5811 comb->sadb_comb_hard_bytes = 0; 5812 comb->sadb_comb_hard_addtime = 86400; /* 1 day */ 5813 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100; 5814 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */ 5815 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100; 5816 } 5817 5818 /* 5819 * XXX reorder combinations by preference 5820 * XXX no idea if the user wants ESP authentication or not 5821 */ 5822 static struct mbuf * 5823 key_getcomb_esp() 5824 { 5825 struct sadb_comb *comb; 5826 struct enc_xform *algo; 5827 struct mbuf *result = NULL, *m, *n; 5828 int encmin; 5829 int i, off, o; 5830 int totlen; 5831 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5832 5833 m = NULL; 5834 for (i = 1; i <= SADB_EALG_MAX; i++) { 5835 algo = esp_algorithm_lookup(i); 5836 if (algo == NULL) 5837 continue; 5838 5839 /* discard algorithms with key size smaller than system min */ 5840 if (_BITS(algo->maxkey) < V_ipsec_esp_keymin) 5841 continue; 5842 if (_BITS(algo->minkey) < V_ipsec_esp_keymin) 5843 encmin = V_ipsec_esp_keymin; 5844 else 5845 encmin = _BITS(algo->minkey); 5846 5847 if (V_ipsec_esp_auth) 5848 m = key_getcomb_ah(); 5849 else { 5850 IPSEC_ASSERT(l <= MLEN, 5851 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 5852 MGET(m, M_NOWAIT, MT_DATA); 5853 if (m) { 5854 M_ALIGN(m, l); 5855 m->m_len = l; 5856 m->m_next = NULL; 5857 bzero(mtod(m, caddr_t), m->m_len); 5858 } 5859 } 5860 if (!m) 5861 goto fail; 5862 5863 totlen = 0; 5864 for (n = m; n; n = n->m_next) 5865 totlen += n->m_len; 5866 IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l)); 5867 5868 for (off = 0; off < totlen; off += l) { 5869 n = m_pulldown(m, off, l, &o); 5870 if (!n) { 5871 /* m is already freed */ 5872 goto fail; 5873 } 5874 comb = (struct sadb_comb *)(mtod(n, caddr_t) + o); 5875 bzero(comb, sizeof(*comb)); 5876 key_getcomb_setlifetime(comb); 5877 comb->sadb_comb_encrypt = i; 5878 comb->sadb_comb_encrypt_minbits = encmin; 5879 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); 5880 } 5881 5882 if (!result) 5883 result = m; 5884 else 5885 m_cat(result, m); 5886 } 5887 5888 return result; 5889 5890 fail: 5891 if (result) 5892 m_freem(result); 5893 return NULL; 5894 } 5895 5896 static void 5897 key_getsizes_ah(const struct auth_hash *ah, int alg, u_int16_t* min, 5898 u_int16_t* max) 5899 { 5900 5901 *min = *max = ah->keysize; 5902 if (ah->keysize == 0) { 5903 /* 5904 * Transform takes arbitrary key size but algorithm 5905 * key size is restricted. Enforce this here. 5906 */ 5907 switch (alg) { 5908 case SADB_X_AALG_MD5: *min = *max = 16; break; 5909 case SADB_X_AALG_SHA: *min = *max = 20; break; 5910 case SADB_X_AALG_NULL: *min = 1; *max = 256; break; 5911 case SADB_X_AALG_SHA2_256: *min = *max = 32; break; 5912 case SADB_X_AALG_SHA2_384: *min = *max = 48; break; 5913 case SADB_X_AALG_SHA2_512: *min = *max = 64; break; 5914 default: 5915 DPRINTF(("%s: unknown AH algorithm %u\n", 5916 __func__, alg)); 5917 break; 5918 } 5919 } 5920 } 5921 5922 /* 5923 * XXX reorder combinations by preference 5924 */ 5925 static struct mbuf * 5926 key_getcomb_ah() 5927 { 5928 struct sadb_comb *comb; 5929 struct auth_hash *algo; 5930 struct mbuf *m; 5931 u_int16_t minkeysize, maxkeysize; 5932 int i; 5933 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5934 5935 m = NULL; 5936 for (i = 1; i <= SADB_AALG_MAX; i++) { 5937 #if 1 5938 /* we prefer HMAC algorithms, not old algorithms */ 5939 if (i != SADB_AALG_SHA1HMAC && 5940 i != SADB_AALG_MD5HMAC && 5941 i != SADB_X_AALG_SHA2_256 && 5942 i != SADB_X_AALG_SHA2_384 && 5943 i != SADB_X_AALG_SHA2_512) 5944 continue; 5945 #endif 5946 algo = ah_algorithm_lookup(i); 5947 if (!algo) 5948 continue; 5949 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); 5950 /* discard algorithms with key size smaller than system min */ 5951 if (_BITS(minkeysize) < V_ipsec_ah_keymin) 5952 continue; 5953 5954 if (!m) { 5955 IPSEC_ASSERT(l <= MLEN, 5956 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 5957 MGET(m, M_NOWAIT, MT_DATA); 5958 if (m) { 5959 M_ALIGN(m, l); 5960 m->m_len = l; 5961 m->m_next = NULL; 5962 } 5963 } else 5964 M_PREPEND(m, l, M_NOWAIT); 5965 if (!m) 5966 return NULL; 5967 5968 comb = mtod(m, struct sadb_comb *); 5969 bzero(comb, sizeof(*comb)); 5970 key_getcomb_setlifetime(comb); 5971 comb->sadb_comb_auth = i; 5972 comb->sadb_comb_auth_minbits = _BITS(minkeysize); 5973 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); 5974 } 5975 5976 return m; 5977 } 5978 5979 /* 5980 * not really an official behavior. discussed in pf_key@inner.net in Sep2000. 5981 * XXX reorder combinations by preference 5982 */ 5983 static struct mbuf * 5984 key_getcomb_ipcomp() 5985 { 5986 struct sadb_comb *comb; 5987 struct comp_algo *algo; 5988 struct mbuf *m; 5989 int i; 5990 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5991 5992 m = NULL; 5993 for (i = 1; i <= SADB_X_CALG_MAX; i++) { 5994 algo = ipcomp_algorithm_lookup(i); 5995 if (!algo) 5996 continue; 5997 5998 if (!m) { 5999 IPSEC_ASSERT(l <= MLEN, 6000 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6001 MGET(m, M_NOWAIT, MT_DATA); 6002 if (m) { 6003 M_ALIGN(m, l); 6004 m->m_len = l; 6005 m->m_next = NULL; 6006 } 6007 } else 6008 M_PREPEND(m, l, M_NOWAIT); 6009 if (!m) 6010 return NULL; 6011 6012 comb = mtod(m, struct sadb_comb *); 6013 bzero(comb, sizeof(*comb)); 6014 key_getcomb_setlifetime(comb); 6015 comb->sadb_comb_encrypt = i; 6016 /* what should we set into sadb_comb_*_{min,max}bits? */ 6017 } 6018 6019 return m; 6020 } 6021 6022 /* 6023 * XXX no way to pass mode (transport/tunnel) to userland 6024 * XXX replay checking? 6025 * XXX sysctl interface to ipsec_{ah,esp}_keymin 6026 */ 6027 static struct mbuf * 6028 key_getprop(const struct secasindex *saidx) 6029 { 6030 struct sadb_prop *prop; 6031 struct mbuf *m, *n; 6032 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); 6033 int totlen; 6034 6035 switch (saidx->proto) { 6036 case IPPROTO_ESP: 6037 m = key_getcomb_esp(); 6038 break; 6039 case IPPROTO_AH: 6040 m = key_getcomb_ah(); 6041 break; 6042 case IPPROTO_IPCOMP: 6043 m = key_getcomb_ipcomp(); 6044 break; 6045 default: 6046 return NULL; 6047 } 6048 6049 if (!m) 6050 return NULL; 6051 M_PREPEND(m, l, M_NOWAIT); 6052 if (!m) 6053 return NULL; 6054 6055 totlen = 0; 6056 for (n = m; n; n = n->m_next) 6057 totlen += n->m_len; 6058 6059 prop = mtod(m, struct sadb_prop *); 6060 bzero(prop, sizeof(*prop)); 6061 prop->sadb_prop_len = PFKEY_UNIT64(totlen); 6062 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 6063 prop->sadb_prop_replay = 32; /* XXX */ 6064 6065 return m; 6066 } 6067 6068 /* 6069 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2(). 6070 * send 6071 * <base, SA, address(SD), (address(P)), x_policy, 6072 * (identity(SD),) (sensitivity,) proposal> 6073 * to KMD, and expect to receive 6074 * <base> with SADB_ACQUIRE if error occured, 6075 * or 6076 * <base, src address, dst address, (SPI range)> with SADB_GETSPI 6077 * from KMD by PF_KEY. 6078 * 6079 * XXX x_policy is outside of RFC2367 (KAME extension). 6080 * XXX sensitivity is not supported. 6081 * XXX for ipcomp, RFC2367 does not define how to fill in proposal. 6082 * see comment for key_getcomb_ipcomp(). 6083 * 6084 * OUT: 6085 * 0 : succeed 6086 * others: error number 6087 */ 6088 static int 6089 key_acquire(const struct secasindex *saidx, struct secpolicy *sp) 6090 { 6091 struct mbuf *result = NULL, *m; 6092 struct secacq *newacq; 6093 u_int8_t satype; 6094 int error = -1; 6095 u_int32_t seq; 6096 6097 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 6098 satype = key_proto2satype(saidx->proto); 6099 IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto)); 6100 6101 /* 6102 * We never do anything about acquirng SA. There is anather 6103 * solution that kernel blocks to send SADB_ACQUIRE message until 6104 * getting something message from IKEd. In later case, to be 6105 * managed with ACQUIRING list. 6106 */ 6107 /* Get an entry to check whether sending message or not. */ 6108 if ((newacq = key_getacq(saidx)) != NULL) { 6109 if (V_key_blockacq_count < newacq->count) { 6110 /* reset counter and do send message. */ 6111 newacq->count = 0; 6112 } else { 6113 /* increment counter and do nothing. */ 6114 newacq->count++; 6115 return 0; 6116 } 6117 } else { 6118 /* make new entry for blocking to send SADB_ACQUIRE. */ 6119 if ((newacq = key_newacq(saidx)) == NULL) 6120 return ENOBUFS; 6121 } 6122 6123 6124 seq = newacq->seq; 6125 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0); 6126 if (!m) { 6127 error = ENOBUFS; 6128 goto fail; 6129 } 6130 result = m; 6131 6132 /* 6133 * No SADB_X_EXT_NAT_T_* here: we do not know 6134 * anything related to NAT-T at this time. 6135 */ 6136 6137 /* set sadb_address for saidx's. */ 6138 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 6139 &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY); 6140 if (!m) { 6141 error = ENOBUFS; 6142 goto fail; 6143 } 6144 m_cat(result, m); 6145 6146 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 6147 &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY); 6148 if (!m) { 6149 error = ENOBUFS; 6150 goto fail; 6151 } 6152 m_cat(result, m); 6153 6154 /* XXX proxy address (optional) */ 6155 6156 /* set sadb_x_policy */ 6157 if (sp) { 6158 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id); 6159 if (!m) { 6160 error = ENOBUFS; 6161 goto fail; 6162 } 6163 m_cat(result, m); 6164 } 6165 6166 /* XXX identity (optional) */ 6167 #if 0 6168 if (idexttype && fqdn) { 6169 /* create identity extension (FQDN) */ 6170 struct sadb_ident *id; 6171 int fqdnlen; 6172 6173 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ 6174 id = (struct sadb_ident *)p; 6175 bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6176 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6177 id->sadb_ident_exttype = idexttype; 6178 id->sadb_ident_type = SADB_IDENTTYPE_FQDN; 6179 bcopy(fqdn, id + 1, fqdnlen); 6180 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); 6181 } 6182 6183 if (idexttype) { 6184 /* create identity extension (USERFQDN) */ 6185 struct sadb_ident *id; 6186 int userfqdnlen; 6187 6188 if (userfqdn) { 6189 /* +1 for terminating-NUL */ 6190 userfqdnlen = strlen(userfqdn) + 1; 6191 } else 6192 userfqdnlen = 0; 6193 id = (struct sadb_ident *)p; 6194 bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6195 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6196 id->sadb_ident_exttype = idexttype; 6197 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; 6198 /* XXX is it correct? */ 6199 if (curproc && curproc->p_cred) 6200 id->sadb_ident_id = curproc->p_cred->p_ruid; 6201 if (userfqdn && userfqdnlen) 6202 bcopy(userfqdn, id + 1, userfqdnlen); 6203 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); 6204 } 6205 #endif 6206 6207 /* XXX sensitivity (optional) */ 6208 6209 /* create proposal/combination extension */ 6210 m = key_getprop(saidx); 6211 #if 0 6212 /* 6213 * spec conformant: always attach proposal/combination extension, 6214 * the problem is that we have no way to attach it for ipcomp, 6215 * due to the way sadb_comb is declared in RFC2367. 6216 */ 6217 if (!m) { 6218 error = ENOBUFS; 6219 goto fail; 6220 } 6221 m_cat(result, m); 6222 #else 6223 /* 6224 * outside of spec; make proposal/combination extension optional. 6225 */ 6226 if (m) 6227 m_cat(result, m); 6228 #endif 6229 6230 if ((result->m_flags & M_PKTHDR) == 0) { 6231 error = EINVAL; 6232 goto fail; 6233 } 6234 6235 if (result->m_len < sizeof(struct sadb_msg)) { 6236 result = m_pullup(result, sizeof(struct sadb_msg)); 6237 if (result == NULL) { 6238 error = ENOBUFS; 6239 goto fail; 6240 } 6241 } 6242 6243 result->m_pkthdr.len = 0; 6244 for (m = result; m; m = m->m_next) 6245 result->m_pkthdr.len += m->m_len; 6246 6247 mtod(result, struct sadb_msg *)->sadb_msg_len = 6248 PFKEY_UNIT64(result->m_pkthdr.len); 6249 6250 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6251 6252 fail: 6253 if (result) 6254 m_freem(result); 6255 return error; 6256 } 6257 6258 static struct secacq * 6259 key_newacq(const struct secasindex *saidx) 6260 { 6261 struct secacq *newacq; 6262 6263 /* get new entry */ 6264 newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 6265 if (newacq == NULL) { 6266 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6267 return NULL; 6268 } 6269 6270 /* copy secindex */ 6271 bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx)); 6272 newacq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq); 6273 newacq->created = time_second; 6274 newacq->count = 0; 6275 6276 /* add to acqtree */ 6277 ACQ_LOCK(); 6278 LIST_INSERT_HEAD(&V_acqtree, newacq, chain); 6279 ACQ_UNLOCK(); 6280 6281 return newacq; 6282 } 6283 6284 static struct secacq * 6285 key_getacq(const struct secasindex *saidx) 6286 { 6287 struct secacq *acq; 6288 6289 ACQ_LOCK(); 6290 LIST_FOREACH(acq, &V_acqtree, chain) { 6291 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY)) 6292 break; 6293 } 6294 ACQ_UNLOCK(); 6295 6296 return acq; 6297 } 6298 6299 static struct secacq * 6300 key_getacqbyseq(u_int32_t seq) 6301 { 6302 struct secacq *acq; 6303 6304 ACQ_LOCK(); 6305 LIST_FOREACH(acq, &V_acqtree, chain) { 6306 if (acq->seq == seq) 6307 break; 6308 } 6309 ACQ_UNLOCK(); 6310 6311 return acq; 6312 } 6313 6314 static struct secspacq * 6315 key_newspacq(struct secpolicyindex *spidx) 6316 { 6317 struct secspacq *acq; 6318 6319 /* get new entry */ 6320 acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 6321 if (acq == NULL) { 6322 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6323 return NULL; 6324 } 6325 6326 /* copy secindex */ 6327 bcopy(spidx, &acq->spidx, sizeof(acq->spidx)); 6328 acq->created = time_second; 6329 acq->count = 0; 6330 6331 /* add to spacqtree */ 6332 SPACQ_LOCK(); 6333 LIST_INSERT_HEAD(&V_spacqtree, acq, chain); 6334 SPACQ_UNLOCK(); 6335 6336 return acq; 6337 } 6338 6339 static struct secspacq * 6340 key_getspacq(struct secpolicyindex *spidx) 6341 { 6342 struct secspacq *acq; 6343 6344 SPACQ_LOCK(); 6345 LIST_FOREACH(acq, &V_spacqtree, chain) { 6346 if (key_cmpspidx_exactly(spidx, &acq->spidx)) { 6347 /* NB: return holding spacq_lock */ 6348 return acq; 6349 } 6350 } 6351 SPACQ_UNLOCK(); 6352 6353 return NULL; 6354 } 6355 6356 /* 6357 * SADB_ACQUIRE processing, 6358 * in first situation, is receiving 6359 * <base> 6360 * from the ikmpd, and clear sequence of its secasvar entry. 6361 * 6362 * In second situation, is receiving 6363 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6364 * from a user land process, and return 6365 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6366 * to the socket. 6367 * 6368 * m will always be freed. 6369 */ 6370 static int 6371 key_acquire2(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 6372 { 6373 const struct sadb_address *src0, *dst0; 6374 struct secasindex saidx; 6375 struct secashead *sah; 6376 u_int16_t proto; 6377 int error; 6378 6379 IPSEC_ASSERT(so != NULL, ("null socket")); 6380 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6381 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6382 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6383 6384 /* 6385 * Error message from KMd. 6386 * We assume that if error was occured in IKEd, the length of PFKEY 6387 * message is equal to the size of sadb_msg structure. 6388 * We do not raise error even if error occured in this function. 6389 */ 6390 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { 6391 struct secacq *acq; 6392 6393 /* check sequence number */ 6394 if (mhp->msg->sadb_msg_seq == 0) { 6395 ipseclog((LOG_DEBUG, "%s: must specify sequence " 6396 "number.\n", __func__)); 6397 m_freem(m); 6398 return 0; 6399 } 6400 6401 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) { 6402 /* 6403 * the specified larval SA is already gone, or we got 6404 * a bogus sequence number. we can silently ignore it. 6405 */ 6406 m_freem(m); 6407 return 0; 6408 } 6409 6410 /* reset acq counter in order to deletion by timehander. */ 6411 acq->created = time_second; 6412 acq->count = 0; 6413 m_freem(m); 6414 return 0; 6415 } 6416 6417 /* 6418 * This message is from user land. 6419 */ 6420 6421 /* map satype to proto */ 6422 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6423 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6424 __func__)); 6425 return key_senderror(so, m, EINVAL); 6426 } 6427 6428 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6429 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 6430 mhp->ext[SADB_EXT_PROPOSAL] == NULL) { 6431 /* error */ 6432 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6433 __func__)); 6434 return key_senderror(so, m, EINVAL); 6435 } 6436 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6437 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 6438 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { 6439 /* error */ 6440 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6441 __func__)); 6442 return key_senderror(so, m, EINVAL); 6443 } 6444 6445 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 6446 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 6447 6448 /* XXX boundary check against sa_len */ 6449 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 6450 6451 /* 6452 * Make sure the port numbers are zero. 6453 * In case of NAT-T we will update them later if needed. 6454 */ 6455 KEY_PORTTOSADDR(&saidx.src, 0); 6456 KEY_PORTTOSADDR(&saidx.dst, 0); 6457 6458 #ifndef IPSEC_NAT_T 6459 /* 6460 * Handle NAT-T info if present. 6461 */ 6462 6463 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 6464 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 6465 struct sadb_x_nat_t_port *sport, *dport; 6466 6467 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 6468 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 6469 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 6470 __func__)); 6471 return key_senderror(so, m, EINVAL); 6472 } 6473 6474 sport = (struct sadb_x_nat_t_port *) 6475 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 6476 dport = (struct sadb_x_nat_t_port *) 6477 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 6478 6479 if (sport) 6480 KEY_PORTTOSADDR(&saidx.src, 6481 sport->sadb_x_nat_t_port_port); 6482 if (dport) 6483 KEY_PORTTOSADDR(&saidx.dst, 6484 dport->sadb_x_nat_t_port_port); 6485 } 6486 #endif 6487 6488 /* get a SA index */ 6489 SAHTREE_LOCK(); 6490 LIST_FOREACH(sah, &V_sahtree, chain) { 6491 if (sah->state == SADB_SASTATE_DEAD) 6492 continue; 6493 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID)) 6494 break; 6495 } 6496 SAHTREE_UNLOCK(); 6497 if (sah != NULL) { 6498 ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__)); 6499 return key_senderror(so, m, EEXIST); 6500 } 6501 6502 error = key_acquire(&saidx, NULL); 6503 if (error != 0) { 6504 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 6505 __func__, mhp->msg->sadb_msg_errno)); 6506 return key_senderror(so, m, error); 6507 } 6508 6509 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); 6510 } 6511 6512 /* 6513 * SADB_REGISTER processing. 6514 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. 6515 * receive 6516 * <base> 6517 * from the ikmpd, and register a socket to send PF_KEY messages, 6518 * and send 6519 * <base, supported> 6520 * to KMD by PF_KEY. 6521 * If socket is detached, must free from regnode. 6522 * 6523 * m will always be freed. 6524 */ 6525 static int 6526 key_register(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 6527 { 6528 struct secreg *reg, *newreg = 0; 6529 6530 IPSEC_ASSERT(so != NULL, ("null socket")); 6531 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6532 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6533 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6534 6535 /* check for invalid register message */ 6536 if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0])) 6537 return key_senderror(so, m, EINVAL); 6538 6539 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ 6540 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) 6541 goto setmsg; 6542 6543 /* check whether existing or not */ 6544 REGTREE_LOCK(); 6545 LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) { 6546 if (reg->so == so) { 6547 REGTREE_UNLOCK(); 6548 ipseclog((LOG_DEBUG, "%s: socket exists already.\n", 6549 __func__)); 6550 return key_senderror(so, m, EEXIST); 6551 } 6552 } 6553 6554 /* create regnode */ 6555 newreg = malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO); 6556 if (newreg == NULL) { 6557 REGTREE_UNLOCK(); 6558 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6559 return key_senderror(so, m, ENOBUFS); 6560 } 6561 6562 newreg->so = so; 6563 ((struct keycb *)sotorawcb(so))->kp_registered++; 6564 6565 /* add regnode to regtree. */ 6566 LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain); 6567 REGTREE_UNLOCK(); 6568 6569 setmsg: 6570 { 6571 struct mbuf *n; 6572 struct sadb_msg *newmsg; 6573 struct sadb_supported *sup; 6574 u_int len, alen, elen; 6575 int off; 6576 int i; 6577 struct sadb_alg *alg; 6578 6579 /* create new sadb_msg to reply. */ 6580 alen = 0; 6581 for (i = 1; i <= SADB_AALG_MAX; i++) { 6582 if (ah_algorithm_lookup(i)) 6583 alen += sizeof(struct sadb_alg); 6584 } 6585 if (alen) 6586 alen += sizeof(struct sadb_supported); 6587 elen = 0; 6588 for (i = 1; i <= SADB_EALG_MAX; i++) { 6589 if (esp_algorithm_lookup(i)) 6590 elen += sizeof(struct sadb_alg); 6591 } 6592 if (elen) 6593 elen += sizeof(struct sadb_supported); 6594 6595 len = sizeof(struct sadb_msg) + alen + elen; 6596 6597 if (len > MCLBYTES) 6598 return key_senderror(so, m, ENOBUFS); 6599 6600 MGETHDR(n, M_NOWAIT, MT_DATA); 6601 if (len > MHLEN) { 6602 if (!(MCLGET(n, M_NOWAIT))) { 6603 m_freem(n); 6604 n = NULL; 6605 } 6606 } 6607 if (!n) 6608 return key_senderror(so, m, ENOBUFS); 6609 6610 n->m_pkthdr.len = n->m_len = len; 6611 n->m_next = NULL; 6612 off = 0; 6613 6614 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 6615 newmsg = mtod(n, struct sadb_msg *); 6616 newmsg->sadb_msg_errno = 0; 6617 newmsg->sadb_msg_len = PFKEY_UNIT64(len); 6618 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 6619 6620 /* for authentication algorithm */ 6621 if (alen) { 6622 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6623 sup->sadb_supported_len = PFKEY_UNIT64(alen); 6624 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 6625 off += PFKEY_ALIGN8(sizeof(*sup)); 6626 6627 for (i = 1; i <= SADB_AALG_MAX; i++) { 6628 struct auth_hash *aalgo; 6629 u_int16_t minkeysize, maxkeysize; 6630 6631 aalgo = ah_algorithm_lookup(i); 6632 if (!aalgo) 6633 continue; 6634 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6635 alg->sadb_alg_id = i; 6636 alg->sadb_alg_ivlen = 0; 6637 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); 6638 alg->sadb_alg_minbits = _BITS(minkeysize); 6639 alg->sadb_alg_maxbits = _BITS(maxkeysize); 6640 off += PFKEY_ALIGN8(sizeof(*alg)); 6641 } 6642 } 6643 6644 /* for encryption algorithm */ 6645 if (elen) { 6646 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6647 sup->sadb_supported_len = PFKEY_UNIT64(elen); 6648 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 6649 off += PFKEY_ALIGN8(sizeof(*sup)); 6650 6651 for (i = 1; i <= SADB_EALG_MAX; i++) { 6652 struct enc_xform *ealgo; 6653 6654 ealgo = esp_algorithm_lookup(i); 6655 if (!ealgo) 6656 continue; 6657 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6658 alg->sadb_alg_id = i; 6659 alg->sadb_alg_ivlen = ealgo->blocksize; 6660 alg->sadb_alg_minbits = _BITS(ealgo->minkey); 6661 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); 6662 off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); 6663 } 6664 } 6665 6666 IPSEC_ASSERT(off == len, 6667 ("length assumption failed (off %u len %u)", off, len)); 6668 6669 m_freem(m); 6670 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); 6671 } 6672 } 6673 6674 /* 6675 * free secreg entry registered. 6676 * XXX: I want to do free a socket marked done SADB_RESIGER to socket. 6677 */ 6678 void 6679 key_freereg(struct socket *so) 6680 { 6681 struct secreg *reg; 6682 int i; 6683 6684 IPSEC_ASSERT(so != NULL, ("NULL so")); 6685 6686 /* 6687 * check whether existing or not. 6688 * check all type of SA, because there is a potential that 6689 * one socket is registered to multiple type of SA. 6690 */ 6691 REGTREE_LOCK(); 6692 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 6693 LIST_FOREACH(reg, &V_regtree[i], chain) { 6694 if (reg->so == so && __LIST_CHAINED(reg)) { 6695 LIST_REMOVE(reg, chain); 6696 free(reg, M_IPSEC_SAR); 6697 break; 6698 } 6699 } 6700 } 6701 REGTREE_UNLOCK(); 6702 } 6703 6704 /* 6705 * SADB_EXPIRE processing 6706 * send 6707 * <base, SA, SA2, lifetime(C and one of HS), address(SD)> 6708 * to KMD by PF_KEY. 6709 * NOTE: We send only soft lifetime extension. 6710 * 6711 * OUT: 0 : succeed 6712 * others : error number 6713 */ 6714 static int 6715 key_expire(struct secasvar *sav, int hard) 6716 { 6717 int satype; 6718 struct mbuf *result = NULL, *m; 6719 int len; 6720 int error = -1; 6721 struct sadb_lifetime *lt; 6722 6723 IPSEC_ASSERT (sav != NULL, ("null sav")); 6724 IPSEC_ASSERT (sav->sah != NULL, ("null sa header")); 6725 6726 /* set msg header */ 6727 satype = key_proto2satype(sav->sah->saidx.proto); 6728 IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype)); 6729 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt); 6730 if (!m) { 6731 error = ENOBUFS; 6732 goto fail; 6733 } 6734 result = m; 6735 6736 /* create SA extension */ 6737 m = key_setsadbsa(sav); 6738 if (!m) { 6739 error = ENOBUFS; 6740 goto fail; 6741 } 6742 m_cat(result, m); 6743 6744 /* create SA extension */ 6745 m = key_setsadbxsa2(sav->sah->saidx.mode, 6746 sav->replay ? sav->replay->count : 0, 6747 sav->sah->saidx.reqid); 6748 if (!m) { 6749 error = ENOBUFS; 6750 goto fail; 6751 } 6752 m_cat(result, m); 6753 6754 /* create lifetime extension (current and soft) */ 6755 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 6756 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 6757 if (m == NULL) { 6758 error = ENOBUFS; 6759 goto fail; 6760 } 6761 m_align(m, len); 6762 m->m_len = len; 6763 bzero(mtod(m, caddr_t), len); 6764 lt = mtod(m, struct sadb_lifetime *); 6765 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6766 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 6767 lt->sadb_lifetime_allocations = sav->lft_c->allocations; 6768 lt->sadb_lifetime_bytes = sav->lft_c->bytes; 6769 lt->sadb_lifetime_addtime = sav->lft_c->addtime; 6770 lt->sadb_lifetime_usetime = sav->lft_c->usetime; 6771 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 6772 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6773 if (hard) { 6774 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 6775 lt->sadb_lifetime_allocations = sav->lft_h->allocations; 6776 lt->sadb_lifetime_bytes = sav->lft_h->bytes; 6777 lt->sadb_lifetime_addtime = sav->lft_h->addtime; 6778 lt->sadb_lifetime_usetime = sav->lft_h->usetime; 6779 } else { 6780 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; 6781 lt->sadb_lifetime_allocations = sav->lft_s->allocations; 6782 lt->sadb_lifetime_bytes = sav->lft_s->bytes; 6783 lt->sadb_lifetime_addtime = sav->lft_s->addtime; 6784 lt->sadb_lifetime_usetime = sav->lft_s->usetime; 6785 } 6786 m_cat(result, m); 6787 6788 /* set sadb_address for source */ 6789 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 6790 &sav->sah->saidx.src.sa, 6791 FULLMASK, IPSEC_ULPROTO_ANY); 6792 if (!m) { 6793 error = ENOBUFS; 6794 goto fail; 6795 } 6796 m_cat(result, m); 6797 6798 /* set sadb_address for destination */ 6799 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 6800 &sav->sah->saidx.dst.sa, 6801 FULLMASK, IPSEC_ULPROTO_ANY); 6802 if (!m) { 6803 error = ENOBUFS; 6804 goto fail; 6805 } 6806 m_cat(result, m); 6807 6808 /* 6809 * XXX-BZ Handle NAT-T extensions here. 6810 */ 6811 6812 if ((result->m_flags & M_PKTHDR) == 0) { 6813 error = EINVAL; 6814 goto fail; 6815 } 6816 6817 if (result->m_len < sizeof(struct sadb_msg)) { 6818 result = m_pullup(result, sizeof(struct sadb_msg)); 6819 if (result == NULL) { 6820 error = ENOBUFS; 6821 goto fail; 6822 } 6823 } 6824 6825 result->m_pkthdr.len = 0; 6826 for (m = result; m; m = m->m_next) 6827 result->m_pkthdr.len += m->m_len; 6828 6829 mtod(result, struct sadb_msg *)->sadb_msg_len = 6830 PFKEY_UNIT64(result->m_pkthdr.len); 6831 6832 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6833 6834 fail: 6835 if (result) 6836 m_freem(result); 6837 return error; 6838 } 6839 6840 /* 6841 * SADB_FLUSH processing 6842 * receive 6843 * <base> 6844 * from the ikmpd, and free all entries in secastree. 6845 * and send, 6846 * <base> 6847 * to the ikmpd. 6848 * NOTE: to do is only marking SADB_SASTATE_DEAD. 6849 * 6850 * m will always be freed. 6851 */ 6852 static int 6853 key_flush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 6854 { 6855 struct sadb_msg *newmsg; 6856 struct secashead *sah, *nextsah; 6857 struct secasvar *sav, *nextsav; 6858 u_int16_t proto; 6859 u_int8_t state; 6860 u_int stateidx; 6861 6862 IPSEC_ASSERT(so != NULL, ("null socket")); 6863 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6864 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6865 6866 /* map satype to proto */ 6867 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6868 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6869 __func__)); 6870 return key_senderror(so, m, EINVAL); 6871 } 6872 6873 /* no SATYPE specified, i.e. flushing all SA. */ 6874 SAHTREE_LOCK(); 6875 for (sah = LIST_FIRST(&V_sahtree); 6876 sah != NULL; 6877 sah = nextsah) { 6878 nextsah = LIST_NEXT(sah, chain); 6879 6880 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 6881 && proto != sah->saidx.proto) 6882 continue; 6883 6884 for (stateidx = 0; 6885 stateidx < _ARRAYLEN(saorder_state_alive); 6886 stateidx++) { 6887 state = saorder_state_any[stateidx]; 6888 for (sav = LIST_FIRST(&sah->savtree[state]); 6889 sav != NULL; 6890 sav = nextsav) { 6891 6892 nextsav = LIST_NEXT(sav, chain); 6893 6894 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 6895 KEY_FREESAV(&sav); 6896 } 6897 } 6898 6899 sah->state = SADB_SASTATE_DEAD; 6900 } 6901 SAHTREE_UNLOCK(); 6902 6903 if (m->m_len < sizeof(struct sadb_msg) || 6904 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 6905 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6906 return key_senderror(so, m, ENOBUFS); 6907 } 6908 6909 if (m->m_next) 6910 m_freem(m->m_next); 6911 m->m_next = NULL; 6912 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); 6913 newmsg = mtod(m, struct sadb_msg *); 6914 newmsg->sadb_msg_errno = 0; 6915 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 6916 6917 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 6918 } 6919 6920 /* 6921 * SADB_DUMP processing 6922 * dump all entries including status of DEAD in SAD. 6923 * receive 6924 * <base> 6925 * from the ikmpd, and dump all secasvar leaves 6926 * and send, 6927 * <base> ..... 6928 * to the ikmpd. 6929 * 6930 * m will always be freed. 6931 */ 6932 static int 6933 key_dump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 6934 { 6935 struct secashead *sah; 6936 struct secasvar *sav; 6937 u_int16_t proto; 6938 u_int stateidx; 6939 u_int8_t satype; 6940 u_int8_t state; 6941 int cnt; 6942 struct sadb_msg *newmsg; 6943 struct mbuf *n; 6944 6945 IPSEC_ASSERT(so != NULL, ("null socket")); 6946 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6947 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6948 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6949 6950 /* map satype to proto */ 6951 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6952 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6953 __func__)); 6954 return key_senderror(so, m, EINVAL); 6955 } 6956 6957 /* count sav entries to be sent to the userland. */ 6958 cnt = 0; 6959 SAHTREE_LOCK(); 6960 LIST_FOREACH(sah, &V_sahtree, chain) { 6961 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 6962 && proto != sah->saidx.proto) 6963 continue; 6964 6965 for (stateidx = 0; 6966 stateidx < _ARRAYLEN(saorder_state_any); 6967 stateidx++) { 6968 state = saorder_state_any[stateidx]; 6969 LIST_FOREACH(sav, &sah->savtree[state], chain) { 6970 cnt++; 6971 } 6972 } 6973 } 6974 6975 if (cnt == 0) { 6976 SAHTREE_UNLOCK(); 6977 return key_senderror(so, m, ENOENT); 6978 } 6979 6980 /* send this to the userland, one at a time. */ 6981 newmsg = NULL; 6982 LIST_FOREACH(sah, &V_sahtree, chain) { 6983 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 6984 && proto != sah->saidx.proto) 6985 continue; 6986 6987 /* map proto to satype */ 6988 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 6989 SAHTREE_UNLOCK(); 6990 ipseclog((LOG_DEBUG, "%s: there was invalid proto in " 6991 "SAD.\n", __func__)); 6992 return key_senderror(so, m, EINVAL); 6993 } 6994 6995 for (stateidx = 0; 6996 stateidx < _ARRAYLEN(saorder_state_any); 6997 stateidx++) { 6998 state = saorder_state_any[stateidx]; 6999 LIST_FOREACH(sav, &sah->savtree[state], chain) { 7000 n = key_setdumpsa(sav, SADB_DUMP, satype, 7001 --cnt, mhp->msg->sadb_msg_pid); 7002 if (!n) { 7003 SAHTREE_UNLOCK(); 7004 return key_senderror(so, m, ENOBUFS); 7005 } 7006 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 7007 } 7008 } 7009 } 7010 SAHTREE_UNLOCK(); 7011 7012 m_freem(m); 7013 return 0; 7014 } 7015 7016 /* 7017 * SADB_X_PROMISC processing 7018 * 7019 * m will always be freed. 7020 */ 7021 static int 7022 key_promisc(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 7023 { 7024 int olen; 7025 7026 IPSEC_ASSERT(so != NULL, ("null socket")); 7027 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7028 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7029 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7030 7031 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7032 7033 if (olen < sizeof(struct sadb_msg)) { 7034 #if 1 7035 return key_senderror(so, m, EINVAL); 7036 #else 7037 m_freem(m); 7038 return 0; 7039 #endif 7040 } else if (olen == sizeof(struct sadb_msg)) { 7041 /* enable/disable promisc mode */ 7042 struct keycb *kp; 7043 7044 if ((kp = (struct keycb *)sotorawcb(so)) == NULL) 7045 return key_senderror(so, m, EINVAL); 7046 mhp->msg->sadb_msg_errno = 0; 7047 switch (mhp->msg->sadb_msg_satype) { 7048 case 0: 7049 case 1: 7050 kp->kp_promisc = mhp->msg->sadb_msg_satype; 7051 break; 7052 default: 7053 return key_senderror(so, m, EINVAL); 7054 } 7055 7056 /* send the original message back to everyone */ 7057 mhp->msg->sadb_msg_errno = 0; 7058 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7059 } else { 7060 /* send packet as is */ 7061 7062 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); 7063 7064 /* TODO: if sadb_msg_seq is specified, send to specific pid */ 7065 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7066 } 7067 } 7068 7069 static int (*key_typesw[])(struct socket *, struct mbuf *, 7070 const struct sadb_msghdr *) = { 7071 NULL, /* SADB_RESERVED */ 7072 key_getspi, /* SADB_GETSPI */ 7073 key_update, /* SADB_UPDATE */ 7074 key_add, /* SADB_ADD */ 7075 key_delete, /* SADB_DELETE */ 7076 key_get, /* SADB_GET */ 7077 key_acquire2, /* SADB_ACQUIRE */ 7078 key_register, /* SADB_REGISTER */ 7079 NULL, /* SADB_EXPIRE */ 7080 key_flush, /* SADB_FLUSH */ 7081 key_dump, /* SADB_DUMP */ 7082 key_promisc, /* SADB_X_PROMISC */ 7083 NULL, /* SADB_X_PCHANGE */ 7084 key_spdadd, /* SADB_X_SPDUPDATE */ 7085 key_spdadd, /* SADB_X_SPDADD */ 7086 key_spddelete, /* SADB_X_SPDDELETE */ 7087 key_spdget, /* SADB_X_SPDGET */ 7088 NULL, /* SADB_X_SPDACQUIRE */ 7089 key_spddump, /* SADB_X_SPDDUMP */ 7090 key_spdflush, /* SADB_X_SPDFLUSH */ 7091 key_spdadd, /* SADB_X_SPDSETIDX */ 7092 NULL, /* SADB_X_SPDEXPIRE */ 7093 key_spddelete2, /* SADB_X_SPDDELETE2 */ 7094 }; 7095 7096 /* 7097 * parse sadb_msg buffer to process PFKEYv2, 7098 * and create a data to response if needed. 7099 * I think to be dealed with mbuf directly. 7100 * IN: 7101 * msgp : pointer to pointer to a received buffer pulluped. 7102 * This is rewrited to response. 7103 * so : pointer to socket. 7104 * OUT: 7105 * length for buffer to send to user process. 7106 */ 7107 int 7108 key_parse(struct mbuf *m, struct socket *so) 7109 { 7110 struct sadb_msg *msg; 7111 struct sadb_msghdr mh; 7112 u_int orglen; 7113 int error; 7114 int target; 7115 7116 IPSEC_ASSERT(so != NULL, ("null socket")); 7117 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7118 7119 #if 0 /*kdebug_sadb assumes msg in linear buffer*/ 7120 KEYDEBUG(KEYDEBUG_KEY_DUMP, 7121 ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__)); 7122 kdebug_sadb(msg)); 7123 #endif 7124 7125 if (m->m_len < sizeof(struct sadb_msg)) { 7126 m = m_pullup(m, sizeof(struct sadb_msg)); 7127 if (!m) 7128 return ENOBUFS; 7129 } 7130 msg = mtod(m, struct sadb_msg *); 7131 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); 7132 target = KEY_SENDUP_ONE; 7133 7134 if ((m->m_flags & M_PKTHDR) == 0 || 7135 m->m_pkthdr.len != m->m_pkthdr.len) { 7136 ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__)); 7137 PFKEYSTAT_INC(out_invlen); 7138 error = EINVAL; 7139 goto senderror; 7140 } 7141 7142 if (msg->sadb_msg_version != PF_KEY_V2) { 7143 ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n", 7144 __func__, msg->sadb_msg_version)); 7145 PFKEYSTAT_INC(out_invver); 7146 error = EINVAL; 7147 goto senderror; 7148 } 7149 7150 if (msg->sadb_msg_type > SADB_MAX) { 7151 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 7152 __func__, msg->sadb_msg_type)); 7153 PFKEYSTAT_INC(out_invmsgtype); 7154 error = EINVAL; 7155 goto senderror; 7156 } 7157 7158 /* for old-fashioned code - should be nuked */ 7159 if (m->m_pkthdr.len > MCLBYTES) { 7160 m_freem(m); 7161 return ENOBUFS; 7162 } 7163 if (m->m_next) { 7164 struct mbuf *n; 7165 7166 MGETHDR(n, M_NOWAIT, MT_DATA); 7167 if (n && m->m_pkthdr.len > MHLEN) { 7168 if (!(MCLGET(n, M_NOWAIT))) { 7169 m_free(n); 7170 n = NULL; 7171 } 7172 } 7173 if (!n) { 7174 m_freem(m); 7175 return ENOBUFS; 7176 } 7177 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t)); 7178 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; 7179 n->m_next = NULL; 7180 m_freem(m); 7181 m = n; 7182 } 7183 7184 /* align the mbuf chain so that extensions are in contiguous region. */ 7185 error = key_align(m, &mh); 7186 if (error) 7187 return error; 7188 7189 msg = mh.msg; 7190 7191 /* check SA type */ 7192 switch (msg->sadb_msg_satype) { 7193 case SADB_SATYPE_UNSPEC: 7194 switch (msg->sadb_msg_type) { 7195 case SADB_GETSPI: 7196 case SADB_UPDATE: 7197 case SADB_ADD: 7198 case SADB_DELETE: 7199 case SADB_GET: 7200 case SADB_ACQUIRE: 7201 case SADB_EXPIRE: 7202 ipseclog((LOG_DEBUG, "%s: must specify satype " 7203 "when msg type=%u.\n", __func__, 7204 msg->sadb_msg_type)); 7205 PFKEYSTAT_INC(out_invsatype); 7206 error = EINVAL; 7207 goto senderror; 7208 } 7209 break; 7210 case SADB_SATYPE_AH: 7211 case SADB_SATYPE_ESP: 7212 case SADB_X_SATYPE_IPCOMP: 7213 case SADB_X_SATYPE_TCPSIGNATURE: 7214 switch (msg->sadb_msg_type) { 7215 case SADB_X_SPDADD: 7216 case SADB_X_SPDDELETE: 7217 case SADB_X_SPDGET: 7218 case SADB_X_SPDDUMP: 7219 case SADB_X_SPDFLUSH: 7220 case SADB_X_SPDSETIDX: 7221 case SADB_X_SPDUPDATE: 7222 case SADB_X_SPDDELETE2: 7223 ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n", 7224 __func__, msg->sadb_msg_type)); 7225 PFKEYSTAT_INC(out_invsatype); 7226 error = EINVAL; 7227 goto senderror; 7228 } 7229 break; 7230 case SADB_SATYPE_RSVP: 7231 case SADB_SATYPE_OSPFV2: 7232 case SADB_SATYPE_RIPV2: 7233 case SADB_SATYPE_MIP: 7234 ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n", 7235 __func__, msg->sadb_msg_satype)); 7236 PFKEYSTAT_INC(out_invsatype); 7237 error = EOPNOTSUPP; 7238 goto senderror; 7239 case 1: /* XXX: What does it do? */ 7240 if (msg->sadb_msg_type == SADB_X_PROMISC) 7241 break; 7242 /*FALLTHROUGH*/ 7243 default: 7244 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 7245 __func__, msg->sadb_msg_satype)); 7246 PFKEYSTAT_INC(out_invsatype); 7247 error = EINVAL; 7248 goto senderror; 7249 } 7250 7251 /* check field of upper layer protocol and address family */ 7252 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL 7253 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { 7254 struct sadb_address *src0, *dst0; 7255 u_int plen; 7256 7257 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]); 7258 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]); 7259 7260 /* check upper layer protocol */ 7261 if (src0->sadb_address_proto != dst0->sadb_address_proto) { 7262 ipseclog((LOG_DEBUG, "%s: upper layer protocol " 7263 "mismatched.\n", __func__)); 7264 PFKEYSTAT_INC(out_invaddr); 7265 error = EINVAL; 7266 goto senderror; 7267 } 7268 7269 /* check family */ 7270 if (PFKEY_ADDR_SADDR(src0)->sa_family != 7271 PFKEY_ADDR_SADDR(dst0)->sa_family) { 7272 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 7273 __func__)); 7274 PFKEYSTAT_INC(out_invaddr); 7275 error = EINVAL; 7276 goto senderror; 7277 } 7278 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7279 PFKEY_ADDR_SADDR(dst0)->sa_len) { 7280 ipseclog((LOG_DEBUG, "%s: address struct size " 7281 "mismatched.\n", __func__)); 7282 PFKEYSTAT_INC(out_invaddr); 7283 error = EINVAL; 7284 goto senderror; 7285 } 7286 7287 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7288 case AF_INET: 7289 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7290 sizeof(struct sockaddr_in)) { 7291 PFKEYSTAT_INC(out_invaddr); 7292 error = EINVAL; 7293 goto senderror; 7294 } 7295 break; 7296 case AF_INET6: 7297 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7298 sizeof(struct sockaddr_in6)) { 7299 PFKEYSTAT_INC(out_invaddr); 7300 error = EINVAL; 7301 goto senderror; 7302 } 7303 break; 7304 default: 7305 ipseclog((LOG_DEBUG, "%s: unsupported address family\n", 7306 __func__)); 7307 PFKEYSTAT_INC(out_invaddr); 7308 error = EAFNOSUPPORT; 7309 goto senderror; 7310 } 7311 7312 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7313 case AF_INET: 7314 plen = sizeof(struct in_addr) << 3; 7315 break; 7316 case AF_INET6: 7317 plen = sizeof(struct in6_addr) << 3; 7318 break; 7319 default: 7320 plen = 0; /*fool gcc*/ 7321 break; 7322 } 7323 7324 /* check max prefix length */ 7325 if (src0->sadb_address_prefixlen > plen || 7326 dst0->sadb_address_prefixlen > plen) { 7327 ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n", 7328 __func__)); 7329 PFKEYSTAT_INC(out_invaddr); 7330 error = EINVAL; 7331 goto senderror; 7332 } 7333 7334 /* 7335 * prefixlen == 0 is valid because there can be a case when 7336 * all addresses are matched. 7337 */ 7338 } 7339 7340 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) || 7341 key_typesw[msg->sadb_msg_type] == NULL) { 7342 PFKEYSTAT_INC(out_invmsgtype); 7343 error = EINVAL; 7344 goto senderror; 7345 } 7346 7347 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh); 7348 7349 senderror: 7350 msg->sadb_msg_errno = error; 7351 return key_sendup_mbuf(so, m, target); 7352 } 7353 7354 static int 7355 key_senderror(struct socket *so, struct mbuf *m, int code) 7356 { 7357 struct sadb_msg *msg; 7358 7359 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 7360 ("mbuf too small, len %u", m->m_len)); 7361 7362 msg = mtod(m, struct sadb_msg *); 7363 msg->sadb_msg_errno = code; 7364 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 7365 } 7366 7367 /* 7368 * set the pointer to each header into message buffer. 7369 * m will be freed on error. 7370 * XXX larger-than-MCLBYTES extension? 7371 */ 7372 static int 7373 key_align(struct mbuf *m, struct sadb_msghdr *mhp) 7374 { 7375 struct mbuf *n; 7376 struct sadb_ext *ext; 7377 size_t off, end; 7378 int extlen; 7379 int toff; 7380 7381 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7382 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7383 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 7384 ("mbuf too small, len %u", m->m_len)); 7385 7386 /* initialize */ 7387 bzero(mhp, sizeof(*mhp)); 7388 7389 mhp->msg = mtod(m, struct sadb_msg *); 7390 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */ 7391 7392 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7393 extlen = end; /*just in case extlen is not updated*/ 7394 for (off = sizeof(struct sadb_msg); off < end; off += extlen) { 7395 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); 7396 if (!n) { 7397 /* m is already freed */ 7398 return ENOBUFS; 7399 } 7400 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 7401 7402 /* set pointer */ 7403 switch (ext->sadb_ext_type) { 7404 case SADB_EXT_SA: 7405 case SADB_EXT_ADDRESS_SRC: 7406 case SADB_EXT_ADDRESS_DST: 7407 case SADB_EXT_ADDRESS_PROXY: 7408 case SADB_EXT_LIFETIME_CURRENT: 7409 case SADB_EXT_LIFETIME_HARD: 7410 case SADB_EXT_LIFETIME_SOFT: 7411 case SADB_EXT_KEY_AUTH: 7412 case SADB_EXT_KEY_ENCRYPT: 7413 case SADB_EXT_IDENTITY_SRC: 7414 case SADB_EXT_IDENTITY_DST: 7415 case SADB_EXT_SENSITIVITY: 7416 case SADB_EXT_PROPOSAL: 7417 case SADB_EXT_SUPPORTED_AUTH: 7418 case SADB_EXT_SUPPORTED_ENCRYPT: 7419 case SADB_EXT_SPIRANGE: 7420 case SADB_X_EXT_POLICY: 7421 case SADB_X_EXT_SA2: 7422 #ifdef IPSEC_NAT_T 7423 case SADB_X_EXT_NAT_T_TYPE: 7424 case SADB_X_EXT_NAT_T_SPORT: 7425 case SADB_X_EXT_NAT_T_DPORT: 7426 case SADB_X_EXT_NAT_T_OAI: 7427 case SADB_X_EXT_NAT_T_OAR: 7428 case SADB_X_EXT_NAT_T_FRAG: 7429 #endif 7430 /* duplicate check */ 7431 /* 7432 * XXX Are there duplication payloads of either 7433 * KEY_AUTH or KEY_ENCRYPT ? 7434 */ 7435 if (mhp->ext[ext->sadb_ext_type] != NULL) { 7436 ipseclog((LOG_DEBUG, "%s: duplicate ext_type " 7437 "%u\n", __func__, ext->sadb_ext_type)); 7438 m_freem(m); 7439 PFKEYSTAT_INC(out_dupext); 7440 return EINVAL; 7441 } 7442 break; 7443 default: 7444 ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n", 7445 __func__, ext->sadb_ext_type)); 7446 m_freem(m); 7447 PFKEYSTAT_INC(out_invexttype); 7448 return EINVAL; 7449 } 7450 7451 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); 7452 7453 if (key_validate_ext(ext, extlen)) { 7454 m_freem(m); 7455 PFKEYSTAT_INC(out_invlen); 7456 return EINVAL; 7457 } 7458 7459 n = m_pulldown(m, off, extlen, &toff); 7460 if (!n) { 7461 /* m is already freed */ 7462 return ENOBUFS; 7463 } 7464 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 7465 7466 mhp->ext[ext->sadb_ext_type] = ext; 7467 mhp->extoff[ext->sadb_ext_type] = off; 7468 mhp->extlen[ext->sadb_ext_type] = extlen; 7469 } 7470 7471 if (off != end) { 7472 m_freem(m); 7473 PFKEYSTAT_INC(out_invlen); 7474 return EINVAL; 7475 } 7476 7477 return 0; 7478 } 7479 7480 static int 7481 key_validate_ext(const struct sadb_ext *ext, int len) 7482 { 7483 const struct sockaddr *sa; 7484 enum { NONE, ADDR } checktype = NONE; 7485 int baselen = 0; 7486 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); 7487 7488 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) 7489 return EINVAL; 7490 7491 /* if it does not match minimum/maximum length, bail */ 7492 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) || 7493 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0])) 7494 return EINVAL; 7495 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) 7496 return EINVAL; 7497 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) 7498 return EINVAL; 7499 7500 /* more checks based on sadb_ext_type XXX need more */ 7501 switch (ext->sadb_ext_type) { 7502 case SADB_EXT_ADDRESS_SRC: 7503 case SADB_EXT_ADDRESS_DST: 7504 case SADB_EXT_ADDRESS_PROXY: 7505 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); 7506 checktype = ADDR; 7507 break; 7508 case SADB_EXT_IDENTITY_SRC: 7509 case SADB_EXT_IDENTITY_DST: 7510 if (((const struct sadb_ident *)ext)->sadb_ident_type == 7511 SADB_X_IDENTTYPE_ADDR) { 7512 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); 7513 checktype = ADDR; 7514 } else 7515 checktype = NONE; 7516 break; 7517 default: 7518 checktype = NONE; 7519 break; 7520 } 7521 7522 switch (checktype) { 7523 case NONE: 7524 break; 7525 case ADDR: 7526 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); 7527 if (len < baselen + sal) 7528 return EINVAL; 7529 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) 7530 return EINVAL; 7531 break; 7532 } 7533 7534 return 0; 7535 } 7536 7537 void 7538 key_init(void) 7539 { 7540 int i; 7541 7542 for (i = 0; i < IPSEC_DIR_MAX; i++) 7543 TAILQ_INIT(&V_sptree[i]); 7544 7545 LIST_INIT(&V_sahtree); 7546 7547 for (i = 0; i <= SADB_SATYPE_MAX; i++) 7548 LIST_INIT(&V_regtree[i]); 7549 7550 LIST_INIT(&V_acqtree); 7551 LIST_INIT(&V_spacqtree); 7552 7553 if (!IS_DEFAULT_VNET(curvnet)) 7554 return; 7555 7556 SPTREE_LOCK_INIT(); 7557 REGTREE_LOCK_INIT(); 7558 SAHTREE_LOCK_INIT(); 7559 ACQ_LOCK_INIT(); 7560 SPACQ_LOCK_INIT(); 7561 7562 #ifndef IPSEC_DEBUG2 7563 callout_init(&key_timer, 1); 7564 callout_reset(&key_timer, hz, key_timehandler, NULL); 7565 #endif /*IPSEC_DEBUG2*/ 7566 7567 /* initialize key statistics */ 7568 keystat.getspi_count = 1; 7569 7570 printf("IPsec: Initialized Security Association Processing.\n"); 7571 } 7572 7573 #ifdef VIMAGE 7574 void 7575 key_destroy(void) 7576 { 7577 TAILQ_HEAD(, secpolicy) drainq; 7578 struct secpolicy *sp, *nextsp; 7579 struct secacq *acq, *nextacq; 7580 struct secspacq *spacq, *nextspacq; 7581 struct secashead *sah, *nextsah; 7582 struct secreg *reg; 7583 int i; 7584 7585 TAILQ_INIT(&drainq); 7586 SPTREE_WLOCK(); 7587 for (i = 0; i < IPSEC_DIR_MAX; i++) { 7588 TAILQ_CONCAT(&drainq, &V_sptree[i], chain); 7589 } 7590 SPTREE_WUNLOCK(); 7591 sp = TAILQ_FIRST(&drainq); 7592 while (sp != NULL) { 7593 nextsp = TAILQ_NEXT(sp, chain); 7594 KEY_FREESP(&sp); 7595 sp = nextsp; 7596 } 7597 7598 SAHTREE_LOCK(); 7599 for (sah = LIST_FIRST(&V_sahtree); sah != NULL; sah = nextsah) { 7600 nextsah = LIST_NEXT(sah, chain); 7601 if (__LIST_CHAINED(sah)) { 7602 LIST_REMOVE(sah, chain); 7603 free(sah, M_IPSEC_SAH); 7604 } 7605 } 7606 SAHTREE_UNLOCK(); 7607 7608 REGTREE_LOCK(); 7609 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 7610 LIST_FOREACH(reg, &V_regtree[i], chain) { 7611 if (__LIST_CHAINED(reg)) { 7612 LIST_REMOVE(reg, chain); 7613 free(reg, M_IPSEC_SAR); 7614 break; 7615 } 7616 } 7617 } 7618 REGTREE_UNLOCK(); 7619 7620 ACQ_LOCK(); 7621 for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) { 7622 nextacq = LIST_NEXT(acq, chain); 7623 if (__LIST_CHAINED(acq)) { 7624 LIST_REMOVE(acq, chain); 7625 free(acq, M_IPSEC_SAQ); 7626 } 7627 } 7628 ACQ_UNLOCK(); 7629 7630 SPACQ_LOCK(); 7631 for (spacq = LIST_FIRST(&V_spacqtree); spacq != NULL; 7632 spacq = nextspacq) { 7633 nextspacq = LIST_NEXT(spacq, chain); 7634 if (__LIST_CHAINED(spacq)) { 7635 LIST_REMOVE(spacq, chain); 7636 free(spacq, M_IPSEC_SAQ); 7637 } 7638 } 7639 SPACQ_UNLOCK(); 7640 } 7641 #endif 7642 7643 /* 7644 * XXX: maybe This function is called after INBOUND IPsec processing. 7645 * 7646 * Special check for tunnel-mode packets. 7647 * We must make some checks for consistency between inner and outer IP header. 7648 * 7649 * xxx more checks to be provided 7650 */ 7651 int 7652 key_checktunnelsanity(struct secasvar *sav, u_int family, caddr_t src, 7653 caddr_t dst) 7654 { 7655 IPSEC_ASSERT(sav->sah != NULL, ("null SA header")); 7656 7657 /* XXX: check inner IP header */ 7658 7659 return 1; 7660 } 7661 7662 /* record data transfer on SA, and update timestamps */ 7663 void 7664 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m) 7665 { 7666 IPSEC_ASSERT(sav != NULL, ("Null secasvar")); 7667 IPSEC_ASSERT(m != NULL, ("Null mbuf")); 7668 if (!sav->lft_c) 7669 return; 7670 7671 /* 7672 * XXX Currently, there is a difference of bytes size 7673 * between inbound and outbound processing. 7674 */ 7675 sav->lft_c->bytes += m->m_pkthdr.len; 7676 /* to check bytes lifetime is done in key_timehandler(). */ 7677 7678 /* 7679 * We use the number of packets as the unit of 7680 * allocations. We increment the variable 7681 * whenever {esp,ah}_{in,out}put is called. 7682 */ 7683 sav->lft_c->allocations++; 7684 /* XXX check for expires? */ 7685 7686 /* 7687 * NOTE: We record CURRENT usetime by using wall clock, 7688 * in seconds. HARD and SOFT lifetime are measured by the time 7689 * difference (again in seconds) from usetime. 7690 * 7691 * usetime 7692 * v expire expire 7693 * -----+-----+--------+---> t 7694 * <--------------> HARD 7695 * <-----> SOFT 7696 */ 7697 sav->lft_c->usetime = time_second; 7698 /* XXX check for expires? */ 7699 7700 return; 7701 } 7702 7703 static void 7704 key_sa_chgstate(struct secasvar *sav, u_int8_t state) 7705 { 7706 IPSEC_ASSERT(sav != NULL, ("NULL sav")); 7707 SAHTREE_LOCK_ASSERT(); 7708 7709 if (sav->state != state) { 7710 if (__LIST_CHAINED(sav)) 7711 LIST_REMOVE(sav, chain); 7712 sav->state = state; 7713 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain); 7714 } 7715 } 7716 7717 void 7718 key_sa_stir_iv(struct secasvar *sav) 7719 { 7720 7721 IPSEC_ASSERT(sav->iv != NULL, ("null IV")); 7722 key_randomfill(sav->iv, sav->ivlen); 7723 } 7724 7725 /* 7726 * Take one of the kernel's security keys and convert it into a PF_KEY 7727 * structure within an mbuf, suitable for sending up to a waiting 7728 * application in user land. 7729 * 7730 * IN: 7731 * src: A pointer to a kernel security key. 7732 * exttype: Which type of key this is. Refer to the PF_KEY data structures. 7733 * OUT: 7734 * a valid mbuf or NULL indicating an error 7735 * 7736 */ 7737 7738 static struct mbuf * 7739 key_setkey(struct seckey *src, u_int16_t exttype) 7740 { 7741 struct mbuf *m; 7742 struct sadb_key *p; 7743 int len; 7744 7745 if (src == NULL) 7746 return NULL; 7747 7748 len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src)); 7749 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 7750 if (m == NULL) 7751 return NULL; 7752 m_align(m, len); 7753 m->m_len = len; 7754 p = mtod(m, struct sadb_key *); 7755 bzero(p, len); 7756 p->sadb_key_len = PFKEY_UNIT64(len); 7757 p->sadb_key_exttype = exttype; 7758 p->sadb_key_bits = src->bits; 7759 bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src)); 7760 7761 return m; 7762 } 7763 7764 /* 7765 * Take one of the kernel's lifetime data structures and convert it 7766 * into a PF_KEY structure within an mbuf, suitable for sending up to 7767 * a waiting application in user land. 7768 * 7769 * IN: 7770 * src: A pointer to a kernel lifetime structure. 7771 * exttype: Which type of lifetime this is. Refer to the PF_KEY 7772 * data structures for more information. 7773 * OUT: 7774 * a valid mbuf or NULL indicating an error 7775 * 7776 */ 7777 7778 static struct mbuf * 7779 key_setlifetime(struct seclifetime *src, u_int16_t exttype) 7780 { 7781 struct mbuf *m = NULL; 7782 struct sadb_lifetime *p; 7783 int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime)); 7784 7785 if (src == NULL) 7786 return NULL; 7787 7788 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 7789 if (m == NULL) 7790 return m; 7791 m_align(m, len); 7792 m->m_len = len; 7793 p = mtod(m, struct sadb_lifetime *); 7794 7795 bzero(p, len); 7796 p->sadb_lifetime_len = PFKEY_UNIT64(len); 7797 p->sadb_lifetime_exttype = exttype; 7798 p->sadb_lifetime_allocations = src->allocations; 7799 p->sadb_lifetime_bytes = src->bytes; 7800 p->sadb_lifetime_addtime = src->addtime; 7801 p->sadb_lifetime_usetime = src->usetime; 7802 7803 return m; 7804 7805 } 7806