1 /* $FreeBSD$ */ 2 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ 3 4 /*- 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * This code is referd to RFC 2367 35 */ 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 #include "opt_ipsec.h" 40 41 #include <sys/types.h> 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/mutex.h> 47 #include <sys/mbuf.h> 48 #include <sys/domain.h> 49 #include <sys/protosw.h> 50 #include <sys/malloc.h> 51 #include <sys/socket.h> 52 #include <sys/socketvar.h> 53 #include <sys/sysctl.h> 54 #include <sys/errno.h> 55 #include <sys/proc.h> 56 #include <sys/queue.h> 57 #include <sys/refcount.h> 58 #include <sys/syslog.h> 59 60 #include <net/if.h> 61 #include <net/route.h> 62 #include <net/raw_cb.h> 63 #include <net/vnet.h> 64 65 #include <netinet/in.h> 66 #include <netinet/in_systm.h> 67 #include <netinet/ip.h> 68 #include <netinet/in_var.h> 69 70 #ifdef INET6 71 #include <netinet/ip6.h> 72 #include <netinet6/in6_var.h> 73 #include <netinet6/ip6_var.h> 74 #endif /* INET6 */ 75 76 #ifdef INET 77 #include <netinet/in_pcb.h> 78 #endif 79 #ifdef INET6 80 #include <netinet6/in6_pcb.h> 81 #endif /* INET6 */ 82 83 #include <net/pfkeyv2.h> 84 #include <netipsec/keydb.h> 85 #include <netipsec/key.h> 86 #include <netipsec/keysock.h> 87 #include <netipsec/key_debug.h> 88 89 #include <netipsec/ipsec.h> 90 #ifdef INET6 91 #include <netipsec/ipsec6.h> 92 #endif 93 94 #include <netipsec/xform.h> 95 96 #include <machine/stdarg.h> 97 98 /* randomness */ 99 #include <sys/random.h> 100 101 #define FULLMASK 0xff 102 #define _BITS(bytes) ((bytes) << 3) 103 104 /* 105 * Note on SA reference counting: 106 * - SAs that are not in DEAD state will have (total external reference + 1) 107 * following value in reference count field. they cannot be freed and are 108 * referenced from SA header. 109 * - SAs that are in DEAD state will have (total external reference) 110 * in reference count field. they are ready to be freed. reference from 111 * SA header will be removed in key_delsav(), when the reference count 112 * field hits 0 (= no external reference other than from SA header. 113 */ 114 115 VNET_DEFINE(u_int32_t, key_debug_level) = 0; 116 static VNET_DEFINE(u_int, key_spi_trycnt) = 1000; 117 #define V_key_spi_trycnt VNET(key_spi_trycnt) 118 static VNET_DEFINE(u_int32_t, key_spi_minval) = 0x100; 119 #define V_key_spi_minval VNET(key_spi_minval) 120 static VNET_DEFINE(u_int32_t, key_spi_maxval) = 0x0fffffff; /* XXX */ 121 #define V_key_spi_maxval VNET(key_spi_maxval) 122 static VNET_DEFINE(u_int32_t, policy_id) = 0; 123 #define V_policy_id VNET(policy_id) 124 /*interval to initialize randseed,1(m)*/ 125 static VNET_DEFINE(u_int, key_int_random) = 60; 126 #define V_key_int_random VNET(key_int_random) 127 /* interval to expire acquiring, 30(s)*/ 128 static VNET_DEFINE(u_int, key_larval_lifetime) = 30; 129 #define V_key_larval_lifetime VNET(key_larval_lifetime) 130 /* counter for blocking SADB_ACQUIRE.*/ 131 static VNET_DEFINE(int, key_blockacq_count) = 10; 132 #define V_key_blockacq_count VNET(key_blockacq_count) 133 /* lifetime for blocking SADB_ACQUIRE.*/ 134 static VNET_DEFINE(int, key_blockacq_lifetime) = 20; 135 #define V_key_blockacq_lifetime VNET(key_blockacq_lifetime) 136 /* preferred old sa rather than new sa.*/ 137 static VNET_DEFINE(int, key_preferred_oldsa) = 1; 138 #define V_key_preferred_oldsa VNET(key_preferred_oldsa) 139 140 static VNET_DEFINE(u_int32_t, acq_seq) = 0; 141 #define V_acq_seq VNET(acq_seq) 142 143 /* SPD */ 144 static VNET_DEFINE(LIST_HEAD(_sptree, secpolicy), sptree[IPSEC_DIR_MAX]); 145 #define V_sptree VNET(sptree) 146 static struct mtx sptree_lock; 147 #define SPTREE_LOCK_INIT() \ 148 mtx_init(&sptree_lock, "sptree", \ 149 "fast ipsec security policy database", MTX_DEF) 150 #define SPTREE_LOCK_DESTROY() mtx_destroy(&sptree_lock) 151 #define SPTREE_LOCK() mtx_lock(&sptree_lock) 152 #define SPTREE_UNLOCK() mtx_unlock(&sptree_lock) 153 #define SPTREE_LOCK_ASSERT() mtx_assert(&sptree_lock, MA_OWNED) 154 155 static VNET_DEFINE(LIST_HEAD(_sahtree, secashead), sahtree); /* SAD */ 156 #define V_sahtree VNET(sahtree) 157 static struct mtx sahtree_lock; 158 #define SAHTREE_LOCK_INIT() \ 159 mtx_init(&sahtree_lock, "sahtree", \ 160 "fast ipsec security association database", MTX_DEF) 161 #define SAHTREE_LOCK_DESTROY() mtx_destroy(&sahtree_lock) 162 #define SAHTREE_LOCK() mtx_lock(&sahtree_lock) 163 #define SAHTREE_UNLOCK() mtx_unlock(&sahtree_lock) 164 #define SAHTREE_LOCK_ASSERT() mtx_assert(&sahtree_lock, MA_OWNED) 165 166 /* registed list */ 167 static VNET_DEFINE(LIST_HEAD(_regtree, secreg), regtree[SADB_SATYPE_MAX + 1]); 168 #define V_regtree VNET(regtree) 169 static struct mtx regtree_lock; 170 #define REGTREE_LOCK_INIT() \ 171 mtx_init(®tree_lock, "regtree", "fast ipsec regtree", MTX_DEF) 172 #define REGTREE_LOCK_DESTROY() mtx_destroy(®tree_lock) 173 #define REGTREE_LOCK() mtx_lock(®tree_lock) 174 #define REGTREE_UNLOCK() mtx_unlock(®tree_lock) 175 #define REGTREE_LOCK_ASSERT() mtx_assert(®tree_lock, MA_OWNED) 176 177 static VNET_DEFINE(LIST_HEAD(_acqtree, secacq), acqtree); /* acquiring list */ 178 #define V_acqtree VNET(acqtree) 179 static struct mtx acq_lock; 180 #define ACQ_LOCK_INIT() \ 181 mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF) 182 #define ACQ_LOCK_DESTROY() mtx_destroy(&acq_lock) 183 #define ACQ_LOCK() mtx_lock(&acq_lock) 184 #define ACQ_UNLOCK() mtx_unlock(&acq_lock) 185 #define ACQ_LOCK_ASSERT() mtx_assert(&acq_lock, MA_OWNED) 186 187 /* SP acquiring list */ 188 static VNET_DEFINE(LIST_HEAD(_spacqtree, secspacq), spacqtree); 189 #define V_spacqtree VNET(spacqtree) 190 static struct mtx spacq_lock; 191 #define SPACQ_LOCK_INIT() \ 192 mtx_init(&spacq_lock, "spacqtree", \ 193 "fast ipsec security policy acquire list", MTX_DEF) 194 #define SPACQ_LOCK_DESTROY() mtx_destroy(&spacq_lock) 195 #define SPACQ_LOCK() mtx_lock(&spacq_lock) 196 #define SPACQ_UNLOCK() mtx_unlock(&spacq_lock) 197 #define SPACQ_LOCK_ASSERT() mtx_assert(&spacq_lock, MA_OWNED) 198 199 /* search order for SAs */ 200 static const u_int saorder_state_valid_prefer_old[] = { 201 SADB_SASTATE_DYING, SADB_SASTATE_MATURE, 202 }; 203 static const u_int saorder_state_valid_prefer_new[] = { 204 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 205 }; 206 static const u_int saorder_state_alive[] = { 207 /* except DEAD */ 208 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL 209 }; 210 static const u_int saorder_state_any[] = { 211 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 212 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD 213 }; 214 215 static const int minsize[] = { 216 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 217 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 218 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 219 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 220 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 221 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ 222 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ 223 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ 224 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ 225 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ 226 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ 227 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ 228 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ 229 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ 230 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ 231 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ 232 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 233 0, /* SADB_X_EXT_KMPRIVATE */ 234 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ 235 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 236 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ 237 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ 238 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ 239 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */ 240 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */ 241 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ 242 }; 243 static const int maxsize[] = { 244 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 245 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 246 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 247 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 248 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 249 0, /* SADB_EXT_ADDRESS_SRC */ 250 0, /* SADB_EXT_ADDRESS_DST */ 251 0, /* SADB_EXT_ADDRESS_PROXY */ 252 0, /* SADB_EXT_KEY_AUTH */ 253 0, /* SADB_EXT_KEY_ENCRYPT */ 254 0, /* SADB_EXT_IDENTITY_SRC */ 255 0, /* SADB_EXT_IDENTITY_DST */ 256 0, /* SADB_EXT_SENSITIVITY */ 257 0, /* SADB_EXT_PROPOSAL */ 258 0, /* SADB_EXT_SUPPORTED_AUTH */ 259 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ 260 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 261 0, /* SADB_X_EXT_KMPRIVATE */ 262 0, /* SADB_X_EXT_POLICY */ 263 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 264 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ 265 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ 266 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ 267 0, /* SADB_X_EXT_NAT_T_OAI */ 268 0, /* SADB_X_EXT_NAT_T_OAR */ 269 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ 270 }; 271 272 static VNET_DEFINE(int, ipsec_esp_keymin) = 256; 273 #define V_ipsec_esp_keymin VNET(ipsec_esp_keymin) 274 static VNET_DEFINE(int, ipsec_esp_auth) = 0; 275 #define V_ipsec_esp_auth VNET(ipsec_esp_auth) 276 static VNET_DEFINE(int, ipsec_ah_keymin) = 128; 277 #define V_ipsec_ah_keymin VNET(ipsec_ah_keymin) 278 279 #ifdef SYSCTL_DECL 280 SYSCTL_DECL(_net_key); 281 #endif 282 283 SYSCTL_VNET_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, 284 CTLFLAG_RW, &VNET_NAME(key_debug_level), 0, ""); 285 286 /* max count of trial for the decision of spi value */ 287 SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, 288 CTLFLAG_RW, &VNET_NAME(key_spi_trycnt), 0, ""); 289 290 /* minimum spi value to allocate automatically. */ 291 SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_MIN_VALUE, 292 spi_minval, CTLFLAG_RW, &VNET_NAME(key_spi_minval), 0, ""); 293 294 /* maximun spi value to allocate automatically. */ 295 SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_MAX_VALUE, 296 spi_maxval, CTLFLAG_RW, &VNET_NAME(key_spi_maxval), 0, ""); 297 298 /* interval to initialize randseed */ 299 SYSCTL_VNET_INT(_net_key, KEYCTL_RANDOM_INT, 300 int_random, CTLFLAG_RW, &VNET_NAME(key_int_random), 0, ""); 301 302 /* lifetime for larval SA */ 303 SYSCTL_VNET_INT(_net_key, KEYCTL_LARVAL_LIFETIME, 304 larval_lifetime, CTLFLAG_RW, &VNET_NAME(key_larval_lifetime), 0, ""); 305 306 /* counter for blocking to send SADB_ACQUIRE to IKEd */ 307 SYSCTL_VNET_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, 308 blockacq_count, CTLFLAG_RW, &VNET_NAME(key_blockacq_count), 0, ""); 309 310 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ 311 SYSCTL_VNET_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, 312 blockacq_lifetime, CTLFLAG_RW, &VNET_NAME(key_blockacq_lifetime), 0, ""); 313 314 /* ESP auth */ 315 SYSCTL_VNET_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, 316 CTLFLAG_RW, &VNET_NAME(ipsec_esp_auth), 0, ""); 317 318 /* minimum ESP key length */ 319 SYSCTL_VNET_INT(_net_key, KEYCTL_ESP_KEYMIN, 320 esp_keymin, CTLFLAG_RW, &VNET_NAME(ipsec_esp_keymin), 0, ""); 321 322 /* minimum AH key length */ 323 SYSCTL_VNET_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, 324 CTLFLAG_RW, &VNET_NAME(ipsec_ah_keymin), 0, ""); 325 326 /* perfered old SA rather than new SA */ 327 SYSCTL_VNET_INT(_net_key, KEYCTL_PREFERED_OLDSA, 328 preferred_oldsa, CTLFLAG_RW, &VNET_NAME(key_preferred_oldsa), 0, ""); 329 330 #define __LIST_CHAINED(elm) \ 331 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) 332 #define LIST_INSERT_TAIL(head, elm, type, field) \ 333 do {\ 334 struct type *curelm = LIST_FIRST(head); \ 335 if (curelm == NULL) {\ 336 LIST_INSERT_HEAD(head, elm, field); \ 337 } else { \ 338 while (LIST_NEXT(curelm, field)) \ 339 curelm = LIST_NEXT(curelm, field);\ 340 LIST_INSERT_AFTER(curelm, elm, field);\ 341 }\ 342 } while (0) 343 344 #define KEY_CHKSASTATE(head, sav, name) \ 345 do { \ 346 if ((head) != (sav)) { \ 347 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \ 348 (name), (head), (sav))); \ 349 continue; \ 350 } \ 351 } while (0) 352 353 #define KEY_CHKSPDIR(head, sp, name) \ 354 do { \ 355 if ((head) != (sp)) { \ 356 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \ 357 "anyway continue.\n", \ 358 (name), (head), (sp))); \ 359 } \ 360 } while (0) 361 362 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association"); 363 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head"); 364 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy"); 365 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request"); 366 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous"); 367 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire"); 368 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire"); 369 370 /* 371 * set parameters into secpolicyindex buffer. 372 * Must allocate secpolicyindex buffer passed to this function. 373 */ 374 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \ 375 do { \ 376 bzero((idx), sizeof(struct secpolicyindex)); \ 377 (idx)->dir = (_dir); \ 378 (idx)->prefs = (ps); \ 379 (idx)->prefd = (pd); \ 380 (idx)->ul_proto = (ulp); \ 381 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 382 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 383 } while (0) 384 385 /* 386 * set parameters into secasindex buffer. 387 * Must allocate secasindex buffer before calling this function. 388 */ 389 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \ 390 do { \ 391 bzero((idx), sizeof(struct secasindex)); \ 392 (idx)->proto = (p); \ 393 (idx)->mode = (m); \ 394 (idx)->reqid = (r); \ 395 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 396 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 397 } while (0) 398 399 /* key statistics */ 400 struct _keystat { 401 u_long getspi_count; /* the avarage of count to try to get new SPI */ 402 } keystat; 403 404 struct sadb_msghdr { 405 struct sadb_msg *msg; 406 struct sadb_ext *ext[SADB_EXT_MAX + 1]; 407 int extoff[SADB_EXT_MAX + 1]; 408 int extlen[SADB_EXT_MAX + 1]; 409 }; 410 411 static struct secasvar *key_allocsa_policy __P((const struct secasindex *)); 412 static void key_freesp_so __P((struct secpolicy **)); 413 static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int)); 414 static void key_delsp __P((struct secpolicy *)); 415 static struct secpolicy *key_getsp __P((struct secpolicyindex *)); 416 static void _key_delsp(struct secpolicy *sp); 417 static struct secpolicy *key_getspbyid __P((u_int32_t)); 418 static u_int32_t key_newreqid __P((void)); 419 static struct mbuf *key_gather_mbuf __P((struct mbuf *, 420 const struct sadb_msghdr *, int, int, ...)); 421 static int key_spdadd __P((struct socket *, struct mbuf *, 422 const struct sadb_msghdr *)); 423 static u_int32_t key_getnewspid __P((void)); 424 static int key_spddelete __P((struct socket *, struct mbuf *, 425 const struct sadb_msghdr *)); 426 static int key_spddelete2 __P((struct socket *, struct mbuf *, 427 const struct sadb_msghdr *)); 428 static int key_spdget __P((struct socket *, struct mbuf *, 429 const struct sadb_msghdr *)); 430 static int key_spdflush __P((struct socket *, struct mbuf *, 431 const struct sadb_msghdr *)); 432 static int key_spddump __P((struct socket *, struct mbuf *, 433 const struct sadb_msghdr *)); 434 static struct mbuf *key_setdumpsp __P((struct secpolicy *, 435 u_int8_t, u_int32_t, u_int32_t)); 436 static u_int key_getspreqmsglen __P((struct secpolicy *)); 437 static int key_spdexpire __P((struct secpolicy *)); 438 static struct secashead *key_newsah __P((struct secasindex *)); 439 static void key_delsah __P((struct secashead *)); 440 static struct secasvar *key_newsav __P((struct mbuf *, 441 const struct sadb_msghdr *, struct secashead *, int *, 442 const char*, int)); 443 #define KEY_NEWSAV(m, sadb, sah, e) \ 444 key_newsav(m, sadb, sah, e, __FILE__, __LINE__) 445 static void key_delsav __P((struct secasvar *)); 446 static struct secashead *key_getsah __P((struct secasindex *)); 447 static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t)); 448 static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t)); 449 static int key_setsaval __P((struct secasvar *, struct mbuf *, 450 const struct sadb_msghdr *)); 451 static int key_mature __P((struct secasvar *)); 452 static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t, 453 u_int8_t, u_int32_t, u_int32_t)); 454 static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t, 455 u_int32_t, pid_t, u_int16_t)); 456 static struct mbuf *key_setsadbsa __P((struct secasvar *)); 457 static struct mbuf *key_setsadbaddr __P((u_int16_t, 458 const struct sockaddr *, u_int8_t, u_int16_t)); 459 #ifdef IPSEC_NAT_T 460 static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t); 461 static struct mbuf *key_setsadbxtype(u_int16_t); 462 #endif 463 static void key_porttosaddr(struct sockaddr *, u_int16_t); 464 #define KEY_PORTTOSADDR(saddr, port) \ 465 key_porttosaddr((struct sockaddr *)(saddr), (port)) 466 static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t)); 467 static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t, 468 u_int32_t)); 469 static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int, 470 struct malloc_type *); 471 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src, 472 struct malloc_type *type); 473 #ifdef INET6 474 static int key_ismyaddr6 __P((struct sockaddr_in6 *)); 475 #endif 476 477 /* flags for key_cmpsaidx() */ 478 #define CMP_HEAD 1 /* protocol, addresses. */ 479 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ 480 #define CMP_REQID 3 /* additionally HEAD, reaid. */ 481 #define CMP_EXACTLY 4 /* all elements. */ 482 static int key_cmpsaidx 483 __P((const struct secasindex *, const struct secasindex *, int)); 484 485 static int key_cmpspidx_exactly 486 __P((struct secpolicyindex *, struct secpolicyindex *)); 487 static int key_cmpspidx_withmask 488 __P((struct secpolicyindex *, struct secpolicyindex *)); 489 static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int)); 490 static int key_bbcmp __P((const void *, const void *, u_int)); 491 static u_int16_t key_satype2proto __P((u_int8_t)); 492 static u_int8_t key_proto2satype __P((u_int16_t)); 493 494 static int key_getspi __P((struct socket *, struct mbuf *, 495 const struct sadb_msghdr *)); 496 static u_int32_t key_do_getnewspi __P((struct sadb_spirange *, 497 struct secasindex *)); 498 static int key_update __P((struct socket *, struct mbuf *, 499 const struct sadb_msghdr *)); 500 #ifdef IPSEC_DOSEQCHECK 501 static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t)); 502 #endif 503 static int key_add __P((struct socket *, struct mbuf *, 504 const struct sadb_msghdr *)); 505 static int key_setident __P((struct secashead *, struct mbuf *, 506 const struct sadb_msghdr *)); 507 static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *, 508 const struct sadb_msghdr *)); 509 static int key_delete __P((struct socket *, struct mbuf *, 510 const struct sadb_msghdr *)); 511 static int key_get __P((struct socket *, struct mbuf *, 512 const struct sadb_msghdr *)); 513 514 static void key_getcomb_setlifetime __P((struct sadb_comb *)); 515 static struct mbuf *key_getcomb_esp __P((void)); 516 static struct mbuf *key_getcomb_ah __P((void)); 517 static struct mbuf *key_getcomb_ipcomp __P((void)); 518 static struct mbuf *key_getprop __P((const struct secasindex *)); 519 520 static int key_acquire __P((const struct secasindex *, struct secpolicy *)); 521 static struct secacq *key_newacq __P((const struct secasindex *)); 522 static struct secacq *key_getacq __P((const struct secasindex *)); 523 static struct secacq *key_getacqbyseq __P((u_int32_t)); 524 static struct secspacq *key_newspacq __P((struct secpolicyindex *)); 525 static struct secspacq *key_getspacq __P((struct secpolicyindex *)); 526 static int key_acquire2 __P((struct socket *, struct mbuf *, 527 const struct sadb_msghdr *)); 528 static int key_register __P((struct socket *, struct mbuf *, 529 const struct sadb_msghdr *)); 530 static int key_expire __P((struct secasvar *)); 531 static int key_flush __P((struct socket *, struct mbuf *, 532 const struct sadb_msghdr *)); 533 static int key_dump __P((struct socket *, struct mbuf *, 534 const struct sadb_msghdr *)); 535 static int key_promisc __P((struct socket *, struct mbuf *, 536 const struct sadb_msghdr *)); 537 static int key_senderror __P((struct socket *, struct mbuf *, int)); 538 static int key_validate_ext __P((const struct sadb_ext *, int)); 539 static int key_align __P((struct mbuf *, struct sadb_msghdr *)); 540 static struct mbuf *key_setlifetime(struct seclifetime *src, 541 u_int16_t exttype); 542 static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype); 543 544 #if 0 545 static const char *key_getfqdn __P((void)); 546 static const char *key_getuserfqdn __P((void)); 547 #endif 548 static void key_sa_chgstate __P((struct secasvar *, u_int8_t)); 549 static struct mbuf *key_alloc_mbuf __P((int)); 550 551 static __inline void 552 sa_initref(struct secasvar *sav) 553 { 554 555 refcount_init(&sav->refcnt, 1); 556 } 557 static __inline void 558 sa_addref(struct secasvar *sav) 559 { 560 561 refcount_acquire(&sav->refcnt); 562 IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow")); 563 } 564 static __inline int 565 sa_delref(struct secasvar *sav) 566 { 567 568 IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow")); 569 return (refcount_release(&sav->refcnt)); 570 } 571 572 #define SP_ADDREF(p) do { \ 573 (p)->refcnt++; \ 574 IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow")); \ 575 } while (0) 576 #define SP_DELREF(p) do { \ 577 IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow")); \ 578 (p)->refcnt--; \ 579 } while (0) 580 581 582 /* 583 * Update the refcnt while holding the SPTREE lock. 584 */ 585 void 586 key_addref(struct secpolicy *sp) 587 { 588 SPTREE_LOCK(); 589 SP_ADDREF(sp); 590 SPTREE_UNLOCK(); 591 } 592 593 /* 594 * Return 0 when there are known to be no SP's for the specified 595 * direction. Otherwise return 1. This is used by IPsec code 596 * to optimize performance. 597 */ 598 int 599 key_havesp(u_int dir) 600 { 601 602 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? 603 LIST_FIRST(&V_sptree[dir]) != NULL : 1); 604 } 605 606 /* %%% IPsec policy management */ 607 /* 608 * allocating a SP for OUTBOUND or INBOUND packet. 609 * Must call key_freesp() later. 610 * OUT: NULL: not found 611 * others: found and return the pointer. 612 */ 613 struct secpolicy * 614 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag) 615 { 616 struct secpolicy *sp; 617 618 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 619 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 620 ("invalid direction %u", dir)); 621 622 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 623 printf("DP %s from %s:%u\n", __func__, where, tag)); 624 625 /* get a SP entry */ 626 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 627 printf("*** objects\n"); 628 kdebug_secpolicyindex(spidx)); 629 630 SPTREE_LOCK(); 631 LIST_FOREACH(sp, &V_sptree[dir], chain) { 632 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 633 printf("*** in SPD\n"); 634 kdebug_secpolicyindex(&sp->spidx)); 635 636 if (sp->state == IPSEC_SPSTATE_DEAD) 637 continue; 638 if (key_cmpspidx_withmask(&sp->spidx, spidx)) 639 goto found; 640 } 641 sp = NULL; 642 found: 643 if (sp) { 644 /* sanity check */ 645 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 646 647 /* found a SPD entry */ 648 sp->lastused = time_second; 649 SP_ADDREF(sp); 650 } 651 SPTREE_UNLOCK(); 652 653 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 654 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 655 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 656 return sp; 657 } 658 659 /* 660 * allocating a SP for OUTBOUND or INBOUND packet. 661 * Must call key_freesp() later. 662 * OUT: NULL: not found 663 * others: found and return the pointer. 664 */ 665 struct secpolicy * 666 key_allocsp2(u_int32_t spi, 667 union sockaddr_union *dst, 668 u_int8_t proto, 669 u_int dir, 670 const char* where, int tag) 671 { 672 struct secpolicy *sp; 673 674 IPSEC_ASSERT(dst != NULL, ("null dst")); 675 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 676 ("invalid direction %u", dir)); 677 678 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 679 printf("DP %s from %s:%u\n", __func__, where, tag)); 680 681 /* get a SP entry */ 682 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 683 printf("*** objects\n"); 684 printf("spi %u proto %u dir %u\n", spi, proto, dir); 685 kdebug_sockaddr(&dst->sa)); 686 687 SPTREE_LOCK(); 688 LIST_FOREACH(sp, &V_sptree[dir], chain) { 689 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 690 printf("*** in SPD\n"); 691 kdebug_secpolicyindex(&sp->spidx)); 692 693 if (sp->state == IPSEC_SPSTATE_DEAD) 694 continue; 695 /* compare simple values, then dst address */ 696 if (sp->spidx.ul_proto != proto) 697 continue; 698 /* NB: spi's must exist and match */ 699 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi) 700 continue; 701 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0) 702 goto found; 703 } 704 sp = NULL; 705 found: 706 if (sp) { 707 /* sanity check */ 708 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 709 710 /* found a SPD entry */ 711 sp->lastused = time_second; 712 SP_ADDREF(sp); 713 } 714 SPTREE_UNLOCK(); 715 716 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 717 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 718 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 719 return sp; 720 } 721 722 #if 0 723 /* 724 * return a policy that matches this particular inbound packet. 725 * XXX slow 726 */ 727 struct secpolicy * 728 key_gettunnel(const struct sockaddr *osrc, 729 const struct sockaddr *odst, 730 const struct sockaddr *isrc, 731 const struct sockaddr *idst, 732 const char* where, int tag) 733 { 734 struct secpolicy *sp; 735 const int dir = IPSEC_DIR_INBOUND; 736 struct ipsecrequest *r1, *r2, *p; 737 struct secpolicyindex spidx; 738 739 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 740 printf("DP %s from %s:%u\n", __func__, where, tag)); 741 742 if (isrc->sa_family != idst->sa_family) { 743 ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.", 744 __func__, isrc->sa_family, idst->sa_family)); 745 sp = NULL; 746 goto done; 747 } 748 749 SPTREE_LOCK(); 750 LIST_FOREACH(sp, &V_sptree[dir], chain) { 751 if (sp->state == IPSEC_SPSTATE_DEAD) 752 continue; 753 754 r1 = r2 = NULL; 755 for (p = sp->req; p; p = p->next) { 756 if (p->saidx.mode != IPSEC_MODE_TUNNEL) 757 continue; 758 759 r1 = r2; 760 r2 = p; 761 762 if (!r1) { 763 /* here we look at address matches only */ 764 spidx = sp->spidx; 765 if (isrc->sa_len > sizeof(spidx.src) || 766 idst->sa_len > sizeof(spidx.dst)) 767 continue; 768 bcopy(isrc, &spidx.src, isrc->sa_len); 769 bcopy(idst, &spidx.dst, idst->sa_len); 770 if (!key_cmpspidx_withmask(&sp->spidx, &spidx)) 771 continue; 772 } else { 773 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) || 774 key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0)) 775 continue; 776 } 777 778 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) || 779 key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0)) 780 continue; 781 782 goto found; 783 } 784 } 785 sp = NULL; 786 found: 787 if (sp) { 788 sp->lastused = time_second; 789 SP_ADDREF(sp); 790 } 791 SPTREE_UNLOCK(); 792 done: 793 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 794 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 795 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 796 return sp; 797 } 798 #endif 799 800 /* 801 * allocating an SA entry for an *OUTBOUND* packet. 802 * checking each request entries in SP, and acquire an SA if need. 803 * OUT: 0: there are valid requests. 804 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. 805 */ 806 int 807 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx) 808 { 809 u_int level; 810 int error; 811 812 IPSEC_ASSERT(isr != NULL, ("null isr")); 813 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 814 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT || 815 saidx->mode == IPSEC_MODE_TUNNEL, 816 ("unexpected policy %u", saidx->mode)); 817 818 /* 819 * XXX guard against protocol callbacks from the crypto 820 * thread as they reference ipsecrequest.sav which we 821 * temporarily null out below. Need to rethink how we 822 * handle bundled SA's in the callback thread. 823 */ 824 IPSECREQUEST_LOCK_ASSERT(isr); 825 826 /* get current level */ 827 level = ipsec_get_reqlevel(isr); 828 #if 0 829 /* 830 * We do allocate new SA only if the state of SA in the holder is 831 * SADB_SASTATE_DEAD. The SA for outbound must be the oldest. 832 */ 833 if (isr->sav != NULL) { 834 if (isr->sav->sah == NULL) 835 panic("%s: sah is null.\n", __func__); 836 if (isr->sav == (struct secasvar *)LIST_FIRST( 837 &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) { 838 KEY_FREESAV(&isr->sav); 839 isr->sav = NULL; 840 } 841 } 842 #else 843 /* 844 * we free any SA stashed in the IPsec request because a different 845 * SA may be involved each time this request is checked, either 846 * because new SAs are being configured, or this request is 847 * associated with an unconnected datagram socket, or this request 848 * is associated with a system default policy. 849 * 850 * The operation may have negative impact to performance. We may 851 * want to check cached SA carefully, rather than picking new SA 852 * every time. 853 */ 854 if (isr->sav != NULL) { 855 KEY_FREESAV(&isr->sav); 856 isr->sav = NULL; 857 } 858 #endif 859 860 /* 861 * new SA allocation if no SA found. 862 * key_allocsa_policy should allocate the oldest SA available. 863 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt. 864 */ 865 if (isr->sav == NULL) 866 isr->sav = key_allocsa_policy(saidx); 867 868 /* When there is SA. */ 869 if (isr->sav != NULL) { 870 if (isr->sav->state != SADB_SASTATE_MATURE && 871 isr->sav->state != SADB_SASTATE_DYING) 872 return EINVAL; 873 return 0; 874 } 875 876 /* there is no SA */ 877 error = key_acquire(saidx, isr->sp); 878 if (error != 0) { 879 /* XXX What should I do ? */ 880 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 881 __func__, error)); 882 return error; 883 } 884 885 if (level != IPSEC_LEVEL_REQUIRE) { 886 /* XXX sigh, the interface to this routine is botched */ 887 IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA")); 888 return 0; 889 } else { 890 return ENOENT; 891 } 892 } 893 894 /* 895 * allocating a SA for policy entry from SAD. 896 * NOTE: searching SAD of aliving state. 897 * OUT: NULL: not found. 898 * others: found and return the pointer. 899 */ 900 static struct secasvar * 901 key_allocsa_policy(const struct secasindex *saidx) 902 { 903 #define N(a) _ARRAYLEN(a) 904 struct secashead *sah; 905 struct secasvar *sav; 906 u_int stateidx, arraysize; 907 const u_int *state_valid; 908 909 state_valid = NULL; /* silence gcc */ 910 arraysize = 0; /* silence gcc */ 911 912 SAHTREE_LOCK(); 913 LIST_FOREACH(sah, &V_sahtree, chain) { 914 if (sah->state == SADB_SASTATE_DEAD) 915 continue; 916 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) { 917 if (V_key_preferred_oldsa) { 918 state_valid = saorder_state_valid_prefer_old; 919 arraysize = N(saorder_state_valid_prefer_old); 920 } else { 921 state_valid = saorder_state_valid_prefer_new; 922 arraysize = N(saorder_state_valid_prefer_new); 923 } 924 break; 925 } 926 } 927 SAHTREE_UNLOCK(); 928 if (sah == NULL) 929 return NULL; 930 931 /* search valid state */ 932 for (stateidx = 0; stateidx < arraysize; stateidx++) { 933 sav = key_do_allocsa_policy(sah, state_valid[stateidx]); 934 if (sav != NULL) 935 return sav; 936 } 937 938 return NULL; 939 #undef N 940 } 941 942 /* 943 * searching SAD with direction, protocol, mode and state. 944 * called by key_allocsa_policy(). 945 * OUT: 946 * NULL : not found 947 * others : found, pointer to a SA. 948 */ 949 static struct secasvar * 950 key_do_allocsa_policy(struct secashead *sah, u_int state) 951 { 952 struct secasvar *sav, *nextsav, *candidate, *d; 953 954 /* initilize */ 955 candidate = NULL; 956 957 SAHTREE_LOCK(); 958 for (sav = LIST_FIRST(&sah->savtree[state]); 959 sav != NULL; 960 sav = nextsav) { 961 962 nextsav = LIST_NEXT(sav, chain); 963 964 /* sanity check */ 965 KEY_CHKSASTATE(sav->state, state, __func__); 966 967 /* initialize */ 968 if (candidate == NULL) { 969 candidate = sav; 970 continue; 971 } 972 973 /* Which SA is the better ? */ 974 975 IPSEC_ASSERT(candidate->lft_c != NULL, 976 ("null candidate lifetime")); 977 IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime")); 978 979 /* What the best method is to compare ? */ 980 if (V_key_preferred_oldsa) { 981 if (candidate->lft_c->addtime > 982 sav->lft_c->addtime) { 983 candidate = sav; 984 } 985 continue; 986 /*NOTREACHED*/ 987 } 988 989 /* preferred new sa rather than old sa */ 990 if (candidate->lft_c->addtime < 991 sav->lft_c->addtime) { 992 d = candidate; 993 candidate = sav; 994 } else 995 d = sav; 996 997 /* 998 * prepared to delete the SA when there is more 999 * suitable candidate and the lifetime of the SA is not 1000 * permanent. 1001 */ 1002 if (d->lft_h->addtime != 0) { 1003 struct mbuf *m, *result; 1004 u_int8_t satype; 1005 1006 key_sa_chgstate(d, SADB_SASTATE_DEAD); 1007 1008 IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count")); 1009 1010 satype = key_proto2satype(d->sah->saidx.proto); 1011 if (satype == 0) 1012 goto msgfail; 1013 1014 m = key_setsadbmsg(SADB_DELETE, 0, 1015 satype, 0, 0, d->refcnt - 1); 1016 if (!m) 1017 goto msgfail; 1018 result = m; 1019 1020 /* set sadb_address for saidx's. */ 1021 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 1022 &d->sah->saidx.src.sa, 1023 d->sah->saidx.src.sa.sa_len << 3, 1024 IPSEC_ULPROTO_ANY); 1025 if (!m) 1026 goto msgfail; 1027 m_cat(result, m); 1028 1029 /* set sadb_address for saidx's. */ 1030 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 1031 &d->sah->saidx.dst.sa, 1032 d->sah->saidx.dst.sa.sa_len << 3, 1033 IPSEC_ULPROTO_ANY); 1034 if (!m) 1035 goto msgfail; 1036 m_cat(result, m); 1037 1038 /* create SA extension */ 1039 m = key_setsadbsa(d); 1040 if (!m) 1041 goto msgfail; 1042 m_cat(result, m); 1043 1044 if (result->m_len < sizeof(struct sadb_msg)) { 1045 result = m_pullup(result, 1046 sizeof(struct sadb_msg)); 1047 if (result == NULL) 1048 goto msgfail; 1049 } 1050 1051 result->m_pkthdr.len = 0; 1052 for (m = result; m; m = m->m_next) 1053 result->m_pkthdr.len += m->m_len; 1054 mtod(result, struct sadb_msg *)->sadb_msg_len = 1055 PFKEY_UNIT64(result->m_pkthdr.len); 1056 1057 if (key_sendup_mbuf(NULL, result, 1058 KEY_SENDUP_REGISTERED)) 1059 goto msgfail; 1060 msgfail: 1061 KEY_FREESAV(&d); 1062 } 1063 } 1064 if (candidate) { 1065 sa_addref(candidate); 1066 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1067 printf("DP %s cause refcnt++:%d SA:%p\n", 1068 __func__, candidate->refcnt, candidate)); 1069 } 1070 SAHTREE_UNLOCK(); 1071 1072 return candidate; 1073 } 1074 1075 /* 1076 * allocating a usable SA entry for a *INBOUND* packet. 1077 * Must call key_freesav() later. 1078 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). 1079 * NULL: not found, or error occured. 1080 * 1081 * In the comparison, no source address is used--for RFC2401 conformance. 1082 * To quote, from section 4.1: 1083 * A security association is uniquely identified by a triple consisting 1084 * of a Security Parameter Index (SPI), an IP Destination Address, and a 1085 * security protocol (AH or ESP) identifier. 1086 * Note that, however, we do need to keep source address in IPsec SA. 1087 * IKE specification and PF_KEY specification do assume that we 1088 * keep source address in IPsec SA. We see a tricky situation here. 1089 */ 1090 struct secasvar * 1091 key_allocsa( 1092 union sockaddr_union *dst, 1093 u_int proto, 1094 u_int32_t spi, 1095 const char* where, int tag) 1096 { 1097 struct secashead *sah; 1098 struct secasvar *sav; 1099 u_int stateidx, arraysize, state; 1100 const u_int *saorder_state_valid; 1101 int chkport; 1102 1103 IPSEC_ASSERT(dst != NULL, ("null dst address")); 1104 1105 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1106 printf("DP %s from %s:%u\n", __func__, where, tag)); 1107 1108 #ifdef IPSEC_NAT_T 1109 chkport = (dst->sa.sa_family == AF_INET && 1110 dst->sa.sa_len == sizeof(struct sockaddr_in) && 1111 dst->sin.sin_port != 0); 1112 #else 1113 chkport = 0; 1114 #endif 1115 1116 /* 1117 * searching SAD. 1118 * XXX: to be checked internal IP header somewhere. Also when 1119 * IPsec tunnel packet is received. But ESP tunnel mode is 1120 * encrypted so we can't check internal IP header. 1121 */ 1122 SAHTREE_LOCK(); 1123 if (V_key_preferred_oldsa) { 1124 saorder_state_valid = saorder_state_valid_prefer_old; 1125 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); 1126 } else { 1127 saorder_state_valid = saorder_state_valid_prefer_new; 1128 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); 1129 } 1130 LIST_FOREACH(sah, &V_sahtree, chain) { 1131 /* search valid state */ 1132 for (stateidx = 0; stateidx < arraysize; stateidx++) { 1133 state = saorder_state_valid[stateidx]; 1134 LIST_FOREACH(sav, &sah->savtree[state], chain) { 1135 /* sanity check */ 1136 KEY_CHKSASTATE(sav->state, state, __func__); 1137 /* do not return entries w/ unusable state */ 1138 if (sav->state != SADB_SASTATE_MATURE && 1139 sav->state != SADB_SASTATE_DYING) 1140 continue; 1141 if (proto != sav->sah->saidx.proto) 1142 continue; 1143 if (spi != sav->spi) 1144 continue; 1145 #if 0 /* don't check src */ 1146 /* check src address */ 1147 if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, chkport) != 0) 1148 continue; 1149 #endif 1150 /* check dst address */ 1151 if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, chkport) != 0) 1152 continue; 1153 sa_addref(sav); 1154 goto done; 1155 } 1156 } 1157 } 1158 sav = NULL; 1159 done: 1160 SAHTREE_UNLOCK(); 1161 1162 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1163 printf("DP %s return SA:%p; refcnt %u\n", __func__, 1164 sav, sav ? sav->refcnt : 0)); 1165 return sav; 1166 } 1167 1168 /* 1169 * Must be called after calling key_allocsp(). 1170 * For both the packet without socket and key_freeso(). 1171 */ 1172 void 1173 _key_freesp(struct secpolicy **spp, const char* where, int tag) 1174 { 1175 struct secpolicy *sp = *spp; 1176 1177 IPSEC_ASSERT(sp != NULL, ("null sp")); 1178 1179 SPTREE_LOCK(); 1180 SP_DELREF(sp); 1181 1182 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1183 printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n", 1184 __func__, sp, sp->id, where, tag, sp->refcnt)); 1185 1186 if (sp->refcnt == 0) { 1187 *spp = NULL; 1188 key_delsp(sp); 1189 } 1190 SPTREE_UNLOCK(); 1191 } 1192 1193 /* 1194 * Must be called after calling key_allocsp(). 1195 * For the packet with socket. 1196 */ 1197 void 1198 key_freeso(struct socket *so) 1199 { 1200 IPSEC_ASSERT(so != NULL, ("null so")); 1201 1202 switch (so->so_proto->pr_domain->dom_family) { 1203 #if defined(INET) || defined(INET6) 1204 #ifdef INET 1205 case PF_INET: 1206 #endif 1207 #ifdef INET6 1208 case PF_INET6: 1209 #endif 1210 { 1211 struct inpcb *pcb = sotoinpcb(so); 1212 1213 /* Does it have a PCB ? */ 1214 if (pcb == NULL) 1215 return; 1216 key_freesp_so(&pcb->inp_sp->sp_in); 1217 key_freesp_so(&pcb->inp_sp->sp_out); 1218 } 1219 break; 1220 #endif /* INET || INET6 */ 1221 default: 1222 ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n", 1223 __func__, so->so_proto->pr_domain->dom_family)); 1224 return; 1225 } 1226 } 1227 1228 static void 1229 key_freesp_so(struct secpolicy **sp) 1230 { 1231 IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp")); 1232 1233 if ((*sp)->policy == IPSEC_POLICY_ENTRUST || 1234 (*sp)->policy == IPSEC_POLICY_BYPASS) 1235 return; 1236 1237 IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC, 1238 ("invalid policy %u", (*sp)->policy)); 1239 KEY_FREESP(sp); 1240 } 1241 1242 /* 1243 * Must be called after calling key_allocsa(). 1244 * This function is called by key_freesp() to free some SA allocated 1245 * for a policy. 1246 */ 1247 void 1248 key_freesav(struct secasvar **psav, const char* where, int tag) 1249 { 1250 struct secasvar *sav = *psav; 1251 1252 IPSEC_ASSERT(sav != NULL, ("null sav")); 1253 1254 if (sa_delref(sav)) { 1255 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1256 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1257 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1258 *psav = NULL; 1259 key_delsav(sav); 1260 } else { 1261 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1262 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1263 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1264 } 1265 } 1266 1267 /* %%% SPD management */ 1268 /* 1269 * free security policy entry. 1270 */ 1271 static void 1272 key_delsp(struct secpolicy *sp) 1273 { 1274 struct ipsecrequest *isr, *nextisr; 1275 1276 IPSEC_ASSERT(sp != NULL, ("null sp")); 1277 SPTREE_LOCK_ASSERT(); 1278 1279 sp->state = IPSEC_SPSTATE_DEAD; 1280 1281 IPSEC_ASSERT(sp->refcnt == 0, 1282 ("SP with references deleted (refcnt %u)", sp->refcnt)); 1283 1284 /* remove from SP index */ 1285 if (__LIST_CHAINED(sp)) 1286 LIST_REMOVE(sp, chain); 1287 1288 for (isr = sp->req; isr != NULL; isr = nextisr) { 1289 if (isr->sav != NULL) { 1290 KEY_FREESAV(&isr->sav); 1291 isr->sav = NULL; 1292 } 1293 1294 nextisr = isr->next; 1295 ipsec_delisr(isr); 1296 } 1297 _key_delsp(sp); 1298 } 1299 1300 /* 1301 * search SPD 1302 * OUT: NULL : not found 1303 * others : found, pointer to a SP. 1304 */ 1305 static struct secpolicy * 1306 key_getsp(struct secpolicyindex *spidx) 1307 { 1308 struct secpolicy *sp; 1309 1310 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 1311 1312 SPTREE_LOCK(); 1313 LIST_FOREACH(sp, &V_sptree[spidx->dir], chain) { 1314 if (sp->state == IPSEC_SPSTATE_DEAD) 1315 continue; 1316 if (key_cmpspidx_exactly(spidx, &sp->spidx)) { 1317 SP_ADDREF(sp); 1318 break; 1319 } 1320 } 1321 SPTREE_UNLOCK(); 1322 1323 return sp; 1324 } 1325 1326 /* 1327 * get SP by index. 1328 * OUT: NULL : not found 1329 * others : found, pointer to a SP. 1330 */ 1331 static struct secpolicy * 1332 key_getspbyid(u_int32_t id) 1333 { 1334 struct secpolicy *sp; 1335 1336 SPTREE_LOCK(); 1337 LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_INBOUND], chain) { 1338 if (sp->state == IPSEC_SPSTATE_DEAD) 1339 continue; 1340 if (sp->id == id) { 1341 SP_ADDREF(sp); 1342 goto done; 1343 } 1344 } 1345 1346 LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_OUTBOUND], chain) { 1347 if (sp->state == IPSEC_SPSTATE_DEAD) 1348 continue; 1349 if (sp->id == id) { 1350 SP_ADDREF(sp); 1351 goto done; 1352 } 1353 } 1354 done: 1355 SPTREE_UNLOCK(); 1356 1357 return sp; 1358 } 1359 1360 struct secpolicy * 1361 key_newsp(const char* where, int tag) 1362 { 1363 struct secpolicy *newsp = NULL; 1364 1365 newsp = (struct secpolicy *) 1366 malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO); 1367 if (newsp) { 1368 SECPOLICY_LOCK_INIT(newsp); 1369 newsp->refcnt = 1; 1370 newsp->req = NULL; 1371 } 1372 1373 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1374 printf("DP %s from %s:%u return SP:%p\n", __func__, 1375 where, tag, newsp)); 1376 return newsp; 1377 } 1378 1379 static void 1380 _key_delsp(struct secpolicy *sp) 1381 { 1382 SECPOLICY_LOCK_DESTROY(sp); 1383 free(sp, M_IPSEC_SP); 1384 } 1385 1386 /* 1387 * create secpolicy structure from sadb_x_policy structure. 1388 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, 1389 * so must be set properly later. 1390 */ 1391 struct secpolicy * 1392 key_msg2sp(xpl0, len, error) 1393 struct sadb_x_policy *xpl0; 1394 size_t len; 1395 int *error; 1396 { 1397 struct secpolicy *newsp; 1398 1399 IPSEC_ASSERT(xpl0 != NULL, ("null xpl0")); 1400 IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len)); 1401 1402 if (len != PFKEY_EXTLEN(xpl0)) { 1403 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__)); 1404 *error = EINVAL; 1405 return NULL; 1406 } 1407 1408 if ((newsp = KEY_NEWSP()) == NULL) { 1409 *error = ENOBUFS; 1410 return NULL; 1411 } 1412 1413 newsp->spidx.dir = xpl0->sadb_x_policy_dir; 1414 newsp->policy = xpl0->sadb_x_policy_type; 1415 1416 /* check policy */ 1417 switch (xpl0->sadb_x_policy_type) { 1418 case IPSEC_POLICY_DISCARD: 1419 case IPSEC_POLICY_NONE: 1420 case IPSEC_POLICY_ENTRUST: 1421 case IPSEC_POLICY_BYPASS: 1422 newsp->req = NULL; 1423 break; 1424 1425 case IPSEC_POLICY_IPSEC: 1426 { 1427 int tlen; 1428 struct sadb_x_ipsecrequest *xisr; 1429 struct ipsecrequest **p_isr = &newsp->req; 1430 1431 /* validity check */ 1432 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { 1433 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", 1434 __func__)); 1435 KEY_FREESP(&newsp); 1436 *error = EINVAL; 1437 return NULL; 1438 } 1439 1440 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); 1441 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1); 1442 1443 while (tlen > 0) { 1444 /* length check */ 1445 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { 1446 ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest " 1447 "length.\n", __func__)); 1448 KEY_FREESP(&newsp); 1449 *error = EINVAL; 1450 return NULL; 1451 } 1452 1453 /* allocate request buffer */ 1454 /* NB: data structure is zero'd */ 1455 *p_isr = ipsec_newisr(); 1456 if ((*p_isr) == NULL) { 1457 ipseclog((LOG_DEBUG, 1458 "%s: No more memory.\n", __func__)); 1459 KEY_FREESP(&newsp); 1460 *error = ENOBUFS; 1461 return NULL; 1462 } 1463 1464 /* set values */ 1465 switch (xisr->sadb_x_ipsecrequest_proto) { 1466 case IPPROTO_ESP: 1467 case IPPROTO_AH: 1468 case IPPROTO_IPCOMP: 1469 break; 1470 default: 1471 ipseclog((LOG_DEBUG, 1472 "%s: invalid proto type=%u\n", __func__, 1473 xisr->sadb_x_ipsecrequest_proto)); 1474 KEY_FREESP(&newsp); 1475 *error = EPROTONOSUPPORT; 1476 return NULL; 1477 } 1478 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; 1479 1480 switch (xisr->sadb_x_ipsecrequest_mode) { 1481 case IPSEC_MODE_TRANSPORT: 1482 case IPSEC_MODE_TUNNEL: 1483 break; 1484 case IPSEC_MODE_ANY: 1485 default: 1486 ipseclog((LOG_DEBUG, 1487 "%s: invalid mode=%u\n", __func__, 1488 xisr->sadb_x_ipsecrequest_mode)); 1489 KEY_FREESP(&newsp); 1490 *error = EINVAL; 1491 return NULL; 1492 } 1493 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; 1494 1495 switch (xisr->sadb_x_ipsecrequest_level) { 1496 case IPSEC_LEVEL_DEFAULT: 1497 case IPSEC_LEVEL_USE: 1498 case IPSEC_LEVEL_REQUIRE: 1499 break; 1500 case IPSEC_LEVEL_UNIQUE: 1501 /* validity check */ 1502 /* 1503 * If range violation of reqid, kernel will 1504 * update it, don't refuse it. 1505 */ 1506 if (xisr->sadb_x_ipsecrequest_reqid 1507 > IPSEC_MANUAL_REQID_MAX) { 1508 ipseclog((LOG_DEBUG, 1509 "%s: reqid=%d range " 1510 "violation, updated by kernel.\n", 1511 __func__, 1512 xisr->sadb_x_ipsecrequest_reqid)); 1513 xisr->sadb_x_ipsecrequest_reqid = 0; 1514 } 1515 1516 /* allocate new reqid id if reqid is zero. */ 1517 if (xisr->sadb_x_ipsecrequest_reqid == 0) { 1518 u_int32_t reqid; 1519 if ((reqid = key_newreqid()) == 0) { 1520 KEY_FREESP(&newsp); 1521 *error = ENOBUFS; 1522 return NULL; 1523 } 1524 (*p_isr)->saidx.reqid = reqid; 1525 xisr->sadb_x_ipsecrequest_reqid = reqid; 1526 } else { 1527 /* set it for manual keying. */ 1528 (*p_isr)->saidx.reqid = 1529 xisr->sadb_x_ipsecrequest_reqid; 1530 } 1531 break; 1532 1533 default: 1534 ipseclog((LOG_DEBUG, "%s: invalid level=%u\n", 1535 __func__, 1536 xisr->sadb_x_ipsecrequest_level)); 1537 KEY_FREESP(&newsp); 1538 *error = EINVAL; 1539 return NULL; 1540 } 1541 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; 1542 1543 /* set IP addresses if there */ 1544 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { 1545 struct sockaddr *paddr; 1546 1547 paddr = (struct sockaddr *)(xisr + 1); 1548 1549 /* validity check */ 1550 if (paddr->sa_len 1551 > sizeof((*p_isr)->saidx.src)) { 1552 ipseclog((LOG_DEBUG, "%s: invalid " 1553 "request address length.\n", 1554 __func__)); 1555 KEY_FREESP(&newsp); 1556 *error = EINVAL; 1557 return NULL; 1558 } 1559 bcopy(paddr, &(*p_isr)->saidx.src, 1560 paddr->sa_len); 1561 1562 paddr = (struct sockaddr *)((caddr_t)paddr 1563 + paddr->sa_len); 1564 1565 /* validity check */ 1566 if (paddr->sa_len 1567 > sizeof((*p_isr)->saidx.dst)) { 1568 ipseclog((LOG_DEBUG, "%s: invalid " 1569 "request address length.\n", 1570 __func__)); 1571 KEY_FREESP(&newsp); 1572 *error = EINVAL; 1573 return NULL; 1574 } 1575 bcopy(paddr, &(*p_isr)->saidx.dst, 1576 paddr->sa_len); 1577 } 1578 1579 (*p_isr)->sp = newsp; 1580 1581 /* initialization for the next. */ 1582 p_isr = &(*p_isr)->next; 1583 tlen -= xisr->sadb_x_ipsecrequest_len; 1584 1585 /* validity check */ 1586 if (tlen < 0) { 1587 ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n", 1588 __func__)); 1589 KEY_FREESP(&newsp); 1590 *error = EINVAL; 1591 return NULL; 1592 } 1593 1594 xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr 1595 + xisr->sadb_x_ipsecrequest_len); 1596 } 1597 } 1598 break; 1599 default: 1600 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); 1601 KEY_FREESP(&newsp); 1602 *error = EINVAL; 1603 return NULL; 1604 } 1605 1606 *error = 0; 1607 return newsp; 1608 } 1609 1610 static u_int32_t 1611 key_newreqid() 1612 { 1613 static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 1614 1615 auto_reqid = (auto_reqid == ~0 1616 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); 1617 1618 /* XXX should be unique check */ 1619 1620 return auto_reqid; 1621 } 1622 1623 /* 1624 * copy secpolicy struct to sadb_x_policy structure indicated. 1625 */ 1626 struct mbuf * 1627 key_sp2msg(sp) 1628 struct secpolicy *sp; 1629 { 1630 struct sadb_x_policy *xpl; 1631 int tlen; 1632 caddr_t p; 1633 struct mbuf *m; 1634 1635 IPSEC_ASSERT(sp != NULL, ("null policy")); 1636 1637 tlen = key_getspreqmsglen(sp); 1638 1639 m = key_alloc_mbuf(tlen); 1640 if (!m || m->m_next) { /*XXX*/ 1641 if (m) 1642 m_freem(m); 1643 return NULL; 1644 } 1645 1646 m->m_len = tlen; 1647 m->m_next = NULL; 1648 xpl = mtod(m, struct sadb_x_policy *); 1649 bzero(xpl, tlen); 1650 1651 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen); 1652 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 1653 xpl->sadb_x_policy_type = sp->policy; 1654 xpl->sadb_x_policy_dir = sp->spidx.dir; 1655 xpl->sadb_x_policy_id = sp->id; 1656 p = (caddr_t)xpl + sizeof(*xpl); 1657 1658 /* if is the policy for ipsec ? */ 1659 if (sp->policy == IPSEC_POLICY_IPSEC) { 1660 struct sadb_x_ipsecrequest *xisr; 1661 struct ipsecrequest *isr; 1662 1663 for (isr = sp->req; isr != NULL; isr = isr->next) { 1664 1665 xisr = (struct sadb_x_ipsecrequest *)p; 1666 1667 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; 1668 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; 1669 xisr->sadb_x_ipsecrequest_level = isr->level; 1670 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; 1671 1672 p += sizeof(*xisr); 1673 bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len); 1674 p += isr->saidx.src.sa.sa_len; 1675 bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len); 1676 p += isr->saidx.src.sa.sa_len; 1677 1678 xisr->sadb_x_ipsecrequest_len = 1679 PFKEY_ALIGN8(sizeof(*xisr) 1680 + isr->saidx.src.sa.sa_len 1681 + isr->saidx.dst.sa.sa_len); 1682 } 1683 } 1684 1685 return m; 1686 } 1687 1688 /* m will not be freed nor modified */ 1689 static struct mbuf * 1690 #ifdef __STDC__ 1691 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, 1692 int ndeep, int nitem, ...) 1693 #else 1694 key_gather_mbuf(m, mhp, ndeep, nitem, va_alist) 1695 struct mbuf *m; 1696 const struct sadb_msghdr *mhp; 1697 int ndeep; 1698 int nitem; 1699 va_dcl 1700 #endif 1701 { 1702 va_list ap; 1703 int idx; 1704 int i; 1705 struct mbuf *result = NULL, *n; 1706 int len; 1707 1708 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1709 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1710 1711 va_start(ap, nitem); 1712 for (i = 0; i < nitem; i++) { 1713 idx = va_arg(ap, int); 1714 if (idx < 0 || idx > SADB_EXT_MAX) 1715 goto fail; 1716 /* don't attempt to pull empty extension */ 1717 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) 1718 continue; 1719 if (idx != SADB_EXT_RESERVED && 1720 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) 1721 continue; 1722 1723 if (idx == SADB_EXT_RESERVED) { 1724 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 1725 1726 IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len)); 1727 1728 MGETHDR(n, M_DONTWAIT, MT_DATA); 1729 if (!n) 1730 goto fail; 1731 n->m_len = len; 1732 n->m_next = NULL; 1733 m_copydata(m, 0, sizeof(struct sadb_msg), 1734 mtod(n, caddr_t)); 1735 } else if (i < ndeep) { 1736 len = mhp->extlen[idx]; 1737 n = key_alloc_mbuf(len); 1738 if (!n || n->m_next) { /*XXX*/ 1739 if (n) 1740 m_freem(n); 1741 goto fail; 1742 } 1743 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], 1744 mtod(n, caddr_t)); 1745 } else { 1746 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], 1747 M_DONTWAIT); 1748 } 1749 if (n == NULL) 1750 goto fail; 1751 1752 if (result) 1753 m_cat(result, n); 1754 else 1755 result = n; 1756 } 1757 va_end(ap); 1758 1759 if ((result->m_flags & M_PKTHDR) != 0) { 1760 result->m_pkthdr.len = 0; 1761 for (n = result; n; n = n->m_next) 1762 result->m_pkthdr.len += n->m_len; 1763 } 1764 1765 return result; 1766 1767 fail: 1768 m_freem(result); 1769 return NULL; 1770 } 1771 1772 /* 1773 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing 1774 * add an entry to SP database, when received 1775 * <base, address(SD), (lifetime(H),) policy> 1776 * from the user(?). 1777 * Adding to SP database, 1778 * and send 1779 * <base, address(SD), (lifetime(H),) policy> 1780 * to the socket which was send. 1781 * 1782 * SPDADD set a unique policy entry. 1783 * SPDSETIDX like SPDADD without a part of policy requests. 1784 * SPDUPDATE replace a unique policy entry. 1785 * 1786 * m will always be freed. 1787 */ 1788 static int 1789 key_spdadd(so, m, mhp) 1790 struct socket *so; 1791 struct mbuf *m; 1792 const struct sadb_msghdr *mhp; 1793 { 1794 struct sadb_address *src0, *dst0; 1795 struct sadb_x_policy *xpl0, *xpl; 1796 struct sadb_lifetime *lft = NULL; 1797 struct secpolicyindex spidx; 1798 struct secpolicy *newsp; 1799 int error; 1800 1801 IPSEC_ASSERT(so != NULL, ("null socket")); 1802 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1803 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1804 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 1805 1806 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 1807 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 1808 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 1809 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n")); 1810 return key_senderror(so, m, EINVAL); 1811 } 1812 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 1813 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 1814 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 1815 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1816 __func__)); 1817 return key_senderror(so, m, EINVAL); 1818 } 1819 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { 1820 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] 1821 < sizeof(struct sadb_lifetime)) { 1822 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1823 __func__)); 1824 return key_senderror(so, m, EINVAL); 1825 } 1826 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 1827 } 1828 1829 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 1830 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 1831 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 1832 1833 /* 1834 * Note: do not parse SADB_X_EXT_NAT_T_* here: 1835 * we are processing traffic endpoints. 1836 */ 1837 1838 /* make secindex */ 1839 /* XXX boundary check against sa_len */ 1840 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1841 src0 + 1, 1842 dst0 + 1, 1843 src0->sadb_address_prefixlen, 1844 dst0->sadb_address_prefixlen, 1845 src0->sadb_address_proto, 1846 &spidx); 1847 1848 /* checking the direciton. */ 1849 switch (xpl0->sadb_x_policy_dir) { 1850 case IPSEC_DIR_INBOUND: 1851 case IPSEC_DIR_OUTBOUND: 1852 break; 1853 default: 1854 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 1855 mhp->msg->sadb_msg_errno = EINVAL; 1856 return 0; 1857 } 1858 1859 /* check policy */ 1860 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */ 1861 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST 1862 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { 1863 ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__)); 1864 return key_senderror(so, m, EINVAL); 1865 } 1866 1867 /* policy requests are mandatory when action is ipsec. */ 1868 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX 1869 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC 1870 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { 1871 ipseclog((LOG_DEBUG, "%s: some policy requests part required\n", 1872 __func__)); 1873 return key_senderror(so, m, EINVAL); 1874 } 1875 1876 /* 1877 * checking there is SP already or not. 1878 * SPDUPDATE doesn't depend on whether there is a SP or not. 1879 * If the type is either SPDADD or SPDSETIDX AND a SP is found, 1880 * then error. 1881 */ 1882 newsp = key_getsp(&spidx); 1883 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1884 if (newsp) { 1885 newsp->state = IPSEC_SPSTATE_DEAD; 1886 KEY_FREESP(&newsp); 1887 } 1888 } else { 1889 if (newsp != NULL) { 1890 KEY_FREESP(&newsp); 1891 ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n", 1892 __func__)); 1893 return key_senderror(so, m, EEXIST); 1894 } 1895 } 1896 1897 /* allocation new SP entry */ 1898 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) { 1899 return key_senderror(so, m, error); 1900 } 1901 1902 if ((newsp->id = key_getnewspid()) == 0) { 1903 _key_delsp(newsp); 1904 return key_senderror(so, m, ENOBUFS); 1905 } 1906 1907 /* XXX boundary check against sa_len */ 1908 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1909 src0 + 1, 1910 dst0 + 1, 1911 src0->sadb_address_prefixlen, 1912 dst0->sadb_address_prefixlen, 1913 src0->sadb_address_proto, 1914 &newsp->spidx); 1915 1916 /* sanity check on addr pair */ 1917 if (((struct sockaddr *)(src0 + 1))->sa_family != 1918 ((struct sockaddr *)(dst0+ 1))->sa_family) { 1919 _key_delsp(newsp); 1920 return key_senderror(so, m, EINVAL); 1921 } 1922 if (((struct sockaddr *)(src0 + 1))->sa_len != 1923 ((struct sockaddr *)(dst0+ 1))->sa_len) { 1924 _key_delsp(newsp); 1925 return key_senderror(so, m, EINVAL); 1926 } 1927 #if 1 1928 if (newsp->req && newsp->req->saidx.src.sa.sa_family && newsp->req->saidx.dst.sa.sa_family) { 1929 if (newsp->req->saidx.src.sa.sa_family != newsp->req->saidx.dst.sa.sa_family) { 1930 _key_delsp(newsp); 1931 return key_senderror(so, m, EINVAL); 1932 } 1933 } 1934 #endif 1935 1936 newsp->created = time_second; 1937 newsp->lastused = newsp->created; 1938 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; 1939 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; 1940 1941 newsp->refcnt = 1; /* do not reclaim until I say I do */ 1942 newsp->state = IPSEC_SPSTATE_ALIVE; 1943 LIST_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, secpolicy, chain); 1944 1945 /* delete the entry in spacqtree */ 1946 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1947 struct secspacq *spacq = key_getspacq(&spidx); 1948 if (spacq != NULL) { 1949 /* reset counter in order to deletion by timehandler. */ 1950 spacq->created = time_second; 1951 spacq->count = 0; 1952 SPACQ_UNLOCK(); 1953 } 1954 } 1955 1956 { 1957 struct mbuf *n, *mpolicy; 1958 struct sadb_msg *newmsg; 1959 int off; 1960 1961 /* 1962 * Note: do not send SADB_X_EXT_NAT_T_* here: 1963 * we are sending traffic endpoints. 1964 */ 1965 1966 /* create new sadb_msg to reply. */ 1967 if (lft) { 1968 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, 1969 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, 1970 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1971 } else { 1972 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, 1973 SADB_X_EXT_POLICY, 1974 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1975 } 1976 if (!n) 1977 return key_senderror(so, m, ENOBUFS); 1978 1979 if (n->m_len < sizeof(*newmsg)) { 1980 n = m_pullup(n, sizeof(*newmsg)); 1981 if (!n) 1982 return key_senderror(so, m, ENOBUFS); 1983 } 1984 newmsg = mtod(n, struct sadb_msg *); 1985 newmsg->sadb_msg_errno = 0; 1986 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 1987 1988 off = 0; 1989 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), 1990 sizeof(*xpl), &off); 1991 if (mpolicy == NULL) { 1992 /* n is already freed */ 1993 return key_senderror(so, m, ENOBUFS); 1994 } 1995 xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off); 1996 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { 1997 m_freem(n); 1998 return key_senderror(so, m, EINVAL); 1999 } 2000 xpl->sadb_x_policy_id = newsp->id; 2001 2002 m_freem(m); 2003 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2004 } 2005 } 2006 2007 /* 2008 * get new policy id. 2009 * OUT: 2010 * 0: failure. 2011 * others: success. 2012 */ 2013 static u_int32_t 2014 key_getnewspid() 2015 { 2016 u_int32_t newid = 0; 2017 int count = V_key_spi_trycnt; /* XXX */ 2018 struct secpolicy *sp; 2019 2020 /* when requesting to allocate spi ranged */ 2021 while (count--) { 2022 newid = (V_policy_id = (V_policy_id == ~0 ? 1 : V_policy_id + 1)); 2023 2024 if ((sp = key_getspbyid(newid)) == NULL) 2025 break; 2026 2027 KEY_FREESP(&sp); 2028 } 2029 2030 if (count == 0 || newid == 0) { 2031 ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n", 2032 __func__)); 2033 return 0; 2034 } 2035 2036 return newid; 2037 } 2038 2039 /* 2040 * SADB_SPDDELETE processing 2041 * receive 2042 * <base, address(SD), policy(*)> 2043 * from the user(?), and set SADB_SASTATE_DEAD, 2044 * and send, 2045 * <base, address(SD), policy(*)> 2046 * to the ikmpd. 2047 * policy(*) including direction of policy. 2048 * 2049 * m will always be freed. 2050 */ 2051 static int 2052 key_spddelete(so, m, mhp) 2053 struct socket *so; 2054 struct mbuf *m; 2055 const struct sadb_msghdr *mhp; 2056 { 2057 struct sadb_address *src0, *dst0; 2058 struct sadb_x_policy *xpl0; 2059 struct secpolicyindex spidx; 2060 struct secpolicy *sp; 2061 2062 IPSEC_ASSERT(so != NULL, ("null so")); 2063 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2064 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2065 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2066 2067 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2068 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2069 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2070 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2071 __func__)); 2072 return key_senderror(so, m, EINVAL); 2073 } 2074 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2075 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2076 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2077 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2078 __func__)); 2079 return key_senderror(so, m, EINVAL); 2080 } 2081 2082 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 2083 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 2084 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 2085 2086 /* 2087 * Note: do not parse SADB_X_EXT_NAT_T_* here: 2088 * we are processing traffic endpoints. 2089 */ 2090 2091 /* make secindex */ 2092 /* XXX boundary check against sa_len */ 2093 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 2094 src0 + 1, 2095 dst0 + 1, 2096 src0->sadb_address_prefixlen, 2097 dst0->sadb_address_prefixlen, 2098 src0->sadb_address_proto, 2099 &spidx); 2100 2101 /* checking the direciton. */ 2102 switch (xpl0->sadb_x_policy_dir) { 2103 case IPSEC_DIR_INBOUND: 2104 case IPSEC_DIR_OUTBOUND: 2105 break; 2106 default: 2107 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 2108 return key_senderror(so, m, EINVAL); 2109 } 2110 2111 /* Is there SP in SPD ? */ 2112 if ((sp = key_getsp(&spidx)) == NULL) { 2113 ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__)); 2114 return key_senderror(so, m, EINVAL); 2115 } 2116 2117 /* save policy id to buffer to be returned. */ 2118 xpl0->sadb_x_policy_id = sp->id; 2119 2120 sp->state = IPSEC_SPSTATE_DEAD; 2121 KEY_FREESP(&sp); 2122 2123 { 2124 struct mbuf *n; 2125 struct sadb_msg *newmsg; 2126 2127 /* 2128 * Note: do not send SADB_X_EXT_NAT_T_* here: 2129 * we are sending traffic endpoints. 2130 */ 2131 2132 /* create new sadb_msg to reply. */ 2133 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 2134 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2135 if (!n) 2136 return key_senderror(so, m, ENOBUFS); 2137 2138 newmsg = mtod(n, struct sadb_msg *); 2139 newmsg->sadb_msg_errno = 0; 2140 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2141 2142 m_freem(m); 2143 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2144 } 2145 } 2146 2147 /* 2148 * SADB_SPDDELETE2 processing 2149 * receive 2150 * <base, policy(*)> 2151 * from the user(?), and set SADB_SASTATE_DEAD, 2152 * and send, 2153 * <base, policy(*)> 2154 * to the ikmpd. 2155 * policy(*) including direction of policy. 2156 * 2157 * m will always be freed. 2158 */ 2159 static int 2160 key_spddelete2(so, m, mhp) 2161 struct socket *so; 2162 struct mbuf *m; 2163 const struct sadb_msghdr *mhp; 2164 { 2165 u_int32_t id; 2166 struct secpolicy *sp; 2167 2168 IPSEC_ASSERT(so != NULL, ("null socket")); 2169 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2170 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2171 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2172 2173 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2174 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2175 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); 2176 return key_senderror(so, m, EINVAL); 2177 } 2178 2179 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2180 2181 /* Is there SP in SPD ? */ 2182 if ((sp = key_getspbyid(id)) == NULL) { 2183 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2184 return key_senderror(so, m, EINVAL); 2185 } 2186 2187 sp->state = IPSEC_SPSTATE_DEAD; 2188 KEY_FREESP(&sp); 2189 2190 { 2191 struct mbuf *n, *nn; 2192 struct sadb_msg *newmsg; 2193 int off, len; 2194 2195 /* create new sadb_msg to reply. */ 2196 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2197 2198 MGETHDR(n, M_DONTWAIT, MT_DATA); 2199 if (n && len > MHLEN) { 2200 MCLGET(n, M_DONTWAIT); 2201 if ((n->m_flags & M_EXT) == 0) { 2202 m_freem(n); 2203 n = NULL; 2204 } 2205 } 2206 if (!n) 2207 return key_senderror(so, m, ENOBUFS); 2208 2209 n->m_len = len; 2210 n->m_next = NULL; 2211 off = 0; 2212 2213 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 2214 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2215 2216 IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)", 2217 off, len)); 2218 2219 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], 2220 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT); 2221 if (!n->m_next) { 2222 m_freem(n); 2223 return key_senderror(so, m, ENOBUFS); 2224 } 2225 2226 n->m_pkthdr.len = 0; 2227 for (nn = n; nn; nn = nn->m_next) 2228 n->m_pkthdr.len += nn->m_len; 2229 2230 newmsg = mtod(n, struct sadb_msg *); 2231 newmsg->sadb_msg_errno = 0; 2232 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2233 2234 m_freem(m); 2235 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2236 } 2237 } 2238 2239 /* 2240 * SADB_X_GET processing 2241 * receive 2242 * <base, policy(*)> 2243 * from the user(?), 2244 * and send, 2245 * <base, address(SD), policy> 2246 * to the ikmpd. 2247 * policy(*) including direction of policy. 2248 * 2249 * m will always be freed. 2250 */ 2251 static int 2252 key_spdget(so, m, mhp) 2253 struct socket *so; 2254 struct mbuf *m; 2255 const struct sadb_msghdr *mhp; 2256 { 2257 u_int32_t id; 2258 struct secpolicy *sp; 2259 struct mbuf *n; 2260 2261 IPSEC_ASSERT(so != NULL, ("null socket")); 2262 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2263 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2264 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2265 2266 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2267 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2268 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2269 __func__)); 2270 return key_senderror(so, m, EINVAL); 2271 } 2272 2273 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2274 2275 /* Is there SP in SPD ? */ 2276 if ((sp = key_getspbyid(id)) == NULL) { 2277 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2278 return key_senderror(so, m, ENOENT); 2279 } 2280 2281 n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid); 2282 if (n != NULL) { 2283 m_freem(m); 2284 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2285 } else 2286 return key_senderror(so, m, ENOBUFS); 2287 } 2288 2289 /* 2290 * SADB_X_SPDACQUIRE processing. 2291 * Acquire policy and SA(s) for a *OUTBOUND* packet. 2292 * send 2293 * <base, policy(*)> 2294 * to KMD, and expect to receive 2295 * <base> with SADB_X_SPDACQUIRE if error occured, 2296 * or 2297 * <base, policy> 2298 * with SADB_X_SPDUPDATE from KMD by PF_KEY. 2299 * policy(*) is without policy requests. 2300 * 2301 * 0 : succeed 2302 * others: error number 2303 */ 2304 int 2305 key_spdacquire(sp) 2306 struct secpolicy *sp; 2307 { 2308 struct mbuf *result = NULL, *m; 2309 struct secspacq *newspacq; 2310 2311 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2312 IPSEC_ASSERT(sp->req == NULL, ("policy exists")); 2313 IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC, 2314 ("policy not IPSEC %u", sp->policy)); 2315 2316 /* Get an entry to check whether sent message or not. */ 2317 newspacq = key_getspacq(&sp->spidx); 2318 if (newspacq != NULL) { 2319 if (V_key_blockacq_count < newspacq->count) { 2320 /* reset counter and do send message. */ 2321 newspacq->count = 0; 2322 } else { 2323 /* increment counter and do nothing. */ 2324 newspacq->count++; 2325 return 0; 2326 } 2327 SPACQ_UNLOCK(); 2328 } else { 2329 /* make new entry for blocking to send SADB_ACQUIRE. */ 2330 newspacq = key_newspacq(&sp->spidx); 2331 if (newspacq == NULL) 2332 return ENOBUFS; 2333 } 2334 2335 /* create new sadb_msg to reply. */ 2336 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); 2337 if (!m) 2338 return ENOBUFS; 2339 2340 result = m; 2341 2342 result->m_pkthdr.len = 0; 2343 for (m = result; m; m = m->m_next) 2344 result->m_pkthdr.len += m->m_len; 2345 2346 mtod(result, struct sadb_msg *)->sadb_msg_len = 2347 PFKEY_UNIT64(result->m_pkthdr.len); 2348 2349 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 2350 } 2351 2352 /* 2353 * SADB_SPDFLUSH processing 2354 * receive 2355 * <base> 2356 * from the user, and free all entries in secpctree. 2357 * and send, 2358 * <base> 2359 * to the user. 2360 * NOTE: what to do is only marking SADB_SASTATE_DEAD. 2361 * 2362 * m will always be freed. 2363 */ 2364 static int 2365 key_spdflush(so, m, mhp) 2366 struct socket *so; 2367 struct mbuf *m; 2368 const struct sadb_msghdr *mhp; 2369 { 2370 struct sadb_msg *newmsg; 2371 struct secpolicy *sp; 2372 u_int dir; 2373 2374 IPSEC_ASSERT(so != NULL, ("null socket")); 2375 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2376 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2377 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2378 2379 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) 2380 return key_senderror(so, m, EINVAL); 2381 2382 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2383 SPTREE_LOCK(); 2384 LIST_FOREACH(sp, &V_sptree[dir], chain) 2385 sp->state = IPSEC_SPSTATE_DEAD; 2386 SPTREE_UNLOCK(); 2387 } 2388 2389 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 2390 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2391 return key_senderror(so, m, ENOBUFS); 2392 } 2393 2394 if (m->m_next) 2395 m_freem(m->m_next); 2396 m->m_next = NULL; 2397 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2398 newmsg = mtod(m, struct sadb_msg *); 2399 newmsg->sadb_msg_errno = 0; 2400 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 2401 2402 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 2403 } 2404 2405 /* 2406 * SADB_SPDDUMP processing 2407 * receive 2408 * <base> 2409 * from the user, and dump all SP leaves 2410 * and send, 2411 * <base> ..... 2412 * to the ikmpd. 2413 * 2414 * m will always be freed. 2415 */ 2416 static int 2417 key_spddump(so, m, mhp) 2418 struct socket *so; 2419 struct mbuf *m; 2420 const struct sadb_msghdr *mhp; 2421 { 2422 struct secpolicy *sp; 2423 int cnt; 2424 u_int dir; 2425 struct mbuf *n; 2426 2427 IPSEC_ASSERT(so != NULL, ("null socket")); 2428 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2429 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2430 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2431 2432 /* search SPD entry and get buffer size. */ 2433 cnt = 0; 2434 SPTREE_LOCK(); 2435 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2436 LIST_FOREACH(sp, &V_sptree[dir], chain) { 2437 cnt++; 2438 } 2439 } 2440 2441 if (cnt == 0) { 2442 SPTREE_UNLOCK(); 2443 return key_senderror(so, m, ENOENT); 2444 } 2445 2446 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2447 LIST_FOREACH(sp, &V_sptree[dir], chain) { 2448 --cnt; 2449 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, 2450 mhp->msg->sadb_msg_pid); 2451 2452 if (n) 2453 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2454 } 2455 } 2456 2457 SPTREE_UNLOCK(); 2458 m_freem(m); 2459 return 0; 2460 } 2461 2462 static struct mbuf * 2463 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, u_int32_t pid) 2464 { 2465 struct mbuf *result = NULL, *m; 2466 struct seclifetime lt; 2467 2468 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt); 2469 if (!m) 2470 goto fail; 2471 result = m; 2472 2473 /* 2474 * Note: do not send SADB_X_EXT_NAT_T_* here: 2475 * we are sending traffic endpoints. 2476 */ 2477 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2478 &sp->spidx.src.sa, sp->spidx.prefs, 2479 sp->spidx.ul_proto); 2480 if (!m) 2481 goto fail; 2482 m_cat(result, m); 2483 2484 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2485 &sp->spidx.dst.sa, sp->spidx.prefd, 2486 sp->spidx.ul_proto); 2487 if (!m) 2488 goto fail; 2489 m_cat(result, m); 2490 2491 m = key_sp2msg(sp); 2492 if (!m) 2493 goto fail; 2494 m_cat(result, m); 2495 2496 if(sp->lifetime){ 2497 lt.addtime=sp->created; 2498 lt.usetime= sp->lastused; 2499 m = key_setlifetime(<, SADB_EXT_LIFETIME_CURRENT); 2500 if (!m) 2501 goto fail; 2502 m_cat(result, m); 2503 2504 lt.addtime=sp->lifetime; 2505 lt.usetime= sp->validtime; 2506 m = key_setlifetime(<, SADB_EXT_LIFETIME_HARD); 2507 if (!m) 2508 goto fail; 2509 m_cat(result, m); 2510 } 2511 2512 if ((result->m_flags & M_PKTHDR) == 0) 2513 goto fail; 2514 2515 if (result->m_len < sizeof(struct sadb_msg)) { 2516 result = m_pullup(result, sizeof(struct sadb_msg)); 2517 if (result == NULL) 2518 goto fail; 2519 } 2520 2521 result->m_pkthdr.len = 0; 2522 for (m = result; m; m = m->m_next) 2523 result->m_pkthdr.len += m->m_len; 2524 2525 mtod(result, struct sadb_msg *)->sadb_msg_len = 2526 PFKEY_UNIT64(result->m_pkthdr.len); 2527 2528 return result; 2529 2530 fail: 2531 m_freem(result); 2532 return NULL; 2533 } 2534 2535 /* 2536 * get PFKEY message length for security policy and request. 2537 */ 2538 static u_int 2539 key_getspreqmsglen(sp) 2540 struct secpolicy *sp; 2541 { 2542 u_int tlen; 2543 2544 tlen = sizeof(struct sadb_x_policy); 2545 2546 /* if is the policy for ipsec ? */ 2547 if (sp->policy != IPSEC_POLICY_IPSEC) 2548 return tlen; 2549 2550 /* get length of ipsec requests */ 2551 { 2552 struct ipsecrequest *isr; 2553 int len; 2554 2555 for (isr = sp->req; isr != NULL; isr = isr->next) { 2556 len = sizeof(struct sadb_x_ipsecrequest) 2557 + isr->saidx.src.sa.sa_len 2558 + isr->saidx.dst.sa.sa_len; 2559 2560 tlen += PFKEY_ALIGN8(len); 2561 } 2562 } 2563 2564 return tlen; 2565 } 2566 2567 /* 2568 * SADB_SPDEXPIRE processing 2569 * send 2570 * <base, address(SD), lifetime(CH), policy> 2571 * to KMD by PF_KEY. 2572 * 2573 * OUT: 0 : succeed 2574 * others : error number 2575 */ 2576 static int 2577 key_spdexpire(sp) 2578 struct secpolicy *sp; 2579 { 2580 struct mbuf *result = NULL, *m; 2581 int len; 2582 int error = -1; 2583 struct sadb_lifetime *lt; 2584 2585 /* XXX: Why do we lock ? */ 2586 2587 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2588 2589 /* set msg header */ 2590 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0); 2591 if (!m) { 2592 error = ENOBUFS; 2593 goto fail; 2594 } 2595 result = m; 2596 2597 /* create lifetime extension (current and hard) */ 2598 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 2599 m = key_alloc_mbuf(len); 2600 if (!m || m->m_next) { /*XXX*/ 2601 if (m) 2602 m_freem(m); 2603 error = ENOBUFS; 2604 goto fail; 2605 } 2606 bzero(mtod(m, caddr_t), len); 2607 lt = mtod(m, struct sadb_lifetime *); 2608 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2609 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 2610 lt->sadb_lifetime_allocations = 0; 2611 lt->sadb_lifetime_bytes = 0; 2612 lt->sadb_lifetime_addtime = sp->created; 2613 lt->sadb_lifetime_usetime = sp->lastused; 2614 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 2615 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2616 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 2617 lt->sadb_lifetime_allocations = 0; 2618 lt->sadb_lifetime_bytes = 0; 2619 lt->sadb_lifetime_addtime = sp->lifetime; 2620 lt->sadb_lifetime_usetime = sp->validtime; 2621 m_cat(result, m); 2622 2623 /* 2624 * Note: do not send SADB_X_EXT_NAT_T_* here: 2625 * we are sending traffic endpoints. 2626 */ 2627 2628 /* set sadb_address for source */ 2629 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2630 &sp->spidx.src.sa, 2631 sp->spidx.prefs, sp->spidx.ul_proto); 2632 if (!m) { 2633 error = ENOBUFS; 2634 goto fail; 2635 } 2636 m_cat(result, m); 2637 2638 /* set sadb_address for destination */ 2639 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2640 &sp->spidx.dst.sa, 2641 sp->spidx.prefd, sp->spidx.ul_proto); 2642 if (!m) { 2643 error = ENOBUFS; 2644 goto fail; 2645 } 2646 m_cat(result, m); 2647 2648 /* set secpolicy */ 2649 m = key_sp2msg(sp); 2650 if (!m) { 2651 error = ENOBUFS; 2652 goto fail; 2653 } 2654 m_cat(result, m); 2655 2656 if ((result->m_flags & M_PKTHDR) == 0) { 2657 error = EINVAL; 2658 goto fail; 2659 } 2660 2661 if (result->m_len < sizeof(struct sadb_msg)) { 2662 result = m_pullup(result, sizeof(struct sadb_msg)); 2663 if (result == NULL) { 2664 error = ENOBUFS; 2665 goto fail; 2666 } 2667 } 2668 2669 result->m_pkthdr.len = 0; 2670 for (m = result; m; m = m->m_next) 2671 result->m_pkthdr.len += m->m_len; 2672 2673 mtod(result, struct sadb_msg *)->sadb_msg_len = 2674 PFKEY_UNIT64(result->m_pkthdr.len); 2675 2676 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 2677 2678 fail: 2679 if (result) 2680 m_freem(result); 2681 return error; 2682 } 2683 2684 /* %%% SAD management */ 2685 /* 2686 * allocating a memory for new SA head, and copy from the values of mhp. 2687 * OUT: NULL : failure due to the lack of memory. 2688 * others : pointer to new SA head. 2689 */ 2690 static struct secashead * 2691 key_newsah(saidx) 2692 struct secasindex *saidx; 2693 { 2694 struct secashead *newsah; 2695 2696 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 2697 2698 newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO); 2699 if (newsah != NULL) { 2700 int i; 2701 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++) 2702 LIST_INIT(&newsah->savtree[i]); 2703 newsah->saidx = *saidx; 2704 2705 /* add to saidxtree */ 2706 newsah->state = SADB_SASTATE_MATURE; 2707 2708 SAHTREE_LOCK(); 2709 LIST_INSERT_HEAD(&V_sahtree, newsah, chain); 2710 SAHTREE_UNLOCK(); 2711 } 2712 return(newsah); 2713 } 2714 2715 /* 2716 * delete SA index and all SA registerd. 2717 */ 2718 static void 2719 key_delsah(sah) 2720 struct secashead *sah; 2721 { 2722 struct secasvar *sav, *nextsav; 2723 u_int stateidx; 2724 int zombie = 0; 2725 2726 IPSEC_ASSERT(sah != NULL, ("NULL sah")); 2727 SAHTREE_LOCK_ASSERT(); 2728 2729 /* searching all SA registerd in the secindex. */ 2730 for (stateidx = 0; 2731 stateidx < _ARRAYLEN(saorder_state_any); 2732 stateidx++) { 2733 u_int state = saorder_state_any[stateidx]; 2734 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) { 2735 if (sav->refcnt == 0) { 2736 /* sanity check */ 2737 KEY_CHKSASTATE(state, sav->state, __func__); 2738 /* 2739 * do NOT call KEY_FREESAV here: 2740 * it will only delete the sav if refcnt == 1, 2741 * where we already know that refcnt == 0 2742 */ 2743 key_delsav(sav); 2744 } else { 2745 /* give up to delete this sa */ 2746 zombie++; 2747 } 2748 } 2749 } 2750 if (!zombie) { /* delete only if there are savs */ 2751 /* remove from tree of SA index */ 2752 if (__LIST_CHAINED(sah)) 2753 LIST_REMOVE(sah, chain); 2754 if (sah->sa_route.ro_rt) { 2755 RTFREE(sah->sa_route.ro_rt); 2756 sah->sa_route.ro_rt = (struct rtentry *)NULL; 2757 } 2758 free(sah, M_IPSEC_SAH); 2759 } 2760 } 2761 2762 /* 2763 * allocating a new SA with LARVAL state. key_add() and key_getspi() call, 2764 * and copy the values of mhp into new buffer. 2765 * When SAD message type is GETSPI: 2766 * to set sequence number from acq_seq++, 2767 * to set zero to SPI. 2768 * not to call key_setsava(). 2769 * OUT: NULL : fail 2770 * others : pointer to new secasvar. 2771 * 2772 * does not modify mbuf. does not free mbuf on error. 2773 */ 2774 static struct secasvar * 2775 key_newsav(m, mhp, sah, errp, where, tag) 2776 struct mbuf *m; 2777 const struct sadb_msghdr *mhp; 2778 struct secashead *sah; 2779 int *errp; 2780 const char* where; 2781 int tag; 2782 { 2783 struct secasvar *newsav; 2784 const struct sadb_sa *xsa; 2785 2786 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2787 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2788 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2789 IPSEC_ASSERT(sah != NULL, ("null secashead")); 2790 2791 newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO); 2792 if (newsav == NULL) { 2793 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2794 *errp = ENOBUFS; 2795 goto done; 2796 } 2797 2798 switch (mhp->msg->sadb_msg_type) { 2799 case SADB_GETSPI: 2800 newsav->spi = 0; 2801 2802 #ifdef IPSEC_DOSEQCHECK 2803 /* sync sequence number */ 2804 if (mhp->msg->sadb_msg_seq == 0) 2805 newsav->seq = 2806 (V_acq_seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq)); 2807 else 2808 #endif 2809 newsav->seq = mhp->msg->sadb_msg_seq; 2810 break; 2811 2812 case SADB_ADD: 2813 /* sanity check */ 2814 if (mhp->ext[SADB_EXT_SA] == NULL) { 2815 free(newsav, M_IPSEC_SA); 2816 newsav = NULL; 2817 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2818 __func__)); 2819 *errp = EINVAL; 2820 goto done; 2821 } 2822 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 2823 newsav->spi = xsa->sadb_sa_spi; 2824 newsav->seq = mhp->msg->sadb_msg_seq; 2825 break; 2826 default: 2827 free(newsav, M_IPSEC_SA); 2828 newsav = NULL; 2829 *errp = EINVAL; 2830 goto done; 2831 } 2832 2833 2834 /* copy sav values */ 2835 if (mhp->msg->sadb_msg_type != SADB_GETSPI) { 2836 *errp = key_setsaval(newsav, m, mhp); 2837 if (*errp) { 2838 free(newsav, M_IPSEC_SA); 2839 newsav = NULL; 2840 goto done; 2841 } 2842 } 2843 2844 SECASVAR_LOCK_INIT(newsav); 2845 2846 /* reset created */ 2847 newsav->created = time_second; 2848 newsav->pid = mhp->msg->sadb_msg_pid; 2849 2850 /* add to satree */ 2851 newsav->sah = sah; 2852 sa_initref(newsav); 2853 newsav->state = SADB_SASTATE_LARVAL; 2854 2855 SAHTREE_LOCK(); 2856 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav, 2857 secasvar, chain); 2858 SAHTREE_UNLOCK(); 2859 done: 2860 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 2861 printf("DP %s from %s:%u return SP:%p\n", __func__, 2862 where, tag, newsav)); 2863 2864 return newsav; 2865 } 2866 2867 /* 2868 * free() SA variable entry. 2869 */ 2870 static void 2871 key_cleansav(struct secasvar *sav) 2872 { 2873 /* 2874 * Cleanup xform state. Note that zeroize'ing causes the 2875 * keys to be cleared; otherwise we must do it ourself. 2876 */ 2877 if (sav->tdb_xform != NULL) { 2878 sav->tdb_xform->xf_zeroize(sav); 2879 sav->tdb_xform = NULL; 2880 } else { 2881 KASSERT(sav->iv == NULL, ("iv but no xform")); 2882 if (sav->key_auth != NULL) 2883 bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth)); 2884 if (sav->key_enc != NULL) 2885 bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc)); 2886 } 2887 if (sav->key_auth != NULL) { 2888 if (sav->key_auth->key_data != NULL) 2889 free(sav->key_auth->key_data, M_IPSEC_MISC); 2890 free(sav->key_auth, M_IPSEC_MISC); 2891 sav->key_auth = NULL; 2892 } 2893 if (sav->key_enc != NULL) { 2894 if (sav->key_enc->key_data != NULL) 2895 free(sav->key_enc->key_data, M_IPSEC_MISC); 2896 free(sav->key_enc, M_IPSEC_MISC); 2897 sav->key_enc = NULL; 2898 } 2899 if (sav->sched) { 2900 bzero(sav->sched, sav->schedlen); 2901 free(sav->sched, M_IPSEC_MISC); 2902 sav->sched = NULL; 2903 } 2904 if (sav->replay != NULL) { 2905 free(sav->replay, M_IPSEC_MISC); 2906 sav->replay = NULL; 2907 } 2908 if (sav->lft_c != NULL) { 2909 free(sav->lft_c, M_IPSEC_MISC); 2910 sav->lft_c = NULL; 2911 } 2912 if (sav->lft_h != NULL) { 2913 free(sav->lft_h, M_IPSEC_MISC); 2914 sav->lft_h = NULL; 2915 } 2916 if (sav->lft_s != NULL) { 2917 free(sav->lft_s, M_IPSEC_MISC); 2918 sav->lft_s = NULL; 2919 } 2920 } 2921 2922 /* 2923 * free() SA variable entry. 2924 */ 2925 static void 2926 key_delsav(sav) 2927 struct secasvar *sav; 2928 { 2929 IPSEC_ASSERT(sav != NULL, ("null sav")); 2930 IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt)); 2931 2932 /* remove from SA header */ 2933 if (__LIST_CHAINED(sav)) 2934 LIST_REMOVE(sav, chain); 2935 key_cleansav(sav); 2936 SECASVAR_LOCK_DESTROY(sav); 2937 free(sav, M_IPSEC_SA); 2938 } 2939 2940 /* 2941 * search SAD. 2942 * OUT: 2943 * NULL : not found 2944 * others : found, pointer to a SA. 2945 */ 2946 static struct secashead * 2947 key_getsah(saidx) 2948 struct secasindex *saidx; 2949 { 2950 struct secashead *sah; 2951 2952 SAHTREE_LOCK(); 2953 LIST_FOREACH(sah, &V_sahtree, chain) { 2954 if (sah->state == SADB_SASTATE_DEAD) 2955 continue; 2956 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID)) 2957 break; 2958 } 2959 SAHTREE_UNLOCK(); 2960 2961 return sah; 2962 } 2963 2964 /* 2965 * check not to be duplicated SPI. 2966 * NOTE: this function is too slow due to searching all SAD. 2967 * OUT: 2968 * NULL : not found 2969 * others : found, pointer to a SA. 2970 */ 2971 static struct secasvar * 2972 key_checkspidup(saidx, spi) 2973 struct secasindex *saidx; 2974 u_int32_t spi; 2975 { 2976 struct secashead *sah; 2977 struct secasvar *sav; 2978 2979 /* check address family */ 2980 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) { 2981 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 2982 __func__)); 2983 return NULL; 2984 } 2985 2986 sav = NULL; 2987 /* check all SAD */ 2988 SAHTREE_LOCK(); 2989 LIST_FOREACH(sah, &V_sahtree, chain) { 2990 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst)) 2991 continue; 2992 sav = key_getsavbyspi(sah, spi); 2993 if (sav != NULL) 2994 break; 2995 } 2996 SAHTREE_UNLOCK(); 2997 2998 return sav; 2999 } 3000 3001 /* 3002 * search SAD litmited alive SA, protocol, SPI. 3003 * OUT: 3004 * NULL : not found 3005 * others : found, pointer to a SA. 3006 */ 3007 static struct secasvar * 3008 key_getsavbyspi(sah, spi) 3009 struct secashead *sah; 3010 u_int32_t spi; 3011 { 3012 struct secasvar *sav; 3013 u_int stateidx, state; 3014 3015 sav = NULL; 3016 SAHTREE_LOCK_ASSERT(); 3017 /* search all status */ 3018 for (stateidx = 0; 3019 stateidx < _ARRAYLEN(saorder_state_alive); 3020 stateidx++) { 3021 3022 state = saorder_state_alive[stateidx]; 3023 LIST_FOREACH(sav, &sah->savtree[state], chain) { 3024 3025 /* sanity check */ 3026 if (sav->state != state) { 3027 ipseclog((LOG_DEBUG, "%s: " 3028 "invalid sav->state (queue: %d SA: %d)\n", 3029 __func__, state, sav->state)); 3030 continue; 3031 } 3032 3033 if (sav->spi == spi) 3034 return sav; 3035 } 3036 } 3037 3038 return NULL; 3039 } 3040 3041 /* 3042 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. 3043 * You must update these if need. 3044 * OUT: 0: success. 3045 * !0: failure. 3046 * 3047 * does not modify mbuf. does not free mbuf on error. 3048 */ 3049 static int 3050 key_setsaval(sav, m, mhp) 3051 struct secasvar *sav; 3052 struct mbuf *m; 3053 const struct sadb_msghdr *mhp; 3054 { 3055 int error = 0; 3056 3057 IPSEC_ASSERT(m != NULL, ("null mbuf")); 3058 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 3059 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 3060 3061 /* initialization */ 3062 sav->replay = NULL; 3063 sav->key_auth = NULL; 3064 sav->key_enc = NULL; 3065 sav->sched = NULL; 3066 sav->schedlen = 0; 3067 sav->iv = NULL; 3068 sav->lft_c = NULL; 3069 sav->lft_h = NULL; 3070 sav->lft_s = NULL; 3071 sav->tdb_xform = NULL; /* transform */ 3072 sav->tdb_encalgxform = NULL; /* encoding algorithm */ 3073 sav->tdb_authalgxform = NULL; /* authentication algorithm */ 3074 sav->tdb_compalgxform = NULL; /* compression algorithm */ 3075 /* Initialize even if NAT-T not compiled in: */ 3076 sav->natt_type = 0; 3077 sav->natt_esp_frag_len = 0; 3078 3079 /* SA */ 3080 if (mhp->ext[SADB_EXT_SA] != NULL) { 3081 const struct sadb_sa *sa0; 3082 3083 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 3084 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { 3085 error = EINVAL; 3086 goto fail; 3087 } 3088 3089 sav->alg_auth = sa0->sadb_sa_auth; 3090 sav->alg_enc = sa0->sadb_sa_encrypt; 3091 sav->flags = sa0->sadb_sa_flags; 3092 3093 /* replay window */ 3094 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { 3095 sav->replay = (struct secreplay *) 3096 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO); 3097 if (sav->replay == NULL) { 3098 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3099 __func__)); 3100 error = ENOBUFS; 3101 goto fail; 3102 } 3103 if (sa0->sadb_sa_replay != 0) 3104 sav->replay->bitmap = (caddr_t)(sav->replay+1); 3105 sav->replay->wsize = sa0->sadb_sa_replay; 3106 } 3107 } 3108 3109 /* Authentication keys */ 3110 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { 3111 const struct sadb_key *key0; 3112 int len; 3113 3114 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH]; 3115 len = mhp->extlen[SADB_EXT_KEY_AUTH]; 3116 3117 error = 0; 3118 if (len < sizeof(*key0)) { 3119 error = EINVAL; 3120 goto fail; 3121 } 3122 switch (mhp->msg->sadb_msg_satype) { 3123 case SADB_SATYPE_AH: 3124 case SADB_SATYPE_ESP: 3125 case SADB_X_SATYPE_TCPSIGNATURE: 3126 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3127 sav->alg_auth != SADB_X_AALG_NULL) 3128 error = EINVAL; 3129 break; 3130 case SADB_X_SATYPE_IPCOMP: 3131 default: 3132 error = EINVAL; 3133 break; 3134 } 3135 if (error) { 3136 ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n", 3137 __func__)); 3138 goto fail; 3139 } 3140 3141 sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len, 3142 M_IPSEC_MISC); 3143 if (sav->key_auth == NULL ) { 3144 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3145 __func__)); 3146 error = ENOBUFS; 3147 goto fail; 3148 } 3149 } 3150 3151 /* Encryption key */ 3152 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { 3153 const struct sadb_key *key0; 3154 int len; 3155 3156 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT]; 3157 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; 3158 3159 error = 0; 3160 if (len < sizeof(*key0)) { 3161 error = EINVAL; 3162 goto fail; 3163 } 3164 switch (mhp->msg->sadb_msg_satype) { 3165 case SADB_SATYPE_ESP: 3166 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3167 sav->alg_enc != SADB_EALG_NULL) { 3168 error = EINVAL; 3169 break; 3170 } 3171 sav->key_enc = (struct seckey *)key_dup_keymsg(key0, 3172 len, 3173 M_IPSEC_MISC); 3174 if (sav->key_enc == NULL) { 3175 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3176 __func__)); 3177 error = ENOBUFS; 3178 goto fail; 3179 } 3180 break; 3181 case SADB_X_SATYPE_IPCOMP: 3182 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) 3183 error = EINVAL; 3184 sav->key_enc = NULL; /*just in case*/ 3185 break; 3186 case SADB_SATYPE_AH: 3187 case SADB_X_SATYPE_TCPSIGNATURE: 3188 default: 3189 error = EINVAL; 3190 break; 3191 } 3192 if (error) { 3193 ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n", 3194 __func__)); 3195 goto fail; 3196 } 3197 } 3198 3199 /* set iv */ 3200 sav->ivlen = 0; 3201 3202 switch (mhp->msg->sadb_msg_satype) { 3203 case SADB_SATYPE_AH: 3204 error = xform_init(sav, XF_AH); 3205 break; 3206 case SADB_SATYPE_ESP: 3207 error = xform_init(sav, XF_ESP); 3208 break; 3209 case SADB_X_SATYPE_IPCOMP: 3210 error = xform_init(sav, XF_IPCOMP); 3211 break; 3212 case SADB_X_SATYPE_TCPSIGNATURE: 3213 error = xform_init(sav, XF_TCPSIGNATURE); 3214 break; 3215 } 3216 if (error) { 3217 ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n", 3218 __func__, mhp->msg->sadb_msg_satype)); 3219 goto fail; 3220 } 3221 3222 /* reset created */ 3223 sav->created = time_second; 3224 3225 /* make lifetime for CURRENT */ 3226 sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT); 3227 if (sav->lft_c == NULL) { 3228 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3229 error = ENOBUFS; 3230 goto fail; 3231 } 3232 3233 sav->lft_c->allocations = 0; 3234 sav->lft_c->bytes = 0; 3235 sav->lft_c->addtime = time_second; 3236 sav->lft_c->usetime = 0; 3237 3238 /* lifetimes for HARD and SOFT */ 3239 { 3240 const struct sadb_lifetime *lft0; 3241 3242 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 3243 if (lft0 != NULL) { 3244 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { 3245 error = EINVAL; 3246 goto fail; 3247 } 3248 sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3249 if (sav->lft_h == NULL) { 3250 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3251 error = ENOBUFS; 3252 goto fail; 3253 } 3254 /* to be initialize ? */ 3255 } 3256 3257 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT]; 3258 if (lft0 != NULL) { 3259 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { 3260 error = EINVAL; 3261 goto fail; 3262 } 3263 sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3264 if (sav->lft_s == NULL) { 3265 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3266 error = ENOBUFS; 3267 goto fail; 3268 } 3269 /* to be initialize ? */ 3270 } 3271 } 3272 3273 return 0; 3274 3275 fail: 3276 /* initialization */ 3277 key_cleansav(sav); 3278 3279 return error; 3280 } 3281 3282 /* 3283 * validation with a secasvar entry, and set SADB_SATYPE_MATURE. 3284 * OUT: 0: valid 3285 * other: errno 3286 */ 3287 static int 3288 key_mature(struct secasvar *sav) 3289 { 3290 int error; 3291 3292 /* check SPI value */ 3293 switch (sav->sah->saidx.proto) { 3294 case IPPROTO_ESP: 3295 case IPPROTO_AH: 3296 /* 3297 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values 3298 * 1-255 reserved by IANA for future use, 3299 * 0 for implementation specific, local use. 3300 */ 3301 if (ntohl(sav->spi) <= 255) { 3302 ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n", 3303 __func__, (u_int32_t)ntohl(sav->spi))); 3304 return EINVAL; 3305 } 3306 break; 3307 } 3308 3309 /* check satype */ 3310 switch (sav->sah->saidx.proto) { 3311 case IPPROTO_ESP: 3312 /* check flags */ 3313 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) == 3314 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) { 3315 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3316 "given to old-esp.\n", __func__)); 3317 return EINVAL; 3318 } 3319 error = xform_init(sav, XF_ESP); 3320 break; 3321 case IPPROTO_AH: 3322 /* check flags */ 3323 if (sav->flags & SADB_X_EXT_DERIV) { 3324 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3325 "given to AH SA.\n", __func__)); 3326 return EINVAL; 3327 } 3328 if (sav->alg_enc != SADB_EALG_NONE) { 3329 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3330 "mismated.\n", __func__)); 3331 return(EINVAL); 3332 } 3333 error = xform_init(sav, XF_AH); 3334 break; 3335 case IPPROTO_IPCOMP: 3336 if (sav->alg_auth != SADB_AALG_NONE) { 3337 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3338 "mismated.\n", __func__)); 3339 return(EINVAL); 3340 } 3341 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 3342 && ntohl(sav->spi) >= 0x10000) { 3343 ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n", 3344 __func__)); 3345 return(EINVAL); 3346 } 3347 error = xform_init(sav, XF_IPCOMP); 3348 break; 3349 case IPPROTO_TCP: 3350 if (sav->alg_enc != SADB_EALG_NONE) { 3351 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3352 "mismated.\n", __func__)); 3353 return(EINVAL); 3354 } 3355 error = xform_init(sav, XF_TCPSIGNATURE); 3356 break; 3357 default: 3358 ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__)); 3359 error = EPROTONOSUPPORT; 3360 break; 3361 } 3362 if (error == 0) { 3363 SAHTREE_LOCK(); 3364 key_sa_chgstate(sav, SADB_SASTATE_MATURE); 3365 SAHTREE_UNLOCK(); 3366 } 3367 return (error); 3368 } 3369 3370 /* 3371 * subroutine for SADB_GET and SADB_DUMP. 3372 */ 3373 static struct mbuf * 3374 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype, 3375 u_int32_t seq, u_int32_t pid) 3376 { 3377 struct mbuf *result = NULL, *tres = NULL, *m; 3378 int i; 3379 int dumporder[] = { 3380 SADB_EXT_SA, SADB_X_EXT_SA2, 3381 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 3382 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, 3383 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, 3384 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, 3385 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, 3386 #ifdef IPSEC_NAT_T 3387 SADB_X_EXT_NAT_T_TYPE, 3388 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT, 3389 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR, 3390 SADB_X_EXT_NAT_T_FRAG, 3391 #endif 3392 }; 3393 3394 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt); 3395 if (m == NULL) 3396 goto fail; 3397 result = m; 3398 3399 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) { 3400 m = NULL; 3401 switch (dumporder[i]) { 3402 case SADB_EXT_SA: 3403 m = key_setsadbsa(sav); 3404 if (!m) 3405 goto fail; 3406 break; 3407 3408 case SADB_X_EXT_SA2: 3409 m = key_setsadbxsa2(sav->sah->saidx.mode, 3410 sav->replay ? sav->replay->count : 0, 3411 sav->sah->saidx.reqid); 3412 if (!m) 3413 goto fail; 3414 break; 3415 3416 case SADB_EXT_ADDRESS_SRC: 3417 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3418 &sav->sah->saidx.src.sa, 3419 FULLMASK, IPSEC_ULPROTO_ANY); 3420 if (!m) 3421 goto fail; 3422 break; 3423 3424 case SADB_EXT_ADDRESS_DST: 3425 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3426 &sav->sah->saidx.dst.sa, 3427 FULLMASK, IPSEC_ULPROTO_ANY); 3428 if (!m) 3429 goto fail; 3430 break; 3431 3432 case SADB_EXT_KEY_AUTH: 3433 if (!sav->key_auth) 3434 continue; 3435 m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH); 3436 if (!m) 3437 goto fail; 3438 break; 3439 3440 case SADB_EXT_KEY_ENCRYPT: 3441 if (!sav->key_enc) 3442 continue; 3443 m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT); 3444 if (!m) 3445 goto fail; 3446 break; 3447 3448 case SADB_EXT_LIFETIME_CURRENT: 3449 if (!sav->lft_c) 3450 continue; 3451 m = key_setlifetime(sav->lft_c, 3452 SADB_EXT_LIFETIME_CURRENT); 3453 if (!m) 3454 goto fail; 3455 break; 3456 3457 case SADB_EXT_LIFETIME_HARD: 3458 if (!sav->lft_h) 3459 continue; 3460 m = key_setlifetime(sav->lft_h, 3461 SADB_EXT_LIFETIME_HARD); 3462 if (!m) 3463 goto fail; 3464 break; 3465 3466 case SADB_EXT_LIFETIME_SOFT: 3467 if (!sav->lft_s) 3468 continue; 3469 m = key_setlifetime(sav->lft_s, 3470 SADB_EXT_LIFETIME_SOFT); 3471 3472 if (!m) 3473 goto fail; 3474 break; 3475 3476 #ifdef IPSEC_NAT_T 3477 case SADB_X_EXT_NAT_T_TYPE: 3478 m = key_setsadbxtype(sav->natt_type); 3479 if (!m) 3480 goto fail; 3481 break; 3482 3483 case SADB_X_EXT_NAT_T_DPORT: 3484 m = key_setsadbxport( 3485 KEY_PORTFROMSADDR(&sav->sah->saidx.dst), 3486 SADB_X_EXT_NAT_T_DPORT); 3487 if (!m) 3488 goto fail; 3489 break; 3490 3491 case SADB_X_EXT_NAT_T_SPORT: 3492 m = key_setsadbxport( 3493 KEY_PORTFROMSADDR(&sav->sah->saidx.src), 3494 SADB_X_EXT_NAT_T_SPORT); 3495 if (!m) 3496 goto fail; 3497 break; 3498 3499 case SADB_X_EXT_NAT_T_OAI: 3500 case SADB_X_EXT_NAT_T_OAR: 3501 case SADB_X_EXT_NAT_T_FRAG: 3502 /* We do not (yet) support those. */ 3503 continue; 3504 #endif 3505 3506 case SADB_EXT_ADDRESS_PROXY: 3507 case SADB_EXT_IDENTITY_SRC: 3508 case SADB_EXT_IDENTITY_DST: 3509 /* XXX: should we brought from SPD ? */ 3510 case SADB_EXT_SENSITIVITY: 3511 default: 3512 continue; 3513 } 3514 3515 if (!m) 3516 goto fail; 3517 if (tres) 3518 m_cat(m, tres); 3519 tres = m; 3520 3521 } 3522 3523 m_cat(result, tres); 3524 if (result->m_len < sizeof(struct sadb_msg)) { 3525 result = m_pullup(result, sizeof(struct sadb_msg)); 3526 if (result == NULL) 3527 goto fail; 3528 } 3529 3530 result->m_pkthdr.len = 0; 3531 for (m = result; m; m = m->m_next) 3532 result->m_pkthdr.len += m->m_len; 3533 3534 mtod(result, struct sadb_msg *)->sadb_msg_len = 3535 PFKEY_UNIT64(result->m_pkthdr.len); 3536 3537 return result; 3538 3539 fail: 3540 m_freem(result); 3541 m_freem(tres); 3542 return NULL; 3543 } 3544 3545 /* 3546 * set data into sadb_msg. 3547 */ 3548 static struct mbuf * 3549 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq, 3550 pid_t pid, u_int16_t reserved) 3551 { 3552 struct mbuf *m; 3553 struct sadb_msg *p; 3554 int len; 3555 3556 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 3557 if (len > MCLBYTES) 3558 return NULL; 3559 MGETHDR(m, M_DONTWAIT, MT_DATA); 3560 if (m && len > MHLEN) { 3561 MCLGET(m, M_DONTWAIT); 3562 if ((m->m_flags & M_EXT) == 0) { 3563 m_freem(m); 3564 m = NULL; 3565 } 3566 } 3567 if (!m) 3568 return NULL; 3569 m->m_pkthdr.len = m->m_len = len; 3570 m->m_next = NULL; 3571 3572 p = mtod(m, struct sadb_msg *); 3573 3574 bzero(p, len); 3575 p->sadb_msg_version = PF_KEY_V2; 3576 p->sadb_msg_type = type; 3577 p->sadb_msg_errno = 0; 3578 p->sadb_msg_satype = satype; 3579 p->sadb_msg_len = PFKEY_UNIT64(tlen); 3580 p->sadb_msg_reserved = reserved; 3581 p->sadb_msg_seq = seq; 3582 p->sadb_msg_pid = (u_int32_t)pid; 3583 3584 return m; 3585 } 3586 3587 /* 3588 * copy secasvar data into sadb_address. 3589 */ 3590 static struct mbuf * 3591 key_setsadbsa(sav) 3592 struct secasvar *sav; 3593 { 3594 struct mbuf *m; 3595 struct sadb_sa *p; 3596 int len; 3597 3598 len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); 3599 m = key_alloc_mbuf(len); 3600 if (!m || m->m_next) { /*XXX*/ 3601 if (m) 3602 m_freem(m); 3603 return NULL; 3604 } 3605 3606 p = mtod(m, struct sadb_sa *); 3607 3608 bzero(p, len); 3609 p->sadb_sa_len = PFKEY_UNIT64(len); 3610 p->sadb_sa_exttype = SADB_EXT_SA; 3611 p->sadb_sa_spi = sav->spi; 3612 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0); 3613 p->sadb_sa_state = sav->state; 3614 p->sadb_sa_auth = sav->alg_auth; 3615 p->sadb_sa_encrypt = sav->alg_enc; 3616 p->sadb_sa_flags = sav->flags; 3617 3618 return m; 3619 } 3620 3621 /* 3622 * set data into sadb_address. 3623 */ 3624 static struct mbuf * 3625 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, u_int8_t prefixlen, u_int16_t ul_proto) 3626 { 3627 struct mbuf *m; 3628 struct sadb_address *p; 3629 size_t len; 3630 3631 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + 3632 PFKEY_ALIGN8(saddr->sa_len); 3633 m = key_alloc_mbuf(len); 3634 if (!m || m->m_next) { /*XXX*/ 3635 if (m) 3636 m_freem(m); 3637 return NULL; 3638 } 3639 3640 p = mtod(m, struct sadb_address *); 3641 3642 bzero(p, len); 3643 p->sadb_address_len = PFKEY_UNIT64(len); 3644 p->sadb_address_exttype = exttype; 3645 p->sadb_address_proto = ul_proto; 3646 if (prefixlen == FULLMASK) { 3647 switch (saddr->sa_family) { 3648 case AF_INET: 3649 prefixlen = sizeof(struct in_addr) << 3; 3650 break; 3651 case AF_INET6: 3652 prefixlen = sizeof(struct in6_addr) << 3; 3653 break; 3654 default: 3655 ; /*XXX*/ 3656 } 3657 } 3658 p->sadb_address_prefixlen = prefixlen; 3659 p->sadb_address_reserved = 0; 3660 3661 bcopy(saddr, 3662 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)), 3663 saddr->sa_len); 3664 3665 return m; 3666 } 3667 3668 /* 3669 * set data into sadb_x_sa2. 3670 */ 3671 static struct mbuf * 3672 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid) 3673 { 3674 struct mbuf *m; 3675 struct sadb_x_sa2 *p; 3676 size_t len; 3677 3678 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); 3679 m = key_alloc_mbuf(len); 3680 if (!m || m->m_next) { /*XXX*/ 3681 if (m) 3682 m_freem(m); 3683 return NULL; 3684 } 3685 3686 p = mtod(m, struct sadb_x_sa2 *); 3687 3688 bzero(p, len); 3689 p->sadb_x_sa2_len = PFKEY_UNIT64(len); 3690 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 3691 p->sadb_x_sa2_mode = mode; 3692 p->sadb_x_sa2_reserved1 = 0; 3693 p->sadb_x_sa2_reserved2 = 0; 3694 p->sadb_x_sa2_sequence = seq; 3695 p->sadb_x_sa2_reqid = reqid; 3696 3697 return m; 3698 } 3699 3700 #ifdef IPSEC_NAT_T 3701 /* 3702 * Set a type in sadb_x_nat_t_type. 3703 */ 3704 static struct mbuf * 3705 key_setsadbxtype(u_int16_t type) 3706 { 3707 struct mbuf *m; 3708 size_t len; 3709 struct sadb_x_nat_t_type *p; 3710 3711 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type)); 3712 3713 m = key_alloc_mbuf(len); 3714 if (!m || m->m_next) { /*XXX*/ 3715 if (m) 3716 m_freem(m); 3717 return (NULL); 3718 } 3719 3720 p = mtod(m, struct sadb_x_nat_t_type *); 3721 3722 bzero(p, len); 3723 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len); 3724 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; 3725 p->sadb_x_nat_t_type_type = type; 3726 3727 return (m); 3728 } 3729 /* 3730 * Set a port in sadb_x_nat_t_port. 3731 * In contrast to default RFC 2367 behaviour, port is in network byte order. 3732 */ 3733 static struct mbuf * 3734 key_setsadbxport(u_int16_t port, u_int16_t type) 3735 { 3736 struct mbuf *m; 3737 size_t len; 3738 struct sadb_x_nat_t_port *p; 3739 3740 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port)); 3741 3742 m = key_alloc_mbuf(len); 3743 if (!m || m->m_next) { /*XXX*/ 3744 if (m) 3745 m_freem(m); 3746 return (NULL); 3747 } 3748 3749 p = mtod(m, struct sadb_x_nat_t_port *); 3750 3751 bzero(p, len); 3752 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len); 3753 p->sadb_x_nat_t_port_exttype = type; 3754 p->sadb_x_nat_t_port_port = port; 3755 3756 return (m); 3757 } 3758 3759 /* 3760 * Get port from sockaddr. Port is in network byte order. 3761 */ 3762 u_int16_t 3763 key_portfromsaddr(struct sockaddr *sa) 3764 { 3765 3766 switch (sa->sa_family) { 3767 #ifdef INET 3768 case AF_INET: 3769 return ((struct sockaddr_in *)sa)->sin_port; 3770 #endif 3771 #ifdef INET6 3772 case AF_INET6: 3773 return ((struct sockaddr_in6 *)sa)->sin6_port; 3774 #endif 3775 } 3776 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 3777 printf("DP %s unexpected address family %d\n", 3778 __func__, sa->sa_family)); 3779 return (0); 3780 } 3781 #endif /* IPSEC_NAT_T */ 3782 3783 /* 3784 * Set port in struct sockaddr. Port is in network byte order. 3785 */ 3786 static void 3787 key_porttosaddr(struct sockaddr *sa, u_int16_t port) 3788 { 3789 3790 switch (sa->sa_family) { 3791 #ifdef INET 3792 case AF_INET: 3793 ((struct sockaddr_in *)sa)->sin_port = port; 3794 break; 3795 #endif 3796 #ifdef INET6 3797 case AF_INET6: 3798 ((struct sockaddr_in6 *)sa)->sin6_port = port; 3799 break; 3800 #endif 3801 default: 3802 ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n", 3803 __func__, sa->sa_family)); 3804 break; 3805 } 3806 } 3807 3808 /* 3809 * set data into sadb_x_policy 3810 */ 3811 static struct mbuf * 3812 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id) 3813 { 3814 struct mbuf *m; 3815 struct sadb_x_policy *p; 3816 size_t len; 3817 3818 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); 3819 m = key_alloc_mbuf(len); 3820 if (!m || m->m_next) { /*XXX*/ 3821 if (m) 3822 m_freem(m); 3823 return NULL; 3824 } 3825 3826 p = mtod(m, struct sadb_x_policy *); 3827 3828 bzero(p, len); 3829 p->sadb_x_policy_len = PFKEY_UNIT64(len); 3830 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 3831 p->sadb_x_policy_type = type; 3832 p->sadb_x_policy_dir = dir; 3833 p->sadb_x_policy_id = id; 3834 3835 return m; 3836 } 3837 3838 /* %%% utilities */ 3839 /* Take a key message (sadb_key) from the socket and turn it into one 3840 * of the kernel's key structures (seckey). 3841 * 3842 * IN: pointer to the src 3843 * OUT: NULL no more memory 3844 */ 3845 struct seckey * 3846 key_dup_keymsg(const struct sadb_key *src, u_int len, 3847 struct malloc_type *type) 3848 { 3849 struct seckey *dst; 3850 dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT); 3851 if (dst != NULL) { 3852 dst->bits = src->sadb_key_bits; 3853 dst->key_data = (char *)malloc(len, type, M_NOWAIT); 3854 if (dst->key_data != NULL) { 3855 bcopy((const char *)src + sizeof(struct sadb_key), 3856 dst->key_data, len); 3857 } else { 3858 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3859 __func__)); 3860 free(dst, type); 3861 dst = NULL; 3862 } 3863 } else { 3864 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3865 __func__)); 3866 3867 } 3868 return dst; 3869 } 3870 3871 /* Take a lifetime message (sadb_lifetime) passed in on a socket and 3872 * turn it into one of the kernel's lifetime structures (seclifetime). 3873 * 3874 * IN: pointer to the destination, source and malloc type 3875 * OUT: NULL, no more memory 3876 */ 3877 3878 static struct seclifetime * 3879 key_dup_lifemsg(const struct sadb_lifetime *src, 3880 struct malloc_type *type) 3881 { 3882 struct seclifetime *dst = NULL; 3883 3884 dst = (struct seclifetime *)malloc(sizeof(struct seclifetime), 3885 type, M_NOWAIT); 3886 if (dst == NULL) { 3887 /* XXX counter */ 3888 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3889 } else { 3890 dst->allocations = src->sadb_lifetime_allocations; 3891 dst->bytes = src->sadb_lifetime_bytes; 3892 dst->addtime = src->sadb_lifetime_addtime; 3893 dst->usetime = src->sadb_lifetime_usetime; 3894 } 3895 return dst; 3896 } 3897 3898 /* compare my own address 3899 * OUT: 1: true, i.e. my address. 3900 * 0: false 3901 */ 3902 int 3903 key_ismyaddr(sa) 3904 struct sockaddr *sa; 3905 { 3906 #ifdef INET 3907 struct sockaddr_in *sin; 3908 struct in_ifaddr *ia; 3909 #endif 3910 3911 IPSEC_ASSERT(sa != NULL, ("null sockaddr")); 3912 3913 switch (sa->sa_family) { 3914 #ifdef INET 3915 case AF_INET: 3916 sin = (struct sockaddr_in *)sa; 3917 IN_IFADDR_RLOCK(); 3918 for (ia = V_in_ifaddrhead.tqh_first; ia; 3919 ia = ia->ia_link.tqe_next) 3920 { 3921 if (sin->sin_family == ia->ia_addr.sin_family && 3922 sin->sin_len == ia->ia_addr.sin_len && 3923 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr) 3924 { 3925 IN_IFADDR_RUNLOCK(); 3926 return 1; 3927 } 3928 } 3929 IN_IFADDR_RUNLOCK(); 3930 break; 3931 #endif 3932 #ifdef INET6 3933 case AF_INET6: 3934 return key_ismyaddr6((struct sockaddr_in6 *)sa); 3935 #endif 3936 } 3937 3938 return 0; 3939 } 3940 3941 #ifdef INET6 3942 /* 3943 * compare my own address for IPv6. 3944 * 1: ours 3945 * 0: other 3946 * NOTE: derived ip6_input() in KAME. This is necessary to modify more. 3947 */ 3948 #include <netinet6/in6_var.h> 3949 3950 static int 3951 key_ismyaddr6(sin6) 3952 struct sockaddr_in6 *sin6; 3953 { 3954 struct in6_ifaddr *ia; 3955 #if 0 3956 struct in6_multi *in6m; 3957 #endif 3958 3959 IN6_IFADDR_RLOCK(); 3960 TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) { 3961 if (key_sockaddrcmp((struct sockaddr *)&sin6, 3962 (struct sockaddr *)&ia->ia_addr, 0) == 0) { 3963 IN6_IFADDR_RUNLOCK(); 3964 return 1; 3965 } 3966 3967 #if 0 3968 /* 3969 * XXX Multicast 3970 * XXX why do we care about multlicast here while we don't care 3971 * about IPv4 multicast?? 3972 * XXX scope 3973 */ 3974 in6m = NULL; 3975 IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m); 3976 if (in6m) { 3977 IN6_IFADDR_RUNLOCK(); 3978 return 1; 3979 } 3980 #endif 3981 } 3982 IN6_IFADDR_RUNLOCK(); 3983 3984 /* loopback, just for safety */ 3985 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) 3986 return 1; 3987 3988 return 0; 3989 } 3990 #endif /*INET6*/ 3991 3992 /* 3993 * compare two secasindex structure. 3994 * flag can specify to compare 2 saidxes. 3995 * compare two secasindex structure without both mode and reqid. 3996 * don't compare port. 3997 * IN: 3998 * saidx0: source, it can be in SAD. 3999 * saidx1: object. 4000 * OUT: 4001 * 1 : equal 4002 * 0 : not equal 4003 */ 4004 static int 4005 key_cmpsaidx( 4006 const struct secasindex *saidx0, 4007 const struct secasindex *saidx1, 4008 int flag) 4009 { 4010 int chkport = 0; 4011 4012 /* sanity */ 4013 if (saidx0 == NULL && saidx1 == NULL) 4014 return 1; 4015 4016 if (saidx0 == NULL || saidx1 == NULL) 4017 return 0; 4018 4019 if (saidx0->proto != saidx1->proto) 4020 return 0; 4021 4022 if (flag == CMP_EXACTLY) { 4023 if (saidx0->mode != saidx1->mode) 4024 return 0; 4025 if (saidx0->reqid != saidx1->reqid) 4026 return 0; 4027 if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 || 4028 bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0) 4029 return 0; 4030 } else { 4031 4032 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ 4033 if (flag == CMP_MODE_REQID 4034 ||flag == CMP_REQID) { 4035 /* 4036 * If reqid of SPD is non-zero, unique SA is required. 4037 * The result must be of same reqid in this case. 4038 */ 4039 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) 4040 return 0; 4041 } 4042 4043 if (flag == CMP_MODE_REQID) { 4044 if (saidx0->mode != IPSEC_MODE_ANY 4045 && saidx0->mode != saidx1->mode) 4046 return 0; 4047 } 4048 4049 #ifdef IPSEC_NAT_T 4050 /* 4051 * If NAT-T is enabled, check ports for tunnel mode. 4052 * Do not check ports if they are set to zero in the SPD. 4053 * Also do not do it for transport mode, as there is no 4054 * port information available in the SP. 4055 */ 4056 if (saidx1->mode == IPSEC_MODE_TUNNEL && 4057 saidx1->src.sa.sa_family == AF_INET && 4058 saidx1->dst.sa.sa_family == AF_INET && 4059 ((const struct sockaddr_in *)(&saidx1->src))->sin_port && 4060 ((const struct sockaddr_in *)(&saidx1->dst))->sin_port) 4061 chkport = 1; 4062 #endif /* IPSEC_NAT_T */ 4063 4064 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, chkport) != 0) { 4065 return 0; 4066 } 4067 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, chkport) != 0) { 4068 return 0; 4069 } 4070 } 4071 4072 return 1; 4073 } 4074 4075 /* 4076 * compare two secindex structure exactly. 4077 * IN: 4078 * spidx0: source, it is often in SPD. 4079 * spidx1: object, it is often from PFKEY message. 4080 * OUT: 4081 * 1 : equal 4082 * 0 : not equal 4083 */ 4084 static int 4085 key_cmpspidx_exactly( 4086 struct secpolicyindex *spidx0, 4087 struct secpolicyindex *spidx1) 4088 { 4089 /* sanity */ 4090 if (spidx0 == NULL && spidx1 == NULL) 4091 return 1; 4092 4093 if (spidx0 == NULL || spidx1 == NULL) 4094 return 0; 4095 4096 if (spidx0->prefs != spidx1->prefs 4097 || spidx0->prefd != spidx1->prefd 4098 || spidx0->ul_proto != spidx1->ul_proto) 4099 return 0; 4100 4101 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 && 4102 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0; 4103 } 4104 4105 /* 4106 * compare two secindex structure with mask. 4107 * IN: 4108 * spidx0: source, it is often in SPD. 4109 * spidx1: object, it is often from IP header. 4110 * OUT: 4111 * 1 : equal 4112 * 0 : not equal 4113 */ 4114 static int 4115 key_cmpspidx_withmask( 4116 struct secpolicyindex *spidx0, 4117 struct secpolicyindex *spidx1) 4118 { 4119 /* sanity */ 4120 if (spidx0 == NULL && spidx1 == NULL) 4121 return 1; 4122 4123 if (spidx0 == NULL || spidx1 == NULL) 4124 return 0; 4125 4126 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || 4127 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || 4128 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || 4129 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) 4130 return 0; 4131 4132 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ 4133 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY 4134 && spidx0->ul_proto != spidx1->ul_proto) 4135 return 0; 4136 4137 switch (spidx0->src.sa.sa_family) { 4138 case AF_INET: 4139 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY 4140 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) 4141 return 0; 4142 if (!key_bbcmp(&spidx0->src.sin.sin_addr, 4143 &spidx1->src.sin.sin_addr, spidx0->prefs)) 4144 return 0; 4145 break; 4146 case AF_INET6: 4147 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY 4148 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) 4149 return 0; 4150 /* 4151 * scope_id check. if sin6_scope_id is 0, we regard it 4152 * as a wildcard scope, which matches any scope zone ID. 4153 */ 4154 if (spidx0->src.sin6.sin6_scope_id && 4155 spidx1->src.sin6.sin6_scope_id && 4156 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) 4157 return 0; 4158 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr, 4159 &spidx1->src.sin6.sin6_addr, spidx0->prefs)) 4160 return 0; 4161 break; 4162 default: 4163 /* XXX */ 4164 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) 4165 return 0; 4166 break; 4167 } 4168 4169 switch (spidx0->dst.sa.sa_family) { 4170 case AF_INET: 4171 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY 4172 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) 4173 return 0; 4174 if (!key_bbcmp(&spidx0->dst.sin.sin_addr, 4175 &spidx1->dst.sin.sin_addr, spidx0->prefd)) 4176 return 0; 4177 break; 4178 case AF_INET6: 4179 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY 4180 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) 4181 return 0; 4182 /* 4183 * scope_id check. if sin6_scope_id is 0, we regard it 4184 * as a wildcard scope, which matches any scope zone ID. 4185 */ 4186 if (spidx0->dst.sin6.sin6_scope_id && 4187 spidx1->dst.sin6.sin6_scope_id && 4188 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) 4189 return 0; 4190 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr, 4191 &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) 4192 return 0; 4193 break; 4194 default: 4195 /* XXX */ 4196 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) 4197 return 0; 4198 break; 4199 } 4200 4201 /* XXX Do we check other field ? e.g. flowinfo */ 4202 4203 return 1; 4204 } 4205 4206 /* returns 0 on match */ 4207 static int 4208 key_sockaddrcmp( 4209 const struct sockaddr *sa1, 4210 const struct sockaddr *sa2, 4211 int port) 4212 { 4213 #ifdef satosin 4214 #undef satosin 4215 #endif 4216 #define satosin(s) ((const struct sockaddr_in *)s) 4217 #ifdef satosin6 4218 #undef satosin6 4219 #endif 4220 #define satosin6(s) ((const struct sockaddr_in6 *)s) 4221 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) 4222 return 1; 4223 4224 switch (sa1->sa_family) { 4225 case AF_INET: 4226 if (sa1->sa_len != sizeof(struct sockaddr_in)) 4227 return 1; 4228 if (satosin(sa1)->sin_addr.s_addr != 4229 satosin(sa2)->sin_addr.s_addr) { 4230 return 1; 4231 } 4232 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port) 4233 return 1; 4234 break; 4235 case AF_INET6: 4236 if (sa1->sa_len != sizeof(struct sockaddr_in6)) 4237 return 1; /*EINVAL*/ 4238 if (satosin6(sa1)->sin6_scope_id != 4239 satosin6(sa2)->sin6_scope_id) { 4240 return 1; 4241 } 4242 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr, 4243 &satosin6(sa2)->sin6_addr)) { 4244 return 1; 4245 } 4246 if (port && 4247 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) { 4248 return 1; 4249 } 4250 break; 4251 default: 4252 if (bcmp(sa1, sa2, sa1->sa_len) != 0) 4253 return 1; 4254 break; 4255 } 4256 4257 return 0; 4258 #undef satosin 4259 #undef satosin6 4260 } 4261 4262 /* 4263 * compare two buffers with mask. 4264 * IN: 4265 * addr1: source 4266 * addr2: object 4267 * bits: Number of bits to compare 4268 * OUT: 4269 * 1 : equal 4270 * 0 : not equal 4271 */ 4272 static int 4273 key_bbcmp(const void *a1, const void *a2, u_int bits) 4274 { 4275 const unsigned char *p1 = a1; 4276 const unsigned char *p2 = a2; 4277 4278 /* XXX: This could be considerably faster if we compare a word 4279 * at a time, but it is complicated on LSB Endian machines */ 4280 4281 /* Handle null pointers */ 4282 if (p1 == NULL || p2 == NULL) 4283 return (p1 == p2); 4284 4285 while (bits >= 8) { 4286 if (*p1++ != *p2++) 4287 return 0; 4288 bits -= 8; 4289 } 4290 4291 if (bits > 0) { 4292 u_int8_t mask = ~((1<<(8-bits))-1); 4293 if ((*p1 & mask) != (*p2 & mask)) 4294 return 0; 4295 } 4296 return 1; /* Match! */ 4297 } 4298 4299 static void 4300 key_flush_spd(time_t now) 4301 { 4302 static u_int16_t sptree_scangen = 0; 4303 u_int16_t gen = sptree_scangen++; 4304 struct secpolicy *sp; 4305 u_int dir; 4306 4307 /* SPD */ 4308 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 4309 restart: 4310 SPTREE_LOCK(); 4311 LIST_FOREACH(sp, &V_sptree[dir], chain) { 4312 if (sp->scangen == gen) /* previously handled */ 4313 continue; 4314 sp->scangen = gen; 4315 if (sp->state == IPSEC_SPSTATE_DEAD && 4316 sp->refcnt == 1) { 4317 /* 4318 * Ensure that we only decrease refcnt once, 4319 * when we're the last consumer. 4320 * Directly call SP_DELREF/key_delsp instead 4321 * of KEY_FREESP to avoid unlocking/relocking 4322 * SPTREE_LOCK before key_delsp: may refcnt 4323 * be increased again during that time ? 4324 * NB: also clean entries created by 4325 * key_spdflush 4326 */ 4327 SP_DELREF(sp); 4328 key_delsp(sp); 4329 SPTREE_UNLOCK(); 4330 goto restart; 4331 } 4332 if (sp->lifetime == 0 && sp->validtime == 0) 4333 continue; 4334 if ((sp->lifetime && now - sp->created > sp->lifetime) 4335 || (sp->validtime && now - sp->lastused > sp->validtime)) { 4336 sp->state = IPSEC_SPSTATE_DEAD; 4337 SPTREE_UNLOCK(); 4338 key_spdexpire(sp); 4339 goto restart; 4340 } 4341 } 4342 SPTREE_UNLOCK(); 4343 } 4344 } 4345 4346 static void 4347 key_flush_sad(time_t now) 4348 { 4349 struct secashead *sah, *nextsah; 4350 struct secasvar *sav, *nextsav; 4351 4352 /* SAD */ 4353 SAHTREE_LOCK(); 4354 LIST_FOREACH_SAFE(sah, &V_sahtree, chain, nextsah) { 4355 /* if sah has been dead, then delete it and process next sah. */ 4356 if (sah->state == SADB_SASTATE_DEAD) { 4357 key_delsah(sah); 4358 continue; 4359 } 4360 4361 /* if LARVAL entry doesn't become MATURE, delete it. */ 4362 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) { 4363 /* Need to also check refcnt for a larval SA ??? */ 4364 if (now - sav->created > V_key_larval_lifetime) 4365 KEY_FREESAV(&sav); 4366 } 4367 4368 /* 4369 * check MATURE entry to start to send expire message 4370 * whether or not. 4371 */ 4372 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) { 4373 /* we don't need to check. */ 4374 if (sav->lft_s == NULL) 4375 continue; 4376 4377 /* sanity check */ 4378 if (sav->lft_c == NULL) { 4379 ipseclog((LOG_DEBUG,"%s: there is no CURRENT " 4380 "time, why?\n", __func__)); 4381 continue; 4382 } 4383 4384 /* check SOFT lifetime */ 4385 if (sav->lft_s->addtime != 0 && 4386 now - sav->created > sav->lft_s->addtime) { 4387 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4388 /* 4389 * Actually, only send expire message if 4390 * SA has been used, as it was done before, 4391 * but should we always send such message, 4392 * and let IKE daemon decide if it should be 4393 * renegotiated or not ? 4394 * XXX expire message will actually NOT be 4395 * sent if SA is only used after soft 4396 * lifetime has been reached, see below 4397 * (DYING state) 4398 */ 4399 if (sav->lft_c->usetime != 0) 4400 key_expire(sav); 4401 } 4402 /* check SOFT lifetime by bytes */ 4403 /* 4404 * XXX I don't know the way to delete this SA 4405 * when new SA is installed. Caution when it's 4406 * installed too big lifetime by time. 4407 */ 4408 else if (sav->lft_s->bytes != 0 && 4409 sav->lft_s->bytes < sav->lft_c->bytes) { 4410 4411 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4412 /* 4413 * XXX If we keep to send expire 4414 * message in the status of 4415 * DYING. Do remove below code. 4416 */ 4417 key_expire(sav); 4418 } 4419 } 4420 4421 /* check DYING entry to change status to DEAD. */ 4422 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) { 4423 /* we don't need to check. */ 4424 if (sav->lft_h == NULL) 4425 continue; 4426 4427 /* sanity check */ 4428 if (sav->lft_c == NULL) { 4429 ipseclog((LOG_DEBUG, "%s: there is no CURRENT " 4430 "time, why?\n", __func__)); 4431 continue; 4432 } 4433 4434 if (sav->lft_h->addtime != 0 && 4435 now - sav->created > sav->lft_h->addtime) { 4436 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4437 KEY_FREESAV(&sav); 4438 } 4439 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */ 4440 else if (sav->lft_s != NULL 4441 && sav->lft_s->addtime != 0 4442 && now - sav->created > sav->lft_s->addtime) { 4443 /* 4444 * XXX: should be checked to be 4445 * installed the valid SA. 4446 */ 4447 4448 /* 4449 * If there is no SA then sending 4450 * expire message. 4451 */ 4452 key_expire(sav); 4453 } 4454 #endif 4455 /* check HARD lifetime by bytes */ 4456 else if (sav->lft_h->bytes != 0 && 4457 sav->lft_h->bytes < sav->lft_c->bytes) { 4458 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4459 KEY_FREESAV(&sav); 4460 } 4461 } 4462 4463 /* delete entry in DEAD */ 4464 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) { 4465 /* sanity check */ 4466 if (sav->state != SADB_SASTATE_DEAD) { 4467 ipseclog((LOG_DEBUG, "%s: invalid sav->state " 4468 "(queue: %d SA: %d): kill it anyway\n", 4469 __func__, 4470 SADB_SASTATE_DEAD, sav->state)); 4471 } 4472 /* 4473 * do not call key_freesav() here. 4474 * sav should already be freed, and sav->refcnt 4475 * shows other references to sav 4476 * (such as from SPD). 4477 */ 4478 } 4479 } 4480 SAHTREE_UNLOCK(); 4481 } 4482 4483 static void 4484 key_flush_acq(time_t now) 4485 { 4486 struct secacq *acq, *nextacq; 4487 4488 /* ACQ tree */ 4489 ACQ_LOCK(); 4490 for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) { 4491 nextacq = LIST_NEXT(acq, chain); 4492 if (now - acq->created > V_key_blockacq_lifetime 4493 && __LIST_CHAINED(acq)) { 4494 LIST_REMOVE(acq, chain); 4495 free(acq, M_IPSEC_SAQ); 4496 } 4497 } 4498 ACQ_UNLOCK(); 4499 } 4500 4501 static void 4502 key_flush_spacq(time_t now) 4503 { 4504 struct secspacq *acq, *nextacq; 4505 4506 /* SP ACQ tree */ 4507 SPACQ_LOCK(); 4508 for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) { 4509 nextacq = LIST_NEXT(acq, chain); 4510 if (now - acq->created > V_key_blockacq_lifetime 4511 && __LIST_CHAINED(acq)) { 4512 LIST_REMOVE(acq, chain); 4513 free(acq, M_IPSEC_SAQ); 4514 } 4515 } 4516 SPACQ_UNLOCK(); 4517 } 4518 4519 /* 4520 * time handler. 4521 * scanning SPD and SAD to check status for each entries, 4522 * and do to remove or to expire. 4523 * XXX: year 2038 problem may remain. 4524 */ 4525 void 4526 key_timehandler(void) 4527 { 4528 VNET_ITERATOR_DECL(vnet_iter); 4529 time_t now = time_second; 4530 4531 VNET_LIST_RLOCK_NOSLEEP(); 4532 VNET_FOREACH(vnet_iter) { 4533 CURVNET_SET(vnet_iter); 4534 key_flush_spd(now); 4535 key_flush_sad(now); 4536 key_flush_acq(now); 4537 key_flush_spacq(now); 4538 CURVNET_RESTORE(); 4539 } 4540 VNET_LIST_RUNLOCK_NOSLEEP(); 4541 4542 #ifndef IPSEC_DEBUG2 4543 /* do exchange to tick time !! */ 4544 (void)timeout((void *)key_timehandler, (void *)0, hz); 4545 #endif /* IPSEC_DEBUG2 */ 4546 } 4547 4548 u_long 4549 key_random() 4550 { 4551 u_long value; 4552 4553 key_randomfill(&value, sizeof(value)); 4554 return value; 4555 } 4556 4557 void 4558 key_randomfill(p, l) 4559 void *p; 4560 size_t l; 4561 { 4562 size_t n; 4563 u_long v; 4564 static int warn = 1; 4565 4566 n = 0; 4567 n = (size_t)read_random(p, (u_int)l); 4568 /* last resort */ 4569 while (n < l) { 4570 v = random(); 4571 bcopy(&v, (u_int8_t *)p + n, 4572 l - n < sizeof(v) ? l - n : sizeof(v)); 4573 n += sizeof(v); 4574 4575 if (warn) { 4576 printf("WARNING: pseudo-random number generator " 4577 "used for IPsec processing\n"); 4578 warn = 0; 4579 } 4580 } 4581 } 4582 4583 /* 4584 * map SADB_SATYPE_* to IPPROTO_*. 4585 * if satype == SADB_SATYPE then satype is mapped to ~0. 4586 * OUT: 4587 * 0: invalid satype. 4588 */ 4589 static u_int16_t 4590 key_satype2proto(u_int8_t satype) 4591 { 4592 switch (satype) { 4593 case SADB_SATYPE_UNSPEC: 4594 return IPSEC_PROTO_ANY; 4595 case SADB_SATYPE_AH: 4596 return IPPROTO_AH; 4597 case SADB_SATYPE_ESP: 4598 return IPPROTO_ESP; 4599 case SADB_X_SATYPE_IPCOMP: 4600 return IPPROTO_IPCOMP; 4601 case SADB_X_SATYPE_TCPSIGNATURE: 4602 return IPPROTO_TCP; 4603 default: 4604 return 0; 4605 } 4606 /* NOTREACHED */ 4607 } 4608 4609 /* 4610 * map IPPROTO_* to SADB_SATYPE_* 4611 * OUT: 4612 * 0: invalid protocol type. 4613 */ 4614 static u_int8_t 4615 key_proto2satype(u_int16_t proto) 4616 { 4617 switch (proto) { 4618 case IPPROTO_AH: 4619 return SADB_SATYPE_AH; 4620 case IPPROTO_ESP: 4621 return SADB_SATYPE_ESP; 4622 case IPPROTO_IPCOMP: 4623 return SADB_X_SATYPE_IPCOMP; 4624 case IPPROTO_TCP: 4625 return SADB_X_SATYPE_TCPSIGNATURE; 4626 default: 4627 return 0; 4628 } 4629 /* NOTREACHED */ 4630 } 4631 4632 /* %%% PF_KEY */ 4633 /* 4634 * SADB_GETSPI processing is to receive 4635 * <base, (SA2), src address, dst address, (SPI range)> 4636 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND 4637 * tree with the status of LARVAL, and send 4638 * <base, SA(*), address(SD)> 4639 * to the IKMPd. 4640 * 4641 * IN: mhp: pointer to the pointer to each header. 4642 * OUT: NULL if fail. 4643 * other if success, return pointer to the message to send. 4644 */ 4645 static int 4646 key_getspi(so, m, mhp) 4647 struct socket *so; 4648 struct mbuf *m; 4649 const struct sadb_msghdr *mhp; 4650 { 4651 struct sadb_address *src0, *dst0; 4652 struct secasindex saidx; 4653 struct secashead *newsah; 4654 struct secasvar *newsav; 4655 u_int8_t proto; 4656 u_int32_t spi; 4657 u_int8_t mode; 4658 u_int32_t reqid; 4659 int error; 4660 4661 IPSEC_ASSERT(so != NULL, ("null socket")); 4662 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4663 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4664 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4665 4666 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4667 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 4668 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4669 __func__)); 4670 return key_senderror(so, m, EINVAL); 4671 } 4672 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4673 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4674 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4675 __func__)); 4676 return key_senderror(so, m, EINVAL); 4677 } 4678 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4679 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4680 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4681 } else { 4682 mode = IPSEC_MODE_ANY; 4683 reqid = 0; 4684 } 4685 4686 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4687 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4688 4689 /* map satype to proto */ 4690 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4691 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4692 __func__)); 4693 return key_senderror(so, m, EINVAL); 4694 } 4695 4696 /* 4697 * Make sure the port numbers are zero. 4698 * In case of NAT-T we will update them later if needed. 4699 */ 4700 switch (((struct sockaddr *)(src0 + 1))->sa_family) { 4701 case AF_INET: 4702 if (((struct sockaddr *)(src0 + 1))->sa_len != 4703 sizeof(struct sockaddr_in)) 4704 return key_senderror(so, m, EINVAL); 4705 ((struct sockaddr_in *)(src0 + 1))->sin_port = 0; 4706 break; 4707 case AF_INET6: 4708 if (((struct sockaddr *)(src0 + 1))->sa_len != 4709 sizeof(struct sockaddr_in6)) 4710 return key_senderror(so, m, EINVAL); 4711 ((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0; 4712 break; 4713 default: 4714 ; /*???*/ 4715 } 4716 switch (((struct sockaddr *)(dst0 + 1))->sa_family) { 4717 case AF_INET: 4718 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4719 sizeof(struct sockaddr_in)) 4720 return key_senderror(so, m, EINVAL); 4721 ((struct sockaddr_in *)(dst0 + 1))->sin_port = 0; 4722 break; 4723 case AF_INET6: 4724 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4725 sizeof(struct sockaddr_in6)) 4726 return key_senderror(so, m, EINVAL); 4727 ((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0; 4728 break; 4729 default: 4730 ; /*???*/ 4731 } 4732 4733 /* XXX boundary check against sa_len */ 4734 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4735 4736 #ifdef IPSEC_NAT_T 4737 /* 4738 * Handle NAT-T info if present. 4739 * We made sure the port numbers are zero above, so we do 4740 * not have to worry in case we do not update them. 4741 */ 4742 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) 4743 ipseclog((LOG_DEBUG, "%s: NAT-T OAi present\n", __func__)); 4744 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) 4745 ipseclog((LOG_DEBUG, "%s: NAT-T OAr present\n", __func__)); 4746 4747 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 4748 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 4749 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 4750 struct sadb_x_nat_t_type *type; 4751 struct sadb_x_nat_t_port *sport, *dport; 4752 4753 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 4754 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 4755 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 4756 ipseclog((LOG_DEBUG, "%s: invalid nat-t message " 4757 "passed.\n", __func__)); 4758 return key_senderror(so, m, EINVAL); 4759 } 4760 4761 sport = (struct sadb_x_nat_t_port *) 4762 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 4763 dport = (struct sadb_x_nat_t_port *) 4764 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 4765 4766 if (sport) 4767 KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port); 4768 if (dport) 4769 KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port); 4770 } 4771 #endif 4772 4773 /* SPI allocation */ 4774 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE], 4775 &saidx); 4776 if (spi == 0) 4777 return key_senderror(so, m, EINVAL); 4778 4779 /* get a SA index */ 4780 if ((newsah = key_getsah(&saidx)) == NULL) { 4781 /* create a new SA index */ 4782 if ((newsah = key_newsah(&saidx)) == NULL) { 4783 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 4784 return key_senderror(so, m, ENOBUFS); 4785 } 4786 } 4787 4788 /* get a new SA */ 4789 /* XXX rewrite */ 4790 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 4791 if (newsav == NULL) { 4792 /* XXX don't free new SA index allocated in above. */ 4793 return key_senderror(so, m, error); 4794 } 4795 4796 /* set spi */ 4797 newsav->spi = htonl(spi); 4798 4799 /* delete the entry in acqtree */ 4800 if (mhp->msg->sadb_msg_seq != 0) { 4801 struct secacq *acq; 4802 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) { 4803 /* reset counter in order to deletion by timehandler. */ 4804 acq->created = time_second; 4805 acq->count = 0; 4806 } 4807 } 4808 4809 { 4810 struct mbuf *n, *nn; 4811 struct sadb_sa *m_sa; 4812 struct sadb_msg *newmsg; 4813 int off, len; 4814 4815 /* create new sadb_msg to reply. */ 4816 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 4817 PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4818 4819 MGETHDR(n, M_DONTWAIT, MT_DATA); 4820 if (len > MHLEN) { 4821 MCLGET(n, M_DONTWAIT); 4822 if ((n->m_flags & M_EXT) == 0) { 4823 m_freem(n); 4824 n = NULL; 4825 } 4826 } 4827 if (!n) 4828 return key_senderror(so, m, ENOBUFS); 4829 4830 n->m_len = len; 4831 n->m_next = NULL; 4832 off = 0; 4833 4834 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 4835 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 4836 4837 m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off); 4838 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); 4839 m_sa->sadb_sa_exttype = SADB_EXT_SA; 4840 m_sa->sadb_sa_spi = htonl(spi); 4841 off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4842 4843 IPSEC_ASSERT(off == len, 4844 ("length inconsistency (off %u len %u)", off, len)); 4845 4846 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, 4847 SADB_EXT_ADDRESS_DST); 4848 if (!n->m_next) { 4849 m_freem(n); 4850 return key_senderror(so, m, ENOBUFS); 4851 } 4852 4853 if (n->m_len < sizeof(struct sadb_msg)) { 4854 n = m_pullup(n, sizeof(struct sadb_msg)); 4855 if (n == NULL) 4856 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 4857 } 4858 4859 n->m_pkthdr.len = 0; 4860 for (nn = n; nn; nn = nn->m_next) 4861 n->m_pkthdr.len += nn->m_len; 4862 4863 newmsg = mtod(n, struct sadb_msg *); 4864 newmsg->sadb_msg_seq = newsav->seq; 4865 newmsg->sadb_msg_errno = 0; 4866 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 4867 4868 m_freem(m); 4869 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 4870 } 4871 } 4872 4873 /* 4874 * allocating new SPI 4875 * called by key_getspi(). 4876 * OUT: 4877 * 0: failure. 4878 * others: success. 4879 */ 4880 static u_int32_t 4881 key_do_getnewspi(spirange, saidx) 4882 struct sadb_spirange *spirange; 4883 struct secasindex *saidx; 4884 { 4885 u_int32_t newspi; 4886 u_int32_t min, max; 4887 int count = V_key_spi_trycnt; 4888 4889 /* set spi range to allocate */ 4890 if (spirange != NULL) { 4891 min = spirange->sadb_spirange_min; 4892 max = spirange->sadb_spirange_max; 4893 } else { 4894 min = V_key_spi_minval; 4895 max = V_key_spi_maxval; 4896 } 4897 /* IPCOMP needs 2-byte SPI */ 4898 if (saidx->proto == IPPROTO_IPCOMP) { 4899 u_int32_t t; 4900 if (min >= 0x10000) 4901 min = 0xffff; 4902 if (max >= 0x10000) 4903 max = 0xffff; 4904 if (min > max) { 4905 t = min; min = max; max = t; 4906 } 4907 } 4908 4909 if (min == max) { 4910 if (key_checkspidup(saidx, min) != NULL) { 4911 ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n", 4912 __func__, min)); 4913 return 0; 4914 } 4915 4916 count--; /* taking one cost. */ 4917 newspi = min; 4918 4919 } else { 4920 4921 /* init SPI */ 4922 newspi = 0; 4923 4924 /* when requesting to allocate spi ranged */ 4925 while (count--) { 4926 /* generate pseudo-random SPI value ranged. */ 4927 newspi = min + (key_random() % (max - min + 1)); 4928 4929 if (key_checkspidup(saidx, newspi) == NULL) 4930 break; 4931 } 4932 4933 if (count == 0 || newspi == 0) { 4934 ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n", 4935 __func__)); 4936 return 0; 4937 } 4938 } 4939 4940 /* statistics */ 4941 keystat.getspi_count = 4942 (keystat.getspi_count + V_key_spi_trycnt - count) / 2; 4943 4944 return newspi; 4945 } 4946 4947 /* 4948 * SADB_UPDATE processing 4949 * receive 4950 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4951 * key(AE), (identity(SD),) (sensitivity)> 4952 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. 4953 * and send 4954 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4955 * (identity(SD),) (sensitivity)> 4956 * to the ikmpd. 4957 * 4958 * m will always be freed. 4959 */ 4960 static int 4961 key_update(so, m, mhp) 4962 struct socket *so; 4963 struct mbuf *m; 4964 const struct sadb_msghdr *mhp; 4965 { 4966 struct sadb_sa *sa0; 4967 struct sadb_address *src0, *dst0; 4968 #ifdef IPSEC_NAT_T 4969 struct sadb_x_nat_t_type *type; 4970 struct sadb_x_nat_t_port *sport, *dport; 4971 struct sadb_address *iaddr, *raddr; 4972 struct sadb_x_nat_t_frag *frag; 4973 #endif 4974 struct secasindex saidx; 4975 struct secashead *sah; 4976 struct secasvar *sav; 4977 u_int16_t proto; 4978 u_int8_t mode; 4979 u_int32_t reqid; 4980 int error; 4981 4982 IPSEC_ASSERT(so != NULL, ("null socket")); 4983 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4984 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4985 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4986 4987 /* map satype to proto */ 4988 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4989 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4990 __func__)); 4991 return key_senderror(so, m, EINVAL); 4992 } 4993 4994 if (mhp->ext[SADB_EXT_SA] == NULL || 4995 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4996 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 4997 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 4998 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 4999 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5000 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5001 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5002 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5003 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5004 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5005 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5006 __func__)); 5007 return key_senderror(so, m, EINVAL); 5008 } 5009 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5010 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5011 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5012 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5013 __func__)); 5014 return key_senderror(so, m, EINVAL); 5015 } 5016 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5017 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 5018 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 5019 } else { 5020 mode = IPSEC_MODE_ANY; 5021 reqid = 0; 5022 } 5023 /* XXX boundary checking for other extensions */ 5024 5025 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5026 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5027 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5028 5029 /* XXX boundary check against sa_len */ 5030 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 5031 5032 /* 5033 * Make sure the port numbers are zero. 5034 * In case of NAT-T we will update them later if needed. 5035 */ 5036 KEY_PORTTOSADDR(&saidx.src, 0); 5037 KEY_PORTTOSADDR(&saidx.dst, 0); 5038 5039 #ifdef IPSEC_NAT_T 5040 /* 5041 * Handle NAT-T info if present. 5042 */ 5043 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 5044 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5045 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5046 5047 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 5048 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5049 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5050 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5051 __func__)); 5052 return key_senderror(so, m, EINVAL); 5053 } 5054 5055 type = (struct sadb_x_nat_t_type *) 5056 mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5057 sport = (struct sadb_x_nat_t_port *) 5058 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5059 dport = (struct sadb_x_nat_t_port *) 5060 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5061 } else { 5062 type = 0; 5063 sport = dport = 0; 5064 } 5065 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL && 5066 mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { 5067 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) || 5068 mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { 5069 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5070 __func__)); 5071 return key_senderror(so, m, EINVAL); 5072 } 5073 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5074 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5075 ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__)); 5076 } else { 5077 iaddr = raddr = NULL; 5078 } 5079 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { 5080 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { 5081 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5082 __func__)); 5083 return key_senderror(so, m, EINVAL); 5084 } 5085 frag = (struct sadb_x_nat_t_frag *) 5086 mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 5087 } else { 5088 frag = 0; 5089 } 5090 #endif 5091 5092 /* get a SA header */ 5093 if ((sah = key_getsah(&saidx)) == NULL) { 5094 ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__)); 5095 return key_senderror(so, m, ENOENT); 5096 } 5097 5098 /* set spidx if there */ 5099 /* XXX rewrite */ 5100 error = key_setident(sah, m, mhp); 5101 if (error) 5102 return key_senderror(so, m, error); 5103 5104 /* find a SA with sequence number. */ 5105 #ifdef IPSEC_DOSEQCHECK 5106 if (mhp->msg->sadb_msg_seq != 0 5107 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) { 5108 ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u " 5109 "exists.\n", __func__, mhp->msg->sadb_msg_seq)); 5110 return key_senderror(so, m, ENOENT); 5111 } 5112 #else 5113 SAHTREE_LOCK(); 5114 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5115 SAHTREE_UNLOCK(); 5116 if (sav == NULL) { 5117 ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n", 5118 __func__, (u_int32_t)ntohl(sa0->sadb_sa_spi))); 5119 return key_senderror(so, m, EINVAL); 5120 } 5121 #endif 5122 5123 /* validity check */ 5124 if (sav->sah->saidx.proto != proto) { 5125 ipseclog((LOG_DEBUG, "%s: protocol mismatched " 5126 "(DB=%u param=%u)\n", __func__, 5127 sav->sah->saidx.proto, proto)); 5128 return key_senderror(so, m, EINVAL); 5129 } 5130 #ifdef IPSEC_DOSEQCHECK 5131 if (sav->spi != sa0->sadb_sa_spi) { 5132 ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n", 5133 __func__, 5134 (u_int32_t)ntohl(sav->spi), 5135 (u_int32_t)ntohl(sa0->sadb_sa_spi))); 5136 return key_senderror(so, m, EINVAL); 5137 } 5138 #endif 5139 if (sav->pid != mhp->msg->sadb_msg_pid) { 5140 ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n", 5141 __func__, sav->pid, mhp->msg->sadb_msg_pid)); 5142 return key_senderror(so, m, EINVAL); 5143 } 5144 5145 /* copy sav values */ 5146 error = key_setsaval(sav, m, mhp); 5147 if (error) { 5148 KEY_FREESAV(&sav); 5149 return key_senderror(so, m, error); 5150 } 5151 5152 /* check SA values to be mature. */ 5153 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) { 5154 KEY_FREESAV(&sav); 5155 return key_senderror(so, m, 0); 5156 } 5157 5158 #ifdef IPSEC_NAT_T 5159 /* 5160 * Handle more NAT-T info if present, 5161 * now that we have a sav to fill. 5162 */ 5163 if (type) 5164 sav->natt_type = type->sadb_x_nat_t_type_type; 5165 5166 if (sport) 5167 KEY_PORTTOSADDR(&sav->sah->saidx.src, 5168 sport->sadb_x_nat_t_port_port); 5169 if (dport) 5170 KEY_PORTTOSADDR(&sav->sah->saidx.dst, 5171 dport->sadb_x_nat_t_port_port); 5172 5173 #if 0 5174 /* 5175 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0. 5176 * We should actually check for a minimum MTU here, if we 5177 * want to support it in ip_output. 5178 */ 5179 if (frag) 5180 sav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen; 5181 #endif 5182 #endif 5183 5184 { 5185 struct mbuf *n; 5186 5187 /* set msg buf from mhp */ 5188 n = key_getmsgbuf_x1(m, mhp); 5189 if (n == NULL) { 5190 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5191 return key_senderror(so, m, ENOBUFS); 5192 } 5193 5194 m_freem(m); 5195 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5196 } 5197 } 5198 5199 /* 5200 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL. 5201 * only called by key_update(). 5202 * OUT: 5203 * NULL : not found 5204 * others : found, pointer to a SA. 5205 */ 5206 #ifdef IPSEC_DOSEQCHECK 5207 static struct secasvar * 5208 key_getsavbyseq(sah, seq) 5209 struct secashead *sah; 5210 u_int32_t seq; 5211 { 5212 struct secasvar *sav; 5213 u_int state; 5214 5215 state = SADB_SASTATE_LARVAL; 5216 5217 /* search SAD with sequence number ? */ 5218 LIST_FOREACH(sav, &sah->savtree[state], chain) { 5219 5220 KEY_CHKSASTATE(state, sav->state, __func__); 5221 5222 if (sav->seq == seq) { 5223 sa_addref(sav); 5224 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 5225 printf("DP %s cause refcnt++:%d SA:%p\n", 5226 __func__, sav->refcnt, sav)); 5227 return sav; 5228 } 5229 } 5230 5231 return NULL; 5232 } 5233 #endif 5234 5235 /* 5236 * SADB_ADD processing 5237 * add an entry to SA database, when received 5238 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5239 * key(AE), (identity(SD),) (sensitivity)> 5240 * from the ikmpd, 5241 * and send 5242 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5243 * (identity(SD),) (sensitivity)> 5244 * to the ikmpd. 5245 * 5246 * IGNORE identity and sensitivity messages. 5247 * 5248 * m will always be freed. 5249 */ 5250 static int 5251 key_add(so, m, mhp) 5252 struct socket *so; 5253 struct mbuf *m; 5254 const struct sadb_msghdr *mhp; 5255 { 5256 struct sadb_sa *sa0; 5257 struct sadb_address *src0, *dst0; 5258 #ifdef IPSEC_NAT_T 5259 struct sadb_x_nat_t_type *type; 5260 struct sadb_address *iaddr, *raddr; 5261 struct sadb_x_nat_t_frag *frag; 5262 #endif 5263 struct secasindex saidx; 5264 struct secashead *newsah; 5265 struct secasvar *newsav; 5266 u_int16_t proto; 5267 u_int8_t mode; 5268 u_int32_t reqid; 5269 int error; 5270 5271 IPSEC_ASSERT(so != NULL, ("null socket")); 5272 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5273 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5274 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5275 5276 /* map satype to proto */ 5277 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5278 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5279 __func__)); 5280 return key_senderror(so, m, EINVAL); 5281 } 5282 5283 if (mhp->ext[SADB_EXT_SA] == NULL || 5284 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5285 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5286 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5287 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5288 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5289 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5290 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5291 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5292 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5293 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5294 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5295 __func__)); 5296 return key_senderror(so, m, EINVAL); 5297 } 5298 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5299 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5300 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5301 /* XXX need more */ 5302 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5303 __func__)); 5304 return key_senderror(so, m, EINVAL); 5305 } 5306 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5307 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 5308 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 5309 } else { 5310 mode = IPSEC_MODE_ANY; 5311 reqid = 0; 5312 } 5313 5314 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5315 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5316 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5317 5318 /* XXX boundary check against sa_len */ 5319 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 5320 5321 /* 5322 * Make sure the port numbers are zero. 5323 * In case of NAT-T we will update them later if needed. 5324 */ 5325 KEY_PORTTOSADDR(&saidx.src, 0); 5326 KEY_PORTTOSADDR(&saidx.dst, 0); 5327 5328 #ifdef IPSEC_NAT_T 5329 /* 5330 * Handle NAT-T info if present. 5331 */ 5332 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 5333 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5334 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5335 struct sadb_x_nat_t_port *sport, *dport; 5336 5337 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 5338 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5339 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5340 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5341 __func__)); 5342 return key_senderror(so, m, EINVAL); 5343 } 5344 5345 type = (struct sadb_x_nat_t_type *) 5346 mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5347 sport = (struct sadb_x_nat_t_port *) 5348 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5349 dport = (struct sadb_x_nat_t_port *) 5350 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5351 5352 if (sport) 5353 KEY_PORTTOSADDR(&saidx.src, 5354 sport->sadb_x_nat_t_port_port); 5355 if (dport) 5356 KEY_PORTTOSADDR(&saidx.dst, 5357 dport->sadb_x_nat_t_port_port); 5358 } else { 5359 type = 0; 5360 } 5361 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL && 5362 mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { 5363 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) || 5364 mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { 5365 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5366 __func__)); 5367 return key_senderror(so, m, EINVAL); 5368 } 5369 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5370 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5371 ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__)); 5372 } else { 5373 iaddr = raddr = NULL; 5374 } 5375 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { 5376 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { 5377 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5378 __func__)); 5379 return key_senderror(so, m, EINVAL); 5380 } 5381 frag = (struct sadb_x_nat_t_frag *) 5382 mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 5383 } else { 5384 frag = 0; 5385 } 5386 #endif 5387 5388 /* get a SA header */ 5389 if ((newsah = key_getsah(&saidx)) == NULL) { 5390 /* create a new SA header */ 5391 if ((newsah = key_newsah(&saidx)) == NULL) { 5392 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 5393 return key_senderror(so, m, ENOBUFS); 5394 } 5395 } 5396 5397 /* set spidx if there */ 5398 /* XXX rewrite */ 5399 error = key_setident(newsah, m, mhp); 5400 if (error) { 5401 return key_senderror(so, m, error); 5402 } 5403 5404 /* create new SA entry. */ 5405 /* We can create new SA only if SPI is differenct. */ 5406 SAHTREE_LOCK(); 5407 newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi); 5408 SAHTREE_UNLOCK(); 5409 if (newsav != NULL) { 5410 ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__)); 5411 return key_senderror(so, m, EEXIST); 5412 } 5413 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 5414 if (newsav == NULL) { 5415 return key_senderror(so, m, error); 5416 } 5417 5418 /* check SA values to be mature. */ 5419 if ((error = key_mature(newsav)) != 0) { 5420 KEY_FREESAV(&newsav); 5421 return key_senderror(so, m, error); 5422 } 5423 5424 #ifdef IPSEC_NAT_T 5425 /* 5426 * Handle more NAT-T info if present, 5427 * now that we have a sav to fill. 5428 */ 5429 if (type) 5430 newsav->natt_type = type->sadb_x_nat_t_type_type; 5431 5432 #if 0 5433 /* 5434 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0. 5435 * We should actually check for a minimum MTU here, if we 5436 * want to support it in ip_output. 5437 */ 5438 if (frag) 5439 newsav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen; 5440 #endif 5441 #endif 5442 5443 /* 5444 * don't call key_freesav() here, as we would like to keep the SA 5445 * in the database on success. 5446 */ 5447 5448 { 5449 struct mbuf *n; 5450 5451 /* set msg buf from mhp */ 5452 n = key_getmsgbuf_x1(m, mhp); 5453 if (n == NULL) { 5454 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5455 return key_senderror(so, m, ENOBUFS); 5456 } 5457 5458 m_freem(m); 5459 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5460 } 5461 } 5462 5463 /* m is retained */ 5464 static int 5465 key_setident(sah, m, mhp) 5466 struct secashead *sah; 5467 struct mbuf *m; 5468 const struct sadb_msghdr *mhp; 5469 { 5470 const struct sadb_ident *idsrc, *iddst; 5471 int idsrclen, iddstlen; 5472 5473 IPSEC_ASSERT(sah != NULL, ("null secashead")); 5474 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5475 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5476 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5477 5478 /* don't make buffer if not there */ 5479 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL && 5480 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5481 sah->idents = NULL; 5482 sah->identd = NULL; 5483 return 0; 5484 } 5485 5486 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL || 5487 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5488 ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__)); 5489 return EINVAL; 5490 } 5491 5492 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC]; 5493 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST]; 5494 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC]; 5495 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST]; 5496 5497 /* validity check */ 5498 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { 5499 ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__)); 5500 return EINVAL; 5501 } 5502 5503 switch (idsrc->sadb_ident_type) { 5504 case SADB_IDENTTYPE_PREFIX: 5505 case SADB_IDENTTYPE_FQDN: 5506 case SADB_IDENTTYPE_USERFQDN: 5507 default: 5508 /* XXX do nothing */ 5509 sah->idents = NULL; 5510 sah->identd = NULL; 5511 return 0; 5512 } 5513 5514 /* make structure */ 5515 sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5516 if (sah->idents == NULL) { 5517 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5518 return ENOBUFS; 5519 } 5520 sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5521 if (sah->identd == NULL) { 5522 free(sah->idents, M_IPSEC_MISC); 5523 sah->idents = NULL; 5524 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5525 return ENOBUFS; 5526 } 5527 sah->idents->type = idsrc->sadb_ident_type; 5528 sah->idents->id = idsrc->sadb_ident_id; 5529 5530 sah->identd->type = iddst->sadb_ident_type; 5531 sah->identd->id = iddst->sadb_ident_id; 5532 5533 return 0; 5534 } 5535 5536 /* 5537 * m will not be freed on return. 5538 * it is caller's responsibility to free the result. 5539 */ 5540 static struct mbuf * 5541 key_getmsgbuf_x1(m, mhp) 5542 struct mbuf *m; 5543 const struct sadb_msghdr *mhp; 5544 { 5545 struct mbuf *n; 5546 5547 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5548 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5549 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5550 5551 /* create new sadb_msg to reply. */ 5552 n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED, 5553 SADB_EXT_SA, SADB_X_EXT_SA2, 5554 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, 5555 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 5556 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST); 5557 if (!n) 5558 return NULL; 5559 5560 if (n->m_len < sizeof(struct sadb_msg)) { 5561 n = m_pullup(n, sizeof(struct sadb_msg)); 5562 if (n == NULL) 5563 return NULL; 5564 } 5565 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; 5566 mtod(n, struct sadb_msg *)->sadb_msg_len = 5567 PFKEY_UNIT64(n->m_pkthdr.len); 5568 5569 return n; 5570 } 5571 5572 static int key_delete_all __P((struct socket *, struct mbuf *, 5573 const struct sadb_msghdr *, u_int16_t)); 5574 5575 /* 5576 * SADB_DELETE processing 5577 * receive 5578 * <base, SA(*), address(SD)> 5579 * from the ikmpd, and set SADB_SASTATE_DEAD, 5580 * and send, 5581 * <base, SA(*), address(SD)> 5582 * to the ikmpd. 5583 * 5584 * m will always be freed. 5585 */ 5586 static int 5587 key_delete(so, m, mhp) 5588 struct socket *so; 5589 struct mbuf *m; 5590 const struct sadb_msghdr *mhp; 5591 { 5592 struct sadb_sa *sa0; 5593 struct sadb_address *src0, *dst0; 5594 struct secasindex saidx; 5595 struct secashead *sah; 5596 struct secasvar *sav = NULL; 5597 u_int16_t proto; 5598 5599 IPSEC_ASSERT(so != NULL, ("null socket")); 5600 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5601 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5602 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5603 5604 /* map satype to proto */ 5605 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5606 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5607 __func__)); 5608 return key_senderror(so, m, EINVAL); 5609 } 5610 5611 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5612 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5613 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5614 __func__)); 5615 return key_senderror(so, m, EINVAL); 5616 } 5617 5618 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5619 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5620 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5621 __func__)); 5622 return key_senderror(so, m, EINVAL); 5623 } 5624 5625 if (mhp->ext[SADB_EXT_SA] == NULL) { 5626 /* 5627 * Caller wants us to delete all non-LARVAL SAs 5628 * that match the src/dst. This is used during 5629 * IKE INITIAL-CONTACT. 5630 */ 5631 ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__)); 5632 return key_delete_all(so, m, mhp, proto); 5633 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { 5634 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5635 __func__)); 5636 return key_senderror(so, m, EINVAL); 5637 } 5638 5639 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5640 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5641 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5642 5643 /* XXX boundary check against sa_len */ 5644 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5645 5646 /* 5647 * Make sure the port numbers are zero. 5648 * In case of NAT-T we will update them later if needed. 5649 */ 5650 KEY_PORTTOSADDR(&saidx.src, 0); 5651 KEY_PORTTOSADDR(&saidx.dst, 0); 5652 5653 #ifdef IPSEC_NAT_T 5654 /* 5655 * Handle NAT-T info if present. 5656 */ 5657 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5658 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5659 struct sadb_x_nat_t_port *sport, *dport; 5660 5661 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5662 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5663 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5664 __func__)); 5665 return key_senderror(so, m, EINVAL); 5666 } 5667 5668 sport = (struct sadb_x_nat_t_port *) 5669 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5670 dport = (struct sadb_x_nat_t_port *) 5671 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5672 5673 if (sport) 5674 KEY_PORTTOSADDR(&saidx.src, 5675 sport->sadb_x_nat_t_port_port); 5676 if (dport) 5677 KEY_PORTTOSADDR(&saidx.dst, 5678 dport->sadb_x_nat_t_port_port); 5679 } 5680 #endif 5681 5682 /* get a SA header */ 5683 SAHTREE_LOCK(); 5684 LIST_FOREACH(sah, &V_sahtree, chain) { 5685 if (sah->state == SADB_SASTATE_DEAD) 5686 continue; 5687 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5688 continue; 5689 5690 /* get a SA with SPI. */ 5691 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5692 if (sav) 5693 break; 5694 } 5695 if (sah == NULL) { 5696 SAHTREE_UNLOCK(); 5697 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5698 return key_senderror(so, m, ENOENT); 5699 } 5700 5701 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5702 KEY_FREESAV(&sav); 5703 SAHTREE_UNLOCK(); 5704 5705 { 5706 struct mbuf *n; 5707 struct sadb_msg *newmsg; 5708 5709 /* create new sadb_msg to reply. */ 5710 /* XXX-BZ NAT-T extensions? */ 5711 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 5712 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5713 if (!n) 5714 return key_senderror(so, m, ENOBUFS); 5715 5716 if (n->m_len < sizeof(struct sadb_msg)) { 5717 n = m_pullup(n, sizeof(struct sadb_msg)); 5718 if (n == NULL) 5719 return key_senderror(so, m, ENOBUFS); 5720 } 5721 newmsg = mtod(n, struct sadb_msg *); 5722 newmsg->sadb_msg_errno = 0; 5723 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5724 5725 m_freem(m); 5726 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5727 } 5728 } 5729 5730 /* 5731 * delete all SAs for src/dst. Called from key_delete(). 5732 */ 5733 static int 5734 key_delete_all(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp, 5735 u_int16_t proto) 5736 { 5737 struct sadb_address *src0, *dst0; 5738 struct secasindex saidx; 5739 struct secashead *sah; 5740 struct secasvar *sav, *nextsav; 5741 u_int stateidx, state; 5742 5743 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5744 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5745 5746 /* XXX boundary check against sa_len */ 5747 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5748 5749 /* 5750 * Make sure the port numbers are zero. 5751 * In case of NAT-T we will update them later if needed. 5752 */ 5753 KEY_PORTTOSADDR(&saidx.src, 0); 5754 KEY_PORTTOSADDR(&saidx.dst, 0); 5755 5756 #ifdef IPSEC_NAT_T 5757 /* 5758 * Handle NAT-T info if present. 5759 */ 5760 5761 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5762 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5763 struct sadb_x_nat_t_port *sport, *dport; 5764 5765 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5766 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5767 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5768 __func__)); 5769 return key_senderror(so, m, EINVAL); 5770 } 5771 5772 sport = (struct sadb_x_nat_t_port *) 5773 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5774 dport = (struct sadb_x_nat_t_port *) 5775 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5776 5777 if (sport) 5778 KEY_PORTTOSADDR(&saidx.src, 5779 sport->sadb_x_nat_t_port_port); 5780 if (dport) 5781 KEY_PORTTOSADDR(&saidx.dst, 5782 dport->sadb_x_nat_t_port_port); 5783 } 5784 #endif 5785 5786 SAHTREE_LOCK(); 5787 LIST_FOREACH(sah, &V_sahtree, chain) { 5788 if (sah->state == SADB_SASTATE_DEAD) 5789 continue; 5790 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5791 continue; 5792 5793 /* Delete all non-LARVAL SAs. */ 5794 for (stateidx = 0; 5795 stateidx < _ARRAYLEN(saorder_state_alive); 5796 stateidx++) { 5797 state = saorder_state_alive[stateidx]; 5798 if (state == SADB_SASTATE_LARVAL) 5799 continue; 5800 for (sav = LIST_FIRST(&sah->savtree[state]); 5801 sav != NULL; sav = nextsav) { 5802 nextsav = LIST_NEXT(sav, chain); 5803 /* sanity check */ 5804 if (sav->state != state) { 5805 ipseclog((LOG_DEBUG, "%s: invalid " 5806 "sav->state (queue %d SA %d)\n", 5807 __func__, state, sav->state)); 5808 continue; 5809 } 5810 5811 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5812 KEY_FREESAV(&sav); 5813 } 5814 } 5815 } 5816 SAHTREE_UNLOCK(); 5817 { 5818 struct mbuf *n; 5819 struct sadb_msg *newmsg; 5820 5821 /* create new sadb_msg to reply. */ 5822 /* XXX-BZ NAT-T extensions? */ 5823 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, 5824 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5825 if (!n) 5826 return key_senderror(so, m, ENOBUFS); 5827 5828 if (n->m_len < sizeof(struct sadb_msg)) { 5829 n = m_pullup(n, sizeof(struct sadb_msg)); 5830 if (n == NULL) 5831 return key_senderror(so, m, ENOBUFS); 5832 } 5833 newmsg = mtod(n, struct sadb_msg *); 5834 newmsg->sadb_msg_errno = 0; 5835 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5836 5837 m_freem(m); 5838 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5839 } 5840 } 5841 5842 /* 5843 * SADB_GET processing 5844 * receive 5845 * <base, SA(*), address(SD)> 5846 * from the ikmpd, and get a SP and a SA to respond, 5847 * and send, 5848 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), 5849 * (identity(SD),) (sensitivity)> 5850 * to the ikmpd. 5851 * 5852 * m will always be freed. 5853 */ 5854 static int 5855 key_get(so, m, mhp) 5856 struct socket *so; 5857 struct mbuf *m; 5858 const struct sadb_msghdr *mhp; 5859 { 5860 struct sadb_sa *sa0; 5861 struct sadb_address *src0, *dst0; 5862 struct secasindex saidx; 5863 struct secashead *sah; 5864 struct secasvar *sav = NULL; 5865 u_int16_t proto; 5866 5867 IPSEC_ASSERT(so != NULL, ("null socket")); 5868 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5869 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5870 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5871 5872 /* map satype to proto */ 5873 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5874 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5875 __func__)); 5876 return key_senderror(so, m, EINVAL); 5877 } 5878 5879 if (mhp->ext[SADB_EXT_SA] == NULL || 5880 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5881 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5882 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5883 __func__)); 5884 return key_senderror(so, m, EINVAL); 5885 } 5886 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5887 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5888 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5889 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5890 __func__)); 5891 return key_senderror(so, m, EINVAL); 5892 } 5893 5894 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5895 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5896 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5897 5898 /* XXX boundary check against sa_len */ 5899 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5900 5901 /* 5902 * Make sure the port numbers are zero. 5903 * In case of NAT-T we will update them later if needed. 5904 */ 5905 KEY_PORTTOSADDR(&saidx.src, 0); 5906 KEY_PORTTOSADDR(&saidx.dst, 0); 5907 5908 #ifdef IPSEC_NAT_T 5909 /* 5910 * Handle NAT-T info if present. 5911 */ 5912 5913 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5914 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5915 struct sadb_x_nat_t_port *sport, *dport; 5916 5917 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5918 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5919 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5920 __func__)); 5921 return key_senderror(so, m, EINVAL); 5922 } 5923 5924 sport = (struct sadb_x_nat_t_port *) 5925 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5926 dport = (struct sadb_x_nat_t_port *) 5927 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5928 5929 if (sport) 5930 KEY_PORTTOSADDR(&saidx.src, 5931 sport->sadb_x_nat_t_port_port); 5932 if (dport) 5933 KEY_PORTTOSADDR(&saidx.dst, 5934 dport->sadb_x_nat_t_port_port); 5935 } 5936 #endif 5937 5938 /* get a SA header */ 5939 SAHTREE_LOCK(); 5940 LIST_FOREACH(sah, &V_sahtree, chain) { 5941 if (sah->state == SADB_SASTATE_DEAD) 5942 continue; 5943 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5944 continue; 5945 5946 /* get a SA with SPI. */ 5947 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5948 if (sav) 5949 break; 5950 } 5951 SAHTREE_UNLOCK(); 5952 if (sah == NULL) { 5953 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5954 return key_senderror(so, m, ENOENT); 5955 } 5956 5957 { 5958 struct mbuf *n; 5959 u_int8_t satype; 5960 5961 /* map proto to satype */ 5962 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 5963 ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n", 5964 __func__)); 5965 return key_senderror(so, m, EINVAL); 5966 } 5967 5968 /* create new sadb_msg to reply. */ 5969 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, 5970 mhp->msg->sadb_msg_pid); 5971 if (!n) 5972 return key_senderror(so, m, ENOBUFS); 5973 5974 m_freem(m); 5975 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5976 } 5977 } 5978 5979 /* XXX make it sysctl-configurable? */ 5980 static void 5981 key_getcomb_setlifetime(comb) 5982 struct sadb_comb *comb; 5983 { 5984 5985 comb->sadb_comb_soft_allocations = 1; 5986 comb->sadb_comb_hard_allocations = 1; 5987 comb->sadb_comb_soft_bytes = 0; 5988 comb->sadb_comb_hard_bytes = 0; 5989 comb->sadb_comb_hard_addtime = 86400; /* 1 day */ 5990 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100; 5991 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */ 5992 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100; 5993 } 5994 5995 /* 5996 * XXX reorder combinations by preference 5997 * XXX no idea if the user wants ESP authentication or not 5998 */ 5999 static struct mbuf * 6000 key_getcomb_esp() 6001 { 6002 struct sadb_comb *comb; 6003 struct enc_xform *algo; 6004 struct mbuf *result = NULL, *m, *n; 6005 int encmin; 6006 int i, off, o; 6007 int totlen; 6008 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6009 6010 m = NULL; 6011 for (i = 1; i <= SADB_EALG_MAX; i++) { 6012 algo = esp_algorithm_lookup(i); 6013 if (algo == NULL) 6014 continue; 6015 6016 /* discard algorithms with key size smaller than system min */ 6017 if (_BITS(algo->maxkey) < V_ipsec_esp_keymin) 6018 continue; 6019 if (_BITS(algo->minkey) < V_ipsec_esp_keymin) 6020 encmin = V_ipsec_esp_keymin; 6021 else 6022 encmin = _BITS(algo->minkey); 6023 6024 if (V_ipsec_esp_auth) 6025 m = key_getcomb_ah(); 6026 else { 6027 IPSEC_ASSERT(l <= MLEN, 6028 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6029 MGET(m, M_DONTWAIT, MT_DATA); 6030 if (m) { 6031 M_ALIGN(m, l); 6032 m->m_len = l; 6033 m->m_next = NULL; 6034 bzero(mtod(m, caddr_t), m->m_len); 6035 } 6036 } 6037 if (!m) 6038 goto fail; 6039 6040 totlen = 0; 6041 for (n = m; n; n = n->m_next) 6042 totlen += n->m_len; 6043 IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l)); 6044 6045 for (off = 0; off < totlen; off += l) { 6046 n = m_pulldown(m, off, l, &o); 6047 if (!n) { 6048 /* m is already freed */ 6049 goto fail; 6050 } 6051 comb = (struct sadb_comb *)(mtod(n, caddr_t) + o); 6052 bzero(comb, sizeof(*comb)); 6053 key_getcomb_setlifetime(comb); 6054 comb->sadb_comb_encrypt = i; 6055 comb->sadb_comb_encrypt_minbits = encmin; 6056 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); 6057 } 6058 6059 if (!result) 6060 result = m; 6061 else 6062 m_cat(result, m); 6063 } 6064 6065 return result; 6066 6067 fail: 6068 if (result) 6069 m_freem(result); 6070 return NULL; 6071 } 6072 6073 static void 6074 key_getsizes_ah( 6075 const struct auth_hash *ah, 6076 int alg, 6077 u_int16_t* min, 6078 u_int16_t* max) 6079 { 6080 6081 *min = *max = ah->keysize; 6082 if (ah->keysize == 0) { 6083 /* 6084 * Transform takes arbitrary key size but algorithm 6085 * key size is restricted. Enforce this here. 6086 */ 6087 switch (alg) { 6088 case SADB_X_AALG_MD5: *min = *max = 16; break; 6089 case SADB_X_AALG_SHA: *min = *max = 20; break; 6090 case SADB_X_AALG_NULL: *min = 1; *max = 256; break; 6091 default: 6092 DPRINTF(("%s: unknown AH algorithm %u\n", 6093 __func__, alg)); 6094 break; 6095 } 6096 } 6097 } 6098 6099 /* 6100 * XXX reorder combinations by preference 6101 */ 6102 static struct mbuf * 6103 key_getcomb_ah() 6104 { 6105 struct sadb_comb *comb; 6106 struct auth_hash *algo; 6107 struct mbuf *m; 6108 u_int16_t minkeysize, maxkeysize; 6109 int i; 6110 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6111 6112 m = NULL; 6113 for (i = 1; i <= SADB_AALG_MAX; i++) { 6114 #if 1 6115 /* we prefer HMAC algorithms, not old algorithms */ 6116 if (i != SADB_AALG_SHA1HMAC && i != SADB_AALG_MD5HMAC) 6117 continue; 6118 #endif 6119 algo = ah_algorithm_lookup(i); 6120 if (!algo) 6121 continue; 6122 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); 6123 /* discard algorithms with key size smaller than system min */ 6124 if (_BITS(minkeysize) < V_ipsec_ah_keymin) 6125 continue; 6126 6127 if (!m) { 6128 IPSEC_ASSERT(l <= MLEN, 6129 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6130 MGET(m, M_DONTWAIT, MT_DATA); 6131 if (m) { 6132 M_ALIGN(m, l); 6133 m->m_len = l; 6134 m->m_next = NULL; 6135 } 6136 } else 6137 M_PREPEND(m, l, M_DONTWAIT); 6138 if (!m) 6139 return NULL; 6140 6141 comb = mtod(m, struct sadb_comb *); 6142 bzero(comb, sizeof(*comb)); 6143 key_getcomb_setlifetime(comb); 6144 comb->sadb_comb_auth = i; 6145 comb->sadb_comb_auth_minbits = _BITS(minkeysize); 6146 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); 6147 } 6148 6149 return m; 6150 } 6151 6152 /* 6153 * not really an official behavior. discussed in pf_key@inner.net in Sep2000. 6154 * XXX reorder combinations by preference 6155 */ 6156 static struct mbuf * 6157 key_getcomb_ipcomp() 6158 { 6159 struct sadb_comb *comb; 6160 struct comp_algo *algo; 6161 struct mbuf *m; 6162 int i; 6163 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6164 6165 m = NULL; 6166 for (i = 1; i <= SADB_X_CALG_MAX; i++) { 6167 algo = ipcomp_algorithm_lookup(i); 6168 if (!algo) 6169 continue; 6170 6171 if (!m) { 6172 IPSEC_ASSERT(l <= MLEN, 6173 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6174 MGET(m, M_DONTWAIT, MT_DATA); 6175 if (m) { 6176 M_ALIGN(m, l); 6177 m->m_len = l; 6178 m->m_next = NULL; 6179 } 6180 } else 6181 M_PREPEND(m, l, M_DONTWAIT); 6182 if (!m) 6183 return NULL; 6184 6185 comb = mtod(m, struct sadb_comb *); 6186 bzero(comb, sizeof(*comb)); 6187 key_getcomb_setlifetime(comb); 6188 comb->sadb_comb_encrypt = i; 6189 /* what should we set into sadb_comb_*_{min,max}bits? */ 6190 } 6191 6192 return m; 6193 } 6194 6195 /* 6196 * XXX no way to pass mode (transport/tunnel) to userland 6197 * XXX replay checking? 6198 * XXX sysctl interface to ipsec_{ah,esp}_keymin 6199 */ 6200 static struct mbuf * 6201 key_getprop(saidx) 6202 const struct secasindex *saidx; 6203 { 6204 struct sadb_prop *prop; 6205 struct mbuf *m, *n; 6206 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); 6207 int totlen; 6208 6209 switch (saidx->proto) { 6210 case IPPROTO_ESP: 6211 m = key_getcomb_esp(); 6212 break; 6213 case IPPROTO_AH: 6214 m = key_getcomb_ah(); 6215 break; 6216 case IPPROTO_IPCOMP: 6217 m = key_getcomb_ipcomp(); 6218 break; 6219 default: 6220 return NULL; 6221 } 6222 6223 if (!m) 6224 return NULL; 6225 M_PREPEND(m, l, M_DONTWAIT); 6226 if (!m) 6227 return NULL; 6228 6229 totlen = 0; 6230 for (n = m; n; n = n->m_next) 6231 totlen += n->m_len; 6232 6233 prop = mtod(m, struct sadb_prop *); 6234 bzero(prop, sizeof(*prop)); 6235 prop->sadb_prop_len = PFKEY_UNIT64(totlen); 6236 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 6237 prop->sadb_prop_replay = 32; /* XXX */ 6238 6239 return m; 6240 } 6241 6242 /* 6243 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2(). 6244 * send 6245 * <base, SA, address(SD), (address(P)), x_policy, 6246 * (identity(SD),) (sensitivity,) proposal> 6247 * to KMD, and expect to receive 6248 * <base> with SADB_ACQUIRE if error occured, 6249 * or 6250 * <base, src address, dst address, (SPI range)> with SADB_GETSPI 6251 * from KMD by PF_KEY. 6252 * 6253 * XXX x_policy is outside of RFC2367 (KAME extension). 6254 * XXX sensitivity is not supported. 6255 * XXX for ipcomp, RFC2367 does not define how to fill in proposal. 6256 * see comment for key_getcomb_ipcomp(). 6257 * 6258 * OUT: 6259 * 0 : succeed 6260 * others: error number 6261 */ 6262 static int 6263 key_acquire(const struct secasindex *saidx, struct secpolicy *sp) 6264 { 6265 struct mbuf *result = NULL, *m; 6266 struct secacq *newacq; 6267 u_int8_t satype; 6268 int error = -1; 6269 u_int32_t seq; 6270 6271 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 6272 satype = key_proto2satype(saidx->proto); 6273 IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto)); 6274 6275 /* 6276 * We never do anything about acquirng SA. There is anather 6277 * solution that kernel blocks to send SADB_ACQUIRE message until 6278 * getting something message from IKEd. In later case, to be 6279 * managed with ACQUIRING list. 6280 */ 6281 /* Get an entry to check whether sending message or not. */ 6282 if ((newacq = key_getacq(saidx)) != NULL) { 6283 if (V_key_blockacq_count < newacq->count) { 6284 /* reset counter and do send message. */ 6285 newacq->count = 0; 6286 } else { 6287 /* increment counter and do nothing. */ 6288 newacq->count++; 6289 return 0; 6290 } 6291 } else { 6292 /* make new entry for blocking to send SADB_ACQUIRE. */ 6293 if ((newacq = key_newacq(saidx)) == NULL) 6294 return ENOBUFS; 6295 } 6296 6297 6298 seq = newacq->seq; 6299 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0); 6300 if (!m) { 6301 error = ENOBUFS; 6302 goto fail; 6303 } 6304 result = m; 6305 6306 /* 6307 * No SADB_X_EXT_NAT_T_* here: we do not know 6308 * anything related to NAT-T at this time. 6309 */ 6310 6311 /* set sadb_address for saidx's. */ 6312 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 6313 &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY); 6314 if (!m) { 6315 error = ENOBUFS; 6316 goto fail; 6317 } 6318 m_cat(result, m); 6319 6320 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 6321 &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY); 6322 if (!m) { 6323 error = ENOBUFS; 6324 goto fail; 6325 } 6326 m_cat(result, m); 6327 6328 /* XXX proxy address (optional) */ 6329 6330 /* set sadb_x_policy */ 6331 if (sp) { 6332 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id); 6333 if (!m) { 6334 error = ENOBUFS; 6335 goto fail; 6336 } 6337 m_cat(result, m); 6338 } 6339 6340 /* XXX identity (optional) */ 6341 #if 0 6342 if (idexttype && fqdn) { 6343 /* create identity extension (FQDN) */ 6344 struct sadb_ident *id; 6345 int fqdnlen; 6346 6347 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ 6348 id = (struct sadb_ident *)p; 6349 bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6350 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6351 id->sadb_ident_exttype = idexttype; 6352 id->sadb_ident_type = SADB_IDENTTYPE_FQDN; 6353 bcopy(fqdn, id + 1, fqdnlen); 6354 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); 6355 } 6356 6357 if (idexttype) { 6358 /* create identity extension (USERFQDN) */ 6359 struct sadb_ident *id; 6360 int userfqdnlen; 6361 6362 if (userfqdn) { 6363 /* +1 for terminating-NUL */ 6364 userfqdnlen = strlen(userfqdn) + 1; 6365 } else 6366 userfqdnlen = 0; 6367 id = (struct sadb_ident *)p; 6368 bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6369 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6370 id->sadb_ident_exttype = idexttype; 6371 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; 6372 /* XXX is it correct? */ 6373 if (curproc && curproc->p_cred) 6374 id->sadb_ident_id = curproc->p_cred->p_ruid; 6375 if (userfqdn && userfqdnlen) 6376 bcopy(userfqdn, id + 1, userfqdnlen); 6377 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); 6378 } 6379 #endif 6380 6381 /* XXX sensitivity (optional) */ 6382 6383 /* create proposal/combination extension */ 6384 m = key_getprop(saidx); 6385 #if 0 6386 /* 6387 * spec conformant: always attach proposal/combination extension, 6388 * the problem is that we have no way to attach it for ipcomp, 6389 * due to the way sadb_comb is declared in RFC2367. 6390 */ 6391 if (!m) { 6392 error = ENOBUFS; 6393 goto fail; 6394 } 6395 m_cat(result, m); 6396 #else 6397 /* 6398 * outside of spec; make proposal/combination extension optional. 6399 */ 6400 if (m) 6401 m_cat(result, m); 6402 #endif 6403 6404 if ((result->m_flags & M_PKTHDR) == 0) { 6405 error = EINVAL; 6406 goto fail; 6407 } 6408 6409 if (result->m_len < sizeof(struct sadb_msg)) { 6410 result = m_pullup(result, sizeof(struct sadb_msg)); 6411 if (result == NULL) { 6412 error = ENOBUFS; 6413 goto fail; 6414 } 6415 } 6416 6417 result->m_pkthdr.len = 0; 6418 for (m = result; m; m = m->m_next) 6419 result->m_pkthdr.len += m->m_len; 6420 6421 mtod(result, struct sadb_msg *)->sadb_msg_len = 6422 PFKEY_UNIT64(result->m_pkthdr.len); 6423 6424 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6425 6426 fail: 6427 if (result) 6428 m_freem(result); 6429 return error; 6430 } 6431 6432 static struct secacq * 6433 key_newacq(const struct secasindex *saidx) 6434 { 6435 struct secacq *newacq; 6436 6437 /* get new entry */ 6438 newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 6439 if (newacq == NULL) { 6440 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6441 return NULL; 6442 } 6443 6444 /* copy secindex */ 6445 bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx)); 6446 newacq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq); 6447 newacq->created = time_second; 6448 newacq->count = 0; 6449 6450 /* add to acqtree */ 6451 ACQ_LOCK(); 6452 LIST_INSERT_HEAD(&V_acqtree, newacq, chain); 6453 ACQ_UNLOCK(); 6454 6455 return newacq; 6456 } 6457 6458 static struct secacq * 6459 key_getacq(const struct secasindex *saidx) 6460 { 6461 struct secacq *acq; 6462 6463 ACQ_LOCK(); 6464 LIST_FOREACH(acq, &V_acqtree, chain) { 6465 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY)) 6466 break; 6467 } 6468 ACQ_UNLOCK(); 6469 6470 return acq; 6471 } 6472 6473 static struct secacq * 6474 key_getacqbyseq(seq) 6475 u_int32_t seq; 6476 { 6477 struct secacq *acq; 6478 6479 ACQ_LOCK(); 6480 LIST_FOREACH(acq, &V_acqtree, chain) { 6481 if (acq->seq == seq) 6482 break; 6483 } 6484 ACQ_UNLOCK(); 6485 6486 return acq; 6487 } 6488 6489 static struct secspacq * 6490 key_newspacq(spidx) 6491 struct secpolicyindex *spidx; 6492 { 6493 struct secspacq *acq; 6494 6495 /* get new entry */ 6496 acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 6497 if (acq == NULL) { 6498 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6499 return NULL; 6500 } 6501 6502 /* copy secindex */ 6503 bcopy(spidx, &acq->spidx, sizeof(acq->spidx)); 6504 acq->created = time_second; 6505 acq->count = 0; 6506 6507 /* add to spacqtree */ 6508 SPACQ_LOCK(); 6509 LIST_INSERT_HEAD(&V_spacqtree, acq, chain); 6510 SPACQ_UNLOCK(); 6511 6512 return acq; 6513 } 6514 6515 static struct secspacq * 6516 key_getspacq(spidx) 6517 struct secpolicyindex *spidx; 6518 { 6519 struct secspacq *acq; 6520 6521 SPACQ_LOCK(); 6522 LIST_FOREACH(acq, &V_spacqtree, chain) { 6523 if (key_cmpspidx_exactly(spidx, &acq->spidx)) { 6524 /* NB: return holding spacq_lock */ 6525 return acq; 6526 } 6527 } 6528 SPACQ_UNLOCK(); 6529 6530 return NULL; 6531 } 6532 6533 /* 6534 * SADB_ACQUIRE processing, 6535 * in first situation, is receiving 6536 * <base> 6537 * from the ikmpd, and clear sequence of its secasvar entry. 6538 * 6539 * In second situation, is receiving 6540 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6541 * from a user land process, and return 6542 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6543 * to the socket. 6544 * 6545 * m will always be freed. 6546 */ 6547 static int 6548 key_acquire2(so, m, mhp) 6549 struct socket *so; 6550 struct mbuf *m; 6551 const struct sadb_msghdr *mhp; 6552 { 6553 const struct sadb_address *src0, *dst0; 6554 struct secasindex saidx; 6555 struct secashead *sah; 6556 u_int16_t proto; 6557 int error; 6558 6559 IPSEC_ASSERT(so != NULL, ("null socket")); 6560 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6561 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6562 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6563 6564 /* 6565 * Error message from KMd. 6566 * We assume that if error was occured in IKEd, the length of PFKEY 6567 * message is equal to the size of sadb_msg structure. 6568 * We do not raise error even if error occured in this function. 6569 */ 6570 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { 6571 struct secacq *acq; 6572 6573 /* check sequence number */ 6574 if (mhp->msg->sadb_msg_seq == 0) { 6575 ipseclog((LOG_DEBUG, "%s: must specify sequence " 6576 "number.\n", __func__)); 6577 m_freem(m); 6578 return 0; 6579 } 6580 6581 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) { 6582 /* 6583 * the specified larval SA is already gone, or we got 6584 * a bogus sequence number. we can silently ignore it. 6585 */ 6586 m_freem(m); 6587 return 0; 6588 } 6589 6590 /* reset acq counter in order to deletion by timehander. */ 6591 acq->created = time_second; 6592 acq->count = 0; 6593 m_freem(m); 6594 return 0; 6595 } 6596 6597 /* 6598 * This message is from user land. 6599 */ 6600 6601 /* map satype to proto */ 6602 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6603 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6604 __func__)); 6605 return key_senderror(so, m, EINVAL); 6606 } 6607 6608 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6609 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 6610 mhp->ext[SADB_EXT_PROPOSAL] == NULL) { 6611 /* error */ 6612 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6613 __func__)); 6614 return key_senderror(so, m, EINVAL); 6615 } 6616 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6617 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 6618 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { 6619 /* error */ 6620 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6621 __func__)); 6622 return key_senderror(so, m, EINVAL); 6623 } 6624 6625 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 6626 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 6627 6628 /* XXX boundary check against sa_len */ 6629 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 6630 6631 /* 6632 * Make sure the port numbers are zero. 6633 * In case of NAT-T we will update them later if needed. 6634 */ 6635 KEY_PORTTOSADDR(&saidx.src, 0); 6636 KEY_PORTTOSADDR(&saidx.dst, 0); 6637 6638 #ifndef IPSEC_NAT_T 6639 /* 6640 * Handle NAT-T info if present. 6641 */ 6642 6643 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 6644 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 6645 struct sadb_x_nat_t_port *sport, *dport; 6646 6647 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 6648 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 6649 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 6650 __func__)); 6651 return key_senderror(so, m, EINVAL); 6652 } 6653 6654 sport = (struct sadb_x_nat_t_port *) 6655 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 6656 dport = (struct sadb_x_nat_t_port *) 6657 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 6658 6659 if (sport) 6660 KEY_PORTTOSADDR(&saidx.src, 6661 sport->sadb_x_nat_t_port_port); 6662 if (dport) 6663 KEY_PORTTOSADDR(&saidx.dst, 6664 dport->sadb_x_nat_t_port_port); 6665 } 6666 #endif 6667 6668 /* get a SA index */ 6669 SAHTREE_LOCK(); 6670 LIST_FOREACH(sah, &V_sahtree, chain) { 6671 if (sah->state == SADB_SASTATE_DEAD) 6672 continue; 6673 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID)) 6674 break; 6675 } 6676 SAHTREE_UNLOCK(); 6677 if (sah != NULL) { 6678 ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__)); 6679 return key_senderror(so, m, EEXIST); 6680 } 6681 6682 error = key_acquire(&saidx, NULL); 6683 if (error != 0) { 6684 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 6685 __func__, mhp->msg->sadb_msg_errno)); 6686 return key_senderror(so, m, error); 6687 } 6688 6689 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); 6690 } 6691 6692 /* 6693 * SADB_REGISTER processing. 6694 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. 6695 * receive 6696 * <base> 6697 * from the ikmpd, and register a socket to send PF_KEY messages, 6698 * and send 6699 * <base, supported> 6700 * to KMD by PF_KEY. 6701 * If socket is detached, must free from regnode. 6702 * 6703 * m will always be freed. 6704 */ 6705 static int 6706 key_register(so, m, mhp) 6707 struct socket *so; 6708 struct mbuf *m; 6709 const struct sadb_msghdr *mhp; 6710 { 6711 struct secreg *reg, *newreg = 0; 6712 6713 IPSEC_ASSERT(so != NULL, ("null socket")); 6714 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6715 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6716 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6717 6718 /* check for invalid register message */ 6719 if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0])) 6720 return key_senderror(so, m, EINVAL); 6721 6722 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ 6723 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) 6724 goto setmsg; 6725 6726 /* check whether existing or not */ 6727 REGTREE_LOCK(); 6728 LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) { 6729 if (reg->so == so) { 6730 REGTREE_UNLOCK(); 6731 ipseclog((LOG_DEBUG, "%s: socket exists already.\n", 6732 __func__)); 6733 return key_senderror(so, m, EEXIST); 6734 } 6735 } 6736 6737 /* create regnode */ 6738 newreg = malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO); 6739 if (newreg == NULL) { 6740 REGTREE_UNLOCK(); 6741 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6742 return key_senderror(so, m, ENOBUFS); 6743 } 6744 6745 newreg->so = so; 6746 ((struct keycb *)sotorawcb(so))->kp_registered++; 6747 6748 /* add regnode to regtree. */ 6749 LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain); 6750 REGTREE_UNLOCK(); 6751 6752 setmsg: 6753 { 6754 struct mbuf *n; 6755 struct sadb_msg *newmsg; 6756 struct sadb_supported *sup; 6757 u_int len, alen, elen; 6758 int off; 6759 int i; 6760 struct sadb_alg *alg; 6761 6762 /* create new sadb_msg to reply. */ 6763 alen = 0; 6764 for (i = 1; i <= SADB_AALG_MAX; i++) { 6765 if (ah_algorithm_lookup(i)) 6766 alen += sizeof(struct sadb_alg); 6767 } 6768 if (alen) 6769 alen += sizeof(struct sadb_supported); 6770 elen = 0; 6771 for (i = 1; i <= SADB_EALG_MAX; i++) { 6772 if (esp_algorithm_lookup(i)) 6773 elen += sizeof(struct sadb_alg); 6774 } 6775 if (elen) 6776 elen += sizeof(struct sadb_supported); 6777 6778 len = sizeof(struct sadb_msg) + alen + elen; 6779 6780 if (len > MCLBYTES) 6781 return key_senderror(so, m, ENOBUFS); 6782 6783 MGETHDR(n, M_DONTWAIT, MT_DATA); 6784 if (len > MHLEN) { 6785 MCLGET(n, M_DONTWAIT); 6786 if ((n->m_flags & M_EXT) == 0) { 6787 m_freem(n); 6788 n = NULL; 6789 } 6790 } 6791 if (!n) 6792 return key_senderror(so, m, ENOBUFS); 6793 6794 n->m_pkthdr.len = n->m_len = len; 6795 n->m_next = NULL; 6796 off = 0; 6797 6798 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 6799 newmsg = mtod(n, struct sadb_msg *); 6800 newmsg->sadb_msg_errno = 0; 6801 newmsg->sadb_msg_len = PFKEY_UNIT64(len); 6802 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 6803 6804 /* for authentication algorithm */ 6805 if (alen) { 6806 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6807 sup->sadb_supported_len = PFKEY_UNIT64(alen); 6808 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 6809 off += PFKEY_ALIGN8(sizeof(*sup)); 6810 6811 for (i = 1; i <= SADB_AALG_MAX; i++) { 6812 struct auth_hash *aalgo; 6813 u_int16_t minkeysize, maxkeysize; 6814 6815 aalgo = ah_algorithm_lookup(i); 6816 if (!aalgo) 6817 continue; 6818 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6819 alg->sadb_alg_id = i; 6820 alg->sadb_alg_ivlen = 0; 6821 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); 6822 alg->sadb_alg_minbits = _BITS(minkeysize); 6823 alg->sadb_alg_maxbits = _BITS(maxkeysize); 6824 off += PFKEY_ALIGN8(sizeof(*alg)); 6825 } 6826 } 6827 6828 /* for encryption algorithm */ 6829 if (elen) { 6830 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6831 sup->sadb_supported_len = PFKEY_UNIT64(elen); 6832 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 6833 off += PFKEY_ALIGN8(sizeof(*sup)); 6834 6835 for (i = 1; i <= SADB_EALG_MAX; i++) { 6836 struct enc_xform *ealgo; 6837 6838 ealgo = esp_algorithm_lookup(i); 6839 if (!ealgo) 6840 continue; 6841 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6842 alg->sadb_alg_id = i; 6843 alg->sadb_alg_ivlen = ealgo->blocksize; 6844 alg->sadb_alg_minbits = _BITS(ealgo->minkey); 6845 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); 6846 off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); 6847 } 6848 } 6849 6850 IPSEC_ASSERT(off == len, 6851 ("length assumption failed (off %u len %u)", off, len)); 6852 6853 m_freem(m); 6854 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); 6855 } 6856 } 6857 6858 /* 6859 * free secreg entry registered. 6860 * XXX: I want to do free a socket marked done SADB_RESIGER to socket. 6861 */ 6862 void 6863 key_freereg(struct socket *so) 6864 { 6865 struct secreg *reg; 6866 int i; 6867 6868 IPSEC_ASSERT(so != NULL, ("NULL so")); 6869 6870 /* 6871 * check whether existing or not. 6872 * check all type of SA, because there is a potential that 6873 * one socket is registered to multiple type of SA. 6874 */ 6875 REGTREE_LOCK(); 6876 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 6877 LIST_FOREACH(reg, &V_regtree[i], chain) { 6878 if (reg->so == so && __LIST_CHAINED(reg)) { 6879 LIST_REMOVE(reg, chain); 6880 free(reg, M_IPSEC_SAR); 6881 break; 6882 } 6883 } 6884 } 6885 REGTREE_UNLOCK(); 6886 } 6887 6888 /* 6889 * SADB_EXPIRE processing 6890 * send 6891 * <base, SA, SA2, lifetime(C and one of HS), address(SD)> 6892 * to KMD by PF_KEY. 6893 * NOTE: We send only soft lifetime extension. 6894 * 6895 * OUT: 0 : succeed 6896 * others : error number 6897 */ 6898 static int 6899 key_expire(struct secasvar *sav) 6900 { 6901 int s; 6902 int satype; 6903 struct mbuf *result = NULL, *m; 6904 int len; 6905 int error = -1; 6906 struct sadb_lifetime *lt; 6907 6908 /* XXX: Why do we lock ? */ 6909 s = splnet(); /*called from softclock()*/ 6910 6911 IPSEC_ASSERT (sav != NULL, ("null sav")); 6912 IPSEC_ASSERT (sav->sah != NULL, ("null sa header")); 6913 6914 /* set msg header */ 6915 satype = key_proto2satype(sav->sah->saidx.proto); 6916 IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype)); 6917 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt); 6918 if (!m) { 6919 error = ENOBUFS; 6920 goto fail; 6921 } 6922 result = m; 6923 6924 /* create SA extension */ 6925 m = key_setsadbsa(sav); 6926 if (!m) { 6927 error = ENOBUFS; 6928 goto fail; 6929 } 6930 m_cat(result, m); 6931 6932 /* create SA extension */ 6933 m = key_setsadbxsa2(sav->sah->saidx.mode, 6934 sav->replay ? sav->replay->count : 0, 6935 sav->sah->saidx.reqid); 6936 if (!m) { 6937 error = ENOBUFS; 6938 goto fail; 6939 } 6940 m_cat(result, m); 6941 6942 /* create lifetime extension (current and soft) */ 6943 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 6944 m = key_alloc_mbuf(len); 6945 if (!m || m->m_next) { /*XXX*/ 6946 if (m) 6947 m_freem(m); 6948 error = ENOBUFS; 6949 goto fail; 6950 } 6951 bzero(mtod(m, caddr_t), len); 6952 lt = mtod(m, struct sadb_lifetime *); 6953 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6954 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 6955 lt->sadb_lifetime_allocations = sav->lft_c->allocations; 6956 lt->sadb_lifetime_bytes = sav->lft_c->bytes; 6957 lt->sadb_lifetime_addtime = sav->lft_c->addtime; 6958 lt->sadb_lifetime_usetime = sav->lft_c->usetime; 6959 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 6960 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6961 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; 6962 lt->sadb_lifetime_allocations = sav->lft_s->allocations; 6963 lt->sadb_lifetime_bytes = sav->lft_s->bytes; 6964 lt->sadb_lifetime_addtime = sav->lft_s->addtime; 6965 lt->sadb_lifetime_usetime = sav->lft_s->usetime; 6966 m_cat(result, m); 6967 6968 /* set sadb_address for source */ 6969 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 6970 &sav->sah->saidx.src.sa, 6971 FULLMASK, IPSEC_ULPROTO_ANY); 6972 if (!m) { 6973 error = ENOBUFS; 6974 goto fail; 6975 } 6976 m_cat(result, m); 6977 6978 /* set sadb_address for destination */ 6979 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 6980 &sav->sah->saidx.dst.sa, 6981 FULLMASK, IPSEC_ULPROTO_ANY); 6982 if (!m) { 6983 error = ENOBUFS; 6984 goto fail; 6985 } 6986 m_cat(result, m); 6987 6988 /* 6989 * XXX-BZ Handle NAT-T extensions here. 6990 */ 6991 6992 if ((result->m_flags & M_PKTHDR) == 0) { 6993 error = EINVAL; 6994 goto fail; 6995 } 6996 6997 if (result->m_len < sizeof(struct sadb_msg)) { 6998 result = m_pullup(result, sizeof(struct sadb_msg)); 6999 if (result == NULL) { 7000 error = ENOBUFS; 7001 goto fail; 7002 } 7003 } 7004 7005 result->m_pkthdr.len = 0; 7006 for (m = result; m; m = m->m_next) 7007 result->m_pkthdr.len += m->m_len; 7008 7009 mtod(result, struct sadb_msg *)->sadb_msg_len = 7010 PFKEY_UNIT64(result->m_pkthdr.len); 7011 7012 splx(s); 7013 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 7014 7015 fail: 7016 if (result) 7017 m_freem(result); 7018 splx(s); 7019 return error; 7020 } 7021 7022 /* 7023 * SADB_FLUSH processing 7024 * receive 7025 * <base> 7026 * from the ikmpd, and free all entries in secastree. 7027 * and send, 7028 * <base> 7029 * to the ikmpd. 7030 * NOTE: to do is only marking SADB_SASTATE_DEAD. 7031 * 7032 * m will always be freed. 7033 */ 7034 static int 7035 key_flush(so, m, mhp) 7036 struct socket *so; 7037 struct mbuf *m; 7038 const struct sadb_msghdr *mhp; 7039 { 7040 struct sadb_msg *newmsg; 7041 struct secashead *sah, *nextsah; 7042 struct secasvar *sav, *nextsav; 7043 u_int16_t proto; 7044 u_int8_t state; 7045 u_int stateidx; 7046 7047 IPSEC_ASSERT(so != NULL, ("null socket")); 7048 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7049 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7050 7051 /* map satype to proto */ 7052 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 7053 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 7054 __func__)); 7055 return key_senderror(so, m, EINVAL); 7056 } 7057 7058 /* no SATYPE specified, i.e. flushing all SA. */ 7059 SAHTREE_LOCK(); 7060 for (sah = LIST_FIRST(&V_sahtree); 7061 sah != NULL; 7062 sah = nextsah) { 7063 nextsah = LIST_NEXT(sah, chain); 7064 7065 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 7066 && proto != sah->saidx.proto) 7067 continue; 7068 7069 for (stateidx = 0; 7070 stateidx < _ARRAYLEN(saorder_state_alive); 7071 stateidx++) { 7072 state = saorder_state_any[stateidx]; 7073 for (sav = LIST_FIRST(&sah->savtree[state]); 7074 sav != NULL; 7075 sav = nextsav) { 7076 7077 nextsav = LIST_NEXT(sav, chain); 7078 7079 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 7080 KEY_FREESAV(&sav); 7081 } 7082 } 7083 7084 sah->state = SADB_SASTATE_DEAD; 7085 } 7086 SAHTREE_UNLOCK(); 7087 7088 if (m->m_len < sizeof(struct sadb_msg) || 7089 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 7090 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 7091 return key_senderror(so, m, ENOBUFS); 7092 } 7093 7094 if (m->m_next) 7095 m_freem(m->m_next); 7096 m->m_next = NULL; 7097 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); 7098 newmsg = mtod(m, struct sadb_msg *); 7099 newmsg->sadb_msg_errno = 0; 7100 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 7101 7102 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7103 } 7104 7105 /* 7106 * SADB_DUMP processing 7107 * dump all entries including status of DEAD in SAD. 7108 * receive 7109 * <base> 7110 * from the ikmpd, and dump all secasvar leaves 7111 * and send, 7112 * <base> ..... 7113 * to the ikmpd. 7114 * 7115 * m will always be freed. 7116 */ 7117 static int 7118 key_dump(so, m, mhp) 7119 struct socket *so; 7120 struct mbuf *m; 7121 const struct sadb_msghdr *mhp; 7122 { 7123 struct secashead *sah; 7124 struct secasvar *sav; 7125 u_int16_t proto; 7126 u_int stateidx; 7127 u_int8_t satype; 7128 u_int8_t state; 7129 int cnt; 7130 struct sadb_msg *newmsg; 7131 struct mbuf *n; 7132 7133 IPSEC_ASSERT(so != NULL, ("null socket")); 7134 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7135 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7136 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7137 7138 /* map satype to proto */ 7139 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 7140 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 7141 __func__)); 7142 return key_senderror(so, m, EINVAL); 7143 } 7144 7145 /* count sav entries to be sent to the userland. */ 7146 cnt = 0; 7147 SAHTREE_LOCK(); 7148 LIST_FOREACH(sah, &V_sahtree, chain) { 7149 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 7150 && proto != sah->saidx.proto) 7151 continue; 7152 7153 for (stateidx = 0; 7154 stateidx < _ARRAYLEN(saorder_state_any); 7155 stateidx++) { 7156 state = saorder_state_any[stateidx]; 7157 LIST_FOREACH(sav, &sah->savtree[state], chain) { 7158 cnt++; 7159 } 7160 } 7161 } 7162 7163 if (cnt == 0) { 7164 SAHTREE_UNLOCK(); 7165 return key_senderror(so, m, ENOENT); 7166 } 7167 7168 /* send this to the userland, one at a time. */ 7169 newmsg = NULL; 7170 LIST_FOREACH(sah, &V_sahtree, chain) { 7171 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 7172 && proto != sah->saidx.proto) 7173 continue; 7174 7175 /* map proto to satype */ 7176 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 7177 SAHTREE_UNLOCK(); 7178 ipseclog((LOG_DEBUG, "%s: there was invalid proto in " 7179 "SAD.\n", __func__)); 7180 return key_senderror(so, m, EINVAL); 7181 } 7182 7183 for (stateidx = 0; 7184 stateidx < _ARRAYLEN(saorder_state_any); 7185 stateidx++) { 7186 state = saorder_state_any[stateidx]; 7187 LIST_FOREACH(sav, &sah->savtree[state], chain) { 7188 n = key_setdumpsa(sav, SADB_DUMP, satype, 7189 --cnt, mhp->msg->sadb_msg_pid); 7190 if (!n) { 7191 SAHTREE_UNLOCK(); 7192 return key_senderror(so, m, ENOBUFS); 7193 } 7194 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 7195 } 7196 } 7197 } 7198 SAHTREE_UNLOCK(); 7199 7200 m_freem(m); 7201 return 0; 7202 } 7203 7204 /* 7205 * SADB_X_PROMISC processing 7206 * 7207 * m will always be freed. 7208 */ 7209 static int 7210 key_promisc(so, m, mhp) 7211 struct socket *so; 7212 struct mbuf *m; 7213 const struct sadb_msghdr *mhp; 7214 { 7215 int olen; 7216 7217 IPSEC_ASSERT(so != NULL, ("null socket")); 7218 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7219 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7220 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7221 7222 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7223 7224 if (olen < sizeof(struct sadb_msg)) { 7225 #if 1 7226 return key_senderror(so, m, EINVAL); 7227 #else 7228 m_freem(m); 7229 return 0; 7230 #endif 7231 } else if (olen == sizeof(struct sadb_msg)) { 7232 /* enable/disable promisc mode */ 7233 struct keycb *kp; 7234 7235 if ((kp = (struct keycb *)sotorawcb(so)) == NULL) 7236 return key_senderror(so, m, EINVAL); 7237 mhp->msg->sadb_msg_errno = 0; 7238 switch (mhp->msg->sadb_msg_satype) { 7239 case 0: 7240 case 1: 7241 kp->kp_promisc = mhp->msg->sadb_msg_satype; 7242 break; 7243 default: 7244 return key_senderror(so, m, EINVAL); 7245 } 7246 7247 /* send the original message back to everyone */ 7248 mhp->msg->sadb_msg_errno = 0; 7249 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7250 } else { 7251 /* send packet as is */ 7252 7253 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); 7254 7255 /* TODO: if sadb_msg_seq is specified, send to specific pid */ 7256 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7257 } 7258 } 7259 7260 static int (*key_typesw[]) __P((struct socket *, struct mbuf *, 7261 const struct sadb_msghdr *)) = { 7262 NULL, /* SADB_RESERVED */ 7263 key_getspi, /* SADB_GETSPI */ 7264 key_update, /* SADB_UPDATE */ 7265 key_add, /* SADB_ADD */ 7266 key_delete, /* SADB_DELETE */ 7267 key_get, /* SADB_GET */ 7268 key_acquire2, /* SADB_ACQUIRE */ 7269 key_register, /* SADB_REGISTER */ 7270 NULL, /* SADB_EXPIRE */ 7271 key_flush, /* SADB_FLUSH */ 7272 key_dump, /* SADB_DUMP */ 7273 key_promisc, /* SADB_X_PROMISC */ 7274 NULL, /* SADB_X_PCHANGE */ 7275 key_spdadd, /* SADB_X_SPDUPDATE */ 7276 key_spdadd, /* SADB_X_SPDADD */ 7277 key_spddelete, /* SADB_X_SPDDELETE */ 7278 key_spdget, /* SADB_X_SPDGET */ 7279 NULL, /* SADB_X_SPDACQUIRE */ 7280 key_spddump, /* SADB_X_SPDDUMP */ 7281 key_spdflush, /* SADB_X_SPDFLUSH */ 7282 key_spdadd, /* SADB_X_SPDSETIDX */ 7283 NULL, /* SADB_X_SPDEXPIRE */ 7284 key_spddelete2, /* SADB_X_SPDDELETE2 */ 7285 }; 7286 7287 /* 7288 * parse sadb_msg buffer to process PFKEYv2, 7289 * and create a data to response if needed. 7290 * I think to be dealed with mbuf directly. 7291 * IN: 7292 * msgp : pointer to pointer to a received buffer pulluped. 7293 * This is rewrited to response. 7294 * so : pointer to socket. 7295 * OUT: 7296 * length for buffer to send to user process. 7297 */ 7298 int 7299 key_parse(m, so) 7300 struct mbuf *m; 7301 struct socket *so; 7302 { 7303 struct sadb_msg *msg; 7304 struct sadb_msghdr mh; 7305 u_int orglen; 7306 int error; 7307 int target; 7308 7309 IPSEC_ASSERT(so != NULL, ("null socket")); 7310 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7311 7312 #if 0 /*kdebug_sadb assumes msg in linear buffer*/ 7313 KEYDEBUG(KEYDEBUG_KEY_DUMP, 7314 ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__)); 7315 kdebug_sadb(msg)); 7316 #endif 7317 7318 if (m->m_len < sizeof(struct sadb_msg)) { 7319 m = m_pullup(m, sizeof(struct sadb_msg)); 7320 if (!m) 7321 return ENOBUFS; 7322 } 7323 msg = mtod(m, struct sadb_msg *); 7324 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); 7325 target = KEY_SENDUP_ONE; 7326 7327 if ((m->m_flags & M_PKTHDR) == 0 || 7328 m->m_pkthdr.len != m->m_pkthdr.len) { 7329 ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__)); 7330 V_pfkeystat.out_invlen++; 7331 error = EINVAL; 7332 goto senderror; 7333 } 7334 7335 if (msg->sadb_msg_version != PF_KEY_V2) { 7336 ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n", 7337 __func__, msg->sadb_msg_version)); 7338 V_pfkeystat.out_invver++; 7339 error = EINVAL; 7340 goto senderror; 7341 } 7342 7343 if (msg->sadb_msg_type > SADB_MAX) { 7344 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 7345 __func__, msg->sadb_msg_type)); 7346 V_pfkeystat.out_invmsgtype++; 7347 error = EINVAL; 7348 goto senderror; 7349 } 7350 7351 /* for old-fashioned code - should be nuked */ 7352 if (m->m_pkthdr.len > MCLBYTES) { 7353 m_freem(m); 7354 return ENOBUFS; 7355 } 7356 if (m->m_next) { 7357 struct mbuf *n; 7358 7359 MGETHDR(n, M_DONTWAIT, MT_DATA); 7360 if (n && m->m_pkthdr.len > MHLEN) { 7361 MCLGET(n, M_DONTWAIT); 7362 if ((n->m_flags & M_EXT) == 0) { 7363 m_free(n); 7364 n = NULL; 7365 } 7366 } 7367 if (!n) { 7368 m_freem(m); 7369 return ENOBUFS; 7370 } 7371 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t)); 7372 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; 7373 n->m_next = NULL; 7374 m_freem(m); 7375 m = n; 7376 } 7377 7378 /* align the mbuf chain so that extensions are in contiguous region. */ 7379 error = key_align(m, &mh); 7380 if (error) 7381 return error; 7382 7383 msg = mh.msg; 7384 7385 /* check SA type */ 7386 switch (msg->sadb_msg_satype) { 7387 case SADB_SATYPE_UNSPEC: 7388 switch (msg->sadb_msg_type) { 7389 case SADB_GETSPI: 7390 case SADB_UPDATE: 7391 case SADB_ADD: 7392 case SADB_DELETE: 7393 case SADB_GET: 7394 case SADB_ACQUIRE: 7395 case SADB_EXPIRE: 7396 ipseclog((LOG_DEBUG, "%s: must specify satype " 7397 "when msg type=%u.\n", __func__, 7398 msg->sadb_msg_type)); 7399 V_pfkeystat.out_invsatype++; 7400 error = EINVAL; 7401 goto senderror; 7402 } 7403 break; 7404 case SADB_SATYPE_AH: 7405 case SADB_SATYPE_ESP: 7406 case SADB_X_SATYPE_IPCOMP: 7407 case SADB_X_SATYPE_TCPSIGNATURE: 7408 switch (msg->sadb_msg_type) { 7409 case SADB_X_SPDADD: 7410 case SADB_X_SPDDELETE: 7411 case SADB_X_SPDGET: 7412 case SADB_X_SPDDUMP: 7413 case SADB_X_SPDFLUSH: 7414 case SADB_X_SPDSETIDX: 7415 case SADB_X_SPDUPDATE: 7416 case SADB_X_SPDDELETE2: 7417 ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n", 7418 __func__, msg->sadb_msg_type)); 7419 V_pfkeystat.out_invsatype++; 7420 error = EINVAL; 7421 goto senderror; 7422 } 7423 break; 7424 case SADB_SATYPE_RSVP: 7425 case SADB_SATYPE_OSPFV2: 7426 case SADB_SATYPE_RIPV2: 7427 case SADB_SATYPE_MIP: 7428 ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n", 7429 __func__, msg->sadb_msg_satype)); 7430 V_pfkeystat.out_invsatype++; 7431 error = EOPNOTSUPP; 7432 goto senderror; 7433 case 1: /* XXX: What does it do? */ 7434 if (msg->sadb_msg_type == SADB_X_PROMISC) 7435 break; 7436 /*FALLTHROUGH*/ 7437 default: 7438 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 7439 __func__, msg->sadb_msg_satype)); 7440 V_pfkeystat.out_invsatype++; 7441 error = EINVAL; 7442 goto senderror; 7443 } 7444 7445 /* check field of upper layer protocol and address family */ 7446 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL 7447 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { 7448 struct sadb_address *src0, *dst0; 7449 u_int plen; 7450 7451 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]); 7452 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]); 7453 7454 /* check upper layer protocol */ 7455 if (src0->sadb_address_proto != dst0->sadb_address_proto) { 7456 ipseclog((LOG_DEBUG, "%s: upper layer protocol " 7457 "mismatched.\n", __func__)); 7458 V_pfkeystat.out_invaddr++; 7459 error = EINVAL; 7460 goto senderror; 7461 } 7462 7463 /* check family */ 7464 if (PFKEY_ADDR_SADDR(src0)->sa_family != 7465 PFKEY_ADDR_SADDR(dst0)->sa_family) { 7466 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 7467 __func__)); 7468 V_pfkeystat.out_invaddr++; 7469 error = EINVAL; 7470 goto senderror; 7471 } 7472 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7473 PFKEY_ADDR_SADDR(dst0)->sa_len) { 7474 ipseclog((LOG_DEBUG, "%s: address struct size " 7475 "mismatched.\n", __func__)); 7476 V_pfkeystat.out_invaddr++; 7477 error = EINVAL; 7478 goto senderror; 7479 } 7480 7481 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7482 case AF_INET: 7483 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7484 sizeof(struct sockaddr_in)) { 7485 V_pfkeystat.out_invaddr++; 7486 error = EINVAL; 7487 goto senderror; 7488 } 7489 break; 7490 case AF_INET6: 7491 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7492 sizeof(struct sockaddr_in6)) { 7493 V_pfkeystat.out_invaddr++; 7494 error = EINVAL; 7495 goto senderror; 7496 } 7497 break; 7498 default: 7499 ipseclog((LOG_DEBUG, "%s: unsupported address family\n", 7500 __func__)); 7501 V_pfkeystat.out_invaddr++; 7502 error = EAFNOSUPPORT; 7503 goto senderror; 7504 } 7505 7506 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7507 case AF_INET: 7508 plen = sizeof(struct in_addr) << 3; 7509 break; 7510 case AF_INET6: 7511 plen = sizeof(struct in6_addr) << 3; 7512 break; 7513 default: 7514 plen = 0; /*fool gcc*/ 7515 break; 7516 } 7517 7518 /* check max prefix length */ 7519 if (src0->sadb_address_prefixlen > plen || 7520 dst0->sadb_address_prefixlen > plen) { 7521 ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n", 7522 __func__)); 7523 V_pfkeystat.out_invaddr++; 7524 error = EINVAL; 7525 goto senderror; 7526 } 7527 7528 /* 7529 * prefixlen == 0 is valid because there can be a case when 7530 * all addresses are matched. 7531 */ 7532 } 7533 7534 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) || 7535 key_typesw[msg->sadb_msg_type] == NULL) { 7536 V_pfkeystat.out_invmsgtype++; 7537 error = EINVAL; 7538 goto senderror; 7539 } 7540 7541 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh); 7542 7543 senderror: 7544 msg->sadb_msg_errno = error; 7545 return key_sendup_mbuf(so, m, target); 7546 } 7547 7548 static int 7549 key_senderror(so, m, code) 7550 struct socket *so; 7551 struct mbuf *m; 7552 int code; 7553 { 7554 struct sadb_msg *msg; 7555 7556 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 7557 ("mbuf too small, len %u", m->m_len)); 7558 7559 msg = mtod(m, struct sadb_msg *); 7560 msg->sadb_msg_errno = code; 7561 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 7562 } 7563 7564 /* 7565 * set the pointer to each header into message buffer. 7566 * m will be freed on error. 7567 * XXX larger-than-MCLBYTES extension? 7568 */ 7569 static int 7570 key_align(m, mhp) 7571 struct mbuf *m; 7572 struct sadb_msghdr *mhp; 7573 { 7574 struct mbuf *n; 7575 struct sadb_ext *ext; 7576 size_t off, end; 7577 int extlen; 7578 int toff; 7579 7580 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7581 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7582 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 7583 ("mbuf too small, len %u", m->m_len)); 7584 7585 /* initialize */ 7586 bzero(mhp, sizeof(*mhp)); 7587 7588 mhp->msg = mtod(m, struct sadb_msg *); 7589 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */ 7590 7591 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7592 extlen = end; /*just in case extlen is not updated*/ 7593 for (off = sizeof(struct sadb_msg); off < end; off += extlen) { 7594 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); 7595 if (!n) { 7596 /* m is already freed */ 7597 return ENOBUFS; 7598 } 7599 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 7600 7601 /* set pointer */ 7602 switch (ext->sadb_ext_type) { 7603 case SADB_EXT_SA: 7604 case SADB_EXT_ADDRESS_SRC: 7605 case SADB_EXT_ADDRESS_DST: 7606 case SADB_EXT_ADDRESS_PROXY: 7607 case SADB_EXT_LIFETIME_CURRENT: 7608 case SADB_EXT_LIFETIME_HARD: 7609 case SADB_EXT_LIFETIME_SOFT: 7610 case SADB_EXT_KEY_AUTH: 7611 case SADB_EXT_KEY_ENCRYPT: 7612 case SADB_EXT_IDENTITY_SRC: 7613 case SADB_EXT_IDENTITY_DST: 7614 case SADB_EXT_SENSITIVITY: 7615 case SADB_EXT_PROPOSAL: 7616 case SADB_EXT_SUPPORTED_AUTH: 7617 case SADB_EXT_SUPPORTED_ENCRYPT: 7618 case SADB_EXT_SPIRANGE: 7619 case SADB_X_EXT_POLICY: 7620 case SADB_X_EXT_SA2: 7621 #ifdef IPSEC_NAT_T 7622 case SADB_X_EXT_NAT_T_TYPE: 7623 case SADB_X_EXT_NAT_T_SPORT: 7624 case SADB_X_EXT_NAT_T_DPORT: 7625 case SADB_X_EXT_NAT_T_OAI: 7626 case SADB_X_EXT_NAT_T_OAR: 7627 case SADB_X_EXT_NAT_T_FRAG: 7628 #endif 7629 /* duplicate check */ 7630 /* 7631 * XXX Are there duplication payloads of either 7632 * KEY_AUTH or KEY_ENCRYPT ? 7633 */ 7634 if (mhp->ext[ext->sadb_ext_type] != NULL) { 7635 ipseclog((LOG_DEBUG, "%s: duplicate ext_type " 7636 "%u\n", __func__, ext->sadb_ext_type)); 7637 m_freem(m); 7638 V_pfkeystat.out_dupext++; 7639 return EINVAL; 7640 } 7641 break; 7642 default: 7643 ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n", 7644 __func__, ext->sadb_ext_type)); 7645 m_freem(m); 7646 V_pfkeystat.out_invexttype++; 7647 return EINVAL; 7648 } 7649 7650 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); 7651 7652 if (key_validate_ext(ext, extlen)) { 7653 m_freem(m); 7654 V_pfkeystat.out_invlen++; 7655 return EINVAL; 7656 } 7657 7658 n = m_pulldown(m, off, extlen, &toff); 7659 if (!n) { 7660 /* m is already freed */ 7661 return ENOBUFS; 7662 } 7663 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 7664 7665 mhp->ext[ext->sadb_ext_type] = ext; 7666 mhp->extoff[ext->sadb_ext_type] = off; 7667 mhp->extlen[ext->sadb_ext_type] = extlen; 7668 } 7669 7670 if (off != end) { 7671 m_freem(m); 7672 V_pfkeystat.out_invlen++; 7673 return EINVAL; 7674 } 7675 7676 return 0; 7677 } 7678 7679 static int 7680 key_validate_ext(ext, len) 7681 const struct sadb_ext *ext; 7682 int len; 7683 { 7684 const struct sockaddr *sa; 7685 enum { NONE, ADDR } checktype = NONE; 7686 int baselen = 0; 7687 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); 7688 7689 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) 7690 return EINVAL; 7691 7692 /* if it does not match minimum/maximum length, bail */ 7693 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) || 7694 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0])) 7695 return EINVAL; 7696 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) 7697 return EINVAL; 7698 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) 7699 return EINVAL; 7700 7701 /* more checks based on sadb_ext_type XXX need more */ 7702 switch (ext->sadb_ext_type) { 7703 case SADB_EXT_ADDRESS_SRC: 7704 case SADB_EXT_ADDRESS_DST: 7705 case SADB_EXT_ADDRESS_PROXY: 7706 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); 7707 checktype = ADDR; 7708 break; 7709 case SADB_EXT_IDENTITY_SRC: 7710 case SADB_EXT_IDENTITY_DST: 7711 if (((const struct sadb_ident *)ext)->sadb_ident_type == 7712 SADB_X_IDENTTYPE_ADDR) { 7713 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); 7714 checktype = ADDR; 7715 } else 7716 checktype = NONE; 7717 break; 7718 default: 7719 checktype = NONE; 7720 break; 7721 } 7722 7723 switch (checktype) { 7724 case NONE: 7725 break; 7726 case ADDR: 7727 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); 7728 if (len < baselen + sal) 7729 return EINVAL; 7730 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) 7731 return EINVAL; 7732 break; 7733 } 7734 7735 return 0; 7736 } 7737 7738 void 7739 key_init(void) 7740 { 7741 int i; 7742 7743 for (i = 0; i < IPSEC_DIR_MAX; i++) 7744 LIST_INIT(&V_sptree[i]); 7745 7746 LIST_INIT(&V_sahtree); 7747 7748 for (i = 0; i <= SADB_SATYPE_MAX; i++) 7749 LIST_INIT(&V_regtree[i]); 7750 7751 LIST_INIT(&V_acqtree); 7752 LIST_INIT(&V_spacqtree); 7753 7754 /* system default */ 7755 V_ip4_def_policy.policy = IPSEC_POLICY_NONE; 7756 V_ip4_def_policy.refcnt++; /*never reclaim this*/ 7757 7758 if (!IS_DEFAULT_VNET(curvnet)) 7759 return; 7760 7761 SPTREE_LOCK_INIT(); 7762 REGTREE_LOCK_INIT(); 7763 SAHTREE_LOCK_INIT(); 7764 ACQ_LOCK_INIT(); 7765 SPACQ_LOCK_INIT(); 7766 7767 #ifndef IPSEC_DEBUG2 7768 timeout((void *)key_timehandler, (void *)0, hz); 7769 #endif /*IPSEC_DEBUG2*/ 7770 7771 /* initialize key statistics */ 7772 keystat.getspi_count = 1; 7773 7774 printf("IPsec: Initialized Security Association Processing.\n"); 7775 } 7776 7777 #ifdef VIMAGE 7778 void 7779 key_destroy(void) 7780 { 7781 struct secpolicy *sp, *nextsp; 7782 struct secspacq *acq, *nextacq; 7783 struct secashead *sah, *nextsah; 7784 struct secreg *reg; 7785 int i; 7786 7787 SPTREE_LOCK(); 7788 for (i = 0; i < IPSEC_DIR_MAX; i++) { 7789 for (sp = LIST_FIRST(&V_sptree[i]); 7790 sp != NULL; sp = nextsp) { 7791 nextsp = LIST_NEXT(sp, chain); 7792 if (__LIST_CHAINED(sp)) { 7793 LIST_REMOVE(sp, chain); 7794 free(sp, M_IPSEC_SP); 7795 } 7796 } 7797 } 7798 SPTREE_UNLOCK(); 7799 7800 SAHTREE_LOCK(); 7801 for (sah = LIST_FIRST(&V_sahtree); sah != NULL; sah = nextsah) { 7802 nextsah = LIST_NEXT(sah, chain); 7803 if (__LIST_CHAINED(sah)) { 7804 LIST_REMOVE(sah, chain); 7805 free(sah, M_IPSEC_SAH); 7806 } 7807 } 7808 SAHTREE_UNLOCK(); 7809 7810 REGTREE_LOCK(); 7811 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 7812 LIST_FOREACH(reg, &V_regtree[i], chain) { 7813 if (__LIST_CHAINED(reg)) { 7814 LIST_REMOVE(reg, chain); 7815 free(reg, M_IPSEC_SAR); 7816 break; 7817 } 7818 } 7819 } 7820 REGTREE_UNLOCK(); 7821 7822 ACQ_LOCK(); 7823 for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) { 7824 nextacq = LIST_NEXT(acq, chain); 7825 if (__LIST_CHAINED(acq)) { 7826 LIST_REMOVE(acq, chain); 7827 free(acq, M_IPSEC_SAQ); 7828 } 7829 } 7830 ACQ_UNLOCK(); 7831 7832 SPACQ_LOCK(); 7833 for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) { 7834 nextacq = LIST_NEXT(acq, chain); 7835 if (__LIST_CHAINED(acq)) { 7836 LIST_REMOVE(acq, chain); 7837 free(acq, M_IPSEC_SAQ); 7838 } 7839 } 7840 SPACQ_UNLOCK(); 7841 } 7842 #endif 7843 7844 /* 7845 * XXX: maybe This function is called after INBOUND IPsec processing. 7846 * 7847 * Special check for tunnel-mode packets. 7848 * We must make some checks for consistency between inner and outer IP header. 7849 * 7850 * xxx more checks to be provided 7851 */ 7852 int 7853 key_checktunnelsanity(sav, family, src, dst) 7854 struct secasvar *sav; 7855 u_int family; 7856 caddr_t src; 7857 caddr_t dst; 7858 { 7859 IPSEC_ASSERT(sav->sah != NULL, ("null SA header")); 7860 7861 /* XXX: check inner IP header */ 7862 7863 return 1; 7864 } 7865 7866 /* record data transfer on SA, and update timestamps */ 7867 void 7868 key_sa_recordxfer(sav, m) 7869 struct secasvar *sav; 7870 struct mbuf *m; 7871 { 7872 IPSEC_ASSERT(sav != NULL, ("Null secasvar")); 7873 IPSEC_ASSERT(m != NULL, ("Null mbuf")); 7874 if (!sav->lft_c) 7875 return; 7876 7877 /* 7878 * XXX Currently, there is a difference of bytes size 7879 * between inbound and outbound processing. 7880 */ 7881 sav->lft_c->bytes += m->m_pkthdr.len; 7882 /* to check bytes lifetime is done in key_timehandler(). */ 7883 7884 /* 7885 * We use the number of packets as the unit of 7886 * allocations. We increment the variable 7887 * whenever {esp,ah}_{in,out}put is called. 7888 */ 7889 sav->lft_c->allocations++; 7890 /* XXX check for expires? */ 7891 7892 /* 7893 * NOTE: We record CURRENT usetime by using wall clock, 7894 * in seconds. HARD and SOFT lifetime are measured by the time 7895 * difference (again in seconds) from usetime. 7896 * 7897 * usetime 7898 * v expire expire 7899 * -----+-----+--------+---> t 7900 * <--------------> HARD 7901 * <-----> SOFT 7902 */ 7903 sav->lft_c->usetime = time_second; 7904 /* XXX check for expires? */ 7905 7906 return; 7907 } 7908 7909 /* dumb version */ 7910 void 7911 key_sa_routechange(dst) 7912 struct sockaddr *dst; 7913 { 7914 struct secashead *sah; 7915 struct route *ro; 7916 7917 SAHTREE_LOCK(); 7918 LIST_FOREACH(sah, &V_sahtree, chain) { 7919 ro = &sah->sa_route; 7920 if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len 7921 && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) { 7922 RTFREE(ro->ro_rt); 7923 ro->ro_rt = (struct rtentry *)NULL; 7924 } 7925 } 7926 SAHTREE_UNLOCK(); 7927 } 7928 7929 static void 7930 key_sa_chgstate(struct secasvar *sav, u_int8_t state) 7931 { 7932 IPSEC_ASSERT(sav != NULL, ("NULL sav")); 7933 SAHTREE_LOCK_ASSERT(); 7934 7935 if (sav->state != state) { 7936 if (__LIST_CHAINED(sav)) 7937 LIST_REMOVE(sav, chain); 7938 sav->state = state; 7939 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain); 7940 } 7941 } 7942 7943 void 7944 key_sa_stir_iv(sav) 7945 struct secasvar *sav; 7946 { 7947 7948 IPSEC_ASSERT(sav->iv != NULL, ("null IV")); 7949 key_randomfill(sav->iv, sav->ivlen); 7950 } 7951 7952 /* XXX too much? */ 7953 static struct mbuf * 7954 key_alloc_mbuf(l) 7955 int l; 7956 { 7957 struct mbuf *m = NULL, *n; 7958 int len, t; 7959 7960 len = l; 7961 while (len > 0) { 7962 MGET(n, M_DONTWAIT, MT_DATA); 7963 if (n && len > MLEN) 7964 MCLGET(n, M_DONTWAIT); 7965 if (!n) { 7966 m_freem(m); 7967 return NULL; 7968 } 7969 7970 n->m_next = NULL; 7971 n->m_len = 0; 7972 n->m_len = M_TRAILINGSPACE(n); 7973 /* use the bottom of mbuf, hoping we can prepend afterwards */ 7974 if (n->m_len > len) { 7975 t = (n->m_len - len) & ~(sizeof(long) - 1); 7976 n->m_data += t; 7977 n->m_len = len; 7978 } 7979 7980 len -= n->m_len; 7981 7982 if (m) 7983 m_cat(m, n); 7984 else 7985 m = n; 7986 } 7987 7988 return m; 7989 } 7990 7991 /* 7992 * Take one of the kernel's security keys and convert it into a PF_KEY 7993 * structure within an mbuf, suitable for sending up to a waiting 7994 * application in user land. 7995 * 7996 * IN: 7997 * src: A pointer to a kernel security key. 7998 * exttype: Which type of key this is. Refer to the PF_KEY data structures. 7999 * OUT: 8000 * a valid mbuf or NULL indicating an error 8001 * 8002 */ 8003 8004 static struct mbuf * 8005 key_setkey(struct seckey *src, u_int16_t exttype) 8006 { 8007 struct mbuf *m; 8008 struct sadb_key *p; 8009 int len; 8010 8011 if (src == NULL) 8012 return NULL; 8013 8014 len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src)); 8015 m = key_alloc_mbuf(len); 8016 if (m == NULL) 8017 return NULL; 8018 p = mtod(m, struct sadb_key *); 8019 bzero(p, len); 8020 p->sadb_key_len = PFKEY_UNIT64(len); 8021 p->sadb_key_exttype = exttype; 8022 p->sadb_key_bits = src->bits; 8023 bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src)); 8024 8025 return m; 8026 } 8027 8028 /* 8029 * Take one of the kernel's lifetime data structures and convert it 8030 * into a PF_KEY structure within an mbuf, suitable for sending up to 8031 * a waiting application in user land. 8032 * 8033 * IN: 8034 * src: A pointer to a kernel lifetime structure. 8035 * exttype: Which type of lifetime this is. Refer to the PF_KEY 8036 * data structures for more information. 8037 * OUT: 8038 * a valid mbuf or NULL indicating an error 8039 * 8040 */ 8041 8042 static struct mbuf * 8043 key_setlifetime(struct seclifetime *src, u_int16_t exttype) 8044 { 8045 struct mbuf *m = NULL; 8046 struct sadb_lifetime *p; 8047 int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime)); 8048 8049 if (src == NULL) 8050 return NULL; 8051 8052 m = key_alloc_mbuf(len); 8053 if (m == NULL) 8054 return m; 8055 p = mtod(m, struct sadb_lifetime *); 8056 8057 bzero(p, len); 8058 p->sadb_lifetime_len = PFKEY_UNIT64(len); 8059 p->sadb_lifetime_exttype = exttype; 8060 p->sadb_lifetime_allocations = src->allocations; 8061 p->sadb_lifetime_bytes = src->bytes; 8062 p->sadb_lifetime_addtime = src->addtime; 8063 p->sadb_lifetime_usetime = src->usetime; 8064 8065 return m; 8066 8067 } 8068