1 /* $FreeBSD$ */ 2 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ 3 4 /*- 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * This code is referd to RFC 2367 35 */ 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 #include "opt_ipsec.h" 40 41 #include <sys/types.h> 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/mutex.h> 47 #include <sys/mbuf.h> 48 #include <sys/domain.h> 49 #include <sys/protosw.h> 50 #include <sys/malloc.h> 51 #include <sys/socket.h> 52 #include <sys/socketvar.h> 53 #include <sys/sysctl.h> 54 #include <sys/errno.h> 55 #include <sys/proc.h> 56 #include <sys/queue.h> 57 #include <sys/refcount.h> 58 #include <sys/syslog.h> 59 60 #include <net/if.h> 61 #include <net/route.h> 62 #include <net/raw_cb.h> 63 #include <net/vnet.h> 64 65 #include <netinet/in.h> 66 #include <netinet/in_systm.h> 67 #include <netinet/ip.h> 68 #include <netinet/in_var.h> 69 70 #ifdef INET6 71 #include <netinet/ip6.h> 72 #include <netinet6/in6_var.h> 73 #include <netinet6/ip6_var.h> 74 #endif /* INET6 */ 75 76 #if defined(INET) || defined(INET6) 77 #include <netinet/in_pcb.h> 78 #endif 79 #ifdef INET6 80 #include <netinet6/in6_pcb.h> 81 #endif /* INET6 */ 82 83 #include <net/pfkeyv2.h> 84 #include <netipsec/keydb.h> 85 #include <netipsec/key.h> 86 #include <netipsec/keysock.h> 87 #include <netipsec/key_debug.h> 88 89 #include <netipsec/ipsec.h> 90 #ifdef INET6 91 #include <netipsec/ipsec6.h> 92 #endif 93 94 #include <netipsec/xform.h> 95 96 #include <machine/stdarg.h> 97 98 /* randomness */ 99 #include <sys/random.h> 100 101 #define FULLMASK 0xff 102 #define _BITS(bytes) ((bytes) << 3) 103 104 /* 105 * Note on SA reference counting: 106 * - SAs that are not in DEAD state will have (total external reference + 1) 107 * following value in reference count field. they cannot be freed and are 108 * referenced from SA header. 109 * - SAs that are in DEAD state will have (total external reference) 110 * in reference count field. they are ready to be freed. reference from 111 * SA header will be removed in key_delsav(), when the reference count 112 * field hits 0 (= no external reference other than from SA header. 113 */ 114 115 VNET_DEFINE(u_int32_t, key_debug_level) = 0; 116 static VNET_DEFINE(u_int, key_spi_trycnt) = 1000; 117 static VNET_DEFINE(u_int32_t, key_spi_minval) = 0x100; 118 static VNET_DEFINE(u_int32_t, key_spi_maxval) = 0x0fffffff; /* XXX */ 119 static VNET_DEFINE(u_int32_t, policy_id) = 0; 120 /*interval to initialize randseed,1(m)*/ 121 static VNET_DEFINE(u_int, key_int_random) = 60; 122 /* interval to expire acquiring, 30(s)*/ 123 static VNET_DEFINE(u_int, key_larval_lifetime) = 30; 124 /* counter for blocking SADB_ACQUIRE.*/ 125 static VNET_DEFINE(int, key_blockacq_count) = 10; 126 /* lifetime for blocking SADB_ACQUIRE.*/ 127 static VNET_DEFINE(int, key_blockacq_lifetime) = 20; 128 /* preferred old sa rather than new sa.*/ 129 static VNET_DEFINE(int, key_preferred_oldsa) = 1; 130 #define V_key_spi_trycnt VNET(key_spi_trycnt) 131 #define V_key_spi_minval VNET(key_spi_minval) 132 #define V_key_spi_maxval VNET(key_spi_maxval) 133 #define V_policy_id VNET(policy_id) 134 #define V_key_int_random VNET(key_int_random) 135 #define V_key_larval_lifetime VNET(key_larval_lifetime) 136 #define V_key_blockacq_count VNET(key_blockacq_count) 137 #define V_key_blockacq_lifetime VNET(key_blockacq_lifetime) 138 #define V_key_preferred_oldsa VNET(key_preferred_oldsa) 139 140 static VNET_DEFINE(u_int32_t, acq_seq) = 0; 141 #define V_acq_seq VNET(acq_seq) 142 143 /* SPD */ 144 static VNET_DEFINE(LIST_HEAD(_sptree, secpolicy), sptree[IPSEC_DIR_MAX]); 145 #define V_sptree VNET(sptree) 146 static struct mtx sptree_lock; 147 #define SPTREE_LOCK_INIT() \ 148 mtx_init(&sptree_lock, "sptree", \ 149 "fast ipsec security policy database", MTX_DEF) 150 #define SPTREE_LOCK_DESTROY() mtx_destroy(&sptree_lock) 151 #define SPTREE_LOCK() mtx_lock(&sptree_lock) 152 #define SPTREE_UNLOCK() mtx_unlock(&sptree_lock) 153 #define SPTREE_LOCK_ASSERT() mtx_assert(&sptree_lock, MA_OWNED) 154 155 static VNET_DEFINE(LIST_HEAD(_sahtree, secashead), sahtree); /* SAD */ 156 #define V_sahtree VNET(sahtree) 157 static struct mtx sahtree_lock; 158 #define SAHTREE_LOCK_INIT() \ 159 mtx_init(&sahtree_lock, "sahtree", \ 160 "fast ipsec security association database", MTX_DEF) 161 #define SAHTREE_LOCK_DESTROY() mtx_destroy(&sahtree_lock) 162 #define SAHTREE_LOCK() mtx_lock(&sahtree_lock) 163 #define SAHTREE_UNLOCK() mtx_unlock(&sahtree_lock) 164 #define SAHTREE_LOCK_ASSERT() mtx_assert(&sahtree_lock, MA_OWNED) 165 166 /* registed list */ 167 static VNET_DEFINE(LIST_HEAD(_regtree, secreg), regtree[SADB_SATYPE_MAX + 1]); 168 #define V_regtree VNET(regtree) 169 static struct mtx regtree_lock; 170 #define REGTREE_LOCK_INIT() \ 171 mtx_init(®tree_lock, "regtree", "fast ipsec regtree", MTX_DEF) 172 #define REGTREE_LOCK_DESTROY() mtx_destroy(®tree_lock) 173 #define REGTREE_LOCK() mtx_lock(®tree_lock) 174 #define REGTREE_UNLOCK() mtx_unlock(®tree_lock) 175 #define REGTREE_LOCK_ASSERT() mtx_assert(®tree_lock, MA_OWNED) 176 177 static VNET_DEFINE(LIST_HEAD(_acqtree, secacq), acqtree); /* acquiring list */ 178 #define V_acqtree VNET(acqtree) 179 static struct mtx acq_lock; 180 #define ACQ_LOCK_INIT() \ 181 mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF) 182 #define ACQ_LOCK_DESTROY() mtx_destroy(&acq_lock) 183 #define ACQ_LOCK() mtx_lock(&acq_lock) 184 #define ACQ_UNLOCK() mtx_unlock(&acq_lock) 185 #define ACQ_LOCK_ASSERT() mtx_assert(&acq_lock, MA_OWNED) 186 187 /* SP acquiring list */ 188 static VNET_DEFINE(LIST_HEAD(_spacqtree, secspacq), spacqtree); 189 #define V_spacqtree VNET(spacqtree) 190 static struct mtx spacq_lock; 191 #define SPACQ_LOCK_INIT() \ 192 mtx_init(&spacq_lock, "spacqtree", \ 193 "fast ipsec security policy acquire list", MTX_DEF) 194 #define SPACQ_LOCK_DESTROY() mtx_destroy(&spacq_lock) 195 #define SPACQ_LOCK() mtx_lock(&spacq_lock) 196 #define SPACQ_UNLOCK() mtx_unlock(&spacq_lock) 197 #define SPACQ_LOCK_ASSERT() mtx_assert(&spacq_lock, MA_OWNED) 198 199 /* search order for SAs */ 200 static const u_int saorder_state_valid_prefer_old[] = { 201 SADB_SASTATE_DYING, SADB_SASTATE_MATURE, 202 }; 203 static const u_int saorder_state_valid_prefer_new[] = { 204 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 205 }; 206 static const u_int saorder_state_alive[] = { 207 /* except DEAD */ 208 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL 209 }; 210 static const u_int saorder_state_any[] = { 211 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 212 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD 213 }; 214 215 static const int minsize[] = { 216 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 217 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 218 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 219 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 220 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 221 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ 222 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ 223 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ 224 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ 225 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ 226 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ 227 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ 228 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ 229 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ 230 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ 231 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ 232 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 233 0, /* SADB_X_EXT_KMPRIVATE */ 234 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ 235 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 236 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ 237 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ 238 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ 239 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */ 240 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */ 241 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ 242 }; 243 static const int maxsize[] = { 244 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 245 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 246 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 247 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 248 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 249 0, /* SADB_EXT_ADDRESS_SRC */ 250 0, /* SADB_EXT_ADDRESS_DST */ 251 0, /* SADB_EXT_ADDRESS_PROXY */ 252 0, /* SADB_EXT_KEY_AUTH */ 253 0, /* SADB_EXT_KEY_ENCRYPT */ 254 0, /* SADB_EXT_IDENTITY_SRC */ 255 0, /* SADB_EXT_IDENTITY_DST */ 256 0, /* SADB_EXT_SENSITIVITY */ 257 0, /* SADB_EXT_PROPOSAL */ 258 0, /* SADB_EXT_SUPPORTED_AUTH */ 259 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ 260 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 261 0, /* SADB_X_EXT_KMPRIVATE */ 262 0, /* SADB_X_EXT_POLICY */ 263 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 264 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ 265 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ 266 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ 267 0, /* SADB_X_EXT_NAT_T_OAI */ 268 0, /* SADB_X_EXT_NAT_T_OAR */ 269 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ 270 }; 271 272 static VNET_DEFINE(int, ipsec_esp_keymin) = 256; 273 static VNET_DEFINE(int, ipsec_esp_auth) = 0; 274 static VNET_DEFINE(int, ipsec_ah_keymin) = 128; 275 276 #define V_ipsec_esp_keymin VNET(ipsec_esp_keymin) 277 #define V_ipsec_esp_auth VNET(ipsec_esp_auth) 278 #define V_ipsec_ah_keymin VNET(ipsec_ah_keymin) 279 280 #ifdef SYSCTL_DECL 281 SYSCTL_DECL(_net_key); 282 #endif 283 284 SYSCTL_VNET_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, 285 CTLFLAG_RW, &VNET_NAME(key_debug_level), 0, ""); 286 287 /* max count of trial for the decision of spi value */ 288 SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, 289 CTLFLAG_RW, &VNET_NAME(key_spi_trycnt), 0, ""); 290 291 /* minimum spi value to allocate automatically. */ 292 SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_MIN_VALUE, 293 spi_minval, CTLFLAG_RW, &VNET_NAME(key_spi_minval), 0, ""); 294 295 /* maximun spi value to allocate automatically. */ 296 SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_MAX_VALUE, 297 spi_maxval, CTLFLAG_RW, &VNET_NAME(key_spi_maxval), 0, ""); 298 299 /* interval to initialize randseed */ 300 SYSCTL_VNET_INT(_net_key, KEYCTL_RANDOM_INT, 301 int_random, CTLFLAG_RW, &VNET_NAME(key_int_random), 0, ""); 302 303 /* lifetime for larval SA */ 304 SYSCTL_VNET_INT(_net_key, KEYCTL_LARVAL_LIFETIME, 305 larval_lifetime, CTLFLAG_RW, &VNET_NAME(key_larval_lifetime), 0, ""); 306 307 /* counter for blocking to send SADB_ACQUIRE to IKEd */ 308 SYSCTL_VNET_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, 309 blockacq_count, CTLFLAG_RW, &VNET_NAME(key_blockacq_count), 0, ""); 310 311 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ 312 SYSCTL_VNET_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, 313 blockacq_lifetime, CTLFLAG_RW, &VNET_NAME(key_blockacq_lifetime), 0, ""); 314 315 /* ESP auth */ 316 SYSCTL_VNET_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, 317 CTLFLAG_RW, &VNET_NAME(ipsec_esp_auth), 0, ""); 318 319 /* minimum ESP key length */ 320 SYSCTL_VNET_INT(_net_key, KEYCTL_ESP_KEYMIN, 321 esp_keymin, CTLFLAG_RW, &VNET_NAME(ipsec_esp_keymin), 0, ""); 322 323 /* minimum AH key length */ 324 SYSCTL_VNET_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, 325 CTLFLAG_RW, &VNET_NAME(ipsec_ah_keymin), 0, ""); 326 327 /* perfered old SA rather than new SA */ 328 SYSCTL_VNET_INT(_net_key, KEYCTL_PREFERED_OLDSA, 329 preferred_oldsa, CTLFLAG_RW, &VNET_NAME(key_preferred_oldsa), 0, ""); 330 331 #define __LIST_CHAINED(elm) \ 332 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) 333 #define LIST_INSERT_TAIL(head, elm, type, field) \ 334 do {\ 335 struct type *curelm = LIST_FIRST(head); \ 336 if (curelm == NULL) {\ 337 LIST_INSERT_HEAD(head, elm, field); \ 338 } else { \ 339 while (LIST_NEXT(curelm, field)) \ 340 curelm = LIST_NEXT(curelm, field);\ 341 LIST_INSERT_AFTER(curelm, elm, field);\ 342 }\ 343 } while (0) 344 345 #define KEY_CHKSASTATE(head, sav, name) \ 346 do { \ 347 if ((head) != (sav)) { \ 348 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \ 349 (name), (head), (sav))); \ 350 continue; \ 351 } \ 352 } while (0) 353 354 #define KEY_CHKSPDIR(head, sp, name) \ 355 do { \ 356 if ((head) != (sp)) { \ 357 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \ 358 "anyway continue.\n", \ 359 (name), (head), (sp))); \ 360 } \ 361 } while (0) 362 363 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association"); 364 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head"); 365 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy"); 366 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request"); 367 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous"); 368 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire"); 369 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire"); 370 371 /* 372 * set parameters into secpolicyindex buffer. 373 * Must allocate secpolicyindex buffer passed to this function. 374 */ 375 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \ 376 do { \ 377 bzero((idx), sizeof(struct secpolicyindex)); \ 378 (idx)->dir = (_dir); \ 379 (idx)->prefs = (ps); \ 380 (idx)->prefd = (pd); \ 381 (idx)->ul_proto = (ulp); \ 382 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 383 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 384 } while (0) 385 386 /* 387 * set parameters into secasindex buffer. 388 * Must allocate secasindex buffer before calling this function. 389 */ 390 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \ 391 do { \ 392 bzero((idx), sizeof(struct secasindex)); \ 393 (idx)->proto = (p); \ 394 (idx)->mode = (m); \ 395 (idx)->reqid = (r); \ 396 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 397 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 398 } while (0) 399 400 /* key statistics */ 401 struct _keystat { 402 u_long getspi_count; /* the avarage of count to try to get new SPI */ 403 } keystat; 404 405 struct sadb_msghdr { 406 struct sadb_msg *msg; 407 struct sadb_ext *ext[SADB_EXT_MAX + 1]; 408 int extoff[SADB_EXT_MAX + 1]; 409 int extlen[SADB_EXT_MAX + 1]; 410 }; 411 412 static struct secasvar *key_allocsa_policy __P((const struct secasindex *)); 413 static void key_freesp_so __P((struct secpolicy **)); 414 static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int)); 415 static void key_delsp __P((struct secpolicy *)); 416 static struct secpolicy *key_getsp __P((struct secpolicyindex *)); 417 static void _key_delsp(struct secpolicy *sp); 418 static struct secpolicy *key_getspbyid __P((u_int32_t)); 419 static u_int32_t key_newreqid __P((void)); 420 static struct mbuf *key_gather_mbuf __P((struct mbuf *, 421 const struct sadb_msghdr *, int, int, ...)); 422 static int key_spdadd __P((struct socket *, struct mbuf *, 423 const struct sadb_msghdr *)); 424 static u_int32_t key_getnewspid __P((void)); 425 static int key_spddelete __P((struct socket *, struct mbuf *, 426 const struct sadb_msghdr *)); 427 static int key_spddelete2 __P((struct socket *, struct mbuf *, 428 const struct sadb_msghdr *)); 429 static int key_spdget __P((struct socket *, struct mbuf *, 430 const struct sadb_msghdr *)); 431 static int key_spdflush __P((struct socket *, struct mbuf *, 432 const struct sadb_msghdr *)); 433 static int key_spddump __P((struct socket *, struct mbuf *, 434 const struct sadb_msghdr *)); 435 static struct mbuf *key_setdumpsp __P((struct secpolicy *, 436 u_int8_t, u_int32_t, u_int32_t)); 437 static u_int key_getspreqmsglen __P((struct secpolicy *)); 438 static int key_spdexpire __P((struct secpolicy *)); 439 static struct secashead *key_newsah __P((struct secasindex *)); 440 static void key_delsah __P((struct secashead *)); 441 static struct secasvar *key_newsav __P((struct mbuf *, 442 const struct sadb_msghdr *, struct secashead *, int *, 443 const char*, int)); 444 #define KEY_NEWSAV(m, sadb, sah, e) \ 445 key_newsav(m, sadb, sah, e, __FILE__, __LINE__) 446 static void key_delsav __P((struct secasvar *)); 447 static struct secashead *key_getsah __P((struct secasindex *)); 448 static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t)); 449 static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t)); 450 static int key_setsaval __P((struct secasvar *, struct mbuf *, 451 const struct sadb_msghdr *)); 452 static int key_mature __P((struct secasvar *)); 453 static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t, 454 u_int8_t, u_int32_t, u_int32_t)); 455 static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t, 456 u_int32_t, pid_t, u_int16_t)); 457 static struct mbuf *key_setsadbsa __P((struct secasvar *)); 458 static struct mbuf *key_setsadbaddr __P((u_int16_t, 459 const struct sockaddr *, u_int8_t, u_int16_t)); 460 #ifdef IPSEC_NAT_T 461 static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t); 462 static struct mbuf *key_setsadbxtype(u_int16_t); 463 #endif 464 static void key_porttosaddr(struct sockaddr *, u_int16_t); 465 #define KEY_PORTTOSADDR(saddr, port) \ 466 key_porttosaddr((struct sockaddr *)(saddr), (port)) 467 static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t)); 468 static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t, 469 u_int32_t)); 470 static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int, 471 struct malloc_type *); 472 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src, 473 struct malloc_type *type); 474 #ifdef INET6 475 static int key_ismyaddr6 __P((struct sockaddr_in6 *)); 476 #endif 477 478 /* flags for key_cmpsaidx() */ 479 #define CMP_HEAD 1 /* protocol, addresses. */ 480 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ 481 #define CMP_REQID 3 /* additionally HEAD, reaid. */ 482 #define CMP_EXACTLY 4 /* all elements. */ 483 static int key_cmpsaidx 484 __P((const struct secasindex *, const struct secasindex *, int)); 485 486 static int key_cmpspidx_exactly 487 __P((struct secpolicyindex *, struct secpolicyindex *)); 488 static int key_cmpspidx_withmask 489 __P((struct secpolicyindex *, struct secpolicyindex *)); 490 static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int)); 491 static int key_bbcmp __P((const void *, const void *, u_int)); 492 static u_int16_t key_satype2proto __P((u_int8_t)); 493 static u_int8_t key_proto2satype __P((u_int16_t)); 494 495 static int key_getspi __P((struct socket *, struct mbuf *, 496 const struct sadb_msghdr *)); 497 static u_int32_t key_do_getnewspi __P((struct sadb_spirange *, 498 struct secasindex *)); 499 static int key_update __P((struct socket *, struct mbuf *, 500 const struct sadb_msghdr *)); 501 #ifdef IPSEC_DOSEQCHECK 502 static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t)); 503 #endif 504 static int key_add __P((struct socket *, struct mbuf *, 505 const struct sadb_msghdr *)); 506 static int key_setident __P((struct secashead *, struct mbuf *, 507 const struct sadb_msghdr *)); 508 static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *, 509 const struct sadb_msghdr *)); 510 static int key_delete __P((struct socket *, struct mbuf *, 511 const struct sadb_msghdr *)); 512 static int key_get __P((struct socket *, struct mbuf *, 513 const struct sadb_msghdr *)); 514 515 static void key_getcomb_setlifetime __P((struct sadb_comb *)); 516 static struct mbuf *key_getcomb_esp __P((void)); 517 static struct mbuf *key_getcomb_ah __P((void)); 518 static struct mbuf *key_getcomb_ipcomp __P((void)); 519 static struct mbuf *key_getprop __P((const struct secasindex *)); 520 521 static int key_acquire __P((const struct secasindex *, struct secpolicy *)); 522 static struct secacq *key_newacq __P((const struct secasindex *)); 523 static struct secacq *key_getacq __P((const struct secasindex *)); 524 static struct secacq *key_getacqbyseq __P((u_int32_t)); 525 static struct secspacq *key_newspacq __P((struct secpolicyindex *)); 526 static struct secspacq *key_getspacq __P((struct secpolicyindex *)); 527 static int key_acquire2 __P((struct socket *, struct mbuf *, 528 const struct sadb_msghdr *)); 529 static int key_register __P((struct socket *, struct mbuf *, 530 const struct sadb_msghdr *)); 531 static int key_expire __P((struct secasvar *)); 532 static int key_flush __P((struct socket *, struct mbuf *, 533 const struct sadb_msghdr *)); 534 static int key_dump __P((struct socket *, struct mbuf *, 535 const struct sadb_msghdr *)); 536 static int key_promisc __P((struct socket *, struct mbuf *, 537 const struct sadb_msghdr *)); 538 static int key_senderror __P((struct socket *, struct mbuf *, int)); 539 static int key_validate_ext __P((const struct sadb_ext *, int)); 540 static int key_align __P((struct mbuf *, struct sadb_msghdr *)); 541 static struct mbuf *key_setlifetime(struct seclifetime *src, 542 u_int16_t exttype); 543 static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype); 544 545 #if 0 546 static const char *key_getfqdn __P((void)); 547 static const char *key_getuserfqdn __P((void)); 548 #endif 549 static void key_sa_chgstate __P((struct secasvar *, u_int8_t)); 550 static struct mbuf *key_alloc_mbuf __P((int)); 551 552 static __inline void 553 sa_initref(struct secasvar *sav) 554 { 555 556 refcount_init(&sav->refcnt, 1); 557 } 558 static __inline void 559 sa_addref(struct secasvar *sav) 560 { 561 562 refcount_acquire(&sav->refcnt); 563 IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow")); 564 } 565 static __inline int 566 sa_delref(struct secasvar *sav) 567 { 568 569 IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow")); 570 return (refcount_release(&sav->refcnt)); 571 } 572 573 #define SP_ADDREF(p) do { \ 574 (p)->refcnt++; \ 575 IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow")); \ 576 } while (0) 577 #define SP_DELREF(p) do { \ 578 IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow")); \ 579 (p)->refcnt--; \ 580 } while (0) 581 582 583 /* 584 * Update the refcnt while holding the SPTREE lock. 585 */ 586 void 587 key_addref(struct secpolicy *sp) 588 { 589 SPTREE_LOCK(); 590 SP_ADDREF(sp); 591 SPTREE_UNLOCK(); 592 } 593 594 /* 595 * Return 0 when there are known to be no SP's for the specified 596 * direction. Otherwise return 1. This is used by IPsec code 597 * to optimize performance. 598 */ 599 int 600 key_havesp(u_int dir) 601 { 602 603 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? 604 LIST_FIRST(&V_sptree[dir]) != NULL : 1); 605 } 606 607 /* %%% IPsec policy management */ 608 /* 609 * allocating a SP for OUTBOUND or INBOUND packet. 610 * Must call key_freesp() later. 611 * OUT: NULL: not found 612 * others: found and return the pointer. 613 */ 614 struct secpolicy * 615 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag) 616 { 617 struct secpolicy *sp; 618 619 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 620 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 621 ("invalid direction %u", dir)); 622 623 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 624 printf("DP %s from %s:%u\n", __func__, where, tag)); 625 626 /* get a SP entry */ 627 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 628 printf("*** objects\n"); 629 kdebug_secpolicyindex(spidx)); 630 631 SPTREE_LOCK(); 632 LIST_FOREACH(sp, &V_sptree[dir], chain) { 633 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 634 printf("*** in SPD\n"); 635 kdebug_secpolicyindex(&sp->spidx)); 636 637 if (sp->state == IPSEC_SPSTATE_DEAD) 638 continue; 639 if (key_cmpspidx_withmask(&sp->spidx, spidx)) 640 goto found; 641 } 642 sp = NULL; 643 found: 644 if (sp) { 645 /* sanity check */ 646 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 647 648 /* found a SPD entry */ 649 sp->lastused = time_second; 650 SP_ADDREF(sp); 651 } 652 SPTREE_UNLOCK(); 653 654 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 655 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 656 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 657 return sp; 658 } 659 660 /* 661 * allocating a SP for OUTBOUND or INBOUND packet. 662 * Must call key_freesp() later. 663 * OUT: NULL: not found 664 * others: found and return the pointer. 665 */ 666 struct secpolicy * 667 key_allocsp2(u_int32_t spi, 668 union sockaddr_union *dst, 669 u_int8_t proto, 670 u_int dir, 671 const char* where, int tag) 672 { 673 struct secpolicy *sp; 674 675 IPSEC_ASSERT(dst != NULL, ("null dst")); 676 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 677 ("invalid direction %u", dir)); 678 679 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 680 printf("DP %s from %s:%u\n", __func__, where, tag)); 681 682 /* get a SP entry */ 683 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 684 printf("*** objects\n"); 685 printf("spi %u proto %u dir %u\n", spi, proto, dir); 686 kdebug_sockaddr(&dst->sa)); 687 688 SPTREE_LOCK(); 689 LIST_FOREACH(sp, &V_sptree[dir], chain) { 690 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 691 printf("*** in SPD\n"); 692 kdebug_secpolicyindex(&sp->spidx)); 693 694 if (sp->state == IPSEC_SPSTATE_DEAD) 695 continue; 696 /* compare simple values, then dst address */ 697 if (sp->spidx.ul_proto != proto) 698 continue; 699 /* NB: spi's must exist and match */ 700 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi) 701 continue; 702 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0) 703 goto found; 704 } 705 sp = NULL; 706 found: 707 if (sp) { 708 /* sanity check */ 709 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 710 711 /* found a SPD entry */ 712 sp->lastused = time_second; 713 SP_ADDREF(sp); 714 } 715 SPTREE_UNLOCK(); 716 717 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 718 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 719 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 720 return sp; 721 } 722 723 #if 0 724 /* 725 * return a policy that matches this particular inbound packet. 726 * XXX slow 727 */ 728 struct secpolicy * 729 key_gettunnel(const struct sockaddr *osrc, 730 const struct sockaddr *odst, 731 const struct sockaddr *isrc, 732 const struct sockaddr *idst, 733 const char* where, int tag) 734 { 735 struct secpolicy *sp; 736 const int dir = IPSEC_DIR_INBOUND; 737 struct ipsecrequest *r1, *r2, *p; 738 struct secpolicyindex spidx; 739 740 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 741 printf("DP %s from %s:%u\n", __func__, where, tag)); 742 743 if (isrc->sa_family != idst->sa_family) { 744 ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.", 745 __func__, isrc->sa_family, idst->sa_family)); 746 sp = NULL; 747 goto done; 748 } 749 750 SPTREE_LOCK(); 751 LIST_FOREACH(sp, &V_sptree[dir], chain) { 752 if (sp->state == IPSEC_SPSTATE_DEAD) 753 continue; 754 755 r1 = r2 = NULL; 756 for (p = sp->req; p; p = p->next) { 757 if (p->saidx.mode != IPSEC_MODE_TUNNEL) 758 continue; 759 760 r1 = r2; 761 r2 = p; 762 763 if (!r1) { 764 /* here we look at address matches only */ 765 spidx = sp->spidx; 766 if (isrc->sa_len > sizeof(spidx.src) || 767 idst->sa_len > sizeof(spidx.dst)) 768 continue; 769 bcopy(isrc, &spidx.src, isrc->sa_len); 770 bcopy(idst, &spidx.dst, idst->sa_len); 771 if (!key_cmpspidx_withmask(&sp->spidx, &spidx)) 772 continue; 773 } else { 774 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) || 775 key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0)) 776 continue; 777 } 778 779 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) || 780 key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0)) 781 continue; 782 783 goto found; 784 } 785 } 786 sp = NULL; 787 found: 788 if (sp) { 789 sp->lastused = time_second; 790 SP_ADDREF(sp); 791 } 792 SPTREE_UNLOCK(); 793 done: 794 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 795 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 796 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 797 return sp; 798 } 799 #endif 800 801 /* 802 * allocating an SA entry for an *OUTBOUND* packet. 803 * checking each request entries in SP, and acquire an SA if need. 804 * OUT: 0: there are valid requests. 805 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. 806 */ 807 int 808 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx) 809 { 810 u_int level; 811 int error; 812 struct secasvar *sav; 813 814 IPSEC_ASSERT(isr != NULL, ("null isr")); 815 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 816 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT || 817 saidx->mode == IPSEC_MODE_TUNNEL, 818 ("unexpected policy %u", saidx->mode)); 819 820 /* 821 * XXX guard against protocol callbacks from the crypto 822 * thread as they reference ipsecrequest.sav which we 823 * temporarily null out below. Need to rethink how we 824 * handle bundled SA's in the callback thread. 825 */ 826 IPSECREQUEST_LOCK_ASSERT(isr); 827 828 /* get current level */ 829 level = ipsec_get_reqlevel(isr); 830 831 /* 832 * We check new SA in the IPsec request because a different 833 * SA may be involved each time this request is checked, either 834 * because new SAs are being configured, or this request is 835 * associated with an unconnected datagram socket, or this request 836 * is associated with a system default policy. 837 * 838 * key_allocsa_policy should allocate the oldest SA available. 839 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt. 840 */ 841 sav = key_allocsa_policy(saidx); 842 if (sav != isr->sav) { 843 /* SA need to be updated. */ 844 if (!IPSECREQUEST_UPGRADE(isr)) { 845 /* Kick everyone off. */ 846 IPSECREQUEST_UNLOCK(isr); 847 IPSECREQUEST_WLOCK(isr); 848 } 849 if (isr->sav != NULL) 850 KEY_FREESAV(&isr->sav); 851 isr->sav = sav; 852 IPSECREQUEST_DOWNGRADE(isr); 853 } else if (sav != NULL) 854 KEY_FREESAV(&sav); 855 856 /* When there is SA. */ 857 if (isr->sav != NULL) { 858 if (isr->sav->state != SADB_SASTATE_MATURE && 859 isr->sav->state != SADB_SASTATE_DYING) 860 return EINVAL; 861 return 0; 862 } 863 864 /* there is no SA */ 865 error = key_acquire(saidx, isr->sp); 866 if (error != 0) { 867 /* XXX What should I do ? */ 868 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 869 __func__, error)); 870 return error; 871 } 872 873 if (level != IPSEC_LEVEL_REQUIRE) { 874 /* XXX sigh, the interface to this routine is botched */ 875 IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA")); 876 return 0; 877 } else { 878 return ENOENT; 879 } 880 } 881 882 /* 883 * allocating a SA for policy entry from SAD. 884 * NOTE: searching SAD of aliving state. 885 * OUT: NULL: not found. 886 * others: found and return the pointer. 887 */ 888 static struct secasvar * 889 key_allocsa_policy(const struct secasindex *saidx) 890 { 891 #define N(a) _ARRAYLEN(a) 892 struct secashead *sah; 893 struct secasvar *sav; 894 u_int stateidx, arraysize; 895 const u_int *state_valid; 896 897 state_valid = NULL; /* silence gcc */ 898 arraysize = 0; /* silence gcc */ 899 900 SAHTREE_LOCK(); 901 LIST_FOREACH(sah, &V_sahtree, chain) { 902 if (sah->state == SADB_SASTATE_DEAD) 903 continue; 904 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) { 905 if (V_key_preferred_oldsa) { 906 state_valid = saorder_state_valid_prefer_old; 907 arraysize = N(saorder_state_valid_prefer_old); 908 } else { 909 state_valid = saorder_state_valid_prefer_new; 910 arraysize = N(saorder_state_valid_prefer_new); 911 } 912 break; 913 } 914 } 915 SAHTREE_UNLOCK(); 916 if (sah == NULL) 917 return NULL; 918 919 /* search valid state */ 920 for (stateidx = 0; stateidx < arraysize; stateidx++) { 921 sav = key_do_allocsa_policy(sah, state_valid[stateidx]); 922 if (sav != NULL) 923 return sav; 924 } 925 926 return NULL; 927 #undef N 928 } 929 930 /* 931 * searching SAD with direction, protocol, mode and state. 932 * called by key_allocsa_policy(). 933 * OUT: 934 * NULL : not found 935 * others : found, pointer to a SA. 936 */ 937 static struct secasvar * 938 key_do_allocsa_policy(struct secashead *sah, u_int state) 939 { 940 struct secasvar *sav, *nextsav, *candidate, *d; 941 942 /* initilize */ 943 candidate = NULL; 944 945 SAHTREE_LOCK(); 946 for (sav = LIST_FIRST(&sah->savtree[state]); 947 sav != NULL; 948 sav = nextsav) { 949 950 nextsav = LIST_NEXT(sav, chain); 951 952 /* sanity check */ 953 KEY_CHKSASTATE(sav->state, state, __func__); 954 955 /* initialize */ 956 if (candidate == NULL) { 957 candidate = sav; 958 continue; 959 } 960 961 /* Which SA is the better ? */ 962 963 IPSEC_ASSERT(candidate->lft_c != NULL, 964 ("null candidate lifetime")); 965 IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime")); 966 967 /* What the best method is to compare ? */ 968 if (V_key_preferred_oldsa) { 969 if (candidate->lft_c->addtime > 970 sav->lft_c->addtime) { 971 candidate = sav; 972 } 973 continue; 974 /*NOTREACHED*/ 975 } 976 977 /* preferred new sa rather than old sa */ 978 if (candidate->lft_c->addtime < 979 sav->lft_c->addtime) { 980 d = candidate; 981 candidate = sav; 982 } else 983 d = sav; 984 985 /* 986 * prepared to delete the SA when there is more 987 * suitable candidate and the lifetime of the SA is not 988 * permanent. 989 */ 990 if (d->lft_h->addtime != 0) { 991 struct mbuf *m, *result; 992 u_int8_t satype; 993 994 key_sa_chgstate(d, SADB_SASTATE_DEAD); 995 996 IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count")); 997 998 satype = key_proto2satype(d->sah->saidx.proto); 999 if (satype == 0) 1000 goto msgfail; 1001 1002 m = key_setsadbmsg(SADB_DELETE, 0, 1003 satype, 0, 0, d->refcnt - 1); 1004 if (!m) 1005 goto msgfail; 1006 result = m; 1007 1008 /* set sadb_address for saidx's. */ 1009 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 1010 &d->sah->saidx.src.sa, 1011 d->sah->saidx.src.sa.sa_len << 3, 1012 IPSEC_ULPROTO_ANY); 1013 if (!m) 1014 goto msgfail; 1015 m_cat(result, m); 1016 1017 /* set sadb_address for saidx's. */ 1018 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 1019 &d->sah->saidx.dst.sa, 1020 d->sah->saidx.dst.sa.sa_len << 3, 1021 IPSEC_ULPROTO_ANY); 1022 if (!m) 1023 goto msgfail; 1024 m_cat(result, m); 1025 1026 /* create SA extension */ 1027 m = key_setsadbsa(d); 1028 if (!m) 1029 goto msgfail; 1030 m_cat(result, m); 1031 1032 if (result->m_len < sizeof(struct sadb_msg)) { 1033 result = m_pullup(result, 1034 sizeof(struct sadb_msg)); 1035 if (result == NULL) 1036 goto msgfail; 1037 } 1038 1039 result->m_pkthdr.len = 0; 1040 for (m = result; m; m = m->m_next) 1041 result->m_pkthdr.len += m->m_len; 1042 mtod(result, struct sadb_msg *)->sadb_msg_len = 1043 PFKEY_UNIT64(result->m_pkthdr.len); 1044 1045 if (key_sendup_mbuf(NULL, result, 1046 KEY_SENDUP_REGISTERED)) 1047 goto msgfail; 1048 msgfail: 1049 KEY_FREESAV(&d); 1050 } 1051 } 1052 if (candidate) { 1053 sa_addref(candidate); 1054 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1055 printf("DP %s cause refcnt++:%d SA:%p\n", 1056 __func__, candidate->refcnt, candidate)); 1057 } 1058 SAHTREE_UNLOCK(); 1059 1060 return candidate; 1061 } 1062 1063 /* 1064 * allocating a usable SA entry for a *INBOUND* packet. 1065 * Must call key_freesav() later. 1066 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). 1067 * NULL: not found, or error occured. 1068 * 1069 * In the comparison, no source address is used--for RFC2401 conformance. 1070 * To quote, from section 4.1: 1071 * A security association is uniquely identified by a triple consisting 1072 * of a Security Parameter Index (SPI), an IP Destination Address, and a 1073 * security protocol (AH or ESP) identifier. 1074 * Note that, however, we do need to keep source address in IPsec SA. 1075 * IKE specification and PF_KEY specification do assume that we 1076 * keep source address in IPsec SA. We see a tricky situation here. 1077 */ 1078 struct secasvar * 1079 key_allocsa( 1080 union sockaddr_union *dst, 1081 u_int proto, 1082 u_int32_t spi, 1083 const char* where, int tag) 1084 { 1085 struct secashead *sah; 1086 struct secasvar *sav; 1087 u_int stateidx, arraysize, state; 1088 const u_int *saorder_state_valid; 1089 int chkport; 1090 1091 IPSEC_ASSERT(dst != NULL, ("null dst address")); 1092 1093 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1094 printf("DP %s from %s:%u\n", __func__, where, tag)); 1095 1096 #ifdef IPSEC_NAT_T 1097 chkport = (dst->sa.sa_family == AF_INET && 1098 dst->sa.sa_len == sizeof(struct sockaddr_in) && 1099 dst->sin.sin_port != 0); 1100 #else 1101 chkport = 0; 1102 #endif 1103 1104 /* 1105 * searching SAD. 1106 * XXX: to be checked internal IP header somewhere. Also when 1107 * IPsec tunnel packet is received. But ESP tunnel mode is 1108 * encrypted so we can't check internal IP header. 1109 */ 1110 SAHTREE_LOCK(); 1111 if (V_key_preferred_oldsa) { 1112 saorder_state_valid = saorder_state_valid_prefer_old; 1113 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); 1114 } else { 1115 saorder_state_valid = saorder_state_valid_prefer_new; 1116 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); 1117 } 1118 LIST_FOREACH(sah, &V_sahtree, chain) { 1119 /* search valid state */ 1120 for (stateidx = 0; stateidx < arraysize; stateidx++) { 1121 state = saorder_state_valid[stateidx]; 1122 LIST_FOREACH(sav, &sah->savtree[state], chain) { 1123 /* sanity check */ 1124 KEY_CHKSASTATE(sav->state, state, __func__); 1125 /* do not return entries w/ unusable state */ 1126 if (sav->state != SADB_SASTATE_MATURE && 1127 sav->state != SADB_SASTATE_DYING) 1128 continue; 1129 if (proto != sav->sah->saidx.proto) 1130 continue; 1131 if (spi != sav->spi) 1132 continue; 1133 #if 0 /* don't check src */ 1134 /* check src address */ 1135 if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, chkport) != 0) 1136 continue; 1137 #endif 1138 /* check dst address */ 1139 if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, chkport) != 0) 1140 continue; 1141 sa_addref(sav); 1142 goto done; 1143 } 1144 } 1145 } 1146 sav = NULL; 1147 done: 1148 SAHTREE_UNLOCK(); 1149 1150 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1151 printf("DP %s return SA:%p; refcnt %u\n", __func__, 1152 sav, sav ? sav->refcnt : 0)); 1153 return sav; 1154 } 1155 1156 /* 1157 * Must be called after calling key_allocsp(). 1158 * For both the packet without socket and key_freeso(). 1159 */ 1160 void 1161 _key_freesp(struct secpolicy **spp, const char* where, int tag) 1162 { 1163 struct secpolicy *sp = *spp; 1164 1165 IPSEC_ASSERT(sp != NULL, ("null sp")); 1166 1167 SPTREE_LOCK(); 1168 SP_DELREF(sp); 1169 1170 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1171 printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n", 1172 __func__, sp, sp->id, where, tag, sp->refcnt)); 1173 1174 if (sp->refcnt == 0) { 1175 *spp = NULL; 1176 key_delsp(sp); 1177 } 1178 SPTREE_UNLOCK(); 1179 } 1180 1181 /* 1182 * Must be called after calling key_allocsp(). 1183 * For the packet with socket. 1184 */ 1185 void 1186 key_freeso(struct socket *so) 1187 { 1188 IPSEC_ASSERT(so != NULL, ("null so")); 1189 1190 switch (so->so_proto->pr_domain->dom_family) { 1191 #if defined(INET) || defined(INET6) 1192 #ifdef INET 1193 case PF_INET: 1194 #endif 1195 #ifdef INET6 1196 case PF_INET6: 1197 #endif 1198 { 1199 struct inpcb *pcb = sotoinpcb(so); 1200 1201 /* Does it have a PCB ? */ 1202 if (pcb == NULL) 1203 return; 1204 key_freesp_so(&pcb->inp_sp->sp_in); 1205 key_freesp_so(&pcb->inp_sp->sp_out); 1206 } 1207 break; 1208 #endif /* INET || INET6 */ 1209 default: 1210 ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n", 1211 __func__, so->so_proto->pr_domain->dom_family)); 1212 return; 1213 } 1214 } 1215 1216 static void 1217 key_freesp_so(struct secpolicy **sp) 1218 { 1219 IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp")); 1220 1221 if ((*sp)->policy == IPSEC_POLICY_ENTRUST || 1222 (*sp)->policy == IPSEC_POLICY_BYPASS) 1223 return; 1224 1225 IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC, 1226 ("invalid policy %u", (*sp)->policy)); 1227 KEY_FREESP(sp); 1228 } 1229 1230 void 1231 key_addrefsa(struct secasvar *sav, const char* where, int tag) 1232 { 1233 1234 IPSEC_ASSERT(sav != NULL, ("null sav")); 1235 IPSEC_ASSERT(sav->refcnt > 0, ("refcount must exist")); 1236 1237 sa_addref(sav); 1238 } 1239 1240 /* 1241 * Must be called after calling key_allocsa(). 1242 * This function is called by key_freesp() to free some SA allocated 1243 * for a policy. 1244 */ 1245 void 1246 key_freesav(struct secasvar **psav, const char* where, int tag) 1247 { 1248 struct secasvar *sav = *psav; 1249 1250 IPSEC_ASSERT(sav != NULL, ("null sav")); 1251 1252 if (sa_delref(sav)) { 1253 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1254 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1255 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1256 *psav = NULL; 1257 key_delsav(sav); 1258 } else { 1259 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1260 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1261 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1262 } 1263 } 1264 1265 /* %%% SPD management */ 1266 /* 1267 * free security policy entry. 1268 */ 1269 static void 1270 key_delsp(struct secpolicy *sp) 1271 { 1272 struct ipsecrequest *isr, *nextisr; 1273 1274 IPSEC_ASSERT(sp != NULL, ("null sp")); 1275 SPTREE_LOCK_ASSERT(); 1276 1277 sp->state = IPSEC_SPSTATE_DEAD; 1278 1279 IPSEC_ASSERT(sp->refcnt == 0, 1280 ("SP with references deleted (refcnt %u)", sp->refcnt)); 1281 1282 /* remove from SP index */ 1283 if (__LIST_CHAINED(sp)) 1284 LIST_REMOVE(sp, chain); 1285 1286 for (isr = sp->req; isr != NULL; isr = nextisr) { 1287 if (isr->sav != NULL) { 1288 KEY_FREESAV(&isr->sav); 1289 isr->sav = NULL; 1290 } 1291 1292 nextisr = isr->next; 1293 ipsec_delisr(isr); 1294 } 1295 _key_delsp(sp); 1296 } 1297 1298 /* 1299 * search SPD 1300 * OUT: NULL : not found 1301 * others : found, pointer to a SP. 1302 */ 1303 static struct secpolicy * 1304 key_getsp(struct secpolicyindex *spidx) 1305 { 1306 struct secpolicy *sp; 1307 1308 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 1309 1310 SPTREE_LOCK(); 1311 LIST_FOREACH(sp, &V_sptree[spidx->dir], chain) { 1312 if (sp->state == IPSEC_SPSTATE_DEAD) 1313 continue; 1314 if (key_cmpspidx_exactly(spidx, &sp->spidx)) { 1315 SP_ADDREF(sp); 1316 break; 1317 } 1318 } 1319 SPTREE_UNLOCK(); 1320 1321 return sp; 1322 } 1323 1324 /* 1325 * get SP by index. 1326 * OUT: NULL : not found 1327 * others : found, pointer to a SP. 1328 */ 1329 static struct secpolicy * 1330 key_getspbyid(u_int32_t id) 1331 { 1332 struct secpolicy *sp; 1333 1334 SPTREE_LOCK(); 1335 LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_INBOUND], chain) { 1336 if (sp->state == IPSEC_SPSTATE_DEAD) 1337 continue; 1338 if (sp->id == id) { 1339 SP_ADDREF(sp); 1340 goto done; 1341 } 1342 } 1343 1344 LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_OUTBOUND], chain) { 1345 if (sp->state == IPSEC_SPSTATE_DEAD) 1346 continue; 1347 if (sp->id == id) { 1348 SP_ADDREF(sp); 1349 goto done; 1350 } 1351 } 1352 done: 1353 SPTREE_UNLOCK(); 1354 1355 return sp; 1356 } 1357 1358 struct secpolicy * 1359 key_newsp(const char* where, int tag) 1360 { 1361 struct secpolicy *newsp = NULL; 1362 1363 newsp = (struct secpolicy *) 1364 malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO); 1365 if (newsp) { 1366 SECPOLICY_LOCK_INIT(newsp); 1367 newsp->refcnt = 1; 1368 newsp->req = NULL; 1369 } 1370 1371 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1372 printf("DP %s from %s:%u return SP:%p\n", __func__, 1373 where, tag, newsp)); 1374 return newsp; 1375 } 1376 1377 static void 1378 _key_delsp(struct secpolicy *sp) 1379 { 1380 SECPOLICY_LOCK_DESTROY(sp); 1381 free(sp, M_IPSEC_SP); 1382 } 1383 1384 /* 1385 * create secpolicy structure from sadb_x_policy structure. 1386 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, 1387 * so must be set properly later. 1388 */ 1389 struct secpolicy * 1390 key_msg2sp(xpl0, len, error) 1391 struct sadb_x_policy *xpl0; 1392 size_t len; 1393 int *error; 1394 { 1395 struct secpolicy *newsp; 1396 1397 IPSEC_ASSERT(xpl0 != NULL, ("null xpl0")); 1398 IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len)); 1399 1400 if (len != PFKEY_EXTLEN(xpl0)) { 1401 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__)); 1402 *error = EINVAL; 1403 return NULL; 1404 } 1405 1406 if ((newsp = KEY_NEWSP()) == NULL) { 1407 *error = ENOBUFS; 1408 return NULL; 1409 } 1410 1411 newsp->spidx.dir = xpl0->sadb_x_policy_dir; 1412 newsp->policy = xpl0->sadb_x_policy_type; 1413 1414 /* check policy */ 1415 switch (xpl0->sadb_x_policy_type) { 1416 case IPSEC_POLICY_DISCARD: 1417 case IPSEC_POLICY_NONE: 1418 case IPSEC_POLICY_ENTRUST: 1419 case IPSEC_POLICY_BYPASS: 1420 newsp->req = NULL; 1421 break; 1422 1423 case IPSEC_POLICY_IPSEC: 1424 { 1425 int tlen; 1426 struct sadb_x_ipsecrequest *xisr; 1427 struct ipsecrequest **p_isr = &newsp->req; 1428 1429 /* validity check */ 1430 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { 1431 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", 1432 __func__)); 1433 KEY_FREESP(&newsp); 1434 *error = EINVAL; 1435 return NULL; 1436 } 1437 1438 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); 1439 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1); 1440 1441 while (tlen > 0) { 1442 /* length check */ 1443 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { 1444 ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest " 1445 "length.\n", __func__)); 1446 KEY_FREESP(&newsp); 1447 *error = EINVAL; 1448 return NULL; 1449 } 1450 1451 /* allocate request buffer */ 1452 /* NB: data structure is zero'd */ 1453 *p_isr = ipsec_newisr(); 1454 if ((*p_isr) == NULL) { 1455 ipseclog((LOG_DEBUG, 1456 "%s: No more memory.\n", __func__)); 1457 KEY_FREESP(&newsp); 1458 *error = ENOBUFS; 1459 return NULL; 1460 } 1461 1462 /* set values */ 1463 switch (xisr->sadb_x_ipsecrequest_proto) { 1464 case IPPROTO_ESP: 1465 case IPPROTO_AH: 1466 case IPPROTO_IPCOMP: 1467 break; 1468 default: 1469 ipseclog((LOG_DEBUG, 1470 "%s: invalid proto type=%u\n", __func__, 1471 xisr->sadb_x_ipsecrequest_proto)); 1472 KEY_FREESP(&newsp); 1473 *error = EPROTONOSUPPORT; 1474 return NULL; 1475 } 1476 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; 1477 1478 switch (xisr->sadb_x_ipsecrequest_mode) { 1479 case IPSEC_MODE_TRANSPORT: 1480 case IPSEC_MODE_TUNNEL: 1481 break; 1482 case IPSEC_MODE_ANY: 1483 default: 1484 ipseclog((LOG_DEBUG, 1485 "%s: invalid mode=%u\n", __func__, 1486 xisr->sadb_x_ipsecrequest_mode)); 1487 KEY_FREESP(&newsp); 1488 *error = EINVAL; 1489 return NULL; 1490 } 1491 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; 1492 1493 switch (xisr->sadb_x_ipsecrequest_level) { 1494 case IPSEC_LEVEL_DEFAULT: 1495 case IPSEC_LEVEL_USE: 1496 case IPSEC_LEVEL_REQUIRE: 1497 break; 1498 case IPSEC_LEVEL_UNIQUE: 1499 /* validity check */ 1500 /* 1501 * If range violation of reqid, kernel will 1502 * update it, don't refuse it. 1503 */ 1504 if (xisr->sadb_x_ipsecrequest_reqid 1505 > IPSEC_MANUAL_REQID_MAX) { 1506 ipseclog((LOG_DEBUG, 1507 "%s: reqid=%d range " 1508 "violation, updated by kernel.\n", 1509 __func__, 1510 xisr->sadb_x_ipsecrequest_reqid)); 1511 xisr->sadb_x_ipsecrequest_reqid = 0; 1512 } 1513 1514 /* allocate new reqid id if reqid is zero. */ 1515 if (xisr->sadb_x_ipsecrequest_reqid == 0) { 1516 u_int32_t reqid; 1517 if ((reqid = key_newreqid()) == 0) { 1518 KEY_FREESP(&newsp); 1519 *error = ENOBUFS; 1520 return NULL; 1521 } 1522 (*p_isr)->saidx.reqid = reqid; 1523 xisr->sadb_x_ipsecrequest_reqid = reqid; 1524 } else { 1525 /* set it for manual keying. */ 1526 (*p_isr)->saidx.reqid = 1527 xisr->sadb_x_ipsecrequest_reqid; 1528 } 1529 break; 1530 1531 default: 1532 ipseclog((LOG_DEBUG, "%s: invalid level=%u\n", 1533 __func__, 1534 xisr->sadb_x_ipsecrequest_level)); 1535 KEY_FREESP(&newsp); 1536 *error = EINVAL; 1537 return NULL; 1538 } 1539 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; 1540 1541 /* set IP addresses if there */ 1542 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { 1543 struct sockaddr *paddr; 1544 1545 paddr = (struct sockaddr *)(xisr + 1); 1546 1547 /* validity check */ 1548 if (paddr->sa_len 1549 > sizeof((*p_isr)->saidx.src)) { 1550 ipseclog((LOG_DEBUG, "%s: invalid " 1551 "request address length.\n", 1552 __func__)); 1553 KEY_FREESP(&newsp); 1554 *error = EINVAL; 1555 return NULL; 1556 } 1557 bcopy(paddr, &(*p_isr)->saidx.src, 1558 paddr->sa_len); 1559 1560 paddr = (struct sockaddr *)((caddr_t)paddr 1561 + paddr->sa_len); 1562 1563 /* validity check */ 1564 if (paddr->sa_len 1565 > sizeof((*p_isr)->saidx.dst)) { 1566 ipseclog((LOG_DEBUG, "%s: invalid " 1567 "request address length.\n", 1568 __func__)); 1569 KEY_FREESP(&newsp); 1570 *error = EINVAL; 1571 return NULL; 1572 } 1573 bcopy(paddr, &(*p_isr)->saidx.dst, 1574 paddr->sa_len); 1575 } 1576 1577 (*p_isr)->sp = newsp; 1578 1579 /* initialization for the next. */ 1580 p_isr = &(*p_isr)->next; 1581 tlen -= xisr->sadb_x_ipsecrequest_len; 1582 1583 /* validity check */ 1584 if (tlen < 0) { 1585 ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n", 1586 __func__)); 1587 KEY_FREESP(&newsp); 1588 *error = EINVAL; 1589 return NULL; 1590 } 1591 1592 xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr 1593 + xisr->sadb_x_ipsecrequest_len); 1594 } 1595 } 1596 break; 1597 default: 1598 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); 1599 KEY_FREESP(&newsp); 1600 *error = EINVAL; 1601 return NULL; 1602 } 1603 1604 *error = 0; 1605 return newsp; 1606 } 1607 1608 static u_int32_t 1609 key_newreqid() 1610 { 1611 static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 1612 1613 auto_reqid = (auto_reqid == ~0 1614 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); 1615 1616 /* XXX should be unique check */ 1617 1618 return auto_reqid; 1619 } 1620 1621 /* 1622 * copy secpolicy struct to sadb_x_policy structure indicated. 1623 */ 1624 struct mbuf * 1625 key_sp2msg(sp) 1626 struct secpolicy *sp; 1627 { 1628 struct sadb_x_policy *xpl; 1629 int tlen; 1630 caddr_t p; 1631 struct mbuf *m; 1632 1633 IPSEC_ASSERT(sp != NULL, ("null policy")); 1634 1635 tlen = key_getspreqmsglen(sp); 1636 1637 m = key_alloc_mbuf(tlen); 1638 if (!m || m->m_next) { /*XXX*/ 1639 if (m) 1640 m_freem(m); 1641 return NULL; 1642 } 1643 1644 m->m_len = tlen; 1645 m->m_next = NULL; 1646 xpl = mtod(m, struct sadb_x_policy *); 1647 bzero(xpl, tlen); 1648 1649 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen); 1650 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 1651 xpl->sadb_x_policy_type = sp->policy; 1652 xpl->sadb_x_policy_dir = sp->spidx.dir; 1653 xpl->sadb_x_policy_id = sp->id; 1654 p = (caddr_t)xpl + sizeof(*xpl); 1655 1656 /* if is the policy for ipsec ? */ 1657 if (sp->policy == IPSEC_POLICY_IPSEC) { 1658 struct sadb_x_ipsecrequest *xisr; 1659 struct ipsecrequest *isr; 1660 1661 for (isr = sp->req; isr != NULL; isr = isr->next) { 1662 1663 xisr = (struct sadb_x_ipsecrequest *)p; 1664 1665 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; 1666 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; 1667 xisr->sadb_x_ipsecrequest_level = isr->level; 1668 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; 1669 1670 p += sizeof(*xisr); 1671 bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len); 1672 p += isr->saidx.src.sa.sa_len; 1673 bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len); 1674 p += isr->saidx.src.sa.sa_len; 1675 1676 xisr->sadb_x_ipsecrequest_len = 1677 PFKEY_ALIGN8(sizeof(*xisr) 1678 + isr->saidx.src.sa.sa_len 1679 + isr->saidx.dst.sa.sa_len); 1680 } 1681 } 1682 1683 return m; 1684 } 1685 1686 /* m will not be freed nor modified */ 1687 static struct mbuf * 1688 #ifdef __STDC__ 1689 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, 1690 int ndeep, int nitem, ...) 1691 #else 1692 key_gather_mbuf(m, mhp, ndeep, nitem, va_alist) 1693 struct mbuf *m; 1694 const struct sadb_msghdr *mhp; 1695 int ndeep; 1696 int nitem; 1697 va_dcl 1698 #endif 1699 { 1700 va_list ap; 1701 int idx; 1702 int i; 1703 struct mbuf *result = NULL, *n; 1704 int len; 1705 1706 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1707 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1708 1709 va_start(ap, nitem); 1710 for (i = 0; i < nitem; i++) { 1711 idx = va_arg(ap, int); 1712 if (idx < 0 || idx > SADB_EXT_MAX) 1713 goto fail; 1714 /* don't attempt to pull empty extension */ 1715 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) 1716 continue; 1717 if (idx != SADB_EXT_RESERVED && 1718 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) 1719 continue; 1720 1721 if (idx == SADB_EXT_RESERVED) { 1722 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 1723 1724 IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len)); 1725 1726 MGETHDR(n, M_NOWAIT, MT_DATA); 1727 if (!n) 1728 goto fail; 1729 n->m_len = len; 1730 n->m_next = NULL; 1731 m_copydata(m, 0, sizeof(struct sadb_msg), 1732 mtod(n, caddr_t)); 1733 } else if (i < ndeep) { 1734 len = mhp->extlen[idx]; 1735 n = key_alloc_mbuf(len); 1736 if (!n || n->m_next) { /*XXX*/ 1737 if (n) 1738 m_freem(n); 1739 goto fail; 1740 } 1741 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], 1742 mtod(n, caddr_t)); 1743 } else { 1744 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], 1745 M_NOWAIT); 1746 } 1747 if (n == NULL) 1748 goto fail; 1749 1750 if (result) 1751 m_cat(result, n); 1752 else 1753 result = n; 1754 } 1755 va_end(ap); 1756 1757 if ((result->m_flags & M_PKTHDR) != 0) { 1758 result->m_pkthdr.len = 0; 1759 for (n = result; n; n = n->m_next) 1760 result->m_pkthdr.len += n->m_len; 1761 } 1762 1763 return result; 1764 1765 fail: 1766 m_freem(result); 1767 va_end(ap); 1768 return NULL; 1769 } 1770 1771 /* 1772 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing 1773 * add an entry to SP database, when received 1774 * <base, address(SD), (lifetime(H),) policy> 1775 * from the user(?). 1776 * Adding to SP database, 1777 * and send 1778 * <base, address(SD), (lifetime(H),) policy> 1779 * to the socket which was send. 1780 * 1781 * SPDADD set a unique policy entry. 1782 * SPDSETIDX like SPDADD without a part of policy requests. 1783 * SPDUPDATE replace a unique policy entry. 1784 * 1785 * m will always be freed. 1786 */ 1787 static int 1788 key_spdadd(so, m, mhp) 1789 struct socket *so; 1790 struct mbuf *m; 1791 const struct sadb_msghdr *mhp; 1792 { 1793 struct sadb_address *src0, *dst0; 1794 struct sadb_x_policy *xpl0, *xpl; 1795 struct sadb_lifetime *lft = NULL; 1796 struct secpolicyindex spidx; 1797 struct secpolicy *newsp; 1798 int error; 1799 1800 IPSEC_ASSERT(so != NULL, ("null socket")); 1801 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1802 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1803 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 1804 1805 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 1806 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 1807 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 1808 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n")); 1809 return key_senderror(so, m, EINVAL); 1810 } 1811 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 1812 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 1813 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 1814 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1815 __func__)); 1816 return key_senderror(so, m, EINVAL); 1817 } 1818 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { 1819 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] 1820 < sizeof(struct sadb_lifetime)) { 1821 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1822 __func__)); 1823 return key_senderror(so, m, EINVAL); 1824 } 1825 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 1826 } 1827 1828 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 1829 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 1830 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 1831 1832 /* 1833 * Note: do not parse SADB_X_EXT_NAT_T_* here: 1834 * we are processing traffic endpoints. 1835 */ 1836 1837 /* make secindex */ 1838 /* XXX boundary check against sa_len */ 1839 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1840 src0 + 1, 1841 dst0 + 1, 1842 src0->sadb_address_prefixlen, 1843 dst0->sadb_address_prefixlen, 1844 src0->sadb_address_proto, 1845 &spidx); 1846 1847 /* checking the direciton. */ 1848 switch (xpl0->sadb_x_policy_dir) { 1849 case IPSEC_DIR_INBOUND: 1850 case IPSEC_DIR_OUTBOUND: 1851 break; 1852 default: 1853 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 1854 mhp->msg->sadb_msg_errno = EINVAL; 1855 return 0; 1856 } 1857 1858 /* check policy */ 1859 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */ 1860 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST 1861 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { 1862 ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__)); 1863 return key_senderror(so, m, EINVAL); 1864 } 1865 1866 /* policy requests are mandatory when action is ipsec. */ 1867 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX 1868 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC 1869 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { 1870 ipseclog((LOG_DEBUG, "%s: some policy requests part required\n", 1871 __func__)); 1872 return key_senderror(so, m, EINVAL); 1873 } 1874 1875 /* 1876 * checking there is SP already or not. 1877 * SPDUPDATE doesn't depend on whether there is a SP or not. 1878 * If the type is either SPDADD or SPDSETIDX AND a SP is found, 1879 * then error. 1880 */ 1881 newsp = key_getsp(&spidx); 1882 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1883 if (newsp) { 1884 SPTREE_LOCK(); 1885 newsp->state = IPSEC_SPSTATE_DEAD; 1886 SPTREE_UNLOCK(); 1887 KEY_FREESP(&newsp); 1888 } 1889 } else { 1890 if (newsp != NULL) { 1891 KEY_FREESP(&newsp); 1892 ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n", 1893 __func__)); 1894 return key_senderror(so, m, EEXIST); 1895 } 1896 } 1897 1898 /* allocation new SP entry */ 1899 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) { 1900 return key_senderror(so, m, error); 1901 } 1902 1903 if ((newsp->id = key_getnewspid()) == 0) { 1904 _key_delsp(newsp); 1905 return key_senderror(so, m, ENOBUFS); 1906 } 1907 1908 /* XXX boundary check against sa_len */ 1909 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1910 src0 + 1, 1911 dst0 + 1, 1912 src0->sadb_address_prefixlen, 1913 dst0->sadb_address_prefixlen, 1914 src0->sadb_address_proto, 1915 &newsp->spidx); 1916 1917 /* sanity check on addr pair */ 1918 if (((struct sockaddr *)(src0 + 1))->sa_family != 1919 ((struct sockaddr *)(dst0+ 1))->sa_family) { 1920 _key_delsp(newsp); 1921 return key_senderror(so, m, EINVAL); 1922 } 1923 if (((struct sockaddr *)(src0 + 1))->sa_len != 1924 ((struct sockaddr *)(dst0+ 1))->sa_len) { 1925 _key_delsp(newsp); 1926 return key_senderror(so, m, EINVAL); 1927 } 1928 #if 1 1929 if (newsp->req && newsp->req->saidx.src.sa.sa_family && newsp->req->saidx.dst.sa.sa_family) { 1930 if (newsp->req->saidx.src.sa.sa_family != newsp->req->saidx.dst.sa.sa_family) { 1931 _key_delsp(newsp); 1932 return key_senderror(so, m, EINVAL); 1933 } 1934 } 1935 #endif 1936 1937 newsp->created = time_second; 1938 newsp->lastused = newsp->created; 1939 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; 1940 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; 1941 1942 newsp->refcnt = 1; /* do not reclaim until I say I do */ 1943 newsp->state = IPSEC_SPSTATE_ALIVE; 1944 LIST_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, secpolicy, chain); 1945 1946 /* delete the entry in spacqtree */ 1947 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1948 struct secspacq *spacq = key_getspacq(&spidx); 1949 if (spacq != NULL) { 1950 /* reset counter in order to deletion by timehandler. */ 1951 spacq->created = time_second; 1952 spacq->count = 0; 1953 SPACQ_UNLOCK(); 1954 } 1955 } 1956 1957 { 1958 struct mbuf *n, *mpolicy; 1959 struct sadb_msg *newmsg; 1960 int off; 1961 1962 /* 1963 * Note: do not send SADB_X_EXT_NAT_T_* here: 1964 * we are sending traffic endpoints. 1965 */ 1966 1967 /* create new sadb_msg to reply. */ 1968 if (lft) { 1969 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, 1970 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, 1971 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1972 } else { 1973 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, 1974 SADB_X_EXT_POLICY, 1975 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1976 } 1977 if (!n) 1978 return key_senderror(so, m, ENOBUFS); 1979 1980 if (n->m_len < sizeof(*newmsg)) { 1981 n = m_pullup(n, sizeof(*newmsg)); 1982 if (!n) 1983 return key_senderror(so, m, ENOBUFS); 1984 } 1985 newmsg = mtod(n, struct sadb_msg *); 1986 newmsg->sadb_msg_errno = 0; 1987 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 1988 1989 off = 0; 1990 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), 1991 sizeof(*xpl), &off); 1992 if (mpolicy == NULL) { 1993 /* n is already freed */ 1994 return key_senderror(so, m, ENOBUFS); 1995 } 1996 xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off); 1997 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { 1998 m_freem(n); 1999 return key_senderror(so, m, EINVAL); 2000 } 2001 xpl->sadb_x_policy_id = newsp->id; 2002 2003 m_freem(m); 2004 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2005 } 2006 } 2007 2008 /* 2009 * get new policy id. 2010 * OUT: 2011 * 0: failure. 2012 * others: success. 2013 */ 2014 static u_int32_t 2015 key_getnewspid() 2016 { 2017 u_int32_t newid = 0; 2018 int count = V_key_spi_trycnt; /* XXX */ 2019 struct secpolicy *sp; 2020 2021 /* when requesting to allocate spi ranged */ 2022 while (count--) { 2023 newid = (V_policy_id = (V_policy_id == ~0 ? 1 : V_policy_id + 1)); 2024 2025 if ((sp = key_getspbyid(newid)) == NULL) 2026 break; 2027 2028 KEY_FREESP(&sp); 2029 } 2030 2031 if (count == 0 || newid == 0) { 2032 ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n", 2033 __func__)); 2034 return 0; 2035 } 2036 2037 return newid; 2038 } 2039 2040 /* 2041 * SADB_SPDDELETE processing 2042 * receive 2043 * <base, address(SD), policy(*)> 2044 * from the user(?), and set SADB_SASTATE_DEAD, 2045 * and send, 2046 * <base, address(SD), policy(*)> 2047 * to the ikmpd. 2048 * policy(*) including direction of policy. 2049 * 2050 * m will always be freed. 2051 */ 2052 static int 2053 key_spddelete(so, m, mhp) 2054 struct socket *so; 2055 struct mbuf *m; 2056 const struct sadb_msghdr *mhp; 2057 { 2058 struct sadb_address *src0, *dst0; 2059 struct sadb_x_policy *xpl0; 2060 struct secpolicyindex spidx; 2061 struct secpolicy *sp; 2062 2063 IPSEC_ASSERT(so != NULL, ("null so")); 2064 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2065 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2066 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2067 2068 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2069 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2070 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2071 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2072 __func__)); 2073 return key_senderror(so, m, EINVAL); 2074 } 2075 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2076 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2077 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2078 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2079 __func__)); 2080 return key_senderror(so, m, EINVAL); 2081 } 2082 2083 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 2084 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 2085 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 2086 2087 /* 2088 * Note: do not parse SADB_X_EXT_NAT_T_* here: 2089 * we are processing traffic endpoints. 2090 */ 2091 2092 /* make secindex */ 2093 /* XXX boundary check against sa_len */ 2094 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 2095 src0 + 1, 2096 dst0 + 1, 2097 src0->sadb_address_prefixlen, 2098 dst0->sadb_address_prefixlen, 2099 src0->sadb_address_proto, 2100 &spidx); 2101 2102 /* checking the direciton. */ 2103 switch (xpl0->sadb_x_policy_dir) { 2104 case IPSEC_DIR_INBOUND: 2105 case IPSEC_DIR_OUTBOUND: 2106 break; 2107 default: 2108 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 2109 return key_senderror(so, m, EINVAL); 2110 } 2111 2112 /* Is there SP in SPD ? */ 2113 if ((sp = key_getsp(&spidx)) == NULL) { 2114 ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__)); 2115 return key_senderror(so, m, EINVAL); 2116 } 2117 2118 /* save policy id to buffer to be returned. */ 2119 xpl0->sadb_x_policy_id = sp->id; 2120 2121 SPTREE_LOCK(); 2122 sp->state = IPSEC_SPSTATE_DEAD; 2123 SPTREE_UNLOCK(); 2124 KEY_FREESP(&sp); 2125 2126 { 2127 struct mbuf *n; 2128 struct sadb_msg *newmsg; 2129 2130 /* 2131 * Note: do not send SADB_X_EXT_NAT_T_* here: 2132 * we are sending traffic endpoints. 2133 */ 2134 2135 /* create new sadb_msg to reply. */ 2136 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 2137 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2138 if (!n) 2139 return key_senderror(so, m, ENOBUFS); 2140 2141 newmsg = mtod(n, struct sadb_msg *); 2142 newmsg->sadb_msg_errno = 0; 2143 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2144 2145 m_freem(m); 2146 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2147 } 2148 } 2149 2150 /* 2151 * SADB_SPDDELETE2 processing 2152 * receive 2153 * <base, policy(*)> 2154 * from the user(?), and set SADB_SASTATE_DEAD, 2155 * and send, 2156 * <base, policy(*)> 2157 * to the ikmpd. 2158 * policy(*) including direction of policy. 2159 * 2160 * m will always be freed. 2161 */ 2162 static int 2163 key_spddelete2(so, m, mhp) 2164 struct socket *so; 2165 struct mbuf *m; 2166 const struct sadb_msghdr *mhp; 2167 { 2168 u_int32_t id; 2169 struct secpolicy *sp; 2170 2171 IPSEC_ASSERT(so != NULL, ("null socket")); 2172 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2173 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2174 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2175 2176 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2177 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2178 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); 2179 return key_senderror(so, m, EINVAL); 2180 } 2181 2182 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2183 2184 /* Is there SP in SPD ? */ 2185 if ((sp = key_getspbyid(id)) == NULL) { 2186 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2187 return key_senderror(so, m, EINVAL); 2188 } 2189 2190 SPTREE_LOCK(); 2191 sp->state = IPSEC_SPSTATE_DEAD; 2192 SPTREE_UNLOCK(); 2193 KEY_FREESP(&sp); 2194 2195 { 2196 struct mbuf *n, *nn; 2197 struct sadb_msg *newmsg; 2198 int off, len; 2199 2200 /* create new sadb_msg to reply. */ 2201 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2202 2203 MGETHDR(n, M_NOWAIT, MT_DATA); 2204 if (n && len > MHLEN) { 2205 MCLGET(n, M_NOWAIT); 2206 if ((n->m_flags & M_EXT) == 0) { 2207 m_freem(n); 2208 n = NULL; 2209 } 2210 } 2211 if (!n) 2212 return key_senderror(so, m, ENOBUFS); 2213 2214 n->m_len = len; 2215 n->m_next = NULL; 2216 off = 0; 2217 2218 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 2219 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2220 2221 IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)", 2222 off, len)); 2223 2224 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], 2225 mhp->extlen[SADB_X_EXT_POLICY], M_NOWAIT); 2226 if (!n->m_next) { 2227 m_freem(n); 2228 return key_senderror(so, m, ENOBUFS); 2229 } 2230 2231 n->m_pkthdr.len = 0; 2232 for (nn = n; nn; nn = nn->m_next) 2233 n->m_pkthdr.len += nn->m_len; 2234 2235 newmsg = mtod(n, struct sadb_msg *); 2236 newmsg->sadb_msg_errno = 0; 2237 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2238 2239 m_freem(m); 2240 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2241 } 2242 } 2243 2244 /* 2245 * SADB_X_GET processing 2246 * receive 2247 * <base, policy(*)> 2248 * from the user(?), 2249 * and send, 2250 * <base, address(SD), policy> 2251 * to the ikmpd. 2252 * policy(*) including direction of policy. 2253 * 2254 * m will always be freed. 2255 */ 2256 static int 2257 key_spdget(so, m, mhp) 2258 struct socket *so; 2259 struct mbuf *m; 2260 const struct sadb_msghdr *mhp; 2261 { 2262 u_int32_t id; 2263 struct secpolicy *sp; 2264 struct mbuf *n; 2265 2266 IPSEC_ASSERT(so != NULL, ("null socket")); 2267 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2268 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2269 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2270 2271 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2272 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2273 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2274 __func__)); 2275 return key_senderror(so, m, EINVAL); 2276 } 2277 2278 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2279 2280 /* Is there SP in SPD ? */ 2281 if ((sp = key_getspbyid(id)) == NULL) { 2282 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2283 return key_senderror(so, m, ENOENT); 2284 } 2285 2286 n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid); 2287 KEY_FREESP(&sp); 2288 if (n != NULL) { 2289 m_freem(m); 2290 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2291 } else 2292 return key_senderror(so, m, ENOBUFS); 2293 } 2294 2295 /* 2296 * SADB_X_SPDACQUIRE processing. 2297 * Acquire policy and SA(s) for a *OUTBOUND* packet. 2298 * send 2299 * <base, policy(*)> 2300 * to KMD, and expect to receive 2301 * <base> with SADB_X_SPDACQUIRE if error occured, 2302 * or 2303 * <base, policy> 2304 * with SADB_X_SPDUPDATE from KMD by PF_KEY. 2305 * policy(*) is without policy requests. 2306 * 2307 * 0 : succeed 2308 * others: error number 2309 */ 2310 int 2311 key_spdacquire(sp) 2312 struct secpolicy *sp; 2313 { 2314 struct mbuf *result = NULL, *m; 2315 struct secspacq *newspacq; 2316 2317 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2318 IPSEC_ASSERT(sp->req == NULL, ("policy exists")); 2319 IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC, 2320 ("policy not IPSEC %u", sp->policy)); 2321 2322 /* Get an entry to check whether sent message or not. */ 2323 newspacq = key_getspacq(&sp->spidx); 2324 if (newspacq != NULL) { 2325 if (V_key_blockacq_count < newspacq->count) { 2326 /* reset counter and do send message. */ 2327 newspacq->count = 0; 2328 } else { 2329 /* increment counter and do nothing. */ 2330 newspacq->count++; 2331 return 0; 2332 } 2333 SPACQ_UNLOCK(); 2334 } else { 2335 /* make new entry for blocking to send SADB_ACQUIRE. */ 2336 newspacq = key_newspacq(&sp->spidx); 2337 if (newspacq == NULL) 2338 return ENOBUFS; 2339 } 2340 2341 /* create new sadb_msg to reply. */ 2342 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); 2343 if (!m) 2344 return ENOBUFS; 2345 2346 result = m; 2347 2348 result->m_pkthdr.len = 0; 2349 for (m = result; m; m = m->m_next) 2350 result->m_pkthdr.len += m->m_len; 2351 2352 mtod(result, struct sadb_msg *)->sadb_msg_len = 2353 PFKEY_UNIT64(result->m_pkthdr.len); 2354 2355 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 2356 } 2357 2358 /* 2359 * SADB_SPDFLUSH processing 2360 * receive 2361 * <base> 2362 * from the user, and free all entries in secpctree. 2363 * and send, 2364 * <base> 2365 * to the user. 2366 * NOTE: what to do is only marking SADB_SASTATE_DEAD. 2367 * 2368 * m will always be freed. 2369 */ 2370 static int 2371 key_spdflush(so, m, mhp) 2372 struct socket *so; 2373 struct mbuf *m; 2374 const struct sadb_msghdr *mhp; 2375 { 2376 struct sadb_msg *newmsg; 2377 struct secpolicy *sp; 2378 u_int dir; 2379 2380 IPSEC_ASSERT(so != NULL, ("null socket")); 2381 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2382 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2383 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2384 2385 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) 2386 return key_senderror(so, m, EINVAL); 2387 2388 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2389 SPTREE_LOCK(); 2390 LIST_FOREACH(sp, &V_sptree[dir], chain) 2391 sp->state = IPSEC_SPSTATE_DEAD; 2392 SPTREE_UNLOCK(); 2393 } 2394 2395 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 2396 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2397 return key_senderror(so, m, ENOBUFS); 2398 } 2399 2400 if (m->m_next) 2401 m_freem(m->m_next); 2402 m->m_next = NULL; 2403 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2404 newmsg = mtod(m, struct sadb_msg *); 2405 newmsg->sadb_msg_errno = 0; 2406 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 2407 2408 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 2409 } 2410 2411 /* 2412 * SADB_SPDDUMP processing 2413 * receive 2414 * <base> 2415 * from the user, and dump all SP leaves 2416 * and send, 2417 * <base> ..... 2418 * to the ikmpd. 2419 * 2420 * m will always be freed. 2421 */ 2422 static int 2423 key_spddump(so, m, mhp) 2424 struct socket *so; 2425 struct mbuf *m; 2426 const struct sadb_msghdr *mhp; 2427 { 2428 struct secpolicy *sp; 2429 int cnt; 2430 u_int dir; 2431 struct mbuf *n; 2432 2433 IPSEC_ASSERT(so != NULL, ("null socket")); 2434 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2435 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2436 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2437 2438 /* search SPD entry and get buffer size. */ 2439 cnt = 0; 2440 SPTREE_LOCK(); 2441 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2442 LIST_FOREACH(sp, &V_sptree[dir], chain) { 2443 cnt++; 2444 } 2445 } 2446 2447 if (cnt == 0) { 2448 SPTREE_UNLOCK(); 2449 return key_senderror(so, m, ENOENT); 2450 } 2451 2452 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2453 LIST_FOREACH(sp, &V_sptree[dir], chain) { 2454 --cnt; 2455 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, 2456 mhp->msg->sadb_msg_pid); 2457 2458 if (n) 2459 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2460 } 2461 } 2462 2463 SPTREE_UNLOCK(); 2464 m_freem(m); 2465 return 0; 2466 } 2467 2468 static struct mbuf * 2469 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, u_int32_t pid) 2470 { 2471 struct mbuf *result = NULL, *m; 2472 struct seclifetime lt; 2473 2474 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt); 2475 if (!m) 2476 goto fail; 2477 result = m; 2478 2479 /* 2480 * Note: do not send SADB_X_EXT_NAT_T_* here: 2481 * we are sending traffic endpoints. 2482 */ 2483 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2484 &sp->spidx.src.sa, sp->spidx.prefs, 2485 sp->spidx.ul_proto); 2486 if (!m) 2487 goto fail; 2488 m_cat(result, m); 2489 2490 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2491 &sp->spidx.dst.sa, sp->spidx.prefd, 2492 sp->spidx.ul_proto); 2493 if (!m) 2494 goto fail; 2495 m_cat(result, m); 2496 2497 m = key_sp2msg(sp); 2498 if (!m) 2499 goto fail; 2500 m_cat(result, m); 2501 2502 if(sp->lifetime){ 2503 lt.addtime=sp->created; 2504 lt.usetime= sp->lastused; 2505 m = key_setlifetime(<, SADB_EXT_LIFETIME_CURRENT); 2506 if (!m) 2507 goto fail; 2508 m_cat(result, m); 2509 2510 lt.addtime=sp->lifetime; 2511 lt.usetime= sp->validtime; 2512 m = key_setlifetime(<, SADB_EXT_LIFETIME_HARD); 2513 if (!m) 2514 goto fail; 2515 m_cat(result, m); 2516 } 2517 2518 if ((result->m_flags & M_PKTHDR) == 0) 2519 goto fail; 2520 2521 if (result->m_len < sizeof(struct sadb_msg)) { 2522 result = m_pullup(result, sizeof(struct sadb_msg)); 2523 if (result == NULL) 2524 goto fail; 2525 } 2526 2527 result->m_pkthdr.len = 0; 2528 for (m = result; m; m = m->m_next) 2529 result->m_pkthdr.len += m->m_len; 2530 2531 mtod(result, struct sadb_msg *)->sadb_msg_len = 2532 PFKEY_UNIT64(result->m_pkthdr.len); 2533 2534 return result; 2535 2536 fail: 2537 m_freem(result); 2538 return NULL; 2539 } 2540 2541 /* 2542 * get PFKEY message length for security policy and request. 2543 */ 2544 static u_int 2545 key_getspreqmsglen(sp) 2546 struct secpolicy *sp; 2547 { 2548 u_int tlen; 2549 2550 tlen = sizeof(struct sadb_x_policy); 2551 2552 /* if is the policy for ipsec ? */ 2553 if (sp->policy != IPSEC_POLICY_IPSEC) 2554 return tlen; 2555 2556 /* get length of ipsec requests */ 2557 { 2558 struct ipsecrequest *isr; 2559 int len; 2560 2561 for (isr = sp->req; isr != NULL; isr = isr->next) { 2562 len = sizeof(struct sadb_x_ipsecrequest) 2563 + isr->saidx.src.sa.sa_len 2564 + isr->saidx.dst.sa.sa_len; 2565 2566 tlen += PFKEY_ALIGN8(len); 2567 } 2568 } 2569 2570 return tlen; 2571 } 2572 2573 /* 2574 * SADB_SPDEXPIRE processing 2575 * send 2576 * <base, address(SD), lifetime(CH), policy> 2577 * to KMD by PF_KEY. 2578 * 2579 * OUT: 0 : succeed 2580 * others : error number 2581 */ 2582 static int 2583 key_spdexpire(sp) 2584 struct secpolicy *sp; 2585 { 2586 struct mbuf *result = NULL, *m; 2587 int len; 2588 int error = -1; 2589 struct sadb_lifetime *lt; 2590 2591 /* XXX: Why do we lock ? */ 2592 2593 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2594 2595 /* set msg header */ 2596 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0); 2597 if (!m) { 2598 error = ENOBUFS; 2599 goto fail; 2600 } 2601 result = m; 2602 2603 /* create lifetime extension (current and hard) */ 2604 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 2605 m = key_alloc_mbuf(len); 2606 if (!m || m->m_next) { /*XXX*/ 2607 if (m) 2608 m_freem(m); 2609 error = ENOBUFS; 2610 goto fail; 2611 } 2612 bzero(mtod(m, caddr_t), len); 2613 lt = mtod(m, struct sadb_lifetime *); 2614 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2615 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 2616 lt->sadb_lifetime_allocations = 0; 2617 lt->sadb_lifetime_bytes = 0; 2618 lt->sadb_lifetime_addtime = sp->created; 2619 lt->sadb_lifetime_usetime = sp->lastused; 2620 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 2621 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2622 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 2623 lt->sadb_lifetime_allocations = 0; 2624 lt->sadb_lifetime_bytes = 0; 2625 lt->sadb_lifetime_addtime = sp->lifetime; 2626 lt->sadb_lifetime_usetime = sp->validtime; 2627 m_cat(result, m); 2628 2629 /* 2630 * Note: do not send SADB_X_EXT_NAT_T_* here: 2631 * we are sending traffic endpoints. 2632 */ 2633 2634 /* set sadb_address for source */ 2635 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2636 &sp->spidx.src.sa, 2637 sp->spidx.prefs, sp->spidx.ul_proto); 2638 if (!m) { 2639 error = ENOBUFS; 2640 goto fail; 2641 } 2642 m_cat(result, m); 2643 2644 /* set sadb_address for destination */ 2645 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2646 &sp->spidx.dst.sa, 2647 sp->spidx.prefd, sp->spidx.ul_proto); 2648 if (!m) { 2649 error = ENOBUFS; 2650 goto fail; 2651 } 2652 m_cat(result, m); 2653 2654 /* set secpolicy */ 2655 m = key_sp2msg(sp); 2656 if (!m) { 2657 error = ENOBUFS; 2658 goto fail; 2659 } 2660 m_cat(result, m); 2661 2662 if ((result->m_flags & M_PKTHDR) == 0) { 2663 error = EINVAL; 2664 goto fail; 2665 } 2666 2667 if (result->m_len < sizeof(struct sadb_msg)) { 2668 result = m_pullup(result, sizeof(struct sadb_msg)); 2669 if (result == NULL) { 2670 error = ENOBUFS; 2671 goto fail; 2672 } 2673 } 2674 2675 result->m_pkthdr.len = 0; 2676 for (m = result; m; m = m->m_next) 2677 result->m_pkthdr.len += m->m_len; 2678 2679 mtod(result, struct sadb_msg *)->sadb_msg_len = 2680 PFKEY_UNIT64(result->m_pkthdr.len); 2681 2682 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 2683 2684 fail: 2685 if (result) 2686 m_freem(result); 2687 return error; 2688 } 2689 2690 /* %%% SAD management */ 2691 /* 2692 * allocating a memory for new SA head, and copy from the values of mhp. 2693 * OUT: NULL : failure due to the lack of memory. 2694 * others : pointer to new SA head. 2695 */ 2696 static struct secashead * 2697 key_newsah(saidx) 2698 struct secasindex *saidx; 2699 { 2700 struct secashead *newsah; 2701 2702 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 2703 2704 newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO); 2705 if (newsah != NULL) { 2706 int i; 2707 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++) 2708 LIST_INIT(&newsah->savtree[i]); 2709 newsah->saidx = *saidx; 2710 2711 /* add to saidxtree */ 2712 newsah->state = SADB_SASTATE_MATURE; 2713 2714 SAHTREE_LOCK(); 2715 LIST_INSERT_HEAD(&V_sahtree, newsah, chain); 2716 SAHTREE_UNLOCK(); 2717 } 2718 return(newsah); 2719 } 2720 2721 /* 2722 * delete SA index and all SA registerd. 2723 */ 2724 static void 2725 key_delsah(sah) 2726 struct secashead *sah; 2727 { 2728 struct secasvar *sav, *nextsav; 2729 u_int stateidx; 2730 int zombie = 0; 2731 2732 IPSEC_ASSERT(sah != NULL, ("NULL sah")); 2733 SAHTREE_LOCK_ASSERT(); 2734 2735 /* searching all SA registerd in the secindex. */ 2736 for (stateidx = 0; 2737 stateidx < _ARRAYLEN(saorder_state_any); 2738 stateidx++) { 2739 u_int state = saorder_state_any[stateidx]; 2740 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) { 2741 if (sav->refcnt == 0) { 2742 /* sanity check */ 2743 KEY_CHKSASTATE(state, sav->state, __func__); 2744 /* 2745 * do NOT call KEY_FREESAV here: 2746 * it will only delete the sav if refcnt == 1, 2747 * where we already know that refcnt == 0 2748 */ 2749 key_delsav(sav); 2750 } else { 2751 /* give up to delete this sa */ 2752 zombie++; 2753 } 2754 } 2755 } 2756 if (!zombie) { /* delete only if there are savs */ 2757 /* remove from tree of SA index */ 2758 if (__LIST_CHAINED(sah)) 2759 LIST_REMOVE(sah, chain); 2760 if (sah->route_cache.sa_route.ro_rt) { 2761 RTFREE(sah->route_cache.sa_route.ro_rt); 2762 sah->route_cache.sa_route.ro_rt = (struct rtentry *)NULL; 2763 } 2764 free(sah, M_IPSEC_SAH); 2765 } 2766 } 2767 2768 /* 2769 * allocating a new SA with LARVAL state. key_add() and key_getspi() call, 2770 * and copy the values of mhp into new buffer. 2771 * When SAD message type is GETSPI: 2772 * to set sequence number from acq_seq++, 2773 * to set zero to SPI. 2774 * not to call key_setsava(). 2775 * OUT: NULL : fail 2776 * others : pointer to new secasvar. 2777 * 2778 * does not modify mbuf. does not free mbuf on error. 2779 */ 2780 static struct secasvar * 2781 key_newsav(m, mhp, sah, errp, where, tag) 2782 struct mbuf *m; 2783 const struct sadb_msghdr *mhp; 2784 struct secashead *sah; 2785 int *errp; 2786 const char* where; 2787 int tag; 2788 { 2789 struct secasvar *newsav; 2790 const struct sadb_sa *xsa; 2791 2792 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2793 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2794 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2795 IPSEC_ASSERT(sah != NULL, ("null secashead")); 2796 2797 newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO); 2798 if (newsav == NULL) { 2799 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2800 *errp = ENOBUFS; 2801 goto done; 2802 } 2803 2804 switch (mhp->msg->sadb_msg_type) { 2805 case SADB_GETSPI: 2806 newsav->spi = 0; 2807 2808 #ifdef IPSEC_DOSEQCHECK 2809 /* sync sequence number */ 2810 if (mhp->msg->sadb_msg_seq == 0) 2811 newsav->seq = 2812 (V_acq_seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq)); 2813 else 2814 #endif 2815 newsav->seq = mhp->msg->sadb_msg_seq; 2816 break; 2817 2818 case SADB_ADD: 2819 /* sanity check */ 2820 if (mhp->ext[SADB_EXT_SA] == NULL) { 2821 free(newsav, M_IPSEC_SA); 2822 newsav = NULL; 2823 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2824 __func__)); 2825 *errp = EINVAL; 2826 goto done; 2827 } 2828 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 2829 newsav->spi = xsa->sadb_sa_spi; 2830 newsav->seq = mhp->msg->sadb_msg_seq; 2831 break; 2832 default: 2833 free(newsav, M_IPSEC_SA); 2834 newsav = NULL; 2835 *errp = EINVAL; 2836 goto done; 2837 } 2838 2839 2840 /* copy sav values */ 2841 if (mhp->msg->sadb_msg_type != SADB_GETSPI) { 2842 *errp = key_setsaval(newsav, m, mhp); 2843 if (*errp) { 2844 free(newsav, M_IPSEC_SA); 2845 newsav = NULL; 2846 goto done; 2847 } 2848 } 2849 2850 SECASVAR_LOCK_INIT(newsav); 2851 2852 /* reset created */ 2853 newsav->created = time_second; 2854 newsav->pid = mhp->msg->sadb_msg_pid; 2855 2856 /* add to satree */ 2857 newsav->sah = sah; 2858 sa_initref(newsav); 2859 newsav->state = SADB_SASTATE_LARVAL; 2860 2861 SAHTREE_LOCK(); 2862 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav, 2863 secasvar, chain); 2864 SAHTREE_UNLOCK(); 2865 done: 2866 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 2867 printf("DP %s from %s:%u return SP:%p\n", __func__, 2868 where, tag, newsav)); 2869 2870 return newsav; 2871 } 2872 2873 /* 2874 * free() SA variable entry. 2875 */ 2876 static void 2877 key_cleansav(struct secasvar *sav) 2878 { 2879 /* 2880 * Cleanup xform state. Note that zeroize'ing causes the 2881 * keys to be cleared; otherwise we must do it ourself. 2882 */ 2883 if (sav->tdb_xform != NULL) { 2884 sav->tdb_xform->xf_zeroize(sav); 2885 sav->tdb_xform = NULL; 2886 } else { 2887 KASSERT(sav->iv == NULL, ("iv but no xform")); 2888 if (sav->key_auth != NULL) 2889 bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth)); 2890 if (sav->key_enc != NULL) 2891 bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc)); 2892 } 2893 if (sav->key_auth != NULL) { 2894 if (sav->key_auth->key_data != NULL) 2895 free(sav->key_auth->key_data, M_IPSEC_MISC); 2896 free(sav->key_auth, M_IPSEC_MISC); 2897 sav->key_auth = NULL; 2898 } 2899 if (sav->key_enc != NULL) { 2900 if (sav->key_enc->key_data != NULL) 2901 free(sav->key_enc->key_data, M_IPSEC_MISC); 2902 free(sav->key_enc, M_IPSEC_MISC); 2903 sav->key_enc = NULL; 2904 } 2905 if (sav->sched) { 2906 bzero(sav->sched, sav->schedlen); 2907 free(sav->sched, M_IPSEC_MISC); 2908 sav->sched = NULL; 2909 } 2910 if (sav->replay != NULL) { 2911 free(sav->replay, M_IPSEC_MISC); 2912 sav->replay = NULL; 2913 } 2914 if (sav->lft_c != NULL) { 2915 free(sav->lft_c, M_IPSEC_MISC); 2916 sav->lft_c = NULL; 2917 } 2918 if (sav->lft_h != NULL) { 2919 free(sav->lft_h, M_IPSEC_MISC); 2920 sav->lft_h = NULL; 2921 } 2922 if (sav->lft_s != NULL) { 2923 free(sav->lft_s, M_IPSEC_MISC); 2924 sav->lft_s = NULL; 2925 } 2926 } 2927 2928 /* 2929 * free() SA variable entry. 2930 */ 2931 static void 2932 key_delsav(sav) 2933 struct secasvar *sav; 2934 { 2935 IPSEC_ASSERT(sav != NULL, ("null sav")); 2936 IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt)); 2937 2938 /* remove from SA header */ 2939 if (__LIST_CHAINED(sav)) 2940 LIST_REMOVE(sav, chain); 2941 key_cleansav(sav); 2942 SECASVAR_LOCK_DESTROY(sav); 2943 free(sav, M_IPSEC_SA); 2944 } 2945 2946 /* 2947 * search SAD. 2948 * OUT: 2949 * NULL : not found 2950 * others : found, pointer to a SA. 2951 */ 2952 static struct secashead * 2953 key_getsah(saidx) 2954 struct secasindex *saidx; 2955 { 2956 struct secashead *sah; 2957 2958 SAHTREE_LOCK(); 2959 LIST_FOREACH(sah, &V_sahtree, chain) { 2960 if (sah->state == SADB_SASTATE_DEAD) 2961 continue; 2962 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID)) 2963 break; 2964 } 2965 SAHTREE_UNLOCK(); 2966 2967 return sah; 2968 } 2969 2970 /* 2971 * check not to be duplicated SPI. 2972 * NOTE: this function is too slow due to searching all SAD. 2973 * OUT: 2974 * NULL : not found 2975 * others : found, pointer to a SA. 2976 */ 2977 static struct secasvar * 2978 key_checkspidup(saidx, spi) 2979 struct secasindex *saidx; 2980 u_int32_t spi; 2981 { 2982 struct secashead *sah; 2983 struct secasvar *sav; 2984 2985 /* check address family */ 2986 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) { 2987 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 2988 __func__)); 2989 return NULL; 2990 } 2991 2992 sav = NULL; 2993 /* check all SAD */ 2994 SAHTREE_LOCK(); 2995 LIST_FOREACH(sah, &V_sahtree, chain) { 2996 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst)) 2997 continue; 2998 sav = key_getsavbyspi(sah, spi); 2999 if (sav != NULL) 3000 break; 3001 } 3002 SAHTREE_UNLOCK(); 3003 3004 return sav; 3005 } 3006 3007 /* 3008 * search SAD litmited alive SA, protocol, SPI. 3009 * OUT: 3010 * NULL : not found 3011 * others : found, pointer to a SA. 3012 */ 3013 static struct secasvar * 3014 key_getsavbyspi(sah, spi) 3015 struct secashead *sah; 3016 u_int32_t spi; 3017 { 3018 struct secasvar *sav; 3019 u_int stateidx, state; 3020 3021 sav = NULL; 3022 SAHTREE_LOCK_ASSERT(); 3023 /* search all status */ 3024 for (stateidx = 0; 3025 stateidx < _ARRAYLEN(saorder_state_alive); 3026 stateidx++) { 3027 3028 state = saorder_state_alive[stateidx]; 3029 LIST_FOREACH(sav, &sah->savtree[state], chain) { 3030 3031 /* sanity check */ 3032 if (sav->state != state) { 3033 ipseclog((LOG_DEBUG, "%s: " 3034 "invalid sav->state (queue: %d SA: %d)\n", 3035 __func__, state, sav->state)); 3036 continue; 3037 } 3038 3039 if (sav->spi == spi) 3040 return sav; 3041 } 3042 } 3043 3044 return NULL; 3045 } 3046 3047 /* 3048 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. 3049 * You must update these if need. 3050 * OUT: 0: success. 3051 * !0: failure. 3052 * 3053 * does not modify mbuf. does not free mbuf on error. 3054 */ 3055 static int 3056 key_setsaval(sav, m, mhp) 3057 struct secasvar *sav; 3058 struct mbuf *m; 3059 const struct sadb_msghdr *mhp; 3060 { 3061 int error = 0; 3062 3063 IPSEC_ASSERT(m != NULL, ("null mbuf")); 3064 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 3065 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 3066 3067 /* initialization */ 3068 sav->replay = NULL; 3069 sav->key_auth = NULL; 3070 sav->key_enc = NULL; 3071 sav->sched = NULL; 3072 sav->schedlen = 0; 3073 sav->iv = NULL; 3074 sav->lft_c = NULL; 3075 sav->lft_h = NULL; 3076 sav->lft_s = NULL; 3077 sav->tdb_xform = NULL; /* transform */ 3078 sav->tdb_encalgxform = NULL; /* encoding algorithm */ 3079 sav->tdb_authalgxform = NULL; /* authentication algorithm */ 3080 sav->tdb_compalgxform = NULL; /* compression algorithm */ 3081 /* Initialize even if NAT-T not compiled in: */ 3082 sav->natt_type = 0; 3083 sav->natt_esp_frag_len = 0; 3084 3085 /* SA */ 3086 if (mhp->ext[SADB_EXT_SA] != NULL) { 3087 const struct sadb_sa *sa0; 3088 3089 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 3090 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { 3091 error = EINVAL; 3092 goto fail; 3093 } 3094 3095 sav->alg_auth = sa0->sadb_sa_auth; 3096 sav->alg_enc = sa0->sadb_sa_encrypt; 3097 sav->flags = sa0->sadb_sa_flags; 3098 3099 /* replay window */ 3100 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { 3101 sav->replay = (struct secreplay *) 3102 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO); 3103 if (sav->replay == NULL) { 3104 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3105 __func__)); 3106 error = ENOBUFS; 3107 goto fail; 3108 } 3109 if (sa0->sadb_sa_replay != 0) 3110 sav->replay->bitmap = (caddr_t)(sav->replay+1); 3111 sav->replay->wsize = sa0->sadb_sa_replay; 3112 } 3113 } 3114 3115 /* Authentication keys */ 3116 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { 3117 const struct sadb_key *key0; 3118 int len; 3119 3120 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH]; 3121 len = mhp->extlen[SADB_EXT_KEY_AUTH]; 3122 3123 error = 0; 3124 if (len < sizeof(*key0)) { 3125 error = EINVAL; 3126 goto fail; 3127 } 3128 switch (mhp->msg->sadb_msg_satype) { 3129 case SADB_SATYPE_AH: 3130 case SADB_SATYPE_ESP: 3131 case SADB_X_SATYPE_TCPSIGNATURE: 3132 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3133 sav->alg_auth != SADB_X_AALG_NULL) 3134 error = EINVAL; 3135 break; 3136 case SADB_X_SATYPE_IPCOMP: 3137 default: 3138 error = EINVAL; 3139 break; 3140 } 3141 if (error) { 3142 ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n", 3143 __func__)); 3144 goto fail; 3145 } 3146 3147 sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len, 3148 M_IPSEC_MISC); 3149 if (sav->key_auth == NULL ) { 3150 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3151 __func__)); 3152 error = ENOBUFS; 3153 goto fail; 3154 } 3155 } 3156 3157 /* Encryption key */ 3158 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { 3159 const struct sadb_key *key0; 3160 int len; 3161 3162 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT]; 3163 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; 3164 3165 error = 0; 3166 if (len < sizeof(*key0)) { 3167 error = EINVAL; 3168 goto fail; 3169 } 3170 switch (mhp->msg->sadb_msg_satype) { 3171 case SADB_SATYPE_ESP: 3172 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3173 sav->alg_enc != SADB_EALG_NULL) { 3174 error = EINVAL; 3175 break; 3176 } 3177 sav->key_enc = (struct seckey *)key_dup_keymsg(key0, 3178 len, 3179 M_IPSEC_MISC); 3180 if (sav->key_enc == NULL) { 3181 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3182 __func__)); 3183 error = ENOBUFS; 3184 goto fail; 3185 } 3186 break; 3187 case SADB_X_SATYPE_IPCOMP: 3188 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) 3189 error = EINVAL; 3190 sav->key_enc = NULL; /*just in case*/ 3191 break; 3192 case SADB_SATYPE_AH: 3193 case SADB_X_SATYPE_TCPSIGNATURE: 3194 default: 3195 error = EINVAL; 3196 break; 3197 } 3198 if (error) { 3199 ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n", 3200 __func__)); 3201 goto fail; 3202 } 3203 } 3204 3205 /* set iv */ 3206 sav->ivlen = 0; 3207 3208 switch (mhp->msg->sadb_msg_satype) { 3209 case SADB_SATYPE_AH: 3210 error = xform_init(sav, XF_AH); 3211 break; 3212 case SADB_SATYPE_ESP: 3213 error = xform_init(sav, XF_ESP); 3214 break; 3215 case SADB_X_SATYPE_IPCOMP: 3216 error = xform_init(sav, XF_IPCOMP); 3217 break; 3218 case SADB_X_SATYPE_TCPSIGNATURE: 3219 error = xform_init(sav, XF_TCPSIGNATURE); 3220 break; 3221 } 3222 if (error) { 3223 ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n", 3224 __func__, mhp->msg->sadb_msg_satype)); 3225 goto fail; 3226 } 3227 3228 /* reset created */ 3229 sav->created = time_second; 3230 3231 /* make lifetime for CURRENT */ 3232 sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT); 3233 if (sav->lft_c == NULL) { 3234 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3235 error = ENOBUFS; 3236 goto fail; 3237 } 3238 3239 sav->lft_c->allocations = 0; 3240 sav->lft_c->bytes = 0; 3241 sav->lft_c->addtime = time_second; 3242 sav->lft_c->usetime = 0; 3243 3244 /* lifetimes for HARD and SOFT */ 3245 { 3246 const struct sadb_lifetime *lft0; 3247 3248 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 3249 if (lft0 != NULL) { 3250 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { 3251 error = EINVAL; 3252 goto fail; 3253 } 3254 sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3255 if (sav->lft_h == NULL) { 3256 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3257 error = ENOBUFS; 3258 goto fail; 3259 } 3260 /* to be initialize ? */ 3261 } 3262 3263 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT]; 3264 if (lft0 != NULL) { 3265 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { 3266 error = EINVAL; 3267 goto fail; 3268 } 3269 sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3270 if (sav->lft_s == NULL) { 3271 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3272 error = ENOBUFS; 3273 goto fail; 3274 } 3275 /* to be initialize ? */ 3276 } 3277 } 3278 3279 return 0; 3280 3281 fail: 3282 /* initialization */ 3283 key_cleansav(sav); 3284 3285 return error; 3286 } 3287 3288 /* 3289 * validation with a secasvar entry, and set SADB_SATYPE_MATURE. 3290 * OUT: 0: valid 3291 * other: errno 3292 */ 3293 static int 3294 key_mature(struct secasvar *sav) 3295 { 3296 int error; 3297 3298 /* check SPI value */ 3299 switch (sav->sah->saidx.proto) { 3300 case IPPROTO_ESP: 3301 case IPPROTO_AH: 3302 /* 3303 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values 3304 * 1-255 reserved by IANA for future use, 3305 * 0 for implementation specific, local use. 3306 */ 3307 if (ntohl(sav->spi) <= 255) { 3308 ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n", 3309 __func__, (u_int32_t)ntohl(sav->spi))); 3310 return EINVAL; 3311 } 3312 break; 3313 } 3314 3315 /* check satype */ 3316 switch (sav->sah->saidx.proto) { 3317 case IPPROTO_ESP: 3318 /* check flags */ 3319 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) == 3320 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) { 3321 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3322 "given to old-esp.\n", __func__)); 3323 return EINVAL; 3324 } 3325 error = xform_init(sav, XF_ESP); 3326 break; 3327 case IPPROTO_AH: 3328 /* check flags */ 3329 if (sav->flags & SADB_X_EXT_DERIV) { 3330 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3331 "given to AH SA.\n", __func__)); 3332 return EINVAL; 3333 } 3334 if (sav->alg_enc != SADB_EALG_NONE) { 3335 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3336 "mismated.\n", __func__)); 3337 return(EINVAL); 3338 } 3339 error = xform_init(sav, XF_AH); 3340 break; 3341 case IPPROTO_IPCOMP: 3342 if (sav->alg_auth != SADB_AALG_NONE) { 3343 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3344 "mismated.\n", __func__)); 3345 return(EINVAL); 3346 } 3347 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 3348 && ntohl(sav->spi) >= 0x10000) { 3349 ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n", 3350 __func__)); 3351 return(EINVAL); 3352 } 3353 error = xform_init(sav, XF_IPCOMP); 3354 break; 3355 case IPPROTO_TCP: 3356 if (sav->alg_enc != SADB_EALG_NONE) { 3357 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3358 "mismated.\n", __func__)); 3359 return(EINVAL); 3360 } 3361 error = xform_init(sav, XF_TCPSIGNATURE); 3362 break; 3363 default: 3364 ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__)); 3365 error = EPROTONOSUPPORT; 3366 break; 3367 } 3368 if (error == 0) { 3369 SAHTREE_LOCK(); 3370 key_sa_chgstate(sav, SADB_SASTATE_MATURE); 3371 SAHTREE_UNLOCK(); 3372 } 3373 return (error); 3374 } 3375 3376 /* 3377 * subroutine for SADB_GET and SADB_DUMP. 3378 */ 3379 static struct mbuf * 3380 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype, 3381 u_int32_t seq, u_int32_t pid) 3382 { 3383 struct mbuf *result = NULL, *tres = NULL, *m; 3384 int i; 3385 int dumporder[] = { 3386 SADB_EXT_SA, SADB_X_EXT_SA2, 3387 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 3388 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, 3389 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, 3390 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, 3391 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, 3392 #ifdef IPSEC_NAT_T 3393 SADB_X_EXT_NAT_T_TYPE, 3394 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT, 3395 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR, 3396 SADB_X_EXT_NAT_T_FRAG, 3397 #endif 3398 }; 3399 3400 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt); 3401 if (m == NULL) 3402 goto fail; 3403 result = m; 3404 3405 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) { 3406 m = NULL; 3407 switch (dumporder[i]) { 3408 case SADB_EXT_SA: 3409 m = key_setsadbsa(sav); 3410 if (!m) 3411 goto fail; 3412 break; 3413 3414 case SADB_X_EXT_SA2: 3415 m = key_setsadbxsa2(sav->sah->saidx.mode, 3416 sav->replay ? sav->replay->count : 0, 3417 sav->sah->saidx.reqid); 3418 if (!m) 3419 goto fail; 3420 break; 3421 3422 case SADB_EXT_ADDRESS_SRC: 3423 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3424 &sav->sah->saidx.src.sa, 3425 FULLMASK, IPSEC_ULPROTO_ANY); 3426 if (!m) 3427 goto fail; 3428 break; 3429 3430 case SADB_EXT_ADDRESS_DST: 3431 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3432 &sav->sah->saidx.dst.sa, 3433 FULLMASK, IPSEC_ULPROTO_ANY); 3434 if (!m) 3435 goto fail; 3436 break; 3437 3438 case SADB_EXT_KEY_AUTH: 3439 if (!sav->key_auth) 3440 continue; 3441 m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH); 3442 if (!m) 3443 goto fail; 3444 break; 3445 3446 case SADB_EXT_KEY_ENCRYPT: 3447 if (!sav->key_enc) 3448 continue; 3449 m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT); 3450 if (!m) 3451 goto fail; 3452 break; 3453 3454 case SADB_EXT_LIFETIME_CURRENT: 3455 if (!sav->lft_c) 3456 continue; 3457 m = key_setlifetime(sav->lft_c, 3458 SADB_EXT_LIFETIME_CURRENT); 3459 if (!m) 3460 goto fail; 3461 break; 3462 3463 case SADB_EXT_LIFETIME_HARD: 3464 if (!sav->lft_h) 3465 continue; 3466 m = key_setlifetime(sav->lft_h, 3467 SADB_EXT_LIFETIME_HARD); 3468 if (!m) 3469 goto fail; 3470 break; 3471 3472 case SADB_EXT_LIFETIME_SOFT: 3473 if (!sav->lft_s) 3474 continue; 3475 m = key_setlifetime(sav->lft_s, 3476 SADB_EXT_LIFETIME_SOFT); 3477 3478 if (!m) 3479 goto fail; 3480 break; 3481 3482 #ifdef IPSEC_NAT_T 3483 case SADB_X_EXT_NAT_T_TYPE: 3484 m = key_setsadbxtype(sav->natt_type); 3485 if (!m) 3486 goto fail; 3487 break; 3488 3489 case SADB_X_EXT_NAT_T_DPORT: 3490 m = key_setsadbxport( 3491 KEY_PORTFROMSADDR(&sav->sah->saidx.dst), 3492 SADB_X_EXT_NAT_T_DPORT); 3493 if (!m) 3494 goto fail; 3495 break; 3496 3497 case SADB_X_EXT_NAT_T_SPORT: 3498 m = key_setsadbxport( 3499 KEY_PORTFROMSADDR(&sav->sah->saidx.src), 3500 SADB_X_EXT_NAT_T_SPORT); 3501 if (!m) 3502 goto fail; 3503 break; 3504 3505 case SADB_X_EXT_NAT_T_OAI: 3506 case SADB_X_EXT_NAT_T_OAR: 3507 case SADB_X_EXT_NAT_T_FRAG: 3508 /* We do not (yet) support those. */ 3509 continue; 3510 #endif 3511 3512 case SADB_EXT_ADDRESS_PROXY: 3513 case SADB_EXT_IDENTITY_SRC: 3514 case SADB_EXT_IDENTITY_DST: 3515 /* XXX: should we brought from SPD ? */ 3516 case SADB_EXT_SENSITIVITY: 3517 default: 3518 continue; 3519 } 3520 3521 if (!m) 3522 goto fail; 3523 if (tres) 3524 m_cat(m, tres); 3525 tres = m; 3526 3527 } 3528 3529 m_cat(result, tres); 3530 if (result->m_len < sizeof(struct sadb_msg)) { 3531 result = m_pullup(result, sizeof(struct sadb_msg)); 3532 if (result == NULL) 3533 goto fail; 3534 } 3535 3536 result->m_pkthdr.len = 0; 3537 for (m = result; m; m = m->m_next) 3538 result->m_pkthdr.len += m->m_len; 3539 3540 mtod(result, struct sadb_msg *)->sadb_msg_len = 3541 PFKEY_UNIT64(result->m_pkthdr.len); 3542 3543 return result; 3544 3545 fail: 3546 m_freem(result); 3547 m_freem(tres); 3548 return NULL; 3549 } 3550 3551 /* 3552 * set data into sadb_msg. 3553 */ 3554 static struct mbuf * 3555 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq, 3556 pid_t pid, u_int16_t reserved) 3557 { 3558 struct mbuf *m; 3559 struct sadb_msg *p; 3560 int len; 3561 3562 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 3563 if (len > MCLBYTES) 3564 return NULL; 3565 MGETHDR(m, M_NOWAIT, MT_DATA); 3566 if (m && len > MHLEN) { 3567 MCLGET(m, M_NOWAIT); 3568 if ((m->m_flags & M_EXT) == 0) { 3569 m_freem(m); 3570 m = NULL; 3571 } 3572 } 3573 if (!m) 3574 return NULL; 3575 m->m_pkthdr.len = m->m_len = len; 3576 m->m_next = NULL; 3577 3578 p = mtod(m, struct sadb_msg *); 3579 3580 bzero(p, len); 3581 p->sadb_msg_version = PF_KEY_V2; 3582 p->sadb_msg_type = type; 3583 p->sadb_msg_errno = 0; 3584 p->sadb_msg_satype = satype; 3585 p->sadb_msg_len = PFKEY_UNIT64(tlen); 3586 p->sadb_msg_reserved = reserved; 3587 p->sadb_msg_seq = seq; 3588 p->sadb_msg_pid = (u_int32_t)pid; 3589 3590 return m; 3591 } 3592 3593 /* 3594 * copy secasvar data into sadb_address. 3595 */ 3596 static struct mbuf * 3597 key_setsadbsa(sav) 3598 struct secasvar *sav; 3599 { 3600 struct mbuf *m; 3601 struct sadb_sa *p; 3602 int len; 3603 3604 len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); 3605 m = key_alloc_mbuf(len); 3606 if (!m || m->m_next) { /*XXX*/ 3607 if (m) 3608 m_freem(m); 3609 return NULL; 3610 } 3611 3612 p = mtod(m, struct sadb_sa *); 3613 3614 bzero(p, len); 3615 p->sadb_sa_len = PFKEY_UNIT64(len); 3616 p->sadb_sa_exttype = SADB_EXT_SA; 3617 p->sadb_sa_spi = sav->spi; 3618 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0); 3619 p->sadb_sa_state = sav->state; 3620 p->sadb_sa_auth = sav->alg_auth; 3621 p->sadb_sa_encrypt = sav->alg_enc; 3622 p->sadb_sa_flags = sav->flags; 3623 3624 return m; 3625 } 3626 3627 /* 3628 * set data into sadb_address. 3629 */ 3630 static struct mbuf * 3631 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, u_int8_t prefixlen, u_int16_t ul_proto) 3632 { 3633 struct mbuf *m; 3634 struct sadb_address *p; 3635 size_t len; 3636 3637 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + 3638 PFKEY_ALIGN8(saddr->sa_len); 3639 m = key_alloc_mbuf(len); 3640 if (!m || m->m_next) { /*XXX*/ 3641 if (m) 3642 m_freem(m); 3643 return NULL; 3644 } 3645 3646 p = mtod(m, struct sadb_address *); 3647 3648 bzero(p, len); 3649 p->sadb_address_len = PFKEY_UNIT64(len); 3650 p->sadb_address_exttype = exttype; 3651 p->sadb_address_proto = ul_proto; 3652 if (prefixlen == FULLMASK) { 3653 switch (saddr->sa_family) { 3654 case AF_INET: 3655 prefixlen = sizeof(struct in_addr) << 3; 3656 break; 3657 case AF_INET6: 3658 prefixlen = sizeof(struct in6_addr) << 3; 3659 break; 3660 default: 3661 ; /*XXX*/ 3662 } 3663 } 3664 p->sadb_address_prefixlen = prefixlen; 3665 p->sadb_address_reserved = 0; 3666 3667 bcopy(saddr, 3668 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)), 3669 saddr->sa_len); 3670 3671 return m; 3672 } 3673 3674 /* 3675 * set data into sadb_x_sa2. 3676 */ 3677 static struct mbuf * 3678 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid) 3679 { 3680 struct mbuf *m; 3681 struct sadb_x_sa2 *p; 3682 size_t len; 3683 3684 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); 3685 m = key_alloc_mbuf(len); 3686 if (!m || m->m_next) { /*XXX*/ 3687 if (m) 3688 m_freem(m); 3689 return NULL; 3690 } 3691 3692 p = mtod(m, struct sadb_x_sa2 *); 3693 3694 bzero(p, len); 3695 p->sadb_x_sa2_len = PFKEY_UNIT64(len); 3696 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 3697 p->sadb_x_sa2_mode = mode; 3698 p->sadb_x_sa2_reserved1 = 0; 3699 p->sadb_x_sa2_reserved2 = 0; 3700 p->sadb_x_sa2_sequence = seq; 3701 p->sadb_x_sa2_reqid = reqid; 3702 3703 return m; 3704 } 3705 3706 #ifdef IPSEC_NAT_T 3707 /* 3708 * Set a type in sadb_x_nat_t_type. 3709 */ 3710 static struct mbuf * 3711 key_setsadbxtype(u_int16_t type) 3712 { 3713 struct mbuf *m; 3714 size_t len; 3715 struct sadb_x_nat_t_type *p; 3716 3717 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type)); 3718 3719 m = key_alloc_mbuf(len); 3720 if (!m || m->m_next) { /*XXX*/ 3721 if (m) 3722 m_freem(m); 3723 return (NULL); 3724 } 3725 3726 p = mtod(m, struct sadb_x_nat_t_type *); 3727 3728 bzero(p, len); 3729 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len); 3730 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; 3731 p->sadb_x_nat_t_type_type = type; 3732 3733 return (m); 3734 } 3735 /* 3736 * Set a port in sadb_x_nat_t_port. 3737 * In contrast to default RFC 2367 behaviour, port is in network byte order. 3738 */ 3739 static struct mbuf * 3740 key_setsadbxport(u_int16_t port, u_int16_t type) 3741 { 3742 struct mbuf *m; 3743 size_t len; 3744 struct sadb_x_nat_t_port *p; 3745 3746 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port)); 3747 3748 m = key_alloc_mbuf(len); 3749 if (!m || m->m_next) { /*XXX*/ 3750 if (m) 3751 m_freem(m); 3752 return (NULL); 3753 } 3754 3755 p = mtod(m, struct sadb_x_nat_t_port *); 3756 3757 bzero(p, len); 3758 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len); 3759 p->sadb_x_nat_t_port_exttype = type; 3760 p->sadb_x_nat_t_port_port = port; 3761 3762 return (m); 3763 } 3764 3765 /* 3766 * Get port from sockaddr. Port is in network byte order. 3767 */ 3768 u_int16_t 3769 key_portfromsaddr(struct sockaddr *sa) 3770 { 3771 3772 switch (sa->sa_family) { 3773 #ifdef INET 3774 case AF_INET: 3775 return ((struct sockaddr_in *)sa)->sin_port; 3776 #endif 3777 #ifdef INET6 3778 case AF_INET6: 3779 return ((struct sockaddr_in6 *)sa)->sin6_port; 3780 #endif 3781 } 3782 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 3783 printf("DP %s unexpected address family %d\n", 3784 __func__, sa->sa_family)); 3785 return (0); 3786 } 3787 #endif /* IPSEC_NAT_T */ 3788 3789 /* 3790 * Set port in struct sockaddr. Port is in network byte order. 3791 */ 3792 static void 3793 key_porttosaddr(struct sockaddr *sa, u_int16_t port) 3794 { 3795 3796 switch (sa->sa_family) { 3797 #ifdef INET 3798 case AF_INET: 3799 ((struct sockaddr_in *)sa)->sin_port = port; 3800 break; 3801 #endif 3802 #ifdef INET6 3803 case AF_INET6: 3804 ((struct sockaddr_in6 *)sa)->sin6_port = port; 3805 break; 3806 #endif 3807 default: 3808 ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n", 3809 __func__, sa->sa_family)); 3810 break; 3811 } 3812 } 3813 3814 /* 3815 * set data into sadb_x_policy 3816 */ 3817 static struct mbuf * 3818 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id) 3819 { 3820 struct mbuf *m; 3821 struct sadb_x_policy *p; 3822 size_t len; 3823 3824 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); 3825 m = key_alloc_mbuf(len); 3826 if (!m || m->m_next) { /*XXX*/ 3827 if (m) 3828 m_freem(m); 3829 return NULL; 3830 } 3831 3832 p = mtod(m, struct sadb_x_policy *); 3833 3834 bzero(p, len); 3835 p->sadb_x_policy_len = PFKEY_UNIT64(len); 3836 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 3837 p->sadb_x_policy_type = type; 3838 p->sadb_x_policy_dir = dir; 3839 p->sadb_x_policy_id = id; 3840 3841 return m; 3842 } 3843 3844 /* %%% utilities */ 3845 /* Take a key message (sadb_key) from the socket and turn it into one 3846 * of the kernel's key structures (seckey). 3847 * 3848 * IN: pointer to the src 3849 * OUT: NULL no more memory 3850 */ 3851 struct seckey * 3852 key_dup_keymsg(const struct sadb_key *src, u_int len, 3853 struct malloc_type *type) 3854 { 3855 struct seckey *dst; 3856 dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT); 3857 if (dst != NULL) { 3858 dst->bits = src->sadb_key_bits; 3859 dst->key_data = (char *)malloc(len, type, M_NOWAIT); 3860 if (dst->key_data != NULL) { 3861 bcopy((const char *)src + sizeof(struct sadb_key), 3862 dst->key_data, len); 3863 } else { 3864 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3865 __func__)); 3866 free(dst, type); 3867 dst = NULL; 3868 } 3869 } else { 3870 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3871 __func__)); 3872 3873 } 3874 return dst; 3875 } 3876 3877 /* Take a lifetime message (sadb_lifetime) passed in on a socket and 3878 * turn it into one of the kernel's lifetime structures (seclifetime). 3879 * 3880 * IN: pointer to the destination, source and malloc type 3881 * OUT: NULL, no more memory 3882 */ 3883 3884 static struct seclifetime * 3885 key_dup_lifemsg(const struct sadb_lifetime *src, 3886 struct malloc_type *type) 3887 { 3888 struct seclifetime *dst = NULL; 3889 3890 dst = (struct seclifetime *)malloc(sizeof(struct seclifetime), 3891 type, M_NOWAIT); 3892 if (dst == NULL) { 3893 /* XXX counter */ 3894 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3895 } else { 3896 dst->allocations = src->sadb_lifetime_allocations; 3897 dst->bytes = src->sadb_lifetime_bytes; 3898 dst->addtime = src->sadb_lifetime_addtime; 3899 dst->usetime = src->sadb_lifetime_usetime; 3900 } 3901 return dst; 3902 } 3903 3904 /* compare my own address 3905 * OUT: 1: true, i.e. my address. 3906 * 0: false 3907 */ 3908 int 3909 key_ismyaddr(sa) 3910 struct sockaddr *sa; 3911 { 3912 #ifdef INET 3913 struct sockaddr_in *sin; 3914 struct in_ifaddr *ia; 3915 #endif 3916 3917 IPSEC_ASSERT(sa != NULL, ("null sockaddr")); 3918 3919 switch (sa->sa_family) { 3920 #ifdef INET 3921 case AF_INET: 3922 sin = (struct sockaddr_in *)sa; 3923 IN_IFADDR_RLOCK(); 3924 TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) 3925 { 3926 if (sin->sin_family == ia->ia_addr.sin_family && 3927 sin->sin_len == ia->ia_addr.sin_len && 3928 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr) 3929 { 3930 IN_IFADDR_RUNLOCK(); 3931 return 1; 3932 } 3933 } 3934 IN_IFADDR_RUNLOCK(); 3935 break; 3936 #endif 3937 #ifdef INET6 3938 case AF_INET6: 3939 return key_ismyaddr6((struct sockaddr_in6 *)sa); 3940 #endif 3941 } 3942 3943 return 0; 3944 } 3945 3946 #ifdef INET6 3947 /* 3948 * compare my own address for IPv6. 3949 * 1: ours 3950 * 0: other 3951 * NOTE: derived ip6_input() in KAME. This is necessary to modify more. 3952 */ 3953 #include <netinet6/in6_var.h> 3954 3955 static int 3956 key_ismyaddr6(sin6) 3957 struct sockaddr_in6 *sin6; 3958 { 3959 struct in6_ifaddr *ia; 3960 #if 0 3961 struct in6_multi *in6m; 3962 #endif 3963 3964 IN6_IFADDR_RLOCK(); 3965 TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) { 3966 if (key_sockaddrcmp((struct sockaddr *)&sin6, 3967 (struct sockaddr *)&ia->ia_addr, 0) == 0) { 3968 IN6_IFADDR_RUNLOCK(); 3969 return 1; 3970 } 3971 3972 #if 0 3973 /* 3974 * XXX Multicast 3975 * XXX why do we care about multlicast here while we don't care 3976 * about IPv4 multicast?? 3977 * XXX scope 3978 */ 3979 in6m = NULL; 3980 IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m); 3981 if (in6m) { 3982 IN6_IFADDR_RUNLOCK(); 3983 return 1; 3984 } 3985 #endif 3986 } 3987 IN6_IFADDR_RUNLOCK(); 3988 3989 /* loopback, just for safety */ 3990 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) 3991 return 1; 3992 3993 return 0; 3994 } 3995 #endif /*INET6*/ 3996 3997 /* 3998 * compare two secasindex structure. 3999 * flag can specify to compare 2 saidxes. 4000 * compare two secasindex structure without both mode and reqid. 4001 * don't compare port. 4002 * IN: 4003 * saidx0: source, it can be in SAD. 4004 * saidx1: object. 4005 * OUT: 4006 * 1 : equal 4007 * 0 : not equal 4008 */ 4009 static int 4010 key_cmpsaidx( 4011 const struct secasindex *saidx0, 4012 const struct secasindex *saidx1, 4013 int flag) 4014 { 4015 int chkport = 0; 4016 4017 /* sanity */ 4018 if (saidx0 == NULL && saidx1 == NULL) 4019 return 1; 4020 4021 if (saidx0 == NULL || saidx1 == NULL) 4022 return 0; 4023 4024 if (saidx0->proto != saidx1->proto) 4025 return 0; 4026 4027 if (flag == CMP_EXACTLY) { 4028 if (saidx0->mode != saidx1->mode) 4029 return 0; 4030 if (saidx0->reqid != saidx1->reqid) 4031 return 0; 4032 if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 || 4033 bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0) 4034 return 0; 4035 } else { 4036 4037 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ 4038 if (flag == CMP_MODE_REQID 4039 ||flag == CMP_REQID) { 4040 /* 4041 * If reqid of SPD is non-zero, unique SA is required. 4042 * The result must be of same reqid in this case. 4043 */ 4044 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) 4045 return 0; 4046 } 4047 4048 if (flag == CMP_MODE_REQID) { 4049 if (saidx0->mode != IPSEC_MODE_ANY 4050 && saidx0->mode != saidx1->mode) 4051 return 0; 4052 } 4053 4054 #ifdef IPSEC_NAT_T 4055 /* 4056 * If NAT-T is enabled, check ports for tunnel mode. 4057 * Do not check ports if they are set to zero in the SPD. 4058 * Also do not do it for native transport mode, as there 4059 * is no port information available in the SP. 4060 */ 4061 if ((saidx1->mode == IPSEC_MODE_TUNNEL || 4062 (saidx1->mode == IPSEC_MODE_TRANSPORT && 4063 saidx1->proto == IPPROTO_ESP)) && 4064 saidx1->src.sa.sa_family == AF_INET && 4065 saidx1->dst.sa.sa_family == AF_INET && 4066 ((const struct sockaddr_in *)(&saidx1->src))->sin_port && 4067 ((const struct sockaddr_in *)(&saidx1->dst))->sin_port) 4068 chkport = 1; 4069 #endif /* IPSEC_NAT_T */ 4070 4071 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, chkport) != 0) { 4072 return 0; 4073 } 4074 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, chkport) != 0) { 4075 return 0; 4076 } 4077 } 4078 4079 return 1; 4080 } 4081 4082 /* 4083 * compare two secindex structure exactly. 4084 * IN: 4085 * spidx0: source, it is often in SPD. 4086 * spidx1: object, it is often from PFKEY message. 4087 * OUT: 4088 * 1 : equal 4089 * 0 : not equal 4090 */ 4091 static int 4092 key_cmpspidx_exactly( 4093 struct secpolicyindex *spidx0, 4094 struct secpolicyindex *spidx1) 4095 { 4096 /* sanity */ 4097 if (spidx0 == NULL && spidx1 == NULL) 4098 return 1; 4099 4100 if (spidx0 == NULL || spidx1 == NULL) 4101 return 0; 4102 4103 if (spidx0->prefs != spidx1->prefs 4104 || spidx0->prefd != spidx1->prefd 4105 || spidx0->ul_proto != spidx1->ul_proto) 4106 return 0; 4107 4108 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 && 4109 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0; 4110 } 4111 4112 /* 4113 * compare two secindex structure with mask. 4114 * IN: 4115 * spidx0: source, it is often in SPD. 4116 * spidx1: object, it is often from IP header. 4117 * OUT: 4118 * 1 : equal 4119 * 0 : not equal 4120 */ 4121 static int 4122 key_cmpspidx_withmask( 4123 struct secpolicyindex *spidx0, 4124 struct secpolicyindex *spidx1) 4125 { 4126 /* sanity */ 4127 if (spidx0 == NULL && spidx1 == NULL) 4128 return 1; 4129 4130 if (spidx0 == NULL || spidx1 == NULL) 4131 return 0; 4132 4133 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || 4134 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || 4135 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || 4136 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) 4137 return 0; 4138 4139 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ 4140 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY 4141 && spidx0->ul_proto != spidx1->ul_proto) 4142 return 0; 4143 4144 switch (spidx0->src.sa.sa_family) { 4145 case AF_INET: 4146 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY 4147 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) 4148 return 0; 4149 if (!key_bbcmp(&spidx0->src.sin.sin_addr, 4150 &spidx1->src.sin.sin_addr, spidx0->prefs)) 4151 return 0; 4152 break; 4153 case AF_INET6: 4154 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY 4155 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) 4156 return 0; 4157 /* 4158 * scope_id check. if sin6_scope_id is 0, we regard it 4159 * as a wildcard scope, which matches any scope zone ID. 4160 */ 4161 if (spidx0->src.sin6.sin6_scope_id && 4162 spidx1->src.sin6.sin6_scope_id && 4163 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) 4164 return 0; 4165 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr, 4166 &spidx1->src.sin6.sin6_addr, spidx0->prefs)) 4167 return 0; 4168 break; 4169 default: 4170 /* XXX */ 4171 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) 4172 return 0; 4173 break; 4174 } 4175 4176 switch (spidx0->dst.sa.sa_family) { 4177 case AF_INET: 4178 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY 4179 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) 4180 return 0; 4181 if (!key_bbcmp(&spidx0->dst.sin.sin_addr, 4182 &spidx1->dst.sin.sin_addr, spidx0->prefd)) 4183 return 0; 4184 break; 4185 case AF_INET6: 4186 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY 4187 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) 4188 return 0; 4189 /* 4190 * scope_id check. if sin6_scope_id is 0, we regard it 4191 * as a wildcard scope, which matches any scope zone ID. 4192 */ 4193 if (spidx0->dst.sin6.sin6_scope_id && 4194 spidx1->dst.sin6.sin6_scope_id && 4195 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) 4196 return 0; 4197 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr, 4198 &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) 4199 return 0; 4200 break; 4201 default: 4202 /* XXX */ 4203 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) 4204 return 0; 4205 break; 4206 } 4207 4208 /* XXX Do we check other field ? e.g. flowinfo */ 4209 4210 return 1; 4211 } 4212 4213 /* returns 0 on match */ 4214 static int 4215 key_sockaddrcmp( 4216 const struct sockaddr *sa1, 4217 const struct sockaddr *sa2, 4218 int port) 4219 { 4220 #ifdef satosin 4221 #undef satosin 4222 #endif 4223 #define satosin(s) ((const struct sockaddr_in *)s) 4224 #ifdef satosin6 4225 #undef satosin6 4226 #endif 4227 #define satosin6(s) ((const struct sockaddr_in6 *)s) 4228 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) 4229 return 1; 4230 4231 switch (sa1->sa_family) { 4232 case AF_INET: 4233 if (sa1->sa_len != sizeof(struct sockaddr_in)) 4234 return 1; 4235 if (satosin(sa1)->sin_addr.s_addr != 4236 satosin(sa2)->sin_addr.s_addr) { 4237 return 1; 4238 } 4239 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port) 4240 return 1; 4241 break; 4242 case AF_INET6: 4243 if (sa1->sa_len != sizeof(struct sockaddr_in6)) 4244 return 1; /*EINVAL*/ 4245 if (satosin6(sa1)->sin6_scope_id != 4246 satosin6(sa2)->sin6_scope_id) { 4247 return 1; 4248 } 4249 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr, 4250 &satosin6(sa2)->sin6_addr)) { 4251 return 1; 4252 } 4253 if (port && 4254 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) { 4255 return 1; 4256 } 4257 break; 4258 default: 4259 if (bcmp(sa1, sa2, sa1->sa_len) != 0) 4260 return 1; 4261 break; 4262 } 4263 4264 return 0; 4265 #undef satosin 4266 #undef satosin6 4267 } 4268 4269 /* 4270 * compare two buffers with mask. 4271 * IN: 4272 * addr1: source 4273 * addr2: object 4274 * bits: Number of bits to compare 4275 * OUT: 4276 * 1 : equal 4277 * 0 : not equal 4278 */ 4279 static int 4280 key_bbcmp(const void *a1, const void *a2, u_int bits) 4281 { 4282 const unsigned char *p1 = a1; 4283 const unsigned char *p2 = a2; 4284 4285 /* XXX: This could be considerably faster if we compare a word 4286 * at a time, but it is complicated on LSB Endian machines */ 4287 4288 /* Handle null pointers */ 4289 if (p1 == NULL || p2 == NULL) 4290 return (p1 == p2); 4291 4292 while (bits >= 8) { 4293 if (*p1++ != *p2++) 4294 return 0; 4295 bits -= 8; 4296 } 4297 4298 if (bits > 0) { 4299 u_int8_t mask = ~((1<<(8-bits))-1); 4300 if ((*p1 & mask) != (*p2 & mask)) 4301 return 0; 4302 } 4303 return 1; /* Match! */ 4304 } 4305 4306 static void 4307 key_flush_spd(time_t now) 4308 { 4309 static u_int16_t sptree_scangen = 0; 4310 u_int16_t gen = sptree_scangen++; 4311 struct secpolicy *sp; 4312 u_int dir; 4313 4314 /* SPD */ 4315 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 4316 restart: 4317 SPTREE_LOCK(); 4318 LIST_FOREACH(sp, &V_sptree[dir], chain) { 4319 if (sp->scangen == gen) /* previously handled */ 4320 continue; 4321 sp->scangen = gen; 4322 if (sp->state == IPSEC_SPSTATE_DEAD && 4323 sp->refcnt == 1) { 4324 /* 4325 * Ensure that we only decrease refcnt once, 4326 * when we're the last consumer. 4327 * Directly call SP_DELREF/key_delsp instead 4328 * of KEY_FREESP to avoid unlocking/relocking 4329 * SPTREE_LOCK before key_delsp: may refcnt 4330 * be increased again during that time ? 4331 * NB: also clean entries created by 4332 * key_spdflush 4333 */ 4334 SP_DELREF(sp); 4335 key_delsp(sp); 4336 SPTREE_UNLOCK(); 4337 goto restart; 4338 } 4339 if (sp->lifetime == 0 && sp->validtime == 0) 4340 continue; 4341 if ((sp->lifetime && now - sp->created > sp->lifetime) 4342 || (sp->validtime && now - sp->lastused > sp->validtime)) { 4343 sp->state = IPSEC_SPSTATE_DEAD; 4344 SPTREE_UNLOCK(); 4345 key_spdexpire(sp); 4346 goto restart; 4347 } 4348 } 4349 SPTREE_UNLOCK(); 4350 } 4351 } 4352 4353 static void 4354 key_flush_sad(time_t now) 4355 { 4356 struct secashead *sah, *nextsah; 4357 struct secasvar *sav, *nextsav; 4358 4359 /* SAD */ 4360 SAHTREE_LOCK(); 4361 LIST_FOREACH_SAFE(sah, &V_sahtree, chain, nextsah) { 4362 /* if sah has been dead, then delete it and process next sah. */ 4363 if (sah->state == SADB_SASTATE_DEAD) { 4364 key_delsah(sah); 4365 continue; 4366 } 4367 4368 /* if LARVAL entry doesn't become MATURE, delete it. */ 4369 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) { 4370 /* Need to also check refcnt for a larval SA ??? */ 4371 if (now - sav->created > V_key_larval_lifetime) 4372 KEY_FREESAV(&sav); 4373 } 4374 4375 /* 4376 * check MATURE entry to start to send expire message 4377 * whether or not. 4378 */ 4379 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) { 4380 /* we don't need to check. */ 4381 if (sav->lft_s == NULL) 4382 continue; 4383 4384 /* sanity check */ 4385 if (sav->lft_c == NULL) { 4386 ipseclog((LOG_DEBUG,"%s: there is no CURRENT " 4387 "time, why?\n", __func__)); 4388 continue; 4389 } 4390 4391 /* check SOFT lifetime */ 4392 if (sav->lft_s->addtime != 0 && 4393 now - sav->created > sav->lft_s->addtime) { 4394 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4395 /* 4396 * Actually, only send expire message if 4397 * SA has been used, as it was done before, 4398 * but should we always send such message, 4399 * and let IKE daemon decide if it should be 4400 * renegotiated or not ? 4401 * XXX expire message will actually NOT be 4402 * sent if SA is only used after soft 4403 * lifetime has been reached, see below 4404 * (DYING state) 4405 */ 4406 if (sav->lft_c->usetime != 0) 4407 key_expire(sav); 4408 } 4409 /* check SOFT lifetime by bytes */ 4410 /* 4411 * XXX I don't know the way to delete this SA 4412 * when new SA is installed. Caution when it's 4413 * installed too big lifetime by time. 4414 */ 4415 else if (sav->lft_s->bytes != 0 && 4416 sav->lft_s->bytes < sav->lft_c->bytes) { 4417 4418 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4419 /* 4420 * XXX If we keep to send expire 4421 * message in the status of 4422 * DYING. Do remove below code. 4423 */ 4424 key_expire(sav); 4425 } 4426 } 4427 4428 /* check DYING entry to change status to DEAD. */ 4429 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) { 4430 /* we don't need to check. */ 4431 if (sav->lft_h == NULL) 4432 continue; 4433 4434 /* sanity check */ 4435 if (sav->lft_c == NULL) { 4436 ipseclog((LOG_DEBUG, "%s: there is no CURRENT " 4437 "time, why?\n", __func__)); 4438 continue; 4439 } 4440 4441 if (sav->lft_h->addtime != 0 && 4442 now - sav->created > sav->lft_h->addtime) { 4443 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4444 KEY_FREESAV(&sav); 4445 } 4446 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */ 4447 else if (sav->lft_s != NULL 4448 && sav->lft_s->addtime != 0 4449 && now - sav->created > sav->lft_s->addtime) { 4450 /* 4451 * XXX: should be checked to be 4452 * installed the valid SA. 4453 */ 4454 4455 /* 4456 * If there is no SA then sending 4457 * expire message. 4458 */ 4459 key_expire(sav); 4460 } 4461 #endif 4462 /* check HARD lifetime by bytes */ 4463 else if (sav->lft_h->bytes != 0 && 4464 sav->lft_h->bytes < sav->lft_c->bytes) { 4465 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4466 KEY_FREESAV(&sav); 4467 } 4468 } 4469 4470 /* delete entry in DEAD */ 4471 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) { 4472 /* sanity check */ 4473 if (sav->state != SADB_SASTATE_DEAD) { 4474 ipseclog((LOG_DEBUG, "%s: invalid sav->state " 4475 "(queue: %d SA: %d): kill it anyway\n", 4476 __func__, 4477 SADB_SASTATE_DEAD, sav->state)); 4478 } 4479 /* 4480 * do not call key_freesav() here. 4481 * sav should already be freed, and sav->refcnt 4482 * shows other references to sav 4483 * (such as from SPD). 4484 */ 4485 } 4486 } 4487 SAHTREE_UNLOCK(); 4488 } 4489 4490 static void 4491 key_flush_acq(time_t now) 4492 { 4493 struct secacq *acq, *nextacq; 4494 4495 /* ACQ tree */ 4496 ACQ_LOCK(); 4497 for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) { 4498 nextacq = LIST_NEXT(acq, chain); 4499 if (now - acq->created > V_key_blockacq_lifetime 4500 && __LIST_CHAINED(acq)) { 4501 LIST_REMOVE(acq, chain); 4502 free(acq, M_IPSEC_SAQ); 4503 } 4504 } 4505 ACQ_UNLOCK(); 4506 } 4507 4508 static void 4509 key_flush_spacq(time_t now) 4510 { 4511 struct secspacq *acq, *nextacq; 4512 4513 /* SP ACQ tree */ 4514 SPACQ_LOCK(); 4515 for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) { 4516 nextacq = LIST_NEXT(acq, chain); 4517 if (now - acq->created > V_key_blockacq_lifetime 4518 && __LIST_CHAINED(acq)) { 4519 LIST_REMOVE(acq, chain); 4520 free(acq, M_IPSEC_SAQ); 4521 } 4522 } 4523 SPACQ_UNLOCK(); 4524 } 4525 4526 /* 4527 * time handler. 4528 * scanning SPD and SAD to check status for each entries, 4529 * and do to remove or to expire. 4530 * XXX: year 2038 problem may remain. 4531 */ 4532 void 4533 key_timehandler(void) 4534 { 4535 VNET_ITERATOR_DECL(vnet_iter); 4536 time_t now = time_second; 4537 4538 VNET_LIST_RLOCK_NOSLEEP(); 4539 VNET_FOREACH(vnet_iter) { 4540 CURVNET_SET(vnet_iter); 4541 key_flush_spd(now); 4542 key_flush_sad(now); 4543 key_flush_acq(now); 4544 key_flush_spacq(now); 4545 CURVNET_RESTORE(); 4546 } 4547 VNET_LIST_RUNLOCK_NOSLEEP(); 4548 4549 #ifndef IPSEC_DEBUG2 4550 /* do exchange to tick time !! */ 4551 (void)timeout((void *)key_timehandler, (void *)0, hz); 4552 #endif /* IPSEC_DEBUG2 */ 4553 } 4554 4555 u_long 4556 key_random() 4557 { 4558 u_long value; 4559 4560 key_randomfill(&value, sizeof(value)); 4561 return value; 4562 } 4563 4564 void 4565 key_randomfill(p, l) 4566 void *p; 4567 size_t l; 4568 { 4569 size_t n; 4570 u_long v; 4571 static int warn = 1; 4572 4573 n = 0; 4574 n = (size_t)read_random(p, (u_int)l); 4575 /* last resort */ 4576 while (n < l) { 4577 v = random(); 4578 bcopy(&v, (u_int8_t *)p + n, 4579 l - n < sizeof(v) ? l - n : sizeof(v)); 4580 n += sizeof(v); 4581 4582 if (warn) { 4583 printf("WARNING: pseudo-random number generator " 4584 "used for IPsec processing\n"); 4585 warn = 0; 4586 } 4587 } 4588 } 4589 4590 /* 4591 * map SADB_SATYPE_* to IPPROTO_*. 4592 * if satype == SADB_SATYPE then satype is mapped to ~0. 4593 * OUT: 4594 * 0: invalid satype. 4595 */ 4596 static u_int16_t 4597 key_satype2proto(u_int8_t satype) 4598 { 4599 switch (satype) { 4600 case SADB_SATYPE_UNSPEC: 4601 return IPSEC_PROTO_ANY; 4602 case SADB_SATYPE_AH: 4603 return IPPROTO_AH; 4604 case SADB_SATYPE_ESP: 4605 return IPPROTO_ESP; 4606 case SADB_X_SATYPE_IPCOMP: 4607 return IPPROTO_IPCOMP; 4608 case SADB_X_SATYPE_TCPSIGNATURE: 4609 return IPPROTO_TCP; 4610 default: 4611 return 0; 4612 } 4613 /* NOTREACHED */ 4614 } 4615 4616 /* 4617 * map IPPROTO_* to SADB_SATYPE_* 4618 * OUT: 4619 * 0: invalid protocol type. 4620 */ 4621 static u_int8_t 4622 key_proto2satype(u_int16_t proto) 4623 { 4624 switch (proto) { 4625 case IPPROTO_AH: 4626 return SADB_SATYPE_AH; 4627 case IPPROTO_ESP: 4628 return SADB_SATYPE_ESP; 4629 case IPPROTO_IPCOMP: 4630 return SADB_X_SATYPE_IPCOMP; 4631 case IPPROTO_TCP: 4632 return SADB_X_SATYPE_TCPSIGNATURE; 4633 default: 4634 return 0; 4635 } 4636 /* NOTREACHED */ 4637 } 4638 4639 /* %%% PF_KEY */ 4640 /* 4641 * SADB_GETSPI processing is to receive 4642 * <base, (SA2), src address, dst address, (SPI range)> 4643 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND 4644 * tree with the status of LARVAL, and send 4645 * <base, SA(*), address(SD)> 4646 * to the IKMPd. 4647 * 4648 * IN: mhp: pointer to the pointer to each header. 4649 * OUT: NULL if fail. 4650 * other if success, return pointer to the message to send. 4651 */ 4652 static int 4653 key_getspi(so, m, mhp) 4654 struct socket *so; 4655 struct mbuf *m; 4656 const struct sadb_msghdr *mhp; 4657 { 4658 struct sadb_address *src0, *dst0; 4659 struct secasindex saidx; 4660 struct secashead *newsah; 4661 struct secasvar *newsav; 4662 u_int8_t proto; 4663 u_int32_t spi; 4664 u_int8_t mode; 4665 u_int32_t reqid; 4666 int error; 4667 4668 IPSEC_ASSERT(so != NULL, ("null socket")); 4669 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4670 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4671 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4672 4673 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4674 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 4675 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4676 __func__)); 4677 return key_senderror(so, m, EINVAL); 4678 } 4679 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4680 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4681 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4682 __func__)); 4683 return key_senderror(so, m, EINVAL); 4684 } 4685 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4686 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4687 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4688 } else { 4689 mode = IPSEC_MODE_ANY; 4690 reqid = 0; 4691 } 4692 4693 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4694 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4695 4696 /* map satype to proto */ 4697 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4698 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4699 __func__)); 4700 return key_senderror(so, m, EINVAL); 4701 } 4702 4703 /* 4704 * Make sure the port numbers are zero. 4705 * In case of NAT-T we will update them later if needed. 4706 */ 4707 switch (((struct sockaddr *)(src0 + 1))->sa_family) { 4708 case AF_INET: 4709 if (((struct sockaddr *)(src0 + 1))->sa_len != 4710 sizeof(struct sockaddr_in)) 4711 return key_senderror(so, m, EINVAL); 4712 ((struct sockaddr_in *)(src0 + 1))->sin_port = 0; 4713 break; 4714 case AF_INET6: 4715 if (((struct sockaddr *)(src0 + 1))->sa_len != 4716 sizeof(struct sockaddr_in6)) 4717 return key_senderror(so, m, EINVAL); 4718 ((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0; 4719 break; 4720 default: 4721 ; /*???*/ 4722 } 4723 switch (((struct sockaddr *)(dst0 + 1))->sa_family) { 4724 case AF_INET: 4725 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4726 sizeof(struct sockaddr_in)) 4727 return key_senderror(so, m, EINVAL); 4728 ((struct sockaddr_in *)(dst0 + 1))->sin_port = 0; 4729 break; 4730 case AF_INET6: 4731 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4732 sizeof(struct sockaddr_in6)) 4733 return key_senderror(so, m, EINVAL); 4734 ((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0; 4735 break; 4736 default: 4737 ; /*???*/ 4738 } 4739 4740 /* XXX boundary check against sa_len */ 4741 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4742 4743 #ifdef IPSEC_NAT_T 4744 /* 4745 * Handle NAT-T info if present. 4746 * We made sure the port numbers are zero above, so we do 4747 * not have to worry in case we do not update them. 4748 */ 4749 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) 4750 ipseclog((LOG_DEBUG, "%s: NAT-T OAi present\n", __func__)); 4751 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) 4752 ipseclog((LOG_DEBUG, "%s: NAT-T OAr present\n", __func__)); 4753 4754 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 4755 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 4756 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 4757 struct sadb_x_nat_t_type *type; 4758 struct sadb_x_nat_t_port *sport, *dport; 4759 4760 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 4761 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 4762 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 4763 ipseclog((LOG_DEBUG, "%s: invalid nat-t message " 4764 "passed.\n", __func__)); 4765 return key_senderror(so, m, EINVAL); 4766 } 4767 4768 sport = (struct sadb_x_nat_t_port *) 4769 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 4770 dport = (struct sadb_x_nat_t_port *) 4771 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 4772 4773 if (sport) 4774 KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port); 4775 if (dport) 4776 KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port); 4777 } 4778 #endif 4779 4780 /* SPI allocation */ 4781 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE], 4782 &saidx); 4783 if (spi == 0) 4784 return key_senderror(so, m, EINVAL); 4785 4786 /* get a SA index */ 4787 if ((newsah = key_getsah(&saidx)) == NULL) { 4788 /* create a new SA index */ 4789 if ((newsah = key_newsah(&saidx)) == NULL) { 4790 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 4791 return key_senderror(so, m, ENOBUFS); 4792 } 4793 } 4794 4795 /* get a new SA */ 4796 /* XXX rewrite */ 4797 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 4798 if (newsav == NULL) { 4799 /* XXX don't free new SA index allocated in above. */ 4800 return key_senderror(so, m, error); 4801 } 4802 4803 /* set spi */ 4804 newsav->spi = htonl(spi); 4805 4806 /* delete the entry in acqtree */ 4807 if (mhp->msg->sadb_msg_seq != 0) { 4808 struct secacq *acq; 4809 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) { 4810 /* reset counter in order to deletion by timehandler. */ 4811 acq->created = time_second; 4812 acq->count = 0; 4813 } 4814 } 4815 4816 { 4817 struct mbuf *n, *nn; 4818 struct sadb_sa *m_sa; 4819 struct sadb_msg *newmsg; 4820 int off, len; 4821 4822 /* create new sadb_msg to reply. */ 4823 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 4824 PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4825 4826 MGETHDR(n, M_NOWAIT, MT_DATA); 4827 if (len > MHLEN) { 4828 MCLGET(n, M_NOWAIT); 4829 if ((n->m_flags & M_EXT) == 0) { 4830 m_freem(n); 4831 n = NULL; 4832 } 4833 } 4834 if (!n) 4835 return key_senderror(so, m, ENOBUFS); 4836 4837 n->m_len = len; 4838 n->m_next = NULL; 4839 off = 0; 4840 4841 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 4842 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 4843 4844 m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off); 4845 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); 4846 m_sa->sadb_sa_exttype = SADB_EXT_SA; 4847 m_sa->sadb_sa_spi = htonl(spi); 4848 off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4849 4850 IPSEC_ASSERT(off == len, 4851 ("length inconsistency (off %u len %u)", off, len)); 4852 4853 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, 4854 SADB_EXT_ADDRESS_DST); 4855 if (!n->m_next) { 4856 m_freem(n); 4857 return key_senderror(so, m, ENOBUFS); 4858 } 4859 4860 if (n->m_len < sizeof(struct sadb_msg)) { 4861 n = m_pullup(n, sizeof(struct sadb_msg)); 4862 if (n == NULL) 4863 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 4864 } 4865 4866 n->m_pkthdr.len = 0; 4867 for (nn = n; nn; nn = nn->m_next) 4868 n->m_pkthdr.len += nn->m_len; 4869 4870 newmsg = mtod(n, struct sadb_msg *); 4871 newmsg->sadb_msg_seq = newsav->seq; 4872 newmsg->sadb_msg_errno = 0; 4873 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 4874 4875 m_freem(m); 4876 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 4877 } 4878 } 4879 4880 /* 4881 * allocating new SPI 4882 * called by key_getspi(). 4883 * OUT: 4884 * 0: failure. 4885 * others: success. 4886 */ 4887 static u_int32_t 4888 key_do_getnewspi(spirange, saidx) 4889 struct sadb_spirange *spirange; 4890 struct secasindex *saidx; 4891 { 4892 u_int32_t newspi; 4893 u_int32_t min, max; 4894 int count = V_key_spi_trycnt; 4895 4896 /* set spi range to allocate */ 4897 if (spirange != NULL) { 4898 min = spirange->sadb_spirange_min; 4899 max = spirange->sadb_spirange_max; 4900 } else { 4901 min = V_key_spi_minval; 4902 max = V_key_spi_maxval; 4903 } 4904 /* IPCOMP needs 2-byte SPI */ 4905 if (saidx->proto == IPPROTO_IPCOMP) { 4906 u_int32_t t; 4907 if (min >= 0x10000) 4908 min = 0xffff; 4909 if (max >= 0x10000) 4910 max = 0xffff; 4911 if (min > max) { 4912 t = min; min = max; max = t; 4913 } 4914 } 4915 4916 if (min == max) { 4917 if (key_checkspidup(saidx, min) != NULL) { 4918 ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n", 4919 __func__, min)); 4920 return 0; 4921 } 4922 4923 count--; /* taking one cost. */ 4924 newspi = min; 4925 4926 } else { 4927 4928 /* init SPI */ 4929 newspi = 0; 4930 4931 /* when requesting to allocate spi ranged */ 4932 while (count--) { 4933 /* generate pseudo-random SPI value ranged. */ 4934 newspi = min + (key_random() % (max - min + 1)); 4935 4936 if (key_checkspidup(saidx, newspi) == NULL) 4937 break; 4938 } 4939 4940 if (count == 0 || newspi == 0) { 4941 ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n", 4942 __func__)); 4943 return 0; 4944 } 4945 } 4946 4947 /* statistics */ 4948 keystat.getspi_count = 4949 (keystat.getspi_count + V_key_spi_trycnt - count) / 2; 4950 4951 return newspi; 4952 } 4953 4954 /* 4955 * SADB_UPDATE processing 4956 * receive 4957 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4958 * key(AE), (identity(SD),) (sensitivity)> 4959 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. 4960 * and send 4961 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4962 * (identity(SD),) (sensitivity)> 4963 * to the ikmpd. 4964 * 4965 * m will always be freed. 4966 */ 4967 static int 4968 key_update(so, m, mhp) 4969 struct socket *so; 4970 struct mbuf *m; 4971 const struct sadb_msghdr *mhp; 4972 { 4973 struct sadb_sa *sa0; 4974 struct sadb_address *src0, *dst0; 4975 #ifdef IPSEC_NAT_T 4976 struct sadb_x_nat_t_type *type; 4977 struct sadb_x_nat_t_port *sport, *dport; 4978 struct sadb_address *iaddr, *raddr; 4979 struct sadb_x_nat_t_frag *frag; 4980 #endif 4981 struct secasindex saidx; 4982 struct secashead *sah; 4983 struct secasvar *sav; 4984 u_int16_t proto; 4985 u_int8_t mode; 4986 u_int32_t reqid; 4987 int error; 4988 4989 IPSEC_ASSERT(so != NULL, ("null socket")); 4990 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4991 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4992 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4993 4994 /* map satype to proto */ 4995 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4996 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4997 __func__)); 4998 return key_senderror(so, m, EINVAL); 4999 } 5000 5001 if (mhp->ext[SADB_EXT_SA] == NULL || 5002 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5003 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5004 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5005 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5006 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5007 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5008 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5009 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5010 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5011 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5012 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5013 __func__)); 5014 return key_senderror(so, m, EINVAL); 5015 } 5016 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5017 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5018 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5019 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5020 __func__)); 5021 return key_senderror(so, m, EINVAL); 5022 } 5023 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5024 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 5025 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 5026 } else { 5027 mode = IPSEC_MODE_ANY; 5028 reqid = 0; 5029 } 5030 /* XXX boundary checking for other extensions */ 5031 5032 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5033 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5034 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5035 5036 /* XXX boundary check against sa_len */ 5037 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 5038 5039 /* 5040 * Make sure the port numbers are zero. 5041 * In case of NAT-T we will update them later if needed. 5042 */ 5043 KEY_PORTTOSADDR(&saidx.src, 0); 5044 KEY_PORTTOSADDR(&saidx.dst, 0); 5045 5046 #ifdef IPSEC_NAT_T 5047 /* 5048 * Handle NAT-T info if present. 5049 */ 5050 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 5051 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5052 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5053 5054 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 5055 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5056 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5057 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5058 __func__)); 5059 return key_senderror(so, m, EINVAL); 5060 } 5061 5062 type = (struct sadb_x_nat_t_type *) 5063 mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5064 sport = (struct sadb_x_nat_t_port *) 5065 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5066 dport = (struct sadb_x_nat_t_port *) 5067 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5068 } else { 5069 type = 0; 5070 sport = dport = 0; 5071 } 5072 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL && 5073 mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { 5074 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) || 5075 mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { 5076 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5077 __func__)); 5078 return key_senderror(so, m, EINVAL); 5079 } 5080 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5081 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5082 ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__)); 5083 } else { 5084 iaddr = raddr = NULL; 5085 } 5086 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { 5087 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { 5088 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5089 __func__)); 5090 return key_senderror(so, m, EINVAL); 5091 } 5092 frag = (struct sadb_x_nat_t_frag *) 5093 mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 5094 } else { 5095 frag = 0; 5096 } 5097 #endif 5098 5099 /* get a SA header */ 5100 if ((sah = key_getsah(&saidx)) == NULL) { 5101 ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__)); 5102 return key_senderror(so, m, ENOENT); 5103 } 5104 5105 /* set spidx if there */ 5106 /* XXX rewrite */ 5107 error = key_setident(sah, m, mhp); 5108 if (error) 5109 return key_senderror(so, m, error); 5110 5111 /* find a SA with sequence number. */ 5112 #ifdef IPSEC_DOSEQCHECK 5113 if (mhp->msg->sadb_msg_seq != 0 5114 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) { 5115 ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u " 5116 "exists.\n", __func__, mhp->msg->sadb_msg_seq)); 5117 return key_senderror(so, m, ENOENT); 5118 } 5119 #else 5120 SAHTREE_LOCK(); 5121 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5122 SAHTREE_UNLOCK(); 5123 if (sav == NULL) { 5124 ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n", 5125 __func__, (u_int32_t)ntohl(sa0->sadb_sa_spi))); 5126 return key_senderror(so, m, EINVAL); 5127 } 5128 #endif 5129 5130 /* validity check */ 5131 if (sav->sah->saidx.proto != proto) { 5132 ipseclog((LOG_DEBUG, "%s: protocol mismatched " 5133 "(DB=%u param=%u)\n", __func__, 5134 sav->sah->saidx.proto, proto)); 5135 return key_senderror(so, m, EINVAL); 5136 } 5137 #ifdef IPSEC_DOSEQCHECK 5138 if (sav->spi != sa0->sadb_sa_spi) { 5139 ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n", 5140 __func__, 5141 (u_int32_t)ntohl(sav->spi), 5142 (u_int32_t)ntohl(sa0->sadb_sa_spi))); 5143 return key_senderror(so, m, EINVAL); 5144 } 5145 #endif 5146 if (sav->pid != mhp->msg->sadb_msg_pid) { 5147 ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n", 5148 __func__, sav->pid, mhp->msg->sadb_msg_pid)); 5149 return key_senderror(so, m, EINVAL); 5150 } 5151 5152 /* copy sav values */ 5153 error = key_setsaval(sav, m, mhp); 5154 if (error) { 5155 KEY_FREESAV(&sav); 5156 return key_senderror(so, m, error); 5157 } 5158 5159 #ifdef IPSEC_NAT_T 5160 /* 5161 * Handle more NAT-T info if present, 5162 * now that we have a sav to fill. 5163 */ 5164 if (type) 5165 sav->natt_type = type->sadb_x_nat_t_type_type; 5166 5167 if (sport) 5168 KEY_PORTTOSADDR(&sav->sah->saidx.src, 5169 sport->sadb_x_nat_t_port_port); 5170 if (dport) 5171 KEY_PORTTOSADDR(&sav->sah->saidx.dst, 5172 dport->sadb_x_nat_t_port_port); 5173 5174 #if 0 5175 /* 5176 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0. 5177 * We should actually check for a minimum MTU here, if we 5178 * want to support it in ip_output. 5179 */ 5180 if (frag) 5181 sav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen; 5182 #endif 5183 #endif 5184 5185 /* check SA values to be mature. */ 5186 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) { 5187 KEY_FREESAV(&sav); 5188 return key_senderror(so, m, 0); 5189 } 5190 5191 { 5192 struct mbuf *n; 5193 5194 /* set msg buf from mhp */ 5195 n = key_getmsgbuf_x1(m, mhp); 5196 if (n == NULL) { 5197 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5198 return key_senderror(so, m, ENOBUFS); 5199 } 5200 5201 m_freem(m); 5202 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5203 } 5204 } 5205 5206 /* 5207 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL. 5208 * only called by key_update(). 5209 * OUT: 5210 * NULL : not found 5211 * others : found, pointer to a SA. 5212 */ 5213 #ifdef IPSEC_DOSEQCHECK 5214 static struct secasvar * 5215 key_getsavbyseq(sah, seq) 5216 struct secashead *sah; 5217 u_int32_t seq; 5218 { 5219 struct secasvar *sav; 5220 u_int state; 5221 5222 state = SADB_SASTATE_LARVAL; 5223 5224 /* search SAD with sequence number ? */ 5225 LIST_FOREACH(sav, &sah->savtree[state], chain) { 5226 5227 KEY_CHKSASTATE(state, sav->state, __func__); 5228 5229 if (sav->seq == seq) { 5230 sa_addref(sav); 5231 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 5232 printf("DP %s cause refcnt++:%d SA:%p\n", 5233 __func__, sav->refcnt, sav)); 5234 return sav; 5235 } 5236 } 5237 5238 return NULL; 5239 } 5240 #endif 5241 5242 /* 5243 * SADB_ADD processing 5244 * add an entry to SA database, when received 5245 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5246 * key(AE), (identity(SD),) (sensitivity)> 5247 * from the ikmpd, 5248 * and send 5249 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5250 * (identity(SD),) (sensitivity)> 5251 * to the ikmpd. 5252 * 5253 * IGNORE identity and sensitivity messages. 5254 * 5255 * m will always be freed. 5256 */ 5257 static int 5258 key_add(so, m, mhp) 5259 struct socket *so; 5260 struct mbuf *m; 5261 const struct sadb_msghdr *mhp; 5262 { 5263 struct sadb_sa *sa0; 5264 struct sadb_address *src0, *dst0; 5265 #ifdef IPSEC_NAT_T 5266 struct sadb_x_nat_t_type *type; 5267 struct sadb_address *iaddr, *raddr; 5268 struct sadb_x_nat_t_frag *frag; 5269 #endif 5270 struct secasindex saidx; 5271 struct secashead *newsah; 5272 struct secasvar *newsav; 5273 u_int16_t proto; 5274 u_int8_t mode; 5275 u_int32_t reqid; 5276 int error; 5277 5278 IPSEC_ASSERT(so != NULL, ("null socket")); 5279 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5280 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5281 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5282 5283 /* map satype to proto */ 5284 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5285 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5286 __func__)); 5287 return key_senderror(so, m, EINVAL); 5288 } 5289 5290 if (mhp->ext[SADB_EXT_SA] == NULL || 5291 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5292 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5293 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5294 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5295 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5296 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5297 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5298 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5299 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5300 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5301 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5302 __func__)); 5303 return key_senderror(so, m, EINVAL); 5304 } 5305 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5306 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5307 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5308 /* XXX need more */ 5309 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5310 __func__)); 5311 return key_senderror(so, m, EINVAL); 5312 } 5313 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5314 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 5315 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 5316 } else { 5317 mode = IPSEC_MODE_ANY; 5318 reqid = 0; 5319 } 5320 5321 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5322 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5323 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5324 5325 /* XXX boundary check against sa_len */ 5326 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 5327 5328 /* 5329 * Make sure the port numbers are zero. 5330 * In case of NAT-T we will update them later if needed. 5331 */ 5332 KEY_PORTTOSADDR(&saidx.src, 0); 5333 KEY_PORTTOSADDR(&saidx.dst, 0); 5334 5335 #ifdef IPSEC_NAT_T 5336 /* 5337 * Handle NAT-T info if present. 5338 */ 5339 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 5340 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5341 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5342 struct sadb_x_nat_t_port *sport, *dport; 5343 5344 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 5345 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5346 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5347 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5348 __func__)); 5349 return key_senderror(so, m, EINVAL); 5350 } 5351 5352 type = (struct sadb_x_nat_t_type *) 5353 mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5354 sport = (struct sadb_x_nat_t_port *) 5355 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5356 dport = (struct sadb_x_nat_t_port *) 5357 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5358 5359 if (sport) 5360 KEY_PORTTOSADDR(&saidx.src, 5361 sport->sadb_x_nat_t_port_port); 5362 if (dport) 5363 KEY_PORTTOSADDR(&saidx.dst, 5364 dport->sadb_x_nat_t_port_port); 5365 } else { 5366 type = 0; 5367 } 5368 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL && 5369 mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { 5370 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) || 5371 mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { 5372 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5373 __func__)); 5374 return key_senderror(so, m, EINVAL); 5375 } 5376 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5377 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5378 ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__)); 5379 } else { 5380 iaddr = raddr = NULL; 5381 } 5382 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { 5383 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { 5384 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5385 __func__)); 5386 return key_senderror(so, m, EINVAL); 5387 } 5388 frag = (struct sadb_x_nat_t_frag *) 5389 mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 5390 } else { 5391 frag = 0; 5392 } 5393 #endif 5394 5395 /* get a SA header */ 5396 if ((newsah = key_getsah(&saidx)) == NULL) { 5397 /* create a new SA header */ 5398 if ((newsah = key_newsah(&saidx)) == NULL) { 5399 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 5400 return key_senderror(so, m, ENOBUFS); 5401 } 5402 } 5403 5404 /* set spidx if there */ 5405 /* XXX rewrite */ 5406 error = key_setident(newsah, m, mhp); 5407 if (error) { 5408 return key_senderror(so, m, error); 5409 } 5410 5411 /* create new SA entry. */ 5412 /* We can create new SA only if SPI is differenct. */ 5413 SAHTREE_LOCK(); 5414 newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi); 5415 SAHTREE_UNLOCK(); 5416 if (newsav != NULL) { 5417 ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__)); 5418 return key_senderror(so, m, EEXIST); 5419 } 5420 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 5421 if (newsav == NULL) { 5422 return key_senderror(so, m, error); 5423 } 5424 5425 #ifdef IPSEC_NAT_T 5426 /* 5427 * Handle more NAT-T info if present, 5428 * now that we have a sav to fill. 5429 */ 5430 if (type) 5431 newsav->natt_type = type->sadb_x_nat_t_type_type; 5432 5433 #if 0 5434 /* 5435 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0. 5436 * We should actually check for a minimum MTU here, if we 5437 * want to support it in ip_output. 5438 */ 5439 if (frag) 5440 newsav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen; 5441 #endif 5442 #endif 5443 5444 /* check SA values to be mature. */ 5445 if ((error = key_mature(newsav)) != 0) { 5446 KEY_FREESAV(&newsav); 5447 return key_senderror(so, m, error); 5448 } 5449 5450 /* 5451 * don't call key_freesav() here, as we would like to keep the SA 5452 * in the database on success. 5453 */ 5454 5455 { 5456 struct mbuf *n; 5457 5458 /* set msg buf from mhp */ 5459 n = key_getmsgbuf_x1(m, mhp); 5460 if (n == NULL) { 5461 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5462 return key_senderror(so, m, ENOBUFS); 5463 } 5464 5465 m_freem(m); 5466 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5467 } 5468 } 5469 5470 /* m is retained */ 5471 static int 5472 key_setident(sah, m, mhp) 5473 struct secashead *sah; 5474 struct mbuf *m; 5475 const struct sadb_msghdr *mhp; 5476 { 5477 const struct sadb_ident *idsrc, *iddst; 5478 int idsrclen, iddstlen; 5479 5480 IPSEC_ASSERT(sah != NULL, ("null secashead")); 5481 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5482 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5483 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5484 5485 /* don't make buffer if not there */ 5486 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL && 5487 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5488 sah->idents = NULL; 5489 sah->identd = NULL; 5490 return 0; 5491 } 5492 5493 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL || 5494 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5495 ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__)); 5496 return EINVAL; 5497 } 5498 5499 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC]; 5500 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST]; 5501 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC]; 5502 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST]; 5503 5504 /* validity check */ 5505 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { 5506 ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__)); 5507 return EINVAL; 5508 } 5509 5510 switch (idsrc->sadb_ident_type) { 5511 case SADB_IDENTTYPE_PREFIX: 5512 case SADB_IDENTTYPE_FQDN: 5513 case SADB_IDENTTYPE_USERFQDN: 5514 default: 5515 /* XXX do nothing */ 5516 sah->idents = NULL; 5517 sah->identd = NULL; 5518 return 0; 5519 } 5520 5521 /* make structure */ 5522 sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5523 if (sah->idents == NULL) { 5524 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5525 return ENOBUFS; 5526 } 5527 sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5528 if (sah->identd == NULL) { 5529 free(sah->idents, M_IPSEC_MISC); 5530 sah->idents = NULL; 5531 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5532 return ENOBUFS; 5533 } 5534 sah->idents->type = idsrc->sadb_ident_type; 5535 sah->idents->id = idsrc->sadb_ident_id; 5536 5537 sah->identd->type = iddst->sadb_ident_type; 5538 sah->identd->id = iddst->sadb_ident_id; 5539 5540 return 0; 5541 } 5542 5543 /* 5544 * m will not be freed on return. 5545 * it is caller's responsibility to free the result. 5546 */ 5547 static struct mbuf * 5548 key_getmsgbuf_x1(m, mhp) 5549 struct mbuf *m; 5550 const struct sadb_msghdr *mhp; 5551 { 5552 struct mbuf *n; 5553 5554 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5555 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5556 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5557 5558 /* create new sadb_msg to reply. */ 5559 n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED, 5560 SADB_EXT_SA, SADB_X_EXT_SA2, 5561 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, 5562 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 5563 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST); 5564 if (!n) 5565 return NULL; 5566 5567 if (n->m_len < sizeof(struct sadb_msg)) { 5568 n = m_pullup(n, sizeof(struct sadb_msg)); 5569 if (n == NULL) 5570 return NULL; 5571 } 5572 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; 5573 mtod(n, struct sadb_msg *)->sadb_msg_len = 5574 PFKEY_UNIT64(n->m_pkthdr.len); 5575 5576 return n; 5577 } 5578 5579 static int key_delete_all __P((struct socket *, struct mbuf *, 5580 const struct sadb_msghdr *, u_int16_t)); 5581 5582 /* 5583 * SADB_DELETE processing 5584 * receive 5585 * <base, SA(*), address(SD)> 5586 * from the ikmpd, and set SADB_SASTATE_DEAD, 5587 * and send, 5588 * <base, SA(*), address(SD)> 5589 * to the ikmpd. 5590 * 5591 * m will always be freed. 5592 */ 5593 static int 5594 key_delete(so, m, mhp) 5595 struct socket *so; 5596 struct mbuf *m; 5597 const struct sadb_msghdr *mhp; 5598 { 5599 struct sadb_sa *sa0; 5600 struct sadb_address *src0, *dst0; 5601 struct secasindex saidx; 5602 struct secashead *sah; 5603 struct secasvar *sav = NULL; 5604 u_int16_t proto; 5605 5606 IPSEC_ASSERT(so != NULL, ("null socket")); 5607 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5608 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5609 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5610 5611 /* map satype to proto */ 5612 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5613 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5614 __func__)); 5615 return key_senderror(so, m, EINVAL); 5616 } 5617 5618 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5619 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5620 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5621 __func__)); 5622 return key_senderror(so, m, EINVAL); 5623 } 5624 5625 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5626 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5627 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5628 __func__)); 5629 return key_senderror(so, m, EINVAL); 5630 } 5631 5632 if (mhp->ext[SADB_EXT_SA] == NULL) { 5633 /* 5634 * Caller wants us to delete all non-LARVAL SAs 5635 * that match the src/dst. This is used during 5636 * IKE INITIAL-CONTACT. 5637 */ 5638 ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__)); 5639 return key_delete_all(so, m, mhp, proto); 5640 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { 5641 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5642 __func__)); 5643 return key_senderror(so, m, EINVAL); 5644 } 5645 5646 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5647 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5648 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5649 5650 /* XXX boundary check against sa_len */ 5651 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5652 5653 /* 5654 * Make sure the port numbers are zero. 5655 * In case of NAT-T we will update them later if needed. 5656 */ 5657 KEY_PORTTOSADDR(&saidx.src, 0); 5658 KEY_PORTTOSADDR(&saidx.dst, 0); 5659 5660 #ifdef IPSEC_NAT_T 5661 /* 5662 * Handle NAT-T info if present. 5663 */ 5664 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5665 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5666 struct sadb_x_nat_t_port *sport, *dport; 5667 5668 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5669 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5670 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5671 __func__)); 5672 return key_senderror(so, m, EINVAL); 5673 } 5674 5675 sport = (struct sadb_x_nat_t_port *) 5676 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5677 dport = (struct sadb_x_nat_t_port *) 5678 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5679 5680 if (sport) 5681 KEY_PORTTOSADDR(&saidx.src, 5682 sport->sadb_x_nat_t_port_port); 5683 if (dport) 5684 KEY_PORTTOSADDR(&saidx.dst, 5685 dport->sadb_x_nat_t_port_port); 5686 } 5687 #endif 5688 5689 /* get a SA header */ 5690 SAHTREE_LOCK(); 5691 LIST_FOREACH(sah, &V_sahtree, chain) { 5692 if (sah->state == SADB_SASTATE_DEAD) 5693 continue; 5694 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5695 continue; 5696 5697 /* get a SA with SPI. */ 5698 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5699 if (sav) 5700 break; 5701 } 5702 if (sah == NULL) { 5703 SAHTREE_UNLOCK(); 5704 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5705 return key_senderror(so, m, ENOENT); 5706 } 5707 5708 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5709 KEY_FREESAV(&sav); 5710 SAHTREE_UNLOCK(); 5711 5712 { 5713 struct mbuf *n; 5714 struct sadb_msg *newmsg; 5715 5716 /* create new sadb_msg to reply. */ 5717 /* XXX-BZ NAT-T extensions? */ 5718 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 5719 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5720 if (!n) 5721 return key_senderror(so, m, ENOBUFS); 5722 5723 if (n->m_len < sizeof(struct sadb_msg)) { 5724 n = m_pullup(n, sizeof(struct sadb_msg)); 5725 if (n == NULL) 5726 return key_senderror(so, m, ENOBUFS); 5727 } 5728 newmsg = mtod(n, struct sadb_msg *); 5729 newmsg->sadb_msg_errno = 0; 5730 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5731 5732 m_freem(m); 5733 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5734 } 5735 } 5736 5737 /* 5738 * delete all SAs for src/dst. Called from key_delete(). 5739 */ 5740 static int 5741 key_delete_all(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp, 5742 u_int16_t proto) 5743 { 5744 struct sadb_address *src0, *dst0; 5745 struct secasindex saidx; 5746 struct secashead *sah; 5747 struct secasvar *sav, *nextsav; 5748 u_int stateidx, state; 5749 5750 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5751 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5752 5753 /* XXX boundary check against sa_len */ 5754 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5755 5756 /* 5757 * Make sure the port numbers are zero. 5758 * In case of NAT-T we will update them later if needed. 5759 */ 5760 KEY_PORTTOSADDR(&saidx.src, 0); 5761 KEY_PORTTOSADDR(&saidx.dst, 0); 5762 5763 #ifdef IPSEC_NAT_T 5764 /* 5765 * Handle NAT-T info if present. 5766 */ 5767 5768 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5769 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5770 struct sadb_x_nat_t_port *sport, *dport; 5771 5772 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5773 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5774 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5775 __func__)); 5776 return key_senderror(so, m, EINVAL); 5777 } 5778 5779 sport = (struct sadb_x_nat_t_port *) 5780 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5781 dport = (struct sadb_x_nat_t_port *) 5782 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5783 5784 if (sport) 5785 KEY_PORTTOSADDR(&saidx.src, 5786 sport->sadb_x_nat_t_port_port); 5787 if (dport) 5788 KEY_PORTTOSADDR(&saidx.dst, 5789 dport->sadb_x_nat_t_port_port); 5790 } 5791 #endif 5792 5793 SAHTREE_LOCK(); 5794 LIST_FOREACH(sah, &V_sahtree, chain) { 5795 if (sah->state == SADB_SASTATE_DEAD) 5796 continue; 5797 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5798 continue; 5799 5800 /* Delete all non-LARVAL SAs. */ 5801 for (stateidx = 0; 5802 stateidx < _ARRAYLEN(saorder_state_alive); 5803 stateidx++) { 5804 state = saorder_state_alive[stateidx]; 5805 if (state == SADB_SASTATE_LARVAL) 5806 continue; 5807 for (sav = LIST_FIRST(&sah->savtree[state]); 5808 sav != NULL; sav = nextsav) { 5809 nextsav = LIST_NEXT(sav, chain); 5810 /* sanity check */ 5811 if (sav->state != state) { 5812 ipseclog((LOG_DEBUG, "%s: invalid " 5813 "sav->state (queue %d SA %d)\n", 5814 __func__, state, sav->state)); 5815 continue; 5816 } 5817 5818 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5819 KEY_FREESAV(&sav); 5820 } 5821 } 5822 } 5823 SAHTREE_UNLOCK(); 5824 { 5825 struct mbuf *n; 5826 struct sadb_msg *newmsg; 5827 5828 /* create new sadb_msg to reply. */ 5829 /* XXX-BZ NAT-T extensions? */ 5830 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, 5831 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5832 if (!n) 5833 return key_senderror(so, m, ENOBUFS); 5834 5835 if (n->m_len < sizeof(struct sadb_msg)) { 5836 n = m_pullup(n, sizeof(struct sadb_msg)); 5837 if (n == NULL) 5838 return key_senderror(so, m, ENOBUFS); 5839 } 5840 newmsg = mtod(n, struct sadb_msg *); 5841 newmsg->sadb_msg_errno = 0; 5842 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5843 5844 m_freem(m); 5845 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5846 } 5847 } 5848 5849 /* 5850 * SADB_GET processing 5851 * receive 5852 * <base, SA(*), address(SD)> 5853 * from the ikmpd, and get a SP and a SA to respond, 5854 * and send, 5855 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), 5856 * (identity(SD),) (sensitivity)> 5857 * to the ikmpd. 5858 * 5859 * m will always be freed. 5860 */ 5861 static int 5862 key_get(so, m, mhp) 5863 struct socket *so; 5864 struct mbuf *m; 5865 const struct sadb_msghdr *mhp; 5866 { 5867 struct sadb_sa *sa0; 5868 struct sadb_address *src0, *dst0; 5869 struct secasindex saidx; 5870 struct secashead *sah; 5871 struct secasvar *sav = NULL; 5872 u_int16_t proto; 5873 5874 IPSEC_ASSERT(so != NULL, ("null socket")); 5875 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5876 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5877 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5878 5879 /* map satype to proto */ 5880 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5881 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5882 __func__)); 5883 return key_senderror(so, m, EINVAL); 5884 } 5885 5886 if (mhp->ext[SADB_EXT_SA] == NULL || 5887 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5888 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5889 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5890 __func__)); 5891 return key_senderror(so, m, EINVAL); 5892 } 5893 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5894 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5895 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5896 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5897 __func__)); 5898 return key_senderror(so, m, EINVAL); 5899 } 5900 5901 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5902 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5903 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5904 5905 /* XXX boundary check against sa_len */ 5906 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5907 5908 /* 5909 * Make sure the port numbers are zero. 5910 * In case of NAT-T we will update them later if needed. 5911 */ 5912 KEY_PORTTOSADDR(&saidx.src, 0); 5913 KEY_PORTTOSADDR(&saidx.dst, 0); 5914 5915 #ifdef IPSEC_NAT_T 5916 /* 5917 * Handle NAT-T info if present. 5918 */ 5919 5920 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5921 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5922 struct sadb_x_nat_t_port *sport, *dport; 5923 5924 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5925 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5926 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5927 __func__)); 5928 return key_senderror(so, m, EINVAL); 5929 } 5930 5931 sport = (struct sadb_x_nat_t_port *) 5932 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5933 dport = (struct sadb_x_nat_t_port *) 5934 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5935 5936 if (sport) 5937 KEY_PORTTOSADDR(&saidx.src, 5938 sport->sadb_x_nat_t_port_port); 5939 if (dport) 5940 KEY_PORTTOSADDR(&saidx.dst, 5941 dport->sadb_x_nat_t_port_port); 5942 } 5943 #endif 5944 5945 /* get a SA header */ 5946 SAHTREE_LOCK(); 5947 LIST_FOREACH(sah, &V_sahtree, chain) { 5948 if (sah->state == SADB_SASTATE_DEAD) 5949 continue; 5950 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5951 continue; 5952 5953 /* get a SA with SPI. */ 5954 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5955 if (sav) 5956 break; 5957 } 5958 SAHTREE_UNLOCK(); 5959 if (sah == NULL) { 5960 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5961 return key_senderror(so, m, ENOENT); 5962 } 5963 5964 { 5965 struct mbuf *n; 5966 u_int8_t satype; 5967 5968 /* map proto to satype */ 5969 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 5970 ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n", 5971 __func__)); 5972 return key_senderror(so, m, EINVAL); 5973 } 5974 5975 /* create new sadb_msg to reply. */ 5976 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, 5977 mhp->msg->sadb_msg_pid); 5978 if (!n) 5979 return key_senderror(so, m, ENOBUFS); 5980 5981 m_freem(m); 5982 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5983 } 5984 } 5985 5986 /* XXX make it sysctl-configurable? */ 5987 static void 5988 key_getcomb_setlifetime(comb) 5989 struct sadb_comb *comb; 5990 { 5991 5992 comb->sadb_comb_soft_allocations = 1; 5993 comb->sadb_comb_hard_allocations = 1; 5994 comb->sadb_comb_soft_bytes = 0; 5995 comb->sadb_comb_hard_bytes = 0; 5996 comb->sadb_comb_hard_addtime = 86400; /* 1 day */ 5997 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100; 5998 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */ 5999 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100; 6000 } 6001 6002 /* 6003 * XXX reorder combinations by preference 6004 * XXX no idea if the user wants ESP authentication or not 6005 */ 6006 static struct mbuf * 6007 key_getcomb_esp() 6008 { 6009 struct sadb_comb *comb; 6010 struct enc_xform *algo; 6011 struct mbuf *result = NULL, *m, *n; 6012 int encmin; 6013 int i, off, o; 6014 int totlen; 6015 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6016 6017 m = NULL; 6018 for (i = 1; i <= SADB_EALG_MAX; i++) { 6019 algo = esp_algorithm_lookup(i); 6020 if (algo == NULL) 6021 continue; 6022 6023 /* discard algorithms with key size smaller than system min */ 6024 if (_BITS(algo->maxkey) < V_ipsec_esp_keymin) 6025 continue; 6026 if (_BITS(algo->minkey) < V_ipsec_esp_keymin) 6027 encmin = V_ipsec_esp_keymin; 6028 else 6029 encmin = _BITS(algo->minkey); 6030 6031 if (V_ipsec_esp_auth) 6032 m = key_getcomb_ah(); 6033 else { 6034 IPSEC_ASSERT(l <= MLEN, 6035 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6036 MGET(m, M_NOWAIT, MT_DATA); 6037 if (m) { 6038 M_ALIGN(m, l); 6039 m->m_len = l; 6040 m->m_next = NULL; 6041 bzero(mtod(m, caddr_t), m->m_len); 6042 } 6043 } 6044 if (!m) 6045 goto fail; 6046 6047 totlen = 0; 6048 for (n = m; n; n = n->m_next) 6049 totlen += n->m_len; 6050 IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l)); 6051 6052 for (off = 0; off < totlen; off += l) { 6053 n = m_pulldown(m, off, l, &o); 6054 if (!n) { 6055 /* m is already freed */ 6056 goto fail; 6057 } 6058 comb = (struct sadb_comb *)(mtod(n, caddr_t) + o); 6059 bzero(comb, sizeof(*comb)); 6060 key_getcomb_setlifetime(comb); 6061 comb->sadb_comb_encrypt = i; 6062 comb->sadb_comb_encrypt_minbits = encmin; 6063 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); 6064 } 6065 6066 if (!result) 6067 result = m; 6068 else 6069 m_cat(result, m); 6070 } 6071 6072 return result; 6073 6074 fail: 6075 if (result) 6076 m_freem(result); 6077 return NULL; 6078 } 6079 6080 static void 6081 key_getsizes_ah( 6082 const struct auth_hash *ah, 6083 int alg, 6084 u_int16_t* min, 6085 u_int16_t* max) 6086 { 6087 6088 *min = *max = ah->keysize; 6089 if (ah->keysize == 0) { 6090 /* 6091 * Transform takes arbitrary key size but algorithm 6092 * key size is restricted. Enforce this here. 6093 */ 6094 switch (alg) { 6095 case SADB_X_AALG_MD5: *min = *max = 16; break; 6096 case SADB_X_AALG_SHA: *min = *max = 20; break; 6097 case SADB_X_AALG_NULL: *min = 1; *max = 256; break; 6098 case SADB_X_AALG_SHA2_256: *min = *max = 32; break; 6099 case SADB_X_AALG_SHA2_384: *min = *max = 48; break; 6100 case SADB_X_AALG_SHA2_512: *min = *max = 64; break; 6101 default: 6102 DPRINTF(("%s: unknown AH algorithm %u\n", 6103 __func__, alg)); 6104 break; 6105 } 6106 } 6107 } 6108 6109 /* 6110 * XXX reorder combinations by preference 6111 */ 6112 static struct mbuf * 6113 key_getcomb_ah() 6114 { 6115 struct sadb_comb *comb; 6116 struct auth_hash *algo; 6117 struct mbuf *m; 6118 u_int16_t minkeysize, maxkeysize; 6119 int i; 6120 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6121 6122 m = NULL; 6123 for (i = 1; i <= SADB_AALG_MAX; i++) { 6124 #if 1 6125 /* we prefer HMAC algorithms, not old algorithms */ 6126 if (i != SADB_AALG_SHA1HMAC && 6127 i != SADB_AALG_MD5HMAC && 6128 i != SADB_X_AALG_SHA2_256 && 6129 i != SADB_X_AALG_SHA2_384 && 6130 i != SADB_X_AALG_SHA2_512) 6131 continue; 6132 #endif 6133 algo = ah_algorithm_lookup(i); 6134 if (!algo) 6135 continue; 6136 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); 6137 /* discard algorithms with key size smaller than system min */ 6138 if (_BITS(minkeysize) < V_ipsec_ah_keymin) 6139 continue; 6140 6141 if (!m) { 6142 IPSEC_ASSERT(l <= MLEN, 6143 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6144 MGET(m, M_NOWAIT, MT_DATA); 6145 if (m) { 6146 M_ALIGN(m, l); 6147 m->m_len = l; 6148 m->m_next = NULL; 6149 } 6150 } else 6151 M_PREPEND(m, l, M_NOWAIT); 6152 if (!m) 6153 return NULL; 6154 6155 comb = mtod(m, struct sadb_comb *); 6156 bzero(comb, sizeof(*comb)); 6157 key_getcomb_setlifetime(comb); 6158 comb->sadb_comb_auth = i; 6159 comb->sadb_comb_auth_minbits = _BITS(minkeysize); 6160 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); 6161 } 6162 6163 return m; 6164 } 6165 6166 /* 6167 * not really an official behavior. discussed in pf_key@inner.net in Sep2000. 6168 * XXX reorder combinations by preference 6169 */ 6170 static struct mbuf * 6171 key_getcomb_ipcomp() 6172 { 6173 struct sadb_comb *comb; 6174 struct comp_algo *algo; 6175 struct mbuf *m; 6176 int i; 6177 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6178 6179 m = NULL; 6180 for (i = 1; i <= SADB_X_CALG_MAX; i++) { 6181 algo = ipcomp_algorithm_lookup(i); 6182 if (!algo) 6183 continue; 6184 6185 if (!m) { 6186 IPSEC_ASSERT(l <= MLEN, 6187 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6188 MGET(m, M_NOWAIT, MT_DATA); 6189 if (m) { 6190 M_ALIGN(m, l); 6191 m->m_len = l; 6192 m->m_next = NULL; 6193 } 6194 } else 6195 M_PREPEND(m, l, M_NOWAIT); 6196 if (!m) 6197 return NULL; 6198 6199 comb = mtod(m, struct sadb_comb *); 6200 bzero(comb, sizeof(*comb)); 6201 key_getcomb_setlifetime(comb); 6202 comb->sadb_comb_encrypt = i; 6203 /* what should we set into sadb_comb_*_{min,max}bits? */ 6204 } 6205 6206 return m; 6207 } 6208 6209 /* 6210 * XXX no way to pass mode (transport/tunnel) to userland 6211 * XXX replay checking? 6212 * XXX sysctl interface to ipsec_{ah,esp}_keymin 6213 */ 6214 static struct mbuf * 6215 key_getprop(saidx) 6216 const struct secasindex *saidx; 6217 { 6218 struct sadb_prop *prop; 6219 struct mbuf *m, *n; 6220 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); 6221 int totlen; 6222 6223 switch (saidx->proto) { 6224 case IPPROTO_ESP: 6225 m = key_getcomb_esp(); 6226 break; 6227 case IPPROTO_AH: 6228 m = key_getcomb_ah(); 6229 break; 6230 case IPPROTO_IPCOMP: 6231 m = key_getcomb_ipcomp(); 6232 break; 6233 default: 6234 return NULL; 6235 } 6236 6237 if (!m) 6238 return NULL; 6239 M_PREPEND(m, l, M_NOWAIT); 6240 if (!m) 6241 return NULL; 6242 6243 totlen = 0; 6244 for (n = m; n; n = n->m_next) 6245 totlen += n->m_len; 6246 6247 prop = mtod(m, struct sadb_prop *); 6248 bzero(prop, sizeof(*prop)); 6249 prop->sadb_prop_len = PFKEY_UNIT64(totlen); 6250 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 6251 prop->sadb_prop_replay = 32; /* XXX */ 6252 6253 return m; 6254 } 6255 6256 /* 6257 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2(). 6258 * send 6259 * <base, SA, address(SD), (address(P)), x_policy, 6260 * (identity(SD),) (sensitivity,) proposal> 6261 * to KMD, and expect to receive 6262 * <base> with SADB_ACQUIRE if error occured, 6263 * or 6264 * <base, src address, dst address, (SPI range)> with SADB_GETSPI 6265 * from KMD by PF_KEY. 6266 * 6267 * XXX x_policy is outside of RFC2367 (KAME extension). 6268 * XXX sensitivity is not supported. 6269 * XXX for ipcomp, RFC2367 does not define how to fill in proposal. 6270 * see comment for key_getcomb_ipcomp(). 6271 * 6272 * OUT: 6273 * 0 : succeed 6274 * others: error number 6275 */ 6276 static int 6277 key_acquire(const struct secasindex *saidx, struct secpolicy *sp) 6278 { 6279 struct mbuf *result = NULL, *m; 6280 struct secacq *newacq; 6281 u_int8_t satype; 6282 int error = -1; 6283 u_int32_t seq; 6284 6285 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 6286 satype = key_proto2satype(saidx->proto); 6287 IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto)); 6288 6289 /* 6290 * We never do anything about acquirng SA. There is anather 6291 * solution that kernel blocks to send SADB_ACQUIRE message until 6292 * getting something message from IKEd. In later case, to be 6293 * managed with ACQUIRING list. 6294 */ 6295 /* Get an entry to check whether sending message or not. */ 6296 if ((newacq = key_getacq(saidx)) != NULL) { 6297 if (V_key_blockacq_count < newacq->count) { 6298 /* reset counter and do send message. */ 6299 newacq->count = 0; 6300 } else { 6301 /* increment counter and do nothing. */ 6302 newacq->count++; 6303 return 0; 6304 } 6305 } else { 6306 /* make new entry for blocking to send SADB_ACQUIRE. */ 6307 if ((newacq = key_newacq(saidx)) == NULL) 6308 return ENOBUFS; 6309 } 6310 6311 6312 seq = newacq->seq; 6313 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0); 6314 if (!m) { 6315 error = ENOBUFS; 6316 goto fail; 6317 } 6318 result = m; 6319 6320 /* 6321 * No SADB_X_EXT_NAT_T_* here: we do not know 6322 * anything related to NAT-T at this time. 6323 */ 6324 6325 /* set sadb_address for saidx's. */ 6326 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 6327 &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY); 6328 if (!m) { 6329 error = ENOBUFS; 6330 goto fail; 6331 } 6332 m_cat(result, m); 6333 6334 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 6335 &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY); 6336 if (!m) { 6337 error = ENOBUFS; 6338 goto fail; 6339 } 6340 m_cat(result, m); 6341 6342 /* XXX proxy address (optional) */ 6343 6344 /* set sadb_x_policy */ 6345 if (sp) { 6346 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id); 6347 if (!m) { 6348 error = ENOBUFS; 6349 goto fail; 6350 } 6351 m_cat(result, m); 6352 } 6353 6354 /* XXX identity (optional) */ 6355 #if 0 6356 if (idexttype && fqdn) { 6357 /* create identity extension (FQDN) */ 6358 struct sadb_ident *id; 6359 int fqdnlen; 6360 6361 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ 6362 id = (struct sadb_ident *)p; 6363 bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6364 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6365 id->sadb_ident_exttype = idexttype; 6366 id->sadb_ident_type = SADB_IDENTTYPE_FQDN; 6367 bcopy(fqdn, id + 1, fqdnlen); 6368 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); 6369 } 6370 6371 if (idexttype) { 6372 /* create identity extension (USERFQDN) */ 6373 struct sadb_ident *id; 6374 int userfqdnlen; 6375 6376 if (userfqdn) { 6377 /* +1 for terminating-NUL */ 6378 userfqdnlen = strlen(userfqdn) + 1; 6379 } else 6380 userfqdnlen = 0; 6381 id = (struct sadb_ident *)p; 6382 bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6383 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6384 id->sadb_ident_exttype = idexttype; 6385 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; 6386 /* XXX is it correct? */ 6387 if (curproc && curproc->p_cred) 6388 id->sadb_ident_id = curproc->p_cred->p_ruid; 6389 if (userfqdn && userfqdnlen) 6390 bcopy(userfqdn, id + 1, userfqdnlen); 6391 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); 6392 } 6393 #endif 6394 6395 /* XXX sensitivity (optional) */ 6396 6397 /* create proposal/combination extension */ 6398 m = key_getprop(saidx); 6399 #if 0 6400 /* 6401 * spec conformant: always attach proposal/combination extension, 6402 * the problem is that we have no way to attach it for ipcomp, 6403 * due to the way sadb_comb is declared in RFC2367. 6404 */ 6405 if (!m) { 6406 error = ENOBUFS; 6407 goto fail; 6408 } 6409 m_cat(result, m); 6410 #else 6411 /* 6412 * outside of spec; make proposal/combination extension optional. 6413 */ 6414 if (m) 6415 m_cat(result, m); 6416 #endif 6417 6418 if ((result->m_flags & M_PKTHDR) == 0) { 6419 error = EINVAL; 6420 goto fail; 6421 } 6422 6423 if (result->m_len < sizeof(struct sadb_msg)) { 6424 result = m_pullup(result, sizeof(struct sadb_msg)); 6425 if (result == NULL) { 6426 error = ENOBUFS; 6427 goto fail; 6428 } 6429 } 6430 6431 result->m_pkthdr.len = 0; 6432 for (m = result; m; m = m->m_next) 6433 result->m_pkthdr.len += m->m_len; 6434 6435 mtod(result, struct sadb_msg *)->sadb_msg_len = 6436 PFKEY_UNIT64(result->m_pkthdr.len); 6437 6438 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6439 6440 fail: 6441 if (result) 6442 m_freem(result); 6443 return error; 6444 } 6445 6446 static struct secacq * 6447 key_newacq(const struct secasindex *saidx) 6448 { 6449 struct secacq *newacq; 6450 6451 /* get new entry */ 6452 newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 6453 if (newacq == NULL) { 6454 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6455 return NULL; 6456 } 6457 6458 /* copy secindex */ 6459 bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx)); 6460 newacq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq); 6461 newacq->created = time_second; 6462 newacq->count = 0; 6463 6464 /* add to acqtree */ 6465 ACQ_LOCK(); 6466 LIST_INSERT_HEAD(&V_acqtree, newacq, chain); 6467 ACQ_UNLOCK(); 6468 6469 return newacq; 6470 } 6471 6472 static struct secacq * 6473 key_getacq(const struct secasindex *saidx) 6474 { 6475 struct secacq *acq; 6476 6477 ACQ_LOCK(); 6478 LIST_FOREACH(acq, &V_acqtree, chain) { 6479 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY)) 6480 break; 6481 } 6482 ACQ_UNLOCK(); 6483 6484 return acq; 6485 } 6486 6487 static struct secacq * 6488 key_getacqbyseq(seq) 6489 u_int32_t seq; 6490 { 6491 struct secacq *acq; 6492 6493 ACQ_LOCK(); 6494 LIST_FOREACH(acq, &V_acqtree, chain) { 6495 if (acq->seq == seq) 6496 break; 6497 } 6498 ACQ_UNLOCK(); 6499 6500 return acq; 6501 } 6502 6503 static struct secspacq * 6504 key_newspacq(spidx) 6505 struct secpolicyindex *spidx; 6506 { 6507 struct secspacq *acq; 6508 6509 /* get new entry */ 6510 acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 6511 if (acq == NULL) { 6512 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6513 return NULL; 6514 } 6515 6516 /* copy secindex */ 6517 bcopy(spidx, &acq->spidx, sizeof(acq->spidx)); 6518 acq->created = time_second; 6519 acq->count = 0; 6520 6521 /* add to spacqtree */ 6522 SPACQ_LOCK(); 6523 LIST_INSERT_HEAD(&V_spacqtree, acq, chain); 6524 SPACQ_UNLOCK(); 6525 6526 return acq; 6527 } 6528 6529 static struct secspacq * 6530 key_getspacq(spidx) 6531 struct secpolicyindex *spidx; 6532 { 6533 struct secspacq *acq; 6534 6535 SPACQ_LOCK(); 6536 LIST_FOREACH(acq, &V_spacqtree, chain) { 6537 if (key_cmpspidx_exactly(spidx, &acq->spidx)) { 6538 /* NB: return holding spacq_lock */ 6539 return acq; 6540 } 6541 } 6542 SPACQ_UNLOCK(); 6543 6544 return NULL; 6545 } 6546 6547 /* 6548 * SADB_ACQUIRE processing, 6549 * in first situation, is receiving 6550 * <base> 6551 * from the ikmpd, and clear sequence of its secasvar entry. 6552 * 6553 * In second situation, is receiving 6554 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6555 * from a user land process, and return 6556 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6557 * to the socket. 6558 * 6559 * m will always be freed. 6560 */ 6561 static int 6562 key_acquire2(so, m, mhp) 6563 struct socket *so; 6564 struct mbuf *m; 6565 const struct sadb_msghdr *mhp; 6566 { 6567 const struct sadb_address *src0, *dst0; 6568 struct secasindex saidx; 6569 struct secashead *sah; 6570 u_int16_t proto; 6571 int error; 6572 6573 IPSEC_ASSERT(so != NULL, ("null socket")); 6574 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6575 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6576 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6577 6578 /* 6579 * Error message from KMd. 6580 * We assume that if error was occured in IKEd, the length of PFKEY 6581 * message is equal to the size of sadb_msg structure. 6582 * We do not raise error even if error occured in this function. 6583 */ 6584 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { 6585 struct secacq *acq; 6586 6587 /* check sequence number */ 6588 if (mhp->msg->sadb_msg_seq == 0) { 6589 ipseclog((LOG_DEBUG, "%s: must specify sequence " 6590 "number.\n", __func__)); 6591 m_freem(m); 6592 return 0; 6593 } 6594 6595 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) { 6596 /* 6597 * the specified larval SA is already gone, or we got 6598 * a bogus sequence number. we can silently ignore it. 6599 */ 6600 m_freem(m); 6601 return 0; 6602 } 6603 6604 /* reset acq counter in order to deletion by timehander. */ 6605 acq->created = time_second; 6606 acq->count = 0; 6607 m_freem(m); 6608 return 0; 6609 } 6610 6611 /* 6612 * This message is from user land. 6613 */ 6614 6615 /* map satype to proto */ 6616 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6617 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6618 __func__)); 6619 return key_senderror(so, m, EINVAL); 6620 } 6621 6622 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6623 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 6624 mhp->ext[SADB_EXT_PROPOSAL] == NULL) { 6625 /* error */ 6626 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6627 __func__)); 6628 return key_senderror(so, m, EINVAL); 6629 } 6630 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6631 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 6632 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { 6633 /* error */ 6634 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6635 __func__)); 6636 return key_senderror(so, m, EINVAL); 6637 } 6638 6639 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 6640 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 6641 6642 /* XXX boundary check against sa_len */ 6643 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 6644 6645 /* 6646 * Make sure the port numbers are zero. 6647 * In case of NAT-T we will update them later if needed. 6648 */ 6649 KEY_PORTTOSADDR(&saidx.src, 0); 6650 KEY_PORTTOSADDR(&saidx.dst, 0); 6651 6652 #ifndef IPSEC_NAT_T 6653 /* 6654 * Handle NAT-T info if present. 6655 */ 6656 6657 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 6658 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 6659 struct sadb_x_nat_t_port *sport, *dport; 6660 6661 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 6662 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 6663 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 6664 __func__)); 6665 return key_senderror(so, m, EINVAL); 6666 } 6667 6668 sport = (struct sadb_x_nat_t_port *) 6669 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 6670 dport = (struct sadb_x_nat_t_port *) 6671 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 6672 6673 if (sport) 6674 KEY_PORTTOSADDR(&saidx.src, 6675 sport->sadb_x_nat_t_port_port); 6676 if (dport) 6677 KEY_PORTTOSADDR(&saidx.dst, 6678 dport->sadb_x_nat_t_port_port); 6679 } 6680 #endif 6681 6682 /* get a SA index */ 6683 SAHTREE_LOCK(); 6684 LIST_FOREACH(sah, &V_sahtree, chain) { 6685 if (sah->state == SADB_SASTATE_DEAD) 6686 continue; 6687 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID)) 6688 break; 6689 } 6690 SAHTREE_UNLOCK(); 6691 if (sah != NULL) { 6692 ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__)); 6693 return key_senderror(so, m, EEXIST); 6694 } 6695 6696 error = key_acquire(&saidx, NULL); 6697 if (error != 0) { 6698 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 6699 __func__, mhp->msg->sadb_msg_errno)); 6700 return key_senderror(so, m, error); 6701 } 6702 6703 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); 6704 } 6705 6706 /* 6707 * SADB_REGISTER processing. 6708 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. 6709 * receive 6710 * <base> 6711 * from the ikmpd, and register a socket to send PF_KEY messages, 6712 * and send 6713 * <base, supported> 6714 * to KMD by PF_KEY. 6715 * If socket is detached, must free from regnode. 6716 * 6717 * m will always be freed. 6718 */ 6719 static int 6720 key_register(so, m, mhp) 6721 struct socket *so; 6722 struct mbuf *m; 6723 const struct sadb_msghdr *mhp; 6724 { 6725 struct secreg *reg, *newreg = 0; 6726 6727 IPSEC_ASSERT(so != NULL, ("null socket")); 6728 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6729 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6730 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6731 6732 /* check for invalid register message */ 6733 if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0])) 6734 return key_senderror(so, m, EINVAL); 6735 6736 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ 6737 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) 6738 goto setmsg; 6739 6740 /* check whether existing or not */ 6741 REGTREE_LOCK(); 6742 LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) { 6743 if (reg->so == so) { 6744 REGTREE_UNLOCK(); 6745 ipseclog((LOG_DEBUG, "%s: socket exists already.\n", 6746 __func__)); 6747 return key_senderror(so, m, EEXIST); 6748 } 6749 } 6750 6751 /* create regnode */ 6752 newreg = malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO); 6753 if (newreg == NULL) { 6754 REGTREE_UNLOCK(); 6755 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6756 return key_senderror(so, m, ENOBUFS); 6757 } 6758 6759 newreg->so = so; 6760 ((struct keycb *)sotorawcb(so))->kp_registered++; 6761 6762 /* add regnode to regtree. */ 6763 LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain); 6764 REGTREE_UNLOCK(); 6765 6766 setmsg: 6767 { 6768 struct mbuf *n; 6769 struct sadb_msg *newmsg; 6770 struct sadb_supported *sup; 6771 u_int len, alen, elen; 6772 int off; 6773 int i; 6774 struct sadb_alg *alg; 6775 6776 /* create new sadb_msg to reply. */ 6777 alen = 0; 6778 for (i = 1; i <= SADB_AALG_MAX; i++) { 6779 if (ah_algorithm_lookup(i)) 6780 alen += sizeof(struct sadb_alg); 6781 } 6782 if (alen) 6783 alen += sizeof(struct sadb_supported); 6784 elen = 0; 6785 for (i = 1; i <= SADB_EALG_MAX; i++) { 6786 if (esp_algorithm_lookup(i)) 6787 elen += sizeof(struct sadb_alg); 6788 } 6789 if (elen) 6790 elen += sizeof(struct sadb_supported); 6791 6792 len = sizeof(struct sadb_msg) + alen + elen; 6793 6794 if (len > MCLBYTES) 6795 return key_senderror(so, m, ENOBUFS); 6796 6797 MGETHDR(n, M_NOWAIT, MT_DATA); 6798 if (len > MHLEN) { 6799 MCLGET(n, M_NOWAIT); 6800 if ((n->m_flags & M_EXT) == 0) { 6801 m_freem(n); 6802 n = NULL; 6803 } 6804 } 6805 if (!n) 6806 return key_senderror(so, m, ENOBUFS); 6807 6808 n->m_pkthdr.len = n->m_len = len; 6809 n->m_next = NULL; 6810 off = 0; 6811 6812 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 6813 newmsg = mtod(n, struct sadb_msg *); 6814 newmsg->sadb_msg_errno = 0; 6815 newmsg->sadb_msg_len = PFKEY_UNIT64(len); 6816 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 6817 6818 /* for authentication algorithm */ 6819 if (alen) { 6820 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6821 sup->sadb_supported_len = PFKEY_UNIT64(alen); 6822 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 6823 off += PFKEY_ALIGN8(sizeof(*sup)); 6824 6825 for (i = 1; i <= SADB_AALG_MAX; i++) { 6826 struct auth_hash *aalgo; 6827 u_int16_t minkeysize, maxkeysize; 6828 6829 aalgo = ah_algorithm_lookup(i); 6830 if (!aalgo) 6831 continue; 6832 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6833 alg->sadb_alg_id = i; 6834 alg->sadb_alg_ivlen = 0; 6835 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); 6836 alg->sadb_alg_minbits = _BITS(minkeysize); 6837 alg->sadb_alg_maxbits = _BITS(maxkeysize); 6838 off += PFKEY_ALIGN8(sizeof(*alg)); 6839 } 6840 } 6841 6842 /* for encryption algorithm */ 6843 if (elen) { 6844 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6845 sup->sadb_supported_len = PFKEY_UNIT64(elen); 6846 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 6847 off += PFKEY_ALIGN8(sizeof(*sup)); 6848 6849 for (i = 1; i <= SADB_EALG_MAX; i++) { 6850 struct enc_xform *ealgo; 6851 6852 ealgo = esp_algorithm_lookup(i); 6853 if (!ealgo) 6854 continue; 6855 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6856 alg->sadb_alg_id = i; 6857 alg->sadb_alg_ivlen = ealgo->blocksize; 6858 alg->sadb_alg_minbits = _BITS(ealgo->minkey); 6859 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); 6860 off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); 6861 } 6862 } 6863 6864 IPSEC_ASSERT(off == len, 6865 ("length assumption failed (off %u len %u)", off, len)); 6866 6867 m_freem(m); 6868 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); 6869 } 6870 } 6871 6872 /* 6873 * free secreg entry registered. 6874 * XXX: I want to do free a socket marked done SADB_RESIGER to socket. 6875 */ 6876 void 6877 key_freereg(struct socket *so) 6878 { 6879 struct secreg *reg; 6880 int i; 6881 6882 IPSEC_ASSERT(so != NULL, ("NULL so")); 6883 6884 /* 6885 * check whether existing or not. 6886 * check all type of SA, because there is a potential that 6887 * one socket is registered to multiple type of SA. 6888 */ 6889 REGTREE_LOCK(); 6890 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 6891 LIST_FOREACH(reg, &V_regtree[i], chain) { 6892 if (reg->so == so && __LIST_CHAINED(reg)) { 6893 LIST_REMOVE(reg, chain); 6894 free(reg, M_IPSEC_SAR); 6895 break; 6896 } 6897 } 6898 } 6899 REGTREE_UNLOCK(); 6900 } 6901 6902 /* 6903 * SADB_EXPIRE processing 6904 * send 6905 * <base, SA, SA2, lifetime(C and one of HS), address(SD)> 6906 * to KMD by PF_KEY. 6907 * NOTE: We send only soft lifetime extension. 6908 * 6909 * OUT: 0 : succeed 6910 * others : error number 6911 */ 6912 static int 6913 key_expire(struct secasvar *sav) 6914 { 6915 int satype; 6916 struct mbuf *result = NULL, *m; 6917 int len; 6918 int error = -1; 6919 struct sadb_lifetime *lt; 6920 6921 IPSEC_ASSERT (sav != NULL, ("null sav")); 6922 IPSEC_ASSERT (sav->sah != NULL, ("null sa header")); 6923 6924 /* set msg header */ 6925 satype = key_proto2satype(sav->sah->saidx.proto); 6926 IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype)); 6927 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt); 6928 if (!m) { 6929 error = ENOBUFS; 6930 goto fail; 6931 } 6932 result = m; 6933 6934 /* create SA extension */ 6935 m = key_setsadbsa(sav); 6936 if (!m) { 6937 error = ENOBUFS; 6938 goto fail; 6939 } 6940 m_cat(result, m); 6941 6942 /* create SA extension */ 6943 m = key_setsadbxsa2(sav->sah->saidx.mode, 6944 sav->replay ? sav->replay->count : 0, 6945 sav->sah->saidx.reqid); 6946 if (!m) { 6947 error = ENOBUFS; 6948 goto fail; 6949 } 6950 m_cat(result, m); 6951 6952 /* create lifetime extension (current and soft) */ 6953 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 6954 m = key_alloc_mbuf(len); 6955 if (!m || m->m_next) { /*XXX*/ 6956 if (m) 6957 m_freem(m); 6958 error = ENOBUFS; 6959 goto fail; 6960 } 6961 bzero(mtod(m, caddr_t), len); 6962 lt = mtod(m, struct sadb_lifetime *); 6963 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6964 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 6965 lt->sadb_lifetime_allocations = sav->lft_c->allocations; 6966 lt->sadb_lifetime_bytes = sav->lft_c->bytes; 6967 lt->sadb_lifetime_addtime = sav->lft_c->addtime; 6968 lt->sadb_lifetime_usetime = sav->lft_c->usetime; 6969 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 6970 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6971 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; 6972 lt->sadb_lifetime_allocations = sav->lft_s->allocations; 6973 lt->sadb_lifetime_bytes = sav->lft_s->bytes; 6974 lt->sadb_lifetime_addtime = sav->lft_s->addtime; 6975 lt->sadb_lifetime_usetime = sav->lft_s->usetime; 6976 m_cat(result, m); 6977 6978 /* set sadb_address for source */ 6979 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 6980 &sav->sah->saidx.src.sa, 6981 FULLMASK, IPSEC_ULPROTO_ANY); 6982 if (!m) { 6983 error = ENOBUFS; 6984 goto fail; 6985 } 6986 m_cat(result, m); 6987 6988 /* set sadb_address for destination */ 6989 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 6990 &sav->sah->saidx.dst.sa, 6991 FULLMASK, IPSEC_ULPROTO_ANY); 6992 if (!m) { 6993 error = ENOBUFS; 6994 goto fail; 6995 } 6996 m_cat(result, m); 6997 6998 /* 6999 * XXX-BZ Handle NAT-T extensions here. 7000 */ 7001 7002 if ((result->m_flags & M_PKTHDR) == 0) { 7003 error = EINVAL; 7004 goto fail; 7005 } 7006 7007 if (result->m_len < sizeof(struct sadb_msg)) { 7008 result = m_pullup(result, sizeof(struct sadb_msg)); 7009 if (result == NULL) { 7010 error = ENOBUFS; 7011 goto fail; 7012 } 7013 } 7014 7015 result->m_pkthdr.len = 0; 7016 for (m = result; m; m = m->m_next) 7017 result->m_pkthdr.len += m->m_len; 7018 7019 mtod(result, struct sadb_msg *)->sadb_msg_len = 7020 PFKEY_UNIT64(result->m_pkthdr.len); 7021 7022 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 7023 7024 fail: 7025 if (result) 7026 m_freem(result); 7027 return error; 7028 } 7029 7030 /* 7031 * SADB_FLUSH processing 7032 * receive 7033 * <base> 7034 * from the ikmpd, and free all entries in secastree. 7035 * and send, 7036 * <base> 7037 * to the ikmpd. 7038 * NOTE: to do is only marking SADB_SASTATE_DEAD. 7039 * 7040 * m will always be freed. 7041 */ 7042 static int 7043 key_flush(so, m, mhp) 7044 struct socket *so; 7045 struct mbuf *m; 7046 const struct sadb_msghdr *mhp; 7047 { 7048 struct sadb_msg *newmsg; 7049 struct secashead *sah, *nextsah; 7050 struct secasvar *sav, *nextsav; 7051 u_int16_t proto; 7052 u_int8_t state; 7053 u_int stateidx; 7054 7055 IPSEC_ASSERT(so != NULL, ("null socket")); 7056 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7057 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7058 7059 /* map satype to proto */ 7060 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 7061 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 7062 __func__)); 7063 return key_senderror(so, m, EINVAL); 7064 } 7065 7066 /* no SATYPE specified, i.e. flushing all SA. */ 7067 SAHTREE_LOCK(); 7068 for (sah = LIST_FIRST(&V_sahtree); 7069 sah != NULL; 7070 sah = nextsah) { 7071 nextsah = LIST_NEXT(sah, chain); 7072 7073 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 7074 && proto != sah->saidx.proto) 7075 continue; 7076 7077 for (stateidx = 0; 7078 stateidx < _ARRAYLEN(saorder_state_alive); 7079 stateidx++) { 7080 state = saorder_state_any[stateidx]; 7081 for (sav = LIST_FIRST(&sah->savtree[state]); 7082 sav != NULL; 7083 sav = nextsav) { 7084 7085 nextsav = LIST_NEXT(sav, chain); 7086 7087 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 7088 KEY_FREESAV(&sav); 7089 } 7090 } 7091 7092 sah->state = SADB_SASTATE_DEAD; 7093 } 7094 SAHTREE_UNLOCK(); 7095 7096 if (m->m_len < sizeof(struct sadb_msg) || 7097 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 7098 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 7099 return key_senderror(so, m, ENOBUFS); 7100 } 7101 7102 if (m->m_next) 7103 m_freem(m->m_next); 7104 m->m_next = NULL; 7105 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); 7106 newmsg = mtod(m, struct sadb_msg *); 7107 newmsg->sadb_msg_errno = 0; 7108 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 7109 7110 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7111 } 7112 7113 /* 7114 * SADB_DUMP processing 7115 * dump all entries including status of DEAD in SAD. 7116 * receive 7117 * <base> 7118 * from the ikmpd, and dump all secasvar leaves 7119 * and send, 7120 * <base> ..... 7121 * to the ikmpd. 7122 * 7123 * m will always be freed. 7124 */ 7125 static int 7126 key_dump(so, m, mhp) 7127 struct socket *so; 7128 struct mbuf *m; 7129 const struct sadb_msghdr *mhp; 7130 { 7131 struct secashead *sah; 7132 struct secasvar *sav; 7133 u_int16_t proto; 7134 u_int stateidx; 7135 u_int8_t satype; 7136 u_int8_t state; 7137 int cnt; 7138 struct sadb_msg *newmsg; 7139 struct mbuf *n; 7140 7141 IPSEC_ASSERT(so != NULL, ("null socket")); 7142 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7143 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7144 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7145 7146 /* map satype to proto */ 7147 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 7148 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 7149 __func__)); 7150 return key_senderror(so, m, EINVAL); 7151 } 7152 7153 /* count sav entries to be sent to the userland. */ 7154 cnt = 0; 7155 SAHTREE_LOCK(); 7156 LIST_FOREACH(sah, &V_sahtree, chain) { 7157 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 7158 && proto != sah->saidx.proto) 7159 continue; 7160 7161 for (stateidx = 0; 7162 stateidx < _ARRAYLEN(saorder_state_any); 7163 stateidx++) { 7164 state = saorder_state_any[stateidx]; 7165 LIST_FOREACH(sav, &sah->savtree[state], chain) { 7166 cnt++; 7167 } 7168 } 7169 } 7170 7171 if (cnt == 0) { 7172 SAHTREE_UNLOCK(); 7173 return key_senderror(so, m, ENOENT); 7174 } 7175 7176 /* send this to the userland, one at a time. */ 7177 newmsg = NULL; 7178 LIST_FOREACH(sah, &V_sahtree, chain) { 7179 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 7180 && proto != sah->saidx.proto) 7181 continue; 7182 7183 /* map proto to satype */ 7184 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 7185 SAHTREE_UNLOCK(); 7186 ipseclog((LOG_DEBUG, "%s: there was invalid proto in " 7187 "SAD.\n", __func__)); 7188 return key_senderror(so, m, EINVAL); 7189 } 7190 7191 for (stateidx = 0; 7192 stateidx < _ARRAYLEN(saorder_state_any); 7193 stateidx++) { 7194 state = saorder_state_any[stateidx]; 7195 LIST_FOREACH(sav, &sah->savtree[state], chain) { 7196 n = key_setdumpsa(sav, SADB_DUMP, satype, 7197 --cnt, mhp->msg->sadb_msg_pid); 7198 if (!n) { 7199 SAHTREE_UNLOCK(); 7200 return key_senderror(so, m, ENOBUFS); 7201 } 7202 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 7203 } 7204 } 7205 } 7206 SAHTREE_UNLOCK(); 7207 7208 m_freem(m); 7209 return 0; 7210 } 7211 7212 /* 7213 * SADB_X_PROMISC processing 7214 * 7215 * m will always be freed. 7216 */ 7217 static int 7218 key_promisc(so, m, mhp) 7219 struct socket *so; 7220 struct mbuf *m; 7221 const struct sadb_msghdr *mhp; 7222 { 7223 int olen; 7224 7225 IPSEC_ASSERT(so != NULL, ("null socket")); 7226 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7227 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7228 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7229 7230 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7231 7232 if (olen < sizeof(struct sadb_msg)) { 7233 #if 1 7234 return key_senderror(so, m, EINVAL); 7235 #else 7236 m_freem(m); 7237 return 0; 7238 #endif 7239 } else if (olen == sizeof(struct sadb_msg)) { 7240 /* enable/disable promisc mode */ 7241 struct keycb *kp; 7242 7243 if ((kp = (struct keycb *)sotorawcb(so)) == NULL) 7244 return key_senderror(so, m, EINVAL); 7245 mhp->msg->sadb_msg_errno = 0; 7246 switch (mhp->msg->sadb_msg_satype) { 7247 case 0: 7248 case 1: 7249 kp->kp_promisc = mhp->msg->sadb_msg_satype; 7250 break; 7251 default: 7252 return key_senderror(so, m, EINVAL); 7253 } 7254 7255 /* send the original message back to everyone */ 7256 mhp->msg->sadb_msg_errno = 0; 7257 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7258 } else { 7259 /* send packet as is */ 7260 7261 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); 7262 7263 /* TODO: if sadb_msg_seq is specified, send to specific pid */ 7264 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7265 } 7266 } 7267 7268 static int (*key_typesw[]) __P((struct socket *, struct mbuf *, 7269 const struct sadb_msghdr *)) = { 7270 NULL, /* SADB_RESERVED */ 7271 key_getspi, /* SADB_GETSPI */ 7272 key_update, /* SADB_UPDATE */ 7273 key_add, /* SADB_ADD */ 7274 key_delete, /* SADB_DELETE */ 7275 key_get, /* SADB_GET */ 7276 key_acquire2, /* SADB_ACQUIRE */ 7277 key_register, /* SADB_REGISTER */ 7278 NULL, /* SADB_EXPIRE */ 7279 key_flush, /* SADB_FLUSH */ 7280 key_dump, /* SADB_DUMP */ 7281 key_promisc, /* SADB_X_PROMISC */ 7282 NULL, /* SADB_X_PCHANGE */ 7283 key_spdadd, /* SADB_X_SPDUPDATE */ 7284 key_spdadd, /* SADB_X_SPDADD */ 7285 key_spddelete, /* SADB_X_SPDDELETE */ 7286 key_spdget, /* SADB_X_SPDGET */ 7287 NULL, /* SADB_X_SPDACQUIRE */ 7288 key_spddump, /* SADB_X_SPDDUMP */ 7289 key_spdflush, /* SADB_X_SPDFLUSH */ 7290 key_spdadd, /* SADB_X_SPDSETIDX */ 7291 NULL, /* SADB_X_SPDEXPIRE */ 7292 key_spddelete2, /* SADB_X_SPDDELETE2 */ 7293 }; 7294 7295 /* 7296 * parse sadb_msg buffer to process PFKEYv2, 7297 * and create a data to response if needed. 7298 * I think to be dealed with mbuf directly. 7299 * IN: 7300 * msgp : pointer to pointer to a received buffer pulluped. 7301 * This is rewrited to response. 7302 * so : pointer to socket. 7303 * OUT: 7304 * length for buffer to send to user process. 7305 */ 7306 int 7307 key_parse(m, so) 7308 struct mbuf *m; 7309 struct socket *so; 7310 { 7311 struct sadb_msg *msg; 7312 struct sadb_msghdr mh; 7313 u_int orglen; 7314 int error; 7315 int target; 7316 7317 IPSEC_ASSERT(so != NULL, ("null socket")); 7318 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7319 7320 #if 0 /*kdebug_sadb assumes msg in linear buffer*/ 7321 KEYDEBUG(KEYDEBUG_KEY_DUMP, 7322 ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__)); 7323 kdebug_sadb(msg)); 7324 #endif 7325 7326 if (m->m_len < sizeof(struct sadb_msg)) { 7327 m = m_pullup(m, sizeof(struct sadb_msg)); 7328 if (!m) 7329 return ENOBUFS; 7330 } 7331 msg = mtod(m, struct sadb_msg *); 7332 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); 7333 target = KEY_SENDUP_ONE; 7334 7335 if ((m->m_flags & M_PKTHDR) == 0 || 7336 m->m_pkthdr.len != m->m_pkthdr.len) { 7337 ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__)); 7338 V_pfkeystat.out_invlen++; 7339 error = EINVAL; 7340 goto senderror; 7341 } 7342 7343 if (msg->sadb_msg_version != PF_KEY_V2) { 7344 ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n", 7345 __func__, msg->sadb_msg_version)); 7346 V_pfkeystat.out_invver++; 7347 error = EINVAL; 7348 goto senderror; 7349 } 7350 7351 if (msg->sadb_msg_type > SADB_MAX) { 7352 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 7353 __func__, msg->sadb_msg_type)); 7354 V_pfkeystat.out_invmsgtype++; 7355 error = EINVAL; 7356 goto senderror; 7357 } 7358 7359 /* for old-fashioned code - should be nuked */ 7360 if (m->m_pkthdr.len > MCLBYTES) { 7361 m_freem(m); 7362 return ENOBUFS; 7363 } 7364 if (m->m_next) { 7365 struct mbuf *n; 7366 7367 MGETHDR(n, M_NOWAIT, MT_DATA); 7368 if (n && m->m_pkthdr.len > MHLEN) { 7369 MCLGET(n, M_NOWAIT); 7370 if ((n->m_flags & M_EXT) == 0) { 7371 m_free(n); 7372 n = NULL; 7373 } 7374 } 7375 if (!n) { 7376 m_freem(m); 7377 return ENOBUFS; 7378 } 7379 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t)); 7380 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; 7381 n->m_next = NULL; 7382 m_freem(m); 7383 m = n; 7384 } 7385 7386 /* align the mbuf chain so that extensions are in contiguous region. */ 7387 error = key_align(m, &mh); 7388 if (error) 7389 return error; 7390 7391 msg = mh.msg; 7392 7393 /* check SA type */ 7394 switch (msg->sadb_msg_satype) { 7395 case SADB_SATYPE_UNSPEC: 7396 switch (msg->sadb_msg_type) { 7397 case SADB_GETSPI: 7398 case SADB_UPDATE: 7399 case SADB_ADD: 7400 case SADB_DELETE: 7401 case SADB_GET: 7402 case SADB_ACQUIRE: 7403 case SADB_EXPIRE: 7404 ipseclog((LOG_DEBUG, "%s: must specify satype " 7405 "when msg type=%u.\n", __func__, 7406 msg->sadb_msg_type)); 7407 V_pfkeystat.out_invsatype++; 7408 error = EINVAL; 7409 goto senderror; 7410 } 7411 break; 7412 case SADB_SATYPE_AH: 7413 case SADB_SATYPE_ESP: 7414 case SADB_X_SATYPE_IPCOMP: 7415 case SADB_X_SATYPE_TCPSIGNATURE: 7416 switch (msg->sadb_msg_type) { 7417 case SADB_X_SPDADD: 7418 case SADB_X_SPDDELETE: 7419 case SADB_X_SPDGET: 7420 case SADB_X_SPDDUMP: 7421 case SADB_X_SPDFLUSH: 7422 case SADB_X_SPDSETIDX: 7423 case SADB_X_SPDUPDATE: 7424 case SADB_X_SPDDELETE2: 7425 ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n", 7426 __func__, msg->sadb_msg_type)); 7427 V_pfkeystat.out_invsatype++; 7428 error = EINVAL; 7429 goto senderror; 7430 } 7431 break; 7432 case SADB_SATYPE_RSVP: 7433 case SADB_SATYPE_OSPFV2: 7434 case SADB_SATYPE_RIPV2: 7435 case SADB_SATYPE_MIP: 7436 ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n", 7437 __func__, msg->sadb_msg_satype)); 7438 V_pfkeystat.out_invsatype++; 7439 error = EOPNOTSUPP; 7440 goto senderror; 7441 case 1: /* XXX: What does it do? */ 7442 if (msg->sadb_msg_type == SADB_X_PROMISC) 7443 break; 7444 /*FALLTHROUGH*/ 7445 default: 7446 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 7447 __func__, msg->sadb_msg_satype)); 7448 V_pfkeystat.out_invsatype++; 7449 error = EINVAL; 7450 goto senderror; 7451 } 7452 7453 /* check field of upper layer protocol and address family */ 7454 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL 7455 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { 7456 struct sadb_address *src0, *dst0; 7457 u_int plen; 7458 7459 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]); 7460 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]); 7461 7462 /* check upper layer protocol */ 7463 if (src0->sadb_address_proto != dst0->sadb_address_proto) { 7464 ipseclog((LOG_DEBUG, "%s: upper layer protocol " 7465 "mismatched.\n", __func__)); 7466 V_pfkeystat.out_invaddr++; 7467 error = EINVAL; 7468 goto senderror; 7469 } 7470 7471 /* check family */ 7472 if (PFKEY_ADDR_SADDR(src0)->sa_family != 7473 PFKEY_ADDR_SADDR(dst0)->sa_family) { 7474 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 7475 __func__)); 7476 V_pfkeystat.out_invaddr++; 7477 error = EINVAL; 7478 goto senderror; 7479 } 7480 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7481 PFKEY_ADDR_SADDR(dst0)->sa_len) { 7482 ipseclog((LOG_DEBUG, "%s: address struct size " 7483 "mismatched.\n", __func__)); 7484 V_pfkeystat.out_invaddr++; 7485 error = EINVAL; 7486 goto senderror; 7487 } 7488 7489 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7490 case AF_INET: 7491 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7492 sizeof(struct sockaddr_in)) { 7493 V_pfkeystat.out_invaddr++; 7494 error = EINVAL; 7495 goto senderror; 7496 } 7497 break; 7498 case AF_INET6: 7499 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7500 sizeof(struct sockaddr_in6)) { 7501 V_pfkeystat.out_invaddr++; 7502 error = EINVAL; 7503 goto senderror; 7504 } 7505 break; 7506 default: 7507 ipseclog((LOG_DEBUG, "%s: unsupported address family\n", 7508 __func__)); 7509 V_pfkeystat.out_invaddr++; 7510 error = EAFNOSUPPORT; 7511 goto senderror; 7512 } 7513 7514 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7515 case AF_INET: 7516 plen = sizeof(struct in_addr) << 3; 7517 break; 7518 case AF_INET6: 7519 plen = sizeof(struct in6_addr) << 3; 7520 break; 7521 default: 7522 plen = 0; /*fool gcc*/ 7523 break; 7524 } 7525 7526 /* check max prefix length */ 7527 if (src0->sadb_address_prefixlen > plen || 7528 dst0->sadb_address_prefixlen > plen) { 7529 ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n", 7530 __func__)); 7531 V_pfkeystat.out_invaddr++; 7532 error = EINVAL; 7533 goto senderror; 7534 } 7535 7536 /* 7537 * prefixlen == 0 is valid because there can be a case when 7538 * all addresses are matched. 7539 */ 7540 } 7541 7542 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) || 7543 key_typesw[msg->sadb_msg_type] == NULL) { 7544 V_pfkeystat.out_invmsgtype++; 7545 error = EINVAL; 7546 goto senderror; 7547 } 7548 7549 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh); 7550 7551 senderror: 7552 msg->sadb_msg_errno = error; 7553 return key_sendup_mbuf(so, m, target); 7554 } 7555 7556 static int 7557 key_senderror(so, m, code) 7558 struct socket *so; 7559 struct mbuf *m; 7560 int code; 7561 { 7562 struct sadb_msg *msg; 7563 7564 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 7565 ("mbuf too small, len %u", m->m_len)); 7566 7567 msg = mtod(m, struct sadb_msg *); 7568 msg->sadb_msg_errno = code; 7569 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 7570 } 7571 7572 /* 7573 * set the pointer to each header into message buffer. 7574 * m will be freed on error. 7575 * XXX larger-than-MCLBYTES extension? 7576 */ 7577 static int 7578 key_align(m, mhp) 7579 struct mbuf *m; 7580 struct sadb_msghdr *mhp; 7581 { 7582 struct mbuf *n; 7583 struct sadb_ext *ext; 7584 size_t off, end; 7585 int extlen; 7586 int toff; 7587 7588 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7589 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7590 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 7591 ("mbuf too small, len %u", m->m_len)); 7592 7593 /* initialize */ 7594 bzero(mhp, sizeof(*mhp)); 7595 7596 mhp->msg = mtod(m, struct sadb_msg *); 7597 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */ 7598 7599 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7600 extlen = end; /*just in case extlen is not updated*/ 7601 for (off = sizeof(struct sadb_msg); off < end; off += extlen) { 7602 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); 7603 if (!n) { 7604 /* m is already freed */ 7605 return ENOBUFS; 7606 } 7607 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 7608 7609 /* set pointer */ 7610 switch (ext->sadb_ext_type) { 7611 case SADB_EXT_SA: 7612 case SADB_EXT_ADDRESS_SRC: 7613 case SADB_EXT_ADDRESS_DST: 7614 case SADB_EXT_ADDRESS_PROXY: 7615 case SADB_EXT_LIFETIME_CURRENT: 7616 case SADB_EXT_LIFETIME_HARD: 7617 case SADB_EXT_LIFETIME_SOFT: 7618 case SADB_EXT_KEY_AUTH: 7619 case SADB_EXT_KEY_ENCRYPT: 7620 case SADB_EXT_IDENTITY_SRC: 7621 case SADB_EXT_IDENTITY_DST: 7622 case SADB_EXT_SENSITIVITY: 7623 case SADB_EXT_PROPOSAL: 7624 case SADB_EXT_SUPPORTED_AUTH: 7625 case SADB_EXT_SUPPORTED_ENCRYPT: 7626 case SADB_EXT_SPIRANGE: 7627 case SADB_X_EXT_POLICY: 7628 case SADB_X_EXT_SA2: 7629 #ifdef IPSEC_NAT_T 7630 case SADB_X_EXT_NAT_T_TYPE: 7631 case SADB_X_EXT_NAT_T_SPORT: 7632 case SADB_X_EXT_NAT_T_DPORT: 7633 case SADB_X_EXT_NAT_T_OAI: 7634 case SADB_X_EXT_NAT_T_OAR: 7635 case SADB_X_EXT_NAT_T_FRAG: 7636 #endif 7637 /* duplicate check */ 7638 /* 7639 * XXX Are there duplication payloads of either 7640 * KEY_AUTH or KEY_ENCRYPT ? 7641 */ 7642 if (mhp->ext[ext->sadb_ext_type] != NULL) { 7643 ipseclog((LOG_DEBUG, "%s: duplicate ext_type " 7644 "%u\n", __func__, ext->sadb_ext_type)); 7645 m_freem(m); 7646 V_pfkeystat.out_dupext++; 7647 return EINVAL; 7648 } 7649 break; 7650 default: 7651 ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n", 7652 __func__, ext->sadb_ext_type)); 7653 m_freem(m); 7654 V_pfkeystat.out_invexttype++; 7655 return EINVAL; 7656 } 7657 7658 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); 7659 7660 if (key_validate_ext(ext, extlen)) { 7661 m_freem(m); 7662 V_pfkeystat.out_invlen++; 7663 return EINVAL; 7664 } 7665 7666 n = m_pulldown(m, off, extlen, &toff); 7667 if (!n) { 7668 /* m is already freed */ 7669 return ENOBUFS; 7670 } 7671 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 7672 7673 mhp->ext[ext->sadb_ext_type] = ext; 7674 mhp->extoff[ext->sadb_ext_type] = off; 7675 mhp->extlen[ext->sadb_ext_type] = extlen; 7676 } 7677 7678 if (off != end) { 7679 m_freem(m); 7680 V_pfkeystat.out_invlen++; 7681 return EINVAL; 7682 } 7683 7684 return 0; 7685 } 7686 7687 static int 7688 key_validate_ext(ext, len) 7689 const struct sadb_ext *ext; 7690 int len; 7691 { 7692 const struct sockaddr *sa; 7693 enum { NONE, ADDR } checktype = NONE; 7694 int baselen = 0; 7695 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); 7696 7697 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) 7698 return EINVAL; 7699 7700 /* if it does not match minimum/maximum length, bail */ 7701 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) || 7702 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0])) 7703 return EINVAL; 7704 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) 7705 return EINVAL; 7706 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) 7707 return EINVAL; 7708 7709 /* more checks based on sadb_ext_type XXX need more */ 7710 switch (ext->sadb_ext_type) { 7711 case SADB_EXT_ADDRESS_SRC: 7712 case SADB_EXT_ADDRESS_DST: 7713 case SADB_EXT_ADDRESS_PROXY: 7714 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); 7715 checktype = ADDR; 7716 break; 7717 case SADB_EXT_IDENTITY_SRC: 7718 case SADB_EXT_IDENTITY_DST: 7719 if (((const struct sadb_ident *)ext)->sadb_ident_type == 7720 SADB_X_IDENTTYPE_ADDR) { 7721 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); 7722 checktype = ADDR; 7723 } else 7724 checktype = NONE; 7725 break; 7726 default: 7727 checktype = NONE; 7728 break; 7729 } 7730 7731 switch (checktype) { 7732 case NONE: 7733 break; 7734 case ADDR: 7735 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); 7736 if (len < baselen + sal) 7737 return EINVAL; 7738 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) 7739 return EINVAL; 7740 break; 7741 } 7742 7743 return 0; 7744 } 7745 7746 void 7747 key_init(void) 7748 { 7749 int i; 7750 7751 for (i = 0; i < IPSEC_DIR_MAX; i++) 7752 LIST_INIT(&V_sptree[i]); 7753 7754 LIST_INIT(&V_sahtree); 7755 7756 for (i = 0; i <= SADB_SATYPE_MAX; i++) 7757 LIST_INIT(&V_regtree[i]); 7758 7759 LIST_INIT(&V_acqtree); 7760 LIST_INIT(&V_spacqtree); 7761 7762 /* system default */ 7763 V_ip4_def_policy.policy = IPSEC_POLICY_NONE; 7764 V_ip4_def_policy.refcnt++; /*never reclaim this*/ 7765 7766 if (!IS_DEFAULT_VNET(curvnet)) 7767 return; 7768 7769 SPTREE_LOCK_INIT(); 7770 REGTREE_LOCK_INIT(); 7771 SAHTREE_LOCK_INIT(); 7772 ACQ_LOCK_INIT(); 7773 SPACQ_LOCK_INIT(); 7774 7775 #ifndef IPSEC_DEBUG2 7776 timeout((void *)key_timehandler, (void *)0, hz); 7777 #endif /*IPSEC_DEBUG2*/ 7778 7779 /* initialize key statistics */ 7780 keystat.getspi_count = 1; 7781 7782 printf("IPsec: Initialized Security Association Processing.\n"); 7783 } 7784 7785 #ifdef VIMAGE 7786 void 7787 key_destroy(void) 7788 { 7789 struct secpolicy *sp, *nextsp; 7790 struct secacq *acq, *nextacq; 7791 struct secspacq *spacq, *nextspacq; 7792 struct secashead *sah, *nextsah; 7793 struct secreg *reg; 7794 int i; 7795 7796 SPTREE_LOCK(); 7797 for (i = 0; i < IPSEC_DIR_MAX; i++) { 7798 for (sp = LIST_FIRST(&V_sptree[i]); 7799 sp != NULL; sp = nextsp) { 7800 nextsp = LIST_NEXT(sp, chain); 7801 if (__LIST_CHAINED(sp)) { 7802 LIST_REMOVE(sp, chain); 7803 free(sp, M_IPSEC_SP); 7804 } 7805 } 7806 } 7807 SPTREE_UNLOCK(); 7808 7809 SAHTREE_LOCK(); 7810 for (sah = LIST_FIRST(&V_sahtree); sah != NULL; sah = nextsah) { 7811 nextsah = LIST_NEXT(sah, chain); 7812 if (__LIST_CHAINED(sah)) { 7813 LIST_REMOVE(sah, chain); 7814 free(sah, M_IPSEC_SAH); 7815 } 7816 } 7817 SAHTREE_UNLOCK(); 7818 7819 REGTREE_LOCK(); 7820 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 7821 LIST_FOREACH(reg, &V_regtree[i], chain) { 7822 if (__LIST_CHAINED(reg)) { 7823 LIST_REMOVE(reg, chain); 7824 free(reg, M_IPSEC_SAR); 7825 break; 7826 } 7827 } 7828 } 7829 REGTREE_UNLOCK(); 7830 7831 ACQ_LOCK(); 7832 for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) { 7833 nextacq = LIST_NEXT(acq, chain); 7834 if (__LIST_CHAINED(acq)) { 7835 LIST_REMOVE(acq, chain); 7836 free(acq, M_IPSEC_SAQ); 7837 } 7838 } 7839 ACQ_UNLOCK(); 7840 7841 SPACQ_LOCK(); 7842 for (spacq = LIST_FIRST(&V_spacqtree); spacq != NULL; 7843 spacq = nextspacq) { 7844 nextspacq = LIST_NEXT(spacq, chain); 7845 if (__LIST_CHAINED(spacq)) { 7846 LIST_REMOVE(spacq, chain); 7847 free(spacq, M_IPSEC_SAQ); 7848 } 7849 } 7850 SPACQ_UNLOCK(); 7851 } 7852 #endif 7853 7854 /* 7855 * XXX: maybe This function is called after INBOUND IPsec processing. 7856 * 7857 * Special check for tunnel-mode packets. 7858 * We must make some checks for consistency between inner and outer IP header. 7859 * 7860 * xxx more checks to be provided 7861 */ 7862 int 7863 key_checktunnelsanity(sav, family, src, dst) 7864 struct secasvar *sav; 7865 u_int family; 7866 caddr_t src; 7867 caddr_t dst; 7868 { 7869 IPSEC_ASSERT(sav->sah != NULL, ("null SA header")); 7870 7871 /* XXX: check inner IP header */ 7872 7873 return 1; 7874 } 7875 7876 /* record data transfer on SA, and update timestamps */ 7877 void 7878 key_sa_recordxfer(sav, m) 7879 struct secasvar *sav; 7880 struct mbuf *m; 7881 { 7882 IPSEC_ASSERT(sav != NULL, ("Null secasvar")); 7883 IPSEC_ASSERT(m != NULL, ("Null mbuf")); 7884 if (!sav->lft_c) 7885 return; 7886 7887 /* 7888 * XXX Currently, there is a difference of bytes size 7889 * between inbound and outbound processing. 7890 */ 7891 sav->lft_c->bytes += m->m_pkthdr.len; 7892 /* to check bytes lifetime is done in key_timehandler(). */ 7893 7894 /* 7895 * We use the number of packets as the unit of 7896 * allocations. We increment the variable 7897 * whenever {esp,ah}_{in,out}put is called. 7898 */ 7899 sav->lft_c->allocations++; 7900 /* XXX check for expires? */ 7901 7902 /* 7903 * NOTE: We record CURRENT usetime by using wall clock, 7904 * in seconds. HARD and SOFT lifetime are measured by the time 7905 * difference (again in seconds) from usetime. 7906 * 7907 * usetime 7908 * v expire expire 7909 * -----+-----+--------+---> t 7910 * <--------------> HARD 7911 * <-----> SOFT 7912 */ 7913 sav->lft_c->usetime = time_second; 7914 /* XXX check for expires? */ 7915 7916 return; 7917 } 7918 7919 /* dumb version */ 7920 void 7921 key_sa_routechange(dst) 7922 struct sockaddr *dst; 7923 { 7924 struct secashead *sah; 7925 struct route *ro; 7926 7927 SAHTREE_LOCK(); 7928 LIST_FOREACH(sah, &V_sahtree, chain) { 7929 ro = &sah->route_cache.sa_route; 7930 if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len 7931 && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) { 7932 RTFREE(ro->ro_rt); 7933 ro->ro_rt = (struct rtentry *)NULL; 7934 } 7935 } 7936 SAHTREE_UNLOCK(); 7937 } 7938 7939 static void 7940 key_sa_chgstate(struct secasvar *sav, u_int8_t state) 7941 { 7942 IPSEC_ASSERT(sav != NULL, ("NULL sav")); 7943 SAHTREE_LOCK_ASSERT(); 7944 7945 if (sav->state != state) { 7946 if (__LIST_CHAINED(sav)) 7947 LIST_REMOVE(sav, chain); 7948 sav->state = state; 7949 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain); 7950 } 7951 } 7952 7953 void 7954 key_sa_stir_iv(sav) 7955 struct secasvar *sav; 7956 { 7957 7958 IPSEC_ASSERT(sav->iv != NULL, ("null IV")); 7959 key_randomfill(sav->iv, sav->ivlen); 7960 } 7961 7962 /* XXX too much? */ 7963 static struct mbuf * 7964 key_alloc_mbuf(l) 7965 int l; 7966 { 7967 struct mbuf *m = NULL, *n; 7968 int len, t; 7969 7970 len = l; 7971 while (len > 0) { 7972 MGET(n, M_NOWAIT, MT_DATA); 7973 if (n && len > MLEN) 7974 MCLGET(n, M_NOWAIT); 7975 if (!n) { 7976 m_freem(m); 7977 return NULL; 7978 } 7979 7980 n->m_next = NULL; 7981 n->m_len = 0; 7982 n->m_len = M_TRAILINGSPACE(n); 7983 /* use the bottom of mbuf, hoping we can prepend afterwards */ 7984 if (n->m_len > len) { 7985 t = (n->m_len - len) & ~(sizeof(long) - 1); 7986 n->m_data += t; 7987 n->m_len = len; 7988 } 7989 7990 len -= n->m_len; 7991 7992 if (m) 7993 m_cat(m, n); 7994 else 7995 m = n; 7996 } 7997 7998 return m; 7999 } 8000 8001 /* 8002 * Take one of the kernel's security keys and convert it into a PF_KEY 8003 * structure within an mbuf, suitable for sending up to a waiting 8004 * application in user land. 8005 * 8006 * IN: 8007 * src: A pointer to a kernel security key. 8008 * exttype: Which type of key this is. Refer to the PF_KEY data structures. 8009 * OUT: 8010 * a valid mbuf or NULL indicating an error 8011 * 8012 */ 8013 8014 static struct mbuf * 8015 key_setkey(struct seckey *src, u_int16_t exttype) 8016 { 8017 struct mbuf *m; 8018 struct sadb_key *p; 8019 int len; 8020 8021 if (src == NULL) 8022 return NULL; 8023 8024 len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src)); 8025 m = key_alloc_mbuf(len); 8026 if (m == NULL) 8027 return NULL; 8028 p = mtod(m, struct sadb_key *); 8029 bzero(p, len); 8030 p->sadb_key_len = PFKEY_UNIT64(len); 8031 p->sadb_key_exttype = exttype; 8032 p->sadb_key_bits = src->bits; 8033 bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src)); 8034 8035 return m; 8036 } 8037 8038 /* 8039 * Take one of the kernel's lifetime data structures and convert it 8040 * into a PF_KEY structure within an mbuf, suitable for sending up to 8041 * a waiting application in user land. 8042 * 8043 * IN: 8044 * src: A pointer to a kernel lifetime structure. 8045 * exttype: Which type of lifetime this is. Refer to the PF_KEY 8046 * data structures for more information. 8047 * OUT: 8048 * a valid mbuf or NULL indicating an error 8049 * 8050 */ 8051 8052 static struct mbuf * 8053 key_setlifetime(struct seclifetime *src, u_int16_t exttype) 8054 { 8055 struct mbuf *m = NULL; 8056 struct sadb_lifetime *p; 8057 int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime)); 8058 8059 if (src == NULL) 8060 return NULL; 8061 8062 m = key_alloc_mbuf(len); 8063 if (m == NULL) 8064 return m; 8065 p = mtod(m, struct sadb_lifetime *); 8066 8067 bzero(p, len); 8068 p->sadb_lifetime_len = PFKEY_UNIT64(len); 8069 p->sadb_lifetime_exttype = exttype; 8070 p->sadb_lifetime_allocations = src->allocations; 8071 p->sadb_lifetime_bytes = src->bytes; 8072 p->sadb_lifetime_addtime = src->addtime; 8073 p->sadb_lifetime_usetime = src->usetime; 8074 8075 return m; 8076 8077 } 8078