1 /* $FreeBSD$ */ 2 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ 3 4 /*- 5 * SPDX-License-Identifier: BSD-3-Clause 6 * 7 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the project nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 /* 36 * This code is referd to RFC 2367 37 */ 38 39 #include "opt_inet.h" 40 #include "opt_inet6.h" 41 #include "opt_ipsec.h" 42 43 #include <sys/types.h> 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/kernel.h> 47 #include <sys/fnv_hash.h> 48 #include <sys/lock.h> 49 #include <sys/mutex.h> 50 #include <sys/mbuf.h> 51 #include <sys/domain.h> 52 #include <sys/protosw.h> 53 #include <sys/malloc.h> 54 #include <sys/rmlock.h> 55 #include <sys/socket.h> 56 #include <sys/socketvar.h> 57 #include <sys/sysctl.h> 58 #include <sys/errno.h> 59 #include <sys/proc.h> 60 #include <sys/queue.h> 61 #include <sys/refcount.h> 62 #include <sys/syslog.h> 63 64 #include <vm/uma.h> 65 66 #include <net/if.h> 67 #include <net/if_var.h> 68 #include <net/vnet.h> 69 #include <net/raw_cb.h> 70 71 #include <netinet/in.h> 72 #include <netinet/in_systm.h> 73 #include <netinet/ip.h> 74 #include <netinet/in_var.h> 75 #include <netinet/udp.h> 76 77 #ifdef INET6 78 #include <netinet/ip6.h> 79 #include <netinet6/in6_var.h> 80 #include <netinet6/ip6_var.h> 81 #endif /* INET6 */ 82 83 #include <net/pfkeyv2.h> 84 #include <netipsec/keydb.h> 85 #include <netipsec/key.h> 86 #include <netipsec/keysock.h> 87 #include <netipsec/key_debug.h> 88 89 #include <netipsec/ipsec.h> 90 #ifdef INET6 91 #include <netipsec/ipsec6.h> 92 #endif 93 94 #include <netipsec/xform.h> 95 #include <machine/in_cksum.h> 96 #include <machine/stdarg.h> 97 98 /* randomness */ 99 #include <sys/random.h> 100 101 #define FULLMASK 0xff 102 #define _BITS(bytes) ((bytes) << 3) 103 104 /* 105 * Note on SA reference counting: 106 * - SAs that are not in DEAD state will have (total external reference + 1) 107 * following value in reference count field. they cannot be freed and are 108 * referenced from SA header. 109 * - SAs that are in DEAD state will have (total external reference) 110 * in reference count field. they are ready to be freed. reference from 111 * SA header will be removed in key_delsav(), when the reference count 112 * field hits 0 (= no external reference other than from SA header. 113 */ 114 115 VNET_DEFINE(u_int32_t, key_debug_level) = 0; 116 VNET_DEFINE_STATIC(u_int, key_spi_trycnt) = 1000; 117 VNET_DEFINE_STATIC(u_int32_t, key_spi_minval) = 0x100; 118 VNET_DEFINE_STATIC(u_int32_t, key_spi_maxval) = 0x0fffffff; /* XXX */ 119 VNET_DEFINE_STATIC(u_int32_t, policy_id) = 0; 120 /*interval to initialize randseed,1(m)*/ 121 VNET_DEFINE_STATIC(u_int, key_int_random) = 60; 122 /* interval to expire acquiring, 30(s)*/ 123 VNET_DEFINE_STATIC(u_int, key_larval_lifetime) = 30; 124 /* counter for blocking SADB_ACQUIRE.*/ 125 VNET_DEFINE_STATIC(int, key_blockacq_count) = 10; 126 /* lifetime for blocking SADB_ACQUIRE.*/ 127 VNET_DEFINE_STATIC(int, key_blockacq_lifetime) = 20; 128 /* preferred old sa rather than new sa.*/ 129 VNET_DEFINE_STATIC(int, key_preferred_oldsa) = 1; 130 #define V_key_spi_trycnt VNET(key_spi_trycnt) 131 #define V_key_spi_minval VNET(key_spi_minval) 132 #define V_key_spi_maxval VNET(key_spi_maxval) 133 #define V_policy_id VNET(policy_id) 134 #define V_key_int_random VNET(key_int_random) 135 #define V_key_larval_lifetime VNET(key_larval_lifetime) 136 #define V_key_blockacq_count VNET(key_blockacq_count) 137 #define V_key_blockacq_lifetime VNET(key_blockacq_lifetime) 138 #define V_key_preferred_oldsa VNET(key_preferred_oldsa) 139 140 VNET_DEFINE_STATIC(u_int32_t, acq_seq) = 0; 141 #define V_acq_seq VNET(acq_seq) 142 143 VNET_DEFINE_STATIC(uint32_t, sp_genid) = 0; 144 #define V_sp_genid VNET(sp_genid) 145 146 /* SPD */ 147 TAILQ_HEAD(secpolicy_queue, secpolicy); 148 LIST_HEAD(secpolicy_list, secpolicy); 149 VNET_DEFINE_STATIC(struct secpolicy_queue, sptree[IPSEC_DIR_MAX]); 150 VNET_DEFINE_STATIC(struct secpolicy_queue, sptree_ifnet[IPSEC_DIR_MAX]); 151 static struct rmlock sptree_lock; 152 #define V_sptree VNET(sptree) 153 #define V_sptree_ifnet VNET(sptree_ifnet) 154 #define SPTREE_LOCK_INIT() rm_init(&sptree_lock, "sptree") 155 #define SPTREE_LOCK_DESTROY() rm_destroy(&sptree_lock) 156 #define SPTREE_RLOCK_TRACKER struct rm_priotracker sptree_tracker 157 #define SPTREE_RLOCK() rm_rlock(&sptree_lock, &sptree_tracker) 158 #define SPTREE_RUNLOCK() rm_runlock(&sptree_lock, &sptree_tracker) 159 #define SPTREE_RLOCK_ASSERT() rm_assert(&sptree_lock, RA_RLOCKED) 160 #define SPTREE_WLOCK() rm_wlock(&sptree_lock) 161 #define SPTREE_WUNLOCK() rm_wunlock(&sptree_lock) 162 #define SPTREE_WLOCK_ASSERT() rm_assert(&sptree_lock, RA_WLOCKED) 163 #define SPTREE_UNLOCK_ASSERT() rm_assert(&sptree_lock, RA_UNLOCKED) 164 165 /* Hash table for lookup SP using unique id */ 166 VNET_DEFINE_STATIC(struct secpolicy_list *, sphashtbl); 167 VNET_DEFINE_STATIC(u_long, sphash_mask); 168 #define V_sphashtbl VNET(sphashtbl) 169 #define V_sphash_mask VNET(sphash_mask) 170 171 #define SPHASH_NHASH_LOG2 7 172 #define SPHASH_NHASH (1 << SPHASH_NHASH_LOG2) 173 #define SPHASH_HASHVAL(id) (key_u32hash(id) & V_sphash_mask) 174 #define SPHASH_HASH(id) &V_sphashtbl[SPHASH_HASHVAL(id)] 175 176 /* SPD cache */ 177 struct spdcache_entry { 178 struct secpolicyindex spidx; /* secpolicyindex */ 179 struct secpolicy *sp; /* cached policy to be used */ 180 181 LIST_ENTRY(spdcache_entry) chain; 182 }; 183 LIST_HEAD(spdcache_entry_list, spdcache_entry); 184 185 #define SPDCACHE_MAX_ENTRIES_PER_HASH 8 186 187 VNET_DEFINE_STATIC(u_int, key_spdcache_maxentries) = 0; 188 #define V_key_spdcache_maxentries VNET(key_spdcache_maxentries) 189 VNET_DEFINE_STATIC(u_int, key_spdcache_threshold) = 32; 190 #define V_key_spdcache_threshold VNET(key_spdcache_threshold) 191 VNET_DEFINE_STATIC(unsigned long, spd_size) = 0; 192 #define V_spd_size VNET(spd_size) 193 194 #define SPDCACHE_ENABLED() (V_key_spdcache_maxentries != 0) 195 #define SPDCACHE_ACTIVE() \ 196 (SPDCACHE_ENABLED() && V_spd_size >= V_key_spdcache_threshold) 197 198 VNET_DEFINE_STATIC(struct spdcache_entry_list *, spdcachehashtbl); 199 VNET_DEFINE_STATIC(u_long, spdcachehash_mask); 200 #define V_spdcachehashtbl VNET(spdcachehashtbl) 201 #define V_spdcachehash_mask VNET(spdcachehash_mask) 202 203 #define SPDCACHE_HASHVAL(idx) \ 204 (key_addrprotohash(&(idx)->src, &(idx)->dst, &(idx)->ul_proto) & \ 205 V_spdcachehash_mask) 206 207 /* Each cache line is protected by a mutex */ 208 VNET_DEFINE_STATIC(struct mtx *, spdcache_lock); 209 #define V_spdcache_lock VNET(spdcache_lock) 210 211 #define SPDCACHE_LOCK_INIT(a) \ 212 mtx_init(&V_spdcache_lock[a], "spdcache", \ 213 "fast ipsec SPD cache", MTX_DEF|MTX_DUPOK) 214 #define SPDCACHE_LOCK_DESTROY(a) mtx_destroy(&V_spdcache_lock[a]) 215 #define SPDCACHE_LOCK(a) mtx_lock(&V_spdcache_lock[a]); 216 #define SPDCACHE_UNLOCK(a) mtx_unlock(&V_spdcache_lock[a]); 217 218 /* SAD */ 219 TAILQ_HEAD(secashead_queue, secashead); 220 LIST_HEAD(secashead_list, secashead); 221 VNET_DEFINE_STATIC(struct secashead_queue, sahtree); 222 static struct rmlock sahtree_lock; 223 #define V_sahtree VNET(sahtree) 224 #define SAHTREE_LOCK_INIT() rm_init(&sahtree_lock, "sahtree") 225 #define SAHTREE_LOCK_DESTROY() rm_destroy(&sahtree_lock) 226 #define SAHTREE_RLOCK_TRACKER struct rm_priotracker sahtree_tracker 227 #define SAHTREE_RLOCK() rm_rlock(&sahtree_lock, &sahtree_tracker) 228 #define SAHTREE_RUNLOCK() rm_runlock(&sahtree_lock, &sahtree_tracker) 229 #define SAHTREE_RLOCK_ASSERT() rm_assert(&sahtree_lock, RA_RLOCKED) 230 #define SAHTREE_WLOCK() rm_wlock(&sahtree_lock) 231 #define SAHTREE_WUNLOCK() rm_wunlock(&sahtree_lock) 232 #define SAHTREE_WLOCK_ASSERT() rm_assert(&sahtree_lock, RA_WLOCKED) 233 #define SAHTREE_UNLOCK_ASSERT() rm_assert(&sahtree_lock, RA_UNLOCKED) 234 235 /* Hash table for lookup in SAD using SA addresses */ 236 VNET_DEFINE_STATIC(struct secashead_list *, sahaddrhashtbl); 237 VNET_DEFINE_STATIC(u_long, sahaddrhash_mask); 238 #define V_sahaddrhashtbl VNET(sahaddrhashtbl) 239 #define V_sahaddrhash_mask VNET(sahaddrhash_mask) 240 241 #define SAHHASH_NHASH_LOG2 7 242 #define SAHHASH_NHASH (1 << SAHHASH_NHASH_LOG2) 243 #define SAHADDRHASH_HASHVAL(idx) \ 244 (key_addrprotohash(&(idx)->src, &(idx)->dst, &(idx)->proto) & \ 245 V_sahaddrhash_mask) 246 #define SAHADDRHASH_HASH(saidx) \ 247 &V_sahaddrhashtbl[SAHADDRHASH_HASHVAL(saidx)] 248 249 /* Hash table for lookup in SAD using SPI */ 250 LIST_HEAD(secasvar_list, secasvar); 251 VNET_DEFINE_STATIC(struct secasvar_list *, savhashtbl); 252 VNET_DEFINE_STATIC(u_long, savhash_mask); 253 #define V_savhashtbl VNET(savhashtbl) 254 #define V_savhash_mask VNET(savhash_mask) 255 #define SAVHASH_NHASH_LOG2 7 256 #define SAVHASH_NHASH (1 << SAVHASH_NHASH_LOG2) 257 #define SAVHASH_HASHVAL(spi) (key_u32hash(spi) & V_savhash_mask) 258 #define SAVHASH_HASH(spi) &V_savhashtbl[SAVHASH_HASHVAL(spi)] 259 260 static uint32_t 261 key_addrprotohash(const union sockaddr_union *src, 262 const union sockaddr_union *dst, const uint8_t *proto) 263 { 264 uint32_t hval; 265 266 hval = fnv_32_buf(proto, sizeof(*proto), 267 FNV1_32_INIT); 268 switch (dst->sa.sa_family) { 269 #ifdef INET 270 case AF_INET: 271 hval = fnv_32_buf(&src->sin.sin_addr, 272 sizeof(in_addr_t), hval); 273 hval = fnv_32_buf(&dst->sin.sin_addr, 274 sizeof(in_addr_t), hval); 275 break; 276 #endif 277 #ifdef INET6 278 case AF_INET6: 279 hval = fnv_32_buf(&src->sin6.sin6_addr, 280 sizeof(struct in6_addr), hval); 281 hval = fnv_32_buf(&dst->sin6.sin6_addr, 282 sizeof(struct in6_addr), hval); 283 break; 284 #endif 285 default: 286 hval = 0; 287 ipseclog((LOG_DEBUG, "%s: unknown address family %d", 288 __func__, dst->sa.sa_family)); 289 } 290 return (hval); 291 } 292 293 static uint32_t 294 key_u32hash(uint32_t val) 295 { 296 297 return (fnv_32_buf(&val, sizeof(val), FNV1_32_INIT)); 298 } 299 300 /* registed list */ 301 VNET_DEFINE_STATIC(LIST_HEAD(_regtree, secreg), regtree[SADB_SATYPE_MAX + 1]); 302 #define V_regtree VNET(regtree) 303 static struct mtx regtree_lock; 304 #define REGTREE_LOCK_INIT() \ 305 mtx_init(®tree_lock, "regtree", "fast ipsec regtree", MTX_DEF) 306 #define REGTREE_LOCK_DESTROY() mtx_destroy(®tree_lock) 307 #define REGTREE_LOCK() mtx_lock(®tree_lock) 308 #define REGTREE_UNLOCK() mtx_unlock(®tree_lock) 309 #define REGTREE_LOCK_ASSERT() mtx_assert(®tree_lock, MA_OWNED) 310 311 /* Acquiring list */ 312 LIST_HEAD(secacq_list, secacq); 313 VNET_DEFINE_STATIC(struct secacq_list, acqtree); 314 #define V_acqtree VNET(acqtree) 315 static struct mtx acq_lock; 316 #define ACQ_LOCK_INIT() \ 317 mtx_init(&acq_lock, "acqtree", "ipsec SA acquiring list", MTX_DEF) 318 #define ACQ_LOCK_DESTROY() mtx_destroy(&acq_lock) 319 #define ACQ_LOCK() mtx_lock(&acq_lock) 320 #define ACQ_UNLOCK() mtx_unlock(&acq_lock) 321 #define ACQ_LOCK_ASSERT() mtx_assert(&acq_lock, MA_OWNED) 322 323 /* Hash table for lookup in ACQ list using SA addresses */ 324 VNET_DEFINE_STATIC(struct secacq_list *, acqaddrhashtbl); 325 VNET_DEFINE_STATIC(u_long, acqaddrhash_mask); 326 #define V_acqaddrhashtbl VNET(acqaddrhashtbl) 327 #define V_acqaddrhash_mask VNET(acqaddrhash_mask) 328 329 /* Hash table for lookup in ACQ list using SEQ number */ 330 VNET_DEFINE_STATIC(struct secacq_list *, acqseqhashtbl); 331 VNET_DEFINE_STATIC(u_long, acqseqhash_mask); 332 #define V_acqseqhashtbl VNET(acqseqhashtbl) 333 #define V_acqseqhash_mask VNET(acqseqhash_mask) 334 335 #define ACQHASH_NHASH_LOG2 7 336 #define ACQHASH_NHASH (1 << ACQHASH_NHASH_LOG2) 337 #define ACQADDRHASH_HASHVAL(idx) \ 338 (key_addrprotohash(&(idx)->src, &(idx)->dst, &(idx)->proto) & \ 339 V_acqaddrhash_mask) 340 #define ACQSEQHASH_HASHVAL(seq) \ 341 (key_u32hash(seq) & V_acqseqhash_mask) 342 #define ACQADDRHASH_HASH(saidx) \ 343 &V_acqaddrhashtbl[ACQADDRHASH_HASHVAL(saidx)] 344 #define ACQSEQHASH_HASH(seq) \ 345 &V_acqseqhashtbl[ACQSEQHASH_HASHVAL(seq)] 346 /* SP acquiring list */ 347 VNET_DEFINE_STATIC(LIST_HEAD(_spacqtree, secspacq), spacqtree); 348 #define V_spacqtree VNET(spacqtree) 349 static struct mtx spacq_lock; 350 #define SPACQ_LOCK_INIT() \ 351 mtx_init(&spacq_lock, "spacqtree", \ 352 "fast ipsec security policy acquire list", MTX_DEF) 353 #define SPACQ_LOCK_DESTROY() mtx_destroy(&spacq_lock) 354 #define SPACQ_LOCK() mtx_lock(&spacq_lock) 355 #define SPACQ_UNLOCK() mtx_unlock(&spacq_lock) 356 #define SPACQ_LOCK_ASSERT() mtx_assert(&spacq_lock, MA_OWNED) 357 358 static const int minsize[] = { 359 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 360 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 361 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 362 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 363 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 364 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ 365 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ 366 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ 367 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ 368 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ 369 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ 370 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ 371 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ 372 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ 373 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ 374 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ 375 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 376 0, /* SADB_X_EXT_KMPRIVATE */ 377 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ 378 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 379 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ 380 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ 381 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ 382 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */ 383 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */ 384 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ 385 sizeof(struct sadb_x_sa_replay), /* SADB_X_EXT_SA_REPLAY */ 386 sizeof(struct sadb_address), /* SADB_X_EXT_NEW_ADDRESS_SRC */ 387 sizeof(struct sadb_address), /* SADB_X_EXT_NEW_ADDRESS_DST */ 388 }; 389 _Static_assert(sizeof(minsize)/sizeof(int) == SADB_EXT_MAX + 1, "minsize size mismatch"); 390 391 static const int maxsize[] = { 392 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 393 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 394 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 395 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 396 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 397 0, /* SADB_EXT_ADDRESS_SRC */ 398 0, /* SADB_EXT_ADDRESS_DST */ 399 0, /* SADB_EXT_ADDRESS_PROXY */ 400 0, /* SADB_EXT_KEY_AUTH */ 401 0, /* SADB_EXT_KEY_ENCRYPT */ 402 0, /* SADB_EXT_IDENTITY_SRC */ 403 0, /* SADB_EXT_IDENTITY_DST */ 404 0, /* SADB_EXT_SENSITIVITY */ 405 0, /* SADB_EXT_PROPOSAL */ 406 0, /* SADB_EXT_SUPPORTED_AUTH */ 407 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ 408 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 409 0, /* SADB_X_EXT_KMPRIVATE */ 410 0, /* SADB_X_EXT_POLICY */ 411 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 412 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ 413 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ 414 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ 415 0, /* SADB_X_EXT_NAT_T_OAI */ 416 0, /* SADB_X_EXT_NAT_T_OAR */ 417 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ 418 sizeof(struct sadb_x_sa_replay), /* SADB_X_EXT_SA_REPLAY */ 419 0, /* SADB_X_EXT_NEW_ADDRESS_SRC */ 420 0, /* SADB_X_EXT_NEW_ADDRESS_DST */ 421 }; 422 _Static_assert(sizeof(maxsize)/sizeof(int) == SADB_EXT_MAX + 1, "minsize size mismatch"); 423 424 /* 425 * Internal values for SA flags: 426 * SADB_X_EXT_F_CLONED means that SA was cloned by key_updateaddresses, 427 * thus we will not free the most of SA content in key_delsav(). 428 */ 429 #define SADB_X_EXT_F_CLONED 0x80000000 430 431 #define SADB_CHECKLEN(_mhp, _ext) \ 432 ((_mhp)->extlen[(_ext)] < minsize[(_ext)] || (maxsize[(_ext)] != 0 && \ 433 ((_mhp)->extlen[(_ext)] > maxsize[(_ext)]))) 434 #define SADB_CHECKHDR(_mhp, _ext) ((_mhp)->ext[(_ext)] == NULL) 435 436 VNET_DEFINE_STATIC(int, ipsec_esp_keymin) = 256; 437 VNET_DEFINE_STATIC(int, ipsec_esp_auth) = 0; 438 VNET_DEFINE_STATIC(int, ipsec_ah_keymin) = 128; 439 440 #define V_ipsec_esp_keymin VNET(ipsec_esp_keymin) 441 #define V_ipsec_esp_auth VNET(ipsec_esp_auth) 442 #define V_ipsec_ah_keymin VNET(ipsec_ah_keymin) 443 444 #ifdef IPSEC_DEBUG 445 VNET_DEFINE(int, ipsec_debug) = 1; 446 #else 447 VNET_DEFINE(int, ipsec_debug) = 0; 448 #endif 449 450 #ifdef INET 451 SYSCTL_DECL(_net_inet_ipsec); 452 SYSCTL_INT(_net_inet_ipsec, IPSECCTL_DEBUG, debug, 453 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_debug), 0, 454 "Enable IPsec debugging output when set."); 455 #endif 456 #ifdef INET6 457 SYSCTL_DECL(_net_inet6_ipsec6); 458 SYSCTL_INT(_net_inet6_ipsec6, IPSECCTL_DEBUG, debug, 459 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_debug), 0, 460 "Enable IPsec debugging output when set."); 461 #endif 462 463 SYSCTL_DECL(_net_key); 464 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, 465 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_debug_level), 0, ""); 466 467 /* max count of trial for the decision of spi value */ 468 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, 469 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_trycnt), 0, ""); 470 471 /* minimum spi value to allocate automatically. */ 472 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, 473 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_minval), 0, ""); 474 475 /* maximun spi value to allocate automatically. */ 476 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, 477 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_maxval), 0, ""); 478 479 /* interval to initialize randseed */ 480 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, 481 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_int_random), 0, ""); 482 483 /* lifetime for larval SA */ 484 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, 485 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_larval_lifetime), 0, ""); 486 487 /* counter for blocking to send SADB_ACQUIRE to IKEd */ 488 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, 489 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_count), 0, ""); 490 491 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ 492 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, 493 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_lifetime), 0, ""); 494 495 /* ESP auth */ 496 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, 497 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_auth), 0, ""); 498 499 /* minimum ESP key length */ 500 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, 501 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_keymin), 0, ""); 502 503 /* minimum AH key length */ 504 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, 505 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_ah_keymin), 0, ""); 506 507 /* perfered old SA rather than new SA */ 508 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, preferred_oldsa, 509 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_preferred_oldsa), 0, ""); 510 511 static SYSCTL_NODE(_net_key, OID_AUTO, spdcache, CTLFLAG_RW, 0, "SPD cache"); 512 513 SYSCTL_UINT(_net_key_spdcache, OID_AUTO, maxentries, 514 CTLFLAG_VNET | CTLFLAG_RDTUN, &VNET_NAME(key_spdcache_maxentries), 0, 515 "Maximum number of entries in the SPD cache" 516 " (power of 2, 0 to disable)"); 517 518 SYSCTL_UINT(_net_key_spdcache, OID_AUTO, threshold, 519 CTLFLAG_VNET | CTLFLAG_RDTUN, &VNET_NAME(key_spdcache_threshold), 0, 520 "Number of SPs that make the SPD cache active"); 521 522 #define __LIST_CHAINED(elm) \ 523 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) 524 525 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association"); 526 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head"); 527 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy"); 528 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request"); 529 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous"); 530 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire"); 531 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire"); 532 MALLOC_DEFINE(M_IPSEC_SPDCACHE, "ipsec-spdcache", "ipsec SPD cache"); 533 534 VNET_DEFINE_STATIC(uma_zone_t, key_lft_zone); 535 #define V_key_lft_zone VNET(key_lft_zone) 536 537 /* 538 * set parameters into secpolicyindex buffer. 539 * Must allocate secpolicyindex buffer passed to this function. 540 */ 541 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \ 542 do { \ 543 bzero((idx), sizeof(struct secpolicyindex)); \ 544 (idx)->dir = (_dir); \ 545 (idx)->prefs = (ps); \ 546 (idx)->prefd = (pd); \ 547 (idx)->ul_proto = (ulp); \ 548 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 549 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 550 } while (0) 551 552 /* 553 * set parameters into secasindex buffer. 554 * Must allocate secasindex buffer before calling this function. 555 */ 556 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \ 557 do { \ 558 bzero((idx), sizeof(struct secasindex)); \ 559 (idx)->proto = (p); \ 560 (idx)->mode = (m); \ 561 (idx)->reqid = (r); \ 562 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 563 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 564 key_porttosaddr(&(idx)->src.sa, 0); \ 565 key_porttosaddr(&(idx)->dst.sa, 0); \ 566 } while (0) 567 568 /* key statistics */ 569 struct _keystat { 570 u_long getspi_count; /* the avarage of count to try to get new SPI */ 571 } keystat; 572 573 struct sadb_msghdr { 574 struct sadb_msg *msg; 575 struct sadb_ext *ext[SADB_EXT_MAX + 1]; 576 int extoff[SADB_EXT_MAX + 1]; 577 int extlen[SADB_EXT_MAX + 1]; 578 }; 579 580 static struct supported_ealgs { 581 int sadb_alg; 582 const struct enc_xform *xform; 583 } supported_ealgs[] = { 584 { SADB_EALG_DESCBC, &enc_xform_des }, 585 { SADB_EALG_3DESCBC, &enc_xform_3des }, 586 { SADB_X_EALG_AES, &enc_xform_rijndael128 }, 587 { SADB_X_EALG_BLOWFISHCBC, &enc_xform_blf }, 588 { SADB_X_EALG_CAST128CBC, &enc_xform_cast5 }, 589 { SADB_EALG_NULL, &enc_xform_null }, 590 { SADB_X_EALG_CAMELLIACBC, &enc_xform_camellia }, 591 { SADB_X_EALG_AESCTR, &enc_xform_aes_icm }, 592 { SADB_X_EALG_AESGCM16, &enc_xform_aes_nist_gcm }, 593 { SADB_X_EALG_AESGMAC, &enc_xform_aes_nist_gmac }, 594 }; 595 596 static struct supported_aalgs { 597 int sadb_alg; 598 const struct auth_hash *xform; 599 } supported_aalgs[] = { 600 { SADB_X_AALG_NULL, &auth_hash_null }, 601 { SADB_AALG_MD5HMAC, &auth_hash_hmac_md5 }, 602 { SADB_AALG_SHA1HMAC, &auth_hash_hmac_sha1 }, 603 { SADB_X_AALG_RIPEMD160HMAC, &auth_hash_hmac_ripemd_160 }, 604 { SADB_X_AALG_MD5, &auth_hash_key_md5 }, 605 { SADB_X_AALG_SHA, &auth_hash_key_sha1 }, 606 { SADB_X_AALG_SHA2_256, &auth_hash_hmac_sha2_256 }, 607 { SADB_X_AALG_SHA2_384, &auth_hash_hmac_sha2_384 }, 608 { SADB_X_AALG_SHA2_512, &auth_hash_hmac_sha2_512 }, 609 { SADB_X_AALG_AES128GMAC, &auth_hash_nist_gmac_aes_128 }, 610 { SADB_X_AALG_AES192GMAC, &auth_hash_nist_gmac_aes_192 }, 611 { SADB_X_AALG_AES256GMAC, &auth_hash_nist_gmac_aes_256 }, 612 }; 613 614 static struct supported_calgs { 615 int sadb_alg; 616 const struct comp_algo *xform; 617 } supported_calgs[] = { 618 { SADB_X_CALG_DEFLATE, &comp_algo_deflate }, 619 }; 620 621 #ifndef IPSEC_DEBUG2 622 static struct callout key_timer; 623 #endif 624 625 static void key_unlink(struct secpolicy *); 626 static struct secpolicy *key_do_allocsp(struct secpolicyindex *spidx, u_int dir); 627 static struct secpolicy *key_getsp(struct secpolicyindex *); 628 static struct secpolicy *key_getspbyid(u_int32_t); 629 static struct mbuf *key_gather_mbuf(struct mbuf *, 630 const struct sadb_msghdr *, int, int, ...); 631 static int key_spdadd(struct socket *, struct mbuf *, 632 const struct sadb_msghdr *); 633 static uint32_t key_getnewspid(void); 634 static int key_spddelete(struct socket *, struct mbuf *, 635 const struct sadb_msghdr *); 636 static int key_spddelete2(struct socket *, struct mbuf *, 637 const struct sadb_msghdr *); 638 static int key_spdget(struct socket *, struct mbuf *, 639 const struct sadb_msghdr *); 640 static int key_spdflush(struct socket *, struct mbuf *, 641 const struct sadb_msghdr *); 642 static int key_spddump(struct socket *, struct mbuf *, 643 const struct sadb_msghdr *); 644 static struct mbuf *key_setdumpsp(struct secpolicy *, 645 u_int8_t, u_int32_t, u_int32_t); 646 static struct mbuf *key_sp2mbuf(struct secpolicy *); 647 static size_t key_getspreqmsglen(struct secpolicy *); 648 static int key_spdexpire(struct secpolicy *); 649 static struct secashead *key_newsah(struct secasindex *); 650 static void key_freesah(struct secashead **); 651 static void key_delsah(struct secashead *); 652 static struct secasvar *key_newsav(const struct sadb_msghdr *, 653 struct secasindex *, uint32_t, int *); 654 static void key_delsav(struct secasvar *); 655 static void key_unlinksav(struct secasvar *); 656 static struct secashead *key_getsah(struct secasindex *); 657 static int key_checkspidup(uint32_t); 658 static struct secasvar *key_getsavbyspi(uint32_t); 659 static int key_setnatt(struct secasvar *, const struct sadb_msghdr *); 660 static int key_setsaval(struct secasvar *, const struct sadb_msghdr *); 661 static int key_updatelifetimes(struct secasvar *, const struct sadb_msghdr *); 662 static int key_updateaddresses(struct socket *, struct mbuf *, 663 const struct sadb_msghdr *, struct secasvar *, struct secasindex *); 664 665 static struct mbuf *key_setdumpsa(struct secasvar *, u_int8_t, 666 u_int8_t, u_int32_t, u_int32_t); 667 static struct mbuf *key_setsadbmsg(u_int8_t, u_int16_t, u_int8_t, 668 u_int32_t, pid_t, u_int16_t); 669 static struct mbuf *key_setsadbsa(struct secasvar *); 670 static struct mbuf *key_setsadbaddr(u_int16_t, 671 const struct sockaddr *, u_int8_t, u_int16_t); 672 static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t); 673 static struct mbuf *key_setsadbxtype(u_int16_t); 674 static struct mbuf *key_setsadbxsa2(u_int8_t, u_int32_t, u_int32_t); 675 static struct mbuf *key_setsadbxsareplay(u_int32_t); 676 static struct mbuf *key_setsadbxpolicy(u_int16_t, u_int8_t, 677 u_int32_t, u_int32_t); 678 static struct seckey *key_dup_keymsg(const struct sadb_key *, size_t, 679 struct malloc_type *); 680 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src, 681 struct malloc_type *); 682 683 /* flags for key_cmpsaidx() */ 684 #define CMP_HEAD 1 /* protocol, addresses. */ 685 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ 686 #define CMP_REQID 3 /* additionally HEAD, reaid. */ 687 #define CMP_EXACTLY 4 /* all elements. */ 688 static int key_cmpsaidx(const struct secasindex *, 689 const struct secasindex *, int); 690 static int key_cmpspidx_exactly(struct secpolicyindex *, 691 struct secpolicyindex *); 692 static int key_cmpspidx_withmask(struct secpolicyindex *, 693 struct secpolicyindex *); 694 static int key_bbcmp(const void *, const void *, u_int); 695 static uint8_t key_satype2proto(uint8_t); 696 static uint8_t key_proto2satype(uint8_t); 697 698 static int key_getspi(struct socket *, struct mbuf *, 699 const struct sadb_msghdr *); 700 static uint32_t key_do_getnewspi(struct sadb_spirange *, struct secasindex *); 701 static int key_update(struct socket *, struct mbuf *, 702 const struct sadb_msghdr *); 703 static int key_add(struct socket *, struct mbuf *, 704 const struct sadb_msghdr *); 705 static int key_setident(struct secashead *, const struct sadb_msghdr *); 706 static struct mbuf *key_getmsgbuf_x1(struct mbuf *, 707 const struct sadb_msghdr *); 708 static int key_delete(struct socket *, struct mbuf *, 709 const struct sadb_msghdr *); 710 static int key_delete_all(struct socket *, struct mbuf *, 711 const struct sadb_msghdr *, struct secasindex *); 712 static int key_get(struct socket *, struct mbuf *, 713 const struct sadb_msghdr *); 714 715 static void key_getcomb_setlifetime(struct sadb_comb *); 716 static struct mbuf *key_getcomb_ealg(void); 717 static struct mbuf *key_getcomb_ah(void); 718 static struct mbuf *key_getcomb_ipcomp(void); 719 static struct mbuf *key_getprop(const struct secasindex *); 720 721 static int key_acquire(const struct secasindex *, struct secpolicy *); 722 static uint32_t key_newacq(const struct secasindex *, int *); 723 static uint32_t key_getacq(const struct secasindex *, int *); 724 static int key_acqdone(const struct secasindex *, uint32_t); 725 static int key_acqreset(uint32_t); 726 static struct secspacq *key_newspacq(struct secpolicyindex *); 727 static struct secspacq *key_getspacq(struct secpolicyindex *); 728 static int key_acquire2(struct socket *, struct mbuf *, 729 const struct sadb_msghdr *); 730 static int key_register(struct socket *, struct mbuf *, 731 const struct sadb_msghdr *); 732 static int key_expire(struct secasvar *, int); 733 static int key_flush(struct socket *, struct mbuf *, 734 const struct sadb_msghdr *); 735 static int key_dump(struct socket *, struct mbuf *, 736 const struct sadb_msghdr *); 737 static int key_promisc(struct socket *, struct mbuf *, 738 const struct sadb_msghdr *); 739 static int key_senderror(struct socket *, struct mbuf *, int); 740 static int key_validate_ext(const struct sadb_ext *, int); 741 static int key_align(struct mbuf *, struct sadb_msghdr *); 742 static struct mbuf *key_setlifetime(struct seclifetime *, uint16_t); 743 static struct mbuf *key_setkey(struct seckey *, uint16_t); 744 745 static void spdcache_init(void); 746 static void spdcache_clear(void); 747 static struct spdcache_entry *spdcache_entry_alloc( 748 const struct secpolicyindex *spidx, 749 struct secpolicy *policy); 750 static void spdcache_entry_free(struct spdcache_entry *entry); 751 #ifdef VIMAGE 752 static void spdcache_destroy(void); 753 #endif 754 755 #define DBG_IPSEC_INITREF(t, p) do { \ 756 refcount_init(&(p)->refcnt, 1); \ 757 KEYDBG(KEY_STAMP, \ 758 printf("%s: Initialize refcnt %s(%p) = %u\n", \ 759 __func__, #t, (p), (p)->refcnt)); \ 760 } while (0) 761 #define DBG_IPSEC_ADDREF(t, p) do { \ 762 refcount_acquire(&(p)->refcnt); \ 763 KEYDBG(KEY_STAMP, \ 764 printf("%s: Acquire refcnt %s(%p) -> %u\n", \ 765 __func__, #t, (p), (p)->refcnt)); \ 766 } while (0) 767 #define DBG_IPSEC_DELREF(t, p) do { \ 768 KEYDBG(KEY_STAMP, \ 769 printf("%s: Release refcnt %s(%p) -> %u\n", \ 770 __func__, #t, (p), (p)->refcnt - 1)); \ 771 refcount_release(&(p)->refcnt); \ 772 } while (0) 773 774 #define IPSEC_INITREF(t, p) refcount_init(&(p)->refcnt, 1) 775 #define IPSEC_ADDREF(t, p) refcount_acquire(&(p)->refcnt) 776 #define IPSEC_DELREF(t, p) refcount_release(&(p)->refcnt) 777 778 #define SP_INITREF(p) IPSEC_INITREF(SP, p) 779 #define SP_ADDREF(p) IPSEC_ADDREF(SP, p) 780 #define SP_DELREF(p) IPSEC_DELREF(SP, p) 781 782 #define SAH_INITREF(p) IPSEC_INITREF(SAH, p) 783 #define SAH_ADDREF(p) IPSEC_ADDREF(SAH, p) 784 #define SAH_DELREF(p) IPSEC_DELREF(SAH, p) 785 786 #define SAV_INITREF(p) IPSEC_INITREF(SAV, p) 787 #define SAV_ADDREF(p) IPSEC_ADDREF(SAV, p) 788 #define SAV_DELREF(p) IPSEC_DELREF(SAV, p) 789 790 /* 791 * Update the refcnt while holding the SPTREE lock. 792 */ 793 void 794 key_addref(struct secpolicy *sp) 795 { 796 797 SP_ADDREF(sp); 798 } 799 800 /* 801 * Return 0 when there are known to be no SP's for the specified 802 * direction. Otherwise return 1. This is used by IPsec code 803 * to optimize performance. 804 */ 805 int 806 key_havesp(u_int dir) 807 { 808 809 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? 810 TAILQ_FIRST(&V_sptree[dir]) != NULL : 1); 811 } 812 813 /* %%% IPsec policy management */ 814 /* 815 * Return current SPDB generation. 816 */ 817 uint32_t 818 key_getspgen(void) 819 { 820 821 return (V_sp_genid); 822 } 823 824 void 825 key_bumpspgen(void) 826 { 827 828 V_sp_genid++; 829 } 830 831 static int 832 key_checksockaddrs(struct sockaddr *src, struct sockaddr *dst) 833 { 834 835 /* family match */ 836 if (src->sa_family != dst->sa_family) 837 return (EINVAL); 838 /* sa_len match */ 839 if (src->sa_len != dst->sa_len) 840 return (EINVAL); 841 switch (src->sa_family) { 842 #ifdef INET 843 case AF_INET: 844 if (src->sa_len != sizeof(struct sockaddr_in)) 845 return (EINVAL); 846 break; 847 #endif 848 #ifdef INET6 849 case AF_INET6: 850 if (src->sa_len != sizeof(struct sockaddr_in6)) 851 return (EINVAL); 852 break; 853 #endif 854 default: 855 return (EAFNOSUPPORT); 856 } 857 return (0); 858 } 859 860 struct secpolicy * 861 key_do_allocsp(struct secpolicyindex *spidx, u_int dir) 862 { 863 SPTREE_RLOCK_TRACKER; 864 struct secpolicy *sp; 865 866 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 867 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 868 ("invalid direction %u", dir)); 869 870 SPTREE_RLOCK(); 871 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 872 if (key_cmpspidx_withmask(&sp->spidx, spidx)) { 873 SP_ADDREF(sp); 874 break; 875 } 876 } 877 SPTREE_RUNLOCK(); 878 return (sp); 879 } 880 881 882 /* 883 * allocating a SP for OUTBOUND or INBOUND packet. 884 * Must call key_freesp() later. 885 * OUT: NULL: not found 886 * others: found and return the pointer. 887 */ 888 struct secpolicy * 889 key_allocsp(struct secpolicyindex *spidx, u_int dir) 890 { 891 struct spdcache_entry *entry, *lastentry, *tmpentry; 892 struct secpolicy *sp; 893 uint32_t hashv; 894 int nb_entries; 895 896 if (!SPDCACHE_ACTIVE()) { 897 sp = key_do_allocsp(spidx, dir); 898 goto out; 899 } 900 901 hashv = SPDCACHE_HASHVAL(spidx); 902 SPDCACHE_LOCK(hashv); 903 nb_entries = 0; 904 LIST_FOREACH_SAFE(entry, &V_spdcachehashtbl[hashv], chain, tmpentry) { 905 /* Removed outdated entries */ 906 if (entry->sp != NULL && 907 entry->sp->state == IPSEC_SPSTATE_DEAD) { 908 LIST_REMOVE(entry, chain); 909 spdcache_entry_free(entry); 910 continue; 911 } 912 913 nb_entries++; 914 if (!key_cmpspidx_exactly(&entry->spidx, spidx)) { 915 lastentry = entry; 916 continue; 917 } 918 919 sp = entry->sp; 920 if (entry->sp != NULL) 921 SP_ADDREF(sp); 922 923 /* IPSECSTAT_INC(ips_spdcache_hits); */ 924 925 SPDCACHE_UNLOCK(hashv); 926 goto out; 927 } 928 929 /* IPSECSTAT_INC(ips_spdcache_misses); */ 930 931 sp = key_do_allocsp(spidx, dir); 932 entry = spdcache_entry_alloc(spidx, sp); 933 if (entry != NULL) { 934 if (nb_entries >= SPDCACHE_MAX_ENTRIES_PER_HASH) { 935 LIST_REMOVE(lastentry, chain); 936 spdcache_entry_free(lastentry); 937 } 938 939 LIST_INSERT_HEAD(&V_spdcachehashtbl[hashv], entry, chain); 940 } 941 942 SPDCACHE_UNLOCK(hashv); 943 944 out: 945 if (sp != NULL) { /* found a SPD entry */ 946 sp->lastused = time_second; 947 KEYDBG(IPSEC_STAMP, 948 printf("%s: return SP(%p)\n", __func__, sp)); 949 KEYDBG(IPSEC_DATA, kdebug_secpolicy(sp)); 950 } else { 951 KEYDBG(IPSEC_DATA, 952 printf("%s: lookup failed for ", __func__); 953 kdebug_secpolicyindex(spidx, NULL)); 954 } 955 return (sp); 956 } 957 958 /* 959 * Allocating an SA entry for an *INBOUND* or *OUTBOUND* TCP packet, signed 960 * or should be signed by MD5 signature. 961 * We don't use key_allocsa() for such lookups, because we don't know SPI. 962 * Unlike ESP and AH protocols, SPI isn't transmitted in the TCP header with 963 * signed packet. We use SADB only as storage for password. 964 * OUT: positive: corresponding SA for given saidx found. 965 * NULL: SA not found 966 */ 967 struct secasvar * 968 key_allocsa_tcpmd5(struct secasindex *saidx) 969 { 970 SAHTREE_RLOCK_TRACKER; 971 struct secashead *sah; 972 struct secasvar *sav; 973 974 IPSEC_ASSERT(saidx->proto == IPPROTO_TCP, 975 ("unexpected security protocol %u", saidx->proto)); 976 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TCPMD5, 977 ("unexpected mode %u", saidx->mode)); 978 979 SAHTREE_RLOCK(); 980 LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) { 981 KEYDBG(IPSEC_DUMP, 982 printf("%s: checking SAH\n", __func__); 983 kdebug_secash(sah, " ")); 984 if (sah->saidx.proto != IPPROTO_TCP) 985 continue; 986 if (!key_sockaddrcmp(&saidx->dst.sa, &sah->saidx.dst.sa, 0) && 987 !key_sockaddrcmp(&saidx->src.sa, &sah->saidx.src.sa, 0)) 988 break; 989 } 990 if (sah != NULL) { 991 if (V_key_preferred_oldsa) 992 sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue); 993 else 994 sav = TAILQ_FIRST(&sah->savtree_alive); 995 if (sav != NULL) 996 SAV_ADDREF(sav); 997 } else 998 sav = NULL; 999 SAHTREE_RUNLOCK(); 1000 1001 if (sav != NULL) { 1002 KEYDBG(IPSEC_STAMP, 1003 printf("%s: return SA(%p)\n", __func__, sav)); 1004 KEYDBG(IPSEC_DATA, kdebug_secasv(sav)); 1005 } else { 1006 KEYDBG(IPSEC_STAMP, 1007 printf("%s: SA not found\n", __func__)); 1008 KEYDBG(IPSEC_DATA, kdebug_secasindex(saidx, NULL)); 1009 } 1010 return (sav); 1011 } 1012 1013 /* 1014 * Allocating an SA entry for an *OUTBOUND* packet. 1015 * OUT: positive: corresponding SA for given saidx found. 1016 * NULL: SA not found, but will be acquired, check *error 1017 * for acquiring status. 1018 */ 1019 struct secasvar * 1020 key_allocsa_policy(struct secpolicy *sp, const struct secasindex *saidx, 1021 int *error) 1022 { 1023 SAHTREE_RLOCK_TRACKER; 1024 struct secashead *sah; 1025 struct secasvar *sav; 1026 1027 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 1028 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT || 1029 saidx->mode == IPSEC_MODE_TUNNEL, 1030 ("unexpected policy %u", saidx->mode)); 1031 1032 /* 1033 * We check new SA in the IPsec request because a different 1034 * SA may be involved each time this request is checked, either 1035 * because new SAs are being configured, or this request is 1036 * associated with an unconnected datagram socket, or this request 1037 * is associated with a system default policy. 1038 */ 1039 SAHTREE_RLOCK(); 1040 LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) { 1041 KEYDBG(IPSEC_DUMP, 1042 printf("%s: checking SAH\n", __func__); 1043 kdebug_secash(sah, " ")); 1044 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) 1045 break; 1046 1047 } 1048 if (sah != NULL) { 1049 /* 1050 * Allocate the oldest SA available according to 1051 * draft-jenkins-ipsec-rekeying-03. 1052 */ 1053 if (V_key_preferred_oldsa) 1054 sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue); 1055 else 1056 sav = TAILQ_FIRST(&sah->savtree_alive); 1057 if (sav != NULL) 1058 SAV_ADDREF(sav); 1059 } else 1060 sav = NULL; 1061 SAHTREE_RUNLOCK(); 1062 1063 if (sav != NULL) { 1064 *error = 0; 1065 KEYDBG(IPSEC_STAMP, 1066 printf("%s: chosen SA(%p) for SP(%p)\n", __func__, 1067 sav, sp)); 1068 KEYDBG(IPSEC_DATA, kdebug_secasv(sav)); 1069 return (sav); /* return referenced SA */ 1070 } 1071 1072 /* there is no SA */ 1073 *error = key_acquire(saidx, sp); 1074 if ((*error) != 0) 1075 ipseclog((LOG_DEBUG, 1076 "%s: error %d returned from key_acquire()\n", 1077 __func__, *error)); 1078 KEYDBG(IPSEC_STAMP, 1079 printf("%s: acquire SA for SP(%p), error %d\n", 1080 __func__, sp, *error)); 1081 KEYDBG(IPSEC_DATA, kdebug_secasindex(saidx, NULL)); 1082 return (NULL); 1083 } 1084 1085 /* 1086 * allocating a usable SA entry for a *INBOUND* packet. 1087 * Must call key_freesav() later. 1088 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). 1089 * NULL: not found, or error occurred. 1090 * 1091 * According to RFC 2401 SA is uniquely identified by a triple SPI, 1092 * destination address, and security protocol. But according to RFC 4301, 1093 * SPI by itself suffices to specify an SA. 1094 * 1095 * Note that, however, we do need to keep source address in IPsec SA. 1096 * IKE specification and PF_KEY specification do assume that we 1097 * keep source address in IPsec SA. We see a tricky situation here. 1098 */ 1099 struct secasvar * 1100 key_allocsa(union sockaddr_union *dst, uint8_t proto, uint32_t spi) 1101 { 1102 SAHTREE_RLOCK_TRACKER; 1103 struct secasvar *sav; 1104 1105 IPSEC_ASSERT(proto == IPPROTO_ESP || proto == IPPROTO_AH || 1106 proto == IPPROTO_IPCOMP, ("unexpected security protocol %u", 1107 proto)); 1108 1109 SAHTREE_RLOCK(); 1110 LIST_FOREACH(sav, SAVHASH_HASH(spi), spihash) { 1111 if (sav->spi == spi) 1112 break; 1113 } 1114 /* 1115 * We use single SPI namespace for all protocols, so it is 1116 * impossible to have SPI duplicates in the SAVHASH. 1117 */ 1118 if (sav != NULL) { 1119 if (sav->state != SADB_SASTATE_LARVAL && 1120 sav->sah->saidx.proto == proto && 1121 key_sockaddrcmp(&dst->sa, 1122 &sav->sah->saidx.dst.sa, 0) == 0) 1123 SAV_ADDREF(sav); 1124 else 1125 sav = NULL; 1126 } 1127 SAHTREE_RUNLOCK(); 1128 1129 if (sav == NULL) { 1130 KEYDBG(IPSEC_STAMP, 1131 char buf[IPSEC_ADDRSTRLEN]; 1132 printf("%s: SA not found for spi %u proto %u dst %s\n", 1133 __func__, ntohl(spi), proto, ipsec_address(dst, buf, 1134 sizeof(buf)))); 1135 } else { 1136 KEYDBG(IPSEC_STAMP, 1137 printf("%s: return SA(%p)\n", __func__, sav)); 1138 KEYDBG(IPSEC_DATA, kdebug_secasv(sav)); 1139 } 1140 return (sav); 1141 } 1142 1143 struct secasvar * 1144 key_allocsa_tunnel(union sockaddr_union *src, union sockaddr_union *dst, 1145 uint8_t proto) 1146 { 1147 SAHTREE_RLOCK_TRACKER; 1148 struct secasindex saidx; 1149 struct secashead *sah; 1150 struct secasvar *sav; 1151 1152 IPSEC_ASSERT(src != NULL, ("null src address")); 1153 IPSEC_ASSERT(dst != NULL, ("null dst address")); 1154 1155 KEY_SETSECASIDX(proto, IPSEC_MODE_TUNNEL, 0, &src->sa, 1156 &dst->sa, &saidx); 1157 1158 sav = NULL; 1159 SAHTREE_RLOCK(); 1160 LIST_FOREACH(sah, SAHADDRHASH_HASH(&saidx), addrhash) { 1161 if (IPSEC_MODE_TUNNEL != sah->saidx.mode) 1162 continue; 1163 if (proto != sah->saidx.proto) 1164 continue; 1165 if (key_sockaddrcmp(&src->sa, &sah->saidx.src.sa, 0) != 0) 1166 continue; 1167 if (key_sockaddrcmp(&dst->sa, &sah->saidx.dst.sa, 0) != 0) 1168 continue; 1169 /* XXXAE: is key_preferred_oldsa reasonably?*/ 1170 if (V_key_preferred_oldsa) 1171 sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue); 1172 else 1173 sav = TAILQ_FIRST(&sah->savtree_alive); 1174 if (sav != NULL) { 1175 SAV_ADDREF(sav); 1176 break; 1177 } 1178 } 1179 SAHTREE_RUNLOCK(); 1180 KEYDBG(IPSEC_STAMP, 1181 printf("%s: return SA(%p)\n", __func__, sav)); 1182 if (sav != NULL) 1183 KEYDBG(IPSEC_DATA, kdebug_secasv(sav)); 1184 return (sav); 1185 } 1186 1187 /* 1188 * Must be called after calling key_allocsp(). 1189 */ 1190 void 1191 key_freesp(struct secpolicy **spp) 1192 { 1193 struct secpolicy *sp = *spp; 1194 1195 IPSEC_ASSERT(sp != NULL, ("null sp")); 1196 if (SP_DELREF(sp) == 0) 1197 return; 1198 1199 KEYDBG(IPSEC_STAMP, 1200 printf("%s: last reference to SP(%p)\n", __func__, sp)); 1201 KEYDBG(IPSEC_DATA, kdebug_secpolicy(sp)); 1202 1203 *spp = NULL; 1204 while (sp->tcount > 0) 1205 ipsec_delisr(sp->req[--sp->tcount]); 1206 free(sp, M_IPSEC_SP); 1207 } 1208 1209 static void 1210 key_unlink(struct secpolicy *sp) 1211 { 1212 1213 IPSEC_ASSERT(sp->spidx.dir == IPSEC_DIR_INBOUND || 1214 sp->spidx.dir == IPSEC_DIR_OUTBOUND, 1215 ("invalid direction %u", sp->spidx.dir)); 1216 SPTREE_UNLOCK_ASSERT(); 1217 1218 KEYDBG(KEY_STAMP, 1219 printf("%s: SP(%p)\n", __func__, sp)); 1220 SPTREE_WLOCK(); 1221 if (sp->state != IPSEC_SPSTATE_ALIVE) { 1222 /* SP is already unlinked */ 1223 SPTREE_WUNLOCK(); 1224 return; 1225 } 1226 sp->state = IPSEC_SPSTATE_DEAD; 1227 TAILQ_REMOVE(&V_sptree[sp->spidx.dir], sp, chain); 1228 V_spd_size--; 1229 LIST_REMOVE(sp, idhash); 1230 V_sp_genid++; 1231 SPTREE_WUNLOCK(); 1232 if (SPDCACHE_ENABLED()) 1233 spdcache_clear(); 1234 key_freesp(&sp); 1235 } 1236 1237 /* 1238 * insert a secpolicy into the SP database. Lower priorities first 1239 */ 1240 static void 1241 key_insertsp(struct secpolicy *newsp) 1242 { 1243 struct secpolicy *sp; 1244 1245 SPTREE_WLOCK_ASSERT(); 1246 TAILQ_FOREACH(sp, &V_sptree[newsp->spidx.dir], chain) { 1247 if (newsp->priority < sp->priority) { 1248 TAILQ_INSERT_BEFORE(sp, newsp, chain); 1249 goto done; 1250 } 1251 } 1252 TAILQ_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, chain); 1253 done: 1254 LIST_INSERT_HEAD(SPHASH_HASH(newsp->id), newsp, idhash); 1255 newsp->state = IPSEC_SPSTATE_ALIVE; 1256 V_spd_size++; 1257 V_sp_genid++; 1258 } 1259 1260 /* 1261 * Insert a bunch of VTI secpolicies into the SPDB. 1262 * We keep VTI policies in the separate list due to following reasons: 1263 * 1) they should be immutable to user's or some deamon's attempts to 1264 * delete. The only way delete such policies - destroy or unconfigure 1265 * corresponding virtual inteface. 1266 * 2) such policies have traffic selector that matches all traffic per 1267 * address family. 1268 * Since all VTI policies have the same priority, we don't care about 1269 * policies order. 1270 */ 1271 int 1272 key_register_ifnet(struct secpolicy **spp, u_int count) 1273 { 1274 struct mbuf *m; 1275 u_int i; 1276 1277 SPTREE_WLOCK(); 1278 /* 1279 * First of try to acquire id for each SP. 1280 */ 1281 for (i = 0; i < count; i++) { 1282 IPSEC_ASSERT(spp[i]->spidx.dir == IPSEC_DIR_INBOUND || 1283 spp[i]->spidx.dir == IPSEC_DIR_OUTBOUND, 1284 ("invalid direction %u", spp[i]->spidx.dir)); 1285 1286 if ((spp[i]->id = key_getnewspid()) == 0) { 1287 SPTREE_WUNLOCK(); 1288 return (EAGAIN); 1289 } 1290 } 1291 for (i = 0; i < count; i++) { 1292 TAILQ_INSERT_TAIL(&V_sptree_ifnet[spp[i]->spidx.dir], 1293 spp[i], chain); 1294 /* 1295 * NOTE: despite the fact that we keep VTI SP in the 1296 * separate list, SPHASH contains policies from both 1297 * sources. Thus SADB_X_SPDGET will correctly return 1298 * SP by id, because it uses SPHASH for lookups. 1299 */ 1300 LIST_INSERT_HEAD(SPHASH_HASH(spp[i]->id), spp[i], idhash); 1301 spp[i]->state = IPSEC_SPSTATE_IFNET; 1302 } 1303 SPTREE_WUNLOCK(); 1304 /* 1305 * Notify user processes about new SP. 1306 */ 1307 for (i = 0; i < count; i++) { 1308 m = key_setdumpsp(spp[i], SADB_X_SPDADD, 0, 0); 1309 if (m != NULL) 1310 key_sendup_mbuf(NULL, m, KEY_SENDUP_ALL); 1311 } 1312 return (0); 1313 } 1314 1315 void 1316 key_unregister_ifnet(struct secpolicy **spp, u_int count) 1317 { 1318 struct mbuf *m; 1319 u_int i; 1320 1321 SPTREE_WLOCK(); 1322 for (i = 0; i < count; i++) { 1323 IPSEC_ASSERT(spp[i]->spidx.dir == IPSEC_DIR_INBOUND || 1324 spp[i]->spidx.dir == IPSEC_DIR_OUTBOUND, 1325 ("invalid direction %u", spp[i]->spidx.dir)); 1326 1327 if (spp[i]->state != IPSEC_SPSTATE_IFNET) 1328 continue; 1329 spp[i]->state = IPSEC_SPSTATE_DEAD; 1330 TAILQ_REMOVE(&V_sptree_ifnet[spp[i]->spidx.dir], 1331 spp[i], chain); 1332 V_spd_size--; 1333 LIST_REMOVE(spp[i], idhash); 1334 } 1335 SPTREE_WUNLOCK(); 1336 if (SPDCACHE_ENABLED()) 1337 spdcache_clear(); 1338 1339 for (i = 0; i < count; i++) { 1340 m = key_setdumpsp(spp[i], SADB_X_SPDDELETE, 0, 0); 1341 if (m != NULL) 1342 key_sendup_mbuf(NULL, m, KEY_SENDUP_ALL); 1343 } 1344 } 1345 1346 /* 1347 * Must be called after calling key_allocsa(). 1348 * This function is called by key_freesp() to free some SA allocated 1349 * for a policy. 1350 */ 1351 void 1352 key_freesav(struct secasvar **psav) 1353 { 1354 struct secasvar *sav = *psav; 1355 1356 IPSEC_ASSERT(sav != NULL, ("null sav")); 1357 if (SAV_DELREF(sav) == 0) 1358 return; 1359 1360 KEYDBG(IPSEC_STAMP, 1361 printf("%s: last reference to SA(%p)\n", __func__, sav)); 1362 1363 *psav = NULL; 1364 key_delsav(sav); 1365 } 1366 1367 /* 1368 * Unlink SA from SAH and SPI hash under SAHTREE_WLOCK. 1369 * Expect that SA has extra reference due to lookup. 1370 * Release this references, also release SAH reference after unlink. 1371 */ 1372 static void 1373 key_unlinksav(struct secasvar *sav) 1374 { 1375 struct secashead *sah; 1376 1377 KEYDBG(KEY_STAMP, 1378 printf("%s: SA(%p)\n", __func__, sav)); 1379 1380 SAHTREE_UNLOCK_ASSERT(); 1381 SAHTREE_WLOCK(); 1382 if (sav->state == SADB_SASTATE_DEAD) { 1383 /* SA is already unlinked */ 1384 SAHTREE_WUNLOCK(); 1385 return; 1386 } 1387 /* Unlink from SAH */ 1388 if (sav->state == SADB_SASTATE_LARVAL) 1389 TAILQ_REMOVE(&sav->sah->savtree_larval, sav, chain); 1390 else 1391 TAILQ_REMOVE(&sav->sah->savtree_alive, sav, chain); 1392 /* Unlink from SPI hash */ 1393 LIST_REMOVE(sav, spihash); 1394 sav->state = SADB_SASTATE_DEAD; 1395 sah = sav->sah; 1396 SAHTREE_WUNLOCK(); 1397 key_freesav(&sav); 1398 /* Since we are unlinked, release reference to SAH */ 1399 key_freesah(&sah); 1400 } 1401 1402 /* %%% SPD management */ 1403 /* 1404 * search SPD 1405 * OUT: NULL : not found 1406 * others : found, pointer to a SP. 1407 */ 1408 static struct secpolicy * 1409 key_getsp(struct secpolicyindex *spidx) 1410 { 1411 SPTREE_RLOCK_TRACKER; 1412 struct secpolicy *sp; 1413 1414 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 1415 1416 SPTREE_RLOCK(); 1417 TAILQ_FOREACH(sp, &V_sptree[spidx->dir], chain) { 1418 if (key_cmpspidx_exactly(spidx, &sp->spidx)) { 1419 SP_ADDREF(sp); 1420 break; 1421 } 1422 } 1423 SPTREE_RUNLOCK(); 1424 1425 return sp; 1426 } 1427 1428 /* 1429 * get SP by index. 1430 * OUT: NULL : not found 1431 * others : found, pointer to referenced SP. 1432 */ 1433 static struct secpolicy * 1434 key_getspbyid(uint32_t id) 1435 { 1436 SPTREE_RLOCK_TRACKER; 1437 struct secpolicy *sp; 1438 1439 SPTREE_RLOCK(); 1440 LIST_FOREACH(sp, SPHASH_HASH(id), idhash) { 1441 if (sp->id == id) { 1442 SP_ADDREF(sp); 1443 break; 1444 } 1445 } 1446 SPTREE_RUNLOCK(); 1447 return (sp); 1448 } 1449 1450 struct secpolicy * 1451 key_newsp(void) 1452 { 1453 struct secpolicy *sp; 1454 1455 sp = malloc(sizeof(*sp), M_IPSEC_SP, M_NOWAIT | M_ZERO); 1456 if (sp != NULL) 1457 SP_INITREF(sp); 1458 return (sp); 1459 } 1460 1461 struct ipsecrequest * 1462 ipsec_newisr(void) 1463 { 1464 1465 return (malloc(sizeof(struct ipsecrequest), M_IPSEC_SR, 1466 M_NOWAIT | M_ZERO)); 1467 } 1468 1469 void 1470 ipsec_delisr(struct ipsecrequest *p) 1471 { 1472 1473 free(p, M_IPSEC_SR); 1474 } 1475 1476 /* 1477 * create secpolicy structure from sadb_x_policy structure. 1478 * NOTE: `state', `secpolicyindex' and 'id' in secpolicy structure 1479 * are not set, so must be set properly later. 1480 */ 1481 struct secpolicy * 1482 key_msg2sp(struct sadb_x_policy *xpl0, size_t len, int *error) 1483 { 1484 struct secpolicy *newsp; 1485 1486 IPSEC_ASSERT(xpl0 != NULL, ("null xpl0")); 1487 IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len)); 1488 1489 if (len != PFKEY_EXTLEN(xpl0)) { 1490 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__)); 1491 *error = EINVAL; 1492 return NULL; 1493 } 1494 1495 if ((newsp = key_newsp()) == NULL) { 1496 *error = ENOBUFS; 1497 return NULL; 1498 } 1499 1500 newsp->spidx.dir = xpl0->sadb_x_policy_dir; 1501 newsp->policy = xpl0->sadb_x_policy_type; 1502 newsp->priority = xpl0->sadb_x_policy_priority; 1503 newsp->tcount = 0; 1504 1505 /* check policy */ 1506 switch (xpl0->sadb_x_policy_type) { 1507 case IPSEC_POLICY_DISCARD: 1508 case IPSEC_POLICY_NONE: 1509 case IPSEC_POLICY_ENTRUST: 1510 case IPSEC_POLICY_BYPASS: 1511 break; 1512 1513 case IPSEC_POLICY_IPSEC: 1514 { 1515 struct sadb_x_ipsecrequest *xisr; 1516 struct ipsecrequest *isr; 1517 int tlen; 1518 1519 /* validity check */ 1520 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { 1521 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", 1522 __func__)); 1523 key_freesp(&newsp); 1524 *error = EINVAL; 1525 return NULL; 1526 } 1527 1528 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); 1529 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1); 1530 1531 while (tlen > 0) { 1532 /* length check */ 1533 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr) || 1534 xisr->sadb_x_ipsecrequest_len > tlen) { 1535 ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest " 1536 "length.\n", __func__)); 1537 key_freesp(&newsp); 1538 *error = EINVAL; 1539 return NULL; 1540 } 1541 1542 if (newsp->tcount >= IPSEC_MAXREQ) { 1543 ipseclog((LOG_DEBUG, 1544 "%s: too many ipsecrequests.\n", 1545 __func__)); 1546 key_freesp(&newsp); 1547 *error = EINVAL; 1548 return (NULL); 1549 } 1550 1551 /* allocate request buffer */ 1552 /* NB: data structure is zero'd */ 1553 isr = ipsec_newisr(); 1554 if (isr == NULL) { 1555 ipseclog((LOG_DEBUG, 1556 "%s: No more memory.\n", __func__)); 1557 key_freesp(&newsp); 1558 *error = ENOBUFS; 1559 return NULL; 1560 } 1561 1562 newsp->req[newsp->tcount++] = isr; 1563 1564 /* set values */ 1565 switch (xisr->sadb_x_ipsecrequest_proto) { 1566 case IPPROTO_ESP: 1567 case IPPROTO_AH: 1568 case IPPROTO_IPCOMP: 1569 break; 1570 default: 1571 ipseclog((LOG_DEBUG, 1572 "%s: invalid proto type=%u\n", __func__, 1573 xisr->sadb_x_ipsecrequest_proto)); 1574 key_freesp(&newsp); 1575 *error = EPROTONOSUPPORT; 1576 return NULL; 1577 } 1578 isr->saidx.proto = 1579 (uint8_t)xisr->sadb_x_ipsecrequest_proto; 1580 1581 switch (xisr->sadb_x_ipsecrequest_mode) { 1582 case IPSEC_MODE_TRANSPORT: 1583 case IPSEC_MODE_TUNNEL: 1584 break; 1585 case IPSEC_MODE_ANY: 1586 default: 1587 ipseclog((LOG_DEBUG, 1588 "%s: invalid mode=%u\n", __func__, 1589 xisr->sadb_x_ipsecrequest_mode)); 1590 key_freesp(&newsp); 1591 *error = EINVAL; 1592 return NULL; 1593 } 1594 isr->saidx.mode = xisr->sadb_x_ipsecrequest_mode; 1595 1596 switch (xisr->sadb_x_ipsecrequest_level) { 1597 case IPSEC_LEVEL_DEFAULT: 1598 case IPSEC_LEVEL_USE: 1599 case IPSEC_LEVEL_REQUIRE: 1600 break; 1601 case IPSEC_LEVEL_UNIQUE: 1602 /* validity check */ 1603 /* 1604 * If range violation of reqid, kernel will 1605 * update it, don't refuse it. 1606 */ 1607 if (xisr->sadb_x_ipsecrequest_reqid 1608 > IPSEC_MANUAL_REQID_MAX) { 1609 ipseclog((LOG_DEBUG, 1610 "%s: reqid=%d range " 1611 "violation, updated by kernel.\n", 1612 __func__, 1613 xisr->sadb_x_ipsecrequest_reqid)); 1614 xisr->sadb_x_ipsecrequest_reqid = 0; 1615 } 1616 1617 /* allocate new reqid id if reqid is zero. */ 1618 if (xisr->sadb_x_ipsecrequest_reqid == 0) { 1619 u_int32_t reqid; 1620 if ((reqid = key_newreqid()) == 0) { 1621 key_freesp(&newsp); 1622 *error = ENOBUFS; 1623 return NULL; 1624 } 1625 isr->saidx.reqid = reqid; 1626 xisr->sadb_x_ipsecrequest_reqid = reqid; 1627 } else { 1628 /* set it for manual keying. */ 1629 isr->saidx.reqid = 1630 xisr->sadb_x_ipsecrequest_reqid; 1631 } 1632 break; 1633 1634 default: 1635 ipseclog((LOG_DEBUG, "%s: invalid level=%u\n", 1636 __func__, 1637 xisr->sadb_x_ipsecrequest_level)); 1638 key_freesp(&newsp); 1639 *error = EINVAL; 1640 return NULL; 1641 } 1642 isr->level = xisr->sadb_x_ipsecrequest_level; 1643 1644 /* set IP addresses if there */ 1645 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { 1646 struct sockaddr *paddr; 1647 1648 len = tlen - sizeof(*xisr); 1649 paddr = (struct sockaddr *)(xisr + 1); 1650 /* validity check */ 1651 if (len < sizeof(struct sockaddr) || 1652 len < 2 * paddr->sa_len || 1653 paddr->sa_len > sizeof(isr->saidx.src)) { 1654 ipseclog((LOG_DEBUG, "%s: invalid " 1655 "request address length.\n", 1656 __func__)); 1657 key_freesp(&newsp); 1658 *error = EINVAL; 1659 return NULL; 1660 } 1661 /* 1662 * Request length should be enough to keep 1663 * source and destination addresses. 1664 */ 1665 if (xisr->sadb_x_ipsecrequest_len < 1666 sizeof(*xisr) + 2 * paddr->sa_len) { 1667 ipseclog((LOG_DEBUG, "%s: invalid " 1668 "ipsecrequest length.\n", 1669 __func__)); 1670 key_freesp(&newsp); 1671 *error = EINVAL; 1672 return (NULL); 1673 } 1674 bcopy(paddr, &isr->saidx.src, paddr->sa_len); 1675 paddr = (struct sockaddr *)((caddr_t)paddr + 1676 paddr->sa_len); 1677 1678 /* validity check */ 1679 if (paddr->sa_len != 1680 isr->saidx.src.sa.sa_len) { 1681 ipseclog((LOG_DEBUG, "%s: invalid " 1682 "request address length.\n", 1683 __func__)); 1684 key_freesp(&newsp); 1685 *error = EINVAL; 1686 return NULL; 1687 } 1688 /* AF family should match */ 1689 if (paddr->sa_family != 1690 isr->saidx.src.sa.sa_family) { 1691 ipseclog((LOG_DEBUG, "%s: address " 1692 "family doesn't match.\n", 1693 __func__)); 1694 key_freesp(&newsp); 1695 *error = EINVAL; 1696 return (NULL); 1697 } 1698 bcopy(paddr, &isr->saidx.dst, paddr->sa_len); 1699 } else { 1700 /* 1701 * Addresses for TUNNEL mode requests are 1702 * mandatory. 1703 */ 1704 if (isr->saidx.mode == IPSEC_MODE_TUNNEL) { 1705 ipseclog((LOG_DEBUG, "%s: missing " 1706 "request addresses.\n", __func__)); 1707 key_freesp(&newsp); 1708 *error = EINVAL; 1709 return (NULL); 1710 } 1711 } 1712 tlen -= xisr->sadb_x_ipsecrequest_len; 1713 1714 /* validity check */ 1715 if (tlen < 0) { 1716 ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n", 1717 __func__)); 1718 key_freesp(&newsp); 1719 *error = EINVAL; 1720 return NULL; 1721 } 1722 1723 xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr 1724 + xisr->sadb_x_ipsecrequest_len); 1725 } 1726 /* XXXAE: LARVAL SP */ 1727 if (newsp->tcount < 1) { 1728 ipseclog((LOG_DEBUG, "%s: valid IPSEC transforms " 1729 "not found.\n", __func__)); 1730 key_freesp(&newsp); 1731 *error = EINVAL; 1732 return (NULL); 1733 } 1734 } 1735 break; 1736 default: 1737 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); 1738 key_freesp(&newsp); 1739 *error = EINVAL; 1740 return NULL; 1741 } 1742 1743 *error = 0; 1744 return (newsp); 1745 } 1746 1747 uint32_t 1748 key_newreqid(void) 1749 { 1750 static uint32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 1751 1752 if (auto_reqid == ~0) 1753 auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 1754 else 1755 auto_reqid++; 1756 1757 /* XXX should be unique check */ 1758 return (auto_reqid); 1759 } 1760 1761 /* 1762 * copy secpolicy struct to sadb_x_policy structure indicated. 1763 */ 1764 static struct mbuf * 1765 key_sp2mbuf(struct secpolicy *sp) 1766 { 1767 struct mbuf *m; 1768 size_t tlen; 1769 1770 tlen = key_getspreqmsglen(sp); 1771 m = m_get2(tlen, M_NOWAIT, MT_DATA, 0); 1772 if (m == NULL) 1773 return (NULL); 1774 m_align(m, tlen); 1775 m->m_len = tlen; 1776 if (key_sp2msg(sp, m->m_data, &tlen) != 0) { 1777 m_freem(m); 1778 return (NULL); 1779 } 1780 return (m); 1781 } 1782 1783 int 1784 key_sp2msg(struct secpolicy *sp, void *request, size_t *len) 1785 { 1786 struct sadb_x_ipsecrequest *xisr; 1787 struct sadb_x_policy *xpl; 1788 struct ipsecrequest *isr; 1789 size_t xlen, ilen; 1790 caddr_t p; 1791 int error, i; 1792 1793 IPSEC_ASSERT(sp != NULL, ("null policy")); 1794 1795 xlen = sizeof(*xpl); 1796 if (*len < xlen) 1797 return (EINVAL); 1798 1799 error = 0; 1800 bzero(request, *len); 1801 xpl = (struct sadb_x_policy *)request; 1802 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 1803 xpl->sadb_x_policy_type = sp->policy; 1804 xpl->sadb_x_policy_dir = sp->spidx.dir; 1805 xpl->sadb_x_policy_id = sp->id; 1806 xpl->sadb_x_policy_priority = sp->priority; 1807 switch (sp->state) { 1808 case IPSEC_SPSTATE_IFNET: 1809 xpl->sadb_x_policy_scope = IPSEC_POLICYSCOPE_IFNET; 1810 break; 1811 case IPSEC_SPSTATE_PCB: 1812 xpl->sadb_x_policy_scope = IPSEC_POLICYSCOPE_PCB; 1813 break; 1814 default: 1815 xpl->sadb_x_policy_scope = IPSEC_POLICYSCOPE_GLOBAL; 1816 } 1817 1818 /* if is the policy for ipsec ? */ 1819 if (sp->policy == IPSEC_POLICY_IPSEC) { 1820 p = (caddr_t)xpl + sizeof(*xpl); 1821 for (i = 0; i < sp->tcount; i++) { 1822 isr = sp->req[i]; 1823 ilen = PFKEY_ALIGN8(sizeof(*xisr) + 1824 isr->saidx.src.sa.sa_len + 1825 isr->saidx.dst.sa.sa_len); 1826 xlen += ilen; 1827 if (xlen > *len) { 1828 error = ENOBUFS; 1829 /* Calculate needed size */ 1830 continue; 1831 } 1832 xisr = (struct sadb_x_ipsecrequest *)p; 1833 xisr->sadb_x_ipsecrequest_len = ilen; 1834 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; 1835 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; 1836 xisr->sadb_x_ipsecrequest_level = isr->level; 1837 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; 1838 1839 p += sizeof(*xisr); 1840 bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len); 1841 p += isr->saidx.src.sa.sa_len; 1842 bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len); 1843 p += isr->saidx.dst.sa.sa_len; 1844 } 1845 } 1846 xpl->sadb_x_policy_len = PFKEY_UNIT64(xlen); 1847 if (error == 0) 1848 *len = xlen; 1849 else 1850 *len = sizeof(*xpl); 1851 return (error); 1852 } 1853 1854 /* m will not be freed nor modified */ 1855 static struct mbuf * 1856 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, 1857 int ndeep, int nitem, ...) 1858 { 1859 va_list ap; 1860 int idx; 1861 int i; 1862 struct mbuf *result = NULL, *n; 1863 int len; 1864 1865 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1866 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1867 1868 va_start(ap, nitem); 1869 for (i = 0; i < nitem; i++) { 1870 idx = va_arg(ap, int); 1871 if (idx < 0 || idx > SADB_EXT_MAX) 1872 goto fail; 1873 /* don't attempt to pull empty extension */ 1874 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) 1875 continue; 1876 if (idx != SADB_EXT_RESERVED && 1877 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) 1878 continue; 1879 1880 if (idx == SADB_EXT_RESERVED) { 1881 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 1882 1883 IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len)); 1884 1885 MGETHDR(n, M_NOWAIT, MT_DATA); 1886 if (!n) 1887 goto fail; 1888 n->m_len = len; 1889 n->m_next = NULL; 1890 m_copydata(m, 0, sizeof(struct sadb_msg), 1891 mtod(n, caddr_t)); 1892 } else if (i < ndeep) { 1893 len = mhp->extlen[idx]; 1894 n = m_get2(len, M_NOWAIT, MT_DATA, 0); 1895 if (n == NULL) 1896 goto fail; 1897 m_align(n, len); 1898 n->m_len = len; 1899 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], 1900 mtod(n, caddr_t)); 1901 } else { 1902 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], 1903 M_NOWAIT); 1904 } 1905 if (n == NULL) 1906 goto fail; 1907 1908 if (result) 1909 m_cat(result, n); 1910 else 1911 result = n; 1912 } 1913 va_end(ap); 1914 1915 if ((result->m_flags & M_PKTHDR) != 0) { 1916 result->m_pkthdr.len = 0; 1917 for (n = result; n; n = n->m_next) 1918 result->m_pkthdr.len += n->m_len; 1919 } 1920 1921 return result; 1922 1923 fail: 1924 m_freem(result); 1925 va_end(ap); 1926 return NULL; 1927 } 1928 1929 /* 1930 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing 1931 * add an entry to SP database, when received 1932 * <base, address(SD), (lifetime(H),) policy> 1933 * from the user(?). 1934 * Adding to SP database, 1935 * and send 1936 * <base, address(SD), (lifetime(H),) policy> 1937 * to the socket which was send. 1938 * 1939 * SPDADD set a unique policy entry. 1940 * SPDSETIDX like SPDADD without a part of policy requests. 1941 * SPDUPDATE replace a unique policy entry. 1942 * 1943 * XXXAE: serialize this in PF_KEY to avoid races. 1944 * m will always be freed. 1945 */ 1946 static int 1947 key_spdadd(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 1948 { 1949 struct secpolicyindex spidx; 1950 struct sadb_address *src0, *dst0; 1951 struct sadb_x_policy *xpl0, *xpl; 1952 struct sadb_lifetime *lft = NULL; 1953 struct secpolicy *newsp; 1954 int error; 1955 1956 IPSEC_ASSERT(so != NULL, ("null socket")); 1957 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1958 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1959 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 1960 1961 if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || 1962 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) || 1963 SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY)) { 1964 ipseclog((LOG_DEBUG, 1965 "%s: invalid message: missing required header.\n", 1966 __func__)); 1967 return key_senderror(so, m, EINVAL); 1968 } 1969 if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || 1970 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST) || 1971 SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) { 1972 ipseclog((LOG_DEBUG, 1973 "%s: invalid message: wrong header size.\n", __func__)); 1974 return key_senderror(so, m, EINVAL); 1975 } 1976 if (!SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD)) { 1977 if (SADB_CHECKLEN(mhp, SADB_EXT_LIFETIME_HARD)) { 1978 ipseclog((LOG_DEBUG, 1979 "%s: invalid message: wrong header size.\n", 1980 __func__)); 1981 return key_senderror(so, m, EINVAL); 1982 } 1983 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 1984 } 1985 1986 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 1987 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 1988 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 1989 1990 /* check the direciton */ 1991 switch (xpl0->sadb_x_policy_dir) { 1992 case IPSEC_DIR_INBOUND: 1993 case IPSEC_DIR_OUTBOUND: 1994 break; 1995 default: 1996 ipseclog((LOG_DEBUG, "%s: invalid SP direction.\n", __func__)); 1997 return key_senderror(so, m, EINVAL); 1998 } 1999 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */ 2000 if (xpl0->sadb_x_policy_type != IPSEC_POLICY_DISCARD && 2001 xpl0->sadb_x_policy_type != IPSEC_POLICY_NONE && 2002 xpl0->sadb_x_policy_type != IPSEC_POLICY_IPSEC) { 2003 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); 2004 return key_senderror(so, m, EINVAL); 2005 } 2006 2007 /* policy requests are mandatory when action is ipsec. */ 2008 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC && 2009 mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { 2010 ipseclog((LOG_DEBUG, 2011 "%s: policy requests required.\n", __func__)); 2012 return key_senderror(so, m, EINVAL); 2013 } 2014 2015 error = key_checksockaddrs((struct sockaddr *)(src0 + 1), 2016 (struct sockaddr *)(dst0 + 1)); 2017 if (error != 0 || 2018 src0->sadb_address_proto != dst0->sadb_address_proto) { 2019 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); 2020 return key_senderror(so, m, error); 2021 } 2022 /* make secindex */ 2023 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 2024 src0 + 1, 2025 dst0 + 1, 2026 src0->sadb_address_prefixlen, 2027 dst0->sadb_address_prefixlen, 2028 src0->sadb_address_proto, 2029 &spidx); 2030 /* Checking there is SP already or not. */ 2031 newsp = key_getsp(&spidx); 2032 if (newsp != NULL) { 2033 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 2034 KEYDBG(KEY_STAMP, 2035 printf("%s: unlink SP(%p) for SPDUPDATE\n", 2036 __func__, newsp)); 2037 KEYDBG(KEY_DATA, kdebug_secpolicy(newsp)); 2038 key_unlink(newsp); 2039 key_freesp(&newsp); 2040 } else { 2041 key_freesp(&newsp); 2042 ipseclog((LOG_DEBUG, "%s: a SP entry exists already.", 2043 __func__)); 2044 return (key_senderror(so, m, EEXIST)); 2045 } 2046 } 2047 2048 /* allocate new SP entry */ 2049 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) { 2050 return key_senderror(so, m, error); 2051 } 2052 2053 newsp->lastused = newsp->created = time_second; 2054 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; 2055 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; 2056 bcopy(&spidx, &newsp->spidx, sizeof(spidx)); 2057 2058 /* XXXAE: there is race between key_getsp() and key_insertsp() */ 2059 SPTREE_WLOCK(); 2060 if ((newsp->id = key_getnewspid()) == 0) { 2061 SPTREE_WUNLOCK(); 2062 key_freesp(&newsp); 2063 return key_senderror(so, m, ENOBUFS); 2064 } 2065 key_insertsp(newsp); 2066 SPTREE_WUNLOCK(); 2067 if (SPDCACHE_ENABLED()) 2068 spdcache_clear(); 2069 2070 KEYDBG(KEY_STAMP, 2071 printf("%s: SP(%p)\n", __func__, newsp)); 2072 KEYDBG(KEY_DATA, kdebug_secpolicy(newsp)); 2073 2074 { 2075 struct mbuf *n, *mpolicy; 2076 struct sadb_msg *newmsg; 2077 int off; 2078 2079 /* create new sadb_msg to reply. */ 2080 if (lft) { 2081 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, 2082 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, 2083 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2084 } else { 2085 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, 2086 SADB_X_EXT_POLICY, 2087 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2088 } 2089 if (!n) 2090 return key_senderror(so, m, ENOBUFS); 2091 2092 if (n->m_len < sizeof(*newmsg)) { 2093 n = m_pullup(n, sizeof(*newmsg)); 2094 if (!n) 2095 return key_senderror(so, m, ENOBUFS); 2096 } 2097 newmsg = mtod(n, struct sadb_msg *); 2098 newmsg->sadb_msg_errno = 0; 2099 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2100 2101 off = 0; 2102 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), 2103 sizeof(*xpl), &off); 2104 if (mpolicy == NULL) { 2105 /* n is already freed */ 2106 return key_senderror(so, m, ENOBUFS); 2107 } 2108 xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off); 2109 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { 2110 m_freem(n); 2111 return key_senderror(so, m, EINVAL); 2112 } 2113 xpl->sadb_x_policy_id = newsp->id; 2114 2115 m_freem(m); 2116 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2117 } 2118 } 2119 2120 /* 2121 * get new policy id. 2122 * OUT: 2123 * 0: failure. 2124 * others: success. 2125 */ 2126 static uint32_t 2127 key_getnewspid(void) 2128 { 2129 struct secpolicy *sp; 2130 uint32_t newid = 0; 2131 int count = V_key_spi_trycnt; /* XXX */ 2132 2133 SPTREE_WLOCK_ASSERT(); 2134 while (count--) { 2135 if (V_policy_id == ~0) /* overflowed */ 2136 newid = V_policy_id = 1; 2137 else 2138 newid = ++V_policy_id; 2139 LIST_FOREACH(sp, SPHASH_HASH(newid), idhash) { 2140 if (sp->id == newid) 2141 break; 2142 } 2143 if (sp == NULL) 2144 break; 2145 } 2146 if (count == 0 || newid == 0) { 2147 ipseclog((LOG_DEBUG, "%s: failed to allocate policy id.\n", 2148 __func__)); 2149 return (0); 2150 } 2151 return (newid); 2152 } 2153 2154 /* 2155 * SADB_SPDDELETE processing 2156 * receive 2157 * <base, address(SD), policy(*)> 2158 * from the user(?), and set SADB_SASTATE_DEAD, 2159 * and send, 2160 * <base, address(SD), policy(*)> 2161 * to the ikmpd. 2162 * policy(*) including direction of policy. 2163 * 2164 * m will always be freed. 2165 */ 2166 static int 2167 key_spddelete(struct socket *so, struct mbuf *m, 2168 const struct sadb_msghdr *mhp) 2169 { 2170 struct secpolicyindex spidx; 2171 struct sadb_address *src0, *dst0; 2172 struct sadb_x_policy *xpl0; 2173 struct secpolicy *sp; 2174 2175 IPSEC_ASSERT(so != NULL, ("null so")); 2176 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2177 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2178 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2179 2180 if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || 2181 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) || 2182 SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY)) { 2183 ipseclog((LOG_DEBUG, 2184 "%s: invalid message: missing required header.\n", 2185 __func__)); 2186 return key_senderror(so, m, EINVAL); 2187 } 2188 if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || 2189 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST) || 2190 SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) { 2191 ipseclog((LOG_DEBUG, 2192 "%s: invalid message: wrong header size.\n", __func__)); 2193 return key_senderror(so, m, EINVAL); 2194 } 2195 2196 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 2197 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 2198 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 2199 2200 /* check the direciton */ 2201 switch (xpl0->sadb_x_policy_dir) { 2202 case IPSEC_DIR_INBOUND: 2203 case IPSEC_DIR_OUTBOUND: 2204 break; 2205 default: 2206 ipseclog((LOG_DEBUG, "%s: invalid SP direction.\n", __func__)); 2207 return key_senderror(so, m, EINVAL); 2208 } 2209 /* Only DISCARD, NONE and IPSEC are allowed */ 2210 if (xpl0->sadb_x_policy_type != IPSEC_POLICY_DISCARD && 2211 xpl0->sadb_x_policy_type != IPSEC_POLICY_NONE && 2212 xpl0->sadb_x_policy_type != IPSEC_POLICY_IPSEC) { 2213 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); 2214 return key_senderror(so, m, EINVAL); 2215 } 2216 if (key_checksockaddrs((struct sockaddr *)(src0 + 1), 2217 (struct sockaddr *)(dst0 + 1)) != 0 || 2218 src0->sadb_address_proto != dst0->sadb_address_proto) { 2219 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); 2220 return key_senderror(so, m, EINVAL); 2221 } 2222 /* make secindex */ 2223 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 2224 src0 + 1, 2225 dst0 + 1, 2226 src0->sadb_address_prefixlen, 2227 dst0->sadb_address_prefixlen, 2228 src0->sadb_address_proto, 2229 &spidx); 2230 2231 /* Is there SP in SPD ? */ 2232 if ((sp = key_getsp(&spidx)) == NULL) { 2233 ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__)); 2234 return key_senderror(so, m, EINVAL); 2235 } 2236 2237 /* save policy id to buffer to be returned. */ 2238 xpl0->sadb_x_policy_id = sp->id; 2239 2240 KEYDBG(KEY_STAMP, 2241 printf("%s: SP(%p)\n", __func__, sp)); 2242 KEYDBG(KEY_DATA, kdebug_secpolicy(sp)); 2243 key_unlink(sp); 2244 key_freesp(&sp); 2245 2246 { 2247 struct mbuf *n; 2248 struct sadb_msg *newmsg; 2249 2250 /* create new sadb_msg to reply. */ 2251 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 2252 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2253 if (!n) 2254 return key_senderror(so, m, ENOBUFS); 2255 2256 newmsg = mtod(n, struct sadb_msg *); 2257 newmsg->sadb_msg_errno = 0; 2258 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2259 2260 m_freem(m); 2261 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2262 } 2263 } 2264 2265 /* 2266 * SADB_SPDDELETE2 processing 2267 * receive 2268 * <base, policy(*)> 2269 * from the user(?), and set SADB_SASTATE_DEAD, 2270 * and send, 2271 * <base, policy(*)> 2272 * to the ikmpd. 2273 * policy(*) including direction of policy. 2274 * 2275 * m will always be freed. 2276 */ 2277 static int 2278 key_spddelete2(struct socket *so, struct mbuf *m, 2279 const struct sadb_msghdr *mhp) 2280 { 2281 struct secpolicy *sp; 2282 uint32_t id; 2283 2284 IPSEC_ASSERT(so != NULL, ("null socket")); 2285 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2286 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2287 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2288 2289 if (SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY) || 2290 SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) { 2291 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2292 __func__)); 2293 return key_senderror(so, m, EINVAL); 2294 } 2295 2296 id = ((struct sadb_x_policy *) 2297 mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2298 2299 /* Is there SP in SPD ? */ 2300 if ((sp = key_getspbyid(id)) == NULL) { 2301 ipseclog((LOG_DEBUG, "%s: no SP found for id %u.\n", 2302 __func__, id)); 2303 return key_senderror(so, m, EINVAL); 2304 } 2305 2306 KEYDBG(KEY_STAMP, 2307 printf("%s: SP(%p)\n", __func__, sp)); 2308 KEYDBG(KEY_DATA, kdebug_secpolicy(sp)); 2309 key_unlink(sp); 2310 if (sp->state != IPSEC_SPSTATE_DEAD) { 2311 ipseclog((LOG_DEBUG, "%s: failed to delete SP with id %u.\n", 2312 __func__, id)); 2313 key_freesp(&sp); 2314 return (key_senderror(so, m, EACCES)); 2315 } 2316 key_freesp(&sp); 2317 2318 { 2319 struct mbuf *n, *nn; 2320 struct sadb_msg *newmsg; 2321 int off, len; 2322 2323 /* create new sadb_msg to reply. */ 2324 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2325 2326 MGETHDR(n, M_NOWAIT, MT_DATA); 2327 if (n && len > MHLEN) { 2328 if (!(MCLGET(n, M_NOWAIT))) { 2329 m_freem(n); 2330 n = NULL; 2331 } 2332 } 2333 if (!n) 2334 return key_senderror(so, m, ENOBUFS); 2335 2336 n->m_len = len; 2337 n->m_next = NULL; 2338 off = 0; 2339 2340 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 2341 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2342 2343 IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)", 2344 off, len)); 2345 2346 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], 2347 mhp->extlen[SADB_X_EXT_POLICY], M_NOWAIT); 2348 if (!n->m_next) { 2349 m_freem(n); 2350 return key_senderror(so, m, ENOBUFS); 2351 } 2352 2353 n->m_pkthdr.len = 0; 2354 for (nn = n; nn; nn = nn->m_next) 2355 n->m_pkthdr.len += nn->m_len; 2356 2357 newmsg = mtod(n, struct sadb_msg *); 2358 newmsg->sadb_msg_errno = 0; 2359 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2360 2361 m_freem(m); 2362 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2363 } 2364 } 2365 2366 /* 2367 * SADB_X_SPDGET processing 2368 * receive 2369 * <base, policy(*)> 2370 * from the user(?), 2371 * and send, 2372 * <base, address(SD), policy> 2373 * to the ikmpd. 2374 * policy(*) including direction of policy. 2375 * 2376 * m will always be freed. 2377 */ 2378 static int 2379 key_spdget(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 2380 { 2381 struct secpolicy *sp; 2382 struct mbuf *n; 2383 uint32_t id; 2384 2385 IPSEC_ASSERT(so != NULL, ("null socket")); 2386 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2387 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2388 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2389 2390 if (SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY) || 2391 SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) { 2392 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2393 __func__)); 2394 return key_senderror(so, m, EINVAL); 2395 } 2396 2397 id = ((struct sadb_x_policy *) 2398 mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2399 2400 /* Is there SP in SPD ? */ 2401 if ((sp = key_getspbyid(id)) == NULL) { 2402 ipseclog((LOG_DEBUG, "%s: no SP found for id %u.\n", 2403 __func__, id)); 2404 return key_senderror(so, m, ENOENT); 2405 } 2406 2407 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq, 2408 mhp->msg->sadb_msg_pid); 2409 key_freesp(&sp); 2410 if (n != NULL) { 2411 m_freem(m); 2412 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2413 } else 2414 return key_senderror(so, m, ENOBUFS); 2415 } 2416 2417 /* 2418 * SADB_X_SPDACQUIRE processing. 2419 * Acquire policy and SA(s) for a *OUTBOUND* packet. 2420 * send 2421 * <base, policy(*)> 2422 * to KMD, and expect to receive 2423 * <base> with SADB_X_SPDACQUIRE if error occurred, 2424 * or 2425 * <base, policy> 2426 * with SADB_X_SPDUPDATE from KMD by PF_KEY. 2427 * policy(*) is without policy requests. 2428 * 2429 * 0 : succeed 2430 * others: error number 2431 */ 2432 int 2433 key_spdacquire(struct secpolicy *sp) 2434 { 2435 struct mbuf *result = NULL, *m; 2436 struct secspacq *newspacq; 2437 2438 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2439 IPSEC_ASSERT(sp->req == NULL, ("policy exists")); 2440 IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC, 2441 ("policy not IPSEC %u", sp->policy)); 2442 2443 /* Get an entry to check whether sent message or not. */ 2444 newspacq = key_getspacq(&sp->spidx); 2445 if (newspacq != NULL) { 2446 if (V_key_blockacq_count < newspacq->count) { 2447 /* reset counter and do send message. */ 2448 newspacq->count = 0; 2449 } else { 2450 /* increment counter and do nothing. */ 2451 newspacq->count++; 2452 SPACQ_UNLOCK(); 2453 return (0); 2454 } 2455 SPACQ_UNLOCK(); 2456 } else { 2457 /* make new entry for blocking to send SADB_ACQUIRE. */ 2458 newspacq = key_newspacq(&sp->spidx); 2459 if (newspacq == NULL) 2460 return ENOBUFS; 2461 } 2462 2463 /* create new sadb_msg to reply. */ 2464 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); 2465 if (!m) 2466 return ENOBUFS; 2467 2468 result = m; 2469 2470 result->m_pkthdr.len = 0; 2471 for (m = result; m; m = m->m_next) 2472 result->m_pkthdr.len += m->m_len; 2473 2474 mtod(result, struct sadb_msg *)->sadb_msg_len = 2475 PFKEY_UNIT64(result->m_pkthdr.len); 2476 2477 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 2478 } 2479 2480 /* 2481 * SADB_SPDFLUSH processing 2482 * receive 2483 * <base> 2484 * from the user, and free all entries in secpctree. 2485 * and send, 2486 * <base> 2487 * to the user. 2488 * NOTE: what to do is only marking SADB_SASTATE_DEAD. 2489 * 2490 * m will always be freed. 2491 */ 2492 static int 2493 key_spdflush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 2494 { 2495 struct secpolicy_queue drainq; 2496 struct sadb_msg *newmsg; 2497 struct secpolicy *sp, *nextsp; 2498 u_int dir; 2499 2500 IPSEC_ASSERT(so != NULL, ("null socket")); 2501 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2502 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2503 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2504 2505 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) 2506 return key_senderror(so, m, EINVAL); 2507 2508 TAILQ_INIT(&drainq); 2509 SPTREE_WLOCK(); 2510 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2511 TAILQ_CONCAT(&drainq, &V_sptree[dir], chain); 2512 } 2513 /* 2514 * We need to set state to DEAD for each policy to be sure, 2515 * that another thread won't try to unlink it. 2516 * Also remove SP from sphash. 2517 */ 2518 TAILQ_FOREACH(sp, &drainq, chain) { 2519 sp->state = IPSEC_SPSTATE_DEAD; 2520 LIST_REMOVE(sp, idhash); 2521 } 2522 V_sp_genid++; 2523 V_spd_size = 0; 2524 SPTREE_WUNLOCK(); 2525 if (SPDCACHE_ENABLED()) 2526 spdcache_clear(); 2527 sp = TAILQ_FIRST(&drainq); 2528 while (sp != NULL) { 2529 nextsp = TAILQ_NEXT(sp, chain); 2530 key_freesp(&sp); 2531 sp = nextsp; 2532 } 2533 2534 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 2535 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2536 return key_senderror(so, m, ENOBUFS); 2537 } 2538 2539 if (m->m_next) 2540 m_freem(m->m_next); 2541 m->m_next = NULL; 2542 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2543 newmsg = mtod(m, struct sadb_msg *); 2544 newmsg->sadb_msg_errno = 0; 2545 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 2546 2547 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 2548 } 2549 2550 static uint8_t 2551 key_satype2scopemask(uint8_t satype) 2552 { 2553 2554 if (satype == IPSEC_POLICYSCOPE_ANY) 2555 return (0xff); 2556 return (satype); 2557 } 2558 /* 2559 * SADB_SPDDUMP processing 2560 * receive 2561 * <base> 2562 * from the user, and dump all SP leaves and send, 2563 * <base> ..... 2564 * to the ikmpd. 2565 * 2566 * NOTE: 2567 * sadb_msg_satype is considered as mask of policy scopes. 2568 * m will always be freed. 2569 */ 2570 static int 2571 key_spddump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 2572 { 2573 SPTREE_RLOCK_TRACKER; 2574 struct secpolicy *sp; 2575 struct mbuf *n; 2576 int cnt; 2577 u_int dir, scope; 2578 2579 IPSEC_ASSERT(so != NULL, ("null socket")); 2580 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2581 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2582 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2583 2584 /* search SPD entry and get buffer size. */ 2585 cnt = 0; 2586 scope = key_satype2scopemask(mhp->msg->sadb_msg_satype); 2587 SPTREE_RLOCK(); 2588 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2589 if (scope & IPSEC_POLICYSCOPE_GLOBAL) { 2590 TAILQ_FOREACH(sp, &V_sptree[dir], chain) 2591 cnt++; 2592 } 2593 if (scope & IPSEC_POLICYSCOPE_IFNET) { 2594 TAILQ_FOREACH(sp, &V_sptree_ifnet[dir], chain) 2595 cnt++; 2596 } 2597 } 2598 2599 if (cnt == 0) { 2600 SPTREE_RUNLOCK(); 2601 return key_senderror(so, m, ENOENT); 2602 } 2603 2604 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2605 if (scope & IPSEC_POLICYSCOPE_GLOBAL) { 2606 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 2607 --cnt; 2608 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, 2609 mhp->msg->sadb_msg_pid); 2610 2611 if (n != NULL) 2612 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2613 } 2614 } 2615 if (scope & IPSEC_POLICYSCOPE_IFNET) { 2616 TAILQ_FOREACH(sp, &V_sptree_ifnet[dir], chain) { 2617 --cnt; 2618 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, 2619 mhp->msg->sadb_msg_pid); 2620 2621 if (n != NULL) 2622 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2623 } 2624 } 2625 } 2626 2627 SPTREE_RUNLOCK(); 2628 m_freem(m); 2629 return (0); 2630 } 2631 2632 static struct mbuf * 2633 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, 2634 u_int32_t pid) 2635 { 2636 struct mbuf *result = NULL, *m; 2637 struct seclifetime lt; 2638 2639 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt); 2640 if (!m) 2641 goto fail; 2642 result = m; 2643 2644 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2645 &sp->spidx.src.sa, sp->spidx.prefs, 2646 sp->spidx.ul_proto); 2647 if (!m) 2648 goto fail; 2649 m_cat(result, m); 2650 2651 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2652 &sp->spidx.dst.sa, sp->spidx.prefd, 2653 sp->spidx.ul_proto); 2654 if (!m) 2655 goto fail; 2656 m_cat(result, m); 2657 2658 m = key_sp2mbuf(sp); 2659 if (!m) 2660 goto fail; 2661 m_cat(result, m); 2662 2663 if(sp->lifetime){ 2664 lt.addtime=sp->created; 2665 lt.usetime= sp->lastused; 2666 m = key_setlifetime(<, SADB_EXT_LIFETIME_CURRENT); 2667 if (!m) 2668 goto fail; 2669 m_cat(result, m); 2670 2671 lt.addtime=sp->lifetime; 2672 lt.usetime= sp->validtime; 2673 m = key_setlifetime(<, SADB_EXT_LIFETIME_HARD); 2674 if (!m) 2675 goto fail; 2676 m_cat(result, m); 2677 } 2678 2679 if ((result->m_flags & M_PKTHDR) == 0) 2680 goto fail; 2681 2682 if (result->m_len < sizeof(struct sadb_msg)) { 2683 result = m_pullup(result, sizeof(struct sadb_msg)); 2684 if (result == NULL) 2685 goto fail; 2686 } 2687 2688 result->m_pkthdr.len = 0; 2689 for (m = result; m; m = m->m_next) 2690 result->m_pkthdr.len += m->m_len; 2691 2692 mtod(result, struct sadb_msg *)->sadb_msg_len = 2693 PFKEY_UNIT64(result->m_pkthdr.len); 2694 2695 return result; 2696 2697 fail: 2698 m_freem(result); 2699 return NULL; 2700 } 2701 /* 2702 * get PFKEY message length for security policy and request. 2703 */ 2704 static size_t 2705 key_getspreqmsglen(struct secpolicy *sp) 2706 { 2707 size_t tlen, len; 2708 int i; 2709 2710 tlen = sizeof(struct sadb_x_policy); 2711 /* if is the policy for ipsec ? */ 2712 if (sp->policy != IPSEC_POLICY_IPSEC) 2713 return (tlen); 2714 2715 /* get length of ipsec requests */ 2716 for (i = 0; i < sp->tcount; i++) { 2717 len = sizeof(struct sadb_x_ipsecrequest) 2718 + sp->req[i]->saidx.src.sa.sa_len 2719 + sp->req[i]->saidx.dst.sa.sa_len; 2720 2721 tlen += PFKEY_ALIGN8(len); 2722 } 2723 return (tlen); 2724 } 2725 2726 /* 2727 * SADB_SPDEXPIRE processing 2728 * send 2729 * <base, address(SD), lifetime(CH), policy> 2730 * to KMD by PF_KEY. 2731 * 2732 * OUT: 0 : succeed 2733 * others : error number 2734 */ 2735 static int 2736 key_spdexpire(struct secpolicy *sp) 2737 { 2738 struct sadb_lifetime *lt; 2739 struct mbuf *result = NULL, *m; 2740 int len, error = -1; 2741 2742 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2743 2744 KEYDBG(KEY_STAMP, 2745 printf("%s: SP(%p)\n", __func__, sp)); 2746 KEYDBG(KEY_DATA, kdebug_secpolicy(sp)); 2747 2748 /* set msg header */ 2749 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0); 2750 if (!m) { 2751 error = ENOBUFS; 2752 goto fail; 2753 } 2754 result = m; 2755 2756 /* create lifetime extension (current and hard) */ 2757 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 2758 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 2759 if (m == NULL) { 2760 error = ENOBUFS; 2761 goto fail; 2762 } 2763 m_align(m, len); 2764 m->m_len = len; 2765 bzero(mtod(m, caddr_t), len); 2766 lt = mtod(m, struct sadb_lifetime *); 2767 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2768 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 2769 lt->sadb_lifetime_allocations = 0; 2770 lt->sadb_lifetime_bytes = 0; 2771 lt->sadb_lifetime_addtime = sp->created; 2772 lt->sadb_lifetime_usetime = sp->lastused; 2773 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 2774 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2775 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 2776 lt->sadb_lifetime_allocations = 0; 2777 lt->sadb_lifetime_bytes = 0; 2778 lt->sadb_lifetime_addtime = sp->lifetime; 2779 lt->sadb_lifetime_usetime = sp->validtime; 2780 m_cat(result, m); 2781 2782 /* set sadb_address for source */ 2783 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2784 &sp->spidx.src.sa, 2785 sp->spidx.prefs, sp->spidx.ul_proto); 2786 if (!m) { 2787 error = ENOBUFS; 2788 goto fail; 2789 } 2790 m_cat(result, m); 2791 2792 /* set sadb_address for destination */ 2793 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2794 &sp->spidx.dst.sa, 2795 sp->spidx.prefd, sp->spidx.ul_proto); 2796 if (!m) { 2797 error = ENOBUFS; 2798 goto fail; 2799 } 2800 m_cat(result, m); 2801 2802 /* set secpolicy */ 2803 m = key_sp2mbuf(sp); 2804 if (!m) { 2805 error = ENOBUFS; 2806 goto fail; 2807 } 2808 m_cat(result, m); 2809 2810 if ((result->m_flags & M_PKTHDR) == 0) { 2811 error = EINVAL; 2812 goto fail; 2813 } 2814 2815 if (result->m_len < sizeof(struct sadb_msg)) { 2816 result = m_pullup(result, sizeof(struct sadb_msg)); 2817 if (result == NULL) { 2818 error = ENOBUFS; 2819 goto fail; 2820 } 2821 } 2822 2823 result->m_pkthdr.len = 0; 2824 for (m = result; m; m = m->m_next) 2825 result->m_pkthdr.len += m->m_len; 2826 2827 mtod(result, struct sadb_msg *)->sadb_msg_len = 2828 PFKEY_UNIT64(result->m_pkthdr.len); 2829 2830 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 2831 2832 fail: 2833 if (result) 2834 m_freem(result); 2835 return error; 2836 } 2837 2838 /* %%% SAD management */ 2839 /* 2840 * allocating and initialize new SA head. 2841 * OUT: NULL : failure due to the lack of memory. 2842 * others : pointer to new SA head. 2843 */ 2844 static struct secashead * 2845 key_newsah(struct secasindex *saidx) 2846 { 2847 struct secashead *sah; 2848 2849 sah = malloc(sizeof(struct secashead), M_IPSEC_SAH, 2850 M_NOWAIT | M_ZERO); 2851 if (sah == NULL) { 2852 PFKEYSTAT_INC(in_nomem); 2853 return (NULL); 2854 } 2855 TAILQ_INIT(&sah->savtree_larval); 2856 TAILQ_INIT(&sah->savtree_alive); 2857 sah->saidx = *saidx; 2858 sah->state = SADB_SASTATE_DEAD; 2859 SAH_INITREF(sah); 2860 2861 KEYDBG(KEY_STAMP, 2862 printf("%s: SAH(%p)\n", __func__, sah)); 2863 KEYDBG(KEY_DATA, kdebug_secash(sah, NULL)); 2864 return (sah); 2865 } 2866 2867 static void 2868 key_freesah(struct secashead **psah) 2869 { 2870 struct secashead *sah = *psah; 2871 2872 if (SAH_DELREF(sah) == 0) 2873 return; 2874 2875 KEYDBG(KEY_STAMP, 2876 printf("%s: last reference to SAH(%p)\n", __func__, sah)); 2877 KEYDBG(KEY_DATA, kdebug_secash(sah, NULL)); 2878 2879 *psah = NULL; 2880 key_delsah(sah); 2881 } 2882 2883 static void 2884 key_delsah(struct secashead *sah) 2885 { 2886 IPSEC_ASSERT(sah != NULL, ("NULL sah")); 2887 IPSEC_ASSERT(sah->state == SADB_SASTATE_DEAD, 2888 ("Attempt to free non DEAD SAH %p", sah)); 2889 IPSEC_ASSERT(TAILQ_EMPTY(&sah->savtree_larval), 2890 ("Attempt to free SAH %p with LARVAL SA", sah)); 2891 IPSEC_ASSERT(TAILQ_EMPTY(&sah->savtree_alive), 2892 ("Attempt to free SAH %p with ALIVE SA", sah)); 2893 2894 free(sah, M_IPSEC_SAH); 2895 } 2896 2897 /* 2898 * allocating a new SA for key_add() and key_getspi() call, 2899 * and copy the values of mhp into new buffer. 2900 * When SAD message type is SADB_GETSPI set SA state to LARVAL. 2901 * For SADB_ADD create and initialize SA with MATURE state. 2902 * OUT: NULL : fail 2903 * others : pointer to new secasvar. 2904 */ 2905 static struct secasvar * 2906 key_newsav(const struct sadb_msghdr *mhp, struct secasindex *saidx, 2907 uint32_t spi, int *errp) 2908 { 2909 struct secashead *sah; 2910 struct secasvar *sav; 2911 int isnew; 2912 2913 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2914 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2915 IPSEC_ASSERT(mhp->msg->sadb_msg_type == SADB_GETSPI || 2916 mhp->msg->sadb_msg_type == SADB_ADD, ("wrong message type")); 2917 2918 sav = NULL; 2919 sah = NULL; 2920 /* check SPI value */ 2921 switch (saidx->proto) { 2922 case IPPROTO_ESP: 2923 case IPPROTO_AH: 2924 /* 2925 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values 2926 * 1-255 reserved by IANA for future use, 2927 * 0 for implementation specific, local use. 2928 */ 2929 if (ntohl(spi) <= 255) { 2930 ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n", 2931 __func__, ntohl(spi))); 2932 *errp = EINVAL; 2933 goto done; 2934 } 2935 break; 2936 } 2937 2938 sav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT | M_ZERO); 2939 if (sav == NULL) { 2940 *errp = ENOBUFS; 2941 goto done; 2942 } 2943 sav->lock = malloc(sizeof(struct mtx), M_IPSEC_MISC, 2944 M_NOWAIT | M_ZERO); 2945 if (sav->lock == NULL) { 2946 *errp = ENOBUFS; 2947 goto done; 2948 } 2949 mtx_init(sav->lock, "ipsec association", NULL, MTX_DEF); 2950 sav->lft_c = uma_zalloc_pcpu(V_key_lft_zone, M_NOWAIT); 2951 if (sav->lft_c == NULL) { 2952 *errp = ENOBUFS; 2953 goto done; 2954 } 2955 counter_u64_zero(sav->lft_c_allocations); 2956 counter_u64_zero(sav->lft_c_bytes); 2957 2958 sav->spi = spi; 2959 sav->seq = mhp->msg->sadb_msg_seq; 2960 sav->state = SADB_SASTATE_LARVAL; 2961 sav->pid = (pid_t)mhp->msg->sadb_msg_pid; 2962 SAV_INITREF(sav); 2963 again: 2964 sah = key_getsah(saidx); 2965 if (sah == NULL) { 2966 /* create a new SA index */ 2967 sah = key_newsah(saidx); 2968 if (sah == NULL) { 2969 ipseclog((LOG_DEBUG, 2970 "%s: No more memory.\n", __func__)); 2971 *errp = ENOBUFS; 2972 goto done; 2973 } 2974 isnew = 1; 2975 } else 2976 isnew = 0; 2977 2978 sav->sah = sah; 2979 if (mhp->msg->sadb_msg_type == SADB_GETSPI) { 2980 sav->created = time_second; 2981 } else if (sav->state == SADB_SASTATE_LARVAL) { 2982 /* 2983 * Do not call key_setsaval() second time in case 2984 * of `goto again`. We will have MATURE state. 2985 */ 2986 *errp = key_setsaval(sav, mhp); 2987 if (*errp != 0) 2988 goto done; 2989 sav->state = SADB_SASTATE_MATURE; 2990 } 2991 2992 SAHTREE_WLOCK(); 2993 /* 2994 * Check that existing SAH wasn't unlinked. 2995 * Since we didn't hold the SAHTREE lock, it is possible, 2996 * that callout handler or key_flush() or key_delete() could 2997 * unlink this SAH. 2998 */ 2999 if (isnew == 0 && sah->state == SADB_SASTATE_DEAD) { 3000 SAHTREE_WUNLOCK(); 3001 key_freesah(&sah); /* reference from key_getsah() */ 3002 goto again; 3003 } 3004 if (isnew != 0) { 3005 /* 3006 * Add new SAH into SADB. 3007 * 3008 * XXXAE: we can serialize key_add and key_getspi calls, so 3009 * several threads will not fight in the race. 3010 * Otherwise we should check under SAHTREE lock, that this 3011 * SAH would not added twice. 3012 */ 3013 TAILQ_INSERT_HEAD(&V_sahtree, sah, chain); 3014 /* Add new SAH into hash by addresses */ 3015 LIST_INSERT_HEAD(SAHADDRHASH_HASH(saidx), sah, addrhash); 3016 /* Now we are linked in the chain */ 3017 sah->state = SADB_SASTATE_MATURE; 3018 /* 3019 * SAV references this new SAH. 3020 * In case of existing SAH we reuse reference 3021 * from key_getsah(). 3022 */ 3023 SAH_ADDREF(sah); 3024 } 3025 /* Link SAV with SAH */ 3026 if (sav->state == SADB_SASTATE_MATURE) 3027 TAILQ_INSERT_HEAD(&sah->savtree_alive, sav, chain); 3028 else 3029 TAILQ_INSERT_HEAD(&sah->savtree_larval, sav, chain); 3030 /* Add SAV into SPI hash */ 3031 LIST_INSERT_HEAD(SAVHASH_HASH(sav->spi), sav, spihash); 3032 SAHTREE_WUNLOCK(); 3033 *errp = 0; /* success */ 3034 done: 3035 if (*errp != 0) { 3036 if (sav != NULL) { 3037 if (sav->lock != NULL) { 3038 mtx_destroy(sav->lock); 3039 free(sav->lock, M_IPSEC_MISC); 3040 } 3041 if (sav->lft_c != NULL) 3042 uma_zfree_pcpu(V_key_lft_zone, sav->lft_c); 3043 free(sav, M_IPSEC_SA), sav = NULL; 3044 } 3045 if (sah != NULL) 3046 key_freesah(&sah); 3047 if (*errp == ENOBUFS) { 3048 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3049 __func__)); 3050 PFKEYSTAT_INC(in_nomem); 3051 } 3052 } 3053 return (sav); 3054 } 3055 3056 /* 3057 * free() SA variable entry. 3058 */ 3059 static void 3060 key_cleansav(struct secasvar *sav) 3061 { 3062 3063 if (sav->natt != NULL) { 3064 free(sav->natt, M_IPSEC_MISC); 3065 sav->natt = NULL; 3066 } 3067 if (sav->flags & SADB_X_EXT_F_CLONED) 3068 return; 3069 /* 3070 * Cleanup xform state. Note that zeroize'ing causes the 3071 * keys to be cleared; otherwise we must do it ourself. 3072 */ 3073 if (sav->tdb_xform != NULL) { 3074 sav->tdb_xform->xf_zeroize(sav); 3075 sav->tdb_xform = NULL; 3076 } else { 3077 if (sav->key_auth != NULL) 3078 bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth)); 3079 if (sav->key_enc != NULL) 3080 bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc)); 3081 } 3082 if (sav->key_auth != NULL) { 3083 if (sav->key_auth->key_data != NULL) 3084 free(sav->key_auth->key_data, M_IPSEC_MISC); 3085 free(sav->key_auth, M_IPSEC_MISC); 3086 sav->key_auth = NULL; 3087 } 3088 if (sav->key_enc != NULL) { 3089 if (sav->key_enc->key_data != NULL) 3090 free(sav->key_enc->key_data, M_IPSEC_MISC); 3091 free(sav->key_enc, M_IPSEC_MISC); 3092 sav->key_enc = NULL; 3093 } 3094 if (sav->replay != NULL) { 3095 if (sav->replay->bitmap != NULL) 3096 free(sav->replay->bitmap, M_IPSEC_MISC); 3097 free(sav->replay, M_IPSEC_MISC); 3098 sav->replay = NULL; 3099 } 3100 if (sav->lft_h != NULL) { 3101 free(sav->lft_h, M_IPSEC_MISC); 3102 sav->lft_h = NULL; 3103 } 3104 if (sav->lft_s != NULL) { 3105 free(sav->lft_s, M_IPSEC_MISC); 3106 sav->lft_s = NULL; 3107 } 3108 } 3109 3110 /* 3111 * free() SA variable entry. 3112 */ 3113 static void 3114 key_delsav(struct secasvar *sav) 3115 { 3116 IPSEC_ASSERT(sav != NULL, ("null sav")); 3117 IPSEC_ASSERT(sav->state == SADB_SASTATE_DEAD, 3118 ("attempt to free non DEAD SA %p", sav)); 3119 IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", 3120 sav->refcnt)); 3121 3122 /* 3123 * SA must be unlinked from the chain and hashtbl. 3124 * If SA was cloned, we leave all fields untouched, 3125 * except NAT-T config. 3126 */ 3127 key_cleansav(sav); 3128 if ((sav->flags & SADB_X_EXT_F_CLONED) == 0) { 3129 mtx_destroy(sav->lock); 3130 free(sav->lock, M_IPSEC_MISC); 3131 uma_zfree(V_key_lft_zone, sav->lft_c); 3132 } 3133 free(sav, M_IPSEC_SA); 3134 } 3135 3136 /* 3137 * search SAH. 3138 * OUT: 3139 * NULL : not found 3140 * others : found, referenced pointer to a SAH. 3141 */ 3142 static struct secashead * 3143 key_getsah(struct secasindex *saidx) 3144 { 3145 SAHTREE_RLOCK_TRACKER; 3146 struct secashead *sah; 3147 3148 SAHTREE_RLOCK(); 3149 LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) { 3150 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID) != 0) { 3151 SAH_ADDREF(sah); 3152 break; 3153 } 3154 } 3155 SAHTREE_RUNLOCK(); 3156 return (sah); 3157 } 3158 3159 /* 3160 * Check not to be duplicated SPI. 3161 * OUT: 3162 * 0 : not found 3163 * 1 : found SA with given SPI. 3164 */ 3165 static int 3166 key_checkspidup(uint32_t spi) 3167 { 3168 SAHTREE_RLOCK_TRACKER; 3169 struct secasvar *sav; 3170 3171 /* Assume SPI is in network byte order */ 3172 SAHTREE_RLOCK(); 3173 LIST_FOREACH(sav, SAVHASH_HASH(spi), spihash) { 3174 if (sav->spi == spi) 3175 break; 3176 } 3177 SAHTREE_RUNLOCK(); 3178 return (sav != NULL); 3179 } 3180 3181 /* 3182 * Search SA by SPI. 3183 * OUT: 3184 * NULL : not found 3185 * others : found, referenced pointer to a SA. 3186 */ 3187 static struct secasvar * 3188 key_getsavbyspi(uint32_t spi) 3189 { 3190 SAHTREE_RLOCK_TRACKER; 3191 struct secasvar *sav; 3192 3193 /* Assume SPI is in network byte order */ 3194 SAHTREE_RLOCK(); 3195 LIST_FOREACH(sav, SAVHASH_HASH(spi), spihash) { 3196 if (sav->spi != spi) 3197 continue; 3198 SAV_ADDREF(sav); 3199 break; 3200 } 3201 SAHTREE_RUNLOCK(); 3202 return (sav); 3203 } 3204 3205 static int 3206 key_updatelifetimes(struct secasvar *sav, const struct sadb_msghdr *mhp) 3207 { 3208 struct seclifetime *lft_h, *lft_s, *tmp; 3209 3210 /* Lifetime extension is optional, check that it is present. */ 3211 if (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) && 3212 SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) { 3213 /* 3214 * In case of SADB_UPDATE we may need to change 3215 * existing lifetimes. 3216 */ 3217 if (sav->state == SADB_SASTATE_MATURE) { 3218 lft_h = lft_s = NULL; 3219 goto reset; 3220 } 3221 return (0); 3222 } 3223 /* Both HARD and SOFT extensions must present */ 3224 if ((SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) && 3225 !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) || 3226 (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT) && 3227 !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD))) { 3228 ipseclog((LOG_DEBUG, 3229 "%s: invalid message: missing required header.\n", 3230 __func__)); 3231 return (EINVAL); 3232 } 3233 if (SADB_CHECKLEN(mhp, SADB_EXT_LIFETIME_HARD) || 3234 SADB_CHECKLEN(mhp, SADB_EXT_LIFETIME_SOFT)) { 3235 ipseclog((LOG_DEBUG, 3236 "%s: invalid message: wrong header size.\n", __func__)); 3237 return (EINVAL); 3238 } 3239 lft_h = key_dup_lifemsg((const struct sadb_lifetime *) 3240 mhp->ext[SADB_EXT_LIFETIME_HARD], M_IPSEC_MISC); 3241 if (lft_h == NULL) { 3242 PFKEYSTAT_INC(in_nomem); 3243 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3244 return (ENOBUFS); 3245 } 3246 lft_s = key_dup_lifemsg((const struct sadb_lifetime *) 3247 mhp->ext[SADB_EXT_LIFETIME_SOFT], M_IPSEC_MISC); 3248 if (lft_s == NULL) { 3249 PFKEYSTAT_INC(in_nomem); 3250 free(lft_h, M_IPSEC_MISC); 3251 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3252 return (ENOBUFS); 3253 } 3254 reset: 3255 if (sav->state != SADB_SASTATE_LARVAL) { 3256 /* 3257 * key_update() holds reference to this SA, 3258 * so it won't be deleted in meanwhile. 3259 */ 3260 SECASVAR_LOCK(sav); 3261 tmp = sav->lft_h; 3262 sav->lft_h = lft_h; 3263 lft_h = tmp; 3264 3265 tmp = sav->lft_s; 3266 sav->lft_s = lft_s; 3267 lft_s = tmp; 3268 SECASVAR_UNLOCK(sav); 3269 if (lft_h != NULL) 3270 free(lft_h, M_IPSEC_MISC); 3271 if (lft_s != NULL) 3272 free(lft_s, M_IPSEC_MISC); 3273 return (0); 3274 } 3275 /* We can update lifetime without holding a lock */ 3276 IPSEC_ASSERT(sav->lft_h == NULL, ("lft_h is already initialized\n")); 3277 IPSEC_ASSERT(sav->lft_s == NULL, ("lft_s is already initialized\n")); 3278 sav->lft_h = lft_h; 3279 sav->lft_s = lft_s; 3280 return (0); 3281 } 3282 3283 /* 3284 * copy SA values from PF_KEY message except *SPI, SEQ, PID and TYPE*. 3285 * You must update these if need. Expects only LARVAL SAs. 3286 * OUT: 0: success. 3287 * !0: failure. 3288 */ 3289 static int 3290 key_setsaval(struct secasvar *sav, const struct sadb_msghdr *mhp) 3291 { 3292 const struct sadb_sa *sa0; 3293 const struct sadb_key *key0; 3294 uint32_t replay; 3295 size_t len; 3296 int error; 3297 3298 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 3299 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 3300 IPSEC_ASSERT(sav->state == SADB_SASTATE_LARVAL, 3301 ("Attempt to update non LARVAL SA")); 3302 3303 /* XXX rewrite */ 3304 error = key_setident(sav->sah, mhp); 3305 if (error != 0) 3306 goto fail; 3307 3308 /* SA */ 3309 if (!SADB_CHECKHDR(mhp, SADB_EXT_SA)) { 3310 if (SADB_CHECKLEN(mhp, SADB_EXT_SA)) { 3311 error = EINVAL; 3312 goto fail; 3313 } 3314 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 3315 sav->alg_auth = sa0->sadb_sa_auth; 3316 sav->alg_enc = sa0->sadb_sa_encrypt; 3317 sav->flags = sa0->sadb_sa_flags; 3318 if ((sav->flags & SADB_KEY_FLAGS_MAX) != sav->flags) { 3319 ipseclog((LOG_DEBUG, 3320 "%s: invalid sa_flags 0x%08x.\n", __func__, 3321 sav->flags)); 3322 error = EINVAL; 3323 goto fail; 3324 } 3325 3326 /* Optional replay window */ 3327 replay = 0; 3328 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) 3329 replay = sa0->sadb_sa_replay; 3330 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_SA_REPLAY)) { 3331 if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA_REPLAY)) { 3332 error = EINVAL; 3333 goto fail; 3334 } 3335 replay = ((const struct sadb_x_sa_replay *) 3336 mhp->ext[SADB_X_EXT_SA_REPLAY])->sadb_x_sa_replay_replay; 3337 3338 if (replay > UINT32_MAX - 32) { 3339 ipseclog((LOG_DEBUG, 3340 "%s: replay window too big.\n", __func__)); 3341 error = EINVAL; 3342 goto fail; 3343 } 3344 3345 replay = (replay + 7) >> 3; 3346 } 3347 3348 sav->replay = malloc(sizeof(struct secreplay), M_IPSEC_MISC, 3349 M_NOWAIT | M_ZERO); 3350 if (sav->replay == NULL) { 3351 PFKEYSTAT_INC(in_nomem); 3352 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3353 __func__)); 3354 error = ENOBUFS; 3355 goto fail; 3356 } 3357 3358 if (replay != 0) { 3359 /* number of 32b blocks to be allocated */ 3360 uint32_t bitmap_size; 3361 3362 /* RFC 6479: 3363 * - the allocated replay window size must be 3364 * a power of two. 3365 * - use an extra 32b block as a redundant window. 3366 */ 3367 bitmap_size = 1; 3368 while (replay + 4 > bitmap_size) 3369 bitmap_size <<= 1; 3370 bitmap_size = bitmap_size / 4; 3371 3372 sav->replay->bitmap = malloc( 3373 bitmap_size * sizeof(uint32_t), M_IPSEC_MISC, 3374 M_NOWAIT | M_ZERO); 3375 if (sav->replay->bitmap == NULL) { 3376 PFKEYSTAT_INC(in_nomem); 3377 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3378 __func__)); 3379 error = ENOBUFS; 3380 goto fail; 3381 } 3382 sav->replay->bitmap_size = bitmap_size; 3383 sav->replay->wsize = replay; 3384 } 3385 } 3386 3387 /* Authentication keys */ 3388 if (!SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH)) { 3389 if (SADB_CHECKLEN(mhp, SADB_EXT_KEY_AUTH)) { 3390 error = EINVAL; 3391 goto fail; 3392 } 3393 error = 0; 3394 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH]; 3395 len = mhp->extlen[SADB_EXT_KEY_AUTH]; 3396 switch (mhp->msg->sadb_msg_satype) { 3397 case SADB_SATYPE_AH: 3398 case SADB_SATYPE_ESP: 3399 case SADB_X_SATYPE_TCPSIGNATURE: 3400 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3401 sav->alg_auth != SADB_X_AALG_NULL) 3402 error = EINVAL; 3403 break; 3404 case SADB_X_SATYPE_IPCOMP: 3405 default: 3406 error = EINVAL; 3407 break; 3408 } 3409 if (error) { 3410 ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n", 3411 __func__)); 3412 goto fail; 3413 } 3414 3415 sav->key_auth = key_dup_keymsg(key0, len, M_IPSEC_MISC); 3416 if (sav->key_auth == NULL ) { 3417 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3418 __func__)); 3419 PFKEYSTAT_INC(in_nomem); 3420 error = ENOBUFS; 3421 goto fail; 3422 } 3423 } 3424 3425 /* Encryption key */ 3426 if (!SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT)) { 3427 if (SADB_CHECKLEN(mhp, SADB_EXT_KEY_ENCRYPT)) { 3428 error = EINVAL; 3429 goto fail; 3430 } 3431 error = 0; 3432 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT]; 3433 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; 3434 switch (mhp->msg->sadb_msg_satype) { 3435 case SADB_SATYPE_ESP: 3436 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3437 sav->alg_enc != SADB_EALG_NULL) { 3438 error = EINVAL; 3439 break; 3440 } 3441 sav->key_enc = key_dup_keymsg(key0, len, M_IPSEC_MISC); 3442 if (sav->key_enc == NULL) { 3443 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3444 __func__)); 3445 PFKEYSTAT_INC(in_nomem); 3446 error = ENOBUFS; 3447 goto fail; 3448 } 3449 break; 3450 case SADB_X_SATYPE_IPCOMP: 3451 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) 3452 error = EINVAL; 3453 sav->key_enc = NULL; /*just in case*/ 3454 break; 3455 case SADB_SATYPE_AH: 3456 case SADB_X_SATYPE_TCPSIGNATURE: 3457 default: 3458 error = EINVAL; 3459 break; 3460 } 3461 if (error) { 3462 ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n", 3463 __func__)); 3464 goto fail; 3465 } 3466 } 3467 3468 /* set iv */ 3469 sav->ivlen = 0; 3470 switch (mhp->msg->sadb_msg_satype) { 3471 case SADB_SATYPE_AH: 3472 if (sav->flags & SADB_X_EXT_DERIV) { 3473 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3474 "given to AH SA.\n", __func__)); 3475 error = EINVAL; 3476 goto fail; 3477 } 3478 if (sav->alg_enc != SADB_EALG_NONE) { 3479 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3480 "mismated.\n", __func__)); 3481 error = EINVAL; 3482 goto fail; 3483 } 3484 error = xform_init(sav, XF_AH); 3485 break; 3486 case SADB_SATYPE_ESP: 3487 if ((sav->flags & (SADB_X_EXT_OLD | SADB_X_EXT_DERIV)) == 3488 (SADB_X_EXT_OLD | SADB_X_EXT_DERIV)) { 3489 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3490 "given to old-esp.\n", __func__)); 3491 error = EINVAL; 3492 goto fail; 3493 } 3494 error = xform_init(sav, XF_ESP); 3495 break; 3496 case SADB_X_SATYPE_IPCOMP: 3497 if (sav->alg_auth != SADB_AALG_NONE) { 3498 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3499 "mismated.\n", __func__)); 3500 error = EINVAL; 3501 goto fail; 3502 } 3503 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 && 3504 ntohl(sav->spi) >= 0x10000) { 3505 ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n", 3506 __func__)); 3507 error = EINVAL; 3508 goto fail; 3509 } 3510 error = xform_init(sav, XF_IPCOMP); 3511 break; 3512 case SADB_X_SATYPE_TCPSIGNATURE: 3513 if (sav->alg_enc != SADB_EALG_NONE) { 3514 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3515 "mismated.\n", __func__)); 3516 error = EINVAL; 3517 goto fail; 3518 } 3519 error = xform_init(sav, XF_TCPSIGNATURE); 3520 break; 3521 default: 3522 ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__)); 3523 error = EPROTONOSUPPORT; 3524 goto fail; 3525 } 3526 if (error) { 3527 ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n", 3528 __func__, mhp->msg->sadb_msg_satype)); 3529 goto fail; 3530 } 3531 3532 /* Handle NAT-T headers */ 3533 error = key_setnatt(sav, mhp); 3534 if (error != 0) 3535 goto fail; 3536 3537 /* Initialize lifetime for CURRENT */ 3538 sav->firstused = 0; 3539 sav->created = time_second; 3540 3541 /* lifetimes for HARD and SOFT */ 3542 error = key_updatelifetimes(sav, mhp); 3543 if (error == 0) 3544 return (0); 3545 fail: 3546 key_cleansav(sav); 3547 return (error); 3548 } 3549 3550 /* 3551 * subroutine for SADB_GET and SADB_DUMP. 3552 */ 3553 static struct mbuf * 3554 key_setdumpsa(struct secasvar *sav, uint8_t type, uint8_t satype, 3555 uint32_t seq, uint32_t pid) 3556 { 3557 struct seclifetime lft_c; 3558 struct mbuf *result = NULL, *tres = NULL, *m; 3559 int i, dumporder[] = { 3560 SADB_EXT_SA, SADB_X_EXT_SA2, SADB_X_EXT_SA_REPLAY, 3561 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 3562 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, 3563 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, 3564 SADB_EXT_KEY_AUTH, SADB_EXT_KEY_ENCRYPT, 3565 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST, 3566 SADB_EXT_SENSITIVITY, 3567 SADB_X_EXT_NAT_T_TYPE, 3568 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT, 3569 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR, 3570 SADB_X_EXT_NAT_T_FRAG, 3571 }; 3572 uint32_t replay_count; 3573 3574 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt); 3575 if (m == NULL) 3576 goto fail; 3577 result = m; 3578 3579 for (i = nitems(dumporder) - 1; i >= 0; i--) { 3580 m = NULL; 3581 switch (dumporder[i]) { 3582 case SADB_EXT_SA: 3583 m = key_setsadbsa(sav); 3584 if (!m) 3585 goto fail; 3586 break; 3587 3588 case SADB_X_EXT_SA2: 3589 SECASVAR_LOCK(sav); 3590 replay_count = sav->replay ? sav->replay->count : 0; 3591 SECASVAR_UNLOCK(sav); 3592 m = key_setsadbxsa2(sav->sah->saidx.mode, replay_count, 3593 sav->sah->saidx.reqid); 3594 if (!m) 3595 goto fail; 3596 break; 3597 3598 case SADB_X_EXT_SA_REPLAY: 3599 if (sav->replay == NULL || 3600 sav->replay->wsize <= UINT8_MAX) 3601 continue; 3602 3603 m = key_setsadbxsareplay(sav->replay->wsize); 3604 if (!m) 3605 goto fail; 3606 break; 3607 3608 case SADB_EXT_ADDRESS_SRC: 3609 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3610 &sav->sah->saidx.src.sa, 3611 FULLMASK, IPSEC_ULPROTO_ANY); 3612 if (!m) 3613 goto fail; 3614 break; 3615 3616 case SADB_EXT_ADDRESS_DST: 3617 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3618 &sav->sah->saidx.dst.sa, 3619 FULLMASK, IPSEC_ULPROTO_ANY); 3620 if (!m) 3621 goto fail; 3622 break; 3623 3624 case SADB_EXT_KEY_AUTH: 3625 if (!sav->key_auth) 3626 continue; 3627 m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH); 3628 if (!m) 3629 goto fail; 3630 break; 3631 3632 case SADB_EXT_KEY_ENCRYPT: 3633 if (!sav->key_enc) 3634 continue; 3635 m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT); 3636 if (!m) 3637 goto fail; 3638 break; 3639 3640 case SADB_EXT_LIFETIME_CURRENT: 3641 lft_c.addtime = sav->created; 3642 lft_c.allocations = (uint32_t)counter_u64_fetch( 3643 sav->lft_c_allocations); 3644 lft_c.bytes = counter_u64_fetch(sav->lft_c_bytes); 3645 lft_c.usetime = sav->firstused; 3646 m = key_setlifetime(&lft_c, SADB_EXT_LIFETIME_CURRENT); 3647 if (!m) 3648 goto fail; 3649 break; 3650 3651 case SADB_EXT_LIFETIME_HARD: 3652 if (!sav->lft_h) 3653 continue; 3654 m = key_setlifetime(sav->lft_h, 3655 SADB_EXT_LIFETIME_HARD); 3656 if (!m) 3657 goto fail; 3658 break; 3659 3660 case SADB_EXT_LIFETIME_SOFT: 3661 if (!sav->lft_s) 3662 continue; 3663 m = key_setlifetime(sav->lft_s, 3664 SADB_EXT_LIFETIME_SOFT); 3665 3666 if (!m) 3667 goto fail; 3668 break; 3669 3670 case SADB_X_EXT_NAT_T_TYPE: 3671 if (sav->natt == NULL) 3672 continue; 3673 m = key_setsadbxtype(UDP_ENCAP_ESPINUDP); 3674 if (!m) 3675 goto fail; 3676 break; 3677 3678 case SADB_X_EXT_NAT_T_DPORT: 3679 if (sav->natt == NULL) 3680 continue; 3681 m = key_setsadbxport(sav->natt->dport, 3682 SADB_X_EXT_NAT_T_DPORT); 3683 if (!m) 3684 goto fail; 3685 break; 3686 3687 case SADB_X_EXT_NAT_T_SPORT: 3688 if (sav->natt == NULL) 3689 continue; 3690 m = key_setsadbxport(sav->natt->sport, 3691 SADB_X_EXT_NAT_T_SPORT); 3692 if (!m) 3693 goto fail; 3694 break; 3695 3696 case SADB_X_EXT_NAT_T_OAI: 3697 if (sav->natt == NULL || 3698 (sav->natt->flags & IPSEC_NATT_F_OAI) == 0) 3699 continue; 3700 m = key_setsadbaddr(SADB_X_EXT_NAT_T_OAI, 3701 &sav->natt->oai.sa, FULLMASK, IPSEC_ULPROTO_ANY); 3702 if (!m) 3703 goto fail; 3704 break; 3705 case SADB_X_EXT_NAT_T_OAR: 3706 if (sav->natt == NULL || 3707 (sav->natt->flags & IPSEC_NATT_F_OAR) == 0) 3708 continue; 3709 m = key_setsadbaddr(SADB_X_EXT_NAT_T_OAR, 3710 &sav->natt->oar.sa, FULLMASK, IPSEC_ULPROTO_ANY); 3711 if (!m) 3712 goto fail; 3713 break; 3714 case SADB_X_EXT_NAT_T_FRAG: 3715 /* We do not (yet) support those. */ 3716 continue; 3717 3718 case SADB_EXT_ADDRESS_PROXY: 3719 case SADB_EXT_IDENTITY_SRC: 3720 case SADB_EXT_IDENTITY_DST: 3721 /* XXX: should we brought from SPD ? */ 3722 case SADB_EXT_SENSITIVITY: 3723 default: 3724 continue; 3725 } 3726 3727 if (!m) 3728 goto fail; 3729 if (tres) 3730 m_cat(m, tres); 3731 tres = m; 3732 } 3733 3734 m_cat(result, tres); 3735 tres = NULL; 3736 if (result->m_len < sizeof(struct sadb_msg)) { 3737 result = m_pullup(result, sizeof(struct sadb_msg)); 3738 if (result == NULL) 3739 goto fail; 3740 } 3741 3742 result->m_pkthdr.len = 0; 3743 for (m = result; m; m = m->m_next) 3744 result->m_pkthdr.len += m->m_len; 3745 3746 mtod(result, struct sadb_msg *)->sadb_msg_len = 3747 PFKEY_UNIT64(result->m_pkthdr.len); 3748 3749 return result; 3750 3751 fail: 3752 m_freem(result); 3753 m_freem(tres); 3754 return NULL; 3755 } 3756 3757 /* 3758 * set data into sadb_msg. 3759 */ 3760 static struct mbuf * 3761 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq, 3762 pid_t pid, u_int16_t reserved) 3763 { 3764 struct mbuf *m; 3765 struct sadb_msg *p; 3766 int len; 3767 3768 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 3769 if (len > MCLBYTES) 3770 return NULL; 3771 MGETHDR(m, M_NOWAIT, MT_DATA); 3772 if (m && len > MHLEN) { 3773 if (!(MCLGET(m, M_NOWAIT))) { 3774 m_freem(m); 3775 m = NULL; 3776 } 3777 } 3778 if (!m) 3779 return NULL; 3780 m->m_pkthdr.len = m->m_len = len; 3781 m->m_next = NULL; 3782 3783 p = mtod(m, struct sadb_msg *); 3784 3785 bzero(p, len); 3786 p->sadb_msg_version = PF_KEY_V2; 3787 p->sadb_msg_type = type; 3788 p->sadb_msg_errno = 0; 3789 p->sadb_msg_satype = satype; 3790 p->sadb_msg_len = PFKEY_UNIT64(tlen); 3791 p->sadb_msg_reserved = reserved; 3792 p->sadb_msg_seq = seq; 3793 p->sadb_msg_pid = (u_int32_t)pid; 3794 3795 return m; 3796 } 3797 3798 /* 3799 * copy secasvar data into sadb_address. 3800 */ 3801 static struct mbuf * 3802 key_setsadbsa(struct secasvar *sav) 3803 { 3804 struct mbuf *m; 3805 struct sadb_sa *p; 3806 int len; 3807 3808 len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); 3809 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3810 if (m == NULL) 3811 return (NULL); 3812 m_align(m, len); 3813 m->m_len = len; 3814 p = mtod(m, struct sadb_sa *); 3815 bzero(p, len); 3816 p->sadb_sa_len = PFKEY_UNIT64(len); 3817 p->sadb_sa_exttype = SADB_EXT_SA; 3818 p->sadb_sa_spi = sav->spi; 3819 p->sadb_sa_replay = sav->replay ? 3820 (sav->replay->wsize > UINT8_MAX ? UINT8_MAX : 3821 sav->replay->wsize): 0; 3822 p->sadb_sa_state = sav->state; 3823 p->sadb_sa_auth = sav->alg_auth; 3824 p->sadb_sa_encrypt = sav->alg_enc; 3825 p->sadb_sa_flags = sav->flags & SADB_KEY_FLAGS_MAX; 3826 return (m); 3827 } 3828 3829 /* 3830 * set data into sadb_address. 3831 */ 3832 static struct mbuf * 3833 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, 3834 u_int8_t prefixlen, u_int16_t ul_proto) 3835 { 3836 struct mbuf *m; 3837 struct sadb_address *p; 3838 size_t len; 3839 3840 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + 3841 PFKEY_ALIGN8(saddr->sa_len); 3842 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3843 if (m == NULL) 3844 return (NULL); 3845 m_align(m, len); 3846 m->m_len = len; 3847 p = mtod(m, struct sadb_address *); 3848 3849 bzero(p, len); 3850 p->sadb_address_len = PFKEY_UNIT64(len); 3851 p->sadb_address_exttype = exttype; 3852 p->sadb_address_proto = ul_proto; 3853 if (prefixlen == FULLMASK) { 3854 switch (saddr->sa_family) { 3855 case AF_INET: 3856 prefixlen = sizeof(struct in_addr) << 3; 3857 break; 3858 case AF_INET6: 3859 prefixlen = sizeof(struct in6_addr) << 3; 3860 break; 3861 default: 3862 ; /*XXX*/ 3863 } 3864 } 3865 p->sadb_address_prefixlen = prefixlen; 3866 p->sadb_address_reserved = 0; 3867 3868 bcopy(saddr, 3869 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)), 3870 saddr->sa_len); 3871 3872 return m; 3873 } 3874 3875 /* 3876 * set data into sadb_x_sa2. 3877 */ 3878 static struct mbuf * 3879 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid) 3880 { 3881 struct mbuf *m; 3882 struct sadb_x_sa2 *p; 3883 size_t len; 3884 3885 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); 3886 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3887 if (m == NULL) 3888 return (NULL); 3889 m_align(m, len); 3890 m->m_len = len; 3891 p = mtod(m, struct sadb_x_sa2 *); 3892 3893 bzero(p, len); 3894 p->sadb_x_sa2_len = PFKEY_UNIT64(len); 3895 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 3896 p->sadb_x_sa2_mode = mode; 3897 p->sadb_x_sa2_reserved1 = 0; 3898 p->sadb_x_sa2_reserved2 = 0; 3899 p->sadb_x_sa2_sequence = seq; 3900 p->sadb_x_sa2_reqid = reqid; 3901 3902 return m; 3903 } 3904 3905 /* 3906 * Set data into sadb_x_sa_replay. 3907 */ 3908 static struct mbuf * 3909 key_setsadbxsareplay(u_int32_t replay) 3910 { 3911 struct mbuf *m; 3912 struct sadb_x_sa_replay *p; 3913 size_t len; 3914 3915 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa_replay)); 3916 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3917 if (m == NULL) 3918 return (NULL); 3919 m_align(m, len); 3920 m->m_len = len; 3921 p = mtod(m, struct sadb_x_sa_replay *); 3922 3923 bzero(p, len); 3924 p->sadb_x_sa_replay_len = PFKEY_UNIT64(len); 3925 p->sadb_x_sa_replay_exttype = SADB_X_EXT_SA_REPLAY; 3926 p->sadb_x_sa_replay_replay = (replay << 3); 3927 3928 return m; 3929 } 3930 3931 /* 3932 * Set a type in sadb_x_nat_t_type. 3933 */ 3934 static struct mbuf * 3935 key_setsadbxtype(u_int16_t type) 3936 { 3937 struct mbuf *m; 3938 size_t len; 3939 struct sadb_x_nat_t_type *p; 3940 3941 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type)); 3942 3943 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3944 if (m == NULL) 3945 return (NULL); 3946 m_align(m, len); 3947 m->m_len = len; 3948 p = mtod(m, struct sadb_x_nat_t_type *); 3949 3950 bzero(p, len); 3951 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len); 3952 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; 3953 p->sadb_x_nat_t_type_type = type; 3954 3955 return (m); 3956 } 3957 /* 3958 * Set a port in sadb_x_nat_t_port. 3959 * In contrast to default RFC 2367 behaviour, port is in network byte order. 3960 */ 3961 static struct mbuf * 3962 key_setsadbxport(u_int16_t port, u_int16_t type) 3963 { 3964 struct mbuf *m; 3965 size_t len; 3966 struct sadb_x_nat_t_port *p; 3967 3968 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port)); 3969 3970 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3971 if (m == NULL) 3972 return (NULL); 3973 m_align(m, len); 3974 m->m_len = len; 3975 p = mtod(m, struct sadb_x_nat_t_port *); 3976 3977 bzero(p, len); 3978 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len); 3979 p->sadb_x_nat_t_port_exttype = type; 3980 p->sadb_x_nat_t_port_port = port; 3981 3982 return (m); 3983 } 3984 3985 /* 3986 * Get port from sockaddr. Port is in network byte order. 3987 */ 3988 uint16_t 3989 key_portfromsaddr(struct sockaddr *sa) 3990 { 3991 3992 switch (sa->sa_family) { 3993 #ifdef INET 3994 case AF_INET: 3995 return ((struct sockaddr_in *)sa)->sin_port; 3996 #endif 3997 #ifdef INET6 3998 case AF_INET6: 3999 return ((struct sockaddr_in6 *)sa)->sin6_port; 4000 #endif 4001 } 4002 return (0); 4003 } 4004 4005 /* 4006 * Set port in struct sockaddr. Port is in network byte order. 4007 */ 4008 void 4009 key_porttosaddr(struct sockaddr *sa, uint16_t port) 4010 { 4011 4012 switch (sa->sa_family) { 4013 #ifdef INET 4014 case AF_INET: 4015 ((struct sockaddr_in *)sa)->sin_port = port; 4016 break; 4017 #endif 4018 #ifdef INET6 4019 case AF_INET6: 4020 ((struct sockaddr_in6 *)sa)->sin6_port = port; 4021 break; 4022 #endif 4023 default: 4024 ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n", 4025 __func__, sa->sa_family)); 4026 break; 4027 } 4028 } 4029 4030 /* 4031 * set data into sadb_x_policy 4032 */ 4033 static struct mbuf * 4034 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id, u_int32_t priority) 4035 { 4036 struct mbuf *m; 4037 struct sadb_x_policy *p; 4038 size_t len; 4039 4040 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); 4041 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 4042 if (m == NULL) 4043 return (NULL); 4044 m_align(m, len); 4045 m->m_len = len; 4046 p = mtod(m, struct sadb_x_policy *); 4047 4048 bzero(p, len); 4049 p->sadb_x_policy_len = PFKEY_UNIT64(len); 4050 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 4051 p->sadb_x_policy_type = type; 4052 p->sadb_x_policy_dir = dir; 4053 p->sadb_x_policy_id = id; 4054 p->sadb_x_policy_priority = priority; 4055 4056 return m; 4057 } 4058 4059 /* %%% utilities */ 4060 /* Take a key message (sadb_key) from the socket and turn it into one 4061 * of the kernel's key structures (seckey). 4062 * 4063 * IN: pointer to the src 4064 * OUT: NULL no more memory 4065 */ 4066 struct seckey * 4067 key_dup_keymsg(const struct sadb_key *src, size_t len, 4068 struct malloc_type *type) 4069 { 4070 struct seckey *dst; 4071 4072 dst = malloc(sizeof(*dst), type, M_NOWAIT); 4073 if (dst != NULL) { 4074 dst->bits = src->sadb_key_bits; 4075 dst->key_data = malloc(len, type, M_NOWAIT); 4076 if (dst->key_data != NULL) { 4077 bcopy((const char *)(src + 1), dst->key_data, len); 4078 } else { 4079 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 4080 __func__)); 4081 free(dst, type); 4082 dst = NULL; 4083 } 4084 } else { 4085 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 4086 __func__)); 4087 4088 } 4089 return (dst); 4090 } 4091 4092 /* Take a lifetime message (sadb_lifetime) passed in on a socket and 4093 * turn it into one of the kernel's lifetime structures (seclifetime). 4094 * 4095 * IN: pointer to the destination, source and malloc type 4096 * OUT: NULL, no more memory 4097 */ 4098 4099 static struct seclifetime * 4100 key_dup_lifemsg(const struct sadb_lifetime *src, struct malloc_type *type) 4101 { 4102 struct seclifetime *dst; 4103 4104 dst = malloc(sizeof(*dst), type, M_NOWAIT); 4105 if (dst == NULL) { 4106 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 4107 return (NULL); 4108 } 4109 dst->allocations = src->sadb_lifetime_allocations; 4110 dst->bytes = src->sadb_lifetime_bytes; 4111 dst->addtime = src->sadb_lifetime_addtime; 4112 dst->usetime = src->sadb_lifetime_usetime; 4113 return (dst); 4114 } 4115 4116 /* 4117 * compare two secasindex structure. 4118 * flag can specify to compare 2 saidxes. 4119 * compare two secasindex structure without both mode and reqid. 4120 * don't compare port. 4121 * IN: 4122 * saidx0: source, it can be in SAD. 4123 * saidx1: object. 4124 * OUT: 4125 * 1 : equal 4126 * 0 : not equal 4127 */ 4128 static int 4129 key_cmpsaidx(const struct secasindex *saidx0, const struct secasindex *saidx1, 4130 int flag) 4131 { 4132 4133 /* sanity */ 4134 if (saidx0 == NULL && saidx1 == NULL) 4135 return 1; 4136 4137 if (saidx0 == NULL || saidx1 == NULL) 4138 return 0; 4139 4140 if (saidx0->proto != saidx1->proto) 4141 return 0; 4142 4143 if (flag == CMP_EXACTLY) { 4144 if (saidx0->mode != saidx1->mode) 4145 return 0; 4146 if (saidx0->reqid != saidx1->reqid) 4147 return 0; 4148 if (bcmp(&saidx0->src, &saidx1->src, 4149 saidx0->src.sa.sa_len) != 0 || 4150 bcmp(&saidx0->dst, &saidx1->dst, 4151 saidx0->dst.sa.sa_len) != 0) 4152 return 0; 4153 } else { 4154 4155 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ 4156 if (flag == CMP_MODE_REQID || flag == CMP_REQID) { 4157 /* 4158 * If reqid of SPD is non-zero, unique SA is required. 4159 * The result must be of same reqid in this case. 4160 */ 4161 if (saidx1->reqid != 0 && 4162 saidx0->reqid != saidx1->reqid) 4163 return 0; 4164 } 4165 4166 if (flag == CMP_MODE_REQID) { 4167 if (saidx0->mode != IPSEC_MODE_ANY 4168 && saidx0->mode != saidx1->mode) 4169 return 0; 4170 } 4171 4172 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, 0) != 0) 4173 return 0; 4174 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, 0) != 0) 4175 return 0; 4176 } 4177 4178 return 1; 4179 } 4180 4181 /* 4182 * compare two secindex structure exactly. 4183 * IN: 4184 * spidx0: source, it is often in SPD. 4185 * spidx1: object, it is often from PFKEY message. 4186 * OUT: 4187 * 1 : equal 4188 * 0 : not equal 4189 */ 4190 static int 4191 key_cmpspidx_exactly(struct secpolicyindex *spidx0, 4192 struct secpolicyindex *spidx1) 4193 { 4194 /* sanity */ 4195 if (spidx0 == NULL && spidx1 == NULL) 4196 return 1; 4197 4198 if (spidx0 == NULL || spidx1 == NULL) 4199 return 0; 4200 4201 if (spidx0->prefs != spidx1->prefs 4202 || spidx0->prefd != spidx1->prefd 4203 || spidx0->ul_proto != spidx1->ul_proto 4204 || spidx0->dir != spidx1->dir) 4205 return 0; 4206 4207 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 && 4208 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0; 4209 } 4210 4211 /* 4212 * compare two secindex structure with mask. 4213 * IN: 4214 * spidx0: source, it is often in SPD. 4215 * spidx1: object, it is often from IP header. 4216 * OUT: 4217 * 1 : equal 4218 * 0 : not equal 4219 */ 4220 static int 4221 key_cmpspidx_withmask(struct secpolicyindex *spidx0, 4222 struct secpolicyindex *spidx1) 4223 { 4224 /* sanity */ 4225 if (spidx0 == NULL && spidx1 == NULL) 4226 return 1; 4227 4228 if (spidx0 == NULL || spidx1 == NULL) 4229 return 0; 4230 4231 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || 4232 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || 4233 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || 4234 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) 4235 return 0; 4236 4237 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ 4238 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY 4239 && spidx0->ul_proto != spidx1->ul_proto) 4240 return 0; 4241 4242 switch (spidx0->src.sa.sa_family) { 4243 case AF_INET: 4244 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY 4245 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) 4246 return 0; 4247 if (!key_bbcmp(&spidx0->src.sin.sin_addr, 4248 &spidx1->src.sin.sin_addr, spidx0->prefs)) 4249 return 0; 4250 break; 4251 case AF_INET6: 4252 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY 4253 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) 4254 return 0; 4255 /* 4256 * scope_id check. if sin6_scope_id is 0, we regard it 4257 * as a wildcard scope, which matches any scope zone ID. 4258 */ 4259 if (spidx0->src.sin6.sin6_scope_id && 4260 spidx1->src.sin6.sin6_scope_id && 4261 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) 4262 return 0; 4263 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr, 4264 &spidx1->src.sin6.sin6_addr, spidx0->prefs)) 4265 return 0; 4266 break; 4267 default: 4268 /* XXX */ 4269 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) 4270 return 0; 4271 break; 4272 } 4273 4274 switch (spidx0->dst.sa.sa_family) { 4275 case AF_INET: 4276 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY 4277 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) 4278 return 0; 4279 if (!key_bbcmp(&spidx0->dst.sin.sin_addr, 4280 &spidx1->dst.sin.sin_addr, spidx0->prefd)) 4281 return 0; 4282 break; 4283 case AF_INET6: 4284 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY 4285 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) 4286 return 0; 4287 /* 4288 * scope_id check. if sin6_scope_id is 0, we regard it 4289 * as a wildcard scope, which matches any scope zone ID. 4290 */ 4291 if (spidx0->dst.sin6.sin6_scope_id && 4292 spidx1->dst.sin6.sin6_scope_id && 4293 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) 4294 return 0; 4295 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr, 4296 &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) 4297 return 0; 4298 break; 4299 default: 4300 /* XXX */ 4301 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) 4302 return 0; 4303 break; 4304 } 4305 4306 /* XXX Do we check other field ? e.g. flowinfo */ 4307 4308 return 1; 4309 } 4310 4311 #ifdef satosin 4312 #undef satosin 4313 #endif 4314 #define satosin(s) ((const struct sockaddr_in *)s) 4315 #ifdef satosin6 4316 #undef satosin6 4317 #endif 4318 #define satosin6(s) ((const struct sockaddr_in6 *)s) 4319 /* returns 0 on match */ 4320 int 4321 key_sockaddrcmp(const struct sockaddr *sa1, const struct sockaddr *sa2, 4322 int port) 4323 { 4324 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) 4325 return 1; 4326 4327 switch (sa1->sa_family) { 4328 #ifdef INET 4329 case AF_INET: 4330 if (sa1->sa_len != sizeof(struct sockaddr_in)) 4331 return 1; 4332 if (satosin(sa1)->sin_addr.s_addr != 4333 satosin(sa2)->sin_addr.s_addr) { 4334 return 1; 4335 } 4336 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port) 4337 return 1; 4338 break; 4339 #endif 4340 #ifdef INET6 4341 case AF_INET6: 4342 if (sa1->sa_len != sizeof(struct sockaddr_in6)) 4343 return 1; /*EINVAL*/ 4344 if (satosin6(sa1)->sin6_scope_id != 4345 satosin6(sa2)->sin6_scope_id) { 4346 return 1; 4347 } 4348 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr, 4349 &satosin6(sa2)->sin6_addr)) { 4350 return 1; 4351 } 4352 if (port && 4353 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) { 4354 return 1; 4355 } 4356 break; 4357 #endif 4358 default: 4359 if (bcmp(sa1, sa2, sa1->sa_len) != 0) 4360 return 1; 4361 break; 4362 } 4363 4364 return 0; 4365 } 4366 4367 /* returns 0 on match */ 4368 int 4369 key_sockaddrcmp_withmask(const struct sockaddr *sa1, 4370 const struct sockaddr *sa2, size_t mask) 4371 { 4372 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) 4373 return (1); 4374 4375 switch (sa1->sa_family) { 4376 #ifdef INET 4377 case AF_INET: 4378 return (!key_bbcmp(&satosin(sa1)->sin_addr, 4379 &satosin(sa2)->sin_addr, mask)); 4380 #endif 4381 #ifdef INET6 4382 case AF_INET6: 4383 if (satosin6(sa1)->sin6_scope_id != 4384 satosin6(sa2)->sin6_scope_id) 4385 return (1); 4386 return (!key_bbcmp(&satosin6(sa1)->sin6_addr, 4387 &satosin6(sa2)->sin6_addr, mask)); 4388 #endif 4389 } 4390 return (1); 4391 } 4392 #undef satosin 4393 #undef satosin6 4394 4395 /* 4396 * compare two buffers with mask. 4397 * IN: 4398 * addr1: source 4399 * addr2: object 4400 * bits: Number of bits to compare 4401 * OUT: 4402 * 1 : equal 4403 * 0 : not equal 4404 */ 4405 static int 4406 key_bbcmp(const void *a1, const void *a2, u_int bits) 4407 { 4408 const unsigned char *p1 = a1; 4409 const unsigned char *p2 = a2; 4410 4411 /* XXX: This could be considerably faster if we compare a word 4412 * at a time, but it is complicated on LSB Endian machines */ 4413 4414 /* Handle null pointers */ 4415 if (p1 == NULL || p2 == NULL) 4416 return (p1 == p2); 4417 4418 while (bits >= 8) { 4419 if (*p1++ != *p2++) 4420 return 0; 4421 bits -= 8; 4422 } 4423 4424 if (bits > 0) { 4425 u_int8_t mask = ~((1<<(8-bits))-1); 4426 if ((*p1 & mask) != (*p2 & mask)) 4427 return 0; 4428 } 4429 return 1; /* Match! */ 4430 } 4431 4432 static void 4433 key_flush_spd(time_t now) 4434 { 4435 SPTREE_RLOCK_TRACKER; 4436 struct secpolicy_list drainq; 4437 struct secpolicy *sp, *nextsp; 4438 u_int dir; 4439 4440 LIST_INIT(&drainq); 4441 SPTREE_RLOCK(); 4442 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 4443 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 4444 if (sp->lifetime == 0 && sp->validtime == 0) 4445 continue; 4446 if ((sp->lifetime && 4447 now - sp->created > sp->lifetime) || 4448 (sp->validtime && 4449 now - sp->lastused > sp->validtime)) { 4450 /* Hold extra reference to send SPDEXPIRE */ 4451 SP_ADDREF(sp); 4452 LIST_INSERT_HEAD(&drainq, sp, drainq); 4453 } 4454 } 4455 } 4456 SPTREE_RUNLOCK(); 4457 if (LIST_EMPTY(&drainq)) 4458 return; 4459 4460 SPTREE_WLOCK(); 4461 sp = LIST_FIRST(&drainq); 4462 while (sp != NULL) { 4463 nextsp = LIST_NEXT(sp, drainq); 4464 /* Check that SP is still linked */ 4465 if (sp->state != IPSEC_SPSTATE_ALIVE) { 4466 LIST_REMOVE(sp, drainq); 4467 key_freesp(&sp); /* release extra reference */ 4468 sp = nextsp; 4469 continue; 4470 } 4471 TAILQ_REMOVE(&V_sptree[sp->spidx.dir], sp, chain); 4472 V_spd_size--; 4473 LIST_REMOVE(sp, idhash); 4474 sp->state = IPSEC_SPSTATE_DEAD; 4475 sp = nextsp; 4476 } 4477 V_sp_genid++; 4478 SPTREE_WUNLOCK(); 4479 if (SPDCACHE_ENABLED()) 4480 spdcache_clear(); 4481 4482 sp = LIST_FIRST(&drainq); 4483 while (sp != NULL) { 4484 nextsp = LIST_NEXT(sp, drainq); 4485 key_spdexpire(sp); 4486 key_freesp(&sp); /* release extra reference */ 4487 key_freesp(&sp); /* release last reference */ 4488 sp = nextsp; 4489 } 4490 } 4491 4492 static void 4493 key_flush_sad(time_t now) 4494 { 4495 SAHTREE_RLOCK_TRACKER; 4496 struct secashead_list emptyq; 4497 struct secasvar_list drainq, hexpireq, sexpireq, freeq; 4498 struct secashead *sah, *nextsah; 4499 struct secasvar *sav, *nextsav; 4500 4501 LIST_INIT(&drainq); 4502 LIST_INIT(&hexpireq); 4503 LIST_INIT(&sexpireq); 4504 LIST_INIT(&emptyq); 4505 4506 SAHTREE_RLOCK(); 4507 TAILQ_FOREACH(sah, &V_sahtree, chain) { 4508 /* Check for empty SAH */ 4509 if (TAILQ_EMPTY(&sah->savtree_larval) && 4510 TAILQ_EMPTY(&sah->savtree_alive)) { 4511 SAH_ADDREF(sah); 4512 LIST_INSERT_HEAD(&emptyq, sah, drainq); 4513 continue; 4514 } 4515 /* Add all stale LARVAL SAs into drainq */ 4516 TAILQ_FOREACH(sav, &sah->savtree_larval, chain) { 4517 if (now - sav->created < V_key_larval_lifetime) 4518 continue; 4519 SAV_ADDREF(sav); 4520 LIST_INSERT_HEAD(&drainq, sav, drainq); 4521 } 4522 TAILQ_FOREACH(sav, &sah->savtree_alive, chain) { 4523 /* lifetimes aren't specified */ 4524 if (sav->lft_h == NULL) 4525 continue; 4526 SECASVAR_LOCK(sav); 4527 /* 4528 * Check again with lock held, because it may 4529 * be updated by SADB_UPDATE. 4530 */ 4531 if (sav->lft_h == NULL) { 4532 SECASVAR_UNLOCK(sav); 4533 continue; 4534 } 4535 /* 4536 * RFC 2367: 4537 * HARD lifetimes MUST take precedence over SOFT 4538 * lifetimes, meaning if the HARD and SOFT lifetimes 4539 * are the same, the HARD lifetime will appear on the 4540 * EXPIRE message. 4541 */ 4542 /* check HARD lifetime */ 4543 if ((sav->lft_h->addtime != 0 && 4544 now - sav->created > sav->lft_h->addtime) || 4545 (sav->lft_h->usetime != 0 && sav->firstused && 4546 now - sav->firstused > sav->lft_h->usetime) || 4547 (sav->lft_h->bytes != 0 && counter_u64_fetch( 4548 sav->lft_c_bytes) > sav->lft_h->bytes)) { 4549 SECASVAR_UNLOCK(sav); 4550 SAV_ADDREF(sav); 4551 LIST_INSERT_HEAD(&hexpireq, sav, drainq); 4552 continue; 4553 } 4554 /* check SOFT lifetime (only for MATURE SAs) */ 4555 if (sav->state == SADB_SASTATE_MATURE && ( 4556 (sav->lft_s->addtime != 0 && 4557 now - sav->created > sav->lft_s->addtime) || 4558 (sav->lft_s->usetime != 0 && sav->firstused && 4559 now - sav->firstused > sav->lft_s->usetime) || 4560 (sav->lft_s->bytes != 0 && counter_u64_fetch( 4561 sav->lft_c_bytes) > sav->lft_s->bytes))) { 4562 SECASVAR_UNLOCK(sav); 4563 SAV_ADDREF(sav); 4564 LIST_INSERT_HEAD(&sexpireq, sav, drainq); 4565 continue; 4566 } 4567 SECASVAR_UNLOCK(sav); 4568 } 4569 } 4570 SAHTREE_RUNLOCK(); 4571 4572 if (LIST_EMPTY(&emptyq) && LIST_EMPTY(&drainq) && 4573 LIST_EMPTY(&hexpireq) && LIST_EMPTY(&sexpireq)) 4574 return; 4575 4576 LIST_INIT(&freeq); 4577 SAHTREE_WLOCK(); 4578 /* Unlink stale LARVAL SAs */ 4579 sav = LIST_FIRST(&drainq); 4580 while (sav != NULL) { 4581 nextsav = LIST_NEXT(sav, drainq); 4582 /* Check that SA is still LARVAL */ 4583 if (sav->state != SADB_SASTATE_LARVAL) { 4584 LIST_REMOVE(sav, drainq); 4585 LIST_INSERT_HEAD(&freeq, sav, drainq); 4586 sav = nextsav; 4587 continue; 4588 } 4589 TAILQ_REMOVE(&sav->sah->savtree_larval, sav, chain); 4590 LIST_REMOVE(sav, spihash); 4591 sav->state = SADB_SASTATE_DEAD; 4592 sav = nextsav; 4593 } 4594 /* Unlink all SAs with expired HARD lifetime */ 4595 sav = LIST_FIRST(&hexpireq); 4596 while (sav != NULL) { 4597 nextsav = LIST_NEXT(sav, drainq); 4598 /* Check that SA is not unlinked */ 4599 if (sav->state == SADB_SASTATE_DEAD) { 4600 LIST_REMOVE(sav, drainq); 4601 LIST_INSERT_HEAD(&freeq, sav, drainq); 4602 sav = nextsav; 4603 continue; 4604 } 4605 TAILQ_REMOVE(&sav->sah->savtree_alive, sav, chain); 4606 LIST_REMOVE(sav, spihash); 4607 sav->state = SADB_SASTATE_DEAD; 4608 sav = nextsav; 4609 } 4610 /* Mark all SAs with expired SOFT lifetime as DYING */ 4611 sav = LIST_FIRST(&sexpireq); 4612 while (sav != NULL) { 4613 nextsav = LIST_NEXT(sav, drainq); 4614 /* Check that SA is not unlinked */ 4615 if (sav->state == SADB_SASTATE_DEAD) { 4616 LIST_REMOVE(sav, drainq); 4617 LIST_INSERT_HEAD(&freeq, sav, drainq); 4618 sav = nextsav; 4619 continue; 4620 } 4621 /* 4622 * NOTE: this doesn't change SA order in the chain. 4623 */ 4624 sav->state = SADB_SASTATE_DYING; 4625 sav = nextsav; 4626 } 4627 /* Unlink empty SAHs */ 4628 sah = LIST_FIRST(&emptyq); 4629 while (sah != NULL) { 4630 nextsah = LIST_NEXT(sah, drainq); 4631 /* Check that SAH is still empty and not unlinked */ 4632 if (sah->state == SADB_SASTATE_DEAD || 4633 !TAILQ_EMPTY(&sah->savtree_larval) || 4634 !TAILQ_EMPTY(&sah->savtree_alive)) { 4635 LIST_REMOVE(sah, drainq); 4636 key_freesah(&sah); /* release extra reference */ 4637 sah = nextsah; 4638 continue; 4639 } 4640 TAILQ_REMOVE(&V_sahtree, sah, chain); 4641 LIST_REMOVE(sah, addrhash); 4642 sah->state = SADB_SASTATE_DEAD; 4643 sah = nextsah; 4644 } 4645 SAHTREE_WUNLOCK(); 4646 4647 /* Send SPDEXPIRE messages */ 4648 sav = LIST_FIRST(&hexpireq); 4649 while (sav != NULL) { 4650 nextsav = LIST_NEXT(sav, drainq); 4651 key_expire(sav, 1); 4652 key_freesah(&sav->sah); /* release reference from SAV */ 4653 key_freesav(&sav); /* release extra reference */ 4654 key_freesav(&sav); /* release last reference */ 4655 sav = nextsav; 4656 } 4657 sav = LIST_FIRST(&sexpireq); 4658 while (sav != NULL) { 4659 nextsav = LIST_NEXT(sav, drainq); 4660 key_expire(sav, 0); 4661 key_freesav(&sav); /* release extra reference */ 4662 sav = nextsav; 4663 } 4664 /* Free stale LARVAL SAs */ 4665 sav = LIST_FIRST(&drainq); 4666 while (sav != NULL) { 4667 nextsav = LIST_NEXT(sav, drainq); 4668 key_freesah(&sav->sah); /* release reference from SAV */ 4669 key_freesav(&sav); /* release extra reference */ 4670 key_freesav(&sav); /* release last reference */ 4671 sav = nextsav; 4672 } 4673 /* Free SAs that were unlinked/changed by someone else */ 4674 sav = LIST_FIRST(&freeq); 4675 while (sav != NULL) { 4676 nextsav = LIST_NEXT(sav, drainq); 4677 key_freesav(&sav); /* release extra reference */ 4678 sav = nextsav; 4679 } 4680 /* Free empty SAH */ 4681 sah = LIST_FIRST(&emptyq); 4682 while (sah != NULL) { 4683 nextsah = LIST_NEXT(sah, drainq); 4684 key_freesah(&sah); /* release extra reference */ 4685 key_freesah(&sah); /* release last reference */ 4686 sah = nextsah; 4687 } 4688 } 4689 4690 static void 4691 key_flush_acq(time_t now) 4692 { 4693 struct secacq *acq, *nextacq; 4694 4695 /* ACQ tree */ 4696 ACQ_LOCK(); 4697 acq = LIST_FIRST(&V_acqtree); 4698 while (acq != NULL) { 4699 nextacq = LIST_NEXT(acq, chain); 4700 if (now - acq->created > V_key_blockacq_lifetime) { 4701 LIST_REMOVE(acq, chain); 4702 LIST_REMOVE(acq, addrhash); 4703 LIST_REMOVE(acq, seqhash); 4704 free(acq, M_IPSEC_SAQ); 4705 } 4706 acq = nextacq; 4707 } 4708 ACQ_UNLOCK(); 4709 } 4710 4711 static void 4712 key_flush_spacq(time_t now) 4713 { 4714 struct secspacq *acq, *nextacq; 4715 4716 /* SP ACQ tree */ 4717 SPACQ_LOCK(); 4718 for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) { 4719 nextacq = LIST_NEXT(acq, chain); 4720 if (now - acq->created > V_key_blockacq_lifetime 4721 && __LIST_CHAINED(acq)) { 4722 LIST_REMOVE(acq, chain); 4723 free(acq, M_IPSEC_SAQ); 4724 } 4725 } 4726 SPACQ_UNLOCK(); 4727 } 4728 4729 /* 4730 * time handler. 4731 * scanning SPD and SAD to check status for each entries, 4732 * and do to remove or to expire. 4733 * XXX: year 2038 problem may remain. 4734 */ 4735 static void 4736 key_timehandler(void *arg) 4737 { 4738 VNET_ITERATOR_DECL(vnet_iter); 4739 time_t now = time_second; 4740 4741 VNET_LIST_RLOCK_NOSLEEP(); 4742 VNET_FOREACH(vnet_iter) { 4743 CURVNET_SET(vnet_iter); 4744 key_flush_spd(now); 4745 key_flush_sad(now); 4746 key_flush_acq(now); 4747 key_flush_spacq(now); 4748 CURVNET_RESTORE(); 4749 } 4750 VNET_LIST_RUNLOCK_NOSLEEP(); 4751 4752 #ifndef IPSEC_DEBUG2 4753 /* do exchange to tick time !! */ 4754 callout_schedule(&key_timer, hz); 4755 #endif /* IPSEC_DEBUG2 */ 4756 } 4757 4758 u_long 4759 key_random() 4760 { 4761 u_long value; 4762 4763 key_randomfill(&value, sizeof(value)); 4764 return value; 4765 } 4766 4767 void 4768 key_randomfill(void *p, size_t l) 4769 { 4770 size_t n; 4771 u_long v; 4772 static int warn = 1; 4773 4774 n = 0; 4775 n = (size_t)read_random(p, (u_int)l); 4776 /* last resort */ 4777 while (n < l) { 4778 v = random(); 4779 bcopy(&v, (u_int8_t *)p + n, 4780 l - n < sizeof(v) ? l - n : sizeof(v)); 4781 n += sizeof(v); 4782 4783 if (warn) { 4784 printf("WARNING: pseudo-random number generator " 4785 "used for IPsec processing\n"); 4786 warn = 0; 4787 } 4788 } 4789 } 4790 4791 /* 4792 * map SADB_SATYPE_* to IPPROTO_*. 4793 * if satype == SADB_SATYPE then satype is mapped to ~0. 4794 * OUT: 4795 * 0: invalid satype. 4796 */ 4797 static uint8_t 4798 key_satype2proto(uint8_t satype) 4799 { 4800 switch (satype) { 4801 case SADB_SATYPE_UNSPEC: 4802 return IPSEC_PROTO_ANY; 4803 case SADB_SATYPE_AH: 4804 return IPPROTO_AH; 4805 case SADB_SATYPE_ESP: 4806 return IPPROTO_ESP; 4807 case SADB_X_SATYPE_IPCOMP: 4808 return IPPROTO_IPCOMP; 4809 case SADB_X_SATYPE_TCPSIGNATURE: 4810 return IPPROTO_TCP; 4811 default: 4812 return 0; 4813 } 4814 /* NOTREACHED */ 4815 } 4816 4817 /* 4818 * map IPPROTO_* to SADB_SATYPE_* 4819 * OUT: 4820 * 0: invalid protocol type. 4821 */ 4822 static uint8_t 4823 key_proto2satype(uint8_t proto) 4824 { 4825 switch (proto) { 4826 case IPPROTO_AH: 4827 return SADB_SATYPE_AH; 4828 case IPPROTO_ESP: 4829 return SADB_SATYPE_ESP; 4830 case IPPROTO_IPCOMP: 4831 return SADB_X_SATYPE_IPCOMP; 4832 case IPPROTO_TCP: 4833 return SADB_X_SATYPE_TCPSIGNATURE; 4834 default: 4835 return 0; 4836 } 4837 /* NOTREACHED */ 4838 } 4839 4840 /* %%% PF_KEY */ 4841 /* 4842 * SADB_GETSPI processing is to receive 4843 * <base, (SA2), src address, dst address, (SPI range)> 4844 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND 4845 * tree with the status of LARVAL, and send 4846 * <base, SA(*), address(SD)> 4847 * to the IKMPd. 4848 * 4849 * IN: mhp: pointer to the pointer to each header. 4850 * OUT: NULL if fail. 4851 * other if success, return pointer to the message to send. 4852 */ 4853 static int 4854 key_getspi(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 4855 { 4856 struct secasindex saidx; 4857 struct sadb_address *src0, *dst0; 4858 struct secasvar *sav; 4859 uint32_t reqid, spi; 4860 int error; 4861 uint8_t mode, proto; 4862 4863 IPSEC_ASSERT(so != NULL, ("null socket")); 4864 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4865 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4866 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4867 4868 if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || 4869 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) 4870 #ifdef PFKEY_STRICT_CHECKS 4871 || SADB_CHECKHDR(mhp, SADB_EXT_SPIRANGE) 4872 #endif 4873 ) { 4874 ipseclog((LOG_DEBUG, 4875 "%s: invalid message: missing required header.\n", 4876 __func__)); 4877 error = EINVAL; 4878 goto fail; 4879 } 4880 if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || 4881 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST) 4882 #ifdef PFKEY_STRICT_CHECKS 4883 || SADB_CHECKLEN(mhp, SADB_EXT_SPIRANGE) 4884 #endif 4885 ) { 4886 ipseclog((LOG_DEBUG, 4887 "%s: invalid message: wrong header size.\n", __func__)); 4888 error = EINVAL; 4889 goto fail; 4890 } 4891 if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) { 4892 mode = IPSEC_MODE_ANY; 4893 reqid = 0; 4894 } else { 4895 if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) { 4896 ipseclog((LOG_DEBUG, 4897 "%s: invalid message: wrong header size.\n", 4898 __func__)); 4899 error = EINVAL; 4900 goto fail; 4901 } 4902 mode = ((struct sadb_x_sa2 *) 4903 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4904 reqid = ((struct sadb_x_sa2 *) 4905 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4906 } 4907 4908 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4909 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4910 4911 /* map satype to proto */ 4912 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4913 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4914 __func__)); 4915 error = EINVAL; 4916 goto fail; 4917 } 4918 error = key_checksockaddrs((struct sockaddr *)(src0 + 1), 4919 (struct sockaddr *)(dst0 + 1)); 4920 if (error != 0) { 4921 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); 4922 error = EINVAL; 4923 goto fail; 4924 } 4925 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4926 4927 /* SPI allocation */ 4928 spi = key_do_getnewspi( 4929 (struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE], &saidx); 4930 if (spi == 0) { 4931 /* 4932 * Requested SPI or SPI range is not available or 4933 * already used. 4934 */ 4935 error = EEXIST; 4936 goto fail; 4937 } 4938 sav = key_newsav(mhp, &saidx, spi, &error); 4939 if (sav == NULL) 4940 goto fail; 4941 4942 if (sav->seq != 0) { 4943 /* 4944 * RFC2367: 4945 * If the SADB_GETSPI message is in response to a 4946 * kernel-generated SADB_ACQUIRE, the sadb_msg_seq 4947 * MUST be the same as the SADB_ACQUIRE message. 4948 * 4949 * XXXAE: However it doesn't definethe behaviour how to 4950 * check this and what to do if it doesn't match. 4951 * Also what we should do if it matches? 4952 * 4953 * We can compare saidx used in SADB_ACQUIRE with saidx 4954 * used in SADB_GETSPI, but this probably can break 4955 * existing software. For now just warn if it doesn't match. 4956 * 4957 * XXXAE: anyway it looks useless. 4958 */ 4959 key_acqdone(&saidx, sav->seq); 4960 } 4961 KEYDBG(KEY_STAMP, 4962 printf("%s: SA(%p)\n", __func__, sav)); 4963 KEYDBG(KEY_DATA, kdebug_secasv(sav)); 4964 4965 { 4966 struct mbuf *n, *nn; 4967 struct sadb_sa *m_sa; 4968 struct sadb_msg *newmsg; 4969 int off, len; 4970 4971 /* create new sadb_msg to reply. */ 4972 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 4973 PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4974 4975 MGETHDR(n, M_NOWAIT, MT_DATA); 4976 if (len > MHLEN) { 4977 if (!(MCLGET(n, M_NOWAIT))) { 4978 m_freem(n); 4979 n = NULL; 4980 } 4981 } 4982 if (!n) { 4983 error = ENOBUFS; 4984 goto fail; 4985 } 4986 4987 n->m_len = len; 4988 n->m_next = NULL; 4989 off = 0; 4990 4991 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 4992 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 4993 4994 m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off); 4995 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); 4996 m_sa->sadb_sa_exttype = SADB_EXT_SA; 4997 m_sa->sadb_sa_spi = spi; /* SPI is already in network byte order */ 4998 off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4999 5000 IPSEC_ASSERT(off == len, 5001 ("length inconsistency (off %u len %u)", off, len)); 5002 5003 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, 5004 SADB_EXT_ADDRESS_DST); 5005 if (!n->m_next) { 5006 m_freem(n); 5007 error = ENOBUFS; 5008 goto fail; 5009 } 5010 5011 if (n->m_len < sizeof(struct sadb_msg)) { 5012 n = m_pullup(n, sizeof(struct sadb_msg)); 5013 if (n == NULL) 5014 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 5015 } 5016 5017 n->m_pkthdr.len = 0; 5018 for (nn = n; nn; nn = nn->m_next) 5019 n->m_pkthdr.len += nn->m_len; 5020 5021 newmsg = mtod(n, struct sadb_msg *); 5022 newmsg->sadb_msg_seq = sav->seq; 5023 newmsg->sadb_msg_errno = 0; 5024 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5025 5026 m_freem(m); 5027 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5028 } 5029 5030 fail: 5031 return (key_senderror(so, m, error)); 5032 } 5033 5034 /* 5035 * allocating new SPI 5036 * called by key_getspi(). 5037 * OUT: 5038 * 0: failure. 5039 * others: success, SPI in network byte order. 5040 */ 5041 static uint32_t 5042 key_do_getnewspi(struct sadb_spirange *spirange, struct secasindex *saidx) 5043 { 5044 uint32_t min, max, newspi, t; 5045 int count = V_key_spi_trycnt; 5046 5047 /* set spi range to allocate */ 5048 if (spirange != NULL) { 5049 min = spirange->sadb_spirange_min; 5050 max = spirange->sadb_spirange_max; 5051 } else { 5052 min = V_key_spi_minval; 5053 max = V_key_spi_maxval; 5054 } 5055 /* IPCOMP needs 2-byte SPI */ 5056 if (saidx->proto == IPPROTO_IPCOMP) { 5057 if (min >= 0x10000) 5058 min = 0xffff; 5059 if (max >= 0x10000) 5060 max = 0xffff; 5061 if (min > max) { 5062 t = min; min = max; max = t; 5063 } 5064 } 5065 5066 if (min == max) { 5067 if (!key_checkspidup(htonl(min))) { 5068 ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n", 5069 __func__, min)); 5070 return 0; 5071 } 5072 5073 count--; /* taking one cost. */ 5074 newspi = min; 5075 } else { 5076 5077 /* init SPI */ 5078 newspi = 0; 5079 5080 /* when requesting to allocate spi ranged */ 5081 while (count--) { 5082 /* generate pseudo-random SPI value ranged. */ 5083 newspi = min + (key_random() % (max - min + 1)); 5084 if (!key_checkspidup(htonl(newspi))) 5085 break; 5086 } 5087 5088 if (count == 0 || newspi == 0) { 5089 ipseclog((LOG_DEBUG, 5090 "%s: failed to allocate SPI.\n", __func__)); 5091 return 0; 5092 } 5093 } 5094 5095 /* statistics */ 5096 keystat.getspi_count = 5097 (keystat.getspi_count + V_key_spi_trycnt - count) / 2; 5098 5099 return (htonl(newspi)); 5100 } 5101 5102 /* 5103 * Find TCP-MD5 SA with corresponding secasindex. 5104 * If not found, return NULL and fill SPI with usable value if needed. 5105 */ 5106 static struct secasvar * 5107 key_getsav_tcpmd5(struct secasindex *saidx, uint32_t *spi) 5108 { 5109 SAHTREE_RLOCK_TRACKER; 5110 struct secashead *sah; 5111 struct secasvar *sav; 5112 5113 IPSEC_ASSERT(saidx->proto == IPPROTO_TCP, ("wrong proto")); 5114 SAHTREE_RLOCK(); 5115 LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) { 5116 if (sah->saidx.proto != IPPROTO_TCP) 5117 continue; 5118 if (!key_sockaddrcmp(&saidx->dst.sa, &sah->saidx.dst.sa, 0) && 5119 !key_sockaddrcmp(&saidx->src.sa, &sah->saidx.src.sa, 0)) 5120 break; 5121 } 5122 if (sah != NULL) { 5123 if (V_key_preferred_oldsa) 5124 sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue); 5125 else 5126 sav = TAILQ_FIRST(&sah->savtree_alive); 5127 if (sav != NULL) { 5128 SAV_ADDREF(sav); 5129 SAHTREE_RUNLOCK(); 5130 return (sav); 5131 } 5132 } 5133 if (spi == NULL) { 5134 /* No SPI required */ 5135 SAHTREE_RUNLOCK(); 5136 return (NULL); 5137 } 5138 /* Check that SPI is unique */ 5139 LIST_FOREACH(sav, SAVHASH_HASH(*spi), spihash) { 5140 if (sav->spi == *spi) 5141 break; 5142 } 5143 if (sav == NULL) { 5144 SAHTREE_RUNLOCK(); 5145 /* SPI is already unique */ 5146 return (NULL); 5147 } 5148 SAHTREE_RUNLOCK(); 5149 /* XXX: not optimal */ 5150 *spi = key_do_getnewspi(NULL, saidx); 5151 return (NULL); 5152 } 5153 5154 static int 5155 key_updateaddresses(struct socket *so, struct mbuf *m, 5156 const struct sadb_msghdr *mhp, struct secasvar *sav, 5157 struct secasindex *saidx) 5158 { 5159 struct sockaddr *newaddr; 5160 struct secashead *sah; 5161 struct secasvar *newsav, *tmp; 5162 struct mbuf *n; 5163 int error, isnew; 5164 5165 /* Check that we need to change SAH */ 5166 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_SRC)) { 5167 newaddr = (struct sockaddr *)( 5168 ((struct sadb_address *) 5169 mhp->ext[SADB_X_EXT_NEW_ADDRESS_SRC]) + 1); 5170 bcopy(newaddr, &saidx->src, newaddr->sa_len); 5171 key_porttosaddr(&saidx->src.sa, 0); 5172 } 5173 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_DST)) { 5174 newaddr = (struct sockaddr *)( 5175 ((struct sadb_address *) 5176 mhp->ext[SADB_X_EXT_NEW_ADDRESS_DST]) + 1); 5177 bcopy(newaddr, &saidx->dst, newaddr->sa_len); 5178 key_porttosaddr(&saidx->dst.sa, 0); 5179 } 5180 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_SRC) || 5181 !SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_DST)) { 5182 error = key_checksockaddrs(&saidx->src.sa, &saidx->dst.sa); 5183 if (error != 0) { 5184 ipseclog((LOG_DEBUG, "%s: invalid new sockaddr.\n", 5185 __func__)); 5186 return (error); 5187 } 5188 5189 sah = key_getsah(saidx); 5190 if (sah == NULL) { 5191 /* create a new SA index */ 5192 sah = key_newsah(saidx); 5193 if (sah == NULL) { 5194 ipseclog((LOG_DEBUG, 5195 "%s: No more memory.\n", __func__)); 5196 return (ENOBUFS); 5197 } 5198 isnew = 2; /* SAH is new */ 5199 } else 5200 isnew = 1; /* existing SAH is referenced */ 5201 } else { 5202 /* 5203 * src and dst addresses are still the same. 5204 * Do we want to change NAT-T config? 5205 */ 5206 if (sav->sah->saidx.proto != IPPROTO_ESP || 5207 SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_TYPE) || 5208 SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_SPORT) || 5209 SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_DPORT)) { 5210 ipseclog((LOG_DEBUG, 5211 "%s: invalid message: missing required header.\n", 5212 __func__)); 5213 return (EINVAL); 5214 } 5215 /* We hold reference to SA, thus SAH will be referenced too. */ 5216 sah = sav->sah; 5217 isnew = 0; 5218 } 5219 5220 newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, 5221 M_NOWAIT | M_ZERO); 5222 if (newsav == NULL) { 5223 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5224 error = ENOBUFS; 5225 goto fail; 5226 } 5227 5228 /* Clone SA's content into newsav */ 5229 SAV_INITREF(newsav); 5230 bcopy(sav, newsav, offsetof(struct secasvar, chain)); 5231 /* 5232 * We create new NAT-T config if it is needed. 5233 * Old NAT-T config will be freed by key_cleansav() when 5234 * last reference to SA will be released. 5235 */ 5236 newsav->natt = NULL; 5237 newsav->sah = sah; 5238 newsav->state = SADB_SASTATE_MATURE; 5239 error = key_setnatt(newsav, mhp); 5240 if (error != 0) 5241 goto fail; 5242 5243 SAHTREE_WLOCK(); 5244 /* Check that SA is still alive */ 5245 if (sav->state == SADB_SASTATE_DEAD) { 5246 /* SA was unlinked */ 5247 SAHTREE_WUNLOCK(); 5248 error = ESRCH; 5249 goto fail; 5250 } 5251 5252 /* Unlink SA from SAH and SPI hash */ 5253 IPSEC_ASSERT((sav->flags & SADB_X_EXT_F_CLONED) == 0, 5254 ("SA is already cloned")); 5255 IPSEC_ASSERT(sav->state == SADB_SASTATE_MATURE || 5256 sav->state == SADB_SASTATE_DYING, 5257 ("Wrong SA state %u\n", sav->state)); 5258 TAILQ_REMOVE(&sav->sah->savtree_alive, sav, chain); 5259 LIST_REMOVE(sav, spihash); 5260 sav->state = SADB_SASTATE_DEAD; 5261 5262 /* 5263 * Link new SA with SAH. Keep SAs ordered by 5264 * create time (newer are first). 5265 */ 5266 TAILQ_FOREACH(tmp, &sah->savtree_alive, chain) { 5267 if (newsav->created > tmp->created) { 5268 TAILQ_INSERT_BEFORE(tmp, newsav, chain); 5269 break; 5270 } 5271 } 5272 if (tmp == NULL) 5273 TAILQ_INSERT_TAIL(&sah->savtree_alive, newsav, chain); 5274 5275 /* Add new SA into SPI hash. */ 5276 LIST_INSERT_HEAD(SAVHASH_HASH(newsav->spi), newsav, spihash); 5277 5278 /* Add new SAH into SADB. */ 5279 if (isnew == 2) { 5280 TAILQ_INSERT_HEAD(&V_sahtree, sah, chain); 5281 LIST_INSERT_HEAD(SAHADDRHASH_HASH(saidx), sah, addrhash); 5282 sah->state = SADB_SASTATE_MATURE; 5283 SAH_ADDREF(sah); /* newsav references new SAH */ 5284 } 5285 /* 5286 * isnew == 1 -> @sah was referenced by key_getsah(). 5287 * isnew == 0 -> we use the same @sah, that was used by @sav, 5288 * and we use its reference for @newsav. 5289 */ 5290 SECASVAR_LOCK(sav); 5291 /* XXX: replace cntr with pointer? */ 5292 newsav->cntr = sav->cntr; 5293 sav->flags |= SADB_X_EXT_F_CLONED; 5294 SECASVAR_UNLOCK(sav); 5295 5296 SAHTREE_WUNLOCK(); 5297 5298 KEYDBG(KEY_STAMP, 5299 printf("%s: SA(%p) cloned into SA(%p)\n", 5300 __func__, sav, newsav)); 5301 KEYDBG(KEY_DATA, kdebug_secasv(newsav)); 5302 5303 key_freesav(&sav); /* release last reference */ 5304 5305 /* set msg buf from mhp */ 5306 n = key_getmsgbuf_x1(m, mhp); 5307 if (n == NULL) { 5308 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5309 return (ENOBUFS); 5310 } 5311 m_freem(m); 5312 key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5313 return (0); 5314 fail: 5315 if (isnew != 0) 5316 key_freesah(&sah); 5317 if (newsav != NULL) { 5318 if (newsav->natt != NULL) 5319 free(newsav->natt, M_IPSEC_MISC); 5320 free(newsav, M_IPSEC_SA); 5321 } 5322 return (error); 5323 } 5324 5325 /* 5326 * SADB_UPDATE processing 5327 * receive 5328 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5329 * key(AE), (identity(SD),) (sensitivity)> 5330 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. 5331 * and send 5332 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5333 * (identity(SD),) (sensitivity)> 5334 * to the ikmpd. 5335 * 5336 * m will always be freed. 5337 */ 5338 static int 5339 key_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5340 { 5341 struct secasindex saidx; 5342 struct sadb_address *src0, *dst0; 5343 struct sadb_sa *sa0; 5344 struct secasvar *sav; 5345 uint32_t reqid; 5346 int error; 5347 uint8_t mode, proto; 5348 5349 IPSEC_ASSERT(so != NULL, ("null socket")); 5350 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5351 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5352 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5353 5354 /* map satype to proto */ 5355 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5356 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5357 __func__)); 5358 return key_senderror(so, m, EINVAL); 5359 } 5360 5361 if (SADB_CHECKHDR(mhp, SADB_EXT_SA) || 5362 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || 5363 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) || 5364 (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) && 5365 !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) || 5366 (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT) && 5367 !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD))) { 5368 ipseclog((LOG_DEBUG, 5369 "%s: invalid message: missing required header.\n", 5370 __func__)); 5371 return key_senderror(so, m, EINVAL); 5372 } 5373 if (SADB_CHECKLEN(mhp, SADB_EXT_SA) || 5374 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || 5375 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) { 5376 ipseclog((LOG_DEBUG, 5377 "%s: invalid message: wrong header size.\n", __func__)); 5378 return key_senderror(so, m, EINVAL); 5379 } 5380 if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) { 5381 mode = IPSEC_MODE_ANY; 5382 reqid = 0; 5383 } else { 5384 if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) { 5385 ipseclog((LOG_DEBUG, 5386 "%s: invalid message: wrong header size.\n", 5387 __func__)); 5388 return key_senderror(so, m, EINVAL); 5389 } 5390 mode = ((struct sadb_x_sa2 *) 5391 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 5392 reqid = ((struct sadb_x_sa2 *) 5393 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 5394 } 5395 5396 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5397 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5398 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5399 5400 /* 5401 * Only SADB_SASTATE_MATURE SAs may be submitted in an 5402 * SADB_UPDATE message. 5403 */ 5404 if (sa0->sadb_sa_state != SADB_SASTATE_MATURE) { 5405 ipseclog((LOG_DEBUG, "%s: invalid state.\n", __func__)); 5406 #ifdef PFKEY_STRICT_CHECKS 5407 return key_senderror(so, m, EINVAL); 5408 #endif 5409 } 5410 error = key_checksockaddrs((struct sockaddr *)(src0 + 1), 5411 (struct sockaddr *)(dst0 + 1)); 5412 if (error != 0) { 5413 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); 5414 return key_senderror(so, m, error); 5415 } 5416 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 5417 sav = key_getsavbyspi(sa0->sadb_sa_spi); 5418 if (sav == NULL) { 5419 ipseclog((LOG_DEBUG, "%s: no SA found for SPI %u\n", 5420 __func__, ntohl(sa0->sadb_sa_spi))); 5421 return key_senderror(so, m, EINVAL); 5422 } 5423 /* 5424 * Check that SADB_UPDATE issued by the same process that did 5425 * SADB_GETSPI or SADB_ADD. 5426 */ 5427 if (sav->pid != mhp->msg->sadb_msg_pid) { 5428 ipseclog((LOG_DEBUG, 5429 "%s: pid mismatched (SPI %u, pid %u vs. %u)\n", __func__, 5430 ntohl(sav->spi), sav->pid, mhp->msg->sadb_msg_pid)); 5431 key_freesav(&sav); 5432 return key_senderror(so, m, EINVAL); 5433 } 5434 /* saidx should match with SA. */ 5435 if (key_cmpsaidx(&sav->sah->saidx, &saidx, CMP_MODE_REQID) == 0) { 5436 ipseclog((LOG_DEBUG, "%s: saidx mismatched for SPI %u", 5437 __func__, ntohl(sav->spi))); 5438 key_freesav(&sav); 5439 return key_senderror(so, m, ESRCH); 5440 } 5441 5442 if (sav->state == SADB_SASTATE_LARVAL) { 5443 if ((mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5444 SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT)) || 5445 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5446 SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH))) { 5447 ipseclog((LOG_DEBUG, 5448 "%s: invalid message: missing required header.\n", 5449 __func__)); 5450 key_freesav(&sav); 5451 return key_senderror(so, m, EINVAL); 5452 } 5453 /* 5454 * We can set any values except src, dst and SPI. 5455 */ 5456 error = key_setsaval(sav, mhp); 5457 if (error != 0) { 5458 key_freesav(&sav); 5459 return (key_senderror(so, m, error)); 5460 } 5461 /* Change SA state to MATURE */ 5462 SAHTREE_WLOCK(); 5463 if (sav->state != SADB_SASTATE_LARVAL) { 5464 /* SA was deleted or another thread made it MATURE. */ 5465 SAHTREE_WUNLOCK(); 5466 key_freesav(&sav); 5467 return (key_senderror(so, m, ESRCH)); 5468 } 5469 /* 5470 * NOTE: we keep SAs in savtree_alive ordered by created 5471 * time. When SA's state changed from LARVAL to MATURE, 5472 * we update its created time in key_setsaval() and move 5473 * it into head of savtree_alive. 5474 */ 5475 TAILQ_REMOVE(&sav->sah->savtree_larval, sav, chain); 5476 TAILQ_INSERT_HEAD(&sav->sah->savtree_alive, sav, chain); 5477 sav->state = SADB_SASTATE_MATURE; 5478 SAHTREE_WUNLOCK(); 5479 } else { 5480 /* 5481 * For DYING and MATURE SA we can change only state 5482 * and lifetimes. Report EINVAL if something else attempted 5483 * to change. 5484 */ 5485 if (!SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT) || 5486 !SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH)) { 5487 key_freesav(&sav); 5488 return (key_senderror(so, m, EINVAL)); 5489 } 5490 error = key_updatelifetimes(sav, mhp); 5491 if (error != 0) { 5492 key_freesav(&sav); 5493 return (key_senderror(so, m, error)); 5494 } 5495 /* 5496 * This is FreeBSD extension to RFC2367. 5497 * IKEd can specify SADB_X_EXT_NEW_ADDRESS_SRC and/or 5498 * SADB_X_EXT_NEW_ADDRESS_DST when it wants to change 5499 * SA addresses (for example to implement MOBIKE protocol 5500 * as described in RFC4555). Also we allow to change 5501 * NAT-T config. 5502 */ 5503 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_SRC) || 5504 !SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_DST) || 5505 !SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_TYPE) || 5506 sav->natt != NULL) { 5507 error = key_updateaddresses(so, m, mhp, sav, &saidx); 5508 key_freesav(&sav); 5509 if (error != 0) 5510 return (key_senderror(so, m, error)); 5511 return (0); 5512 } 5513 /* Check that SA is still alive */ 5514 SAHTREE_WLOCK(); 5515 if (sav->state == SADB_SASTATE_DEAD) { 5516 /* SA was unlinked */ 5517 SAHTREE_WUNLOCK(); 5518 key_freesav(&sav); 5519 return (key_senderror(so, m, ESRCH)); 5520 } 5521 /* 5522 * NOTE: there is possible state moving from DYING to MATURE, 5523 * but this doesn't change created time, so we won't reorder 5524 * this SA. 5525 */ 5526 sav->state = SADB_SASTATE_MATURE; 5527 SAHTREE_WUNLOCK(); 5528 } 5529 KEYDBG(KEY_STAMP, 5530 printf("%s: SA(%p)\n", __func__, sav)); 5531 KEYDBG(KEY_DATA, kdebug_secasv(sav)); 5532 key_freesav(&sav); 5533 5534 { 5535 struct mbuf *n; 5536 5537 /* set msg buf from mhp */ 5538 n = key_getmsgbuf_x1(m, mhp); 5539 if (n == NULL) { 5540 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5541 return key_senderror(so, m, ENOBUFS); 5542 } 5543 5544 m_freem(m); 5545 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5546 } 5547 } 5548 5549 /* 5550 * SADB_ADD processing 5551 * add an entry to SA database, when received 5552 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5553 * key(AE), (identity(SD),) (sensitivity)> 5554 * from the ikmpd, 5555 * and send 5556 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5557 * (identity(SD),) (sensitivity)> 5558 * to the ikmpd. 5559 * 5560 * IGNORE identity and sensitivity messages. 5561 * 5562 * m will always be freed. 5563 */ 5564 static int 5565 key_add(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5566 { 5567 struct secasindex saidx; 5568 struct sadb_address *src0, *dst0; 5569 struct sadb_sa *sa0; 5570 struct secasvar *sav; 5571 uint32_t reqid, spi; 5572 uint8_t mode, proto; 5573 int error; 5574 5575 IPSEC_ASSERT(so != NULL, ("null socket")); 5576 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5577 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5578 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5579 5580 /* map satype to proto */ 5581 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5582 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5583 __func__)); 5584 return key_senderror(so, m, EINVAL); 5585 } 5586 5587 if (SADB_CHECKHDR(mhp, SADB_EXT_SA) || 5588 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || 5589 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) || 5590 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && ( 5591 SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT) || 5592 SADB_CHECKLEN(mhp, SADB_EXT_KEY_ENCRYPT))) || 5593 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && ( 5594 SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH) || 5595 SADB_CHECKLEN(mhp, SADB_EXT_KEY_AUTH))) || 5596 (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) && 5597 !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) || 5598 (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT) && 5599 !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD))) { 5600 ipseclog((LOG_DEBUG, 5601 "%s: invalid message: missing required header.\n", 5602 __func__)); 5603 return key_senderror(so, m, EINVAL); 5604 } 5605 if (SADB_CHECKLEN(mhp, SADB_EXT_SA) || 5606 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || 5607 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) { 5608 ipseclog((LOG_DEBUG, 5609 "%s: invalid message: wrong header size.\n", __func__)); 5610 return key_senderror(so, m, EINVAL); 5611 } 5612 if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) { 5613 mode = IPSEC_MODE_ANY; 5614 reqid = 0; 5615 } else { 5616 if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) { 5617 ipseclog((LOG_DEBUG, 5618 "%s: invalid message: wrong header size.\n", 5619 __func__)); 5620 return key_senderror(so, m, EINVAL); 5621 } 5622 mode = ((struct sadb_x_sa2 *) 5623 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 5624 reqid = ((struct sadb_x_sa2 *) 5625 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 5626 } 5627 5628 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5629 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5630 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5631 5632 /* 5633 * Only SADB_SASTATE_MATURE SAs may be submitted in an 5634 * SADB_ADD message. 5635 */ 5636 if (sa0->sadb_sa_state != SADB_SASTATE_MATURE) { 5637 ipseclog((LOG_DEBUG, "%s: invalid state.\n", __func__)); 5638 #ifdef PFKEY_STRICT_CHECKS 5639 return key_senderror(so, m, EINVAL); 5640 #endif 5641 } 5642 error = key_checksockaddrs((struct sockaddr *)(src0 + 1), 5643 (struct sockaddr *)(dst0 + 1)); 5644 if (error != 0) { 5645 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); 5646 return key_senderror(so, m, error); 5647 } 5648 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 5649 spi = sa0->sadb_sa_spi; 5650 /* 5651 * For TCP-MD5 SAs we don't use SPI. Check the uniqueness using 5652 * secasindex. 5653 * XXXAE: IPComp seems also doesn't use SPI. 5654 */ 5655 if (proto == IPPROTO_TCP) { 5656 sav = key_getsav_tcpmd5(&saidx, &spi); 5657 if (sav == NULL && spi == 0) { 5658 /* Failed to allocate SPI */ 5659 ipseclog((LOG_DEBUG, "%s: SA already exists.\n", 5660 __func__)); 5661 return key_senderror(so, m, EEXIST); 5662 } 5663 /* XXX: SPI that we report back can have another value */ 5664 } else { 5665 /* We can create new SA only if SPI is different. */ 5666 sav = key_getsavbyspi(spi); 5667 } 5668 if (sav != NULL) { 5669 key_freesav(&sav); 5670 ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__)); 5671 return key_senderror(so, m, EEXIST); 5672 } 5673 5674 sav = key_newsav(mhp, &saidx, spi, &error); 5675 if (sav == NULL) 5676 return key_senderror(so, m, error); 5677 KEYDBG(KEY_STAMP, 5678 printf("%s: return SA(%p)\n", __func__, sav)); 5679 KEYDBG(KEY_DATA, kdebug_secasv(sav)); 5680 /* 5681 * If SADB_ADD was in response to SADB_ACQUIRE, we need to schedule 5682 * ACQ for deletion. 5683 */ 5684 if (sav->seq != 0) 5685 key_acqdone(&saidx, sav->seq); 5686 5687 { 5688 /* 5689 * Don't call key_freesav() on error here, as we would like to 5690 * keep the SA in the database. 5691 */ 5692 struct mbuf *n; 5693 5694 /* set msg buf from mhp */ 5695 n = key_getmsgbuf_x1(m, mhp); 5696 if (n == NULL) { 5697 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5698 return key_senderror(so, m, ENOBUFS); 5699 } 5700 5701 m_freem(m); 5702 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5703 } 5704 } 5705 5706 /* 5707 * NAT-T support. 5708 * IKEd may request the use ESP in UDP encapsulation when it detects the 5709 * presence of NAT. It uses NAT-T extension headers for such SAs to specify 5710 * parameters needed for encapsulation and decapsulation. These PF_KEY 5711 * extension headers are not standardized, so this comment addresses our 5712 * implementation. 5713 * SADB_X_EXT_NAT_T_TYPE specifies type of encapsulation, we support only 5714 * UDP_ENCAP_ESPINUDP as described in RFC3948. 5715 * SADB_X_EXT_NAT_T_SPORT/DPORT specifies source and destination ports for 5716 * UDP header. We use these ports in UDP encapsulation procedure, also we 5717 * can check them in UDP decapsulation procedure. 5718 * SADB_X_EXT_NAT_T_OA[IR] specifies original address of initiator or 5719 * responder. These addresses can be used for transport mode to adjust 5720 * checksum after decapsulation and decryption. Since original IP addresses 5721 * used by peer usually different (we detected presence of NAT), TCP/UDP 5722 * pseudo header checksum and IP header checksum was calculated using original 5723 * addresses. After decapsulation and decryption we need to adjust checksum 5724 * to have correct datagram. 5725 * 5726 * We expect presence of NAT-T extension headers only in SADB_ADD and 5727 * SADB_UPDATE messages. We report NAT-T extension headers in replies 5728 * to SADB_ADD, SADB_UPDATE, SADB_GET, and SADB_DUMP messages. 5729 */ 5730 static int 5731 key_setnatt(struct secasvar *sav, const struct sadb_msghdr *mhp) 5732 { 5733 struct sadb_x_nat_t_port *port; 5734 struct sadb_x_nat_t_type *type; 5735 struct sadb_address *oai, *oar; 5736 struct sockaddr *sa; 5737 uint32_t addr; 5738 uint16_t cksum; 5739 5740 IPSEC_ASSERT(sav->natt == NULL, ("natt is already initialized")); 5741 /* 5742 * Ignore NAT-T headers if sproto isn't ESP. 5743 */ 5744 if (sav->sah->saidx.proto != IPPROTO_ESP) 5745 return (0); 5746 5747 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_TYPE) && 5748 !SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_SPORT) && 5749 !SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_DPORT)) { 5750 if (SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_TYPE) || 5751 SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_SPORT) || 5752 SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_DPORT)) { 5753 ipseclog((LOG_DEBUG, 5754 "%s: invalid message: wrong header size.\n", 5755 __func__)); 5756 return (EINVAL); 5757 } 5758 } else 5759 return (0); 5760 5761 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5762 if (type->sadb_x_nat_t_type_type != UDP_ENCAP_ESPINUDP) { 5763 ipseclog((LOG_DEBUG, "%s: unsupported NAT-T type %u.\n", 5764 __func__, type->sadb_x_nat_t_type_type)); 5765 return (EINVAL); 5766 } 5767 /* 5768 * Allocate storage for NAT-T config. 5769 * On error it will be released by key_cleansav(). 5770 */ 5771 sav->natt = malloc(sizeof(struct secnatt), M_IPSEC_MISC, 5772 M_NOWAIT | M_ZERO); 5773 if (sav->natt == NULL) { 5774 PFKEYSTAT_INC(in_nomem); 5775 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5776 return (ENOBUFS); 5777 } 5778 port = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5779 if (port->sadb_x_nat_t_port_port == 0) { 5780 ipseclog((LOG_DEBUG, "%s: invalid NAT-T sport specified.\n", 5781 __func__)); 5782 return (EINVAL); 5783 } 5784 sav->natt->sport = port->sadb_x_nat_t_port_port; 5785 port = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5786 if (port->sadb_x_nat_t_port_port == 0) { 5787 ipseclog((LOG_DEBUG, "%s: invalid NAT-T dport specified.\n", 5788 __func__)); 5789 return (EINVAL); 5790 } 5791 sav->natt->dport = port->sadb_x_nat_t_port_port; 5792 5793 /* 5794 * SADB_X_EXT_NAT_T_OAI and SADB_X_EXT_NAT_T_OAR are optional 5795 * and needed only for transport mode IPsec. 5796 * Usually NAT translates only one address, but it is possible, 5797 * that both addresses could be translated. 5798 * NOTE: Value of SADB_X_EXT_NAT_T_OAI is equal to SADB_X_EXT_NAT_T_OA. 5799 */ 5800 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_OAI)) { 5801 if (SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_OAI)) { 5802 ipseclog((LOG_DEBUG, 5803 "%s: invalid message: wrong header size.\n", 5804 __func__)); 5805 return (EINVAL); 5806 } 5807 oai = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5808 } else 5809 oai = NULL; 5810 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_OAR)) { 5811 if (SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_OAR)) { 5812 ipseclog((LOG_DEBUG, 5813 "%s: invalid message: wrong header size.\n", 5814 __func__)); 5815 return (EINVAL); 5816 } 5817 oar = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5818 } else 5819 oar = NULL; 5820 5821 /* Initialize addresses only for transport mode */ 5822 if (sav->sah->saidx.mode != IPSEC_MODE_TUNNEL) { 5823 cksum = 0; 5824 if (oai != NULL) { 5825 /* Currently we support only AF_INET */ 5826 sa = (struct sockaddr *)(oai + 1); 5827 if (sa->sa_family != AF_INET || 5828 sa->sa_len != sizeof(struct sockaddr_in)) { 5829 ipseclog((LOG_DEBUG, 5830 "%s: wrong NAT-OAi header.\n", 5831 __func__)); 5832 return (EINVAL); 5833 } 5834 /* Ignore address if it the same */ 5835 if (((struct sockaddr_in *)sa)->sin_addr.s_addr != 5836 sav->sah->saidx.src.sin.sin_addr.s_addr) { 5837 bcopy(sa, &sav->natt->oai.sa, sa->sa_len); 5838 sav->natt->flags |= IPSEC_NATT_F_OAI; 5839 /* Calculate checksum delta */ 5840 addr = sav->sah->saidx.src.sin.sin_addr.s_addr; 5841 cksum = in_addword(cksum, ~addr >> 16); 5842 cksum = in_addword(cksum, ~addr & 0xffff); 5843 addr = sav->natt->oai.sin.sin_addr.s_addr; 5844 cksum = in_addword(cksum, addr >> 16); 5845 cksum = in_addword(cksum, addr & 0xffff); 5846 } 5847 } 5848 if (oar != NULL) { 5849 /* Currently we support only AF_INET */ 5850 sa = (struct sockaddr *)(oar + 1); 5851 if (sa->sa_family != AF_INET || 5852 sa->sa_len != sizeof(struct sockaddr_in)) { 5853 ipseclog((LOG_DEBUG, 5854 "%s: wrong NAT-OAr header.\n", 5855 __func__)); 5856 return (EINVAL); 5857 } 5858 /* Ignore address if it the same */ 5859 if (((struct sockaddr_in *)sa)->sin_addr.s_addr != 5860 sav->sah->saidx.dst.sin.sin_addr.s_addr) { 5861 bcopy(sa, &sav->natt->oar.sa, sa->sa_len); 5862 sav->natt->flags |= IPSEC_NATT_F_OAR; 5863 /* Calculate checksum delta */ 5864 addr = sav->sah->saidx.dst.sin.sin_addr.s_addr; 5865 cksum = in_addword(cksum, ~addr >> 16); 5866 cksum = in_addword(cksum, ~addr & 0xffff); 5867 addr = sav->natt->oar.sin.sin_addr.s_addr; 5868 cksum = in_addword(cksum, addr >> 16); 5869 cksum = in_addword(cksum, addr & 0xffff); 5870 } 5871 } 5872 sav->natt->cksum = cksum; 5873 } 5874 return (0); 5875 } 5876 5877 static int 5878 key_setident(struct secashead *sah, const struct sadb_msghdr *mhp) 5879 { 5880 const struct sadb_ident *idsrc, *iddst; 5881 5882 IPSEC_ASSERT(sah != NULL, ("null secashead")); 5883 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5884 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5885 5886 /* don't make buffer if not there */ 5887 if (SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_SRC) && 5888 SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_DST)) { 5889 sah->idents = NULL; 5890 sah->identd = NULL; 5891 return (0); 5892 } 5893 5894 if (SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_SRC) || 5895 SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_DST)) { 5896 ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__)); 5897 return (EINVAL); 5898 } 5899 5900 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC]; 5901 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST]; 5902 5903 /* validity check */ 5904 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { 5905 ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__)); 5906 return EINVAL; 5907 } 5908 5909 switch (idsrc->sadb_ident_type) { 5910 case SADB_IDENTTYPE_PREFIX: 5911 case SADB_IDENTTYPE_FQDN: 5912 case SADB_IDENTTYPE_USERFQDN: 5913 default: 5914 /* XXX do nothing */ 5915 sah->idents = NULL; 5916 sah->identd = NULL; 5917 return 0; 5918 } 5919 5920 /* make structure */ 5921 sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5922 if (sah->idents == NULL) { 5923 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5924 return ENOBUFS; 5925 } 5926 sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5927 if (sah->identd == NULL) { 5928 free(sah->idents, M_IPSEC_MISC); 5929 sah->idents = NULL; 5930 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5931 return ENOBUFS; 5932 } 5933 sah->idents->type = idsrc->sadb_ident_type; 5934 sah->idents->id = idsrc->sadb_ident_id; 5935 5936 sah->identd->type = iddst->sadb_ident_type; 5937 sah->identd->id = iddst->sadb_ident_id; 5938 5939 return 0; 5940 } 5941 5942 /* 5943 * m will not be freed on return. 5944 * it is caller's responsibility to free the result. 5945 * 5946 * Called from SADB_ADD and SADB_UPDATE. Reply will contain headers 5947 * from the request in defined order. 5948 */ 5949 static struct mbuf * 5950 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp) 5951 { 5952 struct mbuf *n; 5953 5954 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5955 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5956 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5957 5958 /* create new sadb_msg to reply. */ 5959 n = key_gather_mbuf(m, mhp, 1, 16, SADB_EXT_RESERVED, 5960 SADB_EXT_SA, SADB_X_EXT_SA2, 5961 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, 5962 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 5963 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST, 5964 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT, 5965 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI, 5966 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NEW_ADDRESS_SRC, 5967 SADB_X_EXT_NEW_ADDRESS_DST); 5968 if (!n) 5969 return NULL; 5970 5971 if (n->m_len < sizeof(struct sadb_msg)) { 5972 n = m_pullup(n, sizeof(struct sadb_msg)); 5973 if (n == NULL) 5974 return NULL; 5975 } 5976 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; 5977 mtod(n, struct sadb_msg *)->sadb_msg_len = 5978 PFKEY_UNIT64(n->m_pkthdr.len); 5979 5980 return n; 5981 } 5982 5983 /* 5984 * SADB_DELETE processing 5985 * receive 5986 * <base, SA(*), address(SD)> 5987 * from the ikmpd, and set SADB_SASTATE_DEAD, 5988 * and send, 5989 * <base, SA(*), address(SD)> 5990 * to the ikmpd. 5991 * 5992 * m will always be freed. 5993 */ 5994 static int 5995 key_delete(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5996 { 5997 struct secasindex saidx; 5998 struct sadb_address *src0, *dst0; 5999 struct secasvar *sav; 6000 struct sadb_sa *sa0; 6001 uint8_t proto; 6002 6003 IPSEC_ASSERT(so != NULL, ("null socket")); 6004 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6005 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6006 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6007 6008 /* map satype to proto */ 6009 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6010 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6011 __func__)); 6012 return key_senderror(so, m, EINVAL); 6013 } 6014 6015 if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || 6016 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) || 6017 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || 6018 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) { 6019 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6020 __func__)); 6021 return key_senderror(so, m, EINVAL); 6022 } 6023 6024 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 6025 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 6026 6027 if (key_checksockaddrs((struct sockaddr *)(src0 + 1), 6028 (struct sockaddr *)(dst0 + 1)) != 0) { 6029 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); 6030 return (key_senderror(so, m, EINVAL)); 6031 } 6032 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 6033 if (SADB_CHECKHDR(mhp, SADB_EXT_SA)) { 6034 /* 6035 * Caller wants us to delete all non-LARVAL SAs 6036 * that match the src/dst. This is used during 6037 * IKE INITIAL-CONTACT. 6038 * XXXAE: this looks like some extension to RFC2367. 6039 */ 6040 ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__)); 6041 return (key_delete_all(so, m, mhp, &saidx)); 6042 } 6043 if (SADB_CHECKLEN(mhp, SADB_EXT_SA)) { 6044 ipseclog((LOG_DEBUG, 6045 "%s: invalid message: wrong header size.\n", __func__)); 6046 return (key_senderror(so, m, EINVAL)); 6047 } 6048 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 6049 if (proto == IPPROTO_TCP) 6050 sav = key_getsav_tcpmd5(&saidx, NULL); 6051 else 6052 sav = key_getsavbyspi(sa0->sadb_sa_spi); 6053 if (sav == NULL) { 6054 ipseclog((LOG_DEBUG, "%s: no SA found for SPI %u.\n", 6055 __func__, ntohl(sa0->sadb_sa_spi))); 6056 return (key_senderror(so, m, ESRCH)); 6057 } 6058 if (key_cmpsaidx(&sav->sah->saidx, &saidx, CMP_HEAD) == 0) { 6059 ipseclog((LOG_DEBUG, "%s: saidx mismatched for SPI %u.\n", 6060 __func__, ntohl(sav->spi))); 6061 key_freesav(&sav); 6062 return (key_senderror(so, m, ESRCH)); 6063 } 6064 KEYDBG(KEY_STAMP, 6065 printf("%s: SA(%p)\n", __func__, sav)); 6066 KEYDBG(KEY_DATA, kdebug_secasv(sav)); 6067 key_unlinksav(sav); 6068 key_freesav(&sav); 6069 6070 { 6071 struct mbuf *n; 6072 struct sadb_msg *newmsg; 6073 6074 /* create new sadb_msg to reply. */ 6075 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 6076 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 6077 if (!n) 6078 return key_senderror(so, m, ENOBUFS); 6079 6080 if (n->m_len < sizeof(struct sadb_msg)) { 6081 n = m_pullup(n, sizeof(struct sadb_msg)); 6082 if (n == NULL) 6083 return key_senderror(so, m, ENOBUFS); 6084 } 6085 newmsg = mtod(n, struct sadb_msg *); 6086 newmsg->sadb_msg_errno = 0; 6087 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 6088 6089 m_freem(m); 6090 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 6091 } 6092 } 6093 6094 /* 6095 * delete all SAs for src/dst. Called from key_delete(). 6096 */ 6097 static int 6098 key_delete_all(struct socket *so, struct mbuf *m, 6099 const struct sadb_msghdr *mhp, struct secasindex *saidx) 6100 { 6101 struct secasvar_queue drainq; 6102 struct secashead *sah; 6103 struct secasvar *sav, *nextsav; 6104 6105 TAILQ_INIT(&drainq); 6106 SAHTREE_WLOCK(); 6107 LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) { 6108 if (key_cmpsaidx(&sah->saidx, saidx, CMP_HEAD) == 0) 6109 continue; 6110 /* Move all ALIVE SAs into drainq */ 6111 TAILQ_CONCAT(&drainq, &sah->savtree_alive, chain); 6112 } 6113 /* Unlink all queued SAs from SPI hash */ 6114 TAILQ_FOREACH(sav, &drainq, chain) { 6115 sav->state = SADB_SASTATE_DEAD; 6116 LIST_REMOVE(sav, spihash); 6117 } 6118 SAHTREE_WUNLOCK(); 6119 /* Now we can release reference for all SAs in drainq */ 6120 sav = TAILQ_FIRST(&drainq); 6121 while (sav != NULL) { 6122 KEYDBG(KEY_STAMP, 6123 printf("%s: SA(%p)\n", __func__, sav)); 6124 KEYDBG(KEY_DATA, kdebug_secasv(sav)); 6125 nextsav = TAILQ_NEXT(sav, chain); 6126 key_freesah(&sav->sah); /* release reference from SAV */ 6127 key_freesav(&sav); /* release last reference */ 6128 sav = nextsav; 6129 } 6130 6131 { 6132 struct mbuf *n; 6133 struct sadb_msg *newmsg; 6134 6135 /* create new sadb_msg to reply. */ 6136 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, 6137 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 6138 if (!n) 6139 return key_senderror(so, m, ENOBUFS); 6140 6141 if (n->m_len < sizeof(struct sadb_msg)) { 6142 n = m_pullup(n, sizeof(struct sadb_msg)); 6143 if (n == NULL) 6144 return key_senderror(so, m, ENOBUFS); 6145 } 6146 newmsg = mtod(n, struct sadb_msg *); 6147 newmsg->sadb_msg_errno = 0; 6148 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 6149 6150 m_freem(m); 6151 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 6152 } 6153 } 6154 6155 /* 6156 * Delete all alive SAs for corresponding xform. 6157 * Larval SAs have not initialized tdb_xform, so it is safe to leave them 6158 * here when xform disappears. 6159 */ 6160 void 6161 key_delete_xform(const struct xformsw *xsp) 6162 { 6163 struct secasvar_queue drainq; 6164 struct secashead *sah; 6165 struct secasvar *sav, *nextsav; 6166 6167 TAILQ_INIT(&drainq); 6168 SAHTREE_WLOCK(); 6169 TAILQ_FOREACH(sah, &V_sahtree, chain) { 6170 sav = TAILQ_FIRST(&sah->savtree_alive); 6171 if (sav == NULL) 6172 continue; 6173 if (sav->tdb_xform != xsp) 6174 continue; 6175 /* 6176 * It is supposed that all SAs in the chain are related to 6177 * one xform. 6178 */ 6179 TAILQ_CONCAT(&drainq, &sah->savtree_alive, chain); 6180 } 6181 /* Unlink all queued SAs from SPI hash */ 6182 TAILQ_FOREACH(sav, &drainq, chain) { 6183 sav->state = SADB_SASTATE_DEAD; 6184 LIST_REMOVE(sav, spihash); 6185 } 6186 SAHTREE_WUNLOCK(); 6187 6188 /* Now we can release reference for all SAs in drainq */ 6189 sav = TAILQ_FIRST(&drainq); 6190 while (sav != NULL) { 6191 KEYDBG(KEY_STAMP, 6192 printf("%s: SA(%p)\n", __func__, sav)); 6193 KEYDBG(KEY_DATA, kdebug_secasv(sav)); 6194 nextsav = TAILQ_NEXT(sav, chain); 6195 key_freesah(&sav->sah); /* release reference from SAV */ 6196 key_freesav(&sav); /* release last reference */ 6197 sav = nextsav; 6198 } 6199 } 6200 6201 /* 6202 * SADB_GET processing 6203 * receive 6204 * <base, SA(*), address(SD)> 6205 * from the ikmpd, and get a SP and a SA to respond, 6206 * and send, 6207 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), 6208 * (identity(SD),) (sensitivity)> 6209 * to the ikmpd. 6210 * 6211 * m will always be freed. 6212 */ 6213 static int 6214 key_get(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 6215 { 6216 struct secasindex saidx; 6217 struct sadb_address *src0, *dst0; 6218 struct sadb_sa *sa0; 6219 struct secasvar *sav; 6220 uint8_t proto; 6221 6222 IPSEC_ASSERT(so != NULL, ("null socket")); 6223 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6224 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6225 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6226 6227 /* map satype to proto */ 6228 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6229 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6230 __func__)); 6231 return key_senderror(so, m, EINVAL); 6232 } 6233 6234 if (SADB_CHECKHDR(mhp, SADB_EXT_SA) || 6235 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || 6236 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST)) { 6237 ipseclog((LOG_DEBUG, 6238 "%s: invalid message: missing required header.\n", 6239 __func__)); 6240 return key_senderror(so, m, EINVAL); 6241 } 6242 if (SADB_CHECKLEN(mhp, SADB_EXT_SA) || 6243 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || 6244 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) { 6245 ipseclog((LOG_DEBUG, 6246 "%s: invalid message: wrong header size.\n", __func__)); 6247 return key_senderror(so, m, EINVAL); 6248 } 6249 6250 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 6251 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 6252 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 6253 6254 if (key_checksockaddrs((struct sockaddr *)(src0 + 1), 6255 (struct sockaddr *)(dst0 + 1)) != 0) { 6256 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); 6257 return key_senderror(so, m, EINVAL); 6258 } 6259 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 6260 6261 if (proto == IPPROTO_TCP) 6262 sav = key_getsav_tcpmd5(&saidx, NULL); 6263 else 6264 sav = key_getsavbyspi(sa0->sadb_sa_spi); 6265 if (sav == NULL) { 6266 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 6267 return key_senderror(so, m, ESRCH); 6268 } 6269 if (key_cmpsaidx(&sav->sah->saidx, &saidx, CMP_HEAD) == 0) { 6270 ipseclog((LOG_DEBUG, "%s: saidx mismatched for SPI %u.\n", 6271 __func__, ntohl(sa0->sadb_sa_spi))); 6272 key_freesav(&sav); 6273 return (key_senderror(so, m, ESRCH)); 6274 } 6275 6276 { 6277 struct mbuf *n; 6278 uint8_t satype; 6279 6280 /* map proto to satype */ 6281 if ((satype = key_proto2satype(sav->sah->saidx.proto)) == 0) { 6282 ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n", 6283 __func__)); 6284 key_freesav(&sav); 6285 return key_senderror(so, m, EINVAL); 6286 } 6287 6288 /* create new sadb_msg to reply. */ 6289 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, 6290 mhp->msg->sadb_msg_pid); 6291 6292 key_freesav(&sav); 6293 if (!n) 6294 return key_senderror(so, m, ENOBUFS); 6295 6296 m_freem(m); 6297 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 6298 } 6299 } 6300 6301 /* XXX make it sysctl-configurable? */ 6302 static void 6303 key_getcomb_setlifetime(struct sadb_comb *comb) 6304 { 6305 6306 comb->sadb_comb_soft_allocations = 1; 6307 comb->sadb_comb_hard_allocations = 1; 6308 comb->sadb_comb_soft_bytes = 0; 6309 comb->sadb_comb_hard_bytes = 0; 6310 comb->sadb_comb_hard_addtime = 86400; /* 1 day */ 6311 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100; 6312 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */ 6313 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100; 6314 } 6315 6316 /* 6317 * XXX reorder combinations by preference 6318 * XXX no idea if the user wants ESP authentication or not 6319 */ 6320 static struct mbuf * 6321 key_getcomb_ealg(void) 6322 { 6323 struct sadb_comb *comb; 6324 const struct enc_xform *algo; 6325 struct mbuf *result = NULL, *m, *n; 6326 int encmin; 6327 int i, off, o; 6328 int totlen; 6329 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6330 6331 m = NULL; 6332 for (i = 1; i <= SADB_EALG_MAX; i++) { 6333 algo = enc_algorithm_lookup(i); 6334 if (algo == NULL) 6335 continue; 6336 6337 /* discard algorithms with key size smaller than system min */ 6338 if (_BITS(algo->maxkey) < V_ipsec_esp_keymin) 6339 continue; 6340 if (_BITS(algo->minkey) < V_ipsec_esp_keymin) 6341 encmin = V_ipsec_esp_keymin; 6342 else 6343 encmin = _BITS(algo->minkey); 6344 6345 if (V_ipsec_esp_auth) 6346 m = key_getcomb_ah(); 6347 else { 6348 IPSEC_ASSERT(l <= MLEN, 6349 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6350 MGET(m, M_NOWAIT, MT_DATA); 6351 if (m) { 6352 M_ALIGN(m, l); 6353 m->m_len = l; 6354 m->m_next = NULL; 6355 bzero(mtod(m, caddr_t), m->m_len); 6356 } 6357 } 6358 if (!m) 6359 goto fail; 6360 6361 totlen = 0; 6362 for (n = m; n; n = n->m_next) 6363 totlen += n->m_len; 6364 IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l)); 6365 6366 for (off = 0; off < totlen; off += l) { 6367 n = m_pulldown(m, off, l, &o); 6368 if (!n) { 6369 /* m is already freed */ 6370 goto fail; 6371 } 6372 comb = (struct sadb_comb *)(mtod(n, caddr_t) + o); 6373 bzero(comb, sizeof(*comb)); 6374 key_getcomb_setlifetime(comb); 6375 comb->sadb_comb_encrypt = i; 6376 comb->sadb_comb_encrypt_minbits = encmin; 6377 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); 6378 } 6379 6380 if (!result) 6381 result = m; 6382 else 6383 m_cat(result, m); 6384 } 6385 6386 return result; 6387 6388 fail: 6389 if (result) 6390 m_freem(result); 6391 return NULL; 6392 } 6393 6394 static void 6395 key_getsizes_ah(const struct auth_hash *ah, int alg, u_int16_t* min, 6396 u_int16_t* max) 6397 { 6398 6399 *min = *max = ah->hashsize; 6400 if (ah->keysize == 0) { 6401 /* 6402 * Transform takes arbitrary key size but algorithm 6403 * key size is restricted. Enforce this here. 6404 */ 6405 switch (alg) { 6406 case SADB_X_AALG_MD5: *min = *max = 16; break; 6407 case SADB_X_AALG_SHA: *min = *max = 20; break; 6408 case SADB_X_AALG_NULL: *min = 1; *max = 256; break; 6409 case SADB_X_AALG_SHA2_256: *min = *max = 32; break; 6410 case SADB_X_AALG_SHA2_384: *min = *max = 48; break; 6411 case SADB_X_AALG_SHA2_512: *min = *max = 64; break; 6412 default: 6413 DPRINTF(("%s: unknown AH algorithm %u\n", 6414 __func__, alg)); 6415 break; 6416 } 6417 } 6418 } 6419 6420 /* 6421 * XXX reorder combinations by preference 6422 */ 6423 static struct mbuf * 6424 key_getcomb_ah() 6425 { 6426 const struct auth_hash *algo; 6427 struct sadb_comb *comb; 6428 struct mbuf *m; 6429 u_int16_t minkeysize, maxkeysize; 6430 int i; 6431 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6432 6433 m = NULL; 6434 for (i = 1; i <= SADB_AALG_MAX; i++) { 6435 #if 1 6436 /* we prefer HMAC algorithms, not old algorithms */ 6437 if (i != SADB_AALG_SHA1HMAC && 6438 i != SADB_AALG_MD5HMAC && 6439 i != SADB_X_AALG_SHA2_256 && 6440 i != SADB_X_AALG_SHA2_384 && 6441 i != SADB_X_AALG_SHA2_512) 6442 continue; 6443 #endif 6444 algo = auth_algorithm_lookup(i); 6445 if (!algo) 6446 continue; 6447 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); 6448 /* discard algorithms with key size smaller than system min */ 6449 if (_BITS(minkeysize) < V_ipsec_ah_keymin) 6450 continue; 6451 6452 if (!m) { 6453 IPSEC_ASSERT(l <= MLEN, 6454 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6455 MGET(m, M_NOWAIT, MT_DATA); 6456 if (m) { 6457 M_ALIGN(m, l); 6458 m->m_len = l; 6459 m->m_next = NULL; 6460 } 6461 } else 6462 M_PREPEND(m, l, M_NOWAIT); 6463 if (!m) 6464 return NULL; 6465 6466 comb = mtod(m, struct sadb_comb *); 6467 bzero(comb, sizeof(*comb)); 6468 key_getcomb_setlifetime(comb); 6469 comb->sadb_comb_auth = i; 6470 comb->sadb_comb_auth_minbits = _BITS(minkeysize); 6471 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); 6472 } 6473 6474 return m; 6475 } 6476 6477 /* 6478 * not really an official behavior. discussed in pf_key@inner.net in Sep2000. 6479 * XXX reorder combinations by preference 6480 */ 6481 static struct mbuf * 6482 key_getcomb_ipcomp() 6483 { 6484 const struct comp_algo *algo; 6485 struct sadb_comb *comb; 6486 struct mbuf *m; 6487 int i; 6488 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6489 6490 m = NULL; 6491 for (i = 1; i <= SADB_X_CALG_MAX; i++) { 6492 algo = comp_algorithm_lookup(i); 6493 if (!algo) 6494 continue; 6495 6496 if (!m) { 6497 IPSEC_ASSERT(l <= MLEN, 6498 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6499 MGET(m, M_NOWAIT, MT_DATA); 6500 if (m) { 6501 M_ALIGN(m, l); 6502 m->m_len = l; 6503 m->m_next = NULL; 6504 } 6505 } else 6506 M_PREPEND(m, l, M_NOWAIT); 6507 if (!m) 6508 return NULL; 6509 6510 comb = mtod(m, struct sadb_comb *); 6511 bzero(comb, sizeof(*comb)); 6512 key_getcomb_setlifetime(comb); 6513 comb->sadb_comb_encrypt = i; 6514 /* what should we set into sadb_comb_*_{min,max}bits? */ 6515 } 6516 6517 return m; 6518 } 6519 6520 /* 6521 * XXX no way to pass mode (transport/tunnel) to userland 6522 * XXX replay checking? 6523 * XXX sysctl interface to ipsec_{ah,esp}_keymin 6524 */ 6525 static struct mbuf * 6526 key_getprop(const struct secasindex *saidx) 6527 { 6528 struct sadb_prop *prop; 6529 struct mbuf *m, *n; 6530 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); 6531 int totlen; 6532 6533 switch (saidx->proto) { 6534 case IPPROTO_ESP: 6535 m = key_getcomb_ealg(); 6536 break; 6537 case IPPROTO_AH: 6538 m = key_getcomb_ah(); 6539 break; 6540 case IPPROTO_IPCOMP: 6541 m = key_getcomb_ipcomp(); 6542 break; 6543 default: 6544 return NULL; 6545 } 6546 6547 if (!m) 6548 return NULL; 6549 M_PREPEND(m, l, M_NOWAIT); 6550 if (!m) 6551 return NULL; 6552 6553 totlen = 0; 6554 for (n = m; n; n = n->m_next) 6555 totlen += n->m_len; 6556 6557 prop = mtod(m, struct sadb_prop *); 6558 bzero(prop, sizeof(*prop)); 6559 prop->sadb_prop_len = PFKEY_UNIT64(totlen); 6560 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 6561 prop->sadb_prop_replay = 32; /* XXX */ 6562 6563 return m; 6564 } 6565 6566 /* 6567 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2(). 6568 * send 6569 * <base, SA, address(SD), (address(P)), x_policy, 6570 * (identity(SD),) (sensitivity,) proposal> 6571 * to KMD, and expect to receive 6572 * <base> with SADB_ACQUIRE if error occurred, 6573 * or 6574 * <base, src address, dst address, (SPI range)> with SADB_GETSPI 6575 * from KMD by PF_KEY. 6576 * 6577 * XXX x_policy is outside of RFC2367 (KAME extension). 6578 * XXX sensitivity is not supported. 6579 * XXX for ipcomp, RFC2367 does not define how to fill in proposal. 6580 * see comment for key_getcomb_ipcomp(). 6581 * 6582 * OUT: 6583 * 0 : succeed 6584 * others: error number 6585 */ 6586 static int 6587 key_acquire(const struct secasindex *saidx, struct secpolicy *sp) 6588 { 6589 union sockaddr_union addr; 6590 struct mbuf *result, *m; 6591 uint32_t seq; 6592 int error; 6593 uint16_t ul_proto; 6594 uint8_t mask, satype; 6595 6596 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 6597 satype = key_proto2satype(saidx->proto); 6598 IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto)); 6599 6600 error = -1; 6601 result = NULL; 6602 ul_proto = IPSEC_ULPROTO_ANY; 6603 6604 /* Get seq number to check whether sending message or not. */ 6605 seq = key_getacq(saidx, &error); 6606 if (seq == 0) 6607 return (error); 6608 6609 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0); 6610 if (!m) { 6611 error = ENOBUFS; 6612 goto fail; 6613 } 6614 result = m; 6615 6616 /* 6617 * set sadb_address for saidx's. 6618 * 6619 * Note that if sp is supplied, then we're being called from 6620 * key_allocsa_policy() and should supply port and protocol 6621 * information. 6622 * XXXAE: why only TCP and UDP? ICMP and SCTP looks applicable too. 6623 * XXXAE: probably we can handle this in the ipsec[46]_allocsa(). 6624 * XXXAE: it looks like we should save this info in the ACQ entry. 6625 */ 6626 if (sp != NULL && (sp->spidx.ul_proto == IPPROTO_TCP || 6627 sp->spidx.ul_proto == IPPROTO_UDP)) 6628 ul_proto = sp->spidx.ul_proto; 6629 6630 addr = saidx->src; 6631 mask = FULLMASK; 6632 if (ul_proto != IPSEC_ULPROTO_ANY) { 6633 switch (sp->spidx.src.sa.sa_family) { 6634 case AF_INET: 6635 if (sp->spidx.src.sin.sin_port != IPSEC_PORT_ANY) { 6636 addr.sin.sin_port = sp->spidx.src.sin.sin_port; 6637 mask = sp->spidx.prefs; 6638 } 6639 break; 6640 case AF_INET6: 6641 if (sp->spidx.src.sin6.sin6_port != IPSEC_PORT_ANY) { 6642 addr.sin6.sin6_port = 6643 sp->spidx.src.sin6.sin6_port; 6644 mask = sp->spidx.prefs; 6645 } 6646 break; 6647 default: 6648 break; 6649 } 6650 } 6651 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &addr.sa, mask, ul_proto); 6652 if (!m) { 6653 error = ENOBUFS; 6654 goto fail; 6655 } 6656 m_cat(result, m); 6657 6658 addr = saidx->dst; 6659 mask = FULLMASK; 6660 if (ul_proto != IPSEC_ULPROTO_ANY) { 6661 switch (sp->spidx.dst.sa.sa_family) { 6662 case AF_INET: 6663 if (sp->spidx.dst.sin.sin_port != IPSEC_PORT_ANY) { 6664 addr.sin.sin_port = sp->spidx.dst.sin.sin_port; 6665 mask = sp->spidx.prefd; 6666 } 6667 break; 6668 case AF_INET6: 6669 if (sp->spidx.dst.sin6.sin6_port != IPSEC_PORT_ANY) { 6670 addr.sin6.sin6_port = 6671 sp->spidx.dst.sin6.sin6_port; 6672 mask = sp->spidx.prefd; 6673 } 6674 break; 6675 default: 6676 break; 6677 } 6678 } 6679 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &addr.sa, mask, ul_proto); 6680 if (!m) { 6681 error = ENOBUFS; 6682 goto fail; 6683 } 6684 m_cat(result, m); 6685 6686 /* XXX proxy address (optional) */ 6687 6688 /* 6689 * Set sadb_x_policy. This is KAME extension to RFC2367. 6690 */ 6691 if (sp != NULL) { 6692 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id, 6693 sp->priority); 6694 if (!m) { 6695 error = ENOBUFS; 6696 goto fail; 6697 } 6698 m_cat(result, m); 6699 } 6700 6701 /* 6702 * Set sadb_x_sa2 extension if saidx->reqid is not zero. 6703 * This is FreeBSD extension to RFC2367. 6704 */ 6705 if (saidx->reqid != 0) { 6706 m = key_setsadbxsa2(saidx->mode, 0, saidx->reqid); 6707 if (m == NULL) { 6708 error = ENOBUFS; 6709 goto fail; 6710 } 6711 m_cat(result, m); 6712 } 6713 /* XXX identity (optional) */ 6714 #if 0 6715 if (idexttype && fqdn) { 6716 /* create identity extension (FQDN) */ 6717 struct sadb_ident *id; 6718 int fqdnlen; 6719 6720 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ 6721 id = (struct sadb_ident *)p; 6722 bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6723 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6724 id->sadb_ident_exttype = idexttype; 6725 id->sadb_ident_type = SADB_IDENTTYPE_FQDN; 6726 bcopy(fqdn, id + 1, fqdnlen); 6727 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); 6728 } 6729 6730 if (idexttype) { 6731 /* create identity extension (USERFQDN) */ 6732 struct sadb_ident *id; 6733 int userfqdnlen; 6734 6735 if (userfqdn) { 6736 /* +1 for terminating-NUL */ 6737 userfqdnlen = strlen(userfqdn) + 1; 6738 } else 6739 userfqdnlen = 0; 6740 id = (struct sadb_ident *)p; 6741 bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6742 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6743 id->sadb_ident_exttype = idexttype; 6744 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; 6745 /* XXX is it correct? */ 6746 if (curproc && curproc->p_cred) 6747 id->sadb_ident_id = curproc->p_cred->p_ruid; 6748 if (userfqdn && userfqdnlen) 6749 bcopy(userfqdn, id + 1, userfqdnlen); 6750 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); 6751 } 6752 #endif 6753 6754 /* XXX sensitivity (optional) */ 6755 6756 /* create proposal/combination extension */ 6757 m = key_getprop(saidx); 6758 #if 0 6759 /* 6760 * spec conformant: always attach proposal/combination extension, 6761 * the problem is that we have no way to attach it for ipcomp, 6762 * due to the way sadb_comb is declared in RFC2367. 6763 */ 6764 if (!m) { 6765 error = ENOBUFS; 6766 goto fail; 6767 } 6768 m_cat(result, m); 6769 #else 6770 /* 6771 * outside of spec; make proposal/combination extension optional. 6772 */ 6773 if (m) 6774 m_cat(result, m); 6775 #endif 6776 6777 if ((result->m_flags & M_PKTHDR) == 0) { 6778 error = EINVAL; 6779 goto fail; 6780 } 6781 6782 if (result->m_len < sizeof(struct sadb_msg)) { 6783 result = m_pullup(result, sizeof(struct sadb_msg)); 6784 if (result == NULL) { 6785 error = ENOBUFS; 6786 goto fail; 6787 } 6788 } 6789 6790 result->m_pkthdr.len = 0; 6791 for (m = result; m; m = m->m_next) 6792 result->m_pkthdr.len += m->m_len; 6793 6794 mtod(result, struct sadb_msg *)->sadb_msg_len = 6795 PFKEY_UNIT64(result->m_pkthdr.len); 6796 6797 KEYDBG(KEY_STAMP, 6798 printf("%s: SP(%p)\n", __func__, sp)); 6799 KEYDBG(KEY_DATA, kdebug_secasindex(saidx, NULL)); 6800 6801 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6802 6803 fail: 6804 if (result) 6805 m_freem(result); 6806 return error; 6807 } 6808 6809 static uint32_t 6810 key_newacq(const struct secasindex *saidx, int *perror) 6811 { 6812 struct secacq *acq; 6813 uint32_t seq; 6814 6815 acq = malloc(sizeof(*acq), M_IPSEC_SAQ, M_NOWAIT | M_ZERO); 6816 if (acq == NULL) { 6817 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6818 *perror = ENOBUFS; 6819 return (0); 6820 } 6821 6822 /* copy secindex */ 6823 bcopy(saidx, &acq->saidx, sizeof(acq->saidx)); 6824 acq->created = time_second; 6825 acq->count = 0; 6826 6827 /* add to acqtree */ 6828 ACQ_LOCK(); 6829 seq = acq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq); 6830 LIST_INSERT_HEAD(&V_acqtree, acq, chain); 6831 LIST_INSERT_HEAD(ACQADDRHASH_HASH(saidx), acq, addrhash); 6832 LIST_INSERT_HEAD(ACQSEQHASH_HASH(seq), acq, seqhash); 6833 ACQ_UNLOCK(); 6834 *perror = 0; 6835 return (seq); 6836 } 6837 6838 static uint32_t 6839 key_getacq(const struct secasindex *saidx, int *perror) 6840 { 6841 struct secacq *acq; 6842 uint32_t seq; 6843 6844 ACQ_LOCK(); 6845 LIST_FOREACH(acq, ACQADDRHASH_HASH(saidx), addrhash) { 6846 if (key_cmpsaidx(&acq->saidx, saidx, CMP_EXACTLY)) { 6847 if (acq->count > V_key_blockacq_count) { 6848 /* 6849 * Reset counter and send message. 6850 * Also reset created time to keep ACQ for 6851 * this saidx. 6852 */ 6853 acq->created = time_second; 6854 acq->count = 0; 6855 seq = acq->seq; 6856 } else { 6857 /* 6858 * Increment counter and do nothing. 6859 * We send SADB_ACQUIRE message only 6860 * for each V_key_blockacq_count packet. 6861 */ 6862 acq->count++; 6863 seq = 0; 6864 } 6865 break; 6866 } 6867 } 6868 ACQ_UNLOCK(); 6869 if (acq != NULL) { 6870 *perror = 0; 6871 return (seq); 6872 } 6873 /* allocate new entry */ 6874 return (key_newacq(saidx, perror)); 6875 } 6876 6877 static int 6878 key_acqreset(uint32_t seq) 6879 { 6880 struct secacq *acq; 6881 6882 ACQ_LOCK(); 6883 LIST_FOREACH(acq, ACQSEQHASH_HASH(seq), seqhash) { 6884 if (acq->seq == seq) { 6885 acq->count = 0; 6886 acq->created = time_second; 6887 break; 6888 } 6889 } 6890 ACQ_UNLOCK(); 6891 if (acq == NULL) 6892 return (ESRCH); 6893 return (0); 6894 } 6895 /* 6896 * Mark ACQ entry as stale to remove it in key_flush_acq(). 6897 * Called after successful SADB_GETSPI message. 6898 */ 6899 static int 6900 key_acqdone(const struct secasindex *saidx, uint32_t seq) 6901 { 6902 struct secacq *acq; 6903 6904 ACQ_LOCK(); 6905 LIST_FOREACH(acq, ACQSEQHASH_HASH(seq), seqhash) { 6906 if (acq->seq == seq) 6907 break; 6908 } 6909 if (acq != NULL) { 6910 if (key_cmpsaidx(&acq->saidx, saidx, CMP_EXACTLY) == 0) { 6911 ipseclog((LOG_DEBUG, 6912 "%s: Mismatched saidx for ACQ %u", __func__, seq)); 6913 acq = NULL; 6914 } else { 6915 acq->created = 0; 6916 } 6917 } else { 6918 ipseclog((LOG_DEBUG, 6919 "%s: ACQ %u is not found.", __func__, seq)); 6920 } 6921 ACQ_UNLOCK(); 6922 if (acq == NULL) 6923 return (ESRCH); 6924 return (0); 6925 } 6926 6927 static struct secspacq * 6928 key_newspacq(struct secpolicyindex *spidx) 6929 { 6930 struct secspacq *acq; 6931 6932 /* get new entry */ 6933 acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 6934 if (acq == NULL) { 6935 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6936 return NULL; 6937 } 6938 6939 /* copy secindex */ 6940 bcopy(spidx, &acq->spidx, sizeof(acq->spidx)); 6941 acq->created = time_second; 6942 acq->count = 0; 6943 6944 /* add to spacqtree */ 6945 SPACQ_LOCK(); 6946 LIST_INSERT_HEAD(&V_spacqtree, acq, chain); 6947 SPACQ_UNLOCK(); 6948 6949 return acq; 6950 } 6951 6952 static struct secspacq * 6953 key_getspacq(struct secpolicyindex *spidx) 6954 { 6955 struct secspacq *acq; 6956 6957 SPACQ_LOCK(); 6958 LIST_FOREACH(acq, &V_spacqtree, chain) { 6959 if (key_cmpspidx_exactly(spidx, &acq->spidx)) { 6960 /* NB: return holding spacq_lock */ 6961 return acq; 6962 } 6963 } 6964 SPACQ_UNLOCK(); 6965 6966 return NULL; 6967 } 6968 6969 /* 6970 * SADB_ACQUIRE processing, 6971 * in first situation, is receiving 6972 * <base> 6973 * from the ikmpd, and clear sequence of its secasvar entry. 6974 * 6975 * In second situation, is receiving 6976 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6977 * from a user land process, and return 6978 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6979 * to the socket. 6980 * 6981 * m will always be freed. 6982 */ 6983 static int 6984 key_acquire2(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 6985 { 6986 SAHTREE_RLOCK_TRACKER; 6987 struct sadb_address *src0, *dst0; 6988 struct secasindex saidx; 6989 struct secashead *sah; 6990 uint32_t reqid; 6991 int error; 6992 uint8_t mode, proto; 6993 6994 IPSEC_ASSERT(so != NULL, ("null socket")); 6995 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6996 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6997 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6998 6999 /* 7000 * Error message from KMd. 7001 * We assume that if error was occurred in IKEd, the length of PFKEY 7002 * message is equal to the size of sadb_msg structure. 7003 * We do not raise error even if error occurred in this function. 7004 */ 7005 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { 7006 /* check sequence number */ 7007 if (mhp->msg->sadb_msg_seq == 0 || 7008 mhp->msg->sadb_msg_errno == 0) { 7009 ipseclog((LOG_DEBUG, "%s: must specify sequence " 7010 "number and errno.\n", __func__)); 7011 } else { 7012 /* 7013 * IKEd reported that error occurred. 7014 * XXXAE: what it expects from the kernel? 7015 * Probably we should send SADB_ACQUIRE again? 7016 * If so, reset ACQ's state. 7017 * XXXAE: it looks useless. 7018 */ 7019 key_acqreset(mhp->msg->sadb_msg_seq); 7020 } 7021 m_freem(m); 7022 return (0); 7023 } 7024 7025 /* 7026 * This message is from user land. 7027 */ 7028 7029 /* map satype to proto */ 7030 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 7031 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 7032 __func__)); 7033 return key_senderror(so, m, EINVAL); 7034 } 7035 7036 if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || 7037 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) || 7038 SADB_CHECKHDR(mhp, SADB_EXT_PROPOSAL)) { 7039 ipseclog((LOG_DEBUG, 7040 "%s: invalid message: missing required header.\n", 7041 __func__)); 7042 return key_senderror(so, m, EINVAL); 7043 } 7044 if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || 7045 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST) || 7046 SADB_CHECKLEN(mhp, SADB_EXT_PROPOSAL)) { 7047 ipseclog((LOG_DEBUG, 7048 "%s: invalid message: wrong header size.\n", __func__)); 7049 return key_senderror(so, m, EINVAL); 7050 } 7051 7052 if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) { 7053 mode = IPSEC_MODE_ANY; 7054 reqid = 0; 7055 } else { 7056 if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) { 7057 ipseclog((LOG_DEBUG, 7058 "%s: invalid message: wrong header size.\n", 7059 __func__)); 7060 return key_senderror(so, m, EINVAL); 7061 } 7062 mode = ((struct sadb_x_sa2 *) 7063 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 7064 reqid = ((struct sadb_x_sa2 *) 7065 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 7066 } 7067 7068 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 7069 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 7070 7071 error = key_checksockaddrs((struct sockaddr *)(src0 + 1), 7072 (struct sockaddr *)(dst0 + 1)); 7073 if (error != 0) { 7074 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); 7075 return key_senderror(so, m, EINVAL); 7076 } 7077 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 7078 7079 /* get a SA index */ 7080 SAHTREE_RLOCK(); 7081 LIST_FOREACH(sah, SAHADDRHASH_HASH(&saidx), addrhash) { 7082 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID)) 7083 break; 7084 } 7085 SAHTREE_RUNLOCK(); 7086 if (sah != NULL) { 7087 ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__)); 7088 return key_senderror(so, m, EEXIST); 7089 } 7090 7091 error = key_acquire(&saidx, NULL); 7092 if (error != 0) { 7093 ipseclog((LOG_DEBUG, 7094 "%s: error %d returned from key_acquire()\n", 7095 __func__, error)); 7096 return key_senderror(so, m, error); 7097 } 7098 m_freem(m); 7099 return (0); 7100 } 7101 7102 /* 7103 * SADB_REGISTER processing. 7104 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. 7105 * receive 7106 * <base> 7107 * from the ikmpd, and register a socket to send PF_KEY messages, 7108 * and send 7109 * <base, supported> 7110 * to KMD by PF_KEY. 7111 * If socket is detached, must free from regnode. 7112 * 7113 * m will always be freed. 7114 */ 7115 static int 7116 key_register(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 7117 { 7118 struct secreg *reg, *newreg = NULL; 7119 7120 IPSEC_ASSERT(so != NULL, ("null socket")); 7121 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7122 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7123 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7124 7125 /* check for invalid register message */ 7126 if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0])) 7127 return key_senderror(so, m, EINVAL); 7128 7129 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ 7130 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) 7131 goto setmsg; 7132 7133 /* check whether existing or not */ 7134 REGTREE_LOCK(); 7135 LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) { 7136 if (reg->so == so) { 7137 REGTREE_UNLOCK(); 7138 ipseclog((LOG_DEBUG, "%s: socket exists already.\n", 7139 __func__)); 7140 return key_senderror(so, m, EEXIST); 7141 } 7142 } 7143 7144 /* create regnode */ 7145 newreg = malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO); 7146 if (newreg == NULL) { 7147 REGTREE_UNLOCK(); 7148 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 7149 return key_senderror(so, m, ENOBUFS); 7150 } 7151 7152 newreg->so = so; 7153 ((struct keycb *)sotorawcb(so))->kp_registered++; 7154 7155 /* add regnode to regtree. */ 7156 LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain); 7157 REGTREE_UNLOCK(); 7158 7159 setmsg: 7160 { 7161 struct mbuf *n; 7162 struct sadb_msg *newmsg; 7163 struct sadb_supported *sup; 7164 u_int len, alen, elen; 7165 int off; 7166 int i; 7167 struct sadb_alg *alg; 7168 7169 /* create new sadb_msg to reply. */ 7170 alen = 0; 7171 for (i = 1; i <= SADB_AALG_MAX; i++) { 7172 if (auth_algorithm_lookup(i)) 7173 alen += sizeof(struct sadb_alg); 7174 } 7175 if (alen) 7176 alen += sizeof(struct sadb_supported); 7177 elen = 0; 7178 for (i = 1; i <= SADB_EALG_MAX; i++) { 7179 if (enc_algorithm_lookup(i)) 7180 elen += sizeof(struct sadb_alg); 7181 } 7182 if (elen) 7183 elen += sizeof(struct sadb_supported); 7184 7185 len = sizeof(struct sadb_msg) + alen + elen; 7186 7187 if (len > MCLBYTES) 7188 return key_senderror(so, m, ENOBUFS); 7189 7190 MGETHDR(n, M_NOWAIT, MT_DATA); 7191 if (len > MHLEN) { 7192 if (!(MCLGET(n, M_NOWAIT))) { 7193 m_freem(n); 7194 n = NULL; 7195 } 7196 } 7197 if (!n) 7198 return key_senderror(so, m, ENOBUFS); 7199 7200 n->m_pkthdr.len = n->m_len = len; 7201 n->m_next = NULL; 7202 off = 0; 7203 7204 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 7205 newmsg = mtod(n, struct sadb_msg *); 7206 newmsg->sadb_msg_errno = 0; 7207 newmsg->sadb_msg_len = PFKEY_UNIT64(len); 7208 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 7209 7210 /* for authentication algorithm */ 7211 if (alen) { 7212 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 7213 sup->sadb_supported_len = PFKEY_UNIT64(alen); 7214 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 7215 off += PFKEY_ALIGN8(sizeof(*sup)); 7216 7217 for (i = 1; i <= SADB_AALG_MAX; i++) { 7218 const struct auth_hash *aalgo; 7219 u_int16_t minkeysize, maxkeysize; 7220 7221 aalgo = auth_algorithm_lookup(i); 7222 if (!aalgo) 7223 continue; 7224 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 7225 alg->sadb_alg_id = i; 7226 alg->sadb_alg_ivlen = 0; 7227 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); 7228 alg->sadb_alg_minbits = _BITS(minkeysize); 7229 alg->sadb_alg_maxbits = _BITS(maxkeysize); 7230 off += PFKEY_ALIGN8(sizeof(*alg)); 7231 } 7232 } 7233 7234 /* for encryption algorithm */ 7235 if (elen) { 7236 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 7237 sup->sadb_supported_len = PFKEY_UNIT64(elen); 7238 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 7239 off += PFKEY_ALIGN8(sizeof(*sup)); 7240 7241 for (i = 1; i <= SADB_EALG_MAX; i++) { 7242 const struct enc_xform *ealgo; 7243 7244 ealgo = enc_algorithm_lookup(i); 7245 if (!ealgo) 7246 continue; 7247 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 7248 alg->sadb_alg_id = i; 7249 alg->sadb_alg_ivlen = ealgo->ivsize; 7250 alg->sadb_alg_minbits = _BITS(ealgo->minkey); 7251 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); 7252 off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); 7253 } 7254 } 7255 7256 IPSEC_ASSERT(off == len, 7257 ("length assumption failed (off %u len %u)", off, len)); 7258 7259 m_freem(m); 7260 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); 7261 } 7262 } 7263 7264 /* 7265 * free secreg entry registered. 7266 * XXX: I want to do free a socket marked done SADB_RESIGER to socket. 7267 */ 7268 void 7269 key_freereg(struct socket *so) 7270 { 7271 struct secreg *reg; 7272 int i; 7273 7274 IPSEC_ASSERT(so != NULL, ("NULL so")); 7275 7276 /* 7277 * check whether existing or not. 7278 * check all type of SA, because there is a potential that 7279 * one socket is registered to multiple type of SA. 7280 */ 7281 REGTREE_LOCK(); 7282 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 7283 LIST_FOREACH(reg, &V_regtree[i], chain) { 7284 if (reg->so == so && __LIST_CHAINED(reg)) { 7285 LIST_REMOVE(reg, chain); 7286 free(reg, M_IPSEC_SAR); 7287 break; 7288 } 7289 } 7290 } 7291 REGTREE_UNLOCK(); 7292 } 7293 7294 /* 7295 * SADB_EXPIRE processing 7296 * send 7297 * <base, SA, SA2, lifetime(C and one of HS), address(SD)> 7298 * to KMD by PF_KEY. 7299 * NOTE: We send only soft lifetime extension. 7300 * 7301 * OUT: 0 : succeed 7302 * others : error number 7303 */ 7304 static int 7305 key_expire(struct secasvar *sav, int hard) 7306 { 7307 struct mbuf *result = NULL, *m; 7308 struct sadb_lifetime *lt; 7309 uint32_t replay_count; 7310 int error, len; 7311 uint8_t satype; 7312 7313 IPSEC_ASSERT (sav != NULL, ("null sav")); 7314 IPSEC_ASSERT (sav->sah != NULL, ("null sa header")); 7315 7316 KEYDBG(KEY_STAMP, 7317 printf("%s: SA(%p) expired %s lifetime\n", __func__, 7318 sav, hard ? "hard": "soft")); 7319 KEYDBG(KEY_DATA, kdebug_secasv(sav)); 7320 /* set msg header */ 7321 satype = key_proto2satype(sav->sah->saidx.proto); 7322 IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype)); 7323 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt); 7324 if (!m) { 7325 error = ENOBUFS; 7326 goto fail; 7327 } 7328 result = m; 7329 7330 /* create SA extension */ 7331 m = key_setsadbsa(sav); 7332 if (!m) { 7333 error = ENOBUFS; 7334 goto fail; 7335 } 7336 m_cat(result, m); 7337 7338 /* create SA extension */ 7339 SECASVAR_LOCK(sav); 7340 replay_count = sav->replay ? sav->replay->count : 0; 7341 SECASVAR_UNLOCK(sav); 7342 7343 m = key_setsadbxsa2(sav->sah->saidx.mode, replay_count, 7344 sav->sah->saidx.reqid); 7345 if (!m) { 7346 error = ENOBUFS; 7347 goto fail; 7348 } 7349 m_cat(result, m); 7350 7351 if (sav->replay && sav->replay->wsize > UINT8_MAX) { 7352 m = key_setsadbxsareplay(sav->replay->wsize); 7353 if (!m) { 7354 error = ENOBUFS; 7355 goto fail; 7356 } 7357 m_cat(result, m); 7358 } 7359 7360 /* create lifetime extension (current and soft) */ 7361 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 7362 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 7363 if (m == NULL) { 7364 error = ENOBUFS; 7365 goto fail; 7366 } 7367 m_align(m, len); 7368 m->m_len = len; 7369 bzero(mtod(m, caddr_t), len); 7370 lt = mtod(m, struct sadb_lifetime *); 7371 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 7372 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 7373 lt->sadb_lifetime_allocations = 7374 (uint32_t)counter_u64_fetch(sav->lft_c_allocations); 7375 lt->sadb_lifetime_bytes = 7376 counter_u64_fetch(sav->lft_c_bytes); 7377 lt->sadb_lifetime_addtime = sav->created; 7378 lt->sadb_lifetime_usetime = sav->firstused; 7379 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 7380 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 7381 if (hard) { 7382 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 7383 lt->sadb_lifetime_allocations = sav->lft_h->allocations; 7384 lt->sadb_lifetime_bytes = sav->lft_h->bytes; 7385 lt->sadb_lifetime_addtime = sav->lft_h->addtime; 7386 lt->sadb_lifetime_usetime = sav->lft_h->usetime; 7387 } else { 7388 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; 7389 lt->sadb_lifetime_allocations = sav->lft_s->allocations; 7390 lt->sadb_lifetime_bytes = sav->lft_s->bytes; 7391 lt->sadb_lifetime_addtime = sav->lft_s->addtime; 7392 lt->sadb_lifetime_usetime = sav->lft_s->usetime; 7393 } 7394 m_cat(result, m); 7395 7396 /* set sadb_address for source */ 7397 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 7398 &sav->sah->saidx.src.sa, 7399 FULLMASK, IPSEC_ULPROTO_ANY); 7400 if (!m) { 7401 error = ENOBUFS; 7402 goto fail; 7403 } 7404 m_cat(result, m); 7405 7406 /* set sadb_address for destination */ 7407 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 7408 &sav->sah->saidx.dst.sa, 7409 FULLMASK, IPSEC_ULPROTO_ANY); 7410 if (!m) { 7411 error = ENOBUFS; 7412 goto fail; 7413 } 7414 m_cat(result, m); 7415 7416 /* 7417 * XXX-BZ Handle NAT-T extensions here. 7418 * XXXAE: it doesn't seem quite useful. IKEs should not depend on 7419 * this information, we report only significant SA fields. 7420 */ 7421 7422 if ((result->m_flags & M_PKTHDR) == 0) { 7423 error = EINVAL; 7424 goto fail; 7425 } 7426 7427 if (result->m_len < sizeof(struct sadb_msg)) { 7428 result = m_pullup(result, sizeof(struct sadb_msg)); 7429 if (result == NULL) { 7430 error = ENOBUFS; 7431 goto fail; 7432 } 7433 } 7434 7435 result->m_pkthdr.len = 0; 7436 for (m = result; m; m = m->m_next) 7437 result->m_pkthdr.len += m->m_len; 7438 7439 mtod(result, struct sadb_msg *)->sadb_msg_len = 7440 PFKEY_UNIT64(result->m_pkthdr.len); 7441 7442 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 7443 7444 fail: 7445 if (result) 7446 m_freem(result); 7447 return error; 7448 } 7449 7450 static void 7451 key_freesah_flushed(struct secashead_queue *flushq) 7452 { 7453 struct secashead *sah, *nextsah; 7454 struct secasvar *sav, *nextsav; 7455 7456 sah = TAILQ_FIRST(flushq); 7457 while (sah != NULL) { 7458 sav = TAILQ_FIRST(&sah->savtree_larval); 7459 while (sav != NULL) { 7460 nextsav = TAILQ_NEXT(sav, chain); 7461 TAILQ_REMOVE(&sah->savtree_larval, sav, chain); 7462 key_freesav(&sav); /* release last reference */ 7463 key_freesah(&sah); /* release reference from SAV */ 7464 sav = nextsav; 7465 } 7466 sav = TAILQ_FIRST(&sah->savtree_alive); 7467 while (sav != NULL) { 7468 nextsav = TAILQ_NEXT(sav, chain); 7469 TAILQ_REMOVE(&sah->savtree_alive, sav, chain); 7470 key_freesav(&sav); /* release last reference */ 7471 key_freesah(&sah); /* release reference from SAV */ 7472 sav = nextsav; 7473 } 7474 nextsah = TAILQ_NEXT(sah, chain); 7475 key_freesah(&sah); /* release last reference */ 7476 sah = nextsah; 7477 } 7478 } 7479 7480 /* 7481 * SADB_FLUSH processing 7482 * receive 7483 * <base> 7484 * from the ikmpd, and free all entries in secastree. 7485 * and send, 7486 * <base> 7487 * to the ikmpd. 7488 * NOTE: to do is only marking SADB_SASTATE_DEAD. 7489 * 7490 * m will always be freed. 7491 */ 7492 static int 7493 key_flush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 7494 { 7495 struct secashead_queue flushq; 7496 struct sadb_msg *newmsg; 7497 struct secashead *sah, *nextsah; 7498 struct secasvar *sav; 7499 uint8_t proto; 7500 int i; 7501 7502 IPSEC_ASSERT(so != NULL, ("null socket")); 7503 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7504 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7505 7506 /* map satype to proto */ 7507 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 7508 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 7509 __func__)); 7510 return key_senderror(so, m, EINVAL); 7511 } 7512 KEYDBG(KEY_STAMP, 7513 printf("%s: proto %u\n", __func__, proto)); 7514 7515 TAILQ_INIT(&flushq); 7516 if (proto == IPSEC_PROTO_ANY) { 7517 /* no SATYPE specified, i.e. flushing all SA. */ 7518 SAHTREE_WLOCK(); 7519 /* Move all SAHs into flushq */ 7520 TAILQ_CONCAT(&flushq, &V_sahtree, chain); 7521 /* Flush all buckets in SPI hash */ 7522 for (i = 0; i < V_savhash_mask + 1; i++) 7523 LIST_INIT(&V_savhashtbl[i]); 7524 /* Flush all buckets in SAHADDRHASH */ 7525 for (i = 0; i < V_sahaddrhash_mask + 1; i++) 7526 LIST_INIT(&V_sahaddrhashtbl[i]); 7527 /* Mark all SAHs as unlinked */ 7528 TAILQ_FOREACH(sah, &flushq, chain) { 7529 sah->state = SADB_SASTATE_DEAD; 7530 /* 7531 * Callout handler makes its job using 7532 * RLOCK and drain queues. In case, when this 7533 * function will be called just before it 7534 * acquires WLOCK, we need to mark SAs as 7535 * unlinked to prevent second unlink. 7536 */ 7537 TAILQ_FOREACH(sav, &sah->savtree_larval, chain) { 7538 sav->state = SADB_SASTATE_DEAD; 7539 } 7540 TAILQ_FOREACH(sav, &sah->savtree_alive, chain) { 7541 sav->state = SADB_SASTATE_DEAD; 7542 } 7543 } 7544 SAHTREE_WUNLOCK(); 7545 } else { 7546 SAHTREE_WLOCK(); 7547 sah = TAILQ_FIRST(&V_sahtree); 7548 while (sah != NULL) { 7549 IPSEC_ASSERT(sah->state != SADB_SASTATE_DEAD, 7550 ("DEAD SAH %p in SADB_FLUSH", sah)); 7551 nextsah = TAILQ_NEXT(sah, chain); 7552 if (sah->saidx.proto != proto) { 7553 sah = nextsah; 7554 continue; 7555 } 7556 sah->state = SADB_SASTATE_DEAD; 7557 TAILQ_REMOVE(&V_sahtree, sah, chain); 7558 LIST_REMOVE(sah, addrhash); 7559 /* Unlink all SAs from SPI hash */ 7560 TAILQ_FOREACH(sav, &sah->savtree_larval, chain) { 7561 LIST_REMOVE(sav, spihash); 7562 sav->state = SADB_SASTATE_DEAD; 7563 } 7564 TAILQ_FOREACH(sav, &sah->savtree_alive, chain) { 7565 LIST_REMOVE(sav, spihash); 7566 sav->state = SADB_SASTATE_DEAD; 7567 } 7568 /* Add SAH into flushq */ 7569 TAILQ_INSERT_HEAD(&flushq, sah, chain); 7570 sah = nextsah; 7571 } 7572 SAHTREE_WUNLOCK(); 7573 } 7574 7575 key_freesah_flushed(&flushq); 7576 /* Free all queued SAs and SAHs */ 7577 if (m->m_len < sizeof(struct sadb_msg) || 7578 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 7579 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 7580 return key_senderror(so, m, ENOBUFS); 7581 } 7582 7583 if (m->m_next) 7584 m_freem(m->m_next); 7585 m->m_next = NULL; 7586 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); 7587 newmsg = mtod(m, struct sadb_msg *); 7588 newmsg->sadb_msg_errno = 0; 7589 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 7590 7591 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7592 } 7593 7594 /* 7595 * SADB_DUMP processing 7596 * dump all entries including status of DEAD in SAD. 7597 * receive 7598 * <base> 7599 * from the ikmpd, and dump all secasvar leaves 7600 * and send, 7601 * <base> ..... 7602 * to the ikmpd. 7603 * 7604 * m will always be freed. 7605 */ 7606 static int 7607 key_dump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 7608 { 7609 SAHTREE_RLOCK_TRACKER; 7610 struct secashead *sah; 7611 struct secasvar *sav; 7612 struct mbuf *n; 7613 uint32_t cnt; 7614 uint8_t proto, satype; 7615 7616 IPSEC_ASSERT(so != NULL, ("null socket")); 7617 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7618 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7619 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7620 7621 /* map satype to proto */ 7622 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 7623 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 7624 __func__)); 7625 return key_senderror(so, m, EINVAL); 7626 } 7627 7628 /* count sav entries to be sent to the userland. */ 7629 cnt = 0; 7630 SAHTREE_RLOCK(); 7631 TAILQ_FOREACH(sah, &V_sahtree, chain) { 7632 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC && 7633 proto != sah->saidx.proto) 7634 continue; 7635 7636 TAILQ_FOREACH(sav, &sah->savtree_larval, chain) 7637 cnt++; 7638 TAILQ_FOREACH(sav, &sah->savtree_alive, chain) 7639 cnt++; 7640 } 7641 7642 if (cnt == 0) { 7643 SAHTREE_RUNLOCK(); 7644 return key_senderror(so, m, ENOENT); 7645 } 7646 7647 /* send this to the userland, one at a time. */ 7648 TAILQ_FOREACH(sah, &V_sahtree, chain) { 7649 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC && 7650 proto != sah->saidx.proto) 7651 continue; 7652 7653 /* map proto to satype */ 7654 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 7655 SAHTREE_RUNLOCK(); 7656 ipseclog((LOG_DEBUG, "%s: there was invalid proto in " 7657 "SAD.\n", __func__)); 7658 return key_senderror(so, m, EINVAL); 7659 } 7660 TAILQ_FOREACH(sav, &sah->savtree_larval, chain) { 7661 n = key_setdumpsa(sav, SADB_DUMP, satype, 7662 --cnt, mhp->msg->sadb_msg_pid); 7663 if (n == NULL) { 7664 SAHTREE_RUNLOCK(); 7665 return key_senderror(so, m, ENOBUFS); 7666 } 7667 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 7668 } 7669 TAILQ_FOREACH(sav, &sah->savtree_alive, chain) { 7670 n = key_setdumpsa(sav, SADB_DUMP, satype, 7671 --cnt, mhp->msg->sadb_msg_pid); 7672 if (n == NULL) { 7673 SAHTREE_RUNLOCK(); 7674 return key_senderror(so, m, ENOBUFS); 7675 } 7676 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 7677 } 7678 } 7679 SAHTREE_RUNLOCK(); 7680 m_freem(m); 7681 return (0); 7682 } 7683 /* 7684 * SADB_X_PROMISC processing 7685 * 7686 * m will always be freed. 7687 */ 7688 static int 7689 key_promisc(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 7690 { 7691 int olen; 7692 7693 IPSEC_ASSERT(so != NULL, ("null socket")); 7694 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7695 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7696 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7697 7698 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7699 7700 if (olen < sizeof(struct sadb_msg)) { 7701 #if 1 7702 return key_senderror(so, m, EINVAL); 7703 #else 7704 m_freem(m); 7705 return 0; 7706 #endif 7707 } else if (olen == sizeof(struct sadb_msg)) { 7708 /* enable/disable promisc mode */ 7709 struct keycb *kp; 7710 7711 if ((kp = (struct keycb *)sotorawcb(so)) == NULL) 7712 return key_senderror(so, m, EINVAL); 7713 mhp->msg->sadb_msg_errno = 0; 7714 switch (mhp->msg->sadb_msg_satype) { 7715 case 0: 7716 case 1: 7717 kp->kp_promisc = mhp->msg->sadb_msg_satype; 7718 break; 7719 default: 7720 return key_senderror(so, m, EINVAL); 7721 } 7722 7723 /* send the original message back to everyone */ 7724 mhp->msg->sadb_msg_errno = 0; 7725 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7726 } else { 7727 /* send packet as is */ 7728 7729 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); 7730 7731 /* TODO: if sadb_msg_seq is specified, send to specific pid */ 7732 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7733 } 7734 } 7735 7736 static int (*key_typesw[])(struct socket *, struct mbuf *, 7737 const struct sadb_msghdr *) = { 7738 NULL, /* SADB_RESERVED */ 7739 key_getspi, /* SADB_GETSPI */ 7740 key_update, /* SADB_UPDATE */ 7741 key_add, /* SADB_ADD */ 7742 key_delete, /* SADB_DELETE */ 7743 key_get, /* SADB_GET */ 7744 key_acquire2, /* SADB_ACQUIRE */ 7745 key_register, /* SADB_REGISTER */ 7746 NULL, /* SADB_EXPIRE */ 7747 key_flush, /* SADB_FLUSH */ 7748 key_dump, /* SADB_DUMP */ 7749 key_promisc, /* SADB_X_PROMISC */ 7750 NULL, /* SADB_X_PCHANGE */ 7751 key_spdadd, /* SADB_X_SPDUPDATE */ 7752 key_spdadd, /* SADB_X_SPDADD */ 7753 key_spddelete, /* SADB_X_SPDDELETE */ 7754 key_spdget, /* SADB_X_SPDGET */ 7755 NULL, /* SADB_X_SPDACQUIRE */ 7756 key_spddump, /* SADB_X_SPDDUMP */ 7757 key_spdflush, /* SADB_X_SPDFLUSH */ 7758 key_spdadd, /* SADB_X_SPDSETIDX */ 7759 NULL, /* SADB_X_SPDEXPIRE */ 7760 key_spddelete2, /* SADB_X_SPDDELETE2 */ 7761 }; 7762 7763 /* 7764 * parse sadb_msg buffer to process PFKEYv2, 7765 * and create a data to response if needed. 7766 * I think to be dealed with mbuf directly. 7767 * IN: 7768 * msgp : pointer to pointer to a received buffer pulluped. 7769 * This is rewrited to response. 7770 * so : pointer to socket. 7771 * OUT: 7772 * length for buffer to send to user process. 7773 */ 7774 int 7775 key_parse(struct mbuf *m, struct socket *so) 7776 { 7777 struct sadb_msg *msg; 7778 struct sadb_msghdr mh; 7779 u_int orglen; 7780 int error; 7781 int target; 7782 7783 IPSEC_ASSERT(so != NULL, ("null socket")); 7784 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7785 7786 if (m->m_len < sizeof(struct sadb_msg)) { 7787 m = m_pullup(m, sizeof(struct sadb_msg)); 7788 if (!m) 7789 return ENOBUFS; 7790 } 7791 msg = mtod(m, struct sadb_msg *); 7792 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); 7793 target = KEY_SENDUP_ONE; 7794 7795 if ((m->m_flags & M_PKTHDR) == 0 || m->m_pkthdr.len != orglen) { 7796 ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__)); 7797 PFKEYSTAT_INC(out_invlen); 7798 error = EINVAL; 7799 goto senderror; 7800 } 7801 7802 if (msg->sadb_msg_version != PF_KEY_V2) { 7803 ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n", 7804 __func__, msg->sadb_msg_version)); 7805 PFKEYSTAT_INC(out_invver); 7806 error = EINVAL; 7807 goto senderror; 7808 } 7809 7810 if (msg->sadb_msg_type > SADB_MAX) { 7811 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 7812 __func__, msg->sadb_msg_type)); 7813 PFKEYSTAT_INC(out_invmsgtype); 7814 error = EINVAL; 7815 goto senderror; 7816 } 7817 7818 /* for old-fashioned code - should be nuked */ 7819 if (m->m_pkthdr.len > MCLBYTES) { 7820 m_freem(m); 7821 return ENOBUFS; 7822 } 7823 if (m->m_next) { 7824 struct mbuf *n; 7825 7826 MGETHDR(n, M_NOWAIT, MT_DATA); 7827 if (n && m->m_pkthdr.len > MHLEN) { 7828 if (!(MCLGET(n, M_NOWAIT))) { 7829 m_free(n); 7830 n = NULL; 7831 } 7832 } 7833 if (!n) { 7834 m_freem(m); 7835 return ENOBUFS; 7836 } 7837 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t)); 7838 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; 7839 n->m_next = NULL; 7840 m_freem(m); 7841 m = n; 7842 } 7843 7844 /* align the mbuf chain so that extensions are in contiguous region. */ 7845 error = key_align(m, &mh); 7846 if (error) 7847 return error; 7848 7849 msg = mh.msg; 7850 7851 /* We use satype as scope mask for spddump */ 7852 if (msg->sadb_msg_type == SADB_X_SPDDUMP) { 7853 switch (msg->sadb_msg_satype) { 7854 case IPSEC_POLICYSCOPE_ANY: 7855 case IPSEC_POLICYSCOPE_GLOBAL: 7856 case IPSEC_POLICYSCOPE_IFNET: 7857 case IPSEC_POLICYSCOPE_PCB: 7858 break; 7859 default: 7860 ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n", 7861 __func__, msg->sadb_msg_type)); 7862 PFKEYSTAT_INC(out_invsatype); 7863 error = EINVAL; 7864 goto senderror; 7865 } 7866 } else { 7867 switch (msg->sadb_msg_satype) { /* check SA type */ 7868 case SADB_SATYPE_UNSPEC: 7869 switch (msg->sadb_msg_type) { 7870 case SADB_GETSPI: 7871 case SADB_UPDATE: 7872 case SADB_ADD: 7873 case SADB_DELETE: 7874 case SADB_GET: 7875 case SADB_ACQUIRE: 7876 case SADB_EXPIRE: 7877 ipseclog((LOG_DEBUG, "%s: must specify satype " 7878 "when msg type=%u.\n", __func__, 7879 msg->sadb_msg_type)); 7880 PFKEYSTAT_INC(out_invsatype); 7881 error = EINVAL; 7882 goto senderror; 7883 } 7884 break; 7885 case SADB_SATYPE_AH: 7886 case SADB_SATYPE_ESP: 7887 case SADB_X_SATYPE_IPCOMP: 7888 case SADB_X_SATYPE_TCPSIGNATURE: 7889 switch (msg->sadb_msg_type) { 7890 case SADB_X_SPDADD: 7891 case SADB_X_SPDDELETE: 7892 case SADB_X_SPDGET: 7893 case SADB_X_SPDFLUSH: 7894 case SADB_X_SPDSETIDX: 7895 case SADB_X_SPDUPDATE: 7896 case SADB_X_SPDDELETE2: 7897 ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n", 7898 __func__, msg->sadb_msg_type)); 7899 PFKEYSTAT_INC(out_invsatype); 7900 error = EINVAL; 7901 goto senderror; 7902 } 7903 break; 7904 case SADB_SATYPE_RSVP: 7905 case SADB_SATYPE_OSPFV2: 7906 case SADB_SATYPE_RIPV2: 7907 case SADB_SATYPE_MIP: 7908 ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n", 7909 __func__, msg->sadb_msg_satype)); 7910 PFKEYSTAT_INC(out_invsatype); 7911 error = EOPNOTSUPP; 7912 goto senderror; 7913 case 1: /* XXX: What does it do? */ 7914 if (msg->sadb_msg_type == SADB_X_PROMISC) 7915 break; 7916 /*FALLTHROUGH*/ 7917 default: 7918 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 7919 __func__, msg->sadb_msg_satype)); 7920 PFKEYSTAT_INC(out_invsatype); 7921 error = EINVAL; 7922 goto senderror; 7923 } 7924 } 7925 7926 /* check field of upper layer protocol and address family */ 7927 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL 7928 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { 7929 struct sadb_address *src0, *dst0; 7930 u_int plen; 7931 7932 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]); 7933 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]); 7934 7935 /* check upper layer protocol */ 7936 if (src0->sadb_address_proto != dst0->sadb_address_proto) { 7937 ipseclog((LOG_DEBUG, "%s: upper layer protocol " 7938 "mismatched.\n", __func__)); 7939 PFKEYSTAT_INC(out_invaddr); 7940 error = EINVAL; 7941 goto senderror; 7942 } 7943 7944 /* check family */ 7945 if (PFKEY_ADDR_SADDR(src0)->sa_family != 7946 PFKEY_ADDR_SADDR(dst0)->sa_family) { 7947 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 7948 __func__)); 7949 PFKEYSTAT_INC(out_invaddr); 7950 error = EINVAL; 7951 goto senderror; 7952 } 7953 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7954 PFKEY_ADDR_SADDR(dst0)->sa_len) { 7955 ipseclog((LOG_DEBUG, "%s: address struct size " 7956 "mismatched.\n", __func__)); 7957 PFKEYSTAT_INC(out_invaddr); 7958 error = EINVAL; 7959 goto senderror; 7960 } 7961 7962 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7963 case AF_INET: 7964 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7965 sizeof(struct sockaddr_in)) { 7966 PFKEYSTAT_INC(out_invaddr); 7967 error = EINVAL; 7968 goto senderror; 7969 } 7970 break; 7971 case AF_INET6: 7972 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7973 sizeof(struct sockaddr_in6)) { 7974 PFKEYSTAT_INC(out_invaddr); 7975 error = EINVAL; 7976 goto senderror; 7977 } 7978 break; 7979 default: 7980 ipseclog((LOG_DEBUG, "%s: unsupported address family\n", 7981 __func__)); 7982 PFKEYSTAT_INC(out_invaddr); 7983 error = EAFNOSUPPORT; 7984 goto senderror; 7985 } 7986 7987 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7988 case AF_INET: 7989 plen = sizeof(struct in_addr) << 3; 7990 break; 7991 case AF_INET6: 7992 plen = sizeof(struct in6_addr) << 3; 7993 break; 7994 default: 7995 plen = 0; /*fool gcc*/ 7996 break; 7997 } 7998 7999 /* check max prefix length */ 8000 if (src0->sadb_address_prefixlen > plen || 8001 dst0->sadb_address_prefixlen > plen) { 8002 ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n", 8003 __func__)); 8004 PFKEYSTAT_INC(out_invaddr); 8005 error = EINVAL; 8006 goto senderror; 8007 } 8008 8009 /* 8010 * prefixlen == 0 is valid because there can be a case when 8011 * all addresses are matched. 8012 */ 8013 } 8014 8015 if (msg->sadb_msg_type >= nitems(key_typesw) || 8016 key_typesw[msg->sadb_msg_type] == NULL) { 8017 PFKEYSTAT_INC(out_invmsgtype); 8018 error = EINVAL; 8019 goto senderror; 8020 } 8021 8022 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh); 8023 8024 senderror: 8025 msg->sadb_msg_errno = error; 8026 return key_sendup_mbuf(so, m, target); 8027 } 8028 8029 static int 8030 key_senderror(struct socket *so, struct mbuf *m, int code) 8031 { 8032 struct sadb_msg *msg; 8033 8034 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 8035 ("mbuf too small, len %u", m->m_len)); 8036 8037 msg = mtod(m, struct sadb_msg *); 8038 msg->sadb_msg_errno = code; 8039 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 8040 } 8041 8042 /* 8043 * set the pointer to each header into message buffer. 8044 * m will be freed on error. 8045 * XXX larger-than-MCLBYTES extension? 8046 */ 8047 static int 8048 key_align(struct mbuf *m, struct sadb_msghdr *mhp) 8049 { 8050 struct mbuf *n; 8051 struct sadb_ext *ext; 8052 size_t off, end; 8053 int extlen; 8054 int toff; 8055 8056 IPSEC_ASSERT(m != NULL, ("null mbuf")); 8057 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 8058 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 8059 ("mbuf too small, len %u", m->m_len)); 8060 8061 /* initialize */ 8062 bzero(mhp, sizeof(*mhp)); 8063 8064 mhp->msg = mtod(m, struct sadb_msg *); 8065 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */ 8066 8067 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 8068 extlen = end; /*just in case extlen is not updated*/ 8069 for (off = sizeof(struct sadb_msg); off < end; off += extlen) { 8070 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); 8071 if (!n) { 8072 /* m is already freed */ 8073 return ENOBUFS; 8074 } 8075 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 8076 8077 /* set pointer */ 8078 switch (ext->sadb_ext_type) { 8079 case SADB_EXT_SA: 8080 case SADB_EXT_ADDRESS_SRC: 8081 case SADB_EXT_ADDRESS_DST: 8082 case SADB_EXT_ADDRESS_PROXY: 8083 case SADB_EXT_LIFETIME_CURRENT: 8084 case SADB_EXT_LIFETIME_HARD: 8085 case SADB_EXT_LIFETIME_SOFT: 8086 case SADB_EXT_KEY_AUTH: 8087 case SADB_EXT_KEY_ENCRYPT: 8088 case SADB_EXT_IDENTITY_SRC: 8089 case SADB_EXT_IDENTITY_DST: 8090 case SADB_EXT_SENSITIVITY: 8091 case SADB_EXT_PROPOSAL: 8092 case SADB_EXT_SUPPORTED_AUTH: 8093 case SADB_EXT_SUPPORTED_ENCRYPT: 8094 case SADB_EXT_SPIRANGE: 8095 case SADB_X_EXT_POLICY: 8096 case SADB_X_EXT_SA2: 8097 case SADB_X_EXT_NAT_T_TYPE: 8098 case SADB_X_EXT_NAT_T_SPORT: 8099 case SADB_X_EXT_NAT_T_DPORT: 8100 case SADB_X_EXT_NAT_T_OAI: 8101 case SADB_X_EXT_NAT_T_OAR: 8102 case SADB_X_EXT_NAT_T_FRAG: 8103 case SADB_X_EXT_SA_REPLAY: 8104 case SADB_X_EXT_NEW_ADDRESS_SRC: 8105 case SADB_X_EXT_NEW_ADDRESS_DST: 8106 /* duplicate check */ 8107 /* 8108 * XXX Are there duplication payloads of either 8109 * KEY_AUTH or KEY_ENCRYPT ? 8110 */ 8111 if (mhp->ext[ext->sadb_ext_type] != NULL) { 8112 ipseclog((LOG_DEBUG, "%s: duplicate ext_type " 8113 "%u\n", __func__, ext->sadb_ext_type)); 8114 m_freem(m); 8115 PFKEYSTAT_INC(out_dupext); 8116 return EINVAL; 8117 } 8118 break; 8119 default: 8120 ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n", 8121 __func__, ext->sadb_ext_type)); 8122 m_freem(m); 8123 PFKEYSTAT_INC(out_invexttype); 8124 return EINVAL; 8125 } 8126 8127 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); 8128 8129 if (key_validate_ext(ext, extlen)) { 8130 m_freem(m); 8131 PFKEYSTAT_INC(out_invlen); 8132 return EINVAL; 8133 } 8134 8135 n = m_pulldown(m, off, extlen, &toff); 8136 if (!n) { 8137 /* m is already freed */ 8138 return ENOBUFS; 8139 } 8140 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 8141 8142 mhp->ext[ext->sadb_ext_type] = ext; 8143 mhp->extoff[ext->sadb_ext_type] = off; 8144 mhp->extlen[ext->sadb_ext_type] = extlen; 8145 } 8146 8147 if (off != end) { 8148 m_freem(m); 8149 PFKEYSTAT_INC(out_invlen); 8150 return EINVAL; 8151 } 8152 8153 return 0; 8154 } 8155 8156 static int 8157 key_validate_ext(const struct sadb_ext *ext, int len) 8158 { 8159 const struct sockaddr *sa; 8160 enum { NONE, ADDR } checktype = NONE; 8161 int baselen = 0; 8162 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); 8163 8164 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) 8165 return EINVAL; 8166 8167 /* if it does not match minimum/maximum length, bail */ 8168 if (ext->sadb_ext_type >= nitems(minsize) || 8169 ext->sadb_ext_type >= nitems(maxsize)) 8170 return EINVAL; 8171 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) 8172 return EINVAL; 8173 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) 8174 return EINVAL; 8175 8176 /* more checks based on sadb_ext_type XXX need more */ 8177 switch (ext->sadb_ext_type) { 8178 case SADB_EXT_ADDRESS_SRC: 8179 case SADB_EXT_ADDRESS_DST: 8180 case SADB_EXT_ADDRESS_PROXY: 8181 case SADB_X_EXT_NAT_T_OAI: 8182 case SADB_X_EXT_NAT_T_OAR: 8183 case SADB_X_EXT_NEW_ADDRESS_SRC: 8184 case SADB_X_EXT_NEW_ADDRESS_DST: 8185 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); 8186 checktype = ADDR; 8187 break; 8188 case SADB_EXT_IDENTITY_SRC: 8189 case SADB_EXT_IDENTITY_DST: 8190 if (((const struct sadb_ident *)ext)->sadb_ident_type == 8191 SADB_X_IDENTTYPE_ADDR) { 8192 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); 8193 checktype = ADDR; 8194 } else 8195 checktype = NONE; 8196 break; 8197 default: 8198 checktype = NONE; 8199 break; 8200 } 8201 8202 switch (checktype) { 8203 case NONE: 8204 break; 8205 case ADDR: 8206 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); 8207 if (len < baselen + sal) 8208 return EINVAL; 8209 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) 8210 return EINVAL; 8211 break; 8212 } 8213 8214 return 0; 8215 } 8216 8217 void 8218 spdcache_init(void) 8219 { 8220 int i; 8221 8222 TUNABLE_INT_FETCH("net.key.spdcache.maxentries", 8223 &V_key_spdcache_maxentries); 8224 TUNABLE_INT_FETCH("net.key.spdcache.threshold", 8225 &V_key_spdcache_threshold); 8226 8227 if (V_key_spdcache_maxentries) { 8228 V_key_spdcache_maxentries = MAX(V_key_spdcache_maxentries, 8229 SPDCACHE_MAX_ENTRIES_PER_HASH); 8230 V_spdcachehashtbl = hashinit(V_key_spdcache_maxentries / 8231 SPDCACHE_MAX_ENTRIES_PER_HASH, 8232 M_IPSEC_SPDCACHE, &V_spdcachehash_mask); 8233 V_key_spdcache_maxentries = (V_spdcachehash_mask + 1) 8234 * SPDCACHE_MAX_ENTRIES_PER_HASH; 8235 8236 V_spdcache_lock = malloc(sizeof(struct mtx) * 8237 (V_spdcachehash_mask + 1), 8238 M_IPSEC_SPDCACHE, M_WAITOK|M_ZERO); 8239 8240 for (i = 0; i < V_spdcachehash_mask + 1; ++i) 8241 SPDCACHE_LOCK_INIT(i); 8242 } 8243 } 8244 8245 struct spdcache_entry * 8246 spdcache_entry_alloc(const struct secpolicyindex *spidx, struct secpolicy *sp) 8247 { 8248 struct spdcache_entry *entry; 8249 8250 entry = malloc(sizeof(struct spdcache_entry), 8251 M_IPSEC_SPDCACHE, M_NOWAIT|M_ZERO); 8252 if (entry == NULL) 8253 return NULL; 8254 8255 if (sp != NULL) 8256 SP_ADDREF(sp); 8257 8258 entry->spidx = *spidx; 8259 entry->sp = sp; 8260 8261 return (entry); 8262 } 8263 8264 void 8265 spdcache_entry_free(struct spdcache_entry *entry) 8266 { 8267 8268 if (entry->sp != NULL) 8269 key_freesp(&entry->sp); 8270 free(entry, M_IPSEC_SPDCACHE); 8271 } 8272 8273 void 8274 spdcache_clear(void) 8275 { 8276 struct spdcache_entry *entry; 8277 int i; 8278 8279 for (i = 0; i < V_spdcachehash_mask + 1; ++i) { 8280 SPDCACHE_LOCK(i); 8281 while (!LIST_EMPTY(&V_spdcachehashtbl[i])) { 8282 entry = LIST_FIRST(&V_spdcachehashtbl[i]); 8283 LIST_REMOVE(entry, chain); 8284 spdcache_entry_free(entry); 8285 } 8286 SPDCACHE_UNLOCK(i); 8287 } 8288 } 8289 8290 #ifdef VIMAGE 8291 void 8292 spdcache_destroy(void) 8293 { 8294 int i; 8295 8296 if (SPDCACHE_ENABLED()) { 8297 spdcache_clear(); 8298 hashdestroy(V_spdcachehashtbl, M_IPSEC_SPDCACHE, V_spdcachehash_mask); 8299 8300 for (i = 0; i < V_spdcachehash_mask + 1; ++i) 8301 SPDCACHE_LOCK_DESTROY(i); 8302 8303 free(V_spdcache_lock, M_IPSEC_SPDCACHE); 8304 } 8305 } 8306 #endif 8307 void 8308 key_init(void) 8309 { 8310 int i; 8311 8312 for (i = 0; i < IPSEC_DIR_MAX; i++) { 8313 TAILQ_INIT(&V_sptree[i]); 8314 TAILQ_INIT(&V_sptree_ifnet[i]); 8315 } 8316 8317 V_key_lft_zone = uma_zcreate("IPsec SA lft_c", 8318 sizeof(uint64_t) * 2, NULL, NULL, NULL, NULL, 8319 UMA_ALIGN_PTR, UMA_ZONE_PCPU); 8320 8321 TAILQ_INIT(&V_sahtree); 8322 V_sphashtbl = hashinit(SPHASH_NHASH, M_IPSEC_SP, &V_sphash_mask); 8323 V_savhashtbl = hashinit(SAVHASH_NHASH, M_IPSEC_SA, &V_savhash_mask); 8324 V_sahaddrhashtbl = hashinit(SAHHASH_NHASH, M_IPSEC_SAH, 8325 &V_sahaddrhash_mask); 8326 V_acqaddrhashtbl = hashinit(ACQHASH_NHASH, M_IPSEC_SAQ, 8327 &V_acqaddrhash_mask); 8328 V_acqseqhashtbl = hashinit(ACQHASH_NHASH, M_IPSEC_SAQ, 8329 &V_acqseqhash_mask); 8330 8331 spdcache_init(); 8332 8333 for (i = 0; i <= SADB_SATYPE_MAX; i++) 8334 LIST_INIT(&V_regtree[i]); 8335 8336 LIST_INIT(&V_acqtree); 8337 LIST_INIT(&V_spacqtree); 8338 8339 if (!IS_DEFAULT_VNET(curvnet)) 8340 return; 8341 8342 SPTREE_LOCK_INIT(); 8343 REGTREE_LOCK_INIT(); 8344 SAHTREE_LOCK_INIT(); 8345 ACQ_LOCK_INIT(); 8346 SPACQ_LOCK_INIT(); 8347 8348 #ifndef IPSEC_DEBUG2 8349 callout_init(&key_timer, 1); 8350 callout_reset(&key_timer, hz, key_timehandler, NULL); 8351 #endif /*IPSEC_DEBUG2*/ 8352 8353 /* initialize key statistics */ 8354 keystat.getspi_count = 1; 8355 8356 if (bootverbose) 8357 printf("IPsec: Initialized Security Association Processing.\n"); 8358 } 8359 8360 #ifdef VIMAGE 8361 void 8362 key_destroy(void) 8363 { 8364 struct secashead_queue sahdrainq; 8365 struct secpolicy_queue drainq; 8366 struct secpolicy *sp, *nextsp; 8367 struct secacq *acq, *nextacq; 8368 struct secspacq *spacq, *nextspacq; 8369 struct secashead *sah; 8370 struct secasvar *sav; 8371 struct secreg *reg; 8372 int i; 8373 8374 /* 8375 * XXX: can we just call free() for each object without 8376 * walking through safe way with releasing references? 8377 */ 8378 TAILQ_INIT(&drainq); 8379 SPTREE_WLOCK(); 8380 for (i = 0; i < IPSEC_DIR_MAX; i++) { 8381 TAILQ_CONCAT(&drainq, &V_sptree[i], chain); 8382 TAILQ_CONCAT(&drainq, &V_sptree_ifnet[i], chain); 8383 } 8384 for (i = 0; i < V_sphash_mask + 1; i++) 8385 LIST_INIT(&V_sphashtbl[i]); 8386 SPTREE_WUNLOCK(); 8387 spdcache_destroy(); 8388 8389 sp = TAILQ_FIRST(&drainq); 8390 while (sp != NULL) { 8391 nextsp = TAILQ_NEXT(sp, chain); 8392 key_freesp(&sp); 8393 sp = nextsp; 8394 } 8395 8396 TAILQ_INIT(&sahdrainq); 8397 SAHTREE_WLOCK(); 8398 TAILQ_CONCAT(&sahdrainq, &V_sahtree, chain); 8399 for (i = 0; i < V_savhash_mask + 1; i++) 8400 LIST_INIT(&V_savhashtbl[i]); 8401 for (i = 0; i < V_sahaddrhash_mask + 1; i++) 8402 LIST_INIT(&V_sahaddrhashtbl[i]); 8403 TAILQ_FOREACH(sah, &sahdrainq, chain) { 8404 sah->state = SADB_SASTATE_DEAD; 8405 TAILQ_FOREACH(sav, &sah->savtree_larval, chain) { 8406 sav->state = SADB_SASTATE_DEAD; 8407 } 8408 TAILQ_FOREACH(sav, &sah->savtree_alive, chain) { 8409 sav->state = SADB_SASTATE_DEAD; 8410 } 8411 } 8412 SAHTREE_WUNLOCK(); 8413 8414 key_freesah_flushed(&sahdrainq); 8415 hashdestroy(V_sphashtbl, M_IPSEC_SP, V_sphash_mask); 8416 hashdestroy(V_savhashtbl, M_IPSEC_SA, V_savhash_mask); 8417 hashdestroy(V_sahaddrhashtbl, M_IPSEC_SAH, V_sahaddrhash_mask); 8418 8419 REGTREE_LOCK(); 8420 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 8421 LIST_FOREACH(reg, &V_regtree[i], chain) { 8422 if (__LIST_CHAINED(reg)) { 8423 LIST_REMOVE(reg, chain); 8424 free(reg, M_IPSEC_SAR); 8425 break; 8426 } 8427 } 8428 } 8429 REGTREE_UNLOCK(); 8430 8431 ACQ_LOCK(); 8432 acq = LIST_FIRST(&V_acqtree); 8433 while (acq != NULL) { 8434 nextacq = LIST_NEXT(acq, chain); 8435 LIST_REMOVE(acq, chain); 8436 free(acq, M_IPSEC_SAQ); 8437 acq = nextacq; 8438 } 8439 for (i = 0; i < V_acqaddrhash_mask + 1; i++) 8440 LIST_INIT(&V_acqaddrhashtbl[i]); 8441 for (i = 0; i < V_acqseqhash_mask + 1; i++) 8442 LIST_INIT(&V_acqseqhashtbl[i]); 8443 ACQ_UNLOCK(); 8444 8445 SPACQ_LOCK(); 8446 for (spacq = LIST_FIRST(&V_spacqtree); spacq != NULL; 8447 spacq = nextspacq) { 8448 nextspacq = LIST_NEXT(spacq, chain); 8449 if (__LIST_CHAINED(spacq)) { 8450 LIST_REMOVE(spacq, chain); 8451 free(spacq, M_IPSEC_SAQ); 8452 } 8453 } 8454 SPACQ_UNLOCK(); 8455 hashdestroy(V_acqaddrhashtbl, M_IPSEC_SAQ, V_acqaddrhash_mask); 8456 hashdestroy(V_acqseqhashtbl, M_IPSEC_SAQ, V_acqseqhash_mask); 8457 uma_zdestroy(V_key_lft_zone); 8458 8459 if (!IS_DEFAULT_VNET(curvnet)) 8460 return; 8461 #ifndef IPSEC_DEBUG2 8462 callout_drain(&key_timer); 8463 #endif 8464 SPTREE_LOCK_DESTROY(); 8465 REGTREE_LOCK_DESTROY(); 8466 SAHTREE_LOCK_DESTROY(); 8467 ACQ_LOCK_DESTROY(); 8468 SPACQ_LOCK_DESTROY(); 8469 } 8470 #endif 8471 8472 /* record data transfer on SA, and update timestamps */ 8473 void 8474 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m) 8475 { 8476 IPSEC_ASSERT(sav != NULL, ("Null secasvar")); 8477 IPSEC_ASSERT(m != NULL, ("Null mbuf")); 8478 8479 /* 8480 * XXX Currently, there is a difference of bytes size 8481 * between inbound and outbound processing. 8482 */ 8483 counter_u64_add(sav->lft_c_bytes, m->m_pkthdr.len); 8484 8485 /* 8486 * We use the number of packets as the unit of 8487 * allocations. We increment the variable 8488 * whenever {esp,ah}_{in,out}put is called. 8489 */ 8490 counter_u64_add(sav->lft_c_allocations, 1); 8491 8492 /* 8493 * NOTE: We record CURRENT usetime by using wall clock, 8494 * in seconds. HARD and SOFT lifetime are measured by the time 8495 * difference (again in seconds) from usetime. 8496 * 8497 * usetime 8498 * v expire expire 8499 * -----+-----+--------+---> t 8500 * <--------------> HARD 8501 * <-----> SOFT 8502 */ 8503 if (sav->firstused == 0) 8504 sav->firstused = time_second; 8505 } 8506 8507 /* 8508 * Take one of the kernel's security keys and convert it into a PF_KEY 8509 * structure within an mbuf, suitable for sending up to a waiting 8510 * application in user land. 8511 * 8512 * IN: 8513 * src: A pointer to a kernel security key. 8514 * exttype: Which type of key this is. Refer to the PF_KEY data structures. 8515 * OUT: 8516 * a valid mbuf or NULL indicating an error 8517 * 8518 */ 8519 8520 static struct mbuf * 8521 key_setkey(struct seckey *src, uint16_t exttype) 8522 { 8523 struct mbuf *m; 8524 struct sadb_key *p; 8525 int len; 8526 8527 if (src == NULL) 8528 return NULL; 8529 8530 len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src)); 8531 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 8532 if (m == NULL) 8533 return NULL; 8534 m_align(m, len); 8535 m->m_len = len; 8536 p = mtod(m, struct sadb_key *); 8537 bzero(p, len); 8538 p->sadb_key_len = PFKEY_UNIT64(len); 8539 p->sadb_key_exttype = exttype; 8540 p->sadb_key_bits = src->bits; 8541 bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src)); 8542 8543 return m; 8544 } 8545 8546 /* 8547 * Take one of the kernel's lifetime data structures and convert it 8548 * into a PF_KEY structure within an mbuf, suitable for sending up to 8549 * a waiting application in user land. 8550 * 8551 * IN: 8552 * src: A pointer to a kernel lifetime structure. 8553 * exttype: Which type of lifetime this is. Refer to the PF_KEY 8554 * data structures for more information. 8555 * OUT: 8556 * a valid mbuf or NULL indicating an error 8557 * 8558 */ 8559 8560 static struct mbuf * 8561 key_setlifetime(struct seclifetime *src, uint16_t exttype) 8562 { 8563 struct mbuf *m = NULL; 8564 struct sadb_lifetime *p; 8565 int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime)); 8566 8567 if (src == NULL) 8568 return NULL; 8569 8570 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 8571 if (m == NULL) 8572 return m; 8573 m_align(m, len); 8574 m->m_len = len; 8575 p = mtod(m, struct sadb_lifetime *); 8576 8577 bzero(p, len); 8578 p->sadb_lifetime_len = PFKEY_UNIT64(len); 8579 p->sadb_lifetime_exttype = exttype; 8580 p->sadb_lifetime_allocations = src->allocations; 8581 p->sadb_lifetime_bytes = src->bytes; 8582 p->sadb_lifetime_addtime = src->addtime; 8583 p->sadb_lifetime_usetime = src->usetime; 8584 8585 return m; 8586 8587 } 8588 8589 const struct enc_xform * 8590 enc_algorithm_lookup(int alg) 8591 { 8592 int i; 8593 8594 for (i = 0; i < nitems(supported_ealgs); i++) 8595 if (alg == supported_ealgs[i].sadb_alg) 8596 return (supported_ealgs[i].xform); 8597 return (NULL); 8598 } 8599 8600 const struct auth_hash * 8601 auth_algorithm_lookup(int alg) 8602 { 8603 int i; 8604 8605 for (i = 0; i < nitems(supported_aalgs); i++) 8606 if (alg == supported_aalgs[i].sadb_alg) 8607 return (supported_aalgs[i].xform); 8608 return (NULL); 8609 } 8610 8611 const struct comp_algo * 8612 comp_algorithm_lookup(int alg) 8613 { 8614 int i; 8615 8616 for (i = 0; i < nitems(supported_calgs); i++) 8617 if (alg == supported_calgs[i].sadb_alg) 8618 return (supported_calgs[i].xform); 8619 return (NULL); 8620 } 8621 8622