1 /* $FreeBSD$ */ 2 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ 3 4 /*- 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * This code is referd to RFC 2367 35 */ 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 #include "opt_ipsec.h" 40 41 #include <sys/types.h> 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/mutex.h> 47 #include <sys/mbuf.h> 48 #include <sys/domain.h> 49 #include <sys/protosw.h> 50 #include <sys/malloc.h> 51 #include <sys/socket.h> 52 #include <sys/socketvar.h> 53 #include <sys/sysctl.h> 54 #include <sys/errno.h> 55 #include <sys/proc.h> 56 #include <sys/queue.h> 57 #include <sys/refcount.h> 58 #include <sys/syslog.h> 59 60 #include <net/if.h> 61 #include <net/if_var.h> 62 #include <net/route.h> 63 #include <net/vnet.h> 64 #include <net/raw_cb.h> 65 66 #include <netinet/in.h> 67 #include <netinet/in_systm.h> 68 #include <netinet/ip.h> 69 #include <netinet/in_var.h> 70 71 #ifdef INET6 72 #include <netinet/ip6.h> 73 #include <netinet6/in6_var.h> 74 #include <netinet6/ip6_var.h> 75 #endif /* INET6 */ 76 77 #if defined(INET) || defined(INET6) 78 #include <netinet/in_pcb.h> 79 #endif 80 #ifdef INET6 81 #include <netinet6/in6_pcb.h> 82 #endif /* INET6 */ 83 84 #include <net/pfkeyv2.h> 85 #include <netipsec/keydb.h> 86 #include <netipsec/key.h> 87 #include <netipsec/keysock.h> 88 #include <netipsec/key_debug.h> 89 90 #include <netipsec/ipsec.h> 91 #ifdef INET6 92 #include <netipsec/ipsec6.h> 93 #endif 94 95 #include <netipsec/xform.h> 96 97 #include <machine/stdarg.h> 98 99 /* randomness */ 100 #include <sys/random.h> 101 102 #define FULLMASK 0xff 103 #define _BITS(bytes) ((bytes) << 3) 104 105 /* 106 * Note on SA reference counting: 107 * - SAs that are not in DEAD state will have (total external reference + 1) 108 * following value in reference count field. they cannot be freed and are 109 * referenced from SA header. 110 * - SAs that are in DEAD state will have (total external reference) 111 * in reference count field. they are ready to be freed. reference from 112 * SA header will be removed in key_delsav(), when the reference count 113 * field hits 0 (= no external reference other than from SA header. 114 */ 115 116 VNET_DEFINE(u_int32_t, key_debug_level) = 0; 117 static VNET_DEFINE(u_int, key_spi_trycnt) = 1000; 118 static VNET_DEFINE(u_int32_t, key_spi_minval) = 0x100; 119 static VNET_DEFINE(u_int32_t, key_spi_maxval) = 0x0fffffff; /* XXX */ 120 static VNET_DEFINE(u_int32_t, policy_id) = 0; 121 /*interval to initialize randseed,1(m)*/ 122 static VNET_DEFINE(u_int, key_int_random) = 60; 123 /* interval to expire acquiring, 30(s)*/ 124 static VNET_DEFINE(u_int, key_larval_lifetime) = 30; 125 /* counter for blocking SADB_ACQUIRE.*/ 126 static VNET_DEFINE(int, key_blockacq_count) = 10; 127 /* lifetime for blocking SADB_ACQUIRE.*/ 128 static VNET_DEFINE(int, key_blockacq_lifetime) = 20; 129 /* preferred old sa rather than new sa.*/ 130 static VNET_DEFINE(int, key_preferred_oldsa) = 1; 131 #define V_key_spi_trycnt VNET(key_spi_trycnt) 132 #define V_key_spi_minval VNET(key_spi_minval) 133 #define V_key_spi_maxval VNET(key_spi_maxval) 134 #define V_policy_id VNET(policy_id) 135 #define V_key_int_random VNET(key_int_random) 136 #define V_key_larval_lifetime VNET(key_larval_lifetime) 137 #define V_key_blockacq_count VNET(key_blockacq_count) 138 #define V_key_blockacq_lifetime VNET(key_blockacq_lifetime) 139 #define V_key_preferred_oldsa VNET(key_preferred_oldsa) 140 141 static VNET_DEFINE(u_int32_t, acq_seq) = 0; 142 #define V_acq_seq VNET(acq_seq) 143 144 /* SPD */ 145 static VNET_DEFINE(LIST_HEAD(_sptree, secpolicy), sptree[IPSEC_DIR_MAX]); 146 #define V_sptree VNET(sptree) 147 static struct mtx sptree_lock; 148 #define SPTREE_LOCK_INIT() \ 149 mtx_init(&sptree_lock, "sptree", \ 150 "fast ipsec security policy database", MTX_DEF) 151 #define SPTREE_LOCK_DESTROY() mtx_destroy(&sptree_lock) 152 #define SPTREE_LOCK() mtx_lock(&sptree_lock) 153 #define SPTREE_UNLOCK() mtx_unlock(&sptree_lock) 154 #define SPTREE_LOCK_ASSERT() mtx_assert(&sptree_lock, MA_OWNED) 155 156 static VNET_DEFINE(LIST_HEAD(_sahtree, secashead), sahtree); /* SAD */ 157 #define V_sahtree VNET(sahtree) 158 static struct mtx sahtree_lock; 159 #define SAHTREE_LOCK_INIT() \ 160 mtx_init(&sahtree_lock, "sahtree", \ 161 "fast ipsec security association database", MTX_DEF) 162 #define SAHTREE_LOCK_DESTROY() mtx_destroy(&sahtree_lock) 163 #define SAHTREE_LOCK() mtx_lock(&sahtree_lock) 164 #define SAHTREE_UNLOCK() mtx_unlock(&sahtree_lock) 165 #define SAHTREE_LOCK_ASSERT() mtx_assert(&sahtree_lock, MA_OWNED) 166 167 /* registed list */ 168 static VNET_DEFINE(LIST_HEAD(_regtree, secreg), regtree[SADB_SATYPE_MAX + 1]); 169 #define V_regtree VNET(regtree) 170 static struct mtx regtree_lock; 171 #define REGTREE_LOCK_INIT() \ 172 mtx_init(®tree_lock, "regtree", "fast ipsec regtree", MTX_DEF) 173 #define REGTREE_LOCK_DESTROY() mtx_destroy(®tree_lock) 174 #define REGTREE_LOCK() mtx_lock(®tree_lock) 175 #define REGTREE_UNLOCK() mtx_unlock(®tree_lock) 176 #define REGTREE_LOCK_ASSERT() mtx_assert(®tree_lock, MA_OWNED) 177 178 static VNET_DEFINE(LIST_HEAD(_acqtree, secacq), acqtree); /* acquiring list */ 179 #define V_acqtree VNET(acqtree) 180 static struct mtx acq_lock; 181 #define ACQ_LOCK_INIT() \ 182 mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF) 183 #define ACQ_LOCK_DESTROY() mtx_destroy(&acq_lock) 184 #define ACQ_LOCK() mtx_lock(&acq_lock) 185 #define ACQ_UNLOCK() mtx_unlock(&acq_lock) 186 #define ACQ_LOCK_ASSERT() mtx_assert(&acq_lock, MA_OWNED) 187 188 /* SP acquiring list */ 189 static VNET_DEFINE(LIST_HEAD(_spacqtree, secspacq), spacqtree); 190 #define V_spacqtree VNET(spacqtree) 191 static struct mtx spacq_lock; 192 #define SPACQ_LOCK_INIT() \ 193 mtx_init(&spacq_lock, "spacqtree", \ 194 "fast ipsec security policy acquire list", MTX_DEF) 195 #define SPACQ_LOCK_DESTROY() mtx_destroy(&spacq_lock) 196 #define SPACQ_LOCK() mtx_lock(&spacq_lock) 197 #define SPACQ_UNLOCK() mtx_unlock(&spacq_lock) 198 #define SPACQ_LOCK_ASSERT() mtx_assert(&spacq_lock, MA_OWNED) 199 200 /* search order for SAs */ 201 static const u_int saorder_state_valid_prefer_old[] = { 202 SADB_SASTATE_DYING, SADB_SASTATE_MATURE, 203 }; 204 static const u_int saorder_state_valid_prefer_new[] = { 205 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 206 }; 207 static const u_int saorder_state_alive[] = { 208 /* except DEAD */ 209 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL 210 }; 211 static const u_int saorder_state_any[] = { 212 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 213 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD 214 }; 215 216 static const int minsize[] = { 217 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 218 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 219 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 220 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 221 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 222 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ 223 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ 224 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ 225 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ 226 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ 227 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ 228 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ 229 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ 230 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ 231 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ 232 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ 233 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 234 0, /* SADB_X_EXT_KMPRIVATE */ 235 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ 236 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 237 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ 238 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ 239 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ 240 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */ 241 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */ 242 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ 243 }; 244 static const int maxsize[] = { 245 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 246 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 247 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 248 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 249 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 250 0, /* SADB_EXT_ADDRESS_SRC */ 251 0, /* SADB_EXT_ADDRESS_DST */ 252 0, /* SADB_EXT_ADDRESS_PROXY */ 253 0, /* SADB_EXT_KEY_AUTH */ 254 0, /* SADB_EXT_KEY_ENCRYPT */ 255 0, /* SADB_EXT_IDENTITY_SRC */ 256 0, /* SADB_EXT_IDENTITY_DST */ 257 0, /* SADB_EXT_SENSITIVITY */ 258 0, /* SADB_EXT_PROPOSAL */ 259 0, /* SADB_EXT_SUPPORTED_AUTH */ 260 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ 261 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 262 0, /* SADB_X_EXT_KMPRIVATE */ 263 0, /* SADB_X_EXT_POLICY */ 264 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 265 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ 266 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ 267 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ 268 0, /* SADB_X_EXT_NAT_T_OAI */ 269 0, /* SADB_X_EXT_NAT_T_OAR */ 270 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ 271 }; 272 273 static VNET_DEFINE(int, ipsec_esp_keymin) = 256; 274 static VNET_DEFINE(int, ipsec_esp_auth) = 0; 275 static VNET_DEFINE(int, ipsec_ah_keymin) = 128; 276 277 #define V_ipsec_esp_keymin VNET(ipsec_esp_keymin) 278 #define V_ipsec_esp_auth VNET(ipsec_esp_auth) 279 #define V_ipsec_ah_keymin VNET(ipsec_ah_keymin) 280 281 #ifdef SYSCTL_DECL 282 SYSCTL_DECL(_net_key); 283 #endif 284 285 SYSCTL_VNET_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, 286 CTLFLAG_RW, &VNET_NAME(key_debug_level), 0, ""); 287 288 /* max count of trial for the decision of spi value */ 289 SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, 290 CTLFLAG_RW, &VNET_NAME(key_spi_trycnt), 0, ""); 291 292 /* minimum spi value to allocate automatically. */ 293 SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_MIN_VALUE, 294 spi_minval, CTLFLAG_RW, &VNET_NAME(key_spi_minval), 0, ""); 295 296 /* maximun spi value to allocate automatically. */ 297 SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_MAX_VALUE, 298 spi_maxval, CTLFLAG_RW, &VNET_NAME(key_spi_maxval), 0, ""); 299 300 /* interval to initialize randseed */ 301 SYSCTL_VNET_INT(_net_key, KEYCTL_RANDOM_INT, 302 int_random, CTLFLAG_RW, &VNET_NAME(key_int_random), 0, ""); 303 304 /* lifetime for larval SA */ 305 SYSCTL_VNET_INT(_net_key, KEYCTL_LARVAL_LIFETIME, 306 larval_lifetime, CTLFLAG_RW, &VNET_NAME(key_larval_lifetime), 0, ""); 307 308 /* counter for blocking to send SADB_ACQUIRE to IKEd */ 309 SYSCTL_VNET_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, 310 blockacq_count, CTLFLAG_RW, &VNET_NAME(key_blockacq_count), 0, ""); 311 312 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ 313 SYSCTL_VNET_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, 314 blockacq_lifetime, CTLFLAG_RW, &VNET_NAME(key_blockacq_lifetime), 0, ""); 315 316 /* ESP auth */ 317 SYSCTL_VNET_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, 318 CTLFLAG_RW, &VNET_NAME(ipsec_esp_auth), 0, ""); 319 320 /* minimum ESP key length */ 321 SYSCTL_VNET_INT(_net_key, KEYCTL_ESP_KEYMIN, 322 esp_keymin, CTLFLAG_RW, &VNET_NAME(ipsec_esp_keymin), 0, ""); 323 324 /* minimum AH key length */ 325 SYSCTL_VNET_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, 326 CTLFLAG_RW, &VNET_NAME(ipsec_ah_keymin), 0, ""); 327 328 /* perfered old SA rather than new SA */ 329 SYSCTL_VNET_INT(_net_key, KEYCTL_PREFERED_OLDSA, 330 preferred_oldsa, CTLFLAG_RW, &VNET_NAME(key_preferred_oldsa), 0, ""); 331 332 #define __LIST_CHAINED(elm) \ 333 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) 334 #define LIST_INSERT_TAIL(head, elm, type, field) \ 335 do {\ 336 struct type *curelm = LIST_FIRST(head); \ 337 if (curelm == NULL) {\ 338 LIST_INSERT_HEAD(head, elm, field); \ 339 } else { \ 340 while (LIST_NEXT(curelm, field)) \ 341 curelm = LIST_NEXT(curelm, field);\ 342 LIST_INSERT_AFTER(curelm, elm, field);\ 343 }\ 344 } while (0) 345 346 #define KEY_CHKSASTATE(head, sav, name) \ 347 do { \ 348 if ((head) != (sav)) { \ 349 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \ 350 (name), (head), (sav))); \ 351 continue; \ 352 } \ 353 } while (0) 354 355 #define KEY_CHKSPDIR(head, sp, name) \ 356 do { \ 357 if ((head) != (sp)) { \ 358 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \ 359 "anyway continue.\n", \ 360 (name), (head), (sp))); \ 361 } \ 362 } while (0) 363 364 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association"); 365 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head"); 366 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy"); 367 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request"); 368 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous"); 369 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire"); 370 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire"); 371 372 /* 373 * set parameters into secpolicyindex buffer. 374 * Must allocate secpolicyindex buffer passed to this function. 375 */ 376 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \ 377 do { \ 378 bzero((idx), sizeof(struct secpolicyindex)); \ 379 (idx)->dir = (_dir); \ 380 (idx)->prefs = (ps); \ 381 (idx)->prefd = (pd); \ 382 (idx)->ul_proto = (ulp); \ 383 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 384 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 385 } while (0) 386 387 /* 388 * set parameters into secasindex buffer. 389 * Must allocate secasindex buffer before calling this function. 390 */ 391 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \ 392 do { \ 393 bzero((idx), sizeof(struct secasindex)); \ 394 (idx)->proto = (p); \ 395 (idx)->mode = (m); \ 396 (idx)->reqid = (r); \ 397 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 398 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 399 } while (0) 400 401 /* key statistics */ 402 struct _keystat { 403 u_long getspi_count; /* the avarage of count to try to get new SPI */ 404 } keystat; 405 406 struct sadb_msghdr { 407 struct sadb_msg *msg; 408 struct sadb_ext *ext[SADB_EXT_MAX + 1]; 409 int extoff[SADB_EXT_MAX + 1]; 410 int extlen[SADB_EXT_MAX + 1]; 411 }; 412 413 static struct secasvar *key_allocsa_policy __P((const struct secasindex *)); 414 static void key_freesp_so __P((struct secpolicy **)); 415 static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int)); 416 static void key_delsp __P((struct secpolicy *)); 417 static struct secpolicy *key_getsp __P((struct secpolicyindex *)); 418 static void _key_delsp(struct secpolicy *sp); 419 static struct secpolicy *key_getspbyid __P((u_int32_t)); 420 static u_int32_t key_newreqid __P((void)); 421 static struct mbuf *key_gather_mbuf __P((struct mbuf *, 422 const struct sadb_msghdr *, int, int, ...)); 423 static int key_spdadd __P((struct socket *, struct mbuf *, 424 const struct sadb_msghdr *)); 425 static u_int32_t key_getnewspid __P((void)); 426 static int key_spddelete __P((struct socket *, struct mbuf *, 427 const struct sadb_msghdr *)); 428 static int key_spddelete2 __P((struct socket *, struct mbuf *, 429 const struct sadb_msghdr *)); 430 static int key_spdget __P((struct socket *, struct mbuf *, 431 const struct sadb_msghdr *)); 432 static int key_spdflush __P((struct socket *, struct mbuf *, 433 const struct sadb_msghdr *)); 434 static int key_spddump __P((struct socket *, struct mbuf *, 435 const struct sadb_msghdr *)); 436 static struct mbuf *key_setdumpsp __P((struct secpolicy *, 437 u_int8_t, u_int32_t, u_int32_t)); 438 static u_int key_getspreqmsglen __P((struct secpolicy *)); 439 static int key_spdexpire __P((struct secpolicy *)); 440 static struct secashead *key_newsah __P((struct secasindex *)); 441 static void key_delsah __P((struct secashead *)); 442 static struct secasvar *key_newsav __P((struct mbuf *, 443 const struct sadb_msghdr *, struct secashead *, int *, 444 const char*, int)); 445 #define KEY_NEWSAV(m, sadb, sah, e) \ 446 key_newsav(m, sadb, sah, e, __FILE__, __LINE__) 447 static void key_delsav __P((struct secasvar *)); 448 static struct secashead *key_getsah __P((struct secasindex *)); 449 static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t)); 450 static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t)); 451 static int key_setsaval __P((struct secasvar *, struct mbuf *, 452 const struct sadb_msghdr *)); 453 static int key_mature __P((struct secasvar *)); 454 static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t, 455 u_int8_t, u_int32_t, u_int32_t)); 456 static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t, 457 u_int32_t, pid_t, u_int16_t)); 458 static struct mbuf *key_setsadbsa __P((struct secasvar *)); 459 static struct mbuf *key_setsadbaddr __P((u_int16_t, 460 const struct sockaddr *, u_int8_t, u_int16_t)); 461 #ifdef IPSEC_NAT_T 462 static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t); 463 static struct mbuf *key_setsadbxtype(u_int16_t); 464 #endif 465 static void key_porttosaddr(struct sockaddr *, u_int16_t); 466 #define KEY_PORTTOSADDR(saddr, port) \ 467 key_porttosaddr((struct sockaddr *)(saddr), (port)) 468 static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t)); 469 static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t, 470 u_int32_t)); 471 static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int, 472 struct malloc_type *); 473 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src, 474 struct malloc_type *type); 475 #ifdef INET6 476 static int key_ismyaddr6 __P((struct sockaddr_in6 *)); 477 #endif 478 479 /* flags for key_cmpsaidx() */ 480 #define CMP_HEAD 1 /* protocol, addresses. */ 481 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ 482 #define CMP_REQID 3 /* additionally HEAD, reaid. */ 483 #define CMP_EXACTLY 4 /* all elements. */ 484 static int key_cmpsaidx 485 __P((const struct secasindex *, const struct secasindex *, int)); 486 487 static int key_cmpspidx_exactly 488 __P((struct secpolicyindex *, struct secpolicyindex *)); 489 static int key_cmpspidx_withmask 490 __P((struct secpolicyindex *, struct secpolicyindex *)); 491 static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int)); 492 static int key_bbcmp __P((const void *, const void *, u_int)); 493 static u_int16_t key_satype2proto __P((u_int8_t)); 494 static u_int8_t key_proto2satype __P((u_int16_t)); 495 496 static int key_getspi __P((struct socket *, struct mbuf *, 497 const struct sadb_msghdr *)); 498 static u_int32_t key_do_getnewspi __P((struct sadb_spirange *, 499 struct secasindex *)); 500 static int key_update __P((struct socket *, struct mbuf *, 501 const struct sadb_msghdr *)); 502 #ifdef IPSEC_DOSEQCHECK 503 static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t)); 504 #endif 505 static int key_add __P((struct socket *, struct mbuf *, 506 const struct sadb_msghdr *)); 507 static int key_setident __P((struct secashead *, struct mbuf *, 508 const struct sadb_msghdr *)); 509 static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *, 510 const struct sadb_msghdr *)); 511 static int key_delete __P((struct socket *, struct mbuf *, 512 const struct sadb_msghdr *)); 513 static int key_get __P((struct socket *, struct mbuf *, 514 const struct sadb_msghdr *)); 515 516 static void key_getcomb_setlifetime __P((struct sadb_comb *)); 517 static struct mbuf *key_getcomb_esp __P((void)); 518 static struct mbuf *key_getcomb_ah __P((void)); 519 static struct mbuf *key_getcomb_ipcomp __P((void)); 520 static struct mbuf *key_getprop __P((const struct secasindex *)); 521 522 static int key_acquire __P((const struct secasindex *, struct secpolicy *)); 523 static struct secacq *key_newacq __P((const struct secasindex *)); 524 static struct secacq *key_getacq __P((const struct secasindex *)); 525 static struct secacq *key_getacqbyseq __P((u_int32_t)); 526 static struct secspacq *key_newspacq __P((struct secpolicyindex *)); 527 static struct secspacq *key_getspacq __P((struct secpolicyindex *)); 528 static int key_acquire2 __P((struct socket *, struct mbuf *, 529 const struct sadb_msghdr *)); 530 static int key_register __P((struct socket *, struct mbuf *, 531 const struct sadb_msghdr *)); 532 static int key_expire __P((struct secasvar *)); 533 static int key_flush __P((struct socket *, struct mbuf *, 534 const struct sadb_msghdr *)); 535 static int key_dump __P((struct socket *, struct mbuf *, 536 const struct sadb_msghdr *)); 537 static int key_promisc __P((struct socket *, struct mbuf *, 538 const struct sadb_msghdr *)); 539 static int key_senderror __P((struct socket *, struct mbuf *, int)); 540 static int key_validate_ext __P((const struct sadb_ext *, int)); 541 static int key_align __P((struct mbuf *, struct sadb_msghdr *)); 542 static struct mbuf *key_setlifetime(struct seclifetime *src, 543 u_int16_t exttype); 544 static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype); 545 546 #if 0 547 static const char *key_getfqdn __P((void)); 548 static const char *key_getuserfqdn __P((void)); 549 #endif 550 static void key_sa_chgstate __P((struct secasvar *, u_int8_t)); 551 552 static __inline void 553 sa_initref(struct secasvar *sav) 554 { 555 556 refcount_init(&sav->refcnt, 1); 557 } 558 static __inline void 559 sa_addref(struct secasvar *sav) 560 { 561 562 refcount_acquire(&sav->refcnt); 563 IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow")); 564 } 565 static __inline int 566 sa_delref(struct secasvar *sav) 567 { 568 569 IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow")); 570 return (refcount_release(&sav->refcnt)); 571 } 572 573 #define SP_ADDREF(p) do { \ 574 (p)->refcnt++; \ 575 IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow")); \ 576 } while (0) 577 #define SP_DELREF(p) do { \ 578 IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow")); \ 579 (p)->refcnt--; \ 580 } while (0) 581 582 583 /* 584 * Update the refcnt while holding the SPTREE lock. 585 */ 586 void 587 key_addref(struct secpolicy *sp) 588 { 589 SPTREE_LOCK(); 590 SP_ADDREF(sp); 591 SPTREE_UNLOCK(); 592 } 593 594 /* 595 * Return 0 when there are known to be no SP's for the specified 596 * direction. Otherwise return 1. This is used by IPsec code 597 * to optimize performance. 598 */ 599 int 600 key_havesp(u_int dir) 601 { 602 603 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? 604 LIST_FIRST(&V_sptree[dir]) != NULL : 1); 605 } 606 607 /* %%% IPsec policy management */ 608 /* 609 * allocating a SP for OUTBOUND or INBOUND packet. 610 * Must call key_freesp() later. 611 * OUT: NULL: not found 612 * others: found and return the pointer. 613 */ 614 struct secpolicy * 615 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag) 616 { 617 struct secpolicy *sp; 618 619 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 620 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 621 ("invalid direction %u", dir)); 622 623 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 624 printf("DP %s from %s:%u\n", __func__, where, tag)); 625 626 /* get a SP entry */ 627 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 628 printf("*** objects\n"); 629 kdebug_secpolicyindex(spidx)); 630 631 SPTREE_LOCK(); 632 LIST_FOREACH(sp, &V_sptree[dir], chain) { 633 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 634 printf("*** in SPD\n"); 635 kdebug_secpolicyindex(&sp->spidx)); 636 637 if (sp->state == IPSEC_SPSTATE_DEAD) 638 continue; 639 if (key_cmpspidx_withmask(&sp->spidx, spidx)) 640 goto found; 641 } 642 sp = NULL; 643 found: 644 if (sp) { 645 /* sanity check */ 646 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 647 648 /* found a SPD entry */ 649 sp->lastused = time_second; 650 SP_ADDREF(sp); 651 } 652 SPTREE_UNLOCK(); 653 654 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 655 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 656 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 657 return sp; 658 } 659 660 /* 661 * allocating a SP for OUTBOUND or INBOUND packet. 662 * Must call key_freesp() later. 663 * OUT: NULL: not found 664 * others: found and return the pointer. 665 */ 666 struct secpolicy * 667 key_allocsp2(u_int32_t spi, 668 union sockaddr_union *dst, 669 u_int8_t proto, 670 u_int dir, 671 const char* where, int tag) 672 { 673 struct secpolicy *sp; 674 675 IPSEC_ASSERT(dst != NULL, ("null dst")); 676 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 677 ("invalid direction %u", dir)); 678 679 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 680 printf("DP %s from %s:%u\n", __func__, where, tag)); 681 682 /* get a SP entry */ 683 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 684 printf("*** objects\n"); 685 printf("spi %u proto %u dir %u\n", spi, proto, dir); 686 kdebug_sockaddr(&dst->sa)); 687 688 SPTREE_LOCK(); 689 LIST_FOREACH(sp, &V_sptree[dir], chain) { 690 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 691 printf("*** in SPD\n"); 692 kdebug_secpolicyindex(&sp->spidx)); 693 694 if (sp->state == IPSEC_SPSTATE_DEAD) 695 continue; 696 /* compare simple values, then dst address */ 697 if (sp->spidx.ul_proto != proto) 698 continue; 699 /* NB: spi's must exist and match */ 700 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi) 701 continue; 702 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0) 703 goto found; 704 } 705 sp = NULL; 706 found: 707 if (sp) { 708 /* sanity check */ 709 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 710 711 /* found a SPD entry */ 712 sp->lastused = time_second; 713 SP_ADDREF(sp); 714 } 715 SPTREE_UNLOCK(); 716 717 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 718 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 719 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 720 return sp; 721 } 722 723 #if 0 724 /* 725 * return a policy that matches this particular inbound packet. 726 * XXX slow 727 */ 728 struct secpolicy * 729 key_gettunnel(const struct sockaddr *osrc, 730 const struct sockaddr *odst, 731 const struct sockaddr *isrc, 732 const struct sockaddr *idst, 733 const char* where, int tag) 734 { 735 struct secpolicy *sp; 736 const int dir = IPSEC_DIR_INBOUND; 737 struct ipsecrequest *r1, *r2, *p; 738 struct secpolicyindex spidx; 739 740 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 741 printf("DP %s from %s:%u\n", __func__, where, tag)); 742 743 if (isrc->sa_family != idst->sa_family) { 744 ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.", 745 __func__, isrc->sa_family, idst->sa_family)); 746 sp = NULL; 747 goto done; 748 } 749 750 SPTREE_LOCK(); 751 LIST_FOREACH(sp, &V_sptree[dir], chain) { 752 if (sp->state == IPSEC_SPSTATE_DEAD) 753 continue; 754 755 r1 = r2 = NULL; 756 for (p = sp->req; p; p = p->next) { 757 if (p->saidx.mode != IPSEC_MODE_TUNNEL) 758 continue; 759 760 r1 = r2; 761 r2 = p; 762 763 if (!r1) { 764 /* here we look at address matches only */ 765 spidx = sp->spidx; 766 if (isrc->sa_len > sizeof(spidx.src) || 767 idst->sa_len > sizeof(spidx.dst)) 768 continue; 769 bcopy(isrc, &spidx.src, isrc->sa_len); 770 bcopy(idst, &spidx.dst, idst->sa_len); 771 if (!key_cmpspidx_withmask(&sp->spidx, &spidx)) 772 continue; 773 } else { 774 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) || 775 key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0)) 776 continue; 777 } 778 779 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) || 780 key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0)) 781 continue; 782 783 goto found; 784 } 785 } 786 sp = NULL; 787 found: 788 if (sp) { 789 sp->lastused = time_second; 790 SP_ADDREF(sp); 791 } 792 SPTREE_UNLOCK(); 793 done: 794 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 795 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 796 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 797 return sp; 798 } 799 #endif 800 801 /* 802 * allocating an SA entry for an *OUTBOUND* packet. 803 * checking each request entries in SP, and acquire an SA if need. 804 * OUT: 0: there are valid requests. 805 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. 806 */ 807 int 808 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx) 809 { 810 u_int level; 811 int error; 812 struct secasvar *sav; 813 814 IPSEC_ASSERT(isr != NULL, ("null isr")); 815 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 816 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT || 817 saidx->mode == IPSEC_MODE_TUNNEL, 818 ("unexpected policy %u", saidx->mode)); 819 820 /* 821 * XXX guard against protocol callbacks from the crypto 822 * thread as they reference ipsecrequest.sav which we 823 * temporarily null out below. Need to rethink how we 824 * handle bundled SA's in the callback thread. 825 */ 826 IPSECREQUEST_LOCK_ASSERT(isr); 827 828 /* get current level */ 829 level = ipsec_get_reqlevel(isr); 830 831 /* 832 * We check new SA in the IPsec request because a different 833 * SA may be involved each time this request is checked, either 834 * because new SAs are being configured, or this request is 835 * associated with an unconnected datagram socket, or this request 836 * is associated with a system default policy. 837 * 838 * key_allocsa_policy should allocate the oldest SA available. 839 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt. 840 */ 841 sav = key_allocsa_policy(saidx); 842 if (sav != isr->sav) { 843 /* SA need to be updated. */ 844 if (!IPSECREQUEST_UPGRADE(isr)) { 845 /* Kick everyone off. */ 846 IPSECREQUEST_UNLOCK(isr); 847 IPSECREQUEST_WLOCK(isr); 848 } 849 if (isr->sav != NULL) 850 KEY_FREESAV(&isr->sav); 851 isr->sav = sav; 852 IPSECREQUEST_DOWNGRADE(isr); 853 } else if (sav != NULL) 854 KEY_FREESAV(&sav); 855 856 /* When there is SA. */ 857 if (isr->sav != NULL) { 858 if (isr->sav->state != SADB_SASTATE_MATURE && 859 isr->sav->state != SADB_SASTATE_DYING) 860 return EINVAL; 861 return 0; 862 } 863 864 /* there is no SA */ 865 error = key_acquire(saidx, isr->sp); 866 if (error != 0) { 867 /* XXX What should I do ? */ 868 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 869 __func__, error)); 870 return error; 871 } 872 873 if (level != IPSEC_LEVEL_REQUIRE) { 874 /* XXX sigh, the interface to this routine is botched */ 875 IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA")); 876 return 0; 877 } else { 878 return ENOENT; 879 } 880 } 881 882 /* 883 * allocating a SA for policy entry from SAD. 884 * NOTE: searching SAD of aliving state. 885 * OUT: NULL: not found. 886 * others: found and return the pointer. 887 */ 888 static struct secasvar * 889 key_allocsa_policy(const struct secasindex *saidx) 890 { 891 #define N(a) _ARRAYLEN(a) 892 struct secashead *sah; 893 struct secasvar *sav; 894 u_int stateidx, arraysize; 895 const u_int *state_valid; 896 897 state_valid = NULL; /* silence gcc */ 898 arraysize = 0; /* silence gcc */ 899 900 SAHTREE_LOCK(); 901 LIST_FOREACH(sah, &V_sahtree, chain) { 902 if (sah->state == SADB_SASTATE_DEAD) 903 continue; 904 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) { 905 if (V_key_preferred_oldsa) { 906 state_valid = saorder_state_valid_prefer_old; 907 arraysize = N(saorder_state_valid_prefer_old); 908 } else { 909 state_valid = saorder_state_valid_prefer_new; 910 arraysize = N(saorder_state_valid_prefer_new); 911 } 912 break; 913 } 914 } 915 SAHTREE_UNLOCK(); 916 if (sah == NULL) 917 return NULL; 918 919 /* search valid state */ 920 for (stateidx = 0; stateidx < arraysize; stateidx++) { 921 sav = key_do_allocsa_policy(sah, state_valid[stateidx]); 922 if (sav != NULL) 923 return sav; 924 } 925 926 return NULL; 927 #undef N 928 } 929 930 /* 931 * searching SAD with direction, protocol, mode and state. 932 * called by key_allocsa_policy(). 933 * OUT: 934 * NULL : not found 935 * others : found, pointer to a SA. 936 */ 937 static struct secasvar * 938 key_do_allocsa_policy(struct secashead *sah, u_int state) 939 { 940 struct secasvar *sav, *nextsav, *candidate, *d; 941 942 /* initilize */ 943 candidate = NULL; 944 945 SAHTREE_LOCK(); 946 for (sav = LIST_FIRST(&sah->savtree[state]); 947 sav != NULL; 948 sav = nextsav) { 949 950 nextsav = LIST_NEXT(sav, chain); 951 952 /* sanity check */ 953 KEY_CHKSASTATE(sav->state, state, __func__); 954 955 /* initialize */ 956 if (candidate == NULL) { 957 candidate = sav; 958 continue; 959 } 960 961 /* Which SA is the better ? */ 962 963 IPSEC_ASSERT(candidate->lft_c != NULL, 964 ("null candidate lifetime")); 965 IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime")); 966 967 /* What the best method is to compare ? */ 968 if (V_key_preferred_oldsa) { 969 if (candidate->lft_c->addtime > 970 sav->lft_c->addtime) { 971 candidate = sav; 972 } 973 continue; 974 /*NOTREACHED*/ 975 } 976 977 /* preferred new sa rather than old sa */ 978 if (candidate->lft_c->addtime < 979 sav->lft_c->addtime) { 980 d = candidate; 981 candidate = sav; 982 } else 983 d = sav; 984 985 /* 986 * prepared to delete the SA when there is more 987 * suitable candidate and the lifetime of the SA is not 988 * permanent. 989 */ 990 if (d->lft_h->addtime != 0) { 991 struct mbuf *m, *result; 992 u_int8_t satype; 993 994 key_sa_chgstate(d, SADB_SASTATE_DEAD); 995 996 IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count")); 997 998 satype = key_proto2satype(d->sah->saidx.proto); 999 if (satype == 0) 1000 goto msgfail; 1001 1002 m = key_setsadbmsg(SADB_DELETE, 0, 1003 satype, 0, 0, d->refcnt - 1); 1004 if (!m) 1005 goto msgfail; 1006 result = m; 1007 1008 /* set sadb_address for saidx's. */ 1009 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 1010 &d->sah->saidx.src.sa, 1011 d->sah->saidx.src.sa.sa_len << 3, 1012 IPSEC_ULPROTO_ANY); 1013 if (!m) 1014 goto msgfail; 1015 m_cat(result, m); 1016 1017 /* set sadb_address for saidx's. */ 1018 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 1019 &d->sah->saidx.dst.sa, 1020 d->sah->saidx.dst.sa.sa_len << 3, 1021 IPSEC_ULPROTO_ANY); 1022 if (!m) 1023 goto msgfail; 1024 m_cat(result, m); 1025 1026 /* create SA extension */ 1027 m = key_setsadbsa(d); 1028 if (!m) 1029 goto msgfail; 1030 m_cat(result, m); 1031 1032 if (result->m_len < sizeof(struct sadb_msg)) { 1033 result = m_pullup(result, 1034 sizeof(struct sadb_msg)); 1035 if (result == NULL) 1036 goto msgfail; 1037 } 1038 1039 result->m_pkthdr.len = 0; 1040 for (m = result; m; m = m->m_next) 1041 result->m_pkthdr.len += m->m_len; 1042 mtod(result, struct sadb_msg *)->sadb_msg_len = 1043 PFKEY_UNIT64(result->m_pkthdr.len); 1044 1045 if (key_sendup_mbuf(NULL, result, 1046 KEY_SENDUP_REGISTERED)) 1047 goto msgfail; 1048 msgfail: 1049 KEY_FREESAV(&d); 1050 } 1051 } 1052 if (candidate) { 1053 sa_addref(candidate); 1054 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1055 printf("DP %s cause refcnt++:%d SA:%p\n", 1056 __func__, candidate->refcnt, candidate)); 1057 } 1058 SAHTREE_UNLOCK(); 1059 1060 return candidate; 1061 } 1062 1063 /* 1064 * allocating a usable SA entry for a *INBOUND* packet. 1065 * Must call key_freesav() later. 1066 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). 1067 * NULL: not found, or error occured. 1068 * 1069 * In the comparison, no source address is used--for RFC2401 conformance. 1070 * To quote, from section 4.1: 1071 * A security association is uniquely identified by a triple consisting 1072 * of a Security Parameter Index (SPI), an IP Destination Address, and a 1073 * security protocol (AH or ESP) identifier. 1074 * Note that, however, we do need to keep source address in IPsec SA. 1075 * IKE specification and PF_KEY specification do assume that we 1076 * keep source address in IPsec SA. We see a tricky situation here. 1077 */ 1078 struct secasvar * 1079 key_allocsa( 1080 union sockaddr_union *dst, 1081 u_int proto, 1082 u_int32_t spi, 1083 const char* where, int tag) 1084 { 1085 struct secashead *sah; 1086 struct secasvar *sav; 1087 u_int stateidx, arraysize, state; 1088 const u_int *saorder_state_valid; 1089 int chkport; 1090 1091 IPSEC_ASSERT(dst != NULL, ("null dst address")); 1092 1093 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1094 printf("DP %s from %s:%u\n", __func__, where, tag)); 1095 1096 #ifdef IPSEC_NAT_T 1097 chkport = (dst->sa.sa_family == AF_INET && 1098 dst->sa.sa_len == sizeof(struct sockaddr_in) && 1099 dst->sin.sin_port != 0); 1100 #else 1101 chkport = 0; 1102 #endif 1103 1104 /* 1105 * searching SAD. 1106 * XXX: to be checked internal IP header somewhere. Also when 1107 * IPsec tunnel packet is received. But ESP tunnel mode is 1108 * encrypted so we can't check internal IP header. 1109 */ 1110 SAHTREE_LOCK(); 1111 if (V_key_preferred_oldsa) { 1112 saorder_state_valid = saorder_state_valid_prefer_old; 1113 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); 1114 } else { 1115 saorder_state_valid = saorder_state_valid_prefer_new; 1116 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); 1117 } 1118 LIST_FOREACH(sah, &V_sahtree, chain) { 1119 /* search valid state */ 1120 for (stateidx = 0; stateidx < arraysize; stateidx++) { 1121 state = saorder_state_valid[stateidx]; 1122 LIST_FOREACH(sav, &sah->savtree[state], chain) { 1123 /* sanity check */ 1124 KEY_CHKSASTATE(sav->state, state, __func__); 1125 /* do not return entries w/ unusable state */ 1126 if (sav->state != SADB_SASTATE_MATURE && 1127 sav->state != SADB_SASTATE_DYING) 1128 continue; 1129 if (proto != sav->sah->saidx.proto) 1130 continue; 1131 if (spi != sav->spi) 1132 continue; 1133 #if 0 /* don't check src */ 1134 /* check src address */ 1135 if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, chkport) != 0) 1136 continue; 1137 #endif 1138 /* check dst address */ 1139 if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, chkport) != 0) 1140 continue; 1141 sa_addref(sav); 1142 goto done; 1143 } 1144 } 1145 } 1146 sav = NULL; 1147 done: 1148 SAHTREE_UNLOCK(); 1149 1150 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1151 printf("DP %s return SA:%p; refcnt %u\n", __func__, 1152 sav, sav ? sav->refcnt : 0)); 1153 return sav; 1154 } 1155 1156 /* 1157 * Must be called after calling key_allocsp(). 1158 * For both the packet without socket and key_freeso(). 1159 */ 1160 void 1161 _key_freesp(struct secpolicy **spp, const char* where, int tag) 1162 { 1163 struct secpolicy *sp = *spp; 1164 1165 IPSEC_ASSERT(sp != NULL, ("null sp")); 1166 1167 SPTREE_LOCK(); 1168 SP_DELREF(sp); 1169 1170 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1171 printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n", 1172 __func__, sp, sp->id, where, tag, sp->refcnt)); 1173 1174 if (sp->refcnt == 0) { 1175 *spp = NULL; 1176 key_delsp(sp); 1177 } 1178 SPTREE_UNLOCK(); 1179 } 1180 1181 /* 1182 * Must be called after calling key_allocsp(). 1183 * For the packet with socket. 1184 */ 1185 void 1186 key_freeso(struct socket *so) 1187 { 1188 IPSEC_ASSERT(so != NULL, ("null so")); 1189 1190 switch (so->so_proto->pr_domain->dom_family) { 1191 #if defined(INET) || defined(INET6) 1192 #ifdef INET 1193 case PF_INET: 1194 #endif 1195 #ifdef INET6 1196 case PF_INET6: 1197 #endif 1198 { 1199 struct inpcb *pcb = sotoinpcb(so); 1200 1201 /* Does it have a PCB ? */ 1202 if (pcb == NULL) 1203 return; 1204 key_freesp_so(&pcb->inp_sp->sp_in); 1205 key_freesp_so(&pcb->inp_sp->sp_out); 1206 } 1207 break; 1208 #endif /* INET || INET6 */ 1209 default: 1210 ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n", 1211 __func__, so->so_proto->pr_domain->dom_family)); 1212 return; 1213 } 1214 } 1215 1216 static void 1217 key_freesp_so(struct secpolicy **sp) 1218 { 1219 IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp")); 1220 1221 if ((*sp)->policy == IPSEC_POLICY_ENTRUST || 1222 (*sp)->policy == IPSEC_POLICY_BYPASS) 1223 return; 1224 1225 IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC, 1226 ("invalid policy %u", (*sp)->policy)); 1227 KEY_FREESP(sp); 1228 } 1229 1230 void 1231 key_addrefsa(struct secasvar *sav, const char* where, int tag) 1232 { 1233 1234 IPSEC_ASSERT(sav != NULL, ("null sav")); 1235 IPSEC_ASSERT(sav->refcnt > 0, ("refcount must exist")); 1236 1237 sa_addref(sav); 1238 } 1239 1240 /* 1241 * Must be called after calling key_allocsa(). 1242 * This function is called by key_freesp() to free some SA allocated 1243 * for a policy. 1244 */ 1245 void 1246 key_freesav(struct secasvar **psav, const char* where, int tag) 1247 { 1248 struct secasvar *sav = *psav; 1249 1250 IPSEC_ASSERT(sav != NULL, ("null sav")); 1251 1252 if (sa_delref(sav)) { 1253 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1254 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1255 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1256 *psav = NULL; 1257 key_delsav(sav); 1258 } else { 1259 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1260 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1261 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1262 } 1263 } 1264 1265 /* %%% SPD management */ 1266 /* 1267 * free security policy entry. 1268 */ 1269 static void 1270 key_delsp(struct secpolicy *sp) 1271 { 1272 struct ipsecrequest *isr, *nextisr; 1273 1274 IPSEC_ASSERT(sp != NULL, ("null sp")); 1275 SPTREE_LOCK_ASSERT(); 1276 1277 sp->state = IPSEC_SPSTATE_DEAD; 1278 1279 IPSEC_ASSERT(sp->refcnt == 0, 1280 ("SP with references deleted (refcnt %u)", sp->refcnt)); 1281 1282 /* remove from SP index */ 1283 if (__LIST_CHAINED(sp)) 1284 LIST_REMOVE(sp, chain); 1285 1286 for (isr = sp->req; isr != NULL; isr = nextisr) { 1287 if (isr->sav != NULL) { 1288 KEY_FREESAV(&isr->sav); 1289 isr->sav = NULL; 1290 } 1291 1292 nextisr = isr->next; 1293 ipsec_delisr(isr); 1294 } 1295 _key_delsp(sp); 1296 } 1297 1298 /* 1299 * search SPD 1300 * OUT: NULL : not found 1301 * others : found, pointer to a SP. 1302 */ 1303 static struct secpolicy * 1304 key_getsp(struct secpolicyindex *spidx) 1305 { 1306 struct secpolicy *sp; 1307 1308 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 1309 1310 SPTREE_LOCK(); 1311 LIST_FOREACH(sp, &V_sptree[spidx->dir], chain) { 1312 if (sp->state == IPSEC_SPSTATE_DEAD) 1313 continue; 1314 if (key_cmpspidx_exactly(spidx, &sp->spidx)) { 1315 SP_ADDREF(sp); 1316 break; 1317 } 1318 } 1319 SPTREE_UNLOCK(); 1320 1321 return sp; 1322 } 1323 1324 /* 1325 * get SP by index. 1326 * OUT: NULL : not found 1327 * others : found, pointer to a SP. 1328 */ 1329 static struct secpolicy * 1330 key_getspbyid(u_int32_t id) 1331 { 1332 struct secpolicy *sp; 1333 1334 SPTREE_LOCK(); 1335 LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_INBOUND], chain) { 1336 if (sp->state == IPSEC_SPSTATE_DEAD) 1337 continue; 1338 if (sp->id == id) { 1339 SP_ADDREF(sp); 1340 goto done; 1341 } 1342 } 1343 1344 LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_OUTBOUND], chain) { 1345 if (sp->state == IPSEC_SPSTATE_DEAD) 1346 continue; 1347 if (sp->id == id) { 1348 SP_ADDREF(sp); 1349 goto done; 1350 } 1351 } 1352 done: 1353 SPTREE_UNLOCK(); 1354 1355 return sp; 1356 } 1357 1358 struct secpolicy * 1359 key_newsp(const char* where, int tag) 1360 { 1361 struct secpolicy *newsp = NULL; 1362 1363 newsp = (struct secpolicy *) 1364 malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO); 1365 if (newsp) { 1366 SECPOLICY_LOCK_INIT(newsp); 1367 newsp->refcnt = 1; 1368 newsp->req = NULL; 1369 } 1370 1371 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1372 printf("DP %s from %s:%u return SP:%p\n", __func__, 1373 where, tag, newsp)); 1374 return newsp; 1375 } 1376 1377 static void 1378 _key_delsp(struct secpolicy *sp) 1379 { 1380 SECPOLICY_LOCK_DESTROY(sp); 1381 free(sp, M_IPSEC_SP); 1382 } 1383 1384 /* 1385 * create secpolicy structure from sadb_x_policy structure. 1386 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, 1387 * so must be set properly later. 1388 */ 1389 struct secpolicy * 1390 key_msg2sp(xpl0, len, error) 1391 struct sadb_x_policy *xpl0; 1392 size_t len; 1393 int *error; 1394 { 1395 struct secpolicy *newsp; 1396 1397 IPSEC_ASSERT(xpl0 != NULL, ("null xpl0")); 1398 IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len)); 1399 1400 if (len != PFKEY_EXTLEN(xpl0)) { 1401 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__)); 1402 *error = EINVAL; 1403 return NULL; 1404 } 1405 1406 if ((newsp = KEY_NEWSP()) == NULL) { 1407 *error = ENOBUFS; 1408 return NULL; 1409 } 1410 1411 newsp->spidx.dir = xpl0->sadb_x_policy_dir; 1412 newsp->policy = xpl0->sadb_x_policy_type; 1413 1414 /* check policy */ 1415 switch (xpl0->sadb_x_policy_type) { 1416 case IPSEC_POLICY_DISCARD: 1417 case IPSEC_POLICY_NONE: 1418 case IPSEC_POLICY_ENTRUST: 1419 case IPSEC_POLICY_BYPASS: 1420 newsp->req = NULL; 1421 break; 1422 1423 case IPSEC_POLICY_IPSEC: 1424 { 1425 int tlen; 1426 struct sadb_x_ipsecrequest *xisr; 1427 struct ipsecrequest **p_isr = &newsp->req; 1428 1429 /* validity check */ 1430 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { 1431 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", 1432 __func__)); 1433 KEY_FREESP(&newsp); 1434 *error = EINVAL; 1435 return NULL; 1436 } 1437 1438 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); 1439 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1); 1440 1441 while (tlen > 0) { 1442 /* length check */ 1443 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { 1444 ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest " 1445 "length.\n", __func__)); 1446 KEY_FREESP(&newsp); 1447 *error = EINVAL; 1448 return NULL; 1449 } 1450 1451 /* allocate request buffer */ 1452 /* NB: data structure is zero'd */ 1453 *p_isr = ipsec_newisr(); 1454 if ((*p_isr) == NULL) { 1455 ipseclog((LOG_DEBUG, 1456 "%s: No more memory.\n", __func__)); 1457 KEY_FREESP(&newsp); 1458 *error = ENOBUFS; 1459 return NULL; 1460 } 1461 1462 /* set values */ 1463 switch (xisr->sadb_x_ipsecrequest_proto) { 1464 case IPPROTO_ESP: 1465 case IPPROTO_AH: 1466 case IPPROTO_IPCOMP: 1467 break; 1468 default: 1469 ipseclog((LOG_DEBUG, 1470 "%s: invalid proto type=%u\n", __func__, 1471 xisr->sadb_x_ipsecrequest_proto)); 1472 KEY_FREESP(&newsp); 1473 *error = EPROTONOSUPPORT; 1474 return NULL; 1475 } 1476 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; 1477 1478 switch (xisr->sadb_x_ipsecrequest_mode) { 1479 case IPSEC_MODE_TRANSPORT: 1480 case IPSEC_MODE_TUNNEL: 1481 break; 1482 case IPSEC_MODE_ANY: 1483 default: 1484 ipseclog((LOG_DEBUG, 1485 "%s: invalid mode=%u\n", __func__, 1486 xisr->sadb_x_ipsecrequest_mode)); 1487 KEY_FREESP(&newsp); 1488 *error = EINVAL; 1489 return NULL; 1490 } 1491 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; 1492 1493 switch (xisr->sadb_x_ipsecrequest_level) { 1494 case IPSEC_LEVEL_DEFAULT: 1495 case IPSEC_LEVEL_USE: 1496 case IPSEC_LEVEL_REQUIRE: 1497 break; 1498 case IPSEC_LEVEL_UNIQUE: 1499 /* validity check */ 1500 /* 1501 * If range violation of reqid, kernel will 1502 * update it, don't refuse it. 1503 */ 1504 if (xisr->sadb_x_ipsecrequest_reqid 1505 > IPSEC_MANUAL_REQID_MAX) { 1506 ipseclog((LOG_DEBUG, 1507 "%s: reqid=%d range " 1508 "violation, updated by kernel.\n", 1509 __func__, 1510 xisr->sadb_x_ipsecrequest_reqid)); 1511 xisr->sadb_x_ipsecrequest_reqid = 0; 1512 } 1513 1514 /* allocate new reqid id if reqid is zero. */ 1515 if (xisr->sadb_x_ipsecrequest_reqid == 0) { 1516 u_int32_t reqid; 1517 if ((reqid = key_newreqid()) == 0) { 1518 KEY_FREESP(&newsp); 1519 *error = ENOBUFS; 1520 return NULL; 1521 } 1522 (*p_isr)->saidx.reqid = reqid; 1523 xisr->sadb_x_ipsecrequest_reqid = reqid; 1524 } else { 1525 /* set it for manual keying. */ 1526 (*p_isr)->saidx.reqid = 1527 xisr->sadb_x_ipsecrequest_reqid; 1528 } 1529 break; 1530 1531 default: 1532 ipseclog((LOG_DEBUG, "%s: invalid level=%u\n", 1533 __func__, 1534 xisr->sadb_x_ipsecrequest_level)); 1535 KEY_FREESP(&newsp); 1536 *error = EINVAL; 1537 return NULL; 1538 } 1539 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; 1540 1541 /* set IP addresses if there */ 1542 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { 1543 struct sockaddr *paddr; 1544 1545 paddr = (struct sockaddr *)(xisr + 1); 1546 1547 /* validity check */ 1548 if (paddr->sa_len 1549 > sizeof((*p_isr)->saidx.src)) { 1550 ipseclog((LOG_DEBUG, "%s: invalid " 1551 "request address length.\n", 1552 __func__)); 1553 KEY_FREESP(&newsp); 1554 *error = EINVAL; 1555 return NULL; 1556 } 1557 bcopy(paddr, &(*p_isr)->saidx.src, 1558 paddr->sa_len); 1559 1560 paddr = (struct sockaddr *)((caddr_t)paddr 1561 + paddr->sa_len); 1562 1563 /* validity check */ 1564 if (paddr->sa_len 1565 > sizeof((*p_isr)->saidx.dst)) { 1566 ipseclog((LOG_DEBUG, "%s: invalid " 1567 "request address length.\n", 1568 __func__)); 1569 KEY_FREESP(&newsp); 1570 *error = EINVAL; 1571 return NULL; 1572 } 1573 bcopy(paddr, &(*p_isr)->saidx.dst, 1574 paddr->sa_len); 1575 } 1576 1577 (*p_isr)->sp = newsp; 1578 1579 /* initialization for the next. */ 1580 p_isr = &(*p_isr)->next; 1581 tlen -= xisr->sadb_x_ipsecrequest_len; 1582 1583 /* validity check */ 1584 if (tlen < 0) { 1585 ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n", 1586 __func__)); 1587 KEY_FREESP(&newsp); 1588 *error = EINVAL; 1589 return NULL; 1590 } 1591 1592 xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr 1593 + xisr->sadb_x_ipsecrequest_len); 1594 } 1595 } 1596 break; 1597 default: 1598 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); 1599 KEY_FREESP(&newsp); 1600 *error = EINVAL; 1601 return NULL; 1602 } 1603 1604 *error = 0; 1605 return newsp; 1606 } 1607 1608 static u_int32_t 1609 key_newreqid() 1610 { 1611 static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 1612 1613 auto_reqid = (auto_reqid == ~0 1614 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); 1615 1616 /* XXX should be unique check */ 1617 1618 return auto_reqid; 1619 } 1620 1621 /* 1622 * copy secpolicy struct to sadb_x_policy structure indicated. 1623 */ 1624 struct mbuf * 1625 key_sp2msg(sp) 1626 struct secpolicy *sp; 1627 { 1628 struct sadb_x_policy *xpl; 1629 int tlen; 1630 caddr_t p; 1631 struct mbuf *m; 1632 1633 IPSEC_ASSERT(sp != NULL, ("null policy")); 1634 1635 tlen = key_getspreqmsglen(sp); 1636 1637 m = m_get2(tlen, M_NOWAIT, MT_DATA, 0); 1638 if (m == NULL) 1639 return (NULL); 1640 m_align(m, tlen); 1641 m->m_len = tlen; 1642 xpl = mtod(m, struct sadb_x_policy *); 1643 bzero(xpl, tlen); 1644 1645 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen); 1646 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 1647 xpl->sadb_x_policy_type = sp->policy; 1648 xpl->sadb_x_policy_dir = sp->spidx.dir; 1649 xpl->sadb_x_policy_id = sp->id; 1650 p = (caddr_t)xpl + sizeof(*xpl); 1651 1652 /* if is the policy for ipsec ? */ 1653 if (sp->policy == IPSEC_POLICY_IPSEC) { 1654 struct sadb_x_ipsecrequest *xisr; 1655 struct ipsecrequest *isr; 1656 1657 for (isr = sp->req; isr != NULL; isr = isr->next) { 1658 1659 xisr = (struct sadb_x_ipsecrequest *)p; 1660 1661 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; 1662 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; 1663 xisr->sadb_x_ipsecrequest_level = isr->level; 1664 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; 1665 1666 p += sizeof(*xisr); 1667 bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len); 1668 p += isr->saidx.src.sa.sa_len; 1669 bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len); 1670 p += isr->saidx.src.sa.sa_len; 1671 1672 xisr->sadb_x_ipsecrequest_len = 1673 PFKEY_ALIGN8(sizeof(*xisr) 1674 + isr->saidx.src.sa.sa_len 1675 + isr->saidx.dst.sa.sa_len); 1676 } 1677 } 1678 1679 return m; 1680 } 1681 1682 /* m will not be freed nor modified */ 1683 static struct mbuf * 1684 #ifdef __STDC__ 1685 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, 1686 int ndeep, int nitem, ...) 1687 #else 1688 key_gather_mbuf(m, mhp, ndeep, nitem, va_alist) 1689 struct mbuf *m; 1690 const struct sadb_msghdr *mhp; 1691 int ndeep; 1692 int nitem; 1693 va_dcl 1694 #endif 1695 { 1696 va_list ap; 1697 int idx; 1698 int i; 1699 struct mbuf *result = NULL, *n; 1700 int len; 1701 1702 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1703 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1704 1705 va_start(ap, nitem); 1706 for (i = 0; i < nitem; i++) { 1707 idx = va_arg(ap, int); 1708 if (idx < 0 || idx > SADB_EXT_MAX) 1709 goto fail; 1710 /* don't attempt to pull empty extension */ 1711 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) 1712 continue; 1713 if (idx != SADB_EXT_RESERVED && 1714 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) 1715 continue; 1716 1717 if (idx == SADB_EXT_RESERVED) { 1718 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 1719 1720 IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len)); 1721 1722 MGETHDR(n, M_NOWAIT, MT_DATA); 1723 if (!n) 1724 goto fail; 1725 n->m_len = len; 1726 n->m_next = NULL; 1727 m_copydata(m, 0, sizeof(struct sadb_msg), 1728 mtod(n, caddr_t)); 1729 } else if (i < ndeep) { 1730 len = mhp->extlen[idx]; 1731 n = m_get2(len, M_NOWAIT, MT_DATA, 0); 1732 if (n == NULL) 1733 goto fail; 1734 m_align(n, len); 1735 n->m_len = len; 1736 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], 1737 mtod(n, caddr_t)); 1738 } else { 1739 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], 1740 M_NOWAIT); 1741 } 1742 if (n == NULL) 1743 goto fail; 1744 1745 if (result) 1746 m_cat(result, n); 1747 else 1748 result = n; 1749 } 1750 va_end(ap); 1751 1752 if ((result->m_flags & M_PKTHDR) != 0) { 1753 result->m_pkthdr.len = 0; 1754 for (n = result; n; n = n->m_next) 1755 result->m_pkthdr.len += n->m_len; 1756 } 1757 1758 return result; 1759 1760 fail: 1761 m_freem(result); 1762 va_end(ap); 1763 return NULL; 1764 } 1765 1766 /* 1767 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing 1768 * add an entry to SP database, when received 1769 * <base, address(SD), (lifetime(H),) policy> 1770 * from the user(?). 1771 * Adding to SP database, 1772 * and send 1773 * <base, address(SD), (lifetime(H),) policy> 1774 * to the socket which was send. 1775 * 1776 * SPDADD set a unique policy entry. 1777 * SPDSETIDX like SPDADD without a part of policy requests. 1778 * SPDUPDATE replace a unique policy entry. 1779 * 1780 * m will always be freed. 1781 */ 1782 static int 1783 key_spdadd(so, m, mhp) 1784 struct socket *so; 1785 struct mbuf *m; 1786 const struct sadb_msghdr *mhp; 1787 { 1788 struct sadb_address *src0, *dst0; 1789 struct sadb_x_policy *xpl0, *xpl; 1790 struct sadb_lifetime *lft = NULL; 1791 struct secpolicyindex spidx; 1792 struct secpolicy *newsp; 1793 int error; 1794 1795 IPSEC_ASSERT(so != NULL, ("null socket")); 1796 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1797 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1798 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 1799 1800 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 1801 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 1802 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 1803 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n")); 1804 return key_senderror(so, m, EINVAL); 1805 } 1806 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 1807 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 1808 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 1809 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1810 __func__)); 1811 return key_senderror(so, m, EINVAL); 1812 } 1813 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { 1814 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] 1815 < sizeof(struct sadb_lifetime)) { 1816 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1817 __func__)); 1818 return key_senderror(so, m, EINVAL); 1819 } 1820 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 1821 } 1822 1823 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 1824 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 1825 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 1826 1827 /* 1828 * Note: do not parse SADB_X_EXT_NAT_T_* here: 1829 * we are processing traffic endpoints. 1830 */ 1831 1832 /* make secindex */ 1833 /* XXX boundary check against sa_len */ 1834 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1835 src0 + 1, 1836 dst0 + 1, 1837 src0->sadb_address_prefixlen, 1838 dst0->sadb_address_prefixlen, 1839 src0->sadb_address_proto, 1840 &spidx); 1841 1842 /* checking the direciton. */ 1843 switch (xpl0->sadb_x_policy_dir) { 1844 case IPSEC_DIR_INBOUND: 1845 case IPSEC_DIR_OUTBOUND: 1846 break; 1847 default: 1848 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 1849 mhp->msg->sadb_msg_errno = EINVAL; 1850 return 0; 1851 } 1852 1853 /* check policy */ 1854 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */ 1855 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST 1856 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { 1857 ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__)); 1858 return key_senderror(so, m, EINVAL); 1859 } 1860 1861 /* policy requests are mandatory when action is ipsec. */ 1862 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX 1863 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC 1864 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { 1865 ipseclog((LOG_DEBUG, "%s: some policy requests part required\n", 1866 __func__)); 1867 return key_senderror(so, m, EINVAL); 1868 } 1869 1870 /* 1871 * checking there is SP already or not. 1872 * SPDUPDATE doesn't depend on whether there is a SP or not. 1873 * If the type is either SPDADD or SPDSETIDX AND a SP is found, 1874 * then error. 1875 */ 1876 newsp = key_getsp(&spidx); 1877 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1878 if (newsp) { 1879 SPTREE_LOCK(); 1880 newsp->state = IPSEC_SPSTATE_DEAD; 1881 SPTREE_UNLOCK(); 1882 KEY_FREESP(&newsp); 1883 } 1884 } else { 1885 if (newsp != NULL) { 1886 KEY_FREESP(&newsp); 1887 ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n", 1888 __func__)); 1889 return key_senderror(so, m, EEXIST); 1890 } 1891 } 1892 1893 /* allocation new SP entry */ 1894 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) { 1895 return key_senderror(so, m, error); 1896 } 1897 1898 if ((newsp->id = key_getnewspid()) == 0) { 1899 _key_delsp(newsp); 1900 return key_senderror(so, m, ENOBUFS); 1901 } 1902 1903 /* XXX boundary check against sa_len */ 1904 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1905 src0 + 1, 1906 dst0 + 1, 1907 src0->sadb_address_prefixlen, 1908 dst0->sadb_address_prefixlen, 1909 src0->sadb_address_proto, 1910 &newsp->spidx); 1911 1912 /* sanity check on addr pair */ 1913 if (((struct sockaddr *)(src0 + 1))->sa_family != 1914 ((struct sockaddr *)(dst0+ 1))->sa_family) { 1915 _key_delsp(newsp); 1916 return key_senderror(so, m, EINVAL); 1917 } 1918 if (((struct sockaddr *)(src0 + 1))->sa_len != 1919 ((struct sockaddr *)(dst0+ 1))->sa_len) { 1920 _key_delsp(newsp); 1921 return key_senderror(so, m, EINVAL); 1922 } 1923 #if 1 1924 if (newsp->req && newsp->req->saidx.src.sa.sa_family && newsp->req->saidx.dst.sa.sa_family) { 1925 if (newsp->req->saidx.src.sa.sa_family != newsp->req->saidx.dst.sa.sa_family) { 1926 _key_delsp(newsp); 1927 return key_senderror(so, m, EINVAL); 1928 } 1929 } 1930 #endif 1931 1932 newsp->created = time_second; 1933 newsp->lastused = newsp->created; 1934 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; 1935 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; 1936 1937 newsp->refcnt = 1; /* do not reclaim until I say I do */ 1938 newsp->state = IPSEC_SPSTATE_ALIVE; 1939 LIST_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, secpolicy, chain); 1940 1941 /* delete the entry in spacqtree */ 1942 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1943 struct secspacq *spacq = key_getspacq(&spidx); 1944 if (spacq != NULL) { 1945 /* reset counter in order to deletion by timehandler. */ 1946 spacq->created = time_second; 1947 spacq->count = 0; 1948 SPACQ_UNLOCK(); 1949 } 1950 } 1951 1952 { 1953 struct mbuf *n, *mpolicy; 1954 struct sadb_msg *newmsg; 1955 int off; 1956 1957 /* 1958 * Note: do not send SADB_X_EXT_NAT_T_* here: 1959 * we are sending traffic endpoints. 1960 */ 1961 1962 /* create new sadb_msg to reply. */ 1963 if (lft) { 1964 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, 1965 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, 1966 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1967 } else { 1968 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, 1969 SADB_X_EXT_POLICY, 1970 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1971 } 1972 if (!n) 1973 return key_senderror(so, m, ENOBUFS); 1974 1975 if (n->m_len < sizeof(*newmsg)) { 1976 n = m_pullup(n, sizeof(*newmsg)); 1977 if (!n) 1978 return key_senderror(so, m, ENOBUFS); 1979 } 1980 newmsg = mtod(n, struct sadb_msg *); 1981 newmsg->sadb_msg_errno = 0; 1982 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 1983 1984 off = 0; 1985 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), 1986 sizeof(*xpl), &off); 1987 if (mpolicy == NULL) { 1988 /* n is already freed */ 1989 return key_senderror(so, m, ENOBUFS); 1990 } 1991 xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off); 1992 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { 1993 m_freem(n); 1994 return key_senderror(so, m, EINVAL); 1995 } 1996 xpl->sadb_x_policy_id = newsp->id; 1997 1998 m_freem(m); 1999 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2000 } 2001 } 2002 2003 /* 2004 * get new policy id. 2005 * OUT: 2006 * 0: failure. 2007 * others: success. 2008 */ 2009 static u_int32_t 2010 key_getnewspid() 2011 { 2012 u_int32_t newid = 0; 2013 int count = V_key_spi_trycnt; /* XXX */ 2014 struct secpolicy *sp; 2015 2016 /* when requesting to allocate spi ranged */ 2017 while (count--) { 2018 newid = (V_policy_id = (V_policy_id == ~0 ? 1 : V_policy_id + 1)); 2019 2020 if ((sp = key_getspbyid(newid)) == NULL) 2021 break; 2022 2023 KEY_FREESP(&sp); 2024 } 2025 2026 if (count == 0 || newid == 0) { 2027 ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n", 2028 __func__)); 2029 return 0; 2030 } 2031 2032 return newid; 2033 } 2034 2035 /* 2036 * SADB_SPDDELETE processing 2037 * receive 2038 * <base, address(SD), policy(*)> 2039 * from the user(?), and set SADB_SASTATE_DEAD, 2040 * and send, 2041 * <base, address(SD), policy(*)> 2042 * to the ikmpd. 2043 * policy(*) including direction of policy. 2044 * 2045 * m will always be freed. 2046 */ 2047 static int 2048 key_spddelete(so, m, mhp) 2049 struct socket *so; 2050 struct mbuf *m; 2051 const struct sadb_msghdr *mhp; 2052 { 2053 struct sadb_address *src0, *dst0; 2054 struct sadb_x_policy *xpl0; 2055 struct secpolicyindex spidx; 2056 struct secpolicy *sp; 2057 2058 IPSEC_ASSERT(so != NULL, ("null so")); 2059 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2060 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2061 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2062 2063 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2064 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2065 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2066 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2067 __func__)); 2068 return key_senderror(so, m, EINVAL); 2069 } 2070 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2071 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2072 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2073 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2074 __func__)); 2075 return key_senderror(so, m, EINVAL); 2076 } 2077 2078 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 2079 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 2080 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 2081 2082 /* 2083 * Note: do not parse SADB_X_EXT_NAT_T_* here: 2084 * we are processing traffic endpoints. 2085 */ 2086 2087 /* make secindex */ 2088 /* XXX boundary check against sa_len */ 2089 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 2090 src0 + 1, 2091 dst0 + 1, 2092 src0->sadb_address_prefixlen, 2093 dst0->sadb_address_prefixlen, 2094 src0->sadb_address_proto, 2095 &spidx); 2096 2097 /* checking the direciton. */ 2098 switch (xpl0->sadb_x_policy_dir) { 2099 case IPSEC_DIR_INBOUND: 2100 case IPSEC_DIR_OUTBOUND: 2101 break; 2102 default: 2103 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 2104 return key_senderror(so, m, EINVAL); 2105 } 2106 2107 /* Is there SP in SPD ? */ 2108 if ((sp = key_getsp(&spidx)) == NULL) { 2109 ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__)); 2110 return key_senderror(so, m, EINVAL); 2111 } 2112 2113 /* save policy id to buffer to be returned. */ 2114 xpl0->sadb_x_policy_id = sp->id; 2115 2116 SPTREE_LOCK(); 2117 sp->state = IPSEC_SPSTATE_DEAD; 2118 SPTREE_UNLOCK(); 2119 KEY_FREESP(&sp); 2120 2121 { 2122 struct mbuf *n; 2123 struct sadb_msg *newmsg; 2124 2125 /* 2126 * Note: do not send SADB_X_EXT_NAT_T_* here: 2127 * we are sending traffic endpoints. 2128 */ 2129 2130 /* create new sadb_msg to reply. */ 2131 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 2132 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2133 if (!n) 2134 return key_senderror(so, m, ENOBUFS); 2135 2136 newmsg = mtod(n, struct sadb_msg *); 2137 newmsg->sadb_msg_errno = 0; 2138 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2139 2140 m_freem(m); 2141 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2142 } 2143 } 2144 2145 /* 2146 * SADB_SPDDELETE2 processing 2147 * receive 2148 * <base, policy(*)> 2149 * from the user(?), and set SADB_SASTATE_DEAD, 2150 * and send, 2151 * <base, policy(*)> 2152 * to the ikmpd. 2153 * policy(*) including direction of policy. 2154 * 2155 * m will always be freed. 2156 */ 2157 static int 2158 key_spddelete2(so, m, mhp) 2159 struct socket *so; 2160 struct mbuf *m; 2161 const struct sadb_msghdr *mhp; 2162 { 2163 u_int32_t id; 2164 struct secpolicy *sp; 2165 2166 IPSEC_ASSERT(so != NULL, ("null socket")); 2167 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2168 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2169 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2170 2171 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2172 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2173 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); 2174 return key_senderror(so, m, EINVAL); 2175 } 2176 2177 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2178 2179 /* Is there SP in SPD ? */ 2180 if ((sp = key_getspbyid(id)) == NULL) { 2181 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2182 return key_senderror(so, m, EINVAL); 2183 } 2184 2185 SPTREE_LOCK(); 2186 sp->state = IPSEC_SPSTATE_DEAD; 2187 SPTREE_UNLOCK(); 2188 KEY_FREESP(&sp); 2189 2190 { 2191 struct mbuf *n, *nn; 2192 struct sadb_msg *newmsg; 2193 int off, len; 2194 2195 /* create new sadb_msg to reply. */ 2196 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2197 2198 MGETHDR(n, M_NOWAIT, MT_DATA); 2199 if (n && len > MHLEN) { 2200 MCLGET(n, M_NOWAIT); 2201 if ((n->m_flags & M_EXT) == 0) { 2202 m_freem(n); 2203 n = NULL; 2204 } 2205 } 2206 if (!n) 2207 return key_senderror(so, m, ENOBUFS); 2208 2209 n->m_len = len; 2210 n->m_next = NULL; 2211 off = 0; 2212 2213 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 2214 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2215 2216 IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)", 2217 off, len)); 2218 2219 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], 2220 mhp->extlen[SADB_X_EXT_POLICY], M_NOWAIT); 2221 if (!n->m_next) { 2222 m_freem(n); 2223 return key_senderror(so, m, ENOBUFS); 2224 } 2225 2226 n->m_pkthdr.len = 0; 2227 for (nn = n; nn; nn = nn->m_next) 2228 n->m_pkthdr.len += nn->m_len; 2229 2230 newmsg = mtod(n, struct sadb_msg *); 2231 newmsg->sadb_msg_errno = 0; 2232 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2233 2234 m_freem(m); 2235 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2236 } 2237 } 2238 2239 /* 2240 * SADB_X_GET processing 2241 * receive 2242 * <base, policy(*)> 2243 * from the user(?), 2244 * and send, 2245 * <base, address(SD), policy> 2246 * to the ikmpd. 2247 * policy(*) including direction of policy. 2248 * 2249 * m will always be freed. 2250 */ 2251 static int 2252 key_spdget(so, m, mhp) 2253 struct socket *so; 2254 struct mbuf *m; 2255 const struct sadb_msghdr *mhp; 2256 { 2257 u_int32_t id; 2258 struct secpolicy *sp; 2259 struct mbuf *n; 2260 2261 IPSEC_ASSERT(so != NULL, ("null socket")); 2262 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2263 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2264 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2265 2266 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2267 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2268 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2269 __func__)); 2270 return key_senderror(so, m, EINVAL); 2271 } 2272 2273 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2274 2275 /* Is there SP in SPD ? */ 2276 if ((sp = key_getspbyid(id)) == NULL) { 2277 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2278 return key_senderror(so, m, ENOENT); 2279 } 2280 2281 n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid); 2282 KEY_FREESP(&sp); 2283 if (n != NULL) { 2284 m_freem(m); 2285 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2286 } else 2287 return key_senderror(so, m, ENOBUFS); 2288 } 2289 2290 /* 2291 * SADB_X_SPDACQUIRE processing. 2292 * Acquire policy and SA(s) for a *OUTBOUND* packet. 2293 * send 2294 * <base, policy(*)> 2295 * to KMD, and expect to receive 2296 * <base> with SADB_X_SPDACQUIRE if error occured, 2297 * or 2298 * <base, policy> 2299 * with SADB_X_SPDUPDATE from KMD by PF_KEY. 2300 * policy(*) is without policy requests. 2301 * 2302 * 0 : succeed 2303 * others: error number 2304 */ 2305 int 2306 key_spdacquire(sp) 2307 struct secpolicy *sp; 2308 { 2309 struct mbuf *result = NULL, *m; 2310 struct secspacq *newspacq; 2311 2312 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2313 IPSEC_ASSERT(sp->req == NULL, ("policy exists")); 2314 IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC, 2315 ("policy not IPSEC %u", sp->policy)); 2316 2317 /* Get an entry to check whether sent message or not. */ 2318 newspacq = key_getspacq(&sp->spidx); 2319 if (newspacq != NULL) { 2320 if (V_key_blockacq_count < newspacq->count) { 2321 /* reset counter and do send message. */ 2322 newspacq->count = 0; 2323 } else { 2324 /* increment counter and do nothing. */ 2325 newspacq->count++; 2326 return 0; 2327 } 2328 SPACQ_UNLOCK(); 2329 } else { 2330 /* make new entry for blocking to send SADB_ACQUIRE. */ 2331 newspacq = key_newspacq(&sp->spidx); 2332 if (newspacq == NULL) 2333 return ENOBUFS; 2334 } 2335 2336 /* create new sadb_msg to reply. */ 2337 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); 2338 if (!m) 2339 return ENOBUFS; 2340 2341 result = m; 2342 2343 result->m_pkthdr.len = 0; 2344 for (m = result; m; m = m->m_next) 2345 result->m_pkthdr.len += m->m_len; 2346 2347 mtod(result, struct sadb_msg *)->sadb_msg_len = 2348 PFKEY_UNIT64(result->m_pkthdr.len); 2349 2350 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 2351 } 2352 2353 /* 2354 * SADB_SPDFLUSH processing 2355 * receive 2356 * <base> 2357 * from the user, and free all entries in secpctree. 2358 * and send, 2359 * <base> 2360 * to the user. 2361 * NOTE: what to do is only marking SADB_SASTATE_DEAD. 2362 * 2363 * m will always be freed. 2364 */ 2365 static int 2366 key_spdflush(so, m, mhp) 2367 struct socket *so; 2368 struct mbuf *m; 2369 const struct sadb_msghdr *mhp; 2370 { 2371 struct sadb_msg *newmsg; 2372 struct secpolicy *sp; 2373 u_int dir; 2374 2375 IPSEC_ASSERT(so != NULL, ("null socket")); 2376 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2377 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2378 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2379 2380 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) 2381 return key_senderror(so, m, EINVAL); 2382 2383 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2384 SPTREE_LOCK(); 2385 LIST_FOREACH(sp, &V_sptree[dir], chain) 2386 sp->state = IPSEC_SPSTATE_DEAD; 2387 SPTREE_UNLOCK(); 2388 } 2389 2390 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 2391 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2392 return key_senderror(so, m, ENOBUFS); 2393 } 2394 2395 if (m->m_next) 2396 m_freem(m->m_next); 2397 m->m_next = NULL; 2398 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2399 newmsg = mtod(m, struct sadb_msg *); 2400 newmsg->sadb_msg_errno = 0; 2401 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 2402 2403 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 2404 } 2405 2406 /* 2407 * SADB_SPDDUMP processing 2408 * receive 2409 * <base> 2410 * from the user, and dump all SP leaves 2411 * and send, 2412 * <base> ..... 2413 * to the ikmpd. 2414 * 2415 * m will always be freed. 2416 */ 2417 static int 2418 key_spddump(so, m, mhp) 2419 struct socket *so; 2420 struct mbuf *m; 2421 const struct sadb_msghdr *mhp; 2422 { 2423 struct secpolicy *sp; 2424 int cnt; 2425 u_int dir; 2426 struct mbuf *n; 2427 2428 IPSEC_ASSERT(so != NULL, ("null socket")); 2429 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2430 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2431 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2432 2433 /* search SPD entry and get buffer size. */ 2434 cnt = 0; 2435 SPTREE_LOCK(); 2436 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2437 LIST_FOREACH(sp, &V_sptree[dir], chain) { 2438 cnt++; 2439 } 2440 } 2441 2442 if (cnt == 0) { 2443 SPTREE_UNLOCK(); 2444 return key_senderror(so, m, ENOENT); 2445 } 2446 2447 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2448 LIST_FOREACH(sp, &V_sptree[dir], chain) { 2449 --cnt; 2450 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, 2451 mhp->msg->sadb_msg_pid); 2452 2453 if (n) 2454 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2455 } 2456 } 2457 2458 SPTREE_UNLOCK(); 2459 m_freem(m); 2460 return 0; 2461 } 2462 2463 static struct mbuf * 2464 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, u_int32_t pid) 2465 { 2466 struct mbuf *result = NULL, *m; 2467 struct seclifetime lt; 2468 2469 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt); 2470 if (!m) 2471 goto fail; 2472 result = m; 2473 2474 /* 2475 * Note: do not send SADB_X_EXT_NAT_T_* here: 2476 * we are sending traffic endpoints. 2477 */ 2478 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2479 &sp->spidx.src.sa, sp->spidx.prefs, 2480 sp->spidx.ul_proto); 2481 if (!m) 2482 goto fail; 2483 m_cat(result, m); 2484 2485 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2486 &sp->spidx.dst.sa, sp->spidx.prefd, 2487 sp->spidx.ul_proto); 2488 if (!m) 2489 goto fail; 2490 m_cat(result, m); 2491 2492 m = key_sp2msg(sp); 2493 if (!m) 2494 goto fail; 2495 m_cat(result, m); 2496 2497 if(sp->lifetime){ 2498 lt.addtime=sp->created; 2499 lt.usetime= sp->lastused; 2500 m = key_setlifetime(<, SADB_EXT_LIFETIME_CURRENT); 2501 if (!m) 2502 goto fail; 2503 m_cat(result, m); 2504 2505 lt.addtime=sp->lifetime; 2506 lt.usetime= sp->validtime; 2507 m = key_setlifetime(<, SADB_EXT_LIFETIME_HARD); 2508 if (!m) 2509 goto fail; 2510 m_cat(result, m); 2511 } 2512 2513 if ((result->m_flags & M_PKTHDR) == 0) 2514 goto fail; 2515 2516 if (result->m_len < sizeof(struct sadb_msg)) { 2517 result = m_pullup(result, sizeof(struct sadb_msg)); 2518 if (result == NULL) 2519 goto fail; 2520 } 2521 2522 result->m_pkthdr.len = 0; 2523 for (m = result; m; m = m->m_next) 2524 result->m_pkthdr.len += m->m_len; 2525 2526 mtod(result, struct sadb_msg *)->sadb_msg_len = 2527 PFKEY_UNIT64(result->m_pkthdr.len); 2528 2529 return result; 2530 2531 fail: 2532 m_freem(result); 2533 return NULL; 2534 } 2535 2536 /* 2537 * get PFKEY message length for security policy and request. 2538 */ 2539 static u_int 2540 key_getspreqmsglen(sp) 2541 struct secpolicy *sp; 2542 { 2543 u_int tlen; 2544 2545 tlen = sizeof(struct sadb_x_policy); 2546 2547 /* if is the policy for ipsec ? */ 2548 if (sp->policy != IPSEC_POLICY_IPSEC) 2549 return tlen; 2550 2551 /* get length of ipsec requests */ 2552 { 2553 struct ipsecrequest *isr; 2554 int len; 2555 2556 for (isr = sp->req; isr != NULL; isr = isr->next) { 2557 len = sizeof(struct sadb_x_ipsecrequest) 2558 + isr->saidx.src.sa.sa_len 2559 + isr->saidx.dst.sa.sa_len; 2560 2561 tlen += PFKEY_ALIGN8(len); 2562 } 2563 } 2564 2565 return tlen; 2566 } 2567 2568 /* 2569 * SADB_SPDEXPIRE processing 2570 * send 2571 * <base, address(SD), lifetime(CH), policy> 2572 * to KMD by PF_KEY. 2573 * 2574 * OUT: 0 : succeed 2575 * others : error number 2576 */ 2577 static int 2578 key_spdexpire(sp) 2579 struct secpolicy *sp; 2580 { 2581 struct mbuf *result = NULL, *m; 2582 int len; 2583 int error = -1; 2584 struct sadb_lifetime *lt; 2585 2586 /* XXX: Why do we lock ? */ 2587 2588 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2589 2590 /* set msg header */ 2591 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0); 2592 if (!m) { 2593 error = ENOBUFS; 2594 goto fail; 2595 } 2596 result = m; 2597 2598 /* create lifetime extension (current and hard) */ 2599 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 2600 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 2601 if (m == NULL) { 2602 error = ENOBUFS; 2603 goto fail; 2604 } 2605 m_align(m, len); 2606 m->m_len = len; 2607 bzero(mtod(m, caddr_t), len); 2608 lt = mtod(m, struct sadb_lifetime *); 2609 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2610 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 2611 lt->sadb_lifetime_allocations = 0; 2612 lt->sadb_lifetime_bytes = 0; 2613 lt->sadb_lifetime_addtime = sp->created; 2614 lt->sadb_lifetime_usetime = sp->lastused; 2615 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 2616 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2617 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 2618 lt->sadb_lifetime_allocations = 0; 2619 lt->sadb_lifetime_bytes = 0; 2620 lt->sadb_lifetime_addtime = sp->lifetime; 2621 lt->sadb_lifetime_usetime = sp->validtime; 2622 m_cat(result, m); 2623 2624 /* 2625 * Note: do not send SADB_X_EXT_NAT_T_* here: 2626 * we are sending traffic endpoints. 2627 */ 2628 2629 /* set sadb_address for source */ 2630 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2631 &sp->spidx.src.sa, 2632 sp->spidx.prefs, sp->spidx.ul_proto); 2633 if (!m) { 2634 error = ENOBUFS; 2635 goto fail; 2636 } 2637 m_cat(result, m); 2638 2639 /* set sadb_address for destination */ 2640 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2641 &sp->spidx.dst.sa, 2642 sp->spidx.prefd, sp->spidx.ul_proto); 2643 if (!m) { 2644 error = ENOBUFS; 2645 goto fail; 2646 } 2647 m_cat(result, m); 2648 2649 /* set secpolicy */ 2650 m = key_sp2msg(sp); 2651 if (!m) { 2652 error = ENOBUFS; 2653 goto fail; 2654 } 2655 m_cat(result, m); 2656 2657 if ((result->m_flags & M_PKTHDR) == 0) { 2658 error = EINVAL; 2659 goto fail; 2660 } 2661 2662 if (result->m_len < sizeof(struct sadb_msg)) { 2663 result = m_pullup(result, sizeof(struct sadb_msg)); 2664 if (result == NULL) { 2665 error = ENOBUFS; 2666 goto fail; 2667 } 2668 } 2669 2670 result->m_pkthdr.len = 0; 2671 for (m = result; m; m = m->m_next) 2672 result->m_pkthdr.len += m->m_len; 2673 2674 mtod(result, struct sadb_msg *)->sadb_msg_len = 2675 PFKEY_UNIT64(result->m_pkthdr.len); 2676 2677 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 2678 2679 fail: 2680 if (result) 2681 m_freem(result); 2682 return error; 2683 } 2684 2685 /* %%% SAD management */ 2686 /* 2687 * allocating a memory for new SA head, and copy from the values of mhp. 2688 * OUT: NULL : failure due to the lack of memory. 2689 * others : pointer to new SA head. 2690 */ 2691 static struct secashead * 2692 key_newsah(saidx) 2693 struct secasindex *saidx; 2694 { 2695 struct secashead *newsah; 2696 2697 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 2698 2699 newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO); 2700 if (newsah != NULL) { 2701 int i; 2702 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++) 2703 LIST_INIT(&newsah->savtree[i]); 2704 newsah->saidx = *saidx; 2705 2706 /* add to saidxtree */ 2707 newsah->state = SADB_SASTATE_MATURE; 2708 2709 SAHTREE_LOCK(); 2710 LIST_INSERT_HEAD(&V_sahtree, newsah, chain); 2711 SAHTREE_UNLOCK(); 2712 } 2713 return(newsah); 2714 } 2715 2716 /* 2717 * delete SA index and all SA registerd. 2718 */ 2719 static void 2720 key_delsah(sah) 2721 struct secashead *sah; 2722 { 2723 struct secasvar *sav, *nextsav; 2724 u_int stateidx; 2725 int zombie = 0; 2726 2727 IPSEC_ASSERT(sah != NULL, ("NULL sah")); 2728 SAHTREE_LOCK_ASSERT(); 2729 2730 /* searching all SA registerd in the secindex. */ 2731 for (stateidx = 0; 2732 stateidx < _ARRAYLEN(saorder_state_any); 2733 stateidx++) { 2734 u_int state = saorder_state_any[stateidx]; 2735 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) { 2736 if (sav->refcnt == 0) { 2737 /* sanity check */ 2738 KEY_CHKSASTATE(state, sav->state, __func__); 2739 /* 2740 * do NOT call KEY_FREESAV here: 2741 * it will only delete the sav if refcnt == 1, 2742 * where we already know that refcnt == 0 2743 */ 2744 key_delsav(sav); 2745 } else { 2746 /* give up to delete this sa */ 2747 zombie++; 2748 } 2749 } 2750 } 2751 if (!zombie) { /* delete only if there are savs */ 2752 /* remove from tree of SA index */ 2753 if (__LIST_CHAINED(sah)) 2754 LIST_REMOVE(sah, chain); 2755 if (sah->route_cache.sa_route.ro_rt) { 2756 RTFREE(sah->route_cache.sa_route.ro_rt); 2757 sah->route_cache.sa_route.ro_rt = (struct rtentry *)NULL; 2758 } 2759 free(sah, M_IPSEC_SAH); 2760 } 2761 } 2762 2763 /* 2764 * allocating a new SA with LARVAL state. key_add() and key_getspi() call, 2765 * and copy the values of mhp into new buffer. 2766 * When SAD message type is GETSPI: 2767 * to set sequence number from acq_seq++, 2768 * to set zero to SPI. 2769 * not to call key_setsava(). 2770 * OUT: NULL : fail 2771 * others : pointer to new secasvar. 2772 * 2773 * does not modify mbuf. does not free mbuf on error. 2774 */ 2775 static struct secasvar * 2776 key_newsav(m, mhp, sah, errp, where, tag) 2777 struct mbuf *m; 2778 const struct sadb_msghdr *mhp; 2779 struct secashead *sah; 2780 int *errp; 2781 const char* where; 2782 int tag; 2783 { 2784 struct secasvar *newsav; 2785 const struct sadb_sa *xsa; 2786 2787 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2788 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2789 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2790 IPSEC_ASSERT(sah != NULL, ("null secashead")); 2791 2792 newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO); 2793 if (newsav == NULL) { 2794 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2795 *errp = ENOBUFS; 2796 goto done; 2797 } 2798 2799 switch (mhp->msg->sadb_msg_type) { 2800 case SADB_GETSPI: 2801 newsav->spi = 0; 2802 2803 #ifdef IPSEC_DOSEQCHECK 2804 /* sync sequence number */ 2805 if (mhp->msg->sadb_msg_seq == 0) 2806 newsav->seq = 2807 (V_acq_seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq)); 2808 else 2809 #endif 2810 newsav->seq = mhp->msg->sadb_msg_seq; 2811 break; 2812 2813 case SADB_ADD: 2814 /* sanity check */ 2815 if (mhp->ext[SADB_EXT_SA] == NULL) { 2816 free(newsav, M_IPSEC_SA); 2817 newsav = NULL; 2818 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2819 __func__)); 2820 *errp = EINVAL; 2821 goto done; 2822 } 2823 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 2824 newsav->spi = xsa->sadb_sa_spi; 2825 newsav->seq = mhp->msg->sadb_msg_seq; 2826 break; 2827 default: 2828 free(newsav, M_IPSEC_SA); 2829 newsav = NULL; 2830 *errp = EINVAL; 2831 goto done; 2832 } 2833 2834 2835 /* copy sav values */ 2836 if (mhp->msg->sadb_msg_type != SADB_GETSPI) { 2837 *errp = key_setsaval(newsav, m, mhp); 2838 if (*errp) { 2839 free(newsav, M_IPSEC_SA); 2840 newsav = NULL; 2841 goto done; 2842 } 2843 } 2844 2845 SECASVAR_LOCK_INIT(newsav); 2846 2847 /* reset created */ 2848 newsav->created = time_second; 2849 newsav->pid = mhp->msg->sadb_msg_pid; 2850 2851 /* add to satree */ 2852 newsav->sah = sah; 2853 sa_initref(newsav); 2854 newsav->state = SADB_SASTATE_LARVAL; 2855 2856 SAHTREE_LOCK(); 2857 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav, 2858 secasvar, chain); 2859 SAHTREE_UNLOCK(); 2860 done: 2861 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 2862 printf("DP %s from %s:%u return SP:%p\n", __func__, 2863 where, tag, newsav)); 2864 2865 return newsav; 2866 } 2867 2868 /* 2869 * free() SA variable entry. 2870 */ 2871 static void 2872 key_cleansav(struct secasvar *sav) 2873 { 2874 /* 2875 * Cleanup xform state. Note that zeroize'ing causes the 2876 * keys to be cleared; otherwise we must do it ourself. 2877 */ 2878 if (sav->tdb_xform != NULL) { 2879 sav->tdb_xform->xf_zeroize(sav); 2880 sav->tdb_xform = NULL; 2881 } else { 2882 KASSERT(sav->iv == NULL, ("iv but no xform")); 2883 if (sav->key_auth != NULL) 2884 bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth)); 2885 if (sav->key_enc != NULL) 2886 bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc)); 2887 } 2888 if (sav->key_auth != NULL) { 2889 if (sav->key_auth->key_data != NULL) 2890 free(sav->key_auth->key_data, M_IPSEC_MISC); 2891 free(sav->key_auth, M_IPSEC_MISC); 2892 sav->key_auth = NULL; 2893 } 2894 if (sav->key_enc != NULL) { 2895 if (sav->key_enc->key_data != NULL) 2896 free(sav->key_enc->key_data, M_IPSEC_MISC); 2897 free(sav->key_enc, M_IPSEC_MISC); 2898 sav->key_enc = NULL; 2899 } 2900 if (sav->sched) { 2901 bzero(sav->sched, sav->schedlen); 2902 free(sav->sched, M_IPSEC_MISC); 2903 sav->sched = NULL; 2904 } 2905 if (sav->replay != NULL) { 2906 free(sav->replay, M_IPSEC_MISC); 2907 sav->replay = NULL; 2908 } 2909 if (sav->lft_c != NULL) { 2910 free(sav->lft_c, M_IPSEC_MISC); 2911 sav->lft_c = NULL; 2912 } 2913 if (sav->lft_h != NULL) { 2914 free(sav->lft_h, M_IPSEC_MISC); 2915 sav->lft_h = NULL; 2916 } 2917 if (sav->lft_s != NULL) { 2918 free(sav->lft_s, M_IPSEC_MISC); 2919 sav->lft_s = NULL; 2920 } 2921 } 2922 2923 /* 2924 * free() SA variable entry. 2925 */ 2926 static void 2927 key_delsav(sav) 2928 struct secasvar *sav; 2929 { 2930 IPSEC_ASSERT(sav != NULL, ("null sav")); 2931 IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt)); 2932 2933 /* remove from SA header */ 2934 if (__LIST_CHAINED(sav)) 2935 LIST_REMOVE(sav, chain); 2936 key_cleansav(sav); 2937 SECASVAR_LOCK_DESTROY(sav); 2938 free(sav, M_IPSEC_SA); 2939 } 2940 2941 /* 2942 * search SAD. 2943 * OUT: 2944 * NULL : not found 2945 * others : found, pointer to a SA. 2946 */ 2947 static struct secashead * 2948 key_getsah(saidx) 2949 struct secasindex *saidx; 2950 { 2951 struct secashead *sah; 2952 2953 SAHTREE_LOCK(); 2954 LIST_FOREACH(sah, &V_sahtree, chain) { 2955 if (sah->state == SADB_SASTATE_DEAD) 2956 continue; 2957 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID)) 2958 break; 2959 } 2960 SAHTREE_UNLOCK(); 2961 2962 return sah; 2963 } 2964 2965 /* 2966 * check not to be duplicated SPI. 2967 * NOTE: this function is too slow due to searching all SAD. 2968 * OUT: 2969 * NULL : not found 2970 * others : found, pointer to a SA. 2971 */ 2972 static struct secasvar * 2973 key_checkspidup(saidx, spi) 2974 struct secasindex *saidx; 2975 u_int32_t spi; 2976 { 2977 struct secashead *sah; 2978 struct secasvar *sav; 2979 2980 /* check address family */ 2981 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) { 2982 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 2983 __func__)); 2984 return NULL; 2985 } 2986 2987 sav = NULL; 2988 /* check all SAD */ 2989 SAHTREE_LOCK(); 2990 LIST_FOREACH(sah, &V_sahtree, chain) { 2991 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst)) 2992 continue; 2993 sav = key_getsavbyspi(sah, spi); 2994 if (sav != NULL) 2995 break; 2996 } 2997 SAHTREE_UNLOCK(); 2998 2999 return sav; 3000 } 3001 3002 /* 3003 * search SAD litmited alive SA, protocol, SPI. 3004 * OUT: 3005 * NULL : not found 3006 * others : found, pointer to a SA. 3007 */ 3008 static struct secasvar * 3009 key_getsavbyspi(sah, spi) 3010 struct secashead *sah; 3011 u_int32_t spi; 3012 { 3013 struct secasvar *sav; 3014 u_int stateidx, state; 3015 3016 sav = NULL; 3017 SAHTREE_LOCK_ASSERT(); 3018 /* search all status */ 3019 for (stateidx = 0; 3020 stateidx < _ARRAYLEN(saorder_state_alive); 3021 stateidx++) { 3022 3023 state = saorder_state_alive[stateidx]; 3024 LIST_FOREACH(sav, &sah->savtree[state], chain) { 3025 3026 /* sanity check */ 3027 if (sav->state != state) { 3028 ipseclog((LOG_DEBUG, "%s: " 3029 "invalid sav->state (queue: %d SA: %d)\n", 3030 __func__, state, sav->state)); 3031 continue; 3032 } 3033 3034 if (sav->spi == spi) 3035 return sav; 3036 } 3037 } 3038 3039 return NULL; 3040 } 3041 3042 /* 3043 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. 3044 * You must update these if need. 3045 * OUT: 0: success. 3046 * !0: failure. 3047 * 3048 * does not modify mbuf. does not free mbuf on error. 3049 */ 3050 static int 3051 key_setsaval(sav, m, mhp) 3052 struct secasvar *sav; 3053 struct mbuf *m; 3054 const struct sadb_msghdr *mhp; 3055 { 3056 int error = 0; 3057 3058 IPSEC_ASSERT(m != NULL, ("null mbuf")); 3059 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 3060 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 3061 3062 /* initialization */ 3063 sav->replay = NULL; 3064 sav->key_auth = NULL; 3065 sav->key_enc = NULL; 3066 sav->sched = NULL; 3067 sav->schedlen = 0; 3068 sav->iv = NULL; 3069 sav->lft_c = NULL; 3070 sav->lft_h = NULL; 3071 sav->lft_s = NULL; 3072 sav->tdb_xform = NULL; /* transform */ 3073 sav->tdb_encalgxform = NULL; /* encoding algorithm */ 3074 sav->tdb_authalgxform = NULL; /* authentication algorithm */ 3075 sav->tdb_compalgxform = NULL; /* compression algorithm */ 3076 /* Initialize even if NAT-T not compiled in: */ 3077 sav->natt_type = 0; 3078 sav->natt_esp_frag_len = 0; 3079 3080 /* SA */ 3081 if (mhp->ext[SADB_EXT_SA] != NULL) { 3082 const struct sadb_sa *sa0; 3083 3084 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 3085 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { 3086 error = EINVAL; 3087 goto fail; 3088 } 3089 3090 sav->alg_auth = sa0->sadb_sa_auth; 3091 sav->alg_enc = sa0->sadb_sa_encrypt; 3092 sav->flags = sa0->sadb_sa_flags; 3093 3094 /* replay window */ 3095 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { 3096 sav->replay = (struct secreplay *) 3097 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO); 3098 if (sav->replay == NULL) { 3099 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3100 __func__)); 3101 error = ENOBUFS; 3102 goto fail; 3103 } 3104 if (sa0->sadb_sa_replay != 0) 3105 sav->replay->bitmap = (caddr_t)(sav->replay+1); 3106 sav->replay->wsize = sa0->sadb_sa_replay; 3107 } 3108 } 3109 3110 /* Authentication keys */ 3111 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { 3112 const struct sadb_key *key0; 3113 int len; 3114 3115 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH]; 3116 len = mhp->extlen[SADB_EXT_KEY_AUTH]; 3117 3118 error = 0; 3119 if (len < sizeof(*key0)) { 3120 error = EINVAL; 3121 goto fail; 3122 } 3123 switch (mhp->msg->sadb_msg_satype) { 3124 case SADB_SATYPE_AH: 3125 case SADB_SATYPE_ESP: 3126 case SADB_X_SATYPE_TCPSIGNATURE: 3127 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3128 sav->alg_auth != SADB_X_AALG_NULL) 3129 error = EINVAL; 3130 break; 3131 case SADB_X_SATYPE_IPCOMP: 3132 default: 3133 error = EINVAL; 3134 break; 3135 } 3136 if (error) { 3137 ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n", 3138 __func__)); 3139 goto fail; 3140 } 3141 3142 sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len, 3143 M_IPSEC_MISC); 3144 if (sav->key_auth == NULL ) { 3145 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3146 __func__)); 3147 error = ENOBUFS; 3148 goto fail; 3149 } 3150 } 3151 3152 /* Encryption key */ 3153 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { 3154 const struct sadb_key *key0; 3155 int len; 3156 3157 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT]; 3158 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; 3159 3160 error = 0; 3161 if (len < sizeof(*key0)) { 3162 error = EINVAL; 3163 goto fail; 3164 } 3165 switch (mhp->msg->sadb_msg_satype) { 3166 case SADB_SATYPE_ESP: 3167 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3168 sav->alg_enc != SADB_EALG_NULL) { 3169 error = EINVAL; 3170 break; 3171 } 3172 sav->key_enc = (struct seckey *)key_dup_keymsg(key0, 3173 len, 3174 M_IPSEC_MISC); 3175 if (sav->key_enc == NULL) { 3176 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3177 __func__)); 3178 error = ENOBUFS; 3179 goto fail; 3180 } 3181 break; 3182 case SADB_X_SATYPE_IPCOMP: 3183 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) 3184 error = EINVAL; 3185 sav->key_enc = NULL; /*just in case*/ 3186 break; 3187 case SADB_SATYPE_AH: 3188 case SADB_X_SATYPE_TCPSIGNATURE: 3189 default: 3190 error = EINVAL; 3191 break; 3192 } 3193 if (error) { 3194 ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n", 3195 __func__)); 3196 goto fail; 3197 } 3198 } 3199 3200 /* set iv */ 3201 sav->ivlen = 0; 3202 3203 switch (mhp->msg->sadb_msg_satype) { 3204 case SADB_SATYPE_AH: 3205 error = xform_init(sav, XF_AH); 3206 break; 3207 case SADB_SATYPE_ESP: 3208 error = xform_init(sav, XF_ESP); 3209 break; 3210 case SADB_X_SATYPE_IPCOMP: 3211 error = xform_init(sav, XF_IPCOMP); 3212 break; 3213 case SADB_X_SATYPE_TCPSIGNATURE: 3214 error = xform_init(sav, XF_TCPSIGNATURE); 3215 break; 3216 } 3217 if (error) { 3218 ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n", 3219 __func__, mhp->msg->sadb_msg_satype)); 3220 goto fail; 3221 } 3222 3223 /* reset created */ 3224 sav->created = time_second; 3225 3226 /* make lifetime for CURRENT */ 3227 sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT); 3228 if (sav->lft_c == NULL) { 3229 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3230 error = ENOBUFS; 3231 goto fail; 3232 } 3233 3234 sav->lft_c->allocations = 0; 3235 sav->lft_c->bytes = 0; 3236 sav->lft_c->addtime = time_second; 3237 sav->lft_c->usetime = 0; 3238 3239 /* lifetimes for HARD and SOFT */ 3240 { 3241 const struct sadb_lifetime *lft0; 3242 3243 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 3244 if (lft0 != NULL) { 3245 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { 3246 error = EINVAL; 3247 goto fail; 3248 } 3249 sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3250 if (sav->lft_h == NULL) { 3251 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3252 error = ENOBUFS; 3253 goto fail; 3254 } 3255 /* to be initialize ? */ 3256 } 3257 3258 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT]; 3259 if (lft0 != NULL) { 3260 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { 3261 error = EINVAL; 3262 goto fail; 3263 } 3264 sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3265 if (sav->lft_s == NULL) { 3266 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3267 error = ENOBUFS; 3268 goto fail; 3269 } 3270 /* to be initialize ? */ 3271 } 3272 } 3273 3274 return 0; 3275 3276 fail: 3277 /* initialization */ 3278 key_cleansav(sav); 3279 3280 return error; 3281 } 3282 3283 /* 3284 * validation with a secasvar entry, and set SADB_SATYPE_MATURE. 3285 * OUT: 0: valid 3286 * other: errno 3287 */ 3288 static int 3289 key_mature(struct secasvar *sav) 3290 { 3291 int error; 3292 3293 /* check SPI value */ 3294 switch (sav->sah->saidx.proto) { 3295 case IPPROTO_ESP: 3296 case IPPROTO_AH: 3297 /* 3298 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values 3299 * 1-255 reserved by IANA for future use, 3300 * 0 for implementation specific, local use. 3301 */ 3302 if (ntohl(sav->spi) <= 255) { 3303 ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n", 3304 __func__, (u_int32_t)ntohl(sav->spi))); 3305 return EINVAL; 3306 } 3307 break; 3308 } 3309 3310 /* check satype */ 3311 switch (sav->sah->saidx.proto) { 3312 case IPPROTO_ESP: 3313 /* check flags */ 3314 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) == 3315 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) { 3316 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3317 "given to old-esp.\n", __func__)); 3318 return EINVAL; 3319 } 3320 error = xform_init(sav, XF_ESP); 3321 break; 3322 case IPPROTO_AH: 3323 /* check flags */ 3324 if (sav->flags & SADB_X_EXT_DERIV) { 3325 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3326 "given to AH SA.\n", __func__)); 3327 return EINVAL; 3328 } 3329 if (sav->alg_enc != SADB_EALG_NONE) { 3330 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3331 "mismated.\n", __func__)); 3332 return(EINVAL); 3333 } 3334 error = xform_init(sav, XF_AH); 3335 break; 3336 case IPPROTO_IPCOMP: 3337 if (sav->alg_auth != SADB_AALG_NONE) { 3338 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3339 "mismated.\n", __func__)); 3340 return(EINVAL); 3341 } 3342 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 3343 && ntohl(sav->spi) >= 0x10000) { 3344 ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n", 3345 __func__)); 3346 return(EINVAL); 3347 } 3348 error = xform_init(sav, XF_IPCOMP); 3349 break; 3350 case IPPROTO_TCP: 3351 if (sav->alg_enc != SADB_EALG_NONE) { 3352 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3353 "mismated.\n", __func__)); 3354 return(EINVAL); 3355 } 3356 error = xform_init(sav, XF_TCPSIGNATURE); 3357 break; 3358 default: 3359 ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__)); 3360 error = EPROTONOSUPPORT; 3361 break; 3362 } 3363 if (error == 0) { 3364 SAHTREE_LOCK(); 3365 key_sa_chgstate(sav, SADB_SASTATE_MATURE); 3366 SAHTREE_UNLOCK(); 3367 } 3368 return (error); 3369 } 3370 3371 /* 3372 * subroutine for SADB_GET and SADB_DUMP. 3373 */ 3374 static struct mbuf * 3375 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype, 3376 u_int32_t seq, u_int32_t pid) 3377 { 3378 struct mbuf *result = NULL, *tres = NULL, *m; 3379 int i; 3380 int dumporder[] = { 3381 SADB_EXT_SA, SADB_X_EXT_SA2, 3382 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 3383 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, 3384 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, 3385 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, 3386 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, 3387 #ifdef IPSEC_NAT_T 3388 SADB_X_EXT_NAT_T_TYPE, 3389 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT, 3390 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR, 3391 SADB_X_EXT_NAT_T_FRAG, 3392 #endif 3393 }; 3394 3395 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt); 3396 if (m == NULL) 3397 goto fail; 3398 result = m; 3399 3400 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) { 3401 m = NULL; 3402 switch (dumporder[i]) { 3403 case SADB_EXT_SA: 3404 m = key_setsadbsa(sav); 3405 if (!m) 3406 goto fail; 3407 break; 3408 3409 case SADB_X_EXT_SA2: 3410 m = key_setsadbxsa2(sav->sah->saidx.mode, 3411 sav->replay ? sav->replay->count : 0, 3412 sav->sah->saidx.reqid); 3413 if (!m) 3414 goto fail; 3415 break; 3416 3417 case SADB_EXT_ADDRESS_SRC: 3418 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3419 &sav->sah->saidx.src.sa, 3420 FULLMASK, IPSEC_ULPROTO_ANY); 3421 if (!m) 3422 goto fail; 3423 break; 3424 3425 case SADB_EXT_ADDRESS_DST: 3426 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3427 &sav->sah->saidx.dst.sa, 3428 FULLMASK, IPSEC_ULPROTO_ANY); 3429 if (!m) 3430 goto fail; 3431 break; 3432 3433 case SADB_EXT_KEY_AUTH: 3434 if (!sav->key_auth) 3435 continue; 3436 m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH); 3437 if (!m) 3438 goto fail; 3439 break; 3440 3441 case SADB_EXT_KEY_ENCRYPT: 3442 if (!sav->key_enc) 3443 continue; 3444 m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT); 3445 if (!m) 3446 goto fail; 3447 break; 3448 3449 case SADB_EXT_LIFETIME_CURRENT: 3450 if (!sav->lft_c) 3451 continue; 3452 m = key_setlifetime(sav->lft_c, 3453 SADB_EXT_LIFETIME_CURRENT); 3454 if (!m) 3455 goto fail; 3456 break; 3457 3458 case SADB_EXT_LIFETIME_HARD: 3459 if (!sav->lft_h) 3460 continue; 3461 m = key_setlifetime(sav->lft_h, 3462 SADB_EXT_LIFETIME_HARD); 3463 if (!m) 3464 goto fail; 3465 break; 3466 3467 case SADB_EXT_LIFETIME_SOFT: 3468 if (!sav->lft_s) 3469 continue; 3470 m = key_setlifetime(sav->lft_s, 3471 SADB_EXT_LIFETIME_SOFT); 3472 3473 if (!m) 3474 goto fail; 3475 break; 3476 3477 #ifdef IPSEC_NAT_T 3478 case SADB_X_EXT_NAT_T_TYPE: 3479 m = key_setsadbxtype(sav->natt_type); 3480 if (!m) 3481 goto fail; 3482 break; 3483 3484 case SADB_X_EXT_NAT_T_DPORT: 3485 m = key_setsadbxport( 3486 KEY_PORTFROMSADDR(&sav->sah->saidx.dst), 3487 SADB_X_EXT_NAT_T_DPORT); 3488 if (!m) 3489 goto fail; 3490 break; 3491 3492 case SADB_X_EXT_NAT_T_SPORT: 3493 m = key_setsadbxport( 3494 KEY_PORTFROMSADDR(&sav->sah->saidx.src), 3495 SADB_X_EXT_NAT_T_SPORT); 3496 if (!m) 3497 goto fail; 3498 break; 3499 3500 case SADB_X_EXT_NAT_T_OAI: 3501 case SADB_X_EXT_NAT_T_OAR: 3502 case SADB_X_EXT_NAT_T_FRAG: 3503 /* We do not (yet) support those. */ 3504 continue; 3505 #endif 3506 3507 case SADB_EXT_ADDRESS_PROXY: 3508 case SADB_EXT_IDENTITY_SRC: 3509 case SADB_EXT_IDENTITY_DST: 3510 /* XXX: should we brought from SPD ? */ 3511 case SADB_EXT_SENSITIVITY: 3512 default: 3513 continue; 3514 } 3515 3516 if (!m) 3517 goto fail; 3518 if (tres) 3519 m_cat(m, tres); 3520 tres = m; 3521 3522 } 3523 3524 m_cat(result, tres); 3525 if (result->m_len < sizeof(struct sadb_msg)) { 3526 result = m_pullup(result, sizeof(struct sadb_msg)); 3527 if (result == NULL) 3528 goto fail; 3529 } 3530 3531 result->m_pkthdr.len = 0; 3532 for (m = result; m; m = m->m_next) 3533 result->m_pkthdr.len += m->m_len; 3534 3535 mtod(result, struct sadb_msg *)->sadb_msg_len = 3536 PFKEY_UNIT64(result->m_pkthdr.len); 3537 3538 return result; 3539 3540 fail: 3541 m_freem(result); 3542 m_freem(tres); 3543 return NULL; 3544 } 3545 3546 /* 3547 * set data into sadb_msg. 3548 */ 3549 static struct mbuf * 3550 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq, 3551 pid_t pid, u_int16_t reserved) 3552 { 3553 struct mbuf *m; 3554 struct sadb_msg *p; 3555 int len; 3556 3557 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 3558 if (len > MCLBYTES) 3559 return NULL; 3560 MGETHDR(m, M_NOWAIT, MT_DATA); 3561 if (m && len > MHLEN) { 3562 MCLGET(m, M_NOWAIT); 3563 if ((m->m_flags & M_EXT) == 0) { 3564 m_freem(m); 3565 m = NULL; 3566 } 3567 } 3568 if (!m) 3569 return NULL; 3570 m->m_pkthdr.len = m->m_len = len; 3571 m->m_next = NULL; 3572 3573 p = mtod(m, struct sadb_msg *); 3574 3575 bzero(p, len); 3576 p->sadb_msg_version = PF_KEY_V2; 3577 p->sadb_msg_type = type; 3578 p->sadb_msg_errno = 0; 3579 p->sadb_msg_satype = satype; 3580 p->sadb_msg_len = PFKEY_UNIT64(tlen); 3581 p->sadb_msg_reserved = reserved; 3582 p->sadb_msg_seq = seq; 3583 p->sadb_msg_pid = (u_int32_t)pid; 3584 3585 return m; 3586 } 3587 3588 /* 3589 * copy secasvar data into sadb_address. 3590 */ 3591 static struct mbuf * 3592 key_setsadbsa(sav) 3593 struct secasvar *sav; 3594 { 3595 struct mbuf *m; 3596 struct sadb_sa *p; 3597 int len; 3598 3599 len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); 3600 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3601 if (m == NULL) 3602 return (NULL); 3603 m_align(m, len); 3604 m->m_len = len; 3605 p = mtod(m, struct sadb_sa *); 3606 bzero(p, len); 3607 p->sadb_sa_len = PFKEY_UNIT64(len); 3608 p->sadb_sa_exttype = SADB_EXT_SA; 3609 p->sadb_sa_spi = sav->spi; 3610 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0); 3611 p->sadb_sa_state = sav->state; 3612 p->sadb_sa_auth = sav->alg_auth; 3613 p->sadb_sa_encrypt = sav->alg_enc; 3614 p->sadb_sa_flags = sav->flags; 3615 3616 return m; 3617 } 3618 3619 /* 3620 * set data into sadb_address. 3621 */ 3622 static struct mbuf * 3623 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, u_int8_t prefixlen, u_int16_t ul_proto) 3624 { 3625 struct mbuf *m; 3626 struct sadb_address *p; 3627 size_t len; 3628 3629 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + 3630 PFKEY_ALIGN8(saddr->sa_len); 3631 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3632 if (m == NULL) 3633 return (NULL); 3634 m_align(m, len); 3635 m->m_len = len; 3636 p = mtod(m, struct sadb_address *); 3637 3638 bzero(p, len); 3639 p->sadb_address_len = PFKEY_UNIT64(len); 3640 p->sadb_address_exttype = exttype; 3641 p->sadb_address_proto = ul_proto; 3642 if (prefixlen == FULLMASK) { 3643 switch (saddr->sa_family) { 3644 case AF_INET: 3645 prefixlen = sizeof(struct in_addr) << 3; 3646 break; 3647 case AF_INET6: 3648 prefixlen = sizeof(struct in6_addr) << 3; 3649 break; 3650 default: 3651 ; /*XXX*/ 3652 } 3653 } 3654 p->sadb_address_prefixlen = prefixlen; 3655 p->sadb_address_reserved = 0; 3656 3657 bcopy(saddr, 3658 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)), 3659 saddr->sa_len); 3660 3661 return m; 3662 } 3663 3664 /* 3665 * set data into sadb_x_sa2. 3666 */ 3667 static struct mbuf * 3668 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid) 3669 { 3670 struct mbuf *m; 3671 struct sadb_x_sa2 *p; 3672 size_t len; 3673 3674 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); 3675 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3676 if (m == NULL) 3677 return (NULL); 3678 m_align(m, len); 3679 m->m_len = len; 3680 p = mtod(m, struct sadb_x_sa2 *); 3681 3682 bzero(p, len); 3683 p->sadb_x_sa2_len = PFKEY_UNIT64(len); 3684 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 3685 p->sadb_x_sa2_mode = mode; 3686 p->sadb_x_sa2_reserved1 = 0; 3687 p->sadb_x_sa2_reserved2 = 0; 3688 p->sadb_x_sa2_sequence = seq; 3689 p->sadb_x_sa2_reqid = reqid; 3690 3691 return m; 3692 } 3693 3694 #ifdef IPSEC_NAT_T 3695 /* 3696 * Set a type in sadb_x_nat_t_type. 3697 */ 3698 static struct mbuf * 3699 key_setsadbxtype(u_int16_t type) 3700 { 3701 struct mbuf *m; 3702 size_t len; 3703 struct sadb_x_nat_t_type *p; 3704 3705 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type)); 3706 3707 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3708 if (m == NULL) 3709 return (NULL); 3710 m_align(m, len); 3711 m->m_len = len; 3712 p = mtod(m, struct sadb_x_nat_t_type *); 3713 3714 bzero(p, len); 3715 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len); 3716 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; 3717 p->sadb_x_nat_t_type_type = type; 3718 3719 return (m); 3720 } 3721 /* 3722 * Set a port in sadb_x_nat_t_port. 3723 * In contrast to default RFC 2367 behaviour, port is in network byte order. 3724 */ 3725 static struct mbuf * 3726 key_setsadbxport(u_int16_t port, u_int16_t type) 3727 { 3728 struct mbuf *m; 3729 size_t len; 3730 struct sadb_x_nat_t_port *p; 3731 3732 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port)); 3733 3734 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3735 if (m == NULL) 3736 return (NULL); 3737 m_align(m, len); 3738 m->m_len = len; 3739 p = mtod(m, struct sadb_x_nat_t_port *); 3740 3741 bzero(p, len); 3742 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len); 3743 p->sadb_x_nat_t_port_exttype = type; 3744 p->sadb_x_nat_t_port_port = port; 3745 3746 return (m); 3747 } 3748 3749 /* 3750 * Get port from sockaddr. Port is in network byte order. 3751 */ 3752 u_int16_t 3753 key_portfromsaddr(struct sockaddr *sa) 3754 { 3755 3756 switch (sa->sa_family) { 3757 #ifdef INET 3758 case AF_INET: 3759 return ((struct sockaddr_in *)sa)->sin_port; 3760 #endif 3761 #ifdef INET6 3762 case AF_INET6: 3763 return ((struct sockaddr_in6 *)sa)->sin6_port; 3764 #endif 3765 } 3766 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 3767 printf("DP %s unexpected address family %d\n", 3768 __func__, sa->sa_family)); 3769 return (0); 3770 } 3771 #endif /* IPSEC_NAT_T */ 3772 3773 /* 3774 * Set port in struct sockaddr. Port is in network byte order. 3775 */ 3776 static void 3777 key_porttosaddr(struct sockaddr *sa, u_int16_t port) 3778 { 3779 3780 switch (sa->sa_family) { 3781 #ifdef INET 3782 case AF_INET: 3783 ((struct sockaddr_in *)sa)->sin_port = port; 3784 break; 3785 #endif 3786 #ifdef INET6 3787 case AF_INET6: 3788 ((struct sockaddr_in6 *)sa)->sin6_port = port; 3789 break; 3790 #endif 3791 default: 3792 ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n", 3793 __func__, sa->sa_family)); 3794 break; 3795 } 3796 } 3797 3798 /* 3799 * set data into sadb_x_policy 3800 */ 3801 static struct mbuf * 3802 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id) 3803 { 3804 struct mbuf *m; 3805 struct sadb_x_policy *p; 3806 size_t len; 3807 3808 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); 3809 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3810 if (m == NULL) 3811 return (NULL); 3812 m_align(m, len); 3813 m->m_len = len; 3814 p = mtod(m, struct sadb_x_policy *); 3815 3816 bzero(p, len); 3817 p->sadb_x_policy_len = PFKEY_UNIT64(len); 3818 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 3819 p->sadb_x_policy_type = type; 3820 p->sadb_x_policy_dir = dir; 3821 p->sadb_x_policy_id = id; 3822 3823 return m; 3824 } 3825 3826 /* %%% utilities */ 3827 /* Take a key message (sadb_key) from the socket and turn it into one 3828 * of the kernel's key structures (seckey). 3829 * 3830 * IN: pointer to the src 3831 * OUT: NULL no more memory 3832 */ 3833 struct seckey * 3834 key_dup_keymsg(const struct sadb_key *src, u_int len, 3835 struct malloc_type *type) 3836 { 3837 struct seckey *dst; 3838 dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT); 3839 if (dst != NULL) { 3840 dst->bits = src->sadb_key_bits; 3841 dst->key_data = (char *)malloc(len, type, M_NOWAIT); 3842 if (dst->key_data != NULL) { 3843 bcopy((const char *)src + sizeof(struct sadb_key), 3844 dst->key_data, len); 3845 } else { 3846 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3847 __func__)); 3848 free(dst, type); 3849 dst = NULL; 3850 } 3851 } else { 3852 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3853 __func__)); 3854 3855 } 3856 return dst; 3857 } 3858 3859 /* Take a lifetime message (sadb_lifetime) passed in on a socket and 3860 * turn it into one of the kernel's lifetime structures (seclifetime). 3861 * 3862 * IN: pointer to the destination, source and malloc type 3863 * OUT: NULL, no more memory 3864 */ 3865 3866 static struct seclifetime * 3867 key_dup_lifemsg(const struct sadb_lifetime *src, 3868 struct malloc_type *type) 3869 { 3870 struct seclifetime *dst = NULL; 3871 3872 dst = (struct seclifetime *)malloc(sizeof(struct seclifetime), 3873 type, M_NOWAIT); 3874 if (dst == NULL) { 3875 /* XXX counter */ 3876 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3877 } else { 3878 dst->allocations = src->sadb_lifetime_allocations; 3879 dst->bytes = src->sadb_lifetime_bytes; 3880 dst->addtime = src->sadb_lifetime_addtime; 3881 dst->usetime = src->sadb_lifetime_usetime; 3882 } 3883 return dst; 3884 } 3885 3886 /* compare my own address 3887 * OUT: 1: true, i.e. my address. 3888 * 0: false 3889 */ 3890 int 3891 key_ismyaddr(sa) 3892 struct sockaddr *sa; 3893 { 3894 #ifdef INET 3895 struct sockaddr_in *sin; 3896 struct in_ifaddr *ia; 3897 #endif 3898 3899 IPSEC_ASSERT(sa != NULL, ("null sockaddr")); 3900 3901 switch (sa->sa_family) { 3902 #ifdef INET 3903 case AF_INET: 3904 sin = (struct sockaddr_in *)sa; 3905 IN_IFADDR_RLOCK(); 3906 TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) 3907 { 3908 if (sin->sin_family == ia->ia_addr.sin_family && 3909 sin->sin_len == ia->ia_addr.sin_len && 3910 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr) 3911 { 3912 IN_IFADDR_RUNLOCK(); 3913 return 1; 3914 } 3915 } 3916 IN_IFADDR_RUNLOCK(); 3917 break; 3918 #endif 3919 #ifdef INET6 3920 case AF_INET6: 3921 return key_ismyaddr6((struct sockaddr_in6 *)sa); 3922 #endif 3923 } 3924 3925 return 0; 3926 } 3927 3928 #ifdef INET6 3929 /* 3930 * compare my own address for IPv6. 3931 * 1: ours 3932 * 0: other 3933 * NOTE: derived ip6_input() in KAME. This is necessary to modify more. 3934 */ 3935 #include <netinet6/in6_var.h> 3936 3937 static int 3938 key_ismyaddr6(sin6) 3939 struct sockaddr_in6 *sin6; 3940 { 3941 struct in6_ifaddr *ia; 3942 #if 0 3943 struct in6_multi *in6m; 3944 #endif 3945 3946 IN6_IFADDR_RLOCK(); 3947 TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) { 3948 if (key_sockaddrcmp((struct sockaddr *)&sin6, 3949 (struct sockaddr *)&ia->ia_addr, 0) == 0) { 3950 IN6_IFADDR_RUNLOCK(); 3951 return 1; 3952 } 3953 3954 #if 0 3955 /* 3956 * XXX Multicast 3957 * XXX why do we care about multlicast here while we don't care 3958 * about IPv4 multicast?? 3959 * XXX scope 3960 */ 3961 in6m = NULL; 3962 IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m); 3963 if (in6m) { 3964 IN6_IFADDR_RUNLOCK(); 3965 return 1; 3966 } 3967 #endif 3968 } 3969 IN6_IFADDR_RUNLOCK(); 3970 3971 /* loopback, just for safety */ 3972 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) 3973 return 1; 3974 3975 return 0; 3976 } 3977 #endif /*INET6*/ 3978 3979 /* 3980 * compare two secasindex structure. 3981 * flag can specify to compare 2 saidxes. 3982 * compare two secasindex structure without both mode and reqid. 3983 * don't compare port. 3984 * IN: 3985 * saidx0: source, it can be in SAD. 3986 * saidx1: object. 3987 * OUT: 3988 * 1 : equal 3989 * 0 : not equal 3990 */ 3991 static int 3992 key_cmpsaidx( 3993 const struct secasindex *saidx0, 3994 const struct secasindex *saidx1, 3995 int flag) 3996 { 3997 int chkport = 0; 3998 3999 /* sanity */ 4000 if (saidx0 == NULL && saidx1 == NULL) 4001 return 1; 4002 4003 if (saidx0 == NULL || saidx1 == NULL) 4004 return 0; 4005 4006 if (saidx0->proto != saidx1->proto) 4007 return 0; 4008 4009 if (flag == CMP_EXACTLY) { 4010 if (saidx0->mode != saidx1->mode) 4011 return 0; 4012 if (saidx0->reqid != saidx1->reqid) 4013 return 0; 4014 if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 || 4015 bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0) 4016 return 0; 4017 } else { 4018 4019 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ 4020 if (flag == CMP_MODE_REQID 4021 ||flag == CMP_REQID) { 4022 /* 4023 * If reqid of SPD is non-zero, unique SA is required. 4024 * The result must be of same reqid in this case. 4025 */ 4026 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) 4027 return 0; 4028 } 4029 4030 if (flag == CMP_MODE_REQID) { 4031 if (saidx0->mode != IPSEC_MODE_ANY 4032 && saidx0->mode != saidx1->mode) 4033 return 0; 4034 } 4035 4036 #ifdef IPSEC_NAT_T 4037 /* 4038 * If NAT-T is enabled, check ports for tunnel mode. 4039 * Do not check ports if they are set to zero in the SPD. 4040 * Also do not do it for native transport mode, as there 4041 * is no port information available in the SP. 4042 */ 4043 if ((saidx1->mode == IPSEC_MODE_TUNNEL || 4044 (saidx1->mode == IPSEC_MODE_TRANSPORT && 4045 saidx1->proto == IPPROTO_ESP)) && 4046 saidx1->src.sa.sa_family == AF_INET && 4047 saidx1->dst.sa.sa_family == AF_INET && 4048 ((const struct sockaddr_in *)(&saidx1->src))->sin_port && 4049 ((const struct sockaddr_in *)(&saidx1->dst))->sin_port) 4050 chkport = 1; 4051 #endif /* IPSEC_NAT_T */ 4052 4053 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, chkport) != 0) { 4054 return 0; 4055 } 4056 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, chkport) != 0) { 4057 return 0; 4058 } 4059 } 4060 4061 return 1; 4062 } 4063 4064 /* 4065 * compare two secindex structure exactly. 4066 * IN: 4067 * spidx0: source, it is often in SPD. 4068 * spidx1: object, it is often from PFKEY message. 4069 * OUT: 4070 * 1 : equal 4071 * 0 : not equal 4072 */ 4073 static int 4074 key_cmpspidx_exactly( 4075 struct secpolicyindex *spidx0, 4076 struct secpolicyindex *spidx1) 4077 { 4078 /* sanity */ 4079 if (spidx0 == NULL && spidx1 == NULL) 4080 return 1; 4081 4082 if (spidx0 == NULL || spidx1 == NULL) 4083 return 0; 4084 4085 if (spidx0->prefs != spidx1->prefs 4086 || spidx0->prefd != spidx1->prefd 4087 || spidx0->ul_proto != spidx1->ul_proto) 4088 return 0; 4089 4090 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 && 4091 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0; 4092 } 4093 4094 /* 4095 * compare two secindex structure with mask. 4096 * IN: 4097 * spidx0: source, it is often in SPD. 4098 * spidx1: object, it is often from IP header. 4099 * OUT: 4100 * 1 : equal 4101 * 0 : not equal 4102 */ 4103 static int 4104 key_cmpspidx_withmask( 4105 struct secpolicyindex *spidx0, 4106 struct secpolicyindex *spidx1) 4107 { 4108 /* sanity */ 4109 if (spidx0 == NULL && spidx1 == NULL) 4110 return 1; 4111 4112 if (spidx0 == NULL || spidx1 == NULL) 4113 return 0; 4114 4115 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || 4116 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || 4117 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || 4118 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) 4119 return 0; 4120 4121 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ 4122 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY 4123 && spidx0->ul_proto != spidx1->ul_proto) 4124 return 0; 4125 4126 switch (spidx0->src.sa.sa_family) { 4127 case AF_INET: 4128 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY 4129 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) 4130 return 0; 4131 if (!key_bbcmp(&spidx0->src.sin.sin_addr, 4132 &spidx1->src.sin.sin_addr, spidx0->prefs)) 4133 return 0; 4134 break; 4135 case AF_INET6: 4136 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY 4137 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) 4138 return 0; 4139 /* 4140 * scope_id check. if sin6_scope_id is 0, we regard it 4141 * as a wildcard scope, which matches any scope zone ID. 4142 */ 4143 if (spidx0->src.sin6.sin6_scope_id && 4144 spidx1->src.sin6.sin6_scope_id && 4145 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) 4146 return 0; 4147 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr, 4148 &spidx1->src.sin6.sin6_addr, spidx0->prefs)) 4149 return 0; 4150 break; 4151 default: 4152 /* XXX */ 4153 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) 4154 return 0; 4155 break; 4156 } 4157 4158 switch (spidx0->dst.sa.sa_family) { 4159 case AF_INET: 4160 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY 4161 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) 4162 return 0; 4163 if (!key_bbcmp(&spidx0->dst.sin.sin_addr, 4164 &spidx1->dst.sin.sin_addr, spidx0->prefd)) 4165 return 0; 4166 break; 4167 case AF_INET6: 4168 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY 4169 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) 4170 return 0; 4171 /* 4172 * scope_id check. if sin6_scope_id is 0, we regard it 4173 * as a wildcard scope, which matches any scope zone ID. 4174 */ 4175 if (spidx0->dst.sin6.sin6_scope_id && 4176 spidx1->dst.sin6.sin6_scope_id && 4177 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) 4178 return 0; 4179 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr, 4180 &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) 4181 return 0; 4182 break; 4183 default: 4184 /* XXX */ 4185 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) 4186 return 0; 4187 break; 4188 } 4189 4190 /* XXX Do we check other field ? e.g. flowinfo */ 4191 4192 return 1; 4193 } 4194 4195 /* returns 0 on match */ 4196 static int 4197 key_sockaddrcmp( 4198 const struct sockaddr *sa1, 4199 const struct sockaddr *sa2, 4200 int port) 4201 { 4202 #ifdef satosin 4203 #undef satosin 4204 #endif 4205 #define satosin(s) ((const struct sockaddr_in *)s) 4206 #ifdef satosin6 4207 #undef satosin6 4208 #endif 4209 #define satosin6(s) ((const struct sockaddr_in6 *)s) 4210 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) 4211 return 1; 4212 4213 switch (sa1->sa_family) { 4214 case AF_INET: 4215 if (sa1->sa_len != sizeof(struct sockaddr_in)) 4216 return 1; 4217 if (satosin(sa1)->sin_addr.s_addr != 4218 satosin(sa2)->sin_addr.s_addr) { 4219 return 1; 4220 } 4221 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port) 4222 return 1; 4223 break; 4224 case AF_INET6: 4225 if (sa1->sa_len != sizeof(struct sockaddr_in6)) 4226 return 1; /*EINVAL*/ 4227 if (satosin6(sa1)->sin6_scope_id != 4228 satosin6(sa2)->sin6_scope_id) { 4229 return 1; 4230 } 4231 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr, 4232 &satosin6(sa2)->sin6_addr)) { 4233 return 1; 4234 } 4235 if (port && 4236 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) { 4237 return 1; 4238 } 4239 break; 4240 default: 4241 if (bcmp(sa1, sa2, sa1->sa_len) != 0) 4242 return 1; 4243 break; 4244 } 4245 4246 return 0; 4247 #undef satosin 4248 #undef satosin6 4249 } 4250 4251 /* 4252 * compare two buffers with mask. 4253 * IN: 4254 * addr1: source 4255 * addr2: object 4256 * bits: Number of bits to compare 4257 * OUT: 4258 * 1 : equal 4259 * 0 : not equal 4260 */ 4261 static int 4262 key_bbcmp(const void *a1, const void *a2, u_int bits) 4263 { 4264 const unsigned char *p1 = a1; 4265 const unsigned char *p2 = a2; 4266 4267 /* XXX: This could be considerably faster if we compare a word 4268 * at a time, but it is complicated on LSB Endian machines */ 4269 4270 /* Handle null pointers */ 4271 if (p1 == NULL || p2 == NULL) 4272 return (p1 == p2); 4273 4274 while (bits >= 8) { 4275 if (*p1++ != *p2++) 4276 return 0; 4277 bits -= 8; 4278 } 4279 4280 if (bits > 0) { 4281 u_int8_t mask = ~((1<<(8-bits))-1); 4282 if ((*p1 & mask) != (*p2 & mask)) 4283 return 0; 4284 } 4285 return 1; /* Match! */ 4286 } 4287 4288 static void 4289 key_flush_spd(time_t now) 4290 { 4291 static u_int16_t sptree_scangen = 0; 4292 u_int16_t gen = sptree_scangen++; 4293 struct secpolicy *sp; 4294 u_int dir; 4295 4296 /* SPD */ 4297 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 4298 restart: 4299 SPTREE_LOCK(); 4300 LIST_FOREACH(sp, &V_sptree[dir], chain) { 4301 if (sp->scangen == gen) /* previously handled */ 4302 continue; 4303 sp->scangen = gen; 4304 if (sp->state == IPSEC_SPSTATE_DEAD && 4305 sp->refcnt == 1) { 4306 /* 4307 * Ensure that we only decrease refcnt once, 4308 * when we're the last consumer. 4309 * Directly call SP_DELREF/key_delsp instead 4310 * of KEY_FREESP to avoid unlocking/relocking 4311 * SPTREE_LOCK before key_delsp: may refcnt 4312 * be increased again during that time ? 4313 * NB: also clean entries created by 4314 * key_spdflush 4315 */ 4316 SP_DELREF(sp); 4317 key_delsp(sp); 4318 SPTREE_UNLOCK(); 4319 goto restart; 4320 } 4321 if (sp->lifetime == 0 && sp->validtime == 0) 4322 continue; 4323 if ((sp->lifetime && now - sp->created > sp->lifetime) 4324 || (sp->validtime && now - sp->lastused > sp->validtime)) { 4325 sp->state = IPSEC_SPSTATE_DEAD; 4326 SPTREE_UNLOCK(); 4327 key_spdexpire(sp); 4328 goto restart; 4329 } 4330 } 4331 SPTREE_UNLOCK(); 4332 } 4333 } 4334 4335 static void 4336 key_flush_sad(time_t now) 4337 { 4338 struct secashead *sah, *nextsah; 4339 struct secasvar *sav, *nextsav; 4340 4341 /* SAD */ 4342 SAHTREE_LOCK(); 4343 LIST_FOREACH_SAFE(sah, &V_sahtree, chain, nextsah) { 4344 /* if sah has been dead, then delete it and process next sah. */ 4345 if (sah->state == SADB_SASTATE_DEAD) { 4346 key_delsah(sah); 4347 continue; 4348 } 4349 4350 /* if LARVAL entry doesn't become MATURE, delete it. */ 4351 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) { 4352 /* Need to also check refcnt for a larval SA ??? */ 4353 if (now - sav->created > V_key_larval_lifetime) 4354 KEY_FREESAV(&sav); 4355 } 4356 4357 /* 4358 * check MATURE entry to start to send expire message 4359 * whether or not. 4360 */ 4361 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) { 4362 /* we don't need to check. */ 4363 if (sav->lft_s == NULL) 4364 continue; 4365 4366 /* sanity check */ 4367 if (sav->lft_c == NULL) { 4368 ipseclog((LOG_DEBUG,"%s: there is no CURRENT " 4369 "time, why?\n", __func__)); 4370 continue; 4371 } 4372 4373 /* check SOFT lifetime */ 4374 if (sav->lft_s->addtime != 0 && 4375 now - sav->created > sav->lft_s->addtime) { 4376 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4377 /* 4378 * Actually, only send expire message if 4379 * SA has been used, as it was done before, 4380 * but should we always send such message, 4381 * and let IKE daemon decide if it should be 4382 * renegotiated or not ? 4383 * XXX expire message will actually NOT be 4384 * sent if SA is only used after soft 4385 * lifetime has been reached, see below 4386 * (DYING state) 4387 */ 4388 if (sav->lft_c->usetime != 0) 4389 key_expire(sav); 4390 } 4391 /* check SOFT lifetime by bytes */ 4392 /* 4393 * XXX I don't know the way to delete this SA 4394 * when new SA is installed. Caution when it's 4395 * installed too big lifetime by time. 4396 */ 4397 else if (sav->lft_s->bytes != 0 && 4398 sav->lft_s->bytes < sav->lft_c->bytes) { 4399 4400 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4401 /* 4402 * XXX If we keep to send expire 4403 * message in the status of 4404 * DYING. Do remove below code. 4405 */ 4406 key_expire(sav); 4407 } 4408 } 4409 4410 /* check DYING entry to change status to DEAD. */ 4411 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) { 4412 /* we don't need to check. */ 4413 if (sav->lft_h == NULL) 4414 continue; 4415 4416 /* sanity check */ 4417 if (sav->lft_c == NULL) { 4418 ipseclog((LOG_DEBUG, "%s: there is no CURRENT " 4419 "time, why?\n", __func__)); 4420 continue; 4421 } 4422 4423 if (sav->lft_h->addtime != 0 && 4424 now - sav->created > sav->lft_h->addtime) { 4425 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4426 KEY_FREESAV(&sav); 4427 } 4428 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */ 4429 else if (sav->lft_s != NULL 4430 && sav->lft_s->addtime != 0 4431 && now - sav->created > sav->lft_s->addtime) { 4432 /* 4433 * XXX: should be checked to be 4434 * installed the valid SA. 4435 */ 4436 4437 /* 4438 * If there is no SA then sending 4439 * expire message. 4440 */ 4441 key_expire(sav); 4442 } 4443 #endif 4444 /* check HARD lifetime by bytes */ 4445 else if (sav->lft_h->bytes != 0 && 4446 sav->lft_h->bytes < sav->lft_c->bytes) { 4447 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4448 KEY_FREESAV(&sav); 4449 } 4450 } 4451 4452 /* delete entry in DEAD */ 4453 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) { 4454 /* sanity check */ 4455 if (sav->state != SADB_SASTATE_DEAD) { 4456 ipseclog((LOG_DEBUG, "%s: invalid sav->state " 4457 "(queue: %d SA: %d): kill it anyway\n", 4458 __func__, 4459 SADB_SASTATE_DEAD, sav->state)); 4460 } 4461 /* 4462 * do not call key_freesav() here. 4463 * sav should already be freed, and sav->refcnt 4464 * shows other references to sav 4465 * (such as from SPD). 4466 */ 4467 } 4468 } 4469 SAHTREE_UNLOCK(); 4470 } 4471 4472 static void 4473 key_flush_acq(time_t now) 4474 { 4475 struct secacq *acq, *nextacq; 4476 4477 /* ACQ tree */ 4478 ACQ_LOCK(); 4479 for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) { 4480 nextacq = LIST_NEXT(acq, chain); 4481 if (now - acq->created > V_key_blockacq_lifetime 4482 && __LIST_CHAINED(acq)) { 4483 LIST_REMOVE(acq, chain); 4484 free(acq, M_IPSEC_SAQ); 4485 } 4486 } 4487 ACQ_UNLOCK(); 4488 } 4489 4490 static void 4491 key_flush_spacq(time_t now) 4492 { 4493 struct secspacq *acq, *nextacq; 4494 4495 /* SP ACQ tree */ 4496 SPACQ_LOCK(); 4497 for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) { 4498 nextacq = LIST_NEXT(acq, chain); 4499 if (now - acq->created > V_key_blockacq_lifetime 4500 && __LIST_CHAINED(acq)) { 4501 LIST_REMOVE(acq, chain); 4502 free(acq, M_IPSEC_SAQ); 4503 } 4504 } 4505 SPACQ_UNLOCK(); 4506 } 4507 4508 /* 4509 * time handler. 4510 * scanning SPD and SAD to check status for each entries, 4511 * and do to remove or to expire. 4512 * XXX: year 2038 problem may remain. 4513 */ 4514 void 4515 key_timehandler(void) 4516 { 4517 VNET_ITERATOR_DECL(vnet_iter); 4518 time_t now = time_second; 4519 4520 VNET_LIST_RLOCK_NOSLEEP(); 4521 VNET_FOREACH(vnet_iter) { 4522 CURVNET_SET(vnet_iter); 4523 key_flush_spd(now); 4524 key_flush_sad(now); 4525 key_flush_acq(now); 4526 key_flush_spacq(now); 4527 CURVNET_RESTORE(); 4528 } 4529 VNET_LIST_RUNLOCK_NOSLEEP(); 4530 4531 #ifndef IPSEC_DEBUG2 4532 /* do exchange to tick time !! */ 4533 (void)timeout((void *)key_timehandler, (void *)0, hz); 4534 #endif /* IPSEC_DEBUG2 */ 4535 } 4536 4537 u_long 4538 key_random() 4539 { 4540 u_long value; 4541 4542 key_randomfill(&value, sizeof(value)); 4543 return value; 4544 } 4545 4546 void 4547 key_randomfill(p, l) 4548 void *p; 4549 size_t l; 4550 { 4551 size_t n; 4552 u_long v; 4553 static int warn = 1; 4554 4555 n = 0; 4556 n = (size_t)read_random(p, (u_int)l); 4557 /* last resort */ 4558 while (n < l) { 4559 v = random(); 4560 bcopy(&v, (u_int8_t *)p + n, 4561 l - n < sizeof(v) ? l - n : sizeof(v)); 4562 n += sizeof(v); 4563 4564 if (warn) { 4565 printf("WARNING: pseudo-random number generator " 4566 "used for IPsec processing\n"); 4567 warn = 0; 4568 } 4569 } 4570 } 4571 4572 /* 4573 * map SADB_SATYPE_* to IPPROTO_*. 4574 * if satype == SADB_SATYPE then satype is mapped to ~0. 4575 * OUT: 4576 * 0: invalid satype. 4577 */ 4578 static u_int16_t 4579 key_satype2proto(u_int8_t satype) 4580 { 4581 switch (satype) { 4582 case SADB_SATYPE_UNSPEC: 4583 return IPSEC_PROTO_ANY; 4584 case SADB_SATYPE_AH: 4585 return IPPROTO_AH; 4586 case SADB_SATYPE_ESP: 4587 return IPPROTO_ESP; 4588 case SADB_X_SATYPE_IPCOMP: 4589 return IPPROTO_IPCOMP; 4590 case SADB_X_SATYPE_TCPSIGNATURE: 4591 return IPPROTO_TCP; 4592 default: 4593 return 0; 4594 } 4595 /* NOTREACHED */ 4596 } 4597 4598 /* 4599 * map IPPROTO_* to SADB_SATYPE_* 4600 * OUT: 4601 * 0: invalid protocol type. 4602 */ 4603 static u_int8_t 4604 key_proto2satype(u_int16_t proto) 4605 { 4606 switch (proto) { 4607 case IPPROTO_AH: 4608 return SADB_SATYPE_AH; 4609 case IPPROTO_ESP: 4610 return SADB_SATYPE_ESP; 4611 case IPPROTO_IPCOMP: 4612 return SADB_X_SATYPE_IPCOMP; 4613 case IPPROTO_TCP: 4614 return SADB_X_SATYPE_TCPSIGNATURE; 4615 default: 4616 return 0; 4617 } 4618 /* NOTREACHED */ 4619 } 4620 4621 /* %%% PF_KEY */ 4622 /* 4623 * SADB_GETSPI processing is to receive 4624 * <base, (SA2), src address, dst address, (SPI range)> 4625 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND 4626 * tree with the status of LARVAL, and send 4627 * <base, SA(*), address(SD)> 4628 * to the IKMPd. 4629 * 4630 * IN: mhp: pointer to the pointer to each header. 4631 * OUT: NULL if fail. 4632 * other if success, return pointer to the message to send. 4633 */ 4634 static int 4635 key_getspi(so, m, mhp) 4636 struct socket *so; 4637 struct mbuf *m; 4638 const struct sadb_msghdr *mhp; 4639 { 4640 struct sadb_address *src0, *dst0; 4641 struct secasindex saidx; 4642 struct secashead *newsah; 4643 struct secasvar *newsav; 4644 u_int8_t proto; 4645 u_int32_t spi; 4646 u_int8_t mode; 4647 u_int32_t reqid; 4648 int error; 4649 4650 IPSEC_ASSERT(so != NULL, ("null socket")); 4651 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4652 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4653 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4654 4655 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4656 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 4657 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4658 __func__)); 4659 return key_senderror(so, m, EINVAL); 4660 } 4661 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4662 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4663 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4664 __func__)); 4665 return key_senderror(so, m, EINVAL); 4666 } 4667 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4668 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4669 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4670 } else { 4671 mode = IPSEC_MODE_ANY; 4672 reqid = 0; 4673 } 4674 4675 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4676 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4677 4678 /* map satype to proto */ 4679 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4680 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4681 __func__)); 4682 return key_senderror(so, m, EINVAL); 4683 } 4684 4685 /* 4686 * Make sure the port numbers are zero. 4687 * In case of NAT-T we will update them later if needed. 4688 */ 4689 switch (((struct sockaddr *)(src0 + 1))->sa_family) { 4690 case AF_INET: 4691 if (((struct sockaddr *)(src0 + 1))->sa_len != 4692 sizeof(struct sockaddr_in)) 4693 return key_senderror(so, m, EINVAL); 4694 ((struct sockaddr_in *)(src0 + 1))->sin_port = 0; 4695 break; 4696 case AF_INET6: 4697 if (((struct sockaddr *)(src0 + 1))->sa_len != 4698 sizeof(struct sockaddr_in6)) 4699 return key_senderror(so, m, EINVAL); 4700 ((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0; 4701 break; 4702 default: 4703 ; /*???*/ 4704 } 4705 switch (((struct sockaddr *)(dst0 + 1))->sa_family) { 4706 case AF_INET: 4707 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4708 sizeof(struct sockaddr_in)) 4709 return key_senderror(so, m, EINVAL); 4710 ((struct sockaddr_in *)(dst0 + 1))->sin_port = 0; 4711 break; 4712 case AF_INET6: 4713 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4714 sizeof(struct sockaddr_in6)) 4715 return key_senderror(so, m, EINVAL); 4716 ((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0; 4717 break; 4718 default: 4719 ; /*???*/ 4720 } 4721 4722 /* XXX boundary check against sa_len */ 4723 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4724 4725 #ifdef IPSEC_NAT_T 4726 /* 4727 * Handle NAT-T info if present. 4728 * We made sure the port numbers are zero above, so we do 4729 * not have to worry in case we do not update them. 4730 */ 4731 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) 4732 ipseclog((LOG_DEBUG, "%s: NAT-T OAi present\n", __func__)); 4733 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) 4734 ipseclog((LOG_DEBUG, "%s: NAT-T OAr present\n", __func__)); 4735 4736 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 4737 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 4738 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 4739 struct sadb_x_nat_t_type *type; 4740 struct sadb_x_nat_t_port *sport, *dport; 4741 4742 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 4743 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 4744 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 4745 ipseclog((LOG_DEBUG, "%s: invalid nat-t message " 4746 "passed.\n", __func__)); 4747 return key_senderror(so, m, EINVAL); 4748 } 4749 4750 sport = (struct sadb_x_nat_t_port *) 4751 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 4752 dport = (struct sadb_x_nat_t_port *) 4753 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 4754 4755 if (sport) 4756 KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port); 4757 if (dport) 4758 KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port); 4759 } 4760 #endif 4761 4762 /* SPI allocation */ 4763 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE], 4764 &saidx); 4765 if (spi == 0) 4766 return key_senderror(so, m, EINVAL); 4767 4768 /* get a SA index */ 4769 if ((newsah = key_getsah(&saidx)) == NULL) { 4770 /* create a new SA index */ 4771 if ((newsah = key_newsah(&saidx)) == NULL) { 4772 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 4773 return key_senderror(so, m, ENOBUFS); 4774 } 4775 } 4776 4777 /* get a new SA */ 4778 /* XXX rewrite */ 4779 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 4780 if (newsav == NULL) { 4781 /* XXX don't free new SA index allocated in above. */ 4782 return key_senderror(so, m, error); 4783 } 4784 4785 /* set spi */ 4786 newsav->spi = htonl(spi); 4787 4788 /* delete the entry in acqtree */ 4789 if (mhp->msg->sadb_msg_seq != 0) { 4790 struct secacq *acq; 4791 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) { 4792 /* reset counter in order to deletion by timehandler. */ 4793 acq->created = time_second; 4794 acq->count = 0; 4795 } 4796 } 4797 4798 { 4799 struct mbuf *n, *nn; 4800 struct sadb_sa *m_sa; 4801 struct sadb_msg *newmsg; 4802 int off, len; 4803 4804 /* create new sadb_msg to reply. */ 4805 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 4806 PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4807 4808 MGETHDR(n, M_NOWAIT, MT_DATA); 4809 if (len > MHLEN) { 4810 MCLGET(n, M_NOWAIT); 4811 if ((n->m_flags & M_EXT) == 0) { 4812 m_freem(n); 4813 n = NULL; 4814 } 4815 } 4816 if (!n) 4817 return key_senderror(so, m, ENOBUFS); 4818 4819 n->m_len = len; 4820 n->m_next = NULL; 4821 off = 0; 4822 4823 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 4824 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 4825 4826 m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off); 4827 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); 4828 m_sa->sadb_sa_exttype = SADB_EXT_SA; 4829 m_sa->sadb_sa_spi = htonl(spi); 4830 off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4831 4832 IPSEC_ASSERT(off == len, 4833 ("length inconsistency (off %u len %u)", off, len)); 4834 4835 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, 4836 SADB_EXT_ADDRESS_DST); 4837 if (!n->m_next) { 4838 m_freem(n); 4839 return key_senderror(so, m, ENOBUFS); 4840 } 4841 4842 if (n->m_len < sizeof(struct sadb_msg)) { 4843 n = m_pullup(n, sizeof(struct sadb_msg)); 4844 if (n == NULL) 4845 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 4846 } 4847 4848 n->m_pkthdr.len = 0; 4849 for (nn = n; nn; nn = nn->m_next) 4850 n->m_pkthdr.len += nn->m_len; 4851 4852 newmsg = mtod(n, struct sadb_msg *); 4853 newmsg->sadb_msg_seq = newsav->seq; 4854 newmsg->sadb_msg_errno = 0; 4855 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 4856 4857 m_freem(m); 4858 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 4859 } 4860 } 4861 4862 /* 4863 * allocating new SPI 4864 * called by key_getspi(). 4865 * OUT: 4866 * 0: failure. 4867 * others: success. 4868 */ 4869 static u_int32_t 4870 key_do_getnewspi(spirange, saidx) 4871 struct sadb_spirange *spirange; 4872 struct secasindex *saidx; 4873 { 4874 u_int32_t newspi; 4875 u_int32_t min, max; 4876 int count = V_key_spi_trycnt; 4877 4878 /* set spi range to allocate */ 4879 if (spirange != NULL) { 4880 min = spirange->sadb_spirange_min; 4881 max = spirange->sadb_spirange_max; 4882 } else { 4883 min = V_key_spi_minval; 4884 max = V_key_spi_maxval; 4885 } 4886 /* IPCOMP needs 2-byte SPI */ 4887 if (saidx->proto == IPPROTO_IPCOMP) { 4888 u_int32_t t; 4889 if (min >= 0x10000) 4890 min = 0xffff; 4891 if (max >= 0x10000) 4892 max = 0xffff; 4893 if (min > max) { 4894 t = min; min = max; max = t; 4895 } 4896 } 4897 4898 if (min == max) { 4899 if (key_checkspidup(saidx, min) != NULL) { 4900 ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n", 4901 __func__, min)); 4902 return 0; 4903 } 4904 4905 count--; /* taking one cost. */ 4906 newspi = min; 4907 4908 } else { 4909 4910 /* init SPI */ 4911 newspi = 0; 4912 4913 /* when requesting to allocate spi ranged */ 4914 while (count--) { 4915 /* generate pseudo-random SPI value ranged. */ 4916 newspi = min + (key_random() % (max - min + 1)); 4917 4918 if (key_checkspidup(saidx, newspi) == NULL) 4919 break; 4920 } 4921 4922 if (count == 0 || newspi == 0) { 4923 ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n", 4924 __func__)); 4925 return 0; 4926 } 4927 } 4928 4929 /* statistics */ 4930 keystat.getspi_count = 4931 (keystat.getspi_count + V_key_spi_trycnt - count) / 2; 4932 4933 return newspi; 4934 } 4935 4936 /* 4937 * SADB_UPDATE processing 4938 * receive 4939 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4940 * key(AE), (identity(SD),) (sensitivity)> 4941 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. 4942 * and send 4943 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4944 * (identity(SD),) (sensitivity)> 4945 * to the ikmpd. 4946 * 4947 * m will always be freed. 4948 */ 4949 static int 4950 key_update(so, m, mhp) 4951 struct socket *so; 4952 struct mbuf *m; 4953 const struct sadb_msghdr *mhp; 4954 { 4955 struct sadb_sa *sa0; 4956 struct sadb_address *src0, *dst0; 4957 #ifdef IPSEC_NAT_T 4958 struct sadb_x_nat_t_type *type; 4959 struct sadb_x_nat_t_port *sport, *dport; 4960 struct sadb_address *iaddr, *raddr; 4961 struct sadb_x_nat_t_frag *frag; 4962 #endif 4963 struct secasindex saidx; 4964 struct secashead *sah; 4965 struct secasvar *sav; 4966 u_int16_t proto; 4967 u_int8_t mode; 4968 u_int32_t reqid; 4969 int error; 4970 4971 IPSEC_ASSERT(so != NULL, ("null socket")); 4972 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4973 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4974 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4975 4976 /* map satype to proto */ 4977 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4978 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4979 __func__)); 4980 return key_senderror(so, m, EINVAL); 4981 } 4982 4983 if (mhp->ext[SADB_EXT_SA] == NULL || 4984 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4985 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 4986 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 4987 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 4988 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 4989 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 4990 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 4991 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 4992 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 4993 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 4994 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4995 __func__)); 4996 return key_senderror(so, m, EINVAL); 4997 } 4998 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 4999 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5000 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5001 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5002 __func__)); 5003 return key_senderror(so, m, EINVAL); 5004 } 5005 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5006 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 5007 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 5008 } else { 5009 mode = IPSEC_MODE_ANY; 5010 reqid = 0; 5011 } 5012 /* XXX boundary checking for other extensions */ 5013 5014 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5015 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5016 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5017 5018 /* XXX boundary check against sa_len */ 5019 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 5020 5021 /* 5022 * Make sure the port numbers are zero. 5023 * In case of NAT-T we will update them later if needed. 5024 */ 5025 KEY_PORTTOSADDR(&saidx.src, 0); 5026 KEY_PORTTOSADDR(&saidx.dst, 0); 5027 5028 #ifdef IPSEC_NAT_T 5029 /* 5030 * Handle NAT-T info if present. 5031 */ 5032 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 5033 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5034 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5035 5036 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 5037 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5038 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5039 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5040 __func__)); 5041 return key_senderror(so, m, EINVAL); 5042 } 5043 5044 type = (struct sadb_x_nat_t_type *) 5045 mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5046 sport = (struct sadb_x_nat_t_port *) 5047 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5048 dport = (struct sadb_x_nat_t_port *) 5049 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5050 } else { 5051 type = 0; 5052 sport = dport = 0; 5053 } 5054 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL && 5055 mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { 5056 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) || 5057 mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { 5058 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5059 __func__)); 5060 return key_senderror(so, m, EINVAL); 5061 } 5062 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5063 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5064 ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__)); 5065 } else { 5066 iaddr = raddr = NULL; 5067 } 5068 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { 5069 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { 5070 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5071 __func__)); 5072 return key_senderror(so, m, EINVAL); 5073 } 5074 frag = (struct sadb_x_nat_t_frag *) 5075 mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 5076 } else { 5077 frag = 0; 5078 } 5079 #endif 5080 5081 /* get a SA header */ 5082 if ((sah = key_getsah(&saidx)) == NULL) { 5083 ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__)); 5084 return key_senderror(so, m, ENOENT); 5085 } 5086 5087 /* set spidx if there */ 5088 /* XXX rewrite */ 5089 error = key_setident(sah, m, mhp); 5090 if (error) 5091 return key_senderror(so, m, error); 5092 5093 /* find a SA with sequence number. */ 5094 #ifdef IPSEC_DOSEQCHECK 5095 if (mhp->msg->sadb_msg_seq != 0 5096 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) { 5097 ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u " 5098 "exists.\n", __func__, mhp->msg->sadb_msg_seq)); 5099 return key_senderror(so, m, ENOENT); 5100 } 5101 #else 5102 SAHTREE_LOCK(); 5103 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5104 SAHTREE_UNLOCK(); 5105 if (sav == NULL) { 5106 ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n", 5107 __func__, (u_int32_t)ntohl(sa0->sadb_sa_spi))); 5108 return key_senderror(so, m, EINVAL); 5109 } 5110 #endif 5111 5112 /* validity check */ 5113 if (sav->sah->saidx.proto != proto) { 5114 ipseclog((LOG_DEBUG, "%s: protocol mismatched " 5115 "(DB=%u param=%u)\n", __func__, 5116 sav->sah->saidx.proto, proto)); 5117 return key_senderror(so, m, EINVAL); 5118 } 5119 #ifdef IPSEC_DOSEQCHECK 5120 if (sav->spi != sa0->sadb_sa_spi) { 5121 ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n", 5122 __func__, 5123 (u_int32_t)ntohl(sav->spi), 5124 (u_int32_t)ntohl(sa0->sadb_sa_spi))); 5125 return key_senderror(so, m, EINVAL); 5126 } 5127 #endif 5128 if (sav->pid != mhp->msg->sadb_msg_pid) { 5129 ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n", 5130 __func__, sav->pid, mhp->msg->sadb_msg_pid)); 5131 return key_senderror(so, m, EINVAL); 5132 } 5133 5134 /* copy sav values */ 5135 error = key_setsaval(sav, m, mhp); 5136 if (error) { 5137 KEY_FREESAV(&sav); 5138 return key_senderror(so, m, error); 5139 } 5140 5141 #ifdef IPSEC_NAT_T 5142 /* 5143 * Handle more NAT-T info if present, 5144 * now that we have a sav to fill. 5145 */ 5146 if (type) 5147 sav->natt_type = type->sadb_x_nat_t_type_type; 5148 5149 if (sport) 5150 KEY_PORTTOSADDR(&sav->sah->saidx.src, 5151 sport->sadb_x_nat_t_port_port); 5152 if (dport) 5153 KEY_PORTTOSADDR(&sav->sah->saidx.dst, 5154 dport->sadb_x_nat_t_port_port); 5155 5156 #if 0 5157 /* 5158 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0. 5159 * We should actually check for a minimum MTU here, if we 5160 * want to support it in ip_output. 5161 */ 5162 if (frag) 5163 sav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen; 5164 #endif 5165 #endif 5166 5167 /* check SA values to be mature. */ 5168 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) { 5169 KEY_FREESAV(&sav); 5170 return key_senderror(so, m, 0); 5171 } 5172 5173 { 5174 struct mbuf *n; 5175 5176 /* set msg buf from mhp */ 5177 n = key_getmsgbuf_x1(m, mhp); 5178 if (n == NULL) { 5179 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5180 return key_senderror(so, m, ENOBUFS); 5181 } 5182 5183 m_freem(m); 5184 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5185 } 5186 } 5187 5188 /* 5189 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL. 5190 * only called by key_update(). 5191 * OUT: 5192 * NULL : not found 5193 * others : found, pointer to a SA. 5194 */ 5195 #ifdef IPSEC_DOSEQCHECK 5196 static struct secasvar * 5197 key_getsavbyseq(sah, seq) 5198 struct secashead *sah; 5199 u_int32_t seq; 5200 { 5201 struct secasvar *sav; 5202 u_int state; 5203 5204 state = SADB_SASTATE_LARVAL; 5205 5206 /* search SAD with sequence number ? */ 5207 LIST_FOREACH(sav, &sah->savtree[state], chain) { 5208 5209 KEY_CHKSASTATE(state, sav->state, __func__); 5210 5211 if (sav->seq == seq) { 5212 sa_addref(sav); 5213 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 5214 printf("DP %s cause refcnt++:%d SA:%p\n", 5215 __func__, sav->refcnt, sav)); 5216 return sav; 5217 } 5218 } 5219 5220 return NULL; 5221 } 5222 #endif 5223 5224 /* 5225 * SADB_ADD processing 5226 * add an entry to SA database, when received 5227 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5228 * key(AE), (identity(SD),) (sensitivity)> 5229 * from the ikmpd, 5230 * and send 5231 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5232 * (identity(SD),) (sensitivity)> 5233 * to the ikmpd. 5234 * 5235 * IGNORE identity and sensitivity messages. 5236 * 5237 * m will always be freed. 5238 */ 5239 static int 5240 key_add(so, m, mhp) 5241 struct socket *so; 5242 struct mbuf *m; 5243 const struct sadb_msghdr *mhp; 5244 { 5245 struct sadb_sa *sa0; 5246 struct sadb_address *src0, *dst0; 5247 #ifdef IPSEC_NAT_T 5248 struct sadb_x_nat_t_type *type; 5249 struct sadb_address *iaddr, *raddr; 5250 struct sadb_x_nat_t_frag *frag; 5251 #endif 5252 struct secasindex saidx; 5253 struct secashead *newsah; 5254 struct secasvar *newsav; 5255 u_int16_t proto; 5256 u_int8_t mode; 5257 u_int32_t reqid; 5258 int error; 5259 5260 IPSEC_ASSERT(so != NULL, ("null socket")); 5261 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5262 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5263 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5264 5265 /* map satype to proto */ 5266 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5267 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5268 __func__)); 5269 return key_senderror(so, m, EINVAL); 5270 } 5271 5272 if (mhp->ext[SADB_EXT_SA] == NULL || 5273 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5274 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5275 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5276 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5277 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5278 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5279 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5280 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5281 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5282 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5283 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5284 __func__)); 5285 return key_senderror(so, m, EINVAL); 5286 } 5287 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5288 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5289 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5290 /* XXX need more */ 5291 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5292 __func__)); 5293 return key_senderror(so, m, EINVAL); 5294 } 5295 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5296 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 5297 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 5298 } else { 5299 mode = IPSEC_MODE_ANY; 5300 reqid = 0; 5301 } 5302 5303 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5304 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5305 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5306 5307 /* XXX boundary check against sa_len */ 5308 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 5309 5310 /* 5311 * Make sure the port numbers are zero. 5312 * In case of NAT-T we will update them later if needed. 5313 */ 5314 KEY_PORTTOSADDR(&saidx.src, 0); 5315 KEY_PORTTOSADDR(&saidx.dst, 0); 5316 5317 #ifdef IPSEC_NAT_T 5318 /* 5319 * Handle NAT-T info if present. 5320 */ 5321 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 5322 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5323 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5324 struct sadb_x_nat_t_port *sport, *dport; 5325 5326 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 5327 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5328 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5329 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5330 __func__)); 5331 return key_senderror(so, m, EINVAL); 5332 } 5333 5334 type = (struct sadb_x_nat_t_type *) 5335 mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5336 sport = (struct sadb_x_nat_t_port *) 5337 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5338 dport = (struct sadb_x_nat_t_port *) 5339 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5340 5341 if (sport) 5342 KEY_PORTTOSADDR(&saidx.src, 5343 sport->sadb_x_nat_t_port_port); 5344 if (dport) 5345 KEY_PORTTOSADDR(&saidx.dst, 5346 dport->sadb_x_nat_t_port_port); 5347 } else { 5348 type = 0; 5349 } 5350 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL && 5351 mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { 5352 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) || 5353 mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { 5354 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5355 __func__)); 5356 return key_senderror(so, m, EINVAL); 5357 } 5358 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5359 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5360 ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__)); 5361 } else { 5362 iaddr = raddr = NULL; 5363 } 5364 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { 5365 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { 5366 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5367 __func__)); 5368 return key_senderror(so, m, EINVAL); 5369 } 5370 frag = (struct sadb_x_nat_t_frag *) 5371 mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 5372 } else { 5373 frag = 0; 5374 } 5375 #endif 5376 5377 /* get a SA header */ 5378 if ((newsah = key_getsah(&saidx)) == NULL) { 5379 /* create a new SA header */ 5380 if ((newsah = key_newsah(&saidx)) == NULL) { 5381 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 5382 return key_senderror(so, m, ENOBUFS); 5383 } 5384 } 5385 5386 /* set spidx if there */ 5387 /* XXX rewrite */ 5388 error = key_setident(newsah, m, mhp); 5389 if (error) { 5390 return key_senderror(so, m, error); 5391 } 5392 5393 /* create new SA entry. */ 5394 /* We can create new SA only if SPI is differenct. */ 5395 SAHTREE_LOCK(); 5396 newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi); 5397 SAHTREE_UNLOCK(); 5398 if (newsav != NULL) { 5399 ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__)); 5400 return key_senderror(so, m, EEXIST); 5401 } 5402 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 5403 if (newsav == NULL) { 5404 return key_senderror(so, m, error); 5405 } 5406 5407 #ifdef IPSEC_NAT_T 5408 /* 5409 * Handle more NAT-T info if present, 5410 * now that we have a sav to fill. 5411 */ 5412 if (type) 5413 newsav->natt_type = type->sadb_x_nat_t_type_type; 5414 5415 #if 0 5416 /* 5417 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0. 5418 * We should actually check for a minimum MTU here, if we 5419 * want to support it in ip_output. 5420 */ 5421 if (frag) 5422 newsav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen; 5423 #endif 5424 #endif 5425 5426 /* check SA values to be mature. */ 5427 if ((error = key_mature(newsav)) != 0) { 5428 KEY_FREESAV(&newsav); 5429 return key_senderror(so, m, error); 5430 } 5431 5432 /* 5433 * don't call key_freesav() here, as we would like to keep the SA 5434 * in the database on success. 5435 */ 5436 5437 { 5438 struct mbuf *n; 5439 5440 /* set msg buf from mhp */ 5441 n = key_getmsgbuf_x1(m, mhp); 5442 if (n == NULL) { 5443 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5444 return key_senderror(so, m, ENOBUFS); 5445 } 5446 5447 m_freem(m); 5448 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5449 } 5450 } 5451 5452 /* m is retained */ 5453 static int 5454 key_setident(sah, m, mhp) 5455 struct secashead *sah; 5456 struct mbuf *m; 5457 const struct sadb_msghdr *mhp; 5458 { 5459 const struct sadb_ident *idsrc, *iddst; 5460 int idsrclen, iddstlen; 5461 5462 IPSEC_ASSERT(sah != NULL, ("null secashead")); 5463 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5464 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5465 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5466 5467 /* don't make buffer if not there */ 5468 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL && 5469 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5470 sah->idents = NULL; 5471 sah->identd = NULL; 5472 return 0; 5473 } 5474 5475 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL || 5476 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5477 ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__)); 5478 return EINVAL; 5479 } 5480 5481 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC]; 5482 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST]; 5483 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC]; 5484 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST]; 5485 5486 /* validity check */ 5487 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { 5488 ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__)); 5489 return EINVAL; 5490 } 5491 5492 switch (idsrc->sadb_ident_type) { 5493 case SADB_IDENTTYPE_PREFIX: 5494 case SADB_IDENTTYPE_FQDN: 5495 case SADB_IDENTTYPE_USERFQDN: 5496 default: 5497 /* XXX do nothing */ 5498 sah->idents = NULL; 5499 sah->identd = NULL; 5500 return 0; 5501 } 5502 5503 /* make structure */ 5504 sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5505 if (sah->idents == NULL) { 5506 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5507 return ENOBUFS; 5508 } 5509 sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5510 if (sah->identd == NULL) { 5511 free(sah->idents, M_IPSEC_MISC); 5512 sah->idents = NULL; 5513 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5514 return ENOBUFS; 5515 } 5516 sah->idents->type = idsrc->sadb_ident_type; 5517 sah->idents->id = idsrc->sadb_ident_id; 5518 5519 sah->identd->type = iddst->sadb_ident_type; 5520 sah->identd->id = iddst->sadb_ident_id; 5521 5522 return 0; 5523 } 5524 5525 /* 5526 * m will not be freed on return. 5527 * it is caller's responsibility to free the result. 5528 */ 5529 static struct mbuf * 5530 key_getmsgbuf_x1(m, mhp) 5531 struct mbuf *m; 5532 const struct sadb_msghdr *mhp; 5533 { 5534 struct mbuf *n; 5535 5536 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5537 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5538 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5539 5540 /* create new sadb_msg to reply. */ 5541 n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED, 5542 SADB_EXT_SA, SADB_X_EXT_SA2, 5543 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, 5544 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 5545 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST); 5546 if (!n) 5547 return NULL; 5548 5549 if (n->m_len < sizeof(struct sadb_msg)) { 5550 n = m_pullup(n, sizeof(struct sadb_msg)); 5551 if (n == NULL) 5552 return NULL; 5553 } 5554 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; 5555 mtod(n, struct sadb_msg *)->sadb_msg_len = 5556 PFKEY_UNIT64(n->m_pkthdr.len); 5557 5558 return n; 5559 } 5560 5561 static int key_delete_all __P((struct socket *, struct mbuf *, 5562 const struct sadb_msghdr *, u_int16_t)); 5563 5564 /* 5565 * SADB_DELETE processing 5566 * receive 5567 * <base, SA(*), address(SD)> 5568 * from the ikmpd, and set SADB_SASTATE_DEAD, 5569 * and send, 5570 * <base, SA(*), address(SD)> 5571 * to the ikmpd. 5572 * 5573 * m will always be freed. 5574 */ 5575 static int 5576 key_delete(so, m, mhp) 5577 struct socket *so; 5578 struct mbuf *m; 5579 const struct sadb_msghdr *mhp; 5580 { 5581 struct sadb_sa *sa0; 5582 struct sadb_address *src0, *dst0; 5583 struct secasindex saidx; 5584 struct secashead *sah; 5585 struct secasvar *sav = NULL; 5586 u_int16_t proto; 5587 5588 IPSEC_ASSERT(so != NULL, ("null socket")); 5589 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5590 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5591 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5592 5593 /* map satype to proto */ 5594 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5595 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5596 __func__)); 5597 return key_senderror(so, m, EINVAL); 5598 } 5599 5600 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5601 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5602 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5603 __func__)); 5604 return key_senderror(so, m, EINVAL); 5605 } 5606 5607 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5608 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5609 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5610 __func__)); 5611 return key_senderror(so, m, EINVAL); 5612 } 5613 5614 if (mhp->ext[SADB_EXT_SA] == NULL) { 5615 /* 5616 * Caller wants us to delete all non-LARVAL SAs 5617 * that match the src/dst. This is used during 5618 * IKE INITIAL-CONTACT. 5619 */ 5620 ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__)); 5621 return key_delete_all(so, m, mhp, proto); 5622 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { 5623 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5624 __func__)); 5625 return key_senderror(so, m, EINVAL); 5626 } 5627 5628 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5629 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5630 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5631 5632 /* XXX boundary check against sa_len */ 5633 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5634 5635 /* 5636 * Make sure the port numbers are zero. 5637 * In case of NAT-T we will update them later if needed. 5638 */ 5639 KEY_PORTTOSADDR(&saidx.src, 0); 5640 KEY_PORTTOSADDR(&saidx.dst, 0); 5641 5642 #ifdef IPSEC_NAT_T 5643 /* 5644 * Handle NAT-T info if present. 5645 */ 5646 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5647 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5648 struct sadb_x_nat_t_port *sport, *dport; 5649 5650 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5651 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5652 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5653 __func__)); 5654 return key_senderror(so, m, EINVAL); 5655 } 5656 5657 sport = (struct sadb_x_nat_t_port *) 5658 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5659 dport = (struct sadb_x_nat_t_port *) 5660 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5661 5662 if (sport) 5663 KEY_PORTTOSADDR(&saidx.src, 5664 sport->sadb_x_nat_t_port_port); 5665 if (dport) 5666 KEY_PORTTOSADDR(&saidx.dst, 5667 dport->sadb_x_nat_t_port_port); 5668 } 5669 #endif 5670 5671 /* get a SA header */ 5672 SAHTREE_LOCK(); 5673 LIST_FOREACH(sah, &V_sahtree, chain) { 5674 if (sah->state == SADB_SASTATE_DEAD) 5675 continue; 5676 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5677 continue; 5678 5679 /* get a SA with SPI. */ 5680 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5681 if (sav) 5682 break; 5683 } 5684 if (sah == NULL) { 5685 SAHTREE_UNLOCK(); 5686 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5687 return key_senderror(so, m, ENOENT); 5688 } 5689 5690 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5691 KEY_FREESAV(&sav); 5692 SAHTREE_UNLOCK(); 5693 5694 { 5695 struct mbuf *n; 5696 struct sadb_msg *newmsg; 5697 5698 /* create new sadb_msg to reply. */ 5699 /* XXX-BZ NAT-T extensions? */ 5700 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 5701 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5702 if (!n) 5703 return key_senderror(so, m, ENOBUFS); 5704 5705 if (n->m_len < sizeof(struct sadb_msg)) { 5706 n = m_pullup(n, sizeof(struct sadb_msg)); 5707 if (n == NULL) 5708 return key_senderror(so, m, ENOBUFS); 5709 } 5710 newmsg = mtod(n, struct sadb_msg *); 5711 newmsg->sadb_msg_errno = 0; 5712 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5713 5714 m_freem(m); 5715 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5716 } 5717 } 5718 5719 /* 5720 * delete all SAs for src/dst. Called from key_delete(). 5721 */ 5722 static int 5723 key_delete_all(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp, 5724 u_int16_t proto) 5725 { 5726 struct sadb_address *src0, *dst0; 5727 struct secasindex saidx; 5728 struct secashead *sah; 5729 struct secasvar *sav, *nextsav; 5730 u_int stateidx, state; 5731 5732 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5733 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5734 5735 /* XXX boundary check against sa_len */ 5736 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5737 5738 /* 5739 * Make sure the port numbers are zero. 5740 * In case of NAT-T we will update them later if needed. 5741 */ 5742 KEY_PORTTOSADDR(&saidx.src, 0); 5743 KEY_PORTTOSADDR(&saidx.dst, 0); 5744 5745 #ifdef IPSEC_NAT_T 5746 /* 5747 * Handle NAT-T info if present. 5748 */ 5749 5750 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5751 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5752 struct sadb_x_nat_t_port *sport, *dport; 5753 5754 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5755 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5756 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5757 __func__)); 5758 return key_senderror(so, m, EINVAL); 5759 } 5760 5761 sport = (struct sadb_x_nat_t_port *) 5762 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5763 dport = (struct sadb_x_nat_t_port *) 5764 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5765 5766 if (sport) 5767 KEY_PORTTOSADDR(&saidx.src, 5768 sport->sadb_x_nat_t_port_port); 5769 if (dport) 5770 KEY_PORTTOSADDR(&saidx.dst, 5771 dport->sadb_x_nat_t_port_port); 5772 } 5773 #endif 5774 5775 SAHTREE_LOCK(); 5776 LIST_FOREACH(sah, &V_sahtree, chain) { 5777 if (sah->state == SADB_SASTATE_DEAD) 5778 continue; 5779 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5780 continue; 5781 5782 /* Delete all non-LARVAL SAs. */ 5783 for (stateidx = 0; 5784 stateidx < _ARRAYLEN(saorder_state_alive); 5785 stateidx++) { 5786 state = saorder_state_alive[stateidx]; 5787 if (state == SADB_SASTATE_LARVAL) 5788 continue; 5789 for (sav = LIST_FIRST(&sah->savtree[state]); 5790 sav != NULL; sav = nextsav) { 5791 nextsav = LIST_NEXT(sav, chain); 5792 /* sanity check */ 5793 if (sav->state != state) { 5794 ipseclog((LOG_DEBUG, "%s: invalid " 5795 "sav->state (queue %d SA %d)\n", 5796 __func__, state, sav->state)); 5797 continue; 5798 } 5799 5800 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5801 KEY_FREESAV(&sav); 5802 } 5803 } 5804 } 5805 SAHTREE_UNLOCK(); 5806 { 5807 struct mbuf *n; 5808 struct sadb_msg *newmsg; 5809 5810 /* create new sadb_msg to reply. */ 5811 /* XXX-BZ NAT-T extensions? */ 5812 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, 5813 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5814 if (!n) 5815 return key_senderror(so, m, ENOBUFS); 5816 5817 if (n->m_len < sizeof(struct sadb_msg)) { 5818 n = m_pullup(n, sizeof(struct sadb_msg)); 5819 if (n == NULL) 5820 return key_senderror(so, m, ENOBUFS); 5821 } 5822 newmsg = mtod(n, struct sadb_msg *); 5823 newmsg->sadb_msg_errno = 0; 5824 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5825 5826 m_freem(m); 5827 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5828 } 5829 } 5830 5831 /* 5832 * SADB_GET processing 5833 * receive 5834 * <base, SA(*), address(SD)> 5835 * from the ikmpd, and get a SP and a SA to respond, 5836 * and send, 5837 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), 5838 * (identity(SD),) (sensitivity)> 5839 * to the ikmpd. 5840 * 5841 * m will always be freed. 5842 */ 5843 static int 5844 key_get(so, m, mhp) 5845 struct socket *so; 5846 struct mbuf *m; 5847 const struct sadb_msghdr *mhp; 5848 { 5849 struct sadb_sa *sa0; 5850 struct sadb_address *src0, *dst0; 5851 struct secasindex saidx; 5852 struct secashead *sah; 5853 struct secasvar *sav = NULL; 5854 u_int16_t proto; 5855 5856 IPSEC_ASSERT(so != NULL, ("null socket")); 5857 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5858 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5859 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5860 5861 /* map satype to proto */ 5862 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5863 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5864 __func__)); 5865 return key_senderror(so, m, EINVAL); 5866 } 5867 5868 if (mhp->ext[SADB_EXT_SA] == NULL || 5869 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5870 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5871 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5872 __func__)); 5873 return key_senderror(so, m, EINVAL); 5874 } 5875 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5876 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5877 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5878 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5879 __func__)); 5880 return key_senderror(so, m, EINVAL); 5881 } 5882 5883 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5884 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5885 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5886 5887 /* XXX boundary check against sa_len */ 5888 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5889 5890 /* 5891 * Make sure the port numbers are zero. 5892 * In case of NAT-T we will update them later if needed. 5893 */ 5894 KEY_PORTTOSADDR(&saidx.src, 0); 5895 KEY_PORTTOSADDR(&saidx.dst, 0); 5896 5897 #ifdef IPSEC_NAT_T 5898 /* 5899 * Handle NAT-T info if present. 5900 */ 5901 5902 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5903 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5904 struct sadb_x_nat_t_port *sport, *dport; 5905 5906 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5907 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5908 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5909 __func__)); 5910 return key_senderror(so, m, EINVAL); 5911 } 5912 5913 sport = (struct sadb_x_nat_t_port *) 5914 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5915 dport = (struct sadb_x_nat_t_port *) 5916 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5917 5918 if (sport) 5919 KEY_PORTTOSADDR(&saidx.src, 5920 sport->sadb_x_nat_t_port_port); 5921 if (dport) 5922 KEY_PORTTOSADDR(&saidx.dst, 5923 dport->sadb_x_nat_t_port_port); 5924 } 5925 #endif 5926 5927 /* get a SA header */ 5928 SAHTREE_LOCK(); 5929 LIST_FOREACH(sah, &V_sahtree, chain) { 5930 if (sah->state == SADB_SASTATE_DEAD) 5931 continue; 5932 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5933 continue; 5934 5935 /* get a SA with SPI. */ 5936 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5937 if (sav) 5938 break; 5939 } 5940 SAHTREE_UNLOCK(); 5941 if (sah == NULL) { 5942 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5943 return key_senderror(so, m, ENOENT); 5944 } 5945 5946 { 5947 struct mbuf *n; 5948 u_int8_t satype; 5949 5950 /* map proto to satype */ 5951 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 5952 ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n", 5953 __func__)); 5954 return key_senderror(so, m, EINVAL); 5955 } 5956 5957 /* create new sadb_msg to reply. */ 5958 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, 5959 mhp->msg->sadb_msg_pid); 5960 if (!n) 5961 return key_senderror(so, m, ENOBUFS); 5962 5963 m_freem(m); 5964 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5965 } 5966 } 5967 5968 /* XXX make it sysctl-configurable? */ 5969 static void 5970 key_getcomb_setlifetime(comb) 5971 struct sadb_comb *comb; 5972 { 5973 5974 comb->sadb_comb_soft_allocations = 1; 5975 comb->sadb_comb_hard_allocations = 1; 5976 comb->sadb_comb_soft_bytes = 0; 5977 comb->sadb_comb_hard_bytes = 0; 5978 comb->sadb_comb_hard_addtime = 86400; /* 1 day */ 5979 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100; 5980 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */ 5981 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100; 5982 } 5983 5984 /* 5985 * XXX reorder combinations by preference 5986 * XXX no idea if the user wants ESP authentication or not 5987 */ 5988 static struct mbuf * 5989 key_getcomb_esp() 5990 { 5991 struct sadb_comb *comb; 5992 struct enc_xform *algo; 5993 struct mbuf *result = NULL, *m, *n; 5994 int encmin; 5995 int i, off, o; 5996 int totlen; 5997 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5998 5999 m = NULL; 6000 for (i = 1; i <= SADB_EALG_MAX; i++) { 6001 algo = esp_algorithm_lookup(i); 6002 if (algo == NULL) 6003 continue; 6004 6005 /* discard algorithms with key size smaller than system min */ 6006 if (_BITS(algo->maxkey) < V_ipsec_esp_keymin) 6007 continue; 6008 if (_BITS(algo->minkey) < V_ipsec_esp_keymin) 6009 encmin = V_ipsec_esp_keymin; 6010 else 6011 encmin = _BITS(algo->minkey); 6012 6013 if (V_ipsec_esp_auth) 6014 m = key_getcomb_ah(); 6015 else { 6016 IPSEC_ASSERT(l <= MLEN, 6017 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6018 MGET(m, M_NOWAIT, MT_DATA); 6019 if (m) { 6020 M_ALIGN(m, l); 6021 m->m_len = l; 6022 m->m_next = NULL; 6023 bzero(mtod(m, caddr_t), m->m_len); 6024 } 6025 } 6026 if (!m) 6027 goto fail; 6028 6029 totlen = 0; 6030 for (n = m; n; n = n->m_next) 6031 totlen += n->m_len; 6032 IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l)); 6033 6034 for (off = 0; off < totlen; off += l) { 6035 n = m_pulldown(m, off, l, &o); 6036 if (!n) { 6037 /* m is already freed */ 6038 goto fail; 6039 } 6040 comb = (struct sadb_comb *)(mtod(n, caddr_t) + o); 6041 bzero(comb, sizeof(*comb)); 6042 key_getcomb_setlifetime(comb); 6043 comb->sadb_comb_encrypt = i; 6044 comb->sadb_comb_encrypt_minbits = encmin; 6045 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); 6046 } 6047 6048 if (!result) 6049 result = m; 6050 else 6051 m_cat(result, m); 6052 } 6053 6054 return result; 6055 6056 fail: 6057 if (result) 6058 m_freem(result); 6059 return NULL; 6060 } 6061 6062 static void 6063 key_getsizes_ah( 6064 const struct auth_hash *ah, 6065 int alg, 6066 u_int16_t* min, 6067 u_int16_t* max) 6068 { 6069 6070 *min = *max = ah->keysize; 6071 if (ah->keysize == 0) { 6072 /* 6073 * Transform takes arbitrary key size but algorithm 6074 * key size is restricted. Enforce this here. 6075 */ 6076 switch (alg) { 6077 case SADB_X_AALG_MD5: *min = *max = 16; break; 6078 case SADB_X_AALG_SHA: *min = *max = 20; break; 6079 case SADB_X_AALG_NULL: *min = 1; *max = 256; break; 6080 case SADB_X_AALG_SHA2_256: *min = *max = 32; break; 6081 case SADB_X_AALG_SHA2_384: *min = *max = 48; break; 6082 case SADB_X_AALG_SHA2_512: *min = *max = 64; break; 6083 default: 6084 DPRINTF(("%s: unknown AH algorithm %u\n", 6085 __func__, alg)); 6086 break; 6087 } 6088 } 6089 } 6090 6091 /* 6092 * XXX reorder combinations by preference 6093 */ 6094 static struct mbuf * 6095 key_getcomb_ah() 6096 { 6097 struct sadb_comb *comb; 6098 struct auth_hash *algo; 6099 struct mbuf *m; 6100 u_int16_t minkeysize, maxkeysize; 6101 int i; 6102 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6103 6104 m = NULL; 6105 for (i = 1; i <= SADB_AALG_MAX; i++) { 6106 #if 1 6107 /* we prefer HMAC algorithms, not old algorithms */ 6108 if (i != SADB_AALG_SHA1HMAC && 6109 i != SADB_AALG_MD5HMAC && 6110 i != SADB_X_AALG_SHA2_256 && 6111 i != SADB_X_AALG_SHA2_384 && 6112 i != SADB_X_AALG_SHA2_512) 6113 continue; 6114 #endif 6115 algo = ah_algorithm_lookup(i); 6116 if (!algo) 6117 continue; 6118 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); 6119 /* discard algorithms with key size smaller than system min */ 6120 if (_BITS(minkeysize) < V_ipsec_ah_keymin) 6121 continue; 6122 6123 if (!m) { 6124 IPSEC_ASSERT(l <= MLEN, 6125 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6126 MGET(m, M_NOWAIT, MT_DATA); 6127 if (m) { 6128 M_ALIGN(m, l); 6129 m->m_len = l; 6130 m->m_next = NULL; 6131 } 6132 } else 6133 M_PREPEND(m, l, M_NOWAIT); 6134 if (!m) 6135 return NULL; 6136 6137 comb = mtod(m, struct sadb_comb *); 6138 bzero(comb, sizeof(*comb)); 6139 key_getcomb_setlifetime(comb); 6140 comb->sadb_comb_auth = i; 6141 comb->sadb_comb_auth_minbits = _BITS(minkeysize); 6142 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); 6143 } 6144 6145 return m; 6146 } 6147 6148 /* 6149 * not really an official behavior. discussed in pf_key@inner.net in Sep2000. 6150 * XXX reorder combinations by preference 6151 */ 6152 static struct mbuf * 6153 key_getcomb_ipcomp() 6154 { 6155 struct sadb_comb *comb; 6156 struct comp_algo *algo; 6157 struct mbuf *m; 6158 int i; 6159 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6160 6161 m = NULL; 6162 for (i = 1; i <= SADB_X_CALG_MAX; i++) { 6163 algo = ipcomp_algorithm_lookup(i); 6164 if (!algo) 6165 continue; 6166 6167 if (!m) { 6168 IPSEC_ASSERT(l <= MLEN, 6169 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6170 MGET(m, M_NOWAIT, MT_DATA); 6171 if (m) { 6172 M_ALIGN(m, l); 6173 m->m_len = l; 6174 m->m_next = NULL; 6175 } 6176 } else 6177 M_PREPEND(m, l, M_NOWAIT); 6178 if (!m) 6179 return NULL; 6180 6181 comb = mtod(m, struct sadb_comb *); 6182 bzero(comb, sizeof(*comb)); 6183 key_getcomb_setlifetime(comb); 6184 comb->sadb_comb_encrypt = i; 6185 /* what should we set into sadb_comb_*_{min,max}bits? */ 6186 } 6187 6188 return m; 6189 } 6190 6191 /* 6192 * XXX no way to pass mode (transport/tunnel) to userland 6193 * XXX replay checking? 6194 * XXX sysctl interface to ipsec_{ah,esp}_keymin 6195 */ 6196 static struct mbuf * 6197 key_getprop(saidx) 6198 const struct secasindex *saidx; 6199 { 6200 struct sadb_prop *prop; 6201 struct mbuf *m, *n; 6202 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); 6203 int totlen; 6204 6205 switch (saidx->proto) { 6206 case IPPROTO_ESP: 6207 m = key_getcomb_esp(); 6208 break; 6209 case IPPROTO_AH: 6210 m = key_getcomb_ah(); 6211 break; 6212 case IPPROTO_IPCOMP: 6213 m = key_getcomb_ipcomp(); 6214 break; 6215 default: 6216 return NULL; 6217 } 6218 6219 if (!m) 6220 return NULL; 6221 M_PREPEND(m, l, M_NOWAIT); 6222 if (!m) 6223 return NULL; 6224 6225 totlen = 0; 6226 for (n = m; n; n = n->m_next) 6227 totlen += n->m_len; 6228 6229 prop = mtod(m, struct sadb_prop *); 6230 bzero(prop, sizeof(*prop)); 6231 prop->sadb_prop_len = PFKEY_UNIT64(totlen); 6232 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 6233 prop->sadb_prop_replay = 32; /* XXX */ 6234 6235 return m; 6236 } 6237 6238 /* 6239 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2(). 6240 * send 6241 * <base, SA, address(SD), (address(P)), x_policy, 6242 * (identity(SD),) (sensitivity,) proposal> 6243 * to KMD, and expect to receive 6244 * <base> with SADB_ACQUIRE if error occured, 6245 * or 6246 * <base, src address, dst address, (SPI range)> with SADB_GETSPI 6247 * from KMD by PF_KEY. 6248 * 6249 * XXX x_policy is outside of RFC2367 (KAME extension). 6250 * XXX sensitivity is not supported. 6251 * XXX for ipcomp, RFC2367 does not define how to fill in proposal. 6252 * see comment for key_getcomb_ipcomp(). 6253 * 6254 * OUT: 6255 * 0 : succeed 6256 * others: error number 6257 */ 6258 static int 6259 key_acquire(const struct secasindex *saidx, struct secpolicy *sp) 6260 { 6261 struct mbuf *result = NULL, *m; 6262 struct secacq *newacq; 6263 u_int8_t satype; 6264 int error = -1; 6265 u_int32_t seq; 6266 6267 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 6268 satype = key_proto2satype(saidx->proto); 6269 IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto)); 6270 6271 /* 6272 * We never do anything about acquirng SA. There is anather 6273 * solution that kernel blocks to send SADB_ACQUIRE message until 6274 * getting something message from IKEd. In later case, to be 6275 * managed with ACQUIRING list. 6276 */ 6277 /* Get an entry to check whether sending message or not. */ 6278 if ((newacq = key_getacq(saidx)) != NULL) { 6279 if (V_key_blockacq_count < newacq->count) { 6280 /* reset counter and do send message. */ 6281 newacq->count = 0; 6282 } else { 6283 /* increment counter and do nothing. */ 6284 newacq->count++; 6285 return 0; 6286 } 6287 } else { 6288 /* make new entry for blocking to send SADB_ACQUIRE. */ 6289 if ((newacq = key_newacq(saidx)) == NULL) 6290 return ENOBUFS; 6291 } 6292 6293 6294 seq = newacq->seq; 6295 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0); 6296 if (!m) { 6297 error = ENOBUFS; 6298 goto fail; 6299 } 6300 result = m; 6301 6302 /* 6303 * No SADB_X_EXT_NAT_T_* here: we do not know 6304 * anything related to NAT-T at this time. 6305 */ 6306 6307 /* set sadb_address for saidx's. */ 6308 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 6309 &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY); 6310 if (!m) { 6311 error = ENOBUFS; 6312 goto fail; 6313 } 6314 m_cat(result, m); 6315 6316 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 6317 &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY); 6318 if (!m) { 6319 error = ENOBUFS; 6320 goto fail; 6321 } 6322 m_cat(result, m); 6323 6324 /* XXX proxy address (optional) */ 6325 6326 /* set sadb_x_policy */ 6327 if (sp) { 6328 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id); 6329 if (!m) { 6330 error = ENOBUFS; 6331 goto fail; 6332 } 6333 m_cat(result, m); 6334 } 6335 6336 /* XXX identity (optional) */ 6337 #if 0 6338 if (idexttype && fqdn) { 6339 /* create identity extension (FQDN) */ 6340 struct sadb_ident *id; 6341 int fqdnlen; 6342 6343 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ 6344 id = (struct sadb_ident *)p; 6345 bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6346 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6347 id->sadb_ident_exttype = idexttype; 6348 id->sadb_ident_type = SADB_IDENTTYPE_FQDN; 6349 bcopy(fqdn, id + 1, fqdnlen); 6350 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); 6351 } 6352 6353 if (idexttype) { 6354 /* create identity extension (USERFQDN) */ 6355 struct sadb_ident *id; 6356 int userfqdnlen; 6357 6358 if (userfqdn) { 6359 /* +1 for terminating-NUL */ 6360 userfqdnlen = strlen(userfqdn) + 1; 6361 } else 6362 userfqdnlen = 0; 6363 id = (struct sadb_ident *)p; 6364 bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6365 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6366 id->sadb_ident_exttype = idexttype; 6367 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; 6368 /* XXX is it correct? */ 6369 if (curproc && curproc->p_cred) 6370 id->sadb_ident_id = curproc->p_cred->p_ruid; 6371 if (userfqdn && userfqdnlen) 6372 bcopy(userfqdn, id + 1, userfqdnlen); 6373 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); 6374 } 6375 #endif 6376 6377 /* XXX sensitivity (optional) */ 6378 6379 /* create proposal/combination extension */ 6380 m = key_getprop(saidx); 6381 #if 0 6382 /* 6383 * spec conformant: always attach proposal/combination extension, 6384 * the problem is that we have no way to attach it for ipcomp, 6385 * due to the way sadb_comb is declared in RFC2367. 6386 */ 6387 if (!m) { 6388 error = ENOBUFS; 6389 goto fail; 6390 } 6391 m_cat(result, m); 6392 #else 6393 /* 6394 * outside of spec; make proposal/combination extension optional. 6395 */ 6396 if (m) 6397 m_cat(result, m); 6398 #endif 6399 6400 if ((result->m_flags & M_PKTHDR) == 0) { 6401 error = EINVAL; 6402 goto fail; 6403 } 6404 6405 if (result->m_len < sizeof(struct sadb_msg)) { 6406 result = m_pullup(result, sizeof(struct sadb_msg)); 6407 if (result == NULL) { 6408 error = ENOBUFS; 6409 goto fail; 6410 } 6411 } 6412 6413 result->m_pkthdr.len = 0; 6414 for (m = result; m; m = m->m_next) 6415 result->m_pkthdr.len += m->m_len; 6416 6417 mtod(result, struct sadb_msg *)->sadb_msg_len = 6418 PFKEY_UNIT64(result->m_pkthdr.len); 6419 6420 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6421 6422 fail: 6423 if (result) 6424 m_freem(result); 6425 return error; 6426 } 6427 6428 static struct secacq * 6429 key_newacq(const struct secasindex *saidx) 6430 { 6431 struct secacq *newacq; 6432 6433 /* get new entry */ 6434 newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 6435 if (newacq == NULL) { 6436 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6437 return NULL; 6438 } 6439 6440 /* copy secindex */ 6441 bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx)); 6442 newacq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq); 6443 newacq->created = time_second; 6444 newacq->count = 0; 6445 6446 /* add to acqtree */ 6447 ACQ_LOCK(); 6448 LIST_INSERT_HEAD(&V_acqtree, newacq, chain); 6449 ACQ_UNLOCK(); 6450 6451 return newacq; 6452 } 6453 6454 static struct secacq * 6455 key_getacq(const struct secasindex *saidx) 6456 { 6457 struct secacq *acq; 6458 6459 ACQ_LOCK(); 6460 LIST_FOREACH(acq, &V_acqtree, chain) { 6461 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY)) 6462 break; 6463 } 6464 ACQ_UNLOCK(); 6465 6466 return acq; 6467 } 6468 6469 static struct secacq * 6470 key_getacqbyseq(seq) 6471 u_int32_t seq; 6472 { 6473 struct secacq *acq; 6474 6475 ACQ_LOCK(); 6476 LIST_FOREACH(acq, &V_acqtree, chain) { 6477 if (acq->seq == seq) 6478 break; 6479 } 6480 ACQ_UNLOCK(); 6481 6482 return acq; 6483 } 6484 6485 static struct secspacq * 6486 key_newspacq(spidx) 6487 struct secpolicyindex *spidx; 6488 { 6489 struct secspacq *acq; 6490 6491 /* get new entry */ 6492 acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 6493 if (acq == NULL) { 6494 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6495 return NULL; 6496 } 6497 6498 /* copy secindex */ 6499 bcopy(spidx, &acq->spidx, sizeof(acq->spidx)); 6500 acq->created = time_second; 6501 acq->count = 0; 6502 6503 /* add to spacqtree */ 6504 SPACQ_LOCK(); 6505 LIST_INSERT_HEAD(&V_spacqtree, acq, chain); 6506 SPACQ_UNLOCK(); 6507 6508 return acq; 6509 } 6510 6511 static struct secspacq * 6512 key_getspacq(spidx) 6513 struct secpolicyindex *spidx; 6514 { 6515 struct secspacq *acq; 6516 6517 SPACQ_LOCK(); 6518 LIST_FOREACH(acq, &V_spacqtree, chain) { 6519 if (key_cmpspidx_exactly(spidx, &acq->spidx)) { 6520 /* NB: return holding spacq_lock */ 6521 return acq; 6522 } 6523 } 6524 SPACQ_UNLOCK(); 6525 6526 return NULL; 6527 } 6528 6529 /* 6530 * SADB_ACQUIRE processing, 6531 * in first situation, is receiving 6532 * <base> 6533 * from the ikmpd, and clear sequence of its secasvar entry. 6534 * 6535 * In second situation, is receiving 6536 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6537 * from a user land process, and return 6538 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6539 * to the socket. 6540 * 6541 * m will always be freed. 6542 */ 6543 static int 6544 key_acquire2(so, m, mhp) 6545 struct socket *so; 6546 struct mbuf *m; 6547 const struct sadb_msghdr *mhp; 6548 { 6549 const struct sadb_address *src0, *dst0; 6550 struct secasindex saidx; 6551 struct secashead *sah; 6552 u_int16_t proto; 6553 int error; 6554 6555 IPSEC_ASSERT(so != NULL, ("null socket")); 6556 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6557 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6558 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6559 6560 /* 6561 * Error message from KMd. 6562 * We assume that if error was occured in IKEd, the length of PFKEY 6563 * message is equal to the size of sadb_msg structure. 6564 * We do not raise error even if error occured in this function. 6565 */ 6566 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { 6567 struct secacq *acq; 6568 6569 /* check sequence number */ 6570 if (mhp->msg->sadb_msg_seq == 0) { 6571 ipseclog((LOG_DEBUG, "%s: must specify sequence " 6572 "number.\n", __func__)); 6573 m_freem(m); 6574 return 0; 6575 } 6576 6577 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) { 6578 /* 6579 * the specified larval SA is already gone, or we got 6580 * a bogus sequence number. we can silently ignore it. 6581 */ 6582 m_freem(m); 6583 return 0; 6584 } 6585 6586 /* reset acq counter in order to deletion by timehander. */ 6587 acq->created = time_second; 6588 acq->count = 0; 6589 m_freem(m); 6590 return 0; 6591 } 6592 6593 /* 6594 * This message is from user land. 6595 */ 6596 6597 /* map satype to proto */ 6598 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6599 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6600 __func__)); 6601 return key_senderror(so, m, EINVAL); 6602 } 6603 6604 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6605 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 6606 mhp->ext[SADB_EXT_PROPOSAL] == NULL) { 6607 /* error */ 6608 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6609 __func__)); 6610 return key_senderror(so, m, EINVAL); 6611 } 6612 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6613 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 6614 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { 6615 /* error */ 6616 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6617 __func__)); 6618 return key_senderror(so, m, EINVAL); 6619 } 6620 6621 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 6622 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 6623 6624 /* XXX boundary check against sa_len */ 6625 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 6626 6627 /* 6628 * Make sure the port numbers are zero. 6629 * In case of NAT-T we will update them later if needed. 6630 */ 6631 KEY_PORTTOSADDR(&saidx.src, 0); 6632 KEY_PORTTOSADDR(&saidx.dst, 0); 6633 6634 #ifndef IPSEC_NAT_T 6635 /* 6636 * Handle NAT-T info if present. 6637 */ 6638 6639 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 6640 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 6641 struct sadb_x_nat_t_port *sport, *dport; 6642 6643 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 6644 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 6645 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 6646 __func__)); 6647 return key_senderror(so, m, EINVAL); 6648 } 6649 6650 sport = (struct sadb_x_nat_t_port *) 6651 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 6652 dport = (struct sadb_x_nat_t_port *) 6653 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 6654 6655 if (sport) 6656 KEY_PORTTOSADDR(&saidx.src, 6657 sport->sadb_x_nat_t_port_port); 6658 if (dport) 6659 KEY_PORTTOSADDR(&saidx.dst, 6660 dport->sadb_x_nat_t_port_port); 6661 } 6662 #endif 6663 6664 /* get a SA index */ 6665 SAHTREE_LOCK(); 6666 LIST_FOREACH(sah, &V_sahtree, chain) { 6667 if (sah->state == SADB_SASTATE_DEAD) 6668 continue; 6669 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID)) 6670 break; 6671 } 6672 SAHTREE_UNLOCK(); 6673 if (sah != NULL) { 6674 ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__)); 6675 return key_senderror(so, m, EEXIST); 6676 } 6677 6678 error = key_acquire(&saidx, NULL); 6679 if (error != 0) { 6680 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 6681 __func__, mhp->msg->sadb_msg_errno)); 6682 return key_senderror(so, m, error); 6683 } 6684 6685 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); 6686 } 6687 6688 /* 6689 * SADB_REGISTER processing. 6690 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. 6691 * receive 6692 * <base> 6693 * from the ikmpd, and register a socket to send PF_KEY messages, 6694 * and send 6695 * <base, supported> 6696 * to KMD by PF_KEY. 6697 * If socket is detached, must free from regnode. 6698 * 6699 * m will always be freed. 6700 */ 6701 static int 6702 key_register(so, m, mhp) 6703 struct socket *so; 6704 struct mbuf *m; 6705 const struct sadb_msghdr *mhp; 6706 { 6707 struct secreg *reg, *newreg = 0; 6708 6709 IPSEC_ASSERT(so != NULL, ("null socket")); 6710 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6711 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6712 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6713 6714 /* check for invalid register message */ 6715 if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0])) 6716 return key_senderror(so, m, EINVAL); 6717 6718 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ 6719 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) 6720 goto setmsg; 6721 6722 /* check whether existing or not */ 6723 REGTREE_LOCK(); 6724 LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) { 6725 if (reg->so == so) { 6726 REGTREE_UNLOCK(); 6727 ipseclog((LOG_DEBUG, "%s: socket exists already.\n", 6728 __func__)); 6729 return key_senderror(so, m, EEXIST); 6730 } 6731 } 6732 6733 /* create regnode */ 6734 newreg = malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO); 6735 if (newreg == NULL) { 6736 REGTREE_UNLOCK(); 6737 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6738 return key_senderror(so, m, ENOBUFS); 6739 } 6740 6741 newreg->so = so; 6742 ((struct keycb *)sotorawcb(so))->kp_registered++; 6743 6744 /* add regnode to regtree. */ 6745 LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain); 6746 REGTREE_UNLOCK(); 6747 6748 setmsg: 6749 { 6750 struct mbuf *n; 6751 struct sadb_msg *newmsg; 6752 struct sadb_supported *sup; 6753 u_int len, alen, elen; 6754 int off; 6755 int i; 6756 struct sadb_alg *alg; 6757 6758 /* create new sadb_msg to reply. */ 6759 alen = 0; 6760 for (i = 1; i <= SADB_AALG_MAX; i++) { 6761 if (ah_algorithm_lookup(i)) 6762 alen += sizeof(struct sadb_alg); 6763 } 6764 if (alen) 6765 alen += sizeof(struct sadb_supported); 6766 elen = 0; 6767 for (i = 1; i <= SADB_EALG_MAX; i++) { 6768 if (esp_algorithm_lookup(i)) 6769 elen += sizeof(struct sadb_alg); 6770 } 6771 if (elen) 6772 elen += sizeof(struct sadb_supported); 6773 6774 len = sizeof(struct sadb_msg) + alen + elen; 6775 6776 if (len > MCLBYTES) 6777 return key_senderror(so, m, ENOBUFS); 6778 6779 MGETHDR(n, M_NOWAIT, MT_DATA); 6780 if (len > MHLEN) { 6781 MCLGET(n, M_NOWAIT); 6782 if ((n->m_flags & M_EXT) == 0) { 6783 m_freem(n); 6784 n = NULL; 6785 } 6786 } 6787 if (!n) 6788 return key_senderror(so, m, ENOBUFS); 6789 6790 n->m_pkthdr.len = n->m_len = len; 6791 n->m_next = NULL; 6792 off = 0; 6793 6794 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 6795 newmsg = mtod(n, struct sadb_msg *); 6796 newmsg->sadb_msg_errno = 0; 6797 newmsg->sadb_msg_len = PFKEY_UNIT64(len); 6798 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 6799 6800 /* for authentication algorithm */ 6801 if (alen) { 6802 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6803 sup->sadb_supported_len = PFKEY_UNIT64(alen); 6804 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 6805 off += PFKEY_ALIGN8(sizeof(*sup)); 6806 6807 for (i = 1; i <= SADB_AALG_MAX; i++) { 6808 struct auth_hash *aalgo; 6809 u_int16_t minkeysize, maxkeysize; 6810 6811 aalgo = ah_algorithm_lookup(i); 6812 if (!aalgo) 6813 continue; 6814 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6815 alg->sadb_alg_id = i; 6816 alg->sadb_alg_ivlen = 0; 6817 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); 6818 alg->sadb_alg_minbits = _BITS(minkeysize); 6819 alg->sadb_alg_maxbits = _BITS(maxkeysize); 6820 off += PFKEY_ALIGN8(sizeof(*alg)); 6821 } 6822 } 6823 6824 /* for encryption algorithm */ 6825 if (elen) { 6826 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6827 sup->sadb_supported_len = PFKEY_UNIT64(elen); 6828 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 6829 off += PFKEY_ALIGN8(sizeof(*sup)); 6830 6831 for (i = 1; i <= SADB_EALG_MAX; i++) { 6832 struct enc_xform *ealgo; 6833 6834 ealgo = esp_algorithm_lookup(i); 6835 if (!ealgo) 6836 continue; 6837 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6838 alg->sadb_alg_id = i; 6839 alg->sadb_alg_ivlen = ealgo->blocksize; 6840 alg->sadb_alg_minbits = _BITS(ealgo->minkey); 6841 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); 6842 off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); 6843 } 6844 } 6845 6846 IPSEC_ASSERT(off == len, 6847 ("length assumption failed (off %u len %u)", off, len)); 6848 6849 m_freem(m); 6850 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); 6851 } 6852 } 6853 6854 /* 6855 * free secreg entry registered. 6856 * XXX: I want to do free a socket marked done SADB_RESIGER to socket. 6857 */ 6858 void 6859 key_freereg(struct socket *so) 6860 { 6861 struct secreg *reg; 6862 int i; 6863 6864 IPSEC_ASSERT(so != NULL, ("NULL so")); 6865 6866 /* 6867 * check whether existing or not. 6868 * check all type of SA, because there is a potential that 6869 * one socket is registered to multiple type of SA. 6870 */ 6871 REGTREE_LOCK(); 6872 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 6873 LIST_FOREACH(reg, &V_regtree[i], chain) { 6874 if (reg->so == so && __LIST_CHAINED(reg)) { 6875 LIST_REMOVE(reg, chain); 6876 free(reg, M_IPSEC_SAR); 6877 break; 6878 } 6879 } 6880 } 6881 REGTREE_UNLOCK(); 6882 } 6883 6884 /* 6885 * SADB_EXPIRE processing 6886 * send 6887 * <base, SA, SA2, lifetime(C and one of HS), address(SD)> 6888 * to KMD by PF_KEY. 6889 * NOTE: We send only soft lifetime extension. 6890 * 6891 * OUT: 0 : succeed 6892 * others : error number 6893 */ 6894 static int 6895 key_expire(struct secasvar *sav) 6896 { 6897 int satype; 6898 struct mbuf *result = NULL, *m; 6899 int len; 6900 int error = -1; 6901 struct sadb_lifetime *lt; 6902 6903 IPSEC_ASSERT (sav != NULL, ("null sav")); 6904 IPSEC_ASSERT (sav->sah != NULL, ("null sa header")); 6905 6906 /* set msg header */ 6907 satype = key_proto2satype(sav->sah->saidx.proto); 6908 IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype)); 6909 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt); 6910 if (!m) { 6911 error = ENOBUFS; 6912 goto fail; 6913 } 6914 result = m; 6915 6916 /* create SA extension */ 6917 m = key_setsadbsa(sav); 6918 if (!m) { 6919 error = ENOBUFS; 6920 goto fail; 6921 } 6922 m_cat(result, m); 6923 6924 /* create SA extension */ 6925 m = key_setsadbxsa2(sav->sah->saidx.mode, 6926 sav->replay ? sav->replay->count : 0, 6927 sav->sah->saidx.reqid); 6928 if (!m) { 6929 error = ENOBUFS; 6930 goto fail; 6931 } 6932 m_cat(result, m); 6933 6934 /* create lifetime extension (current and soft) */ 6935 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 6936 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 6937 if (m == NULL) { 6938 error = ENOBUFS; 6939 goto fail; 6940 } 6941 m_align(m, len); 6942 m->m_len = len; 6943 bzero(mtod(m, caddr_t), len); 6944 lt = mtod(m, struct sadb_lifetime *); 6945 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6946 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 6947 lt->sadb_lifetime_allocations = sav->lft_c->allocations; 6948 lt->sadb_lifetime_bytes = sav->lft_c->bytes; 6949 lt->sadb_lifetime_addtime = sav->lft_c->addtime; 6950 lt->sadb_lifetime_usetime = sav->lft_c->usetime; 6951 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 6952 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6953 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; 6954 lt->sadb_lifetime_allocations = sav->lft_s->allocations; 6955 lt->sadb_lifetime_bytes = sav->lft_s->bytes; 6956 lt->sadb_lifetime_addtime = sav->lft_s->addtime; 6957 lt->sadb_lifetime_usetime = sav->lft_s->usetime; 6958 m_cat(result, m); 6959 6960 /* set sadb_address for source */ 6961 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 6962 &sav->sah->saidx.src.sa, 6963 FULLMASK, IPSEC_ULPROTO_ANY); 6964 if (!m) { 6965 error = ENOBUFS; 6966 goto fail; 6967 } 6968 m_cat(result, m); 6969 6970 /* set sadb_address for destination */ 6971 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 6972 &sav->sah->saidx.dst.sa, 6973 FULLMASK, IPSEC_ULPROTO_ANY); 6974 if (!m) { 6975 error = ENOBUFS; 6976 goto fail; 6977 } 6978 m_cat(result, m); 6979 6980 /* 6981 * XXX-BZ Handle NAT-T extensions here. 6982 */ 6983 6984 if ((result->m_flags & M_PKTHDR) == 0) { 6985 error = EINVAL; 6986 goto fail; 6987 } 6988 6989 if (result->m_len < sizeof(struct sadb_msg)) { 6990 result = m_pullup(result, sizeof(struct sadb_msg)); 6991 if (result == NULL) { 6992 error = ENOBUFS; 6993 goto fail; 6994 } 6995 } 6996 6997 result->m_pkthdr.len = 0; 6998 for (m = result; m; m = m->m_next) 6999 result->m_pkthdr.len += m->m_len; 7000 7001 mtod(result, struct sadb_msg *)->sadb_msg_len = 7002 PFKEY_UNIT64(result->m_pkthdr.len); 7003 7004 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 7005 7006 fail: 7007 if (result) 7008 m_freem(result); 7009 return error; 7010 } 7011 7012 /* 7013 * SADB_FLUSH processing 7014 * receive 7015 * <base> 7016 * from the ikmpd, and free all entries in secastree. 7017 * and send, 7018 * <base> 7019 * to the ikmpd. 7020 * NOTE: to do is only marking SADB_SASTATE_DEAD. 7021 * 7022 * m will always be freed. 7023 */ 7024 static int 7025 key_flush(so, m, mhp) 7026 struct socket *so; 7027 struct mbuf *m; 7028 const struct sadb_msghdr *mhp; 7029 { 7030 struct sadb_msg *newmsg; 7031 struct secashead *sah, *nextsah; 7032 struct secasvar *sav, *nextsav; 7033 u_int16_t proto; 7034 u_int8_t state; 7035 u_int stateidx; 7036 7037 IPSEC_ASSERT(so != NULL, ("null socket")); 7038 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7039 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7040 7041 /* map satype to proto */ 7042 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 7043 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 7044 __func__)); 7045 return key_senderror(so, m, EINVAL); 7046 } 7047 7048 /* no SATYPE specified, i.e. flushing all SA. */ 7049 SAHTREE_LOCK(); 7050 for (sah = LIST_FIRST(&V_sahtree); 7051 sah != NULL; 7052 sah = nextsah) { 7053 nextsah = LIST_NEXT(sah, chain); 7054 7055 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 7056 && proto != sah->saidx.proto) 7057 continue; 7058 7059 for (stateidx = 0; 7060 stateidx < _ARRAYLEN(saorder_state_alive); 7061 stateidx++) { 7062 state = saorder_state_any[stateidx]; 7063 for (sav = LIST_FIRST(&sah->savtree[state]); 7064 sav != NULL; 7065 sav = nextsav) { 7066 7067 nextsav = LIST_NEXT(sav, chain); 7068 7069 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 7070 KEY_FREESAV(&sav); 7071 } 7072 } 7073 7074 sah->state = SADB_SASTATE_DEAD; 7075 } 7076 SAHTREE_UNLOCK(); 7077 7078 if (m->m_len < sizeof(struct sadb_msg) || 7079 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 7080 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 7081 return key_senderror(so, m, ENOBUFS); 7082 } 7083 7084 if (m->m_next) 7085 m_freem(m->m_next); 7086 m->m_next = NULL; 7087 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); 7088 newmsg = mtod(m, struct sadb_msg *); 7089 newmsg->sadb_msg_errno = 0; 7090 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 7091 7092 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7093 } 7094 7095 /* 7096 * SADB_DUMP processing 7097 * dump all entries including status of DEAD in SAD. 7098 * receive 7099 * <base> 7100 * from the ikmpd, and dump all secasvar leaves 7101 * and send, 7102 * <base> ..... 7103 * to the ikmpd. 7104 * 7105 * m will always be freed. 7106 */ 7107 static int 7108 key_dump(so, m, mhp) 7109 struct socket *so; 7110 struct mbuf *m; 7111 const struct sadb_msghdr *mhp; 7112 { 7113 struct secashead *sah; 7114 struct secasvar *sav; 7115 u_int16_t proto; 7116 u_int stateidx; 7117 u_int8_t satype; 7118 u_int8_t state; 7119 int cnt; 7120 struct sadb_msg *newmsg; 7121 struct mbuf *n; 7122 7123 IPSEC_ASSERT(so != NULL, ("null socket")); 7124 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7125 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7126 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7127 7128 /* map satype to proto */ 7129 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 7130 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 7131 __func__)); 7132 return key_senderror(so, m, EINVAL); 7133 } 7134 7135 /* count sav entries to be sent to the userland. */ 7136 cnt = 0; 7137 SAHTREE_LOCK(); 7138 LIST_FOREACH(sah, &V_sahtree, chain) { 7139 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 7140 && proto != sah->saidx.proto) 7141 continue; 7142 7143 for (stateidx = 0; 7144 stateidx < _ARRAYLEN(saorder_state_any); 7145 stateidx++) { 7146 state = saorder_state_any[stateidx]; 7147 LIST_FOREACH(sav, &sah->savtree[state], chain) { 7148 cnt++; 7149 } 7150 } 7151 } 7152 7153 if (cnt == 0) { 7154 SAHTREE_UNLOCK(); 7155 return key_senderror(so, m, ENOENT); 7156 } 7157 7158 /* send this to the userland, one at a time. */ 7159 newmsg = NULL; 7160 LIST_FOREACH(sah, &V_sahtree, chain) { 7161 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 7162 && proto != sah->saidx.proto) 7163 continue; 7164 7165 /* map proto to satype */ 7166 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 7167 SAHTREE_UNLOCK(); 7168 ipseclog((LOG_DEBUG, "%s: there was invalid proto in " 7169 "SAD.\n", __func__)); 7170 return key_senderror(so, m, EINVAL); 7171 } 7172 7173 for (stateidx = 0; 7174 stateidx < _ARRAYLEN(saorder_state_any); 7175 stateidx++) { 7176 state = saorder_state_any[stateidx]; 7177 LIST_FOREACH(sav, &sah->savtree[state], chain) { 7178 n = key_setdumpsa(sav, SADB_DUMP, satype, 7179 --cnt, mhp->msg->sadb_msg_pid); 7180 if (!n) { 7181 SAHTREE_UNLOCK(); 7182 return key_senderror(so, m, ENOBUFS); 7183 } 7184 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 7185 } 7186 } 7187 } 7188 SAHTREE_UNLOCK(); 7189 7190 m_freem(m); 7191 return 0; 7192 } 7193 7194 /* 7195 * SADB_X_PROMISC processing 7196 * 7197 * m will always be freed. 7198 */ 7199 static int 7200 key_promisc(so, m, mhp) 7201 struct socket *so; 7202 struct mbuf *m; 7203 const struct sadb_msghdr *mhp; 7204 { 7205 int olen; 7206 7207 IPSEC_ASSERT(so != NULL, ("null socket")); 7208 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7209 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7210 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7211 7212 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7213 7214 if (olen < sizeof(struct sadb_msg)) { 7215 #if 1 7216 return key_senderror(so, m, EINVAL); 7217 #else 7218 m_freem(m); 7219 return 0; 7220 #endif 7221 } else if (olen == sizeof(struct sadb_msg)) { 7222 /* enable/disable promisc mode */ 7223 struct keycb *kp; 7224 7225 if ((kp = (struct keycb *)sotorawcb(so)) == NULL) 7226 return key_senderror(so, m, EINVAL); 7227 mhp->msg->sadb_msg_errno = 0; 7228 switch (mhp->msg->sadb_msg_satype) { 7229 case 0: 7230 case 1: 7231 kp->kp_promisc = mhp->msg->sadb_msg_satype; 7232 break; 7233 default: 7234 return key_senderror(so, m, EINVAL); 7235 } 7236 7237 /* send the original message back to everyone */ 7238 mhp->msg->sadb_msg_errno = 0; 7239 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7240 } else { 7241 /* send packet as is */ 7242 7243 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); 7244 7245 /* TODO: if sadb_msg_seq is specified, send to specific pid */ 7246 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7247 } 7248 } 7249 7250 static int (*key_typesw[]) __P((struct socket *, struct mbuf *, 7251 const struct sadb_msghdr *)) = { 7252 NULL, /* SADB_RESERVED */ 7253 key_getspi, /* SADB_GETSPI */ 7254 key_update, /* SADB_UPDATE */ 7255 key_add, /* SADB_ADD */ 7256 key_delete, /* SADB_DELETE */ 7257 key_get, /* SADB_GET */ 7258 key_acquire2, /* SADB_ACQUIRE */ 7259 key_register, /* SADB_REGISTER */ 7260 NULL, /* SADB_EXPIRE */ 7261 key_flush, /* SADB_FLUSH */ 7262 key_dump, /* SADB_DUMP */ 7263 key_promisc, /* SADB_X_PROMISC */ 7264 NULL, /* SADB_X_PCHANGE */ 7265 key_spdadd, /* SADB_X_SPDUPDATE */ 7266 key_spdadd, /* SADB_X_SPDADD */ 7267 key_spddelete, /* SADB_X_SPDDELETE */ 7268 key_spdget, /* SADB_X_SPDGET */ 7269 NULL, /* SADB_X_SPDACQUIRE */ 7270 key_spddump, /* SADB_X_SPDDUMP */ 7271 key_spdflush, /* SADB_X_SPDFLUSH */ 7272 key_spdadd, /* SADB_X_SPDSETIDX */ 7273 NULL, /* SADB_X_SPDEXPIRE */ 7274 key_spddelete2, /* SADB_X_SPDDELETE2 */ 7275 }; 7276 7277 /* 7278 * parse sadb_msg buffer to process PFKEYv2, 7279 * and create a data to response if needed. 7280 * I think to be dealed with mbuf directly. 7281 * IN: 7282 * msgp : pointer to pointer to a received buffer pulluped. 7283 * This is rewrited to response. 7284 * so : pointer to socket. 7285 * OUT: 7286 * length for buffer to send to user process. 7287 */ 7288 int 7289 key_parse(m, so) 7290 struct mbuf *m; 7291 struct socket *so; 7292 { 7293 struct sadb_msg *msg; 7294 struct sadb_msghdr mh; 7295 u_int orglen; 7296 int error; 7297 int target; 7298 7299 IPSEC_ASSERT(so != NULL, ("null socket")); 7300 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7301 7302 #if 0 /*kdebug_sadb assumes msg in linear buffer*/ 7303 KEYDEBUG(KEYDEBUG_KEY_DUMP, 7304 ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__)); 7305 kdebug_sadb(msg)); 7306 #endif 7307 7308 if (m->m_len < sizeof(struct sadb_msg)) { 7309 m = m_pullup(m, sizeof(struct sadb_msg)); 7310 if (!m) 7311 return ENOBUFS; 7312 } 7313 msg = mtod(m, struct sadb_msg *); 7314 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); 7315 target = KEY_SENDUP_ONE; 7316 7317 if ((m->m_flags & M_PKTHDR) == 0 || 7318 m->m_pkthdr.len != m->m_pkthdr.len) { 7319 ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__)); 7320 PFKEYSTAT_INC(out_invlen); 7321 error = EINVAL; 7322 goto senderror; 7323 } 7324 7325 if (msg->sadb_msg_version != PF_KEY_V2) { 7326 ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n", 7327 __func__, msg->sadb_msg_version)); 7328 PFKEYSTAT_INC(out_invver); 7329 error = EINVAL; 7330 goto senderror; 7331 } 7332 7333 if (msg->sadb_msg_type > SADB_MAX) { 7334 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 7335 __func__, msg->sadb_msg_type)); 7336 PFKEYSTAT_INC(out_invmsgtype); 7337 error = EINVAL; 7338 goto senderror; 7339 } 7340 7341 /* for old-fashioned code - should be nuked */ 7342 if (m->m_pkthdr.len > MCLBYTES) { 7343 m_freem(m); 7344 return ENOBUFS; 7345 } 7346 if (m->m_next) { 7347 struct mbuf *n; 7348 7349 MGETHDR(n, M_NOWAIT, MT_DATA); 7350 if (n && m->m_pkthdr.len > MHLEN) { 7351 MCLGET(n, M_NOWAIT); 7352 if ((n->m_flags & M_EXT) == 0) { 7353 m_free(n); 7354 n = NULL; 7355 } 7356 } 7357 if (!n) { 7358 m_freem(m); 7359 return ENOBUFS; 7360 } 7361 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t)); 7362 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; 7363 n->m_next = NULL; 7364 m_freem(m); 7365 m = n; 7366 } 7367 7368 /* align the mbuf chain so that extensions are in contiguous region. */ 7369 error = key_align(m, &mh); 7370 if (error) 7371 return error; 7372 7373 msg = mh.msg; 7374 7375 /* check SA type */ 7376 switch (msg->sadb_msg_satype) { 7377 case SADB_SATYPE_UNSPEC: 7378 switch (msg->sadb_msg_type) { 7379 case SADB_GETSPI: 7380 case SADB_UPDATE: 7381 case SADB_ADD: 7382 case SADB_DELETE: 7383 case SADB_GET: 7384 case SADB_ACQUIRE: 7385 case SADB_EXPIRE: 7386 ipseclog((LOG_DEBUG, "%s: must specify satype " 7387 "when msg type=%u.\n", __func__, 7388 msg->sadb_msg_type)); 7389 PFKEYSTAT_INC(out_invsatype); 7390 error = EINVAL; 7391 goto senderror; 7392 } 7393 break; 7394 case SADB_SATYPE_AH: 7395 case SADB_SATYPE_ESP: 7396 case SADB_X_SATYPE_IPCOMP: 7397 case SADB_X_SATYPE_TCPSIGNATURE: 7398 switch (msg->sadb_msg_type) { 7399 case SADB_X_SPDADD: 7400 case SADB_X_SPDDELETE: 7401 case SADB_X_SPDGET: 7402 case SADB_X_SPDDUMP: 7403 case SADB_X_SPDFLUSH: 7404 case SADB_X_SPDSETIDX: 7405 case SADB_X_SPDUPDATE: 7406 case SADB_X_SPDDELETE2: 7407 ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n", 7408 __func__, msg->sadb_msg_type)); 7409 PFKEYSTAT_INC(out_invsatype); 7410 error = EINVAL; 7411 goto senderror; 7412 } 7413 break; 7414 case SADB_SATYPE_RSVP: 7415 case SADB_SATYPE_OSPFV2: 7416 case SADB_SATYPE_RIPV2: 7417 case SADB_SATYPE_MIP: 7418 ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n", 7419 __func__, msg->sadb_msg_satype)); 7420 PFKEYSTAT_INC(out_invsatype); 7421 error = EOPNOTSUPP; 7422 goto senderror; 7423 case 1: /* XXX: What does it do? */ 7424 if (msg->sadb_msg_type == SADB_X_PROMISC) 7425 break; 7426 /*FALLTHROUGH*/ 7427 default: 7428 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 7429 __func__, msg->sadb_msg_satype)); 7430 PFKEYSTAT_INC(out_invsatype); 7431 error = EINVAL; 7432 goto senderror; 7433 } 7434 7435 /* check field of upper layer protocol and address family */ 7436 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL 7437 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { 7438 struct sadb_address *src0, *dst0; 7439 u_int plen; 7440 7441 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]); 7442 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]); 7443 7444 /* check upper layer protocol */ 7445 if (src0->sadb_address_proto != dst0->sadb_address_proto) { 7446 ipseclog((LOG_DEBUG, "%s: upper layer protocol " 7447 "mismatched.\n", __func__)); 7448 PFKEYSTAT_INC(out_invaddr); 7449 error = EINVAL; 7450 goto senderror; 7451 } 7452 7453 /* check family */ 7454 if (PFKEY_ADDR_SADDR(src0)->sa_family != 7455 PFKEY_ADDR_SADDR(dst0)->sa_family) { 7456 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 7457 __func__)); 7458 PFKEYSTAT_INC(out_invaddr); 7459 error = EINVAL; 7460 goto senderror; 7461 } 7462 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7463 PFKEY_ADDR_SADDR(dst0)->sa_len) { 7464 ipseclog((LOG_DEBUG, "%s: address struct size " 7465 "mismatched.\n", __func__)); 7466 PFKEYSTAT_INC(out_invaddr); 7467 error = EINVAL; 7468 goto senderror; 7469 } 7470 7471 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7472 case AF_INET: 7473 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7474 sizeof(struct sockaddr_in)) { 7475 PFKEYSTAT_INC(out_invaddr); 7476 error = EINVAL; 7477 goto senderror; 7478 } 7479 break; 7480 case AF_INET6: 7481 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7482 sizeof(struct sockaddr_in6)) { 7483 PFKEYSTAT_INC(out_invaddr); 7484 error = EINVAL; 7485 goto senderror; 7486 } 7487 break; 7488 default: 7489 ipseclog((LOG_DEBUG, "%s: unsupported address family\n", 7490 __func__)); 7491 PFKEYSTAT_INC(out_invaddr); 7492 error = EAFNOSUPPORT; 7493 goto senderror; 7494 } 7495 7496 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7497 case AF_INET: 7498 plen = sizeof(struct in_addr) << 3; 7499 break; 7500 case AF_INET6: 7501 plen = sizeof(struct in6_addr) << 3; 7502 break; 7503 default: 7504 plen = 0; /*fool gcc*/ 7505 break; 7506 } 7507 7508 /* check max prefix length */ 7509 if (src0->sadb_address_prefixlen > plen || 7510 dst0->sadb_address_prefixlen > plen) { 7511 ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n", 7512 __func__)); 7513 PFKEYSTAT_INC(out_invaddr); 7514 error = EINVAL; 7515 goto senderror; 7516 } 7517 7518 /* 7519 * prefixlen == 0 is valid because there can be a case when 7520 * all addresses are matched. 7521 */ 7522 } 7523 7524 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) || 7525 key_typesw[msg->sadb_msg_type] == NULL) { 7526 PFKEYSTAT_INC(out_invmsgtype); 7527 error = EINVAL; 7528 goto senderror; 7529 } 7530 7531 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh); 7532 7533 senderror: 7534 msg->sadb_msg_errno = error; 7535 return key_sendup_mbuf(so, m, target); 7536 } 7537 7538 static int 7539 key_senderror(so, m, code) 7540 struct socket *so; 7541 struct mbuf *m; 7542 int code; 7543 { 7544 struct sadb_msg *msg; 7545 7546 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 7547 ("mbuf too small, len %u", m->m_len)); 7548 7549 msg = mtod(m, struct sadb_msg *); 7550 msg->sadb_msg_errno = code; 7551 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 7552 } 7553 7554 /* 7555 * set the pointer to each header into message buffer. 7556 * m will be freed on error. 7557 * XXX larger-than-MCLBYTES extension? 7558 */ 7559 static int 7560 key_align(m, mhp) 7561 struct mbuf *m; 7562 struct sadb_msghdr *mhp; 7563 { 7564 struct mbuf *n; 7565 struct sadb_ext *ext; 7566 size_t off, end; 7567 int extlen; 7568 int toff; 7569 7570 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7571 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7572 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 7573 ("mbuf too small, len %u", m->m_len)); 7574 7575 /* initialize */ 7576 bzero(mhp, sizeof(*mhp)); 7577 7578 mhp->msg = mtod(m, struct sadb_msg *); 7579 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */ 7580 7581 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7582 extlen = end; /*just in case extlen is not updated*/ 7583 for (off = sizeof(struct sadb_msg); off < end; off += extlen) { 7584 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); 7585 if (!n) { 7586 /* m is already freed */ 7587 return ENOBUFS; 7588 } 7589 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 7590 7591 /* set pointer */ 7592 switch (ext->sadb_ext_type) { 7593 case SADB_EXT_SA: 7594 case SADB_EXT_ADDRESS_SRC: 7595 case SADB_EXT_ADDRESS_DST: 7596 case SADB_EXT_ADDRESS_PROXY: 7597 case SADB_EXT_LIFETIME_CURRENT: 7598 case SADB_EXT_LIFETIME_HARD: 7599 case SADB_EXT_LIFETIME_SOFT: 7600 case SADB_EXT_KEY_AUTH: 7601 case SADB_EXT_KEY_ENCRYPT: 7602 case SADB_EXT_IDENTITY_SRC: 7603 case SADB_EXT_IDENTITY_DST: 7604 case SADB_EXT_SENSITIVITY: 7605 case SADB_EXT_PROPOSAL: 7606 case SADB_EXT_SUPPORTED_AUTH: 7607 case SADB_EXT_SUPPORTED_ENCRYPT: 7608 case SADB_EXT_SPIRANGE: 7609 case SADB_X_EXT_POLICY: 7610 case SADB_X_EXT_SA2: 7611 #ifdef IPSEC_NAT_T 7612 case SADB_X_EXT_NAT_T_TYPE: 7613 case SADB_X_EXT_NAT_T_SPORT: 7614 case SADB_X_EXT_NAT_T_DPORT: 7615 case SADB_X_EXT_NAT_T_OAI: 7616 case SADB_X_EXT_NAT_T_OAR: 7617 case SADB_X_EXT_NAT_T_FRAG: 7618 #endif 7619 /* duplicate check */ 7620 /* 7621 * XXX Are there duplication payloads of either 7622 * KEY_AUTH or KEY_ENCRYPT ? 7623 */ 7624 if (mhp->ext[ext->sadb_ext_type] != NULL) { 7625 ipseclog((LOG_DEBUG, "%s: duplicate ext_type " 7626 "%u\n", __func__, ext->sadb_ext_type)); 7627 m_freem(m); 7628 PFKEYSTAT_INC(out_dupext); 7629 return EINVAL; 7630 } 7631 break; 7632 default: 7633 ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n", 7634 __func__, ext->sadb_ext_type)); 7635 m_freem(m); 7636 PFKEYSTAT_INC(out_invexttype); 7637 return EINVAL; 7638 } 7639 7640 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); 7641 7642 if (key_validate_ext(ext, extlen)) { 7643 m_freem(m); 7644 PFKEYSTAT_INC(out_invlen); 7645 return EINVAL; 7646 } 7647 7648 n = m_pulldown(m, off, extlen, &toff); 7649 if (!n) { 7650 /* m is already freed */ 7651 return ENOBUFS; 7652 } 7653 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 7654 7655 mhp->ext[ext->sadb_ext_type] = ext; 7656 mhp->extoff[ext->sadb_ext_type] = off; 7657 mhp->extlen[ext->sadb_ext_type] = extlen; 7658 } 7659 7660 if (off != end) { 7661 m_freem(m); 7662 PFKEYSTAT_INC(out_invlen); 7663 return EINVAL; 7664 } 7665 7666 return 0; 7667 } 7668 7669 static int 7670 key_validate_ext(ext, len) 7671 const struct sadb_ext *ext; 7672 int len; 7673 { 7674 const struct sockaddr *sa; 7675 enum { NONE, ADDR } checktype = NONE; 7676 int baselen = 0; 7677 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); 7678 7679 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) 7680 return EINVAL; 7681 7682 /* if it does not match minimum/maximum length, bail */ 7683 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) || 7684 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0])) 7685 return EINVAL; 7686 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) 7687 return EINVAL; 7688 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) 7689 return EINVAL; 7690 7691 /* more checks based on sadb_ext_type XXX need more */ 7692 switch (ext->sadb_ext_type) { 7693 case SADB_EXT_ADDRESS_SRC: 7694 case SADB_EXT_ADDRESS_DST: 7695 case SADB_EXT_ADDRESS_PROXY: 7696 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); 7697 checktype = ADDR; 7698 break; 7699 case SADB_EXT_IDENTITY_SRC: 7700 case SADB_EXT_IDENTITY_DST: 7701 if (((const struct sadb_ident *)ext)->sadb_ident_type == 7702 SADB_X_IDENTTYPE_ADDR) { 7703 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); 7704 checktype = ADDR; 7705 } else 7706 checktype = NONE; 7707 break; 7708 default: 7709 checktype = NONE; 7710 break; 7711 } 7712 7713 switch (checktype) { 7714 case NONE: 7715 break; 7716 case ADDR: 7717 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); 7718 if (len < baselen + sal) 7719 return EINVAL; 7720 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) 7721 return EINVAL; 7722 break; 7723 } 7724 7725 return 0; 7726 } 7727 7728 void 7729 key_init(void) 7730 { 7731 int i; 7732 7733 for (i = 0; i < IPSEC_DIR_MAX; i++) 7734 LIST_INIT(&V_sptree[i]); 7735 7736 LIST_INIT(&V_sahtree); 7737 7738 for (i = 0; i <= SADB_SATYPE_MAX; i++) 7739 LIST_INIT(&V_regtree[i]); 7740 7741 LIST_INIT(&V_acqtree); 7742 LIST_INIT(&V_spacqtree); 7743 7744 /* system default */ 7745 V_ip4_def_policy.policy = IPSEC_POLICY_NONE; 7746 V_ip4_def_policy.refcnt++; /*never reclaim this*/ 7747 7748 if (!IS_DEFAULT_VNET(curvnet)) 7749 return; 7750 7751 SPTREE_LOCK_INIT(); 7752 REGTREE_LOCK_INIT(); 7753 SAHTREE_LOCK_INIT(); 7754 ACQ_LOCK_INIT(); 7755 SPACQ_LOCK_INIT(); 7756 7757 #ifndef IPSEC_DEBUG2 7758 timeout((void *)key_timehandler, (void *)0, hz); 7759 #endif /*IPSEC_DEBUG2*/ 7760 7761 /* initialize key statistics */ 7762 keystat.getspi_count = 1; 7763 7764 printf("IPsec: Initialized Security Association Processing.\n"); 7765 } 7766 7767 #ifdef VIMAGE 7768 void 7769 key_destroy(void) 7770 { 7771 struct secpolicy *sp, *nextsp; 7772 struct secacq *acq, *nextacq; 7773 struct secspacq *spacq, *nextspacq; 7774 struct secashead *sah, *nextsah; 7775 struct secreg *reg; 7776 int i; 7777 7778 SPTREE_LOCK(); 7779 for (i = 0; i < IPSEC_DIR_MAX; i++) { 7780 for (sp = LIST_FIRST(&V_sptree[i]); 7781 sp != NULL; sp = nextsp) { 7782 nextsp = LIST_NEXT(sp, chain); 7783 if (__LIST_CHAINED(sp)) { 7784 LIST_REMOVE(sp, chain); 7785 free(sp, M_IPSEC_SP); 7786 } 7787 } 7788 } 7789 SPTREE_UNLOCK(); 7790 7791 SAHTREE_LOCK(); 7792 for (sah = LIST_FIRST(&V_sahtree); sah != NULL; sah = nextsah) { 7793 nextsah = LIST_NEXT(sah, chain); 7794 if (__LIST_CHAINED(sah)) { 7795 LIST_REMOVE(sah, chain); 7796 free(sah, M_IPSEC_SAH); 7797 } 7798 } 7799 SAHTREE_UNLOCK(); 7800 7801 REGTREE_LOCK(); 7802 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 7803 LIST_FOREACH(reg, &V_regtree[i], chain) { 7804 if (__LIST_CHAINED(reg)) { 7805 LIST_REMOVE(reg, chain); 7806 free(reg, M_IPSEC_SAR); 7807 break; 7808 } 7809 } 7810 } 7811 REGTREE_UNLOCK(); 7812 7813 ACQ_LOCK(); 7814 for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) { 7815 nextacq = LIST_NEXT(acq, chain); 7816 if (__LIST_CHAINED(acq)) { 7817 LIST_REMOVE(acq, chain); 7818 free(acq, M_IPSEC_SAQ); 7819 } 7820 } 7821 ACQ_UNLOCK(); 7822 7823 SPACQ_LOCK(); 7824 for (spacq = LIST_FIRST(&V_spacqtree); spacq != NULL; 7825 spacq = nextspacq) { 7826 nextspacq = LIST_NEXT(spacq, chain); 7827 if (__LIST_CHAINED(spacq)) { 7828 LIST_REMOVE(spacq, chain); 7829 free(spacq, M_IPSEC_SAQ); 7830 } 7831 } 7832 SPACQ_UNLOCK(); 7833 } 7834 #endif 7835 7836 /* 7837 * XXX: maybe This function is called after INBOUND IPsec processing. 7838 * 7839 * Special check for tunnel-mode packets. 7840 * We must make some checks for consistency between inner and outer IP header. 7841 * 7842 * xxx more checks to be provided 7843 */ 7844 int 7845 key_checktunnelsanity(sav, family, src, dst) 7846 struct secasvar *sav; 7847 u_int family; 7848 caddr_t src; 7849 caddr_t dst; 7850 { 7851 IPSEC_ASSERT(sav->sah != NULL, ("null SA header")); 7852 7853 /* XXX: check inner IP header */ 7854 7855 return 1; 7856 } 7857 7858 /* record data transfer on SA, and update timestamps */ 7859 void 7860 key_sa_recordxfer(sav, m) 7861 struct secasvar *sav; 7862 struct mbuf *m; 7863 { 7864 IPSEC_ASSERT(sav != NULL, ("Null secasvar")); 7865 IPSEC_ASSERT(m != NULL, ("Null mbuf")); 7866 if (!sav->lft_c) 7867 return; 7868 7869 /* 7870 * XXX Currently, there is a difference of bytes size 7871 * between inbound and outbound processing. 7872 */ 7873 sav->lft_c->bytes += m->m_pkthdr.len; 7874 /* to check bytes lifetime is done in key_timehandler(). */ 7875 7876 /* 7877 * We use the number of packets as the unit of 7878 * allocations. We increment the variable 7879 * whenever {esp,ah}_{in,out}put is called. 7880 */ 7881 sav->lft_c->allocations++; 7882 /* XXX check for expires? */ 7883 7884 /* 7885 * NOTE: We record CURRENT usetime by using wall clock, 7886 * in seconds. HARD and SOFT lifetime are measured by the time 7887 * difference (again in seconds) from usetime. 7888 * 7889 * usetime 7890 * v expire expire 7891 * -----+-----+--------+---> t 7892 * <--------------> HARD 7893 * <-----> SOFT 7894 */ 7895 sav->lft_c->usetime = time_second; 7896 /* XXX check for expires? */ 7897 7898 return; 7899 } 7900 7901 /* dumb version */ 7902 void 7903 key_sa_routechange(dst) 7904 struct sockaddr *dst; 7905 { 7906 struct secashead *sah; 7907 struct route *ro; 7908 7909 SAHTREE_LOCK(); 7910 LIST_FOREACH(sah, &V_sahtree, chain) { 7911 ro = &sah->route_cache.sa_route; 7912 if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len 7913 && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) { 7914 RTFREE(ro->ro_rt); 7915 ro->ro_rt = (struct rtentry *)NULL; 7916 } 7917 } 7918 SAHTREE_UNLOCK(); 7919 } 7920 7921 static void 7922 key_sa_chgstate(struct secasvar *sav, u_int8_t state) 7923 { 7924 IPSEC_ASSERT(sav != NULL, ("NULL sav")); 7925 SAHTREE_LOCK_ASSERT(); 7926 7927 if (sav->state != state) { 7928 if (__LIST_CHAINED(sav)) 7929 LIST_REMOVE(sav, chain); 7930 sav->state = state; 7931 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain); 7932 } 7933 } 7934 7935 void 7936 key_sa_stir_iv(sav) 7937 struct secasvar *sav; 7938 { 7939 7940 IPSEC_ASSERT(sav->iv != NULL, ("null IV")); 7941 key_randomfill(sav->iv, sav->ivlen); 7942 } 7943 7944 /* 7945 * Take one of the kernel's security keys and convert it into a PF_KEY 7946 * structure within an mbuf, suitable for sending up to a waiting 7947 * application in user land. 7948 * 7949 * IN: 7950 * src: A pointer to a kernel security key. 7951 * exttype: Which type of key this is. Refer to the PF_KEY data structures. 7952 * OUT: 7953 * a valid mbuf or NULL indicating an error 7954 * 7955 */ 7956 7957 static struct mbuf * 7958 key_setkey(struct seckey *src, u_int16_t exttype) 7959 { 7960 struct mbuf *m; 7961 struct sadb_key *p; 7962 int len; 7963 7964 if (src == NULL) 7965 return NULL; 7966 7967 len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src)); 7968 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 7969 if (m == NULL) 7970 return NULL; 7971 m_align(m, len); 7972 m->m_len = len; 7973 p = mtod(m, struct sadb_key *); 7974 bzero(p, len); 7975 p->sadb_key_len = PFKEY_UNIT64(len); 7976 p->sadb_key_exttype = exttype; 7977 p->sadb_key_bits = src->bits; 7978 bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src)); 7979 7980 return m; 7981 } 7982 7983 /* 7984 * Take one of the kernel's lifetime data structures and convert it 7985 * into a PF_KEY structure within an mbuf, suitable for sending up to 7986 * a waiting application in user land. 7987 * 7988 * IN: 7989 * src: A pointer to a kernel lifetime structure. 7990 * exttype: Which type of lifetime this is. Refer to the PF_KEY 7991 * data structures for more information. 7992 * OUT: 7993 * a valid mbuf or NULL indicating an error 7994 * 7995 */ 7996 7997 static struct mbuf * 7998 key_setlifetime(struct seclifetime *src, u_int16_t exttype) 7999 { 8000 struct mbuf *m = NULL; 8001 struct sadb_lifetime *p; 8002 int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime)); 8003 8004 if (src == NULL) 8005 return NULL; 8006 8007 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 8008 if (m == NULL) 8009 return m; 8010 m_align(m, len); 8011 m->m_len = len; 8012 p = mtod(m, struct sadb_lifetime *); 8013 8014 bzero(p, len); 8015 p->sadb_lifetime_len = PFKEY_UNIT64(len); 8016 p->sadb_lifetime_exttype = exttype; 8017 p->sadb_lifetime_allocations = src->allocations; 8018 p->sadb_lifetime_bytes = src->bytes; 8019 p->sadb_lifetime_addtime = src->addtime; 8020 p->sadb_lifetime_usetime = src->usetime; 8021 8022 return m; 8023 8024 } 8025