xref: /freebsd/sys/netipsec/key.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*	$FreeBSD$	*/
2 /*	$KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $	*/
3 
4 /*-
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * This code is referd to RFC 2367
35  */
36 
37 #include "opt_inet.h"
38 #include "opt_inet6.h"
39 #include "opt_ipsec.h"
40 
41 #include <sys/types.h>
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/mbuf.h>
48 #include <sys/domain.h>
49 #include <sys/protosw.h>
50 #include <sys/malloc.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/sysctl.h>
54 #include <sys/errno.h>
55 #include <sys/proc.h>
56 #include <sys/queue.h>
57 #include <sys/refcount.h>
58 #include <sys/syslog.h>
59 
60 #include <net/if.h>
61 #include <net/route.h>
62 #include <net/raw_cb.h>
63 #include <net/vnet.h>
64 
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/ip.h>
68 #include <netinet/in_var.h>
69 
70 #ifdef INET6
71 #include <netinet/ip6.h>
72 #include <netinet6/in6_var.h>
73 #include <netinet6/ip6_var.h>
74 #endif /* INET6 */
75 
76 #if defined(INET) || defined(INET6)
77 #include <netinet/in_pcb.h>
78 #endif
79 #ifdef INET6
80 #include <netinet6/in6_pcb.h>
81 #endif /* INET6 */
82 
83 #include <net/pfkeyv2.h>
84 #include <netipsec/keydb.h>
85 #include <netipsec/key.h>
86 #include <netipsec/keysock.h>
87 #include <netipsec/key_debug.h>
88 
89 #include <netipsec/ipsec.h>
90 #ifdef INET6
91 #include <netipsec/ipsec6.h>
92 #endif
93 
94 #include <netipsec/xform.h>
95 
96 #include <machine/stdarg.h>
97 
98 /* randomness */
99 #include <sys/random.h>
100 
101 #define FULLMASK	0xff
102 #define	_BITS(bytes)	((bytes) << 3)
103 
104 /*
105  * Note on SA reference counting:
106  * - SAs that are not in DEAD state will have (total external reference + 1)
107  *   following value in reference count field.  they cannot be freed and are
108  *   referenced from SA header.
109  * - SAs that are in DEAD state will have (total external reference)
110  *   in reference count field.  they are ready to be freed.  reference from
111  *   SA header will be removed in key_delsav(), when the reference count
112  *   field hits 0 (= no external reference other than from SA header.
113  */
114 
115 VNET_DEFINE(u_int32_t, key_debug_level) = 0;
116 static VNET_DEFINE(u_int, key_spi_trycnt) = 1000;
117 static VNET_DEFINE(u_int32_t, key_spi_minval) = 0x100;
118 static VNET_DEFINE(u_int32_t, key_spi_maxval) = 0x0fffffff;	/* XXX */
119 static VNET_DEFINE(u_int32_t, policy_id) = 0;
120 /*interval to initialize randseed,1(m)*/
121 static VNET_DEFINE(u_int, key_int_random) = 60;
122 /* interval to expire acquiring, 30(s)*/
123 static VNET_DEFINE(u_int, key_larval_lifetime) = 30;
124 /* counter for blocking SADB_ACQUIRE.*/
125 static VNET_DEFINE(int, key_blockacq_count) = 10;
126 /* lifetime for blocking SADB_ACQUIRE.*/
127 static VNET_DEFINE(int, key_blockacq_lifetime) = 20;
128 /* preferred old sa rather than new sa.*/
129 static VNET_DEFINE(int, key_preferred_oldsa) = 1;
130 #define	V_key_spi_trycnt	VNET(key_spi_trycnt)
131 #define	V_key_spi_minval	VNET(key_spi_minval)
132 #define	V_key_spi_maxval	VNET(key_spi_maxval)
133 #define	V_policy_id		VNET(policy_id)
134 #define	V_key_int_random	VNET(key_int_random)
135 #define	V_key_larval_lifetime	VNET(key_larval_lifetime)
136 #define	V_key_blockacq_count	VNET(key_blockacq_count)
137 #define	V_key_blockacq_lifetime	VNET(key_blockacq_lifetime)
138 #define	V_key_preferred_oldsa	VNET(key_preferred_oldsa)
139 
140 static VNET_DEFINE(u_int32_t, acq_seq) = 0;
141 #define	V_acq_seq		VNET(acq_seq)
142 
143 								/* SPD */
144 static VNET_DEFINE(LIST_HEAD(_sptree, secpolicy), sptree[IPSEC_DIR_MAX]);
145 #define	V_sptree		VNET(sptree)
146 static struct mtx sptree_lock;
147 #define	SPTREE_LOCK_INIT() \
148 	mtx_init(&sptree_lock, "sptree", \
149 		"fast ipsec security policy database", MTX_DEF)
150 #define	SPTREE_LOCK_DESTROY()	mtx_destroy(&sptree_lock)
151 #define	SPTREE_LOCK()		mtx_lock(&sptree_lock)
152 #define	SPTREE_UNLOCK()	mtx_unlock(&sptree_lock)
153 #define	SPTREE_LOCK_ASSERT()	mtx_assert(&sptree_lock, MA_OWNED)
154 
155 static VNET_DEFINE(LIST_HEAD(_sahtree, secashead), sahtree);	/* SAD */
156 #define	V_sahtree		VNET(sahtree)
157 static struct mtx sahtree_lock;
158 #define	SAHTREE_LOCK_INIT() \
159 	mtx_init(&sahtree_lock, "sahtree", \
160 		"fast ipsec security association database", MTX_DEF)
161 #define	SAHTREE_LOCK_DESTROY()	mtx_destroy(&sahtree_lock)
162 #define	SAHTREE_LOCK()		mtx_lock(&sahtree_lock)
163 #define	SAHTREE_UNLOCK()	mtx_unlock(&sahtree_lock)
164 #define	SAHTREE_LOCK_ASSERT()	mtx_assert(&sahtree_lock, MA_OWNED)
165 
166 							/* registed list */
167 static VNET_DEFINE(LIST_HEAD(_regtree, secreg), regtree[SADB_SATYPE_MAX + 1]);
168 #define	V_regtree		VNET(regtree)
169 static struct mtx regtree_lock;
170 #define	REGTREE_LOCK_INIT() \
171 	mtx_init(&regtree_lock, "regtree", "fast ipsec regtree", MTX_DEF)
172 #define	REGTREE_LOCK_DESTROY()	mtx_destroy(&regtree_lock)
173 #define	REGTREE_LOCK()		mtx_lock(&regtree_lock)
174 #define	REGTREE_UNLOCK()	mtx_unlock(&regtree_lock)
175 #define	REGTREE_LOCK_ASSERT()	mtx_assert(&regtree_lock, MA_OWNED)
176 
177 static VNET_DEFINE(LIST_HEAD(_acqtree, secacq), acqtree); /* acquiring list */
178 #define	V_acqtree		VNET(acqtree)
179 static struct mtx acq_lock;
180 #define	ACQ_LOCK_INIT() \
181 	mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF)
182 #define	ACQ_LOCK_DESTROY()	mtx_destroy(&acq_lock)
183 #define	ACQ_LOCK()		mtx_lock(&acq_lock)
184 #define	ACQ_UNLOCK()		mtx_unlock(&acq_lock)
185 #define	ACQ_LOCK_ASSERT()	mtx_assert(&acq_lock, MA_OWNED)
186 
187 							/* SP acquiring list */
188 static VNET_DEFINE(LIST_HEAD(_spacqtree, secspacq), spacqtree);
189 #define	V_spacqtree		VNET(spacqtree)
190 static struct mtx spacq_lock;
191 #define	SPACQ_LOCK_INIT() \
192 	mtx_init(&spacq_lock, "spacqtree", \
193 		"fast ipsec security policy acquire list", MTX_DEF)
194 #define	SPACQ_LOCK_DESTROY()	mtx_destroy(&spacq_lock)
195 #define	SPACQ_LOCK()		mtx_lock(&spacq_lock)
196 #define	SPACQ_UNLOCK()		mtx_unlock(&spacq_lock)
197 #define	SPACQ_LOCK_ASSERT()	mtx_assert(&spacq_lock, MA_OWNED)
198 
199 /* search order for SAs */
200 static const u_int saorder_state_valid_prefer_old[] = {
201 	SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
202 };
203 static const u_int saorder_state_valid_prefer_new[] = {
204 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
205 };
206 static const u_int saorder_state_alive[] = {
207 	/* except DEAD */
208 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
209 };
210 static const u_int saorder_state_any[] = {
211 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
212 	SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
213 };
214 
215 static const int minsize[] = {
216 	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
217 	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
218 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
219 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
220 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
221 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_SRC */
222 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_DST */
223 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_PROXY */
224 	sizeof(struct sadb_key),	/* SADB_EXT_KEY_AUTH */
225 	sizeof(struct sadb_key),	/* SADB_EXT_KEY_ENCRYPT */
226 	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_SRC */
227 	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_DST */
228 	sizeof(struct sadb_sens),	/* SADB_EXT_SENSITIVITY */
229 	sizeof(struct sadb_prop),	/* SADB_EXT_PROPOSAL */
230 	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_AUTH */
231 	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_ENCRYPT */
232 	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
233 	0,				/* SADB_X_EXT_KMPRIVATE */
234 	sizeof(struct sadb_x_policy),	/* SADB_X_EXT_POLICY */
235 	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
236 	sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */
237 	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */
238 	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */
239 	sizeof(struct sadb_address),	/* SADB_X_EXT_NAT_T_OAI */
240 	sizeof(struct sadb_address),	/* SADB_X_EXT_NAT_T_OAR */
241 	sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */
242 };
243 static const int maxsize[] = {
244 	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
245 	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
246 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
247 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
248 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
249 	0,				/* SADB_EXT_ADDRESS_SRC */
250 	0,				/* SADB_EXT_ADDRESS_DST */
251 	0,				/* SADB_EXT_ADDRESS_PROXY */
252 	0,				/* SADB_EXT_KEY_AUTH */
253 	0,				/* SADB_EXT_KEY_ENCRYPT */
254 	0,				/* SADB_EXT_IDENTITY_SRC */
255 	0,				/* SADB_EXT_IDENTITY_DST */
256 	0,				/* SADB_EXT_SENSITIVITY */
257 	0,				/* SADB_EXT_PROPOSAL */
258 	0,				/* SADB_EXT_SUPPORTED_AUTH */
259 	0,				/* SADB_EXT_SUPPORTED_ENCRYPT */
260 	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
261 	0,				/* SADB_X_EXT_KMPRIVATE */
262 	0,				/* SADB_X_EXT_POLICY */
263 	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
264 	sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */
265 	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */
266 	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */
267 	0,				/* SADB_X_EXT_NAT_T_OAI */
268 	0,				/* SADB_X_EXT_NAT_T_OAR */
269 	sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */
270 };
271 
272 static VNET_DEFINE(int, ipsec_esp_keymin) = 256;
273 static VNET_DEFINE(int, ipsec_esp_auth) = 0;
274 static VNET_DEFINE(int, ipsec_ah_keymin) = 128;
275 
276 #define	V_ipsec_esp_keymin	VNET(ipsec_esp_keymin)
277 #define	V_ipsec_esp_auth	VNET(ipsec_esp_auth)
278 #define	V_ipsec_ah_keymin	VNET(ipsec_ah_keymin)
279 
280 #ifdef SYSCTL_DECL
281 SYSCTL_DECL(_net_key);
282 #endif
283 
284 SYSCTL_VNET_INT(_net_key, KEYCTL_DEBUG_LEVEL,	debug,
285 	CTLFLAG_RW, &VNET_NAME(key_debug_level),	0,	"");
286 
287 /* max count of trial for the decision of spi value */
288 SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt,
289 	CTLFLAG_RW, &VNET_NAME(key_spi_trycnt),	0,	"");
290 
291 /* minimum spi value to allocate automatically. */
292 SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_MIN_VALUE,
293 	spi_minval,	CTLFLAG_RW, &VNET_NAME(key_spi_minval),	0,	"");
294 
295 /* maximun spi value to allocate automatically. */
296 SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_MAX_VALUE,
297 	spi_maxval,	CTLFLAG_RW, &VNET_NAME(key_spi_maxval),	0,	"");
298 
299 /* interval to initialize randseed */
300 SYSCTL_VNET_INT(_net_key, KEYCTL_RANDOM_INT,
301 	int_random,	CTLFLAG_RW, &VNET_NAME(key_int_random),	0,	"");
302 
303 /* lifetime for larval SA */
304 SYSCTL_VNET_INT(_net_key, KEYCTL_LARVAL_LIFETIME,
305 	larval_lifetime, CTLFLAG_RW, &VNET_NAME(key_larval_lifetime),	0, "");
306 
307 /* counter for blocking to send SADB_ACQUIRE to IKEd */
308 SYSCTL_VNET_INT(_net_key, KEYCTL_BLOCKACQ_COUNT,
309 	blockacq_count,	CTLFLAG_RW, &VNET_NAME(key_blockacq_count),	0, "");
310 
311 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
312 SYSCTL_VNET_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME,
313 	blockacq_lifetime, CTLFLAG_RW, &VNET_NAME(key_blockacq_lifetime), 0, "");
314 
315 /* ESP auth */
316 SYSCTL_VNET_INT(_net_key, KEYCTL_ESP_AUTH,	esp_auth,
317 	CTLFLAG_RW, &VNET_NAME(ipsec_esp_auth),	0,	"");
318 
319 /* minimum ESP key length */
320 SYSCTL_VNET_INT(_net_key, KEYCTL_ESP_KEYMIN,
321 	esp_keymin, CTLFLAG_RW, &VNET_NAME(ipsec_esp_keymin),	0,	"");
322 
323 /* minimum AH key length */
324 SYSCTL_VNET_INT(_net_key, KEYCTL_AH_KEYMIN,	ah_keymin,
325 	CTLFLAG_RW, &VNET_NAME(ipsec_ah_keymin),	0,	"");
326 
327 /* perfered old SA rather than new SA */
328 SYSCTL_VNET_INT(_net_key, KEYCTL_PREFERED_OLDSA,
329 	preferred_oldsa, CTLFLAG_RW, &VNET_NAME(key_preferred_oldsa),	0, "");
330 
331 #define __LIST_CHAINED(elm) \
332 	(!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
333 #define LIST_INSERT_TAIL(head, elm, type, field) \
334 do {\
335 	struct type *curelm = LIST_FIRST(head); \
336 	if (curelm == NULL) {\
337 		LIST_INSERT_HEAD(head, elm, field); \
338 	} else { \
339 		while (LIST_NEXT(curelm, field)) \
340 			curelm = LIST_NEXT(curelm, field);\
341 		LIST_INSERT_AFTER(curelm, elm, field);\
342 	}\
343 } while (0)
344 
345 #define KEY_CHKSASTATE(head, sav, name) \
346 do { \
347 	if ((head) != (sav)) {						\
348 		ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \
349 			(name), (head), (sav)));			\
350 		continue;						\
351 	}								\
352 } while (0)
353 
354 #define KEY_CHKSPDIR(head, sp, name) \
355 do { \
356 	if ((head) != (sp)) {						\
357 		ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \
358 			"anyway continue.\n",				\
359 			(name), (head), (sp)));				\
360 	}								\
361 } while (0)
362 
363 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association");
364 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head");
365 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy");
366 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request");
367 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous");
368 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire");
369 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire");
370 
371 /*
372  * set parameters into secpolicyindex buffer.
373  * Must allocate secpolicyindex buffer passed to this function.
374  */
375 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
376 do { \
377 	bzero((idx), sizeof(struct secpolicyindex));                         \
378 	(idx)->dir = (_dir);                                                 \
379 	(idx)->prefs = (ps);                                                 \
380 	(idx)->prefd = (pd);                                                 \
381 	(idx)->ul_proto = (ulp);                                             \
382 	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
383 	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
384 } while (0)
385 
386 /*
387  * set parameters into secasindex buffer.
388  * Must allocate secasindex buffer before calling this function.
389  */
390 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \
391 do { \
392 	bzero((idx), sizeof(struct secasindex));                             \
393 	(idx)->proto = (p);                                                  \
394 	(idx)->mode = (m);                                                   \
395 	(idx)->reqid = (r);                                                  \
396 	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
397 	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
398 } while (0)
399 
400 /* key statistics */
401 struct _keystat {
402 	u_long getspi_count; /* the avarage of count to try to get new SPI */
403 } keystat;
404 
405 struct sadb_msghdr {
406 	struct sadb_msg *msg;
407 	struct sadb_ext *ext[SADB_EXT_MAX + 1];
408 	int extoff[SADB_EXT_MAX + 1];
409 	int extlen[SADB_EXT_MAX + 1];
410 };
411 
412 static struct secasvar *key_allocsa_policy __P((const struct secasindex *));
413 static void key_freesp_so __P((struct secpolicy **));
414 static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int));
415 static void key_delsp __P((struct secpolicy *));
416 static struct secpolicy *key_getsp __P((struct secpolicyindex *));
417 static void _key_delsp(struct secpolicy *sp);
418 static struct secpolicy *key_getspbyid __P((u_int32_t));
419 static u_int32_t key_newreqid __P((void));
420 static struct mbuf *key_gather_mbuf __P((struct mbuf *,
421 	const struct sadb_msghdr *, int, int, ...));
422 static int key_spdadd __P((struct socket *, struct mbuf *,
423 	const struct sadb_msghdr *));
424 static u_int32_t key_getnewspid __P((void));
425 static int key_spddelete __P((struct socket *, struct mbuf *,
426 	const struct sadb_msghdr *));
427 static int key_spddelete2 __P((struct socket *, struct mbuf *,
428 	const struct sadb_msghdr *));
429 static int key_spdget __P((struct socket *, struct mbuf *,
430 	const struct sadb_msghdr *));
431 static int key_spdflush __P((struct socket *, struct mbuf *,
432 	const struct sadb_msghdr *));
433 static int key_spddump __P((struct socket *, struct mbuf *,
434 	const struct sadb_msghdr *));
435 static struct mbuf *key_setdumpsp __P((struct secpolicy *,
436 	u_int8_t, u_int32_t, u_int32_t));
437 static u_int key_getspreqmsglen __P((struct secpolicy *));
438 static int key_spdexpire __P((struct secpolicy *));
439 static struct secashead *key_newsah __P((struct secasindex *));
440 static void key_delsah __P((struct secashead *));
441 static struct secasvar *key_newsav __P((struct mbuf *,
442 	const struct sadb_msghdr *, struct secashead *, int *,
443 	const char*, int));
444 #define	KEY_NEWSAV(m, sadb, sah, e)				\
445 	key_newsav(m, sadb, sah, e, __FILE__, __LINE__)
446 static void key_delsav __P((struct secasvar *));
447 static struct secashead *key_getsah __P((struct secasindex *));
448 static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t));
449 static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t));
450 static int key_setsaval __P((struct secasvar *, struct mbuf *,
451 	const struct sadb_msghdr *));
452 static int key_mature __P((struct secasvar *));
453 static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t,
454 	u_int8_t, u_int32_t, u_int32_t));
455 static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t,
456 	u_int32_t, pid_t, u_int16_t));
457 static struct mbuf *key_setsadbsa __P((struct secasvar *));
458 static struct mbuf *key_setsadbaddr __P((u_int16_t,
459 	const struct sockaddr *, u_int8_t, u_int16_t));
460 #ifdef IPSEC_NAT_T
461 static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t);
462 static struct mbuf *key_setsadbxtype(u_int16_t);
463 #endif
464 static void key_porttosaddr(struct sockaddr *, u_int16_t);
465 #define	KEY_PORTTOSADDR(saddr, port)				\
466 	key_porttosaddr((struct sockaddr *)(saddr), (port))
467 static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t));
468 static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t,
469 	u_int32_t));
470 static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int,
471 				     struct malloc_type *);
472 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src,
473 					    struct malloc_type *type);
474 #ifdef INET6
475 static int key_ismyaddr6 __P((struct sockaddr_in6 *));
476 #endif
477 
478 /* flags for key_cmpsaidx() */
479 #define CMP_HEAD	1	/* protocol, addresses. */
480 #define CMP_MODE_REQID	2	/* additionally HEAD, reqid, mode. */
481 #define CMP_REQID	3	/* additionally HEAD, reaid. */
482 #define CMP_EXACTLY	4	/* all elements. */
483 static int key_cmpsaidx
484 	__P((const struct secasindex *, const struct secasindex *, int));
485 
486 static int key_cmpspidx_exactly
487 	__P((struct secpolicyindex *, struct secpolicyindex *));
488 static int key_cmpspidx_withmask
489 	__P((struct secpolicyindex *, struct secpolicyindex *));
490 static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int));
491 static int key_bbcmp __P((const void *, const void *, u_int));
492 static u_int16_t key_satype2proto __P((u_int8_t));
493 static u_int8_t key_proto2satype __P((u_int16_t));
494 
495 static int key_getspi __P((struct socket *, struct mbuf *,
496 	const struct sadb_msghdr *));
497 static u_int32_t key_do_getnewspi __P((struct sadb_spirange *,
498 					struct secasindex *));
499 static int key_update __P((struct socket *, struct mbuf *,
500 	const struct sadb_msghdr *));
501 #ifdef IPSEC_DOSEQCHECK
502 static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t));
503 #endif
504 static int key_add __P((struct socket *, struct mbuf *,
505 	const struct sadb_msghdr *));
506 static int key_setident __P((struct secashead *, struct mbuf *,
507 	const struct sadb_msghdr *));
508 static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *,
509 	const struct sadb_msghdr *));
510 static int key_delete __P((struct socket *, struct mbuf *,
511 	const struct sadb_msghdr *));
512 static int key_get __P((struct socket *, struct mbuf *,
513 	const struct sadb_msghdr *));
514 
515 static void key_getcomb_setlifetime __P((struct sadb_comb *));
516 static struct mbuf *key_getcomb_esp __P((void));
517 static struct mbuf *key_getcomb_ah __P((void));
518 static struct mbuf *key_getcomb_ipcomp __P((void));
519 static struct mbuf *key_getprop __P((const struct secasindex *));
520 
521 static int key_acquire __P((const struct secasindex *, struct secpolicy *));
522 static struct secacq *key_newacq __P((const struct secasindex *));
523 static struct secacq *key_getacq __P((const struct secasindex *));
524 static struct secacq *key_getacqbyseq __P((u_int32_t));
525 static struct secspacq *key_newspacq __P((struct secpolicyindex *));
526 static struct secspacq *key_getspacq __P((struct secpolicyindex *));
527 static int key_acquire2 __P((struct socket *, struct mbuf *,
528 	const struct sadb_msghdr *));
529 static int key_register __P((struct socket *, struct mbuf *,
530 	const struct sadb_msghdr *));
531 static int key_expire __P((struct secasvar *));
532 static int key_flush __P((struct socket *, struct mbuf *,
533 	const struct sadb_msghdr *));
534 static int key_dump __P((struct socket *, struct mbuf *,
535 	const struct sadb_msghdr *));
536 static int key_promisc __P((struct socket *, struct mbuf *,
537 	const struct sadb_msghdr *));
538 static int key_senderror __P((struct socket *, struct mbuf *, int));
539 static int key_validate_ext __P((const struct sadb_ext *, int));
540 static int key_align __P((struct mbuf *, struct sadb_msghdr *));
541 static struct mbuf *key_setlifetime(struct seclifetime *src,
542 				     u_int16_t exttype);
543 static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype);
544 
545 #if 0
546 static const char *key_getfqdn __P((void));
547 static const char *key_getuserfqdn __P((void));
548 #endif
549 static void key_sa_chgstate __P((struct secasvar *, u_int8_t));
550 static struct mbuf *key_alloc_mbuf __P((int));
551 
552 static __inline void
553 sa_initref(struct secasvar *sav)
554 {
555 
556 	refcount_init(&sav->refcnt, 1);
557 }
558 static __inline void
559 sa_addref(struct secasvar *sav)
560 {
561 
562 	refcount_acquire(&sav->refcnt);
563 	IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow"));
564 }
565 static __inline int
566 sa_delref(struct secasvar *sav)
567 {
568 
569 	IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow"));
570 	return (refcount_release(&sav->refcnt));
571 }
572 
573 #define	SP_ADDREF(p) do {						\
574 	(p)->refcnt++;							\
575 	IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow"));		\
576 } while (0)
577 #define	SP_DELREF(p) do {						\
578 	IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow"));		\
579 	(p)->refcnt--;							\
580 } while (0)
581 
582 
583 /*
584  * Update the refcnt while holding the SPTREE lock.
585  */
586 void
587 key_addref(struct secpolicy *sp)
588 {
589 	SPTREE_LOCK();
590 	SP_ADDREF(sp);
591 	SPTREE_UNLOCK();
592 }
593 
594 /*
595  * Return 0 when there are known to be no SP's for the specified
596  * direction.  Otherwise return 1.  This is used by IPsec code
597  * to optimize performance.
598  */
599 int
600 key_havesp(u_int dir)
601 {
602 
603 	return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
604 		LIST_FIRST(&V_sptree[dir]) != NULL : 1);
605 }
606 
607 /* %%% IPsec policy management */
608 /*
609  * allocating a SP for OUTBOUND or INBOUND packet.
610  * Must call key_freesp() later.
611  * OUT:	NULL:	not found
612  *	others:	found and return the pointer.
613  */
614 struct secpolicy *
615 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag)
616 {
617 	struct secpolicy *sp;
618 
619 	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
620 	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
621 		("invalid direction %u", dir));
622 
623 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
624 		printf("DP %s from %s:%u\n", __func__, where, tag));
625 
626 	/* get a SP entry */
627 	KEYDEBUG(KEYDEBUG_IPSEC_DATA,
628 		printf("*** objects\n");
629 		kdebug_secpolicyindex(spidx));
630 
631 	SPTREE_LOCK();
632 	LIST_FOREACH(sp, &V_sptree[dir], chain) {
633 		KEYDEBUG(KEYDEBUG_IPSEC_DATA,
634 			printf("*** in SPD\n");
635 			kdebug_secpolicyindex(&sp->spidx));
636 
637 		if (sp->state == IPSEC_SPSTATE_DEAD)
638 			continue;
639 		if (key_cmpspidx_withmask(&sp->spidx, spidx))
640 			goto found;
641 	}
642 	sp = NULL;
643 found:
644 	if (sp) {
645 		/* sanity check */
646 		KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
647 
648 		/* found a SPD entry */
649 		sp->lastused = time_second;
650 		SP_ADDREF(sp);
651 	}
652 	SPTREE_UNLOCK();
653 
654 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
655 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
656 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
657 	return sp;
658 }
659 
660 /*
661  * allocating a SP for OUTBOUND or INBOUND packet.
662  * Must call key_freesp() later.
663  * OUT:	NULL:	not found
664  *	others:	found and return the pointer.
665  */
666 struct secpolicy *
667 key_allocsp2(u_int32_t spi,
668 	     union sockaddr_union *dst,
669 	     u_int8_t proto,
670 	     u_int dir,
671 	     const char* where, int tag)
672 {
673 	struct secpolicy *sp;
674 
675 	IPSEC_ASSERT(dst != NULL, ("null dst"));
676 	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
677 		("invalid direction %u", dir));
678 
679 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
680 		printf("DP %s from %s:%u\n", __func__, where, tag));
681 
682 	/* get a SP entry */
683 	KEYDEBUG(KEYDEBUG_IPSEC_DATA,
684 		printf("*** objects\n");
685 		printf("spi %u proto %u dir %u\n", spi, proto, dir);
686 		kdebug_sockaddr(&dst->sa));
687 
688 	SPTREE_LOCK();
689 	LIST_FOREACH(sp, &V_sptree[dir], chain) {
690 		KEYDEBUG(KEYDEBUG_IPSEC_DATA,
691 			printf("*** in SPD\n");
692 			kdebug_secpolicyindex(&sp->spidx));
693 
694 		if (sp->state == IPSEC_SPSTATE_DEAD)
695 			continue;
696 		/* compare simple values, then dst address */
697 		if (sp->spidx.ul_proto != proto)
698 			continue;
699 		/* NB: spi's must exist and match */
700 		if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
701 			continue;
702 		if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0)
703 			goto found;
704 	}
705 	sp = NULL;
706 found:
707 	if (sp) {
708 		/* sanity check */
709 		KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
710 
711 		/* found a SPD entry */
712 		sp->lastused = time_second;
713 		SP_ADDREF(sp);
714 	}
715 	SPTREE_UNLOCK();
716 
717 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
718 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
719 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
720 	return sp;
721 }
722 
723 #if 0
724 /*
725  * return a policy that matches this particular inbound packet.
726  * XXX slow
727  */
728 struct secpolicy *
729 key_gettunnel(const struct sockaddr *osrc,
730 	      const struct sockaddr *odst,
731 	      const struct sockaddr *isrc,
732 	      const struct sockaddr *idst,
733 	      const char* where, int tag)
734 {
735 	struct secpolicy *sp;
736 	const int dir = IPSEC_DIR_INBOUND;
737 	struct ipsecrequest *r1, *r2, *p;
738 	struct secpolicyindex spidx;
739 
740 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
741 		printf("DP %s from %s:%u\n", __func__, where, tag));
742 
743 	if (isrc->sa_family != idst->sa_family) {
744 		ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.",
745 			__func__, isrc->sa_family, idst->sa_family));
746 		sp = NULL;
747 		goto done;
748 	}
749 
750 	SPTREE_LOCK();
751 	LIST_FOREACH(sp, &V_sptree[dir], chain) {
752 		if (sp->state == IPSEC_SPSTATE_DEAD)
753 			continue;
754 
755 		r1 = r2 = NULL;
756 		for (p = sp->req; p; p = p->next) {
757 			if (p->saidx.mode != IPSEC_MODE_TUNNEL)
758 				continue;
759 
760 			r1 = r2;
761 			r2 = p;
762 
763 			if (!r1) {
764 				/* here we look at address matches only */
765 				spidx = sp->spidx;
766 				if (isrc->sa_len > sizeof(spidx.src) ||
767 				    idst->sa_len > sizeof(spidx.dst))
768 					continue;
769 				bcopy(isrc, &spidx.src, isrc->sa_len);
770 				bcopy(idst, &spidx.dst, idst->sa_len);
771 				if (!key_cmpspidx_withmask(&sp->spidx, &spidx))
772 					continue;
773 			} else {
774 				if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) ||
775 				    key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0))
776 					continue;
777 			}
778 
779 			if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) ||
780 			    key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0))
781 				continue;
782 
783 			goto found;
784 		}
785 	}
786 	sp = NULL;
787 found:
788 	if (sp) {
789 		sp->lastused = time_second;
790 		SP_ADDREF(sp);
791 	}
792 	SPTREE_UNLOCK();
793 done:
794 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
795 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
796 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
797 	return sp;
798 }
799 #endif
800 
801 /*
802  * allocating an SA entry for an *OUTBOUND* packet.
803  * checking each request entries in SP, and acquire an SA if need.
804  * OUT:	0: there are valid requests.
805  *	ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
806  */
807 int
808 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
809 {
810 	u_int level;
811 	int error;
812 	struct secasvar *sav;
813 
814 	IPSEC_ASSERT(isr != NULL, ("null isr"));
815 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
816 	IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT ||
817 		saidx->mode == IPSEC_MODE_TUNNEL,
818 		("unexpected policy %u", saidx->mode));
819 
820 	/*
821 	 * XXX guard against protocol callbacks from the crypto
822 	 * thread as they reference ipsecrequest.sav which we
823 	 * temporarily null out below.  Need to rethink how we
824 	 * handle bundled SA's in the callback thread.
825 	 */
826 	IPSECREQUEST_LOCK_ASSERT(isr);
827 
828 	/* get current level */
829 	level = ipsec_get_reqlevel(isr);
830 
831 	/*
832 	 * We check new SA in the IPsec request because a different
833 	 * SA may be involved each time this request is checked, either
834 	 * because new SAs are being configured, or this request is
835 	 * associated with an unconnected datagram socket, or this request
836 	 * is associated with a system default policy.
837 	 *
838 	 * key_allocsa_policy should allocate the oldest SA available.
839 	 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
840 	 */
841 	sav = key_allocsa_policy(saidx);
842 	if (sav != isr->sav) {
843 		/* SA need to be updated. */
844 		if (!IPSECREQUEST_UPGRADE(isr)) {
845 			/* Kick everyone off. */
846 			IPSECREQUEST_UNLOCK(isr);
847 			IPSECREQUEST_WLOCK(isr);
848 		}
849 		if (isr->sav != NULL)
850 			KEY_FREESAV(&isr->sav);
851 		isr->sav = sav;
852 		IPSECREQUEST_DOWNGRADE(isr);
853 	} else if (sav != NULL)
854 		KEY_FREESAV(&sav);
855 
856 	/* When there is SA. */
857 	if (isr->sav != NULL) {
858 		if (isr->sav->state != SADB_SASTATE_MATURE &&
859 		    isr->sav->state != SADB_SASTATE_DYING)
860 			return EINVAL;
861 		return 0;
862 	}
863 
864 	/* there is no SA */
865 	error = key_acquire(saidx, isr->sp);
866 	if (error != 0) {
867 		/* XXX What should I do ? */
868 		ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
869 			__func__, error));
870 		return error;
871 	}
872 
873 	if (level != IPSEC_LEVEL_REQUIRE) {
874 		/* XXX sigh, the interface to this routine is botched */
875 		IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA"));
876 		return 0;
877 	} else {
878 		return ENOENT;
879 	}
880 }
881 
882 /*
883  * allocating a SA for policy entry from SAD.
884  * NOTE: searching SAD of aliving state.
885  * OUT:	NULL:	not found.
886  *	others:	found and return the pointer.
887  */
888 static struct secasvar *
889 key_allocsa_policy(const struct secasindex *saidx)
890 {
891 #define	N(a)	_ARRAYLEN(a)
892 	struct secashead *sah;
893 	struct secasvar *sav;
894 	u_int stateidx, arraysize;
895 	const u_int *state_valid;
896 
897 	state_valid = NULL;	/* silence gcc */
898 	arraysize = 0;		/* silence gcc */
899 
900 	SAHTREE_LOCK();
901 	LIST_FOREACH(sah, &V_sahtree, chain) {
902 		if (sah->state == SADB_SASTATE_DEAD)
903 			continue;
904 		if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) {
905 			if (V_key_preferred_oldsa) {
906 				state_valid = saorder_state_valid_prefer_old;
907 				arraysize = N(saorder_state_valid_prefer_old);
908 			} else {
909 				state_valid = saorder_state_valid_prefer_new;
910 				arraysize = N(saorder_state_valid_prefer_new);
911 			}
912 			break;
913 		}
914 	}
915 	SAHTREE_UNLOCK();
916 	if (sah == NULL)
917 		return NULL;
918 
919 	/* search valid state */
920 	for (stateidx = 0; stateidx < arraysize; stateidx++) {
921 		sav = key_do_allocsa_policy(sah, state_valid[stateidx]);
922 		if (sav != NULL)
923 			return sav;
924 	}
925 
926 	return NULL;
927 #undef N
928 }
929 
930 /*
931  * searching SAD with direction, protocol, mode and state.
932  * called by key_allocsa_policy().
933  * OUT:
934  *	NULL	: not found
935  *	others	: found, pointer to a SA.
936  */
937 static struct secasvar *
938 key_do_allocsa_policy(struct secashead *sah, u_int state)
939 {
940 	struct secasvar *sav, *nextsav, *candidate, *d;
941 
942 	/* initilize */
943 	candidate = NULL;
944 
945 	SAHTREE_LOCK();
946 	for (sav = LIST_FIRST(&sah->savtree[state]);
947 	     sav != NULL;
948 	     sav = nextsav) {
949 
950 		nextsav = LIST_NEXT(sav, chain);
951 
952 		/* sanity check */
953 		KEY_CHKSASTATE(sav->state, state, __func__);
954 
955 		/* initialize */
956 		if (candidate == NULL) {
957 			candidate = sav;
958 			continue;
959 		}
960 
961 		/* Which SA is the better ? */
962 
963 		IPSEC_ASSERT(candidate->lft_c != NULL,
964 			("null candidate lifetime"));
965 		IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime"));
966 
967 		/* What the best method is to compare ? */
968 		if (V_key_preferred_oldsa) {
969 			if (candidate->lft_c->addtime >
970 					sav->lft_c->addtime) {
971 				candidate = sav;
972 			}
973 			continue;
974 			/*NOTREACHED*/
975 		}
976 
977 		/* preferred new sa rather than old sa */
978 		if (candidate->lft_c->addtime <
979 				sav->lft_c->addtime) {
980 			d = candidate;
981 			candidate = sav;
982 		} else
983 			d = sav;
984 
985 		/*
986 		 * prepared to delete the SA when there is more
987 		 * suitable candidate and the lifetime of the SA is not
988 		 * permanent.
989 		 */
990 		if (d->lft_h->addtime != 0) {
991 			struct mbuf *m, *result;
992 			u_int8_t satype;
993 
994 			key_sa_chgstate(d, SADB_SASTATE_DEAD);
995 
996 			IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count"));
997 
998 			satype = key_proto2satype(d->sah->saidx.proto);
999 			if (satype == 0)
1000 				goto msgfail;
1001 
1002 			m = key_setsadbmsg(SADB_DELETE, 0,
1003 			    satype, 0, 0, d->refcnt - 1);
1004 			if (!m)
1005 				goto msgfail;
1006 			result = m;
1007 
1008 			/* set sadb_address for saidx's. */
1009 			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
1010 				&d->sah->saidx.src.sa,
1011 				d->sah->saidx.src.sa.sa_len << 3,
1012 				IPSEC_ULPROTO_ANY);
1013 			if (!m)
1014 				goto msgfail;
1015 			m_cat(result, m);
1016 
1017 			/* set sadb_address for saidx's. */
1018 			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
1019 				&d->sah->saidx.dst.sa,
1020 				d->sah->saidx.dst.sa.sa_len << 3,
1021 				IPSEC_ULPROTO_ANY);
1022 			if (!m)
1023 				goto msgfail;
1024 			m_cat(result, m);
1025 
1026 			/* create SA extension */
1027 			m = key_setsadbsa(d);
1028 			if (!m)
1029 				goto msgfail;
1030 			m_cat(result, m);
1031 
1032 			if (result->m_len < sizeof(struct sadb_msg)) {
1033 				result = m_pullup(result,
1034 						sizeof(struct sadb_msg));
1035 				if (result == NULL)
1036 					goto msgfail;
1037 			}
1038 
1039 			result->m_pkthdr.len = 0;
1040 			for (m = result; m; m = m->m_next)
1041 				result->m_pkthdr.len += m->m_len;
1042 			mtod(result, struct sadb_msg *)->sadb_msg_len =
1043 				PFKEY_UNIT64(result->m_pkthdr.len);
1044 
1045 			if (key_sendup_mbuf(NULL, result,
1046 					KEY_SENDUP_REGISTERED))
1047 				goto msgfail;
1048 		 msgfail:
1049 			KEY_FREESAV(&d);
1050 		}
1051 	}
1052 	if (candidate) {
1053 		sa_addref(candidate);
1054 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1055 			printf("DP %s cause refcnt++:%d SA:%p\n",
1056 				__func__, candidate->refcnt, candidate));
1057 	}
1058 	SAHTREE_UNLOCK();
1059 
1060 	return candidate;
1061 }
1062 
1063 /*
1064  * allocating a usable SA entry for a *INBOUND* packet.
1065  * Must call key_freesav() later.
1066  * OUT: positive:	pointer to a usable sav (i.e. MATURE or DYING state).
1067  *	NULL:		not found, or error occured.
1068  *
1069  * In the comparison, no source address is used--for RFC2401 conformance.
1070  * To quote, from section 4.1:
1071  *	A security association is uniquely identified by a triple consisting
1072  *	of a Security Parameter Index (SPI), an IP Destination Address, and a
1073  *	security protocol (AH or ESP) identifier.
1074  * Note that, however, we do need to keep source address in IPsec SA.
1075  * IKE specification and PF_KEY specification do assume that we
1076  * keep source address in IPsec SA.  We see a tricky situation here.
1077  */
1078 struct secasvar *
1079 key_allocsa(
1080 	union sockaddr_union *dst,
1081 	u_int proto,
1082 	u_int32_t spi,
1083 	const char* where, int tag)
1084 {
1085 	struct secashead *sah;
1086 	struct secasvar *sav;
1087 	u_int stateidx, arraysize, state;
1088 	const u_int *saorder_state_valid;
1089 	int chkport;
1090 
1091 	IPSEC_ASSERT(dst != NULL, ("null dst address"));
1092 
1093 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1094 		printf("DP %s from %s:%u\n", __func__, where, tag));
1095 
1096 #ifdef IPSEC_NAT_T
1097         chkport = (dst->sa.sa_family == AF_INET &&
1098 	    dst->sa.sa_len == sizeof(struct sockaddr_in) &&
1099 	    dst->sin.sin_port != 0);
1100 #else
1101 	chkport = 0;
1102 #endif
1103 
1104 	/*
1105 	 * searching SAD.
1106 	 * XXX: to be checked internal IP header somewhere.  Also when
1107 	 * IPsec tunnel packet is received.  But ESP tunnel mode is
1108 	 * encrypted so we can't check internal IP header.
1109 	 */
1110 	SAHTREE_LOCK();
1111 	if (V_key_preferred_oldsa) {
1112 		saorder_state_valid = saorder_state_valid_prefer_old;
1113 		arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1114 	} else {
1115 		saorder_state_valid = saorder_state_valid_prefer_new;
1116 		arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1117 	}
1118 	LIST_FOREACH(sah, &V_sahtree, chain) {
1119 		/* search valid state */
1120 		for (stateidx = 0; stateidx < arraysize; stateidx++) {
1121 			state = saorder_state_valid[stateidx];
1122 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
1123 				/* sanity check */
1124 				KEY_CHKSASTATE(sav->state, state, __func__);
1125 				/* do not return entries w/ unusable state */
1126 				if (sav->state != SADB_SASTATE_MATURE &&
1127 				    sav->state != SADB_SASTATE_DYING)
1128 					continue;
1129 				if (proto != sav->sah->saidx.proto)
1130 					continue;
1131 				if (spi != sav->spi)
1132 					continue;
1133 #if 0	/* don't check src */
1134 				/* check src address */
1135 				if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, chkport) != 0)
1136 					continue;
1137 #endif
1138 				/* check dst address */
1139 				if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, chkport) != 0)
1140 					continue;
1141 				sa_addref(sav);
1142 				goto done;
1143 			}
1144 		}
1145 	}
1146 	sav = NULL;
1147 done:
1148 	SAHTREE_UNLOCK();
1149 
1150 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1151 		printf("DP %s return SA:%p; refcnt %u\n", __func__,
1152 			sav, sav ? sav->refcnt : 0));
1153 	return sav;
1154 }
1155 
1156 /*
1157  * Must be called after calling key_allocsp().
1158  * For both the packet without socket and key_freeso().
1159  */
1160 void
1161 _key_freesp(struct secpolicy **spp, const char* where, int tag)
1162 {
1163 	struct secpolicy *sp = *spp;
1164 
1165 	IPSEC_ASSERT(sp != NULL, ("null sp"));
1166 
1167 	SPTREE_LOCK();
1168 	SP_DELREF(sp);
1169 
1170 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1171 		printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1172 			__func__, sp, sp->id, where, tag, sp->refcnt));
1173 
1174 	if (sp->refcnt == 0) {
1175 		*spp = NULL;
1176 		key_delsp(sp);
1177 	}
1178 	SPTREE_UNLOCK();
1179 }
1180 
1181 /*
1182  * Must be called after calling key_allocsp().
1183  * For the packet with socket.
1184  */
1185 void
1186 key_freeso(struct socket *so)
1187 {
1188 	IPSEC_ASSERT(so != NULL, ("null so"));
1189 
1190 	switch (so->so_proto->pr_domain->dom_family) {
1191 #if defined(INET) || defined(INET6)
1192 #ifdef INET
1193 	case PF_INET:
1194 #endif
1195 #ifdef INET6
1196 	case PF_INET6:
1197 #endif
1198 	    {
1199 		struct inpcb *pcb = sotoinpcb(so);
1200 
1201 		/* Does it have a PCB ? */
1202 		if (pcb == NULL)
1203 			return;
1204 		key_freesp_so(&pcb->inp_sp->sp_in);
1205 		key_freesp_so(&pcb->inp_sp->sp_out);
1206 	    }
1207 		break;
1208 #endif /* INET || INET6 */
1209 	default:
1210 		ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n",
1211 		    __func__, so->so_proto->pr_domain->dom_family));
1212 		return;
1213 	}
1214 }
1215 
1216 static void
1217 key_freesp_so(struct secpolicy **sp)
1218 {
1219 	IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp"));
1220 
1221 	if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1222 	    (*sp)->policy == IPSEC_POLICY_BYPASS)
1223 		return;
1224 
1225 	IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC,
1226 		("invalid policy %u", (*sp)->policy));
1227 	KEY_FREESP(sp);
1228 }
1229 
1230 void
1231 key_addrefsa(struct secasvar *sav, const char* where, int tag)
1232 {
1233 
1234 	IPSEC_ASSERT(sav != NULL, ("null sav"));
1235 	IPSEC_ASSERT(sav->refcnt > 0, ("refcount must exist"));
1236 
1237 	sa_addref(sav);
1238 }
1239 
1240 /*
1241  * Must be called after calling key_allocsa().
1242  * This function is called by key_freesp() to free some SA allocated
1243  * for a policy.
1244  */
1245 void
1246 key_freesav(struct secasvar **psav, const char* where, int tag)
1247 {
1248 	struct secasvar *sav = *psav;
1249 
1250 	IPSEC_ASSERT(sav != NULL, ("null sav"));
1251 
1252 	if (sa_delref(sav)) {
1253 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1254 			printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1255 				__func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1256 		*psav = NULL;
1257 		key_delsav(sav);
1258 	} else {
1259 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1260 			printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1261 				__func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1262 	}
1263 }
1264 
1265 /* %%% SPD management */
1266 /*
1267  * free security policy entry.
1268  */
1269 static void
1270 key_delsp(struct secpolicy *sp)
1271 {
1272 	struct ipsecrequest *isr, *nextisr;
1273 
1274 	IPSEC_ASSERT(sp != NULL, ("null sp"));
1275 	SPTREE_LOCK_ASSERT();
1276 
1277 	sp->state = IPSEC_SPSTATE_DEAD;
1278 
1279 	IPSEC_ASSERT(sp->refcnt == 0,
1280 		("SP with references deleted (refcnt %u)", sp->refcnt));
1281 
1282 	/* remove from SP index */
1283 	if (__LIST_CHAINED(sp))
1284 		LIST_REMOVE(sp, chain);
1285 
1286 	for (isr = sp->req; isr != NULL; isr = nextisr) {
1287 		if (isr->sav != NULL) {
1288 			KEY_FREESAV(&isr->sav);
1289 			isr->sav = NULL;
1290 		}
1291 
1292 		nextisr = isr->next;
1293 		ipsec_delisr(isr);
1294 	}
1295 	_key_delsp(sp);
1296 }
1297 
1298 /*
1299  * search SPD
1300  * OUT:	NULL	: not found
1301  *	others	: found, pointer to a SP.
1302  */
1303 static struct secpolicy *
1304 key_getsp(struct secpolicyindex *spidx)
1305 {
1306 	struct secpolicy *sp;
1307 
1308 	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
1309 
1310 	SPTREE_LOCK();
1311 	LIST_FOREACH(sp, &V_sptree[spidx->dir], chain) {
1312 		if (sp->state == IPSEC_SPSTATE_DEAD)
1313 			continue;
1314 		if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1315 			SP_ADDREF(sp);
1316 			break;
1317 		}
1318 	}
1319 	SPTREE_UNLOCK();
1320 
1321 	return sp;
1322 }
1323 
1324 /*
1325  * get SP by index.
1326  * OUT:	NULL	: not found
1327  *	others	: found, pointer to a SP.
1328  */
1329 static struct secpolicy *
1330 key_getspbyid(u_int32_t id)
1331 {
1332 	struct secpolicy *sp;
1333 
1334 	SPTREE_LOCK();
1335 	LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_INBOUND], chain) {
1336 		if (sp->state == IPSEC_SPSTATE_DEAD)
1337 			continue;
1338 		if (sp->id == id) {
1339 			SP_ADDREF(sp);
1340 			goto done;
1341 		}
1342 	}
1343 
1344 	LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_OUTBOUND], chain) {
1345 		if (sp->state == IPSEC_SPSTATE_DEAD)
1346 			continue;
1347 		if (sp->id == id) {
1348 			SP_ADDREF(sp);
1349 			goto done;
1350 		}
1351 	}
1352 done:
1353 	SPTREE_UNLOCK();
1354 
1355 	return sp;
1356 }
1357 
1358 struct secpolicy *
1359 key_newsp(const char* where, int tag)
1360 {
1361 	struct secpolicy *newsp = NULL;
1362 
1363 	newsp = (struct secpolicy *)
1364 		malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO);
1365 	if (newsp) {
1366 		SECPOLICY_LOCK_INIT(newsp);
1367 		newsp->refcnt = 1;
1368 		newsp->req = NULL;
1369 	}
1370 
1371 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1372 		printf("DP %s from %s:%u return SP:%p\n", __func__,
1373 			where, tag, newsp));
1374 	return newsp;
1375 }
1376 
1377 static void
1378 _key_delsp(struct secpolicy *sp)
1379 {
1380 	SECPOLICY_LOCK_DESTROY(sp);
1381 	free(sp, M_IPSEC_SP);
1382 }
1383 
1384 /*
1385  * create secpolicy structure from sadb_x_policy structure.
1386  * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1387  * so must be set properly later.
1388  */
1389 struct secpolicy *
1390 key_msg2sp(xpl0, len, error)
1391 	struct sadb_x_policy *xpl0;
1392 	size_t len;
1393 	int *error;
1394 {
1395 	struct secpolicy *newsp;
1396 
1397 	IPSEC_ASSERT(xpl0 != NULL, ("null xpl0"));
1398 	IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len));
1399 
1400 	if (len != PFKEY_EXTLEN(xpl0)) {
1401 		ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__));
1402 		*error = EINVAL;
1403 		return NULL;
1404 	}
1405 
1406 	if ((newsp = KEY_NEWSP()) == NULL) {
1407 		*error = ENOBUFS;
1408 		return NULL;
1409 	}
1410 
1411 	newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1412 	newsp->policy = xpl0->sadb_x_policy_type;
1413 
1414 	/* check policy */
1415 	switch (xpl0->sadb_x_policy_type) {
1416 	case IPSEC_POLICY_DISCARD:
1417 	case IPSEC_POLICY_NONE:
1418 	case IPSEC_POLICY_ENTRUST:
1419 	case IPSEC_POLICY_BYPASS:
1420 		newsp->req = NULL;
1421 		break;
1422 
1423 	case IPSEC_POLICY_IPSEC:
1424 	    {
1425 		int tlen;
1426 		struct sadb_x_ipsecrequest *xisr;
1427 		struct ipsecrequest **p_isr = &newsp->req;
1428 
1429 		/* validity check */
1430 		if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1431 			ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n",
1432 				__func__));
1433 			KEY_FREESP(&newsp);
1434 			*error = EINVAL;
1435 			return NULL;
1436 		}
1437 
1438 		tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1439 		xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1);
1440 
1441 		while (tlen > 0) {
1442 			/* length check */
1443 			if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1444 				ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest "
1445 					"length.\n", __func__));
1446 				KEY_FREESP(&newsp);
1447 				*error = EINVAL;
1448 				return NULL;
1449 			}
1450 
1451 			/* allocate request buffer */
1452 			/* NB: data structure is zero'd */
1453 			*p_isr = ipsec_newisr();
1454 			if ((*p_isr) == NULL) {
1455 				ipseclog((LOG_DEBUG,
1456 				    "%s: No more memory.\n", __func__));
1457 				KEY_FREESP(&newsp);
1458 				*error = ENOBUFS;
1459 				return NULL;
1460 			}
1461 
1462 			/* set values */
1463 			switch (xisr->sadb_x_ipsecrequest_proto) {
1464 			case IPPROTO_ESP:
1465 			case IPPROTO_AH:
1466 			case IPPROTO_IPCOMP:
1467 				break;
1468 			default:
1469 				ipseclog((LOG_DEBUG,
1470 				    "%s: invalid proto type=%u\n", __func__,
1471 				    xisr->sadb_x_ipsecrequest_proto));
1472 				KEY_FREESP(&newsp);
1473 				*error = EPROTONOSUPPORT;
1474 				return NULL;
1475 			}
1476 			(*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1477 
1478 			switch (xisr->sadb_x_ipsecrequest_mode) {
1479 			case IPSEC_MODE_TRANSPORT:
1480 			case IPSEC_MODE_TUNNEL:
1481 				break;
1482 			case IPSEC_MODE_ANY:
1483 			default:
1484 				ipseclog((LOG_DEBUG,
1485 				    "%s: invalid mode=%u\n", __func__,
1486 				    xisr->sadb_x_ipsecrequest_mode));
1487 				KEY_FREESP(&newsp);
1488 				*error = EINVAL;
1489 				return NULL;
1490 			}
1491 			(*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1492 
1493 			switch (xisr->sadb_x_ipsecrequest_level) {
1494 			case IPSEC_LEVEL_DEFAULT:
1495 			case IPSEC_LEVEL_USE:
1496 			case IPSEC_LEVEL_REQUIRE:
1497 				break;
1498 			case IPSEC_LEVEL_UNIQUE:
1499 				/* validity check */
1500 				/*
1501 				 * If range violation of reqid, kernel will
1502 				 * update it, don't refuse it.
1503 				 */
1504 				if (xisr->sadb_x_ipsecrequest_reqid
1505 						> IPSEC_MANUAL_REQID_MAX) {
1506 					ipseclog((LOG_DEBUG,
1507 					    "%s: reqid=%d range "
1508 					    "violation, updated by kernel.\n",
1509 					    __func__,
1510 					    xisr->sadb_x_ipsecrequest_reqid));
1511 					xisr->sadb_x_ipsecrequest_reqid = 0;
1512 				}
1513 
1514 				/* allocate new reqid id if reqid is zero. */
1515 				if (xisr->sadb_x_ipsecrequest_reqid == 0) {
1516 					u_int32_t reqid;
1517 					if ((reqid = key_newreqid()) == 0) {
1518 						KEY_FREESP(&newsp);
1519 						*error = ENOBUFS;
1520 						return NULL;
1521 					}
1522 					(*p_isr)->saidx.reqid = reqid;
1523 					xisr->sadb_x_ipsecrequest_reqid = reqid;
1524 				} else {
1525 				/* set it for manual keying. */
1526 					(*p_isr)->saidx.reqid =
1527 						xisr->sadb_x_ipsecrequest_reqid;
1528 				}
1529 				break;
1530 
1531 			default:
1532 				ipseclog((LOG_DEBUG, "%s: invalid level=%u\n",
1533 					__func__,
1534 					xisr->sadb_x_ipsecrequest_level));
1535 				KEY_FREESP(&newsp);
1536 				*error = EINVAL;
1537 				return NULL;
1538 			}
1539 			(*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1540 
1541 			/* set IP addresses if there */
1542 			if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1543 				struct sockaddr *paddr;
1544 
1545 				paddr = (struct sockaddr *)(xisr + 1);
1546 
1547 				/* validity check */
1548 				if (paddr->sa_len
1549 				    > sizeof((*p_isr)->saidx.src)) {
1550 					ipseclog((LOG_DEBUG, "%s: invalid "
1551 						"request address length.\n",
1552 						__func__));
1553 					KEY_FREESP(&newsp);
1554 					*error = EINVAL;
1555 					return NULL;
1556 				}
1557 				bcopy(paddr, &(*p_isr)->saidx.src,
1558 					paddr->sa_len);
1559 
1560 				paddr = (struct sockaddr *)((caddr_t)paddr
1561 							+ paddr->sa_len);
1562 
1563 				/* validity check */
1564 				if (paddr->sa_len
1565 				    > sizeof((*p_isr)->saidx.dst)) {
1566 					ipseclog((LOG_DEBUG, "%s: invalid "
1567 						"request address length.\n",
1568 						__func__));
1569 					KEY_FREESP(&newsp);
1570 					*error = EINVAL;
1571 					return NULL;
1572 				}
1573 				bcopy(paddr, &(*p_isr)->saidx.dst,
1574 					paddr->sa_len);
1575 			}
1576 
1577 			(*p_isr)->sp = newsp;
1578 
1579 			/* initialization for the next. */
1580 			p_isr = &(*p_isr)->next;
1581 			tlen -= xisr->sadb_x_ipsecrequest_len;
1582 
1583 			/* validity check */
1584 			if (tlen < 0) {
1585 				ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n",
1586 					__func__));
1587 				KEY_FREESP(&newsp);
1588 				*error = EINVAL;
1589 				return NULL;
1590 			}
1591 
1592 			xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr
1593 			                 + xisr->sadb_x_ipsecrequest_len);
1594 		}
1595 	    }
1596 		break;
1597 	default:
1598 		ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__));
1599 		KEY_FREESP(&newsp);
1600 		*error = EINVAL;
1601 		return NULL;
1602 	}
1603 
1604 	*error = 0;
1605 	return newsp;
1606 }
1607 
1608 static u_int32_t
1609 key_newreqid()
1610 {
1611 	static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1612 
1613 	auto_reqid = (auto_reqid == ~0
1614 			? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1615 
1616 	/* XXX should be unique check */
1617 
1618 	return auto_reqid;
1619 }
1620 
1621 /*
1622  * copy secpolicy struct to sadb_x_policy structure indicated.
1623  */
1624 struct mbuf *
1625 key_sp2msg(sp)
1626 	struct secpolicy *sp;
1627 {
1628 	struct sadb_x_policy *xpl;
1629 	int tlen;
1630 	caddr_t p;
1631 	struct mbuf *m;
1632 
1633 	IPSEC_ASSERT(sp != NULL, ("null policy"));
1634 
1635 	tlen = key_getspreqmsglen(sp);
1636 
1637 	m = key_alloc_mbuf(tlen);
1638 	if (!m || m->m_next) {	/*XXX*/
1639 		if (m)
1640 			m_freem(m);
1641 		return NULL;
1642 	}
1643 
1644 	m->m_len = tlen;
1645 	m->m_next = NULL;
1646 	xpl = mtod(m, struct sadb_x_policy *);
1647 	bzero(xpl, tlen);
1648 
1649 	xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1650 	xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1651 	xpl->sadb_x_policy_type = sp->policy;
1652 	xpl->sadb_x_policy_dir = sp->spidx.dir;
1653 	xpl->sadb_x_policy_id = sp->id;
1654 	p = (caddr_t)xpl + sizeof(*xpl);
1655 
1656 	/* if is the policy for ipsec ? */
1657 	if (sp->policy == IPSEC_POLICY_IPSEC) {
1658 		struct sadb_x_ipsecrequest *xisr;
1659 		struct ipsecrequest *isr;
1660 
1661 		for (isr = sp->req; isr != NULL; isr = isr->next) {
1662 
1663 			xisr = (struct sadb_x_ipsecrequest *)p;
1664 
1665 			xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1666 			xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1667 			xisr->sadb_x_ipsecrequest_level = isr->level;
1668 			xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1669 
1670 			p += sizeof(*xisr);
1671 			bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len);
1672 			p += isr->saidx.src.sa.sa_len;
1673 			bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len);
1674 			p += isr->saidx.src.sa.sa_len;
1675 
1676 			xisr->sadb_x_ipsecrequest_len =
1677 				PFKEY_ALIGN8(sizeof(*xisr)
1678 					+ isr->saidx.src.sa.sa_len
1679 					+ isr->saidx.dst.sa.sa_len);
1680 		}
1681 	}
1682 
1683 	return m;
1684 }
1685 
1686 /* m will not be freed nor modified */
1687 static struct mbuf *
1688 #ifdef __STDC__
1689 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1690 	int ndeep, int nitem, ...)
1691 #else
1692 key_gather_mbuf(m, mhp, ndeep, nitem, va_alist)
1693 	struct mbuf *m;
1694 	const struct sadb_msghdr *mhp;
1695 	int ndeep;
1696 	int nitem;
1697 	va_dcl
1698 #endif
1699 {
1700 	va_list ap;
1701 	int idx;
1702 	int i;
1703 	struct mbuf *result = NULL, *n;
1704 	int len;
1705 
1706 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1707 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1708 
1709 	va_start(ap, nitem);
1710 	for (i = 0; i < nitem; i++) {
1711 		idx = va_arg(ap, int);
1712 		if (idx < 0 || idx > SADB_EXT_MAX)
1713 			goto fail;
1714 		/* don't attempt to pull empty extension */
1715 		if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1716 			continue;
1717 		if (idx != SADB_EXT_RESERVED  &&
1718 		    (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1719 			continue;
1720 
1721 		if (idx == SADB_EXT_RESERVED) {
1722 			len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1723 
1724 			IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len));
1725 
1726 			MGETHDR(n, M_DONTWAIT, MT_DATA);
1727 			if (!n)
1728 				goto fail;
1729 			n->m_len = len;
1730 			n->m_next = NULL;
1731 			m_copydata(m, 0, sizeof(struct sadb_msg),
1732 			    mtod(n, caddr_t));
1733 		} else if (i < ndeep) {
1734 			len = mhp->extlen[idx];
1735 			n = key_alloc_mbuf(len);
1736 			if (!n || n->m_next) {	/*XXX*/
1737 				if (n)
1738 					m_freem(n);
1739 				goto fail;
1740 			}
1741 			m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1742 			    mtod(n, caddr_t));
1743 		} else {
1744 			n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1745 			    M_DONTWAIT);
1746 		}
1747 		if (n == NULL)
1748 			goto fail;
1749 
1750 		if (result)
1751 			m_cat(result, n);
1752 		else
1753 			result = n;
1754 	}
1755 	va_end(ap);
1756 
1757 	if ((result->m_flags & M_PKTHDR) != 0) {
1758 		result->m_pkthdr.len = 0;
1759 		for (n = result; n; n = n->m_next)
1760 			result->m_pkthdr.len += n->m_len;
1761 	}
1762 
1763 	return result;
1764 
1765 fail:
1766 	m_freem(result);
1767 	return NULL;
1768 }
1769 
1770 /*
1771  * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1772  * add an entry to SP database, when received
1773  *   <base, address(SD), (lifetime(H),) policy>
1774  * from the user(?).
1775  * Adding to SP database,
1776  * and send
1777  *   <base, address(SD), (lifetime(H),) policy>
1778  * to the socket which was send.
1779  *
1780  * SPDADD set a unique policy entry.
1781  * SPDSETIDX like SPDADD without a part of policy requests.
1782  * SPDUPDATE replace a unique policy entry.
1783  *
1784  * m will always be freed.
1785  */
1786 static int
1787 key_spdadd(so, m, mhp)
1788 	struct socket *so;
1789 	struct mbuf *m;
1790 	const struct sadb_msghdr *mhp;
1791 {
1792 	struct sadb_address *src0, *dst0;
1793 	struct sadb_x_policy *xpl0, *xpl;
1794 	struct sadb_lifetime *lft = NULL;
1795 	struct secpolicyindex spidx;
1796 	struct secpolicy *newsp;
1797 	int error;
1798 
1799 	IPSEC_ASSERT(so != NULL, ("null socket"));
1800 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1801 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1802 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
1803 
1804 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1805 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1806 	    mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1807 		ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1808 		return key_senderror(so, m, EINVAL);
1809 	}
1810 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1811 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1812 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1813 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1814 			__func__));
1815 		return key_senderror(so, m, EINVAL);
1816 	}
1817 	if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1818 		if (mhp->extlen[SADB_EXT_LIFETIME_HARD]
1819 			< sizeof(struct sadb_lifetime)) {
1820 			ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1821 				__func__));
1822 			return key_senderror(so, m, EINVAL);
1823 		}
1824 		lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1825 	}
1826 
1827 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1828 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1829 	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1830 
1831 	/*
1832 	 * Note: do not parse SADB_X_EXT_NAT_T_* here:
1833 	 * we are processing traffic endpoints.
1834 	 */
1835 
1836 	/* make secindex */
1837 	/* XXX boundary check against sa_len */
1838 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1839 	                src0 + 1,
1840 	                dst0 + 1,
1841 	                src0->sadb_address_prefixlen,
1842 	                dst0->sadb_address_prefixlen,
1843 	                src0->sadb_address_proto,
1844 	                &spidx);
1845 
1846 	/* checking the direciton. */
1847 	switch (xpl0->sadb_x_policy_dir) {
1848 	case IPSEC_DIR_INBOUND:
1849 	case IPSEC_DIR_OUTBOUND:
1850 		break;
1851 	default:
1852 		ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
1853 		mhp->msg->sadb_msg_errno = EINVAL;
1854 		return 0;
1855 	}
1856 
1857 	/* check policy */
1858 	/* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1859 	if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST
1860 	 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1861 		ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__));
1862 		return key_senderror(so, m, EINVAL);
1863 	}
1864 
1865 	/* policy requests are mandatory when action is ipsec. */
1866         if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX
1867 	 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC
1868 	 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1869 		ipseclog((LOG_DEBUG, "%s: some policy requests part required\n",
1870 			__func__));
1871 		return key_senderror(so, m, EINVAL);
1872 	}
1873 
1874 	/*
1875 	 * checking there is SP already or not.
1876 	 * SPDUPDATE doesn't depend on whether there is a SP or not.
1877 	 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1878 	 * then error.
1879 	 */
1880 	newsp = key_getsp(&spidx);
1881 	if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1882 		if (newsp) {
1883 			SPTREE_LOCK();
1884 			newsp->state = IPSEC_SPSTATE_DEAD;
1885 			SPTREE_UNLOCK();
1886 			KEY_FREESP(&newsp);
1887 		}
1888 	} else {
1889 		if (newsp != NULL) {
1890 			KEY_FREESP(&newsp);
1891 			ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n",
1892 				__func__));
1893 			return key_senderror(so, m, EEXIST);
1894 		}
1895 	}
1896 
1897 	/* allocation new SP entry */
1898 	if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
1899 		return key_senderror(so, m, error);
1900 	}
1901 
1902 	if ((newsp->id = key_getnewspid()) == 0) {
1903 		_key_delsp(newsp);
1904 		return key_senderror(so, m, ENOBUFS);
1905 	}
1906 
1907 	/* XXX boundary check against sa_len */
1908 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1909 	                src0 + 1,
1910 	                dst0 + 1,
1911 	                src0->sadb_address_prefixlen,
1912 	                dst0->sadb_address_prefixlen,
1913 	                src0->sadb_address_proto,
1914 	                &newsp->spidx);
1915 
1916 	/* sanity check on addr pair */
1917 	if (((struct sockaddr *)(src0 + 1))->sa_family !=
1918 			((struct sockaddr *)(dst0+ 1))->sa_family) {
1919 		_key_delsp(newsp);
1920 		return key_senderror(so, m, EINVAL);
1921 	}
1922 	if (((struct sockaddr *)(src0 + 1))->sa_len !=
1923 			((struct sockaddr *)(dst0+ 1))->sa_len) {
1924 		_key_delsp(newsp);
1925 		return key_senderror(so, m, EINVAL);
1926 	}
1927 #if 1
1928 	if (newsp->req && newsp->req->saidx.src.sa.sa_family && newsp->req->saidx.dst.sa.sa_family) {
1929 		if (newsp->req->saidx.src.sa.sa_family != newsp->req->saidx.dst.sa.sa_family) {
1930 			_key_delsp(newsp);
1931 			return key_senderror(so, m, EINVAL);
1932 		}
1933 	}
1934 #endif
1935 
1936 	newsp->created = time_second;
1937 	newsp->lastused = newsp->created;
1938 	newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1939 	newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1940 
1941 	newsp->refcnt = 1;	/* do not reclaim until I say I do */
1942 	newsp->state = IPSEC_SPSTATE_ALIVE;
1943 	LIST_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1944 
1945 	/* delete the entry in spacqtree */
1946 	if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1947 		struct secspacq *spacq = key_getspacq(&spidx);
1948 		if (spacq != NULL) {
1949 			/* reset counter in order to deletion by timehandler. */
1950 			spacq->created = time_second;
1951 			spacq->count = 0;
1952 			SPACQ_UNLOCK();
1953 		}
1954     	}
1955 
1956     {
1957 	struct mbuf *n, *mpolicy;
1958 	struct sadb_msg *newmsg;
1959 	int off;
1960 
1961 	/*
1962 	 * Note: do not send SADB_X_EXT_NAT_T_* here:
1963 	 * we are sending traffic endpoints.
1964 	 */
1965 
1966 	/* create new sadb_msg to reply. */
1967 	if (lft) {
1968 		n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
1969 		    SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
1970 		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1971 	} else {
1972 		n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
1973 		    SADB_X_EXT_POLICY,
1974 		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1975 	}
1976 	if (!n)
1977 		return key_senderror(so, m, ENOBUFS);
1978 
1979 	if (n->m_len < sizeof(*newmsg)) {
1980 		n = m_pullup(n, sizeof(*newmsg));
1981 		if (!n)
1982 			return key_senderror(so, m, ENOBUFS);
1983 	}
1984 	newmsg = mtod(n, struct sadb_msg *);
1985 	newmsg->sadb_msg_errno = 0;
1986 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
1987 
1988 	off = 0;
1989 	mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
1990 	    sizeof(*xpl), &off);
1991 	if (mpolicy == NULL) {
1992 		/* n is already freed */
1993 		return key_senderror(so, m, ENOBUFS);
1994 	}
1995 	xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off);
1996 	if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
1997 		m_freem(n);
1998 		return key_senderror(so, m, EINVAL);
1999 	}
2000 	xpl->sadb_x_policy_id = newsp->id;
2001 
2002 	m_freem(m);
2003 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2004     }
2005 }
2006 
2007 /*
2008  * get new policy id.
2009  * OUT:
2010  *	0:	failure.
2011  *	others: success.
2012  */
2013 static u_int32_t
2014 key_getnewspid()
2015 {
2016 	u_int32_t newid = 0;
2017 	int count = V_key_spi_trycnt;	/* XXX */
2018 	struct secpolicy *sp;
2019 
2020 	/* when requesting to allocate spi ranged */
2021 	while (count--) {
2022 		newid = (V_policy_id = (V_policy_id == ~0 ? 1 : V_policy_id + 1));
2023 
2024 		if ((sp = key_getspbyid(newid)) == NULL)
2025 			break;
2026 
2027 		KEY_FREESP(&sp);
2028 	}
2029 
2030 	if (count == 0 || newid == 0) {
2031 		ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n",
2032 			__func__));
2033 		return 0;
2034 	}
2035 
2036 	return newid;
2037 }
2038 
2039 /*
2040  * SADB_SPDDELETE processing
2041  * receive
2042  *   <base, address(SD), policy(*)>
2043  * from the user(?), and set SADB_SASTATE_DEAD,
2044  * and send,
2045  *   <base, address(SD), policy(*)>
2046  * to the ikmpd.
2047  * policy(*) including direction of policy.
2048  *
2049  * m will always be freed.
2050  */
2051 static int
2052 key_spddelete(so, m, mhp)
2053 	struct socket *so;
2054 	struct mbuf *m;
2055 	const struct sadb_msghdr *mhp;
2056 {
2057 	struct sadb_address *src0, *dst0;
2058 	struct sadb_x_policy *xpl0;
2059 	struct secpolicyindex spidx;
2060 	struct secpolicy *sp;
2061 
2062 	IPSEC_ASSERT(so != NULL, ("null so"));
2063 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2064 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2065 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2066 
2067 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2068 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2069 	    mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2070 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2071 			__func__));
2072 		return key_senderror(so, m, EINVAL);
2073 	}
2074 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2075 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2076 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2077 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2078 			__func__));
2079 		return key_senderror(so, m, EINVAL);
2080 	}
2081 
2082 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2083 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2084 	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2085 
2086 	/*
2087 	 * Note: do not parse SADB_X_EXT_NAT_T_* here:
2088 	 * we are processing traffic endpoints.
2089 	 */
2090 
2091 	/* make secindex */
2092 	/* XXX boundary check against sa_len */
2093 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2094 	                src0 + 1,
2095 	                dst0 + 1,
2096 	                src0->sadb_address_prefixlen,
2097 	                dst0->sadb_address_prefixlen,
2098 	                src0->sadb_address_proto,
2099 	                &spidx);
2100 
2101 	/* checking the direciton. */
2102 	switch (xpl0->sadb_x_policy_dir) {
2103 	case IPSEC_DIR_INBOUND:
2104 	case IPSEC_DIR_OUTBOUND:
2105 		break;
2106 	default:
2107 		ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
2108 		return key_senderror(so, m, EINVAL);
2109 	}
2110 
2111 	/* Is there SP in SPD ? */
2112 	if ((sp = key_getsp(&spidx)) == NULL) {
2113 		ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__));
2114 		return key_senderror(so, m, EINVAL);
2115 	}
2116 
2117 	/* save policy id to buffer to be returned. */
2118 	xpl0->sadb_x_policy_id = sp->id;
2119 
2120 	SPTREE_LOCK();
2121 	sp->state = IPSEC_SPSTATE_DEAD;
2122 	SPTREE_UNLOCK();
2123 	KEY_FREESP(&sp);
2124 
2125     {
2126 	struct mbuf *n;
2127 	struct sadb_msg *newmsg;
2128 
2129 	/*
2130 	 * Note: do not send SADB_X_EXT_NAT_T_* here:
2131 	 * we are sending traffic endpoints.
2132 	 */
2133 
2134 	/* create new sadb_msg to reply. */
2135 	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2136 	    SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2137 	if (!n)
2138 		return key_senderror(so, m, ENOBUFS);
2139 
2140 	newmsg = mtod(n, struct sadb_msg *);
2141 	newmsg->sadb_msg_errno = 0;
2142 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2143 
2144 	m_freem(m);
2145 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2146     }
2147 }
2148 
2149 /*
2150  * SADB_SPDDELETE2 processing
2151  * receive
2152  *   <base, policy(*)>
2153  * from the user(?), and set SADB_SASTATE_DEAD,
2154  * and send,
2155  *   <base, policy(*)>
2156  * to the ikmpd.
2157  * policy(*) including direction of policy.
2158  *
2159  * m will always be freed.
2160  */
2161 static int
2162 key_spddelete2(so, m, mhp)
2163 	struct socket *so;
2164 	struct mbuf *m;
2165 	const struct sadb_msghdr *mhp;
2166 {
2167 	u_int32_t id;
2168 	struct secpolicy *sp;
2169 
2170 	IPSEC_ASSERT(so != NULL, ("null socket"));
2171 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2172 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2173 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2174 
2175 	if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2176 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2177 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__));
2178 		return key_senderror(so, m, EINVAL);
2179 	}
2180 
2181 	id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2182 
2183 	/* Is there SP in SPD ? */
2184 	if ((sp = key_getspbyid(id)) == NULL) {
2185 		ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2186 		return key_senderror(so, m, EINVAL);
2187 	}
2188 
2189 	SPTREE_LOCK();
2190 	sp->state = IPSEC_SPSTATE_DEAD;
2191 	SPTREE_UNLOCK();
2192 	KEY_FREESP(&sp);
2193 
2194     {
2195 	struct mbuf *n, *nn;
2196 	struct sadb_msg *newmsg;
2197 	int off, len;
2198 
2199 	/* create new sadb_msg to reply. */
2200 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2201 
2202 	MGETHDR(n, M_DONTWAIT, MT_DATA);
2203 	if (n && len > MHLEN) {
2204 		MCLGET(n, M_DONTWAIT);
2205 		if ((n->m_flags & M_EXT) == 0) {
2206 			m_freem(n);
2207 			n = NULL;
2208 		}
2209 	}
2210 	if (!n)
2211 		return key_senderror(so, m, ENOBUFS);
2212 
2213 	n->m_len = len;
2214 	n->m_next = NULL;
2215 	off = 0;
2216 
2217 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
2218 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2219 
2220 	IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)",
2221 		off, len));
2222 
2223 	n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2224 	    mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2225 	if (!n->m_next) {
2226 		m_freem(n);
2227 		return key_senderror(so, m, ENOBUFS);
2228 	}
2229 
2230 	n->m_pkthdr.len = 0;
2231 	for (nn = n; nn; nn = nn->m_next)
2232 		n->m_pkthdr.len += nn->m_len;
2233 
2234 	newmsg = mtod(n, struct sadb_msg *);
2235 	newmsg->sadb_msg_errno = 0;
2236 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2237 
2238 	m_freem(m);
2239 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2240     }
2241 }
2242 
2243 /*
2244  * SADB_X_GET processing
2245  * receive
2246  *   <base, policy(*)>
2247  * from the user(?),
2248  * and send,
2249  *   <base, address(SD), policy>
2250  * to the ikmpd.
2251  * policy(*) including direction of policy.
2252  *
2253  * m will always be freed.
2254  */
2255 static int
2256 key_spdget(so, m, mhp)
2257 	struct socket *so;
2258 	struct mbuf *m;
2259 	const struct sadb_msghdr *mhp;
2260 {
2261 	u_int32_t id;
2262 	struct secpolicy *sp;
2263 	struct mbuf *n;
2264 
2265 	IPSEC_ASSERT(so != NULL, ("null socket"));
2266 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2267 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2268 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2269 
2270 	if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2271 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2272 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2273 			__func__));
2274 		return key_senderror(so, m, EINVAL);
2275 	}
2276 
2277 	id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2278 
2279 	/* Is there SP in SPD ? */
2280 	if ((sp = key_getspbyid(id)) == NULL) {
2281 		ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2282 		return key_senderror(so, m, ENOENT);
2283 	}
2284 
2285 	n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid);
2286 	KEY_FREESP(&sp);
2287 	if (n != NULL) {
2288 		m_freem(m);
2289 		return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2290 	} else
2291 		return key_senderror(so, m, ENOBUFS);
2292 }
2293 
2294 /*
2295  * SADB_X_SPDACQUIRE processing.
2296  * Acquire policy and SA(s) for a *OUTBOUND* packet.
2297  * send
2298  *   <base, policy(*)>
2299  * to KMD, and expect to receive
2300  *   <base> with SADB_X_SPDACQUIRE if error occured,
2301  * or
2302  *   <base, policy>
2303  * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2304  * policy(*) is without policy requests.
2305  *
2306  *    0     : succeed
2307  *    others: error number
2308  */
2309 int
2310 key_spdacquire(sp)
2311 	struct secpolicy *sp;
2312 {
2313 	struct mbuf *result = NULL, *m;
2314 	struct secspacq *newspacq;
2315 
2316 	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2317 	IPSEC_ASSERT(sp->req == NULL, ("policy exists"));
2318 	IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC,
2319 		("policy not IPSEC %u", sp->policy));
2320 
2321 	/* Get an entry to check whether sent message or not. */
2322 	newspacq = key_getspacq(&sp->spidx);
2323 	if (newspacq != NULL) {
2324 		if (V_key_blockacq_count < newspacq->count) {
2325 			/* reset counter and do send message. */
2326 			newspacq->count = 0;
2327 		} else {
2328 			/* increment counter and do nothing. */
2329 			newspacq->count++;
2330 			return 0;
2331 		}
2332 		SPACQ_UNLOCK();
2333 	} else {
2334 		/* make new entry for blocking to send SADB_ACQUIRE. */
2335 		newspacq = key_newspacq(&sp->spidx);
2336 		if (newspacq == NULL)
2337 			return ENOBUFS;
2338 	}
2339 
2340 	/* create new sadb_msg to reply. */
2341 	m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2342 	if (!m)
2343 		return ENOBUFS;
2344 
2345 	result = m;
2346 
2347 	result->m_pkthdr.len = 0;
2348 	for (m = result; m; m = m->m_next)
2349 		result->m_pkthdr.len += m->m_len;
2350 
2351 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2352 	    PFKEY_UNIT64(result->m_pkthdr.len);
2353 
2354 	return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2355 }
2356 
2357 /*
2358  * SADB_SPDFLUSH processing
2359  * receive
2360  *   <base>
2361  * from the user, and free all entries in secpctree.
2362  * and send,
2363  *   <base>
2364  * to the user.
2365  * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2366  *
2367  * m will always be freed.
2368  */
2369 static int
2370 key_spdflush(so, m, mhp)
2371 	struct socket *so;
2372 	struct mbuf *m;
2373 	const struct sadb_msghdr *mhp;
2374 {
2375 	struct sadb_msg *newmsg;
2376 	struct secpolicy *sp;
2377 	u_int dir;
2378 
2379 	IPSEC_ASSERT(so != NULL, ("null socket"));
2380 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2381 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2382 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2383 
2384 	if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2385 		return key_senderror(so, m, EINVAL);
2386 
2387 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2388 		SPTREE_LOCK();
2389 		LIST_FOREACH(sp, &V_sptree[dir], chain)
2390 			sp->state = IPSEC_SPSTATE_DEAD;
2391 		SPTREE_UNLOCK();
2392 	}
2393 
2394 	if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2395 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2396 		return key_senderror(so, m, ENOBUFS);
2397 	}
2398 
2399 	if (m->m_next)
2400 		m_freem(m->m_next);
2401 	m->m_next = NULL;
2402 	m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2403 	newmsg = mtod(m, struct sadb_msg *);
2404 	newmsg->sadb_msg_errno = 0;
2405 	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2406 
2407 	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2408 }
2409 
2410 /*
2411  * SADB_SPDDUMP processing
2412  * receive
2413  *   <base>
2414  * from the user, and dump all SP leaves
2415  * and send,
2416  *   <base> .....
2417  * to the ikmpd.
2418  *
2419  * m will always be freed.
2420  */
2421 static int
2422 key_spddump(so, m, mhp)
2423 	struct socket *so;
2424 	struct mbuf *m;
2425 	const struct sadb_msghdr *mhp;
2426 {
2427 	struct secpolicy *sp;
2428 	int cnt;
2429 	u_int dir;
2430 	struct mbuf *n;
2431 
2432 	IPSEC_ASSERT(so != NULL, ("null socket"));
2433 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2434 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2435 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2436 
2437 	/* search SPD entry and get buffer size. */
2438 	cnt = 0;
2439 	SPTREE_LOCK();
2440 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2441 		LIST_FOREACH(sp, &V_sptree[dir], chain) {
2442 			cnt++;
2443 		}
2444 	}
2445 
2446 	if (cnt == 0) {
2447 		SPTREE_UNLOCK();
2448 		return key_senderror(so, m, ENOENT);
2449 	}
2450 
2451 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2452 		LIST_FOREACH(sp, &V_sptree[dir], chain) {
2453 			--cnt;
2454 			n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt,
2455 			    mhp->msg->sadb_msg_pid);
2456 
2457 			if (n)
2458 				key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2459 		}
2460 	}
2461 
2462 	SPTREE_UNLOCK();
2463 	m_freem(m);
2464 	return 0;
2465 }
2466 
2467 static struct mbuf *
2468 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, u_int32_t pid)
2469 {
2470 	struct mbuf *result = NULL, *m;
2471 	struct seclifetime lt;
2472 
2473 	m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2474 	if (!m)
2475 		goto fail;
2476 	result = m;
2477 
2478 	/*
2479 	 * Note: do not send SADB_X_EXT_NAT_T_* here:
2480 	 * we are sending traffic endpoints.
2481 	 */
2482 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2483 	    &sp->spidx.src.sa, sp->spidx.prefs,
2484 	    sp->spidx.ul_proto);
2485 	if (!m)
2486 		goto fail;
2487 	m_cat(result, m);
2488 
2489 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2490 	    &sp->spidx.dst.sa, sp->spidx.prefd,
2491 	    sp->spidx.ul_proto);
2492 	if (!m)
2493 		goto fail;
2494 	m_cat(result, m);
2495 
2496 	m = key_sp2msg(sp);
2497 	if (!m)
2498 		goto fail;
2499 	m_cat(result, m);
2500 
2501 	if(sp->lifetime){
2502 		lt.addtime=sp->created;
2503 		lt.usetime= sp->lastused;
2504 		m = key_setlifetime(&lt, SADB_EXT_LIFETIME_CURRENT);
2505 		if (!m)
2506 			goto fail;
2507 		m_cat(result, m);
2508 
2509 		lt.addtime=sp->lifetime;
2510 		lt.usetime= sp->validtime;
2511 		m = key_setlifetime(&lt, SADB_EXT_LIFETIME_HARD);
2512 		if (!m)
2513 			goto fail;
2514 		m_cat(result, m);
2515 	}
2516 
2517 	if ((result->m_flags & M_PKTHDR) == 0)
2518 		goto fail;
2519 
2520 	if (result->m_len < sizeof(struct sadb_msg)) {
2521 		result = m_pullup(result, sizeof(struct sadb_msg));
2522 		if (result == NULL)
2523 			goto fail;
2524 	}
2525 
2526 	result->m_pkthdr.len = 0;
2527 	for (m = result; m; m = m->m_next)
2528 		result->m_pkthdr.len += m->m_len;
2529 
2530 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2531 	    PFKEY_UNIT64(result->m_pkthdr.len);
2532 
2533 	return result;
2534 
2535 fail:
2536 	m_freem(result);
2537 	return NULL;
2538 }
2539 
2540 /*
2541  * get PFKEY message length for security policy and request.
2542  */
2543 static u_int
2544 key_getspreqmsglen(sp)
2545 	struct secpolicy *sp;
2546 {
2547 	u_int tlen;
2548 
2549 	tlen = sizeof(struct sadb_x_policy);
2550 
2551 	/* if is the policy for ipsec ? */
2552 	if (sp->policy != IPSEC_POLICY_IPSEC)
2553 		return tlen;
2554 
2555 	/* get length of ipsec requests */
2556     {
2557 	struct ipsecrequest *isr;
2558 	int len;
2559 
2560 	for (isr = sp->req; isr != NULL; isr = isr->next) {
2561 		len = sizeof(struct sadb_x_ipsecrequest)
2562 			+ isr->saidx.src.sa.sa_len
2563 			+ isr->saidx.dst.sa.sa_len;
2564 
2565 		tlen += PFKEY_ALIGN8(len);
2566 	}
2567     }
2568 
2569 	return tlen;
2570 }
2571 
2572 /*
2573  * SADB_SPDEXPIRE processing
2574  * send
2575  *   <base, address(SD), lifetime(CH), policy>
2576  * to KMD by PF_KEY.
2577  *
2578  * OUT:	0	: succeed
2579  *	others	: error number
2580  */
2581 static int
2582 key_spdexpire(sp)
2583 	struct secpolicy *sp;
2584 {
2585 	struct mbuf *result = NULL, *m;
2586 	int len;
2587 	int error = -1;
2588 	struct sadb_lifetime *lt;
2589 
2590 	/* XXX: Why do we lock ? */
2591 
2592 	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2593 
2594 	/* set msg header */
2595 	m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2596 	if (!m) {
2597 		error = ENOBUFS;
2598 		goto fail;
2599 	}
2600 	result = m;
2601 
2602 	/* create lifetime extension (current and hard) */
2603 	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2604 	m = key_alloc_mbuf(len);
2605 	if (!m || m->m_next) {	/*XXX*/
2606 		if (m)
2607 			m_freem(m);
2608 		error = ENOBUFS;
2609 		goto fail;
2610 	}
2611 	bzero(mtod(m, caddr_t), len);
2612 	lt = mtod(m, struct sadb_lifetime *);
2613 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2614 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2615 	lt->sadb_lifetime_allocations = 0;
2616 	lt->sadb_lifetime_bytes = 0;
2617 	lt->sadb_lifetime_addtime = sp->created;
2618 	lt->sadb_lifetime_usetime = sp->lastused;
2619 	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
2620 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2621 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2622 	lt->sadb_lifetime_allocations = 0;
2623 	lt->sadb_lifetime_bytes = 0;
2624 	lt->sadb_lifetime_addtime = sp->lifetime;
2625 	lt->sadb_lifetime_usetime = sp->validtime;
2626 	m_cat(result, m);
2627 
2628 	/*
2629 	 * Note: do not send SADB_X_EXT_NAT_T_* here:
2630 	 * we are sending traffic endpoints.
2631 	 */
2632 
2633 	/* set sadb_address for source */
2634 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2635 	    &sp->spidx.src.sa,
2636 	    sp->spidx.prefs, sp->spidx.ul_proto);
2637 	if (!m) {
2638 		error = ENOBUFS;
2639 		goto fail;
2640 	}
2641 	m_cat(result, m);
2642 
2643 	/* set sadb_address for destination */
2644 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2645 	    &sp->spidx.dst.sa,
2646 	    sp->spidx.prefd, sp->spidx.ul_proto);
2647 	if (!m) {
2648 		error = ENOBUFS;
2649 		goto fail;
2650 	}
2651 	m_cat(result, m);
2652 
2653 	/* set secpolicy */
2654 	m = key_sp2msg(sp);
2655 	if (!m) {
2656 		error = ENOBUFS;
2657 		goto fail;
2658 	}
2659 	m_cat(result, m);
2660 
2661 	if ((result->m_flags & M_PKTHDR) == 0) {
2662 		error = EINVAL;
2663 		goto fail;
2664 	}
2665 
2666 	if (result->m_len < sizeof(struct sadb_msg)) {
2667 		result = m_pullup(result, sizeof(struct sadb_msg));
2668 		if (result == NULL) {
2669 			error = ENOBUFS;
2670 			goto fail;
2671 		}
2672 	}
2673 
2674 	result->m_pkthdr.len = 0;
2675 	for (m = result; m; m = m->m_next)
2676 		result->m_pkthdr.len += m->m_len;
2677 
2678 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2679 	    PFKEY_UNIT64(result->m_pkthdr.len);
2680 
2681 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2682 
2683  fail:
2684 	if (result)
2685 		m_freem(result);
2686 	return error;
2687 }
2688 
2689 /* %%% SAD management */
2690 /*
2691  * allocating a memory for new SA head, and copy from the values of mhp.
2692  * OUT:	NULL	: failure due to the lack of memory.
2693  *	others	: pointer to new SA head.
2694  */
2695 static struct secashead *
2696 key_newsah(saidx)
2697 	struct secasindex *saidx;
2698 {
2699 	struct secashead *newsah;
2700 
2701 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
2702 
2703 	newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO);
2704 	if (newsah != NULL) {
2705 		int i;
2706 		for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++)
2707 			LIST_INIT(&newsah->savtree[i]);
2708 		newsah->saidx = *saidx;
2709 
2710 		/* add to saidxtree */
2711 		newsah->state = SADB_SASTATE_MATURE;
2712 
2713 		SAHTREE_LOCK();
2714 		LIST_INSERT_HEAD(&V_sahtree, newsah, chain);
2715 		SAHTREE_UNLOCK();
2716 	}
2717 	return(newsah);
2718 }
2719 
2720 /*
2721  * delete SA index and all SA registerd.
2722  */
2723 static void
2724 key_delsah(sah)
2725 	struct secashead *sah;
2726 {
2727 	struct secasvar *sav, *nextsav;
2728 	u_int stateidx;
2729 	int zombie = 0;
2730 
2731 	IPSEC_ASSERT(sah != NULL, ("NULL sah"));
2732 	SAHTREE_LOCK_ASSERT();
2733 
2734 	/* searching all SA registerd in the secindex. */
2735 	for (stateidx = 0;
2736 	     stateidx < _ARRAYLEN(saorder_state_any);
2737 	     stateidx++) {
2738 		u_int state = saorder_state_any[stateidx];
2739 		LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) {
2740 			if (sav->refcnt == 0) {
2741 				/* sanity check */
2742 				KEY_CHKSASTATE(state, sav->state, __func__);
2743 				/*
2744 				 * do NOT call KEY_FREESAV here:
2745 				 * it will only delete the sav if refcnt == 1,
2746 				 * where we already know that refcnt == 0
2747 				 */
2748 				key_delsav(sav);
2749 			} else {
2750 				/* give up to delete this sa */
2751 				zombie++;
2752 			}
2753 		}
2754 	}
2755 	if (!zombie) {		/* delete only if there are savs */
2756 		/* remove from tree of SA index */
2757 		if (__LIST_CHAINED(sah))
2758 			LIST_REMOVE(sah, chain);
2759 		if (sah->route_cache.sa_route.ro_rt) {
2760 			RTFREE(sah->route_cache.sa_route.ro_rt);
2761 			sah->route_cache.sa_route.ro_rt = (struct rtentry *)NULL;
2762 		}
2763 		free(sah, M_IPSEC_SAH);
2764 	}
2765 }
2766 
2767 /*
2768  * allocating a new SA with LARVAL state.  key_add() and key_getspi() call,
2769  * and copy the values of mhp into new buffer.
2770  * When SAD message type is GETSPI:
2771  *	to set sequence number from acq_seq++,
2772  *	to set zero to SPI.
2773  *	not to call key_setsava().
2774  * OUT:	NULL	: fail
2775  *	others	: pointer to new secasvar.
2776  *
2777  * does not modify mbuf.  does not free mbuf on error.
2778  */
2779 static struct secasvar *
2780 key_newsav(m, mhp, sah, errp, where, tag)
2781 	struct mbuf *m;
2782 	const struct sadb_msghdr *mhp;
2783 	struct secashead *sah;
2784 	int *errp;
2785 	const char* where;
2786 	int tag;
2787 {
2788 	struct secasvar *newsav;
2789 	const struct sadb_sa *xsa;
2790 
2791 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2792 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2793 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2794 	IPSEC_ASSERT(sah != NULL, ("null secashead"));
2795 
2796 	newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO);
2797 	if (newsav == NULL) {
2798 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2799 		*errp = ENOBUFS;
2800 		goto done;
2801 	}
2802 
2803 	switch (mhp->msg->sadb_msg_type) {
2804 	case SADB_GETSPI:
2805 		newsav->spi = 0;
2806 
2807 #ifdef IPSEC_DOSEQCHECK
2808 		/* sync sequence number */
2809 		if (mhp->msg->sadb_msg_seq == 0)
2810 			newsav->seq =
2811 				(V_acq_seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq));
2812 		else
2813 #endif
2814 			newsav->seq = mhp->msg->sadb_msg_seq;
2815 		break;
2816 
2817 	case SADB_ADD:
2818 		/* sanity check */
2819 		if (mhp->ext[SADB_EXT_SA] == NULL) {
2820 			free(newsav, M_IPSEC_SA);
2821 			newsav = NULL;
2822 			ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2823 				__func__));
2824 			*errp = EINVAL;
2825 			goto done;
2826 		}
2827 		xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2828 		newsav->spi = xsa->sadb_sa_spi;
2829 		newsav->seq = mhp->msg->sadb_msg_seq;
2830 		break;
2831 	default:
2832 		free(newsav, M_IPSEC_SA);
2833 		newsav = NULL;
2834 		*errp = EINVAL;
2835 		goto done;
2836 	}
2837 
2838 
2839 	/* copy sav values */
2840 	if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2841 		*errp = key_setsaval(newsav, m, mhp);
2842 		if (*errp) {
2843 			free(newsav, M_IPSEC_SA);
2844 			newsav = NULL;
2845 			goto done;
2846 		}
2847 	}
2848 
2849 	SECASVAR_LOCK_INIT(newsav);
2850 
2851 	/* reset created */
2852 	newsav->created = time_second;
2853 	newsav->pid = mhp->msg->sadb_msg_pid;
2854 
2855 	/* add to satree */
2856 	newsav->sah = sah;
2857 	sa_initref(newsav);
2858 	newsav->state = SADB_SASTATE_LARVAL;
2859 
2860 	SAHTREE_LOCK();
2861 	LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
2862 			secasvar, chain);
2863 	SAHTREE_UNLOCK();
2864 done:
2865 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
2866 		printf("DP %s from %s:%u return SP:%p\n", __func__,
2867 			where, tag, newsav));
2868 
2869 	return newsav;
2870 }
2871 
2872 /*
2873  * free() SA variable entry.
2874  */
2875 static void
2876 key_cleansav(struct secasvar *sav)
2877 {
2878 	/*
2879 	 * Cleanup xform state.  Note that zeroize'ing causes the
2880 	 * keys to be cleared; otherwise we must do it ourself.
2881 	 */
2882 	if (sav->tdb_xform != NULL) {
2883 		sav->tdb_xform->xf_zeroize(sav);
2884 		sav->tdb_xform = NULL;
2885 	} else {
2886 		KASSERT(sav->iv == NULL, ("iv but no xform"));
2887 		if (sav->key_auth != NULL)
2888 			bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2889 		if (sav->key_enc != NULL)
2890 			bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc));
2891 	}
2892 	if (sav->key_auth != NULL) {
2893 		if (sav->key_auth->key_data != NULL)
2894 			free(sav->key_auth->key_data, M_IPSEC_MISC);
2895 		free(sav->key_auth, M_IPSEC_MISC);
2896 		sav->key_auth = NULL;
2897 	}
2898 	if (sav->key_enc != NULL) {
2899 		if (sav->key_enc->key_data != NULL)
2900 			free(sav->key_enc->key_data, M_IPSEC_MISC);
2901 		free(sav->key_enc, M_IPSEC_MISC);
2902 		sav->key_enc = NULL;
2903 	}
2904 	if (sav->sched) {
2905 		bzero(sav->sched, sav->schedlen);
2906 		free(sav->sched, M_IPSEC_MISC);
2907 		sav->sched = NULL;
2908 	}
2909 	if (sav->replay != NULL) {
2910 		free(sav->replay, M_IPSEC_MISC);
2911 		sav->replay = NULL;
2912 	}
2913 	if (sav->lft_c != NULL) {
2914 		free(sav->lft_c, M_IPSEC_MISC);
2915 		sav->lft_c = NULL;
2916 	}
2917 	if (sav->lft_h != NULL) {
2918 		free(sav->lft_h, M_IPSEC_MISC);
2919 		sav->lft_h = NULL;
2920 	}
2921 	if (sav->lft_s != NULL) {
2922 		free(sav->lft_s, M_IPSEC_MISC);
2923 		sav->lft_s = NULL;
2924 	}
2925 }
2926 
2927 /*
2928  * free() SA variable entry.
2929  */
2930 static void
2931 key_delsav(sav)
2932 	struct secasvar *sav;
2933 {
2934 	IPSEC_ASSERT(sav != NULL, ("null sav"));
2935 	IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt));
2936 
2937 	/* remove from SA header */
2938 	if (__LIST_CHAINED(sav))
2939 		LIST_REMOVE(sav, chain);
2940 	key_cleansav(sav);
2941 	SECASVAR_LOCK_DESTROY(sav);
2942 	free(sav, M_IPSEC_SA);
2943 }
2944 
2945 /*
2946  * search SAD.
2947  * OUT:
2948  *	NULL	: not found
2949  *	others	: found, pointer to a SA.
2950  */
2951 static struct secashead *
2952 key_getsah(saidx)
2953 	struct secasindex *saidx;
2954 {
2955 	struct secashead *sah;
2956 
2957 	SAHTREE_LOCK();
2958 	LIST_FOREACH(sah, &V_sahtree, chain) {
2959 		if (sah->state == SADB_SASTATE_DEAD)
2960 			continue;
2961 		if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID))
2962 			break;
2963 	}
2964 	SAHTREE_UNLOCK();
2965 
2966 	return sah;
2967 }
2968 
2969 /*
2970  * check not to be duplicated SPI.
2971  * NOTE: this function is too slow due to searching all SAD.
2972  * OUT:
2973  *	NULL	: not found
2974  *	others	: found, pointer to a SA.
2975  */
2976 static struct secasvar *
2977 key_checkspidup(saidx, spi)
2978 	struct secasindex *saidx;
2979 	u_int32_t spi;
2980 {
2981 	struct secashead *sah;
2982 	struct secasvar *sav;
2983 
2984 	/* check address family */
2985 	if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
2986 		ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
2987 			__func__));
2988 		return NULL;
2989 	}
2990 
2991 	sav = NULL;
2992 	/* check all SAD */
2993 	SAHTREE_LOCK();
2994 	LIST_FOREACH(sah, &V_sahtree, chain) {
2995 		if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
2996 			continue;
2997 		sav = key_getsavbyspi(sah, spi);
2998 		if (sav != NULL)
2999 			break;
3000 	}
3001 	SAHTREE_UNLOCK();
3002 
3003 	return sav;
3004 }
3005 
3006 /*
3007  * search SAD litmited alive SA, protocol, SPI.
3008  * OUT:
3009  *	NULL	: not found
3010  *	others	: found, pointer to a SA.
3011  */
3012 static struct secasvar *
3013 key_getsavbyspi(sah, spi)
3014 	struct secashead *sah;
3015 	u_int32_t spi;
3016 {
3017 	struct secasvar *sav;
3018 	u_int stateidx, state;
3019 
3020 	sav = NULL;
3021 	SAHTREE_LOCK_ASSERT();
3022 	/* search all status */
3023 	for (stateidx = 0;
3024 	     stateidx < _ARRAYLEN(saorder_state_alive);
3025 	     stateidx++) {
3026 
3027 		state = saorder_state_alive[stateidx];
3028 		LIST_FOREACH(sav, &sah->savtree[state], chain) {
3029 
3030 			/* sanity check */
3031 			if (sav->state != state) {
3032 				ipseclog((LOG_DEBUG, "%s: "
3033 				    "invalid sav->state (queue: %d SA: %d)\n",
3034 				    __func__, state, sav->state));
3035 				continue;
3036 			}
3037 
3038 			if (sav->spi == spi)
3039 				return sav;
3040 		}
3041 	}
3042 
3043 	return NULL;
3044 }
3045 
3046 /*
3047  * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3048  * You must update these if need.
3049  * OUT:	0:	success.
3050  *	!0:	failure.
3051  *
3052  * does not modify mbuf.  does not free mbuf on error.
3053  */
3054 static int
3055 key_setsaval(sav, m, mhp)
3056 	struct secasvar *sav;
3057 	struct mbuf *m;
3058 	const struct sadb_msghdr *mhp;
3059 {
3060 	int error = 0;
3061 
3062 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
3063 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
3064 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
3065 
3066 	/* initialization */
3067 	sav->replay = NULL;
3068 	sav->key_auth = NULL;
3069 	sav->key_enc = NULL;
3070 	sav->sched = NULL;
3071 	sav->schedlen = 0;
3072 	sav->iv = NULL;
3073 	sav->lft_c = NULL;
3074 	sav->lft_h = NULL;
3075 	sav->lft_s = NULL;
3076 	sav->tdb_xform = NULL;		/* transform */
3077 	sav->tdb_encalgxform = NULL;	/* encoding algorithm */
3078 	sav->tdb_authalgxform = NULL;	/* authentication algorithm */
3079 	sav->tdb_compalgxform = NULL;	/* compression algorithm */
3080 	/*  Initialize even if NAT-T not compiled in: */
3081 	sav->natt_type = 0;
3082 	sav->natt_esp_frag_len = 0;
3083 
3084 	/* SA */
3085 	if (mhp->ext[SADB_EXT_SA] != NULL) {
3086 		const struct sadb_sa *sa0;
3087 
3088 		sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3089 		if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3090 			error = EINVAL;
3091 			goto fail;
3092 		}
3093 
3094 		sav->alg_auth = sa0->sadb_sa_auth;
3095 		sav->alg_enc = sa0->sadb_sa_encrypt;
3096 		sav->flags = sa0->sadb_sa_flags;
3097 
3098 		/* replay window */
3099 		if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3100 			sav->replay = (struct secreplay *)
3101 				malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO);
3102 			if (sav->replay == NULL) {
3103 				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3104 					__func__));
3105 				error = ENOBUFS;
3106 				goto fail;
3107 			}
3108 			if (sa0->sadb_sa_replay != 0)
3109 				sav->replay->bitmap = (caddr_t)(sav->replay+1);
3110 			sav->replay->wsize = sa0->sadb_sa_replay;
3111 		}
3112 	}
3113 
3114 	/* Authentication keys */
3115 	if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3116 		const struct sadb_key *key0;
3117 		int len;
3118 
3119 		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3120 		len = mhp->extlen[SADB_EXT_KEY_AUTH];
3121 
3122 		error = 0;
3123 		if (len < sizeof(*key0)) {
3124 			error = EINVAL;
3125 			goto fail;
3126 		}
3127 		switch (mhp->msg->sadb_msg_satype) {
3128 		case SADB_SATYPE_AH:
3129 		case SADB_SATYPE_ESP:
3130 		case SADB_X_SATYPE_TCPSIGNATURE:
3131 			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3132 			    sav->alg_auth != SADB_X_AALG_NULL)
3133 				error = EINVAL;
3134 			break;
3135 		case SADB_X_SATYPE_IPCOMP:
3136 		default:
3137 			error = EINVAL;
3138 			break;
3139 		}
3140 		if (error) {
3141 			ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n",
3142 				__func__));
3143 			goto fail;
3144 		}
3145 
3146 		sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len,
3147 								M_IPSEC_MISC);
3148 		if (sav->key_auth == NULL ) {
3149 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3150 				  __func__));
3151 			error = ENOBUFS;
3152 			goto fail;
3153 		}
3154 	}
3155 
3156 	/* Encryption key */
3157 	if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3158 		const struct sadb_key *key0;
3159 		int len;
3160 
3161 		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3162 		len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3163 
3164 		error = 0;
3165 		if (len < sizeof(*key0)) {
3166 			error = EINVAL;
3167 			goto fail;
3168 		}
3169 		switch (mhp->msg->sadb_msg_satype) {
3170 		case SADB_SATYPE_ESP:
3171 			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3172 			    sav->alg_enc != SADB_EALG_NULL) {
3173 				error = EINVAL;
3174 				break;
3175 			}
3176 			sav->key_enc = (struct seckey *)key_dup_keymsg(key0,
3177 								       len,
3178 								       M_IPSEC_MISC);
3179 			if (sav->key_enc == NULL) {
3180 				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3181 					__func__));
3182 				error = ENOBUFS;
3183 				goto fail;
3184 			}
3185 			break;
3186 		case SADB_X_SATYPE_IPCOMP:
3187 			if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3188 				error = EINVAL;
3189 			sav->key_enc = NULL;	/*just in case*/
3190 			break;
3191 		case SADB_SATYPE_AH:
3192 		case SADB_X_SATYPE_TCPSIGNATURE:
3193 		default:
3194 			error = EINVAL;
3195 			break;
3196 		}
3197 		if (error) {
3198 			ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n",
3199 				__func__));
3200 			goto fail;
3201 		}
3202 	}
3203 
3204 	/* set iv */
3205 	sav->ivlen = 0;
3206 
3207 	switch (mhp->msg->sadb_msg_satype) {
3208 	case SADB_SATYPE_AH:
3209 		error = xform_init(sav, XF_AH);
3210 		break;
3211 	case SADB_SATYPE_ESP:
3212 		error = xform_init(sav, XF_ESP);
3213 		break;
3214 	case SADB_X_SATYPE_IPCOMP:
3215 		error = xform_init(sav, XF_IPCOMP);
3216 		break;
3217 	case SADB_X_SATYPE_TCPSIGNATURE:
3218 		error = xform_init(sav, XF_TCPSIGNATURE);
3219 		break;
3220 	}
3221 	if (error) {
3222 		ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n",
3223 		        __func__, mhp->msg->sadb_msg_satype));
3224 		goto fail;
3225 	}
3226 
3227 	/* reset created */
3228 	sav->created = time_second;
3229 
3230 	/* make lifetime for CURRENT */
3231 	sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT);
3232 	if (sav->lft_c == NULL) {
3233 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3234 		error = ENOBUFS;
3235 		goto fail;
3236 	}
3237 
3238 	sav->lft_c->allocations = 0;
3239 	sav->lft_c->bytes = 0;
3240 	sav->lft_c->addtime = time_second;
3241 	sav->lft_c->usetime = 0;
3242 
3243 	/* lifetimes for HARD and SOFT */
3244     {
3245 	const struct sadb_lifetime *lft0;
3246 
3247 	lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3248 	if (lft0 != NULL) {
3249 		if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3250 			error = EINVAL;
3251 			goto fail;
3252 		}
3253 		sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC);
3254 		if (sav->lft_h == NULL) {
3255 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3256 			error = ENOBUFS;
3257 			goto fail;
3258 		}
3259 		/* to be initialize ? */
3260 	}
3261 
3262 	lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3263 	if (lft0 != NULL) {
3264 		if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3265 			error = EINVAL;
3266 			goto fail;
3267 		}
3268 		sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC);
3269 		if (sav->lft_s == NULL) {
3270 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3271 			error = ENOBUFS;
3272 			goto fail;
3273 		}
3274 		/* to be initialize ? */
3275 	}
3276     }
3277 
3278 	return 0;
3279 
3280  fail:
3281 	/* initialization */
3282 	key_cleansav(sav);
3283 
3284 	return error;
3285 }
3286 
3287 /*
3288  * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3289  * OUT:	0:	valid
3290  *	other:	errno
3291  */
3292 static int
3293 key_mature(struct secasvar *sav)
3294 {
3295 	int error;
3296 
3297 	/* check SPI value */
3298 	switch (sav->sah->saidx.proto) {
3299 	case IPPROTO_ESP:
3300 	case IPPROTO_AH:
3301 		/*
3302 		 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values
3303 		 * 1-255 reserved by IANA for future use,
3304 		 * 0 for implementation specific, local use.
3305 		 */
3306 		if (ntohl(sav->spi) <= 255) {
3307 			ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n",
3308 			    __func__, (u_int32_t)ntohl(sav->spi)));
3309 			return EINVAL;
3310 		}
3311 		break;
3312 	}
3313 
3314 	/* check satype */
3315 	switch (sav->sah->saidx.proto) {
3316 	case IPPROTO_ESP:
3317 		/* check flags */
3318 		if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3319 		    (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3320 			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3321 				"given to old-esp.\n", __func__));
3322 			return EINVAL;
3323 		}
3324 		error = xform_init(sav, XF_ESP);
3325 		break;
3326 	case IPPROTO_AH:
3327 		/* check flags */
3328 		if (sav->flags & SADB_X_EXT_DERIV) {
3329 			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3330 				"given to AH SA.\n", __func__));
3331 			return EINVAL;
3332 		}
3333 		if (sav->alg_enc != SADB_EALG_NONE) {
3334 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3335 				"mismated.\n", __func__));
3336 			return(EINVAL);
3337 		}
3338 		error = xform_init(sav, XF_AH);
3339 		break;
3340 	case IPPROTO_IPCOMP:
3341 		if (sav->alg_auth != SADB_AALG_NONE) {
3342 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3343 				"mismated.\n", __func__));
3344 			return(EINVAL);
3345 		}
3346 		if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3347 		 && ntohl(sav->spi) >= 0x10000) {
3348 			ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n",
3349 				__func__));
3350 			return(EINVAL);
3351 		}
3352 		error = xform_init(sav, XF_IPCOMP);
3353 		break;
3354 	case IPPROTO_TCP:
3355 		if (sav->alg_enc != SADB_EALG_NONE) {
3356 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3357 				"mismated.\n", __func__));
3358 			return(EINVAL);
3359 		}
3360 		error = xform_init(sav, XF_TCPSIGNATURE);
3361 		break;
3362 	default:
3363 		ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__));
3364 		error = EPROTONOSUPPORT;
3365 		break;
3366 	}
3367 	if (error == 0) {
3368 		SAHTREE_LOCK();
3369 		key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3370 		SAHTREE_UNLOCK();
3371 	}
3372 	return (error);
3373 }
3374 
3375 /*
3376  * subroutine for SADB_GET and SADB_DUMP.
3377  */
3378 static struct mbuf *
3379 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3380     u_int32_t seq, u_int32_t pid)
3381 {
3382 	struct mbuf *result = NULL, *tres = NULL, *m;
3383 	int i;
3384 	int dumporder[] = {
3385 		SADB_EXT_SA, SADB_X_EXT_SA2,
3386 		SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3387 		SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3388 		SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3389 		SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3390 		SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3391 #ifdef IPSEC_NAT_T
3392 		SADB_X_EXT_NAT_T_TYPE,
3393 		SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3394 		SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3395 		SADB_X_EXT_NAT_T_FRAG,
3396 #endif
3397 	};
3398 
3399 	m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3400 	if (m == NULL)
3401 		goto fail;
3402 	result = m;
3403 
3404 	for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) {
3405 		m = NULL;
3406 		switch (dumporder[i]) {
3407 		case SADB_EXT_SA:
3408 			m = key_setsadbsa(sav);
3409 			if (!m)
3410 				goto fail;
3411 			break;
3412 
3413 		case SADB_X_EXT_SA2:
3414 			m = key_setsadbxsa2(sav->sah->saidx.mode,
3415 					sav->replay ? sav->replay->count : 0,
3416 					sav->sah->saidx.reqid);
3417 			if (!m)
3418 				goto fail;
3419 			break;
3420 
3421 		case SADB_EXT_ADDRESS_SRC:
3422 			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3423 			    &sav->sah->saidx.src.sa,
3424 			    FULLMASK, IPSEC_ULPROTO_ANY);
3425 			if (!m)
3426 				goto fail;
3427 			break;
3428 
3429 		case SADB_EXT_ADDRESS_DST:
3430 			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3431 			    &sav->sah->saidx.dst.sa,
3432 			    FULLMASK, IPSEC_ULPROTO_ANY);
3433 			if (!m)
3434 				goto fail;
3435 			break;
3436 
3437 		case SADB_EXT_KEY_AUTH:
3438 			if (!sav->key_auth)
3439 				continue;
3440 			m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH);
3441 			if (!m)
3442 				goto fail;
3443 			break;
3444 
3445 		case SADB_EXT_KEY_ENCRYPT:
3446 			if (!sav->key_enc)
3447 				continue;
3448 			m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT);
3449 			if (!m)
3450 				goto fail;
3451 			break;
3452 
3453 		case SADB_EXT_LIFETIME_CURRENT:
3454 			if (!sav->lft_c)
3455 				continue;
3456 			m = key_setlifetime(sav->lft_c,
3457 					    SADB_EXT_LIFETIME_CURRENT);
3458 			if (!m)
3459 				goto fail;
3460 			break;
3461 
3462 		case SADB_EXT_LIFETIME_HARD:
3463 			if (!sav->lft_h)
3464 				continue;
3465 			m = key_setlifetime(sav->lft_h,
3466 					    SADB_EXT_LIFETIME_HARD);
3467 			if (!m)
3468 				goto fail;
3469 			break;
3470 
3471 		case SADB_EXT_LIFETIME_SOFT:
3472 			if (!sav->lft_s)
3473 				continue;
3474 			m = key_setlifetime(sav->lft_s,
3475 					    SADB_EXT_LIFETIME_SOFT);
3476 
3477 			if (!m)
3478 				goto fail;
3479 			break;
3480 
3481 #ifdef IPSEC_NAT_T
3482 		case SADB_X_EXT_NAT_T_TYPE:
3483 			m = key_setsadbxtype(sav->natt_type);
3484 			if (!m)
3485 				goto fail;
3486 			break;
3487 
3488 		case SADB_X_EXT_NAT_T_DPORT:
3489 			m = key_setsadbxport(
3490 			    KEY_PORTFROMSADDR(&sav->sah->saidx.dst),
3491 			    SADB_X_EXT_NAT_T_DPORT);
3492 			if (!m)
3493 				goto fail;
3494 			break;
3495 
3496 		case SADB_X_EXT_NAT_T_SPORT:
3497 			m = key_setsadbxport(
3498 			    KEY_PORTFROMSADDR(&sav->sah->saidx.src),
3499 			    SADB_X_EXT_NAT_T_SPORT);
3500 			if (!m)
3501 				goto fail;
3502 			break;
3503 
3504 		case SADB_X_EXT_NAT_T_OAI:
3505 		case SADB_X_EXT_NAT_T_OAR:
3506 		case SADB_X_EXT_NAT_T_FRAG:
3507 			/* We do not (yet) support those. */
3508 			continue;
3509 #endif
3510 
3511 		case SADB_EXT_ADDRESS_PROXY:
3512 		case SADB_EXT_IDENTITY_SRC:
3513 		case SADB_EXT_IDENTITY_DST:
3514 			/* XXX: should we brought from SPD ? */
3515 		case SADB_EXT_SENSITIVITY:
3516 		default:
3517 			continue;
3518 		}
3519 
3520 		if (!m)
3521 			goto fail;
3522 		if (tres)
3523 			m_cat(m, tres);
3524 		tres = m;
3525 
3526 	}
3527 
3528 	m_cat(result, tres);
3529 	if (result->m_len < sizeof(struct sadb_msg)) {
3530 		result = m_pullup(result, sizeof(struct sadb_msg));
3531 		if (result == NULL)
3532 			goto fail;
3533 	}
3534 
3535 	result->m_pkthdr.len = 0;
3536 	for (m = result; m; m = m->m_next)
3537 		result->m_pkthdr.len += m->m_len;
3538 
3539 	mtod(result, struct sadb_msg *)->sadb_msg_len =
3540 	    PFKEY_UNIT64(result->m_pkthdr.len);
3541 
3542 	return result;
3543 
3544 fail:
3545 	m_freem(result);
3546 	m_freem(tres);
3547 	return NULL;
3548 }
3549 
3550 /*
3551  * set data into sadb_msg.
3552  */
3553 static struct mbuf *
3554 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq,
3555     pid_t pid, u_int16_t reserved)
3556 {
3557 	struct mbuf *m;
3558 	struct sadb_msg *p;
3559 	int len;
3560 
3561 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3562 	if (len > MCLBYTES)
3563 		return NULL;
3564 	MGETHDR(m, M_DONTWAIT, MT_DATA);
3565 	if (m && len > MHLEN) {
3566 		MCLGET(m, M_DONTWAIT);
3567 		if ((m->m_flags & M_EXT) == 0) {
3568 			m_freem(m);
3569 			m = NULL;
3570 		}
3571 	}
3572 	if (!m)
3573 		return NULL;
3574 	m->m_pkthdr.len = m->m_len = len;
3575 	m->m_next = NULL;
3576 
3577 	p = mtod(m, struct sadb_msg *);
3578 
3579 	bzero(p, len);
3580 	p->sadb_msg_version = PF_KEY_V2;
3581 	p->sadb_msg_type = type;
3582 	p->sadb_msg_errno = 0;
3583 	p->sadb_msg_satype = satype;
3584 	p->sadb_msg_len = PFKEY_UNIT64(tlen);
3585 	p->sadb_msg_reserved = reserved;
3586 	p->sadb_msg_seq = seq;
3587 	p->sadb_msg_pid = (u_int32_t)pid;
3588 
3589 	return m;
3590 }
3591 
3592 /*
3593  * copy secasvar data into sadb_address.
3594  */
3595 static struct mbuf *
3596 key_setsadbsa(sav)
3597 	struct secasvar *sav;
3598 {
3599 	struct mbuf *m;
3600 	struct sadb_sa *p;
3601 	int len;
3602 
3603 	len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3604 	m = key_alloc_mbuf(len);
3605 	if (!m || m->m_next) {	/*XXX*/
3606 		if (m)
3607 			m_freem(m);
3608 		return NULL;
3609 	}
3610 
3611 	p = mtod(m, struct sadb_sa *);
3612 
3613 	bzero(p, len);
3614 	p->sadb_sa_len = PFKEY_UNIT64(len);
3615 	p->sadb_sa_exttype = SADB_EXT_SA;
3616 	p->sadb_sa_spi = sav->spi;
3617 	p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3618 	p->sadb_sa_state = sav->state;
3619 	p->sadb_sa_auth = sav->alg_auth;
3620 	p->sadb_sa_encrypt = sav->alg_enc;
3621 	p->sadb_sa_flags = sav->flags;
3622 
3623 	return m;
3624 }
3625 
3626 /*
3627  * set data into sadb_address.
3628  */
3629 static struct mbuf *
3630 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, u_int8_t prefixlen, u_int16_t ul_proto)
3631 {
3632 	struct mbuf *m;
3633 	struct sadb_address *p;
3634 	size_t len;
3635 
3636 	len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3637 	    PFKEY_ALIGN8(saddr->sa_len);
3638 	m = key_alloc_mbuf(len);
3639 	if (!m || m->m_next) {	/*XXX*/
3640 		if (m)
3641 			m_freem(m);
3642 		return NULL;
3643 	}
3644 
3645 	p = mtod(m, struct sadb_address *);
3646 
3647 	bzero(p, len);
3648 	p->sadb_address_len = PFKEY_UNIT64(len);
3649 	p->sadb_address_exttype = exttype;
3650 	p->sadb_address_proto = ul_proto;
3651 	if (prefixlen == FULLMASK) {
3652 		switch (saddr->sa_family) {
3653 		case AF_INET:
3654 			prefixlen = sizeof(struct in_addr) << 3;
3655 			break;
3656 		case AF_INET6:
3657 			prefixlen = sizeof(struct in6_addr) << 3;
3658 			break;
3659 		default:
3660 			; /*XXX*/
3661 		}
3662 	}
3663 	p->sadb_address_prefixlen = prefixlen;
3664 	p->sadb_address_reserved = 0;
3665 
3666 	bcopy(saddr,
3667 	    mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3668 	    saddr->sa_len);
3669 
3670 	return m;
3671 }
3672 
3673 /*
3674  * set data into sadb_x_sa2.
3675  */
3676 static struct mbuf *
3677 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid)
3678 {
3679 	struct mbuf *m;
3680 	struct sadb_x_sa2 *p;
3681 	size_t len;
3682 
3683 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3684 	m = key_alloc_mbuf(len);
3685 	if (!m || m->m_next) {	/*XXX*/
3686 		if (m)
3687 			m_freem(m);
3688 		return NULL;
3689 	}
3690 
3691 	p = mtod(m, struct sadb_x_sa2 *);
3692 
3693 	bzero(p, len);
3694 	p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3695 	p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3696 	p->sadb_x_sa2_mode = mode;
3697 	p->sadb_x_sa2_reserved1 = 0;
3698 	p->sadb_x_sa2_reserved2 = 0;
3699 	p->sadb_x_sa2_sequence = seq;
3700 	p->sadb_x_sa2_reqid = reqid;
3701 
3702 	return m;
3703 }
3704 
3705 #ifdef IPSEC_NAT_T
3706 /*
3707  * Set a type in sadb_x_nat_t_type.
3708  */
3709 static struct mbuf *
3710 key_setsadbxtype(u_int16_t type)
3711 {
3712 	struct mbuf *m;
3713 	size_t len;
3714 	struct sadb_x_nat_t_type *p;
3715 
3716 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3717 
3718 	m = key_alloc_mbuf(len);
3719 	if (!m || m->m_next) {	/*XXX*/
3720 		if (m)
3721 			m_freem(m);
3722 		return (NULL);
3723 	}
3724 
3725 	p = mtod(m, struct sadb_x_nat_t_type *);
3726 
3727 	bzero(p, len);
3728 	p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3729 	p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3730 	p->sadb_x_nat_t_type_type = type;
3731 
3732 	return (m);
3733 }
3734 /*
3735  * Set a port in sadb_x_nat_t_port.
3736  * In contrast to default RFC 2367 behaviour, port is in network byte order.
3737  */
3738 static struct mbuf *
3739 key_setsadbxport(u_int16_t port, u_int16_t type)
3740 {
3741 	struct mbuf *m;
3742 	size_t len;
3743 	struct sadb_x_nat_t_port *p;
3744 
3745 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3746 
3747 	m = key_alloc_mbuf(len);
3748 	if (!m || m->m_next) {	/*XXX*/
3749 		if (m)
3750 			m_freem(m);
3751 		return (NULL);
3752 	}
3753 
3754 	p = mtod(m, struct sadb_x_nat_t_port *);
3755 
3756 	bzero(p, len);
3757 	p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3758 	p->sadb_x_nat_t_port_exttype = type;
3759 	p->sadb_x_nat_t_port_port = port;
3760 
3761 	return (m);
3762 }
3763 
3764 /*
3765  * Get port from sockaddr. Port is in network byte order.
3766  */
3767 u_int16_t
3768 key_portfromsaddr(struct sockaddr *sa)
3769 {
3770 
3771 	switch (sa->sa_family) {
3772 #ifdef INET
3773 	case AF_INET:
3774 		return ((struct sockaddr_in *)sa)->sin_port;
3775 #endif
3776 #ifdef INET6
3777 	case AF_INET6:
3778 		return ((struct sockaddr_in6 *)sa)->sin6_port;
3779 #endif
3780 	}
3781 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
3782 		printf("DP %s unexpected address family %d\n",
3783 			__func__, sa->sa_family));
3784 	return (0);
3785 }
3786 #endif /* IPSEC_NAT_T */
3787 
3788 /*
3789  * Set port in struct sockaddr. Port is in network byte order.
3790  */
3791 static void
3792 key_porttosaddr(struct sockaddr *sa, u_int16_t port)
3793 {
3794 
3795 	switch (sa->sa_family) {
3796 #ifdef INET
3797 	case AF_INET:
3798 		((struct sockaddr_in *)sa)->sin_port = port;
3799 		break;
3800 #endif
3801 #ifdef INET6
3802 	case AF_INET6:
3803 		((struct sockaddr_in6 *)sa)->sin6_port = port;
3804 		break;
3805 #endif
3806 	default:
3807 		ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n",
3808 			__func__, sa->sa_family));
3809 		break;
3810 	}
3811 }
3812 
3813 /*
3814  * set data into sadb_x_policy
3815  */
3816 static struct mbuf *
3817 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
3818 {
3819 	struct mbuf *m;
3820 	struct sadb_x_policy *p;
3821 	size_t len;
3822 
3823 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
3824 	m = key_alloc_mbuf(len);
3825 	if (!m || m->m_next) {	/*XXX*/
3826 		if (m)
3827 			m_freem(m);
3828 		return NULL;
3829 	}
3830 
3831 	p = mtod(m, struct sadb_x_policy *);
3832 
3833 	bzero(p, len);
3834 	p->sadb_x_policy_len = PFKEY_UNIT64(len);
3835 	p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
3836 	p->sadb_x_policy_type = type;
3837 	p->sadb_x_policy_dir = dir;
3838 	p->sadb_x_policy_id = id;
3839 
3840 	return m;
3841 }
3842 
3843 /* %%% utilities */
3844 /* Take a key message (sadb_key) from the socket and turn it into one
3845  * of the kernel's key structures (seckey).
3846  *
3847  * IN: pointer to the src
3848  * OUT: NULL no more memory
3849  */
3850 struct seckey *
3851 key_dup_keymsg(const struct sadb_key *src, u_int len,
3852 	       struct malloc_type *type)
3853 {
3854 	struct seckey *dst;
3855 	dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT);
3856 	if (dst != NULL) {
3857 		dst->bits = src->sadb_key_bits;
3858 		dst->key_data = (char *)malloc(len, type, M_NOWAIT);
3859 		if (dst->key_data != NULL) {
3860 			bcopy((const char *)src + sizeof(struct sadb_key),
3861 			      dst->key_data, len);
3862 		} else {
3863 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3864 				  __func__));
3865 			free(dst, type);
3866 			dst = NULL;
3867 		}
3868 	} else {
3869 		ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3870 			  __func__));
3871 
3872 	}
3873 	return dst;
3874 }
3875 
3876 /* Take a lifetime message (sadb_lifetime) passed in on a socket and
3877  * turn it into one of the kernel's lifetime structures (seclifetime).
3878  *
3879  * IN: pointer to the destination, source and malloc type
3880  * OUT: NULL, no more memory
3881  */
3882 
3883 static struct seclifetime *
3884 key_dup_lifemsg(const struct sadb_lifetime *src,
3885 		 struct malloc_type *type)
3886 {
3887 	struct seclifetime *dst = NULL;
3888 
3889 	dst = (struct seclifetime *)malloc(sizeof(struct seclifetime),
3890 					   type, M_NOWAIT);
3891 	if (dst == NULL) {
3892 		/* XXX counter */
3893 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3894 	} else {
3895 		dst->allocations = src->sadb_lifetime_allocations;
3896 		dst->bytes = src->sadb_lifetime_bytes;
3897 		dst->addtime = src->sadb_lifetime_addtime;
3898 		dst->usetime = src->sadb_lifetime_usetime;
3899 	}
3900 	return dst;
3901 }
3902 
3903 /* compare my own address
3904  * OUT:	1: true, i.e. my address.
3905  *	0: false
3906  */
3907 int
3908 key_ismyaddr(sa)
3909 	struct sockaddr *sa;
3910 {
3911 #ifdef INET
3912 	struct sockaddr_in *sin;
3913 	struct in_ifaddr *ia;
3914 #endif
3915 
3916 	IPSEC_ASSERT(sa != NULL, ("null sockaddr"));
3917 
3918 	switch (sa->sa_family) {
3919 #ifdef INET
3920 	case AF_INET:
3921 		sin = (struct sockaddr_in *)sa;
3922 		IN_IFADDR_RLOCK();
3923 		for (ia = V_in_ifaddrhead.tqh_first; ia;
3924 		     ia = ia->ia_link.tqe_next)
3925 		{
3926 			if (sin->sin_family == ia->ia_addr.sin_family &&
3927 			    sin->sin_len == ia->ia_addr.sin_len &&
3928 			    sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
3929 			{
3930 				IN_IFADDR_RUNLOCK();
3931 				return 1;
3932 			}
3933 		}
3934 		IN_IFADDR_RUNLOCK();
3935 		break;
3936 #endif
3937 #ifdef INET6
3938 	case AF_INET6:
3939 		return key_ismyaddr6((struct sockaddr_in6 *)sa);
3940 #endif
3941 	}
3942 
3943 	return 0;
3944 }
3945 
3946 #ifdef INET6
3947 /*
3948  * compare my own address for IPv6.
3949  * 1: ours
3950  * 0: other
3951  * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
3952  */
3953 #include <netinet6/in6_var.h>
3954 
3955 static int
3956 key_ismyaddr6(sin6)
3957 	struct sockaddr_in6 *sin6;
3958 {
3959 	struct in6_ifaddr *ia;
3960 #if 0
3961 	struct in6_multi *in6m;
3962 #endif
3963 
3964 	IN6_IFADDR_RLOCK();
3965 	TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) {
3966 		if (key_sockaddrcmp((struct sockaddr *)&sin6,
3967 		    (struct sockaddr *)&ia->ia_addr, 0) == 0) {
3968 			IN6_IFADDR_RUNLOCK();
3969 			return 1;
3970 		}
3971 
3972 #if 0
3973 		/*
3974 		 * XXX Multicast
3975 		 * XXX why do we care about multlicast here while we don't care
3976 		 * about IPv4 multicast??
3977 		 * XXX scope
3978 		 */
3979 		in6m = NULL;
3980 		IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m);
3981 		if (in6m) {
3982 			IN6_IFADDR_RUNLOCK();
3983 			return 1;
3984 		}
3985 #endif
3986 	}
3987 	IN6_IFADDR_RUNLOCK();
3988 
3989 	/* loopback, just for safety */
3990 	if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
3991 		return 1;
3992 
3993 	return 0;
3994 }
3995 #endif /*INET6*/
3996 
3997 /*
3998  * compare two secasindex structure.
3999  * flag can specify to compare 2 saidxes.
4000  * compare two secasindex structure without both mode and reqid.
4001  * don't compare port.
4002  * IN:
4003  *      saidx0: source, it can be in SAD.
4004  *      saidx1: object.
4005  * OUT:
4006  *      1 : equal
4007  *      0 : not equal
4008  */
4009 static int
4010 key_cmpsaidx(
4011 	const struct secasindex *saidx0,
4012 	const struct secasindex *saidx1,
4013 	int flag)
4014 {
4015 	int chkport = 0;
4016 
4017 	/* sanity */
4018 	if (saidx0 == NULL && saidx1 == NULL)
4019 		return 1;
4020 
4021 	if (saidx0 == NULL || saidx1 == NULL)
4022 		return 0;
4023 
4024 	if (saidx0->proto != saidx1->proto)
4025 		return 0;
4026 
4027 	if (flag == CMP_EXACTLY) {
4028 		if (saidx0->mode != saidx1->mode)
4029 			return 0;
4030 		if (saidx0->reqid != saidx1->reqid)
4031 			return 0;
4032 		if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
4033 		    bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
4034 			return 0;
4035 	} else {
4036 
4037 		/* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4038 		if (flag == CMP_MODE_REQID
4039 		  ||flag == CMP_REQID) {
4040 			/*
4041 			 * If reqid of SPD is non-zero, unique SA is required.
4042 			 * The result must be of same reqid in this case.
4043 			 */
4044 			if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
4045 				return 0;
4046 		}
4047 
4048 		if (flag == CMP_MODE_REQID) {
4049 			if (saidx0->mode != IPSEC_MODE_ANY
4050 			 && saidx0->mode != saidx1->mode)
4051 				return 0;
4052 		}
4053 
4054 #ifdef IPSEC_NAT_T
4055 		/*
4056 		 * If NAT-T is enabled, check ports for tunnel mode.
4057 		 * Do not check ports if they are set to zero in the SPD.
4058 		 * Also do not do it for transport mode, as there is no
4059 		 * port information available in the SP.
4060 		 */
4061 		if (saidx1->mode == IPSEC_MODE_TUNNEL &&
4062 		    saidx1->src.sa.sa_family == AF_INET &&
4063 		    saidx1->dst.sa.sa_family == AF_INET &&
4064 		    ((const struct sockaddr_in *)(&saidx1->src))->sin_port &&
4065 		    ((const struct sockaddr_in *)(&saidx1->dst))->sin_port)
4066 			chkport = 1;
4067 #endif /* IPSEC_NAT_T */
4068 
4069 		if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, chkport) != 0) {
4070 			return 0;
4071 		}
4072 		if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, chkport) != 0) {
4073 			return 0;
4074 		}
4075 	}
4076 
4077 	return 1;
4078 }
4079 
4080 /*
4081  * compare two secindex structure exactly.
4082  * IN:
4083  *	spidx0: source, it is often in SPD.
4084  *	spidx1: object, it is often from PFKEY message.
4085  * OUT:
4086  *	1 : equal
4087  *	0 : not equal
4088  */
4089 static int
4090 key_cmpspidx_exactly(
4091 	struct secpolicyindex *spidx0,
4092 	struct secpolicyindex *spidx1)
4093 {
4094 	/* sanity */
4095 	if (spidx0 == NULL && spidx1 == NULL)
4096 		return 1;
4097 
4098 	if (spidx0 == NULL || spidx1 == NULL)
4099 		return 0;
4100 
4101 	if (spidx0->prefs != spidx1->prefs
4102 	 || spidx0->prefd != spidx1->prefd
4103 	 || spidx0->ul_proto != spidx1->ul_proto)
4104 		return 0;
4105 
4106 	return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 &&
4107 	       key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0;
4108 }
4109 
4110 /*
4111  * compare two secindex structure with mask.
4112  * IN:
4113  *	spidx0: source, it is often in SPD.
4114  *	spidx1: object, it is often from IP header.
4115  * OUT:
4116  *	1 : equal
4117  *	0 : not equal
4118  */
4119 static int
4120 key_cmpspidx_withmask(
4121 	struct secpolicyindex *spidx0,
4122 	struct secpolicyindex *spidx1)
4123 {
4124 	/* sanity */
4125 	if (spidx0 == NULL && spidx1 == NULL)
4126 		return 1;
4127 
4128 	if (spidx0 == NULL || spidx1 == NULL)
4129 		return 0;
4130 
4131 	if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4132 	    spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4133 	    spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4134 	    spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4135 		return 0;
4136 
4137 	/* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4138 	if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
4139 	 && spidx0->ul_proto != spidx1->ul_proto)
4140 		return 0;
4141 
4142 	switch (spidx0->src.sa.sa_family) {
4143 	case AF_INET:
4144 		if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
4145 		 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4146 			return 0;
4147 		if (!key_bbcmp(&spidx0->src.sin.sin_addr,
4148 		    &spidx1->src.sin.sin_addr, spidx0->prefs))
4149 			return 0;
4150 		break;
4151 	case AF_INET6:
4152 		if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
4153 		 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4154 			return 0;
4155 		/*
4156 		 * scope_id check. if sin6_scope_id is 0, we regard it
4157 		 * as a wildcard scope, which matches any scope zone ID.
4158 		 */
4159 		if (spidx0->src.sin6.sin6_scope_id &&
4160 		    spidx1->src.sin6.sin6_scope_id &&
4161 		    spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4162 			return 0;
4163 		if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
4164 		    &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4165 			return 0;
4166 		break;
4167 	default:
4168 		/* XXX */
4169 		if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4170 			return 0;
4171 		break;
4172 	}
4173 
4174 	switch (spidx0->dst.sa.sa_family) {
4175 	case AF_INET:
4176 		if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
4177 		 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4178 			return 0;
4179 		if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
4180 		    &spidx1->dst.sin.sin_addr, spidx0->prefd))
4181 			return 0;
4182 		break;
4183 	case AF_INET6:
4184 		if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
4185 		 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4186 			return 0;
4187 		/*
4188 		 * scope_id check. if sin6_scope_id is 0, we regard it
4189 		 * as a wildcard scope, which matches any scope zone ID.
4190 		 */
4191 		if (spidx0->dst.sin6.sin6_scope_id &&
4192 		    spidx1->dst.sin6.sin6_scope_id &&
4193 		    spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4194 			return 0;
4195 		if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
4196 		    &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4197 			return 0;
4198 		break;
4199 	default:
4200 		/* XXX */
4201 		if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4202 			return 0;
4203 		break;
4204 	}
4205 
4206 	/* XXX Do we check other field ?  e.g. flowinfo */
4207 
4208 	return 1;
4209 }
4210 
4211 /* returns 0 on match */
4212 static int
4213 key_sockaddrcmp(
4214 	const struct sockaddr *sa1,
4215 	const struct sockaddr *sa2,
4216 	int port)
4217 {
4218 #ifdef satosin
4219 #undef satosin
4220 #endif
4221 #define satosin(s) ((const struct sockaddr_in *)s)
4222 #ifdef satosin6
4223 #undef satosin6
4224 #endif
4225 #define satosin6(s) ((const struct sockaddr_in6 *)s)
4226 	if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
4227 		return 1;
4228 
4229 	switch (sa1->sa_family) {
4230 	case AF_INET:
4231 		if (sa1->sa_len != sizeof(struct sockaddr_in))
4232 			return 1;
4233 		if (satosin(sa1)->sin_addr.s_addr !=
4234 		    satosin(sa2)->sin_addr.s_addr) {
4235 			return 1;
4236 		}
4237 		if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port)
4238 			return 1;
4239 		break;
4240 	case AF_INET6:
4241 		if (sa1->sa_len != sizeof(struct sockaddr_in6))
4242 			return 1;	/*EINVAL*/
4243 		if (satosin6(sa1)->sin6_scope_id !=
4244 		    satosin6(sa2)->sin6_scope_id) {
4245 			return 1;
4246 		}
4247 		if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr,
4248 		    &satosin6(sa2)->sin6_addr)) {
4249 			return 1;
4250 		}
4251 		if (port &&
4252 		    satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) {
4253 			return 1;
4254 		}
4255 		break;
4256 	default:
4257 		if (bcmp(sa1, sa2, sa1->sa_len) != 0)
4258 			return 1;
4259 		break;
4260 	}
4261 
4262 	return 0;
4263 #undef satosin
4264 #undef satosin6
4265 }
4266 
4267 /*
4268  * compare two buffers with mask.
4269  * IN:
4270  *	addr1: source
4271  *	addr2: object
4272  *	bits:  Number of bits to compare
4273  * OUT:
4274  *	1 : equal
4275  *	0 : not equal
4276  */
4277 static int
4278 key_bbcmp(const void *a1, const void *a2, u_int bits)
4279 {
4280 	const unsigned char *p1 = a1;
4281 	const unsigned char *p2 = a2;
4282 
4283 	/* XXX: This could be considerably faster if we compare a word
4284 	 * at a time, but it is complicated on LSB Endian machines */
4285 
4286 	/* Handle null pointers */
4287 	if (p1 == NULL || p2 == NULL)
4288 		return (p1 == p2);
4289 
4290 	while (bits >= 8) {
4291 		if (*p1++ != *p2++)
4292 			return 0;
4293 		bits -= 8;
4294 	}
4295 
4296 	if (bits > 0) {
4297 		u_int8_t mask = ~((1<<(8-bits))-1);
4298 		if ((*p1 & mask) != (*p2 & mask))
4299 			return 0;
4300 	}
4301 	return 1;	/* Match! */
4302 }
4303 
4304 static void
4305 key_flush_spd(time_t now)
4306 {
4307 	static u_int16_t sptree_scangen = 0;
4308 	u_int16_t gen = sptree_scangen++;
4309 	struct secpolicy *sp;
4310 	u_int dir;
4311 
4312 	/* SPD */
4313 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4314 restart:
4315 		SPTREE_LOCK();
4316 		LIST_FOREACH(sp, &V_sptree[dir], chain) {
4317 			if (sp->scangen == gen)		/* previously handled */
4318 				continue;
4319 			sp->scangen = gen;
4320 			if (sp->state == IPSEC_SPSTATE_DEAD &&
4321 			    sp->refcnt == 1) {
4322 				/*
4323 				 * Ensure that we only decrease refcnt once,
4324 				 * when we're the last consumer.
4325 				 * Directly call SP_DELREF/key_delsp instead
4326 				 * of KEY_FREESP to avoid unlocking/relocking
4327 				 * SPTREE_LOCK before key_delsp: may refcnt
4328 				 * be increased again during that time ?
4329 				 * NB: also clean entries created by
4330 				 * key_spdflush
4331 				 */
4332 				SP_DELREF(sp);
4333 				key_delsp(sp);
4334 				SPTREE_UNLOCK();
4335 				goto restart;
4336 			}
4337 			if (sp->lifetime == 0 && sp->validtime == 0)
4338 				continue;
4339 			if ((sp->lifetime && now - sp->created > sp->lifetime)
4340 			 || (sp->validtime && now - sp->lastused > sp->validtime)) {
4341 				sp->state = IPSEC_SPSTATE_DEAD;
4342 				SPTREE_UNLOCK();
4343 				key_spdexpire(sp);
4344 				goto restart;
4345 			}
4346 		}
4347 		SPTREE_UNLOCK();
4348 	}
4349 }
4350 
4351 static void
4352 key_flush_sad(time_t now)
4353 {
4354 	struct secashead *sah, *nextsah;
4355 	struct secasvar *sav, *nextsav;
4356 
4357 	/* SAD */
4358 	SAHTREE_LOCK();
4359 	LIST_FOREACH_SAFE(sah, &V_sahtree, chain, nextsah) {
4360 		/* if sah has been dead, then delete it and process next sah. */
4361 		if (sah->state == SADB_SASTATE_DEAD) {
4362 			key_delsah(sah);
4363 			continue;
4364 		}
4365 
4366 		/* if LARVAL entry doesn't become MATURE, delete it. */
4367 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) {
4368 			/* Need to also check refcnt for a larval SA ??? */
4369 			if (now - sav->created > V_key_larval_lifetime)
4370 				KEY_FREESAV(&sav);
4371 		}
4372 
4373 		/*
4374 		 * check MATURE entry to start to send expire message
4375 		 * whether or not.
4376 		 */
4377 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) {
4378 			/* we don't need to check. */
4379 			if (sav->lft_s == NULL)
4380 				continue;
4381 
4382 			/* sanity check */
4383 			if (sav->lft_c == NULL) {
4384 				ipseclog((LOG_DEBUG,"%s: there is no CURRENT "
4385 					"time, why?\n", __func__));
4386 				continue;
4387 			}
4388 
4389 			/* check SOFT lifetime */
4390 			if (sav->lft_s->addtime != 0 &&
4391 			    now - sav->created > sav->lft_s->addtime) {
4392 				key_sa_chgstate(sav, SADB_SASTATE_DYING);
4393 				/*
4394 				 * Actually, only send expire message if
4395 				 * SA has been used, as it was done before,
4396 				 * but should we always send such message,
4397 				 * and let IKE daemon decide if it should be
4398 				 * renegotiated or not ?
4399 				 * XXX expire message will actually NOT be
4400 				 * sent if SA is only used after soft
4401 				 * lifetime has been reached, see below
4402 				 * (DYING state)
4403 				 */
4404 				if (sav->lft_c->usetime != 0)
4405 					key_expire(sav);
4406 			}
4407 			/* check SOFT lifetime by bytes */
4408 			/*
4409 			 * XXX I don't know the way to delete this SA
4410 			 * when new SA is installed.  Caution when it's
4411 			 * installed too big lifetime by time.
4412 			 */
4413 			else if (sav->lft_s->bytes != 0 &&
4414 			    sav->lft_s->bytes < sav->lft_c->bytes) {
4415 
4416 				key_sa_chgstate(sav, SADB_SASTATE_DYING);
4417 				/*
4418 				 * XXX If we keep to send expire
4419 				 * message in the status of
4420 				 * DYING. Do remove below code.
4421 				 */
4422 				key_expire(sav);
4423 			}
4424 		}
4425 
4426 		/* check DYING entry to change status to DEAD. */
4427 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) {
4428 			/* we don't need to check. */
4429 			if (sav->lft_h == NULL)
4430 				continue;
4431 
4432 			/* sanity check */
4433 			if (sav->lft_c == NULL) {
4434 				ipseclog((LOG_DEBUG, "%s: there is no CURRENT "
4435 					"time, why?\n", __func__));
4436 				continue;
4437 			}
4438 
4439 			if (sav->lft_h->addtime != 0 &&
4440 			    now - sav->created > sav->lft_h->addtime) {
4441 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4442 				KEY_FREESAV(&sav);
4443 			}
4444 #if 0	/* XXX Should we keep to send expire message until HARD lifetime ? */
4445 			else if (sav->lft_s != NULL
4446 			      && sav->lft_s->addtime != 0
4447 			      && now - sav->created > sav->lft_s->addtime) {
4448 				/*
4449 				 * XXX: should be checked to be
4450 				 * installed the valid SA.
4451 				 */
4452 
4453 				/*
4454 				 * If there is no SA then sending
4455 				 * expire message.
4456 				 */
4457 				key_expire(sav);
4458 			}
4459 #endif
4460 			/* check HARD lifetime by bytes */
4461 			else if (sav->lft_h->bytes != 0 &&
4462 			    sav->lft_h->bytes < sav->lft_c->bytes) {
4463 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4464 				KEY_FREESAV(&sav);
4465 			}
4466 		}
4467 
4468 		/* delete entry in DEAD */
4469 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) {
4470 			/* sanity check */
4471 			if (sav->state != SADB_SASTATE_DEAD) {
4472 				ipseclog((LOG_DEBUG, "%s: invalid sav->state "
4473 					"(queue: %d SA: %d): kill it anyway\n",
4474 					__func__,
4475 					SADB_SASTATE_DEAD, sav->state));
4476 			}
4477 			/*
4478 			 * do not call key_freesav() here.
4479 			 * sav should already be freed, and sav->refcnt
4480 			 * shows other references to sav
4481 			 * (such as from SPD).
4482 			 */
4483 		}
4484 	}
4485 	SAHTREE_UNLOCK();
4486 }
4487 
4488 static void
4489 key_flush_acq(time_t now)
4490 {
4491 	struct secacq *acq, *nextacq;
4492 
4493 	/* ACQ tree */
4494 	ACQ_LOCK();
4495 	for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) {
4496 		nextacq = LIST_NEXT(acq, chain);
4497 		if (now - acq->created > V_key_blockacq_lifetime
4498 		 && __LIST_CHAINED(acq)) {
4499 			LIST_REMOVE(acq, chain);
4500 			free(acq, M_IPSEC_SAQ);
4501 		}
4502 	}
4503 	ACQ_UNLOCK();
4504 }
4505 
4506 static void
4507 key_flush_spacq(time_t now)
4508 {
4509 	struct secspacq *acq, *nextacq;
4510 
4511 	/* SP ACQ tree */
4512 	SPACQ_LOCK();
4513 	for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) {
4514 		nextacq = LIST_NEXT(acq, chain);
4515 		if (now - acq->created > V_key_blockacq_lifetime
4516 		 && __LIST_CHAINED(acq)) {
4517 			LIST_REMOVE(acq, chain);
4518 			free(acq, M_IPSEC_SAQ);
4519 		}
4520 	}
4521 	SPACQ_UNLOCK();
4522 }
4523 
4524 /*
4525  * time handler.
4526  * scanning SPD and SAD to check status for each entries,
4527  * and do to remove or to expire.
4528  * XXX: year 2038 problem may remain.
4529  */
4530 void
4531 key_timehandler(void)
4532 {
4533 	VNET_ITERATOR_DECL(vnet_iter);
4534 	time_t now = time_second;
4535 
4536 	VNET_LIST_RLOCK_NOSLEEP();
4537 	VNET_FOREACH(vnet_iter) {
4538 		CURVNET_SET(vnet_iter);
4539 		key_flush_spd(now);
4540 		key_flush_sad(now);
4541 		key_flush_acq(now);
4542 		key_flush_spacq(now);
4543 		CURVNET_RESTORE();
4544 	}
4545 	VNET_LIST_RUNLOCK_NOSLEEP();
4546 
4547 #ifndef IPSEC_DEBUG2
4548 	/* do exchange to tick time !! */
4549 	(void)timeout((void *)key_timehandler, (void *)0, hz);
4550 #endif /* IPSEC_DEBUG2 */
4551 }
4552 
4553 u_long
4554 key_random()
4555 {
4556 	u_long value;
4557 
4558 	key_randomfill(&value, sizeof(value));
4559 	return value;
4560 }
4561 
4562 void
4563 key_randomfill(p, l)
4564 	void *p;
4565 	size_t l;
4566 {
4567 	size_t n;
4568 	u_long v;
4569 	static int warn = 1;
4570 
4571 	n = 0;
4572 	n = (size_t)read_random(p, (u_int)l);
4573 	/* last resort */
4574 	while (n < l) {
4575 		v = random();
4576 		bcopy(&v, (u_int8_t *)p + n,
4577 		    l - n < sizeof(v) ? l - n : sizeof(v));
4578 		n += sizeof(v);
4579 
4580 		if (warn) {
4581 			printf("WARNING: pseudo-random number generator "
4582 			    "used for IPsec processing\n");
4583 			warn = 0;
4584 		}
4585 	}
4586 }
4587 
4588 /*
4589  * map SADB_SATYPE_* to IPPROTO_*.
4590  * if satype == SADB_SATYPE then satype is mapped to ~0.
4591  * OUT:
4592  *	0: invalid satype.
4593  */
4594 static u_int16_t
4595 key_satype2proto(u_int8_t satype)
4596 {
4597 	switch (satype) {
4598 	case SADB_SATYPE_UNSPEC:
4599 		return IPSEC_PROTO_ANY;
4600 	case SADB_SATYPE_AH:
4601 		return IPPROTO_AH;
4602 	case SADB_SATYPE_ESP:
4603 		return IPPROTO_ESP;
4604 	case SADB_X_SATYPE_IPCOMP:
4605 		return IPPROTO_IPCOMP;
4606 	case SADB_X_SATYPE_TCPSIGNATURE:
4607 		return IPPROTO_TCP;
4608 	default:
4609 		return 0;
4610 	}
4611 	/* NOTREACHED */
4612 }
4613 
4614 /*
4615  * map IPPROTO_* to SADB_SATYPE_*
4616  * OUT:
4617  *	0: invalid protocol type.
4618  */
4619 static u_int8_t
4620 key_proto2satype(u_int16_t proto)
4621 {
4622 	switch (proto) {
4623 	case IPPROTO_AH:
4624 		return SADB_SATYPE_AH;
4625 	case IPPROTO_ESP:
4626 		return SADB_SATYPE_ESP;
4627 	case IPPROTO_IPCOMP:
4628 		return SADB_X_SATYPE_IPCOMP;
4629 	case IPPROTO_TCP:
4630 		return SADB_X_SATYPE_TCPSIGNATURE;
4631 	default:
4632 		return 0;
4633 	}
4634 	/* NOTREACHED */
4635 }
4636 
4637 /* %%% PF_KEY */
4638 /*
4639  * SADB_GETSPI processing is to receive
4640  *	<base, (SA2), src address, dst address, (SPI range)>
4641  * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4642  * tree with the status of LARVAL, and send
4643  *	<base, SA(*), address(SD)>
4644  * to the IKMPd.
4645  *
4646  * IN:	mhp: pointer to the pointer to each header.
4647  * OUT:	NULL if fail.
4648  *	other if success, return pointer to the message to send.
4649  */
4650 static int
4651 key_getspi(so, m, mhp)
4652 	struct socket *so;
4653 	struct mbuf *m;
4654 	const struct sadb_msghdr *mhp;
4655 {
4656 	struct sadb_address *src0, *dst0;
4657 	struct secasindex saidx;
4658 	struct secashead *newsah;
4659 	struct secasvar *newsav;
4660 	u_int8_t proto;
4661 	u_int32_t spi;
4662 	u_int8_t mode;
4663 	u_int32_t reqid;
4664 	int error;
4665 
4666 	IPSEC_ASSERT(so != NULL, ("null socket"));
4667 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4668 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4669 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4670 
4671 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4672 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4673 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4674 			__func__));
4675 		return key_senderror(so, m, EINVAL);
4676 	}
4677 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4678 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4679 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4680 			__func__));
4681 		return key_senderror(so, m, EINVAL);
4682 	}
4683 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4684 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4685 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4686 	} else {
4687 		mode = IPSEC_MODE_ANY;
4688 		reqid = 0;
4689 	}
4690 
4691 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4692 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4693 
4694 	/* map satype to proto */
4695 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4696 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4697 			__func__));
4698 		return key_senderror(so, m, EINVAL);
4699 	}
4700 
4701 	/*
4702 	 * Make sure the port numbers are zero.
4703 	 * In case of NAT-T we will update them later if needed.
4704 	 */
4705 	switch (((struct sockaddr *)(src0 + 1))->sa_family) {
4706 	case AF_INET:
4707 		if (((struct sockaddr *)(src0 + 1))->sa_len !=
4708 		    sizeof(struct sockaddr_in))
4709 			return key_senderror(so, m, EINVAL);
4710 		((struct sockaddr_in *)(src0 + 1))->sin_port = 0;
4711 		break;
4712 	case AF_INET6:
4713 		if (((struct sockaddr *)(src0 + 1))->sa_len !=
4714 		    sizeof(struct sockaddr_in6))
4715 			return key_senderror(so, m, EINVAL);
4716 		((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0;
4717 		break;
4718 	default:
4719 		; /*???*/
4720 	}
4721 	switch (((struct sockaddr *)(dst0 + 1))->sa_family) {
4722 	case AF_INET:
4723 		if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4724 		    sizeof(struct sockaddr_in))
4725 			return key_senderror(so, m, EINVAL);
4726 		((struct sockaddr_in *)(dst0 + 1))->sin_port = 0;
4727 		break;
4728 	case AF_INET6:
4729 		if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4730 		    sizeof(struct sockaddr_in6))
4731 			return key_senderror(so, m, EINVAL);
4732 		((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0;
4733 		break;
4734 	default:
4735 		; /*???*/
4736 	}
4737 
4738 	/* XXX boundary check against sa_len */
4739 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4740 
4741 #ifdef IPSEC_NAT_T
4742 	/*
4743 	 * Handle NAT-T info if present.
4744 	 * We made sure the port numbers are zero above, so we do
4745 	 * not have to worry in case we do not update them.
4746 	 */
4747 	if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
4748 		ipseclog((LOG_DEBUG, "%s: NAT-T OAi present\n", __func__));
4749 	if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
4750 		ipseclog((LOG_DEBUG, "%s: NAT-T OAr present\n", __func__));
4751 
4752 	if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
4753 	    mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
4754 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
4755 		struct sadb_x_nat_t_type *type;
4756 		struct sadb_x_nat_t_port *sport, *dport;
4757 
4758 		if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
4759 		    mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
4760 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
4761 			ipseclog((LOG_DEBUG, "%s: invalid nat-t message "
4762 			    "passed.\n", __func__));
4763 			return key_senderror(so, m, EINVAL);
4764 		}
4765 
4766 		sport = (struct sadb_x_nat_t_port *)
4767 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
4768 		dport = (struct sadb_x_nat_t_port *)
4769 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
4770 
4771 		if (sport)
4772 			KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port);
4773 		if (dport)
4774 			KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port);
4775 	}
4776 #endif
4777 
4778 	/* SPI allocation */
4779 	spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4780 	                       &saidx);
4781 	if (spi == 0)
4782 		return key_senderror(so, m, EINVAL);
4783 
4784 	/* get a SA index */
4785 	if ((newsah = key_getsah(&saidx)) == NULL) {
4786 		/* create a new SA index */
4787 		if ((newsah = key_newsah(&saidx)) == NULL) {
4788 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
4789 			return key_senderror(so, m, ENOBUFS);
4790 		}
4791 	}
4792 
4793 	/* get a new SA */
4794 	/* XXX rewrite */
4795 	newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4796 	if (newsav == NULL) {
4797 		/* XXX don't free new SA index allocated in above. */
4798 		return key_senderror(so, m, error);
4799 	}
4800 
4801 	/* set spi */
4802 	newsav->spi = htonl(spi);
4803 
4804 	/* delete the entry in acqtree */
4805 	if (mhp->msg->sadb_msg_seq != 0) {
4806 		struct secacq *acq;
4807 		if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) {
4808 			/* reset counter in order to deletion by timehandler. */
4809 			acq->created = time_second;
4810 			acq->count = 0;
4811 		}
4812     	}
4813 
4814     {
4815 	struct mbuf *n, *nn;
4816 	struct sadb_sa *m_sa;
4817 	struct sadb_msg *newmsg;
4818 	int off, len;
4819 
4820 	/* create new sadb_msg to reply. */
4821 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4822 	    PFKEY_ALIGN8(sizeof(struct sadb_sa));
4823 
4824 	MGETHDR(n, M_DONTWAIT, MT_DATA);
4825 	if (len > MHLEN) {
4826 		MCLGET(n, M_DONTWAIT);
4827 		if ((n->m_flags & M_EXT) == 0) {
4828 			m_freem(n);
4829 			n = NULL;
4830 		}
4831 	}
4832 	if (!n)
4833 		return key_senderror(so, m, ENOBUFS);
4834 
4835 	n->m_len = len;
4836 	n->m_next = NULL;
4837 	off = 0;
4838 
4839 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
4840 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4841 
4842 	m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off);
4843 	m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4844 	m_sa->sadb_sa_exttype = SADB_EXT_SA;
4845 	m_sa->sadb_sa_spi = htonl(spi);
4846 	off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4847 
4848 	IPSEC_ASSERT(off == len,
4849 		("length inconsistency (off %u len %u)", off, len));
4850 
4851 	n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4852 	    SADB_EXT_ADDRESS_DST);
4853 	if (!n->m_next) {
4854 		m_freem(n);
4855 		return key_senderror(so, m, ENOBUFS);
4856 	}
4857 
4858 	if (n->m_len < sizeof(struct sadb_msg)) {
4859 		n = m_pullup(n, sizeof(struct sadb_msg));
4860 		if (n == NULL)
4861 			return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
4862 	}
4863 
4864 	n->m_pkthdr.len = 0;
4865 	for (nn = n; nn; nn = nn->m_next)
4866 		n->m_pkthdr.len += nn->m_len;
4867 
4868 	newmsg = mtod(n, struct sadb_msg *);
4869 	newmsg->sadb_msg_seq = newsav->seq;
4870 	newmsg->sadb_msg_errno = 0;
4871 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
4872 
4873 	m_freem(m);
4874 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
4875     }
4876 }
4877 
4878 /*
4879  * allocating new SPI
4880  * called by key_getspi().
4881  * OUT:
4882  *	0:	failure.
4883  *	others: success.
4884  */
4885 static u_int32_t
4886 key_do_getnewspi(spirange, saidx)
4887 	struct sadb_spirange *spirange;
4888 	struct secasindex *saidx;
4889 {
4890 	u_int32_t newspi;
4891 	u_int32_t min, max;
4892 	int count = V_key_spi_trycnt;
4893 
4894 	/* set spi range to allocate */
4895 	if (spirange != NULL) {
4896 		min = spirange->sadb_spirange_min;
4897 		max = spirange->sadb_spirange_max;
4898 	} else {
4899 		min = V_key_spi_minval;
4900 		max = V_key_spi_maxval;
4901 	}
4902 	/* IPCOMP needs 2-byte SPI */
4903 	if (saidx->proto == IPPROTO_IPCOMP) {
4904 		u_int32_t t;
4905 		if (min >= 0x10000)
4906 			min = 0xffff;
4907 		if (max >= 0x10000)
4908 			max = 0xffff;
4909 		if (min > max) {
4910 			t = min; min = max; max = t;
4911 		}
4912 	}
4913 
4914 	if (min == max) {
4915 		if (key_checkspidup(saidx, min) != NULL) {
4916 			ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n",
4917 				__func__, min));
4918 			return 0;
4919 		}
4920 
4921 		count--; /* taking one cost. */
4922 		newspi = min;
4923 
4924 	} else {
4925 
4926 		/* init SPI */
4927 		newspi = 0;
4928 
4929 		/* when requesting to allocate spi ranged */
4930 		while (count--) {
4931 			/* generate pseudo-random SPI value ranged. */
4932 			newspi = min + (key_random() % (max - min + 1));
4933 
4934 			if (key_checkspidup(saidx, newspi) == NULL)
4935 				break;
4936 		}
4937 
4938 		if (count == 0 || newspi == 0) {
4939 			ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n",
4940 				__func__));
4941 			return 0;
4942 		}
4943 	}
4944 
4945 	/* statistics */
4946 	keystat.getspi_count =
4947 		(keystat.getspi_count + V_key_spi_trycnt - count) / 2;
4948 
4949 	return newspi;
4950 }
4951 
4952 /*
4953  * SADB_UPDATE processing
4954  * receive
4955  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4956  *       key(AE), (identity(SD),) (sensitivity)>
4957  * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
4958  * and send
4959  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4960  *       (identity(SD),) (sensitivity)>
4961  * to the ikmpd.
4962  *
4963  * m will always be freed.
4964  */
4965 static int
4966 key_update(so, m, mhp)
4967 	struct socket *so;
4968 	struct mbuf *m;
4969 	const struct sadb_msghdr *mhp;
4970 {
4971 	struct sadb_sa *sa0;
4972 	struct sadb_address *src0, *dst0;
4973 #ifdef IPSEC_NAT_T
4974 	struct sadb_x_nat_t_type *type;
4975 	struct sadb_x_nat_t_port *sport, *dport;
4976 	struct sadb_address *iaddr, *raddr;
4977 	struct sadb_x_nat_t_frag *frag;
4978 #endif
4979 	struct secasindex saidx;
4980 	struct secashead *sah;
4981 	struct secasvar *sav;
4982 	u_int16_t proto;
4983 	u_int8_t mode;
4984 	u_int32_t reqid;
4985 	int error;
4986 
4987 	IPSEC_ASSERT(so != NULL, ("null socket"));
4988 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4989 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4990 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4991 
4992 	/* map satype to proto */
4993 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4994 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4995 			__func__));
4996 		return key_senderror(so, m, EINVAL);
4997 	}
4998 
4999 	if (mhp->ext[SADB_EXT_SA] == NULL ||
5000 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5001 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5002 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5003 	     mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5004 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5005 	     mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5006 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5007 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5008 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5009 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5010 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5011 			__func__));
5012 		return key_senderror(so, m, EINVAL);
5013 	}
5014 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5015 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5016 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5017 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5018 			__func__));
5019 		return key_senderror(so, m, EINVAL);
5020 	}
5021 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5022 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5023 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5024 	} else {
5025 		mode = IPSEC_MODE_ANY;
5026 		reqid = 0;
5027 	}
5028 	/* XXX boundary checking for other extensions */
5029 
5030 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5031 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5032 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5033 
5034 	/* XXX boundary check against sa_len */
5035 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5036 
5037 	/*
5038 	 * Make sure the port numbers are zero.
5039 	 * In case of NAT-T we will update them later if needed.
5040 	 */
5041 	KEY_PORTTOSADDR(&saidx.src, 0);
5042 	KEY_PORTTOSADDR(&saidx.dst, 0);
5043 
5044 #ifdef IPSEC_NAT_T
5045 	/*
5046 	 * Handle NAT-T info if present.
5047 	 */
5048 	if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
5049 	    mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5050 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5051 
5052 		if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
5053 		    mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5054 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5055 			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5056 			    __func__));
5057 			return key_senderror(so, m, EINVAL);
5058 		}
5059 
5060 		type = (struct sadb_x_nat_t_type *)
5061 		    mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5062 		sport = (struct sadb_x_nat_t_port *)
5063 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5064 		dport = (struct sadb_x_nat_t_port *)
5065 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5066 	} else {
5067 		type = 0;
5068 		sport = dport = 0;
5069 	}
5070 	if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL &&
5071 	    mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5072 		if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) ||
5073 		    mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5074 			ipseclog((LOG_DEBUG, "%s: invalid message\n",
5075 			    __func__));
5076 			return key_senderror(so, m, EINVAL);
5077 		}
5078 		iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5079 		raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5080 		ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__));
5081 	} else {
5082 		iaddr = raddr = NULL;
5083 	}
5084 	if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5085 		if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5086 			ipseclog((LOG_DEBUG, "%s: invalid message\n",
5087 			    __func__));
5088 			return key_senderror(so, m, EINVAL);
5089 		}
5090 		frag = (struct sadb_x_nat_t_frag *)
5091 		    mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5092 	} else {
5093 		frag = 0;
5094 	}
5095 #endif
5096 
5097 	/* get a SA header */
5098 	if ((sah = key_getsah(&saidx)) == NULL) {
5099 		ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__));
5100 		return key_senderror(so, m, ENOENT);
5101 	}
5102 
5103 	/* set spidx if there */
5104 	/* XXX rewrite */
5105 	error = key_setident(sah, m, mhp);
5106 	if (error)
5107 		return key_senderror(so, m, error);
5108 
5109 	/* find a SA with sequence number. */
5110 #ifdef IPSEC_DOSEQCHECK
5111 	if (mhp->msg->sadb_msg_seq != 0
5112 	 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) {
5113 		ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u "
5114 			"exists.\n", __func__, mhp->msg->sadb_msg_seq));
5115 		return key_senderror(so, m, ENOENT);
5116 	}
5117 #else
5118 	SAHTREE_LOCK();
5119 	sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5120 	SAHTREE_UNLOCK();
5121 	if (sav == NULL) {
5122 		ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n",
5123 			__func__, (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5124 		return key_senderror(so, m, EINVAL);
5125 	}
5126 #endif
5127 
5128 	/* validity check */
5129 	if (sav->sah->saidx.proto != proto) {
5130 		ipseclog((LOG_DEBUG, "%s: protocol mismatched "
5131 			"(DB=%u param=%u)\n", __func__,
5132 			sav->sah->saidx.proto, proto));
5133 		return key_senderror(so, m, EINVAL);
5134 	}
5135 #ifdef IPSEC_DOSEQCHECK
5136 	if (sav->spi != sa0->sadb_sa_spi) {
5137 		ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n",
5138 		    __func__,
5139 		    (u_int32_t)ntohl(sav->spi),
5140 		    (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5141 		return key_senderror(so, m, EINVAL);
5142 	}
5143 #endif
5144 	if (sav->pid != mhp->msg->sadb_msg_pid) {
5145 		ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n",
5146 		    __func__, sav->pid, mhp->msg->sadb_msg_pid));
5147 		return key_senderror(so, m, EINVAL);
5148 	}
5149 
5150 	/* copy sav values */
5151 	error = key_setsaval(sav, m, mhp);
5152 	if (error) {
5153 		KEY_FREESAV(&sav);
5154 		return key_senderror(so, m, error);
5155 	}
5156 
5157 #ifdef IPSEC_NAT_T
5158 	/*
5159 	 * Handle more NAT-T info if present,
5160 	 * now that we have a sav to fill.
5161 	 */
5162 	if (type)
5163 		sav->natt_type = type->sadb_x_nat_t_type_type;
5164 
5165 	if (sport)
5166 		KEY_PORTTOSADDR(&sav->sah->saidx.src,
5167 		    sport->sadb_x_nat_t_port_port);
5168 	if (dport)
5169 		KEY_PORTTOSADDR(&sav->sah->saidx.dst,
5170 		    dport->sadb_x_nat_t_port_port);
5171 
5172 #if 0
5173 	/*
5174 	 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0.
5175 	 * We should actually check for a minimum MTU here, if we
5176 	 * want to support it in ip_output.
5177 	 */
5178 	if (frag)
5179 		sav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen;
5180 #endif
5181 #endif
5182 
5183 	/* check SA values to be mature. */
5184 	if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) {
5185 		KEY_FREESAV(&sav);
5186 		return key_senderror(so, m, 0);
5187 	}
5188 
5189     {
5190 	struct mbuf *n;
5191 
5192 	/* set msg buf from mhp */
5193 	n = key_getmsgbuf_x1(m, mhp);
5194 	if (n == NULL) {
5195 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5196 		return key_senderror(so, m, ENOBUFS);
5197 	}
5198 
5199 	m_freem(m);
5200 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5201     }
5202 }
5203 
5204 /*
5205  * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5206  * only called by key_update().
5207  * OUT:
5208  *	NULL	: not found
5209  *	others	: found, pointer to a SA.
5210  */
5211 #ifdef IPSEC_DOSEQCHECK
5212 static struct secasvar *
5213 key_getsavbyseq(sah, seq)
5214 	struct secashead *sah;
5215 	u_int32_t seq;
5216 {
5217 	struct secasvar *sav;
5218 	u_int state;
5219 
5220 	state = SADB_SASTATE_LARVAL;
5221 
5222 	/* search SAD with sequence number ? */
5223 	LIST_FOREACH(sav, &sah->savtree[state], chain) {
5224 
5225 		KEY_CHKSASTATE(state, sav->state, __func__);
5226 
5227 		if (sav->seq == seq) {
5228 			sa_addref(sav);
5229 			KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
5230 				printf("DP %s cause refcnt++:%d SA:%p\n",
5231 					__func__, sav->refcnt, sav));
5232 			return sav;
5233 		}
5234 	}
5235 
5236 	return NULL;
5237 }
5238 #endif
5239 
5240 /*
5241  * SADB_ADD processing
5242  * add an entry to SA database, when received
5243  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5244  *       key(AE), (identity(SD),) (sensitivity)>
5245  * from the ikmpd,
5246  * and send
5247  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5248  *       (identity(SD),) (sensitivity)>
5249  * to the ikmpd.
5250  *
5251  * IGNORE identity and sensitivity messages.
5252  *
5253  * m will always be freed.
5254  */
5255 static int
5256 key_add(so, m, mhp)
5257 	struct socket *so;
5258 	struct mbuf *m;
5259 	const struct sadb_msghdr *mhp;
5260 {
5261 	struct sadb_sa *sa0;
5262 	struct sadb_address *src0, *dst0;
5263 #ifdef IPSEC_NAT_T
5264 	struct sadb_x_nat_t_type *type;
5265 	struct sadb_address *iaddr, *raddr;
5266 	struct sadb_x_nat_t_frag *frag;
5267 #endif
5268 	struct secasindex saidx;
5269 	struct secashead *newsah;
5270 	struct secasvar *newsav;
5271 	u_int16_t proto;
5272 	u_int8_t mode;
5273 	u_int32_t reqid;
5274 	int error;
5275 
5276 	IPSEC_ASSERT(so != NULL, ("null socket"));
5277 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5278 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5279 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5280 
5281 	/* map satype to proto */
5282 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5283 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5284 			__func__));
5285 		return key_senderror(so, m, EINVAL);
5286 	}
5287 
5288 	if (mhp->ext[SADB_EXT_SA] == NULL ||
5289 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5290 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5291 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5292 	     mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5293 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5294 	     mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5295 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5296 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5297 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5298 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5299 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5300 			__func__));
5301 		return key_senderror(so, m, EINVAL);
5302 	}
5303 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5304 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5305 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5306 		/* XXX need more */
5307 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5308 			__func__));
5309 		return key_senderror(so, m, EINVAL);
5310 	}
5311 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5312 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5313 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5314 	} else {
5315 		mode = IPSEC_MODE_ANY;
5316 		reqid = 0;
5317 	}
5318 
5319 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5320 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5321 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5322 
5323 	/* XXX boundary check against sa_len */
5324 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5325 
5326 	/*
5327 	 * Make sure the port numbers are zero.
5328 	 * In case of NAT-T we will update them later if needed.
5329 	 */
5330 	KEY_PORTTOSADDR(&saidx.src, 0);
5331 	KEY_PORTTOSADDR(&saidx.dst, 0);
5332 
5333 #ifdef IPSEC_NAT_T
5334 	/*
5335 	 * Handle NAT-T info if present.
5336 	 */
5337 	if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
5338 	    mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5339 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5340 		struct sadb_x_nat_t_port *sport, *dport;
5341 
5342 		if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
5343 		    mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5344 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5345 			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5346 			    __func__));
5347 			return key_senderror(so, m, EINVAL);
5348 		}
5349 
5350 		type = (struct sadb_x_nat_t_type *)
5351 		    mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5352 		sport = (struct sadb_x_nat_t_port *)
5353 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5354 		dport = (struct sadb_x_nat_t_port *)
5355 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5356 
5357 		if (sport)
5358 			KEY_PORTTOSADDR(&saidx.src,
5359 			    sport->sadb_x_nat_t_port_port);
5360 		if (dport)
5361 			KEY_PORTTOSADDR(&saidx.dst,
5362 			    dport->sadb_x_nat_t_port_port);
5363 	} else {
5364 		type = 0;
5365 	}
5366 	if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL &&
5367 	    mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5368 		if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) ||
5369 		    mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5370 			ipseclog((LOG_DEBUG, "%s: invalid message\n",
5371 			    __func__));
5372 			return key_senderror(so, m, EINVAL);
5373 		}
5374 		iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5375 		raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5376 		ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__));
5377 	} else {
5378 		iaddr = raddr = NULL;
5379 	}
5380 	if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5381 		if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5382 			ipseclog((LOG_DEBUG, "%s: invalid message\n",
5383 			    __func__));
5384 			return key_senderror(so, m, EINVAL);
5385 		}
5386 		frag = (struct sadb_x_nat_t_frag *)
5387 		    mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5388 	} else {
5389 		frag = 0;
5390 	}
5391 #endif
5392 
5393 	/* get a SA header */
5394 	if ((newsah = key_getsah(&saidx)) == NULL) {
5395 		/* create a new SA header */
5396 		if ((newsah = key_newsah(&saidx)) == NULL) {
5397 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
5398 			return key_senderror(so, m, ENOBUFS);
5399 		}
5400 	}
5401 
5402 	/* set spidx if there */
5403 	/* XXX rewrite */
5404 	error = key_setident(newsah, m, mhp);
5405 	if (error) {
5406 		return key_senderror(so, m, error);
5407 	}
5408 
5409 	/* create new SA entry. */
5410 	/* We can create new SA only if SPI is differenct. */
5411 	SAHTREE_LOCK();
5412 	newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi);
5413 	SAHTREE_UNLOCK();
5414 	if (newsav != NULL) {
5415 		ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__));
5416 		return key_senderror(so, m, EEXIST);
5417 	}
5418 	newsav = KEY_NEWSAV(m, mhp, newsah, &error);
5419 	if (newsav == NULL) {
5420 		return key_senderror(so, m, error);
5421 	}
5422 
5423 #ifdef IPSEC_NAT_T
5424 	/*
5425 	 * Handle more NAT-T info if present,
5426 	 * now that we have a sav to fill.
5427 	 */
5428 	if (type)
5429 		newsav->natt_type = type->sadb_x_nat_t_type_type;
5430 
5431 #if 0
5432 	/*
5433 	 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0.
5434 	 * We should actually check for a minimum MTU here, if we
5435 	 * want to support it in ip_output.
5436 	 */
5437 	if (frag)
5438 		newsav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen;
5439 #endif
5440 #endif
5441 
5442 	/* check SA values to be mature. */
5443 	if ((error = key_mature(newsav)) != 0) {
5444 		KEY_FREESAV(&newsav);
5445 		return key_senderror(so, m, error);
5446 	}
5447 
5448 	/*
5449 	 * don't call key_freesav() here, as we would like to keep the SA
5450 	 * in the database on success.
5451 	 */
5452 
5453     {
5454 	struct mbuf *n;
5455 
5456 	/* set msg buf from mhp */
5457 	n = key_getmsgbuf_x1(m, mhp);
5458 	if (n == NULL) {
5459 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5460 		return key_senderror(so, m, ENOBUFS);
5461 	}
5462 
5463 	m_freem(m);
5464 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5465     }
5466 }
5467 
5468 /* m is retained */
5469 static int
5470 key_setident(sah, m, mhp)
5471 	struct secashead *sah;
5472 	struct mbuf *m;
5473 	const struct sadb_msghdr *mhp;
5474 {
5475 	const struct sadb_ident *idsrc, *iddst;
5476 	int idsrclen, iddstlen;
5477 
5478 	IPSEC_ASSERT(sah != NULL, ("null secashead"));
5479 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5480 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5481 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5482 
5483 	/* don't make buffer if not there */
5484 	if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5485 	    mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5486 		sah->idents = NULL;
5487 		sah->identd = NULL;
5488 		return 0;
5489 	}
5490 
5491 	if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5492 	    mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5493 		ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__));
5494 		return EINVAL;
5495 	}
5496 
5497 	idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5498 	iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5499 	idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5500 	iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5501 
5502 	/* validity check */
5503 	if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5504 		ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__));
5505 		return EINVAL;
5506 	}
5507 
5508 	switch (idsrc->sadb_ident_type) {
5509 	case SADB_IDENTTYPE_PREFIX:
5510 	case SADB_IDENTTYPE_FQDN:
5511 	case SADB_IDENTTYPE_USERFQDN:
5512 	default:
5513 		/* XXX do nothing */
5514 		sah->idents = NULL;
5515 		sah->identd = NULL;
5516 	 	return 0;
5517 	}
5518 
5519 	/* make structure */
5520 	sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5521 	if (sah->idents == NULL) {
5522 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5523 		return ENOBUFS;
5524 	}
5525 	sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5526 	if (sah->identd == NULL) {
5527 		free(sah->idents, M_IPSEC_MISC);
5528 		sah->idents = NULL;
5529 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5530 		return ENOBUFS;
5531 	}
5532 	sah->idents->type = idsrc->sadb_ident_type;
5533 	sah->idents->id = idsrc->sadb_ident_id;
5534 
5535 	sah->identd->type = iddst->sadb_ident_type;
5536 	sah->identd->id = iddst->sadb_ident_id;
5537 
5538 	return 0;
5539 }
5540 
5541 /*
5542  * m will not be freed on return.
5543  * it is caller's responsibility to free the result.
5544  */
5545 static struct mbuf *
5546 key_getmsgbuf_x1(m, mhp)
5547 	struct mbuf *m;
5548 	const struct sadb_msghdr *mhp;
5549 {
5550 	struct mbuf *n;
5551 
5552 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5553 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5554 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5555 
5556 	/* create new sadb_msg to reply. */
5557 	n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED,
5558 	    SADB_EXT_SA, SADB_X_EXT_SA2,
5559 	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5560 	    SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5561 	    SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST);
5562 	if (!n)
5563 		return NULL;
5564 
5565 	if (n->m_len < sizeof(struct sadb_msg)) {
5566 		n = m_pullup(n, sizeof(struct sadb_msg));
5567 		if (n == NULL)
5568 			return NULL;
5569 	}
5570 	mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5571 	mtod(n, struct sadb_msg *)->sadb_msg_len =
5572 	    PFKEY_UNIT64(n->m_pkthdr.len);
5573 
5574 	return n;
5575 }
5576 
5577 static int key_delete_all __P((struct socket *, struct mbuf *,
5578 	const struct sadb_msghdr *, u_int16_t));
5579 
5580 /*
5581  * SADB_DELETE processing
5582  * receive
5583  *   <base, SA(*), address(SD)>
5584  * from the ikmpd, and set SADB_SASTATE_DEAD,
5585  * and send,
5586  *   <base, SA(*), address(SD)>
5587  * to the ikmpd.
5588  *
5589  * m will always be freed.
5590  */
5591 static int
5592 key_delete(so, m, mhp)
5593 	struct socket *so;
5594 	struct mbuf *m;
5595 	const struct sadb_msghdr *mhp;
5596 {
5597 	struct sadb_sa *sa0;
5598 	struct sadb_address *src0, *dst0;
5599 	struct secasindex saidx;
5600 	struct secashead *sah;
5601 	struct secasvar *sav = NULL;
5602 	u_int16_t proto;
5603 
5604 	IPSEC_ASSERT(so != NULL, ("null socket"));
5605 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5606 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5607 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5608 
5609 	/* map satype to proto */
5610 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5611 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5612 			__func__));
5613 		return key_senderror(so, m, EINVAL);
5614 	}
5615 
5616 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5617 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5618 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5619 			__func__));
5620 		return key_senderror(so, m, EINVAL);
5621 	}
5622 
5623 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5624 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5625 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5626 			__func__));
5627 		return key_senderror(so, m, EINVAL);
5628 	}
5629 
5630 	if (mhp->ext[SADB_EXT_SA] == NULL) {
5631 		/*
5632 		 * Caller wants us to delete all non-LARVAL SAs
5633 		 * that match the src/dst.  This is used during
5634 		 * IKE INITIAL-CONTACT.
5635 		 */
5636 		ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__));
5637 		return key_delete_all(so, m, mhp, proto);
5638 	} else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5639 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5640 			__func__));
5641 		return key_senderror(so, m, EINVAL);
5642 	}
5643 
5644 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5645 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5646 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5647 
5648 	/* XXX boundary check against sa_len */
5649 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5650 
5651 	/*
5652 	 * Make sure the port numbers are zero.
5653 	 * In case of NAT-T we will update them later if needed.
5654 	 */
5655 	KEY_PORTTOSADDR(&saidx.src, 0);
5656 	KEY_PORTTOSADDR(&saidx.dst, 0);
5657 
5658 #ifdef IPSEC_NAT_T
5659 	/*
5660 	 * Handle NAT-T info if present.
5661 	 */
5662 	if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5663 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5664 		struct sadb_x_nat_t_port *sport, *dport;
5665 
5666 		if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5667 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5668 			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5669 			    __func__));
5670 			return key_senderror(so, m, EINVAL);
5671 		}
5672 
5673 		sport = (struct sadb_x_nat_t_port *)
5674 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5675 		dport = (struct sadb_x_nat_t_port *)
5676 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5677 
5678 		if (sport)
5679 			KEY_PORTTOSADDR(&saidx.src,
5680 			    sport->sadb_x_nat_t_port_port);
5681 		if (dport)
5682 			KEY_PORTTOSADDR(&saidx.dst,
5683 			    dport->sadb_x_nat_t_port_port);
5684 	}
5685 #endif
5686 
5687 	/* get a SA header */
5688 	SAHTREE_LOCK();
5689 	LIST_FOREACH(sah, &V_sahtree, chain) {
5690 		if (sah->state == SADB_SASTATE_DEAD)
5691 			continue;
5692 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5693 			continue;
5694 
5695 		/* get a SA with SPI. */
5696 		sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5697 		if (sav)
5698 			break;
5699 	}
5700 	if (sah == NULL) {
5701 		SAHTREE_UNLOCK();
5702 		ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5703 		return key_senderror(so, m, ENOENT);
5704 	}
5705 
5706 	key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5707 	KEY_FREESAV(&sav);
5708 	SAHTREE_UNLOCK();
5709 
5710     {
5711 	struct mbuf *n;
5712 	struct sadb_msg *newmsg;
5713 
5714 	/* create new sadb_msg to reply. */
5715 	/* XXX-BZ NAT-T extensions? */
5716 	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5717 	    SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5718 	if (!n)
5719 		return key_senderror(so, m, ENOBUFS);
5720 
5721 	if (n->m_len < sizeof(struct sadb_msg)) {
5722 		n = m_pullup(n, sizeof(struct sadb_msg));
5723 		if (n == NULL)
5724 			return key_senderror(so, m, ENOBUFS);
5725 	}
5726 	newmsg = mtod(n, struct sadb_msg *);
5727 	newmsg->sadb_msg_errno = 0;
5728 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5729 
5730 	m_freem(m);
5731 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5732     }
5733 }
5734 
5735 /*
5736  * delete all SAs for src/dst.  Called from key_delete().
5737  */
5738 static int
5739 key_delete_all(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp,
5740     u_int16_t proto)
5741 {
5742 	struct sadb_address *src0, *dst0;
5743 	struct secasindex saidx;
5744 	struct secashead *sah;
5745 	struct secasvar *sav, *nextsav;
5746 	u_int stateidx, state;
5747 
5748 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5749 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5750 
5751 	/* XXX boundary check against sa_len */
5752 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5753 
5754 	/*
5755 	 * Make sure the port numbers are zero.
5756 	 * In case of NAT-T we will update them later if needed.
5757 	 */
5758 	KEY_PORTTOSADDR(&saidx.src, 0);
5759 	KEY_PORTTOSADDR(&saidx.dst, 0);
5760 
5761 #ifdef IPSEC_NAT_T
5762 	/*
5763 	 * Handle NAT-T info if present.
5764 	 */
5765 
5766 	if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5767 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5768 		struct sadb_x_nat_t_port *sport, *dport;
5769 
5770 		if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5771 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5772 			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5773 			    __func__));
5774 			return key_senderror(so, m, EINVAL);
5775 		}
5776 
5777 		sport = (struct sadb_x_nat_t_port *)
5778 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5779 		dport = (struct sadb_x_nat_t_port *)
5780 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5781 
5782 		if (sport)
5783 			KEY_PORTTOSADDR(&saidx.src,
5784 			    sport->sadb_x_nat_t_port_port);
5785 		if (dport)
5786 			KEY_PORTTOSADDR(&saidx.dst,
5787 			    dport->sadb_x_nat_t_port_port);
5788 	}
5789 #endif
5790 
5791 	SAHTREE_LOCK();
5792 	LIST_FOREACH(sah, &V_sahtree, chain) {
5793 		if (sah->state == SADB_SASTATE_DEAD)
5794 			continue;
5795 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5796 			continue;
5797 
5798 		/* Delete all non-LARVAL SAs. */
5799 		for (stateidx = 0;
5800 		     stateidx < _ARRAYLEN(saorder_state_alive);
5801 		     stateidx++) {
5802 			state = saorder_state_alive[stateidx];
5803 			if (state == SADB_SASTATE_LARVAL)
5804 				continue;
5805 			for (sav = LIST_FIRST(&sah->savtree[state]);
5806 			     sav != NULL; sav = nextsav) {
5807 				nextsav = LIST_NEXT(sav, chain);
5808 				/* sanity check */
5809 				if (sav->state != state) {
5810 					ipseclog((LOG_DEBUG, "%s: invalid "
5811 						"sav->state (queue %d SA %d)\n",
5812 						__func__, state, sav->state));
5813 					continue;
5814 				}
5815 
5816 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5817 				KEY_FREESAV(&sav);
5818 			}
5819 		}
5820 	}
5821 	SAHTREE_UNLOCK();
5822     {
5823 	struct mbuf *n;
5824 	struct sadb_msg *newmsg;
5825 
5826 	/* create new sadb_msg to reply. */
5827 	/* XXX-BZ NAT-T extensions? */
5828 	n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5829 	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5830 	if (!n)
5831 		return key_senderror(so, m, ENOBUFS);
5832 
5833 	if (n->m_len < sizeof(struct sadb_msg)) {
5834 		n = m_pullup(n, sizeof(struct sadb_msg));
5835 		if (n == NULL)
5836 			return key_senderror(so, m, ENOBUFS);
5837 	}
5838 	newmsg = mtod(n, struct sadb_msg *);
5839 	newmsg->sadb_msg_errno = 0;
5840 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5841 
5842 	m_freem(m);
5843 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5844     }
5845 }
5846 
5847 /*
5848  * SADB_GET processing
5849  * receive
5850  *   <base, SA(*), address(SD)>
5851  * from the ikmpd, and get a SP and a SA to respond,
5852  * and send,
5853  *   <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5854  *       (identity(SD),) (sensitivity)>
5855  * to the ikmpd.
5856  *
5857  * m will always be freed.
5858  */
5859 static int
5860 key_get(so, m, mhp)
5861 	struct socket *so;
5862 	struct mbuf *m;
5863 	const struct sadb_msghdr *mhp;
5864 {
5865 	struct sadb_sa *sa0;
5866 	struct sadb_address *src0, *dst0;
5867 	struct secasindex saidx;
5868 	struct secashead *sah;
5869 	struct secasvar *sav = NULL;
5870 	u_int16_t proto;
5871 
5872 	IPSEC_ASSERT(so != NULL, ("null socket"));
5873 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5874 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5875 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5876 
5877 	/* map satype to proto */
5878 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5879 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5880 			__func__));
5881 		return key_senderror(so, m, EINVAL);
5882 	}
5883 
5884 	if (mhp->ext[SADB_EXT_SA] == NULL ||
5885 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5886 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5887 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5888 			__func__));
5889 		return key_senderror(so, m, EINVAL);
5890 	}
5891 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5892 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5893 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5894 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5895 			__func__));
5896 		return key_senderror(so, m, EINVAL);
5897 	}
5898 
5899 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5900 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5901 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5902 
5903 	/* XXX boundary check against sa_len */
5904 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5905 
5906 	/*
5907 	 * Make sure the port numbers are zero.
5908 	 * In case of NAT-T we will update them later if needed.
5909 	 */
5910 	KEY_PORTTOSADDR(&saidx.src, 0);
5911 	KEY_PORTTOSADDR(&saidx.dst, 0);
5912 
5913 #ifdef IPSEC_NAT_T
5914 	/*
5915 	 * Handle NAT-T info if present.
5916 	 */
5917 
5918 	if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5919 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5920 		struct sadb_x_nat_t_port *sport, *dport;
5921 
5922 		if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5923 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5924 			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5925 			    __func__));
5926 			return key_senderror(so, m, EINVAL);
5927 		}
5928 
5929 		sport = (struct sadb_x_nat_t_port *)
5930 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5931 		dport = (struct sadb_x_nat_t_port *)
5932 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5933 
5934 		if (sport)
5935 			KEY_PORTTOSADDR(&saidx.src,
5936 			    sport->sadb_x_nat_t_port_port);
5937 		if (dport)
5938 			KEY_PORTTOSADDR(&saidx.dst,
5939 			    dport->sadb_x_nat_t_port_port);
5940 	}
5941 #endif
5942 
5943 	/* get a SA header */
5944 	SAHTREE_LOCK();
5945 	LIST_FOREACH(sah, &V_sahtree, chain) {
5946 		if (sah->state == SADB_SASTATE_DEAD)
5947 			continue;
5948 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5949 			continue;
5950 
5951 		/* get a SA with SPI. */
5952 		sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5953 		if (sav)
5954 			break;
5955 	}
5956 	SAHTREE_UNLOCK();
5957 	if (sah == NULL) {
5958 		ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5959 		return key_senderror(so, m, ENOENT);
5960 	}
5961 
5962     {
5963 	struct mbuf *n;
5964 	u_int8_t satype;
5965 
5966 	/* map proto to satype */
5967 	if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
5968 		ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n",
5969 			__func__));
5970 		return key_senderror(so, m, EINVAL);
5971 	}
5972 
5973 	/* create new sadb_msg to reply. */
5974 	n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5975 	    mhp->msg->sadb_msg_pid);
5976 	if (!n)
5977 		return key_senderror(so, m, ENOBUFS);
5978 
5979 	m_freem(m);
5980 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5981     }
5982 }
5983 
5984 /* XXX make it sysctl-configurable? */
5985 static void
5986 key_getcomb_setlifetime(comb)
5987 	struct sadb_comb *comb;
5988 {
5989 
5990 	comb->sadb_comb_soft_allocations = 1;
5991 	comb->sadb_comb_hard_allocations = 1;
5992 	comb->sadb_comb_soft_bytes = 0;
5993 	comb->sadb_comb_hard_bytes = 0;
5994 	comb->sadb_comb_hard_addtime = 86400;	/* 1 day */
5995 	comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5996 	comb->sadb_comb_soft_usetime = 28800;	/* 8 hours */
5997 	comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
5998 }
5999 
6000 /*
6001  * XXX reorder combinations by preference
6002  * XXX no idea if the user wants ESP authentication or not
6003  */
6004 static struct mbuf *
6005 key_getcomb_esp()
6006 {
6007 	struct sadb_comb *comb;
6008 	struct enc_xform *algo;
6009 	struct mbuf *result = NULL, *m, *n;
6010 	int encmin;
6011 	int i, off, o;
6012 	int totlen;
6013 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6014 
6015 	m = NULL;
6016 	for (i = 1; i <= SADB_EALG_MAX; i++) {
6017 		algo = esp_algorithm_lookup(i);
6018 		if (algo == NULL)
6019 			continue;
6020 
6021 		/* discard algorithms with key size smaller than system min */
6022 		if (_BITS(algo->maxkey) < V_ipsec_esp_keymin)
6023 			continue;
6024 		if (_BITS(algo->minkey) < V_ipsec_esp_keymin)
6025 			encmin = V_ipsec_esp_keymin;
6026 		else
6027 			encmin = _BITS(algo->minkey);
6028 
6029 		if (V_ipsec_esp_auth)
6030 			m = key_getcomb_ah();
6031 		else {
6032 			IPSEC_ASSERT(l <= MLEN,
6033 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
6034 			MGET(m, M_DONTWAIT, MT_DATA);
6035 			if (m) {
6036 				M_ALIGN(m, l);
6037 				m->m_len = l;
6038 				m->m_next = NULL;
6039 				bzero(mtod(m, caddr_t), m->m_len);
6040 			}
6041 		}
6042 		if (!m)
6043 			goto fail;
6044 
6045 		totlen = 0;
6046 		for (n = m; n; n = n->m_next)
6047 			totlen += n->m_len;
6048 		IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l));
6049 
6050 		for (off = 0; off < totlen; off += l) {
6051 			n = m_pulldown(m, off, l, &o);
6052 			if (!n) {
6053 				/* m is already freed */
6054 				goto fail;
6055 			}
6056 			comb = (struct sadb_comb *)(mtod(n, caddr_t) + o);
6057 			bzero(comb, sizeof(*comb));
6058 			key_getcomb_setlifetime(comb);
6059 			comb->sadb_comb_encrypt = i;
6060 			comb->sadb_comb_encrypt_minbits = encmin;
6061 			comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
6062 		}
6063 
6064 		if (!result)
6065 			result = m;
6066 		else
6067 			m_cat(result, m);
6068 	}
6069 
6070 	return result;
6071 
6072  fail:
6073 	if (result)
6074 		m_freem(result);
6075 	return NULL;
6076 }
6077 
6078 static void
6079 key_getsizes_ah(
6080 	const struct auth_hash *ah,
6081 	int alg,
6082 	u_int16_t* min,
6083 	u_int16_t* max)
6084 {
6085 
6086 	*min = *max = ah->keysize;
6087 	if (ah->keysize == 0) {
6088 		/*
6089 		 * Transform takes arbitrary key size but algorithm
6090 		 * key size is restricted.  Enforce this here.
6091 		 */
6092 		switch (alg) {
6093 		case SADB_X_AALG_MD5:	*min = *max = 16; break;
6094 		case SADB_X_AALG_SHA:	*min = *max = 20; break;
6095 		case SADB_X_AALG_NULL:	*min = 1; *max = 256; break;
6096 		case SADB_X_AALG_SHA2_256: *min = *max = 32; break;
6097 		case SADB_X_AALG_SHA2_384: *min = *max = 48; break;
6098 		case SADB_X_AALG_SHA2_512: *min = *max = 64; break;
6099 		default:
6100 			DPRINTF(("%s: unknown AH algorithm %u\n",
6101 				__func__, alg));
6102 			break;
6103 		}
6104 	}
6105 }
6106 
6107 /*
6108  * XXX reorder combinations by preference
6109  */
6110 static struct mbuf *
6111 key_getcomb_ah()
6112 {
6113 	struct sadb_comb *comb;
6114 	struct auth_hash *algo;
6115 	struct mbuf *m;
6116 	u_int16_t minkeysize, maxkeysize;
6117 	int i;
6118 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6119 
6120 	m = NULL;
6121 	for (i = 1; i <= SADB_AALG_MAX; i++) {
6122 #if 1
6123 		/* we prefer HMAC algorithms, not old algorithms */
6124 		if (i != SADB_AALG_SHA1HMAC &&
6125 		    i != SADB_AALG_MD5HMAC  &&
6126 		    i != SADB_X_AALG_SHA2_256 &&
6127 		    i != SADB_X_AALG_SHA2_384 &&
6128 		    i != SADB_X_AALG_SHA2_512)
6129 			continue;
6130 #endif
6131 		algo = ah_algorithm_lookup(i);
6132 		if (!algo)
6133 			continue;
6134 		key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6135 		/* discard algorithms with key size smaller than system min */
6136 		if (_BITS(minkeysize) < V_ipsec_ah_keymin)
6137 			continue;
6138 
6139 		if (!m) {
6140 			IPSEC_ASSERT(l <= MLEN,
6141 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
6142 			MGET(m, M_DONTWAIT, MT_DATA);
6143 			if (m) {
6144 				M_ALIGN(m, l);
6145 				m->m_len = l;
6146 				m->m_next = NULL;
6147 			}
6148 		} else
6149 			M_PREPEND(m, l, M_DONTWAIT);
6150 		if (!m)
6151 			return NULL;
6152 
6153 		comb = mtod(m, struct sadb_comb *);
6154 		bzero(comb, sizeof(*comb));
6155 		key_getcomb_setlifetime(comb);
6156 		comb->sadb_comb_auth = i;
6157 		comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6158 		comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6159 	}
6160 
6161 	return m;
6162 }
6163 
6164 /*
6165  * not really an official behavior.  discussed in pf_key@inner.net in Sep2000.
6166  * XXX reorder combinations by preference
6167  */
6168 static struct mbuf *
6169 key_getcomb_ipcomp()
6170 {
6171 	struct sadb_comb *comb;
6172 	struct comp_algo *algo;
6173 	struct mbuf *m;
6174 	int i;
6175 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6176 
6177 	m = NULL;
6178 	for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6179 		algo = ipcomp_algorithm_lookup(i);
6180 		if (!algo)
6181 			continue;
6182 
6183 		if (!m) {
6184 			IPSEC_ASSERT(l <= MLEN,
6185 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
6186 			MGET(m, M_DONTWAIT, MT_DATA);
6187 			if (m) {
6188 				M_ALIGN(m, l);
6189 				m->m_len = l;
6190 				m->m_next = NULL;
6191 			}
6192 		} else
6193 			M_PREPEND(m, l, M_DONTWAIT);
6194 		if (!m)
6195 			return NULL;
6196 
6197 		comb = mtod(m, struct sadb_comb *);
6198 		bzero(comb, sizeof(*comb));
6199 		key_getcomb_setlifetime(comb);
6200 		comb->sadb_comb_encrypt = i;
6201 		/* what should we set into sadb_comb_*_{min,max}bits? */
6202 	}
6203 
6204 	return m;
6205 }
6206 
6207 /*
6208  * XXX no way to pass mode (transport/tunnel) to userland
6209  * XXX replay checking?
6210  * XXX sysctl interface to ipsec_{ah,esp}_keymin
6211  */
6212 static struct mbuf *
6213 key_getprop(saidx)
6214 	const struct secasindex *saidx;
6215 {
6216 	struct sadb_prop *prop;
6217 	struct mbuf *m, *n;
6218 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6219 	int totlen;
6220 
6221 	switch (saidx->proto)  {
6222 	case IPPROTO_ESP:
6223 		m = key_getcomb_esp();
6224 		break;
6225 	case IPPROTO_AH:
6226 		m = key_getcomb_ah();
6227 		break;
6228 	case IPPROTO_IPCOMP:
6229 		m = key_getcomb_ipcomp();
6230 		break;
6231 	default:
6232 		return NULL;
6233 	}
6234 
6235 	if (!m)
6236 		return NULL;
6237 	M_PREPEND(m, l, M_DONTWAIT);
6238 	if (!m)
6239 		return NULL;
6240 
6241 	totlen = 0;
6242 	for (n = m; n; n = n->m_next)
6243 		totlen += n->m_len;
6244 
6245 	prop = mtod(m, struct sadb_prop *);
6246 	bzero(prop, sizeof(*prop));
6247 	prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6248 	prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6249 	prop->sadb_prop_replay = 32;	/* XXX */
6250 
6251 	return m;
6252 }
6253 
6254 /*
6255  * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
6256  * send
6257  *   <base, SA, address(SD), (address(P)), x_policy,
6258  *       (identity(SD),) (sensitivity,) proposal>
6259  * to KMD, and expect to receive
6260  *   <base> with SADB_ACQUIRE if error occured,
6261  * or
6262  *   <base, src address, dst address, (SPI range)> with SADB_GETSPI
6263  * from KMD by PF_KEY.
6264  *
6265  * XXX x_policy is outside of RFC2367 (KAME extension).
6266  * XXX sensitivity is not supported.
6267  * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6268  * see comment for key_getcomb_ipcomp().
6269  *
6270  * OUT:
6271  *    0     : succeed
6272  *    others: error number
6273  */
6274 static int
6275 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6276 {
6277 	struct mbuf *result = NULL, *m;
6278 	struct secacq *newacq;
6279 	u_int8_t satype;
6280 	int error = -1;
6281 	u_int32_t seq;
6282 
6283 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
6284 	satype = key_proto2satype(saidx->proto);
6285 	IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto));
6286 
6287 	/*
6288 	 * We never do anything about acquirng SA.  There is anather
6289 	 * solution that kernel blocks to send SADB_ACQUIRE message until
6290 	 * getting something message from IKEd.  In later case, to be
6291 	 * managed with ACQUIRING list.
6292 	 */
6293 	/* Get an entry to check whether sending message or not. */
6294 	if ((newacq = key_getacq(saidx)) != NULL) {
6295 		if (V_key_blockacq_count < newacq->count) {
6296 			/* reset counter and do send message. */
6297 			newacq->count = 0;
6298 		} else {
6299 			/* increment counter and do nothing. */
6300 			newacq->count++;
6301 			return 0;
6302 		}
6303 	} else {
6304 		/* make new entry for blocking to send SADB_ACQUIRE. */
6305 		if ((newacq = key_newacq(saidx)) == NULL)
6306 			return ENOBUFS;
6307 	}
6308 
6309 
6310 	seq = newacq->seq;
6311 	m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6312 	if (!m) {
6313 		error = ENOBUFS;
6314 		goto fail;
6315 	}
6316 	result = m;
6317 
6318 	/*
6319 	 * No SADB_X_EXT_NAT_T_* here: we do not know
6320 	 * anything related to NAT-T at this time.
6321 	 */
6322 
6323 	/* set sadb_address for saidx's. */
6324 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6325 	    &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY);
6326 	if (!m) {
6327 		error = ENOBUFS;
6328 		goto fail;
6329 	}
6330 	m_cat(result, m);
6331 
6332 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6333 	    &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY);
6334 	if (!m) {
6335 		error = ENOBUFS;
6336 		goto fail;
6337 	}
6338 	m_cat(result, m);
6339 
6340 	/* XXX proxy address (optional) */
6341 
6342 	/* set sadb_x_policy */
6343 	if (sp) {
6344 		m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6345 		if (!m) {
6346 			error = ENOBUFS;
6347 			goto fail;
6348 		}
6349 		m_cat(result, m);
6350 	}
6351 
6352 	/* XXX identity (optional) */
6353 #if 0
6354 	if (idexttype && fqdn) {
6355 		/* create identity extension (FQDN) */
6356 		struct sadb_ident *id;
6357 		int fqdnlen;
6358 
6359 		fqdnlen = strlen(fqdn) + 1;	/* +1 for terminating-NUL */
6360 		id = (struct sadb_ident *)p;
6361 		bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6362 		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6363 		id->sadb_ident_exttype = idexttype;
6364 		id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6365 		bcopy(fqdn, id + 1, fqdnlen);
6366 		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6367 	}
6368 
6369 	if (idexttype) {
6370 		/* create identity extension (USERFQDN) */
6371 		struct sadb_ident *id;
6372 		int userfqdnlen;
6373 
6374 		if (userfqdn) {
6375 			/* +1 for terminating-NUL */
6376 			userfqdnlen = strlen(userfqdn) + 1;
6377 		} else
6378 			userfqdnlen = 0;
6379 		id = (struct sadb_ident *)p;
6380 		bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6381 		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6382 		id->sadb_ident_exttype = idexttype;
6383 		id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6384 		/* XXX is it correct? */
6385 		if (curproc && curproc->p_cred)
6386 			id->sadb_ident_id = curproc->p_cred->p_ruid;
6387 		if (userfqdn && userfqdnlen)
6388 			bcopy(userfqdn, id + 1, userfqdnlen);
6389 		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6390 	}
6391 #endif
6392 
6393 	/* XXX sensitivity (optional) */
6394 
6395 	/* create proposal/combination extension */
6396 	m = key_getprop(saidx);
6397 #if 0
6398 	/*
6399 	 * spec conformant: always attach proposal/combination extension,
6400 	 * the problem is that we have no way to attach it for ipcomp,
6401 	 * due to the way sadb_comb is declared in RFC2367.
6402 	 */
6403 	if (!m) {
6404 		error = ENOBUFS;
6405 		goto fail;
6406 	}
6407 	m_cat(result, m);
6408 #else
6409 	/*
6410 	 * outside of spec; make proposal/combination extension optional.
6411 	 */
6412 	if (m)
6413 		m_cat(result, m);
6414 #endif
6415 
6416 	if ((result->m_flags & M_PKTHDR) == 0) {
6417 		error = EINVAL;
6418 		goto fail;
6419 	}
6420 
6421 	if (result->m_len < sizeof(struct sadb_msg)) {
6422 		result = m_pullup(result, sizeof(struct sadb_msg));
6423 		if (result == NULL) {
6424 			error = ENOBUFS;
6425 			goto fail;
6426 		}
6427 	}
6428 
6429 	result->m_pkthdr.len = 0;
6430 	for (m = result; m; m = m->m_next)
6431 		result->m_pkthdr.len += m->m_len;
6432 
6433 	mtod(result, struct sadb_msg *)->sadb_msg_len =
6434 	    PFKEY_UNIT64(result->m_pkthdr.len);
6435 
6436 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6437 
6438  fail:
6439 	if (result)
6440 		m_freem(result);
6441 	return error;
6442 }
6443 
6444 static struct secacq *
6445 key_newacq(const struct secasindex *saidx)
6446 {
6447 	struct secacq *newacq;
6448 
6449 	/* get new entry */
6450 	newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
6451 	if (newacq == NULL) {
6452 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6453 		return NULL;
6454 	}
6455 
6456 	/* copy secindex */
6457 	bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx));
6458 	newacq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq);
6459 	newacq->created = time_second;
6460 	newacq->count = 0;
6461 
6462 	/* add to acqtree */
6463 	ACQ_LOCK();
6464 	LIST_INSERT_HEAD(&V_acqtree, newacq, chain);
6465 	ACQ_UNLOCK();
6466 
6467 	return newacq;
6468 }
6469 
6470 static struct secacq *
6471 key_getacq(const struct secasindex *saidx)
6472 {
6473 	struct secacq *acq;
6474 
6475 	ACQ_LOCK();
6476 	LIST_FOREACH(acq, &V_acqtree, chain) {
6477 		if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY))
6478 			break;
6479 	}
6480 	ACQ_UNLOCK();
6481 
6482 	return acq;
6483 }
6484 
6485 static struct secacq *
6486 key_getacqbyseq(seq)
6487 	u_int32_t seq;
6488 {
6489 	struct secacq *acq;
6490 
6491 	ACQ_LOCK();
6492 	LIST_FOREACH(acq, &V_acqtree, chain) {
6493 		if (acq->seq == seq)
6494 			break;
6495 	}
6496 	ACQ_UNLOCK();
6497 
6498 	return acq;
6499 }
6500 
6501 static struct secspacq *
6502 key_newspacq(spidx)
6503 	struct secpolicyindex *spidx;
6504 {
6505 	struct secspacq *acq;
6506 
6507 	/* get new entry */
6508 	acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
6509 	if (acq == NULL) {
6510 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6511 		return NULL;
6512 	}
6513 
6514 	/* copy secindex */
6515 	bcopy(spidx, &acq->spidx, sizeof(acq->spidx));
6516 	acq->created = time_second;
6517 	acq->count = 0;
6518 
6519 	/* add to spacqtree */
6520 	SPACQ_LOCK();
6521 	LIST_INSERT_HEAD(&V_spacqtree, acq, chain);
6522 	SPACQ_UNLOCK();
6523 
6524 	return acq;
6525 }
6526 
6527 static struct secspacq *
6528 key_getspacq(spidx)
6529 	struct secpolicyindex *spidx;
6530 {
6531 	struct secspacq *acq;
6532 
6533 	SPACQ_LOCK();
6534 	LIST_FOREACH(acq, &V_spacqtree, chain) {
6535 		if (key_cmpspidx_exactly(spidx, &acq->spidx)) {
6536 			/* NB: return holding spacq_lock */
6537 			return acq;
6538 		}
6539 	}
6540 	SPACQ_UNLOCK();
6541 
6542 	return NULL;
6543 }
6544 
6545 /*
6546  * SADB_ACQUIRE processing,
6547  * in first situation, is receiving
6548  *   <base>
6549  * from the ikmpd, and clear sequence of its secasvar entry.
6550  *
6551  * In second situation, is receiving
6552  *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6553  * from a user land process, and return
6554  *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6555  * to the socket.
6556  *
6557  * m will always be freed.
6558  */
6559 static int
6560 key_acquire2(so, m, mhp)
6561 	struct socket *so;
6562 	struct mbuf *m;
6563 	const struct sadb_msghdr *mhp;
6564 {
6565 	const struct sadb_address *src0, *dst0;
6566 	struct secasindex saidx;
6567 	struct secashead *sah;
6568 	u_int16_t proto;
6569 	int error;
6570 
6571 	IPSEC_ASSERT(so != NULL, ("null socket"));
6572 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6573 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6574 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6575 
6576 	/*
6577 	 * Error message from KMd.
6578 	 * We assume that if error was occured in IKEd, the length of PFKEY
6579 	 * message is equal to the size of sadb_msg structure.
6580 	 * We do not raise error even if error occured in this function.
6581 	 */
6582 	if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6583 		struct secacq *acq;
6584 
6585 		/* check sequence number */
6586 		if (mhp->msg->sadb_msg_seq == 0) {
6587 			ipseclog((LOG_DEBUG, "%s: must specify sequence "
6588 				"number.\n", __func__));
6589 			m_freem(m);
6590 			return 0;
6591 		}
6592 
6593 		if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) {
6594 			/*
6595 			 * the specified larval SA is already gone, or we got
6596 			 * a bogus sequence number.  we can silently ignore it.
6597 			 */
6598 			m_freem(m);
6599 			return 0;
6600 		}
6601 
6602 		/* reset acq counter in order to deletion by timehander. */
6603 		acq->created = time_second;
6604 		acq->count = 0;
6605 		m_freem(m);
6606 		return 0;
6607 	}
6608 
6609 	/*
6610 	 * This message is from user land.
6611 	 */
6612 
6613 	/* map satype to proto */
6614 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6615 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6616 			__func__));
6617 		return key_senderror(so, m, EINVAL);
6618 	}
6619 
6620 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6621 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6622 	    mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6623 		/* error */
6624 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
6625 			__func__));
6626 		return key_senderror(so, m, EINVAL);
6627 	}
6628 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6629 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6630 	    mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6631 		/* error */
6632 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
6633 			__func__));
6634 		return key_senderror(so, m, EINVAL);
6635 	}
6636 
6637 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
6638 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
6639 
6640 	/* XXX boundary check against sa_len */
6641 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
6642 
6643 	/*
6644 	 * Make sure the port numbers are zero.
6645 	 * In case of NAT-T we will update them later if needed.
6646 	 */
6647 	KEY_PORTTOSADDR(&saidx.src, 0);
6648 	KEY_PORTTOSADDR(&saidx.dst, 0);
6649 
6650 #ifndef IPSEC_NAT_T
6651 	/*
6652 	 * Handle NAT-T info if present.
6653 	 */
6654 
6655 	if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
6656 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
6657 		struct sadb_x_nat_t_port *sport, *dport;
6658 
6659 		if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
6660 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
6661 			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
6662 			    __func__));
6663 			return key_senderror(so, m, EINVAL);
6664 		}
6665 
6666 		sport = (struct sadb_x_nat_t_port *)
6667 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
6668 		dport = (struct sadb_x_nat_t_port *)
6669 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
6670 
6671 		if (sport)
6672 			KEY_PORTTOSADDR(&saidx.src,
6673 			    sport->sadb_x_nat_t_port_port);
6674 		if (dport)
6675 			KEY_PORTTOSADDR(&saidx.dst,
6676 			    dport->sadb_x_nat_t_port_port);
6677 	}
6678 #endif
6679 
6680 	/* get a SA index */
6681 	SAHTREE_LOCK();
6682 	LIST_FOREACH(sah, &V_sahtree, chain) {
6683 		if (sah->state == SADB_SASTATE_DEAD)
6684 			continue;
6685 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID))
6686 			break;
6687 	}
6688 	SAHTREE_UNLOCK();
6689 	if (sah != NULL) {
6690 		ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__));
6691 		return key_senderror(so, m, EEXIST);
6692 	}
6693 
6694 	error = key_acquire(&saidx, NULL);
6695 	if (error != 0) {
6696 		ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
6697 			__func__, mhp->msg->sadb_msg_errno));
6698 		return key_senderror(so, m, error);
6699 	}
6700 
6701 	return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6702 }
6703 
6704 /*
6705  * SADB_REGISTER processing.
6706  * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6707  * receive
6708  *   <base>
6709  * from the ikmpd, and register a socket to send PF_KEY messages,
6710  * and send
6711  *   <base, supported>
6712  * to KMD by PF_KEY.
6713  * If socket is detached, must free from regnode.
6714  *
6715  * m will always be freed.
6716  */
6717 static int
6718 key_register(so, m, mhp)
6719 	struct socket *so;
6720 	struct mbuf *m;
6721 	const struct sadb_msghdr *mhp;
6722 {
6723 	struct secreg *reg, *newreg = 0;
6724 
6725 	IPSEC_ASSERT(so != NULL, ("null socket"));
6726 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6727 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6728 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6729 
6730 	/* check for invalid register message */
6731 	if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0]))
6732 		return key_senderror(so, m, EINVAL);
6733 
6734 	/* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6735 	if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6736 		goto setmsg;
6737 
6738 	/* check whether existing or not */
6739 	REGTREE_LOCK();
6740 	LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) {
6741 		if (reg->so == so) {
6742 			REGTREE_UNLOCK();
6743 			ipseclog((LOG_DEBUG, "%s: socket exists already.\n",
6744 				__func__));
6745 			return key_senderror(so, m, EEXIST);
6746 		}
6747 	}
6748 
6749 	/* create regnode */
6750 	newreg =  malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO);
6751 	if (newreg == NULL) {
6752 		REGTREE_UNLOCK();
6753 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6754 		return key_senderror(so, m, ENOBUFS);
6755 	}
6756 
6757 	newreg->so = so;
6758 	((struct keycb *)sotorawcb(so))->kp_registered++;
6759 
6760 	/* add regnode to regtree. */
6761 	LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain);
6762 	REGTREE_UNLOCK();
6763 
6764   setmsg:
6765     {
6766 	struct mbuf *n;
6767 	struct sadb_msg *newmsg;
6768 	struct sadb_supported *sup;
6769 	u_int len, alen, elen;
6770 	int off;
6771 	int i;
6772 	struct sadb_alg *alg;
6773 
6774 	/* create new sadb_msg to reply. */
6775 	alen = 0;
6776 	for (i = 1; i <= SADB_AALG_MAX; i++) {
6777 		if (ah_algorithm_lookup(i))
6778 			alen += sizeof(struct sadb_alg);
6779 	}
6780 	if (alen)
6781 		alen += sizeof(struct sadb_supported);
6782 	elen = 0;
6783 	for (i = 1; i <= SADB_EALG_MAX; i++) {
6784 		if (esp_algorithm_lookup(i))
6785 			elen += sizeof(struct sadb_alg);
6786 	}
6787 	if (elen)
6788 		elen += sizeof(struct sadb_supported);
6789 
6790 	len = sizeof(struct sadb_msg) + alen + elen;
6791 
6792 	if (len > MCLBYTES)
6793 		return key_senderror(so, m, ENOBUFS);
6794 
6795 	MGETHDR(n, M_DONTWAIT, MT_DATA);
6796 	if (len > MHLEN) {
6797 		MCLGET(n, M_DONTWAIT);
6798 		if ((n->m_flags & M_EXT) == 0) {
6799 			m_freem(n);
6800 			n = NULL;
6801 		}
6802 	}
6803 	if (!n)
6804 		return key_senderror(so, m, ENOBUFS);
6805 
6806 	n->m_pkthdr.len = n->m_len = len;
6807 	n->m_next = NULL;
6808 	off = 0;
6809 
6810 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
6811 	newmsg = mtod(n, struct sadb_msg *);
6812 	newmsg->sadb_msg_errno = 0;
6813 	newmsg->sadb_msg_len = PFKEY_UNIT64(len);
6814 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6815 
6816 	/* for authentication algorithm */
6817 	if (alen) {
6818 		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6819 		sup->sadb_supported_len = PFKEY_UNIT64(alen);
6820 		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6821 		off += PFKEY_ALIGN8(sizeof(*sup));
6822 
6823 		for (i = 1; i <= SADB_AALG_MAX; i++) {
6824 			struct auth_hash *aalgo;
6825 			u_int16_t minkeysize, maxkeysize;
6826 
6827 			aalgo = ah_algorithm_lookup(i);
6828 			if (!aalgo)
6829 				continue;
6830 			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6831 			alg->sadb_alg_id = i;
6832 			alg->sadb_alg_ivlen = 0;
6833 			key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6834 			alg->sadb_alg_minbits = _BITS(minkeysize);
6835 			alg->sadb_alg_maxbits = _BITS(maxkeysize);
6836 			off += PFKEY_ALIGN8(sizeof(*alg));
6837 		}
6838 	}
6839 
6840 	/* for encryption algorithm */
6841 	if (elen) {
6842 		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6843 		sup->sadb_supported_len = PFKEY_UNIT64(elen);
6844 		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6845 		off += PFKEY_ALIGN8(sizeof(*sup));
6846 
6847 		for (i = 1; i <= SADB_EALG_MAX; i++) {
6848 			struct enc_xform *ealgo;
6849 
6850 			ealgo = esp_algorithm_lookup(i);
6851 			if (!ealgo)
6852 				continue;
6853 			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6854 			alg->sadb_alg_id = i;
6855 			alg->sadb_alg_ivlen = ealgo->blocksize;
6856 			alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6857 			alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6858 			off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6859 		}
6860 	}
6861 
6862 	IPSEC_ASSERT(off == len,
6863 		("length assumption failed (off %u len %u)", off, len));
6864 
6865 	m_freem(m);
6866 	return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6867     }
6868 }
6869 
6870 /*
6871  * free secreg entry registered.
6872  * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6873  */
6874 void
6875 key_freereg(struct socket *so)
6876 {
6877 	struct secreg *reg;
6878 	int i;
6879 
6880 	IPSEC_ASSERT(so != NULL, ("NULL so"));
6881 
6882 	/*
6883 	 * check whether existing or not.
6884 	 * check all type of SA, because there is a potential that
6885 	 * one socket is registered to multiple type of SA.
6886 	 */
6887 	REGTREE_LOCK();
6888 	for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6889 		LIST_FOREACH(reg, &V_regtree[i], chain) {
6890 			if (reg->so == so && __LIST_CHAINED(reg)) {
6891 				LIST_REMOVE(reg, chain);
6892 				free(reg, M_IPSEC_SAR);
6893 				break;
6894 			}
6895 		}
6896 	}
6897 	REGTREE_UNLOCK();
6898 }
6899 
6900 /*
6901  * SADB_EXPIRE processing
6902  * send
6903  *   <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6904  * to KMD by PF_KEY.
6905  * NOTE: We send only soft lifetime extension.
6906  *
6907  * OUT:	0	: succeed
6908  *	others	: error number
6909  */
6910 static int
6911 key_expire(struct secasvar *sav)
6912 {
6913 	int s;
6914 	int satype;
6915 	struct mbuf *result = NULL, *m;
6916 	int len;
6917 	int error = -1;
6918 	struct sadb_lifetime *lt;
6919 
6920 	/* XXX: Why do we lock ? */
6921 	s = splnet();	/*called from softclock()*/
6922 
6923 	IPSEC_ASSERT (sav != NULL, ("null sav"));
6924 	IPSEC_ASSERT (sav->sah != NULL, ("null sa header"));
6925 
6926 	/* set msg header */
6927 	satype = key_proto2satype(sav->sah->saidx.proto);
6928 	IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype));
6929 	m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6930 	if (!m) {
6931 		error = ENOBUFS;
6932 		goto fail;
6933 	}
6934 	result = m;
6935 
6936 	/* create SA extension */
6937 	m = key_setsadbsa(sav);
6938 	if (!m) {
6939 		error = ENOBUFS;
6940 		goto fail;
6941 	}
6942 	m_cat(result, m);
6943 
6944 	/* create SA extension */
6945 	m = key_setsadbxsa2(sav->sah->saidx.mode,
6946 			sav->replay ? sav->replay->count : 0,
6947 			sav->sah->saidx.reqid);
6948 	if (!m) {
6949 		error = ENOBUFS;
6950 		goto fail;
6951 	}
6952 	m_cat(result, m);
6953 
6954 	/* create lifetime extension (current and soft) */
6955 	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6956 	m = key_alloc_mbuf(len);
6957 	if (!m || m->m_next) {	/*XXX*/
6958 		if (m)
6959 			m_freem(m);
6960 		error = ENOBUFS;
6961 		goto fail;
6962 	}
6963 	bzero(mtod(m, caddr_t), len);
6964 	lt = mtod(m, struct sadb_lifetime *);
6965 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6966 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6967 	lt->sadb_lifetime_allocations = sav->lft_c->allocations;
6968 	lt->sadb_lifetime_bytes = sav->lft_c->bytes;
6969 	lt->sadb_lifetime_addtime = sav->lft_c->addtime;
6970 	lt->sadb_lifetime_usetime = sav->lft_c->usetime;
6971 	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
6972 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6973 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
6974 	lt->sadb_lifetime_allocations = sav->lft_s->allocations;
6975 	lt->sadb_lifetime_bytes = sav->lft_s->bytes;
6976 	lt->sadb_lifetime_addtime = sav->lft_s->addtime;
6977 	lt->sadb_lifetime_usetime = sav->lft_s->usetime;
6978 	m_cat(result, m);
6979 
6980 	/* set sadb_address for source */
6981 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6982 	    &sav->sah->saidx.src.sa,
6983 	    FULLMASK, IPSEC_ULPROTO_ANY);
6984 	if (!m) {
6985 		error = ENOBUFS;
6986 		goto fail;
6987 	}
6988 	m_cat(result, m);
6989 
6990 	/* set sadb_address for destination */
6991 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6992 	    &sav->sah->saidx.dst.sa,
6993 	    FULLMASK, IPSEC_ULPROTO_ANY);
6994 	if (!m) {
6995 		error = ENOBUFS;
6996 		goto fail;
6997 	}
6998 	m_cat(result, m);
6999 
7000 	/*
7001 	 * XXX-BZ Handle NAT-T extensions here.
7002 	 */
7003 
7004 	if ((result->m_flags & M_PKTHDR) == 0) {
7005 		error = EINVAL;
7006 		goto fail;
7007 	}
7008 
7009 	if (result->m_len < sizeof(struct sadb_msg)) {
7010 		result = m_pullup(result, sizeof(struct sadb_msg));
7011 		if (result == NULL) {
7012 			error = ENOBUFS;
7013 			goto fail;
7014 		}
7015 	}
7016 
7017 	result->m_pkthdr.len = 0;
7018 	for (m = result; m; m = m->m_next)
7019 		result->m_pkthdr.len += m->m_len;
7020 
7021 	mtod(result, struct sadb_msg *)->sadb_msg_len =
7022 	    PFKEY_UNIT64(result->m_pkthdr.len);
7023 
7024 	splx(s);
7025 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
7026 
7027  fail:
7028 	if (result)
7029 		m_freem(result);
7030 	splx(s);
7031 	return error;
7032 }
7033 
7034 /*
7035  * SADB_FLUSH processing
7036  * receive
7037  *   <base>
7038  * from the ikmpd, and free all entries in secastree.
7039  * and send,
7040  *   <base>
7041  * to the ikmpd.
7042  * NOTE: to do is only marking SADB_SASTATE_DEAD.
7043  *
7044  * m will always be freed.
7045  */
7046 static int
7047 key_flush(so, m, mhp)
7048 	struct socket *so;
7049 	struct mbuf *m;
7050 	const struct sadb_msghdr *mhp;
7051 {
7052 	struct sadb_msg *newmsg;
7053 	struct secashead *sah, *nextsah;
7054 	struct secasvar *sav, *nextsav;
7055 	u_int16_t proto;
7056 	u_int8_t state;
7057 	u_int stateidx;
7058 
7059 	IPSEC_ASSERT(so != NULL, ("null socket"));
7060 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7061 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7062 
7063 	/* map satype to proto */
7064 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
7065 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
7066 			__func__));
7067 		return key_senderror(so, m, EINVAL);
7068 	}
7069 
7070 	/* no SATYPE specified, i.e. flushing all SA. */
7071 	SAHTREE_LOCK();
7072 	for (sah = LIST_FIRST(&V_sahtree);
7073 	     sah != NULL;
7074 	     sah = nextsah) {
7075 		nextsah = LIST_NEXT(sah, chain);
7076 
7077 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
7078 		 && proto != sah->saidx.proto)
7079 			continue;
7080 
7081 		for (stateidx = 0;
7082 		     stateidx < _ARRAYLEN(saorder_state_alive);
7083 		     stateidx++) {
7084 			state = saorder_state_any[stateidx];
7085 			for (sav = LIST_FIRST(&sah->savtree[state]);
7086 			     sav != NULL;
7087 			     sav = nextsav) {
7088 
7089 				nextsav = LIST_NEXT(sav, chain);
7090 
7091 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
7092 				KEY_FREESAV(&sav);
7093 			}
7094 		}
7095 
7096 		sah->state = SADB_SASTATE_DEAD;
7097 	}
7098 	SAHTREE_UNLOCK();
7099 
7100 	if (m->m_len < sizeof(struct sadb_msg) ||
7101 	    sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
7102 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
7103 		return key_senderror(so, m, ENOBUFS);
7104 	}
7105 
7106 	if (m->m_next)
7107 		m_freem(m->m_next);
7108 	m->m_next = NULL;
7109 	m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
7110 	newmsg = mtod(m, struct sadb_msg *);
7111 	newmsg->sadb_msg_errno = 0;
7112 	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
7113 
7114 	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7115 }
7116 
7117 /*
7118  * SADB_DUMP processing
7119  * dump all entries including status of DEAD in SAD.
7120  * receive
7121  *   <base>
7122  * from the ikmpd, and dump all secasvar leaves
7123  * and send,
7124  *   <base> .....
7125  * to the ikmpd.
7126  *
7127  * m will always be freed.
7128  */
7129 static int
7130 key_dump(so, m, mhp)
7131 	struct socket *so;
7132 	struct mbuf *m;
7133 	const struct sadb_msghdr *mhp;
7134 {
7135 	struct secashead *sah;
7136 	struct secasvar *sav;
7137 	u_int16_t proto;
7138 	u_int stateidx;
7139 	u_int8_t satype;
7140 	u_int8_t state;
7141 	int cnt;
7142 	struct sadb_msg *newmsg;
7143 	struct mbuf *n;
7144 
7145 	IPSEC_ASSERT(so != NULL, ("null socket"));
7146 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7147 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7148 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7149 
7150 	/* map satype to proto */
7151 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
7152 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
7153 			__func__));
7154 		return key_senderror(so, m, EINVAL);
7155 	}
7156 
7157 	/* count sav entries to be sent to the userland. */
7158 	cnt = 0;
7159 	SAHTREE_LOCK();
7160 	LIST_FOREACH(sah, &V_sahtree, chain) {
7161 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
7162 		 && proto != sah->saidx.proto)
7163 			continue;
7164 
7165 		for (stateidx = 0;
7166 		     stateidx < _ARRAYLEN(saorder_state_any);
7167 		     stateidx++) {
7168 			state = saorder_state_any[stateidx];
7169 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
7170 				cnt++;
7171 			}
7172 		}
7173 	}
7174 
7175 	if (cnt == 0) {
7176 		SAHTREE_UNLOCK();
7177 		return key_senderror(so, m, ENOENT);
7178 	}
7179 
7180 	/* send this to the userland, one at a time. */
7181 	newmsg = NULL;
7182 	LIST_FOREACH(sah, &V_sahtree, chain) {
7183 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
7184 		 && proto != sah->saidx.proto)
7185 			continue;
7186 
7187 		/* map proto to satype */
7188 		if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
7189 			SAHTREE_UNLOCK();
7190 			ipseclog((LOG_DEBUG, "%s: there was invalid proto in "
7191 				"SAD.\n", __func__));
7192 			return key_senderror(so, m, EINVAL);
7193 		}
7194 
7195 		for (stateidx = 0;
7196 		     stateidx < _ARRAYLEN(saorder_state_any);
7197 		     stateidx++) {
7198 			state = saorder_state_any[stateidx];
7199 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
7200 				n = key_setdumpsa(sav, SADB_DUMP, satype,
7201 				    --cnt, mhp->msg->sadb_msg_pid);
7202 				if (!n) {
7203 					SAHTREE_UNLOCK();
7204 					return key_senderror(so, m, ENOBUFS);
7205 				}
7206 				key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
7207 			}
7208 		}
7209 	}
7210 	SAHTREE_UNLOCK();
7211 
7212 	m_freem(m);
7213 	return 0;
7214 }
7215 
7216 /*
7217  * SADB_X_PROMISC processing
7218  *
7219  * m will always be freed.
7220  */
7221 static int
7222 key_promisc(so, m, mhp)
7223 	struct socket *so;
7224 	struct mbuf *m;
7225 	const struct sadb_msghdr *mhp;
7226 {
7227 	int olen;
7228 
7229 	IPSEC_ASSERT(so != NULL, ("null socket"));
7230 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7231 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7232 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7233 
7234 	olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7235 
7236 	if (olen < sizeof(struct sadb_msg)) {
7237 #if 1
7238 		return key_senderror(so, m, EINVAL);
7239 #else
7240 		m_freem(m);
7241 		return 0;
7242 #endif
7243 	} else if (olen == sizeof(struct sadb_msg)) {
7244 		/* enable/disable promisc mode */
7245 		struct keycb *kp;
7246 
7247 		if ((kp = (struct keycb *)sotorawcb(so)) == NULL)
7248 			return key_senderror(so, m, EINVAL);
7249 		mhp->msg->sadb_msg_errno = 0;
7250 		switch (mhp->msg->sadb_msg_satype) {
7251 		case 0:
7252 		case 1:
7253 			kp->kp_promisc = mhp->msg->sadb_msg_satype;
7254 			break;
7255 		default:
7256 			return key_senderror(so, m, EINVAL);
7257 		}
7258 
7259 		/* send the original message back to everyone */
7260 		mhp->msg->sadb_msg_errno = 0;
7261 		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7262 	} else {
7263 		/* send packet as is */
7264 
7265 		m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7266 
7267 		/* TODO: if sadb_msg_seq is specified, send to specific pid */
7268 		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7269 	}
7270 }
7271 
7272 static int (*key_typesw[]) __P((struct socket *, struct mbuf *,
7273 		const struct sadb_msghdr *)) = {
7274 	NULL,		/* SADB_RESERVED */
7275 	key_getspi,	/* SADB_GETSPI */
7276 	key_update,	/* SADB_UPDATE */
7277 	key_add,	/* SADB_ADD */
7278 	key_delete,	/* SADB_DELETE */
7279 	key_get,	/* SADB_GET */
7280 	key_acquire2,	/* SADB_ACQUIRE */
7281 	key_register,	/* SADB_REGISTER */
7282 	NULL,		/* SADB_EXPIRE */
7283 	key_flush,	/* SADB_FLUSH */
7284 	key_dump,	/* SADB_DUMP */
7285 	key_promisc,	/* SADB_X_PROMISC */
7286 	NULL,		/* SADB_X_PCHANGE */
7287 	key_spdadd,	/* SADB_X_SPDUPDATE */
7288 	key_spdadd,	/* SADB_X_SPDADD */
7289 	key_spddelete,	/* SADB_X_SPDDELETE */
7290 	key_spdget,	/* SADB_X_SPDGET */
7291 	NULL,		/* SADB_X_SPDACQUIRE */
7292 	key_spddump,	/* SADB_X_SPDDUMP */
7293 	key_spdflush,	/* SADB_X_SPDFLUSH */
7294 	key_spdadd,	/* SADB_X_SPDSETIDX */
7295 	NULL,		/* SADB_X_SPDEXPIRE */
7296 	key_spddelete2,	/* SADB_X_SPDDELETE2 */
7297 };
7298 
7299 /*
7300  * parse sadb_msg buffer to process PFKEYv2,
7301  * and create a data to response if needed.
7302  * I think to be dealed with mbuf directly.
7303  * IN:
7304  *     msgp  : pointer to pointer to a received buffer pulluped.
7305  *             This is rewrited to response.
7306  *     so    : pointer to socket.
7307  * OUT:
7308  *    length for buffer to send to user process.
7309  */
7310 int
7311 key_parse(m, so)
7312 	struct mbuf *m;
7313 	struct socket *so;
7314 {
7315 	struct sadb_msg *msg;
7316 	struct sadb_msghdr mh;
7317 	u_int orglen;
7318 	int error;
7319 	int target;
7320 
7321 	IPSEC_ASSERT(so != NULL, ("null socket"));
7322 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7323 
7324 #if 0	/*kdebug_sadb assumes msg in linear buffer*/
7325 	KEYDEBUG(KEYDEBUG_KEY_DUMP,
7326 		ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__));
7327 		kdebug_sadb(msg));
7328 #endif
7329 
7330 	if (m->m_len < sizeof(struct sadb_msg)) {
7331 		m = m_pullup(m, sizeof(struct sadb_msg));
7332 		if (!m)
7333 			return ENOBUFS;
7334 	}
7335 	msg = mtod(m, struct sadb_msg *);
7336 	orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7337 	target = KEY_SENDUP_ONE;
7338 
7339 	if ((m->m_flags & M_PKTHDR) == 0 ||
7340 	    m->m_pkthdr.len != m->m_pkthdr.len) {
7341 		ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__));
7342 		V_pfkeystat.out_invlen++;
7343 		error = EINVAL;
7344 		goto senderror;
7345 	}
7346 
7347 	if (msg->sadb_msg_version != PF_KEY_V2) {
7348 		ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n",
7349 		    __func__, msg->sadb_msg_version));
7350 		V_pfkeystat.out_invver++;
7351 		error = EINVAL;
7352 		goto senderror;
7353 	}
7354 
7355 	if (msg->sadb_msg_type > SADB_MAX) {
7356 		ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
7357 		    __func__, msg->sadb_msg_type));
7358 		V_pfkeystat.out_invmsgtype++;
7359 		error = EINVAL;
7360 		goto senderror;
7361 	}
7362 
7363 	/* for old-fashioned code - should be nuked */
7364 	if (m->m_pkthdr.len > MCLBYTES) {
7365 		m_freem(m);
7366 		return ENOBUFS;
7367 	}
7368 	if (m->m_next) {
7369 		struct mbuf *n;
7370 
7371 		MGETHDR(n, M_DONTWAIT, MT_DATA);
7372 		if (n && m->m_pkthdr.len > MHLEN) {
7373 			MCLGET(n, M_DONTWAIT);
7374 			if ((n->m_flags & M_EXT) == 0) {
7375 				m_free(n);
7376 				n = NULL;
7377 			}
7378 		}
7379 		if (!n) {
7380 			m_freem(m);
7381 			return ENOBUFS;
7382 		}
7383 		m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t));
7384 		n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7385 		n->m_next = NULL;
7386 		m_freem(m);
7387 		m = n;
7388 	}
7389 
7390 	/* align the mbuf chain so that extensions are in contiguous region. */
7391 	error = key_align(m, &mh);
7392 	if (error)
7393 		return error;
7394 
7395 	msg = mh.msg;
7396 
7397 	/* check SA type */
7398 	switch (msg->sadb_msg_satype) {
7399 	case SADB_SATYPE_UNSPEC:
7400 		switch (msg->sadb_msg_type) {
7401 		case SADB_GETSPI:
7402 		case SADB_UPDATE:
7403 		case SADB_ADD:
7404 		case SADB_DELETE:
7405 		case SADB_GET:
7406 		case SADB_ACQUIRE:
7407 		case SADB_EXPIRE:
7408 			ipseclog((LOG_DEBUG, "%s: must specify satype "
7409 			    "when msg type=%u.\n", __func__,
7410 			    msg->sadb_msg_type));
7411 			V_pfkeystat.out_invsatype++;
7412 			error = EINVAL;
7413 			goto senderror;
7414 		}
7415 		break;
7416 	case SADB_SATYPE_AH:
7417 	case SADB_SATYPE_ESP:
7418 	case SADB_X_SATYPE_IPCOMP:
7419 	case SADB_X_SATYPE_TCPSIGNATURE:
7420 		switch (msg->sadb_msg_type) {
7421 		case SADB_X_SPDADD:
7422 		case SADB_X_SPDDELETE:
7423 		case SADB_X_SPDGET:
7424 		case SADB_X_SPDDUMP:
7425 		case SADB_X_SPDFLUSH:
7426 		case SADB_X_SPDSETIDX:
7427 		case SADB_X_SPDUPDATE:
7428 		case SADB_X_SPDDELETE2:
7429 			ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n",
7430 				__func__, msg->sadb_msg_type));
7431 			V_pfkeystat.out_invsatype++;
7432 			error = EINVAL;
7433 			goto senderror;
7434 		}
7435 		break;
7436 	case SADB_SATYPE_RSVP:
7437 	case SADB_SATYPE_OSPFV2:
7438 	case SADB_SATYPE_RIPV2:
7439 	case SADB_SATYPE_MIP:
7440 		ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n",
7441 			__func__, msg->sadb_msg_satype));
7442 		V_pfkeystat.out_invsatype++;
7443 		error = EOPNOTSUPP;
7444 		goto senderror;
7445 	case 1:	/* XXX: What does it do? */
7446 		if (msg->sadb_msg_type == SADB_X_PROMISC)
7447 			break;
7448 		/*FALLTHROUGH*/
7449 	default:
7450 		ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
7451 			__func__, msg->sadb_msg_satype));
7452 		V_pfkeystat.out_invsatype++;
7453 		error = EINVAL;
7454 		goto senderror;
7455 	}
7456 
7457 	/* check field of upper layer protocol and address family */
7458 	if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL
7459 	 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7460 		struct sadb_address *src0, *dst0;
7461 		u_int plen;
7462 
7463 		src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7464 		dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7465 
7466 		/* check upper layer protocol */
7467 		if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7468 			ipseclog((LOG_DEBUG, "%s: upper layer protocol "
7469 				"mismatched.\n", __func__));
7470 			V_pfkeystat.out_invaddr++;
7471 			error = EINVAL;
7472 			goto senderror;
7473 		}
7474 
7475 		/* check family */
7476 		if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7477 		    PFKEY_ADDR_SADDR(dst0)->sa_family) {
7478 			ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
7479 				__func__));
7480 			V_pfkeystat.out_invaddr++;
7481 			error = EINVAL;
7482 			goto senderror;
7483 		}
7484 		if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7485 		    PFKEY_ADDR_SADDR(dst0)->sa_len) {
7486 			ipseclog((LOG_DEBUG, "%s: address struct size "
7487 				"mismatched.\n", __func__));
7488 			V_pfkeystat.out_invaddr++;
7489 			error = EINVAL;
7490 			goto senderror;
7491 		}
7492 
7493 		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7494 		case AF_INET:
7495 			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7496 			    sizeof(struct sockaddr_in)) {
7497 				V_pfkeystat.out_invaddr++;
7498 				error = EINVAL;
7499 				goto senderror;
7500 			}
7501 			break;
7502 		case AF_INET6:
7503 			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7504 			    sizeof(struct sockaddr_in6)) {
7505 				V_pfkeystat.out_invaddr++;
7506 				error = EINVAL;
7507 				goto senderror;
7508 			}
7509 			break;
7510 		default:
7511 			ipseclog((LOG_DEBUG, "%s: unsupported address family\n",
7512 				__func__));
7513 			V_pfkeystat.out_invaddr++;
7514 			error = EAFNOSUPPORT;
7515 			goto senderror;
7516 		}
7517 
7518 		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7519 		case AF_INET:
7520 			plen = sizeof(struct in_addr) << 3;
7521 			break;
7522 		case AF_INET6:
7523 			plen = sizeof(struct in6_addr) << 3;
7524 			break;
7525 		default:
7526 			plen = 0;	/*fool gcc*/
7527 			break;
7528 		}
7529 
7530 		/* check max prefix length */
7531 		if (src0->sadb_address_prefixlen > plen ||
7532 		    dst0->sadb_address_prefixlen > plen) {
7533 			ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n",
7534 				__func__));
7535 			V_pfkeystat.out_invaddr++;
7536 			error = EINVAL;
7537 			goto senderror;
7538 		}
7539 
7540 		/*
7541 		 * prefixlen == 0 is valid because there can be a case when
7542 		 * all addresses are matched.
7543 		 */
7544 	}
7545 
7546 	if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) ||
7547 	    key_typesw[msg->sadb_msg_type] == NULL) {
7548 		V_pfkeystat.out_invmsgtype++;
7549 		error = EINVAL;
7550 		goto senderror;
7551 	}
7552 
7553 	return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
7554 
7555 senderror:
7556 	msg->sadb_msg_errno = error;
7557 	return key_sendup_mbuf(so, m, target);
7558 }
7559 
7560 static int
7561 key_senderror(so, m, code)
7562 	struct socket *so;
7563 	struct mbuf *m;
7564 	int code;
7565 {
7566 	struct sadb_msg *msg;
7567 
7568 	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
7569 		("mbuf too small, len %u", m->m_len));
7570 
7571 	msg = mtod(m, struct sadb_msg *);
7572 	msg->sadb_msg_errno = code;
7573 	return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7574 }
7575 
7576 /*
7577  * set the pointer to each header into message buffer.
7578  * m will be freed on error.
7579  * XXX larger-than-MCLBYTES extension?
7580  */
7581 static int
7582 key_align(m, mhp)
7583 	struct mbuf *m;
7584 	struct sadb_msghdr *mhp;
7585 {
7586 	struct mbuf *n;
7587 	struct sadb_ext *ext;
7588 	size_t off, end;
7589 	int extlen;
7590 	int toff;
7591 
7592 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7593 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7594 	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
7595 		("mbuf too small, len %u", m->m_len));
7596 
7597 	/* initialize */
7598 	bzero(mhp, sizeof(*mhp));
7599 
7600 	mhp->msg = mtod(m, struct sadb_msg *);
7601 	mhp->ext[0] = (struct sadb_ext *)mhp->msg;	/*XXX backward compat */
7602 
7603 	end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7604 	extlen = end;	/*just in case extlen is not updated*/
7605 	for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7606 		n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7607 		if (!n) {
7608 			/* m is already freed */
7609 			return ENOBUFS;
7610 		}
7611 		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
7612 
7613 		/* set pointer */
7614 		switch (ext->sadb_ext_type) {
7615 		case SADB_EXT_SA:
7616 		case SADB_EXT_ADDRESS_SRC:
7617 		case SADB_EXT_ADDRESS_DST:
7618 		case SADB_EXT_ADDRESS_PROXY:
7619 		case SADB_EXT_LIFETIME_CURRENT:
7620 		case SADB_EXT_LIFETIME_HARD:
7621 		case SADB_EXT_LIFETIME_SOFT:
7622 		case SADB_EXT_KEY_AUTH:
7623 		case SADB_EXT_KEY_ENCRYPT:
7624 		case SADB_EXT_IDENTITY_SRC:
7625 		case SADB_EXT_IDENTITY_DST:
7626 		case SADB_EXT_SENSITIVITY:
7627 		case SADB_EXT_PROPOSAL:
7628 		case SADB_EXT_SUPPORTED_AUTH:
7629 		case SADB_EXT_SUPPORTED_ENCRYPT:
7630 		case SADB_EXT_SPIRANGE:
7631 		case SADB_X_EXT_POLICY:
7632 		case SADB_X_EXT_SA2:
7633 #ifdef IPSEC_NAT_T
7634 		case SADB_X_EXT_NAT_T_TYPE:
7635 		case SADB_X_EXT_NAT_T_SPORT:
7636 		case SADB_X_EXT_NAT_T_DPORT:
7637 		case SADB_X_EXT_NAT_T_OAI:
7638 		case SADB_X_EXT_NAT_T_OAR:
7639 		case SADB_X_EXT_NAT_T_FRAG:
7640 #endif
7641 			/* duplicate check */
7642 			/*
7643 			 * XXX Are there duplication payloads of either
7644 			 * KEY_AUTH or KEY_ENCRYPT ?
7645 			 */
7646 			if (mhp->ext[ext->sadb_ext_type] != NULL) {
7647 				ipseclog((LOG_DEBUG, "%s: duplicate ext_type "
7648 					"%u\n", __func__, ext->sadb_ext_type));
7649 				m_freem(m);
7650 				V_pfkeystat.out_dupext++;
7651 				return EINVAL;
7652 			}
7653 			break;
7654 		default:
7655 			ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n",
7656 				__func__, ext->sadb_ext_type));
7657 			m_freem(m);
7658 			V_pfkeystat.out_invexttype++;
7659 			return EINVAL;
7660 		}
7661 
7662 		extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7663 
7664 		if (key_validate_ext(ext, extlen)) {
7665 			m_freem(m);
7666 			V_pfkeystat.out_invlen++;
7667 			return EINVAL;
7668 		}
7669 
7670 		n = m_pulldown(m, off, extlen, &toff);
7671 		if (!n) {
7672 			/* m is already freed */
7673 			return ENOBUFS;
7674 		}
7675 		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
7676 
7677 		mhp->ext[ext->sadb_ext_type] = ext;
7678 		mhp->extoff[ext->sadb_ext_type] = off;
7679 		mhp->extlen[ext->sadb_ext_type] = extlen;
7680 	}
7681 
7682 	if (off != end) {
7683 		m_freem(m);
7684 		V_pfkeystat.out_invlen++;
7685 		return EINVAL;
7686 	}
7687 
7688 	return 0;
7689 }
7690 
7691 static int
7692 key_validate_ext(ext, len)
7693 	const struct sadb_ext *ext;
7694 	int len;
7695 {
7696 	const struct sockaddr *sa;
7697 	enum { NONE, ADDR } checktype = NONE;
7698 	int baselen = 0;
7699 	const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7700 
7701 	if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7702 		return EINVAL;
7703 
7704 	/* if it does not match minimum/maximum length, bail */
7705 	if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) ||
7706 	    ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0]))
7707 		return EINVAL;
7708 	if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7709 		return EINVAL;
7710 	if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7711 		return EINVAL;
7712 
7713 	/* more checks based on sadb_ext_type XXX need more */
7714 	switch (ext->sadb_ext_type) {
7715 	case SADB_EXT_ADDRESS_SRC:
7716 	case SADB_EXT_ADDRESS_DST:
7717 	case SADB_EXT_ADDRESS_PROXY:
7718 		baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7719 		checktype = ADDR;
7720 		break;
7721 	case SADB_EXT_IDENTITY_SRC:
7722 	case SADB_EXT_IDENTITY_DST:
7723 		if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7724 		    SADB_X_IDENTTYPE_ADDR) {
7725 			baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7726 			checktype = ADDR;
7727 		} else
7728 			checktype = NONE;
7729 		break;
7730 	default:
7731 		checktype = NONE;
7732 		break;
7733 	}
7734 
7735 	switch (checktype) {
7736 	case NONE:
7737 		break;
7738 	case ADDR:
7739 		sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7740 		if (len < baselen + sal)
7741 			return EINVAL;
7742 		if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7743 			return EINVAL;
7744 		break;
7745 	}
7746 
7747 	return 0;
7748 }
7749 
7750 void
7751 key_init(void)
7752 {
7753 	int i;
7754 
7755 	for (i = 0; i < IPSEC_DIR_MAX; i++)
7756 		LIST_INIT(&V_sptree[i]);
7757 
7758 	LIST_INIT(&V_sahtree);
7759 
7760 	for (i = 0; i <= SADB_SATYPE_MAX; i++)
7761 		LIST_INIT(&V_regtree[i]);
7762 
7763 	LIST_INIT(&V_acqtree);
7764 	LIST_INIT(&V_spacqtree);
7765 
7766 	/* system default */
7767 	V_ip4_def_policy.policy = IPSEC_POLICY_NONE;
7768 	V_ip4_def_policy.refcnt++;	/*never reclaim this*/
7769 
7770 	if (!IS_DEFAULT_VNET(curvnet))
7771 		return;
7772 
7773 	SPTREE_LOCK_INIT();
7774 	REGTREE_LOCK_INIT();
7775 	SAHTREE_LOCK_INIT();
7776 	ACQ_LOCK_INIT();
7777 	SPACQ_LOCK_INIT();
7778 
7779 #ifndef IPSEC_DEBUG2
7780 	timeout((void *)key_timehandler, (void *)0, hz);
7781 #endif /*IPSEC_DEBUG2*/
7782 
7783 	/* initialize key statistics */
7784 	keystat.getspi_count = 1;
7785 
7786 	printf("IPsec: Initialized Security Association Processing.\n");
7787 }
7788 
7789 #ifdef VIMAGE
7790 void
7791 key_destroy(void)
7792 {
7793 	struct secpolicy *sp, *nextsp;
7794 	struct secacq *acq, *nextacq;
7795 	struct secspacq *spacq, *nextspacq;
7796 	struct secashead *sah, *nextsah;
7797 	struct secreg *reg;
7798 	int i;
7799 
7800 	SPTREE_LOCK();
7801 	for (i = 0; i < IPSEC_DIR_MAX; i++) {
7802 		for (sp = LIST_FIRST(&V_sptree[i]);
7803 		    sp != NULL; sp = nextsp) {
7804 			nextsp = LIST_NEXT(sp, chain);
7805 			if (__LIST_CHAINED(sp)) {
7806 				LIST_REMOVE(sp, chain);
7807 				free(sp, M_IPSEC_SP);
7808 			}
7809 		}
7810 	}
7811 	SPTREE_UNLOCK();
7812 
7813 	SAHTREE_LOCK();
7814 	for (sah = LIST_FIRST(&V_sahtree); sah != NULL; sah = nextsah) {
7815 		nextsah = LIST_NEXT(sah, chain);
7816 		if (__LIST_CHAINED(sah)) {
7817 			LIST_REMOVE(sah, chain);
7818 			free(sah, M_IPSEC_SAH);
7819 		}
7820 	}
7821 	SAHTREE_UNLOCK();
7822 
7823 	REGTREE_LOCK();
7824 	for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7825 		LIST_FOREACH(reg, &V_regtree[i], chain) {
7826 			if (__LIST_CHAINED(reg)) {
7827 				LIST_REMOVE(reg, chain);
7828 				free(reg, M_IPSEC_SAR);
7829 				break;
7830 			}
7831 		}
7832 	}
7833 	REGTREE_UNLOCK();
7834 
7835 	ACQ_LOCK();
7836 	for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) {
7837 		nextacq = LIST_NEXT(acq, chain);
7838 		if (__LIST_CHAINED(acq)) {
7839 			LIST_REMOVE(acq, chain);
7840 			free(acq, M_IPSEC_SAQ);
7841 		}
7842 	}
7843 	ACQ_UNLOCK();
7844 
7845 	SPACQ_LOCK();
7846 	for (spacq = LIST_FIRST(&V_spacqtree); spacq != NULL;
7847 	    spacq = nextspacq) {
7848 		nextspacq = LIST_NEXT(spacq, chain);
7849 		if (__LIST_CHAINED(spacq)) {
7850 			LIST_REMOVE(spacq, chain);
7851 			free(spacq, M_IPSEC_SAQ);
7852 		}
7853 	}
7854 	SPACQ_UNLOCK();
7855 }
7856 #endif
7857 
7858 /*
7859  * XXX: maybe This function is called after INBOUND IPsec processing.
7860  *
7861  * Special check for tunnel-mode packets.
7862  * We must make some checks for consistency between inner and outer IP header.
7863  *
7864  * xxx more checks to be provided
7865  */
7866 int
7867 key_checktunnelsanity(sav, family, src, dst)
7868 	struct secasvar *sav;
7869 	u_int family;
7870 	caddr_t src;
7871 	caddr_t dst;
7872 {
7873 	IPSEC_ASSERT(sav->sah != NULL, ("null SA header"));
7874 
7875 	/* XXX: check inner IP header */
7876 
7877 	return 1;
7878 }
7879 
7880 /* record data transfer on SA, and update timestamps */
7881 void
7882 key_sa_recordxfer(sav, m)
7883 	struct secasvar *sav;
7884 	struct mbuf *m;
7885 {
7886 	IPSEC_ASSERT(sav != NULL, ("Null secasvar"));
7887 	IPSEC_ASSERT(m != NULL, ("Null mbuf"));
7888 	if (!sav->lft_c)
7889 		return;
7890 
7891 	/*
7892 	 * XXX Currently, there is a difference of bytes size
7893 	 * between inbound and outbound processing.
7894 	 */
7895 	sav->lft_c->bytes += m->m_pkthdr.len;
7896 	/* to check bytes lifetime is done in key_timehandler(). */
7897 
7898 	/*
7899 	 * We use the number of packets as the unit of
7900 	 * allocations.  We increment the variable
7901 	 * whenever {esp,ah}_{in,out}put is called.
7902 	 */
7903 	sav->lft_c->allocations++;
7904 	/* XXX check for expires? */
7905 
7906 	/*
7907 	 * NOTE: We record CURRENT usetime by using wall clock,
7908 	 * in seconds.  HARD and SOFT lifetime are measured by the time
7909 	 * difference (again in seconds) from usetime.
7910 	 *
7911 	 *	usetime
7912 	 *	v     expire   expire
7913 	 * -----+-----+--------+---> t
7914 	 *	<--------------> HARD
7915 	 *	<-----> SOFT
7916 	 */
7917 	sav->lft_c->usetime = time_second;
7918 	/* XXX check for expires? */
7919 
7920 	return;
7921 }
7922 
7923 /* dumb version */
7924 void
7925 key_sa_routechange(dst)
7926 	struct sockaddr *dst;
7927 {
7928 	struct secashead *sah;
7929 	struct route *ro;
7930 
7931 	SAHTREE_LOCK();
7932 	LIST_FOREACH(sah, &V_sahtree, chain) {
7933 		ro = &sah->route_cache.sa_route;
7934 		if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len
7935 		 && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) {
7936 			RTFREE(ro->ro_rt);
7937 			ro->ro_rt = (struct rtentry *)NULL;
7938 		}
7939 	}
7940 	SAHTREE_UNLOCK();
7941 }
7942 
7943 static void
7944 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
7945 {
7946 	IPSEC_ASSERT(sav != NULL, ("NULL sav"));
7947 	SAHTREE_LOCK_ASSERT();
7948 
7949 	if (sav->state != state) {
7950 		if (__LIST_CHAINED(sav))
7951 			LIST_REMOVE(sav, chain);
7952 		sav->state = state;
7953 		LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7954 	}
7955 }
7956 
7957 void
7958 key_sa_stir_iv(sav)
7959 	struct secasvar *sav;
7960 {
7961 
7962 	IPSEC_ASSERT(sav->iv != NULL, ("null IV"));
7963 	key_randomfill(sav->iv, sav->ivlen);
7964 }
7965 
7966 /* XXX too much? */
7967 static struct mbuf *
7968 key_alloc_mbuf(l)
7969 	int l;
7970 {
7971 	struct mbuf *m = NULL, *n;
7972 	int len, t;
7973 
7974 	len = l;
7975 	while (len > 0) {
7976 		MGET(n, M_DONTWAIT, MT_DATA);
7977 		if (n && len > MLEN)
7978 			MCLGET(n, M_DONTWAIT);
7979 		if (!n) {
7980 			m_freem(m);
7981 			return NULL;
7982 		}
7983 
7984 		n->m_next = NULL;
7985 		n->m_len = 0;
7986 		n->m_len = M_TRAILINGSPACE(n);
7987 		/* use the bottom of mbuf, hoping we can prepend afterwards */
7988 		if (n->m_len > len) {
7989 			t = (n->m_len - len) & ~(sizeof(long) - 1);
7990 			n->m_data += t;
7991 			n->m_len = len;
7992 		}
7993 
7994 		len -= n->m_len;
7995 
7996 		if (m)
7997 			m_cat(m, n);
7998 		else
7999 			m = n;
8000 	}
8001 
8002 	return m;
8003 }
8004 
8005 /*
8006  * Take one of the kernel's security keys and convert it into a PF_KEY
8007  * structure within an mbuf, suitable for sending up to a waiting
8008  * application in user land.
8009  *
8010  * IN:
8011  *    src: A pointer to a kernel security key.
8012  *    exttype: Which type of key this is. Refer to the PF_KEY data structures.
8013  * OUT:
8014  *    a valid mbuf or NULL indicating an error
8015  *
8016  */
8017 
8018 static struct mbuf *
8019 key_setkey(struct seckey *src, u_int16_t exttype)
8020 {
8021 	struct mbuf *m;
8022 	struct sadb_key *p;
8023 	int len;
8024 
8025 	if (src == NULL)
8026 		return NULL;
8027 
8028 	len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src));
8029 	m = key_alloc_mbuf(len);
8030 	if (m == NULL)
8031 		return NULL;
8032 	p = mtod(m, struct sadb_key *);
8033 	bzero(p, len);
8034 	p->sadb_key_len = PFKEY_UNIT64(len);
8035 	p->sadb_key_exttype = exttype;
8036 	p->sadb_key_bits = src->bits;
8037 	bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src));
8038 
8039 	return m;
8040 }
8041 
8042 /*
8043  * Take one of the kernel's lifetime data structures and convert it
8044  * into a PF_KEY structure within an mbuf, suitable for sending up to
8045  * a waiting application in user land.
8046  *
8047  * IN:
8048  *    src: A pointer to a kernel lifetime structure.
8049  *    exttype: Which type of lifetime this is. Refer to the PF_KEY
8050  *             data structures for more information.
8051  * OUT:
8052  *    a valid mbuf or NULL indicating an error
8053  *
8054  */
8055 
8056 static struct mbuf *
8057 key_setlifetime(struct seclifetime *src, u_int16_t exttype)
8058 {
8059 	struct mbuf *m = NULL;
8060 	struct sadb_lifetime *p;
8061 	int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime));
8062 
8063 	if (src == NULL)
8064 		return NULL;
8065 
8066 	m = key_alloc_mbuf(len);
8067 	if (m == NULL)
8068 		return m;
8069 	p = mtod(m, struct sadb_lifetime *);
8070 
8071 	bzero(p, len);
8072 	p->sadb_lifetime_len = PFKEY_UNIT64(len);
8073 	p->sadb_lifetime_exttype = exttype;
8074 	p->sadb_lifetime_allocations = src->allocations;
8075 	p->sadb_lifetime_bytes = src->bytes;
8076 	p->sadb_lifetime_addtime = src->addtime;
8077 	p->sadb_lifetime_usetime = src->usetime;
8078 
8079 	return m;
8080 
8081 }
8082