xref: /freebsd/sys/netipsec/key.c (revision 7d0d268b8a67f28ccefdd0b8ce6fb38acac78d80)
1 /*	$FreeBSD$	*/
2 /*	$KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $	*/
3 
4 /*-
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * This code is referd to RFC 2367
35  */
36 
37 #include "opt_inet.h"
38 #include "opt_inet6.h"
39 #include "opt_ipsec.h"
40 
41 #include <sys/types.h>
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/mbuf.h>
48 #include <sys/domain.h>
49 #include <sys/protosw.h>
50 #include <sys/malloc.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/sysctl.h>
54 #include <sys/errno.h>
55 #include <sys/proc.h>
56 #include <sys/queue.h>
57 #include <sys/refcount.h>
58 #include <sys/syslog.h>
59 #include <sys/vimage.h>
60 
61 #include <net/if.h>
62 #include <net/route.h>
63 #include <net/raw_cb.h>
64 
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/ip.h>
68 #include <netinet/in_var.h>
69 
70 #ifdef INET6
71 #include <netinet/ip6.h>
72 #include <netinet6/in6_var.h>
73 #include <netinet6/ip6_var.h>
74 #endif /* INET6 */
75 
76 #ifdef INET
77 #include <netinet/in_pcb.h>
78 #include <netinet/vinet.h>
79 #endif
80 #ifdef INET6
81 #include <netinet6/in6_pcb.h>
82 #include <netinet6/vinet6.h>
83 #endif /* INET6 */
84 
85 #include <net/pfkeyv2.h>
86 #include <netipsec/keydb.h>
87 #include <netipsec/key.h>
88 #include <netipsec/keysock.h>
89 #include <netipsec/key_debug.h>
90 
91 #include <netipsec/ipsec.h>
92 #ifdef INET6
93 #include <netipsec/ipsec6.h>
94 #endif
95 
96 #include <netipsec/xform.h>
97 
98 #include <machine/stdarg.h>
99 
100 /* randomness */
101 #include <sys/random.h>
102 #include <sys/vimage.h>
103 
104 #define FULLMASK	0xff
105 #define	_BITS(bytes)	((bytes) << 3)
106 
107 /*
108  * Note on SA reference counting:
109  * - SAs that are not in DEAD state will have (total external reference + 1)
110  *   following value in reference count field.  they cannot be freed and are
111  *   referenced from SA header.
112  * - SAs that are in DEAD state will have (total external reference)
113  *   in reference count field.  they are ready to be freed.  reference from
114  *   SA header will be removed in key_delsav(), when the reference count
115  *   field hits 0 (= no external reference other than from SA header.
116  */
117 
118 #ifdef VIMAGE_GLOBALS
119 u_int32_t key_debug_level;
120 static u_int key_spi_trycnt;
121 static u_int32_t key_spi_minval;
122 static u_int32_t key_spi_maxval;
123 static u_int32_t policy_id;
124 static u_int key_int_random;
125 static u_int key_larval_lifetime;
126 static int key_blockacq_count;
127 static int key_blockacq_lifetime;
128 static int key_preferred_oldsa;
129 
130 static u_int32_t acq_seq;
131 
132 static int ipsec_esp_keymin;
133 static int ipsec_esp_auth;
134 static int ipsec_ah_keymin;
135 
136 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX];	/* SPD */
137 static LIST_HEAD(_sahtree, secashead) sahtree;			/* SAD */
138 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1];
139 static LIST_HEAD(_acqtree, secacq) acqtree;		/* acquiring list */
140 static LIST_HEAD(_spacqtree, secspacq) spacqtree;	/* SP acquiring list */
141 #endif /* VIMAGE_GLOBALS */
142 
143 static struct mtx sptree_lock;
144 #define	SPTREE_LOCK_INIT() \
145 	mtx_init(&sptree_lock, "sptree", \
146 		"fast ipsec security policy database", MTX_DEF)
147 #define	SPTREE_LOCK_DESTROY()	mtx_destroy(&sptree_lock)
148 #define	SPTREE_LOCK()		mtx_lock(&sptree_lock)
149 #define	SPTREE_UNLOCK()	mtx_unlock(&sptree_lock)
150 #define	SPTREE_LOCK_ASSERT()	mtx_assert(&sptree_lock, MA_OWNED)
151 
152 static struct mtx sahtree_lock;
153 #define	SAHTREE_LOCK_INIT() \
154 	mtx_init(&sahtree_lock, "sahtree", \
155 		"fast ipsec security association database", MTX_DEF)
156 #define	SAHTREE_LOCK_DESTROY()	mtx_destroy(&sahtree_lock)
157 #define	SAHTREE_LOCK()		mtx_lock(&sahtree_lock)
158 #define	SAHTREE_UNLOCK()	mtx_unlock(&sahtree_lock)
159 #define	SAHTREE_LOCK_ASSERT()	mtx_assert(&sahtree_lock, MA_OWNED)
160 
161 							/* registed list */
162 static struct mtx regtree_lock;
163 #define	REGTREE_LOCK_INIT() \
164 	mtx_init(&regtree_lock, "regtree", "fast ipsec regtree", MTX_DEF)
165 #define	REGTREE_LOCK_DESTROY()	mtx_destroy(&regtree_lock)
166 #define	REGTREE_LOCK()		mtx_lock(&regtree_lock)
167 #define	REGTREE_UNLOCK()	mtx_unlock(&regtree_lock)
168 #define	REGTREE_LOCK_ASSERT()	mtx_assert(&regtree_lock, MA_OWNED)
169 
170 static struct mtx acq_lock;
171 #define	ACQ_LOCK_INIT() \
172 	mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF)
173 #define	ACQ_LOCK_DESTROY()	mtx_destroy(&acq_lock)
174 #define	ACQ_LOCK()		mtx_lock(&acq_lock)
175 #define	ACQ_UNLOCK()		mtx_unlock(&acq_lock)
176 #define	ACQ_LOCK_ASSERT()	mtx_assert(&acq_lock, MA_OWNED)
177 
178 static struct mtx spacq_lock;
179 #define	SPACQ_LOCK_INIT() \
180 	mtx_init(&spacq_lock, "spacqtree", \
181 		"fast ipsec security policy acquire list", MTX_DEF)
182 #define	SPACQ_LOCK_DESTROY()	mtx_destroy(&spacq_lock)
183 #define	SPACQ_LOCK()		mtx_lock(&spacq_lock)
184 #define	SPACQ_UNLOCK()		mtx_unlock(&spacq_lock)
185 #define	SPACQ_LOCK_ASSERT()	mtx_assert(&spacq_lock, MA_OWNED)
186 
187 /* search order for SAs */
188 static const u_int saorder_state_valid_prefer_old[] = {
189 	SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
190 };
191 static const u_int saorder_state_valid_prefer_new[] = {
192 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
193 };
194 static const u_int saorder_state_alive[] = {
195 	/* except DEAD */
196 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
197 };
198 static const u_int saorder_state_any[] = {
199 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
200 	SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
201 };
202 
203 static const int minsize[] = {
204 	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
205 	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
206 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
207 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
208 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
209 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_SRC */
210 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_DST */
211 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_PROXY */
212 	sizeof(struct sadb_key),	/* SADB_EXT_KEY_AUTH */
213 	sizeof(struct sadb_key),	/* SADB_EXT_KEY_ENCRYPT */
214 	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_SRC */
215 	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_DST */
216 	sizeof(struct sadb_sens),	/* SADB_EXT_SENSITIVITY */
217 	sizeof(struct sadb_prop),	/* SADB_EXT_PROPOSAL */
218 	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_AUTH */
219 	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_ENCRYPT */
220 	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
221 	0,				/* SADB_X_EXT_KMPRIVATE */
222 	sizeof(struct sadb_x_policy),	/* SADB_X_EXT_POLICY */
223 	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
224 };
225 static const int maxsize[] = {
226 	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
227 	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
228 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
229 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
230 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
231 	0,				/* SADB_EXT_ADDRESS_SRC */
232 	0,				/* SADB_EXT_ADDRESS_DST */
233 	0,				/* SADB_EXT_ADDRESS_PROXY */
234 	0,				/* SADB_EXT_KEY_AUTH */
235 	0,				/* SADB_EXT_KEY_ENCRYPT */
236 	0,				/* SADB_EXT_IDENTITY_SRC */
237 	0,				/* SADB_EXT_IDENTITY_DST */
238 	0,				/* SADB_EXT_SENSITIVITY */
239 	0,				/* SADB_EXT_PROPOSAL */
240 	0,				/* SADB_EXT_SUPPORTED_AUTH */
241 	0,				/* SADB_EXT_SUPPORTED_ENCRYPT */
242 	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
243 	0,				/* SADB_X_EXT_KMPRIVATE */
244 	0,				/* SADB_X_EXT_POLICY */
245 	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
246 };
247 
248 #ifdef SYSCTL_DECL
249 SYSCTL_DECL(_net_key);
250 #endif
251 
252 SYSCTL_V_INT(V_NET, vnet_ipsec,_net_key, KEYCTL_DEBUG_LEVEL,	debug,
253 	CTLFLAG_RW, key_debug_level,	0,	"");
254 
255 /* max count of trial for the decision of spi value */
256 SYSCTL_V_INT(V_NET, vnet_ipsec,_net_key, KEYCTL_SPI_TRY, spi_trycnt,
257 	CTLFLAG_RW, key_spi_trycnt,	0,	"");
258 
259 /* minimum spi value to allocate automatically. */
260 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_SPI_MIN_VALUE,
261 	spi_minval,	CTLFLAG_RW, key_spi_minval,	0,	"");
262 
263 /* maximun spi value to allocate automatically. */
264 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_SPI_MAX_VALUE,
265 	spi_maxval,	CTLFLAG_RW, key_spi_maxval,	0,	"");
266 
267 /* interval to initialize randseed */
268 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_RANDOM_INT,
269 	int_random,	CTLFLAG_RW, key_int_random,	0,	"");
270 
271 /* lifetime for larval SA */
272 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_LARVAL_LIFETIME,
273 	larval_lifetime, CTLFLAG_RW, key_larval_lifetime,	0,	"");
274 
275 /* counter for blocking to send SADB_ACQUIRE to IKEd */
276 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_BLOCKACQ_COUNT,
277 	blockacq_count,	CTLFLAG_RW, key_blockacq_count,	0,	"");
278 
279 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
280 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_BLOCKACQ_LIFETIME,
281 	blockacq_lifetime, CTLFLAG_RW, key_blockacq_lifetime,	0, "");
282 
283 /* ESP auth */
284 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_ESP_AUTH,	esp_auth,
285 	CTLFLAG_RW, ipsec_esp_auth,	0,	"");
286 
287 /* minimum ESP key length */
288 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_ESP_KEYMIN,
289 	esp_keymin, CTLFLAG_RW, ipsec_esp_keymin,	0,	"");
290 
291 /* minimum AH key length */
292 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_AH_KEYMIN,	ah_keymin,
293 	CTLFLAG_RW, ipsec_ah_keymin,	0,	"");
294 
295 /* perfered old SA rather than new SA */
296 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_PREFERED_OLDSA,
297 	preferred_oldsa, CTLFLAG_RW, key_preferred_oldsa,	0,	"");
298 
299 #define __LIST_CHAINED(elm) \
300 	(!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
301 #define LIST_INSERT_TAIL(head, elm, type, field) \
302 do {\
303 	struct type *curelm = LIST_FIRST(head); \
304 	if (curelm == NULL) {\
305 		LIST_INSERT_HEAD(head, elm, field); \
306 	} else { \
307 		while (LIST_NEXT(curelm, field)) \
308 			curelm = LIST_NEXT(curelm, field);\
309 		LIST_INSERT_AFTER(curelm, elm, field);\
310 	}\
311 } while (0)
312 
313 #define KEY_CHKSASTATE(head, sav, name) \
314 do { \
315 	if ((head) != (sav)) {						\
316 		ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \
317 			(name), (head), (sav)));			\
318 		continue;						\
319 	}								\
320 } while (0)
321 
322 #define KEY_CHKSPDIR(head, sp, name) \
323 do { \
324 	if ((head) != (sp)) {						\
325 		ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \
326 			"anyway continue.\n",				\
327 			(name), (head), (sp)));				\
328 	}								\
329 } while (0)
330 
331 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association");
332 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head");
333 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy");
334 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request");
335 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous");
336 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire");
337 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire");
338 
339 /*
340  * set parameters into secpolicyindex buffer.
341  * Must allocate secpolicyindex buffer passed to this function.
342  */
343 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
344 do { \
345 	bzero((idx), sizeof(struct secpolicyindex));                         \
346 	(idx)->dir = (_dir);                                                 \
347 	(idx)->prefs = (ps);                                                 \
348 	(idx)->prefd = (pd);                                                 \
349 	(idx)->ul_proto = (ulp);                                             \
350 	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
351 	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
352 } while (0)
353 
354 /*
355  * set parameters into secasindex buffer.
356  * Must allocate secasindex buffer before calling this function.
357  */
358 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \
359 do { \
360 	bzero((idx), sizeof(struct secasindex));                             \
361 	(idx)->proto = (p);                                                  \
362 	(idx)->mode = (m);                                                   \
363 	(idx)->reqid = (r);                                                  \
364 	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
365 	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
366 } while (0)
367 
368 /* key statistics */
369 struct _keystat {
370 	u_long getspi_count; /* the avarage of count to try to get new SPI */
371 } keystat;
372 
373 struct sadb_msghdr {
374 	struct sadb_msg *msg;
375 	struct sadb_ext *ext[SADB_EXT_MAX + 1];
376 	int extoff[SADB_EXT_MAX + 1];
377 	int extlen[SADB_EXT_MAX + 1];
378 };
379 
380 static struct secasvar *key_allocsa_policy __P((const struct secasindex *));
381 static void key_freesp_so __P((struct secpolicy **));
382 static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int));
383 static void key_delsp __P((struct secpolicy *));
384 static struct secpolicy *key_getsp __P((struct secpolicyindex *));
385 static void _key_delsp(struct secpolicy *sp);
386 static struct secpolicy *key_getspbyid __P((u_int32_t));
387 static u_int32_t key_newreqid __P((void));
388 static struct mbuf *key_gather_mbuf __P((struct mbuf *,
389 	const struct sadb_msghdr *, int, int, ...));
390 static int key_spdadd __P((struct socket *, struct mbuf *,
391 	const struct sadb_msghdr *));
392 static u_int32_t key_getnewspid __P((void));
393 static int key_spddelete __P((struct socket *, struct mbuf *,
394 	const struct sadb_msghdr *));
395 static int key_spddelete2 __P((struct socket *, struct mbuf *,
396 	const struct sadb_msghdr *));
397 static int key_spdget __P((struct socket *, struct mbuf *,
398 	const struct sadb_msghdr *));
399 static int key_spdflush __P((struct socket *, struct mbuf *,
400 	const struct sadb_msghdr *));
401 static int key_spddump __P((struct socket *, struct mbuf *,
402 	const struct sadb_msghdr *));
403 static struct mbuf *key_setdumpsp __P((struct secpolicy *,
404 	u_int8_t, u_int32_t, u_int32_t));
405 static u_int key_getspreqmsglen __P((struct secpolicy *));
406 static int key_spdexpire __P((struct secpolicy *));
407 static struct secashead *key_newsah __P((struct secasindex *));
408 static void key_delsah __P((struct secashead *));
409 static struct secasvar *key_newsav __P((struct mbuf *,
410 	const struct sadb_msghdr *, struct secashead *, int *,
411 	const char*, int));
412 #define	KEY_NEWSAV(m, sadb, sah, e)				\
413 	key_newsav(m, sadb, sah, e, __FILE__, __LINE__)
414 static void key_delsav __P((struct secasvar *));
415 static struct secashead *key_getsah __P((struct secasindex *));
416 static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t));
417 static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t));
418 static int key_setsaval __P((struct secasvar *, struct mbuf *,
419 	const struct sadb_msghdr *));
420 static int key_mature __P((struct secasvar *));
421 static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t,
422 	u_int8_t, u_int32_t, u_int32_t));
423 static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t,
424 	u_int32_t, pid_t, u_int16_t));
425 static struct mbuf *key_setsadbsa __P((struct secasvar *));
426 static struct mbuf *key_setsadbaddr __P((u_int16_t,
427 	const struct sockaddr *, u_int8_t, u_int16_t));
428 static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t));
429 static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t,
430 	u_int32_t));
431 static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int,
432 				     struct malloc_type *);
433 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src,
434 					    struct malloc_type *type);
435 #ifdef INET6
436 static int key_ismyaddr6 __P((struct sockaddr_in6 *));
437 #endif
438 
439 /* flags for key_cmpsaidx() */
440 #define CMP_HEAD	1	/* protocol, addresses. */
441 #define CMP_MODE_REQID	2	/* additionally HEAD, reqid, mode. */
442 #define CMP_REQID	3	/* additionally HEAD, reaid. */
443 #define CMP_EXACTLY	4	/* all elements. */
444 static int key_cmpsaidx
445 	__P((const struct secasindex *, const struct secasindex *, int));
446 
447 static int key_cmpspidx_exactly
448 	__P((struct secpolicyindex *, struct secpolicyindex *));
449 static int key_cmpspidx_withmask
450 	__P((struct secpolicyindex *, struct secpolicyindex *));
451 static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int));
452 static int key_bbcmp __P((const void *, const void *, u_int));
453 static u_int16_t key_satype2proto __P((u_int8_t));
454 static u_int8_t key_proto2satype __P((u_int16_t));
455 
456 static int key_getspi __P((struct socket *, struct mbuf *,
457 	const struct sadb_msghdr *));
458 static u_int32_t key_do_getnewspi __P((struct sadb_spirange *,
459 					struct secasindex *));
460 static int key_update __P((struct socket *, struct mbuf *,
461 	const struct sadb_msghdr *));
462 #ifdef IPSEC_DOSEQCHECK
463 static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t));
464 #endif
465 static int key_add __P((struct socket *, struct mbuf *,
466 	const struct sadb_msghdr *));
467 static int key_setident __P((struct secashead *, struct mbuf *,
468 	const struct sadb_msghdr *));
469 static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *,
470 	const struct sadb_msghdr *));
471 static int key_delete __P((struct socket *, struct mbuf *,
472 	const struct sadb_msghdr *));
473 static int key_get __P((struct socket *, struct mbuf *,
474 	const struct sadb_msghdr *));
475 
476 static void key_getcomb_setlifetime __P((struct sadb_comb *));
477 static struct mbuf *key_getcomb_esp __P((void));
478 static struct mbuf *key_getcomb_ah __P((void));
479 static struct mbuf *key_getcomb_ipcomp __P((void));
480 static struct mbuf *key_getprop __P((const struct secasindex *));
481 
482 static int key_acquire __P((const struct secasindex *, struct secpolicy *));
483 static struct secacq *key_newacq __P((const struct secasindex *));
484 static struct secacq *key_getacq __P((const struct secasindex *));
485 static struct secacq *key_getacqbyseq __P((u_int32_t));
486 static struct secspacq *key_newspacq __P((struct secpolicyindex *));
487 static struct secspacq *key_getspacq __P((struct secpolicyindex *));
488 static int key_acquire2 __P((struct socket *, struct mbuf *,
489 	const struct sadb_msghdr *));
490 static int key_register __P((struct socket *, struct mbuf *,
491 	const struct sadb_msghdr *));
492 static int key_expire __P((struct secasvar *));
493 static int key_flush __P((struct socket *, struct mbuf *,
494 	const struct sadb_msghdr *));
495 static int key_dump __P((struct socket *, struct mbuf *,
496 	const struct sadb_msghdr *));
497 static int key_promisc __P((struct socket *, struct mbuf *,
498 	const struct sadb_msghdr *));
499 static int key_senderror __P((struct socket *, struct mbuf *, int));
500 static int key_validate_ext __P((const struct sadb_ext *, int));
501 static int key_align __P((struct mbuf *, struct sadb_msghdr *));
502 static struct mbuf *key_setlifetime(struct seclifetime *src,
503 				     u_int16_t exttype);
504 static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype);
505 
506 #if 0
507 static const char *key_getfqdn __P((void));
508 static const char *key_getuserfqdn __P((void));
509 #endif
510 static void key_sa_chgstate __P((struct secasvar *, u_int8_t));
511 static struct mbuf *key_alloc_mbuf __P((int));
512 
513 static __inline void
514 sa_initref(struct secasvar *sav)
515 {
516 
517 	refcount_init(&sav->refcnt, 1);
518 }
519 static __inline void
520 sa_addref(struct secasvar *sav)
521 {
522 
523 	refcount_acquire(&sav->refcnt);
524 	IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow"));
525 }
526 static __inline int
527 sa_delref(struct secasvar *sav)
528 {
529 
530 	IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow"));
531 	return (refcount_release(&sav->refcnt));
532 }
533 
534 #define	SP_ADDREF(p) do {						\
535 	(p)->refcnt++;							\
536 	IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow"));		\
537 } while (0)
538 #define	SP_DELREF(p) do {						\
539 	IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow"));		\
540 	(p)->refcnt--;							\
541 } while (0)
542 
543 
544 /*
545  * Update the refcnt while holding the SPTREE lock.
546  */
547 void
548 key_addref(struct secpolicy *sp)
549 {
550 	SPTREE_LOCK();
551 	SP_ADDREF(sp);
552 	SPTREE_UNLOCK();
553 }
554 
555 /*
556  * Return 0 when there are known to be no SP's for the specified
557  * direction.  Otherwise return 1.  This is used by IPsec code
558  * to optimize performance.
559  */
560 int
561 key_havesp(u_int dir)
562 {
563 	INIT_VNET_IPSEC(curvnet);
564 
565 	return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
566 		LIST_FIRST(&V_sptree[dir]) != NULL : 1);
567 }
568 
569 /* %%% IPsec policy management */
570 /*
571  * allocating a SP for OUTBOUND or INBOUND packet.
572  * Must call key_freesp() later.
573  * OUT:	NULL:	not found
574  *	others:	found and return the pointer.
575  */
576 struct secpolicy *
577 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag)
578 {
579 	INIT_VNET_IPSEC(curvnet);
580 	struct secpolicy *sp;
581 
582 	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
583 	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
584 		("invalid direction %u", dir));
585 
586 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
587 		printf("DP %s from %s:%u\n", __func__, where, tag));
588 
589 	/* get a SP entry */
590 	KEYDEBUG(KEYDEBUG_IPSEC_DATA,
591 		printf("*** objects\n");
592 		kdebug_secpolicyindex(spidx));
593 
594 	SPTREE_LOCK();
595 	LIST_FOREACH(sp, &V_sptree[dir], chain) {
596 		KEYDEBUG(KEYDEBUG_IPSEC_DATA,
597 			printf("*** in SPD\n");
598 			kdebug_secpolicyindex(&sp->spidx));
599 
600 		if (sp->state == IPSEC_SPSTATE_DEAD)
601 			continue;
602 		if (key_cmpspidx_withmask(&sp->spidx, spidx))
603 			goto found;
604 	}
605 	sp = NULL;
606 found:
607 	if (sp) {
608 		/* sanity check */
609 		KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
610 
611 		/* found a SPD entry */
612 		sp->lastused = time_second;
613 		SP_ADDREF(sp);
614 	}
615 	SPTREE_UNLOCK();
616 
617 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
618 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
619 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
620 	return sp;
621 }
622 
623 /*
624  * allocating a SP for OUTBOUND or INBOUND packet.
625  * Must call key_freesp() later.
626  * OUT:	NULL:	not found
627  *	others:	found and return the pointer.
628  */
629 struct secpolicy *
630 key_allocsp2(u_int32_t spi,
631 	     union sockaddr_union *dst,
632 	     u_int8_t proto,
633 	     u_int dir,
634 	     const char* where, int tag)
635 {
636 	INIT_VNET_IPSEC(curvnet);
637 	struct secpolicy *sp;
638 
639 	IPSEC_ASSERT(dst != NULL, ("null dst"));
640 	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
641 		("invalid direction %u", dir));
642 
643 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
644 		printf("DP %s from %s:%u\n", __func__, where, tag));
645 
646 	/* get a SP entry */
647 	KEYDEBUG(KEYDEBUG_IPSEC_DATA,
648 		printf("*** objects\n");
649 		printf("spi %u proto %u dir %u\n", spi, proto, dir);
650 		kdebug_sockaddr(&dst->sa));
651 
652 	SPTREE_LOCK();
653 	LIST_FOREACH(sp, &V_sptree[dir], chain) {
654 		KEYDEBUG(KEYDEBUG_IPSEC_DATA,
655 			printf("*** in SPD\n");
656 			kdebug_secpolicyindex(&sp->spidx));
657 
658 		if (sp->state == IPSEC_SPSTATE_DEAD)
659 			continue;
660 		/* compare simple values, then dst address */
661 		if (sp->spidx.ul_proto != proto)
662 			continue;
663 		/* NB: spi's must exist and match */
664 		if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
665 			continue;
666 		if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0)
667 			goto found;
668 	}
669 	sp = NULL;
670 found:
671 	if (sp) {
672 		/* sanity check */
673 		KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
674 
675 		/* found a SPD entry */
676 		sp->lastused = time_second;
677 		SP_ADDREF(sp);
678 	}
679 	SPTREE_UNLOCK();
680 
681 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
682 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
683 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
684 	return sp;
685 }
686 
687 /*
688  * return a policy that matches this particular inbound packet.
689  * XXX slow
690  */
691 struct secpolicy *
692 key_gettunnel(const struct sockaddr *osrc,
693 	      const struct sockaddr *odst,
694 	      const struct sockaddr *isrc,
695 	      const struct sockaddr *idst,
696 	      const char* where, int tag)
697 {
698 	INIT_VNET_IPSEC(curvnet);
699 	struct secpolicy *sp;
700 	const int dir = IPSEC_DIR_INBOUND;
701 	struct ipsecrequest *r1, *r2, *p;
702 	struct secpolicyindex spidx;
703 
704 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
705 		printf("DP %s from %s:%u\n", __func__, where, tag));
706 
707 	if (isrc->sa_family != idst->sa_family) {
708 		ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.",
709 			__func__, isrc->sa_family, idst->sa_family));
710 		sp = NULL;
711 		goto done;
712 	}
713 
714 	SPTREE_LOCK();
715 	LIST_FOREACH(sp, &V_sptree[dir], chain) {
716 		if (sp->state == IPSEC_SPSTATE_DEAD)
717 			continue;
718 
719 		r1 = r2 = NULL;
720 		for (p = sp->req; p; p = p->next) {
721 			if (p->saidx.mode != IPSEC_MODE_TUNNEL)
722 				continue;
723 
724 			r1 = r2;
725 			r2 = p;
726 
727 			if (!r1) {
728 				/* here we look at address matches only */
729 				spidx = sp->spidx;
730 				if (isrc->sa_len > sizeof(spidx.src) ||
731 				    idst->sa_len > sizeof(spidx.dst))
732 					continue;
733 				bcopy(isrc, &spidx.src, isrc->sa_len);
734 				bcopy(idst, &spidx.dst, idst->sa_len);
735 				if (!key_cmpspidx_withmask(&sp->spidx, &spidx))
736 					continue;
737 			} else {
738 				if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) ||
739 				    key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0))
740 					continue;
741 			}
742 
743 			if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) ||
744 			    key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0))
745 				continue;
746 
747 			goto found;
748 		}
749 	}
750 	sp = NULL;
751 found:
752 	if (sp) {
753 		sp->lastused = time_second;
754 		SP_ADDREF(sp);
755 	}
756 	SPTREE_UNLOCK();
757 done:
758 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
759 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
760 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
761 	return sp;
762 }
763 
764 /*
765  * allocating an SA entry for an *OUTBOUND* packet.
766  * checking each request entries in SP, and acquire an SA if need.
767  * OUT:	0: there are valid requests.
768  *	ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
769  */
770 int
771 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
772 {
773 	INIT_VNET_IPSEC(curvnet);
774 	u_int level;
775 	int error;
776 
777 	IPSEC_ASSERT(isr != NULL, ("null isr"));
778 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
779 	IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT ||
780 		saidx->mode == IPSEC_MODE_TUNNEL,
781 		("unexpected policy %u", saidx->mode));
782 
783 	/*
784 	 * XXX guard against protocol callbacks from the crypto
785 	 * thread as they reference ipsecrequest.sav which we
786 	 * temporarily null out below.  Need to rethink how we
787 	 * handle bundled SA's in the callback thread.
788 	 */
789 	IPSECREQUEST_LOCK_ASSERT(isr);
790 
791 	/* get current level */
792 	level = ipsec_get_reqlevel(isr);
793 #if 0
794 	/*
795 	 * We do allocate new SA only if the state of SA in the holder is
796 	 * SADB_SASTATE_DEAD.  The SA for outbound must be the oldest.
797 	 */
798 	if (isr->sav != NULL) {
799 		if (isr->sav->sah == NULL)
800 			panic("%s: sah is null.\n", __func__);
801 		if (isr->sav == (struct secasvar *)LIST_FIRST(
802 			    &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) {
803 			KEY_FREESAV(&isr->sav);
804 			isr->sav = NULL;
805 		}
806 	}
807 #else
808 	/*
809 	 * we free any SA stashed in the IPsec request because a different
810 	 * SA may be involved each time this request is checked, either
811 	 * because new SAs are being configured, or this request is
812 	 * associated with an unconnected datagram socket, or this request
813 	 * is associated with a system default policy.
814 	 *
815 	 * The operation may have negative impact to performance.  We may
816 	 * want to check cached SA carefully, rather than picking new SA
817 	 * every time.
818 	 */
819 	if (isr->sav != NULL) {
820 		KEY_FREESAV(&isr->sav);
821 		isr->sav = NULL;
822 	}
823 #endif
824 
825 	/*
826 	 * new SA allocation if no SA found.
827 	 * key_allocsa_policy should allocate the oldest SA available.
828 	 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
829 	 */
830 	if (isr->sav == NULL)
831 		isr->sav = key_allocsa_policy(saidx);
832 
833 	/* When there is SA. */
834 	if (isr->sav != NULL) {
835 		if (isr->sav->state != SADB_SASTATE_MATURE &&
836 		    isr->sav->state != SADB_SASTATE_DYING)
837 			return EINVAL;
838 		return 0;
839 	}
840 
841 	/* there is no SA */
842 	error = key_acquire(saidx, isr->sp);
843 	if (error != 0) {
844 		/* XXX What should I do ? */
845 		ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
846 			__func__, error));
847 		return error;
848 	}
849 
850 	if (level != IPSEC_LEVEL_REQUIRE) {
851 		/* XXX sigh, the interface to this routine is botched */
852 		IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA"));
853 		return 0;
854 	} else {
855 		return ENOENT;
856 	}
857 }
858 
859 /*
860  * allocating a SA for policy entry from SAD.
861  * NOTE: searching SAD of aliving state.
862  * OUT:	NULL:	not found.
863  *	others:	found and return the pointer.
864  */
865 static struct secasvar *
866 key_allocsa_policy(const struct secasindex *saidx)
867 {
868 #define	N(a)	_ARRAYLEN(a)
869 	INIT_VNET_IPSEC(curvnet);
870 	struct secashead *sah;
871 	struct secasvar *sav;
872 	u_int stateidx, arraysize;
873 	const u_int *state_valid;
874 
875 	SAHTREE_LOCK();
876 	LIST_FOREACH(sah, &V_sahtree, chain) {
877 		if (sah->state == SADB_SASTATE_DEAD)
878 			continue;
879 		if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) {
880 			if (V_key_preferred_oldsa) {
881 				state_valid = saorder_state_valid_prefer_old;
882 				arraysize = N(saorder_state_valid_prefer_old);
883 			} else {
884 				state_valid = saorder_state_valid_prefer_new;
885 				arraysize = N(saorder_state_valid_prefer_new);
886 			}
887 			SAHTREE_UNLOCK();
888 			goto found;
889 		}
890 	}
891 	SAHTREE_UNLOCK();
892 
893 	return NULL;
894 
895     found:
896 	/* search valid state */
897 	for (stateidx = 0; stateidx < arraysize; stateidx++) {
898 		sav = key_do_allocsa_policy(sah, state_valid[stateidx]);
899 		if (sav != NULL)
900 			return sav;
901 	}
902 
903 	return NULL;
904 #undef N
905 }
906 
907 /*
908  * searching SAD with direction, protocol, mode and state.
909  * called by key_allocsa_policy().
910  * OUT:
911  *	NULL	: not found
912  *	others	: found, pointer to a SA.
913  */
914 static struct secasvar *
915 key_do_allocsa_policy(struct secashead *sah, u_int state)
916 {
917 	INIT_VNET_IPSEC(curvnet);
918 	struct secasvar *sav, *nextsav, *candidate, *d;
919 
920 	/* initilize */
921 	candidate = NULL;
922 
923 	SAHTREE_LOCK();
924 	for (sav = LIST_FIRST(&sah->savtree[state]);
925 	     sav != NULL;
926 	     sav = nextsav) {
927 
928 		nextsav = LIST_NEXT(sav, chain);
929 
930 		/* sanity check */
931 		KEY_CHKSASTATE(sav->state, state, __func__);
932 
933 		/* initialize */
934 		if (candidate == NULL) {
935 			candidate = sav;
936 			continue;
937 		}
938 
939 		/* Which SA is the better ? */
940 
941 		IPSEC_ASSERT(candidate->lft_c != NULL,
942 			("null candidate lifetime"));
943 		IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime"));
944 
945 		/* What the best method is to compare ? */
946 		if (V_key_preferred_oldsa) {
947 			if (candidate->lft_c->addtime >
948 					sav->lft_c->addtime) {
949 				candidate = sav;
950 			}
951 			continue;
952 			/*NOTREACHED*/
953 		}
954 
955 		/* preferred new sa rather than old sa */
956 		if (candidate->lft_c->addtime <
957 				sav->lft_c->addtime) {
958 			d = candidate;
959 			candidate = sav;
960 		} else
961 			d = sav;
962 
963 		/*
964 		 * prepared to delete the SA when there is more
965 		 * suitable candidate and the lifetime of the SA is not
966 		 * permanent.
967 		 */
968 		if (d->lft_h->addtime != 0) {
969 			struct mbuf *m, *result;
970 			u_int8_t satype;
971 
972 			key_sa_chgstate(d, SADB_SASTATE_DEAD);
973 
974 			IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count"));
975 
976 			satype = key_proto2satype(d->sah->saidx.proto);
977 			if (satype == 0)
978 				goto msgfail;
979 
980 			m = key_setsadbmsg(SADB_DELETE, 0,
981 			    satype, 0, 0, d->refcnt - 1);
982 			if (!m)
983 				goto msgfail;
984 			result = m;
985 
986 			/* set sadb_address for saidx's. */
987 			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
988 				&d->sah->saidx.src.sa,
989 				d->sah->saidx.src.sa.sa_len << 3,
990 				IPSEC_ULPROTO_ANY);
991 			if (!m)
992 				goto msgfail;
993 			m_cat(result, m);
994 
995 			/* set sadb_address for saidx's. */
996 			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
997 				&d->sah->saidx.dst.sa,
998 				d->sah->saidx.dst.sa.sa_len << 3,
999 				IPSEC_ULPROTO_ANY);
1000 			if (!m)
1001 				goto msgfail;
1002 			m_cat(result, m);
1003 
1004 			/* create SA extension */
1005 			m = key_setsadbsa(d);
1006 			if (!m)
1007 				goto msgfail;
1008 			m_cat(result, m);
1009 
1010 			if (result->m_len < sizeof(struct sadb_msg)) {
1011 				result = m_pullup(result,
1012 						sizeof(struct sadb_msg));
1013 				if (result == NULL)
1014 					goto msgfail;
1015 			}
1016 
1017 			result->m_pkthdr.len = 0;
1018 			for (m = result; m; m = m->m_next)
1019 				result->m_pkthdr.len += m->m_len;
1020 			mtod(result, struct sadb_msg *)->sadb_msg_len =
1021 				PFKEY_UNIT64(result->m_pkthdr.len);
1022 
1023 			if (key_sendup_mbuf(NULL, result,
1024 					KEY_SENDUP_REGISTERED))
1025 				goto msgfail;
1026 		 msgfail:
1027 			KEY_FREESAV(&d);
1028 		}
1029 	}
1030 	if (candidate) {
1031 		sa_addref(candidate);
1032 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1033 			printf("DP %s cause refcnt++:%d SA:%p\n",
1034 				__func__, candidate->refcnt, candidate));
1035 	}
1036 	SAHTREE_UNLOCK();
1037 
1038 	return candidate;
1039 }
1040 
1041 /*
1042  * allocating a usable SA entry for a *INBOUND* packet.
1043  * Must call key_freesav() later.
1044  * OUT: positive:	pointer to a usable sav (i.e. MATURE or DYING state).
1045  *	NULL:		not found, or error occured.
1046  *
1047  * In the comparison, no source address is used--for RFC2401 conformance.
1048  * To quote, from section 4.1:
1049  *	A security association is uniquely identified by a triple consisting
1050  *	of a Security Parameter Index (SPI), an IP Destination Address, and a
1051  *	security protocol (AH or ESP) identifier.
1052  * Note that, however, we do need to keep source address in IPsec SA.
1053  * IKE specification and PF_KEY specification do assume that we
1054  * keep source address in IPsec SA.  We see a tricky situation here.
1055  */
1056 struct secasvar *
1057 key_allocsa(
1058 	union sockaddr_union *dst,
1059 	u_int proto,
1060 	u_int32_t spi,
1061 	const char* where, int tag)
1062 {
1063 	INIT_VNET_IPSEC(curvnet);
1064 	struct secashead *sah;
1065 	struct secasvar *sav;
1066 	u_int stateidx, arraysize, state;
1067 	const u_int *saorder_state_valid;
1068 
1069 	IPSEC_ASSERT(dst != NULL, ("null dst address"));
1070 
1071 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1072 		printf("DP %s from %s:%u\n", __func__, where, tag));
1073 
1074 	/*
1075 	 * searching SAD.
1076 	 * XXX: to be checked internal IP header somewhere.  Also when
1077 	 * IPsec tunnel packet is received.  But ESP tunnel mode is
1078 	 * encrypted so we can't check internal IP header.
1079 	 */
1080 	SAHTREE_LOCK();
1081 	if (V_key_preferred_oldsa) {
1082 		saorder_state_valid = saorder_state_valid_prefer_old;
1083 		arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1084 	} else {
1085 		saorder_state_valid = saorder_state_valid_prefer_new;
1086 		arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1087 	}
1088 	LIST_FOREACH(sah, &V_sahtree, chain) {
1089 		/* search valid state */
1090 		for (stateidx = 0; stateidx < arraysize; stateidx++) {
1091 			state = saorder_state_valid[stateidx];
1092 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
1093 				/* sanity check */
1094 				KEY_CHKSASTATE(sav->state, state, __func__);
1095 				/* do not return entries w/ unusable state */
1096 				if (sav->state != SADB_SASTATE_MATURE &&
1097 				    sav->state != SADB_SASTATE_DYING)
1098 					continue;
1099 				if (proto != sav->sah->saidx.proto)
1100 					continue;
1101 				if (spi != sav->spi)
1102 					continue;
1103 #if 0	/* don't check src */
1104 				/* check src address */
1105 				if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, 0) != 0)
1106 					continue;
1107 #endif
1108 				/* check dst address */
1109 				if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, 0) != 0)
1110 					continue;
1111 				sa_addref(sav);
1112 				goto done;
1113 			}
1114 		}
1115 	}
1116 	sav = NULL;
1117 done:
1118 	SAHTREE_UNLOCK();
1119 
1120 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1121 		printf("DP %s return SA:%p; refcnt %u\n", __func__,
1122 			sav, sav ? sav->refcnt : 0));
1123 	return sav;
1124 }
1125 
1126 /*
1127  * Must be called after calling key_allocsp().
1128  * For both the packet without socket and key_freeso().
1129  */
1130 void
1131 _key_freesp(struct secpolicy **spp, const char* where, int tag)
1132 {
1133 	INIT_VNET_IPSEC(curvnet);
1134 	struct secpolicy *sp = *spp;
1135 
1136 	IPSEC_ASSERT(sp != NULL, ("null sp"));
1137 
1138 	SPTREE_LOCK();
1139 	SP_DELREF(sp);
1140 
1141 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1142 		printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1143 			__func__, sp, sp->id, where, tag, sp->refcnt));
1144 
1145 	if (sp->refcnt == 0) {
1146 		*spp = NULL;
1147 		key_delsp(sp);
1148 	}
1149 	SPTREE_UNLOCK();
1150 }
1151 
1152 /*
1153  * Must be called after calling key_allocsp().
1154  * For the packet with socket.
1155  */
1156 void
1157 key_freeso(struct socket *so)
1158 {
1159 	INIT_VNET_IPSEC(curvnet);
1160 	IPSEC_ASSERT(so != NULL, ("null so"));
1161 
1162 	switch (so->so_proto->pr_domain->dom_family) {
1163 #if defined(INET) || defined(INET6)
1164 #ifdef INET
1165 	case PF_INET:
1166 #endif
1167 #ifdef INET6
1168 	case PF_INET6:
1169 #endif
1170 	    {
1171 		struct inpcb *pcb = sotoinpcb(so);
1172 
1173 		/* Does it have a PCB ? */
1174 		if (pcb == NULL)
1175 			return;
1176 		key_freesp_so(&pcb->inp_sp->sp_in);
1177 		key_freesp_so(&pcb->inp_sp->sp_out);
1178 	    }
1179 		break;
1180 #endif /* INET || INET6 */
1181 	default:
1182 		ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n",
1183 		    __func__, so->so_proto->pr_domain->dom_family));
1184 		return;
1185 	}
1186 }
1187 
1188 static void
1189 key_freesp_so(struct secpolicy **sp)
1190 {
1191 	IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp"));
1192 
1193 	if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1194 	    (*sp)->policy == IPSEC_POLICY_BYPASS)
1195 		return;
1196 
1197 	IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC,
1198 		("invalid policy %u", (*sp)->policy));
1199 	KEY_FREESP(sp);
1200 }
1201 
1202 /*
1203  * Must be called after calling key_allocsa().
1204  * This function is called by key_freesp() to free some SA allocated
1205  * for a policy.
1206  */
1207 void
1208 key_freesav(struct secasvar **psav, const char* where, int tag)
1209 {
1210 	INIT_VNET_IPSEC(curvnet);
1211 	struct secasvar *sav = *psav;
1212 
1213 	IPSEC_ASSERT(sav != NULL, ("null sav"));
1214 
1215 	if (sa_delref(sav)) {
1216 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1217 			printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1218 				__func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1219 		*psav = NULL;
1220 		key_delsav(sav);
1221 	} else {
1222 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1223 			printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1224 				__func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1225 	}
1226 }
1227 
1228 /* %%% SPD management */
1229 /*
1230  * free security policy entry.
1231  */
1232 static void
1233 key_delsp(struct secpolicy *sp)
1234 {
1235 	struct ipsecrequest *isr, *nextisr;
1236 
1237 	IPSEC_ASSERT(sp != NULL, ("null sp"));
1238 	SPTREE_LOCK_ASSERT();
1239 
1240 	sp->state = IPSEC_SPSTATE_DEAD;
1241 
1242 	IPSEC_ASSERT(sp->refcnt == 0,
1243 		("SP with references deleted (refcnt %u)", sp->refcnt));
1244 
1245 	/* remove from SP index */
1246 	if (__LIST_CHAINED(sp))
1247 		LIST_REMOVE(sp, chain);
1248 
1249 	for (isr = sp->req; isr != NULL; isr = nextisr) {
1250 		if (isr->sav != NULL) {
1251 			KEY_FREESAV(&isr->sav);
1252 			isr->sav = NULL;
1253 		}
1254 
1255 		nextisr = isr->next;
1256 		ipsec_delisr(isr);
1257 	}
1258 	_key_delsp(sp);
1259 }
1260 
1261 /*
1262  * search SPD
1263  * OUT:	NULL	: not found
1264  *	others	: found, pointer to a SP.
1265  */
1266 static struct secpolicy *
1267 key_getsp(struct secpolicyindex *spidx)
1268 {
1269 	INIT_VNET_IPSEC(curvnet);
1270 	struct secpolicy *sp;
1271 
1272 	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
1273 
1274 	SPTREE_LOCK();
1275 	LIST_FOREACH(sp, &V_sptree[spidx->dir], chain) {
1276 		if (sp->state == IPSEC_SPSTATE_DEAD)
1277 			continue;
1278 		if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1279 			SP_ADDREF(sp);
1280 			break;
1281 		}
1282 	}
1283 	SPTREE_UNLOCK();
1284 
1285 	return sp;
1286 }
1287 
1288 /*
1289  * get SP by index.
1290  * OUT:	NULL	: not found
1291  *	others	: found, pointer to a SP.
1292  */
1293 static struct secpolicy *
1294 key_getspbyid(u_int32_t id)
1295 {
1296 	INIT_VNET_IPSEC(curvnet);
1297 	struct secpolicy *sp;
1298 
1299 	SPTREE_LOCK();
1300 	LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_INBOUND], chain) {
1301 		if (sp->state == IPSEC_SPSTATE_DEAD)
1302 			continue;
1303 		if (sp->id == id) {
1304 			SP_ADDREF(sp);
1305 			goto done;
1306 		}
1307 	}
1308 
1309 	LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_OUTBOUND], chain) {
1310 		if (sp->state == IPSEC_SPSTATE_DEAD)
1311 			continue;
1312 		if (sp->id == id) {
1313 			SP_ADDREF(sp);
1314 			goto done;
1315 		}
1316 	}
1317 done:
1318 	SPTREE_UNLOCK();
1319 
1320 	return sp;
1321 }
1322 
1323 struct secpolicy *
1324 key_newsp(const char* where, int tag)
1325 {
1326 	INIT_VNET_IPSEC(curvnet);
1327 	struct secpolicy *newsp = NULL;
1328 
1329 	newsp = (struct secpolicy *)
1330 		malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO);
1331 	if (newsp) {
1332 		SECPOLICY_LOCK_INIT(newsp);
1333 		newsp->refcnt = 1;
1334 		newsp->req = NULL;
1335 	}
1336 
1337 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1338 		printf("DP %s from %s:%u return SP:%p\n", __func__,
1339 			where, tag, newsp));
1340 	return newsp;
1341 }
1342 
1343 static void
1344 _key_delsp(struct secpolicy *sp)
1345 {
1346 	SECPOLICY_LOCK_DESTROY(sp);
1347 	free(sp, M_IPSEC_SP);
1348 }
1349 
1350 /*
1351  * create secpolicy structure from sadb_x_policy structure.
1352  * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1353  * so must be set properly later.
1354  */
1355 struct secpolicy *
1356 key_msg2sp(xpl0, len, error)
1357 	struct sadb_x_policy *xpl0;
1358 	size_t len;
1359 	int *error;
1360 {
1361 	INIT_VNET_IPSEC(curvnet);
1362 	struct secpolicy *newsp;
1363 
1364 	IPSEC_ASSERT(xpl0 != NULL, ("null xpl0"));
1365 	IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len));
1366 
1367 	if (len != PFKEY_EXTLEN(xpl0)) {
1368 		ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__));
1369 		*error = EINVAL;
1370 		return NULL;
1371 	}
1372 
1373 	if ((newsp = KEY_NEWSP()) == NULL) {
1374 		*error = ENOBUFS;
1375 		return NULL;
1376 	}
1377 
1378 	newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1379 	newsp->policy = xpl0->sadb_x_policy_type;
1380 
1381 	/* check policy */
1382 	switch (xpl0->sadb_x_policy_type) {
1383 	case IPSEC_POLICY_DISCARD:
1384 	case IPSEC_POLICY_NONE:
1385 	case IPSEC_POLICY_ENTRUST:
1386 	case IPSEC_POLICY_BYPASS:
1387 		newsp->req = NULL;
1388 		break;
1389 
1390 	case IPSEC_POLICY_IPSEC:
1391 	    {
1392 		int tlen;
1393 		struct sadb_x_ipsecrequest *xisr;
1394 		struct ipsecrequest **p_isr = &newsp->req;
1395 
1396 		/* validity check */
1397 		if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1398 			ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n",
1399 				__func__));
1400 			KEY_FREESP(&newsp);
1401 			*error = EINVAL;
1402 			return NULL;
1403 		}
1404 
1405 		tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1406 		xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1);
1407 
1408 		while (tlen > 0) {
1409 			/* length check */
1410 			if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1411 				ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest "
1412 					"length.\n", __func__));
1413 				KEY_FREESP(&newsp);
1414 				*error = EINVAL;
1415 				return NULL;
1416 			}
1417 
1418 			/* allocate request buffer */
1419 			/* NB: data structure is zero'd */
1420 			*p_isr = ipsec_newisr();
1421 			if ((*p_isr) == NULL) {
1422 				ipseclog((LOG_DEBUG,
1423 				    "%s: No more memory.\n", __func__));
1424 				KEY_FREESP(&newsp);
1425 				*error = ENOBUFS;
1426 				return NULL;
1427 			}
1428 
1429 			/* set values */
1430 			switch (xisr->sadb_x_ipsecrequest_proto) {
1431 			case IPPROTO_ESP:
1432 			case IPPROTO_AH:
1433 			case IPPROTO_IPCOMP:
1434 				break;
1435 			default:
1436 				ipseclog((LOG_DEBUG,
1437 				    "%s: invalid proto type=%u\n", __func__,
1438 				    xisr->sadb_x_ipsecrequest_proto));
1439 				KEY_FREESP(&newsp);
1440 				*error = EPROTONOSUPPORT;
1441 				return NULL;
1442 			}
1443 			(*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1444 
1445 			switch (xisr->sadb_x_ipsecrequest_mode) {
1446 			case IPSEC_MODE_TRANSPORT:
1447 			case IPSEC_MODE_TUNNEL:
1448 				break;
1449 			case IPSEC_MODE_ANY:
1450 			default:
1451 				ipseclog((LOG_DEBUG,
1452 				    "%s: invalid mode=%u\n", __func__,
1453 				    xisr->sadb_x_ipsecrequest_mode));
1454 				KEY_FREESP(&newsp);
1455 				*error = EINVAL;
1456 				return NULL;
1457 			}
1458 			(*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1459 
1460 			switch (xisr->sadb_x_ipsecrequest_level) {
1461 			case IPSEC_LEVEL_DEFAULT:
1462 			case IPSEC_LEVEL_USE:
1463 			case IPSEC_LEVEL_REQUIRE:
1464 				break;
1465 			case IPSEC_LEVEL_UNIQUE:
1466 				/* validity check */
1467 				/*
1468 				 * If range violation of reqid, kernel will
1469 				 * update it, don't refuse it.
1470 				 */
1471 				if (xisr->sadb_x_ipsecrequest_reqid
1472 						> IPSEC_MANUAL_REQID_MAX) {
1473 					ipseclog((LOG_DEBUG,
1474 					    "%s: reqid=%d range "
1475 					    "violation, updated by kernel.\n",
1476 					    __func__,
1477 					    xisr->sadb_x_ipsecrequest_reqid));
1478 					xisr->sadb_x_ipsecrequest_reqid = 0;
1479 				}
1480 
1481 				/* allocate new reqid id if reqid is zero. */
1482 				if (xisr->sadb_x_ipsecrequest_reqid == 0) {
1483 					u_int32_t reqid;
1484 					if ((reqid = key_newreqid()) == 0) {
1485 						KEY_FREESP(&newsp);
1486 						*error = ENOBUFS;
1487 						return NULL;
1488 					}
1489 					(*p_isr)->saidx.reqid = reqid;
1490 					xisr->sadb_x_ipsecrequest_reqid = reqid;
1491 				} else {
1492 				/* set it for manual keying. */
1493 					(*p_isr)->saidx.reqid =
1494 						xisr->sadb_x_ipsecrequest_reqid;
1495 				}
1496 				break;
1497 
1498 			default:
1499 				ipseclog((LOG_DEBUG, "%s: invalid level=%u\n",
1500 					__func__,
1501 					xisr->sadb_x_ipsecrequest_level));
1502 				KEY_FREESP(&newsp);
1503 				*error = EINVAL;
1504 				return NULL;
1505 			}
1506 			(*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1507 
1508 			/* set IP addresses if there */
1509 			if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1510 				struct sockaddr *paddr;
1511 
1512 				paddr = (struct sockaddr *)(xisr + 1);
1513 
1514 				/* validity check */
1515 				if (paddr->sa_len
1516 				    > sizeof((*p_isr)->saidx.src)) {
1517 					ipseclog((LOG_DEBUG, "%s: invalid "
1518 						"request address length.\n",
1519 						__func__));
1520 					KEY_FREESP(&newsp);
1521 					*error = EINVAL;
1522 					return NULL;
1523 				}
1524 				bcopy(paddr, &(*p_isr)->saidx.src,
1525 					paddr->sa_len);
1526 
1527 				paddr = (struct sockaddr *)((caddr_t)paddr
1528 							+ paddr->sa_len);
1529 
1530 				/* validity check */
1531 				if (paddr->sa_len
1532 				    > sizeof((*p_isr)->saidx.dst)) {
1533 					ipseclog((LOG_DEBUG, "%s: invalid "
1534 						"request address length.\n",
1535 						__func__));
1536 					KEY_FREESP(&newsp);
1537 					*error = EINVAL;
1538 					return NULL;
1539 				}
1540 				bcopy(paddr, &(*p_isr)->saidx.dst,
1541 					paddr->sa_len);
1542 			}
1543 
1544 			(*p_isr)->sp = newsp;
1545 
1546 			/* initialization for the next. */
1547 			p_isr = &(*p_isr)->next;
1548 			tlen -= xisr->sadb_x_ipsecrequest_len;
1549 
1550 			/* validity check */
1551 			if (tlen < 0) {
1552 				ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n",
1553 					__func__));
1554 				KEY_FREESP(&newsp);
1555 				*error = EINVAL;
1556 				return NULL;
1557 			}
1558 
1559 			xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr
1560 			                 + xisr->sadb_x_ipsecrequest_len);
1561 		}
1562 	    }
1563 		break;
1564 	default:
1565 		ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__));
1566 		KEY_FREESP(&newsp);
1567 		*error = EINVAL;
1568 		return NULL;
1569 	}
1570 
1571 	*error = 0;
1572 	return newsp;
1573 }
1574 
1575 static u_int32_t
1576 key_newreqid()
1577 {
1578 	static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1579 
1580 	auto_reqid = (auto_reqid == ~0
1581 			? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1582 
1583 	/* XXX should be unique check */
1584 
1585 	return auto_reqid;
1586 }
1587 
1588 /*
1589  * copy secpolicy struct to sadb_x_policy structure indicated.
1590  */
1591 struct mbuf *
1592 key_sp2msg(sp)
1593 	struct secpolicy *sp;
1594 {
1595 	struct sadb_x_policy *xpl;
1596 	int tlen;
1597 	caddr_t p;
1598 	struct mbuf *m;
1599 
1600 	IPSEC_ASSERT(sp != NULL, ("null policy"));
1601 
1602 	tlen = key_getspreqmsglen(sp);
1603 
1604 	m = key_alloc_mbuf(tlen);
1605 	if (!m || m->m_next) {	/*XXX*/
1606 		if (m)
1607 			m_freem(m);
1608 		return NULL;
1609 	}
1610 
1611 	m->m_len = tlen;
1612 	m->m_next = NULL;
1613 	xpl = mtod(m, struct sadb_x_policy *);
1614 	bzero(xpl, tlen);
1615 
1616 	xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1617 	xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1618 	xpl->sadb_x_policy_type = sp->policy;
1619 	xpl->sadb_x_policy_dir = sp->spidx.dir;
1620 	xpl->sadb_x_policy_id = sp->id;
1621 	p = (caddr_t)xpl + sizeof(*xpl);
1622 
1623 	/* if is the policy for ipsec ? */
1624 	if (sp->policy == IPSEC_POLICY_IPSEC) {
1625 		struct sadb_x_ipsecrequest *xisr;
1626 		struct ipsecrequest *isr;
1627 
1628 		for (isr = sp->req; isr != NULL; isr = isr->next) {
1629 
1630 			xisr = (struct sadb_x_ipsecrequest *)p;
1631 
1632 			xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1633 			xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1634 			xisr->sadb_x_ipsecrequest_level = isr->level;
1635 			xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1636 
1637 			p += sizeof(*xisr);
1638 			bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len);
1639 			p += isr->saidx.src.sa.sa_len;
1640 			bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len);
1641 			p += isr->saidx.src.sa.sa_len;
1642 
1643 			xisr->sadb_x_ipsecrequest_len =
1644 				PFKEY_ALIGN8(sizeof(*xisr)
1645 					+ isr->saidx.src.sa.sa_len
1646 					+ isr->saidx.dst.sa.sa_len);
1647 		}
1648 	}
1649 
1650 	return m;
1651 }
1652 
1653 /* m will not be freed nor modified */
1654 static struct mbuf *
1655 #ifdef __STDC__
1656 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1657 	int ndeep, int nitem, ...)
1658 #else
1659 key_gather_mbuf(m, mhp, ndeep, nitem, va_alist)
1660 	struct mbuf *m;
1661 	const struct sadb_msghdr *mhp;
1662 	int ndeep;
1663 	int nitem;
1664 	va_dcl
1665 #endif
1666 {
1667 	va_list ap;
1668 	int idx;
1669 	int i;
1670 	struct mbuf *result = NULL, *n;
1671 	int len;
1672 
1673 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1674 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1675 
1676 	va_start(ap, nitem);
1677 	for (i = 0; i < nitem; i++) {
1678 		idx = va_arg(ap, int);
1679 		if (idx < 0 || idx > SADB_EXT_MAX)
1680 			goto fail;
1681 		/* don't attempt to pull empty extension */
1682 		if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1683 			continue;
1684 		if (idx != SADB_EXT_RESERVED  &&
1685 		    (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1686 			continue;
1687 
1688 		if (idx == SADB_EXT_RESERVED) {
1689 			len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1690 
1691 			IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len));
1692 
1693 			MGETHDR(n, M_DONTWAIT, MT_DATA);
1694 			if (!n)
1695 				goto fail;
1696 			n->m_len = len;
1697 			n->m_next = NULL;
1698 			m_copydata(m, 0, sizeof(struct sadb_msg),
1699 			    mtod(n, caddr_t));
1700 		} else if (i < ndeep) {
1701 			len = mhp->extlen[idx];
1702 			n = key_alloc_mbuf(len);
1703 			if (!n || n->m_next) {	/*XXX*/
1704 				if (n)
1705 					m_freem(n);
1706 				goto fail;
1707 			}
1708 			m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1709 			    mtod(n, caddr_t));
1710 		} else {
1711 			n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1712 			    M_DONTWAIT);
1713 		}
1714 		if (n == NULL)
1715 			goto fail;
1716 
1717 		if (result)
1718 			m_cat(result, n);
1719 		else
1720 			result = n;
1721 	}
1722 	va_end(ap);
1723 
1724 	if ((result->m_flags & M_PKTHDR) != 0) {
1725 		result->m_pkthdr.len = 0;
1726 		for (n = result; n; n = n->m_next)
1727 			result->m_pkthdr.len += n->m_len;
1728 	}
1729 
1730 	return result;
1731 
1732 fail:
1733 	m_freem(result);
1734 	return NULL;
1735 }
1736 
1737 /*
1738  * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1739  * add an entry to SP database, when received
1740  *   <base, address(SD), (lifetime(H),) policy>
1741  * from the user(?).
1742  * Adding to SP database,
1743  * and send
1744  *   <base, address(SD), (lifetime(H),) policy>
1745  * to the socket which was send.
1746  *
1747  * SPDADD set a unique policy entry.
1748  * SPDSETIDX like SPDADD without a part of policy requests.
1749  * SPDUPDATE replace a unique policy entry.
1750  *
1751  * m will always be freed.
1752  */
1753 static int
1754 key_spdadd(so, m, mhp)
1755 	struct socket *so;
1756 	struct mbuf *m;
1757 	const struct sadb_msghdr *mhp;
1758 {
1759 	INIT_VNET_IPSEC(curvnet);
1760 	struct sadb_address *src0, *dst0;
1761 	struct sadb_x_policy *xpl0, *xpl;
1762 	struct sadb_lifetime *lft = NULL;
1763 	struct secpolicyindex spidx;
1764 	struct secpolicy *newsp;
1765 	int error;
1766 
1767 	IPSEC_ASSERT(so != NULL, ("null socket"));
1768 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1769 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1770 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
1771 
1772 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1773 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1774 	    mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1775 		ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1776 		return key_senderror(so, m, EINVAL);
1777 	}
1778 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1779 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1780 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1781 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1782 			__func__));
1783 		return key_senderror(so, m, EINVAL);
1784 	}
1785 	if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1786 		if (mhp->extlen[SADB_EXT_LIFETIME_HARD]
1787 			< sizeof(struct sadb_lifetime)) {
1788 			ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1789 				__func__));
1790 			return key_senderror(so, m, EINVAL);
1791 		}
1792 		lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1793 	}
1794 
1795 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1796 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1797 	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1798 
1799 	/* make secindex */
1800 	/* XXX boundary check against sa_len */
1801 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1802 	                src0 + 1,
1803 	                dst0 + 1,
1804 	                src0->sadb_address_prefixlen,
1805 	                dst0->sadb_address_prefixlen,
1806 	                src0->sadb_address_proto,
1807 	                &spidx);
1808 
1809 	/* checking the direciton. */
1810 	switch (xpl0->sadb_x_policy_dir) {
1811 	case IPSEC_DIR_INBOUND:
1812 	case IPSEC_DIR_OUTBOUND:
1813 		break;
1814 	default:
1815 		ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
1816 		mhp->msg->sadb_msg_errno = EINVAL;
1817 		return 0;
1818 	}
1819 
1820 	/* check policy */
1821 	/* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1822 	if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST
1823 	 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1824 		ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__));
1825 		return key_senderror(so, m, EINVAL);
1826 	}
1827 
1828 	/* policy requests are mandatory when action is ipsec. */
1829         if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX
1830 	 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC
1831 	 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1832 		ipseclog((LOG_DEBUG, "%s: some policy requests part required\n",
1833 			__func__));
1834 		return key_senderror(so, m, EINVAL);
1835 	}
1836 
1837 	/*
1838 	 * checking there is SP already or not.
1839 	 * SPDUPDATE doesn't depend on whether there is a SP or not.
1840 	 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1841 	 * then error.
1842 	 */
1843 	newsp = key_getsp(&spidx);
1844 	if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1845 		if (newsp) {
1846 			newsp->state = IPSEC_SPSTATE_DEAD;
1847 			KEY_FREESP(&newsp);
1848 		}
1849 	} else {
1850 		if (newsp != NULL) {
1851 			KEY_FREESP(&newsp);
1852 			ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n",
1853 				__func__));
1854 			return key_senderror(so, m, EEXIST);
1855 		}
1856 	}
1857 
1858 	/* allocation new SP entry */
1859 	if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
1860 		return key_senderror(so, m, error);
1861 	}
1862 
1863 	if ((newsp->id = key_getnewspid()) == 0) {
1864 		_key_delsp(newsp);
1865 		return key_senderror(so, m, ENOBUFS);
1866 	}
1867 
1868 	/* XXX boundary check against sa_len */
1869 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1870 	                src0 + 1,
1871 	                dst0 + 1,
1872 	                src0->sadb_address_prefixlen,
1873 	                dst0->sadb_address_prefixlen,
1874 	                src0->sadb_address_proto,
1875 	                &newsp->spidx);
1876 
1877 	/* sanity check on addr pair */
1878 	if (((struct sockaddr *)(src0 + 1))->sa_family !=
1879 			((struct sockaddr *)(dst0+ 1))->sa_family) {
1880 		_key_delsp(newsp);
1881 		return key_senderror(so, m, EINVAL);
1882 	}
1883 	if (((struct sockaddr *)(src0 + 1))->sa_len !=
1884 			((struct sockaddr *)(dst0+ 1))->sa_len) {
1885 		_key_delsp(newsp);
1886 		return key_senderror(so, m, EINVAL);
1887 	}
1888 #if 1
1889 	if (newsp->req && newsp->req->saidx.src.sa.sa_family) {
1890 		struct sockaddr *sa;
1891 		sa = (struct sockaddr *)(src0 + 1);
1892 		if (sa->sa_family != newsp->req->saidx.src.sa.sa_family) {
1893 			_key_delsp(newsp);
1894 			return key_senderror(so, m, EINVAL);
1895 		}
1896 	}
1897 	if (newsp->req && newsp->req->saidx.dst.sa.sa_family) {
1898 		struct sockaddr *sa;
1899 		sa = (struct sockaddr *)(dst0 + 1);
1900 		if (sa->sa_family != newsp->req->saidx.dst.sa.sa_family) {
1901 			_key_delsp(newsp);
1902 			return key_senderror(so, m, EINVAL);
1903 		}
1904 	}
1905 #endif
1906 
1907 	newsp->created = time_second;
1908 	newsp->lastused = newsp->created;
1909 	newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1910 	newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1911 
1912 	newsp->refcnt = 1;	/* do not reclaim until I say I do */
1913 	newsp->state = IPSEC_SPSTATE_ALIVE;
1914 	LIST_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1915 
1916 	/* delete the entry in spacqtree */
1917 	if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1918 		struct secspacq *spacq = key_getspacq(&spidx);
1919 		if (spacq != NULL) {
1920 			/* reset counter in order to deletion by timehandler. */
1921 			spacq->created = time_second;
1922 			spacq->count = 0;
1923 			SPACQ_UNLOCK();
1924 		}
1925     	}
1926 
1927     {
1928 	struct mbuf *n, *mpolicy;
1929 	struct sadb_msg *newmsg;
1930 	int off;
1931 
1932 	/* create new sadb_msg to reply. */
1933 	if (lft) {
1934 		n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
1935 		    SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
1936 		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1937 	} else {
1938 		n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
1939 		    SADB_X_EXT_POLICY,
1940 		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1941 	}
1942 	if (!n)
1943 		return key_senderror(so, m, ENOBUFS);
1944 
1945 	if (n->m_len < sizeof(*newmsg)) {
1946 		n = m_pullup(n, sizeof(*newmsg));
1947 		if (!n)
1948 			return key_senderror(so, m, ENOBUFS);
1949 	}
1950 	newmsg = mtod(n, struct sadb_msg *);
1951 	newmsg->sadb_msg_errno = 0;
1952 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
1953 
1954 	off = 0;
1955 	mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
1956 	    sizeof(*xpl), &off);
1957 	if (mpolicy == NULL) {
1958 		/* n is already freed */
1959 		return key_senderror(so, m, ENOBUFS);
1960 	}
1961 	xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off);
1962 	if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
1963 		m_freem(n);
1964 		return key_senderror(so, m, EINVAL);
1965 	}
1966 	xpl->sadb_x_policy_id = newsp->id;
1967 
1968 	m_freem(m);
1969 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
1970     }
1971 }
1972 
1973 /*
1974  * get new policy id.
1975  * OUT:
1976  *	0:	failure.
1977  *	others: success.
1978  */
1979 static u_int32_t
1980 key_getnewspid()
1981 {
1982 	INIT_VNET_IPSEC(curvnet);
1983 	u_int32_t newid = 0;
1984 	int count = V_key_spi_trycnt;	/* XXX */
1985 	struct secpolicy *sp;
1986 
1987 	/* when requesting to allocate spi ranged */
1988 	while (count--) {
1989 		newid = (V_policy_id = (V_policy_id == ~0 ? 1 : V_policy_id + 1));
1990 
1991 		if ((sp = key_getspbyid(newid)) == NULL)
1992 			break;
1993 
1994 		KEY_FREESP(&sp);
1995 	}
1996 
1997 	if (count == 0 || newid == 0) {
1998 		ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n",
1999 			__func__));
2000 		return 0;
2001 	}
2002 
2003 	return newid;
2004 }
2005 
2006 /*
2007  * SADB_SPDDELETE processing
2008  * receive
2009  *   <base, address(SD), policy(*)>
2010  * from the user(?), and set SADB_SASTATE_DEAD,
2011  * and send,
2012  *   <base, address(SD), policy(*)>
2013  * to the ikmpd.
2014  * policy(*) including direction of policy.
2015  *
2016  * m will always be freed.
2017  */
2018 static int
2019 key_spddelete(so, m, mhp)
2020 	struct socket *so;
2021 	struct mbuf *m;
2022 	const struct sadb_msghdr *mhp;
2023 {
2024 	INIT_VNET_IPSEC(curvnet);
2025 	struct sadb_address *src0, *dst0;
2026 	struct sadb_x_policy *xpl0;
2027 	struct secpolicyindex spidx;
2028 	struct secpolicy *sp;
2029 
2030 	IPSEC_ASSERT(so != NULL, ("null so"));
2031 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2032 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2033 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2034 
2035 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2036 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2037 	    mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2038 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2039 			__func__));
2040 		return key_senderror(so, m, EINVAL);
2041 	}
2042 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2043 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2044 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2045 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2046 			__func__));
2047 		return key_senderror(so, m, EINVAL);
2048 	}
2049 
2050 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2051 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2052 	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2053 
2054 	/* make secindex */
2055 	/* XXX boundary check against sa_len */
2056 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2057 	                src0 + 1,
2058 	                dst0 + 1,
2059 	                src0->sadb_address_prefixlen,
2060 	                dst0->sadb_address_prefixlen,
2061 	                src0->sadb_address_proto,
2062 	                &spidx);
2063 
2064 	/* checking the direciton. */
2065 	switch (xpl0->sadb_x_policy_dir) {
2066 	case IPSEC_DIR_INBOUND:
2067 	case IPSEC_DIR_OUTBOUND:
2068 		break;
2069 	default:
2070 		ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
2071 		return key_senderror(so, m, EINVAL);
2072 	}
2073 
2074 	/* Is there SP in SPD ? */
2075 	if ((sp = key_getsp(&spidx)) == NULL) {
2076 		ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__));
2077 		return key_senderror(so, m, EINVAL);
2078 	}
2079 
2080 	/* save policy id to buffer to be returned. */
2081 	xpl0->sadb_x_policy_id = sp->id;
2082 
2083 	sp->state = IPSEC_SPSTATE_DEAD;
2084 	KEY_FREESP(&sp);
2085 
2086     {
2087 	struct mbuf *n;
2088 	struct sadb_msg *newmsg;
2089 
2090 	/* create new sadb_msg to reply. */
2091 	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2092 	    SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2093 	if (!n)
2094 		return key_senderror(so, m, ENOBUFS);
2095 
2096 	newmsg = mtod(n, struct sadb_msg *);
2097 	newmsg->sadb_msg_errno = 0;
2098 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2099 
2100 	m_freem(m);
2101 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2102     }
2103 }
2104 
2105 /*
2106  * SADB_SPDDELETE2 processing
2107  * receive
2108  *   <base, policy(*)>
2109  * from the user(?), and set SADB_SASTATE_DEAD,
2110  * and send,
2111  *   <base, policy(*)>
2112  * to the ikmpd.
2113  * policy(*) including direction of policy.
2114  *
2115  * m will always be freed.
2116  */
2117 static int
2118 key_spddelete2(so, m, mhp)
2119 	struct socket *so;
2120 	struct mbuf *m;
2121 	const struct sadb_msghdr *mhp;
2122 {
2123 	INIT_VNET_IPSEC(curvnet);
2124 	u_int32_t id;
2125 	struct secpolicy *sp;
2126 
2127 	IPSEC_ASSERT(so != NULL, ("null socket"));
2128 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2129 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2130 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2131 
2132 	if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2133 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2134 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__));
2135 		return key_senderror(so, m, EINVAL);
2136 	}
2137 
2138 	id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2139 
2140 	/* Is there SP in SPD ? */
2141 	if ((sp = key_getspbyid(id)) == NULL) {
2142 		ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2143 		return key_senderror(so, m, EINVAL);
2144 	}
2145 
2146 	sp->state = IPSEC_SPSTATE_DEAD;
2147 	KEY_FREESP(&sp);
2148 
2149     {
2150 	struct mbuf *n, *nn;
2151 	struct sadb_msg *newmsg;
2152 	int off, len;
2153 
2154 	/* create new sadb_msg to reply. */
2155 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2156 
2157 	MGETHDR(n, M_DONTWAIT, MT_DATA);
2158 	if (n && len > MHLEN) {
2159 		MCLGET(n, M_DONTWAIT);
2160 		if ((n->m_flags & M_EXT) == 0) {
2161 			m_freem(n);
2162 			n = NULL;
2163 		}
2164 	}
2165 	if (!n)
2166 		return key_senderror(so, m, ENOBUFS);
2167 
2168 	n->m_len = len;
2169 	n->m_next = NULL;
2170 	off = 0;
2171 
2172 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
2173 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2174 
2175 	IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)",
2176 		off, len));
2177 
2178 	n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2179 	    mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2180 	if (!n->m_next) {
2181 		m_freem(n);
2182 		return key_senderror(so, m, ENOBUFS);
2183 	}
2184 
2185 	n->m_pkthdr.len = 0;
2186 	for (nn = n; nn; nn = nn->m_next)
2187 		n->m_pkthdr.len += nn->m_len;
2188 
2189 	newmsg = mtod(n, struct sadb_msg *);
2190 	newmsg->sadb_msg_errno = 0;
2191 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2192 
2193 	m_freem(m);
2194 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2195     }
2196 }
2197 
2198 /*
2199  * SADB_X_GET processing
2200  * receive
2201  *   <base, policy(*)>
2202  * from the user(?),
2203  * and send,
2204  *   <base, address(SD), policy>
2205  * to the ikmpd.
2206  * policy(*) including direction of policy.
2207  *
2208  * m will always be freed.
2209  */
2210 static int
2211 key_spdget(so, m, mhp)
2212 	struct socket *so;
2213 	struct mbuf *m;
2214 	const struct sadb_msghdr *mhp;
2215 {
2216 	INIT_VNET_IPSEC(curvnet);
2217 	u_int32_t id;
2218 	struct secpolicy *sp;
2219 	struct mbuf *n;
2220 
2221 	IPSEC_ASSERT(so != NULL, ("null socket"));
2222 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2223 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2224 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2225 
2226 	if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2227 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2228 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2229 			__func__));
2230 		return key_senderror(so, m, EINVAL);
2231 	}
2232 
2233 	id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2234 
2235 	/* Is there SP in SPD ? */
2236 	if ((sp = key_getspbyid(id)) == NULL) {
2237 		ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2238 		return key_senderror(so, m, ENOENT);
2239 	}
2240 
2241 	n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid);
2242 	if (n != NULL) {
2243 		m_freem(m);
2244 		return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2245 	} else
2246 		return key_senderror(so, m, ENOBUFS);
2247 }
2248 
2249 /*
2250  * SADB_X_SPDACQUIRE processing.
2251  * Acquire policy and SA(s) for a *OUTBOUND* packet.
2252  * send
2253  *   <base, policy(*)>
2254  * to KMD, and expect to receive
2255  *   <base> with SADB_X_SPDACQUIRE if error occured,
2256  * or
2257  *   <base, policy>
2258  * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2259  * policy(*) is without policy requests.
2260  *
2261  *    0     : succeed
2262  *    others: error number
2263  */
2264 int
2265 key_spdacquire(sp)
2266 	struct secpolicy *sp;
2267 {
2268 	INIT_VNET_IPSEC(curvnet);
2269 	struct mbuf *result = NULL, *m;
2270 	struct secspacq *newspacq;
2271 
2272 	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2273 	IPSEC_ASSERT(sp->req == NULL, ("policy exists"));
2274 	IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC,
2275 		("policy not IPSEC %u", sp->policy));
2276 
2277 	/* Get an entry to check whether sent message or not. */
2278 	newspacq = key_getspacq(&sp->spidx);
2279 	if (newspacq != NULL) {
2280 		if (V_key_blockacq_count < newspacq->count) {
2281 			/* reset counter and do send message. */
2282 			newspacq->count = 0;
2283 		} else {
2284 			/* increment counter and do nothing. */
2285 			newspacq->count++;
2286 			return 0;
2287 		}
2288 		SPACQ_UNLOCK();
2289 	} else {
2290 		/* make new entry for blocking to send SADB_ACQUIRE. */
2291 		newspacq = key_newspacq(&sp->spidx);
2292 		if (newspacq == NULL)
2293 			return ENOBUFS;
2294 	}
2295 
2296 	/* create new sadb_msg to reply. */
2297 	m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2298 	if (!m)
2299 		return ENOBUFS;
2300 
2301 	result = m;
2302 
2303 	result->m_pkthdr.len = 0;
2304 	for (m = result; m; m = m->m_next)
2305 		result->m_pkthdr.len += m->m_len;
2306 
2307 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2308 	    PFKEY_UNIT64(result->m_pkthdr.len);
2309 
2310 	return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2311 }
2312 
2313 /*
2314  * SADB_SPDFLUSH processing
2315  * receive
2316  *   <base>
2317  * from the user, and free all entries in secpctree.
2318  * and send,
2319  *   <base>
2320  * to the user.
2321  * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2322  *
2323  * m will always be freed.
2324  */
2325 static int
2326 key_spdflush(so, m, mhp)
2327 	struct socket *so;
2328 	struct mbuf *m;
2329 	const struct sadb_msghdr *mhp;
2330 {
2331 	INIT_VNET_IPSEC(curvnet);
2332 	struct sadb_msg *newmsg;
2333 	struct secpolicy *sp;
2334 	u_int dir;
2335 
2336 	IPSEC_ASSERT(so != NULL, ("null socket"));
2337 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2338 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2339 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2340 
2341 	if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2342 		return key_senderror(so, m, EINVAL);
2343 
2344 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2345 		SPTREE_LOCK();
2346 		LIST_FOREACH(sp, &V_sptree[dir], chain)
2347 			sp->state = IPSEC_SPSTATE_DEAD;
2348 		SPTREE_UNLOCK();
2349 	}
2350 
2351 	if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2352 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2353 		return key_senderror(so, m, ENOBUFS);
2354 	}
2355 
2356 	if (m->m_next)
2357 		m_freem(m->m_next);
2358 	m->m_next = NULL;
2359 	m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2360 	newmsg = mtod(m, struct sadb_msg *);
2361 	newmsg->sadb_msg_errno = 0;
2362 	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2363 
2364 	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2365 }
2366 
2367 /*
2368  * SADB_SPDDUMP processing
2369  * receive
2370  *   <base>
2371  * from the user, and dump all SP leaves
2372  * and send,
2373  *   <base> .....
2374  * to the ikmpd.
2375  *
2376  * m will always be freed.
2377  */
2378 static int
2379 key_spddump(so, m, mhp)
2380 	struct socket *so;
2381 	struct mbuf *m;
2382 	const struct sadb_msghdr *mhp;
2383 {
2384 	INIT_VNET_IPSEC(curvnet);
2385 	struct secpolicy *sp;
2386 	int cnt;
2387 	u_int dir;
2388 	struct mbuf *n;
2389 
2390 	IPSEC_ASSERT(so != NULL, ("null socket"));
2391 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2392 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2393 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2394 
2395 	/* search SPD entry and get buffer size. */
2396 	cnt = 0;
2397 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2398 		LIST_FOREACH(sp, &V_sptree[dir], chain) {
2399 			cnt++;
2400 		}
2401 	}
2402 
2403 	if (cnt == 0)
2404 		return key_senderror(so, m, ENOENT);
2405 
2406 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2407 		LIST_FOREACH(sp, &V_sptree[dir], chain) {
2408 			--cnt;
2409 			n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt,
2410 			    mhp->msg->sadb_msg_pid);
2411 
2412 			if (n)
2413 				key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2414 		}
2415 	}
2416 
2417 	m_freem(m);
2418 	return 0;
2419 }
2420 
2421 static struct mbuf *
2422 key_setdumpsp(sp, type, seq, pid)
2423 	struct secpolicy *sp;
2424 	u_int8_t type;
2425 	u_int32_t seq, pid;
2426 {
2427 	struct mbuf *result = NULL, *m;
2428 	struct seclifetime lt;
2429 
2430 	m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2431 	if (!m)
2432 		goto fail;
2433 	result = m;
2434 
2435 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2436 	    &sp->spidx.src.sa, sp->spidx.prefs,
2437 	    sp->spidx.ul_proto);
2438 	if (!m)
2439 		goto fail;
2440 	m_cat(result, m);
2441 
2442 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2443 	    &sp->spidx.dst.sa, sp->spidx.prefd,
2444 	    sp->spidx.ul_proto);
2445 	if (!m)
2446 		goto fail;
2447 	m_cat(result, m);
2448 
2449 	m = key_sp2msg(sp);
2450 	if (!m)
2451 		goto fail;
2452 	m_cat(result, m);
2453 
2454 	if(sp->lifetime){
2455 		lt.addtime=sp->created;
2456 		lt.usetime= sp->lastused;
2457 		m = key_setlifetime(&lt, SADB_EXT_LIFETIME_CURRENT);
2458 		if (!m)
2459 			goto fail;
2460 		m_cat(result, m);
2461 
2462 		lt.addtime=sp->lifetime;
2463 		lt.usetime= sp->validtime;
2464 		m = key_setlifetime(&lt, SADB_EXT_LIFETIME_HARD);
2465 		if (!m)
2466 			goto fail;
2467 		m_cat(result, m);
2468 	}
2469 
2470 	if ((result->m_flags & M_PKTHDR) == 0)
2471 		goto fail;
2472 
2473 	if (result->m_len < sizeof(struct sadb_msg)) {
2474 		result = m_pullup(result, sizeof(struct sadb_msg));
2475 		if (result == NULL)
2476 			goto fail;
2477 	}
2478 
2479 	result->m_pkthdr.len = 0;
2480 	for (m = result; m; m = m->m_next)
2481 		result->m_pkthdr.len += m->m_len;
2482 
2483 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2484 	    PFKEY_UNIT64(result->m_pkthdr.len);
2485 
2486 	return result;
2487 
2488 fail:
2489 	m_freem(result);
2490 	return NULL;
2491 }
2492 
2493 /*
2494  * get PFKEY message length for security policy and request.
2495  */
2496 static u_int
2497 key_getspreqmsglen(sp)
2498 	struct secpolicy *sp;
2499 {
2500 	u_int tlen;
2501 
2502 	tlen = sizeof(struct sadb_x_policy);
2503 
2504 	/* if is the policy for ipsec ? */
2505 	if (sp->policy != IPSEC_POLICY_IPSEC)
2506 		return tlen;
2507 
2508 	/* get length of ipsec requests */
2509     {
2510 	struct ipsecrequest *isr;
2511 	int len;
2512 
2513 	for (isr = sp->req; isr != NULL; isr = isr->next) {
2514 		len = sizeof(struct sadb_x_ipsecrequest)
2515 			+ isr->saidx.src.sa.sa_len
2516 			+ isr->saidx.dst.sa.sa_len;
2517 
2518 		tlen += PFKEY_ALIGN8(len);
2519 	}
2520     }
2521 
2522 	return tlen;
2523 }
2524 
2525 /*
2526  * SADB_SPDEXPIRE processing
2527  * send
2528  *   <base, address(SD), lifetime(CH), policy>
2529  * to KMD by PF_KEY.
2530  *
2531  * OUT:	0	: succeed
2532  *	others	: error number
2533  */
2534 static int
2535 key_spdexpire(sp)
2536 	struct secpolicy *sp;
2537 {
2538 	struct mbuf *result = NULL, *m;
2539 	int len;
2540 	int error = -1;
2541 	struct sadb_lifetime *lt;
2542 
2543 	/* XXX: Why do we lock ? */
2544 
2545 	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2546 
2547 	/* set msg header */
2548 	m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2549 	if (!m) {
2550 		error = ENOBUFS;
2551 		goto fail;
2552 	}
2553 	result = m;
2554 
2555 	/* create lifetime extension (current and hard) */
2556 	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2557 	m = key_alloc_mbuf(len);
2558 	if (!m || m->m_next) {	/*XXX*/
2559 		if (m)
2560 			m_freem(m);
2561 		error = ENOBUFS;
2562 		goto fail;
2563 	}
2564 	bzero(mtod(m, caddr_t), len);
2565 	lt = mtod(m, struct sadb_lifetime *);
2566 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2567 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2568 	lt->sadb_lifetime_allocations = 0;
2569 	lt->sadb_lifetime_bytes = 0;
2570 	lt->sadb_lifetime_addtime = sp->created;
2571 	lt->sadb_lifetime_usetime = sp->lastused;
2572 	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
2573 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2574 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2575 	lt->sadb_lifetime_allocations = 0;
2576 	lt->sadb_lifetime_bytes = 0;
2577 	lt->sadb_lifetime_addtime = sp->lifetime;
2578 	lt->sadb_lifetime_usetime = sp->validtime;
2579 	m_cat(result, m);
2580 
2581 	/* set sadb_address for source */
2582 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2583 	    &sp->spidx.src.sa,
2584 	    sp->spidx.prefs, sp->spidx.ul_proto);
2585 	if (!m) {
2586 		error = ENOBUFS;
2587 		goto fail;
2588 	}
2589 	m_cat(result, m);
2590 
2591 	/* set sadb_address for destination */
2592 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2593 	    &sp->spidx.dst.sa,
2594 	    sp->spidx.prefd, sp->spidx.ul_proto);
2595 	if (!m) {
2596 		error = ENOBUFS;
2597 		goto fail;
2598 	}
2599 	m_cat(result, m);
2600 
2601 	/* set secpolicy */
2602 	m = key_sp2msg(sp);
2603 	if (!m) {
2604 		error = ENOBUFS;
2605 		goto fail;
2606 	}
2607 	m_cat(result, m);
2608 
2609 	if ((result->m_flags & M_PKTHDR) == 0) {
2610 		error = EINVAL;
2611 		goto fail;
2612 	}
2613 
2614 	if (result->m_len < sizeof(struct sadb_msg)) {
2615 		result = m_pullup(result, sizeof(struct sadb_msg));
2616 		if (result == NULL) {
2617 			error = ENOBUFS;
2618 			goto fail;
2619 		}
2620 	}
2621 
2622 	result->m_pkthdr.len = 0;
2623 	for (m = result; m; m = m->m_next)
2624 		result->m_pkthdr.len += m->m_len;
2625 
2626 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2627 	    PFKEY_UNIT64(result->m_pkthdr.len);
2628 
2629 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2630 
2631  fail:
2632 	if (result)
2633 		m_freem(result);
2634 	return error;
2635 }
2636 
2637 /* %%% SAD management */
2638 /*
2639  * allocating a memory for new SA head, and copy from the values of mhp.
2640  * OUT:	NULL	: failure due to the lack of memory.
2641  *	others	: pointer to new SA head.
2642  */
2643 static struct secashead *
2644 key_newsah(saidx)
2645 	struct secasindex *saidx;
2646 {
2647 	INIT_VNET_IPSEC(curvnet);
2648 	struct secashead *newsah;
2649 
2650 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
2651 
2652 	newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO);
2653 	if (newsah != NULL) {
2654 		int i;
2655 		for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++)
2656 			LIST_INIT(&newsah->savtree[i]);
2657 		newsah->saidx = *saidx;
2658 
2659 		/* add to saidxtree */
2660 		newsah->state = SADB_SASTATE_MATURE;
2661 
2662 		SAHTREE_LOCK();
2663 		LIST_INSERT_HEAD(&V_sahtree, newsah, chain);
2664 		SAHTREE_UNLOCK();
2665 	}
2666 	return(newsah);
2667 }
2668 
2669 /*
2670  * delete SA index and all SA registerd.
2671  */
2672 static void
2673 key_delsah(sah)
2674 	struct secashead *sah;
2675 {
2676 	INIT_VNET_IPSEC(curvnet);
2677 	struct secasvar *sav, *nextsav;
2678 	u_int stateidx;
2679 	int zombie = 0;
2680 
2681 	IPSEC_ASSERT(sah != NULL, ("NULL sah"));
2682 	SAHTREE_LOCK_ASSERT();
2683 
2684 	/* searching all SA registerd in the secindex. */
2685 	for (stateidx = 0;
2686 	     stateidx < _ARRAYLEN(saorder_state_any);
2687 	     stateidx++) {
2688 		u_int state = saorder_state_any[stateidx];
2689 		LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) {
2690 			if (sav->refcnt == 0) {
2691 				/* sanity check */
2692 				KEY_CHKSASTATE(state, sav->state, __func__);
2693 				KEY_FREESAV(&sav);
2694 			} else {
2695 				/* give up to delete this sa */
2696 				zombie++;
2697 			}
2698 		}
2699 	}
2700 	if (!zombie) {		/* delete only if there are savs */
2701 		/* remove from tree of SA index */
2702 		if (__LIST_CHAINED(sah))
2703 			LIST_REMOVE(sah, chain);
2704 		if (sah->sa_route.ro_rt) {
2705 			RTFREE(sah->sa_route.ro_rt);
2706 			sah->sa_route.ro_rt = (struct rtentry *)NULL;
2707 		}
2708 		free(sah, M_IPSEC_SAH);
2709 	}
2710 }
2711 
2712 /*
2713  * allocating a new SA with LARVAL state.  key_add() and key_getspi() call,
2714  * and copy the values of mhp into new buffer.
2715  * When SAD message type is GETSPI:
2716  *	to set sequence number from acq_seq++,
2717  *	to set zero to SPI.
2718  *	not to call key_setsava().
2719  * OUT:	NULL	: fail
2720  *	others	: pointer to new secasvar.
2721  *
2722  * does not modify mbuf.  does not free mbuf on error.
2723  */
2724 static struct secasvar *
2725 key_newsav(m, mhp, sah, errp, where, tag)
2726 	struct mbuf *m;
2727 	const struct sadb_msghdr *mhp;
2728 	struct secashead *sah;
2729 	int *errp;
2730 	const char* where;
2731 	int tag;
2732 {
2733 	INIT_VNET_IPSEC(curvnet);
2734 	struct secasvar *newsav;
2735 	const struct sadb_sa *xsa;
2736 
2737 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2738 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2739 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2740 	IPSEC_ASSERT(sah != NULL, ("null secashead"));
2741 
2742 	newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO);
2743 	if (newsav == NULL) {
2744 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2745 		*errp = ENOBUFS;
2746 		goto done;
2747 	}
2748 
2749 	switch (mhp->msg->sadb_msg_type) {
2750 	case SADB_GETSPI:
2751 		newsav->spi = 0;
2752 
2753 #ifdef IPSEC_DOSEQCHECK
2754 		/* sync sequence number */
2755 		if (mhp->msg->sadb_msg_seq == 0)
2756 			newsav->seq =
2757 				(V_acq_seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq));
2758 		else
2759 #endif
2760 			newsav->seq = mhp->msg->sadb_msg_seq;
2761 		break;
2762 
2763 	case SADB_ADD:
2764 		/* sanity check */
2765 		if (mhp->ext[SADB_EXT_SA] == NULL) {
2766 			free(newsav, M_IPSEC_SA);
2767 			newsav = NULL;
2768 			ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2769 				__func__));
2770 			*errp = EINVAL;
2771 			goto done;
2772 		}
2773 		xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2774 		newsav->spi = xsa->sadb_sa_spi;
2775 		newsav->seq = mhp->msg->sadb_msg_seq;
2776 		break;
2777 	default:
2778 		free(newsav, M_IPSEC_SA);
2779 		newsav = NULL;
2780 		*errp = EINVAL;
2781 		goto done;
2782 	}
2783 
2784 
2785 	/* copy sav values */
2786 	if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2787 		*errp = key_setsaval(newsav, m, mhp);
2788 		if (*errp) {
2789 			free(newsav, M_IPSEC_SA);
2790 			newsav = NULL;
2791 			goto done;
2792 		}
2793 	}
2794 
2795 	SECASVAR_LOCK_INIT(newsav);
2796 
2797 	/* reset created */
2798 	newsav->created = time_second;
2799 	newsav->pid = mhp->msg->sadb_msg_pid;
2800 
2801 	/* add to satree */
2802 	newsav->sah = sah;
2803 	sa_initref(newsav);
2804 	newsav->state = SADB_SASTATE_LARVAL;
2805 
2806 	/* XXX locking??? */
2807 	LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
2808 			secasvar, chain);
2809 done:
2810 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
2811 		printf("DP %s from %s:%u return SP:%p\n", __func__,
2812 			where, tag, newsav));
2813 
2814 	return newsav;
2815 }
2816 
2817 /*
2818  * free() SA variable entry.
2819  */
2820 static void
2821 key_cleansav(struct secasvar *sav)
2822 {
2823 	/*
2824 	 * Cleanup xform state.  Note that zeroize'ing causes the
2825 	 * keys to be cleared; otherwise we must do it ourself.
2826 	 */
2827 	if (sav->tdb_xform != NULL) {
2828 		sav->tdb_xform->xf_zeroize(sav);
2829 		sav->tdb_xform = NULL;
2830 	} else {
2831 		KASSERT(sav->iv == NULL, ("iv but no xform"));
2832 		if (sav->key_auth != NULL)
2833 			bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2834 		if (sav->key_enc != NULL)
2835 			bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc));
2836 	}
2837 	if (sav->key_auth != NULL) {
2838 		if (sav->key_auth->key_data != NULL)
2839 			free(sav->key_auth->key_data, M_IPSEC_MISC);
2840 		free(sav->key_auth, M_IPSEC_MISC);
2841 		sav->key_auth = NULL;
2842 	}
2843 	if (sav->key_enc != NULL) {
2844 		if (sav->key_enc->key_data != NULL)
2845 			free(sav->key_enc->key_data, M_IPSEC_MISC);
2846 		free(sav->key_enc, M_IPSEC_MISC);
2847 		sav->key_enc = NULL;
2848 	}
2849 	if (sav->sched) {
2850 		bzero(sav->sched, sav->schedlen);
2851 		free(sav->sched, M_IPSEC_MISC);
2852 		sav->sched = NULL;
2853 	}
2854 	if (sav->replay != NULL) {
2855 		free(sav->replay, M_IPSEC_MISC);
2856 		sav->replay = NULL;
2857 	}
2858 	if (sav->lft_c != NULL) {
2859 		free(sav->lft_c, M_IPSEC_MISC);
2860 		sav->lft_c = NULL;
2861 	}
2862 	if (sav->lft_h != NULL) {
2863 		free(sav->lft_h, M_IPSEC_MISC);
2864 		sav->lft_h = NULL;
2865 	}
2866 	if (sav->lft_s != NULL) {
2867 		free(sav->lft_s, M_IPSEC_MISC);
2868 		sav->lft_s = NULL;
2869 	}
2870 }
2871 
2872 /*
2873  * free() SA variable entry.
2874  */
2875 static void
2876 key_delsav(sav)
2877 	struct secasvar *sav;
2878 {
2879 	IPSEC_ASSERT(sav != NULL, ("null sav"));
2880 	IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt));
2881 
2882 	/* remove from SA header */
2883 	if (__LIST_CHAINED(sav))
2884 		LIST_REMOVE(sav, chain);
2885 	key_cleansav(sav);
2886 	SECASVAR_LOCK_DESTROY(sav);
2887 	free(sav, M_IPSEC_SA);
2888 }
2889 
2890 /*
2891  * search SAD.
2892  * OUT:
2893  *	NULL	: not found
2894  *	others	: found, pointer to a SA.
2895  */
2896 static struct secashead *
2897 key_getsah(saidx)
2898 	struct secasindex *saidx;
2899 {
2900 	INIT_VNET_IPSEC(curvnet);
2901 	struct secashead *sah;
2902 
2903 	SAHTREE_LOCK();
2904 	LIST_FOREACH(sah, &V_sahtree, chain) {
2905 		if (sah->state == SADB_SASTATE_DEAD)
2906 			continue;
2907 		if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID))
2908 			break;
2909 	}
2910 	SAHTREE_UNLOCK();
2911 
2912 	return sah;
2913 }
2914 
2915 /*
2916  * check not to be duplicated SPI.
2917  * NOTE: this function is too slow due to searching all SAD.
2918  * OUT:
2919  *	NULL	: not found
2920  *	others	: found, pointer to a SA.
2921  */
2922 static struct secasvar *
2923 key_checkspidup(saidx, spi)
2924 	struct secasindex *saidx;
2925 	u_int32_t spi;
2926 {
2927 	INIT_VNET_IPSEC(curvnet);
2928 	struct secashead *sah;
2929 	struct secasvar *sav;
2930 
2931 	/* check address family */
2932 	if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
2933 		ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
2934 			__func__));
2935 		return NULL;
2936 	}
2937 
2938 	sav = NULL;
2939 	/* check all SAD */
2940 	SAHTREE_LOCK();
2941 	LIST_FOREACH(sah, &V_sahtree, chain) {
2942 		if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
2943 			continue;
2944 		sav = key_getsavbyspi(sah, spi);
2945 		if (sav != NULL)
2946 			break;
2947 	}
2948 	SAHTREE_UNLOCK();
2949 
2950 	return sav;
2951 }
2952 
2953 /*
2954  * search SAD litmited alive SA, protocol, SPI.
2955  * OUT:
2956  *	NULL	: not found
2957  *	others	: found, pointer to a SA.
2958  */
2959 static struct secasvar *
2960 key_getsavbyspi(sah, spi)
2961 	struct secashead *sah;
2962 	u_int32_t spi;
2963 {
2964 	INIT_VNET_IPSEC(curvnet);
2965 	struct secasvar *sav;
2966 	u_int stateidx, state;
2967 
2968 	sav = NULL;
2969 	SAHTREE_LOCK_ASSERT();
2970 	/* search all status */
2971 	for (stateidx = 0;
2972 	     stateidx < _ARRAYLEN(saorder_state_alive);
2973 	     stateidx++) {
2974 
2975 		state = saorder_state_alive[stateidx];
2976 		LIST_FOREACH(sav, &sah->savtree[state], chain) {
2977 
2978 			/* sanity check */
2979 			if (sav->state != state) {
2980 				ipseclog((LOG_DEBUG, "%s: "
2981 				    "invalid sav->state (queue: %d SA: %d)\n",
2982 				    __func__, state, sav->state));
2983 				continue;
2984 			}
2985 
2986 			if (sav->spi == spi)
2987 				return sav;
2988 		}
2989 	}
2990 
2991 	return NULL;
2992 }
2993 
2994 /*
2995  * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
2996  * You must update these if need.
2997  * OUT:	0:	success.
2998  *	!0:	failure.
2999  *
3000  * does not modify mbuf.  does not free mbuf on error.
3001  */
3002 static int
3003 key_setsaval(sav, m, mhp)
3004 	struct secasvar *sav;
3005 	struct mbuf *m;
3006 	const struct sadb_msghdr *mhp;
3007 {
3008 	INIT_VNET_IPSEC(curvnet);
3009 	int error = 0;
3010 
3011 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
3012 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
3013 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
3014 
3015 	/* initialization */
3016 	sav->replay = NULL;
3017 	sav->key_auth = NULL;
3018 	sav->key_enc = NULL;
3019 	sav->sched = NULL;
3020 	sav->schedlen = 0;
3021 	sav->iv = NULL;
3022 	sav->lft_c = NULL;
3023 	sav->lft_h = NULL;
3024 	sav->lft_s = NULL;
3025 	sav->tdb_xform = NULL;		/* transform */
3026 	sav->tdb_encalgxform = NULL;	/* encoding algorithm */
3027 	sav->tdb_authalgxform = NULL;	/* authentication algorithm */
3028 	sav->tdb_compalgxform = NULL;	/* compression algorithm */
3029 
3030 	/* SA */
3031 	if (mhp->ext[SADB_EXT_SA] != NULL) {
3032 		const struct sadb_sa *sa0;
3033 
3034 		sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3035 		if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3036 			error = EINVAL;
3037 			goto fail;
3038 		}
3039 
3040 		sav->alg_auth = sa0->sadb_sa_auth;
3041 		sav->alg_enc = sa0->sadb_sa_encrypt;
3042 		sav->flags = sa0->sadb_sa_flags;
3043 
3044 		/* replay window */
3045 		if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3046 			sav->replay = (struct secreplay *)
3047 				malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO);
3048 			if (sav->replay == NULL) {
3049 				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3050 					__func__));
3051 				error = ENOBUFS;
3052 				goto fail;
3053 			}
3054 			if (sa0->sadb_sa_replay != 0)
3055 				sav->replay->bitmap = (caddr_t)(sav->replay+1);
3056 			sav->replay->wsize = sa0->sadb_sa_replay;
3057 		}
3058 	}
3059 
3060 	/* Authentication keys */
3061 	if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3062 		const struct sadb_key *key0;
3063 		int len;
3064 
3065 		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3066 		len = mhp->extlen[SADB_EXT_KEY_AUTH];
3067 
3068 		error = 0;
3069 		if (len < sizeof(*key0)) {
3070 			error = EINVAL;
3071 			goto fail;
3072 		}
3073 		switch (mhp->msg->sadb_msg_satype) {
3074 		case SADB_SATYPE_AH:
3075 		case SADB_SATYPE_ESP:
3076 		case SADB_X_SATYPE_TCPSIGNATURE:
3077 			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3078 			    sav->alg_auth != SADB_X_AALG_NULL)
3079 				error = EINVAL;
3080 			break;
3081 		case SADB_X_SATYPE_IPCOMP:
3082 		default:
3083 			error = EINVAL;
3084 			break;
3085 		}
3086 		if (error) {
3087 			ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n",
3088 				__func__));
3089 			goto fail;
3090 		}
3091 
3092 		sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len,
3093 								M_IPSEC_MISC);
3094 		if (sav->key_auth == NULL ) {
3095 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3096 				  __func__));
3097 			error = ENOBUFS;
3098 			goto fail;
3099 		}
3100 	}
3101 
3102 	/* Encryption key */
3103 	if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3104 		const struct sadb_key *key0;
3105 		int len;
3106 
3107 		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3108 		len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3109 
3110 		error = 0;
3111 		if (len < sizeof(*key0)) {
3112 			error = EINVAL;
3113 			goto fail;
3114 		}
3115 		switch (mhp->msg->sadb_msg_satype) {
3116 		case SADB_SATYPE_ESP:
3117 			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3118 			    sav->alg_enc != SADB_EALG_NULL) {
3119 				error = EINVAL;
3120 				break;
3121 			}
3122 			sav->key_enc = (struct seckey *)key_dup_keymsg(key0,
3123 								       len,
3124 								       M_IPSEC_MISC);
3125 			if (sav->key_enc == NULL) {
3126 				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3127 					__func__));
3128 				error = ENOBUFS;
3129 				goto fail;
3130 			}
3131 			break;
3132 		case SADB_X_SATYPE_IPCOMP:
3133 			if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3134 				error = EINVAL;
3135 			sav->key_enc = NULL;	/*just in case*/
3136 			break;
3137 		case SADB_SATYPE_AH:
3138 		case SADB_X_SATYPE_TCPSIGNATURE:
3139 		default:
3140 			error = EINVAL;
3141 			break;
3142 		}
3143 		if (error) {
3144 			ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n",
3145 				__func__));
3146 			goto fail;
3147 		}
3148 	}
3149 
3150 	/* set iv */
3151 	sav->ivlen = 0;
3152 
3153 	switch (mhp->msg->sadb_msg_satype) {
3154 	case SADB_SATYPE_AH:
3155 		error = xform_init(sav, XF_AH);
3156 		break;
3157 	case SADB_SATYPE_ESP:
3158 		error = xform_init(sav, XF_ESP);
3159 		break;
3160 	case SADB_X_SATYPE_IPCOMP:
3161 		error = xform_init(sav, XF_IPCOMP);
3162 		break;
3163 	case SADB_X_SATYPE_TCPSIGNATURE:
3164 		error = xform_init(sav, XF_TCPSIGNATURE);
3165 		break;
3166 	}
3167 	if (error) {
3168 		ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n",
3169 		        __func__, mhp->msg->sadb_msg_satype));
3170 		goto fail;
3171 	}
3172 
3173 	/* reset created */
3174 	sav->created = time_second;
3175 
3176 	/* make lifetime for CURRENT */
3177 	sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT);
3178 	if (sav->lft_c == NULL) {
3179 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3180 		error = ENOBUFS;
3181 		goto fail;
3182 	}
3183 
3184 	sav->lft_c->allocations = 0;
3185 	sav->lft_c->bytes = 0;
3186 	sav->lft_c->addtime = time_second;
3187 	sav->lft_c->usetime = 0;
3188 
3189 	/* lifetimes for HARD and SOFT */
3190     {
3191 	const struct sadb_lifetime *lft0;
3192 
3193 	lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3194 	if (lft0 != NULL) {
3195 		if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3196 			error = EINVAL;
3197 			goto fail;
3198 		}
3199 		sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC);
3200 		if (sav->lft_h == NULL) {
3201 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3202 			error = ENOBUFS;
3203 			goto fail;
3204 		}
3205 		/* to be initialize ? */
3206 	}
3207 
3208 	lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3209 	if (lft0 != NULL) {
3210 		if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3211 			error = EINVAL;
3212 			goto fail;
3213 		}
3214 		sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC);
3215 		if (sav->lft_s == NULL) {
3216 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3217 			error = ENOBUFS;
3218 			goto fail;
3219 		}
3220 		/* to be initialize ? */
3221 	}
3222     }
3223 
3224 	return 0;
3225 
3226  fail:
3227 	/* initialization */
3228 	key_cleansav(sav);
3229 
3230 	return error;
3231 }
3232 
3233 /*
3234  * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3235  * OUT:	0:	valid
3236  *	other:	errno
3237  */
3238 static int
3239 key_mature(struct secasvar *sav)
3240 {
3241 	INIT_VNET_IPSEC(curvnet);
3242 	int error;
3243 
3244 	/* check SPI value */
3245 	switch (sav->sah->saidx.proto) {
3246 	case IPPROTO_ESP:
3247 	case IPPROTO_AH:
3248 		/*
3249 		 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values
3250 		 * 1-255 reserved by IANA for future use,
3251 		 * 0 for implementation specific, local use.
3252 		 */
3253 		if (ntohl(sav->spi) <= 255) {
3254 			ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n",
3255 			    __func__, (u_int32_t)ntohl(sav->spi)));
3256 			return EINVAL;
3257 		}
3258 		break;
3259 	}
3260 
3261 	/* check satype */
3262 	switch (sav->sah->saidx.proto) {
3263 	case IPPROTO_ESP:
3264 		/* check flags */
3265 		if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3266 		    (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3267 			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3268 				"given to old-esp.\n", __func__));
3269 			return EINVAL;
3270 		}
3271 		error = xform_init(sav, XF_ESP);
3272 		break;
3273 	case IPPROTO_AH:
3274 		/* check flags */
3275 		if (sav->flags & SADB_X_EXT_DERIV) {
3276 			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3277 				"given to AH SA.\n", __func__));
3278 			return EINVAL;
3279 		}
3280 		if (sav->alg_enc != SADB_EALG_NONE) {
3281 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3282 				"mismated.\n", __func__));
3283 			return(EINVAL);
3284 		}
3285 		error = xform_init(sav, XF_AH);
3286 		break;
3287 	case IPPROTO_IPCOMP:
3288 		if (sav->alg_auth != SADB_AALG_NONE) {
3289 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3290 				"mismated.\n", __func__));
3291 			return(EINVAL);
3292 		}
3293 		if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3294 		 && ntohl(sav->spi) >= 0x10000) {
3295 			ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n",
3296 				__func__));
3297 			return(EINVAL);
3298 		}
3299 		error = xform_init(sav, XF_IPCOMP);
3300 		break;
3301 	case IPPROTO_TCP:
3302 		if (sav->alg_enc != SADB_EALG_NONE) {
3303 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3304 				"mismated.\n", __func__));
3305 			return(EINVAL);
3306 		}
3307 		error = xform_init(sav, XF_TCPSIGNATURE);
3308 		break;
3309 	default:
3310 		ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__));
3311 		error = EPROTONOSUPPORT;
3312 		break;
3313 	}
3314 	if (error == 0) {
3315 		SAHTREE_LOCK();
3316 		key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3317 		SAHTREE_UNLOCK();
3318 	}
3319 	return (error);
3320 }
3321 
3322 /*
3323  * subroutine for SADB_GET and SADB_DUMP.
3324  */
3325 static struct mbuf *
3326 key_setdumpsa(sav, type, satype, seq, pid)
3327 	struct secasvar *sav;
3328 	u_int8_t type, satype;
3329 	u_int32_t seq, pid;
3330 {
3331 	struct mbuf *result = NULL, *tres = NULL, *m;
3332 	int i;
3333 	int dumporder[] = {
3334 		SADB_EXT_SA, SADB_X_EXT_SA2,
3335 		SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3336 		SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3337 		SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3338 		SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3339 		SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3340 	};
3341 
3342 	m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3343 	if (m == NULL)
3344 		goto fail;
3345 	result = m;
3346 
3347 	for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) {
3348 		m = NULL;
3349 		switch (dumporder[i]) {
3350 		case SADB_EXT_SA:
3351 			m = key_setsadbsa(sav);
3352 			if (!m)
3353 				goto fail;
3354 			break;
3355 
3356 		case SADB_X_EXT_SA2:
3357 			m = key_setsadbxsa2(sav->sah->saidx.mode,
3358 					sav->replay ? sav->replay->count : 0,
3359 					sav->sah->saidx.reqid);
3360 			if (!m)
3361 				goto fail;
3362 			break;
3363 
3364 		case SADB_EXT_ADDRESS_SRC:
3365 			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3366 			    &sav->sah->saidx.src.sa,
3367 			    FULLMASK, IPSEC_ULPROTO_ANY);
3368 			if (!m)
3369 				goto fail;
3370 			break;
3371 
3372 		case SADB_EXT_ADDRESS_DST:
3373 			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3374 			    &sav->sah->saidx.dst.sa,
3375 			    FULLMASK, IPSEC_ULPROTO_ANY);
3376 			if (!m)
3377 				goto fail;
3378 			break;
3379 
3380 		case SADB_EXT_KEY_AUTH:
3381 			if (!sav->key_auth)
3382 				continue;
3383 			m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH);
3384 			if (!m)
3385 				goto fail;
3386 			break;
3387 
3388 		case SADB_EXT_KEY_ENCRYPT:
3389 			if (!sav->key_enc)
3390 				continue;
3391 			m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT);
3392 			if (!m)
3393 				goto fail;
3394 			break;
3395 
3396 		case SADB_EXT_LIFETIME_CURRENT:
3397 			if (!sav->lft_c)
3398 				continue;
3399 			m = key_setlifetime(sav->lft_c,
3400 					    SADB_EXT_LIFETIME_CURRENT);
3401 			if (!m)
3402 				goto fail;
3403 			break;
3404 
3405 		case SADB_EXT_LIFETIME_HARD:
3406 			if (!sav->lft_h)
3407 				continue;
3408 			m = key_setlifetime(sav->lft_h,
3409 					    SADB_EXT_LIFETIME_HARD);
3410 			if (!m)
3411 				goto fail;
3412 			break;
3413 
3414 		case SADB_EXT_LIFETIME_SOFT:
3415 			if (!sav->lft_s)
3416 				continue;
3417 			m = key_setlifetime(sav->lft_s,
3418 					    SADB_EXT_LIFETIME_SOFT);
3419 
3420 			if (!m)
3421 				goto fail;
3422 			break;
3423 
3424 		case SADB_EXT_ADDRESS_PROXY:
3425 		case SADB_EXT_IDENTITY_SRC:
3426 		case SADB_EXT_IDENTITY_DST:
3427 			/* XXX: should we brought from SPD ? */
3428 		case SADB_EXT_SENSITIVITY:
3429 		default:
3430 			continue;
3431 		}
3432 
3433 		if (!m)
3434 			goto fail;
3435 		if (tres)
3436 			m_cat(m, tres);
3437 		tres = m;
3438 
3439 	}
3440 
3441 	m_cat(result, tres);
3442 	if (result->m_len < sizeof(struct sadb_msg)) {
3443 		result = m_pullup(result, sizeof(struct sadb_msg));
3444 		if (result == NULL)
3445 			goto fail;
3446 	}
3447 
3448 	result->m_pkthdr.len = 0;
3449 	for (m = result; m; m = m->m_next)
3450 		result->m_pkthdr.len += m->m_len;
3451 
3452 	mtod(result, struct sadb_msg *)->sadb_msg_len =
3453 	    PFKEY_UNIT64(result->m_pkthdr.len);
3454 
3455 	return result;
3456 
3457 fail:
3458 	m_freem(result);
3459 	m_freem(tres);
3460 	return NULL;
3461 }
3462 
3463 /*
3464  * set data into sadb_msg.
3465  */
3466 static struct mbuf *
3467 key_setsadbmsg(type, tlen, satype, seq, pid, reserved)
3468 	u_int8_t type, satype;
3469 	u_int16_t tlen;
3470 	u_int32_t seq;
3471 	pid_t pid;
3472 	u_int16_t reserved;
3473 {
3474 	struct mbuf *m;
3475 	struct sadb_msg *p;
3476 	int len;
3477 
3478 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3479 	if (len > MCLBYTES)
3480 		return NULL;
3481 	MGETHDR(m, M_DONTWAIT, MT_DATA);
3482 	if (m && len > MHLEN) {
3483 		MCLGET(m, M_DONTWAIT);
3484 		if ((m->m_flags & M_EXT) == 0) {
3485 			m_freem(m);
3486 			m = NULL;
3487 		}
3488 	}
3489 	if (!m)
3490 		return NULL;
3491 	m->m_pkthdr.len = m->m_len = len;
3492 	m->m_next = NULL;
3493 
3494 	p = mtod(m, struct sadb_msg *);
3495 
3496 	bzero(p, len);
3497 	p->sadb_msg_version = PF_KEY_V2;
3498 	p->sadb_msg_type = type;
3499 	p->sadb_msg_errno = 0;
3500 	p->sadb_msg_satype = satype;
3501 	p->sadb_msg_len = PFKEY_UNIT64(tlen);
3502 	p->sadb_msg_reserved = reserved;
3503 	p->sadb_msg_seq = seq;
3504 	p->sadb_msg_pid = (u_int32_t)pid;
3505 
3506 	return m;
3507 }
3508 
3509 /*
3510  * copy secasvar data into sadb_address.
3511  */
3512 static struct mbuf *
3513 key_setsadbsa(sav)
3514 	struct secasvar *sav;
3515 {
3516 	struct mbuf *m;
3517 	struct sadb_sa *p;
3518 	int len;
3519 
3520 	len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3521 	m = key_alloc_mbuf(len);
3522 	if (!m || m->m_next) {	/*XXX*/
3523 		if (m)
3524 			m_freem(m);
3525 		return NULL;
3526 	}
3527 
3528 	p = mtod(m, struct sadb_sa *);
3529 
3530 	bzero(p, len);
3531 	p->sadb_sa_len = PFKEY_UNIT64(len);
3532 	p->sadb_sa_exttype = SADB_EXT_SA;
3533 	p->sadb_sa_spi = sav->spi;
3534 	p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3535 	p->sadb_sa_state = sav->state;
3536 	p->sadb_sa_auth = sav->alg_auth;
3537 	p->sadb_sa_encrypt = sav->alg_enc;
3538 	p->sadb_sa_flags = sav->flags;
3539 
3540 	return m;
3541 }
3542 
3543 /*
3544  * set data into sadb_address.
3545  */
3546 static struct mbuf *
3547 key_setsadbaddr(exttype, saddr, prefixlen, ul_proto)
3548 	u_int16_t exttype;
3549 	const struct sockaddr *saddr;
3550 	u_int8_t prefixlen;
3551 	u_int16_t ul_proto;
3552 {
3553 	struct mbuf *m;
3554 	struct sadb_address *p;
3555 	size_t len;
3556 
3557 	len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3558 	    PFKEY_ALIGN8(saddr->sa_len);
3559 	m = key_alloc_mbuf(len);
3560 	if (!m || m->m_next) {	/*XXX*/
3561 		if (m)
3562 			m_freem(m);
3563 		return NULL;
3564 	}
3565 
3566 	p = mtod(m, struct sadb_address *);
3567 
3568 	bzero(p, len);
3569 	p->sadb_address_len = PFKEY_UNIT64(len);
3570 	p->sadb_address_exttype = exttype;
3571 	p->sadb_address_proto = ul_proto;
3572 	if (prefixlen == FULLMASK) {
3573 		switch (saddr->sa_family) {
3574 		case AF_INET:
3575 			prefixlen = sizeof(struct in_addr) << 3;
3576 			break;
3577 		case AF_INET6:
3578 			prefixlen = sizeof(struct in6_addr) << 3;
3579 			break;
3580 		default:
3581 			; /*XXX*/
3582 		}
3583 	}
3584 	p->sadb_address_prefixlen = prefixlen;
3585 	p->sadb_address_reserved = 0;
3586 
3587 	bcopy(saddr,
3588 	    mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3589 	    saddr->sa_len);
3590 
3591 	return m;
3592 }
3593 
3594 /*
3595  * set data into sadb_x_sa2.
3596  */
3597 static struct mbuf *
3598 key_setsadbxsa2(mode, seq, reqid)
3599 	u_int8_t mode;
3600 	u_int32_t seq, reqid;
3601 {
3602 	struct mbuf *m;
3603 	struct sadb_x_sa2 *p;
3604 	size_t len;
3605 
3606 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3607 	m = key_alloc_mbuf(len);
3608 	if (!m || m->m_next) {	/*XXX*/
3609 		if (m)
3610 			m_freem(m);
3611 		return NULL;
3612 	}
3613 
3614 	p = mtod(m, struct sadb_x_sa2 *);
3615 
3616 	bzero(p, len);
3617 	p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3618 	p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3619 	p->sadb_x_sa2_mode = mode;
3620 	p->sadb_x_sa2_reserved1 = 0;
3621 	p->sadb_x_sa2_reserved2 = 0;
3622 	p->sadb_x_sa2_sequence = seq;
3623 	p->sadb_x_sa2_reqid = reqid;
3624 
3625 	return m;
3626 }
3627 
3628 /*
3629  * set data into sadb_x_policy
3630  */
3631 static struct mbuf *
3632 key_setsadbxpolicy(type, dir, id)
3633 	u_int16_t type;
3634 	u_int8_t dir;
3635 	u_int32_t id;
3636 {
3637 	struct mbuf *m;
3638 	struct sadb_x_policy *p;
3639 	size_t len;
3640 
3641 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
3642 	m = key_alloc_mbuf(len);
3643 	if (!m || m->m_next) {	/*XXX*/
3644 		if (m)
3645 			m_freem(m);
3646 		return NULL;
3647 	}
3648 
3649 	p = mtod(m, struct sadb_x_policy *);
3650 
3651 	bzero(p, len);
3652 	p->sadb_x_policy_len = PFKEY_UNIT64(len);
3653 	p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
3654 	p->sadb_x_policy_type = type;
3655 	p->sadb_x_policy_dir = dir;
3656 	p->sadb_x_policy_id = id;
3657 
3658 	return m;
3659 }
3660 
3661 /* %%% utilities */
3662 /* Take a key message (sadb_key) from the socket and turn it into one
3663  * of the kernel's key structures (seckey).
3664  *
3665  * IN: pointer to the src
3666  * OUT: NULL no more memory
3667  */
3668 struct seckey *
3669 key_dup_keymsg(const struct sadb_key *src, u_int len,
3670 	       struct malloc_type *type)
3671 {
3672 	INIT_VNET_IPSEC(curvnet);
3673 	struct seckey *dst;
3674 	dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT);
3675 	if (dst != NULL) {
3676 		dst->bits = src->sadb_key_bits;
3677 		dst->key_data = (char *)malloc(len, type, M_NOWAIT);
3678 		if (dst->key_data != NULL) {
3679 			bcopy((const char *)src + sizeof(struct sadb_key),
3680 			      dst->key_data, len);
3681 		} else {
3682 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3683 				  __func__));
3684 			free(dst, type);
3685 			dst = NULL;
3686 		}
3687 	} else {
3688 		ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3689 			  __func__));
3690 
3691 	}
3692 	return dst;
3693 }
3694 
3695 /* Take a lifetime message (sadb_lifetime) passed in on a socket and
3696  * turn it into one of the kernel's lifetime structures (seclifetime).
3697  *
3698  * IN: pointer to the destination, source and malloc type
3699  * OUT: NULL, no more memory
3700  */
3701 
3702 static struct seclifetime *
3703 key_dup_lifemsg(const struct sadb_lifetime *src,
3704 		 struct malloc_type *type)
3705 {
3706 	INIT_VNET_IPSEC(curvnet);
3707 	struct seclifetime *dst = NULL;
3708 
3709 	dst = (struct seclifetime *)malloc(sizeof(struct seclifetime),
3710 					   type, M_NOWAIT);
3711 	if (dst == NULL) {
3712 		/* XXX counter */
3713 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3714 	} else {
3715 		dst->allocations = src->sadb_lifetime_allocations;
3716 		dst->bytes = src->sadb_lifetime_bytes;
3717 		dst->addtime = src->sadb_lifetime_addtime;
3718 		dst->usetime = src->sadb_lifetime_usetime;
3719 	}
3720 	return dst;
3721 }
3722 
3723 /* compare my own address
3724  * OUT:	1: true, i.e. my address.
3725  *	0: false
3726  */
3727 int
3728 key_ismyaddr(sa)
3729 	struct sockaddr *sa;
3730 {
3731 #ifdef INET
3732 	INIT_VNET_INET(curvnet);
3733 	struct sockaddr_in *sin;
3734 	struct in_ifaddr *ia;
3735 #endif
3736 
3737 	IPSEC_ASSERT(sa != NULL, ("null sockaddr"));
3738 
3739 	switch (sa->sa_family) {
3740 #ifdef INET
3741 	case AF_INET:
3742 		sin = (struct sockaddr_in *)sa;
3743 		for (ia = V_in_ifaddrhead.tqh_first; ia;
3744 		     ia = ia->ia_link.tqe_next)
3745 		{
3746 			if (sin->sin_family == ia->ia_addr.sin_family &&
3747 			    sin->sin_len == ia->ia_addr.sin_len &&
3748 			    sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
3749 			{
3750 				return 1;
3751 			}
3752 		}
3753 		break;
3754 #endif
3755 #ifdef INET6
3756 	case AF_INET6:
3757 		return key_ismyaddr6((struct sockaddr_in6 *)sa);
3758 #endif
3759 	}
3760 
3761 	return 0;
3762 }
3763 
3764 #ifdef INET6
3765 /*
3766  * compare my own address for IPv6.
3767  * 1: ours
3768  * 0: other
3769  * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
3770  */
3771 #include <netinet6/in6_var.h>
3772 
3773 static int
3774 key_ismyaddr6(sin6)
3775 	struct sockaddr_in6 *sin6;
3776 {
3777 	INIT_VNET_INET6(curvnet);
3778 	struct in6_ifaddr *ia;
3779 	struct in6_multi *in6m;
3780 
3781 	for (ia = V_in6_ifaddr; ia; ia = ia->ia_next) {
3782 		if (key_sockaddrcmp((struct sockaddr *)&sin6,
3783 		    (struct sockaddr *)&ia->ia_addr, 0) == 0)
3784 			return 1;
3785 
3786 		/*
3787 		 * XXX Multicast
3788 		 * XXX why do we care about multlicast here while we don't care
3789 		 * about IPv4 multicast??
3790 		 * XXX scope
3791 		 */
3792 		in6m = NULL;
3793 		IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m);
3794 		if (in6m)
3795 			return 1;
3796 	}
3797 
3798 	/* loopback, just for safety */
3799 	if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
3800 		return 1;
3801 
3802 	return 0;
3803 }
3804 #endif /*INET6*/
3805 
3806 /*
3807  * compare two secasindex structure.
3808  * flag can specify to compare 2 saidxes.
3809  * compare two secasindex structure without both mode and reqid.
3810  * don't compare port.
3811  * IN:
3812  *      saidx0: source, it can be in SAD.
3813  *      saidx1: object.
3814  * OUT:
3815  *      1 : equal
3816  *      0 : not equal
3817  */
3818 static int
3819 key_cmpsaidx(
3820 	const struct secasindex *saidx0,
3821 	const struct secasindex *saidx1,
3822 	int flag)
3823 {
3824 	/* sanity */
3825 	if (saidx0 == NULL && saidx1 == NULL)
3826 		return 1;
3827 
3828 	if (saidx0 == NULL || saidx1 == NULL)
3829 		return 0;
3830 
3831 	if (saidx0->proto != saidx1->proto)
3832 		return 0;
3833 
3834 	if (flag == CMP_EXACTLY) {
3835 		if (saidx0->mode != saidx1->mode)
3836 			return 0;
3837 		if (saidx0->reqid != saidx1->reqid)
3838 			return 0;
3839 		if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
3840 		    bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
3841 			return 0;
3842 	} else {
3843 
3844 		/* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
3845 		if (flag == CMP_MODE_REQID
3846 		  ||flag == CMP_REQID) {
3847 			/*
3848 			 * If reqid of SPD is non-zero, unique SA is required.
3849 			 * The result must be of same reqid in this case.
3850 			 */
3851 			if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
3852 				return 0;
3853 		}
3854 
3855 		if (flag == CMP_MODE_REQID) {
3856 			if (saidx0->mode != IPSEC_MODE_ANY
3857 			 && saidx0->mode != saidx1->mode)
3858 				return 0;
3859 		}
3860 
3861 		if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, 0) != 0) {
3862 			return 0;
3863 		}
3864 		if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, 0) != 0) {
3865 			return 0;
3866 		}
3867 	}
3868 
3869 	return 1;
3870 }
3871 
3872 /*
3873  * compare two secindex structure exactly.
3874  * IN:
3875  *	spidx0: source, it is often in SPD.
3876  *	spidx1: object, it is often from PFKEY message.
3877  * OUT:
3878  *	1 : equal
3879  *	0 : not equal
3880  */
3881 static int
3882 key_cmpspidx_exactly(
3883 	struct secpolicyindex *spidx0,
3884 	struct secpolicyindex *spidx1)
3885 {
3886 	/* sanity */
3887 	if (spidx0 == NULL && spidx1 == NULL)
3888 		return 1;
3889 
3890 	if (spidx0 == NULL || spidx1 == NULL)
3891 		return 0;
3892 
3893 	if (spidx0->prefs != spidx1->prefs
3894 	 || spidx0->prefd != spidx1->prefd
3895 	 || spidx0->ul_proto != spidx1->ul_proto)
3896 		return 0;
3897 
3898 	return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 &&
3899 	       key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0;
3900 }
3901 
3902 /*
3903  * compare two secindex structure with mask.
3904  * IN:
3905  *	spidx0: source, it is often in SPD.
3906  *	spidx1: object, it is often from IP header.
3907  * OUT:
3908  *	1 : equal
3909  *	0 : not equal
3910  */
3911 static int
3912 key_cmpspidx_withmask(
3913 	struct secpolicyindex *spidx0,
3914 	struct secpolicyindex *spidx1)
3915 {
3916 	/* sanity */
3917 	if (spidx0 == NULL && spidx1 == NULL)
3918 		return 1;
3919 
3920 	if (spidx0 == NULL || spidx1 == NULL)
3921 		return 0;
3922 
3923 	if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
3924 	    spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
3925 	    spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
3926 	    spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
3927 		return 0;
3928 
3929 	/* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
3930 	if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
3931 	 && spidx0->ul_proto != spidx1->ul_proto)
3932 		return 0;
3933 
3934 	switch (spidx0->src.sa.sa_family) {
3935 	case AF_INET:
3936 		if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
3937 		 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
3938 			return 0;
3939 		if (!key_bbcmp(&spidx0->src.sin.sin_addr,
3940 		    &spidx1->src.sin.sin_addr, spidx0->prefs))
3941 			return 0;
3942 		break;
3943 	case AF_INET6:
3944 		if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
3945 		 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
3946 			return 0;
3947 		/*
3948 		 * scope_id check. if sin6_scope_id is 0, we regard it
3949 		 * as a wildcard scope, which matches any scope zone ID.
3950 		 */
3951 		if (spidx0->src.sin6.sin6_scope_id &&
3952 		    spidx1->src.sin6.sin6_scope_id &&
3953 		    spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
3954 			return 0;
3955 		if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
3956 		    &spidx1->src.sin6.sin6_addr, spidx0->prefs))
3957 			return 0;
3958 		break;
3959 	default:
3960 		/* XXX */
3961 		if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
3962 			return 0;
3963 		break;
3964 	}
3965 
3966 	switch (spidx0->dst.sa.sa_family) {
3967 	case AF_INET:
3968 		if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
3969 		 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
3970 			return 0;
3971 		if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
3972 		    &spidx1->dst.sin.sin_addr, spidx0->prefd))
3973 			return 0;
3974 		break;
3975 	case AF_INET6:
3976 		if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
3977 		 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
3978 			return 0;
3979 		/*
3980 		 * scope_id check. if sin6_scope_id is 0, we regard it
3981 		 * as a wildcard scope, which matches any scope zone ID.
3982 		 */
3983 		if (spidx0->dst.sin6.sin6_scope_id &&
3984 		    spidx1->dst.sin6.sin6_scope_id &&
3985 		    spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
3986 			return 0;
3987 		if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
3988 		    &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
3989 			return 0;
3990 		break;
3991 	default:
3992 		/* XXX */
3993 		if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
3994 			return 0;
3995 		break;
3996 	}
3997 
3998 	/* XXX Do we check other field ?  e.g. flowinfo */
3999 
4000 	return 1;
4001 }
4002 
4003 /* returns 0 on match */
4004 static int
4005 key_sockaddrcmp(
4006 	const struct sockaddr *sa1,
4007 	const struct sockaddr *sa2,
4008 	int port)
4009 {
4010 #ifdef satosin
4011 #undef satosin
4012 #endif
4013 #define satosin(s) ((const struct sockaddr_in *)s)
4014 #ifdef satosin6
4015 #undef satosin6
4016 #endif
4017 #define satosin6(s) ((const struct sockaddr_in6 *)s)
4018 	if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
4019 		return 1;
4020 
4021 	switch (sa1->sa_family) {
4022 	case AF_INET:
4023 		if (sa1->sa_len != sizeof(struct sockaddr_in))
4024 			return 1;
4025 		if (satosin(sa1)->sin_addr.s_addr !=
4026 		    satosin(sa2)->sin_addr.s_addr) {
4027 			return 1;
4028 		}
4029 		if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port)
4030 			return 1;
4031 		break;
4032 	case AF_INET6:
4033 		if (sa1->sa_len != sizeof(struct sockaddr_in6))
4034 			return 1;	/*EINVAL*/
4035 		if (satosin6(sa1)->sin6_scope_id !=
4036 		    satosin6(sa2)->sin6_scope_id) {
4037 			return 1;
4038 		}
4039 		if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr,
4040 		    &satosin6(sa2)->sin6_addr)) {
4041 			return 1;
4042 		}
4043 		if (port &&
4044 		    satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) {
4045 			return 1;
4046 		}
4047 		break;
4048 	default:
4049 		if (bcmp(sa1, sa2, sa1->sa_len) != 0)
4050 			return 1;
4051 		break;
4052 	}
4053 
4054 	return 0;
4055 #undef satosin
4056 #undef satosin6
4057 }
4058 
4059 /*
4060  * compare two buffers with mask.
4061  * IN:
4062  *	addr1: source
4063  *	addr2: object
4064  *	bits:  Number of bits to compare
4065  * OUT:
4066  *	1 : equal
4067  *	0 : not equal
4068  */
4069 static int
4070 key_bbcmp(const void *a1, const void *a2, u_int bits)
4071 {
4072 	const unsigned char *p1 = a1;
4073 	const unsigned char *p2 = a2;
4074 
4075 	/* XXX: This could be considerably faster if we compare a word
4076 	 * at a time, but it is complicated on LSB Endian machines */
4077 
4078 	/* Handle null pointers */
4079 	if (p1 == NULL || p2 == NULL)
4080 		return (p1 == p2);
4081 
4082 	while (bits >= 8) {
4083 		if (*p1++ != *p2++)
4084 			return 0;
4085 		bits -= 8;
4086 	}
4087 
4088 	if (bits > 0) {
4089 		u_int8_t mask = ~((1<<(8-bits))-1);
4090 		if ((*p1 & mask) != (*p2 & mask))
4091 			return 0;
4092 	}
4093 	return 1;	/* Match! */
4094 }
4095 
4096 static void
4097 key_flush_spd(time_t now)
4098 {
4099 	INIT_VNET_IPSEC(curvnet);
4100 	static u_int16_t sptree_scangen = 0;
4101 	u_int16_t gen = sptree_scangen++;
4102 	struct secpolicy *sp;
4103 	u_int dir;
4104 
4105 	/* SPD */
4106 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4107 restart:
4108 		SPTREE_LOCK();
4109 		LIST_FOREACH(sp, &V_sptree[dir], chain) {
4110 			if (sp->scangen == gen)		/* previously handled */
4111 				continue;
4112 			sp->scangen = gen;
4113 			if (sp->state == IPSEC_SPSTATE_DEAD) {
4114 				/* NB: clean entries created by key_spdflush */
4115 				SPTREE_UNLOCK();
4116 				KEY_FREESP(&sp);
4117 				goto restart;
4118 			}
4119 			if (sp->lifetime == 0 && sp->validtime == 0)
4120 				continue;
4121 			if ((sp->lifetime && now - sp->created > sp->lifetime)
4122 			 || (sp->validtime && now - sp->lastused > sp->validtime)) {
4123 				sp->state = IPSEC_SPSTATE_DEAD;
4124 				SPTREE_UNLOCK();
4125 				key_spdexpire(sp);
4126 				KEY_FREESP(&sp);
4127 				goto restart;
4128 			}
4129 		}
4130 		SPTREE_UNLOCK();
4131 	}
4132 }
4133 
4134 static void
4135 key_flush_sad(time_t now)
4136 {
4137 	INIT_VNET_IPSEC(curvnet);
4138 	struct secashead *sah, *nextsah;
4139 	struct secasvar *sav, *nextsav;
4140 
4141 	/* SAD */
4142 	SAHTREE_LOCK();
4143 	LIST_FOREACH_SAFE(sah, &V_sahtree, chain, nextsah) {
4144 		/* if sah has been dead, then delete it and process next sah. */
4145 		if (sah->state == SADB_SASTATE_DEAD) {
4146 			key_delsah(sah);
4147 			continue;
4148 		}
4149 
4150 		/* if LARVAL entry doesn't become MATURE, delete it. */
4151 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) {
4152 			if (now - sav->created > V_key_larval_lifetime)
4153 				KEY_FREESAV(&sav);
4154 		}
4155 
4156 		/*
4157 		 * check MATURE entry to start to send expire message
4158 		 * whether or not.
4159 		 */
4160 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) {
4161 			/* we don't need to check. */
4162 			if (sav->lft_s == NULL)
4163 				continue;
4164 
4165 			/* sanity check */
4166 			if (sav->lft_c == NULL) {
4167 				ipseclog((LOG_DEBUG,"%s: there is no CURRENT "
4168 					"time, why?\n", __func__));
4169 				continue;
4170 			}
4171 
4172 			/* check SOFT lifetime */
4173 			if (sav->lft_s->addtime != 0 &&
4174 			    now - sav->created > sav->lft_s->addtime) {
4175 				/*
4176 				 * check SA to be used whether or not.
4177 				 * when SA hasn't been used, delete it.
4178 				 */
4179 				if (sav->lft_c->usetime == 0) {
4180 					key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4181 					KEY_FREESAV(&sav);
4182 				} else {
4183 					key_sa_chgstate(sav, SADB_SASTATE_DYING);
4184 					/*
4185 					 * XXX If we keep to send expire
4186 					 * message in the status of
4187 					 * DYING. Do remove below code.
4188 					 */
4189 					key_expire(sav);
4190 				}
4191 			}
4192 			/* check SOFT lifetime by bytes */
4193 			/*
4194 			 * XXX I don't know the way to delete this SA
4195 			 * when new SA is installed.  Caution when it's
4196 			 * installed too big lifetime by time.
4197 			 */
4198 			else if (sav->lft_s->bytes != 0 &&
4199 			    sav->lft_s->bytes < sav->lft_c->bytes) {
4200 
4201 				key_sa_chgstate(sav, SADB_SASTATE_DYING);
4202 				/*
4203 				 * XXX If we keep to send expire
4204 				 * message in the status of
4205 				 * DYING. Do remove below code.
4206 				 */
4207 				key_expire(sav);
4208 			}
4209 		}
4210 
4211 		/* check DYING entry to change status to DEAD. */
4212 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) {
4213 			/* we don't need to check. */
4214 			if (sav->lft_h == NULL)
4215 				continue;
4216 
4217 			/* sanity check */
4218 			if (sav->lft_c == NULL) {
4219 				ipseclog((LOG_DEBUG, "%s: there is no CURRENT "
4220 					"time, why?\n", __func__));
4221 				continue;
4222 			}
4223 
4224 			if (sav->lft_h->addtime != 0 &&
4225 			    now - sav->created > sav->lft_h->addtime) {
4226 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4227 				KEY_FREESAV(&sav);
4228 			}
4229 #if 0	/* XXX Should we keep to send expire message until HARD lifetime ? */
4230 			else if (sav->lft_s != NULL
4231 			      && sav->lft_s->addtime != 0
4232 			      && now - sav->created > sav->lft_s->addtime) {
4233 				/*
4234 				 * XXX: should be checked to be
4235 				 * installed the valid SA.
4236 				 */
4237 
4238 				/*
4239 				 * If there is no SA then sending
4240 				 * expire message.
4241 				 */
4242 				key_expire(sav);
4243 			}
4244 #endif
4245 			/* check HARD lifetime by bytes */
4246 			else if (sav->lft_h->bytes != 0 &&
4247 			    sav->lft_h->bytes < sav->lft_c->bytes) {
4248 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4249 				KEY_FREESAV(&sav);
4250 			}
4251 		}
4252 
4253 		/* delete entry in DEAD */
4254 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) {
4255 			/* sanity check */
4256 			if (sav->state != SADB_SASTATE_DEAD) {
4257 				ipseclog((LOG_DEBUG, "%s: invalid sav->state "
4258 					"(queue: %d SA: %d): kill it anyway\n",
4259 					__func__,
4260 					SADB_SASTATE_DEAD, sav->state));
4261 			}
4262 			/*
4263 			 * do not call key_freesav() here.
4264 			 * sav should already be freed, and sav->refcnt
4265 			 * shows other references to sav
4266 			 * (such as from SPD).
4267 			 */
4268 		}
4269 	}
4270 	SAHTREE_UNLOCK();
4271 }
4272 
4273 static void
4274 key_flush_acq(time_t now)
4275 {
4276 	INIT_VNET_IPSEC(curvnet);
4277 	struct secacq *acq, *nextacq;
4278 
4279 	/* ACQ tree */
4280 	ACQ_LOCK();
4281 	for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) {
4282 		nextacq = LIST_NEXT(acq, chain);
4283 		if (now - acq->created > V_key_blockacq_lifetime
4284 		 && __LIST_CHAINED(acq)) {
4285 			LIST_REMOVE(acq, chain);
4286 			free(acq, M_IPSEC_SAQ);
4287 		}
4288 	}
4289 	ACQ_UNLOCK();
4290 }
4291 
4292 static void
4293 key_flush_spacq(time_t now)
4294 {
4295 	INIT_VNET_IPSEC(curvnet);
4296 	struct secspacq *acq, *nextacq;
4297 
4298 	/* SP ACQ tree */
4299 	SPACQ_LOCK();
4300 	for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) {
4301 		nextacq = LIST_NEXT(acq, chain);
4302 		if (now - acq->created > V_key_blockacq_lifetime
4303 		 && __LIST_CHAINED(acq)) {
4304 			LIST_REMOVE(acq, chain);
4305 			free(acq, M_IPSEC_SAQ);
4306 		}
4307 	}
4308 	SPACQ_UNLOCK();
4309 }
4310 
4311 /*
4312  * time handler.
4313  * scanning SPD and SAD to check status for each entries,
4314  * and do to remove or to expire.
4315  * XXX: year 2038 problem may remain.
4316  */
4317 void
4318 key_timehandler(void)
4319 {
4320 	VNET_ITERATOR_DECL(vnet_iter);
4321 	time_t now = time_second;
4322 
4323 	VNET_LIST_RLOCK();
4324 	VNET_FOREACH(vnet_iter) {
4325 		CURVNET_SET(vnet_iter);
4326 		key_flush_spd(now);
4327 		key_flush_sad(now);
4328 		key_flush_acq(now);
4329 		key_flush_spacq(now);
4330 		CURVNET_RESTORE();
4331 	}
4332 	VNET_LIST_RUNLOCK();
4333 
4334 #ifndef IPSEC_DEBUG2
4335 	/* do exchange to tick time !! */
4336 	(void)timeout((void *)key_timehandler, (void *)0, hz);
4337 #endif /* IPSEC_DEBUG2 */
4338 }
4339 
4340 u_long
4341 key_random()
4342 {
4343 	u_long value;
4344 
4345 	key_randomfill(&value, sizeof(value));
4346 	return value;
4347 }
4348 
4349 void
4350 key_randomfill(p, l)
4351 	void *p;
4352 	size_t l;
4353 {
4354 	size_t n;
4355 	u_long v;
4356 	static int warn = 1;
4357 
4358 	n = 0;
4359 	n = (size_t)read_random(p, (u_int)l);
4360 	/* last resort */
4361 	while (n < l) {
4362 		v = random();
4363 		bcopy(&v, (u_int8_t *)p + n,
4364 		    l - n < sizeof(v) ? l - n : sizeof(v));
4365 		n += sizeof(v);
4366 
4367 		if (warn) {
4368 			printf("WARNING: pseudo-random number generator "
4369 			    "used for IPsec processing\n");
4370 			warn = 0;
4371 		}
4372 	}
4373 }
4374 
4375 /*
4376  * map SADB_SATYPE_* to IPPROTO_*.
4377  * if satype == SADB_SATYPE then satype is mapped to ~0.
4378  * OUT:
4379  *	0: invalid satype.
4380  */
4381 static u_int16_t
4382 key_satype2proto(satype)
4383 	u_int8_t satype;
4384 {
4385 	switch (satype) {
4386 	case SADB_SATYPE_UNSPEC:
4387 		return IPSEC_PROTO_ANY;
4388 	case SADB_SATYPE_AH:
4389 		return IPPROTO_AH;
4390 	case SADB_SATYPE_ESP:
4391 		return IPPROTO_ESP;
4392 	case SADB_X_SATYPE_IPCOMP:
4393 		return IPPROTO_IPCOMP;
4394 	case SADB_X_SATYPE_TCPSIGNATURE:
4395 		return IPPROTO_TCP;
4396 	default:
4397 		return 0;
4398 	}
4399 	/* NOTREACHED */
4400 }
4401 
4402 /*
4403  * map IPPROTO_* to SADB_SATYPE_*
4404  * OUT:
4405  *	0: invalid protocol type.
4406  */
4407 static u_int8_t
4408 key_proto2satype(proto)
4409 	u_int16_t proto;
4410 {
4411 	switch (proto) {
4412 	case IPPROTO_AH:
4413 		return SADB_SATYPE_AH;
4414 	case IPPROTO_ESP:
4415 		return SADB_SATYPE_ESP;
4416 	case IPPROTO_IPCOMP:
4417 		return SADB_X_SATYPE_IPCOMP;
4418 	case IPPROTO_TCP:
4419 		return SADB_X_SATYPE_TCPSIGNATURE;
4420 	default:
4421 		return 0;
4422 	}
4423 	/* NOTREACHED */
4424 }
4425 
4426 /* %%% PF_KEY */
4427 /*
4428  * SADB_GETSPI processing is to receive
4429  *	<base, (SA2), src address, dst address, (SPI range)>
4430  * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4431  * tree with the status of LARVAL, and send
4432  *	<base, SA(*), address(SD)>
4433  * to the IKMPd.
4434  *
4435  * IN:	mhp: pointer to the pointer to each header.
4436  * OUT:	NULL if fail.
4437  *	other if success, return pointer to the message to send.
4438  */
4439 static int
4440 key_getspi(so, m, mhp)
4441 	struct socket *so;
4442 	struct mbuf *m;
4443 	const struct sadb_msghdr *mhp;
4444 {
4445 	INIT_VNET_IPSEC(curvnet);
4446 	struct sadb_address *src0, *dst0;
4447 	struct secasindex saidx;
4448 	struct secashead *newsah;
4449 	struct secasvar *newsav;
4450 	u_int8_t proto;
4451 	u_int32_t spi;
4452 	u_int8_t mode;
4453 	u_int32_t reqid;
4454 	int error;
4455 
4456 	IPSEC_ASSERT(so != NULL, ("null socket"));
4457 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4458 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4459 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4460 
4461 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4462 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4463 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4464 			__func__));
4465 		return key_senderror(so, m, EINVAL);
4466 	}
4467 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4468 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4469 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4470 			__func__));
4471 		return key_senderror(so, m, EINVAL);
4472 	}
4473 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4474 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4475 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4476 	} else {
4477 		mode = IPSEC_MODE_ANY;
4478 		reqid = 0;
4479 	}
4480 
4481 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4482 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4483 
4484 	/* map satype to proto */
4485 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4486 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4487 			__func__));
4488 		return key_senderror(so, m, EINVAL);
4489 	}
4490 
4491 	/* make sure if port number is zero. */
4492 	switch (((struct sockaddr *)(src0 + 1))->sa_family) {
4493 	case AF_INET:
4494 		if (((struct sockaddr *)(src0 + 1))->sa_len !=
4495 		    sizeof(struct sockaddr_in))
4496 			return key_senderror(so, m, EINVAL);
4497 		((struct sockaddr_in *)(src0 + 1))->sin_port = 0;
4498 		break;
4499 	case AF_INET6:
4500 		if (((struct sockaddr *)(src0 + 1))->sa_len !=
4501 		    sizeof(struct sockaddr_in6))
4502 			return key_senderror(so, m, EINVAL);
4503 		((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0;
4504 		break;
4505 	default:
4506 		; /*???*/
4507 	}
4508 	switch (((struct sockaddr *)(dst0 + 1))->sa_family) {
4509 	case AF_INET:
4510 		if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4511 		    sizeof(struct sockaddr_in))
4512 			return key_senderror(so, m, EINVAL);
4513 		((struct sockaddr_in *)(dst0 + 1))->sin_port = 0;
4514 		break;
4515 	case AF_INET6:
4516 		if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4517 		    sizeof(struct sockaddr_in6))
4518 			return key_senderror(so, m, EINVAL);
4519 		((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0;
4520 		break;
4521 	default:
4522 		; /*???*/
4523 	}
4524 
4525 	/* XXX boundary check against sa_len */
4526 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4527 
4528 	/* SPI allocation */
4529 	spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4530 	                       &saidx);
4531 	if (spi == 0)
4532 		return key_senderror(so, m, EINVAL);
4533 
4534 	/* get a SA index */
4535 	if ((newsah = key_getsah(&saidx)) == NULL) {
4536 		/* create a new SA index */
4537 		if ((newsah = key_newsah(&saidx)) == NULL) {
4538 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
4539 			return key_senderror(so, m, ENOBUFS);
4540 		}
4541 	}
4542 
4543 	/* get a new SA */
4544 	/* XXX rewrite */
4545 	newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4546 	if (newsav == NULL) {
4547 		/* XXX don't free new SA index allocated in above. */
4548 		return key_senderror(so, m, error);
4549 	}
4550 
4551 	/* set spi */
4552 	newsav->spi = htonl(spi);
4553 
4554 	/* delete the entry in acqtree */
4555 	if (mhp->msg->sadb_msg_seq != 0) {
4556 		struct secacq *acq;
4557 		if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) {
4558 			/* reset counter in order to deletion by timehandler. */
4559 			acq->created = time_second;
4560 			acq->count = 0;
4561 		}
4562     	}
4563 
4564     {
4565 	struct mbuf *n, *nn;
4566 	struct sadb_sa *m_sa;
4567 	struct sadb_msg *newmsg;
4568 	int off, len;
4569 
4570 	/* create new sadb_msg to reply. */
4571 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4572 	    PFKEY_ALIGN8(sizeof(struct sadb_sa));
4573 
4574 	MGETHDR(n, M_DONTWAIT, MT_DATA);
4575 	if (len > MHLEN) {
4576 		MCLGET(n, M_DONTWAIT);
4577 		if ((n->m_flags & M_EXT) == 0) {
4578 			m_freem(n);
4579 			n = NULL;
4580 		}
4581 	}
4582 	if (!n)
4583 		return key_senderror(so, m, ENOBUFS);
4584 
4585 	n->m_len = len;
4586 	n->m_next = NULL;
4587 	off = 0;
4588 
4589 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
4590 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4591 
4592 	m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off);
4593 	m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4594 	m_sa->sadb_sa_exttype = SADB_EXT_SA;
4595 	m_sa->sadb_sa_spi = htonl(spi);
4596 	off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4597 
4598 	IPSEC_ASSERT(off == len,
4599 		("length inconsistency (off %u len %u)", off, len));
4600 
4601 	n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4602 	    SADB_EXT_ADDRESS_DST);
4603 	if (!n->m_next) {
4604 		m_freem(n);
4605 		return key_senderror(so, m, ENOBUFS);
4606 	}
4607 
4608 	if (n->m_len < sizeof(struct sadb_msg)) {
4609 		n = m_pullup(n, sizeof(struct sadb_msg));
4610 		if (n == NULL)
4611 			return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
4612 	}
4613 
4614 	n->m_pkthdr.len = 0;
4615 	for (nn = n; nn; nn = nn->m_next)
4616 		n->m_pkthdr.len += nn->m_len;
4617 
4618 	newmsg = mtod(n, struct sadb_msg *);
4619 	newmsg->sadb_msg_seq = newsav->seq;
4620 	newmsg->sadb_msg_errno = 0;
4621 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
4622 
4623 	m_freem(m);
4624 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
4625     }
4626 }
4627 
4628 /*
4629  * allocating new SPI
4630  * called by key_getspi().
4631  * OUT:
4632  *	0:	failure.
4633  *	others: success.
4634  */
4635 static u_int32_t
4636 key_do_getnewspi(spirange, saidx)
4637 	struct sadb_spirange *spirange;
4638 	struct secasindex *saidx;
4639 {
4640 	INIT_VNET_IPSEC(curvnet);
4641 	u_int32_t newspi;
4642 	u_int32_t min, max;
4643 	int count = V_key_spi_trycnt;
4644 
4645 	/* set spi range to allocate */
4646 	if (spirange != NULL) {
4647 		min = spirange->sadb_spirange_min;
4648 		max = spirange->sadb_spirange_max;
4649 	} else {
4650 		min = V_key_spi_minval;
4651 		max = V_key_spi_maxval;
4652 	}
4653 	/* IPCOMP needs 2-byte SPI */
4654 	if (saidx->proto == IPPROTO_IPCOMP) {
4655 		u_int32_t t;
4656 		if (min >= 0x10000)
4657 			min = 0xffff;
4658 		if (max >= 0x10000)
4659 			max = 0xffff;
4660 		if (min > max) {
4661 			t = min; min = max; max = t;
4662 		}
4663 	}
4664 
4665 	if (min == max) {
4666 		if (key_checkspidup(saidx, min) != NULL) {
4667 			ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n",
4668 				__func__, min));
4669 			return 0;
4670 		}
4671 
4672 		count--; /* taking one cost. */
4673 		newspi = min;
4674 
4675 	} else {
4676 
4677 		/* init SPI */
4678 		newspi = 0;
4679 
4680 		/* when requesting to allocate spi ranged */
4681 		while (count--) {
4682 			/* generate pseudo-random SPI value ranged. */
4683 			newspi = min + (key_random() % (max - min + 1));
4684 
4685 			if (key_checkspidup(saidx, newspi) == NULL)
4686 				break;
4687 		}
4688 
4689 		if (count == 0 || newspi == 0) {
4690 			ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n",
4691 				__func__));
4692 			return 0;
4693 		}
4694 	}
4695 
4696 	/* statistics */
4697 	keystat.getspi_count =
4698 		(keystat.getspi_count + V_key_spi_trycnt - count) / 2;
4699 
4700 	return newspi;
4701 }
4702 
4703 /*
4704  * SADB_UPDATE processing
4705  * receive
4706  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4707  *       key(AE), (identity(SD),) (sensitivity)>
4708  * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
4709  * and send
4710  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4711  *       (identity(SD),) (sensitivity)>
4712  * to the ikmpd.
4713  *
4714  * m will always be freed.
4715  */
4716 static int
4717 key_update(so, m, mhp)
4718 	struct socket *so;
4719 	struct mbuf *m;
4720 	const struct sadb_msghdr *mhp;
4721 {
4722 	INIT_VNET_IPSEC(curvnet);
4723 	struct sadb_sa *sa0;
4724 	struct sadb_address *src0, *dst0;
4725 	struct secasindex saidx;
4726 	struct secashead *sah;
4727 	struct secasvar *sav;
4728 	u_int16_t proto;
4729 	u_int8_t mode;
4730 	u_int32_t reqid;
4731 	int error;
4732 
4733 	IPSEC_ASSERT(so != NULL, ("null socket"));
4734 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4735 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4736 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4737 
4738 	/* map satype to proto */
4739 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4740 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4741 			__func__));
4742 		return key_senderror(so, m, EINVAL);
4743 	}
4744 
4745 	if (mhp->ext[SADB_EXT_SA] == NULL ||
4746 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4747 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
4748 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
4749 	     mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
4750 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
4751 	     mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
4752 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
4753 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
4754 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
4755 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
4756 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4757 			__func__));
4758 		return key_senderror(so, m, EINVAL);
4759 	}
4760 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
4761 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4762 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4763 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4764 			__func__));
4765 		return key_senderror(so, m, EINVAL);
4766 	}
4767 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4768 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4769 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4770 	} else {
4771 		mode = IPSEC_MODE_ANY;
4772 		reqid = 0;
4773 	}
4774 	/* XXX boundary checking for other extensions */
4775 
4776 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
4777 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4778 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4779 
4780 	/* XXX boundary check against sa_len */
4781 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4782 
4783 	/* get a SA header */
4784 	if ((sah = key_getsah(&saidx)) == NULL) {
4785 		ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__));
4786 		return key_senderror(so, m, ENOENT);
4787 	}
4788 
4789 	/* set spidx if there */
4790 	/* XXX rewrite */
4791 	error = key_setident(sah, m, mhp);
4792 	if (error)
4793 		return key_senderror(so, m, error);
4794 
4795 	/* find a SA with sequence number. */
4796 #ifdef IPSEC_DOSEQCHECK
4797 	if (mhp->msg->sadb_msg_seq != 0
4798 	 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) {
4799 		ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u "
4800 			"exists.\n", __func__, mhp->msg->sadb_msg_seq));
4801 		return key_senderror(so, m, ENOENT);
4802 	}
4803 #else
4804 	SAHTREE_LOCK();
4805 	sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
4806 	SAHTREE_UNLOCK();
4807 	if (sav == NULL) {
4808 		ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n",
4809 			__func__, (u_int32_t)ntohl(sa0->sadb_sa_spi)));
4810 		return key_senderror(so, m, EINVAL);
4811 	}
4812 #endif
4813 
4814 	/* validity check */
4815 	if (sav->sah->saidx.proto != proto) {
4816 		ipseclog((LOG_DEBUG, "%s: protocol mismatched "
4817 			"(DB=%u param=%u)\n", __func__,
4818 			sav->sah->saidx.proto, proto));
4819 		return key_senderror(so, m, EINVAL);
4820 	}
4821 #ifdef IPSEC_DOSEQCHECK
4822 	if (sav->spi != sa0->sadb_sa_spi) {
4823 		ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n",
4824 		    __func__,
4825 		    (u_int32_t)ntohl(sav->spi),
4826 		    (u_int32_t)ntohl(sa0->sadb_sa_spi)));
4827 		return key_senderror(so, m, EINVAL);
4828 	}
4829 #endif
4830 	if (sav->pid != mhp->msg->sadb_msg_pid) {
4831 		ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n",
4832 		    __func__, sav->pid, mhp->msg->sadb_msg_pid));
4833 		return key_senderror(so, m, EINVAL);
4834 	}
4835 
4836 	/* copy sav values */
4837 	error = key_setsaval(sav, m, mhp);
4838 	if (error) {
4839 		KEY_FREESAV(&sav);
4840 		return key_senderror(so, m, error);
4841 	}
4842 
4843 	/* check SA values to be mature. */
4844 	if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) {
4845 		KEY_FREESAV(&sav);
4846 		return key_senderror(so, m, 0);
4847 	}
4848 
4849     {
4850 	struct mbuf *n;
4851 
4852 	/* set msg buf from mhp */
4853 	n = key_getmsgbuf_x1(m, mhp);
4854 	if (n == NULL) {
4855 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
4856 		return key_senderror(so, m, ENOBUFS);
4857 	}
4858 
4859 	m_freem(m);
4860 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
4861     }
4862 }
4863 
4864 /*
4865  * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
4866  * only called by key_update().
4867  * OUT:
4868  *	NULL	: not found
4869  *	others	: found, pointer to a SA.
4870  */
4871 #ifdef IPSEC_DOSEQCHECK
4872 static struct secasvar *
4873 key_getsavbyseq(sah, seq)
4874 	struct secashead *sah;
4875 	u_int32_t seq;
4876 {
4877 	struct secasvar *sav;
4878 	u_int state;
4879 
4880 	state = SADB_SASTATE_LARVAL;
4881 
4882 	/* search SAD with sequence number ? */
4883 	LIST_FOREACH(sav, &sah->savtree[state], chain) {
4884 
4885 		KEY_CHKSASTATE(state, sav->state, __func__);
4886 
4887 		if (sav->seq == seq) {
4888 			sa_addref(sav);
4889 			KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
4890 				printf("DP %s cause refcnt++:%d SA:%p\n",
4891 					__func__, sav->refcnt, sav));
4892 			return sav;
4893 		}
4894 	}
4895 
4896 	return NULL;
4897 }
4898 #endif
4899 
4900 /*
4901  * SADB_ADD processing
4902  * add an entry to SA database, when received
4903  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4904  *       key(AE), (identity(SD),) (sensitivity)>
4905  * from the ikmpd,
4906  * and send
4907  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4908  *       (identity(SD),) (sensitivity)>
4909  * to the ikmpd.
4910  *
4911  * IGNORE identity and sensitivity messages.
4912  *
4913  * m will always be freed.
4914  */
4915 static int
4916 key_add(so, m, mhp)
4917 	struct socket *so;
4918 	struct mbuf *m;
4919 	const struct sadb_msghdr *mhp;
4920 {
4921 	INIT_VNET_IPSEC(curvnet);
4922 	struct sadb_sa *sa0;
4923 	struct sadb_address *src0, *dst0;
4924 	struct secasindex saidx;
4925 	struct secashead *newsah;
4926 	struct secasvar *newsav;
4927 	u_int16_t proto;
4928 	u_int8_t mode;
4929 	u_int32_t reqid;
4930 	int error;
4931 
4932 	IPSEC_ASSERT(so != NULL, ("null socket"));
4933 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4934 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4935 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4936 
4937 	/* map satype to proto */
4938 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4939 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4940 			__func__));
4941 		return key_senderror(so, m, EINVAL);
4942 	}
4943 
4944 	if (mhp->ext[SADB_EXT_SA] == NULL ||
4945 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4946 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
4947 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
4948 	     mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
4949 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
4950 	     mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
4951 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
4952 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
4953 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
4954 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
4955 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4956 			__func__));
4957 		return key_senderror(so, m, EINVAL);
4958 	}
4959 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
4960 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4961 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4962 		/* XXX need more */
4963 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4964 			__func__));
4965 		return key_senderror(so, m, EINVAL);
4966 	}
4967 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4968 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4969 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4970 	} else {
4971 		mode = IPSEC_MODE_ANY;
4972 		reqid = 0;
4973 	}
4974 
4975 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
4976 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
4977 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
4978 
4979 	/* XXX boundary check against sa_len */
4980 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4981 
4982 	/* get a SA header */
4983 	if ((newsah = key_getsah(&saidx)) == NULL) {
4984 		/* create a new SA header */
4985 		if ((newsah = key_newsah(&saidx)) == NULL) {
4986 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
4987 			return key_senderror(so, m, ENOBUFS);
4988 		}
4989 	}
4990 
4991 	/* set spidx if there */
4992 	/* XXX rewrite */
4993 	error = key_setident(newsah, m, mhp);
4994 	if (error) {
4995 		return key_senderror(so, m, error);
4996 	}
4997 
4998 	/* create new SA entry. */
4999 	/* We can create new SA only if SPI is differenct. */
5000 	SAHTREE_LOCK();
5001 	newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi);
5002 	SAHTREE_UNLOCK();
5003 	if (newsav != NULL) {
5004 		ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__));
5005 		return key_senderror(so, m, EEXIST);
5006 	}
5007 	newsav = KEY_NEWSAV(m, mhp, newsah, &error);
5008 	if (newsav == NULL) {
5009 		return key_senderror(so, m, error);
5010 	}
5011 
5012 	/* check SA values to be mature. */
5013 	if ((error = key_mature(newsav)) != 0) {
5014 		KEY_FREESAV(&newsav);
5015 		return key_senderror(so, m, error);
5016 	}
5017 
5018 	/*
5019 	 * don't call key_freesav() here, as we would like to keep the SA
5020 	 * in the database on success.
5021 	 */
5022 
5023     {
5024 	struct mbuf *n;
5025 
5026 	/* set msg buf from mhp */
5027 	n = key_getmsgbuf_x1(m, mhp);
5028 	if (n == NULL) {
5029 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5030 		return key_senderror(so, m, ENOBUFS);
5031 	}
5032 
5033 	m_freem(m);
5034 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5035     }
5036 }
5037 
5038 /* m is retained */
5039 static int
5040 key_setident(sah, m, mhp)
5041 	struct secashead *sah;
5042 	struct mbuf *m;
5043 	const struct sadb_msghdr *mhp;
5044 {
5045 	INIT_VNET_IPSEC(curvnet);
5046 	const struct sadb_ident *idsrc, *iddst;
5047 	int idsrclen, iddstlen;
5048 
5049 	IPSEC_ASSERT(sah != NULL, ("null secashead"));
5050 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5051 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5052 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5053 
5054 	/* don't make buffer if not there */
5055 	if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5056 	    mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5057 		sah->idents = NULL;
5058 		sah->identd = NULL;
5059 		return 0;
5060 	}
5061 
5062 	if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5063 	    mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5064 		ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__));
5065 		return EINVAL;
5066 	}
5067 
5068 	idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5069 	iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5070 	idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5071 	iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5072 
5073 	/* validity check */
5074 	if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5075 		ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__));
5076 		return EINVAL;
5077 	}
5078 
5079 	switch (idsrc->sadb_ident_type) {
5080 	case SADB_IDENTTYPE_PREFIX:
5081 	case SADB_IDENTTYPE_FQDN:
5082 	case SADB_IDENTTYPE_USERFQDN:
5083 	default:
5084 		/* XXX do nothing */
5085 		sah->idents = NULL;
5086 		sah->identd = NULL;
5087 	 	return 0;
5088 	}
5089 
5090 	/* make structure */
5091 	sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5092 	if (sah->idents == NULL) {
5093 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5094 		return ENOBUFS;
5095 	}
5096 	sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5097 	if (sah->identd == NULL) {
5098 		free(sah->idents, M_IPSEC_MISC);
5099 		sah->idents = NULL;
5100 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5101 		return ENOBUFS;
5102 	}
5103 	sah->idents->type = idsrc->sadb_ident_type;
5104 	sah->idents->id = idsrc->sadb_ident_id;
5105 
5106 	sah->identd->type = iddst->sadb_ident_type;
5107 	sah->identd->id = iddst->sadb_ident_id;
5108 
5109 	return 0;
5110 }
5111 
5112 /*
5113  * m will not be freed on return.
5114  * it is caller's responsibility to free the result.
5115  */
5116 static struct mbuf *
5117 key_getmsgbuf_x1(m, mhp)
5118 	struct mbuf *m;
5119 	const struct sadb_msghdr *mhp;
5120 {
5121 	struct mbuf *n;
5122 
5123 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5124 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5125 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5126 
5127 	/* create new sadb_msg to reply. */
5128 	n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED,
5129 	    SADB_EXT_SA, SADB_X_EXT_SA2,
5130 	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5131 	    SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5132 	    SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST);
5133 	if (!n)
5134 		return NULL;
5135 
5136 	if (n->m_len < sizeof(struct sadb_msg)) {
5137 		n = m_pullup(n, sizeof(struct sadb_msg));
5138 		if (n == NULL)
5139 			return NULL;
5140 	}
5141 	mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5142 	mtod(n, struct sadb_msg *)->sadb_msg_len =
5143 	    PFKEY_UNIT64(n->m_pkthdr.len);
5144 
5145 	return n;
5146 }
5147 
5148 static int key_delete_all __P((struct socket *, struct mbuf *,
5149 	const struct sadb_msghdr *, u_int16_t));
5150 
5151 /*
5152  * SADB_DELETE processing
5153  * receive
5154  *   <base, SA(*), address(SD)>
5155  * from the ikmpd, and set SADB_SASTATE_DEAD,
5156  * and send,
5157  *   <base, SA(*), address(SD)>
5158  * to the ikmpd.
5159  *
5160  * m will always be freed.
5161  */
5162 static int
5163 key_delete(so, m, mhp)
5164 	struct socket *so;
5165 	struct mbuf *m;
5166 	const struct sadb_msghdr *mhp;
5167 {
5168 	INIT_VNET_IPSEC(curvnet);
5169 	struct sadb_sa *sa0;
5170 	struct sadb_address *src0, *dst0;
5171 	struct secasindex saidx;
5172 	struct secashead *sah;
5173 	struct secasvar *sav = NULL;
5174 	u_int16_t proto;
5175 
5176 	IPSEC_ASSERT(so != NULL, ("null socket"));
5177 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5178 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5179 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5180 
5181 	/* map satype to proto */
5182 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5183 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5184 			__func__));
5185 		return key_senderror(so, m, EINVAL);
5186 	}
5187 
5188 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5189 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5190 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5191 			__func__));
5192 		return key_senderror(so, m, EINVAL);
5193 	}
5194 
5195 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5196 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5197 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5198 			__func__));
5199 		return key_senderror(so, m, EINVAL);
5200 	}
5201 
5202 	if (mhp->ext[SADB_EXT_SA] == NULL) {
5203 		/*
5204 		 * Caller wants us to delete all non-LARVAL SAs
5205 		 * that match the src/dst.  This is used during
5206 		 * IKE INITIAL-CONTACT.
5207 		 */
5208 		ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__));
5209 		return key_delete_all(so, m, mhp, proto);
5210 	} else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5211 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5212 			__func__));
5213 		return key_senderror(so, m, EINVAL);
5214 	}
5215 
5216 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5217 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5218 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5219 
5220 	/* XXX boundary check against sa_len */
5221 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5222 
5223 	/* get a SA header */
5224 	SAHTREE_LOCK();
5225 	LIST_FOREACH(sah, &V_sahtree, chain) {
5226 		if (sah->state == SADB_SASTATE_DEAD)
5227 			continue;
5228 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5229 			continue;
5230 
5231 		/* get a SA with SPI. */
5232 		sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5233 		if (sav)
5234 			break;
5235 	}
5236 	if (sah == NULL) {
5237 		SAHTREE_UNLOCK();
5238 		ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5239 		return key_senderror(so, m, ENOENT);
5240 	}
5241 
5242 	key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5243 	SAHTREE_UNLOCK();
5244 	KEY_FREESAV(&sav);
5245 
5246     {
5247 	struct mbuf *n;
5248 	struct sadb_msg *newmsg;
5249 
5250 	/* create new sadb_msg to reply. */
5251 	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5252 	    SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5253 	if (!n)
5254 		return key_senderror(so, m, ENOBUFS);
5255 
5256 	if (n->m_len < sizeof(struct sadb_msg)) {
5257 		n = m_pullup(n, sizeof(struct sadb_msg));
5258 		if (n == NULL)
5259 			return key_senderror(so, m, ENOBUFS);
5260 	}
5261 	newmsg = mtod(n, struct sadb_msg *);
5262 	newmsg->sadb_msg_errno = 0;
5263 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5264 
5265 	m_freem(m);
5266 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5267     }
5268 }
5269 
5270 /*
5271  * delete all SAs for src/dst.  Called from key_delete().
5272  */
5273 static int
5274 key_delete_all(so, m, mhp, proto)
5275 	struct socket *so;
5276 	struct mbuf *m;
5277 	const struct sadb_msghdr *mhp;
5278 	u_int16_t proto;
5279 {
5280 	INIT_VNET_IPSEC(curvnet);
5281 	struct sadb_address *src0, *dst0;
5282 	struct secasindex saidx;
5283 	struct secashead *sah;
5284 	struct secasvar *sav, *nextsav;
5285 	u_int stateidx, state;
5286 
5287 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5288 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5289 
5290 	/* XXX boundary check against sa_len */
5291 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5292 
5293 	SAHTREE_LOCK();
5294 	LIST_FOREACH(sah, &V_sahtree, chain) {
5295 		if (sah->state == SADB_SASTATE_DEAD)
5296 			continue;
5297 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5298 			continue;
5299 
5300 		/* Delete all non-LARVAL SAs. */
5301 		for (stateidx = 0;
5302 		     stateidx < _ARRAYLEN(saorder_state_alive);
5303 		     stateidx++) {
5304 			state = saorder_state_alive[stateidx];
5305 			if (state == SADB_SASTATE_LARVAL)
5306 				continue;
5307 			for (sav = LIST_FIRST(&sah->savtree[state]);
5308 			     sav != NULL; sav = nextsav) {
5309 				nextsav = LIST_NEXT(sav, chain);
5310 				/* sanity check */
5311 				if (sav->state != state) {
5312 					ipseclog((LOG_DEBUG, "%s: invalid "
5313 						"sav->state (queue %d SA %d)\n",
5314 						__func__, state, sav->state));
5315 					continue;
5316 				}
5317 
5318 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5319 				KEY_FREESAV(&sav);
5320 			}
5321 		}
5322 	}
5323 	SAHTREE_UNLOCK();
5324     {
5325 	struct mbuf *n;
5326 	struct sadb_msg *newmsg;
5327 
5328 	/* create new sadb_msg to reply. */
5329 	n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5330 	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5331 	if (!n)
5332 		return key_senderror(so, m, ENOBUFS);
5333 
5334 	if (n->m_len < sizeof(struct sadb_msg)) {
5335 		n = m_pullup(n, sizeof(struct sadb_msg));
5336 		if (n == NULL)
5337 			return key_senderror(so, m, ENOBUFS);
5338 	}
5339 	newmsg = mtod(n, struct sadb_msg *);
5340 	newmsg->sadb_msg_errno = 0;
5341 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5342 
5343 	m_freem(m);
5344 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5345     }
5346 }
5347 
5348 /*
5349  * SADB_GET processing
5350  * receive
5351  *   <base, SA(*), address(SD)>
5352  * from the ikmpd, and get a SP and a SA to respond,
5353  * and send,
5354  *   <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5355  *       (identity(SD),) (sensitivity)>
5356  * to the ikmpd.
5357  *
5358  * m will always be freed.
5359  */
5360 static int
5361 key_get(so, m, mhp)
5362 	struct socket *so;
5363 	struct mbuf *m;
5364 	const struct sadb_msghdr *mhp;
5365 {
5366 	INIT_VNET_IPSEC(curvnet);
5367 	struct sadb_sa *sa0;
5368 	struct sadb_address *src0, *dst0;
5369 	struct secasindex saidx;
5370 	struct secashead *sah;
5371 	struct secasvar *sav = NULL;
5372 	u_int16_t proto;
5373 
5374 	IPSEC_ASSERT(so != NULL, ("null socket"));
5375 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5376 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5377 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5378 
5379 	/* map satype to proto */
5380 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5381 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5382 			__func__));
5383 		return key_senderror(so, m, EINVAL);
5384 	}
5385 
5386 	if (mhp->ext[SADB_EXT_SA] == NULL ||
5387 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5388 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5389 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5390 			__func__));
5391 		return key_senderror(so, m, EINVAL);
5392 	}
5393 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5394 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5395 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5396 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5397 			__func__));
5398 		return key_senderror(so, m, EINVAL);
5399 	}
5400 
5401 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5402 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5403 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5404 
5405 	/* XXX boundary check against sa_len */
5406 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5407 
5408 	/* get a SA header */
5409 	SAHTREE_LOCK();
5410 	LIST_FOREACH(sah, &V_sahtree, chain) {
5411 		if (sah->state == SADB_SASTATE_DEAD)
5412 			continue;
5413 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5414 			continue;
5415 
5416 		/* get a SA with SPI. */
5417 		sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5418 		if (sav)
5419 			break;
5420 	}
5421 	SAHTREE_UNLOCK();
5422 	if (sah == NULL) {
5423 		ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5424 		return key_senderror(so, m, ENOENT);
5425 	}
5426 
5427     {
5428 	struct mbuf *n;
5429 	u_int8_t satype;
5430 
5431 	/* map proto to satype */
5432 	if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
5433 		ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n",
5434 			__func__));
5435 		return key_senderror(so, m, EINVAL);
5436 	}
5437 
5438 	/* create new sadb_msg to reply. */
5439 	n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5440 	    mhp->msg->sadb_msg_pid);
5441 	if (!n)
5442 		return key_senderror(so, m, ENOBUFS);
5443 
5444 	m_freem(m);
5445 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5446     }
5447 }
5448 
5449 /* XXX make it sysctl-configurable? */
5450 static void
5451 key_getcomb_setlifetime(comb)
5452 	struct sadb_comb *comb;
5453 {
5454 
5455 	comb->sadb_comb_soft_allocations = 1;
5456 	comb->sadb_comb_hard_allocations = 1;
5457 	comb->sadb_comb_soft_bytes = 0;
5458 	comb->sadb_comb_hard_bytes = 0;
5459 	comb->sadb_comb_hard_addtime = 86400;	/* 1 day */
5460 	comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5461 	comb->sadb_comb_soft_usetime = 28800;	/* 8 hours */
5462 	comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
5463 }
5464 
5465 /*
5466  * XXX reorder combinations by preference
5467  * XXX no idea if the user wants ESP authentication or not
5468  */
5469 static struct mbuf *
5470 key_getcomb_esp()
5471 {
5472 	INIT_VNET_IPSEC(curvnet);
5473 	struct sadb_comb *comb;
5474 	struct enc_xform *algo;
5475 	struct mbuf *result = NULL, *m, *n;
5476 	int encmin;
5477 	int i, off, o;
5478 	int totlen;
5479 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5480 
5481 	m = NULL;
5482 	for (i = 1; i <= SADB_EALG_MAX; i++) {
5483 		algo = esp_algorithm_lookup(i);
5484 		if (algo == NULL)
5485 			continue;
5486 
5487 		/* discard algorithms with key size smaller than system min */
5488 		if (_BITS(algo->maxkey) < V_ipsec_esp_keymin)
5489 			continue;
5490 		if (_BITS(algo->minkey) < V_ipsec_esp_keymin)
5491 			encmin = V_ipsec_esp_keymin;
5492 		else
5493 			encmin = _BITS(algo->minkey);
5494 
5495 		if (V_ipsec_esp_auth)
5496 			m = key_getcomb_ah();
5497 		else {
5498 			IPSEC_ASSERT(l <= MLEN,
5499 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
5500 			MGET(m, M_DONTWAIT, MT_DATA);
5501 			if (m) {
5502 				M_ALIGN(m, l);
5503 				m->m_len = l;
5504 				m->m_next = NULL;
5505 				bzero(mtod(m, caddr_t), m->m_len);
5506 			}
5507 		}
5508 		if (!m)
5509 			goto fail;
5510 
5511 		totlen = 0;
5512 		for (n = m; n; n = n->m_next)
5513 			totlen += n->m_len;
5514 		IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l));
5515 
5516 		for (off = 0; off < totlen; off += l) {
5517 			n = m_pulldown(m, off, l, &o);
5518 			if (!n) {
5519 				/* m is already freed */
5520 				goto fail;
5521 			}
5522 			comb = (struct sadb_comb *)(mtod(n, caddr_t) + o);
5523 			bzero(comb, sizeof(*comb));
5524 			key_getcomb_setlifetime(comb);
5525 			comb->sadb_comb_encrypt = i;
5526 			comb->sadb_comb_encrypt_minbits = encmin;
5527 			comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
5528 		}
5529 
5530 		if (!result)
5531 			result = m;
5532 		else
5533 			m_cat(result, m);
5534 	}
5535 
5536 	return result;
5537 
5538  fail:
5539 	if (result)
5540 		m_freem(result);
5541 	return NULL;
5542 }
5543 
5544 static void
5545 key_getsizes_ah(
5546 	const struct auth_hash *ah,
5547 	int alg,
5548 	u_int16_t* min,
5549 	u_int16_t* max)
5550 {
5551 	INIT_VNET_IPSEC(curvnet);
5552 
5553 	*min = *max = ah->keysize;
5554 	if (ah->keysize == 0) {
5555 		/*
5556 		 * Transform takes arbitrary key size but algorithm
5557 		 * key size is restricted.  Enforce this here.
5558 		 */
5559 		switch (alg) {
5560 		case SADB_X_AALG_MD5:	*min = *max = 16; break;
5561 		case SADB_X_AALG_SHA:	*min = *max = 20; break;
5562 		case SADB_X_AALG_NULL:	*min = 1; *max = 256; break;
5563 		default:
5564 			DPRINTF(("%s: unknown AH algorithm %u\n",
5565 				__func__, alg));
5566 			break;
5567 		}
5568 	}
5569 }
5570 
5571 /*
5572  * XXX reorder combinations by preference
5573  */
5574 static struct mbuf *
5575 key_getcomb_ah()
5576 {
5577 	INIT_VNET_IPSEC(curvnet);
5578 	struct sadb_comb *comb;
5579 	struct auth_hash *algo;
5580 	struct mbuf *m;
5581 	u_int16_t minkeysize, maxkeysize;
5582 	int i;
5583 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5584 
5585 	m = NULL;
5586 	for (i = 1; i <= SADB_AALG_MAX; i++) {
5587 #if 1
5588 		/* we prefer HMAC algorithms, not old algorithms */
5589 		if (i != SADB_AALG_SHA1HMAC && i != SADB_AALG_MD5HMAC)
5590 			continue;
5591 #endif
5592 		algo = ah_algorithm_lookup(i);
5593 		if (!algo)
5594 			continue;
5595 		key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
5596 		/* discard algorithms with key size smaller than system min */
5597 		if (_BITS(minkeysize) < V_ipsec_ah_keymin)
5598 			continue;
5599 
5600 		if (!m) {
5601 			IPSEC_ASSERT(l <= MLEN,
5602 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
5603 			MGET(m, M_DONTWAIT, MT_DATA);
5604 			if (m) {
5605 				M_ALIGN(m, l);
5606 				m->m_len = l;
5607 				m->m_next = NULL;
5608 			}
5609 		} else
5610 			M_PREPEND(m, l, M_DONTWAIT);
5611 		if (!m)
5612 			return NULL;
5613 
5614 		comb = mtod(m, struct sadb_comb *);
5615 		bzero(comb, sizeof(*comb));
5616 		key_getcomb_setlifetime(comb);
5617 		comb->sadb_comb_auth = i;
5618 		comb->sadb_comb_auth_minbits = _BITS(minkeysize);
5619 		comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
5620 	}
5621 
5622 	return m;
5623 }
5624 
5625 /*
5626  * not really an official behavior.  discussed in pf_key@inner.net in Sep2000.
5627  * XXX reorder combinations by preference
5628  */
5629 static struct mbuf *
5630 key_getcomb_ipcomp()
5631 {
5632 	struct sadb_comb *comb;
5633 	struct comp_algo *algo;
5634 	struct mbuf *m;
5635 	int i;
5636 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5637 
5638 	m = NULL;
5639 	for (i = 1; i <= SADB_X_CALG_MAX; i++) {
5640 		algo = ipcomp_algorithm_lookup(i);
5641 		if (!algo)
5642 			continue;
5643 
5644 		if (!m) {
5645 			IPSEC_ASSERT(l <= MLEN,
5646 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
5647 			MGET(m, M_DONTWAIT, MT_DATA);
5648 			if (m) {
5649 				M_ALIGN(m, l);
5650 				m->m_len = l;
5651 				m->m_next = NULL;
5652 			}
5653 		} else
5654 			M_PREPEND(m, l, M_DONTWAIT);
5655 		if (!m)
5656 			return NULL;
5657 
5658 		comb = mtod(m, struct sadb_comb *);
5659 		bzero(comb, sizeof(*comb));
5660 		key_getcomb_setlifetime(comb);
5661 		comb->sadb_comb_encrypt = i;
5662 		/* what should we set into sadb_comb_*_{min,max}bits? */
5663 	}
5664 
5665 	return m;
5666 }
5667 
5668 /*
5669  * XXX no way to pass mode (transport/tunnel) to userland
5670  * XXX replay checking?
5671  * XXX sysctl interface to ipsec_{ah,esp}_keymin
5672  */
5673 static struct mbuf *
5674 key_getprop(saidx)
5675 	const struct secasindex *saidx;
5676 {
5677 	struct sadb_prop *prop;
5678 	struct mbuf *m, *n;
5679 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
5680 	int totlen;
5681 
5682 	switch (saidx->proto)  {
5683 	case IPPROTO_ESP:
5684 		m = key_getcomb_esp();
5685 		break;
5686 	case IPPROTO_AH:
5687 		m = key_getcomb_ah();
5688 		break;
5689 	case IPPROTO_IPCOMP:
5690 		m = key_getcomb_ipcomp();
5691 		break;
5692 	default:
5693 		return NULL;
5694 	}
5695 
5696 	if (!m)
5697 		return NULL;
5698 	M_PREPEND(m, l, M_DONTWAIT);
5699 	if (!m)
5700 		return NULL;
5701 
5702 	totlen = 0;
5703 	for (n = m; n; n = n->m_next)
5704 		totlen += n->m_len;
5705 
5706 	prop = mtod(m, struct sadb_prop *);
5707 	bzero(prop, sizeof(*prop));
5708 	prop->sadb_prop_len = PFKEY_UNIT64(totlen);
5709 	prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
5710 	prop->sadb_prop_replay = 32;	/* XXX */
5711 
5712 	return m;
5713 }
5714 
5715 /*
5716  * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
5717  * send
5718  *   <base, SA, address(SD), (address(P)), x_policy,
5719  *       (identity(SD),) (sensitivity,) proposal>
5720  * to KMD, and expect to receive
5721  *   <base> with SADB_ACQUIRE if error occured,
5722  * or
5723  *   <base, src address, dst address, (SPI range)> with SADB_GETSPI
5724  * from KMD by PF_KEY.
5725  *
5726  * XXX x_policy is outside of RFC2367 (KAME extension).
5727  * XXX sensitivity is not supported.
5728  * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
5729  * see comment for key_getcomb_ipcomp().
5730  *
5731  * OUT:
5732  *    0     : succeed
5733  *    others: error number
5734  */
5735 static int
5736 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
5737 {
5738 	INIT_VNET_IPSEC(curvnet);
5739 	struct mbuf *result = NULL, *m;
5740 	struct secacq *newacq;
5741 	u_int8_t satype;
5742 	int error = -1;
5743 	u_int32_t seq;
5744 
5745 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
5746 	satype = key_proto2satype(saidx->proto);
5747 	IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto));
5748 
5749 	/*
5750 	 * We never do anything about acquirng SA.  There is anather
5751 	 * solution that kernel blocks to send SADB_ACQUIRE message until
5752 	 * getting something message from IKEd.  In later case, to be
5753 	 * managed with ACQUIRING list.
5754 	 */
5755 	/* Get an entry to check whether sending message or not. */
5756 	if ((newacq = key_getacq(saidx)) != NULL) {
5757 		if (V_key_blockacq_count < newacq->count) {
5758 			/* reset counter and do send message. */
5759 			newacq->count = 0;
5760 		} else {
5761 			/* increment counter and do nothing. */
5762 			newacq->count++;
5763 			return 0;
5764 		}
5765 	} else {
5766 		/* make new entry for blocking to send SADB_ACQUIRE. */
5767 		if ((newacq = key_newacq(saidx)) == NULL)
5768 			return ENOBUFS;
5769 	}
5770 
5771 
5772 	seq = newacq->seq;
5773 	m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
5774 	if (!m) {
5775 		error = ENOBUFS;
5776 		goto fail;
5777 	}
5778 	result = m;
5779 
5780 	/* set sadb_address for saidx's. */
5781 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
5782 	    &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY);
5783 	if (!m) {
5784 		error = ENOBUFS;
5785 		goto fail;
5786 	}
5787 	m_cat(result, m);
5788 
5789 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
5790 	    &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY);
5791 	if (!m) {
5792 		error = ENOBUFS;
5793 		goto fail;
5794 	}
5795 	m_cat(result, m);
5796 
5797 	/* XXX proxy address (optional) */
5798 
5799 	/* set sadb_x_policy */
5800 	if (sp) {
5801 		m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
5802 		if (!m) {
5803 			error = ENOBUFS;
5804 			goto fail;
5805 		}
5806 		m_cat(result, m);
5807 	}
5808 
5809 	/* XXX identity (optional) */
5810 #if 0
5811 	if (idexttype && fqdn) {
5812 		/* create identity extension (FQDN) */
5813 		struct sadb_ident *id;
5814 		int fqdnlen;
5815 
5816 		fqdnlen = strlen(fqdn) + 1;	/* +1 for terminating-NUL */
5817 		id = (struct sadb_ident *)p;
5818 		bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
5819 		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
5820 		id->sadb_ident_exttype = idexttype;
5821 		id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
5822 		bcopy(fqdn, id + 1, fqdnlen);
5823 		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
5824 	}
5825 
5826 	if (idexttype) {
5827 		/* create identity extension (USERFQDN) */
5828 		struct sadb_ident *id;
5829 		int userfqdnlen;
5830 
5831 		if (userfqdn) {
5832 			/* +1 for terminating-NUL */
5833 			userfqdnlen = strlen(userfqdn) + 1;
5834 		} else
5835 			userfqdnlen = 0;
5836 		id = (struct sadb_ident *)p;
5837 		bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
5838 		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
5839 		id->sadb_ident_exttype = idexttype;
5840 		id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
5841 		/* XXX is it correct? */
5842 		if (curproc && curproc->p_cred)
5843 			id->sadb_ident_id = curproc->p_cred->p_ruid;
5844 		if (userfqdn && userfqdnlen)
5845 			bcopy(userfqdn, id + 1, userfqdnlen);
5846 		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
5847 	}
5848 #endif
5849 
5850 	/* XXX sensitivity (optional) */
5851 
5852 	/* create proposal/combination extension */
5853 	m = key_getprop(saidx);
5854 #if 0
5855 	/*
5856 	 * spec conformant: always attach proposal/combination extension,
5857 	 * the problem is that we have no way to attach it for ipcomp,
5858 	 * due to the way sadb_comb is declared in RFC2367.
5859 	 */
5860 	if (!m) {
5861 		error = ENOBUFS;
5862 		goto fail;
5863 	}
5864 	m_cat(result, m);
5865 #else
5866 	/*
5867 	 * outside of spec; make proposal/combination extension optional.
5868 	 */
5869 	if (m)
5870 		m_cat(result, m);
5871 #endif
5872 
5873 	if ((result->m_flags & M_PKTHDR) == 0) {
5874 		error = EINVAL;
5875 		goto fail;
5876 	}
5877 
5878 	if (result->m_len < sizeof(struct sadb_msg)) {
5879 		result = m_pullup(result, sizeof(struct sadb_msg));
5880 		if (result == NULL) {
5881 			error = ENOBUFS;
5882 			goto fail;
5883 		}
5884 	}
5885 
5886 	result->m_pkthdr.len = 0;
5887 	for (m = result; m; m = m->m_next)
5888 		result->m_pkthdr.len += m->m_len;
5889 
5890 	mtod(result, struct sadb_msg *)->sadb_msg_len =
5891 	    PFKEY_UNIT64(result->m_pkthdr.len);
5892 
5893 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
5894 
5895  fail:
5896 	if (result)
5897 		m_freem(result);
5898 	return error;
5899 }
5900 
5901 static struct secacq *
5902 key_newacq(const struct secasindex *saidx)
5903 {
5904 	INIT_VNET_IPSEC(curvnet);
5905 	struct secacq *newacq;
5906 
5907 	/* get new entry */
5908 	newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
5909 	if (newacq == NULL) {
5910 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5911 		return NULL;
5912 	}
5913 
5914 	/* copy secindex */
5915 	bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx));
5916 	newacq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq);
5917 	newacq->created = time_second;
5918 	newacq->count = 0;
5919 
5920 	/* add to acqtree */
5921 	ACQ_LOCK();
5922 	LIST_INSERT_HEAD(&V_acqtree, newacq, chain);
5923 	ACQ_UNLOCK();
5924 
5925 	return newacq;
5926 }
5927 
5928 static struct secacq *
5929 key_getacq(const struct secasindex *saidx)
5930 {
5931 	INIT_VNET_IPSEC(curvnet);
5932 	struct secacq *acq;
5933 
5934 	ACQ_LOCK();
5935 	LIST_FOREACH(acq, &V_acqtree, chain) {
5936 		if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY))
5937 			break;
5938 	}
5939 	ACQ_UNLOCK();
5940 
5941 	return acq;
5942 }
5943 
5944 static struct secacq *
5945 key_getacqbyseq(seq)
5946 	u_int32_t seq;
5947 {
5948 	INIT_VNET_IPSEC(curvnet);
5949 	struct secacq *acq;
5950 
5951 	ACQ_LOCK();
5952 	LIST_FOREACH(acq, &V_acqtree, chain) {
5953 		if (acq->seq == seq)
5954 			break;
5955 	}
5956 	ACQ_UNLOCK();
5957 
5958 	return acq;
5959 }
5960 
5961 static struct secspacq *
5962 key_newspacq(spidx)
5963 	struct secpolicyindex *spidx;
5964 {
5965 	INIT_VNET_IPSEC(curvnet);
5966 	struct secspacq *acq;
5967 
5968 	/* get new entry */
5969 	acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
5970 	if (acq == NULL) {
5971 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5972 		return NULL;
5973 	}
5974 
5975 	/* copy secindex */
5976 	bcopy(spidx, &acq->spidx, sizeof(acq->spidx));
5977 	acq->created = time_second;
5978 	acq->count = 0;
5979 
5980 	/* add to spacqtree */
5981 	SPACQ_LOCK();
5982 	LIST_INSERT_HEAD(&V_spacqtree, acq, chain);
5983 	SPACQ_UNLOCK();
5984 
5985 	return acq;
5986 }
5987 
5988 static struct secspacq *
5989 key_getspacq(spidx)
5990 	struct secpolicyindex *spidx;
5991 {
5992 	INIT_VNET_IPSEC(curvnet);
5993 	struct secspacq *acq;
5994 
5995 	SPACQ_LOCK();
5996 	LIST_FOREACH(acq, &V_spacqtree, chain) {
5997 		if (key_cmpspidx_exactly(spidx, &acq->spidx)) {
5998 			/* NB: return holding spacq_lock */
5999 			return acq;
6000 		}
6001 	}
6002 	SPACQ_UNLOCK();
6003 
6004 	return NULL;
6005 }
6006 
6007 /*
6008  * SADB_ACQUIRE processing,
6009  * in first situation, is receiving
6010  *   <base>
6011  * from the ikmpd, and clear sequence of its secasvar entry.
6012  *
6013  * In second situation, is receiving
6014  *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6015  * from a user land process, and return
6016  *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6017  * to the socket.
6018  *
6019  * m will always be freed.
6020  */
6021 static int
6022 key_acquire2(so, m, mhp)
6023 	struct socket *so;
6024 	struct mbuf *m;
6025 	const struct sadb_msghdr *mhp;
6026 {
6027 	INIT_VNET_IPSEC(curvnet);
6028 	const struct sadb_address *src0, *dst0;
6029 	struct secasindex saidx;
6030 	struct secashead *sah;
6031 	u_int16_t proto;
6032 	int error;
6033 
6034 	IPSEC_ASSERT(so != NULL, ("null socket"));
6035 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6036 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6037 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6038 
6039 	/*
6040 	 * Error message from KMd.
6041 	 * We assume that if error was occured in IKEd, the length of PFKEY
6042 	 * message is equal to the size of sadb_msg structure.
6043 	 * We do not raise error even if error occured in this function.
6044 	 */
6045 	if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6046 		struct secacq *acq;
6047 
6048 		/* check sequence number */
6049 		if (mhp->msg->sadb_msg_seq == 0) {
6050 			ipseclog((LOG_DEBUG, "%s: must specify sequence "
6051 				"number.\n", __func__));
6052 			m_freem(m);
6053 			return 0;
6054 		}
6055 
6056 		if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) {
6057 			/*
6058 			 * the specified larval SA is already gone, or we got
6059 			 * a bogus sequence number.  we can silently ignore it.
6060 			 */
6061 			m_freem(m);
6062 			return 0;
6063 		}
6064 
6065 		/* reset acq counter in order to deletion by timehander. */
6066 		acq->created = time_second;
6067 		acq->count = 0;
6068 		m_freem(m);
6069 		return 0;
6070 	}
6071 
6072 	/*
6073 	 * This message is from user land.
6074 	 */
6075 
6076 	/* map satype to proto */
6077 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6078 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6079 			__func__));
6080 		return key_senderror(so, m, EINVAL);
6081 	}
6082 
6083 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6084 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6085 	    mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6086 		/* error */
6087 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
6088 			__func__));
6089 		return key_senderror(so, m, EINVAL);
6090 	}
6091 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6092 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6093 	    mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6094 		/* error */
6095 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
6096 			__func__));
6097 		return key_senderror(so, m, EINVAL);
6098 	}
6099 
6100 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
6101 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
6102 
6103 	/* XXX boundary check against sa_len */
6104 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
6105 
6106 	/* get a SA index */
6107 	SAHTREE_LOCK();
6108 	LIST_FOREACH(sah, &V_sahtree, chain) {
6109 		if (sah->state == SADB_SASTATE_DEAD)
6110 			continue;
6111 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID))
6112 			break;
6113 	}
6114 	SAHTREE_UNLOCK();
6115 	if (sah != NULL) {
6116 		ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__));
6117 		return key_senderror(so, m, EEXIST);
6118 	}
6119 
6120 	error = key_acquire(&saidx, NULL);
6121 	if (error != 0) {
6122 		ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
6123 			__func__, mhp->msg->sadb_msg_errno));
6124 		return key_senderror(so, m, error);
6125 	}
6126 
6127 	return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6128 }
6129 
6130 /*
6131  * SADB_REGISTER processing.
6132  * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6133  * receive
6134  *   <base>
6135  * from the ikmpd, and register a socket to send PF_KEY messages,
6136  * and send
6137  *   <base, supported>
6138  * to KMD by PF_KEY.
6139  * If socket is detached, must free from regnode.
6140  *
6141  * m will always be freed.
6142  */
6143 static int
6144 key_register(so, m, mhp)
6145 	struct socket *so;
6146 	struct mbuf *m;
6147 	const struct sadb_msghdr *mhp;
6148 {
6149 	INIT_VNET_IPSEC(curvnet);
6150 	struct secreg *reg, *newreg = 0;
6151 
6152 	IPSEC_ASSERT(so != NULL, ("null socket"));
6153 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6154 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6155 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6156 
6157 	/* check for invalid register message */
6158 	if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0]))
6159 		return key_senderror(so, m, EINVAL);
6160 
6161 	/* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6162 	if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6163 		goto setmsg;
6164 
6165 	/* check whether existing or not */
6166 	REGTREE_LOCK();
6167 	LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) {
6168 		if (reg->so == so) {
6169 			REGTREE_UNLOCK();
6170 			ipseclog((LOG_DEBUG, "%s: socket exists already.\n",
6171 				__func__));
6172 			return key_senderror(so, m, EEXIST);
6173 		}
6174 	}
6175 
6176 	/* create regnode */
6177 	newreg =  malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO);
6178 	if (newreg == NULL) {
6179 		REGTREE_UNLOCK();
6180 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6181 		return key_senderror(so, m, ENOBUFS);
6182 	}
6183 
6184 	newreg->so = so;
6185 	((struct keycb *)sotorawcb(so))->kp_registered++;
6186 
6187 	/* add regnode to regtree. */
6188 	LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain);
6189 	REGTREE_UNLOCK();
6190 
6191   setmsg:
6192     {
6193 	struct mbuf *n;
6194 	struct sadb_msg *newmsg;
6195 	struct sadb_supported *sup;
6196 	u_int len, alen, elen;
6197 	int off;
6198 	int i;
6199 	struct sadb_alg *alg;
6200 
6201 	/* create new sadb_msg to reply. */
6202 	alen = 0;
6203 	for (i = 1; i <= SADB_AALG_MAX; i++) {
6204 		if (ah_algorithm_lookup(i))
6205 			alen += sizeof(struct sadb_alg);
6206 	}
6207 	if (alen)
6208 		alen += sizeof(struct sadb_supported);
6209 	elen = 0;
6210 	for (i = 1; i <= SADB_EALG_MAX; i++) {
6211 		if (esp_algorithm_lookup(i))
6212 			elen += sizeof(struct sadb_alg);
6213 	}
6214 	if (elen)
6215 		elen += sizeof(struct sadb_supported);
6216 
6217 	len = sizeof(struct sadb_msg) + alen + elen;
6218 
6219 	if (len > MCLBYTES)
6220 		return key_senderror(so, m, ENOBUFS);
6221 
6222 	MGETHDR(n, M_DONTWAIT, MT_DATA);
6223 	if (len > MHLEN) {
6224 		MCLGET(n, M_DONTWAIT);
6225 		if ((n->m_flags & M_EXT) == 0) {
6226 			m_freem(n);
6227 			n = NULL;
6228 		}
6229 	}
6230 	if (!n)
6231 		return key_senderror(so, m, ENOBUFS);
6232 
6233 	n->m_pkthdr.len = n->m_len = len;
6234 	n->m_next = NULL;
6235 	off = 0;
6236 
6237 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
6238 	newmsg = mtod(n, struct sadb_msg *);
6239 	newmsg->sadb_msg_errno = 0;
6240 	newmsg->sadb_msg_len = PFKEY_UNIT64(len);
6241 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6242 
6243 	/* for authentication algorithm */
6244 	if (alen) {
6245 		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6246 		sup->sadb_supported_len = PFKEY_UNIT64(alen);
6247 		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6248 		off += PFKEY_ALIGN8(sizeof(*sup));
6249 
6250 		for (i = 1; i <= SADB_AALG_MAX; i++) {
6251 			struct auth_hash *aalgo;
6252 			u_int16_t minkeysize, maxkeysize;
6253 
6254 			aalgo = ah_algorithm_lookup(i);
6255 			if (!aalgo)
6256 				continue;
6257 			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6258 			alg->sadb_alg_id = i;
6259 			alg->sadb_alg_ivlen = 0;
6260 			key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6261 			alg->sadb_alg_minbits = _BITS(minkeysize);
6262 			alg->sadb_alg_maxbits = _BITS(maxkeysize);
6263 			off += PFKEY_ALIGN8(sizeof(*alg));
6264 		}
6265 	}
6266 
6267 	/* for encryption algorithm */
6268 	if (elen) {
6269 		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6270 		sup->sadb_supported_len = PFKEY_UNIT64(elen);
6271 		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6272 		off += PFKEY_ALIGN8(sizeof(*sup));
6273 
6274 		for (i = 1; i <= SADB_EALG_MAX; i++) {
6275 			struct enc_xform *ealgo;
6276 
6277 			ealgo = esp_algorithm_lookup(i);
6278 			if (!ealgo)
6279 				continue;
6280 			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6281 			alg->sadb_alg_id = i;
6282 			alg->sadb_alg_ivlen = ealgo->blocksize;
6283 			alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6284 			alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6285 			off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6286 		}
6287 	}
6288 
6289 	IPSEC_ASSERT(off == len,
6290 		("length assumption failed (off %u len %u)", off, len));
6291 
6292 	m_freem(m);
6293 	return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6294     }
6295 }
6296 
6297 /*
6298  * free secreg entry registered.
6299  * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6300  */
6301 void
6302 key_freereg(struct socket *so)
6303 {
6304 	INIT_VNET_IPSEC(curvnet);
6305 	struct secreg *reg;
6306 	int i;
6307 
6308 	IPSEC_ASSERT(so != NULL, ("NULL so"));
6309 
6310 	/*
6311 	 * check whether existing or not.
6312 	 * check all type of SA, because there is a potential that
6313 	 * one socket is registered to multiple type of SA.
6314 	 */
6315 	REGTREE_LOCK();
6316 	for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6317 		LIST_FOREACH(reg, &V_regtree[i], chain) {
6318 			if (reg->so == so && __LIST_CHAINED(reg)) {
6319 				LIST_REMOVE(reg, chain);
6320 				free(reg, M_IPSEC_SAR);
6321 				break;
6322 			}
6323 		}
6324 	}
6325 	REGTREE_UNLOCK();
6326 }
6327 
6328 /*
6329  * SADB_EXPIRE processing
6330  * send
6331  *   <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6332  * to KMD by PF_KEY.
6333  * NOTE: We send only soft lifetime extension.
6334  *
6335  * OUT:	0	: succeed
6336  *	others	: error number
6337  */
6338 static int
6339 key_expire(struct secasvar *sav)
6340 {
6341 	int s;
6342 	int satype;
6343 	struct mbuf *result = NULL, *m;
6344 	int len;
6345 	int error = -1;
6346 	struct sadb_lifetime *lt;
6347 
6348 	/* XXX: Why do we lock ? */
6349 	s = splnet();	/*called from softclock()*/
6350 
6351 	IPSEC_ASSERT (sav != NULL, ("null sav"));
6352 	IPSEC_ASSERT (sav->sah != NULL, ("null sa header"));
6353 
6354 	/* set msg header */
6355 	satype = key_proto2satype(sav->sah->saidx.proto);
6356 	IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype));
6357 	m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6358 	if (!m) {
6359 		error = ENOBUFS;
6360 		goto fail;
6361 	}
6362 	result = m;
6363 
6364 	/* create SA extension */
6365 	m = key_setsadbsa(sav);
6366 	if (!m) {
6367 		error = ENOBUFS;
6368 		goto fail;
6369 	}
6370 	m_cat(result, m);
6371 
6372 	/* create SA extension */
6373 	m = key_setsadbxsa2(sav->sah->saidx.mode,
6374 			sav->replay ? sav->replay->count : 0,
6375 			sav->sah->saidx.reqid);
6376 	if (!m) {
6377 		error = ENOBUFS;
6378 		goto fail;
6379 	}
6380 	m_cat(result, m);
6381 
6382 	/* create lifetime extension (current and soft) */
6383 	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6384 	m = key_alloc_mbuf(len);
6385 	if (!m || m->m_next) {	/*XXX*/
6386 		if (m)
6387 			m_freem(m);
6388 		error = ENOBUFS;
6389 		goto fail;
6390 	}
6391 	bzero(mtod(m, caddr_t), len);
6392 	lt = mtod(m, struct sadb_lifetime *);
6393 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6394 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6395 	lt->sadb_lifetime_allocations = sav->lft_c->allocations;
6396 	lt->sadb_lifetime_bytes = sav->lft_c->bytes;
6397 	lt->sadb_lifetime_addtime = sav->lft_c->addtime;
6398 	lt->sadb_lifetime_usetime = sav->lft_c->usetime;
6399 	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
6400 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6401 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
6402 	lt->sadb_lifetime_allocations = sav->lft_s->allocations;
6403 	lt->sadb_lifetime_bytes = sav->lft_s->bytes;
6404 	lt->sadb_lifetime_addtime = sav->lft_s->addtime;
6405 	lt->sadb_lifetime_usetime = sav->lft_s->usetime;
6406 	m_cat(result, m);
6407 
6408 	/* set sadb_address for source */
6409 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6410 	    &sav->sah->saidx.src.sa,
6411 	    FULLMASK, IPSEC_ULPROTO_ANY);
6412 	if (!m) {
6413 		error = ENOBUFS;
6414 		goto fail;
6415 	}
6416 	m_cat(result, m);
6417 
6418 	/* set sadb_address for destination */
6419 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6420 	    &sav->sah->saidx.dst.sa,
6421 	    FULLMASK, IPSEC_ULPROTO_ANY);
6422 	if (!m) {
6423 		error = ENOBUFS;
6424 		goto fail;
6425 	}
6426 	m_cat(result, m);
6427 
6428 	if ((result->m_flags & M_PKTHDR) == 0) {
6429 		error = EINVAL;
6430 		goto fail;
6431 	}
6432 
6433 	if (result->m_len < sizeof(struct sadb_msg)) {
6434 		result = m_pullup(result, sizeof(struct sadb_msg));
6435 		if (result == NULL) {
6436 			error = ENOBUFS;
6437 			goto fail;
6438 		}
6439 	}
6440 
6441 	result->m_pkthdr.len = 0;
6442 	for (m = result; m; m = m->m_next)
6443 		result->m_pkthdr.len += m->m_len;
6444 
6445 	mtod(result, struct sadb_msg *)->sadb_msg_len =
6446 	    PFKEY_UNIT64(result->m_pkthdr.len);
6447 
6448 	splx(s);
6449 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6450 
6451  fail:
6452 	if (result)
6453 		m_freem(result);
6454 	splx(s);
6455 	return error;
6456 }
6457 
6458 /*
6459  * SADB_FLUSH processing
6460  * receive
6461  *   <base>
6462  * from the ikmpd, and free all entries in secastree.
6463  * and send,
6464  *   <base>
6465  * to the ikmpd.
6466  * NOTE: to do is only marking SADB_SASTATE_DEAD.
6467  *
6468  * m will always be freed.
6469  */
6470 static int
6471 key_flush(so, m, mhp)
6472 	struct socket *so;
6473 	struct mbuf *m;
6474 	const struct sadb_msghdr *mhp;
6475 {
6476 	INIT_VNET_IPSEC(curvnet);
6477 	struct sadb_msg *newmsg;
6478 	struct secashead *sah, *nextsah;
6479 	struct secasvar *sav, *nextsav;
6480 	u_int16_t proto;
6481 	u_int8_t state;
6482 	u_int stateidx;
6483 
6484 	IPSEC_ASSERT(so != NULL, ("null socket"));
6485 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6486 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6487 
6488 	/* map satype to proto */
6489 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6490 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6491 			__func__));
6492 		return key_senderror(so, m, EINVAL);
6493 	}
6494 
6495 	/* no SATYPE specified, i.e. flushing all SA. */
6496 	SAHTREE_LOCK();
6497 	for (sah = LIST_FIRST(&V_sahtree);
6498 	     sah != NULL;
6499 	     sah = nextsah) {
6500 		nextsah = LIST_NEXT(sah, chain);
6501 
6502 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6503 		 && proto != sah->saidx.proto)
6504 			continue;
6505 
6506 		for (stateidx = 0;
6507 		     stateidx < _ARRAYLEN(saorder_state_alive);
6508 		     stateidx++) {
6509 			state = saorder_state_any[stateidx];
6510 			for (sav = LIST_FIRST(&sah->savtree[state]);
6511 			     sav != NULL;
6512 			     sav = nextsav) {
6513 
6514 				nextsav = LIST_NEXT(sav, chain);
6515 
6516 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
6517 				KEY_FREESAV(&sav);
6518 			}
6519 		}
6520 
6521 		sah->state = SADB_SASTATE_DEAD;
6522 	}
6523 	SAHTREE_UNLOCK();
6524 
6525 	if (m->m_len < sizeof(struct sadb_msg) ||
6526 	    sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
6527 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6528 		return key_senderror(so, m, ENOBUFS);
6529 	}
6530 
6531 	if (m->m_next)
6532 		m_freem(m->m_next);
6533 	m->m_next = NULL;
6534 	m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
6535 	newmsg = mtod(m, struct sadb_msg *);
6536 	newmsg->sadb_msg_errno = 0;
6537 	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
6538 
6539 	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6540 }
6541 
6542 /*
6543  * SADB_DUMP processing
6544  * dump all entries including status of DEAD in SAD.
6545  * receive
6546  *   <base>
6547  * from the ikmpd, and dump all secasvar leaves
6548  * and send,
6549  *   <base> .....
6550  * to the ikmpd.
6551  *
6552  * m will always be freed.
6553  */
6554 static int
6555 key_dump(so, m, mhp)
6556 	struct socket *so;
6557 	struct mbuf *m;
6558 	const struct sadb_msghdr *mhp;
6559 {
6560 	INIT_VNET_IPSEC(curvnet);
6561 	struct secashead *sah;
6562 	struct secasvar *sav;
6563 	u_int16_t proto;
6564 	u_int stateidx;
6565 	u_int8_t satype;
6566 	u_int8_t state;
6567 	int cnt;
6568 	struct sadb_msg *newmsg;
6569 	struct mbuf *n;
6570 
6571 	IPSEC_ASSERT(so != NULL, ("null socket"));
6572 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6573 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6574 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6575 
6576 	/* map satype to proto */
6577 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6578 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6579 			__func__));
6580 		return key_senderror(so, m, EINVAL);
6581 	}
6582 
6583 	/* count sav entries to be sent to the userland. */
6584 	cnt = 0;
6585 	SAHTREE_LOCK();
6586 	LIST_FOREACH(sah, &V_sahtree, chain) {
6587 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6588 		 && proto != sah->saidx.proto)
6589 			continue;
6590 
6591 		for (stateidx = 0;
6592 		     stateidx < _ARRAYLEN(saorder_state_any);
6593 		     stateidx++) {
6594 			state = saorder_state_any[stateidx];
6595 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
6596 				cnt++;
6597 			}
6598 		}
6599 	}
6600 
6601 	if (cnt == 0) {
6602 		SAHTREE_UNLOCK();
6603 		return key_senderror(so, m, ENOENT);
6604 	}
6605 
6606 	/* send this to the userland, one at a time. */
6607 	newmsg = NULL;
6608 	LIST_FOREACH(sah, &V_sahtree, chain) {
6609 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6610 		 && proto != sah->saidx.proto)
6611 			continue;
6612 
6613 		/* map proto to satype */
6614 		if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
6615 			SAHTREE_UNLOCK();
6616 			ipseclog((LOG_DEBUG, "%s: there was invalid proto in "
6617 				"SAD.\n", __func__));
6618 			return key_senderror(so, m, EINVAL);
6619 		}
6620 
6621 		for (stateidx = 0;
6622 		     stateidx < _ARRAYLEN(saorder_state_any);
6623 		     stateidx++) {
6624 			state = saorder_state_any[stateidx];
6625 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
6626 				n = key_setdumpsa(sav, SADB_DUMP, satype,
6627 				    --cnt, mhp->msg->sadb_msg_pid);
6628 				if (!n) {
6629 					SAHTREE_UNLOCK();
6630 					return key_senderror(so, m, ENOBUFS);
6631 				}
6632 				key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
6633 			}
6634 		}
6635 	}
6636 	SAHTREE_UNLOCK();
6637 
6638 	m_freem(m);
6639 	return 0;
6640 }
6641 
6642 /*
6643  * SADB_X_PROMISC processing
6644  *
6645  * m will always be freed.
6646  */
6647 static int
6648 key_promisc(so, m, mhp)
6649 	struct socket *so;
6650 	struct mbuf *m;
6651 	const struct sadb_msghdr *mhp;
6652 {
6653 	int olen;
6654 
6655 	IPSEC_ASSERT(so != NULL, ("null socket"));
6656 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6657 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6658 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6659 
6660 	olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
6661 
6662 	if (olen < sizeof(struct sadb_msg)) {
6663 #if 1
6664 		return key_senderror(so, m, EINVAL);
6665 #else
6666 		m_freem(m);
6667 		return 0;
6668 #endif
6669 	} else if (olen == sizeof(struct sadb_msg)) {
6670 		/* enable/disable promisc mode */
6671 		struct keycb *kp;
6672 
6673 		if ((kp = (struct keycb *)sotorawcb(so)) == NULL)
6674 			return key_senderror(so, m, EINVAL);
6675 		mhp->msg->sadb_msg_errno = 0;
6676 		switch (mhp->msg->sadb_msg_satype) {
6677 		case 0:
6678 		case 1:
6679 			kp->kp_promisc = mhp->msg->sadb_msg_satype;
6680 			break;
6681 		default:
6682 			return key_senderror(so, m, EINVAL);
6683 		}
6684 
6685 		/* send the original message back to everyone */
6686 		mhp->msg->sadb_msg_errno = 0;
6687 		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6688 	} else {
6689 		/* send packet as is */
6690 
6691 		m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
6692 
6693 		/* TODO: if sadb_msg_seq is specified, send to specific pid */
6694 		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6695 	}
6696 }
6697 
6698 static int (*key_typesw[]) __P((struct socket *, struct mbuf *,
6699 		const struct sadb_msghdr *)) = {
6700 	NULL,		/* SADB_RESERVED */
6701 	key_getspi,	/* SADB_GETSPI */
6702 	key_update,	/* SADB_UPDATE */
6703 	key_add,	/* SADB_ADD */
6704 	key_delete,	/* SADB_DELETE */
6705 	key_get,	/* SADB_GET */
6706 	key_acquire2,	/* SADB_ACQUIRE */
6707 	key_register,	/* SADB_REGISTER */
6708 	NULL,		/* SADB_EXPIRE */
6709 	key_flush,	/* SADB_FLUSH */
6710 	key_dump,	/* SADB_DUMP */
6711 	key_promisc,	/* SADB_X_PROMISC */
6712 	NULL,		/* SADB_X_PCHANGE */
6713 	key_spdadd,	/* SADB_X_SPDUPDATE */
6714 	key_spdadd,	/* SADB_X_SPDADD */
6715 	key_spddelete,	/* SADB_X_SPDDELETE */
6716 	key_spdget,	/* SADB_X_SPDGET */
6717 	NULL,		/* SADB_X_SPDACQUIRE */
6718 	key_spddump,	/* SADB_X_SPDDUMP */
6719 	key_spdflush,	/* SADB_X_SPDFLUSH */
6720 	key_spdadd,	/* SADB_X_SPDSETIDX */
6721 	NULL,		/* SADB_X_SPDEXPIRE */
6722 	key_spddelete2,	/* SADB_X_SPDDELETE2 */
6723 };
6724 
6725 /*
6726  * parse sadb_msg buffer to process PFKEYv2,
6727  * and create a data to response if needed.
6728  * I think to be dealed with mbuf directly.
6729  * IN:
6730  *     msgp  : pointer to pointer to a received buffer pulluped.
6731  *             This is rewrited to response.
6732  *     so    : pointer to socket.
6733  * OUT:
6734  *    length for buffer to send to user process.
6735  */
6736 int
6737 key_parse(m, so)
6738 	struct mbuf *m;
6739 	struct socket *so;
6740 {
6741 	INIT_VNET_IPSEC(curvnet);
6742 	struct sadb_msg *msg;
6743 	struct sadb_msghdr mh;
6744 	u_int orglen;
6745 	int error;
6746 	int target;
6747 
6748 	IPSEC_ASSERT(so != NULL, ("null socket"));
6749 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6750 
6751 #if 0	/*kdebug_sadb assumes msg in linear buffer*/
6752 	KEYDEBUG(KEYDEBUG_KEY_DUMP,
6753 		ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__));
6754 		kdebug_sadb(msg));
6755 #endif
6756 
6757 	if (m->m_len < sizeof(struct sadb_msg)) {
6758 		m = m_pullup(m, sizeof(struct sadb_msg));
6759 		if (!m)
6760 			return ENOBUFS;
6761 	}
6762 	msg = mtod(m, struct sadb_msg *);
6763 	orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
6764 	target = KEY_SENDUP_ONE;
6765 
6766 	if ((m->m_flags & M_PKTHDR) == 0 ||
6767 	    m->m_pkthdr.len != m->m_pkthdr.len) {
6768 		ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__));
6769 		V_pfkeystat.out_invlen++;
6770 		error = EINVAL;
6771 		goto senderror;
6772 	}
6773 
6774 	if (msg->sadb_msg_version != PF_KEY_V2) {
6775 		ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n",
6776 		    __func__, msg->sadb_msg_version));
6777 		V_pfkeystat.out_invver++;
6778 		error = EINVAL;
6779 		goto senderror;
6780 	}
6781 
6782 	if (msg->sadb_msg_type > SADB_MAX) {
6783 		ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
6784 		    __func__, msg->sadb_msg_type));
6785 		V_pfkeystat.out_invmsgtype++;
6786 		error = EINVAL;
6787 		goto senderror;
6788 	}
6789 
6790 	/* for old-fashioned code - should be nuked */
6791 	if (m->m_pkthdr.len > MCLBYTES) {
6792 		m_freem(m);
6793 		return ENOBUFS;
6794 	}
6795 	if (m->m_next) {
6796 		struct mbuf *n;
6797 
6798 		MGETHDR(n, M_DONTWAIT, MT_DATA);
6799 		if (n && m->m_pkthdr.len > MHLEN) {
6800 			MCLGET(n, M_DONTWAIT);
6801 			if ((n->m_flags & M_EXT) == 0) {
6802 				m_free(n);
6803 				n = NULL;
6804 			}
6805 		}
6806 		if (!n) {
6807 			m_freem(m);
6808 			return ENOBUFS;
6809 		}
6810 		m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t));
6811 		n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
6812 		n->m_next = NULL;
6813 		m_freem(m);
6814 		m = n;
6815 	}
6816 
6817 	/* align the mbuf chain so that extensions are in contiguous region. */
6818 	error = key_align(m, &mh);
6819 	if (error)
6820 		return error;
6821 
6822 	msg = mh.msg;
6823 
6824 	/* check SA type */
6825 	switch (msg->sadb_msg_satype) {
6826 	case SADB_SATYPE_UNSPEC:
6827 		switch (msg->sadb_msg_type) {
6828 		case SADB_GETSPI:
6829 		case SADB_UPDATE:
6830 		case SADB_ADD:
6831 		case SADB_DELETE:
6832 		case SADB_GET:
6833 		case SADB_ACQUIRE:
6834 		case SADB_EXPIRE:
6835 			ipseclog((LOG_DEBUG, "%s: must specify satype "
6836 			    "when msg type=%u.\n", __func__,
6837 			    msg->sadb_msg_type));
6838 			V_pfkeystat.out_invsatype++;
6839 			error = EINVAL;
6840 			goto senderror;
6841 		}
6842 		break;
6843 	case SADB_SATYPE_AH:
6844 	case SADB_SATYPE_ESP:
6845 	case SADB_X_SATYPE_IPCOMP:
6846 	case SADB_X_SATYPE_TCPSIGNATURE:
6847 		switch (msg->sadb_msg_type) {
6848 		case SADB_X_SPDADD:
6849 		case SADB_X_SPDDELETE:
6850 		case SADB_X_SPDGET:
6851 		case SADB_X_SPDDUMP:
6852 		case SADB_X_SPDFLUSH:
6853 		case SADB_X_SPDSETIDX:
6854 		case SADB_X_SPDUPDATE:
6855 		case SADB_X_SPDDELETE2:
6856 			ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n",
6857 				__func__, msg->sadb_msg_type));
6858 			V_pfkeystat.out_invsatype++;
6859 			error = EINVAL;
6860 			goto senderror;
6861 		}
6862 		break;
6863 	case SADB_SATYPE_RSVP:
6864 	case SADB_SATYPE_OSPFV2:
6865 	case SADB_SATYPE_RIPV2:
6866 	case SADB_SATYPE_MIP:
6867 		ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n",
6868 			__func__, msg->sadb_msg_satype));
6869 		V_pfkeystat.out_invsatype++;
6870 		error = EOPNOTSUPP;
6871 		goto senderror;
6872 	case 1:	/* XXX: What does it do? */
6873 		if (msg->sadb_msg_type == SADB_X_PROMISC)
6874 			break;
6875 		/*FALLTHROUGH*/
6876 	default:
6877 		ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
6878 			__func__, msg->sadb_msg_satype));
6879 		V_pfkeystat.out_invsatype++;
6880 		error = EINVAL;
6881 		goto senderror;
6882 	}
6883 
6884 	/* check field of upper layer protocol and address family */
6885 	if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL
6886 	 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
6887 		struct sadb_address *src0, *dst0;
6888 		u_int plen;
6889 
6890 		src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
6891 		dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
6892 
6893 		/* check upper layer protocol */
6894 		if (src0->sadb_address_proto != dst0->sadb_address_proto) {
6895 			ipseclog((LOG_DEBUG, "%s: upper layer protocol "
6896 				"mismatched.\n", __func__));
6897 			V_pfkeystat.out_invaddr++;
6898 			error = EINVAL;
6899 			goto senderror;
6900 		}
6901 
6902 		/* check family */
6903 		if (PFKEY_ADDR_SADDR(src0)->sa_family !=
6904 		    PFKEY_ADDR_SADDR(dst0)->sa_family) {
6905 			ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
6906 				__func__));
6907 			V_pfkeystat.out_invaddr++;
6908 			error = EINVAL;
6909 			goto senderror;
6910 		}
6911 		if (PFKEY_ADDR_SADDR(src0)->sa_len !=
6912 		    PFKEY_ADDR_SADDR(dst0)->sa_len) {
6913 			ipseclog((LOG_DEBUG, "%s: address struct size "
6914 				"mismatched.\n", __func__));
6915 			V_pfkeystat.out_invaddr++;
6916 			error = EINVAL;
6917 			goto senderror;
6918 		}
6919 
6920 		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
6921 		case AF_INET:
6922 			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
6923 			    sizeof(struct sockaddr_in)) {
6924 				V_pfkeystat.out_invaddr++;
6925 				error = EINVAL;
6926 				goto senderror;
6927 			}
6928 			break;
6929 		case AF_INET6:
6930 			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
6931 			    sizeof(struct sockaddr_in6)) {
6932 				V_pfkeystat.out_invaddr++;
6933 				error = EINVAL;
6934 				goto senderror;
6935 			}
6936 			break;
6937 		default:
6938 			ipseclog((LOG_DEBUG, "%s: unsupported address family\n",
6939 				__func__));
6940 			V_pfkeystat.out_invaddr++;
6941 			error = EAFNOSUPPORT;
6942 			goto senderror;
6943 		}
6944 
6945 		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
6946 		case AF_INET:
6947 			plen = sizeof(struct in_addr) << 3;
6948 			break;
6949 		case AF_INET6:
6950 			plen = sizeof(struct in6_addr) << 3;
6951 			break;
6952 		default:
6953 			plen = 0;	/*fool gcc*/
6954 			break;
6955 		}
6956 
6957 		/* check max prefix length */
6958 		if (src0->sadb_address_prefixlen > plen ||
6959 		    dst0->sadb_address_prefixlen > plen) {
6960 			ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n",
6961 				__func__));
6962 			V_pfkeystat.out_invaddr++;
6963 			error = EINVAL;
6964 			goto senderror;
6965 		}
6966 
6967 		/*
6968 		 * prefixlen == 0 is valid because there can be a case when
6969 		 * all addresses are matched.
6970 		 */
6971 	}
6972 
6973 	if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) ||
6974 	    key_typesw[msg->sadb_msg_type] == NULL) {
6975 		V_pfkeystat.out_invmsgtype++;
6976 		error = EINVAL;
6977 		goto senderror;
6978 	}
6979 
6980 	return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
6981 
6982 senderror:
6983 	msg->sadb_msg_errno = error;
6984 	return key_sendup_mbuf(so, m, target);
6985 }
6986 
6987 static int
6988 key_senderror(so, m, code)
6989 	struct socket *so;
6990 	struct mbuf *m;
6991 	int code;
6992 {
6993 	struct sadb_msg *msg;
6994 
6995 	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
6996 		("mbuf too small, len %u", m->m_len));
6997 
6998 	msg = mtod(m, struct sadb_msg *);
6999 	msg->sadb_msg_errno = code;
7000 	return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7001 }
7002 
7003 /*
7004  * set the pointer to each header into message buffer.
7005  * m will be freed on error.
7006  * XXX larger-than-MCLBYTES extension?
7007  */
7008 static int
7009 key_align(m, mhp)
7010 	struct mbuf *m;
7011 	struct sadb_msghdr *mhp;
7012 {
7013 	INIT_VNET_IPSEC(curvnet);
7014 	struct mbuf *n;
7015 	struct sadb_ext *ext;
7016 	size_t off, end;
7017 	int extlen;
7018 	int toff;
7019 
7020 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7021 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7022 	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
7023 		("mbuf too small, len %u", m->m_len));
7024 
7025 	/* initialize */
7026 	bzero(mhp, sizeof(*mhp));
7027 
7028 	mhp->msg = mtod(m, struct sadb_msg *);
7029 	mhp->ext[0] = (struct sadb_ext *)mhp->msg;	/*XXX backward compat */
7030 
7031 	end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7032 	extlen = end;	/*just in case extlen is not updated*/
7033 	for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7034 		n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7035 		if (!n) {
7036 			/* m is already freed */
7037 			return ENOBUFS;
7038 		}
7039 		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
7040 
7041 		/* set pointer */
7042 		switch (ext->sadb_ext_type) {
7043 		case SADB_EXT_SA:
7044 		case SADB_EXT_ADDRESS_SRC:
7045 		case SADB_EXT_ADDRESS_DST:
7046 		case SADB_EXT_ADDRESS_PROXY:
7047 		case SADB_EXT_LIFETIME_CURRENT:
7048 		case SADB_EXT_LIFETIME_HARD:
7049 		case SADB_EXT_LIFETIME_SOFT:
7050 		case SADB_EXT_KEY_AUTH:
7051 		case SADB_EXT_KEY_ENCRYPT:
7052 		case SADB_EXT_IDENTITY_SRC:
7053 		case SADB_EXT_IDENTITY_DST:
7054 		case SADB_EXT_SENSITIVITY:
7055 		case SADB_EXT_PROPOSAL:
7056 		case SADB_EXT_SUPPORTED_AUTH:
7057 		case SADB_EXT_SUPPORTED_ENCRYPT:
7058 		case SADB_EXT_SPIRANGE:
7059 		case SADB_X_EXT_POLICY:
7060 		case SADB_X_EXT_SA2:
7061 			/* duplicate check */
7062 			/*
7063 			 * XXX Are there duplication payloads of either
7064 			 * KEY_AUTH or KEY_ENCRYPT ?
7065 			 */
7066 			if (mhp->ext[ext->sadb_ext_type] != NULL) {
7067 				ipseclog((LOG_DEBUG, "%s: duplicate ext_type "
7068 					"%u\n", __func__, ext->sadb_ext_type));
7069 				m_freem(m);
7070 				V_pfkeystat.out_dupext++;
7071 				return EINVAL;
7072 			}
7073 			break;
7074 		default:
7075 			ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n",
7076 				__func__, ext->sadb_ext_type));
7077 			m_freem(m);
7078 			V_pfkeystat.out_invexttype++;
7079 			return EINVAL;
7080 		}
7081 
7082 		extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7083 
7084 		if (key_validate_ext(ext, extlen)) {
7085 			m_freem(m);
7086 			V_pfkeystat.out_invlen++;
7087 			return EINVAL;
7088 		}
7089 
7090 		n = m_pulldown(m, off, extlen, &toff);
7091 		if (!n) {
7092 			/* m is already freed */
7093 			return ENOBUFS;
7094 		}
7095 		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
7096 
7097 		mhp->ext[ext->sadb_ext_type] = ext;
7098 		mhp->extoff[ext->sadb_ext_type] = off;
7099 		mhp->extlen[ext->sadb_ext_type] = extlen;
7100 	}
7101 
7102 	if (off != end) {
7103 		m_freem(m);
7104 		V_pfkeystat.out_invlen++;
7105 		return EINVAL;
7106 	}
7107 
7108 	return 0;
7109 }
7110 
7111 static int
7112 key_validate_ext(ext, len)
7113 	const struct sadb_ext *ext;
7114 	int len;
7115 {
7116 	const struct sockaddr *sa;
7117 	enum { NONE, ADDR } checktype = NONE;
7118 	int baselen = 0;
7119 	const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7120 
7121 	if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7122 		return EINVAL;
7123 
7124 	/* if it does not match minimum/maximum length, bail */
7125 	if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) ||
7126 	    ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0]))
7127 		return EINVAL;
7128 	if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7129 		return EINVAL;
7130 	if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7131 		return EINVAL;
7132 
7133 	/* more checks based on sadb_ext_type XXX need more */
7134 	switch (ext->sadb_ext_type) {
7135 	case SADB_EXT_ADDRESS_SRC:
7136 	case SADB_EXT_ADDRESS_DST:
7137 	case SADB_EXT_ADDRESS_PROXY:
7138 		baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7139 		checktype = ADDR;
7140 		break;
7141 	case SADB_EXT_IDENTITY_SRC:
7142 	case SADB_EXT_IDENTITY_DST:
7143 		if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7144 		    SADB_X_IDENTTYPE_ADDR) {
7145 			baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7146 			checktype = ADDR;
7147 		} else
7148 			checktype = NONE;
7149 		break;
7150 	default:
7151 		checktype = NONE;
7152 		break;
7153 	}
7154 
7155 	switch (checktype) {
7156 	case NONE:
7157 		break;
7158 	case ADDR:
7159 		sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7160 		if (len < baselen + sal)
7161 			return EINVAL;
7162 		if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7163 			return EINVAL;
7164 		break;
7165 	}
7166 
7167 	return 0;
7168 }
7169 
7170 void
7171 key_init(void)
7172 {
7173 	INIT_VNET_IPSEC(curvnet);
7174 	int i;
7175 
7176 	V_key_debug_level = 0;
7177 	V_key_spi_trycnt = 1000;
7178 	V_key_spi_minval = 0x100;
7179 	V_key_spi_maxval = 0x0fffffff;	/* XXX */
7180 	V_policy_id = 0;
7181 	V_key_int_random = 60;		/*interval to initialize randseed,1(m)*/
7182 	V_key_larval_lifetime = 30;	/* interval to expire acquiring, 30(s)*/
7183 	V_key_blockacq_count = 10;	/* counter for blocking SADB_ACQUIRE.*/
7184 	V_key_blockacq_lifetime = 20;	/* lifetime for blocking SADB_ACQUIRE.*/
7185 	V_key_preferred_oldsa = 1;	/* preferred old sa rather than new sa*/
7186 
7187 	V_acq_seq = 0;
7188 
7189 	V_ipsec_esp_keymin = 256;
7190 	V_ipsec_esp_auth = 0;
7191 	V_ipsec_ah_keymin = 128;
7192 
7193 	SPTREE_LOCK_INIT();
7194 	REGTREE_LOCK_INIT();
7195 	SAHTREE_LOCK_INIT();
7196 	ACQ_LOCK_INIT();
7197 	SPACQ_LOCK_INIT();
7198 
7199 	for (i = 0; i < IPSEC_DIR_MAX; i++)
7200 		LIST_INIT(&V_sptree[i]);
7201 
7202 	LIST_INIT(&V_sahtree);
7203 
7204 	for (i = 0; i <= SADB_SATYPE_MAX; i++)
7205 		LIST_INIT(&V_regtree[i]);
7206 
7207 	LIST_INIT(&V_acqtree);
7208 	LIST_INIT(&V_spacqtree);
7209 
7210 	/* system default */
7211 	V_ip4_def_policy.policy = IPSEC_POLICY_NONE;
7212 	V_ip4_def_policy.refcnt++;	/*never reclaim this*/
7213 
7214 #ifndef IPSEC_DEBUG2
7215 	timeout((void *)key_timehandler, (void *)0, hz);
7216 #endif /*IPSEC_DEBUG2*/
7217 
7218 	/* initialize key statistics */
7219 	keystat.getspi_count = 1;
7220 
7221 	printf("IPsec: Initialized Security Association Processing.\n");
7222 
7223 	return;
7224 }
7225 
7226 /*
7227  * XXX: maybe This function is called after INBOUND IPsec processing.
7228  *
7229  * Special check for tunnel-mode packets.
7230  * We must make some checks for consistency between inner and outer IP header.
7231  *
7232  * xxx more checks to be provided
7233  */
7234 int
7235 key_checktunnelsanity(sav, family, src, dst)
7236 	struct secasvar *sav;
7237 	u_int family;
7238 	caddr_t src;
7239 	caddr_t dst;
7240 {
7241 	IPSEC_ASSERT(sav->sah != NULL, ("null SA header"));
7242 
7243 	/* XXX: check inner IP header */
7244 
7245 	return 1;
7246 }
7247 
7248 /* record data transfer on SA, and update timestamps */
7249 void
7250 key_sa_recordxfer(sav, m)
7251 	struct secasvar *sav;
7252 	struct mbuf *m;
7253 {
7254 	IPSEC_ASSERT(sav != NULL, ("Null secasvar"));
7255 	IPSEC_ASSERT(m != NULL, ("Null mbuf"));
7256 	if (!sav->lft_c)
7257 		return;
7258 
7259 	/*
7260 	 * XXX Currently, there is a difference of bytes size
7261 	 * between inbound and outbound processing.
7262 	 */
7263 	sav->lft_c->bytes += m->m_pkthdr.len;
7264 	/* to check bytes lifetime is done in key_timehandler(). */
7265 
7266 	/*
7267 	 * We use the number of packets as the unit of
7268 	 * allocations.  We increment the variable
7269 	 * whenever {esp,ah}_{in,out}put is called.
7270 	 */
7271 	sav->lft_c->allocations++;
7272 	/* XXX check for expires? */
7273 
7274 	/*
7275 	 * NOTE: We record CURRENT usetime by using wall clock,
7276 	 * in seconds.  HARD and SOFT lifetime are measured by the time
7277 	 * difference (again in seconds) from usetime.
7278 	 *
7279 	 *	usetime
7280 	 *	v     expire   expire
7281 	 * -----+-----+--------+---> t
7282 	 *	<--------------> HARD
7283 	 *	<-----> SOFT
7284 	 */
7285 	sav->lft_c->usetime = time_second;
7286 	/* XXX check for expires? */
7287 
7288 	return;
7289 }
7290 
7291 /* dumb version */
7292 void
7293 key_sa_routechange(dst)
7294 	struct sockaddr *dst;
7295 {
7296 	INIT_VNET_IPSEC(curvnet);
7297 	struct secashead *sah;
7298 	struct route *ro;
7299 
7300 	SAHTREE_LOCK();
7301 	LIST_FOREACH(sah, &V_sahtree, chain) {
7302 		ro = &sah->sa_route;
7303 		if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len
7304 		 && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) {
7305 			RTFREE(ro->ro_rt);
7306 			ro->ro_rt = (struct rtentry *)NULL;
7307 		}
7308 	}
7309 	SAHTREE_UNLOCK();
7310 }
7311 
7312 static void
7313 key_sa_chgstate(sav, state)
7314 	struct secasvar *sav;
7315 	u_int8_t state;
7316 {
7317 	IPSEC_ASSERT(sav != NULL, ("NULL sav"));
7318 	SAHTREE_LOCK_ASSERT();
7319 
7320 	if (sav->state != state) {
7321 		if (__LIST_CHAINED(sav))
7322 			LIST_REMOVE(sav, chain);
7323 		sav->state = state;
7324 		LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7325 	}
7326 }
7327 
7328 void
7329 key_sa_stir_iv(sav)
7330 	struct secasvar *sav;
7331 {
7332 
7333 	IPSEC_ASSERT(sav->iv != NULL, ("null IV"));
7334 	key_randomfill(sav->iv, sav->ivlen);
7335 }
7336 
7337 /* XXX too much? */
7338 static struct mbuf *
7339 key_alloc_mbuf(l)
7340 	int l;
7341 {
7342 	struct mbuf *m = NULL, *n;
7343 	int len, t;
7344 
7345 	len = l;
7346 	while (len > 0) {
7347 		MGET(n, M_DONTWAIT, MT_DATA);
7348 		if (n && len > MLEN)
7349 			MCLGET(n, M_DONTWAIT);
7350 		if (!n) {
7351 			m_freem(m);
7352 			return NULL;
7353 		}
7354 
7355 		n->m_next = NULL;
7356 		n->m_len = 0;
7357 		n->m_len = M_TRAILINGSPACE(n);
7358 		/* use the bottom of mbuf, hoping we can prepend afterwards */
7359 		if (n->m_len > len) {
7360 			t = (n->m_len - len) & ~(sizeof(long) - 1);
7361 			n->m_data += t;
7362 			n->m_len = len;
7363 		}
7364 
7365 		len -= n->m_len;
7366 
7367 		if (m)
7368 			m_cat(m, n);
7369 		else
7370 			m = n;
7371 	}
7372 
7373 	return m;
7374 }
7375 
7376 /*
7377  * Take one of the kernel's security keys and convert it into a PF_KEY
7378  * structure within an mbuf, suitable for sending up to a waiting
7379  * application in user land.
7380  *
7381  * IN:
7382  *    src: A pointer to a kernel security key.
7383  *    exttype: Which type of key this is. Refer to the PF_KEY data structures.
7384  * OUT:
7385  *    a valid mbuf or NULL indicating an error
7386  *
7387  */
7388 
7389 static struct mbuf *
7390 key_setkey(struct seckey *src, u_int16_t exttype)
7391 {
7392 	struct mbuf *m;
7393 	struct sadb_key *p;
7394 	int len;
7395 
7396 	if (src == NULL)
7397 		return NULL;
7398 
7399 	len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src));
7400 	m = key_alloc_mbuf(len);
7401 	if (m == NULL)
7402 		return NULL;
7403 	p = mtod(m, struct sadb_key *);
7404 	bzero(p, len);
7405 	p->sadb_key_len = PFKEY_UNIT64(len);
7406 	p->sadb_key_exttype = exttype;
7407 	p->sadb_key_bits = src->bits;
7408 	bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src));
7409 
7410 	return m;
7411 }
7412 
7413 /*
7414  * Take one of the kernel's lifetime data structures and convert it
7415  * into a PF_KEY structure within an mbuf, suitable for sending up to
7416  * a waiting application in user land.
7417  *
7418  * IN:
7419  *    src: A pointer to a kernel lifetime structure.
7420  *    exttype: Which type of lifetime this is. Refer to the PF_KEY
7421  *             data structures for more information.
7422  * OUT:
7423  *    a valid mbuf or NULL indicating an error
7424  *
7425  */
7426 
7427 static struct mbuf *
7428 key_setlifetime(struct seclifetime *src, u_int16_t exttype)
7429 {
7430 	struct mbuf *m = NULL;
7431 	struct sadb_lifetime *p;
7432 	int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime));
7433 
7434 	if (src == NULL)
7435 		return NULL;
7436 
7437 	m = key_alloc_mbuf(len);
7438 	if (m == NULL)
7439 		return m;
7440 	p = mtod(m, struct sadb_lifetime *);
7441 
7442 	bzero(p, len);
7443 	p->sadb_lifetime_len = PFKEY_UNIT64(len);
7444 	p->sadb_lifetime_exttype = exttype;
7445 	p->sadb_lifetime_allocations = src->allocations;
7446 	p->sadb_lifetime_bytes = src->bytes;
7447 	p->sadb_lifetime_addtime = src->addtime;
7448 	p->sadb_lifetime_usetime = src->usetime;
7449 
7450 	return m;
7451 
7452 }
7453