1 /* $FreeBSD$ */ 2 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ 3 4 /*- 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * This code is referd to RFC 2367 35 */ 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 #include "opt_ipsec.h" 40 41 #include <sys/types.h> 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/mutex.h> 47 #include <sys/mbuf.h> 48 #include <sys/domain.h> 49 #include <sys/protosw.h> 50 #include <sys/malloc.h> 51 #include <sys/socket.h> 52 #include <sys/socketvar.h> 53 #include <sys/sysctl.h> 54 #include <sys/errno.h> 55 #include <sys/proc.h> 56 #include <sys/queue.h> 57 #include <sys/refcount.h> 58 #include <sys/syslog.h> 59 #include <sys/vimage.h> 60 61 #include <net/if.h> 62 #include <net/route.h> 63 #include <net/raw_cb.h> 64 65 #include <netinet/in.h> 66 #include <netinet/in_systm.h> 67 #include <netinet/ip.h> 68 #include <netinet/in_var.h> 69 70 #ifdef INET6 71 #include <netinet/ip6.h> 72 #include <netinet6/in6_var.h> 73 #include <netinet6/ip6_var.h> 74 #endif /* INET6 */ 75 76 #ifdef INET 77 #include <netinet/in_pcb.h> 78 #include <netinet/vinet.h> 79 #endif 80 #ifdef INET6 81 #include <netinet6/in6_pcb.h> 82 #include <netinet6/vinet6.h> 83 #endif /* INET6 */ 84 85 #include <net/pfkeyv2.h> 86 #include <netipsec/keydb.h> 87 #include <netipsec/key.h> 88 #include <netipsec/keysock.h> 89 #include <netipsec/key_debug.h> 90 91 #include <netipsec/ipsec.h> 92 #ifdef INET6 93 #include <netipsec/ipsec6.h> 94 #endif 95 96 #include <netipsec/xform.h> 97 98 #include <machine/stdarg.h> 99 100 /* randomness */ 101 #include <sys/random.h> 102 #include <sys/vimage.h> 103 104 #define FULLMASK 0xff 105 #define _BITS(bytes) ((bytes) << 3) 106 107 /* 108 * Note on SA reference counting: 109 * - SAs that are not in DEAD state will have (total external reference + 1) 110 * following value in reference count field. they cannot be freed and are 111 * referenced from SA header. 112 * - SAs that are in DEAD state will have (total external reference) 113 * in reference count field. they are ready to be freed. reference from 114 * SA header will be removed in key_delsav(), when the reference count 115 * field hits 0 (= no external reference other than from SA header. 116 */ 117 118 #ifdef VIMAGE_GLOBALS 119 u_int32_t key_debug_level; 120 static u_int key_spi_trycnt; 121 static u_int32_t key_spi_minval; 122 static u_int32_t key_spi_maxval; 123 static u_int32_t policy_id; 124 static u_int key_int_random; 125 static u_int key_larval_lifetime; 126 static int key_blockacq_count; 127 static int key_blockacq_lifetime; 128 static int key_preferred_oldsa; 129 130 static u_int32_t acq_seq; 131 132 static int ipsec_esp_keymin; 133 static int ipsec_esp_auth; 134 static int ipsec_ah_keymin; 135 136 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */ 137 static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */ 138 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1]; 139 static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */ 140 static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */ 141 #endif /* VIMAGE_GLOBALS */ 142 143 static struct mtx sptree_lock; 144 #define SPTREE_LOCK_INIT() \ 145 mtx_init(&sptree_lock, "sptree", \ 146 "fast ipsec security policy database", MTX_DEF) 147 #define SPTREE_LOCK_DESTROY() mtx_destroy(&sptree_lock) 148 #define SPTREE_LOCK() mtx_lock(&sptree_lock) 149 #define SPTREE_UNLOCK() mtx_unlock(&sptree_lock) 150 #define SPTREE_LOCK_ASSERT() mtx_assert(&sptree_lock, MA_OWNED) 151 152 static struct mtx sahtree_lock; 153 #define SAHTREE_LOCK_INIT() \ 154 mtx_init(&sahtree_lock, "sahtree", \ 155 "fast ipsec security association database", MTX_DEF) 156 #define SAHTREE_LOCK_DESTROY() mtx_destroy(&sahtree_lock) 157 #define SAHTREE_LOCK() mtx_lock(&sahtree_lock) 158 #define SAHTREE_UNLOCK() mtx_unlock(&sahtree_lock) 159 #define SAHTREE_LOCK_ASSERT() mtx_assert(&sahtree_lock, MA_OWNED) 160 161 /* registed list */ 162 static struct mtx regtree_lock; 163 #define REGTREE_LOCK_INIT() \ 164 mtx_init(®tree_lock, "regtree", "fast ipsec regtree", MTX_DEF) 165 #define REGTREE_LOCK_DESTROY() mtx_destroy(®tree_lock) 166 #define REGTREE_LOCK() mtx_lock(®tree_lock) 167 #define REGTREE_UNLOCK() mtx_unlock(®tree_lock) 168 #define REGTREE_LOCK_ASSERT() mtx_assert(®tree_lock, MA_OWNED) 169 170 static struct mtx acq_lock; 171 #define ACQ_LOCK_INIT() \ 172 mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF) 173 #define ACQ_LOCK_DESTROY() mtx_destroy(&acq_lock) 174 #define ACQ_LOCK() mtx_lock(&acq_lock) 175 #define ACQ_UNLOCK() mtx_unlock(&acq_lock) 176 #define ACQ_LOCK_ASSERT() mtx_assert(&acq_lock, MA_OWNED) 177 178 static struct mtx spacq_lock; 179 #define SPACQ_LOCK_INIT() \ 180 mtx_init(&spacq_lock, "spacqtree", \ 181 "fast ipsec security policy acquire list", MTX_DEF) 182 #define SPACQ_LOCK_DESTROY() mtx_destroy(&spacq_lock) 183 #define SPACQ_LOCK() mtx_lock(&spacq_lock) 184 #define SPACQ_UNLOCK() mtx_unlock(&spacq_lock) 185 #define SPACQ_LOCK_ASSERT() mtx_assert(&spacq_lock, MA_OWNED) 186 187 /* search order for SAs */ 188 static const u_int saorder_state_valid_prefer_old[] = { 189 SADB_SASTATE_DYING, SADB_SASTATE_MATURE, 190 }; 191 static const u_int saorder_state_valid_prefer_new[] = { 192 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 193 }; 194 static const u_int saorder_state_alive[] = { 195 /* except DEAD */ 196 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL 197 }; 198 static const u_int saorder_state_any[] = { 199 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 200 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD 201 }; 202 203 static const int minsize[] = { 204 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 205 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 206 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 207 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 208 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 209 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ 210 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ 211 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ 212 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ 213 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ 214 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ 215 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ 216 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ 217 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ 218 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ 219 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ 220 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 221 0, /* SADB_X_EXT_KMPRIVATE */ 222 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ 223 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 224 }; 225 static const int maxsize[] = { 226 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 227 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 228 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 229 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 230 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 231 0, /* SADB_EXT_ADDRESS_SRC */ 232 0, /* SADB_EXT_ADDRESS_DST */ 233 0, /* SADB_EXT_ADDRESS_PROXY */ 234 0, /* SADB_EXT_KEY_AUTH */ 235 0, /* SADB_EXT_KEY_ENCRYPT */ 236 0, /* SADB_EXT_IDENTITY_SRC */ 237 0, /* SADB_EXT_IDENTITY_DST */ 238 0, /* SADB_EXT_SENSITIVITY */ 239 0, /* SADB_EXT_PROPOSAL */ 240 0, /* SADB_EXT_SUPPORTED_AUTH */ 241 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ 242 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 243 0, /* SADB_X_EXT_KMPRIVATE */ 244 0, /* SADB_X_EXT_POLICY */ 245 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 246 }; 247 248 #ifdef SYSCTL_DECL 249 SYSCTL_DECL(_net_key); 250 #endif 251 252 SYSCTL_V_INT(V_NET, vnet_ipsec,_net_key, KEYCTL_DEBUG_LEVEL, debug, 253 CTLFLAG_RW, key_debug_level, 0, ""); 254 255 /* max count of trial for the decision of spi value */ 256 SYSCTL_V_INT(V_NET, vnet_ipsec,_net_key, KEYCTL_SPI_TRY, spi_trycnt, 257 CTLFLAG_RW, key_spi_trycnt, 0, ""); 258 259 /* minimum spi value to allocate automatically. */ 260 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_SPI_MIN_VALUE, 261 spi_minval, CTLFLAG_RW, key_spi_minval, 0, ""); 262 263 /* maximun spi value to allocate automatically. */ 264 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_SPI_MAX_VALUE, 265 spi_maxval, CTLFLAG_RW, key_spi_maxval, 0, ""); 266 267 /* interval to initialize randseed */ 268 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_RANDOM_INT, 269 int_random, CTLFLAG_RW, key_int_random, 0, ""); 270 271 /* lifetime for larval SA */ 272 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_LARVAL_LIFETIME, 273 larval_lifetime, CTLFLAG_RW, key_larval_lifetime, 0, ""); 274 275 /* counter for blocking to send SADB_ACQUIRE to IKEd */ 276 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_BLOCKACQ_COUNT, 277 blockacq_count, CTLFLAG_RW, key_blockacq_count, 0, ""); 278 279 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ 280 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_BLOCKACQ_LIFETIME, 281 blockacq_lifetime, CTLFLAG_RW, key_blockacq_lifetime, 0, ""); 282 283 /* ESP auth */ 284 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_ESP_AUTH, esp_auth, 285 CTLFLAG_RW, ipsec_esp_auth, 0, ""); 286 287 /* minimum ESP key length */ 288 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_ESP_KEYMIN, 289 esp_keymin, CTLFLAG_RW, ipsec_esp_keymin, 0, ""); 290 291 /* minimum AH key length */ 292 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_AH_KEYMIN, ah_keymin, 293 CTLFLAG_RW, ipsec_ah_keymin, 0, ""); 294 295 /* perfered old SA rather than new SA */ 296 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_PREFERED_OLDSA, 297 preferred_oldsa, CTLFLAG_RW, key_preferred_oldsa, 0, ""); 298 299 #define __LIST_CHAINED(elm) \ 300 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) 301 #define LIST_INSERT_TAIL(head, elm, type, field) \ 302 do {\ 303 struct type *curelm = LIST_FIRST(head); \ 304 if (curelm == NULL) {\ 305 LIST_INSERT_HEAD(head, elm, field); \ 306 } else { \ 307 while (LIST_NEXT(curelm, field)) \ 308 curelm = LIST_NEXT(curelm, field);\ 309 LIST_INSERT_AFTER(curelm, elm, field);\ 310 }\ 311 } while (0) 312 313 #define KEY_CHKSASTATE(head, sav, name) \ 314 do { \ 315 if ((head) != (sav)) { \ 316 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \ 317 (name), (head), (sav))); \ 318 continue; \ 319 } \ 320 } while (0) 321 322 #define KEY_CHKSPDIR(head, sp, name) \ 323 do { \ 324 if ((head) != (sp)) { \ 325 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \ 326 "anyway continue.\n", \ 327 (name), (head), (sp))); \ 328 } \ 329 } while (0) 330 331 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association"); 332 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head"); 333 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy"); 334 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request"); 335 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous"); 336 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire"); 337 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire"); 338 339 /* 340 * set parameters into secpolicyindex buffer. 341 * Must allocate secpolicyindex buffer passed to this function. 342 */ 343 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \ 344 do { \ 345 bzero((idx), sizeof(struct secpolicyindex)); \ 346 (idx)->dir = (_dir); \ 347 (idx)->prefs = (ps); \ 348 (idx)->prefd = (pd); \ 349 (idx)->ul_proto = (ulp); \ 350 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 351 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 352 } while (0) 353 354 /* 355 * set parameters into secasindex buffer. 356 * Must allocate secasindex buffer before calling this function. 357 */ 358 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \ 359 do { \ 360 bzero((idx), sizeof(struct secasindex)); \ 361 (idx)->proto = (p); \ 362 (idx)->mode = (m); \ 363 (idx)->reqid = (r); \ 364 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 365 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 366 } while (0) 367 368 /* key statistics */ 369 struct _keystat { 370 u_long getspi_count; /* the avarage of count to try to get new SPI */ 371 } keystat; 372 373 struct sadb_msghdr { 374 struct sadb_msg *msg; 375 struct sadb_ext *ext[SADB_EXT_MAX + 1]; 376 int extoff[SADB_EXT_MAX + 1]; 377 int extlen[SADB_EXT_MAX + 1]; 378 }; 379 380 static struct secasvar *key_allocsa_policy __P((const struct secasindex *)); 381 static void key_freesp_so __P((struct secpolicy **)); 382 static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int)); 383 static void key_delsp __P((struct secpolicy *)); 384 static struct secpolicy *key_getsp __P((struct secpolicyindex *)); 385 static void _key_delsp(struct secpolicy *sp); 386 static struct secpolicy *key_getspbyid __P((u_int32_t)); 387 static u_int32_t key_newreqid __P((void)); 388 static struct mbuf *key_gather_mbuf __P((struct mbuf *, 389 const struct sadb_msghdr *, int, int, ...)); 390 static int key_spdadd __P((struct socket *, struct mbuf *, 391 const struct sadb_msghdr *)); 392 static u_int32_t key_getnewspid __P((void)); 393 static int key_spddelete __P((struct socket *, struct mbuf *, 394 const struct sadb_msghdr *)); 395 static int key_spddelete2 __P((struct socket *, struct mbuf *, 396 const struct sadb_msghdr *)); 397 static int key_spdget __P((struct socket *, struct mbuf *, 398 const struct sadb_msghdr *)); 399 static int key_spdflush __P((struct socket *, struct mbuf *, 400 const struct sadb_msghdr *)); 401 static int key_spddump __P((struct socket *, struct mbuf *, 402 const struct sadb_msghdr *)); 403 static struct mbuf *key_setdumpsp __P((struct secpolicy *, 404 u_int8_t, u_int32_t, u_int32_t)); 405 static u_int key_getspreqmsglen __P((struct secpolicy *)); 406 static int key_spdexpire __P((struct secpolicy *)); 407 static struct secashead *key_newsah __P((struct secasindex *)); 408 static void key_delsah __P((struct secashead *)); 409 static struct secasvar *key_newsav __P((struct mbuf *, 410 const struct sadb_msghdr *, struct secashead *, int *, 411 const char*, int)); 412 #define KEY_NEWSAV(m, sadb, sah, e) \ 413 key_newsav(m, sadb, sah, e, __FILE__, __LINE__) 414 static void key_delsav __P((struct secasvar *)); 415 static struct secashead *key_getsah __P((struct secasindex *)); 416 static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t)); 417 static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t)); 418 static int key_setsaval __P((struct secasvar *, struct mbuf *, 419 const struct sadb_msghdr *)); 420 static int key_mature __P((struct secasvar *)); 421 static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t, 422 u_int8_t, u_int32_t, u_int32_t)); 423 static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t, 424 u_int32_t, pid_t, u_int16_t)); 425 static struct mbuf *key_setsadbsa __P((struct secasvar *)); 426 static struct mbuf *key_setsadbaddr __P((u_int16_t, 427 const struct sockaddr *, u_int8_t, u_int16_t)); 428 static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t)); 429 static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t, 430 u_int32_t)); 431 static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int, 432 struct malloc_type *); 433 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src, 434 struct malloc_type *type); 435 #ifdef INET6 436 static int key_ismyaddr6 __P((struct sockaddr_in6 *)); 437 #endif 438 439 /* flags for key_cmpsaidx() */ 440 #define CMP_HEAD 1 /* protocol, addresses. */ 441 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ 442 #define CMP_REQID 3 /* additionally HEAD, reaid. */ 443 #define CMP_EXACTLY 4 /* all elements. */ 444 static int key_cmpsaidx 445 __P((const struct secasindex *, const struct secasindex *, int)); 446 447 static int key_cmpspidx_exactly 448 __P((struct secpolicyindex *, struct secpolicyindex *)); 449 static int key_cmpspidx_withmask 450 __P((struct secpolicyindex *, struct secpolicyindex *)); 451 static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int)); 452 static int key_bbcmp __P((const void *, const void *, u_int)); 453 static u_int16_t key_satype2proto __P((u_int8_t)); 454 static u_int8_t key_proto2satype __P((u_int16_t)); 455 456 static int key_getspi __P((struct socket *, struct mbuf *, 457 const struct sadb_msghdr *)); 458 static u_int32_t key_do_getnewspi __P((struct sadb_spirange *, 459 struct secasindex *)); 460 static int key_update __P((struct socket *, struct mbuf *, 461 const struct sadb_msghdr *)); 462 #ifdef IPSEC_DOSEQCHECK 463 static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t)); 464 #endif 465 static int key_add __P((struct socket *, struct mbuf *, 466 const struct sadb_msghdr *)); 467 static int key_setident __P((struct secashead *, struct mbuf *, 468 const struct sadb_msghdr *)); 469 static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *, 470 const struct sadb_msghdr *)); 471 static int key_delete __P((struct socket *, struct mbuf *, 472 const struct sadb_msghdr *)); 473 static int key_get __P((struct socket *, struct mbuf *, 474 const struct sadb_msghdr *)); 475 476 static void key_getcomb_setlifetime __P((struct sadb_comb *)); 477 static struct mbuf *key_getcomb_esp __P((void)); 478 static struct mbuf *key_getcomb_ah __P((void)); 479 static struct mbuf *key_getcomb_ipcomp __P((void)); 480 static struct mbuf *key_getprop __P((const struct secasindex *)); 481 482 static int key_acquire __P((const struct secasindex *, struct secpolicy *)); 483 static struct secacq *key_newacq __P((const struct secasindex *)); 484 static struct secacq *key_getacq __P((const struct secasindex *)); 485 static struct secacq *key_getacqbyseq __P((u_int32_t)); 486 static struct secspacq *key_newspacq __P((struct secpolicyindex *)); 487 static struct secspacq *key_getspacq __P((struct secpolicyindex *)); 488 static int key_acquire2 __P((struct socket *, struct mbuf *, 489 const struct sadb_msghdr *)); 490 static int key_register __P((struct socket *, struct mbuf *, 491 const struct sadb_msghdr *)); 492 static int key_expire __P((struct secasvar *)); 493 static int key_flush __P((struct socket *, struct mbuf *, 494 const struct sadb_msghdr *)); 495 static int key_dump __P((struct socket *, struct mbuf *, 496 const struct sadb_msghdr *)); 497 static int key_promisc __P((struct socket *, struct mbuf *, 498 const struct sadb_msghdr *)); 499 static int key_senderror __P((struct socket *, struct mbuf *, int)); 500 static int key_validate_ext __P((const struct sadb_ext *, int)); 501 static int key_align __P((struct mbuf *, struct sadb_msghdr *)); 502 static struct mbuf *key_setlifetime(struct seclifetime *src, 503 u_int16_t exttype); 504 static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype); 505 506 #if 0 507 static const char *key_getfqdn __P((void)); 508 static const char *key_getuserfqdn __P((void)); 509 #endif 510 static void key_sa_chgstate __P((struct secasvar *, u_int8_t)); 511 static struct mbuf *key_alloc_mbuf __P((int)); 512 513 static __inline void 514 sa_initref(struct secasvar *sav) 515 { 516 517 refcount_init(&sav->refcnt, 1); 518 } 519 static __inline void 520 sa_addref(struct secasvar *sav) 521 { 522 523 refcount_acquire(&sav->refcnt); 524 IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow")); 525 } 526 static __inline int 527 sa_delref(struct secasvar *sav) 528 { 529 530 IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow")); 531 return (refcount_release(&sav->refcnt)); 532 } 533 534 #define SP_ADDREF(p) do { \ 535 (p)->refcnt++; \ 536 IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow")); \ 537 } while (0) 538 #define SP_DELREF(p) do { \ 539 IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow")); \ 540 (p)->refcnt--; \ 541 } while (0) 542 543 544 /* 545 * Update the refcnt while holding the SPTREE lock. 546 */ 547 void 548 key_addref(struct secpolicy *sp) 549 { 550 SPTREE_LOCK(); 551 SP_ADDREF(sp); 552 SPTREE_UNLOCK(); 553 } 554 555 /* 556 * Return 0 when there are known to be no SP's for the specified 557 * direction. Otherwise return 1. This is used by IPsec code 558 * to optimize performance. 559 */ 560 int 561 key_havesp(u_int dir) 562 { 563 INIT_VNET_IPSEC(curvnet); 564 565 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? 566 LIST_FIRST(&V_sptree[dir]) != NULL : 1); 567 } 568 569 /* %%% IPsec policy management */ 570 /* 571 * allocating a SP for OUTBOUND or INBOUND packet. 572 * Must call key_freesp() later. 573 * OUT: NULL: not found 574 * others: found and return the pointer. 575 */ 576 struct secpolicy * 577 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag) 578 { 579 INIT_VNET_IPSEC(curvnet); 580 struct secpolicy *sp; 581 582 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 583 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 584 ("invalid direction %u", dir)); 585 586 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 587 printf("DP %s from %s:%u\n", __func__, where, tag)); 588 589 /* get a SP entry */ 590 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 591 printf("*** objects\n"); 592 kdebug_secpolicyindex(spidx)); 593 594 SPTREE_LOCK(); 595 LIST_FOREACH(sp, &V_sptree[dir], chain) { 596 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 597 printf("*** in SPD\n"); 598 kdebug_secpolicyindex(&sp->spidx)); 599 600 if (sp->state == IPSEC_SPSTATE_DEAD) 601 continue; 602 if (key_cmpspidx_withmask(&sp->spidx, spidx)) 603 goto found; 604 } 605 sp = NULL; 606 found: 607 if (sp) { 608 /* sanity check */ 609 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 610 611 /* found a SPD entry */ 612 sp->lastused = time_second; 613 SP_ADDREF(sp); 614 } 615 SPTREE_UNLOCK(); 616 617 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 618 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 619 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 620 return sp; 621 } 622 623 /* 624 * allocating a SP for OUTBOUND or INBOUND packet. 625 * Must call key_freesp() later. 626 * OUT: NULL: not found 627 * others: found and return the pointer. 628 */ 629 struct secpolicy * 630 key_allocsp2(u_int32_t spi, 631 union sockaddr_union *dst, 632 u_int8_t proto, 633 u_int dir, 634 const char* where, int tag) 635 { 636 INIT_VNET_IPSEC(curvnet); 637 struct secpolicy *sp; 638 639 IPSEC_ASSERT(dst != NULL, ("null dst")); 640 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 641 ("invalid direction %u", dir)); 642 643 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 644 printf("DP %s from %s:%u\n", __func__, where, tag)); 645 646 /* get a SP entry */ 647 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 648 printf("*** objects\n"); 649 printf("spi %u proto %u dir %u\n", spi, proto, dir); 650 kdebug_sockaddr(&dst->sa)); 651 652 SPTREE_LOCK(); 653 LIST_FOREACH(sp, &V_sptree[dir], chain) { 654 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 655 printf("*** in SPD\n"); 656 kdebug_secpolicyindex(&sp->spidx)); 657 658 if (sp->state == IPSEC_SPSTATE_DEAD) 659 continue; 660 /* compare simple values, then dst address */ 661 if (sp->spidx.ul_proto != proto) 662 continue; 663 /* NB: spi's must exist and match */ 664 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi) 665 continue; 666 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0) 667 goto found; 668 } 669 sp = NULL; 670 found: 671 if (sp) { 672 /* sanity check */ 673 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 674 675 /* found a SPD entry */ 676 sp->lastused = time_second; 677 SP_ADDREF(sp); 678 } 679 SPTREE_UNLOCK(); 680 681 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 682 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 683 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 684 return sp; 685 } 686 687 /* 688 * return a policy that matches this particular inbound packet. 689 * XXX slow 690 */ 691 struct secpolicy * 692 key_gettunnel(const struct sockaddr *osrc, 693 const struct sockaddr *odst, 694 const struct sockaddr *isrc, 695 const struct sockaddr *idst, 696 const char* where, int tag) 697 { 698 INIT_VNET_IPSEC(curvnet); 699 struct secpolicy *sp; 700 const int dir = IPSEC_DIR_INBOUND; 701 struct ipsecrequest *r1, *r2, *p; 702 struct secpolicyindex spidx; 703 704 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 705 printf("DP %s from %s:%u\n", __func__, where, tag)); 706 707 if (isrc->sa_family != idst->sa_family) { 708 ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.", 709 __func__, isrc->sa_family, idst->sa_family)); 710 sp = NULL; 711 goto done; 712 } 713 714 SPTREE_LOCK(); 715 LIST_FOREACH(sp, &V_sptree[dir], chain) { 716 if (sp->state == IPSEC_SPSTATE_DEAD) 717 continue; 718 719 r1 = r2 = NULL; 720 for (p = sp->req; p; p = p->next) { 721 if (p->saidx.mode != IPSEC_MODE_TUNNEL) 722 continue; 723 724 r1 = r2; 725 r2 = p; 726 727 if (!r1) { 728 /* here we look at address matches only */ 729 spidx = sp->spidx; 730 if (isrc->sa_len > sizeof(spidx.src) || 731 idst->sa_len > sizeof(spidx.dst)) 732 continue; 733 bcopy(isrc, &spidx.src, isrc->sa_len); 734 bcopy(idst, &spidx.dst, idst->sa_len); 735 if (!key_cmpspidx_withmask(&sp->spidx, &spidx)) 736 continue; 737 } else { 738 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) || 739 key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0)) 740 continue; 741 } 742 743 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) || 744 key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0)) 745 continue; 746 747 goto found; 748 } 749 } 750 sp = NULL; 751 found: 752 if (sp) { 753 sp->lastused = time_second; 754 SP_ADDREF(sp); 755 } 756 SPTREE_UNLOCK(); 757 done: 758 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 759 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 760 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 761 return sp; 762 } 763 764 /* 765 * allocating an SA entry for an *OUTBOUND* packet. 766 * checking each request entries in SP, and acquire an SA if need. 767 * OUT: 0: there are valid requests. 768 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. 769 */ 770 int 771 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx) 772 { 773 INIT_VNET_IPSEC(curvnet); 774 u_int level; 775 int error; 776 777 IPSEC_ASSERT(isr != NULL, ("null isr")); 778 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 779 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT || 780 saidx->mode == IPSEC_MODE_TUNNEL, 781 ("unexpected policy %u", saidx->mode)); 782 783 /* 784 * XXX guard against protocol callbacks from the crypto 785 * thread as they reference ipsecrequest.sav which we 786 * temporarily null out below. Need to rethink how we 787 * handle bundled SA's in the callback thread. 788 */ 789 IPSECREQUEST_LOCK_ASSERT(isr); 790 791 /* get current level */ 792 level = ipsec_get_reqlevel(isr); 793 #if 0 794 /* 795 * We do allocate new SA only if the state of SA in the holder is 796 * SADB_SASTATE_DEAD. The SA for outbound must be the oldest. 797 */ 798 if (isr->sav != NULL) { 799 if (isr->sav->sah == NULL) 800 panic("%s: sah is null.\n", __func__); 801 if (isr->sav == (struct secasvar *)LIST_FIRST( 802 &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) { 803 KEY_FREESAV(&isr->sav); 804 isr->sav = NULL; 805 } 806 } 807 #else 808 /* 809 * we free any SA stashed in the IPsec request because a different 810 * SA may be involved each time this request is checked, either 811 * because new SAs are being configured, or this request is 812 * associated with an unconnected datagram socket, or this request 813 * is associated with a system default policy. 814 * 815 * The operation may have negative impact to performance. We may 816 * want to check cached SA carefully, rather than picking new SA 817 * every time. 818 */ 819 if (isr->sav != NULL) { 820 KEY_FREESAV(&isr->sav); 821 isr->sav = NULL; 822 } 823 #endif 824 825 /* 826 * new SA allocation if no SA found. 827 * key_allocsa_policy should allocate the oldest SA available. 828 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt. 829 */ 830 if (isr->sav == NULL) 831 isr->sav = key_allocsa_policy(saidx); 832 833 /* When there is SA. */ 834 if (isr->sav != NULL) { 835 if (isr->sav->state != SADB_SASTATE_MATURE && 836 isr->sav->state != SADB_SASTATE_DYING) 837 return EINVAL; 838 return 0; 839 } 840 841 /* there is no SA */ 842 error = key_acquire(saidx, isr->sp); 843 if (error != 0) { 844 /* XXX What should I do ? */ 845 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 846 __func__, error)); 847 return error; 848 } 849 850 if (level != IPSEC_LEVEL_REQUIRE) { 851 /* XXX sigh, the interface to this routine is botched */ 852 IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA")); 853 return 0; 854 } else { 855 return ENOENT; 856 } 857 } 858 859 /* 860 * allocating a SA for policy entry from SAD. 861 * NOTE: searching SAD of aliving state. 862 * OUT: NULL: not found. 863 * others: found and return the pointer. 864 */ 865 static struct secasvar * 866 key_allocsa_policy(const struct secasindex *saidx) 867 { 868 #define N(a) _ARRAYLEN(a) 869 INIT_VNET_IPSEC(curvnet); 870 struct secashead *sah; 871 struct secasvar *sav; 872 u_int stateidx, arraysize; 873 const u_int *state_valid; 874 875 SAHTREE_LOCK(); 876 LIST_FOREACH(sah, &V_sahtree, chain) { 877 if (sah->state == SADB_SASTATE_DEAD) 878 continue; 879 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) { 880 if (V_key_preferred_oldsa) { 881 state_valid = saorder_state_valid_prefer_old; 882 arraysize = N(saorder_state_valid_prefer_old); 883 } else { 884 state_valid = saorder_state_valid_prefer_new; 885 arraysize = N(saorder_state_valid_prefer_new); 886 } 887 SAHTREE_UNLOCK(); 888 goto found; 889 } 890 } 891 SAHTREE_UNLOCK(); 892 893 return NULL; 894 895 found: 896 /* search valid state */ 897 for (stateidx = 0; stateidx < arraysize; stateidx++) { 898 sav = key_do_allocsa_policy(sah, state_valid[stateidx]); 899 if (sav != NULL) 900 return sav; 901 } 902 903 return NULL; 904 #undef N 905 } 906 907 /* 908 * searching SAD with direction, protocol, mode and state. 909 * called by key_allocsa_policy(). 910 * OUT: 911 * NULL : not found 912 * others : found, pointer to a SA. 913 */ 914 static struct secasvar * 915 key_do_allocsa_policy(struct secashead *sah, u_int state) 916 { 917 INIT_VNET_IPSEC(curvnet); 918 struct secasvar *sav, *nextsav, *candidate, *d; 919 920 /* initilize */ 921 candidate = NULL; 922 923 SAHTREE_LOCK(); 924 for (sav = LIST_FIRST(&sah->savtree[state]); 925 sav != NULL; 926 sav = nextsav) { 927 928 nextsav = LIST_NEXT(sav, chain); 929 930 /* sanity check */ 931 KEY_CHKSASTATE(sav->state, state, __func__); 932 933 /* initialize */ 934 if (candidate == NULL) { 935 candidate = sav; 936 continue; 937 } 938 939 /* Which SA is the better ? */ 940 941 IPSEC_ASSERT(candidate->lft_c != NULL, 942 ("null candidate lifetime")); 943 IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime")); 944 945 /* What the best method is to compare ? */ 946 if (V_key_preferred_oldsa) { 947 if (candidate->lft_c->addtime > 948 sav->lft_c->addtime) { 949 candidate = sav; 950 } 951 continue; 952 /*NOTREACHED*/ 953 } 954 955 /* preferred new sa rather than old sa */ 956 if (candidate->lft_c->addtime < 957 sav->lft_c->addtime) { 958 d = candidate; 959 candidate = sav; 960 } else 961 d = sav; 962 963 /* 964 * prepared to delete the SA when there is more 965 * suitable candidate and the lifetime of the SA is not 966 * permanent. 967 */ 968 if (d->lft_h->addtime != 0) { 969 struct mbuf *m, *result; 970 u_int8_t satype; 971 972 key_sa_chgstate(d, SADB_SASTATE_DEAD); 973 974 IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count")); 975 976 satype = key_proto2satype(d->sah->saidx.proto); 977 if (satype == 0) 978 goto msgfail; 979 980 m = key_setsadbmsg(SADB_DELETE, 0, 981 satype, 0, 0, d->refcnt - 1); 982 if (!m) 983 goto msgfail; 984 result = m; 985 986 /* set sadb_address for saidx's. */ 987 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 988 &d->sah->saidx.src.sa, 989 d->sah->saidx.src.sa.sa_len << 3, 990 IPSEC_ULPROTO_ANY); 991 if (!m) 992 goto msgfail; 993 m_cat(result, m); 994 995 /* set sadb_address for saidx's. */ 996 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 997 &d->sah->saidx.dst.sa, 998 d->sah->saidx.dst.sa.sa_len << 3, 999 IPSEC_ULPROTO_ANY); 1000 if (!m) 1001 goto msgfail; 1002 m_cat(result, m); 1003 1004 /* create SA extension */ 1005 m = key_setsadbsa(d); 1006 if (!m) 1007 goto msgfail; 1008 m_cat(result, m); 1009 1010 if (result->m_len < sizeof(struct sadb_msg)) { 1011 result = m_pullup(result, 1012 sizeof(struct sadb_msg)); 1013 if (result == NULL) 1014 goto msgfail; 1015 } 1016 1017 result->m_pkthdr.len = 0; 1018 for (m = result; m; m = m->m_next) 1019 result->m_pkthdr.len += m->m_len; 1020 mtod(result, struct sadb_msg *)->sadb_msg_len = 1021 PFKEY_UNIT64(result->m_pkthdr.len); 1022 1023 if (key_sendup_mbuf(NULL, result, 1024 KEY_SENDUP_REGISTERED)) 1025 goto msgfail; 1026 msgfail: 1027 KEY_FREESAV(&d); 1028 } 1029 } 1030 if (candidate) { 1031 sa_addref(candidate); 1032 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1033 printf("DP %s cause refcnt++:%d SA:%p\n", 1034 __func__, candidate->refcnt, candidate)); 1035 } 1036 SAHTREE_UNLOCK(); 1037 1038 return candidate; 1039 } 1040 1041 /* 1042 * allocating a usable SA entry for a *INBOUND* packet. 1043 * Must call key_freesav() later. 1044 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). 1045 * NULL: not found, or error occured. 1046 * 1047 * In the comparison, no source address is used--for RFC2401 conformance. 1048 * To quote, from section 4.1: 1049 * A security association is uniquely identified by a triple consisting 1050 * of a Security Parameter Index (SPI), an IP Destination Address, and a 1051 * security protocol (AH or ESP) identifier. 1052 * Note that, however, we do need to keep source address in IPsec SA. 1053 * IKE specification and PF_KEY specification do assume that we 1054 * keep source address in IPsec SA. We see a tricky situation here. 1055 */ 1056 struct secasvar * 1057 key_allocsa( 1058 union sockaddr_union *dst, 1059 u_int proto, 1060 u_int32_t spi, 1061 const char* where, int tag) 1062 { 1063 INIT_VNET_IPSEC(curvnet); 1064 struct secashead *sah; 1065 struct secasvar *sav; 1066 u_int stateidx, arraysize, state; 1067 const u_int *saorder_state_valid; 1068 1069 IPSEC_ASSERT(dst != NULL, ("null dst address")); 1070 1071 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1072 printf("DP %s from %s:%u\n", __func__, where, tag)); 1073 1074 /* 1075 * searching SAD. 1076 * XXX: to be checked internal IP header somewhere. Also when 1077 * IPsec tunnel packet is received. But ESP tunnel mode is 1078 * encrypted so we can't check internal IP header. 1079 */ 1080 SAHTREE_LOCK(); 1081 if (V_key_preferred_oldsa) { 1082 saorder_state_valid = saorder_state_valid_prefer_old; 1083 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); 1084 } else { 1085 saorder_state_valid = saorder_state_valid_prefer_new; 1086 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); 1087 } 1088 LIST_FOREACH(sah, &V_sahtree, chain) { 1089 /* search valid state */ 1090 for (stateidx = 0; stateidx < arraysize; stateidx++) { 1091 state = saorder_state_valid[stateidx]; 1092 LIST_FOREACH(sav, &sah->savtree[state], chain) { 1093 /* sanity check */ 1094 KEY_CHKSASTATE(sav->state, state, __func__); 1095 /* do not return entries w/ unusable state */ 1096 if (sav->state != SADB_SASTATE_MATURE && 1097 sav->state != SADB_SASTATE_DYING) 1098 continue; 1099 if (proto != sav->sah->saidx.proto) 1100 continue; 1101 if (spi != sav->spi) 1102 continue; 1103 #if 0 /* don't check src */ 1104 /* check src address */ 1105 if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, 0) != 0) 1106 continue; 1107 #endif 1108 /* check dst address */ 1109 if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, 0) != 0) 1110 continue; 1111 sa_addref(sav); 1112 goto done; 1113 } 1114 } 1115 } 1116 sav = NULL; 1117 done: 1118 SAHTREE_UNLOCK(); 1119 1120 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1121 printf("DP %s return SA:%p; refcnt %u\n", __func__, 1122 sav, sav ? sav->refcnt : 0)); 1123 return sav; 1124 } 1125 1126 /* 1127 * Must be called after calling key_allocsp(). 1128 * For both the packet without socket and key_freeso(). 1129 */ 1130 void 1131 _key_freesp(struct secpolicy **spp, const char* where, int tag) 1132 { 1133 INIT_VNET_IPSEC(curvnet); 1134 struct secpolicy *sp = *spp; 1135 1136 IPSEC_ASSERT(sp != NULL, ("null sp")); 1137 1138 SPTREE_LOCK(); 1139 SP_DELREF(sp); 1140 1141 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1142 printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n", 1143 __func__, sp, sp->id, where, tag, sp->refcnt)); 1144 1145 if (sp->refcnt == 0) { 1146 *spp = NULL; 1147 key_delsp(sp); 1148 } 1149 SPTREE_UNLOCK(); 1150 } 1151 1152 /* 1153 * Must be called after calling key_allocsp(). 1154 * For the packet with socket. 1155 */ 1156 void 1157 key_freeso(struct socket *so) 1158 { 1159 INIT_VNET_IPSEC(curvnet); 1160 IPSEC_ASSERT(so != NULL, ("null so")); 1161 1162 switch (so->so_proto->pr_domain->dom_family) { 1163 #if defined(INET) || defined(INET6) 1164 #ifdef INET 1165 case PF_INET: 1166 #endif 1167 #ifdef INET6 1168 case PF_INET6: 1169 #endif 1170 { 1171 struct inpcb *pcb = sotoinpcb(so); 1172 1173 /* Does it have a PCB ? */ 1174 if (pcb == NULL) 1175 return; 1176 key_freesp_so(&pcb->inp_sp->sp_in); 1177 key_freesp_so(&pcb->inp_sp->sp_out); 1178 } 1179 break; 1180 #endif /* INET || INET6 */ 1181 default: 1182 ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n", 1183 __func__, so->so_proto->pr_domain->dom_family)); 1184 return; 1185 } 1186 } 1187 1188 static void 1189 key_freesp_so(struct secpolicy **sp) 1190 { 1191 IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp")); 1192 1193 if ((*sp)->policy == IPSEC_POLICY_ENTRUST || 1194 (*sp)->policy == IPSEC_POLICY_BYPASS) 1195 return; 1196 1197 IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC, 1198 ("invalid policy %u", (*sp)->policy)); 1199 KEY_FREESP(sp); 1200 } 1201 1202 /* 1203 * Must be called after calling key_allocsa(). 1204 * This function is called by key_freesp() to free some SA allocated 1205 * for a policy. 1206 */ 1207 void 1208 key_freesav(struct secasvar **psav, const char* where, int tag) 1209 { 1210 INIT_VNET_IPSEC(curvnet); 1211 struct secasvar *sav = *psav; 1212 1213 IPSEC_ASSERT(sav != NULL, ("null sav")); 1214 1215 if (sa_delref(sav)) { 1216 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1217 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1218 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1219 *psav = NULL; 1220 key_delsav(sav); 1221 } else { 1222 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1223 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1224 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1225 } 1226 } 1227 1228 /* %%% SPD management */ 1229 /* 1230 * free security policy entry. 1231 */ 1232 static void 1233 key_delsp(struct secpolicy *sp) 1234 { 1235 struct ipsecrequest *isr, *nextisr; 1236 1237 IPSEC_ASSERT(sp != NULL, ("null sp")); 1238 SPTREE_LOCK_ASSERT(); 1239 1240 sp->state = IPSEC_SPSTATE_DEAD; 1241 1242 IPSEC_ASSERT(sp->refcnt == 0, 1243 ("SP with references deleted (refcnt %u)", sp->refcnt)); 1244 1245 /* remove from SP index */ 1246 if (__LIST_CHAINED(sp)) 1247 LIST_REMOVE(sp, chain); 1248 1249 for (isr = sp->req; isr != NULL; isr = nextisr) { 1250 if (isr->sav != NULL) { 1251 KEY_FREESAV(&isr->sav); 1252 isr->sav = NULL; 1253 } 1254 1255 nextisr = isr->next; 1256 ipsec_delisr(isr); 1257 } 1258 _key_delsp(sp); 1259 } 1260 1261 /* 1262 * search SPD 1263 * OUT: NULL : not found 1264 * others : found, pointer to a SP. 1265 */ 1266 static struct secpolicy * 1267 key_getsp(struct secpolicyindex *spidx) 1268 { 1269 INIT_VNET_IPSEC(curvnet); 1270 struct secpolicy *sp; 1271 1272 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 1273 1274 SPTREE_LOCK(); 1275 LIST_FOREACH(sp, &V_sptree[spidx->dir], chain) { 1276 if (sp->state == IPSEC_SPSTATE_DEAD) 1277 continue; 1278 if (key_cmpspidx_exactly(spidx, &sp->spidx)) { 1279 SP_ADDREF(sp); 1280 break; 1281 } 1282 } 1283 SPTREE_UNLOCK(); 1284 1285 return sp; 1286 } 1287 1288 /* 1289 * get SP by index. 1290 * OUT: NULL : not found 1291 * others : found, pointer to a SP. 1292 */ 1293 static struct secpolicy * 1294 key_getspbyid(u_int32_t id) 1295 { 1296 INIT_VNET_IPSEC(curvnet); 1297 struct secpolicy *sp; 1298 1299 SPTREE_LOCK(); 1300 LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_INBOUND], chain) { 1301 if (sp->state == IPSEC_SPSTATE_DEAD) 1302 continue; 1303 if (sp->id == id) { 1304 SP_ADDREF(sp); 1305 goto done; 1306 } 1307 } 1308 1309 LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_OUTBOUND], chain) { 1310 if (sp->state == IPSEC_SPSTATE_DEAD) 1311 continue; 1312 if (sp->id == id) { 1313 SP_ADDREF(sp); 1314 goto done; 1315 } 1316 } 1317 done: 1318 SPTREE_UNLOCK(); 1319 1320 return sp; 1321 } 1322 1323 struct secpolicy * 1324 key_newsp(const char* where, int tag) 1325 { 1326 INIT_VNET_IPSEC(curvnet); 1327 struct secpolicy *newsp = NULL; 1328 1329 newsp = (struct secpolicy *) 1330 malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO); 1331 if (newsp) { 1332 SECPOLICY_LOCK_INIT(newsp); 1333 newsp->refcnt = 1; 1334 newsp->req = NULL; 1335 } 1336 1337 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1338 printf("DP %s from %s:%u return SP:%p\n", __func__, 1339 where, tag, newsp)); 1340 return newsp; 1341 } 1342 1343 static void 1344 _key_delsp(struct secpolicy *sp) 1345 { 1346 SECPOLICY_LOCK_DESTROY(sp); 1347 free(sp, M_IPSEC_SP); 1348 } 1349 1350 /* 1351 * create secpolicy structure from sadb_x_policy structure. 1352 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, 1353 * so must be set properly later. 1354 */ 1355 struct secpolicy * 1356 key_msg2sp(xpl0, len, error) 1357 struct sadb_x_policy *xpl0; 1358 size_t len; 1359 int *error; 1360 { 1361 INIT_VNET_IPSEC(curvnet); 1362 struct secpolicy *newsp; 1363 1364 IPSEC_ASSERT(xpl0 != NULL, ("null xpl0")); 1365 IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len)); 1366 1367 if (len != PFKEY_EXTLEN(xpl0)) { 1368 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__)); 1369 *error = EINVAL; 1370 return NULL; 1371 } 1372 1373 if ((newsp = KEY_NEWSP()) == NULL) { 1374 *error = ENOBUFS; 1375 return NULL; 1376 } 1377 1378 newsp->spidx.dir = xpl0->sadb_x_policy_dir; 1379 newsp->policy = xpl0->sadb_x_policy_type; 1380 1381 /* check policy */ 1382 switch (xpl0->sadb_x_policy_type) { 1383 case IPSEC_POLICY_DISCARD: 1384 case IPSEC_POLICY_NONE: 1385 case IPSEC_POLICY_ENTRUST: 1386 case IPSEC_POLICY_BYPASS: 1387 newsp->req = NULL; 1388 break; 1389 1390 case IPSEC_POLICY_IPSEC: 1391 { 1392 int tlen; 1393 struct sadb_x_ipsecrequest *xisr; 1394 struct ipsecrequest **p_isr = &newsp->req; 1395 1396 /* validity check */ 1397 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { 1398 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", 1399 __func__)); 1400 KEY_FREESP(&newsp); 1401 *error = EINVAL; 1402 return NULL; 1403 } 1404 1405 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); 1406 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1); 1407 1408 while (tlen > 0) { 1409 /* length check */ 1410 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { 1411 ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest " 1412 "length.\n", __func__)); 1413 KEY_FREESP(&newsp); 1414 *error = EINVAL; 1415 return NULL; 1416 } 1417 1418 /* allocate request buffer */ 1419 /* NB: data structure is zero'd */ 1420 *p_isr = ipsec_newisr(); 1421 if ((*p_isr) == NULL) { 1422 ipseclog((LOG_DEBUG, 1423 "%s: No more memory.\n", __func__)); 1424 KEY_FREESP(&newsp); 1425 *error = ENOBUFS; 1426 return NULL; 1427 } 1428 1429 /* set values */ 1430 switch (xisr->sadb_x_ipsecrequest_proto) { 1431 case IPPROTO_ESP: 1432 case IPPROTO_AH: 1433 case IPPROTO_IPCOMP: 1434 break; 1435 default: 1436 ipseclog((LOG_DEBUG, 1437 "%s: invalid proto type=%u\n", __func__, 1438 xisr->sadb_x_ipsecrequest_proto)); 1439 KEY_FREESP(&newsp); 1440 *error = EPROTONOSUPPORT; 1441 return NULL; 1442 } 1443 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; 1444 1445 switch (xisr->sadb_x_ipsecrequest_mode) { 1446 case IPSEC_MODE_TRANSPORT: 1447 case IPSEC_MODE_TUNNEL: 1448 break; 1449 case IPSEC_MODE_ANY: 1450 default: 1451 ipseclog((LOG_DEBUG, 1452 "%s: invalid mode=%u\n", __func__, 1453 xisr->sadb_x_ipsecrequest_mode)); 1454 KEY_FREESP(&newsp); 1455 *error = EINVAL; 1456 return NULL; 1457 } 1458 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; 1459 1460 switch (xisr->sadb_x_ipsecrequest_level) { 1461 case IPSEC_LEVEL_DEFAULT: 1462 case IPSEC_LEVEL_USE: 1463 case IPSEC_LEVEL_REQUIRE: 1464 break; 1465 case IPSEC_LEVEL_UNIQUE: 1466 /* validity check */ 1467 /* 1468 * If range violation of reqid, kernel will 1469 * update it, don't refuse it. 1470 */ 1471 if (xisr->sadb_x_ipsecrequest_reqid 1472 > IPSEC_MANUAL_REQID_MAX) { 1473 ipseclog((LOG_DEBUG, 1474 "%s: reqid=%d range " 1475 "violation, updated by kernel.\n", 1476 __func__, 1477 xisr->sadb_x_ipsecrequest_reqid)); 1478 xisr->sadb_x_ipsecrequest_reqid = 0; 1479 } 1480 1481 /* allocate new reqid id if reqid is zero. */ 1482 if (xisr->sadb_x_ipsecrequest_reqid == 0) { 1483 u_int32_t reqid; 1484 if ((reqid = key_newreqid()) == 0) { 1485 KEY_FREESP(&newsp); 1486 *error = ENOBUFS; 1487 return NULL; 1488 } 1489 (*p_isr)->saidx.reqid = reqid; 1490 xisr->sadb_x_ipsecrequest_reqid = reqid; 1491 } else { 1492 /* set it for manual keying. */ 1493 (*p_isr)->saidx.reqid = 1494 xisr->sadb_x_ipsecrequest_reqid; 1495 } 1496 break; 1497 1498 default: 1499 ipseclog((LOG_DEBUG, "%s: invalid level=%u\n", 1500 __func__, 1501 xisr->sadb_x_ipsecrequest_level)); 1502 KEY_FREESP(&newsp); 1503 *error = EINVAL; 1504 return NULL; 1505 } 1506 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; 1507 1508 /* set IP addresses if there */ 1509 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { 1510 struct sockaddr *paddr; 1511 1512 paddr = (struct sockaddr *)(xisr + 1); 1513 1514 /* validity check */ 1515 if (paddr->sa_len 1516 > sizeof((*p_isr)->saidx.src)) { 1517 ipseclog((LOG_DEBUG, "%s: invalid " 1518 "request address length.\n", 1519 __func__)); 1520 KEY_FREESP(&newsp); 1521 *error = EINVAL; 1522 return NULL; 1523 } 1524 bcopy(paddr, &(*p_isr)->saidx.src, 1525 paddr->sa_len); 1526 1527 paddr = (struct sockaddr *)((caddr_t)paddr 1528 + paddr->sa_len); 1529 1530 /* validity check */ 1531 if (paddr->sa_len 1532 > sizeof((*p_isr)->saidx.dst)) { 1533 ipseclog((LOG_DEBUG, "%s: invalid " 1534 "request address length.\n", 1535 __func__)); 1536 KEY_FREESP(&newsp); 1537 *error = EINVAL; 1538 return NULL; 1539 } 1540 bcopy(paddr, &(*p_isr)->saidx.dst, 1541 paddr->sa_len); 1542 } 1543 1544 (*p_isr)->sp = newsp; 1545 1546 /* initialization for the next. */ 1547 p_isr = &(*p_isr)->next; 1548 tlen -= xisr->sadb_x_ipsecrequest_len; 1549 1550 /* validity check */ 1551 if (tlen < 0) { 1552 ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n", 1553 __func__)); 1554 KEY_FREESP(&newsp); 1555 *error = EINVAL; 1556 return NULL; 1557 } 1558 1559 xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr 1560 + xisr->sadb_x_ipsecrequest_len); 1561 } 1562 } 1563 break; 1564 default: 1565 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); 1566 KEY_FREESP(&newsp); 1567 *error = EINVAL; 1568 return NULL; 1569 } 1570 1571 *error = 0; 1572 return newsp; 1573 } 1574 1575 static u_int32_t 1576 key_newreqid() 1577 { 1578 static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 1579 1580 auto_reqid = (auto_reqid == ~0 1581 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); 1582 1583 /* XXX should be unique check */ 1584 1585 return auto_reqid; 1586 } 1587 1588 /* 1589 * copy secpolicy struct to sadb_x_policy structure indicated. 1590 */ 1591 struct mbuf * 1592 key_sp2msg(sp) 1593 struct secpolicy *sp; 1594 { 1595 struct sadb_x_policy *xpl; 1596 int tlen; 1597 caddr_t p; 1598 struct mbuf *m; 1599 1600 IPSEC_ASSERT(sp != NULL, ("null policy")); 1601 1602 tlen = key_getspreqmsglen(sp); 1603 1604 m = key_alloc_mbuf(tlen); 1605 if (!m || m->m_next) { /*XXX*/ 1606 if (m) 1607 m_freem(m); 1608 return NULL; 1609 } 1610 1611 m->m_len = tlen; 1612 m->m_next = NULL; 1613 xpl = mtod(m, struct sadb_x_policy *); 1614 bzero(xpl, tlen); 1615 1616 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen); 1617 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 1618 xpl->sadb_x_policy_type = sp->policy; 1619 xpl->sadb_x_policy_dir = sp->spidx.dir; 1620 xpl->sadb_x_policy_id = sp->id; 1621 p = (caddr_t)xpl + sizeof(*xpl); 1622 1623 /* if is the policy for ipsec ? */ 1624 if (sp->policy == IPSEC_POLICY_IPSEC) { 1625 struct sadb_x_ipsecrequest *xisr; 1626 struct ipsecrequest *isr; 1627 1628 for (isr = sp->req; isr != NULL; isr = isr->next) { 1629 1630 xisr = (struct sadb_x_ipsecrequest *)p; 1631 1632 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; 1633 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; 1634 xisr->sadb_x_ipsecrequest_level = isr->level; 1635 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; 1636 1637 p += sizeof(*xisr); 1638 bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len); 1639 p += isr->saidx.src.sa.sa_len; 1640 bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len); 1641 p += isr->saidx.src.sa.sa_len; 1642 1643 xisr->sadb_x_ipsecrequest_len = 1644 PFKEY_ALIGN8(sizeof(*xisr) 1645 + isr->saidx.src.sa.sa_len 1646 + isr->saidx.dst.sa.sa_len); 1647 } 1648 } 1649 1650 return m; 1651 } 1652 1653 /* m will not be freed nor modified */ 1654 static struct mbuf * 1655 #ifdef __STDC__ 1656 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, 1657 int ndeep, int nitem, ...) 1658 #else 1659 key_gather_mbuf(m, mhp, ndeep, nitem, va_alist) 1660 struct mbuf *m; 1661 const struct sadb_msghdr *mhp; 1662 int ndeep; 1663 int nitem; 1664 va_dcl 1665 #endif 1666 { 1667 va_list ap; 1668 int idx; 1669 int i; 1670 struct mbuf *result = NULL, *n; 1671 int len; 1672 1673 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1674 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1675 1676 va_start(ap, nitem); 1677 for (i = 0; i < nitem; i++) { 1678 idx = va_arg(ap, int); 1679 if (idx < 0 || idx > SADB_EXT_MAX) 1680 goto fail; 1681 /* don't attempt to pull empty extension */ 1682 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) 1683 continue; 1684 if (idx != SADB_EXT_RESERVED && 1685 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) 1686 continue; 1687 1688 if (idx == SADB_EXT_RESERVED) { 1689 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 1690 1691 IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len)); 1692 1693 MGETHDR(n, M_DONTWAIT, MT_DATA); 1694 if (!n) 1695 goto fail; 1696 n->m_len = len; 1697 n->m_next = NULL; 1698 m_copydata(m, 0, sizeof(struct sadb_msg), 1699 mtod(n, caddr_t)); 1700 } else if (i < ndeep) { 1701 len = mhp->extlen[idx]; 1702 n = key_alloc_mbuf(len); 1703 if (!n || n->m_next) { /*XXX*/ 1704 if (n) 1705 m_freem(n); 1706 goto fail; 1707 } 1708 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], 1709 mtod(n, caddr_t)); 1710 } else { 1711 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], 1712 M_DONTWAIT); 1713 } 1714 if (n == NULL) 1715 goto fail; 1716 1717 if (result) 1718 m_cat(result, n); 1719 else 1720 result = n; 1721 } 1722 va_end(ap); 1723 1724 if ((result->m_flags & M_PKTHDR) != 0) { 1725 result->m_pkthdr.len = 0; 1726 for (n = result; n; n = n->m_next) 1727 result->m_pkthdr.len += n->m_len; 1728 } 1729 1730 return result; 1731 1732 fail: 1733 m_freem(result); 1734 return NULL; 1735 } 1736 1737 /* 1738 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing 1739 * add an entry to SP database, when received 1740 * <base, address(SD), (lifetime(H),) policy> 1741 * from the user(?). 1742 * Adding to SP database, 1743 * and send 1744 * <base, address(SD), (lifetime(H),) policy> 1745 * to the socket which was send. 1746 * 1747 * SPDADD set a unique policy entry. 1748 * SPDSETIDX like SPDADD without a part of policy requests. 1749 * SPDUPDATE replace a unique policy entry. 1750 * 1751 * m will always be freed. 1752 */ 1753 static int 1754 key_spdadd(so, m, mhp) 1755 struct socket *so; 1756 struct mbuf *m; 1757 const struct sadb_msghdr *mhp; 1758 { 1759 INIT_VNET_IPSEC(curvnet); 1760 struct sadb_address *src0, *dst0; 1761 struct sadb_x_policy *xpl0, *xpl; 1762 struct sadb_lifetime *lft = NULL; 1763 struct secpolicyindex spidx; 1764 struct secpolicy *newsp; 1765 int error; 1766 1767 IPSEC_ASSERT(so != NULL, ("null socket")); 1768 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1769 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1770 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 1771 1772 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 1773 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 1774 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 1775 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n")); 1776 return key_senderror(so, m, EINVAL); 1777 } 1778 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 1779 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 1780 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 1781 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1782 __func__)); 1783 return key_senderror(so, m, EINVAL); 1784 } 1785 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { 1786 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] 1787 < sizeof(struct sadb_lifetime)) { 1788 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1789 __func__)); 1790 return key_senderror(so, m, EINVAL); 1791 } 1792 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 1793 } 1794 1795 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 1796 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 1797 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 1798 1799 /* make secindex */ 1800 /* XXX boundary check against sa_len */ 1801 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1802 src0 + 1, 1803 dst0 + 1, 1804 src0->sadb_address_prefixlen, 1805 dst0->sadb_address_prefixlen, 1806 src0->sadb_address_proto, 1807 &spidx); 1808 1809 /* checking the direciton. */ 1810 switch (xpl0->sadb_x_policy_dir) { 1811 case IPSEC_DIR_INBOUND: 1812 case IPSEC_DIR_OUTBOUND: 1813 break; 1814 default: 1815 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 1816 mhp->msg->sadb_msg_errno = EINVAL; 1817 return 0; 1818 } 1819 1820 /* check policy */ 1821 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */ 1822 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST 1823 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { 1824 ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__)); 1825 return key_senderror(so, m, EINVAL); 1826 } 1827 1828 /* policy requests are mandatory when action is ipsec. */ 1829 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX 1830 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC 1831 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { 1832 ipseclog((LOG_DEBUG, "%s: some policy requests part required\n", 1833 __func__)); 1834 return key_senderror(so, m, EINVAL); 1835 } 1836 1837 /* 1838 * checking there is SP already or not. 1839 * SPDUPDATE doesn't depend on whether there is a SP or not. 1840 * If the type is either SPDADD or SPDSETIDX AND a SP is found, 1841 * then error. 1842 */ 1843 newsp = key_getsp(&spidx); 1844 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1845 if (newsp) { 1846 newsp->state = IPSEC_SPSTATE_DEAD; 1847 KEY_FREESP(&newsp); 1848 } 1849 } else { 1850 if (newsp != NULL) { 1851 KEY_FREESP(&newsp); 1852 ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n", 1853 __func__)); 1854 return key_senderror(so, m, EEXIST); 1855 } 1856 } 1857 1858 /* allocation new SP entry */ 1859 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) { 1860 return key_senderror(so, m, error); 1861 } 1862 1863 if ((newsp->id = key_getnewspid()) == 0) { 1864 _key_delsp(newsp); 1865 return key_senderror(so, m, ENOBUFS); 1866 } 1867 1868 /* XXX boundary check against sa_len */ 1869 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1870 src0 + 1, 1871 dst0 + 1, 1872 src0->sadb_address_prefixlen, 1873 dst0->sadb_address_prefixlen, 1874 src0->sadb_address_proto, 1875 &newsp->spidx); 1876 1877 /* sanity check on addr pair */ 1878 if (((struct sockaddr *)(src0 + 1))->sa_family != 1879 ((struct sockaddr *)(dst0+ 1))->sa_family) { 1880 _key_delsp(newsp); 1881 return key_senderror(so, m, EINVAL); 1882 } 1883 if (((struct sockaddr *)(src0 + 1))->sa_len != 1884 ((struct sockaddr *)(dst0+ 1))->sa_len) { 1885 _key_delsp(newsp); 1886 return key_senderror(so, m, EINVAL); 1887 } 1888 #if 1 1889 if (newsp->req && newsp->req->saidx.src.sa.sa_family) { 1890 struct sockaddr *sa; 1891 sa = (struct sockaddr *)(src0 + 1); 1892 if (sa->sa_family != newsp->req->saidx.src.sa.sa_family) { 1893 _key_delsp(newsp); 1894 return key_senderror(so, m, EINVAL); 1895 } 1896 } 1897 if (newsp->req && newsp->req->saidx.dst.sa.sa_family) { 1898 struct sockaddr *sa; 1899 sa = (struct sockaddr *)(dst0 + 1); 1900 if (sa->sa_family != newsp->req->saidx.dst.sa.sa_family) { 1901 _key_delsp(newsp); 1902 return key_senderror(so, m, EINVAL); 1903 } 1904 } 1905 #endif 1906 1907 newsp->created = time_second; 1908 newsp->lastused = newsp->created; 1909 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; 1910 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; 1911 1912 newsp->refcnt = 1; /* do not reclaim until I say I do */ 1913 newsp->state = IPSEC_SPSTATE_ALIVE; 1914 LIST_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, secpolicy, chain); 1915 1916 /* delete the entry in spacqtree */ 1917 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1918 struct secspacq *spacq = key_getspacq(&spidx); 1919 if (spacq != NULL) { 1920 /* reset counter in order to deletion by timehandler. */ 1921 spacq->created = time_second; 1922 spacq->count = 0; 1923 SPACQ_UNLOCK(); 1924 } 1925 } 1926 1927 { 1928 struct mbuf *n, *mpolicy; 1929 struct sadb_msg *newmsg; 1930 int off; 1931 1932 /* create new sadb_msg to reply. */ 1933 if (lft) { 1934 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, 1935 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, 1936 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1937 } else { 1938 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, 1939 SADB_X_EXT_POLICY, 1940 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1941 } 1942 if (!n) 1943 return key_senderror(so, m, ENOBUFS); 1944 1945 if (n->m_len < sizeof(*newmsg)) { 1946 n = m_pullup(n, sizeof(*newmsg)); 1947 if (!n) 1948 return key_senderror(so, m, ENOBUFS); 1949 } 1950 newmsg = mtod(n, struct sadb_msg *); 1951 newmsg->sadb_msg_errno = 0; 1952 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 1953 1954 off = 0; 1955 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), 1956 sizeof(*xpl), &off); 1957 if (mpolicy == NULL) { 1958 /* n is already freed */ 1959 return key_senderror(so, m, ENOBUFS); 1960 } 1961 xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off); 1962 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { 1963 m_freem(n); 1964 return key_senderror(so, m, EINVAL); 1965 } 1966 xpl->sadb_x_policy_id = newsp->id; 1967 1968 m_freem(m); 1969 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 1970 } 1971 } 1972 1973 /* 1974 * get new policy id. 1975 * OUT: 1976 * 0: failure. 1977 * others: success. 1978 */ 1979 static u_int32_t 1980 key_getnewspid() 1981 { 1982 INIT_VNET_IPSEC(curvnet); 1983 u_int32_t newid = 0; 1984 int count = V_key_spi_trycnt; /* XXX */ 1985 struct secpolicy *sp; 1986 1987 /* when requesting to allocate spi ranged */ 1988 while (count--) { 1989 newid = (V_policy_id = (V_policy_id == ~0 ? 1 : V_policy_id + 1)); 1990 1991 if ((sp = key_getspbyid(newid)) == NULL) 1992 break; 1993 1994 KEY_FREESP(&sp); 1995 } 1996 1997 if (count == 0 || newid == 0) { 1998 ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n", 1999 __func__)); 2000 return 0; 2001 } 2002 2003 return newid; 2004 } 2005 2006 /* 2007 * SADB_SPDDELETE processing 2008 * receive 2009 * <base, address(SD), policy(*)> 2010 * from the user(?), and set SADB_SASTATE_DEAD, 2011 * and send, 2012 * <base, address(SD), policy(*)> 2013 * to the ikmpd. 2014 * policy(*) including direction of policy. 2015 * 2016 * m will always be freed. 2017 */ 2018 static int 2019 key_spddelete(so, m, mhp) 2020 struct socket *so; 2021 struct mbuf *m; 2022 const struct sadb_msghdr *mhp; 2023 { 2024 INIT_VNET_IPSEC(curvnet); 2025 struct sadb_address *src0, *dst0; 2026 struct sadb_x_policy *xpl0; 2027 struct secpolicyindex spidx; 2028 struct secpolicy *sp; 2029 2030 IPSEC_ASSERT(so != NULL, ("null so")); 2031 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2032 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2033 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2034 2035 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2036 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2037 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2038 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2039 __func__)); 2040 return key_senderror(so, m, EINVAL); 2041 } 2042 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2043 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2044 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2045 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2046 __func__)); 2047 return key_senderror(so, m, EINVAL); 2048 } 2049 2050 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 2051 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 2052 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 2053 2054 /* make secindex */ 2055 /* XXX boundary check against sa_len */ 2056 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 2057 src0 + 1, 2058 dst0 + 1, 2059 src0->sadb_address_prefixlen, 2060 dst0->sadb_address_prefixlen, 2061 src0->sadb_address_proto, 2062 &spidx); 2063 2064 /* checking the direciton. */ 2065 switch (xpl0->sadb_x_policy_dir) { 2066 case IPSEC_DIR_INBOUND: 2067 case IPSEC_DIR_OUTBOUND: 2068 break; 2069 default: 2070 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 2071 return key_senderror(so, m, EINVAL); 2072 } 2073 2074 /* Is there SP in SPD ? */ 2075 if ((sp = key_getsp(&spidx)) == NULL) { 2076 ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__)); 2077 return key_senderror(so, m, EINVAL); 2078 } 2079 2080 /* save policy id to buffer to be returned. */ 2081 xpl0->sadb_x_policy_id = sp->id; 2082 2083 sp->state = IPSEC_SPSTATE_DEAD; 2084 KEY_FREESP(&sp); 2085 2086 { 2087 struct mbuf *n; 2088 struct sadb_msg *newmsg; 2089 2090 /* create new sadb_msg to reply. */ 2091 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 2092 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2093 if (!n) 2094 return key_senderror(so, m, ENOBUFS); 2095 2096 newmsg = mtod(n, struct sadb_msg *); 2097 newmsg->sadb_msg_errno = 0; 2098 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2099 2100 m_freem(m); 2101 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2102 } 2103 } 2104 2105 /* 2106 * SADB_SPDDELETE2 processing 2107 * receive 2108 * <base, policy(*)> 2109 * from the user(?), and set SADB_SASTATE_DEAD, 2110 * and send, 2111 * <base, policy(*)> 2112 * to the ikmpd. 2113 * policy(*) including direction of policy. 2114 * 2115 * m will always be freed. 2116 */ 2117 static int 2118 key_spddelete2(so, m, mhp) 2119 struct socket *so; 2120 struct mbuf *m; 2121 const struct sadb_msghdr *mhp; 2122 { 2123 INIT_VNET_IPSEC(curvnet); 2124 u_int32_t id; 2125 struct secpolicy *sp; 2126 2127 IPSEC_ASSERT(so != NULL, ("null socket")); 2128 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2129 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2130 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2131 2132 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2133 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2134 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); 2135 return key_senderror(so, m, EINVAL); 2136 } 2137 2138 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2139 2140 /* Is there SP in SPD ? */ 2141 if ((sp = key_getspbyid(id)) == NULL) { 2142 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2143 return key_senderror(so, m, EINVAL); 2144 } 2145 2146 sp->state = IPSEC_SPSTATE_DEAD; 2147 KEY_FREESP(&sp); 2148 2149 { 2150 struct mbuf *n, *nn; 2151 struct sadb_msg *newmsg; 2152 int off, len; 2153 2154 /* create new sadb_msg to reply. */ 2155 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2156 2157 MGETHDR(n, M_DONTWAIT, MT_DATA); 2158 if (n && len > MHLEN) { 2159 MCLGET(n, M_DONTWAIT); 2160 if ((n->m_flags & M_EXT) == 0) { 2161 m_freem(n); 2162 n = NULL; 2163 } 2164 } 2165 if (!n) 2166 return key_senderror(so, m, ENOBUFS); 2167 2168 n->m_len = len; 2169 n->m_next = NULL; 2170 off = 0; 2171 2172 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 2173 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2174 2175 IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)", 2176 off, len)); 2177 2178 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], 2179 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT); 2180 if (!n->m_next) { 2181 m_freem(n); 2182 return key_senderror(so, m, ENOBUFS); 2183 } 2184 2185 n->m_pkthdr.len = 0; 2186 for (nn = n; nn; nn = nn->m_next) 2187 n->m_pkthdr.len += nn->m_len; 2188 2189 newmsg = mtod(n, struct sadb_msg *); 2190 newmsg->sadb_msg_errno = 0; 2191 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2192 2193 m_freem(m); 2194 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2195 } 2196 } 2197 2198 /* 2199 * SADB_X_GET processing 2200 * receive 2201 * <base, policy(*)> 2202 * from the user(?), 2203 * and send, 2204 * <base, address(SD), policy> 2205 * to the ikmpd. 2206 * policy(*) including direction of policy. 2207 * 2208 * m will always be freed. 2209 */ 2210 static int 2211 key_spdget(so, m, mhp) 2212 struct socket *so; 2213 struct mbuf *m; 2214 const struct sadb_msghdr *mhp; 2215 { 2216 INIT_VNET_IPSEC(curvnet); 2217 u_int32_t id; 2218 struct secpolicy *sp; 2219 struct mbuf *n; 2220 2221 IPSEC_ASSERT(so != NULL, ("null socket")); 2222 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2223 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2224 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2225 2226 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2227 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2228 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2229 __func__)); 2230 return key_senderror(so, m, EINVAL); 2231 } 2232 2233 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2234 2235 /* Is there SP in SPD ? */ 2236 if ((sp = key_getspbyid(id)) == NULL) { 2237 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2238 return key_senderror(so, m, ENOENT); 2239 } 2240 2241 n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid); 2242 if (n != NULL) { 2243 m_freem(m); 2244 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2245 } else 2246 return key_senderror(so, m, ENOBUFS); 2247 } 2248 2249 /* 2250 * SADB_X_SPDACQUIRE processing. 2251 * Acquire policy and SA(s) for a *OUTBOUND* packet. 2252 * send 2253 * <base, policy(*)> 2254 * to KMD, and expect to receive 2255 * <base> with SADB_X_SPDACQUIRE if error occured, 2256 * or 2257 * <base, policy> 2258 * with SADB_X_SPDUPDATE from KMD by PF_KEY. 2259 * policy(*) is without policy requests. 2260 * 2261 * 0 : succeed 2262 * others: error number 2263 */ 2264 int 2265 key_spdacquire(sp) 2266 struct secpolicy *sp; 2267 { 2268 INIT_VNET_IPSEC(curvnet); 2269 struct mbuf *result = NULL, *m; 2270 struct secspacq *newspacq; 2271 2272 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2273 IPSEC_ASSERT(sp->req == NULL, ("policy exists")); 2274 IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC, 2275 ("policy not IPSEC %u", sp->policy)); 2276 2277 /* Get an entry to check whether sent message or not. */ 2278 newspacq = key_getspacq(&sp->spidx); 2279 if (newspacq != NULL) { 2280 if (V_key_blockacq_count < newspacq->count) { 2281 /* reset counter and do send message. */ 2282 newspacq->count = 0; 2283 } else { 2284 /* increment counter and do nothing. */ 2285 newspacq->count++; 2286 return 0; 2287 } 2288 SPACQ_UNLOCK(); 2289 } else { 2290 /* make new entry for blocking to send SADB_ACQUIRE. */ 2291 newspacq = key_newspacq(&sp->spidx); 2292 if (newspacq == NULL) 2293 return ENOBUFS; 2294 } 2295 2296 /* create new sadb_msg to reply. */ 2297 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); 2298 if (!m) 2299 return ENOBUFS; 2300 2301 result = m; 2302 2303 result->m_pkthdr.len = 0; 2304 for (m = result; m; m = m->m_next) 2305 result->m_pkthdr.len += m->m_len; 2306 2307 mtod(result, struct sadb_msg *)->sadb_msg_len = 2308 PFKEY_UNIT64(result->m_pkthdr.len); 2309 2310 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 2311 } 2312 2313 /* 2314 * SADB_SPDFLUSH processing 2315 * receive 2316 * <base> 2317 * from the user, and free all entries in secpctree. 2318 * and send, 2319 * <base> 2320 * to the user. 2321 * NOTE: what to do is only marking SADB_SASTATE_DEAD. 2322 * 2323 * m will always be freed. 2324 */ 2325 static int 2326 key_spdflush(so, m, mhp) 2327 struct socket *so; 2328 struct mbuf *m; 2329 const struct sadb_msghdr *mhp; 2330 { 2331 INIT_VNET_IPSEC(curvnet); 2332 struct sadb_msg *newmsg; 2333 struct secpolicy *sp; 2334 u_int dir; 2335 2336 IPSEC_ASSERT(so != NULL, ("null socket")); 2337 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2338 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2339 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2340 2341 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) 2342 return key_senderror(so, m, EINVAL); 2343 2344 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2345 SPTREE_LOCK(); 2346 LIST_FOREACH(sp, &V_sptree[dir], chain) 2347 sp->state = IPSEC_SPSTATE_DEAD; 2348 SPTREE_UNLOCK(); 2349 } 2350 2351 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 2352 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2353 return key_senderror(so, m, ENOBUFS); 2354 } 2355 2356 if (m->m_next) 2357 m_freem(m->m_next); 2358 m->m_next = NULL; 2359 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2360 newmsg = mtod(m, struct sadb_msg *); 2361 newmsg->sadb_msg_errno = 0; 2362 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 2363 2364 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 2365 } 2366 2367 /* 2368 * SADB_SPDDUMP processing 2369 * receive 2370 * <base> 2371 * from the user, and dump all SP leaves 2372 * and send, 2373 * <base> ..... 2374 * to the ikmpd. 2375 * 2376 * m will always be freed. 2377 */ 2378 static int 2379 key_spddump(so, m, mhp) 2380 struct socket *so; 2381 struct mbuf *m; 2382 const struct sadb_msghdr *mhp; 2383 { 2384 INIT_VNET_IPSEC(curvnet); 2385 struct secpolicy *sp; 2386 int cnt; 2387 u_int dir; 2388 struct mbuf *n; 2389 2390 IPSEC_ASSERT(so != NULL, ("null socket")); 2391 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2392 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2393 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2394 2395 /* search SPD entry and get buffer size. */ 2396 cnt = 0; 2397 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2398 LIST_FOREACH(sp, &V_sptree[dir], chain) { 2399 cnt++; 2400 } 2401 } 2402 2403 if (cnt == 0) 2404 return key_senderror(so, m, ENOENT); 2405 2406 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2407 LIST_FOREACH(sp, &V_sptree[dir], chain) { 2408 --cnt; 2409 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, 2410 mhp->msg->sadb_msg_pid); 2411 2412 if (n) 2413 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2414 } 2415 } 2416 2417 m_freem(m); 2418 return 0; 2419 } 2420 2421 static struct mbuf * 2422 key_setdumpsp(sp, type, seq, pid) 2423 struct secpolicy *sp; 2424 u_int8_t type; 2425 u_int32_t seq, pid; 2426 { 2427 struct mbuf *result = NULL, *m; 2428 struct seclifetime lt; 2429 2430 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt); 2431 if (!m) 2432 goto fail; 2433 result = m; 2434 2435 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2436 &sp->spidx.src.sa, sp->spidx.prefs, 2437 sp->spidx.ul_proto); 2438 if (!m) 2439 goto fail; 2440 m_cat(result, m); 2441 2442 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2443 &sp->spidx.dst.sa, sp->spidx.prefd, 2444 sp->spidx.ul_proto); 2445 if (!m) 2446 goto fail; 2447 m_cat(result, m); 2448 2449 m = key_sp2msg(sp); 2450 if (!m) 2451 goto fail; 2452 m_cat(result, m); 2453 2454 if(sp->lifetime){ 2455 lt.addtime=sp->created; 2456 lt.usetime= sp->lastused; 2457 m = key_setlifetime(<, SADB_EXT_LIFETIME_CURRENT); 2458 if (!m) 2459 goto fail; 2460 m_cat(result, m); 2461 2462 lt.addtime=sp->lifetime; 2463 lt.usetime= sp->validtime; 2464 m = key_setlifetime(<, SADB_EXT_LIFETIME_HARD); 2465 if (!m) 2466 goto fail; 2467 m_cat(result, m); 2468 } 2469 2470 if ((result->m_flags & M_PKTHDR) == 0) 2471 goto fail; 2472 2473 if (result->m_len < sizeof(struct sadb_msg)) { 2474 result = m_pullup(result, sizeof(struct sadb_msg)); 2475 if (result == NULL) 2476 goto fail; 2477 } 2478 2479 result->m_pkthdr.len = 0; 2480 for (m = result; m; m = m->m_next) 2481 result->m_pkthdr.len += m->m_len; 2482 2483 mtod(result, struct sadb_msg *)->sadb_msg_len = 2484 PFKEY_UNIT64(result->m_pkthdr.len); 2485 2486 return result; 2487 2488 fail: 2489 m_freem(result); 2490 return NULL; 2491 } 2492 2493 /* 2494 * get PFKEY message length for security policy and request. 2495 */ 2496 static u_int 2497 key_getspreqmsglen(sp) 2498 struct secpolicy *sp; 2499 { 2500 u_int tlen; 2501 2502 tlen = sizeof(struct sadb_x_policy); 2503 2504 /* if is the policy for ipsec ? */ 2505 if (sp->policy != IPSEC_POLICY_IPSEC) 2506 return tlen; 2507 2508 /* get length of ipsec requests */ 2509 { 2510 struct ipsecrequest *isr; 2511 int len; 2512 2513 for (isr = sp->req; isr != NULL; isr = isr->next) { 2514 len = sizeof(struct sadb_x_ipsecrequest) 2515 + isr->saidx.src.sa.sa_len 2516 + isr->saidx.dst.sa.sa_len; 2517 2518 tlen += PFKEY_ALIGN8(len); 2519 } 2520 } 2521 2522 return tlen; 2523 } 2524 2525 /* 2526 * SADB_SPDEXPIRE processing 2527 * send 2528 * <base, address(SD), lifetime(CH), policy> 2529 * to KMD by PF_KEY. 2530 * 2531 * OUT: 0 : succeed 2532 * others : error number 2533 */ 2534 static int 2535 key_spdexpire(sp) 2536 struct secpolicy *sp; 2537 { 2538 struct mbuf *result = NULL, *m; 2539 int len; 2540 int error = -1; 2541 struct sadb_lifetime *lt; 2542 2543 /* XXX: Why do we lock ? */ 2544 2545 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2546 2547 /* set msg header */ 2548 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0); 2549 if (!m) { 2550 error = ENOBUFS; 2551 goto fail; 2552 } 2553 result = m; 2554 2555 /* create lifetime extension (current and hard) */ 2556 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 2557 m = key_alloc_mbuf(len); 2558 if (!m || m->m_next) { /*XXX*/ 2559 if (m) 2560 m_freem(m); 2561 error = ENOBUFS; 2562 goto fail; 2563 } 2564 bzero(mtod(m, caddr_t), len); 2565 lt = mtod(m, struct sadb_lifetime *); 2566 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2567 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 2568 lt->sadb_lifetime_allocations = 0; 2569 lt->sadb_lifetime_bytes = 0; 2570 lt->sadb_lifetime_addtime = sp->created; 2571 lt->sadb_lifetime_usetime = sp->lastused; 2572 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 2573 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2574 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 2575 lt->sadb_lifetime_allocations = 0; 2576 lt->sadb_lifetime_bytes = 0; 2577 lt->sadb_lifetime_addtime = sp->lifetime; 2578 lt->sadb_lifetime_usetime = sp->validtime; 2579 m_cat(result, m); 2580 2581 /* set sadb_address for source */ 2582 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2583 &sp->spidx.src.sa, 2584 sp->spidx.prefs, sp->spidx.ul_proto); 2585 if (!m) { 2586 error = ENOBUFS; 2587 goto fail; 2588 } 2589 m_cat(result, m); 2590 2591 /* set sadb_address for destination */ 2592 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2593 &sp->spidx.dst.sa, 2594 sp->spidx.prefd, sp->spidx.ul_proto); 2595 if (!m) { 2596 error = ENOBUFS; 2597 goto fail; 2598 } 2599 m_cat(result, m); 2600 2601 /* set secpolicy */ 2602 m = key_sp2msg(sp); 2603 if (!m) { 2604 error = ENOBUFS; 2605 goto fail; 2606 } 2607 m_cat(result, m); 2608 2609 if ((result->m_flags & M_PKTHDR) == 0) { 2610 error = EINVAL; 2611 goto fail; 2612 } 2613 2614 if (result->m_len < sizeof(struct sadb_msg)) { 2615 result = m_pullup(result, sizeof(struct sadb_msg)); 2616 if (result == NULL) { 2617 error = ENOBUFS; 2618 goto fail; 2619 } 2620 } 2621 2622 result->m_pkthdr.len = 0; 2623 for (m = result; m; m = m->m_next) 2624 result->m_pkthdr.len += m->m_len; 2625 2626 mtod(result, struct sadb_msg *)->sadb_msg_len = 2627 PFKEY_UNIT64(result->m_pkthdr.len); 2628 2629 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 2630 2631 fail: 2632 if (result) 2633 m_freem(result); 2634 return error; 2635 } 2636 2637 /* %%% SAD management */ 2638 /* 2639 * allocating a memory for new SA head, and copy from the values of mhp. 2640 * OUT: NULL : failure due to the lack of memory. 2641 * others : pointer to new SA head. 2642 */ 2643 static struct secashead * 2644 key_newsah(saidx) 2645 struct secasindex *saidx; 2646 { 2647 INIT_VNET_IPSEC(curvnet); 2648 struct secashead *newsah; 2649 2650 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 2651 2652 newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO); 2653 if (newsah != NULL) { 2654 int i; 2655 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++) 2656 LIST_INIT(&newsah->savtree[i]); 2657 newsah->saidx = *saidx; 2658 2659 /* add to saidxtree */ 2660 newsah->state = SADB_SASTATE_MATURE; 2661 2662 SAHTREE_LOCK(); 2663 LIST_INSERT_HEAD(&V_sahtree, newsah, chain); 2664 SAHTREE_UNLOCK(); 2665 } 2666 return(newsah); 2667 } 2668 2669 /* 2670 * delete SA index and all SA registerd. 2671 */ 2672 static void 2673 key_delsah(sah) 2674 struct secashead *sah; 2675 { 2676 INIT_VNET_IPSEC(curvnet); 2677 struct secasvar *sav, *nextsav; 2678 u_int stateidx; 2679 int zombie = 0; 2680 2681 IPSEC_ASSERT(sah != NULL, ("NULL sah")); 2682 SAHTREE_LOCK_ASSERT(); 2683 2684 /* searching all SA registerd in the secindex. */ 2685 for (stateidx = 0; 2686 stateidx < _ARRAYLEN(saorder_state_any); 2687 stateidx++) { 2688 u_int state = saorder_state_any[stateidx]; 2689 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) { 2690 if (sav->refcnt == 0) { 2691 /* sanity check */ 2692 KEY_CHKSASTATE(state, sav->state, __func__); 2693 KEY_FREESAV(&sav); 2694 } else { 2695 /* give up to delete this sa */ 2696 zombie++; 2697 } 2698 } 2699 } 2700 if (!zombie) { /* delete only if there are savs */ 2701 /* remove from tree of SA index */ 2702 if (__LIST_CHAINED(sah)) 2703 LIST_REMOVE(sah, chain); 2704 if (sah->sa_route.ro_rt) { 2705 RTFREE(sah->sa_route.ro_rt); 2706 sah->sa_route.ro_rt = (struct rtentry *)NULL; 2707 } 2708 free(sah, M_IPSEC_SAH); 2709 } 2710 } 2711 2712 /* 2713 * allocating a new SA with LARVAL state. key_add() and key_getspi() call, 2714 * and copy the values of mhp into new buffer. 2715 * When SAD message type is GETSPI: 2716 * to set sequence number from acq_seq++, 2717 * to set zero to SPI. 2718 * not to call key_setsava(). 2719 * OUT: NULL : fail 2720 * others : pointer to new secasvar. 2721 * 2722 * does not modify mbuf. does not free mbuf on error. 2723 */ 2724 static struct secasvar * 2725 key_newsav(m, mhp, sah, errp, where, tag) 2726 struct mbuf *m; 2727 const struct sadb_msghdr *mhp; 2728 struct secashead *sah; 2729 int *errp; 2730 const char* where; 2731 int tag; 2732 { 2733 INIT_VNET_IPSEC(curvnet); 2734 struct secasvar *newsav; 2735 const struct sadb_sa *xsa; 2736 2737 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2738 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2739 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2740 IPSEC_ASSERT(sah != NULL, ("null secashead")); 2741 2742 newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO); 2743 if (newsav == NULL) { 2744 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2745 *errp = ENOBUFS; 2746 goto done; 2747 } 2748 2749 switch (mhp->msg->sadb_msg_type) { 2750 case SADB_GETSPI: 2751 newsav->spi = 0; 2752 2753 #ifdef IPSEC_DOSEQCHECK 2754 /* sync sequence number */ 2755 if (mhp->msg->sadb_msg_seq == 0) 2756 newsav->seq = 2757 (V_acq_seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq)); 2758 else 2759 #endif 2760 newsav->seq = mhp->msg->sadb_msg_seq; 2761 break; 2762 2763 case SADB_ADD: 2764 /* sanity check */ 2765 if (mhp->ext[SADB_EXT_SA] == NULL) { 2766 free(newsav, M_IPSEC_SA); 2767 newsav = NULL; 2768 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2769 __func__)); 2770 *errp = EINVAL; 2771 goto done; 2772 } 2773 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 2774 newsav->spi = xsa->sadb_sa_spi; 2775 newsav->seq = mhp->msg->sadb_msg_seq; 2776 break; 2777 default: 2778 free(newsav, M_IPSEC_SA); 2779 newsav = NULL; 2780 *errp = EINVAL; 2781 goto done; 2782 } 2783 2784 2785 /* copy sav values */ 2786 if (mhp->msg->sadb_msg_type != SADB_GETSPI) { 2787 *errp = key_setsaval(newsav, m, mhp); 2788 if (*errp) { 2789 free(newsav, M_IPSEC_SA); 2790 newsav = NULL; 2791 goto done; 2792 } 2793 } 2794 2795 SECASVAR_LOCK_INIT(newsav); 2796 2797 /* reset created */ 2798 newsav->created = time_second; 2799 newsav->pid = mhp->msg->sadb_msg_pid; 2800 2801 /* add to satree */ 2802 newsav->sah = sah; 2803 sa_initref(newsav); 2804 newsav->state = SADB_SASTATE_LARVAL; 2805 2806 /* XXX locking??? */ 2807 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav, 2808 secasvar, chain); 2809 done: 2810 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 2811 printf("DP %s from %s:%u return SP:%p\n", __func__, 2812 where, tag, newsav)); 2813 2814 return newsav; 2815 } 2816 2817 /* 2818 * free() SA variable entry. 2819 */ 2820 static void 2821 key_cleansav(struct secasvar *sav) 2822 { 2823 /* 2824 * Cleanup xform state. Note that zeroize'ing causes the 2825 * keys to be cleared; otherwise we must do it ourself. 2826 */ 2827 if (sav->tdb_xform != NULL) { 2828 sav->tdb_xform->xf_zeroize(sav); 2829 sav->tdb_xform = NULL; 2830 } else { 2831 KASSERT(sav->iv == NULL, ("iv but no xform")); 2832 if (sav->key_auth != NULL) 2833 bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth)); 2834 if (sav->key_enc != NULL) 2835 bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc)); 2836 } 2837 if (sav->key_auth != NULL) { 2838 if (sav->key_auth->key_data != NULL) 2839 free(sav->key_auth->key_data, M_IPSEC_MISC); 2840 free(sav->key_auth, M_IPSEC_MISC); 2841 sav->key_auth = NULL; 2842 } 2843 if (sav->key_enc != NULL) { 2844 if (sav->key_enc->key_data != NULL) 2845 free(sav->key_enc->key_data, M_IPSEC_MISC); 2846 free(sav->key_enc, M_IPSEC_MISC); 2847 sav->key_enc = NULL; 2848 } 2849 if (sav->sched) { 2850 bzero(sav->sched, sav->schedlen); 2851 free(sav->sched, M_IPSEC_MISC); 2852 sav->sched = NULL; 2853 } 2854 if (sav->replay != NULL) { 2855 free(sav->replay, M_IPSEC_MISC); 2856 sav->replay = NULL; 2857 } 2858 if (sav->lft_c != NULL) { 2859 free(sav->lft_c, M_IPSEC_MISC); 2860 sav->lft_c = NULL; 2861 } 2862 if (sav->lft_h != NULL) { 2863 free(sav->lft_h, M_IPSEC_MISC); 2864 sav->lft_h = NULL; 2865 } 2866 if (sav->lft_s != NULL) { 2867 free(sav->lft_s, M_IPSEC_MISC); 2868 sav->lft_s = NULL; 2869 } 2870 } 2871 2872 /* 2873 * free() SA variable entry. 2874 */ 2875 static void 2876 key_delsav(sav) 2877 struct secasvar *sav; 2878 { 2879 IPSEC_ASSERT(sav != NULL, ("null sav")); 2880 IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt)); 2881 2882 /* remove from SA header */ 2883 if (__LIST_CHAINED(sav)) 2884 LIST_REMOVE(sav, chain); 2885 key_cleansav(sav); 2886 SECASVAR_LOCK_DESTROY(sav); 2887 free(sav, M_IPSEC_SA); 2888 } 2889 2890 /* 2891 * search SAD. 2892 * OUT: 2893 * NULL : not found 2894 * others : found, pointer to a SA. 2895 */ 2896 static struct secashead * 2897 key_getsah(saidx) 2898 struct secasindex *saidx; 2899 { 2900 INIT_VNET_IPSEC(curvnet); 2901 struct secashead *sah; 2902 2903 SAHTREE_LOCK(); 2904 LIST_FOREACH(sah, &V_sahtree, chain) { 2905 if (sah->state == SADB_SASTATE_DEAD) 2906 continue; 2907 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID)) 2908 break; 2909 } 2910 SAHTREE_UNLOCK(); 2911 2912 return sah; 2913 } 2914 2915 /* 2916 * check not to be duplicated SPI. 2917 * NOTE: this function is too slow due to searching all SAD. 2918 * OUT: 2919 * NULL : not found 2920 * others : found, pointer to a SA. 2921 */ 2922 static struct secasvar * 2923 key_checkspidup(saidx, spi) 2924 struct secasindex *saidx; 2925 u_int32_t spi; 2926 { 2927 INIT_VNET_IPSEC(curvnet); 2928 struct secashead *sah; 2929 struct secasvar *sav; 2930 2931 /* check address family */ 2932 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) { 2933 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 2934 __func__)); 2935 return NULL; 2936 } 2937 2938 sav = NULL; 2939 /* check all SAD */ 2940 SAHTREE_LOCK(); 2941 LIST_FOREACH(sah, &V_sahtree, chain) { 2942 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst)) 2943 continue; 2944 sav = key_getsavbyspi(sah, spi); 2945 if (sav != NULL) 2946 break; 2947 } 2948 SAHTREE_UNLOCK(); 2949 2950 return sav; 2951 } 2952 2953 /* 2954 * search SAD litmited alive SA, protocol, SPI. 2955 * OUT: 2956 * NULL : not found 2957 * others : found, pointer to a SA. 2958 */ 2959 static struct secasvar * 2960 key_getsavbyspi(sah, spi) 2961 struct secashead *sah; 2962 u_int32_t spi; 2963 { 2964 INIT_VNET_IPSEC(curvnet); 2965 struct secasvar *sav; 2966 u_int stateidx, state; 2967 2968 sav = NULL; 2969 SAHTREE_LOCK_ASSERT(); 2970 /* search all status */ 2971 for (stateidx = 0; 2972 stateidx < _ARRAYLEN(saorder_state_alive); 2973 stateidx++) { 2974 2975 state = saorder_state_alive[stateidx]; 2976 LIST_FOREACH(sav, &sah->savtree[state], chain) { 2977 2978 /* sanity check */ 2979 if (sav->state != state) { 2980 ipseclog((LOG_DEBUG, "%s: " 2981 "invalid sav->state (queue: %d SA: %d)\n", 2982 __func__, state, sav->state)); 2983 continue; 2984 } 2985 2986 if (sav->spi == spi) 2987 return sav; 2988 } 2989 } 2990 2991 return NULL; 2992 } 2993 2994 /* 2995 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. 2996 * You must update these if need. 2997 * OUT: 0: success. 2998 * !0: failure. 2999 * 3000 * does not modify mbuf. does not free mbuf on error. 3001 */ 3002 static int 3003 key_setsaval(sav, m, mhp) 3004 struct secasvar *sav; 3005 struct mbuf *m; 3006 const struct sadb_msghdr *mhp; 3007 { 3008 INIT_VNET_IPSEC(curvnet); 3009 int error = 0; 3010 3011 IPSEC_ASSERT(m != NULL, ("null mbuf")); 3012 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 3013 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 3014 3015 /* initialization */ 3016 sav->replay = NULL; 3017 sav->key_auth = NULL; 3018 sav->key_enc = NULL; 3019 sav->sched = NULL; 3020 sav->schedlen = 0; 3021 sav->iv = NULL; 3022 sav->lft_c = NULL; 3023 sav->lft_h = NULL; 3024 sav->lft_s = NULL; 3025 sav->tdb_xform = NULL; /* transform */ 3026 sav->tdb_encalgxform = NULL; /* encoding algorithm */ 3027 sav->tdb_authalgxform = NULL; /* authentication algorithm */ 3028 sav->tdb_compalgxform = NULL; /* compression algorithm */ 3029 3030 /* SA */ 3031 if (mhp->ext[SADB_EXT_SA] != NULL) { 3032 const struct sadb_sa *sa0; 3033 3034 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 3035 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { 3036 error = EINVAL; 3037 goto fail; 3038 } 3039 3040 sav->alg_auth = sa0->sadb_sa_auth; 3041 sav->alg_enc = sa0->sadb_sa_encrypt; 3042 sav->flags = sa0->sadb_sa_flags; 3043 3044 /* replay window */ 3045 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { 3046 sav->replay = (struct secreplay *) 3047 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO); 3048 if (sav->replay == NULL) { 3049 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3050 __func__)); 3051 error = ENOBUFS; 3052 goto fail; 3053 } 3054 if (sa0->sadb_sa_replay != 0) 3055 sav->replay->bitmap = (caddr_t)(sav->replay+1); 3056 sav->replay->wsize = sa0->sadb_sa_replay; 3057 } 3058 } 3059 3060 /* Authentication keys */ 3061 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { 3062 const struct sadb_key *key0; 3063 int len; 3064 3065 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH]; 3066 len = mhp->extlen[SADB_EXT_KEY_AUTH]; 3067 3068 error = 0; 3069 if (len < sizeof(*key0)) { 3070 error = EINVAL; 3071 goto fail; 3072 } 3073 switch (mhp->msg->sadb_msg_satype) { 3074 case SADB_SATYPE_AH: 3075 case SADB_SATYPE_ESP: 3076 case SADB_X_SATYPE_TCPSIGNATURE: 3077 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3078 sav->alg_auth != SADB_X_AALG_NULL) 3079 error = EINVAL; 3080 break; 3081 case SADB_X_SATYPE_IPCOMP: 3082 default: 3083 error = EINVAL; 3084 break; 3085 } 3086 if (error) { 3087 ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n", 3088 __func__)); 3089 goto fail; 3090 } 3091 3092 sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len, 3093 M_IPSEC_MISC); 3094 if (sav->key_auth == NULL ) { 3095 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3096 __func__)); 3097 error = ENOBUFS; 3098 goto fail; 3099 } 3100 } 3101 3102 /* Encryption key */ 3103 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { 3104 const struct sadb_key *key0; 3105 int len; 3106 3107 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT]; 3108 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; 3109 3110 error = 0; 3111 if (len < sizeof(*key0)) { 3112 error = EINVAL; 3113 goto fail; 3114 } 3115 switch (mhp->msg->sadb_msg_satype) { 3116 case SADB_SATYPE_ESP: 3117 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3118 sav->alg_enc != SADB_EALG_NULL) { 3119 error = EINVAL; 3120 break; 3121 } 3122 sav->key_enc = (struct seckey *)key_dup_keymsg(key0, 3123 len, 3124 M_IPSEC_MISC); 3125 if (sav->key_enc == NULL) { 3126 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3127 __func__)); 3128 error = ENOBUFS; 3129 goto fail; 3130 } 3131 break; 3132 case SADB_X_SATYPE_IPCOMP: 3133 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) 3134 error = EINVAL; 3135 sav->key_enc = NULL; /*just in case*/ 3136 break; 3137 case SADB_SATYPE_AH: 3138 case SADB_X_SATYPE_TCPSIGNATURE: 3139 default: 3140 error = EINVAL; 3141 break; 3142 } 3143 if (error) { 3144 ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n", 3145 __func__)); 3146 goto fail; 3147 } 3148 } 3149 3150 /* set iv */ 3151 sav->ivlen = 0; 3152 3153 switch (mhp->msg->sadb_msg_satype) { 3154 case SADB_SATYPE_AH: 3155 error = xform_init(sav, XF_AH); 3156 break; 3157 case SADB_SATYPE_ESP: 3158 error = xform_init(sav, XF_ESP); 3159 break; 3160 case SADB_X_SATYPE_IPCOMP: 3161 error = xform_init(sav, XF_IPCOMP); 3162 break; 3163 case SADB_X_SATYPE_TCPSIGNATURE: 3164 error = xform_init(sav, XF_TCPSIGNATURE); 3165 break; 3166 } 3167 if (error) { 3168 ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n", 3169 __func__, mhp->msg->sadb_msg_satype)); 3170 goto fail; 3171 } 3172 3173 /* reset created */ 3174 sav->created = time_second; 3175 3176 /* make lifetime for CURRENT */ 3177 sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT); 3178 if (sav->lft_c == NULL) { 3179 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3180 error = ENOBUFS; 3181 goto fail; 3182 } 3183 3184 sav->lft_c->allocations = 0; 3185 sav->lft_c->bytes = 0; 3186 sav->lft_c->addtime = time_second; 3187 sav->lft_c->usetime = 0; 3188 3189 /* lifetimes for HARD and SOFT */ 3190 { 3191 const struct sadb_lifetime *lft0; 3192 3193 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 3194 if (lft0 != NULL) { 3195 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { 3196 error = EINVAL; 3197 goto fail; 3198 } 3199 sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3200 if (sav->lft_h == NULL) { 3201 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3202 error = ENOBUFS; 3203 goto fail; 3204 } 3205 /* to be initialize ? */ 3206 } 3207 3208 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT]; 3209 if (lft0 != NULL) { 3210 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { 3211 error = EINVAL; 3212 goto fail; 3213 } 3214 sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3215 if (sav->lft_s == NULL) { 3216 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3217 error = ENOBUFS; 3218 goto fail; 3219 } 3220 /* to be initialize ? */ 3221 } 3222 } 3223 3224 return 0; 3225 3226 fail: 3227 /* initialization */ 3228 key_cleansav(sav); 3229 3230 return error; 3231 } 3232 3233 /* 3234 * validation with a secasvar entry, and set SADB_SATYPE_MATURE. 3235 * OUT: 0: valid 3236 * other: errno 3237 */ 3238 static int 3239 key_mature(struct secasvar *sav) 3240 { 3241 INIT_VNET_IPSEC(curvnet); 3242 int error; 3243 3244 /* check SPI value */ 3245 switch (sav->sah->saidx.proto) { 3246 case IPPROTO_ESP: 3247 case IPPROTO_AH: 3248 /* 3249 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values 3250 * 1-255 reserved by IANA for future use, 3251 * 0 for implementation specific, local use. 3252 */ 3253 if (ntohl(sav->spi) <= 255) { 3254 ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n", 3255 __func__, (u_int32_t)ntohl(sav->spi))); 3256 return EINVAL; 3257 } 3258 break; 3259 } 3260 3261 /* check satype */ 3262 switch (sav->sah->saidx.proto) { 3263 case IPPROTO_ESP: 3264 /* check flags */ 3265 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) == 3266 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) { 3267 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3268 "given to old-esp.\n", __func__)); 3269 return EINVAL; 3270 } 3271 error = xform_init(sav, XF_ESP); 3272 break; 3273 case IPPROTO_AH: 3274 /* check flags */ 3275 if (sav->flags & SADB_X_EXT_DERIV) { 3276 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3277 "given to AH SA.\n", __func__)); 3278 return EINVAL; 3279 } 3280 if (sav->alg_enc != SADB_EALG_NONE) { 3281 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3282 "mismated.\n", __func__)); 3283 return(EINVAL); 3284 } 3285 error = xform_init(sav, XF_AH); 3286 break; 3287 case IPPROTO_IPCOMP: 3288 if (sav->alg_auth != SADB_AALG_NONE) { 3289 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3290 "mismated.\n", __func__)); 3291 return(EINVAL); 3292 } 3293 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 3294 && ntohl(sav->spi) >= 0x10000) { 3295 ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n", 3296 __func__)); 3297 return(EINVAL); 3298 } 3299 error = xform_init(sav, XF_IPCOMP); 3300 break; 3301 case IPPROTO_TCP: 3302 if (sav->alg_enc != SADB_EALG_NONE) { 3303 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3304 "mismated.\n", __func__)); 3305 return(EINVAL); 3306 } 3307 error = xform_init(sav, XF_TCPSIGNATURE); 3308 break; 3309 default: 3310 ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__)); 3311 error = EPROTONOSUPPORT; 3312 break; 3313 } 3314 if (error == 0) { 3315 SAHTREE_LOCK(); 3316 key_sa_chgstate(sav, SADB_SASTATE_MATURE); 3317 SAHTREE_UNLOCK(); 3318 } 3319 return (error); 3320 } 3321 3322 /* 3323 * subroutine for SADB_GET and SADB_DUMP. 3324 */ 3325 static struct mbuf * 3326 key_setdumpsa(sav, type, satype, seq, pid) 3327 struct secasvar *sav; 3328 u_int8_t type, satype; 3329 u_int32_t seq, pid; 3330 { 3331 struct mbuf *result = NULL, *tres = NULL, *m; 3332 int i; 3333 int dumporder[] = { 3334 SADB_EXT_SA, SADB_X_EXT_SA2, 3335 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 3336 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, 3337 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, 3338 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, 3339 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, 3340 }; 3341 3342 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt); 3343 if (m == NULL) 3344 goto fail; 3345 result = m; 3346 3347 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) { 3348 m = NULL; 3349 switch (dumporder[i]) { 3350 case SADB_EXT_SA: 3351 m = key_setsadbsa(sav); 3352 if (!m) 3353 goto fail; 3354 break; 3355 3356 case SADB_X_EXT_SA2: 3357 m = key_setsadbxsa2(sav->sah->saidx.mode, 3358 sav->replay ? sav->replay->count : 0, 3359 sav->sah->saidx.reqid); 3360 if (!m) 3361 goto fail; 3362 break; 3363 3364 case SADB_EXT_ADDRESS_SRC: 3365 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3366 &sav->sah->saidx.src.sa, 3367 FULLMASK, IPSEC_ULPROTO_ANY); 3368 if (!m) 3369 goto fail; 3370 break; 3371 3372 case SADB_EXT_ADDRESS_DST: 3373 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3374 &sav->sah->saidx.dst.sa, 3375 FULLMASK, IPSEC_ULPROTO_ANY); 3376 if (!m) 3377 goto fail; 3378 break; 3379 3380 case SADB_EXT_KEY_AUTH: 3381 if (!sav->key_auth) 3382 continue; 3383 m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH); 3384 if (!m) 3385 goto fail; 3386 break; 3387 3388 case SADB_EXT_KEY_ENCRYPT: 3389 if (!sav->key_enc) 3390 continue; 3391 m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT); 3392 if (!m) 3393 goto fail; 3394 break; 3395 3396 case SADB_EXT_LIFETIME_CURRENT: 3397 if (!sav->lft_c) 3398 continue; 3399 m = key_setlifetime(sav->lft_c, 3400 SADB_EXT_LIFETIME_CURRENT); 3401 if (!m) 3402 goto fail; 3403 break; 3404 3405 case SADB_EXT_LIFETIME_HARD: 3406 if (!sav->lft_h) 3407 continue; 3408 m = key_setlifetime(sav->lft_h, 3409 SADB_EXT_LIFETIME_HARD); 3410 if (!m) 3411 goto fail; 3412 break; 3413 3414 case SADB_EXT_LIFETIME_SOFT: 3415 if (!sav->lft_s) 3416 continue; 3417 m = key_setlifetime(sav->lft_s, 3418 SADB_EXT_LIFETIME_SOFT); 3419 3420 if (!m) 3421 goto fail; 3422 break; 3423 3424 case SADB_EXT_ADDRESS_PROXY: 3425 case SADB_EXT_IDENTITY_SRC: 3426 case SADB_EXT_IDENTITY_DST: 3427 /* XXX: should we brought from SPD ? */ 3428 case SADB_EXT_SENSITIVITY: 3429 default: 3430 continue; 3431 } 3432 3433 if (!m) 3434 goto fail; 3435 if (tres) 3436 m_cat(m, tres); 3437 tres = m; 3438 3439 } 3440 3441 m_cat(result, tres); 3442 if (result->m_len < sizeof(struct sadb_msg)) { 3443 result = m_pullup(result, sizeof(struct sadb_msg)); 3444 if (result == NULL) 3445 goto fail; 3446 } 3447 3448 result->m_pkthdr.len = 0; 3449 for (m = result; m; m = m->m_next) 3450 result->m_pkthdr.len += m->m_len; 3451 3452 mtod(result, struct sadb_msg *)->sadb_msg_len = 3453 PFKEY_UNIT64(result->m_pkthdr.len); 3454 3455 return result; 3456 3457 fail: 3458 m_freem(result); 3459 m_freem(tres); 3460 return NULL; 3461 } 3462 3463 /* 3464 * set data into sadb_msg. 3465 */ 3466 static struct mbuf * 3467 key_setsadbmsg(type, tlen, satype, seq, pid, reserved) 3468 u_int8_t type, satype; 3469 u_int16_t tlen; 3470 u_int32_t seq; 3471 pid_t pid; 3472 u_int16_t reserved; 3473 { 3474 struct mbuf *m; 3475 struct sadb_msg *p; 3476 int len; 3477 3478 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 3479 if (len > MCLBYTES) 3480 return NULL; 3481 MGETHDR(m, M_DONTWAIT, MT_DATA); 3482 if (m && len > MHLEN) { 3483 MCLGET(m, M_DONTWAIT); 3484 if ((m->m_flags & M_EXT) == 0) { 3485 m_freem(m); 3486 m = NULL; 3487 } 3488 } 3489 if (!m) 3490 return NULL; 3491 m->m_pkthdr.len = m->m_len = len; 3492 m->m_next = NULL; 3493 3494 p = mtod(m, struct sadb_msg *); 3495 3496 bzero(p, len); 3497 p->sadb_msg_version = PF_KEY_V2; 3498 p->sadb_msg_type = type; 3499 p->sadb_msg_errno = 0; 3500 p->sadb_msg_satype = satype; 3501 p->sadb_msg_len = PFKEY_UNIT64(tlen); 3502 p->sadb_msg_reserved = reserved; 3503 p->sadb_msg_seq = seq; 3504 p->sadb_msg_pid = (u_int32_t)pid; 3505 3506 return m; 3507 } 3508 3509 /* 3510 * copy secasvar data into sadb_address. 3511 */ 3512 static struct mbuf * 3513 key_setsadbsa(sav) 3514 struct secasvar *sav; 3515 { 3516 struct mbuf *m; 3517 struct sadb_sa *p; 3518 int len; 3519 3520 len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); 3521 m = key_alloc_mbuf(len); 3522 if (!m || m->m_next) { /*XXX*/ 3523 if (m) 3524 m_freem(m); 3525 return NULL; 3526 } 3527 3528 p = mtod(m, struct sadb_sa *); 3529 3530 bzero(p, len); 3531 p->sadb_sa_len = PFKEY_UNIT64(len); 3532 p->sadb_sa_exttype = SADB_EXT_SA; 3533 p->sadb_sa_spi = sav->spi; 3534 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0); 3535 p->sadb_sa_state = sav->state; 3536 p->sadb_sa_auth = sav->alg_auth; 3537 p->sadb_sa_encrypt = sav->alg_enc; 3538 p->sadb_sa_flags = sav->flags; 3539 3540 return m; 3541 } 3542 3543 /* 3544 * set data into sadb_address. 3545 */ 3546 static struct mbuf * 3547 key_setsadbaddr(exttype, saddr, prefixlen, ul_proto) 3548 u_int16_t exttype; 3549 const struct sockaddr *saddr; 3550 u_int8_t prefixlen; 3551 u_int16_t ul_proto; 3552 { 3553 struct mbuf *m; 3554 struct sadb_address *p; 3555 size_t len; 3556 3557 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + 3558 PFKEY_ALIGN8(saddr->sa_len); 3559 m = key_alloc_mbuf(len); 3560 if (!m || m->m_next) { /*XXX*/ 3561 if (m) 3562 m_freem(m); 3563 return NULL; 3564 } 3565 3566 p = mtod(m, struct sadb_address *); 3567 3568 bzero(p, len); 3569 p->sadb_address_len = PFKEY_UNIT64(len); 3570 p->sadb_address_exttype = exttype; 3571 p->sadb_address_proto = ul_proto; 3572 if (prefixlen == FULLMASK) { 3573 switch (saddr->sa_family) { 3574 case AF_INET: 3575 prefixlen = sizeof(struct in_addr) << 3; 3576 break; 3577 case AF_INET6: 3578 prefixlen = sizeof(struct in6_addr) << 3; 3579 break; 3580 default: 3581 ; /*XXX*/ 3582 } 3583 } 3584 p->sadb_address_prefixlen = prefixlen; 3585 p->sadb_address_reserved = 0; 3586 3587 bcopy(saddr, 3588 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)), 3589 saddr->sa_len); 3590 3591 return m; 3592 } 3593 3594 /* 3595 * set data into sadb_x_sa2. 3596 */ 3597 static struct mbuf * 3598 key_setsadbxsa2(mode, seq, reqid) 3599 u_int8_t mode; 3600 u_int32_t seq, reqid; 3601 { 3602 struct mbuf *m; 3603 struct sadb_x_sa2 *p; 3604 size_t len; 3605 3606 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); 3607 m = key_alloc_mbuf(len); 3608 if (!m || m->m_next) { /*XXX*/ 3609 if (m) 3610 m_freem(m); 3611 return NULL; 3612 } 3613 3614 p = mtod(m, struct sadb_x_sa2 *); 3615 3616 bzero(p, len); 3617 p->sadb_x_sa2_len = PFKEY_UNIT64(len); 3618 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 3619 p->sadb_x_sa2_mode = mode; 3620 p->sadb_x_sa2_reserved1 = 0; 3621 p->sadb_x_sa2_reserved2 = 0; 3622 p->sadb_x_sa2_sequence = seq; 3623 p->sadb_x_sa2_reqid = reqid; 3624 3625 return m; 3626 } 3627 3628 /* 3629 * set data into sadb_x_policy 3630 */ 3631 static struct mbuf * 3632 key_setsadbxpolicy(type, dir, id) 3633 u_int16_t type; 3634 u_int8_t dir; 3635 u_int32_t id; 3636 { 3637 struct mbuf *m; 3638 struct sadb_x_policy *p; 3639 size_t len; 3640 3641 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); 3642 m = key_alloc_mbuf(len); 3643 if (!m || m->m_next) { /*XXX*/ 3644 if (m) 3645 m_freem(m); 3646 return NULL; 3647 } 3648 3649 p = mtod(m, struct sadb_x_policy *); 3650 3651 bzero(p, len); 3652 p->sadb_x_policy_len = PFKEY_UNIT64(len); 3653 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 3654 p->sadb_x_policy_type = type; 3655 p->sadb_x_policy_dir = dir; 3656 p->sadb_x_policy_id = id; 3657 3658 return m; 3659 } 3660 3661 /* %%% utilities */ 3662 /* Take a key message (sadb_key) from the socket and turn it into one 3663 * of the kernel's key structures (seckey). 3664 * 3665 * IN: pointer to the src 3666 * OUT: NULL no more memory 3667 */ 3668 struct seckey * 3669 key_dup_keymsg(const struct sadb_key *src, u_int len, 3670 struct malloc_type *type) 3671 { 3672 INIT_VNET_IPSEC(curvnet); 3673 struct seckey *dst; 3674 dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT); 3675 if (dst != NULL) { 3676 dst->bits = src->sadb_key_bits; 3677 dst->key_data = (char *)malloc(len, type, M_NOWAIT); 3678 if (dst->key_data != NULL) { 3679 bcopy((const char *)src + sizeof(struct sadb_key), 3680 dst->key_data, len); 3681 } else { 3682 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3683 __func__)); 3684 free(dst, type); 3685 dst = NULL; 3686 } 3687 } else { 3688 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3689 __func__)); 3690 3691 } 3692 return dst; 3693 } 3694 3695 /* Take a lifetime message (sadb_lifetime) passed in on a socket and 3696 * turn it into one of the kernel's lifetime structures (seclifetime). 3697 * 3698 * IN: pointer to the destination, source and malloc type 3699 * OUT: NULL, no more memory 3700 */ 3701 3702 static struct seclifetime * 3703 key_dup_lifemsg(const struct sadb_lifetime *src, 3704 struct malloc_type *type) 3705 { 3706 INIT_VNET_IPSEC(curvnet); 3707 struct seclifetime *dst = NULL; 3708 3709 dst = (struct seclifetime *)malloc(sizeof(struct seclifetime), 3710 type, M_NOWAIT); 3711 if (dst == NULL) { 3712 /* XXX counter */ 3713 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3714 } else { 3715 dst->allocations = src->sadb_lifetime_allocations; 3716 dst->bytes = src->sadb_lifetime_bytes; 3717 dst->addtime = src->sadb_lifetime_addtime; 3718 dst->usetime = src->sadb_lifetime_usetime; 3719 } 3720 return dst; 3721 } 3722 3723 /* compare my own address 3724 * OUT: 1: true, i.e. my address. 3725 * 0: false 3726 */ 3727 int 3728 key_ismyaddr(sa) 3729 struct sockaddr *sa; 3730 { 3731 #ifdef INET 3732 INIT_VNET_INET(curvnet); 3733 struct sockaddr_in *sin; 3734 struct in_ifaddr *ia; 3735 #endif 3736 3737 IPSEC_ASSERT(sa != NULL, ("null sockaddr")); 3738 3739 switch (sa->sa_family) { 3740 #ifdef INET 3741 case AF_INET: 3742 sin = (struct sockaddr_in *)sa; 3743 for (ia = V_in_ifaddrhead.tqh_first; ia; 3744 ia = ia->ia_link.tqe_next) 3745 { 3746 if (sin->sin_family == ia->ia_addr.sin_family && 3747 sin->sin_len == ia->ia_addr.sin_len && 3748 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr) 3749 { 3750 return 1; 3751 } 3752 } 3753 break; 3754 #endif 3755 #ifdef INET6 3756 case AF_INET6: 3757 return key_ismyaddr6((struct sockaddr_in6 *)sa); 3758 #endif 3759 } 3760 3761 return 0; 3762 } 3763 3764 #ifdef INET6 3765 /* 3766 * compare my own address for IPv6. 3767 * 1: ours 3768 * 0: other 3769 * NOTE: derived ip6_input() in KAME. This is necessary to modify more. 3770 */ 3771 #include <netinet6/in6_var.h> 3772 3773 static int 3774 key_ismyaddr6(sin6) 3775 struct sockaddr_in6 *sin6; 3776 { 3777 INIT_VNET_INET6(curvnet); 3778 struct in6_ifaddr *ia; 3779 struct in6_multi *in6m; 3780 3781 for (ia = V_in6_ifaddr; ia; ia = ia->ia_next) { 3782 if (key_sockaddrcmp((struct sockaddr *)&sin6, 3783 (struct sockaddr *)&ia->ia_addr, 0) == 0) 3784 return 1; 3785 3786 /* 3787 * XXX Multicast 3788 * XXX why do we care about multlicast here while we don't care 3789 * about IPv4 multicast?? 3790 * XXX scope 3791 */ 3792 in6m = NULL; 3793 IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m); 3794 if (in6m) 3795 return 1; 3796 } 3797 3798 /* loopback, just for safety */ 3799 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) 3800 return 1; 3801 3802 return 0; 3803 } 3804 #endif /*INET6*/ 3805 3806 /* 3807 * compare two secasindex structure. 3808 * flag can specify to compare 2 saidxes. 3809 * compare two secasindex structure without both mode and reqid. 3810 * don't compare port. 3811 * IN: 3812 * saidx0: source, it can be in SAD. 3813 * saidx1: object. 3814 * OUT: 3815 * 1 : equal 3816 * 0 : not equal 3817 */ 3818 static int 3819 key_cmpsaidx( 3820 const struct secasindex *saidx0, 3821 const struct secasindex *saidx1, 3822 int flag) 3823 { 3824 /* sanity */ 3825 if (saidx0 == NULL && saidx1 == NULL) 3826 return 1; 3827 3828 if (saidx0 == NULL || saidx1 == NULL) 3829 return 0; 3830 3831 if (saidx0->proto != saidx1->proto) 3832 return 0; 3833 3834 if (flag == CMP_EXACTLY) { 3835 if (saidx0->mode != saidx1->mode) 3836 return 0; 3837 if (saidx0->reqid != saidx1->reqid) 3838 return 0; 3839 if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 || 3840 bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0) 3841 return 0; 3842 } else { 3843 3844 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ 3845 if (flag == CMP_MODE_REQID 3846 ||flag == CMP_REQID) { 3847 /* 3848 * If reqid of SPD is non-zero, unique SA is required. 3849 * The result must be of same reqid in this case. 3850 */ 3851 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) 3852 return 0; 3853 } 3854 3855 if (flag == CMP_MODE_REQID) { 3856 if (saidx0->mode != IPSEC_MODE_ANY 3857 && saidx0->mode != saidx1->mode) 3858 return 0; 3859 } 3860 3861 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, 0) != 0) { 3862 return 0; 3863 } 3864 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, 0) != 0) { 3865 return 0; 3866 } 3867 } 3868 3869 return 1; 3870 } 3871 3872 /* 3873 * compare two secindex structure exactly. 3874 * IN: 3875 * spidx0: source, it is often in SPD. 3876 * spidx1: object, it is often from PFKEY message. 3877 * OUT: 3878 * 1 : equal 3879 * 0 : not equal 3880 */ 3881 static int 3882 key_cmpspidx_exactly( 3883 struct secpolicyindex *spidx0, 3884 struct secpolicyindex *spidx1) 3885 { 3886 /* sanity */ 3887 if (spidx0 == NULL && spidx1 == NULL) 3888 return 1; 3889 3890 if (spidx0 == NULL || spidx1 == NULL) 3891 return 0; 3892 3893 if (spidx0->prefs != spidx1->prefs 3894 || spidx0->prefd != spidx1->prefd 3895 || spidx0->ul_proto != spidx1->ul_proto) 3896 return 0; 3897 3898 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 && 3899 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0; 3900 } 3901 3902 /* 3903 * compare two secindex structure with mask. 3904 * IN: 3905 * spidx0: source, it is often in SPD. 3906 * spidx1: object, it is often from IP header. 3907 * OUT: 3908 * 1 : equal 3909 * 0 : not equal 3910 */ 3911 static int 3912 key_cmpspidx_withmask( 3913 struct secpolicyindex *spidx0, 3914 struct secpolicyindex *spidx1) 3915 { 3916 /* sanity */ 3917 if (spidx0 == NULL && spidx1 == NULL) 3918 return 1; 3919 3920 if (spidx0 == NULL || spidx1 == NULL) 3921 return 0; 3922 3923 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || 3924 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || 3925 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || 3926 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) 3927 return 0; 3928 3929 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ 3930 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY 3931 && spidx0->ul_proto != spidx1->ul_proto) 3932 return 0; 3933 3934 switch (spidx0->src.sa.sa_family) { 3935 case AF_INET: 3936 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY 3937 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) 3938 return 0; 3939 if (!key_bbcmp(&spidx0->src.sin.sin_addr, 3940 &spidx1->src.sin.sin_addr, spidx0->prefs)) 3941 return 0; 3942 break; 3943 case AF_INET6: 3944 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY 3945 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) 3946 return 0; 3947 /* 3948 * scope_id check. if sin6_scope_id is 0, we regard it 3949 * as a wildcard scope, which matches any scope zone ID. 3950 */ 3951 if (spidx0->src.sin6.sin6_scope_id && 3952 spidx1->src.sin6.sin6_scope_id && 3953 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) 3954 return 0; 3955 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr, 3956 &spidx1->src.sin6.sin6_addr, spidx0->prefs)) 3957 return 0; 3958 break; 3959 default: 3960 /* XXX */ 3961 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) 3962 return 0; 3963 break; 3964 } 3965 3966 switch (spidx0->dst.sa.sa_family) { 3967 case AF_INET: 3968 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY 3969 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) 3970 return 0; 3971 if (!key_bbcmp(&spidx0->dst.sin.sin_addr, 3972 &spidx1->dst.sin.sin_addr, spidx0->prefd)) 3973 return 0; 3974 break; 3975 case AF_INET6: 3976 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY 3977 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) 3978 return 0; 3979 /* 3980 * scope_id check. if sin6_scope_id is 0, we regard it 3981 * as a wildcard scope, which matches any scope zone ID. 3982 */ 3983 if (spidx0->dst.sin6.sin6_scope_id && 3984 spidx1->dst.sin6.sin6_scope_id && 3985 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) 3986 return 0; 3987 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr, 3988 &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) 3989 return 0; 3990 break; 3991 default: 3992 /* XXX */ 3993 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) 3994 return 0; 3995 break; 3996 } 3997 3998 /* XXX Do we check other field ? e.g. flowinfo */ 3999 4000 return 1; 4001 } 4002 4003 /* returns 0 on match */ 4004 static int 4005 key_sockaddrcmp( 4006 const struct sockaddr *sa1, 4007 const struct sockaddr *sa2, 4008 int port) 4009 { 4010 #ifdef satosin 4011 #undef satosin 4012 #endif 4013 #define satosin(s) ((const struct sockaddr_in *)s) 4014 #ifdef satosin6 4015 #undef satosin6 4016 #endif 4017 #define satosin6(s) ((const struct sockaddr_in6 *)s) 4018 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) 4019 return 1; 4020 4021 switch (sa1->sa_family) { 4022 case AF_INET: 4023 if (sa1->sa_len != sizeof(struct sockaddr_in)) 4024 return 1; 4025 if (satosin(sa1)->sin_addr.s_addr != 4026 satosin(sa2)->sin_addr.s_addr) { 4027 return 1; 4028 } 4029 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port) 4030 return 1; 4031 break; 4032 case AF_INET6: 4033 if (sa1->sa_len != sizeof(struct sockaddr_in6)) 4034 return 1; /*EINVAL*/ 4035 if (satosin6(sa1)->sin6_scope_id != 4036 satosin6(sa2)->sin6_scope_id) { 4037 return 1; 4038 } 4039 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr, 4040 &satosin6(sa2)->sin6_addr)) { 4041 return 1; 4042 } 4043 if (port && 4044 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) { 4045 return 1; 4046 } 4047 break; 4048 default: 4049 if (bcmp(sa1, sa2, sa1->sa_len) != 0) 4050 return 1; 4051 break; 4052 } 4053 4054 return 0; 4055 #undef satosin 4056 #undef satosin6 4057 } 4058 4059 /* 4060 * compare two buffers with mask. 4061 * IN: 4062 * addr1: source 4063 * addr2: object 4064 * bits: Number of bits to compare 4065 * OUT: 4066 * 1 : equal 4067 * 0 : not equal 4068 */ 4069 static int 4070 key_bbcmp(const void *a1, const void *a2, u_int bits) 4071 { 4072 const unsigned char *p1 = a1; 4073 const unsigned char *p2 = a2; 4074 4075 /* XXX: This could be considerably faster if we compare a word 4076 * at a time, but it is complicated on LSB Endian machines */ 4077 4078 /* Handle null pointers */ 4079 if (p1 == NULL || p2 == NULL) 4080 return (p1 == p2); 4081 4082 while (bits >= 8) { 4083 if (*p1++ != *p2++) 4084 return 0; 4085 bits -= 8; 4086 } 4087 4088 if (bits > 0) { 4089 u_int8_t mask = ~((1<<(8-bits))-1); 4090 if ((*p1 & mask) != (*p2 & mask)) 4091 return 0; 4092 } 4093 return 1; /* Match! */ 4094 } 4095 4096 static void 4097 key_flush_spd(time_t now) 4098 { 4099 INIT_VNET_IPSEC(curvnet); 4100 static u_int16_t sptree_scangen = 0; 4101 u_int16_t gen = sptree_scangen++; 4102 struct secpolicy *sp; 4103 u_int dir; 4104 4105 /* SPD */ 4106 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 4107 restart: 4108 SPTREE_LOCK(); 4109 LIST_FOREACH(sp, &V_sptree[dir], chain) { 4110 if (sp->scangen == gen) /* previously handled */ 4111 continue; 4112 sp->scangen = gen; 4113 if (sp->state == IPSEC_SPSTATE_DEAD) { 4114 /* NB: clean entries created by key_spdflush */ 4115 SPTREE_UNLOCK(); 4116 KEY_FREESP(&sp); 4117 goto restart; 4118 } 4119 if (sp->lifetime == 0 && sp->validtime == 0) 4120 continue; 4121 if ((sp->lifetime && now - sp->created > sp->lifetime) 4122 || (sp->validtime && now - sp->lastused > sp->validtime)) { 4123 sp->state = IPSEC_SPSTATE_DEAD; 4124 SPTREE_UNLOCK(); 4125 key_spdexpire(sp); 4126 KEY_FREESP(&sp); 4127 goto restart; 4128 } 4129 } 4130 SPTREE_UNLOCK(); 4131 } 4132 } 4133 4134 static void 4135 key_flush_sad(time_t now) 4136 { 4137 INIT_VNET_IPSEC(curvnet); 4138 struct secashead *sah, *nextsah; 4139 struct secasvar *sav, *nextsav; 4140 4141 /* SAD */ 4142 SAHTREE_LOCK(); 4143 LIST_FOREACH_SAFE(sah, &V_sahtree, chain, nextsah) { 4144 /* if sah has been dead, then delete it and process next sah. */ 4145 if (sah->state == SADB_SASTATE_DEAD) { 4146 key_delsah(sah); 4147 continue; 4148 } 4149 4150 /* if LARVAL entry doesn't become MATURE, delete it. */ 4151 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) { 4152 if (now - sav->created > V_key_larval_lifetime) 4153 KEY_FREESAV(&sav); 4154 } 4155 4156 /* 4157 * check MATURE entry to start to send expire message 4158 * whether or not. 4159 */ 4160 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) { 4161 /* we don't need to check. */ 4162 if (sav->lft_s == NULL) 4163 continue; 4164 4165 /* sanity check */ 4166 if (sav->lft_c == NULL) { 4167 ipseclog((LOG_DEBUG,"%s: there is no CURRENT " 4168 "time, why?\n", __func__)); 4169 continue; 4170 } 4171 4172 /* check SOFT lifetime */ 4173 if (sav->lft_s->addtime != 0 && 4174 now - sav->created > sav->lft_s->addtime) { 4175 /* 4176 * check SA to be used whether or not. 4177 * when SA hasn't been used, delete it. 4178 */ 4179 if (sav->lft_c->usetime == 0) { 4180 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4181 KEY_FREESAV(&sav); 4182 } else { 4183 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4184 /* 4185 * XXX If we keep to send expire 4186 * message in the status of 4187 * DYING. Do remove below code. 4188 */ 4189 key_expire(sav); 4190 } 4191 } 4192 /* check SOFT lifetime by bytes */ 4193 /* 4194 * XXX I don't know the way to delete this SA 4195 * when new SA is installed. Caution when it's 4196 * installed too big lifetime by time. 4197 */ 4198 else if (sav->lft_s->bytes != 0 && 4199 sav->lft_s->bytes < sav->lft_c->bytes) { 4200 4201 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4202 /* 4203 * XXX If we keep to send expire 4204 * message in the status of 4205 * DYING. Do remove below code. 4206 */ 4207 key_expire(sav); 4208 } 4209 } 4210 4211 /* check DYING entry to change status to DEAD. */ 4212 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) { 4213 /* we don't need to check. */ 4214 if (sav->lft_h == NULL) 4215 continue; 4216 4217 /* sanity check */ 4218 if (sav->lft_c == NULL) { 4219 ipseclog((LOG_DEBUG, "%s: there is no CURRENT " 4220 "time, why?\n", __func__)); 4221 continue; 4222 } 4223 4224 if (sav->lft_h->addtime != 0 && 4225 now - sav->created > sav->lft_h->addtime) { 4226 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4227 KEY_FREESAV(&sav); 4228 } 4229 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */ 4230 else if (sav->lft_s != NULL 4231 && sav->lft_s->addtime != 0 4232 && now - sav->created > sav->lft_s->addtime) { 4233 /* 4234 * XXX: should be checked to be 4235 * installed the valid SA. 4236 */ 4237 4238 /* 4239 * If there is no SA then sending 4240 * expire message. 4241 */ 4242 key_expire(sav); 4243 } 4244 #endif 4245 /* check HARD lifetime by bytes */ 4246 else if (sav->lft_h->bytes != 0 && 4247 sav->lft_h->bytes < sav->lft_c->bytes) { 4248 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4249 KEY_FREESAV(&sav); 4250 } 4251 } 4252 4253 /* delete entry in DEAD */ 4254 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) { 4255 /* sanity check */ 4256 if (sav->state != SADB_SASTATE_DEAD) { 4257 ipseclog((LOG_DEBUG, "%s: invalid sav->state " 4258 "(queue: %d SA: %d): kill it anyway\n", 4259 __func__, 4260 SADB_SASTATE_DEAD, sav->state)); 4261 } 4262 /* 4263 * do not call key_freesav() here. 4264 * sav should already be freed, and sav->refcnt 4265 * shows other references to sav 4266 * (such as from SPD). 4267 */ 4268 } 4269 } 4270 SAHTREE_UNLOCK(); 4271 } 4272 4273 static void 4274 key_flush_acq(time_t now) 4275 { 4276 INIT_VNET_IPSEC(curvnet); 4277 struct secacq *acq, *nextacq; 4278 4279 /* ACQ tree */ 4280 ACQ_LOCK(); 4281 for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) { 4282 nextacq = LIST_NEXT(acq, chain); 4283 if (now - acq->created > V_key_blockacq_lifetime 4284 && __LIST_CHAINED(acq)) { 4285 LIST_REMOVE(acq, chain); 4286 free(acq, M_IPSEC_SAQ); 4287 } 4288 } 4289 ACQ_UNLOCK(); 4290 } 4291 4292 static void 4293 key_flush_spacq(time_t now) 4294 { 4295 INIT_VNET_IPSEC(curvnet); 4296 struct secspacq *acq, *nextacq; 4297 4298 /* SP ACQ tree */ 4299 SPACQ_LOCK(); 4300 for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) { 4301 nextacq = LIST_NEXT(acq, chain); 4302 if (now - acq->created > V_key_blockacq_lifetime 4303 && __LIST_CHAINED(acq)) { 4304 LIST_REMOVE(acq, chain); 4305 free(acq, M_IPSEC_SAQ); 4306 } 4307 } 4308 SPACQ_UNLOCK(); 4309 } 4310 4311 /* 4312 * time handler. 4313 * scanning SPD and SAD to check status for each entries, 4314 * and do to remove or to expire. 4315 * XXX: year 2038 problem may remain. 4316 */ 4317 void 4318 key_timehandler(void) 4319 { 4320 VNET_ITERATOR_DECL(vnet_iter); 4321 time_t now = time_second; 4322 4323 VNET_LIST_RLOCK(); 4324 VNET_FOREACH(vnet_iter) { 4325 CURVNET_SET(vnet_iter); 4326 key_flush_spd(now); 4327 key_flush_sad(now); 4328 key_flush_acq(now); 4329 key_flush_spacq(now); 4330 CURVNET_RESTORE(); 4331 } 4332 VNET_LIST_RUNLOCK(); 4333 4334 #ifndef IPSEC_DEBUG2 4335 /* do exchange to tick time !! */ 4336 (void)timeout((void *)key_timehandler, (void *)0, hz); 4337 #endif /* IPSEC_DEBUG2 */ 4338 } 4339 4340 u_long 4341 key_random() 4342 { 4343 u_long value; 4344 4345 key_randomfill(&value, sizeof(value)); 4346 return value; 4347 } 4348 4349 void 4350 key_randomfill(p, l) 4351 void *p; 4352 size_t l; 4353 { 4354 size_t n; 4355 u_long v; 4356 static int warn = 1; 4357 4358 n = 0; 4359 n = (size_t)read_random(p, (u_int)l); 4360 /* last resort */ 4361 while (n < l) { 4362 v = random(); 4363 bcopy(&v, (u_int8_t *)p + n, 4364 l - n < sizeof(v) ? l - n : sizeof(v)); 4365 n += sizeof(v); 4366 4367 if (warn) { 4368 printf("WARNING: pseudo-random number generator " 4369 "used for IPsec processing\n"); 4370 warn = 0; 4371 } 4372 } 4373 } 4374 4375 /* 4376 * map SADB_SATYPE_* to IPPROTO_*. 4377 * if satype == SADB_SATYPE then satype is mapped to ~0. 4378 * OUT: 4379 * 0: invalid satype. 4380 */ 4381 static u_int16_t 4382 key_satype2proto(satype) 4383 u_int8_t satype; 4384 { 4385 switch (satype) { 4386 case SADB_SATYPE_UNSPEC: 4387 return IPSEC_PROTO_ANY; 4388 case SADB_SATYPE_AH: 4389 return IPPROTO_AH; 4390 case SADB_SATYPE_ESP: 4391 return IPPROTO_ESP; 4392 case SADB_X_SATYPE_IPCOMP: 4393 return IPPROTO_IPCOMP; 4394 case SADB_X_SATYPE_TCPSIGNATURE: 4395 return IPPROTO_TCP; 4396 default: 4397 return 0; 4398 } 4399 /* NOTREACHED */ 4400 } 4401 4402 /* 4403 * map IPPROTO_* to SADB_SATYPE_* 4404 * OUT: 4405 * 0: invalid protocol type. 4406 */ 4407 static u_int8_t 4408 key_proto2satype(proto) 4409 u_int16_t proto; 4410 { 4411 switch (proto) { 4412 case IPPROTO_AH: 4413 return SADB_SATYPE_AH; 4414 case IPPROTO_ESP: 4415 return SADB_SATYPE_ESP; 4416 case IPPROTO_IPCOMP: 4417 return SADB_X_SATYPE_IPCOMP; 4418 case IPPROTO_TCP: 4419 return SADB_X_SATYPE_TCPSIGNATURE; 4420 default: 4421 return 0; 4422 } 4423 /* NOTREACHED */ 4424 } 4425 4426 /* %%% PF_KEY */ 4427 /* 4428 * SADB_GETSPI processing is to receive 4429 * <base, (SA2), src address, dst address, (SPI range)> 4430 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND 4431 * tree with the status of LARVAL, and send 4432 * <base, SA(*), address(SD)> 4433 * to the IKMPd. 4434 * 4435 * IN: mhp: pointer to the pointer to each header. 4436 * OUT: NULL if fail. 4437 * other if success, return pointer to the message to send. 4438 */ 4439 static int 4440 key_getspi(so, m, mhp) 4441 struct socket *so; 4442 struct mbuf *m; 4443 const struct sadb_msghdr *mhp; 4444 { 4445 INIT_VNET_IPSEC(curvnet); 4446 struct sadb_address *src0, *dst0; 4447 struct secasindex saidx; 4448 struct secashead *newsah; 4449 struct secasvar *newsav; 4450 u_int8_t proto; 4451 u_int32_t spi; 4452 u_int8_t mode; 4453 u_int32_t reqid; 4454 int error; 4455 4456 IPSEC_ASSERT(so != NULL, ("null socket")); 4457 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4458 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4459 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4460 4461 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4462 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 4463 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4464 __func__)); 4465 return key_senderror(so, m, EINVAL); 4466 } 4467 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4468 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4469 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4470 __func__)); 4471 return key_senderror(so, m, EINVAL); 4472 } 4473 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4474 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4475 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4476 } else { 4477 mode = IPSEC_MODE_ANY; 4478 reqid = 0; 4479 } 4480 4481 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4482 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4483 4484 /* map satype to proto */ 4485 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4486 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4487 __func__)); 4488 return key_senderror(so, m, EINVAL); 4489 } 4490 4491 /* make sure if port number is zero. */ 4492 switch (((struct sockaddr *)(src0 + 1))->sa_family) { 4493 case AF_INET: 4494 if (((struct sockaddr *)(src0 + 1))->sa_len != 4495 sizeof(struct sockaddr_in)) 4496 return key_senderror(so, m, EINVAL); 4497 ((struct sockaddr_in *)(src0 + 1))->sin_port = 0; 4498 break; 4499 case AF_INET6: 4500 if (((struct sockaddr *)(src0 + 1))->sa_len != 4501 sizeof(struct sockaddr_in6)) 4502 return key_senderror(so, m, EINVAL); 4503 ((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0; 4504 break; 4505 default: 4506 ; /*???*/ 4507 } 4508 switch (((struct sockaddr *)(dst0 + 1))->sa_family) { 4509 case AF_INET: 4510 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4511 sizeof(struct sockaddr_in)) 4512 return key_senderror(so, m, EINVAL); 4513 ((struct sockaddr_in *)(dst0 + 1))->sin_port = 0; 4514 break; 4515 case AF_INET6: 4516 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4517 sizeof(struct sockaddr_in6)) 4518 return key_senderror(so, m, EINVAL); 4519 ((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0; 4520 break; 4521 default: 4522 ; /*???*/ 4523 } 4524 4525 /* XXX boundary check against sa_len */ 4526 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4527 4528 /* SPI allocation */ 4529 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE], 4530 &saidx); 4531 if (spi == 0) 4532 return key_senderror(so, m, EINVAL); 4533 4534 /* get a SA index */ 4535 if ((newsah = key_getsah(&saidx)) == NULL) { 4536 /* create a new SA index */ 4537 if ((newsah = key_newsah(&saidx)) == NULL) { 4538 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 4539 return key_senderror(so, m, ENOBUFS); 4540 } 4541 } 4542 4543 /* get a new SA */ 4544 /* XXX rewrite */ 4545 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 4546 if (newsav == NULL) { 4547 /* XXX don't free new SA index allocated in above. */ 4548 return key_senderror(so, m, error); 4549 } 4550 4551 /* set spi */ 4552 newsav->spi = htonl(spi); 4553 4554 /* delete the entry in acqtree */ 4555 if (mhp->msg->sadb_msg_seq != 0) { 4556 struct secacq *acq; 4557 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) { 4558 /* reset counter in order to deletion by timehandler. */ 4559 acq->created = time_second; 4560 acq->count = 0; 4561 } 4562 } 4563 4564 { 4565 struct mbuf *n, *nn; 4566 struct sadb_sa *m_sa; 4567 struct sadb_msg *newmsg; 4568 int off, len; 4569 4570 /* create new sadb_msg to reply. */ 4571 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 4572 PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4573 4574 MGETHDR(n, M_DONTWAIT, MT_DATA); 4575 if (len > MHLEN) { 4576 MCLGET(n, M_DONTWAIT); 4577 if ((n->m_flags & M_EXT) == 0) { 4578 m_freem(n); 4579 n = NULL; 4580 } 4581 } 4582 if (!n) 4583 return key_senderror(so, m, ENOBUFS); 4584 4585 n->m_len = len; 4586 n->m_next = NULL; 4587 off = 0; 4588 4589 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 4590 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 4591 4592 m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off); 4593 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); 4594 m_sa->sadb_sa_exttype = SADB_EXT_SA; 4595 m_sa->sadb_sa_spi = htonl(spi); 4596 off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4597 4598 IPSEC_ASSERT(off == len, 4599 ("length inconsistency (off %u len %u)", off, len)); 4600 4601 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, 4602 SADB_EXT_ADDRESS_DST); 4603 if (!n->m_next) { 4604 m_freem(n); 4605 return key_senderror(so, m, ENOBUFS); 4606 } 4607 4608 if (n->m_len < sizeof(struct sadb_msg)) { 4609 n = m_pullup(n, sizeof(struct sadb_msg)); 4610 if (n == NULL) 4611 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 4612 } 4613 4614 n->m_pkthdr.len = 0; 4615 for (nn = n; nn; nn = nn->m_next) 4616 n->m_pkthdr.len += nn->m_len; 4617 4618 newmsg = mtod(n, struct sadb_msg *); 4619 newmsg->sadb_msg_seq = newsav->seq; 4620 newmsg->sadb_msg_errno = 0; 4621 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 4622 4623 m_freem(m); 4624 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 4625 } 4626 } 4627 4628 /* 4629 * allocating new SPI 4630 * called by key_getspi(). 4631 * OUT: 4632 * 0: failure. 4633 * others: success. 4634 */ 4635 static u_int32_t 4636 key_do_getnewspi(spirange, saidx) 4637 struct sadb_spirange *spirange; 4638 struct secasindex *saidx; 4639 { 4640 INIT_VNET_IPSEC(curvnet); 4641 u_int32_t newspi; 4642 u_int32_t min, max; 4643 int count = V_key_spi_trycnt; 4644 4645 /* set spi range to allocate */ 4646 if (spirange != NULL) { 4647 min = spirange->sadb_spirange_min; 4648 max = spirange->sadb_spirange_max; 4649 } else { 4650 min = V_key_spi_minval; 4651 max = V_key_spi_maxval; 4652 } 4653 /* IPCOMP needs 2-byte SPI */ 4654 if (saidx->proto == IPPROTO_IPCOMP) { 4655 u_int32_t t; 4656 if (min >= 0x10000) 4657 min = 0xffff; 4658 if (max >= 0x10000) 4659 max = 0xffff; 4660 if (min > max) { 4661 t = min; min = max; max = t; 4662 } 4663 } 4664 4665 if (min == max) { 4666 if (key_checkspidup(saidx, min) != NULL) { 4667 ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n", 4668 __func__, min)); 4669 return 0; 4670 } 4671 4672 count--; /* taking one cost. */ 4673 newspi = min; 4674 4675 } else { 4676 4677 /* init SPI */ 4678 newspi = 0; 4679 4680 /* when requesting to allocate spi ranged */ 4681 while (count--) { 4682 /* generate pseudo-random SPI value ranged. */ 4683 newspi = min + (key_random() % (max - min + 1)); 4684 4685 if (key_checkspidup(saidx, newspi) == NULL) 4686 break; 4687 } 4688 4689 if (count == 0 || newspi == 0) { 4690 ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n", 4691 __func__)); 4692 return 0; 4693 } 4694 } 4695 4696 /* statistics */ 4697 keystat.getspi_count = 4698 (keystat.getspi_count + V_key_spi_trycnt - count) / 2; 4699 4700 return newspi; 4701 } 4702 4703 /* 4704 * SADB_UPDATE processing 4705 * receive 4706 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4707 * key(AE), (identity(SD),) (sensitivity)> 4708 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. 4709 * and send 4710 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4711 * (identity(SD),) (sensitivity)> 4712 * to the ikmpd. 4713 * 4714 * m will always be freed. 4715 */ 4716 static int 4717 key_update(so, m, mhp) 4718 struct socket *so; 4719 struct mbuf *m; 4720 const struct sadb_msghdr *mhp; 4721 { 4722 INIT_VNET_IPSEC(curvnet); 4723 struct sadb_sa *sa0; 4724 struct sadb_address *src0, *dst0; 4725 struct secasindex saidx; 4726 struct secashead *sah; 4727 struct secasvar *sav; 4728 u_int16_t proto; 4729 u_int8_t mode; 4730 u_int32_t reqid; 4731 int error; 4732 4733 IPSEC_ASSERT(so != NULL, ("null socket")); 4734 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4735 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4736 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4737 4738 /* map satype to proto */ 4739 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4740 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4741 __func__)); 4742 return key_senderror(so, m, EINVAL); 4743 } 4744 4745 if (mhp->ext[SADB_EXT_SA] == NULL || 4746 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4747 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 4748 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 4749 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 4750 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 4751 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 4752 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 4753 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 4754 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 4755 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 4756 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4757 __func__)); 4758 return key_senderror(so, m, EINVAL); 4759 } 4760 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 4761 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4762 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4763 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4764 __func__)); 4765 return key_senderror(so, m, EINVAL); 4766 } 4767 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4768 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4769 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4770 } else { 4771 mode = IPSEC_MODE_ANY; 4772 reqid = 0; 4773 } 4774 /* XXX boundary checking for other extensions */ 4775 4776 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 4777 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4778 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4779 4780 /* XXX boundary check against sa_len */ 4781 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4782 4783 /* get a SA header */ 4784 if ((sah = key_getsah(&saidx)) == NULL) { 4785 ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__)); 4786 return key_senderror(so, m, ENOENT); 4787 } 4788 4789 /* set spidx if there */ 4790 /* XXX rewrite */ 4791 error = key_setident(sah, m, mhp); 4792 if (error) 4793 return key_senderror(so, m, error); 4794 4795 /* find a SA with sequence number. */ 4796 #ifdef IPSEC_DOSEQCHECK 4797 if (mhp->msg->sadb_msg_seq != 0 4798 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) { 4799 ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u " 4800 "exists.\n", __func__, mhp->msg->sadb_msg_seq)); 4801 return key_senderror(so, m, ENOENT); 4802 } 4803 #else 4804 SAHTREE_LOCK(); 4805 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 4806 SAHTREE_UNLOCK(); 4807 if (sav == NULL) { 4808 ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n", 4809 __func__, (u_int32_t)ntohl(sa0->sadb_sa_spi))); 4810 return key_senderror(so, m, EINVAL); 4811 } 4812 #endif 4813 4814 /* validity check */ 4815 if (sav->sah->saidx.proto != proto) { 4816 ipseclog((LOG_DEBUG, "%s: protocol mismatched " 4817 "(DB=%u param=%u)\n", __func__, 4818 sav->sah->saidx.proto, proto)); 4819 return key_senderror(so, m, EINVAL); 4820 } 4821 #ifdef IPSEC_DOSEQCHECK 4822 if (sav->spi != sa0->sadb_sa_spi) { 4823 ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n", 4824 __func__, 4825 (u_int32_t)ntohl(sav->spi), 4826 (u_int32_t)ntohl(sa0->sadb_sa_spi))); 4827 return key_senderror(so, m, EINVAL); 4828 } 4829 #endif 4830 if (sav->pid != mhp->msg->sadb_msg_pid) { 4831 ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n", 4832 __func__, sav->pid, mhp->msg->sadb_msg_pid)); 4833 return key_senderror(so, m, EINVAL); 4834 } 4835 4836 /* copy sav values */ 4837 error = key_setsaval(sav, m, mhp); 4838 if (error) { 4839 KEY_FREESAV(&sav); 4840 return key_senderror(so, m, error); 4841 } 4842 4843 /* check SA values to be mature. */ 4844 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) { 4845 KEY_FREESAV(&sav); 4846 return key_senderror(so, m, 0); 4847 } 4848 4849 { 4850 struct mbuf *n; 4851 4852 /* set msg buf from mhp */ 4853 n = key_getmsgbuf_x1(m, mhp); 4854 if (n == NULL) { 4855 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 4856 return key_senderror(so, m, ENOBUFS); 4857 } 4858 4859 m_freem(m); 4860 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 4861 } 4862 } 4863 4864 /* 4865 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL. 4866 * only called by key_update(). 4867 * OUT: 4868 * NULL : not found 4869 * others : found, pointer to a SA. 4870 */ 4871 #ifdef IPSEC_DOSEQCHECK 4872 static struct secasvar * 4873 key_getsavbyseq(sah, seq) 4874 struct secashead *sah; 4875 u_int32_t seq; 4876 { 4877 struct secasvar *sav; 4878 u_int state; 4879 4880 state = SADB_SASTATE_LARVAL; 4881 4882 /* search SAD with sequence number ? */ 4883 LIST_FOREACH(sav, &sah->savtree[state], chain) { 4884 4885 KEY_CHKSASTATE(state, sav->state, __func__); 4886 4887 if (sav->seq == seq) { 4888 sa_addref(sav); 4889 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 4890 printf("DP %s cause refcnt++:%d SA:%p\n", 4891 __func__, sav->refcnt, sav)); 4892 return sav; 4893 } 4894 } 4895 4896 return NULL; 4897 } 4898 #endif 4899 4900 /* 4901 * SADB_ADD processing 4902 * add an entry to SA database, when received 4903 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4904 * key(AE), (identity(SD),) (sensitivity)> 4905 * from the ikmpd, 4906 * and send 4907 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4908 * (identity(SD),) (sensitivity)> 4909 * to the ikmpd. 4910 * 4911 * IGNORE identity and sensitivity messages. 4912 * 4913 * m will always be freed. 4914 */ 4915 static int 4916 key_add(so, m, mhp) 4917 struct socket *so; 4918 struct mbuf *m; 4919 const struct sadb_msghdr *mhp; 4920 { 4921 INIT_VNET_IPSEC(curvnet); 4922 struct sadb_sa *sa0; 4923 struct sadb_address *src0, *dst0; 4924 struct secasindex saidx; 4925 struct secashead *newsah; 4926 struct secasvar *newsav; 4927 u_int16_t proto; 4928 u_int8_t mode; 4929 u_int32_t reqid; 4930 int error; 4931 4932 IPSEC_ASSERT(so != NULL, ("null socket")); 4933 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4934 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4935 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4936 4937 /* map satype to proto */ 4938 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4939 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4940 __func__)); 4941 return key_senderror(so, m, EINVAL); 4942 } 4943 4944 if (mhp->ext[SADB_EXT_SA] == NULL || 4945 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4946 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 4947 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 4948 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 4949 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 4950 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 4951 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 4952 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 4953 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 4954 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 4955 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4956 __func__)); 4957 return key_senderror(so, m, EINVAL); 4958 } 4959 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 4960 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4961 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4962 /* XXX need more */ 4963 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4964 __func__)); 4965 return key_senderror(so, m, EINVAL); 4966 } 4967 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4968 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4969 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4970 } else { 4971 mode = IPSEC_MODE_ANY; 4972 reqid = 0; 4973 } 4974 4975 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 4976 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 4977 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 4978 4979 /* XXX boundary check against sa_len */ 4980 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4981 4982 /* get a SA header */ 4983 if ((newsah = key_getsah(&saidx)) == NULL) { 4984 /* create a new SA header */ 4985 if ((newsah = key_newsah(&saidx)) == NULL) { 4986 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 4987 return key_senderror(so, m, ENOBUFS); 4988 } 4989 } 4990 4991 /* set spidx if there */ 4992 /* XXX rewrite */ 4993 error = key_setident(newsah, m, mhp); 4994 if (error) { 4995 return key_senderror(so, m, error); 4996 } 4997 4998 /* create new SA entry. */ 4999 /* We can create new SA only if SPI is differenct. */ 5000 SAHTREE_LOCK(); 5001 newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi); 5002 SAHTREE_UNLOCK(); 5003 if (newsav != NULL) { 5004 ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__)); 5005 return key_senderror(so, m, EEXIST); 5006 } 5007 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 5008 if (newsav == NULL) { 5009 return key_senderror(so, m, error); 5010 } 5011 5012 /* check SA values to be mature. */ 5013 if ((error = key_mature(newsav)) != 0) { 5014 KEY_FREESAV(&newsav); 5015 return key_senderror(so, m, error); 5016 } 5017 5018 /* 5019 * don't call key_freesav() here, as we would like to keep the SA 5020 * in the database on success. 5021 */ 5022 5023 { 5024 struct mbuf *n; 5025 5026 /* set msg buf from mhp */ 5027 n = key_getmsgbuf_x1(m, mhp); 5028 if (n == NULL) { 5029 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5030 return key_senderror(so, m, ENOBUFS); 5031 } 5032 5033 m_freem(m); 5034 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5035 } 5036 } 5037 5038 /* m is retained */ 5039 static int 5040 key_setident(sah, m, mhp) 5041 struct secashead *sah; 5042 struct mbuf *m; 5043 const struct sadb_msghdr *mhp; 5044 { 5045 INIT_VNET_IPSEC(curvnet); 5046 const struct sadb_ident *idsrc, *iddst; 5047 int idsrclen, iddstlen; 5048 5049 IPSEC_ASSERT(sah != NULL, ("null secashead")); 5050 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5051 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5052 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5053 5054 /* don't make buffer if not there */ 5055 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL && 5056 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5057 sah->idents = NULL; 5058 sah->identd = NULL; 5059 return 0; 5060 } 5061 5062 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL || 5063 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5064 ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__)); 5065 return EINVAL; 5066 } 5067 5068 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC]; 5069 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST]; 5070 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC]; 5071 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST]; 5072 5073 /* validity check */ 5074 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { 5075 ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__)); 5076 return EINVAL; 5077 } 5078 5079 switch (idsrc->sadb_ident_type) { 5080 case SADB_IDENTTYPE_PREFIX: 5081 case SADB_IDENTTYPE_FQDN: 5082 case SADB_IDENTTYPE_USERFQDN: 5083 default: 5084 /* XXX do nothing */ 5085 sah->idents = NULL; 5086 sah->identd = NULL; 5087 return 0; 5088 } 5089 5090 /* make structure */ 5091 sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5092 if (sah->idents == NULL) { 5093 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5094 return ENOBUFS; 5095 } 5096 sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5097 if (sah->identd == NULL) { 5098 free(sah->idents, M_IPSEC_MISC); 5099 sah->idents = NULL; 5100 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5101 return ENOBUFS; 5102 } 5103 sah->idents->type = idsrc->sadb_ident_type; 5104 sah->idents->id = idsrc->sadb_ident_id; 5105 5106 sah->identd->type = iddst->sadb_ident_type; 5107 sah->identd->id = iddst->sadb_ident_id; 5108 5109 return 0; 5110 } 5111 5112 /* 5113 * m will not be freed on return. 5114 * it is caller's responsibility to free the result. 5115 */ 5116 static struct mbuf * 5117 key_getmsgbuf_x1(m, mhp) 5118 struct mbuf *m; 5119 const struct sadb_msghdr *mhp; 5120 { 5121 struct mbuf *n; 5122 5123 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5124 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5125 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5126 5127 /* create new sadb_msg to reply. */ 5128 n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED, 5129 SADB_EXT_SA, SADB_X_EXT_SA2, 5130 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, 5131 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 5132 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST); 5133 if (!n) 5134 return NULL; 5135 5136 if (n->m_len < sizeof(struct sadb_msg)) { 5137 n = m_pullup(n, sizeof(struct sadb_msg)); 5138 if (n == NULL) 5139 return NULL; 5140 } 5141 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; 5142 mtod(n, struct sadb_msg *)->sadb_msg_len = 5143 PFKEY_UNIT64(n->m_pkthdr.len); 5144 5145 return n; 5146 } 5147 5148 static int key_delete_all __P((struct socket *, struct mbuf *, 5149 const struct sadb_msghdr *, u_int16_t)); 5150 5151 /* 5152 * SADB_DELETE processing 5153 * receive 5154 * <base, SA(*), address(SD)> 5155 * from the ikmpd, and set SADB_SASTATE_DEAD, 5156 * and send, 5157 * <base, SA(*), address(SD)> 5158 * to the ikmpd. 5159 * 5160 * m will always be freed. 5161 */ 5162 static int 5163 key_delete(so, m, mhp) 5164 struct socket *so; 5165 struct mbuf *m; 5166 const struct sadb_msghdr *mhp; 5167 { 5168 INIT_VNET_IPSEC(curvnet); 5169 struct sadb_sa *sa0; 5170 struct sadb_address *src0, *dst0; 5171 struct secasindex saidx; 5172 struct secashead *sah; 5173 struct secasvar *sav = NULL; 5174 u_int16_t proto; 5175 5176 IPSEC_ASSERT(so != NULL, ("null socket")); 5177 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5178 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5179 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5180 5181 /* map satype to proto */ 5182 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5183 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5184 __func__)); 5185 return key_senderror(so, m, EINVAL); 5186 } 5187 5188 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5189 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5190 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5191 __func__)); 5192 return key_senderror(so, m, EINVAL); 5193 } 5194 5195 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5196 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5197 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5198 __func__)); 5199 return key_senderror(so, m, EINVAL); 5200 } 5201 5202 if (mhp->ext[SADB_EXT_SA] == NULL) { 5203 /* 5204 * Caller wants us to delete all non-LARVAL SAs 5205 * that match the src/dst. This is used during 5206 * IKE INITIAL-CONTACT. 5207 */ 5208 ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__)); 5209 return key_delete_all(so, m, mhp, proto); 5210 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { 5211 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5212 __func__)); 5213 return key_senderror(so, m, EINVAL); 5214 } 5215 5216 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5217 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5218 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5219 5220 /* XXX boundary check against sa_len */ 5221 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5222 5223 /* get a SA header */ 5224 SAHTREE_LOCK(); 5225 LIST_FOREACH(sah, &V_sahtree, chain) { 5226 if (sah->state == SADB_SASTATE_DEAD) 5227 continue; 5228 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5229 continue; 5230 5231 /* get a SA with SPI. */ 5232 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5233 if (sav) 5234 break; 5235 } 5236 if (sah == NULL) { 5237 SAHTREE_UNLOCK(); 5238 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5239 return key_senderror(so, m, ENOENT); 5240 } 5241 5242 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5243 SAHTREE_UNLOCK(); 5244 KEY_FREESAV(&sav); 5245 5246 { 5247 struct mbuf *n; 5248 struct sadb_msg *newmsg; 5249 5250 /* create new sadb_msg to reply. */ 5251 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 5252 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5253 if (!n) 5254 return key_senderror(so, m, ENOBUFS); 5255 5256 if (n->m_len < sizeof(struct sadb_msg)) { 5257 n = m_pullup(n, sizeof(struct sadb_msg)); 5258 if (n == NULL) 5259 return key_senderror(so, m, ENOBUFS); 5260 } 5261 newmsg = mtod(n, struct sadb_msg *); 5262 newmsg->sadb_msg_errno = 0; 5263 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5264 5265 m_freem(m); 5266 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5267 } 5268 } 5269 5270 /* 5271 * delete all SAs for src/dst. Called from key_delete(). 5272 */ 5273 static int 5274 key_delete_all(so, m, mhp, proto) 5275 struct socket *so; 5276 struct mbuf *m; 5277 const struct sadb_msghdr *mhp; 5278 u_int16_t proto; 5279 { 5280 INIT_VNET_IPSEC(curvnet); 5281 struct sadb_address *src0, *dst0; 5282 struct secasindex saidx; 5283 struct secashead *sah; 5284 struct secasvar *sav, *nextsav; 5285 u_int stateidx, state; 5286 5287 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5288 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5289 5290 /* XXX boundary check against sa_len */ 5291 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5292 5293 SAHTREE_LOCK(); 5294 LIST_FOREACH(sah, &V_sahtree, chain) { 5295 if (sah->state == SADB_SASTATE_DEAD) 5296 continue; 5297 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5298 continue; 5299 5300 /* Delete all non-LARVAL SAs. */ 5301 for (stateidx = 0; 5302 stateidx < _ARRAYLEN(saorder_state_alive); 5303 stateidx++) { 5304 state = saorder_state_alive[stateidx]; 5305 if (state == SADB_SASTATE_LARVAL) 5306 continue; 5307 for (sav = LIST_FIRST(&sah->savtree[state]); 5308 sav != NULL; sav = nextsav) { 5309 nextsav = LIST_NEXT(sav, chain); 5310 /* sanity check */ 5311 if (sav->state != state) { 5312 ipseclog((LOG_DEBUG, "%s: invalid " 5313 "sav->state (queue %d SA %d)\n", 5314 __func__, state, sav->state)); 5315 continue; 5316 } 5317 5318 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5319 KEY_FREESAV(&sav); 5320 } 5321 } 5322 } 5323 SAHTREE_UNLOCK(); 5324 { 5325 struct mbuf *n; 5326 struct sadb_msg *newmsg; 5327 5328 /* create new sadb_msg to reply. */ 5329 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, 5330 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5331 if (!n) 5332 return key_senderror(so, m, ENOBUFS); 5333 5334 if (n->m_len < sizeof(struct sadb_msg)) { 5335 n = m_pullup(n, sizeof(struct sadb_msg)); 5336 if (n == NULL) 5337 return key_senderror(so, m, ENOBUFS); 5338 } 5339 newmsg = mtod(n, struct sadb_msg *); 5340 newmsg->sadb_msg_errno = 0; 5341 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5342 5343 m_freem(m); 5344 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5345 } 5346 } 5347 5348 /* 5349 * SADB_GET processing 5350 * receive 5351 * <base, SA(*), address(SD)> 5352 * from the ikmpd, and get a SP and a SA to respond, 5353 * and send, 5354 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), 5355 * (identity(SD),) (sensitivity)> 5356 * to the ikmpd. 5357 * 5358 * m will always be freed. 5359 */ 5360 static int 5361 key_get(so, m, mhp) 5362 struct socket *so; 5363 struct mbuf *m; 5364 const struct sadb_msghdr *mhp; 5365 { 5366 INIT_VNET_IPSEC(curvnet); 5367 struct sadb_sa *sa0; 5368 struct sadb_address *src0, *dst0; 5369 struct secasindex saidx; 5370 struct secashead *sah; 5371 struct secasvar *sav = NULL; 5372 u_int16_t proto; 5373 5374 IPSEC_ASSERT(so != NULL, ("null socket")); 5375 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5376 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5377 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5378 5379 /* map satype to proto */ 5380 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5381 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5382 __func__)); 5383 return key_senderror(so, m, EINVAL); 5384 } 5385 5386 if (mhp->ext[SADB_EXT_SA] == NULL || 5387 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5388 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5389 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5390 __func__)); 5391 return key_senderror(so, m, EINVAL); 5392 } 5393 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5394 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5395 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5396 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5397 __func__)); 5398 return key_senderror(so, m, EINVAL); 5399 } 5400 5401 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5402 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5403 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5404 5405 /* XXX boundary check against sa_len */ 5406 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5407 5408 /* get a SA header */ 5409 SAHTREE_LOCK(); 5410 LIST_FOREACH(sah, &V_sahtree, chain) { 5411 if (sah->state == SADB_SASTATE_DEAD) 5412 continue; 5413 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5414 continue; 5415 5416 /* get a SA with SPI. */ 5417 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5418 if (sav) 5419 break; 5420 } 5421 SAHTREE_UNLOCK(); 5422 if (sah == NULL) { 5423 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5424 return key_senderror(so, m, ENOENT); 5425 } 5426 5427 { 5428 struct mbuf *n; 5429 u_int8_t satype; 5430 5431 /* map proto to satype */ 5432 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 5433 ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n", 5434 __func__)); 5435 return key_senderror(so, m, EINVAL); 5436 } 5437 5438 /* create new sadb_msg to reply. */ 5439 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, 5440 mhp->msg->sadb_msg_pid); 5441 if (!n) 5442 return key_senderror(so, m, ENOBUFS); 5443 5444 m_freem(m); 5445 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5446 } 5447 } 5448 5449 /* XXX make it sysctl-configurable? */ 5450 static void 5451 key_getcomb_setlifetime(comb) 5452 struct sadb_comb *comb; 5453 { 5454 5455 comb->sadb_comb_soft_allocations = 1; 5456 comb->sadb_comb_hard_allocations = 1; 5457 comb->sadb_comb_soft_bytes = 0; 5458 comb->sadb_comb_hard_bytes = 0; 5459 comb->sadb_comb_hard_addtime = 86400; /* 1 day */ 5460 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100; 5461 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */ 5462 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100; 5463 } 5464 5465 /* 5466 * XXX reorder combinations by preference 5467 * XXX no idea if the user wants ESP authentication or not 5468 */ 5469 static struct mbuf * 5470 key_getcomb_esp() 5471 { 5472 INIT_VNET_IPSEC(curvnet); 5473 struct sadb_comb *comb; 5474 struct enc_xform *algo; 5475 struct mbuf *result = NULL, *m, *n; 5476 int encmin; 5477 int i, off, o; 5478 int totlen; 5479 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5480 5481 m = NULL; 5482 for (i = 1; i <= SADB_EALG_MAX; i++) { 5483 algo = esp_algorithm_lookup(i); 5484 if (algo == NULL) 5485 continue; 5486 5487 /* discard algorithms with key size smaller than system min */ 5488 if (_BITS(algo->maxkey) < V_ipsec_esp_keymin) 5489 continue; 5490 if (_BITS(algo->minkey) < V_ipsec_esp_keymin) 5491 encmin = V_ipsec_esp_keymin; 5492 else 5493 encmin = _BITS(algo->minkey); 5494 5495 if (V_ipsec_esp_auth) 5496 m = key_getcomb_ah(); 5497 else { 5498 IPSEC_ASSERT(l <= MLEN, 5499 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 5500 MGET(m, M_DONTWAIT, MT_DATA); 5501 if (m) { 5502 M_ALIGN(m, l); 5503 m->m_len = l; 5504 m->m_next = NULL; 5505 bzero(mtod(m, caddr_t), m->m_len); 5506 } 5507 } 5508 if (!m) 5509 goto fail; 5510 5511 totlen = 0; 5512 for (n = m; n; n = n->m_next) 5513 totlen += n->m_len; 5514 IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l)); 5515 5516 for (off = 0; off < totlen; off += l) { 5517 n = m_pulldown(m, off, l, &o); 5518 if (!n) { 5519 /* m is already freed */ 5520 goto fail; 5521 } 5522 comb = (struct sadb_comb *)(mtod(n, caddr_t) + o); 5523 bzero(comb, sizeof(*comb)); 5524 key_getcomb_setlifetime(comb); 5525 comb->sadb_comb_encrypt = i; 5526 comb->sadb_comb_encrypt_minbits = encmin; 5527 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); 5528 } 5529 5530 if (!result) 5531 result = m; 5532 else 5533 m_cat(result, m); 5534 } 5535 5536 return result; 5537 5538 fail: 5539 if (result) 5540 m_freem(result); 5541 return NULL; 5542 } 5543 5544 static void 5545 key_getsizes_ah( 5546 const struct auth_hash *ah, 5547 int alg, 5548 u_int16_t* min, 5549 u_int16_t* max) 5550 { 5551 INIT_VNET_IPSEC(curvnet); 5552 5553 *min = *max = ah->keysize; 5554 if (ah->keysize == 0) { 5555 /* 5556 * Transform takes arbitrary key size but algorithm 5557 * key size is restricted. Enforce this here. 5558 */ 5559 switch (alg) { 5560 case SADB_X_AALG_MD5: *min = *max = 16; break; 5561 case SADB_X_AALG_SHA: *min = *max = 20; break; 5562 case SADB_X_AALG_NULL: *min = 1; *max = 256; break; 5563 default: 5564 DPRINTF(("%s: unknown AH algorithm %u\n", 5565 __func__, alg)); 5566 break; 5567 } 5568 } 5569 } 5570 5571 /* 5572 * XXX reorder combinations by preference 5573 */ 5574 static struct mbuf * 5575 key_getcomb_ah() 5576 { 5577 INIT_VNET_IPSEC(curvnet); 5578 struct sadb_comb *comb; 5579 struct auth_hash *algo; 5580 struct mbuf *m; 5581 u_int16_t minkeysize, maxkeysize; 5582 int i; 5583 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5584 5585 m = NULL; 5586 for (i = 1; i <= SADB_AALG_MAX; i++) { 5587 #if 1 5588 /* we prefer HMAC algorithms, not old algorithms */ 5589 if (i != SADB_AALG_SHA1HMAC && i != SADB_AALG_MD5HMAC) 5590 continue; 5591 #endif 5592 algo = ah_algorithm_lookup(i); 5593 if (!algo) 5594 continue; 5595 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); 5596 /* discard algorithms with key size smaller than system min */ 5597 if (_BITS(minkeysize) < V_ipsec_ah_keymin) 5598 continue; 5599 5600 if (!m) { 5601 IPSEC_ASSERT(l <= MLEN, 5602 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 5603 MGET(m, M_DONTWAIT, MT_DATA); 5604 if (m) { 5605 M_ALIGN(m, l); 5606 m->m_len = l; 5607 m->m_next = NULL; 5608 } 5609 } else 5610 M_PREPEND(m, l, M_DONTWAIT); 5611 if (!m) 5612 return NULL; 5613 5614 comb = mtod(m, struct sadb_comb *); 5615 bzero(comb, sizeof(*comb)); 5616 key_getcomb_setlifetime(comb); 5617 comb->sadb_comb_auth = i; 5618 comb->sadb_comb_auth_minbits = _BITS(minkeysize); 5619 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); 5620 } 5621 5622 return m; 5623 } 5624 5625 /* 5626 * not really an official behavior. discussed in pf_key@inner.net in Sep2000. 5627 * XXX reorder combinations by preference 5628 */ 5629 static struct mbuf * 5630 key_getcomb_ipcomp() 5631 { 5632 struct sadb_comb *comb; 5633 struct comp_algo *algo; 5634 struct mbuf *m; 5635 int i; 5636 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5637 5638 m = NULL; 5639 for (i = 1; i <= SADB_X_CALG_MAX; i++) { 5640 algo = ipcomp_algorithm_lookup(i); 5641 if (!algo) 5642 continue; 5643 5644 if (!m) { 5645 IPSEC_ASSERT(l <= MLEN, 5646 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 5647 MGET(m, M_DONTWAIT, MT_DATA); 5648 if (m) { 5649 M_ALIGN(m, l); 5650 m->m_len = l; 5651 m->m_next = NULL; 5652 } 5653 } else 5654 M_PREPEND(m, l, M_DONTWAIT); 5655 if (!m) 5656 return NULL; 5657 5658 comb = mtod(m, struct sadb_comb *); 5659 bzero(comb, sizeof(*comb)); 5660 key_getcomb_setlifetime(comb); 5661 comb->sadb_comb_encrypt = i; 5662 /* what should we set into sadb_comb_*_{min,max}bits? */ 5663 } 5664 5665 return m; 5666 } 5667 5668 /* 5669 * XXX no way to pass mode (transport/tunnel) to userland 5670 * XXX replay checking? 5671 * XXX sysctl interface to ipsec_{ah,esp}_keymin 5672 */ 5673 static struct mbuf * 5674 key_getprop(saidx) 5675 const struct secasindex *saidx; 5676 { 5677 struct sadb_prop *prop; 5678 struct mbuf *m, *n; 5679 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); 5680 int totlen; 5681 5682 switch (saidx->proto) { 5683 case IPPROTO_ESP: 5684 m = key_getcomb_esp(); 5685 break; 5686 case IPPROTO_AH: 5687 m = key_getcomb_ah(); 5688 break; 5689 case IPPROTO_IPCOMP: 5690 m = key_getcomb_ipcomp(); 5691 break; 5692 default: 5693 return NULL; 5694 } 5695 5696 if (!m) 5697 return NULL; 5698 M_PREPEND(m, l, M_DONTWAIT); 5699 if (!m) 5700 return NULL; 5701 5702 totlen = 0; 5703 for (n = m; n; n = n->m_next) 5704 totlen += n->m_len; 5705 5706 prop = mtod(m, struct sadb_prop *); 5707 bzero(prop, sizeof(*prop)); 5708 prop->sadb_prop_len = PFKEY_UNIT64(totlen); 5709 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 5710 prop->sadb_prop_replay = 32; /* XXX */ 5711 5712 return m; 5713 } 5714 5715 /* 5716 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2(). 5717 * send 5718 * <base, SA, address(SD), (address(P)), x_policy, 5719 * (identity(SD),) (sensitivity,) proposal> 5720 * to KMD, and expect to receive 5721 * <base> with SADB_ACQUIRE if error occured, 5722 * or 5723 * <base, src address, dst address, (SPI range)> with SADB_GETSPI 5724 * from KMD by PF_KEY. 5725 * 5726 * XXX x_policy is outside of RFC2367 (KAME extension). 5727 * XXX sensitivity is not supported. 5728 * XXX for ipcomp, RFC2367 does not define how to fill in proposal. 5729 * see comment for key_getcomb_ipcomp(). 5730 * 5731 * OUT: 5732 * 0 : succeed 5733 * others: error number 5734 */ 5735 static int 5736 key_acquire(const struct secasindex *saidx, struct secpolicy *sp) 5737 { 5738 INIT_VNET_IPSEC(curvnet); 5739 struct mbuf *result = NULL, *m; 5740 struct secacq *newacq; 5741 u_int8_t satype; 5742 int error = -1; 5743 u_int32_t seq; 5744 5745 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 5746 satype = key_proto2satype(saidx->proto); 5747 IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto)); 5748 5749 /* 5750 * We never do anything about acquirng SA. There is anather 5751 * solution that kernel blocks to send SADB_ACQUIRE message until 5752 * getting something message from IKEd. In later case, to be 5753 * managed with ACQUIRING list. 5754 */ 5755 /* Get an entry to check whether sending message or not. */ 5756 if ((newacq = key_getacq(saidx)) != NULL) { 5757 if (V_key_blockacq_count < newacq->count) { 5758 /* reset counter and do send message. */ 5759 newacq->count = 0; 5760 } else { 5761 /* increment counter and do nothing. */ 5762 newacq->count++; 5763 return 0; 5764 } 5765 } else { 5766 /* make new entry for blocking to send SADB_ACQUIRE. */ 5767 if ((newacq = key_newacq(saidx)) == NULL) 5768 return ENOBUFS; 5769 } 5770 5771 5772 seq = newacq->seq; 5773 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0); 5774 if (!m) { 5775 error = ENOBUFS; 5776 goto fail; 5777 } 5778 result = m; 5779 5780 /* set sadb_address for saidx's. */ 5781 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 5782 &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY); 5783 if (!m) { 5784 error = ENOBUFS; 5785 goto fail; 5786 } 5787 m_cat(result, m); 5788 5789 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 5790 &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY); 5791 if (!m) { 5792 error = ENOBUFS; 5793 goto fail; 5794 } 5795 m_cat(result, m); 5796 5797 /* XXX proxy address (optional) */ 5798 5799 /* set sadb_x_policy */ 5800 if (sp) { 5801 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id); 5802 if (!m) { 5803 error = ENOBUFS; 5804 goto fail; 5805 } 5806 m_cat(result, m); 5807 } 5808 5809 /* XXX identity (optional) */ 5810 #if 0 5811 if (idexttype && fqdn) { 5812 /* create identity extension (FQDN) */ 5813 struct sadb_ident *id; 5814 int fqdnlen; 5815 5816 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ 5817 id = (struct sadb_ident *)p; 5818 bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 5819 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 5820 id->sadb_ident_exttype = idexttype; 5821 id->sadb_ident_type = SADB_IDENTTYPE_FQDN; 5822 bcopy(fqdn, id + 1, fqdnlen); 5823 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); 5824 } 5825 5826 if (idexttype) { 5827 /* create identity extension (USERFQDN) */ 5828 struct sadb_ident *id; 5829 int userfqdnlen; 5830 5831 if (userfqdn) { 5832 /* +1 for terminating-NUL */ 5833 userfqdnlen = strlen(userfqdn) + 1; 5834 } else 5835 userfqdnlen = 0; 5836 id = (struct sadb_ident *)p; 5837 bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 5838 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 5839 id->sadb_ident_exttype = idexttype; 5840 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; 5841 /* XXX is it correct? */ 5842 if (curproc && curproc->p_cred) 5843 id->sadb_ident_id = curproc->p_cred->p_ruid; 5844 if (userfqdn && userfqdnlen) 5845 bcopy(userfqdn, id + 1, userfqdnlen); 5846 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); 5847 } 5848 #endif 5849 5850 /* XXX sensitivity (optional) */ 5851 5852 /* create proposal/combination extension */ 5853 m = key_getprop(saidx); 5854 #if 0 5855 /* 5856 * spec conformant: always attach proposal/combination extension, 5857 * the problem is that we have no way to attach it for ipcomp, 5858 * due to the way sadb_comb is declared in RFC2367. 5859 */ 5860 if (!m) { 5861 error = ENOBUFS; 5862 goto fail; 5863 } 5864 m_cat(result, m); 5865 #else 5866 /* 5867 * outside of spec; make proposal/combination extension optional. 5868 */ 5869 if (m) 5870 m_cat(result, m); 5871 #endif 5872 5873 if ((result->m_flags & M_PKTHDR) == 0) { 5874 error = EINVAL; 5875 goto fail; 5876 } 5877 5878 if (result->m_len < sizeof(struct sadb_msg)) { 5879 result = m_pullup(result, sizeof(struct sadb_msg)); 5880 if (result == NULL) { 5881 error = ENOBUFS; 5882 goto fail; 5883 } 5884 } 5885 5886 result->m_pkthdr.len = 0; 5887 for (m = result; m; m = m->m_next) 5888 result->m_pkthdr.len += m->m_len; 5889 5890 mtod(result, struct sadb_msg *)->sadb_msg_len = 5891 PFKEY_UNIT64(result->m_pkthdr.len); 5892 5893 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 5894 5895 fail: 5896 if (result) 5897 m_freem(result); 5898 return error; 5899 } 5900 5901 static struct secacq * 5902 key_newacq(const struct secasindex *saidx) 5903 { 5904 INIT_VNET_IPSEC(curvnet); 5905 struct secacq *newacq; 5906 5907 /* get new entry */ 5908 newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 5909 if (newacq == NULL) { 5910 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5911 return NULL; 5912 } 5913 5914 /* copy secindex */ 5915 bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx)); 5916 newacq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq); 5917 newacq->created = time_second; 5918 newacq->count = 0; 5919 5920 /* add to acqtree */ 5921 ACQ_LOCK(); 5922 LIST_INSERT_HEAD(&V_acqtree, newacq, chain); 5923 ACQ_UNLOCK(); 5924 5925 return newacq; 5926 } 5927 5928 static struct secacq * 5929 key_getacq(const struct secasindex *saidx) 5930 { 5931 INIT_VNET_IPSEC(curvnet); 5932 struct secacq *acq; 5933 5934 ACQ_LOCK(); 5935 LIST_FOREACH(acq, &V_acqtree, chain) { 5936 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY)) 5937 break; 5938 } 5939 ACQ_UNLOCK(); 5940 5941 return acq; 5942 } 5943 5944 static struct secacq * 5945 key_getacqbyseq(seq) 5946 u_int32_t seq; 5947 { 5948 INIT_VNET_IPSEC(curvnet); 5949 struct secacq *acq; 5950 5951 ACQ_LOCK(); 5952 LIST_FOREACH(acq, &V_acqtree, chain) { 5953 if (acq->seq == seq) 5954 break; 5955 } 5956 ACQ_UNLOCK(); 5957 5958 return acq; 5959 } 5960 5961 static struct secspacq * 5962 key_newspacq(spidx) 5963 struct secpolicyindex *spidx; 5964 { 5965 INIT_VNET_IPSEC(curvnet); 5966 struct secspacq *acq; 5967 5968 /* get new entry */ 5969 acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 5970 if (acq == NULL) { 5971 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5972 return NULL; 5973 } 5974 5975 /* copy secindex */ 5976 bcopy(spidx, &acq->spidx, sizeof(acq->spidx)); 5977 acq->created = time_second; 5978 acq->count = 0; 5979 5980 /* add to spacqtree */ 5981 SPACQ_LOCK(); 5982 LIST_INSERT_HEAD(&V_spacqtree, acq, chain); 5983 SPACQ_UNLOCK(); 5984 5985 return acq; 5986 } 5987 5988 static struct secspacq * 5989 key_getspacq(spidx) 5990 struct secpolicyindex *spidx; 5991 { 5992 INIT_VNET_IPSEC(curvnet); 5993 struct secspacq *acq; 5994 5995 SPACQ_LOCK(); 5996 LIST_FOREACH(acq, &V_spacqtree, chain) { 5997 if (key_cmpspidx_exactly(spidx, &acq->spidx)) { 5998 /* NB: return holding spacq_lock */ 5999 return acq; 6000 } 6001 } 6002 SPACQ_UNLOCK(); 6003 6004 return NULL; 6005 } 6006 6007 /* 6008 * SADB_ACQUIRE processing, 6009 * in first situation, is receiving 6010 * <base> 6011 * from the ikmpd, and clear sequence of its secasvar entry. 6012 * 6013 * In second situation, is receiving 6014 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6015 * from a user land process, and return 6016 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6017 * to the socket. 6018 * 6019 * m will always be freed. 6020 */ 6021 static int 6022 key_acquire2(so, m, mhp) 6023 struct socket *so; 6024 struct mbuf *m; 6025 const struct sadb_msghdr *mhp; 6026 { 6027 INIT_VNET_IPSEC(curvnet); 6028 const struct sadb_address *src0, *dst0; 6029 struct secasindex saidx; 6030 struct secashead *sah; 6031 u_int16_t proto; 6032 int error; 6033 6034 IPSEC_ASSERT(so != NULL, ("null socket")); 6035 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6036 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6037 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6038 6039 /* 6040 * Error message from KMd. 6041 * We assume that if error was occured in IKEd, the length of PFKEY 6042 * message is equal to the size of sadb_msg structure. 6043 * We do not raise error even if error occured in this function. 6044 */ 6045 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { 6046 struct secacq *acq; 6047 6048 /* check sequence number */ 6049 if (mhp->msg->sadb_msg_seq == 0) { 6050 ipseclog((LOG_DEBUG, "%s: must specify sequence " 6051 "number.\n", __func__)); 6052 m_freem(m); 6053 return 0; 6054 } 6055 6056 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) { 6057 /* 6058 * the specified larval SA is already gone, or we got 6059 * a bogus sequence number. we can silently ignore it. 6060 */ 6061 m_freem(m); 6062 return 0; 6063 } 6064 6065 /* reset acq counter in order to deletion by timehander. */ 6066 acq->created = time_second; 6067 acq->count = 0; 6068 m_freem(m); 6069 return 0; 6070 } 6071 6072 /* 6073 * This message is from user land. 6074 */ 6075 6076 /* map satype to proto */ 6077 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6078 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6079 __func__)); 6080 return key_senderror(so, m, EINVAL); 6081 } 6082 6083 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6084 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 6085 mhp->ext[SADB_EXT_PROPOSAL] == NULL) { 6086 /* error */ 6087 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6088 __func__)); 6089 return key_senderror(so, m, EINVAL); 6090 } 6091 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6092 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 6093 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { 6094 /* error */ 6095 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6096 __func__)); 6097 return key_senderror(so, m, EINVAL); 6098 } 6099 6100 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 6101 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 6102 6103 /* XXX boundary check against sa_len */ 6104 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 6105 6106 /* get a SA index */ 6107 SAHTREE_LOCK(); 6108 LIST_FOREACH(sah, &V_sahtree, chain) { 6109 if (sah->state == SADB_SASTATE_DEAD) 6110 continue; 6111 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID)) 6112 break; 6113 } 6114 SAHTREE_UNLOCK(); 6115 if (sah != NULL) { 6116 ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__)); 6117 return key_senderror(so, m, EEXIST); 6118 } 6119 6120 error = key_acquire(&saidx, NULL); 6121 if (error != 0) { 6122 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 6123 __func__, mhp->msg->sadb_msg_errno)); 6124 return key_senderror(so, m, error); 6125 } 6126 6127 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); 6128 } 6129 6130 /* 6131 * SADB_REGISTER processing. 6132 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. 6133 * receive 6134 * <base> 6135 * from the ikmpd, and register a socket to send PF_KEY messages, 6136 * and send 6137 * <base, supported> 6138 * to KMD by PF_KEY. 6139 * If socket is detached, must free from regnode. 6140 * 6141 * m will always be freed. 6142 */ 6143 static int 6144 key_register(so, m, mhp) 6145 struct socket *so; 6146 struct mbuf *m; 6147 const struct sadb_msghdr *mhp; 6148 { 6149 INIT_VNET_IPSEC(curvnet); 6150 struct secreg *reg, *newreg = 0; 6151 6152 IPSEC_ASSERT(so != NULL, ("null socket")); 6153 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6154 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6155 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6156 6157 /* check for invalid register message */ 6158 if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0])) 6159 return key_senderror(so, m, EINVAL); 6160 6161 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ 6162 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) 6163 goto setmsg; 6164 6165 /* check whether existing or not */ 6166 REGTREE_LOCK(); 6167 LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) { 6168 if (reg->so == so) { 6169 REGTREE_UNLOCK(); 6170 ipseclog((LOG_DEBUG, "%s: socket exists already.\n", 6171 __func__)); 6172 return key_senderror(so, m, EEXIST); 6173 } 6174 } 6175 6176 /* create regnode */ 6177 newreg = malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO); 6178 if (newreg == NULL) { 6179 REGTREE_UNLOCK(); 6180 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6181 return key_senderror(so, m, ENOBUFS); 6182 } 6183 6184 newreg->so = so; 6185 ((struct keycb *)sotorawcb(so))->kp_registered++; 6186 6187 /* add regnode to regtree. */ 6188 LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain); 6189 REGTREE_UNLOCK(); 6190 6191 setmsg: 6192 { 6193 struct mbuf *n; 6194 struct sadb_msg *newmsg; 6195 struct sadb_supported *sup; 6196 u_int len, alen, elen; 6197 int off; 6198 int i; 6199 struct sadb_alg *alg; 6200 6201 /* create new sadb_msg to reply. */ 6202 alen = 0; 6203 for (i = 1; i <= SADB_AALG_MAX; i++) { 6204 if (ah_algorithm_lookup(i)) 6205 alen += sizeof(struct sadb_alg); 6206 } 6207 if (alen) 6208 alen += sizeof(struct sadb_supported); 6209 elen = 0; 6210 for (i = 1; i <= SADB_EALG_MAX; i++) { 6211 if (esp_algorithm_lookup(i)) 6212 elen += sizeof(struct sadb_alg); 6213 } 6214 if (elen) 6215 elen += sizeof(struct sadb_supported); 6216 6217 len = sizeof(struct sadb_msg) + alen + elen; 6218 6219 if (len > MCLBYTES) 6220 return key_senderror(so, m, ENOBUFS); 6221 6222 MGETHDR(n, M_DONTWAIT, MT_DATA); 6223 if (len > MHLEN) { 6224 MCLGET(n, M_DONTWAIT); 6225 if ((n->m_flags & M_EXT) == 0) { 6226 m_freem(n); 6227 n = NULL; 6228 } 6229 } 6230 if (!n) 6231 return key_senderror(so, m, ENOBUFS); 6232 6233 n->m_pkthdr.len = n->m_len = len; 6234 n->m_next = NULL; 6235 off = 0; 6236 6237 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 6238 newmsg = mtod(n, struct sadb_msg *); 6239 newmsg->sadb_msg_errno = 0; 6240 newmsg->sadb_msg_len = PFKEY_UNIT64(len); 6241 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 6242 6243 /* for authentication algorithm */ 6244 if (alen) { 6245 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6246 sup->sadb_supported_len = PFKEY_UNIT64(alen); 6247 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 6248 off += PFKEY_ALIGN8(sizeof(*sup)); 6249 6250 for (i = 1; i <= SADB_AALG_MAX; i++) { 6251 struct auth_hash *aalgo; 6252 u_int16_t minkeysize, maxkeysize; 6253 6254 aalgo = ah_algorithm_lookup(i); 6255 if (!aalgo) 6256 continue; 6257 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6258 alg->sadb_alg_id = i; 6259 alg->sadb_alg_ivlen = 0; 6260 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); 6261 alg->sadb_alg_minbits = _BITS(minkeysize); 6262 alg->sadb_alg_maxbits = _BITS(maxkeysize); 6263 off += PFKEY_ALIGN8(sizeof(*alg)); 6264 } 6265 } 6266 6267 /* for encryption algorithm */ 6268 if (elen) { 6269 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6270 sup->sadb_supported_len = PFKEY_UNIT64(elen); 6271 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 6272 off += PFKEY_ALIGN8(sizeof(*sup)); 6273 6274 for (i = 1; i <= SADB_EALG_MAX; i++) { 6275 struct enc_xform *ealgo; 6276 6277 ealgo = esp_algorithm_lookup(i); 6278 if (!ealgo) 6279 continue; 6280 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6281 alg->sadb_alg_id = i; 6282 alg->sadb_alg_ivlen = ealgo->blocksize; 6283 alg->sadb_alg_minbits = _BITS(ealgo->minkey); 6284 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); 6285 off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); 6286 } 6287 } 6288 6289 IPSEC_ASSERT(off == len, 6290 ("length assumption failed (off %u len %u)", off, len)); 6291 6292 m_freem(m); 6293 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); 6294 } 6295 } 6296 6297 /* 6298 * free secreg entry registered. 6299 * XXX: I want to do free a socket marked done SADB_RESIGER to socket. 6300 */ 6301 void 6302 key_freereg(struct socket *so) 6303 { 6304 INIT_VNET_IPSEC(curvnet); 6305 struct secreg *reg; 6306 int i; 6307 6308 IPSEC_ASSERT(so != NULL, ("NULL so")); 6309 6310 /* 6311 * check whether existing or not. 6312 * check all type of SA, because there is a potential that 6313 * one socket is registered to multiple type of SA. 6314 */ 6315 REGTREE_LOCK(); 6316 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 6317 LIST_FOREACH(reg, &V_regtree[i], chain) { 6318 if (reg->so == so && __LIST_CHAINED(reg)) { 6319 LIST_REMOVE(reg, chain); 6320 free(reg, M_IPSEC_SAR); 6321 break; 6322 } 6323 } 6324 } 6325 REGTREE_UNLOCK(); 6326 } 6327 6328 /* 6329 * SADB_EXPIRE processing 6330 * send 6331 * <base, SA, SA2, lifetime(C and one of HS), address(SD)> 6332 * to KMD by PF_KEY. 6333 * NOTE: We send only soft lifetime extension. 6334 * 6335 * OUT: 0 : succeed 6336 * others : error number 6337 */ 6338 static int 6339 key_expire(struct secasvar *sav) 6340 { 6341 int s; 6342 int satype; 6343 struct mbuf *result = NULL, *m; 6344 int len; 6345 int error = -1; 6346 struct sadb_lifetime *lt; 6347 6348 /* XXX: Why do we lock ? */ 6349 s = splnet(); /*called from softclock()*/ 6350 6351 IPSEC_ASSERT (sav != NULL, ("null sav")); 6352 IPSEC_ASSERT (sav->sah != NULL, ("null sa header")); 6353 6354 /* set msg header */ 6355 satype = key_proto2satype(sav->sah->saidx.proto); 6356 IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype)); 6357 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt); 6358 if (!m) { 6359 error = ENOBUFS; 6360 goto fail; 6361 } 6362 result = m; 6363 6364 /* create SA extension */ 6365 m = key_setsadbsa(sav); 6366 if (!m) { 6367 error = ENOBUFS; 6368 goto fail; 6369 } 6370 m_cat(result, m); 6371 6372 /* create SA extension */ 6373 m = key_setsadbxsa2(sav->sah->saidx.mode, 6374 sav->replay ? sav->replay->count : 0, 6375 sav->sah->saidx.reqid); 6376 if (!m) { 6377 error = ENOBUFS; 6378 goto fail; 6379 } 6380 m_cat(result, m); 6381 6382 /* create lifetime extension (current and soft) */ 6383 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 6384 m = key_alloc_mbuf(len); 6385 if (!m || m->m_next) { /*XXX*/ 6386 if (m) 6387 m_freem(m); 6388 error = ENOBUFS; 6389 goto fail; 6390 } 6391 bzero(mtod(m, caddr_t), len); 6392 lt = mtod(m, struct sadb_lifetime *); 6393 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6394 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 6395 lt->sadb_lifetime_allocations = sav->lft_c->allocations; 6396 lt->sadb_lifetime_bytes = sav->lft_c->bytes; 6397 lt->sadb_lifetime_addtime = sav->lft_c->addtime; 6398 lt->sadb_lifetime_usetime = sav->lft_c->usetime; 6399 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 6400 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6401 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; 6402 lt->sadb_lifetime_allocations = sav->lft_s->allocations; 6403 lt->sadb_lifetime_bytes = sav->lft_s->bytes; 6404 lt->sadb_lifetime_addtime = sav->lft_s->addtime; 6405 lt->sadb_lifetime_usetime = sav->lft_s->usetime; 6406 m_cat(result, m); 6407 6408 /* set sadb_address for source */ 6409 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 6410 &sav->sah->saidx.src.sa, 6411 FULLMASK, IPSEC_ULPROTO_ANY); 6412 if (!m) { 6413 error = ENOBUFS; 6414 goto fail; 6415 } 6416 m_cat(result, m); 6417 6418 /* set sadb_address for destination */ 6419 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 6420 &sav->sah->saidx.dst.sa, 6421 FULLMASK, IPSEC_ULPROTO_ANY); 6422 if (!m) { 6423 error = ENOBUFS; 6424 goto fail; 6425 } 6426 m_cat(result, m); 6427 6428 if ((result->m_flags & M_PKTHDR) == 0) { 6429 error = EINVAL; 6430 goto fail; 6431 } 6432 6433 if (result->m_len < sizeof(struct sadb_msg)) { 6434 result = m_pullup(result, sizeof(struct sadb_msg)); 6435 if (result == NULL) { 6436 error = ENOBUFS; 6437 goto fail; 6438 } 6439 } 6440 6441 result->m_pkthdr.len = 0; 6442 for (m = result; m; m = m->m_next) 6443 result->m_pkthdr.len += m->m_len; 6444 6445 mtod(result, struct sadb_msg *)->sadb_msg_len = 6446 PFKEY_UNIT64(result->m_pkthdr.len); 6447 6448 splx(s); 6449 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6450 6451 fail: 6452 if (result) 6453 m_freem(result); 6454 splx(s); 6455 return error; 6456 } 6457 6458 /* 6459 * SADB_FLUSH processing 6460 * receive 6461 * <base> 6462 * from the ikmpd, and free all entries in secastree. 6463 * and send, 6464 * <base> 6465 * to the ikmpd. 6466 * NOTE: to do is only marking SADB_SASTATE_DEAD. 6467 * 6468 * m will always be freed. 6469 */ 6470 static int 6471 key_flush(so, m, mhp) 6472 struct socket *so; 6473 struct mbuf *m; 6474 const struct sadb_msghdr *mhp; 6475 { 6476 INIT_VNET_IPSEC(curvnet); 6477 struct sadb_msg *newmsg; 6478 struct secashead *sah, *nextsah; 6479 struct secasvar *sav, *nextsav; 6480 u_int16_t proto; 6481 u_int8_t state; 6482 u_int stateidx; 6483 6484 IPSEC_ASSERT(so != NULL, ("null socket")); 6485 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6486 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6487 6488 /* map satype to proto */ 6489 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6490 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6491 __func__)); 6492 return key_senderror(so, m, EINVAL); 6493 } 6494 6495 /* no SATYPE specified, i.e. flushing all SA. */ 6496 SAHTREE_LOCK(); 6497 for (sah = LIST_FIRST(&V_sahtree); 6498 sah != NULL; 6499 sah = nextsah) { 6500 nextsah = LIST_NEXT(sah, chain); 6501 6502 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 6503 && proto != sah->saidx.proto) 6504 continue; 6505 6506 for (stateidx = 0; 6507 stateidx < _ARRAYLEN(saorder_state_alive); 6508 stateidx++) { 6509 state = saorder_state_any[stateidx]; 6510 for (sav = LIST_FIRST(&sah->savtree[state]); 6511 sav != NULL; 6512 sav = nextsav) { 6513 6514 nextsav = LIST_NEXT(sav, chain); 6515 6516 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 6517 KEY_FREESAV(&sav); 6518 } 6519 } 6520 6521 sah->state = SADB_SASTATE_DEAD; 6522 } 6523 SAHTREE_UNLOCK(); 6524 6525 if (m->m_len < sizeof(struct sadb_msg) || 6526 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 6527 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6528 return key_senderror(so, m, ENOBUFS); 6529 } 6530 6531 if (m->m_next) 6532 m_freem(m->m_next); 6533 m->m_next = NULL; 6534 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); 6535 newmsg = mtod(m, struct sadb_msg *); 6536 newmsg->sadb_msg_errno = 0; 6537 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 6538 6539 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 6540 } 6541 6542 /* 6543 * SADB_DUMP processing 6544 * dump all entries including status of DEAD in SAD. 6545 * receive 6546 * <base> 6547 * from the ikmpd, and dump all secasvar leaves 6548 * and send, 6549 * <base> ..... 6550 * to the ikmpd. 6551 * 6552 * m will always be freed. 6553 */ 6554 static int 6555 key_dump(so, m, mhp) 6556 struct socket *so; 6557 struct mbuf *m; 6558 const struct sadb_msghdr *mhp; 6559 { 6560 INIT_VNET_IPSEC(curvnet); 6561 struct secashead *sah; 6562 struct secasvar *sav; 6563 u_int16_t proto; 6564 u_int stateidx; 6565 u_int8_t satype; 6566 u_int8_t state; 6567 int cnt; 6568 struct sadb_msg *newmsg; 6569 struct mbuf *n; 6570 6571 IPSEC_ASSERT(so != NULL, ("null socket")); 6572 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6573 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6574 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6575 6576 /* map satype to proto */ 6577 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6578 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6579 __func__)); 6580 return key_senderror(so, m, EINVAL); 6581 } 6582 6583 /* count sav entries to be sent to the userland. */ 6584 cnt = 0; 6585 SAHTREE_LOCK(); 6586 LIST_FOREACH(sah, &V_sahtree, chain) { 6587 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 6588 && proto != sah->saidx.proto) 6589 continue; 6590 6591 for (stateidx = 0; 6592 stateidx < _ARRAYLEN(saorder_state_any); 6593 stateidx++) { 6594 state = saorder_state_any[stateidx]; 6595 LIST_FOREACH(sav, &sah->savtree[state], chain) { 6596 cnt++; 6597 } 6598 } 6599 } 6600 6601 if (cnt == 0) { 6602 SAHTREE_UNLOCK(); 6603 return key_senderror(so, m, ENOENT); 6604 } 6605 6606 /* send this to the userland, one at a time. */ 6607 newmsg = NULL; 6608 LIST_FOREACH(sah, &V_sahtree, chain) { 6609 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 6610 && proto != sah->saidx.proto) 6611 continue; 6612 6613 /* map proto to satype */ 6614 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 6615 SAHTREE_UNLOCK(); 6616 ipseclog((LOG_DEBUG, "%s: there was invalid proto in " 6617 "SAD.\n", __func__)); 6618 return key_senderror(so, m, EINVAL); 6619 } 6620 6621 for (stateidx = 0; 6622 stateidx < _ARRAYLEN(saorder_state_any); 6623 stateidx++) { 6624 state = saorder_state_any[stateidx]; 6625 LIST_FOREACH(sav, &sah->savtree[state], chain) { 6626 n = key_setdumpsa(sav, SADB_DUMP, satype, 6627 --cnt, mhp->msg->sadb_msg_pid); 6628 if (!n) { 6629 SAHTREE_UNLOCK(); 6630 return key_senderror(so, m, ENOBUFS); 6631 } 6632 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 6633 } 6634 } 6635 } 6636 SAHTREE_UNLOCK(); 6637 6638 m_freem(m); 6639 return 0; 6640 } 6641 6642 /* 6643 * SADB_X_PROMISC processing 6644 * 6645 * m will always be freed. 6646 */ 6647 static int 6648 key_promisc(so, m, mhp) 6649 struct socket *so; 6650 struct mbuf *m; 6651 const struct sadb_msghdr *mhp; 6652 { 6653 int olen; 6654 6655 IPSEC_ASSERT(so != NULL, ("null socket")); 6656 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6657 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6658 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6659 6660 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 6661 6662 if (olen < sizeof(struct sadb_msg)) { 6663 #if 1 6664 return key_senderror(so, m, EINVAL); 6665 #else 6666 m_freem(m); 6667 return 0; 6668 #endif 6669 } else if (olen == sizeof(struct sadb_msg)) { 6670 /* enable/disable promisc mode */ 6671 struct keycb *kp; 6672 6673 if ((kp = (struct keycb *)sotorawcb(so)) == NULL) 6674 return key_senderror(so, m, EINVAL); 6675 mhp->msg->sadb_msg_errno = 0; 6676 switch (mhp->msg->sadb_msg_satype) { 6677 case 0: 6678 case 1: 6679 kp->kp_promisc = mhp->msg->sadb_msg_satype; 6680 break; 6681 default: 6682 return key_senderror(so, m, EINVAL); 6683 } 6684 6685 /* send the original message back to everyone */ 6686 mhp->msg->sadb_msg_errno = 0; 6687 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 6688 } else { 6689 /* send packet as is */ 6690 6691 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); 6692 6693 /* TODO: if sadb_msg_seq is specified, send to specific pid */ 6694 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 6695 } 6696 } 6697 6698 static int (*key_typesw[]) __P((struct socket *, struct mbuf *, 6699 const struct sadb_msghdr *)) = { 6700 NULL, /* SADB_RESERVED */ 6701 key_getspi, /* SADB_GETSPI */ 6702 key_update, /* SADB_UPDATE */ 6703 key_add, /* SADB_ADD */ 6704 key_delete, /* SADB_DELETE */ 6705 key_get, /* SADB_GET */ 6706 key_acquire2, /* SADB_ACQUIRE */ 6707 key_register, /* SADB_REGISTER */ 6708 NULL, /* SADB_EXPIRE */ 6709 key_flush, /* SADB_FLUSH */ 6710 key_dump, /* SADB_DUMP */ 6711 key_promisc, /* SADB_X_PROMISC */ 6712 NULL, /* SADB_X_PCHANGE */ 6713 key_spdadd, /* SADB_X_SPDUPDATE */ 6714 key_spdadd, /* SADB_X_SPDADD */ 6715 key_spddelete, /* SADB_X_SPDDELETE */ 6716 key_spdget, /* SADB_X_SPDGET */ 6717 NULL, /* SADB_X_SPDACQUIRE */ 6718 key_spddump, /* SADB_X_SPDDUMP */ 6719 key_spdflush, /* SADB_X_SPDFLUSH */ 6720 key_spdadd, /* SADB_X_SPDSETIDX */ 6721 NULL, /* SADB_X_SPDEXPIRE */ 6722 key_spddelete2, /* SADB_X_SPDDELETE2 */ 6723 }; 6724 6725 /* 6726 * parse sadb_msg buffer to process PFKEYv2, 6727 * and create a data to response if needed. 6728 * I think to be dealed with mbuf directly. 6729 * IN: 6730 * msgp : pointer to pointer to a received buffer pulluped. 6731 * This is rewrited to response. 6732 * so : pointer to socket. 6733 * OUT: 6734 * length for buffer to send to user process. 6735 */ 6736 int 6737 key_parse(m, so) 6738 struct mbuf *m; 6739 struct socket *so; 6740 { 6741 INIT_VNET_IPSEC(curvnet); 6742 struct sadb_msg *msg; 6743 struct sadb_msghdr mh; 6744 u_int orglen; 6745 int error; 6746 int target; 6747 6748 IPSEC_ASSERT(so != NULL, ("null socket")); 6749 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6750 6751 #if 0 /*kdebug_sadb assumes msg in linear buffer*/ 6752 KEYDEBUG(KEYDEBUG_KEY_DUMP, 6753 ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__)); 6754 kdebug_sadb(msg)); 6755 #endif 6756 6757 if (m->m_len < sizeof(struct sadb_msg)) { 6758 m = m_pullup(m, sizeof(struct sadb_msg)); 6759 if (!m) 6760 return ENOBUFS; 6761 } 6762 msg = mtod(m, struct sadb_msg *); 6763 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); 6764 target = KEY_SENDUP_ONE; 6765 6766 if ((m->m_flags & M_PKTHDR) == 0 || 6767 m->m_pkthdr.len != m->m_pkthdr.len) { 6768 ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__)); 6769 V_pfkeystat.out_invlen++; 6770 error = EINVAL; 6771 goto senderror; 6772 } 6773 6774 if (msg->sadb_msg_version != PF_KEY_V2) { 6775 ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n", 6776 __func__, msg->sadb_msg_version)); 6777 V_pfkeystat.out_invver++; 6778 error = EINVAL; 6779 goto senderror; 6780 } 6781 6782 if (msg->sadb_msg_type > SADB_MAX) { 6783 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 6784 __func__, msg->sadb_msg_type)); 6785 V_pfkeystat.out_invmsgtype++; 6786 error = EINVAL; 6787 goto senderror; 6788 } 6789 6790 /* for old-fashioned code - should be nuked */ 6791 if (m->m_pkthdr.len > MCLBYTES) { 6792 m_freem(m); 6793 return ENOBUFS; 6794 } 6795 if (m->m_next) { 6796 struct mbuf *n; 6797 6798 MGETHDR(n, M_DONTWAIT, MT_DATA); 6799 if (n && m->m_pkthdr.len > MHLEN) { 6800 MCLGET(n, M_DONTWAIT); 6801 if ((n->m_flags & M_EXT) == 0) { 6802 m_free(n); 6803 n = NULL; 6804 } 6805 } 6806 if (!n) { 6807 m_freem(m); 6808 return ENOBUFS; 6809 } 6810 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t)); 6811 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; 6812 n->m_next = NULL; 6813 m_freem(m); 6814 m = n; 6815 } 6816 6817 /* align the mbuf chain so that extensions are in contiguous region. */ 6818 error = key_align(m, &mh); 6819 if (error) 6820 return error; 6821 6822 msg = mh.msg; 6823 6824 /* check SA type */ 6825 switch (msg->sadb_msg_satype) { 6826 case SADB_SATYPE_UNSPEC: 6827 switch (msg->sadb_msg_type) { 6828 case SADB_GETSPI: 6829 case SADB_UPDATE: 6830 case SADB_ADD: 6831 case SADB_DELETE: 6832 case SADB_GET: 6833 case SADB_ACQUIRE: 6834 case SADB_EXPIRE: 6835 ipseclog((LOG_DEBUG, "%s: must specify satype " 6836 "when msg type=%u.\n", __func__, 6837 msg->sadb_msg_type)); 6838 V_pfkeystat.out_invsatype++; 6839 error = EINVAL; 6840 goto senderror; 6841 } 6842 break; 6843 case SADB_SATYPE_AH: 6844 case SADB_SATYPE_ESP: 6845 case SADB_X_SATYPE_IPCOMP: 6846 case SADB_X_SATYPE_TCPSIGNATURE: 6847 switch (msg->sadb_msg_type) { 6848 case SADB_X_SPDADD: 6849 case SADB_X_SPDDELETE: 6850 case SADB_X_SPDGET: 6851 case SADB_X_SPDDUMP: 6852 case SADB_X_SPDFLUSH: 6853 case SADB_X_SPDSETIDX: 6854 case SADB_X_SPDUPDATE: 6855 case SADB_X_SPDDELETE2: 6856 ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n", 6857 __func__, msg->sadb_msg_type)); 6858 V_pfkeystat.out_invsatype++; 6859 error = EINVAL; 6860 goto senderror; 6861 } 6862 break; 6863 case SADB_SATYPE_RSVP: 6864 case SADB_SATYPE_OSPFV2: 6865 case SADB_SATYPE_RIPV2: 6866 case SADB_SATYPE_MIP: 6867 ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n", 6868 __func__, msg->sadb_msg_satype)); 6869 V_pfkeystat.out_invsatype++; 6870 error = EOPNOTSUPP; 6871 goto senderror; 6872 case 1: /* XXX: What does it do? */ 6873 if (msg->sadb_msg_type == SADB_X_PROMISC) 6874 break; 6875 /*FALLTHROUGH*/ 6876 default: 6877 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 6878 __func__, msg->sadb_msg_satype)); 6879 V_pfkeystat.out_invsatype++; 6880 error = EINVAL; 6881 goto senderror; 6882 } 6883 6884 /* check field of upper layer protocol and address family */ 6885 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL 6886 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { 6887 struct sadb_address *src0, *dst0; 6888 u_int plen; 6889 6890 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]); 6891 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]); 6892 6893 /* check upper layer protocol */ 6894 if (src0->sadb_address_proto != dst0->sadb_address_proto) { 6895 ipseclog((LOG_DEBUG, "%s: upper layer protocol " 6896 "mismatched.\n", __func__)); 6897 V_pfkeystat.out_invaddr++; 6898 error = EINVAL; 6899 goto senderror; 6900 } 6901 6902 /* check family */ 6903 if (PFKEY_ADDR_SADDR(src0)->sa_family != 6904 PFKEY_ADDR_SADDR(dst0)->sa_family) { 6905 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 6906 __func__)); 6907 V_pfkeystat.out_invaddr++; 6908 error = EINVAL; 6909 goto senderror; 6910 } 6911 if (PFKEY_ADDR_SADDR(src0)->sa_len != 6912 PFKEY_ADDR_SADDR(dst0)->sa_len) { 6913 ipseclog((LOG_DEBUG, "%s: address struct size " 6914 "mismatched.\n", __func__)); 6915 V_pfkeystat.out_invaddr++; 6916 error = EINVAL; 6917 goto senderror; 6918 } 6919 6920 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 6921 case AF_INET: 6922 if (PFKEY_ADDR_SADDR(src0)->sa_len != 6923 sizeof(struct sockaddr_in)) { 6924 V_pfkeystat.out_invaddr++; 6925 error = EINVAL; 6926 goto senderror; 6927 } 6928 break; 6929 case AF_INET6: 6930 if (PFKEY_ADDR_SADDR(src0)->sa_len != 6931 sizeof(struct sockaddr_in6)) { 6932 V_pfkeystat.out_invaddr++; 6933 error = EINVAL; 6934 goto senderror; 6935 } 6936 break; 6937 default: 6938 ipseclog((LOG_DEBUG, "%s: unsupported address family\n", 6939 __func__)); 6940 V_pfkeystat.out_invaddr++; 6941 error = EAFNOSUPPORT; 6942 goto senderror; 6943 } 6944 6945 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 6946 case AF_INET: 6947 plen = sizeof(struct in_addr) << 3; 6948 break; 6949 case AF_INET6: 6950 plen = sizeof(struct in6_addr) << 3; 6951 break; 6952 default: 6953 plen = 0; /*fool gcc*/ 6954 break; 6955 } 6956 6957 /* check max prefix length */ 6958 if (src0->sadb_address_prefixlen > plen || 6959 dst0->sadb_address_prefixlen > plen) { 6960 ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n", 6961 __func__)); 6962 V_pfkeystat.out_invaddr++; 6963 error = EINVAL; 6964 goto senderror; 6965 } 6966 6967 /* 6968 * prefixlen == 0 is valid because there can be a case when 6969 * all addresses are matched. 6970 */ 6971 } 6972 6973 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) || 6974 key_typesw[msg->sadb_msg_type] == NULL) { 6975 V_pfkeystat.out_invmsgtype++; 6976 error = EINVAL; 6977 goto senderror; 6978 } 6979 6980 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh); 6981 6982 senderror: 6983 msg->sadb_msg_errno = error; 6984 return key_sendup_mbuf(so, m, target); 6985 } 6986 6987 static int 6988 key_senderror(so, m, code) 6989 struct socket *so; 6990 struct mbuf *m; 6991 int code; 6992 { 6993 struct sadb_msg *msg; 6994 6995 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 6996 ("mbuf too small, len %u", m->m_len)); 6997 6998 msg = mtod(m, struct sadb_msg *); 6999 msg->sadb_msg_errno = code; 7000 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 7001 } 7002 7003 /* 7004 * set the pointer to each header into message buffer. 7005 * m will be freed on error. 7006 * XXX larger-than-MCLBYTES extension? 7007 */ 7008 static int 7009 key_align(m, mhp) 7010 struct mbuf *m; 7011 struct sadb_msghdr *mhp; 7012 { 7013 INIT_VNET_IPSEC(curvnet); 7014 struct mbuf *n; 7015 struct sadb_ext *ext; 7016 size_t off, end; 7017 int extlen; 7018 int toff; 7019 7020 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7021 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7022 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 7023 ("mbuf too small, len %u", m->m_len)); 7024 7025 /* initialize */ 7026 bzero(mhp, sizeof(*mhp)); 7027 7028 mhp->msg = mtod(m, struct sadb_msg *); 7029 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */ 7030 7031 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7032 extlen = end; /*just in case extlen is not updated*/ 7033 for (off = sizeof(struct sadb_msg); off < end; off += extlen) { 7034 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); 7035 if (!n) { 7036 /* m is already freed */ 7037 return ENOBUFS; 7038 } 7039 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 7040 7041 /* set pointer */ 7042 switch (ext->sadb_ext_type) { 7043 case SADB_EXT_SA: 7044 case SADB_EXT_ADDRESS_SRC: 7045 case SADB_EXT_ADDRESS_DST: 7046 case SADB_EXT_ADDRESS_PROXY: 7047 case SADB_EXT_LIFETIME_CURRENT: 7048 case SADB_EXT_LIFETIME_HARD: 7049 case SADB_EXT_LIFETIME_SOFT: 7050 case SADB_EXT_KEY_AUTH: 7051 case SADB_EXT_KEY_ENCRYPT: 7052 case SADB_EXT_IDENTITY_SRC: 7053 case SADB_EXT_IDENTITY_DST: 7054 case SADB_EXT_SENSITIVITY: 7055 case SADB_EXT_PROPOSAL: 7056 case SADB_EXT_SUPPORTED_AUTH: 7057 case SADB_EXT_SUPPORTED_ENCRYPT: 7058 case SADB_EXT_SPIRANGE: 7059 case SADB_X_EXT_POLICY: 7060 case SADB_X_EXT_SA2: 7061 /* duplicate check */ 7062 /* 7063 * XXX Are there duplication payloads of either 7064 * KEY_AUTH or KEY_ENCRYPT ? 7065 */ 7066 if (mhp->ext[ext->sadb_ext_type] != NULL) { 7067 ipseclog((LOG_DEBUG, "%s: duplicate ext_type " 7068 "%u\n", __func__, ext->sadb_ext_type)); 7069 m_freem(m); 7070 V_pfkeystat.out_dupext++; 7071 return EINVAL; 7072 } 7073 break; 7074 default: 7075 ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n", 7076 __func__, ext->sadb_ext_type)); 7077 m_freem(m); 7078 V_pfkeystat.out_invexttype++; 7079 return EINVAL; 7080 } 7081 7082 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); 7083 7084 if (key_validate_ext(ext, extlen)) { 7085 m_freem(m); 7086 V_pfkeystat.out_invlen++; 7087 return EINVAL; 7088 } 7089 7090 n = m_pulldown(m, off, extlen, &toff); 7091 if (!n) { 7092 /* m is already freed */ 7093 return ENOBUFS; 7094 } 7095 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 7096 7097 mhp->ext[ext->sadb_ext_type] = ext; 7098 mhp->extoff[ext->sadb_ext_type] = off; 7099 mhp->extlen[ext->sadb_ext_type] = extlen; 7100 } 7101 7102 if (off != end) { 7103 m_freem(m); 7104 V_pfkeystat.out_invlen++; 7105 return EINVAL; 7106 } 7107 7108 return 0; 7109 } 7110 7111 static int 7112 key_validate_ext(ext, len) 7113 const struct sadb_ext *ext; 7114 int len; 7115 { 7116 const struct sockaddr *sa; 7117 enum { NONE, ADDR } checktype = NONE; 7118 int baselen = 0; 7119 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); 7120 7121 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) 7122 return EINVAL; 7123 7124 /* if it does not match minimum/maximum length, bail */ 7125 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) || 7126 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0])) 7127 return EINVAL; 7128 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) 7129 return EINVAL; 7130 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) 7131 return EINVAL; 7132 7133 /* more checks based on sadb_ext_type XXX need more */ 7134 switch (ext->sadb_ext_type) { 7135 case SADB_EXT_ADDRESS_SRC: 7136 case SADB_EXT_ADDRESS_DST: 7137 case SADB_EXT_ADDRESS_PROXY: 7138 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); 7139 checktype = ADDR; 7140 break; 7141 case SADB_EXT_IDENTITY_SRC: 7142 case SADB_EXT_IDENTITY_DST: 7143 if (((const struct sadb_ident *)ext)->sadb_ident_type == 7144 SADB_X_IDENTTYPE_ADDR) { 7145 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); 7146 checktype = ADDR; 7147 } else 7148 checktype = NONE; 7149 break; 7150 default: 7151 checktype = NONE; 7152 break; 7153 } 7154 7155 switch (checktype) { 7156 case NONE: 7157 break; 7158 case ADDR: 7159 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); 7160 if (len < baselen + sal) 7161 return EINVAL; 7162 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) 7163 return EINVAL; 7164 break; 7165 } 7166 7167 return 0; 7168 } 7169 7170 void 7171 key_init(void) 7172 { 7173 INIT_VNET_IPSEC(curvnet); 7174 int i; 7175 7176 V_key_debug_level = 0; 7177 V_key_spi_trycnt = 1000; 7178 V_key_spi_minval = 0x100; 7179 V_key_spi_maxval = 0x0fffffff; /* XXX */ 7180 V_policy_id = 0; 7181 V_key_int_random = 60; /*interval to initialize randseed,1(m)*/ 7182 V_key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/ 7183 V_key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/ 7184 V_key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/ 7185 V_key_preferred_oldsa = 1; /* preferred old sa rather than new sa*/ 7186 7187 V_acq_seq = 0; 7188 7189 V_ipsec_esp_keymin = 256; 7190 V_ipsec_esp_auth = 0; 7191 V_ipsec_ah_keymin = 128; 7192 7193 SPTREE_LOCK_INIT(); 7194 REGTREE_LOCK_INIT(); 7195 SAHTREE_LOCK_INIT(); 7196 ACQ_LOCK_INIT(); 7197 SPACQ_LOCK_INIT(); 7198 7199 for (i = 0; i < IPSEC_DIR_MAX; i++) 7200 LIST_INIT(&V_sptree[i]); 7201 7202 LIST_INIT(&V_sahtree); 7203 7204 for (i = 0; i <= SADB_SATYPE_MAX; i++) 7205 LIST_INIT(&V_regtree[i]); 7206 7207 LIST_INIT(&V_acqtree); 7208 LIST_INIT(&V_spacqtree); 7209 7210 /* system default */ 7211 V_ip4_def_policy.policy = IPSEC_POLICY_NONE; 7212 V_ip4_def_policy.refcnt++; /*never reclaim this*/ 7213 7214 #ifndef IPSEC_DEBUG2 7215 timeout((void *)key_timehandler, (void *)0, hz); 7216 #endif /*IPSEC_DEBUG2*/ 7217 7218 /* initialize key statistics */ 7219 keystat.getspi_count = 1; 7220 7221 printf("IPsec: Initialized Security Association Processing.\n"); 7222 7223 return; 7224 } 7225 7226 /* 7227 * XXX: maybe This function is called after INBOUND IPsec processing. 7228 * 7229 * Special check for tunnel-mode packets. 7230 * We must make some checks for consistency between inner and outer IP header. 7231 * 7232 * xxx more checks to be provided 7233 */ 7234 int 7235 key_checktunnelsanity(sav, family, src, dst) 7236 struct secasvar *sav; 7237 u_int family; 7238 caddr_t src; 7239 caddr_t dst; 7240 { 7241 IPSEC_ASSERT(sav->sah != NULL, ("null SA header")); 7242 7243 /* XXX: check inner IP header */ 7244 7245 return 1; 7246 } 7247 7248 /* record data transfer on SA, and update timestamps */ 7249 void 7250 key_sa_recordxfer(sav, m) 7251 struct secasvar *sav; 7252 struct mbuf *m; 7253 { 7254 IPSEC_ASSERT(sav != NULL, ("Null secasvar")); 7255 IPSEC_ASSERT(m != NULL, ("Null mbuf")); 7256 if (!sav->lft_c) 7257 return; 7258 7259 /* 7260 * XXX Currently, there is a difference of bytes size 7261 * between inbound and outbound processing. 7262 */ 7263 sav->lft_c->bytes += m->m_pkthdr.len; 7264 /* to check bytes lifetime is done in key_timehandler(). */ 7265 7266 /* 7267 * We use the number of packets as the unit of 7268 * allocations. We increment the variable 7269 * whenever {esp,ah}_{in,out}put is called. 7270 */ 7271 sav->lft_c->allocations++; 7272 /* XXX check for expires? */ 7273 7274 /* 7275 * NOTE: We record CURRENT usetime by using wall clock, 7276 * in seconds. HARD and SOFT lifetime are measured by the time 7277 * difference (again in seconds) from usetime. 7278 * 7279 * usetime 7280 * v expire expire 7281 * -----+-----+--------+---> t 7282 * <--------------> HARD 7283 * <-----> SOFT 7284 */ 7285 sav->lft_c->usetime = time_second; 7286 /* XXX check for expires? */ 7287 7288 return; 7289 } 7290 7291 /* dumb version */ 7292 void 7293 key_sa_routechange(dst) 7294 struct sockaddr *dst; 7295 { 7296 INIT_VNET_IPSEC(curvnet); 7297 struct secashead *sah; 7298 struct route *ro; 7299 7300 SAHTREE_LOCK(); 7301 LIST_FOREACH(sah, &V_sahtree, chain) { 7302 ro = &sah->sa_route; 7303 if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len 7304 && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) { 7305 RTFREE(ro->ro_rt); 7306 ro->ro_rt = (struct rtentry *)NULL; 7307 } 7308 } 7309 SAHTREE_UNLOCK(); 7310 } 7311 7312 static void 7313 key_sa_chgstate(sav, state) 7314 struct secasvar *sav; 7315 u_int8_t state; 7316 { 7317 IPSEC_ASSERT(sav != NULL, ("NULL sav")); 7318 SAHTREE_LOCK_ASSERT(); 7319 7320 if (sav->state != state) { 7321 if (__LIST_CHAINED(sav)) 7322 LIST_REMOVE(sav, chain); 7323 sav->state = state; 7324 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain); 7325 } 7326 } 7327 7328 void 7329 key_sa_stir_iv(sav) 7330 struct secasvar *sav; 7331 { 7332 7333 IPSEC_ASSERT(sav->iv != NULL, ("null IV")); 7334 key_randomfill(sav->iv, sav->ivlen); 7335 } 7336 7337 /* XXX too much? */ 7338 static struct mbuf * 7339 key_alloc_mbuf(l) 7340 int l; 7341 { 7342 struct mbuf *m = NULL, *n; 7343 int len, t; 7344 7345 len = l; 7346 while (len > 0) { 7347 MGET(n, M_DONTWAIT, MT_DATA); 7348 if (n && len > MLEN) 7349 MCLGET(n, M_DONTWAIT); 7350 if (!n) { 7351 m_freem(m); 7352 return NULL; 7353 } 7354 7355 n->m_next = NULL; 7356 n->m_len = 0; 7357 n->m_len = M_TRAILINGSPACE(n); 7358 /* use the bottom of mbuf, hoping we can prepend afterwards */ 7359 if (n->m_len > len) { 7360 t = (n->m_len - len) & ~(sizeof(long) - 1); 7361 n->m_data += t; 7362 n->m_len = len; 7363 } 7364 7365 len -= n->m_len; 7366 7367 if (m) 7368 m_cat(m, n); 7369 else 7370 m = n; 7371 } 7372 7373 return m; 7374 } 7375 7376 /* 7377 * Take one of the kernel's security keys and convert it into a PF_KEY 7378 * structure within an mbuf, suitable for sending up to a waiting 7379 * application in user land. 7380 * 7381 * IN: 7382 * src: A pointer to a kernel security key. 7383 * exttype: Which type of key this is. Refer to the PF_KEY data structures. 7384 * OUT: 7385 * a valid mbuf or NULL indicating an error 7386 * 7387 */ 7388 7389 static struct mbuf * 7390 key_setkey(struct seckey *src, u_int16_t exttype) 7391 { 7392 struct mbuf *m; 7393 struct sadb_key *p; 7394 int len; 7395 7396 if (src == NULL) 7397 return NULL; 7398 7399 len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src)); 7400 m = key_alloc_mbuf(len); 7401 if (m == NULL) 7402 return NULL; 7403 p = mtod(m, struct sadb_key *); 7404 bzero(p, len); 7405 p->sadb_key_len = PFKEY_UNIT64(len); 7406 p->sadb_key_exttype = exttype; 7407 p->sadb_key_bits = src->bits; 7408 bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src)); 7409 7410 return m; 7411 } 7412 7413 /* 7414 * Take one of the kernel's lifetime data structures and convert it 7415 * into a PF_KEY structure within an mbuf, suitable for sending up to 7416 * a waiting application in user land. 7417 * 7418 * IN: 7419 * src: A pointer to a kernel lifetime structure. 7420 * exttype: Which type of lifetime this is. Refer to the PF_KEY 7421 * data structures for more information. 7422 * OUT: 7423 * a valid mbuf or NULL indicating an error 7424 * 7425 */ 7426 7427 static struct mbuf * 7428 key_setlifetime(struct seclifetime *src, u_int16_t exttype) 7429 { 7430 struct mbuf *m = NULL; 7431 struct sadb_lifetime *p; 7432 int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime)); 7433 7434 if (src == NULL) 7435 return NULL; 7436 7437 m = key_alloc_mbuf(len); 7438 if (m == NULL) 7439 return m; 7440 p = mtod(m, struct sadb_lifetime *); 7441 7442 bzero(p, len); 7443 p->sadb_lifetime_len = PFKEY_UNIT64(len); 7444 p->sadb_lifetime_exttype = exttype; 7445 p->sadb_lifetime_allocations = src->allocations; 7446 p->sadb_lifetime_bytes = src->bytes; 7447 p->sadb_lifetime_addtime = src->addtime; 7448 p->sadb_lifetime_usetime = src->usetime; 7449 7450 return m; 7451 7452 } 7453