1 /* $FreeBSD$ */ 2 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * This code is referd to RFC 2367 35 */ 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 #include "opt_ipsec.h" 40 41 #include <sys/types.h> 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/mutex.h> 47 #include <sys/mbuf.h> 48 #include <sys/domain.h> 49 #include <sys/protosw.h> 50 #include <sys/malloc.h> 51 #include <sys/socket.h> 52 #include <sys/socketvar.h> 53 #include <sys/sysctl.h> 54 #include <sys/errno.h> 55 #include <sys/proc.h> 56 #include <sys/queue.h> 57 #include <sys/syslog.h> 58 59 #include <net/if.h> 60 #include <net/route.h> 61 #include <net/raw_cb.h> 62 63 #include <netinet/in.h> 64 #include <netinet/in_systm.h> 65 #include <netinet/ip.h> 66 #include <netinet/in_var.h> 67 68 #ifdef INET6 69 #include <netinet/ip6.h> 70 #include <netinet6/in6_var.h> 71 #include <netinet6/ip6_var.h> 72 #endif /* INET6 */ 73 74 #ifdef INET 75 #include <netinet/in_pcb.h> 76 #endif 77 #ifdef INET6 78 #include <netinet6/in6_pcb.h> 79 #endif /* INET6 */ 80 81 #include <net/pfkeyv2.h> 82 #include <netipsec/keydb.h> 83 #include <netipsec/key.h> 84 #include <netipsec/keysock.h> 85 #include <netipsec/key_debug.h> 86 87 #include <netipsec/ipsec.h> 88 #ifdef INET6 89 #include <netipsec/ipsec6.h> 90 #endif 91 92 #include <netipsec/xform.h> 93 94 #include <machine/stdarg.h> 95 96 /* randomness */ 97 #include <sys/random.h> 98 99 #include <net/net_osdep.h> 100 101 #define FULLMASK 0xff 102 #define _BITS(bytes) ((bytes) << 3) 103 104 /* 105 * Note on SA reference counting: 106 * - SAs that are not in DEAD state will have (total external reference + 1) 107 * following value in reference count field. they cannot be freed and are 108 * referenced from SA header. 109 * - SAs that are in DEAD state will have (total external reference) 110 * in reference count field. they are ready to be freed. reference from 111 * SA header will be removed in key_delsav(), when the reference count 112 * field hits 0 (= no external reference other than from SA header. 113 */ 114 115 u_int32_t key_debug_level = 0; 116 static u_int key_spi_trycnt = 1000; 117 static u_int32_t key_spi_minval = 0x100; 118 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */ 119 static u_int32_t policy_id = 0; 120 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/ 121 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/ 122 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/ 123 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/ 124 static int key_prefered_oldsa = 1; /* prefered old sa rather than new sa.*/ 125 126 static u_int32_t acq_seq = 0; 127 128 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */ 129 static struct mtx sptree_lock; 130 static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */ 131 static struct mtx sahtree_lock; 132 /* registed list */ 133 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1]; 134 static struct mtx regtree_lock; 135 static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */ 136 static struct mtx acq_lock; 137 static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */ 138 static struct mtx spacq_lock; 139 140 /* search order for SAs */ 141 static u_int saorder_state_valid[] = { 142 SADB_SASTATE_DYING, SADB_SASTATE_MATURE, 143 /* 144 * This order is important because we must select the oldest SA 145 * for outbound processing. For inbound, This is not important. 146 */ 147 }; 148 static u_int saorder_state_alive[] = { 149 /* except DEAD */ 150 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL 151 }; 152 static u_int saorder_state_any[] = { 153 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 154 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD 155 }; 156 157 static const int minsize[] = { 158 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 159 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 160 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 161 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 162 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 163 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ 164 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ 165 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ 166 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ 167 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ 168 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ 169 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ 170 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ 171 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ 172 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ 173 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ 174 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 175 0, /* SADB_X_EXT_KMPRIVATE */ 176 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ 177 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 178 }; 179 static const int maxsize[] = { 180 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 181 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 182 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 183 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 184 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 185 0, /* SADB_EXT_ADDRESS_SRC */ 186 0, /* SADB_EXT_ADDRESS_DST */ 187 0, /* SADB_EXT_ADDRESS_PROXY */ 188 0, /* SADB_EXT_KEY_AUTH */ 189 0, /* SADB_EXT_KEY_ENCRYPT */ 190 0, /* SADB_EXT_IDENTITY_SRC */ 191 0, /* SADB_EXT_IDENTITY_DST */ 192 0, /* SADB_EXT_SENSITIVITY */ 193 0, /* SADB_EXT_PROPOSAL */ 194 0, /* SADB_EXT_SUPPORTED_AUTH */ 195 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ 196 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 197 0, /* SADB_X_EXT_KMPRIVATE */ 198 0, /* SADB_X_EXT_POLICY */ 199 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 200 }; 201 202 static int ipsec_esp_keymin = 256; 203 static int ipsec_esp_auth = 0; 204 static int ipsec_ah_keymin = 128; 205 206 #ifdef SYSCTL_DECL 207 SYSCTL_DECL(_net_key); 208 #endif 209 210 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \ 211 &key_debug_level, 0, ""); 212 213 /* max count of trial for the decision of spi value */ 214 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \ 215 &key_spi_trycnt, 0, ""); 216 217 /* minimum spi value to allocate automatically. */ 218 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \ 219 &key_spi_minval, 0, ""); 220 221 /* maximun spi value to allocate automatically. */ 222 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \ 223 &key_spi_maxval, 0, ""); 224 225 /* interval to initialize randseed */ 226 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \ 227 &key_int_random, 0, ""); 228 229 /* lifetime for larval SA */ 230 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \ 231 &key_larval_lifetime, 0, ""); 232 233 /* counter for blocking to send SADB_ACQUIRE to IKEd */ 234 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \ 235 &key_blockacq_count, 0, ""); 236 237 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ 238 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \ 239 &key_blockacq_lifetime, 0, ""); 240 241 /* ESP auth */ 242 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \ 243 &ipsec_esp_auth, 0, ""); 244 245 /* minimum ESP key length */ 246 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \ 247 &ipsec_esp_keymin, 0, ""); 248 249 /* minimum AH key length */ 250 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \ 251 &ipsec_ah_keymin, 0, ""); 252 253 /* perfered old SA rather than new SA */ 254 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\ 255 &key_prefered_oldsa, 0, ""); 256 257 #ifndef LIST_FOREACH 258 #define LIST_FOREACH(elm, head, field) \ 259 for (elm = LIST_FIRST(head); elm; elm = LIST_NEXT(elm, field)) 260 #endif 261 #define __LIST_CHAINED(elm) \ 262 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) 263 #define LIST_INSERT_TAIL(head, elm, type, field) \ 264 do {\ 265 struct type *curelm = LIST_FIRST(head); \ 266 if (curelm == NULL) {\ 267 LIST_INSERT_HEAD(head, elm, field); \ 268 } else { \ 269 while (LIST_NEXT(curelm, field)) \ 270 curelm = LIST_NEXT(curelm, field);\ 271 LIST_INSERT_AFTER(curelm, elm, field);\ 272 }\ 273 } while (0) 274 275 #define KEY_CHKSASTATE(head, sav, name) \ 276 do { \ 277 if ((head) != (sav)) { \ 278 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \ 279 (name), (head), (sav))); \ 280 continue; \ 281 } \ 282 } while (0) 283 284 #define KEY_CHKSPDIR(head, sp, name) \ 285 do { \ 286 if ((head) != (sp)) { \ 287 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \ 288 "anyway continue.\n", \ 289 (name), (head), (sp))); \ 290 } \ 291 } while (0) 292 293 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association"); 294 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head"); 295 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy"); 296 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request"); 297 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous"); 298 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire"); 299 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire"); 300 301 /* 302 * set parameters into secpolicyindex buffer. 303 * Must allocate secpolicyindex buffer passed to this function. 304 */ 305 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \ 306 do { \ 307 bzero((idx), sizeof(struct secpolicyindex)); \ 308 (idx)->dir = (_dir); \ 309 (idx)->prefs = (ps); \ 310 (idx)->prefd = (pd); \ 311 (idx)->ul_proto = (ulp); \ 312 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 313 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 314 } while (0) 315 316 /* 317 * set parameters into secasindex buffer. 318 * Must allocate secasindex buffer before calling this function. 319 */ 320 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \ 321 do { \ 322 bzero((idx), sizeof(struct secasindex)); \ 323 (idx)->proto = (p); \ 324 (idx)->mode = (m); \ 325 (idx)->reqid = (r); \ 326 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 327 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 328 } while (0) 329 330 /* key statistics */ 331 struct _keystat { 332 u_long getspi_count; /* the avarage of count to try to get new SPI */ 333 } keystat; 334 335 struct sadb_msghdr { 336 struct sadb_msg *msg; 337 struct sadb_ext *ext[SADB_EXT_MAX + 1]; 338 int extoff[SADB_EXT_MAX + 1]; 339 int extlen[SADB_EXT_MAX + 1]; 340 }; 341 342 static struct secasvar *key_allocsa_policy __P((const struct secasindex *)); 343 static void key_freesp_so __P((struct secpolicy **)); 344 static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int)); 345 static void key_delsp __P((struct secpolicy *)); 346 static struct secpolicy *key_getsp __P((struct secpolicyindex *)); 347 static void _key_delsp(struct secpolicy *sp); 348 static struct secpolicy *key_getspbyid __P((u_int32_t)); 349 static u_int32_t key_newreqid __P((void)); 350 static struct mbuf *key_gather_mbuf __P((struct mbuf *, 351 const struct sadb_msghdr *, int, int, ...)); 352 static int key_spdadd __P((struct socket *, struct mbuf *, 353 const struct sadb_msghdr *)); 354 static u_int32_t key_getnewspid __P((void)); 355 static int key_spddelete __P((struct socket *, struct mbuf *, 356 const struct sadb_msghdr *)); 357 static int key_spddelete2 __P((struct socket *, struct mbuf *, 358 const struct sadb_msghdr *)); 359 static int key_spdget __P((struct socket *, struct mbuf *, 360 const struct sadb_msghdr *)); 361 static int key_spdflush __P((struct socket *, struct mbuf *, 362 const struct sadb_msghdr *)); 363 static int key_spddump __P((struct socket *, struct mbuf *, 364 const struct sadb_msghdr *)); 365 static struct mbuf *key_setdumpsp __P((struct secpolicy *, 366 u_int8_t, u_int32_t, u_int32_t)); 367 static u_int key_getspreqmsglen __P((struct secpolicy *)); 368 static int key_spdexpire __P((struct secpolicy *)); 369 static struct secashead *key_newsah __P((struct secasindex *)); 370 static void key_delsah __P((struct secashead *)); 371 static struct secasvar *key_newsav __P((struct mbuf *, 372 const struct sadb_msghdr *, struct secashead *, int *, 373 const char*, int)); 374 #define KEY_NEWSAV(m, sadb, sah, e) \ 375 key_newsav(m, sadb, sah, e, __FILE__, __LINE__) 376 static void key_delsav __P((struct secasvar *)); 377 static struct secashead *key_getsah __P((struct secasindex *)); 378 static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t)); 379 static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t)); 380 static int key_setsaval __P((struct secasvar *, struct mbuf *, 381 const struct sadb_msghdr *)); 382 static int key_mature __P((struct secasvar *)); 383 static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t, 384 u_int8_t, u_int32_t, u_int32_t)); 385 static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t, 386 u_int32_t, pid_t, u_int16_t)); 387 static struct mbuf *key_setsadbsa __P((struct secasvar *)); 388 static struct mbuf *key_setsadbaddr __P((u_int16_t, 389 const struct sockaddr *, u_int8_t, u_int16_t)); 390 static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t)); 391 static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t, 392 u_int32_t)); 393 static void *key_dup(const void *, u_int, struct malloc_type *); 394 #ifdef INET6 395 static int key_ismyaddr6 __P((struct sockaddr_in6 *)); 396 #endif 397 398 /* flags for key_cmpsaidx() */ 399 #define CMP_HEAD 1 /* protocol, addresses. */ 400 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ 401 #define CMP_REQID 3 /* additionally HEAD, reaid. */ 402 #define CMP_EXACTLY 4 /* all elements. */ 403 static int key_cmpsaidx 404 __P((const struct secasindex *, const struct secasindex *, int)); 405 406 static int key_cmpspidx_exactly 407 __P((struct secpolicyindex *, struct secpolicyindex *)); 408 static int key_cmpspidx_withmask 409 __P((struct secpolicyindex *, struct secpolicyindex *)); 410 static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int)); 411 static int key_bbcmp __P((const void *, const void *, u_int)); 412 static u_int16_t key_satype2proto __P((u_int8_t)); 413 static u_int8_t key_proto2satype __P((u_int16_t)); 414 415 static int key_getspi __P((struct socket *, struct mbuf *, 416 const struct sadb_msghdr *)); 417 static u_int32_t key_do_getnewspi __P((struct sadb_spirange *, 418 struct secasindex *)); 419 static int key_update __P((struct socket *, struct mbuf *, 420 const struct sadb_msghdr *)); 421 #ifdef IPSEC_DOSEQCHECK 422 static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t)); 423 #endif 424 static int key_add __P((struct socket *, struct mbuf *, 425 const struct sadb_msghdr *)); 426 static int key_setident __P((struct secashead *, struct mbuf *, 427 const struct sadb_msghdr *)); 428 static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *, 429 const struct sadb_msghdr *)); 430 static int key_delete __P((struct socket *, struct mbuf *, 431 const struct sadb_msghdr *)); 432 static int key_get __P((struct socket *, struct mbuf *, 433 const struct sadb_msghdr *)); 434 435 static void key_getcomb_setlifetime __P((struct sadb_comb *)); 436 static struct mbuf *key_getcomb_esp __P((void)); 437 static struct mbuf *key_getcomb_ah __P((void)); 438 static struct mbuf *key_getcomb_ipcomp __P((void)); 439 static struct mbuf *key_getprop __P((const struct secasindex *)); 440 441 static int key_acquire __P((const struct secasindex *, struct secpolicy *)); 442 static struct secacq *key_newacq __P((const struct secasindex *)); 443 static struct secacq *key_getacq __P((const struct secasindex *)); 444 static struct secacq *key_getacqbyseq __P((u_int32_t)); 445 static struct secspacq *key_newspacq __P((struct secpolicyindex *)); 446 static struct secspacq *key_getspacq __P((struct secpolicyindex *)); 447 static int key_acquire2 __P((struct socket *, struct mbuf *, 448 const struct sadb_msghdr *)); 449 static int key_register __P((struct socket *, struct mbuf *, 450 const struct sadb_msghdr *)); 451 static int key_expire __P((struct secasvar *)); 452 static int key_flush __P((struct socket *, struct mbuf *, 453 const struct sadb_msghdr *)); 454 static int key_dump __P((struct socket *, struct mbuf *, 455 const struct sadb_msghdr *)); 456 static int key_promisc __P((struct socket *, struct mbuf *, 457 const struct sadb_msghdr *)); 458 static int key_senderror __P((struct socket *, struct mbuf *, int)); 459 static int key_validate_ext __P((const struct sadb_ext *, int)); 460 static int key_align __P((struct mbuf *, struct sadb_msghdr *)); 461 #if 0 462 static const char *key_getfqdn __P((void)); 463 static const char *key_getuserfqdn __P((void)); 464 #endif 465 static void key_sa_chgstate __P((struct secasvar *, u_int8_t)); 466 static struct mbuf *key_alloc_mbuf __P((int)); 467 468 #define SA_ADDREF(p) do { \ 469 (p)->refcnt++; \ 470 KASSERT((p)->refcnt != 0, \ 471 ("SA refcnt overflow at %s:%u", __FILE__, __LINE__)); \ 472 } while (0) 473 #define SA_DELREF(p) do { \ 474 KASSERT((p)->refcnt > 0, \ 475 ("SA refcnt underflow at %s:%u", __FILE__, __LINE__)); \ 476 (p)->refcnt--; \ 477 } while (0) 478 479 #define SP_ADDREF(p) do { \ 480 (p)->refcnt++; \ 481 KASSERT((p)->refcnt != 0, \ 482 ("SP refcnt overflow at %s:%u", __FILE__, __LINE__)); \ 483 } while (0) 484 #define SP_DELREF(p) do { \ 485 KASSERT((p)->refcnt > 0, \ 486 ("SP refcnt underflow at %s:%u", __FILE__, __LINE__)); \ 487 (p)->refcnt--; \ 488 } while (0) 489 490 /* 491 * Return 0 when there are known to be no SP's for the specified 492 * direction. Otherwise return 1. This is used by IPsec code 493 * to optimize performance. 494 */ 495 int 496 key_havesp(u_int dir) 497 { 498 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? 499 LIST_FIRST(&sptree[dir]) != NULL : 1); 500 } 501 502 /* %%% IPsec policy management */ 503 /* 504 * allocating a SP for OUTBOUND or INBOUND packet. 505 * Must call key_freesp() later. 506 * OUT: NULL: not found 507 * others: found and return the pointer. 508 */ 509 struct secpolicy * 510 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag) 511 { 512 struct secpolicy *sp; 513 514 KASSERT(spidx != NULL, ("key_allocsp: null spidx")); 515 KASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 516 ("key_allocsp: invalid direction %u", dir)); 517 518 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 519 printf("DP key_allocsp from %s:%u\n", where, tag)); 520 521 /* get a SP entry */ 522 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 523 printf("*** objects\n"); 524 kdebug_secpolicyindex(spidx)); 525 526 mtx_lock(&sptree_lock); 527 LIST_FOREACH(sp, &sptree[dir], chain) { 528 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 529 printf("*** in SPD\n"); 530 kdebug_secpolicyindex(&sp->spidx)); 531 532 if (sp->state == IPSEC_SPSTATE_DEAD) 533 continue; 534 if (key_cmpspidx_withmask(&sp->spidx, spidx)) 535 goto found; 536 } 537 sp = NULL; 538 found: 539 if (sp) { 540 /* sanity check */ 541 KEY_CHKSPDIR(sp->spidx.dir, dir, "key_allocsp"); 542 543 /* found a SPD entry */ 544 sp->lastused = time_second; 545 SP_ADDREF(sp); 546 } 547 mtx_unlock(&sptree_lock); 548 549 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 550 printf("DP key_allocsp return SP:%p (ID=%u) refcnt %u\n", 551 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 552 return sp; 553 } 554 555 /* 556 * allocating a SP for OUTBOUND or INBOUND packet. 557 * Must call key_freesp() later. 558 * OUT: NULL: not found 559 * others: found and return the pointer. 560 */ 561 struct secpolicy * 562 key_allocsp2(u_int32_t spi, 563 union sockaddr_union *dst, 564 u_int8_t proto, 565 u_int dir, 566 const char* where, int tag) 567 { 568 struct secpolicy *sp; 569 570 KASSERT(dst != NULL, ("key_allocsp2: null dst")); 571 KASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 572 ("key_allocsp2: invalid direction %u", dir)); 573 574 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 575 printf("DP key_allocsp2 from %s:%u\n", where, tag)); 576 577 /* get a SP entry */ 578 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 579 printf("*** objects\n"); 580 printf("spi %u proto %u dir %u\n", spi, proto, dir); 581 kdebug_sockaddr(&dst->sa)); 582 583 mtx_lock(&sptree_lock); 584 LIST_FOREACH(sp, &sptree[dir], chain) { 585 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 586 printf("*** in SPD\n"); 587 kdebug_secpolicyindex(&sp->spidx)); 588 589 if (sp->state == IPSEC_SPSTATE_DEAD) 590 continue; 591 /* compare simple values, then dst address */ 592 if (sp->spidx.ul_proto != proto) 593 continue; 594 /* NB: spi's must exist and match */ 595 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi) 596 continue; 597 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0) 598 goto found; 599 } 600 sp = NULL; 601 found: 602 if (sp) { 603 /* sanity check */ 604 KEY_CHKSPDIR(sp->spidx.dir, dir, "key_allocsp2"); 605 606 /* found a SPD entry */ 607 sp->lastused = time_second; 608 SP_ADDREF(sp); 609 } 610 mtx_unlock(&sptree_lock); 611 612 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 613 printf("DP key_allocsp2 return SP:%p (ID=%u) refcnt %u\n", 614 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 615 return sp; 616 } 617 618 /* 619 * return a policy that matches this particular inbound packet. 620 * XXX slow 621 */ 622 struct secpolicy * 623 key_gettunnel(const struct sockaddr *osrc, 624 const struct sockaddr *odst, 625 const struct sockaddr *isrc, 626 const struct sockaddr *idst, 627 const char* where, int tag) 628 { 629 struct secpolicy *sp; 630 const int dir = IPSEC_DIR_INBOUND; 631 struct ipsecrequest *r1, *r2, *p; 632 struct secpolicyindex spidx; 633 634 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 635 printf("DP key_gettunnel from %s:%u\n", where, tag)); 636 637 if (isrc->sa_family != idst->sa_family) { 638 ipseclog((LOG_ERR, "protocol family mismatched %d != %d\n.", 639 isrc->sa_family, idst->sa_family)); 640 sp = NULL; 641 goto done; 642 } 643 644 mtx_lock(&sptree_lock); 645 LIST_FOREACH(sp, &sptree[dir], chain) { 646 if (sp->state == IPSEC_SPSTATE_DEAD) 647 continue; 648 649 r1 = r2 = NULL; 650 for (p = sp->req; p; p = p->next) { 651 if (p->saidx.mode != IPSEC_MODE_TUNNEL) 652 continue; 653 654 r1 = r2; 655 r2 = p; 656 657 if (!r1) { 658 /* here we look at address matches only */ 659 spidx = sp->spidx; 660 if (isrc->sa_len > sizeof(spidx.src) || 661 idst->sa_len > sizeof(spidx.dst)) 662 continue; 663 bcopy(isrc, &spidx.src, isrc->sa_len); 664 bcopy(idst, &spidx.dst, idst->sa_len); 665 if (!key_cmpspidx_withmask(&sp->spidx, &spidx)) 666 continue; 667 } else { 668 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) || 669 key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0)) 670 continue; 671 } 672 673 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) || 674 key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0)) 675 continue; 676 677 goto found; 678 } 679 } 680 sp = NULL; 681 found: 682 if (sp) { 683 sp->lastused = time_second; 684 SP_ADDREF(sp); 685 } 686 mtx_unlock(&sptree_lock); 687 done: 688 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 689 printf("DP key_gettunnel return SP:%p (ID=%u) refcnt %u\n", 690 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 691 return sp; 692 } 693 694 /* 695 * allocating an SA entry for an *OUTBOUND* packet. 696 * checking each request entries in SP, and acquire an SA if need. 697 * OUT: 0: there are valid requests. 698 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. 699 */ 700 int 701 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx) 702 { 703 u_int level; 704 int error; 705 706 KASSERT(isr != NULL, ("key_checkrequest: null isr")); 707 KASSERT(saidx != NULL, ("key_checkrequest: null saidx")); 708 KASSERT(saidx->mode == IPSEC_MODE_TRANSPORT || 709 saidx->mode == IPSEC_MODE_TUNNEL, 710 ("key_checkrequest: unexpected policy %u", saidx->mode)); 711 712 /* 713 * XXX guard against protocol callbacks from the crypto 714 * thread as they reference ipsecrequest.sav which we 715 * temporarily null out below. Need to rethink how we 716 * handle bundled SA's in the callback thread. 717 */ 718 mtx_assert(&isr->lock, MA_OWNED); 719 720 /* get current level */ 721 level = ipsec_get_reqlevel(isr); 722 #if 0 723 /* 724 * We do allocate new SA only if the state of SA in the holder is 725 * SADB_SASTATE_DEAD. The SA for outbound must be the oldest. 726 */ 727 if (isr->sav != NULL) { 728 if (isr->sav->sah == NULL) 729 panic("key_checkrequest: sah is null.\n"); 730 if (isr->sav == (struct secasvar *)LIST_FIRST( 731 &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) { 732 KEY_FREESAV(&isr->sav); 733 isr->sav = NULL; 734 } 735 } 736 #else 737 /* 738 * we free any SA stashed in the IPsec request because a different 739 * SA may be involved each time this request is checked, either 740 * because new SAs are being configured, or this request is 741 * associated with an unconnected datagram socket, or this request 742 * is associated with a system default policy. 743 * 744 * The operation may have negative impact to performance. We may 745 * want to check cached SA carefully, rather than picking new SA 746 * every time. 747 */ 748 if (isr->sav != NULL) { 749 KEY_FREESAV(&isr->sav); 750 isr->sav = NULL; 751 } 752 #endif 753 754 /* 755 * new SA allocation if no SA found. 756 * key_allocsa_policy should allocate the oldest SA available. 757 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt. 758 */ 759 if (isr->sav == NULL) 760 isr->sav = key_allocsa_policy(saidx); 761 762 /* When there is SA. */ 763 if (isr->sav != NULL) { 764 if (isr->sav->state != SADB_SASTATE_MATURE && 765 isr->sav->state != SADB_SASTATE_DYING) 766 return EINVAL; 767 return 0; 768 } 769 770 /* there is no SA */ 771 error = key_acquire(saidx, isr->sp); 772 if (error != 0) { 773 /* XXX What should I do ? */ 774 ipseclog((LOG_DEBUG, "key_checkrequest: error %d returned " 775 "from key_acquire.\n", error)); 776 return error; 777 } 778 779 if (level != IPSEC_LEVEL_REQUIRE) { 780 /* XXX sigh, the interface to this routine is botched */ 781 KASSERT(isr->sav == NULL, ("key_checkrequest: unexpected SA")); 782 return 0; 783 } else { 784 return ENOENT; 785 } 786 } 787 788 /* 789 * allocating a SA for policy entry from SAD. 790 * NOTE: searching SAD of aliving state. 791 * OUT: NULL: not found. 792 * others: found and return the pointer. 793 */ 794 static struct secasvar * 795 key_allocsa_policy(const struct secasindex *saidx) 796 { 797 struct secashead *sah; 798 struct secasvar *sav; 799 u_int stateidx, state; 800 801 mtx_lock(&sahtree_lock); 802 LIST_FOREACH(sah, &sahtree, chain) { 803 if (sah->state == SADB_SASTATE_DEAD) 804 continue; 805 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) { 806 mtx_unlock(&sahtree_lock); /* XXX??? */ 807 goto found; 808 } 809 } 810 mtx_unlock(&sahtree_lock); 811 812 return NULL; 813 814 found: 815 816 /* search valid state */ 817 for (stateidx = 0; 818 stateidx < _ARRAYLEN(saorder_state_valid); 819 stateidx++) { 820 821 state = saorder_state_valid[stateidx]; 822 823 sav = key_do_allocsa_policy(sah, state); 824 if (sav != NULL) 825 return sav; 826 } 827 828 return NULL; 829 } 830 831 /* 832 * searching SAD with direction, protocol, mode and state. 833 * called by key_allocsa_policy(). 834 * OUT: 835 * NULL : not found 836 * others : found, pointer to a SA. 837 */ 838 static struct secasvar * 839 key_do_allocsa_policy(struct secashead *sah, u_int state) 840 { 841 struct secasvar *sav, *nextsav, *candidate, *d; 842 843 /* initilize */ 844 candidate = NULL; 845 846 mtx_lock(&sahtree_lock); 847 for (sav = LIST_FIRST(&sah->savtree[state]); 848 sav != NULL; 849 sav = nextsav) { 850 851 nextsav = LIST_NEXT(sav, chain); 852 853 /* sanity check */ 854 KEY_CHKSASTATE(sav->state, state, "key_do_allocsa_policy"); 855 856 /* initialize */ 857 if (candidate == NULL) { 858 candidate = sav; 859 continue; 860 } 861 862 /* Which SA is the better ? */ 863 864 /* sanity check 2 */ 865 if (candidate->lft_c == NULL || sav->lft_c == NULL) 866 panic("key_do_allocsa_policy: " 867 "lifetime_current is NULL.\n"); 868 869 /* What the best method is to compare ? */ 870 if (key_prefered_oldsa) { 871 if (candidate->lft_c->sadb_lifetime_addtime > 872 sav->lft_c->sadb_lifetime_addtime) { 873 candidate = sav; 874 } 875 continue; 876 /*NOTREACHED*/ 877 } 878 879 /* prefered new sa rather than old sa */ 880 if (candidate->lft_c->sadb_lifetime_addtime < 881 sav->lft_c->sadb_lifetime_addtime) { 882 d = candidate; 883 candidate = sav; 884 } else 885 d = sav; 886 887 /* 888 * prepared to delete the SA when there is more 889 * suitable candidate and the lifetime of the SA is not 890 * permanent. 891 */ 892 if (d->lft_c->sadb_lifetime_addtime != 0) { 893 struct mbuf *m, *result; 894 895 key_sa_chgstate(d, SADB_SASTATE_DEAD); 896 897 KASSERT(d->refcnt > 0, 898 ("key_do_allocsa_policy: bogus ref count")); 899 m = key_setsadbmsg(SADB_DELETE, 0, 900 d->sah->saidx.proto, 0, 0, d->refcnt - 1); 901 if (!m) 902 goto msgfail; 903 result = m; 904 905 /* set sadb_address for saidx's. */ 906 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 907 &d->sah->saidx.src.sa, 908 d->sah->saidx.src.sa.sa_len << 3, 909 IPSEC_ULPROTO_ANY); 910 if (!m) 911 goto msgfail; 912 m_cat(result, m); 913 914 /* set sadb_address for saidx's. */ 915 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 916 &d->sah->saidx.src.sa, 917 d->sah->saidx.src.sa.sa_len << 3, 918 IPSEC_ULPROTO_ANY); 919 if (!m) 920 goto msgfail; 921 m_cat(result, m); 922 923 /* create SA extension */ 924 m = key_setsadbsa(d); 925 if (!m) 926 goto msgfail; 927 m_cat(result, m); 928 929 if (result->m_len < sizeof(struct sadb_msg)) { 930 result = m_pullup(result, 931 sizeof(struct sadb_msg)); 932 if (result == NULL) 933 goto msgfail; 934 } 935 936 result->m_pkthdr.len = 0; 937 for (m = result; m; m = m->m_next) 938 result->m_pkthdr.len += m->m_len; 939 mtod(result, struct sadb_msg *)->sadb_msg_len = 940 PFKEY_UNIT64(result->m_pkthdr.len); 941 942 if (key_sendup_mbuf(NULL, result, 943 KEY_SENDUP_REGISTERED)) 944 goto msgfail; 945 msgfail: 946 KEY_FREESAV(&d); 947 } 948 } 949 if (candidate) { 950 SA_ADDREF(candidate); 951 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 952 printf("DP allocsa_policy cause " 953 "refcnt++:%d SA:%p\n", 954 candidate->refcnt, candidate)); 955 } 956 mtx_unlock(&sahtree_lock); 957 958 return candidate; 959 } 960 961 /* 962 * allocating a usable SA entry for a *INBOUND* packet. 963 * Must call key_freesav() later. 964 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). 965 * NULL: not found, or error occured. 966 * 967 * In the comparison, no source address is used--for RFC2401 conformance. 968 * To quote, from section 4.1: 969 * A security association is uniquely identified by a triple consisting 970 * of a Security Parameter Index (SPI), an IP Destination Address, and a 971 * security protocol (AH or ESP) identifier. 972 * Note that, however, we do need to keep source address in IPsec SA. 973 * IKE specification and PF_KEY specification do assume that we 974 * keep source address in IPsec SA. We see a tricky situation here. 975 */ 976 struct secasvar * 977 key_allocsa( 978 union sockaddr_union *dst, 979 u_int proto, 980 u_int32_t spi, 981 const char* where, int tag) 982 { 983 struct secashead *sah; 984 struct secasvar *sav; 985 u_int stateidx, state; 986 987 KASSERT(dst != NULL, ("key_allocsa: null dst address")); 988 989 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 990 printf("DP key_allocsa from %s:%u\n", where, tag)); 991 992 /* 993 * searching SAD. 994 * XXX: to be checked internal IP header somewhere. Also when 995 * IPsec tunnel packet is received. But ESP tunnel mode is 996 * encrypted so we can't check internal IP header. 997 */ 998 mtx_lock(&sahtree_lock); 999 LIST_FOREACH(sah, &sahtree, chain) { 1000 /* search valid state */ 1001 for (stateidx = 0; 1002 stateidx < _ARRAYLEN(saorder_state_valid); 1003 stateidx++) { 1004 state = saorder_state_valid[stateidx]; 1005 LIST_FOREACH(sav, &sah->savtree[state], chain) { 1006 /* sanity check */ 1007 KEY_CHKSASTATE(sav->state, state, "key_allocsav"); 1008 /* do not return entries w/ unusable state */ 1009 if (sav->state != SADB_SASTATE_MATURE && 1010 sav->state != SADB_SASTATE_DYING) 1011 continue; 1012 if (proto != sav->sah->saidx.proto) 1013 continue; 1014 if (spi != sav->spi) 1015 continue; 1016 #if 0 /* don't check src */ 1017 /* check src address */ 1018 if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, 0) != 0) 1019 continue; 1020 #endif 1021 /* check dst address */ 1022 if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, 0) != 0) 1023 continue; 1024 SA_ADDREF(sav); 1025 goto done; 1026 } 1027 } 1028 } 1029 sav = NULL; 1030 done: 1031 mtx_unlock(&sahtree_lock); 1032 1033 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1034 printf("DP key_allocsa return SA:%p; refcnt %u\n", 1035 sav, sav ? sav->refcnt : 0)); 1036 return sav; 1037 } 1038 1039 /* 1040 * Must be called after calling key_allocsp(). 1041 * For both the packet without socket and key_freeso(). 1042 */ 1043 void 1044 _key_freesp(struct secpolicy **spp, const char* where, int tag) 1045 { 1046 struct secpolicy *sp = *spp; 1047 1048 KASSERT(sp != NULL, ("key_freesp: null sp")); 1049 1050 mtx_lock(&sptree_lock); 1051 SP_DELREF(sp); 1052 1053 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1054 printf("DP key_freesp SP:%p (ID=%u) from %s:%u; refcnt now %u\n", 1055 sp, sp->id, where, tag, sp->refcnt)); 1056 1057 if (sp->refcnt == 0) { 1058 *spp = NULL; 1059 key_delsp(sp); 1060 } 1061 mtx_unlock(&sptree_lock); 1062 } 1063 1064 /* 1065 * Must be called after calling key_allocsp(). 1066 * For the packet with socket. 1067 */ 1068 void 1069 key_freeso(struct socket *so) 1070 { 1071 /* sanity check */ 1072 KASSERT(so != NULL, ("key_freeso: null so")); 1073 1074 switch (so->so_proto->pr_domain->dom_family) { 1075 #ifdef INET 1076 case PF_INET: 1077 { 1078 struct inpcb *pcb = sotoinpcb(so); 1079 1080 /* Does it have a PCB ? */ 1081 if (pcb == NULL) 1082 return; 1083 key_freesp_so(&pcb->inp_sp->sp_in); 1084 key_freesp_so(&pcb->inp_sp->sp_out); 1085 } 1086 break; 1087 #endif 1088 #ifdef INET6 1089 case PF_INET6: 1090 { 1091 #ifdef HAVE_NRL_INPCB 1092 struct inpcb *pcb = sotoinpcb(so); 1093 1094 /* Does it have a PCB ? */ 1095 if (pcb == NULL) 1096 return; 1097 key_freesp_so(&pcb->inp_sp->sp_in); 1098 key_freesp_so(&pcb->inp_sp->sp_out); 1099 #else 1100 struct in6pcb *pcb = sotoin6pcb(so); 1101 1102 /* Does it have a PCB ? */ 1103 if (pcb == NULL) 1104 return; 1105 key_freesp_so(&pcb->in6p_sp->sp_in); 1106 key_freesp_so(&pcb->in6p_sp->sp_out); 1107 #endif 1108 } 1109 break; 1110 #endif /* INET6 */ 1111 default: 1112 ipseclog((LOG_DEBUG, "key_freeso: unknown address family=%d.\n", 1113 so->so_proto->pr_domain->dom_family)); 1114 return; 1115 } 1116 } 1117 1118 static void 1119 key_freesp_so(struct secpolicy **sp) 1120 { 1121 KASSERT(sp != NULL && *sp != NULL, ("key_freesp_so: null sp")); 1122 1123 if ((*sp)->policy == IPSEC_POLICY_ENTRUST || 1124 (*sp)->policy == IPSEC_POLICY_BYPASS) 1125 return; 1126 1127 KASSERT((*sp)->policy == IPSEC_POLICY_IPSEC, 1128 ("key_freesp_so: invalid policy %u", (*sp)->policy)); 1129 KEY_FREESP(sp); 1130 } 1131 1132 /* 1133 * Must be called after calling key_allocsa(). 1134 * This function is called by key_freesp() to free some SA allocated 1135 * for a policy. 1136 */ 1137 void 1138 key_freesav(struct secasvar **psav, const char* where, int tag) 1139 { 1140 struct secasvar *sav = *psav; 1141 1142 KASSERT(sav != NULL, ("key_freesav: null sav")); 1143 1144 SA_DELREF(sav); 1145 1146 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1147 printf("DP key_freesav SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1148 sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1149 1150 if (sav->refcnt == 0) { 1151 *psav = NULL; 1152 key_delsav(sav); 1153 } 1154 } 1155 1156 /* %%% SPD management */ 1157 /* 1158 * free security policy entry. 1159 */ 1160 static void 1161 key_delsp(struct secpolicy *sp) 1162 { 1163 struct ipsecrequest *isr, *nextisr; 1164 1165 KASSERT(sp != NULL, ("key_delsp: null sp")); 1166 mtx_assert(&sptree_lock, MA_OWNED); 1167 1168 sp->state = IPSEC_SPSTATE_DEAD; 1169 1170 KASSERT(sp->refcnt == 0, 1171 ("key_delsp: SP with references deleted (refcnt %u)", 1172 sp->refcnt)); 1173 1174 /* remove from SP index */ 1175 if (__LIST_CHAINED(sp)) 1176 LIST_REMOVE(sp, chain); 1177 1178 for (isr = sp->req; isr != NULL; isr = nextisr) { 1179 if (isr->sav != NULL) { 1180 KEY_FREESAV(&isr->sav); 1181 isr->sav = NULL; 1182 } 1183 1184 nextisr = isr->next; 1185 ipsec_delisr(isr); 1186 } 1187 _key_delsp(sp); 1188 } 1189 1190 /* 1191 * search SPD 1192 * OUT: NULL : not found 1193 * others : found, pointer to a SP. 1194 */ 1195 static struct secpolicy * 1196 key_getsp(struct secpolicyindex *spidx) 1197 { 1198 struct secpolicy *sp; 1199 1200 KASSERT(spidx != NULL, ("key_getsp: null spidx")); 1201 1202 mtx_lock(&sptree_lock); 1203 LIST_FOREACH(sp, &sptree[spidx->dir], chain) { 1204 if (sp->state == IPSEC_SPSTATE_DEAD) 1205 continue; 1206 if (key_cmpspidx_exactly(spidx, &sp->spidx)) { 1207 SP_ADDREF(sp); 1208 break; 1209 } 1210 } 1211 mtx_unlock(&sptree_lock); 1212 1213 return sp; 1214 } 1215 1216 /* 1217 * get SP by index. 1218 * OUT: NULL : not found 1219 * others : found, pointer to a SP. 1220 */ 1221 static struct secpolicy * 1222 key_getspbyid(u_int32_t id) 1223 { 1224 struct secpolicy *sp; 1225 1226 mtx_lock(&sptree_lock); 1227 LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) { 1228 if (sp->state == IPSEC_SPSTATE_DEAD) 1229 continue; 1230 if (sp->id == id) { 1231 SP_ADDREF(sp); 1232 goto done; 1233 } 1234 } 1235 1236 LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) { 1237 if (sp->state == IPSEC_SPSTATE_DEAD) 1238 continue; 1239 if (sp->id == id) { 1240 SP_ADDREF(sp); 1241 goto done; 1242 } 1243 } 1244 done: 1245 mtx_unlock(&sptree_lock); 1246 1247 return sp; 1248 } 1249 1250 struct secpolicy * 1251 key_newsp(const char* where, int tag) 1252 { 1253 struct secpolicy *newsp = NULL; 1254 1255 newsp = (struct secpolicy *) 1256 malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO); 1257 if (newsp) { 1258 mtx_init(&newsp->lock, "ipsec policy", NULL, MTX_DEF); 1259 newsp->refcnt = 1; 1260 newsp->req = NULL; 1261 } 1262 1263 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1264 printf("DP key_newsp from %s:%u return SP:%p\n", 1265 where, tag, newsp)); 1266 return newsp; 1267 } 1268 1269 static void 1270 _key_delsp(struct secpolicy *sp) 1271 { 1272 mtx_destroy(&sp->lock); 1273 free(sp, M_IPSEC_SP); 1274 } 1275 1276 /* 1277 * create secpolicy structure from sadb_x_policy structure. 1278 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, 1279 * so must be set properly later. 1280 */ 1281 struct secpolicy * 1282 key_msg2sp(xpl0, len, error) 1283 struct sadb_x_policy *xpl0; 1284 size_t len; 1285 int *error; 1286 { 1287 struct secpolicy *newsp; 1288 1289 /* sanity check */ 1290 if (xpl0 == NULL) 1291 panic("key_msg2sp: NULL pointer was passed.\n"); 1292 if (len < sizeof(*xpl0)) 1293 panic("key_msg2sp: invalid length.\n"); 1294 if (len != PFKEY_EXTLEN(xpl0)) { 1295 ipseclog((LOG_DEBUG, "key_msg2sp: Invalid msg length.\n")); 1296 *error = EINVAL; 1297 return NULL; 1298 } 1299 1300 if ((newsp = KEY_NEWSP()) == NULL) { 1301 *error = ENOBUFS; 1302 return NULL; 1303 } 1304 1305 newsp->spidx.dir = xpl0->sadb_x_policy_dir; 1306 newsp->policy = xpl0->sadb_x_policy_type; 1307 1308 /* check policy */ 1309 switch (xpl0->sadb_x_policy_type) { 1310 case IPSEC_POLICY_DISCARD: 1311 case IPSEC_POLICY_NONE: 1312 case IPSEC_POLICY_ENTRUST: 1313 case IPSEC_POLICY_BYPASS: 1314 newsp->req = NULL; 1315 break; 1316 1317 case IPSEC_POLICY_IPSEC: 1318 { 1319 int tlen; 1320 struct sadb_x_ipsecrequest *xisr; 1321 struct ipsecrequest **p_isr = &newsp->req; 1322 1323 /* validity check */ 1324 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { 1325 ipseclog((LOG_DEBUG, 1326 "key_msg2sp: Invalid msg length.\n")); 1327 KEY_FREESP(&newsp); 1328 *error = EINVAL; 1329 return NULL; 1330 } 1331 1332 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); 1333 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1); 1334 1335 while (tlen > 0) { 1336 /* length check */ 1337 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { 1338 ipseclog((LOG_DEBUG, "key_msg2sp: " 1339 "invalid ipsecrequest length.\n")); 1340 KEY_FREESP(&newsp); 1341 *error = EINVAL; 1342 return NULL; 1343 } 1344 1345 /* allocate request buffer */ 1346 /* NB: data structure is zero'd */ 1347 *p_isr = ipsec_newisr(); 1348 if ((*p_isr) == NULL) { 1349 ipseclog((LOG_DEBUG, 1350 "key_msg2sp: No more memory.\n")); 1351 KEY_FREESP(&newsp); 1352 *error = ENOBUFS; 1353 return NULL; 1354 } 1355 1356 /* set values */ 1357 switch (xisr->sadb_x_ipsecrequest_proto) { 1358 case IPPROTO_ESP: 1359 case IPPROTO_AH: 1360 case IPPROTO_IPCOMP: 1361 break; 1362 default: 1363 ipseclog((LOG_DEBUG, 1364 "key_msg2sp: invalid proto type=%u\n", 1365 xisr->sadb_x_ipsecrequest_proto)); 1366 KEY_FREESP(&newsp); 1367 *error = EPROTONOSUPPORT; 1368 return NULL; 1369 } 1370 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; 1371 1372 switch (xisr->sadb_x_ipsecrequest_mode) { 1373 case IPSEC_MODE_TRANSPORT: 1374 case IPSEC_MODE_TUNNEL: 1375 break; 1376 case IPSEC_MODE_ANY: 1377 default: 1378 ipseclog((LOG_DEBUG, 1379 "key_msg2sp: invalid mode=%u\n", 1380 xisr->sadb_x_ipsecrequest_mode)); 1381 KEY_FREESP(&newsp); 1382 *error = EINVAL; 1383 return NULL; 1384 } 1385 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; 1386 1387 switch (xisr->sadb_x_ipsecrequest_level) { 1388 case IPSEC_LEVEL_DEFAULT: 1389 case IPSEC_LEVEL_USE: 1390 case IPSEC_LEVEL_REQUIRE: 1391 break; 1392 case IPSEC_LEVEL_UNIQUE: 1393 /* validity check */ 1394 /* 1395 * If range violation of reqid, kernel will 1396 * update it, don't refuse it. 1397 */ 1398 if (xisr->sadb_x_ipsecrequest_reqid 1399 > IPSEC_MANUAL_REQID_MAX) { 1400 ipseclog((LOG_DEBUG, 1401 "key_msg2sp: reqid=%d range " 1402 "violation, updated by kernel.\n", 1403 xisr->sadb_x_ipsecrequest_reqid)); 1404 xisr->sadb_x_ipsecrequest_reqid = 0; 1405 } 1406 1407 /* allocate new reqid id if reqid is zero. */ 1408 if (xisr->sadb_x_ipsecrequest_reqid == 0) { 1409 u_int32_t reqid; 1410 if ((reqid = key_newreqid()) == 0) { 1411 KEY_FREESP(&newsp); 1412 *error = ENOBUFS; 1413 return NULL; 1414 } 1415 (*p_isr)->saidx.reqid = reqid; 1416 xisr->sadb_x_ipsecrequest_reqid = reqid; 1417 } else { 1418 /* set it for manual keying. */ 1419 (*p_isr)->saidx.reqid = 1420 xisr->sadb_x_ipsecrequest_reqid; 1421 } 1422 break; 1423 1424 default: 1425 ipseclog((LOG_DEBUG, "key_msg2sp: invalid level=%u\n", 1426 xisr->sadb_x_ipsecrequest_level)); 1427 KEY_FREESP(&newsp); 1428 *error = EINVAL; 1429 return NULL; 1430 } 1431 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; 1432 1433 /* set IP addresses if there */ 1434 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { 1435 struct sockaddr *paddr; 1436 1437 paddr = (struct sockaddr *)(xisr + 1); 1438 1439 /* validity check */ 1440 if (paddr->sa_len 1441 > sizeof((*p_isr)->saidx.src)) { 1442 ipseclog((LOG_DEBUG, "key_msg2sp: invalid request " 1443 "address length.\n")); 1444 KEY_FREESP(&newsp); 1445 *error = EINVAL; 1446 return NULL; 1447 } 1448 bcopy(paddr, &(*p_isr)->saidx.src, 1449 paddr->sa_len); 1450 1451 paddr = (struct sockaddr *)((caddr_t)paddr 1452 + paddr->sa_len); 1453 1454 /* validity check */ 1455 if (paddr->sa_len 1456 > sizeof((*p_isr)->saidx.dst)) { 1457 ipseclog((LOG_DEBUG, "key_msg2sp: invalid request " 1458 "address length.\n")); 1459 KEY_FREESP(&newsp); 1460 *error = EINVAL; 1461 return NULL; 1462 } 1463 bcopy(paddr, &(*p_isr)->saidx.dst, 1464 paddr->sa_len); 1465 } 1466 1467 (*p_isr)->sp = newsp; 1468 1469 /* initialization for the next. */ 1470 p_isr = &(*p_isr)->next; 1471 tlen -= xisr->sadb_x_ipsecrequest_len; 1472 1473 /* validity check */ 1474 if (tlen < 0) { 1475 ipseclog((LOG_DEBUG, "key_msg2sp: becoming tlen < 0.\n")); 1476 KEY_FREESP(&newsp); 1477 *error = EINVAL; 1478 return NULL; 1479 } 1480 1481 xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr 1482 + xisr->sadb_x_ipsecrequest_len); 1483 } 1484 } 1485 break; 1486 default: 1487 ipseclog((LOG_DEBUG, "key_msg2sp: invalid policy type.\n")); 1488 KEY_FREESP(&newsp); 1489 *error = EINVAL; 1490 return NULL; 1491 } 1492 1493 *error = 0; 1494 return newsp; 1495 } 1496 1497 static u_int32_t 1498 key_newreqid() 1499 { 1500 static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 1501 1502 auto_reqid = (auto_reqid == ~0 1503 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); 1504 1505 /* XXX should be unique check */ 1506 1507 return auto_reqid; 1508 } 1509 1510 /* 1511 * copy secpolicy struct to sadb_x_policy structure indicated. 1512 */ 1513 struct mbuf * 1514 key_sp2msg(sp) 1515 struct secpolicy *sp; 1516 { 1517 struct sadb_x_policy *xpl; 1518 int tlen; 1519 caddr_t p; 1520 struct mbuf *m; 1521 1522 /* sanity check. */ 1523 if (sp == NULL) 1524 panic("key_sp2msg: NULL pointer was passed.\n"); 1525 1526 tlen = key_getspreqmsglen(sp); 1527 1528 m = key_alloc_mbuf(tlen); 1529 if (!m || m->m_next) { /*XXX*/ 1530 if (m) 1531 m_freem(m); 1532 return NULL; 1533 } 1534 1535 m->m_len = tlen; 1536 m->m_next = NULL; 1537 xpl = mtod(m, struct sadb_x_policy *); 1538 bzero(xpl, tlen); 1539 1540 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen); 1541 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 1542 xpl->sadb_x_policy_type = sp->policy; 1543 xpl->sadb_x_policy_dir = sp->spidx.dir; 1544 xpl->sadb_x_policy_id = sp->id; 1545 p = (caddr_t)xpl + sizeof(*xpl); 1546 1547 /* if is the policy for ipsec ? */ 1548 if (sp->policy == IPSEC_POLICY_IPSEC) { 1549 struct sadb_x_ipsecrequest *xisr; 1550 struct ipsecrequest *isr; 1551 1552 for (isr = sp->req; isr != NULL; isr = isr->next) { 1553 1554 xisr = (struct sadb_x_ipsecrequest *)p; 1555 1556 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; 1557 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; 1558 xisr->sadb_x_ipsecrequest_level = isr->level; 1559 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; 1560 1561 p += sizeof(*xisr); 1562 bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len); 1563 p += isr->saidx.src.sa.sa_len; 1564 bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len); 1565 p += isr->saidx.src.sa.sa_len; 1566 1567 xisr->sadb_x_ipsecrequest_len = 1568 PFKEY_ALIGN8(sizeof(*xisr) 1569 + isr->saidx.src.sa.sa_len 1570 + isr->saidx.dst.sa.sa_len); 1571 } 1572 } 1573 1574 return m; 1575 } 1576 1577 /* m will not be freed nor modified */ 1578 static struct mbuf * 1579 #ifdef __STDC__ 1580 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, 1581 int ndeep, int nitem, ...) 1582 #else 1583 key_gather_mbuf(m, mhp, ndeep, nitem, va_alist) 1584 struct mbuf *m; 1585 const struct sadb_msghdr *mhp; 1586 int ndeep; 1587 int nitem; 1588 va_dcl 1589 #endif 1590 { 1591 va_list ap; 1592 int idx; 1593 int i; 1594 struct mbuf *result = NULL, *n; 1595 int len; 1596 1597 if (m == NULL || mhp == NULL) 1598 panic("null pointer passed to key_gather"); 1599 1600 va_start(ap, nitem); 1601 for (i = 0; i < nitem; i++) { 1602 idx = va_arg(ap, int); 1603 if (idx < 0 || idx > SADB_EXT_MAX) 1604 goto fail; 1605 /* don't attempt to pull empty extension */ 1606 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) 1607 continue; 1608 if (idx != SADB_EXT_RESERVED && 1609 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) 1610 continue; 1611 1612 if (idx == SADB_EXT_RESERVED) { 1613 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 1614 #ifdef DIAGNOSTIC 1615 if (len > MHLEN) 1616 panic("assumption failed"); 1617 #endif 1618 MGETHDR(n, M_DONTWAIT, MT_DATA); 1619 if (!n) 1620 goto fail; 1621 n->m_len = len; 1622 n->m_next = NULL; 1623 m_copydata(m, 0, sizeof(struct sadb_msg), 1624 mtod(n, caddr_t)); 1625 } else if (i < ndeep) { 1626 len = mhp->extlen[idx]; 1627 n = key_alloc_mbuf(len); 1628 if (!n || n->m_next) { /*XXX*/ 1629 if (n) 1630 m_freem(n); 1631 goto fail; 1632 } 1633 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], 1634 mtod(n, caddr_t)); 1635 } else { 1636 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], 1637 M_DONTWAIT); 1638 } 1639 if (n == NULL) 1640 goto fail; 1641 1642 if (result) 1643 m_cat(result, n); 1644 else 1645 result = n; 1646 } 1647 va_end(ap); 1648 1649 if ((result->m_flags & M_PKTHDR) != 0) { 1650 result->m_pkthdr.len = 0; 1651 for (n = result; n; n = n->m_next) 1652 result->m_pkthdr.len += n->m_len; 1653 } 1654 1655 return result; 1656 1657 fail: 1658 m_freem(result); 1659 return NULL; 1660 } 1661 1662 /* 1663 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing 1664 * add an entry to SP database, when received 1665 * <base, address(SD), (lifetime(H),) policy> 1666 * from the user(?). 1667 * Adding to SP database, 1668 * and send 1669 * <base, address(SD), (lifetime(H),) policy> 1670 * to the socket which was send. 1671 * 1672 * SPDADD set a unique policy entry. 1673 * SPDSETIDX like SPDADD without a part of policy requests. 1674 * SPDUPDATE replace a unique policy entry. 1675 * 1676 * m will always be freed. 1677 */ 1678 static int 1679 key_spdadd(so, m, mhp) 1680 struct socket *so; 1681 struct mbuf *m; 1682 const struct sadb_msghdr *mhp; 1683 { 1684 struct sadb_address *src0, *dst0; 1685 struct sadb_x_policy *xpl0, *xpl; 1686 struct sadb_lifetime *lft = NULL; 1687 struct secpolicyindex spidx; 1688 struct secpolicy *newsp; 1689 int error; 1690 1691 /* sanity check */ 1692 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 1693 panic("key_spdadd: NULL pointer is passed.\n"); 1694 1695 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 1696 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 1697 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 1698 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n")); 1699 return key_senderror(so, m, EINVAL); 1700 } 1701 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 1702 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 1703 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 1704 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n")); 1705 return key_senderror(so, m, EINVAL); 1706 } 1707 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { 1708 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] 1709 < sizeof(struct sadb_lifetime)) { 1710 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n")); 1711 return key_senderror(so, m, EINVAL); 1712 } 1713 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 1714 } 1715 1716 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 1717 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 1718 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 1719 1720 /* make secindex */ 1721 /* XXX boundary check against sa_len */ 1722 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1723 src0 + 1, 1724 dst0 + 1, 1725 src0->sadb_address_prefixlen, 1726 dst0->sadb_address_prefixlen, 1727 src0->sadb_address_proto, 1728 &spidx); 1729 1730 /* checking the direciton. */ 1731 switch (xpl0->sadb_x_policy_dir) { 1732 case IPSEC_DIR_INBOUND: 1733 case IPSEC_DIR_OUTBOUND: 1734 break; 1735 default: 1736 ipseclog((LOG_DEBUG, "key_spdadd: Invalid SP direction.\n")); 1737 mhp->msg->sadb_msg_errno = EINVAL; 1738 return 0; 1739 } 1740 1741 /* check policy */ 1742 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */ 1743 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST 1744 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { 1745 ipseclog((LOG_DEBUG, "key_spdadd: Invalid policy type.\n")); 1746 return key_senderror(so, m, EINVAL); 1747 } 1748 1749 /* policy requests are mandatory when action is ipsec. */ 1750 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX 1751 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC 1752 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { 1753 ipseclog((LOG_DEBUG, "key_spdadd: some policy requests part required.\n")); 1754 return key_senderror(so, m, EINVAL); 1755 } 1756 1757 /* 1758 * checking there is SP already or not. 1759 * SPDUPDATE doesn't depend on whether there is a SP or not. 1760 * If the type is either SPDADD or SPDSETIDX AND a SP is found, 1761 * then error. 1762 */ 1763 newsp = key_getsp(&spidx); 1764 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1765 if (newsp) { 1766 newsp->state = IPSEC_SPSTATE_DEAD; 1767 KEY_FREESP(&newsp); 1768 } 1769 } else { 1770 if (newsp != NULL) { 1771 KEY_FREESP(&newsp); 1772 ipseclog((LOG_DEBUG, "key_spdadd: a SP entry exists already.\n")); 1773 return key_senderror(so, m, EEXIST); 1774 } 1775 } 1776 1777 /* allocation new SP entry */ 1778 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) { 1779 return key_senderror(so, m, error); 1780 } 1781 1782 if ((newsp->id = key_getnewspid()) == 0) { 1783 _key_delsp(newsp); 1784 return key_senderror(so, m, ENOBUFS); 1785 } 1786 1787 /* XXX boundary check against sa_len */ 1788 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1789 src0 + 1, 1790 dst0 + 1, 1791 src0->sadb_address_prefixlen, 1792 dst0->sadb_address_prefixlen, 1793 src0->sadb_address_proto, 1794 &newsp->spidx); 1795 1796 /* sanity check on addr pair */ 1797 if (((struct sockaddr *)(src0 + 1))->sa_family != 1798 ((struct sockaddr *)(dst0+ 1))->sa_family) { 1799 _key_delsp(newsp); 1800 return key_senderror(so, m, EINVAL); 1801 } 1802 if (((struct sockaddr *)(src0 + 1))->sa_len != 1803 ((struct sockaddr *)(dst0+ 1))->sa_len) { 1804 _key_delsp(newsp); 1805 return key_senderror(so, m, EINVAL); 1806 } 1807 #if 1 1808 if (newsp->req && newsp->req->saidx.src.sa.sa_family) { 1809 struct sockaddr *sa; 1810 sa = (struct sockaddr *)(src0 + 1); 1811 if (sa->sa_family != newsp->req->saidx.src.sa.sa_family) { 1812 _key_delsp(newsp); 1813 return key_senderror(so, m, EINVAL); 1814 } 1815 } 1816 if (newsp->req && newsp->req->saidx.dst.sa.sa_family) { 1817 struct sockaddr *sa; 1818 sa = (struct sockaddr *)(dst0 + 1); 1819 if (sa->sa_family != newsp->req->saidx.dst.sa.sa_family) { 1820 _key_delsp(newsp); 1821 return key_senderror(so, m, EINVAL); 1822 } 1823 } 1824 #endif 1825 1826 newsp->created = time_second; 1827 newsp->lastused = newsp->created; 1828 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; 1829 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; 1830 1831 newsp->refcnt = 1; /* do not reclaim until I say I do */ 1832 newsp->state = IPSEC_SPSTATE_ALIVE; 1833 LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain); 1834 1835 /* delete the entry in spacqtree */ 1836 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1837 struct secspacq *spacq = key_getspacq(&spidx); 1838 if (spacq != NULL) { 1839 /* reset counter in order to deletion by timehandler. */ 1840 spacq->created = time_second; 1841 spacq->count = 0; 1842 mtx_unlock(&spacq_lock); 1843 } 1844 } 1845 1846 { 1847 struct mbuf *n, *mpolicy; 1848 struct sadb_msg *newmsg; 1849 int off; 1850 1851 /* create new sadb_msg to reply. */ 1852 if (lft) { 1853 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, 1854 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, 1855 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1856 } else { 1857 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, 1858 SADB_X_EXT_POLICY, 1859 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1860 } 1861 if (!n) 1862 return key_senderror(so, m, ENOBUFS); 1863 1864 if (n->m_len < sizeof(*newmsg)) { 1865 n = m_pullup(n, sizeof(*newmsg)); 1866 if (!n) 1867 return key_senderror(so, m, ENOBUFS); 1868 } 1869 newmsg = mtod(n, struct sadb_msg *); 1870 newmsg->sadb_msg_errno = 0; 1871 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 1872 1873 off = 0; 1874 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), 1875 sizeof(*xpl), &off); 1876 if (mpolicy == NULL) { 1877 /* n is already freed */ 1878 return key_senderror(so, m, ENOBUFS); 1879 } 1880 xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off); 1881 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { 1882 m_freem(n); 1883 return key_senderror(so, m, EINVAL); 1884 } 1885 xpl->sadb_x_policy_id = newsp->id; 1886 1887 m_freem(m); 1888 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 1889 } 1890 } 1891 1892 /* 1893 * get new policy id. 1894 * OUT: 1895 * 0: failure. 1896 * others: success. 1897 */ 1898 static u_int32_t 1899 key_getnewspid() 1900 { 1901 u_int32_t newid = 0; 1902 int count = key_spi_trycnt; /* XXX */ 1903 struct secpolicy *sp; 1904 1905 /* when requesting to allocate spi ranged */ 1906 while (count--) { 1907 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1)); 1908 1909 if ((sp = key_getspbyid(newid)) == NULL) 1910 break; 1911 1912 KEY_FREESP(&sp); 1913 } 1914 1915 if (count == 0 || newid == 0) { 1916 ipseclog((LOG_DEBUG, "key_getnewspid: to allocate policy id is failed.\n")); 1917 return 0; 1918 } 1919 1920 return newid; 1921 } 1922 1923 /* 1924 * SADB_SPDDELETE processing 1925 * receive 1926 * <base, address(SD), policy(*)> 1927 * from the user(?), and set SADB_SASTATE_DEAD, 1928 * and send, 1929 * <base, address(SD), policy(*)> 1930 * to the ikmpd. 1931 * policy(*) including direction of policy. 1932 * 1933 * m will always be freed. 1934 */ 1935 static int 1936 key_spddelete(so, m, mhp) 1937 struct socket *so; 1938 struct mbuf *m; 1939 const struct sadb_msghdr *mhp; 1940 { 1941 struct sadb_address *src0, *dst0; 1942 struct sadb_x_policy *xpl0; 1943 struct secpolicyindex spidx; 1944 struct secpolicy *sp; 1945 1946 /* sanity check */ 1947 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 1948 panic("key_spddelete: NULL pointer is passed.\n"); 1949 1950 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 1951 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 1952 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 1953 ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n")); 1954 return key_senderror(so, m, EINVAL); 1955 } 1956 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 1957 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 1958 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 1959 ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n")); 1960 return key_senderror(so, m, EINVAL); 1961 } 1962 1963 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 1964 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 1965 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 1966 1967 /* make secindex */ 1968 /* XXX boundary check against sa_len */ 1969 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1970 src0 + 1, 1971 dst0 + 1, 1972 src0->sadb_address_prefixlen, 1973 dst0->sadb_address_prefixlen, 1974 src0->sadb_address_proto, 1975 &spidx); 1976 1977 /* checking the direciton. */ 1978 switch (xpl0->sadb_x_policy_dir) { 1979 case IPSEC_DIR_INBOUND: 1980 case IPSEC_DIR_OUTBOUND: 1981 break; 1982 default: 1983 ipseclog((LOG_DEBUG, "key_spddelete: Invalid SP direction.\n")); 1984 return key_senderror(so, m, EINVAL); 1985 } 1986 1987 /* Is there SP in SPD ? */ 1988 if ((sp = key_getsp(&spidx)) == NULL) { 1989 ipseclog((LOG_DEBUG, "key_spddelete: no SP found.\n")); 1990 return key_senderror(so, m, EINVAL); 1991 } 1992 1993 /* save policy id to buffer to be returned. */ 1994 xpl0->sadb_x_policy_id = sp->id; 1995 1996 sp->state = IPSEC_SPSTATE_DEAD; 1997 mtx_destroy(&sp->lock); 1998 KEY_FREESP(&sp); 1999 2000 { 2001 struct mbuf *n; 2002 struct sadb_msg *newmsg; 2003 2004 /* create new sadb_msg to reply. */ 2005 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 2006 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2007 if (!n) 2008 return key_senderror(so, m, ENOBUFS); 2009 2010 newmsg = mtod(n, struct sadb_msg *); 2011 newmsg->sadb_msg_errno = 0; 2012 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2013 2014 m_freem(m); 2015 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2016 } 2017 } 2018 2019 /* 2020 * SADB_SPDDELETE2 processing 2021 * receive 2022 * <base, policy(*)> 2023 * from the user(?), and set SADB_SASTATE_DEAD, 2024 * and send, 2025 * <base, policy(*)> 2026 * to the ikmpd. 2027 * policy(*) including direction of policy. 2028 * 2029 * m will always be freed. 2030 */ 2031 static int 2032 key_spddelete2(so, m, mhp) 2033 struct socket *so; 2034 struct mbuf *m; 2035 const struct sadb_msghdr *mhp; 2036 { 2037 u_int32_t id; 2038 struct secpolicy *sp; 2039 2040 /* sanity check */ 2041 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 2042 panic("key_spddelete2: NULL pointer is passed.\n"); 2043 2044 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2045 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2046 ipseclog((LOG_DEBUG, "key_spddelete2: invalid message is passed.\n")); 2047 key_senderror(so, m, EINVAL); 2048 return 0; 2049 } 2050 2051 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2052 2053 /* Is there SP in SPD ? */ 2054 if ((sp = key_getspbyid(id)) == NULL) { 2055 ipseclog((LOG_DEBUG, "key_spddelete2: no SP found id:%u.\n", id)); 2056 key_senderror(so, m, EINVAL); 2057 } 2058 2059 sp->state = IPSEC_SPSTATE_DEAD; 2060 mtx_destroy(&sp->lock); 2061 KEY_FREESP(&sp); 2062 2063 { 2064 struct mbuf *n, *nn; 2065 struct sadb_msg *newmsg; 2066 int off, len; 2067 2068 /* create new sadb_msg to reply. */ 2069 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2070 2071 if (len > MCLBYTES) 2072 return key_senderror(so, m, ENOBUFS); 2073 MGETHDR(n, M_DONTWAIT, MT_DATA); 2074 if (n && len > MHLEN) { 2075 MCLGET(n, M_DONTWAIT); 2076 if ((n->m_flags & M_EXT) == 0) { 2077 m_freem(n); 2078 n = NULL; 2079 } 2080 } 2081 if (!n) 2082 return key_senderror(so, m, ENOBUFS); 2083 2084 n->m_len = len; 2085 n->m_next = NULL; 2086 off = 0; 2087 2088 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 2089 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2090 2091 #ifdef DIAGNOSTIC 2092 if (off != len) 2093 panic("length inconsistency in key_spddelete2"); 2094 #endif 2095 2096 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], 2097 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT); 2098 if (!n->m_next) { 2099 m_freem(n); 2100 return key_senderror(so, m, ENOBUFS); 2101 } 2102 2103 n->m_pkthdr.len = 0; 2104 for (nn = n; nn; nn = nn->m_next) 2105 n->m_pkthdr.len += nn->m_len; 2106 2107 newmsg = mtod(n, struct sadb_msg *); 2108 newmsg->sadb_msg_errno = 0; 2109 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2110 2111 m_freem(m); 2112 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2113 } 2114 } 2115 2116 /* 2117 * SADB_X_GET processing 2118 * receive 2119 * <base, policy(*)> 2120 * from the user(?), 2121 * and send, 2122 * <base, address(SD), policy> 2123 * to the ikmpd. 2124 * policy(*) including direction of policy. 2125 * 2126 * m will always be freed. 2127 */ 2128 static int 2129 key_spdget(so, m, mhp) 2130 struct socket *so; 2131 struct mbuf *m; 2132 const struct sadb_msghdr *mhp; 2133 { 2134 u_int32_t id; 2135 struct secpolicy *sp; 2136 struct mbuf *n; 2137 2138 /* sanity check */ 2139 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 2140 panic("key_spdget: NULL pointer is passed.\n"); 2141 2142 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2143 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2144 ipseclog((LOG_DEBUG, "key_spdget: invalid message is passed.\n")); 2145 return key_senderror(so, m, EINVAL); 2146 } 2147 2148 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2149 2150 /* Is there SP in SPD ? */ 2151 if ((sp = key_getspbyid(id)) == NULL) { 2152 ipseclog((LOG_DEBUG, "key_spdget: no SP found id:%u.\n", id)); 2153 return key_senderror(so, m, ENOENT); 2154 } 2155 2156 n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid); 2157 if (n != NULL) { 2158 m_freem(m); 2159 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2160 } else 2161 return key_senderror(so, m, ENOBUFS); 2162 } 2163 2164 /* 2165 * SADB_X_SPDACQUIRE processing. 2166 * Acquire policy and SA(s) for a *OUTBOUND* packet. 2167 * send 2168 * <base, policy(*)> 2169 * to KMD, and expect to receive 2170 * <base> with SADB_X_SPDACQUIRE if error occured, 2171 * or 2172 * <base, policy> 2173 * with SADB_X_SPDUPDATE from KMD by PF_KEY. 2174 * policy(*) is without policy requests. 2175 * 2176 * 0 : succeed 2177 * others: error number 2178 */ 2179 int 2180 key_spdacquire(sp) 2181 struct secpolicy *sp; 2182 { 2183 struct mbuf *result = NULL, *m; 2184 struct secspacq *newspacq; 2185 int error; 2186 2187 /* sanity check */ 2188 if (sp == NULL) 2189 panic("key_spdacquire: NULL pointer is passed.\n"); 2190 if (sp->req != NULL) 2191 panic("key_spdacquire: called but there is request.\n"); 2192 if (sp->policy != IPSEC_POLICY_IPSEC) 2193 panic("key_spdacquire: policy mismathed. IPsec is expected.\n"); 2194 2195 /* Get an entry to check whether sent message or not. */ 2196 newspacq = key_getspacq(&sp->spidx); 2197 if (newspacq != NULL) { 2198 if (key_blockacq_count < newspacq->count) { 2199 /* reset counter and do send message. */ 2200 newspacq->count = 0; 2201 } else { 2202 /* increment counter and do nothing. */ 2203 newspacq->count++; 2204 return 0; 2205 } 2206 mtx_unlock(&spacq_lock); 2207 } else { 2208 /* make new entry for blocking to send SADB_ACQUIRE. */ 2209 newspacq = key_newspacq(&sp->spidx); 2210 if (newspacq == NULL) 2211 return ENOBUFS; 2212 } 2213 2214 /* create new sadb_msg to reply. */ 2215 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); 2216 if (!m) { 2217 error = ENOBUFS; 2218 goto fail; 2219 } 2220 result = m; 2221 2222 result->m_pkthdr.len = 0; 2223 for (m = result; m; m = m->m_next) 2224 result->m_pkthdr.len += m->m_len; 2225 2226 mtod(result, struct sadb_msg *)->sadb_msg_len = 2227 PFKEY_UNIT64(result->m_pkthdr.len); 2228 2229 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 2230 2231 fail: 2232 if (result) 2233 m_freem(result); 2234 return error; 2235 } 2236 2237 /* 2238 * SADB_SPDFLUSH processing 2239 * receive 2240 * <base> 2241 * from the user, and free all entries in secpctree. 2242 * and send, 2243 * <base> 2244 * to the user. 2245 * NOTE: what to do is only marking SADB_SASTATE_DEAD. 2246 * 2247 * m will always be freed. 2248 */ 2249 static int 2250 key_spdflush(so, m, mhp) 2251 struct socket *so; 2252 struct mbuf *m; 2253 const struct sadb_msghdr *mhp; 2254 { 2255 struct sadb_msg *newmsg; 2256 struct secpolicy *sp; 2257 u_int dir; 2258 2259 /* sanity check */ 2260 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 2261 panic("key_spdflush: NULL pointer is passed.\n"); 2262 2263 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) 2264 return key_senderror(so, m, EINVAL); 2265 2266 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2267 LIST_FOREACH(sp, &sptree[dir], chain) { 2268 sp->state = IPSEC_SPSTATE_DEAD; 2269 } 2270 } 2271 2272 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 2273 ipseclog((LOG_DEBUG, "key_spdflush: No more memory.\n")); 2274 return key_senderror(so, m, ENOBUFS); 2275 } 2276 2277 if (m->m_next) 2278 m_freem(m->m_next); 2279 m->m_next = NULL; 2280 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2281 newmsg = mtod(m, struct sadb_msg *); 2282 newmsg->sadb_msg_errno = 0; 2283 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 2284 2285 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 2286 } 2287 2288 /* 2289 * SADB_SPDDUMP processing 2290 * receive 2291 * <base> 2292 * from the user, and dump all SP leaves 2293 * and send, 2294 * <base> ..... 2295 * to the ikmpd. 2296 * 2297 * m will always be freed. 2298 */ 2299 static int 2300 key_spddump(so, m, mhp) 2301 struct socket *so; 2302 struct mbuf *m; 2303 const struct sadb_msghdr *mhp; 2304 { 2305 struct secpolicy *sp; 2306 int cnt; 2307 u_int dir; 2308 struct mbuf *n; 2309 2310 /* sanity check */ 2311 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 2312 panic("key_spddump: NULL pointer is passed.\n"); 2313 2314 /* search SPD entry and get buffer size. */ 2315 cnt = 0; 2316 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2317 LIST_FOREACH(sp, &sptree[dir], chain) { 2318 cnt++; 2319 } 2320 } 2321 2322 if (cnt == 0) 2323 return key_senderror(so, m, ENOENT); 2324 2325 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2326 LIST_FOREACH(sp, &sptree[dir], chain) { 2327 --cnt; 2328 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, 2329 mhp->msg->sadb_msg_pid); 2330 2331 if (n) 2332 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2333 } 2334 } 2335 2336 m_freem(m); 2337 return 0; 2338 } 2339 2340 static struct mbuf * 2341 key_setdumpsp(sp, type, seq, pid) 2342 struct secpolicy *sp; 2343 u_int8_t type; 2344 u_int32_t seq, pid; 2345 { 2346 struct mbuf *result = NULL, *m; 2347 2348 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt); 2349 if (!m) 2350 goto fail; 2351 result = m; 2352 2353 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2354 &sp->spidx.src.sa, sp->spidx.prefs, 2355 sp->spidx.ul_proto); 2356 if (!m) 2357 goto fail; 2358 m_cat(result, m); 2359 2360 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2361 &sp->spidx.dst.sa, sp->spidx.prefd, 2362 sp->spidx.ul_proto); 2363 if (!m) 2364 goto fail; 2365 m_cat(result, m); 2366 2367 m = key_sp2msg(sp); 2368 if (!m) 2369 goto fail; 2370 m_cat(result, m); 2371 2372 if ((result->m_flags & M_PKTHDR) == 0) 2373 goto fail; 2374 2375 if (result->m_len < sizeof(struct sadb_msg)) { 2376 result = m_pullup(result, sizeof(struct sadb_msg)); 2377 if (result == NULL) 2378 goto fail; 2379 } 2380 2381 result->m_pkthdr.len = 0; 2382 for (m = result; m; m = m->m_next) 2383 result->m_pkthdr.len += m->m_len; 2384 2385 mtod(result, struct sadb_msg *)->sadb_msg_len = 2386 PFKEY_UNIT64(result->m_pkthdr.len); 2387 2388 return result; 2389 2390 fail: 2391 m_freem(result); 2392 return NULL; 2393 } 2394 2395 /* 2396 * get PFKEY message length for security policy and request. 2397 */ 2398 static u_int 2399 key_getspreqmsglen(sp) 2400 struct secpolicy *sp; 2401 { 2402 u_int tlen; 2403 2404 tlen = sizeof(struct sadb_x_policy); 2405 2406 /* if is the policy for ipsec ? */ 2407 if (sp->policy != IPSEC_POLICY_IPSEC) 2408 return tlen; 2409 2410 /* get length of ipsec requests */ 2411 { 2412 struct ipsecrequest *isr; 2413 int len; 2414 2415 for (isr = sp->req; isr != NULL; isr = isr->next) { 2416 len = sizeof(struct sadb_x_ipsecrequest) 2417 + isr->saidx.src.sa.sa_len 2418 + isr->saidx.dst.sa.sa_len; 2419 2420 tlen += PFKEY_ALIGN8(len); 2421 } 2422 } 2423 2424 return tlen; 2425 } 2426 2427 /* 2428 * SADB_SPDEXPIRE processing 2429 * send 2430 * <base, address(SD), lifetime(CH), policy> 2431 * to KMD by PF_KEY. 2432 * 2433 * OUT: 0 : succeed 2434 * others : error number 2435 */ 2436 static int 2437 key_spdexpire(sp) 2438 struct secpolicy *sp; 2439 { 2440 struct mbuf *result = NULL, *m; 2441 int len; 2442 int error = -1; 2443 struct sadb_lifetime *lt; 2444 2445 /* XXX: Why do we lock ? */ 2446 2447 /* sanity check */ 2448 if (sp == NULL) 2449 panic("key_spdexpire: NULL pointer is passed.\n"); 2450 2451 /* set msg header */ 2452 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0); 2453 if (!m) { 2454 error = ENOBUFS; 2455 goto fail; 2456 } 2457 result = m; 2458 2459 /* create lifetime extension (current and hard) */ 2460 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 2461 m = key_alloc_mbuf(len); 2462 if (!m || m->m_next) { /*XXX*/ 2463 if (m) 2464 m_freem(m); 2465 error = ENOBUFS; 2466 goto fail; 2467 } 2468 bzero(mtod(m, caddr_t), len); 2469 lt = mtod(m, struct sadb_lifetime *); 2470 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2471 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 2472 lt->sadb_lifetime_allocations = 0; 2473 lt->sadb_lifetime_bytes = 0; 2474 lt->sadb_lifetime_addtime = sp->created; 2475 lt->sadb_lifetime_usetime = sp->lastused; 2476 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 2477 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2478 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 2479 lt->sadb_lifetime_allocations = 0; 2480 lt->sadb_lifetime_bytes = 0; 2481 lt->sadb_lifetime_addtime = sp->lifetime; 2482 lt->sadb_lifetime_usetime = sp->validtime; 2483 m_cat(result, m); 2484 2485 /* set sadb_address for source */ 2486 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2487 &sp->spidx.src.sa, 2488 sp->spidx.prefs, sp->spidx.ul_proto); 2489 if (!m) { 2490 error = ENOBUFS; 2491 goto fail; 2492 } 2493 m_cat(result, m); 2494 2495 /* set sadb_address for destination */ 2496 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2497 &sp->spidx.dst.sa, 2498 sp->spidx.prefd, sp->spidx.ul_proto); 2499 if (!m) { 2500 error = ENOBUFS; 2501 goto fail; 2502 } 2503 m_cat(result, m); 2504 2505 /* set secpolicy */ 2506 m = key_sp2msg(sp); 2507 if (!m) { 2508 error = ENOBUFS; 2509 goto fail; 2510 } 2511 m_cat(result, m); 2512 2513 if ((result->m_flags & M_PKTHDR) == 0) { 2514 error = EINVAL; 2515 goto fail; 2516 } 2517 2518 if (result->m_len < sizeof(struct sadb_msg)) { 2519 result = m_pullup(result, sizeof(struct sadb_msg)); 2520 if (result == NULL) { 2521 error = ENOBUFS; 2522 goto fail; 2523 } 2524 } 2525 2526 result->m_pkthdr.len = 0; 2527 for (m = result; m; m = m->m_next) 2528 result->m_pkthdr.len += m->m_len; 2529 2530 mtod(result, struct sadb_msg *)->sadb_msg_len = 2531 PFKEY_UNIT64(result->m_pkthdr.len); 2532 2533 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 2534 2535 fail: 2536 if (result) 2537 m_freem(result); 2538 return error; 2539 } 2540 2541 /* %%% SAD management */ 2542 /* 2543 * allocating a memory for new SA head, and copy from the values of mhp. 2544 * OUT: NULL : failure due to the lack of memory. 2545 * others : pointer to new SA head. 2546 */ 2547 static struct secashead * 2548 key_newsah(saidx) 2549 struct secasindex *saidx; 2550 { 2551 struct secashead *newsah; 2552 2553 KASSERT(saidx != NULL, ("key_newsaidx: null saidx")); 2554 2555 newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO); 2556 if (newsah != NULL) { 2557 int i; 2558 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++) 2559 LIST_INIT(&newsah->savtree[i]); 2560 newsah->saidx = *saidx; 2561 2562 /* add to saidxtree */ 2563 newsah->state = SADB_SASTATE_MATURE; 2564 2565 mtx_lock(&sahtree_lock); 2566 LIST_INSERT_HEAD(&sahtree, newsah, chain); 2567 mtx_unlock(&sahtree_lock); 2568 } 2569 return(newsah); 2570 } 2571 2572 /* 2573 * delete SA index and all SA registerd. 2574 */ 2575 static void 2576 key_delsah(sah) 2577 struct secashead *sah; 2578 { 2579 struct secasvar *sav, *nextsav; 2580 u_int stateidx, state; 2581 int zombie = 0; 2582 2583 /* sanity check */ 2584 KASSERT(sah != NULL, ("key_delsah: NULL sah")); 2585 mtx_assert(&sahtree_lock, MA_OWNED); 2586 2587 /* searching all SA registerd in the secindex. */ 2588 for (stateidx = 0; 2589 stateidx < _ARRAYLEN(saorder_state_any); 2590 stateidx++) { 2591 2592 state = saorder_state_any[stateidx]; 2593 for (sav = (struct secasvar *)LIST_FIRST(&sah->savtree[state]); 2594 sav != NULL; 2595 sav = nextsav) { 2596 2597 nextsav = LIST_NEXT(sav, chain); 2598 2599 if (sav->refcnt == 0) { 2600 /* sanity check */ 2601 KEY_CHKSASTATE(state, sav->state, "key_delsah"); 2602 KEY_FREESAV(&sav); 2603 } else { 2604 /* give up to delete this sa */ 2605 zombie++; 2606 } 2607 } 2608 } 2609 /* remove from tree of SA index */ 2610 if (!zombie && __LIST_CHAINED(sah)) 2611 LIST_REMOVE(sah, chain); 2612 2613 /* don't delete sah only if there are savs. */ 2614 if (zombie) 2615 return; 2616 2617 if (sah->sa_route.ro_rt) { 2618 RTFREE(sah->sa_route.ro_rt); 2619 sah->sa_route.ro_rt = (struct rtentry *)NULL; 2620 } 2621 2622 free(sah, M_IPSEC_SAH); 2623 } 2624 2625 /* 2626 * allocating a new SA with LARVAL state. key_add() and key_getspi() call, 2627 * and copy the values of mhp into new buffer. 2628 * When SAD message type is GETSPI: 2629 * to set sequence number from acq_seq++, 2630 * to set zero to SPI. 2631 * not to call key_setsava(). 2632 * OUT: NULL : fail 2633 * others : pointer to new secasvar. 2634 * 2635 * does not modify mbuf. does not free mbuf on error. 2636 */ 2637 static struct secasvar * 2638 key_newsav(m, mhp, sah, errp, where, tag) 2639 struct mbuf *m; 2640 const struct sadb_msghdr *mhp; 2641 struct secashead *sah; 2642 int *errp; 2643 const char* where; 2644 int tag; 2645 { 2646 struct secasvar *newsav; 2647 const struct sadb_sa *xsa; 2648 2649 /* sanity check */ 2650 if (m == NULL || mhp == NULL || mhp->msg == NULL || sah == NULL) 2651 panic("key_newsa: NULL pointer is passed.\n"); 2652 2653 newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO); 2654 if (newsav == NULL) { 2655 ipseclog((LOG_DEBUG, "key_newsa: No more memory.\n")); 2656 *errp = ENOBUFS; 2657 goto done; 2658 } 2659 2660 switch (mhp->msg->sadb_msg_type) { 2661 case SADB_GETSPI: 2662 newsav->spi = 0; 2663 2664 #ifdef IPSEC_DOSEQCHECK 2665 /* sync sequence number */ 2666 if (mhp->msg->sadb_msg_seq == 0) 2667 newsav->seq = 2668 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq)); 2669 else 2670 #endif 2671 newsav->seq = mhp->msg->sadb_msg_seq; 2672 break; 2673 2674 case SADB_ADD: 2675 /* sanity check */ 2676 if (mhp->ext[SADB_EXT_SA] == NULL) { 2677 free(newsav, M_IPSEC_SA); 2678 newsav = NULL; 2679 ipseclog((LOG_DEBUG, "key_newsa: invalid message is passed.\n")); 2680 *errp = EINVAL; 2681 goto done; 2682 } 2683 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 2684 newsav->spi = xsa->sadb_sa_spi; 2685 newsav->seq = mhp->msg->sadb_msg_seq; 2686 break; 2687 default: 2688 free(newsav, M_IPSEC_SA); 2689 newsav = NULL; 2690 *errp = EINVAL; 2691 goto done; 2692 } 2693 2694 2695 /* copy sav values */ 2696 if (mhp->msg->sadb_msg_type != SADB_GETSPI) { 2697 *errp = key_setsaval(newsav, m, mhp); 2698 if (*errp) { 2699 free(newsav, M_IPSEC_SA); 2700 newsav = NULL; 2701 goto done; 2702 } 2703 } 2704 2705 mtx_init(&newsav->lock, "ipsec sa", NULL, MTX_DEF); 2706 2707 /* reset created */ 2708 newsav->created = time_second; 2709 newsav->pid = mhp->msg->sadb_msg_pid; 2710 2711 /* add to satree */ 2712 newsav->sah = sah; 2713 newsav->refcnt = 1; 2714 newsav->state = SADB_SASTATE_LARVAL; 2715 2716 /* XXX locking??? */ 2717 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav, 2718 secasvar, chain); 2719 done: 2720 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 2721 printf("DP key_newsav from %s:%u return SP:%p\n", 2722 where, tag, newsav)); 2723 2724 return newsav; 2725 } 2726 2727 /* 2728 * free() SA variable entry. 2729 */ 2730 static void 2731 key_cleansav(struct secasvar *sav) 2732 { 2733 /* 2734 * Cleanup xform state. Note that zeroize'ing causes the 2735 * keys to be cleared; otherwise we must do it ourself. 2736 */ 2737 if (sav->tdb_xform != NULL) { 2738 sav->tdb_xform->xf_zeroize(sav); 2739 sav->tdb_xform = NULL; 2740 } else { 2741 if (sav->key_auth != NULL) 2742 bzero(_KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth)); 2743 if (sav->key_enc != NULL) 2744 bzero(_KEYBUF(sav->key_enc), _KEYLEN(sav->key_enc)); 2745 } 2746 if (sav->key_auth != NULL) { 2747 free(sav->key_auth, M_IPSEC_MISC); 2748 sav->key_auth = NULL; 2749 } 2750 if (sav->key_enc != NULL) { 2751 free(sav->key_enc, M_IPSEC_MISC); 2752 sav->key_enc = NULL; 2753 } 2754 if (sav->sched) { 2755 bzero(sav->sched, sav->schedlen); 2756 free(sav->sched, M_IPSEC_MISC); 2757 sav->sched = NULL; 2758 } 2759 if (sav->replay != NULL) { 2760 free(sav->replay, M_IPSEC_MISC); 2761 sav->replay = NULL; 2762 } 2763 if (sav->lft_c != NULL) { 2764 free(sav->lft_c, M_IPSEC_MISC); 2765 sav->lft_c = NULL; 2766 } 2767 if (sav->lft_h != NULL) { 2768 free(sav->lft_h, M_IPSEC_MISC); 2769 sav->lft_h = NULL; 2770 } 2771 if (sav->lft_s != NULL) { 2772 free(sav->lft_s, M_IPSEC_MISC); 2773 sav->lft_s = NULL; 2774 } 2775 if (sav->iv != NULL) { 2776 free(sav->iv, M_IPSEC_MISC); 2777 sav->iv = NULL; 2778 } 2779 } 2780 2781 /* 2782 * free() SA variable entry. 2783 */ 2784 static void 2785 key_delsav(sav) 2786 struct secasvar *sav; 2787 { 2788 KASSERT(sav != NULL, ("key_delsav: null sav")); 2789 KASSERT(sav->refcnt == 0, 2790 ("key_delsav: reference count %u > 0", sav->refcnt)); 2791 2792 /* remove from SA header */ 2793 if (__LIST_CHAINED(sav)) 2794 LIST_REMOVE(sav, chain); 2795 key_cleansav(sav); 2796 mtx_destroy(&sav->lock); 2797 free(sav, M_IPSEC_SA); 2798 } 2799 2800 /* 2801 * search SAD. 2802 * OUT: 2803 * NULL : not found 2804 * others : found, pointer to a SA. 2805 */ 2806 static struct secashead * 2807 key_getsah(saidx) 2808 struct secasindex *saidx; 2809 { 2810 struct secashead *sah; 2811 2812 mtx_lock(&sahtree_lock); 2813 LIST_FOREACH(sah, &sahtree, chain) { 2814 if (sah->state == SADB_SASTATE_DEAD) 2815 continue; 2816 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID)) 2817 break; 2818 } 2819 mtx_unlock(&sahtree_lock); 2820 2821 return sah; 2822 } 2823 2824 /* 2825 * check not to be duplicated SPI. 2826 * NOTE: this function is too slow due to searching all SAD. 2827 * OUT: 2828 * NULL : not found 2829 * others : found, pointer to a SA. 2830 */ 2831 static struct secasvar * 2832 key_checkspidup(saidx, spi) 2833 struct secasindex *saidx; 2834 u_int32_t spi; 2835 { 2836 struct secashead *sah; 2837 struct secasvar *sav; 2838 2839 /* check address family */ 2840 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) { 2841 ipseclog((LOG_DEBUG, "key_checkspidup: address family mismatched.\n")); 2842 return NULL; 2843 } 2844 2845 sav = NULL; 2846 /* check all SAD */ 2847 mtx_lock(&sahtree_lock); 2848 LIST_FOREACH(sah, &sahtree, chain) { 2849 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst)) 2850 continue; 2851 sav = key_getsavbyspi(sah, spi); 2852 if (sav != NULL) 2853 break; 2854 } 2855 mtx_unlock(&sahtree_lock); 2856 2857 return sav; 2858 } 2859 2860 /* 2861 * search SAD litmited alive SA, protocol, SPI. 2862 * OUT: 2863 * NULL : not found 2864 * others : found, pointer to a SA. 2865 */ 2866 static struct secasvar * 2867 key_getsavbyspi(sah, spi) 2868 struct secashead *sah; 2869 u_int32_t spi; 2870 { 2871 struct secasvar *sav; 2872 u_int stateidx, state; 2873 2874 sav = NULL; 2875 mtx_lock(&sahtree_lock); 2876 /* search all status */ 2877 for (stateidx = 0; 2878 stateidx < _ARRAYLEN(saorder_state_alive); 2879 stateidx++) { 2880 2881 state = saorder_state_alive[stateidx]; 2882 LIST_FOREACH(sav, &sah->savtree[state], chain) { 2883 2884 /* sanity check */ 2885 if (sav->state != state) { 2886 ipseclog((LOG_DEBUG, "key_getsavbyspi: " 2887 "invalid sav->state (queue: %d SA: %d)\n", 2888 state, sav->state)); 2889 continue; 2890 } 2891 2892 if (sav->spi == spi) 2893 break; 2894 } 2895 } 2896 mtx_unlock(&sahtree_lock); 2897 2898 return sav; 2899 } 2900 2901 /* 2902 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. 2903 * You must update these if need. 2904 * OUT: 0: success. 2905 * !0: failure. 2906 * 2907 * does not modify mbuf. does not free mbuf on error. 2908 */ 2909 static int 2910 key_setsaval(sav, m, mhp) 2911 struct secasvar *sav; 2912 struct mbuf *m; 2913 const struct sadb_msghdr *mhp; 2914 { 2915 int error = 0; 2916 2917 /* sanity check */ 2918 if (m == NULL || mhp == NULL || mhp->msg == NULL) 2919 panic("key_setsaval: NULL pointer is passed.\n"); 2920 2921 /* initialization */ 2922 sav->replay = NULL; 2923 sav->key_auth = NULL; 2924 sav->key_enc = NULL; 2925 sav->sched = NULL; 2926 sav->schedlen = 0; 2927 sav->iv = NULL; 2928 sav->lft_c = NULL; 2929 sav->lft_h = NULL; 2930 sav->lft_s = NULL; 2931 sav->tdb_xform = NULL; /* transform */ 2932 sav->tdb_encalgxform = NULL; /* encoding algorithm */ 2933 sav->tdb_authalgxform = NULL; /* authentication algorithm */ 2934 sav->tdb_compalgxform = NULL; /* compression algorithm */ 2935 2936 /* SA */ 2937 if (mhp->ext[SADB_EXT_SA] != NULL) { 2938 const struct sadb_sa *sa0; 2939 2940 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 2941 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { 2942 error = EINVAL; 2943 goto fail; 2944 } 2945 2946 sav->alg_auth = sa0->sadb_sa_auth; 2947 sav->alg_enc = sa0->sadb_sa_encrypt; 2948 sav->flags = sa0->sadb_sa_flags; 2949 2950 /* replay window */ 2951 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { 2952 sav->replay = (struct secreplay *) 2953 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO); 2954 if (sav->replay == NULL) { 2955 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n")); 2956 error = ENOBUFS; 2957 goto fail; 2958 } 2959 if (sa0->sadb_sa_replay != 0) 2960 sav->replay->bitmap = (caddr_t)(sav->replay+1); 2961 sav->replay->wsize = sa0->sadb_sa_replay; 2962 } 2963 } 2964 2965 /* Authentication keys */ 2966 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { 2967 const struct sadb_key *key0; 2968 int len; 2969 2970 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH]; 2971 len = mhp->extlen[SADB_EXT_KEY_AUTH]; 2972 2973 error = 0; 2974 if (len < sizeof(*key0)) { 2975 error = EINVAL; 2976 goto fail; 2977 } 2978 switch (mhp->msg->sadb_msg_satype) { 2979 case SADB_SATYPE_AH: 2980 case SADB_SATYPE_ESP: 2981 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 2982 sav->alg_auth != SADB_X_AALG_NULL) 2983 error = EINVAL; 2984 break; 2985 case SADB_X_SATYPE_IPCOMP: 2986 default: 2987 error = EINVAL; 2988 break; 2989 } 2990 if (error) { 2991 ipseclog((LOG_DEBUG, "key_setsaval: invalid key_auth values.\n")); 2992 goto fail; 2993 } 2994 2995 sav->key_auth = key_dup(key0, len, M_IPSEC_MISC); 2996 if (sav->key_auth == NULL) { 2997 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n")); 2998 error = ENOBUFS; 2999 goto fail; 3000 } 3001 } 3002 3003 /* Encryption key */ 3004 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { 3005 const struct sadb_key *key0; 3006 int len; 3007 3008 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT]; 3009 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; 3010 3011 error = 0; 3012 if (len < sizeof(*key0)) { 3013 error = EINVAL; 3014 goto fail; 3015 } 3016 switch (mhp->msg->sadb_msg_satype) { 3017 case SADB_SATYPE_ESP: 3018 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3019 sav->alg_enc != SADB_EALG_NULL) { 3020 error = EINVAL; 3021 break; 3022 } 3023 sav->key_enc = key_dup(key0, len, M_IPSEC_MISC); 3024 if (sav->key_enc == NULL) { 3025 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n")); 3026 error = ENOBUFS; 3027 goto fail; 3028 } 3029 break; 3030 case SADB_X_SATYPE_IPCOMP: 3031 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) 3032 error = EINVAL; 3033 sav->key_enc = NULL; /*just in case*/ 3034 break; 3035 case SADB_SATYPE_AH: 3036 default: 3037 error = EINVAL; 3038 break; 3039 } 3040 if (error) { 3041 ipseclog((LOG_DEBUG, "key_setsatval: invalid key_enc value.\n")); 3042 goto fail; 3043 } 3044 } 3045 3046 /* set iv */ 3047 sav->ivlen = 0; 3048 3049 switch (mhp->msg->sadb_msg_satype) { 3050 case SADB_SATYPE_AH: 3051 error = xform_init(sav, XF_AH); 3052 break; 3053 case SADB_SATYPE_ESP: 3054 error = xform_init(sav, XF_ESP); 3055 break; 3056 case SADB_X_SATYPE_IPCOMP: 3057 error = xform_init(sav, XF_IPCOMP); 3058 break; 3059 } 3060 if (error) { 3061 ipseclog((LOG_DEBUG, 3062 "key_setsaval: unable to initialize SA type %u.\n", 3063 mhp->msg->sadb_msg_satype)); 3064 goto fail; 3065 } 3066 3067 /* reset created */ 3068 sav->created = time_second; 3069 3070 /* make lifetime for CURRENT */ 3071 sav->lft_c = malloc(sizeof(struct sadb_lifetime), M_IPSEC_MISC, M_NOWAIT); 3072 if (sav->lft_c == NULL) { 3073 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n")); 3074 error = ENOBUFS; 3075 goto fail; 3076 } 3077 3078 sav->lft_c->sadb_lifetime_len = 3079 PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 3080 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 3081 sav->lft_c->sadb_lifetime_allocations = 0; 3082 sav->lft_c->sadb_lifetime_bytes = 0; 3083 sav->lft_c->sadb_lifetime_addtime = time_second; 3084 sav->lft_c->sadb_lifetime_usetime = 0; 3085 3086 /* lifetimes for HARD and SOFT */ 3087 { 3088 const struct sadb_lifetime *lft0; 3089 3090 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 3091 if (lft0 != NULL) { 3092 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { 3093 error = EINVAL; 3094 goto fail; 3095 } 3096 sav->lft_h = key_dup(lft0, sizeof(*lft0), M_IPSEC_MISC); 3097 if (sav->lft_h == NULL) { 3098 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n")); 3099 error = ENOBUFS; 3100 goto fail; 3101 } 3102 /* to be initialize ? */ 3103 } 3104 3105 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT]; 3106 if (lft0 != NULL) { 3107 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { 3108 error = EINVAL; 3109 goto fail; 3110 } 3111 sav->lft_s = key_dup(lft0, sizeof(*lft0), M_IPSEC_MISC); 3112 if (sav->lft_s == NULL) { 3113 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n")); 3114 error = ENOBUFS; 3115 goto fail; 3116 } 3117 /* to be initialize ? */ 3118 } 3119 } 3120 3121 return 0; 3122 3123 fail: 3124 /* initialization */ 3125 key_cleansav(sav); 3126 3127 return error; 3128 } 3129 3130 /* 3131 * validation with a secasvar entry, and set SADB_SATYPE_MATURE. 3132 * OUT: 0: valid 3133 * other: errno 3134 */ 3135 static int 3136 key_mature(struct secasvar *sav) 3137 { 3138 int error; 3139 3140 /* check SPI value */ 3141 switch (sav->sah->saidx.proto) { 3142 case IPPROTO_ESP: 3143 case IPPROTO_AH: 3144 if (ntohl(sav->spi) >= 0 && ntohl(sav->spi) <= 255) { 3145 ipseclog((LOG_DEBUG, 3146 "key_mature: illegal range of SPI %u.\n", 3147 (u_int32_t)ntohl(sav->spi))); 3148 return EINVAL; 3149 } 3150 break; 3151 } 3152 3153 /* check satype */ 3154 switch (sav->sah->saidx.proto) { 3155 case IPPROTO_ESP: 3156 /* check flags */ 3157 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) == 3158 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) { 3159 ipseclog((LOG_DEBUG, "key_mature: " 3160 "invalid flag (derived) given to old-esp.\n")); 3161 return EINVAL; 3162 } 3163 error = xform_init(sav, XF_ESP); 3164 break; 3165 case IPPROTO_AH: 3166 /* check flags */ 3167 if (sav->flags & SADB_X_EXT_DERIV) { 3168 ipseclog((LOG_DEBUG, "key_mature: " 3169 "invalid flag (derived) given to AH SA.\n")); 3170 return EINVAL; 3171 } 3172 if (sav->alg_enc != SADB_EALG_NONE) { 3173 ipseclog((LOG_DEBUG, "key_mature: " 3174 "protocol and algorithm mismated.\n")); 3175 return(EINVAL); 3176 } 3177 error = xform_init(sav, XF_AH); 3178 break; 3179 case IPPROTO_IPCOMP: 3180 if (sav->alg_auth != SADB_AALG_NONE) { 3181 ipseclog((LOG_DEBUG, "key_mature: " 3182 "protocol and algorithm mismated.\n")); 3183 return(EINVAL); 3184 } 3185 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 3186 && ntohl(sav->spi) >= 0x10000) { 3187 ipseclog((LOG_DEBUG, "key_mature: invalid cpi for IPComp.\n")); 3188 return(EINVAL); 3189 } 3190 error = xform_init(sav, XF_IPCOMP); 3191 break; 3192 default: 3193 ipseclog((LOG_DEBUG, "key_mature: Invalid satype.\n")); 3194 error = EPROTONOSUPPORT; 3195 break; 3196 } 3197 if (error == 0) { 3198 mtx_lock(&sahtree_lock); 3199 key_sa_chgstate(sav, SADB_SASTATE_MATURE); 3200 mtx_unlock(&sahtree_lock); 3201 } 3202 return (error); 3203 } 3204 3205 /* 3206 * subroutine for SADB_GET and SADB_DUMP. 3207 */ 3208 static struct mbuf * 3209 key_setdumpsa(sav, type, satype, seq, pid) 3210 struct secasvar *sav; 3211 u_int8_t type, satype; 3212 u_int32_t seq, pid; 3213 { 3214 struct mbuf *result = NULL, *tres = NULL, *m; 3215 int l = 0; 3216 int i; 3217 void *p; 3218 int dumporder[] = { 3219 SADB_EXT_SA, SADB_X_EXT_SA2, 3220 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 3221 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, 3222 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, 3223 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, 3224 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, 3225 }; 3226 3227 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt); 3228 if (m == NULL) 3229 goto fail; 3230 result = m; 3231 3232 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) { 3233 m = NULL; 3234 p = NULL; 3235 switch (dumporder[i]) { 3236 case SADB_EXT_SA: 3237 m = key_setsadbsa(sav); 3238 if (!m) 3239 goto fail; 3240 break; 3241 3242 case SADB_X_EXT_SA2: 3243 m = key_setsadbxsa2(sav->sah->saidx.mode, 3244 sav->replay ? sav->replay->count : 0, 3245 sav->sah->saidx.reqid); 3246 if (!m) 3247 goto fail; 3248 break; 3249 3250 case SADB_EXT_ADDRESS_SRC: 3251 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3252 &sav->sah->saidx.src.sa, 3253 FULLMASK, IPSEC_ULPROTO_ANY); 3254 if (!m) 3255 goto fail; 3256 break; 3257 3258 case SADB_EXT_ADDRESS_DST: 3259 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3260 &sav->sah->saidx.dst.sa, 3261 FULLMASK, IPSEC_ULPROTO_ANY); 3262 if (!m) 3263 goto fail; 3264 break; 3265 3266 case SADB_EXT_KEY_AUTH: 3267 if (!sav->key_auth) 3268 continue; 3269 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len); 3270 p = sav->key_auth; 3271 break; 3272 3273 case SADB_EXT_KEY_ENCRYPT: 3274 if (!sav->key_enc) 3275 continue; 3276 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len); 3277 p = sav->key_enc; 3278 break; 3279 3280 case SADB_EXT_LIFETIME_CURRENT: 3281 if (!sav->lft_c) 3282 continue; 3283 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len); 3284 p = sav->lft_c; 3285 break; 3286 3287 case SADB_EXT_LIFETIME_HARD: 3288 if (!sav->lft_h) 3289 continue; 3290 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len); 3291 p = sav->lft_h; 3292 break; 3293 3294 case SADB_EXT_LIFETIME_SOFT: 3295 if (!sav->lft_s) 3296 continue; 3297 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len); 3298 p = sav->lft_s; 3299 break; 3300 3301 case SADB_EXT_ADDRESS_PROXY: 3302 case SADB_EXT_IDENTITY_SRC: 3303 case SADB_EXT_IDENTITY_DST: 3304 /* XXX: should we brought from SPD ? */ 3305 case SADB_EXT_SENSITIVITY: 3306 default: 3307 continue; 3308 } 3309 3310 if ((!m && !p) || (m && p)) 3311 goto fail; 3312 if (p && tres) { 3313 M_PREPEND(tres, l, M_DONTWAIT); 3314 if (!tres) 3315 goto fail; 3316 bcopy(p, mtod(tres, caddr_t), l); 3317 continue; 3318 } 3319 if (p) { 3320 m = key_alloc_mbuf(l); 3321 if (!m) 3322 goto fail; 3323 m_copyback(m, 0, l, p); 3324 } 3325 3326 if (tres) 3327 m_cat(m, tres); 3328 tres = m; 3329 } 3330 3331 m_cat(result, tres); 3332 3333 if (result->m_len < sizeof(struct sadb_msg)) { 3334 result = m_pullup(result, sizeof(struct sadb_msg)); 3335 if (result == NULL) 3336 goto fail; 3337 } 3338 3339 result->m_pkthdr.len = 0; 3340 for (m = result; m; m = m->m_next) 3341 result->m_pkthdr.len += m->m_len; 3342 3343 mtod(result, struct sadb_msg *)->sadb_msg_len = 3344 PFKEY_UNIT64(result->m_pkthdr.len); 3345 3346 return result; 3347 3348 fail: 3349 m_freem(result); 3350 m_freem(tres); 3351 return NULL; 3352 } 3353 3354 /* 3355 * set data into sadb_msg. 3356 */ 3357 static struct mbuf * 3358 key_setsadbmsg(type, tlen, satype, seq, pid, reserved) 3359 u_int8_t type, satype; 3360 u_int16_t tlen; 3361 u_int32_t seq; 3362 pid_t pid; 3363 u_int16_t reserved; 3364 { 3365 struct mbuf *m; 3366 struct sadb_msg *p; 3367 int len; 3368 3369 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 3370 if (len > MCLBYTES) 3371 return NULL; 3372 MGETHDR(m, M_DONTWAIT, MT_DATA); 3373 if (m && len > MHLEN) { 3374 MCLGET(m, M_DONTWAIT); 3375 if ((m->m_flags & M_EXT) == 0) { 3376 m_freem(m); 3377 m = NULL; 3378 } 3379 } 3380 if (!m) 3381 return NULL; 3382 m->m_pkthdr.len = m->m_len = len; 3383 m->m_next = NULL; 3384 3385 p = mtod(m, struct sadb_msg *); 3386 3387 bzero(p, len); 3388 p->sadb_msg_version = PF_KEY_V2; 3389 p->sadb_msg_type = type; 3390 p->sadb_msg_errno = 0; 3391 p->sadb_msg_satype = satype; 3392 p->sadb_msg_len = PFKEY_UNIT64(tlen); 3393 p->sadb_msg_reserved = reserved; 3394 p->sadb_msg_seq = seq; 3395 p->sadb_msg_pid = (u_int32_t)pid; 3396 3397 return m; 3398 } 3399 3400 /* 3401 * copy secasvar data into sadb_address. 3402 */ 3403 static struct mbuf * 3404 key_setsadbsa(sav) 3405 struct secasvar *sav; 3406 { 3407 struct mbuf *m; 3408 struct sadb_sa *p; 3409 int len; 3410 3411 len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); 3412 m = key_alloc_mbuf(len); 3413 if (!m || m->m_next) { /*XXX*/ 3414 if (m) 3415 m_freem(m); 3416 return NULL; 3417 } 3418 3419 p = mtod(m, struct sadb_sa *); 3420 3421 bzero(p, len); 3422 p->sadb_sa_len = PFKEY_UNIT64(len); 3423 p->sadb_sa_exttype = SADB_EXT_SA; 3424 p->sadb_sa_spi = sav->spi; 3425 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0); 3426 p->sadb_sa_state = sav->state; 3427 p->sadb_sa_auth = sav->alg_auth; 3428 p->sadb_sa_encrypt = sav->alg_enc; 3429 p->sadb_sa_flags = sav->flags; 3430 3431 return m; 3432 } 3433 3434 /* 3435 * set data into sadb_address. 3436 */ 3437 static struct mbuf * 3438 key_setsadbaddr(exttype, saddr, prefixlen, ul_proto) 3439 u_int16_t exttype; 3440 const struct sockaddr *saddr; 3441 u_int8_t prefixlen; 3442 u_int16_t ul_proto; 3443 { 3444 struct mbuf *m; 3445 struct sadb_address *p; 3446 size_t len; 3447 3448 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + 3449 PFKEY_ALIGN8(saddr->sa_len); 3450 m = key_alloc_mbuf(len); 3451 if (!m || m->m_next) { /*XXX*/ 3452 if (m) 3453 m_freem(m); 3454 return NULL; 3455 } 3456 3457 p = mtod(m, struct sadb_address *); 3458 3459 bzero(p, len); 3460 p->sadb_address_len = PFKEY_UNIT64(len); 3461 p->sadb_address_exttype = exttype; 3462 p->sadb_address_proto = ul_proto; 3463 if (prefixlen == FULLMASK) { 3464 switch (saddr->sa_family) { 3465 case AF_INET: 3466 prefixlen = sizeof(struct in_addr) << 3; 3467 break; 3468 case AF_INET6: 3469 prefixlen = sizeof(struct in6_addr) << 3; 3470 break; 3471 default: 3472 ; /*XXX*/ 3473 } 3474 } 3475 p->sadb_address_prefixlen = prefixlen; 3476 p->sadb_address_reserved = 0; 3477 3478 bcopy(saddr, 3479 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)), 3480 saddr->sa_len); 3481 3482 return m; 3483 } 3484 3485 /* 3486 * set data into sadb_x_sa2. 3487 */ 3488 static struct mbuf * 3489 key_setsadbxsa2(mode, seq, reqid) 3490 u_int8_t mode; 3491 u_int32_t seq, reqid; 3492 { 3493 struct mbuf *m; 3494 struct sadb_x_sa2 *p; 3495 size_t len; 3496 3497 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); 3498 m = key_alloc_mbuf(len); 3499 if (!m || m->m_next) { /*XXX*/ 3500 if (m) 3501 m_freem(m); 3502 return NULL; 3503 } 3504 3505 p = mtod(m, struct sadb_x_sa2 *); 3506 3507 bzero(p, len); 3508 p->sadb_x_sa2_len = PFKEY_UNIT64(len); 3509 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 3510 p->sadb_x_sa2_mode = mode; 3511 p->sadb_x_sa2_reserved1 = 0; 3512 p->sadb_x_sa2_reserved2 = 0; 3513 p->sadb_x_sa2_sequence = seq; 3514 p->sadb_x_sa2_reqid = reqid; 3515 3516 return m; 3517 } 3518 3519 /* 3520 * set data into sadb_x_policy 3521 */ 3522 static struct mbuf * 3523 key_setsadbxpolicy(type, dir, id) 3524 u_int16_t type; 3525 u_int8_t dir; 3526 u_int32_t id; 3527 { 3528 struct mbuf *m; 3529 struct sadb_x_policy *p; 3530 size_t len; 3531 3532 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); 3533 m = key_alloc_mbuf(len); 3534 if (!m || m->m_next) { /*XXX*/ 3535 if (m) 3536 m_freem(m); 3537 return NULL; 3538 } 3539 3540 p = mtod(m, struct sadb_x_policy *); 3541 3542 bzero(p, len); 3543 p->sadb_x_policy_len = PFKEY_UNIT64(len); 3544 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 3545 p->sadb_x_policy_type = type; 3546 p->sadb_x_policy_dir = dir; 3547 p->sadb_x_policy_id = id; 3548 3549 return m; 3550 } 3551 3552 /* %%% utilities */ 3553 /* 3554 * copy a buffer into the new buffer allocated. 3555 */ 3556 static void * 3557 key_dup(const void *src, u_int len, struct malloc_type *type) 3558 { 3559 void *copy; 3560 3561 copy = malloc(len, type, M_NOWAIT); 3562 if (copy == NULL) { 3563 /* XXX counter */ 3564 ipseclog((LOG_DEBUG, "key_dup: No more memory.\n")); 3565 } else 3566 bcopy(src, copy, len); 3567 return copy; 3568 } 3569 3570 /* compare my own address 3571 * OUT: 1: true, i.e. my address. 3572 * 0: false 3573 */ 3574 int 3575 key_ismyaddr(sa) 3576 struct sockaddr *sa; 3577 { 3578 #ifdef INET 3579 struct sockaddr_in *sin; 3580 struct in_ifaddr *ia; 3581 #endif 3582 3583 /* sanity check */ 3584 if (sa == NULL) 3585 panic("key_ismyaddr: NULL pointer is passed.\n"); 3586 3587 switch (sa->sa_family) { 3588 #ifdef INET 3589 case AF_INET: 3590 sin = (struct sockaddr_in *)sa; 3591 for (ia = in_ifaddrhead.tqh_first; ia; 3592 ia = ia->ia_link.tqe_next) 3593 { 3594 if (sin->sin_family == ia->ia_addr.sin_family && 3595 sin->sin_len == ia->ia_addr.sin_len && 3596 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr) 3597 { 3598 return 1; 3599 } 3600 } 3601 break; 3602 #endif 3603 #ifdef INET6 3604 case AF_INET6: 3605 return key_ismyaddr6((struct sockaddr_in6 *)sa); 3606 #endif 3607 } 3608 3609 return 0; 3610 } 3611 3612 #ifdef INET6 3613 /* 3614 * compare my own address for IPv6. 3615 * 1: ours 3616 * 0: other 3617 * NOTE: derived ip6_input() in KAME. This is necessary to modify more. 3618 */ 3619 #include <netinet6/in6_var.h> 3620 3621 static int 3622 key_ismyaddr6(sin6) 3623 struct sockaddr_in6 *sin6; 3624 { 3625 struct in6_ifaddr *ia; 3626 struct in6_multi *in6m; 3627 3628 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 3629 if (key_sockaddrcmp((struct sockaddr *)&sin6, 3630 (struct sockaddr *)&ia->ia_addr, 0) == 0) 3631 return 1; 3632 3633 /* 3634 * XXX Multicast 3635 * XXX why do we care about multlicast here while we don't care 3636 * about IPv4 multicast?? 3637 * XXX scope 3638 */ 3639 in6m = NULL; 3640 IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m); 3641 if (in6m) 3642 return 1; 3643 } 3644 3645 /* loopback, just for safety */ 3646 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) 3647 return 1; 3648 3649 return 0; 3650 } 3651 #endif /*INET6*/ 3652 3653 /* 3654 * compare two secasindex structure. 3655 * flag can specify to compare 2 saidxes. 3656 * compare two secasindex structure without both mode and reqid. 3657 * don't compare port. 3658 * IN: 3659 * saidx0: source, it can be in SAD. 3660 * saidx1: object. 3661 * OUT: 3662 * 1 : equal 3663 * 0 : not equal 3664 */ 3665 static int 3666 key_cmpsaidx( 3667 const struct secasindex *saidx0, 3668 const struct secasindex *saidx1, 3669 int flag) 3670 { 3671 /* sanity */ 3672 if (saidx0 == NULL && saidx1 == NULL) 3673 return 1; 3674 3675 if (saidx0 == NULL || saidx1 == NULL) 3676 return 0; 3677 3678 if (saidx0->proto != saidx1->proto) 3679 return 0; 3680 3681 if (flag == CMP_EXACTLY) { 3682 if (saidx0->mode != saidx1->mode) 3683 return 0; 3684 if (saidx0->reqid != saidx1->reqid) 3685 return 0; 3686 if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 || 3687 bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0) 3688 return 0; 3689 } else { 3690 3691 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ 3692 if (flag == CMP_MODE_REQID 3693 ||flag == CMP_REQID) { 3694 /* 3695 * If reqid of SPD is non-zero, unique SA is required. 3696 * The result must be of same reqid in this case. 3697 */ 3698 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) 3699 return 0; 3700 } 3701 3702 if (flag == CMP_MODE_REQID) { 3703 if (saidx0->mode != IPSEC_MODE_ANY 3704 && saidx0->mode != saidx1->mode) 3705 return 0; 3706 } 3707 3708 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, 0) != 0) { 3709 return 0; 3710 } 3711 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, 0) != 0) { 3712 return 0; 3713 } 3714 } 3715 3716 return 1; 3717 } 3718 3719 /* 3720 * compare two secindex structure exactly. 3721 * IN: 3722 * spidx0: source, it is often in SPD. 3723 * spidx1: object, it is often from PFKEY message. 3724 * OUT: 3725 * 1 : equal 3726 * 0 : not equal 3727 */ 3728 static int 3729 key_cmpspidx_exactly( 3730 struct secpolicyindex *spidx0, 3731 struct secpolicyindex *spidx1) 3732 { 3733 /* sanity */ 3734 if (spidx0 == NULL && spidx1 == NULL) 3735 return 1; 3736 3737 if (spidx0 == NULL || spidx1 == NULL) 3738 return 0; 3739 3740 if (spidx0->prefs != spidx1->prefs 3741 || spidx0->prefd != spidx1->prefd 3742 || spidx0->ul_proto != spidx1->ul_proto) 3743 return 0; 3744 3745 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 && 3746 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0; 3747 } 3748 3749 /* 3750 * compare two secindex structure with mask. 3751 * IN: 3752 * spidx0: source, it is often in SPD. 3753 * spidx1: object, it is often from IP header. 3754 * OUT: 3755 * 1 : equal 3756 * 0 : not equal 3757 */ 3758 static int 3759 key_cmpspidx_withmask( 3760 struct secpolicyindex *spidx0, 3761 struct secpolicyindex *spidx1) 3762 { 3763 /* sanity */ 3764 if (spidx0 == NULL && spidx1 == NULL) 3765 return 1; 3766 3767 if (spidx0 == NULL || spidx1 == NULL) 3768 return 0; 3769 3770 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || 3771 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || 3772 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || 3773 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) 3774 return 0; 3775 3776 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ 3777 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY 3778 && spidx0->ul_proto != spidx1->ul_proto) 3779 return 0; 3780 3781 switch (spidx0->src.sa.sa_family) { 3782 case AF_INET: 3783 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY 3784 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) 3785 return 0; 3786 if (!key_bbcmp(&spidx0->src.sin.sin_addr, 3787 &spidx1->src.sin.sin_addr, spidx0->prefs)) 3788 return 0; 3789 break; 3790 case AF_INET6: 3791 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY 3792 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) 3793 return 0; 3794 /* 3795 * scope_id check. if sin6_scope_id is 0, we regard it 3796 * as a wildcard scope, which matches any scope zone ID. 3797 */ 3798 if (spidx0->src.sin6.sin6_scope_id && 3799 spidx1->src.sin6.sin6_scope_id && 3800 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) 3801 return 0; 3802 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr, 3803 &spidx1->src.sin6.sin6_addr, spidx0->prefs)) 3804 return 0; 3805 break; 3806 default: 3807 /* XXX */ 3808 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) 3809 return 0; 3810 break; 3811 } 3812 3813 switch (spidx0->dst.sa.sa_family) { 3814 case AF_INET: 3815 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY 3816 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) 3817 return 0; 3818 if (!key_bbcmp(&spidx0->dst.sin.sin_addr, 3819 &spidx1->dst.sin.sin_addr, spidx0->prefd)) 3820 return 0; 3821 break; 3822 case AF_INET6: 3823 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY 3824 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) 3825 return 0; 3826 /* 3827 * scope_id check. if sin6_scope_id is 0, we regard it 3828 * as a wildcard scope, which matches any scope zone ID. 3829 */ 3830 if (spidx0->src.sin6.sin6_scope_id && 3831 spidx1->src.sin6.sin6_scope_id && 3832 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) 3833 return 0; 3834 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr, 3835 &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) 3836 return 0; 3837 break; 3838 default: 3839 /* XXX */ 3840 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) 3841 return 0; 3842 break; 3843 } 3844 3845 /* XXX Do we check other field ? e.g. flowinfo */ 3846 3847 return 1; 3848 } 3849 3850 /* returns 0 on match */ 3851 static int 3852 key_sockaddrcmp( 3853 const struct sockaddr *sa1, 3854 const struct sockaddr *sa2, 3855 int port) 3856 { 3857 #ifdef satosin 3858 #undef satosin 3859 #endif 3860 #define satosin(s) ((const struct sockaddr_in *)s) 3861 #ifdef satosin6 3862 #undef satosin6 3863 #endif 3864 #define satosin6(s) ((const struct sockaddr_in6 *)s) 3865 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) 3866 return 1; 3867 3868 switch (sa1->sa_family) { 3869 case AF_INET: 3870 if (sa1->sa_len != sizeof(struct sockaddr_in)) 3871 return 1; 3872 if (satosin(sa1)->sin_addr.s_addr != 3873 satosin(sa2)->sin_addr.s_addr) { 3874 return 1; 3875 } 3876 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port) 3877 return 1; 3878 break; 3879 case AF_INET6: 3880 if (sa1->sa_len != sizeof(struct sockaddr_in6)) 3881 return 1; /*EINVAL*/ 3882 if (satosin6(sa1)->sin6_scope_id != 3883 satosin6(sa2)->sin6_scope_id) { 3884 return 1; 3885 } 3886 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr, 3887 &satosin6(sa2)->sin6_addr)) { 3888 return 1; 3889 } 3890 if (port && 3891 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) { 3892 return 1; 3893 } 3894 default: 3895 if (bcmp(sa1, sa2, sa1->sa_len) != 0) 3896 return 1; 3897 break; 3898 } 3899 3900 return 0; 3901 #undef satosin 3902 #undef satosin6 3903 } 3904 3905 /* 3906 * compare two buffers with mask. 3907 * IN: 3908 * addr1: source 3909 * addr2: object 3910 * bits: Number of bits to compare 3911 * OUT: 3912 * 1 : equal 3913 * 0 : not equal 3914 */ 3915 static int 3916 key_bbcmp(const void *a1, const void *a2, u_int bits) 3917 { 3918 const unsigned char *p1 = a1; 3919 const unsigned char *p2 = a2; 3920 3921 /* XXX: This could be considerably faster if we compare a word 3922 * at a time, but it is complicated on LSB Endian machines */ 3923 3924 /* Handle null pointers */ 3925 if (p1 == NULL || p2 == NULL) 3926 return (p1 == p2); 3927 3928 while (bits >= 8) { 3929 if (*p1++ != *p2++) 3930 return 0; 3931 bits -= 8; 3932 } 3933 3934 if (bits > 0) { 3935 u_int8_t mask = ~((1<<(8-bits))-1); 3936 if ((*p1 & mask) != (*p2 & mask)) 3937 return 0; 3938 } 3939 return 1; /* Match! */ 3940 } 3941 3942 static void 3943 key_flush_spd(time_t now) 3944 { 3945 struct secpolicy *sp, *nextsp; 3946 u_int dir; 3947 3948 /* SPD */ 3949 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 3950 mtx_lock(&sptree_lock); 3951 for (sp = LIST_FIRST(&sptree[dir]); 3952 sp != NULL; 3953 sp = nextsp) { 3954 3955 nextsp = LIST_NEXT(sp, chain); 3956 3957 if (sp->state == IPSEC_SPSTATE_DEAD) { 3958 KEY_FREESP(&sp); 3959 continue; 3960 } 3961 3962 if (sp->lifetime == 0 && sp->validtime == 0) 3963 continue; 3964 3965 /* the deletion will occur next time */ 3966 if ((sp->lifetime && now - sp->created > sp->lifetime) 3967 || (sp->validtime && now - sp->lastused > sp->validtime)) { 3968 sp->state = IPSEC_SPSTATE_DEAD; 3969 key_spdexpire(sp); 3970 continue; 3971 } 3972 } 3973 mtx_unlock(&sptree_lock); 3974 } 3975 } 3976 3977 static void 3978 key_flush_sad(time_t now) 3979 { 3980 struct secashead *sah, *nextsah; 3981 struct secasvar *sav, *nextsav; 3982 3983 /* SAD */ 3984 mtx_lock(&sahtree_lock); 3985 for (sah = LIST_FIRST(&sahtree); 3986 sah != NULL; 3987 sah = nextsah) { 3988 3989 nextsah = LIST_NEXT(sah, chain); 3990 3991 /* if sah has been dead, then delete it and process next sah. */ 3992 if (sah->state == SADB_SASTATE_DEAD) { 3993 key_delsah(sah); 3994 continue; 3995 } 3996 3997 /* if LARVAL entry doesn't become MATURE, delete it. */ 3998 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_LARVAL]); 3999 sav != NULL; 4000 sav = nextsav) { 4001 4002 nextsav = LIST_NEXT(sav, chain); 4003 4004 if (now - sav->created > key_larval_lifetime) { 4005 KEY_FREESAV(&sav); 4006 } 4007 } 4008 4009 /* 4010 * check MATURE entry to start to send expire message 4011 * whether or not. 4012 */ 4013 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_MATURE]); 4014 sav != NULL; 4015 sav = nextsav) { 4016 4017 nextsav = LIST_NEXT(sav, chain); 4018 4019 /* we don't need to check. */ 4020 if (sav->lft_s == NULL) 4021 continue; 4022 4023 /* sanity check */ 4024 if (sav->lft_c == NULL) { 4025 ipseclog((LOG_DEBUG,"key_timehandler: " 4026 "There is no CURRENT time, why?\n")); 4027 continue; 4028 } 4029 4030 /* check SOFT lifetime */ 4031 if (sav->lft_s->sadb_lifetime_addtime != 0 4032 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) { 4033 /* 4034 * check SA to be used whether or not. 4035 * when SA hasn't been used, delete it. 4036 */ 4037 if (sav->lft_c->sadb_lifetime_usetime == 0) { 4038 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4039 KEY_FREESAV(&sav); 4040 } else { 4041 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4042 /* 4043 * XXX If we keep to send expire 4044 * message in the status of 4045 * DYING. Do remove below code. 4046 */ 4047 key_expire(sav); 4048 } 4049 } 4050 /* check SOFT lifetime by bytes */ 4051 /* 4052 * XXX I don't know the way to delete this SA 4053 * when new SA is installed. Caution when it's 4054 * installed too big lifetime by time. 4055 */ 4056 else if (sav->lft_s->sadb_lifetime_bytes != 0 4057 && sav->lft_s->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) { 4058 4059 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4060 /* 4061 * XXX If we keep to send expire 4062 * message in the status of 4063 * DYING. Do remove below code. 4064 */ 4065 key_expire(sav); 4066 } 4067 } 4068 4069 /* check DYING entry to change status to DEAD. */ 4070 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_DYING]); 4071 sav != NULL; 4072 sav = nextsav) { 4073 4074 nextsav = LIST_NEXT(sav, chain); 4075 4076 /* we don't need to check. */ 4077 if (sav->lft_h == NULL) 4078 continue; 4079 4080 /* sanity check */ 4081 if (sav->lft_c == NULL) { 4082 ipseclog((LOG_DEBUG, "key_timehandler: " 4083 "There is no CURRENT time, why?\n")); 4084 continue; 4085 } 4086 4087 if (sav->lft_h->sadb_lifetime_addtime != 0 4088 && now - sav->created > sav->lft_h->sadb_lifetime_addtime) { 4089 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4090 KEY_FREESAV(&sav); 4091 } 4092 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */ 4093 else if (sav->lft_s != NULL 4094 && sav->lft_s->sadb_lifetime_addtime != 0 4095 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) { 4096 /* 4097 * XXX: should be checked to be 4098 * installed the valid SA. 4099 */ 4100 4101 /* 4102 * If there is no SA then sending 4103 * expire message. 4104 */ 4105 key_expire(sav); 4106 } 4107 #endif 4108 /* check HARD lifetime by bytes */ 4109 else if (sav->lft_h->sadb_lifetime_bytes != 0 4110 && sav->lft_h->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) { 4111 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4112 KEY_FREESAV(&sav); 4113 } 4114 } 4115 4116 /* delete entry in DEAD */ 4117 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_DEAD]); 4118 sav != NULL; 4119 sav = nextsav) { 4120 4121 nextsav = LIST_NEXT(sav, chain); 4122 4123 /* sanity check */ 4124 if (sav->state != SADB_SASTATE_DEAD) { 4125 ipseclog((LOG_DEBUG, "key_timehandler: " 4126 "invalid sav->state " 4127 "(queue: %d SA: %d): " 4128 "kill it anyway\n", 4129 SADB_SASTATE_DEAD, sav->state)); 4130 } 4131 4132 /* 4133 * do not call key_freesav() here. 4134 * sav should already be freed, and sav->refcnt 4135 * shows other references to sav 4136 * (such as from SPD). 4137 */ 4138 } 4139 } 4140 mtx_unlock(&sahtree_lock); 4141 } 4142 4143 static void 4144 key_flush_acq(time_t now) 4145 { 4146 struct secacq *acq, *nextacq; 4147 4148 /* ACQ tree */ 4149 mtx_lock(&acq_lock); 4150 for (acq = LIST_FIRST(&acqtree); acq != NULL; acq = nextacq) { 4151 nextacq = LIST_NEXT(acq, chain); 4152 if (now - acq->created > key_blockacq_lifetime 4153 && __LIST_CHAINED(acq)) { 4154 LIST_REMOVE(acq, chain); 4155 free(acq, M_IPSEC_SAQ); 4156 } 4157 } 4158 mtx_unlock(&acq_lock); 4159 } 4160 4161 static void 4162 key_flush_spacq(time_t now) 4163 { 4164 struct secspacq *acq, *nextacq; 4165 4166 /* SP ACQ tree */ 4167 mtx_lock(&spacq_lock); 4168 for (acq = LIST_FIRST(&spacqtree); acq != NULL; acq = nextacq) { 4169 nextacq = LIST_NEXT(acq, chain); 4170 if (now - acq->created > key_blockacq_lifetime 4171 && __LIST_CHAINED(acq)) { 4172 LIST_REMOVE(acq, chain); 4173 free(acq, M_IPSEC_SAQ); 4174 } 4175 } 4176 mtx_unlock(&spacq_lock); 4177 } 4178 4179 /* 4180 * time handler. 4181 * scanning SPD and SAD to check status for each entries, 4182 * and do to remove or to expire. 4183 * XXX: year 2038 problem may remain. 4184 */ 4185 void 4186 key_timehandler(void) 4187 { 4188 time_t now = time_second; 4189 4190 key_flush_spd(now); 4191 key_flush_sad(now); 4192 key_flush_acq(now); 4193 key_flush_spacq(now); 4194 4195 #ifndef IPSEC_DEBUG2 4196 /* do exchange to tick time !! */ 4197 (void)timeout((void *)key_timehandler, (void *)0, hz); 4198 #endif /* IPSEC_DEBUG2 */ 4199 } 4200 4201 u_long 4202 key_random() 4203 { 4204 u_long value; 4205 4206 key_randomfill(&value, sizeof(value)); 4207 return value; 4208 } 4209 4210 void 4211 key_randomfill(p, l) 4212 void *p; 4213 size_t l; 4214 { 4215 size_t n; 4216 u_long v; 4217 static int warn = 1; 4218 4219 n = 0; 4220 n = (size_t)read_random(p, (u_int)l); 4221 /* last resort */ 4222 while (n < l) { 4223 v = random(); 4224 bcopy(&v, (u_int8_t *)p + n, 4225 l - n < sizeof(v) ? l - n : sizeof(v)); 4226 n += sizeof(v); 4227 4228 if (warn) { 4229 printf("WARNING: pseudo-random number generator " 4230 "used for IPsec processing\n"); 4231 warn = 0; 4232 } 4233 } 4234 } 4235 4236 /* 4237 * map SADB_SATYPE_* to IPPROTO_*. 4238 * if satype == SADB_SATYPE then satype is mapped to ~0. 4239 * OUT: 4240 * 0: invalid satype. 4241 */ 4242 static u_int16_t 4243 key_satype2proto(satype) 4244 u_int8_t satype; 4245 { 4246 switch (satype) { 4247 case SADB_SATYPE_UNSPEC: 4248 return IPSEC_PROTO_ANY; 4249 case SADB_SATYPE_AH: 4250 return IPPROTO_AH; 4251 case SADB_SATYPE_ESP: 4252 return IPPROTO_ESP; 4253 case SADB_X_SATYPE_IPCOMP: 4254 return IPPROTO_IPCOMP; 4255 default: 4256 return 0; 4257 } 4258 /* NOTREACHED */ 4259 } 4260 4261 /* 4262 * map IPPROTO_* to SADB_SATYPE_* 4263 * OUT: 4264 * 0: invalid protocol type. 4265 */ 4266 static u_int8_t 4267 key_proto2satype(proto) 4268 u_int16_t proto; 4269 { 4270 switch (proto) { 4271 case IPPROTO_AH: 4272 return SADB_SATYPE_AH; 4273 case IPPROTO_ESP: 4274 return SADB_SATYPE_ESP; 4275 case IPPROTO_IPCOMP: 4276 return SADB_X_SATYPE_IPCOMP; 4277 default: 4278 return 0; 4279 } 4280 /* NOTREACHED */ 4281 } 4282 4283 /* %%% PF_KEY */ 4284 /* 4285 * SADB_GETSPI processing is to receive 4286 * <base, (SA2), src address, dst address, (SPI range)> 4287 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND 4288 * tree with the status of LARVAL, and send 4289 * <base, SA(*), address(SD)> 4290 * to the IKMPd. 4291 * 4292 * IN: mhp: pointer to the pointer to each header. 4293 * OUT: NULL if fail. 4294 * other if success, return pointer to the message to send. 4295 */ 4296 static int 4297 key_getspi(so, m, mhp) 4298 struct socket *so; 4299 struct mbuf *m; 4300 const struct sadb_msghdr *mhp; 4301 { 4302 struct sadb_address *src0, *dst0; 4303 struct secasindex saidx; 4304 struct secashead *newsah; 4305 struct secasvar *newsav; 4306 u_int8_t proto; 4307 u_int32_t spi; 4308 u_int8_t mode; 4309 u_int32_t reqid; 4310 int error; 4311 4312 /* sanity check */ 4313 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 4314 panic("key_getspi: NULL pointer is passed.\n"); 4315 4316 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4317 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 4318 ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n")); 4319 return key_senderror(so, m, EINVAL); 4320 } 4321 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4322 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4323 ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n")); 4324 return key_senderror(so, m, EINVAL); 4325 } 4326 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4327 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4328 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4329 } else { 4330 mode = IPSEC_MODE_ANY; 4331 reqid = 0; 4332 } 4333 4334 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4335 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4336 4337 /* map satype to proto */ 4338 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4339 ipseclog((LOG_DEBUG, "key_getspi: invalid satype is passed.\n")); 4340 return key_senderror(so, m, EINVAL); 4341 } 4342 4343 /* make sure if port number is zero. */ 4344 switch (((struct sockaddr *)(src0 + 1))->sa_family) { 4345 case AF_INET: 4346 if (((struct sockaddr *)(src0 + 1))->sa_len != 4347 sizeof(struct sockaddr_in)) 4348 return key_senderror(so, m, EINVAL); 4349 ((struct sockaddr_in *)(src0 + 1))->sin_port = 0; 4350 break; 4351 case AF_INET6: 4352 if (((struct sockaddr *)(src0 + 1))->sa_len != 4353 sizeof(struct sockaddr_in6)) 4354 return key_senderror(so, m, EINVAL); 4355 ((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0; 4356 break; 4357 default: 4358 ; /*???*/ 4359 } 4360 switch (((struct sockaddr *)(dst0 + 1))->sa_family) { 4361 case AF_INET: 4362 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4363 sizeof(struct sockaddr_in)) 4364 return key_senderror(so, m, EINVAL); 4365 ((struct sockaddr_in *)(dst0 + 1))->sin_port = 0; 4366 break; 4367 case AF_INET6: 4368 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4369 sizeof(struct sockaddr_in6)) 4370 return key_senderror(so, m, EINVAL); 4371 ((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0; 4372 break; 4373 default: 4374 ; /*???*/ 4375 } 4376 4377 /* XXX boundary check against sa_len */ 4378 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4379 4380 /* SPI allocation */ 4381 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE], 4382 &saidx); 4383 if (spi == 0) 4384 return key_senderror(so, m, EINVAL); 4385 4386 /* get a SA index */ 4387 if ((newsah = key_getsah(&saidx)) == NULL) { 4388 /* create a new SA index */ 4389 if ((newsah = key_newsah(&saidx)) == NULL) { 4390 ipseclog((LOG_DEBUG, "key_getspi: No more memory.\n")); 4391 return key_senderror(so, m, ENOBUFS); 4392 } 4393 } 4394 4395 /* get a new SA */ 4396 /* XXX rewrite */ 4397 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 4398 if (newsav == NULL) { 4399 /* XXX don't free new SA index allocated in above. */ 4400 return key_senderror(so, m, error); 4401 } 4402 4403 /* set spi */ 4404 newsav->spi = htonl(spi); 4405 4406 /* delete the entry in acqtree */ 4407 if (mhp->msg->sadb_msg_seq != 0) { 4408 struct secacq *acq; 4409 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) { 4410 /* reset counter in order to deletion by timehandler. */ 4411 acq->created = time_second; 4412 acq->count = 0; 4413 } 4414 } 4415 4416 { 4417 struct mbuf *n, *nn; 4418 struct sadb_sa *m_sa; 4419 struct sadb_msg *newmsg; 4420 int off, len; 4421 4422 /* create new sadb_msg to reply. */ 4423 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 4424 PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4425 if (len > MCLBYTES) 4426 return key_senderror(so, m, ENOBUFS); 4427 4428 MGETHDR(n, M_DONTWAIT, MT_DATA); 4429 if (len > MHLEN) { 4430 MCLGET(n, M_DONTWAIT); 4431 if ((n->m_flags & M_EXT) == 0) { 4432 m_freem(n); 4433 n = NULL; 4434 } 4435 } 4436 if (!n) 4437 return key_senderror(so, m, ENOBUFS); 4438 4439 n->m_len = len; 4440 n->m_next = NULL; 4441 off = 0; 4442 4443 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 4444 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 4445 4446 m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off); 4447 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); 4448 m_sa->sadb_sa_exttype = SADB_EXT_SA; 4449 m_sa->sadb_sa_spi = htonl(spi); 4450 off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4451 4452 #ifdef DIAGNOSTIC 4453 if (off != len) 4454 panic("length inconsistency in key_getspi"); 4455 #endif 4456 4457 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, 4458 SADB_EXT_ADDRESS_DST); 4459 if (!n->m_next) { 4460 m_freem(n); 4461 return key_senderror(so, m, ENOBUFS); 4462 } 4463 4464 if (n->m_len < sizeof(struct sadb_msg)) { 4465 n = m_pullup(n, sizeof(struct sadb_msg)); 4466 if (n == NULL) 4467 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 4468 } 4469 4470 n->m_pkthdr.len = 0; 4471 for (nn = n; nn; nn = nn->m_next) 4472 n->m_pkthdr.len += nn->m_len; 4473 4474 newmsg = mtod(n, struct sadb_msg *); 4475 newmsg->sadb_msg_seq = newsav->seq; 4476 newmsg->sadb_msg_errno = 0; 4477 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 4478 4479 m_freem(m); 4480 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 4481 } 4482 } 4483 4484 /* 4485 * allocating new SPI 4486 * called by key_getspi(). 4487 * OUT: 4488 * 0: failure. 4489 * others: success. 4490 */ 4491 static u_int32_t 4492 key_do_getnewspi(spirange, saidx) 4493 struct sadb_spirange *spirange; 4494 struct secasindex *saidx; 4495 { 4496 u_int32_t newspi; 4497 u_int32_t min, max; 4498 int count = key_spi_trycnt; 4499 4500 /* set spi range to allocate */ 4501 if (spirange != NULL) { 4502 min = spirange->sadb_spirange_min; 4503 max = spirange->sadb_spirange_max; 4504 } else { 4505 min = key_spi_minval; 4506 max = key_spi_maxval; 4507 } 4508 /* IPCOMP needs 2-byte SPI */ 4509 if (saidx->proto == IPPROTO_IPCOMP) { 4510 u_int32_t t; 4511 if (min >= 0x10000) 4512 min = 0xffff; 4513 if (max >= 0x10000) 4514 max = 0xffff; 4515 if (min > max) { 4516 t = min; min = max; max = t; 4517 } 4518 } 4519 4520 if (min == max) { 4521 if (key_checkspidup(saidx, min) != NULL) { 4522 ipseclog((LOG_DEBUG, "key_do_getnewspi: SPI %u exists already.\n", min)); 4523 return 0; 4524 } 4525 4526 count--; /* taking one cost. */ 4527 newspi = min; 4528 4529 } else { 4530 4531 /* init SPI */ 4532 newspi = 0; 4533 4534 /* when requesting to allocate spi ranged */ 4535 while (count--) { 4536 /* generate pseudo-random SPI value ranged. */ 4537 newspi = min + (key_random() % (max - min + 1)); 4538 4539 if (key_checkspidup(saidx, newspi) == NULL) 4540 break; 4541 } 4542 4543 if (count == 0 || newspi == 0) { 4544 ipseclog((LOG_DEBUG, "key_do_getnewspi: to allocate spi is failed.\n")); 4545 return 0; 4546 } 4547 } 4548 4549 /* statistics */ 4550 keystat.getspi_count = 4551 (keystat.getspi_count + key_spi_trycnt - count) / 2; 4552 4553 return newspi; 4554 } 4555 4556 /* 4557 * SADB_UPDATE processing 4558 * receive 4559 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4560 * key(AE), (identity(SD),) (sensitivity)> 4561 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. 4562 * and send 4563 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4564 * (identity(SD),) (sensitivity)> 4565 * to the ikmpd. 4566 * 4567 * m will always be freed. 4568 */ 4569 static int 4570 key_update(so, m, mhp) 4571 struct socket *so; 4572 struct mbuf *m; 4573 const struct sadb_msghdr *mhp; 4574 { 4575 struct sadb_sa *sa0; 4576 struct sadb_address *src0, *dst0; 4577 struct secasindex saidx; 4578 struct secashead *sah; 4579 struct secasvar *sav; 4580 u_int16_t proto; 4581 u_int8_t mode; 4582 u_int32_t reqid; 4583 int error; 4584 4585 /* sanity check */ 4586 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 4587 panic("key_update: NULL pointer is passed.\n"); 4588 4589 /* map satype to proto */ 4590 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4591 ipseclog((LOG_DEBUG, "key_update: invalid satype is passed.\n")); 4592 return key_senderror(so, m, EINVAL); 4593 } 4594 4595 if (mhp->ext[SADB_EXT_SA] == NULL || 4596 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4597 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 4598 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 4599 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 4600 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 4601 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 4602 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 4603 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 4604 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 4605 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 4606 ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n")); 4607 return key_senderror(so, m, EINVAL); 4608 } 4609 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 4610 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4611 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4612 ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n")); 4613 return key_senderror(so, m, EINVAL); 4614 } 4615 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4616 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4617 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4618 } else { 4619 mode = IPSEC_MODE_ANY; 4620 reqid = 0; 4621 } 4622 /* XXX boundary checking for other extensions */ 4623 4624 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 4625 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4626 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4627 4628 /* XXX boundary check against sa_len */ 4629 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4630 4631 /* get a SA header */ 4632 if ((sah = key_getsah(&saidx)) == NULL) { 4633 ipseclog((LOG_DEBUG, "key_update: no SA index found.\n")); 4634 return key_senderror(so, m, ENOENT); 4635 } 4636 4637 /* set spidx if there */ 4638 /* XXX rewrite */ 4639 error = key_setident(sah, m, mhp); 4640 if (error) 4641 return key_senderror(so, m, error); 4642 4643 /* find a SA with sequence number. */ 4644 #ifdef IPSEC_DOSEQCHECK 4645 if (mhp->msg->sadb_msg_seq != 0 4646 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) { 4647 ipseclog((LOG_DEBUG, 4648 "key_update: no larval SA with sequence %u exists.\n", 4649 mhp->msg->sadb_msg_seq)); 4650 return key_senderror(so, m, ENOENT); 4651 } 4652 #else 4653 if ((sav = key_getsavbyspi(sah, sa0->sadb_sa_spi)) == NULL) { 4654 ipseclog((LOG_DEBUG, 4655 "key_update: no such a SA found (spi:%u)\n", 4656 (u_int32_t)ntohl(sa0->sadb_sa_spi))); 4657 return key_senderror(so, m, EINVAL); 4658 } 4659 #endif 4660 4661 /* validity check */ 4662 if (sav->sah->saidx.proto != proto) { 4663 ipseclog((LOG_DEBUG, 4664 "key_update: protocol mismatched (DB=%u param=%u)\n", 4665 sav->sah->saidx.proto, proto)); 4666 return key_senderror(so, m, EINVAL); 4667 } 4668 #ifdef IPSEC_DOSEQCHECK 4669 if (sav->spi != sa0->sadb_sa_spi) { 4670 ipseclog((LOG_DEBUG, 4671 "key_update: SPI mismatched (DB:%u param:%u)\n", 4672 (u_int32_t)ntohl(sav->spi), 4673 (u_int32_t)ntohl(sa0->sadb_sa_spi))); 4674 return key_senderror(so, m, EINVAL); 4675 } 4676 #endif 4677 if (sav->pid != mhp->msg->sadb_msg_pid) { 4678 ipseclog((LOG_DEBUG, 4679 "key_update: pid mismatched (DB:%u param:%u)\n", 4680 sav->pid, mhp->msg->sadb_msg_pid)); 4681 return key_senderror(so, m, EINVAL); 4682 } 4683 4684 /* copy sav values */ 4685 error = key_setsaval(sav, m, mhp); 4686 if (error) { 4687 KEY_FREESAV(&sav); 4688 return key_senderror(so, m, error); 4689 } 4690 4691 /* check SA values to be mature. */ 4692 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) { 4693 KEY_FREESAV(&sav); 4694 return key_senderror(so, m, 0); 4695 } 4696 4697 { 4698 struct mbuf *n; 4699 4700 /* set msg buf from mhp */ 4701 n = key_getmsgbuf_x1(m, mhp); 4702 if (n == NULL) { 4703 ipseclog((LOG_DEBUG, "key_update: No more memory.\n")); 4704 return key_senderror(so, m, ENOBUFS); 4705 } 4706 4707 m_freem(m); 4708 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 4709 } 4710 } 4711 4712 /* 4713 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL. 4714 * only called by key_update(). 4715 * OUT: 4716 * NULL : not found 4717 * others : found, pointer to a SA. 4718 */ 4719 #ifdef IPSEC_DOSEQCHECK 4720 static struct secasvar * 4721 key_getsavbyseq(sah, seq) 4722 struct secashead *sah; 4723 u_int32_t seq; 4724 { 4725 struct secasvar *sav; 4726 u_int state; 4727 4728 state = SADB_SASTATE_LARVAL; 4729 4730 /* search SAD with sequence number ? */ 4731 LIST_FOREACH(sav, &sah->savtree[state], chain) { 4732 4733 KEY_CHKSASTATE(state, sav->state, "key_getsabyseq"); 4734 4735 if (sav->seq == seq) { 4736 SA_ADDREF(sav); 4737 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 4738 printf("DP key_getsavbyseq cause " 4739 "refcnt++:%d SA:%p\n", 4740 sav->refcnt, sav)); 4741 return sav; 4742 } 4743 } 4744 4745 return NULL; 4746 } 4747 #endif 4748 4749 /* 4750 * SADB_ADD processing 4751 * add an entry to SA database, when received 4752 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4753 * key(AE), (identity(SD),) (sensitivity)> 4754 * from the ikmpd, 4755 * and send 4756 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4757 * (identity(SD),) (sensitivity)> 4758 * to the ikmpd. 4759 * 4760 * IGNORE identity and sensitivity messages. 4761 * 4762 * m will always be freed. 4763 */ 4764 static int 4765 key_add(so, m, mhp) 4766 struct socket *so; 4767 struct mbuf *m; 4768 const struct sadb_msghdr *mhp; 4769 { 4770 struct sadb_sa *sa0; 4771 struct sadb_address *src0, *dst0; 4772 struct secasindex saidx; 4773 struct secashead *newsah; 4774 struct secasvar *newsav; 4775 u_int16_t proto; 4776 u_int8_t mode; 4777 u_int32_t reqid; 4778 int error; 4779 4780 /* sanity check */ 4781 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 4782 panic("key_add: NULL pointer is passed.\n"); 4783 4784 /* map satype to proto */ 4785 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4786 ipseclog((LOG_DEBUG, "key_add: invalid satype is passed.\n")); 4787 return key_senderror(so, m, EINVAL); 4788 } 4789 4790 if (mhp->ext[SADB_EXT_SA] == NULL || 4791 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4792 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 4793 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 4794 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 4795 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 4796 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 4797 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 4798 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 4799 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 4800 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 4801 ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n")); 4802 return key_senderror(so, m, EINVAL); 4803 } 4804 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 4805 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4806 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4807 /* XXX need more */ 4808 ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n")); 4809 return key_senderror(so, m, EINVAL); 4810 } 4811 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4812 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4813 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4814 } else { 4815 mode = IPSEC_MODE_ANY; 4816 reqid = 0; 4817 } 4818 4819 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 4820 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 4821 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 4822 4823 /* XXX boundary check against sa_len */ 4824 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4825 4826 /* get a SA header */ 4827 if ((newsah = key_getsah(&saidx)) == NULL) { 4828 /* create a new SA header */ 4829 if ((newsah = key_newsah(&saidx)) == NULL) { 4830 ipseclog((LOG_DEBUG, "key_add: No more memory.\n")); 4831 return key_senderror(so, m, ENOBUFS); 4832 } 4833 } 4834 4835 /* set spidx if there */ 4836 /* XXX rewrite */ 4837 error = key_setident(newsah, m, mhp); 4838 if (error) { 4839 return key_senderror(so, m, error); 4840 } 4841 4842 /* create new SA entry. */ 4843 /* We can create new SA only if SPI is differenct. */ 4844 if (key_getsavbyspi(newsah, sa0->sadb_sa_spi)) { 4845 ipseclog((LOG_DEBUG, "key_add: SA already exists.\n")); 4846 return key_senderror(so, m, EEXIST); 4847 } 4848 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 4849 if (newsav == NULL) { 4850 return key_senderror(so, m, error); 4851 } 4852 4853 /* check SA values to be mature. */ 4854 if ((error = key_mature(newsav)) != 0) { 4855 KEY_FREESAV(&newsav); 4856 return key_senderror(so, m, error); 4857 } 4858 4859 /* 4860 * don't call key_freesav() here, as we would like to keep the SA 4861 * in the database on success. 4862 */ 4863 4864 { 4865 struct mbuf *n; 4866 4867 /* set msg buf from mhp */ 4868 n = key_getmsgbuf_x1(m, mhp); 4869 if (n == NULL) { 4870 ipseclog((LOG_DEBUG, "key_update: No more memory.\n")); 4871 return key_senderror(so, m, ENOBUFS); 4872 } 4873 4874 m_freem(m); 4875 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 4876 } 4877 } 4878 4879 /* m is retained */ 4880 static int 4881 key_setident(sah, m, mhp) 4882 struct secashead *sah; 4883 struct mbuf *m; 4884 const struct sadb_msghdr *mhp; 4885 { 4886 const struct sadb_ident *idsrc, *iddst; 4887 int idsrclen, iddstlen; 4888 4889 /* sanity check */ 4890 if (sah == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 4891 panic("key_setident: NULL pointer is passed.\n"); 4892 4893 /* don't make buffer if not there */ 4894 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL && 4895 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 4896 sah->idents = NULL; 4897 sah->identd = NULL; 4898 return 0; 4899 } 4900 4901 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL || 4902 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 4903 ipseclog((LOG_DEBUG, "key_setident: invalid identity.\n")); 4904 return EINVAL; 4905 } 4906 4907 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC]; 4908 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST]; 4909 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC]; 4910 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST]; 4911 4912 /* validity check */ 4913 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { 4914 ipseclog((LOG_DEBUG, "key_setident: ident type mismatch.\n")); 4915 return EINVAL; 4916 } 4917 4918 switch (idsrc->sadb_ident_type) { 4919 case SADB_IDENTTYPE_PREFIX: 4920 case SADB_IDENTTYPE_FQDN: 4921 case SADB_IDENTTYPE_USERFQDN: 4922 default: 4923 /* XXX do nothing */ 4924 sah->idents = NULL; 4925 sah->identd = NULL; 4926 return 0; 4927 } 4928 4929 /* make structure */ 4930 sah->idents = malloc(idsrclen, M_IPSEC_MISC, M_NOWAIT); 4931 if (sah->idents == NULL) { 4932 ipseclog((LOG_DEBUG, "key_setident: No more memory.\n")); 4933 return ENOBUFS; 4934 } 4935 sah->identd = malloc(iddstlen, M_IPSEC_MISC, M_NOWAIT); 4936 if (sah->identd == NULL) { 4937 free(sah->idents, M_IPSEC_MISC); 4938 sah->idents = NULL; 4939 ipseclog((LOG_DEBUG, "key_setident: No more memory.\n")); 4940 return ENOBUFS; 4941 } 4942 bcopy(idsrc, sah->idents, idsrclen); 4943 bcopy(iddst, sah->identd, iddstlen); 4944 4945 return 0; 4946 } 4947 4948 /* 4949 * m will not be freed on return. 4950 * it is caller's responsibility to free the result. 4951 */ 4952 static struct mbuf * 4953 key_getmsgbuf_x1(m, mhp) 4954 struct mbuf *m; 4955 const struct sadb_msghdr *mhp; 4956 { 4957 struct mbuf *n; 4958 4959 /* sanity check */ 4960 if (m == NULL || mhp == NULL || mhp->msg == NULL) 4961 panic("key_getmsgbuf_x1: NULL pointer is passed.\n"); 4962 4963 /* create new sadb_msg to reply. */ 4964 n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED, 4965 SADB_EXT_SA, SADB_X_EXT_SA2, 4966 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, 4967 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 4968 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST); 4969 if (!n) 4970 return NULL; 4971 4972 if (n->m_len < sizeof(struct sadb_msg)) { 4973 n = m_pullup(n, sizeof(struct sadb_msg)); 4974 if (n == NULL) 4975 return NULL; 4976 } 4977 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; 4978 mtod(n, struct sadb_msg *)->sadb_msg_len = 4979 PFKEY_UNIT64(n->m_pkthdr.len); 4980 4981 return n; 4982 } 4983 4984 static int key_delete_all __P((struct socket *, struct mbuf *, 4985 const struct sadb_msghdr *, u_int16_t)); 4986 4987 /* 4988 * SADB_DELETE processing 4989 * receive 4990 * <base, SA(*), address(SD)> 4991 * from the ikmpd, and set SADB_SASTATE_DEAD, 4992 * and send, 4993 * <base, SA(*), address(SD)> 4994 * to the ikmpd. 4995 * 4996 * m will always be freed. 4997 */ 4998 static int 4999 key_delete(so, m, mhp) 5000 struct socket *so; 5001 struct mbuf *m; 5002 const struct sadb_msghdr *mhp; 5003 { 5004 struct sadb_sa *sa0; 5005 struct sadb_address *src0, *dst0; 5006 struct secasindex saidx; 5007 struct secashead *sah; 5008 struct secasvar *sav = NULL; 5009 u_int16_t proto; 5010 5011 /* sanity check */ 5012 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 5013 panic("key_delete: NULL pointer is passed.\n"); 5014 5015 /* map satype to proto */ 5016 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5017 ipseclog((LOG_DEBUG, "key_delete: invalid satype is passed.\n")); 5018 return key_senderror(so, m, EINVAL); 5019 } 5020 5021 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5022 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5023 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n")); 5024 return key_senderror(so, m, EINVAL); 5025 } 5026 5027 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5028 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5029 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n")); 5030 return key_senderror(so, m, EINVAL); 5031 } 5032 5033 if (mhp->ext[SADB_EXT_SA] == NULL) { 5034 /* 5035 * Caller wants us to delete all non-LARVAL SAs 5036 * that match the src/dst. This is used during 5037 * IKE INITIAL-CONTACT. 5038 */ 5039 ipseclog((LOG_DEBUG, "key_delete: doing delete all.\n")); 5040 return key_delete_all(so, m, mhp, proto); 5041 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { 5042 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n")); 5043 return key_senderror(so, m, EINVAL); 5044 } 5045 5046 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5047 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5048 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5049 5050 /* XXX boundary check against sa_len */ 5051 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5052 5053 /* get a SA header */ 5054 mtx_lock(&sahtree_lock); 5055 LIST_FOREACH(sah, &sahtree, chain) { 5056 if (sah->state == SADB_SASTATE_DEAD) 5057 continue; 5058 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5059 continue; 5060 5061 /* get a SA with SPI. */ 5062 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5063 if (sav) 5064 break; 5065 } 5066 if (sah == NULL) { 5067 mtx_unlock(&sahtree_lock); 5068 ipseclog((LOG_DEBUG, "key_delete: no SA found.\n")); 5069 return key_senderror(so, m, ENOENT); 5070 } 5071 5072 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5073 mtx_unlock(&sahtree_lock); 5074 KEY_FREESAV(&sav); 5075 5076 { 5077 struct mbuf *n; 5078 struct sadb_msg *newmsg; 5079 5080 /* create new sadb_msg to reply. */ 5081 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 5082 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5083 if (!n) 5084 return key_senderror(so, m, ENOBUFS); 5085 5086 if (n->m_len < sizeof(struct sadb_msg)) { 5087 n = m_pullup(n, sizeof(struct sadb_msg)); 5088 if (n == NULL) 5089 return key_senderror(so, m, ENOBUFS); 5090 } 5091 newmsg = mtod(n, struct sadb_msg *); 5092 newmsg->sadb_msg_errno = 0; 5093 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5094 5095 m_freem(m); 5096 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5097 } 5098 } 5099 5100 /* 5101 * delete all SAs for src/dst. Called from key_delete(). 5102 */ 5103 static int 5104 key_delete_all(so, m, mhp, proto) 5105 struct socket *so; 5106 struct mbuf *m; 5107 const struct sadb_msghdr *mhp; 5108 u_int16_t proto; 5109 { 5110 struct sadb_address *src0, *dst0; 5111 struct secasindex saidx; 5112 struct secashead *sah; 5113 struct secasvar *sav, *nextsav; 5114 u_int stateidx, state; 5115 5116 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5117 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5118 5119 /* XXX boundary check against sa_len */ 5120 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5121 5122 mtx_lock(&sahtree_lock); 5123 LIST_FOREACH(sah, &sahtree, chain) { 5124 if (sah->state == SADB_SASTATE_DEAD) 5125 continue; 5126 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5127 continue; 5128 5129 /* Delete all non-LARVAL SAs. */ 5130 for (stateidx = 0; 5131 stateidx < _ARRAYLEN(saorder_state_alive); 5132 stateidx++) { 5133 state = saorder_state_alive[stateidx]; 5134 if (state == SADB_SASTATE_LARVAL) 5135 continue; 5136 for (sav = LIST_FIRST(&sah->savtree[state]); 5137 sav != NULL; sav = nextsav) { 5138 nextsav = LIST_NEXT(sav, chain); 5139 /* sanity check */ 5140 if (sav->state != state) { 5141 ipseclog((LOG_DEBUG, "key_delete_all: " 5142 "invalid sav->state " 5143 "(queue: %d SA: %d)\n", 5144 state, sav->state)); 5145 continue; 5146 } 5147 5148 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5149 KEY_FREESAV(&sav); 5150 } 5151 } 5152 } 5153 mtx_unlock(&sahtree_lock); 5154 { 5155 struct mbuf *n; 5156 struct sadb_msg *newmsg; 5157 5158 /* create new sadb_msg to reply. */ 5159 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, 5160 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5161 if (!n) 5162 return key_senderror(so, m, ENOBUFS); 5163 5164 if (n->m_len < sizeof(struct sadb_msg)) { 5165 n = m_pullup(n, sizeof(struct sadb_msg)); 5166 if (n == NULL) 5167 return key_senderror(so, m, ENOBUFS); 5168 } 5169 newmsg = mtod(n, struct sadb_msg *); 5170 newmsg->sadb_msg_errno = 0; 5171 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5172 5173 m_freem(m); 5174 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5175 } 5176 } 5177 5178 /* 5179 * SADB_GET processing 5180 * receive 5181 * <base, SA(*), address(SD)> 5182 * from the ikmpd, and get a SP and a SA to respond, 5183 * and send, 5184 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), 5185 * (identity(SD),) (sensitivity)> 5186 * to the ikmpd. 5187 * 5188 * m will always be freed. 5189 */ 5190 static int 5191 key_get(so, m, mhp) 5192 struct socket *so; 5193 struct mbuf *m; 5194 const struct sadb_msghdr *mhp; 5195 { 5196 struct sadb_sa *sa0; 5197 struct sadb_address *src0, *dst0; 5198 struct secasindex saidx; 5199 struct secashead *sah; 5200 struct secasvar *sav = NULL; 5201 u_int16_t proto; 5202 5203 /* sanity check */ 5204 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 5205 panic("key_get: NULL pointer is passed.\n"); 5206 5207 /* map satype to proto */ 5208 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5209 ipseclog((LOG_DEBUG, "key_get: invalid satype is passed.\n")); 5210 return key_senderror(so, m, EINVAL); 5211 } 5212 5213 if (mhp->ext[SADB_EXT_SA] == NULL || 5214 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5215 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5216 ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n")); 5217 return key_senderror(so, m, EINVAL); 5218 } 5219 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5220 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5221 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5222 ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n")); 5223 return key_senderror(so, m, EINVAL); 5224 } 5225 5226 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5227 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5228 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5229 5230 /* XXX boundary check against sa_len */ 5231 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5232 5233 /* get a SA header */ 5234 mtx_lock(&sahtree_lock); 5235 LIST_FOREACH(sah, &sahtree, chain) { 5236 if (sah->state == SADB_SASTATE_DEAD) 5237 continue; 5238 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5239 continue; 5240 5241 /* get a SA with SPI. */ 5242 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5243 if (sav) 5244 break; 5245 } 5246 mtx_unlock(&sahtree_lock); 5247 if (sah == NULL) { 5248 ipseclog((LOG_DEBUG, "key_get: no SA found.\n")); 5249 return key_senderror(so, m, ENOENT); 5250 } 5251 5252 { 5253 struct mbuf *n; 5254 u_int8_t satype; 5255 5256 /* map proto to satype */ 5257 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 5258 ipseclog((LOG_DEBUG, "key_get: there was invalid proto in SAD.\n")); 5259 return key_senderror(so, m, EINVAL); 5260 } 5261 5262 /* create new sadb_msg to reply. */ 5263 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, 5264 mhp->msg->sadb_msg_pid); 5265 if (!n) 5266 return key_senderror(so, m, ENOBUFS); 5267 5268 m_freem(m); 5269 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5270 } 5271 } 5272 5273 /* XXX make it sysctl-configurable? */ 5274 static void 5275 key_getcomb_setlifetime(comb) 5276 struct sadb_comb *comb; 5277 { 5278 5279 comb->sadb_comb_soft_allocations = 1; 5280 comb->sadb_comb_hard_allocations = 1; 5281 comb->sadb_comb_soft_bytes = 0; 5282 comb->sadb_comb_hard_bytes = 0; 5283 comb->sadb_comb_hard_addtime = 86400; /* 1 day */ 5284 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100; 5285 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */ 5286 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100; 5287 } 5288 5289 /* 5290 * XXX reorder combinations by preference 5291 * XXX no idea if the user wants ESP authentication or not 5292 */ 5293 static struct mbuf * 5294 key_getcomb_esp() 5295 { 5296 struct sadb_comb *comb; 5297 struct enc_xform *algo; 5298 struct mbuf *result = NULL, *m, *n; 5299 int encmin; 5300 int i, off, o; 5301 int totlen; 5302 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5303 5304 m = NULL; 5305 for (i = 1; i <= SADB_EALG_MAX; i++) { 5306 algo = esp_algorithm_lookup(i); 5307 if (algo == NULL) 5308 continue; 5309 5310 /* discard algorithms with key size smaller than system min */ 5311 if (_BITS(algo->maxkey) < ipsec_esp_keymin) 5312 continue; 5313 if (_BITS(algo->minkey) < ipsec_esp_keymin) 5314 encmin = ipsec_esp_keymin; 5315 else 5316 encmin = _BITS(algo->minkey); 5317 5318 if (ipsec_esp_auth) 5319 m = key_getcomb_ah(); 5320 else { 5321 KASSERT(l <= MLEN, 5322 ("key_getcomb_esp: l=%u > MLEN=%lu", 5323 l, (u_long) MLEN)); 5324 MGET(m, M_DONTWAIT, MT_DATA); 5325 if (m) { 5326 M_ALIGN(m, l); 5327 m->m_len = l; 5328 m->m_next = NULL; 5329 bzero(mtod(m, caddr_t), m->m_len); 5330 } 5331 } 5332 if (!m) 5333 goto fail; 5334 5335 totlen = 0; 5336 for (n = m; n; n = n->m_next) 5337 totlen += n->m_len; 5338 KASSERT((totlen % l) == 0, 5339 ("key_getcomb_esp: totlen=%u, l=%u", totlen, l)); 5340 5341 for (off = 0; off < totlen; off += l) { 5342 n = m_pulldown(m, off, l, &o); 5343 if (!n) { 5344 /* m is already freed */ 5345 goto fail; 5346 } 5347 comb = (struct sadb_comb *)(mtod(n, caddr_t) + o); 5348 bzero(comb, sizeof(*comb)); 5349 key_getcomb_setlifetime(comb); 5350 comb->sadb_comb_encrypt = i; 5351 comb->sadb_comb_encrypt_minbits = encmin; 5352 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); 5353 } 5354 5355 if (!result) 5356 result = m; 5357 else 5358 m_cat(result, m); 5359 } 5360 5361 return result; 5362 5363 fail: 5364 if (result) 5365 m_freem(result); 5366 return NULL; 5367 } 5368 5369 static void 5370 key_getsizes_ah( 5371 const struct auth_hash *ah, 5372 int alg, 5373 u_int16_t* min, 5374 u_int16_t* max) 5375 { 5376 *min = *max = ah->keysize; 5377 if (ah->keysize == 0) { 5378 /* 5379 * Transform takes arbitrary key size but algorithm 5380 * key size is restricted. Enforce this here. 5381 */ 5382 switch (alg) { 5383 case SADB_X_AALG_MD5: *min = *max = 16; break; 5384 case SADB_X_AALG_SHA: *min = *max = 20; break; 5385 case SADB_X_AALG_NULL: *min = 1; *max = 256; break; 5386 default: 5387 DPRINTF(("key_getsizes_ah: unknown AH algorithm %u\n", 5388 alg)); 5389 break; 5390 } 5391 } 5392 } 5393 5394 /* 5395 * XXX reorder combinations by preference 5396 */ 5397 static struct mbuf * 5398 key_getcomb_ah() 5399 { 5400 struct sadb_comb *comb; 5401 struct auth_hash *algo; 5402 struct mbuf *m; 5403 u_int16_t minkeysize, maxkeysize; 5404 int i; 5405 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5406 5407 m = NULL; 5408 for (i = 1; i <= SADB_AALG_MAX; i++) { 5409 #if 1 5410 /* we prefer HMAC algorithms, not old algorithms */ 5411 if (i != SADB_AALG_SHA1HMAC && i != SADB_AALG_MD5HMAC) 5412 continue; 5413 #endif 5414 algo = ah_algorithm_lookup(i); 5415 if (!algo) 5416 continue; 5417 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); 5418 /* discard algorithms with key size smaller than system min */ 5419 if (_BITS(minkeysize) < ipsec_ah_keymin) 5420 continue; 5421 5422 if (!m) { 5423 KASSERT(l <= MLEN, 5424 ("key_getcomb_ah: l=%u > MLEN=%lu", 5425 l, (u_long) MLEN)); 5426 MGET(m, M_DONTWAIT, MT_DATA); 5427 if (m) { 5428 M_ALIGN(m, l); 5429 m->m_len = l; 5430 m->m_next = NULL; 5431 } 5432 } else 5433 M_PREPEND(m, l, M_DONTWAIT); 5434 if (!m) 5435 return NULL; 5436 5437 comb = mtod(m, struct sadb_comb *); 5438 bzero(comb, sizeof(*comb)); 5439 key_getcomb_setlifetime(comb); 5440 comb->sadb_comb_auth = i; 5441 comb->sadb_comb_auth_minbits = _BITS(minkeysize); 5442 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); 5443 } 5444 5445 return m; 5446 } 5447 5448 /* 5449 * not really an official behavior. discussed in pf_key@inner.net in Sep2000. 5450 * XXX reorder combinations by preference 5451 */ 5452 static struct mbuf * 5453 key_getcomb_ipcomp() 5454 { 5455 struct sadb_comb *comb; 5456 struct comp_algo *algo; 5457 struct mbuf *m; 5458 int i; 5459 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5460 5461 m = NULL; 5462 for (i = 1; i <= SADB_X_CALG_MAX; i++) { 5463 algo = ipcomp_algorithm_lookup(i); 5464 if (!algo) 5465 continue; 5466 5467 if (!m) { 5468 KASSERT(l <= MLEN, 5469 ("key_getcomb_ipcomp: l=%u > MLEN=%lu", 5470 l, (u_long) MLEN)); 5471 MGET(m, M_DONTWAIT, MT_DATA); 5472 if (m) { 5473 M_ALIGN(m, l); 5474 m->m_len = l; 5475 m->m_next = NULL; 5476 } 5477 } else 5478 M_PREPEND(m, l, M_DONTWAIT); 5479 if (!m) 5480 return NULL; 5481 5482 comb = mtod(m, struct sadb_comb *); 5483 bzero(comb, sizeof(*comb)); 5484 key_getcomb_setlifetime(comb); 5485 comb->sadb_comb_encrypt = i; 5486 /* what should we set into sadb_comb_*_{min,max}bits? */ 5487 } 5488 5489 return m; 5490 } 5491 5492 /* 5493 * XXX no way to pass mode (transport/tunnel) to userland 5494 * XXX replay checking? 5495 * XXX sysctl interface to ipsec_{ah,esp}_keymin 5496 */ 5497 static struct mbuf * 5498 key_getprop(saidx) 5499 const struct secasindex *saidx; 5500 { 5501 struct sadb_prop *prop; 5502 struct mbuf *m, *n; 5503 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); 5504 int totlen; 5505 5506 switch (saidx->proto) { 5507 case IPPROTO_ESP: 5508 m = key_getcomb_esp(); 5509 break; 5510 case IPPROTO_AH: 5511 m = key_getcomb_ah(); 5512 break; 5513 case IPPROTO_IPCOMP: 5514 m = key_getcomb_ipcomp(); 5515 break; 5516 default: 5517 return NULL; 5518 } 5519 5520 if (!m) 5521 return NULL; 5522 M_PREPEND(m, l, M_DONTWAIT); 5523 if (!m) 5524 return NULL; 5525 5526 totlen = 0; 5527 for (n = m; n; n = n->m_next) 5528 totlen += n->m_len; 5529 5530 prop = mtod(m, struct sadb_prop *); 5531 bzero(prop, sizeof(*prop)); 5532 prop->sadb_prop_len = PFKEY_UNIT64(totlen); 5533 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 5534 prop->sadb_prop_replay = 32; /* XXX */ 5535 5536 return m; 5537 } 5538 5539 /* 5540 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2(). 5541 * send 5542 * <base, SA, address(SD), (address(P)), x_policy, 5543 * (identity(SD),) (sensitivity,) proposal> 5544 * to KMD, and expect to receive 5545 * <base> with SADB_ACQUIRE if error occured, 5546 * or 5547 * <base, src address, dst address, (SPI range)> with SADB_GETSPI 5548 * from KMD by PF_KEY. 5549 * 5550 * XXX x_policy is outside of RFC2367 (KAME extension). 5551 * XXX sensitivity is not supported. 5552 * XXX for ipcomp, RFC2367 does not define how to fill in proposal. 5553 * see comment for key_getcomb_ipcomp(). 5554 * 5555 * OUT: 5556 * 0 : succeed 5557 * others: error number 5558 */ 5559 static int 5560 key_acquire(const struct secasindex *saidx, struct secpolicy *sp) 5561 { 5562 struct mbuf *result = NULL, *m; 5563 struct secacq *newacq; 5564 u_int8_t satype; 5565 int error = -1; 5566 u_int32_t seq; 5567 5568 /* sanity check */ 5569 KASSERT(saidx != NULL, ("key_acquire: null saidx")); 5570 satype = key_proto2satype(saidx->proto); 5571 KASSERT(satype != 0, 5572 ("key_acquire: null satype, protocol %u", saidx->proto)); 5573 5574 /* 5575 * We never do anything about acquirng SA. There is anather 5576 * solution that kernel blocks to send SADB_ACQUIRE message until 5577 * getting something message from IKEd. In later case, to be 5578 * managed with ACQUIRING list. 5579 */ 5580 /* Get an entry to check whether sending message or not. */ 5581 if ((newacq = key_getacq(saidx)) != NULL) { 5582 if (key_blockacq_count < newacq->count) { 5583 /* reset counter and do send message. */ 5584 newacq->count = 0; 5585 } else { 5586 /* increment counter and do nothing. */ 5587 newacq->count++; 5588 return 0; 5589 } 5590 } else { 5591 /* make new entry for blocking to send SADB_ACQUIRE. */ 5592 if ((newacq = key_newacq(saidx)) == NULL) 5593 return ENOBUFS; 5594 } 5595 5596 5597 seq = newacq->seq; 5598 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0); 5599 if (!m) { 5600 error = ENOBUFS; 5601 goto fail; 5602 } 5603 result = m; 5604 5605 /* set sadb_address for saidx's. */ 5606 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 5607 &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY); 5608 if (!m) { 5609 error = ENOBUFS; 5610 goto fail; 5611 } 5612 m_cat(result, m); 5613 5614 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 5615 &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY); 5616 if (!m) { 5617 error = ENOBUFS; 5618 goto fail; 5619 } 5620 m_cat(result, m); 5621 5622 /* XXX proxy address (optional) */ 5623 5624 /* set sadb_x_policy */ 5625 if (sp) { 5626 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id); 5627 if (!m) { 5628 error = ENOBUFS; 5629 goto fail; 5630 } 5631 m_cat(result, m); 5632 } 5633 5634 /* XXX identity (optional) */ 5635 #if 0 5636 if (idexttype && fqdn) { 5637 /* create identity extension (FQDN) */ 5638 struct sadb_ident *id; 5639 int fqdnlen; 5640 5641 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ 5642 id = (struct sadb_ident *)p; 5643 bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 5644 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 5645 id->sadb_ident_exttype = idexttype; 5646 id->sadb_ident_type = SADB_IDENTTYPE_FQDN; 5647 bcopy(fqdn, id + 1, fqdnlen); 5648 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); 5649 } 5650 5651 if (idexttype) { 5652 /* create identity extension (USERFQDN) */ 5653 struct sadb_ident *id; 5654 int userfqdnlen; 5655 5656 if (userfqdn) { 5657 /* +1 for terminating-NUL */ 5658 userfqdnlen = strlen(userfqdn) + 1; 5659 } else 5660 userfqdnlen = 0; 5661 id = (struct sadb_ident *)p; 5662 bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 5663 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 5664 id->sadb_ident_exttype = idexttype; 5665 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; 5666 /* XXX is it correct? */ 5667 if (curproc && curproc->p_cred) 5668 id->sadb_ident_id = curproc->p_cred->p_ruid; 5669 if (userfqdn && userfqdnlen) 5670 bcopy(userfqdn, id + 1, userfqdnlen); 5671 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); 5672 } 5673 #endif 5674 5675 /* XXX sensitivity (optional) */ 5676 5677 /* create proposal/combination extension */ 5678 m = key_getprop(saidx); 5679 #if 0 5680 /* 5681 * spec conformant: always attach proposal/combination extension, 5682 * the problem is that we have no way to attach it for ipcomp, 5683 * due to the way sadb_comb is declared in RFC2367. 5684 */ 5685 if (!m) { 5686 error = ENOBUFS; 5687 goto fail; 5688 } 5689 m_cat(result, m); 5690 #else 5691 /* 5692 * outside of spec; make proposal/combination extension optional. 5693 */ 5694 if (m) 5695 m_cat(result, m); 5696 #endif 5697 5698 if ((result->m_flags & M_PKTHDR) == 0) { 5699 error = EINVAL; 5700 goto fail; 5701 } 5702 5703 if (result->m_len < sizeof(struct sadb_msg)) { 5704 result = m_pullup(result, sizeof(struct sadb_msg)); 5705 if (result == NULL) { 5706 error = ENOBUFS; 5707 goto fail; 5708 } 5709 } 5710 5711 result->m_pkthdr.len = 0; 5712 for (m = result; m; m = m->m_next) 5713 result->m_pkthdr.len += m->m_len; 5714 5715 mtod(result, struct sadb_msg *)->sadb_msg_len = 5716 PFKEY_UNIT64(result->m_pkthdr.len); 5717 5718 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 5719 5720 fail: 5721 if (result) 5722 m_freem(result); 5723 return error; 5724 } 5725 5726 static struct secacq * 5727 key_newacq(const struct secasindex *saidx) 5728 { 5729 struct secacq *newacq; 5730 5731 /* get new entry */ 5732 newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 5733 if (newacq == NULL) { 5734 ipseclog((LOG_DEBUG, "key_newacq: No more memory.\n")); 5735 return NULL; 5736 } 5737 5738 /* copy secindex */ 5739 bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx)); 5740 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq); 5741 newacq->created = time_second; 5742 newacq->count = 0; 5743 5744 /* add to acqtree */ 5745 mtx_lock(&acq_lock); 5746 LIST_INSERT_HEAD(&acqtree, newacq, chain); 5747 mtx_unlock(&acq_lock); 5748 5749 return newacq; 5750 } 5751 5752 static struct secacq * 5753 key_getacq(const struct secasindex *saidx) 5754 { 5755 struct secacq *acq; 5756 5757 mtx_lock(&acq_lock); 5758 LIST_FOREACH(acq, &acqtree, chain) { 5759 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY)) 5760 break; 5761 } 5762 mtx_unlock(&acq_lock); 5763 5764 return acq; 5765 } 5766 5767 static struct secacq * 5768 key_getacqbyseq(seq) 5769 u_int32_t seq; 5770 { 5771 struct secacq *acq; 5772 5773 mtx_lock(&acq_lock); 5774 LIST_FOREACH(acq, &acqtree, chain) { 5775 if (acq->seq == seq) 5776 break; 5777 } 5778 mtx_unlock(&acq_lock); 5779 5780 return acq; 5781 } 5782 5783 static struct secspacq * 5784 key_newspacq(spidx) 5785 struct secpolicyindex *spidx; 5786 { 5787 struct secspacq *acq; 5788 5789 /* get new entry */ 5790 acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 5791 if (acq == NULL) { 5792 ipseclog((LOG_DEBUG, "key_newspacq: No more memory.\n")); 5793 return NULL; 5794 } 5795 5796 /* copy secindex */ 5797 bcopy(spidx, &acq->spidx, sizeof(acq->spidx)); 5798 acq->created = time_second; 5799 acq->count = 0; 5800 5801 /* add to spacqtree */ 5802 mtx_lock(&spacq_lock); 5803 LIST_INSERT_HEAD(&spacqtree, acq, chain); 5804 mtx_unlock(&spacq_lock); 5805 5806 return acq; 5807 } 5808 5809 static struct secspacq * 5810 key_getspacq(spidx) 5811 struct secpolicyindex *spidx; 5812 { 5813 struct secspacq *acq; 5814 5815 mtx_lock(&spacq_lock); 5816 LIST_FOREACH(acq, &spacqtree, chain) { 5817 if (key_cmpspidx_exactly(spidx, &acq->spidx)) { 5818 /* NB: return holding spacq_lock */ 5819 return acq; 5820 } 5821 } 5822 mtx_unlock(&spacq_lock); 5823 5824 return NULL; 5825 } 5826 5827 /* 5828 * SADB_ACQUIRE processing, 5829 * in first situation, is receiving 5830 * <base> 5831 * from the ikmpd, and clear sequence of its secasvar entry. 5832 * 5833 * In second situation, is receiving 5834 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 5835 * from a user land process, and return 5836 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 5837 * to the socket. 5838 * 5839 * m will always be freed. 5840 */ 5841 static int 5842 key_acquire2(so, m, mhp) 5843 struct socket *so; 5844 struct mbuf *m; 5845 const struct sadb_msghdr *mhp; 5846 { 5847 const struct sadb_address *src0, *dst0; 5848 struct secasindex saidx; 5849 struct secashead *sah; 5850 u_int16_t proto; 5851 int error; 5852 5853 /* sanity check */ 5854 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 5855 panic("key_acquire2: NULL pointer is passed.\n"); 5856 5857 /* 5858 * Error message from KMd. 5859 * We assume that if error was occured in IKEd, the length of PFKEY 5860 * message is equal to the size of sadb_msg structure. 5861 * We do not raise error even if error occured in this function. 5862 */ 5863 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { 5864 struct secacq *acq; 5865 5866 /* check sequence number */ 5867 if (mhp->msg->sadb_msg_seq == 0) { 5868 ipseclog((LOG_DEBUG, "key_acquire2: must specify sequence number.\n")); 5869 m_freem(m); 5870 return 0; 5871 } 5872 5873 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) { 5874 /* 5875 * the specified larval SA is already gone, or we got 5876 * a bogus sequence number. we can silently ignore it. 5877 */ 5878 m_freem(m); 5879 return 0; 5880 } 5881 5882 /* reset acq counter in order to deletion by timehander. */ 5883 acq->created = time_second; 5884 acq->count = 0; 5885 m_freem(m); 5886 return 0; 5887 } 5888 5889 /* 5890 * This message is from user land. 5891 */ 5892 5893 /* map satype to proto */ 5894 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5895 ipseclog((LOG_DEBUG, "key_acquire2: invalid satype is passed.\n")); 5896 return key_senderror(so, m, EINVAL); 5897 } 5898 5899 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5900 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5901 mhp->ext[SADB_EXT_PROPOSAL] == NULL) { 5902 /* error */ 5903 ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n")); 5904 return key_senderror(so, m, EINVAL); 5905 } 5906 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5907 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 5908 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { 5909 /* error */ 5910 ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n")); 5911 return key_senderror(so, m, EINVAL); 5912 } 5913 5914 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5915 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5916 5917 /* XXX boundary check against sa_len */ 5918 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5919 5920 /* get a SA index */ 5921 mtx_lock(&sahtree_lock); 5922 LIST_FOREACH(sah, &sahtree, chain) { 5923 if (sah->state == SADB_SASTATE_DEAD) 5924 continue; 5925 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID)) 5926 break; 5927 } 5928 mtx_unlock(&sahtree_lock); 5929 if (sah != NULL) { 5930 ipseclog((LOG_DEBUG, "key_acquire2: a SA exists already.\n")); 5931 return key_senderror(so, m, EEXIST); 5932 } 5933 5934 error = key_acquire(&saidx, NULL); 5935 if (error != 0) { 5936 ipseclog((LOG_DEBUG, "key_acquire2: error %d returned " 5937 "from key_acquire.\n", mhp->msg->sadb_msg_errno)); 5938 return key_senderror(so, m, error); 5939 } 5940 5941 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); 5942 } 5943 5944 /* 5945 * SADB_REGISTER processing. 5946 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. 5947 * receive 5948 * <base> 5949 * from the ikmpd, and register a socket to send PF_KEY messages, 5950 * and send 5951 * <base, supported> 5952 * to KMD by PF_KEY. 5953 * If socket is detached, must free from regnode. 5954 * 5955 * m will always be freed. 5956 */ 5957 static int 5958 key_register(so, m, mhp) 5959 struct socket *so; 5960 struct mbuf *m; 5961 const struct sadb_msghdr *mhp; 5962 { 5963 struct secreg *reg, *newreg = 0; 5964 5965 /* sanity check */ 5966 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 5967 panic("key_register: NULL pointer is passed.\n"); 5968 5969 /* check for invalid register message */ 5970 if (mhp->msg->sadb_msg_satype >= sizeof(regtree)/sizeof(regtree[0])) 5971 return key_senderror(so, m, EINVAL); 5972 5973 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ 5974 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) 5975 goto setmsg; 5976 5977 /* check whether existing or not */ 5978 mtx_lock(®tree_lock); 5979 LIST_FOREACH(reg, ®tree[mhp->msg->sadb_msg_satype], chain) { 5980 if (reg->so == so) { 5981 mtx_unlock(®tree_lock); 5982 ipseclog((LOG_DEBUG, "key_register: socket exists already.\n")); 5983 return key_senderror(so, m, EEXIST); 5984 } 5985 } 5986 5987 /* create regnode */ 5988 newreg = malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO); 5989 if (newreg == NULL) { 5990 mtx_unlock(®tree_lock); 5991 ipseclog((LOG_DEBUG, "key_register: No more memory.\n")); 5992 return key_senderror(so, m, ENOBUFS); 5993 } 5994 5995 newreg->so = so; 5996 ((struct keycb *)sotorawcb(so))->kp_registered++; 5997 5998 /* add regnode to regtree. */ 5999 LIST_INSERT_HEAD(®tree[mhp->msg->sadb_msg_satype], newreg, chain); 6000 mtx_unlock(®tree_lock); 6001 6002 setmsg: 6003 { 6004 struct mbuf *n; 6005 struct sadb_msg *newmsg; 6006 struct sadb_supported *sup; 6007 u_int len, alen, elen; 6008 int off; 6009 int i; 6010 struct sadb_alg *alg; 6011 6012 /* create new sadb_msg to reply. */ 6013 alen = 0; 6014 for (i = 1; i <= SADB_AALG_MAX; i++) { 6015 if (ah_algorithm_lookup(i)) 6016 alen += sizeof(struct sadb_alg); 6017 } 6018 if (alen) 6019 alen += sizeof(struct sadb_supported); 6020 elen = 0; 6021 for (i = 1; i <= SADB_EALG_MAX; i++) { 6022 if (esp_algorithm_lookup(i)) 6023 elen += sizeof(struct sadb_alg); 6024 } 6025 if (elen) 6026 elen += sizeof(struct sadb_supported); 6027 6028 len = sizeof(struct sadb_msg) + alen + elen; 6029 6030 if (len > MCLBYTES) 6031 return key_senderror(so, m, ENOBUFS); 6032 6033 MGETHDR(n, M_DONTWAIT, MT_DATA); 6034 if (len > MHLEN) { 6035 MCLGET(n, M_DONTWAIT); 6036 if ((n->m_flags & M_EXT) == 0) { 6037 m_freem(n); 6038 n = NULL; 6039 } 6040 } 6041 if (!n) 6042 return key_senderror(so, m, ENOBUFS); 6043 6044 n->m_pkthdr.len = n->m_len = len; 6045 n->m_next = NULL; 6046 off = 0; 6047 6048 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 6049 newmsg = mtod(n, struct sadb_msg *); 6050 newmsg->sadb_msg_errno = 0; 6051 newmsg->sadb_msg_len = PFKEY_UNIT64(len); 6052 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 6053 6054 /* for authentication algorithm */ 6055 if (alen) { 6056 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6057 sup->sadb_supported_len = PFKEY_UNIT64(alen); 6058 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 6059 off += PFKEY_ALIGN8(sizeof(*sup)); 6060 6061 for (i = 1; i <= SADB_AALG_MAX; i++) { 6062 struct auth_hash *aalgo; 6063 u_int16_t minkeysize, maxkeysize; 6064 6065 aalgo = ah_algorithm_lookup(i); 6066 if (!aalgo) 6067 continue; 6068 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6069 alg->sadb_alg_id = i; 6070 alg->sadb_alg_ivlen = 0; 6071 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); 6072 alg->sadb_alg_minbits = _BITS(minkeysize); 6073 alg->sadb_alg_maxbits = _BITS(maxkeysize); 6074 off += PFKEY_ALIGN8(sizeof(*alg)); 6075 } 6076 } 6077 6078 /* for encryption algorithm */ 6079 if (elen) { 6080 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6081 sup->sadb_supported_len = PFKEY_UNIT64(elen); 6082 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 6083 off += PFKEY_ALIGN8(sizeof(*sup)); 6084 6085 for (i = 1; i <= SADB_EALG_MAX; i++) { 6086 struct enc_xform *ealgo; 6087 6088 ealgo = esp_algorithm_lookup(i); 6089 if (!ealgo) 6090 continue; 6091 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6092 alg->sadb_alg_id = i; 6093 alg->sadb_alg_ivlen = ealgo->blocksize; 6094 alg->sadb_alg_minbits = _BITS(ealgo->minkey); 6095 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); 6096 off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); 6097 } 6098 } 6099 6100 #ifdef DIGAGNOSTIC 6101 if (off != len) 6102 panic("length assumption failed in key_register"); 6103 #endif 6104 6105 m_freem(m); 6106 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); 6107 } 6108 } 6109 6110 /* 6111 * free secreg entry registered. 6112 * XXX: I want to do free a socket marked done SADB_RESIGER to socket. 6113 */ 6114 void 6115 key_freereg(struct socket *so) 6116 { 6117 struct secreg *reg; 6118 int i; 6119 6120 /* sanity check */ 6121 KASSERT(so != NULL, ("key_freereg: NULL so")); 6122 6123 /* 6124 * check whether existing or not. 6125 * check all type of SA, because there is a potential that 6126 * one socket is registered to multiple type of SA. 6127 */ 6128 mtx_lock(®tree_lock); 6129 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 6130 LIST_FOREACH(reg, ®tree[i], chain) { 6131 if (reg->so == so && __LIST_CHAINED(reg)) { 6132 LIST_REMOVE(reg, chain); 6133 free(reg, M_IPSEC_SAR); 6134 break; 6135 } 6136 } 6137 } 6138 mtx_unlock(®tree_lock); 6139 } 6140 6141 /* 6142 * SADB_EXPIRE processing 6143 * send 6144 * <base, SA, SA2, lifetime(C and one of HS), address(SD)> 6145 * to KMD by PF_KEY. 6146 * NOTE: We send only soft lifetime extension. 6147 * 6148 * OUT: 0 : succeed 6149 * others : error number 6150 */ 6151 static int 6152 key_expire(struct secasvar *sav) 6153 { 6154 int s; 6155 int satype; 6156 struct mbuf *result = NULL, *m; 6157 int len; 6158 int error = -1; 6159 struct sadb_lifetime *lt; 6160 6161 /* XXX: Why do we lock ? */ 6162 s = splnet(); /*called from softclock()*/ 6163 6164 /* sanity check */ 6165 if (sav == NULL) 6166 panic("key_expire: NULL pointer is passed.\n"); 6167 if (sav->sah == NULL) 6168 panic("key_expire: Why was SA index in SA NULL.\n"); 6169 if ((satype = key_proto2satype(sav->sah->saidx.proto)) == 0) 6170 panic("key_expire: invalid proto is passed.\n"); 6171 6172 /* set msg header */ 6173 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt); 6174 if (!m) { 6175 error = ENOBUFS; 6176 goto fail; 6177 } 6178 result = m; 6179 6180 /* create SA extension */ 6181 m = key_setsadbsa(sav); 6182 if (!m) { 6183 error = ENOBUFS; 6184 goto fail; 6185 } 6186 m_cat(result, m); 6187 6188 /* create SA extension */ 6189 m = key_setsadbxsa2(sav->sah->saidx.mode, 6190 sav->replay ? sav->replay->count : 0, 6191 sav->sah->saidx.reqid); 6192 if (!m) { 6193 error = ENOBUFS; 6194 goto fail; 6195 } 6196 m_cat(result, m); 6197 6198 /* create lifetime extension (current and soft) */ 6199 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 6200 m = key_alloc_mbuf(len); 6201 if (!m || m->m_next) { /*XXX*/ 6202 if (m) 6203 m_freem(m); 6204 error = ENOBUFS; 6205 goto fail; 6206 } 6207 bzero(mtod(m, caddr_t), len); 6208 lt = mtod(m, struct sadb_lifetime *); 6209 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6210 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 6211 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations; 6212 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes; 6213 lt->sadb_lifetime_addtime = sav->lft_c->sadb_lifetime_addtime; 6214 lt->sadb_lifetime_usetime = sav->lft_c->sadb_lifetime_usetime; 6215 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 6216 bcopy(sav->lft_s, lt, sizeof(*lt)); 6217 m_cat(result, m); 6218 6219 /* set sadb_address for source */ 6220 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 6221 &sav->sah->saidx.src.sa, 6222 FULLMASK, IPSEC_ULPROTO_ANY); 6223 if (!m) { 6224 error = ENOBUFS; 6225 goto fail; 6226 } 6227 m_cat(result, m); 6228 6229 /* set sadb_address for destination */ 6230 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 6231 &sav->sah->saidx.dst.sa, 6232 FULLMASK, IPSEC_ULPROTO_ANY); 6233 if (!m) { 6234 error = ENOBUFS; 6235 goto fail; 6236 } 6237 m_cat(result, m); 6238 6239 if ((result->m_flags & M_PKTHDR) == 0) { 6240 error = EINVAL; 6241 goto fail; 6242 } 6243 6244 if (result->m_len < sizeof(struct sadb_msg)) { 6245 result = m_pullup(result, sizeof(struct sadb_msg)); 6246 if (result == NULL) { 6247 error = ENOBUFS; 6248 goto fail; 6249 } 6250 } 6251 6252 result->m_pkthdr.len = 0; 6253 for (m = result; m; m = m->m_next) 6254 result->m_pkthdr.len += m->m_len; 6255 6256 mtod(result, struct sadb_msg *)->sadb_msg_len = 6257 PFKEY_UNIT64(result->m_pkthdr.len); 6258 6259 splx(s); 6260 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6261 6262 fail: 6263 if (result) 6264 m_freem(result); 6265 splx(s); 6266 return error; 6267 } 6268 6269 /* 6270 * SADB_FLUSH processing 6271 * receive 6272 * <base> 6273 * from the ikmpd, and free all entries in secastree. 6274 * and send, 6275 * <base> 6276 * to the ikmpd. 6277 * NOTE: to do is only marking SADB_SASTATE_DEAD. 6278 * 6279 * m will always be freed. 6280 */ 6281 static int 6282 key_flush(so, m, mhp) 6283 struct socket *so; 6284 struct mbuf *m; 6285 const struct sadb_msghdr *mhp; 6286 { 6287 struct sadb_msg *newmsg; 6288 struct secashead *sah, *nextsah; 6289 struct secasvar *sav, *nextsav; 6290 u_int16_t proto; 6291 u_int8_t state; 6292 u_int stateidx; 6293 6294 /* sanity check */ 6295 if (so == NULL || mhp == NULL || mhp->msg == NULL) 6296 panic("key_flush: NULL pointer is passed.\n"); 6297 6298 /* map satype to proto */ 6299 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6300 ipseclog((LOG_DEBUG, "key_flush: invalid satype is passed.\n")); 6301 return key_senderror(so, m, EINVAL); 6302 } 6303 6304 /* no SATYPE specified, i.e. flushing all SA. */ 6305 mtx_lock(&sahtree_lock); 6306 for (sah = LIST_FIRST(&sahtree); 6307 sah != NULL; 6308 sah = nextsah) { 6309 nextsah = LIST_NEXT(sah, chain); 6310 6311 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 6312 && proto != sah->saidx.proto) 6313 continue; 6314 6315 for (stateidx = 0; 6316 stateidx < _ARRAYLEN(saorder_state_alive); 6317 stateidx++) { 6318 state = saorder_state_any[stateidx]; 6319 for (sav = LIST_FIRST(&sah->savtree[state]); 6320 sav != NULL; 6321 sav = nextsav) { 6322 6323 nextsav = LIST_NEXT(sav, chain); 6324 6325 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 6326 KEY_FREESAV(&sav); 6327 } 6328 } 6329 6330 sah->state = SADB_SASTATE_DEAD; 6331 } 6332 mtx_unlock(&sahtree_lock); 6333 6334 if (m->m_len < sizeof(struct sadb_msg) || 6335 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 6336 ipseclog((LOG_DEBUG, "key_flush: No more memory.\n")); 6337 return key_senderror(so, m, ENOBUFS); 6338 } 6339 6340 if (m->m_next) 6341 m_freem(m->m_next); 6342 m->m_next = NULL; 6343 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); 6344 newmsg = mtod(m, struct sadb_msg *); 6345 newmsg->sadb_msg_errno = 0; 6346 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 6347 6348 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 6349 } 6350 6351 /* 6352 * SADB_DUMP processing 6353 * dump all entries including status of DEAD in SAD. 6354 * receive 6355 * <base> 6356 * from the ikmpd, and dump all secasvar leaves 6357 * and send, 6358 * <base> ..... 6359 * to the ikmpd. 6360 * 6361 * m will always be freed. 6362 */ 6363 static int 6364 key_dump(so, m, mhp) 6365 struct socket *so; 6366 struct mbuf *m; 6367 const struct sadb_msghdr *mhp; 6368 { 6369 struct secashead *sah; 6370 struct secasvar *sav; 6371 u_int16_t proto; 6372 u_int stateidx; 6373 u_int8_t satype; 6374 u_int8_t state; 6375 int cnt; 6376 struct sadb_msg *newmsg; 6377 struct mbuf *n; 6378 6379 /* sanity check */ 6380 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 6381 panic("key_dump: NULL pointer is passed.\n"); 6382 6383 /* map satype to proto */ 6384 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6385 ipseclog((LOG_DEBUG, "key_dump: invalid satype is passed.\n")); 6386 return key_senderror(so, m, EINVAL); 6387 } 6388 6389 /* count sav entries to be sent to the userland. */ 6390 cnt = 0; 6391 mtx_lock(&sahtree_lock); 6392 LIST_FOREACH(sah, &sahtree, chain) { 6393 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 6394 && proto != sah->saidx.proto) 6395 continue; 6396 6397 for (stateidx = 0; 6398 stateidx < _ARRAYLEN(saorder_state_any); 6399 stateidx++) { 6400 state = saorder_state_any[stateidx]; 6401 LIST_FOREACH(sav, &sah->savtree[state], chain) { 6402 cnt++; 6403 } 6404 } 6405 } 6406 6407 if (cnt == 0) { 6408 mtx_unlock(&sahtree_lock); 6409 return key_senderror(so, m, ENOENT); 6410 } 6411 6412 /* send this to the userland, one at a time. */ 6413 newmsg = NULL; 6414 LIST_FOREACH(sah, &sahtree, chain) { 6415 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 6416 && proto != sah->saidx.proto) 6417 continue; 6418 6419 /* map proto to satype */ 6420 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 6421 mtx_unlock(&sahtree_lock); 6422 ipseclog((LOG_DEBUG, "key_dump: there was invalid proto in SAD.\n")); 6423 return key_senderror(so, m, EINVAL); 6424 } 6425 6426 for (stateidx = 0; 6427 stateidx < _ARRAYLEN(saorder_state_any); 6428 stateidx++) { 6429 state = saorder_state_any[stateidx]; 6430 LIST_FOREACH(sav, &sah->savtree[state], chain) { 6431 n = key_setdumpsa(sav, SADB_DUMP, satype, 6432 --cnt, mhp->msg->sadb_msg_pid); 6433 if (!n) { 6434 mtx_unlock(&sahtree_lock); 6435 return key_senderror(so, m, ENOBUFS); 6436 } 6437 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 6438 } 6439 } 6440 } 6441 mtx_unlock(&sahtree_lock); 6442 6443 m_freem(m); 6444 return 0; 6445 } 6446 6447 /* 6448 * SADB_X_PROMISC processing 6449 * 6450 * m will always be freed. 6451 */ 6452 static int 6453 key_promisc(so, m, mhp) 6454 struct socket *so; 6455 struct mbuf *m; 6456 const struct sadb_msghdr *mhp; 6457 { 6458 int olen; 6459 6460 /* sanity check */ 6461 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 6462 panic("key_promisc: NULL pointer is passed.\n"); 6463 6464 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 6465 6466 if (olen < sizeof(struct sadb_msg)) { 6467 #if 1 6468 return key_senderror(so, m, EINVAL); 6469 #else 6470 m_freem(m); 6471 return 0; 6472 #endif 6473 } else if (olen == sizeof(struct sadb_msg)) { 6474 /* enable/disable promisc mode */ 6475 struct keycb *kp; 6476 6477 if ((kp = (struct keycb *)sotorawcb(so)) == NULL) 6478 return key_senderror(so, m, EINVAL); 6479 mhp->msg->sadb_msg_errno = 0; 6480 switch (mhp->msg->sadb_msg_satype) { 6481 case 0: 6482 case 1: 6483 kp->kp_promisc = mhp->msg->sadb_msg_satype; 6484 break; 6485 default: 6486 return key_senderror(so, m, EINVAL); 6487 } 6488 6489 /* send the original message back to everyone */ 6490 mhp->msg->sadb_msg_errno = 0; 6491 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 6492 } else { 6493 /* send packet as is */ 6494 6495 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); 6496 6497 /* TODO: if sadb_msg_seq is specified, send to specific pid */ 6498 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 6499 } 6500 } 6501 6502 static int (*key_typesw[]) __P((struct socket *, struct mbuf *, 6503 const struct sadb_msghdr *)) = { 6504 NULL, /* SADB_RESERVED */ 6505 key_getspi, /* SADB_GETSPI */ 6506 key_update, /* SADB_UPDATE */ 6507 key_add, /* SADB_ADD */ 6508 key_delete, /* SADB_DELETE */ 6509 key_get, /* SADB_GET */ 6510 key_acquire2, /* SADB_ACQUIRE */ 6511 key_register, /* SADB_REGISTER */ 6512 NULL, /* SADB_EXPIRE */ 6513 key_flush, /* SADB_FLUSH */ 6514 key_dump, /* SADB_DUMP */ 6515 key_promisc, /* SADB_X_PROMISC */ 6516 NULL, /* SADB_X_PCHANGE */ 6517 key_spdadd, /* SADB_X_SPDUPDATE */ 6518 key_spdadd, /* SADB_X_SPDADD */ 6519 key_spddelete, /* SADB_X_SPDDELETE */ 6520 key_spdget, /* SADB_X_SPDGET */ 6521 NULL, /* SADB_X_SPDACQUIRE */ 6522 key_spddump, /* SADB_X_SPDDUMP */ 6523 key_spdflush, /* SADB_X_SPDFLUSH */ 6524 key_spdadd, /* SADB_X_SPDSETIDX */ 6525 NULL, /* SADB_X_SPDEXPIRE */ 6526 key_spddelete2, /* SADB_X_SPDDELETE2 */ 6527 }; 6528 6529 /* 6530 * parse sadb_msg buffer to process PFKEYv2, 6531 * and create a data to response if needed. 6532 * I think to be dealed with mbuf directly. 6533 * IN: 6534 * msgp : pointer to pointer to a received buffer pulluped. 6535 * This is rewrited to response. 6536 * so : pointer to socket. 6537 * OUT: 6538 * length for buffer to send to user process. 6539 */ 6540 int 6541 key_parse(m, so) 6542 struct mbuf *m; 6543 struct socket *so; 6544 { 6545 struct sadb_msg *msg; 6546 struct sadb_msghdr mh; 6547 u_int orglen; 6548 int error; 6549 int target; 6550 6551 /* sanity check */ 6552 if (m == NULL || so == NULL) 6553 panic("key_parse: NULL pointer is passed.\n"); 6554 6555 #if 0 /*kdebug_sadb assumes msg in linear buffer*/ 6556 KEYDEBUG(KEYDEBUG_KEY_DUMP, 6557 ipseclog((LOG_DEBUG, "key_parse: passed sadb_msg\n")); 6558 kdebug_sadb(msg)); 6559 #endif 6560 6561 if (m->m_len < sizeof(struct sadb_msg)) { 6562 m = m_pullup(m, sizeof(struct sadb_msg)); 6563 if (!m) 6564 return ENOBUFS; 6565 } 6566 msg = mtod(m, struct sadb_msg *); 6567 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); 6568 target = KEY_SENDUP_ONE; 6569 6570 if ((m->m_flags & M_PKTHDR) == 0 || 6571 m->m_pkthdr.len != m->m_pkthdr.len) { 6572 ipseclog((LOG_DEBUG, "key_parse: invalid message length.\n")); 6573 pfkeystat.out_invlen++; 6574 error = EINVAL; 6575 goto senderror; 6576 } 6577 6578 if (msg->sadb_msg_version != PF_KEY_V2) { 6579 ipseclog((LOG_DEBUG, 6580 "key_parse: PF_KEY version %u is mismatched.\n", 6581 msg->sadb_msg_version)); 6582 pfkeystat.out_invver++; 6583 error = EINVAL; 6584 goto senderror; 6585 } 6586 6587 if (msg->sadb_msg_type > SADB_MAX) { 6588 ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n", 6589 msg->sadb_msg_type)); 6590 pfkeystat.out_invmsgtype++; 6591 error = EINVAL; 6592 goto senderror; 6593 } 6594 6595 /* for old-fashioned code - should be nuked */ 6596 if (m->m_pkthdr.len > MCLBYTES) { 6597 m_freem(m); 6598 return ENOBUFS; 6599 } 6600 if (m->m_next) { 6601 struct mbuf *n; 6602 6603 MGETHDR(n, M_DONTWAIT, MT_DATA); 6604 if (n && m->m_pkthdr.len > MHLEN) { 6605 MCLGET(n, M_DONTWAIT); 6606 if ((n->m_flags & M_EXT) == 0) { 6607 m_free(n); 6608 n = NULL; 6609 } 6610 } 6611 if (!n) { 6612 m_freem(m); 6613 return ENOBUFS; 6614 } 6615 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t)); 6616 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; 6617 n->m_next = NULL; 6618 m_freem(m); 6619 m = n; 6620 } 6621 6622 /* align the mbuf chain so that extensions are in contiguous region. */ 6623 error = key_align(m, &mh); 6624 if (error) 6625 return error; 6626 6627 if (m->m_next) { /*XXX*/ 6628 m_freem(m); 6629 return ENOBUFS; 6630 } 6631 6632 msg = mh.msg; 6633 6634 /* check SA type */ 6635 switch (msg->sadb_msg_satype) { 6636 case SADB_SATYPE_UNSPEC: 6637 switch (msg->sadb_msg_type) { 6638 case SADB_GETSPI: 6639 case SADB_UPDATE: 6640 case SADB_ADD: 6641 case SADB_DELETE: 6642 case SADB_GET: 6643 case SADB_ACQUIRE: 6644 case SADB_EXPIRE: 6645 ipseclog((LOG_DEBUG, "key_parse: must specify satype " 6646 "when msg type=%u.\n", msg->sadb_msg_type)); 6647 pfkeystat.out_invsatype++; 6648 error = EINVAL; 6649 goto senderror; 6650 } 6651 break; 6652 case SADB_SATYPE_AH: 6653 case SADB_SATYPE_ESP: 6654 case SADB_X_SATYPE_IPCOMP: 6655 switch (msg->sadb_msg_type) { 6656 case SADB_X_SPDADD: 6657 case SADB_X_SPDDELETE: 6658 case SADB_X_SPDGET: 6659 case SADB_X_SPDDUMP: 6660 case SADB_X_SPDFLUSH: 6661 case SADB_X_SPDSETIDX: 6662 case SADB_X_SPDUPDATE: 6663 case SADB_X_SPDDELETE2: 6664 ipseclog((LOG_DEBUG, "key_parse: illegal satype=%u\n", 6665 msg->sadb_msg_type)); 6666 pfkeystat.out_invsatype++; 6667 error = EINVAL; 6668 goto senderror; 6669 } 6670 break; 6671 case SADB_SATYPE_RSVP: 6672 case SADB_SATYPE_OSPFV2: 6673 case SADB_SATYPE_RIPV2: 6674 case SADB_SATYPE_MIP: 6675 ipseclog((LOG_DEBUG, "key_parse: type %u isn't supported.\n", 6676 msg->sadb_msg_satype)); 6677 pfkeystat.out_invsatype++; 6678 error = EOPNOTSUPP; 6679 goto senderror; 6680 case 1: /* XXX: What does it do? */ 6681 if (msg->sadb_msg_type == SADB_X_PROMISC) 6682 break; 6683 /*FALLTHROUGH*/ 6684 default: 6685 ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n", 6686 msg->sadb_msg_satype)); 6687 pfkeystat.out_invsatype++; 6688 error = EINVAL; 6689 goto senderror; 6690 } 6691 6692 /* check field of upper layer protocol and address family */ 6693 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL 6694 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { 6695 struct sadb_address *src0, *dst0; 6696 u_int plen; 6697 6698 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]); 6699 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]); 6700 6701 /* check upper layer protocol */ 6702 if (src0->sadb_address_proto != dst0->sadb_address_proto) { 6703 ipseclog((LOG_DEBUG, "key_parse: upper layer protocol mismatched.\n")); 6704 pfkeystat.out_invaddr++; 6705 error = EINVAL; 6706 goto senderror; 6707 } 6708 6709 /* check family */ 6710 if (PFKEY_ADDR_SADDR(src0)->sa_family != 6711 PFKEY_ADDR_SADDR(dst0)->sa_family) { 6712 ipseclog((LOG_DEBUG, "key_parse: address family mismatched.\n")); 6713 pfkeystat.out_invaddr++; 6714 error = EINVAL; 6715 goto senderror; 6716 } 6717 if (PFKEY_ADDR_SADDR(src0)->sa_len != 6718 PFKEY_ADDR_SADDR(dst0)->sa_len) { 6719 ipseclog((LOG_DEBUG, 6720 "key_parse: address struct size mismatched.\n")); 6721 pfkeystat.out_invaddr++; 6722 error = EINVAL; 6723 goto senderror; 6724 } 6725 6726 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 6727 case AF_INET: 6728 if (PFKEY_ADDR_SADDR(src0)->sa_len != 6729 sizeof(struct sockaddr_in)) { 6730 pfkeystat.out_invaddr++; 6731 error = EINVAL; 6732 goto senderror; 6733 } 6734 break; 6735 case AF_INET6: 6736 if (PFKEY_ADDR_SADDR(src0)->sa_len != 6737 sizeof(struct sockaddr_in6)) { 6738 pfkeystat.out_invaddr++; 6739 error = EINVAL; 6740 goto senderror; 6741 } 6742 break; 6743 default: 6744 ipseclog((LOG_DEBUG, 6745 "key_parse: unsupported address family.\n")); 6746 pfkeystat.out_invaddr++; 6747 error = EAFNOSUPPORT; 6748 goto senderror; 6749 } 6750 6751 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 6752 case AF_INET: 6753 plen = sizeof(struct in_addr) << 3; 6754 break; 6755 case AF_INET6: 6756 plen = sizeof(struct in6_addr) << 3; 6757 break; 6758 default: 6759 plen = 0; /*fool gcc*/ 6760 break; 6761 } 6762 6763 /* check max prefix length */ 6764 if (src0->sadb_address_prefixlen > plen || 6765 dst0->sadb_address_prefixlen > plen) { 6766 ipseclog((LOG_DEBUG, 6767 "key_parse: illegal prefixlen.\n")); 6768 pfkeystat.out_invaddr++; 6769 error = EINVAL; 6770 goto senderror; 6771 } 6772 6773 /* 6774 * prefixlen == 0 is valid because there can be a case when 6775 * all addresses are matched. 6776 */ 6777 } 6778 6779 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) || 6780 key_typesw[msg->sadb_msg_type] == NULL) { 6781 pfkeystat.out_invmsgtype++; 6782 error = EINVAL; 6783 goto senderror; 6784 } 6785 6786 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh); 6787 6788 senderror: 6789 msg->sadb_msg_errno = error; 6790 return key_sendup_mbuf(so, m, target); 6791 } 6792 6793 static int 6794 key_senderror(so, m, code) 6795 struct socket *so; 6796 struct mbuf *m; 6797 int code; 6798 { 6799 struct sadb_msg *msg; 6800 6801 if (m->m_len < sizeof(struct sadb_msg)) 6802 panic("invalid mbuf passed to key_senderror"); 6803 6804 msg = mtod(m, struct sadb_msg *); 6805 msg->sadb_msg_errno = code; 6806 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 6807 } 6808 6809 /* 6810 * set the pointer to each header into message buffer. 6811 * m will be freed on error. 6812 * XXX larger-than-MCLBYTES extension? 6813 */ 6814 static int 6815 key_align(m, mhp) 6816 struct mbuf *m; 6817 struct sadb_msghdr *mhp; 6818 { 6819 struct mbuf *n; 6820 struct sadb_ext *ext; 6821 size_t off, end; 6822 int extlen; 6823 int toff; 6824 6825 /* sanity check */ 6826 if (m == NULL || mhp == NULL) 6827 panic("key_align: NULL pointer is passed.\n"); 6828 if (m->m_len < sizeof(struct sadb_msg)) 6829 panic("invalid mbuf passed to key_align"); 6830 6831 /* initialize */ 6832 bzero(mhp, sizeof(*mhp)); 6833 6834 mhp->msg = mtod(m, struct sadb_msg *); 6835 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */ 6836 6837 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 6838 extlen = end; /*just in case extlen is not updated*/ 6839 for (off = sizeof(struct sadb_msg); off < end; off += extlen) { 6840 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); 6841 if (!n) { 6842 /* m is already freed */ 6843 return ENOBUFS; 6844 } 6845 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 6846 6847 /* set pointer */ 6848 switch (ext->sadb_ext_type) { 6849 case SADB_EXT_SA: 6850 case SADB_EXT_ADDRESS_SRC: 6851 case SADB_EXT_ADDRESS_DST: 6852 case SADB_EXT_ADDRESS_PROXY: 6853 case SADB_EXT_LIFETIME_CURRENT: 6854 case SADB_EXT_LIFETIME_HARD: 6855 case SADB_EXT_LIFETIME_SOFT: 6856 case SADB_EXT_KEY_AUTH: 6857 case SADB_EXT_KEY_ENCRYPT: 6858 case SADB_EXT_IDENTITY_SRC: 6859 case SADB_EXT_IDENTITY_DST: 6860 case SADB_EXT_SENSITIVITY: 6861 case SADB_EXT_PROPOSAL: 6862 case SADB_EXT_SUPPORTED_AUTH: 6863 case SADB_EXT_SUPPORTED_ENCRYPT: 6864 case SADB_EXT_SPIRANGE: 6865 case SADB_X_EXT_POLICY: 6866 case SADB_X_EXT_SA2: 6867 /* duplicate check */ 6868 /* 6869 * XXX Are there duplication payloads of either 6870 * KEY_AUTH or KEY_ENCRYPT ? 6871 */ 6872 if (mhp->ext[ext->sadb_ext_type] != NULL) { 6873 ipseclog((LOG_DEBUG, 6874 "key_align: duplicate ext_type %u " 6875 "is passed.\n", ext->sadb_ext_type)); 6876 m_freem(m); 6877 pfkeystat.out_dupext++; 6878 return EINVAL; 6879 } 6880 break; 6881 default: 6882 ipseclog((LOG_DEBUG, 6883 "key_align: invalid ext_type %u is passed.\n", 6884 ext->sadb_ext_type)); 6885 m_freem(m); 6886 pfkeystat.out_invexttype++; 6887 return EINVAL; 6888 } 6889 6890 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); 6891 6892 if (key_validate_ext(ext, extlen)) { 6893 m_freem(m); 6894 pfkeystat.out_invlen++; 6895 return EINVAL; 6896 } 6897 6898 n = m_pulldown(m, off, extlen, &toff); 6899 if (!n) { 6900 /* m is already freed */ 6901 return ENOBUFS; 6902 } 6903 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 6904 6905 mhp->ext[ext->sadb_ext_type] = ext; 6906 mhp->extoff[ext->sadb_ext_type] = off; 6907 mhp->extlen[ext->sadb_ext_type] = extlen; 6908 } 6909 6910 if (off != end) { 6911 m_freem(m); 6912 pfkeystat.out_invlen++; 6913 return EINVAL; 6914 } 6915 6916 return 0; 6917 } 6918 6919 static int 6920 key_validate_ext(ext, len) 6921 const struct sadb_ext *ext; 6922 int len; 6923 { 6924 const struct sockaddr *sa; 6925 enum { NONE, ADDR } checktype = NONE; 6926 int baselen = 0; 6927 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); 6928 6929 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) 6930 return EINVAL; 6931 6932 /* if it does not match minimum/maximum length, bail */ 6933 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) || 6934 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0])) 6935 return EINVAL; 6936 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) 6937 return EINVAL; 6938 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) 6939 return EINVAL; 6940 6941 /* more checks based on sadb_ext_type XXX need more */ 6942 switch (ext->sadb_ext_type) { 6943 case SADB_EXT_ADDRESS_SRC: 6944 case SADB_EXT_ADDRESS_DST: 6945 case SADB_EXT_ADDRESS_PROXY: 6946 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); 6947 checktype = ADDR; 6948 break; 6949 case SADB_EXT_IDENTITY_SRC: 6950 case SADB_EXT_IDENTITY_DST: 6951 if (((const struct sadb_ident *)ext)->sadb_ident_type == 6952 SADB_X_IDENTTYPE_ADDR) { 6953 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); 6954 checktype = ADDR; 6955 } else 6956 checktype = NONE; 6957 break; 6958 default: 6959 checktype = NONE; 6960 break; 6961 } 6962 6963 switch (checktype) { 6964 case NONE: 6965 break; 6966 case ADDR: 6967 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); 6968 if (len < baselen + sal) 6969 return EINVAL; 6970 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) 6971 return EINVAL; 6972 break; 6973 } 6974 6975 return 0; 6976 } 6977 6978 void 6979 key_init() 6980 { 6981 int i; 6982 6983 mtx_init(&sptree_lock, "sptree lock", "fast ipsec sadb", MTX_DEF); 6984 mtx_init(®tree_lock, "regtree lock", "fast ipsec sadb", MTX_DEF); 6985 mtx_init(&sahtree_lock, "sahtree lock", "fast ipsec sadb", MTX_DEF); 6986 mtx_init(&acq_lock, "acqtree lock", "fast ipsec sadb", MTX_DEF); 6987 mtx_init(&spacq_lock, "spacqtree lock", "fast ipsec sadb", MTX_DEF); 6988 6989 for (i = 0; i < IPSEC_DIR_MAX; i++) 6990 LIST_INIT(&sptree[i]); 6991 6992 LIST_INIT(&sahtree); 6993 6994 for (i = 0; i <= SADB_SATYPE_MAX; i++) 6995 LIST_INIT(®tree[i]); 6996 6997 LIST_INIT(&acqtree); 6998 LIST_INIT(&spacqtree); 6999 7000 /* system default */ 7001 ip4_def_policy.policy = IPSEC_POLICY_NONE; 7002 ip4_def_policy.refcnt++; /*never reclaim this*/ 7003 7004 #ifndef IPSEC_DEBUG2 7005 timeout((void *)key_timehandler, (void *)0, hz); 7006 #endif /*IPSEC_DEBUG2*/ 7007 7008 /* initialize key statistics */ 7009 keystat.getspi_count = 1; 7010 7011 printf("IPsec: Initialized Security Association Processing.\n"); 7012 7013 return; 7014 } 7015 7016 /* 7017 * XXX: maybe This function is called after INBOUND IPsec processing. 7018 * 7019 * Special check for tunnel-mode packets. 7020 * We must make some checks for consistency between inner and outer IP header. 7021 * 7022 * xxx more checks to be provided 7023 */ 7024 int 7025 key_checktunnelsanity(sav, family, src, dst) 7026 struct secasvar *sav; 7027 u_int family; 7028 caddr_t src; 7029 caddr_t dst; 7030 { 7031 /* sanity check */ 7032 if (sav->sah == NULL) 7033 panic("sav->sah == NULL at key_checktunnelsanity"); 7034 7035 /* XXX: check inner IP header */ 7036 7037 return 1; 7038 } 7039 7040 /* record data transfer on SA, and update timestamps */ 7041 void 7042 key_sa_recordxfer(sav, m) 7043 struct secasvar *sav; 7044 struct mbuf *m; 7045 { 7046 KASSERT(sav != NULL, ("key_sa_recordxfer: Null secasvar")); 7047 KASSERT(m != NULL, ("key_sa_recordxfer: Null mbuf")); 7048 if (!sav->lft_c) 7049 return; 7050 7051 /* 7052 * XXX Currently, there is a difference of bytes size 7053 * between inbound and outbound processing. 7054 */ 7055 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len; 7056 /* to check bytes lifetime is done in key_timehandler(). */ 7057 7058 /* 7059 * We use the number of packets as the unit of 7060 * sadb_lifetime_allocations. We increment the variable 7061 * whenever {esp,ah}_{in,out}put is called. 7062 */ 7063 sav->lft_c->sadb_lifetime_allocations++; 7064 /* XXX check for expires? */ 7065 7066 /* 7067 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock, 7068 * in seconds. HARD and SOFT lifetime are measured by the time 7069 * difference (again in seconds) from sadb_lifetime_usetime. 7070 * 7071 * usetime 7072 * v expire expire 7073 * -----+-----+--------+---> t 7074 * <--------------> HARD 7075 * <-----> SOFT 7076 */ 7077 sav->lft_c->sadb_lifetime_usetime = time_second; 7078 /* XXX check for expires? */ 7079 7080 return; 7081 } 7082 7083 /* dumb version */ 7084 void 7085 key_sa_routechange(dst) 7086 struct sockaddr *dst; 7087 { 7088 struct secashead *sah; 7089 struct route *ro; 7090 7091 mtx_lock(&sahtree_lock); 7092 LIST_FOREACH(sah, &sahtree, chain) { 7093 ro = &sah->sa_route; 7094 if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len 7095 && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) { 7096 RTFREE(ro->ro_rt); 7097 ro->ro_rt = (struct rtentry *)NULL; 7098 } 7099 } 7100 mtx_unlock(&sahtree_lock); 7101 } 7102 7103 static void 7104 key_sa_chgstate(sav, state) 7105 struct secasvar *sav; 7106 u_int8_t state; 7107 { 7108 KASSERT(sav != NULL, ("key_sa_chgstate: NULL sav")); 7109 mtx_assert(&sahtree_lock, MA_OWNED); 7110 7111 if (sav->state != state) { 7112 if (__LIST_CHAINED(sav)) 7113 LIST_REMOVE(sav, chain); 7114 sav->state = state; 7115 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain); 7116 } 7117 } 7118 7119 void 7120 key_sa_stir_iv(sav) 7121 struct secasvar *sav; 7122 { 7123 7124 if (!sav->iv) 7125 panic("key_sa_stir_iv called with sav == NULL"); 7126 key_randomfill(sav->iv, sav->ivlen); 7127 } 7128 7129 /* XXX too much? */ 7130 static struct mbuf * 7131 key_alloc_mbuf(l) 7132 int l; 7133 { 7134 struct mbuf *m = NULL, *n; 7135 int len, t; 7136 7137 len = l; 7138 while (len > 0) { 7139 MGET(n, M_DONTWAIT, MT_DATA); 7140 if (n && len > MLEN) 7141 MCLGET(n, M_DONTWAIT); 7142 if (!n) { 7143 m_freem(m); 7144 return NULL; 7145 } 7146 7147 n->m_next = NULL; 7148 n->m_len = 0; 7149 n->m_len = M_TRAILINGSPACE(n); 7150 /* use the bottom of mbuf, hoping we can prepend afterwards */ 7151 if (n->m_len > len) { 7152 t = (n->m_len - len) & ~(sizeof(long) - 1); 7153 n->m_data += t; 7154 n->m_len = len; 7155 } 7156 7157 len -= n->m_len; 7158 7159 if (m) 7160 m_cat(m, n); 7161 else 7162 m = n; 7163 } 7164 7165 return m; 7166 } 7167