xref: /freebsd/sys/netipsec/key.c (revision 6af83ee0d2941d18880b6aaa2b4facd1d30c6106)
1 /*	$FreeBSD$	*/
2 /*	$KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $	*/
3 
4 /*-
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * This code is referd to RFC 2367
35  */
36 
37 #include "opt_inet.h"
38 #include "opt_inet6.h"
39 #include "opt_ipsec.h"
40 
41 #include <sys/types.h>
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/mbuf.h>
48 #include <sys/domain.h>
49 #include <sys/protosw.h>
50 #include <sys/malloc.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/sysctl.h>
54 #include <sys/errno.h>
55 #include <sys/proc.h>
56 #include <sys/queue.h>
57 #include <sys/syslog.h>
58 
59 #include <net/if.h>
60 #include <net/route.h>
61 #include <net/raw_cb.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/ip.h>
66 #include <netinet/in_var.h>
67 
68 #ifdef INET6
69 #include <netinet/ip6.h>
70 #include <netinet6/in6_var.h>
71 #include <netinet6/ip6_var.h>
72 #endif /* INET6 */
73 
74 #ifdef INET
75 #include <netinet/in_pcb.h>
76 #endif
77 #ifdef INET6
78 #include <netinet6/in6_pcb.h>
79 #endif /* INET6 */
80 
81 #include <net/pfkeyv2.h>
82 #include <netipsec/keydb.h>
83 #include <netipsec/key.h>
84 #include <netipsec/keysock.h>
85 #include <netipsec/key_debug.h>
86 
87 #include <netipsec/ipsec.h>
88 #ifdef INET6
89 #include <netipsec/ipsec6.h>
90 #endif
91 
92 #include <netipsec/xform.h>
93 
94 #include <machine/stdarg.h>
95 
96 /* randomness */
97 #include <sys/random.h>
98 
99 #define FULLMASK	0xff
100 #define	_BITS(bytes)	((bytes) << 3)
101 
102 /*
103  * Note on SA reference counting:
104  * - SAs that are not in DEAD state will have (total external reference + 1)
105  *   following value in reference count field.  they cannot be freed and are
106  *   referenced from SA header.
107  * - SAs that are in DEAD state will have (total external reference)
108  *   in reference count field.  they are ready to be freed.  reference from
109  *   SA header will be removed in key_delsav(), when the reference count
110  *   field hits 0 (= no external reference other than from SA header.
111  */
112 
113 u_int32_t key_debug_level = 0;
114 static u_int key_spi_trycnt = 1000;
115 static u_int32_t key_spi_minval = 0x100;
116 static u_int32_t key_spi_maxval = 0x0fffffff;	/* XXX */
117 static u_int32_t policy_id = 0;
118 static u_int key_int_random = 60;	/*interval to initialize randseed,1(m)*/
119 static u_int key_larval_lifetime = 30;	/* interval to expire acquiring, 30(s)*/
120 static int key_blockacq_count = 10;	/* counter for blocking SADB_ACQUIRE.*/
121 static int key_blockacq_lifetime = 20;	/* lifetime for blocking SADB_ACQUIRE.*/
122 static int key_preferred_oldsa = 1;	/* preferred old sa rather than new sa.*/
123 
124 static u_int32_t acq_seq = 0;
125 
126 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX];	/* SPD */
127 static struct mtx sptree_lock;
128 #define	SPTREE_LOCK_INIT() \
129 	mtx_init(&sptree_lock, "sptree", \
130 		"fast ipsec security policy database", MTX_DEF)
131 #define	SPTREE_LOCK_DESTROY()	mtx_destroy(&sptree_lock)
132 #define	SPTREE_LOCK()		mtx_lock(&sptree_lock)
133 #define	SPTREE_UNLOCK()	mtx_unlock(&sptree_lock)
134 #define	SPTREE_LOCK_ASSERT()	mtx_assert(&sptree_lock, MA_OWNED)
135 
136 static LIST_HEAD(_sahtree, secashead) sahtree;			/* SAD */
137 static struct mtx sahtree_lock;
138 #define	SAHTREE_LOCK_INIT() \
139 	mtx_init(&sahtree_lock, "sahtree", \
140 		"fast ipsec security association database", MTX_DEF)
141 #define	SAHTREE_LOCK_DESTROY()	mtx_destroy(&sahtree_lock)
142 #define	SAHTREE_LOCK()		mtx_lock(&sahtree_lock)
143 #define	SAHTREE_UNLOCK()	mtx_unlock(&sahtree_lock)
144 #define	SAHTREE_LOCK_ASSERT()	mtx_assert(&sahtree_lock, MA_OWNED)
145 
146 							/* registed list */
147 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1];
148 static struct mtx regtree_lock;
149 #define	REGTREE_LOCK_INIT() \
150 	mtx_init(&regtree_lock, "regtree", "fast ipsec regtree", MTX_DEF)
151 #define	REGTREE_LOCK_DESTROY()	mtx_destroy(&regtree_lock)
152 #define	REGTREE_LOCK()		mtx_lock(&regtree_lock)
153 #define	REGTREE_UNLOCK()	mtx_unlock(&regtree_lock)
154 #define	REGTREE_LOCK_ASSERT()	mtx_assert(&regtree_lock, MA_OWNED)
155 
156 static LIST_HEAD(_acqtree, secacq) acqtree;		/* acquiring list */
157 static struct mtx acq_lock;
158 #define	ACQ_LOCK_INIT() \
159 	mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF)
160 #define	ACQ_LOCK_DESTROY()	mtx_destroy(&acq_lock)
161 #define	ACQ_LOCK()		mtx_lock(&acq_lock)
162 #define	ACQ_UNLOCK()		mtx_unlock(&acq_lock)
163 #define	ACQ_LOCK_ASSERT()	mtx_assert(&acq_lock, MA_OWNED)
164 
165 static LIST_HEAD(_spacqtree, secspacq) spacqtree;	/* SP acquiring list */
166 static struct mtx spacq_lock;
167 #define	SPACQ_LOCK_INIT() \
168 	mtx_init(&spacq_lock, "spacqtree", \
169 		"fast ipsec security policy acquire list", MTX_DEF)
170 #define	SPACQ_LOCK_DESTROY()	mtx_destroy(&spacq_lock)
171 #define	SPACQ_LOCK()		mtx_lock(&spacq_lock)
172 #define	SPACQ_UNLOCK()		mtx_unlock(&spacq_lock)
173 #define	SPACQ_LOCK_ASSERT()	mtx_assert(&spacq_lock, MA_OWNED)
174 
175 /* search order for SAs */
176 static const u_int saorder_state_valid_prefer_old[] = {
177 	SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
178 };
179 static const u_int saorder_state_valid_prefer_new[] = {
180 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
181 };
182 static u_int saorder_state_alive[] = {
183 	/* except DEAD */
184 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
185 };
186 static u_int saorder_state_any[] = {
187 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
188 	SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
189 };
190 
191 static const int minsize[] = {
192 	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
193 	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
194 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
195 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
196 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
197 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_SRC */
198 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_DST */
199 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_PROXY */
200 	sizeof(struct sadb_key),	/* SADB_EXT_KEY_AUTH */
201 	sizeof(struct sadb_key),	/* SADB_EXT_KEY_ENCRYPT */
202 	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_SRC */
203 	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_DST */
204 	sizeof(struct sadb_sens),	/* SADB_EXT_SENSITIVITY */
205 	sizeof(struct sadb_prop),	/* SADB_EXT_PROPOSAL */
206 	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_AUTH */
207 	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_ENCRYPT */
208 	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
209 	0,				/* SADB_X_EXT_KMPRIVATE */
210 	sizeof(struct sadb_x_policy),	/* SADB_X_EXT_POLICY */
211 	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
212 };
213 static const int maxsize[] = {
214 	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
215 	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
216 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
217 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
218 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
219 	0,				/* SADB_EXT_ADDRESS_SRC */
220 	0,				/* SADB_EXT_ADDRESS_DST */
221 	0,				/* SADB_EXT_ADDRESS_PROXY */
222 	0,				/* SADB_EXT_KEY_AUTH */
223 	0,				/* SADB_EXT_KEY_ENCRYPT */
224 	0,				/* SADB_EXT_IDENTITY_SRC */
225 	0,				/* SADB_EXT_IDENTITY_DST */
226 	0,				/* SADB_EXT_SENSITIVITY */
227 	0,				/* SADB_EXT_PROPOSAL */
228 	0,				/* SADB_EXT_SUPPORTED_AUTH */
229 	0,				/* SADB_EXT_SUPPORTED_ENCRYPT */
230 	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
231 	0,				/* SADB_X_EXT_KMPRIVATE */
232 	0,				/* SADB_X_EXT_POLICY */
233 	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
234 };
235 
236 static int ipsec_esp_keymin = 256;
237 static int ipsec_esp_auth = 0;
238 static int ipsec_ah_keymin = 128;
239 
240 #ifdef SYSCTL_DECL
241 SYSCTL_DECL(_net_key);
242 #endif
243 
244 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL,	debug,	CTLFLAG_RW, \
245 	&key_debug_level,	0,	"");
246 
247 /* max count of trial for the decision of spi value */
248 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY,		spi_trycnt,	CTLFLAG_RW, \
249 	&key_spi_trycnt,	0,	"");
250 
251 /* minimum spi value to allocate automatically. */
252 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE,	spi_minval,	CTLFLAG_RW, \
253 	&key_spi_minval,	0,	"");
254 
255 /* maximun spi value to allocate automatically. */
256 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE,	spi_maxval,	CTLFLAG_RW, \
257 	&key_spi_maxval,	0,	"");
258 
259 /* interval to initialize randseed */
260 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT,	int_random,	CTLFLAG_RW, \
261 	&key_int_random,	0,	"");
262 
263 /* lifetime for larval SA */
264 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME,	larval_lifetime, CTLFLAG_RW, \
265 	&key_larval_lifetime,	0,	"");
266 
267 /* counter for blocking to send SADB_ACQUIRE to IKEd */
268 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT,	blockacq_count,	CTLFLAG_RW, \
269 	&key_blockacq_count,	0,	"");
270 
271 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
272 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME,	blockacq_lifetime, CTLFLAG_RW, \
273 	&key_blockacq_lifetime,	0,	"");
274 
275 /* ESP auth */
276 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH,	esp_auth, CTLFLAG_RW, \
277 	&ipsec_esp_auth,	0,	"");
278 
279 /* minimum ESP key length */
280 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN,	esp_keymin, CTLFLAG_RW, \
281 	&ipsec_esp_keymin,	0,	"");
282 
283 /* minimum AH key length */
284 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN,	ah_keymin, CTLFLAG_RW, \
285 	&ipsec_ah_keymin,	0,	"");
286 
287 /* perfered old SA rather than new SA */
288 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA,	preferred_oldsa, CTLFLAG_RW,\
289 	&key_preferred_oldsa,	0,	"");
290 
291 #define __LIST_CHAINED(elm) \
292 	(!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
293 #define LIST_INSERT_TAIL(head, elm, type, field) \
294 do {\
295 	struct type *curelm = LIST_FIRST(head); \
296 	if (curelm == NULL) {\
297 		LIST_INSERT_HEAD(head, elm, field); \
298 	} else { \
299 		while (LIST_NEXT(curelm, field)) \
300 			curelm = LIST_NEXT(curelm, field);\
301 		LIST_INSERT_AFTER(curelm, elm, field);\
302 	}\
303 } while (0)
304 
305 #define KEY_CHKSASTATE(head, sav, name) \
306 do { \
307 	if ((head) != (sav)) {						\
308 		ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \
309 			(name), (head), (sav)));			\
310 		continue;						\
311 	}								\
312 } while (0)
313 
314 #define KEY_CHKSPDIR(head, sp, name) \
315 do { \
316 	if ((head) != (sp)) {						\
317 		ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \
318 			"anyway continue.\n",				\
319 			(name), (head), (sp)));				\
320 	}								\
321 } while (0)
322 
323 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association");
324 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head");
325 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy");
326 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request");
327 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous");
328 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire");
329 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire");
330 
331 /*
332  * set parameters into secpolicyindex buffer.
333  * Must allocate secpolicyindex buffer passed to this function.
334  */
335 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
336 do { \
337 	bzero((idx), sizeof(struct secpolicyindex));                         \
338 	(idx)->dir = (_dir);                                                 \
339 	(idx)->prefs = (ps);                                                 \
340 	(idx)->prefd = (pd);                                                 \
341 	(idx)->ul_proto = (ulp);                                             \
342 	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
343 	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
344 } while (0)
345 
346 /*
347  * set parameters into secasindex buffer.
348  * Must allocate secasindex buffer before calling this function.
349  */
350 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \
351 do { \
352 	bzero((idx), sizeof(struct secasindex));                             \
353 	(idx)->proto = (p);                                                  \
354 	(idx)->mode = (m);                                                   \
355 	(idx)->reqid = (r);                                                  \
356 	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
357 	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
358 } while (0)
359 
360 /* key statistics */
361 struct _keystat {
362 	u_long getspi_count; /* the avarage of count to try to get new SPI */
363 } keystat;
364 
365 struct sadb_msghdr {
366 	struct sadb_msg *msg;
367 	struct sadb_ext *ext[SADB_EXT_MAX + 1];
368 	int extoff[SADB_EXT_MAX + 1];
369 	int extlen[SADB_EXT_MAX + 1];
370 };
371 
372 static struct secasvar *key_allocsa_policy __P((const struct secasindex *));
373 static void key_freesp_so __P((struct secpolicy **));
374 static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int));
375 static void key_delsp __P((struct secpolicy *));
376 static struct secpolicy *key_getsp __P((struct secpolicyindex *));
377 static void _key_delsp(struct secpolicy *sp);
378 static struct secpolicy *key_getspbyid __P((u_int32_t));
379 static u_int32_t key_newreqid __P((void));
380 static struct mbuf *key_gather_mbuf __P((struct mbuf *,
381 	const struct sadb_msghdr *, int, int, ...));
382 static int key_spdadd __P((struct socket *, struct mbuf *,
383 	const struct sadb_msghdr *));
384 static u_int32_t key_getnewspid __P((void));
385 static int key_spddelete __P((struct socket *, struct mbuf *,
386 	const struct sadb_msghdr *));
387 static int key_spddelete2 __P((struct socket *, struct mbuf *,
388 	const struct sadb_msghdr *));
389 static int key_spdget __P((struct socket *, struct mbuf *,
390 	const struct sadb_msghdr *));
391 static int key_spdflush __P((struct socket *, struct mbuf *,
392 	const struct sadb_msghdr *));
393 static int key_spddump __P((struct socket *, struct mbuf *,
394 	const struct sadb_msghdr *));
395 static struct mbuf *key_setdumpsp __P((struct secpolicy *,
396 	u_int8_t, u_int32_t, u_int32_t));
397 static u_int key_getspreqmsglen __P((struct secpolicy *));
398 static int key_spdexpire __P((struct secpolicy *));
399 static struct secashead *key_newsah __P((struct secasindex *));
400 static void key_delsah __P((struct secashead *));
401 static struct secasvar *key_newsav __P((struct mbuf *,
402 	const struct sadb_msghdr *, struct secashead *, int *,
403 	const char*, int));
404 #define	KEY_NEWSAV(m, sadb, sah, e)				\
405 	key_newsav(m, sadb, sah, e, __FILE__, __LINE__)
406 static void key_delsav __P((struct secasvar *));
407 static struct secashead *key_getsah __P((struct secasindex *));
408 static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t));
409 static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t));
410 static int key_setsaval __P((struct secasvar *, struct mbuf *,
411 	const struct sadb_msghdr *));
412 static int key_mature __P((struct secasvar *));
413 static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t,
414 	u_int8_t, u_int32_t, u_int32_t));
415 static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t,
416 	u_int32_t, pid_t, u_int16_t));
417 static struct mbuf *key_setsadbsa __P((struct secasvar *));
418 static struct mbuf *key_setsadbaddr __P((u_int16_t,
419 	const struct sockaddr *, u_int8_t, u_int16_t));
420 static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t));
421 static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t,
422 	u_int32_t));
423 static void *key_dup(const void *, u_int, struct malloc_type *);
424 #ifdef INET6
425 static int key_ismyaddr6 __P((struct sockaddr_in6 *));
426 #endif
427 
428 /* flags for key_cmpsaidx() */
429 #define CMP_HEAD	1	/* protocol, addresses. */
430 #define CMP_MODE_REQID	2	/* additionally HEAD, reqid, mode. */
431 #define CMP_REQID	3	/* additionally HEAD, reaid. */
432 #define CMP_EXACTLY	4	/* all elements. */
433 static int key_cmpsaidx
434 	__P((const struct secasindex *, const struct secasindex *, int));
435 
436 static int key_cmpspidx_exactly
437 	__P((struct secpolicyindex *, struct secpolicyindex *));
438 static int key_cmpspidx_withmask
439 	__P((struct secpolicyindex *, struct secpolicyindex *));
440 static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int));
441 static int key_bbcmp __P((const void *, const void *, u_int));
442 static u_int16_t key_satype2proto __P((u_int8_t));
443 static u_int8_t key_proto2satype __P((u_int16_t));
444 
445 static int key_getspi __P((struct socket *, struct mbuf *,
446 	const struct sadb_msghdr *));
447 static u_int32_t key_do_getnewspi __P((struct sadb_spirange *,
448 					struct secasindex *));
449 static int key_update __P((struct socket *, struct mbuf *,
450 	const struct sadb_msghdr *));
451 #ifdef IPSEC_DOSEQCHECK
452 static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t));
453 #endif
454 static int key_add __P((struct socket *, struct mbuf *,
455 	const struct sadb_msghdr *));
456 static int key_setident __P((struct secashead *, struct mbuf *,
457 	const struct sadb_msghdr *));
458 static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *,
459 	const struct sadb_msghdr *));
460 static int key_delete __P((struct socket *, struct mbuf *,
461 	const struct sadb_msghdr *));
462 static int key_get __P((struct socket *, struct mbuf *,
463 	const struct sadb_msghdr *));
464 
465 static void key_getcomb_setlifetime __P((struct sadb_comb *));
466 static struct mbuf *key_getcomb_esp __P((void));
467 static struct mbuf *key_getcomb_ah __P((void));
468 static struct mbuf *key_getcomb_ipcomp __P((void));
469 static struct mbuf *key_getprop __P((const struct secasindex *));
470 
471 static int key_acquire __P((const struct secasindex *, struct secpolicy *));
472 static struct secacq *key_newacq __P((const struct secasindex *));
473 static struct secacq *key_getacq __P((const struct secasindex *));
474 static struct secacq *key_getacqbyseq __P((u_int32_t));
475 static struct secspacq *key_newspacq __P((struct secpolicyindex *));
476 static struct secspacq *key_getspacq __P((struct secpolicyindex *));
477 static int key_acquire2 __P((struct socket *, struct mbuf *,
478 	const struct sadb_msghdr *));
479 static int key_register __P((struct socket *, struct mbuf *,
480 	const struct sadb_msghdr *));
481 static int key_expire __P((struct secasvar *));
482 static int key_flush __P((struct socket *, struct mbuf *,
483 	const struct sadb_msghdr *));
484 static int key_dump __P((struct socket *, struct mbuf *,
485 	const struct sadb_msghdr *));
486 static int key_promisc __P((struct socket *, struct mbuf *,
487 	const struct sadb_msghdr *));
488 static int key_senderror __P((struct socket *, struct mbuf *, int));
489 static int key_validate_ext __P((const struct sadb_ext *, int));
490 static int key_align __P((struct mbuf *, struct sadb_msghdr *));
491 #if 0
492 static const char *key_getfqdn __P((void));
493 static const char *key_getuserfqdn __P((void));
494 #endif
495 static void key_sa_chgstate __P((struct secasvar *, u_int8_t));
496 static struct mbuf *key_alloc_mbuf __P((int));
497 
498 #define	SA_ADDREF(p) do {						\
499 	(p)->refcnt++;							\
500 	IPSEC_ASSERT((p)->refcnt != 0, ("SA refcnt overflow"));		\
501 } while (0)
502 #define	SA_DELREF(p) do {						\
503 	IPSEC_ASSERT((p)->refcnt > 0, ("SA refcnt underflow"));		\
504 	(p)->refcnt--;							\
505 } while (0)
506 
507 #define	SP_ADDREF(p) do {						\
508 	(p)->refcnt++;							\
509 	IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow"));		\
510 } while (0)
511 #define	SP_DELREF(p) do {						\
512 	IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow"));		\
513 	(p)->refcnt--;							\
514 } while (0)
515 
516 
517 /*
518  * Update the refcnt while holding the SPTREE lock.
519  */
520 void
521 key_addref(struct secpolicy *sp)
522 {
523 	SPTREE_LOCK();
524 	SP_ADDREF(sp);
525 	SPTREE_UNLOCK();
526 }
527 
528 /*
529  * Return 0 when there are known to be no SP's for the specified
530  * direction.  Otherwise return 1.  This is used by IPsec code
531  * to optimize performance.
532  */
533 int
534 key_havesp(u_int dir)
535 {
536 	return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
537 		LIST_FIRST(&sptree[dir]) != NULL : 1);
538 }
539 
540 /* %%% IPsec policy management */
541 /*
542  * allocating a SP for OUTBOUND or INBOUND packet.
543  * Must call key_freesp() later.
544  * OUT:	NULL:	not found
545  *	others:	found and return the pointer.
546  */
547 struct secpolicy *
548 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag)
549 {
550 	struct secpolicy *sp;
551 
552 	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
553 	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
554 		("invalid direction %u", dir));
555 
556 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
557 		printf("DP %s from %s:%u\n", __func__, where, tag));
558 
559 	/* get a SP entry */
560 	KEYDEBUG(KEYDEBUG_IPSEC_DATA,
561 		printf("*** objects\n");
562 		kdebug_secpolicyindex(spidx));
563 
564 	SPTREE_LOCK();
565 	LIST_FOREACH(sp, &sptree[dir], chain) {
566 		KEYDEBUG(KEYDEBUG_IPSEC_DATA,
567 			printf("*** in SPD\n");
568 			kdebug_secpolicyindex(&sp->spidx));
569 
570 		if (sp->state == IPSEC_SPSTATE_DEAD)
571 			continue;
572 		if (key_cmpspidx_withmask(&sp->spidx, spidx))
573 			goto found;
574 	}
575 	sp = NULL;
576 found:
577 	if (sp) {
578 		/* sanity check */
579 		KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
580 
581 		/* found a SPD entry */
582 		sp->lastused = time_second;
583 		SP_ADDREF(sp);
584 	}
585 	SPTREE_UNLOCK();
586 
587 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
588 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
589 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
590 	return sp;
591 }
592 
593 /*
594  * allocating a SP for OUTBOUND or INBOUND packet.
595  * Must call key_freesp() later.
596  * OUT:	NULL:	not found
597  *	others:	found and return the pointer.
598  */
599 struct secpolicy *
600 key_allocsp2(u_int32_t spi,
601 	     union sockaddr_union *dst,
602 	     u_int8_t proto,
603 	     u_int dir,
604 	     const char* where, int tag)
605 {
606 	struct secpolicy *sp;
607 
608 	IPSEC_ASSERT(dst != NULL, ("null dst"));
609 	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
610 		("invalid direction %u", dir));
611 
612 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
613 		printf("DP %s from %s:%u\n", __func__, where, tag));
614 
615 	/* get a SP entry */
616 	KEYDEBUG(KEYDEBUG_IPSEC_DATA,
617 		printf("*** objects\n");
618 		printf("spi %u proto %u dir %u\n", spi, proto, dir);
619 		kdebug_sockaddr(&dst->sa));
620 
621 	SPTREE_LOCK();
622 	LIST_FOREACH(sp, &sptree[dir], chain) {
623 		KEYDEBUG(KEYDEBUG_IPSEC_DATA,
624 			printf("*** in SPD\n");
625 			kdebug_secpolicyindex(&sp->spidx));
626 
627 		if (sp->state == IPSEC_SPSTATE_DEAD)
628 			continue;
629 		/* compare simple values, then dst address */
630 		if (sp->spidx.ul_proto != proto)
631 			continue;
632 		/* NB: spi's must exist and match */
633 		if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
634 			continue;
635 		if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0)
636 			goto found;
637 	}
638 	sp = NULL;
639 found:
640 	if (sp) {
641 		/* sanity check */
642 		KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
643 
644 		/* found a SPD entry */
645 		sp->lastused = time_second;
646 		SP_ADDREF(sp);
647 	}
648 	SPTREE_UNLOCK();
649 
650 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
651 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
652 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
653 	return sp;
654 }
655 
656 /*
657  * return a policy that matches this particular inbound packet.
658  * XXX slow
659  */
660 struct secpolicy *
661 key_gettunnel(const struct sockaddr *osrc,
662 	      const struct sockaddr *odst,
663 	      const struct sockaddr *isrc,
664 	      const struct sockaddr *idst,
665 	      const char* where, int tag)
666 {
667 	struct secpolicy *sp;
668 	const int dir = IPSEC_DIR_INBOUND;
669 	struct ipsecrequest *r1, *r2, *p;
670 	struct secpolicyindex spidx;
671 
672 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
673 		printf("DP %s from %s:%u\n", __func__, where, tag));
674 
675 	if (isrc->sa_family != idst->sa_family) {
676 		ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.",
677 			__func__, isrc->sa_family, idst->sa_family));
678 		sp = NULL;
679 		goto done;
680 	}
681 
682 	SPTREE_LOCK();
683 	LIST_FOREACH(sp, &sptree[dir], chain) {
684 		if (sp->state == IPSEC_SPSTATE_DEAD)
685 			continue;
686 
687 		r1 = r2 = NULL;
688 		for (p = sp->req; p; p = p->next) {
689 			if (p->saidx.mode != IPSEC_MODE_TUNNEL)
690 				continue;
691 
692 			r1 = r2;
693 			r2 = p;
694 
695 			if (!r1) {
696 				/* here we look at address matches only */
697 				spidx = sp->spidx;
698 				if (isrc->sa_len > sizeof(spidx.src) ||
699 				    idst->sa_len > sizeof(spidx.dst))
700 					continue;
701 				bcopy(isrc, &spidx.src, isrc->sa_len);
702 				bcopy(idst, &spidx.dst, idst->sa_len);
703 				if (!key_cmpspidx_withmask(&sp->spidx, &spidx))
704 					continue;
705 			} else {
706 				if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) ||
707 				    key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0))
708 					continue;
709 			}
710 
711 			if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) ||
712 			    key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0))
713 				continue;
714 
715 			goto found;
716 		}
717 	}
718 	sp = NULL;
719 found:
720 	if (sp) {
721 		sp->lastused = time_second;
722 		SP_ADDREF(sp);
723 	}
724 	SPTREE_UNLOCK();
725 done:
726 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
727 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
728 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
729 	return sp;
730 }
731 
732 /*
733  * allocating an SA entry for an *OUTBOUND* packet.
734  * checking each request entries in SP, and acquire an SA if need.
735  * OUT:	0: there are valid requests.
736  *	ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
737  */
738 int
739 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
740 {
741 	u_int level;
742 	int error;
743 
744 	IPSEC_ASSERT(isr != NULL, ("null isr"));
745 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
746 	IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT ||
747 		saidx->mode == IPSEC_MODE_TUNNEL,
748 		("unexpected policy %u", saidx->mode));
749 
750 	/*
751 	 * XXX guard against protocol callbacks from the crypto
752 	 * thread as they reference ipsecrequest.sav which we
753 	 * temporarily null out below.  Need to rethink how we
754 	 * handle bundled SA's in the callback thread.
755 	 */
756 	IPSECREQUEST_LOCK_ASSERT(isr);
757 
758 	/* get current level */
759 	level = ipsec_get_reqlevel(isr);
760 #if 0
761 	/*
762 	 * We do allocate new SA only if the state of SA in the holder is
763 	 * SADB_SASTATE_DEAD.  The SA for outbound must be the oldest.
764 	 */
765 	if (isr->sav != NULL) {
766 		if (isr->sav->sah == NULL)
767 			panic("%s: sah is null.\n", __func__);
768 		if (isr->sav == (struct secasvar *)LIST_FIRST(
769 			    &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) {
770 			KEY_FREESAV(&isr->sav);
771 			isr->sav = NULL;
772 		}
773 	}
774 #else
775 	/*
776 	 * we free any SA stashed in the IPsec request because a different
777 	 * SA may be involved each time this request is checked, either
778 	 * because new SAs are being configured, or this request is
779 	 * associated with an unconnected datagram socket, or this request
780 	 * is associated with a system default policy.
781 	 *
782 	 * The operation may have negative impact to performance.  We may
783 	 * want to check cached SA carefully, rather than picking new SA
784 	 * every time.
785 	 */
786 	if (isr->sav != NULL) {
787 		KEY_FREESAV(&isr->sav);
788 		isr->sav = NULL;
789 	}
790 #endif
791 
792 	/*
793 	 * new SA allocation if no SA found.
794 	 * key_allocsa_policy should allocate the oldest SA available.
795 	 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
796 	 */
797 	if (isr->sav == NULL)
798 		isr->sav = key_allocsa_policy(saidx);
799 
800 	/* When there is SA. */
801 	if (isr->sav != NULL) {
802 		if (isr->sav->state != SADB_SASTATE_MATURE &&
803 		    isr->sav->state != SADB_SASTATE_DYING)
804 			return EINVAL;
805 		return 0;
806 	}
807 
808 	/* there is no SA */
809 	error = key_acquire(saidx, isr->sp);
810 	if (error != 0) {
811 		/* XXX What should I do ? */
812 		ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
813 			__func__, error));
814 		return error;
815 	}
816 
817 	if (level != IPSEC_LEVEL_REQUIRE) {
818 		/* XXX sigh, the interface to this routine is botched */
819 		IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA"));
820 		return 0;
821 	} else {
822 		return ENOENT;
823 	}
824 }
825 
826 /*
827  * allocating a SA for policy entry from SAD.
828  * NOTE: searching SAD of aliving state.
829  * OUT:	NULL:	not found.
830  *	others:	found and return the pointer.
831  */
832 static struct secasvar *
833 key_allocsa_policy(const struct secasindex *saidx)
834 {
835 #define	N(a)	_ARRAYLEN(a)
836 	struct secashead *sah;
837 	struct secasvar *sav;
838 	u_int stateidx, arraysize;
839 	const u_int *state_valid;
840 
841 	SAHTREE_LOCK();
842 	LIST_FOREACH(sah, &sahtree, chain) {
843 		if (sah->state == SADB_SASTATE_DEAD)
844 			continue;
845 		if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) {
846 			if (key_preferred_oldsa) {
847 				state_valid = saorder_state_valid_prefer_old;
848 				arraysize = N(saorder_state_valid_prefer_old);
849 			} else {
850 				state_valid = saorder_state_valid_prefer_new;
851 				arraysize = N(saorder_state_valid_prefer_new);
852 			}
853 			SAHTREE_UNLOCK();
854 			goto found;
855 		}
856 	}
857 	SAHTREE_UNLOCK();
858 
859 	return NULL;
860 
861     found:
862 	/* search valid state */
863 	for (stateidx = 0; stateidx < arraysize; stateidx++) {
864 		sav = key_do_allocsa_policy(sah, state_valid[stateidx]);
865 		if (sav != NULL)
866 			return sav;
867 	}
868 
869 	return NULL;
870 #undef N
871 }
872 
873 /*
874  * searching SAD with direction, protocol, mode and state.
875  * called by key_allocsa_policy().
876  * OUT:
877  *	NULL	: not found
878  *	others	: found, pointer to a SA.
879  */
880 static struct secasvar *
881 key_do_allocsa_policy(struct secashead *sah, u_int state)
882 {
883 	struct secasvar *sav, *nextsav, *candidate, *d;
884 
885 	/* initilize */
886 	candidate = NULL;
887 
888 	SAHTREE_LOCK();
889 	for (sav = LIST_FIRST(&sah->savtree[state]);
890 	     sav != NULL;
891 	     sav = nextsav) {
892 
893 		nextsav = LIST_NEXT(sav, chain);
894 
895 		/* sanity check */
896 		KEY_CHKSASTATE(sav->state, state, __func__);
897 
898 		/* initialize */
899 		if (candidate == NULL) {
900 			candidate = sav;
901 			continue;
902 		}
903 
904 		/* Which SA is the better ? */
905 
906 		IPSEC_ASSERT(candidate->lft_c != NULL,
907 			("null candidate lifetime"));
908 		IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime"));
909 
910 		/* What the best method is to compare ? */
911 		if (key_preferred_oldsa) {
912 			if (candidate->lft_c->sadb_lifetime_addtime >
913 					sav->lft_c->sadb_lifetime_addtime) {
914 				candidate = sav;
915 			}
916 			continue;
917 			/*NOTREACHED*/
918 		}
919 
920 		/* preferred new sa rather than old sa */
921 		if (candidate->lft_c->sadb_lifetime_addtime <
922 				sav->lft_c->sadb_lifetime_addtime) {
923 			d = candidate;
924 			candidate = sav;
925 		} else
926 			d = sav;
927 
928 		/*
929 		 * prepared to delete the SA when there is more
930 		 * suitable candidate and the lifetime of the SA is not
931 		 * permanent.
932 		 */
933 		if (d->lft_c->sadb_lifetime_addtime != 0) {
934 			struct mbuf *m, *result;
935 			u_int8_t satype;
936 
937 			key_sa_chgstate(d, SADB_SASTATE_DEAD);
938 
939 			IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count"));
940 
941 			satype = key_proto2satype(d->sah->saidx.proto);
942 			if (satype == 0)
943 				goto msgfail;
944 
945 			m = key_setsadbmsg(SADB_DELETE, 0,
946 			    satype, 0, 0, d->refcnt - 1);
947 			if (!m)
948 				goto msgfail;
949 			result = m;
950 
951 			/* set sadb_address for saidx's. */
952 			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
953 				&d->sah->saidx.src.sa,
954 				d->sah->saidx.src.sa.sa_len << 3,
955 				IPSEC_ULPROTO_ANY);
956 			if (!m)
957 				goto msgfail;
958 			m_cat(result, m);
959 
960 			/* set sadb_address for saidx's. */
961 			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
962 				&d->sah->saidx.dst.sa,
963 				d->sah->saidx.dst.sa.sa_len << 3,
964 				IPSEC_ULPROTO_ANY);
965 			if (!m)
966 				goto msgfail;
967 			m_cat(result, m);
968 
969 			/* create SA extension */
970 			m = key_setsadbsa(d);
971 			if (!m)
972 				goto msgfail;
973 			m_cat(result, m);
974 
975 			if (result->m_len < sizeof(struct sadb_msg)) {
976 				result = m_pullup(result,
977 						sizeof(struct sadb_msg));
978 				if (result == NULL)
979 					goto msgfail;
980 			}
981 
982 			result->m_pkthdr.len = 0;
983 			for (m = result; m; m = m->m_next)
984 				result->m_pkthdr.len += m->m_len;
985 			mtod(result, struct sadb_msg *)->sadb_msg_len =
986 				PFKEY_UNIT64(result->m_pkthdr.len);
987 
988 			if (key_sendup_mbuf(NULL, result,
989 					KEY_SENDUP_REGISTERED))
990 				goto msgfail;
991 		 msgfail:
992 			KEY_FREESAV(&d);
993 		}
994 	}
995 	if (candidate) {
996 		SA_ADDREF(candidate);
997 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
998 			printf("DP %s cause refcnt++:%d SA:%p\n",
999 				__func__, candidate->refcnt, candidate));
1000 	}
1001 	SAHTREE_UNLOCK();
1002 
1003 	return candidate;
1004 }
1005 
1006 /*
1007  * allocating a usable SA entry for a *INBOUND* packet.
1008  * Must call key_freesav() later.
1009  * OUT: positive:	pointer to a usable sav (i.e. MATURE or DYING state).
1010  *	NULL:		not found, or error occured.
1011  *
1012  * In the comparison, no source address is used--for RFC2401 conformance.
1013  * To quote, from section 4.1:
1014  *	A security association is uniquely identified by a triple consisting
1015  *	of a Security Parameter Index (SPI), an IP Destination Address, and a
1016  *	security protocol (AH or ESP) identifier.
1017  * Note that, however, we do need to keep source address in IPsec SA.
1018  * IKE specification and PF_KEY specification do assume that we
1019  * keep source address in IPsec SA.  We see a tricky situation here.
1020  */
1021 struct secasvar *
1022 key_allocsa(
1023 	union sockaddr_union *dst,
1024 	u_int proto,
1025 	u_int32_t spi,
1026 	const char* where, int tag)
1027 {
1028 	struct secashead *sah;
1029 	struct secasvar *sav;
1030 	u_int stateidx, arraysize, state;
1031 	const u_int *saorder_state_valid;
1032 
1033 	IPSEC_ASSERT(dst != NULL, ("null dst address"));
1034 
1035 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1036 		printf("DP %s from %s:%u\n", __func__, where, tag));
1037 
1038 	/*
1039 	 * searching SAD.
1040 	 * XXX: to be checked internal IP header somewhere.  Also when
1041 	 * IPsec tunnel packet is received.  But ESP tunnel mode is
1042 	 * encrypted so we can't check internal IP header.
1043 	 */
1044 	SAHTREE_LOCK();
1045 	if (key_preferred_oldsa) {
1046 		saorder_state_valid = saorder_state_valid_prefer_old;
1047 		arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1048 	} else {
1049 		saorder_state_valid = saorder_state_valid_prefer_new;
1050 		arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1051 	}
1052 	LIST_FOREACH(sah, &sahtree, chain) {
1053 		/* search valid state */
1054 		for (stateidx = 0; stateidx < arraysize; stateidx++) {
1055 			state = saorder_state_valid[stateidx];
1056 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
1057 				/* sanity check */
1058 				KEY_CHKSASTATE(sav->state, state, __func__);
1059 				/* do not return entries w/ unusable state */
1060 				if (sav->state != SADB_SASTATE_MATURE &&
1061 				    sav->state != SADB_SASTATE_DYING)
1062 					continue;
1063 				if (proto != sav->sah->saidx.proto)
1064 					continue;
1065 				if (spi != sav->spi)
1066 					continue;
1067 #if 0	/* don't check src */
1068 				/* check src address */
1069 				if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, 0) != 0)
1070 					continue;
1071 #endif
1072 				/* check dst address */
1073 				if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, 0) != 0)
1074 					continue;
1075 				SA_ADDREF(sav);
1076 				goto done;
1077 			}
1078 		}
1079 	}
1080 	sav = NULL;
1081 done:
1082 	SAHTREE_UNLOCK();
1083 
1084 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1085 		printf("DP %s return SA:%p; refcnt %u\n", __func__,
1086 			sav, sav ? sav->refcnt : 0));
1087 	return sav;
1088 }
1089 
1090 /*
1091  * Must be called after calling key_allocsp().
1092  * For both the packet without socket and key_freeso().
1093  */
1094 void
1095 _key_freesp(struct secpolicy **spp, const char* where, int tag)
1096 {
1097 	struct secpolicy *sp = *spp;
1098 
1099 	IPSEC_ASSERT(sp != NULL, ("null sp"));
1100 
1101 	SPTREE_LOCK();
1102 	SP_DELREF(sp);
1103 
1104 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1105 		printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1106 			__func__, sp, sp->id, where, tag, sp->refcnt));
1107 
1108 	if (sp->refcnt == 0) {
1109 		*spp = NULL;
1110 		key_delsp(sp);
1111 	}
1112 	SPTREE_UNLOCK();
1113 }
1114 
1115 /*
1116  * Must be called after calling key_allocsp().
1117  * For the packet with socket.
1118  */
1119 void
1120 key_freeso(struct socket *so)
1121 {
1122 	IPSEC_ASSERT(so != NULL, ("null so"));
1123 
1124 	switch (so->so_proto->pr_domain->dom_family) {
1125 #ifdef INET
1126 	case PF_INET:
1127 	    {
1128 		struct inpcb *pcb = sotoinpcb(so);
1129 
1130 		/* Does it have a PCB ? */
1131 		if (pcb == NULL)
1132 			return;
1133 		key_freesp_so(&pcb->inp_sp->sp_in);
1134 		key_freesp_so(&pcb->inp_sp->sp_out);
1135 	    }
1136 		break;
1137 #endif
1138 #ifdef INET6
1139 	case PF_INET6:
1140 	    {
1141 #ifdef HAVE_NRL_INPCB
1142 		struct inpcb *pcb  = sotoinpcb(so);
1143 
1144 		/* Does it have a PCB ? */
1145 		if (pcb == NULL)
1146 			return;
1147 		key_freesp_so(&pcb->inp_sp->sp_in);
1148 		key_freesp_so(&pcb->inp_sp->sp_out);
1149 #else
1150 		struct in6pcb *pcb  = sotoin6pcb(so);
1151 
1152 		/* Does it have a PCB ? */
1153 		if (pcb == NULL)
1154 			return;
1155 		key_freesp_so(&pcb->in6p_sp->sp_in);
1156 		key_freesp_so(&pcb->in6p_sp->sp_out);
1157 #endif
1158 	    }
1159 		break;
1160 #endif /* INET6 */
1161 	default:
1162 		ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n",
1163 		    __func__, so->so_proto->pr_domain->dom_family));
1164 		return;
1165 	}
1166 }
1167 
1168 static void
1169 key_freesp_so(struct secpolicy **sp)
1170 {
1171 	IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp"));
1172 
1173 	if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1174 	    (*sp)->policy == IPSEC_POLICY_BYPASS)
1175 		return;
1176 
1177 	IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC,
1178 		("invalid policy %u", (*sp)->policy));
1179 	KEY_FREESP(sp);
1180 }
1181 
1182 /*
1183  * Must be called after calling key_allocsa().
1184  * This function is called by key_freesp() to free some SA allocated
1185  * for a policy.
1186  */
1187 void
1188 key_freesav(struct secasvar **psav, const char* where, int tag)
1189 {
1190 	struct secasvar *sav = *psav;
1191 
1192 	IPSEC_ASSERT(sav != NULL, ("null sav"));
1193 
1194 	/* XXX unguarded? */
1195 	SA_DELREF(sav);
1196 
1197 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1198 		printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1199 			__func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1200 
1201 	if (sav->refcnt == 0) {
1202 		*psav = NULL;
1203 		key_delsav(sav);
1204 	}
1205 }
1206 
1207 /* %%% SPD management */
1208 /*
1209  * free security policy entry.
1210  */
1211 static void
1212 key_delsp(struct secpolicy *sp)
1213 {
1214 	struct ipsecrequest *isr, *nextisr;
1215 
1216 	IPSEC_ASSERT(sp != NULL, ("null sp"));
1217 	SPTREE_LOCK_ASSERT();
1218 
1219 	sp->state = IPSEC_SPSTATE_DEAD;
1220 
1221 	IPSEC_ASSERT(sp->refcnt == 0,
1222 		("SP with references deleted (refcnt %u)", sp->refcnt));
1223 
1224 	/* remove from SP index */
1225 	if (__LIST_CHAINED(sp))
1226 		LIST_REMOVE(sp, chain);
1227 
1228 	for (isr = sp->req; isr != NULL; isr = nextisr) {
1229 		if (isr->sav != NULL) {
1230 			KEY_FREESAV(&isr->sav);
1231 			isr->sav = NULL;
1232 		}
1233 
1234 		nextisr = isr->next;
1235 		ipsec_delisr(isr);
1236 	}
1237 	_key_delsp(sp);
1238 }
1239 
1240 /*
1241  * search SPD
1242  * OUT:	NULL	: not found
1243  *	others	: found, pointer to a SP.
1244  */
1245 static struct secpolicy *
1246 key_getsp(struct secpolicyindex *spidx)
1247 {
1248 	struct secpolicy *sp;
1249 
1250 	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
1251 
1252 	SPTREE_LOCK();
1253 	LIST_FOREACH(sp, &sptree[spidx->dir], chain) {
1254 		if (sp->state == IPSEC_SPSTATE_DEAD)
1255 			continue;
1256 		if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1257 			SP_ADDREF(sp);
1258 			break;
1259 		}
1260 	}
1261 	SPTREE_UNLOCK();
1262 
1263 	return sp;
1264 }
1265 
1266 /*
1267  * get SP by index.
1268  * OUT:	NULL	: not found
1269  *	others	: found, pointer to a SP.
1270  */
1271 static struct secpolicy *
1272 key_getspbyid(u_int32_t id)
1273 {
1274 	struct secpolicy *sp;
1275 
1276 	SPTREE_LOCK();
1277 	LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) {
1278 		if (sp->state == IPSEC_SPSTATE_DEAD)
1279 			continue;
1280 		if (sp->id == id) {
1281 			SP_ADDREF(sp);
1282 			goto done;
1283 		}
1284 	}
1285 
1286 	LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) {
1287 		if (sp->state == IPSEC_SPSTATE_DEAD)
1288 			continue;
1289 		if (sp->id == id) {
1290 			SP_ADDREF(sp);
1291 			goto done;
1292 		}
1293 	}
1294 done:
1295 	SPTREE_UNLOCK();
1296 
1297 	return sp;
1298 }
1299 
1300 struct secpolicy *
1301 key_newsp(const char* where, int tag)
1302 {
1303 	struct secpolicy *newsp = NULL;
1304 
1305 	newsp = (struct secpolicy *)
1306 		malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO);
1307 	if (newsp) {
1308 		SECPOLICY_LOCK_INIT(newsp);
1309 		newsp->refcnt = 1;
1310 		newsp->req = NULL;
1311 	}
1312 
1313 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1314 		printf("DP %s from %s:%u return SP:%p\n", __func__,
1315 			where, tag, newsp));
1316 	return newsp;
1317 }
1318 
1319 static void
1320 _key_delsp(struct secpolicy *sp)
1321 {
1322 	SECPOLICY_LOCK_DESTROY(sp);
1323 	free(sp, M_IPSEC_SP);
1324 }
1325 
1326 /*
1327  * create secpolicy structure from sadb_x_policy structure.
1328  * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1329  * so must be set properly later.
1330  */
1331 struct secpolicy *
1332 key_msg2sp(xpl0, len, error)
1333 	struct sadb_x_policy *xpl0;
1334 	size_t len;
1335 	int *error;
1336 {
1337 	struct secpolicy *newsp;
1338 
1339 	IPSEC_ASSERT(xpl0 != NULL, ("null xpl0"));
1340 	IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len));
1341 
1342 	if (len != PFKEY_EXTLEN(xpl0)) {
1343 		ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__));
1344 		*error = EINVAL;
1345 		return NULL;
1346 	}
1347 
1348 	if ((newsp = KEY_NEWSP()) == NULL) {
1349 		*error = ENOBUFS;
1350 		return NULL;
1351 	}
1352 
1353 	newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1354 	newsp->policy = xpl0->sadb_x_policy_type;
1355 
1356 	/* check policy */
1357 	switch (xpl0->sadb_x_policy_type) {
1358 	case IPSEC_POLICY_DISCARD:
1359 	case IPSEC_POLICY_NONE:
1360 	case IPSEC_POLICY_ENTRUST:
1361 	case IPSEC_POLICY_BYPASS:
1362 		newsp->req = NULL;
1363 		break;
1364 
1365 	case IPSEC_POLICY_IPSEC:
1366 	    {
1367 		int tlen;
1368 		struct sadb_x_ipsecrequest *xisr;
1369 		struct ipsecrequest **p_isr = &newsp->req;
1370 
1371 		/* validity check */
1372 		if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1373 			ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n",
1374 				__func__));
1375 			KEY_FREESP(&newsp);
1376 			*error = EINVAL;
1377 			return NULL;
1378 		}
1379 
1380 		tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1381 		xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1);
1382 
1383 		while (tlen > 0) {
1384 			/* length check */
1385 			if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1386 				ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest "
1387 					"length.\n", __func__));
1388 				KEY_FREESP(&newsp);
1389 				*error = EINVAL;
1390 				return NULL;
1391 			}
1392 
1393 			/* allocate request buffer */
1394 			/* NB: data structure is zero'd */
1395 			*p_isr = ipsec_newisr();
1396 			if ((*p_isr) == NULL) {
1397 				ipseclog((LOG_DEBUG,
1398 				    "%s: No more memory.\n", __func__));
1399 				KEY_FREESP(&newsp);
1400 				*error = ENOBUFS;
1401 				return NULL;
1402 			}
1403 
1404 			/* set values */
1405 			switch (xisr->sadb_x_ipsecrequest_proto) {
1406 			case IPPROTO_ESP:
1407 			case IPPROTO_AH:
1408 			case IPPROTO_IPCOMP:
1409 				break;
1410 			default:
1411 				ipseclog((LOG_DEBUG,
1412 				    "%s: invalid proto type=%u\n", __func__,
1413 				    xisr->sadb_x_ipsecrequest_proto));
1414 				KEY_FREESP(&newsp);
1415 				*error = EPROTONOSUPPORT;
1416 				return NULL;
1417 			}
1418 			(*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1419 
1420 			switch (xisr->sadb_x_ipsecrequest_mode) {
1421 			case IPSEC_MODE_TRANSPORT:
1422 			case IPSEC_MODE_TUNNEL:
1423 				break;
1424 			case IPSEC_MODE_ANY:
1425 			default:
1426 				ipseclog((LOG_DEBUG,
1427 				    "%s: invalid mode=%u\n", __func__,
1428 				    xisr->sadb_x_ipsecrequest_mode));
1429 				KEY_FREESP(&newsp);
1430 				*error = EINVAL;
1431 				return NULL;
1432 			}
1433 			(*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1434 
1435 			switch (xisr->sadb_x_ipsecrequest_level) {
1436 			case IPSEC_LEVEL_DEFAULT:
1437 			case IPSEC_LEVEL_USE:
1438 			case IPSEC_LEVEL_REQUIRE:
1439 				break;
1440 			case IPSEC_LEVEL_UNIQUE:
1441 				/* validity check */
1442 				/*
1443 				 * If range violation of reqid, kernel will
1444 				 * update it, don't refuse it.
1445 				 */
1446 				if (xisr->sadb_x_ipsecrequest_reqid
1447 						> IPSEC_MANUAL_REQID_MAX) {
1448 					ipseclog((LOG_DEBUG,
1449 					    "%s: reqid=%d range "
1450 					    "violation, updated by kernel.\n",
1451 					    __func__,
1452 					    xisr->sadb_x_ipsecrequest_reqid));
1453 					xisr->sadb_x_ipsecrequest_reqid = 0;
1454 				}
1455 
1456 				/* allocate new reqid id if reqid is zero. */
1457 				if (xisr->sadb_x_ipsecrequest_reqid == 0) {
1458 					u_int32_t reqid;
1459 					if ((reqid = key_newreqid()) == 0) {
1460 						KEY_FREESP(&newsp);
1461 						*error = ENOBUFS;
1462 						return NULL;
1463 					}
1464 					(*p_isr)->saidx.reqid = reqid;
1465 					xisr->sadb_x_ipsecrequest_reqid = reqid;
1466 				} else {
1467 				/* set it for manual keying. */
1468 					(*p_isr)->saidx.reqid =
1469 						xisr->sadb_x_ipsecrequest_reqid;
1470 				}
1471 				break;
1472 
1473 			default:
1474 				ipseclog((LOG_DEBUG, "%s: invalid level=%u\n",
1475 					__func__,
1476 					xisr->sadb_x_ipsecrequest_level));
1477 				KEY_FREESP(&newsp);
1478 				*error = EINVAL;
1479 				return NULL;
1480 			}
1481 			(*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1482 
1483 			/* set IP addresses if there */
1484 			if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1485 				struct sockaddr *paddr;
1486 
1487 				paddr = (struct sockaddr *)(xisr + 1);
1488 
1489 				/* validity check */
1490 				if (paddr->sa_len
1491 				    > sizeof((*p_isr)->saidx.src)) {
1492 					ipseclog((LOG_DEBUG, "%s: invalid "
1493 						"request address length.\n",
1494 						__func__));
1495 					KEY_FREESP(&newsp);
1496 					*error = EINVAL;
1497 					return NULL;
1498 				}
1499 				bcopy(paddr, &(*p_isr)->saidx.src,
1500 					paddr->sa_len);
1501 
1502 				paddr = (struct sockaddr *)((caddr_t)paddr
1503 							+ paddr->sa_len);
1504 
1505 				/* validity check */
1506 				if (paddr->sa_len
1507 				    > sizeof((*p_isr)->saidx.dst)) {
1508 					ipseclog((LOG_DEBUG, "%s: invalid "
1509 						"request address length.\n",
1510 						__func__));
1511 					KEY_FREESP(&newsp);
1512 					*error = EINVAL;
1513 					return NULL;
1514 				}
1515 				bcopy(paddr, &(*p_isr)->saidx.dst,
1516 					paddr->sa_len);
1517 			}
1518 
1519 			(*p_isr)->sp = newsp;
1520 
1521 			/* initialization for the next. */
1522 			p_isr = &(*p_isr)->next;
1523 			tlen -= xisr->sadb_x_ipsecrequest_len;
1524 
1525 			/* validity check */
1526 			if (tlen < 0) {
1527 				ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n",
1528 					__func__));
1529 				KEY_FREESP(&newsp);
1530 				*error = EINVAL;
1531 				return NULL;
1532 			}
1533 
1534 			xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr
1535 			                 + xisr->sadb_x_ipsecrequest_len);
1536 		}
1537 	    }
1538 		break;
1539 	default:
1540 		ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__));
1541 		KEY_FREESP(&newsp);
1542 		*error = EINVAL;
1543 		return NULL;
1544 	}
1545 
1546 	*error = 0;
1547 	return newsp;
1548 }
1549 
1550 static u_int32_t
1551 key_newreqid()
1552 {
1553 	static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1554 
1555 	auto_reqid = (auto_reqid == ~0
1556 			? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1557 
1558 	/* XXX should be unique check */
1559 
1560 	return auto_reqid;
1561 }
1562 
1563 /*
1564  * copy secpolicy struct to sadb_x_policy structure indicated.
1565  */
1566 struct mbuf *
1567 key_sp2msg(sp)
1568 	struct secpolicy *sp;
1569 {
1570 	struct sadb_x_policy *xpl;
1571 	int tlen;
1572 	caddr_t p;
1573 	struct mbuf *m;
1574 
1575 	IPSEC_ASSERT(sp != NULL, ("null policy"));
1576 
1577 	tlen = key_getspreqmsglen(sp);
1578 
1579 	m = key_alloc_mbuf(tlen);
1580 	if (!m || m->m_next) {	/*XXX*/
1581 		if (m)
1582 			m_freem(m);
1583 		return NULL;
1584 	}
1585 
1586 	m->m_len = tlen;
1587 	m->m_next = NULL;
1588 	xpl = mtod(m, struct sadb_x_policy *);
1589 	bzero(xpl, tlen);
1590 
1591 	xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1592 	xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1593 	xpl->sadb_x_policy_type = sp->policy;
1594 	xpl->sadb_x_policy_dir = sp->spidx.dir;
1595 	xpl->sadb_x_policy_id = sp->id;
1596 	p = (caddr_t)xpl + sizeof(*xpl);
1597 
1598 	/* if is the policy for ipsec ? */
1599 	if (sp->policy == IPSEC_POLICY_IPSEC) {
1600 		struct sadb_x_ipsecrequest *xisr;
1601 		struct ipsecrequest *isr;
1602 
1603 		for (isr = sp->req; isr != NULL; isr = isr->next) {
1604 
1605 			xisr = (struct sadb_x_ipsecrequest *)p;
1606 
1607 			xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1608 			xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1609 			xisr->sadb_x_ipsecrequest_level = isr->level;
1610 			xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1611 
1612 			p += sizeof(*xisr);
1613 			bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len);
1614 			p += isr->saidx.src.sa.sa_len;
1615 			bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len);
1616 			p += isr->saidx.src.sa.sa_len;
1617 
1618 			xisr->sadb_x_ipsecrequest_len =
1619 				PFKEY_ALIGN8(sizeof(*xisr)
1620 					+ isr->saidx.src.sa.sa_len
1621 					+ isr->saidx.dst.sa.sa_len);
1622 		}
1623 	}
1624 
1625 	return m;
1626 }
1627 
1628 /* m will not be freed nor modified */
1629 static struct mbuf *
1630 #ifdef __STDC__
1631 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1632 	int ndeep, int nitem, ...)
1633 #else
1634 key_gather_mbuf(m, mhp, ndeep, nitem, va_alist)
1635 	struct mbuf *m;
1636 	const struct sadb_msghdr *mhp;
1637 	int ndeep;
1638 	int nitem;
1639 	va_dcl
1640 #endif
1641 {
1642 	va_list ap;
1643 	int idx;
1644 	int i;
1645 	struct mbuf *result = NULL, *n;
1646 	int len;
1647 
1648 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1649 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1650 
1651 	va_start(ap, nitem);
1652 	for (i = 0; i < nitem; i++) {
1653 		idx = va_arg(ap, int);
1654 		if (idx < 0 || idx > SADB_EXT_MAX)
1655 			goto fail;
1656 		/* don't attempt to pull empty extension */
1657 		if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1658 			continue;
1659 		if (idx != SADB_EXT_RESERVED  &&
1660 		    (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1661 			continue;
1662 
1663 		if (idx == SADB_EXT_RESERVED) {
1664 			len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1665 
1666 			IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len));
1667 
1668 			MGETHDR(n, M_DONTWAIT, MT_DATA);
1669 			if (!n)
1670 				goto fail;
1671 			n->m_len = len;
1672 			n->m_next = NULL;
1673 			m_copydata(m, 0, sizeof(struct sadb_msg),
1674 			    mtod(n, caddr_t));
1675 		} else if (i < ndeep) {
1676 			len = mhp->extlen[idx];
1677 			n = key_alloc_mbuf(len);
1678 			if (!n || n->m_next) {	/*XXX*/
1679 				if (n)
1680 					m_freem(n);
1681 				goto fail;
1682 			}
1683 			m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1684 			    mtod(n, caddr_t));
1685 		} else {
1686 			n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1687 			    M_DONTWAIT);
1688 		}
1689 		if (n == NULL)
1690 			goto fail;
1691 
1692 		if (result)
1693 			m_cat(result, n);
1694 		else
1695 			result = n;
1696 	}
1697 	va_end(ap);
1698 
1699 	if ((result->m_flags & M_PKTHDR) != 0) {
1700 		result->m_pkthdr.len = 0;
1701 		for (n = result; n; n = n->m_next)
1702 			result->m_pkthdr.len += n->m_len;
1703 	}
1704 
1705 	return result;
1706 
1707 fail:
1708 	m_freem(result);
1709 	return NULL;
1710 }
1711 
1712 /*
1713  * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1714  * add an entry to SP database, when received
1715  *   <base, address(SD), (lifetime(H),) policy>
1716  * from the user(?).
1717  * Adding to SP database,
1718  * and send
1719  *   <base, address(SD), (lifetime(H),) policy>
1720  * to the socket which was send.
1721  *
1722  * SPDADD set a unique policy entry.
1723  * SPDSETIDX like SPDADD without a part of policy requests.
1724  * SPDUPDATE replace a unique policy entry.
1725  *
1726  * m will always be freed.
1727  */
1728 static int
1729 key_spdadd(so, m, mhp)
1730 	struct socket *so;
1731 	struct mbuf *m;
1732 	const struct sadb_msghdr *mhp;
1733 {
1734 	struct sadb_address *src0, *dst0;
1735 	struct sadb_x_policy *xpl0, *xpl;
1736 	struct sadb_lifetime *lft = NULL;
1737 	struct secpolicyindex spidx;
1738 	struct secpolicy *newsp;
1739 	int error;
1740 
1741 	IPSEC_ASSERT(so != NULL, ("null socket"));
1742 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1743 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1744 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
1745 
1746 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1747 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1748 	    mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1749 		ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1750 		return key_senderror(so, m, EINVAL);
1751 	}
1752 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1753 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1754 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1755 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1756 			__func__));
1757 		return key_senderror(so, m, EINVAL);
1758 	}
1759 	if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1760 		if (mhp->extlen[SADB_EXT_LIFETIME_HARD]
1761 			< sizeof(struct sadb_lifetime)) {
1762 			ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1763 				__func__));
1764 			return key_senderror(so, m, EINVAL);
1765 		}
1766 		lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1767 	}
1768 
1769 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1770 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1771 	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1772 
1773 	/* make secindex */
1774 	/* XXX boundary check against sa_len */
1775 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1776 	                src0 + 1,
1777 	                dst0 + 1,
1778 	                src0->sadb_address_prefixlen,
1779 	                dst0->sadb_address_prefixlen,
1780 	                src0->sadb_address_proto,
1781 	                &spidx);
1782 
1783 	/* checking the direciton. */
1784 	switch (xpl0->sadb_x_policy_dir) {
1785 	case IPSEC_DIR_INBOUND:
1786 	case IPSEC_DIR_OUTBOUND:
1787 		break;
1788 	default:
1789 		ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
1790 		mhp->msg->sadb_msg_errno = EINVAL;
1791 		return 0;
1792 	}
1793 
1794 	/* check policy */
1795 	/* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1796 	if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST
1797 	 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1798 		ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__));
1799 		return key_senderror(so, m, EINVAL);
1800 	}
1801 
1802 	/* policy requests are mandatory when action is ipsec. */
1803         if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX
1804 	 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC
1805 	 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1806 		ipseclog((LOG_DEBUG, "%s: some policy requests part required\n",
1807 			__func__));
1808 		return key_senderror(so, m, EINVAL);
1809 	}
1810 
1811 	/*
1812 	 * checking there is SP already or not.
1813 	 * SPDUPDATE doesn't depend on whether there is a SP or not.
1814 	 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1815 	 * then error.
1816 	 */
1817 	newsp = key_getsp(&spidx);
1818 	if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1819 		if (newsp) {
1820 			newsp->state = IPSEC_SPSTATE_DEAD;
1821 			KEY_FREESP(&newsp);
1822 		}
1823 	} else {
1824 		if (newsp != NULL) {
1825 			KEY_FREESP(&newsp);
1826 			ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n",
1827 				__func__));
1828 			return key_senderror(so, m, EEXIST);
1829 		}
1830 	}
1831 
1832 	/* allocation new SP entry */
1833 	if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
1834 		return key_senderror(so, m, error);
1835 	}
1836 
1837 	if ((newsp->id = key_getnewspid()) == 0) {
1838 		_key_delsp(newsp);
1839 		return key_senderror(so, m, ENOBUFS);
1840 	}
1841 
1842 	/* XXX boundary check against sa_len */
1843 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1844 	                src0 + 1,
1845 	                dst0 + 1,
1846 	                src0->sadb_address_prefixlen,
1847 	                dst0->sadb_address_prefixlen,
1848 	                src0->sadb_address_proto,
1849 	                &newsp->spidx);
1850 
1851 	/* sanity check on addr pair */
1852 	if (((struct sockaddr *)(src0 + 1))->sa_family !=
1853 			((struct sockaddr *)(dst0+ 1))->sa_family) {
1854 		_key_delsp(newsp);
1855 		return key_senderror(so, m, EINVAL);
1856 	}
1857 	if (((struct sockaddr *)(src0 + 1))->sa_len !=
1858 			((struct sockaddr *)(dst0+ 1))->sa_len) {
1859 		_key_delsp(newsp);
1860 		return key_senderror(so, m, EINVAL);
1861 	}
1862 #if 1
1863 	if (newsp->req && newsp->req->saidx.src.sa.sa_family) {
1864 		struct sockaddr *sa;
1865 		sa = (struct sockaddr *)(src0 + 1);
1866 		if (sa->sa_family != newsp->req->saidx.src.sa.sa_family) {
1867 			_key_delsp(newsp);
1868 			return key_senderror(so, m, EINVAL);
1869 		}
1870 	}
1871 	if (newsp->req && newsp->req->saidx.dst.sa.sa_family) {
1872 		struct sockaddr *sa;
1873 		sa = (struct sockaddr *)(dst0 + 1);
1874 		if (sa->sa_family != newsp->req->saidx.dst.sa.sa_family) {
1875 			_key_delsp(newsp);
1876 			return key_senderror(so, m, EINVAL);
1877 		}
1878 	}
1879 #endif
1880 
1881 	newsp->created = time_second;
1882 	newsp->lastused = newsp->created;
1883 	newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1884 	newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1885 
1886 	newsp->refcnt = 1;	/* do not reclaim until I say I do */
1887 	newsp->state = IPSEC_SPSTATE_ALIVE;
1888 	LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1889 
1890 	/* delete the entry in spacqtree */
1891 	if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1892 		struct secspacq *spacq = key_getspacq(&spidx);
1893 		if (spacq != NULL) {
1894 			/* reset counter in order to deletion by timehandler. */
1895 			spacq->created = time_second;
1896 			spacq->count = 0;
1897 			SPACQ_UNLOCK();
1898 		}
1899     	}
1900 
1901     {
1902 	struct mbuf *n, *mpolicy;
1903 	struct sadb_msg *newmsg;
1904 	int off;
1905 
1906 	/* create new sadb_msg to reply. */
1907 	if (lft) {
1908 		n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
1909 		    SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
1910 		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1911 	} else {
1912 		n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
1913 		    SADB_X_EXT_POLICY,
1914 		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1915 	}
1916 	if (!n)
1917 		return key_senderror(so, m, ENOBUFS);
1918 
1919 	if (n->m_len < sizeof(*newmsg)) {
1920 		n = m_pullup(n, sizeof(*newmsg));
1921 		if (!n)
1922 			return key_senderror(so, m, ENOBUFS);
1923 	}
1924 	newmsg = mtod(n, struct sadb_msg *);
1925 	newmsg->sadb_msg_errno = 0;
1926 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
1927 
1928 	off = 0;
1929 	mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
1930 	    sizeof(*xpl), &off);
1931 	if (mpolicy == NULL) {
1932 		/* n is already freed */
1933 		return key_senderror(so, m, ENOBUFS);
1934 	}
1935 	xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off);
1936 	if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
1937 		m_freem(n);
1938 		return key_senderror(so, m, EINVAL);
1939 	}
1940 	xpl->sadb_x_policy_id = newsp->id;
1941 
1942 	m_freem(m);
1943 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
1944     }
1945 }
1946 
1947 /*
1948  * get new policy id.
1949  * OUT:
1950  *	0:	failure.
1951  *	others: success.
1952  */
1953 static u_int32_t
1954 key_getnewspid()
1955 {
1956 	u_int32_t newid = 0;
1957 	int count = key_spi_trycnt;	/* XXX */
1958 	struct secpolicy *sp;
1959 
1960 	/* when requesting to allocate spi ranged */
1961 	while (count--) {
1962 		newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
1963 
1964 		if ((sp = key_getspbyid(newid)) == NULL)
1965 			break;
1966 
1967 		KEY_FREESP(&sp);
1968 	}
1969 
1970 	if (count == 0 || newid == 0) {
1971 		ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n",
1972 			__func__));
1973 		return 0;
1974 	}
1975 
1976 	return newid;
1977 }
1978 
1979 /*
1980  * SADB_SPDDELETE processing
1981  * receive
1982  *   <base, address(SD), policy(*)>
1983  * from the user(?), and set SADB_SASTATE_DEAD,
1984  * and send,
1985  *   <base, address(SD), policy(*)>
1986  * to the ikmpd.
1987  * policy(*) including direction of policy.
1988  *
1989  * m will always be freed.
1990  */
1991 static int
1992 key_spddelete(so, m, mhp)
1993 	struct socket *so;
1994 	struct mbuf *m;
1995 	const struct sadb_msghdr *mhp;
1996 {
1997 	struct sadb_address *src0, *dst0;
1998 	struct sadb_x_policy *xpl0;
1999 	struct secpolicyindex spidx;
2000 	struct secpolicy *sp;
2001 
2002 	IPSEC_ASSERT(so != NULL, ("null so"));
2003 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2004 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2005 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2006 
2007 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2008 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2009 	    mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2010 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2011 			__func__));
2012 		return key_senderror(so, m, EINVAL);
2013 	}
2014 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2015 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2016 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2017 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2018 			__func__));
2019 		return key_senderror(so, m, EINVAL);
2020 	}
2021 
2022 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2023 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2024 	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2025 
2026 	/* make secindex */
2027 	/* XXX boundary check against sa_len */
2028 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2029 	                src0 + 1,
2030 	                dst0 + 1,
2031 	                src0->sadb_address_prefixlen,
2032 	                dst0->sadb_address_prefixlen,
2033 	                src0->sadb_address_proto,
2034 	                &spidx);
2035 
2036 	/* checking the direciton. */
2037 	switch (xpl0->sadb_x_policy_dir) {
2038 	case IPSEC_DIR_INBOUND:
2039 	case IPSEC_DIR_OUTBOUND:
2040 		break;
2041 	default:
2042 		ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
2043 		return key_senderror(so, m, EINVAL);
2044 	}
2045 
2046 	/* Is there SP in SPD ? */
2047 	if ((sp = key_getsp(&spidx)) == NULL) {
2048 		ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__));
2049 		return key_senderror(so, m, EINVAL);
2050 	}
2051 
2052 	/* save policy id to buffer to be returned. */
2053 	xpl0->sadb_x_policy_id = sp->id;
2054 
2055 	sp->state = IPSEC_SPSTATE_DEAD;
2056 	KEY_FREESP(&sp);
2057 
2058     {
2059 	struct mbuf *n;
2060 	struct sadb_msg *newmsg;
2061 
2062 	/* create new sadb_msg to reply. */
2063 	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2064 	    SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2065 	if (!n)
2066 		return key_senderror(so, m, ENOBUFS);
2067 
2068 	newmsg = mtod(n, struct sadb_msg *);
2069 	newmsg->sadb_msg_errno = 0;
2070 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2071 
2072 	m_freem(m);
2073 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2074     }
2075 }
2076 
2077 /*
2078  * SADB_SPDDELETE2 processing
2079  * receive
2080  *   <base, policy(*)>
2081  * from the user(?), and set SADB_SASTATE_DEAD,
2082  * and send,
2083  *   <base, policy(*)>
2084  * to the ikmpd.
2085  * policy(*) including direction of policy.
2086  *
2087  * m will always be freed.
2088  */
2089 static int
2090 key_spddelete2(so, m, mhp)
2091 	struct socket *so;
2092 	struct mbuf *m;
2093 	const struct sadb_msghdr *mhp;
2094 {
2095 	u_int32_t id;
2096 	struct secpolicy *sp;
2097 
2098 	IPSEC_ASSERT(so != NULL, ("null socket"));
2099 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2100 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2101 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2102 
2103 	if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2104 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2105 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__));
2106 		key_senderror(so, m, EINVAL);
2107 		return 0;
2108 	}
2109 
2110 	id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2111 
2112 	/* Is there SP in SPD ? */
2113 	if ((sp = key_getspbyid(id)) == NULL) {
2114 		ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2115 		key_senderror(so, m, EINVAL);
2116 	}
2117 
2118 	sp->state = IPSEC_SPSTATE_DEAD;
2119 	KEY_FREESP(&sp);
2120 
2121     {
2122 	struct mbuf *n, *nn;
2123 	struct sadb_msg *newmsg;
2124 	int off, len;
2125 
2126 	/* create new sadb_msg to reply. */
2127 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2128 
2129 	if (len > MCLBYTES)
2130 		return key_senderror(so, m, ENOBUFS);
2131 	MGETHDR(n, M_DONTWAIT, MT_DATA);
2132 	if (n && len > MHLEN) {
2133 		MCLGET(n, M_DONTWAIT);
2134 		if ((n->m_flags & M_EXT) == 0) {
2135 			m_freem(n);
2136 			n = NULL;
2137 		}
2138 	}
2139 	if (!n)
2140 		return key_senderror(so, m, ENOBUFS);
2141 
2142 	n->m_len = len;
2143 	n->m_next = NULL;
2144 	off = 0;
2145 
2146 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
2147 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2148 
2149 	IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)",
2150 		off, len));
2151 
2152 	n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2153 	    mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2154 	if (!n->m_next) {
2155 		m_freem(n);
2156 		return key_senderror(so, m, ENOBUFS);
2157 	}
2158 
2159 	n->m_pkthdr.len = 0;
2160 	for (nn = n; nn; nn = nn->m_next)
2161 		n->m_pkthdr.len += nn->m_len;
2162 
2163 	newmsg = mtod(n, struct sadb_msg *);
2164 	newmsg->sadb_msg_errno = 0;
2165 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2166 
2167 	m_freem(m);
2168 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2169     }
2170 }
2171 
2172 /*
2173  * SADB_X_GET processing
2174  * receive
2175  *   <base, policy(*)>
2176  * from the user(?),
2177  * and send,
2178  *   <base, address(SD), policy>
2179  * to the ikmpd.
2180  * policy(*) including direction of policy.
2181  *
2182  * m will always be freed.
2183  */
2184 static int
2185 key_spdget(so, m, mhp)
2186 	struct socket *so;
2187 	struct mbuf *m;
2188 	const struct sadb_msghdr *mhp;
2189 {
2190 	u_int32_t id;
2191 	struct secpolicy *sp;
2192 	struct mbuf *n;
2193 
2194 	IPSEC_ASSERT(so != NULL, ("null socket"));
2195 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2196 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2197 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2198 
2199 	if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2200 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2201 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2202 			__func__));
2203 		return key_senderror(so, m, EINVAL);
2204 	}
2205 
2206 	id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2207 
2208 	/* Is there SP in SPD ? */
2209 	if ((sp = key_getspbyid(id)) == NULL) {
2210 		ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2211 		return key_senderror(so, m, ENOENT);
2212 	}
2213 
2214 	n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid);
2215 	if (n != NULL) {
2216 		m_freem(m);
2217 		return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2218 	} else
2219 		return key_senderror(so, m, ENOBUFS);
2220 }
2221 
2222 /*
2223  * SADB_X_SPDACQUIRE processing.
2224  * Acquire policy and SA(s) for a *OUTBOUND* packet.
2225  * send
2226  *   <base, policy(*)>
2227  * to KMD, and expect to receive
2228  *   <base> with SADB_X_SPDACQUIRE if error occured,
2229  * or
2230  *   <base, policy>
2231  * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2232  * policy(*) is without policy requests.
2233  *
2234  *    0     : succeed
2235  *    others: error number
2236  */
2237 int
2238 key_spdacquire(sp)
2239 	struct secpolicy *sp;
2240 {
2241 	struct mbuf *result = NULL, *m;
2242 	struct secspacq *newspacq;
2243 	int error;
2244 
2245 	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2246 	IPSEC_ASSERT(sp->req == NULL, ("policy exists"));
2247 	IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC,
2248 		("policy not IPSEC %u", sp->policy));
2249 
2250 	/* Get an entry to check whether sent message or not. */
2251 	newspacq = key_getspacq(&sp->spidx);
2252 	if (newspacq != NULL) {
2253 		if (key_blockacq_count < newspacq->count) {
2254 			/* reset counter and do send message. */
2255 			newspacq->count = 0;
2256 		} else {
2257 			/* increment counter and do nothing. */
2258 			newspacq->count++;
2259 			return 0;
2260 		}
2261 		SPACQ_UNLOCK();
2262 	} else {
2263 		/* make new entry for blocking to send SADB_ACQUIRE. */
2264 		newspacq = key_newspacq(&sp->spidx);
2265 		if (newspacq == NULL)
2266 			return ENOBUFS;
2267 	}
2268 
2269 	/* create new sadb_msg to reply. */
2270 	m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2271 	if (!m) {
2272 		error = ENOBUFS;
2273 		goto fail;
2274 	}
2275 	result = m;
2276 
2277 	result->m_pkthdr.len = 0;
2278 	for (m = result; m; m = m->m_next)
2279 		result->m_pkthdr.len += m->m_len;
2280 
2281 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2282 	    PFKEY_UNIT64(result->m_pkthdr.len);
2283 
2284 	return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2285 
2286 fail:
2287 	if (result)
2288 		m_freem(result);
2289 	return error;
2290 }
2291 
2292 /*
2293  * SADB_SPDFLUSH processing
2294  * receive
2295  *   <base>
2296  * from the user, and free all entries in secpctree.
2297  * and send,
2298  *   <base>
2299  * to the user.
2300  * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2301  *
2302  * m will always be freed.
2303  */
2304 static int
2305 key_spdflush(so, m, mhp)
2306 	struct socket *so;
2307 	struct mbuf *m;
2308 	const struct sadb_msghdr *mhp;
2309 {
2310 	struct sadb_msg *newmsg;
2311 	struct secpolicy *sp;
2312 	u_int dir;
2313 
2314 	IPSEC_ASSERT(so != NULL, ("null socket"));
2315 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2316 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2317 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2318 
2319 	if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2320 		return key_senderror(so, m, EINVAL);
2321 
2322 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2323 		SPTREE_LOCK();
2324 		LIST_FOREACH(sp, &sptree[dir], chain)
2325 			sp->state = IPSEC_SPSTATE_DEAD;
2326 		SPTREE_UNLOCK();
2327 	}
2328 
2329 	if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2330 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2331 		return key_senderror(so, m, ENOBUFS);
2332 	}
2333 
2334 	if (m->m_next)
2335 		m_freem(m->m_next);
2336 	m->m_next = NULL;
2337 	m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2338 	newmsg = mtod(m, struct sadb_msg *);
2339 	newmsg->sadb_msg_errno = 0;
2340 	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2341 
2342 	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2343 }
2344 
2345 /*
2346  * SADB_SPDDUMP processing
2347  * receive
2348  *   <base>
2349  * from the user, and dump all SP leaves
2350  * and send,
2351  *   <base> .....
2352  * to the ikmpd.
2353  *
2354  * m will always be freed.
2355  */
2356 static int
2357 key_spddump(so, m, mhp)
2358 	struct socket *so;
2359 	struct mbuf *m;
2360 	const struct sadb_msghdr *mhp;
2361 {
2362 	struct secpolicy *sp;
2363 	int cnt;
2364 	u_int dir;
2365 	struct mbuf *n;
2366 
2367 	IPSEC_ASSERT(so != NULL, ("null socket"));
2368 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2369 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2370 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2371 
2372 	/* search SPD entry and get buffer size. */
2373 	cnt = 0;
2374 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2375 		LIST_FOREACH(sp, &sptree[dir], chain) {
2376 			cnt++;
2377 		}
2378 	}
2379 
2380 	if (cnt == 0)
2381 		return key_senderror(so, m, ENOENT);
2382 
2383 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2384 		LIST_FOREACH(sp, &sptree[dir], chain) {
2385 			--cnt;
2386 			n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt,
2387 			    mhp->msg->sadb_msg_pid);
2388 
2389 			if (n)
2390 				key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2391 		}
2392 	}
2393 
2394 	m_freem(m);
2395 	return 0;
2396 }
2397 
2398 static struct mbuf *
2399 key_setdumpsp(sp, type, seq, pid)
2400 	struct secpolicy *sp;
2401 	u_int8_t type;
2402 	u_int32_t seq, pid;
2403 {
2404 	struct mbuf *result = NULL, *m;
2405 
2406 	m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2407 	if (!m)
2408 		goto fail;
2409 	result = m;
2410 
2411 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2412 	    &sp->spidx.src.sa, sp->spidx.prefs,
2413 	    sp->spidx.ul_proto);
2414 	if (!m)
2415 		goto fail;
2416 	m_cat(result, m);
2417 
2418 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2419 	    &sp->spidx.dst.sa, sp->spidx.prefd,
2420 	    sp->spidx.ul_proto);
2421 	if (!m)
2422 		goto fail;
2423 	m_cat(result, m);
2424 
2425 	m = key_sp2msg(sp);
2426 	if (!m)
2427 		goto fail;
2428 	m_cat(result, m);
2429 
2430 	if ((result->m_flags & M_PKTHDR) == 0)
2431 		goto fail;
2432 
2433 	if (result->m_len < sizeof(struct sadb_msg)) {
2434 		result = m_pullup(result, sizeof(struct sadb_msg));
2435 		if (result == NULL)
2436 			goto fail;
2437 	}
2438 
2439 	result->m_pkthdr.len = 0;
2440 	for (m = result; m; m = m->m_next)
2441 		result->m_pkthdr.len += m->m_len;
2442 
2443 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2444 	    PFKEY_UNIT64(result->m_pkthdr.len);
2445 
2446 	return result;
2447 
2448 fail:
2449 	m_freem(result);
2450 	return NULL;
2451 }
2452 
2453 /*
2454  * get PFKEY message length for security policy and request.
2455  */
2456 static u_int
2457 key_getspreqmsglen(sp)
2458 	struct secpolicy *sp;
2459 {
2460 	u_int tlen;
2461 
2462 	tlen = sizeof(struct sadb_x_policy);
2463 
2464 	/* if is the policy for ipsec ? */
2465 	if (sp->policy != IPSEC_POLICY_IPSEC)
2466 		return tlen;
2467 
2468 	/* get length of ipsec requests */
2469     {
2470 	struct ipsecrequest *isr;
2471 	int len;
2472 
2473 	for (isr = sp->req; isr != NULL; isr = isr->next) {
2474 		len = sizeof(struct sadb_x_ipsecrequest)
2475 			+ isr->saidx.src.sa.sa_len
2476 			+ isr->saidx.dst.sa.sa_len;
2477 
2478 		tlen += PFKEY_ALIGN8(len);
2479 	}
2480     }
2481 
2482 	return tlen;
2483 }
2484 
2485 /*
2486  * SADB_SPDEXPIRE processing
2487  * send
2488  *   <base, address(SD), lifetime(CH), policy>
2489  * to KMD by PF_KEY.
2490  *
2491  * OUT:	0	: succeed
2492  *	others	: error number
2493  */
2494 static int
2495 key_spdexpire(sp)
2496 	struct secpolicy *sp;
2497 {
2498 	struct mbuf *result = NULL, *m;
2499 	int len;
2500 	int error = -1;
2501 	struct sadb_lifetime *lt;
2502 
2503 	/* XXX: Why do we lock ? */
2504 
2505 	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2506 
2507 	/* set msg header */
2508 	m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2509 	if (!m) {
2510 		error = ENOBUFS;
2511 		goto fail;
2512 	}
2513 	result = m;
2514 
2515 	/* create lifetime extension (current and hard) */
2516 	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2517 	m = key_alloc_mbuf(len);
2518 	if (!m || m->m_next) {	/*XXX*/
2519 		if (m)
2520 			m_freem(m);
2521 		error = ENOBUFS;
2522 		goto fail;
2523 	}
2524 	bzero(mtod(m, caddr_t), len);
2525 	lt = mtod(m, struct sadb_lifetime *);
2526 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2527 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2528 	lt->sadb_lifetime_allocations = 0;
2529 	lt->sadb_lifetime_bytes = 0;
2530 	lt->sadb_lifetime_addtime = sp->created;
2531 	lt->sadb_lifetime_usetime = sp->lastused;
2532 	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
2533 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2534 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2535 	lt->sadb_lifetime_allocations = 0;
2536 	lt->sadb_lifetime_bytes = 0;
2537 	lt->sadb_lifetime_addtime = sp->lifetime;
2538 	lt->sadb_lifetime_usetime = sp->validtime;
2539 	m_cat(result, m);
2540 
2541 	/* set sadb_address for source */
2542 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2543 	    &sp->spidx.src.sa,
2544 	    sp->spidx.prefs, sp->spidx.ul_proto);
2545 	if (!m) {
2546 		error = ENOBUFS;
2547 		goto fail;
2548 	}
2549 	m_cat(result, m);
2550 
2551 	/* set sadb_address for destination */
2552 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2553 	    &sp->spidx.dst.sa,
2554 	    sp->spidx.prefd, sp->spidx.ul_proto);
2555 	if (!m) {
2556 		error = ENOBUFS;
2557 		goto fail;
2558 	}
2559 	m_cat(result, m);
2560 
2561 	/* set secpolicy */
2562 	m = key_sp2msg(sp);
2563 	if (!m) {
2564 		error = ENOBUFS;
2565 		goto fail;
2566 	}
2567 	m_cat(result, m);
2568 
2569 	if ((result->m_flags & M_PKTHDR) == 0) {
2570 		error = EINVAL;
2571 		goto fail;
2572 	}
2573 
2574 	if (result->m_len < sizeof(struct sadb_msg)) {
2575 		result = m_pullup(result, sizeof(struct sadb_msg));
2576 		if (result == NULL) {
2577 			error = ENOBUFS;
2578 			goto fail;
2579 		}
2580 	}
2581 
2582 	result->m_pkthdr.len = 0;
2583 	for (m = result; m; m = m->m_next)
2584 		result->m_pkthdr.len += m->m_len;
2585 
2586 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2587 	    PFKEY_UNIT64(result->m_pkthdr.len);
2588 
2589 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2590 
2591  fail:
2592 	if (result)
2593 		m_freem(result);
2594 	return error;
2595 }
2596 
2597 /* %%% SAD management */
2598 /*
2599  * allocating a memory for new SA head, and copy from the values of mhp.
2600  * OUT:	NULL	: failure due to the lack of memory.
2601  *	others	: pointer to new SA head.
2602  */
2603 static struct secashead *
2604 key_newsah(saidx)
2605 	struct secasindex *saidx;
2606 {
2607 	struct secashead *newsah;
2608 
2609 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
2610 
2611 	newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO);
2612 	if (newsah != NULL) {
2613 		int i;
2614 		for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++)
2615 			LIST_INIT(&newsah->savtree[i]);
2616 		newsah->saidx = *saidx;
2617 
2618 		/* add to saidxtree */
2619 		newsah->state = SADB_SASTATE_MATURE;
2620 
2621 		SAHTREE_LOCK();
2622 		LIST_INSERT_HEAD(&sahtree, newsah, chain);
2623 		SAHTREE_UNLOCK();
2624 	}
2625 	return(newsah);
2626 }
2627 
2628 /*
2629  * delete SA index and all SA registerd.
2630  */
2631 static void
2632 key_delsah(sah)
2633 	struct secashead *sah;
2634 {
2635 	struct secasvar *sav, *nextsav;
2636 	u_int stateidx;
2637 	int zombie = 0;
2638 
2639 	IPSEC_ASSERT(sah != NULL, ("NULL sah"));
2640 	SAHTREE_LOCK_ASSERT();
2641 
2642 	/* searching all SA registerd in the secindex. */
2643 	for (stateidx = 0;
2644 	     stateidx < _ARRAYLEN(saorder_state_any);
2645 	     stateidx++) {
2646 		u_int state = saorder_state_any[stateidx];
2647 		LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) {
2648 			if (sav->refcnt == 0) {
2649 				/* sanity check */
2650 				KEY_CHKSASTATE(state, sav->state, __func__);
2651 				KEY_FREESAV(&sav);
2652 			} else {
2653 				/* give up to delete this sa */
2654 				zombie++;
2655 			}
2656 		}
2657 	}
2658 	if (!zombie) {		/* delete only if there are savs */
2659 		/* remove from tree of SA index */
2660 		if (__LIST_CHAINED(sah))
2661 			LIST_REMOVE(sah, chain);
2662 		if (sah->sa_route.ro_rt) {
2663 			RTFREE(sah->sa_route.ro_rt);
2664 			sah->sa_route.ro_rt = (struct rtentry *)NULL;
2665 		}
2666 		free(sah, M_IPSEC_SAH);
2667 	}
2668 }
2669 
2670 /*
2671  * allocating a new SA with LARVAL state.  key_add() and key_getspi() call,
2672  * and copy the values of mhp into new buffer.
2673  * When SAD message type is GETSPI:
2674  *	to set sequence number from acq_seq++,
2675  *	to set zero to SPI.
2676  *	not to call key_setsava().
2677  * OUT:	NULL	: fail
2678  *	others	: pointer to new secasvar.
2679  *
2680  * does not modify mbuf.  does not free mbuf on error.
2681  */
2682 static struct secasvar *
2683 key_newsav(m, mhp, sah, errp, where, tag)
2684 	struct mbuf *m;
2685 	const struct sadb_msghdr *mhp;
2686 	struct secashead *sah;
2687 	int *errp;
2688 	const char* where;
2689 	int tag;
2690 {
2691 	struct secasvar *newsav;
2692 	const struct sadb_sa *xsa;
2693 
2694 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2695 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2696 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2697 	IPSEC_ASSERT(sah != NULL, ("null secashead"));
2698 
2699 	newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO);
2700 	if (newsav == NULL) {
2701 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2702 		*errp = ENOBUFS;
2703 		goto done;
2704 	}
2705 
2706 	switch (mhp->msg->sadb_msg_type) {
2707 	case SADB_GETSPI:
2708 		newsav->spi = 0;
2709 
2710 #ifdef IPSEC_DOSEQCHECK
2711 		/* sync sequence number */
2712 		if (mhp->msg->sadb_msg_seq == 0)
2713 			newsav->seq =
2714 				(acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
2715 		else
2716 #endif
2717 			newsav->seq = mhp->msg->sadb_msg_seq;
2718 		break;
2719 
2720 	case SADB_ADD:
2721 		/* sanity check */
2722 		if (mhp->ext[SADB_EXT_SA] == NULL) {
2723 			free(newsav, M_IPSEC_SA);
2724 			newsav = NULL;
2725 			ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2726 				__func__));
2727 			*errp = EINVAL;
2728 			goto done;
2729 		}
2730 		xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2731 		newsav->spi = xsa->sadb_sa_spi;
2732 		newsav->seq = mhp->msg->sadb_msg_seq;
2733 		break;
2734 	default:
2735 		free(newsav, M_IPSEC_SA);
2736 		newsav = NULL;
2737 		*errp = EINVAL;
2738 		goto done;
2739 	}
2740 
2741 
2742 	/* copy sav values */
2743 	if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2744 		*errp = key_setsaval(newsav, m, mhp);
2745 		if (*errp) {
2746 			free(newsav, M_IPSEC_SA);
2747 			newsav = NULL;
2748 			goto done;
2749 		}
2750 	}
2751 
2752 	SECASVAR_LOCK_INIT(newsav);
2753 
2754 	/* reset created */
2755 	newsav->created = time_second;
2756 	newsav->pid = mhp->msg->sadb_msg_pid;
2757 
2758 	/* add to satree */
2759 	newsav->sah = sah;
2760 	newsav->refcnt = 1;
2761 	newsav->state = SADB_SASTATE_LARVAL;
2762 
2763 	/* XXX locking??? */
2764 	LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
2765 			secasvar, chain);
2766 done:
2767 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
2768 		printf("DP %s from %s:%u return SP:%p\n", __func__,
2769 			where, tag, newsav));
2770 
2771 	return newsav;
2772 }
2773 
2774 /*
2775  * free() SA variable entry.
2776  */
2777 static void
2778 key_cleansav(struct secasvar *sav)
2779 {
2780 	/*
2781 	 * Cleanup xform state.  Note that zeroize'ing causes the
2782 	 * keys to be cleared; otherwise we must do it ourself.
2783 	 */
2784 	if (sav->tdb_xform != NULL) {
2785 		sav->tdb_xform->xf_zeroize(sav);
2786 		sav->tdb_xform = NULL;
2787 	} else {
2788 		KASSERT(sav->iv == NULL, ("iv but no xform"));
2789 		if (sav->key_auth != NULL)
2790 			bzero(_KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2791 		if (sav->key_enc != NULL)
2792 			bzero(_KEYBUF(sav->key_enc), _KEYLEN(sav->key_enc));
2793 	}
2794 	if (sav->key_auth != NULL) {
2795 		free(sav->key_auth, M_IPSEC_MISC);
2796 		sav->key_auth = NULL;
2797 	}
2798 	if (sav->key_enc != NULL) {
2799 		free(sav->key_enc, M_IPSEC_MISC);
2800 		sav->key_enc = NULL;
2801 	}
2802 	if (sav->sched) {
2803 		bzero(sav->sched, sav->schedlen);
2804 		free(sav->sched, M_IPSEC_MISC);
2805 		sav->sched = NULL;
2806 	}
2807 	if (sav->replay != NULL) {
2808 		free(sav->replay, M_IPSEC_MISC);
2809 		sav->replay = NULL;
2810 	}
2811 	if (sav->lft_c != NULL) {
2812 		free(sav->lft_c, M_IPSEC_MISC);
2813 		sav->lft_c = NULL;
2814 	}
2815 	if (sav->lft_h != NULL) {
2816 		free(sav->lft_h, M_IPSEC_MISC);
2817 		sav->lft_h = NULL;
2818 	}
2819 	if (sav->lft_s != NULL) {
2820 		free(sav->lft_s, M_IPSEC_MISC);
2821 		sav->lft_s = NULL;
2822 	}
2823 }
2824 
2825 /*
2826  * free() SA variable entry.
2827  */
2828 static void
2829 key_delsav(sav)
2830 	struct secasvar *sav;
2831 {
2832 	IPSEC_ASSERT(sav != NULL, ("null sav"));
2833 	IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt));
2834 
2835 	/* remove from SA header */
2836 	if (__LIST_CHAINED(sav))
2837 		LIST_REMOVE(sav, chain);
2838 	key_cleansav(sav);
2839 	SECASVAR_LOCK_DESTROY(sav);
2840 	free(sav, M_IPSEC_SA);
2841 }
2842 
2843 /*
2844  * search SAD.
2845  * OUT:
2846  *	NULL	: not found
2847  *	others	: found, pointer to a SA.
2848  */
2849 static struct secashead *
2850 key_getsah(saidx)
2851 	struct secasindex *saidx;
2852 {
2853 	struct secashead *sah;
2854 
2855 	SAHTREE_LOCK();
2856 	LIST_FOREACH(sah, &sahtree, chain) {
2857 		if (sah->state == SADB_SASTATE_DEAD)
2858 			continue;
2859 		if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID))
2860 			break;
2861 	}
2862 	SAHTREE_UNLOCK();
2863 
2864 	return sah;
2865 }
2866 
2867 /*
2868  * check not to be duplicated SPI.
2869  * NOTE: this function is too slow due to searching all SAD.
2870  * OUT:
2871  *	NULL	: not found
2872  *	others	: found, pointer to a SA.
2873  */
2874 static struct secasvar *
2875 key_checkspidup(saidx, spi)
2876 	struct secasindex *saidx;
2877 	u_int32_t spi;
2878 {
2879 	struct secashead *sah;
2880 	struct secasvar *sav;
2881 
2882 	/* check address family */
2883 	if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
2884 		ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
2885 			__func__));
2886 		return NULL;
2887 	}
2888 
2889 	sav = NULL;
2890 	/* check all SAD */
2891 	SAHTREE_LOCK();
2892 	LIST_FOREACH(sah, &sahtree, chain) {
2893 		if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
2894 			continue;
2895 		sav = key_getsavbyspi(sah, spi);
2896 		if (sav != NULL)
2897 			break;
2898 	}
2899 	SAHTREE_UNLOCK();
2900 
2901 	return sav;
2902 }
2903 
2904 /*
2905  * search SAD litmited alive SA, protocol, SPI.
2906  * OUT:
2907  *	NULL	: not found
2908  *	others	: found, pointer to a SA.
2909  */
2910 static struct secasvar *
2911 key_getsavbyspi(sah, spi)
2912 	struct secashead *sah;
2913 	u_int32_t spi;
2914 {
2915 	struct secasvar *sav;
2916 	u_int stateidx, state;
2917 
2918 	sav = NULL;
2919 	SAHTREE_LOCK_ASSERT();
2920 	/* search all status */
2921 	for (stateidx = 0;
2922 	     stateidx < _ARRAYLEN(saorder_state_alive);
2923 	     stateidx++) {
2924 
2925 		state = saorder_state_alive[stateidx];
2926 		LIST_FOREACH(sav, &sah->savtree[state], chain) {
2927 
2928 			/* sanity check */
2929 			if (sav->state != state) {
2930 				ipseclog((LOG_DEBUG, "%s: "
2931 				    "invalid sav->state (queue: %d SA: %d)\n",
2932 				    __func__, state, sav->state));
2933 				continue;
2934 			}
2935 
2936 			if (sav->spi == spi)
2937 				return sav;
2938 		}
2939 	}
2940 
2941 	return NULL;
2942 }
2943 
2944 /*
2945  * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
2946  * You must update these if need.
2947  * OUT:	0:	success.
2948  *	!0:	failure.
2949  *
2950  * does not modify mbuf.  does not free mbuf on error.
2951  */
2952 static int
2953 key_setsaval(sav, m, mhp)
2954 	struct secasvar *sav;
2955 	struct mbuf *m;
2956 	const struct sadb_msghdr *mhp;
2957 {
2958 	int error = 0;
2959 
2960 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2961 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2962 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2963 
2964 	/* initialization */
2965 	sav->replay = NULL;
2966 	sav->key_auth = NULL;
2967 	sav->key_enc = NULL;
2968 	sav->sched = NULL;
2969 	sav->schedlen = 0;
2970 	sav->iv = NULL;
2971 	sav->lft_c = NULL;
2972 	sav->lft_h = NULL;
2973 	sav->lft_s = NULL;
2974 	sav->tdb_xform = NULL;		/* transform */
2975 	sav->tdb_encalgxform = NULL;	/* encoding algorithm */
2976 	sav->tdb_authalgxform = NULL;	/* authentication algorithm */
2977 	sav->tdb_compalgxform = NULL;	/* compression algorithm */
2978 
2979 	/* SA */
2980 	if (mhp->ext[SADB_EXT_SA] != NULL) {
2981 		const struct sadb_sa *sa0;
2982 
2983 		sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2984 		if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
2985 			error = EINVAL;
2986 			goto fail;
2987 		}
2988 
2989 		sav->alg_auth = sa0->sadb_sa_auth;
2990 		sav->alg_enc = sa0->sadb_sa_encrypt;
2991 		sav->flags = sa0->sadb_sa_flags;
2992 
2993 		/* replay window */
2994 		if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
2995 			sav->replay = (struct secreplay *)
2996 				malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO);
2997 			if (sav->replay == NULL) {
2998 				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
2999 					__func__));
3000 				error = ENOBUFS;
3001 				goto fail;
3002 			}
3003 			if (sa0->sadb_sa_replay != 0)
3004 				sav->replay->bitmap = (caddr_t)(sav->replay+1);
3005 			sav->replay->wsize = sa0->sadb_sa_replay;
3006 		}
3007 	}
3008 
3009 	/* Authentication keys */
3010 	if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3011 		const struct sadb_key *key0;
3012 		int len;
3013 
3014 		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3015 		len = mhp->extlen[SADB_EXT_KEY_AUTH];
3016 
3017 		error = 0;
3018 		if (len < sizeof(*key0)) {
3019 			error = EINVAL;
3020 			goto fail;
3021 		}
3022 		switch (mhp->msg->sadb_msg_satype) {
3023 		case SADB_SATYPE_AH:
3024 		case SADB_SATYPE_ESP:
3025 		case SADB_X_SATYPE_TCPSIGNATURE:
3026 			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3027 			    sav->alg_auth != SADB_X_AALG_NULL)
3028 				error = EINVAL;
3029 			break;
3030 		case SADB_X_SATYPE_IPCOMP:
3031 		default:
3032 			error = EINVAL;
3033 			break;
3034 		}
3035 		if (error) {
3036 			ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n",
3037 				__func__));
3038 			goto fail;
3039 		}
3040 
3041 		sav->key_auth = key_dup(key0, len, M_IPSEC_MISC);
3042 		if (sav->key_auth == NULL) {
3043 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3044 			error = ENOBUFS;
3045 			goto fail;
3046 		}
3047 	}
3048 
3049 	/* Encryption key */
3050 	if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3051 		const struct sadb_key *key0;
3052 		int len;
3053 
3054 		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3055 		len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3056 
3057 		error = 0;
3058 		if (len < sizeof(*key0)) {
3059 			error = EINVAL;
3060 			goto fail;
3061 		}
3062 		switch (mhp->msg->sadb_msg_satype) {
3063 		case SADB_SATYPE_ESP:
3064 			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3065 			    sav->alg_enc != SADB_EALG_NULL) {
3066 				error = EINVAL;
3067 				break;
3068 			}
3069 			sav->key_enc = key_dup(key0, len, M_IPSEC_MISC);
3070 			if (sav->key_enc == NULL) {
3071 				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3072 					__func__));
3073 				error = ENOBUFS;
3074 				goto fail;
3075 			}
3076 			break;
3077 		case SADB_X_SATYPE_IPCOMP:
3078 			if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3079 				error = EINVAL;
3080 			sav->key_enc = NULL;	/*just in case*/
3081 			break;
3082 		case SADB_SATYPE_AH:
3083 		case SADB_X_SATYPE_TCPSIGNATURE:
3084 		default:
3085 			error = EINVAL;
3086 			break;
3087 		}
3088 		if (error) {
3089 			ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n",
3090 				__func__));
3091 			goto fail;
3092 		}
3093 	}
3094 
3095 	/* set iv */
3096 	sav->ivlen = 0;
3097 
3098 	switch (mhp->msg->sadb_msg_satype) {
3099 	case SADB_SATYPE_AH:
3100 		error = xform_init(sav, XF_AH);
3101 		break;
3102 	case SADB_SATYPE_ESP:
3103 		error = xform_init(sav, XF_ESP);
3104 		break;
3105 	case SADB_X_SATYPE_IPCOMP:
3106 		error = xform_init(sav, XF_IPCOMP);
3107 		break;
3108 	case SADB_X_SATYPE_TCPSIGNATURE:
3109 		error = xform_init(sav, XF_TCPSIGNATURE);
3110 		break;
3111 	}
3112 	if (error) {
3113 		ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n",
3114 		        __func__, mhp->msg->sadb_msg_satype));
3115 		goto fail;
3116 	}
3117 
3118 	/* reset created */
3119 	sav->created = time_second;
3120 
3121 	/* make lifetime for CURRENT */
3122 	sav->lft_c = malloc(sizeof(struct sadb_lifetime), M_IPSEC_MISC, M_NOWAIT);
3123 	if (sav->lft_c == NULL) {
3124 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3125 		error = ENOBUFS;
3126 		goto fail;
3127 	}
3128 
3129 	sav->lft_c->sadb_lifetime_len =
3130 	    PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3131 	sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3132 	sav->lft_c->sadb_lifetime_allocations = 0;
3133 	sav->lft_c->sadb_lifetime_bytes = 0;
3134 	sav->lft_c->sadb_lifetime_addtime = time_second;
3135 	sav->lft_c->sadb_lifetime_usetime = 0;
3136 
3137 	/* lifetimes for HARD and SOFT */
3138     {
3139 	const struct sadb_lifetime *lft0;
3140 
3141 	lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3142 	if (lft0 != NULL) {
3143 		if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3144 			error = EINVAL;
3145 			goto fail;
3146 		}
3147 		sav->lft_h = key_dup(lft0, sizeof(*lft0), M_IPSEC_MISC);
3148 		if (sav->lft_h == NULL) {
3149 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3150 			error = ENOBUFS;
3151 			goto fail;
3152 		}
3153 		/* to be initialize ? */
3154 	}
3155 
3156 	lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3157 	if (lft0 != NULL) {
3158 		if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3159 			error = EINVAL;
3160 			goto fail;
3161 		}
3162 		sav->lft_s = key_dup(lft0, sizeof(*lft0), M_IPSEC_MISC);
3163 		if (sav->lft_s == NULL) {
3164 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3165 			error = ENOBUFS;
3166 			goto fail;
3167 		}
3168 		/* to be initialize ? */
3169 	}
3170     }
3171 
3172 	return 0;
3173 
3174  fail:
3175 	/* initialization */
3176 	key_cleansav(sav);
3177 
3178 	return error;
3179 }
3180 
3181 /*
3182  * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3183  * OUT:	0:	valid
3184  *	other:	errno
3185  */
3186 static int
3187 key_mature(struct secasvar *sav)
3188 {
3189 	int error;
3190 
3191 	/* check SPI value */
3192 	switch (sav->sah->saidx.proto) {
3193 	case IPPROTO_ESP:
3194 	case IPPROTO_AH:
3195 		if (ntohl(sav->spi) >= 0 && ntohl(sav->spi) <= 255) {
3196 			ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n",
3197 			    __func__, (u_int32_t)ntohl(sav->spi)));
3198 			return EINVAL;
3199 		}
3200 		break;
3201 	}
3202 
3203 	/* check satype */
3204 	switch (sav->sah->saidx.proto) {
3205 	case IPPROTO_ESP:
3206 		/* check flags */
3207 		if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3208 		    (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3209 			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3210 				"given to old-esp.\n", __func__));
3211 			return EINVAL;
3212 		}
3213 		error = xform_init(sav, XF_ESP);
3214 		break;
3215 	case IPPROTO_AH:
3216 		/* check flags */
3217 		if (sav->flags & SADB_X_EXT_DERIV) {
3218 			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3219 				"given to AH SA.\n", __func__));
3220 			return EINVAL;
3221 		}
3222 		if (sav->alg_enc != SADB_EALG_NONE) {
3223 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3224 				"mismated.\n", __func__));
3225 			return(EINVAL);
3226 		}
3227 		error = xform_init(sav, XF_AH);
3228 		break;
3229 	case IPPROTO_IPCOMP:
3230 		if (sav->alg_auth != SADB_AALG_NONE) {
3231 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3232 				"mismated.\n", __func__));
3233 			return(EINVAL);
3234 		}
3235 		if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3236 		 && ntohl(sav->spi) >= 0x10000) {
3237 			ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n",
3238 				__func__));
3239 			return(EINVAL);
3240 		}
3241 		error = xform_init(sav, XF_IPCOMP);
3242 		break;
3243 	case IPPROTO_TCP:
3244 		if (sav->alg_enc != SADB_EALG_NONE) {
3245 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3246 				"mismated.\n", __func__));
3247 			return(EINVAL);
3248 		}
3249 		error = xform_init(sav, XF_TCPSIGNATURE);
3250 		break;
3251 	default:
3252 		ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__));
3253 		error = EPROTONOSUPPORT;
3254 		break;
3255 	}
3256 	if (error == 0) {
3257 		SAHTREE_LOCK();
3258 		key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3259 		SAHTREE_UNLOCK();
3260 	}
3261 	return (error);
3262 }
3263 
3264 /*
3265  * subroutine for SADB_GET and SADB_DUMP.
3266  */
3267 static struct mbuf *
3268 key_setdumpsa(sav, type, satype, seq, pid)
3269 	struct secasvar *sav;
3270 	u_int8_t type, satype;
3271 	u_int32_t seq, pid;
3272 {
3273 	struct mbuf *result = NULL, *tres = NULL, *m;
3274 	int l = 0;
3275 	int i;
3276 	void *p;
3277 	int dumporder[] = {
3278 		SADB_EXT_SA, SADB_X_EXT_SA2,
3279 		SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3280 		SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3281 		SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3282 		SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3283 		SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3284 	};
3285 
3286 	m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3287 	if (m == NULL)
3288 		goto fail;
3289 	result = m;
3290 
3291 	for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) {
3292 		m = NULL;
3293 		p = NULL;
3294 		switch (dumporder[i]) {
3295 		case SADB_EXT_SA:
3296 			m = key_setsadbsa(sav);
3297 			if (!m)
3298 				goto fail;
3299 			break;
3300 
3301 		case SADB_X_EXT_SA2:
3302 			m = key_setsadbxsa2(sav->sah->saidx.mode,
3303 					sav->replay ? sav->replay->count : 0,
3304 					sav->sah->saidx.reqid);
3305 			if (!m)
3306 				goto fail;
3307 			break;
3308 
3309 		case SADB_EXT_ADDRESS_SRC:
3310 			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3311 			    &sav->sah->saidx.src.sa,
3312 			    FULLMASK, IPSEC_ULPROTO_ANY);
3313 			if (!m)
3314 				goto fail;
3315 			break;
3316 
3317 		case SADB_EXT_ADDRESS_DST:
3318 			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3319 			    &sav->sah->saidx.dst.sa,
3320 			    FULLMASK, IPSEC_ULPROTO_ANY);
3321 			if (!m)
3322 				goto fail;
3323 			break;
3324 
3325 		case SADB_EXT_KEY_AUTH:
3326 			if (!sav->key_auth)
3327 				continue;
3328 			l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
3329 			p = sav->key_auth;
3330 			break;
3331 
3332 		case SADB_EXT_KEY_ENCRYPT:
3333 			if (!sav->key_enc)
3334 				continue;
3335 			l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
3336 			p = sav->key_enc;
3337 			break;
3338 
3339 		case SADB_EXT_LIFETIME_CURRENT:
3340 			if (!sav->lft_c)
3341 				continue;
3342 			l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
3343 			p = sav->lft_c;
3344 			break;
3345 
3346 		case SADB_EXT_LIFETIME_HARD:
3347 			if (!sav->lft_h)
3348 				continue;
3349 			l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
3350 			p = sav->lft_h;
3351 			break;
3352 
3353 		case SADB_EXT_LIFETIME_SOFT:
3354 			if (!sav->lft_s)
3355 				continue;
3356 			l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
3357 			p = sav->lft_s;
3358 			break;
3359 
3360 		case SADB_EXT_ADDRESS_PROXY:
3361 		case SADB_EXT_IDENTITY_SRC:
3362 		case SADB_EXT_IDENTITY_DST:
3363 			/* XXX: should we brought from SPD ? */
3364 		case SADB_EXT_SENSITIVITY:
3365 		default:
3366 			continue;
3367 		}
3368 
3369 		if ((!m && !p) || (m && p))
3370 			goto fail;
3371 		if (p && tres) {
3372 			M_PREPEND(tres, l, M_DONTWAIT);
3373 			if (!tres)
3374 				goto fail;
3375 			bcopy(p, mtod(tres, caddr_t), l);
3376 			continue;
3377 		}
3378 		if (p) {
3379 			m = key_alloc_mbuf(l);
3380 			if (!m)
3381 				goto fail;
3382 			m_copyback(m, 0, l, p);
3383 		}
3384 
3385 		if (tres)
3386 			m_cat(m, tres);
3387 		tres = m;
3388 	}
3389 
3390 	m_cat(result, tres);
3391 
3392 	if (result->m_len < sizeof(struct sadb_msg)) {
3393 		result = m_pullup(result, sizeof(struct sadb_msg));
3394 		if (result == NULL)
3395 			goto fail;
3396 	}
3397 
3398 	result->m_pkthdr.len = 0;
3399 	for (m = result; m; m = m->m_next)
3400 		result->m_pkthdr.len += m->m_len;
3401 
3402 	mtod(result, struct sadb_msg *)->sadb_msg_len =
3403 	    PFKEY_UNIT64(result->m_pkthdr.len);
3404 
3405 	return result;
3406 
3407 fail:
3408 	m_freem(result);
3409 	m_freem(tres);
3410 	return NULL;
3411 }
3412 
3413 /*
3414  * set data into sadb_msg.
3415  */
3416 static struct mbuf *
3417 key_setsadbmsg(type, tlen, satype, seq, pid, reserved)
3418 	u_int8_t type, satype;
3419 	u_int16_t tlen;
3420 	u_int32_t seq;
3421 	pid_t pid;
3422 	u_int16_t reserved;
3423 {
3424 	struct mbuf *m;
3425 	struct sadb_msg *p;
3426 	int len;
3427 
3428 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3429 	if (len > MCLBYTES)
3430 		return NULL;
3431 	MGETHDR(m, M_DONTWAIT, MT_DATA);
3432 	if (m && len > MHLEN) {
3433 		MCLGET(m, M_DONTWAIT);
3434 		if ((m->m_flags & M_EXT) == 0) {
3435 			m_freem(m);
3436 			m = NULL;
3437 		}
3438 	}
3439 	if (!m)
3440 		return NULL;
3441 	m->m_pkthdr.len = m->m_len = len;
3442 	m->m_next = NULL;
3443 
3444 	p = mtod(m, struct sadb_msg *);
3445 
3446 	bzero(p, len);
3447 	p->sadb_msg_version = PF_KEY_V2;
3448 	p->sadb_msg_type = type;
3449 	p->sadb_msg_errno = 0;
3450 	p->sadb_msg_satype = satype;
3451 	p->sadb_msg_len = PFKEY_UNIT64(tlen);
3452 	p->sadb_msg_reserved = reserved;
3453 	p->sadb_msg_seq = seq;
3454 	p->sadb_msg_pid = (u_int32_t)pid;
3455 
3456 	return m;
3457 }
3458 
3459 /*
3460  * copy secasvar data into sadb_address.
3461  */
3462 static struct mbuf *
3463 key_setsadbsa(sav)
3464 	struct secasvar *sav;
3465 {
3466 	struct mbuf *m;
3467 	struct sadb_sa *p;
3468 	int len;
3469 
3470 	len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3471 	m = key_alloc_mbuf(len);
3472 	if (!m || m->m_next) {	/*XXX*/
3473 		if (m)
3474 			m_freem(m);
3475 		return NULL;
3476 	}
3477 
3478 	p = mtod(m, struct sadb_sa *);
3479 
3480 	bzero(p, len);
3481 	p->sadb_sa_len = PFKEY_UNIT64(len);
3482 	p->sadb_sa_exttype = SADB_EXT_SA;
3483 	p->sadb_sa_spi = sav->spi;
3484 	p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3485 	p->sadb_sa_state = sav->state;
3486 	p->sadb_sa_auth = sav->alg_auth;
3487 	p->sadb_sa_encrypt = sav->alg_enc;
3488 	p->sadb_sa_flags = sav->flags;
3489 
3490 	return m;
3491 }
3492 
3493 /*
3494  * set data into sadb_address.
3495  */
3496 static struct mbuf *
3497 key_setsadbaddr(exttype, saddr, prefixlen, ul_proto)
3498 	u_int16_t exttype;
3499 	const struct sockaddr *saddr;
3500 	u_int8_t prefixlen;
3501 	u_int16_t ul_proto;
3502 {
3503 	struct mbuf *m;
3504 	struct sadb_address *p;
3505 	size_t len;
3506 
3507 	len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3508 	    PFKEY_ALIGN8(saddr->sa_len);
3509 	m = key_alloc_mbuf(len);
3510 	if (!m || m->m_next) {	/*XXX*/
3511 		if (m)
3512 			m_freem(m);
3513 		return NULL;
3514 	}
3515 
3516 	p = mtod(m, struct sadb_address *);
3517 
3518 	bzero(p, len);
3519 	p->sadb_address_len = PFKEY_UNIT64(len);
3520 	p->sadb_address_exttype = exttype;
3521 	p->sadb_address_proto = ul_proto;
3522 	if (prefixlen == FULLMASK) {
3523 		switch (saddr->sa_family) {
3524 		case AF_INET:
3525 			prefixlen = sizeof(struct in_addr) << 3;
3526 			break;
3527 		case AF_INET6:
3528 			prefixlen = sizeof(struct in6_addr) << 3;
3529 			break;
3530 		default:
3531 			; /*XXX*/
3532 		}
3533 	}
3534 	p->sadb_address_prefixlen = prefixlen;
3535 	p->sadb_address_reserved = 0;
3536 
3537 	bcopy(saddr,
3538 	    mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3539 	    saddr->sa_len);
3540 
3541 	return m;
3542 }
3543 
3544 /*
3545  * set data into sadb_x_sa2.
3546  */
3547 static struct mbuf *
3548 key_setsadbxsa2(mode, seq, reqid)
3549 	u_int8_t mode;
3550 	u_int32_t seq, reqid;
3551 {
3552 	struct mbuf *m;
3553 	struct sadb_x_sa2 *p;
3554 	size_t len;
3555 
3556 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3557 	m = key_alloc_mbuf(len);
3558 	if (!m || m->m_next) {	/*XXX*/
3559 		if (m)
3560 			m_freem(m);
3561 		return NULL;
3562 	}
3563 
3564 	p = mtod(m, struct sadb_x_sa2 *);
3565 
3566 	bzero(p, len);
3567 	p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3568 	p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3569 	p->sadb_x_sa2_mode = mode;
3570 	p->sadb_x_sa2_reserved1 = 0;
3571 	p->sadb_x_sa2_reserved2 = 0;
3572 	p->sadb_x_sa2_sequence = seq;
3573 	p->sadb_x_sa2_reqid = reqid;
3574 
3575 	return m;
3576 }
3577 
3578 /*
3579  * set data into sadb_x_policy
3580  */
3581 static struct mbuf *
3582 key_setsadbxpolicy(type, dir, id)
3583 	u_int16_t type;
3584 	u_int8_t dir;
3585 	u_int32_t id;
3586 {
3587 	struct mbuf *m;
3588 	struct sadb_x_policy *p;
3589 	size_t len;
3590 
3591 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
3592 	m = key_alloc_mbuf(len);
3593 	if (!m || m->m_next) {	/*XXX*/
3594 		if (m)
3595 			m_freem(m);
3596 		return NULL;
3597 	}
3598 
3599 	p = mtod(m, struct sadb_x_policy *);
3600 
3601 	bzero(p, len);
3602 	p->sadb_x_policy_len = PFKEY_UNIT64(len);
3603 	p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
3604 	p->sadb_x_policy_type = type;
3605 	p->sadb_x_policy_dir = dir;
3606 	p->sadb_x_policy_id = id;
3607 
3608 	return m;
3609 }
3610 
3611 /* %%% utilities */
3612 /*
3613  * copy a buffer into the new buffer allocated.
3614  */
3615 static void *
3616 key_dup(const void *src, u_int len, struct malloc_type *type)
3617 {
3618 	void *copy;
3619 
3620 	copy = malloc(len, type, M_NOWAIT);
3621 	if (copy == NULL) {
3622 		/* XXX counter */
3623 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3624 	} else
3625 		bcopy(src, copy, len);
3626 	return copy;
3627 }
3628 
3629 /* compare my own address
3630  * OUT:	1: true, i.e. my address.
3631  *	0: false
3632  */
3633 int
3634 key_ismyaddr(sa)
3635 	struct sockaddr *sa;
3636 {
3637 #ifdef INET
3638 	struct sockaddr_in *sin;
3639 	struct in_ifaddr *ia;
3640 #endif
3641 
3642 	IPSEC_ASSERT(sa != NULL, ("null sockaddr"));
3643 
3644 	switch (sa->sa_family) {
3645 #ifdef INET
3646 	case AF_INET:
3647 		sin = (struct sockaddr_in *)sa;
3648 		for (ia = in_ifaddrhead.tqh_first; ia;
3649 		     ia = ia->ia_link.tqe_next)
3650 		{
3651 			if (sin->sin_family == ia->ia_addr.sin_family &&
3652 			    sin->sin_len == ia->ia_addr.sin_len &&
3653 			    sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
3654 			{
3655 				return 1;
3656 			}
3657 		}
3658 		break;
3659 #endif
3660 #ifdef INET6
3661 	case AF_INET6:
3662 		return key_ismyaddr6((struct sockaddr_in6 *)sa);
3663 #endif
3664 	}
3665 
3666 	return 0;
3667 }
3668 
3669 #ifdef INET6
3670 /*
3671  * compare my own address for IPv6.
3672  * 1: ours
3673  * 0: other
3674  * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
3675  */
3676 #include <netinet6/in6_var.h>
3677 
3678 static int
3679 key_ismyaddr6(sin6)
3680 	struct sockaddr_in6 *sin6;
3681 {
3682 	struct in6_ifaddr *ia;
3683 	struct in6_multi *in6m;
3684 
3685 	for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
3686 		if (key_sockaddrcmp((struct sockaddr *)&sin6,
3687 		    (struct sockaddr *)&ia->ia_addr, 0) == 0)
3688 			return 1;
3689 
3690 		/*
3691 		 * XXX Multicast
3692 		 * XXX why do we care about multlicast here while we don't care
3693 		 * about IPv4 multicast??
3694 		 * XXX scope
3695 		 */
3696 		in6m = NULL;
3697 		IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m);
3698 		if (in6m)
3699 			return 1;
3700 	}
3701 
3702 	/* loopback, just for safety */
3703 	if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
3704 		return 1;
3705 
3706 	return 0;
3707 }
3708 #endif /*INET6*/
3709 
3710 /*
3711  * compare two secasindex structure.
3712  * flag can specify to compare 2 saidxes.
3713  * compare two secasindex structure without both mode and reqid.
3714  * don't compare port.
3715  * IN:
3716  *      saidx0: source, it can be in SAD.
3717  *      saidx1: object.
3718  * OUT:
3719  *      1 : equal
3720  *      0 : not equal
3721  */
3722 static int
3723 key_cmpsaidx(
3724 	const struct secasindex *saidx0,
3725 	const struct secasindex *saidx1,
3726 	int flag)
3727 {
3728 	/* sanity */
3729 	if (saidx0 == NULL && saidx1 == NULL)
3730 		return 1;
3731 
3732 	if (saidx0 == NULL || saidx1 == NULL)
3733 		return 0;
3734 
3735 	if (saidx0->proto != saidx1->proto)
3736 		return 0;
3737 
3738 	if (flag == CMP_EXACTLY) {
3739 		if (saidx0->mode != saidx1->mode)
3740 			return 0;
3741 		if (saidx0->reqid != saidx1->reqid)
3742 			return 0;
3743 		if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
3744 		    bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
3745 			return 0;
3746 	} else {
3747 
3748 		/* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
3749 		if (flag == CMP_MODE_REQID
3750 		  ||flag == CMP_REQID) {
3751 			/*
3752 			 * If reqid of SPD is non-zero, unique SA is required.
3753 			 * The result must be of same reqid in this case.
3754 			 */
3755 			if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
3756 				return 0;
3757 		}
3758 
3759 		if (flag == CMP_MODE_REQID) {
3760 			if (saidx0->mode != IPSEC_MODE_ANY
3761 			 && saidx0->mode != saidx1->mode)
3762 				return 0;
3763 		}
3764 
3765 		if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, 0) != 0) {
3766 			return 0;
3767 		}
3768 		if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, 0) != 0) {
3769 			return 0;
3770 		}
3771 	}
3772 
3773 	return 1;
3774 }
3775 
3776 /*
3777  * compare two secindex structure exactly.
3778  * IN:
3779  *	spidx0: source, it is often in SPD.
3780  *	spidx1: object, it is often from PFKEY message.
3781  * OUT:
3782  *	1 : equal
3783  *	0 : not equal
3784  */
3785 static int
3786 key_cmpspidx_exactly(
3787 	struct secpolicyindex *spidx0,
3788 	struct secpolicyindex *spidx1)
3789 {
3790 	/* sanity */
3791 	if (spidx0 == NULL && spidx1 == NULL)
3792 		return 1;
3793 
3794 	if (spidx0 == NULL || spidx1 == NULL)
3795 		return 0;
3796 
3797 	if (spidx0->prefs != spidx1->prefs
3798 	 || spidx0->prefd != spidx1->prefd
3799 	 || spidx0->ul_proto != spidx1->ul_proto)
3800 		return 0;
3801 
3802 	return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 &&
3803 	       key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0;
3804 }
3805 
3806 /*
3807  * compare two secindex structure with mask.
3808  * IN:
3809  *	spidx0: source, it is often in SPD.
3810  *	spidx1: object, it is often from IP header.
3811  * OUT:
3812  *	1 : equal
3813  *	0 : not equal
3814  */
3815 static int
3816 key_cmpspidx_withmask(
3817 	struct secpolicyindex *spidx0,
3818 	struct secpolicyindex *spidx1)
3819 {
3820 	/* sanity */
3821 	if (spidx0 == NULL && spidx1 == NULL)
3822 		return 1;
3823 
3824 	if (spidx0 == NULL || spidx1 == NULL)
3825 		return 0;
3826 
3827 	if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
3828 	    spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
3829 	    spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
3830 	    spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
3831 		return 0;
3832 
3833 	/* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
3834 	if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
3835 	 && spidx0->ul_proto != spidx1->ul_proto)
3836 		return 0;
3837 
3838 	switch (spidx0->src.sa.sa_family) {
3839 	case AF_INET:
3840 		if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
3841 		 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
3842 			return 0;
3843 		if (!key_bbcmp(&spidx0->src.sin.sin_addr,
3844 		    &spidx1->src.sin.sin_addr, spidx0->prefs))
3845 			return 0;
3846 		break;
3847 	case AF_INET6:
3848 		if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
3849 		 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
3850 			return 0;
3851 		/*
3852 		 * scope_id check. if sin6_scope_id is 0, we regard it
3853 		 * as a wildcard scope, which matches any scope zone ID.
3854 		 */
3855 		if (spidx0->src.sin6.sin6_scope_id &&
3856 		    spidx1->src.sin6.sin6_scope_id &&
3857 		    spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
3858 			return 0;
3859 		if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
3860 		    &spidx1->src.sin6.sin6_addr, spidx0->prefs))
3861 			return 0;
3862 		break;
3863 	default:
3864 		/* XXX */
3865 		if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
3866 			return 0;
3867 		break;
3868 	}
3869 
3870 	switch (spidx0->dst.sa.sa_family) {
3871 	case AF_INET:
3872 		if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
3873 		 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
3874 			return 0;
3875 		if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
3876 		    &spidx1->dst.sin.sin_addr, spidx0->prefd))
3877 			return 0;
3878 		break;
3879 	case AF_INET6:
3880 		if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
3881 		 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
3882 			return 0;
3883 		/*
3884 		 * scope_id check. if sin6_scope_id is 0, we regard it
3885 		 * as a wildcard scope, which matches any scope zone ID.
3886 		 */
3887 		if (spidx0->dst.sin6.sin6_scope_id &&
3888 		    spidx1->dst.sin6.sin6_scope_id &&
3889 		    spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
3890 			return 0;
3891 		if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
3892 		    &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
3893 			return 0;
3894 		break;
3895 	default:
3896 		/* XXX */
3897 		if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
3898 			return 0;
3899 		break;
3900 	}
3901 
3902 	/* XXX Do we check other field ?  e.g. flowinfo */
3903 
3904 	return 1;
3905 }
3906 
3907 /* returns 0 on match */
3908 static int
3909 key_sockaddrcmp(
3910 	const struct sockaddr *sa1,
3911 	const struct sockaddr *sa2,
3912 	int port)
3913 {
3914 #ifdef satosin
3915 #undef satosin
3916 #endif
3917 #define satosin(s) ((const struct sockaddr_in *)s)
3918 #ifdef satosin6
3919 #undef satosin6
3920 #endif
3921 #define satosin6(s) ((const struct sockaddr_in6 *)s)
3922 	if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
3923 		return 1;
3924 
3925 	switch (sa1->sa_family) {
3926 	case AF_INET:
3927 		if (sa1->sa_len != sizeof(struct sockaddr_in))
3928 			return 1;
3929 		if (satosin(sa1)->sin_addr.s_addr !=
3930 		    satosin(sa2)->sin_addr.s_addr) {
3931 			return 1;
3932 		}
3933 		if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port)
3934 			return 1;
3935 		break;
3936 	case AF_INET6:
3937 		if (sa1->sa_len != sizeof(struct sockaddr_in6))
3938 			return 1;	/*EINVAL*/
3939 		if (satosin6(sa1)->sin6_scope_id !=
3940 		    satosin6(sa2)->sin6_scope_id) {
3941 			return 1;
3942 		}
3943 		if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr,
3944 		    &satosin6(sa2)->sin6_addr)) {
3945 			return 1;
3946 		}
3947 		if (port &&
3948 		    satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) {
3949 			return 1;
3950 		}
3951 	default:
3952 		if (bcmp(sa1, sa2, sa1->sa_len) != 0)
3953 			return 1;
3954 		break;
3955 	}
3956 
3957 	return 0;
3958 #undef satosin
3959 #undef satosin6
3960 }
3961 
3962 /*
3963  * compare two buffers with mask.
3964  * IN:
3965  *	addr1: source
3966  *	addr2: object
3967  *	bits:  Number of bits to compare
3968  * OUT:
3969  *	1 : equal
3970  *	0 : not equal
3971  */
3972 static int
3973 key_bbcmp(const void *a1, const void *a2, u_int bits)
3974 {
3975 	const unsigned char *p1 = a1;
3976 	const unsigned char *p2 = a2;
3977 
3978 	/* XXX: This could be considerably faster if we compare a word
3979 	 * at a time, but it is complicated on LSB Endian machines */
3980 
3981 	/* Handle null pointers */
3982 	if (p1 == NULL || p2 == NULL)
3983 		return (p1 == p2);
3984 
3985 	while (bits >= 8) {
3986 		if (*p1++ != *p2++)
3987 			return 0;
3988 		bits -= 8;
3989 	}
3990 
3991 	if (bits > 0) {
3992 		u_int8_t mask = ~((1<<(8-bits))-1);
3993 		if ((*p1 & mask) != (*p2 & mask))
3994 			return 0;
3995 	}
3996 	return 1;	/* Match! */
3997 }
3998 
3999 static void
4000 key_flush_spd(time_t now)
4001 {
4002 	static u_int16_t sptree_scangen = 0;
4003 	u_int16_t gen = sptree_scangen++;
4004 	struct secpolicy *sp;
4005 	u_int dir;
4006 
4007 	/* SPD */
4008 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4009 restart:
4010 		SPTREE_LOCK();
4011 		LIST_FOREACH(sp, &sptree[dir], chain) {
4012 			if (sp->scangen == gen)		/* previously handled */
4013 				continue;
4014 			sp->scangen = gen;
4015 			if (sp->state == IPSEC_SPSTATE_DEAD) {
4016 				/* NB: clean entries created by key_spdflush */
4017 				SPTREE_UNLOCK();
4018 				KEY_FREESP(&sp);
4019 				goto restart;
4020 			}
4021 			if (sp->lifetime == 0 && sp->validtime == 0)
4022 				continue;
4023 			if ((sp->lifetime && now - sp->created > sp->lifetime)
4024 			 || (sp->validtime && now - sp->lastused > sp->validtime)) {
4025 				sp->state = IPSEC_SPSTATE_DEAD;
4026 				SPTREE_UNLOCK();
4027 				key_spdexpire(sp);
4028 				KEY_FREESP(&sp);
4029 				goto restart;
4030 			}
4031 		}
4032 		SPTREE_UNLOCK();
4033 	}
4034 }
4035 
4036 static void
4037 key_flush_sad(time_t now)
4038 {
4039 	struct secashead *sah, *nextsah;
4040 	struct secasvar *sav, *nextsav;
4041 
4042 	/* SAD */
4043 	SAHTREE_LOCK();
4044 	LIST_FOREACH_SAFE(sah, &sahtree, chain, nextsah) {
4045 		/* if sah has been dead, then delete it and process next sah. */
4046 		if (sah->state == SADB_SASTATE_DEAD) {
4047 			key_delsah(sah);
4048 			continue;
4049 		}
4050 
4051 		/* if LARVAL entry doesn't become MATURE, delete it. */
4052 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) {
4053 			if (now - sav->created > key_larval_lifetime)
4054 				KEY_FREESAV(&sav);
4055 		}
4056 
4057 		/*
4058 		 * check MATURE entry to start to send expire message
4059 		 * whether or not.
4060 		 */
4061 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) {
4062 			/* we don't need to check. */
4063 			if (sav->lft_s == NULL)
4064 				continue;
4065 
4066 			/* sanity check */
4067 			if (sav->lft_c == NULL) {
4068 				ipseclog((LOG_DEBUG,"%s: there is no CURRENT "
4069 					"time, why?\n", __func__));
4070 				continue;
4071 			}
4072 
4073 			/* check SOFT lifetime */
4074 			if (sav->lft_s->sadb_lifetime_addtime != 0 &&
4075 			    now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4076 				/*
4077 				 * check SA to be used whether or not.
4078 				 * when SA hasn't been used, delete it.
4079 				 */
4080 				if (sav->lft_c->sadb_lifetime_usetime == 0) {
4081 					key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4082 					KEY_FREESAV(&sav);
4083 				} else {
4084 					key_sa_chgstate(sav, SADB_SASTATE_DYING);
4085 					/*
4086 					 * XXX If we keep to send expire
4087 					 * message in the status of
4088 					 * DYING. Do remove below code.
4089 					 */
4090 					key_expire(sav);
4091 				}
4092 			}
4093 			/* check SOFT lifetime by bytes */
4094 			/*
4095 			 * XXX I don't know the way to delete this SA
4096 			 * when new SA is installed.  Caution when it's
4097 			 * installed too big lifetime by time.
4098 			 */
4099 			else if (sav->lft_s->sadb_lifetime_bytes != 0 &&
4100 			    sav->lft_s->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) {
4101 
4102 				key_sa_chgstate(sav, SADB_SASTATE_DYING);
4103 				/*
4104 				 * XXX If we keep to send expire
4105 				 * message in the status of
4106 				 * DYING. Do remove below code.
4107 				 */
4108 				key_expire(sav);
4109 			}
4110 		}
4111 
4112 		/* check DYING entry to change status to DEAD. */
4113 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) {
4114 			/* we don't need to check. */
4115 			if (sav->lft_h == NULL)
4116 				continue;
4117 
4118 			/* sanity check */
4119 			if (sav->lft_c == NULL) {
4120 				ipseclog((LOG_DEBUG, "%s: there is no CURRENT "
4121 					"time, why?\n", __func__));
4122 				continue;
4123 			}
4124 
4125 			if (sav->lft_h->sadb_lifetime_addtime != 0 &&
4126 			    now - sav->created > sav->lft_h->sadb_lifetime_addtime) {
4127 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4128 				KEY_FREESAV(&sav);
4129 			}
4130 #if 0	/* XXX Should we keep to send expire message until HARD lifetime ? */
4131 			else if (sav->lft_s != NULL
4132 			      && sav->lft_s->sadb_lifetime_addtime != 0
4133 			      && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4134 				/*
4135 				 * XXX: should be checked to be
4136 				 * installed the valid SA.
4137 				 */
4138 
4139 				/*
4140 				 * If there is no SA then sending
4141 				 * expire message.
4142 				 */
4143 				key_expire(sav);
4144 			}
4145 #endif
4146 			/* check HARD lifetime by bytes */
4147 			else if (sav->lft_h->sadb_lifetime_bytes != 0 &&
4148 			    sav->lft_h->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) {
4149 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4150 				KEY_FREESAV(&sav);
4151 			}
4152 		}
4153 
4154 		/* delete entry in DEAD */
4155 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) {
4156 			/* sanity check */
4157 			if (sav->state != SADB_SASTATE_DEAD) {
4158 				ipseclog((LOG_DEBUG, "%s: invalid sav->state "
4159 					"(queue: %d SA: %d): kill it anyway\n",
4160 					__func__,
4161 					SADB_SASTATE_DEAD, sav->state));
4162 			}
4163 			/*
4164 			 * do not call key_freesav() here.
4165 			 * sav should already be freed, and sav->refcnt
4166 			 * shows other references to sav
4167 			 * (such as from SPD).
4168 			 */
4169 		}
4170 	}
4171 	SAHTREE_UNLOCK();
4172 }
4173 
4174 static void
4175 key_flush_acq(time_t now)
4176 {
4177 	struct secacq *acq, *nextacq;
4178 
4179 	/* ACQ tree */
4180 	ACQ_LOCK();
4181 	for (acq = LIST_FIRST(&acqtree); acq != NULL; acq = nextacq) {
4182 		nextacq = LIST_NEXT(acq, chain);
4183 		if (now - acq->created > key_blockacq_lifetime
4184 		 && __LIST_CHAINED(acq)) {
4185 			LIST_REMOVE(acq, chain);
4186 			free(acq, M_IPSEC_SAQ);
4187 		}
4188 	}
4189 	ACQ_UNLOCK();
4190 }
4191 
4192 static void
4193 key_flush_spacq(time_t now)
4194 {
4195 	struct secspacq *acq, *nextacq;
4196 
4197 	/* SP ACQ tree */
4198 	SPACQ_LOCK();
4199 	for (acq = LIST_FIRST(&spacqtree); acq != NULL; acq = nextacq) {
4200 		nextacq = LIST_NEXT(acq, chain);
4201 		if (now - acq->created > key_blockacq_lifetime
4202 		 && __LIST_CHAINED(acq)) {
4203 			LIST_REMOVE(acq, chain);
4204 			free(acq, M_IPSEC_SAQ);
4205 		}
4206 	}
4207 	SPACQ_UNLOCK();
4208 }
4209 
4210 /*
4211  * time handler.
4212  * scanning SPD and SAD to check status for each entries,
4213  * and do to remove or to expire.
4214  * XXX: year 2038 problem may remain.
4215  */
4216 void
4217 key_timehandler(void)
4218 {
4219 	time_t now = time_second;
4220 
4221 	key_flush_spd(now);
4222 	key_flush_sad(now);
4223 	key_flush_acq(now);
4224 	key_flush_spacq(now);
4225 
4226 #ifndef IPSEC_DEBUG2
4227 	/* do exchange to tick time !! */
4228 	(void)timeout((void *)key_timehandler, (void *)0, hz);
4229 #endif /* IPSEC_DEBUG2 */
4230 }
4231 
4232 u_long
4233 key_random()
4234 {
4235 	u_long value;
4236 
4237 	key_randomfill(&value, sizeof(value));
4238 	return value;
4239 }
4240 
4241 void
4242 key_randomfill(p, l)
4243 	void *p;
4244 	size_t l;
4245 {
4246 	size_t n;
4247 	u_long v;
4248 	static int warn = 1;
4249 
4250 	n = 0;
4251 	n = (size_t)read_random(p, (u_int)l);
4252 	/* last resort */
4253 	while (n < l) {
4254 		v = random();
4255 		bcopy(&v, (u_int8_t *)p + n,
4256 		    l - n < sizeof(v) ? l - n : sizeof(v));
4257 		n += sizeof(v);
4258 
4259 		if (warn) {
4260 			printf("WARNING: pseudo-random number generator "
4261 			    "used for IPsec processing\n");
4262 			warn = 0;
4263 		}
4264 	}
4265 }
4266 
4267 /*
4268  * map SADB_SATYPE_* to IPPROTO_*.
4269  * if satype == SADB_SATYPE then satype is mapped to ~0.
4270  * OUT:
4271  *	0: invalid satype.
4272  */
4273 static u_int16_t
4274 key_satype2proto(satype)
4275 	u_int8_t satype;
4276 {
4277 	switch (satype) {
4278 	case SADB_SATYPE_UNSPEC:
4279 		return IPSEC_PROTO_ANY;
4280 	case SADB_SATYPE_AH:
4281 		return IPPROTO_AH;
4282 	case SADB_SATYPE_ESP:
4283 		return IPPROTO_ESP;
4284 	case SADB_X_SATYPE_IPCOMP:
4285 		return IPPROTO_IPCOMP;
4286 	case SADB_X_SATYPE_TCPSIGNATURE:
4287 		return IPPROTO_TCP;
4288 	default:
4289 		return 0;
4290 	}
4291 	/* NOTREACHED */
4292 }
4293 
4294 /*
4295  * map IPPROTO_* to SADB_SATYPE_*
4296  * OUT:
4297  *	0: invalid protocol type.
4298  */
4299 static u_int8_t
4300 key_proto2satype(proto)
4301 	u_int16_t proto;
4302 {
4303 	switch (proto) {
4304 	case IPPROTO_AH:
4305 		return SADB_SATYPE_AH;
4306 	case IPPROTO_ESP:
4307 		return SADB_SATYPE_ESP;
4308 	case IPPROTO_IPCOMP:
4309 		return SADB_X_SATYPE_IPCOMP;
4310 	case IPPROTO_TCP:
4311 		return SADB_X_SATYPE_TCPSIGNATURE;
4312 	default:
4313 		return 0;
4314 	}
4315 	/* NOTREACHED */
4316 }
4317 
4318 /* %%% PF_KEY */
4319 /*
4320  * SADB_GETSPI processing is to receive
4321  *	<base, (SA2), src address, dst address, (SPI range)>
4322  * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4323  * tree with the status of LARVAL, and send
4324  *	<base, SA(*), address(SD)>
4325  * to the IKMPd.
4326  *
4327  * IN:	mhp: pointer to the pointer to each header.
4328  * OUT:	NULL if fail.
4329  *	other if success, return pointer to the message to send.
4330  */
4331 static int
4332 key_getspi(so, m, mhp)
4333 	struct socket *so;
4334 	struct mbuf *m;
4335 	const struct sadb_msghdr *mhp;
4336 {
4337 	struct sadb_address *src0, *dst0;
4338 	struct secasindex saidx;
4339 	struct secashead *newsah;
4340 	struct secasvar *newsav;
4341 	u_int8_t proto;
4342 	u_int32_t spi;
4343 	u_int8_t mode;
4344 	u_int32_t reqid;
4345 	int error;
4346 
4347 	IPSEC_ASSERT(so != NULL, ("null socket"));
4348 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4349 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4350 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4351 
4352 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4353 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4354 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4355 			__func__));
4356 		return key_senderror(so, m, EINVAL);
4357 	}
4358 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4359 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4360 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4361 			__func__));
4362 		return key_senderror(so, m, EINVAL);
4363 	}
4364 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4365 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4366 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4367 	} else {
4368 		mode = IPSEC_MODE_ANY;
4369 		reqid = 0;
4370 	}
4371 
4372 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4373 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4374 
4375 	/* map satype to proto */
4376 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4377 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4378 			__func__));
4379 		return key_senderror(so, m, EINVAL);
4380 	}
4381 
4382 	/* make sure if port number is zero. */
4383 	switch (((struct sockaddr *)(src0 + 1))->sa_family) {
4384 	case AF_INET:
4385 		if (((struct sockaddr *)(src0 + 1))->sa_len !=
4386 		    sizeof(struct sockaddr_in))
4387 			return key_senderror(so, m, EINVAL);
4388 		((struct sockaddr_in *)(src0 + 1))->sin_port = 0;
4389 		break;
4390 	case AF_INET6:
4391 		if (((struct sockaddr *)(src0 + 1))->sa_len !=
4392 		    sizeof(struct sockaddr_in6))
4393 			return key_senderror(so, m, EINVAL);
4394 		((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0;
4395 		break;
4396 	default:
4397 		; /*???*/
4398 	}
4399 	switch (((struct sockaddr *)(dst0 + 1))->sa_family) {
4400 	case AF_INET:
4401 		if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4402 		    sizeof(struct sockaddr_in))
4403 			return key_senderror(so, m, EINVAL);
4404 		((struct sockaddr_in *)(dst0 + 1))->sin_port = 0;
4405 		break;
4406 	case AF_INET6:
4407 		if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4408 		    sizeof(struct sockaddr_in6))
4409 			return key_senderror(so, m, EINVAL);
4410 		((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0;
4411 		break;
4412 	default:
4413 		; /*???*/
4414 	}
4415 
4416 	/* XXX boundary check against sa_len */
4417 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4418 
4419 	/* SPI allocation */
4420 	spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4421 	                       &saidx);
4422 	if (spi == 0)
4423 		return key_senderror(so, m, EINVAL);
4424 
4425 	/* get a SA index */
4426 	if ((newsah = key_getsah(&saidx)) == NULL) {
4427 		/* create a new SA index */
4428 		if ((newsah = key_newsah(&saidx)) == NULL) {
4429 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
4430 			return key_senderror(so, m, ENOBUFS);
4431 		}
4432 	}
4433 
4434 	/* get a new SA */
4435 	/* XXX rewrite */
4436 	newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4437 	if (newsav == NULL) {
4438 		/* XXX don't free new SA index allocated in above. */
4439 		return key_senderror(so, m, error);
4440 	}
4441 
4442 	/* set spi */
4443 	newsav->spi = htonl(spi);
4444 
4445 	/* delete the entry in acqtree */
4446 	if (mhp->msg->sadb_msg_seq != 0) {
4447 		struct secacq *acq;
4448 		if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) {
4449 			/* reset counter in order to deletion by timehandler. */
4450 			acq->created = time_second;
4451 			acq->count = 0;
4452 		}
4453     	}
4454 
4455     {
4456 	struct mbuf *n, *nn;
4457 	struct sadb_sa *m_sa;
4458 	struct sadb_msg *newmsg;
4459 	int off, len;
4460 
4461 	/* create new sadb_msg to reply. */
4462 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4463 	    PFKEY_ALIGN8(sizeof(struct sadb_sa));
4464 	if (len > MCLBYTES)
4465 		return key_senderror(so, m, ENOBUFS);
4466 
4467 	MGETHDR(n, M_DONTWAIT, MT_DATA);
4468 	if (len > MHLEN) {
4469 		MCLGET(n, M_DONTWAIT);
4470 		if ((n->m_flags & M_EXT) == 0) {
4471 			m_freem(n);
4472 			n = NULL;
4473 		}
4474 	}
4475 	if (!n)
4476 		return key_senderror(so, m, ENOBUFS);
4477 
4478 	n->m_len = len;
4479 	n->m_next = NULL;
4480 	off = 0;
4481 
4482 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
4483 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4484 
4485 	m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off);
4486 	m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4487 	m_sa->sadb_sa_exttype = SADB_EXT_SA;
4488 	m_sa->sadb_sa_spi = htonl(spi);
4489 	off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4490 
4491 	IPSEC_ASSERT(off == len,
4492 		("length inconsistency (off %u len %u)", off, len));
4493 
4494 	n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4495 	    SADB_EXT_ADDRESS_DST);
4496 	if (!n->m_next) {
4497 		m_freem(n);
4498 		return key_senderror(so, m, ENOBUFS);
4499 	}
4500 
4501 	if (n->m_len < sizeof(struct sadb_msg)) {
4502 		n = m_pullup(n, sizeof(struct sadb_msg));
4503 		if (n == NULL)
4504 			return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
4505 	}
4506 
4507 	n->m_pkthdr.len = 0;
4508 	for (nn = n; nn; nn = nn->m_next)
4509 		n->m_pkthdr.len += nn->m_len;
4510 
4511 	newmsg = mtod(n, struct sadb_msg *);
4512 	newmsg->sadb_msg_seq = newsav->seq;
4513 	newmsg->sadb_msg_errno = 0;
4514 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
4515 
4516 	m_freem(m);
4517 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
4518     }
4519 }
4520 
4521 /*
4522  * allocating new SPI
4523  * called by key_getspi().
4524  * OUT:
4525  *	0:	failure.
4526  *	others: success.
4527  */
4528 static u_int32_t
4529 key_do_getnewspi(spirange, saidx)
4530 	struct sadb_spirange *spirange;
4531 	struct secasindex *saidx;
4532 {
4533 	u_int32_t newspi;
4534 	u_int32_t min, max;
4535 	int count = key_spi_trycnt;
4536 
4537 	/* set spi range to allocate */
4538 	if (spirange != NULL) {
4539 		min = spirange->sadb_spirange_min;
4540 		max = spirange->sadb_spirange_max;
4541 	} else {
4542 		min = key_spi_minval;
4543 		max = key_spi_maxval;
4544 	}
4545 	/* IPCOMP needs 2-byte SPI */
4546 	if (saidx->proto == IPPROTO_IPCOMP) {
4547 		u_int32_t t;
4548 		if (min >= 0x10000)
4549 			min = 0xffff;
4550 		if (max >= 0x10000)
4551 			max = 0xffff;
4552 		if (min > max) {
4553 			t = min; min = max; max = t;
4554 		}
4555 	}
4556 
4557 	if (min == max) {
4558 		if (key_checkspidup(saidx, min) != NULL) {
4559 			ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n",
4560 				__func__, min));
4561 			return 0;
4562 		}
4563 
4564 		count--; /* taking one cost. */
4565 		newspi = min;
4566 
4567 	} else {
4568 
4569 		/* init SPI */
4570 		newspi = 0;
4571 
4572 		/* when requesting to allocate spi ranged */
4573 		while (count--) {
4574 			/* generate pseudo-random SPI value ranged. */
4575 			newspi = min + (key_random() % (max - min + 1));
4576 
4577 			if (key_checkspidup(saidx, newspi) == NULL)
4578 				break;
4579 		}
4580 
4581 		if (count == 0 || newspi == 0) {
4582 			ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n",
4583 				__func__));
4584 			return 0;
4585 		}
4586 	}
4587 
4588 	/* statistics */
4589 	keystat.getspi_count =
4590 		(keystat.getspi_count + key_spi_trycnt - count) / 2;
4591 
4592 	return newspi;
4593 }
4594 
4595 /*
4596  * SADB_UPDATE processing
4597  * receive
4598  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4599  *       key(AE), (identity(SD),) (sensitivity)>
4600  * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
4601  * and send
4602  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4603  *       (identity(SD),) (sensitivity)>
4604  * to the ikmpd.
4605  *
4606  * m will always be freed.
4607  */
4608 static int
4609 key_update(so, m, mhp)
4610 	struct socket *so;
4611 	struct mbuf *m;
4612 	const struct sadb_msghdr *mhp;
4613 {
4614 	struct sadb_sa *sa0;
4615 	struct sadb_address *src0, *dst0;
4616 	struct secasindex saidx;
4617 	struct secashead *sah;
4618 	struct secasvar *sav;
4619 	u_int16_t proto;
4620 	u_int8_t mode;
4621 	u_int32_t reqid;
4622 	int error;
4623 
4624 	IPSEC_ASSERT(so != NULL, ("null socket"));
4625 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4626 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4627 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4628 
4629 	/* map satype to proto */
4630 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4631 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4632 			__func__));
4633 		return key_senderror(so, m, EINVAL);
4634 	}
4635 
4636 	if (mhp->ext[SADB_EXT_SA] == NULL ||
4637 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4638 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
4639 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
4640 	     mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
4641 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
4642 	     mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
4643 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
4644 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
4645 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
4646 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
4647 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4648 			__func__));
4649 		return key_senderror(so, m, EINVAL);
4650 	}
4651 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
4652 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4653 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4654 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4655 			__func__));
4656 		return key_senderror(so, m, EINVAL);
4657 	}
4658 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4659 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4660 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4661 	} else {
4662 		mode = IPSEC_MODE_ANY;
4663 		reqid = 0;
4664 	}
4665 	/* XXX boundary checking for other extensions */
4666 
4667 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
4668 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4669 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4670 
4671 	/* XXX boundary check against sa_len */
4672 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4673 
4674 	/* get a SA header */
4675 	if ((sah = key_getsah(&saidx)) == NULL) {
4676 		ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__));
4677 		return key_senderror(so, m, ENOENT);
4678 	}
4679 
4680 	/* set spidx if there */
4681 	/* XXX rewrite */
4682 	error = key_setident(sah, m, mhp);
4683 	if (error)
4684 		return key_senderror(so, m, error);
4685 
4686 	/* find a SA with sequence number. */
4687 #ifdef IPSEC_DOSEQCHECK
4688 	if (mhp->msg->sadb_msg_seq != 0
4689 	 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) {
4690 		ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u "
4691 			"exists.\n", __func__, mhp->msg->sadb_msg_seq));
4692 		return key_senderror(so, m, ENOENT);
4693 	}
4694 #else
4695 	SAHTREE_LOCK();
4696 	sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
4697 	SAHTREE_UNLOCK();
4698 	if (sav == NULL) {
4699 		ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n",
4700 			__func__, (u_int32_t)ntohl(sa0->sadb_sa_spi)));
4701 		return key_senderror(so, m, EINVAL);
4702 	}
4703 #endif
4704 
4705 	/* validity check */
4706 	if (sav->sah->saidx.proto != proto) {
4707 		ipseclog((LOG_DEBUG, "%s: protocol mismatched "
4708 			"(DB=%u param=%u)\n", __func__,
4709 			sav->sah->saidx.proto, proto));
4710 		return key_senderror(so, m, EINVAL);
4711 	}
4712 #ifdef IPSEC_DOSEQCHECK
4713 	if (sav->spi != sa0->sadb_sa_spi) {
4714 		ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n",
4715 		    __func__,
4716 		    (u_int32_t)ntohl(sav->spi),
4717 		    (u_int32_t)ntohl(sa0->sadb_sa_spi)));
4718 		return key_senderror(so, m, EINVAL);
4719 	}
4720 #endif
4721 	if (sav->pid != mhp->msg->sadb_msg_pid) {
4722 		ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n",
4723 		    __func__, sav->pid, mhp->msg->sadb_msg_pid));
4724 		return key_senderror(so, m, EINVAL);
4725 	}
4726 
4727 	/* copy sav values */
4728 	error = key_setsaval(sav, m, mhp);
4729 	if (error) {
4730 		KEY_FREESAV(&sav);
4731 		return key_senderror(so, m, error);
4732 	}
4733 
4734 	/* check SA values to be mature. */
4735 	if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) {
4736 		KEY_FREESAV(&sav);
4737 		return key_senderror(so, m, 0);
4738 	}
4739 
4740     {
4741 	struct mbuf *n;
4742 
4743 	/* set msg buf from mhp */
4744 	n = key_getmsgbuf_x1(m, mhp);
4745 	if (n == NULL) {
4746 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
4747 		return key_senderror(so, m, ENOBUFS);
4748 	}
4749 
4750 	m_freem(m);
4751 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
4752     }
4753 }
4754 
4755 /*
4756  * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
4757  * only called by key_update().
4758  * OUT:
4759  *	NULL	: not found
4760  *	others	: found, pointer to a SA.
4761  */
4762 #ifdef IPSEC_DOSEQCHECK
4763 static struct secasvar *
4764 key_getsavbyseq(sah, seq)
4765 	struct secashead *sah;
4766 	u_int32_t seq;
4767 {
4768 	struct secasvar *sav;
4769 	u_int state;
4770 
4771 	state = SADB_SASTATE_LARVAL;
4772 
4773 	/* search SAD with sequence number ? */
4774 	LIST_FOREACH(sav, &sah->savtree[state], chain) {
4775 
4776 		KEY_CHKSASTATE(state, sav->state, __func__);
4777 
4778 		if (sav->seq == seq) {
4779 			SA_ADDREF(sav);
4780 			KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
4781 				printf("DP %s cause refcnt++:%d SA:%p\n",
4782 					__func__, sav->refcnt, sav));
4783 			return sav;
4784 		}
4785 	}
4786 
4787 	return NULL;
4788 }
4789 #endif
4790 
4791 /*
4792  * SADB_ADD processing
4793  * add an entry to SA database, when received
4794  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4795  *       key(AE), (identity(SD),) (sensitivity)>
4796  * from the ikmpd,
4797  * and send
4798  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4799  *       (identity(SD),) (sensitivity)>
4800  * to the ikmpd.
4801  *
4802  * IGNORE identity and sensitivity messages.
4803  *
4804  * m will always be freed.
4805  */
4806 static int
4807 key_add(so, m, mhp)
4808 	struct socket *so;
4809 	struct mbuf *m;
4810 	const struct sadb_msghdr *mhp;
4811 {
4812 	struct sadb_sa *sa0;
4813 	struct sadb_address *src0, *dst0;
4814 	struct secasindex saidx;
4815 	struct secashead *newsah;
4816 	struct secasvar *newsav;
4817 	u_int16_t proto;
4818 	u_int8_t mode;
4819 	u_int32_t reqid;
4820 	int error;
4821 
4822 	IPSEC_ASSERT(so != NULL, ("null socket"));
4823 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4824 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4825 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4826 
4827 	/* map satype to proto */
4828 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4829 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4830 			__func__));
4831 		return key_senderror(so, m, EINVAL);
4832 	}
4833 
4834 	if (mhp->ext[SADB_EXT_SA] == NULL ||
4835 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4836 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
4837 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
4838 	     mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
4839 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
4840 	     mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
4841 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
4842 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
4843 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
4844 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
4845 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4846 			__func__));
4847 		return key_senderror(so, m, EINVAL);
4848 	}
4849 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
4850 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4851 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4852 		/* XXX need more */
4853 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4854 			__func__));
4855 		return key_senderror(so, m, EINVAL);
4856 	}
4857 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4858 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4859 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4860 	} else {
4861 		mode = IPSEC_MODE_ANY;
4862 		reqid = 0;
4863 	}
4864 
4865 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
4866 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
4867 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
4868 
4869 	/* XXX boundary check against sa_len */
4870 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4871 
4872 	/* get a SA header */
4873 	if ((newsah = key_getsah(&saidx)) == NULL) {
4874 		/* create a new SA header */
4875 		if ((newsah = key_newsah(&saidx)) == NULL) {
4876 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
4877 			return key_senderror(so, m, ENOBUFS);
4878 		}
4879 	}
4880 
4881 	/* set spidx if there */
4882 	/* XXX rewrite */
4883 	error = key_setident(newsah, m, mhp);
4884 	if (error) {
4885 		return key_senderror(so, m, error);
4886 	}
4887 
4888 	/* create new SA entry. */
4889 	/* We can create new SA only if SPI is differenct. */
4890 	SAHTREE_LOCK();
4891 	newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi);
4892 	SAHTREE_UNLOCK();
4893 	if (newsav != NULL) {
4894 		ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__));
4895 		return key_senderror(so, m, EEXIST);
4896 	}
4897 	newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4898 	if (newsav == NULL) {
4899 		return key_senderror(so, m, error);
4900 	}
4901 
4902 	/* check SA values to be mature. */
4903 	if ((error = key_mature(newsav)) != 0) {
4904 		KEY_FREESAV(&newsav);
4905 		return key_senderror(so, m, error);
4906 	}
4907 
4908 	/*
4909 	 * don't call key_freesav() here, as we would like to keep the SA
4910 	 * in the database on success.
4911 	 */
4912 
4913     {
4914 	struct mbuf *n;
4915 
4916 	/* set msg buf from mhp */
4917 	n = key_getmsgbuf_x1(m, mhp);
4918 	if (n == NULL) {
4919 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
4920 		return key_senderror(so, m, ENOBUFS);
4921 	}
4922 
4923 	m_freem(m);
4924 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
4925     }
4926 }
4927 
4928 /* m is retained */
4929 static int
4930 key_setident(sah, m, mhp)
4931 	struct secashead *sah;
4932 	struct mbuf *m;
4933 	const struct sadb_msghdr *mhp;
4934 {
4935 	const struct sadb_ident *idsrc, *iddst;
4936 	int idsrclen, iddstlen;
4937 
4938 	IPSEC_ASSERT(sah != NULL, ("null secashead"));
4939 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4940 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4941 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4942 
4943 	/* don't make buffer if not there */
4944 	if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
4945 	    mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
4946 		sah->idents = NULL;
4947 		sah->identd = NULL;
4948 		return 0;
4949 	}
4950 
4951 	if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
4952 	    mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
4953 		ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__));
4954 		return EINVAL;
4955 	}
4956 
4957 	idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
4958 	iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
4959 	idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
4960 	iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
4961 
4962 	/* validity check */
4963 	if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
4964 		ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__));
4965 		return EINVAL;
4966 	}
4967 
4968 	switch (idsrc->sadb_ident_type) {
4969 	case SADB_IDENTTYPE_PREFIX:
4970 	case SADB_IDENTTYPE_FQDN:
4971 	case SADB_IDENTTYPE_USERFQDN:
4972 	default:
4973 		/* XXX do nothing */
4974 		sah->idents = NULL;
4975 		sah->identd = NULL;
4976 	 	return 0;
4977 	}
4978 
4979 	/* make structure */
4980 	sah->idents = malloc(idsrclen, M_IPSEC_MISC, M_NOWAIT);
4981 	if (sah->idents == NULL) {
4982 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
4983 		return ENOBUFS;
4984 	}
4985 	sah->identd = malloc(iddstlen, M_IPSEC_MISC, M_NOWAIT);
4986 	if (sah->identd == NULL) {
4987 		free(sah->idents, M_IPSEC_MISC);
4988 		sah->idents = NULL;
4989 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
4990 		return ENOBUFS;
4991 	}
4992 	bcopy(idsrc, sah->idents, idsrclen);
4993 	bcopy(iddst, sah->identd, iddstlen);
4994 
4995 	return 0;
4996 }
4997 
4998 /*
4999  * m will not be freed on return.
5000  * it is caller's responsibility to free the result.
5001  */
5002 static struct mbuf *
5003 key_getmsgbuf_x1(m, mhp)
5004 	struct mbuf *m;
5005 	const struct sadb_msghdr *mhp;
5006 {
5007 	struct mbuf *n;
5008 
5009 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5010 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5011 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5012 
5013 	/* create new sadb_msg to reply. */
5014 	n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED,
5015 	    SADB_EXT_SA, SADB_X_EXT_SA2,
5016 	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5017 	    SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5018 	    SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST);
5019 	if (!n)
5020 		return NULL;
5021 
5022 	if (n->m_len < sizeof(struct sadb_msg)) {
5023 		n = m_pullup(n, sizeof(struct sadb_msg));
5024 		if (n == NULL)
5025 			return NULL;
5026 	}
5027 	mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5028 	mtod(n, struct sadb_msg *)->sadb_msg_len =
5029 	    PFKEY_UNIT64(n->m_pkthdr.len);
5030 
5031 	return n;
5032 }
5033 
5034 static int key_delete_all __P((struct socket *, struct mbuf *,
5035 	const struct sadb_msghdr *, u_int16_t));
5036 
5037 /*
5038  * SADB_DELETE processing
5039  * receive
5040  *   <base, SA(*), address(SD)>
5041  * from the ikmpd, and set SADB_SASTATE_DEAD,
5042  * and send,
5043  *   <base, SA(*), address(SD)>
5044  * to the ikmpd.
5045  *
5046  * m will always be freed.
5047  */
5048 static int
5049 key_delete(so, m, mhp)
5050 	struct socket *so;
5051 	struct mbuf *m;
5052 	const struct sadb_msghdr *mhp;
5053 {
5054 	struct sadb_sa *sa0;
5055 	struct sadb_address *src0, *dst0;
5056 	struct secasindex saidx;
5057 	struct secashead *sah;
5058 	struct secasvar *sav = NULL;
5059 	u_int16_t proto;
5060 
5061 	IPSEC_ASSERT(so != NULL, ("null socket"));
5062 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5063 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5064 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5065 
5066 	/* map satype to proto */
5067 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5068 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5069 			__func__));
5070 		return key_senderror(so, m, EINVAL);
5071 	}
5072 
5073 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5074 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5075 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5076 			__func__));
5077 		return key_senderror(so, m, EINVAL);
5078 	}
5079 
5080 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5081 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5082 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5083 			__func__));
5084 		return key_senderror(so, m, EINVAL);
5085 	}
5086 
5087 	if (mhp->ext[SADB_EXT_SA] == NULL) {
5088 		/*
5089 		 * Caller wants us to delete all non-LARVAL SAs
5090 		 * that match the src/dst.  This is used during
5091 		 * IKE INITIAL-CONTACT.
5092 		 */
5093 		ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__));
5094 		return key_delete_all(so, m, mhp, proto);
5095 	} else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5096 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5097 			__func__));
5098 		return key_senderror(so, m, EINVAL);
5099 	}
5100 
5101 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5102 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5103 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5104 
5105 	/* XXX boundary check against sa_len */
5106 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5107 
5108 	/* get a SA header */
5109 	SAHTREE_LOCK();
5110 	LIST_FOREACH(sah, &sahtree, chain) {
5111 		if (sah->state == SADB_SASTATE_DEAD)
5112 			continue;
5113 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5114 			continue;
5115 
5116 		/* get a SA with SPI. */
5117 		sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5118 		if (sav)
5119 			break;
5120 	}
5121 	if (sah == NULL) {
5122 		SAHTREE_UNLOCK();
5123 		ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5124 		return key_senderror(so, m, ENOENT);
5125 	}
5126 
5127 	key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5128 	SAHTREE_UNLOCK();
5129 	KEY_FREESAV(&sav);
5130 
5131     {
5132 	struct mbuf *n;
5133 	struct sadb_msg *newmsg;
5134 
5135 	/* create new sadb_msg to reply. */
5136 	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5137 	    SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5138 	if (!n)
5139 		return key_senderror(so, m, ENOBUFS);
5140 
5141 	if (n->m_len < sizeof(struct sadb_msg)) {
5142 		n = m_pullup(n, sizeof(struct sadb_msg));
5143 		if (n == NULL)
5144 			return key_senderror(so, m, ENOBUFS);
5145 	}
5146 	newmsg = mtod(n, struct sadb_msg *);
5147 	newmsg->sadb_msg_errno = 0;
5148 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5149 
5150 	m_freem(m);
5151 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5152     }
5153 }
5154 
5155 /*
5156  * delete all SAs for src/dst.  Called from key_delete().
5157  */
5158 static int
5159 key_delete_all(so, m, mhp, proto)
5160 	struct socket *so;
5161 	struct mbuf *m;
5162 	const struct sadb_msghdr *mhp;
5163 	u_int16_t proto;
5164 {
5165 	struct sadb_address *src0, *dst0;
5166 	struct secasindex saidx;
5167 	struct secashead *sah;
5168 	struct secasvar *sav, *nextsav;
5169 	u_int stateidx, state;
5170 
5171 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5172 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5173 
5174 	/* XXX boundary check against sa_len */
5175 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5176 
5177 	SAHTREE_LOCK();
5178 	LIST_FOREACH(sah, &sahtree, chain) {
5179 		if (sah->state == SADB_SASTATE_DEAD)
5180 			continue;
5181 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5182 			continue;
5183 
5184 		/* Delete all non-LARVAL SAs. */
5185 		for (stateidx = 0;
5186 		     stateidx < _ARRAYLEN(saorder_state_alive);
5187 		     stateidx++) {
5188 			state = saorder_state_alive[stateidx];
5189 			if (state == SADB_SASTATE_LARVAL)
5190 				continue;
5191 			for (sav = LIST_FIRST(&sah->savtree[state]);
5192 			     sav != NULL; sav = nextsav) {
5193 				nextsav = LIST_NEXT(sav, chain);
5194 				/* sanity check */
5195 				if (sav->state != state) {
5196 					ipseclog((LOG_DEBUG, "%s: invalid "
5197 						"sav->state (queue %d SA %d)\n",
5198 						__func__, state, sav->state));
5199 					continue;
5200 				}
5201 
5202 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5203 				KEY_FREESAV(&sav);
5204 			}
5205 		}
5206 	}
5207 	SAHTREE_UNLOCK();
5208     {
5209 	struct mbuf *n;
5210 	struct sadb_msg *newmsg;
5211 
5212 	/* create new sadb_msg to reply. */
5213 	n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5214 	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5215 	if (!n)
5216 		return key_senderror(so, m, ENOBUFS);
5217 
5218 	if (n->m_len < sizeof(struct sadb_msg)) {
5219 		n = m_pullup(n, sizeof(struct sadb_msg));
5220 		if (n == NULL)
5221 			return key_senderror(so, m, ENOBUFS);
5222 	}
5223 	newmsg = mtod(n, struct sadb_msg *);
5224 	newmsg->sadb_msg_errno = 0;
5225 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5226 
5227 	m_freem(m);
5228 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5229     }
5230 }
5231 
5232 /*
5233  * SADB_GET processing
5234  * receive
5235  *   <base, SA(*), address(SD)>
5236  * from the ikmpd, and get a SP and a SA to respond,
5237  * and send,
5238  *   <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5239  *       (identity(SD),) (sensitivity)>
5240  * to the ikmpd.
5241  *
5242  * m will always be freed.
5243  */
5244 static int
5245 key_get(so, m, mhp)
5246 	struct socket *so;
5247 	struct mbuf *m;
5248 	const struct sadb_msghdr *mhp;
5249 {
5250 	struct sadb_sa *sa0;
5251 	struct sadb_address *src0, *dst0;
5252 	struct secasindex saidx;
5253 	struct secashead *sah;
5254 	struct secasvar *sav = NULL;
5255 	u_int16_t proto;
5256 
5257 	IPSEC_ASSERT(so != NULL, ("null socket"));
5258 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5259 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5260 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5261 
5262 	/* map satype to proto */
5263 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5264 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5265 			__func__));
5266 		return key_senderror(so, m, EINVAL);
5267 	}
5268 
5269 	if (mhp->ext[SADB_EXT_SA] == NULL ||
5270 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5271 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5272 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5273 			__func__));
5274 		return key_senderror(so, m, EINVAL);
5275 	}
5276 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5277 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5278 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5279 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5280 			__func__));
5281 		return key_senderror(so, m, EINVAL);
5282 	}
5283 
5284 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5285 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5286 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5287 
5288 	/* XXX boundary check against sa_len */
5289 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5290 
5291 	/* get a SA header */
5292 	SAHTREE_LOCK();
5293 	LIST_FOREACH(sah, &sahtree, chain) {
5294 		if (sah->state == SADB_SASTATE_DEAD)
5295 			continue;
5296 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5297 			continue;
5298 
5299 		/* get a SA with SPI. */
5300 		sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5301 		if (sav)
5302 			break;
5303 	}
5304 	SAHTREE_UNLOCK();
5305 	if (sah == NULL) {
5306 		ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5307 		return key_senderror(so, m, ENOENT);
5308 	}
5309 
5310     {
5311 	struct mbuf *n;
5312 	u_int8_t satype;
5313 
5314 	/* map proto to satype */
5315 	if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
5316 		ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n",
5317 			__func__));
5318 		return key_senderror(so, m, EINVAL);
5319 	}
5320 
5321 	/* create new sadb_msg to reply. */
5322 	n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5323 	    mhp->msg->sadb_msg_pid);
5324 	if (!n)
5325 		return key_senderror(so, m, ENOBUFS);
5326 
5327 	m_freem(m);
5328 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5329     }
5330 }
5331 
5332 /* XXX make it sysctl-configurable? */
5333 static void
5334 key_getcomb_setlifetime(comb)
5335 	struct sadb_comb *comb;
5336 {
5337 
5338 	comb->sadb_comb_soft_allocations = 1;
5339 	comb->sadb_comb_hard_allocations = 1;
5340 	comb->sadb_comb_soft_bytes = 0;
5341 	comb->sadb_comb_hard_bytes = 0;
5342 	comb->sadb_comb_hard_addtime = 86400;	/* 1 day */
5343 	comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5344 	comb->sadb_comb_soft_usetime = 28800;	/* 8 hours */
5345 	comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
5346 }
5347 
5348 /*
5349  * XXX reorder combinations by preference
5350  * XXX no idea if the user wants ESP authentication or not
5351  */
5352 static struct mbuf *
5353 key_getcomb_esp()
5354 {
5355 	struct sadb_comb *comb;
5356 	struct enc_xform *algo;
5357 	struct mbuf *result = NULL, *m, *n;
5358 	int encmin;
5359 	int i, off, o;
5360 	int totlen;
5361 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5362 
5363 	m = NULL;
5364 	for (i = 1; i <= SADB_EALG_MAX; i++) {
5365 		algo = esp_algorithm_lookup(i);
5366 		if (algo == NULL)
5367 			continue;
5368 
5369 		/* discard algorithms with key size smaller than system min */
5370 		if (_BITS(algo->maxkey) < ipsec_esp_keymin)
5371 			continue;
5372 		if (_BITS(algo->minkey) < ipsec_esp_keymin)
5373 			encmin = ipsec_esp_keymin;
5374 		else
5375 			encmin = _BITS(algo->minkey);
5376 
5377 		if (ipsec_esp_auth)
5378 			m = key_getcomb_ah();
5379 		else {
5380 			IPSEC_ASSERT(l <= MLEN,
5381 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
5382 			MGET(m, M_DONTWAIT, MT_DATA);
5383 			if (m) {
5384 				M_ALIGN(m, l);
5385 				m->m_len = l;
5386 				m->m_next = NULL;
5387 				bzero(mtod(m, caddr_t), m->m_len);
5388 			}
5389 		}
5390 		if (!m)
5391 			goto fail;
5392 
5393 		totlen = 0;
5394 		for (n = m; n; n = n->m_next)
5395 			totlen += n->m_len;
5396 		IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l));
5397 
5398 		for (off = 0; off < totlen; off += l) {
5399 			n = m_pulldown(m, off, l, &o);
5400 			if (!n) {
5401 				/* m is already freed */
5402 				goto fail;
5403 			}
5404 			comb = (struct sadb_comb *)(mtod(n, caddr_t) + o);
5405 			bzero(comb, sizeof(*comb));
5406 			key_getcomb_setlifetime(comb);
5407 			comb->sadb_comb_encrypt = i;
5408 			comb->sadb_comb_encrypt_minbits = encmin;
5409 			comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
5410 		}
5411 
5412 		if (!result)
5413 			result = m;
5414 		else
5415 			m_cat(result, m);
5416 	}
5417 
5418 	return result;
5419 
5420  fail:
5421 	if (result)
5422 		m_freem(result);
5423 	return NULL;
5424 }
5425 
5426 static void
5427 key_getsizes_ah(
5428 	const struct auth_hash *ah,
5429 	int alg,
5430 	u_int16_t* min,
5431 	u_int16_t* max)
5432 {
5433 	*min = *max = ah->keysize;
5434 	if (ah->keysize == 0) {
5435 		/*
5436 		 * Transform takes arbitrary key size but algorithm
5437 		 * key size is restricted.  Enforce this here.
5438 		 */
5439 		switch (alg) {
5440 		case SADB_X_AALG_MD5:	*min = *max = 16; break;
5441 		case SADB_X_AALG_SHA:	*min = *max = 20; break;
5442 		case SADB_X_AALG_NULL:	*min = 1; *max = 256; break;
5443 		default:
5444 			DPRINTF(("%s: unknown AH algorithm %u\n",
5445 				__func__, alg));
5446 			break;
5447 		}
5448 	}
5449 }
5450 
5451 /*
5452  * XXX reorder combinations by preference
5453  */
5454 static struct mbuf *
5455 key_getcomb_ah()
5456 {
5457 	struct sadb_comb *comb;
5458 	struct auth_hash *algo;
5459 	struct mbuf *m;
5460 	u_int16_t minkeysize, maxkeysize;
5461 	int i;
5462 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5463 
5464 	m = NULL;
5465 	for (i = 1; i <= SADB_AALG_MAX; i++) {
5466 #if 1
5467 		/* we prefer HMAC algorithms, not old algorithms */
5468 		if (i != SADB_AALG_SHA1HMAC && i != SADB_AALG_MD5HMAC)
5469 			continue;
5470 #endif
5471 		algo = ah_algorithm_lookup(i);
5472 		if (!algo)
5473 			continue;
5474 		key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
5475 		/* discard algorithms with key size smaller than system min */
5476 		if (_BITS(minkeysize) < ipsec_ah_keymin)
5477 			continue;
5478 
5479 		if (!m) {
5480 			IPSEC_ASSERT(l <= MLEN,
5481 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
5482 			MGET(m, M_DONTWAIT, MT_DATA);
5483 			if (m) {
5484 				M_ALIGN(m, l);
5485 				m->m_len = l;
5486 				m->m_next = NULL;
5487 			}
5488 		} else
5489 			M_PREPEND(m, l, M_DONTWAIT);
5490 		if (!m)
5491 			return NULL;
5492 
5493 		comb = mtod(m, struct sadb_comb *);
5494 		bzero(comb, sizeof(*comb));
5495 		key_getcomb_setlifetime(comb);
5496 		comb->sadb_comb_auth = i;
5497 		comb->sadb_comb_auth_minbits = _BITS(minkeysize);
5498 		comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
5499 	}
5500 
5501 	return m;
5502 }
5503 
5504 /*
5505  * not really an official behavior.  discussed in pf_key@inner.net in Sep2000.
5506  * XXX reorder combinations by preference
5507  */
5508 static struct mbuf *
5509 key_getcomb_ipcomp()
5510 {
5511 	struct sadb_comb *comb;
5512 	struct comp_algo *algo;
5513 	struct mbuf *m;
5514 	int i;
5515 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5516 
5517 	m = NULL;
5518 	for (i = 1; i <= SADB_X_CALG_MAX; i++) {
5519 		algo = ipcomp_algorithm_lookup(i);
5520 		if (!algo)
5521 			continue;
5522 
5523 		if (!m) {
5524 			IPSEC_ASSERT(l <= MLEN,
5525 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
5526 			MGET(m, M_DONTWAIT, MT_DATA);
5527 			if (m) {
5528 				M_ALIGN(m, l);
5529 				m->m_len = l;
5530 				m->m_next = NULL;
5531 			}
5532 		} else
5533 			M_PREPEND(m, l, M_DONTWAIT);
5534 		if (!m)
5535 			return NULL;
5536 
5537 		comb = mtod(m, struct sadb_comb *);
5538 		bzero(comb, sizeof(*comb));
5539 		key_getcomb_setlifetime(comb);
5540 		comb->sadb_comb_encrypt = i;
5541 		/* what should we set into sadb_comb_*_{min,max}bits? */
5542 	}
5543 
5544 	return m;
5545 }
5546 
5547 /*
5548  * XXX no way to pass mode (transport/tunnel) to userland
5549  * XXX replay checking?
5550  * XXX sysctl interface to ipsec_{ah,esp}_keymin
5551  */
5552 static struct mbuf *
5553 key_getprop(saidx)
5554 	const struct secasindex *saidx;
5555 {
5556 	struct sadb_prop *prop;
5557 	struct mbuf *m, *n;
5558 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
5559 	int totlen;
5560 
5561 	switch (saidx->proto)  {
5562 	case IPPROTO_ESP:
5563 		m = key_getcomb_esp();
5564 		break;
5565 	case IPPROTO_AH:
5566 		m = key_getcomb_ah();
5567 		break;
5568 	case IPPROTO_IPCOMP:
5569 		m = key_getcomb_ipcomp();
5570 		break;
5571 	default:
5572 		return NULL;
5573 	}
5574 
5575 	if (!m)
5576 		return NULL;
5577 	M_PREPEND(m, l, M_DONTWAIT);
5578 	if (!m)
5579 		return NULL;
5580 
5581 	totlen = 0;
5582 	for (n = m; n; n = n->m_next)
5583 		totlen += n->m_len;
5584 
5585 	prop = mtod(m, struct sadb_prop *);
5586 	bzero(prop, sizeof(*prop));
5587 	prop->sadb_prop_len = PFKEY_UNIT64(totlen);
5588 	prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
5589 	prop->sadb_prop_replay = 32;	/* XXX */
5590 
5591 	return m;
5592 }
5593 
5594 /*
5595  * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
5596  * send
5597  *   <base, SA, address(SD), (address(P)), x_policy,
5598  *       (identity(SD),) (sensitivity,) proposal>
5599  * to KMD, and expect to receive
5600  *   <base> with SADB_ACQUIRE if error occured,
5601  * or
5602  *   <base, src address, dst address, (SPI range)> with SADB_GETSPI
5603  * from KMD by PF_KEY.
5604  *
5605  * XXX x_policy is outside of RFC2367 (KAME extension).
5606  * XXX sensitivity is not supported.
5607  * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
5608  * see comment for key_getcomb_ipcomp().
5609  *
5610  * OUT:
5611  *    0     : succeed
5612  *    others: error number
5613  */
5614 static int
5615 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
5616 {
5617 	struct mbuf *result = NULL, *m;
5618 	struct secacq *newacq;
5619 	u_int8_t satype;
5620 	int error = -1;
5621 	u_int32_t seq;
5622 
5623 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
5624 	satype = key_proto2satype(saidx->proto);
5625 	IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto));
5626 
5627 	/*
5628 	 * We never do anything about acquirng SA.  There is anather
5629 	 * solution that kernel blocks to send SADB_ACQUIRE message until
5630 	 * getting something message from IKEd.  In later case, to be
5631 	 * managed with ACQUIRING list.
5632 	 */
5633 	/* Get an entry to check whether sending message or not. */
5634 	if ((newacq = key_getacq(saidx)) != NULL) {
5635 		if (key_blockacq_count < newacq->count) {
5636 			/* reset counter and do send message. */
5637 			newacq->count = 0;
5638 		} else {
5639 			/* increment counter and do nothing. */
5640 			newacq->count++;
5641 			return 0;
5642 		}
5643 	} else {
5644 		/* make new entry for blocking to send SADB_ACQUIRE. */
5645 		if ((newacq = key_newacq(saidx)) == NULL)
5646 			return ENOBUFS;
5647 	}
5648 
5649 
5650 	seq = newacq->seq;
5651 	m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
5652 	if (!m) {
5653 		error = ENOBUFS;
5654 		goto fail;
5655 	}
5656 	result = m;
5657 
5658 	/* set sadb_address for saidx's. */
5659 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
5660 	    &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY);
5661 	if (!m) {
5662 		error = ENOBUFS;
5663 		goto fail;
5664 	}
5665 	m_cat(result, m);
5666 
5667 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
5668 	    &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY);
5669 	if (!m) {
5670 		error = ENOBUFS;
5671 		goto fail;
5672 	}
5673 	m_cat(result, m);
5674 
5675 	/* XXX proxy address (optional) */
5676 
5677 	/* set sadb_x_policy */
5678 	if (sp) {
5679 		m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
5680 		if (!m) {
5681 			error = ENOBUFS;
5682 			goto fail;
5683 		}
5684 		m_cat(result, m);
5685 	}
5686 
5687 	/* XXX identity (optional) */
5688 #if 0
5689 	if (idexttype && fqdn) {
5690 		/* create identity extension (FQDN) */
5691 		struct sadb_ident *id;
5692 		int fqdnlen;
5693 
5694 		fqdnlen = strlen(fqdn) + 1;	/* +1 for terminating-NUL */
5695 		id = (struct sadb_ident *)p;
5696 		bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
5697 		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
5698 		id->sadb_ident_exttype = idexttype;
5699 		id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
5700 		bcopy(fqdn, id + 1, fqdnlen);
5701 		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
5702 	}
5703 
5704 	if (idexttype) {
5705 		/* create identity extension (USERFQDN) */
5706 		struct sadb_ident *id;
5707 		int userfqdnlen;
5708 
5709 		if (userfqdn) {
5710 			/* +1 for terminating-NUL */
5711 			userfqdnlen = strlen(userfqdn) + 1;
5712 		} else
5713 			userfqdnlen = 0;
5714 		id = (struct sadb_ident *)p;
5715 		bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
5716 		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
5717 		id->sadb_ident_exttype = idexttype;
5718 		id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
5719 		/* XXX is it correct? */
5720 		if (curproc && curproc->p_cred)
5721 			id->sadb_ident_id = curproc->p_cred->p_ruid;
5722 		if (userfqdn && userfqdnlen)
5723 			bcopy(userfqdn, id + 1, userfqdnlen);
5724 		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
5725 	}
5726 #endif
5727 
5728 	/* XXX sensitivity (optional) */
5729 
5730 	/* create proposal/combination extension */
5731 	m = key_getprop(saidx);
5732 #if 0
5733 	/*
5734 	 * spec conformant: always attach proposal/combination extension,
5735 	 * the problem is that we have no way to attach it for ipcomp,
5736 	 * due to the way sadb_comb is declared in RFC2367.
5737 	 */
5738 	if (!m) {
5739 		error = ENOBUFS;
5740 		goto fail;
5741 	}
5742 	m_cat(result, m);
5743 #else
5744 	/*
5745 	 * outside of spec; make proposal/combination extension optional.
5746 	 */
5747 	if (m)
5748 		m_cat(result, m);
5749 #endif
5750 
5751 	if ((result->m_flags & M_PKTHDR) == 0) {
5752 		error = EINVAL;
5753 		goto fail;
5754 	}
5755 
5756 	if (result->m_len < sizeof(struct sadb_msg)) {
5757 		result = m_pullup(result, sizeof(struct sadb_msg));
5758 		if (result == NULL) {
5759 			error = ENOBUFS;
5760 			goto fail;
5761 		}
5762 	}
5763 
5764 	result->m_pkthdr.len = 0;
5765 	for (m = result; m; m = m->m_next)
5766 		result->m_pkthdr.len += m->m_len;
5767 
5768 	mtod(result, struct sadb_msg *)->sadb_msg_len =
5769 	    PFKEY_UNIT64(result->m_pkthdr.len);
5770 
5771 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
5772 
5773  fail:
5774 	if (result)
5775 		m_freem(result);
5776 	return error;
5777 }
5778 
5779 static struct secacq *
5780 key_newacq(const struct secasindex *saidx)
5781 {
5782 	struct secacq *newacq;
5783 
5784 	/* get new entry */
5785 	newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
5786 	if (newacq == NULL) {
5787 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5788 		return NULL;
5789 	}
5790 
5791 	/* copy secindex */
5792 	bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx));
5793 	newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
5794 	newacq->created = time_second;
5795 	newacq->count = 0;
5796 
5797 	/* add to acqtree */
5798 	ACQ_LOCK();
5799 	LIST_INSERT_HEAD(&acqtree, newacq, chain);
5800 	ACQ_UNLOCK();
5801 
5802 	return newacq;
5803 }
5804 
5805 static struct secacq *
5806 key_getacq(const struct secasindex *saidx)
5807 {
5808 	struct secacq *acq;
5809 
5810 	ACQ_LOCK();
5811 	LIST_FOREACH(acq, &acqtree, chain) {
5812 		if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY))
5813 			break;
5814 	}
5815 	ACQ_UNLOCK();
5816 
5817 	return acq;
5818 }
5819 
5820 static struct secacq *
5821 key_getacqbyseq(seq)
5822 	u_int32_t seq;
5823 {
5824 	struct secacq *acq;
5825 
5826 	ACQ_LOCK();
5827 	LIST_FOREACH(acq, &acqtree, chain) {
5828 		if (acq->seq == seq)
5829 			break;
5830 	}
5831 	ACQ_UNLOCK();
5832 
5833 	return acq;
5834 }
5835 
5836 static struct secspacq *
5837 key_newspacq(spidx)
5838 	struct secpolicyindex *spidx;
5839 {
5840 	struct secspacq *acq;
5841 
5842 	/* get new entry */
5843 	acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
5844 	if (acq == NULL) {
5845 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5846 		return NULL;
5847 	}
5848 
5849 	/* copy secindex */
5850 	bcopy(spidx, &acq->spidx, sizeof(acq->spidx));
5851 	acq->created = time_second;
5852 	acq->count = 0;
5853 
5854 	/* add to spacqtree */
5855 	SPACQ_LOCK();
5856 	LIST_INSERT_HEAD(&spacqtree, acq, chain);
5857 	SPACQ_UNLOCK();
5858 
5859 	return acq;
5860 }
5861 
5862 static struct secspacq *
5863 key_getspacq(spidx)
5864 	struct secpolicyindex *spidx;
5865 {
5866 	struct secspacq *acq;
5867 
5868 	SPACQ_LOCK();
5869 	LIST_FOREACH(acq, &spacqtree, chain) {
5870 		if (key_cmpspidx_exactly(spidx, &acq->spidx)) {
5871 			/* NB: return holding spacq_lock */
5872 			return acq;
5873 		}
5874 	}
5875 	SPACQ_UNLOCK();
5876 
5877 	return NULL;
5878 }
5879 
5880 /*
5881  * SADB_ACQUIRE processing,
5882  * in first situation, is receiving
5883  *   <base>
5884  * from the ikmpd, and clear sequence of its secasvar entry.
5885  *
5886  * In second situation, is receiving
5887  *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
5888  * from a user land process, and return
5889  *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
5890  * to the socket.
5891  *
5892  * m will always be freed.
5893  */
5894 static int
5895 key_acquire2(so, m, mhp)
5896 	struct socket *so;
5897 	struct mbuf *m;
5898 	const struct sadb_msghdr *mhp;
5899 {
5900 	const struct sadb_address *src0, *dst0;
5901 	struct secasindex saidx;
5902 	struct secashead *sah;
5903 	u_int16_t proto;
5904 	int error;
5905 
5906 	IPSEC_ASSERT(so != NULL, ("null socket"));
5907 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5908 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5909 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5910 
5911 	/*
5912 	 * Error message from KMd.
5913 	 * We assume that if error was occured in IKEd, the length of PFKEY
5914 	 * message is equal to the size of sadb_msg structure.
5915 	 * We do not raise error even if error occured in this function.
5916 	 */
5917 	if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
5918 		struct secacq *acq;
5919 
5920 		/* check sequence number */
5921 		if (mhp->msg->sadb_msg_seq == 0) {
5922 			ipseclog((LOG_DEBUG, "%s: must specify sequence "
5923 				"number.\n", __func__));
5924 			m_freem(m);
5925 			return 0;
5926 		}
5927 
5928 		if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) {
5929 			/*
5930 			 * the specified larval SA is already gone, or we got
5931 			 * a bogus sequence number.  we can silently ignore it.
5932 			 */
5933 			m_freem(m);
5934 			return 0;
5935 		}
5936 
5937 		/* reset acq counter in order to deletion by timehander. */
5938 		acq->created = time_second;
5939 		acq->count = 0;
5940 		m_freem(m);
5941 		return 0;
5942 	}
5943 
5944 	/*
5945 	 * This message is from user land.
5946 	 */
5947 
5948 	/* map satype to proto */
5949 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5950 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5951 			__func__));
5952 		return key_senderror(so, m, EINVAL);
5953 	}
5954 
5955 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5956 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5957 	    mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
5958 		/* error */
5959 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5960 			__func__));
5961 		return key_senderror(so, m, EINVAL);
5962 	}
5963 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5964 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
5965 	    mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
5966 		/* error */
5967 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5968 			__func__));
5969 		return key_senderror(so, m, EINVAL);
5970 	}
5971 
5972 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5973 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5974 
5975 	/* XXX boundary check against sa_len */
5976 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5977 
5978 	/* get a SA index */
5979 	SAHTREE_LOCK();
5980 	LIST_FOREACH(sah, &sahtree, chain) {
5981 		if (sah->state == SADB_SASTATE_DEAD)
5982 			continue;
5983 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID))
5984 			break;
5985 	}
5986 	SAHTREE_UNLOCK();
5987 	if (sah != NULL) {
5988 		ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__));
5989 		return key_senderror(so, m, EEXIST);
5990 	}
5991 
5992 	error = key_acquire(&saidx, NULL);
5993 	if (error != 0) {
5994 		ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
5995 			__func__, mhp->msg->sadb_msg_errno));
5996 		return key_senderror(so, m, error);
5997 	}
5998 
5999 	return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6000 }
6001 
6002 /*
6003  * SADB_REGISTER processing.
6004  * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6005  * receive
6006  *   <base>
6007  * from the ikmpd, and register a socket to send PF_KEY messages,
6008  * and send
6009  *   <base, supported>
6010  * to KMD by PF_KEY.
6011  * If socket is detached, must free from regnode.
6012  *
6013  * m will always be freed.
6014  */
6015 static int
6016 key_register(so, m, mhp)
6017 	struct socket *so;
6018 	struct mbuf *m;
6019 	const struct sadb_msghdr *mhp;
6020 {
6021 	struct secreg *reg, *newreg = 0;
6022 
6023 	IPSEC_ASSERT(so != NULL, ("null socket"));
6024 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6025 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6026 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6027 
6028 	/* check for invalid register message */
6029 	if (mhp->msg->sadb_msg_satype >= sizeof(regtree)/sizeof(regtree[0]))
6030 		return key_senderror(so, m, EINVAL);
6031 
6032 	/* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6033 	if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6034 		goto setmsg;
6035 
6036 	/* check whether existing or not */
6037 	REGTREE_LOCK();
6038 	LIST_FOREACH(reg, &regtree[mhp->msg->sadb_msg_satype], chain) {
6039 		if (reg->so == so) {
6040 			REGTREE_UNLOCK();
6041 			ipseclog((LOG_DEBUG, "%s: socket exists already.\n",
6042 				__func__));
6043 			return key_senderror(so, m, EEXIST);
6044 		}
6045 	}
6046 
6047 	/* create regnode */
6048 	newreg =  malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO);
6049 	if (newreg == NULL) {
6050 		REGTREE_UNLOCK();
6051 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6052 		return key_senderror(so, m, ENOBUFS);
6053 	}
6054 
6055 	newreg->so = so;
6056 	((struct keycb *)sotorawcb(so))->kp_registered++;
6057 
6058 	/* add regnode to regtree. */
6059 	LIST_INSERT_HEAD(&regtree[mhp->msg->sadb_msg_satype], newreg, chain);
6060 	REGTREE_UNLOCK();
6061 
6062   setmsg:
6063     {
6064 	struct mbuf *n;
6065 	struct sadb_msg *newmsg;
6066 	struct sadb_supported *sup;
6067 	u_int len, alen, elen;
6068 	int off;
6069 	int i;
6070 	struct sadb_alg *alg;
6071 
6072 	/* create new sadb_msg to reply. */
6073 	alen = 0;
6074 	for (i = 1; i <= SADB_AALG_MAX; i++) {
6075 		if (ah_algorithm_lookup(i))
6076 			alen += sizeof(struct sadb_alg);
6077 	}
6078 	if (alen)
6079 		alen += sizeof(struct sadb_supported);
6080 	elen = 0;
6081 	for (i = 1; i <= SADB_EALG_MAX; i++) {
6082 		if (esp_algorithm_lookup(i))
6083 			elen += sizeof(struct sadb_alg);
6084 	}
6085 	if (elen)
6086 		elen += sizeof(struct sadb_supported);
6087 
6088 	len = sizeof(struct sadb_msg) + alen + elen;
6089 
6090 	if (len > MCLBYTES)
6091 		return key_senderror(so, m, ENOBUFS);
6092 
6093 	MGETHDR(n, M_DONTWAIT, MT_DATA);
6094 	if (len > MHLEN) {
6095 		MCLGET(n, M_DONTWAIT);
6096 		if ((n->m_flags & M_EXT) == 0) {
6097 			m_freem(n);
6098 			n = NULL;
6099 		}
6100 	}
6101 	if (!n)
6102 		return key_senderror(so, m, ENOBUFS);
6103 
6104 	n->m_pkthdr.len = n->m_len = len;
6105 	n->m_next = NULL;
6106 	off = 0;
6107 
6108 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
6109 	newmsg = mtod(n, struct sadb_msg *);
6110 	newmsg->sadb_msg_errno = 0;
6111 	newmsg->sadb_msg_len = PFKEY_UNIT64(len);
6112 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6113 
6114 	/* for authentication algorithm */
6115 	if (alen) {
6116 		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6117 		sup->sadb_supported_len = PFKEY_UNIT64(alen);
6118 		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6119 		off += PFKEY_ALIGN8(sizeof(*sup));
6120 
6121 		for (i = 1; i <= SADB_AALG_MAX; i++) {
6122 			struct auth_hash *aalgo;
6123 			u_int16_t minkeysize, maxkeysize;
6124 
6125 			aalgo = ah_algorithm_lookup(i);
6126 			if (!aalgo)
6127 				continue;
6128 			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6129 			alg->sadb_alg_id = i;
6130 			alg->sadb_alg_ivlen = 0;
6131 			key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6132 			alg->sadb_alg_minbits = _BITS(minkeysize);
6133 			alg->sadb_alg_maxbits = _BITS(maxkeysize);
6134 			off += PFKEY_ALIGN8(sizeof(*alg));
6135 		}
6136 	}
6137 
6138 	/* for encryption algorithm */
6139 	if (elen) {
6140 		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6141 		sup->sadb_supported_len = PFKEY_UNIT64(elen);
6142 		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6143 		off += PFKEY_ALIGN8(sizeof(*sup));
6144 
6145 		for (i = 1; i <= SADB_EALG_MAX; i++) {
6146 			struct enc_xform *ealgo;
6147 
6148 			ealgo = esp_algorithm_lookup(i);
6149 			if (!ealgo)
6150 				continue;
6151 			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6152 			alg->sadb_alg_id = i;
6153 			alg->sadb_alg_ivlen = ealgo->blocksize;
6154 			alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6155 			alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6156 			off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6157 		}
6158 	}
6159 
6160 	IPSEC_ASSERT(off == len,
6161 		("length assumption failed (off %u len %u)", off, len));
6162 
6163 	m_freem(m);
6164 	return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6165     }
6166 }
6167 
6168 /*
6169  * free secreg entry registered.
6170  * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6171  */
6172 void
6173 key_freereg(struct socket *so)
6174 {
6175 	struct secreg *reg;
6176 	int i;
6177 
6178 	IPSEC_ASSERT(so != NULL, ("NULL so"));
6179 
6180 	/*
6181 	 * check whether existing or not.
6182 	 * check all type of SA, because there is a potential that
6183 	 * one socket is registered to multiple type of SA.
6184 	 */
6185 	REGTREE_LOCK();
6186 	for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6187 		LIST_FOREACH(reg, &regtree[i], chain) {
6188 			if (reg->so == so && __LIST_CHAINED(reg)) {
6189 				LIST_REMOVE(reg, chain);
6190 				free(reg, M_IPSEC_SAR);
6191 				break;
6192 			}
6193 		}
6194 	}
6195 	REGTREE_UNLOCK();
6196 }
6197 
6198 /*
6199  * SADB_EXPIRE processing
6200  * send
6201  *   <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6202  * to KMD by PF_KEY.
6203  * NOTE: We send only soft lifetime extension.
6204  *
6205  * OUT:	0	: succeed
6206  *	others	: error number
6207  */
6208 static int
6209 key_expire(struct secasvar *sav)
6210 {
6211 	int s;
6212 	int satype;
6213 	struct mbuf *result = NULL, *m;
6214 	int len;
6215 	int error = -1;
6216 	struct sadb_lifetime *lt;
6217 
6218 	/* XXX: Why do we lock ? */
6219 	s = splnet();	/*called from softclock()*/
6220 
6221 	IPSEC_ASSERT (sav != NULL, ("null sav"));
6222 	IPSEC_ASSERT (sav->sah != NULL, ("null sa header"));
6223 
6224 	/* set msg header */
6225 	satype = key_proto2satype(sav->sah->saidx.proto);
6226 	IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype));
6227 	m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6228 	if (!m) {
6229 		error = ENOBUFS;
6230 		goto fail;
6231 	}
6232 	result = m;
6233 
6234 	/* create SA extension */
6235 	m = key_setsadbsa(sav);
6236 	if (!m) {
6237 		error = ENOBUFS;
6238 		goto fail;
6239 	}
6240 	m_cat(result, m);
6241 
6242 	/* create SA extension */
6243 	m = key_setsadbxsa2(sav->sah->saidx.mode,
6244 			sav->replay ? sav->replay->count : 0,
6245 			sav->sah->saidx.reqid);
6246 	if (!m) {
6247 		error = ENOBUFS;
6248 		goto fail;
6249 	}
6250 	m_cat(result, m);
6251 
6252 	/* create lifetime extension (current and soft) */
6253 	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6254 	m = key_alloc_mbuf(len);
6255 	if (!m || m->m_next) {	/*XXX*/
6256 		if (m)
6257 			m_freem(m);
6258 		error = ENOBUFS;
6259 		goto fail;
6260 	}
6261 	bzero(mtod(m, caddr_t), len);
6262 	lt = mtod(m, struct sadb_lifetime *);
6263 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6264 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6265 	lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations;
6266 	lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes;
6267 	lt->sadb_lifetime_addtime = sav->lft_c->sadb_lifetime_addtime;
6268 	lt->sadb_lifetime_usetime = sav->lft_c->sadb_lifetime_usetime;
6269 	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
6270 	bcopy(sav->lft_s, lt, sizeof(*lt));
6271 	m_cat(result, m);
6272 
6273 	/* set sadb_address for source */
6274 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6275 	    &sav->sah->saidx.src.sa,
6276 	    FULLMASK, IPSEC_ULPROTO_ANY);
6277 	if (!m) {
6278 		error = ENOBUFS;
6279 		goto fail;
6280 	}
6281 	m_cat(result, m);
6282 
6283 	/* set sadb_address for destination */
6284 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6285 	    &sav->sah->saidx.dst.sa,
6286 	    FULLMASK, IPSEC_ULPROTO_ANY);
6287 	if (!m) {
6288 		error = ENOBUFS;
6289 		goto fail;
6290 	}
6291 	m_cat(result, m);
6292 
6293 	if ((result->m_flags & M_PKTHDR) == 0) {
6294 		error = EINVAL;
6295 		goto fail;
6296 	}
6297 
6298 	if (result->m_len < sizeof(struct sadb_msg)) {
6299 		result = m_pullup(result, sizeof(struct sadb_msg));
6300 		if (result == NULL) {
6301 			error = ENOBUFS;
6302 			goto fail;
6303 		}
6304 	}
6305 
6306 	result->m_pkthdr.len = 0;
6307 	for (m = result; m; m = m->m_next)
6308 		result->m_pkthdr.len += m->m_len;
6309 
6310 	mtod(result, struct sadb_msg *)->sadb_msg_len =
6311 	    PFKEY_UNIT64(result->m_pkthdr.len);
6312 
6313 	splx(s);
6314 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6315 
6316  fail:
6317 	if (result)
6318 		m_freem(result);
6319 	splx(s);
6320 	return error;
6321 }
6322 
6323 /*
6324  * SADB_FLUSH processing
6325  * receive
6326  *   <base>
6327  * from the ikmpd, and free all entries in secastree.
6328  * and send,
6329  *   <base>
6330  * to the ikmpd.
6331  * NOTE: to do is only marking SADB_SASTATE_DEAD.
6332  *
6333  * m will always be freed.
6334  */
6335 static int
6336 key_flush(so, m, mhp)
6337 	struct socket *so;
6338 	struct mbuf *m;
6339 	const struct sadb_msghdr *mhp;
6340 {
6341 	struct sadb_msg *newmsg;
6342 	struct secashead *sah, *nextsah;
6343 	struct secasvar *sav, *nextsav;
6344 	u_int16_t proto;
6345 	u_int8_t state;
6346 	u_int stateidx;
6347 
6348 	IPSEC_ASSERT(so != NULL, ("null socket"));
6349 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6350 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6351 
6352 	/* map satype to proto */
6353 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6354 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6355 			__func__));
6356 		return key_senderror(so, m, EINVAL);
6357 	}
6358 
6359 	/* no SATYPE specified, i.e. flushing all SA. */
6360 	SAHTREE_LOCK();
6361 	for (sah = LIST_FIRST(&sahtree);
6362 	     sah != NULL;
6363 	     sah = nextsah) {
6364 		nextsah = LIST_NEXT(sah, chain);
6365 
6366 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6367 		 && proto != sah->saidx.proto)
6368 			continue;
6369 
6370 		for (stateidx = 0;
6371 		     stateidx < _ARRAYLEN(saorder_state_alive);
6372 		     stateidx++) {
6373 			state = saorder_state_any[stateidx];
6374 			for (sav = LIST_FIRST(&sah->savtree[state]);
6375 			     sav != NULL;
6376 			     sav = nextsav) {
6377 
6378 				nextsav = LIST_NEXT(sav, chain);
6379 
6380 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
6381 				KEY_FREESAV(&sav);
6382 			}
6383 		}
6384 
6385 		sah->state = SADB_SASTATE_DEAD;
6386 	}
6387 	SAHTREE_UNLOCK();
6388 
6389 	if (m->m_len < sizeof(struct sadb_msg) ||
6390 	    sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
6391 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6392 		return key_senderror(so, m, ENOBUFS);
6393 	}
6394 
6395 	if (m->m_next)
6396 		m_freem(m->m_next);
6397 	m->m_next = NULL;
6398 	m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
6399 	newmsg = mtod(m, struct sadb_msg *);
6400 	newmsg->sadb_msg_errno = 0;
6401 	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
6402 
6403 	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6404 }
6405 
6406 /*
6407  * SADB_DUMP processing
6408  * dump all entries including status of DEAD in SAD.
6409  * receive
6410  *   <base>
6411  * from the ikmpd, and dump all secasvar leaves
6412  * and send,
6413  *   <base> .....
6414  * to the ikmpd.
6415  *
6416  * m will always be freed.
6417  */
6418 static int
6419 key_dump(so, m, mhp)
6420 	struct socket *so;
6421 	struct mbuf *m;
6422 	const struct sadb_msghdr *mhp;
6423 {
6424 	struct secashead *sah;
6425 	struct secasvar *sav;
6426 	u_int16_t proto;
6427 	u_int stateidx;
6428 	u_int8_t satype;
6429 	u_int8_t state;
6430 	int cnt;
6431 	struct sadb_msg *newmsg;
6432 	struct mbuf *n;
6433 
6434 	IPSEC_ASSERT(so != NULL, ("null socket"));
6435 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6436 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6437 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6438 
6439 	/* map satype to proto */
6440 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6441 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6442 			__func__));
6443 		return key_senderror(so, m, EINVAL);
6444 	}
6445 
6446 	/* count sav entries to be sent to the userland. */
6447 	cnt = 0;
6448 	SAHTREE_LOCK();
6449 	LIST_FOREACH(sah, &sahtree, chain) {
6450 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6451 		 && proto != sah->saidx.proto)
6452 			continue;
6453 
6454 		for (stateidx = 0;
6455 		     stateidx < _ARRAYLEN(saorder_state_any);
6456 		     stateidx++) {
6457 			state = saorder_state_any[stateidx];
6458 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
6459 				cnt++;
6460 			}
6461 		}
6462 	}
6463 
6464 	if (cnt == 0) {
6465 		SAHTREE_UNLOCK();
6466 		return key_senderror(so, m, ENOENT);
6467 	}
6468 
6469 	/* send this to the userland, one at a time. */
6470 	newmsg = NULL;
6471 	LIST_FOREACH(sah, &sahtree, chain) {
6472 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6473 		 && proto != sah->saidx.proto)
6474 			continue;
6475 
6476 		/* map proto to satype */
6477 		if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
6478 			SAHTREE_UNLOCK();
6479 			ipseclog((LOG_DEBUG, "%s: there was invalid proto in "
6480 				"SAD.\n", __func__));
6481 			return key_senderror(so, m, EINVAL);
6482 		}
6483 
6484 		for (stateidx = 0;
6485 		     stateidx < _ARRAYLEN(saorder_state_any);
6486 		     stateidx++) {
6487 			state = saorder_state_any[stateidx];
6488 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
6489 				n = key_setdumpsa(sav, SADB_DUMP, satype,
6490 				    --cnt, mhp->msg->sadb_msg_pid);
6491 				if (!n) {
6492 					SAHTREE_UNLOCK();
6493 					return key_senderror(so, m, ENOBUFS);
6494 				}
6495 				key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
6496 			}
6497 		}
6498 	}
6499 	SAHTREE_UNLOCK();
6500 
6501 	m_freem(m);
6502 	return 0;
6503 }
6504 
6505 /*
6506  * SADB_X_PROMISC processing
6507  *
6508  * m will always be freed.
6509  */
6510 static int
6511 key_promisc(so, m, mhp)
6512 	struct socket *so;
6513 	struct mbuf *m;
6514 	const struct sadb_msghdr *mhp;
6515 {
6516 	int olen;
6517 
6518 	IPSEC_ASSERT(so != NULL, ("null socket"));
6519 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6520 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6521 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6522 
6523 	olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
6524 
6525 	if (olen < sizeof(struct sadb_msg)) {
6526 #if 1
6527 		return key_senderror(so, m, EINVAL);
6528 #else
6529 		m_freem(m);
6530 		return 0;
6531 #endif
6532 	} else if (olen == sizeof(struct sadb_msg)) {
6533 		/* enable/disable promisc mode */
6534 		struct keycb *kp;
6535 
6536 		if ((kp = (struct keycb *)sotorawcb(so)) == NULL)
6537 			return key_senderror(so, m, EINVAL);
6538 		mhp->msg->sadb_msg_errno = 0;
6539 		switch (mhp->msg->sadb_msg_satype) {
6540 		case 0:
6541 		case 1:
6542 			kp->kp_promisc = mhp->msg->sadb_msg_satype;
6543 			break;
6544 		default:
6545 			return key_senderror(so, m, EINVAL);
6546 		}
6547 
6548 		/* send the original message back to everyone */
6549 		mhp->msg->sadb_msg_errno = 0;
6550 		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6551 	} else {
6552 		/* send packet as is */
6553 
6554 		m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
6555 
6556 		/* TODO: if sadb_msg_seq is specified, send to specific pid */
6557 		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6558 	}
6559 }
6560 
6561 static int (*key_typesw[]) __P((struct socket *, struct mbuf *,
6562 		const struct sadb_msghdr *)) = {
6563 	NULL,		/* SADB_RESERVED */
6564 	key_getspi,	/* SADB_GETSPI */
6565 	key_update,	/* SADB_UPDATE */
6566 	key_add,	/* SADB_ADD */
6567 	key_delete,	/* SADB_DELETE */
6568 	key_get,	/* SADB_GET */
6569 	key_acquire2,	/* SADB_ACQUIRE */
6570 	key_register,	/* SADB_REGISTER */
6571 	NULL,		/* SADB_EXPIRE */
6572 	key_flush,	/* SADB_FLUSH */
6573 	key_dump,	/* SADB_DUMP */
6574 	key_promisc,	/* SADB_X_PROMISC */
6575 	NULL,		/* SADB_X_PCHANGE */
6576 	key_spdadd,	/* SADB_X_SPDUPDATE */
6577 	key_spdadd,	/* SADB_X_SPDADD */
6578 	key_spddelete,	/* SADB_X_SPDDELETE */
6579 	key_spdget,	/* SADB_X_SPDGET */
6580 	NULL,		/* SADB_X_SPDACQUIRE */
6581 	key_spddump,	/* SADB_X_SPDDUMP */
6582 	key_spdflush,	/* SADB_X_SPDFLUSH */
6583 	key_spdadd,	/* SADB_X_SPDSETIDX */
6584 	NULL,		/* SADB_X_SPDEXPIRE */
6585 	key_spddelete2,	/* SADB_X_SPDDELETE2 */
6586 };
6587 
6588 /*
6589  * parse sadb_msg buffer to process PFKEYv2,
6590  * and create a data to response if needed.
6591  * I think to be dealed with mbuf directly.
6592  * IN:
6593  *     msgp  : pointer to pointer to a received buffer pulluped.
6594  *             This is rewrited to response.
6595  *     so    : pointer to socket.
6596  * OUT:
6597  *    length for buffer to send to user process.
6598  */
6599 int
6600 key_parse(m, so)
6601 	struct mbuf *m;
6602 	struct socket *so;
6603 {
6604 	struct sadb_msg *msg;
6605 	struct sadb_msghdr mh;
6606 	u_int orglen;
6607 	int error;
6608 	int target;
6609 
6610 	IPSEC_ASSERT(so != NULL, ("null socket"));
6611 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6612 
6613 #if 0	/*kdebug_sadb assumes msg in linear buffer*/
6614 	KEYDEBUG(KEYDEBUG_KEY_DUMP,
6615 		ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__));
6616 		kdebug_sadb(msg));
6617 #endif
6618 
6619 	if (m->m_len < sizeof(struct sadb_msg)) {
6620 		m = m_pullup(m, sizeof(struct sadb_msg));
6621 		if (!m)
6622 			return ENOBUFS;
6623 	}
6624 	msg = mtod(m, struct sadb_msg *);
6625 	orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
6626 	target = KEY_SENDUP_ONE;
6627 
6628 	if ((m->m_flags & M_PKTHDR) == 0 ||
6629 	    m->m_pkthdr.len != m->m_pkthdr.len) {
6630 		ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__));
6631 		pfkeystat.out_invlen++;
6632 		error = EINVAL;
6633 		goto senderror;
6634 	}
6635 
6636 	if (msg->sadb_msg_version != PF_KEY_V2) {
6637 		ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n",
6638 		    __func__, msg->sadb_msg_version));
6639 		pfkeystat.out_invver++;
6640 		error = EINVAL;
6641 		goto senderror;
6642 	}
6643 
6644 	if (msg->sadb_msg_type > SADB_MAX) {
6645 		ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
6646 		    __func__, msg->sadb_msg_type));
6647 		pfkeystat.out_invmsgtype++;
6648 		error = EINVAL;
6649 		goto senderror;
6650 	}
6651 
6652 	/* for old-fashioned code - should be nuked */
6653 	if (m->m_pkthdr.len > MCLBYTES) {
6654 		m_freem(m);
6655 		return ENOBUFS;
6656 	}
6657 	if (m->m_next) {
6658 		struct mbuf *n;
6659 
6660 		MGETHDR(n, M_DONTWAIT, MT_DATA);
6661 		if (n && m->m_pkthdr.len > MHLEN) {
6662 			MCLGET(n, M_DONTWAIT);
6663 			if ((n->m_flags & M_EXT) == 0) {
6664 				m_free(n);
6665 				n = NULL;
6666 			}
6667 		}
6668 		if (!n) {
6669 			m_freem(m);
6670 			return ENOBUFS;
6671 		}
6672 		m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t));
6673 		n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
6674 		n->m_next = NULL;
6675 		m_freem(m);
6676 		m = n;
6677 	}
6678 
6679 	/* align the mbuf chain so that extensions are in contiguous region. */
6680 	error = key_align(m, &mh);
6681 	if (error)
6682 		return error;
6683 
6684 	msg = mh.msg;
6685 
6686 	/* check SA type */
6687 	switch (msg->sadb_msg_satype) {
6688 	case SADB_SATYPE_UNSPEC:
6689 		switch (msg->sadb_msg_type) {
6690 		case SADB_GETSPI:
6691 		case SADB_UPDATE:
6692 		case SADB_ADD:
6693 		case SADB_DELETE:
6694 		case SADB_GET:
6695 		case SADB_ACQUIRE:
6696 		case SADB_EXPIRE:
6697 			ipseclog((LOG_DEBUG, "%s: must specify satype "
6698 			    "when msg type=%u.\n", __func__,
6699 			    msg->sadb_msg_type));
6700 			pfkeystat.out_invsatype++;
6701 			error = EINVAL;
6702 			goto senderror;
6703 		}
6704 		break;
6705 	case SADB_SATYPE_AH:
6706 	case SADB_SATYPE_ESP:
6707 	case SADB_X_SATYPE_IPCOMP:
6708 	case SADB_X_SATYPE_TCPSIGNATURE:
6709 		switch (msg->sadb_msg_type) {
6710 		case SADB_X_SPDADD:
6711 		case SADB_X_SPDDELETE:
6712 		case SADB_X_SPDGET:
6713 		case SADB_X_SPDDUMP:
6714 		case SADB_X_SPDFLUSH:
6715 		case SADB_X_SPDSETIDX:
6716 		case SADB_X_SPDUPDATE:
6717 		case SADB_X_SPDDELETE2:
6718 			ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n",
6719 				__func__, msg->sadb_msg_type));
6720 			pfkeystat.out_invsatype++;
6721 			error = EINVAL;
6722 			goto senderror;
6723 		}
6724 		break;
6725 	case SADB_SATYPE_RSVP:
6726 	case SADB_SATYPE_OSPFV2:
6727 	case SADB_SATYPE_RIPV2:
6728 	case SADB_SATYPE_MIP:
6729 		ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n",
6730 			__func__, msg->sadb_msg_satype));
6731 		pfkeystat.out_invsatype++;
6732 		error = EOPNOTSUPP;
6733 		goto senderror;
6734 	case 1:	/* XXX: What does it do? */
6735 		if (msg->sadb_msg_type == SADB_X_PROMISC)
6736 			break;
6737 		/*FALLTHROUGH*/
6738 	default:
6739 		ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
6740 			__func__, msg->sadb_msg_satype));
6741 		pfkeystat.out_invsatype++;
6742 		error = EINVAL;
6743 		goto senderror;
6744 	}
6745 
6746 	/* check field of upper layer protocol and address family */
6747 	if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL
6748 	 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
6749 		struct sadb_address *src0, *dst0;
6750 		u_int plen;
6751 
6752 		src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
6753 		dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
6754 
6755 		/* check upper layer protocol */
6756 		if (src0->sadb_address_proto != dst0->sadb_address_proto) {
6757 			ipseclog((LOG_DEBUG, "%s: upper layer protocol "
6758 				"mismatched.\n", __func__));
6759 			pfkeystat.out_invaddr++;
6760 			error = EINVAL;
6761 			goto senderror;
6762 		}
6763 
6764 		/* check family */
6765 		if (PFKEY_ADDR_SADDR(src0)->sa_family !=
6766 		    PFKEY_ADDR_SADDR(dst0)->sa_family) {
6767 			ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
6768 				__func__));
6769 			pfkeystat.out_invaddr++;
6770 			error = EINVAL;
6771 			goto senderror;
6772 		}
6773 		if (PFKEY_ADDR_SADDR(src0)->sa_len !=
6774 		    PFKEY_ADDR_SADDR(dst0)->sa_len) {
6775 			ipseclog((LOG_DEBUG, "%s: address struct size "
6776 				"mismatched.\n", __func__));
6777 			pfkeystat.out_invaddr++;
6778 			error = EINVAL;
6779 			goto senderror;
6780 		}
6781 
6782 		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
6783 		case AF_INET:
6784 			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
6785 			    sizeof(struct sockaddr_in)) {
6786 				pfkeystat.out_invaddr++;
6787 				error = EINVAL;
6788 				goto senderror;
6789 			}
6790 			break;
6791 		case AF_INET6:
6792 			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
6793 			    sizeof(struct sockaddr_in6)) {
6794 				pfkeystat.out_invaddr++;
6795 				error = EINVAL;
6796 				goto senderror;
6797 			}
6798 			break;
6799 		default:
6800 			ipseclog((LOG_DEBUG, "%s: unsupported address family\n",
6801 				__func__));
6802 			pfkeystat.out_invaddr++;
6803 			error = EAFNOSUPPORT;
6804 			goto senderror;
6805 		}
6806 
6807 		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
6808 		case AF_INET:
6809 			plen = sizeof(struct in_addr) << 3;
6810 			break;
6811 		case AF_INET6:
6812 			plen = sizeof(struct in6_addr) << 3;
6813 			break;
6814 		default:
6815 			plen = 0;	/*fool gcc*/
6816 			break;
6817 		}
6818 
6819 		/* check max prefix length */
6820 		if (src0->sadb_address_prefixlen > plen ||
6821 		    dst0->sadb_address_prefixlen > plen) {
6822 			ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n",
6823 				__func__));
6824 			pfkeystat.out_invaddr++;
6825 			error = EINVAL;
6826 			goto senderror;
6827 		}
6828 
6829 		/*
6830 		 * prefixlen == 0 is valid because there can be a case when
6831 		 * all addresses are matched.
6832 		 */
6833 	}
6834 
6835 	if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) ||
6836 	    key_typesw[msg->sadb_msg_type] == NULL) {
6837 		pfkeystat.out_invmsgtype++;
6838 		error = EINVAL;
6839 		goto senderror;
6840 	}
6841 
6842 	return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
6843 
6844 senderror:
6845 	msg->sadb_msg_errno = error;
6846 	return key_sendup_mbuf(so, m, target);
6847 }
6848 
6849 static int
6850 key_senderror(so, m, code)
6851 	struct socket *so;
6852 	struct mbuf *m;
6853 	int code;
6854 {
6855 	struct sadb_msg *msg;
6856 
6857 	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
6858 		("mbuf too small, len %u", m->m_len));
6859 
6860 	msg = mtod(m, struct sadb_msg *);
6861 	msg->sadb_msg_errno = code;
6862 	return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
6863 }
6864 
6865 /*
6866  * set the pointer to each header into message buffer.
6867  * m will be freed on error.
6868  * XXX larger-than-MCLBYTES extension?
6869  */
6870 static int
6871 key_align(m, mhp)
6872 	struct mbuf *m;
6873 	struct sadb_msghdr *mhp;
6874 {
6875 	struct mbuf *n;
6876 	struct sadb_ext *ext;
6877 	size_t off, end;
6878 	int extlen;
6879 	int toff;
6880 
6881 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6882 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6883 	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
6884 		("mbuf too small, len %u", m->m_len));
6885 
6886 	/* initialize */
6887 	bzero(mhp, sizeof(*mhp));
6888 
6889 	mhp->msg = mtod(m, struct sadb_msg *);
6890 	mhp->ext[0] = (struct sadb_ext *)mhp->msg;	/*XXX backward compat */
6891 
6892 	end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
6893 	extlen = end;	/*just in case extlen is not updated*/
6894 	for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
6895 		n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
6896 		if (!n) {
6897 			/* m is already freed */
6898 			return ENOBUFS;
6899 		}
6900 		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
6901 
6902 		/* set pointer */
6903 		switch (ext->sadb_ext_type) {
6904 		case SADB_EXT_SA:
6905 		case SADB_EXT_ADDRESS_SRC:
6906 		case SADB_EXT_ADDRESS_DST:
6907 		case SADB_EXT_ADDRESS_PROXY:
6908 		case SADB_EXT_LIFETIME_CURRENT:
6909 		case SADB_EXT_LIFETIME_HARD:
6910 		case SADB_EXT_LIFETIME_SOFT:
6911 		case SADB_EXT_KEY_AUTH:
6912 		case SADB_EXT_KEY_ENCRYPT:
6913 		case SADB_EXT_IDENTITY_SRC:
6914 		case SADB_EXT_IDENTITY_DST:
6915 		case SADB_EXT_SENSITIVITY:
6916 		case SADB_EXT_PROPOSAL:
6917 		case SADB_EXT_SUPPORTED_AUTH:
6918 		case SADB_EXT_SUPPORTED_ENCRYPT:
6919 		case SADB_EXT_SPIRANGE:
6920 		case SADB_X_EXT_POLICY:
6921 		case SADB_X_EXT_SA2:
6922 			/* duplicate check */
6923 			/*
6924 			 * XXX Are there duplication payloads of either
6925 			 * KEY_AUTH or KEY_ENCRYPT ?
6926 			 */
6927 			if (mhp->ext[ext->sadb_ext_type] != NULL) {
6928 				ipseclog((LOG_DEBUG, "%s: duplicate ext_type "
6929 					"%u\n", __func__, ext->sadb_ext_type));
6930 				m_freem(m);
6931 				pfkeystat.out_dupext++;
6932 				return EINVAL;
6933 			}
6934 			break;
6935 		default:
6936 			ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n",
6937 				__func__, ext->sadb_ext_type));
6938 			m_freem(m);
6939 			pfkeystat.out_invexttype++;
6940 			return EINVAL;
6941 		}
6942 
6943 		extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
6944 
6945 		if (key_validate_ext(ext, extlen)) {
6946 			m_freem(m);
6947 			pfkeystat.out_invlen++;
6948 			return EINVAL;
6949 		}
6950 
6951 		n = m_pulldown(m, off, extlen, &toff);
6952 		if (!n) {
6953 			/* m is already freed */
6954 			return ENOBUFS;
6955 		}
6956 		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
6957 
6958 		mhp->ext[ext->sadb_ext_type] = ext;
6959 		mhp->extoff[ext->sadb_ext_type] = off;
6960 		mhp->extlen[ext->sadb_ext_type] = extlen;
6961 	}
6962 
6963 	if (off != end) {
6964 		m_freem(m);
6965 		pfkeystat.out_invlen++;
6966 		return EINVAL;
6967 	}
6968 
6969 	return 0;
6970 }
6971 
6972 static int
6973 key_validate_ext(ext, len)
6974 	const struct sadb_ext *ext;
6975 	int len;
6976 {
6977 	const struct sockaddr *sa;
6978 	enum { NONE, ADDR } checktype = NONE;
6979 	int baselen = 0;
6980 	const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
6981 
6982 	if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
6983 		return EINVAL;
6984 
6985 	/* if it does not match minimum/maximum length, bail */
6986 	if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) ||
6987 	    ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0]))
6988 		return EINVAL;
6989 	if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
6990 		return EINVAL;
6991 	if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
6992 		return EINVAL;
6993 
6994 	/* more checks based on sadb_ext_type XXX need more */
6995 	switch (ext->sadb_ext_type) {
6996 	case SADB_EXT_ADDRESS_SRC:
6997 	case SADB_EXT_ADDRESS_DST:
6998 	case SADB_EXT_ADDRESS_PROXY:
6999 		baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7000 		checktype = ADDR;
7001 		break;
7002 	case SADB_EXT_IDENTITY_SRC:
7003 	case SADB_EXT_IDENTITY_DST:
7004 		if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7005 		    SADB_X_IDENTTYPE_ADDR) {
7006 			baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7007 			checktype = ADDR;
7008 		} else
7009 			checktype = NONE;
7010 		break;
7011 	default:
7012 		checktype = NONE;
7013 		break;
7014 	}
7015 
7016 	switch (checktype) {
7017 	case NONE:
7018 		break;
7019 	case ADDR:
7020 		sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7021 		if (len < baselen + sal)
7022 			return EINVAL;
7023 		if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7024 			return EINVAL;
7025 		break;
7026 	}
7027 
7028 	return 0;
7029 }
7030 
7031 void
7032 key_init()
7033 {
7034 	int i;
7035 
7036 	SPTREE_LOCK_INIT();
7037 	REGTREE_LOCK_INIT();
7038 	SAHTREE_LOCK_INIT();
7039 	ACQ_LOCK_INIT();
7040 	SPACQ_LOCK_INIT();
7041 
7042 	for (i = 0; i < IPSEC_DIR_MAX; i++)
7043 		LIST_INIT(&sptree[i]);
7044 
7045 	LIST_INIT(&sahtree);
7046 
7047 	for (i = 0; i <= SADB_SATYPE_MAX; i++)
7048 		LIST_INIT(&regtree[i]);
7049 
7050 	LIST_INIT(&acqtree);
7051 	LIST_INIT(&spacqtree);
7052 
7053 	/* system default */
7054 	ip4_def_policy.policy = IPSEC_POLICY_NONE;
7055 	ip4_def_policy.refcnt++;	/*never reclaim this*/
7056 
7057 #ifndef IPSEC_DEBUG2
7058 	timeout((void *)key_timehandler, (void *)0, hz);
7059 #endif /*IPSEC_DEBUG2*/
7060 
7061 	/* initialize key statistics */
7062 	keystat.getspi_count = 1;
7063 
7064 	printf("Fast IPsec: Initialized Security Association Processing.\n");
7065 
7066 	return;
7067 }
7068 
7069 /*
7070  * XXX: maybe This function is called after INBOUND IPsec processing.
7071  *
7072  * Special check for tunnel-mode packets.
7073  * We must make some checks for consistency between inner and outer IP header.
7074  *
7075  * xxx more checks to be provided
7076  */
7077 int
7078 key_checktunnelsanity(sav, family, src, dst)
7079 	struct secasvar *sav;
7080 	u_int family;
7081 	caddr_t src;
7082 	caddr_t dst;
7083 {
7084 	IPSEC_ASSERT(sav->sah != NULL, ("null SA header"));
7085 
7086 	/* XXX: check inner IP header */
7087 
7088 	return 1;
7089 }
7090 
7091 /* record data transfer on SA, and update timestamps */
7092 void
7093 key_sa_recordxfer(sav, m)
7094 	struct secasvar *sav;
7095 	struct mbuf *m;
7096 {
7097 	IPSEC_ASSERT(sav != NULL, ("Null secasvar"));
7098 	IPSEC_ASSERT(m != NULL, ("Null mbuf"));
7099 	if (!sav->lft_c)
7100 		return;
7101 
7102 	/*
7103 	 * XXX Currently, there is a difference of bytes size
7104 	 * between inbound and outbound processing.
7105 	 */
7106 	sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len;
7107 	/* to check bytes lifetime is done in key_timehandler(). */
7108 
7109 	/*
7110 	 * We use the number of packets as the unit of
7111 	 * sadb_lifetime_allocations.  We increment the variable
7112 	 * whenever {esp,ah}_{in,out}put is called.
7113 	 */
7114 	sav->lft_c->sadb_lifetime_allocations++;
7115 	/* XXX check for expires? */
7116 
7117 	/*
7118 	 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock,
7119 	 * in seconds.  HARD and SOFT lifetime are measured by the time
7120 	 * difference (again in seconds) from sadb_lifetime_usetime.
7121 	 *
7122 	 *	usetime
7123 	 *	v     expire   expire
7124 	 * -----+-----+--------+---> t
7125 	 *	<--------------> HARD
7126 	 *	<-----> SOFT
7127 	 */
7128 	sav->lft_c->sadb_lifetime_usetime = time_second;
7129 	/* XXX check for expires? */
7130 
7131 	return;
7132 }
7133 
7134 /* dumb version */
7135 void
7136 key_sa_routechange(dst)
7137 	struct sockaddr *dst;
7138 {
7139 	struct secashead *sah;
7140 	struct route *ro;
7141 
7142 	SAHTREE_LOCK();
7143 	LIST_FOREACH(sah, &sahtree, chain) {
7144 		ro = &sah->sa_route;
7145 		if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len
7146 		 && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) {
7147 			RTFREE(ro->ro_rt);
7148 			ro->ro_rt = (struct rtentry *)NULL;
7149 		}
7150 	}
7151 	SAHTREE_UNLOCK();
7152 }
7153 
7154 static void
7155 key_sa_chgstate(sav, state)
7156 	struct secasvar *sav;
7157 	u_int8_t state;
7158 {
7159 	IPSEC_ASSERT(sav != NULL, ("NULL sav"));
7160 	SAHTREE_LOCK_ASSERT();
7161 
7162 	if (sav->state != state) {
7163 		if (__LIST_CHAINED(sav))
7164 			LIST_REMOVE(sav, chain);
7165 		sav->state = state;
7166 		LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7167 	}
7168 }
7169 
7170 void
7171 key_sa_stir_iv(sav)
7172 	struct secasvar *sav;
7173 {
7174 
7175 	IPSEC_ASSERT(sav->iv != NULL, ("null IV"));
7176 	key_randomfill(sav->iv, sav->ivlen);
7177 }
7178 
7179 /* XXX too much? */
7180 static struct mbuf *
7181 key_alloc_mbuf(l)
7182 	int l;
7183 {
7184 	struct mbuf *m = NULL, *n;
7185 	int len, t;
7186 
7187 	len = l;
7188 	while (len > 0) {
7189 		MGET(n, M_DONTWAIT, MT_DATA);
7190 		if (n && len > MLEN)
7191 			MCLGET(n, M_DONTWAIT);
7192 		if (!n) {
7193 			m_freem(m);
7194 			return NULL;
7195 		}
7196 
7197 		n->m_next = NULL;
7198 		n->m_len = 0;
7199 		n->m_len = M_TRAILINGSPACE(n);
7200 		/* use the bottom of mbuf, hoping we can prepend afterwards */
7201 		if (n->m_len > len) {
7202 			t = (n->m_len - len) & ~(sizeof(long) - 1);
7203 			n->m_data += t;
7204 			n->m_len = len;
7205 		}
7206 
7207 		len -= n->m_len;
7208 
7209 		if (m)
7210 			m_cat(m, n);
7211 		else
7212 			m = n;
7213 	}
7214 
7215 	return m;
7216 }
7217