1 /* $FreeBSD$ */ 2 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ 3 4 /*- 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * This code is referd to RFC 2367 35 */ 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 #include "opt_ipsec.h" 40 41 #include <sys/types.h> 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/mutex.h> 47 #include <sys/mbuf.h> 48 #include <sys/domain.h> 49 #include <sys/protosw.h> 50 #include <sys/malloc.h> 51 #include <sys/socket.h> 52 #include <sys/socketvar.h> 53 #include <sys/sysctl.h> 54 #include <sys/errno.h> 55 #include <sys/proc.h> 56 #include <sys/queue.h> 57 #include <sys/syslog.h> 58 59 #include <net/if.h> 60 #include <net/route.h> 61 #include <net/raw_cb.h> 62 63 #include <netinet/in.h> 64 #include <netinet/in_systm.h> 65 #include <netinet/ip.h> 66 #include <netinet/in_var.h> 67 68 #ifdef INET6 69 #include <netinet/ip6.h> 70 #include <netinet6/in6_var.h> 71 #include <netinet6/ip6_var.h> 72 #endif /* INET6 */ 73 74 #ifdef INET 75 #include <netinet/in_pcb.h> 76 #endif 77 #ifdef INET6 78 #include <netinet6/in6_pcb.h> 79 #endif /* INET6 */ 80 81 #include <net/pfkeyv2.h> 82 #include <netipsec/keydb.h> 83 #include <netipsec/key.h> 84 #include <netipsec/keysock.h> 85 #include <netipsec/key_debug.h> 86 87 #include <netipsec/ipsec.h> 88 #ifdef INET6 89 #include <netipsec/ipsec6.h> 90 #endif 91 92 #include <netipsec/xform.h> 93 94 #include <machine/stdarg.h> 95 96 /* randomness */ 97 #include <sys/random.h> 98 99 #define FULLMASK 0xff 100 #define _BITS(bytes) ((bytes) << 3) 101 102 /* 103 * Note on SA reference counting: 104 * - SAs that are not in DEAD state will have (total external reference + 1) 105 * following value in reference count field. they cannot be freed and are 106 * referenced from SA header. 107 * - SAs that are in DEAD state will have (total external reference) 108 * in reference count field. they are ready to be freed. reference from 109 * SA header will be removed in key_delsav(), when the reference count 110 * field hits 0 (= no external reference other than from SA header. 111 */ 112 113 u_int32_t key_debug_level = 0; 114 static u_int key_spi_trycnt = 1000; 115 static u_int32_t key_spi_minval = 0x100; 116 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */ 117 static u_int32_t policy_id = 0; 118 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/ 119 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/ 120 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/ 121 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/ 122 static int key_preferred_oldsa = 1; /* preferred old sa rather than new sa.*/ 123 124 static u_int32_t acq_seq = 0; 125 126 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */ 127 static struct mtx sptree_lock; 128 #define SPTREE_LOCK_INIT() \ 129 mtx_init(&sptree_lock, "sptree", \ 130 "fast ipsec security policy database", MTX_DEF) 131 #define SPTREE_LOCK_DESTROY() mtx_destroy(&sptree_lock) 132 #define SPTREE_LOCK() mtx_lock(&sptree_lock) 133 #define SPTREE_UNLOCK() mtx_unlock(&sptree_lock) 134 #define SPTREE_LOCK_ASSERT() mtx_assert(&sptree_lock, MA_OWNED) 135 136 static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */ 137 static struct mtx sahtree_lock; 138 #define SAHTREE_LOCK_INIT() \ 139 mtx_init(&sahtree_lock, "sahtree", \ 140 "fast ipsec security association database", MTX_DEF) 141 #define SAHTREE_LOCK_DESTROY() mtx_destroy(&sahtree_lock) 142 #define SAHTREE_LOCK() mtx_lock(&sahtree_lock) 143 #define SAHTREE_UNLOCK() mtx_unlock(&sahtree_lock) 144 #define SAHTREE_LOCK_ASSERT() mtx_assert(&sahtree_lock, MA_OWNED) 145 146 /* registed list */ 147 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1]; 148 static struct mtx regtree_lock; 149 #define REGTREE_LOCK_INIT() \ 150 mtx_init(®tree_lock, "regtree", "fast ipsec regtree", MTX_DEF) 151 #define REGTREE_LOCK_DESTROY() mtx_destroy(®tree_lock) 152 #define REGTREE_LOCK() mtx_lock(®tree_lock) 153 #define REGTREE_UNLOCK() mtx_unlock(®tree_lock) 154 #define REGTREE_LOCK_ASSERT() mtx_assert(®tree_lock, MA_OWNED) 155 156 static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */ 157 static struct mtx acq_lock; 158 #define ACQ_LOCK_INIT() \ 159 mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF) 160 #define ACQ_LOCK_DESTROY() mtx_destroy(&acq_lock) 161 #define ACQ_LOCK() mtx_lock(&acq_lock) 162 #define ACQ_UNLOCK() mtx_unlock(&acq_lock) 163 #define ACQ_LOCK_ASSERT() mtx_assert(&acq_lock, MA_OWNED) 164 165 static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */ 166 static struct mtx spacq_lock; 167 #define SPACQ_LOCK_INIT() \ 168 mtx_init(&spacq_lock, "spacqtree", \ 169 "fast ipsec security policy acquire list", MTX_DEF) 170 #define SPACQ_LOCK_DESTROY() mtx_destroy(&spacq_lock) 171 #define SPACQ_LOCK() mtx_lock(&spacq_lock) 172 #define SPACQ_UNLOCK() mtx_unlock(&spacq_lock) 173 #define SPACQ_LOCK_ASSERT() mtx_assert(&spacq_lock, MA_OWNED) 174 175 /* search order for SAs */ 176 static const u_int saorder_state_valid_prefer_old[] = { 177 SADB_SASTATE_DYING, SADB_SASTATE_MATURE, 178 }; 179 static const u_int saorder_state_valid_prefer_new[] = { 180 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 181 }; 182 static u_int saorder_state_alive[] = { 183 /* except DEAD */ 184 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL 185 }; 186 static u_int saorder_state_any[] = { 187 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 188 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD 189 }; 190 191 static const int minsize[] = { 192 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 193 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 194 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 195 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 196 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 197 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ 198 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ 199 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ 200 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ 201 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ 202 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ 203 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ 204 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ 205 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ 206 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ 207 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ 208 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 209 0, /* SADB_X_EXT_KMPRIVATE */ 210 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ 211 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 212 }; 213 static const int maxsize[] = { 214 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 215 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 216 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 217 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 218 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 219 0, /* SADB_EXT_ADDRESS_SRC */ 220 0, /* SADB_EXT_ADDRESS_DST */ 221 0, /* SADB_EXT_ADDRESS_PROXY */ 222 0, /* SADB_EXT_KEY_AUTH */ 223 0, /* SADB_EXT_KEY_ENCRYPT */ 224 0, /* SADB_EXT_IDENTITY_SRC */ 225 0, /* SADB_EXT_IDENTITY_DST */ 226 0, /* SADB_EXT_SENSITIVITY */ 227 0, /* SADB_EXT_PROPOSAL */ 228 0, /* SADB_EXT_SUPPORTED_AUTH */ 229 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ 230 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 231 0, /* SADB_X_EXT_KMPRIVATE */ 232 0, /* SADB_X_EXT_POLICY */ 233 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 234 }; 235 236 static int ipsec_esp_keymin = 256; 237 static int ipsec_esp_auth = 0; 238 static int ipsec_ah_keymin = 128; 239 240 #ifdef SYSCTL_DECL 241 SYSCTL_DECL(_net_key); 242 #endif 243 244 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \ 245 &key_debug_level, 0, ""); 246 247 /* max count of trial for the decision of spi value */ 248 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \ 249 &key_spi_trycnt, 0, ""); 250 251 /* minimum spi value to allocate automatically. */ 252 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \ 253 &key_spi_minval, 0, ""); 254 255 /* maximun spi value to allocate automatically. */ 256 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \ 257 &key_spi_maxval, 0, ""); 258 259 /* interval to initialize randseed */ 260 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \ 261 &key_int_random, 0, ""); 262 263 /* lifetime for larval SA */ 264 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \ 265 &key_larval_lifetime, 0, ""); 266 267 /* counter for blocking to send SADB_ACQUIRE to IKEd */ 268 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \ 269 &key_blockacq_count, 0, ""); 270 271 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ 272 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \ 273 &key_blockacq_lifetime, 0, ""); 274 275 /* ESP auth */ 276 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \ 277 &ipsec_esp_auth, 0, ""); 278 279 /* minimum ESP key length */ 280 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \ 281 &ipsec_esp_keymin, 0, ""); 282 283 /* minimum AH key length */ 284 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \ 285 &ipsec_ah_keymin, 0, ""); 286 287 /* perfered old SA rather than new SA */ 288 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, preferred_oldsa, CTLFLAG_RW,\ 289 &key_preferred_oldsa, 0, ""); 290 291 #define __LIST_CHAINED(elm) \ 292 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) 293 #define LIST_INSERT_TAIL(head, elm, type, field) \ 294 do {\ 295 struct type *curelm = LIST_FIRST(head); \ 296 if (curelm == NULL) {\ 297 LIST_INSERT_HEAD(head, elm, field); \ 298 } else { \ 299 while (LIST_NEXT(curelm, field)) \ 300 curelm = LIST_NEXT(curelm, field);\ 301 LIST_INSERT_AFTER(curelm, elm, field);\ 302 }\ 303 } while (0) 304 305 #define KEY_CHKSASTATE(head, sav, name) \ 306 do { \ 307 if ((head) != (sav)) { \ 308 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \ 309 (name), (head), (sav))); \ 310 continue; \ 311 } \ 312 } while (0) 313 314 #define KEY_CHKSPDIR(head, sp, name) \ 315 do { \ 316 if ((head) != (sp)) { \ 317 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \ 318 "anyway continue.\n", \ 319 (name), (head), (sp))); \ 320 } \ 321 } while (0) 322 323 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association"); 324 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head"); 325 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy"); 326 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request"); 327 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous"); 328 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire"); 329 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire"); 330 331 /* 332 * set parameters into secpolicyindex buffer. 333 * Must allocate secpolicyindex buffer passed to this function. 334 */ 335 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \ 336 do { \ 337 bzero((idx), sizeof(struct secpolicyindex)); \ 338 (idx)->dir = (_dir); \ 339 (idx)->prefs = (ps); \ 340 (idx)->prefd = (pd); \ 341 (idx)->ul_proto = (ulp); \ 342 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 343 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 344 } while (0) 345 346 /* 347 * set parameters into secasindex buffer. 348 * Must allocate secasindex buffer before calling this function. 349 */ 350 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \ 351 do { \ 352 bzero((idx), sizeof(struct secasindex)); \ 353 (idx)->proto = (p); \ 354 (idx)->mode = (m); \ 355 (idx)->reqid = (r); \ 356 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 357 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 358 } while (0) 359 360 /* key statistics */ 361 struct _keystat { 362 u_long getspi_count; /* the avarage of count to try to get new SPI */ 363 } keystat; 364 365 struct sadb_msghdr { 366 struct sadb_msg *msg; 367 struct sadb_ext *ext[SADB_EXT_MAX + 1]; 368 int extoff[SADB_EXT_MAX + 1]; 369 int extlen[SADB_EXT_MAX + 1]; 370 }; 371 372 static struct secasvar *key_allocsa_policy __P((const struct secasindex *)); 373 static void key_freesp_so __P((struct secpolicy **)); 374 static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int)); 375 static void key_delsp __P((struct secpolicy *)); 376 static struct secpolicy *key_getsp __P((struct secpolicyindex *)); 377 static void _key_delsp(struct secpolicy *sp); 378 static struct secpolicy *key_getspbyid __P((u_int32_t)); 379 static u_int32_t key_newreqid __P((void)); 380 static struct mbuf *key_gather_mbuf __P((struct mbuf *, 381 const struct sadb_msghdr *, int, int, ...)); 382 static int key_spdadd __P((struct socket *, struct mbuf *, 383 const struct sadb_msghdr *)); 384 static u_int32_t key_getnewspid __P((void)); 385 static int key_spddelete __P((struct socket *, struct mbuf *, 386 const struct sadb_msghdr *)); 387 static int key_spddelete2 __P((struct socket *, struct mbuf *, 388 const struct sadb_msghdr *)); 389 static int key_spdget __P((struct socket *, struct mbuf *, 390 const struct sadb_msghdr *)); 391 static int key_spdflush __P((struct socket *, struct mbuf *, 392 const struct sadb_msghdr *)); 393 static int key_spddump __P((struct socket *, struct mbuf *, 394 const struct sadb_msghdr *)); 395 static struct mbuf *key_setdumpsp __P((struct secpolicy *, 396 u_int8_t, u_int32_t, u_int32_t)); 397 static u_int key_getspreqmsglen __P((struct secpolicy *)); 398 static int key_spdexpire __P((struct secpolicy *)); 399 static struct secashead *key_newsah __P((struct secasindex *)); 400 static void key_delsah __P((struct secashead *)); 401 static struct secasvar *key_newsav __P((struct mbuf *, 402 const struct sadb_msghdr *, struct secashead *, int *, 403 const char*, int)); 404 #define KEY_NEWSAV(m, sadb, sah, e) \ 405 key_newsav(m, sadb, sah, e, __FILE__, __LINE__) 406 static void key_delsav __P((struct secasvar *)); 407 static struct secashead *key_getsah __P((struct secasindex *)); 408 static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t)); 409 static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t)); 410 static int key_setsaval __P((struct secasvar *, struct mbuf *, 411 const struct sadb_msghdr *)); 412 static int key_mature __P((struct secasvar *)); 413 static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t, 414 u_int8_t, u_int32_t, u_int32_t)); 415 static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t, 416 u_int32_t, pid_t, u_int16_t)); 417 static struct mbuf *key_setsadbsa __P((struct secasvar *)); 418 static struct mbuf *key_setsadbaddr __P((u_int16_t, 419 const struct sockaddr *, u_int8_t, u_int16_t)); 420 static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t)); 421 static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t, 422 u_int32_t)); 423 static void *key_dup(const void *, u_int, struct malloc_type *); 424 #ifdef INET6 425 static int key_ismyaddr6 __P((struct sockaddr_in6 *)); 426 #endif 427 428 /* flags for key_cmpsaidx() */ 429 #define CMP_HEAD 1 /* protocol, addresses. */ 430 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ 431 #define CMP_REQID 3 /* additionally HEAD, reaid. */ 432 #define CMP_EXACTLY 4 /* all elements. */ 433 static int key_cmpsaidx 434 __P((const struct secasindex *, const struct secasindex *, int)); 435 436 static int key_cmpspidx_exactly 437 __P((struct secpolicyindex *, struct secpolicyindex *)); 438 static int key_cmpspidx_withmask 439 __P((struct secpolicyindex *, struct secpolicyindex *)); 440 static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int)); 441 static int key_bbcmp __P((const void *, const void *, u_int)); 442 static u_int16_t key_satype2proto __P((u_int8_t)); 443 static u_int8_t key_proto2satype __P((u_int16_t)); 444 445 static int key_getspi __P((struct socket *, struct mbuf *, 446 const struct sadb_msghdr *)); 447 static u_int32_t key_do_getnewspi __P((struct sadb_spirange *, 448 struct secasindex *)); 449 static int key_update __P((struct socket *, struct mbuf *, 450 const struct sadb_msghdr *)); 451 #ifdef IPSEC_DOSEQCHECK 452 static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t)); 453 #endif 454 static int key_add __P((struct socket *, struct mbuf *, 455 const struct sadb_msghdr *)); 456 static int key_setident __P((struct secashead *, struct mbuf *, 457 const struct sadb_msghdr *)); 458 static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *, 459 const struct sadb_msghdr *)); 460 static int key_delete __P((struct socket *, struct mbuf *, 461 const struct sadb_msghdr *)); 462 static int key_get __P((struct socket *, struct mbuf *, 463 const struct sadb_msghdr *)); 464 465 static void key_getcomb_setlifetime __P((struct sadb_comb *)); 466 static struct mbuf *key_getcomb_esp __P((void)); 467 static struct mbuf *key_getcomb_ah __P((void)); 468 static struct mbuf *key_getcomb_ipcomp __P((void)); 469 static struct mbuf *key_getprop __P((const struct secasindex *)); 470 471 static int key_acquire __P((const struct secasindex *, struct secpolicy *)); 472 static struct secacq *key_newacq __P((const struct secasindex *)); 473 static struct secacq *key_getacq __P((const struct secasindex *)); 474 static struct secacq *key_getacqbyseq __P((u_int32_t)); 475 static struct secspacq *key_newspacq __P((struct secpolicyindex *)); 476 static struct secspacq *key_getspacq __P((struct secpolicyindex *)); 477 static int key_acquire2 __P((struct socket *, struct mbuf *, 478 const struct sadb_msghdr *)); 479 static int key_register __P((struct socket *, struct mbuf *, 480 const struct sadb_msghdr *)); 481 static int key_expire __P((struct secasvar *)); 482 static int key_flush __P((struct socket *, struct mbuf *, 483 const struct sadb_msghdr *)); 484 static int key_dump __P((struct socket *, struct mbuf *, 485 const struct sadb_msghdr *)); 486 static int key_promisc __P((struct socket *, struct mbuf *, 487 const struct sadb_msghdr *)); 488 static int key_senderror __P((struct socket *, struct mbuf *, int)); 489 static int key_validate_ext __P((const struct sadb_ext *, int)); 490 static int key_align __P((struct mbuf *, struct sadb_msghdr *)); 491 #if 0 492 static const char *key_getfqdn __P((void)); 493 static const char *key_getuserfqdn __P((void)); 494 #endif 495 static void key_sa_chgstate __P((struct secasvar *, u_int8_t)); 496 static struct mbuf *key_alloc_mbuf __P((int)); 497 498 #define SA_ADDREF(p) do { \ 499 (p)->refcnt++; \ 500 IPSEC_ASSERT((p)->refcnt != 0, ("SA refcnt overflow")); \ 501 } while (0) 502 #define SA_DELREF(p) do { \ 503 IPSEC_ASSERT((p)->refcnt > 0, ("SA refcnt underflow")); \ 504 (p)->refcnt--; \ 505 } while (0) 506 507 #define SP_ADDREF(p) do { \ 508 (p)->refcnt++; \ 509 IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow")); \ 510 } while (0) 511 #define SP_DELREF(p) do { \ 512 IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow")); \ 513 (p)->refcnt--; \ 514 } while (0) 515 516 517 /* 518 * Update the refcnt while holding the SPTREE lock. 519 */ 520 void 521 key_addref(struct secpolicy *sp) 522 { 523 SPTREE_LOCK(); 524 SP_ADDREF(sp); 525 SPTREE_UNLOCK(); 526 } 527 528 /* 529 * Return 0 when there are known to be no SP's for the specified 530 * direction. Otherwise return 1. This is used by IPsec code 531 * to optimize performance. 532 */ 533 int 534 key_havesp(u_int dir) 535 { 536 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? 537 LIST_FIRST(&sptree[dir]) != NULL : 1); 538 } 539 540 /* %%% IPsec policy management */ 541 /* 542 * allocating a SP for OUTBOUND or INBOUND packet. 543 * Must call key_freesp() later. 544 * OUT: NULL: not found 545 * others: found and return the pointer. 546 */ 547 struct secpolicy * 548 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag) 549 { 550 struct secpolicy *sp; 551 552 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 553 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 554 ("invalid direction %u", dir)); 555 556 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 557 printf("DP %s from %s:%u\n", __func__, where, tag)); 558 559 /* get a SP entry */ 560 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 561 printf("*** objects\n"); 562 kdebug_secpolicyindex(spidx)); 563 564 SPTREE_LOCK(); 565 LIST_FOREACH(sp, &sptree[dir], chain) { 566 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 567 printf("*** in SPD\n"); 568 kdebug_secpolicyindex(&sp->spidx)); 569 570 if (sp->state == IPSEC_SPSTATE_DEAD) 571 continue; 572 if (key_cmpspidx_withmask(&sp->spidx, spidx)) 573 goto found; 574 } 575 sp = NULL; 576 found: 577 if (sp) { 578 /* sanity check */ 579 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 580 581 /* found a SPD entry */ 582 sp->lastused = time_second; 583 SP_ADDREF(sp); 584 } 585 SPTREE_UNLOCK(); 586 587 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 588 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 589 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 590 return sp; 591 } 592 593 /* 594 * allocating a SP for OUTBOUND or INBOUND packet. 595 * Must call key_freesp() later. 596 * OUT: NULL: not found 597 * others: found and return the pointer. 598 */ 599 struct secpolicy * 600 key_allocsp2(u_int32_t spi, 601 union sockaddr_union *dst, 602 u_int8_t proto, 603 u_int dir, 604 const char* where, int tag) 605 { 606 struct secpolicy *sp; 607 608 IPSEC_ASSERT(dst != NULL, ("null dst")); 609 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 610 ("invalid direction %u", dir)); 611 612 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 613 printf("DP %s from %s:%u\n", __func__, where, tag)); 614 615 /* get a SP entry */ 616 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 617 printf("*** objects\n"); 618 printf("spi %u proto %u dir %u\n", spi, proto, dir); 619 kdebug_sockaddr(&dst->sa)); 620 621 SPTREE_LOCK(); 622 LIST_FOREACH(sp, &sptree[dir], chain) { 623 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 624 printf("*** in SPD\n"); 625 kdebug_secpolicyindex(&sp->spidx)); 626 627 if (sp->state == IPSEC_SPSTATE_DEAD) 628 continue; 629 /* compare simple values, then dst address */ 630 if (sp->spidx.ul_proto != proto) 631 continue; 632 /* NB: spi's must exist and match */ 633 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi) 634 continue; 635 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0) 636 goto found; 637 } 638 sp = NULL; 639 found: 640 if (sp) { 641 /* sanity check */ 642 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 643 644 /* found a SPD entry */ 645 sp->lastused = time_second; 646 SP_ADDREF(sp); 647 } 648 SPTREE_UNLOCK(); 649 650 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 651 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 652 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 653 return sp; 654 } 655 656 /* 657 * return a policy that matches this particular inbound packet. 658 * XXX slow 659 */ 660 struct secpolicy * 661 key_gettunnel(const struct sockaddr *osrc, 662 const struct sockaddr *odst, 663 const struct sockaddr *isrc, 664 const struct sockaddr *idst, 665 const char* where, int tag) 666 { 667 struct secpolicy *sp; 668 const int dir = IPSEC_DIR_INBOUND; 669 struct ipsecrequest *r1, *r2, *p; 670 struct secpolicyindex spidx; 671 672 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 673 printf("DP %s from %s:%u\n", __func__, where, tag)); 674 675 if (isrc->sa_family != idst->sa_family) { 676 ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.", 677 __func__, isrc->sa_family, idst->sa_family)); 678 sp = NULL; 679 goto done; 680 } 681 682 SPTREE_LOCK(); 683 LIST_FOREACH(sp, &sptree[dir], chain) { 684 if (sp->state == IPSEC_SPSTATE_DEAD) 685 continue; 686 687 r1 = r2 = NULL; 688 for (p = sp->req; p; p = p->next) { 689 if (p->saidx.mode != IPSEC_MODE_TUNNEL) 690 continue; 691 692 r1 = r2; 693 r2 = p; 694 695 if (!r1) { 696 /* here we look at address matches only */ 697 spidx = sp->spidx; 698 if (isrc->sa_len > sizeof(spidx.src) || 699 idst->sa_len > sizeof(spidx.dst)) 700 continue; 701 bcopy(isrc, &spidx.src, isrc->sa_len); 702 bcopy(idst, &spidx.dst, idst->sa_len); 703 if (!key_cmpspidx_withmask(&sp->spidx, &spidx)) 704 continue; 705 } else { 706 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) || 707 key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0)) 708 continue; 709 } 710 711 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) || 712 key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0)) 713 continue; 714 715 goto found; 716 } 717 } 718 sp = NULL; 719 found: 720 if (sp) { 721 sp->lastused = time_second; 722 SP_ADDREF(sp); 723 } 724 SPTREE_UNLOCK(); 725 done: 726 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 727 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 728 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 729 return sp; 730 } 731 732 /* 733 * allocating an SA entry for an *OUTBOUND* packet. 734 * checking each request entries in SP, and acquire an SA if need. 735 * OUT: 0: there are valid requests. 736 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. 737 */ 738 int 739 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx) 740 { 741 u_int level; 742 int error; 743 744 IPSEC_ASSERT(isr != NULL, ("null isr")); 745 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 746 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT || 747 saidx->mode == IPSEC_MODE_TUNNEL, 748 ("unexpected policy %u", saidx->mode)); 749 750 /* 751 * XXX guard against protocol callbacks from the crypto 752 * thread as they reference ipsecrequest.sav which we 753 * temporarily null out below. Need to rethink how we 754 * handle bundled SA's in the callback thread. 755 */ 756 IPSECREQUEST_LOCK_ASSERT(isr); 757 758 /* get current level */ 759 level = ipsec_get_reqlevel(isr); 760 #if 0 761 /* 762 * We do allocate new SA only if the state of SA in the holder is 763 * SADB_SASTATE_DEAD. The SA for outbound must be the oldest. 764 */ 765 if (isr->sav != NULL) { 766 if (isr->sav->sah == NULL) 767 panic("%s: sah is null.\n", __func__); 768 if (isr->sav == (struct secasvar *)LIST_FIRST( 769 &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) { 770 KEY_FREESAV(&isr->sav); 771 isr->sav = NULL; 772 } 773 } 774 #else 775 /* 776 * we free any SA stashed in the IPsec request because a different 777 * SA may be involved each time this request is checked, either 778 * because new SAs are being configured, or this request is 779 * associated with an unconnected datagram socket, or this request 780 * is associated with a system default policy. 781 * 782 * The operation may have negative impact to performance. We may 783 * want to check cached SA carefully, rather than picking new SA 784 * every time. 785 */ 786 if (isr->sav != NULL) { 787 KEY_FREESAV(&isr->sav); 788 isr->sav = NULL; 789 } 790 #endif 791 792 /* 793 * new SA allocation if no SA found. 794 * key_allocsa_policy should allocate the oldest SA available. 795 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt. 796 */ 797 if (isr->sav == NULL) 798 isr->sav = key_allocsa_policy(saidx); 799 800 /* When there is SA. */ 801 if (isr->sav != NULL) { 802 if (isr->sav->state != SADB_SASTATE_MATURE && 803 isr->sav->state != SADB_SASTATE_DYING) 804 return EINVAL; 805 return 0; 806 } 807 808 /* there is no SA */ 809 error = key_acquire(saidx, isr->sp); 810 if (error != 0) { 811 /* XXX What should I do ? */ 812 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 813 __func__, error)); 814 return error; 815 } 816 817 if (level != IPSEC_LEVEL_REQUIRE) { 818 /* XXX sigh, the interface to this routine is botched */ 819 IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA")); 820 return 0; 821 } else { 822 return ENOENT; 823 } 824 } 825 826 /* 827 * allocating a SA for policy entry from SAD. 828 * NOTE: searching SAD of aliving state. 829 * OUT: NULL: not found. 830 * others: found and return the pointer. 831 */ 832 static struct secasvar * 833 key_allocsa_policy(const struct secasindex *saidx) 834 { 835 #define N(a) _ARRAYLEN(a) 836 struct secashead *sah; 837 struct secasvar *sav; 838 u_int stateidx, arraysize; 839 const u_int *state_valid; 840 841 SAHTREE_LOCK(); 842 LIST_FOREACH(sah, &sahtree, chain) { 843 if (sah->state == SADB_SASTATE_DEAD) 844 continue; 845 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) { 846 if (key_preferred_oldsa) { 847 state_valid = saorder_state_valid_prefer_old; 848 arraysize = N(saorder_state_valid_prefer_old); 849 } else { 850 state_valid = saorder_state_valid_prefer_new; 851 arraysize = N(saorder_state_valid_prefer_new); 852 } 853 SAHTREE_UNLOCK(); 854 goto found; 855 } 856 } 857 SAHTREE_UNLOCK(); 858 859 return NULL; 860 861 found: 862 /* search valid state */ 863 for (stateidx = 0; stateidx < arraysize; stateidx++) { 864 sav = key_do_allocsa_policy(sah, state_valid[stateidx]); 865 if (sav != NULL) 866 return sav; 867 } 868 869 return NULL; 870 #undef N 871 } 872 873 /* 874 * searching SAD with direction, protocol, mode and state. 875 * called by key_allocsa_policy(). 876 * OUT: 877 * NULL : not found 878 * others : found, pointer to a SA. 879 */ 880 static struct secasvar * 881 key_do_allocsa_policy(struct secashead *sah, u_int state) 882 { 883 struct secasvar *sav, *nextsav, *candidate, *d; 884 885 /* initilize */ 886 candidate = NULL; 887 888 SAHTREE_LOCK(); 889 for (sav = LIST_FIRST(&sah->savtree[state]); 890 sav != NULL; 891 sav = nextsav) { 892 893 nextsav = LIST_NEXT(sav, chain); 894 895 /* sanity check */ 896 KEY_CHKSASTATE(sav->state, state, __func__); 897 898 /* initialize */ 899 if (candidate == NULL) { 900 candidate = sav; 901 continue; 902 } 903 904 /* Which SA is the better ? */ 905 906 IPSEC_ASSERT(candidate->lft_c != NULL, 907 ("null candidate lifetime")); 908 IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime")); 909 910 /* What the best method is to compare ? */ 911 if (key_preferred_oldsa) { 912 if (candidate->lft_c->sadb_lifetime_addtime > 913 sav->lft_c->sadb_lifetime_addtime) { 914 candidate = sav; 915 } 916 continue; 917 /*NOTREACHED*/ 918 } 919 920 /* preferred new sa rather than old sa */ 921 if (candidate->lft_c->sadb_lifetime_addtime < 922 sav->lft_c->sadb_lifetime_addtime) { 923 d = candidate; 924 candidate = sav; 925 } else 926 d = sav; 927 928 /* 929 * prepared to delete the SA when there is more 930 * suitable candidate and the lifetime of the SA is not 931 * permanent. 932 */ 933 if (d->lft_c->sadb_lifetime_addtime != 0) { 934 struct mbuf *m, *result; 935 u_int8_t satype; 936 937 key_sa_chgstate(d, SADB_SASTATE_DEAD); 938 939 IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count")); 940 941 satype = key_proto2satype(d->sah->saidx.proto); 942 if (satype == 0) 943 goto msgfail; 944 945 m = key_setsadbmsg(SADB_DELETE, 0, 946 satype, 0, 0, d->refcnt - 1); 947 if (!m) 948 goto msgfail; 949 result = m; 950 951 /* set sadb_address for saidx's. */ 952 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 953 &d->sah->saidx.src.sa, 954 d->sah->saidx.src.sa.sa_len << 3, 955 IPSEC_ULPROTO_ANY); 956 if (!m) 957 goto msgfail; 958 m_cat(result, m); 959 960 /* set sadb_address for saidx's. */ 961 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 962 &d->sah->saidx.dst.sa, 963 d->sah->saidx.dst.sa.sa_len << 3, 964 IPSEC_ULPROTO_ANY); 965 if (!m) 966 goto msgfail; 967 m_cat(result, m); 968 969 /* create SA extension */ 970 m = key_setsadbsa(d); 971 if (!m) 972 goto msgfail; 973 m_cat(result, m); 974 975 if (result->m_len < sizeof(struct sadb_msg)) { 976 result = m_pullup(result, 977 sizeof(struct sadb_msg)); 978 if (result == NULL) 979 goto msgfail; 980 } 981 982 result->m_pkthdr.len = 0; 983 for (m = result; m; m = m->m_next) 984 result->m_pkthdr.len += m->m_len; 985 mtod(result, struct sadb_msg *)->sadb_msg_len = 986 PFKEY_UNIT64(result->m_pkthdr.len); 987 988 if (key_sendup_mbuf(NULL, result, 989 KEY_SENDUP_REGISTERED)) 990 goto msgfail; 991 msgfail: 992 KEY_FREESAV(&d); 993 } 994 } 995 if (candidate) { 996 SA_ADDREF(candidate); 997 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 998 printf("DP %s cause refcnt++:%d SA:%p\n", 999 __func__, candidate->refcnt, candidate)); 1000 } 1001 SAHTREE_UNLOCK(); 1002 1003 return candidate; 1004 } 1005 1006 /* 1007 * allocating a usable SA entry for a *INBOUND* packet. 1008 * Must call key_freesav() later. 1009 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). 1010 * NULL: not found, or error occured. 1011 * 1012 * In the comparison, no source address is used--for RFC2401 conformance. 1013 * To quote, from section 4.1: 1014 * A security association is uniquely identified by a triple consisting 1015 * of a Security Parameter Index (SPI), an IP Destination Address, and a 1016 * security protocol (AH or ESP) identifier. 1017 * Note that, however, we do need to keep source address in IPsec SA. 1018 * IKE specification and PF_KEY specification do assume that we 1019 * keep source address in IPsec SA. We see a tricky situation here. 1020 */ 1021 struct secasvar * 1022 key_allocsa( 1023 union sockaddr_union *dst, 1024 u_int proto, 1025 u_int32_t spi, 1026 const char* where, int tag) 1027 { 1028 struct secashead *sah; 1029 struct secasvar *sav; 1030 u_int stateidx, arraysize, state; 1031 const u_int *saorder_state_valid; 1032 1033 IPSEC_ASSERT(dst != NULL, ("null dst address")); 1034 1035 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1036 printf("DP %s from %s:%u\n", __func__, where, tag)); 1037 1038 /* 1039 * searching SAD. 1040 * XXX: to be checked internal IP header somewhere. Also when 1041 * IPsec tunnel packet is received. But ESP tunnel mode is 1042 * encrypted so we can't check internal IP header. 1043 */ 1044 SAHTREE_LOCK(); 1045 if (key_preferred_oldsa) { 1046 saorder_state_valid = saorder_state_valid_prefer_old; 1047 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); 1048 } else { 1049 saorder_state_valid = saorder_state_valid_prefer_new; 1050 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); 1051 } 1052 LIST_FOREACH(sah, &sahtree, chain) { 1053 /* search valid state */ 1054 for (stateidx = 0; stateidx < arraysize; stateidx++) { 1055 state = saorder_state_valid[stateidx]; 1056 LIST_FOREACH(sav, &sah->savtree[state], chain) { 1057 /* sanity check */ 1058 KEY_CHKSASTATE(sav->state, state, __func__); 1059 /* do not return entries w/ unusable state */ 1060 if (sav->state != SADB_SASTATE_MATURE && 1061 sav->state != SADB_SASTATE_DYING) 1062 continue; 1063 if (proto != sav->sah->saidx.proto) 1064 continue; 1065 if (spi != sav->spi) 1066 continue; 1067 #if 0 /* don't check src */ 1068 /* check src address */ 1069 if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, 0) != 0) 1070 continue; 1071 #endif 1072 /* check dst address */ 1073 if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, 0) != 0) 1074 continue; 1075 SA_ADDREF(sav); 1076 goto done; 1077 } 1078 } 1079 } 1080 sav = NULL; 1081 done: 1082 SAHTREE_UNLOCK(); 1083 1084 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1085 printf("DP %s return SA:%p; refcnt %u\n", __func__, 1086 sav, sav ? sav->refcnt : 0)); 1087 return sav; 1088 } 1089 1090 /* 1091 * Must be called after calling key_allocsp(). 1092 * For both the packet without socket and key_freeso(). 1093 */ 1094 void 1095 _key_freesp(struct secpolicy **spp, const char* where, int tag) 1096 { 1097 struct secpolicy *sp = *spp; 1098 1099 IPSEC_ASSERT(sp != NULL, ("null sp")); 1100 1101 SPTREE_LOCK(); 1102 SP_DELREF(sp); 1103 1104 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1105 printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n", 1106 __func__, sp, sp->id, where, tag, sp->refcnt)); 1107 1108 if (sp->refcnt == 0) { 1109 *spp = NULL; 1110 key_delsp(sp); 1111 } 1112 SPTREE_UNLOCK(); 1113 } 1114 1115 /* 1116 * Must be called after calling key_allocsp(). 1117 * For the packet with socket. 1118 */ 1119 void 1120 key_freeso(struct socket *so) 1121 { 1122 IPSEC_ASSERT(so != NULL, ("null so")); 1123 1124 switch (so->so_proto->pr_domain->dom_family) { 1125 #ifdef INET 1126 case PF_INET: 1127 { 1128 struct inpcb *pcb = sotoinpcb(so); 1129 1130 /* Does it have a PCB ? */ 1131 if (pcb == NULL) 1132 return; 1133 key_freesp_so(&pcb->inp_sp->sp_in); 1134 key_freesp_so(&pcb->inp_sp->sp_out); 1135 } 1136 break; 1137 #endif 1138 #ifdef INET6 1139 case PF_INET6: 1140 { 1141 #ifdef HAVE_NRL_INPCB 1142 struct inpcb *pcb = sotoinpcb(so); 1143 1144 /* Does it have a PCB ? */ 1145 if (pcb == NULL) 1146 return; 1147 key_freesp_so(&pcb->inp_sp->sp_in); 1148 key_freesp_so(&pcb->inp_sp->sp_out); 1149 #else 1150 struct in6pcb *pcb = sotoin6pcb(so); 1151 1152 /* Does it have a PCB ? */ 1153 if (pcb == NULL) 1154 return; 1155 key_freesp_so(&pcb->in6p_sp->sp_in); 1156 key_freesp_so(&pcb->in6p_sp->sp_out); 1157 #endif 1158 } 1159 break; 1160 #endif /* INET6 */ 1161 default: 1162 ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n", 1163 __func__, so->so_proto->pr_domain->dom_family)); 1164 return; 1165 } 1166 } 1167 1168 static void 1169 key_freesp_so(struct secpolicy **sp) 1170 { 1171 IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp")); 1172 1173 if ((*sp)->policy == IPSEC_POLICY_ENTRUST || 1174 (*sp)->policy == IPSEC_POLICY_BYPASS) 1175 return; 1176 1177 IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC, 1178 ("invalid policy %u", (*sp)->policy)); 1179 KEY_FREESP(sp); 1180 } 1181 1182 /* 1183 * Must be called after calling key_allocsa(). 1184 * This function is called by key_freesp() to free some SA allocated 1185 * for a policy. 1186 */ 1187 void 1188 key_freesav(struct secasvar **psav, const char* where, int tag) 1189 { 1190 struct secasvar *sav = *psav; 1191 1192 IPSEC_ASSERT(sav != NULL, ("null sav")); 1193 1194 /* XXX unguarded? */ 1195 SA_DELREF(sav); 1196 1197 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1198 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1199 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1200 1201 if (sav->refcnt == 0) { 1202 *psav = NULL; 1203 key_delsav(sav); 1204 } 1205 } 1206 1207 /* %%% SPD management */ 1208 /* 1209 * free security policy entry. 1210 */ 1211 static void 1212 key_delsp(struct secpolicy *sp) 1213 { 1214 struct ipsecrequest *isr, *nextisr; 1215 1216 IPSEC_ASSERT(sp != NULL, ("null sp")); 1217 SPTREE_LOCK_ASSERT(); 1218 1219 sp->state = IPSEC_SPSTATE_DEAD; 1220 1221 IPSEC_ASSERT(sp->refcnt == 0, 1222 ("SP with references deleted (refcnt %u)", sp->refcnt)); 1223 1224 /* remove from SP index */ 1225 if (__LIST_CHAINED(sp)) 1226 LIST_REMOVE(sp, chain); 1227 1228 for (isr = sp->req; isr != NULL; isr = nextisr) { 1229 if (isr->sav != NULL) { 1230 KEY_FREESAV(&isr->sav); 1231 isr->sav = NULL; 1232 } 1233 1234 nextisr = isr->next; 1235 ipsec_delisr(isr); 1236 } 1237 _key_delsp(sp); 1238 } 1239 1240 /* 1241 * search SPD 1242 * OUT: NULL : not found 1243 * others : found, pointer to a SP. 1244 */ 1245 static struct secpolicy * 1246 key_getsp(struct secpolicyindex *spidx) 1247 { 1248 struct secpolicy *sp; 1249 1250 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 1251 1252 SPTREE_LOCK(); 1253 LIST_FOREACH(sp, &sptree[spidx->dir], chain) { 1254 if (sp->state == IPSEC_SPSTATE_DEAD) 1255 continue; 1256 if (key_cmpspidx_exactly(spidx, &sp->spidx)) { 1257 SP_ADDREF(sp); 1258 break; 1259 } 1260 } 1261 SPTREE_UNLOCK(); 1262 1263 return sp; 1264 } 1265 1266 /* 1267 * get SP by index. 1268 * OUT: NULL : not found 1269 * others : found, pointer to a SP. 1270 */ 1271 static struct secpolicy * 1272 key_getspbyid(u_int32_t id) 1273 { 1274 struct secpolicy *sp; 1275 1276 SPTREE_LOCK(); 1277 LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) { 1278 if (sp->state == IPSEC_SPSTATE_DEAD) 1279 continue; 1280 if (sp->id == id) { 1281 SP_ADDREF(sp); 1282 goto done; 1283 } 1284 } 1285 1286 LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) { 1287 if (sp->state == IPSEC_SPSTATE_DEAD) 1288 continue; 1289 if (sp->id == id) { 1290 SP_ADDREF(sp); 1291 goto done; 1292 } 1293 } 1294 done: 1295 SPTREE_UNLOCK(); 1296 1297 return sp; 1298 } 1299 1300 struct secpolicy * 1301 key_newsp(const char* where, int tag) 1302 { 1303 struct secpolicy *newsp = NULL; 1304 1305 newsp = (struct secpolicy *) 1306 malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO); 1307 if (newsp) { 1308 SECPOLICY_LOCK_INIT(newsp); 1309 newsp->refcnt = 1; 1310 newsp->req = NULL; 1311 } 1312 1313 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1314 printf("DP %s from %s:%u return SP:%p\n", __func__, 1315 where, tag, newsp)); 1316 return newsp; 1317 } 1318 1319 static void 1320 _key_delsp(struct secpolicy *sp) 1321 { 1322 SECPOLICY_LOCK_DESTROY(sp); 1323 free(sp, M_IPSEC_SP); 1324 } 1325 1326 /* 1327 * create secpolicy structure from sadb_x_policy structure. 1328 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, 1329 * so must be set properly later. 1330 */ 1331 struct secpolicy * 1332 key_msg2sp(xpl0, len, error) 1333 struct sadb_x_policy *xpl0; 1334 size_t len; 1335 int *error; 1336 { 1337 struct secpolicy *newsp; 1338 1339 IPSEC_ASSERT(xpl0 != NULL, ("null xpl0")); 1340 IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len)); 1341 1342 if (len != PFKEY_EXTLEN(xpl0)) { 1343 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__)); 1344 *error = EINVAL; 1345 return NULL; 1346 } 1347 1348 if ((newsp = KEY_NEWSP()) == NULL) { 1349 *error = ENOBUFS; 1350 return NULL; 1351 } 1352 1353 newsp->spidx.dir = xpl0->sadb_x_policy_dir; 1354 newsp->policy = xpl0->sadb_x_policy_type; 1355 1356 /* check policy */ 1357 switch (xpl0->sadb_x_policy_type) { 1358 case IPSEC_POLICY_DISCARD: 1359 case IPSEC_POLICY_NONE: 1360 case IPSEC_POLICY_ENTRUST: 1361 case IPSEC_POLICY_BYPASS: 1362 newsp->req = NULL; 1363 break; 1364 1365 case IPSEC_POLICY_IPSEC: 1366 { 1367 int tlen; 1368 struct sadb_x_ipsecrequest *xisr; 1369 struct ipsecrequest **p_isr = &newsp->req; 1370 1371 /* validity check */ 1372 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { 1373 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", 1374 __func__)); 1375 KEY_FREESP(&newsp); 1376 *error = EINVAL; 1377 return NULL; 1378 } 1379 1380 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); 1381 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1); 1382 1383 while (tlen > 0) { 1384 /* length check */ 1385 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { 1386 ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest " 1387 "length.\n", __func__)); 1388 KEY_FREESP(&newsp); 1389 *error = EINVAL; 1390 return NULL; 1391 } 1392 1393 /* allocate request buffer */ 1394 /* NB: data structure is zero'd */ 1395 *p_isr = ipsec_newisr(); 1396 if ((*p_isr) == NULL) { 1397 ipseclog((LOG_DEBUG, 1398 "%s: No more memory.\n", __func__)); 1399 KEY_FREESP(&newsp); 1400 *error = ENOBUFS; 1401 return NULL; 1402 } 1403 1404 /* set values */ 1405 switch (xisr->sadb_x_ipsecrequest_proto) { 1406 case IPPROTO_ESP: 1407 case IPPROTO_AH: 1408 case IPPROTO_IPCOMP: 1409 break; 1410 default: 1411 ipseclog((LOG_DEBUG, 1412 "%s: invalid proto type=%u\n", __func__, 1413 xisr->sadb_x_ipsecrequest_proto)); 1414 KEY_FREESP(&newsp); 1415 *error = EPROTONOSUPPORT; 1416 return NULL; 1417 } 1418 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; 1419 1420 switch (xisr->sadb_x_ipsecrequest_mode) { 1421 case IPSEC_MODE_TRANSPORT: 1422 case IPSEC_MODE_TUNNEL: 1423 break; 1424 case IPSEC_MODE_ANY: 1425 default: 1426 ipseclog((LOG_DEBUG, 1427 "%s: invalid mode=%u\n", __func__, 1428 xisr->sadb_x_ipsecrequest_mode)); 1429 KEY_FREESP(&newsp); 1430 *error = EINVAL; 1431 return NULL; 1432 } 1433 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; 1434 1435 switch (xisr->sadb_x_ipsecrequest_level) { 1436 case IPSEC_LEVEL_DEFAULT: 1437 case IPSEC_LEVEL_USE: 1438 case IPSEC_LEVEL_REQUIRE: 1439 break; 1440 case IPSEC_LEVEL_UNIQUE: 1441 /* validity check */ 1442 /* 1443 * If range violation of reqid, kernel will 1444 * update it, don't refuse it. 1445 */ 1446 if (xisr->sadb_x_ipsecrequest_reqid 1447 > IPSEC_MANUAL_REQID_MAX) { 1448 ipseclog((LOG_DEBUG, 1449 "%s: reqid=%d range " 1450 "violation, updated by kernel.\n", 1451 __func__, 1452 xisr->sadb_x_ipsecrequest_reqid)); 1453 xisr->sadb_x_ipsecrequest_reqid = 0; 1454 } 1455 1456 /* allocate new reqid id if reqid is zero. */ 1457 if (xisr->sadb_x_ipsecrequest_reqid == 0) { 1458 u_int32_t reqid; 1459 if ((reqid = key_newreqid()) == 0) { 1460 KEY_FREESP(&newsp); 1461 *error = ENOBUFS; 1462 return NULL; 1463 } 1464 (*p_isr)->saidx.reqid = reqid; 1465 xisr->sadb_x_ipsecrequest_reqid = reqid; 1466 } else { 1467 /* set it for manual keying. */ 1468 (*p_isr)->saidx.reqid = 1469 xisr->sadb_x_ipsecrequest_reqid; 1470 } 1471 break; 1472 1473 default: 1474 ipseclog((LOG_DEBUG, "%s: invalid level=%u\n", 1475 __func__, 1476 xisr->sadb_x_ipsecrequest_level)); 1477 KEY_FREESP(&newsp); 1478 *error = EINVAL; 1479 return NULL; 1480 } 1481 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; 1482 1483 /* set IP addresses if there */ 1484 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { 1485 struct sockaddr *paddr; 1486 1487 paddr = (struct sockaddr *)(xisr + 1); 1488 1489 /* validity check */ 1490 if (paddr->sa_len 1491 > sizeof((*p_isr)->saidx.src)) { 1492 ipseclog((LOG_DEBUG, "%s: invalid " 1493 "request address length.\n", 1494 __func__)); 1495 KEY_FREESP(&newsp); 1496 *error = EINVAL; 1497 return NULL; 1498 } 1499 bcopy(paddr, &(*p_isr)->saidx.src, 1500 paddr->sa_len); 1501 1502 paddr = (struct sockaddr *)((caddr_t)paddr 1503 + paddr->sa_len); 1504 1505 /* validity check */ 1506 if (paddr->sa_len 1507 > sizeof((*p_isr)->saidx.dst)) { 1508 ipseclog((LOG_DEBUG, "%s: invalid " 1509 "request address length.\n", 1510 __func__)); 1511 KEY_FREESP(&newsp); 1512 *error = EINVAL; 1513 return NULL; 1514 } 1515 bcopy(paddr, &(*p_isr)->saidx.dst, 1516 paddr->sa_len); 1517 } 1518 1519 (*p_isr)->sp = newsp; 1520 1521 /* initialization for the next. */ 1522 p_isr = &(*p_isr)->next; 1523 tlen -= xisr->sadb_x_ipsecrequest_len; 1524 1525 /* validity check */ 1526 if (tlen < 0) { 1527 ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n", 1528 __func__)); 1529 KEY_FREESP(&newsp); 1530 *error = EINVAL; 1531 return NULL; 1532 } 1533 1534 xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr 1535 + xisr->sadb_x_ipsecrequest_len); 1536 } 1537 } 1538 break; 1539 default: 1540 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); 1541 KEY_FREESP(&newsp); 1542 *error = EINVAL; 1543 return NULL; 1544 } 1545 1546 *error = 0; 1547 return newsp; 1548 } 1549 1550 static u_int32_t 1551 key_newreqid() 1552 { 1553 static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 1554 1555 auto_reqid = (auto_reqid == ~0 1556 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); 1557 1558 /* XXX should be unique check */ 1559 1560 return auto_reqid; 1561 } 1562 1563 /* 1564 * copy secpolicy struct to sadb_x_policy structure indicated. 1565 */ 1566 struct mbuf * 1567 key_sp2msg(sp) 1568 struct secpolicy *sp; 1569 { 1570 struct sadb_x_policy *xpl; 1571 int tlen; 1572 caddr_t p; 1573 struct mbuf *m; 1574 1575 IPSEC_ASSERT(sp != NULL, ("null policy")); 1576 1577 tlen = key_getspreqmsglen(sp); 1578 1579 m = key_alloc_mbuf(tlen); 1580 if (!m || m->m_next) { /*XXX*/ 1581 if (m) 1582 m_freem(m); 1583 return NULL; 1584 } 1585 1586 m->m_len = tlen; 1587 m->m_next = NULL; 1588 xpl = mtod(m, struct sadb_x_policy *); 1589 bzero(xpl, tlen); 1590 1591 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen); 1592 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 1593 xpl->sadb_x_policy_type = sp->policy; 1594 xpl->sadb_x_policy_dir = sp->spidx.dir; 1595 xpl->sadb_x_policy_id = sp->id; 1596 p = (caddr_t)xpl + sizeof(*xpl); 1597 1598 /* if is the policy for ipsec ? */ 1599 if (sp->policy == IPSEC_POLICY_IPSEC) { 1600 struct sadb_x_ipsecrequest *xisr; 1601 struct ipsecrequest *isr; 1602 1603 for (isr = sp->req; isr != NULL; isr = isr->next) { 1604 1605 xisr = (struct sadb_x_ipsecrequest *)p; 1606 1607 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; 1608 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; 1609 xisr->sadb_x_ipsecrequest_level = isr->level; 1610 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; 1611 1612 p += sizeof(*xisr); 1613 bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len); 1614 p += isr->saidx.src.sa.sa_len; 1615 bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len); 1616 p += isr->saidx.src.sa.sa_len; 1617 1618 xisr->sadb_x_ipsecrequest_len = 1619 PFKEY_ALIGN8(sizeof(*xisr) 1620 + isr->saidx.src.sa.sa_len 1621 + isr->saidx.dst.sa.sa_len); 1622 } 1623 } 1624 1625 return m; 1626 } 1627 1628 /* m will not be freed nor modified */ 1629 static struct mbuf * 1630 #ifdef __STDC__ 1631 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, 1632 int ndeep, int nitem, ...) 1633 #else 1634 key_gather_mbuf(m, mhp, ndeep, nitem, va_alist) 1635 struct mbuf *m; 1636 const struct sadb_msghdr *mhp; 1637 int ndeep; 1638 int nitem; 1639 va_dcl 1640 #endif 1641 { 1642 va_list ap; 1643 int idx; 1644 int i; 1645 struct mbuf *result = NULL, *n; 1646 int len; 1647 1648 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1649 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1650 1651 va_start(ap, nitem); 1652 for (i = 0; i < nitem; i++) { 1653 idx = va_arg(ap, int); 1654 if (idx < 0 || idx > SADB_EXT_MAX) 1655 goto fail; 1656 /* don't attempt to pull empty extension */ 1657 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) 1658 continue; 1659 if (idx != SADB_EXT_RESERVED && 1660 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) 1661 continue; 1662 1663 if (idx == SADB_EXT_RESERVED) { 1664 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 1665 1666 IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len)); 1667 1668 MGETHDR(n, M_DONTWAIT, MT_DATA); 1669 if (!n) 1670 goto fail; 1671 n->m_len = len; 1672 n->m_next = NULL; 1673 m_copydata(m, 0, sizeof(struct sadb_msg), 1674 mtod(n, caddr_t)); 1675 } else if (i < ndeep) { 1676 len = mhp->extlen[idx]; 1677 n = key_alloc_mbuf(len); 1678 if (!n || n->m_next) { /*XXX*/ 1679 if (n) 1680 m_freem(n); 1681 goto fail; 1682 } 1683 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], 1684 mtod(n, caddr_t)); 1685 } else { 1686 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], 1687 M_DONTWAIT); 1688 } 1689 if (n == NULL) 1690 goto fail; 1691 1692 if (result) 1693 m_cat(result, n); 1694 else 1695 result = n; 1696 } 1697 va_end(ap); 1698 1699 if ((result->m_flags & M_PKTHDR) != 0) { 1700 result->m_pkthdr.len = 0; 1701 for (n = result; n; n = n->m_next) 1702 result->m_pkthdr.len += n->m_len; 1703 } 1704 1705 return result; 1706 1707 fail: 1708 m_freem(result); 1709 return NULL; 1710 } 1711 1712 /* 1713 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing 1714 * add an entry to SP database, when received 1715 * <base, address(SD), (lifetime(H),) policy> 1716 * from the user(?). 1717 * Adding to SP database, 1718 * and send 1719 * <base, address(SD), (lifetime(H),) policy> 1720 * to the socket which was send. 1721 * 1722 * SPDADD set a unique policy entry. 1723 * SPDSETIDX like SPDADD without a part of policy requests. 1724 * SPDUPDATE replace a unique policy entry. 1725 * 1726 * m will always be freed. 1727 */ 1728 static int 1729 key_spdadd(so, m, mhp) 1730 struct socket *so; 1731 struct mbuf *m; 1732 const struct sadb_msghdr *mhp; 1733 { 1734 struct sadb_address *src0, *dst0; 1735 struct sadb_x_policy *xpl0, *xpl; 1736 struct sadb_lifetime *lft = NULL; 1737 struct secpolicyindex spidx; 1738 struct secpolicy *newsp; 1739 int error; 1740 1741 IPSEC_ASSERT(so != NULL, ("null socket")); 1742 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1743 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1744 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 1745 1746 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 1747 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 1748 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 1749 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n")); 1750 return key_senderror(so, m, EINVAL); 1751 } 1752 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 1753 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 1754 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 1755 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1756 __func__)); 1757 return key_senderror(so, m, EINVAL); 1758 } 1759 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { 1760 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] 1761 < sizeof(struct sadb_lifetime)) { 1762 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1763 __func__)); 1764 return key_senderror(so, m, EINVAL); 1765 } 1766 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 1767 } 1768 1769 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 1770 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 1771 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 1772 1773 /* make secindex */ 1774 /* XXX boundary check against sa_len */ 1775 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1776 src0 + 1, 1777 dst0 + 1, 1778 src0->sadb_address_prefixlen, 1779 dst0->sadb_address_prefixlen, 1780 src0->sadb_address_proto, 1781 &spidx); 1782 1783 /* checking the direciton. */ 1784 switch (xpl0->sadb_x_policy_dir) { 1785 case IPSEC_DIR_INBOUND: 1786 case IPSEC_DIR_OUTBOUND: 1787 break; 1788 default: 1789 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 1790 mhp->msg->sadb_msg_errno = EINVAL; 1791 return 0; 1792 } 1793 1794 /* check policy */ 1795 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */ 1796 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST 1797 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { 1798 ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__)); 1799 return key_senderror(so, m, EINVAL); 1800 } 1801 1802 /* policy requests are mandatory when action is ipsec. */ 1803 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX 1804 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC 1805 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { 1806 ipseclog((LOG_DEBUG, "%s: some policy requests part required\n", 1807 __func__)); 1808 return key_senderror(so, m, EINVAL); 1809 } 1810 1811 /* 1812 * checking there is SP already or not. 1813 * SPDUPDATE doesn't depend on whether there is a SP or not. 1814 * If the type is either SPDADD or SPDSETIDX AND a SP is found, 1815 * then error. 1816 */ 1817 newsp = key_getsp(&spidx); 1818 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1819 if (newsp) { 1820 newsp->state = IPSEC_SPSTATE_DEAD; 1821 KEY_FREESP(&newsp); 1822 } 1823 } else { 1824 if (newsp != NULL) { 1825 KEY_FREESP(&newsp); 1826 ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n", 1827 __func__)); 1828 return key_senderror(so, m, EEXIST); 1829 } 1830 } 1831 1832 /* allocation new SP entry */ 1833 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) { 1834 return key_senderror(so, m, error); 1835 } 1836 1837 if ((newsp->id = key_getnewspid()) == 0) { 1838 _key_delsp(newsp); 1839 return key_senderror(so, m, ENOBUFS); 1840 } 1841 1842 /* XXX boundary check against sa_len */ 1843 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1844 src0 + 1, 1845 dst0 + 1, 1846 src0->sadb_address_prefixlen, 1847 dst0->sadb_address_prefixlen, 1848 src0->sadb_address_proto, 1849 &newsp->spidx); 1850 1851 /* sanity check on addr pair */ 1852 if (((struct sockaddr *)(src0 + 1))->sa_family != 1853 ((struct sockaddr *)(dst0+ 1))->sa_family) { 1854 _key_delsp(newsp); 1855 return key_senderror(so, m, EINVAL); 1856 } 1857 if (((struct sockaddr *)(src0 + 1))->sa_len != 1858 ((struct sockaddr *)(dst0+ 1))->sa_len) { 1859 _key_delsp(newsp); 1860 return key_senderror(so, m, EINVAL); 1861 } 1862 #if 1 1863 if (newsp->req && newsp->req->saidx.src.sa.sa_family) { 1864 struct sockaddr *sa; 1865 sa = (struct sockaddr *)(src0 + 1); 1866 if (sa->sa_family != newsp->req->saidx.src.sa.sa_family) { 1867 _key_delsp(newsp); 1868 return key_senderror(so, m, EINVAL); 1869 } 1870 } 1871 if (newsp->req && newsp->req->saidx.dst.sa.sa_family) { 1872 struct sockaddr *sa; 1873 sa = (struct sockaddr *)(dst0 + 1); 1874 if (sa->sa_family != newsp->req->saidx.dst.sa.sa_family) { 1875 _key_delsp(newsp); 1876 return key_senderror(so, m, EINVAL); 1877 } 1878 } 1879 #endif 1880 1881 newsp->created = time_second; 1882 newsp->lastused = newsp->created; 1883 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; 1884 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; 1885 1886 newsp->refcnt = 1; /* do not reclaim until I say I do */ 1887 newsp->state = IPSEC_SPSTATE_ALIVE; 1888 LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain); 1889 1890 /* delete the entry in spacqtree */ 1891 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1892 struct secspacq *spacq = key_getspacq(&spidx); 1893 if (spacq != NULL) { 1894 /* reset counter in order to deletion by timehandler. */ 1895 spacq->created = time_second; 1896 spacq->count = 0; 1897 SPACQ_UNLOCK(); 1898 } 1899 } 1900 1901 { 1902 struct mbuf *n, *mpolicy; 1903 struct sadb_msg *newmsg; 1904 int off; 1905 1906 /* create new sadb_msg to reply. */ 1907 if (lft) { 1908 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, 1909 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, 1910 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1911 } else { 1912 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, 1913 SADB_X_EXT_POLICY, 1914 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1915 } 1916 if (!n) 1917 return key_senderror(so, m, ENOBUFS); 1918 1919 if (n->m_len < sizeof(*newmsg)) { 1920 n = m_pullup(n, sizeof(*newmsg)); 1921 if (!n) 1922 return key_senderror(so, m, ENOBUFS); 1923 } 1924 newmsg = mtod(n, struct sadb_msg *); 1925 newmsg->sadb_msg_errno = 0; 1926 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 1927 1928 off = 0; 1929 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), 1930 sizeof(*xpl), &off); 1931 if (mpolicy == NULL) { 1932 /* n is already freed */ 1933 return key_senderror(so, m, ENOBUFS); 1934 } 1935 xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off); 1936 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { 1937 m_freem(n); 1938 return key_senderror(so, m, EINVAL); 1939 } 1940 xpl->sadb_x_policy_id = newsp->id; 1941 1942 m_freem(m); 1943 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 1944 } 1945 } 1946 1947 /* 1948 * get new policy id. 1949 * OUT: 1950 * 0: failure. 1951 * others: success. 1952 */ 1953 static u_int32_t 1954 key_getnewspid() 1955 { 1956 u_int32_t newid = 0; 1957 int count = key_spi_trycnt; /* XXX */ 1958 struct secpolicy *sp; 1959 1960 /* when requesting to allocate spi ranged */ 1961 while (count--) { 1962 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1)); 1963 1964 if ((sp = key_getspbyid(newid)) == NULL) 1965 break; 1966 1967 KEY_FREESP(&sp); 1968 } 1969 1970 if (count == 0 || newid == 0) { 1971 ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n", 1972 __func__)); 1973 return 0; 1974 } 1975 1976 return newid; 1977 } 1978 1979 /* 1980 * SADB_SPDDELETE processing 1981 * receive 1982 * <base, address(SD), policy(*)> 1983 * from the user(?), and set SADB_SASTATE_DEAD, 1984 * and send, 1985 * <base, address(SD), policy(*)> 1986 * to the ikmpd. 1987 * policy(*) including direction of policy. 1988 * 1989 * m will always be freed. 1990 */ 1991 static int 1992 key_spddelete(so, m, mhp) 1993 struct socket *so; 1994 struct mbuf *m; 1995 const struct sadb_msghdr *mhp; 1996 { 1997 struct sadb_address *src0, *dst0; 1998 struct sadb_x_policy *xpl0; 1999 struct secpolicyindex spidx; 2000 struct secpolicy *sp; 2001 2002 IPSEC_ASSERT(so != NULL, ("null so")); 2003 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2004 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2005 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2006 2007 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2008 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2009 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2010 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2011 __func__)); 2012 return key_senderror(so, m, EINVAL); 2013 } 2014 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2015 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2016 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2017 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2018 __func__)); 2019 return key_senderror(so, m, EINVAL); 2020 } 2021 2022 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 2023 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 2024 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 2025 2026 /* make secindex */ 2027 /* XXX boundary check against sa_len */ 2028 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 2029 src0 + 1, 2030 dst0 + 1, 2031 src0->sadb_address_prefixlen, 2032 dst0->sadb_address_prefixlen, 2033 src0->sadb_address_proto, 2034 &spidx); 2035 2036 /* checking the direciton. */ 2037 switch (xpl0->sadb_x_policy_dir) { 2038 case IPSEC_DIR_INBOUND: 2039 case IPSEC_DIR_OUTBOUND: 2040 break; 2041 default: 2042 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 2043 return key_senderror(so, m, EINVAL); 2044 } 2045 2046 /* Is there SP in SPD ? */ 2047 if ((sp = key_getsp(&spidx)) == NULL) { 2048 ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__)); 2049 return key_senderror(so, m, EINVAL); 2050 } 2051 2052 /* save policy id to buffer to be returned. */ 2053 xpl0->sadb_x_policy_id = sp->id; 2054 2055 sp->state = IPSEC_SPSTATE_DEAD; 2056 KEY_FREESP(&sp); 2057 2058 { 2059 struct mbuf *n; 2060 struct sadb_msg *newmsg; 2061 2062 /* create new sadb_msg to reply. */ 2063 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 2064 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2065 if (!n) 2066 return key_senderror(so, m, ENOBUFS); 2067 2068 newmsg = mtod(n, struct sadb_msg *); 2069 newmsg->sadb_msg_errno = 0; 2070 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2071 2072 m_freem(m); 2073 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2074 } 2075 } 2076 2077 /* 2078 * SADB_SPDDELETE2 processing 2079 * receive 2080 * <base, policy(*)> 2081 * from the user(?), and set SADB_SASTATE_DEAD, 2082 * and send, 2083 * <base, policy(*)> 2084 * to the ikmpd. 2085 * policy(*) including direction of policy. 2086 * 2087 * m will always be freed. 2088 */ 2089 static int 2090 key_spddelete2(so, m, mhp) 2091 struct socket *so; 2092 struct mbuf *m; 2093 const struct sadb_msghdr *mhp; 2094 { 2095 u_int32_t id; 2096 struct secpolicy *sp; 2097 2098 IPSEC_ASSERT(so != NULL, ("null socket")); 2099 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2100 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2101 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2102 2103 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2104 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2105 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); 2106 key_senderror(so, m, EINVAL); 2107 return 0; 2108 } 2109 2110 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2111 2112 /* Is there SP in SPD ? */ 2113 if ((sp = key_getspbyid(id)) == NULL) { 2114 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2115 key_senderror(so, m, EINVAL); 2116 } 2117 2118 sp->state = IPSEC_SPSTATE_DEAD; 2119 KEY_FREESP(&sp); 2120 2121 { 2122 struct mbuf *n, *nn; 2123 struct sadb_msg *newmsg; 2124 int off, len; 2125 2126 /* create new sadb_msg to reply. */ 2127 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2128 2129 if (len > MCLBYTES) 2130 return key_senderror(so, m, ENOBUFS); 2131 MGETHDR(n, M_DONTWAIT, MT_DATA); 2132 if (n && len > MHLEN) { 2133 MCLGET(n, M_DONTWAIT); 2134 if ((n->m_flags & M_EXT) == 0) { 2135 m_freem(n); 2136 n = NULL; 2137 } 2138 } 2139 if (!n) 2140 return key_senderror(so, m, ENOBUFS); 2141 2142 n->m_len = len; 2143 n->m_next = NULL; 2144 off = 0; 2145 2146 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 2147 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2148 2149 IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)", 2150 off, len)); 2151 2152 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], 2153 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT); 2154 if (!n->m_next) { 2155 m_freem(n); 2156 return key_senderror(so, m, ENOBUFS); 2157 } 2158 2159 n->m_pkthdr.len = 0; 2160 for (nn = n; nn; nn = nn->m_next) 2161 n->m_pkthdr.len += nn->m_len; 2162 2163 newmsg = mtod(n, struct sadb_msg *); 2164 newmsg->sadb_msg_errno = 0; 2165 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2166 2167 m_freem(m); 2168 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2169 } 2170 } 2171 2172 /* 2173 * SADB_X_GET processing 2174 * receive 2175 * <base, policy(*)> 2176 * from the user(?), 2177 * and send, 2178 * <base, address(SD), policy> 2179 * to the ikmpd. 2180 * policy(*) including direction of policy. 2181 * 2182 * m will always be freed. 2183 */ 2184 static int 2185 key_spdget(so, m, mhp) 2186 struct socket *so; 2187 struct mbuf *m; 2188 const struct sadb_msghdr *mhp; 2189 { 2190 u_int32_t id; 2191 struct secpolicy *sp; 2192 struct mbuf *n; 2193 2194 IPSEC_ASSERT(so != NULL, ("null socket")); 2195 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2196 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2197 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2198 2199 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2200 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2201 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2202 __func__)); 2203 return key_senderror(so, m, EINVAL); 2204 } 2205 2206 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2207 2208 /* Is there SP in SPD ? */ 2209 if ((sp = key_getspbyid(id)) == NULL) { 2210 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2211 return key_senderror(so, m, ENOENT); 2212 } 2213 2214 n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid); 2215 if (n != NULL) { 2216 m_freem(m); 2217 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2218 } else 2219 return key_senderror(so, m, ENOBUFS); 2220 } 2221 2222 /* 2223 * SADB_X_SPDACQUIRE processing. 2224 * Acquire policy and SA(s) for a *OUTBOUND* packet. 2225 * send 2226 * <base, policy(*)> 2227 * to KMD, and expect to receive 2228 * <base> with SADB_X_SPDACQUIRE if error occured, 2229 * or 2230 * <base, policy> 2231 * with SADB_X_SPDUPDATE from KMD by PF_KEY. 2232 * policy(*) is without policy requests. 2233 * 2234 * 0 : succeed 2235 * others: error number 2236 */ 2237 int 2238 key_spdacquire(sp) 2239 struct secpolicy *sp; 2240 { 2241 struct mbuf *result = NULL, *m; 2242 struct secspacq *newspacq; 2243 int error; 2244 2245 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2246 IPSEC_ASSERT(sp->req == NULL, ("policy exists")); 2247 IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC, 2248 ("policy not IPSEC %u", sp->policy)); 2249 2250 /* Get an entry to check whether sent message or not. */ 2251 newspacq = key_getspacq(&sp->spidx); 2252 if (newspacq != NULL) { 2253 if (key_blockacq_count < newspacq->count) { 2254 /* reset counter and do send message. */ 2255 newspacq->count = 0; 2256 } else { 2257 /* increment counter and do nothing. */ 2258 newspacq->count++; 2259 return 0; 2260 } 2261 SPACQ_UNLOCK(); 2262 } else { 2263 /* make new entry for blocking to send SADB_ACQUIRE. */ 2264 newspacq = key_newspacq(&sp->spidx); 2265 if (newspacq == NULL) 2266 return ENOBUFS; 2267 } 2268 2269 /* create new sadb_msg to reply. */ 2270 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); 2271 if (!m) { 2272 error = ENOBUFS; 2273 goto fail; 2274 } 2275 result = m; 2276 2277 result->m_pkthdr.len = 0; 2278 for (m = result; m; m = m->m_next) 2279 result->m_pkthdr.len += m->m_len; 2280 2281 mtod(result, struct sadb_msg *)->sadb_msg_len = 2282 PFKEY_UNIT64(result->m_pkthdr.len); 2283 2284 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 2285 2286 fail: 2287 if (result) 2288 m_freem(result); 2289 return error; 2290 } 2291 2292 /* 2293 * SADB_SPDFLUSH processing 2294 * receive 2295 * <base> 2296 * from the user, and free all entries in secpctree. 2297 * and send, 2298 * <base> 2299 * to the user. 2300 * NOTE: what to do is only marking SADB_SASTATE_DEAD. 2301 * 2302 * m will always be freed. 2303 */ 2304 static int 2305 key_spdflush(so, m, mhp) 2306 struct socket *so; 2307 struct mbuf *m; 2308 const struct sadb_msghdr *mhp; 2309 { 2310 struct sadb_msg *newmsg; 2311 struct secpolicy *sp; 2312 u_int dir; 2313 2314 IPSEC_ASSERT(so != NULL, ("null socket")); 2315 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2316 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2317 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2318 2319 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) 2320 return key_senderror(so, m, EINVAL); 2321 2322 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2323 SPTREE_LOCK(); 2324 LIST_FOREACH(sp, &sptree[dir], chain) 2325 sp->state = IPSEC_SPSTATE_DEAD; 2326 SPTREE_UNLOCK(); 2327 } 2328 2329 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 2330 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2331 return key_senderror(so, m, ENOBUFS); 2332 } 2333 2334 if (m->m_next) 2335 m_freem(m->m_next); 2336 m->m_next = NULL; 2337 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2338 newmsg = mtod(m, struct sadb_msg *); 2339 newmsg->sadb_msg_errno = 0; 2340 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 2341 2342 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 2343 } 2344 2345 /* 2346 * SADB_SPDDUMP processing 2347 * receive 2348 * <base> 2349 * from the user, and dump all SP leaves 2350 * and send, 2351 * <base> ..... 2352 * to the ikmpd. 2353 * 2354 * m will always be freed. 2355 */ 2356 static int 2357 key_spddump(so, m, mhp) 2358 struct socket *so; 2359 struct mbuf *m; 2360 const struct sadb_msghdr *mhp; 2361 { 2362 struct secpolicy *sp; 2363 int cnt; 2364 u_int dir; 2365 struct mbuf *n; 2366 2367 IPSEC_ASSERT(so != NULL, ("null socket")); 2368 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2369 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2370 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2371 2372 /* search SPD entry and get buffer size. */ 2373 cnt = 0; 2374 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2375 LIST_FOREACH(sp, &sptree[dir], chain) { 2376 cnt++; 2377 } 2378 } 2379 2380 if (cnt == 0) 2381 return key_senderror(so, m, ENOENT); 2382 2383 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2384 LIST_FOREACH(sp, &sptree[dir], chain) { 2385 --cnt; 2386 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, 2387 mhp->msg->sadb_msg_pid); 2388 2389 if (n) 2390 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2391 } 2392 } 2393 2394 m_freem(m); 2395 return 0; 2396 } 2397 2398 static struct mbuf * 2399 key_setdumpsp(sp, type, seq, pid) 2400 struct secpolicy *sp; 2401 u_int8_t type; 2402 u_int32_t seq, pid; 2403 { 2404 struct mbuf *result = NULL, *m; 2405 2406 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt); 2407 if (!m) 2408 goto fail; 2409 result = m; 2410 2411 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2412 &sp->spidx.src.sa, sp->spidx.prefs, 2413 sp->spidx.ul_proto); 2414 if (!m) 2415 goto fail; 2416 m_cat(result, m); 2417 2418 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2419 &sp->spidx.dst.sa, sp->spidx.prefd, 2420 sp->spidx.ul_proto); 2421 if (!m) 2422 goto fail; 2423 m_cat(result, m); 2424 2425 m = key_sp2msg(sp); 2426 if (!m) 2427 goto fail; 2428 m_cat(result, m); 2429 2430 if ((result->m_flags & M_PKTHDR) == 0) 2431 goto fail; 2432 2433 if (result->m_len < sizeof(struct sadb_msg)) { 2434 result = m_pullup(result, sizeof(struct sadb_msg)); 2435 if (result == NULL) 2436 goto fail; 2437 } 2438 2439 result->m_pkthdr.len = 0; 2440 for (m = result; m; m = m->m_next) 2441 result->m_pkthdr.len += m->m_len; 2442 2443 mtod(result, struct sadb_msg *)->sadb_msg_len = 2444 PFKEY_UNIT64(result->m_pkthdr.len); 2445 2446 return result; 2447 2448 fail: 2449 m_freem(result); 2450 return NULL; 2451 } 2452 2453 /* 2454 * get PFKEY message length for security policy and request. 2455 */ 2456 static u_int 2457 key_getspreqmsglen(sp) 2458 struct secpolicy *sp; 2459 { 2460 u_int tlen; 2461 2462 tlen = sizeof(struct sadb_x_policy); 2463 2464 /* if is the policy for ipsec ? */ 2465 if (sp->policy != IPSEC_POLICY_IPSEC) 2466 return tlen; 2467 2468 /* get length of ipsec requests */ 2469 { 2470 struct ipsecrequest *isr; 2471 int len; 2472 2473 for (isr = sp->req; isr != NULL; isr = isr->next) { 2474 len = sizeof(struct sadb_x_ipsecrequest) 2475 + isr->saidx.src.sa.sa_len 2476 + isr->saidx.dst.sa.sa_len; 2477 2478 tlen += PFKEY_ALIGN8(len); 2479 } 2480 } 2481 2482 return tlen; 2483 } 2484 2485 /* 2486 * SADB_SPDEXPIRE processing 2487 * send 2488 * <base, address(SD), lifetime(CH), policy> 2489 * to KMD by PF_KEY. 2490 * 2491 * OUT: 0 : succeed 2492 * others : error number 2493 */ 2494 static int 2495 key_spdexpire(sp) 2496 struct secpolicy *sp; 2497 { 2498 struct mbuf *result = NULL, *m; 2499 int len; 2500 int error = -1; 2501 struct sadb_lifetime *lt; 2502 2503 /* XXX: Why do we lock ? */ 2504 2505 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2506 2507 /* set msg header */ 2508 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0); 2509 if (!m) { 2510 error = ENOBUFS; 2511 goto fail; 2512 } 2513 result = m; 2514 2515 /* create lifetime extension (current and hard) */ 2516 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 2517 m = key_alloc_mbuf(len); 2518 if (!m || m->m_next) { /*XXX*/ 2519 if (m) 2520 m_freem(m); 2521 error = ENOBUFS; 2522 goto fail; 2523 } 2524 bzero(mtod(m, caddr_t), len); 2525 lt = mtod(m, struct sadb_lifetime *); 2526 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2527 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 2528 lt->sadb_lifetime_allocations = 0; 2529 lt->sadb_lifetime_bytes = 0; 2530 lt->sadb_lifetime_addtime = sp->created; 2531 lt->sadb_lifetime_usetime = sp->lastused; 2532 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 2533 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2534 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 2535 lt->sadb_lifetime_allocations = 0; 2536 lt->sadb_lifetime_bytes = 0; 2537 lt->sadb_lifetime_addtime = sp->lifetime; 2538 lt->sadb_lifetime_usetime = sp->validtime; 2539 m_cat(result, m); 2540 2541 /* set sadb_address for source */ 2542 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2543 &sp->spidx.src.sa, 2544 sp->spidx.prefs, sp->spidx.ul_proto); 2545 if (!m) { 2546 error = ENOBUFS; 2547 goto fail; 2548 } 2549 m_cat(result, m); 2550 2551 /* set sadb_address for destination */ 2552 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2553 &sp->spidx.dst.sa, 2554 sp->spidx.prefd, sp->spidx.ul_proto); 2555 if (!m) { 2556 error = ENOBUFS; 2557 goto fail; 2558 } 2559 m_cat(result, m); 2560 2561 /* set secpolicy */ 2562 m = key_sp2msg(sp); 2563 if (!m) { 2564 error = ENOBUFS; 2565 goto fail; 2566 } 2567 m_cat(result, m); 2568 2569 if ((result->m_flags & M_PKTHDR) == 0) { 2570 error = EINVAL; 2571 goto fail; 2572 } 2573 2574 if (result->m_len < sizeof(struct sadb_msg)) { 2575 result = m_pullup(result, sizeof(struct sadb_msg)); 2576 if (result == NULL) { 2577 error = ENOBUFS; 2578 goto fail; 2579 } 2580 } 2581 2582 result->m_pkthdr.len = 0; 2583 for (m = result; m; m = m->m_next) 2584 result->m_pkthdr.len += m->m_len; 2585 2586 mtod(result, struct sadb_msg *)->sadb_msg_len = 2587 PFKEY_UNIT64(result->m_pkthdr.len); 2588 2589 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 2590 2591 fail: 2592 if (result) 2593 m_freem(result); 2594 return error; 2595 } 2596 2597 /* %%% SAD management */ 2598 /* 2599 * allocating a memory for new SA head, and copy from the values of mhp. 2600 * OUT: NULL : failure due to the lack of memory. 2601 * others : pointer to new SA head. 2602 */ 2603 static struct secashead * 2604 key_newsah(saidx) 2605 struct secasindex *saidx; 2606 { 2607 struct secashead *newsah; 2608 2609 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 2610 2611 newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO); 2612 if (newsah != NULL) { 2613 int i; 2614 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++) 2615 LIST_INIT(&newsah->savtree[i]); 2616 newsah->saidx = *saidx; 2617 2618 /* add to saidxtree */ 2619 newsah->state = SADB_SASTATE_MATURE; 2620 2621 SAHTREE_LOCK(); 2622 LIST_INSERT_HEAD(&sahtree, newsah, chain); 2623 SAHTREE_UNLOCK(); 2624 } 2625 return(newsah); 2626 } 2627 2628 /* 2629 * delete SA index and all SA registerd. 2630 */ 2631 static void 2632 key_delsah(sah) 2633 struct secashead *sah; 2634 { 2635 struct secasvar *sav, *nextsav; 2636 u_int stateidx; 2637 int zombie = 0; 2638 2639 IPSEC_ASSERT(sah != NULL, ("NULL sah")); 2640 SAHTREE_LOCK_ASSERT(); 2641 2642 /* searching all SA registerd in the secindex. */ 2643 for (stateidx = 0; 2644 stateidx < _ARRAYLEN(saorder_state_any); 2645 stateidx++) { 2646 u_int state = saorder_state_any[stateidx]; 2647 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) { 2648 if (sav->refcnt == 0) { 2649 /* sanity check */ 2650 KEY_CHKSASTATE(state, sav->state, __func__); 2651 KEY_FREESAV(&sav); 2652 } else { 2653 /* give up to delete this sa */ 2654 zombie++; 2655 } 2656 } 2657 } 2658 if (!zombie) { /* delete only if there are savs */ 2659 /* remove from tree of SA index */ 2660 if (__LIST_CHAINED(sah)) 2661 LIST_REMOVE(sah, chain); 2662 if (sah->sa_route.ro_rt) { 2663 RTFREE(sah->sa_route.ro_rt); 2664 sah->sa_route.ro_rt = (struct rtentry *)NULL; 2665 } 2666 free(sah, M_IPSEC_SAH); 2667 } 2668 } 2669 2670 /* 2671 * allocating a new SA with LARVAL state. key_add() and key_getspi() call, 2672 * and copy the values of mhp into new buffer. 2673 * When SAD message type is GETSPI: 2674 * to set sequence number from acq_seq++, 2675 * to set zero to SPI. 2676 * not to call key_setsava(). 2677 * OUT: NULL : fail 2678 * others : pointer to new secasvar. 2679 * 2680 * does not modify mbuf. does not free mbuf on error. 2681 */ 2682 static struct secasvar * 2683 key_newsav(m, mhp, sah, errp, where, tag) 2684 struct mbuf *m; 2685 const struct sadb_msghdr *mhp; 2686 struct secashead *sah; 2687 int *errp; 2688 const char* where; 2689 int tag; 2690 { 2691 struct secasvar *newsav; 2692 const struct sadb_sa *xsa; 2693 2694 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2695 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2696 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2697 IPSEC_ASSERT(sah != NULL, ("null secashead")); 2698 2699 newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO); 2700 if (newsav == NULL) { 2701 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2702 *errp = ENOBUFS; 2703 goto done; 2704 } 2705 2706 switch (mhp->msg->sadb_msg_type) { 2707 case SADB_GETSPI: 2708 newsav->spi = 0; 2709 2710 #ifdef IPSEC_DOSEQCHECK 2711 /* sync sequence number */ 2712 if (mhp->msg->sadb_msg_seq == 0) 2713 newsav->seq = 2714 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq)); 2715 else 2716 #endif 2717 newsav->seq = mhp->msg->sadb_msg_seq; 2718 break; 2719 2720 case SADB_ADD: 2721 /* sanity check */ 2722 if (mhp->ext[SADB_EXT_SA] == NULL) { 2723 free(newsav, M_IPSEC_SA); 2724 newsav = NULL; 2725 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2726 __func__)); 2727 *errp = EINVAL; 2728 goto done; 2729 } 2730 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 2731 newsav->spi = xsa->sadb_sa_spi; 2732 newsav->seq = mhp->msg->sadb_msg_seq; 2733 break; 2734 default: 2735 free(newsav, M_IPSEC_SA); 2736 newsav = NULL; 2737 *errp = EINVAL; 2738 goto done; 2739 } 2740 2741 2742 /* copy sav values */ 2743 if (mhp->msg->sadb_msg_type != SADB_GETSPI) { 2744 *errp = key_setsaval(newsav, m, mhp); 2745 if (*errp) { 2746 free(newsav, M_IPSEC_SA); 2747 newsav = NULL; 2748 goto done; 2749 } 2750 } 2751 2752 SECASVAR_LOCK_INIT(newsav); 2753 2754 /* reset created */ 2755 newsav->created = time_second; 2756 newsav->pid = mhp->msg->sadb_msg_pid; 2757 2758 /* add to satree */ 2759 newsav->sah = sah; 2760 newsav->refcnt = 1; 2761 newsav->state = SADB_SASTATE_LARVAL; 2762 2763 /* XXX locking??? */ 2764 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav, 2765 secasvar, chain); 2766 done: 2767 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 2768 printf("DP %s from %s:%u return SP:%p\n", __func__, 2769 where, tag, newsav)); 2770 2771 return newsav; 2772 } 2773 2774 /* 2775 * free() SA variable entry. 2776 */ 2777 static void 2778 key_cleansav(struct secasvar *sav) 2779 { 2780 /* 2781 * Cleanup xform state. Note that zeroize'ing causes the 2782 * keys to be cleared; otherwise we must do it ourself. 2783 */ 2784 if (sav->tdb_xform != NULL) { 2785 sav->tdb_xform->xf_zeroize(sav); 2786 sav->tdb_xform = NULL; 2787 } else { 2788 KASSERT(sav->iv == NULL, ("iv but no xform")); 2789 if (sav->key_auth != NULL) 2790 bzero(_KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth)); 2791 if (sav->key_enc != NULL) 2792 bzero(_KEYBUF(sav->key_enc), _KEYLEN(sav->key_enc)); 2793 } 2794 if (sav->key_auth != NULL) { 2795 free(sav->key_auth, M_IPSEC_MISC); 2796 sav->key_auth = NULL; 2797 } 2798 if (sav->key_enc != NULL) { 2799 free(sav->key_enc, M_IPSEC_MISC); 2800 sav->key_enc = NULL; 2801 } 2802 if (sav->sched) { 2803 bzero(sav->sched, sav->schedlen); 2804 free(sav->sched, M_IPSEC_MISC); 2805 sav->sched = NULL; 2806 } 2807 if (sav->replay != NULL) { 2808 free(sav->replay, M_IPSEC_MISC); 2809 sav->replay = NULL; 2810 } 2811 if (sav->lft_c != NULL) { 2812 free(sav->lft_c, M_IPSEC_MISC); 2813 sav->lft_c = NULL; 2814 } 2815 if (sav->lft_h != NULL) { 2816 free(sav->lft_h, M_IPSEC_MISC); 2817 sav->lft_h = NULL; 2818 } 2819 if (sav->lft_s != NULL) { 2820 free(sav->lft_s, M_IPSEC_MISC); 2821 sav->lft_s = NULL; 2822 } 2823 } 2824 2825 /* 2826 * free() SA variable entry. 2827 */ 2828 static void 2829 key_delsav(sav) 2830 struct secasvar *sav; 2831 { 2832 IPSEC_ASSERT(sav != NULL, ("null sav")); 2833 IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt)); 2834 2835 /* remove from SA header */ 2836 if (__LIST_CHAINED(sav)) 2837 LIST_REMOVE(sav, chain); 2838 key_cleansav(sav); 2839 SECASVAR_LOCK_DESTROY(sav); 2840 free(sav, M_IPSEC_SA); 2841 } 2842 2843 /* 2844 * search SAD. 2845 * OUT: 2846 * NULL : not found 2847 * others : found, pointer to a SA. 2848 */ 2849 static struct secashead * 2850 key_getsah(saidx) 2851 struct secasindex *saidx; 2852 { 2853 struct secashead *sah; 2854 2855 SAHTREE_LOCK(); 2856 LIST_FOREACH(sah, &sahtree, chain) { 2857 if (sah->state == SADB_SASTATE_DEAD) 2858 continue; 2859 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID)) 2860 break; 2861 } 2862 SAHTREE_UNLOCK(); 2863 2864 return sah; 2865 } 2866 2867 /* 2868 * check not to be duplicated SPI. 2869 * NOTE: this function is too slow due to searching all SAD. 2870 * OUT: 2871 * NULL : not found 2872 * others : found, pointer to a SA. 2873 */ 2874 static struct secasvar * 2875 key_checkspidup(saidx, spi) 2876 struct secasindex *saidx; 2877 u_int32_t spi; 2878 { 2879 struct secashead *sah; 2880 struct secasvar *sav; 2881 2882 /* check address family */ 2883 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) { 2884 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 2885 __func__)); 2886 return NULL; 2887 } 2888 2889 sav = NULL; 2890 /* check all SAD */ 2891 SAHTREE_LOCK(); 2892 LIST_FOREACH(sah, &sahtree, chain) { 2893 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst)) 2894 continue; 2895 sav = key_getsavbyspi(sah, spi); 2896 if (sav != NULL) 2897 break; 2898 } 2899 SAHTREE_UNLOCK(); 2900 2901 return sav; 2902 } 2903 2904 /* 2905 * search SAD litmited alive SA, protocol, SPI. 2906 * OUT: 2907 * NULL : not found 2908 * others : found, pointer to a SA. 2909 */ 2910 static struct secasvar * 2911 key_getsavbyspi(sah, spi) 2912 struct secashead *sah; 2913 u_int32_t spi; 2914 { 2915 struct secasvar *sav; 2916 u_int stateidx, state; 2917 2918 sav = NULL; 2919 SAHTREE_LOCK_ASSERT(); 2920 /* search all status */ 2921 for (stateidx = 0; 2922 stateidx < _ARRAYLEN(saorder_state_alive); 2923 stateidx++) { 2924 2925 state = saorder_state_alive[stateidx]; 2926 LIST_FOREACH(sav, &sah->savtree[state], chain) { 2927 2928 /* sanity check */ 2929 if (sav->state != state) { 2930 ipseclog((LOG_DEBUG, "%s: " 2931 "invalid sav->state (queue: %d SA: %d)\n", 2932 __func__, state, sav->state)); 2933 continue; 2934 } 2935 2936 if (sav->spi == spi) 2937 return sav; 2938 } 2939 } 2940 2941 return NULL; 2942 } 2943 2944 /* 2945 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. 2946 * You must update these if need. 2947 * OUT: 0: success. 2948 * !0: failure. 2949 * 2950 * does not modify mbuf. does not free mbuf on error. 2951 */ 2952 static int 2953 key_setsaval(sav, m, mhp) 2954 struct secasvar *sav; 2955 struct mbuf *m; 2956 const struct sadb_msghdr *mhp; 2957 { 2958 int error = 0; 2959 2960 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2961 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2962 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2963 2964 /* initialization */ 2965 sav->replay = NULL; 2966 sav->key_auth = NULL; 2967 sav->key_enc = NULL; 2968 sav->sched = NULL; 2969 sav->schedlen = 0; 2970 sav->iv = NULL; 2971 sav->lft_c = NULL; 2972 sav->lft_h = NULL; 2973 sav->lft_s = NULL; 2974 sav->tdb_xform = NULL; /* transform */ 2975 sav->tdb_encalgxform = NULL; /* encoding algorithm */ 2976 sav->tdb_authalgxform = NULL; /* authentication algorithm */ 2977 sav->tdb_compalgxform = NULL; /* compression algorithm */ 2978 2979 /* SA */ 2980 if (mhp->ext[SADB_EXT_SA] != NULL) { 2981 const struct sadb_sa *sa0; 2982 2983 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 2984 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { 2985 error = EINVAL; 2986 goto fail; 2987 } 2988 2989 sav->alg_auth = sa0->sadb_sa_auth; 2990 sav->alg_enc = sa0->sadb_sa_encrypt; 2991 sav->flags = sa0->sadb_sa_flags; 2992 2993 /* replay window */ 2994 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { 2995 sav->replay = (struct secreplay *) 2996 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO); 2997 if (sav->replay == NULL) { 2998 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 2999 __func__)); 3000 error = ENOBUFS; 3001 goto fail; 3002 } 3003 if (sa0->sadb_sa_replay != 0) 3004 sav->replay->bitmap = (caddr_t)(sav->replay+1); 3005 sav->replay->wsize = sa0->sadb_sa_replay; 3006 } 3007 } 3008 3009 /* Authentication keys */ 3010 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { 3011 const struct sadb_key *key0; 3012 int len; 3013 3014 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH]; 3015 len = mhp->extlen[SADB_EXT_KEY_AUTH]; 3016 3017 error = 0; 3018 if (len < sizeof(*key0)) { 3019 error = EINVAL; 3020 goto fail; 3021 } 3022 switch (mhp->msg->sadb_msg_satype) { 3023 case SADB_SATYPE_AH: 3024 case SADB_SATYPE_ESP: 3025 case SADB_X_SATYPE_TCPSIGNATURE: 3026 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3027 sav->alg_auth != SADB_X_AALG_NULL) 3028 error = EINVAL; 3029 break; 3030 case SADB_X_SATYPE_IPCOMP: 3031 default: 3032 error = EINVAL; 3033 break; 3034 } 3035 if (error) { 3036 ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n", 3037 __func__)); 3038 goto fail; 3039 } 3040 3041 sav->key_auth = key_dup(key0, len, M_IPSEC_MISC); 3042 if (sav->key_auth == NULL) { 3043 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3044 error = ENOBUFS; 3045 goto fail; 3046 } 3047 } 3048 3049 /* Encryption key */ 3050 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { 3051 const struct sadb_key *key0; 3052 int len; 3053 3054 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT]; 3055 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; 3056 3057 error = 0; 3058 if (len < sizeof(*key0)) { 3059 error = EINVAL; 3060 goto fail; 3061 } 3062 switch (mhp->msg->sadb_msg_satype) { 3063 case SADB_SATYPE_ESP: 3064 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3065 sav->alg_enc != SADB_EALG_NULL) { 3066 error = EINVAL; 3067 break; 3068 } 3069 sav->key_enc = key_dup(key0, len, M_IPSEC_MISC); 3070 if (sav->key_enc == NULL) { 3071 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3072 __func__)); 3073 error = ENOBUFS; 3074 goto fail; 3075 } 3076 break; 3077 case SADB_X_SATYPE_IPCOMP: 3078 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) 3079 error = EINVAL; 3080 sav->key_enc = NULL; /*just in case*/ 3081 break; 3082 case SADB_SATYPE_AH: 3083 case SADB_X_SATYPE_TCPSIGNATURE: 3084 default: 3085 error = EINVAL; 3086 break; 3087 } 3088 if (error) { 3089 ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n", 3090 __func__)); 3091 goto fail; 3092 } 3093 } 3094 3095 /* set iv */ 3096 sav->ivlen = 0; 3097 3098 switch (mhp->msg->sadb_msg_satype) { 3099 case SADB_SATYPE_AH: 3100 error = xform_init(sav, XF_AH); 3101 break; 3102 case SADB_SATYPE_ESP: 3103 error = xform_init(sav, XF_ESP); 3104 break; 3105 case SADB_X_SATYPE_IPCOMP: 3106 error = xform_init(sav, XF_IPCOMP); 3107 break; 3108 case SADB_X_SATYPE_TCPSIGNATURE: 3109 error = xform_init(sav, XF_TCPSIGNATURE); 3110 break; 3111 } 3112 if (error) { 3113 ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n", 3114 __func__, mhp->msg->sadb_msg_satype)); 3115 goto fail; 3116 } 3117 3118 /* reset created */ 3119 sav->created = time_second; 3120 3121 /* make lifetime for CURRENT */ 3122 sav->lft_c = malloc(sizeof(struct sadb_lifetime), M_IPSEC_MISC, M_NOWAIT); 3123 if (sav->lft_c == NULL) { 3124 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3125 error = ENOBUFS; 3126 goto fail; 3127 } 3128 3129 sav->lft_c->sadb_lifetime_len = 3130 PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 3131 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 3132 sav->lft_c->sadb_lifetime_allocations = 0; 3133 sav->lft_c->sadb_lifetime_bytes = 0; 3134 sav->lft_c->sadb_lifetime_addtime = time_second; 3135 sav->lft_c->sadb_lifetime_usetime = 0; 3136 3137 /* lifetimes for HARD and SOFT */ 3138 { 3139 const struct sadb_lifetime *lft0; 3140 3141 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 3142 if (lft0 != NULL) { 3143 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { 3144 error = EINVAL; 3145 goto fail; 3146 } 3147 sav->lft_h = key_dup(lft0, sizeof(*lft0), M_IPSEC_MISC); 3148 if (sav->lft_h == NULL) { 3149 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3150 error = ENOBUFS; 3151 goto fail; 3152 } 3153 /* to be initialize ? */ 3154 } 3155 3156 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT]; 3157 if (lft0 != NULL) { 3158 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { 3159 error = EINVAL; 3160 goto fail; 3161 } 3162 sav->lft_s = key_dup(lft0, sizeof(*lft0), M_IPSEC_MISC); 3163 if (sav->lft_s == NULL) { 3164 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3165 error = ENOBUFS; 3166 goto fail; 3167 } 3168 /* to be initialize ? */ 3169 } 3170 } 3171 3172 return 0; 3173 3174 fail: 3175 /* initialization */ 3176 key_cleansav(sav); 3177 3178 return error; 3179 } 3180 3181 /* 3182 * validation with a secasvar entry, and set SADB_SATYPE_MATURE. 3183 * OUT: 0: valid 3184 * other: errno 3185 */ 3186 static int 3187 key_mature(struct secasvar *sav) 3188 { 3189 int error; 3190 3191 /* check SPI value */ 3192 switch (sav->sah->saidx.proto) { 3193 case IPPROTO_ESP: 3194 case IPPROTO_AH: 3195 if (ntohl(sav->spi) >= 0 && ntohl(sav->spi) <= 255) { 3196 ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n", 3197 __func__, (u_int32_t)ntohl(sav->spi))); 3198 return EINVAL; 3199 } 3200 break; 3201 } 3202 3203 /* check satype */ 3204 switch (sav->sah->saidx.proto) { 3205 case IPPROTO_ESP: 3206 /* check flags */ 3207 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) == 3208 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) { 3209 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3210 "given to old-esp.\n", __func__)); 3211 return EINVAL; 3212 } 3213 error = xform_init(sav, XF_ESP); 3214 break; 3215 case IPPROTO_AH: 3216 /* check flags */ 3217 if (sav->flags & SADB_X_EXT_DERIV) { 3218 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3219 "given to AH SA.\n", __func__)); 3220 return EINVAL; 3221 } 3222 if (sav->alg_enc != SADB_EALG_NONE) { 3223 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3224 "mismated.\n", __func__)); 3225 return(EINVAL); 3226 } 3227 error = xform_init(sav, XF_AH); 3228 break; 3229 case IPPROTO_IPCOMP: 3230 if (sav->alg_auth != SADB_AALG_NONE) { 3231 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3232 "mismated.\n", __func__)); 3233 return(EINVAL); 3234 } 3235 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 3236 && ntohl(sav->spi) >= 0x10000) { 3237 ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n", 3238 __func__)); 3239 return(EINVAL); 3240 } 3241 error = xform_init(sav, XF_IPCOMP); 3242 break; 3243 case IPPROTO_TCP: 3244 if (sav->alg_enc != SADB_EALG_NONE) { 3245 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3246 "mismated.\n", __func__)); 3247 return(EINVAL); 3248 } 3249 error = xform_init(sav, XF_TCPSIGNATURE); 3250 break; 3251 default: 3252 ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__)); 3253 error = EPROTONOSUPPORT; 3254 break; 3255 } 3256 if (error == 0) { 3257 SAHTREE_LOCK(); 3258 key_sa_chgstate(sav, SADB_SASTATE_MATURE); 3259 SAHTREE_UNLOCK(); 3260 } 3261 return (error); 3262 } 3263 3264 /* 3265 * subroutine for SADB_GET and SADB_DUMP. 3266 */ 3267 static struct mbuf * 3268 key_setdumpsa(sav, type, satype, seq, pid) 3269 struct secasvar *sav; 3270 u_int8_t type, satype; 3271 u_int32_t seq, pid; 3272 { 3273 struct mbuf *result = NULL, *tres = NULL, *m; 3274 int l = 0; 3275 int i; 3276 void *p; 3277 int dumporder[] = { 3278 SADB_EXT_SA, SADB_X_EXT_SA2, 3279 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 3280 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, 3281 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, 3282 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, 3283 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, 3284 }; 3285 3286 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt); 3287 if (m == NULL) 3288 goto fail; 3289 result = m; 3290 3291 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) { 3292 m = NULL; 3293 p = NULL; 3294 switch (dumporder[i]) { 3295 case SADB_EXT_SA: 3296 m = key_setsadbsa(sav); 3297 if (!m) 3298 goto fail; 3299 break; 3300 3301 case SADB_X_EXT_SA2: 3302 m = key_setsadbxsa2(sav->sah->saidx.mode, 3303 sav->replay ? sav->replay->count : 0, 3304 sav->sah->saidx.reqid); 3305 if (!m) 3306 goto fail; 3307 break; 3308 3309 case SADB_EXT_ADDRESS_SRC: 3310 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3311 &sav->sah->saidx.src.sa, 3312 FULLMASK, IPSEC_ULPROTO_ANY); 3313 if (!m) 3314 goto fail; 3315 break; 3316 3317 case SADB_EXT_ADDRESS_DST: 3318 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3319 &sav->sah->saidx.dst.sa, 3320 FULLMASK, IPSEC_ULPROTO_ANY); 3321 if (!m) 3322 goto fail; 3323 break; 3324 3325 case SADB_EXT_KEY_AUTH: 3326 if (!sav->key_auth) 3327 continue; 3328 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len); 3329 p = sav->key_auth; 3330 break; 3331 3332 case SADB_EXT_KEY_ENCRYPT: 3333 if (!sav->key_enc) 3334 continue; 3335 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len); 3336 p = sav->key_enc; 3337 break; 3338 3339 case SADB_EXT_LIFETIME_CURRENT: 3340 if (!sav->lft_c) 3341 continue; 3342 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len); 3343 p = sav->lft_c; 3344 break; 3345 3346 case SADB_EXT_LIFETIME_HARD: 3347 if (!sav->lft_h) 3348 continue; 3349 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len); 3350 p = sav->lft_h; 3351 break; 3352 3353 case SADB_EXT_LIFETIME_SOFT: 3354 if (!sav->lft_s) 3355 continue; 3356 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len); 3357 p = sav->lft_s; 3358 break; 3359 3360 case SADB_EXT_ADDRESS_PROXY: 3361 case SADB_EXT_IDENTITY_SRC: 3362 case SADB_EXT_IDENTITY_DST: 3363 /* XXX: should we brought from SPD ? */ 3364 case SADB_EXT_SENSITIVITY: 3365 default: 3366 continue; 3367 } 3368 3369 if ((!m && !p) || (m && p)) 3370 goto fail; 3371 if (p && tres) { 3372 M_PREPEND(tres, l, M_DONTWAIT); 3373 if (!tres) 3374 goto fail; 3375 bcopy(p, mtod(tres, caddr_t), l); 3376 continue; 3377 } 3378 if (p) { 3379 m = key_alloc_mbuf(l); 3380 if (!m) 3381 goto fail; 3382 m_copyback(m, 0, l, p); 3383 } 3384 3385 if (tres) 3386 m_cat(m, tres); 3387 tres = m; 3388 } 3389 3390 m_cat(result, tres); 3391 3392 if (result->m_len < sizeof(struct sadb_msg)) { 3393 result = m_pullup(result, sizeof(struct sadb_msg)); 3394 if (result == NULL) 3395 goto fail; 3396 } 3397 3398 result->m_pkthdr.len = 0; 3399 for (m = result; m; m = m->m_next) 3400 result->m_pkthdr.len += m->m_len; 3401 3402 mtod(result, struct sadb_msg *)->sadb_msg_len = 3403 PFKEY_UNIT64(result->m_pkthdr.len); 3404 3405 return result; 3406 3407 fail: 3408 m_freem(result); 3409 m_freem(tres); 3410 return NULL; 3411 } 3412 3413 /* 3414 * set data into sadb_msg. 3415 */ 3416 static struct mbuf * 3417 key_setsadbmsg(type, tlen, satype, seq, pid, reserved) 3418 u_int8_t type, satype; 3419 u_int16_t tlen; 3420 u_int32_t seq; 3421 pid_t pid; 3422 u_int16_t reserved; 3423 { 3424 struct mbuf *m; 3425 struct sadb_msg *p; 3426 int len; 3427 3428 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 3429 if (len > MCLBYTES) 3430 return NULL; 3431 MGETHDR(m, M_DONTWAIT, MT_DATA); 3432 if (m && len > MHLEN) { 3433 MCLGET(m, M_DONTWAIT); 3434 if ((m->m_flags & M_EXT) == 0) { 3435 m_freem(m); 3436 m = NULL; 3437 } 3438 } 3439 if (!m) 3440 return NULL; 3441 m->m_pkthdr.len = m->m_len = len; 3442 m->m_next = NULL; 3443 3444 p = mtod(m, struct sadb_msg *); 3445 3446 bzero(p, len); 3447 p->sadb_msg_version = PF_KEY_V2; 3448 p->sadb_msg_type = type; 3449 p->sadb_msg_errno = 0; 3450 p->sadb_msg_satype = satype; 3451 p->sadb_msg_len = PFKEY_UNIT64(tlen); 3452 p->sadb_msg_reserved = reserved; 3453 p->sadb_msg_seq = seq; 3454 p->sadb_msg_pid = (u_int32_t)pid; 3455 3456 return m; 3457 } 3458 3459 /* 3460 * copy secasvar data into sadb_address. 3461 */ 3462 static struct mbuf * 3463 key_setsadbsa(sav) 3464 struct secasvar *sav; 3465 { 3466 struct mbuf *m; 3467 struct sadb_sa *p; 3468 int len; 3469 3470 len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); 3471 m = key_alloc_mbuf(len); 3472 if (!m || m->m_next) { /*XXX*/ 3473 if (m) 3474 m_freem(m); 3475 return NULL; 3476 } 3477 3478 p = mtod(m, struct sadb_sa *); 3479 3480 bzero(p, len); 3481 p->sadb_sa_len = PFKEY_UNIT64(len); 3482 p->sadb_sa_exttype = SADB_EXT_SA; 3483 p->sadb_sa_spi = sav->spi; 3484 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0); 3485 p->sadb_sa_state = sav->state; 3486 p->sadb_sa_auth = sav->alg_auth; 3487 p->sadb_sa_encrypt = sav->alg_enc; 3488 p->sadb_sa_flags = sav->flags; 3489 3490 return m; 3491 } 3492 3493 /* 3494 * set data into sadb_address. 3495 */ 3496 static struct mbuf * 3497 key_setsadbaddr(exttype, saddr, prefixlen, ul_proto) 3498 u_int16_t exttype; 3499 const struct sockaddr *saddr; 3500 u_int8_t prefixlen; 3501 u_int16_t ul_proto; 3502 { 3503 struct mbuf *m; 3504 struct sadb_address *p; 3505 size_t len; 3506 3507 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + 3508 PFKEY_ALIGN8(saddr->sa_len); 3509 m = key_alloc_mbuf(len); 3510 if (!m || m->m_next) { /*XXX*/ 3511 if (m) 3512 m_freem(m); 3513 return NULL; 3514 } 3515 3516 p = mtod(m, struct sadb_address *); 3517 3518 bzero(p, len); 3519 p->sadb_address_len = PFKEY_UNIT64(len); 3520 p->sadb_address_exttype = exttype; 3521 p->sadb_address_proto = ul_proto; 3522 if (prefixlen == FULLMASK) { 3523 switch (saddr->sa_family) { 3524 case AF_INET: 3525 prefixlen = sizeof(struct in_addr) << 3; 3526 break; 3527 case AF_INET6: 3528 prefixlen = sizeof(struct in6_addr) << 3; 3529 break; 3530 default: 3531 ; /*XXX*/ 3532 } 3533 } 3534 p->sadb_address_prefixlen = prefixlen; 3535 p->sadb_address_reserved = 0; 3536 3537 bcopy(saddr, 3538 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)), 3539 saddr->sa_len); 3540 3541 return m; 3542 } 3543 3544 /* 3545 * set data into sadb_x_sa2. 3546 */ 3547 static struct mbuf * 3548 key_setsadbxsa2(mode, seq, reqid) 3549 u_int8_t mode; 3550 u_int32_t seq, reqid; 3551 { 3552 struct mbuf *m; 3553 struct sadb_x_sa2 *p; 3554 size_t len; 3555 3556 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); 3557 m = key_alloc_mbuf(len); 3558 if (!m || m->m_next) { /*XXX*/ 3559 if (m) 3560 m_freem(m); 3561 return NULL; 3562 } 3563 3564 p = mtod(m, struct sadb_x_sa2 *); 3565 3566 bzero(p, len); 3567 p->sadb_x_sa2_len = PFKEY_UNIT64(len); 3568 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 3569 p->sadb_x_sa2_mode = mode; 3570 p->sadb_x_sa2_reserved1 = 0; 3571 p->sadb_x_sa2_reserved2 = 0; 3572 p->sadb_x_sa2_sequence = seq; 3573 p->sadb_x_sa2_reqid = reqid; 3574 3575 return m; 3576 } 3577 3578 /* 3579 * set data into sadb_x_policy 3580 */ 3581 static struct mbuf * 3582 key_setsadbxpolicy(type, dir, id) 3583 u_int16_t type; 3584 u_int8_t dir; 3585 u_int32_t id; 3586 { 3587 struct mbuf *m; 3588 struct sadb_x_policy *p; 3589 size_t len; 3590 3591 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); 3592 m = key_alloc_mbuf(len); 3593 if (!m || m->m_next) { /*XXX*/ 3594 if (m) 3595 m_freem(m); 3596 return NULL; 3597 } 3598 3599 p = mtod(m, struct sadb_x_policy *); 3600 3601 bzero(p, len); 3602 p->sadb_x_policy_len = PFKEY_UNIT64(len); 3603 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 3604 p->sadb_x_policy_type = type; 3605 p->sadb_x_policy_dir = dir; 3606 p->sadb_x_policy_id = id; 3607 3608 return m; 3609 } 3610 3611 /* %%% utilities */ 3612 /* 3613 * copy a buffer into the new buffer allocated. 3614 */ 3615 static void * 3616 key_dup(const void *src, u_int len, struct malloc_type *type) 3617 { 3618 void *copy; 3619 3620 copy = malloc(len, type, M_NOWAIT); 3621 if (copy == NULL) { 3622 /* XXX counter */ 3623 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3624 } else 3625 bcopy(src, copy, len); 3626 return copy; 3627 } 3628 3629 /* compare my own address 3630 * OUT: 1: true, i.e. my address. 3631 * 0: false 3632 */ 3633 int 3634 key_ismyaddr(sa) 3635 struct sockaddr *sa; 3636 { 3637 #ifdef INET 3638 struct sockaddr_in *sin; 3639 struct in_ifaddr *ia; 3640 #endif 3641 3642 IPSEC_ASSERT(sa != NULL, ("null sockaddr")); 3643 3644 switch (sa->sa_family) { 3645 #ifdef INET 3646 case AF_INET: 3647 sin = (struct sockaddr_in *)sa; 3648 for (ia = in_ifaddrhead.tqh_first; ia; 3649 ia = ia->ia_link.tqe_next) 3650 { 3651 if (sin->sin_family == ia->ia_addr.sin_family && 3652 sin->sin_len == ia->ia_addr.sin_len && 3653 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr) 3654 { 3655 return 1; 3656 } 3657 } 3658 break; 3659 #endif 3660 #ifdef INET6 3661 case AF_INET6: 3662 return key_ismyaddr6((struct sockaddr_in6 *)sa); 3663 #endif 3664 } 3665 3666 return 0; 3667 } 3668 3669 #ifdef INET6 3670 /* 3671 * compare my own address for IPv6. 3672 * 1: ours 3673 * 0: other 3674 * NOTE: derived ip6_input() in KAME. This is necessary to modify more. 3675 */ 3676 #include <netinet6/in6_var.h> 3677 3678 static int 3679 key_ismyaddr6(sin6) 3680 struct sockaddr_in6 *sin6; 3681 { 3682 struct in6_ifaddr *ia; 3683 struct in6_multi *in6m; 3684 3685 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 3686 if (key_sockaddrcmp((struct sockaddr *)&sin6, 3687 (struct sockaddr *)&ia->ia_addr, 0) == 0) 3688 return 1; 3689 3690 /* 3691 * XXX Multicast 3692 * XXX why do we care about multlicast here while we don't care 3693 * about IPv4 multicast?? 3694 * XXX scope 3695 */ 3696 in6m = NULL; 3697 IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m); 3698 if (in6m) 3699 return 1; 3700 } 3701 3702 /* loopback, just for safety */ 3703 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) 3704 return 1; 3705 3706 return 0; 3707 } 3708 #endif /*INET6*/ 3709 3710 /* 3711 * compare two secasindex structure. 3712 * flag can specify to compare 2 saidxes. 3713 * compare two secasindex structure without both mode and reqid. 3714 * don't compare port. 3715 * IN: 3716 * saidx0: source, it can be in SAD. 3717 * saidx1: object. 3718 * OUT: 3719 * 1 : equal 3720 * 0 : not equal 3721 */ 3722 static int 3723 key_cmpsaidx( 3724 const struct secasindex *saidx0, 3725 const struct secasindex *saidx1, 3726 int flag) 3727 { 3728 /* sanity */ 3729 if (saidx0 == NULL && saidx1 == NULL) 3730 return 1; 3731 3732 if (saidx0 == NULL || saidx1 == NULL) 3733 return 0; 3734 3735 if (saidx0->proto != saidx1->proto) 3736 return 0; 3737 3738 if (flag == CMP_EXACTLY) { 3739 if (saidx0->mode != saidx1->mode) 3740 return 0; 3741 if (saidx0->reqid != saidx1->reqid) 3742 return 0; 3743 if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 || 3744 bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0) 3745 return 0; 3746 } else { 3747 3748 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ 3749 if (flag == CMP_MODE_REQID 3750 ||flag == CMP_REQID) { 3751 /* 3752 * If reqid of SPD is non-zero, unique SA is required. 3753 * The result must be of same reqid in this case. 3754 */ 3755 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) 3756 return 0; 3757 } 3758 3759 if (flag == CMP_MODE_REQID) { 3760 if (saidx0->mode != IPSEC_MODE_ANY 3761 && saidx0->mode != saidx1->mode) 3762 return 0; 3763 } 3764 3765 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, 0) != 0) { 3766 return 0; 3767 } 3768 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, 0) != 0) { 3769 return 0; 3770 } 3771 } 3772 3773 return 1; 3774 } 3775 3776 /* 3777 * compare two secindex structure exactly. 3778 * IN: 3779 * spidx0: source, it is often in SPD. 3780 * spidx1: object, it is often from PFKEY message. 3781 * OUT: 3782 * 1 : equal 3783 * 0 : not equal 3784 */ 3785 static int 3786 key_cmpspidx_exactly( 3787 struct secpolicyindex *spidx0, 3788 struct secpolicyindex *spidx1) 3789 { 3790 /* sanity */ 3791 if (spidx0 == NULL && spidx1 == NULL) 3792 return 1; 3793 3794 if (spidx0 == NULL || spidx1 == NULL) 3795 return 0; 3796 3797 if (spidx0->prefs != spidx1->prefs 3798 || spidx0->prefd != spidx1->prefd 3799 || spidx0->ul_proto != spidx1->ul_proto) 3800 return 0; 3801 3802 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 && 3803 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0; 3804 } 3805 3806 /* 3807 * compare two secindex structure with mask. 3808 * IN: 3809 * spidx0: source, it is often in SPD. 3810 * spidx1: object, it is often from IP header. 3811 * OUT: 3812 * 1 : equal 3813 * 0 : not equal 3814 */ 3815 static int 3816 key_cmpspidx_withmask( 3817 struct secpolicyindex *spidx0, 3818 struct secpolicyindex *spidx1) 3819 { 3820 /* sanity */ 3821 if (spidx0 == NULL && spidx1 == NULL) 3822 return 1; 3823 3824 if (spidx0 == NULL || spidx1 == NULL) 3825 return 0; 3826 3827 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || 3828 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || 3829 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || 3830 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) 3831 return 0; 3832 3833 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ 3834 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY 3835 && spidx0->ul_proto != spidx1->ul_proto) 3836 return 0; 3837 3838 switch (spidx0->src.sa.sa_family) { 3839 case AF_INET: 3840 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY 3841 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) 3842 return 0; 3843 if (!key_bbcmp(&spidx0->src.sin.sin_addr, 3844 &spidx1->src.sin.sin_addr, spidx0->prefs)) 3845 return 0; 3846 break; 3847 case AF_INET6: 3848 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY 3849 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) 3850 return 0; 3851 /* 3852 * scope_id check. if sin6_scope_id is 0, we regard it 3853 * as a wildcard scope, which matches any scope zone ID. 3854 */ 3855 if (spidx0->src.sin6.sin6_scope_id && 3856 spidx1->src.sin6.sin6_scope_id && 3857 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) 3858 return 0; 3859 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr, 3860 &spidx1->src.sin6.sin6_addr, spidx0->prefs)) 3861 return 0; 3862 break; 3863 default: 3864 /* XXX */ 3865 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) 3866 return 0; 3867 break; 3868 } 3869 3870 switch (spidx0->dst.sa.sa_family) { 3871 case AF_INET: 3872 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY 3873 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) 3874 return 0; 3875 if (!key_bbcmp(&spidx0->dst.sin.sin_addr, 3876 &spidx1->dst.sin.sin_addr, spidx0->prefd)) 3877 return 0; 3878 break; 3879 case AF_INET6: 3880 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY 3881 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) 3882 return 0; 3883 /* 3884 * scope_id check. if sin6_scope_id is 0, we regard it 3885 * as a wildcard scope, which matches any scope zone ID. 3886 */ 3887 if (spidx0->dst.sin6.sin6_scope_id && 3888 spidx1->dst.sin6.sin6_scope_id && 3889 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) 3890 return 0; 3891 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr, 3892 &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) 3893 return 0; 3894 break; 3895 default: 3896 /* XXX */ 3897 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) 3898 return 0; 3899 break; 3900 } 3901 3902 /* XXX Do we check other field ? e.g. flowinfo */ 3903 3904 return 1; 3905 } 3906 3907 /* returns 0 on match */ 3908 static int 3909 key_sockaddrcmp( 3910 const struct sockaddr *sa1, 3911 const struct sockaddr *sa2, 3912 int port) 3913 { 3914 #ifdef satosin 3915 #undef satosin 3916 #endif 3917 #define satosin(s) ((const struct sockaddr_in *)s) 3918 #ifdef satosin6 3919 #undef satosin6 3920 #endif 3921 #define satosin6(s) ((const struct sockaddr_in6 *)s) 3922 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) 3923 return 1; 3924 3925 switch (sa1->sa_family) { 3926 case AF_INET: 3927 if (sa1->sa_len != sizeof(struct sockaddr_in)) 3928 return 1; 3929 if (satosin(sa1)->sin_addr.s_addr != 3930 satosin(sa2)->sin_addr.s_addr) { 3931 return 1; 3932 } 3933 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port) 3934 return 1; 3935 break; 3936 case AF_INET6: 3937 if (sa1->sa_len != sizeof(struct sockaddr_in6)) 3938 return 1; /*EINVAL*/ 3939 if (satosin6(sa1)->sin6_scope_id != 3940 satosin6(sa2)->sin6_scope_id) { 3941 return 1; 3942 } 3943 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr, 3944 &satosin6(sa2)->sin6_addr)) { 3945 return 1; 3946 } 3947 if (port && 3948 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) { 3949 return 1; 3950 } 3951 default: 3952 if (bcmp(sa1, sa2, sa1->sa_len) != 0) 3953 return 1; 3954 break; 3955 } 3956 3957 return 0; 3958 #undef satosin 3959 #undef satosin6 3960 } 3961 3962 /* 3963 * compare two buffers with mask. 3964 * IN: 3965 * addr1: source 3966 * addr2: object 3967 * bits: Number of bits to compare 3968 * OUT: 3969 * 1 : equal 3970 * 0 : not equal 3971 */ 3972 static int 3973 key_bbcmp(const void *a1, const void *a2, u_int bits) 3974 { 3975 const unsigned char *p1 = a1; 3976 const unsigned char *p2 = a2; 3977 3978 /* XXX: This could be considerably faster if we compare a word 3979 * at a time, but it is complicated on LSB Endian machines */ 3980 3981 /* Handle null pointers */ 3982 if (p1 == NULL || p2 == NULL) 3983 return (p1 == p2); 3984 3985 while (bits >= 8) { 3986 if (*p1++ != *p2++) 3987 return 0; 3988 bits -= 8; 3989 } 3990 3991 if (bits > 0) { 3992 u_int8_t mask = ~((1<<(8-bits))-1); 3993 if ((*p1 & mask) != (*p2 & mask)) 3994 return 0; 3995 } 3996 return 1; /* Match! */ 3997 } 3998 3999 static void 4000 key_flush_spd(time_t now) 4001 { 4002 static u_int16_t sptree_scangen = 0; 4003 u_int16_t gen = sptree_scangen++; 4004 struct secpolicy *sp; 4005 u_int dir; 4006 4007 /* SPD */ 4008 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 4009 restart: 4010 SPTREE_LOCK(); 4011 LIST_FOREACH(sp, &sptree[dir], chain) { 4012 if (sp->scangen == gen) /* previously handled */ 4013 continue; 4014 sp->scangen = gen; 4015 if (sp->state == IPSEC_SPSTATE_DEAD) { 4016 /* NB: clean entries created by key_spdflush */ 4017 SPTREE_UNLOCK(); 4018 KEY_FREESP(&sp); 4019 goto restart; 4020 } 4021 if (sp->lifetime == 0 && sp->validtime == 0) 4022 continue; 4023 if ((sp->lifetime && now - sp->created > sp->lifetime) 4024 || (sp->validtime && now - sp->lastused > sp->validtime)) { 4025 sp->state = IPSEC_SPSTATE_DEAD; 4026 SPTREE_UNLOCK(); 4027 key_spdexpire(sp); 4028 KEY_FREESP(&sp); 4029 goto restart; 4030 } 4031 } 4032 SPTREE_UNLOCK(); 4033 } 4034 } 4035 4036 static void 4037 key_flush_sad(time_t now) 4038 { 4039 struct secashead *sah, *nextsah; 4040 struct secasvar *sav, *nextsav; 4041 4042 /* SAD */ 4043 SAHTREE_LOCK(); 4044 LIST_FOREACH_SAFE(sah, &sahtree, chain, nextsah) { 4045 /* if sah has been dead, then delete it and process next sah. */ 4046 if (sah->state == SADB_SASTATE_DEAD) { 4047 key_delsah(sah); 4048 continue; 4049 } 4050 4051 /* if LARVAL entry doesn't become MATURE, delete it. */ 4052 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) { 4053 if (now - sav->created > key_larval_lifetime) 4054 KEY_FREESAV(&sav); 4055 } 4056 4057 /* 4058 * check MATURE entry to start to send expire message 4059 * whether or not. 4060 */ 4061 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) { 4062 /* we don't need to check. */ 4063 if (sav->lft_s == NULL) 4064 continue; 4065 4066 /* sanity check */ 4067 if (sav->lft_c == NULL) { 4068 ipseclog((LOG_DEBUG,"%s: there is no CURRENT " 4069 "time, why?\n", __func__)); 4070 continue; 4071 } 4072 4073 /* check SOFT lifetime */ 4074 if (sav->lft_s->sadb_lifetime_addtime != 0 && 4075 now - sav->created > sav->lft_s->sadb_lifetime_addtime) { 4076 /* 4077 * check SA to be used whether or not. 4078 * when SA hasn't been used, delete it. 4079 */ 4080 if (sav->lft_c->sadb_lifetime_usetime == 0) { 4081 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4082 KEY_FREESAV(&sav); 4083 } else { 4084 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4085 /* 4086 * XXX If we keep to send expire 4087 * message in the status of 4088 * DYING. Do remove below code. 4089 */ 4090 key_expire(sav); 4091 } 4092 } 4093 /* check SOFT lifetime by bytes */ 4094 /* 4095 * XXX I don't know the way to delete this SA 4096 * when new SA is installed. Caution when it's 4097 * installed too big lifetime by time. 4098 */ 4099 else if (sav->lft_s->sadb_lifetime_bytes != 0 && 4100 sav->lft_s->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) { 4101 4102 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4103 /* 4104 * XXX If we keep to send expire 4105 * message in the status of 4106 * DYING. Do remove below code. 4107 */ 4108 key_expire(sav); 4109 } 4110 } 4111 4112 /* check DYING entry to change status to DEAD. */ 4113 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) { 4114 /* we don't need to check. */ 4115 if (sav->lft_h == NULL) 4116 continue; 4117 4118 /* sanity check */ 4119 if (sav->lft_c == NULL) { 4120 ipseclog((LOG_DEBUG, "%s: there is no CURRENT " 4121 "time, why?\n", __func__)); 4122 continue; 4123 } 4124 4125 if (sav->lft_h->sadb_lifetime_addtime != 0 && 4126 now - sav->created > sav->lft_h->sadb_lifetime_addtime) { 4127 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4128 KEY_FREESAV(&sav); 4129 } 4130 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */ 4131 else if (sav->lft_s != NULL 4132 && sav->lft_s->sadb_lifetime_addtime != 0 4133 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) { 4134 /* 4135 * XXX: should be checked to be 4136 * installed the valid SA. 4137 */ 4138 4139 /* 4140 * If there is no SA then sending 4141 * expire message. 4142 */ 4143 key_expire(sav); 4144 } 4145 #endif 4146 /* check HARD lifetime by bytes */ 4147 else if (sav->lft_h->sadb_lifetime_bytes != 0 && 4148 sav->lft_h->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) { 4149 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4150 KEY_FREESAV(&sav); 4151 } 4152 } 4153 4154 /* delete entry in DEAD */ 4155 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) { 4156 /* sanity check */ 4157 if (sav->state != SADB_SASTATE_DEAD) { 4158 ipseclog((LOG_DEBUG, "%s: invalid sav->state " 4159 "(queue: %d SA: %d): kill it anyway\n", 4160 __func__, 4161 SADB_SASTATE_DEAD, sav->state)); 4162 } 4163 /* 4164 * do not call key_freesav() here. 4165 * sav should already be freed, and sav->refcnt 4166 * shows other references to sav 4167 * (such as from SPD). 4168 */ 4169 } 4170 } 4171 SAHTREE_UNLOCK(); 4172 } 4173 4174 static void 4175 key_flush_acq(time_t now) 4176 { 4177 struct secacq *acq, *nextacq; 4178 4179 /* ACQ tree */ 4180 ACQ_LOCK(); 4181 for (acq = LIST_FIRST(&acqtree); acq != NULL; acq = nextacq) { 4182 nextacq = LIST_NEXT(acq, chain); 4183 if (now - acq->created > key_blockacq_lifetime 4184 && __LIST_CHAINED(acq)) { 4185 LIST_REMOVE(acq, chain); 4186 free(acq, M_IPSEC_SAQ); 4187 } 4188 } 4189 ACQ_UNLOCK(); 4190 } 4191 4192 static void 4193 key_flush_spacq(time_t now) 4194 { 4195 struct secspacq *acq, *nextacq; 4196 4197 /* SP ACQ tree */ 4198 SPACQ_LOCK(); 4199 for (acq = LIST_FIRST(&spacqtree); acq != NULL; acq = nextacq) { 4200 nextacq = LIST_NEXT(acq, chain); 4201 if (now - acq->created > key_blockacq_lifetime 4202 && __LIST_CHAINED(acq)) { 4203 LIST_REMOVE(acq, chain); 4204 free(acq, M_IPSEC_SAQ); 4205 } 4206 } 4207 SPACQ_UNLOCK(); 4208 } 4209 4210 /* 4211 * time handler. 4212 * scanning SPD and SAD to check status for each entries, 4213 * and do to remove or to expire. 4214 * XXX: year 2038 problem may remain. 4215 */ 4216 void 4217 key_timehandler(void) 4218 { 4219 time_t now = time_second; 4220 4221 key_flush_spd(now); 4222 key_flush_sad(now); 4223 key_flush_acq(now); 4224 key_flush_spacq(now); 4225 4226 #ifndef IPSEC_DEBUG2 4227 /* do exchange to tick time !! */ 4228 (void)timeout((void *)key_timehandler, (void *)0, hz); 4229 #endif /* IPSEC_DEBUG2 */ 4230 } 4231 4232 u_long 4233 key_random() 4234 { 4235 u_long value; 4236 4237 key_randomfill(&value, sizeof(value)); 4238 return value; 4239 } 4240 4241 void 4242 key_randomfill(p, l) 4243 void *p; 4244 size_t l; 4245 { 4246 size_t n; 4247 u_long v; 4248 static int warn = 1; 4249 4250 n = 0; 4251 n = (size_t)read_random(p, (u_int)l); 4252 /* last resort */ 4253 while (n < l) { 4254 v = random(); 4255 bcopy(&v, (u_int8_t *)p + n, 4256 l - n < sizeof(v) ? l - n : sizeof(v)); 4257 n += sizeof(v); 4258 4259 if (warn) { 4260 printf("WARNING: pseudo-random number generator " 4261 "used for IPsec processing\n"); 4262 warn = 0; 4263 } 4264 } 4265 } 4266 4267 /* 4268 * map SADB_SATYPE_* to IPPROTO_*. 4269 * if satype == SADB_SATYPE then satype is mapped to ~0. 4270 * OUT: 4271 * 0: invalid satype. 4272 */ 4273 static u_int16_t 4274 key_satype2proto(satype) 4275 u_int8_t satype; 4276 { 4277 switch (satype) { 4278 case SADB_SATYPE_UNSPEC: 4279 return IPSEC_PROTO_ANY; 4280 case SADB_SATYPE_AH: 4281 return IPPROTO_AH; 4282 case SADB_SATYPE_ESP: 4283 return IPPROTO_ESP; 4284 case SADB_X_SATYPE_IPCOMP: 4285 return IPPROTO_IPCOMP; 4286 case SADB_X_SATYPE_TCPSIGNATURE: 4287 return IPPROTO_TCP; 4288 default: 4289 return 0; 4290 } 4291 /* NOTREACHED */ 4292 } 4293 4294 /* 4295 * map IPPROTO_* to SADB_SATYPE_* 4296 * OUT: 4297 * 0: invalid protocol type. 4298 */ 4299 static u_int8_t 4300 key_proto2satype(proto) 4301 u_int16_t proto; 4302 { 4303 switch (proto) { 4304 case IPPROTO_AH: 4305 return SADB_SATYPE_AH; 4306 case IPPROTO_ESP: 4307 return SADB_SATYPE_ESP; 4308 case IPPROTO_IPCOMP: 4309 return SADB_X_SATYPE_IPCOMP; 4310 case IPPROTO_TCP: 4311 return SADB_X_SATYPE_TCPSIGNATURE; 4312 default: 4313 return 0; 4314 } 4315 /* NOTREACHED */ 4316 } 4317 4318 /* %%% PF_KEY */ 4319 /* 4320 * SADB_GETSPI processing is to receive 4321 * <base, (SA2), src address, dst address, (SPI range)> 4322 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND 4323 * tree with the status of LARVAL, and send 4324 * <base, SA(*), address(SD)> 4325 * to the IKMPd. 4326 * 4327 * IN: mhp: pointer to the pointer to each header. 4328 * OUT: NULL if fail. 4329 * other if success, return pointer to the message to send. 4330 */ 4331 static int 4332 key_getspi(so, m, mhp) 4333 struct socket *so; 4334 struct mbuf *m; 4335 const struct sadb_msghdr *mhp; 4336 { 4337 struct sadb_address *src0, *dst0; 4338 struct secasindex saidx; 4339 struct secashead *newsah; 4340 struct secasvar *newsav; 4341 u_int8_t proto; 4342 u_int32_t spi; 4343 u_int8_t mode; 4344 u_int32_t reqid; 4345 int error; 4346 4347 IPSEC_ASSERT(so != NULL, ("null socket")); 4348 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4349 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4350 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4351 4352 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4353 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 4354 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4355 __func__)); 4356 return key_senderror(so, m, EINVAL); 4357 } 4358 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4359 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4360 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4361 __func__)); 4362 return key_senderror(so, m, EINVAL); 4363 } 4364 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4365 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4366 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4367 } else { 4368 mode = IPSEC_MODE_ANY; 4369 reqid = 0; 4370 } 4371 4372 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4373 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4374 4375 /* map satype to proto */ 4376 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4377 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4378 __func__)); 4379 return key_senderror(so, m, EINVAL); 4380 } 4381 4382 /* make sure if port number is zero. */ 4383 switch (((struct sockaddr *)(src0 + 1))->sa_family) { 4384 case AF_INET: 4385 if (((struct sockaddr *)(src0 + 1))->sa_len != 4386 sizeof(struct sockaddr_in)) 4387 return key_senderror(so, m, EINVAL); 4388 ((struct sockaddr_in *)(src0 + 1))->sin_port = 0; 4389 break; 4390 case AF_INET6: 4391 if (((struct sockaddr *)(src0 + 1))->sa_len != 4392 sizeof(struct sockaddr_in6)) 4393 return key_senderror(so, m, EINVAL); 4394 ((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0; 4395 break; 4396 default: 4397 ; /*???*/ 4398 } 4399 switch (((struct sockaddr *)(dst0 + 1))->sa_family) { 4400 case AF_INET: 4401 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4402 sizeof(struct sockaddr_in)) 4403 return key_senderror(so, m, EINVAL); 4404 ((struct sockaddr_in *)(dst0 + 1))->sin_port = 0; 4405 break; 4406 case AF_INET6: 4407 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4408 sizeof(struct sockaddr_in6)) 4409 return key_senderror(so, m, EINVAL); 4410 ((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0; 4411 break; 4412 default: 4413 ; /*???*/ 4414 } 4415 4416 /* XXX boundary check against sa_len */ 4417 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4418 4419 /* SPI allocation */ 4420 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE], 4421 &saidx); 4422 if (spi == 0) 4423 return key_senderror(so, m, EINVAL); 4424 4425 /* get a SA index */ 4426 if ((newsah = key_getsah(&saidx)) == NULL) { 4427 /* create a new SA index */ 4428 if ((newsah = key_newsah(&saidx)) == NULL) { 4429 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 4430 return key_senderror(so, m, ENOBUFS); 4431 } 4432 } 4433 4434 /* get a new SA */ 4435 /* XXX rewrite */ 4436 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 4437 if (newsav == NULL) { 4438 /* XXX don't free new SA index allocated in above. */ 4439 return key_senderror(so, m, error); 4440 } 4441 4442 /* set spi */ 4443 newsav->spi = htonl(spi); 4444 4445 /* delete the entry in acqtree */ 4446 if (mhp->msg->sadb_msg_seq != 0) { 4447 struct secacq *acq; 4448 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) { 4449 /* reset counter in order to deletion by timehandler. */ 4450 acq->created = time_second; 4451 acq->count = 0; 4452 } 4453 } 4454 4455 { 4456 struct mbuf *n, *nn; 4457 struct sadb_sa *m_sa; 4458 struct sadb_msg *newmsg; 4459 int off, len; 4460 4461 /* create new sadb_msg to reply. */ 4462 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 4463 PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4464 if (len > MCLBYTES) 4465 return key_senderror(so, m, ENOBUFS); 4466 4467 MGETHDR(n, M_DONTWAIT, MT_DATA); 4468 if (len > MHLEN) { 4469 MCLGET(n, M_DONTWAIT); 4470 if ((n->m_flags & M_EXT) == 0) { 4471 m_freem(n); 4472 n = NULL; 4473 } 4474 } 4475 if (!n) 4476 return key_senderror(so, m, ENOBUFS); 4477 4478 n->m_len = len; 4479 n->m_next = NULL; 4480 off = 0; 4481 4482 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 4483 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 4484 4485 m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off); 4486 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); 4487 m_sa->sadb_sa_exttype = SADB_EXT_SA; 4488 m_sa->sadb_sa_spi = htonl(spi); 4489 off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4490 4491 IPSEC_ASSERT(off == len, 4492 ("length inconsistency (off %u len %u)", off, len)); 4493 4494 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, 4495 SADB_EXT_ADDRESS_DST); 4496 if (!n->m_next) { 4497 m_freem(n); 4498 return key_senderror(so, m, ENOBUFS); 4499 } 4500 4501 if (n->m_len < sizeof(struct sadb_msg)) { 4502 n = m_pullup(n, sizeof(struct sadb_msg)); 4503 if (n == NULL) 4504 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 4505 } 4506 4507 n->m_pkthdr.len = 0; 4508 for (nn = n; nn; nn = nn->m_next) 4509 n->m_pkthdr.len += nn->m_len; 4510 4511 newmsg = mtod(n, struct sadb_msg *); 4512 newmsg->sadb_msg_seq = newsav->seq; 4513 newmsg->sadb_msg_errno = 0; 4514 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 4515 4516 m_freem(m); 4517 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 4518 } 4519 } 4520 4521 /* 4522 * allocating new SPI 4523 * called by key_getspi(). 4524 * OUT: 4525 * 0: failure. 4526 * others: success. 4527 */ 4528 static u_int32_t 4529 key_do_getnewspi(spirange, saidx) 4530 struct sadb_spirange *spirange; 4531 struct secasindex *saidx; 4532 { 4533 u_int32_t newspi; 4534 u_int32_t min, max; 4535 int count = key_spi_trycnt; 4536 4537 /* set spi range to allocate */ 4538 if (spirange != NULL) { 4539 min = spirange->sadb_spirange_min; 4540 max = spirange->sadb_spirange_max; 4541 } else { 4542 min = key_spi_minval; 4543 max = key_spi_maxval; 4544 } 4545 /* IPCOMP needs 2-byte SPI */ 4546 if (saidx->proto == IPPROTO_IPCOMP) { 4547 u_int32_t t; 4548 if (min >= 0x10000) 4549 min = 0xffff; 4550 if (max >= 0x10000) 4551 max = 0xffff; 4552 if (min > max) { 4553 t = min; min = max; max = t; 4554 } 4555 } 4556 4557 if (min == max) { 4558 if (key_checkspidup(saidx, min) != NULL) { 4559 ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n", 4560 __func__, min)); 4561 return 0; 4562 } 4563 4564 count--; /* taking one cost. */ 4565 newspi = min; 4566 4567 } else { 4568 4569 /* init SPI */ 4570 newspi = 0; 4571 4572 /* when requesting to allocate spi ranged */ 4573 while (count--) { 4574 /* generate pseudo-random SPI value ranged. */ 4575 newspi = min + (key_random() % (max - min + 1)); 4576 4577 if (key_checkspidup(saidx, newspi) == NULL) 4578 break; 4579 } 4580 4581 if (count == 0 || newspi == 0) { 4582 ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n", 4583 __func__)); 4584 return 0; 4585 } 4586 } 4587 4588 /* statistics */ 4589 keystat.getspi_count = 4590 (keystat.getspi_count + key_spi_trycnt - count) / 2; 4591 4592 return newspi; 4593 } 4594 4595 /* 4596 * SADB_UPDATE processing 4597 * receive 4598 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4599 * key(AE), (identity(SD),) (sensitivity)> 4600 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. 4601 * and send 4602 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4603 * (identity(SD),) (sensitivity)> 4604 * to the ikmpd. 4605 * 4606 * m will always be freed. 4607 */ 4608 static int 4609 key_update(so, m, mhp) 4610 struct socket *so; 4611 struct mbuf *m; 4612 const struct sadb_msghdr *mhp; 4613 { 4614 struct sadb_sa *sa0; 4615 struct sadb_address *src0, *dst0; 4616 struct secasindex saidx; 4617 struct secashead *sah; 4618 struct secasvar *sav; 4619 u_int16_t proto; 4620 u_int8_t mode; 4621 u_int32_t reqid; 4622 int error; 4623 4624 IPSEC_ASSERT(so != NULL, ("null socket")); 4625 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4626 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4627 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4628 4629 /* map satype to proto */ 4630 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4631 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4632 __func__)); 4633 return key_senderror(so, m, EINVAL); 4634 } 4635 4636 if (mhp->ext[SADB_EXT_SA] == NULL || 4637 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4638 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 4639 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 4640 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 4641 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 4642 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 4643 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 4644 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 4645 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 4646 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 4647 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4648 __func__)); 4649 return key_senderror(so, m, EINVAL); 4650 } 4651 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 4652 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4653 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4654 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4655 __func__)); 4656 return key_senderror(so, m, EINVAL); 4657 } 4658 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4659 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4660 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4661 } else { 4662 mode = IPSEC_MODE_ANY; 4663 reqid = 0; 4664 } 4665 /* XXX boundary checking for other extensions */ 4666 4667 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 4668 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4669 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4670 4671 /* XXX boundary check against sa_len */ 4672 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4673 4674 /* get a SA header */ 4675 if ((sah = key_getsah(&saidx)) == NULL) { 4676 ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__)); 4677 return key_senderror(so, m, ENOENT); 4678 } 4679 4680 /* set spidx if there */ 4681 /* XXX rewrite */ 4682 error = key_setident(sah, m, mhp); 4683 if (error) 4684 return key_senderror(so, m, error); 4685 4686 /* find a SA with sequence number. */ 4687 #ifdef IPSEC_DOSEQCHECK 4688 if (mhp->msg->sadb_msg_seq != 0 4689 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) { 4690 ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u " 4691 "exists.\n", __func__, mhp->msg->sadb_msg_seq)); 4692 return key_senderror(so, m, ENOENT); 4693 } 4694 #else 4695 SAHTREE_LOCK(); 4696 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 4697 SAHTREE_UNLOCK(); 4698 if (sav == NULL) { 4699 ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n", 4700 __func__, (u_int32_t)ntohl(sa0->sadb_sa_spi))); 4701 return key_senderror(so, m, EINVAL); 4702 } 4703 #endif 4704 4705 /* validity check */ 4706 if (sav->sah->saidx.proto != proto) { 4707 ipseclog((LOG_DEBUG, "%s: protocol mismatched " 4708 "(DB=%u param=%u)\n", __func__, 4709 sav->sah->saidx.proto, proto)); 4710 return key_senderror(so, m, EINVAL); 4711 } 4712 #ifdef IPSEC_DOSEQCHECK 4713 if (sav->spi != sa0->sadb_sa_spi) { 4714 ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n", 4715 __func__, 4716 (u_int32_t)ntohl(sav->spi), 4717 (u_int32_t)ntohl(sa0->sadb_sa_spi))); 4718 return key_senderror(so, m, EINVAL); 4719 } 4720 #endif 4721 if (sav->pid != mhp->msg->sadb_msg_pid) { 4722 ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n", 4723 __func__, sav->pid, mhp->msg->sadb_msg_pid)); 4724 return key_senderror(so, m, EINVAL); 4725 } 4726 4727 /* copy sav values */ 4728 error = key_setsaval(sav, m, mhp); 4729 if (error) { 4730 KEY_FREESAV(&sav); 4731 return key_senderror(so, m, error); 4732 } 4733 4734 /* check SA values to be mature. */ 4735 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) { 4736 KEY_FREESAV(&sav); 4737 return key_senderror(so, m, 0); 4738 } 4739 4740 { 4741 struct mbuf *n; 4742 4743 /* set msg buf from mhp */ 4744 n = key_getmsgbuf_x1(m, mhp); 4745 if (n == NULL) { 4746 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 4747 return key_senderror(so, m, ENOBUFS); 4748 } 4749 4750 m_freem(m); 4751 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 4752 } 4753 } 4754 4755 /* 4756 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL. 4757 * only called by key_update(). 4758 * OUT: 4759 * NULL : not found 4760 * others : found, pointer to a SA. 4761 */ 4762 #ifdef IPSEC_DOSEQCHECK 4763 static struct secasvar * 4764 key_getsavbyseq(sah, seq) 4765 struct secashead *sah; 4766 u_int32_t seq; 4767 { 4768 struct secasvar *sav; 4769 u_int state; 4770 4771 state = SADB_SASTATE_LARVAL; 4772 4773 /* search SAD with sequence number ? */ 4774 LIST_FOREACH(sav, &sah->savtree[state], chain) { 4775 4776 KEY_CHKSASTATE(state, sav->state, __func__); 4777 4778 if (sav->seq == seq) { 4779 SA_ADDREF(sav); 4780 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 4781 printf("DP %s cause refcnt++:%d SA:%p\n", 4782 __func__, sav->refcnt, sav)); 4783 return sav; 4784 } 4785 } 4786 4787 return NULL; 4788 } 4789 #endif 4790 4791 /* 4792 * SADB_ADD processing 4793 * add an entry to SA database, when received 4794 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4795 * key(AE), (identity(SD),) (sensitivity)> 4796 * from the ikmpd, 4797 * and send 4798 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4799 * (identity(SD),) (sensitivity)> 4800 * to the ikmpd. 4801 * 4802 * IGNORE identity and sensitivity messages. 4803 * 4804 * m will always be freed. 4805 */ 4806 static int 4807 key_add(so, m, mhp) 4808 struct socket *so; 4809 struct mbuf *m; 4810 const struct sadb_msghdr *mhp; 4811 { 4812 struct sadb_sa *sa0; 4813 struct sadb_address *src0, *dst0; 4814 struct secasindex saidx; 4815 struct secashead *newsah; 4816 struct secasvar *newsav; 4817 u_int16_t proto; 4818 u_int8_t mode; 4819 u_int32_t reqid; 4820 int error; 4821 4822 IPSEC_ASSERT(so != NULL, ("null socket")); 4823 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4824 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4825 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4826 4827 /* map satype to proto */ 4828 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4829 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4830 __func__)); 4831 return key_senderror(so, m, EINVAL); 4832 } 4833 4834 if (mhp->ext[SADB_EXT_SA] == NULL || 4835 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4836 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 4837 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 4838 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 4839 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 4840 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 4841 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 4842 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 4843 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 4844 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 4845 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4846 __func__)); 4847 return key_senderror(so, m, EINVAL); 4848 } 4849 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 4850 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4851 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4852 /* XXX need more */ 4853 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4854 __func__)); 4855 return key_senderror(so, m, EINVAL); 4856 } 4857 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4858 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4859 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4860 } else { 4861 mode = IPSEC_MODE_ANY; 4862 reqid = 0; 4863 } 4864 4865 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 4866 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 4867 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 4868 4869 /* XXX boundary check against sa_len */ 4870 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4871 4872 /* get a SA header */ 4873 if ((newsah = key_getsah(&saidx)) == NULL) { 4874 /* create a new SA header */ 4875 if ((newsah = key_newsah(&saidx)) == NULL) { 4876 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 4877 return key_senderror(so, m, ENOBUFS); 4878 } 4879 } 4880 4881 /* set spidx if there */ 4882 /* XXX rewrite */ 4883 error = key_setident(newsah, m, mhp); 4884 if (error) { 4885 return key_senderror(so, m, error); 4886 } 4887 4888 /* create new SA entry. */ 4889 /* We can create new SA only if SPI is differenct. */ 4890 SAHTREE_LOCK(); 4891 newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi); 4892 SAHTREE_UNLOCK(); 4893 if (newsav != NULL) { 4894 ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__)); 4895 return key_senderror(so, m, EEXIST); 4896 } 4897 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 4898 if (newsav == NULL) { 4899 return key_senderror(so, m, error); 4900 } 4901 4902 /* check SA values to be mature. */ 4903 if ((error = key_mature(newsav)) != 0) { 4904 KEY_FREESAV(&newsav); 4905 return key_senderror(so, m, error); 4906 } 4907 4908 /* 4909 * don't call key_freesav() here, as we would like to keep the SA 4910 * in the database on success. 4911 */ 4912 4913 { 4914 struct mbuf *n; 4915 4916 /* set msg buf from mhp */ 4917 n = key_getmsgbuf_x1(m, mhp); 4918 if (n == NULL) { 4919 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 4920 return key_senderror(so, m, ENOBUFS); 4921 } 4922 4923 m_freem(m); 4924 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 4925 } 4926 } 4927 4928 /* m is retained */ 4929 static int 4930 key_setident(sah, m, mhp) 4931 struct secashead *sah; 4932 struct mbuf *m; 4933 const struct sadb_msghdr *mhp; 4934 { 4935 const struct sadb_ident *idsrc, *iddst; 4936 int idsrclen, iddstlen; 4937 4938 IPSEC_ASSERT(sah != NULL, ("null secashead")); 4939 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4940 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4941 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4942 4943 /* don't make buffer if not there */ 4944 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL && 4945 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 4946 sah->idents = NULL; 4947 sah->identd = NULL; 4948 return 0; 4949 } 4950 4951 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL || 4952 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 4953 ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__)); 4954 return EINVAL; 4955 } 4956 4957 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC]; 4958 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST]; 4959 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC]; 4960 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST]; 4961 4962 /* validity check */ 4963 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { 4964 ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__)); 4965 return EINVAL; 4966 } 4967 4968 switch (idsrc->sadb_ident_type) { 4969 case SADB_IDENTTYPE_PREFIX: 4970 case SADB_IDENTTYPE_FQDN: 4971 case SADB_IDENTTYPE_USERFQDN: 4972 default: 4973 /* XXX do nothing */ 4974 sah->idents = NULL; 4975 sah->identd = NULL; 4976 return 0; 4977 } 4978 4979 /* make structure */ 4980 sah->idents = malloc(idsrclen, M_IPSEC_MISC, M_NOWAIT); 4981 if (sah->idents == NULL) { 4982 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 4983 return ENOBUFS; 4984 } 4985 sah->identd = malloc(iddstlen, M_IPSEC_MISC, M_NOWAIT); 4986 if (sah->identd == NULL) { 4987 free(sah->idents, M_IPSEC_MISC); 4988 sah->idents = NULL; 4989 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 4990 return ENOBUFS; 4991 } 4992 bcopy(idsrc, sah->idents, idsrclen); 4993 bcopy(iddst, sah->identd, iddstlen); 4994 4995 return 0; 4996 } 4997 4998 /* 4999 * m will not be freed on return. 5000 * it is caller's responsibility to free the result. 5001 */ 5002 static struct mbuf * 5003 key_getmsgbuf_x1(m, mhp) 5004 struct mbuf *m; 5005 const struct sadb_msghdr *mhp; 5006 { 5007 struct mbuf *n; 5008 5009 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5010 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5011 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5012 5013 /* create new sadb_msg to reply. */ 5014 n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED, 5015 SADB_EXT_SA, SADB_X_EXT_SA2, 5016 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, 5017 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 5018 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST); 5019 if (!n) 5020 return NULL; 5021 5022 if (n->m_len < sizeof(struct sadb_msg)) { 5023 n = m_pullup(n, sizeof(struct sadb_msg)); 5024 if (n == NULL) 5025 return NULL; 5026 } 5027 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; 5028 mtod(n, struct sadb_msg *)->sadb_msg_len = 5029 PFKEY_UNIT64(n->m_pkthdr.len); 5030 5031 return n; 5032 } 5033 5034 static int key_delete_all __P((struct socket *, struct mbuf *, 5035 const struct sadb_msghdr *, u_int16_t)); 5036 5037 /* 5038 * SADB_DELETE processing 5039 * receive 5040 * <base, SA(*), address(SD)> 5041 * from the ikmpd, and set SADB_SASTATE_DEAD, 5042 * and send, 5043 * <base, SA(*), address(SD)> 5044 * to the ikmpd. 5045 * 5046 * m will always be freed. 5047 */ 5048 static int 5049 key_delete(so, m, mhp) 5050 struct socket *so; 5051 struct mbuf *m; 5052 const struct sadb_msghdr *mhp; 5053 { 5054 struct sadb_sa *sa0; 5055 struct sadb_address *src0, *dst0; 5056 struct secasindex saidx; 5057 struct secashead *sah; 5058 struct secasvar *sav = NULL; 5059 u_int16_t proto; 5060 5061 IPSEC_ASSERT(so != NULL, ("null socket")); 5062 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5063 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5064 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5065 5066 /* map satype to proto */ 5067 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5068 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5069 __func__)); 5070 return key_senderror(so, m, EINVAL); 5071 } 5072 5073 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5074 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5075 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5076 __func__)); 5077 return key_senderror(so, m, EINVAL); 5078 } 5079 5080 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5081 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5082 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5083 __func__)); 5084 return key_senderror(so, m, EINVAL); 5085 } 5086 5087 if (mhp->ext[SADB_EXT_SA] == NULL) { 5088 /* 5089 * Caller wants us to delete all non-LARVAL SAs 5090 * that match the src/dst. This is used during 5091 * IKE INITIAL-CONTACT. 5092 */ 5093 ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__)); 5094 return key_delete_all(so, m, mhp, proto); 5095 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { 5096 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5097 __func__)); 5098 return key_senderror(so, m, EINVAL); 5099 } 5100 5101 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5102 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5103 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5104 5105 /* XXX boundary check against sa_len */ 5106 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5107 5108 /* get a SA header */ 5109 SAHTREE_LOCK(); 5110 LIST_FOREACH(sah, &sahtree, chain) { 5111 if (sah->state == SADB_SASTATE_DEAD) 5112 continue; 5113 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5114 continue; 5115 5116 /* get a SA with SPI. */ 5117 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5118 if (sav) 5119 break; 5120 } 5121 if (sah == NULL) { 5122 SAHTREE_UNLOCK(); 5123 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5124 return key_senderror(so, m, ENOENT); 5125 } 5126 5127 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5128 SAHTREE_UNLOCK(); 5129 KEY_FREESAV(&sav); 5130 5131 { 5132 struct mbuf *n; 5133 struct sadb_msg *newmsg; 5134 5135 /* create new sadb_msg to reply. */ 5136 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 5137 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5138 if (!n) 5139 return key_senderror(so, m, ENOBUFS); 5140 5141 if (n->m_len < sizeof(struct sadb_msg)) { 5142 n = m_pullup(n, sizeof(struct sadb_msg)); 5143 if (n == NULL) 5144 return key_senderror(so, m, ENOBUFS); 5145 } 5146 newmsg = mtod(n, struct sadb_msg *); 5147 newmsg->sadb_msg_errno = 0; 5148 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5149 5150 m_freem(m); 5151 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5152 } 5153 } 5154 5155 /* 5156 * delete all SAs for src/dst. Called from key_delete(). 5157 */ 5158 static int 5159 key_delete_all(so, m, mhp, proto) 5160 struct socket *so; 5161 struct mbuf *m; 5162 const struct sadb_msghdr *mhp; 5163 u_int16_t proto; 5164 { 5165 struct sadb_address *src0, *dst0; 5166 struct secasindex saidx; 5167 struct secashead *sah; 5168 struct secasvar *sav, *nextsav; 5169 u_int stateidx, state; 5170 5171 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5172 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5173 5174 /* XXX boundary check against sa_len */ 5175 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5176 5177 SAHTREE_LOCK(); 5178 LIST_FOREACH(sah, &sahtree, chain) { 5179 if (sah->state == SADB_SASTATE_DEAD) 5180 continue; 5181 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5182 continue; 5183 5184 /* Delete all non-LARVAL SAs. */ 5185 for (stateidx = 0; 5186 stateidx < _ARRAYLEN(saorder_state_alive); 5187 stateidx++) { 5188 state = saorder_state_alive[stateidx]; 5189 if (state == SADB_SASTATE_LARVAL) 5190 continue; 5191 for (sav = LIST_FIRST(&sah->savtree[state]); 5192 sav != NULL; sav = nextsav) { 5193 nextsav = LIST_NEXT(sav, chain); 5194 /* sanity check */ 5195 if (sav->state != state) { 5196 ipseclog((LOG_DEBUG, "%s: invalid " 5197 "sav->state (queue %d SA %d)\n", 5198 __func__, state, sav->state)); 5199 continue; 5200 } 5201 5202 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5203 KEY_FREESAV(&sav); 5204 } 5205 } 5206 } 5207 SAHTREE_UNLOCK(); 5208 { 5209 struct mbuf *n; 5210 struct sadb_msg *newmsg; 5211 5212 /* create new sadb_msg to reply. */ 5213 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, 5214 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5215 if (!n) 5216 return key_senderror(so, m, ENOBUFS); 5217 5218 if (n->m_len < sizeof(struct sadb_msg)) { 5219 n = m_pullup(n, sizeof(struct sadb_msg)); 5220 if (n == NULL) 5221 return key_senderror(so, m, ENOBUFS); 5222 } 5223 newmsg = mtod(n, struct sadb_msg *); 5224 newmsg->sadb_msg_errno = 0; 5225 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5226 5227 m_freem(m); 5228 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5229 } 5230 } 5231 5232 /* 5233 * SADB_GET processing 5234 * receive 5235 * <base, SA(*), address(SD)> 5236 * from the ikmpd, and get a SP and a SA to respond, 5237 * and send, 5238 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), 5239 * (identity(SD),) (sensitivity)> 5240 * to the ikmpd. 5241 * 5242 * m will always be freed. 5243 */ 5244 static int 5245 key_get(so, m, mhp) 5246 struct socket *so; 5247 struct mbuf *m; 5248 const struct sadb_msghdr *mhp; 5249 { 5250 struct sadb_sa *sa0; 5251 struct sadb_address *src0, *dst0; 5252 struct secasindex saidx; 5253 struct secashead *sah; 5254 struct secasvar *sav = NULL; 5255 u_int16_t proto; 5256 5257 IPSEC_ASSERT(so != NULL, ("null socket")); 5258 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5259 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5260 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5261 5262 /* map satype to proto */ 5263 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5264 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5265 __func__)); 5266 return key_senderror(so, m, EINVAL); 5267 } 5268 5269 if (mhp->ext[SADB_EXT_SA] == NULL || 5270 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5271 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5272 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5273 __func__)); 5274 return key_senderror(so, m, EINVAL); 5275 } 5276 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5277 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5278 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5279 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5280 __func__)); 5281 return key_senderror(so, m, EINVAL); 5282 } 5283 5284 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5285 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5286 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5287 5288 /* XXX boundary check against sa_len */ 5289 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5290 5291 /* get a SA header */ 5292 SAHTREE_LOCK(); 5293 LIST_FOREACH(sah, &sahtree, chain) { 5294 if (sah->state == SADB_SASTATE_DEAD) 5295 continue; 5296 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5297 continue; 5298 5299 /* get a SA with SPI. */ 5300 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5301 if (sav) 5302 break; 5303 } 5304 SAHTREE_UNLOCK(); 5305 if (sah == NULL) { 5306 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5307 return key_senderror(so, m, ENOENT); 5308 } 5309 5310 { 5311 struct mbuf *n; 5312 u_int8_t satype; 5313 5314 /* map proto to satype */ 5315 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 5316 ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n", 5317 __func__)); 5318 return key_senderror(so, m, EINVAL); 5319 } 5320 5321 /* create new sadb_msg to reply. */ 5322 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, 5323 mhp->msg->sadb_msg_pid); 5324 if (!n) 5325 return key_senderror(so, m, ENOBUFS); 5326 5327 m_freem(m); 5328 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5329 } 5330 } 5331 5332 /* XXX make it sysctl-configurable? */ 5333 static void 5334 key_getcomb_setlifetime(comb) 5335 struct sadb_comb *comb; 5336 { 5337 5338 comb->sadb_comb_soft_allocations = 1; 5339 comb->sadb_comb_hard_allocations = 1; 5340 comb->sadb_comb_soft_bytes = 0; 5341 comb->sadb_comb_hard_bytes = 0; 5342 comb->sadb_comb_hard_addtime = 86400; /* 1 day */ 5343 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100; 5344 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */ 5345 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100; 5346 } 5347 5348 /* 5349 * XXX reorder combinations by preference 5350 * XXX no idea if the user wants ESP authentication or not 5351 */ 5352 static struct mbuf * 5353 key_getcomb_esp() 5354 { 5355 struct sadb_comb *comb; 5356 struct enc_xform *algo; 5357 struct mbuf *result = NULL, *m, *n; 5358 int encmin; 5359 int i, off, o; 5360 int totlen; 5361 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5362 5363 m = NULL; 5364 for (i = 1; i <= SADB_EALG_MAX; i++) { 5365 algo = esp_algorithm_lookup(i); 5366 if (algo == NULL) 5367 continue; 5368 5369 /* discard algorithms with key size smaller than system min */ 5370 if (_BITS(algo->maxkey) < ipsec_esp_keymin) 5371 continue; 5372 if (_BITS(algo->minkey) < ipsec_esp_keymin) 5373 encmin = ipsec_esp_keymin; 5374 else 5375 encmin = _BITS(algo->minkey); 5376 5377 if (ipsec_esp_auth) 5378 m = key_getcomb_ah(); 5379 else { 5380 IPSEC_ASSERT(l <= MLEN, 5381 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 5382 MGET(m, M_DONTWAIT, MT_DATA); 5383 if (m) { 5384 M_ALIGN(m, l); 5385 m->m_len = l; 5386 m->m_next = NULL; 5387 bzero(mtod(m, caddr_t), m->m_len); 5388 } 5389 } 5390 if (!m) 5391 goto fail; 5392 5393 totlen = 0; 5394 for (n = m; n; n = n->m_next) 5395 totlen += n->m_len; 5396 IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l)); 5397 5398 for (off = 0; off < totlen; off += l) { 5399 n = m_pulldown(m, off, l, &o); 5400 if (!n) { 5401 /* m is already freed */ 5402 goto fail; 5403 } 5404 comb = (struct sadb_comb *)(mtod(n, caddr_t) + o); 5405 bzero(comb, sizeof(*comb)); 5406 key_getcomb_setlifetime(comb); 5407 comb->sadb_comb_encrypt = i; 5408 comb->sadb_comb_encrypt_minbits = encmin; 5409 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); 5410 } 5411 5412 if (!result) 5413 result = m; 5414 else 5415 m_cat(result, m); 5416 } 5417 5418 return result; 5419 5420 fail: 5421 if (result) 5422 m_freem(result); 5423 return NULL; 5424 } 5425 5426 static void 5427 key_getsizes_ah( 5428 const struct auth_hash *ah, 5429 int alg, 5430 u_int16_t* min, 5431 u_int16_t* max) 5432 { 5433 *min = *max = ah->keysize; 5434 if (ah->keysize == 0) { 5435 /* 5436 * Transform takes arbitrary key size but algorithm 5437 * key size is restricted. Enforce this here. 5438 */ 5439 switch (alg) { 5440 case SADB_X_AALG_MD5: *min = *max = 16; break; 5441 case SADB_X_AALG_SHA: *min = *max = 20; break; 5442 case SADB_X_AALG_NULL: *min = 1; *max = 256; break; 5443 default: 5444 DPRINTF(("%s: unknown AH algorithm %u\n", 5445 __func__, alg)); 5446 break; 5447 } 5448 } 5449 } 5450 5451 /* 5452 * XXX reorder combinations by preference 5453 */ 5454 static struct mbuf * 5455 key_getcomb_ah() 5456 { 5457 struct sadb_comb *comb; 5458 struct auth_hash *algo; 5459 struct mbuf *m; 5460 u_int16_t minkeysize, maxkeysize; 5461 int i; 5462 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5463 5464 m = NULL; 5465 for (i = 1; i <= SADB_AALG_MAX; i++) { 5466 #if 1 5467 /* we prefer HMAC algorithms, not old algorithms */ 5468 if (i != SADB_AALG_SHA1HMAC && i != SADB_AALG_MD5HMAC) 5469 continue; 5470 #endif 5471 algo = ah_algorithm_lookup(i); 5472 if (!algo) 5473 continue; 5474 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); 5475 /* discard algorithms with key size smaller than system min */ 5476 if (_BITS(minkeysize) < ipsec_ah_keymin) 5477 continue; 5478 5479 if (!m) { 5480 IPSEC_ASSERT(l <= MLEN, 5481 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 5482 MGET(m, M_DONTWAIT, MT_DATA); 5483 if (m) { 5484 M_ALIGN(m, l); 5485 m->m_len = l; 5486 m->m_next = NULL; 5487 } 5488 } else 5489 M_PREPEND(m, l, M_DONTWAIT); 5490 if (!m) 5491 return NULL; 5492 5493 comb = mtod(m, struct sadb_comb *); 5494 bzero(comb, sizeof(*comb)); 5495 key_getcomb_setlifetime(comb); 5496 comb->sadb_comb_auth = i; 5497 comb->sadb_comb_auth_minbits = _BITS(minkeysize); 5498 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); 5499 } 5500 5501 return m; 5502 } 5503 5504 /* 5505 * not really an official behavior. discussed in pf_key@inner.net in Sep2000. 5506 * XXX reorder combinations by preference 5507 */ 5508 static struct mbuf * 5509 key_getcomb_ipcomp() 5510 { 5511 struct sadb_comb *comb; 5512 struct comp_algo *algo; 5513 struct mbuf *m; 5514 int i; 5515 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5516 5517 m = NULL; 5518 for (i = 1; i <= SADB_X_CALG_MAX; i++) { 5519 algo = ipcomp_algorithm_lookup(i); 5520 if (!algo) 5521 continue; 5522 5523 if (!m) { 5524 IPSEC_ASSERT(l <= MLEN, 5525 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 5526 MGET(m, M_DONTWAIT, MT_DATA); 5527 if (m) { 5528 M_ALIGN(m, l); 5529 m->m_len = l; 5530 m->m_next = NULL; 5531 } 5532 } else 5533 M_PREPEND(m, l, M_DONTWAIT); 5534 if (!m) 5535 return NULL; 5536 5537 comb = mtod(m, struct sadb_comb *); 5538 bzero(comb, sizeof(*comb)); 5539 key_getcomb_setlifetime(comb); 5540 comb->sadb_comb_encrypt = i; 5541 /* what should we set into sadb_comb_*_{min,max}bits? */ 5542 } 5543 5544 return m; 5545 } 5546 5547 /* 5548 * XXX no way to pass mode (transport/tunnel) to userland 5549 * XXX replay checking? 5550 * XXX sysctl interface to ipsec_{ah,esp}_keymin 5551 */ 5552 static struct mbuf * 5553 key_getprop(saidx) 5554 const struct secasindex *saidx; 5555 { 5556 struct sadb_prop *prop; 5557 struct mbuf *m, *n; 5558 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); 5559 int totlen; 5560 5561 switch (saidx->proto) { 5562 case IPPROTO_ESP: 5563 m = key_getcomb_esp(); 5564 break; 5565 case IPPROTO_AH: 5566 m = key_getcomb_ah(); 5567 break; 5568 case IPPROTO_IPCOMP: 5569 m = key_getcomb_ipcomp(); 5570 break; 5571 default: 5572 return NULL; 5573 } 5574 5575 if (!m) 5576 return NULL; 5577 M_PREPEND(m, l, M_DONTWAIT); 5578 if (!m) 5579 return NULL; 5580 5581 totlen = 0; 5582 for (n = m; n; n = n->m_next) 5583 totlen += n->m_len; 5584 5585 prop = mtod(m, struct sadb_prop *); 5586 bzero(prop, sizeof(*prop)); 5587 prop->sadb_prop_len = PFKEY_UNIT64(totlen); 5588 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 5589 prop->sadb_prop_replay = 32; /* XXX */ 5590 5591 return m; 5592 } 5593 5594 /* 5595 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2(). 5596 * send 5597 * <base, SA, address(SD), (address(P)), x_policy, 5598 * (identity(SD),) (sensitivity,) proposal> 5599 * to KMD, and expect to receive 5600 * <base> with SADB_ACQUIRE if error occured, 5601 * or 5602 * <base, src address, dst address, (SPI range)> with SADB_GETSPI 5603 * from KMD by PF_KEY. 5604 * 5605 * XXX x_policy is outside of RFC2367 (KAME extension). 5606 * XXX sensitivity is not supported. 5607 * XXX for ipcomp, RFC2367 does not define how to fill in proposal. 5608 * see comment for key_getcomb_ipcomp(). 5609 * 5610 * OUT: 5611 * 0 : succeed 5612 * others: error number 5613 */ 5614 static int 5615 key_acquire(const struct secasindex *saidx, struct secpolicy *sp) 5616 { 5617 struct mbuf *result = NULL, *m; 5618 struct secacq *newacq; 5619 u_int8_t satype; 5620 int error = -1; 5621 u_int32_t seq; 5622 5623 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 5624 satype = key_proto2satype(saidx->proto); 5625 IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto)); 5626 5627 /* 5628 * We never do anything about acquirng SA. There is anather 5629 * solution that kernel blocks to send SADB_ACQUIRE message until 5630 * getting something message from IKEd. In later case, to be 5631 * managed with ACQUIRING list. 5632 */ 5633 /* Get an entry to check whether sending message or not. */ 5634 if ((newacq = key_getacq(saidx)) != NULL) { 5635 if (key_blockacq_count < newacq->count) { 5636 /* reset counter and do send message. */ 5637 newacq->count = 0; 5638 } else { 5639 /* increment counter and do nothing. */ 5640 newacq->count++; 5641 return 0; 5642 } 5643 } else { 5644 /* make new entry for blocking to send SADB_ACQUIRE. */ 5645 if ((newacq = key_newacq(saidx)) == NULL) 5646 return ENOBUFS; 5647 } 5648 5649 5650 seq = newacq->seq; 5651 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0); 5652 if (!m) { 5653 error = ENOBUFS; 5654 goto fail; 5655 } 5656 result = m; 5657 5658 /* set sadb_address for saidx's. */ 5659 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 5660 &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY); 5661 if (!m) { 5662 error = ENOBUFS; 5663 goto fail; 5664 } 5665 m_cat(result, m); 5666 5667 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 5668 &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY); 5669 if (!m) { 5670 error = ENOBUFS; 5671 goto fail; 5672 } 5673 m_cat(result, m); 5674 5675 /* XXX proxy address (optional) */ 5676 5677 /* set sadb_x_policy */ 5678 if (sp) { 5679 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id); 5680 if (!m) { 5681 error = ENOBUFS; 5682 goto fail; 5683 } 5684 m_cat(result, m); 5685 } 5686 5687 /* XXX identity (optional) */ 5688 #if 0 5689 if (idexttype && fqdn) { 5690 /* create identity extension (FQDN) */ 5691 struct sadb_ident *id; 5692 int fqdnlen; 5693 5694 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ 5695 id = (struct sadb_ident *)p; 5696 bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 5697 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 5698 id->sadb_ident_exttype = idexttype; 5699 id->sadb_ident_type = SADB_IDENTTYPE_FQDN; 5700 bcopy(fqdn, id + 1, fqdnlen); 5701 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); 5702 } 5703 5704 if (idexttype) { 5705 /* create identity extension (USERFQDN) */ 5706 struct sadb_ident *id; 5707 int userfqdnlen; 5708 5709 if (userfqdn) { 5710 /* +1 for terminating-NUL */ 5711 userfqdnlen = strlen(userfqdn) + 1; 5712 } else 5713 userfqdnlen = 0; 5714 id = (struct sadb_ident *)p; 5715 bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 5716 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 5717 id->sadb_ident_exttype = idexttype; 5718 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; 5719 /* XXX is it correct? */ 5720 if (curproc && curproc->p_cred) 5721 id->sadb_ident_id = curproc->p_cred->p_ruid; 5722 if (userfqdn && userfqdnlen) 5723 bcopy(userfqdn, id + 1, userfqdnlen); 5724 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); 5725 } 5726 #endif 5727 5728 /* XXX sensitivity (optional) */ 5729 5730 /* create proposal/combination extension */ 5731 m = key_getprop(saidx); 5732 #if 0 5733 /* 5734 * spec conformant: always attach proposal/combination extension, 5735 * the problem is that we have no way to attach it for ipcomp, 5736 * due to the way sadb_comb is declared in RFC2367. 5737 */ 5738 if (!m) { 5739 error = ENOBUFS; 5740 goto fail; 5741 } 5742 m_cat(result, m); 5743 #else 5744 /* 5745 * outside of spec; make proposal/combination extension optional. 5746 */ 5747 if (m) 5748 m_cat(result, m); 5749 #endif 5750 5751 if ((result->m_flags & M_PKTHDR) == 0) { 5752 error = EINVAL; 5753 goto fail; 5754 } 5755 5756 if (result->m_len < sizeof(struct sadb_msg)) { 5757 result = m_pullup(result, sizeof(struct sadb_msg)); 5758 if (result == NULL) { 5759 error = ENOBUFS; 5760 goto fail; 5761 } 5762 } 5763 5764 result->m_pkthdr.len = 0; 5765 for (m = result; m; m = m->m_next) 5766 result->m_pkthdr.len += m->m_len; 5767 5768 mtod(result, struct sadb_msg *)->sadb_msg_len = 5769 PFKEY_UNIT64(result->m_pkthdr.len); 5770 5771 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 5772 5773 fail: 5774 if (result) 5775 m_freem(result); 5776 return error; 5777 } 5778 5779 static struct secacq * 5780 key_newacq(const struct secasindex *saidx) 5781 { 5782 struct secacq *newacq; 5783 5784 /* get new entry */ 5785 newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 5786 if (newacq == NULL) { 5787 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5788 return NULL; 5789 } 5790 5791 /* copy secindex */ 5792 bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx)); 5793 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq); 5794 newacq->created = time_second; 5795 newacq->count = 0; 5796 5797 /* add to acqtree */ 5798 ACQ_LOCK(); 5799 LIST_INSERT_HEAD(&acqtree, newacq, chain); 5800 ACQ_UNLOCK(); 5801 5802 return newacq; 5803 } 5804 5805 static struct secacq * 5806 key_getacq(const struct secasindex *saidx) 5807 { 5808 struct secacq *acq; 5809 5810 ACQ_LOCK(); 5811 LIST_FOREACH(acq, &acqtree, chain) { 5812 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY)) 5813 break; 5814 } 5815 ACQ_UNLOCK(); 5816 5817 return acq; 5818 } 5819 5820 static struct secacq * 5821 key_getacqbyseq(seq) 5822 u_int32_t seq; 5823 { 5824 struct secacq *acq; 5825 5826 ACQ_LOCK(); 5827 LIST_FOREACH(acq, &acqtree, chain) { 5828 if (acq->seq == seq) 5829 break; 5830 } 5831 ACQ_UNLOCK(); 5832 5833 return acq; 5834 } 5835 5836 static struct secspacq * 5837 key_newspacq(spidx) 5838 struct secpolicyindex *spidx; 5839 { 5840 struct secspacq *acq; 5841 5842 /* get new entry */ 5843 acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 5844 if (acq == NULL) { 5845 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5846 return NULL; 5847 } 5848 5849 /* copy secindex */ 5850 bcopy(spidx, &acq->spidx, sizeof(acq->spidx)); 5851 acq->created = time_second; 5852 acq->count = 0; 5853 5854 /* add to spacqtree */ 5855 SPACQ_LOCK(); 5856 LIST_INSERT_HEAD(&spacqtree, acq, chain); 5857 SPACQ_UNLOCK(); 5858 5859 return acq; 5860 } 5861 5862 static struct secspacq * 5863 key_getspacq(spidx) 5864 struct secpolicyindex *spidx; 5865 { 5866 struct secspacq *acq; 5867 5868 SPACQ_LOCK(); 5869 LIST_FOREACH(acq, &spacqtree, chain) { 5870 if (key_cmpspidx_exactly(spidx, &acq->spidx)) { 5871 /* NB: return holding spacq_lock */ 5872 return acq; 5873 } 5874 } 5875 SPACQ_UNLOCK(); 5876 5877 return NULL; 5878 } 5879 5880 /* 5881 * SADB_ACQUIRE processing, 5882 * in first situation, is receiving 5883 * <base> 5884 * from the ikmpd, and clear sequence of its secasvar entry. 5885 * 5886 * In second situation, is receiving 5887 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 5888 * from a user land process, and return 5889 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 5890 * to the socket. 5891 * 5892 * m will always be freed. 5893 */ 5894 static int 5895 key_acquire2(so, m, mhp) 5896 struct socket *so; 5897 struct mbuf *m; 5898 const struct sadb_msghdr *mhp; 5899 { 5900 const struct sadb_address *src0, *dst0; 5901 struct secasindex saidx; 5902 struct secashead *sah; 5903 u_int16_t proto; 5904 int error; 5905 5906 IPSEC_ASSERT(so != NULL, ("null socket")); 5907 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5908 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5909 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5910 5911 /* 5912 * Error message from KMd. 5913 * We assume that if error was occured in IKEd, the length of PFKEY 5914 * message is equal to the size of sadb_msg structure. 5915 * We do not raise error even if error occured in this function. 5916 */ 5917 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { 5918 struct secacq *acq; 5919 5920 /* check sequence number */ 5921 if (mhp->msg->sadb_msg_seq == 0) { 5922 ipseclog((LOG_DEBUG, "%s: must specify sequence " 5923 "number.\n", __func__)); 5924 m_freem(m); 5925 return 0; 5926 } 5927 5928 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) { 5929 /* 5930 * the specified larval SA is already gone, or we got 5931 * a bogus sequence number. we can silently ignore it. 5932 */ 5933 m_freem(m); 5934 return 0; 5935 } 5936 5937 /* reset acq counter in order to deletion by timehander. */ 5938 acq->created = time_second; 5939 acq->count = 0; 5940 m_freem(m); 5941 return 0; 5942 } 5943 5944 /* 5945 * This message is from user land. 5946 */ 5947 5948 /* map satype to proto */ 5949 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5950 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5951 __func__)); 5952 return key_senderror(so, m, EINVAL); 5953 } 5954 5955 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5956 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5957 mhp->ext[SADB_EXT_PROPOSAL] == NULL) { 5958 /* error */ 5959 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5960 __func__)); 5961 return key_senderror(so, m, EINVAL); 5962 } 5963 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5964 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 5965 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { 5966 /* error */ 5967 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5968 __func__)); 5969 return key_senderror(so, m, EINVAL); 5970 } 5971 5972 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5973 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5974 5975 /* XXX boundary check against sa_len */ 5976 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5977 5978 /* get a SA index */ 5979 SAHTREE_LOCK(); 5980 LIST_FOREACH(sah, &sahtree, chain) { 5981 if (sah->state == SADB_SASTATE_DEAD) 5982 continue; 5983 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID)) 5984 break; 5985 } 5986 SAHTREE_UNLOCK(); 5987 if (sah != NULL) { 5988 ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__)); 5989 return key_senderror(so, m, EEXIST); 5990 } 5991 5992 error = key_acquire(&saidx, NULL); 5993 if (error != 0) { 5994 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 5995 __func__, mhp->msg->sadb_msg_errno)); 5996 return key_senderror(so, m, error); 5997 } 5998 5999 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); 6000 } 6001 6002 /* 6003 * SADB_REGISTER processing. 6004 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. 6005 * receive 6006 * <base> 6007 * from the ikmpd, and register a socket to send PF_KEY messages, 6008 * and send 6009 * <base, supported> 6010 * to KMD by PF_KEY. 6011 * If socket is detached, must free from regnode. 6012 * 6013 * m will always be freed. 6014 */ 6015 static int 6016 key_register(so, m, mhp) 6017 struct socket *so; 6018 struct mbuf *m; 6019 const struct sadb_msghdr *mhp; 6020 { 6021 struct secreg *reg, *newreg = 0; 6022 6023 IPSEC_ASSERT(so != NULL, ("null socket")); 6024 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6025 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6026 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6027 6028 /* check for invalid register message */ 6029 if (mhp->msg->sadb_msg_satype >= sizeof(regtree)/sizeof(regtree[0])) 6030 return key_senderror(so, m, EINVAL); 6031 6032 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ 6033 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) 6034 goto setmsg; 6035 6036 /* check whether existing or not */ 6037 REGTREE_LOCK(); 6038 LIST_FOREACH(reg, ®tree[mhp->msg->sadb_msg_satype], chain) { 6039 if (reg->so == so) { 6040 REGTREE_UNLOCK(); 6041 ipseclog((LOG_DEBUG, "%s: socket exists already.\n", 6042 __func__)); 6043 return key_senderror(so, m, EEXIST); 6044 } 6045 } 6046 6047 /* create regnode */ 6048 newreg = malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO); 6049 if (newreg == NULL) { 6050 REGTREE_UNLOCK(); 6051 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6052 return key_senderror(so, m, ENOBUFS); 6053 } 6054 6055 newreg->so = so; 6056 ((struct keycb *)sotorawcb(so))->kp_registered++; 6057 6058 /* add regnode to regtree. */ 6059 LIST_INSERT_HEAD(®tree[mhp->msg->sadb_msg_satype], newreg, chain); 6060 REGTREE_UNLOCK(); 6061 6062 setmsg: 6063 { 6064 struct mbuf *n; 6065 struct sadb_msg *newmsg; 6066 struct sadb_supported *sup; 6067 u_int len, alen, elen; 6068 int off; 6069 int i; 6070 struct sadb_alg *alg; 6071 6072 /* create new sadb_msg to reply. */ 6073 alen = 0; 6074 for (i = 1; i <= SADB_AALG_MAX; i++) { 6075 if (ah_algorithm_lookup(i)) 6076 alen += sizeof(struct sadb_alg); 6077 } 6078 if (alen) 6079 alen += sizeof(struct sadb_supported); 6080 elen = 0; 6081 for (i = 1; i <= SADB_EALG_MAX; i++) { 6082 if (esp_algorithm_lookup(i)) 6083 elen += sizeof(struct sadb_alg); 6084 } 6085 if (elen) 6086 elen += sizeof(struct sadb_supported); 6087 6088 len = sizeof(struct sadb_msg) + alen + elen; 6089 6090 if (len > MCLBYTES) 6091 return key_senderror(so, m, ENOBUFS); 6092 6093 MGETHDR(n, M_DONTWAIT, MT_DATA); 6094 if (len > MHLEN) { 6095 MCLGET(n, M_DONTWAIT); 6096 if ((n->m_flags & M_EXT) == 0) { 6097 m_freem(n); 6098 n = NULL; 6099 } 6100 } 6101 if (!n) 6102 return key_senderror(so, m, ENOBUFS); 6103 6104 n->m_pkthdr.len = n->m_len = len; 6105 n->m_next = NULL; 6106 off = 0; 6107 6108 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 6109 newmsg = mtod(n, struct sadb_msg *); 6110 newmsg->sadb_msg_errno = 0; 6111 newmsg->sadb_msg_len = PFKEY_UNIT64(len); 6112 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 6113 6114 /* for authentication algorithm */ 6115 if (alen) { 6116 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6117 sup->sadb_supported_len = PFKEY_UNIT64(alen); 6118 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 6119 off += PFKEY_ALIGN8(sizeof(*sup)); 6120 6121 for (i = 1; i <= SADB_AALG_MAX; i++) { 6122 struct auth_hash *aalgo; 6123 u_int16_t minkeysize, maxkeysize; 6124 6125 aalgo = ah_algorithm_lookup(i); 6126 if (!aalgo) 6127 continue; 6128 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6129 alg->sadb_alg_id = i; 6130 alg->sadb_alg_ivlen = 0; 6131 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); 6132 alg->sadb_alg_minbits = _BITS(minkeysize); 6133 alg->sadb_alg_maxbits = _BITS(maxkeysize); 6134 off += PFKEY_ALIGN8(sizeof(*alg)); 6135 } 6136 } 6137 6138 /* for encryption algorithm */ 6139 if (elen) { 6140 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6141 sup->sadb_supported_len = PFKEY_UNIT64(elen); 6142 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 6143 off += PFKEY_ALIGN8(sizeof(*sup)); 6144 6145 for (i = 1; i <= SADB_EALG_MAX; i++) { 6146 struct enc_xform *ealgo; 6147 6148 ealgo = esp_algorithm_lookup(i); 6149 if (!ealgo) 6150 continue; 6151 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6152 alg->sadb_alg_id = i; 6153 alg->sadb_alg_ivlen = ealgo->blocksize; 6154 alg->sadb_alg_minbits = _BITS(ealgo->minkey); 6155 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); 6156 off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); 6157 } 6158 } 6159 6160 IPSEC_ASSERT(off == len, 6161 ("length assumption failed (off %u len %u)", off, len)); 6162 6163 m_freem(m); 6164 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); 6165 } 6166 } 6167 6168 /* 6169 * free secreg entry registered. 6170 * XXX: I want to do free a socket marked done SADB_RESIGER to socket. 6171 */ 6172 void 6173 key_freereg(struct socket *so) 6174 { 6175 struct secreg *reg; 6176 int i; 6177 6178 IPSEC_ASSERT(so != NULL, ("NULL so")); 6179 6180 /* 6181 * check whether existing or not. 6182 * check all type of SA, because there is a potential that 6183 * one socket is registered to multiple type of SA. 6184 */ 6185 REGTREE_LOCK(); 6186 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 6187 LIST_FOREACH(reg, ®tree[i], chain) { 6188 if (reg->so == so && __LIST_CHAINED(reg)) { 6189 LIST_REMOVE(reg, chain); 6190 free(reg, M_IPSEC_SAR); 6191 break; 6192 } 6193 } 6194 } 6195 REGTREE_UNLOCK(); 6196 } 6197 6198 /* 6199 * SADB_EXPIRE processing 6200 * send 6201 * <base, SA, SA2, lifetime(C and one of HS), address(SD)> 6202 * to KMD by PF_KEY. 6203 * NOTE: We send only soft lifetime extension. 6204 * 6205 * OUT: 0 : succeed 6206 * others : error number 6207 */ 6208 static int 6209 key_expire(struct secasvar *sav) 6210 { 6211 int s; 6212 int satype; 6213 struct mbuf *result = NULL, *m; 6214 int len; 6215 int error = -1; 6216 struct sadb_lifetime *lt; 6217 6218 /* XXX: Why do we lock ? */ 6219 s = splnet(); /*called from softclock()*/ 6220 6221 IPSEC_ASSERT (sav != NULL, ("null sav")); 6222 IPSEC_ASSERT (sav->sah != NULL, ("null sa header")); 6223 6224 /* set msg header */ 6225 satype = key_proto2satype(sav->sah->saidx.proto); 6226 IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype)); 6227 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt); 6228 if (!m) { 6229 error = ENOBUFS; 6230 goto fail; 6231 } 6232 result = m; 6233 6234 /* create SA extension */ 6235 m = key_setsadbsa(sav); 6236 if (!m) { 6237 error = ENOBUFS; 6238 goto fail; 6239 } 6240 m_cat(result, m); 6241 6242 /* create SA extension */ 6243 m = key_setsadbxsa2(sav->sah->saidx.mode, 6244 sav->replay ? sav->replay->count : 0, 6245 sav->sah->saidx.reqid); 6246 if (!m) { 6247 error = ENOBUFS; 6248 goto fail; 6249 } 6250 m_cat(result, m); 6251 6252 /* create lifetime extension (current and soft) */ 6253 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 6254 m = key_alloc_mbuf(len); 6255 if (!m || m->m_next) { /*XXX*/ 6256 if (m) 6257 m_freem(m); 6258 error = ENOBUFS; 6259 goto fail; 6260 } 6261 bzero(mtod(m, caddr_t), len); 6262 lt = mtod(m, struct sadb_lifetime *); 6263 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6264 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 6265 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations; 6266 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes; 6267 lt->sadb_lifetime_addtime = sav->lft_c->sadb_lifetime_addtime; 6268 lt->sadb_lifetime_usetime = sav->lft_c->sadb_lifetime_usetime; 6269 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 6270 bcopy(sav->lft_s, lt, sizeof(*lt)); 6271 m_cat(result, m); 6272 6273 /* set sadb_address for source */ 6274 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 6275 &sav->sah->saidx.src.sa, 6276 FULLMASK, IPSEC_ULPROTO_ANY); 6277 if (!m) { 6278 error = ENOBUFS; 6279 goto fail; 6280 } 6281 m_cat(result, m); 6282 6283 /* set sadb_address for destination */ 6284 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 6285 &sav->sah->saidx.dst.sa, 6286 FULLMASK, IPSEC_ULPROTO_ANY); 6287 if (!m) { 6288 error = ENOBUFS; 6289 goto fail; 6290 } 6291 m_cat(result, m); 6292 6293 if ((result->m_flags & M_PKTHDR) == 0) { 6294 error = EINVAL; 6295 goto fail; 6296 } 6297 6298 if (result->m_len < sizeof(struct sadb_msg)) { 6299 result = m_pullup(result, sizeof(struct sadb_msg)); 6300 if (result == NULL) { 6301 error = ENOBUFS; 6302 goto fail; 6303 } 6304 } 6305 6306 result->m_pkthdr.len = 0; 6307 for (m = result; m; m = m->m_next) 6308 result->m_pkthdr.len += m->m_len; 6309 6310 mtod(result, struct sadb_msg *)->sadb_msg_len = 6311 PFKEY_UNIT64(result->m_pkthdr.len); 6312 6313 splx(s); 6314 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6315 6316 fail: 6317 if (result) 6318 m_freem(result); 6319 splx(s); 6320 return error; 6321 } 6322 6323 /* 6324 * SADB_FLUSH processing 6325 * receive 6326 * <base> 6327 * from the ikmpd, and free all entries in secastree. 6328 * and send, 6329 * <base> 6330 * to the ikmpd. 6331 * NOTE: to do is only marking SADB_SASTATE_DEAD. 6332 * 6333 * m will always be freed. 6334 */ 6335 static int 6336 key_flush(so, m, mhp) 6337 struct socket *so; 6338 struct mbuf *m; 6339 const struct sadb_msghdr *mhp; 6340 { 6341 struct sadb_msg *newmsg; 6342 struct secashead *sah, *nextsah; 6343 struct secasvar *sav, *nextsav; 6344 u_int16_t proto; 6345 u_int8_t state; 6346 u_int stateidx; 6347 6348 IPSEC_ASSERT(so != NULL, ("null socket")); 6349 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6350 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6351 6352 /* map satype to proto */ 6353 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6354 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6355 __func__)); 6356 return key_senderror(so, m, EINVAL); 6357 } 6358 6359 /* no SATYPE specified, i.e. flushing all SA. */ 6360 SAHTREE_LOCK(); 6361 for (sah = LIST_FIRST(&sahtree); 6362 sah != NULL; 6363 sah = nextsah) { 6364 nextsah = LIST_NEXT(sah, chain); 6365 6366 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 6367 && proto != sah->saidx.proto) 6368 continue; 6369 6370 for (stateidx = 0; 6371 stateidx < _ARRAYLEN(saorder_state_alive); 6372 stateidx++) { 6373 state = saorder_state_any[stateidx]; 6374 for (sav = LIST_FIRST(&sah->savtree[state]); 6375 sav != NULL; 6376 sav = nextsav) { 6377 6378 nextsav = LIST_NEXT(sav, chain); 6379 6380 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 6381 KEY_FREESAV(&sav); 6382 } 6383 } 6384 6385 sah->state = SADB_SASTATE_DEAD; 6386 } 6387 SAHTREE_UNLOCK(); 6388 6389 if (m->m_len < sizeof(struct sadb_msg) || 6390 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 6391 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6392 return key_senderror(so, m, ENOBUFS); 6393 } 6394 6395 if (m->m_next) 6396 m_freem(m->m_next); 6397 m->m_next = NULL; 6398 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); 6399 newmsg = mtod(m, struct sadb_msg *); 6400 newmsg->sadb_msg_errno = 0; 6401 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 6402 6403 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 6404 } 6405 6406 /* 6407 * SADB_DUMP processing 6408 * dump all entries including status of DEAD in SAD. 6409 * receive 6410 * <base> 6411 * from the ikmpd, and dump all secasvar leaves 6412 * and send, 6413 * <base> ..... 6414 * to the ikmpd. 6415 * 6416 * m will always be freed. 6417 */ 6418 static int 6419 key_dump(so, m, mhp) 6420 struct socket *so; 6421 struct mbuf *m; 6422 const struct sadb_msghdr *mhp; 6423 { 6424 struct secashead *sah; 6425 struct secasvar *sav; 6426 u_int16_t proto; 6427 u_int stateidx; 6428 u_int8_t satype; 6429 u_int8_t state; 6430 int cnt; 6431 struct sadb_msg *newmsg; 6432 struct mbuf *n; 6433 6434 IPSEC_ASSERT(so != NULL, ("null socket")); 6435 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6436 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6437 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6438 6439 /* map satype to proto */ 6440 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6441 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6442 __func__)); 6443 return key_senderror(so, m, EINVAL); 6444 } 6445 6446 /* count sav entries to be sent to the userland. */ 6447 cnt = 0; 6448 SAHTREE_LOCK(); 6449 LIST_FOREACH(sah, &sahtree, chain) { 6450 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 6451 && proto != sah->saidx.proto) 6452 continue; 6453 6454 for (stateidx = 0; 6455 stateidx < _ARRAYLEN(saorder_state_any); 6456 stateidx++) { 6457 state = saorder_state_any[stateidx]; 6458 LIST_FOREACH(sav, &sah->savtree[state], chain) { 6459 cnt++; 6460 } 6461 } 6462 } 6463 6464 if (cnt == 0) { 6465 SAHTREE_UNLOCK(); 6466 return key_senderror(so, m, ENOENT); 6467 } 6468 6469 /* send this to the userland, one at a time. */ 6470 newmsg = NULL; 6471 LIST_FOREACH(sah, &sahtree, chain) { 6472 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 6473 && proto != sah->saidx.proto) 6474 continue; 6475 6476 /* map proto to satype */ 6477 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 6478 SAHTREE_UNLOCK(); 6479 ipseclog((LOG_DEBUG, "%s: there was invalid proto in " 6480 "SAD.\n", __func__)); 6481 return key_senderror(so, m, EINVAL); 6482 } 6483 6484 for (stateidx = 0; 6485 stateidx < _ARRAYLEN(saorder_state_any); 6486 stateidx++) { 6487 state = saorder_state_any[stateidx]; 6488 LIST_FOREACH(sav, &sah->savtree[state], chain) { 6489 n = key_setdumpsa(sav, SADB_DUMP, satype, 6490 --cnt, mhp->msg->sadb_msg_pid); 6491 if (!n) { 6492 SAHTREE_UNLOCK(); 6493 return key_senderror(so, m, ENOBUFS); 6494 } 6495 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 6496 } 6497 } 6498 } 6499 SAHTREE_UNLOCK(); 6500 6501 m_freem(m); 6502 return 0; 6503 } 6504 6505 /* 6506 * SADB_X_PROMISC processing 6507 * 6508 * m will always be freed. 6509 */ 6510 static int 6511 key_promisc(so, m, mhp) 6512 struct socket *so; 6513 struct mbuf *m; 6514 const struct sadb_msghdr *mhp; 6515 { 6516 int olen; 6517 6518 IPSEC_ASSERT(so != NULL, ("null socket")); 6519 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6520 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6521 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6522 6523 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 6524 6525 if (olen < sizeof(struct sadb_msg)) { 6526 #if 1 6527 return key_senderror(so, m, EINVAL); 6528 #else 6529 m_freem(m); 6530 return 0; 6531 #endif 6532 } else if (olen == sizeof(struct sadb_msg)) { 6533 /* enable/disable promisc mode */ 6534 struct keycb *kp; 6535 6536 if ((kp = (struct keycb *)sotorawcb(so)) == NULL) 6537 return key_senderror(so, m, EINVAL); 6538 mhp->msg->sadb_msg_errno = 0; 6539 switch (mhp->msg->sadb_msg_satype) { 6540 case 0: 6541 case 1: 6542 kp->kp_promisc = mhp->msg->sadb_msg_satype; 6543 break; 6544 default: 6545 return key_senderror(so, m, EINVAL); 6546 } 6547 6548 /* send the original message back to everyone */ 6549 mhp->msg->sadb_msg_errno = 0; 6550 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 6551 } else { 6552 /* send packet as is */ 6553 6554 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); 6555 6556 /* TODO: if sadb_msg_seq is specified, send to specific pid */ 6557 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 6558 } 6559 } 6560 6561 static int (*key_typesw[]) __P((struct socket *, struct mbuf *, 6562 const struct sadb_msghdr *)) = { 6563 NULL, /* SADB_RESERVED */ 6564 key_getspi, /* SADB_GETSPI */ 6565 key_update, /* SADB_UPDATE */ 6566 key_add, /* SADB_ADD */ 6567 key_delete, /* SADB_DELETE */ 6568 key_get, /* SADB_GET */ 6569 key_acquire2, /* SADB_ACQUIRE */ 6570 key_register, /* SADB_REGISTER */ 6571 NULL, /* SADB_EXPIRE */ 6572 key_flush, /* SADB_FLUSH */ 6573 key_dump, /* SADB_DUMP */ 6574 key_promisc, /* SADB_X_PROMISC */ 6575 NULL, /* SADB_X_PCHANGE */ 6576 key_spdadd, /* SADB_X_SPDUPDATE */ 6577 key_spdadd, /* SADB_X_SPDADD */ 6578 key_spddelete, /* SADB_X_SPDDELETE */ 6579 key_spdget, /* SADB_X_SPDGET */ 6580 NULL, /* SADB_X_SPDACQUIRE */ 6581 key_spddump, /* SADB_X_SPDDUMP */ 6582 key_spdflush, /* SADB_X_SPDFLUSH */ 6583 key_spdadd, /* SADB_X_SPDSETIDX */ 6584 NULL, /* SADB_X_SPDEXPIRE */ 6585 key_spddelete2, /* SADB_X_SPDDELETE2 */ 6586 }; 6587 6588 /* 6589 * parse sadb_msg buffer to process PFKEYv2, 6590 * and create a data to response if needed. 6591 * I think to be dealed with mbuf directly. 6592 * IN: 6593 * msgp : pointer to pointer to a received buffer pulluped. 6594 * This is rewrited to response. 6595 * so : pointer to socket. 6596 * OUT: 6597 * length for buffer to send to user process. 6598 */ 6599 int 6600 key_parse(m, so) 6601 struct mbuf *m; 6602 struct socket *so; 6603 { 6604 struct sadb_msg *msg; 6605 struct sadb_msghdr mh; 6606 u_int orglen; 6607 int error; 6608 int target; 6609 6610 IPSEC_ASSERT(so != NULL, ("null socket")); 6611 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6612 6613 #if 0 /*kdebug_sadb assumes msg in linear buffer*/ 6614 KEYDEBUG(KEYDEBUG_KEY_DUMP, 6615 ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__)); 6616 kdebug_sadb(msg)); 6617 #endif 6618 6619 if (m->m_len < sizeof(struct sadb_msg)) { 6620 m = m_pullup(m, sizeof(struct sadb_msg)); 6621 if (!m) 6622 return ENOBUFS; 6623 } 6624 msg = mtod(m, struct sadb_msg *); 6625 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); 6626 target = KEY_SENDUP_ONE; 6627 6628 if ((m->m_flags & M_PKTHDR) == 0 || 6629 m->m_pkthdr.len != m->m_pkthdr.len) { 6630 ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__)); 6631 pfkeystat.out_invlen++; 6632 error = EINVAL; 6633 goto senderror; 6634 } 6635 6636 if (msg->sadb_msg_version != PF_KEY_V2) { 6637 ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n", 6638 __func__, msg->sadb_msg_version)); 6639 pfkeystat.out_invver++; 6640 error = EINVAL; 6641 goto senderror; 6642 } 6643 6644 if (msg->sadb_msg_type > SADB_MAX) { 6645 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 6646 __func__, msg->sadb_msg_type)); 6647 pfkeystat.out_invmsgtype++; 6648 error = EINVAL; 6649 goto senderror; 6650 } 6651 6652 /* for old-fashioned code - should be nuked */ 6653 if (m->m_pkthdr.len > MCLBYTES) { 6654 m_freem(m); 6655 return ENOBUFS; 6656 } 6657 if (m->m_next) { 6658 struct mbuf *n; 6659 6660 MGETHDR(n, M_DONTWAIT, MT_DATA); 6661 if (n && m->m_pkthdr.len > MHLEN) { 6662 MCLGET(n, M_DONTWAIT); 6663 if ((n->m_flags & M_EXT) == 0) { 6664 m_free(n); 6665 n = NULL; 6666 } 6667 } 6668 if (!n) { 6669 m_freem(m); 6670 return ENOBUFS; 6671 } 6672 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t)); 6673 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; 6674 n->m_next = NULL; 6675 m_freem(m); 6676 m = n; 6677 } 6678 6679 /* align the mbuf chain so that extensions are in contiguous region. */ 6680 error = key_align(m, &mh); 6681 if (error) 6682 return error; 6683 6684 msg = mh.msg; 6685 6686 /* check SA type */ 6687 switch (msg->sadb_msg_satype) { 6688 case SADB_SATYPE_UNSPEC: 6689 switch (msg->sadb_msg_type) { 6690 case SADB_GETSPI: 6691 case SADB_UPDATE: 6692 case SADB_ADD: 6693 case SADB_DELETE: 6694 case SADB_GET: 6695 case SADB_ACQUIRE: 6696 case SADB_EXPIRE: 6697 ipseclog((LOG_DEBUG, "%s: must specify satype " 6698 "when msg type=%u.\n", __func__, 6699 msg->sadb_msg_type)); 6700 pfkeystat.out_invsatype++; 6701 error = EINVAL; 6702 goto senderror; 6703 } 6704 break; 6705 case SADB_SATYPE_AH: 6706 case SADB_SATYPE_ESP: 6707 case SADB_X_SATYPE_IPCOMP: 6708 case SADB_X_SATYPE_TCPSIGNATURE: 6709 switch (msg->sadb_msg_type) { 6710 case SADB_X_SPDADD: 6711 case SADB_X_SPDDELETE: 6712 case SADB_X_SPDGET: 6713 case SADB_X_SPDDUMP: 6714 case SADB_X_SPDFLUSH: 6715 case SADB_X_SPDSETIDX: 6716 case SADB_X_SPDUPDATE: 6717 case SADB_X_SPDDELETE2: 6718 ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n", 6719 __func__, msg->sadb_msg_type)); 6720 pfkeystat.out_invsatype++; 6721 error = EINVAL; 6722 goto senderror; 6723 } 6724 break; 6725 case SADB_SATYPE_RSVP: 6726 case SADB_SATYPE_OSPFV2: 6727 case SADB_SATYPE_RIPV2: 6728 case SADB_SATYPE_MIP: 6729 ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n", 6730 __func__, msg->sadb_msg_satype)); 6731 pfkeystat.out_invsatype++; 6732 error = EOPNOTSUPP; 6733 goto senderror; 6734 case 1: /* XXX: What does it do? */ 6735 if (msg->sadb_msg_type == SADB_X_PROMISC) 6736 break; 6737 /*FALLTHROUGH*/ 6738 default: 6739 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 6740 __func__, msg->sadb_msg_satype)); 6741 pfkeystat.out_invsatype++; 6742 error = EINVAL; 6743 goto senderror; 6744 } 6745 6746 /* check field of upper layer protocol and address family */ 6747 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL 6748 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { 6749 struct sadb_address *src0, *dst0; 6750 u_int plen; 6751 6752 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]); 6753 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]); 6754 6755 /* check upper layer protocol */ 6756 if (src0->sadb_address_proto != dst0->sadb_address_proto) { 6757 ipseclog((LOG_DEBUG, "%s: upper layer protocol " 6758 "mismatched.\n", __func__)); 6759 pfkeystat.out_invaddr++; 6760 error = EINVAL; 6761 goto senderror; 6762 } 6763 6764 /* check family */ 6765 if (PFKEY_ADDR_SADDR(src0)->sa_family != 6766 PFKEY_ADDR_SADDR(dst0)->sa_family) { 6767 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 6768 __func__)); 6769 pfkeystat.out_invaddr++; 6770 error = EINVAL; 6771 goto senderror; 6772 } 6773 if (PFKEY_ADDR_SADDR(src0)->sa_len != 6774 PFKEY_ADDR_SADDR(dst0)->sa_len) { 6775 ipseclog((LOG_DEBUG, "%s: address struct size " 6776 "mismatched.\n", __func__)); 6777 pfkeystat.out_invaddr++; 6778 error = EINVAL; 6779 goto senderror; 6780 } 6781 6782 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 6783 case AF_INET: 6784 if (PFKEY_ADDR_SADDR(src0)->sa_len != 6785 sizeof(struct sockaddr_in)) { 6786 pfkeystat.out_invaddr++; 6787 error = EINVAL; 6788 goto senderror; 6789 } 6790 break; 6791 case AF_INET6: 6792 if (PFKEY_ADDR_SADDR(src0)->sa_len != 6793 sizeof(struct sockaddr_in6)) { 6794 pfkeystat.out_invaddr++; 6795 error = EINVAL; 6796 goto senderror; 6797 } 6798 break; 6799 default: 6800 ipseclog((LOG_DEBUG, "%s: unsupported address family\n", 6801 __func__)); 6802 pfkeystat.out_invaddr++; 6803 error = EAFNOSUPPORT; 6804 goto senderror; 6805 } 6806 6807 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 6808 case AF_INET: 6809 plen = sizeof(struct in_addr) << 3; 6810 break; 6811 case AF_INET6: 6812 plen = sizeof(struct in6_addr) << 3; 6813 break; 6814 default: 6815 plen = 0; /*fool gcc*/ 6816 break; 6817 } 6818 6819 /* check max prefix length */ 6820 if (src0->sadb_address_prefixlen > plen || 6821 dst0->sadb_address_prefixlen > plen) { 6822 ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n", 6823 __func__)); 6824 pfkeystat.out_invaddr++; 6825 error = EINVAL; 6826 goto senderror; 6827 } 6828 6829 /* 6830 * prefixlen == 0 is valid because there can be a case when 6831 * all addresses are matched. 6832 */ 6833 } 6834 6835 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) || 6836 key_typesw[msg->sadb_msg_type] == NULL) { 6837 pfkeystat.out_invmsgtype++; 6838 error = EINVAL; 6839 goto senderror; 6840 } 6841 6842 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh); 6843 6844 senderror: 6845 msg->sadb_msg_errno = error; 6846 return key_sendup_mbuf(so, m, target); 6847 } 6848 6849 static int 6850 key_senderror(so, m, code) 6851 struct socket *so; 6852 struct mbuf *m; 6853 int code; 6854 { 6855 struct sadb_msg *msg; 6856 6857 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 6858 ("mbuf too small, len %u", m->m_len)); 6859 6860 msg = mtod(m, struct sadb_msg *); 6861 msg->sadb_msg_errno = code; 6862 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 6863 } 6864 6865 /* 6866 * set the pointer to each header into message buffer. 6867 * m will be freed on error. 6868 * XXX larger-than-MCLBYTES extension? 6869 */ 6870 static int 6871 key_align(m, mhp) 6872 struct mbuf *m; 6873 struct sadb_msghdr *mhp; 6874 { 6875 struct mbuf *n; 6876 struct sadb_ext *ext; 6877 size_t off, end; 6878 int extlen; 6879 int toff; 6880 6881 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6882 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6883 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 6884 ("mbuf too small, len %u", m->m_len)); 6885 6886 /* initialize */ 6887 bzero(mhp, sizeof(*mhp)); 6888 6889 mhp->msg = mtod(m, struct sadb_msg *); 6890 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */ 6891 6892 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 6893 extlen = end; /*just in case extlen is not updated*/ 6894 for (off = sizeof(struct sadb_msg); off < end; off += extlen) { 6895 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); 6896 if (!n) { 6897 /* m is already freed */ 6898 return ENOBUFS; 6899 } 6900 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 6901 6902 /* set pointer */ 6903 switch (ext->sadb_ext_type) { 6904 case SADB_EXT_SA: 6905 case SADB_EXT_ADDRESS_SRC: 6906 case SADB_EXT_ADDRESS_DST: 6907 case SADB_EXT_ADDRESS_PROXY: 6908 case SADB_EXT_LIFETIME_CURRENT: 6909 case SADB_EXT_LIFETIME_HARD: 6910 case SADB_EXT_LIFETIME_SOFT: 6911 case SADB_EXT_KEY_AUTH: 6912 case SADB_EXT_KEY_ENCRYPT: 6913 case SADB_EXT_IDENTITY_SRC: 6914 case SADB_EXT_IDENTITY_DST: 6915 case SADB_EXT_SENSITIVITY: 6916 case SADB_EXT_PROPOSAL: 6917 case SADB_EXT_SUPPORTED_AUTH: 6918 case SADB_EXT_SUPPORTED_ENCRYPT: 6919 case SADB_EXT_SPIRANGE: 6920 case SADB_X_EXT_POLICY: 6921 case SADB_X_EXT_SA2: 6922 /* duplicate check */ 6923 /* 6924 * XXX Are there duplication payloads of either 6925 * KEY_AUTH or KEY_ENCRYPT ? 6926 */ 6927 if (mhp->ext[ext->sadb_ext_type] != NULL) { 6928 ipseclog((LOG_DEBUG, "%s: duplicate ext_type " 6929 "%u\n", __func__, ext->sadb_ext_type)); 6930 m_freem(m); 6931 pfkeystat.out_dupext++; 6932 return EINVAL; 6933 } 6934 break; 6935 default: 6936 ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n", 6937 __func__, ext->sadb_ext_type)); 6938 m_freem(m); 6939 pfkeystat.out_invexttype++; 6940 return EINVAL; 6941 } 6942 6943 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); 6944 6945 if (key_validate_ext(ext, extlen)) { 6946 m_freem(m); 6947 pfkeystat.out_invlen++; 6948 return EINVAL; 6949 } 6950 6951 n = m_pulldown(m, off, extlen, &toff); 6952 if (!n) { 6953 /* m is already freed */ 6954 return ENOBUFS; 6955 } 6956 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 6957 6958 mhp->ext[ext->sadb_ext_type] = ext; 6959 mhp->extoff[ext->sadb_ext_type] = off; 6960 mhp->extlen[ext->sadb_ext_type] = extlen; 6961 } 6962 6963 if (off != end) { 6964 m_freem(m); 6965 pfkeystat.out_invlen++; 6966 return EINVAL; 6967 } 6968 6969 return 0; 6970 } 6971 6972 static int 6973 key_validate_ext(ext, len) 6974 const struct sadb_ext *ext; 6975 int len; 6976 { 6977 const struct sockaddr *sa; 6978 enum { NONE, ADDR } checktype = NONE; 6979 int baselen = 0; 6980 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); 6981 6982 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) 6983 return EINVAL; 6984 6985 /* if it does not match minimum/maximum length, bail */ 6986 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) || 6987 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0])) 6988 return EINVAL; 6989 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) 6990 return EINVAL; 6991 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) 6992 return EINVAL; 6993 6994 /* more checks based on sadb_ext_type XXX need more */ 6995 switch (ext->sadb_ext_type) { 6996 case SADB_EXT_ADDRESS_SRC: 6997 case SADB_EXT_ADDRESS_DST: 6998 case SADB_EXT_ADDRESS_PROXY: 6999 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); 7000 checktype = ADDR; 7001 break; 7002 case SADB_EXT_IDENTITY_SRC: 7003 case SADB_EXT_IDENTITY_DST: 7004 if (((const struct sadb_ident *)ext)->sadb_ident_type == 7005 SADB_X_IDENTTYPE_ADDR) { 7006 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); 7007 checktype = ADDR; 7008 } else 7009 checktype = NONE; 7010 break; 7011 default: 7012 checktype = NONE; 7013 break; 7014 } 7015 7016 switch (checktype) { 7017 case NONE: 7018 break; 7019 case ADDR: 7020 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); 7021 if (len < baselen + sal) 7022 return EINVAL; 7023 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) 7024 return EINVAL; 7025 break; 7026 } 7027 7028 return 0; 7029 } 7030 7031 void 7032 key_init() 7033 { 7034 int i; 7035 7036 SPTREE_LOCK_INIT(); 7037 REGTREE_LOCK_INIT(); 7038 SAHTREE_LOCK_INIT(); 7039 ACQ_LOCK_INIT(); 7040 SPACQ_LOCK_INIT(); 7041 7042 for (i = 0; i < IPSEC_DIR_MAX; i++) 7043 LIST_INIT(&sptree[i]); 7044 7045 LIST_INIT(&sahtree); 7046 7047 for (i = 0; i <= SADB_SATYPE_MAX; i++) 7048 LIST_INIT(®tree[i]); 7049 7050 LIST_INIT(&acqtree); 7051 LIST_INIT(&spacqtree); 7052 7053 /* system default */ 7054 ip4_def_policy.policy = IPSEC_POLICY_NONE; 7055 ip4_def_policy.refcnt++; /*never reclaim this*/ 7056 7057 #ifndef IPSEC_DEBUG2 7058 timeout((void *)key_timehandler, (void *)0, hz); 7059 #endif /*IPSEC_DEBUG2*/ 7060 7061 /* initialize key statistics */ 7062 keystat.getspi_count = 1; 7063 7064 printf("Fast IPsec: Initialized Security Association Processing.\n"); 7065 7066 return; 7067 } 7068 7069 /* 7070 * XXX: maybe This function is called after INBOUND IPsec processing. 7071 * 7072 * Special check for tunnel-mode packets. 7073 * We must make some checks for consistency between inner and outer IP header. 7074 * 7075 * xxx more checks to be provided 7076 */ 7077 int 7078 key_checktunnelsanity(sav, family, src, dst) 7079 struct secasvar *sav; 7080 u_int family; 7081 caddr_t src; 7082 caddr_t dst; 7083 { 7084 IPSEC_ASSERT(sav->sah != NULL, ("null SA header")); 7085 7086 /* XXX: check inner IP header */ 7087 7088 return 1; 7089 } 7090 7091 /* record data transfer on SA, and update timestamps */ 7092 void 7093 key_sa_recordxfer(sav, m) 7094 struct secasvar *sav; 7095 struct mbuf *m; 7096 { 7097 IPSEC_ASSERT(sav != NULL, ("Null secasvar")); 7098 IPSEC_ASSERT(m != NULL, ("Null mbuf")); 7099 if (!sav->lft_c) 7100 return; 7101 7102 /* 7103 * XXX Currently, there is a difference of bytes size 7104 * between inbound and outbound processing. 7105 */ 7106 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len; 7107 /* to check bytes lifetime is done in key_timehandler(). */ 7108 7109 /* 7110 * We use the number of packets as the unit of 7111 * sadb_lifetime_allocations. We increment the variable 7112 * whenever {esp,ah}_{in,out}put is called. 7113 */ 7114 sav->lft_c->sadb_lifetime_allocations++; 7115 /* XXX check for expires? */ 7116 7117 /* 7118 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock, 7119 * in seconds. HARD and SOFT lifetime are measured by the time 7120 * difference (again in seconds) from sadb_lifetime_usetime. 7121 * 7122 * usetime 7123 * v expire expire 7124 * -----+-----+--------+---> t 7125 * <--------------> HARD 7126 * <-----> SOFT 7127 */ 7128 sav->lft_c->sadb_lifetime_usetime = time_second; 7129 /* XXX check for expires? */ 7130 7131 return; 7132 } 7133 7134 /* dumb version */ 7135 void 7136 key_sa_routechange(dst) 7137 struct sockaddr *dst; 7138 { 7139 struct secashead *sah; 7140 struct route *ro; 7141 7142 SAHTREE_LOCK(); 7143 LIST_FOREACH(sah, &sahtree, chain) { 7144 ro = &sah->sa_route; 7145 if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len 7146 && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) { 7147 RTFREE(ro->ro_rt); 7148 ro->ro_rt = (struct rtentry *)NULL; 7149 } 7150 } 7151 SAHTREE_UNLOCK(); 7152 } 7153 7154 static void 7155 key_sa_chgstate(sav, state) 7156 struct secasvar *sav; 7157 u_int8_t state; 7158 { 7159 IPSEC_ASSERT(sav != NULL, ("NULL sav")); 7160 SAHTREE_LOCK_ASSERT(); 7161 7162 if (sav->state != state) { 7163 if (__LIST_CHAINED(sav)) 7164 LIST_REMOVE(sav, chain); 7165 sav->state = state; 7166 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain); 7167 } 7168 } 7169 7170 void 7171 key_sa_stir_iv(sav) 7172 struct secasvar *sav; 7173 { 7174 7175 IPSEC_ASSERT(sav->iv != NULL, ("null IV")); 7176 key_randomfill(sav->iv, sav->ivlen); 7177 } 7178 7179 /* XXX too much? */ 7180 static struct mbuf * 7181 key_alloc_mbuf(l) 7182 int l; 7183 { 7184 struct mbuf *m = NULL, *n; 7185 int len, t; 7186 7187 len = l; 7188 while (len > 0) { 7189 MGET(n, M_DONTWAIT, MT_DATA); 7190 if (n && len > MLEN) 7191 MCLGET(n, M_DONTWAIT); 7192 if (!n) { 7193 m_freem(m); 7194 return NULL; 7195 } 7196 7197 n->m_next = NULL; 7198 n->m_len = 0; 7199 n->m_len = M_TRAILINGSPACE(n); 7200 /* use the bottom of mbuf, hoping we can prepend afterwards */ 7201 if (n->m_len > len) { 7202 t = (n->m_len - len) & ~(sizeof(long) - 1); 7203 n->m_data += t; 7204 n->m_len = len; 7205 } 7206 7207 len -= n->m_len; 7208 7209 if (m) 7210 m_cat(m, n); 7211 else 7212 m = n; 7213 } 7214 7215 return m; 7216 } 7217