1 /* $FreeBSD$ */ 2 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ 3 4 /*- 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * This code is referd to RFC 2367 35 */ 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 #include "opt_ipsec.h" 40 41 #include <sys/types.h> 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/mutex.h> 47 #include <sys/mbuf.h> 48 #include <sys/domain.h> 49 #include <sys/protosw.h> 50 #include <sys/malloc.h> 51 #include <sys/socket.h> 52 #include <sys/socketvar.h> 53 #include <sys/sysctl.h> 54 #include <sys/errno.h> 55 #include <sys/proc.h> 56 #include <sys/queue.h> 57 #include <sys/refcount.h> 58 #include <sys/syslog.h> 59 #include <sys/vimage.h> 60 61 #include <net/if.h> 62 #include <net/route.h> 63 #include <net/raw_cb.h> 64 65 #include <netinet/in.h> 66 #include <netinet/in_systm.h> 67 #include <netinet/ip.h> 68 #include <netinet/in_var.h> 69 70 #ifdef INET6 71 #include <netinet/ip6.h> 72 #include <netinet6/in6_var.h> 73 #include <netinet6/ip6_var.h> 74 #endif /* INET6 */ 75 76 #ifdef INET 77 #include <netinet/in_pcb.h> 78 #include <netinet/vinet.h> 79 #endif 80 #ifdef INET6 81 #include <netinet6/in6_pcb.h> 82 #include <netinet6/vinet6.h> 83 #endif /* INET6 */ 84 85 #include <net/pfkeyv2.h> 86 #include <netipsec/keydb.h> 87 #include <netipsec/key.h> 88 #include <netipsec/keysock.h> 89 #include <netipsec/key_debug.h> 90 91 #include <netipsec/ipsec.h> 92 #ifdef INET6 93 #include <netipsec/ipsec6.h> 94 #endif 95 96 #include <netipsec/xform.h> 97 98 #include <machine/stdarg.h> 99 100 /* randomness */ 101 #include <sys/random.h> 102 #include <sys/vimage.h> 103 104 #define FULLMASK 0xff 105 #define _BITS(bytes) ((bytes) << 3) 106 107 /* 108 * Note on SA reference counting: 109 * - SAs that are not in DEAD state will have (total external reference + 1) 110 * following value in reference count field. they cannot be freed and are 111 * referenced from SA header. 112 * - SAs that are in DEAD state will have (total external reference) 113 * in reference count field. they are ready to be freed. reference from 114 * SA header will be removed in key_delsav(), when the reference count 115 * field hits 0 (= no external reference other than from SA header. 116 */ 117 118 #ifdef VIMAGE_GLOBALS 119 u_int32_t key_debug_level; 120 static u_int key_spi_trycnt; 121 static u_int32_t key_spi_minval; 122 static u_int32_t key_spi_maxval; 123 static u_int32_t policy_id; 124 static u_int key_int_random; 125 static u_int key_larval_lifetime; 126 static int key_blockacq_count; 127 static int key_blockacq_lifetime; 128 static int key_preferred_oldsa; 129 130 static u_int32_t acq_seq; 131 132 static int ipsec_esp_keymin; 133 static int ipsec_esp_auth; 134 static int ipsec_ah_keymin; 135 136 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */ 137 static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */ 138 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1]; 139 static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */ 140 static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */ 141 #endif /* VIMAGE_GLOBALS */ 142 143 static struct mtx sptree_lock; 144 #define SPTREE_LOCK_INIT() \ 145 mtx_init(&sptree_lock, "sptree", \ 146 "fast ipsec security policy database", MTX_DEF) 147 #define SPTREE_LOCK_DESTROY() mtx_destroy(&sptree_lock) 148 #define SPTREE_LOCK() mtx_lock(&sptree_lock) 149 #define SPTREE_UNLOCK() mtx_unlock(&sptree_lock) 150 #define SPTREE_LOCK_ASSERT() mtx_assert(&sptree_lock, MA_OWNED) 151 152 static struct mtx sahtree_lock; 153 #define SAHTREE_LOCK_INIT() \ 154 mtx_init(&sahtree_lock, "sahtree", \ 155 "fast ipsec security association database", MTX_DEF) 156 #define SAHTREE_LOCK_DESTROY() mtx_destroy(&sahtree_lock) 157 #define SAHTREE_LOCK() mtx_lock(&sahtree_lock) 158 #define SAHTREE_UNLOCK() mtx_unlock(&sahtree_lock) 159 #define SAHTREE_LOCK_ASSERT() mtx_assert(&sahtree_lock, MA_OWNED) 160 161 /* registed list */ 162 static struct mtx regtree_lock; 163 #define REGTREE_LOCK_INIT() \ 164 mtx_init(®tree_lock, "regtree", "fast ipsec regtree", MTX_DEF) 165 #define REGTREE_LOCK_DESTROY() mtx_destroy(®tree_lock) 166 #define REGTREE_LOCK() mtx_lock(®tree_lock) 167 #define REGTREE_UNLOCK() mtx_unlock(®tree_lock) 168 #define REGTREE_LOCK_ASSERT() mtx_assert(®tree_lock, MA_OWNED) 169 170 static struct mtx acq_lock; 171 #define ACQ_LOCK_INIT() \ 172 mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF) 173 #define ACQ_LOCK_DESTROY() mtx_destroy(&acq_lock) 174 #define ACQ_LOCK() mtx_lock(&acq_lock) 175 #define ACQ_UNLOCK() mtx_unlock(&acq_lock) 176 #define ACQ_LOCK_ASSERT() mtx_assert(&acq_lock, MA_OWNED) 177 178 static struct mtx spacq_lock; 179 #define SPACQ_LOCK_INIT() \ 180 mtx_init(&spacq_lock, "spacqtree", \ 181 "fast ipsec security policy acquire list", MTX_DEF) 182 #define SPACQ_LOCK_DESTROY() mtx_destroy(&spacq_lock) 183 #define SPACQ_LOCK() mtx_lock(&spacq_lock) 184 #define SPACQ_UNLOCK() mtx_unlock(&spacq_lock) 185 #define SPACQ_LOCK_ASSERT() mtx_assert(&spacq_lock, MA_OWNED) 186 187 /* search order for SAs */ 188 static const u_int saorder_state_valid_prefer_old[] = { 189 SADB_SASTATE_DYING, SADB_SASTATE_MATURE, 190 }; 191 static const u_int saorder_state_valid_prefer_new[] = { 192 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 193 }; 194 static const u_int saorder_state_alive[] = { 195 /* except DEAD */ 196 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL 197 }; 198 static const u_int saorder_state_any[] = { 199 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 200 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD 201 }; 202 203 static const int minsize[] = { 204 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 205 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 206 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 207 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 208 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 209 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ 210 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ 211 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ 212 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ 213 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ 214 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ 215 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ 216 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ 217 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ 218 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ 219 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ 220 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 221 0, /* SADB_X_EXT_KMPRIVATE */ 222 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ 223 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 224 }; 225 static const int maxsize[] = { 226 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 227 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 228 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 229 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 230 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 231 0, /* SADB_EXT_ADDRESS_SRC */ 232 0, /* SADB_EXT_ADDRESS_DST */ 233 0, /* SADB_EXT_ADDRESS_PROXY */ 234 0, /* SADB_EXT_KEY_AUTH */ 235 0, /* SADB_EXT_KEY_ENCRYPT */ 236 0, /* SADB_EXT_IDENTITY_SRC */ 237 0, /* SADB_EXT_IDENTITY_DST */ 238 0, /* SADB_EXT_SENSITIVITY */ 239 0, /* SADB_EXT_PROPOSAL */ 240 0, /* SADB_EXT_SUPPORTED_AUTH */ 241 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ 242 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 243 0, /* SADB_X_EXT_KMPRIVATE */ 244 0, /* SADB_X_EXT_POLICY */ 245 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 246 }; 247 248 #ifdef SYSCTL_DECL 249 SYSCTL_DECL(_net_key); 250 #endif 251 252 SYSCTL_V_INT(V_NET, vnet_ipsec,_net_key, KEYCTL_DEBUG_LEVEL, debug, 253 CTLFLAG_RW, key_debug_level, 0, ""); 254 255 /* max count of trial for the decision of spi value */ 256 SYSCTL_V_INT(V_NET, vnet_ipsec,_net_key, KEYCTL_SPI_TRY, spi_trycnt, 257 CTLFLAG_RW, key_spi_trycnt, 0, ""); 258 259 /* minimum spi value to allocate automatically. */ 260 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_SPI_MIN_VALUE, 261 spi_minval, CTLFLAG_RW, key_spi_minval, 0, ""); 262 263 /* maximun spi value to allocate automatically. */ 264 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_SPI_MAX_VALUE, 265 spi_maxval, CTLFLAG_RW, key_spi_maxval, 0, ""); 266 267 /* interval to initialize randseed */ 268 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_RANDOM_INT, 269 int_random, CTLFLAG_RW, key_int_random, 0, ""); 270 271 /* lifetime for larval SA */ 272 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_LARVAL_LIFETIME, 273 larval_lifetime, CTLFLAG_RW, key_larval_lifetime, 0, ""); 274 275 /* counter for blocking to send SADB_ACQUIRE to IKEd */ 276 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_BLOCKACQ_COUNT, 277 blockacq_count, CTLFLAG_RW, key_blockacq_count, 0, ""); 278 279 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ 280 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_BLOCKACQ_LIFETIME, 281 blockacq_lifetime, CTLFLAG_RW, key_blockacq_lifetime, 0, ""); 282 283 /* ESP auth */ 284 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_ESP_AUTH, esp_auth, 285 CTLFLAG_RW, ipsec_esp_auth, 0, ""); 286 287 /* minimum ESP key length */ 288 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_ESP_KEYMIN, 289 esp_keymin, CTLFLAG_RW, ipsec_esp_keymin, 0, ""); 290 291 /* minimum AH key length */ 292 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_AH_KEYMIN, ah_keymin, 293 CTLFLAG_RW, ipsec_ah_keymin, 0, ""); 294 295 /* perfered old SA rather than new SA */ 296 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_PREFERED_OLDSA, 297 preferred_oldsa, CTLFLAG_RW, key_preferred_oldsa, 0, ""); 298 299 #define __LIST_CHAINED(elm) \ 300 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) 301 #define LIST_INSERT_TAIL(head, elm, type, field) \ 302 do {\ 303 struct type *curelm = LIST_FIRST(head); \ 304 if (curelm == NULL) {\ 305 LIST_INSERT_HEAD(head, elm, field); \ 306 } else { \ 307 while (LIST_NEXT(curelm, field)) \ 308 curelm = LIST_NEXT(curelm, field);\ 309 LIST_INSERT_AFTER(curelm, elm, field);\ 310 }\ 311 } while (0) 312 313 #define KEY_CHKSASTATE(head, sav, name) \ 314 do { \ 315 if ((head) != (sav)) { \ 316 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \ 317 (name), (head), (sav))); \ 318 continue; \ 319 } \ 320 } while (0) 321 322 #define KEY_CHKSPDIR(head, sp, name) \ 323 do { \ 324 if ((head) != (sp)) { \ 325 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \ 326 "anyway continue.\n", \ 327 (name), (head), (sp))); \ 328 } \ 329 } while (0) 330 331 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association"); 332 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head"); 333 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy"); 334 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request"); 335 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous"); 336 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire"); 337 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire"); 338 339 /* 340 * set parameters into secpolicyindex buffer. 341 * Must allocate secpolicyindex buffer passed to this function. 342 */ 343 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \ 344 do { \ 345 bzero((idx), sizeof(struct secpolicyindex)); \ 346 (idx)->dir = (_dir); \ 347 (idx)->prefs = (ps); \ 348 (idx)->prefd = (pd); \ 349 (idx)->ul_proto = (ulp); \ 350 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 351 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 352 } while (0) 353 354 /* 355 * set parameters into secasindex buffer. 356 * Must allocate secasindex buffer before calling this function. 357 */ 358 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \ 359 do { \ 360 bzero((idx), sizeof(struct secasindex)); \ 361 (idx)->proto = (p); \ 362 (idx)->mode = (m); \ 363 (idx)->reqid = (r); \ 364 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 365 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 366 } while (0) 367 368 /* key statistics */ 369 struct _keystat { 370 u_long getspi_count; /* the avarage of count to try to get new SPI */ 371 } keystat; 372 373 struct sadb_msghdr { 374 struct sadb_msg *msg; 375 struct sadb_ext *ext[SADB_EXT_MAX + 1]; 376 int extoff[SADB_EXT_MAX + 1]; 377 int extlen[SADB_EXT_MAX + 1]; 378 }; 379 380 static struct secasvar *key_allocsa_policy __P((const struct secasindex *)); 381 static void key_freesp_so __P((struct secpolicy **)); 382 static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int)); 383 static void key_delsp __P((struct secpolicy *)); 384 static struct secpolicy *key_getsp __P((struct secpolicyindex *)); 385 static void _key_delsp(struct secpolicy *sp); 386 static struct secpolicy *key_getspbyid __P((u_int32_t)); 387 static u_int32_t key_newreqid __P((void)); 388 static struct mbuf *key_gather_mbuf __P((struct mbuf *, 389 const struct sadb_msghdr *, int, int, ...)); 390 static int key_spdadd __P((struct socket *, struct mbuf *, 391 const struct sadb_msghdr *)); 392 static u_int32_t key_getnewspid __P((void)); 393 static int key_spddelete __P((struct socket *, struct mbuf *, 394 const struct sadb_msghdr *)); 395 static int key_spddelete2 __P((struct socket *, struct mbuf *, 396 const struct sadb_msghdr *)); 397 static int key_spdget __P((struct socket *, struct mbuf *, 398 const struct sadb_msghdr *)); 399 static int key_spdflush __P((struct socket *, struct mbuf *, 400 const struct sadb_msghdr *)); 401 static int key_spddump __P((struct socket *, struct mbuf *, 402 const struct sadb_msghdr *)); 403 static struct mbuf *key_setdumpsp __P((struct secpolicy *, 404 u_int8_t, u_int32_t, u_int32_t)); 405 static u_int key_getspreqmsglen __P((struct secpolicy *)); 406 static int key_spdexpire __P((struct secpolicy *)); 407 static struct secashead *key_newsah __P((struct secasindex *)); 408 static void key_delsah __P((struct secashead *)); 409 static struct secasvar *key_newsav __P((struct mbuf *, 410 const struct sadb_msghdr *, struct secashead *, int *, 411 const char*, int)); 412 #define KEY_NEWSAV(m, sadb, sah, e) \ 413 key_newsav(m, sadb, sah, e, __FILE__, __LINE__) 414 static void key_delsav __P((struct secasvar *)); 415 static struct secashead *key_getsah __P((struct secasindex *)); 416 static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t)); 417 static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t)); 418 static int key_setsaval __P((struct secasvar *, struct mbuf *, 419 const struct sadb_msghdr *)); 420 static int key_mature __P((struct secasvar *)); 421 static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t, 422 u_int8_t, u_int32_t, u_int32_t)); 423 static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t, 424 u_int32_t, pid_t, u_int16_t)); 425 static struct mbuf *key_setsadbsa __P((struct secasvar *)); 426 static struct mbuf *key_setsadbaddr __P((u_int16_t, 427 const struct sockaddr *, u_int8_t, u_int16_t)); 428 static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t)); 429 static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t, 430 u_int32_t)); 431 static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int, 432 struct malloc_type *); 433 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src, 434 struct malloc_type *type); 435 #ifdef INET6 436 static int key_ismyaddr6 __P((struct sockaddr_in6 *)); 437 #endif 438 439 /* flags for key_cmpsaidx() */ 440 #define CMP_HEAD 1 /* protocol, addresses. */ 441 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ 442 #define CMP_REQID 3 /* additionally HEAD, reaid. */ 443 #define CMP_EXACTLY 4 /* all elements. */ 444 static int key_cmpsaidx 445 __P((const struct secasindex *, const struct secasindex *, int)); 446 447 static int key_cmpspidx_exactly 448 __P((struct secpolicyindex *, struct secpolicyindex *)); 449 static int key_cmpspidx_withmask 450 __P((struct secpolicyindex *, struct secpolicyindex *)); 451 static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int)); 452 static int key_bbcmp __P((const void *, const void *, u_int)); 453 static u_int16_t key_satype2proto __P((u_int8_t)); 454 static u_int8_t key_proto2satype __P((u_int16_t)); 455 456 static int key_getspi __P((struct socket *, struct mbuf *, 457 const struct sadb_msghdr *)); 458 static u_int32_t key_do_getnewspi __P((struct sadb_spirange *, 459 struct secasindex *)); 460 static int key_update __P((struct socket *, struct mbuf *, 461 const struct sadb_msghdr *)); 462 #ifdef IPSEC_DOSEQCHECK 463 static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t)); 464 #endif 465 static int key_add __P((struct socket *, struct mbuf *, 466 const struct sadb_msghdr *)); 467 static int key_setident __P((struct secashead *, struct mbuf *, 468 const struct sadb_msghdr *)); 469 static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *, 470 const struct sadb_msghdr *)); 471 static int key_delete __P((struct socket *, struct mbuf *, 472 const struct sadb_msghdr *)); 473 static int key_get __P((struct socket *, struct mbuf *, 474 const struct sadb_msghdr *)); 475 476 static void key_getcomb_setlifetime __P((struct sadb_comb *)); 477 static struct mbuf *key_getcomb_esp __P((void)); 478 static struct mbuf *key_getcomb_ah __P((void)); 479 static struct mbuf *key_getcomb_ipcomp __P((void)); 480 static struct mbuf *key_getprop __P((const struct secasindex *)); 481 482 static int key_acquire __P((const struct secasindex *, struct secpolicy *)); 483 static struct secacq *key_newacq __P((const struct secasindex *)); 484 static struct secacq *key_getacq __P((const struct secasindex *)); 485 static struct secacq *key_getacqbyseq __P((u_int32_t)); 486 static struct secspacq *key_newspacq __P((struct secpolicyindex *)); 487 static struct secspacq *key_getspacq __P((struct secpolicyindex *)); 488 static int key_acquire2 __P((struct socket *, struct mbuf *, 489 const struct sadb_msghdr *)); 490 static int key_register __P((struct socket *, struct mbuf *, 491 const struct sadb_msghdr *)); 492 static int key_expire __P((struct secasvar *)); 493 static int key_flush __P((struct socket *, struct mbuf *, 494 const struct sadb_msghdr *)); 495 static int key_dump __P((struct socket *, struct mbuf *, 496 const struct sadb_msghdr *)); 497 static int key_promisc __P((struct socket *, struct mbuf *, 498 const struct sadb_msghdr *)); 499 static int key_senderror __P((struct socket *, struct mbuf *, int)); 500 static int key_validate_ext __P((const struct sadb_ext *, int)); 501 static int key_align __P((struct mbuf *, struct sadb_msghdr *)); 502 static struct mbuf *key_setlifetime(struct seclifetime *src, 503 u_int16_t exttype); 504 static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype); 505 506 #if 0 507 static const char *key_getfqdn __P((void)); 508 static const char *key_getuserfqdn __P((void)); 509 #endif 510 static void key_sa_chgstate __P((struct secasvar *, u_int8_t)); 511 static struct mbuf *key_alloc_mbuf __P((int)); 512 513 static __inline void 514 sa_initref(struct secasvar *sav) 515 { 516 517 refcount_init(&sav->refcnt, 1); 518 } 519 static __inline void 520 sa_addref(struct secasvar *sav) 521 { 522 523 refcount_acquire(&sav->refcnt); 524 IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow")); 525 } 526 static __inline int 527 sa_delref(struct secasvar *sav) 528 { 529 530 IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow")); 531 return (refcount_release(&sav->refcnt)); 532 } 533 534 #define SP_ADDREF(p) do { \ 535 (p)->refcnt++; \ 536 IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow")); \ 537 } while (0) 538 #define SP_DELREF(p) do { \ 539 IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow")); \ 540 (p)->refcnt--; \ 541 } while (0) 542 543 544 /* 545 * Update the refcnt while holding the SPTREE lock. 546 */ 547 void 548 key_addref(struct secpolicy *sp) 549 { 550 SPTREE_LOCK(); 551 SP_ADDREF(sp); 552 SPTREE_UNLOCK(); 553 } 554 555 /* 556 * Return 0 when there are known to be no SP's for the specified 557 * direction. Otherwise return 1. This is used by IPsec code 558 * to optimize performance. 559 */ 560 int 561 key_havesp(u_int dir) 562 { 563 INIT_VNET_IPSEC(curvnet); 564 565 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? 566 LIST_FIRST(&V_sptree[dir]) != NULL : 1); 567 } 568 569 /* %%% IPsec policy management */ 570 /* 571 * allocating a SP for OUTBOUND or INBOUND packet. 572 * Must call key_freesp() later. 573 * OUT: NULL: not found 574 * others: found and return the pointer. 575 */ 576 struct secpolicy * 577 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag) 578 { 579 INIT_VNET_IPSEC(curvnet); 580 struct secpolicy *sp; 581 582 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 583 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 584 ("invalid direction %u", dir)); 585 586 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 587 printf("DP %s from %s:%u\n", __func__, where, tag)); 588 589 /* get a SP entry */ 590 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 591 printf("*** objects\n"); 592 kdebug_secpolicyindex(spidx)); 593 594 SPTREE_LOCK(); 595 LIST_FOREACH(sp, &V_sptree[dir], chain) { 596 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 597 printf("*** in SPD\n"); 598 kdebug_secpolicyindex(&sp->spidx)); 599 600 if (sp->state == IPSEC_SPSTATE_DEAD) 601 continue; 602 if (key_cmpspidx_withmask(&sp->spidx, spidx)) 603 goto found; 604 } 605 sp = NULL; 606 found: 607 if (sp) { 608 /* sanity check */ 609 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 610 611 /* found a SPD entry */ 612 sp->lastused = time_second; 613 SP_ADDREF(sp); 614 } 615 SPTREE_UNLOCK(); 616 617 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 618 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 619 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 620 return sp; 621 } 622 623 /* 624 * allocating a SP for OUTBOUND or INBOUND packet. 625 * Must call key_freesp() later. 626 * OUT: NULL: not found 627 * others: found and return the pointer. 628 */ 629 struct secpolicy * 630 key_allocsp2(u_int32_t spi, 631 union sockaddr_union *dst, 632 u_int8_t proto, 633 u_int dir, 634 const char* where, int tag) 635 { 636 INIT_VNET_IPSEC(curvnet); 637 struct secpolicy *sp; 638 639 IPSEC_ASSERT(dst != NULL, ("null dst")); 640 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 641 ("invalid direction %u", dir)); 642 643 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 644 printf("DP %s from %s:%u\n", __func__, where, tag)); 645 646 /* get a SP entry */ 647 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 648 printf("*** objects\n"); 649 printf("spi %u proto %u dir %u\n", spi, proto, dir); 650 kdebug_sockaddr(&dst->sa)); 651 652 SPTREE_LOCK(); 653 LIST_FOREACH(sp, &V_sptree[dir], chain) { 654 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 655 printf("*** in SPD\n"); 656 kdebug_secpolicyindex(&sp->spidx)); 657 658 if (sp->state == IPSEC_SPSTATE_DEAD) 659 continue; 660 /* compare simple values, then dst address */ 661 if (sp->spidx.ul_proto != proto) 662 continue; 663 /* NB: spi's must exist and match */ 664 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi) 665 continue; 666 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0) 667 goto found; 668 } 669 sp = NULL; 670 found: 671 if (sp) { 672 /* sanity check */ 673 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 674 675 /* found a SPD entry */ 676 sp->lastused = time_second; 677 SP_ADDREF(sp); 678 } 679 SPTREE_UNLOCK(); 680 681 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 682 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 683 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 684 return sp; 685 } 686 687 /* 688 * return a policy that matches this particular inbound packet. 689 * XXX slow 690 */ 691 struct secpolicy * 692 key_gettunnel(const struct sockaddr *osrc, 693 const struct sockaddr *odst, 694 const struct sockaddr *isrc, 695 const struct sockaddr *idst, 696 const char* where, int tag) 697 { 698 INIT_VNET_IPSEC(curvnet); 699 struct secpolicy *sp; 700 const int dir = IPSEC_DIR_INBOUND; 701 struct ipsecrequest *r1, *r2, *p; 702 struct secpolicyindex spidx; 703 704 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 705 printf("DP %s from %s:%u\n", __func__, where, tag)); 706 707 if (isrc->sa_family != idst->sa_family) { 708 ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.", 709 __func__, isrc->sa_family, idst->sa_family)); 710 sp = NULL; 711 goto done; 712 } 713 714 SPTREE_LOCK(); 715 LIST_FOREACH(sp, &V_sptree[dir], chain) { 716 if (sp->state == IPSEC_SPSTATE_DEAD) 717 continue; 718 719 r1 = r2 = NULL; 720 for (p = sp->req; p; p = p->next) { 721 if (p->saidx.mode != IPSEC_MODE_TUNNEL) 722 continue; 723 724 r1 = r2; 725 r2 = p; 726 727 if (!r1) { 728 /* here we look at address matches only */ 729 spidx = sp->spidx; 730 if (isrc->sa_len > sizeof(spidx.src) || 731 idst->sa_len > sizeof(spidx.dst)) 732 continue; 733 bcopy(isrc, &spidx.src, isrc->sa_len); 734 bcopy(idst, &spidx.dst, idst->sa_len); 735 if (!key_cmpspidx_withmask(&sp->spidx, &spidx)) 736 continue; 737 } else { 738 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) || 739 key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0)) 740 continue; 741 } 742 743 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) || 744 key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0)) 745 continue; 746 747 goto found; 748 } 749 } 750 sp = NULL; 751 found: 752 if (sp) { 753 sp->lastused = time_second; 754 SP_ADDREF(sp); 755 } 756 SPTREE_UNLOCK(); 757 done: 758 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 759 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 760 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 761 return sp; 762 } 763 764 /* 765 * allocating an SA entry for an *OUTBOUND* packet. 766 * checking each request entries in SP, and acquire an SA if need. 767 * OUT: 0: there are valid requests. 768 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. 769 */ 770 int 771 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx) 772 { 773 INIT_VNET_IPSEC(curvnet); 774 u_int level; 775 int error; 776 777 IPSEC_ASSERT(isr != NULL, ("null isr")); 778 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 779 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT || 780 saidx->mode == IPSEC_MODE_TUNNEL, 781 ("unexpected policy %u", saidx->mode)); 782 783 /* 784 * XXX guard against protocol callbacks from the crypto 785 * thread as they reference ipsecrequest.sav which we 786 * temporarily null out below. Need to rethink how we 787 * handle bundled SA's in the callback thread. 788 */ 789 IPSECREQUEST_LOCK_ASSERT(isr); 790 791 /* get current level */ 792 level = ipsec_get_reqlevel(isr); 793 #if 0 794 /* 795 * We do allocate new SA only if the state of SA in the holder is 796 * SADB_SASTATE_DEAD. The SA for outbound must be the oldest. 797 */ 798 if (isr->sav != NULL) { 799 if (isr->sav->sah == NULL) 800 panic("%s: sah is null.\n", __func__); 801 if (isr->sav == (struct secasvar *)LIST_FIRST( 802 &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) { 803 KEY_FREESAV(&isr->sav); 804 isr->sav = NULL; 805 } 806 } 807 #else 808 /* 809 * we free any SA stashed in the IPsec request because a different 810 * SA may be involved each time this request is checked, either 811 * because new SAs are being configured, or this request is 812 * associated with an unconnected datagram socket, or this request 813 * is associated with a system default policy. 814 * 815 * The operation may have negative impact to performance. We may 816 * want to check cached SA carefully, rather than picking new SA 817 * every time. 818 */ 819 if (isr->sav != NULL) { 820 KEY_FREESAV(&isr->sav); 821 isr->sav = NULL; 822 } 823 #endif 824 825 /* 826 * new SA allocation if no SA found. 827 * key_allocsa_policy should allocate the oldest SA available. 828 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt. 829 */ 830 if (isr->sav == NULL) 831 isr->sav = key_allocsa_policy(saidx); 832 833 /* When there is SA. */ 834 if (isr->sav != NULL) { 835 if (isr->sav->state != SADB_SASTATE_MATURE && 836 isr->sav->state != SADB_SASTATE_DYING) 837 return EINVAL; 838 return 0; 839 } 840 841 /* there is no SA */ 842 error = key_acquire(saidx, isr->sp); 843 if (error != 0) { 844 /* XXX What should I do ? */ 845 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 846 __func__, error)); 847 return error; 848 } 849 850 if (level != IPSEC_LEVEL_REQUIRE) { 851 /* XXX sigh, the interface to this routine is botched */ 852 IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA")); 853 return 0; 854 } else { 855 return ENOENT; 856 } 857 } 858 859 /* 860 * allocating a SA for policy entry from SAD. 861 * NOTE: searching SAD of aliving state. 862 * OUT: NULL: not found. 863 * others: found and return the pointer. 864 */ 865 static struct secasvar * 866 key_allocsa_policy(const struct secasindex *saidx) 867 { 868 #define N(a) _ARRAYLEN(a) 869 INIT_VNET_IPSEC(curvnet); 870 struct secashead *sah; 871 struct secasvar *sav; 872 u_int stateidx, arraysize; 873 const u_int *state_valid; 874 875 SAHTREE_LOCK(); 876 LIST_FOREACH(sah, &V_sahtree, chain) { 877 if (sah->state == SADB_SASTATE_DEAD) 878 continue; 879 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) { 880 if (V_key_preferred_oldsa) { 881 state_valid = saorder_state_valid_prefer_old; 882 arraysize = N(saorder_state_valid_prefer_old); 883 } else { 884 state_valid = saorder_state_valid_prefer_new; 885 arraysize = N(saorder_state_valid_prefer_new); 886 } 887 SAHTREE_UNLOCK(); 888 goto found; 889 } 890 } 891 SAHTREE_UNLOCK(); 892 893 return NULL; 894 895 found: 896 /* search valid state */ 897 for (stateidx = 0; stateidx < arraysize; stateidx++) { 898 sav = key_do_allocsa_policy(sah, state_valid[stateidx]); 899 if (sav != NULL) 900 return sav; 901 } 902 903 return NULL; 904 #undef N 905 } 906 907 /* 908 * searching SAD with direction, protocol, mode and state. 909 * called by key_allocsa_policy(). 910 * OUT: 911 * NULL : not found 912 * others : found, pointer to a SA. 913 */ 914 static struct secasvar * 915 key_do_allocsa_policy(struct secashead *sah, u_int state) 916 { 917 INIT_VNET_IPSEC(curvnet); 918 struct secasvar *sav, *nextsav, *candidate, *d; 919 920 /* initilize */ 921 candidate = NULL; 922 923 SAHTREE_LOCK(); 924 for (sav = LIST_FIRST(&sah->savtree[state]); 925 sav != NULL; 926 sav = nextsav) { 927 928 nextsav = LIST_NEXT(sav, chain); 929 930 /* sanity check */ 931 KEY_CHKSASTATE(sav->state, state, __func__); 932 933 /* initialize */ 934 if (candidate == NULL) { 935 candidate = sav; 936 continue; 937 } 938 939 /* Which SA is the better ? */ 940 941 IPSEC_ASSERT(candidate->lft_c != NULL, 942 ("null candidate lifetime")); 943 IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime")); 944 945 /* What the best method is to compare ? */ 946 if (V_key_preferred_oldsa) { 947 if (candidate->lft_c->addtime > 948 sav->lft_c->addtime) { 949 candidate = sav; 950 } 951 continue; 952 /*NOTREACHED*/ 953 } 954 955 /* preferred new sa rather than old sa */ 956 if (candidate->lft_c->addtime < 957 sav->lft_c->addtime) { 958 d = candidate; 959 candidate = sav; 960 } else 961 d = sav; 962 963 /* 964 * prepared to delete the SA when there is more 965 * suitable candidate and the lifetime of the SA is not 966 * permanent. 967 */ 968 if (d->lft_h->addtime != 0) { 969 struct mbuf *m, *result; 970 u_int8_t satype; 971 972 key_sa_chgstate(d, SADB_SASTATE_DEAD); 973 974 IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count")); 975 976 satype = key_proto2satype(d->sah->saidx.proto); 977 if (satype == 0) 978 goto msgfail; 979 980 m = key_setsadbmsg(SADB_DELETE, 0, 981 satype, 0, 0, d->refcnt - 1); 982 if (!m) 983 goto msgfail; 984 result = m; 985 986 /* set sadb_address for saidx's. */ 987 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 988 &d->sah->saidx.src.sa, 989 d->sah->saidx.src.sa.sa_len << 3, 990 IPSEC_ULPROTO_ANY); 991 if (!m) 992 goto msgfail; 993 m_cat(result, m); 994 995 /* set sadb_address for saidx's. */ 996 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 997 &d->sah->saidx.dst.sa, 998 d->sah->saidx.dst.sa.sa_len << 3, 999 IPSEC_ULPROTO_ANY); 1000 if (!m) 1001 goto msgfail; 1002 m_cat(result, m); 1003 1004 /* create SA extension */ 1005 m = key_setsadbsa(d); 1006 if (!m) 1007 goto msgfail; 1008 m_cat(result, m); 1009 1010 if (result->m_len < sizeof(struct sadb_msg)) { 1011 result = m_pullup(result, 1012 sizeof(struct sadb_msg)); 1013 if (result == NULL) 1014 goto msgfail; 1015 } 1016 1017 result->m_pkthdr.len = 0; 1018 for (m = result; m; m = m->m_next) 1019 result->m_pkthdr.len += m->m_len; 1020 mtod(result, struct sadb_msg *)->sadb_msg_len = 1021 PFKEY_UNIT64(result->m_pkthdr.len); 1022 1023 if (key_sendup_mbuf(NULL, result, 1024 KEY_SENDUP_REGISTERED)) 1025 goto msgfail; 1026 msgfail: 1027 KEY_FREESAV(&d); 1028 } 1029 } 1030 if (candidate) { 1031 sa_addref(candidate); 1032 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1033 printf("DP %s cause refcnt++:%d SA:%p\n", 1034 __func__, candidate->refcnt, candidate)); 1035 } 1036 SAHTREE_UNLOCK(); 1037 1038 return candidate; 1039 } 1040 1041 /* 1042 * allocating a usable SA entry for a *INBOUND* packet. 1043 * Must call key_freesav() later. 1044 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). 1045 * NULL: not found, or error occured. 1046 * 1047 * In the comparison, no source address is used--for RFC2401 conformance. 1048 * To quote, from section 4.1: 1049 * A security association is uniquely identified by a triple consisting 1050 * of a Security Parameter Index (SPI), an IP Destination Address, and a 1051 * security protocol (AH or ESP) identifier. 1052 * Note that, however, we do need to keep source address in IPsec SA. 1053 * IKE specification and PF_KEY specification do assume that we 1054 * keep source address in IPsec SA. We see a tricky situation here. 1055 */ 1056 struct secasvar * 1057 key_allocsa( 1058 union sockaddr_union *dst, 1059 u_int proto, 1060 u_int32_t spi, 1061 const char* where, int tag) 1062 { 1063 INIT_VNET_IPSEC(curvnet); 1064 struct secashead *sah; 1065 struct secasvar *sav; 1066 u_int stateidx, arraysize, state; 1067 const u_int *saorder_state_valid; 1068 1069 IPSEC_ASSERT(dst != NULL, ("null dst address")); 1070 1071 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1072 printf("DP %s from %s:%u\n", __func__, where, tag)); 1073 1074 /* 1075 * searching SAD. 1076 * XXX: to be checked internal IP header somewhere. Also when 1077 * IPsec tunnel packet is received. But ESP tunnel mode is 1078 * encrypted so we can't check internal IP header. 1079 */ 1080 SAHTREE_LOCK(); 1081 if (V_key_preferred_oldsa) { 1082 saorder_state_valid = saorder_state_valid_prefer_old; 1083 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); 1084 } else { 1085 saorder_state_valid = saorder_state_valid_prefer_new; 1086 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); 1087 } 1088 LIST_FOREACH(sah, &V_sahtree, chain) { 1089 /* search valid state */ 1090 for (stateidx = 0; stateidx < arraysize; stateidx++) { 1091 state = saorder_state_valid[stateidx]; 1092 LIST_FOREACH(sav, &sah->savtree[state], chain) { 1093 /* sanity check */ 1094 KEY_CHKSASTATE(sav->state, state, __func__); 1095 /* do not return entries w/ unusable state */ 1096 if (sav->state != SADB_SASTATE_MATURE && 1097 sav->state != SADB_SASTATE_DYING) 1098 continue; 1099 if (proto != sav->sah->saidx.proto) 1100 continue; 1101 if (spi != sav->spi) 1102 continue; 1103 #if 0 /* don't check src */ 1104 /* check src address */ 1105 if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, 0) != 0) 1106 continue; 1107 #endif 1108 /* check dst address */ 1109 if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, 0) != 0) 1110 continue; 1111 sa_addref(sav); 1112 goto done; 1113 } 1114 } 1115 } 1116 sav = NULL; 1117 done: 1118 SAHTREE_UNLOCK(); 1119 1120 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1121 printf("DP %s return SA:%p; refcnt %u\n", __func__, 1122 sav, sav ? sav->refcnt : 0)); 1123 return sav; 1124 } 1125 1126 /* 1127 * Must be called after calling key_allocsp(). 1128 * For both the packet without socket and key_freeso(). 1129 */ 1130 void 1131 _key_freesp(struct secpolicy **spp, const char* where, int tag) 1132 { 1133 INIT_VNET_IPSEC(curvnet); 1134 struct secpolicy *sp = *spp; 1135 1136 IPSEC_ASSERT(sp != NULL, ("null sp")); 1137 1138 SPTREE_LOCK(); 1139 SP_DELREF(sp); 1140 1141 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1142 printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n", 1143 __func__, sp, sp->id, where, tag, sp->refcnt)); 1144 1145 if (sp->refcnt == 0) { 1146 *spp = NULL; 1147 key_delsp(sp); 1148 } 1149 SPTREE_UNLOCK(); 1150 } 1151 1152 /* 1153 * Must be called after calling key_allocsp(). 1154 * For the packet with socket. 1155 */ 1156 void 1157 key_freeso(struct socket *so) 1158 { 1159 INIT_VNET_IPSEC(curvnet); 1160 IPSEC_ASSERT(so != NULL, ("null so")); 1161 1162 switch (so->so_proto->pr_domain->dom_family) { 1163 #ifdef INET 1164 case PF_INET: 1165 { 1166 struct inpcb *pcb = sotoinpcb(so); 1167 1168 /* Does it have a PCB ? */ 1169 if (pcb == NULL) 1170 return; 1171 key_freesp_so(&pcb->inp_sp->sp_in); 1172 key_freesp_so(&pcb->inp_sp->sp_out); 1173 } 1174 break; 1175 #endif 1176 #ifdef INET6 1177 case PF_INET6: 1178 { 1179 #ifdef HAVE_NRL_INPCB 1180 struct inpcb *pcb = sotoinpcb(so); 1181 1182 /* Does it have a PCB ? */ 1183 if (pcb == NULL) 1184 return; 1185 key_freesp_so(&pcb->inp_sp->sp_in); 1186 key_freesp_so(&pcb->inp_sp->sp_out); 1187 #else 1188 struct in6pcb *pcb = sotoin6pcb(so); 1189 1190 /* Does it have a PCB ? */ 1191 if (pcb == NULL) 1192 return; 1193 key_freesp_so(&pcb->in6p_sp->sp_in); 1194 key_freesp_so(&pcb->in6p_sp->sp_out); 1195 #endif 1196 } 1197 break; 1198 #endif /* INET6 */ 1199 default: 1200 ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n", 1201 __func__, so->so_proto->pr_domain->dom_family)); 1202 return; 1203 } 1204 } 1205 1206 static void 1207 key_freesp_so(struct secpolicy **sp) 1208 { 1209 IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp")); 1210 1211 if ((*sp)->policy == IPSEC_POLICY_ENTRUST || 1212 (*sp)->policy == IPSEC_POLICY_BYPASS) 1213 return; 1214 1215 IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC, 1216 ("invalid policy %u", (*sp)->policy)); 1217 KEY_FREESP(sp); 1218 } 1219 1220 /* 1221 * Must be called after calling key_allocsa(). 1222 * This function is called by key_freesp() to free some SA allocated 1223 * for a policy. 1224 */ 1225 void 1226 key_freesav(struct secasvar **psav, const char* where, int tag) 1227 { 1228 INIT_VNET_IPSEC(curvnet); 1229 struct secasvar *sav = *psav; 1230 1231 IPSEC_ASSERT(sav != NULL, ("null sav")); 1232 1233 if (sa_delref(sav)) { 1234 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1235 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1236 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1237 *psav = NULL; 1238 key_delsav(sav); 1239 } else { 1240 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1241 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1242 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1243 } 1244 } 1245 1246 /* %%% SPD management */ 1247 /* 1248 * free security policy entry. 1249 */ 1250 static void 1251 key_delsp(struct secpolicy *sp) 1252 { 1253 struct ipsecrequest *isr, *nextisr; 1254 1255 IPSEC_ASSERT(sp != NULL, ("null sp")); 1256 SPTREE_LOCK_ASSERT(); 1257 1258 sp->state = IPSEC_SPSTATE_DEAD; 1259 1260 IPSEC_ASSERT(sp->refcnt == 0, 1261 ("SP with references deleted (refcnt %u)", sp->refcnt)); 1262 1263 /* remove from SP index */ 1264 if (__LIST_CHAINED(sp)) 1265 LIST_REMOVE(sp, chain); 1266 1267 for (isr = sp->req; isr != NULL; isr = nextisr) { 1268 if (isr->sav != NULL) { 1269 KEY_FREESAV(&isr->sav); 1270 isr->sav = NULL; 1271 } 1272 1273 nextisr = isr->next; 1274 ipsec_delisr(isr); 1275 } 1276 _key_delsp(sp); 1277 } 1278 1279 /* 1280 * search SPD 1281 * OUT: NULL : not found 1282 * others : found, pointer to a SP. 1283 */ 1284 static struct secpolicy * 1285 key_getsp(struct secpolicyindex *spidx) 1286 { 1287 INIT_VNET_IPSEC(curvnet); 1288 struct secpolicy *sp; 1289 1290 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 1291 1292 SPTREE_LOCK(); 1293 LIST_FOREACH(sp, &V_sptree[spidx->dir], chain) { 1294 if (sp->state == IPSEC_SPSTATE_DEAD) 1295 continue; 1296 if (key_cmpspidx_exactly(spidx, &sp->spidx)) { 1297 SP_ADDREF(sp); 1298 break; 1299 } 1300 } 1301 SPTREE_UNLOCK(); 1302 1303 return sp; 1304 } 1305 1306 /* 1307 * get SP by index. 1308 * OUT: NULL : not found 1309 * others : found, pointer to a SP. 1310 */ 1311 static struct secpolicy * 1312 key_getspbyid(u_int32_t id) 1313 { 1314 INIT_VNET_IPSEC(curvnet); 1315 struct secpolicy *sp; 1316 1317 SPTREE_LOCK(); 1318 LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_INBOUND], chain) { 1319 if (sp->state == IPSEC_SPSTATE_DEAD) 1320 continue; 1321 if (sp->id == id) { 1322 SP_ADDREF(sp); 1323 goto done; 1324 } 1325 } 1326 1327 LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_OUTBOUND], chain) { 1328 if (sp->state == IPSEC_SPSTATE_DEAD) 1329 continue; 1330 if (sp->id == id) { 1331 SP_ADDREF(sp); 1332 goto done; 1333 } 1334 } 1335 done: 1336 SPTREE_UNLOCK(); 1337 1338 return sp; 1339 } 1340 1341 struct secpolicy * 1342 key_newsp(const char* where, int tag) 1343 { 1344 INIT_VNET_IPSEC(curvnet); 1345 struct secpolicy *newsp = NULL; 1346 1347 newsp = (struct secpolicy *) 1348 malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO); 1349 if (newsp) { 1350 SECPOLICY_LOCK_INIT(newsp); 1351 newsp->refcnt = 1; 1352 newsp->req = NULL; 1353 } 1354 1355 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1356 printf("DP %s from %s:%u return SP:%p\n", __func__, 1357 where, tag, newsp)); 1358 return newsp; 1359 } 1360 1361 static void 1362 _key_delsp(struct secpolicy *sp) 1363 { 1364 SECPOLICY_LOCK_DESTROY(sp); 1365 free(sp, M_IPSEC_SP); 1366 } 1367 1368 /* 1369 * create secpolicy structure from sadb_x_policy structure. 1370 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, 1371 * so must be set properly later. 1372 */ 1373 struct secpolicy * 1374 key_msg2sp(xpl0, len, error) 1375 struct sadb_x_policy *xpl0; 1376 size_t len; 1377 int *error; 1378 { 1379 INIT_VNET_IPSEC(curvnet); 1380 struct secpolicy *newsp; 1381 1382 IPSEC_ASSERT(xpl0 != NULL, ("null xpl0")); 1383 IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len)); 1384 1385 if (len != PFKEY_EXTLEN(xpl0)) { 1386 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__)); 1387 *error = EINVAL; 1388 return NULL; 1389 } 1390 1391 if ((newsp = KEY_NEWSP()) == NULL) { 1392 *error = ENOBUFS; 1393 return NULL; 1394 } 1395 1396 newsp->spidx.dir = xpl0->sadb_x_policy_dir; 1397 newsp->policy = xpl0->sadb_x_policy_type; 1398 1399 /* check policy */ 1400 switch (xpl0->sadb_x_policy_type) { 1401 case IPSEC_POLICY_DISCARD: 1402 case IPSEC_POLICY_NONE: 1403 case IPSEC_POLICY_ENTRUST: 1404 case IPSEC_POLICY_BYPASS: 1405 newsp->req = NULL; 1406 break; 1407 1408 case IPSEC_POLICY_IPSEC: 1409 { 1410 int tlen; 1411 struct sadb_x_ipsecrequest *xisr; 1412 struct ipsecrequest **p_isr = &newsp->req; 1413 1414 /* validity check */ 1415 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { 1416 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", 1417 __func__)); 1418 KEY_FREESP(&newsp); 1419 *error = EINVAL; 1420 return NULL; 1421 } 1422 1423 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); 1424 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1); 1425 1426 while (tlen > 0) { 1427 /* length check */ 1428 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { 1429 ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest " 1430 "length.\n", __func__)); 1431 KEY_FREESP(&newsp); 1432 *error = EINVAL; 1433 return NULL; 1434 } 1435 1436 /* allocate request buffer */ 1437 /* NB: data structure is zero'd */ 1438 *p_isr = ipsec_newisr(); 1439 if ((*p_isr) == NULL) { 1440 ipseclog((LOG_DEBUG, 1441 "%s: No more memory.\n", __func__)); 1442 KEY_FREESP(&newsp); 1443 *error = ENOBUFS; 1444 return NULL; 1445 } 1446 1447 /* set values */ 1448 switch (xisr->sadb_x_ipsecrequest_proto) { 1449 case IPPROTO_ESP: 1450 case IPPROTO_AH: 1451 case IPPROTO_IPCOMP: 1452 break; 1453 default: 1454 ipseclog((LOG_DEBUG, 1455 "%s: invalid proto type=%u\n", __func__, 1456 xisr->sadb_x_ipsecrequest_proto)); 1457 KEY_FREESP(&newsp); 1458 *error = EPROTONOSUPPORT; 1459 return NULL; 1460 } 1461 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; 1462 1463 switch (xisr->sadb_x_ipsecrequest_mode) { 1464 case IPSEC_MODE_TRANSPORT: 1465 case IPSEC_MODE_TUNNEL: 1466 break; 1467 case IPSEC_MODE_ANY: 1468 default: 1469 ipseclog((LOG_DEBUG, 1470 "%s: invalid mode=%u\n", __func__, 1471 xisr->sadb_x_ipsecrequest_mode)); 1472 KEY_FREESP(&newsp); 1473 *error = EINVAL; 1474 return NULL; 1475 } 1476 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; 1477 1478 switch (xisr->sadb_x_ipsecrequest_level) { 1479 case IPSEC_LEVEL_DEFAULT: 1480 case IPSEC_LEVEL_USE: 1481 case IPSEC_LEVEL_REQUIRE: 1482 break; 1483 case IPSEC_LEVEL_UNIQUE: 1484 /* validity check */ 1485 /* 1486 * If range violation of reqid, kernel will 1487 * update it, don't refuse it. 1488 */ 1489 if (xisr->sadb_x_ipsecrequest_reqid 1490 > IPSEC_MANUAL_REQID_MAX) { 1491 ipseclog((LOG_DEBUG, 1492 "%s: reqid=%d range " 1493 "violation, updated by kernel.\n", 1494 __func__, 1495 xisr->sadb_x_ipsecrequest_reqid)); 1496 xisr->sadb_x_ipsecrequest_reqid = 0; 1497 } 1498 1499 /* allocate new reqid id if reqid is zero. */ 1500 if (xisr->sadb_x_ipsecrequest_reqid == 0) { 1501 u_int32_t reqid; 1502 if ((reqid = key_newreqid()) == 0) { 1503 KEY_FREESP(&newsp); 1504 *error = ENOBUFS; 1505 return NULL; 1506 } 1507 (*p_isr)->saidx.reqid = reqid; 1508 xisr->sadb_x_ipsecrequest_reqid = reqid; 1509 } else { 1510 /* set it for manual keying. */ 1511 (*p_isr)->saidx.reqid = 1512 xisr->sadb_x_ipsecrequest_reqid; 1513 } 1514 break; 1515 1516 default: 1517 ipseclog((LOG_DEBUG, "%s: invalid level=%u\n", 1518 __func__, 1519 xisr->sadb_x_ipsecrequest_level)); 1520 KEY_FREESP(&newsp); 1521 *error = EINVAL; 1522 return NULL; 1523 } 1524 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; 1525 1526 /* set IP addresses if there */ 1527 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { 1528 struct sockaddr *paddr; 1529 1530 paddr = (struct sockaddr *)(xisr + 1); 1531 1532 /* validity check */ 1533 if (paddr->sa_len 1534 > sizeof((*p_isr)->saidx.src)) { 1535 ipseclog((LOG_DEBUG, "%s: invalid " 1536 "request address length.\n", 1537 __func__)); 1538 KEY_FREESP(&newsp); 1539 *error = EINVAL; 1540 return NULL; 1541 } 1542 bcopy(paddr, &(*p_isr)->saidx.src, 1543 paddr->sa_len); 1544 1545 paddr = (struct sockaddr *)((caddr_t)paddr 1546 + paddr->sa_len); 1547 1548 /* validity check */ 1549 if (paddr->sa_len 1550 > sizeof((*p_isr)->saidx.dst)) { 1551 ipseclog((LOG_DEBUG, "%s: invalid " 1552 "request address length.\n", 1553 __func__)); 1554 KEY_FREESP(&newsp); 1555 *error = EINVAL; 1556 return NULL; 1557 } 1558 bcopy(paddr, &(*p_isr)->saidx.dst, 1559 paddr->sa_len); 1560 } 1561 1562 (*p_isr)->sp = newsp; 1563 1564 /* initialization for the next. */ 1565 p_isr = &(*p_isr)->next; 1566 tlen -= xisr->sadb_x_ipsecrequest_len; 1567 1568 /* validity check */ 1569 if (tlen < 0) { 1570 ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n", 1571 __func__)); 1572 KEY_FREESP(&newsp); 1573 *error = EINVAL; 1574 return NULL; 1575 } 1576 1577 xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr 1578 + xisr->sadb_x_ipsecrequest_len); 1579 } 1580 } 1581 break; 1582 default: 1583 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); 1584 KEY_FREESP(&newsp); 1585 *error = EINVAL; 1586 return NULL; 1587 } 1588 1589 *error = 0; 1590 return newsp; 1591 } 1592 1593 static u_int32_t 1594 key_newreqid() 1595 { 1596 static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 1597 1598 auto_reqid = (auto_reqid == ~0 1599 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); 1600 1601 /* XXX should be unique check */ 1602 1603 return auto_reqid; 1604 } 1605 1606 /* 1607 * copy secpolicy struct to sadb_x_policy structure indicated. 1608 */ 1609 struct mbuf * 1610 key_sp2msg(sp) 1611 struct secpolicy *sp; 1612 { 1613 struct sadb_x_policy *xpl; 1614 int tlen; 1615 caddr_t p; 1616 struct mbuf *m; 1617 1618 IPSEC_ASSERT(sp != NULL, ("null policy")); 1619 1620 tlen = key_getspreqmsglen(sp); 1621 1622 m = key_alloc_mbuf(tlen); 1623 if (!m || m->m_next) { /*XXX*/ 1624 if (m) 1625 m_freem(m); 1626 return NULL; 1627 } 1628 1629 m->m_len = tlen; 1630 m->m_next = NULL; 1631 xpl = mtod(m, struct sadb_x_policy *); 1632 bzero(xpl, tlen); 1633 1634 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen); 1635 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 1636 xpl->sadb_x_policy_type = sp->policy; 1637 xpl->sadb_x_policy_dir = sp->spidx.dir; 1638 xpl->sadb_x_policy_id = sp->id; 1639 p = (caddr_t)xpl + sizeof(*xpl); 1640 1641 /* if is the policy for ipsec ? */ 1642 if (sp->policy == IPSEC_POLICY_IPSEC) { 1643 struct sadb_x_ipsecrequest *xisr; 1644 struct ipsecrequest *isr; 1645 1646 for (isr = sp->req; isr != NULL; isr = isr->next) { 1647 1648 xisr = (struct sadb_x_ipsecrequest *)p; 1649 1650 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; 1651 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; 1652 xisr->sadb_x_ipsecrequest_level = isr->level; 1653 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; 1654 1655 p += sizeof(*xisr); 1656 bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len); 1657 p += isr->saidx.src.sa.sa_len; 1658 bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len); 1659 p += isr->saidx.src.sa.sa_len; 1660 1661 xisr->sadb_x_ipsecrequest_len = 1662 PFKEY_ALIGN8(sizeof(*xisr) 1663 + isr->saidx.src.sa.sa_len 1664 + isr->saidx.dst.sa.sa_len); 1665 } 1666 } 1667 1668 return m; 1669 } 1670 1671 /* m will not be freed nor modified */ 1672 static struct mbuf * 1673 #ifdef __STDC__ 1674 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, 1675 int ndeep, int nitem, ...) 1676 #else 1677 key_gather_mbuf(m, mhp, ndeep, nitem, va_alist) 1678 struct mbuf *m; 1679 const struct sadb_msghdr *mhp; 1680 int ndeep; 1681 int nitem; 1682 va_dcl 1683 #endif 1684 { 1685 va_list ap; 1686 int idx; 1687 int i; 1688 struct mbuf *result = NULL, *n; 1689 int len; 1690 1691 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1692 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1693 1694 va_start(ap, nitem); 1695 for (i = 0; i < nitem; i++) { 1696 idx = va_arg(ap, int); 1697 if (idx < 0 || idx > SADB_EXT_MAX) 1698 goto fail; 1699 /* don't attempt to pull empty extension */ 1700 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) 1701 continue; 1702 if (idx != SADB_EXT_RESERVED && 1703 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) 1704 continue; 1705 1706 if (idx == SADB_EXT_RESERVED) { 1707 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 1708 1709 IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len)); 1710 1711 MGETHDR(n, M_DONTWAIT, MT_DATA); 1712 if (!n) 1713 goto fail; 1714 n->m_len = len; 1715 n->m_next = NULL; 1716 m_copydata(m, 0, sizeof(struct sadb_msg), 1717 mtod(n, caddr_t)); 1718 } else if (i < ndeep) { 1719 len = mhp->extlen[idx]; 1720 n = key_alloc_mbuf(len); 1721 if (!n || n->m_next) { /*XXX*/ 1722 if (n) 1723 m_freem(n); 1724 goto fail; 1725 } 1726 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], 1727 mtod(n, caddr_t)); 1728 } else { 1729 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], 1730 M_DONTWAIT); 1731 } 1732 if (n == NULL) 1733 goto fail; 1734 1735 if (result) 1736 m_cat(result, n); 1737 else 1738 result = n; 1739 } 1740 va_end(ap); 1741 1742 if ((result->m_flags & M_PKTHDR) != 0) { 1743 result->m_pkthdr.len = 0; 1744 for (n = result; n; n = n->m_next) 1745 result->m_pkthdr.len += n->m_len; 1746 } 1747 1748 return result; 1749 1750 fail: 1751 m_freem(result); 1752 return NULL; 1753 } 1754 1755 /* 1756 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing 1757 * add an entry to SP database, when received 1758 * <base, address(SD), (lifetime(H),) policy> 1759 * from the user(?). 1760 * Adding to SP database, 1761 * and send 1762 * <base, address(SD), (lifetime(H),) policy> 1763 * to the socket which was send. 1764 * 1765 * SPDADD set a unique policy entry. 1766 * SPDSETIDX like SPDADD without a part of policy requests. 1767 * SPDUPDATE replace a unique policy entry. 1768 * 1769 * m will always be freed. 1770 */ 1771 static int 1772 key_spdadd(so, m, mhp) 1773 struct socket *so; 1774 struct mbuf *m; 1775 const struct sadb_msghdr *mhp; 1776 { 1777 INIT_VNET_IPSEC(curvnet); 1778 struct sadb_address *src0, *dst0; 1779 struct sadb_x_policy *xpl0, *xpl; 1780 struct sadb_lifetime *lft = NULL; 1781 struct secpolicyindex spidx; 1782 struct secpolicy *newsp; 1783 int error; 1784 1785 IPSEC_ASSERT(so != NULL, ("null socket")); 1786 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1787 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1788 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 1789 1790 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 1791 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 1792 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 1793 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n")); 1794 return key_senderror(so, m, EINVAL); 1795 } 1796 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 1797 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 1798 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 1799 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1800 __func__)); 1801 return key_senderror(so, m, EINVAL); 1802 } 1803 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { 1804 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] 1805 < sizeof(struct sadb_lifetime)) { 1806 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1807 __func__)); 1808 return key_senderror(so, m, EINVAL); 1809 } 1810 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 1811 } 1812 1813 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 1814 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 1815 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 1816 1817 /* make secindex */ 1818 /* XXX boundary check against sa_len */ 1819 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1820 src0 + 1, 1821 dst0 + 1, 1822 src0->sadb_address_prefixlen, 1823 dst0->sadb_address_prefixlen, 1824 src0->sadb_address_proto, 1825 &spidx); 1826 1827 /* checking the direciton. */ 1828 switch (xpl0->sadb_x_policy_dir) { 1829 case IPSEC_DIR_INBOUND: 1830 case IPSEC_DIR_OUTBOUND: 1831 break; 1832 default: 1833 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 1834 mhp->msg->sadb_msg_errno = EINVAL; 1835 return 0; 1836 } 1837 1838 /* check policy */ 1839 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */ 1840 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST 1841 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { 1842 ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__)); 1843 return key_senderror(so, m, EINVAL); 1844 } 1845 1846 /* policy requests are mandatory when action is ipsec. */ 1847 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX 1848 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC 1849 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { 1850 ipseclog((LOG_DEBUG, "%s: some policy requests part required\n", 1851 __func__)); 1852 return key_senderror(so, m, EINVAL); 1853 } 1854 1855 /* 1856 * checking there is SP already or not. 1857 * SPDUPDATE doesn't depend on whether there is a SP or not. 1858 * If the type is either SPDADD or SPDSETIDX AND a SP is found, 1859 * then error. 1860 */ 1861 newsp = key_getsp(&spidx); 1862 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1863 if (newsp) { 1864 newsp->state = IPSEC_SPSTATE_DEAD; 1865 KEY_FREESP(&newsp); 1866 } 1867 } else { 1868 if (newsp != NULL) { 1869 KEY_FREESP(&newsp); 1870 ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n", 1871 __func__)); 1872 return key_senderror(so, m, EEXIST); 1873 } 1874 } 1875 1876 /* allocation new SP entry */ 1877 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) { 1878 return key_senderror(so, m, error); 1879 } 1880 1881 if ((newsp->id = key_getnewspid()) == 0) { 1882 _key_delsp(newsp); 1883 return key_senderror(so, m, ENOBUFS); 1884 } 1885 1886 /* XXX boundary check against sa_len */ 1887 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1888 src0 + 1, 1889 dst0 + 1, 1890 src0->sadb_address_prefixlen, 1891 dst0->sadb_address_prefixlen, 1892 src0->sadb_address_proto, 1893 &newsp->spidx); 1894 1895 /* sanity check on addr pair */ 1896 if (((struct sockaddr *)(src0 + 1))->sa_family != 1897 ((struct sockaddr *)(dst0+ 1))->sa_family) { 1898 _key_delsp(newsp); 1899 return key_senderror(so, m, EINVAL); 1900 } 1901 if (((struct sockaddr *)(src0 + 1))->sa_len != 1902 ((struct sockaddr *)(dst0+ 1))->sa_len) { 1903 _key_delsp(newsp); 1904 return key_senderror(so, m, EINVAL); 1905 } 1906 #if 1 1907 if (newsp->req && newsp->req->saidx.src.sa.sa_family) { 1908 struct sockaddr *sa; 1909 sa = (struct sockaddr *)(src0 + 1); 1910 if (sa->sa_family != newsp->req->saidx.src.sa.sa_family) { 1911 _key_delsp(newsp); 1912 return key_senderror(so, m, EINVAL); 1913 } 1914 } 1915 if (newsp->req && newsp->req->saidx.dst.sa.sa_family) { 1916 struct sockaddr *sa; 1917 sa = (struct sockaddr *)(dst0 + 1); 1918 if (sa->sa_family != newsp->req->saidx.dst.sa.sa_family) { 1919 _key_delsp(newsp); 1920 return key_senderror(so, m, EINVAL); 1921 } 1922 } 1923 #endif 1924 1925 newsp->created = time_second; 1926 newsp->lastused = newsp->created; 1927 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; 1928 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; 1929 1930 newsp->refcnt = 1; /* do not reclaim until I say I do */ 1931 newsp->state = IPSEC_SPSTATE_ALIVE; 1932 LIST_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, secpolicy, chain); 1933 1934 /* delete the entry in spacqtree */ 1935 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1936 struct secspacq *spacq = key_getspacq(&spidx); 1937 if (spacq != NULL) { 1938 /* reset counter in order to deletion by timehandler. */ 1939 spacq->created = time_second; 1940 spacq->count = 0; 1941 SPACQ_UNLOCK(); 1942 } 1943 } 1944 1945 { 1946 struct mbuf *n, *mpolicy; 1947 struct sadb_msg *newmsg; 1948 int off; 1949 1950 /* create new sadb_msg to reply. */ 1951 if (lft) { 1952 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, 1953 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, 1954 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1955 } else { 1956 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, 1957 SADB_X_EXT_POLICY, 1958 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1959 } 1960 if (!n) 1961 return key_senderror(so, m, ENOBUFS); 1962 1963 if (n->m_len < sizeof(*newmsg)) { 1964 n = m_pullup(n, sizeof(*newmsg)); 1965 if (!n) 1966 return key_senderror(so, m, ENOBUFS); 1967 } 1968 newmsg = mtod(n, struct sadb_msg *); 1969 newmsg->sadb_msg_errno = 0; 1970 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 1971 1972 off = 0; 1973 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), 1974 sizeof(*xpl), &off); 1975 if (mpolicy == NULL) { 1976 /* n is already freed */ 1977 return key_senderror(so, m, ENOBUFS); 1978 } 1979 xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off); 1980 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { 1981 m_freem(n); 1982 return key_senderror(so, m, EINVAL); 1983 } 1984 xpl->sadb_x_policy_id = newsp->id; 1985 1986 m_freem(m); 1987 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 1988 } 1989 } 1990 1991 /* 1992 * get new policy id. 1993 * OUT: 1994 * 0: failure. 1995 * others: success. 1996 */ 1997 static u_int32_t 1998 key_getnewspid() 1999 { 2000 INIT_VNET_IPSEC(curvnet); 2001 u_int32_t newid = 0; 2002 int count = V_key_spi_trycnt; /* XXX */ 2003 struct secpolicy *sp; 2004 2005 /* when requesting to allocate spi ranged */ 2006 while (count--) { 2007 newid = (V_policy_id = (V_policy_id == ~0 ? 1 : V_policy_id + 1)); 2008 2009 if ((sp = key_getspbyid(newid)) == NULL) 2010 break; 2011 2012 KEY_FREESP(&sp); 2013 } 2014 2015 if (count == 0 || newid == 0) { 2016 ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n", 2017 __func__)); 2018 return 0; 2019 } 2020 2021 return newid; 2022 } 2023 2024 /* 2025 * SADB_SPDDELETE processing 2026 * receive 2027 * <base, address(SD), policy(*)> 2028 * from the user(?), and set SADB_SASTATE_DEAD, 2029 * and send, 2030 * <base, address(SD), policy(*)> 2031 * to the ikmpd. 2032 * policy(*) including direction of policy. 2033 * 2034 * m will always be freed. 2035 */ 2036 static int 2037 key_spddelete(so, m, mhp) 2038 struct socket *so; 2039 struct mbuf *m; 2040 const struct sadb_msghdr *mhp; 2041 { 2042 INIT_VNET_IPSEC(curvnet); 2043 struct sadb_address *src0, *dst0; 2044 struct sadb_x_policy *xpl0; 2045 struct secpolicyindex spidx; 2046 struct secpolicy *sp; 2047 2048 IPSEC_ASSERT(so != NULL, ("null so")); 2049 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2050 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2051 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2052 2053 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2054 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2055 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2056 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2057 __func__)); 2058 return key_senderror(so, m, EINVAL); 2059 } 2060 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2061 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2062 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2063 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2064 __func__)); 2065 return key_senderror(so, m, EINVAL); 2066 } 2067 2068 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 2069 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 2070 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 2071 2072 /* make secindex */ 2073 /* XXX boundary check against sa_len */ 2074 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 2075 src0 + 1, 2076 dst0 + 1, 2077 src0->sadb_address_prefixlen, 2078 dst0->sadb_address_prefixlen, 2079 src0->sadb_address_proto, 2080 &spidx); 2081 2082 /* checking the direciton. */ 2083 switch (xpl0->sadb_x_policy_dir) { 2084 case IPSEC_DIR_INBOUND: 2085 case IPSEC_DIR_OUTBOUND: 2086 break; 2087 default: 2088 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 2089 return key_senderror(so, m, EINVAL); 2090 } 2091 2092 /* Is there SP in SPD ? */ 2093 if ((sp = key_getsp(&spidx)) == NULL) { 2094 ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__)); 2095 return key_senderror(so, m, EINVAL); 2096 } 2097 2098 /* save policy id to buffer to be returned. */ 2099 xpl0->sadb_x_policy_id = sp->id; 2100 2101 sp->state = IPSEC_SPSTATE_DEAD; 2102 KEY_FREESP(&sp); 2103 2104 { 2105 struct mbuf *n; 2106 struct sadb_msg *newmsg; 2107 2108 /* create new sadb_msg to reply. */ 2109 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 2110 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2111 if (!n) 2112 return key_senderror(so, m, ENOBUFS); 2113 2114 newmsg = mtod(n, struct sadb_msg *); 2115 newmsg->sadb_msg_errno = 0; 2116 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2117 2118 m_freem(m); 2119 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2120 } 2121 } 2122 2123 /* 2124 * SADB_SPDDELETE2 processing 2125 * receive 2126 * <base, policy(*)> 2127 * from the user(?), and set SADB_SASTATE_DEAD, 2128 * and send, 2129 * <base, policy(*)> 2130 * to the ikmpd. 2131 * policy(*) including direction of policy. 2132 * 2133 * m will always be freed. 2134 */ 2135 static int 2136 key_spddelete2(so, m, mhp) 2137 struct socket *so; 2138 struct mbuf *m; 2139 const struct sadb_msghdr *mhp; 2140 { 2141 INIT_VNET_IPSEC(curvnet); 2142 u_int32_t id; 2143 struct secpolicy *sp; 2144 2145 IPSEC_ASSERT(so != NULL, ("null socket")); 2146 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2147 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2148 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2149 2150 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2151 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2152 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); 2153 return key_senderror(so, m, EINVAL); 2154 } 2155 2156 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2157 2158 /* Is there SP in SPD ? */ 2159 if ((sp = key_getspbyid(id)) == NULL) { 2160 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2161 return key_senderror(so, m, EINVAL); 2162 } 2163 2164 sp->state = IPSEC_SPSTATE_DEAD; 2165 KEY_FREESP(&sp); 2166 2167 { 2168 struct mbuf *n, *nn; 2169 struct sadb_msg *newmsg; 2170 int off, len; 2171 2172 /* create new sadb_msg to reply. */ 2173 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2174 2175 MGETHDR(n, M_DONTWAIT, MT_DATA); 2176 if (n && len > MHLEN) { 2177 MCLGET(n, M_DONTWAIT); 2178 if ((n->m_flags & M_EXT) == 0) { 2179 m_freem(n); 2180 n = NULL; 2181 } 2182 } 2183 if (!n) 2184 return key_senderror(so, m, ENOBUFS); 2185 2186 n->m_len = len; 2187 n->m_next = NULL; 2188 off = 0; 2189 2190 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 2191 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2192 2193 IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)", 2194 off, len)); 2195 2196 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], 2197 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT); 2198 if (!n->m_next) { 2199 m_freem(n); 2200 return key_senderror(so, m, ENOBUFS); 2201 } 2202 2203 n->m_pkthdr.len = 0; 2204 for (nn = n; nn; nn = nn->m_next) 2205 n->m_pkthdr.len += nn->m_len; 2206 2207 newmsg = mtod(n, struct sadb_msg *); 2208 newmsg->sadb_msg_errno = 0; 2209 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2210 2211 m_freem(m); 2212 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2213 } 2214 } 2215 2216 /* 2217 * SADB_X_GET processing 2218 * receive 2219 * <base, policy(*)> 2220 * from the user(?), 2221 * and send, 2222 * <base, address(SD), policy> 2223 * to the ikmpd. 2224 * policy(*) including direction of policy. 2225 * 2226 * m will always be freed. 2227 */ 2228 static int 2229 key_spdget(so, m, mhp) 2230 struct socket *so; 2231 struct mbuf *m; 2232 const struct sadb_msghdr *mhp; 2233 { 2234 INIT_VNET_IPSEC(curvnet); 2235 u_int32_t id; 2236 struct secpolicy *sp; 2237 struct mbuf *n; 2238 2239 IPSEC_ASSERT(so != NULL, ("null socket")); 2240 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2241 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2242 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2243 2244 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2245 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2246 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2247 __func__)); 2248 return key_senderror(so, m, EINVAL); 2249 } 2250 2251 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2252 2253 /* Is there SP in SPD ? */ 2254 if ((sp = key_getspbyid(id)) == NULL) { 2255 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2256 return key_senderror(so, m, ENOENT); 2257 } 2258 2259 n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid); 2260 if (n != NULL) { 2261 m_freem(m); 2262 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2263 } else 2264 return key_senderror(so, m, ENOBUFS); 2265 } 2266 2267 /* 2268 * SADB_X_SPDACQUIRE processing. 2269 * Acquire policy and SA(s) for a *OUTBOUND* packet. 2270 * send 2271 * <base, policy(*)> 2272 * to KMD, and expect to receive 2273 * <base> with SADB_X_SPDACQUIRE if error occured, 2274 * or 2275 * <base, policy> 2276 * with SADB_X_SPDUPDATE from KMD by PF_KEY. 2277 * policy(*) is without policy requests. 2278 * 2279 * 0 : succeed 2280 * others: error number 2281 */ 2282 int 2283 key_spdacquire(sp) 2284 struct secpolicy *sp; 2285 { 2286 INIT_VNET_IPSEC(curvnet); 2287 struct mbuf *result = NULL, *m; 2288 struct secspacq *newspacq; 2289 2290 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2291 IPSEC_ASSERT(sp->req == NULL, ("policy exists")); 2292 IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC, 2293 ("policy not IPSEC %u", sp->policy)); 2294 2295 /* Get an entry to check whether sent message or not. */ 2296 newspacq = key_getspacq(&sp->spidx); 2297 if (newspacq != NULL) { 2298 if (V_key_blockacq_count < newspacq->count) { 2299 /* reset counter and do send message. */ 2300 newspacq->count = 0; 2301 } else { 2302 /* increment counter and do nothing. */ 2303 newspacq->count++; 2304 return 0; 2305 } 2306 SPACQ_UNLOCK(); 2307 } else { 2308 /* make new entry for blocking to send SADB_ACQUIRE. */ 2309 newspacq = key_newspacq(&sp->spidx); 2310 if (newspacq == NULL) 2311 return ENOBUFS; 2312 } 2313 2314 /* create new sadb_msg to reply. */ 2315 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); 2316 if (!m) 2317 return ENOBUFS; 2318 2319 result = m; 2320 2321 result->m_pkthdr.len = 0; 2322 for (m = result; m; m = m->m_next) 2323 result->m_pkthdr.len += m->m_len; 2324 2325 mtod(result, struct sadb_msg *)->sadb_msg_len = 2326 PFKEY_UNIT64(result->m_pkthdr.len); 2327 2328 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 2329 } 2330 2331 /* 2332 * SADB_SPDFLUSH processing 2333 * receive 2334 * <base> 2335 * from the user, and free all entries in secpctree. 2336 * and send, 2337 * <base> 2338 * to the user. 2339 * NOTE: what to do is only marking SADB_SASTATE_DEAD. 2340 * 2341 * m will always be freed. 2342 */ 2343 static int 2344 key_spdflush(so, m, mhp) 2345 struct socket *so; 2346 struct mbuf *m; 2347 const struct sadb_msghdr *mhp; 2348 { 2349 INIT_VNET_IPSEC(curvnet); 2350 struct sadb_msg *newmsg; 2351 struct secpolicy *sp; 2352 u_int dir; 2353 2354 IPSEC_ASSERT(so != NULL, ("null socket")); 2355 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2356 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2357 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2358 2359 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) 2360 return key_senderror(so, m, EINVAL); 2361 2362 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2363 SPTREE_LOCK(); 2364 LIST_FOREACH(sp, &V_sptree[dir], chain) 2365 sp->state = IPSEC_SPSTATE_DEAD; 2366 SPTREE_UNLOCK(); 2367 } 2368 2369 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 2370 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2371 return key_senderror(so, m, ENOBUFS); 2372 } 2373 2374 if (m->m_next) 2375 m_freem(m->m_next); 2376 m->m_next = NULL; 2377 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2378 newmsg = mtod(m, struct sadb_msg *); 2379 newmsg->sadb_msg_errno = 0; 2380 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 2381 2382 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 2383 } 2384 2385 /* 2386 * SADB_SPDDUMP processing 2387 * receive 2388 * <base> 2389 * from the user, and dump all SP leaves 2390 * and send, 2391 * <base> ..... 2392 * to the ikmpd. 2393 * 2394 * m will always be freed. 2395 */ 2396 static int 2397 key_spddump(so, m, mhp) 2398 struct socket *so; 2399 struct mbuf *m; 2400 const struct sadb_msghdr *mhp; 2401 { 2402 INIT_VNET_IPSEC(curvnet); 2403 struct secpolicy *sp; 2404 int cnt; 2405 u_int dir; 2406 struct mbuf *n; 2407 2408 IPSEC_ASSERT(so != NULL, ("null socket")); 2409 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2410 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2411 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2412 2413 /* search SPD entry and get buffer size. */ 2414 cnt = 0; 2415 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2416 LIST_FOREACH(sp, &V_sptree[dir], chain) { 2417 cnt++; 2418 } 2419 } 2420 2421 if (cnt == 0) 2422 return key_senderror(so, m, ENOENT); 2423 2424 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2425 LIST_FOREACH(sp, &V_sptree[dir], chain) { 2426 --cnt; 2427 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, 2428 mhp->msg->sadb_msg_pid); 2429 2430 if (n) 2431 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2432 } 2433 } 2434 2435 m_freem(m); 2436 return 0; 2437 } 2438 2439 static struct mbuf * 2440 key_setdumpsp(sp, type, seq, pid) 2441 struct secpolicy *sp; 2442 u_int8_t type; 2443 u_int32_t seq, pid; 2444 { 2445 struct mbuf *result = NULL, *m; 2446 struct seclifetime lt; 2447 2448 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt); 2449 if (!m) 2450 goto fail; 2451 result = m; 2452 2453 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2454 &sp->spidx.src.sa, sp->spidx.prefs, 2455 sp->spidx.ul_proto); 2456 if (!m) 2457 goto fail; 2458 m_cat(result, m); 2459 2460 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2461 &sp->spidx.dst.sa, sp->spidx.prefd, 2462 sp->spidx.ul_proto); 2463 if (!m) 2464 goto fail; 2465 m_cat(result, m); 2466 2467 m = key_sp2msg(sp); 2468 if (!m) 2469 goto fail; 2470 m_cat(result, m); 2471 2472 if(sp->lifetime){ 2473 lt.addtime=sp->created; 2474 lt.usetime= sp->lastused; 2475 m = key_setlifetime(<, SADB_EXT_LIFETIME_CURRENT); 2476 if (!m) 2477 goto fail; 2478 m_cat(result, m); 2479 2480 lt.addtime=sp->lifetime; 2481 lt.usetime= sp->validtime; 2482 m = key_setlifetime(<, SADB_EXT_LIFETIME_HARD); 2483 if (!m) 2484 goto fail; 2485 m_cat(result, m); 2486 } 2487 2488 if ((result->m_flags & M_PKTHDR) == 0) 2489 goto fail; 2490 2491 if (result->m_len < sizeof(struct sadb_msg)) { 2492 result = m_pullup(result, sizeof(struct sadb_msg)); 2493 if (result == NULL) 2494 goto fail; 2495 } 2496 2497 result->m_pkthdr.len = 0; 2498 for (m = result; m; m = m->m_next) 2499 result->m_pkthdr.len += m->m_len; 2500 2501 mtod(result, struct sadb_msg *)->sadb_msg_len = 2502 PFKEY_UNIT64(result->m_pkthdr.len); 2503 2504 return result; 2505 2506 fail: 2507 m_freem(result); 2508 return NULL; 2509 } 2510 2511 /* 2512 * get PFKEY message length for security policy and request. 2513 */ 2514 static u_int 2515 key_getspreqmsglen(sp) 2516 struct secpolicy *sp; 2517 { 2518 u_int tlen; 2519 2520 tlen = sizeof(struct sadb_x_policy); 2521 2522 /* if is the policy for ipsec ? */ 2523 if (sp->policy != IPSEC_POLICY_IPSEC) 2524 return tlen; 2525 2526 /* get length of ipsec requests */ 2527 { 2528 struct ipsecrequest *isr; 2529 int len; 2530 2531 for (isr = sp->req; isr != NULL; isr = isr->next) { 2532 len = sizeof(struct sadb_x_ipsecrequest) 2533 + isr->saidx.src.sa.sa_len 2534 + isr->saidx.dst.sa.sa_len; 2535 2536 tlen += PFKEY_ALIGN8(len); 2537 } 2538 } 2539 2540 return tlen; 2541 } 2542 2543 /* 2544 * SADB_SPDEXPIRE processing 2545 * send 2546 * <base, address(SD), lifetime(CH), policy> 2547 * to KMD by PF_KEY. 2548 * 2549 * OUT: 0 : succeed 2550 * others : error number 2551 */ 2552 static int 2553 key_spdexpire(sp) 2554 struct secpolicy *sp; 2555 { 2556 struct mbuf *result = NULL, *m; 2557 int len; 2558 int error = -1; 2559 struct sadb_lifetime *lt; 2560 2561 /* XXX: Why do we lock ? */ 2562 2563 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2564 2565 /* set msg header */ 2566 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0); 2567 if (!m) { 2568 error = ENOBUFS; 2569 goto fail; 2570 } 2571 result = m; 2572 2573 /* create lifetime extension (current and hard) */ 2574 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 2575 m = key_alloc_mbuf(len); 2576 if (!m || m->m_next) { /*XXX*/ 2577 if (m) 2578 m_freem(m); 2579 error = ENOBUFS; 2580 goto fail; 2581 } 2582 bzero(mtod(m, caddr_t), len); 2583 lt = mtod(m, struct sadb_lifetime *); 2584 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2585 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 2586 lt->sadb_lifetime_allocations = 0; 2587 lt->sadb_lifetime_bytes = 0; 2588 lt->sadb_lifetime_addtime = sp->created; 2589 lt->sadb_lifetime_usetime = sp->lastused; 2590 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 2591 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2592 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 2593 lt->sadb_lifetime_allocations = 0; 2594 lt->sadb_lifetime_bytes = 0; 2595 lt->sadb_lifetime_addtime = sp->lifetime; 2596 lt->sadb_lifetime_usetime = sp->validtime; 2597 m_cat(result, m); 2598 2599 /* set sadb_address for source */ 2600 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2601 &sp->spidx.src.sa, 2602 sp->spidx.prefs, sp->spidx.ul_proto); 2603 if (!m) { 2604 error = ENOBUFS; 2605 goto fail; 2606 } 2607 m_cat(result, m); 2608 2609 /* set sadb_address for destination */ 2610 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2611 &sp->spidx.dst.sa, 2612 sp->spidx.prefd, sp->spidx.ul_proto); 2613 if (!m) { 2614 error = ENOBUFS; 2615 goto fail; 2616 } 2617 m_cat(result, m); 2618 2619 /* set secpolicy */ 2620 m = key_sp2msg(sp); 2621 if (!m) { 2622 error = ENOBUFS; 2623 goto fail; 2624 } 2625 m_cat(result, m); 2626 2627 if ((result->m_flags & M_PKTHDR) == 0) { 2628 error = EINVAL; 2629 goto fail; 2630 } 2631 2632 if (result->m_len < sizeof(struct sadb_msg)) { 2633 result = m_pullup(result, sizeof(struct sadb_msg)); 2634 if (result == NULL) { 2635 error = ENOBUFS; 2636 goto fail; 2637 } 2638 } 2639 2640 result->m_pkthdr.len = 0; 2641 for (m = result; m; m = m->m_next) 2642 result->m_pkthdr.len += m->m_len; 2643 2644 mtod(result, struct sadb_msg *)->sadb_msg_len = 2645 PFKEY_UNIT64(result->m_pkthdr.len); 2646 2647 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 2648 2649 fail: 2650 if (result) 2651 m_freem(result); 2652 return error; 2653 } 2654 2655 /* %%% SAD management */ 2656 /* 2657 * allocating a memory for new SA head, and copy from the values of mhp. 2658 * OUT: NULL : failure due to the lack of memory. 2659 * others : pointer to new SA head. 2660 */ 2661 static struct secashead * 2662 key_newsah(saidx) 2663 struct secasindex *saidx; 2664 { 2665 INIT_VNET_IPSEC(curvnet); 2666 struct secashead *newsah; 2667 2668 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 2669 2670 newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO); 2671 if (newsah != NULL) { 2672 int i; 2673 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++) 2674 LIST_INIT(&newsah->savtree[i]); 2675 newsah->saidx = *saidx; 2676 2677 /* add to saidxtree */ 2678 newsah->state = SADB_SASTATE_MATURE; 2679 2680 SAHTREE_LOCK(); 2681 LIST_INSERT_HEAD(&V_sahtree, newsah, chain); 2682 SAHTREE_UNLOCK(); 2683 } 2684 return(newsah); 2685 } 2686 2687 /* 2688 * delete SA index and all SA registerd. 2689 */ 2690 static void 2691 key_delsah(sah) 2692 struct secashead *sah; 2693 { 2694 INIT_VNET_IPSEC(curvnet); 2695 struct secasvar *sav, *nextsav; 2696 u_int stateidx; 2697 int zombie = 0; 2698 2699 IPSEC_ASSERT(sah != NULL, ("NULL sah")); 2700 SAHTREE_LOCK_ASSERT(); 2701 2702 /* searching all SA registerd in the secindex. */ 2703 for (stateidx = 0; 2704 stateidx < _ARRAYLEN(saorder_state_any); 2705 stateidx++) { 2706 u_int state = saorder_state_any[stateidx]; 2707 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) { 2708 if (sav->refcnt == 0) { 2709 /* sanity check */ 2710 KEY_CHKSASTATE(state, sav->state, __func__); 2711 KEY_FREESAV(&sav); 2712 } else { 2713 /* give up to delete this sa */ 2714 zombie++; 2715 } 2716 } 2717 } 2718 if (!zombie) { /* delete only if there are savs */ 2719 /* remove from tree of SA index */ 2720 if (__LIST_CHAINED(sah)) 2721 LIST_REMOVE(sah, chain); 2722 if (sah->sa_route.ro_rt) { 2723 RTFREE(sah->sa_route.ro_rt); 2724 sah->sa_route.ro_rt = (struct rtentry *)NULL; 2725 } 2726 free(sah, M_IPSEC_SAH); 2727 } 2728 } 2729 2730 /* 2731 * allocating a new SA with LARVAL state. key_add() and key_getspi() call, 2732 * and copy the values of mhp into new buffer. 2733 * When SAD message type is GETSPI: 2734 * to set sequence number from acq_seq++, 2735 * to set zero to SPI. 2736 * not to call key_setsava(). 2737 * OUT: NULL : fail 2738 * others : pointer to new secasvar. 2739 * 2740 * does not modify mbuf. does not free mbuf on error. 2741 */ 2742 static struct secasvar * 2743 key_newsav(m, mhp, sah, errp, where, tag) 2744 struct mbuf *m; 2745 const struct sadb_msghdr *mhp; 2746 struct secashead *sah; 2747 int *errp; 2748 const char* where; 2749 int tag; 2750 { 2751 INIT_VNET_IPSEC(curvnet); 2752 struct secasvar *newsav; 2753 const struct sadb_sa *xsa; 2754 2755 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2756 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2757 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2758 IPSEC_ASSERT(sah != NULL, ("null secashead")); 2759 2760 newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO); 2761 if (newsav == NULL) { 2762 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2763 *errp = ENOBUFS; 2764 goto done; 2765 } 2766 2767 switch (mhp->msg->sadb_msg_type) { 2768 case SADB_GETSPI: 2769 newsav->spi = 0; 2770 2771 #ifdef IPSEC_DOSEQCHECK 2772 /* sync sequence number */ 2773 if (mhp->msg->sadb_msg_seq == 0) 2774 newsav->seq = 2775 (V_acq_seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq)); 2776 else 2777 #endif 2778 newsav->seq = mhp->msg->sadb_msg_seq; 2779 break; 2780 2781 case SADB_ADD: 2782 /* sanity check */ 2783 if (mhp->ext[SADB_EXT_SA] == NULL) { 2784 free(newsav, M_IPSEC_SA); 2785 newsav = NULL; 2786 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2787 __func__)); 2788 *errp = EINVAL; 2789 goto done; 2790 } 2791 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 2792 newsav->spi = xsa->sadb_sa_spi; 2793 newsav->seq = mhp->msg->sadb_msg_seq; 2794 break; 2795 default: 2796 free(newsav, M_IPSEC_SA); 2797 newsav = NULL; 2798 *errp = EINVAL; 2799 goto done; 2800 } 2801 2802 2803 /* copy sav values */ 2804 if (mhp->msg->sadb_msg_type != SADB_GETSPI) { 2805 *errp = key_setsaval(newsav, m, mhp); 2806 if (*errp) { 2807 free(newsav, M_IPSEC_SA); 2808 newsav = NULL; 2809 goto done; 2810 } 2811 } 2812 2813 SECASVAR_LOCK_INIT(newsav); 2814 2815 /* reset created */ 2816 newsav->created = time_second; 2817 newsav->pid = mhp->msg->sadb_msg_pid; 2818 2819 /* add to satree */ 2820 newsav->sah = sah; 2821 sa_initref(newsav); 2822 newsav->state = SADB_SASTATE_LARVAL; 2823 2824 /* XXX locking??? */ 2825 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav, 2826 secasvar, chain); 2827 done: 2828 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 2829 printf("DP %s from %s:%u return SP:%p\n", __func__, 2830 where, tag, newsav)); 2831 2832 return newsav; 2833 } 2834 2835 /* 2836 * free() SA variable entry. 2837 */ 2838 static void 2839 key_cleansav(struct secasvar *sav) 2840 { 2841 /* 2842 * Cleanup xform state. Note that zeroize'ing causes the 2843 * keys to be cleared; otherwise we must do it ourself. 2844 */ 2845 if (sav->tdb_xform != NULL) { 2846 sav->tdb_xform->xf_zeroize(sav); 2847 sav->tdb_xform = NULL; 2848 } else { 2849 KASSERT(sav->iv == NULL, ("iv but no xform")); 2850 if (sav->key_auth != NULL) 2851 bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth)); 2852 if (sav->key_enc != NULL) 2853 bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc)); 2854 } 2855 if (sav->key_auth != NULL) { 2856 if (sav->key_auth->key_data != NULL) 2857 free(sav->key_auth->key_data, M_IPSEC_MISC); 2858 free(sav->key_auth, M_IPSEC_MISC); 2859 sav->key_auth = NULL; 2860 } 2861 if (sav->key_enc != NULL) { 2862 if (sav->key_enc->key_data != NULL) 2863 free(sav->key_enc->key_data, M_IPSEC_MISC); 2864 free(sav->key_enc, M_IPSEC_MISC); 2865 sav->key_enc = NULL; 2866 } 2867 if (sav->sched) { 2868 bzero(sav->sched, sav->schedlen); 2869 free(sav->sched, M_IPSEC_MISC); 2870 sav->sched = NULL; 2871 } 2872 if (sav->replay != NULL) { 2873 free(sav->replay, M_IPSEC_MISC); 2874 sav->replay = NULL; 2875 } 2876 if (sav->lft_c != NULL) { 2877 free(sav->lft_c, M_IPSEC_MISC); 2878 sav->lft_c = NULL; 2879 } 2880 if (sav->lft_h != NULL) { 2881 free(sav->lft_h, M_IPSEC_MISC); 2882 sav->lft_h = NULL; 2883 } 2884 if (sav->lft_s != NULL) { 2885 free(sav->lft_s, M_IPSEC_MISC); 2886 sav->lft_s = NULL; 2887 } 2888 } 2889 2890 /* 2891 * free() SA variable entry. 2892 */ 2893 static void 2894 key_delsav(sav) 2895 struct secasvar *sav; 2896 { 2897 IPSEC_ASSERT(sav != NULL, ("null sav")); 2898 IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt)); 2899 2900 /* remove from SA header */ 2901 if (__LIST_CHAINED(sav)) 2902 LIST_REMOVE(sav, chain); 2903 key_cleansav(sav); 2904 SECASVAR_LOCK_DESTROY(sav); 2905 free(sav, M_IPSEC_SA); 2906 } 2907 2908 /* 2909 * search SAD. 2910 * OUT: 2911 * NULL : not found 2912 * others : found, pointer to a SA. 2913 */ 2914 static struct secashead * 2915 key_getsah(saidx) 2916 struct secasindex *saidx; 2917 { 2918 INIT_VNET_IPSEC(curvnet); 2919 struct secashead *sah; 2920 2921 SAHTREE_LOCK(); 2922 LIST_FOREACH(sah, &V_sahtree, chain) { 2923 if (sah->state == SADB_SASTATE_DEAD) 2924 continue; 2925 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID)) 2926 break; 2927 } 2928 SAHTREE_UNLOCK(); 2929 2930 return sah; 2931 } 2932 2933 /* 2934 * check not to be duplicated SPI. 2935 * NOTE: this function is too slow due to searching all SAD. 2936 * OUT: 2937 * NULL : not found 2938 * others : found, pointer to a SA. 2939 */ 2940 static struct secasvar * 2941 key_checkspidup(saidx, spi) 2942 struct secasindex *saidx; 2943 u_int32_t spi; 2944 { 2945 INIT_VNET_IPSEC(curvnet); 2946 struct secashead *sah; 2947 struct secasvar *sav; 2948 2949 /* check address family */ 2950 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) { 2951 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 2952 __func__)); 2953 return NULL; 2954 } 2955 2956 sav = NULL; 2957 /* check all SAD */ 2958 SAHTREE_LOCK(); 2959 LIST_FOREACH(sah, &V_sahtree, chain) { 2960 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst)) 2961 continue; 2962 sav = key_getsavbyspi(sah, spi); 2963 if (sav != NULL) 2964 break; 2965 } 2966 SAHTREE_UNLOCK(); 2967 2968 return sav; 2969 } 2970 2971 /* 2972 * search SAD litmited alive SA, protocol, SPI. 2973 * OUT: 2974 * NULL : not found 2975 * others : found, pointer to a SA. 2976 */ 2977 static struct secasvar * 2978 key_getsavbyspi(sah, spi) 2979 struct secashead *sah; 2980 u_int32_t spi; 2981 { 2982 INIT_VNET_IPSEC(curvnet); 2983 struct secasvar *sav; 2984 u_int stateidx, state; 2985 2986 sav = NULL; 2987 SAHTREE_LOCK_ASSERT(); 2988 /* search all status */ 2989 for (stateidx = 0; 2990 stateidx < _ARRAYLEN(saorder_state_alive); 2991 stateidx++) { 2992 2993 state = saorder_state_alive[stateidx]; 2994 LIST_FOREACH(sav, &sah->savtree[state], chain) { 2995 2996 /* sanity check */ 2997 if (sav->state != state) { 2998 ipseclog((LOG_DEBUG, "%s: " 2999 "invalid sav->state (queue: %d SA: %d)\n", 3000 __func__, state, sav->state)); 3001 continue; 3002 } 3003 3004 if (sav->spi == spi) 3005 return sav; 3006 } 3007 } 3008 3009 return NULL; 3010 } 3011 3012 /* 3013 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. 3014 * You must update these if need. 3015 * OUT: 0: success. 3016 * !0: failure. 3017 * 3018 * does not modify mbuf. does not free mbuf on error. 3019 */ 3020 static int 3021 key_setsaval(sav, m, mhp) 3022 struct secasvar *sav; 3023 struct mbuf *m; 3024 const struct sadb_msghdr *mhp; 3025 { 3026 INIT_VNET_IPSEC(curvnet); 3027 int error = 0; 3028 3029 IPSEC_ASSERT(m != NULL, ("null mbuf")); 3030 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 3031 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 3032 3033 /* initialization */ 3034 sav->replay = NULL; 3035 sav->key_auth = NULL; 3036 sav->key_enc = NULL; 3037 sav->sched = NULL; 3038 sav->schedlen = 0; 3039 sav->iv = NULL; 3040 sav->lft_c = NULL; 3041 sav->lft_h = NULL; 3042 sav->lft_s = NULL; 3043 sav->tdb_xform = NULL; /* transform */ 3044 sav->tdb_encalgxform = NULL; /* encoding algorithm */ 3045 sav->tdb_authalgxform = NULL; /* authentication algorithm */ 3046 sav->tdb_compalgxform = NULL; /* compression algorithm */ 3047 3048 /* SA */ 3049 if (mhp->ext[SADB_EXT_SA] != NULL) { 3050 const struct sadb_sa *sa0; 3051 3052 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 3053 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { 3054 error = EINVAL; 3055 goto fail; 3056 } 3057 3058 sav->alg_auth = sa0->sadb_sa_auth; 3059 sav->alg_enc = sa0->sadb_sa_encrypt; 3060 sav->flags = sa0->sadb_sa_flags; 3061 3062 /* replay window */ 3063 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { 3064 sav->replay = (struct secreplay *) 3065 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO); 3066 if (sav->replay == NULL) { 3067 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3068 __func__)); 3069 error = ENOBUFS; 3070 goto fail; 3071 } 3072 if (sa0->sadb_sa_replay != 0) 3073 sav->replay->bitmap = (caddr_t)(sav->replay+1); 3074 sav->replay->wsize = sa0->sadb_sa_replay; 3075 } 3076 } 3077 3078 /* Authentication keys */ 3079 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { 3080 const struct sadb_key *key0; 3081 int len; 3082 3083 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH]; 3084 len = mhp->extlen[SADB_EXT_KEY_AUTH]; 3085 3086 error = 0; 3087 if (len < sizeof(*key0)) { 3088 error = EINVAL; 3089 goto fail; 3090 } 3091 switch (mhp->msg->sadb_msg_satype) { 3092 case SADB_SATYPE_AH: 3093 case SADB_SATYPE_ESP: 3094 case SADB_X_SATYPE_TCPSIGNATURE: 3095 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3096 sav->alg_auth != SADB_X_AALG_NULL) 3097 error = EINVAL; 3098 break; 3099 case SADB_X_SATYPE_IPCOMP: 3100 default: 3101 error = EINVAL; 3102 break; 3103 } 3104 if (error) { 3105 ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n", 3106 __func__)); 3107 goto fail; 3108 } 3109 3110 sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len, 3111 M_IPSEC_MISC); 3112 if (sav->key_auth == NULL ) { 3113 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3114 __func__)); 3115 error = ENOBUFS; 3116 goto fail; 3117 } 3118 } 3119 3120 /* Encryption key */ 3121 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { 3122 const struct sadb_key *key0; 3123 int len; 3124 3125 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT]; 3126 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; 3127 3128 error = 0; 3129 if (len < sizeof(*key0)) { 3130 error = EINVAL; 3131 goto fail; 3132 } 3133 switch (mhp->msg->sadb_msg_satype) { 3134 case SADB_SATYPE_ESP: 3135 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3136 sav->alg_enc != SADB_EALG_NULL) { 3137 error = EINVAL; 3138 break; 3139 } 3140 sav->key_enc = (struct seckey *)key_dup_keymsg(key0, 3141 len, 3142 M_IPSEC_MISC); 3143 if (sav->key_enc == NULL) { 3144 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3145 __func__)); 3146 error = ENOBUFS; 3147 goto fail; 3148 } 3149 break; 3150 case SADB_X_SATYPE_IPCOMP: 3151 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) 3152 error = EINVAL; 3153 sav->key_enc = NULL; /*just in case*/ 3154 break; 3155 case SADB_SATYPE_AH: 3156 case SADB_X_SATYPE_TCPSIGNATURE: 3157 default: 3158 error = EINVAL; 3159 break; 3160 } 3161 if (error) { 3162 ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n", 3163 __func__)); 3164 goto fail; 3165 } 3166 } 3167 3168 /* set iv */ 3169 sav->ivlen = 0; 3170 3171 switch (mhp->msg->sadb_msg_satype) { 3172 case SADB_SATYPE_AH: 3173 error = xform_init(sav, XF_AH); 3174 break; 3175 case SADB_SATYPE_ESP: 3176 error = xform_init(sav, XF_ESP); 3177 break; 3178 case SADB_X_SATYPE_IPCOMP: 3179 error = xform_init(sav, XF_IPCOMP); 3180 break; 3181 case SADB_X_SATYPE_TCPSIGNATURE: 3182 error = xform_init(sav, XF_TCPSIGNATURE); 3183 break; 3184 } 3185 if (error) { 3186 ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n", 3187 __func__, mhp->msg->sadb_msg_satype)); 3188 goto fail; 3189 } 3190 3191 /* reset created */ 3192 sav->created = time_second; 3193 3194 /* make lifetime for CURRENT */ 3195 sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT); 3196 if (sav->lft_c == NULL) { 3197 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3198 error = ENOBUFS; 3199 goto fail; 3200 } 3201 3202 sav->lft_c->allocations = 0; 3203 sav->lft_c->bytes = 0; 3204 sav->lft_c->addtime = time_second; 3205 sav->lft_c->usetime = 0; 3206 3207 /* lifetimes for HARD and SOFT */ 3208 { 3209 const struct sadb_lifetime *lft0; 3210 3211 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 3212 if (lft0 != NULL) { 3213 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { 3214 error = EINVAL; 3215 goto fail; 3216 } 3217 sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3218 if (sav->lft_h == NULL) { 3219 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3220 error = ENOBUFS; 3221 goto fail; 3222 } 3223 /* to be initialize ? */ 3224 } 3225 3226 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT]; 3227 if (lft0 != NULL) { 3228 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { 3229 error = EINVAL; 3230 goto fail; 3231 } 3232 sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3233 if (sav->lft_s == NULL) { 3234 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3235 error = ENOBUFS; 3236 goto fail; 3237 } 3238 /* to be initialize ? */ 3239 } 3240 } 3241 3242 return 0; 3243 3244 fail: 3245 /* initialization */ 3246 key_cleansav(sav); 3247 3248 return error; 3249 } 3250 3251 /* 3252 * validation with a secasvar entry, and set SADB_SATYPE_MATURE. 3253 * OUT: 0: valid 3254 * other: errno 3255 */ 3256 static int 3257 key_mature(struct secasvar *sav) 3258 { 3259 INIT_VNET_IPSEC(curvnet); 3260 int error; 3261 3262 /* check SPI value */ 3263 switch (sav->sah->saidx.proto) { 3264 case IPPROTO_ESP: 3265 case IPPROTO_AH: 3266 /* 3267 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values 3268 * 1-255 reserved by IANA for future use, 3269 * 0 for implementation specific, local use. 3270 */ 3271 if (ntohl(sav->spi) <= 255) { 3272 ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n", 3273 __func__, (u_int32_t)ntohl(sav->spi))); 3274 return EINVAL; 3275 } 3276 break; 3277 } 3278 3279 /* check satype */ 3280 switch (sav->sah->saidx.proto) { 3281 case IPPROTO_ESP: 3282 /* check flags */ 3283 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) == 3284 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) { 3285 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3286 "given to old-esp.\n", __func__)); 3287 return EINVAL; 3288 } 3289 error = xform_init(sav, XF_ESP); 3290 break; 3291 case IPPROTO_AH: 3292 /* check flags */ 3293 if (sav->flags & SADB_X_EXT_DERIV) { 3294 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3295 "given to AH SA.\n", __func__)); 3296 return EINVAL; 3297 } 3298 if (sav->alg_enc != SADB_EALG_NONE) { 3299 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3300 "mismated.\n", __func__)); 3301 return(EINVAL); 3302 } 3303 error = xform_init(sav, XF_AH); 3304 break; 3305 case IPPROTO_IPCOMP: 3306 if (sav->alg_auth != SADB_AALG_NONE) { 3307 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3308 "mismated.\n", __func__)); 3309 return(EINVAL); 3310 } 3311 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 3312 && ntohl(sav->spi) >= 0x10000) { 3313 ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n", 3314 __func__)); 3315 return(EINVAL); 3316 } 3317 error = xform_init(sav, XF_IPCOMP); 3318 break; 3319 case IPPROTO_TCP: 3320 if (sav->alg_enc != SADB_EALG_NONE) { 3321 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3322 "mismated.\n", __func__)); 3323 return(EINVAL); 3324 } 3325 error = xform_init(sav, XF_TCPSIGNATURE); 3326 break; 3327 default: 3328 ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__)); 3329 error = EPROTONOSUPPORT; 3330 break; 3331 } 3332 if (error == 0) { 3333 SAHTREE_LOCK(); 3334 key_sa_chgstate(sav, SADB_SASTATE_MATURE); 3335 SAHTREE_UNLOCK(); 3336 } 3337 return (error); 3338 } 3339 3340 /* 3341 * subroutine for SADB_GET and SADB_DUMP. 3342 */ 3343 static struct mbuf * 3344 key_setdumpsa(sav, type, satype, seq, pid) 3345 struct secasvar *sav; 3346 u_int8_t type, satype; 3347 u_int32_t seq, pid; 3348 { 3349 struct mbuf *result = NULL, *tres = NULL, *m; 3350 int i; 3351 int dumporder[] = { 3352 SADB_EXT_SA, SADB_X_EXT_SA2, 3353 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 3354 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, 3355 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, 3356 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, 3357 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, 3358 }; 3359 3360 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt); 3361 if (m == NULL) 3362 goto fail; 3363 result = m; 3364 3365 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) { 3366 m = NULL; 3367 switch (dumporder[i]) { 3368 case SADB_EXT_SA: 3369 m = key_setsadbsa(sav); 3370 if (!m) 3371 goto fail; 3372 break; 3373 3374 case SADB_X_EXT_SA2: 3375 m = key_setsadbxsa2(sav->sah->saidx.mode, 3376 sav->replay ? sav->replay->count : 0, 3377 sav->sah->saidx.reqid); 3378 if (!m) 3379 goto fail; 3380 break; 3381 3382 case SADB_EXT_ADDRESS_SRC: 3383 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3384 &sav->sah->saidx.src.sa, 3385 FULLMASK, IPSEC_ULPROTO_ANY); 3386 if (!m) 3387 goto fail; 3388 break; 3389 3390 case SADB_EXT_ADDRESS_DST: 3391 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3392 &sav->sah->saidx.dst.sa, 3393 FULLMASK, IPSEC_ULPROTO_ANY); 3394 if (!m) 3395 goto fail; 3396 break; 3397 3398 case SADB_EXT_KEY_AUTH: 3399 if (!sav->key_auth) 3400 continue; 3401 m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH); 3402 if (!m) 3403 goto fail; 3404 break; 3405 3406 case SADB_EXT_KEY_ENCRYPT: 3407 if (!sav->key_enc) 3408 continue; 3409 m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT); 3410 if (!m) 3411 goto fail; 3412 break; 3413 3414 case SADB_EXT_LIFETIME_CURRENT: 3415 if (!sav->lft_c) 3416 continue; 3417 m = key_setlifetime(sav->lft_c, 3418 SADB_EXT_LIFETIME_CURRENT); 3419 if (!m) 3420 goto fail; 3421 break; 3422 3423 case SADB_EXT_LIFETIME_HARD: 3424 if (!sav->lft_h) 3425 continue; 3426 m = key_setlifetime(sav->lft_h, 3427 SADB_EXT_LIFETIME_HARD); 3428 if (!m) 3429 goto fail; 3430 break; 3431 3432 case SADB_EXT_LIFETIME_SOFT: 3433 if (!sav->lft_s) 3434 continue; 3435 m = key_setlifetime(sav->lft_s, 3436 SADB_EXT_LIFETIME_SOFT); 3437 3438 if (!m) 3439 goto fail; 3440 break; 3441 3442 case SADB_EXT_ADDRESS_PROXY: 3443 case SADB_EXT_IDENTITY_SRC: 3444 case SADB_EXT_IDENTITY_DST: 3445 /* XXX: should we brought from SPD ? */ 3446 case SADB_EXT_SENSITIVITY: 3447 default: 3448 continue; 3449 } 3450 3451 if (!m) 3452 goto fail; 3453 if (tres) 3454 m_cat(m, tres); 3455 tres = m; 3456 3457 } 3458 3459 m_cat(result, tres); 3460 if (result->m_len < sizeof(struct sadb_msg)) { 3461 result = m_pullup(result, sizeof(struct sadb_msg)); 3462 if (result == NULL) 3463 goto fail; 3464 } 3465 3466 result->m_pkthdr.len = 0; 3467 for (m = result; m; m = m->m_next) 3468 result->m_pkthdr.len += m->m_len; 3469 3470 mtod(result, struct sadb_msg *)->sadb_msg_len = 3471 PFKEY_UNIT64(result->m_pkthdr.len); 3472 3473 return result; 3474 3475 fail: 3476 m_freem(result); 3477 m_freem(tres); 3478 return NULL; 3479 } 3480 3481 /* 3482 * set data into sadb_msg. 3483 */ 3484 static struct mbuf * 3485 key_setsadbmsg(type, tlen, satype, seq, pid, reserved) 3486 u_int8_t type, satype; 3487 u_int16_t tlen; 3488 u_int32_t seq; 3489 pid_t pid; 3490 u_int16_t reserved; 3491 { 3492 struct mbuf *m; 3493 struct sadb_msg *p; 3494 int len; 3495 3496 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 3497 if (len > MCLBYTES) 3498 return NULL; 3499 MGETHDR(m, M_DONTWAIT, MT_DATA); 3500 if (m && len > MHLEN) { 3501 MCLGET(m, M_DONTWAIT); 3502 if ((m->m_flags & M_EXT) == 0) { 3503 m_freem(m); 3504 m = NULL; 3505 } 3506 } 3507 if (!m) 3508 return NULL; 3509 m->m_pkthdr.len = m->m_len = len; 3510 m->m_next = NULL; 3511 3512 p = mtod(m, struct sadb_msg *); 3513 3514 bzero(p, len); 3515 p->sadb_msg_version = PF_KEY_V2; 3516 p->sadb_msg_type = type; 3517 p->sadb_msg_errno = 0; 3518 p->sadb_msg_satype = satype; 3519 p->sadb_msg_len = PFKEY_UNIT64(tlen); 3520 p->sadb_msg_reserved = reserved; 3521 p->sadb_msg_seq = seq; 3522 p->sadb_msg_pid = (u_int32_t)pid; 3523 3524 return m; 3525 } 3526 3527 /* 3528 * copy secasvar data into sadb_address. 3529 */ 3530 static struct mbuf * 3531 key_setsadbsa(sav) 3532 struct secasvar *sav; 3533 { 3534 struct mbuf *m; 3535 struct sadb_sa *p; 3536 int len; 3537 3538 len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); 3539 m = key_alloc_mbuf(len); 3540 if (!m || m->m_next) { /*XXX*/ 3541 if (m) 3542 m_freem(m); 3543 return NULL; 3544 } 3545 3546 p = mtod(m, struct sadb_sa *); 3547 3548 bzero(p, len); 3549 p->sadb_sa_len = PFKEY_UNIT64(len); 3550 p->sadb_sa_exttype = SADB_EXT_SA; 3551 p->sadb_sa_spi = sav->spi; 3552 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0); 3553 p->sadb_sa_state = sav->state; 3554 p->sadb_sa_auth = sav->alg_auth; 3555 p->sadb_sa_encrypt = sav->alg_enc; 3556 p->sadb_sa_flags = sav->flags; 3557 3558 return m; 3559 } 3560 3561 /* 3562 * set data into sadb_address. 3563 */ 3564 static struct mbuf * 3565 key_setsadbaddr(exttype, saddr, prefixlen, ul_proto) 3566 u_int16_t exttype; 3567 const struct sockaddr *saddr; 3568 u_int8_t prefixlen; 3569 u_int16_t ul_proto; 3570 { 3571 struct mbuf *m; 3572 struct sadb_address *p; 3573 size_t len; 3574 3575 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + 3576 PFKEY_ALIGN8(saddr->sa_len); 3577 m = key_alloc_mbuf(len); 3578 if (!m || m->m_next) { /*XXX*/ 3579 if (m) 3580 m_freem(m); 3581 return NULL; 3582 } 3583 3584 p = mtod(m, struct sadb_address *); 3585 3586 bzero(p, len); 3587 p->sadb_address_len = PFKEY_UNIT64(len); 3588 p->sadb_address_exttype = exttype; 3589 p->sadb_address_proto = ul_proto; 3590 if (prefixlen == FULLMASK) { 3591 switch (saddr->sa_family) { 3592 case AF_INET: 3593 prefixlen = sizeof(struct in_addr) << 3; 3594 break; 3595 case AF_INET6: 3596 prefixlen = sizeof(struct in6_addr) << 3; 3597 break; 3598 default: 3599 ; /*XXX*/ 3600 } 3601 } 3602 p->sadb_address_prefixlen = prefixlen; 3603 p->sadb_address_reserved = 0; 3604 3605 bcopy(saddr, 3606 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)), 3607 saddr->sa_len); 3608 3609 return m; 3610 } 3611 3612 /* 3613 * set data into sadb_x_sa2. 3614 */ 3615 static struct mbuf * 3616 key_setsadbxsa2(mode, seq, reqid) 3617 u_int8_t mode; 3618 u_int32_t seq, reqid; 3619 { 3620 struct mbuf *m; 3621 struct sadb_x_sa2 *p; 3622 size_t len; 3623 3624 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); 3625 m = key_alloc_mbuf(len); 3626 if (!m || m->m_next) { /*XXX*/ 3627 if (m) 3628 m_freem(m); 3629 return NULL; 3630 } 3631 3632 p = mtod(m, struct sadb_x_sa2 *); 3633 3634 bzero(p, len); 3635 p->sadb_x_sa2_len = PFKEY_UNIT64(len); 3636 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 3637 p->sadb_x_sa2_mode = mode; 3638 p->sadb_x_sa2_reserved1 = 0; 3639 p->sadb_x_sa2_reserved2 = 0; 3640 p->sadb_x_sa2_sequence = seq; 3641 p->sadb_x_sa2_reqid = reqid; 3642 3643 return m; 3644 } 3645 3646 /* 3647 * set data into sadb_x_policy 3648 */ 3649 static struct mbuf * 3650 key_setsadbxpolicy(type, dir, id) 3651 u_int16_t type; 3652 u_int8_t dir; 3653 u_int32_t id; 3654 { 3655 struct mbuf *m; 3656 struct sadb_x_policy *p; 3657 size_t len; 3658 3659 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); 3660 m = key_alloc_mbuf(len); 3661 if (!m || m->m_next) { /*XXX*/ 3662 if (m) 3663 m_freem(m); 3664 return NULL; 3665 } 3666 3667 p = mtod(m, struct sadb_x_policy *); 3668 3669 bzero(p, len); 3670 p->sadb_x_policy_len = PFKEY_UNIT64(len); 3671 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 3672 p->sadb_x_policy_type = type; 3673 p->sadb_x_policy_dir = dir; 3674 p->sadb_x_policy_id = id; 3675 3676 return m; 3677 } 3678 3679 /* %%% utilities */ 3680 /* Take a key message (sadb_key) from the socket and turn it into one 3681 * of the kernel's key structures (seckey). 3682 * 3683 * IN: pointer to the src 3684 * OUT: NULL no more memory 3685 */ 3686 struct seckey * 3687 key_dup_keymsg(const struct sadb_key *src, u_int len, 3688 struct malloc_type *type) 3689 { 3690 INIT_VNET_IPSEC(curvnet); 3691 struct seckey *dst; 3692 dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT); 3693 if (dst != NULL) { 3694 dst->bits = src->sadb_key_bits; 3695 dst->key_data = (char *)malloc(len, type, M_NOWAIT); 3696 if (dst->key_data != NULL) { 3697 bcopy((const char *)src + sizeof(struct sadb_key), 3698 dst->key_data, len); 3699 } else { 3700 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3701 __func__)); 3702 free(dst, type); 3703 dst = NULL; 3704 } 3705 } else { 3706 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3707 __func__)); 3708 3709 } 3710 return dst; 3711 } 3712 3713 /* Take a lifetime message (sadb_lifetime) passed in on a socket and 3714 * turn it into one of the kernel's lifetime structures (seclifetime). 3715 * 3716 * IN: pointer to the destination, source and malloc type 3717 * OUT: NULL, no more memory 3718 */ 3719 3720 static struct seclifetime * 3721 key_dup_lifemsg(const struct sadb_lifetime *src, 3722 struct malloc_type *type) 3723 { 3724 INIT_VNET_IPSEC(curvnet); 3725 struct seclifetime *dst = NULL; 3726 3727 dst = (struct seclifetime *)malloc(sizeof(struct seclifetime), 3728 type, M_NOWAIT); 3729 if (dst == NULL) { 3730 /* XXX counter */ 3731 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3732 } else { 3733 dst->allocations = src->sadb_lifetime_allocations; 3734 dst->bytes = src->sadb_lifetime_bytes; 3735 dst->addtime = src->sadb_lifetime_addtime; 3736 dst->usetime = src->sadb_lifetime_usetime; 3737 } 3738 return dst; 3739 } 3740 3741 /* compare my own address 3742 * OUT: 1: true, i.e. my address. 3743 * 0: false 3744 */ 3745 int 3746 key_ismyaddr(sa) 3747 struct sockaddr *sa; 3748 { 3749 #ifdef INET 3750 INIT_VNET_INET(curvnet); 3751 struct sockaddr_in *sin; 3752 struct in_ifaddr *ia; 3753 #endif 3754 3755 IPSEC_ASSERT(sa != NULL, ("null sockaddr")); 3756 3757 switch (sa->sa_family) { 3758 #ifdef INET 3759 case AF_INET: 3760 sin = (struct sockaddr_in *)sa; 3761 for (ia = V_in_ifaddrhead.tqh_first; ia; 3762 ia = ia->ia_link.tqe_next) 3763 { 3764 if (sin->sin_family == ia->ia_addr.sin_family && 3765 sin->sin_len == ia->ia_addr.sin_len && 3766 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr) 3767 { 3768 return 1; 3769 } 3770 } 3771 break; 3772 #endif 3773 #ifdef INET6 3774 case AF_INET6: 3775 return key_ismyaddr6((struct sockaddr_in6 *)sa); 3776 #endif 3777 } 3778 3779 return 0; 3780 } 3781 3782 #ifdef INET6 3783 /* 3784 * compare my own address for IPv6. 3785 * 1: ours 3786 * 0: other 3787 * NOTE: derived ip6_input() in KAME. This is necessary to modify more. 3788 */ 3789 #include <netinet6/in6_var.h> 3790 3791 static int 3792 key_ismyaddr6(sin6) 3793 struct sockaddr_in6 *sin6; 3794 { 3795 INIT_VNET_INET6(curvnet); 3796 struct in6_ifaddr *ia; 3797 struct in6_multi *in6m; 3798 3799 for (ia = V_in6_ifaddr; ia; ia = ia->ia_next) { 3800 if (key_sockaddrcmp((struct sockaddr *)&sin6, 3801 (struct sockaddr *)&ia->ia_addr, 0) == 0) 3802 return 1; 3803 3804 /* 3805 * XXX Multicast 3806 * XXX why do we care about multlicast here while we don't care 3807 * about IPv4 multicast?? 3808 * XXX scope 3809 */ 3810 in6m = NULL; 3811 IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m); 3812 if (in6m) 3813 return 1; 3814 } 3815 3816 /* loopback, just for safety */ 3817 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) 3818 return 1; 3819 3820 return 0; 3821 } 3822 #endif /*INET6*/ 3823 3824 /* 3825 * compare two secasindex structure. 3826 * flag can specify to compare 2 saidxes. 3827 * compare two secasindex structure without both mode and reqid. 3828 * don't compare port. 3829 * IN: 3830 * saidx0: source, it can be in SAD. 3831 * saidx1: object. 3832 * OUT: 3833 * 1 : equal 3834 * 0 : not equal 3835 */ 3836 static int 3837 key_cmpsaidx( 3838 const struct secasindex *saidx0, 3839 const struct secasindex *saidx1, 3840 int flag) 3841 { 3842 /* sanity */ 3843 if (saidx0 == NULL && saidx1 == NULL) 3844 return 1; 3845 3846 if (saidx0 == NULL || saidx1 == NULL) 3847 return 0; 3848 3849 if (saidx0->proto != saidx1->proto) 3850 return 0; 3851 3852 if (flag == CMP_EXACTLY) { 3853 if (saidx0->mode != saidx1->mode) 3854 return 0; 3855 if (saidx0->reqid != saidx1->reqid) 3856 return 0; 3857 if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 || 3858 bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0) 3859 return 0; 3860 } else { 3861 3862 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ 3863 if (flag == CMP_MODE_REQID 3864 ||flag == CMP_REQID) { 3865 /* 3866 * If reqid of SPD is non-zero, unique SA is required. 3867 * The result must be of same reqid in this case. 3868 */ 3869 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) 3870 return 0; 3871 } 3872 3873 if (flag == CMP_MODE_REQID) { 3874 if (saidx0->mode != IPSEC_MODE_ANY 3875 && saidx0->mode != saidx1->mode) 3876 return 0; 3877 } 3878 3879 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, 0) != 0) { 3880 return 0; 3881 } 3882 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, 0) != 0) { 3883 return 0; 3884 } 3885 } 3886 3887 return 1; 3888 } 3889 3890 /* 3891 * compare two secindex structure exactly. 3892 * IN: 3893 * spidx0: source, it is often in SPD. 3894 * spidx1: object, it is often from PFKEY message. 3895 * OUT: 3896 * 1 : equal 3897 * 0 : not equal 3898 */ 3899 static int 3900 key_cmpspidx_exactly( 3901 struct secpolicyindex *spidx0, 3902 struct secpolicyindex *spidx1) 3903 { 3904 /* sanity */ 3905 if (spidx0 == NULL && spidx1 == NULL) 3906 return 1; 3907 3908 if (spidx0 == NULL || spidx1 == NULL) 3909 return 0; 3910 3911 if (spidx0->prefs != spidx1->prefs 3912 || spidx0->prefd != spidx1->prefd 3913 || spidx0->ul_proto != spidx1->ul_proto) 3914 return 0; 3915 3916 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 && 3917 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0; 3918 } 3919 3920 /* 3921 * compare two secindex structure with mask. 3922 * IN: 3923 * spidx0: source, it is often in SPD. 3924 * spidx1: object, it is often from IP header. 3925 * OUT: 3926 * 1 : equal 3927 * 0 : not equal 3928 */ 3929 static int 3930 key_cmpspidx_withmask( 3931 struct secpolicyindex *spidx0, 3932 struct secpolicyindex *spidx1) 3933 { 3934 /* sanity */ 3935 if (spidx0 == NULL && spidx1 == NULL) 3936 return 1; 3937 3938 if (spidx0 == NULL || spidx1 == NULL) 3939 return 0; 3940 3941 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || 3942 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || 3943 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || 3944 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) 3945 return 0; 3946 3947 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ 3948 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY 3949 && spidx0->ul_proto != spidx1->ul_proto) 3950 return 0; 3951 3952 switch (spidx0->src.sa.sa_family) { 3953 case AF_INET: 3954 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY 3955 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) 3956 return 0; 3957 if (!key_bbcmp(&spidx0->src.sin.sin_addr, 3958 &spidx1->src.sin.sin_addr, spidx0->prefs)) 3959 return 0; 3960 break; 3961 case AF_INET6: 3962 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY 3963 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) 3964 return 0; 3965 /* 3966 * scope_id check. if sin6_scope_id is 0, we regard it 3967 * as a wildcard scope, which matches any scope zone ID. 3968 */ 3969 if (spidx0->src.sin6.sin6_scope_id && 3970 spidx1->src.sin6.sin6_scope_id && 3971 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) 3972 return 0; 3973 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr, 3974 &spidx1->src.sin6.sin6_addr, spidx0->prefs)) 3975 return 0; 3976 break; 3977 default: 3978 /* XXX */ 3979 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) 3980 return 0; 3981 break; 3982 } 3983 3984 switch (spidx0->dst.sa.sa_family) { 3985 case AF_INET: 3986 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY 3987 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) 3988 return 0; 3989 if (!key_bbcmp(&spidx0->dst.sin.sin_addr, 3990 &spidx1->dst.sin.sin_addr, spidx0->prefd)) 3991 return 0; 3992 break; 3993 case AF_INET6: 3994 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY 3995 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) 3996 return 0; 3997 /* 3998 * scope_id check. if sin6_scope_id is 0, we regard it 3999 * as a wildcard scope, which matches any scope zone ID. 4000 */ 4001 if (spidx0->dst.sin6.sin6_scope_id && 4002 spidx1->dst.sin6.sin6_scope_id && 4003 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) 4004 return 0; 4005 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr, 4006 &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) 4007 return 0; 4008 break; 4009 default: 4010 /* XXX */ 4011 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) 4012 return 0; 4013 break; 4014 } 4015 4016 /* XXX Do we check other field ? e.g. flowinfo */ 4017 4018 return 1; 4019 } 4020 4021 /* returns 0 on match */ 4022 static int 4023 key_sockaddrcmp( 4024 const struct sockaddr *sa1, 4025 const struct sockaddr *sa2, 4026 int port) 4027 { 4028 #ifdef satosin 4029 #undef satosin 4030 #endif 4031 #define satosin(s) ((const struct sockaddr_in *)s) 4032 #ifdef satosin6 4033 #undef satosin6 4034 #endif 4035 #define satosin6(s) ((const struct sockaddr_in6 *)s) 4036 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) 4037 return 1; 4038 4039 switch (sa1->sa_family) { 4040 case AF_INET: 4041 if (sa1->sa_len != sizeof(struct sockaddr_in)) 4042 return 1; 4043 if (satosin(sa1)->sin_addr.s_addr != 4044 satosin(sa2)->sin_addr.s_addr) { 4045 return 1; 4046 } 4047 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port) 4048 return 1; 4049 break; 4050 case AF_INET6: 4051 if (sa1->sa_len != sizeof(struct sockaddr_in6)) 4052 return 1; /*EINVAL*/ 4053 if (satosin6(sa1)->sin6_scope_id != 4054 satosin6(sa2)->sin6_scope_id) { 4055 return 1; 4056 } 4057 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr, 4058 &satosin6(sa2)->sin6_addr)) { 4059 return 1; 4060 } 4061 if (port && 4062 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) { 4063 return 1; 4064 } 4065 break; 4066 default: 4067 if (bcmp(sa1, sa2, sa1->sa_len) != 0) 4068 return 1; 4069 break; 4070 } 4071 4072 return 0; 4073 #undef satosin 4074 #undef satosin6 4075 } 4076 4077 /* 4078 * compare two buffers with mask. 4079 * IN: 4080 * addr1: source 4081 * addr2: object 4082 * bits: Number of bits to compare 4083 * OUT: 4084 * 1 : equal 4085 * 0 : not equal 4086 */ 4087 static int 4088 key_bbcmp(const void *a1, const void *a2, u_int bits) 4089 { 4090 const unsigned char *p1 = a1; 4091 const unsigned char *p2 = a2; 4092 4093 /* XXX: This could be considerably faster if we compare a word 4094 * at a time, but it is complicated on LSB Endian machines */ 4095 4096 /* Handle null pointers */ 4097 if (p1 == NULL || p2 == NULL) 4098 return (p1 == p2); 4099 4100 while (bits >= 8) { 4101 if (*p1++ != *p2++) 4102 return 0; 4103 bits -= 8; 4104 } 4105 4106 if (bits > 0) { 4107 u_int8_t mask = ~((1<<(8-bits))-1); 4108 if ((*p1 & mask) != (*p2 & mask)) 4109 return 0; 4110 } 4111 return 1; /* Match! */ 4112 } 4113 4114 static void 4115 key_flush_spd(time_t now) 4116 { 4117 INIT_VNET_IPSEC(curvnet); 4118 static u_int16_t sptree_scangen = 0; 4119 u_int16_t gen = sptree_scangen++; 4120 struct secpolicy *sp; 4121 u_int dir; 4122 4123 /* SPD */ 4124 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 4125 restart: 4126 SPTREE_LOCK(); 4127 LIST_FOREACH(sp, &V_sptree[dir], chain) { 4128 if (sp->scangen == gen) /* previously handled */ 4129 continue; 4130 sp->scangen = gen; 4131 if (sp->state == IPSEC_SPSTATE_DEAD) { 4132 /* NB: clean entries created by key_spdflush */ 4133 SPTREE_UNLOCK(); 4134 KEY_FREESP(&sp); 4135 goto restart; 4136 } 4137 if (sp->lifetime == 0 && sp->validtime == 0) 4138 continue; 4139 if ((sp->lifetime && now - sp->created > sp->lifetime) 4140 || (sp->validtime && now - sp->lastused > sp->validtime)) { 4141 sp->state = IPSEC_SPSTATE_DEAD; 4142 SPTREE_UNLOCK(); 4143 key_spdexpire(sp); 4144 KEY_FREESP(&sp); 4145 goto restart; 4146 } 4147 } 4148 SPTREE_UNLOCK(); 4149 } 4150 } 4151 4152 static void 4153 key_flush_sad(time_t now) 4154 { 4155 INIT_VNET_IPSEC(curvnet); 4156 struct secashead *sah, *nextsah; 4157 struct secasvar *sav, *nextsav; 4158 4159 /* SAD */ 4160 SAHTREE_LOCK(); 4161 LIST_FOREACH_SAFE(sah, &V_sahtree, chain, nextsah) { 4162 /* if sah has been dead, then delete it and process next sah. */ 4163 if (sah->state == SADB_SASTATE_DEAD) { 4164 key_delsah(sah); 4165 continue; 4166 } 4167 4168 /* if LARVAL entry doesn't become MATURE, delete it. */ 4169 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) { 4170 if (now - sav->created > V_key_larval_lifetime) 4171 KEY_FREESAV(&sav); 4172 } 4173 4174 /* 4175 * check MATURE entry to start to send expire message 4176 * whether or not. 4177 */ 4178 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) { 4179 /* we don't need to check. */ 4180 if (sav->lft_s == NULL) 4181 continue; 4182 4183 /* sanity check */ 4184 if (sav->lft_c == NULL) { 4185 ipseclog((LOG_DEBUG,"%s: there is no CURRENT " 4186 "time, why?\n", __func__)); 4187 continue; 4188 } 4189 4190 /* check SOFT lifetime */ 4191 if (sav->lft_s->addtime != 0 && 4192 now - sav->created > sav->lft_s->addtime) { 4193 /* 4194 * check SA to be used whether or not. 4195 * when SA hasn't been used, delete it. 4196 */ 4197 if (sav->lft_c->usetime == 0) { 4198 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4199 KEY_FREESAV(&sav); 4200 } else { 4201 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4202 /* 4203 * XXX If we keep to send expire 4204 * message in the status of 4205 * DYING. Do remove below code. 4206 */ 4207 key_expire(sav); 4208 } 4209 } 4210 /* check SOFT lifetime by bytes */ 4211 /* 4212 * XXX I don't know the way to delete this SA 4213 * when new SA is installed. Caution when it's 4214 * installed too big lifetime by time. 4215 */ 4216 else if (sav->lft_s->bytes != 0 && 4217 sav->lft_s->bytes < sav->lft_c->bytes) { 4218 4219 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4220 /* 4221 * XXX If we keep to send expire 4222 * message in the status of 4223 * DYING. Do remove below code. 4224 */ 4225 key_expire(sav); 4226 } 4227 } 4228 4229 /* check DYING entry to change status to DEAD. */ 4230 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) { 4231 /* we don't need to check. */ 4232 if (sav->lft_h == NULL) 4233 continue; 4234 4235 /* sanity check */ 4236 if (sav->lft_c == NULL) { 4237 ipseclog((LOG_DEBUG, "%s: there is no CURRENT " 4238 "time, why?\n", __func__)); 4239 continue; 4240 } 4241 4242 if (sav->lft_h->addtime != 0 && 4243 now - sav->created > sav->lft_h->addtime) { 4244 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4245 KEY_FREESAV(&sav); 4246 } 4247 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */ 4248 else if (sav->lft_s != NULL 4249 && sav->lft_s->addtime != 0 4250 && now - sav->created > sav->lft_s->addtime) { 4251 /* 4252 * XXX: should be checked to be 4253 * installed the valid SA. 4254 */ 4255 4256 /* 4257 * If there is no SA then sending 4258 * expire message. 4259 */ 4260 key_expire(sav); 4261 } 4262 #endif 4263 /* check HARD lifetime by bytes */ 4264 else if (sav->lft_h->bytes != 0 && 4265 sav->lft_h->bytes < sav->lft_c->bytes) { 4266 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4267 KEY_FREESAV(&sav); 4268 } 4269 } 4270 4271 /* delete entry in DEAD */ 4272 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) { 4273 /* sanity check */ 4274 if (sav->state != SADB_SASTATE_DEAD) { 4275 ipseclog((LOG_DEBUG, "%s: invalid sav->state " 4276 "(queue: %d SA: %d): kill it anyway\n", 4277 __func__, 4278 SADB_SASTATE_DEAD, sav->state)); 4279 } 4280 /* 4281 * do not call key_freesav() here. 4282 * sav should already be freed, and sav->refcnt 4283 * shows other references to sav 4284 * (such as from SPD). 4285 */ 4286 } 4287 } 4288 SAHTREE_UNLOCK(); 4289 } 4290 4291 static void 4292 key_flush_acq(time_t now) 4293 { 4294 INIT_VNET_IPSEC(curvnet); 4295 struct secacq *acq, *nextacq; 4296 4297 /* ACQ tree */ 4298 ACQ_LOCK(); 4299 for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) { 4300 nextacq = LIST_NEXT(acq, chain); 4301 if (now - acq->created > V_key_blockacq_lifetime 4302 && __LIST_CHAINED(acq)) { 4303 LIST_REMOVE(acq, chain); 4304 free(acq, M_IPSEC_SAQ); 4305 } 4306 } 4307 ACQ_UNLOCK(); 4308 } 4309 4310 static void 4311 key_flush_spacq(time_t now) 4312 { 4313 INIT_VNET_IPSEC(curvnet); 4314 struct secspacq *acq, *nextacq; 4315 4316 /* SP ACQ tree */ 4317 SPACQ_LOCK(); 4318 for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) { 4319 nextacq = LIST_NEXT(acq, chain); 4320 if (now - acq->created > V_key_blockacq_lifetime 4321 && __LIST_CHAINED(acq)) { 4322 LIST_REMOVE(acq, chain); 4323 free(acq, M_IPSEC_SAQ); 4324 } 4325 } 4326 SPACQ_UNLOCK(); 4327 } 4328 4329 /* 4330 * time handler. 4331 * scanning SPD and SAD to check status for each entries, 4332 * and do to remove or to expire. 4333 * XXX: year 2038 problem may remain. 4334 */ 4335 void 4336 key_timehandler(void) 4337 { 4338 VNET_ITERATOR_DECL(vnet_iter); 4339 time_t now = time_second; 4340 4341 VNET_LIST_RLOCK(); 4342 VNET_FOREACH(vnet_iter) { 4343 CURVNET_SET(vnet_iter); 4344 key_flush_spd(now); 4345 key_flush_sad(now); 4346 key_flush_acq(now); 4347 key_flush_spacq(now); 4348 CURVNET_RESTORE(); 4349 } 4350 VNET_LIST_RUNLOCK(); 4351 4352 #ifndef IPSEC_DEBUG2 4353 /* do exchange to tick time !! */ 4354 (void)timeout((void *)key_timehandler, (void *)0, hz); 4355 #endif /* IPSEC_DEBUG2 */ 4356 } 4357 4358 u_long 4359 key_random() 4360 { 4361 u_long value; 4362 4363 key_randomfill(&value, sizeof(value)); 4364 return value; 4365 } 4366 4367 void 4368 key_randomfill(p, l) 4369 void *p; 4370 size_t l; 4371 { 4372 size_t n; 4373 u_long v; 4374 static int warn = 1; 4375 4376 n = 0; 4377 n = (size_t)read_random(p, (u_int)l); 4378 /* last resort */ 4379 while (n < l) { 4380 v = random(); 4381 bcopy(&v, (u_int8_t *)p + n, 4382 l - n < sizeof(v) ? l - n : sizeof(v)); 4383 n += sizeof(v); 4384 4385 if (warn) { 4386 printf("WARNING: pseudo-random number generator " 4387 "used for IPsec processing\n"); 4388 warn = 0; 4389 } 4390 } 4391 } 4392 4393 /* 4394 * map SADB_SATYPE_* to IPPROTO_*. 4395 * if satype == SADB_SATYPE then satype is mapped to ~0. 4396 * OUT: 4397 * 0: invalid satype. 4398 */ 4399 static u_int16_t 4400 key_satype2proto(satype) 4401 u_int8_t satype; 4402 { 4403 switch (satype) { 4404 case SADB_SATYPE_UNSPEC: 4405 return IPSEC_PROTO_ANY; 4406 case SADB_SATYPE_AH: 4407 return IPPROTO_AH; 4408 case SADB_SATYPE_ESP: 4409 return IPPROTO_ESP; 4410 case SADB_X_SATYPE_IPCOMP: 4411 return IPPROTO_IPCOMP; 4412 case SADB_X_SATYPE_TCPSIGNATURE: 4413 return IPPROTO_TCP; 4414 default: 4415 return 0; 4416 } 4417 /* NOTREACHED */ 4418 } 4419 4420 /* 4421 * map IPPROTO_* to SADB_SATYPE_* 4422 * OUT: 4423 * 0: invalid protocol type. 4424 */ 4425 static u_int8_t 4426 key_proto2satype(proto) 4427 u_int16_t proto; 4428 { 4429 switch (proto) { 4430 case IPPROTO_AH: 4431 return SADB_SATYPE_AH; 4432 case IPPROTO_ESP: 4433 return SADB_SATYPE_ESP; 4434 case IPPROTO_IPCOMP: 4435 return SADB_X_SATYPE_IPCOMP; 4436 case IPPROTO_TCP: 4437 return SADB_X_SATYPE_TCPSIGNATURE; 4438 default: 4439 return 0; 4440 } 4441 /* NOTREACHED */ 4442 } 4443 4444 /* %%% PF_KEY */ 4445 /* 4446 * SADB_GETSPI processing is to receive 4447 * <base, (SA2), src address, dst address, (SPI range)> 4448 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND 4449 * tree with the status of LARVAL, and send 4450 * <base, SA(*), address(SD)> 4451 * to the IKMPd. 4452 * 4453 * IN: mhp: pointer to the pointer to each header. 4454 * OUT: NULL if fail. 4455 * other if success, return pointer to the message to send. 4456 */ 4457 static int 4458 key_getspi(so, m, mhp) 4459 struct socket *so; 4460 struct mbuf *m; 4461 const struct sadb_msghdr *mhp; 4462 { 4463 INIT_VNET_IPSEC(curvnet); 4464 struct sadb_address *src0, *dst0; 4465 struct secasindex saidx; 4466 struct secashead *newsah; 4467 struct secasvar *newsav; 4468 u_int8_t proto; 4469 u_int32_t spi; 4470 u_int8_t mode; 4471 u_int32_t reqid; 4472 int error; 4473 4474 IPSEC_ASSERT(so != NULL, ("null socket")); 4475 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4476 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4477 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4478 4479 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4480 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 4481 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4482 __func__)); 4483 return key_senderror(so, m, EINVAL); 4484 } 4485 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4486 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4487 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4488 __func__)); 4489 return key_senderror(so, m, EINVAL); 4490 } 4491 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4492 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4493 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4494 } else { 4495 mode = IPSEC_MODE_ANY; 4496 reqid = 0; 4497 } 4498 4499 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4500 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4501 4502 /* map satype to proto */ 4503 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4504 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4505 __func__)); 4506 return key_senderror(so, m, EINVAL); 4507 } 4508 4509 /* make sure if port number is zero. */ 4510 switch (((struct sockaddr *)(src0 + 1))->sa_family) { 4511 case AF_INET: 4512 if (((struct sockaddr *)(src0 + 1))->sa_len != 4513 sizeof(struct sockaddr_in)) 4514 return key_senderror(so, m, EINVAL); 4515 ((struct sockaddr_in *)(src0 + 1))->sin_port = 0; 4516 break; 4517 case AF_INET6: 4518 if (((struct sockaddr *)(src0 + 1))->sa_len != 4519 sizeof(struct sockaddr_in6)) 4520 return key_senderror(so, m, EINVAL); 4521 ((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0; 4522 break; 4523 default: 4524 ; /*???*/ 4525 } 4526 switch (((struct sockaddr *)(dst0 + 1))->sa_family) { 4527 case AF_INET: 4528 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4529 sizeof(struct sockaddr_in)) 4530 return key_senderror(so, m, EINVAL); 4531 ((struct sockaddr_in *)(dst0 + 1))->sin_port = 0; 4532 break; 4533 case AF_INET6: 4534 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4535 sizeof(struct sockaddr_in6)) 4536 return key_senderror(so, m, EINVAL); 4537 ((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0; 4538 break; 4539 default: 4540 ; /*???*/ 4541 } 4542 4543 /* XXX boundary check against sa_len */ 4544 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4545 4546 /* SPI allocation */ 4547 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE], 4548 &saidx); 4549 if (spi == 0) 4550 return key_senderror(so, m, EINVAL); 4551 4552 /* get a SA index */ 4553 if ((newsah = key_getsah(&saidx)) == NULL) { 4554 /* create a new SA index */ 4555 if ((newsah = key_newsah(&saidx)) == NULL) { 4556 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 4557 return key_senderror(so, m, ENOBUFS); 4558 } 4559 } 4560 4561 /* get a new SA */ 4562 /* XXX rewrite */ 4563 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 4564 if (newsav == NULL) { 4565 /* XXX don't free new SA index allocated in above. */ 4566 return key_senderror(so, m, error); 4567 } 4568 4569 /* set spi */ 4570 newsav->spi = htonl(spi); 4571 4572 /* delete the entry in acqtree */ 4573 if (mhp->msg->sadb_msg_seq != 0) { 4574 struct secacq *acq; 4575 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) { 4576 /* reset counter in order to deletion by timehandler. */ 4577 acq->created = time_second; 4578 acq->count = 0; 4579 } 4580 } 4581 4582 { 4583 struct mbuf *n, *nn; 4584 struct sadb_sa *m_sa; 4585 struct sadb_msg *newmsg; 4586 int off, len; 4587 4588 /* create new sadb_msg to reply. */ 4589 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 4590 PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4591 4592 MGETHDR(n, M_DONTWAIT, MT_DATA); 4593 if (len > MHLEN) { 4594 MCLGET(n, M_DONTWAIT); 4595 if ((n->m_flags & M_EXT) == 0) { 4596 m_freem(n); 4597 n = NULL; 4598 } 4599 } 4600 if (!n) 4601 return key_senderror(so, m, ENOBUFS); 4602 4603 n->m_len = len; 4604 n->m_next = NULL; 4605 off = 0; 4606 4607 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 4608 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 4609 4610 m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off); 4611 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); 4612 m_sa->sadb_sa_exttype = SADB_EXT_SA; 4613 m_sa->sadb_sa_spi = htonl(spi); 4614 off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4615 4616 IPSEC_ASSERT(off == len, 4617 ("length inconsistency (off %u len %u)", off, len)); 4618 4619 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, 4620 SADB_EXT_ADDRESS_DST); 4621 if (!n->m_next) { 4622 m_freem(n); 4623 return key_senderror(so, m, ENOBUFS); 4624 } 4625 4626 if (n->m_len < sizeof(struct sadb_msg)) { 4627 n = m_pullup(n, sizeof(struct sadb_msg)); 4628 if (n == NULL) 4629 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 4630 } 4631 4632 n->m_pkthdr.len = 0; 4633 for (nn = n; nn; nn = nn->m_next) 4634 n->m_pkthdr.len += nn->m_len; 4635 4636 newmsg = mtod(n, struct sadb_msg *); 4637 newmsg->sadb_msg_seq = newsav->seq; 4638 newmsg->sadb_msg_errno = 0; 4639 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 4640 4641 m_freem(m); 4642 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 4643 } 4644 } 4645 4646 /* 4647 * allocating new SPI 4648 * called by key_getspi(). 4649 * OUT: 4650 * 0: failure. 4651 * others: success. 4652 */ 4653 static u_int32_t 4654 key_do_getnewspi(spirange, saidx) 4655 struct sadb_spirange *spirange; 4656 struct secasindex *saidx; 4657 { 4658 INIT_VNET_IPSEC(curvnet); 4659 u_int32_t newspi; 4660 u_int32_t min, max; 4661 int count = V_key_spi_trycnt; 4662 4663 /* set spi range to allocate */ 4664 if (spirange != NULL) { 4665 min = spirange->sadb_spirange_min; 4666 max = spirange->sadb_spirange_max; 4667 } else { 4668 min = V_key_spi_minval; 4669 max = V_key_spi_maxval; 4670 } 4671 /* IPCOMP needs 2-byte SPI */ 4672 if (saidx->proto == IPPROTO_IPCOMP) { 4673 u_int32_t t; 4674 if (min >= 0x10000) 4675 min = 0xffff; 4676 if (max >= 0x10000) 4677 max = 0xffff; 4678 if (min > max) { 4679 t = min; min = max; max = t; 4680 } 4681 } 4682 4683 if (min == max) { 4684 if (key_checkspidup(saidx, min) != NULL) { 4685 ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n", 4686 __func__, min)); 4687 return 0; 4688 } 4689 4690 count--; /* taking one cost. */ 4691 newspi = min; 4692 4693 } else { 4694 4695 /* init SPI */ 4696 newspi = 0; 4697 4698 /* when requesting to allocate spi ranged */ 4699 while (count--) { 4700 /* generate pseudo-random SPI value ranged. */ 4701 newspi = min + (key_random() % (max - min + 1)); 4702 4703 if (key_checkspidup(saidx, newspi) == NULL) 4704 break; 4705 } 4706 4707 if (count == 0 || newspi == 0) { 4708 ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n", 4709 __func__)); 4710 return 0; 4711 } 4712 } 4713 4714 /* statistics */ 4715 keystat.getspi_count = 4716 (keystat.getspi_count + V_key_spi_trycnt - count) / 2; 4717 4718 return newspi; 4719 } 4720 4721 /* 4722 * SADB_UPDATE processing 4723 * receive 4724 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4725 * key(AE), (identity(SD),) (sensitivity)> 4726 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. 4727 * and send 4728 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4729 * (identity(SD),) (sensitivity)> 4730 * to the ikmpd. 4731 * 4732 * m will always be freed. 4733 */ 4734 static int 4735 key_update(so, m, mhp) 4736 struct socket *so; 4737 struct mbuf *m; 4738 const struct sadb_msghdr *mhp; 4739 { 4740 INIT_VNET_IPSEC(curvnet); 4741 struct sadb_sa *sa0; 4742 struct sadb_address *src0, *dst0; 4743 struct secasindex saidx; 4744 struct secashead *sah; 4745 struct secasvar *sav; 4746 u_int16_t proto; 4747 u_int8_t mode; 4748 u_int32_t reqid; 4749 int error; 4750 4751 IPSEC_ASSERT(so != NULL, ("null socket")); 4752 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4753 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4754 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4755 4756 /* map satype to proto */ 4757 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4758 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4759 __func__)); 4760 return key_senderror(so, m, EINVAL); 4761 } 4762 4763 if (mhp->ext[SADB_EXT_SA] == NULL || 4764 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4765 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 4766 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 4767 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 4768 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 4769 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 4770 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 4771 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 4772 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 4773 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 4774 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4775 __func__)); 4776 return key_senderror(so, m, EINVAL); 4777 } 4778 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 4779 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4780 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4781 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4782 __func__)); 4783 return key_senderror(so, m, EINVAL); 4784 } 4785 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4786 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4787 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4788 } else { 4789 mode = IPSEC_MODE_ANY; 4790 reqid = 0; 4791 } 4792 /* XXX boundary checking for other extensions */ 4793 4794 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 4795 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4796 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4797 4798 /* XXX boundary check against sa_len */ 4799 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4800 4801 /* get a SA header */ 4802 if ((sah = key_getsah(&saidx)) == NULL) { 4803 ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__)); 4804 return key_senderror(so, m, ENOENT); 4805 } 4806 4807 /* set spidx if there */ 4808 /* XXX rewrite */ 4809 error = key_setident(sah, m, mhp); 4810 if (error) 4811 return key_senderror(so, m, error); 4812 4813 /* find a SA with sequence number. */ 4814 #ifdef IPSEC_DOSEQCHECK 4815 if (mhp->msg->sadb_msg_seq != 0 4816 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) { 4817 ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u " 4818 "exists.\n", __func__, mhp->msg->sadb_msg_seq)); 4819 return key_senderror(so, m, ENOENT); 4820 } 4821 #else 4822 SAHTREE_LOCK(); 4823 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 4824 SAHTREE_UNLOCK(); 4825 if (sav == NULL) { 4826 ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n", 4827 __func__, (u_int32_t)ntohl(sa0->sadb_sa_spi))); 4828 return key_senderror(so, m, EINVAL); 4829 } 4830 #endif 4831 4832 /* validity check */ 4833 if (sav->sah->saidx.proto != proto) { 4834 ipseclog((LOG_DEBUG, "%s: protocol mismatched " 4835 "(DB=%u param=%u)\n", __func__, 4836 sav->sah->saidx.proto, proto)); 4837 return key_senderror(so, m, EINVAL); 4838 } 4839 #ifdef IPSEC_DOSEQCHECK 4840 if (sav->spi != sa0->sadb_sa_spi) { 4841 ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n", 4842 __func__, 4843 (u_int32_t)ntohl(sav->spi), 4844 (u_int32_t)ntohl(sa0->sadb_sa_spi))); 4845 return key_senderror(so, m, EINVAL); 4846 } 4847 #endif 4848 if (sav->pid != mhp->msg->sadb_msg_pid) { 4849 ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n", 4850 __func__, sav->pid, mhp->msg->sadb_msg_pid)); 4851 return key_senderror(so, m, EINVAL); 4852 } 4853 4854 /* copy sav values */ 4855 error = key_setsaval(sav, m, mhp); 4856 if (error) { 4857 KEY_FREESAV(&sav); 4858 return key_senderror(so, m, error); 4859 } 4860 4861 /* check SA values to be mature. */ 4862 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) { 4863 KEY_FREESAV(&sav); 4864 return key_senderror(so, m, 0); 4865 } 4866 4867 { 4868 struct mbuf *n; 4869 4870 /* set msg buf from mhp */ 4871 n = key_getmsgbuf_x1(m, mhp); 4872 if (n == NULL) { 4873 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 4874 return key_senderror(so, m, ENOBUFS); 4875 } 4876 4877 m_freem(m); 4878 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 4879 } 4880 } 4881 4882 /* 4883 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL. 4884 * only called by key_update(). 4885 * OUT: 4886 * NULL : not found 4887 * others : found, pointer to a SA. 4888 */ 4889 #ifdef IPSEC_DOSEQCHECK 4890 static struct secasvar * 4891 key_getsavbyseq(sah, seq) 4892 struct secashead *sah; 4893 u_int32_t seq; 4894 { 4895 struct secasvar *sav; 4896 u_int state; 4897 4898 state = SADB_SASTATE_LARVAL; 4899 4900 /* search SAD with sequence number ? */ 4901 LIST_FOREACH(sav, &sah->savtree[state], chain) { 4902 4903 KEY_CHKSASTATE(state, sav->state, __func__); 4904 4905 if (sav->seq == seq) { 4906 sa_addref(sav); 4907 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 4908 printf("DP %s cause refcnt++:%d SA:%p\n", 4909 __func__, sav->refcnt, sav)); 4910 return sav; 4911 } 4912 } 4913 4914 return NULL; 4915 } 4916 #endif 4917 4918 /* 4919 * SADB_ADD processing 4920 * add an entry to SA database, when received 4921 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4922 * key(AE), (identity(SD),) (sensitivity)> 4923 * from the ikmpd, 4924 * and send 4925 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4926 * (identity(SD),) (sensitivity)> 4927 * to the ikmpd. 4928 * 4929 * IGNORE identity and sensitivity messages. 4930 * 4931 * m will always be freed. 4932 */ 4933 static int 4934 key_add(so, m, mhp) 4935 struct socket *so; 4936 struct mbuf *m; 4937 const struct sadb_msghdr *mhp; 4938 { 4939 INIT_VNET_IPSEC(curvnet); 4940 struct sadb_sa *sa0; 4941 struct sadb_address *src0, *dst0; 4942 struct secasindex saidx; 4943 struct secashead *newsah; 4944 struct secasvar *newsav; 4945 u_int16_t proto; 4946 u_int8_t mode; 4947 u_int32_t reqid; 4948 int error; 4949 4950 IPSEC_ASSERT(so != NULL, ("null socket")); 4951 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4952 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4953 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4954 4955 /* map satype to proto */ 4956 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4957 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4958 __func__)); 4959 return key_senderror(so, m, EINVAL); 4960 } 4961 4962 if (mhp->ext[SADB_EXT_SA] == NULL || 4963 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4964 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 4965 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 4966 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 4967 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 4968 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 4969 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 4970 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 4971 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 4972 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 4973 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4974 __func__)); 4975 return key_senderror(so, m, EINVAL); 4976 } 4977 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 4978 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4979 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4980 /* XXX need more */ 4981 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4982 __func__)); 4983 return key_senderror(so, m, EINVAL); 4984 } 4985 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4986 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4987 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4988 } else { 4989 mode = IPSEC_MODE_ANY; 4990 reqid = 0; 4991 } 4992 4993 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 4994 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 4995 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 4996 4997 /* XXX boundary check against sa_len */ 4998 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4999 5000 /* get a SA header */ 5001 if ((newsah = key_getsah(&saidx)) == NULL) { 5002 /* create a new SA header */ 5003 if ((newsah = key_newsah(&saidx)) == NULL) { 5004 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 5005 return key_senderror(so, m, ENOBUFS); 5006 } 5007 } 5008 5009 /* set spidx if there */ 5010 /* XXX rewrite */ 5011 error = key_setident(newsah, m, mhp); 5012 if (error) { 5013 return key_senderror(so, m, error); 5014 } 5015 5016 /* create new SA entry. */ 5017 /* We can create new SA only if SPI is differenct. */ 5018 SAHTREE_LOCK(); 5019 newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi); 5020 SAHTREE_UNLOCK(); 5021 if (newsav != NULL) { 5022 ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__)); 5023 return key_senderror(so, m, EEXIST); 5024 } 5025 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 5026 if (newsav == NULL) { 5027 return key_senderror(so, m, error); 5028 } 5029 5030 /* check SA values to be mature. */ 5031 if ((error = key_mature(newsav)) != 0) { 5032 KEY_FREESAV(&newsav); 5033 return key_senderror(so, m, error); 5034 } 5035 5036 /* 5037 * don't call key_freesav() here, as we would like to keep the SA 5038 * in the database on success. 5039 */ 5040 5041 { 5042 struct mbuf *n; 5043 5044 /* set msg buf from mhp */ 5045 n = key_getmsgbuf_x1(m, mhp); 5046 if (n == NULL) { 5047 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5048 return key_senderror(so, m, ENOBUFS); 5049 } 5050 5051 m_freem(m); 5052 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5053 } 5054 } 5055 5056 /* m is retained */ 5057 static int 5058 key_setident(sah, m, mhp) 5059 struct secashead *sah; 5060 struct mbuf *m; 5061 const struct sadb_msghdr *mhp; 5062 { 5063 INIT_VNET_IPSEC(curvnet); 5064 const struct sadb_ident *idsrc, *iddst; 5065 int idsrclen, iddstlen; 5066 5067 IPSEC_ASSERT(sah != NULL, ("null secashead")); 5068 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5069 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5070 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5071 5072 /* don't make buffer if not there */ 5073 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL && 5074 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5075 sah->idents = NULL; 5076 sah->identd = NULL; 5077 return 0; 5078 } 5079 5080 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL || 5081 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5082 ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__)); 5083 return EINVAL; 5084 } 5085 5086 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC]; 5087 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST]; 5088 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC]; 5089 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST]; 5090 5091 /* validity check */ 5092 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { 5093 ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__)); 5094 return EINVAL; 5095 } 5096 5097 switch (idsrc->sadb_ident_type) { 5098 case SADB_IDENTTYPE_PREFIX: 5099 case SADB_IDENTTYPE_FQDN: 5100 case SADB_IDENTTYPE_USERFQDN: 5101 default: 5102 /* XXX do nothing */ 5103 sah->idents = NULL; 5104 sah->identd = NULL; 5105 return 0; 5106 } 5107 5108 /* make structure */ 5109 sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5110 if (sah->idents == NULL) { 5111 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5112 return ENOBUFS; 5113 } 5114 sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5115 if (sah->identd == NULL) { 5116 free(sah->idents, M_IPSEC_MISC); 5117 sah->idents = NULL; 5118 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5119 return ENOBUFS; 5120 } 5121 sah->idents->type = idsrc->sadb_ident_type; 5122 sah->idents->id = idsrc->sadb_ident_id; 5123 5124 sah->identd->type = iddst->sadb_ident_type; 5125 sah->identd->id = iddst->sadb_ident_id; 5126 5127 return 0; 5128 } 5129 5130 /* 5131 * m will not be freed on return. 5132 * it is caller's responsibility to free the result. 5133 */ 5134 static struct mbuf * 5135 key_getmsgbuf_x1(m, mhp) 5136 struct mbuf *m; 5137 const struct sadb_msghdr *mhp; 5138 { 5139 struct mbuf *n; 5140 5141 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5142 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5143 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5144 5145 /* create new sadb_msg to reply. */ 5146 n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED, 5147 SADB_EXT_SA, SADB_X_EXT_SA2, 5148 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, 5149 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 5150 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST); 5151 if (!n) 5152 return NULL; 5153 5154 if (n->m_len < sizeof(struct sadb_msg)) { 5155 n = m_pullup(n, sizeof(struct sadb_msg)); 5156 if (n == NULL) 5157 return NULL; 5158 } 5159 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; 5160 mtod(n, struct sadb_msg *)->sadb_msg_len = 5161 PFKEY_UNIT64(n->m_pkthdr.len); 5162 5163 return n; 5164 } 5165 5166 static int key_delete_all __P((struct socket *, struct mbuf *, 5167 const struct sadb_msghdr *, u_int16_t)); 5168 5169 /* 5170 * SADB_DELETE processing 5171 * receive 5172 * <base, SA(*), address(SD)> 5173 * from the ikmpd, and set SADB_SASTATE_DEAD, 5174 * and send, 5175 * <base, SA(*), address(SD)> 5176 * to the ikmpd. 5177 * 5178 * m will always be freed. 5179 */ 5180 static int 5181 key_delete(so, m, mhp) 5182 struct socket *so; 5183 struct mbuf *m; 5184 const struct sadb_msghdr *mhp; 5185 { 5186 INIT_VNET_IPSEC(curvnet); 5187 struct sadb_sa *sa0; 5188 struct sadb_address *src0, *dst0; 5189 struct secasindex saidx; 5190 struct secashead *sah; 5191 struct secasvar *sav = NULL; 5192 u_int16_t proto; 5193 5194 IPSEC_ASSERT(so != NULL, ("null socket")); 5195 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5196 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5197 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5198 5199 /* map satype to proto */ 5200 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5201 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5202 __func__)); 5203 return key_senderror(so, m, EINVAL); 5204 } 5205 5206 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5207 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5208 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5209 __func__)); 5210 return key_senderror(so, m, EINVAL); 5211 } 5212 5213 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5214 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5215 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5216 __func__)); 5217 return key_senderror(so, m, EINVAL); 5218 } 5219 5220 if (mhp->ext[SADB_EXT_SA] == NULL) { 5221 /* 5222 * Caller wants us to delete all non-LARVAL SAs 5223 * that match the src/dst. This is used during 5224 * IKE INITIAL-CONTACT. 5225 */ 5226 ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__)); 5227 return key_delete_all(so, m, mhp, proto); 5228 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { 5229 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5230 __func__)); 5231 return key_senderror(so, m, EINVAL); 5232 } 5233 5234 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5235 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5236 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5237 5238 /* XXX boundary check against sa_len */ 5239 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5240 5241 /* get a SA header */ 5242 SAHTREE_LOCK(); 5243 LIST_FOREACH(sah, &V_sahtree, chain) { 5244 if (sah->state == SADB_SASTATE_DEAD) 5245 continue; 5246 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5247 continue; 5248 5249 /* get a SA with SPI. */ 5250 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5251 if (sav) 5252 break; 5253 } 5254 if (sah == NULL) { 5255 SAHTREE_UNLOCK(); 5256 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5257 return key_senderror(so, m, ENOENT); 5258 } 5259 5260 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5261 SAHTREE_UNLOCK(); 5262 KEY_FREESAV(&sav); 5263 5264 { 5265 struct mbuf *n; 5266 struct sadb_msg *newmsg; 5267 5268 /* create new sadb_msg to reply. */ 5269 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 5270 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5271 if (!n) 5272 return key_senderror(so, m, ENOBUFS); 5273 5274 if (n->m_len < sizeof(struct sadb_msg)) { 5275 n = m_pullup(n, sizeof(struct sadb_msg)); 5276 if (n == NULL) 5277 return key_senderror(so, m, ENOBUFS); 5278 } 5279 newmsg = mtod(n, struct sadb_msg *); 5280 newmsg->sadb_msg_errno = 0; 5281 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5282 5283 m_freem(m); 5284 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5285 } 5286 } 5287 5288 /* 5289 * delete all SAs for src/dst. Called from key_delete(). 5290 */ 5291 static int 5292 key_delete_all(so, m, mhp, proto) 5293 struct socket *so; 5294 struct mbuf *m; 5295 const struct sadb_msghdr *mhp; 5296 u_int16_t proto; 5297 { 5298 INIT_VNET_IPSEC(curvnet); 5299 struct sadb_address *src0, *dst0; 5300 struct secasindex saidx; 5301 struct secashead *sah; 5302 struct secasvar *sav, *nextsav; 5303 u_int stateidx, state; 5304 5305 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5306 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5307 5308 /* XXX boundary check against sa_len */ 5309 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5310 5311 SAHTREE_LOCK(); 5312 LIST_FOREACH(sah, &V_sahtree, chain) { 5313 if (sah->state == SADB_SASTATE_DEAD) 5314 continue; 5315 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5316 continue; 5317 5318 /* Delete all non-LARVAL SAs. */ 5319 for (stateidx = 0; 5320 stateidx < _ARRAYLEN(saorder_state_alive); 5321 stateidx++) { 5322 state = saorder_state_alive[stateidx]; 5323 if (state == SADB_SASTATE_LARVAL) 5324 continue; 5325 for (sav = LIST_FIRST(&sah->savtree[state]); 5326 sav != NULL; sav = nextsav) { 5327 nextsav = LIST_NEXT(sav, chain); 5328 /* sanity check */ 5329 if (sav->state != state) { 5330 ipseclog((LOG_DEBUG, "%s: invalid " 5331 "sav->state (queue %d SA %d)\n", 5332 __func__, state, sav->state)); 5333 continue; 5334 } 5335 5336 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5337 KEY_FREESAV(&sav); 5338 } 5339 } 5340 } 5341 SAHTREE_UNLOCK(); 5342 { 5343 struct mbuf *n; 5344 struct sadb_msg *newmsg; 5345 5346 /* create new sadb_msg to reply. */ 5347 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, 5348 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5349 if (!n) 5350 return key_senderror(so, m, ENOBUFS); 5351 5352 if (n->m_len < sizeof(struct sadb_msg)) { 5353 n = m_pullup(n, sizeof(struct sadb_msg)); 5354 if (n == NULL) 5355 return key_senderror(so, m, ENOBUFS); 5356 } 5357 newmsg = mtod(n, struct sadb_msg *); 5358 newmsg->sadb_msg_errno = 0; 5359 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5360 5361 m_freem(m); 5362 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5363 } 5364 } 5365 5366 /* 5367 * SADB_GET processing 5368 * receive 5369 * <base, SA(*), address(SD)> 5370 * from the ikmpd, and get a SP and a SA to respond, 5371 * and send, 5372 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), 5373 * (identity(SD),) (sensitivity)> 5374 * to the ikmpd. 5375 * 5376 * m will always be freed. 5377 */ 5378 static int 5379 key_get(so, m, mhp) 5380 struct socket *so; 5381 struct mbuf *m; 5382 const struct sadb_msghdr *mhp; 5383 { 5384 INIT_VNET_IPSEC(curvnet); 5385 struct sadb_sa *sa0; 5386 struct sadb_address *src0, *dst0; 5387 struct secasindex saidx; 5388 struct secashead *sah; 5389 struct secasvar *sav = NULL; 5390 u_int16_t proto; 5391 5392 IPSEC_ASSERT(so != NULL, ("null socket")); 5393 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5394 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5395 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5396 5397 /* map satype to proto */ 5398 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5399 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5400 __func__)); 5401 return key_senderror(so, m, EINVAL); 5402 } 5403 5404 if (mhp->ext[SADB_EXT_SA] == NULL || 5405 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5406 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5407 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5408 __func__)); 5409 return key_senderror(so, m, EINVAL); 5410 } 5411 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5412 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5413 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5414 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5415 __func__)); 5416 return key_senderror(so, m, EINVAL); 5417 } 5418 5419 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5420 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5421 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5422 5423 /* XXX boundary check against sa_len */ 5424 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5425 5426 /* get a SA header */ 5427 SAHTREE_LOCK(); 5428 LIST_FOREACH(sah, &V_sahtree, chain) { 5429 if (sah->state == SADB_SASTATE_DEAD) 5430 continue; 5431 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5432 continue; 5433 5434 /* get a SA with SPI. */ 5435 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5436 if (sav) 5437 break; 5438 } 5439 SAHTREE_UNLOCK(); 5440 if (sah == NULL) { 5441 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5442 return key_senderror(so, m, ENOENT); 5443 } 5444 5445 { 5446 struct mbuf *n; 5447 u_int8_t satype; 5448 5449 /* map proto to satype */ 5450 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 5451 ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n", 5452 __func__)); 5453 return key_senderror(so, m, EINVAL); 5454 } 5455 5456 /* create new sadb_msg to reply. */ 5457 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, 5458 mhp->msg->sadb_msg_pid); 5459 if (!n) 5460 return key_senderror(so, m, ENOBUFS); 5461 5462 m_freem(m); 5463 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5464 } 5465 } 5466 5467 /* XXX make it sysctl-configurable? */ 5468 static void 5469 key_getcomb_setlifetime(comb) 5470 struct sadb_comb *comb; 5471 { 5472 5473 comb->sadb_comb_soft_allocations = 1; 5474 comb->sadb_comb_hard_allocations = 1; 5475 comb->sadb_comb_soft_bytes = 0; 5476 comb->sadb_comb_hard_bytes = 0; 5477 comb->sadb_comb_hard_addtime = 86400; /* 1 day */ 5478 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100; 5479 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */ 5480 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100; 5481 } 5482 5483 /* 5484 * XXX reorder combinations by preference 5485 * XXX no idea if the user wants ESP authentication or not 5486 */ 5487 static struct mbuf * 5488 key_getcomb_esp() 5489 { 5490 INIT_VNET_IPSEC(curvnet); 5491 struct sadb_comb *comb; 5492 struct enc_xform *algo; 5493 struct mbuf *result = NULL, *m, *n; 5494 int encmin; 5495 int i, off, o; 5496 int totlen; 5497 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5498 5499 m = NULL; 5500 for (i = 1; i <= SADB_EALG_MAX; i++) { 5501 algo = esp_algorithm_lookup(i); 5502 if (algo == NULL) 5503 continue; 5504 5505 /* discard algorithms with key size smaller than system min */ 5506 if (_BITS(algo->maxkey) < V_ipsec_esp_keymin) 5507 continue; 5508 if (_BITS(algo->minkey) < V_ipsec_esp_keymin) 5509 encmin = V_ipsec_esp_keymin; 5510 else 5511 encmin = _BITS(algo->minkey); 5512 5513 if (V_ipsec_esp_auth) 5514 m = key_getcomb_ah(); 5515 else { 5516 IPSEC_ASSERT(l <= MLEN, 5517 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 5518 MGET(m, M_DONTWAIT, MT_DATA); 5519 if (m) { 5520 M_ALIGN(m, l); 5521 m->m_len = l; 5522 m->m_next = NULL; 5523 bzero(mtod(m, caddr_t), m->m_len); 5524 } 5525 } 5526 if (!m) 5527 goto fail; 5528 5529 totlen = 0; 5530 for (n = m; n; n = n->m_next) 5531 totlen += n->m_len; 5532 IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l)); 5533 5534 for (off = 0; off < totlen; off += l) { 5535 n = m_pulldown(m, off, l, &o); 5536 if (!n) { 5537 /* m is already freed */ 5538 goto fail; 5539 } 5540 comb = (struct sadb_comb *)(mtod(n, caddr_t) + o); 5541 bzero(comb, sizeof(*comb)); 5542 key_getcomb_setlifetime(comb); 5543 comb->sadb_comb_encrypt = i; 5544 comb->sadb_comb_encrypt_minbits = encmin; 5545 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); 5546 } 5547 5548 if (!result) 5549 result = m; 5550 else 5551 m_cat(result, m); 5552 } 5553 5554 return result; 5555 5556 fail: 5557 if (result) 5558 m_freem(result); 5559 return NULL; 5560 } 5561 5562 static void 5563 key_getsizes_ah( 5564 const struct auth_hash *ah, 5565 int alg, 5566 u_int16_t* min, 5567 u_int16_t* max) 5568 { 5569 INIT_VNET_IPSEC(curvnet); 5570 5571 *min = *max = ah->keysize; 5572 if (ah->keysize == 0) { 5573 /* 5574 * Transform takes arbitrary key size but algorithm 5575 * key size is restricted. Enforce this here. 5576 */ 5577 switch (alg) { 5578 case SADB_X_AALG_MD5: *min = *max = 16; break; 5579 case SADB_X_AALG_SHA: *min = *max = 20; break; 5580 case SADB_X_AALG_NULL: *min = 1; *max = 256; break; 5581 default: 5582 DPRINTF(("%s: unknown AH algorithm %u\n", 5583 __func__, alg)); 5584 break; 5585 } 5586 } 5587 } 5588 5589 /* 5590 * XXX reorder combinations by preference 5591 */ 5592 static struct mbuf * 5593 key_getcomb_ah() 5594 { 5595 INIT_VNET_IPSEC(curvnet); 5596 struct sadb_comb *comb; 5597 struct auth_hash *algo; 5598 struct mbuf *m; 5599 u_int16_t minkeysize, maxkeysize; 5600 int i; 5601 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5602 5603 m = NULL; 5604 for (i = 1; i <= SADB_AALG_MAX; i++) { 5605 #if 1 5606 /* we prefer HMAC algorithms, not old algorithms */ 5607 if (i != SADB_AALG_SHA1HMAC && i != SADB_AALG_MD5HMAC) 5608 continue; 5609 #endif 5610 algo = ah_algorithm_lookup(i); 5611 if (!algo) 5612 continue; 5613 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); 5614 /* discard algorithms with key size smaller than system min */ 5615 if (_BITS(minkeysize) < V_ipsec_ah_keymin) 5616 continue; 5617 5618 if (!m) { 5619 IPSEC_ASSERT(l <= MLEN, 5620 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 5621 MGET(m, M_DONTWAIT, MT_DATA); 5622 if (m) { 5623 M_ALIGN(m, l); 5624 m->m_len = l; 5625 m->m_next = NULL; 5626 } 5627 } else 5628 M_PREPEND(m, l, M_DONTWAIT); 5629 if (!m) 5630 return NULL; 5631 5632 comb = mtod(m, struct sadb_comb *); 5633 bzero(comb, sizeof(*comb)); 5634 key_getcomb_setlifetime(comb); 5635 comb->sadb_comb_auth = i; 5636 comb->sadb_comb_auth_minbits = _BITS(minkeysize); 5637 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); 5638 } 5639 5640 return m; 5641 } 5642 5643 /* 5644 * not really an official behavior. discussed in pf_key@inner.net in Sep2000. 5645 * XXX reorder combinations by preference 5646 */ 5647 static struct mbuf * 5648 key_getcomb_ipcomp() 5649 { 5650 struct sadb_comb *comb; 5651 struct comp_algo *algo; 5652 struct mbuf *m; 5653 int i; 5654 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5655 5656 m = NULL; 5657 for (i = 1; i <= SADB_X_CALG_MAX; i++) { 5658 algo = ipcomp_algorithm_lookup(i); 5659 if (!algo) 5660 continue; 5661 5662 if (!m) { 5663 IPSEC_ASSERT(l <= MLEN, 5664 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 5665 MGET(m, M_DONTWAIT, MT_DATA); 5666 if (m) { 5667 M_ALIGN(m, l); 5668 m->m_len = l; 5669 m->m_next = NULL; 5670 } 5671 } else 5672 M_PREPEND(m, l, M_DONTWAIT); 5673 if (!m) 5674 return NULL; 5675 5676 comb = mtod(m, struct sadb_comb *); 5677 bzero(comb, sizeof(*comb)); 5678 key_getcomb_setlifetime(comb); 5679 comb->sadb_comb_encrypt = i; 5680 /* what should we set into sadb_comb_*_{min,max}bits? */ 5681 } 5682 5683 return m; 5684 } 5685 5686 /* 5687 * XXX no way to pass mode (transport/tunnel) to userland 5688 * XXX replay checking? 5689 * XXX sysctl interface to ipsec_{ah,esp}_keymin 5690 */ 5691 static struct mbuf * 5692 key_getprop(saidx) 5693 const struct secasindex *saidx; 5694 { 5695 struct sadb_prop *prop; 5696 struct mbuf *m, *n; 5697 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); 5698 int totlen; 5699 5700 switch (saidx->proto) { 5701 case IPPROTO_ESP: 5702 m = key_getcomb_esp(); 5703 break; 5704 case IPPROTO_AH: 5705 m = key_getcomb_ah(); 5706 break; 5707 case IPPROTO_IPCOMP: 5708 m = key_getcomb_ipcomp(); 5709 break; 5710 default: 5711 return NULL; 5712 } 5713 5714 if (!m) 5715 return NULL; 5716 M_PREPEND(m, l, M_DONTWAIT); 5717 if (!m) 5718 return NULL; 5719 5720 totlen = 0; 5721 for (n = m; n; n = n->m_next) 5722 totlen += n->m_len; 5723 5724 prop = mtod(m, struct sadb_prop *); 5725 bzero(prop, sizeof(*prop)); 5726 prop->sadb_prop_len = PFKEY_UNIT64(totlen); 5727 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 5728 prop->sadb_prop_replay = 32; /* XXX */ 5729 5730 return m; 5731 } 5732 5733 /* 5734 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2(). 5735 * send 5736 * <base, SA, address(SD), (address(P)), x_policy, 5737 * (identity(SD),) (sensitivity,) proposal> 5738 * to KMD, and expect to receive 5739 * <base> with SADB_ACQUIRE if error occured, 5740 * or 5741 * <base, src address, dst address, (SPI range)> with SADB_GETSPI 5742 * from KMD by PF_KEY. 5743 * 5744 * XXX x_policy is outside of RFC2367 (KAME extension). 5745 * XXX sensitivity is not supported. 5746 * XXX for ipcomp, RFC2367 does not define how to fill in proposal. 5747 * see comment for key_getcomb_ipcomp(). 5748 * 5749 * OUT: 5750 * 0 : succeed 5751 * others: error number 5752 */ 5753 static int 5754 key_acquire(const struct secasindex *saidx, struct secpolicy *sp) 5755 { 5756 INIT_VNET_IPSEC(curvnet); 5757 struct mbuf *result = NULL, *m; 5758 struct secacq *newacq; 5759 u_int8_t satype; 5760 int error = -1; 5761 u_int32_t seq; 5762 5763 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 5764 satype = key_proto2satype(saidx->proto); 5765 IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto)); 5766 5767 /* 5768 * We never do anything about acquirng SA. There is anather 5769 * solution that kernel blocks to send SADB_ACQUIRE message until 5770 * getting something message from IKEd. In later case, to be 5771 * managed with ACQUIRING list. 5772 */ 5773 /* Get an entry to check whether sending message or not. */ 5774 if ((newacq = key_getacq(saidx)) != NULL) { 5775 if (V_key_blockacq_count < newacq->count) { 5776 /* reset counter and do send message. */ 5777 newacq->count = 0; 5778 } else { 5779 /* increment counter and do nothing. */ 5780 newacq->count++; 5781 return 0; 5782 } 5783 } else { 5784 /* make new entry for blocking to send SADB_ACQUIRE. */ 5785 if ((newacq = key_newacq(saidx)) == NULL) 5786 return ENOBUFS; 5787 } 5788 5789 5790 seq = newacq->seq; 5791 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0); 5792 if (!m) { 5793 error = ENOBUFS; 5794 goto fail; 5795 } 5796 result = m; 5797 5798 /* set sadb_address for saidx's. */ 5799 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 5800 &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY); 5801 if (!m) { 5802 error = ENOBUFS; 5803 goto fail; 5804 } 5805 m_cat(result, m); 5806 5807 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 5808 &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY); 5809 if (!m) { 5810 error = ENOBUFS; 5811 goto fail; 5812 } 5813 m_cat(result, m); 5814 5815 /* XXX proxy address (optional) */ 5816 5817 /* set sadb_x_policy */ 5818 if (sp) { 5819 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id); 5820 if (!m) { 5821 error = ENOBUFS; 5822 goto fail; 5823 } 5824 m_cat(result, m); 5825 } 5826 5827 /* XXX identity (optional) */ 5828 #if 0 5829 if (idexttype && fqdn) { 5830 /* create identity extension (FQDN) */ 5831 struct sadb_ident *id; 5832 int fqdnlen; 5833 5834 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ 5835 id = (struct sadb_ident *)p; 5836 bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 5837 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 5838 id->sadb_ident_exttype = idexttype; 5839 id->sadb_ident_type = SADB_IDENTTYPE_FQDN; 5840 bcopy(fqdn, id + 1, fqdnlen); 5841 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); 5842 } 5843 5844 if (idexttype) { 5845 /* create identity extension (USERFQDN) */ 5846 struct sadb_ident *id; 5847 int userfqdnlen; 5848 5849 if (userfqdn) { 5850 /* +1 for terminating-NUL */ 5851 userfqdnlen = strlen(userfqdn) + 1; 5852 } else 5853 userfqdnlen = 0; 5854 id = (struct sadb_ident *)p; 5855 bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 5856 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 5857 id->sadb_ident_exttype = idexttype; 5858 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; 5859 /* XXX is it correct? */ 5860 if (curproc && curproc->p_cred) 5861 id->sadb_ident_id = curproc->p_cred->p_ruid; 5862 if (userfqdn && userfqdnlen) 5863 bcopy(userfqdn, id + 1, userfqdnlen); 5864 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); 5865 } 5866 #endif 5867 5868 /* XXX sensitivity (optional) */ 5869 5870 /* create proposal/combination extension */ 5871 m = key_getprop(saidx); 5872 #if 0 5873 /* 5874 * spec conformant: always attach proposal/combination extension, 5875 * the problem is that we have no way to attach it for ipcomp, 5876 * due to the way sadb_comb is declared in RFC2367. 5877 */ 5878 if (!m) { 5879 error = ENOBUFS; 5880 goto fail; 5881 } 5882 m_cat(result, m); 5883 #else 5884 /* 5885 * outside of spec; make proposal/combination extension optional. 5886 */ 5887 if (m) 5888 m_cat(result, m); 5889 #endif 5890 5891 if ((result->m_flags & M_PKTHDR) == 0) { 5892 error = EINVAL; 5893 goto fail; 5894 } 5895 5896 if (result->m_len < sizeof(struct sadb_msg)) { 5897 result = m_pullup(result, sizeof(struct sadb_msg)); 5898 if (result == NULL) { 5899 error = ENOBUFS; 5900 goto fail; 5901 } 5902 } 5903 5904 result->m_pkthdr.len = 0; 5905 for (m = result; m; m = m->m_next) 5906 result->m_pkthdr.len += m->m_len; 5907 5908 mtod(result, struct sadb_msg *)->sadb_msg_len = 5909 PFKEY_UNIT64(result->m_pkthdr.len); 5910 5911 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 5912 5913 fail: 5914 if (result) 5915 m_freem(result); 5916 return error; 5917 } 5918 5919 static struct secacq * 5920 key_newacq(const struct secasindex *saidx) 5921 { 5922 INIT_VNET_IPSEC(curvnet); 5923 struct secacq *newacq; 5924 5925 /* get new entry */ 5926 newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 5927 if (newacq == NULL) { 5928 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5929 return NULL; 5930 } 5931 5932 /* copy secindex */ 5933 bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx)); 5934 newacq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq); 5935 newacq->created = time_second; 5936 newacq->count = 0; 5937 5938 /* add to acqtree */ 5939 ACQ_LOCK(); 5940 LIST_INSERT_HEAD(&V_acqtree, newacq, chain); 5941 ACQ_UNLOCK(); 5942 5943 return newacq; 5944 } 5945 5946 static struct secacq * 5947 key_getacq(const struct secasindex *saidx) 5948 { 5949 INIT_VNET_IPSEC(curvnet); 5950 struct secacq *acq; 5951 5952 ACQ_LOCK(); 5953 LIST_FOREACH(acq, &V_acqtree, chain) { 5954 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY)) 5955 break; 5956 } 5957 ACQ_UNLOCK(); 5958 5959 return acq; 5960 } 5961 5962 static struct secacq * 5963 key_getacqbyseq(seq) 5964 u_int32_t seq; 5965 { 5966 INIT_VNET_IPSEC(curvnet); 5967 struct secacq *acq; 5968 5969 ACQ_LOCK(); 5970 LIST_FOREACH(acq, &V_acqtree, chain) { 5971 if (acq->seq == seq) 5972 break; 5973 } 5974 ACQ_UNLOCK(); 5975 5976 return acq; 5977 } 5978 5979 static struct secspacq * 5980 key_newspacq(spidx) 5981 struct secpolicyindex *spidx; 5982 { 5983 INIT_VNET_IPSEC(curvnet); 5984 struct secspacq *acq; 5985 5986 /* get new entry */ 5987 acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 5988 if (acq == NULL) { 5989 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5990 return NULL; 5991 } 5992 5993 /* copy secindex */ 5994 bcopy(spidx, &acq->spidx, sizeof(acq->spidx)); 5995 acq->created = time_second; 5996 acq->count = 0; 5997 5998 /* add to spacqtree */ 5999 SPACQ_LOCK(); 6000 LIST_INSERT_HEAD(&V_spacqtree, acq, chain); 6001 SPACQ_UNLOCK(); 6002 6003 return acq; 6004 } 6005 6006 static struct secspacq * 6007 key_getspacq(spidx) 6008 struct secpolicyindex *spidx; 6009 { 6010 INIT_VNET_IPSEC(curvnet); 6011 struct secspacq *acq; 6012 6013 SPACQ_LOCK(); 6014 LIST_FOREACH(acq, &V_spacqtree, chain) { 6015 if (key_cmpspidx_exactly(spidx, &acq->spidx)) { 6016 /* NB: return holding spacq_lock */ 6017 return acq; 6018 } 6019 } 6020 SPACQ_UNLOCK(); 6021 6022 return NULL; 6023 } 6024 6025 /* 6026 * SADB_ACQUIRE processing, 6027 * in first situation, is receiving 6028 * <base> 6029 * from the ikmpd, and clear sequence of its secasvar entry. 6030 * 6031 * In second situation, is receiving 6032 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6033 * from a user land process, and return 6034 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6035 * to the socket. 6036 * 6037 * m will always be freed. 6038 */ 6039 static int 6040 key_acquire2(so, m, mhp) 6041 struct socket *so; 6042 struct mbuf *m; 6043 const struct sadb_msghdr *mhp; 6044 { 6045 INIT_VNET_IPSEC(curvnet); 6046 const struct sadb_address *src0, *dst0; 6047 struct secasindex saidx; 6048 struct secashead *sah; 6049 u_int16_t proto; 6050 int error; 6051 6052 IPSEC_ASSERT(so != NULL, ("null socket")); 6053 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6054 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6055 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6056 6057 /* 6058 * Error message from KMd. 6059 * We assume that if error was occured in IKEd, the length of PFKEY 6060 * message is equal to the size of sadb_msg structure. 6061 * We do not raise error even if error occured in this function. 6062 */ 6063 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { 6064 struct secacq *acq; 6065 6066 /* check sequence number */ 6067 if (mhp->msg->sadb_msg_seq == 0) { 6068 ipseclog((LOG_DEBUG, "%s: must specify sequence " 6069 "number.\n", __func__)); 6070 m_freem(m); 6071 return 0; 6072 } 6073 6074 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) { 6075 /* 6076 * the specified larval SA is already gone, or we got 6077 * a bogus sequence number. we can silently ignore it. 6078 */ 6079 m_freem(m); 6080 return 0; 6081 } 6082 6083 /* reset acq counter in order to deletion by timehander. */ 6084 acq->created = time_second; 6085 acq->count = 0; 6086 m_freem(m); 6087 return 0; 6088 } 6089 6090 /* 6091 * This message is from user land. 6092 */ 6093 6094 /* map satype to proto */ 6095 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6096 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6097 __func__)); 6098 return key_senderror(so, m, EINVAL); 6099 } 6100 6101 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6102 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 6103 mhp->ext[SADB_EXT_PROPOSAL] == NULL) { 6104 /* error */ 6105 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6106 __func__)); 6107 return key_senderror(so, m, EINVAL); 6108 } 6109 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6110 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 6111 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { 6112 /* error */ 6113 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6114 __func__)); 6115 return key_senderror(so, m, EINVAL); 6116 } 6117 6118 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 6119 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 6120 6121 /* XXX boundary check against sa_len */ 6122 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 6123 6124 /* get a SA index */ 6125 SAHTREE_LOCK(); 6126 LIST_FOREACH(sah, &V_sahtree, chain) { 6127 if (sah->state == SADB_SASTATE_DEAD) 6128 continue; 6129 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID)) 6130 break; 6131 } 6132 SAHTREE_UNLOCK(); 6133 if (sah != NULL) { 6134 ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__)); 6135 return key_senderror(so, m, EEXIST); 6136 } 6137 6138 error = key_acquire(&saidx, NULL); 6139 if (error != 0) { 6140 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 6141 __func__, mhp->msg->sadb_msg_errno)); 6142 return key_senderror(so, m, error); 6143 } 6144 6145 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); 6146 } 6147 6148 /* 6149 * SADB_REGISTER processing. 6150 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. 6151 * receive 6152 * <base> 6153 * from the ikmpd, and register a socket to send PF_KEY messages, 6154 * and send 6155 * <base, supported> 6156 * to KMD by PF_KEY. 6157 * If socket is detached, must free from regnode. 6158 * 6159 * m will always be freed. 6160 */ 6161 static int 6162 key_register(so, m, mhp) 6163 struct socket *so; 6164 struct mbuf *m; 6165 const struct sadb_msghdr *mhp; 6166 { 6167 INIT_VNET_IPSEC(curvnet); 6168 struct secreg *reg, *newreg = 0; 6169 6170 IPSEC_ASSERT(so != NULL, ("null socket")); 6171 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6172 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6173 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6174 6175 /* check for invalid register message */ 6176 if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0])) 6177 return key_senderror(so, m, EINVAL); 6178 6179 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ 6180 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) 6181 goto setmsg; 6182 6183 /* check whether existing or not */ 6184 REGTREE_LOCK(); 6185 LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) { 6186 if (reg->so == so) { 6187 REGTREE_UNLOCK(); 6188 ipseclog((LOG_DEBUG, "%s: socket exists already.\n", 6189 __func__)); 6190 return key_senderror(so, m, EEXIST); 6191 } 6192 } 6193 6194 /* create regnode */ 6195 newreg = malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO); 6196 if (newreg == NULL) { 6197 REGTREE_UNLOCK(); 6198 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6199 return key_senderror(so, m, ENOBUFS); 6200 } 6201 6202 newreg->so = so; 6203 ((struct keycb *)sotorawcb(so))->kp_registered++; 6204 6205 /* add regnode to regtree. */ 6206 LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain); 6207 REGTREE_UNLOCK(); 6208 6209 setmsg: 6210 { 6211 struct mbuf *n; 6212 struct sadb_msg *newmsg; 6213 struct sadb_supported *sup; 6214 u_int len, alen, elen; 6215 int off; 6216 int i; 6217 struct sadb_alg *alg; 6218 6219 /* create new sadb_msg to reply. */ 6220 alen = 0; 6221 for (i = 1; i <= SADB_AALG_MAX; i++) { 6222 if (ah_algorithm_lookup(i)) 6223 alen += sizeof(struct sadb_alg); 6224 } 6225 if (alen) 6226 alen += sizeof(struct sadb_supported); 6227 elen = 0; 6228 for (i = 1; i <= SADB_EALG_MAX; i++) { 6229 if (esp_algorithm_lookup(i)) 6230 elen += sizeof(struct sadb_alg); 6231 } 6232 if (elen) 6233 elen += sizeof(struct sadb_supported); 6234 6235 len = sizeof(struct sadb_msg) + alen + elen; 6236 6237 if (len > MCLBYTES) 6238 return key_senderror(so, m, ENOBUFS); 6239 6240 MGETHDR(n, M_DONTWAIT, MT_DATA); 6241 if (len > MHLEN) { 6242 MCLGET(n, M_DONTWAIT); 6243 if ((n->m_flags & M_EXT) == 0) { 6244 m_freem(n); 6245 n = NULL; 6246 } 6247 } 6248 if (!n) 6249 return key_senderror(so, m, ENOBUFS); 6250 6251 n->m_pkthdr.len = n->m_len = len; 6252 n->m_next = NULL; 6253 off = 0; 6254 6255 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 6256 newmsg = mtod(n, struct sadb_msg *); 6257 newmsg->sadb_msg_errno = 0; 6258 newmsg->sadb_msg_len = PFKEY_UNIT64(len); 6259 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 6260 6261 /* for authentication algorithm */ 6262 if (alen) { 6263 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6264 sup->sadb_supported_len = PFKEY_UNIT64(alen); 6265 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 6266 off += PFKEY_ALIGN8(sizeof(*sup)); 6267 6268 for (i = 1; i <= SADB_AALG_MAX; i++) { 6269 struct auth_hash *aalgo; 6270 u_int16_t minkeysize, maxkeysize; 6271 6272 aalgo = ah_algorithm_lookup(i); 6273 if (!aalgo) 6274 continue; 6275 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6276 alg->sadb_alg_id = i; 6277 alg->sadb_alg_ivlen = 0; 6278 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); 6279 alg->sadb_alg_minbits = _BITS(minkeysize); 6280 alg->sadb_alg_maxbits = _BITS(maxkeysize); 6281 off += PFKEY_ALIGN8(sizeof(*alg)); 6282 } 6283 } 6284 6285 /* for encryption algorithm */ 6286 if (elen) { 6287 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6288 sup->sadb_supported_len = PFKEY_UNIT64(elen); 6289 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 6290 off += PFKEY_ALIGN8(sizeof(*sup)); 6291 6292 for (i = 1; i <= SADB_EALG_MAX; i++) { 6293 struct enc_xform *ealgo; 6294 6295 ealgo = esp_algorithm_lookup(i); 6296 if (!ealgo) 6297 continue; 6298 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6299 alg->sadb_alg_id = i; 6300 alg->sadb_alg_ivlen = ealgo->blocksize; 6301 alg->sadb_alg_minbits = _BITS(ealgo->minkey); 6302 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); 6303 off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); 6304 } 6305 } 6306 6307 IPSEC_ASSERT(off == len, 6308 ("length assumption failed (off %u len %u)", off, len)); 6309 6310 m_freem(m); 6311 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); 6312 } 6313 } 6314 6315 /* 6316 * free secreg entry registered. 6317 * XXX: I want to do free a socket marked done SADB_RESIGER to socket. 6318 */ 6319 void 6320 key_freereg(struct socket *so) 6321 { 6322 INIT_VNET_IPSEC(curvnet); 6323 struct secreg *reg; 6324 int i; 6325 6326 IPSEC_ASSERT(so != NULL, ("NULL so")); 6327 6328 /* 6329 * check whether existing or not. 6330 * check all type of SA, because there is a potential that 6331 * one socket is registered to multiple type of SA. 6332 */ 6333 REGTREE_LOCK(); 6334 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 6335 LIST_FOREACH(reg, &V_regtree[i], chain) { 6336 if (reg->so == so && __LIST_CHAINED(reg)) { 6337 LIST_REMOVE(reg, chain); 6338 free(reg, M_IPSEC_SAR); 6339 break; 6340 } 6341 } 6342 } 6343 REGTREE_UNLOCK(); 6344 } 6345 6346 /* 6347 * SADB_EXPIRE processing 6348 * send 6349 * <base, SA, SA2, lifetime(C and one of HS), address(SD)> 6350 * to KMD by PF_KEY. 6351 * NOTE: We send only soft lifetime extension. 6352 * 6353 * OUT: 0 : succeed 6354 * others : error number 6355 */ 6356 static int 6357 key_expire(struct secasvar *sav) 6358 { 6359 int s; 6360 int satype; 6361 struct mbuf *result = NULL, *m; 6362 int len; 6363 int error = -1; 6364 struct sadb_lifetime *lt; 6365 6366 /* XXX: Why do we lock ? */ 6367 s = splnet(); /*called from softclock()*/ 6368 6369 IPSEC_ASSERT (sav != NULL, ("null sav")); 6370 IPSEC_ASSERT (sav->sah != NULL, ("null sa header")); 6371 6372 /* set msg header */ 6373 satype = key_proto2satype(sav->sah->saidx.proto); 6374 IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype)); 6375 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt); 6376 if (!m) { 6377 error = ENOBUFS; 6378 goto fail; 6379 } 6380 result = m; 6381 6382 /* create SA extension */ 6383 m = key_setsadbsa(sav); 6384 if (!m) { 6385 error = ENOBUFS; 6386 goto fail; 6387 } 6388 m_cat(result, m); 6389 6390 /* create SA extension */ 6391 m = key_setsadbxsa2(sav->sah->saidx.mode, 6392 sav->replay ? sav->replay->count : 0, 6393 sav->sah->saidx.reqid); 6394 if (!m) { 6395 error = ENOBUFS; 6396 goto fail; 6397 } 6398 m_cat(result, m); 6399 6400 /* create lifetime extension (current and soft) */ 6401 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 6402 m = key_alloc_mbuf(len); 6403 if (!m || m->m_next) { /*XXX*/ 6404 if (m) 6405 m_freem(m); 6406 error = ENOBUFS; 6407 goto fail; 6408 } 6409 bzero(mtod(m, caddr_t), len); 6410 lt = mtod(m, struct sadb_lifetime *); 6411 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6412 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 6413 lt->sadb_lifetime_allocations = sav->lft_c->allocations; 6414 lt->sadb_lifetime_bytes = sav->lft_c->bytes; 6415 lt->sadb_lifetime_addtime = sav->lft_c->addtime; 6416 lt->sadb_lifetime_usetime = sav->lft_c->usetime; 6417 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 6418 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6419 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; 6420 lt->sadb_lifetime_allocations = sav->lft_s->allocations; 6421 lt->sadb_lifetime_bytes = sav->lft_s->bytes; 6422 lt->sadb_lifetime_addtime = sav->lft_s->addtime; 6423 lt->sadb_lifetime_usetime = sav->lft_s->usetime; 6424 m_cat(result, m); 6425 6426 /* set sadb_address for source */ 6427 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 6428 &sav->sah->saidx.src.sa, 6429 FULLMASK, IPSEC_ULPROTO_ANY); 6430 if (!m) { 6431 error = ENOBUFS; 6432 goto fail; 6433 } 6434 m_cat(result, m); 6435 6436 /* set sadb_address for destination */ 6437 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 6438 &sav->sah->saidx.dst.sa, 6439 FULLMASK, IPSEC_ULPROTO_ANY); 6440 if (!m) { 6441 error = ENOBUFS; 6442 goto fail; 6443 } 6444 m_cat(result, m); 6445 6446 if ((result->m_flags & M_PKTHDR) == 0) { 6447 error = EINVAL; 6448 goto fail; 6449 } 6450 6451 if (result->m_len < sizeof(struct sadb_msg)) { 6452 result = m_pullup(result, sizeof(struct sadb_msg)); 6453 if (result == NULL) { 6454 error = ENOBUFS; 6455 goto fail; 6456 } 6457 } 6458 6459 result->m_pkthdr.len = 0; 6460 for (m = result; m; m = m->m_next) 6461 result->m_pkthdr.len += m->m_len; 6462 6463 mtod(result, struct sadb_msg *)->sadb_msg_len = 6464 PFKEY_UNIT64(result->m_pkthdr.len); 6465 6466 splx(s); 6467 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6468 6469 fail: 6470 if (result) 6471 m_freem(result); 6472 splx(s); 6473 return error; 6474 } 6475 6476 /* 6477 * SADB_FLUSH processing 6478 * receive 6479 * <base> 6480 * from the ikmpd, and free all entries in secastree. 6481 * and send, 6482 * <base> 6483 * to the ikmpd. 6484 * NOTE: to do is only marking SADB_SASTATE_DEAD. 6485 * 6486 * m will always be freed. 6487 */ 6488 static int 6489 key_flush(so, m, mhp) 6490 struct socket *so; 6491 struct mbuf *m; 6492 const struct sadb_msghdr *mhp; 6493 { 6494 INIT_VNET_IPSEC(curvnet); 6495 struct sadb_msg *newmsg; 6496 struct secashead *sah, *nextsah; 6497 struct secasvar *sav, *nextsav; 6498 u_int16_t proto; 6499 u_int8_t state; 6500 u_int stateidx; 6501 6502 IPSEC_ASSERT(so != NULL, ("null socket")); 6503 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6504 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6505 6506 /* map satype to proto */ 6507 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6508 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6509 __func__)); 6510 return key_senderror(so, m, EINVAL); 6511 } 6512 6513 /* no SATYPE specified, i.e. flushing all SA. */ 6514 SAHTREE_LOCK(); 6515 for (sah = LIST_FIRST(&V_sahtree); 6516 sah != NULL; 6517 sah = nextsah) { 6518 nextsah = LIST_NEXT(sah, chain); 6519 6520 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 6521 && proto != sah->saidx.proto) 6522 continue; 6523 6524 for (stateidx = 0; 6525 stateidx < _ARRAYLEN(saorder_state_alive); 6526 stateidx++) { 6527 state = saorder_state_any[stateidx]; 6528 for (sav = LIST_FIRST(&sah->savtree[state]); 6529 sav != NULL; 6530 sav = nextsav) { 6531 6532 nextsav = LIST_NEXT(sav, chain); 6533 6534 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 6535 KEY_FREESAV(&sav); 6536 } 6537 } 6538 6539 sah->state = SADB_SASTATE_DEAD; 6540 } 6541 SAHTREE_UNLOCK(); 6542 6543 if (m->m_len < sizeof(struct sadb_msg) || 6544 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 6545 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6546 return key_senderror(so, m, ENOBUFS); 6547 } 6548 6549 if (m->m_next) 6550 m_freem(m->m_next); 6551 m->m_next = NULL; 6552 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); 6553 newmsg = mtod(m, struct sadb_msg *); 6554 newmsg->sadb_msg_errno = 0; 6555 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 6556 6557 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 6558 } 6559 6560 /* 6561 * SADB_DUMP processing 6562 * dump all entries including status of DEAD in SAD. 6563 * receive 6564 * <base> 6565 * from the ikmpd, and dump all secasvar leaves 6566 * and send, 6567 * <base> ..... 6568 * to the ikmpd. 6569 * 6570 * m will always be freed. 6571 */ 6572 static int 6573 key_dump(so, m, mhp) 6574 struct socket *so; 6575 struct mbuf *m; 6576 const struct sadb_msghdr *mhp; 6577 { 6578 INIT_VNET_IPSEC(curvnet); 6579 struct secashead *sah; 6580 struct secasvar *sav; 6581 u_int16_t proto; 6582 u_int stateidx; 6583 u_int8_t satype; 6584 u_int8_t state; 6585 int cnt; 6586 struct sadb_msg *newmsg; 6587 struct mbuf *n; 6588 6589 IPSEC_ASSERT(so != NULL, ("null socket")); 6590 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6591 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6592 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6593 6594 /* map satype to proto */ 6595 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6596 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6597 __func__)); 6598 return key_senderror(so, m, EINVAL); 6599 } 6600 6601 /* count sav entries to be sent to the userland. */ 6602 cnt = 0; 6603 SAHTREE_LOCK(); 6604 LIST_FOREACH(sah, &V_sahtree, chain) { 6605 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 6606 && proto != sah->saidx.proto) 6607 continue; 6608 6609 for (stateidx = 0; 6610 stateidx < _ARRAYLEN(saorder_state_any); 6611 stateidx++) { 6612 state = saorder_state_any[stateidx]; 6613 LIST_FOREACH(sav, &sah->savtree[state], chain) { 6614 cnt++; 6615 } 6616 } 6617 } 6618 6619 if (cnt == 0) { 6620 SAHTREE_UNLOCK(); 6621 return key_senderror(so, m, ENOENT); 6622 } 6623 6624 /* send this to the userland, one at a time. */ 6625 newmsg = NULL; 6626 LIST_FOREACH(sah, &V_sahtree, chain) { 6627 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 6628 && proto != sah->saidx.proto) 6629 continue; 6630 6631 /* map proto to satype */ 6632 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 6633 SAHTREE_UNLOCK(); 6634 ipseclog((LOG_DEBUG, "%s: there was invalid proto in " 6635 "SAD.\n", __func__)); 6636 return key_senderror(so, m, EINVAL); 6637 } 6638 6639 for (stateidx = 0; 6640 stateidx < _ARRAYLEN(saorder_state_any); 6641 stateidx++) { 6642 state = saorder_state_any[stateidx]; 6643 LIST_FOREACH(sav, &sah->savtree[state], chain) { 6644 n = key_setdumpsa(sav, SADB_DUMP, satype, 6645 --cnt, mhp->msg->sadb_msg_pid); 6646 if (!n) { 6647 SAHTREE_UNLOCK(); 6648 return key_senderror(so, m, ENOBUFS); 6649 } 6650 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 6651 } 6652 } 6653 } 6654 SAHTREE_UNLOCK(); 6655 6656 m_freem(m); 6657 return 0; 6658 } 6659 6660 /* 6661 * SADB_X_PROMISC processing 6662 * 6663 * m will always be freed. 6664 */ 6665 static int 6666 key_promisc(so, m, mhp) 6667 struct socket *so; 6668 struct mbuf *m; 6669 const struct sadb_msghdr *mhp; 6670 { 6671 int olen; 6672 6673 IPSEC_ASSERT(so != NULL, ("null socket")); 6674 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6675 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6676 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6677 6678 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 6679 6680 if (olen < sizeof(struct sadb_msg)) { 6681 #if 1 6682 return key_senderror(so, m, EINVAL); 6683 #else 6684 m_freem(m); 6685 return 0; 6686 #endif 6687 } else if (olen == sizeof(struct sadb_msg)) { 6688 /* enable/disable promisc mode */ 6689 struct keycb *kp; 6690 6691 if ((kp = (struct keycb *)sotorawcb(so)) == NULL) 6692 return key_senderror(so, m, EINVAL); 6693 mhp->msg->sadb_msg_errno = 0; 6694 switch (mhp->msg->sadb_msg_satype) { 6695 case 0: 6696 case 1: 6697 kp->kp_promisc = mhp->msg->sadb_msg_satype; 6698 break; 6699 default: 6700 return key_senderror(so, m, EINVAL); 6701 } 6702 6703 /* send the original message back to everyone */ 6704 mhp->msg->sadb_msg_errno = 0; 6705 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 6706 } else { 6707 /* send packet as is */ 6708 6709 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); 6710 6711 /* TODO: if sadb_msg_seq is specified, send to specific pid */ 6712 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 6713 } 6714 } 6715 6716 static int (*key_typesw[]) __P((struct socket *, struct mbuf *, 6717 const struct sadb_msghdr *)) = { 6718 NULL, /* SADB_RESERVED */ 6719 key_getspi, /* SADB_GETSPI */ 6720 key_update, /* SADB_UPDATE */ 6721 key_add, /* SADB_ADD */ 6722 key_delete, /* SADB_DELETE */ 6723 key_get, /* SADB_GET */ 6724 key_acquire2, /* SADB_ACQUIRE */ 6725 key_register, /* SADB_REGISTER */ 6726 NULL, /* SADB_EXPIRE */ 6727 key_flush, /* SADB_FLUSH */ 6728 key_dump, /* SADB_DUMP */ 6729 key_promisc, /* SADB_X_PROMISC */ 6730 NULL, /* SADB_X_PCHANGE */ 6731 key_spdadd, /* SADB_X_SPDUPDATE */ 6732 key_spdadd, /* SADB_X_SPDADD */ 6733 key_spddelete, /* SADB_X_SPDDELETE */ 6734 key_spdget, /* SADB_X_SPDGET */ 6735 NULL, /* SADB_X_SPDACQUIRE */ 6736 key_spddump, /* SADB_X_SPDDUMP */ 6737 key_spdflush, /* SADB_X_SPDFLUSH */ 6738 key_spdadd, /* SADB_X_SPDSETIDX */ 6739 NULL, /* SADB_X_SPDEXPIRE */ 6740 key_spddelete2, /* SADB_X_SPDDELETE2 */ 6741 }; 6742 6743 /* 6744 * parse sadb_msg buffer to process PFKEYv2, 6745 * and create a data to response if needed. 6746 * I think to be dealed with mbuf directly. 6747 * IN: 6748 * msgp : pointer to pointer to a received buffer pulluped. 6749 * This is rewrited to response. 6750 * so : pointer to socket. 6751 * OUT: 6752 * length for buffer to send to user process. 6753 */ 6754 int 6755 key_parse(m, so) 6756 struct mbuf *m; 6757 struct socket *so; 6758 { 6759 INIT_VNET_IPSEC(curvnet); 6760 struct sadb_msg *msg; 6761 struct sadb_msghdr mh; 6762 u_int orglen; 6763 int error; 6764 int target; 6765 6766 IPSEC_ASSERT(so != NULL, ("null socket")); 6767 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6768 6769 #if 0 /*kdebug_sadb assumes msg in linear buffer*/ 6770 KEYDEBUG(KEYDEBUG_KEY_DUMP, 6771 ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__)); 6772 kdebug_sadb(msg)); 6773 #endif 6774 6775 if (m->m_len < sizeof(struct sadb_msg)) { 6776 m = m_pullup(m, sizeof(struct sadb_msg)); 6777 if (!m) 6778 return ENOBUFS; 6779 } 6780 msg = mtod(m, struct sadb_msg *); 6781 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); 6782 target = KEY_SENDUP_ONE; 6783 6784 if ((m->m_flags & M_PKTHDR) == 0 || 6785 m->m_pkthdr.len != m->m_pkthdr.len) { 6786 ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__)); 6787 V_pfkeystat.out_invlen++; 6788 error = EINVAL; 6789 goto senderror; 6790 } 6791 6792 if (msg->sadb_msg_version != PF_KEY_V2) { 6793 ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n", 6794 __func__, msg->sadb_msg_version)); 6795 V_pfkeystat.out_invver++; 6796 error = EINVAL; 6797 goto senderror; 6798 } 6799 6800 if (msg->sadb_msg_type > SADB_MAX) { 6801 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 6802 __func__, msg->sadb_msg_type)); 6803 V_pfkeystat.out_invmsgtype++; 6804 error = EINVAL; 6805 goto senderror; 6806 } 6807 6808 /* for old-fashioned code - should be nuked */ 6809 if (m->m_pkthdr.len > MCLBYTES) { 6810 m_freem(m); 6811 return ENOBUFS; 6812 } 6813 if (m->m_next) { 6814 struct mbuf *n; 6815 6816 MGETHDR(n, M_DONTWAIT, MT_DATA); 6817 if (n && m->m_pkthdr.len > MHLEN) { 6818 MCLGET(n, M_DONTWAIT); 6819 if ((n->m_flags & M_EXT) == 0) { 6820 m_free(n); 6821 n = NULL; 6822 } 6823 } 6824 if (!n) { 6825 m_freem(m); 6826 return ENOBUFS; 6827 } 6828 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t)); 6829 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; 6830 n->m_next = NULL; 6831 m_freem(m); 6832 m = n; 6833 } 6834 6835 /* align the mbuf chain so that extensions are in contiguous region. */ 6836 error = key_align(m, &mh); 6837 if (error) 6838 return error; 6839 6840 msg = mh.msg; 6841 6842 /* check SA type */ 6843 switch (msg->sadb_msg_satype) { 6844 case SADB_SATYPE_UNSPEC: 6845 switch (msg->sadb_msg_type) { 6846 case SADB_GETSPI: 6847 case SADB_UPDATE: 6848 case SADB_ADD: 6849 case SADB_DELETE: 6850 case SADB_GET: 6851 case SADB_ACQUIRE: 6852 case SADB_EXPIRE: 6853 ipseclog((LOG_DEBUG, "%s: must specify satype " 6854 "when msg type=%u.\n", __func__, 6855 msg->sadb_msg_type)); 6856 V_pfkeystat.out_invsatype++; 6857 error = EINVAL; 6858 goto senderror; 6859 } 6860 break; 6861 case SADB_SATYPE_AH: 6862 case SADB_SATYPE_ESP: 6863 case SADB_X_SATYPE_IPCOMP: 6864 case SADB_X_SATYPE_TCPSIGNATURE: 6865 switch (msg->sadb_msg_type) { 6866 case SADB_X_SPDADD: 6867 case SADB_X_SPDDELETE: 6868 case SADB_X_SPDGET: 6869 case SADB_X_SPDDUMP: 6870 case SADB_X_SPDFLUSH: 6871 case SADB_X_SPDSETIDX: 6872 case SADB_X_SPDUPDATE: 6873 case SADB_X_SPDDELETE2: 6874 ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n", 6875 __func__, msg->sadb_msg_type)); 6876 V_pfkeystat.out_invsatype++; 6877 error = EINVAL; 6878 goto senderror; 6879 } 6880 break; 6881 case SADB_SATYPE_RSVP: 6882 case SADB_SATYPE_OSPFV2: 6883 case SADB_SATYPE_RIPV2: 6884 case SADB_SATYPE_MIP: 6885 ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n", 6886 __func__, msg->sadb_msg_satype)); 6887 V_pfkeystat.out_invsatype++; 6888 error = EOPNOTSUPP; 6889 goto senderror; 6890 case 1: /* XXX: What does it do? */ 6891 if (msg->sadb_msg_type == SADB_X_PROMISC) 6892 break; 6893 /*FALLTHROUGH*/ 6894 default: 6895 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 6896 __func__, msg->sadb_msg_satype)); 6897 V_pfkeystat.out_invsatype++; 6898 error = EINVAL; 6899 goto senderror; 6900 } 6901 6902 /* check field of upper layer protocol and address family */ 6903 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL 6904 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { 6905 struct sadb_address *src0, *dst0; 6906 u_int plen; 6907 6908 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]); 6909 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]); 6910 6911 /* check upper layer protocol */ 6912 if (src0->sadb_address_proto != dst0->sadb_address_proto) { 6913 ipseclog((LOG_DEBUG, "%s: upper layer protocol " 6914 "mismatched.\n", __func__)); 6915 V_pfkeystat.out_invaddr++; 6916 error = EINVAL; 6917 goto senderror; 6918 } 6919 6920 /* check family */ 6921 if (PFKEY_ADDR_SADDR(src0)->sa_family != 6922 PFKEY_ADDR_SADDR(dst0)->sa_family) { 6923 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 6924 __func__)); 6925 V_pfkeystat.out_invaddr++; 6926 error = EINVAL; 6927 goto senderror; 6928 } 6929 if (PFKEY_ADDR_SADDR(src0)->sa_len != 6930 PFKEY_ADDR_SADDR(dst0)->sa_len) { 6931 ipseclog((LOG_DEBUG, "%s: address struct size " 6932 "mismatched.\n", __func__)); 6933 V_pfkeystat.out_invaddr++; 6934 error = EINVAL; 6935 goto senderror; 6936 } 6937 6938 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 6939 case AF_INET: 6940 if (PFKEY_ADDR_SADDR(src0)->sa_len != 6941 sizeof(struct sockaddr_in)) { 6942 V_pfkeystat.out_invaddr++; 6943 error = EINVAL; 6944 goto senderror; 6945 } 6946 break; 6947 case AF_INET6: 6948 if (PFKEY_ADDR_SADDR(src0)->sa_len != 6949 sizeof(struct sockaddr_in6)) { 6950 V_pfkeystat.out_invaddr++; 6951 error = EINVAL; 6952 goto senderror; 6953 } 6954 break; 6955 default: 6956 ipseclog((LOG_DEBUG, "%s: unsupported address family\n", 6957 __func__)); 6958 V_pfkeystat.out_invaddr++; 6959 error = EAFNOSUPPORT; 6960 goto senderror; 6961 } 6962 6963 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 6964 case AF_INET: 6965 plen = sizeof(struct in_addr) << 3; 6966 break; 6967 case AF_INET6: 6968 plen = sizeof(struct in6_addr) << 3; 6969 break; 6970 default: 6971 plen = 0; /*fool gcc*/ 6972 break; 6973 } 6974 6975 /* check max prefix length */ 6976 if (src0->sadb_address_prefixlen > plen || 6977 dst0->sadb_address_prefixlen > plen) { 6978 ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n", 6979 __func__)); 6980 V_pfkeystat.out_invaddr++; 6981 error = EINVAL; 6982 goto senderror; 6983 } 6984 6985 /* 6986 * prefixlen == 0 is valid because there can be a case when 6987 * all addresses are matched. 6988 */ 6989 } 6990 6991 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) || 6992 key_typesw[msg->sadb_msg_type] == NULL) { 6993 V_pfkeystat.out_invmsgtype++; 6994 error = EINVAL; 6995 goto senderror; 6996 } 6997 6998 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh); 6999 7000 senderror: 7001 msg->sadb_msg_errno = error; 7002 return key_sendup_mbuf(so, m, target); 7003 } 7004 7005 static int 7006 key_senderror(so, m, code) 7007 struct socket *so; 7008 struct mbuf *m; 7009 int code; 7010 { 7011 struct sadb_msg *msg; 7012 7013 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 7014 ("mbuf too small, len %u", m->m_len)); 7015 7016 msg = mtod(m, struct sadb_msg *); 7017 msg->sadb_msg_errno = code; 7018 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 7019 } 7020 7021 /* 7022 * set the pointer to each header into message buffer. 7023 * m will be freed on error. 7024 * XXX larger-than-MCLBYTES extension? 7025 */ 7026 static int 7027 key_align(m, mhp) 7028 struct mbuf *m; 7029 struct sadb_msghdr *mhp; 7030 { 7031 INIT_VNET_IPSEC(curvnet); 7032 struct mbuf *n; 7033 struct sadb_ext *ext; 7034 size_t off, end; 7035 int extlen; 7036 int toff; 7037 7038 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7039 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7040 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 7041 ("mbuf too small, len %u", m->m_len)); 7042 7043 /* initialize */ 7044 bzero(mhp, sizeof(*mhp)); 7045 7046 mhp->msg = mtod(m, struct sadb_msg *); 7047 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */ 7048 7049 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7050 extlen = end; /*just in case extlen is not updated*/ 7051 for (off = sizeof(struct sadb_msg); off < end; off += extlen) { 7052 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); 7053 if (!n) { 7054 /* m is already freed */ 7055 return ENOBUFS; 7056 } 7057 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 7058 7059 /* set pointer */ 7060 switch (ext->sadb_ext_type) { 7061 case SADB_EXT_SA: 7062 case SADB_EXT_ADDRESS_SRC: 7063 case SADB_EXT_ADDRESS_DST: 7064 case SADB_EXT_ADDRESS_PROXY: 7065 case SADB_EXT_LIFETIME_CURRENT: 7066 case SADB_EXT_LIFETIME_HARD: 7067 case SADB_EXT_LIFETIME_SOFT: 7068 case SADB_EXT_KEY_AUTH: 7069 case SADB_EXT_KEY_ENCRYPT: 7070 case SADB_EXT_IDENTITY_SRC: 7071 case SADB_EXT_IDENTITY_DST: 7072 case SADB_EXT_SENSITIVITY: 7073 case SADB_EXT_PROPOSAL: 7074 case SADB_EXT_SUPPORTED_AUTH: 7075 case SADB_EXT_SUPPORTED_ENCRYPT: 7076 case SADB_EXT_SPIRANGE: 7077 case SADB_X_EXT_POLICY: 7078 case SADB_X_EXT_SA2: 7079 /* duplicate check */ 7080 /* 7081 * XXX Are there duplication payloads of either 7082 * KEY_AUTH or KEY_ENCRYPT ? 7083 */ 7084 if (mhp->ext[ext->sadb_ext_type] != NULL) { 7085 ipseclog((LOG_DEBUG, "%s: duplicate ext_type " 7086 "%u\n", __func__, ext->sadb_ext_type)); 7087 m_freem(m); 7088 V_pfkeystat.out_dupext++; 7089 return EINVAL; 7090 } 7091 break; 7092 default: 7093 ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n", 7094 __func__, ext->sadb_ext_type)); 7095 m_freem(m); 7096 V_pfkeystat.out_invexttype++; 7097 return EINVAL; 7098 } 7099 7100 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); 7101 7102 if (key_validate_ext(ext, extlen)) { 7103 m_freem(m); 7104 V_pfkeystat.out_invlen++; 7105 return EINVAL; 7106 } 7107 7108 n = m_pulldown(m, off, extlen, &toff); 7109 if (!n) { 7110 /* m is already freed */ 7111 return ENOBUFS; 7112 } 7113 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 7114 7115 mhp->ext[ext->sadb_ext_type] = ext; 7116 mhp->extoff[ext->sadb_ext_type] = off; 7117 mhp->extlen[ext->sadb_ext_type] = extlen; 7118 } 7119 7120 if (off != end) { 7121 m_freem(m); 7122 V_pfkeystat.out_invlen++; 7123 return EINVAL; 7124 } 7125 7126 return 0; 7127 } 7128 7129 static int 7130 key_validate_ext(ext, len) 7131 const struct sadb_ext *ext; 7132 int len; 7133 { 7134 const struct sockaddr *sa; 7135 enum { NONE, ADDR } checktype = NONE; 7136 int baselen = 0; 7137 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); 7138 7139 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) 7140 return EINVAL; 7141 7142 /* if it does not match minimum/maximum length, bail */ 7143 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) || 7144 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0])) 7145 return EINVAL; 7146 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) 7147 return EINVAL; 7148 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) 7149 return EINVAL; 7150 7151 /* more checks based on sadb_ext_type XXX need more */ 7152 switch (ext->sadb_ext_type) { 7153 case SADB_EXT_ADDRESS_SRC: 7154 case SADB_EXT_ADDRESS_DST: 7155 case SADB_EXT_ADDRESS_PROXY: 7156 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); 7157 checktype = ADDR; 7158 break; 7159 case SADB_EXT_IDENTITY_SRC: 7160 case SADB_EXT_IDENTITY_DST: 7161 if (((const struct sadb_ident *)ext)->sadb_ident_type == 7162 SADB_X_IDENTTYPE_ADDR) { 7163 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); 7164 checktype = ADDR; 7165 } else 7166 checktype = NONE; 7167 break; 7168 default: 7169 checktype = NONE; 7170 break; 7171 } 7172 7173 switch (checktype) { 7174 case NONE: 7175 break; 7176 case ADDR: 7177 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); 7178 if (len < baselen + sal) 7179 return EINVAL; 7180 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) 7181 return EINVAL; 7182 break; 7183 } 7184 7185 return 0; 7186 } 7187 7188 void 7189 key_init(void) 7190 { 7191 INIT_VNET_IPSEC(curvnet); 7192 int i; 7193 7194 V_key_debug_level = 0; 7195 V_key_spi_trycnt = 1000; 7196 V_key_spi_minval = 0x100; 7197 V_key_spi_maxval = 0x0fffffff; /* XXX */ 7198 V_policy_id = 0; 7199 V_key_int_random = 60; /*interval to initialize randseed,1(m)*/ 7200 V_key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/ 7201 V_key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/ 7202 V_key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/ 7203 V_key_preferred_oldsa = 1; /* preferred old sa rather than new sa*/ 7204 7205 V_acq_seq = 0; 7206 7207 V_ipsec_esp_keymin = 256; 7208 V_ipsec_esp_auth = 0; 7209 V_ipsec_ah_keymin = 128; 7210 7211 SPTREE_LOCK_INIT(); 7212 REGTREE_LOCK_INIT(); 7213 SAHTREE_LOCK_INIT(); 7214 ACQ_LOCK_INIT(); 7215 SPACQ_LOCK_INIT(); 7216 7217 for (i = 0; i < IPSEC_DIR_MAX; i++) 7218 LIST_INIT(&V_sptree[i]); 7219 7220 LIST_INIT(&V_sahtree); 7221 7222 for (i = 0; i <= SADB_SATYPE_MAX; i++) 7223 LIST_INIT(&V_regtree[i]); 7224 7225 LIST_INIT(&V_acqtree); 7226 LIST_INIT(&V_spacqtree); 7227 7228 /* system default */ 7229 V_ip4_def_policy.policy = IPSEC_POLICY_NONE; 7230 V_ip4_def_policy.refcnt++; /*never reclaim this*/ 7231 7232 #ifndef IPSEC_DEBUG2 7233 timeout((void *)key_timehandler, (void *)0, hz); 7234 #endif /*IPSEC_DEBUG2*/ 7235 7236 /* initialize key statistics */ 7237 keystat.getspi_count = 1; 7238 7239 printf("IPsec: Initialized Security Association Processing.\n"); 7240 7241 return; 7242 } 7243 7244 /* 7245 * XXX: maybe This function is called after INBOUND IPsec processing. 7246 * 7247 * Special check for tunnel-mode packets. 7248 * We must make some checks for consistency between inner and outer IP header. 7249 * 7250 * xxx more checks to be provided 7251 */ 7252 int 7253 key_checktunnelsanity(sav, family, src, dst) 7254 struct secasvar *sav; 7255 u_int family; 7256 caddr_t src; 7257 caddr_t dst; 7258 { 7259 IPSEC_ASSERT(sav->sah != NULL, ("null SA header")); 7260 7261 /* XXX: check inner IP header */ 7262 7263 return 1; 7264 } 7265 7266 /* record data transfer on SA, and update timestamps */ 7267 void 7268 key_sa_recordxfer(sav, m) 7269 struct secasvar *sav; 7270 struct mbuf *m; 7271 { 7272 IPSEC_ASSERT(sav != NULL, ("Null secasvar")); 7273 IPSEC_ASSERT(m != NULL, ("Null mbuf")); 7274 if (!sav->lft_c) 7275 return; 7276 7277 /* 7278 * XXX Currently, there is a difference of bytes size 7279 * between inbound and outbound processing. 7280 */ 7281 sav->lft_c->bytes += m->m_pkthdr.len; 7282 /* to check bytes lifetime is done in key_timehandler(). */ 7283 7284 /* 7285 * We use the number of packets as the unit of 7286 * allocations. We increment the variable 7287 * whenever {esp,ah}_{in,out}put is called. 7288 */ 7289 sav->lft_c->allocations++; 7290 /* XXX check for expires? */ 7291 7292 /* 7293 * NOTE: We record CURRENT usetime by using wall clock, 7294 * in seconds. HARD and SOFT lifetime are measured by the time 7295 * difference (again in seconds) from usetime. 7296 * 7297 * usetime 7298 * v expire expire 7299 * -----+-----+--------+---> t 7300 * <--------------> HARD 7301 * <-----> SOFT 7302 */ 7303 sav->lft_c->usetime = time_second; 7304 /* XXX check for expires? */ 7305 7306 return; 7307 } 7308 7309 /* dumb version */ 7310 void 7311 key_sa_routechange(dst) 7312 struct sockaddr *dst; 7313 { 7314 INIT_VNET_IPSEC(curvnet); 7315 struct secashead *sah; 7316 struct route *ro; 7317 7318 SAHTREE_LOCK(); 7319 LIST_FOREACH(sah, &V_sahtree, chain) { 7320 ro = &sah->sa_route; 7321 if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len 7322 && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) { 7323 RTFREE(ro->ro_rt); 7324 ro->ro_rt = (struct rtentry *)NULL; 7325 } 7326 } 7327 SAHTREE_UNLOCK(); 7328 } 7329 7330 static void 7331 key_sa_chgstate(sav, state) 7332 struct secasvar *sav; 7333 u_int8_t state; 7334 { 7335 IPSEC_ASSERT(sav != NULL, ("NULL sav")); 7336 SAHTREE_LOCK_ASSERT(); 7337 7338 if (sav->state != state) { 7339 if (__LIST_CHAINED(sav)) 7340 LIST_REMOVE(sav, chain); 7341 sav->state = state; 7342 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain); 7343 } 7344 } 7345 7346 void 7347 key_sa_stir_iv(sav) 7348 struct secasvar *sav; 7349 { 7350 7351 IPSEC_ASSERT(sav->iv != NULL, ("null IV")); 7352 key_randomfill(sav->iv, sav->ivlen); 7353 } 7354 7355 /* XXX too much? */ 7356 static struct mbuf * 7357 key_alloc_mbuf(l) 7358 int l; 7359 { 7360 struct mbuf *m = NULL, *n; 7361 int len, t; 7362 7363 len = l; 7364 while (len > 0) { 7365 MGET(n, M_DONTWAIT, MT_DATA); 7366 if (n && len > MLEN) 7367 MCLGET(n, M_DONTWAIT); 7368 if (!n) { 7369 m_freem(m); 7370 return NULL; 7371 } 7372 7373 n->m_next = NULL; 7374 n->m_len = 0; 7375 n->m_len = M_TRAILINGSPACE(n); 7376 /* use the bottom of mbuf, hoping we can prepend afterwards */ 7377 if (n->m_len > len) { 7378 t = (n->m_len - len) & ~(sizeof(long) - 1); 7379 n->m_data += t; 7380 n->m_len = len; 7381 } 7382 7383 len -= n->m_len; 7384 7385 if (m) 7386 m_cat(m, n); 7387 else 7388 m = n; 7389 } 7390 7391 return m; 7392 } 7393 7394 /* 7395 * Take one of the kernel's security keys and convert it into a PF_KEY 7396 * structure within an mbuf, suitable for sending up to a waiting 7397 * application in user land. 7398 * 7399 * IN: 7400 * src: A pointer to a kernel security key. 7401 * exttype: Which type of key this is. Refer to the PF_KEY data structures. 7402 * OUT: 7403 * a valid mbuf or NULL indicating an error 7404 * 7405 */ 7406 7407 static struct mbuf * 7408 key_setkey(struct seckey *src, u_int16_t exttype) 7409 { 7410 struct mbuf *m; 7411 struct sadb_key *p; 7412 int len; 7413 7414 if (src == NULL) 7415 return NULL; 7416 7417 len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src)); 7418 m = key_alloc_mbuf(len); 7419 if (m == NULL) 7420 return NULL; 7421 p = mtod(m, struct sadb_key *); 7422 bzero(p, len); 7423 p->sadb_key_len = PFKEY_UNIT64(len); 7424 p->sadb_key_exttype = exttype; 7425 p->sadb_key_bits = src->bits; 7426 bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src)); 7427 7428 return m; 7429 } 7430 7431 /* 7432 * Take one of the kernel's lifetime data structures and convert it 7433 * into a PF_KEY structure within an mbuf, suitable for sending up to 7434 * a waiting application in user land. 7435 * 7436 * IN: 7437 * src: A pointer to a kernel lifetime structure. 7438 * exttype: Which type of lifetime this is. Refer to the PF_KEY 7439 * data structures for more information. 7440 * OUT: 7441 * a valid mbuf or NULL indicating an error 7442 * 7443 */ 7444 7445 static struct mbuf * 7446 key_setlifetime(struct seclifetime *src, u_int16_t exttype) 7447 { 7448 struct mbuf *m = NULL; 7449 struct sadb_lifetime *p; 7450 int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime)); 7451 7452 if (src == NULL) 7453 return NULL; 7454 7455 m = key_alloc_mbuf(len); 7456 if (m == NULL) 7457 return m; 7458 p = mtod(m, struct sadb_lifetime *); 7459 7460 bzero(p, len); 7461 p->sadb_lifetime_len = PFKEY_UNIT64(len); 7462 p->sadb_lifetime_exttype = exttype; 7463 p->sadb_lifetime_allocations = src->allocations; 7464 p->sadb_lifetime_bytes = src->bytes; 7465 p->sadb_lifetime_addtime = src->addtime; 7466 p->sadb_lifetime_usetime = src->usetime; 7467 7468 return m; 7469 7470 } 7471