1 /* $FreeBSD$ */ 2 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ 3 4 /*- 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * This code is referd to RFC 2367 35 */ 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 #include "opt_ipsec.h" 40 41 #include <sys/types.h> 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/mutex.h> 47 #include <sys/mbuf.h> 48 #include <sys/domain.h> 49 #include <sys/protosw.h> 50 #include <sys/malloc.h> 51 #include <sys/socket.h> 52 #include <sys/socketvar.h> 53 #include <sys/sysctl.h> 54 #include <sys/errno.h> 55 #include <sys/proc.h> 56 #include <sys/queue.h> 57 #include <sys/refcount.h> 58 #include <sys/syslog.h> 59 #include <sys/vimage.h> 60 61 #include <net/if.h> 62 #include <net/route.h> 63 #include <net/raw_cb.h> 64 65 #include <netinet/in.h> 66 #include <netinet/in_systm.h> 67 #include <netinet/ip.h> 68 #include <netinet/in_var.h> 69 70 #ifdef INET6 71 #include <netinet/ip6.h> 72 #include <netinet6/in6_var.h> 73 #include <netinet6/ip6_var.h> 74 #endif /* INET6 */ 75 76 #ifdef INET 77 #include <netinet/in_pcb.h> 78 #include <netinet/vinet.h> 79 #endif 80 #ifdef INET6 81 #include <netinet6/in6_pcb.h> 82 #include <netinet6/vinet6.h> 83 #endif /* INET6 */ 84 85 #include <net/pfkeyv2.h> 86 #include <netipsec/keydb.h> 87 #include <netipsec/key.h> 88 #include <netipsec/keysock.h> 89 #include <netipsec/key_debug.h> 90 91 #include <netipsec/ipsec.h> 92 #ifdef INET6 93 #include <netipsec/ipsec6.h> 94 #endif 95 96 #include <netipsec/xform.h> 97 98 #include <machine/stdarg.h> 99 100 /* randomness */ 101 #include <sys/random.h> 102 #include <sys/vimage.h> 103 104 #define FULLMASK 0xff 105 #define _BITS(bytes) ((bytes) << 3) 106 107 /* 108 * Note on SA reference counting: 109 * - SAs that are not in DEAD state will have (total external reference + 1) 110 * following value in reference count field. they cannot be freed and are 111 * referenced from SA header. 112 * - SAs that are in DEAD state will have (total external reference) 113 * in reference count field. they are ready to be freed. reference from 114 * SA header will be removed in key_delsav(), when the reference count 115 * field hits 0 (= no external reference other than from SA header. 116 */ 117 118 #ifdef VIMAGE_GLOBALS 119 u_int32_t key_debug_level; 120 static u_int key_spi_trycnt; 121 static u_int32_t key_spi_minval; 122 static u_int32_t key_spi_maxval; 123 static u_int32_t policy_id; 124 static u_int key_int_random; 125 static u_int key_larval_lifetime; 126 static int key_blockacq_count; 127 static int key_blockacq_lifetime; 128 static int key_preferred_oldsa; 129 130 static u_int32_t acq_seq; 131 132 static int ipsec_esp_keymin; 133 static int ipsec_esp_auth; 134 static int ipsec_ah_keymin; 135 136 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */ 137 static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */ 138 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1]; 139 static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */ 140 static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */ 141 #endif /* VIMAGE_GLOBALS */ 142 143 static struct mtx sptree_lock; 144 #define SPTREE_LOCK_INIT() \ 145 mtx_init(&sptree_lock, "sptree", \ 146 "fast ipsec security policy database", MTX_DEF) 147 #define SPTREE_LOCK_DESTROY() mtx_destroy(&sptree_lock) 148 #define SPTREE_LOCK() mtx_lock(&sptree_lock) 149 #define SPTREE_UNLOCK() mtx_unlock(&sptree_lock) 150 #define SPTREE_LOCK_ASSERT() mtx_assert(&sptree_lock, MA_OWNED) 151 152 static struct mtx sahtree_lock; 153 #define SAHTREE_LOCK_INIT() \ 154 mtx_init(&sahtree_lock, "sahtree", \ 155 "fast ipsec security association database", MTX_DEF) 156 #define SAHTREE_LOCK_DESTROY() mtx_destroy(&sahtree_lock) 157 #define SAHTREE_LOCK() mtx_lock(&sahtree_lock) 158 #define SAHTREE_UNLOCK() mtx_unlock(&sahtree_lock) 159 #define SAHTREE_LOCK_ASSERT() mtx_assert(&sahtree_lock, MA_OWNED) 160 161 /* registed list */ 162 static struct mtx regtree_lock; 163 #define REGTREE_LOCK_INIT() \ 164 mtx_init(®tree_lock, "regtree", "fast ipsec regtree", MTX_DEF) 165 #define REGTREE_LOCK_DESTROY() mtx_destroy(®tree_lock) 166 #define REGTREE_LOCK() mtx_lock(®tree_lock) 167 #define REGTREE_UNLOCK() mtx_unlock(®tree_lock) 168 #define REGTREE_LOCK_ASSERT() mtx_assert(®tree_lock, MA_OWNED) 169 170 static struct mtx acq_lock; 171 #define ACQ_LOCK_INIT() \ 172 mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF) 173 #define ACQ_LOCK_DESTROY() mtx_destroy(&acq_lock) 174 #define ACQ_LOCK() mtx_lock(&acq_lock) 175 #define ACQ_UNLOCK() mtx_unlock(&acq_lock) 176 #define ACQ_LOCK_ASSERT() mtx_assert(&acq_lock, MA_OWNED) 177 178 static struct mtx spacq_lock; 179 #define SPACQ_LOCK_INIT() \ 180 mtx_init(&spacq_lock, "spacqtree", \ 181 "fast ipsec security policy acquire list", MTX_DEF) 182 #define SPACQ_LOCK_DESTROY() mtx_destroy(&spacq_lock) 183 #define SPACQ_LOCK() mtx_lock(&spacq_lock) 184 #define SPACQ_UNLOCK() mtx_unlock(&spacq_lock) 185 #define SPACQ_LOCK_ASSERT() mtx_assert(&spacq_lock, MA_OWNED) 186 187 /* search order for SAs */ 188 static const u_int saorder_state_valid_prefer_old[] = { 189 SADB_SASTATE_DYING, SADB_SASTATE_MATURE, 190 }; 191 static const u_int saorder_state_valid_prefer_new[] = { 192 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 193 }; 194 static const u_int saorder_state_alive[] = { 195 /* except DEAD */ 196 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL 197 }; 198 static const u_int saorder_state_any[] = { 199 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 200 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD 201 }; 202 203 static const int minsize[] = { 204 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 205 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 206 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 207 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 208 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 209 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ 210 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ 211 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ 212 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ 213 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ 214 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ 215 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ 216 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ 217 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ 218 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ 219 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ 220 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 221 0, /* SADB_X_EXT_KMPRIVATE */ 222 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ 223 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 224 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ 225 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ 226 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ 227 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */ 228 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */ 229 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ 230 }; 231 static const int maxsize[] = { 232 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 233 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 234 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 235 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 236 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 237 0, /* SADB_EXT_ADDRESS_SRC */ 238 0, /* SADB_EXT_ADDRESS_DST */ 239 0, /* SADB_EXT_ADDRESS_PROXY */ 240 0, /* SADB_EXT_KEY_AUTH */ 241 0, /* SADB_EXT_KEY_ENCRYPT */ 242 0, /* SADB_EXT_IDENTITY_SRC */ 243 0, /* SADB_EXT_IDENTITY_DST */ 244 0, /* SADB_EXT_SENSITIVITY */ 245 0, /* SADB_EXT_PROPOSAL */ 246 0, /* SADB_EXT_SUPPORTED_AUTH */ 247 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ 248 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 249 0, /* SADB_X_EXT_KMPRIVATE */ 250 0, /* SADB_X_EXT_POLICY */ 251 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 252 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ 253 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ 254 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ 255 0, /* SADB_X_EXT_NAT_T_OAI */ 256 0, /* SADB_X_EXT_NAT_T_OAR */ 257 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ 258 }; 259 260 #ifdef SYSCTL_DECL 261 SYSCTL_DECL(_net_key); 262 #endif 263 264 SYSCTL_V_INT(V_NET, vnet_ipsec,_net_key, KEYCTL_DEBUG_LEVEL, debug, 265 CTLFLAG_RW, key_debug_level, 0, ""); 266 267 /* max count of trial for the decision of spi value */ 268 SYSCTL_V_INT(V_NET, vnet_ipsec,_net_key, KEYCTL_SPI_TRY, spi_trycnt, 269 CTLFLAG_RW, key_spi_trycnt, 0, ""); 270 271 /* minimum spi value to allocate automatically. */ 272 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_SPI_MIN_VALUE, 273 spi_minval, CTLFLAG_RW, key_spi_minval, 0, ""); 274 275 /* maximun spi value to allocate automatically. */ 276 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_SPI_MAX_VALUE, 277 spi_maxval, CTLFLAG_RW, key_spi_maxval, 0, ""); 278 279 /* interval to initialize randseed */ 280 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_RANDOM_INT, 281 int_random, CTLFLAG_RW, key_int_random, 0, ""); 282 283 /* lifetime for larval SA */ 284 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_LARVAL_LIFETIME, 285 larval_lifetime, CTLFLAG_RW, key_larval_lifetime, 0, ""); 286 287 /* counter for blocking to send SADB_ACQUIRE to IKEd */ 288 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_BLOCKACQ_COUNT, 289 blockacq_count, CTLFLAG_RW, key_blockacq_count, 0, ""); 290 291 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ 292 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_BLOCKACQ_LIFETIME, 293 blockacq_lifetime, CTLFLAG_RW, key_blockacq_lifetime, 0, ""); 294 295 /* ESP auth */ 296 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_ESP_AUTH, esp_auth, 297 CTLFLAG_RW, ipsec_esp_auth, 0, ""); 298 299 /* minimum ESP key length */ 300 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_ESP_KEYMIN, 301 esp_keymin, CTLFLAG_RW, ipsec_esp_keymin, 0, ""); 302 303 /* minimum AH key length */ 304 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_AH_KEYMIN, ah_keymin, 305 CTLFLAG_RW, ipsec_ah_keymin, 0, ""); 306 307 /* perfered old SA rather than new SA */ 308 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_PREFERED_OLDSA, 309 preferred_oldsa, CTLFLAG_RW, key_preferred_oldsa, 0, ""); 310 311 #define __LIST_CHAINED(elm) \ 312 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) 313 #define LIST_INSERT_TAIL(head, elm, type, field) \ 314 do {\ 315 struct type *curelm = LIST_FIRST(head); \ 316 if (curelm == NULL) {\ 317 LIST_INSERT_HEAD(head, elm, field); \ 318 } else { \ 319 while (LIST_NEXT(curelm, field)) \ 320 curelm = LIST_NEXT(curelm, field);\ 321 LIST_INSERT_AFTER(curelm, elm, field);\ 322 }\ 323 } while (0) 324 325 #define KEY_CHKSASTATE(head, sav, name) \ 326 do { \ 327 if ((head) != (sav)) { \ 328 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \ 329 (name), (head), (sav))); \ 330 continue; \ 331 } \ 332 } while (0) 333 334 #define KEY_CHKSPDIR(head, sp, name) \ 335 do { \ 336 if ((head) != (sp)) { \ 337 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \ 338 "anyway continue.\n", \ 339 (name), (head), (sp))); \ 340 } \ 341 } while (0) 342 343 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association"); 344 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head"); 345 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy"); 346 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request"); 347 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous"); 348 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire"); 349 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire"); 350 351 /* 352 * set parameters into secpolicyindex buffer. 353 * Must allocate secpolicyindex buffer passed to this function. 354 */ 355 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \ 356 do { \ 357 bzero((idx), sizeof(struct secpolicyindex)); \ 358 (idx)->dir = (_dir); \ 359 (idx)->prefs = (ps); \ 360 (idx)->prefd = (pd); \ 361 (idx)->ul_proto = (ulp); \ 362 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 363 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 364 } while (0) 365 366 /* 367 * set parameters into secasindex buffer. 368 * Must allocate secasindex buffer before calling this function. 369 */ 370 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \ 371 do { \ 372 bzero((idx), sizeof(struct secasindex)); \ 373 (idx)->proto = (p); \ 374 (idx)->mode = (m); \ 375 (idx)->reqid = (r); \ 376 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 377 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 378 } while (0) 379 380 /* key statistics */ 381 struct _keystat { 382 u_long getspi_count; /* the avarage of count to try to get new SPI */ 383 } keystat; 384 385 struct sadb_msghdr { 386 struct sadb_msg *msg; 387 struct sadb_ext *ext[SADB_EXT_MAX + 1]; 388 int extoff[SADB_EXT_MAX + 1]; 389 int extlen[SADB_EXT_MAX + 1]; 390 }; 391 392 static struct secasvar *key_allocsa_policy __P((const struct secasindex *)); 393 static void key_freesp_so __P((struct secpolicy **)); 394 static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int)); 395 static void key_delsp __P((struct secpolicy *)); 396 static struct secpolicy *key_getsp __P((struct secpolicyindex *)); 397 static void _key_delsp(struct secpolicy *sp); 398 static struct secpolicy *key_getspbyid __P((u_int32_t)); 399 static u_int32_t key_newreqid __P((void)); 400 static struct mbuf *key_gather_mbuf __P((struct mbuf *, 401 const struct sadb_msghdr *, int, int, ...)); 402 static int key_spdadd __P((struct socket *, struct mbuf *, 403 const struct sadb_msghdr *)); 404 static u_int32_t key_getnewspid __P((void)); 405 static int key_spddelete __P((struct socket *, struct mbuf *, 406 const struct sadb_msghdr *)); 407 static int key_spddelete2 __P((struct socket *, struct mbuf *, 408 const struct sadb_msghdr *)); 409 static int key_spdget __P((struct socket *, struct mbuf *, 410 const struct sadb_msghdr *)); 411 static int key_spdflush __P((struct socket *, struct mbuf *, 412 const struct sadb_msghdr *)); 413 static int key_spddump __P((struct socket *, struct mbuf *, 414 const struct sadb_msghdr *)); 415 static struct mbuf *key_setdumpsp __P((struct secpolicy *, 416 u_int8_t, u_int32_t, u_int32_t)); 417 static u_int key_getspreqmsglen __P((struct secpolicy *)); 418 static int key_spdexpire __P((struct secpolicy *)); 419 static struct secashead *key_newsah __P((struct secasindex *)); 420 static void key_delsah __P((struct secashead *)); 421 static struct secasvar *key_newsav __P((struct mbuf *, 422 const struct sadb_msghdr *, struct secashead *, int *, 423 const char*, int)); 424 #define KEY_NEWSAV(m, sadb, sah, e) \ 425 key_newsav(m, sadb, sah, e, __FILE__, __LINE__) 426 static void key_delsav __P((struct secasvar *)); 427 static struct secashead *key_getsah __P((struct secasindex *)); 428 static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t)); 429 static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t)); 430 static int key_setsaval __P((struct secasvar *, struct mbuf *, 431 const struct sadb_msghdr *)); 432 static int key_mature __P((struct secasvar *)); 433 static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t, 434 u_int8_t, u_int32_t, u_int32_t)); 435 static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t, 436 u_int32_t, pid_t, u_int16_t)); 437 static struct mbuf *key_setsadbsa __P((struct secasvar *)); 438 static struct mbuf *key_setsadbaddr __P((u_int16_t, 439 const struct sockaddr *, u_int8_t, u_int16_t)); 440 #ifdef IPSEC_NAT_T 441 static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t); 442 static struct mbuf *key_setsadbxtype(u_int16_t); 443 #endif 444 static void key_porttosaddr(struct sockaddr *, u_int16_t); 445 #define KEY_PORTTOSADDR(saddr, port) \ 446 key_porttosaddr((struct sockaddr *)(saddr), (port)) 447 static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t)); 448 static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t, 449 u_int32_t)); 450 static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int, 451 struct malloc_type *); 452 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src, 453 struct malloc_type *type); 454 #ifdef INET6 455 static int key_ismyaddr6 __P((struct sockaddr_in6 *)); 456 #endif 457 458 /* flags for key_cmpsaidx() */ 459 #define CMP_HEAD 1 /* protocol, addresses. */ 460 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ 461 #define CMP_REQID 3 /* additionally HEAD, reaid. */ 462 #define CMP_EXACTLY 4 /* all elements. */ 463 static int key_cmpsaidx 464 __P((const struct secasindex *, const struct secasindex *, int)); 465 466 static int key_cmpspidx_exactly 467 __P((struct secpolicyindex *, struct secpolicyindex *)); 468 static int key_cmpspidx_withmask 469 __P((struct secpolicyindex *, struct secpolicyindex *)); 470 static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int)); 471 static int key_bbcmp __P((const void *, const void *, u_int)); 472 static u_int16_t key_satype2proto __P((u_int8_t)); 473 static u_int8_t key_proto2satype __P((u_int16_t)); 474 475 static int key_getspi __P((struct socket *, struct mbuf *, 476 const struct sadb_msghdr *)); 477 static u_int32_t key_do_getnewspi __P((struct sadb_spirange *, 478 struct secasindex *)); 479 static int key_update __P((struct socket *, struct mbuf *, 480 const struct sadb_msghdr *)); 481 #ifdef IPSEC_DOSEQCHECK 482 static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t)); 483 #endif 484 static int key_add __P((struct socket *, struct mbuf *, 485 const struct sadb_msghdr *)); 486 static int key_setident __P((struct secashead *, struct mbuf *, 487 const struct sadb_msghdr *)); 488 static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *, 489 const struct sadb_msghdr *)); 490 static int key_delete __P((struct socket *, struct mbuf *, 491 const struct sadb_msghdr *)); 492 static int key_get __P((struct socket *, struct mbuf *, 493 const struct sadb_msghdr *)); 494 495 static void key_getcomb_setlifetime __P((struct sadb_comb *)); 496 static struct mbuf *key_getcomb_esp __P((void)); 497 static struct mbuf *key_getcomb_ah __P((void)); 498 static struct mbuf *key_getcomb_ipcomp __P((void)); 499 static struct mbuf *key_getprop __P((const struct secasindex *)); 500 501 static int key_acquire __P((const struct secasindex *, struct secpolicy *)); 502 static struct secacq *key_newacq __P((const struct secasindex *)); 503 static struct secacq *key_getacq __P((const struct secasindex *)); 504 static struct secacq *key_getacqbyseq __P((u_int32_t)); 505 static struct secspacq *key_newspacq __P((struct secpolicyindex *)); 506 static struct secspacq *key_getspacq __P((struct secpolicyindex *)); 507 static int key_acquire2 __P((struct socket *, struct mbuf *, 508 const struct sadb_msghdr *)); 509 static int key_register __P((struct socket *, struct mbuf *, 510 const struct sadb_msghdr *)); 511 static int key_expire __P((struct secasvar *)); 512 static int key_flush __P((struct socket *, struct mbuf *, 513 const struct sadb_msghdr *)); 514 static int key_dump __P((struct socket *, struct mbuf *, 515 const struct sadb_msghdr *)); 516 static int key_promisc __P((struct socket *, struct mbuf *, 517 const struct sadb_msghdr *)); 518 static int key_senderror __P((struct socket *, struct mbuf *, int)); 519 static int key_validate_ext __P((const struct sadb_ext *, int)); 520 static int key_align __P((struct mbuf *, struct sadb_msghdr *)); 521 static struct mbuf *key_setlifetime(struct seclifetime *src, 522 u_int16_t exttype); 523 static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype); 524 525 #if 0 526 static const char *key_getfqdn __P((void)); 527 static const char *key_getuserfqdn __P((void)); 528 #endif 529 static void key_sa_chgstate __P((struct secasvar *, u_int8_t)); 530 static struct mbuf *key_alloc_mbuf __P((int)); 531 532 static __inline void 533 sa_initref(struct secasvar *sav) 534 { 535 536 refcount_init(&sav->refcnt, 1); 537 } 538 static __inline void 539 sa_addref(struct secasvar *sav) 540 { 541 542 refcount_acquire(&sav->refcnt); 543 IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow")); 544 } 545 static __inline int 546 sa_delref(struct secasvar *sav) 547 { 548 549 IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow")); 550 return (refcount_release(&sav->refcnt)); 551 } 552 553 #define SP_ADDREF(p) do { \ 554 (p)->refcnt++; \ 555 IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow")); \ 556 } while (0) 557 #define SP_DELREF(p) do { \ 558 IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow")); \ 559 (p)->refcnt--; \ 560 } while (0) 561 562 563 /* 564 * Update the refcnt while holding the SPTREE lock. 565 */ 566 void 567 key_addref(struct secpolicy *sp) 568 { 569 SPTREE_LOCK(); 570 SP_ADDREF(sp); 571 SPTREE_UNLOCK(); 572 } 573 574 /* 575 * Return 0 when there are known to be no SP's for the specified 576 * direction. Otherwise return 1. This is used by IPsec code 577 * to optimize performance. 578 */ 579 int 580 key_havesp(u_int dir) 581 { 582 INIT_VNET_IPSEC(curvnet); 583 584 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? 585 LIST_FIRST(&V_sptree[dir]) != NULL : 1); 586 } 587 588 /* %%% IPsec policy management */ 589 /* 590 * allocating a SP for OUTBOUND or INBOUND packet. 591 * Must call key_freesp() later. 592 * OUT: NULL: not found 593 * others: found and return the pointer. 594 */ 595 struct secpolicy * 596 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag) 597 { 598 INIT_VNET_IPSEC(curvnet); 599 struct secpolicy *sp; 600 601 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 602 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 603 ("invalid direction %u", dir)); 604 605 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 606 printf("DP %s from %s:%u\n", __func__, where, tag)); 607 608 /* get a SP entry */ 609 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 610 printf("*** objects\n"); 611 kdebug_secpolicyindex(spidx)); 612 613 SPTREE_LOCK(); 614 LIST_FOREACH(sp, &V_sptree[dir], chain) { 615 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 616 printf("*** in SPD\n"); 617 kdebug_secpolicyindex(&sp->spidx)); 618 619 if (sp->state == IPSEC_SPSTATE_DEAD) 620 continue; 621 if (key_cmpspidx_withmask(&sp->spidx, spidx)) 622 goto found; 623 } 624 sp = NULL; 625 found: 626 if (sp) { 627 /* sanity check */ 628 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 629 630 /* found a SPD entry */ 631 sp->lastused = time_second; 632 SP_ADDREF(sp); 633 } 634 SPTREE_UNLOCK(); 635 636 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 637 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 638 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 639 return sp; 640 } 641 642 /* 643 * allocating a SP for OUTBOUND or INBOUND packet. 644 * Must call key_freesp() later. 645 * OUT: NULL: not found 646 * others: found and return the pointer. 647 */ 648 struct secpolicy * 649 key_allocsp2(u_int32_t spi, 650 union sockaddr_union *dst, 651 u_int8_t proto, 652 u_int dir, 653 const char* where, int tag) 654 { 655 INIT_VNET_IPSEC(curvnet); 656 struct secpolicy *sp; 657 658 IPSEC_ASSERT(dst != NULL, ("null dst")); 659 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 660 ("invalid direction %u", dir)); 661 662 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 663 printf("DP %s from %s:%u\n", __func__, where, tag)); 664 665 /* get a SP entry */ 666 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 667 printf("*** objects\n"); 668 printf("spi %u proto %u dir %u\n", spi, proto, dir); 669 kdebug_sockaddr(&dst->sa)); 670 671 SPTREE_LOCK(); 672 LIST_FOREACH(sp, &V_sptree[dir], chain) { 673 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 674 printf("*** in SPD\n"); 675 kdebug_secpolicyindex(&sp->spidx)); 676 677 if (sp->state == IPSEC_SPSTATE_DEAD) 678 continue; 679 /* compare simple values, then dst address */ 680 if (sp->spidx.ul_proto != proto) 681 continue; 682 /* NB: spi's must exist and match */ 683 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi) 684 continue; 685 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0) 686 goto found; 687 } 688 sp = NULL; 689 found: 690 if (sp) { 691 /* sanity check */ 692 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 693 694 /* found a SPD entry */ 695 sp->lastused = time_second; 696 SP_ADDREF(sp); 697 } 698 SPTREE_UNLOCK(); 699 700 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 701 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 702 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 703 return sp; 704 } 705 706 #if 0 707 /* 708 * return a policy that matches this particular inbound packet. 709 * XXX slow 710 */ 711 struct secpolicy * 712 key_gettunnel(const struct sockaddr *osrc, 713 const struct sockaddr *odst, 714 const struct sockaddr *isrc, 715 const struct sockaddr *idst, 716 const char* where, int tag) 717 { 718 INIT_VNET_IPSEC(curvnet); 719 struct secpolicy *sp; 720 const int dir = IPSEC_DIR_INBOUND; 721 struct ipsecrequest *r1, *r2, *p; 722 struct secpolicyindex spidx; 723 724 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 725 printf("DP %s from %s:%u\n", __func__, where, tag)); 726 727 if (isrc->sa_family != idst->sa_family) { 728 ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.", 729 __func__, isrc->sa_family, idst->sa_family)); 730 sp = NULL; 731 goto done; 732 } 733 734 SPTREE_LOCK(); 735 LIST_FOREACH(sp, &V_sptree[dir], chain) { 736 if (sp->state == IPSEC_SPSTATE_DEAD) 737 continue; 738 739 r1 = r2 = NULL; 740 for (p = sp->req; p; p = p->next) { 741 if (p->saidx.mode != IPSEC_MODE_TUNNEL) 742 continue; 743 744 r1 = r2; 745 r2 = p; 746 747 if (!r1) { 748 /* here we look at address matches only */ 749 spidx = sp->spidx; 750 if (isrc->sa_len > sizeof(spidx.src) || 751 idst->sa_len > sizeof(spidx.dst)) 752 continue; 753 bcopy(isrc, &spidx.src, isrc->sa_len); 754 bcopy(idst, &spidx.dst, idst->sa_len); 755 if (!key_cmpspidx_withmask(&sp->spidx, &spidx)) 756 continue; 757 } else { 758 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) || 759 key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0)) 760 continue; 761 } 762 763 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) || 764 key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0)) 765 continue; 766 767 goto found; 768 } 769 } 770 sp = NULL; 771 found: 772 if (sp) { 773 sp->lastused = time_second; 774 SP_ADDREF(sp); 775 } 776 SPTREE_UNLOCK(); 777 done: 778 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 779 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 780 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 781 return sp; 782 } 783 #endif 784 785 /* 786 * allocating an SA entry for an *OUTBOUND* packet. 787 * checking each request entries in SP, and acquire an SA if need. 788 * OUT: 0: there are valid requests. 789 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. 790 */ 791 int 792 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx) 793 { 794 INIT_VNET_IPSEC(curvnet); 795 u_int level; 796 int error; 797 798 IPSEC_ASSERT(isr != NULL, ("null isr")); 799 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 800 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT || 801 saidx->mode == IPSEC_MODE_TUNNEL, 802 ("unexpected policy %u", saidx->mode)); 803 804 /* 805 * XXX guard against protocol callbacks from the crypto 806 * thread as they reference ipsecrequest.sav which we 807 * temporarily null out below. Need to rethink how we 808 * handle bundled SA's in the callback thread. 809 */ 810 IPSECREQUEST_LOCK_ASSERT(isr); 811 812 /* get current level */ 813 level = ipsec_get_reqlevel(isr); 814 #if 0 815 /* 816 * We do allocate new SA only if the state of SA in the holder is 817 * SADB_SASTATE_DEAD. The SA for outbound must be the oldest. 818 */ 819 if (isr->sav != NULL) { 820 if (isr->sav->sah == NULL) 821 panic("%s: sah is null.\n", __func__); 822 if (isr->sav == (struct secasvar *)LIST_FIRST( 823 &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) { 824 KEY_FREESAV(&isr->sav); 825 isr->sav = NULL; 826 } 827 } 828 #else 829 /* 830 * we free any SA stashed in the IPsec request because a different 831 * SA may be involved each time this request is checked, either 832 * because new SAs are being configured, or this request is 833 * associated with an unconnected datagram socket, or this request 834 * is associated with a system default policy. 835 * 836 * The operation may have negative impact to performance. We may 837 * want to check cached SA carefully, rather than picking new SA 838 * every time. 839 */ 840 if (isr->sav != NULL) { 841 KEY_FREESAV(&isr->sav); 842 isr->sav = NULL; 843 } 844 #endif 845 846 /* 847 * new SA allocation if no SA found. 848 * key_allocsa_policy should allocate the oldest SA available. 849 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt. 850 */ 851 if (isr->sav == NULL) 852 isr->sav = key_allocsa_policy(saidx); 853 854 /* When there is SA. */ 855 if (isr->sav != NULL) { 856 if (isr->sav->state != SADB_SASTATE_MATURE && 857 isr->sav->state != SADB_SASTATE_DYING) 858 return EINVAL; 859 return 0; 860 } 861 862 /* there is no SA */ 863 error = key_acquire(saidx, isr->sp); 864 if (error != 0) { 865 /* XXX What should I do ? */ 866 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 867 __func__, error)); 868 return error; 869 } 870 871 if (level != IPSEC_LEVEL_REQUIRE) { 872 /* XXX sigh, the interface to this routine is botched */ 873 IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA")); 874 return 0; 875 } else { 876 return ENOENT; 877 } 878 } 879 880 /* 881 * allocating a SA for policy entry from SAD. 882 * NOTE: searching SAD of aliving state. 883 * OUT: NULL: not found. 884 * others: found and return the pointer. 885 */ 886 static struct secasvar * 887 key_allocsa_policy(const struct secasindex *saidx) 888 { 889 #define N(a) _ARRAYLEN(a) 890 INIT_VNET_IPSEC(curvnet); 891 struct secashead *sah; 892 struct secasvar *sav; 893 u_int stateidx, arraysize; 894 const u_int *state_valid; 895 896 SAHTREE_LOCK(); 897 LIST_FOREACH(sah, &V_sahtree, chain) { 898 if (sah->state == SADB_SASTATE_DEAD) 899 continue; 900 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) { 901 if (V_key_preferred_oldsa) { 902 state_valid = saorder_state_valid_prefer_old; 903 arraysize = N(saorder_state_valid_prefer_old); 904 } else { 905 state_valid = saorder_state_valid_prefer_new; 906 arraysize = N(saorder_state_valid_prefer_new); 907 } 908 SAHTREE_UNLOCK(); 909 goto found; 910 } 911 } 912 SAHTREE_UNLOCK(); 913 914 return NULL; 915 916 found: 917 /* search valid state */ 918 for (stateidx = 0; stateidx < arraysize; stateidx++) { 919 sav = key_do_allocsa_policy(sah, state_valid[stateidx]); 920 if (sav != NULL) 921 return sav; 922 } 923 924 return NULL; 925 #undef N 926 } 927 928 /* 929 * searching SAD with direction, protocol, mode and state. 930 * called by key_allocsa_policy(). 931 * OUT: 932 * NULL : not found 933 * others : found, pointer to a SA. 934 */ 935 static struct secasvar * 936 key_do_allocsa_policy(struct secashead *sah, u_int state) 937 { 938 INIT_VNET_IPSEC(curvnet); 939 struct secasvar *sav, *nextsav, *candidate, *d; 940 941 /* initilize */ 942 candidate = NULL; 943 944 SAHTREE_LOCK(); 945 for (sav = LIST_FIRST(&sah->savtree[state]); 946 sav != NULL; 947 sav = nextsav) { 948 949 nextsav = LIST_NEXT(sav, chain); 950 951 /* sanity check */ 952 KEY_CHKSASTATE(sav->state, state, __func__); 953 954 /* initialize */ 955 if (candidate == NULL) { 956 candidate = sav; 957 continue; 958 } 959 960 /* Which SA is the better ? */ 961 962 IPSEC_ASSERT(candidate->lft_c != NULL, 963 ("null candidate lifetime")); 964 IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime")); 965 966 /* What the best method is to compare ? */ 967 if (V_key_preferred_oldsa) { 968 if (candidate->lft_c->addtime > 969 sav->lft_c->addtime) { 970 candidate = sav; 971 } 972 continue; 973 /*NOTREACHED*/ 974 } 975 976 /* preferred new sa rather than old sa */ 977 if (candidate->lft_c->addtime < 978 sav->lft_c->addtime) { 979 d = candidate; 980 candidate = sav; 981 } else 982 d = sav; 983 984 /* 985 * prepared to delete the SA when there is more 986 * suitable candidate and the lifetime of the SA is not 987 * permanent. 988 */ 989 if (d->lft_h->addtime != 0) { 990 struct mbuf *m, *result; 991 u_int8_t satype; 992 993 key_sa_chgstate(d, SADB_SASTATE_DEAD); 994 995 IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count")); 996 997 satype = key_proto2satype(d->sah->saidx.proto); 998 if (satype == 0) 999 goto msgfail; 1000 1001 m = key_setsadbmsg(SADB_DELETE, 0, 1002 satype, 0, 0, d->refcnt - 1); 1003 if (!m) 1004 goto msgfail; 1005 result = m; 1006 1007 /* set sadb_address for saidx's. */ 1008 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 1009 &d->sah->saidx.src.sa, 1010 d->sah->saidx.src.sa.sa_len << 3, 1011 IPSEC_ULPROTO_ANY); 1012 if (!m) 1013 goto msgfail; 1014 m_cat(result, m); 1015 1016 /* set sadb_address for saidx's. */ 1017 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 1018 &d->sah->saidx.dst.sa, 1019 d->sah->saidx.dst.sa.sa_len << 3, 1020 IPSEC_ULPROTO_ANY); 1021 if (!m) 1022 goto msgfail; 1023 m_cat(result, m); 1024 1025 /* create SA extension */ 1026 m = key_setsadbsa(d); 1027 if (!m) 1028 goto msgfail; 1029 m_cat(result, m); 1030 1031 if (result->m_len < sizeof(struct sadb_msg)) { 1032 result = m_pullup(result, 1033 sizeof(struct sadb_msg)); 1034 if (result == NULL) 1035 goto msgfail; 1036 } 1037 1038 result->m_pkthdr.len = 0; 1039 for (m = result; m; m = m->m_next) 1040 result->m_pkthdr.len += m->m_len; 1041 mtod(result, struct sadb_msg *)->sadb_msg_len = 1042 PFKEY_UNIT64(result->m_pkthdr.len); 1043 1044 if (key_sendup_mbuf(NULL, result, 1045 KEY_SENDUP_REGISTERED)) 1046 goto msgfail; 1047 msgfail: 1048 KEY_FREESAV(&d); 1049 } 1050 } 1051 if (candidate) { 1052 sa_addref(candidate); 1053 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1054 printf("DP %s cause refcnt++:%d SA:%p\n", 1055 __func__, candidate->refcnt, candidate)); 1056 } 1057 SAHTREE_UNLOCK(); 1058 1059 return candidate; 1060 } 1061 1062 /* 1063 * allocating a usable SA entry for a *INBOUND* packet. 1064 * Must call key_freesav() later. 1065 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). 1066 * NULL: not found, or error occured. 1067 * 1068 * In the comparison, no source address is used--for RFC2401 conformance. 1069 * To quote, from section 4.1: 1070 * A security association is uniquely identified by a triple consisting 1071 * of a Security Parameter Index (SPI), an IP Destination Address, and a 1072 * security protocol (AH or ESP) identifier. 1073 * Note that, however, we do need to keep source address in IPsec SA. 1074 * IKE specification and PF_KEY specification do assume that we 1075 * keep source address in IPsec SA. We see a tricky situation here. 1076 */ 1077 struct secasvar * 1078 key_allocsa( 1079 union sockaddr_union *dst, 1080 u_int proto, 1081 u_int32_t spi, 1082 const char* where, int tag) 1083 { 1084 INIT_VNET_IPSEC(curvnet); 1085 struct secashead *sah; 1086 struct secasvar *sav; 1087 u_int stateidx, arraysize, state; 1088 const u_int *saorder_state_valid; 1089 int chkport; 1090 1091 IPSEC_ASSERT(dst != NULL, ("null dst address")); 1092 1093 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1094 printf("DP %s from %s:%u\n", __func__, where, tag)); 1095 1096 #ifdef IPSEC_NAT_T 1097 chkport = (dst->sa.sa_family == AF_INET && 1098 dst->sa.sa_len == sizeof(struct sockaddr_in) && 1099 dst->sin.sin_port != 0); 1100 #else 1101 chkport = 0; 1102 #endif 1103 1104 /* 1105 * searching SAD. 1106 * XXX: to be checked internal IP header somewhere. Also when 1107 * IPsec tunnel packet is received. But ESP tunnel mode is 1108 * encrypted so we can't check internal IP header. 1109 */ 1110 SAHTREE_LOCK(); 1111 if (V_key_preferred_oldsa) { 1112 saorder_state_valid = saorder_state_valid_prefer_old; 1113 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); 1114 } else { 1115 saorder_state_valid = saorder_state_valid_prefer_new; 1116 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); 1117 } 1118 LIST_FOREACH(sah, &V_sahtree, chain) { 1119 /* search valid state */ 1120 for (stateidx = 0; stateidx < arraysize; stateidx++) { 1121 state = saorder_state_valid[stateidx]; 1122 LIST_FOREACH(sav, &sah->savtree[state], chain) { 1123 /* sanity check */ 1124 KEY_CHKSASTATE(sav->state, state, __func__); 1125 /* do not return entries w/ unusable state */ 1126 if (sav->state != SADB_SASTATE_MATURE && 1127 sav->state != SADB_SASTATE_DYING) 1128 continue; 1129 if (proto != sav->sah->saidx.proto) 1130 continue; 1131 if (spi != sav->spi) 1132 continue; 1133 #if 0 /* don't check src */ 1134 /* check src address */ 1135 if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, chkport) != 0) 1136 continue; 1137 #endif 1138 /* check dst address */ 1139 if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, chkport) != 0) 1140 continue; 1141 sa_addref(sav); 1142 goto done; 1143 } 1144 } 1145 } 1146 sav = NULL; 1147 done: 1148 SAHTREE_UNLOCK(); 1149 1150 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1151 printf("DP %s return SA:%p; refcnt %u\n", __func__, 1152 sav, sav ? sav->refcnt : 0)); 1153 return sav; 1154 } 1155 1156 /* 1157 * Must be called after calling key_allocsp(). 1158 * For both the packet without socket and key_freeso(). 1159 */ 1160 void 1161 _key_freesp(struct secpolicy **spp, const char* where, int tag) 1162 { 1163 INIT_VNET_IPSEC(curvnet); 1164 struct secpolicy *sp = *spp; 1165 1166 IPSEC_ASSERT(sp != NULL, ("null sp")); 1167 1168 SPTREE_LOCK(); 1169 SP_DELREF(sp); 1170 1171 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1172 printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n", 1173 __func__, sp, sp->id, where, tag, sp->refcnt)); 1174 1175 if (sp->refcnt == 0) { 1176 *spp = NULL; 1177 key_delsp(sp); 1178 } 1179 SPTREE_UNLOCK(); 1180 } 1181 1182 /* 1183 * Must be called after calling key_allocsp(). 1184 * For the packet with socket. 1185 */ 1186 void 1187 key_freeso(struct socket *so) 1188 { 1189 INIT_VNET_IPSEC(curvnet); 1190 IPSEC_ASSERT(so != NULL, ("null so")); 1191 1192 switch (so->so_proto->pr_domain->dom_family) { 1193 #if defined(INET) || defined(INET6) 1194 #ifdef INET 1195 case PF_INET: 1196 #endif 1197 #ifdef INET6 1198 case PF_INET6: 1199 #endif 1200 { 1201 struct inpcb *pcb = sotoinpcb(so); 1202 1203 /* Does it have a PCB ? */ 1204 if (pcb == NULL) 1205 return; 1206 key_freesp_so(&pcb->inp_sp->sp_in); 1207 key_freesp_so(&pcb->inp_sp->sp_out); 1208 } 1209 break; 1210 #endif /* INET || INET6 */ 1211 default: 1212 ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n", 1213 __func__, so->so_proto->pr_domain->dom_family)); 1214 return; 1215 } 1216 } 1217 1218 static void 1219 key_freesp_so(struct secpolicy **sp) 1220 { 1221 IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp")); 1222 1223 if ((*sp)->policy == IPSEC_POLICY_ENTRUST || 1224 (*sp)->policy == IPSEC_POLICY_BYPASS) 1225 return; 1226 1227 IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC, 1228 ("invalid policy %u", (*sp)->policy)); 1229 KEY_FREESP(sp); 1230 } 1231 1232 /* 1233 * Must be called after calling key_allocsa(). 1234 * This function is called by key_freesp() to free some SA allocated 1235 * for a policy. 1236 */ 1237 void 1238 key_freesav(struct secasvar **psav, const char* where, int tag) 1239 { 1240 INIT_VNET_IPSEC(curvnet); 1241 struct secasvar *sav = *psav; 1242 1243 IPSEC_ASSERT(sav != NULL, ("null sav")); 1244 1245 if (sa_delref(sav)) { 1246 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1247 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1248 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1249 *psav = NULL; 1250 key_delsav(sav); 1251 } else { 1252 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1253 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1254 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1255 } 1256 } 1257 1258 /* %%% SPD management */ 1259 /* 1260 * free security policy entry. 1261 */ 1262 static void 1263 key_delsp(struct secpolicy *sp) 1264 { 1265 struct ipsecrequest *isr, *nextisr; 1266 1267 IPSEC_ASSERT(sp != NULL, ("null sp")); 1268 SPTREE_LOCK_ASSERT(); 1269 1270 sp->state = IPSEC_SPSTATE_DEAD; 1271 1272 IPSEC_ASSERT(sp->refcnt == 0, 1273 ("SP with references deleted (refcnt %u)", sp->refcnt)); 1274 1275 /* remove from SP index */ 1276 if (__LIST_CHAINED(sp)) 1277 LIST_REMOVE(sp, chain); 1278 1279 for (isr = sp->req; isr != NULL; isr = nextisr) { 1280 if (isr->sav != NULL) { 1281 KEY_FREESAV(&isr->sav); 1282 isr->sav = NULL; 1283 } 1284 1285 nextisr = isr->next; 1286 ipsec_delisr(isr); 1287 } 1288 _key_delsp(sp); 1289 } 1290 1291 /* 1292 * search SPD 1293 * OUT: NULL : not found 1294 * others : found, pointer to a SP. 1295 */ 1296 static struct secpolicy * 1297 key_getsp(struct secpolicyindex *spidx) 1298 { 1299 INIT_VNET_IPSEC(curvnet); 1300 struct secpolicy *sp; 1301 1302 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 1303 1304 SPTREE_LOCK(); 1305 LIST_FOREACH(sp, &V_sptree[spidx->dir], chain) { 1306 if (sp->state == IPSEC_SPSTATE_DEAD) 1307 continue; 1308 if (key_cmpspidx_exactly(spidx, &sp->spidx)) { 1309 SP_ADDREF(sp); 1310 break; 1311 } 1312 } 1313 SPTREE_UNLOCK(); 1314 1315 return sp; 1316 } 1317 1318 /* 1319 * get SP by index. 1320 * OUT: NULL : not found 1321 * others : found, pointer to a SP. 1322 */ 1323 static struct secpolicy * 1324 key_getspbyid(u_int32_t id) 1325 { 1326 INIT_VNET_IPSEC(curvnet); 1327 struct secpolicy *sp; 1328 1329 SPTREE_LOCK(); 1330 LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_INBOUND], chain) { 1331 if (sp->state == IPSEC_SPSTATE_DEAD) 1332 continue; 1333 if (sp->id == id) { 1334 SP_ADDREF(sp); 1335 goto done; 1336 } 1337 } 1338 1339 LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_OUTBOUND], chain) { 1340 if (sp->state == IPSEC_SPSTATE_DEAD) 1341 continue; 1342 if (sp->id == id) { 1343 SP_ADDREF(sp); 1344 goto done; 1345 } 1346 } 1347 done: 1348 SPTREE_UNLOCK(); 1349 1350 return sp; 1351 } 1352 1353 struct secpolicy * 1354 key_newsp(const char* where, int tag) 1355 { 1356 INIT_VNET_IPSEC(curvnet); 1357 struct secpolicy *newsp = NULL; 1358 1359 newsp = (struct secpolicy *) 1360 malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO); 1361 if (newsp) { 1362 SECPOLICY_LOCK_INIT(newsp); 1363 newsp->refcnt = 1; 1364 newsp->req = NULL; 1365 } 1366 1367 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1368 printf("DP %s from %s:%u return SP:%p\n", __func__, 1369 where, tag, newsp)); 1370 return newsp; 1371 } 1372 1373 static void 1374 _key_delsp(struct secpolicy *sp) 1375 { 1376 SECPOLICY_LOCK_DESTROY(sp); 1377 free(sp, M_IPSEC_SP); 1378 } 1379 1380 /* 1381 * create secpolicy structure from sadb_x_policy structure. 1382 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, 1383 * so must be set properly later. 1384 */ 1385 struct secpolicy * 1386 key_msg2sp(xpl0, len, error) 1387 struct sadb_x_policy *xpl0; 1388 size_t len; 1389 int *error; 1390 { 1391 INIT_VNET_IPSEC(curvnet); 1392 struct secpolicy *newsp; 1393 1394 IPSEC_ASSERT(xpl0 != NULL, ("null xpl0")); 1395 IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len)); 1396 1397 if (len != PFKEY_EXTLEN(xpl0)) { 1398 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__)); 1399 *error = EINVAL; 1400 return NULL; 1401 } 1402 1403 if ((newsp = KEY_NEWSP()) == NULL) { 1404 *error = ENOBUFS; 1405 return NULL; 1406 } 1407 1408 newsp->spidx.dir = xpl0->sadb_x_policy_dir; 1409 newsp->policy = xpl0->sadb_x_policy_type; 1410 1411 /* check policy */ 1412 switch (xpl0->sadb_x_policy_type) { 1413 case IPSEC_POLICY_DISCARD: 1414 case IPSEC_POLICY_NONE: 1415 case IPSEC_POLICY_ENTRUST: 1416 case IPSEC_POLICY_BYPASS: 1417 newsp->req = NULL; 1418 break; 1419 1420 case IPSEC_POLICY_IPSEC: 1421 { 1422 int tlen; 1423 struct sadb_x_ipsecrequest *xisr; 1424 struct ipsecrequest **p_isr = &newsp->req; 1425 1426 /* validity check */ 1427 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { 1428 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", 1429 __func__)); 1430 KEY_FREESP(&newsp); 1431 *error = EINVAL; 1432 return NULL; 1433 } 1434 1435 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); 1436 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1); 1437 1438 while (tlen > 0) { 1439 /* length check */ 1440 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { 1441 ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest " 1442 "length.\n", __func__)); 1443 KEY_FREESP(&newsp); 1444 *error = EINVAL; 1445 return NULL; 1446 } 1447 1448 /* allocate request buffer */ 1449 /* NB: data structure is zero'd */ 1450 *p_isr = ipsec_newisr(); 1451 if ((*p_isr) == NULL) { 1452 ipseclog((LOG_DEBUG, 1453 "%s: No more memory.\n", __func__)); 1454 KEY_FREESP(&newsp); 1455 *error = ENOBUFS; 1456 return NULL; 1457 } 1458 1459 /* set values */ 1460 switch (xisr->sadb_x_ipsecrequest_proto) { 1461 case IPPROTO_ESP: 1462 case IPPROTO_AH: 1463 case IPPROTO_IPCOMP: 1464 break; 1465 default: 1466 ipseclog((LOG_DEBUG, 1467 "%s: invalid proto type=%u\n", __func__, 1468 xisr->sadb_x_ipsecrequest_proto)); 1469 KEY_FREESP(&newsp); 1470 *error = EPROTONOSUPPORT; 1471 return NULL; 1472 } 1473 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; 1474 1475 switch (xisr->sadb_x_ipsecrequest_mode) { 1476 case IPSEC_MODE_TRANSPORT: 1477 case IPSEC_MODE_TUNNEL: 1478 break; 1479 case IPSEC_MODE_ANY: 1480 default: 1481 ipseclog((LOG_DEBUG, 1482 "%s: invalid mode=%u\n", __func__, 1483 xisr->sadb_x_ipsecrequest_mode)); 1484 KEY_FREESP(&newsp); 1485 *error = EINVAL; 1486 return NULL; 1487 } 1488 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; 1489 1490 switch (xisr->sadb_x_ipsecrequest_level) { 1491 case IPSEC_LEVEL_DEFAULT: 1492 case IPSEC_LEVEL_USE: 1493 case IPSEC_LEVEL_REQUIRE: 1494 break; 1495 case IPSEC_LEVEL_UNIQUE: 1496 /* validity check */ 1497 /* 1498 * If range violation of reqid, kernel will 1499 * update it, don't refuse it. 1500 */ 1501 if (xisr->sadb_x_ipsecrequest_reqid 1502 > IPSEC_MANUAL_REQID_MAX) { 1503 ipseclog((LOG_DEBUG, 1504 "%s: reqid=%d range " 1505 "violation, updated by kernel.\n", 1506 __func__, 1507 xisr->sadb_x_ipsecrequest_reqid)); 1508 xisr->sadb_x_ipsecrequest_reqid = 0; 1509 } 1510 1511 /* allocate new reqid id if reqid is zero. */ 1512 if (xisr->sadb_x_ipsecrequest_reqid == 0) { 1513 u_int32_t reqid; 1514 if ((reqid = key_newreqid()) == 0) { 1515 KEY_FREESP(&newsp); 1516 *error = ENOBUFS; 1517 return NULL; 1518 } 1519 (*p_isr)->saidx.reqid = reqid; 1520 xisr->sadb_x_ipsecrequest_reqid = reqid; 1521 } else { 1522 /* set it for manual keying. */ 1523 (*p_isr)->saidx.reqid = 1524 xisr->sadb_x_ipsecrequest_reqid; 1525 } 1526 break; 1527 1528 default: 1529 ipseclog((LOG_DEBUG, "%s: invalid level=%u\n", 1530 __func__, 1531 xisr->sadb_x_ipsecrequest_level)); 1532 KEY_FREESP(&newsp); 1533 *error = EINVAL; 1534 return NULL; 1535 } 1536 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; 1537 1538 /* set IP addresses if there */ 1539 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { 1540 struct sockaddr *paddr; 1541 1542 paddr = (struct sockaddr *)(xisr + 1); 1543 1544 /* validity check */ 1545 if (paddr->sa_len 1546 > sizeof((*p_isr)->saidx.src)) { 1547 ipseclog((LOG_DEBUG, "%s: invalid " 1548 "request address length.\n", 1549 __func__)); 1550 KEY_FREESP(&newsp); 1551 *error = EINVAL; 1552 return NULL; 1553 } 1554 bcopy(paddr, &(*p_isr)->saidx.src, 1555 paddr->sa_len); 1556 1557 paddr = (struct sockaddr *)((caddr_t)paddr 1558 + paddr->sa_len); 1559 1560 /* validity check */ 1561 if (paddr->sa_len 1562 > sizeof((*p_isr)->saidx.dst)) { 1563 ipseclog((LOG_DEBUG, "%s: invalid " 1564 "request address length.\n", 1565 __func__)); 1566 KEY_FREESP(&newsp); 1567 *error = EINVAL; 1568 return NULL; 1569 } 1570 bcopy(paddr, &(*p_isr)->saidx.dst, 1571 paddr->sa_len); 1572 } 1573 1574 (*p_isr)->sp = newsp; 1575 1576 /* initialization for the next. */ 1577 p_isr = &(*p_isr)->next; 1578 tlen -= xisr->sadb_x_ipsecrequest_len; 1579 1580 /* validity check */ 1581 if (tlen < 0) { 1582 ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n", 1583 __func__)); 1584 KEY_FREESP(&newsp); 1585 *error = EINVAL; 1586 return NULL; 1587 } 1588 1589 xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr 1590 + xisr->sadb_x_ipsecrequest_len); 1591 } 1592 } 1593 break; 1594 default: 1595 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); 1596 KEY_FREESP(&newsp); 1597 *error = EINVAL; 1598 return NULL; 1599 } 1600 1601 *error = 0; 1602 return newsp; 1603 } 1604 1605 static u_int32_t 1606 key_newreqid() 1607 { 1608 static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 1609 1610 auto_reqid = (auto_reqid == ~0 1611 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); 1612 1613 /* XXX should be unique check */ 1614 1615 return auto_reqid; 1616 } 1617 1618 /* 1619 * copy secpolicy struct to sadb_x_policy structure indicated. 1620 */ 1621 struct mbuf * 1622 key_sp2msg(sp) 1623 struct secpolicy *sp; 1624 { 1625 struct sadb_x_policy *xpl; 1626 int tlen; 1627 caddr_t p; 1628 struct mbuf *m; 1629 1630 IPSEC_ASSERT(sp != NULL, ("null policy")); 1631 1632 tlen = key_getspreqmsglen(sp); 1633 1634 m = key_alloc_mbuf(tlen); 1635 if (!m || m->m_next) { /*XXX*/ 1636 if (m) 1637 m_freem(m); 1638 return NULL; 1639 } 1640 1641 m->m_len = tlen; 1642 m->m_next = NULL; 1643 xpl = mtod(m, struct sadb_x_policy *); 1644 bzero(xpl, tlen); 1645 1646 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen); 1647 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 1648 xpl->sadb_x_policy_type = sp->policy; 1649 xpl->sadb_x_policy_dir = sp->spidx.dir; 1650 xpl->sadb_x_policy_id = sp->id; 1651 p = (caddr_t)xpl + sizeof(*xpl); 1652 1653 /* if is the policy for ipsec ? */ 1654 if (sp->policy == IPSEC_POLICY_IPSEC) { 1655 struct sadb_x_ipsecrequest *xisr; 1656 struct ipsecrequest *isr; 1657 1658 for (isr = sp->req; isr != NULL; isr = isr->next) { 1659 1660 xisr = (struct sadb_x_ipsecrequest *)p; 1661 1662 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; 1663 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; 1664 xisr->sadb_x_ipsecrequest_level = isr->level; 1665 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; 1666 1667 p += sizeof(*xisr); 1668 bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len); 1669 p += isr->saidx.src.sa.sa_len; 1670 bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len); 1671 p += isr->saidx.src.sa.sa_len; 1672 1673 xisr->sadb_x_ipsecrequest_len = 1674 PFKEY_ALIGN8(sizeof(*xisr) 1675 + isr->saidx.src.sa.sa_len 1676 + isr->saidx.dst.sa.sa_len); 1677 } 1678 } 1679 1680 return m; 1681 } 1682 1683 /* m will not be freed nor modified */ 1684 static struct mbuf * 1685 #ifdef __STDC__ 1686 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, 1687 int ndeep, int nitem, ...) 1688 #else 1689 key_gather_mbuf(m, mhp, ndeep, nitem, va_alist) 1690 struct mbuf *m; 1691 const struct sadb_msghdr *mhp; 1692 int ndeep; 1693 int nitem; 1694 va_dcl 1695 #endif 1696 { 1697 va_list ap; 1698 int idx; 1699 int i; 1700 struct mbuf *result = NULL, *n; 1701 int len; 1702 1703 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1704 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1705 1706 va_start(ap, nitem); 1707 for (i = 0; i < nitem; i++) { 1708 idx = va_arg(ap, int); 1709 if (idx < 0 || idx > SADB_EXT_MAX) 1710 goto fail; 1711 /* don't attempt to pull empty extension */ 1712 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) 1713 continue; 1714 if (idx != SADB_EXT_RESERVED && 1715 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) 1716 continue; 1717 1718 if (idx == SADB_EXT_RESERVED) { 1719 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 1720 1721 IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len)); 1722 1723 MGETHDR(n, M_DONTWAIT, MT_DATA); 1724 if (!n) 1725 goto fail; 1726 n->m_len = len; 1727 n->m_next = NULL; 1728 m_copydata(m, 0, sizeof(struct sadb_msg), 1729 mtod(n, caddr_t)); 1730 } else if (i < ndeep) { 1731 len = mhp->extlen[idx]; 1732 n = key_alloc_mbuf(len); 1733 if (!n || n->m_next) { /*XXX*/ 1734 if (n) 1735 m_freem(n); 1736 goto fail; 1737 } 1738 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], 1739 mtod(n, caddr_t)); 1740 } else { 1741 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], 1742 M_DONTWAIT); 1743 } 1744 if (n == NULL) 1745 goto fail; 1746 1747 if (result) 1748 m_cat(result, n); 1749 else 1750 result = n; 1751 } 1752 va_end(ap); 1753 1754 if ((result->m_flags & M_PKTHDR) != 0) { 1755 result->m_pkthdr.len = 0; 1756 for (n = result; n; n = n->m_next) 1757 result->m_pkthdr.len += n->m_len; 1758 } 1759 1760 return result; 1761 1762 fail: 1763 m_freem(result); 1764 return NULL; 1765 } 1766 1767 /* 1768 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing 1769 * add an entry to SP database, when received 1770 * <base, address(SD), (lifetime(H),) policy> 1771 * from the user(?). 1772 * Adding to SP database, 1773 * and send 1774 * <base, address(SD), (lifetime(H),) policy> 1775 * to the socket which was send. 1776 * 1777 * SPDADD set a unique policy entry. 1778 * SPDSETIDX like SPDADD without a part of policy requests. 1779 * SPDUPDATE replace a unique policy entry. 1780 * 1781 * m will always be freed. 1782 */ 1783 static int 1784 key_spdadd(so, m, mhp) 1785 struct socket *so; 1786 struct mbuf *m; 1787 const struct sadb_msghdr *mhp; 1788 { 1789 INIT_VNET_IPSEC(curvnet); 1790 struct sadb_address *src0, *dst0; 1791 struct sadb_x_policy *xpl0, *xpl; 1792 struct sadb_lifetime *lft = NULL; 1793 struct secpolicyindex spidx; 1794 struct secpolicy *newsp; 1795 int error; 1796 1797 IPSEC_ASSERT(so != NULL, ("null socket")); 1798 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1799 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1800 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 1801 1802 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 1803 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 1804 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 1805 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n")); 1806 return key_senderror(so, m, EINVAL); 1807 } 1808 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 1809 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 1810 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 1811 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1812 __func__)); 1813 return key_senderror(so, m, EINVAL); 1814 } 1815 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { 1816 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] 1817 < sizeof(struct sadb_lifetime)) { 1818 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1819 __func__)); 1820 return key_senderror(so, m, EINVAL); 1821 } 1822 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 1823 } 1824 1825 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 1826 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 1827 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 1828 1829 /* 1830 * Note: do not parse SADB_X_EXT_NAT_T_* here: 1831 * we are processing traffic endpoints. 1832 */ 1833 1834 /* make secindex */ 1835 /* XXX boundary check against sa_len */ 1836 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1837 src0 + 1, 1838 dst0 + 1, 1839 src0->sadb_address_prefixlen, 1840 dst0->sadb_address_prefixlen, 1841 src0->sadb_address_proto, 1842 &spidx); 1843 1844 /* checking the direciton. */ 1845 switch (xpl0->sadb_x_policy_dir) { 1846 case IPSEC_DIR_INBOUND: 1847 case IPSEC_DIR_OUTBOUND: 1848 break; 1849 default: 1850 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 1851 mhp->msg->sadb_msg_errno = EINVAL; 1852 return 0; 1853 } 1854 1855 /* check policy */ 1856 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */ 1857 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST 1858 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { 1859 ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__)); 1860 return key_senderror(so, m, EINVAL); 1861 } 1862 1863 /* policy requests are mandatory when action is ipsec. */ 1864 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX 1865 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC 1866 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { 1867 ipseclog((LOG_DEBUG, "%s: some policy requests part required\n", 1868 __func__)); 1869 return key_senderror(so, m, EINVAL); 1870 } 1871 1872 /* 1873 * checking there is SP already or not. 1874 * SPDUPDATE doesn't depend on whether there is a SP or not. 1875 * If the type is either SPDADD or SPDSETIDX AND a SP is found, 1876 * then error. 1877 */ 1878 newsp = key_getsp(&spidx); 1879 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1880 if (newsp) { 1881 newsp->state = IPSEC_SPSTATE_DEAD; 1882 KEY_FREESP(&newsp); 1883 } 1884 } else { 1885 if (newsp != NULL) { 1886 KEY_FREESP(&newsp); 1887 ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n", 1888 __func__)); 1889 return key_senderror(so, m, EEXIST); 1890 } 1891 } 1892 1893 /* allocation new SP entry */ 1894 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) { 1895 return key_senderror(so, m, error); 1896 } 1897 1898 if ((newsp->id = key_getnewspid()) == 0) { 1899 _key_delsp(newsp); 1900 return key_senderror(so, m, ENOBUFS); 1901 } 1902 1903 /* XXX boundary check against sa_len */ 1904 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1905 src0 + 1, 1906 dst0 + 1, 1907 src0->sadb_address_prefixlen, 1908 dst0->sadb_address_prefixlen, 1909 src0->sadb_address_proto, 1910 &newsp->spidx); 1911 1912 /* sanity check on addr pair */ 1913 if (((struct sockaddr *)(src0 + 1))->sa_family != 1914 ((struct sockaddr *)(dst0+ 1))->sa_family) { 1915 _key_delsp(newsp); 1916 return key_senderror(so, m, EINVAL); 1917 } 1918 if (((struct sockaddr *)(src0 + 1))->sa_len != 1919 ((struct sockaddr *)(dst0+ 1))->sa_len) { 1920 _key_delsp(newsp); 1921 return key_senderror(so, m, EINVAL); 1922 } 1923 #if 1 1924 if (newsp->req && newsp->req->saidx.src.sa.sa_family) { 1925 struct sockaddr *sa; 1926 sa = (struct sockaddr *)(src0 + 1); 1927 if (sa->sa_family != newsp->req->saidx.src.sa.sa_family) { 1928 _key_delsp(newsp); 1929 return key_senderror(so, m, EINVAL); 1930 } 1931 } 1932 if (newsp->req && newsp->req->saidx.dst.sa.sa_family) { 1933 struct sockaddr *sa; 1934 sa = (struct sockaddr *)(dst0 + 1); 1935 if (sa->sa_family != newsp->req->saidx.dst.sa.sa_family) { 1936 _key_delsp(newsp); 1937 return key_senderror(so, m, EINVAL); 1938 } 1939 } 1940 #endif 1941 1942 newsp->created = time_second; 1943 newsp->lastused = newsp->created; 1944 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; 1945 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; 1946 1947 newsp->refcnt = 1; /* do not reclaim until I say I do */ 1948 newsp->state = IPSEC_SPSTATE_ALIVE; 1949 LIST_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, secpolicy, chain); 1950 1951 /* delete the entry in spacqtree */ 1952 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1953 struct secspacq *spacq = key_getspacq(&spidx); 1954 if (spacq != NULL) { 1955 /* reset counter in order to deletion by timehandler. */ 1956 spacq->created = time_second; 1957 spacq->count = 0; 1958 SPACQ_UNLOCK(); 1959 } 1960 } 1961 1962 { 1963 struct mbuf *n, *mpolicy; 1964 struct sadb_msg *newmsg; 1965 int off; 1966 1967 /* 1968 * Note: do not send SADB_X_EXT_NAT_T_* here: 1969 * we are sending traffic endpoints. 1970 */ 1971 1972 /* create new sadb_msg to reply. */ 1973 if (lft) { 1974 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, 1975 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, 1976 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1977 } else { 1978 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, 1979 SADB_X_EXT_POLICY, 1980 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1981 } 1982 if (!n) 1983 return key_senderror(so, m, ENOBUFS); 1984 1985 if (n->m_len < sizeof(*newmsg)) { 1986 n = m_pullup(n, sizeof(*newmsg)); 1987 if (!n) 1988 return key_senderror(so, m, ENOBUFS); 1989 } 1990 newmsg = mtod(n, struct sadb_msg *); 1991 newmsg->sadb_msg_errno = 0; 1992 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 1993 1994 off = 0; 1995 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), 1996 sizeof(*xpl), &off); 1997 if (mpolicy == NULL) { 1998 /* n is already freed */ 1999 return key_senderror(so, m, ENOBUFS); 2000 } 2001 xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off); 2002 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { 2003 m_freem(n); 2004 return key_senderror(so, m, EINVAL); 2005 } 2006 xpl->sadb_x_policy_id = newsp->id; 2007 2008 m_freem(m); 2009 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2010 } 2011 } 2012 2013 /* 2014 * get new policy id. 2015 * OUT: 2016 * 0: failure. 2017 * others: success. 2018 */ 2019 static u_int32_t 2020 key_getnewspid() 2021 { 2022 INIT_VNET_IPSEC(curvnet); 2023 u_int32_t newid = 0; 2024 int count = V_key_spi_trycnt; /* XXX */ 2025 struct secpolicy *sp; 2026 2027 /* when requesting to allocate spi ranged */ 2028 while (count--) { 2029 newid = (V_policy_id = (V_policy_id == ~0 ? 1 : V_policy_id + 1)); 2030 2031 if ((sp = key_getspbyid(newid)) == NULL) 2032 break; 2033 2034 KEY_FREESP(&sp); 2035 } 2036 2037 if (count == 0 || newid == 0) { 2038 ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n", 2039 __func__)); 2040 return 0; 2041 } 2042 2043 return newid; 2044 } 2045 2046 /* 2047 * SADB_SPDDELETE processing 2048 * receive 2049 * <base, address(SD), policy(*)> 2050 * from the user(?), and set SADB_SASTATE_DEAD, 2051 * and send, 2052 * <base, address(SD), policy(*)> 2053 * to the ikmpd. 2054 * policy(*) including direction of policy. 2055 * 2056 * m will always be freed. 2057 */ 2058 static int 2059 key_spddelete(so, m, mhp) 2060 struct socket *so; 2061 struct mbuf *m; 2062 const struct sadb_msghdr *mhp; 2063 { 2064 INIT_VNET_IPSEC(curvnet); 2065 struct sadb_address *src0, *dst0; 2066 struct sadb_x_policy *xpl0; 2067 struct secpolicyindex spidx; 2068 struct secpolicy *sp; 2069 2070 IPSEC_ASSERT(so != NULL, ("null so")); 2071 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2072 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2073 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2074 2075 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2076 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2077 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2078 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2079 __func__)); 2080 return key_senderror(so, m, EINVAL); 2081 } 2082 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2083 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2084 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2085 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2086 __func__)); 2087 return key_senderror(so, m, EINVAL); 2088 } 2089 2090 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 2091 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 2092 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 2093 2094 /* 2095 * Note: do not parse SADB_X_EXT_NAT_T_* here: 2096 * we are processing traffic endpoints. 2097 */ 2098 2099 /* make secindex */ 2100 /* XXX boundary check against sa_len */ 2101 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 2102 src0 + 1, 2103 dst0 + 1, 2104 src0->sadb_address_prefixlen, 2105 dst0->sadb_address_prefixlen, 2106 src0->sadb_address_proto, 2107 &spidx); 2108 2109 /* checking the direciton. */ 2110 switch (xpl0->sadb_x_policy_dir) { 2111 case IPSEC_DIR_INBOUND: 2112 case IPSEC_DIR_OUTBOUND: 2113 break; 2114 default: 2115 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 2116 return key_senderror(so, m, EINVAL); 2117 } 2118 2119 /* Is there SP in SPD ? */ 2120 if ((sp = key_getsp(&spidx)) == NULL) { 2121 ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__)); 2122 return key_senderror(so, m, EINVAL); 2123 } 2124 2125 /* save policy id to buffer to be returned. */ 2126 xpl0->sadb_x_policy_id = sp->id; 2127 2128 sp->state = IPSEC_SPSTATE_DEAD; 2129 KEY_FREESP(&sp); 2130 2131 { 2132 struct mbuf *n; 2133 struct sadb_msg *newmsg; 2134 2135 /* 2136 * Note: do not send SADB_X_EXT_NAT_T_* here: 2137 * we are sending traffic endpoints. 2138 */ 2139 2140 /* create new sadb_msg to reply. */ 2141 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 2142 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2143 if (!n) 2144 return key_senderror(so, m, ENOBUFS); 2145 2146 newmsg = mtod(n, struct sadb_msg *); 2147 newmsg->sadb_msg_errno = 0; 2148 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2149 2150 m_freem(m); 2151 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2152 } 2153 } 2154 2155 /* 2156 * SADB_SPDDELETE2 processing 2157 * receive 2158 * <base, policy(*)> 2159 * from the user(?), and set SADB_SASTATE_DEAD, 2160 * and send, 2161 * <base, policy(*)> 2162 * to the ikmpd. 2163 * policy(*) including direction of policy. 2164 * 2165 * m will always be freed. 2166 */ 2167 static int 2168 key_spddelete2(so, m, mhp) 2169 struct socket *so; 2170 struct mbuf *m; 2171 const struct sadb_msghdr *mhp; 2172 { 2173 INIT_VNET_IPSEC(curvnet); 2174 u_int32_t id; 2175 struct secpolicy *sp; 2176 2177 IPSEC_ASSERT(so != NULL, ("null socket")); 2178 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2179 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2180 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2181 2182 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2183 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2184 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); 2185 return key_senderror(so, m, EINVAL); 2186 } 2187 2188 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2189 2190 /* Is there SP in SPD ? */ 2191 if ((sp = key_getspbyid(id)) == NULL) { 2192 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2193 return key_senderror(so, m, EINVAL); 2194 } 2195 2196 sp->state = IPSEC_SPSTATE_DEAD; 2197 KEY_FREESP(&sp); 2198 2199 { 2200 struct mbuf *n, *nn; 2201 struct sadb_msg *newmsg; 2202 int off, len; 2203 2204 /* create new sadb_msg to reply. */ 2205 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2206 2207 MGETHDR(n, M_DONTWAIT, MT_DATA); 2208 if (n && len > MHLEN) { 2209 MCLGET(n, M_DONTWAIT); 2210 if ((n->m_flags & M_EXT) == 0) { 2211 m_freem(n); 2212 n = NULL; 2213 } 2214 } 2215 if (!n) 2216 return key_senderror(so, m, ENOBUFS); 2217 2218 n->m_len = len; 2219 n->m_next = NULL; 2220 off = 0; 2221 2222 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 2223 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2224 2225 IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)", 2226 off, len)); 2227 2228 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], 2229 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT); 2230 if (!n->m_next) { 2231 m_freem(n); 2232 return key_senderror(so, m, ENOBUFS); 2233 } 2234 2235 n->m_pkthdr.len = 0; 2236 for (nn = n; nn; nn = nn->m_next) 2237 n->m_pkthdr.len += nn->m_len; 2238 2239 newmsg = mtod(n, struct sadb_msg *); 2240 newmsg->sadb_msg_errno = 0; 2241 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2242 2243 m_freem(m); 2244 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2245 } 2246 } 2247 2248 /* 2249 * SADB_X_GET processing 2250 * receive 2251 * <base, policy(*)> 2252 * from the user(?), 2253 * and send, 2254 * <base, address(SD), policy> 2255 * to the ikmpd. 2256 * policy(*) including direction of policy. 2257 * 2258 * m will always be freed. 2259 */ 2260 static int 2261 key_spdget(so, m, mhp) 2262 struct socket *so; 2263 struct mbuf *m; 2264 const struct sadb_msghdr *mhp; 2265 { 2266 INIT_VNET_IPSEC(curvnet); 2267 u_int32_t id; 2268 struct secpolicy *sp; 2269 struct mbuf *n; 2270 2271 IPSEC_ASSERT(so != NULL, ("null socket")); 2272 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2273 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2274 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2275 2276 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2277 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2278 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2279 __func__)); 2280 return key_senderror(so, m, EINVAL); 2281 } 2282 2283 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2284 2285 /* Is there SP in SPD ? */ 2286 if ((sp = key_getspbyid(id)) == NULL) { 2287 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2288 return key_senderror(so, m, ENOENT); 2289 } 2290 2291 n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid); 2292 if (n != NULL) { 2293 m_freem(m); 2294 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2295 } else 2296 return key_senderror(so, m, ENOBUFS); 2297 } 2298 2299 /* 2300 * SADB_X_SPDACQUIRE processing. 2301 * Acquire policy and SA(s) for a *OUTBOUND* packet. 2302 * send 2303 * <base, policy(*)> 2304 * to KMD, and expect to receive 2305 * <base> with SADB_X_SPDACQUIRE if error occured, 2306 * or 2307 * <base, policy> 2308 * with SADB_X_SPDUPDATE from KMD by PF_KEY. 2309 * policy(*) is without policy requests. 2310 * 2311 * 0 : succeed 2312 * others: error number 2313 */ 2314 int 2315 key_spdacquire(sp) 2316 struct secpolicy *sp; 2317 { 2318 INIT_VNET_IPSEC(curvnet); 2319 struct mbuf *result = NULL, *m; 2320 struct secspacq *newspacq; 2321 2322 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2323 IPSEC_ASSERT(sp->req == NULL, ("policy exists")); 2324 IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC, 2325 ("policy not IPSEC %u", sp->policy)); 2326 2327 /* Get an entry to check whether sent message or not. */ 2328 newspacq = key_getspacq(&sp->spidx); 2329 if (newspacq != NULL) { 2330 if (V_key_blockacq_count < newspacq->count) { 2331 /* reset counter and do send message. */ 2332 newspacq->count = 0; 2333 } else { 2334 /* increment counter and do nothing. */ 2335 newspacq->count++; 2336 return 0; 2337 } 2338 SPACQ_UNLOCK(); 2339 } else { 2340 /* make new entry for blocking to send SADB_ACQUIRE. */ 2341 newspacq = key_newspacq(&sp->spidx); 2342 if (newspacq == NULL) 2343 return ENOBUFS; 2344 } 2345 2346 /* create new sadb_msg to reply. */ 2347 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); 2348 if (!m) 2349 return ENOBUFS; 2350 2351 result = m; 2352 2353 result->m_pkthdr.len = 0; 2354 for (m = result; m; m = m->m_next) 2355 result->m_pkthdr.len += m->m_len; 2356 2357 mtod(result, struct sadb_msg *)->sadb_msg_len = 2358 PFKEY_UNIT64(result->m_pkthdr.len); 2359 2360 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 2361 } 2362 2363 /* 2364 * SADB_SPDFLUSH processing 2365 * receive 2366 * <base> 2367 * from the user, and free all entries in secpctree. 2368 * and send, 2369 * <base> 2370 * to the user. 2371 * NOTE: what to do is only marking SADB_SASTATE_DEAD. 2372 * 2373 * m will always be freed. 2374 */ 2375 static int 2376 key_spdflush(so, m, mhp) 2377 struct socket *so; 2378 struct mbuf *m; 2379 const struct sadb_msghdr *mhp; 2380 { 2381 INIT_VNET_IPSEC(curvnet); 2382 struct sadb_msg *newmsg; 2383 struct secpolicy *sp; 2384 u_int dir; 2385 2386 IPSEC_ASSERT(so != NULL, ("null socket")); 2387 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2388 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2389 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2390 2391 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) 2392 return key_senderror(so, m, EINVAL); 2393 2394 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2395 SPTREE_LOCK(); 2396 LIST_FOREACH(sp, &V_sptree[dir], chain) 2397 sp->state = IPSEC_SPSTATE_DEAD; 2398 SPTREE_UNLOCK(); 2399 } 2400 2401 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 2402 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2403 return key_senderror(so, m, ENOBUFS); 2404 } 2405 2406 if (m->m_next) 2407 m_freem(m->m_next); 2408 m->m_next = NULL; 2409 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2410 newmsg = mtod(m, struct sadb_msg *); 2411 newmsg->sadb_msg_errno = 0; 2412 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 2413 2414 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 2415 } 2416 2417 /* 2418 * SADB_SPDDUMP processing 2419 * receive 2420 * <base> 2421 * from the user, and dump all SP leaves 2422 * and send, 2423 * <base> ..... 2424 * to the ikmpd. 2425 * 2426 * m will always be freed. 2427 */ 2428 static int 2429 key_spddump(so, m, mhp) 2430 struct socket *so; 2431 struct mbuf *m; 2432 const struct sadb_msghdr *mhp; 2433 { 2434 INIT_VNET_IPSEC(curvnet); 2435 struct secpolicy *sp; 2436 int cnt; 2437 u_int dir; 2438 struct mbuf *n; 2439 2440 IPSEC_ASSERT(so != NULL, ("null socket")); 2441 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2442 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2443 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2444 2445 /* search SPD entry and get buffer size. */ 2446 cnt = 0; 2447 SPTREE_LOCK(); 2448 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2449 LIST_FOREACH(sp, &V_sptree[dir], chain) { 2450 cnt++; 2451 } 2452 } 2453 2454 if (cnt == 0) { 2455 SPTREE_UNLOCK(); 2456 return key_senderror(so, m, ENOENT); 2457 } 2458 2459 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2460 LIST_FOREACH(sp, &V_sptree[dir], chain) { 2461 --cnt; 2462 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, 2463 mhp->msg->sadb_msg_pid); 2464 2465 if (n) 2466 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2467 } 2468 } 2469 2470 SPTREE_UNLOCK(); 2471 m_freem(m); 2472 return 0; 2473 } 2474 2475 static struct mbuf * 2476 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, u_int32_t pid) 2477 { 2478 struct mbuf *result = NULL, *m; 2479 struct seclifetime lt; 2480 2481 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt); 2482 if (!m) 2483 goto fail; 2484 result = m; 2485 2486 /* 2487 * Note: do not send SADB_X_EXT_NAT_T_* here: 2488 * we are sending traffic endpoints. 2489 */ 2490 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2491 &sp->spidx.src.sa, sp->spidx.prefs, 2492 sp->spidx.ul_proto); 2493 if (!m) 2494 goto fail; 2495 m_cat(result, m); 2496 2497 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2498 &sp->spidx.dst.sa, sp->spidx.prefd, 2499 sp->spidx.ul_proto); 2500 if (!m) 2501 goto fail; 2502 m_cat(result, m); 2503 2504 m = key_sp2msg(sp); 2505 if (!m) 2506 goto fail; 2507 m_cat(result, m); 2508 2509 if(sp->lifetime){ 2510 lt.addtime=sp->created; 2511 lt.usetime= sp->lastused; 2512 m = key_setlifetime(<, SADB_EXT_LIFETIME_CURRENT); 2513 if (!m) 2514 goto fail; 2515 m_cat(result, m); 2516 2517 lt.addtime=sp->lifetime; 2518 lt.usetime= sp->validtime; 2519 m = key_setlifetime(<, SADB_EXT_LIFETIME_HARD); 2520 if (!m) 2521 goto fail; 2522 m_cat(result, m); 2523 } 2524 2525 if ((result->m_flags & M_PKTHDR) == 0) 2526 goto fail; 2527 2528 if (result->m_len < sizeof(struct sadb_msg)) { 2529 result = m_pullup(result, sizeof(struct sadb_msg)); 2530 if (result == NULL) 2531 goto fail; 2532 } 2533 2534 result->m_pkthdr.len = 0; 2535 for (m = result; m; m = m->m_next) 2536 result->m_pkthdr.len += m->m_len; 2537 2538 mtod(result, struct sadb_msg *)->sadb_msg_len = 2539 PFKEY_UNIT64(result->m_pkthdr.len); 2540 2541 return result; 2542 2543 fail: 2544 m_freem(result); 2545 return NULL; 2546 } 2547 2548 /* 2549 * get PFKEY message length for security policy and request. 2550 */ 2551 static u_int 2552 key_getspreqmsglen(sp) 2553 struct secpolicy *sp; 2554 { 2555 u_int tlen; 2556 2557 tlen = sizeof(struct sadb_x_policy); 2558 2559 /* if is the policy for ipsec ? */ 2560 if (sp->policy != IPSEC_POLICY_IPSEC) 2561 return tlen; 2562 2563 /* get length of ipsec requests */ 2564 { 2565 struct ipsecrequest *isr; 2566 int len; 2567 2568 for (isr = sp->req; isr != NULL; isr = isr->next) { 2569 len = sizeof(struct sadb_x_ipsecrequest) 2570 + isr->saidx.src.sa.sa_len 2571 + isr->saidx.dst.sa.sa_len; 2572 2573 tlen += PFKEY_ALIGN8(len); 2574 } 2575 } 2576 2577 return tlen; 2578 } 2579 2580 /* 2581 * SADB_SPDEXPIRE processing 2582 * send 2583 * <base, address(SD), lifetime(CH), policy> 2584 * to KMD by PF_KEY. 2585 * 2586 * OUT: 0 : succeed 2587 * others : error number 2588 */ 2589 static int 2590 key_spdexpire(sp) 2591 struct secpolicy *sp; 2592 { 2593 struct mbuf *result = NULL, *m; 2594 int len; 2595 int error = -1; 2596 struct sadb_lifetime *lt; 2597 2598 /* XXX: Why do we lock ? */ 2599 2600 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2601 2602 /* set msg header */ 2603 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0); 2604 if (!m) { 2605 error = ENOBUFS; 2606 goto fail; 2607 } 2608 result = m; 2609 2610 /* create lifetime extension (current and hard) */ 2611 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 2612 m = key_alloc_mbuf(len); 2613 if (!m || m->m_next) { /*XXX*/ 2614 if (m) 2615 m_freem(m); 2616 error = ENOBUFS; 2617 goto fail; 2618 } 2619 bzero(mtod(m, caddr_t), len); 2620 lt = mtod(m, struct sadb_lifetime *); 2621 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2622 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 2623 lt->sadb_lifetime_allocations = 0; 2624 lt->sadb_lifetime_bytes = 0; 2625 lt->sadb_lifetime_addtime = sp->created; 2626 lt->sadb_lifetime_usetime = sp->lastused; 2627 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 2628 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2629 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 2630 lt->sadb_lifetime_allocations = 0; 2631 lt->sadb_lifetime_bytes = 0; 2632 lt->sadb_lifetime_addtime = sp->lifetime; 2633 lt->sadb_lifetime_usetime = sp->validtime; 2634 m_cat(result, m); 2635 2636 /* 2637 * Note: do not send SADB_X_EXT_NAT_T_* here: 2638 * we are sending traffic endpoints. 2639 */ 2640 2641 /* set sadb_address for source */ 2642 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2643 &sp->spidx.src.sa, 2644 sp->spidx.prefs, sp->spidx.ul_proto); 2645 if (!m) { 2646 error = ENOBUFS; 2647 goto fail; 2648 } 2649 m_cat(result, m); 2650 2651 /* set sadb_address for destination */ 2652 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2653 &sp->spidx.dst.sa, 2654 sp->spidx.prefd, sp->spidx.ul_proto); 2655 if (!m) { 2656 error = ENOBUFS; 2657 goto fail; 2658 } 2659 m_cat(result, m); 2660 2661 /* set secpolicy */ 2662 m = key_sp2msg(sp); 2663 if (!m) { 2664 error = ENOBUFS; 2665 goto fail; 2666 } 2667 m_cat(result, m); 2668 2669 if ((result->m_flags & M_PKTHDR) == 0) { 2670 error = EINVAL; 2671 goto fail; 2672 } 2673 2674 if (result->m_len < sizeof(struct sadb_msg)) { 2675 result = m_pullup(result, sizeof(struct sadb_msg)); 2676 if (result == NULL) { 2677 error = ENOBUFS; 2678 goto fail; 2679 } 2680 } 2681 2682 result->m_pkthdr.len = 0; 2683 for (m = result; m; m = m->m_next) 2684 result->m_pkthdr.len += m->m_len; 2685 2686 mtod(result, struct sadb_msg *)->sadb_msg_len = 2687 PFKEY_UNIT64(result->m_pkthdr.len); 2688 2689 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 2690 2691 fail: 2692 if (result) 2693 m_freem(result); 2694 return error; 2695 } 2696 2697 /* %%% SAD management */ 2698 /* 2699 * allocating a memory for new SA head, and copy from the values of mhp. 2700 * OUT: NULL : failure due to the lack of memory. 2701 * others : pointer to new SA head. 2702 */ 2703 static struct secashead * 2704 key_newsah(saidx) 2705 struct secasindex *saidx; 2706 { 2707 INIT_VNET_IPSEC(curvnet); 2708 struct secashead *newsah; 2709 2710 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 2711 2712 newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO); 2713 if (newsah != NULL) { 2714 int i; 2715 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++) 2716 LIST_INIT(&newsah->savtree[i]); 2717 newsah->saidx = *saidx; 2718 2719 /* add to saidxtree */ 2720 newsah->state = SADB_SASTATE_MATURE; 2721 2722 SAHTREE_LOCK(); 2723 LIST_INSERT_HEAD(&V_sahtree, newsah, chain); 2724 SAHTREE_UNLOCK(); 2725 } 2726 return(newsah); 2727 } 2728 2729 /* 2730 * delete SA index and all SA registerd. 2731 */ 2732 static void 2733 key_delsah(sah) 2734 struct secashead *sah; 2735 { 2736 INIT_VNET_IPSEC(curvnet); 2737 struct secasvar *sav, *nextsav; 2738 u_int stateidx; 2739 int zombie = 0; 2740 2741 IPSEC_ASSERT(sah != NULL, ("NULL sah")); 2742 SAHTREE_LOCK_ASSERT(); 2743 2744 /* searching all SA registerd in the secindex. */ 2745 for (stateidx = 0; 2746 stateidx < _ARRAYLEN(saorder_state_any); 2747 stateidx++) { 2748 u_int state = saorder_state_any[stateidx]; 2749 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) { 2750 if (sav->refcnt == 0) { 2751 /* sanity check */ 2752 KEY_CHKSASTATE(state, sav->state, __func__); 2753 /* 2754 * do NOT call KEY_FREESAV here: 2755 * it will only delete the sav if refcnt == 1, 2756 * where we already know that refcnt == 0 2757 */ 2758 key_delsav(sav); 2759 } else { 2760 /* give up to delete this sa */ 2761 zombie++; 2762 } 2763 } 2764 } 2765 if (!zombie) { /* delete only if there are savs */ 2766 /* remove from tree of SA index */ 2767 if (__LIST_CHAINED(sah)) 2768 LIST_REMOVE(sah, chain); 2769 if (sah->sa_route.ro_rt) { 2770 RTFREE(sah->sa_route.ro_rt); 2771 sah->sa_route.ro_rt = (struct rtentry *)NULL; 2772 } 2773 free(sah, M_IPSEC_SAH); 2774 } 2775 } 2776 2777 /* 2778 * allocating a new SA with LARVAL state. key_add() and key_getspi() call, 2779 * and copy the values of mhp into new buffer. 2780 * When SAD message type is GETSPI: 2781 * to set sequence number from acq_seq++, 2782 * to set zero to SPI. 2783 * not to call key_setsava(). 2784 * OUT: NULL : fail 2785 * others : pointer to new secasvar. 2786 * 2787 * does not modify mbuf. does not free mbuf on error. 2788 */ 2789 static struct secasvar * 2790 key_newsav(m, mhp, sah, errp, where, tag) 2791 struct mbuf *m; 2792 const struct sadb_msghdr *mhp; 2793 struct secashead *sah; 2794 int *errp; 2795 const char* where; 2796 int tag; 2797 { 2798 INIT_VNET_IPSEC(curvnet); 2799 struct secasvar *newsav; 2800 const struct sadb_sa *xsa; 2801 2802 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2803 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2804 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2805 IPSEC_ASSERT(sah != NULL, ("null secashead")); 2806 2807 newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO); 2808 if (newsav == NULL) { 2809 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2810 *errp = ENOBUFS; 2811 goto done; 2812 } 2813 2814 switch (mhp->msg->sadb_msg_type) { 2815 case SADB_GETSPI: 2816 newsav->spi = 0; 2817 2818 #ifdef IPSEC_DOSEQCHECK 2819 /* sync sequence number */ 2820 if (mhp->msg->sadb_msg_seq == 0) 2821 newsav->seq = 2822 (V_acq_seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq)); 2823 else 2824 #endif 2825 newsav->seq = mhp->msg->sadb_msg_seq; 2826 break; 2827 2828 case SADB_ADD: 2829 /* sanity check */ 2830 if (mhp->ext[SADB_EXT_SA] == NULL) { 2831 free(newsav, M_IPSEC_SA); 2832 newsav = NULL; 2833 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2834 __func__)); 2835 *errp = EINVAL; 2836 goto done; 2837 } 2838 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 2839 newsav->spi = xsa->sadb_sa_spi; 2840 newsav->seq = mhp->msg->sadb_msg_seq; 2841 break; 2842 default: 2843 free(newsav, M_IPSEC_SA); 2844 newsav = NULL; 2845 *errp = EINVAL; 2846 goto done; 2847 } 2848 2849 2850 /* copy sav values */ 2851 if (mhp->msg->sadb_msg_type != SADB_GETSPI) { 2852 *errp = key_setsaval(newsav, m, mhp); 2853 if (*errp) { 2854 free(newsav, M_IPSEC_SA); 2855 newsav = NULL; 2856 goto done; 2857 } 2858 } 2859 2860 SECASVAR_LOCK_INIT(newsav); 2861 2862 /* reset created */ 2863 newsav->created = time_second; 2864 newsav->pid = mhp->msg->sadb_msg_pid; 2865 2866 /* add to satree */ 2867 newsav->sah = sah; 2868 sa_initref(newsav); 2869 newsav->state = SADB_SASTATE_LARVAL; 2870 2871 /* XXX locking??? */ 2872 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav, 2873 secasvar, chain); 2874 done: 2875 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 2876 printf("DP %s from %s:%u return SP:%p\n", __func__, 2877 where, tag, newsav)); 2878 2879 return newsav; 2880 } 2881 2882 /* 2883 * free() SA variable entry. 2884 */ 2885 static void 2886 key_cleansav(struct secasvar *sav) 2887 { 2888 /* 2889 * Cleanup xform state. Note that zeroize'ing causes the 2890 * keys to be cleared; otherwise we must do it ourself. 2891 */ 2892 if (sav->tdb_xform != NULL) { 2893 sav->tdb_xform->xf_zeroize(sav); 2894 sav->tdb_xform = NULL; 2895 } else { 2896 KASSERT(sav->iv == NULL, ("iv but no xform")); 2897 if (sav->key_auth != NULL) 2898 bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth)); 2899 if (sav->key_enc != NULL) 2900 bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc)); 2901 } 2902 if (sav->key_auth != NULL) { 2903 if (sav->key_auth->key_data != NULL) 2904 free(sav->key_auth->key_data, M_IPSEC_MISC); 2905 free(sav->key_auth, M_IPSEC_MISC); 2906 sav->key_auth = NULL; 2907 } 2908 if (sav->key_enc != NULL) { 2909 if (sav->key_enc->key_data != NULL) 2910 free(sav->key_enc->key_data, M_IPSEC_MISC); 2911 free(sav->key_enc, M_IPSEC_MISC); 2912 sav->key_enc = NULL; 2913 } 2914 if (sav->sched) { 2915 bzero(sav->sched, sav->schedlen); 2916 free(sav->sched, M_IPSEC_MISC); 2917 sav->sched = NULL; 2918 } 2919 if (sav->replay != NULL) { 2920 free(sav->replay, M_IPSEC_MISC); 2921 sav->replay = NULL; 2922 } 2923 if (sav->lft_c != NULL) { 2924 free(sav->lft_c, M_IPSEC_MISC); 2925 sav->lft_c = NULL; 2926 } 2927 if (sav->lft_h != NULL) { 2928 free(sav->lft_h, M_IPSEC_MISC); 2929 sav->lft_h = NULL; 2930 } 2931 if (sav->lft_s != NULL) { 2932 free(sav->lft_s, M_IPSEC_MISC); 2933 sav->lft_s = NULL; 2934 } 2935 } 2936 2937 /* 2938 * free() SA variable entry. 2939 */ 2940 static void 2941 key_delsav(sav) 2942 struct secasvar *sav; 2943 { 2944 IPSEC_ASSERT(sav != NULL, ("null sav")); 2945 IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt)); 2946 2947 /* remove from SA header */ 2948 if (__LIST_CHAINED(sav)) 2949 LIST_REMOVE(sav, chain); 2950 key_cleansav(sav); 2951 SECASVAR_LOCK_DESTROY(sav); 2952 free(sav, M_IPSEC_SA); 2953 } 2954 2955 /* 2956 * search SAD. 2957 * OUT: 2958 * NULL : not found 2959 * others : found, pointer to a SA. 2960 */ 2961 static struct secashead * 2962 key_getsah(saidx) 2963 struct secasindex *saidx; 2964 { 2965 INIT_VNET_IPSEC(curvnet); 2966 struct secashead *sah; 2967 2968 SAHTREE_LOCK(); 2969 LIST_FOREACH(sah, &V_sahtree, chain) { 2970 if (sah->state == SADB_SASTATE_DEAD) 2971 continue; 2972 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID)) 2973 break; 2974 } 2975 SAHTREE_UNLOCK(); 2976 2977 return sah; 2978 } 2979 2980 /* 2981 * check not to be duplicated SPI. 2982 * NOTE: this function is too slow due to searching all SAD. 2983 * OUT: 2984 * NULL : not found 2985 * others : found, pointer to a SA. 2986 */ 2987 static struct secasvar * 2988 key_checkspidup(saidx, spi) 2989 struct secasindex *saidx; 2990 u_int32_t spi; 2991 { 2992 INIT_VNET_IPSEC(curvnet); 2993 struct secashead *sah; 2994 struct secasvar *sav; 2995 2996 /* check address family */ 2997 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) { 2998 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 2999 __func__)); 3000 return NULL; 3001 } 3002 3003 sav = NULL; 3004 /* check all SAD */ 3005 SAHTREE_LOCK(); 3006 LIST_FOREACH(sah, &V_sahtree, chain) { 3007 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst)) 3008 continue; 3009 sav = key_getsavbyspi(sah, spi); 3010 if (sav != NULL) 3011 break; 3012 } 3013 SAHTREE_UNLOCK(); 3014 3015 return sav; 3016 } 3017 3018 /* 3019 * search SAD litmited alive SA, protocol, SPI. 3020 * OUT: 3021 * NULL : not found 3022 * others : found, pointer to a SA. 3023 */ 3024 static struct secasvar * 3025 key_getsavbyspi(sah, spi) 3026 struct secashead *sah; 3027 u_int32_t spi; 3028 { 3029 INIT_VNET_IPSEC(curvnet); 3030 struct secasvar *sav; 3031 u_int stateidx, state; 3032 3033 sav = NULL; 3034 SAHTREE_LOCK_ASSERT(); 3035 /* search all status */ 3036 for (stateidx = 0; 3037 stateidx < _ARRAYLEN(saorder_state_alive); 3038 stateidx++) { 3039 3040 state = saorder_state_alive[stateidx]; 3041 LIST_FOREACH(sav, &sah->savtree[state], chain) { 3042 3043 /* sanity check */ 3044 if (sav->state != state) { 3045 ipseclog((LOG_DEBUG, "%s: " 3046 "invalid sav->state (queue: %d SA: %d)\n", 3047 __func__, state, sav->state)); 3048 continue; 3049 } 3050 3051 if (sav->spi == spi) 3052 return sav; 3053 } 3054 } 3055 3056 return NULL; 3057 } 3058 3059 /* 3060 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. 3061 * You must update these if need. 3062 * OUT: 0: success. 3063 * !0: failure. 3064 * 3065 * does not modify mbuf. does not free mbuf on error. 3066 */ 3067 static int 3068 key_setsaval(sav, m, mhp) 3069 struct secasvar *sav; 3070 struct mbuf *m; 3071 const struct sadb_msghdr *mhp; 3072 { 3073 INIT_VNET_IPSEC(curvnet); 3074 int error = 0; 3075 3076 IPSEC_ASSERT(m != NULL, ("null mbuf")); 3077 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 3078 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 3079 3080 /* initialization */ 3081 sav->replay = NULL; 3082 sav->key_auth = NULL; 3083 sav->key_enc = NULL; 3084 sav->sched = NULL; 3085 sav->schedlen = 0; 3086 sav->iv = NULL; 3087 sav->lft_c = NULL; 3088 sav->lft_h = NULL; 3089 sav->lft_s = NULL; 3090 sav->tdb_xform = NULL; /* transform */ 3091 sav->tdb_encalgxform = NULL; /* encoding algorithm */ 3092 sav->tdb_authalgxform = NULL; /* authentication algorithm */ 3093 sav->tdb_compalgxform = NULL; /* compression algorithm */ 3094 /* Initialize even if NAT-T not compiled in: */ 3095 sav->natt_type = 0; 3096 sav->natt_esp_frag_len = 0; 3097 3098 /* SA */ 3099 if (mhp->ext[SADB_EXT_SA] != NULL) { 3100 const struct sadb_sa *sa0; 3101 3102 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 3103 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { 3104 error = EINVAL; 3105 goto fail; 3106 } 3107 3108 sav->alg_auth = sa0->sadb_sa_auth; 3109 sav->alg_enc = sa0->sadb_sa_encrypt; 3110 sav->flags = sa0->sadb_sa_flags; 3111 3112 /* replay window */ 3113 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { 3114 sav->replay = (struct secreplay *) 3115 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO); 3116 if (sav->replay == NULL) { 3117 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3118 __func__)); 3119 error = ENOBUFS; 3120 goto fail; 3121 } 3122 if (sa0->sadb_sa_replay != 0) 3123 sav->replay->bitmap = (caddr_t)(sav->replay+1); 3124 sav->replay->wsize = sa0->sadb_sa_replay; 3125 } 3126 } 3127 3128 /* Authentication keys */ 3129 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { 3130 const struct sadb_key *key0; 3131 int len; 3132 3133 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH]; 3134 len = mhp->extlen[SADB_EXT_KEY_AUTH]; 3135 3136 error = 0; 3137 if (len < sizeof(*key0)) { 3138 error = EINVAL; 3139 goto fail; 3140 } 3141 switch (mhp->msg->sadb_msg_satype) { 3142 case SADB_SATYPE_AH: 3143 case SADB_SATYPE_ESP: 3144 case SADB_X_SATYPE_TCPSIGNATURE: 3145 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3146 sav->alg_auth != SADB_X_AALG_NULL) 3147 error = EINVAL; 3148 break; 3149 case SADB_X_SATYPE_IPCOMP: 3150 default: 3151 error = EINVAL; 3152 break; 3153 } 3154 if (error) { 3155 ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n", 3156 __func__)); 3157 goto fail; 3158 } 3159 3160 sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len, 3161 M_IPSEC_MISC); 3162 if (sav->key_auth == NULL ) { 3163 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3164 __func__)); 3165 error = ENOBUFS; 3166 goto fail; 3167 } 3168 } 3169 3170 /* Encryption key */ 3171 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { 3172 const struct sadb_key *key0; 3173 int len; 3174 3175 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT]; 3176 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; 3177 3178 error = 0; 3179 if (len < sizeof(*key0)) { 3180 error = EINVAL; 3181 goto fail; 3182 } 3183 switch (mhp->msg->sadb_msg_satype) { 3184 case SADB_SATYPE_ESP: 3185 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3186 sav->alg_enc != SADB_EALG_NULL) { 3187 error = EINVAL; 3188 break; 3189 } 3190 sav->key_enc = (struct seckey *)key_dup_keymsg(key0, 3191 len, 3192 M_IPSEC_MISC); 3193 if (sav->key_enc == NULL) { 3194 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3195 __func__)); 3196 error = ENOBUFS; 3197 goto fail; 3198 } 3199 break; 3200 case SADB_X_SATYPE_IPCOMP: 3201 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) 3202 error = EINVAL; 3203 sav->key_enc = NULL; /*just in case*/ 3204 break; 3205 case SADB_SATYPE_AH: 3206 case SADB_X_SATYPE_TCPSIGNATURE: 3207 default: 3208 error = EINVAL; 3209 break; 3210 } 3211 if (error) { 3212 ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n", 3213 __func__)); 3214 goto fail; 3215 } 3216 } 3217 3218 /* set iv */ 3219 sav->ivlen = 0; 3220 3221 switch (mhp->msg->sadb_msg_satype) { 3222 case SADB_SATYPE_AH: 3223 error = xform_init(sav, XF_AH); 3224 break; 3225 case SADB_SATYPE_ESP: 3226 error = xform_init(sav, XF_ESP); 3227 break; 3228 case SADB_X_SATYPE_IPCOMP: 3229 error = xform_init(sav, XF_IPCOMP); 3230 break; 3231 case SADB_X_SATYPE_TCPSIGNATURE: 3232 error = xform_init(sav, XF_TCPSIGNATURE); 3233 break; 3234 } 3235 if (error) { 3236 ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n", 3237 __func__, mhp->msg->sadb_msg_satype)); 3238 goto fail; 3239 } 3240 3241 /* reset created */ 3242 sav->created = time_second; 3243 3244 /* make lifetime for CURRENT */ 3245 sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT); 3246 if (sav->lft_c == NULL) { 3247 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3248 error = ENOBUFS; 3249 goto fail; 3250 } 3251 3252 sav->lft_c->allocations = 0; 3253 sav->lft_c->bytes = 0; 3254 sav->lft_c->addtime = time_second; 3255 sav->lft_c->usetime = 0; 3256 3257 /* lifetimes for HARD and SOFT */ 3258 { 3259 const struct sadb_lifetime *lft0; 3260 3261 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 3262 if (lft0 != NULL) { 3263 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { 3264 error = EINVAL; 3265 goto fail; 3266 } 3267 sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3268 if (sav->lft_h == NULL) { 3269 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3270 error = ENOBUFS; 3271 goto fail; 3272 } 3273 /* to be initialize ? */ 3274 } 3275 3276 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT]; 3277 if (lft0 != NULL) { 3278 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { 3279 error = EINVAL; 3280 goto fail; 3281 } 3282 sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3283 if (sav->lft_s == NULL) { 3284 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3285 error = ENOBUFS; 3286 goto fail; 3287 } 3288 /* to be initialize ? */ 3289 } 3290 } 3291 3292 return 0; 3293 3294 fail: 3295 /* initialization */ 3296 key_cleansav(sav); 3297 3298 return error; 3299 } 3300 3301 /* 3302 * validation with a secasvar entry, and set SADB_SATYPE_MATURE. 3303 * OUT: 0: valid 3304 * other: errno 3305 */ 3306 static int 3307 key_mature(struct secasvar *sav) 3308 { 3309 INIT_VNET_IPSEC(curvnet); 3310 int error; 3311 3312 /* check SPI value */ 3313 switch (sav->sah->saidx.proto) { 3314 case IPPROTO_ESP: 3315 case IPPROTO_AH: 3316 /* 3317 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values 3318 * 1-255 reserved by IANA for future use, 3319 * 0 for implementation specific, local use. 3320 */ 3321 if (ntohl(sav->spi) <= 255) { 3322 ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n", 3323 __func__, (u_int32_t)ntohl(sav->spi))); 3324 return EINVAL; 3325 } 3326 break; 3327 } 3328 3329 /* check satype */ 3330 switch (sav->sah->saidx.proto) { 3331 case IPPROTO_ESP: 3332 /* check flags */ 3333 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) == 3334 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) { 3335 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3336 "given to old-esp.\n", __func__)); 3337 return EINVAL; 3338 } 3339 error = xform_init(sav, XF_ESP); 3340 break; 3341 case IPPROTO_AH: 3342 /* check flags */ 3343 if (sav->flags & SADB_X_EXT_DERIV) { 3344 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3345 "given to AH SA.\n", __func__)); 3346 return EINVAL; 3347 } 3348 if (sav->alg_enc != SADB_EALG_NONE) { 3349 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3350 "mismated.\n", __func__)); 3351 return(EINVAL); 3352 } 3353 error = xform_init(sav, XF_AH); 3354 break; 3355 case IPPROTO_IPCOMP: 3356 if (sav->alg_auth != SADB_AALG_NONE) { 3357 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3358 "mismated.\n", __func__)); 3359 return(EINVAL); 3360 } 3361 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 3362 && ntohl(sav->spi) >= 0x10000) { 3363 ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n", 3364 __func__)); 3365 return(EINVAL); 3366 } 3367 error = xform_init(sav, XF_IPCOMP); 3368 break; 3369 case IPPROTO_TCP: 3370 if (sav->alg_enc != SADB_EALG_NONE) { 3371 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3372 "mismated.\n", __func__)); 3373 return(EINVAL); 3374 } 3375 error = xform_init(sav, XF_TCPSIGNATURE); 3376 break; 3377 default: 3378 ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__)); 3379 error = EPROTONOSUPPORT; 3380 break; 3381 } 3382 if (error == 0) { 3383 SAHTREE_LOCK(); 3384 key_sa_chgstate(sav, SADB_SASTATE_MATURE); 3385 SAHTREE_UNLOCK(); 3386 } 3387 return (error); 3388 } 3389 3390 /* 3391 * subroutine for SADB_GET and SADB_DUMP. 3392 */ 3393 static struct mbuf * 3394 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype, 3395 u_int32_t seq, u_int32_t pid) 3396 { 3397 struct mbuf *result = NULL, *tres = NULL, *m; 3398 int i; 3399 int dumporder[] = { 3400 SADB_EXT_SA, SADB_X_EXT_SA2, 3401 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 3402 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, 3403 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, 3404 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, 3405 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, 3406 #ifdef IPSEC_NAT_T 3407 SADB_X_EXT_NAT_T_TYPE, 3408 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT, 3409 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR, 3410 SADB_X_EXT_NAT_T_FRAG, 3411 #endif 3412 }; 3413 3414 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt); 3415 if (m == NULL) 3416 goto fail; 3417 result = m; 3418 3419 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) { 3420 m = NULL; 3421 switch (dumporder[i]) { 3422 case SADB_EXT_SA: 3423 m = key_setsadbsa(sav); 3424 if (!m) 3425 goto fail; 3426 break; 3427 3428 case SADB_X_EXT_SA2: 3429 m = key_setsadbxsa2(sav->sah->saidx.mode, 3430 sav->replay ? sav->replay->count : 0, 3431 sav->sah->saidx.reqid); 3432 if (!m) 3433 goto fail; 3434 break; 3435 3436 case SADB_EXT_ADDRESS_SRC: 3437 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3438 &sav->sah->saidx.src.sa, 3439 FULLMASK, IPSEC_ULPROTO_ANY); 3440 if (!m) 3441 goto fail; 3442 break; 3443 3444 case SADB_EXT_ADDRESS_DST: 3445 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3446 &sav->sah->saidx.dst.sa, 3447 FULLMASK, IPSEC_ULPROTO_ANY); 3448 if (!m) 3449 goto fail; 3450 break; 3451 3452 case SADB_EXT_KEY_AUTH: 3453 if (!sav->key_auth) 3454 continue; 3455 m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH); 3456 if (!m) 3457 goto fail; 3458 break; 3459 3460 case SADB_EXT_KEY_ENCRYPT: 3461 if (!sav->key_enc) 3462 continue; 3463 m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT); 3464 if (!m) 3465 goto fail; 3466 break; 3467 3468 case SADB_EXT_LIFETIME_CURRENT: 3469 if (!sav->lft_c) 3470 continue; 3471 m = key_setlifetime(sav->lft_c, 3472 SADB_EXT_LIFETIME_CURRENT); 3473 if (!m) 3474 goto fail; 3475 break; 3476 3477 case SADB_EXT_LIFETIME_HARD: 3478 if (!sav->lft_h) 3479 continue; 3480 m = key_setlifetime(sav->lft_h, 3481 SADB_EXT_LIFETIME_HARD); 3482 if (!m) 3483 goto fail; 3484 break; 3485 3486 case SADB_EXT_LIFETIME_SOFT: 3487 if (!sav->lft_s) 3488 continue; 3489 m = key_setlifetime(sav->lft_s, 3490 SADB_EXT_LIFETIME_SOFT); 3491 3492 if (!m) 3493 goto fail; 3494 break; 3495 3496 #ifdef IPSEC_NAT_T 3497 case SADB_X_EXT_NAT_T_TYPE: 3498 m = key_setsadbxtype(sav->natt_type); 3499 if (!m) 3500 goto fail; 3501 break; 3502 3503 case SADB_X_EXT_NAT_T_DPORT: 3504 m = key_setsadbxport( 3505 KEY_PORTFROMSADDR(&sav->sah->saidx.dst), 3506 SADB_X_EXT_NAT_T_DPORT); 3507 if (!m) 3508 goto fail; 3509 break; 3510 3511 case SADB_X_EXT_NAT_T_SPORT: 3512 m = key_setsadbxport( 3513 KEY_PORTFROMSADDR(&sav->sah->saidx.src), 3514 SADB_X_EXT_NAT_T_SPORT); 3515 if (!m) 3516 goto fail; 3517 break; 3518 3519 case SADB_X_EXT_NAT_T_OAI: 3520 case SADB_X_EXT_NAT_T_OAR: 3521 case SADB_X_EXT_NAT_T_FRAG: 3522 /* We do not (yet) support those. */ 3523 continue; 3524 #endif 3525 3526 case SADB_EXT_ADDRESS_PROXY: 3527 case SADB_EXT_IDENTITY_SRC: 3528 case SADB_EXT_IDENTITY_DST: 3529 /* XXX: should we brought from SPD ? */ 3530 case SADB_EXT_SENSITIVITY: 3531 default: 3532 continue; 3533 } 3534 3535 if (!m) 3536 goto fail; 3537 if (tres) 3538 m_cat(m, tres); 3539 tres = m; 3540 3541 } 3542 3543 m_cat(result, tres); 3544 if (result->m_len < sizeof(struct sadb_msg)) { 3545 result = m_pullup(result, sizeof(struct sadb_msg)); 3546 if (result == NULL) 3547 goto fail; 3548 } 3549 3550 result->m_pkthdr.len = 0; 3551 for (m = result; m; m = m->m_next) 3552 result->m_pkthdr.len += m->m_len; 3553 3554 mtod(result, struct sadb_msg *)->sadb_msg_len = 3555 PFKEY_UNIT64(result->m_pkthdr.len); 3556 3557 return result; 3558 3559 fail: 3560 m_freem(result); 3561 m_freem(tres); 3562 return NULL; 3563 } 3564 3565 /* 3566 * set data into sadb_msg. 3567 */ 3568 static struct mbuf * 3569 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq, 3570 pid_t pid, u_int16_t reserved) 3571 { 3572 struct mbuf *m; 3573 struct sadb_msg *p; 3574 int len; 3575 3576 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 3577 if (len > MCLBYTES) 3578 return NULL; 3579 MGETHDR(m, M_DONTWAIT, MT_DATA); 3580 if (m && len > MHLEN) { 3581 MCLGET(m, M_DONTWAIT); 3582 if ((m->m_flags & M_EXT) == 0) { 3583 m_freem(m); 3584 m = NULL; 3585 } 3586 } 3587 if (!m) 3588 return NULL; 3589 m->m_pkthdr.len = m->m_len = len; 3590 m->m_next = NULL; 3591 3592 p = mtod(m, struct sadb_msg *); 3593 3594 bzero(p, len); 3595 p->sadb_msg_version = PF_KEY_V2; 3596 p->sadb_msg_type = type; 3597 p->sadb_msg_errno = 0; 3598 p->sadb_msg_satype = satype; 3599 p->sadb_msg_len = PFKEY_UNIT64(tlen); 3600 p->sadb_msg_reserved = reserved; 3601 p->sadb_msg_seq = seq; 3602 p->sadb_msg_pid = (u_int32_t)pid; 3603 3604 return m; 3605 } 3606 3607 /* 3608 * copy secasvar data into sadb_address. 3609 */ 3610 static struct mbuf * 3611 key_setsadbsa(sav) 3612 struct secasvar *sav; 3613 { 3614 struct mbuf *m; 3615 struct sadb_sa *p; 3616 int len; 3617 3618 len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); 3619 m = key_alloc_mbuf(len); 3620 if (!m || m->m_next) { /*XXX*/ 3621 if (m) 3622 m_freem(m); 3623 return NULL; 3624 } 3625 3626 p = mtod(m, struct sadb_sa *); 3627 3628 bzero(p, len); 3629 p->sadb_sa_len = PFKEY_UNIT64(len); 3630 p->sadb_sa_exttype = SADB_EXT_SA; 3631 p->sadb_sa_spi = sav->spi; 3632 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0); 3633 p->sadb_sa_state = sav->state; 3634 p->sadb_sa_auth = sav->alg_auth; 3635 p->sadb_sa_encrypt = sav->alg_enc; 3636 p->sadb_sa_flags = sav->flags; 3637 3638 return m; 3639 } 3640 3641 /* 3642 * set data into sadb_address. 3643 */ 3644 static struct mbuf * 3645 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, u_int8_t prefixlen, u_int16_t ul_proto) 3646 { 3647 struct mbuf *m; 3648 struct sadb_address *p; 3649 size_t len; 3650 3651 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + 3652 PFKEY_ALIGN8(saddr->sa_len); 3653 m = key_alloc_mbuf(len); 3654 if (!m || m->m_next) { /*XXX*/ 3655 if (m) 3656 m_freem(m); 3657 return NULL; 3658 } 3659 3660 p = mtod(m, struct sadb_address *); 3661 3662 bzero(p, len); 3663 p->sadb_address_len = PFKEY_UNIT64(len); 3664 p->sadb_address_exttype = exttype; 3665 p->sadb_address_proto = ul_proto; 3666 if (prefixlen == FULLMASK) { 3667 switch (saddr->sa_family) { 3668 case AF_INET: 3669 prefixlen = sizeof(struct in_addr) << 3; 3670 break; 3671 case AF_INET6: 3672 prefixlen = sizeof(struct in6_addr) << 3; 3673 break; 3674 default: 3675 ; /*XXX*/ 3676 } 3677 } 3678 p->sadb_address_prefixlen = prefixlen; 3679 p->sadb_address_reserved = 0; 3680 3681 bcopy(saddr, 3682 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)), 3683 saddr->sa_len); 3684 3685 return m; 3686 } 3687 3688 /* 3689 * set data into sadb_x_sa2. 3690 */ 3691 static struct mbuf * 3692 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid) 3693 { 3694 struct mbuf *m; 3695 struct sadb_x_sa2 *p; 3696 size_t len; 3697 3698 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); 3699 m = key_alloc_mbuf(len); 3700 if (!m || m->m_next) { /*XXX*/ 3701 if (m) 3702 m_freem(m); 3703 return NULL; 3704 } 3705 3706 p = mtod(m, struct sadb_x_sa2 *); 3707 3708 bzero(p, len); 3709 p->sadb_x_sa2_len = PFKEY_UNIT64(len); 3710 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 3711 p->sadb_x_sa2_mode = mode; 3712 p->sadb_x_sa2_reserved1 = 0; 3713 p->sadb_x_sa2_reserved2 = 0; 3714 p->sadb_x_sa2_sequence = seq; 3715 p->sadb_x_sa2_reqid = reqid; 3716 3717 return m; 3718 } 3719 3720 #ifdef IPSEC_NAT_T 3721 /* 3722 * Set a type in sadb_x_nat_t_type. 3723 */ 3724 static struct mbuf * 3725 key_setsadbxtype(u_int16_t type) 3726 { 3727 struct mbuf *m; 3728 size_t len; 3729 struct sadb_x_nat_t_type *p; 3730 3731 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type)); 3732 3733 m = key_alloc_mbuf(len); 3734 if (!m || m->m_next) { /*XXX*/ 3735 if (m) 3736 m_freem(m); 3737 return (NULL); 3738 } 3739 3740 p = mtod(m, struct sadb_x_nat_t_type *); 3741 3742 bzero(p, len); 3743 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len); 3744 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; 3745 p->sadb_x_nat_t_type_type = type; 3746 3747 return (m); 3748 } 3749 /* 3750 * Set a port in sadb_x_nat_t_port. 3751 * In contrast to default RFC 2367 behaviour, port is in network byte order. 3752 */ 3753 static struct mbuf * 3754 key_setsadbxport(u_int16_t port, u_int16_t type) 3755 { 3756 struct mbuf *m; 3757 size_t len; 3758 struct sadb_x_nat_t_port *p; 3759 3760 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port)); 3761 3762 m = key_alloc_mbuf(len); 3763 if (!m || m->m_next) { /*XXX*/ 3764 if (m) 3765 m_freem(m); 3766 return (NULL); 3767 } 3768 3769 p = mtod(m, struct sadb_x_nat_t_port *); 3770 3771 bzero(p, len); 3772 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len); 3773 p->sadb_x_nat_t_port_exttype = type; 3774 p->sadb_x_nat_t_port_port = port; 3775 3776 return (m); 3777 } 3778 3779 /* 3780 * Get port from sockaddr. Port is in network byte order. 3781 */ 3782 u_int16_t 3783 key_portfromsaddr(struct sockaddr *sa) 3784 { 3785 INIT_VNET_IPSEC(curvnet); 3786 3787 switch (sa->sa_family) { 3788 #ifdef INET 3789 case AF_INET: 3790 return ((struct sockaddr_in *)sa)->sin_port; 3791 #endif 3792 #ifdef INET6 3793 case AF_INET6: 3794 return ((struct sockaddr_in6 *)sa)->sin6_port; 3795 #endif 3796 } 3797 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 3798 printf("DP %s unexpected address family %d\n", 3799 __func__, sa->sa_family)); 3800 return (0); 3801 } 3802 #endif /* IPSEC_NAT_T */ 3803 3804 /* 3805 * Set port in struct sockaddr. Port is in network byte order. 3806 */ 3807 static void 3808 key_porttosaddr(struct sockaddr *sa, u_int16_t port) 3809 { 3810 INIT_VNET_IPSEC(curvnet); 3811 3812 switch (sa->sa_family) { 3813 #ifdef INET 3814 case AF_INET: 3815 ((struct sockaddr_in *)sa)->sin_port = port; 3816 break; 3817 #endif 3818 #ifdef INET6 3819 case AF_INET6: 3820 ((struct sockaddr_in6 *)sa)->sin6_port = port; 3821 break; 3822 #endif 3823 default: 3824 ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n", 3825 __func__, sa->sa_family)); 3826 break; 3827 } 3828 } 3829 3830 /* 3831 * set data into sadb_x_policy 3832 */ 3833 static struct mbuf * 3834 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id) 3835 { 3836 struct mbuf *m; 3837 struct sadb_x_policy *p; 3838 size_t len; 3839 3840 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); 3841 m = key_alloc_mbuf(len); 3842 if (!m || m->m_next) { /*XXX*/ 3843 if (m) 3844 m_freem(m); 3845 return NULL; 3846 } 3847 3848 p = mtod(m, struct sadb_x_policy *); 3849 3850 bzero(p, len); 3851 p->sadb_x_policy_len = PFKEY_UNIT64(len); 3852 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 3853 p->sadb_x_policy_type = type; 3854 p->sadb_x_policy_dir = dir; 3855 p->sadb_x_policy_id = id; 3856 3857 return m; 3858 } 3859 3860 /* %%% utilities */ 3861 /* Take a key message (sadb_key) from the socket and turn it into one 3862 * of the kernel's key structures (seckey). 3863 * 3864 * IN: pointer to the src 3865 * OUT: NULL no more memory 3866 */ 3867 struct seckey * 3868 key_dup_keymsg(const struct sadb_key *src, u_int len, 3869 struct malloc_type *type) 3870 { 3871 INIT_VNET_IPSEC(curvnet); 3872 struct seckey *dst; 3873 dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT); 3874 if (dst != NULL) { 3875 dst->bits = src->sadb_key_bits; 3876 dst->key_data = (char *)malloc(len, type, M_NOWAIT); 3877 if (dst->key_data != NULL) { 3878 bcopy((const char *)src + sizeof(struct sadb_key), 3879 dst->key_data, len); 3880 } else { 3881 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3882 __func__)); 3883 free(dst, type); 3884 dst = NULL; 3885 } 3886 } else { 3887 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3888 __func__)); 3889 3890 } 3891 return dst; 3892 } 3893 3894 /* Take a lifetime message (sadb_lifetime) passed in on a socket and 3895 * turn it into one of the kernel's lifetime structures (seclifetime). 3896 * 3897 * IN: pointer to the destination, source and malloc type 3898 * OUT: NULL, no more memory 3899 */ 3900 3901 static struct seclifetime * 3902 key_dup_lifemsg(const struct sadb_lifetime *src, 3903 struct malloc_type *type) 3904 { 3905 INIT_VNET_IPSEC(curvnet); 3906 struct seclifetime *dst = NULL; 3907 3908 dst = (struct seclifetime *)malloc(sizeof(struct seclifetime), 3909 type, M_NOWAIT); 3910 if (dst == NULL) { 3911 /* XXX counter */ 3912 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3913 } else { 3914 dst->allocations = src->sadb_lifetime_allocations; 3915 dst->bytes = src->sadb_lifetime_bytes; 3916 dst->addtime = src->sadb_lifetime_addtime; 3917 dst->usetime = src->sadb_lifetime_usetime; 3918 } 3919 return dst; 3920 } 3921 3922 /* compare my own address 3923 * OUT: 1: true, i.e. my address. 3924 * 0: false 3925 */ 3926 int 3927 key_ismyaddr(sa) 3928 struct sockaddr *sa; 3929 { 3930 #ifdef INET 3931 INIT_VNET_INET(curvnet); 3932 struct sockaddr_in *sin; 3933 struct in_ifaddr *ia; 3934 #endif 3935 3936 IPSEC_ASSERT(sa != NULL, ("null sockaddr")); 3937 3938 switch (sa->sa_family) { 3939 #ifdef INET 3940 case AF_INET: 3941 sin = (struct sockaddr_in *)sa; 3942 IN_IFADDR_RLOCK(); 3943 for (ia = V_in_ifaddrhead.tqh_first; ia; 3944 ia = ia->ia_link.tqe_next) 3945 { 3946 if (sin->sin_family == ia->ia_addr.sin_family && 3947 sin->sin_len == ia->ia_addr.sin_len && 3948 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr) 3949 { 3950 IN_IFADDR_RUNLOCK(); 3951 return 1; 3952 } 3953 } 3954 IN_IFADDR_RUNLOCK(); 3955 break; 3956 #endif 3957 #ifdef INET6 3958 case AF_INET6: 3959 return key_ismyaddr6((struct sockaddr_in6 *)sa); 3960 #endif 3961 } 3962 3963 return 0; 3964 } 3965 3966 #ifdef INET6 3967 /* 3968 * compare my own address for IPv6. 3969 * 1: ours 3970 * 0: other 3971 * NOTE: derived ip6_input() in KAME. This is necessary to modify more. 3972 */ 3973 #include <netinet6/in6_var.h> 3974 3975 static int 3976 key_ismyaddr6(sin6) 3977 struct sockaddr_in6 *sin6; 3978 { 3979 INIT_VNET_INET6(curvnet); 3980 struct in6_ifaddr *ia; 3981 #if 0 3982 struct in6_multi *in6m; 3983 #endif 3984 3985 IN6_IFADDR_RLOCK(); 3986 TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) { 3987 if (key_sockaddrcmp((struct sockaddr *)&sin6, 3988 (struct sockaddr *)&ia->ia_addr, 0) == 0) { 3989 IN6_IFADDR_RUNLOCK(); 3990 return 1; 3991 } 3992 3993 #if 0 3994 /* 3995 * XXX Multicast 3996 * XXX why do we care about multlicast here while we don't care 3997 * about IPv4 multicast?? 3998 * XXX scope 3999 */ 4000 in6m = NULL; 4001 IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m); 4002 if (in6m) { 4003 IN6_IFADDR_RUNLOCK(); 4004 return 1; 4005 } 4006 #endif 4007 } 4008 IN6_IFADDR_RUNLOCK(); 4009 4010 /* loopback, just for safety */ 4011 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) 4012 return 1; 4013 4014 return 0; 4015 } 4016 #endif /*INET6*/ 4017 4018 /* 4019 * compare two secasindex structure. 4020 * flag can specify to compare 2 saidxes. 4021 * compare two secasindex structure without both mode and reqid. 4022 * don't compare port. 4023 * IN: 4024 * saidx0: source, it can be in SAD. 4025 * saidx1: object. 4026 * OUT: 4027 * 1 : equal 4028 * 0 : not equal 4029 */ 4030 static int 4031 key_cmpsaidx( 4032 const struct secasindex *saidx0, 4033 const struct secasindex *saidx1, 4034 int flag) 4035 { 4036 int chkport = 0; 4037 4038 /* sanity */ 4039 if (saidx0 == NULL && saidx1 == NULL) 4040 return 1; 4041 4042 if (saidx0 == NULL || saidx1 == NULL) 4043 return 0; 4044 4045 if (saidx0->proto != saidx1->proto) 4046 return 0; 4047 4048 if (flag == CMP_EXACTLY) { 4049 if (saidx0->mode != saidx1->mode) 4050 return 0; 4051 if (saidx0->reqid != saidx1->reqid) 4052 return 0; 4053 if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 || 4054 bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0) 4055 return 0; 4056 } else { 4057 4058 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ 4059 if (flag == CMP_MODE_REQID 4060 ||flag == CMP_REQID) { 4061 /* 4062 * If reqid of SPD is non-zero, unique SA is required. 4063 * The result must be of same reqid in this case. 4064 */ 4065 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) 4066 return 0; 4067 } 4068 4069 if (flag == CMP_MODE_REQID) { 4070 if (saidx0->mode != IPSEC_MODE_ANY 4071 && saidx0->mode != saidx1->mode) 4072 return 0; 4073 } 4074 4075 #ifdef IPSEC_NAT_T 4076 /* 4077 * If NAT-T is enabled, check ports for tunnel mode. 4078 * Do not check ports if they are set to zero in the SPD. 4079 * Also do not do it for transport mode, as there is no 4080 * port information available in the SP. 4081 */ 4082 if (saidx1->mode == IPSEC_MODE_TUNNEL && 4083 saidx1->src.sa.sa_family == AF_INET && 4084 saidx1->dst.sa.sa_family == AF_INET && 4085 ((const struct sockaddr_in *)(&saidx1->src))->sin_port && 4086 ((const struct sockaddr_in *)(&saidx1->dst))->sin_port) 4087 chkport = 1; 4088 #endif /* IPSEC_NAT_T */ 4089 4090 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, chkport) != 0) { 4091 return 0; 4092 } 4093 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, chkport) != 0) { 4094 return 0; 4095 } 4096 } 4097 4098 return 1; 4099 } 4100 4101 /* 4102 * compare two secindex structure exactly. 4103 * IN: 4104 * spidx0: source, it is often in SPD. 4105 * spidx1: object, it is often from PFKEY message. 4106 * OUT: 4107 * 1 : equal 4108 * 0 : not equal 4109 */ 4110 static int 4111 key_cmpspidx_exactly( 4112 struct secpolicyindex *spidx0, 4113 struct secpolicyindex *spidx1) 4114 { 4115 /* sanity */ 4116 if (spidx0 == NULL && spidx1 == NULL) 4117 return 1; 4118 4119 if (spidx0 == NULL || spidx1 == NULL) 4120 return 0; 4121 4122 if (spidx0->prefs != spidx1->prefs 4123 || spidx0->prefd != spidx1->prefd 4124 || spidx0->ul_proto != spidx1->ul_proto) 4125 return 0; 4126 4127 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 && 4128 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0; 4129 } 4130 4131 /* 4132 * compare two secindex structure with mask. 4133 * IN: 4134 * spidx0: source, it is often in SPD. 4135 * spidx1: object, it is often from IP header. 4136 * OUT: 4137 * 1 : equal 4138 * 0 : not equal 4139 */ 4140 static int 4141 key_cmpspidx_withmask( 4142 struct secpolicyindex *spidx0, 4143 struct secpolicyindex *spidx1) 4144 { 4145 /* sanity */ 4146 if (spidx0 == NULL && spidx1 == NULL) 4147 return 1; 4148 4149 if (spidx0 == NULL || spidx1 == NULL) 4150 return 0; 4151 4152 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || 4153 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || 4154 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || 4155 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) 4156 return 0; 4157 4158 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ 4159 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY 4160 && spidx0->ul_proto != spidx1->ul_proto) 4161 return 0; 4162 4163 switch (spidx0->src.sa.sa_family) { 4164 case AF_INET: 4165 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY 4166 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) 4167 return 0; 4168 if (!key_bbcmp(&spidx0->src.sin.sin_addr, 4169 &spidx1->src.sin.sin_addr, spidx0->prefs)) 4170 return 0; 4171 break; 4172 case AF_INET6: 4173 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY 4174 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) 4175 return 0; 4176 /* 4177 * scope_id check. if sin6_scope_id is 0, we regard it 4178 * as a wildcard scope, which matches any scope zone ID. 4179 */ 4180 if (spidx0->src.sin6.sin6_scope_id && 4181 spidx1->src.sin6.sin6_scope_id && 4182 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) 4183 return 0; 4184 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr, 4185 &spidx1->src.sin6.sin6_addr, spidx0->prefs)) 4186 return 0; 4187 break; 4188 default: 4189 /* XXX */ 4190 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) 4191 return 0; 4192 break; 4193 } 4194 4195 switch (spidx0->dst.sa.sa_family) { 4196 case AF_INET: 4197 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY 4198 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) 4199 return 0; 4200 if (!key_bbcmp(&spidx0->dst.sin.sin_addr, 4201 &spidx1->dst.sin.sin_addr, spidx0->prefd)) 4202 return 0; 4203 break; 4204 case AF_INET6: 4205 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY 4206 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) 4207 return 0; 4208 /* 4209 * scope_id check. if sin6_scope_id is 0, we regard it 4210 * as a wildcard scope, which matches any scope zone ID. 4211 */ 4212 if (spidx0->dst.sin6.sin6_scope_id && 4213 spidx1->dst.sin6.sin6_scope_id && 4214 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) 4215 return 0; 4216 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr, 4217 &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) 4218 return 0; 4219 break; 4220 default: 4221 /* XXX */ 4222 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) 4223 return 0; 4224 break; 4225 } 4226 4227 /* XXX Do we check other field ? e.g. flowinfo */ 4228 4229 return 1; 4230 } 4231 4232 /* returns 0 on match */ 4233 static int 4234 key_sockaddrcmp( 4235 const struct sockaddr *sa1, 4236 const struct sockaddr *sa2, 4237 int port) 4238 { 4239 #ifdef satosin 4240 #undef satosin 4241 #endif 4242 #define satosin(s) ((const struct sockaddr_in *)s) 4243 #ifdef satosin6 4244 #undef satosin6 4245 #endif 4246 #define satosin6(s) ((const struct sockaddr_in6 *)s) 4247 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) 4248 return 1; 4249 4250 switch (sa1->sa_family) { 4251 case AF_INET: 4252 if (sa1->sa_len != sizeof(struct sockaddr_in)) 4253 return 1; 4254 if (satosin(sa1)->sin_addr.s_addr != 4255 satosin(sa2)->sin_addr.s_addr) { 4256 return 1; 4257 } 4258 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port) 4259 return 1; 4260 break; 4261 case AF_INET6: 4262 if (sa1->sa_len != sizeof(struct sockaddr_in6)) 4263 return 1; /*EINVAL*/ 4264 if (satosin6(sa1)->sin6_scope_id != 4265 satosin6(sa2)->sin6_scope_id) { 4266 return 1; 4267 } 4268 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr, 4269 &satosin6(sa2)->sin6_addr)) { 4270 return 1; 4271 } 4272 if (port && 4273 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) { 4274 return 1; 4275 } 4276 break; 4277 default: 4278 if (bcmp(sa1, sa2, sa1->sa_len) != 0) 4279 return 1; 4280 break; 4281 } 4282 4283 return 0; 4284 #undef satosin 4285 #undef satosin6 4286 } 4287 4288 /* 4289 * compare two buffers with mask. 4290 * IN: 4291 * addr1: source 4292 * addr2: object 4293 * bits: Number of bits to compare 4294 * OUT: 4295 * 1 : equal 4296 * 0 : not equal 4297 */ 4298 static int 4299 key_bbcmp(const void *a1, const void *a2, u_int bits) 4300 { 4301 const unsigned char *p1 = a1; 4302 const unsigned char *p2 = a2; 4303 4304 /* XXX: This could be considerably faster if we compare a word 4305 * at a time, but it is complicated on LSB Endian machines */ 4306 4307 /* Handle null pointers */ 4308 if (p1 == NULL || p2 == NULL) 4309 return (p1 == p2); 4310 4311 while (bits >= 8) { 4312 if (*p1++ != *p2++) 4313 return 0; 4314 bits -= 8; 4315 } 4316 4317 if (bits > 0) { 4318 u_int8_t mask = ~((1<<(8-bits))-1); 4319 if ((*p1 & mask) != (*p2 & mask)) 4320 return 0; 4321 } 4322 return 1; /* Match! */ 4323 } 4324 4325 static void 4326 key_flush_spd(time_t now) 4327 { 4328 INIT_VNET_IPSEC(curvnet); 4329 static u_int16_t sptree_scangen = 0; 4330 u_int16_t gen = sptree_scangen++; 4331 struct secpolicy *sp; 4332 u_int dir; 4333 4334 /* SPD */ 4335 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 4336 restart: 4337 SPTREE_LOCK(); 4338 LIST_FOREACH(sp, &V_sptree[dir], chain) { 4339 if (sp->scangen == gen) /* previously handled */ 4340 continue; 4341 sp->scangen = gen; 4342 if (sp->state == IPSEC_SPSTATE_DEAD && 4343 sp->refcnt == 1) { 4344 /* 4345 * Ensure that we only decrease refcnt once, 4346 * when we're the last consumer. 4347 * Directly call SP_DELREF/key_delsp instead 4348 * of KEY_FREESP to avoid unlocking/relocking 4349 * SPTREE_LOCK before key_delsp: may refcnt 4350 * be increased again during that time ? 4351 * NB: also clean entries created by 4352 * key_spdflush 4353 */ 4354 SP_DELREF(sp); 4355 key_delsp(sp); 4356 SPTREE_UNLOCK(); 4357 goto restart; 4358 } 4359 if (sp->lifetime == 0 && sp->validtime == 0) 4360 continue; 4361 if ((sp->lifetime && now - sp->created > sp->lifetime) 4362 || (sp->validtime && now - sp->lastused > sp->validtime)) { 4363 sp->state = IPSEC_SPSTATE_DEAD; 4364 SPTREE_UNLOCK(); 4365 key_spdexpire(sp); 4366 goto restart; 4367 } 4368 } 4369 SPTREE_UNLOCK(); 4370 } 4371 } 4372 4373 static void 4374 key_flush_sad(time_t now) 4375 { 4376 INIT_VNET_IPSEC(curvnet); 4377 struct secashead *sah, *nextsah; 4378 struct secasvar *sav, *nextsav; 4379 4380 /* SAD */ 4381 SAHTREE_LOCK(); 4382 LIST_FOREACH_SAFE(sah, &V_sahtree, chain, nextsah) { 4383 /* if sah has been dead, then delete it and process next sah. */ 4384 if (sah->state == SADB_SASTATE_DEAD) { 4385 key_delsah(sah); 4386 continue; 4387 } 4388 4389 /* if LARVAL entry doesn't become MATURE, delete it. */ 4390 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) { 4391 /* Need to also check refcnt for a larval SA ??? */ 4392 if (now - sav->created > V_key_larval_lifetime) 4393 KEY_FREESAV(&sav); 4394 } 4395 4396 /* 4397 * check MATURE entry to start to send expire message 4398 * whether or not. 4399 */ 4400 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) { 4401 /* we don't need to check. */ 4402 if (sav->lft_s == NULL) 4403 continue; 4404 4405 /* sanity check */ 4406 if (sav->lft_c == NULL) { 4407 ipseclog((LOG_DEBUG,"%s: there is no CURRENT " 4408 "time, why?\n", __func__)); 4409 continue; 4410 } 4411 4412 /* check SOFT lifetime */ 4413 if (sav->lft_s->addtime != 0 && 4414 now - sav->created > sav->lft_s->addtime) { 4415 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4416 /* 4417 * Actually, only send expire message if 4418 * SA has been used, as it was done before, 4419 * but should we always send such message, 4420 * and let IKE daemon decide if it should be 4421 * renegotiated or not ? 4422 * XXX expire message will actually NOT be 4423 * sent if SA is only used after soft 4424 * lifetime has been reached, see below 4425 * (DYING state) 4426 */ 4427 if (sav->lft_c->usetime != 0) 4428 key_expire(sav); 4429 } 4430 /* check SOFT lifetime by bytes */ 4431 /* 4432 * XXX I don't know the way to delete this SA 4433 * when new SA is installed. Caution when it's 4434 * installed too big lifetime by time. 4435 */ 4436 else if (sav->lft_s->bytes != 0 && 4437 sav->lft_s->bytes < sav->lft_c->bytes) { 4438 4439 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4440 /* 4441 * XXX If we keep to send expire 4442 * message in the status of 4443 * DYING. Do remove below code. 4444 */ 4445 key_expire(sav); 4446 } 4447 } 4448 4449 /* check DYING entry to change status to DEAD. */ 4450 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) { 4451 /* we don't need to check. */ 4452 if (sav->lft_h == NULL) 4453 continue; 4454 4455 /* sanity check */ 4456 if (sav->lft_c == NULL) { 4457 ipseclog((LOG_DEBUG, "%s: there is no CURRENT " 4458 "time, why?\n", __func__)); 4459 continue; 4460 } 4461 4462 if (sav->lft_h->addtime != 0 && 4463 now - sav->created > sav->lft_h->addtime) { 4464 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4465 KEY_FREESAV(&sav); 4466 } 4467 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */ 4468 else if (sav->lft_s != NULL 4469 && sav->lft_s->addtime != 0 4470 && now - sav->created > sav->lft_s->addtime) { 4471 /* 4472 * XXX: should be checked to be 4473 * installed the valid SA. 4474 */ 4475 4476 /* 4477 * If there is no SA then sending 4478 * expire message. 4479 */ 4480 key_expire(sav); 4481 } 4482 #endif 4483 /* check HARD lifetime by bytes */ 4484 else if (sav->lft_h->bytes != 0 && 4485 sav->lft_h->bytes < sav->lft_c->bytes) { 4486 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4487 KEY_FREESAV(&sav); 4488 } 4489 } 4490 4491 /* delete entry in DEAD */ 4492 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) { 4493 /* sanity check */ 4494 if (sav->state != SADB_SASTATE_DEAD) { 4495 ipseclog((LOG_DEBUG, "%s: invalid sav->state " 4496 "(queue: %d SA: %d): kill it anyway\n", 4497 __func__, 4498 SADB_SASTATE_DEAD, sav->state)); 4499 } 4500 /* 4501 * do not call key_freesav() here. 4502 * sav should already be freed, and sav->refcnt 4503 * shows other references to sav 4504 * (such as from SPD). 4505 */ 4506 } 4507 } 4508 SAHTREE_UNLOCK(); 4509 } 4510 4511 static void 4512 key_flush_acq(time_t now) 4513 { 4514 INIT_VNET_IPSEC(curvnet); 4515 struct secacq *acq, *nextacq; 4516 4517 /* ACQ tree */ 4518 ACQ_LOCK(); 4519 for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) { 4520 nextacq = LIST_NEXT(acq, chain); 4521 if (now - acq->created > V_key_blockacq_lifetime 4522 && __LIST_CHAINED(acq)) { 4523 LIST_REMOVE(acq, chain); 4524 free(acq, M_IPSEC_SAQ); 4525 } 4526 } 4527 ACQ_UNLOCK(); 4528 } 4529 4530 static void 4531 key_flush_spacq(time_t now) 4532 { 4533 INIT_VNET_IPSEC(curvnet); 4534 struct secspacq *acq, *nextacq; 4535 4536 /* SP ACQ tree */ 4537 SPACQ_LOCK(); 4538 for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) { 4539 nextacq = LIST_NEXT(acq, chain); 4540 if (now - acq->created > V_key_blockacq_lifetime 4541 && __LIST_CHAINED(acq)) { 4542 LIST_REMOVE(acq, chain); 4543 free(acq, M_IPSEC_SAQ); 4544 } 4545 } 4546 SPACQ_UNLOCK(); 4547 } 4548 4549 /* 4550 * time handler. 4551 * scanning SPD and SAD to check status for each entries, 4552 * and do to remove or to expire. 4553 * XXX: year 2038 problem may remain. 4554 */ 4555 void 4556 key_timehandler(void) 4557 { 4558 VNET_ITERATOR_DECL(vnet_iter); 4559 time_t now = time_second; 4560 4561 VNET_LIST_RLOCK(); 4562 VNET_FOREACH(vnet_iter) { 4563 CURVNET_SET(vnet_iter); 4564 key_flush_spd(now); 4565 key_flush_sad(now); 4566 key_flush_acq(now); 4567 key_flush_spacq(now); 4568 CURVNET_RESTORE(); 4569 } 4570 VNET_LIST_RUNLOCK(); 4571 4572 #ifndef IPSEC_DEBUG2 4573 /* do exchange to tick time !! */ 4574 (void)timeout((void *)key_timehandler, (void *)0, hz); 4575 #endif /* IPSEC_DEBUG2 */ 4576 } 4577 4578 u_long 4579 key_random() 4580 { 4581 u_long value; 4582 4583 key_randomfill(&value, sizeof(value)); 4584 return value; 4585 } 4586 4587 void 4588 key_randomfill(p, l) 4589 void *p; 4590 size_t l; 4591 { 4592 size_t n; 4593 u_long v; 4594 static int warn = 1; 4595 4596 n = 0; 4597 n = (size_t)read_random(p, (u_int)l); 4598 /* last resort */ 4599 while (n < l) { 4600 v = random(); 4601 bcopy(&v, (u_int8_t *)p + n, 4602 l - n < sizeof(v) ? l - n : sizeof(v)); 4603 n += sizeof(v); 4604 4605 if (warn) { 4606 printf("WARNING: pseudo-random number generator " 4607 "used for IPsec processing\n"); 4608 warn = 0; 4609 } 4610 } 4611 } 4612 4613 /* 4614 * map SADB_SATYPE_* to IPPROTO_*. 4615 * if satype == SADB_SATYPE then satype is mapped to ~0. 4616 * OUT: 4617 * 0: invalid satype. 4618 */ 4619 static u_int16_t 4620 key_satype2proto(u_int8_t satype) 4621 { 4622 switch (satype) { 4623 case SADB_SATYPE_UNSPEC: 4624 return IPSEC_PROTO_ANY; 4625 case SADB_SATYPE_AH: 4626 return IPPROTO_AH; 4627 case SADB_SATYPE_ESP: 4628 return IPPROTO_ESP; 4629 case SADB_X_SATYPE_IPCOMP: 4630 return IPPROTO_IPCOMP; 4631 case SADB_X_SATYPE_TCPSIGNATURE: 4632 return IPPROTO_TCP; 4633 default: 4634 return 0; 4635 } 4636 /* NOTREACHED */ 4637 } 4638 4639 /* 4640 * map IPPROTO_* to SADB_SATYPE_* 4641 * OUT: 4642 * 0: invalid protocol type. 4643 */ 4644 static u_int8_t 4645 key_proto2satype(u_int16_t proto) 4646 { 4647 switch (proto) { 4648 case IPPROTO_AH: 4649 return SADB_SATYPE_AH; 4650 case IPPROTO_ESP: 4651 return SADB_SATYPE_ESP; 4652 case IPPROTO_IPCOMP: 4653 return SADB_X_SATYPE_IPCOMP; 4654 case IPPROTO_TCP: 4655 return SADB_X_SATYPE_TCPSIGNATURE; 4656 default: 4657 return 0; 4658 } 4659 /* NOTREACHED */ 4660 } 4661 4662 /* %%% PF_KEY */ 4663 /* 4664 * SADB_GETSPI processing is to receive 4665 * <base, (SA2), src address, dst address, (SPI range)> 4666 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND 4667 * tree with the status of LARVAL, and send 4668 * <base, SA(*), address(SD)> 4669 * to the IKMPd. 4670 * 4671 * IN: mhp: pointer to the pointer to each header. 4672 * OUT: NULL if fail. 4673 * other if success, return pointer to the message to send. 4674 */ 4675 static int 4676 key_getspi(so, m, mhp) 4677 struct socket *so; 4678 struct mbuf *m; 4679 const struct sadb_msghdr *mhp; 4680 { 4681 INIT_VNET_IPSEC(curvnet); 4682 struct sadb_address *src0, *dst0; 4683 struct secasindex saidx; 4684 struct secashead *newsah; 4685 struct secasvar *newsav; 4686 u_int8_t proto; 4687 u_int32_t spi; 4688 u_int8_t mode; 4689 u_int32_t reqid; 4690 int error; 4691 4692 IPSEC_ASSERT(so != NULL, ("null socket")); 4693 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4694 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4695 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4696 4697 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4698 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 4699 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4700 __func__)); 4701 return key_senderror(so, m, EINVAL); 4702 } 4703 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4704 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4705 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4706 __func__)); 4707 return key_senderror(so, m, EINVAL); 4708 } 4709 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4710 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4711 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4712 } else { 4713 mode = IPSEC_MODE_ANY; 4714 reqid = 0; 4715 } 4716 4717 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4718 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4719 4720 /* map satype to proto */ 4721 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4722 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4723 __func__)); 4724 return key_senderror(so, m, EINVAL); 4725 } 4726 4727 /* 4728 * Make sure the port numbers are zero. 4729 * In case of NAT-T we will update them later if needed. 4730 */ 4731 switch (((struct sockaddr *)(src0 + 1))->sa_family) { 4732 case AF_INET: 4733 if (((struct sockaddr *)(src0 + 1))->sa_len != 4734 sizeof(struct sockaddr_in)) 4735 return key_senderror(so, m, EINVAL); 4736 ((struct sockaddr_in *)(src0 + 1))->sin_port = 0; 4737 break; 4738 case AF_INET6: 4739 if (((struct sockaddr *)(src0 + 1))->sa_len != 4740 sizeof(struct sockaddr_in6)) 4741 return key_senderror(so, m, EINVAL); 4742 ((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0; 4743 break; 4744 default: 4745 ; /*???*/ 4746 } 4747 switch (((struct sockaddr *)(dst0 + 1))->sa_family) { 4748 case AF_INET: 4749 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4750 sizeof(struct sockaddr_in)) 4751 return key_senderror(so, m, EINVAL); 4752 ((struct sockaddr_in *)(dst0 + 1))->sin_port = 0; 4753 break; 4754 case AF_INET6: 4755 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4756 sizeof(struct sockaddr_in6)) 4757 return key_senderror(so, m, EINVAL); 4758 ((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0; 4759 break; 4760 default: 4761 ; /*???*/ 4762 } 4763 4764 /* XXX boundary check against sa_len */ 4765 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4766 4767 #ifdef IPSEC_NAT_T 4768 /* 4769 * Handle NAT-T info if present. 4770 * We made sure the port numbers are zero above, so we do 4771 * not have to worry in case we do not update them. 4772 */ 4773 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) 4774 ipseclog((LOG_DEBUG, "%s: NAT-T OAi present\n", __func__)); 4775 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) 4776 ipseclog((LOG_DEBUG, "%s: NAT-T OAr present\n", __func__)); 4777 4778 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 4779 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 4780 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 4781 struct sadb_x_nat_t_type *type; 4782 struct sadb_x_nat_t_port *sport, *dport; 4783 4784 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 4785 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 4786 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 4787 ipseclog((LOG_DEBUG, "%s: invalid nat-t message " 4788 "passed.\n", __func__)); 4789 return key_senderror(so, m, EINVAL); 4790 } 4791 4792 sport = (struct sadb_x_nat_t_port *) 4793 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 4794 dport = (struct sadb_x_nat_t_port *) 4795 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 4796 4797 if (sport) 4798 KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port); 4799 if (dport) 4800 KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port); 4801 } 4802 #endif 4803 4804 /* SPI allocation */ 4805 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE], 4806 &saidx); 4807 if (spi == 0) 4808 return key_senderror(so, m, EINVAL); 4809 4810 /* get a SA index */ 4811 if ((newsah = key_getsah(&saidx)) == NULL) { 4812 /* create a new SA index */ 4813 if ((newsah = key_newsah(&saidx)) == NULL) { 4814 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 4815 return key_senderror(so, m, ENOBUFS); 4816 } 4817 } 4818 4819 /* get a new SA */ 4820 /* XXX rewrite */ 4821 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 4822 if (newsav == NULL) { 4823 /* XXX don't free new SA index allocated in above. */ 4824 return key_senderror(so, m, error); 4825 } 4826 4827 /* set spi */ 4828 newsav->spi = htonl(spi); 4829 4830 /* delete the entry in acqtree */ 4831 if (mhp->msg->sadb_msg_seq != 0) { 4832 struct secacq *acq; 4833 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) { 4834 /* reset counter in order to deletion by timehandler. */ 4835 acq->created = time_second; 4836 acq->count = 0; 4837 } 4838 } 4839 4840 { 4841 struct mbuf *n, *nn; 4842 struct sadb_sa *m_sa; 4843 struct sadb_msg *newmsg; 4844 int off, len; 4845 4846 /* create new sadb_msg to reply. */ 4847 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 4848 PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4849 4850 MGETHDR(n, M_DONTWAIT, MT_DATA); 4851 if (len > MHLEN) { 4852 MCLGET(n, M_DONTWAIT); 4853 if ((n->m_flags & M_EXT) == 0) { 4854 m_freem(n); 4855 n = NULL; 4856 } 4857 } 4858 if (!n) 4859 return key_senderror(so, m, ENOBUFS); 4860 4861 n->m_len = len; 4862 n->m_next = NULL; 4863 off = 0; 4864 4865 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 4866 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 4867 4868 m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off); 4869 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); 4870 m_sa->sadb_sa_exttype = SADB_EXT_SA; 4871 m_sa->sadb_sa_spi = htonl(spi); 4872 off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4873 4874 IPSEC_ASSERT(off == len, 4875 ("length inconsistency (off %u len %u)", off, len)); 4876 4877 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, 4878 SADB_EXT_ADDRESS_DST); 4879 if (!n->m_next) { 4880 m_freem(n); 4881 return key_senderror(so, m, ENOBUFS); 4882 } 4883 4884 if (n->m_len < sizeof(struct sadb_msg)) { 4885 n = m_pullup(n, sizeof(struct sadb_msg)); 4886 if (n == NULL) 4887 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 4888 } 4889 4890 n->m_pkthdr.len = 0; 4891 for (nn = n; nn; nn = nn->m_next) 4892 n->m_pkthdr.len += nn->m_len; 4893 4894 newmsg = mtod(n, struct sadb_msg *); 4895 newmsg->sadb_msg_seq = newsav->seq; 4896 newmsg->sadb_msg_errno = 0; 4897 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 4898 4899 m_freem(m); 4900 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 4901 } 4902 } 4903 4904 /* 4905 * allocating new SPI 4906 * called by key_getspi(). 4907 * OUT: 4908 * 0: failure. 4909 * others: success. 4910 */ 4911 static u_int32_t 4912 key_do_getnewspi(spirange, saidx) 4913 struct sadb_spirange *spirange; 4914 struct secasindex *saidx; 4915 { 4916 INIT_VNET_IPSEC(curvnet); 4917 u_int32_t newspi; 4918 u_int32_t min, max; 4919 int count = V_key_spi_trycnt; 4920 4921 /* set spi range to allocate */ 4922 if (spirange != NULL) { 4923 min = spirange->sadb_spirange_min; 4924 max = spirange->sadb_spirange_max; 4925 } else { 4926 min = V_key_spi_minval; 4927 max = V_key_spi_maxval; 4928 } 4929 /* IPCOMP needs 2-byte SPI */ 4930 if (saidx->proto == IPPROTO_IPCOMP) { 4931 u_int32_t t; 4932 if (min >= 0x10000) 4933 min = 0xffff; 4934 if (max >= 0x10000) 4935 max = 0xffff; 4936 if (min > max) { 4937 t = min; min = max; max = t; 4938 } 4939 } 4940 4941 if (min == max) { 4942 if (key_checkspidup(saidx, min) != NULL) { 4943 ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n", 4944 __func__, min)); 4945 return 0; 4946 } 4947 4948 count--; /* taking one cost. */ 4949 newspi = min; 4950 4951 } else { 4952 4953 /* init SPI */ 4954 newspi = 0; 4955 4956 /* when requesting to allocate spi ranged */ 4957 while (count--) { 4958 /* generate pseudo-random SPI value ranged. */ 4959 newspi = min + (key_random() % (max - min + 1)); 4960 4961 if (key_checkspidup(saidx, newspi) == NULL) 4962 break; 4963 } 4964 4965 if (count == 0 || newspi == 0) { 4966 ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n", 4967 __func__)); 4968 return 0; 4969 } 4970 } 4971 4972 /* statistics */ 4973 keystat.getspi_count = 4974 (keystat.getspi_count + V_key_spi_trycnt - count) / 2; 4975 4976 return newspi; 4977 } 4978 4979 /* 4980 * SADB_UPDATE processing 4981 * receive 4982 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4983 * key(AE), (identity(SD),) (sensitivity)> 4984 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. 4985 * and send 4986 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4987 * (identity(SD),) (sensitivity)> 4988 * to the ikmpd. 4989 * 4990 * m will always be freed. 4991 */ 4992 static int 4993 key_update(so, m, mhp) 4994 struct socket *so; 4995 struct mbuf *m; 4996 const struct sadb_msghdr *mhp; 4997 { 4998 INIT_VNET_IPSEC(curvnet); 4999 struct sadb_sa *sa0; 5000 struct sadb_address *src0, *dst0; 5001 #ifdef IPSEC_NAT_T 5002 struct sadb_x_nat_t_type *type; 5003 struct sadb_x_nat_t_port *sport, *dport; 5004 struct sadb_address *iaddr, *raddr; 5005 struct sadb_x_nat_t_frag *frag; 5006 #endif 5007 struct secasindex saidx; 5008 struct secashead *sah; 5009 struct secasvar *sav; 5010 u_int16_t proto; 5011 u_int8_t mode; 5012 u_int32_t reqid; 5013 int error; 5014 5015 IPSEC_ASSERT(so != NULL, ("null socket")); 5016 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5017 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5018 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5019 5020 /* map satype to proto */ 5021 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5022 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5023 __func__)); 5024 return key_senderror(so, m, EINVAL); 5025 } 5026 5027 if (mhp->ext[SADB_EXT_SA] == NULL || 5028 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5029 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5030 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5031 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5032 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5033 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5034 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5035 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5036 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5037 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5038 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5039 __func__)); 5040 return key_senderror(so, m, EINVAL); 5041 } 5042 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5043 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5044 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5045 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5046 __func__)); 5047 return key_senderror(so, m, EINVAL); 5048 } 5049 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5050 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 5051 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 5052 } else { 5053 mode = IPSEC_MODE_ANY; 5054 reqid = 0; 5055 } 5056 /* XXX boundary checking for other extensions */ 5057 5058 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5059 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5060 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5061 5062 /* XXX boundary check against sa_len */ 5063 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 5064 5065 /* 5066 * Make sure the port numbers are zero. 5067 * In case of NAT-T we will update them later if needed. 5068 */ 5069 KEY_PORTTOSADDR(&saidx.src, 0); 5070 KEY_PORTTOSADDR(&saidx.dst, 0); 5071 5072 #ifdef IPSEC_NAT_T 5073 /* 5074 * Handle NAT-T info if present. 5075 */ 5076 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 5077 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5078 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5079 5080 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 5081 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5082 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5083 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5084 __func__)); 5085 return key_senderror(so, m, EINVAL); 5086 } 5087 5088 type = (struct sadb_x_nat_t_type *) 5089 mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5090 sport = (struct sadb_x_nat_t_port *) 5091 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5092 dport = (struct sadb_x_nat_t_port *) 5093 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5094 } else { 5095 type = 0; 5096 sport = dport = 0; 5097 } 5098 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL && 5099 mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { 5100 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) || 5101 mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { 5102 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5103 __func__)); 5104 return key_senderror(so, m, EINVAL); 5105 } 5106 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5107 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5108 ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__)); 5109 } else { 5110 iaddr = raddr = NULL; 5111 } 5112 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { 5113 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { 5114 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5115 __func__)); 5116 return key_senderror(so, m, EINVAL); 5117 } 5118 frag = (struct sadb_x_nat_t_frag *) 5119 mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 5120 } else { 5121 frag = 0; 5122 } 5123 #endif 5124 5125 /* get a SA header */ 5126 if ((sah = key_getsah(&saidx)) == NULL) { 5127 ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__)); 5128 return key_senderror(so, m, ENOENT); 5129 } 5130 5131 /* set spidx if there */ 5132 /* XXX rewrite */ 5133 error = key_setident(sah, m, mhp); 5134 if (error) 5135 return key_senderror(so, m, error); 5136 5137 /* find a SA with sequence number. */ 5138 #ifdef IPSEC_DOSEQCHECK 5139 if (mhp->msg->sadb_msg_seq != 0 5140 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) { 5141 ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u " 5142 "exists.\n", __func__, mhp->msg->sadb_msg_seq)); 5143 return key_senderror(so, m, ENOENT); 5144 } 5145 #else 5146 SAHTREE_LOCK(); 5147 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5148 SAHTREE_UNLOCK(); 5149 if (sav == NULL) { 5150 ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n", 5151 __func__, (u_int32_t)ntohl(sa0->sadb_sa_spi))); 5152 return key_senderror(so, m, EINVAL); 5153 } 5154 #endif 5155 5156 /* validity check */ 5157 if (sav->sah->saidx.proto != proto) { 5158 ipseclog((LOG_DEBUG, "%s: protocol mismatched " 5159 "(DB=%u param=%u)\n", __func__, 5160 sav->sah->saidx.proto, proto)); 5161 return key_senderror(so, m, EINVAL); 5162 } 5163 #ifdef IPSEC_DOSEQCHECK 5164 if (sav->spi != sa0->sadb_sa_spi) { 5165 ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n", 5166 __func__, 5167 (u_int32_t)ntohl(sav->spi), 5168 (u_int32_t)ntohl(sa0->sadb_sa_spi))); 5169 return key_senderror(so, m, EINVAL); 5170 } 5171 #endif 5172 if (sav->pid != mhp->msg->sadb_msg_pid) { 5173 ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n", 5174 __func__, sav->pid, mhp->msg->sadb_msg_pid)); 5175 return key_senderror(so, m, EINVAL); 5176 } 5177 5178 /* copy sav values */ 5179 error = key_setsaval(sav, m, mhp); 5180 if (error) { 5181 KEY_FREESAV(&sav); 5182 return key_senderror(so, m, error); 5183 } 5184 5185 /* check SA values to be mature. */ 5186 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) { 5187 KEY_FREESAV(&sav); 5188 return key_senderror(so, m, 0); 5189 } 5190 5191 #ifdef IPSEC_NAT_T 5192 /* 5193 * Handle more NAT-T info if present, 5194 * now that we have a sav to fill. 5195 */ 5196 if (type) 5197 sav->natt_type = type->sadb_x_nat_t_type_type; 5198 5199 if (sport) 5200 KEY_PORTTOSADDR(&sav->sah->saidx.src, 5201 sport->sadb_x_nat_t_port_port); 5202 if (dport) 5203 KEY_PORTTOSADDR(&sav->sah->saidx.dst, 5204 dport->sadb_x_nat_t_port_port); 5205 5206 #if 0 5207 /* 5208 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0. 5209 * We should actually check for a minimum MTU here, if we 5210 * want to support it in ip_output. 5211 */ 5212 if (frag) 5213 sav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen; 5214 #endif 5215 #endif 5216 5217 { 5218 struct mbuf *n; 5219 5220 /* set msg buf from mhp */ 5221 n = key_getmsgbuf_x1(m, mhp); 5222 if (n == NULL) { 5223 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5224 return key_senderror(so, m, ENOBUFS); 5225 } 5226 5227 m_freem(m); 5228 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5229 } 5230 } 5231 5232 /* 5233 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL. 5234 * only called by key_update(). 5235 * OUT: 5236 * NULL : not found 5237 * others : found, pointer to a SA. 5238 */ 5239 #ifdef IPSEC_DOSEQCHECK 5240 static struct secasvar * 5241 key_getsavbyseq(sah, seq) 5242 struct secashead *sah; 5243 u_int32_t seq; 5244 { 5245 struct secasvar *sav; 5246 u_int state; 5247 5248 state = SADB_SASTATE_LARVAL; 5249 5250 /* search SAD with sequence number ? */ 5251 LIST_FOREACH(sav, &sah->savtree[state], chain) { 5252 5253 KEY_CHKSASTATE(state, sav->state, __func__); 5254 5255 if (sav->seq == seq) { 5256 sa_addref(sav); 5257 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 5258 printf("DP %s cause refcnt++:%d SA:%p\n", 5259 __func__, sav->refcnt, sav)); 5260 return sav; 5261 } 5262 } 5263 5264 return NULL; 5265 } 5266 #endif 5267 5268 /* 5269 * SADB_ADD processing 5270 * add an entry to SA database, when received 5271 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5272 * key(AE), (identity(SD),) (sensitivity)> 5273 * from the ikmpd, 5274 * and send 5275 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5276 * (identity(SD),) (sensitivity)> 5277 * to the ikmpd. 5278 * 5279 * IGNORE identity and sensitivity messages. 5280 * 5281 * m will always be freed. 5282 */ 5283 static int 5284 key_add(so, m, mhp) 5285 struct socket *so; 5286 struct mbuf *m; 5287 const struct sadb_msghdr *mhp; 5288 { 5289 INIT_VNET_IPSEC(curvnet); 5290 struct sadb_sa *sa0; 5291 struct sadb_address *src0, *dst0; 5292 #ifdef IPSEC_NAT_T 5293 struct sadb_x_nat_t_type *type; 5294 struct sadb_address *iaddr, *raddr; 5295 struct sadb_x_nat_t_frag *frag; 5296 #endif 5297 struct secasindex saidx; 5298 struct secashead *newsah; 5299 struct secasvar *newsav; 5300 u_int16_t proto; 5301 u_int8_t mode; 5302 u_int32_t reqid; 5303 int error; 5304 5305 IPSEC_ASSERT(so != NULL, ("null socket")); 5306 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5307 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5308 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5309 5310 /* map satype to proto */ 5311 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5312 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5313 __func__)); 5314 return key_senderror(so, m, EINVAL); 5315 } 5316 5317 if (mhp->ext[SADB_EXT_SA] == NULL || 5318 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5319 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5320 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5321 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5322 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5323 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5324 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5325 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5326 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5327 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5328 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5329 __func__)); 5330 return key_senderror(so, m, EINVAL); 5331 } 5332 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5333 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5334 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5335 /* XXX need more */ 5336 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5337 __func__)); 5338 return key_senderror(so, m, EINVAL); 5339 } 5340 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5341 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 5342 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 5343 } else { 5344 mode = IPSEC_MODE_ANY; 5345 reqid = 0; 5346 } 5347 5348 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5349 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5350 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5351 5352 /* XXX boundary check against sa_len */ 5353 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 5354 5355 /* 5356 * Make sure the port numbers are zero. 5357 * In case of NAT-T we will update them later if needed. 5358 */ 5359 KEY_PORTTOSADDR(&saidx.src, 0); 5360 KEY_PORTTOSADDR(&saidx.dst, 0); 5361 5362 #ifdef IPSEC_NAT_T 5363 /* 5364 * Handle NAT-T info if present. 5365 */ 5366 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 5367 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5368 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5369 struct sadb_x_nat_t_port *sport, *dport; 5370 5371 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 5372 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5373 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5374 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5375 __func__)); 5376 return key_senderror(so, m, EINVAL); 5377 } 5378 5379 type = (struct sadb_x_nat_t_type *) 5380 mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5381 sport = (struct sadb_x_nat_t_port *) 5382 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5383 dport = (struct sadb_x_nat_t_port *) 5384 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5385 5386 if (sport) 5387 KEY_PORTTOSADDR(&saidx.src, 5388 sport->sadb_x_nat_t_port_port); 5389 if (dport) 5390 KEY_PORTTOSADDR(&saidx.dst, 5391 dport->sadb_x_nat_t_port_port); 5392 } else { 5393 type = 0; 5394 } 5395 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL && 5396 mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { 5397 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) || 5398 mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { 5399 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5400 __func__)); 5401 return key_senderror(so, m, EINVAL); 5402 } 5403 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5404 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5405 ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__)); 5406 } else { 5407 iaddr = raddr = NULL; 5408 } 5409 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { 5410 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { 5411 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5412 __func__)); 5413 return key_senderror(so, m, EINVAL); 5414 } 5415 frag = (struct sadb_x_nat_t_frag *) 5416 mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 5417 } else { 5418 frag = 0; 5419 } 5420 #endif 5421 5422 /* get a SA header */ 5423 if ((newsah = key_getsah(&saidx)) == NULL) { 5424 /* create a new SA header */ 5425 if ((newsah = key_newsah(&saidx)) == NULL) { 5426 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 5427 return key_senderror(so, m, ENOBUFS); 5428 } 5429 } 5430 5431 /* set spidx if there */ 5432 /* XXX rewrite */ 5433 error = key_setident(newsah, m, mhp); 5434 if (error) { 5435 return key_senderror(so, m, error); 5436 } 5437 5438 /* create new SA entry. */ 5439 /* We can create new SA only if SPI is differenct. */ 5440 SAHTREE_LOCK(); 5441 newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi); 5442 SAHTREE_UNLOCK(); 5443 if (newsav != NULL) { 5444 ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__)); 5445 return key_senderror(so, m, EEXIST); 5446 } 5447 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 5448 if (newsav == NULL) { 5449 return key_senderror(so, m, error); 5450 } 5451 5452 /* check SA values to be mature. */ 5453 if ((error = key_mature(newsav)) != 0) { 5454 KEY_FREESAV(&newsav); 5455 return key_senderror(so, m, error); 5456 } 5457 5458 #ifdef IPSEC_NAT_T 5459 /* 5460 * Handle more NAT-T info if present, 5461 * now that we have a sav to fill. 5462 */ 5463 if (type) 5464 newsav->natt_type = type->sadb_x_nat_t_type_type; 5465 5466 #if 0 5467 /* 5468 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0. 5469 * We should actually check for a minimum MTU here, if we 5470 * want to support it in ip_output. 5471 */ 5472 if (frag) 5473 newsav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen; 5474 #endif 5475 #endif 5476 5477 /* 5478 * don't call key_freesav() here, as we would like to keep the SA 5479 * in the database on success. 5480 */ 5481 5482 { 5483 struct mbuf *n; 5484 5485 /* set msg buf from mhp */ 5486 n = key_getmsgbuf_x1(m, mhp); 5487 if (n == NULL) { 5488 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5489 return key_senderror(so, m, ENOBUFS); 5490 } 5491 5492 m_freem(m); 5493 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5494 } 5495 } 5496 5497 /* m is retained */ 5498 static int 5499 key_setident(sah, m, mhp) 5500 struct secashead *sah; 5501 struct mbuf *m; 5502 const struct sadb_msghdr *mhp; 5503 { 5504 INIT_VNET_IPSEC(curvnet); 5505 const struct sadb_ident *idsrc, *iddst; 5506 int idsrclen, iddstlen; 5507 5508 IPSEC_ASSERT(sah != NULL, ("null secashead")); 5509 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5510 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5511 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5512 5513 /* don't make buffer if not there */ 5514 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL && 5515 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5516 sah->idents = NULL; 5517 sah->identd = NULL; 5518 return 0; 5519 } 5520 5521 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL || 5522 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5523 ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__)); 5524 return EINVAL; 5525 } 5526 5527 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC]; 5528 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST]; 5529 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC]; 5530 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST]; 5531 5532 /* validity check */ 5533 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { 5534 ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__)); 5535 return EINVAL; 5536 } 5537 5538 switch (idsrc->sadb_ident_type) { 5539 case SADB_IDENTTYPE_PREFIX: 5540 case SADB_IDENTTYPE_FQDN: 5541 case SADB_IDENTTYPE_USERFQDN: 5542 default: 5543 /* XXX do nothing */ 5544 sah->idents = NULL; 5545 sah->identd = NULL; 5546 return 0; 5547 } 5548 5549 /* make structure */ 5550 sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5551 if (sah->idents == NULL) { 5552 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5553 return ENOBUFS; 5554 } 5555 sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5556 if (sah->identd == NULL) { 5557 free(sah->idents, M_IPSEC_MISC); 5558 sah->idents = NULL; 5559 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5560 return ENOBUFS; 5561 } 5562 sah->idents->type = idsrc->sadb_ident_type; 5563 sah->idents->id = idsrc->sadb_ident_id; 5564 5565 sah->identd->type = iddst->sadb_ident_type; 5566 sah->identd->id = iddst->sadb_ident_id; 5567 5568 return 0; 5569 } 5570 5571 /* 5572 * m will not be freed on return. 5573 * it is caller's responsibility to free the result. 5574 */ 5575 static struct mbuf * 5576 key_getmsgbuf_x1(m, mhp) 5577 struct mbuf *m; 5578 const struct sadb_msghdr *mhp; 5579 { 5580 struct mbuf *n; 5581 5582 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5583 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5584 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5585 5586 /* create new sadb_msg to reply. */ 5587 n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED, 5588 SADB_EXT_SA, SADB_X_EXT_SA2, 5589 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, 5590 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 5591 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST); 5592 if (!n) 5593 return NULL; 5594 5595 if (n->m_len < sizeof(struct sadb_msg)) { 5596 n = m_pullup(n, sizeof(struct sadb_msg)); 5597 if (n == NULL) 5598 return NULL; 5599 } 5600 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; 5601 mtod(n, struct sadb_msg *)->sadb_msg_len = 5602 PFKEY_UNIT64(n->m_pkthdr.len); 5603 5604 return n; 5605 } 5606 5607 static int key_delete_all __P((struct socket *, struct mbuf *, 5608 const struct sadb_msghdr *, u_int16_t)); 5609 5610 /* 5611 * SADB_DELETE processing 5612 * receive 5613 * <base, SA(*), address(SD)> 5614 * from the ikmpd, and set SADB_SASTATE_DEAD, 5615 * and send, 5616 * <base, SA(*), address(SD)> 5617 * to the ikmpd. 5618 * 5619 * m will always be freed. 5620 */ 5621 static int 5622 key_delete(so, m, mhp) 5623 struct socket *so; 5624 struct mbuf *m; 5625 const struct sadb_msghdr *mhp; 5626 { 5627 INIT_VNET_IPSEC(curvnet); 5628 struct sadb_sa *sa0; 5629 struct sadb_address *src0, *dst0; 5630 struct secasindex saidx; 5631 struct secashead *sah; 5632 struct secasvar *sav = NULL; 5633 u_int16_t proto; 5634 5635 IPSEC_ASSERT(so != NULL, ("null socket")); 5636 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5637 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5638 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5639 5640 /* map satype to proto */ 5641 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5642 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5643 __func__)); 5644 return key_senderror(so, m, EINVAL); 5645 } 5646 5647 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5648 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5649 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5650 __func__)); 5651 return key_senderror(so, m, EINVAL); 5652 } 5653 5654 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5655 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5656 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5657 __func__)); 5658 return key_senderror(so, m, EINVAL); 5659 } 5660 5661 if (mhp->ext[SADB_EXT_SA] == NULL) { 5662 /* 5663 * Caller wants us to delete all non-LARVAL SAs 5664 * that match the src/dst. This is used during 5665 * IKE INITIAL-CONTACT. 5666 */ 5667 ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__)); 5668 return key_delete_all(so, m, mhp, proto); 5669 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { 5670 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5671 __func__)); 5672 return key_senderror(so, m, EINVAL); 5673 } 5674 5675 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5676 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5677 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5678 5679 /* XXX boundary check against sa_len */ 5680 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5681 5682 /* 5683 * Make sure the port numbers are zero. 5684 * In case of NAT-T we will update them later if needed. 5685 */ 5686 KEY_PORTTOSADDR(&saidx.src, 0); 5687 KEY_PORTTOSADDR(&saidx.dst, 0); 5688 5689 #ifdef IPSEC_NAT_T 5690 /* 5691 * Handle NAT-T info if present. 5692 */ 5693 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5694 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5695 struct sadb_x_nat_t_port *sport, *dport; 5696 5697 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5698 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5699 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5700 __func__)); 5701 return key_senderror(so, m, EINVAL); 5702 } 5703 5704 sport = (struct sadb_x_nat_t_port *) 5705 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5706 dport = (struct sadb_x_nat_t_port *) 5707 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5708 5709 if (sport) 5710 KEY_PORTTOSADDR(&saidx.src, 5711 sport->sadb_x_nat_t_port_port); 5712 if (dport) 5713 KEY_PORTTOSADDR(&saidx.dst, 5714 dport->sadb_x_nat_t_port_port); 5715 } 5716 #endif 5717 5718 /* get a SA header */ 5719 SAHTREE_LOCK(); 5720 LIST_FOREACH(sah, &V_sahtree, chain) { 5721 if (sah->state == SADB_SASTATE_DEAD) 5722 continue; 5723 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5724 continue; 5725 5726 /* get a SA with SPI. */ 5727 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5728 if (sav) 5729 break; 5730 } 5731 if (sah == NULL) { 5732 SAHTREE_UNLOCK(); 5733 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5734 return key_senderror(so, m, ENOENT); 5735 } 5736 5737 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5738 SAHTREE_UNLOCK(); 5739 KEY_FREESAV(&sav); 5740 5741 { 5742 struct mbuf *n; 5743 struct sadb_msg *newmsg; 5744 5745 /* create new sadb_msg to reply. */ 5746 /* XXX-BZ NAT-T extensions? */ 5747 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 5748 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5749 if (!n) 5750 return key_senderror(so, m, ENOBUFS); 5751 5752 if (n->m_len < sizeof(struct sadb_msg)) { 5753 n = m_pullup(n, sizeof(struct sadb_msg)); 5754 if (n == NULL) 5755 return key_senderror(so, m, ENOBUFS); 5756 } 5757 newmsg = mtod(n, struct sadb_msg *); 5758 newmsg->sadb_msg_errno = 0; 5759 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5760 5761 m_freem(m); 5762 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5763 } 5764 } 5765 5766 /* 5767 * delete all SAs for src/dst. Called from key_delete(). 5768 */ 5769 static int 5770 key_delete_all(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp, 5771 u_int16_t proto) 5772 { 5773 INIT_VNET_IPSEC(curvnet); 5774 struct sadb_address *src0, *dst0; 5775 struct secasindex saidx; 5776 struct secashead *sah; 5777 struct secasvar *sav, *nextsav; 5778 u_int stateidx, state; 5779 5780 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5781 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5782 5783 /* XXX boundary check against sa_len */ 5784 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5785 5786 /* 5787 * Make sure the port numbers are zero. 5788 * In case of NAT-T we will update them later if needed. 5789 */ 5790 KEY_PORTTOSADDR(&saidx.src, 0); 5791 KEY_PORTTOSADDR(&saidx.dst, 0); 5792 5793 #ifdef IPSEC_NAT_T 5794 /* 5795 * Handle NAT-T info if present. 5796 */ 5797 5798 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5799 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5800 struct sadb_x_nat_t_port *sport, *dport; 5801 5802 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5803 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5804 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5805 __func__)); 5806 return key_senderror(so, m, EINVAL); 5807 } 5808 5809 sport = (struct sadb_x_nat_t_port *) 5810 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5811 dport = (struct sadb_x_nat_t_port *) 5812 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5813 5814 if (sport) 5815 KEY_PORTTOSADDR(&saidx.src, 5816 sport->sadb_x_nat_t_port_port); 5817 if (dport) 5818 KEY_PORTTOSADDR(&saidx.dst, 5819 dport->sadb_x_nat_t_port_port); 5820 } 5821 #endif 5822 5823 SAHTREE_LOCK(); 5824 LIST_FOREACH(sah, &V_sahtree, chain) { 5825 if (sah->state == SADB_SASTATE_DEAD) 5826 continue; 5827 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5828 continue; 5829 5830 /* Delete all non-LARVAL SAs. */ 5831 for (stateidx = 0; 5832 stateidx < _ARRAYLEN(saorder_state_alive); 5833 stateidx++) { 5834 state = saorder_state_alive[stateidx]; 5835 if (state == SADB_SASTATE_LARVAL) 5836 continue; 5837 for (sav = LIST_FIRST(&sah->savtree[state]); 5838 sav != NULL; sav = nextsav) { 5839 nextsav = LIST_NEXT(sav, chain); 5840 /* sanity check */ 5841 if (sav->state != state) { 5842 ipseclog((LOG_DEBUG, "%s: invalid " 5843 "sav->state (queue %d SA %d)\n", 5844 __func__, state, sav->state)); 5845 continue; 5846 } 5847 5848 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5849 KEY_FREESAV(&sav); 5850 } 5851 } 5852 } 5853 SAHTREE_UNLOCK(); 5854 { 5855 struct mbuf *n; 5856 struct sadb_msg *newmsg; 5857 5858 /* create new sadb_msg to reply. */ 5859 /* XXX-BZ NAT-T extensions? */ 5860 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, 5861 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5862 if (!n) 5863 return key_senderror(so, m, ENOBUFS); 5864 5865 if (n->m_len < sizeof(struct sadb_msg)) { 5866 n = m_pullup(n, sizeof(struct sadb_msg)); 5867 if (n == NULL) 5868 return key_senderror(so, m, ENOBUFS); 5869 } 5870 newmsg = mtod(n, struct sadb_msg *); 5871 newmsg->sadb_msg_errno = 0; 5872 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5873 5874 m_freem(m); 5875 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5876 } 5877 } 5878 5879 /* 5880 * SADB_GET processing 5881 * receive 5882 * <base, SA(*), address(SD)> 5883 * from the ikmpd, and get a SP and a SA to respond, 5884 * and send, 5885 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), 5886 * (identity(SD),) (sensitivity)> 5887 * to the ikmpd. 5888 * 5889 * m will always be freed. 5890 */ 5891 static int 5892 key_get(so, m, mhp) 5893 struct socket *so; 5894 struct mbuf *m; 5895 const struct sadb_msghdr *mhp; 5896 { 5897 INIT_VNET_IPSEC(curvnet); 5898 struct sadb_sa *sa0; 5899 struct sadb_address *src0, *dst0; 5900 struct secasindex saidx; 5901 struct secashead *sah; 5902 struct secasvar *sav = NULL; 5903 u_int16_t proto; 5904 5905 IPSEC_ASSERT(so != NULL, ("null socket")); 5906 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5907 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5908 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5909 5910 /* map satype to proto */ 5911 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5912 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5913 __func__)); 5914 return key_senderror(so, m, EINVAL); 5915 } 5916 5917 if (mhp->ext[SADB_EXT_SA] == NULL || 5918 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5919 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5920 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5921 __func__)); 5922 return key_senderror(so, m, EINVAL); 5923 } 5924 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5925 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5926 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5927 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5928 __func__)); 5929 return key_senderror(so, m, EINVAL); 5930 } 5931 5932 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5933 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5934 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5935 5936 /* XXX boundary check against sa_len */ 5937 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5938 5939 /* 5940 * Make sure the port numbers are zero. 5941 * In case of NAT-T we will update them later if needed. 5942 */ 5943 KEY_PORTTOSADDR(&saidx.src, 0); 5944 KEY_PORTTOSADDR(&saidx.dst, 0); 5945 5946 #ifdef IPSEC_NAT_T 5947 /* 5948 * Handle NAT-T info if present. 5949 */ 5950 5951 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5952 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5953 struct sadb_x_nat_t_port *sport, *dport; 5954 5955 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5956 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5957 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5958 __func__)); 5959 return key_senderror(so, m, EINVAL); 5960 } 5961 5962 sport = (struct sadb_x_nat_t_port *) 5963 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5964 dport = (struct sadb_x_nat_t_port *) 5965 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5966 5967 if (sport) 5968 KEY_PORTTOSADDR(&saidx.src, 5969 sport->sadb_x_nat_t_port_port); 5970 if (dport) 5971 KEY_PORTTOSADDR(&saidx.dst, 5972 dport->sadb_x_nat_t_port_port); 5973 } 5974 #endif 5975 5976 /* get a SA header */ 5977 SAHTREE_LOCK(); 5978 LIST_FOREACH(sah, &V_sahtree, chain) { 5979 if (sah->state == SADB_SASTATE_DEAD) 5980 continue; 5981 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5982 continue; 5983 5984 /* get a SA with SPI. */ 5985 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5986 if (sav) 5987 break; 5988 } 5989 SAHTREE_UNLOCK(); 5990 if (sah == NULL) { 5991 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5992 return key_senderror(so, m, ENOENT); 5993 } 5994 5995 { 5996 struct mbuf *n; 5997 u_int8_t satype; 5998 5999 /* map proto to satype */ 6000 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 6001 ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n", 6002 __func__)); 6003 return key_senderror(so, m, EINVAL); 6004 } 6005 6006 /* create new sadb_msg to reply. */ 6007 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, 6008 mhp->msg->sadb_msg_pid); 6009 if (!n) 6010 return key_senderror(so, m, ENOBUFS); 6011 6012 m_freem(m); 6013 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 6014 } 6015 } 6016 6017 /* XXX make it sysctl-configurable? */ 6018 static void 6019 key_getcomb_setlifetime(comb) 6020 struct sadb_comb *comb; 6021 { 6022 6023 comb->sadb_comb_soft_allocations = 1; 6024 comb->sadb_comb_hard_allocations = 1; 6025 comb->sadb_comb_soft_bytes = 0; 6026 comb->sadb_comb_hard_bytes = 0; 6027 comb->sadb_comb_hard_addtime = 86400; /* 1 day */ 6028 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100; 6029 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */ 6030 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100; 6031 } 6032 6033 /* 6034 * XXX reorder combinations by preference 6035 * XXX no idea if the user wants ESP authentication or not 6036 */ 6037 static struct mbuf * 6038 key_getcomb_esp() 6039 { 6040 INIT_VNET_IPSEC(curvnet); 6041 struct sadb_comb *comb; 6042 struct enc_xform *algo; 6043 struct mbuf *result = NULL, *m, *n; 6044 int encmin; 6045 int i, off, o; 6046 int totlen; 6047 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6048 6049 m = NULL; 6050 for (i = 1; i <= SADB_EALG_MAX; i++) { 6051 algo = esp_algorithm_lookup(i); 6052 if (algo == NULL) 6053 continue; 6054 6055 /* discard algorithms with key size smaller than system min */ 6056 if (_BITS(algo->maxkey) < V_ipsec_esp_keymin) 6057 continue; 6058 if (_BITS(algo->minkey) < V_ipsec_esp_keymin) 6059 encmin = V_ipsec_esp_keymin; 6060 else 6061 encmin = _BITS(algo->minkey); 6062 6063 if (V_ipsec_esp_auth) 6064 m = key_getcomb_ah(); 6065 else { 6066 IPSEC_ASSERT(l <= MLEN, 6067 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6068 MGET(m, M_DONTWAIT, MT_DATA); 6069 if (m) { 6070 M_ALIGN(m, l); 6071 m->m_len = l; 6072 m->m_next = NULL; 6073 bzero(mtod(m, caddr_t), m->m_len); 6074 } 6075 } 6076 if (!m) 6077 goto fail; 6078 6079 totlen = 0; 6080 for (n = m; n; n = n->m_next) 6081 totlen += n->m_len; 6082 IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l)); 6083 6084 for (off = 0; off < totlen; off += l) { 6085 n = m_pulldown(m, off, l, &o); 6086 if (!n) { 6087 /* m is already freed */ 6088 goto fail; 6089 } 6090 comb = (struct sadb_comb *)(mtod(n, caddr_t) + o); 6091 bzero(comb, sizeof(*comb)); 6092 key_getcomb_setlifetime(comb); 6093 comb->sadb_comb_encrypt = i; 6094 comb->sadb_comb_encrypt_minbits = encmin; 6095 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); 6096 } 6097 6098 if (!result) 6099 result = m; 6100 else 6101 m_cat(result, m); 6102 } 6103 6104 return result; 6105 6106 fail: 6107 if (result) 6108 m_freem(result); 6109 return NULL; 6110 } 6111 6112 static void 6113 key_getsizes_ah( 6114 const struct auth_hash *ah, 6115 int alg, 6116 u_int16_t* min, 6117 u_int16_t* max) 6118 { 6119 INIT_VNET_IPSEC(curvnet); 6120 6121 *min = *max = ah->keysize; 6122 if (ah->keysize == 0) { 6123 /* 6124 * Transform takes arbitrary key size but algorithm 6125 * key size is restricted. Enforce this here. 6126 */ 6127 switch (alg) { 6128 case SADB_X_AALG_MD5: *min = *max = 16; break; 6129 case SADB_X_AALG_SHA: *min = *max = 20; break; 6130 case SADB_X_AALG_NULL: *min = 1; *max = 256; break; 6131 default: 6132 DPRINTF(("%s: unknown AH algorithm %u\n", 6133 __func__, alg)); 6134 break; 6135 } 6136 } 6137 } 6138 6139 /* 6140 * XXX reorder combinations by preference 6141 */ 6142 static struct mbuf * 6143 key_getcomb_ah() 6144 { 6145 INIT_VNET_IPSEC(curvnet); 6146 struct sadb_comb *comb; 6147 struct auth_hash *algo; 6148 struct mbuf *m; 6149 u_int16_t minkeysize, maxkeysize; 6150 int i; 6151 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6152 6153 m = NULL; 6154 for (i = 1; i <= SADB_AALG_MAX; i++) { 6155 #if 1 6156 /* we prefer HMAC algorithms, not old algorithms */ 6157 if (i != SADB_AALG_SHA1HMAC && i != SADB_AALG_MD5HMAC) 6158 continue; 6159 #endif 6160 algo = ah_algorithm_lookup(i); 6161 if (!algo) 6162 continue; 6163 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); 6164 /* discard algorithms with key size smaller than system min */ 6165 if (_BITS(minkeysize) < V_ipsec_ah_keymin) 6166 continue; 6167 6168 if (!m) { 6169 IPSEC_ASSERT(l <= MLEN, 6170 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6171 MGET(m, M_DONTWAIT, MT_DATA); 6172 if (m) { 6173 M_ALIGN(m, l); 6174 m->m_len = l; 6175 m->m_next = NULL; 6176 } 6177 } else 6178 M_PREPEND(m, l, M_DONTWAIT); 6179 if (!m) 6180 return NULL; 6181 6182 comb = mtod(m, struct sadb_comb *); 6183 bzero(comb, sizeof(*comb)); 6184 key_getcomb_setlifetime(comb); 6185 comb->sadb_comb_auth = i; 6186 comb->sadb_comb_auth_minbits = _BITS(minkeysize); 6187 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); 6188 } 6189 6190 return m; 6191 } 6192 6193 /* 6194 * not really an official behavior. discussed in pf_key@inner.net in Sep2000. 6195 * XXX reorder combinations by preference 6196 */ 6197 static struct mbuf * 6198 key_getcomb_ipcomp() 6199 { 6200 struct sadb_comb *comb; 6201 struct comp_algo *algo; 6202 struct mbuf *m; 6203 int i; 6204 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6205 6206 m = NULL; 6207 for (i = 1; i <= SADB_X_CALG_MAX; i++) { 6208 algo = ipcomp_algorithm_lookup(i); 6209 if (!algo) 6210 continue; 6211 6212 if (!m) { 6213 IPSEC_ASSERT(l <= MLEN, 6214 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6215 MGET(m, M_DONTWAIT, MT_DATA); 6216 if (m) { 6217 M_ALIGN(m, l); 6218 m->m_len = l; 6219 m->m_next = NULL; 6220 } 6221 } else 6222 M_PREPEND(m, l, M_DONTWAIT); 6223 if (!m) 6224 return NULL; 6225 6226 comb = mtod(m, struct sadb_comb *); 6227 bzero(comb, sizeof(*comb)); 6228 key_getcomb_setlifetime(comb); 6229 comb->sadb_comb_encrypt = i; 6230 /* what should we set into sadb_comb_*_{min,max}bits? */ 6231 } 6232 6233 return m; 6234 } 6235 6236 /* 6237 * XXX no way to pass mode (transport/tunnel) to userland 6238 * XXX replay checking? 6239 * XXX sysctl interface to ipsec_{ah,esp}_keymin 6240 */ 6241 static struct mbuf * 6242 key_getprop(saidx) 6243 const struct secasindex *saidx; 6244 { 6245 struct sadb_prop *prop; 6246 struct mbuf *m, *n; 6247 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); 6248 int totlen; 6249 6250 switch (saidx->proto) { 6251 case IPPROTO_ESP: 6252 m = key_getcomb_esp(); 6253 break; 6254 case IPPROTO_AH: 6255 m = key_getcomb_ah(); 6256 break; 6257 case IPPROTO_IPCOMP: 6258 m = key_getcomb_ipcomp(); 6259 break; 6260 default: 6261 return NULL; 6262 } 6263 6264 if (!m) 6265 return NULL; 6266 M_PREPEND(m, l, M_DONTWAIT); 6267 if (!m) 6268 return NULL; 6269 6270 totlen = 0; 6271 for (n = m; n; n = n->m_next) 6272 totlen += n->m_len; 6273 6274 prop = mtod(m, struct sadb_prop *); 6275 bzero(prop, sizeof(*prop)); 6276 prop->sadb_prop_len = PFKEY_UNIT64(totlen); 6277 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 6278 prop->sadb_prop_replay = 32; /* XXX */ 6279 6280 return m; 6281 } 6282 6283 /* 6284 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2(). 6285 * send 6286 * <base, SA, address(SD), (address(P)), x_policy, 6287 * (identity(SD),) (sensitivity,) proposal> 6288 * to KMD, and expect to receive 6289 * <base> with SADB_ACQUIRE if error occured, 6290 * or 6291 * <base, src address, dst address, (SPI range)> with SADB_GETSPI 6292 * from KMD by PF_KEY. 6293 * 6294 * XXX x_policy is outside of RFC2367 (KAME extension). 6295 * XXX sensitivity is not supported. 6296 * XXX for ipcomp, RFC2367 does not define how to fill in proposal. 6297 * see comment for key_getcomb_ipcomp(). 6298 * 6299 * OUT: 6300 * 0 : succeed 6301 * others: error number 6302 */ 6303 static int 6304 key_acquire(const struct secasindex *saidx, struct secpolicy *sp) 6305 { 6306 INIT_VNET_IPSEC(curvnet); 6307 struct mbuf *result = NULL, *m; 6308 struct secacq *newacq; 6309 u_int8_t satype; 6310 int error = -1; 6311 u_int32_t seq; 6312 6313 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 6314 satype = key_proto2satype(saidx->proto); 6315 IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto)); 6316 6317 /* 6318 * We never do anything about acquirng SA. There is anather 6319 * solution that kernel blocks to send SADB_ACQUIRE message until 6320 * getting something message from IKEd. In later case, to be 6321 * managed with ACQUIRING list. 6322 */ 6323 /* Get an entry to check whether sending message or not. */ 6324 if ((newacq = key_getacq(saidx)) != NULL) { 6325 if (V_key_blockacq_count < newacq->count) { 6326 /* reset counter and do send message. */ 6327 newacq->count = 0; 6328 } else { 6329 /* increment counter and do nothing. */ 6330 newacq->count++; 6331 return 0; 6332 } 6333 } else { 6334 /* make new entry for blocking to send SADB_ACQUIRE. */ 6335 if ((newacq = key_newacq(saidx)) == NULL) 6336 return ENOBUFS; 6337 } 6338 6339 6340 seq = newacq->seq; 6341 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0); 6342 if (!m) { 6343 error = ENOBUFS; 6344 goto fail; 6345 } 6346 result = m; 6347 6348 /* 6349 * No SADB_X_EXT_NAT_T_* here: we do not know 6350 * anything related to NAT-T at this time. 6351 */ 6352 6353 /* set sadb_address for saidx's. */ 6354 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 6355 &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY); 6356 if (!m) { 6357 error = ENOBUFS; 6358 goto fail; 6359 } 6360 m_cat(result, m); 6361 6362 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 6363 &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY); 6364 if (!m) { 6365 error = ENOBUFS; 6366 goto fail; 6367 } 6368 m_cat(result, m); 6369 6370 /* XXX proxy address (optional) */ 6371 6372 /* set sadb_x_policy */ 6373 if (sp) { 6374 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id); 6375 if (!m) { 6376 error = ENOBUFS; 6377 goto fail; 6378 } 6379 m_cat(result, m); 6380 } 6381 6382 /* XXX identity (optional) */ 6383 #if 0 6384 if (idexttype && fqdn) { 6385 /* create identity extension (FQDN) */ 6386 struct sadb_ident *id; 6387 int fqdnlen; 6388 6389 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ 6390 id = (struct sadb_ident *)p; 6391 bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6392 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6393 id->sadb_ident_exttype = idexttype; 6394 id->sadb_ident_type = SADB_IDENTTYPE_FQDN; 6395 bcopy(fqdn, id + 1, fqdnlen); 6396 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); 6397 } 6398 6399 if (idexttype) { 6400 /* create identity extension (USERFQDN) */ 6401 struct sadb_ident *id; 6402 int userfqdnlen; 6403 6404 if (userfqdn) { 6405 /* +1 for terminating-NUL */ 6406 userfqdnlen = strlen(userfqdn) + 1; 6407 } else 6408 userfqdnlen = 0; 6409 id = (struct sadb_ident *)p; 6410 bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6411 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6412 id->sadb_ident_exttype = idexttype; 6413 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; 6414 /* XXX is it correct? */ 6415 if (curproc && curproc->p_cred) 6416 id->sadb_ident_id = curproc->p_cred->p_ruid; 6417 if (userfqdn && userfqdnlen) 6418 bcopy(userfqdn, id + 1, userfqdnlen); 6419 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); 6420 } 6421 #endif 6422 6423 /* XXX sensitivity (optional) */ 6424 6425 /* create proposal/combination extension */ 6426 m = key_getprop(saidx); 6427 #if 0 6428 /* 6429 * spec conformant: always attach proposal/combination extension, 6430 * the problem is that we have no way to attach it for ipcomp, 6431 * due to the way sadb_comb is declared in RFC2367. 6432 */ 6433 if (!m) { 6434 error = ENOBUFS; 6435 goto fail; 6436 } 6437 m_cat(result, m); 6438 #else 6439 /* 6440 * outside of spec; make proposal/combination extension optional. 6441 */ 6442 if (m) 6443 m_cat(result, m); 6444 #endif 6445 6446 if ((result->m_flags & M_PKTHDR) == 0) { 6447 error = EINVAL; 6448 goto fail; 6449 } 6450 6451 if (result->m_len < sizeof(struct sadb_msg)) { 6452 result = m_pullup(result, sizeof(struct sadb_msg)); 6453 if (result == NULL) { 6454 error = ENOBUFS; 6455 goto fail; 6456 } 6457 } 6458 6459 result->m_pkthdr.len = 0; 6460 for (m = result; m; m = m->m_next) 6461 result->m_pkthdr.len += m->m_len; 6462 6463 mtod(result, struct sadb_msg *)->sadb_msg_len = 6464 PFKEY_UNIT64(result->m_pkthdr.len); 6465 6466 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6467 6468 fail: 6469 if (result) 6470 m_freem(result); 6471 return error; 6472 } 6473 6474 static struct secacq * 6475 key_newacq(const struct secasindex *saidx) 6476 { 6477 INIT_VNET_IPSEC(curvnet); 6478 struct secacq *newacq; 6479 6480 /* get new entry */ 6481 newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 6482 if (newacq == NULL) { 6483 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6484 return NULL; 6485 } 6486 6487 /* copy secindex */ 6488 bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx)); 6489 newacq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq); 6490 newacq->created = time_second; 6491 newacq->count = 0; 6492 6493 /* add to acqtree */ 6494 ACQ_LOCK(); 6495 LIST_INSERT_HEAD(&V_acqtree, newacq, chain); 6496 ACQ_UNLOCK(); 6497 6498 return newacq; 6499 } 6500 6501 static struct secacq * 6502 key_getacq(const struct secasindex *saidx) 6503 { 6504 INIT_VNET_IPSEC(curvnet); 6505 struct secacq *acq; 6506 6507 ACQ_LOCK(); 6508 LIST_FOREACH(acq, &V_acqtree, chain) { 6509 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY)) 6510 break; 6511 } 6512 ACQ_UNLOCK(); 6513 6514 return acq; 6515 } 6516 6517 static struct secacq * 6518 key_getacqbyseq(seq) 6519 u_int32_t seq; 6520 { 6521 INIT_VNET_IPSEC(curvnet); 6522 struct secacq *acq; 6523 6524 ACQ_LOCK(); 6525 LIST_FOREACH(acq, &V_acqtree, chain) { 6526 if (acq->seq == seq) 6527 break; 6528 } 6529 ACQ_UNLOCK(); 6530 6531 return acq; 6532 } 6533 6534 static struct secspacq * 6535 key_newspacq(spidx) 6536 struct secpolicyindex *spidx; 6537 { 6538 INIT_VNET_IPSEC(curvnet); 6539 struct secspacq *acq; 6540 6541 /* get new entry */ 6542 acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 6543 if (acq == NULL) { 6544 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6545 return NULL; 6546 } 6547 6548 /* copy secindex */ 6549 bcopy(spidx, &acq->spidx, sizeof(acq->spidx)); 6550 acq->created = time_second; 6551 acq->count = 0; 6552 6553 /* add to spacqtree */ 6554 SPACQ_LOCK(); 6555 LIST_INSERT_HEAD(&V_spacqtree, acq, chain); 6556 SPACQ_UNLOCK(); 6557 6558 return acq; 6559 } 6560 6561 static struct secspacq * 6562 key_getspacq(spidx) 6563 struct secpolicyindex *spidx; 6564 { 6565 INIT_VNET_IPSEC(curvnet); 6566 struct secspacq *acq; 6567 6568 SPACQ_LOCK(); 6569 LIST_FOREACH(acq, &V_spacqtree, chain) { 6570 if (key_cmpspidx_exactly(spidx, &acq->spidx)) { 6571 /* NB: return holding spacq_lock */ 6572 return acq; 6573 } 6574 } 6575 SPACQ_UNLOCK(); 6576 6577 return NULL; 6578 } 6579 6580 /* 6581 * SADB_ACQUIRE processing, 6582 * in first situation, is receiving 6583 * <base> 6584 * from the ikmpd, and clear sequence of its secasvar entry. 6585 * 6586 * In second situation, is receiving 6587 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6588 * from a user land process, and return 6589 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6590 * to the socket. 6591 * 6592 * m will always be freed. 6593 */ 6594 static int 6595 key_acquire2(so, m, mhp) 6596 struct socket *so; 6597 struct mbuf *m; 6598 const struct sadb_msghdr *mhp; 6599 { 6600 INIT_VNET_IPSEC(curvnet); 6601 const struct sadb_address *src0, *dst0; 6602 struct secasindex saidx; 6603 struct secashead *sah; 6604 u_int16_t proto; 6605 int error; 6606 6607 IPSEC_ASSERT(so != NULL, ("null socket")); 6608 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6609 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6610 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6611 6612 /* 6613 * Error message from KMd. 6614 * We assume that if error was occured in IKEd, the length of PFKEY 6615 * message is equal to the size of sadb_msg structure. 6616 * We do not raise error even if error occured in this function. 6617 */ 6618 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { 6619 struct secacq *acq; 6620 6621 /* check sequence number */ 6622 if (mhp->msg->sadb_msg_seq == 0) { 6623 ipseclog((LOG_DEBUG, "%s: must specify sequence " 6624 "number.\n", __func__)); 6625 m_freem(m); 6626 return 0; 6627 } 6628 6629 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) { 6630 /* 6631 * the specified larval SA is already gone, or we got 6632 * a bogus sequence number. we can silently ignore it. 6633 */ 6634 m_freem(m); 6635 return 0; 6636 } 6637 6638 /* reset acq counter in order to deletion by timehander. */ 6639 acq->created = time_second; 6640 acq->count = 0; 6641 m_freem(m); 6642 return 0; 6643 } 6644 6645 /* 6646 * This message is from user land. 6647 */ 6648 6649 /* map satype to proto */ 6650 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6651 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6652 __func__)); 6653 return key_senderror(so, m, EINVAL); 6654 } 6655 6656 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6657 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 6658 mhp->ext[SADB_EXT_PROPOSAL] == NULL) { 6659 /* error */ 6660 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6661 __func__)); 6662 return key_senderror(so, m, EINVAL); 6663 } 6664 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6665 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 6666 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { 6667 /* error */ 6668 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6669 __func__)); 6670 return key_senderror(so, m, EINVAL); 6671 } 6672 6673 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 6674 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 6675 6676 /* XXX boundary check against sa_len */ 6677 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 6678 6679 /* 6680 * Make sure the port numbers are zero. 6681 * In case of NAT-T we will update them later if needed. 6682 */ 6683 KEY_PORTTOSADDR(&saidx.src, 0); 6684 KEY_PORTTOSADDR(&saidx.dst, 0); 6685 6686 #ifndef IPSEC_NAT_T 6687 /* 6688 * Handle NAT-T info if present. 6689 */ 6690 6691 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 6692 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 6693 struct sadb_x_nat_t_port *sport, *dport; 6694 6695 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 6696 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 6697 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 6698 __func__)); 6699 return key_senderror(so, m, EINVAL); 6700 } 6701 6702 sport = (struct sadb_x_nat_t_port *) 6703 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 6704 dport = (struct sadb_x_nat_t_port *) 6705 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 6706 6707 if (sport) 6708 KEY_PORTTOSADDR(&saidx.src, 6709 sport->sadb_x_nat_t_port_port); 6710 if (dport) 6711 KEY_PORTTOSADDR(&saidx.dst, 6712 dport->sadb_x_nat_t_port_port); 6713 } 6714 #endif 6715 6716 /* get a SA index */ 6717 SAHTREE_LOCK(); 6718 LIST_FOREACH(sah, &V_sahtree, chain) { 6719 if (sah->state == SADB_SASTATE_DEAD) 6720 continue; 6721 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID)) 6722 break; 6723 } 6724 SAHTREE_UNLOCK(); 6725 if (sah != NULL) { 6726 ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__)); 6727 return key_senderror(so, m, EEXIST); 6728 } 6729 6730 error = key_acquire(&saidx, NULL); 6731 if (error != 0) { 6732 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 6733 __func__, mhp->msg->sadb_msg_errno)); 6734 return key_senderror(so, m, error); 6735 } 6736 6737 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); 6738 } 6739 6740 /* 6741 * SADB_REGISTER processing. 6742 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. 6743 * receive 6744 * <base> 6745 * from the ikmpd, and register a socket to send PF_KEY messages, 6746 * and send 6747 * <base, supported> 6748 * to KMD by PF_KEY. 6749 * If socket is detached, must free from regnode. 6750 * 6751 * m will always be freed. 6752 */ 6753 static int 6754 key_register(so, m, mhp) 6755 struct socket *so; 6756 struct mbuf *m; 6757 const struct sadb_msghdr *mhp; 6758 { 6759 INIT_VNET_IPSEC(curvnet); 6760 struct secreg *reg, *newreg = 0; 6761 6762 IPSEC_ASSERT(so != NULL, ("null socket")); 6763 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6764 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6765 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6766 6767 /* check for invalid register message */ 6768 if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0])) 6769 return key_senderror(so, m, EINVAL); 6770 6771 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ 6772 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) 6773 goto setmsg; 6774 6775 /* check whether existing or not */ 6776 REGTREE_LOCK(); 6777 LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) { 6778 if (reg->so == so) { 6779 REGTREE_UNLOCK(); 6780 ipseclog((LOG_DEBUG, "%s: socket exists already.\n", 6781 __func__)); 6782 return key_senderror(so, m, EEXIST); 6783 } 6784 } 6785 6786 /* create regnode */ 6787 newreg = malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO); 6788 if (newreg == NULL) { 6789 REGTREE_UNLOCK(); 6790 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6791 return key_senderror(so, m, ENOBUFS); 6792 } 6793 6794 newreg->so = so; 6795 ((struct keycb *)sotorawcb(so))->kp_registered++; 6796 6797 /* add regnode to regtree. */ 6798 LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain); 6799 REGTREE_UNLOCK(); 6800 6801 setmsg: 6802 { 6803 struct mbuf *n; 6804 struct sadb_msg *newmsg; 6805 struct sadb_supported *sup; 6806 u_int len, alen, elen; 6807 int off; 6808 int i; 6809 struct sadb_alg *alg; 6810 6811 /* create new sadb_msg to reply. */ 6812 alen = 0; 6813 for (i = 1; i <= SADB_AALG_MAX; i++) { 6814 if (ah_algorithm_lookup(i)) 6815 alen += sizeof(struct sadb_alg); 6816 } 6817 if (alen) 6818 alen += sizeof(struct sadb_supported); 6819 elen = 0; 6820 for (i = 1; i <= SADB_EALG_MAX; i++) { 6821 if (esp_algorithm_lookup(i)) 6822 elen += sizeof(struct sadb_alg); 6823 } 6824 if (elen) 6825 elen += sizeof(struct sadb_supported); 6826 6827 len = sizeof(struct sadb_msg) + alen + elen; 6828 6829 if (len > MCLBYTES) 6830 return key_senderror(so, m, ENOBUFS); 6831 6832 MGETHDR(n, M_DONTWAIT, MT_DATA); 6833 if (len > MHLEN) { 6834 MCLGET(n, M_DONTWAIT); 6835 if ((n->m_flags & M_EXT) == 0) { 6836 m_freem(n); 6837 n = NULL; 6838 } 6839 } 6840 if (!n) 6841 return key_senderror(so, m, ENOBUFS); 6842 6843 n->m_pkthdr.len = n->m_len = len; 6844 n->m_next = NULL; 6845 off = 0; 6846 6847 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 6848 newmsg = mtod(n, struct sadb_msg *); 6849 newmsg->sadb_msg_errno = 0; 6850 newmsg->sadb_msg_len = PFKEY_UNIT64(len); 6851 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 6852 6853 /* for authentication algorithm */ 6854 if (alen) { 6855 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6856 sup->sadb_supported_len = PFKEY_UNIT64(alen); 6857 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 6858 off += PFKEY_ALIGN8(sizeof(*sup)); 6859 6860 for (i = 1; i <= SADB_AALG_MAX; i++) { 6861 struct auth_hash *aalgo; 6862 u_int16_t minkeysize, maxkeysize; 6863 6864 aalgo = ah_algorithm_lookup(i); 6865 if (!aalgo) 6866 continue; 6867 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6868 alg->sadb_alg_id = i; 6869 alg->sadb_alg_ivlen = 0; 6870 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); 6871 alg->sadb_alg_minbits = _BITS(minkeysize); 6872 alg->sadb_alg_maxbits = _BITS(maxkeysize); 6873 off += PFKEY_ALIGN8(sizeof(*alg)); 6874 } 6875 } 6876 6877 /* for encryption algorithm */ 6878 if (elen) { 6879 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6880 sup->sadb_supported_len = PFKEY_UNIT64(elen); 6881 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 6882 off += PFKEY_ALIGN8(sizeof(*sup)); 6883 6884 for (i = 1; i <= SADB_EALG_MAX; i++) { 6885 struct enc_xform *ealgo; 6886 6887 ealgo = esp_algorithm_lookup(i); 6888 if (!ealgo) 6889 continue; 6890 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6891 alg->sadb_alg_id = i; 6892 alg->sadb_alg_ivlen = ealgo->blocksize; 6893 alg->sadb_alg_minbits = _BITS(ealgo->minkey); 6894 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); 6895 off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); 6896 } 6897 } 6898 6899 IPSEC_ASSERT(off == len, 6900 ("length assumption failed (off %u len %u)", off, len)); 6901 6902 m_freem(m); 6903 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); 6904 } 6905 } 6906 6907 /* 6908 * free secreg entry registered. 6909 * XXX: I want to do free a socket marked done SADB_RESIGER to socket. 6910 */ 6911 void 6912 key_freereg(struct socket *so) 6913 { 6914 INIT_VNET_IPSEC(curvnet); 6915 struct secreg *reg; 6916 int i; 6917 6918 IPSEC_ASSERT(so != NULL, ("NULL so")); 6919 6920 /* 6921 * check whether existing or not. 6922 * check all type of SA, because there is a potential that 6923 * one socket is registered to multiple type of SA. 6924 */ 6925 REGTREE_LOCK(); 6926 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 6927 LIST_FOREACH(reg, &V_regtree[i], chain) { 6928 if (reg->so == so && __LIST_CHAINED(reg)) { 6929 LIST_REMOVE(reg, chain); 6930 free(reg, M_IPSEC_SAR); 6931 break; 6932 } 6933 } 6934 } 6935 REGTREE_UNLOCK(); 6936 } 6937 6938 /* 6939 * SADB_EXPIRE processing 6940 * send 6941 * <base, SA, SA2, lifetime(C and one of HS), address(SD)> 6942 * to KMD by PF_KEY. 6943 * NOTE: We send only soft lifetime extension. 6944 * 6945 * OUT: 0 : succeed 6946 * others : error number 6947 */ 6948 static int 6949 key_expire(struct secasvar *sav) 6950 { 6951 int s; 6952 int satype; 6953 struct mbuf *result = NULL, *m; 6954 int len; 6955 int error = -1; 6956 struct sadb_lifetime *lt; 6957 6958 /* XXX: Why do we lock ? */ 6959 s = splnet(); /*called from softclock()*/ 6960 6961 IPSEC_ASSERT (sav != NULL, ("null sav")); 6962 IPSEC_ASSERT (sav->sah != NULL, ("null sa header")); 6963 6964 /* set msg header */ 6965 satype = key_proto2satype(sav->sah->saidx.proto); 6966 IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype)); 6967 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt); 6968 if (!m) { 6969 error = ENOBUFS; 6970 goto fail; 6971 } 6972 result = m; 6973 6974 /* create SA extension */ 6975 m = key_setsadbsa(sav); 6976 if (!m) { 6977 error = ENOBUFS; 6978 goto fail; 6979 } 6980 m_cat(result, m); 6981 6982 /* create SA extension */ 6983 m = key_setsadbxsa2(sav->sah->saidx.mode, 6984 sav->replay ? sav->replay->count : 0, 6985 sav->sah->saidx.reqid); 6986 if (!m) { 6987 error = ENOBUFS; 6988 goto fail; 6989 } 6990 m_cat(result, m); 6991 6992 /* create lifetime extension (current and soft) */ 6993 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 6994 m = key_alloc_mbuf(len); 6995 if (!m || m->m_next) { /*XXX*/ 6996 if (m) 6997 m_freem(m); 6998 error = ENOBUFS; 6999 goto fail; 7000 } 7001 bzero(mtod(m, caddr_t), len); 7002 lt = mtod(m, struct sadb_lifetime *); 7003 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 7004 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 7005 lt->sadb_lifetime_allocations = sav->lft_c->allocations; 7006 lt->sadb_lifetime_bytes = sav->lft_c->bytes; 7007 lt->sadb_lifetime_addtime = sav->lft_c->addtime; 7008 lt->sadb_lifetime_usetime = sav->lft_c->usetime; 7009 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 7010 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 7011 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; 7012 lt->sadb_lifetime_allocations = sav->lft_s->allocations; 7013 lt->sadb_lifetime_bytes = sav->lft_s->bytes; 7014 lt->sadb_lifetime_addtime = sav->lft_s->addtime; 7015 lt->sadb_lifetime_usetime = sav->lft_s->usetime; 7016 m_cat(result, m); 7017 7018 /* set sadb_address for source */ 7019 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 7020 &sav->sah->saidx.src.sa, 7021 FULLMASK, IPSEC_ULPROTO_ANY); 7022 if (!m) { 7023 error = ENOBUFS; 7024 goto fail; 7025 } 7026 m_cat(result, m); 7027 7028 /* set sadb_address for destination */ 7029 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 7030 &sav->sah->saidx.dst.sa, 7031 FULLMASK, IPSEC_ULPROTO_ANY); 7032 if (!m) { 7033 error = ENOBUFS; 7034 goto fail; 7035 } 7036 m_cat(result, m); 7037 7038 /* 7039 * XXX-BZ Handle NAT-T extensions here. 7040 */ 7041 7042 if ((result->m_flags & M_PKTHDR) == 0) { 7043 error = EINVAL; 7044 goto fail; 7045 } 7046 7047 if (result->m_len < sizeof(struct sadb_msg)) { 7048 result = m_pullup(result, sizeof(struct sadb_msg)); 7049 if (result == NULL) { 7050 error = ENOBUFS; 7051 goto fail; 7052 } 7053 } 7054 7055 result->m_pkthdr.len = 0; 7056 for (m = result; m; m = m->m_next) 7057 result->m_pkthdr.len += m->m_len; 7058 7059 mtod(result, struct sadb_msg *)->sadb_msg_len = 7060 PFKEY_UNIT64(result->m_pkthdr.len); 7061 7062 splx(s); 7063 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 7064 7065 fail: 7066 if (result) 7067 m_freem(result); 7068 splx(s); 7069 return error; 7070 } 7071 7072 /* 7073 * SADB_FLUSH processing 7074 * receive 7075 * <base> 7076 * from the ikmpd, and free all entries in secastree. 7077 * and send, 7078 * <base> 7079 * to the ikmpd. 7080 * NOTE: to do is only marking SADB_SASTATE_DEAD. 7081 * 7082 * m will always be freed. 7083 */ 7084 static int 7085 key_flush(so, m, mhp) 7086 struct socket *so; 7087 struct mbuf *m; 7088 const struct sadb_msghdr *mhp; 7089 { 7090 INIT_VNET_IPSEC(curvnet); 7091 struct sadb_msg *newmsg; 7092 struct secashead *sah, *nextsah; 7093 struct secasvar *sav, *nextsav; 7094 u_int16_t proto; 7095 u_int8_t state; 7096 u_int stateidx; 7097 7098 IPSEC_ASSERT(so != NULL, ("null socket")); 7099 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7100 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7101 7102 /* map satype to proto */ 7103 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 7104 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 7105 __func__)); 7106 return key_senderror(so, m, EINVAL); 7107 } 7108 7109 /* no SATYPE specified, i.e. flushing all SA. */ 7110 SAHTREE_LOCK(); 7111 for (sah = LIST_FIRST(&V_sahtree); 7112 sah != NULL; 7113 sah = nextsah) { 7114 nextsah = LIST_NEXT(sah, chain); 7115 7116 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 7117 && proto != sah->saidx.proto) 7118 continue; 7119 7120 for (stateidx = 0; 7121 stateidx < _ARRAYLEN(saorder_state_alive); 7122 stateidx++) { 7123 state = saorder_state_any[stateidx]; 7124 for (sav = LIST_FIRST(&sah->savtree[state]); 7125 sav != NULL; 7126 sav = nextsav) { 7127 7128 nextsav = LIST_NEXT(sav, chain); 7129 7130 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 7131 KEY_FREESAV(&sav); 7132 } 7133 } 7134 7135 sah->state = SADB_SASTATE_DEAD; 7136 } 7137 SAHTREE_UNLOCK(); 7138 7139 if (m->m_len < sizeof(struct sadb_msg) || 7140 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 7141 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 7142 return key_senderror(so, m, ENOBUFS); 7143 } 7144 7145 if (m->m_next) 7146 m_freem(m->m_next); 7147 m->m_next = NULL; 7148 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); 7149 newmsg = mtod(m, struct sadb_msg *); 7150 newmsg->sadb_msg_errno = 0; 7151 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 7152 7153 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7154 } 7155 7156 /* 7157 * SADB_DUMP processing 7158 * dump all entries including status of DEAD in SAD. 7159 * receive 7160 * <base> 7161 * from the ikmpd, and dump all secasvar leaves 7162 * and send, 7163 * <base> ..... 7164 * to the ikmpd. 7165 * 7166 * m will always be freed. 7167 */ 7168 static int 7169 key_dump(so, m, mhp) 7170 struct socket *so; 7171 struct mbuf *m; 7172 const struct sadb_msghdr *mhp; 7173 { 7174 INIT_VNET_IPSEC(curvnet); 7175 struct secashead *sah; 7176 struct secasvar *sav; 7177 u_int16_t proto; 7178 u_int stateidx; 7179 u_int8_t satype; 7180 u_int8_t state; 7181 int cnt; 7182 struct sadb_msg *newmsg; 7183 struct mbuf *n; 7184 7185 IPSEC_ASSERT(so != NULL, ("null socket")); 7186 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7187 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7188 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7189 7190 /* map satype to proto */ 7191 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 7192 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 7193 __func__)); 7194 return key_senderror(so, m, EINVAL); 7195 } 7196 7197 /* count sav entries to be sent to the userland. */ 7198 cnt = 0; 7199 SAHTREE_LOCK(); 7200 LIST_FOREACH(sah, &V_sahtree, chain) { 7201 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 7202 && proto != sah->saidx.proto) 7203 continue; 7204 7205 for (stateidx = 0; 7206 stateidx < _ARRAYLEN(saorder_state_any); 7207 stateidx++) { 7208 state = saorder_state_any[stateidx]; 7209 LIST_FOREACH(sav, &sah->savtree[state], chain) { 7210 cnt++; 7211 } 7212 } 7213 } 7214 7215 if (cnt == 0) { 7216 SAHTREE_UNLOCK(); 7217 return key_senderror(so, m, ENOENT); 7218 } 7219 7220 /* send this to the userland, one at a time. */ 7221 newmsg = NULL; 7222 LIST_FOREACH(sah, &V_sahtree, chain) { 7223 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 7224 && proto != sah->saidx.proto) 7225 continue; 7226 7227 /* map proto to satype */ 7228 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 7229 SAHTREE_UNLOCK(); 7230 ipseclog((LOG_DEBUG, "%s: there was invalid proto in " 7231 "SAD.\n", __func__)); 7232 return key_senderror(so, m, EINVAL); 7233 } 7234 7235 for (stateidx = 0; 7236 stateidx < _ARRAYLEN(saorder_state_any); 7237 stateidx++) { 7238 state = saorder_state_any[stateidx]; 7239 LIST_FOREACH(sav, &sah->savtree[state], chain) { 7240 n = key_setdumpsa(sav, SADB_DUMP, satype, 7241 --cnt, mhp->msg->sadb_msg_pid); 7242 if (!n) { 7243 SAHTREE_UNLOCK(); 7244 return key_senderror(so, m, ENOBUFS); 7245 } 7246 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 7247 } 7248 } 7249 } 7250 SAHTREE_UNLOCK(); 7251 7252 m_freem(m); 7253 return 0; 7254 } 7255 7256 /* 7257 * SADB_X_PROMISC processing 7258 * 7259 * m will always be freed. 7260 */ 7261 static int 7262 key_promisc(so, m, mhp) 7263 struct socket *so; 7264 struct mbuf *m; 7265 const struct sadb_msghdr *mhp; 7266 { 7267 int olen; 7268 7269 IPSEC_ASSERT(so != NULL, ("null socket")); 7270 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7271 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7272 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7273 7274 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7275 7276 if (olen < sizeof(struct sadb_msg)) { 7277 #if 1 7278 return key_senderror(so, m, EINVAL); 7279 #else 7280 m_freem(m); 7281 return 0; 7282 #endif 7283 } else if (olen == sizeof(struct sadb_msg)) { 7284 /* enable/disable promisc mode */ 7285 struct keycb *kp; 7286 7287 if ((kp = (struct keycb *)sotorawcb(so)) == NULL) 7288 return key_senderror(so, m, EINVAL); 7289 mhp->msg->sadb_msg_errno = 0; 7290 switch (mhp->msg->sadb_msg_satype) { 7291 case 0: 7292 case 1: 7293 kp->kp_promisc = mhp->msg->sadb_msg_satype; 7294 break; 7295 default: 7296 return key_senderror(so, m, EINVAL); 7297 } 7298 7299 /* send the original message back to everyone */ 7300 mhp->msg->sadb_msg_errno = 0; 7301 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7302 } else { 7303 /* send packet as is */ 7304 7305 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); 7306 7307 /* TODO: if sadb_msg_seq is specified, send to specific pid */ 7308 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7309 } 7310 } 7311 7312 static int (*key_typesw[]) __P((struct socket *, struct mbuf *, 7313 const struct sadb_msghdr *)) = { 7314 NULL, /* SADB_RESERVED */ 7315 key_getspi, /* SADB_GETSPI */ 7316 key_update, /* SADB_UPDATE */ 7317 key_add, /* SADB_ADD */ 7318 key_delete, /* SADB_DELETE */ 7319 key_get, /* SADB_GET */ 7320 key_acquire2, /* SADB_ACQUIRE */ 7321 key_register, /* SADB_REGISTER */ 7322 NULL, /* SADB_EXPIRE */ 7323 key_flush, /* SADB_FLUSH */ 7324 key_dump, /* SADB_DUMP */ 7325 key_promisc, /* SADB_X_PROMISC */ 7326 NULL, /* SADB_X_PCHANGE */ 7327 key_spdadd, /* SADB_X_SPDUPDATE */ 7328 key_spdadd, /* SADB_X_SPDADD */ 7329 key_spddelete, /* SADB_X_SPDDELETE */ 7330 key_spdget, /* SADB_X_SPDGET */ 7331 NULL, /* SADB_X_SPDACQUIRE */ 7332 key_spddump, /* SADB_X_SPDDUMP */ 7333 key_spdflush, /* SADB_X_SPDFLUSH */ 7334 key_spdadd, /* SADB_X_SPDSETIDX */ 7335 NULL, /* SADB_X_SPDEXPIRE */ 7336 key_spddelete2, /* SADB_X_SPDDELETE2 */ 7337 }; 7338 7339 /* 7340 * parse sadb_msg buffer to process PFKEYv2, 7341 * and create a data to response if needed. 7342 * I think to be dealed with mbuf directly. 7343 * IN: 7344 * msgp : pointer to pointer to a received buffer pulluped. 7345 * This is rewrited to response. 7346 * so : pointer to socket. 7347 * OUT: 7348 * length for buffer to send to user process. 7349 */ 7350 int 7351 key_parse(m, so) 7352 struct mbuf *m; 7353 struct socket *so; 7354 { 7355 INIT_VNET_IPSEC(curvnet); 7356 struct sadb_msg *msg; 7357 struct sadb_msghdr mh; 7358 u_int orglen; 7359 int error; 7360 int target; 7361 7362 IPSEC_ASSERT(so != NULL, ("null socket")); 7363 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7364 7365 #if 0 /*kdebug_sadb assumes msg in linear buffer*/ 7366 KEYDEBUG(KEYDEBUG_KEY_DUMP, 7367 ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__)); 7368 kdebug_sadb(msg)); 7369 #endif 7370 7371 if (m->m_len < sizeof(struct sadb_msg)) { 7372 m = m_pullup(m, sizeof(struct sadb_msg)); 7373 if (!m) 7374 return ENOBUFS; 7375 } 7376 msg = mtod(m, struct sadb_msg *); 7377 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); 7378 target = KEY_SENDUP_ONE; 7379 7380 if ((m->m_flags & M_PKTHDR) == 0 || 7381 m->m_pkthdr.len != m->m_pkthdr.len) { 7382 ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__)); 7383 V_pfkeystat.out_invlen++; 7384 error = EINVAL; 7385 goto senderror; 7386 } 7387 7388 if (msg->sadb_msg_version != PF_KEY_V2) { 7389 ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n", 7390 __func__, msg->sadb_msg_version)); 7391 V_pfkeystat.out_invver++; 7392 error = EINVAL; 7393 goto senderror; 7394 } 7395 7396 if (msg->sadb_msg_type > SADB_MAX) { 7397 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 7398 __func__, msg->sadb_msg_type)); 7399 V_pfkeystat.out_invmsgtype++; 7400 error = EINVAL; 7401 goto senderror; 7402 } 7403 7404 /* for old-fashioned code - should be nuked */ 7405 if (m->m_pkthdr.len > MCLBYTES) { 7406 m_freem(m); 7407 return ENOBUFS; 7408 } 7409 if (m->m_next) { 7410 struct mbuf *n; 7411 7412 MGETHDR(n, M_DONTWAIT, MT_DATA); 7413 if (n && m->m_pkthdr.len > MHLEN) { 7414 MCLGET(n, M_DONTWAIT); 7415 if ((n->m_flags & M_EXT) == 0) { 7416 m_free(n); 7417 n = NULL; 7418 } 7419 } 7420 if (!n) { 7421 m_freem(m); 7422 return ENOBUFS; 7423 } 7424 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t)); 7425 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; 7426 n->m_next = NULL; 7427 m_freem(m); 7428 m = n; 7429 } 7430 7431 /* align the mbuf chain so that extensions are in contiguous region. */ 7432 error = key_align(m, &mh); 7433 if (error) 7434 return error; 7435 7436 msg = mh.msg; 7437 7438 /* check SA type */ 7439 switch (msg->sadb_msg_satype) { 7440 case SADB_SATYPE_UNSPEC: 7441 switch (msg->sadb_msg_type) { 7442 case SADB_GETSPI: 7443 case SADB_UPDATE: 7444 case SADB_ADD: 7445 case SADB_DELETE: 7446 case SADB_GET: 7447 case SADB_ACQUIRE: 7448 case SADB_EXPIRE: 7449 ipseclog((LOG_DEBUG, "%s: must specify satype " 7450 "when msg type=%u.\n", __func__, 7451 msg->sadb_msg_type)); 7452 V_pfkeystat.out_invsatype++; 7453 error = EINVAL; 7454 goto senderror; 7455 } 7456 break; 7457 case SADB_SATYPE_AH: 7458 case SADB_SATYPE_ESP: 7459 case SADB_X_SATYPE_IPCOMP: 7460 case SADB_X_SATYPE_TCPSIGNATURE: 7461 switch (msg->sadb_msg_type) { 7462 case SADB_X_SPDADD: 7463 case SADB_X_SPDDELETE: 7464 case SADB_X_SPDGET: 7465 case SADB_X_SPDDUMP: 7466 case SADB_X_SPDFLUSH: 7467 case SADB_X_SPDSETIDX: 7468 case SADB_X_SPDUPDATE: 7469 case SADB_X_SPDDELETE2: 7470 ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n", 7471 __func__, msg->sadb_msg_type)); 7472 V_pfkeystat.out_invsatype++; 7473 error = EINVAL; 7474 goto senderror; 7475 } 7476 break; 7477 case SADB_SATYPE_RSVP: 7478 case SADB_SATYPE_OSPFV2: 7479 case SADB_SATYPE_RIPV2: 7480 case SADB_SATYPE_MIP: 7481 ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n", 7482 __func__, msg->sadb_msg_satype)); 7483 V_pfkeystat.out_invsatype++; 7484 error = EOPNOTSUPP; 7485 goto senderror; 7486 case 1: /* XXX: What does it do? */ 7487 if (msg->sadb_msg_type == SADB_X_PROMISC) 7488 break; 7489 /*FALLTHROUGH*/ 7490 default: 7491 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 7492 __func__, msg->sadb_msg_satype)); 7493 V_pfkeystat.out_invsatype++; 7494 error = EINVAL; 7495 goto senderror; 7496 } 7497 7498 /* check field of upper layer protocol and address family */ 7499 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL 7500 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { 7501 struct sadb_address *src0, *dst0; 7502 u_int plen; 7503 7504 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]); 7505 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]); 7506 7507 /* check upper layer protocol */ 7508 if (src0->sadb_address_proto != dst0->sadb_address_proto) { 7509 ipseclog((LOG_DEBUG, "%s: upper layer protocol " 7510 "mismatched.\n", __func__)); 7511 V_pfkeystat.out_invaddr++; 7512 error = EINVAL; 7513 goto senderror; 7514 } 7515 7516 /* check family */ 7517 if (PFKEY_ADDR_SADDR(src0)->sa_family != 7518 PFKEY_ADDR_SADDR(dst0)->sa_family) { 7519 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 7520 __func__)); 7521 V_pfkeystat.out_invaddr++; 7522 error = EINVAL; 7523 goto senderror; 7524 } 7525 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7526 PFKEY_ADDR_SADDR(dst0)->sa_len) { 7527 ipseclog((LOG_DEBUG, "%s: address struct size " 7528 "mismatched.\n", __func__)); 7529 V_pfkeystat.out_invaddr++; 7530 error = EINVAL; 7531 goto senderror; 7532 } 7533 7534 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7535 case AF_INET: 7536 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7537 sizeof(struct sockaddr_in)) { 7538 V_pfkeystat.out_invaddr++; 7539 error = EINVAL; 7540 goto senderror; 7541 } 7542 break; 7543 case AF_INET6: 7544 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7545 sizeof(struct sockaddr_in6)) { 7546 V_pfkeystat.out_invaddr++; 7547 error = EINVAL; 7548 goto senderror; 7549 } 7550 break; 7551 default: 7552 ipseclog((LOG_DEBUG, "%s: unsupported address family\n", 7553 __func__)); 7554 V_pfkeystat.out_invaddr++; 7555 error = EAFNOSUPPORT; 7556 goto senderror; 7557 } 7558 7559 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7560 case AF_INET: 7561 plen = sizeof(struct in_addr) << 3; 7562 break; 7563 case AF_INET6: 7564 plen = sizeof(struct in6_addr) << 3; 7565 break; 7566 default: 7567 plen = 0; /*fool gcc*/ 7568 break; 7569 } 7570 7571 /* check max prefix length */ 7572 if (src0->sadb_address_prefixlen > plen || 7573 dst0->sadb_address_prefixlen > plen) { 7574 ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n", 7575 __func__)); 7576 V_pfkeystat.out_invaddr++; 7577 error = EINVAL; 7578 goto senderror; 7579 } 7580 7581 /* 7582 * prefixlen == 0 is valid because there can be a case when 7583 * all addresses are matched. 7584 */ 7585 } 7586 7587 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) || 7588 key_typesw[msg->sadb_msg_type] == NULL) { 7589 V_pfkeystat.out_invmsgtype++; 7590 error = EINVAL; 7591 goto senderror; 7592 } 7593 7594 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh); 7595 7596 senderror: 7597 msg->sadb_msg_errno = error; 7598 return key_sendup_mbuf(so, m, target); 7599 } 7600 7601 static int 7602 key_senderror(so, m, code) 7603 struct socket *so; 7604 struct mbuf *m; 7605 int code; 7606 { 7607 struct sadb_msg *msg; 7608 7609 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 7610 ("mbuf too small, len %u", m->m_len)); 7611 7612 msg = mtod(m, struct sadb_msg *); 7613 msg->sadb_msg_errno = code; 7614 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 7615 } 7616 7617 /* 7618 * set the pointer to each header into message buffer. 7619 * m will be freed on error. 7620 * XXX larger-than-MCLBYTES extension? 7621 */ 7622 static int 7623 key_align(m, mhp) 7624 struct mbuf *m; 7625 struct sadb_msghdr *mhp; 7626 { 7627 INIT_VNET_IPSEC(curvnet); 7628 struct mbuf *n; 7629 struct sadb_ext *ext; 7630 size_t off, end; 7631 int extlen; 7632 int toff; 7633 7634 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7635 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7636 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 7637 ("mbuf too small, len %u", m->m_len)); 7638 7639 /* initialize */ 7640 bzero(mhp, sizeof(*mhp)); 7641 7642 mhp->msg = mtod(m, struct sadb_msg *); 7643 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */ 7644 7645 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7646 extlen = end; /*just in case extlen is not updated*/ 7647 for (off = sizeof(struct sadb_msg); off < end; off += extlen) { 7648 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); 7649 if (!n) { 7650 /* m is already freed */ 7651 return ENOBUFS; 7652 } 7653 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 7654 7655 /* set pointer */ 7656 switch (ext->sadb_ext_type) { 7657 case SADB_EXT_SA: 7658 case SADB_EXT_ADDRESS_SRC: 7659 case SADB_EXT_ADDRESS_DST: 7660 case SADB_EXT_ADDRESS_PROXY: 7661 case SADB_EXT_LIFETIME_CURRENT: 7662 case SADB_EXT_LIFETIME_HARD: 7663 case SADB_EXT_LIFETIME_SOFT: 7664 case SADB_EXT_KEY_AUTH: 7665 case SADB_EXT_KEY_ENCRYPT: 7666 case SADB_EXT_IDENTITY_SRC: 7667 case SADB_EXT_IDENTITY_DST: 7668 case SADB_EXT_SENSITIVITY: 7669 case SADB_EXT_PROPOSAL: 7670 case SADB_EXT_SUPPORTED_AUTH: 7671 case SADB_EXT_SUPPORTED_ENCRYPT: 7672 case SADB_EXT_SPIRANGE: 7673 case SADB_X_EXT_POLICY: 7674 case SADB_X_EXT_SA2: 7675 #ifdef IPSEC_NAT_T 7676 case SADB_X_EXT_NAT_T_TYPE: 7677 case SADB_X_EXT_NAT_T_SPORT: 7678 case SADB_X_EXT_NAT_T_DPORT: 7679 case SADB_X_EXT_NAT_T_OAI: 7680 case SADB_X_EXT_NAT_T_OAR: 7681 case SADB_X_EXT_NAT_T_FRAG: 7682 #endif 7683 /* duplicate check */ 7684 /* 7685 * XXX Are there duplication payloads of either 7686 * KEY_AUTH or KEY_ENCRYPT ? 7687 */ 7688 if (mhp->ext[ext->sadb_ext_type] != NULL) { 7689 ipseclog((LOG_DEBUG, "%s: duplicate ext_type " 7690 "%u\n", __func__, ext->sadb_ext_type)); 7691 m_freem(m); 7692 V_pfkeystat.out_dupext++; 7693 return EINVAL; 7694 } 7695 break; 7696 default: 7697 ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n", 7698 __func__, ext->sadb_ext_type)); 7699 m_freem(m); 7700 V_pfkeystat.out_invexttype++; 7701 return EINVAL; 7702 } 7703 7704 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); 7705 7706 if (key_validate_ext(ext, extlen)) { 7707 m_freem(m); 7708 V_pfkeystat.out_invlen++; 7709 return EINVAL; 7710 } 7711 7712 n = m_pulldown(m, off, extlen, &toff); 7713 if (!n) { 7714 /* m is already freed */ 7715 return ENOBUFS; 7716 } 7717 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 7718 7719 mhp->ext[ext->sadb_ext_type] = ext; 7720 mhp->extoff[ext->sadb_ext_type] = off; 7721 mhp->extlen[ext->sadb_ext_type] = extlen; 7722 } 7723 7724 if (off != end) { 7725 m_freem(m); 7726 V_pfkeystat.out_invlen++; 7727 return EINVAL; 7728 } 7729 7730 return 0; 7731 } 7732 7733 static int 7734 key_validate_ext(ext, len) 7735 const struct sadb_ext *ext; 7736 int len; 7737 { 7738 const struct sockaddr *sa; 7739 enum { NONE, ADDR } checktype = NONE; 7740 int baselen = 0; 7741 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); 7742 7743 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) 7744 return EINVAL; 7745 7746 /* if it does not match minimum/maximum length, bail */ 7747 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) || 7748 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0])) 7749 return EINVAL; 7750 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) 7751 return EINVAL; 7752 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) 7753 return EINVAL; 7754 7755 /* more checks based on sadb_ext_type XXX need more */ 7756 switch (ext->sadb_ext_type) { 7757 case SADB_EXT_ADDRESS_SRC: 7758 case SADB_EXT_ADDRESS_DST: 7759 case SADB_EXT_ADDRESS_PROXY: 7760 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); 7761 checktype = ADDR; 7762 break; 7763 case SADB_EXT_IDENTITY_SRC: 7764 case SADB_EXT_IDENTITY_DST: 7765 if (((const struct sadb_ident *)ext)->sadb_ident_type == 7766 SADB_X_IDENTTYPE_ADDR) { 7767 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); 7768 checktype = ADDR; 7769 } else 7770 checktype = NONE; 7771 break; 7772 default: 7773 checktype = NONE; 7774 break; 7775 } 7776 7777 switch (checktype) { 7778 case NONE: 7779 break; 7780 case ADDR: 7781 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); 7782 if (len < baselen + sal) 7783 return EINVAL; 7784 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) 7785 return EINVAL; 7786 break; 7787 } 7788 7789 return 0; 7790 } 7791 7792 void 7793 key_init(void) 7794 { 7795 INIT_VNET_IPSEC(curvnet); 7796 int i; 7797 7798 V_key_debug_level = 0; 7799 V_key_spi_trycnt = 1000; 7800 V_key_spi_minval = 0x100; 7801 V_key_spi_maxval = 0x0fffffff; /* XXX */ 7802 V_policy_id = 0; 7803 V_key_int_random = 60; /*interval to initialize randseed,1(m)*/ 7804 V_key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/ 7805 V_key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/ 7806 V_key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/ 7807 V_key_preferred_oldsa = 1; /* preferred old sa rather than new sa*/ 7808 7809 V_acq_seq = 0; 7810 7811 V_ipsec_esp_keymin = 256; 7812 V_ipsec_esp_auth = 0; 7813 V_ipsec_ah_keymin = 128; 7814 7815 for (i = 0; i < IPSEC_DIR_MAX; i++) 7816 LIST_INIT(&V_sptree[i]); 7817 7818 LIST_INIT(&V_sahtree); 7819 7820 for (i = 0; i <= SADB_SATYPE_MAX; i++) 7821 LIST_INIT(&V_regtree[i]); 7822 7823 LIST_INIT(&V_acqtree); 7824 LIST_INIT(&V_spacqtree); 7825 7826 /* system default */ 7827 V_ip4_def_policy.policy = IPSEC_POLICY_NONE; 7828 V_ip4_def_policy.refcnt++; /*never reclaim this*/ 7829 7830 if (!IS_DEFAULT_VNET(curvnet)) 7831 return; 7832 7833 SPTREE_LOCK_INIT(); 7834 REGTREE_LOCK_INIT(); 7835 SAHTREE_LOCK_INIT(); 7836 ACQ_LOCK_INIT(); 7837 SPACQ_LOCK_INIT(); 7838 7839 #ifndef IPSEC_DEBUG2 7840 timeout((void *)key_timehandler, (void *)0, hz); 7841 #endif /*IPSEC_DEBUG2*/ 7842 7843 /* initialize key statistics */ 7844 keystat.getspi_count = 1; 7845 7846 printf("IPsec: Initialized Security Association Processing.\n"); 7847 } 7848 7849 #ifdef VIMAGE 7850 void 7851 key_destroy(void) 7852 { 7853 INIT_VNET_IPSEC(curvnet); 7854 struct secpolicy *sp, *nextsp; 7855 struct secspacq *acq, *nextacq; 7856 struct secashead *sah, *nextsah; 7857 struct secreg *reg; 7858 int i; 7859 7860 SPTREE_LOCK(); 7861 for (i = 0; i < IPSEC_DIR_MAX; i++) { 7862 for (sp = LIST_FIRST(&V_sptree[i]); 7863 sp != NULL; sp = nextsp) { 7864 nextsp = LIST_NEXT(sp, chain); 7865 if (__LIST_CHAINED(sp)) { 7866 LIST_REMOVE(sp, chain); 7867 free(sp, M_IPSEC_SP); 7868 } 7869 } 7870 } 7871 SPTREE_UNLOCK(); 7872 7873 SAHTREE_LOCK(); 7874 for (sah = LIST_FIRST(&V_sahtree); sah != NULL; sah = nextsah) { 7875 nextsah = LIST_NEXT(sah, chain); 7876 if (__LIST_CHAINED(sah)) { 7877 LIST_REMOVE(sah, chain); 7878 free(sah, M_IPSEC_SAH); 7879 } 7880 } 7881 SAHTREE_UNLOCK(); 7882 7883 REGTREE_LOCK(); 7884 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 7885 LIST_FOREACH(reg, &V_regtree[i], chain) { 7886 if (__LIST_CHAINED(reg)) { 7887 LIST_REMOVE(reg, chain); 7888 free(reg, M_IPSEC_SAR); 7889 break; 7890 } 7891 } 7892 } 7893 REGTREE_UNLOCK(); 7894 7895 ACQ_LOCK(); 7896 for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) { 7897 nextacq = LIST_NEXT(acq, chain); 7898 if (__LIST_CHAINED(acq)) { 7899 LIST_REMOVE(acq, chain); 7900 free(acq, M_IPSEC_SAQ); 7901 } 7902 } 7903 ACQ_UNLOCK(); 7904 7905 SPACQ_LOCK(); 7906 for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) { 7907 nextacq = LIST_NEXT(acq, chain); 7908 if (__LIST_CHAINED(acq)) { 7909 LIST_REMOVE(acq, chain); 7910 free(acq, M_IPSEC_SAQ); 7911 } 7912 } 7913 SPACQ_UNLOCK(); 7914 } 7915 #endif 7916 7917 /* 7918 * XXX: maybe This function is called after INBOUND IPsec processing. 7919 * 7920 * Special check for tunnel-mode packets. 7921 * We must make some checks for consistency between inner and outer IP header. 7922 * 7923 * xxx more checks to be provided 7924 */ 7925 int 7926 key_checktunnelsanity(sav, family, src, dst) 7927 struct secasvar *sav; 7928 u_int family; 7929 caddr_t src; 7930 caddr_t dst; 7931 { 7932 IPSEC_ASSERT(sav->sah != NULL, ("null SA header")); 7933 7934 /* XXX: check inner IP header */ 7935 7936 return 1; 7937 } 7938 7939 /* record data transfer on SA, and update timestamps */ 7940 void 7941 key_sa_recordxfer(sav, m) 7942 struct secasvar *sav; 7943 struct mbuf *m; 7944 { 7945 IPSEC_ASSERT(sav != NULL, ("Null secasvar")); 7946 IPSEC_ASSERT(m != NULL, ("Null mbuf")); 7947 if (!sav->lft_c) 7948 return; 7949 7950 /* 7951 * XXX Currently, there is a difference of bytes size 7952 * between inbound and outbound processing. 7953 */ 7954 sav->lft_c->bytes += m->m_pkthdr.len; 7955 /* to check bytes lifetime is done in key_timehandler(). */ 7956 7957 /* 7958 * We use the number of packets as the unit of 7959 * allocations. We increment the variable 7960 * whenever {esp,ah}_{in,out}put is called. 7961 */ 7962 sav->lft_c->allocations++; 7963 /* XXX check for expires? */ 7964 7965 /* 7966 * NOTE: We record CURRENT usetime by using wall clock, 7967 * in seconds. HARD and SOFT lifetime are measured by the time 7968 * difference (again in seconds) from usetime. 7969 * 7970 * usetime 7971 * v expire expire 7972 * -----+-----+--------+---> t 7973 * <--------------> HARD 7974 * <-----> SOFT 7975 */ 7976 sav->lft_c->usetime = time_second; 7977 /* XXX check for expires? */ 7978 7979 return; 7980 } 7981 7982 /* dumb version */ 7983 void 7984 key_sa_routechange(dst) 7985 struct sockaddr *dst; 7986 { 7987 INIT_VNET_IPSEC(curvnet); 7988 struct secashead *sah; 7989 struct route *ro; 7990 7991 SAHTREE_LOCK(); 7992 LIST_FOREACH(sah, &V_sahtree, chain) { 7993 ro = &sah->sa_route; 7994 if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len 7995 && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) { 7996 RTFREE(ro->ro_rt); 7997 ro->ro_rt = (struct rtentry *)NULL; 7998 } 7999 } 8000 SAHTREE_UNLOCK(); 8001 } 8002 8003 static void 8004 key_sa_chgstate(struct secasvar *sav, u_int8_t state) 8005 { 8006 IPSEC_ASSERT(sav != NULL, ("NULL sav")); 8007 SAHTREE_LOCK_ASSERT(); 8008 8009 if (sav->state != state) { 8010 if (__LIST_CHAINED(sav)) 8011 LIST_REMOVE(sav, chain); 8012 sav->state = state; 8013 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain); 8014 } 8015 } 8016 8017 void 8018 key_sa_stir_iv(sav) 8019 struct secasvar *sav; 8020 { 8021 8022 IPSEC_ASSERT(sav->iv != NULL, ("null IV")); 8023 key_randomfill(sav->iv, sav->ivlen); 8024 } 8025 8026 /* XXX too much? */ 8027 static struct mbuf * 8028 key_alloc_mbuf(l) 8029 int l; 8030 { 8031 struct mbuf *m = NULL, *n; 8032 int len, t; 8033 8034 len = l; 8035 while (len > 0) { 8036 MGET(n, M_DONTWAIT, MT_DATA); 8037 if (n && len > MLEN) 8038 MCLGET(n, M_DONTWAIT); 8039 if (!n) { 8040 m_freem(m); 8041 return NULL; 8042 } 8043 8044 n->m_next = NULL; 8045 n->m_len = 0; 8046 n->m_len = M_TRAILINGSPACE(n); 8047 /* use the bottom of mbuf, hoping we can prepend afterwards */ 8048 if (n->m_len > len) { 8049 t = (n->m_len - len) & ~(sizeof(long) - 1); 8050 n->m_data += t; 8051 n->m_len = len; 8052 } 8053 8054 len -= n->m_len; 8055 8056 if (m) 8057 m_cat(m, n); 8058 else 8059 m = n; 8060 } 8061 8062 return m; 8063 } 8064 8065 /* 8066 * Take one of the kernel's security keys and convert it into a PF_KEY 8067 * structure within an mbuf, suitable for sending up to a waiting 8068 * application in user land. 8069 * 8070 * IN: 8071 * src: A pointer to a kernel security key. 8072 * exttype: Which type of key this is. Refer to the PF_KEY data structures. 8073 * OUT: 8074 * a valid mbuf or NULL indicating an error 8075 * 8076 */ 8077 8078 static struct mbuf * 8079 key_setkey(struct seckey *src, u_int16_t exttype) 8080 { 8081 struct mbuf *m; 8082 struct sadb_key *p; 8083 int len; 8084 8085 if (src == NULL) 8086 return NULL; 8087 8088 len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src)); 8089 m = key_alloc_mbuf(len); 8090 if (m == NULL) 8091 return NULL; 8092 p = mtod(m, struct sadb_key *); 8093 bzero(p, len); 8094 p->sadb_key_len = PFKEY_UNIT64(len); 8095 p->sadb_key_exttype = exttype; 8096 p->sadb_key_bits = src->bits; 8097 bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src)); 8098 8099 return m; 8100 } 8101 8102 /* 8103 * Take one of the kernel's lifetime data structures and convert it 8104 * into a PF_KEY structure within an mbuf, suitable for sending up to 8105 * a waiting application in user land. 8106 * 8107 * IN: 8108 * src: A pointer to a kernel lifetime structure. 8109 * exttype: Which type of lifetime this is. Refer to the PF_KEY 8110 * data structures for more information. 8111 * OUT: 8112 * a valid mbuf or NULL indicating an error 8113 * 8114 */ 8115 8116 static struct mbuf * 8117 key_setlifetime(struct seclifetime *src, u_int16_t exttype) 8118 { 8119 struct mbuf *m = NULL; 8120 struct sadb_lifetime *p; 8121 int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime)); 8122 8123 if (src == NULL) 8124 return NULL; 8125 8126 m = key_alloc_mbuf(len); 8127 if (m == NULL) 8128 return m; 8129 p = mtod(m, struct sadb_lifetime *); 8130 8131 bzero(p, len); 8132 p->sadb_lifetime_len = PFKEY_UNIT64(len); 8133 p->sadb_lifetime_exttype = exttype; 8134 p->sadb_lifetime_allocations = src->allocations; 8135 p->sadb_lifetime_bytes = src->bytes; 8136 p->sadb_lifetime_addtime = src->addtime; 8137 p->sadb_lifetime_usetime = src->usetime; 8138 8139 return m; 8140 8141 } 8142