xref: /freebsd/sys/netipsec/key.c (revision 5861f9665471e98e544f6fa3ce73c4912229ff82)
1 /*	$FreeBSD$	*/
2 /*	$KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $	*/
3 
4 /*-
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * This code is referd to RFC 2367
35  */
36 
37 #include "opt_inet.h"
38 #include "opt_inet6.h"
39 #include "opt_ipsec.h"
40 
41 #include <sys/types.h>
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/mbuf.h>
48 #include <sys/domain.h>
49 #include <sys/protosw.h>
50 #include <sys/malloc.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/sysctl.h>
54 #include <sys/errno.h>
55 #include <sys/proc.h>
56 #include <sys/queue.h>
57 #include <sys/refcount.h>
58 #include <sys/syslog.h>
59 #include <sys/vimage.h>
60 
61 #include <net/if.h>
62 #include <net/route.h>
63 #include <net/raw_cb.h>
64 
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/ip.h>
68 #include <netinet/in_var.h>
69 
70 #ifdef INET6
71 #include <netinet/ip6.h>
72 #include <netinet6/in6_var.h>
73 #include <netinet6/ip6_var.h>
74 #endif /* INET6 */
75 
76 #ifdef INET
77 #include <netinet/in_pcb.h>
78 #include <netinet/vinet.h>
79 #endif
80 #ifdef INET6
81 #include <netinet6/in6_pcb.h>
82 #include <netinet6/vinet6.h>
83 #endif /* INET6 */
84 
85 #include <net/pfkeyv2.h>
86 #include <netipsec/keydb.h>
87 #include <netipsec/key.h>
88 #include <netipsec/keysock.h>
89 #include <netipsec/key_debug.h>
90 
91 #include <netipsec/ipsec.h>
92 #ifdef INET6
93 #include <netipsec/ipsec6.h>
94 #endif
95 
96 #include <netipsec/xform.h>
97 
98 #include <machine/stdarg.h>
99 
100 /* randomness */
101 #include <sys/random.h>
102 #include <sys/vimage.h>
103 
104 #define FULLMASK	0xff
105 #define	_BITS(bytes)	((bytes) << 3)
106 
107 /*
108  * Note on SA reference counting:
109  * - SAs that are not in DEAD state will have (total external reference + 1)
110  *   following value in reference count field.  they cannot be freed and are
111  *   referenced from SA header.
112  * - SAs that are in DEAD state will have (total external reference)
113  *   in reference count field.  they are ready to be freed.  reference from
114  *   SA header will be removed in key_delsav(), when the reference count
115  *   field hits 0 (= no external reference other than from SA header.
116  */
117 
118 #ifdef VIMAGE_GLOBALS
119 u_int32_t key_debug_level;
120 static u_int key_spi_trycnt;
121 static u_int32_t key_spi_minval;
122 static u_int32_t key_spi_maxval;
123 static u_int32_t policy_id;
124 static u_int key_int_random;
125 static u_int key_larval_lifetime;
126 static int key_blockacq_count;
127 static int key_blockacq_lifetime;
128 static int key_preferred_oldsa;
129 
130 static u_int32_t acq_seq;
131 
132 static int ipsec_esp_keymin;
133 static int ipsec_esp_auth;
134 static int ipsec_ah_keymin;
135 
136 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX];	/* SPD */
137 static LIST_HEAD(_sahtree, secashead) sahtree;			/* SAD */
138 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1];
139 static LIST_HEAD(_acqtree, secacq) acqtree;		/* acquiring list */
140 static LIST_HEAD(_spacqtree, secspacq) spacqtree;	/* SP acquiring list */
141 #endif /* VIMAGE_GLOBALS */
142 
143 static struct mtx sptree_lock;
144 #define	SPTREE_LOCK_INIT() \
145 	mtx_init(&sptree_lock, "sptree", \
146 		"fast ipsec security policy database", MTX_DEF)
147 #define	SPTREE_LOCK_DESTROY()	mtx_destroy(&sptree_lock)
148 #define	SPTREE_LOCK()		mtx_lock(&sptree_lock)
149 #define	SPTREE_UNLOCK()	mtx_unlock(&sptree_lock)
150 #define	SPTREE_LOCK_ASSERT()	mtx_assert(&sptree_lock, MA_OWNED)
151 
152 static struct mtx sahtree_lock;
153 #define	SAHTREE_LOCK_INIT() \
154 	mtx_init(&sahtree_lock, "sahtree", \
155 		"fast ipsec security association database", MTX_DEF)
156 #define	SAHTREE_LOCK_DESTROY()	mtx_destroy(&sahtree_lock)
157 #define	SAHTREE_LOCK()		mtx_lock(&sahtree_lock)
158 #define	SAHTREE_UNLOCK()	mtx_unlock(&sahtree_lock)
159 #define	SAHTREE_LOCK_ASSERT()	mtx_assert(&sahtree_lock, MA_OWNED)
160 
161 							/* registed list */
162 static struct mtx regtree_lock;
163 #define	REGTREE_LOCK_INIT() \
164 	mtx_init(&regtree_lock, "regtree", "fast ipsec regtree", MTX_DEF)
165 #define	REGTREE_LOCK_DESTROY()	mtx_destroy(&regtree_lock)
166 #define	REGTREE_LOCK()		mtx_lock(&regtree_lock)
167 #define	REGTREE_UNLOCK()	mtx_unlock(&regtree_lock)
168 #define	REGTREE_LOCK_ASSERT()	mtx_assert(&regtree_lock, MA_OWNED)
169 
170 static struct mtx acq_lock;
171 #define	ACQ_LOCK_INIT() \
172 	mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF)
173 #define	ACQ_LOCK_DESTROY()	mtx_destroy(&acq_lock)
174 #define	ACQ_LOCK()		mtx_lock(&acq_lock)
175 #define	ACQ_UNLOCK()		mtx_unlock(&acq_lock)
176 #define	ACQ_LOCK_ASSERT()	mtx_assert(&acq_lock, MA_OWNED)
177 
178 static struct mtx spacq_lock;
179 #define	SPACQ_LOCK_INIT() \
180 	mtx_init(&spacq_lock, "spacqtree", \
181 		"fast ipsec security policy acquire list", MTX_DEF)
182 #define	SPACQ_LOCK_DESTROY()	mtx_destroy(&spacq_lock)
183 #define	SPACQ_LOCK()		mtx_lock(&spacq_lock)
184 #define	SPACQ_UNLOCK()		mtx_unlock(&spacq_lock)
185 #define	SPACQ_LOCK_ASSERT()	mtx_assert(&spacq_lock, MA_OWNED)
186 
187 /* search order for SAs */
188 static const u_int saorder_state_valid_prefer_old[] = {
189 	SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
190 };
191 static const u_int saorder_state_valid_prefer_new[] = {
192 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
193 };
194 static const u_int saorder_state_alive[] = {
195 	/* except DEAD */
196 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
197 };
198 static const u_int saorder_state_any[] = {
199 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
200 	SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
201 };
202 
203 static const int minsize[] = {
204 	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
205 	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
206 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
207 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
208 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
209 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_SRC */
210 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_DST */
211 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_PROXY */
212 	sizeof(struct sadb_key),	/* SADB_EXT_KEY_AUTH */
213 	sizeof(struct sadb_key),	/* SADB_EXT_KEY_ENCRYPT */
214 	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_SRC */
215 	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_DST */
216 	sizeof(struct sadb_sens),	/* SADB_EXT_SENSITIVITY */
217 	sizeof(struct sadb_prop),	/* SADB_EXT_PROPOSAL */
218 	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_AUTH */
219 	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_ENCRYPT */
220 	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
221 	0,				/* SADB_X_EXT_KMPRIVATE */
222 	sizeof(struct sadb_x_policy),	/* SADB_X_EXT_POLICY */
223 	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
224 	sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */
225 	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */
226 	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */
227 	sizeof(struct sadb_address),	/* SADB_X_EXT_NAT_T_OAI */
228 	sizeof(struct sadb_address),	/* SADB_X_EXT_NAT_T_OAR */
229 	sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */
230 };
231 static const int maxsize[] = {
232 	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
233 	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
234 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
235 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
236 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
237 	0,				/* SADB_EXT_ADDRESS_SRC */
238 	0,				/* SADB_EXT_ADDRESS_DST */
239 	0,				/* SADB_EXT_ADDRESS_PROXY */
240 	0,				/* SADB_EXT_KEY_AUTH */
241 	0,				/* SADB_EXT_KEY_ENCRYPT */
242 	0,				/* SADB_EXT_IDENTITY_SRC */
243 	0,				/* SADB_EXT_IDENTITY_DST */
244 	0,				/* SADB_EXT_SENSITIVITY */
245 	0,				/* SADB_EXT_PROPOSAL */
246 	0,				/* SADB_EXT_SUPPORTED_AUTH */
247 	0,				/* SADB_EXT_SUPPORTED_ENCRYPT */
248 	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
249 	0,				/* SADB_X_EXT_KMPRIVATE */
250 	0,				/* SADB_X_EXT_POLICY */
251 	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
252 	sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */
253 	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */
254 	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */
255 	0,				/* SADB_X_EXT_NAT_T_OAI */
256 	0,				/* SADB_X_EXT_NAT_T_OAR */
257 	sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */
258 };
259 
260 #ifdef SYSCTL_DECL
261 SYSCTL_DECL(_net_key);
262 #endif
263 
264 SYSCTL_V_INT(V_NET, vnet_ipsec,_net_key, KEYCTL_DEBUG_LEVEL,	debug,
265 	CTLFLAG_RW, key_debug_level,	0,	"");
266 
267 /* max count of trial for the decision of spi value */
268 SYSCTL_V_INT(V_NET, vnet_ipsec,_net_key, KEYCTL_SPI_TRY, spi_trycnt,
269 	CTLFLAG_RW, key_spi_trycnt,	0,	"");
270 
271 /* minimum spi value to allocate automatically. */
272 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_SPI_MIN_VALUE,
273 	spi_minval,	CTLFLAG_RW, key_spi_minval,	0,	"");
274 
275 /* maximun spi value to allocate automatically. */
276 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_SPI_MAX_VALUE,
277 	spi_maxval,	CTLFLAG_RW, key_spi_maxval,	0,	"");
278 
279 /* interval to initialize randseed */
280 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_RANDOM_INT,
281 	int_random,	CTLFLAG_RW, key_int_random,	0,	"");
282 
283 /* lifetime for larval SA */
284 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_LARVAL_LIFETIME,
285 	larval_lifetime, CTLFLAG_RW, key_larval_lifetime,	0,	"");
286 
287 /* counter for blocking to send SADB_ACQUIRE to IKEd */
288 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_BLOCKACQ_COUNT,
289 	blockacq_count,	CTLFLAG_RW, key_blockacq_count,	0,	"");
290 
291 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
292 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_BLOCKACQ_LIFETIME,
293 	blockacq_lifetime, CTLFLAG_RW, key_blockacq_lifetime,	0, "");
294 
295 /* ESP auth */
296 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_ESP_AUTH,	esp_auth,
297 	CTLFLAG_RW, ipsec_esp_auth,	0,	"");
298 
299 /* minimum ESP key length */
300 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_ESP_KEYMIN,
301 	esp_keymin, CTLFLAG_RW, ipsec_esp_keymin,	0,	"");
302 
303 /* minimum AH key length */
304 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_AH_KEYMIN,	ah_keymin,
305 	CTLFLAG_RW, ipsec_ah_keymin,	0,	"");
306 
307 /* perfered old SA rather than new SA */
308 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_PREFERED_OLDSA,
309 	preferred_oldsa, CTLFLAG_RW, key_preferred_oldsa,	0,	"");
310 
311 #define __LIST_CHAINED(elm) \
312 	(!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
313 #define LIST_INSERT_TAIL(head, elm, type, field) \
314 do {\
315 	struct type *curelm = LIST_FIRST(head); \
316 	if (curelm == NULL) {\
317 		LIST_INSERT_HEAD(head, elm, field); \
318 	} else { \
319 		while (LIST_NEXT(curelm, field)) \
320 			curelm = LIST_NEXT(curelm, field);\
321 		LIST_INSERT_AFTER(curelm, elm, field);\
322 	}\
323 } while (0)
324 
325 #define KEY_CHKSASTATE(head, sav, name) \
326 do { \
327 	if ((head) != (sav)) {						\
328 		ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \
329 			(name), (head), (sav)));			\
330 		continue;						\
331 	}								\
332 } while (0)
333 
334 #define KEY_CHKSPDIR(head, sp, name) \
335 do { \
336 	if ((head) != (sp)) {						\
337 		ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \
338 			"anyway continue.\n",				\
339 			(name), (head), (sp)));				\
340 	}								\
341 } while (0)
342 
343 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association");
344 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head");
345 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy");
346 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request");
347 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous");
348 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire");
349 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire");
350 
351 /*
352  * set parameters into secpolicyindex buffer.
353  * Must allocate secpolicyindex buffer passed to this function.
354  */
355 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
356 do { \
357 	bzero((idx), sizeof(struct secpolicyindex));                         \
358 	(idx)->dir = (_dir);                                                 \
359 	(idx)->prefs = (ps);                                                 \
360 	(idx)->prefd = (pd);                                                 \
361 	(idx)->ul_proto = (ulp);                                             \
362 	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
363 	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
364 } while (0)
365 
366 /*
367  * set parameters into secasindex buffer.
368  * Must allocate secasindex buffer before calling this function.
369  */
370 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \
371 do { \
372 	bzero((idx), sizeof(struct secasindex));                             \
373 	(idx)->proto = (p);                                                  \
374 	(idx)->mode = (m);                                                   \
375 	(idx)->reqid = (r);                                                  \
376 	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
377 	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
378 } while (0)
379 
380 /* key statistics */
381 struct _keystat {
382 	u_long getspi_count; /* the avarage of count to try to get new SPI */
383 } keystat;
384 
385 struct sadb_msghdr {
386 	struct sadb_msg *msg;
387 	struct sadb_ext *ext[SADB_EXT_MAX + 1];
388 	int extoff[SADB_EXT_MAX + 1];
389 	int extlen[SADB_EXT_MAX + 1];
390 };
391 
392 static struct secasvar *key_allocsa_policy __P((const struct secasindex *));
393 static void key_freesp_so __P((struct secpolicy **));
394 static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int));
395 static void key_delsp __P((struct secpolicy *));
396 static struct secpolicy *key_getsp __P((struct secpolicyindex *));
397 static void _key_delsp(struct secpolicy *sp);
398 static struct secpolicy *key_getspbyid __P((u_int32_t));
399 static u_int32_t key_newreqid __P((void));
400 static struct mbuf *key_gather_mbuf __P((struct mbuf *,
401 	const struct sadb_msghdr *, int, int, ...));
402 static int key_spdadd __P((struct socket *, struct mbuf *,
403 	const struct sadb_msghdr *));
404 static u_int32_t key_getnewspid __P((void));
405 static int key_spddelete __P((struct socket *, struct mbuf *,
406 	const struct sadb_msghdr *));
407 static int key_spddelete2 __P((struct socket *, struct mbuf *,
408 	const struct sadb_msghdr *));
409 static int key_spdget __P((struct socket *, struct mbuf *,
410 	const struct sadb_msghdr *));
411 static int key_spdflush __P((struct socket *, struct mbuf *,
412 	const struct sadb_msghdr *));
413 static int key_spddump __P((struct socket *, struct mbuf *,
414 	const struct sadb_msghdr *));
415 static struct mbuf *key_setdumpsp __P((struct secpolicy *,
416 	u_int8_t, u_int32_t, u_int32_t));
417 static u_int key_getspreqmsglen __P((struct secpolicy *));
418 static int key_spdexpire __P((struct secpolicy *));
419 static struct secashead *key_newsah __P((struct secasindex *));
420 static void key_delsah __P((struct secashead *));
421 static struct secasvar *key_newsav __P((struct mbuf *,
422 	const struct sadb_msghdr *, struct secashead *, int *,
423 	const char*, int));
424 #define	KEY_NEWSAV(m, sadb, sah, e)				\
425 	key_newsav(m, sadb, sah, e, __FILE__, __LINE__)
426 static void key_delsav __P((struct secasvar *));
427 static struct secashead *key_getsah __P((struct secasindex *));
428 static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t));
429 static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t));
430 static int key_setsaval __P((struct secasvar *, struct mbuf *,
431 	const struct sadb_msghdr *));
432 static int key_mature __P((struct secasvar *));
433 static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t,
434 	u_int8_t, u_int32_t, u_int32_t));
435 static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t,
436 	u_int32_t, pid_t, u_int16_t));
437 static struct mbuf *key_setsadbsa __P((struct secasvar *));
438 static struct mbuf *key_setsadbaddr __P((u_int16_t,
439 	const struct sockaddr *, u_int8_t, u_int16_t));
440 #ifdef IPSEC_NAT_T
441 static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t);
442 static struct mbuf *key_setsadbxtype(u_int16_t);
443 #endif
444 static void key_porttosaddr(struct sockaddr *, u_int16_t);
445 #define	KEY_PORTTOSADDR(saddr, port)				\
446 	key_porttosaddr((struct sockaddr *)(saddr), (port))
447 static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t));
448 static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t,
449 	u_int32_t));
450 static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int,
451 				     struct malloc_type *);
452 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src,
453 					    struct malloc_type *type);
454 #ifdef INET6
455 static int key_ismyaddr6 __P((struct sockaddr_in6 *));
456 #endif
457 
458 /* flags for key_cmpsaidx() */
459 #define CMP_HEAD	1	/* protocol, addresses. */
460 #define CMP_MODE_REQID	2	/* additionally HEAD, reqid, mode. */
461 #define CMP_REQID	3	/* additionally HEAD, reaid. */
462 #define CMP_EXACTLY	4	/* all elements. */
463 static int key_cmpsaidx
464 	__P((const struct secasindex *, const struct secasindex *, int));
465 
466 static int key_cmpspidx_exactly
467 	__P((struct secpolicyindex *, struct secpolicyindex *));
468 static int key_cmpspidx_withmask
469 	__P((struct secpolicyindex *, struct secpolicyindex *));
470 static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int));
471 static int key_bbcmp __P((const void *, const void *, u_int));
472 static u_int16_t key_satype2proto __P((u_int8_t));
473 static u_int8_t key_proto2satype __P((u_int16_t));
474 
475 static int key_getspi __P((struct socket *, struct mbuf *,
476 	const struct sadb_msghdr *));
477 static u_int32_t key_do_getnewspi __P((struct sadb_spirange *,
478 					struct secasindex *));
479 static int key_update __P((struct socket *, struct mbuf *,
480 	const struct sadb_msghdr *));
481 #ifdef IPSEC_DOSEQCHECK
482 static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t));
483 #endif
484 static int key_add __P((struct socket *, struct mbuf *,
485 	const struct sadb_msghdr *));
486 static int key_setident __P((struct secashead *, struct mbuf *,
487 	const struct sadb_msghdr *));
488 static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *,
489 	const struct sadb_msghdr *));
490 static int key_delete __P((struct socket *, struct mbuf *,
491 	const struct sadb_msghdr *));
492 static int key_get __P((struct socket *, struct mbuf *,
493 	const struct sadb_msghdr *));
494 
495 static void key_getcomb_setlifetime __P((struct sadb_comb *));
496 static struct mbuf *key_getcomb_esp __P((void));
497 static struct mbuf *key_getcomb_ah __P((void));
498 static struct mbuf *key_getcomb_ipcomp __P((void));
499 static struct mbuf *key_getprop __P((const struct secasindex *));
500 
501 static int key_acquire __P((const struct secasindex *, struct secpolicy *));
502 static struct secacq *key_newacq __P((const struct secasindex *));
503 static struct secacq *key_getacq __P((const struct secasindex *));
504 static struct secacq *key_getacqbyseq __P((u_int32_t));
505 static struct secspacq *key_newspacq __P((struct secpolicyindex *));
506 static struct secspacq *key_getspacq __P((struct secpolicyindex *));
507 static int key_acquire2 __P((struct socket *, struct mbuf *,
508 	const struct sadb_msghdr *));
509 static int key_register __P((struct socket *, struct mbuf *,
510 	const struct sadb_msghdr *));
511 static int key_expire __P((struct secasvar *));
512 static int key_flush __P((struct socket *, struct mbuf *,
513 	const struct sadb_msghdr *));
514 static int key_dump __P((struct socket *, struct mbuf *,
515 	const struct sadb_msghdr *));
516 static int key_promisc __P((struct socket *, struct mbuf *,
517 	const struct sadb_msghdr *));
518 static int key_senderror __P((struct socket *, struct mbuf *, int));
519 static int key_validate_ext __P((const struct sadb_ext *, int));
520 static int key_align __P((struct mbuf *, struct sadb_msghdr *));
521 static struct mbuf *key_setlifetime(struct seclifetime *src,
522 				     u_int16_t exttype);
523 static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype);
524 
525 #if 0
526 static const char *key_getfqdn __P((void));
527 static const char *key_getuserfqdn __P((void));
528 #endif
529 static void key_sa_chgstate __P((struct secasvar *, u_int8_t));
530 static struct mbuf *key_alloc_mbuf __P((int));
531 
532 static __inline void
533 sa_initref(struct secasvar *sav)
534 {
535 
536 	refcount_init(&sav->refcnt, 1);
537 }
538 static __inline void
539 sa_addref(struct secasvar *sav)
540 {
541 
542 	refcount_acquire(&sav->refcnt);
543 	IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow"));
544 }
545 static __inline int
546 sa_delref(struct secasvar *sav)
547 {
548 
549 	IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow"));
550 	return (refcount_release(&sav->refcnt));
551 }
552 
553 #define	SP_ADDREF(p) do {						\
554 	(p)->refcnt++;							\
555 	IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow"));		\
556 } while (0)
557 #define	SP_DELREF(p) do {						\
558 	IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow"));		\
559 	(p)->refcnt--;							\
560 } while (0)
561 
562 
563 /*
564  * Update the refcnt while holding the SPTREE lock.
565  */
566 void
567 key_addref(struct secpolicy *sp)
568 {
569 	SPTREE_LOCK();
570 	SP_ADDREF(sp);
571 	SPTREE_UNLOCK();
572 }
573 
574 /*
575  * Return 0 when there are known to be no SP's for the specified
576  * direction.  Otherwise return 1.  This is used by IPsec code
577  * to optimize performance.
578  */
579 int
580 key_havesp(u_int dir)
581 {
582 	INIT_VNET_IPSEC(curvnet);
583 
584 	return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
585 		LIST_FIRST(&V_sptree[dir]) != NULL : 1);
586 }
587 
588 /* %%% IPsec policy management */
589 /*
590  * allocating a SP for OUTBOUND or INBOUND packet.
591  * Must call key_freesp() later.
592  * OUT:	NULL:	not found
593  *	others:	found and return the pointer.
594  */
595 struct secpolicy *
596 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag)
597 {
598 	INIT_VNET_IPSEC(curvnet);
599 	struct secpolicy *sp;
600 
601 	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
602 	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
603 		("invalid direction %u", dir));
604 
605 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
606 		printf("DP %s from %s:%u\n", __func__, where, tag));
607 
608 	/* get a SP entry */
609 	KEYDEBUG(KEYDEBUG_IPSEC_DATA,
610 		printf("*** objects\n");
611 		kdebug_secpolicyindex(spidx));
612 
613 	SPTREE_LOCK();
614 	LIST_FOREACH(sp, &V_sptree[dir], chain) {
615 		KEYDEBUG(KEYDEBUG_IPSEC_DATA,
616 			printf("*** in SPD\n");
617 			kdebug_secpolicyindex(&sp->spidx));
618 
619 		if (sp->state == IPSEC_SPSTATE_DEAD)
620 			continue;
621 		if (key_cmpspidx_withmask(&sp->spidx, spidx))
622 			goto found;
623 	}
624 	sp = NULL;
625 found:
626 	if (sp) {
627 		/* sanity check */
628 		KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
629 
630 		/* found a SPD entry */
631 		sp->lastused = time_second;
632 		SP_ADDREF(sp);
633 	}
634 	SPTREE_UNLOCK();
635 
636 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
637 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
638 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
639 	return sp;
640 }
641 
642 /*
643  * allocating a SP for OUTBOUND or INBOUND packet.
644  * Must call key_freesp() later.
645  * OUT:	NULL:	not found
646  *	others:	found and return the pointer.
647  */
648 struct secpolicy *
649 key_allocsp2(u_int32_t spi,
650 	     union sockaddr_union *dst,
651 	     u_int8_t proto,
652 	     u_int dir,
653 	     const char* where, int tag)
654 {
655 	INIT_VNET_IPSEC(curvnet);
656 	struct secpolicy *sp;
657 
658 	IPSEC_ASSERT(dst != NULL, ("null dst"));
659 	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
660 		("invalid direction %u", dir));
661 
662 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
663 		printf("DP %s from %s:%u\n", __func__, where, tag));
664 
665 	/* get a SP entry */
666 	KEYDEBUG(KEYDEBUG_IPSEC_DATA,
667 		printf("*** objects\n");
668 		printf("spi %u proto %u dir %u\n", spi, proto, dir);
669 		kdebug_sockaddr(&dst->sa));
670 
671 	SPTREE_LOCK();
672 	LIST_FOREACH(sp, &V_sptree[dir], chain) {
673 		KEYDEBUG(KEYDEBUG_IPSEC_DATA,
674 			printf("*** in SPD\n");
675 			kdebug_secpolicyindex(&sp->spidx));
676 
677 		if (sp->state == IPSEC_SPSTATE_DEAD)
678 			continue;
679 		/* compare simple values, then dst address */
680 		if (sp->spidx.ul_proto != proto)
681 			continue;
682 		/* NB: spi's must exist and match */
683 		if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
684 			continue;
685 		if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0)
686 			goto found;
687 	}
688 	sp = NULL;
689 found:
690 	if (sp) {
691 		/* sanity check */
692 		KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
693 
694 		/* found a SPD entry */
695 		sp->lastused = time_second;
696 		SP_ADDREF(sp);
697 	}
698 	SPTREE_UNLOCK();
699 
700 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
701 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
702 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
703 	return sp;
704 }
705 
706 #if 0
707 /*
708  * return a policy that matches this particular inbound packet.
709  * XXX slow
710  */
711 struct secpolicy *
712 key_gettunnel(const struct sockaddr *osrc,
713 	      const struct sockaddr *odst,
714 	      const struct sockaddr *isrc,
715 	      const struct sockaddr *idst,
716 	      const char* where, int tag)
717 {
718 	INIT_VNET_IPSEC(curvnet);
719 	struct secpolicy *sp;
720 	const int dir = IPSEC_DIR_INBOUND;
721 	struct ipsecrequest *r1, *r2, *p;
722 	struct secpolicyindex spidx;
723 
724 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
725 		printf("DP %s from %s:%u\n", __func__, where, tag));
726 
727 	if (isrc->sa_family != idst->sa_family) {
728 		ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.",
729 			__func__, isrc->sa_family, idst->sa_family));
730 		sp = NULL;
731 		goto done;
732 	}
733 
734 	SPTREE_LOCK();
735 	LIST_FOREACH(sp, &V_sptree[dir], chain) {
736 		if (sp->state == IPSEC_SPSTATE_DEAD)
737 			continue;
738 
739 		r1 = r2 = NULL;
740 		for (p = sp->req; p; p = p->next) {
741 			if (p->saidx.mode != IPSEC_MODE_TUNNEL)
742 				continue;
743 
744 			r1 = r2;
745 			r2 = p;
746 
747 			if (!r1) {
748 				/* here we look at address matches only */
749 				spidx = sp->spidx;
750 				if (isrc->sa_len > sizeof(spidx.src) ||
751 				    idst->sa_len > sizeof(spidx.dst))
752 					continue;
753 				bcopy(isrc, &spidx.src, isrc->sa_len);
754 				bcopy(idst, &spidx.dst, idst->sa_len);
755 				if (!key_cmpspidx_withmask(&sp->spidx, &spidx))
756 					continue;
757 			} else {
758 				if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) ||
759 				    key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0))
760 					continue;
761 			}
762 
763 			if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) ||
764 			    key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0))
765 				continue;
766 
767 			goto found;
768 		}
769 	}
770 	sp = NULL;
771 found:
772 	if (sp) {
773 		sp->lastused = time_second;
774 		SP_ADDREF(sp);
775 	}
776 	SPTREE_UNLOCK();
777 done:
778 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
779 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
780 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
781 	return sp;
782 }
783 #endif
784 
785 /*
786  * allocating an SA entry for an *OUTBOUND* packet.
787  * checking each request entries in SP, and acquire an SA if need.
788  * OUT:	0: there are valid requests.
789  *	ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
790  */
791 int
792 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
793 {
794 	INIT_VNET_IPSEC(curvnet);
795 	u_int level;
796 	int error;
797 
798 	IPSEC_ASSERT(isr != NULL, ("null isr"));
799 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
800 	IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT ||
801 		saidx->mode == IPSEC_MODE_TUNNEL,
802 		("unexpected policy %u", saidx->mode));
803 
804 	/*
805 	 * XXX guard against protocol callbacks from the crypto
806 	 * thread as they reference ipsecrequest.sav which we
807 	 * temporarily null out below.  Need to rethink how we
808 	 * handle bundled SA's in the callback thread.
809 	 */
810 	IPSECREQUEST_LOCK_ASSERT(isr);
811 
812 	/* get current level */
813 	level = ipsec_get_reqlevel(isr);
814 #if 0
815 	/*
816 	 * We do allocate new SA only if the state of SA in the holder is
817 	 * SADB_SASTATE_DEAD.  The SA for outbound must be the oldest.
818 	 */
819 	if (isr->sav != NULL) {
820 		if (isr->sav->sah == NULL)
821 			panic("%s: sah is null.\n", __func__);
822 		if (isr->sav == (struct secasvar *)LIST_FIRST(
823 			    &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) {
824 			KEY_FREESAV(&isr->sav);
825 			isr->sav = NULL;
826 		}
827 	}
828 #else
829 	/*
830 	 * we free any SA stashed in the IPsec request because a different
831 	 * SA may be involved each time this request is checked, either
832 	 * because new SAs are being configured, or this request is
833 	 * associated with an unconnected datagram socket, or this request
834 	 * is associated with a system default policy.
835 	 *
836 	 * The operation may have negative impact to performance.  We may
837 	 * want to check cached SA carefully, rather than picking new SA
838 	 * every time.
839 	 */
840 	if (isr->sav != NULL) {
841 		KEY_FREESAV(&isr->sav);
842 		isr->sav = NULL;
843 	}
844 #endif
845 
846 	/*
847 	 * new SA allocation if no SA found.
848 	 * key_allocsa_policy should allocate the oldest SA available.
849 	 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
850 	 */
851 	if (isr->sav == NULL)
852 		isr->sav = key_allocsa_policy(saidx);
853 
854 	/* When there is SA. */
855 	if (isr->sav != NULL) {
856 		if (isr->sav->state != SADB_SASTATE_MATURE &&
857 		    isr->sav->state != SADB_SASTATE_DYING)
858 			return EINVAL;
859 		return 0;
860 	}
861 
862 	/* there is no SA */
863 	error = key_acquire(saidx, isr->sp);
864 	if (error != 0) {
865 		/* XXX What should I do ? */
866 		ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
867 			__func__, error));
868 		return error;
869 	}
870 
871 	if (level != IPSEC_LEVEL_REQUIRE) {
872 		/* XXX sigh, the interface to this routine is botched */
873 		IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA"));
874 		return 0;
875 	} else {
876 		return ENOENT;
877 	}
878 }
879 
880 /*
881  * allocating a SA for policy entry from SAD.
882  * NOTE: searching SAD of aliving state.
883  * OUT:	NULL:	not found.
884  *	others:	found and return the pointer.
885  */
886 static struct secasvar *
887 key_allocsa_policy(const struct secasindex *saidx)
888 {
889 #define	N(a)	_ARRAYLEN(a)
890 	INIT_VNET_IPSEC(curvnet);
891 	struct secashead *sah;
892 	struct secasvar *sav;
893 	u_int stateidx, arraysize;
894 	const u_int *state_valid;
895 
896 	SAHTREE_LOCK();
897 	LIST_FOREACH(sah, &V_sahtree, chain) {
898 		if (sah->state == SADB_SASTATE_DEAD)
899 			continue;
900 		if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) {
901 			if (V_key_preferred_oldsa) {
902 				state_valid = saorder_state_valid_prefer_old;
903 				arraysize = N(saorder_state_valid_prefer_old);
904 			} else {
905 				state_valid = saorder_state_valid_prefer_new;
906 				arraysize = N(saorder_state_valid_prefer_new);
907 			}
908 			SAHTREE_UNLOCK();
909 			goto found;
910 		}
911 	}
912 	SAHTREE_UNLOCK();
913 
914 	return NULL;
915 
916     found:
917 	/* search valid state */
918 	for (stateidx = 0; stateidx < arraysize; stateidx++) {
919 		sav = key_do_allocsa_policy(sah, state_valid[stateidx]);
920 		if (sav != NULL)
921 			return sav;
922 	}
923 
924 	return NULL;
925 #undef N
926 }
927 
928 /*
929  * searching SAD with direction, protocol, mode and state.
930  * called by key_allocsa_policy().
931  * OUT:
932  *	NULL	: not found
933  *	others	: found, pointer to a SA.
934  */
935 static struct secasvar *
936 key_do_allocsa_policy(struct secashead *sah, u_int state)
937 {
938 	INIT_VNET_IPSEC(curvnet);
939 	struct secasvar *sav, *nextsav, *candidate, *d;
940 
941 	/* initilize */
942 	candidate = NULL;
943 
944 	SAHTREE_LOCK();
945 	for (sav = LIST_FIRST(&sah->savtree[state]);
946 	     sav != NULL;
947 	     sav = nextsav) {
948 
949 		nextsav = LIST_NEXT(sav, chain);
950 
951 		/* sanity check */
952 		KEY_CHKSASTATE(sav->state, state, __func__);
953 
954 		/* initialize */
955 		if (candidate == NULL) {
956 			candidate = sav;
957 			continue;
958 		}
959 
960 		/* Which SA is the better ? */
961 
962 		IPSEC_ASSERT(candidate->lft_c != NULL,
963 			("null candidate lifetime"));
964 		IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime"));
965 
966 		/* What the best method is to compare ? */
967 		if (V_key_preferred_oldsa) {
968 			if (candidate->lft_c->addtime >
969 					sav->lft_c->addtime) {
970 				candidate = sav;
971 			}
972 			continue;
973 			/*NOTREACHED*/
974 		}
975 
976 		/* preferred new sa rather than old sa */
977 		if (candidate->lft_c->addtime <
978 				sav->lft_c->addtime) {
979 			d = candidate;
980 			candidate = sav;
981 		} else
982 			d = sav;
983 
984 		/*
985 		 * prepared to delete the SA when there is more
986 		 * suitable candidate and the lifetime of the SA is not
987 		 * permanent.
988 		 */
989 		if (d->lft_h->addtime != 0) {
990 			struct mbuf *m, *result;
991 			u_int8_t satype;
992 
993 			key_sa_chgstate(d, SADB_SASTATE_DEAD);
994 
995 			IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count"));
996 
997 			satype = key_proto2satype(d->sah->saidx.proto);
998 			if (satype == 0)
999 				goto msgfail;
1000 
1001 			m = key_setsadbmsg(SADB_DELETE, 0,
1002 			    satype, 0, 0, d->refcnt - 1);
1003 			if (!m)
1004 				goto msgfail;
1005 			result = m;
1006 
1007 			/* set sadb_address for saidx's. */
1008 			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
1009 				&d->sah->saidx.src.sa,
1010 				d->sah->saidx.src.sa.sa_len << 3,
1011 				IPSEC_ULPROTO_ANY);
1012 			if (!m)
1013 				goto msgfail;
1014 			m_cat(result, m);
1015 
1016 			/* set sadb_address for saidx's. */
1017 			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
1018 				&d->sah->saidx.dst.sa,
1019 				d->sah->saidx.dst.sa.sa_len << 3,
1020 				IPSEC_ULPROTO_ANY);
1021 			if (!m)
1022 				goto msgfail;
1023 			m_cat(result, m);
1024 
1025 			/* create SA extension */
1026 			m = key_setsadbsa(d);
1027 			if (!m)
1028 				goto msgfail;
1029 			m_cat(result, m);
1030 
1031 			if (result->m_len < sizeof(struct sadb_msg)) {
1032 				result = m_pullup(result,
1033 						sizeof(struct sadb_msg));
1034 				if (result == NULL)
1035 					goto msgfail;
1036 			}
1037 
1038 			result->m_pkthdr.len = 0;
1039 			for (m = result; m; m = m->m_next)
1040 				result->m_pkthdr.len += m->m_len;
1041 			mtod(result, struct sadb_msg *)->sadb_msg_len =
1042 				PFKEY_UNIT64(result->m_pkthdr.len);
1043 
1044 			if (key_sendup_mbuf(NULL, result,
1045 					KEY_SENDUP_REGISTERED))
1046 				goto msgfail;
1047 		 msgfail:
1048 			KEY_FREESAV(&d);
1049 		}
1050 	}
1051 	if (candidate) {
1052 		sa_addref(candidate);
1053 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1054 			printf("DP %s cause refcnt++:%d SA:%p\n",
1055 				__func__, candidate->refcnt, candidate));
1056 	}
1057 	SAHTREE_UNLOCK();
1058 
1059 	return candidate;
1060 }
1061 
1062 /*
1063  * allocating a usable SA entry for a *INBOUND* packet.
1064  * Must call key_freesav() later.
1065  * OUT: positive:	pointer to a usable sav (i.e. MATURE or DYING state).
1066  *	NULL:		not found, or error occured.
1067  *
1068  * In the comparison, no source address is used--for RFC2401 conformance.
1069  * To quote, from section 4.1:
1070  *	A security association is uniquely identified by a triple consisting
1071  *	of a Security Parameter Index (SPI), an IP Destination Address, and a
1072  *	security protocol (AH or ESP) identifier.
1073  * Note that, however, we do need to keep source address in IPsec SA.
1074  * IKE specification and PF_KEY specification do assume that we
1075  * keep source address in IPsec SA.  We see a tricky situation here.
1076  */
1077 struct secasvar *
1078 key_allocsa(
1079 	union sockaddr_union *dst,
1080 	u_int proto,
1081 	u_int32_t spi,
1082 	const char* where, int tag)
1083 {
1084 	INIT_VNET_IPSEC(curvnet);
1085 	struct secashead *sah;
1086 	struct secasvar *sav;
1087 	u_int stateidx, arraysize, state;
1088 	const u_int *saorder_state_valid;
1089 	int chkport;
1090 
1091 	IPSEC_ASSERT(dst != NULL, ("null dst address"));
1092 
1093 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1094 		printf("DP %s from %s:%u\n", __func__, where, tag));
1095 
1096 #ifdef IPSEC_NAT_T
1097         chkport = (dst->sa.sa_family == AF_INET &&
1098 	    dst->sa.sa_len == sizeof(struct sockaddr_in) &&
1099 	    dst->sin.sin_port != 0);
1100 #else
1101 	chkport = 0;
1102 #endif
1103 
1104 	/*
1105 	 * searching SAD.
1106 	 * XXX: to be checked internal IP header somewhere.  Also when
1107 	 * IPsec tunnel packet is received.  But ESP tunnel mode is
1108 	 * encrypted so we can't check internal IP header.
1109 	 */
1110 	SAHTREE_LOCK();
1111 	if (V_key_preferred_oldsa) {
1112 		saorder_state_valid = saorder_state_valid_prefer_old;
1113 		arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1114 	} else {
1115 		saorder_state_valid = saorder_state_valid_prefer_new;
1116 		arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1117 	}
1118 	LIST_FOREACH(sah, &V_sahtree, chain) {
1119 		/* search valid state */
1120 		for (stateidx = 0; stateidx < arraysize; stateidx++) {
1121 			state = saorder_state_valid[stateidx];
1122 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
1123 				/* sanity check */
1124 				KEY_CHKSASTATE(sav->state, state, __func__);
1125 				/* do not return entries w/ unusable state */
1126 				if (sav->state != SADB_SASTATE_MATURE &&
1127 				    sav->state != SADB_SASTATE_DYING)
1128 					continue;
1129 				if (proto != sav->sah->saidx.proto)
1130 					continue;
1131 				if (spi != sav->spi)
1132 					continue;
1133 #if 0	/* don't check src */
1134 				/* check src address */
1135 				if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, chkport) != 0)
1136 					continue;
1137 #endif
1138 				/* check dst address */
1139 				if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, chkport) != 0)
1140 					continue;
1141 				sa_addref(sav);
1142 				goto done;
1143 			}
1144 		}
1145 	}
1146 	sav = NULL;
1147 done:
1148 	SAHTREE_UNLOCK();
1149 
1150 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1151 		printf("DP %s return SA:%p; refcnt %u\n", __func__,
1152 			sav, sav ? sav->refcnt : 0));
1153 	return sav;
1154 }
1155 
1156 /*
1157  * Must be called after calling key_allocsp().
1158  * For both the packet without socket and key_freeso().
1159  */
1160 void
1161 _key_freesp(struct secpolicy **spp, const char* where, int tag)
1162 {
1163 	INIT_VNET_IPSEC(curvnet);
1164 	struct secpolicy *sp = *spp;
1165 
1166 	IPSEC_ASSERT(sp != NULL, ("null sp"));
1167 
1168 	SPTREE_LOCK();
1169 	SP_DELREF(sp);
1170 
1171 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1172 		printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1173 			__func__, sp, sp->id, where, tag, sp->refcnt));
1174 
1175 	if (sp->refcnt == 0) {
1176 		*spp = NULL;
1177 		key_delsp(sp);
1178 	}
1179 	SPTREE_UNLOCK();
1180 }
1181 
1182 /*
1183  * Must be called after calling key_allocsp().
1184  * For the packet with socket.
1185  */
1186 void
1187 key_freeso(struct socket *so)
1188 {
1189 	INIT_VNET_IPSEC(curvnet);
1190 	IPSEC_ASSERT(so != NULL, ("null so"));
1191 
1192 	switch (so->so_proto->pr_domain->dom_family) {
1193 #if defined(INET) || defined(INET6)
1194 #ifdef INET
1195 	case PF_INET:
1196 #endif
1197 #ifdef INET6
1198 	case PF_INET6:
1199 #endif
1200 	    {
1201 		struct inpcb *pcb = sotoinpcb(so);
1202 
1203 		/* Does it have a PCB ? */
1204 		if (pcb == NULL)
1205 			return;
1206 		key_freesp_so(&pcb->inp_sp->sp_in);
1207 		key_freesp_so(&pcb->inp_sp->sp_out);
1208 	    }
1209 		break;
1210 #endif /* INET || INET6 */
1211 	default:
1212 		ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n",
1213 		    __func__, so->so_proto->pr_domain->dom_family));
1214 		return;
1215 	}
1216 }
1217 
1218 static void
1219 key_freesp_so(struct secpolicy **sp)
1220 {
1221 	IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp"));
1222 
1223 	if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1224 	    (*sp)->policy == IPSEC_POLICY_BYPASS)
1225 		return;
1226 
1227 	IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC,
1228 		("invalid policy %u", (*sp)->policy));
1229 	KEY_FREESP(sp);
1230 }
1231 
1232 /*
1233  * Must be called after calling key_allocsa().
1234  * This function is called by key_freesp() to free some SA allocated
1235  * for a policy.
1236  */
1237 void
1238 key_freesav(struct secasvar **psav, const char* where, int tag)
1239 {
1240 	INIT_VNET_IPSEC(curvnet);
1241 	struct secasvar *sav = *psav;
1242 
1243 	IPSEC_ASSERT(sav != NULL, ("null sav"));
1244 
1245 	if (sa_delref(sav)) {
1246 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1247 			printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1248 				__func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1249 		*psav = NULL;
1250 		key_delsav(sav);
1251 	} else {
1252 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1253 			printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1254 				__func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1255 	}
1256 }
1257 
1258 /* %%% SPD management */
1259 /*
1260  * free security policy entry.
1261  */
1262 static void
1263 key_delsp(struct secpolicy *sp)
1264 {
1265 	struct ipsecrequest *isr, *nextisr;
1266 
1267 	IPSEC_ASSERT(sp != NULL, ("null sp"));
1268 	SPTREE_LOCK_ASSERT();
1269 
1270 	sp->state = IPSEC_SPSTATE_DEAD;
1271 
1272 	IPSEC_ASSERT(sp->refcnt == 0,
1273 		("SP with references deleted (refcnt %u)", sp->refcnt));
1274 
1275 	/* remove from SP index */
1276 	if (__LIST_CHAINED(sp))
1277 		LIST_REMOVE(sp, chain);
1278 
1279 	for (isr = sp->req; isr != NULL; isr = nextisr) {
1280 		if (isr->sav != NULL) {
1281 			KEY_FREESAV(&isr->sav);
1282 			isr->sav = NULL;
1283 		}
1284 
1285 		nextisr = isr->next;
1286 		ipsec_delisr(isr);
1287 	}
1288 	_key_delsp(sp);
1289 }
1290 
1291 /*
1292  * search SPD
1293  * OUT:	NULL	: not found
1294  *	others	: found, pointer to a SP.
1295  */
1296 static struct secpolicy *
1297 key_getsp(struct secpolicyindex *spidx)
1298 {
1299 	INIT_VNET_IPSEC(curvnet);
1300 	struct secpolicy *sp;
1301 
1302 	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
1303 
1304 	SPTREE_LOCK();
1305 	LIST_FOREACH(sp, &V_sptree[spidx->dir], chain) {
1306 		if (sp->state == IPSEC_SPSTATE_DEAD)
1307 			continue;
1308 		if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1309 			SP_ADDREF(sp);
1310 			break;
1311 		}
1312 	}
1313 	SPTREE_UNLOCK();
1314 
1315 	return sp;
1316 }
1317 
1318 /*
1319  * get SP by index.
1320  * OUT:	NULL	: not found
1321  *	others	: found, pointer to a SP.
1322  */
1323 static struct secpolicy *
1324 key_getspbyid(u_int32_t id)
1325 {
1326 	INIT_VNET_IPSEC(curvnet);
1327 	struct secpolicy *sp;
1328 
1329 	SPTREE_LOCK();
1330 	LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_INBOUND], chain) {
1331 		if (sp->state == IPSEC_SPSTATE_DEAD)
1332 			continue;
1333 		if (sp->id == id) {
1334 			SP_ADDREF(sp);
1335 			goto done;
1336 		}
1337 	}
1338 
1339 	LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_OUTBOUND], chain) {
1340 		if (sp->state == IPSEC_SPSTATE_DEAD)
1341 			continue;
1342 		if (sp->id == id) {
1343 			SP_ADDREF(sp);
1344 			goto done;
1345 		}
1346 	}
1347 done:
1348 	SPTREE_UNLOCK();
1349 
1350 	return sp;
1351 }
1352 
1353 struct secpolicy *
1354 key_newsp(const char* where, int tag)
1355 {
1356 	INIT_VNET_IPSEC(curvnet);
1357 	struct secpolicy *newsp = NULL;
1358 
1359 	newsp = (struct secpolicy *)
1360 		malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO);
1361 	if (newsp) {
1362 		SECPOLICY_LOCK_INIT(newsp);
1363 		newsp->refcnt = 1;
1364 		newsp->req = NULL;
1365 	}
1366 
1367 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1368 		printf("DP %s from %s:%u return SP:%p\n", __func__,
1369 			where, tag, newsp));
1370 	return newsp;
1371 }
1372 
1373 static void
1374 _key_delsp(struct secpolicy *sp)
1375 {
1376 	SECPOLICY_LOCK_DESTROY(sp);
1377 	free(sp, M_IPSEC_SP);
1378 }
1379 
1380 /*
1381  * create secpolicy structure from sadb_x_policy structure.
1382  * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1383  * so must be set properly later.
1384  */
1385 struct secpolicy *
1386 key_msg2sp(xpl0, len, error)
1387 	struct sadb_x_policy *xpl0;
1388 	size_t len;
1389 	int *error;
1390 {
1391 	INIT_VNET_IPSEC(curvnet);
1392 	struct secpolicy *newsp;
1393 
1394 	IPSEC_ASSERT(xpl0 != NULL, ("null xpl0"));
1395 	IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len));
1396 
1397 	if (len != PFKEY_EXTLEN(xpl0)) {
1398 		ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__));
1399 		*error = EINVAL;
1400 		return NULL;
1401 	}
1402 
1403 	if ((newsp = KEY_NEWSP()) == NULL) {
1404 		*error = ENOBUFS;
1405 		return NULL;
1406 	}
1407 
1408 	newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1409 	newsp->policy = xpl0->sadb_x_policy_type;
1410 
1411 	/* check policy */
1412 	switch (xpl0->sadb_x_policy_type) {
1413 	case IPSEC_POLICY_DISCARD:
1414 	case IPSEC_POLICY_NONE:
1415 	case IPSEC_POLICY_ENTRUST:
1416 	case IPSEC_POLICY_BYPASS:
1417 		newsp->req = NULL;
1418 		break;
1419 
1420 	case IPSEC_POLICY_IPSEC:
1421 	    {
1422 		int tlen;
1423 		struct sadb_x_ipsecrequest *xisr;
1424 		struct ipsecrequest **p_isr = &newsp->req;
1425 
1426 		/* validity check */
1427 		if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1428 			ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n",
1429 				__func__));
1430 			KEY_FREESP(&newsp);
1431 			*error = EINVAL;
1432 			return NULL;
1433 		}
1434 
1435 		tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1436 		xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1);
1437 
1438 		while (tlen > 0) {
1439 			/* length check */
1440 			if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1441 				ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest "
1442 					"length.\n", __func__));
1443 				KEY_FREESP(&newsp);
1444 				*error = EINVAL;
1445 				return NULL;
1446 			}
1447 
1448 			/* allocate request buffer */
1449 			/* NB: data structure is zero'd */
1450 			*p_isr = ipsec_newisr();
1451 			if ((*p_isr) == NULL) {
1452 				ipseclog((LOG_DEBUG,
1453 				    "%s: No more memory.\n", __func__));
1454 				KEY_FREESP(&newsp);
1455 				*error = ENOBUFS;
1456 				return NULL;
1457 			}
1458 
1459 			/* set values */
1460 			switch (xisr->sadb_x_ipsecrequest_proto) {
1461 			case IPPROTO_ESP:
1462 			case IPPROTO_AH:
1463 			case IPPROTO_IPCOMP:
1464 				break;
1465 			default:
1466 				ipseclog((LOG_DEBUG,
1467 				    "%s: invalid proto type=%u\n", __func__,
1468 				    xisr->sadb_x_ipsecrequest_proto));
1469 				KEY_FREESP(&newsp);
1470 				*error = EPROTONOSUPPORT;
1471 				return NULL;
1472 			}
1473 			(*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1474 
1475 			switch (xisr->sadb_x_ipsecrequest_mode) {
1476 			case IPSEC_MODE_TRANSPORT:
1477 			case IPSEC_MODE_TUNNEL:
1478 				break;
1479 			case IPSEC_MODE_ANY:
1480 			default:
1481 				ipseclog((LOG_DEBUG,
1482 				    "%s: invalid mode=%u\n", __func__,
1483 				    xisr->sadb_x_ipsecrequest_mode));
1484 				KEY_FREESP(&newsp);
1485 				*error = EINVAL;
1486 				return NULL;
1487 			}
1488 			(*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1489 
1490 			switch (xisr->sadb_x_ipsecrequest_level) {
1491 			case IPSEC_LEVEL_DEFAULT:
1492 			case IPSEC_LEVEL_USE:
1493 			case IPSEC_LEVEL_REQUIRE:
1494 				break;
1495 			case IPSEC_LEVEL_UNIQUE:
1496 				/* validity check */
1497 				/*
1498 				 * If range violation of reqid, kernel will
1499 				 * update it, don't refuse it.
1500 				 */
1501 				if (xisr->sadb_x_ipsecrequest_reqid
1502 						> IPSEC_MANUAL_REQID_MAX) {
1503 					ipseclog((LOG_DEBUG,
1504 					    "%s: reqid=%d range "
1505 					    "violation, updated by kernel.\n",
1506 					    __func__,
1507 					    xisr->sadb_x_ipsecrequest_reqid));
1508 					xisr->sadb_x_ipsecrequest_reqid = 0;
1509 				}
1510 
1511 				/* allocate new reqid id if reqid is zero. */
1512 				if (xisr->sadb_x_ipsecrequest_reqid == 0) {
1513 					u_int32_t reqid;
1514 					if ((reqid = key_newreqid()) == 0) {
1515 						KEY_FREESP(&newsp);
1516 						*error = ENOBUFS;
1517 						return NULL;
1518 					}
1519 					(*p_isr)->saidx.reqid = reqid;
1520 					xisr->sadb_x_ipsecrequest_reqid = reqid;
1521 				} else {
1522 				/* set it for manual keying. */
1523 					(*p_isr)->saidx.reqid =
1524 						xisr->sadb_x_ipsecrequest_reqid;
1525 				}
1526 				break;
1527 
1528 			default:
1529 				ipseclog((LOG_DEBUG, "%s: invalid level=%u\n",
1530 					__func__,
1531 					xisr->sadb_x_ipsecrequest_level));
1532 				KEY_FREESP(&newsp);
1533 				*error = EINVAL;
1534 				return NULL;
1535 			}
1536 			(*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1537 
1538 			/* set IP addresses if there */
1539 			if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1540 				struct sockaddr *paddr;
1541 
1542 				paddr = (struct sockaddr *)(xisr + 1);
1543 
1544 				/* validity check */
1545 				if (paddr->sa_len
1546 				    > sizeof((*p_isr)->saidx.src)) {
1547 					ipseclog((LOG_DEBUG, "%s: invalid "
1548 						"request address length.\n",
1549 						__func__));
1550 					KEY_FREESP(&newsp);
1551 					*error = EINVAL;
1552 					return NULL;
1553 				}
1554 				bcopy(paddr, &(*p_isr)->saidx.src,
1555 					paddr->sa_len);
1556 
1557 				paddr = (struct sockaddr *)((caddr_t)paddr
1558 							+ paddr->sa_len);
1559 
1560 				/* validity check */
1561 				if (paddr->sa_len
1562 				    > sizeof((*p_isr)->saidx.dst)) {
1563 					ipseclog((LOG_DEBUG, "%s: invalid "
1564 						"request address length.\n",
1565 						__func__));
1566 					KEY_FREESP(&newsp);
1567 					*error = EINVAL;
1568 					return NULL;
1569 				}
1570 				bcopy(paddr, &(*p_isr)->saidx.dst,
1571 					paddr->sa_len);
1572 			}
1573 
1574 			(*p_isr)->sp = newsp;
1575 
1576 			/* initialization for the next. */
1577 			p_isr = &(*p_isr)->next;
1578 			tlen -= xisr->sadb_x_ipsecrequest_len;
1579 
1580 			/* validity check */
1581 			if (tlen < 0) {
1582 				ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n",
1583 					__func__));
1584 				KEY_FREESP(&newsp);
1585 				*error = EINVAL;
1586 				return NULL;
1587 			}
1588 
1589 			xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr
1590 			                 + xisr->sadb_x_ipsecrequest_len);
1591 		}
1592 	    }
1593 		break;
1594 	default:
1595 		ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__));
1596 		KEY_FREESP(&newsp);
1597 		*error = EINVAL;
1598 		return NULL;
1599 	}
1600 
1601 	*error = 0;
1602 	return newsp;
1603 }
1604 
1605 static u_int32_t
1606 key_newreqid()
1607 {
1608 	static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1609 
1610 	auto_reqid = (auto_reqid == ~0
1611 			? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1612 
1613 	/* XXX should be unique check */
1614 
1615 	return auto_reqid;
1616 }
1617 
1618 /*
1619  * copy secpolicy struct to sadb_x_policy structure indicated.
1620  */
1621 struct mbuf *
1622 key_sp2msg(sp)
1623 	struct secpolicy *sp;
1624 {
1625 	struct sadb_x_policy *xpl;
1626 	int tlen;
1627 	caddr_t p;
1628 	struct mbuf *m;
1629 
1630 	IPSEC_ASSERT(sp != NULL, ("null policy"));
1631 
1632 	tlen = key_getspreqmsglen(sp);
1633 
1634 	m = key_alloc_mbuf(tlen);
1635 	if (!m || m->m_next) {	/*XXX*/
1636 		if (m)
1637 			m_freem(m);
1638 		return NULL;
1639 	}
1640 
1641 	m->m_len = tlen;
1642 	m->m_next = NULL;
1643 	xpl = mtod(m, struct sadb_x_policy *);
1644 	bzero(xpl, tlen);
1645 
1646 	xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1647 	xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1648 	xpl->sadb_x_policy_type = sp->policy;
1649 	xpl->sadb_x_policy_dir = sp->spidx.dir;
1650 	xpl->sadb_x_policy_id = sp->id;
1651 	p = (caddr_t)xpl + sizeof(*xpl);
1652 
1653 	/* if is the policy for ipsec ? */
1654 	if (sp->policy == IPSEC_POLICY_IPSEC) {
1655 		struct sadb_x_ipsecrequest *xisr;
1656 		struct ipsecrequest *isr;
1657 
1658 		for (isr = sp->req; isr != NULL; isr = isr->next) {
1659 
1660 			xisr = (struct sadb_x_ipsecrequest *)p;
1661 
1662 			xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1663 			xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1664 			xisr->sadb_x_ipsecrequest_level = isr->level;
1665 			xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1666 
1667 			p += sizeof(*xisr);
1668 			bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len);
1669 			p += isr->saidx.src.sa.sa_len;
1670 			bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len);
1671 			p += isr->saidx.src.sa.sa_len;
1672 
1673 			xisr->sadb_x_ipsecrequest_len =
1674 				PFKEY_ALIGN8(sizeof(*xisr)
1675 					+ isr->saidx.src.sa.sa_len
1676 					+ isr->saidx.dst.sa.sa_len);
1677 		}
1678 	}
1679 
1680 	return m;
1681 }
1682 
1683 /* m will not be freed nor modified */
1684 static struct mbuf *
1685 #ifdef __STDC__
1686 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1687 	int ndeep, int nitem, ...)
1688 #else
1689 key_gather_mbuf(m, mhp, ndeep, nitem, va_alist)
1690 	struct mbuf *m;
1691 	const struct sadb_msghdr *mhp;
1692 	int ndeep;
1693 	int nitem;
1694 	va_dcl
1695 #endif
1696 {
1697 	va_list ap;
1698 	int idx;
1699 	int i;
1700 	struct mbuf *result = NULL, *n;
1701 	int len;
1702 
1703 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1704 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1705 
1706 	va_start(ap, nitem);
1707 	for (i = 0; i < nitem; i++) {
1708 		idx = va_arg(ap, int);
1709 		if (idx < 0 || idx > SADB_EXT_MAX)
1710 			goto fail;
1711 		/* don't attempt to pull empty extension */
1712 		if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1713 			continue;
1714 		if (idx != SADB_EXT_RESERVED  &&
1715 		    (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1716 			continue;
1717 
1718 		if (idx == SADB_EXT_RESERVED) {
1719 			len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1720 
1721 			IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len));
1722 
1723 			MGETHDR(n, M_DONTWAIT, MT_DATA);
1724 			if (!n)
1725 				goto fail;
1726 			n->m_len = len;
1727 			n->m_next = NULL;
1728 			m_copydata(m, 0, sizeof(struct sadb_msg),
1729 			    mtod(n, caddr_t));
1730 		} else if (i < ndeep) {
1731 			len = mhp->extlen[idx];
1732 			n = key_alloc_mbuf(len);
1733 			if (!n || n->m_next) {	/*XXX*/
1734 				if (n)
1735 					m_freem(n);
1736 				goto fail;
1737 			}
1738 			m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1739 			    mtod(n, caddr_t));
1740 		} else {
1741 			n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1742 			    M_DONTWAIT);
1743 		}
1744 		if (n == NULL)
1745 			goto fail;
1746 
1747 		if (result)
1748 			m_cat(result, n);
1749 		else
1750 			result = n;
1751 	}
1752 	va_end(ap);
1753 
1754 	if ((result->m_flags & M_PKTHDR) != 0) {
1755 		result->m_pkthdr.len = 0;
1756 		for (n = result; n; n = n->m_next)
1757 			result->m_pkthdr.len += n->m_len;
1758 	}
1759 
1760 	return result;
1761 
1762 fail:
1763 	m_freem(result);
1764 	return NULL;
1765 }
1766 
1767 /*
1768  * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1769  * add an entry to SP database, when received
1770  *   <base, address(SD), (lifetime(H),) policy>
1771  * from the user(?).
1772  * Adding to SP database,
1773  * and send
1774  *   <base, address(SD), (lifetime(H),) policy>
1775  * to the socket which was send.
1776  *
1777  * SPDADD set a unique policy entry.
1778  * SPDSETIDX like SPDADD without a part of policy requests.
1779  * SPDUPDATE replace a unique policy entry.
1780  *
1781  * m will always be freed.
1782  */
1783 static int
1784 key_spdadd(so, m, mhp)
1785 	struct socket *so;
1786 	struct mbuf *m;
1787 	const struct sadb_msghdr *mhp;
1788 {
1789 	INIT_VNET_IPSEC(curvnet);
1790 	struct sadb_address *src0, *dst0;
1791 	struct sadb_x_policy *xpl0, *xpl;
1792 	struct sadb_lifetime *lft = NULL;
1793 	struct secpolicyindex spidx;
1794 	struct secpolicy *newsp;
1795 	int error;
1796 
1797 	IPSEC_ASSERT(so != NULL, ("null socket"));
1798 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1799 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1800 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
1801 
1802 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1803 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1804 	    mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1805 		ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1806 		return key_senderror(so, m, EINVAL);
1807 	}
1808 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1809 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1810 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1811 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1812 			__func__));
1813 		return key_senderror(so, m, EINVAL);
1814 	}
1815 	if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1816 		if (mhp->extlen[SADB_EXT_LIFETIME_HARD]
1817 			< sizeof(struct sadb_lifetime)) {
1818 			ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1819 				__func__));
1820 			return key_senderror(so, m, EINVAL);
1821 		}
1822 		lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1823 	}
1824 
1825 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1826 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1827 	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1828 
1829 	/*
1830 	 * Note: do not parse SADB_X_EXT_NAT_T_* here:
1831 	 * we are processing traffic endpoints.
1832 	 */
1833 
1834 	/* make secindex */
1835 	/* XXX boundary check against sa_len */
1836 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1837 	                src0 + 1,
1838 	                dst0 + 1,
1839 	                src0->sadb_address_prefixlen,
1840 	                dst0->sadb_address_prefixlen,
1841 	                src0->sadb_address_proto,
1842 	                &spidx);
1843 
1844 	/* checking the direciton. */
1845 	switch (xpl0->sadb_x_policy_dir) {
1846 	case IPSEC_DIR_INBOUND:
1847 	case IPSEC_DIR_OUTBOUND:
1848 		break;
1849 	default:
1850 		ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
1851 		mhp->msg->sadb_msg_errno = EINVAL;
1852 		return 0;
1853 	}
1854 
1855 	/* check policy */
1856 	/* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1857 	if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST
1858 	 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1859 		ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__));
1860 		return key_senderror(so, m, EINVAL);
1861 	}
1862 
1863 	/* policy requests are mandatory when action is ipsec. */
1864         if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX
1865 	 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC
1866 	 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1867 		ipseclog((LOG_DEBUG, "%s: some policy requests part required\n",
1868 			__func__));
1869 		return key_senderror(so, m, EINVAL);
1870 	}
1871 
1872 	/*
1873 	 * checking there is SP already or not.
1874 	 * SPDUPDATE doesn't depend on whether there is a SP or not.
1875 	 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1876 	 * then error.
1877 	 */
1878 	newsp = key_getsp(&spidx);
1879 	if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1880 		if (newsp) {
1881 			newsp->state = IPSEC_SPSTATE_DEAD;
1882 			KEY_FREESP(&newsp);
1883 		}
1884 	} else {
1885 		if (newsp != NULL) {
1886 			KEY_FREESP(&newsp);
1887 			ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n",
1888 				__func__));
1889 			return key_senderror(so, m, EEXIST);
1890 		}
1891 	}
1892 
1893 	/* allocation new SP entry */
1894 	if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
1895 		return key_senderror(so, m, error);
1896 	}
1897 
1898 	if ((newsp->id = key_getnewspid()) == 0) {
1899 		_key_delsp(newsp);
1900 		return key_senderror(so, m, ENOBUFS);
1901 	}
1902 
1903 	/* XXX boundary check against sa_len */
1904 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1905 	                src0 + 1,
1906 	                dst0 + 1,
1907 	                src0->sadb_address_prefixlen,
1908 	                dst0->sadb_address_prefixlen,
1909 	                src0->sadb_address_proto,
1910 	                &newsp->spidx);
1911 
1912 	/* sanity check on addr pair */
1913 	if (((struct sockaddr *)(src0 + 1))->sa_family !=
1914 			((struct sockaddr *)(dst0+ 1))->sa_family) {
1915 		_key_delsp(newsp);
1916 		return key_senderror(so, m, EINVAL);
1917 	}
1918 	if (((struct sockaddr *)(src0 + 1))->sa_len !=
1919 			((struct sockaddr *)(dst0+ 1))->sa_len) {
1920 		_key_delsp(newsp);
1921 		return key_senderror(so, m, EINVAL);
1922 	}
1923 #if 1
1924 	if (newsp->req && newsp->req->saidx.src.sa.sa_family) {
1925 		struct sockaddr *sa;
1926 		sa = (struct sockaddr *)(src0 + 1);
1927 		if (sa->sa_family != newsp->req->saidx.src.sa.sa_family) {
1928 			_key_delsp(newsp);
1929 			return key_senderror(so, m, EINVAL);
1930 		}
1931 	}
1932 	if (newsp->req && newsp->req->saidx.dst.sa.sa_family) {
1933 		struct sockaddr *sa;
1934 		sa = (struct sockaddr *)(dst0 + 1);
1935 		if (sa->sa_family != newsp->req->saidx.dst.sa.sa_family) {
1936 			_key_delsp(newsp);
1937 			return key_senderror(so, m, EINVAL);
1938 		}
1939 	}
1940 #endif
1941 
1942 	newsp->created = time_second;
1943 	newsp->lastused = newsp->created;
1944 	newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1945 	newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1946 
1947 	newsp->refcnt = 1;	/* do not reclaim until I say I do */
1948 	newsp->state = IPSEC_SPSTATE_ALIVE;
1949 	LIST_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1950 
1951 	/* delete the entry in spacqtree */
1952 	if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1953 		struct secspacq *spacq = key_getspacq(&spidx);
1954 		if (spacq != NULL) {
1955 			/* reset counter in order to deletion by timehandler. */
1956 			spacq->created = time_second;
1957 			spacq->count = 0;
1958 			SPACQ_UNLOCK();
1959 		}
1960     	}
1961 
1962     {
1963 	struct mbuf *n, *mpolicy;
1964 	struct sadb_msg *newmsg;
1965 	int off;
1966 
1967 	/*
1968 	 * Note: do not send SADB_X_EXT_NAT_T_* here:
1969 	 * we are sending traffic endpoints.
1970 	 */
1971 
1972 	/* create new sadb_msg to reply. */
1973 	if (lft) {
1974 		n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
1975 		    SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
1976 		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1977 	} else {
1978 		n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
1979 		    SADB_X_EXT_POLICY,
1980 		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1981 	}
1982 	if (!n)
1983 		return key_senderror(so, m, ENOBUFS);
1984 
1985 	if (n->m_len < sizeof(*newmsg)) {
1986 		n = m_pullup(n, sizeof(*newmsg));
1987 		if (!n)
1988 			return key_senderror(so, m, ENOBUFS);
1989 	}
1990 	newmsg = mtod(n, struct sadb_msg *);
1991 	newmsg->sadb_msg_errno = 0;
1992 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
1993 
1994 	off = 0;
1995 	mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
1996 	    sizeof(*xpl), &off);
1997 	if (mpolicy == NULL) {
1998 		/* n is already freed */
1999 		return key_senderror(so, m, ENOBUFS);
2000 	}
2001 	xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off);
2002 	if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
2003 		m_freem(n);
2004 		return key_senderror(so, m, EINVAL);
2005 	}
2006 	xpl->sadb_x_policy_id = newsp->id;
2007 
2008 	m_freem(m);
2009 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2010     }
2011 }
2012 
2013 /*
2014  * get new policy id.
2015  * OUT:
2016  *	0:	failure.
2017  *	others: success.
2018  */
2019 static u_int32_t
2020 key_getnewspid()
2021 {
2022 	INIT_VNET_IPSEC(curvnet);
2023 	u_int32_t newid = 0;
2024 	int count = V_key_spi_trycnt;	/* XXX */
2025 	struct secpolicy *sp;
2026 
2027 	/* when requesting to allocate spi ranged */
2028 	while (count--) {
2029 		newid = (V_policy_id = (V_policy_id == ~0 ? 1 : V_policy_id + 1));
2030 
2031 		if ((sp = key_getspbyid(newid)) == NULL)
2032 			break;
2033 
2034 		KEY_FREESP(&sp);
2035 	}
2036 
2037 	if (count == 0 || newid == 0) {
2038 		ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n",
2039 			__func__));
2040 		return 0;
2041 	}
2042 
2043 	return newid;
2044 }
2045 
2046 /*
2047  * SADB_SPDDELETE processing
2048  * receive
2049  *   <base, address(SD), policy(*)>
2050  * from the user(?), and set SADB_SASTATE_DEAD,
2051  * and send,
2052  *   <base, address(SD), policy(*)>
2053  * to the ikmpd.
2054  * policy(*) including direction of policy.
2055  *
2056  * m will always be freed.
2057  */
2058 static int
2059 key_spddelete(so, m, mhp)
2060 	struct socket *so;
2061 	struct mbuf *m;
2062 	const struct sadb_msghdr *mhp;
2063 {
2064 	INIT_VNET_IPSEC(curvnet);
2065 	struct sadb_address *src0, *dst0;
2066 	struct sadb_x_policy *xpl0;
2067 	struct secpolicyindex spidx;
2068 	struct secpolicy *sp;
2069 
2070 	IPSEC_ASSERT(so != NULL, ("null so"));
2071 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2072 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2073 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2074 
2075 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2076 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2077 	    mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2078 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2079 			__func__));
2080 		return key_senderror(so, m, EINVAL);
2081 	}
2082 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2083 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2084 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2085 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2086 			__func__));
2087 		return key_senderror(so, m, EINVAL);
2088 	}
2089 
2090 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2091 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2092 	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2093 
2094 	/*
2095 	 * Note: do not parse SADB_X_EXT_NAT_T_* here:
2096 	 * we are processing traffic endpoints.
2097 	 */
2098 
2099 	/* make secindex */
2100 	/* XXX boundary check against sa_len */
2101 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2102 	                src0 + 1,
2103 	                dst0 + 1,
2104 	                src0->sadb_address_prefixlen,
2105 	                dst0->sadb_address_prefixlen,
2106 	                src0->sadb_address_proto,
2107 	                &spidx);
2108 
2109 	/* checking the direciton. */
2110 	switch (xpl0->sadb_x_policy_dir) {
2111 	case IPSEC_DIR_INBOUND:
2112 	case IPSEC_DIR_OUTBOUND:
2113 		break;
2114 	default:
2115 		ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
2116 		return key_senderror(so, m, EINVAL);
2117 	}
2118 
2119 	/* Is there SP in SPD ? */
2120 	if ((sp = key_getsp(&spidx)) == NULL) {
2121 		ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__));
2122 		return key_senderror(so, m, EINVAL);
2123 	}
2124 
2125 	/* save policy id to buffer to be returned. */
2126 	xpl0->sadb_x_policy_id = sp->id;
2127 
2128 	sp->state = IPSEC_SPSTATE_DEAD;
2129 	KEY_FREESP(&sp);
2130 
2131     {
2132 	struct mbuf *n;
2133 	struct sadb_msg *newmsg;
2134 
2135 	/*
2136 	 * Note: do not send SADB_X_EXT_NAT_T_* here:
2137 	 * we are sending traffic endpoints.
2138 	 */
2139 
2140 	/* create new sadb_msg to reply. */
2141 	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2142 	    SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2143 	if (!n)
2144 		return key_senderror(so, m, ENOBUFS);
2145 
2146 	newmsg = mtod(n, struct sadb_msg *);
2147 	newmsg->sadb_msg_errno = 0;
2148 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2149 
2150 	m_freem(m);
2151 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2152     }
2153 }
2154 
2155 /*
2156  * SADB_SPDDELETE2 processing
2157  * receive
2158  *   <base, policy(*)>
2159  * from the user(?), and set SADB_SASTATE_DEAD,
2160  * and send,
2161  *   <base, policy(*)>
2162  * to the ikmpd.
2163  * policy(*) including direction of policy.
2164  *
2165  * m will always be freed.
2166  */
2167 static int
2168 key_spddelete2(so, m, mhp)
2169 	struct socket *so;
2170 	struct mbuf *m;
2171 	const struct sadb_msghdr *mhp;
2172 {
2173 	INIT_VNET_IPSEC(curvnet);
2174 	u_int32_t id;
2175 	struct secpolicy *sp;
2176 
2177 	IPSEC_ASSERT(so != NULL, ("null socket"));
2178 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2179 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2180 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2181 
2182 	if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2183 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2184 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__));
2185 		return key_senderror(so, m, EINVAL);
2186 	}
2187 
2188 	id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2189 
2190 	/* Is there SP in SPD ? */
2191 	if ((sp = key_getspbyid(id)) == NULL) {
2192 		ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2193 		return key_senderror(so, m, EINVAL);
2194 	}
2195 
2196 	sp->state = IPSEC_SPSTATE_DEAD;
2197 	KEY_FREESP(&sp);
2198 
2199     {
2200 	struct mbuf *n, *nn;
2201 	struct sadb_msg *newmsg;
2202 	int off, len;
2203 
2204 	/* create new sadb_msg to reply. */
2205 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2206 
2207 	MGETHDR(n, M_DONTWAIT, MT_DATA);
2208 	if (n && len > MHLEN) {
2209 		MCLGET(n, M_DONTWAIT);
2210 		if ((n->m_flags & M_EXT) == 0) {
2211 			m_freem(n);
2212 			n = NULL;
2213 		}
2214 	}
2215 	if (!n)
2216 		return key_senderror(so, m, ENOBUFS);
2217 
2218 	n->m_len = len;
2219 	n->m_next = NULL;
2220 	off = 0;
2221 
2222 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
2223 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2224 
2225 	IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)",
2226 		off, len));
2227 
2228 	n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2229 	    mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2230 	if (!n->m_next) {
2231 		m_freem(n);
2232 		return key_senderror(so, m, ENOBUFS);
2233 	}
2234 
2235 	n->m_pkthdr.len = 0;
2236 	for (nn = n; nn; nn = nn->m_next)
2237 		n->m_pkthdr.len += nn->m_len;
2238 
2239 	newmsg = mtod(n, struct sadb_msg *);
2240 	newmsg->sadb_msg_errno = 0;
2241 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2242 
2243 	m_freem(m);
2244 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2245     }
2246 }
2247 
2248 /*
2249  * SADB_X_GET processing
2250  * receive
2251  *   <base, policy(*)>
2252  * from the user(?),
2253  * and send,
2254  *   <base, address(SD), policy>
2255  * to the ikmpd.
2256  * policy(*) including direction of policy.
2257  *
2258  * m will always be freed.
2259  */
2260 static int
2261 key_spdget(so, m, mhp)
2262 	struct socket *so;
2263 	struct mbuf *m;
2264 	const struct sadb_msghdr *mhp;
2265 {
2266 	INIT_VNET_IPSEC(curvnet);
2267 	u_int32_t id;
2268 	struct secpolicy *sp;
2269 	struct mbuf *n;
2270 
2271 	IPSEC_ASSERT(so != NULL, ("null socket"));
2272 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2273 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2274 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2275 
2276 	if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2277 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2278 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2279 			__func__));
2280 		return key_senderror(so, m, EINVAL);
2281 	}
2282 
2283 	id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2284 
2285 	/* Is there SP in SPD ? */
2286 	if ((sp = key_getspbyid(id)) == NULL) {
2287 		ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2288 		return key_senderror(so, m, ENOENT);
2289 	}
2290 
2291 	n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid);
2292 	if (n != NULL) {
2293 		m_freem(m);
2294 		return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2295 	} else
2296 		return key_senderror(so, m, ENOBUFS);
2297 }
2298 
2299 /*
2300  * SADB_X_SPDACQUIRE processing.
2301  * Acquire policy and SA(s) for a *OUTBOUND* packet.
2302  * send
2303  *   <base, policy(*)>
2304  * to KMD, and expect to receive
2305  *   <base> with SADB_X_SPDACQUIRE if error occured,
2306  * or
2307  *   <base, policy>
2308  * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2309  * policy(*) is without policy requests.
2310  *
2311  *    0     : succeed
2312  *    others: error number
2313  */
2314 int
2315 key_spdacquire(sp)
2316 	struct secpolicy *sp;
2317 {
2318 	INIT_VNET_IPSEC(curvnet);
2319 	struct mbuf *result = NULL, *m;
2320 	struct secspacq *newspacq;
2321 
2322 	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2323 	IPSEC_ASSERT(sp->req == NULL, ("policy exists"));
2324 	IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC,
2325 		("policy not IPSEC %u", sp->policy));
2326 
2327 	/* Get an entry to check whether sent message or not. */
2328 	newspacq = key_getspacq(&sp->spidx);
2329 	if (newspacq != NULL) {
2330 		if (V_key_blockacq_count < newspacq->count) {
2331 			/* reset counter and do send message. */
2332 			newspacq->count = 0;
2333 		} else {
2334 			/* increment counter and do nothing. */
2335 			newspacq->count++;
2336 			return 0;
2337 		}
2338 		SPACQ_UNLOCK();
2339 	} else {
2340 		/* make new entry for blocking to send SADB_ACQUIRE. */
2341 		newspacq = key_newspacq(&sp->spidx);
2342 		if (newspacq == NULL)
2343 			return ENOBUFS;
2344 	}
2345 
2346 	/* create new sadb_msg to reply. */
2347 	m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2348 	if (!m)
2349 		return ENOBUFS;
2350 
2351 	result = m;
2352 
2353 	result->m_pkthdr.len = 0;
2354 	for (m = result; m; m = m->m_next)
2355 		result->m_pkthdr.len += m->m_len;
2356 
2357 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2358 	    PFKEY_UNIT64(result->m_pkthdr.len);
2359 
2360 	return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2361 }
2362 
2363 /*
2364  * SADB_SPDFLUSH processing
2365  * receive
2366  *   <base>
2367  * from the user, and free all entries in secpctree.
2368  * and send,
2369  *   <base>
2370  * to the user.
2371  * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2372  *
2373  * m will always be freed.
2374  */
2375 static int
2376 key_spdflush(so, m, mhp)
2377 	struct socket *so;
2378 	struct mbuf *m;
2379 	const struct sadb_msghdr *mhp;
2380 {
2381 	INIT_VNET_IPSEC(curvnet);
2382 	struct sadb_msg *newmsg;
2383 	struct secpolicy *sp;
2384 	u_int dir;
2385 
2386 	IPSEC_ASSERT(so != NULL, ("null socket"));
2387 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2388 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2389 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2390 
2391 	if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2392 		return key_senderror(so, m, EINVAL);
2393 
2394 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2395 		SPTREE_LOCK();
2396 		LIST_FOREACH(sp, &V_sptree[dir], chain)
2397 			sp->state = IPSEC_SPSTATE_DEAD;
2398 		SPTREE_UNLOCK();
2399 	}
2400 
2401 	if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2402 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2403 		return key_senderror(so, m, ENOBUFS);
2404 	}
2405 
2406 	if (m->m_next)
2407 		m_freem(m->m_next);
2408 	m->m_next = NULL;
2409 	m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2410 	newmsg = mtod(m, struct sadb_msg *);
2411 	newmsg->sadb_msg_errno = 0;
2412 	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2413 
2414 	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2415 }
2416 
2417 /*
2418  * SADB_SPDDUMP processing
2419  * receive
2420  *   <base>
2421  * from the user, and dump all SP leaves
2422  * and send,
2423  *   <base> .....
2424  * to the ikmpd.
2425  *
2426  * m will always be freed.
2427  */
2428 static int
2429 key_spddump(so, m, mhp)
2430 	struct socket *so;
2431 	struct mbuf *m;
2432 	const struct sadb_msghdr *mhp;
2433 {
2434 	INIT_VNET_IPSEC(curvnet);
2435 	struct secpolicy *sp;
2436 	int cnt;
2437 	u_int dir;
2438 	struct mbuf *n;
2439 
2440 	IPSEC_ASSERT(so != NULL, ("null socket"));
2441 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2442 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2443 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2444 
2445 	/* search SPD entry and get buffer size. */
2446 	cnt = 0;
2447 	SPTREE_LOCK();
2448 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2449 		LIST_FOREACH(sp, &V_sptree[dir], chain) {
2450 			cnt++;
2451 		}
2452 	}
2453 
2454 	if (cnt == 0) {
2455 		SPTREE_UNLOCK();
2456 		return key_senderror(so, m, ENOENT);
2457 	}
2458 
2459 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2460 		LIST_FOREACH(sp, &V_sptree[dir], chain) {
2461 			--cnt;
2462 			n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt,
2463 			    mhp->msg->sadb_msg_pid);
2464 
2465 			if (n)
2466 				key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2467 		}
2468 	}
2469 
2470 	SPTREE_UNLOCK();
2471 	m_freem(m);
2472 	return 0;
2473 }
2474 
2475 static struct mbuf *
2476 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, u_int32_t pid)
2477 {
2478 	struct mbuf *result = NULL, *m;
2479 	struct seclifetime lt;
2480 
2481 	m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2482 	if (!m)
2483 		goto fail;
2484 	result = m;
2485 
2486 	/*
2487 	 * Note: do not send SADB_X_EXT_NAT_T_* here:
2488 	 * we are sending traffic endpoints.
2489 	 */
2490 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2491 	    &sp->spidx.src.sa, sp->spidx.prefs,
2492 	    sp->spidx.ul_proto);
2493 	if (!m)
2494 		goto fail;
2495 	m_cat(result, m);
2496 
2497 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2498 	    &sp->spidx.dst.sa, sp->spidx.prefd,
2499 	    sp->spidx.ul_proto);
2500 	if (!m)
2501 		goto fail;
2502 	m_cat(result, m);
2503 
2504 	m = key_sp2msg(sp);
2505 	if (!m)
2506 		goto fail;
2507 	m_cat(result, m);
2508 
2509 	if(sp->lifetime){
2510 		lt.addtime=sp->created;
2511 		lt.usetime= sp->lastused;
2512 		m = key_setlifetime(&lt, SADB_EXT_LIFETIME_CURRENT);
2513 		if (!m)
2514 			goto fail;
2515 		m_cat(result, m);
2516 
2517 		lt.addtime=sp->lifetime;
2518 		lt.usetime= sp->validtime;
2519 		m = key_setlifetime(&lt, SADB_EXT_LIFETIME_HARD);
2520 		if (!m)
2521 			goto fail;
2522 		m_cat(result, m);
2523 	}
2524 
2525 	if ((result->m_flags & M_PKTHDR) == 0)
2526 		goto fail;
2527 
2528 	if (result->m_len < sizeof(struct sadb_msg)) {
2529 		result = m_pullup(result, sizeof(struct sadb_msg));
2530 		if (result == NULL)
2531 			goto fail;
2532 	}
2533 
2534 	result->m_pkthdr.len = 0;
2535 	for (m = result; m; m = m->m_next)
2536 		result->m_pkthdr.len += m->m_len;
2537 
2538 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2539 	    PFKEY_UNIT64(result->m_pkthdr.len);
2540 
2541 	return result;
2542 
2543 fail:
2544 	m_freem(result);
2545 	return NULL;
2546 }
2547 
2548 /*
2549  * get PFKEY message length for security policy and request.
2550  */
2551 static u_int
2552 key_getspreqmsglen(sp)
2553 	struct secpolicy *sp;
2554 {
2555 	u_int tlen;
2556 
2557 	tlen = sizeof(struct sadb_x_policy);
2558 
2559 	/* if is the policy for ipsec ? */
2560 	if (sp->policy != IPSEC_POLICY_IPSEC)
2561 		return tlen;
2562 
2563 	/* get length of ipsec requests */
2564     {
2565 	struct ipsecrequest *isr;
2566 	int len;
2567 
2568 	for (isr = sp->req; isr != NULL; isr = isr->next) {
2569 		len = sizeof(struct sadb_x_ipsecrequest)
2570 			+ isr->saidx.src.sa.sa_len
2571 			+ isr->saidx.dst.sa.sa_len;
2572 
2573 		tlen += PFKEY_ALIGN8(len);
2574 	}
2575     }
2576 
2577 	return tlen;
2578 }
2579 
2580 /*
2581  * SADB_SPDEXPIRE processing
2582  * send
2583  *   <base, address(SD), lifetime(CH), policy>
2584  * to KMD by PF_KEY.
2585  *
2586  * OUT:	0	: succeed
2587  *	others	: error number
2588  */
2589 static int
2590 key_spdexpire(sp)
2591 	struct secpolicy *sp;
2592 {
2593 	struct mbuf *result = NULL, *m;
2594 	int len;
2595 	int error = -1;
2596 	struct sadb_lifetime *lt;
2597 
2598 	/* XXX: Why do we lock ? */
2599 
2600 	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2601 
2602 	/* set msg header */
2603 	m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2604 	if (!m) {
2605 		error = ENOBUFS;
2606 		goto fail;
2607 	}
2608 	result = m;
2609 
2610 	/* create lifetime extension (current and hard) */
2611 	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2612 	m = key_alloc_mbuf(len);
2613 	if (!m || m->m_next) {	/*XXX*/
2614 		if (m)
2615 			m_freem(m);
2616 		error = ENOBUFS;
2617 		goto fail;
2618 	}
2619 	bzero(mtod(m, caddr_t), len);
2620 	lt = mtod(m, struct sadb_lifetime *);
2621 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2622 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2623 	lt->sadb_lifetime_allocations = 0;
2624 	lt->sadb_lifetime_bytes = 0;
2625 	lt->sadb_lifetime_addtime = sp->created;
2626 	lt->sadb_lifetime_usetime = sp->lastused;
2627 	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
2628 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2629 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2630 	lt->sadb_lifetime_allocations = 0;
2631 	lt->sadb_lifetime_bytes = 0;
2632 	lt->sadb_lifetime_addtime = sp->lifetime;
2633 	lt->sadb_lifetime_usetime = sp->validtime;
2634 	m_cat(result, m);
2635 
2636 	/*
2637 	 * Note: do not send SADB_X_EXT_NAT_T_* here:
2638 	 * we are sending traffic endpoints.
2639 	 */
2640 
2641 	/* set sadb_address for source */
2642 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2643 	    &sp->spidx.src.sa,
2644 	    sp->spidx.prefs, sp->spidx.ul_proto);
2645 	if (!m) {
2646 		error = ENOBUFS;
2647 		goto fail;
2648 	}
2649 	m_cat(result, m);
2650 
2651 	/* set sadb_address for destination */
2652 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2653 	    &sp->spidx.dst.sa,
2654 	    sp->spidx.prefd, sp->spidx.ul_proto);
2655 	if (!m) {
2656 		error = ENOBUFS;
2657 		goto fail;
2658 	}
2659 	m_cat(result, m);
2660 
2661 	/* set secpolicy */
2662 	m = key_sp2msg(sp);
2663 	if (!m) {
2664 		error = ENOBUFS;
2665 		goto fail;
2666 	}
2667 	m_cat(result, m);
2668 
2669 	if ((result->m_flags & M_PKTHDR) == 0) {
2670 		error = EINVAL;
2671 		goto fail;
2672 	}
2673 
2674 	if (result->m_len < sizeof(struct sadb_msg)) {
2675 		result = m_pullup(result, sizeof(struct sadb_msg));
2676 		if (result == NULL) {
2677 			error = ENOBUFS;
2678 			goto fail;
2679 		}
2680 	}
2681 
2682 	result->m_pkthdr.len = 0;
2683 	for (m = result; m; m = m->m_next)
2684 		result->m_pkthdr.len += m->m_len;
2685 
2686 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2687 	    PFKEY_UNIT64(result->m_pkthdr.len);
2688 
2689 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2690 
2691  fail:
2692 	if (result)
2693 		m_freem(result);
2694 	return error;
2695 }
2696 
2697 /* %%% SAD management */
2698 /*
2699  * allocating a memory for new SA head, and copy from the values of mhp.
2700  * OUT:	NULL	: failure due to the lack of memory.
2701  *	others	: pointer to new SA head.
2702  */
2703 static struct secashead *
2704 key_newsah(saidx)
2705 	struct secasindex *saidx;
2706 {
2707 	INIT_VNET_IPSEC(curvnet);
2708 	struct secashead *newsah;
2709 
2710 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
2711 
2712 	newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO);
2713 	if (newsah != NULL) {
2714 		int i;
2715 		for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++)
2716 			LIST_INIT(&newsah->savtree[i]);
2717 		newsah->saidx = *saidx;
2718 
2719 		/* add to saidxtree */
2720 		newsah->state = SADB_SASTATE_MATURE;
2721 
2722 		SAHTREE_LOCK();
2723 		LIST_INSERT_HEAD(&V_sahtree, newsah, chain);
2724 		SAHTREE_UNLOCK();
2725 	}
2726 	return(newsah);
2727 }
2728 
2729 /*
2730  * delete SA index and all SA registerd.
2731  */
2732 static void
2733 key_delsah(sah)
2734 	struct secashead *sah;
2735 {
2736 	INIT_VNET_IPSEC(curvnet);
2737 	struct secasvar *sav, *nextsav;
2738 	u_int stateidx;
2739 	int zombie = 0;
2740 
2741 	IPSEC_ASSERT(sah != NULL, ("NULL sah"));
2742 	SAHTREE_LOCK_ASSERT();
2743 
2744 	/* searching all SA registerd in the secindex. */
2745 	for (stateidx = 0;
2746 	     stateidx < _ARRAYLEN(saorder_state_any);
2747 	     stateidx++) {
2748 		u_int state = saorder_state_any[stateidx];
2749 		LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) {
2750 			if (sav->refcnt == 0) {
2751 				/* sanity check */
2752 				KEY_CHKSASTATE(state, sav->state, __func__);
2753 				/*
2754 				 * do NOT call KEY_FREESAV here:
2755 				 * it will only delete the sav if refcnt == 1,
2756 				 * where we already know that refcnt == 0
2757 				 */
2758 				key_delsav(sav);
2759 			} else {
2760 				/* give up to delete this sa */
2761 				zombie++;
2762 			}
2763 		}
2764 	}
2765 	if (!zombie) {		/* delete only if there are savs */
2766 		/* remove from tree of SA index */
2767 		if (__LIST_CHAINED(sah))
2768 			LIST_REMOVE(sah, chain);
2769 		if (sah->sa_route.ro_rt) {
2770 			RTFREE(sah->sa_route.ro_rt);
2771 			sah->sa_route.ro_rt = (struct rtentry *)NULL;
2772 		}
2773 		free(sah, M_IPSEC_SAH);
2774 	}
2775 }
2776 
2777 /*
2778  * allocating a new SA with LARVAL state.  key_add() and key_getspi() call,
2779  * and copy the values of mhp into new buffer.
2780  * When SAD message type is GETSPI:
2781  *	to set sequence number from acq_seq++,
2782  *	to set zero to SPI.
2783  *	not to call key_setsava().
2784  * OUT:	NULL	: fail
2785  *	others	: pointer to new secasvar.
2786  *
2787  * does not modify mbuf.  does not free mbuf on error.
2788  */
2789 static struct secasvar *
2790 key_newsav(m, mhp, sah, errp, where, tag)
2791 	struct mbuf *m;
2792 	const struct sadb_msghdr *mhp;
2793 	struct secashead *sah;
2794 	int *errp;
2795 	const char* where;
2796 	int tag;
2797 {
2798 	INIT_VNET_IPSEC(curvnet);
2799 	struct secasvar *newsav;
2800 	const struct sadb_sa *xsa;
2801 
2802 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2803 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2804 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2805 	IPSEC_ASSERT(sah != NULL, ("null secashead"));
2806 
2807 	newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO);
2808 	if (newsav == NULL) {
2809 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2810 		*errp = ENOBUFS;
2811 		goto done;
2812 	}
2813 
2814 	switch (mhp->msg->sadb_msg_type) {
2815 	case SADB_GETSPI:
2816 		newsav->spi = 0;
2817 
2818 #ifdef IPSEC_DOSEQCHECK
2819 		/* sync sequence number */
2820 		if (mhp->msg->sadb_msg_seq == 0)
2821 			newsav->seq =
2822 				(V_acq_seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq));
2823 		else
2824 #endif
2825 			newsav->seq = mhp->msg->sadb_msg_seq;
2826 		break;
2827 
2828 	case SADB_ADD:
2829 		/* sanity check */
2830 		if (mhp->ext[SADB_EXT_SA] == NULL) {
2831 			free(newsav, M_IPSEC_SA);
2832 			newsav = NULL;
2833 			ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2834 				__func__));
2835 			*errp = EINVAL;
2836 			goto done;
2837 		}
2838 		xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2839 		newsav->spi = xsa->sadb_sa_spi;
2840 		newsav->seq = mhp->msg->sadb_msg_seq;
2841 		break;
2842 	default:
2843 		free(newsav, M_IPSEC_SA);
2844 		newsav = NULL;
2845 		*errp = EINVAL;
2846 		goto done;
2847 	}
2848 
2849 
2850 	/* copy sav values */
2851 	if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2852 		*errp = key_setsaval(newsav, m, mhp);
2853 		if (*errp) {
2854 			free(newsav, M_IPSEC_SA);
2855 			newsav = NULL;
2856 			goto done;
2857 		}
2858 	}
2859 
2860 	SECASVAR_LOCK_INIT(newsav);
2861 
2862 	/* reset created */
2863 	newsav->created = time_second;
2864 	newsav->pid = mhp->msg->sadb_msg_pid;
2865 
2866 	/* add to satree */
2867 	newsav->sah = sah;
2868 	sa_initref(newsav);
2869 	newsav->state = SADB_SASTATE_LARVAL;
2870 
2871 	/* XXX locking??? */
2872 	LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
2873 			secasvar, chain);
2874 done:
2875 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
2876 		printf("DP %s from %s:%u return SP:%p\n", __func__,
2877 			where, tag, newsav));
2878 
2879 	return newsav;
2880 }
2881 
2882 /*
2883  * free() SA variable entry.
2884  */
2885 static void
2886 key_cleansav(struct secasvar *sav)
2887 {
2888 	/*
2889 	 * Cleanup xform state.  Note that zeroize'ing causes the
2890 	 * keys to be cleared; otherwise we must do it ourself.
2891 	 */
2892 	if (sav->tdb_xform != NULL) {
2893 		sav->tdb_xform->xf_zeroize(sav);
2894 		sav->tdb_xform = NULL;
2895 	} else {
2896 		KASSERT(sav->iv == NULL, ("iv but no xform"));
2897 		if (sav->key_auth != NULL)
2898 			bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2899 		if (sav->key_enc != NULL)
2900 			bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc));
2901 	}
2902 	if (sav->key_auth != NULL) {
2903 		if (sav->key_auth->key_data != NULL)
2904 			free(sav->key_auth->key_data, M_IPSEC_MISC);
2905 		free(sav->key_auth, M_IPSEC_MISC);
2906 		sav->key_auth = NULL;
2907 	}
2908 	if (sav->key_enc != NULL) {
2909 		if (sav->key_enc->key_data != NULL)
2910 			free(sav->key_enc->key_data, M_IPSEC_MISC);
2911 		free(sav->key_enc, M_IPSEC_MISC);
2912 		sav->key_enc = NULL;
2913 	}
2914 	if (sav->sched) {
2915 		bzero(sav->sched, sav->schedlen);
2916 		free(sav->sched, M_IPSEC_MISC);
2917 		sav->sched = NULL;
2918 	}
2919 	if (sav->replay != NULL) {
2920 		free(sav->replay, M_IPSEC_MISC);
2921 		sav->replay = NULL;
2922 	}
2923 	if (sav->lft_c != NULL) {
2924 		free(sav->lft_c, M_IPSEC_MISC);
2925 		sav->lft_c = NULL;
2926 	}
2927 	if (sav->lft_h != NULL) {
2928 		free(sav->lft_h, M_IPSEC_MISC);
2929 		sav->lft_h = NULL;
2930 	}
2931 	if (sav->lft_s != NULL) {
2932 		free(sav->lft_s, M_IPSEC_MISC);
2933 		sav->lft_s = NULL;
2934 	}
2935 }
2936 
2937 /*
2938  * free() SA variable entry.
2939  */
2940 static void
2941 key_delsav(sav)
2942 	struct secasvar *sav;
2943 {
2944 	IPSEC_ASSERT(sav != NULL, ("null sav"));
2945 	IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt));
2946 
2947 	/* remove from SA header */
2948 	if (__LIST_CHAINED(sav))
2949 		LIST_REMOVE(sav, chain);
2950 	key_cleansav(sav);
2951 	SECASVAR_LOCK_DESTROY(sav);
2952 	free(sav, M_IPSEC_SA);
2953 }
2954 
2955 /*
2956  * search SAD.
2957  * OUT:
2958  *	NULL	: not found
2959  *	others	: found, pointer to a SA.
2960  */
2961 static struct secashead *
2962 key_getsah(saidx)
2963 	struct secasindex *saidx;
2964 {
2965 	INIT_VNET_IPSEC(curvnet);
2966 	struct secashead *sah;
2967 
2968 	SAHTREE_LOCK();
2969 	LIST_FOREACH(sah, &V_sahtree, chain) {
2970 		if (sah->state == SADB_SASTATE_DEAD)
2971 			continue;
2972 		if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID))
2973 			break;
2974 	}
2975 	SAHTREE_UNLOCK();
2976 
2977 	return sah;
2978 }
2979 
2980 /*
2981  * check not to be duplicated SPI.
2982  * NOTE: this function is too slow due to searching all SAD.
2983  * OUT:
2984  *	NULL	: not found
2985  *	others	: found, pointer to a SA.
2986  */
2987 static struct secasvar *
2988 key_checkspidup(saidx, spi)
2989 	struct secasindex *saidx;
2990 	u_int32_t spi;
2991 {
2992 	INIT_VNET_IPSEC(curvnet);
2993 	struct secashead *sah;
2994 	struct secasvar *sav;
2995 
2996 	/* check address family */
2997 	if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
2998 		ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
2999 			__func__));
3000 		return NULL;
3001 	}
3002 
3003 	sav = NULL;
3004 	/* check all SAD */
3005 	SAHTREE_LOCK();
3006 	LIST_FOREACH(sah, &V_sahtree, chain) {
3007 		if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
3008 			continue;
3009 		sav = key_getsavbyspi(sah, spi);
3010 		if (sav != NULL)
3011 			break;
3012 	}
3013 	SAHTREE_UNLOCK();
3014 
3015 	return sav;
3016 }
3017 
3018 /*
3019  * search SAD litmited alive SA, protocol, SPI.
3020  * OUT:
3021  *	NULL	: not found
3022  *	others	: found, pointer to a SA.
3023  */
3024 static struct secasvar *
3025 key_getsavbyspi(sah, spi)
3026 	struct secashead *sah;
3027 	u_int32_t spi;
3028 {
3029 	INIT_VNET_IPSEC(curvnet);
3030 	struct secasvar *sav;
3031 	u_int stateidx, state;
3032 
3033 	sav = NULL;
3034 	SAHTREE_LOCK_ASSERT();
3035 	/* search all status */
3036 	for (stateidx = 0;
3037 	     stateidx < _ARRAYLEN(saorder_state_alive);
3038 	     stateidx++) {
3039 
3040 		state = saorder_state_alive[stateidx];
3041 		LIST_FOREACH(sav, &sah->savtree[state], chain) {
3042 
3043 			/* sanity check */
3044 			if (sav->state != state) {
3045 				ipseclog((LOG_DEBUG, "%s: "
3046 				    "invalid sav->state (queue: %d SA: %d)\n",
3047 				    __func__, state, sav->state));
3048 				continue;
3049 			}
3050 
3051 			if (sav->spi == spi)
3052 				return sav;
3053 		}
3054 	}
3055 
3056 	return NULL;
3057 }
3058 
3059 /*
3060  * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3061  * You must update these if need.
3062  * OUT:	0:	success.
3063  *	!0:	failure.
3064  *
3065  * does not modify mbuf.  does not free mbuf on error.
3066  */
3067 static int
3068 key_setsaval(sav, m, mhp)
3069 	struct secasvar *sav;
3070 	struct mbuf *m;
3071 	const struct sadb_msghdr *mhp;
3072 {
3073 	INIT_VNET_IPSEC(curvnet);
3074 	int error = 0;
3075 
3076 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
3077 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
3078 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
3079 
3080 	/* initialization */
3081 	sav->replay = NULL;
3082 	sav->key_auth = NULL;
3083 	sav->key_enc = NULL;
3084 	sav->sched = NULL;
3085 	sav->schedlen = 0;
3086 	sav->iv = NULL;
3087 	sav->lft_c = NULL;
3088 	sav->lft_h = NULL;
3089 	sav->lft_s = NULL;
3090 	sav->tdb_xform = NULL;		/* transform */
3091 	sav->tdb_encalgxform = NULL;	/* encoding algorithm */
3092 	sav->tdb_authalgxform = NULL;	/* authentication algorithm */
3093 	sav->tdb_compalgxform = NULL;	/* compression algorithm */
3094 	/*  Initialize even if NAT-T not compiled in: */
3095 	sav->natt_type = 0;
3096 	sav->natt_esp_frag_len = 0;
3097 
3098 	/* SA */
3099 	if (mhp->ext[SADB_EXT_SA] != NULL) {
3100 		const struct sadb_sa *sa0;
3101 
3102 		sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3103 		if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3104 			error = EINVAL;
3105 			goto fail;
3106 		}
3107 
3108 		sav->alg_auth = sa0->sadb_sa_auth;
3109 		sav->alg_enc = sa0->sadb_sa_encrypt;
3110 		sav->flags = sa0->sadb_sa_flags;
3111 
3112 		/* replay window */
3113 		if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3114 			sav->replay = (struct secreplay *)
3115 				malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO);
3116 			if (sav->replay == NULL) {
3117 				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3118 					__func__));
3119 				error = ENOBUFS;
3120 				goto fail;
3121 			}
3122 			if (sa0->sadb_sa_replay != 0)
3123 				sav->replay->bitmap = (caddr_t)(sav->replay+1);
3124 			sav->replay->wsize = sa0->sadb_sa_replay;
3125 		}
3126 	}
3127 
3128 	/* Authentication keys */
3129 	if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3130 		const struct sadb_key *key0;
3131 		int len;
3132 
3133 		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3134 		len = mhp->extlen[SADB_EXT_KEY_AUTH];
3135 
3136 		error = 0;
3137 		if (len < sizeof(*key0)) {
3138 			error = EINVAL;
3139 			goto fail;
3140 		}
3141 		switch (mhp->msg->sadb_msg_satype) {
3142 		case SADB_SATYPE_AH:
3143 		case SADB_SATYPE_ESP:
3144 		case SADB_X_SATYPE_TCPSIGNATURE:
3145 			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3146 			    sav->alg_auth != SADB_X_AALG_NULL)
3147 				error = EINVAL;
3148 			break;
3149 		case SADB_X_SATYPE_IPCOMP:
3150 		default:
3151 			error = EINVAL;
3152 			break;
3153 		}
3154 		if (error) {
3155 			ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n",
3156 				__func__));
3157 			goto fail;
3158 		}
3159 
3160 		sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len,
3161 								M_IPSEC_MISC);
3162 		if (sav->key_auth == NULL ) {
3163 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3164 				  __func__));
3165 			error = ENOBUFS;
3166 			goto fail;
3167 		}
3168 	}
3169 
3170 	/* Encryption key */
3171 	if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3172 		const struct sadb_key *key0;
3173 		int len;
3174 
3175 		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3176 		len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3177 
3178 		error = 0;
3179 		if (len < sizeof(*key0)) {
3180 			error = EINVAL;
3181 			goto fail;
3182 		}
3183 		switch (mhp->msg->sadb_msg_satype) {
3184 		case SADB_SATYPE_ESP:
3185 			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3186 			    sav->alg_enc != SADB_EALG_NULL) {
3187 				error = EINVAL;
3188 				break;
3189 			}
3190 			sav->key_enc = (struct seckey *)key_dup_keymsg(key0,
3191 								       len,
3192 								       M_IPSEC_MISC);
3193 			if (sav->key_enc == NULL) {
3194 				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3195 					__func__));
3196 				error = ENOBUFS;
3197 				goto fail;
3198 			}
3199 			break;
3200 		case SADB_X_SATYPE_IPCOMP:
3201 			if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3202 				error = EINVAL;
3203 			sav->key_enc = NULL;	/*just in case*/
3204 			break;
3205 		case SADB_SATYPE_AH:
3206 		case SADB_X_SATYPE_TCPSIGNATURE:
3207 		default:
3208 			error = EINVAL;
3209 			break;
3210 		}
3211 		if (error) {
3212 			ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n",
3213 				__func__));
3214 			goto fail;
3215 		}
3216 	}
3217 
3218 	/* set iv */
3219 	sav->ivlen = 0;
3220 
3221 	switch (mhp->msg->sadb_msg_satype) {
3222 	case SADB_SATYPE_AH:
3223 		error = xform_init(sav, XF_AH);
3224 		break;
3225 	case SADB_SATYPE_ESP:
3226 		error = xform_init(sav, XF_ESP);
3227 		break;
3228 	case SADB_X_SATYPE_IPCOMP:
3229 		error = xform_init(sav, XF_IPCOMP);
3230 		break;
3231 	case SADB_X_SATYPE_TCPSIGNATURE:
3232 		error = xform_init(sav, XF_TCPSIGNATURE);
3233 		break;
3234 	}
3235 	if (error) {
3236 		ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n",
3237 		        __func__, mhp->msg->sadb_msg_satype));
3238 		goto fail;
3239 	}
3240 
3241 	/* reset created */
3242 	sav->created = time_second;
3243 
3244 	/* make lifetime for CURRENT */
3245 	sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT);
3246 	if (sav->lft_c == NULL) {
3247 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3248 		error = ENOBUFS;
3249 		goto fail;
3250 	}
3251 
3252 	sav->lft_c->allocations = 0;
3253 	sav->lft_c->bytes = 0;
3254 	sav->lft_c->addtime = time_second;
3255 	sav->lft_c->usetime = 0;
3256 
3257 	/* lifetimes for HARD and SOFT */
3258     {
3259 	const struct sadb_lifetime *lft0;
3260 
3261 	lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3262 	if (lft0 != NULL) {
3263 		if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3264 			error = EINVAL;
3265 			goto fail;
3266 		}
3267 		sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC);
3268 		if (sav->lft_h == NULL) {
3269 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3270 			error = ENOBUFS;
3271 			goto fail;
3272 		}
3273 		/* to be initialize ? */
3274 	}
3275 
3276 	lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3277 	if (lft0 != NULL) {
3278 		if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3279 			error = EINVAL;
3280 			goto fail;
3281 		}
3282 		sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC);
3283 		if (sav->lft_s == NULL) {
3284 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3285 			error = ENOBUFS;
3286 			goto fail;
3287 		}
3288 		/* to be initialize ? */
3289 	}
3290     }
3291 
3292 	return 0;
3293 
3294  fail:
3295 	/* initialization */
3296 	key_cleansav(sav);
3297 
3298 	return error;
3299 }
3300 
3301 /*
3302  * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3303  * OUT:	0:	valid
3304  *	other:	errno
3305  */
3306 static int
3307 key_mature(struct secasvar *sav)
3308 {
3309 	INIT_VNET_IPSEC(curvnet);
3310 	int error;
3311 
3312 	/* check SPI value */
3313 	switch (sav->sah->saidx.proto) {
3314 	case IPPROTO_ESP:
3315 	case IPPROTO_AH:
3316 		/*
3317 		 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values
3318 		 * 1-255 reserved by IANA for future use,
3319 		 * 0 for implementation specific, local use.
3320 		 */
3321 		if (ntohl(sav->spi) <= 255) {
3322 			ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n",
3323 			    __func__, (u_int32_t)ntohl(sav->spi)));
3324 			return EINVAL;
3325 		}
3326 		break;
3327 	}
3328 
3329 	/* check satype */
3330 	switch (sav->sah->saidx.proto) {
3331 	case IPPROTO_ESP:
3332 		/* check flags */
3333 		if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3334 		    (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3335 			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3336 				"given to old-esp.\n", __func__));
3337 			return EINVAL;
3338 		}
3339 		error = xform_init(sav, XF_ESP);
3340 		break;
3341 	case IPPROTO_AH:
3342 		/* check flags */
3343 		if (sav->flags & SADB_X_EXT_DERIV) {
3344 			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3345 				"given to AH SA.\n", __func__));
3346 			return EINVAL;
3347 		}
3348 		if (sav->alg_enc != SADB_EALG_NONE) {
3349 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3350 				"mismated.\n", __func__));
3351 			return(EINVAL);
3352 		}
3353 		error = xform_init(sav, XF_AH);
3354 		break;
3355 	case IPPROTO_IPCOMP:
3356 		if (sav->alg_auth != SADB_AALG_NONE) {
3357 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3358 				"mismated.\n", __func__));
3359 			return(EINVAL);
3360 		}
3361 		if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3362 		 && ntohl(sav->spi) >= 0x10000) {
3363 			ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n",
3364 				__func__));
3365 			return(EINVAL);
3366 		}
3367 		error = xform_init(sav, XF_IPCOMP);
3368 		break;
3369 	case IPPROTO_TCP:
3370 		if (sav->alg_enc != SADB_EALG_NONE) {
3371 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3372 				"mismated.\n", __func__));
3373 			return(EINVAL);
3374 		}
3375 		error = xform_init(sav, XF_TCPSIGNATURE);
3376 		break;
3377 	default:
3378 		ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__));
3379 		error = EPROTONOSUPPORT;
3380 		break;
3381 	}
3382 	if (error == 0) {
3383 		SAHTREE_LOCK();
3384 		key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3385 		SAHTREE_UNLOCK();
3386 	}
3387 	return (error);
3388 }
3389 
3390 /*
3391  * subroutine for SADB_GET and SADB_DUMP.
3392  */
3393 static struct mbuf *
3394 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3395     u_int32_t seq, u_int32_t pid)
3396 {
3397 	struct mbuf *result = NULL, *tres = NULL, *m;
3398 	int i;
3399 	int dumporder[] = {
3400 		SADB_EXT_SA, SADB_X_EXT_SA2,
3401 		SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3402 		SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3403 		SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3404 		SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3405 		SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3406 #ifdef IPSEC_NAT_T
3407 		SADB_X_EXT_NAT_T_TYPE,
3408 		SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3409 		SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3410 		SADB_X_EXT_NAT_T_FRAG,
3411 #endif
3412 	};
3413 
3414 	m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3415 	if (m == NULL)
3416 		goto fail;
3417 	result = m;
3418 
3419 	for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) {
3420 		m = NULL;
3421 		switch (dumporder[i]) {
3422 		case SADB_EXT_SA:
3423 			m = key_setsadbsa(sav);
3424 			if (!m)
3425 				goto fail;
3426 			break;
3427 
3428 		case SADB_X_EXT_SA2:
3429 			m = key_setsadbxsa2(sav->sah->saidx.mode,
3430 					sav->replay ? sav->replay->count : 0,
3431 					sav->sah->saidx.reqid);
3432 			if (!m)
3433 				goto fail;
3434 			break;
3435 
3436 		case SADB_EXT_ADDRESS_SRC:
3437 			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3438 			    &sav->sah->saidx.src.sa,
3439 			    FULLMASK, IPSEC_ULPROTO_ANY);
3440 			if (!m)
3441 				goto fail;
3442 			break;
3443 
3444 		case SADB_EXT_ADDRESS_DST:
3445 			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3446 			    &sav->sah->saidx.dst.sa,
3447 			    FULLMASK, IPSEC_ULPROTO_ANY);
3448 			if (!m)
3449 				goto fail;
3450 			break;
3451 
3452 		case SADB_EXT_KEY_AUTH:
3453 			if (!sav->key_auth)
3454 				continue;
3455 			m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH);
3456 			if (!m)
3457 				goto fail;
3458 			break;
3459 
3460 		case SADB_EXT_KEY_ENCRYPT:
3461 			if (!sav->key_enc)
3462 				continue;
3463 			m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT);
3464 			if (!m)
3465 				goto fail;
3466 			break;
3467 
3468 		case SADB_EXT_LIFETIME_CURRENT:
3469 			if (!sav->lft_c)
3470 				continue;
3471 			m = key_setlifetime(sav->lft_c,
3472 					    SADB_EXT_LIFETIME_CURRENT);
3473 			if (!m)
3474 				goto fail;
3475 			break;
3476 
3477 		case SADB_EXT_LIFETIME_HARD:
3478 			if (!sav->lft_h)
3479 				continue;
3480 			m = key_setlifetime(sav->lft_h,
3481 					    SADB_EXT_LIFETIME_HARD);
3482 			if (!m)
3483 				goto fail;
3484 			break;
3485 
3486 		case SADB_EXT_LIFETIME_SOFT:
3487 			if (!sav->lft_s)
3488 				continue;
3489 			m = key_setlifetime(sav->lft_s,
3490 					    SADB_EXT_LIFETIME_SOFT);
3491 
3492 			if (!m)
3493 				goto fail;
3494 			break;
3495 
3496 #ifdef IPSEC_NAT_T
3497 		case SADB_X_EXT_NAT_T_TYPE:
3498 			m = key_setsadbxtype(sav->natt_type);
3499 			if (!m)
3500 				goto fail;
3501 			break;
3502 
3503 		case SADB_X_EXT_NAT_T_DPORT:
3504 			m = key_setsadbxport(
3505 			    KEY_PORTFROMSADDR(&sav->sah->saidx.dst),
3506 			    SADB_X_EXT_NAT_T_DPORT);
3507 			if (!m)
3508 				goto fail;
3509 			break;
3510 
3511 		case SADB_X_EXT_NAT_T_SPORT:
3512 			m = key_setsadbxport(
3513 			    KEY_PORTFROMSADDR(&sav->sah->saidx.src),
3514 			    SADB_X_EXT_NAT_T_SPORT);
3515 			if (!m)
3516 				goto fail;
3517 			break;
3518 
3519 		case SADB_X_EXT_NAT_T_OAI:
3520 		case SADB_X_EXT_NAT_T_OAR:
3521 		case SADB_X_EXT_NAT_T_FRAG:
3522 			/* We do not (yet) support those. */
3523 			continue;
3524 #endif
3525 
3526 		case SADB_EXT_ADDRESS_PROXY:
3527 		case SADB_EXT_IDENTITY_SRC:
3528 		case SADB_EXT_IDENTITY_DST:
3529 			/* XXX: should we brought from SPD ? */
3530 		case SADB_EXT_SENSITIVITY:
3531 		default:
3532 			continue;
3533 		}
3534 
3535 		if (!m)
3536 			goto fail;
3537 		if (tres)
3538 			m_cat(m, tres);
3539 		tres = m;
3540 
3541 	}
3542 
3543 	m_cat(result, tres);
3544 	if (result->m_len < sizeof(struct sadb_msg)) {
3545 		result = m_pullup(result, sizeof(struct sadb_msg));
3546 		if (result == NULL)
3547 			goto fail;
3548 	}
3549 
3550 	result->m_pkthdr.len = 0;
3551 	for (m = result; m; m = m->m_next)
3552 		result->m_pkthdr.len += m->m_len;
3553 
3554 	mtod(result, struct sadb_msg *)->sadb_msg_len =
3555 	    PFKEY_UNIT64(result->m_pkthdr.len);
3556 
3557 	return result;
3558 
3559 fail:
3560 	m_freem(result);
3561 	m_freem(tres);
3562 	return NULL;
3563 }
3564 
3565 /*
3566  * set data into sadb_msg.
3567  */
3568 static struct mbuf *
3569 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq,
3570     pid_t pid, u_int16_t reserved)
3571 {
3572 	struct mbuf *m;
3573 	struct sadb_msg *p;
3574 	int len;
3575 
3576 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3577 	if (len > MCLBYTES)
3578 		return NULL;
3579 	MGETHDR(m, M_DONTWAIT, MT_DATA);
3580 	if (m && len > MHLEN) {
3581 		MCLGET(m, M_DONTWAIT);
3582 		if ((m->m_flags & M_EXT) == 0) {
3583 			m_freem(m);
3584 			m = NULL;
3585 		}
3586 	}
3587 	if (!m)
3588 		return NULL;
3589 	m->m_pkthdr.len = m->m_len = len;
3590 	m->m_next = NULL;
3591 
3592 	p = mtod(m, struct sadb_msg *);
3593 
3594 	bzero(p, len);
3595 	p->sadb_msg_version = PF_KEY_V2;
3596 	p->sadb_msg_type = type;
3597 	p->sadb_msg_errno = 0;
3598 	p->sadb_msg_satype = satype;
3599 	p->sadb_msg_len = PFKEY_UNIT64(tlen);
3600 	p->sadb_msg_reserved = reserved;
3601 	p->sadb_msg_seq = seq;
3602 	p->sadb_msg_pid = (u_int32_t)pid;
3603 
3604 	return m;
3605 }
3606 
3607 /*
3608  * copy secasvar data into sadb_address.
3609  */
3610 static struct mbuf *
3611 key_setsadbsa(sav)
3612 	struct secasvar *sav;
3613 {
3614 	struct mbuf *m;
3615 	struct sadb_sa *p;
3616 	int len;
3617 
3618 	len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3619 	m = key_alloc_mbuf(len);
3620 	if (!m || m->m_next) {	/*XXX*/
3621 		if (m)
3622 			m_freem(m);
3623 		return NULL;
3624 	}
3625 
3626 	p = mtod(m, struct sadb_sa *);
3627 
3628 	bzero(p, len);
3629 	p->sadb_sa_len = PFKEY_UNIT64(len);
3630 	p->sadb_sa_exttype = SADB_EXT_SA;
3631 	p->sadb_sa_spi = sav->spi;
3632 	p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3633 	p->sadb_sa_state = sav->state;
3634 	p->sadb_sa_auth = sav->alg_auth;
3635 	p->sadb_sa_encrypt = sav->alg_enc;
3636 	p->sadb_sa_flags = sav->flags;
3637 
3638 	return m;
3639 }
3640 
3641 /*
3642  * set data into sadb_address.
3643  */
3644 static struct mbuf *
3645 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, u_int8_t prefixlen, u_int16_t ul_proto)
3646 {
3647 	struct mbuf *m;
3648 	struct sadb_address *p;
3649 	size_t len;
3650 
3651 	len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3652 	    PFKEY_ALIGN8(saddr->sa_len);
3653 	m = key_alloc_mbuf(len);
3654 	if (!m || m->m_next) {	/*XXX*/
3655 		if (m)
3656 			m_freem(m);
3657 		return NULL;
3658 	}
3659 
3660 	p = mtod(m, struct sadb_address *);
3661 
3662 	bzero(p, len);
3663 	p->sadb_address_len = PFKEY_UNIT64(len);
3664 	p->sadb_address_exttype = exttype;
3665 	p->sadb_address_proto = ul_proto;
3666 	if (prefixlen == FULLMASK) {
3667 		switch (saddr->sa_family) {
3668 		case AF_INET:
3669 			prefixlen = sizeof(struct in_addr) << 3;
3670 			break;
3671 		case AF_INET6:
3672 			prefixlen = sizeof(struct in6_addr) << 3;
3673 			break;
3674 		default:
3675 			; /*XXX*/
3676 		}
3677 	}
3678 	p->sadb_address_prefixlen = prefixlen;
3679 	p->sadb_address_reserved = 0;
3680 
3681 	bcopy(saddr,
3682 	    mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3683 	    saddr->sa_len);
3684 
3685 	return m;
3686 }
3687 
3688 /*
3689  * set data into sadb_x_sa2.
3690  */
3691 static struct mbuf *
3692 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid)
3693 {
3694 	struct mbuf *m;
3695 	struct sadb_x_sa2 *p;
3696 	size_t len;
3697 
3698 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3699 	m = key_alloc_mbuf(len);
3700 	if (!m || m->m_next) {	/*XXX*/
3701 		if (m)
3702 			m_freem(m);
3703 		return NULL;
3704 	}
3705 
3706 	p = mtod(m, struct sadb_x_sa2 *);
3707 
3708 	bzero(p, len);
3709 	p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3710 	p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3711 	p->sadb_x_sa2_mode = mode;
3712 	p->sadb_x_sa2_reserved1 = 0;
3713 	p->sadb_x_sa2_reserved2 = 0;
3714 	p->sadb_x_sa2_sequence = seq;
3715 	p->sadb_x_sa2_reqid = reqid;
3716 
3717 	return m;
3718 }
3719 
3720 #ifdef IPSEC_NAT_T
3721 /*
3722  * Set a type in sadb_x_nat_t_type.
3723  */
3724 static struct mbuf *
3725 key_setsadbxtype(u_int16_t type)
3726 {
3727 	struct mbuf *m;
3728 	size_t len;
3729 	struct sadb_x_nat_t_type *p;
3730 
3731 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3732 
3733 	m = key_alloc_mbuf(len);
3734 	if (!m || m->m_next) {	/*XXX*/
3735 		if (m)
3736 			m_freem(m);
3737 		return (NULL);
3738 	}
3739 
3740 	p = mtod(m, struct sadb_x_nat_t_type *);
3741 
3742 	bzero(p, len);
3743 	p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3744 	p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3745 	p->sadb_x_nat_t_type_type = type;
3746 
3747 	return (m);
3748 }
3749 /*
3750  * Set a port in sadb_x_nat_t_port.
3751  * In contrast to default RFC 2367 behaviour, port is in network byte order.
3752  */
3753 static struct mbuf *
3754 key_setsadbxport(u_int16_t port, u_int16_t type)
3755 {
3756 	struct mbuf *m;
3757 	size_t len;
3758 	struct sadb_x_nat_t_port *p;
3759 
3760 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3761 
3762 	m = key_alloc_mbuf(len);
3763 	if (!m || m->m_next) {	/*XXX*/
3764 		if (m)
3765 			m_freem(m);
3766 		return (NULL);
3767 	}
3768 
3769 	p = mtod(m, struct sadb_x_nat_t_port *);
3770 
3771 	bzero(p, len);
3772 	p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3773 	p->sadb_x_nat_t_port_exttype = type;
3774 	p->sadb_x_nat_t_port_port = port;
3775 
3776 	return (m);
3777 }
3778 
3779 /*
3780  * Get port from sockaddr. Port is in network byte order.
3781  */
3782 u_int16_t
3783 key_portfromsaddr(struct sockaddr *sa)
3784 {
3785 	INIT_VNET_IPSEC(curvnet);
3786 
3787 	switch (sa->sa_family) {
3788 #ifdef INET
3789 	case AF_INET:
3790 		return ((struct sockaddr_in *)sa)->sin_port;
3791 #endif
3792 #ifdef INET6
3793 	case AF_INET6:
3794 		return ((struct sockaddr_in6 *)sa)->sin6_port;
3795 #endif
3796 	}
3797 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
3798 		printf("DP %s unexpected address family %d\n",
3799 			__func__, sa->sa_family));
3800 	return (0);
3801 }
3802 #endif /* IPSEC_NAT_T */
3803 
3804 /*
3805  * Set port in struct sockaddr. Port is in network byte order.
3806  */
3807 static void
3808 key_porttosaddr(struct sockaddr *sa, u_int16_t port)
3809 {
3810 	INIT_VNET_IPSEC(curvnet);
3811 
3812 	switch (sa->sa_family) {
3813 #ifdef INET
3814 	case AF_INET:
3815 		((struct sockaddr_in *)sa)->sin_port = port;
3816 		break;
3817 #endif
3818 #ifdef INET6
3819 	case AF_INET6:
3820 		((struct sockaddr_in6 *)sa)->sin6_port = port;
3821 		break;
3822 #endif
3823 	default:
3824 		ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n",
3825 			__func__, sa->sa_family));
3826 		break;
3827 	}
3828 }
3829 
3830 /*
3831  * set data into sadb_x_policy
3832  */
3833 static struct mbuf *
3834 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
3835 {
3836 	struct mbuf *m;
3837 	struct sadb_x_policy *p;
3838 	size_t len;
3839 
3840 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
3841 	m = key_alloc_mbuf(len);
3842 	if (!m || m->m_next) {	/*XXX*/
3843 		if (m)
3844 			m_freem(m);
3845 		return NULL;
3846 	}
3847 
3848 	p = mtod(m, struct sadb_x_policy *);
3849 
3850 	bzero(p, len);
3851 	p->sadb_x_policy_len = PFKEY_UNIT64(len);
3852 	p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
3853 	p->sadb_x_policy_type = type;
3854 	p->sadb_x_policy_dir = dir;
3855 	p->sadb_x_policy_id = id;
3856 
3857 	return m;
3858 }
3859 
3860 /* %%% utilities */
3861 /* Take a key message (sadb_key) from the socket and turn it into one
3862  * of the kernel's key structures (seckey).
3863  *
3864  * IN: pointer to the src
3865  * OUT: NULL no more memory
3866  */
3867 struct seckey *
3868 key_dup_keymsg(const struct sadb_key *src, u_int len,
3869 	       struct malloc_type *type)
3870 {
3871 	INIT_VNET_IPSEC(curvnet);
3872 	struct seckey *dst;
3873 	dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT);
3874 	if (dst != NULL) {
3875 		dst->bits = src->sadb_key_bits;
3876 		dst->key_data = (char *)malloc(len, type, M_NOWAIT);
3877 		if (dst->key_data != NULL) {
3878 			bcopy((const char *)src + sizeof(struct sadb_key),
3879 			      dst->key_data, len);
3880 		} else {
3881 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3882 				  __func__));
3883 			free(dst, type);
3884 			dst = NULL;
3885 		}
3886 	} else {
3887 		ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3888 			  __func__));
3889 
3890 	}
3891 	return dst;
3892 }
3893 
3894 /* Take a lifetime message (sadb_lifetime) passed in on a socket and
3895  * turn it into one of the kernel's lifetime structures (seclifetime).
3896  *
3897  * IN: pointer to the destination, source and malloc type
3898  * OUT: NULL, no more memory
3899  */
3900 
3901 static struct seclifetime *
3902 key_dup_lifemsg(const struct sadb_lifetime *src,
3903 		 struct malloc_type *type)
3904 {
3905 	INIT_VNET_IPSEC(curvnet);
3906 	struct seclifetime *dst = NULL;
3907 
3908 	dst = (struct seclifetime *)malloc(sizeof(struct seclifetime),
3909 					   type, M_NOWAIT);
3910 	if (dst == NULL) {
3911 		/* XXX counter */
3912 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3913 	} else {
3914 		dst->allocations = src->sadb_lifetime_allocations;
3915 		dst->bytes = src->sadb_lifetime_bytes;
3916 		dst->addtime = src->sadb_lifetime_addtime;
3917 		dst->usetime = src->sadb_lifetime_usetime;
3918 	}
3919 	return dst;
3920 }
3921 
3922 /* compare my own address
3923  * OUT:	1: true, i.e. my address.
3924  *	0: false
3925  */
3926 int
3927 key_ismyaddr(sa)
3928 	struct sockaddr *sa;
3929 {
3930 #ifdef INET
3931 	INIT_VNET_INET(curvnet);
3932 	struct sockaddr_in *sin;
3933 	struct in_ifaddr *ia;
3934 #endif
3935 
3936 	IPSEC_ASSERT(sa != NULL, ("null sockaddr"));
3937 
3938 	switch (sa->sa_family) {
3939 #ifdef INET
3940 	case AF_INET:
3941 		sin = (struct sockaddr_in *)sa;
3942 		IN_IFADDR_RLOCK();
3943 		for (ia = V_in_ifaddrhead.tqh_first; ia;
3944 		     ia = ia->ia_link.tqe_next)
3945 		{
3946 			if (sin->sin_family == ia->ia_addr.sin_family &&
3947 			    sin->sin_len == ia->ia_addr.sin_len &&
3948 			    sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
3949 			{
3950 				IN_IFADDR_RUNLOCK();
3951 				return 1;
3952 			}
3953 		}
3954 		IN_IFADDR_RUNLOCK();
3955 		break;
3956 #endif
3957 #ifdef INET6
3958 	case AF_INET6:
3959 		return key_ismyaddr6((struct sockaddr_in6 *)sa);
3960 #endif
3961 	}
3962 
3963 	return 0;
3964 }
3965 
3966 #ifdef INET6
3967 /*
3968  * compare my own address for IPv6.
3969  * 1: ours
3970  * 0: other
3971  * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
3972  */
3973 #include <netinet6/in6_var.h>
3974 
3975 static int
3976 key_ismyaddr6(sin6)
3977 	struct sockaddr_in6 *sin6;
3978 {
3979 	INIT_VNET_INET6(curvnet);
3980 	struct in6_ifaddr *ia;
3981 #if 0
3982 	struct in6_multi *in6m;
3983 #endif
3984 
3985 	IN6_IFADDR_RLOCK();
3986 	TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) {
3987 		if (key_sockaddrcmp((struct sockaddr *)&sin6,
3988 		    (struct sockaddr *)&ia->ia_addr, 0) == 0) {
3989 			IN6_IFADDR_RUNLOCK();
3990 			return 1;
3991 		}
3992 
3993 #if 0
3994 		/*
3995 		 * XXX Multicast
3996 		 * XXX why do we care about multlicast here while we don't care
3997 		 * about IPv4 multicast??
3998 		 * XXX scope
3999 		 */
4000 		in6m = NULL;
4001 		IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m);
4002 		if (in6m) {
4003 			IN6_IFADDR_RUNLOCK();
4004 			return 1;
4005 		}
4006 #endif
4007 	}
4008 	IN6_IFADDR_RUNLOCK();
4009 
4010 	/* loopback, just for safety */
4011 	if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
4012 		return 1;
4013 
4014 	return 0;
4015 }
4016 #endif /*INET6*/
4017 
4018 /*
4019  * compare two secasindex structure.
4020  * flag can specify to compare 2 saidxes.
4021  * compare two secasindex structure without both mode and reqid.
4022  * don't compare port.
4023  * IN:
4024  *      saidx0: source, it can be in SAD.
4025  *      saidx1: object.
4026  * OUT:
4027  *      1 : equal
4028  *      0 : not equal
4029  */
4030 static int
4031 key_cmpsaidx(
4032 	const struct secasindex *saidx0,
4033 	const struct secasindex *saidx1,
4034 	int flag)
4035 {
4036 	int chkport = 0;
4037 
4038 	/* sanity */
4039 	if (saidx0 == NULL && saidx1 == NULL)
4040 		return 1;
4041 
4042 	if (saidx0 == NULL || saidx1 == NULL)
4043 		return 0;
4044 
4045 	if (saidx0->proto != saidx1->proto)
4046 		return 0;
4047 
4048 	if (flag == CMP_EXACTLY) {
4049 		if (saidx0->mode != saidx1->mode)
4050 			return 0;
4051 		if (saidx0->reqid != saidx1->reqid)
4052 			return 0;
4053 		if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
4054 		    bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
4055 			return 0;
4056 	} else {
4057 
4058 		/* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4059 		if (flag == CMP_MODE_REQID
4060 		  ||flag == CMP_REQID) {
4061 			/*
4062 			 * If reqid of SPD is non-zero, unique SA is required.
4063 			 * The result must be of same reqid in this case.
4064 			 */
4065 			if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
4066 				return 0;
4067 		}
4068 
4069 		if (flag == CMP_MODE_REQID) {
4070 			if (saidx0->mode != IPSEC_MODE_ANY
4071 			 && saidx0->mode != saidx1->mode)
4072 				return 0;
4073 		}
4074 
4075 #ifdef IPSEC_NAT_T
4076 		/*
4077 		 * If NAT-T is enabled, check ports for tunnel mode.
4078 		 * Do not check ports if they are set to zero in the SPD.
4079 		 * Also do not do it for transport mode, as there is no
4080 		 * port information available in the SP.
4081 		 */
4082 		if (saidx1->mode == IPSEC_MODE_TUNNEL &&
4083 		    saidx1->src.sa.sa_family == AF_INET &&
4084 		    saidx1->dst.sa.sa_family == AF_INET &&
4085 		    ((const struct sockaddr_in *)(&saidx1->src))->sin_port &&
4086 		    ((const struct sockaddr_in *)(&saidx1->dst))->sin_port)
4087 			chkport = 1;
4088 #endif /* IPSEC_NAT_T */
4089 
4090 		if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, chkport) != 0) {
4091 			return 0;
4092 		}
4093 		if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, chkport) != 0) {
4094 			return 0;
4095 		}
4096 	}
4097 
4098 	return 1;
4099 }
4100 
4101 /*
4102  * compare two secindex structure exactly.
4103  * IN:
4104  *	spidx0: source, it is often in SPD.
4105  *	spidx1: object, it is often from PFKEY message.
4106  * OUT:
4107  *	1 : equal
4108  *	0 : not equal
4109  */
4110 static int
4111 key_cmpspidx_exactly(
4112 	struct secpolicyindex *spidx0,
4113 	struct secpolicyindex *spidx1)
4114 {
4115 	/* sanity */
4116 	if (spidx0 == NULL && spidx1 == NULL)
4117 		return 1;
4118 
4119 	if (spidx0 == NULL || spidx1 == NULL)
4120 		return 0;
4121 
4122 	if (spidx0->prefs != spidx1->prefs
4123 	 || spidx0->prefd != spidx1->prefd
4124 	 || spidx0->ul_proto != spidx1->ul_proto)
4125 		return 0;
4126 
4127 	return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 &&
4128 	       key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0;
4129 }
4130 
4131 /*
4132  * compare two secindex structure with mask.
4133  * IN:
4134  *	spidx0: source, it is often in SPD.
4135  *	spidx1: object, it is often from IP header.
4136  * OUT:
4137  *	1 : equal
4138  *	0 : not equal
4139  */
4140 static int
4141 key_cmpspidx_withmask(
4142 	struct secpolicyindex *spidx0,
4143 	struct secpolicyindex *spidx1)
4144 {
4145 	/* sanity */
4146 	if (spidx0 == NULL && spidx1 == NULL)
4147 		return 1;
4148 
4149 	if (spidx0 == NULL || spidx1 == NULL)
4150 		return 0;
4151 
4152 	if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4153 	    spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4154 	    spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4155 	    spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4156 		return 0;
4157 
4158 	/* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4159 	if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
4160 	 && spidx0->ul_proto != spidx1->ul_proto)
4161 		return 0;
4162 
4163 	switch (spidx0->src.sa.sa_family) {
4164 	case AF_INET:
4165 		if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
4166 		 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4167 			return 0;
4168 		if (!key_bbcmp(&spidx0->src.sin.sin_addr,
4169 		    &spidx1->src.sin.sin_addr, spidx0->prefs))
4170 			return 0;
4171 		break;
4172 	case AF_INET6:
4173 		if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
4174 		 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4175 			return 0;
4176 		/*
4177 		 * scope_id check. if sin6_scope_id is 0, we regard it
4178 		 * as a wildcard scope, which matches any scope zone ID.
4179 		 */
4180 		if (spidx0->src.sin6.sin6_scope_id &&
4181 		    spidx1->src.sin6.sin6_scope_id &&
4182 		    spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4183 			return 0;
4184 		if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
4185 		    &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4186 			return 0;
4187 		break;
4188 	default:
4189 		/* XXX */
4190 		if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4191 			return 0;
4192 		break;
4193 	}
4194 
4195 	switch (spidx0->dst.sa.sa_family) {
4196 	case AF_INET:
4197 		if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
4198 		 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4199 			return 0;
4200 		if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
4201 		    &spidx1->dst.sin.sin_addr, spidx0->prefd))
4202 			return 0;
4203 		break;
4204 	case AF_INET6:
4205 		if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
4206 		 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4207 			return 0;
4208 		/*
4209 		 * scope_id check. if sin6_scope_id is 0, we regard it
4210 		 * as a wildcard scope, which matches any scope zone ID.
4211 		 */
4212 		if (spidx0->dst.sin6.sin6_scope_id &&
4213 		    spidx1->dst.sin6.sin6_scope_id &&
4214 		    spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4215 			return 0;
4216 		if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
4217 		    &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4218 			return 0;
4219 		break;
4220 	default:
4221 		/* XXX */
4222 		if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4223 			return 0;
4224 		break;
4225 	}
4226 
4227 	/* XXX Do we check other field ?  e.g. flowinfo */
4228 
4229 	return 1;
4230 }
4231 
4232 /* returns 0 on match */
4233 static int
4234 key_sockaddrcmp(
4235 	const struct sockaddr *sa1,
4236 	const struct sockaddr *sa2,
4237 	int port)
4238 {
4239 #ifdef satosin
4240 #undef satosin
4241 #endif
4242 #define satosin(s) ((const struct sockaddr_in *)s)
4243 #ifdef satosin6
4244 #undef satosin6
4245 #endif
4246 #define satosin6(s) ((const struct sockaddr_in6 *)s)
4247 	if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
4248 		return 1;
4249 
4250 	switch (sa1->sa_family) {
4251 	case AF_INET:
4252 		if (sa1->sa_len != sizeof(struct sockaddr_in))
4253 			return 1;
4254 		if (satosin(sa1)->sin_addr.s_addr !=
4255 		    satosin(sa2)->sin_addr.s_addr) {
4256 			return 1;
4257 		}
4258 		if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port)
4259 			return 1;
4260 		break;
4261 	case AF_INET6:
4262 		if (sa1->sa_len != sizeof(struct sockaddr_in6))
4263 			return 1;	/*EINVAL*/
4264 		if (satosin6(sa1)->sin6_scope_id !=
4265 		    satosin6(sa2)->sin6_scope_id) {
4266 			return 1;
4267 		}
4268 		if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr,
4269 		    &satosin6(sa2)->sin6_addr)) {
4270 			return 1;
4271 		}
4272 		if (port &&
4273 		    satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) {
4274 			return 1;
4275 		}
4276 		break;
4277 	default:
4278 		if (bcmp(sa1, sa2, sa1->sa_len) != 0)
4279 			return 1;
4280 		break;
4281 	}
4282 
4283 	return 0;
4284 #undef satosin
4285 #undef satosin6
4286 }
4287 
4288 /*
4289  * compare two buffers with mask.
4290  * IN:
4291  *	addr1: source
4292  *	addr2: object
4293  *	bits:  Number of bits to compare
4294  * OUT:
4295  *	1 : equal
4296  *	0 : not equal
4297  */
4298 static int
4299 key_bbcmp(const void *a1, const void *a2, u_int bits)
4300 {
4301 	const unsigned char *p1 = a1;
4302 	const unsigned char *p2 = a2;
4303 
4304 	/* XXX: This could be considerably faster if we compare a word
4305 	 * at a time, but it is complicated on LSB Endian machines */
4306 
4307 	/* Handle null pointers */
4308 	if (p1 == NULL || p2 == NULL)
4309 		return (p1 == p2);
4310 
4311 	while (bits >= 8) {
4312 		if (*p1++ != *p2++)
4313 			return 0;
4314 		bits -= 8;
4315 	}
4316 
4317 	if (bits > 0) {
4318 		u_int8_t mask = ~((1<<(8-bits))-1);
4319 		if ((*p1 & mask) != (*p2 & mask))
4320 			return 0;
4321 	}
4322 	return 1;	/* Match! */
4323 }
4324 
4325 static void
4326 key_flush_spd(time_t now)
4327 {
4328 	INIT_VNET_IPSEC(curvnet);
4329 	static u_int16_t sptree_scangen = 0;
4330 	u_int16_t gen = sptree_scangen++;
4331 	struct secpolicy *sp;
4332 	u_int dir;
4333 
4334 	/* SPD */
4335 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4336 restart:
4337 		SPTREE_LOCK();
4338 		LIST_FOREACH(sp, &V_sptree[dir], chain) {
4339 			if (sp->scangen == gen)		/* previously handled */
4340 				continue;
4341 			sp->scangen = gen;
4342 			if (sp->state == IPSEC_SPSTATE_DEAD &&
4343 			    sp->refcnt == 1) {
4344 				/*
4345 				 * Ensure that we only decrease refcnt once,
4346 				 * when we're the last consumer.
4347 				 * Directly call SP_DELREF/key_delsp instead
4348 				 * of KEY_FREESP to avoid unlocking/relocking
4349 				 * SPTREE_LOCK before key_delsp: may refcnt
4350 				 * be increased again during that time ?
4351 				 * NB: also clean entries created by
4352 				 * key_spdflush
4353 				 */
4354 				SP_DELREF(sp);
4355 				key_delsp(sp);
4356 				SPTREE_UNLOCK();
4357 				goto restart;
4358 			}
4359 			if (sp->lifetime == 0 && sp->validtime == 0)
4360 				continue;
4361 			if ((sp->lifetime && now - sp->created > sp->lifetime)
4362 			 || (sp->validtime && now - sp->lastused > sp->validtime)) {
4363 				sp->state = IPSEC_SPSTATE_DEAD;
4364 				SPTREE_UNLOCK();
4365 				key_spdexpire(sp);
4366 				goto restart;
4367 			}
4368 		}
4369 		SPTREE_UNLOCK();
4370 	}
4371 }
4372 
4373 static void
4374 key_flush_sad(time_t now)
4375 {
4376 	INIT_VNET_IPSEC(curvnet);
4377 	struct secashead *sah, *nextsah;
4378 	struct secasvar *sav, *nextsav;
4379 
4380 	/* SAD */
4381 	SAHTREE_LOCK();
4382 	LIST_FOREACH_SAFE(sah, &V_sahtree, chain, nextsah) {
4383 		/* if sah has been dead, then delete it and process next sah. */
4384 		if (sah->state == SADB_SASTATE_DEAD) {
4385 			key_delsah(sah);
4386 			continue;
4387 		}
4388 
4389 		/* if LARVAL entry doesn't become MATURE, delete it. */
4390 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) {
4391 			/* Need to also check refcnt for a larval SA ??? */
4392 			if (now - sav->created > V_key_larval_lifetime)
4393 				KEY_FREESAV(&sav);
4394 		}
4395 
4396 		/*
4397 		 * check MATURE entry to start to send expire message
4398 		 * whether or not.
4399 		 */
4400 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) {
4401 			/* we don't need to check. */
4402 			if (sav->lft_s == NULL)
4403 				continue;
4404 
4405 			/* sanity check */
4406 			if (sav->lft_c == NULL) {
4407 				ipseclog((LOG_DEBUG,"%s: there is no CURRENT "
4408 					"time, why?\n", __func__));
4409 				continue;
4410 			}
4411 
4412 			/* check SOFT lifetime */
4413 			if (sav->lft_s->addtime != 0 &&
4414 			    now - sav->created > sav->lft_s->addtime) {
4415 				key_sa_chgstate(sav, SADB_SASTATE_DYING);
4416 				/*
4417 				 * Actually, only send expire message if
4418 				 * SA has been used, as it was done before,
4419 				 * but should we always send such message,
4420 				 * and let IKE daemon decide if it should be
4421 				 * renegotiated or not ?
4422 				 * XXX expire message will actually NOT be
4423 				 * sent if SA is only used after soft
4424 				 * lifetime has been reached, see below
4425 				 * (DYING state)
4426 				 */
4427 				if (sav->lft_c->usetime != 0)
4428 					key_expire(sav);
4429 			}
4430 			/* check SOFT lifetime by bytes */
4431 			/*
4432 			 * XXX I don't know the way to delete this SA
4433 			 * when new SA is installed.  Caution when it's
4434 			 * installed too big lifetime by time.
4435 			 */
4436 			else if (sav->lft_s->bytes != 0 &&
4437 			    sav->lft_s->bytes < sav->lft_c->bytes) {
4438 
4439 				key_sa_chgstate(sav, SADB_SASTATE_DYING);
4440 				/*
4441 				 * XXX If we keep to send expire
4442 				 * message in the status of
4443 				 * DYING. Do remove below code.
4444 				 */
4445 				key_expire(sav);
4446 			}
4447 		}
4448 
4449 		/* check DYING entry to change status to DEAD. */
4450 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) {
4451 			/* we don't need to check. */
4452 			if (sav->lft_h == NULL)
4453 				continue;
4454 
4455 			/* sanity check */
4456 			if (sav->lft_c == NULL) {
4457 				ipseclog((LOG_DEBUG, "%s: there is no CURRENT "
4458 					"time, why?\n", __func__));
4459 				continue;
4460 			}
4461 
4462 			if (sav->lft_h->addtime != 0 &&
4463 			    now - sav->created > sav->lft_h->addtime) {
4464 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4465 				KEY_FREESAV(&sav);
4466 			}
4467 #if 0	/* XXX Should we keep to send expire message until HARD lifetime ? */
4468 			else if (sav->lft_s != NULL
4469 			      && sav->lft_s->addtime != 0
4470 			      && now - sav->created > sav->lft_s->addtime) {
4471 				/*
4472 				 * XXX: should be checked to be
4473 				 * installed the valid SA.
4474 				 */
4475 
4476 				/*
4477 				 * If there is no SA then sending
4478 				 * expire message.
4479 				 */
4480 				key_expire(sav);
4481 			}
4482 #endif
4483 			/* check HARD lifetime by bytes */
4484 			else if (sav->lft_h->bytes != 0 &&
4485 			    sav->lft_h->bytes < sav->lft_c->bytes) {
4486 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4487 				KEY_FREESAV(&sav);
4488 			}
4489 		}
4490 
4491 		/* delete entry in DEAD */
4492 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) {
4493 			/* sanity check */
4494 			if (sav->state != SADB_SASTATE_DEAD) {
4495 				ipseclog((LOG_DEBUG, "%s: invalid sav->state "
4496 					"(queue: %d SA: %d): kill it anyway\n",
4497 					__func__,
4498 					SADB_SASTATE_DEAD, sav->state));
4499 			}
4500 			/*
4501 			 * do not call key_freesav() here.
4502 			 * sav should already be freed, and sav->refcnt
4503 			 * shows other references to sav
4504 			 * (such as from SPD).
4505 			 */
4506 		}
4507 	}
4508 	SAHTREE_UNLOCK();
4509 }
4510 
4511 static void
4512 key_flush_acq(time_t now)
4513 {
4514 	INIT_VNET_IPSEC(curvnet);
4515 	struct secacq *acq, *nextacq;
4516 
4517 	/* ACQ tree */
4518 	ACQ_LOCK();
4519 	for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) {
4520 		nextacq = LIST_NEXT(acq, chain);
4521 		if (now - acq->created > V_key_blockacq_lifetime
4522 		 && __LIST_CHAINED(acq)) {
4523 			LIST_REMOVE(acq, chain);
4524 			free(acq, M_IPSEC_SAQ);
4525 		}
4526 	}
4527 	ACQ_UNLOCK();
4528 }
4529 
4530 static void
4531 key_flush_spacq(time_t now)
4532 {
4533 	INIT_VNET_IPSEC(curvnet);
4534 	struct secspacq *acq, *nextacq;
4535 
4536 	/* SP ACQ tree */
4537 	SPACQ_LOCK();
4538 	for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) {
4539 		nextacq = LIST_NEXT(acq, chain);
4540 		if (now - acq->created > V_key_blockacq_lifetime
4541 		 && __LIST_CHAINED(acq)) {
4542 			LIST_REMOVE(acq, chain);
4543 			free(acq, M_IPSEC_SAQ);
4544 		}
4545 	}
4546 	SPACQ_UNLOCK();
4547 }
4548 
4549 /*
4550  * time handler.
4551  * scanning SPD and SAD to check status for each entries,
4552  * and do to remove or to expire.
4553  * XXX: year 2038 problem may remain.
4554  */
4555 void
4556 key_timehandler(void)
4557 {
4558 	VNET_ITERATOR_DECL(vnet_iter);
4559 	time_t now = time_second;
4560 
4561 	VNET_LIST_RLOCK();
4562 	VNET_FOREACH(vnet_iter) {
4563 		CURVNET_SET(vnet_iter);
4564 		key_flush_spd(now);
4565 		key_flush_sad(now);
4566 		key_flush_acq(now);
4567 		key_flush_spacq(now);
4568 		CURVNET_RESTORE();
4569 	}
4570 	VNET_LIST_RUNLOCK();
4571 
4572 #ifndef IPSEC_DEBUG2
4573 	/* do exchange to tick time !! */
4574 	(void)timeout((void *)key_timehandler, (void *)0, hz);
4575 #endif /* IPSEC_DEBUG2 */
4576 }
4577 
4578 u_long
4579 key_random()
4580 {
4581 	u_long value;
4582 
4583 	key_randomfill(&value, sizeof(value));
4584 	return value;
4585 }
4586 
4587 void
4588 key_randomfill(p, l)
4589 	void *p;
4590 	size_t l;
4591 {
4592 	size_t n;
4593 	u_long v;
4594 	static int warn = 1;
4595 
4596 	n = 0;
4597 	n = (size_t)read_random(p, (u_int)l);
4598 	/* last resort */
4599 	while (n < l) {
4600 		v = random();
4601 		bcopy(&v, (u_int8_t *)p + n,
4602 		    l - n < sizeof(v) ? l - n : sizeof(v));
4603 		n += sizeof(v);
4604 
4605 		if (warn) {
4606 			printf("WARNING: pseudo-random number generator "
4607 			    "used for IPsec processing\n");
4608 			warn = 0;
4609 		}
4610 	}
4611 }
4612 
4613 /*
4614  * map SADB_SATYPE_* to IPPROTO_*.
4615  * if satype == SADB_SATYPE then satype is mapped to ~0.
4616  * OUT:
4617  *	0: invalid satype.
4618  */
4619 static u_int16_t
4620 key_satype2proto(u_int8_t satype)
4621 {
4622 	switch (satype) {
4623 	case SADB_SATYPE_UNSPEC:
4624 		return IPSEC_PROTO_ANY;
4625 	case SADB_SATYPE_AH:
4626 		return IPPROTO_AH;
4627 	case SADB_SATYPE_ESP:
4628 		return IPPROTO_ESP;
4629 	case SADB_X_SATYPE_IPCOMP:
4630 		return IPPROTO_IPCOMP;
4631 	case SADB_X_SATYPE_TCPSIGNATURE:
4632 		return IPPROTO_TCP;
4633 	default:
4634 		return 0;
4635 	}
4636 	/* NOTREACHED */
4637 }
4638 
4639 /*
4640  * map IPPROTO_* to SADB_SATYPE_*
4641  * OUT:
4642  *	0: invalid protocol type.
4643  */
4644 static u_int8_t
4645 key_proto2satype(u_int16_t proto)
4646 {
4647 	switch (proto) {
4648 	case IPPROTO_AH:
4649 		return SADB_SATYPE_AH;
4650 	case IPPROTO_ESP:
4651 		return SADB_SATYPE_ESP;
4652 	case IPPROTO_IPCOMP:
4653 		return SADB_X_SATYPE_IPCOMP;
4654 	case IPPROTO_TCP:
4655 		return SADB_X_SATYPE_TCPSIGNATURE;
4656 	default:
4657 		return 0;
4658 	}
4659 	/* NOTREACHED */
4660 }
4661 
4662 /* %%% PF_KEY */
4663 /*
4664  * SADB_GETSPI processing is to receive
4665  *	<base, (SA2), src address, dst address, (SPI range)>
4666  * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4667  * tree with the status of LARVAL, and send
4668  *	<base, SA(*), address(SD)>
4669  * to the IKMPd.
4670  *
4671  * IN:	mhp: pointer to the pointer to each header.
4672  * OUT:	NULL if fail.
4673  *	other if success, return pointer to the message to send.
4674  */
4675 static int
4676 key_getspi(so, m, mhp)
4677 	struct socket *so;
4678 	struct mbuf *m;
4679 	const struct sadb_msghdr *mhp;
4680 {
4681 	INIT_VNET_IPSEC(curvnet);
4682 	struct sadb_address *src0, *dst0;
4683 	struct secasindex saidx;
4684 	struct secashead *newsah;
4685 	struct secasvar *newsav;
4686 	u_int8_t proto;
4687 	u_int32_t spi;
4688 	u_int8_t mode;
4689 	u_int32_t reqid;
4690 	int error;
4691 
4692 	IPSEC_ASSERT(so != NULL, ("null socket"));
4693 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4694 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4695 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4696 
4697 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4698 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4699 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4700 			__func__));
4701 		return key_senderror(so, m, EINVAL);
4702 	}
4703 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4704 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4705 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4706 			__func__));
4707 		return key_senderror(so, m, EINVAL);
4708 	}
4709 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4710 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4711 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4712 	} else {
4713 		mode = IPSEC_MODE_ANY;
4714 		reqid = 0;
4715 	}
4716 
4717 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4718 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4719 
4720 	/* map satype to proto */
4721 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4722 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4723 			__func__));
4724 		return key_senderror(so, m, EINVAL);
4725 	}
4726 
4727 	/*
4728 	 * Make sure the port numbers are zero.
4729 	 * In case of NAT-T we will update them later if needed.
4730 	 */
4731 	switch (((struct sockaddr *)(src0 + 1))->sa_family) {
4732 	case AF_INET:
4733 		if (((struct sockaddr *)(src0 + 1))->sa_len !=
4734 		    sizeof(struct sockaddr_in))
4735 			return key_senderror(so, m, EINVAL);
4736 		((struct sockaddr_in *)(src0 + 1))->sin_port = 0;
4737 		break;
4738 	case AF_INET6:
4739 		if (((struct sockaddr *)(src0 + 1))->sa_len !=
4740 		    sizeof(struct sockaddr_in6))
4741 			return key_senderror(so, m, EINVAL);
4742 		((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0;
4743 		break;
4744 	default:
4745 		; /*???*/
4746 	}
4747 	switch (((struct sockaddr *)(dst0 + 1))->sa_family) {
4748 	case AF_INET:
4749 		if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4750 		    sizeof(struct sockaddr_in))
4751 			return key_senderror(so, m, EINVAL);
4752 		((struct sockaddr_in *)(dst0 + 1))->sin_port = 0;
4753 		break;
4754 	case AF_INET6:
4755 		if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4756 		    sizeof(struct sockaddr_in6))
4757 			return key_senderror(so, m, EINVAL);
4758 		((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0;
4759 		break;
4760 	default:
4761 		; /*???*/
4762 	}
4763 
4764 	/* XXX boundary check against sa_len */
4765 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4766 
4767 #ifdef IPSEC_NAT_T
4768 	/*
4769 	 * Handle NAT-T info if present.
4770 	 * We made sure the port numbers are zero above, so we do
4771 	 * not have to worry in case we do not update them.
4772 	 */
4773 	if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
4774 		ipseclog((LOG_DEBUG, "%s: NAT-T OAi present\n", __func__));
4775 	if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
4776 		ipseclog((LOG_DEBUG, "%s: NAT-T OAr present\n", __func__));
4777 
4778 	if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
4779 	    mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
4780 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
4781 		struct sadb_x_nat_t_type *type;
4782 		struct sadb_x_nat_t_port *sport, *dport;
4783 
4784 		if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
4785 		    mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
4786 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
4787 			ipseclog((LOG_DEBUG, "%s: invalid nat-t message "
4788 			    "passed.\n", __func__));
4789 			return key_senderror(so, m, EINVAL);
4790 		}
4791 
4792 		sport = (struct sadb_x_nat_t_port *)
4793 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
4794 		dport = (struct sadb_x_nat_t_port *)
4795 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
4796 
4797 		if (sport)
4798 			KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port);
4799 		if (dport)
4800 			KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port);
4801 	}
4802 #endif
4803 
4804 	/* SPI allocation */
4805 	spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4806 	                       &saidx);
4807 	if (spi == 0)
4808 		return key_senderror(so, m, EINVAL);
4809 
4810 	/* get a SA index */
4811 	if ((newsah = key_getsah(&saidx)) == NULL) {
4812 		/* create a new SA index */
4813 		if ((newsah = key_newsah(&saidx)) == NULL) {
4814 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
4815 			return key_senderror(so, m, ENOBUFS);
4816 		}
4817 	}
4818 
4819 	/* get a new SA */
4820 	/* XXX rewrite */
4821 	newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4822 	if (newsav == NULL) {
4823 		/* XXX don't free new SA index allocated in above. */
4824 		return key_senderror(so, m, error);
4825 	}
4826 
4827 	/* set spi */
4828 	newsav->spi = htonl(spi);
4829 
4830 	/* delete the entry in acqtree */
4831 	if (mhp->msg->sadb_msg_seq != 0) {
4832 		struct secacq *acq;
4833 		if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) {
4834 			/* reset counter in order to deletion by timehandler. */
4835 			acq->created = time_second;
4836 			acq->count = 0;
4837 		}
4838     	}
4839 
4840     {
4841 	struct mbuf *n, *nn;
4842 	struct sadb_sa *m_sa;
4843 	struct sadb_msg *newmsg;
4844 	int off, len;
4845 
4846 	/* create new sadb_msg to reply. */
4847 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4848 	    PFKEY_ALIGN8(sizeof(struct sadb_sa));
4849 
4850 	MGETHDR(n, M_DONTWAIT, MT_DATA);
4851 	if (len > MHLEN) {
4852 		MCLGET(n, M_DONTWAIT);
4853 		if ((n->m_flags & M_EXT) == 0) {
4854 			m_freem(n);
4855 			n = NULL;
4856 		}
4857 	}
4858 	if (!n)
4859 		return key_senderror(so, m, ENOBUFS);
4860 
4861 	n->m_len = len;
4862 	n->m_next = NULL;
4863 	off = 0;
4864 
4865 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
4866 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4867 
4868 	m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off);
4869 	m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4870 	m_sa->sadb_sa_exttype = SADB_EXT_SA;
4871 	m_sa->sadb_sa_spi = htonl(spi);
4872 	off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4873 
4874 	IPSEC_ASSERT(off == len,
4875 		("length inconsistency (off %u len %u)", off, len));
4876 
4877 	n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4878 	    SADB_EXT_ADDRESS_DST);
4879 	if (!n->m_next) {
4880 		m_freem(n);
4881 		return key_senderror(so, m, ENOBUFS);
4882 	}
4883 
4884 	if (n->m_len < sizeof(struct sadb_msg)) {
4885 		n = m_pullup(n, sizeof(struct sadb_msg));
4886 		if (n == NULL)
4887 			return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
4888 	}
4889 
4890 	n->m_pkthdr.len = 0;
4891 	for (nn = n; nn; nn = nn->m_next)
4892 		n->m_pkthdr.len += nn->m_len;
4893 
4894 	newmsg = mtod(n, struct sadb_msg *);
4895 	newmsg->sadb_msg_seq = newsav->seq;
4896 	newmsg->sadb_msg_errno = 0;
4897 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
4898 
4899 	m_freem(m);
4900 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
4901     }
4902 }
4903 
4904 /*
4905  * allocating new SPI
4906  * called by key_getspi().
4907  * OUT:
4908  *	0:	failure.
4909  *	others: success.
4910  */
4911 static u_int32_t
4912 key_do_getnewspi(spirange, saidx)
4913 	struct sadb_spirange *spirange;
4914 	struct secasindex *saidx;
4915 {
4916 	INIT_VNET_IPSEC(curvnet);
4917 	u_int32_t newspi;
4918 	u_int32_t min, max;
4919 	int count = V_key_spi_trycnt;
4920 
4921 	/* set spi range to allocate */
4922 	if (spirange != NULL) {
4923 		min = spirange->sadb_spirange_min;
4924 		max = spirange->sadb_spirange_max;
4925 	} else {
4926 		min = V_key_spi_minval;
4927 		max = V_key_spi_maxval;
4928 	}
4929 	/* IPCOMP needs 2-byte SPI */
4930 	if (saidx->proto == IPPROTO_IPCOMP) {
4931 		u_int32_t t;
4932 		if (min >= 0x10000)
4933 			min = 0xffff;
4934 		if (max >= 0x10000)
4935 			max = 0xffff;
4936 		if (min > max) {
4937 			t = min; min = max; max = t;
4938 		}
4939 	}
4940 
4941 	if (min == max) {
4942 		if (key_checkspidup(saidx, min) != NULL) {
4943 			ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n",
4944 				__func__, min));
4945 			return 0;
4946 		}
4947 
4948 		count--; /* taking one cost. */
4949 		newspi = min;
4950 
4951 	} else {
4952 
4953 		/* init SPI */
4954 		newspi = 0;
4955 
4956 		/* when requesting to allocate spi ranged */
4957 		while (count--) {
4958 			/* generate pseudo-random SPI value ranged. */
4959 			newspi = min + (key_random() % (max - min + 1));
4960 
4961 			if (key_checkspidup(saidx, newspi) == NULL)
4962 				break;
4963 		}
4964 
4965 		if (count == 0 || newspi == 0) {
4966 			ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n",
4967 				__func__));
4968 			return 0;
4969 		}
4970 	}
4971 
4972 	/* statistics */
4973 	keystat.getspi_count =
4974 		(keystat.getspi_count + V_key_spi_trycnt - count) / 2;
4975 
4976 	return newspi;
4977 }
4978 
4979 /*
4980  * SADB_UPDATE processing
4981  * receive
4982  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4983  *       key(AE), (identity(SD),) (sensitivity)>
4984  * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
4985  * and send
4986  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4987  *       (identity(SD),) (sensitivity)>
4988  * to the ikmpd.
4989  *
4990  * m will always be freed.
4991  */
4992 static int
4993 key_update(so, m, mhp)
4994 	struct socket *so;
4995 	struct mbuf *m;
4996 	const struct sadb_msghdr *mhp;
4997 {
4998 	INIT_VNET_IPSEC(curvnet);
4999 	struct sadb_sa *sa0;
5000 	struct sadb_address *src0, *dst0;
5001 #ifdef IPSEC_NAT_T
5002 	struct sadb_x_nat_t_type *type;
5003 	struct sadb_x_nat_t_port *sport, *dport;
5004 	struct sadb_address *iaddr, *raddr;
5005 	struct sadb_x_nat_t_frag *frag;
5006 #endif
5007 	struct secasindex saidx;
5008 	struct secashead *sah;
5009 	struct secasvar *sav;
5010 	u_int16_t proto;
5011 	u_int8_t mode;
5012 	u_int32_t reqid;
5013 	int error;
5014 
5015 	IPSEC_ASSERT(so != NULL, ("null socket"));
5016 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5017 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5018 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5019 
5020 	/* map satype to proto */
5021 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5022 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5023 			__func__));
5024 		return key_senderror(so, m, EINVAL);
5025 	}
5026 
5027 	if (mhp->ext[SADB_EXT_SA] == NULL ||
5028 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5029 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5030 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5031 	     mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5032 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5033 	     mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5034 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5035 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5036 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5037 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5038 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5039 			__func__));
5040 		return key_senderror(so, m, EINVAL);
5041 	}
5042 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5043 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5044 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5045 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5046 			__func__));
5047 		return key_senderror(so, m, EINVAL);
5048 	}
5049 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5050 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5051 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5052 	} else {
5053 		mode = IPSEC_MODE_ANY;
5054 		reqid = 0;
5055 	}
5056 	/* XXX boundary checking for other extensions */
5057 
5058 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5059 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5060 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5061 
5062 	/* XXX boundary check against sa_len */
5063 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5064 
5065 	/*
5066 	 * Make sure the port numbers are zero.
5067 	 * In case of NAT-T we will update them later if needed.
5068 	 */
5069 	KEY_PORTTOSADDR(&saidx.src, 0);
5070 	KEY_PORTTOSADDR(&saidx.dst, 0);
5071 
5072 #ifdef IPSEC_NAT_T
5073 	/*
5074 	 * Handle NAT-T info if present.
5075 	 */
5076 	if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
5077 	    mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5078 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5079 
5080 		if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
5081 		    mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5082 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5083 			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5084 			    __func__));
5085 			return key_senderror(so, m, EINVAL);
5086 		}
5087 
5088 		type = (struct sadb_x_nat_t_type *)
5089 		    mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5090 		sport = (struct sadb_x_nat_t_port *)
5091 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5092 		dport = (struct sadb_x_nat_t_port *)
5093 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5094 	} else {
5095 		type = 0;
5096 		sport = dport = 0;
5097 	}
5098 	if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL &&
5099 	    mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5100 		if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) ||
5101 		    mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5102 			ipseclog((LOG_DEBUG, "%s: invalid message\n",
5103 			    __func__));
5104 			return key_senderror(so, m, EINVAL);
5105 		}
5106 		iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5107 		raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5108 		ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__));
5109 	} else {
5110 		iaddr = raddr = NULL;
5111 	}
5112 	if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5113 		if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5114 			ipseclog((LOG_DEBUG, "%s: invalid message\n",
5115 			    __func__));
5116 			return key_senderror(so, m, EINVAL);
5117 		}
5118 		frag = (struct sadb_x_nat_t_frag *)
5119 		    mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5120 	} else {
5121 		frag = 0;
5122 	}
5123 #endif
5124 
5125 	/* get a SA header */
5126 	if ((sah = key_getsah(&saidx)) == NULL) {
5127 		ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__));
5128 		return key_senderror(so, m, ENOENT);
5129 	}
5130 
5131 	/* set spidx if there */
5132 	/* XXX rewrite */
5133 	error = key_setident(sah, m, mhp);
5134 	if (error)
5135 		return key_senderror(so, m, error);
5136 
5137 	/* find a SA with sequence number. */
5138 #ifdef IPSEC_DOSEQCHECK
5139 	if (mhp->msg->sadb_msg_seq != 0
5140 	 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) {
5141 		ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u "
5142 			"exists.\n", __func__, mhp->msg->sadb_msg_seq));
5143 		return key_senderror(so, m, ENOENT);
5144 	}
5145 #else
5146 	SAHTREE_LOCK();
5147 	sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5148 	SAHTREE_UNLOCK();
5149 	if (sav == NULL) {
5150 		ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n",
5151 			__func__, (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5152 		return key_senderror(so, m, EINVAL);
5153 	}
5154 #endif
5155 
5156 	/* validity check */
5157 	if (sav->sah->saidx.proto != proto) {
5158 		ipseclog((LOG_DEBUG, "%s: protocol mismatched "
5159 			"(DB=%u param=%u)\n", __func__,
5160 			sav->sah->saidx.proto, proto));
5161 		return key_senderror(so, m, EINVAL);
5162 	}
5163 #ifdef IPSEC_DOSEQCHECK
5164 	if (sav->spi != sa0->sadb_sa_spi) {
5165 		ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n",
5166 		    __func__,
5167 		    (u_int32_t)ntohl(sav->spi),
5168 		    (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5169 		return key_senderror(so, m, EINVAL);
5170 	}
5171 #endif
5172 	if (sav->pid != mhp->msg->sadb_msg_pid) {
5173 		ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n",
5174 		    __func__, sav->pid, mhp->msg->sadb_msg_pid));
5175 		return key_senderror(so, m, EINVAL);
5176 	}
5177 
5178 	/* copy sav values */
5179 	error = key_setsaval(sav, m, mhp);
5180 	if (error) {
5181 		KEY_FREESAV(&sav);
5182 		return key_senderror(so, m, error);
5183 	}
5184 
5185 	/* check SA values to be mature. */
5186 	if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) {
5187 		KEY_FREESAV(&sav);
5188 		return key_senderror(so, m, 0);
5189 	}
5190 
5191 #ifdef IPSEC_NAT_T
5192 	/*
5193 	 * Handle more NAT-T info if present,
5194 	 * now that we have a sav to fill.
5195 	 */
5196 	if (type)
5197 		sav->natt_type = type->sadb_x_nat_t_type_type;
5198 
5199 	if (sport)
5200 		KEY_PORTTOSADDR(&sav->sah->saidx.src,
5201 		    sport->sadb_x_nat_t_port_port);
5202 	if (dport)
5203 		KEY_PORTTOSADDR(&sav->sah->saidx.dst,
5204 		    dport->sadb_x_nat_t_port_port);
5205 
5206 #if 0
5207 	/*
5208 	 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0.
5209 	 * We should actually check for a minimum MTU here, if we
5210 	 * want to support it in ip_output.
5211 	 */
5212 	if (frag)
5213 		sav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen;
5214 #endif
5215 #endif
5216 
5217     {
5218 	struct mbuf *n;
5219 
5220 	/* set msg buf from mhp */
5221 	n = key_getmsgbuf_x1(m, mhp);
5222 	if (n == NULL) {
5223 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5224 		return key_senderror(so, m, ENOBUFS);
5225 	}
5226 
5227 	m_freem(m);
5228 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5229     }
5230 }
5231 
5232 /*
5233  * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5234  * only called by key_update().
5235  * OUT:
5236  *	NULL	: not found
5237  *	others	: found, pointer to a SA.
5238  */
5239 #ifdef IPSEC_DOSEQCHECK
5240 static struct secasvar *
5241 key_getsavbyseq(sah, seq)
5242 	struct secashead *sah;
5243 	u_int32_t seq;
5244 {
5245 	struct secasvar *sav;
5246 	u_int state;
5247 
5248 	state = SADB_SASTATE_LARVAL;
5249 
5250 	/* search SAD with sequence number ? */
5251 	LIST_FOREACH(sav, &sah->savtree[state], chain) {
5252 
5253 		KEY_CHKSASTATE(state, sav->state, __func__);
5254 
5255 		if (sav->seq == seq) {
5256 			sa_addref(sav);
5257 			KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
5258 				printf("DP %s cause refcnt++:%d SA:%p\n",
5259 					__func__, sav->refcnt, sav));
5260 			return sav;
5261 		}
5262 	}
5263 
5264 	return NULL;
5265 }
5266 #endif
5267 
5268 /*
5269  * SADB_ADD processing
5270  * add an entry to SA database, when received
5271  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5272  *       key(AE), (identity(SD),) (sensitivity)>
5273  * from the ikmpd,
5274  * and send
5275  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5276  *       (identity(SD),) (sensitivity)>
5277  * to the ikmpd.
5278  *
5279  * IGNORE identity and sensitivity messages.
5280  *
5281  * m will always be freed.
5282  */
5283 static int
5284 key_add(so, m, mhp)
5285 	struct socket *so;
5286 	struct mbuf *m;
5287 	const struct sadb_msghdr *mhp;
5288 {
5289 	INIT_VNET_IPSEC(curvnet);
5290 	struct sadb_sa *sa0;
5291 	struct sadb_address *src0, *dst0;
5292 #ifdef IPSEC_NAT_T
5293 	struct sadb_x_nat_t_type *type;
5294 	struct sadb_address *iaddr, *raddr;
5295 	struct sadb_x_nat_t_frag *frag;
5296 #endif
5297 	struct secasindex saidx;
5298 	struct secashead *newsah;
5299 	struct secasvar *newsav;
5300 	u_int16_t proto;
5301 	u_int8_t mode;
5302 	u_int32_t reqid;
5303 	int error;
5304 
5305 	IPSEC_ASSERT(so != NULL, ("null socket"));
5306 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5307 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5308 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5309 
5310 	/* map satype to proto */
5311 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5312 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5313 			__func__));
5314 		return key_senderror(so, m, EINVAL);
5315 	}
5316 
5317 	if (mhp->ext[SADB_EXT_SA] == NULL ||
5318 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5319 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5320 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5321 	     mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5322 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5323 	     mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5324 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5325 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5326 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5327 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5328 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5329 			__func__));
5330 		return key_senderror(so, m, EINVAL);
5331 	}
5332 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5333 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5334 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5335 		/* XXX need more */
5336 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5337 			__func__));
5338 		return key_senderror(so, m, EINVAL);
5339 	}
5340 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5341 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5342 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5343 	} else {
5344 		mode = IPSEC_MODE_ANY;
5345 		reqid = 0;
5346 	}
5347 
5348 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5349 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5350 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5351 
5352 	/* XXX boundary check against sa_len */
5353 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5354 
5355 	/*
5356 	 * Make sure the port numbers are zero.
5357 	 * In case of NAT-T we will update them later if needed.
5358 	 */
5359 	KEY_PORTTOSADDR(&saidx.src, 0);
5360 	KEY_PORTTOSADDR(&saidx.dst, 0);
5361 
5362 #ifdef IPSEC_NAT_T
5363 	/*
5364 	 * Handle NAT-T info if present.
5365 	 */
5366 	if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
5367 	    mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5368 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5369 		struct sadb_x_nat_t_port *sport, *dport;
5370 
5371 		if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
5372 		    mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5373 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5374 			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5375 			    __func__));
5376 			return key_senderror(so, m, EINVAL);
5377 		}
5378 
5379 		type = (struct sadb_x_nat_t_type *)
5380 		    mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5381 		sport = (struct sadb_x_nat_t_port *)
5382 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5383 		dport = (struct sadb_x_nat_t_port *)
5384 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5385 
5386 		if (sport)
5387 			KEY_PORTTOSADDR(&saidx.src,
5388 			    sport->sadb_x_nat_t_port_port);
5389 		if (dport)
5390 			KEY_PORTTOSADDR(&saidx.dst,
5391 			    dport->sadb_x_nat_t_port_port);
5392 	} else {
5393 		type = 0;
5394 	}
5395 	if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL &&
5396 	    mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5397 		if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) ||
5398 		    mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5399 			ipseclog((LOG_DEBUG, "%s: invalid message\n",
5400 			    __func__));
5401 			return key_senderror(so, m, EINVAL);
5402 		}
5403 		iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5404 		raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5405 		ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__));
5406 	} else {
5407 		iaddr = raddr = NULL;
5408 	}
5409 	if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5410 		if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5411 			ipseclog((LOG_DEBUG, "%s: invalid message\n",
5412 			    __func__));
5413 			return key_senderror(so, m, EINVAL);
5414 		}
5415 		frag = (struct sadb_x_nat_t_frag *)
5416 		    mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5417 	} else {
5418 		frag = 0;
5419 	}
5420 #endif
5421 
5422 	/* get a SA header */
5423 	if ((newsah = key_getsah(&saidx)) == NULL) {
5424 		/* create a new SA header */
5425 		if ((newsah = key_newsah(&saidx)) == NULL) {
5426 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
5427 			return key_senderror(so, m, ENOBUFS);
5428 		}
5429 	}
5430 
5431 	/* set spidx if there */
5432 	/* XXX rewrite */
5433 	error = key_setident(newsah, m, mhp);
5434 	if (error) {
5435 		return key_senderror(so, m, error);
5436 	}
5437 
5438 	/* create new SA entry. */
5439 	/* We can create new SA only if SPI is differenct. */
5440 	SAHTREE_LOCK();
5441 	newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi);
5442 	SAHTREE_UNLOCK();
5443 	if (newsav != NULL) {
5444 		ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__));
5445 		return key_senderror(so, m, EEXIST);
5446 	}
5447 	newsav = KEY_NEWSAV(m, mhp, newsah, &error);
5448 	if (newsav == NULL) {
5449 		return key_senderror(so, m, error);
5450 	}
5451 
5452 	/* check SA values to be mature. */
5453 	if ((error = key_mature(newsav)) != 0) {
5454 		KEY_FREESAV(&newsav);
5455 		return key_senderror(so, m, error);
5456 	}
5457 
5458 #ifdef IPSEC_NAT_T
5459 	/*
5460 	 * Handle more NAT-T info if present,
5461 	 * now that we have a sav to fill.
5462 	 */
5463 	if (type)
5464 		newsav->natt_type = type->sadb_x_nat_t_type_type;
5465 
5466 #if 0
5467 	/*
5468 	 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0.
5469 	 * We should actually check for a minimum MTU here, if we
5470 	 * want to support it in ip_output.
5471 	 */
5472 	if (frag)
5473 		newsav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen;
5474 #endif
5475 #endif
5476 
5477 	/*
5478 	 * don't call key_freesav() here, as we would like to keep the SA
5479 	 * in the database on success.
5480 	 */
5481 
5482     {
5483 	struct mbuf *n;
5484 
5485 	/* set msg buf from mhp */
5486 	n = key_getmsgbuf_x1(m, mhp);
5487 	if (n == NULL) {
5488 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5489 		return key_senderror(so, m, ENOBUFS);
5490 	}
5491 
5492 	m_freem(m);
5493 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5494     }
5495 }
5496 
5497 /* m is retained */
5498 static int
5499 key_setident(sah, m, mhp)
5500 	struct secashead *sah;
5501 	struct mbuf *m;
5502 	const struct sadb_msghdr *mhp;
5503 {
5504 	INIT_VNET_IPSEC(curvnet);
5505 	const struct sadb_ident *idsrc, *iddst;
5506 	int idsrclen, iddstlen;
5507 
5508 	IPSEC_ASSERT(sah != NULL, ("null secashead"));
5509 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5510 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5511 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5512 
5513 	/* don't make buffer if not there */
5514 	if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5515 	    mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5516 		sah->idents = NULL;
5517 		sah->identd = NULL;
5518 		return 0;
5519 	}
5520 
5521 	if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5522 	    mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5523 		ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__));
5524 		return EINVAL;
5525 	}
5526 
5527 	idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5528 	iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5529 	idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5530 	iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5531 
5532 	/* validity check */
5533 	if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5534 		ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__));
5535 		return EINVAL;
5536 	}
5537 
5538 	switch (idsrc->sadb_ident_type) {
5539 	case SADB_IDENTTYPE_PREFIX:
5540 	case SADB_IDENTTYPE_FQDN:
5541 	case SADB_IDENTTYPE_USERFQDN:
5542 	default:
5543 		/* XXX do nothing */
5544 		sah->idents = NULL;
5545 		sah->identd = NULL;
5546 	 	return 0;
5547 	}
5548 
5549 	/* make structure */
5550 	sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5551 	if (sah->idents == NULL) {
5552 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5553 		return ENOBUFS;
5554 	}
5555 	sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5556 	if (sah->identd == NULL) {
5557 		free(sah->idents, M_IPSEC_MISC);
5558 		sah->idents = NULL;
5559 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5560 		return ENOBUFS;
5561 	}
5562 	sah->idents->type = idsrc->sadb_ident_type;
5563 	sah->idents->id = idsrc->sadb_ident_id;
5564 
5565 	sah->identd->type = iddst->sadb_ident_type;
5566 	sah->identd->id = iddst->sadb_ident_id;
5567 
5568 	return 0;
5569 }
5570 
5571 /*
5572  * m will not be freed on return.
5573  * it is caller's responsibility to free the result.
5574  */
5575 static struct mbuf *
5576 key_getmsgbuf_x1(m, mhp)
5577 	struct mbuf *m;
5578 	const struct sadb_msghdr *mhp;
5579 {
5580 	struct mbuf *n;
5581 
5582 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5583 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5584 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5585 
5586 	/* create new sadb_msg to reply. */
5587 	n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED,
5588 	    SADB_EXT_SA, SADB_X_EXT_SA2,
5589 	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5590 	    SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5591 	    SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST);
5592 	if (!n)
5593 		return NULL;
5594 
5595 	if (n->m_len < sizeof(struct sadb_msg)) {
5596 		n = m_pullup(n, sizeof(struct sadb_msg));
5597 		if (n == NULL)
5598 			return NULL;
5599 	}
5600 	mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5601 	mtod(n, struct sadb_msg *)->sadb_msg_len =
5602 	    PFKEY_UNIT64(n->m_pkthdr.len);
5603 
5604 	return n;
5605 }
5606 
5607 static int key_delete_all __P((struct socket *, struct mbuf *,
5608 	const struct sadb_msghdr *, u_int16_t));
5609 
5610 /*
5611  * SADB_DELETE processing
5612  * receive
5613  *   <base, SA(*), address(SD)>
5614  * from the ikmpd, and set SADB_SASTATE_DEAD,
5615  * and send,
5616  *   <base, SA(*), address(SD)>
5617  * to the ikmpd.
5618  *
5619  * m will always be freed.
5620  */
5621 static int
5622 key_delete(so, m, mhp)
5623 	struct socket *so;
5624 	struct mbuf *m;
5625 	const struct sadb_msghdr *mhp;
5626 {
5627 	INIT_VNET_IPSEC(curvnet);
5628 	struct sadb_sa *sa0;
5629 	struct sadb_address *src0, *dst0;
5630 	struct secasindex saidx;
5631 	struct secashead *sah;
5632 	struct secasvar *sav = NULL;
5633 	u_int16_t proto;
5634 
5635 	IPSEC_ASSERT(so != NULL, ("null socket"));
5636 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5637 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5638 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5639 
5640 	/* map satype to proto */
5641 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5642 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5643 			__func__));
5644 		return key_senderror(so, m, EINVAL);
5645 	}
5646 
5647 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5648 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5649 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5650 			__func__));
5651 		return key_senderror(so, m, EINVAL);
5652 	}
5653 
5654 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5655 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5656 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5657 			__func__));
5658 		return key_senderror(so, m, EINVAL);
5659 	}
5660 
5661 	if (mhp->ext[SADB_EXT_SA] == NULL) {
5662 		/*
5663 		 * Caller wants us to delete all non-LARVAL SAs
5664 		 * that match the src/dst.  This is used during
5665 		 * IKE INITIAL-CONTACT.
5666 		 */
5667 		ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__));
5668 		return key_delete_all(so, m, mhp, proto);
5669 	} else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5670 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5671 			__func__));
5672 		return key_senderror(so, m, EINVAL);
5673 	}
5674 
5675 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5676 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5677 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5678 
5679 	/* XXX boundary check against sa_len */
5680 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5681 
5682 	/*
5683 	 * Make sure the port numbers are zero.
5684 	 * In case of NAT-T we will update them later if needed.
5685 	 */
5686 	KEY_PORTTOSADDR(&saidx.src, 0);
5687 	KEY_PORTTOSADDR(&saidx.dst, 0);
5688 
5689 #ifdef IPSEC_NAT_T
5690 	/*
5691 	 * Handle NAT-T info if present.
5692 	 */
5693 	if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5694 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5695 		struct sadb_x_nat_t_port *sport, *dport;
5696 
5697 		if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5698 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5699 			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5700 			    __func__));
5701 			return key_senderror(so, m, EINVAL);
5702 		}
5703 
5704 		sport = (struct sadb_x_nat_t_port *)
5705 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5706 		dport = (struct sadb_x_nat_t_port *)
5707 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5708 
5709 		if (sport)
5710 			KEY_PORTTOSADDR(&saidx.src,
5711 			    sport->sadb_x_nat_t_port_port);
5712 		if (dport)
5713 			KEY_PORTTOSADDR(&saidx.dst,
5714 			    dport->sadb_x_nat_t_port_port);
5715 	}
5716 #endif
5717 
5718 	/* get a SA header */
5719 	SAHTREE_LOCK();
5720 	LIST_FOREACH(sah, &V_sahtree, chain) {
5721 		if (sah->state == SADB_SASTATE_DEAD)
5722 			continue;
5723 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5724 			continue;
5725 
5726 		/* get a SA with SPI. */
5727 		sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5728 		if (sav)
5729 			break;
5730 	}
5731 	if (sah == NULL) {
5732 		SAHTREE_UNLOCK();
5733 		ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5734 		return key_senderror(so, m, ENOENT);
5735 	}
5736 
5737 	key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5738 	SAHTREE_UNLOCK();
5739 	KEY_FREESAV(&sav);
5740 
5741     {
5742 	struct mbuf *n;
5743 	struct sadb_msg *newmsg;
5744 
5745 	/* create new sadb_msg to reply. */
5746 	/* XXX-BZ NAT-T extensions? */
5747 	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5748 	    SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5749 	if (!n)
5750 		return key_senderror(so, m, ENOBUFS);
5751 
5752 	if (n->m_len < sizeof(struct sadb_msg)) {
5753 		n = m_pullup(n, sizeof(struct sadb_msg));
5754 		if (n == NULL)
5755 			return key_senderror(so, m, ENOBUFS);
5756 	}
5757 	newmsg = mtod(n, struct sadb_msg *);
5758 	newmsg->sadb_msg_errno = 0;
5759 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5760 
5761 	m_freem(m);
5762 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5763     }
5764 }
5765 
5766 /*
5767  * delete all SAs for src/dst.  Called from key_delete().
5768  */
5769 static int
5770 key_delete_all(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp,
5771     u_int16_t proto)
5772 {
5773 	INIT_VNET_IPSEC(curvnet);
5774 	struct sadb_address *src0, *dst0;
5775 	struct secasindex saidx;
5776 	struct secashead *sah;
5777 	struct secasvar *sav, *nextsav;
5778 	u_int stateidx, state;
5779 
5780 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5781 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5782 
5783 	/* XXX boundary check against sa_len */
5784 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5785 
5786 	/*
5787 	 * Make sure the port numbers are zero.
5788 	 * In case of NAT-T we will update them later if needed.
5789 	 */
5790 	KEY_PORTTOSADDR(&saidx.src, 0);
5791 	KEY_PORTTOSADDR(&saidx.dst, 0);
5792 
5793 #ifdef IPSEC_NAT_T
5794 	/*
5795 	 * Handle NAT-T info if present.
5796 	 */
5797 
5798 	if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5799 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5800 		struct sadb_x_nat_t_port *sport, *dport;
5801 
5802 		if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5803 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5804 			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5805 			    __func__));
5806 			return key_senderror(so, m, EINVAL);
5807 		}
5808 
5809 		sport = (struct sadb_x_nat_t_port *)
5810 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5811 		dport = (struct sadb_x_nat_t_port *)
5812 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5813 
5814 		if (sport)
5815 			KEY_PORTTOSADDR(&saidx.src,
5816 			    sport->sadb_x_nat_t_port_port);
5817 		if (dport)
5818 			KEY_PORTTOSADDR(&saidx.dst,
5819 			    dport->sadb_x_nat_t_port_port);
5820 	}
5821 #endif
5822 
5823 	SAHTREE_LOCK();
5824 	LIST_FOREACH(sah, &V_sahtree, chain) {
5825 		if (sah->state == SADB_SASTATE_DEAD)
5826 			continue;
5827 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5828 			continue;
5829 
5830 		/* Delete all non-LARVAL SAs. */
5831 		for (stateidx = 0;
5832 		     stateidx < _ARRAYLEN(saorder_state_alive);
5833 		     stateidx++) {
5834 			state = saorder_state_alive[stateidx];
5835 			if (state == SADB_SASTATE_LARVAL)
5836 				continue;
5837 			for (sav = LIST_FIRST(&sah->savtree[state]);
5838 			     sav != NULL; sav = nextsav) {
5839 				nextsav = LIST_NEXT(sav, chain);
5840 				/* sanity check */
5841 				if (sav->state != state) {
5842 					ipseclog((LOG_DEBUG, "%s: invalid "
5843 						"sav->state (queue %d SA %d)\n",
5844 						__func__, state, sav->state));
5845 					continue;
5846 				}
5847 
5848 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5849 				KEY_FREESAV(&sav);
5850 			}
5851 		}
5852 	}
5853 	SAHTREE_UNLOCK();
5854     {
5855 	struct mbuf *n;
5856 	struct sadb_msg *newmsg;
5857 
5858 	/* create new sadb_msg to reply. */
5859 	/* XXX-BZ NAT-T extensions? */
5860 	n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5861 	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5862 	if (!n)
5863 		return key_senderror(so, m, ENOBUFS);
5864 
5865 	if (n->m_len < sizeof(struct sadb_msg)) {
5866 		n = m_pullup(n, sizeof(struct sadb_msg));
5867 		if (n == NULL)
5868 			return key_senderror(so, m, ENOBUFS);
5869 	}
5870 	newmsg = mtod(n, struct sadb_msg *);
5871 	newmsg->sadb_msg_errno = 0;
5872 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5873 
5874 	m_freem(m);
5875 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5876     }
5877 }
5878 
5879 /*
5880  * SADB_GET processing
5881  * receive
5882  *   <base, SA(*), address(SD)>
5883  * from the ikmpd, and get a SP and a SA to respond,
5884  * and send,
5885  *   <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5886  *       (identity(SD),) (sensitivity)>
5887  * to the ikmpd.
5888  *
5889  * m will always be freed.
5890  */
5891 static int
5892 key_get(so, m, mhp)
5893 	struct socket *so;
5894 	struct mbuf *m;
5895 	const struct sadb_msghdr *mhp;
5896 {
5897 	INIT_VNET_IPSEC(curvnet);
5898 	struct sadb_sa *sa0;
5899 	struct sadb_address *src0, *dst0;
5900 	struct secasindex saidx;
5901 	struct secashead *sah;
5902 	struct secasvar *sav = NULL;
5903 	u_int16_t proto;
5904 
5905 	IPSEC_ASSERT(so != NULL, ("null socket"));
5906 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5907 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5908 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5909 
5910 	/* map satype to proto */
5911 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5912 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5913 			__func__));
5914 		return key_senderror(so, m, EINVAL);
5915 	}
5916 
5917 	if (mhp->ext[SADB_EXT_SA] == NULL ||
5918 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5919 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5920 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5921 			__func__));
5922 		return key_senderror(so, m, EINVAL);
5923 	}
5924 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5925 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5926 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5927 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5928 			__func__));
5929 		return key_senderror(so, m, EINVAL);
5930 	}
5931 
5932 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5933 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5934 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5935 
5936 	/* XXX boundary check against sa_len */
5937 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5938 
5939 	/*
5940 	 * Make sure the port numbers are zero.
5941 	 * In case of NAT-T we will update them later if needed.
5942 	 */
5943 	KEY_PORTTOSADDR(&saidx.src, 0);
5944 	KEY_PORTTOSADDR(&saidx.dst, 0);
5945 
5946 #ifdef IPSEC_NAT_T
5947 	/*
5948 	 * Handle NAT-T info if present.
5949 	 */
5950 
5951 	if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5952 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5953 		struct sadb_x_nat_t_port *sport, *dport;
5954 
5955 		if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5956 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5957 			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5958 			    __func__));
5959 			return key_senderror(so, m, EINVAL);
5960 		}
5961 
5962 		sport = (struct sadb_x_nat_t_port *)
5963 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5964 		dport = (struct sadb_x_nat_t_port *)
5965 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5966 
5967 		if (sport)
5968 			KEY_PORTTOSADDR(&saidx.src,
5969 			    sport->sadb_x_nat_t_port_port);
5970 		if (dport)
5971 			KEY_PORTTOSADDR(&saidx.dst,
5972 			    dport->sadb_x_nat_t_port_port);
5973 	}
5974 #endif
5975 
5976 	/* get a SA header */
5977 	SAHTREE_LOCK();
5978 	LIST_FOREACH(sah, &V_sahtree, chain) {
5979 		if (sah->state == SADB_SASTATE_DEAD)
5980 			continue;
5981 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5982 			continue;
5983 
5984 		/* get a SA with SPI. */
5985 		sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5986 		if (sav)
5987 			break;
5988 	}
5989 	SAHTREE_UNLOCK();
5990 	if (sah == NULL) {
5991 		ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5992 		return key_senderror(so, m, ENOENT);
5993 	}
5994 
5995     {
5996 	struct mbuf *n;
5997 	u_int8_t satype;
5998 
5999 	/* map proto to satype */
6000 	if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
6001 		ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n",
6002 			__func__));
6003 		return key_senderror(so, m, EINVAL);
6004 	}
6005 
6006 	/* create new sadb_msg to reply. */
6007 	n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
6008 	    mhp->msg->sadb_msg_pid);
6009 	if (!n)
6010 		return key_senderror(so, m, ENOBUFS);
6011 
6012 	m_freem(m);
6013 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
6014     }
6015 }
6016 
6017 /* XXX make it sysctl-configurable? */
6018 static void
6019 key_getcomb_setlifetime(comb)
6020 	struct sadb_comb *comb;
6021 {
6022 
6023 	comb->sadb_comb_soft_allocations = 1;
6024 	comb->sadb_comb_hard_allocations = 1;
6025 	comb->sadb_comb_soft_bytes = 0;
6026 	comb->sadb_comb_hard_bytes = 0;
6027 	comb->sadb_comb_hard_addtime = 86400;	/* 1 day */
6028 	comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
6029 	comb->sadb_comb_soft_usetime = 28800;	/* 8 hours */
6030 	comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
6031 }
6032 
6033 /*
6034  * XXX reorder combinations by preference
6035  * XXX no idea if the user wants ESP authentication or not
6036  */
6037 static struct mbuf *
6038 key_getcomb_esp()
6039 {
6040 	INIT_VNET_IPSEC(curvnet);
6041 	struct sadb_comb *comb;
6042 	struct enc_xform *algo;
6043 	struct mbuf *result = NULL, *m, *n;
6044 	int encmin;
6045 	int i, off, o;
6046 	int totlen;
6047 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6048 
6049 	m = NULL;
6050 	for (i = 1; i <= SADB_EALG_MAX; i++) {
6051 		algo = esp_algorithm_lookup(i);
6052 		if (algo == NULL)
6053 			continue;
6054 
6055 		/* discard algorithms with key size smaller than system min */
6056 		if (_BITS(algo->maxkey) < V_ipsec_esp_keymin)
6057 			continue;
6058 		if (_BITS(algo->minkey) < V_ipsec_esp_keymin)
6059 			encmin = V_ipsec_esp_keymin;
6060 		else
6061 			encmin = _BITS(algo->minkey);
6062 
6063 		if (V_ipsec_esp_auth)
6064 			m = key_getcomb_ah();
6065 		else {
6066 			IPSEC_ASSERT(l <= MLEN,
6067 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
6068 			MGET(m, M_DONTWAIT, MT_DATA);
6069 			if (m) {
6070 				M_ALIGN(m, l);
6071 				m->m_len = l;
6072 				m->m_next = NULL;
6073 				bzero(mtod(m, caddr_t), m->m_len);
6074 			}
6075 		}
6076 		if (!m)
6077 			goto fail;
6078 
6079 		totlen = 0;
6080 		for (n = m; n; n = n->m_next)
6081 			totlen += n->m_len;
6082 		IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l));
6083 
6084 		for (off = 0; off < totlen; off += l) {
6085 			n = m_pulldown(m, off, l, &o);
6086 			if (!n) {
6087 				/* m is already freed */
6088 				goto fail;
6089 			}
6090 			comb = (struct sadb_comb *)(mtod(n, caddr_t) + o);
6091 			bzero(comb, sizeof(*comb));
6092 			key_getcomb_setlifetime(comb);
6093 			comb->sadb_comb_encrypt = i;
6094 			comb->sadb_comb_encrypt_minbits = encmin;
6095 			comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
6096 		}
6097 
6098 		if (!result)
6099 			result = m;
6100 		else
6101 			m_cat(result, m);
6102 	}
6103 
6104 	return result;
6105 
6106  fail:
6107 	if (result)
6108 		m_freem(result);
6109 	return NULL;
6110 }
6111 
6112 static void
6113 key_getsizes_ah(
6114 	const struct auth_hash *ah,
6115 	int alg,
6116 	u_int16_t* min,
6117 	u_int16_t* max)
6118 {
6119 	INIT_VNET_IPSEC(curvnet);
6120 
6121 	*min = *max = ah->keysize;
6122 	if (ah->keysize == 0) {
6123 		/*
6124 		 * Transform takes arbitrary key size but algorithm
6125 		 * key size is restricted.  Enforce this here.
6126 		 */
6127 		switch (alg) {
6128 		case SADB_X_AALG_MD5:	*min = *max = 16; break;
6129 		case SADB_X_AALG_SHA:	*min = *max = 20; break;
6130 		case SADB_X_AALG_NULL:	*min = 1; *max = 256; break;
6131 		default:
6132 			DPRINTF(("%s: unknown AH algorithm %u\n",
6133 				__func__, alg));
6134 			break;
6135 		}
6136 	}
6137 }
6138 
6139 /*
6140  * XXX reorder combinations by preference
6141  */
6142 static struct mbuf *
6143 key_getcomb_ah()
6144 {
6145 	INIT_VNET_IPSEC(curvnet);
6146 	struct sadb_comb *comb;
6147 	struct auth_hash *algo;
6148 	struct mbuf *m;
6149 	u_int16_t minkeysize, maxkeysize;
6150 	int i;
6151 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6152 
6153 	m = NULL;
6154 	for (i = 1; i <= SADB_AALG_MAX; i++) {
6155 #if 1
6156 		/* we prefer HMAC algorithms, not old algorithms */
6157 		if (i != SADB_AALG_SHA1HMAC && i != SADB_AALG_MD5HMAC)
6158 			continue;
6159 #endif
6160 		algo = ah_algorithm_lookup(i);
6161 		if (!algo)
6162 			continue;
6163 		key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6164 		/* discard algorithms with key size smaller than system min */
6165 		if (_BITS(minkeysize) < V_ipsec_ah_keymin)
6166 			continue;
6167 
6168 		if (!m) {
6169 			IPSEC_ASSERT(l <= MLEN,
6170 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
6171 			MGET(m, M_DONTWAIT, MT_DATA);
6172 			if (m) {
6173 				M_ALIGN(m, l);
6174 				m->m_len = l;
6175 				m->m_next = NULL;
6176 			}
6177 		} else
6178 			M_PREPEND(m, l, M_DONTWAIT);
6179 		if (!m)
6180 			return NULL;
6181 
6182 		comb = mtod(m, struct sadb_comb *);
6183 		bzero(comb, sizeof(*comb));
6184 		key_getcomb_setlifetime(comb);
6185 		comb->sadb_comb_auth = i;
6186 		comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6187 		comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6188 	}
6189 
6190 	return m;
6191 }
6192 
6193 /*
6194  * not really an official behavior.  discussed in pf_key@inner.net in Sep2000.
6195  * XXX reorder combinations by preference
6196  */
6197 static struct mbuf *
6198 key_getcomb_ipcomp()
6199 {
6200 	struct sadb_comb *comb;
6201 	struct comp_algo *algo;
6202 	struct mbuf *m;
6203 	int i;
6204 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6205 
6206 	m = NULL;
6207 	for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6208 		algo = ipcomp_algorithm_lookup(i);
6209 		if (!algo)
6210 			continue;
6211 
6212 		if (!m) {
6213 			IPSEC_ASSERT(l <= MLEN,
6214 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
6215 			MGET(m, M_DONTWAIT, MT_DATA);
6216 			if (m) {
6217 				M_ALIGN(m, l);
6218 				m->m_len = l;
6219 				m->m_next = NULL;
6220 			}
6221 		} else
6222 			M_PREPEND(m, l, M_DONTWAIT);
6223 		if (!m)
6224 			return NULL;
6225 
6226 		comb = mtod(m, struct sadb_comb *);
6227 		bzero(comb, sizeof(*comb));
6228 		key_getcomb_setlifetime(comb);
6229 		comb->sadb_comb_encrypt = i;
6230 		/* what should we set into sadb_comb_*_{min,max}bits? */
6231 	}
6232 
6233 	return m;
6234 }
6235 
6236 /*
6237  * XXX no way to pass mode (transport/tunnel) to userland
6238  * XXX replay checking?
6239  * XXX sysctl interface to ipsec_{ah,esp}_keymin
6240  */
6241 static struct mbuf *
6242 key_getprop(saidx)
6243 	const struct secasindex *saidx;
6244 {
6245 	struct sadb_prop *prop;
6246 	struct mbuf *m, *n;
6247 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6248 	int totlen;
6249 
6250 	switch (saidx->proto)  {
6251 	case IPPROTO_ESP:
6252 		m = key_getcomb_esp();
6253 		break;
6254 	case IPPROTO_AH:
6255 		m = key_getcomb_ah();
6256 		break;
6257 	case IPPROTO_IPCOMP:
6258 		m = key_getcomb_ipcomp();
6259 		break;
6260 	default:
6261 		return NULL;
6262 	}
6263 
6264 	if (!m)
6265 		return NULL;
6266 	M_PREPEND(m, l, M_DONTWAIT);
6267 	if (!m)
6268 		return NULL;
6269 
6270 	totlen = 0;
6271 	for (n = m; n; n = n->m_next)
6272 		totlen += n->m_len;
6273 
6274 	prop = mtod(m, struct sadb_prop *);
6275 	bzero(prop, sizeof(*prop));
6276 	prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6277 	prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6278 	prop->sadb_prop_replay = 32;	/* XXX */
6279 
6280 	return m;
6281 }
6282 
6283 /*
6284  * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
6285  * send
6286  *   <base, SA, address(SD), (address(P)), x_policy,
6287  *       (identity(SD),) (sensitivity,) proposal>
6288  * to KMD, and expect to receive
6289  *   <base> with SADB_ACQUIRE if error occured,
6290  * or
6291  *   <base, src address, dst address, (SPI range)> with SADB_GETSPI
6292  * from KMD by PF_KEY.
6293  *
6294  * XXX x_policy is outside of RFC2367 (KAME extension).
6295  * XXX sensitivity is not supported.
6296  * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6297  * see comment for key_getcomb_ipcomp().
6298  *
6299  * OUT:
6300  *    0     : succeed
6301  *    others: error number
6302  */
6303 static int
6304 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6305 {
6306 	INIT_VNET_IPSEC(curvnet);
6307 	struct mbuf *result = NULL, *m;
6308 	struct secacq *newacq;
6309 	u_int8_t satype;
6310 	int error = -1;
6311 	u_int32_t seq;
6312 
6313 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
6314 	satype = key_proto2satype(saidx->proto);
6315 	IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto));
6316 
6317 	/*
6318 	 * We never do anything about acquirng SA.  There is anather
6319 	 * solution that kernel blocks to send SADB_ACQUIRE message until
6320 	 * getting something message from IKEd.  In later case, to be
6321 	 * managed with ACQUIRING list.
6322 	 */
6323 	/* Get an entry to check whether sending message or not. */
6324 	if ((newacq = key_getacq(saidx)) != NULL) {
6325 		if (V_key_blockacq_count < newacq->count) {
6326 			/* reset counter and do send message. */
6327 			newacq->count = 0;
6328 		} else {
6329 			/* increment counter and do nothing. */
6330 			newacq->count++;
6331 			return 0;
6332 		}
6333 	} else {
6334 		/* make new entry for blocking to send SADB_ACQUIRE. */
6335 		if ((newacq = key_newacq(saidx)) == NULL)
6336 			return ENOBUFS;
6337 	}
6338 
6339 
6340 	seq = newacq->seq;
6341 	m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6342 	if (!m) {
6343 		error = ENOBUFS;
6344 		goto fail;
6345 	}
6346 	result = m;
6347 
6348 	/*
6349 	 * No SADB_X_EXT_NAT_T_* here: we do not know
6350 	 * anything related to NAT-T at this time.
6351 	 */
6352 
6353 	/* set sadb_address for saidx's. */
6354 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6355 	    &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY);
6356 	if (!m) {
6357 		error = ENOBUFS;
6358 		goto fail;
6359 	}
6360 	m_cat(result, m);
6361 
6362 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6363 	    &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY);
6364 	if (!m) {
6365 		error = ENOBUFS;
6366 		goto fail;
6367 	}
6368 	m_cat(result, m);
6369 
6370 	/* XXX proxy address (optional) */
6371 
6372 	/* set sadb_x_policy */
6373 	if (sp) {
6374 		m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6375 		if (!m) {
6376 			error = ENOBUFS;
6377 			goto fail;
6378 		}
6379 		m_cat(result, m);
6380 	}
6381 
6382 	/* XXX identity (optional) */
6383 #if 0
6384 	if (idexttype && fqdn) {
6385 		/* create identity extension (FQDN) */
6386 		struct sadb_ident *id;
6387 		int fqdnlen;
6388 
6389 		fqdnlen = strlen(fqdn) + 1;	/* +1 for terminating-NUL */
6390 		id = (struct sadb_ident *)p;
6391 		bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6392 		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6393 		id->sadb_ident_exttype = idexttype;
6394 		id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6395 		bcopy(fqdn, id + 1, fqdnlen);
6396 		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6397 	}
6398 
6399 	if (idexttype) {
6400 		/* create identity extension (USERFQDN) */
6401 		struct sadb_ident *id;
6402 		int userfqdnlen;
6403 
6404 		if (userfqdn) {
6405 			/* +1 for terminating-NUL */
6406 			userfqdnlen = strlen(userfqdn) + 1;
6407 		} else
6408 			userfqdnlen = 0;
6409 		id = (struct sadb_ident *)p;
6410 		bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6411 		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6412 		id->sadb_ident_exttype = idexttype;
6413 		id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6414 		/* XXX is it correct? */
6415 		if (curproc && curproc->p_cred)
6416 			id->sadb_ident_id = curproc->p_cred->p_ruid;
6417 		if (userfqdn && userfqdnlen)
6418 			bcopy(userfqdn, id + 1, userfqdnlen);
6419 		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6420 	}
6421 #endif
6422 
6423 	/* XXX sensitivity (optional) */
6424 
6425 	/* create proposal/combination extension */
6426 	m = key_getprop(saidx);
6427 #if 0
6428 	/*
6429 	 * spec conformant: always attach proposal/combination extension,
6430 	 * the problem is that we have no way to attach it for ipcomp,
6431 	 * due to the way sadb_comb is declared in RFC2367.
6432 	 */
6433 	if (!m) {
6434 		error = ENOBUFS;
6435 		goto fail;
6436 	}
6437 	m_cat(result, m);
6438 #else
6439 	/*
6440 	 * outside of spec; make proposal/combination extension optional.
6441 	 */
6442 	if (m)
6443 		m_cat(result, m);
6444 #endif
6445 
6446 	if ((result->m_flags & M_PKTHDR) == 0) {
6447 		error = EINVAL;
6448 		goto fail;
6449 	}
6450 
6451 	if (result->m_len < sizeof(struct sadb_msg)) {
6452 		result = m_pullup(result, sizeof(struct sadb_msg));
6453 		if (result == NULL) {
6454 			error = ENOBUFS;
6455 			goto fail;
6456 		}
6457 	}
6458 
6459 	result->m_pkthdr.len = 0;
6460 	for (m = result; m; m = m->m_next)
6461 		result->m_pkthdr.len += m->m_len;
6462 
6463 	mtod(result, struct sadb_msg *)->sadb_msg_len =
6464 	    PFKEY_UNIT64(result->m_pkthdr.len);
6465 
6466 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6467 
6468  fail:
6469 	if (result)
6470 		m_freem(result);
6471 	return error;
6472 }
6473 
6474 static struct secacq *
6475 key_newacq(const struct secasindex *saidx)
6476 {
6477 	INIT_VNET_IPSEC(curvnet);
6478 	struct secacq *newacq;
6479 
6480 	/* get new entry */
6481 	newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
6482 	if (newacq == NULL) {
6483 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6484 		return NULL;
6485 	}
6486 
6487 	/* copy secindex */
6488 	bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx));
6489 	newacq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq);
6490 	newacq->created = time_second;
6491 	newacq->count = 0;
6492 
6493 	/* add to acqtree */
6494 	ACQ_LOCK();
6495 	LIST_INSERT_HEAD(&V_acqtree, newacq, chain);
6496 	ACQ_UNLOCK();
6497 
6498 	return newacq;
6499 }
6500 
6501 static struct secacq *
6502 key_getacq(const struct secasindex *saidx)
6503 {
6504 	INIT_VNET_IPSEC(curvnet);
6505 	struct secacq *acq;
6506 
6507 	ACQ_LOCK();
6508 	LIST_FOREACH(acq, &V_acqtree, chain) {
6509 		if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY))
6510 			break;
6511 	}
6512 	ACQ_UNLOCK();
6513 
6514 	return acq;
6515 }
6516 
6517 static struct secacq *
6518 key_getacqbyseq(seq)
6519 	u_int32_t seq;
6520 {
6521 	INIT_VNET_IPSEC(curvnet);
6522 	struct secacq *acq;
6523 
6524 	ACQ_LOCK();
6525 	LIST_FOREACH(acq, &V_acqtree, chain) {
6526 		if (acq->seq == seq)
6527 			break;
6528 	}
6529 	ACQ_UNLOCK();
6530 
6531 	return acq;
6532 }
6533 
6534 static struct secspacq *
6535 key_newspacq(spidx)
6536 	struct secpolicyindex *spidx;
6537 {
6538 	INIT_VNET_IPSEC(curvnet);
6539 	struct secspacq *acq;
6540 
6541 	/* get new entry */
6542 	acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
6543 	if (acq == NULL) {
6544 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6545 		return NULL;
6546 	}
6547 
6548 	/* copy secindex */
6549 	bcopy(spidx, &acq->spidx, sizeof(acq->spidx));
6550 	acq->created = time_second;
6551 	acq->count = 0;
6552 
6553 	/* add to spacqtree */
6554 	SPACQ_LOCK();
6555 	LIST_INSERT_HEAD(&V_spacqtree, acq, chain);
6556 	SPACQ_UNLOCK();
6557 
6558 	return acq;
6559 }
6560 
6561 static struct secspacq *
6562 key_getspacq(spidx)
6563 	struct secpolicyindex *spidx;
6564 {
6565 	INIT_VNET_IPSEC(curvnet);
6566 	struct secspacq *acq;
6567 
6568 	SPACQ_LOCK();
6569 	LIST_FOREACH(acq, &V_spacqtree, chain) {
6570 		if (key_cmpspidx_exactly(spidx, &acq->spidx)) {
6571 			/* NB: return holding spacq_lock */
6572 			return acq;
6573 		}
6574 	}
6575 	SPACQ_UNLOCK();
6576 
6577 	return NULL;
6578 }
6579 
6580 /*
6581  * SADB_ACQUIRE processing,
6582  * in first situation, is receiving
6583  *   <base>
6584  * from the ikmpd, and clear sequence of its secasvar entry.
6585  *
6586  * In second situation, is receiving
6587  *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6588  * from a user land process, and return
6589  *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6590  * to the socket.
6591  *
6592  * m will always be freed.
6593  */
6594 static int
6595 key_acquire2(so, m, mhp)
6596 	struct socket *so;
6597 	struct mbuf *m;
6598 	const struct sadb_msghdr *mhp;
6599 {
6600 	INIT_VNET_IPSEC(curvnet);
6601 	const struct sadb_address *src0, *dst0;
6602 	struct secasindex saidx;
6603 	struct secashead *sah;
6604 	u_int16_t proto;
6605 	int error;
6606 
6607 	IPSEC_ASSERT(so != NULL, ("null socket"));
6608 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6609 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6610 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6611 
6612 	/*
6613 	 * Error message from KMd.
6614 	 * We assume that if error was occured in IKEd, the length of PFKEY
6615 	 * message is equal to the size of sadb_msg structure.
6616 	 * We do not raise error even if error occured in this function.
6617 	 */
6618 	if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6619 		struct secacq *acq;
6620 
6621 		/* check sequence number */
6622 		if (mhp->msg->sadb_msg_seq == 0) {
6623 			ipseclog((LOG_DEBUG, "%s: must specify sequence "
6624 				"number.\n", __func__));
6625 			m_freem(m);
6626 			return 0;
6627 		}
6628 
6629 		if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) {
6630 			/*
6631 			 * the specified larval SA is already gone, or we got
6632 			 * a bogus sequence number.  we can silently ignore it.
6633 			 */
6634 			m_freem(m);
6635 			return 0;
6636 		}
6637 
6638 		/* reset acq counter in order to deletion by timehander. */
6639 		acq->created = time_second;
6640 		acq->count = 0;
6641 		m_freem(m);
6642 		return 0;
6643 	}
6644 
6645 	/*
6646 	 * This message is from user land.
6647 	 */
6648 
6649 	/* map satype to proto */
6650 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6651 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6652 			__func__));
6653 		return key_senderror(so, m, EINVAL);
6654 	}
6655 
6656 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6657 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6658 	    mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6659 		/* error */
6660 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
6661 			__func__));
6662 		return key_senderror(so, m, EINVAL);
6663 	}
6664 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6665 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6666 	    mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6667 		/* error */
6668 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
6669 			__func__));
6670 		return key_senderror(so, m, EINVAL);
6671 	}
6672 
6673 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
6674 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
6675 
6676 	/* XXX boundary check against sa_len */
6677 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
6678 
6679 	/*
6680 	 * Make sure the port numbers are zero.
6681 	 * In case of NAT-T we will update them later if needed.
6682 	 */
6683 	KEY_PORTTOSADDR(&saidx.src, 0);
6684 	KEY_PORTTOSADDR(&saidx.dst, 0);
6685 
6686 #ifndef IPSEC_NAT_T
6687 	/*
6688 	 * Handle NAT-T info if present.
6689 	 */
6690 
6691 	if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
6692 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
6693 		struct sadb_x_nat_t_port *sport, *dport;
6694 
6695 		if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
6696 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
6697 			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
6698 			    __func__));
6699 			return key_senderror(so, m, EINVAL);
6700 		}
6701 
6702 		sport = (struct sadb_x_nat_t_port *)
6703 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
6704 		dport = (struct sadb_x_nat_t_port *)
6705 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
6706 
6707 		if (sport)
6708 			KEY_PORTTOSADDR(&saidx.src,
6709 			    sport->sadb_x_nat_t_port_port);
6710 		if (dport)
6711 			KEY_PORTTOSADDR(&saidx.dst,
6712 			    dport->sadb_x_nat_t_port_port);
6713 	}
6714 #endif
6715 
6716 	/* get a SA index */
6717 	SAHTREE_LOCK();
6718 	LIST_FOREACH(sah, &V_sahtree, chain) {
6719 		if (sah->state == SADB_SASTATE_DEAD)
6720 			continue;
6721 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID))
6722 			break;
6723 	}
6724 	SAHTREE_UNLOCK();
6725 	if (sah != NULL) {
6726 		ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__));
6727 		return key_senderror(so, m, EEXIST);
6728 	}
6729 
6730 	error = key_acquire(&saidx, NULL);
6731 	if (error != 0) {
6732 		ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
6733 			__func__, mhp->msg->sadb_msg_errno));
6734 		return key_senderror(so, m, error);
6735 	}
6736 
6737 	return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6738 }
6739 
6740 /*
6741  * SADB_REGISTER processing.
6742  * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6743  * receive
6744  *   <base>
6745  * from the ikmpd, and register a socket to send PF_KEY messages,
6746  * and send
6747  *   <base, supported>
6748  * to KMD by PF_KEY.
6749  * If socket is detached, must free from regnode.
6750  *
6751  * m will always be freed.
6752  */
6753 static int
6754 key_register(so, m, mhp)
6755 	struct socket *so;
6756 	struct mbuf *m;
6757 	const struct sadb_msghdr *mhp;
6758 {
6759 	INIT_VNET_IPSEC(curvnet);
6760 	struct secreg *reg, *newreg = 0;
6761 
6762 	IPSEC_ASSERT(so != NULL, ("null socket"));
6763 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6764 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6765 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6766 
6767 	/* check for invalid register message */
6768 	if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0]))
6769 		return key_senderror(so, m, EINVAL);
6770 
6771 	/* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6772 	if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6773 		goto setmsg;
6774 
6775 	/* check whether existing or not */
6776 	REGTREE_LOCK();
6777 	LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) {
6778 		if (reg->so == so) {
6779 			REGTREE_UNLOCK();
6780 			ipseclog((LOG_DEBUG, "%s: socket exists already.\n",
6781 				__func__));
6782 			return key_senderror(so, m, EEXIST);
6783 		}
6784 	}
6785 
6786 	/* create regnode */
6787 	newreg =  malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO);
6788 	if (newreg == NULL) {
6789 		REGTREE_UNLOCK();
6790 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6791 		return key_senderror(so, m, ENOBUFS);
6792 	}
6793 
6794 	newreg->so = so;
6795 	((struct keycb *)sotorawcb(so))->kp_registered++;
6796 
6797 	/* add regnode to regtree. */
6798 	LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain);
6799 	REGTREE_UNLOCK();
6800 
6801   setmsg:
6802     {
6803 	struct mbuf *n;
6804 	struct sadb_msg *newmsg;
6805 	struct sadb_supported *sup;
6806 	u_int len, alen, elen;
6807 	int off;
6808 	int i;
6809 	struct sadb_alg *alg;
6810 
6811 	/* create new sadb_msg to reply. */
6812 	alen = 0;
6813 	for (i = 1; i <= SADB_AALG_MAX; i++) {
6814 		if (ah_algorithm_lookup(i))
6815 			alen += sizeof(struct sadb_alg);
6816 	}
6817 	if (alen)
6818 		alen += sizeof(struct sadb_supported);
6819 	elen = 0;
6820 	for (i = 1; i <= SADB_EALG_MAX; i++) {
6821 		if (esp_algorithm_lookup(i))
6822 			elen += sizeof(struct sadb_alg);
6823 	}
6824 	if (elen)
6825 		elen += sizeof(struct sadb_supported);
6826 
6827 	len = sizeof(struct sadb_msg) + alen + elen;
6828 
6829 	if (len > MCLBYTES)
6830 		return key_senderror(so, m, ENOBUFS);
6831 
6832 	MGETHDR(n, M_DONTWAIT, MT_DATA);
6833 	if (len > MHLEN) {
6834 		MCLGET(n, M_DONTWAIT);
6835 		if ((n->m_flags & M_EXT) == 0) {
6836 			m_freem(n);
6837 			n = NULL;
6838 		}
6839 	}
6840 	if (!n)
6841 		return key_senderror(so, m, ENOBUFS);
6842 
6843 	n->m_pkthdr.len = n->m_len = len;
6844 	n->m_next = NULL;
6845 	off = 0;
6846 
6847 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
6848 	newmsg = mtod(n, struct sadb_msg *);
6849 	newmsg->sadb_msg_errno = 0;
6850 	newmsg->sadb_msg_len = PFKEY_UNIT64(len);
6851 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6852 
6853 	/* for authentication algorithm */
6854 	if (alen) {
6855 		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6856 		sup->sadb_supported_len = PFKEY_UNIT64(alen);
6857 		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6858 		off += PFKEY_ALIGN8(sizeof(*sup));
6859 
6860 		for (i = 1; i <= SADB_AALG_MAX; i++) {
6861 			struct auth_hash *aalgo;
6862 			u_int16_t minkeysize, maxkeysize;
6863 
6864 			aalgo = ah_algorithm_lookup(i);
6865 			if (!aalgo)
6866 				continue;
6867 			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6868 			alg->sadb_alg_id = i;
6869 			alg->sadb_alg_ivlen = 0;
6870 			key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6871 			alg->sadb_alg_minbits = _BITS(minkeysize);
6872 			alg->sadb_alg_maxbits = _BITS(maxkeysize);
6873 			off += PFKEY_ALIGN8(sizeof(*alg));
6874 		}
6875 	}
6876 
6877 	/* for encryption algorithm */
6878 	if (elen) {
6879 		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6880 		sup->sadb_supported_len = PFKEY_UNIT64(elen);
6881 		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6882 		off += PFKEY_ALIGN8(sizeof(*sup));
6883 
6884 		for (i = 1; i <= SADB_EALG_MAX; i++) {
6885 			struct enc_xform *ealgo;
6886 
6887 			ealgo = esp_algorithm_lookup(i);
6888 			if (!ealgo)
6889 				continue;
6890 			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6891 			alg->sadb_alg_id = i;
6892 			alg->sadb_alg_ivlen = ealgo->blocksize;
6893 			alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6894 			alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6895 			off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6896 		}
6897 	}
6898 
6899 	IPSEC_ASSERT(off == len,
6900 		("length assumption failed (off %u len %u)", off, len));
6901 
6902 	m_freem(m);
6903 	return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6904     }
6905 }
6906 
6907 /*
6908  * free secreg entry registered.
6909  * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6910  */
6911 void
6912 key_freereg(struct socket *so)
6913 {
6914 	INIT_VNET_IPSEC(curvnet);
6915 	struct secreg *reg;
6916 	int i;
6917 
6918 	IPSEC_ASSERT(so != NULL, ("NULL so"));
6919 
6920 	/*
6921 	 * check whether existing or not.
6922 	 * check all type of SA, because there is a potential that
6923 	 * one socket is registered to multiple type of SA.
6924 	 */
6925 	REGTREE_LOCK();
6926 	for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6927 		LIST_FOREACH(reg, &V_regtree[i], chain) {
6928 			if (reg->so == so && __LIST_CHAINED(reg)) {
6929 				LIST_REMOVE(reg, chain);
6930 				free(reg, M_IPSEC_SAR);
6931 				break;
6932 			}
6933 		}
6934 	}
6935 	REGTREE_UNLOCK();
6936 }
6937 
6938 /*
6939  * SADB_EXPIRE processing
6940  * send
6941  *   <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6942  * to KMD by PF_KEY.
6943  * NOTE: We send only soft lifetime extension.
6944  *
6945  * OUT:	0	: succeed
6946  *	others	: error number
6947  */
6948 static int
6949 key_expire(struct secasvar *sav)
6950 {
6951 	int s;
6952 	int satype;
6953 	struct mbuf *result = NULL, *m;
6954 	int len;
6955 	int error = -1;
6956 	struct sadb_lifetime *lt;
6957 
6958 	/* XXX: Why do we lock ? */
6959 	s = splnet();	/*called from softclock()*/
6960 
6961 	IPSEC_ASSERT (sav != NULL, ("null sav"));
6962 	IPSEC_ASSERT (sav->sah != NULL, ("null sa header"));
6963 
6964 	/* set msg header */
6965 	satype = key_proto2satype(sav->sah->saidx.proto);
6966 	IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype));
6967 	m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6968 	if (!m) {
6969 		error = ENOBUFS;
6970 		goto fail;
6971 	}
6972 	result = m;
6973 
6974 	/* create SA extension */
6975 	m = key_setsadbsa(sav);
6976 	if (!m) {
6977 		error = ENOBUFS;
6978 		goto fail;
6979 	}
6980 	m_cat(result, m);
6981 
6982 	/* create SA extension */
6983 	m = key_setsadbxsa2(sav->sah->saidx.mode,
6984 			sav->replay ? sav->replay->count : 0,
6985 			sav->sah->saidx.reqid);
6986 	if (!m) {
6987 		error = ENOBUFS;
6988 		goto fail;
6989 	}
6990 	m_cat(result, m);
6991 
6992 	/* create lifetime extension (current and soft) */
6993 	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6994 	m = key_alloc_mbuf(len);
6995 	if (!m || m->m_next) {	/*XXX*/
6996 		if (m)
6997 			m_freem(m);
6998 		error = ENOBUFS;
6999 		goto fail;
7000 	}
7001 	bzero(mtod(m, caddr_t), len);
7002 	lt = mtod(m, struct sadb_lifetime *);
7003 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
7004 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
7005 	lt->sadb_lifetime_allocations = sav->lft_c->allocations;
7006 	lt->sadb_lifetime_bytes = sav->lft_c->bytes;
7007 	lt->sadb_lifetime_addtime = sav->lft_c->addtime;
7008 	lt->sadb_lifetime_usetime = sav->lft_c->usetime;
7009 	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
7010 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
7011 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
7012 	lt->sadb_lifetime_allocations = sav->lft_s->allocations;
7013 	lt->sadb_lifetime_bytes = sav->lft_s->bytes;
7014 	lt->sadb_lifetime_addtime = sav->lft_s->addtime;
7015 	lt->sadb_lifetime_usetime = sav->lft_s->usetime;
7016 	m_cat(result, m);
7017 
7018 	/* set sadb_address for source */
7019 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
7020 	    &sav->sah->saidx.src.sa,
7021 	    FULLMASK, IPSEC_ULPROTO_ANY);
7022 	if (!m) {
7023 		error = ENOBUFS;
7024 		goto fail;
7025 	}
7026 	m_cat(result, m);
7027 
7028 	/* set sadb_address for destination */
7029 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
7030 	    &sav->sah->saidx.dst.sa,
7031 	    FULLMASK, IPSEC_ULPROTO_ANY);
7032 	if (!m) {
7033 		error = ENOBUFS;
7034 		goto fail;
7035 	}
7036 	m_cat(result, m);
7037 
7038 	/*
7039 	 * XXX-BZ Handle NAT-T extensions here.
7040 	 */
7041 
7042 	if ((result->m_flags & M_PKTHDR) == 0) {
7043 		error = EINVAL;
7044 		goto fail;
7045 	}
7046 
7047 	if (result->m_len < sizeof(struct sadb_msg)) {
7048 		result = m_pullup(result, sizeof(struct sadb_msg));
7049 		if (result == NULL) {
7050 			error = ENOBUFS;
7051 			goto fail;
7052 		}
7053 	}
7054 
7055 	result->m_pkthdr.len = 0;
7056 	for (m = result; m; m = m->m_next)
7057 		result->m_pkthdr.len += m->m_len;
7058 
7059 	mtod(result, struct sadb_msg *)->sadb_msg_len =
7060 	    PFKEY_UNIT64(result->m_pkthdr.len);
7061 
7062 	splx(s);
7063 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
7064 
7065  fail:
7066 	if (result)
7067 		m_freem(result);
7068 	splx(s);
7069 	return error;
7070 }
7071 
7072 /*
7073  * SADB_FLUSH processing
7074  * receive
7075  *   <base>
7076  * from the ikmpd, and free all entries in secastree.
7077  * and send,
7078  *   <base>
7079  * to the ikmpd.
7080  * NOTE: to do is only marking SADB_SASTATE_DEAD.
7081  *
7082  * m will always be freed.
7083  */
7084 static int
7085 key_flush(so, m, mhp)
7086 	struct socket *so;
7087 	struct mbuf *m;
7088 	const struct sadb_msghdr *mhp;
7089 {
7090 	INIT_VNET_IPSEC(curvnet);
7091 	struct sadb_msg *newmsg;
7092 	struct secashead *sah, *nextsah;
7093 	struct secasvar *sav, *nextsav;
7094 	u_int16_t proto;
7095 	u_int8_t state;
7096 	u_int stateidx;
7097 
7098 	IPSEC_ASSERT(so != NULL, ("null socket"));
7099 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7100 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7101 
7102 	/* map satype to proto */
7103 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
7104 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
7105 			__func__));
7106 		return key_senderror(so, m, EINVAL);
7107 	}
7108 
7109 	/* no SATYPE specified, i.e. flushing all SA. */
7110 	SAHTREE_LOCK();
7111 	for (sah = LIST_FIRST(&V_sahtree);
7112 	     sah != NULL;
7113 	     sah = nextsah) {
7114 		nextsah = LIST_NEXT(sah, chain);
7115 
7116 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
7117 		 && proto != sah->saidx.proto)
7118 			continue;
7119 
7120 		for (stateidx = 0;
7121 		     stateidx < _ARRAYLEN(saorder_state_alive);
7122 		     stateidx++) {
7123 			state = saorder_state_any[stateidx];
7124 			for (sav = LIST_FIRST(&sah->savtree[state]);
7125 			     sav != NULL;
7126 			     sav = nextsav) {
7127 
7128 				nextsav = LIST_NEXT(sav, chain);
7129 
7130 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
7131 				KEY_FREESAV(&sav);
7132 			}
7133 		}
7134 
7135 		sah->state = SADB_SASTATE_DEAD;
7136 	}
7137 	SAHTREE_UNLOCK();
7138 
7139 	if (m->m_len < sizeof(struct sadb_msg) ||
7140 	    sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
7141 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
7142 		return key_senderror(so, m, ENOBUFS);
7143 	}
7144 
7145 	if (m->m_next)
7146 		m_freem(m->m_next);
7147 	m->m_next = NULL;
7148 	m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
7149 	newmsg = mtod(m, struct sadb_msg *);
7150 	newmsg->sadb_msg_errno = 0;
7151 	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
7152 
7153 	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7154 }
7155 
7156 /*
7157  * SADB_DUMP processing
7158  * dump all entries including status of DEAD in SAD.
7159  * receive
7160  *   <base>
7161  * from the ikmpd, and dump all secasvar leaves
7162  * and send,
7163  *   <base> .....
7164  * to the ikmpd.
7165  *
7166  * m will always be freed.
7167  */
7168 static int
7169 key_dump(so, m, mhp)
7170 	struct socket *so;
7171 	struct mbuf *m;
7172 	const struct sadb_msghdr *mhp;
7173 {
7174 	INIT_VNET_IPSEC(curvnet);
7175 	struct secashead *sah;
7176 	struct secasvar *sav;
7177 	u_int16_t proto;
7178 	u_int stateidx;
7179 	u_int8_t satype;
7180 	u_int8_t state;
7181 	int cnt;
7182 	struct sadb_msg *newmsg;
7183 	struct mbuf *n;
7184 
7185 	IPSEC_ASSERT(so != NULL, ("null socket"));
7186 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7187 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7188 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7189 
7190 	/* map satype to proto */
7191 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
7192 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
7193 			__func__));
7194 		return key_senderror(so, m, EINVAL);
7195 	}
7196 
7197 	/* count sav entries to be sent to the userland. */
7198 	cnt = 0;
7199 	SAHTREE_LOCK();
7200 	LIST_FOREACH(sah, &V_sahtree, chain) {
7201 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
7202 		 && proto != sah->saidx.proto)
7203 			continue;
7204 
7205 		for (stateidx = 0;
7206 		     stateidx < _ARRAYLEN(saorder_state_any);
7207 		     stateidx++) {
7208 			state = saorder_state_any[stateidx];
7209 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
7210 				cnt++;
7211 			}
7212 		}
7213 	}
7214 
7215 	if (cnt == 0) {
7216 		SAHTREE_UNLOCK();
7217 		return key_senderror(so, m, ENOENT);
7218 	}
7219 
7220 	/* send this to the userland, one at a time. */
7221 	newmsg = NULL;
7222 	LIST_FOREACH(sah, &V_sahtree, chain) {
7223 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
7224 		 && proto != sah->saidx.proto)
7225 			continue;
7226 
7227 		/* map proto to satype */
7228 		if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
7229 			SAHTREE_UNLOCK();
7230 			ipseclog((LOG_DEBUG, "%s: there was invalid proto in "
7231 				"SAD.\n", __func__));
7232 			return key_senderror(so, m, EINVAL);
7233 		}
7234 
7235 		for (stateidx = 0;
7236 		     stateidx < _ARRAYLEN(saorder_state_any);
7237 		     stateidx++) {
7238 			state = saorder_state_any[stateidx];
7239 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
7240 				n = key_setdumpsa(sav, SADB_DUMP, satype,
7241 				    --cnt, mhp->msg->sadb_msg_pid);
7242 				if (!n) {
7243 					SAHTREE_UNLOCK();
7244 					return key_senderror(so, m, ENOBUFS);
7245 				}
7246 				key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
7247 			}
7248 		}
7249 	}
7250 	SAHTREE_UNLOCK();
7251 
7252 	m_freem(m);
7253 	return 0;
7254 }
7255 
7256 /*
7257  * SADB_X_PROMISC processing
7258  *
7259  * m will always be freed.
7260  */
7261 static int
7262 key_promisc(so, m, mhp)
7263 	struct socket *so;
7264 	struct mbuf *m;
7265 	const struct sadb_msghdr *mhp;
7266 {
7267 	int olen;
7268 
7269 	IPSEC_ASSERT(so != NULL, ("null socket"));
7270 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7271 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7272 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7273 
7274 	olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7275 
7276 	if (olen < sizeof(struct sadb_msg)) {
7277 #if 1
7278 		return key_senderror(so, m, EINVAL);
7279 #else
7280 		m_freem(m);
7281 		return 0;
7282 #endif
7283 	} else if (olen == sizeof(struct sadb_msg)) {
7284 		/* enable/disable promisc mode */
7285 		struct keycb *kp;
7286 
7287 		if ((kp = (struct keycb *)sotorawcb(so)) == NULL)
7288 			return key_senderror(so, m, EINVAL);
7289 		mhp->msg->sadb_msg_errno = 0;
7290 		switch (mhp->msg->sadb_msg_satype) {
7291 		case 0:
7292 		case 1:
7293 			kp->kp_promisc = mhp->msg->sadb_msg_satype;
7294 			break;
7295 		default:
7296 			return key_senderror(so, m, EINVAL);
7297 		}
7298 
7299 		/* send the original message back to everyone */
7300 		mhp->msg->sadb_msg_errno = 0;
7301 		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7302 	} else {
7303 		/* send packet as is */
7304 
7305 		m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7306 
7307 		/* TODO: if sadb_msg_seq is specified, send to specific pid */
7308 		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7309 	}
7310 }
7311 
7312 static int (*key_typesw[]) __P((struct socket *, struct mbuf *,
7313 		const struct sadb_msghdr *)) = {
7314 	NULL,		/* SADB_RESERVED */
7315 	key_getspi,	/* SADB_GETSPI */
7316 	key_update,	/* SADB_UPDATE */
7317 	key_add,	/* SADB_ADD */
7318 	key_delete,	/* SADB_DELETE */
7319 	key_get,	/* SADB_GET */
7320 	key_acquire2,	/* SADB_ACQUIRE */
7321 	key_register,	/* SADB_REGISTER */
7322 	NULL,		/* SADB_EXPIRE */
7323 	key_flush,	/* SADB_FLUSH */
7324 	key_dump,	/* SADB_DUMP */
7325 	key_promisc,	/* SADB_X_PROMISC */
7326 	NULL,		/* SADB_X_PCHANGE */
7327 	key_spdadd,	/* SADB_X_SPDUPDATE */
7328 	key_spdadd,	/* SADB_X_SPDADD */
7329 	key_spddelete,	/* SADB_X_SPDDELETE */
7330 	key_spdget,	/* SADB_X_SPDGET */
7331 	NULL,		/* SADB_X_SPDACQUIRE */
7332 	key_spddump,	/* SADB_X_SPDDUMP */
7333 	key_spdflush,	/* SADB_X_SPDFLUSH */
7334 	key_spdadd,	/* SADB_X_SPDSETIDX */
7335 	NULL,		/* SADB_X_SPDEXPIRE */
7336 	key_spddelete2,	/* SADB_X_SPDDELETE2 */
7337 };
7338 
7339 /*
7340  * parse sadb_msg buffer to process PFKEYv2,
7341  * and create a data to response if needed.
7342  * I think to be dealed with mbuf directly.
7343  * IN:
7344  *     msgp  : pointer to pointer to a received buffer pulluped.
7345  *             This is rewrited to response.
7346  *     so    : pointer to socket.
7347  * OUT:
7348  *    length for buffer to send to user process.
7349  */
7350 int
7351 key_parse(m, so)
7352 	struct mbuf *m;
7353 	struct socket *so;
7354 {
7355 	INIT_VNET_IPSEC(curvnet);
7356 	struct sadb_msg *msg;
7357 	struct sadb_msghdr mh;
7358 	u_int orglen;
7359 	int error;
7360 	int target;
7361 
7362 	IPSEC_ASSERT(so != NULL, ("null socket"));
7363 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7364 
7365 #if 0	/*kdebug_sadb assumes msg in linear buffer*/
7366 	KEYDEBUG(KEYDEBUG_KEY_DUMP,
7367 		ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__));
7368 		kdebug_sadb(msg));
7369 #endif
7370 
7371 	if (m->m_len < sizeof(struct sadb_msg)) {
7372 		m = m_pullup(m, sizeof(struct sadb_msg));
7373 		if (!m)
7374 			return ENOBUFS;
7375 	}
7376 	msg = mtod(m, struct sadb_msg *);
7377 	orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7378 	target = KEY_SENDUP_ONE;
7379 
7380 	if ((m->m_flags & M_PKTHDR) == 0 ||
7381 	    m->m_pkthdr.len != m->m_pkthdr.len) {
7382 		ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__));
7383 		V_pfkeystat.out_invlen++;
7384 		error = EINVAL;
7385 		goto senderror;
7386 	}
7387 
7388 	if (msg->sadb_msg_version != PF_KEY_V2) {
7389 		ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n",
7390 		    __func__, msg->sadb_msg_version));
7391 		V_pfkeystat.out_invver++;
7392 		error = EINVAL;
7393 		goto senderror;
7394 	}
7395 
7396 	if (msg->sadb_msg_type > SADB_MAX) {
7397 		ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
7398 		    __func__, msg->sadb_msg_type));
7399 		V_pfkeystat.out_invmsgtype++;
7400 		error = EINVAL;
7401 		goto senderror;
7402 	}
7403 
7404 	/* for old-fashioned code - should be nuked */
7405 	if (m->m_pkthdr.len > MCLBYTES) {
7406 		m_freem(m);
7407 		return ENOBUFS;
7408 	}
7409 	if (m->m_next) {
7410 		struct mbuf *n;
7411 
7412 		MGETHDR(n, M_DONTWAIT, MT_DATA);
7413 		if (n && m->m_pkthdr.len > MHLEN) {
7414 			MCLGET(n, M_DONTWAIT);
7415 			if ((n->m_flags & M_EXT) == 0) {
7416 				m_free(n);
7417 				n = NULL;
7418 			}
7419 		}
7420 		if (!n) {
7421 			m_freem(m);
7422 			return ENOBUFS;
7423 		}
7424 		m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t));
7425 		n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7426 		n->m_next = NULL;
7427 		m_freem(m);
7428 		m = n;
7429 	}
7430 
7431 	/* align the mbuf chain so that extensions are in contiguous region. */
7432 	error = key_align(m, &mh);
7433 	if (error)
7434 		return error;
7435 
7436 	msg = mh.msg;
7437 
7438 	/* check SA type */
7439 	switch (msg->sadb_msg_satype) {
7440 	case SADB_SATYPE_UNSPEC:
7441 		switch (msg->sadb_msg_type) {
7442 		case SADB_GETSPI:
7443 		case SADB_UPDATE:
7444 		case SADB_ADD:
7445 		case SADB_DELETE:
7446 		case SADB_GET:
7447 		case SADB_ACQUIRE:
7448 		case SADB_EXPIRE:
7449 			ipseclog((LOG_DEBUG, "%s: must specify satype "
7450 			    "when msg type=%u.\n", __func__,
7451 			    msg->sadb_msg_type));
7452 			V_pfkeystat.out_invsatype++;
7453 			error = EINVAL;
7454 			goto senderror;
7455 		}
7456 		break;
7457 	case SADB_SATYPE_AH:
7458 	case SADB_SATYPE_ESP:
7459 	case SADB_X_SATYPE_IPCOMP:
7460 	case SADB_X_SATYPE_TCPSIGNATURE:
7461 		switch (msg->sadb_msg_type) {
7462 		case SADB_X_SPDADD:
7463 		case SADB_X_SPDDELETE:
7464 		case SADB_X_SPDGET:
7465 		case SADB_X_SPDDUMP:
7466 		case SADB_X_SPDFLUSH:
7467 		case SADB_X_SPDSETIDX:
7468 		case SADB_X_SPDUPDATE:
7469 		case SADB_X_SPDDELETE2:
7470 			ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n",
7471 				__func__, msg->sadb_msg_type));
7472 			V_pfkeystat.out_invsatype++;
7473 			error = EINVAL;
7474 			goto senderror;
7475 		}
7476 		break;
7477 	case SADB_SATYPE_RSVP:
7478 	case SADB_SATYPE_OSPFV2:
7479 	case SADB_SATYPE_RIPV2:
7480 	case SADB_SATYPE_MIP:
7481 		ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n",
7482 			__func__, msg->sadb_msg_satype));
7483 		V_pfkeystat.out_invsatype++;
7484 		error = EOPNOTSUPP;
7485 		goto senderror;
7486 	case 1:	/* XXX: What does it do? */
7487 		if (msg->sadb_msg_type == SADB_X_PROMISC)
7488 			break;
7489 		/*FALLTHROUGH*/
7490 	default:
7491 		ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
7492 			__func__, msg->sadb_msg_satype));
7493 		V_pfkeystat.out_invsatype++;
7494 		error = EINVAL;
7495 		goto senderror;
7496 	}
7497 
7498 	/* check field of upper layer protocol and address family */
7499 	if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL
7500 	 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7501 		struct sadb_address *src0, *dst0;
7502 		u_int plen;
7503 
7504 		src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7505 		dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7506 
7507 		/* check upper layer protocol */
7508 		if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7509 			ipseclog((LOG_DEBUG, "%s: upper layer protocol "
7510 				"mismatched.\n", __func__));
7511 			V_pfkeystat.out_invaddr++;
7512 			error = EINVAL;
7513 			goto senderror;
7514 		}
7515 
7516 		/* check family */
7517 		if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7518 		    PFKEY_ADDR_SADDR(dst0)->sa_family) {
7519 			ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
7520 				__func__));
7521 			V_pfkeystat.out_invaddr++;
7522 			error = EINVAL;
7523 			goto senderror;
7524 		}
7525 		if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7526 		    PFKEY_ADDR_SADDR(dst0)->sa_len) {
7527 			ipseclog((LOG_DEBUG, "%s: address struct size "
7528 				"mismatched.\n", __func__));
7529 			V_pfkeystat.out_invaddr++;
7530 			error = EINVAL;
7531 			goto senderror;
7532 		}
7533 
7534 		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7535 		case AF_INET:
7536 			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7537 			    sizeof(struct sockaddr_in)) {
7538 				V_pfkeystat.out_invaddr++;
7539 				error = EINVAL;
7540 				goto senderror;
7541 			}
7542 			break;
7543 		case AF_INET6:
7544 			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7545 			    sizeof(struct sockaddr_in6)) {
7546 				V_pfkeystat.out_invaddr++;
7547 				error = EINVAL;
7548 				goto senderror;
7549 			}
7550 			break;
7551 		default:
7552 			ipseclog((LOG_DEBUG, "%s: unsupported address family\n",
7553 				__func__));
7554 			V_pfkeystat.out_invaddr++;
7555 			error = EAFNOSUPPORT;
7556 			goto senderror;
7557 		}
7558 
7559 		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7560 		case AF_INET:
7561 			plen = sizeof(struct in_addr) << 3;
7562 			break;
7563 		case AF_INET6:
7564 			plen = sizeof(struct in6_addr) << 3;
7565 			break;
7566 		default:
7567 			plen = 0;	/*fool gcc*/
7568 			break;
7569 		}
7570 
7571 		/* check max prefix length */
7572 		if (src0->sadb_address_prefixlen > plen ||
7573 		    dst0->sadb_address_prefixlen > plen) {
7574 			ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n",
7575 				__func__));
7576 			V_pfkeystat.out_invaddr++;
7577 			error = EINVAL;
7578 			goto senderror;
7579 		}
7580 
7581 		/*
7582 		 * prefixlen == 0 is valid because there can be a case when
7583 		 * all addresses are matched.
7584 		 */
7585 	}
7586 
7587 	if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) ||
7588 	    key_typesw[msg->sadb_msg_type] == NULL) {
7589 		V_pfkeystat.out_invmsgtype++;
7590 		error = EINVAL;
7591 		goto senderror;
7592 	}
7593 
7594 	return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
7595 
7596 senderror:
7597 	msg->sadb_msg_errno = error;
7598 	return key_sendup_mbuf(so, m, target);
7599 }
7600 
7601 static int
7602 key_senderror(so, m, code)
7603 	struct socket *so;
7604 	struct mbuf *m;
7605 	int code;
7606 {
7607 	struct sadb_msg *msg;
7608 
7609 	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
7610 		("mbuf too small, len %u", m->m_len));
7611 
7612 	msg = mtod(m, struct sadb_msg *);
7613 	msg->sadb_msg_errno = code;
7614 	return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7615 }
7616 
7617 /*
7618  * set the pointer to each header into message buffer.
7619  * m will be freed on error.
7620  * XXX larger-than-MCLBYTES extension?
7621  */
7622 static int
7623 key_align(m, mhp)
7624 	struct mbuf *m;
7625 	struct sadb_msghdr *mhp;
7626 {
7627 	INIT_VNET_IPSEC(curvnet);
7628 	struct mbuf *n;
7629 	struct sadb_ext *ext;
7630 	size_t off, end;
7631 	int extlen;
7632 	int toff;
7633 
7634 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7635 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7636 	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
7637 		("mbuf too small, len %u", m->m_len));
7638 
7639 	/* initialize */
7640 	bzero(mhp, sizeof(*mhp));
7641 
7642 	mhp->msg = mtod(m, struct sadb_msg *);
7643 	mhp->ext[0] = (struct sadb_ext *)mhp->msg;	/*XXX backward compat */
7644 
7645 	end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7646 	extlen = end;	/*just in case extlen is not updated*/
7647 	for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7648 		n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7649 		if (!n) {
7650 			/* m is already freed */
7651 			return ENOBUFS;
7652 		}
7653 		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
7654 
7655 		/* set pointer */
7656 		switch (ext->sadb_ext_type) {
7657 		case SADB_EXT_SA:
7658 		case SADB_EXT_ADDRESS_SRC:
7659 		case SADB_EXT_ADDRESS_DST:
7660 		case SADB_EXT_ADDRESS_PROXY:
7661 		case SADB_EXT_LIFETIME_CURRENT:
7662 		case SADB_EXT_LIFETIME_HARD:
7663 		case SADB_EXT_LIFETIME_SOFT:
7664 		case SADB_EXT_KEY_AUTH:
7665 		case SADB_EXT_KEY_ENCRYPT:
7666 		case SADB_EXT_IDENTITY_SRC:
7667 		case SADB_EXT_IDENTITY_DST:
7668 		case SADB_EXT_SENSITIVITY:
7669 		case SADB_EXT_PROPOSAL:
7670 		case SADB_EXT_SUPPORTED_AUTH:
7671 		case SADB_EXT_SUPPORTED_ENCRYPT:
7672 		case SADB_EXT_SPIRANGE:
7673 		case SADB_X_EXT_POLICY:
7674 		case SADB_X_EXT_SA2:
7675 #ifdef IPSEC_NAT_T
7676 		case SADB_X_EXT_NAT_T_TYPE:
7677 		case SADB_X_EXT_NAT_T_SPORT:
7678 		case SADB_X_EXT_NAT_T_DPORT:
7679 		case SADB_X_EXT_NAT_T_OAI:
7680 		case SADB_X_EXT_NAT_T_OAR:
7681 		case SADB_X_EXT_NAT_T_FRAG:
7682 #endif
7683 			/* duplicate check */
7684 			/*
7685 			 * XXX Are there duplication payloads of either
7686 			 * KEY_AUTH or KEY_ENCRYPT ?
7687 			 */
7688 			if (mhp->ext[ext->sadb_ext_type] != NULL) {
7689 				ipseclog((LOG_DEBUG, "%s: duplicate ext_type "
7690 					"%u\n", __func__, ext->sadb_ext_type));
7691 				m_freem(m);
7692 				V_pfkeystat.out_dupext++;
7693 				return EINVAL;
7694 			}
7695 			break;
7696 		default:
7697 			ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n",
7698 				__func__, ext->sadb_ext_type));
7699 			m_freem(m);
7700 			V_pfkeystat.out_invexttype++;
7701 			return EINVAL;
7702 		}
7703 
7704 		extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7705 
7706 		if (key_validate_ext(ext, extlen)) {
7707 			m_freem(m);
7708 			V_pfkeystat.out_invlen++;
7709 			return EINVAL;
7710 		}
7711 
7712 		n = m_pulldown(m, off, extlen, &toff);
7713 		if (!n) {
7714 			/* m is already freed */
7715 			return ENOBUFS;
7716 		}
7717 		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
7718 
7719 		mhp->ext[ext->sadb_ext_type] = ext;
7720 		mhp->extoff[ext->sadb_ext_type] = off;
7721 		mhp->extlen[ext->sadb_ext_type] = extlen;
7722 	}
7723 
7724 	if (off != end) {
7725 		m_freem(m);
7726 		V_pfkeystat.out_invlen++;
7727 		return EINVAL;
7728 	}
7729 
7730 	return 0;
7731 }
7732 
7733 static int
7734 key_validate_ext(ext, len)
7735 	const struct sadb_ext *ext;
7736 	int len;
7737 {
7738 	const struct sockaddr *sa;
7739 	enum { NONE, ADDR } checktype = NONE;
7740 	int baselen = 0;
7741 	const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7742 
7743 	if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7744 		return EINVAL;
7745 
7746 	/* if it does not match minimum/maximum length, bail */
7747 	if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) ||
7748 	    ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0]))
7749 		return EINVAL;
7750 	if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7751 		return EINVAL;
7752 	if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7753 		return EINVAL;
7754 
7755 	/* more checks based on sadb_ext_type XXX need more */
7756 	switch (ext->sadb_ext_type) {
7757 	case SADB_EXT_ADDRESS_SRC:
7758 	case SADB_EXT_ADDRESS_DST:
7759 	case SADB_EXT_ADDRESS_PROXY:
7760 		baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7761 		checktype = ADDR;
7762 		break;
7763 	case SADB_EXT_IDENTITY_SRC:
7764 	case SADB_EXT_IDENTITY_DST:
7765 		if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7766 		    SADB_X_IDENTTYPE_ADDR) {
7767 			baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7768 			checktype = ADDR;
7769 		} else
7770 			checktype = NONE;
7771 		break;
7772 	default:
7773 		checktype = NONE;
7774 		break;
7775 	}
7776 
7777 	switch (checktype) {
7778 	case NONE:
7779 		break;
7780 	case ADDR:
7781 		sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7782 		if (len < baselen + sal)
7783 			return EINVAL;
7784 		if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7785 			return EINVAL;
7786 		break;
7787 	}
7788 
7789 	return 0;
7790 }
7791 
7792 void
7793 key_init(void)
7794 {
7795 	INIT_VNET_IPSEC(curvnet);
7796 	int i;
7797 
7798 	V_key_debug_level = 0;
7799 	V_key_spi_trycnt = 1000;
7800 	V_key_spi_minval = 0x100;
7801 	V_key_spi_maxval = 0x0fffffff;	/* XXX */
7802 	V_policy_id = 0;
7803 	V_key_int_random = 60;		/*interval to initialize randseed,1(m)*/
7804 	V_key_larval_lifetime = 30;	/* interval to expire acquiring, 30(s)*/
7805 	V_key_blockacq_count = 10;	/* counter for blocking SADB_ACQUIRE.*/
7806 	V_key_blockacq_lifetime = 20;	/* lifetime for blocking SADB_ACQUIRE.*/
7807 	V_key_preferred_oldsa = 1;	/* preferred old sa rather than new sa*/
7808 
7809 	V_acq_seq = 0;
7810 
7811 	V_ipsec_esp_keymin = 256;
7812 	V_ipsec_esp_auth = 0;
7813 	V_ipsec_ah_keymin = 128;
7814 
7815 	for (i = 0; i < IPSEC_DIR_MAX; i++)
7816 		LIST_INIT(&V_sptree[i]);
7817 
7818 	LIST_INIT(&V_sahtree);
7819 
7820 	for (i = 0; i <= SADB_SATYPE_MAX; i++)
7821 		LIST_INIT(&V_regtree[i]);
7822 
7823 	LIST_INIT(&V_acqtree);
7824 	LIST_INIT(&V_spacqtree);
7825 
7826 	/* system default */
7827 	V_ip4_def_policy.policy = IPSEC_POLICY_NONE;
7828 	V_ip4_def_policy.refcnt++;	/*never reclaim this*/
7829 
7830 	if (!IS_DEFAULT_VNET(curvnet))
7831 		return;
7832 
7833 	SPTREE_LOCK_INIT();
7834 	REGTREE_LOCK_INIT();
7835 	SAHTREE_LOCK_INIT();
7836 	ACQ_LOCK_INIT();
7837 	SPACQ_LOCK_INIT();
7838 
7839 #ifndef IPSEC_DEBUG2
7840 	timeout((void *)key_timehandler, (void *)0, hz);
7841 #endif /*IPSEC_DEBUG2*/
7842 
7843 	/* initialize key statistics */
7844 	keystat.getspi_count = 1;
7845 
7846 	printf("IPsec: Initialized Security Association Processing.\n");
7847 }
7848 
7849 #ifdef VIMAGE
7850 void
7851 key_destroy(void)
7852 {
7853 	INIT_VNET_IPSEC(curvnet);
7854 	struct secpolicy *sp, *nextsp;
7855 	struct secspacq *acq, *nextacq;
7856 	struct secashead *sah, *nextsah;
7857 	struct secreg *reg;
7858 	int i;
7859 
7860 	SPTREE_LOCK();
7861 	for (i = 0; i < IPSEC_DIR_MAX; i++) {
7862 		for (sp = LIST_FIRST(&V_sptree[i]);
7863 		    sp != NULL; sp = nextsp) {
7864 			nextsp = LIST_NEXT(sp, chain);
7865 			if (__LIST_CHAINED(sp)) {
7866 				LIST_REMOVE(sp, chain);
7867 				free(sp, M_IPSEC_SP);
7868 			}
7869 		}
7870 	}
7871 	SPTREE_UNLOCK();
7872 
7873 	SAHTREE_LOCK();
7874 	for (sah = LIST_FIRST(&V_sahtree); sah != NULL; sah = nextsah) {
7875 		nextsah = LIST_NEXT(sah, chain);
7876 		if (__LIST_CHAINED(sah)) {
7877 			LIST_REMOVE(sah, chain);
7878 			free(sah, M_IPSEC_SAH);
7879 		}
7880 	}
7881 	SAHTREE_UNLOCK();
7882 
7883 	REGTREE_LOCK();
7884 	for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7885 		LIST_FOREACH(reg, &V_regtree[i], chain) {
7886 			if (__LIST_CHAINED(reg)) {
7887 				LIST_REMOVE(reg, chain);
7888 				free(reg, M_IPSEC_SAR);
7889 				break;
7890 			}
7891 		}
7892 	}
7893 	REGTREE_UNLOCK();
7894 
7895 	ACQ_LOCK();
7896 	for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) {
7897 		nextacq = LIST_NEXT(acq, chain);
7898 		if (__LIST_CHAINED(acq)) {
7899 			LIST_REMOVE(acq, chain);
7900 			free(acq, M_IPSEC_SAQ);
7901 		}
7902 	}
7903 	ACQ_UNLOCK();
7904 
7905 	SPACQ_LOCK();
7906 	for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) {
7907 		nextacq = LIST_NEXT(acq, chain);
7908 		if (__LIST_CHAINED(acq)) {
7909 			LIST_REMOVE(acq, chain);
7910 			free(acq, M_IPSEC_SAQ);
7911 		}
7912 	}
7913 	SPACQ_UNLOCK();
7914 }
7915 #endif
7916 
7917 /*
7918  * XXX: maybe This function is called after INBOUND IPsec processing.
7919  *
7920  * Special check for tunnel-mode packets.
7921  * We must make some checks for consistency between inner and outer IP header.
7922  *
7923  * xxx more checks to be provided
7924  */
7925 int
7926 key_checktunnelsanity(sav, family, src, dst)
7927 	struct secasvar *sav;
7928 	u_int family;
7929 	caddr_t src;
7930 	caddr_t dst;
7931 {
7932 	IPSEC_ASSERT(sav->sah != NULL, ("null SA header"));
7933 
7934 	/* XXX: check inner IP header */
7935 
7936 	return 1;
7937 }
7938 
7939 /* record data transfer on SA, and update timestamps */
7940 void
7941 key_sa_recordxfer(sav, m)
7942 	struct secasvar *sav;
7943 	struct mbuf *m;
7944 {
7945 	IPSEC_ASSERT(sav != NULL, ("Null secasvar"));
7946 	IPSEC_ASSERT(m != NULL, ("Null mbuf"));
7947 	if (!sav->lft_c)
7948 		return;
7949 
7950 	/*
7951 	 * XXX Currently, there is a difference of bytes size
7952 	 * between inbound and outbound processing.
7953 	 */
7954 	sav->lft_c->bytes += m->m_pkthdr.len;
7955 	/* to check bytes lifetime is done in key_timehandler(). */
7956 
7957 	/*
7958 	 * We use the number of packets as the unit of
7959 	 * allocations.  We increment the variable
7960 	 * whenever {esp,ah}_{in,out}put is called.
7961 	 */
7962 	sav->lft_c->allocations++;
7963 	/* XXX check for expires? */
7964 
7965 	/*
7966 	 * NOTE: We record CURRENT usetime by using wall clock,
7967 	 * in seconds.  HARD and SOFT lifetime are measured by the time
7968 	 * difference (again in seconds) from usetime.
7969 	 *
7970 	 *	usetime
7971 	 *	v     expire   expire
7972 	 * -----+-----+--------+---> t
7973 	 *	<--------------> HARD
7974 	 *	<-----> SOFT
7975 	 */
7976 	sav->lft_c->usetime = time_second;
7977 	/* XXX check for expires? */
7978 
7979 	return;
7980 }
7981 
7982 /* dumb version */
7983 void
7984 key_sa_routechange(dst)
7985 	struct sockaddr *dst;
7986 {
7987 	INIT_VNET_IPSEC(curvnet);
7988 	struct secashead *sah;
7989 	struct route *ro;
7990 
7991 	SAHTREE_LOCK();
7992 	LIST_FOREACH(sah, &V_sahtree, chain) {
7993 		ro = &sah->sa_route;
7994 		if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len
7995 		 && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) {
7996 			RTFREE(ro->ro_rt);
7997 			ro->ro_rt = (struct rtentry *)NULL;
7998 		}
7999 	}
8000 	SAHTREE_UNLOCK();
8001 }
8002 
8003 static void
8004 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
8005 {
8006 	IPSEC_ASSERT(sav != NULL, ("NULL sav"));
8007 	SAHTREE_LOCK_ASSERT();
8008 
8009 	if (sav->state != state) {
8010 		if (__LIST_CHAINED(sav))
8011 			LIST_REMOVE(sav, chain);
8012 		sav->state = state;
8013 		LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
8014 	}
8015 }
8016 
8017 void
8018 key_sa_stir_iv(sav)
8019 	struct secasvar *sav;
8020 {
8021 
8022 	IPSEC_ASSERT(sav->iv != NULL, ("null IV"));
8023 	key_randomfill(sav->iv, sav->ivlen);
8024 }
8025 
8026 /* XXX too much? */
8027 static struct mbuf *
8028 key_alloc_mbuf(l)
8029 	int l;
8030 {
8031 	struct mbuf *m = NULL, *n;
8032 	int len, t;
8033 
8034 	len = l;
8035 	while (len > 0) {
8036 		MGET(n, M_DONTWAIT, MT_DATA);
8037 		if (n && len > MLEN)
8038 			MCLGET(n, M_DONTWAIT);
8039 		if (!n) {
8040 			m_freem(m);
8041 			return NULL;
8042 		}
8043 
8044 		n->m_next = NULL;
8045 		n->m_len = 0;
8046 		n->m_len = M_TRAILINGSPACE(n);
8047 		/* use the bottom of mbuf, hoping we can prepend afterwards */
8048 		if (n->m_len > len) {
8049 			t = (n->m_len - len) & ~(sizeof(long) - 1);
8050 			n->m_data += t;
8051 			n->m_len = len;
8052 		}
8053 
8054 		len -= n->m_len;
8055 
8056 		if (m)
8057 			m_cat(m, n);
8058 		else
8059 			m = n;
8060 	}
8061 
8062 	return m;
8063 }
8064 
8065 /*
8066  * Take one of the kernel's security keys and convert it into a PF_KEY
8067  * structure within an mbuf, suitable for sending up to a waiting
8068  * application in user land.
8069  *
8070  * IN:
8071  *    src: A pointer to a kernel security key.
8072  *    exttype: Which type of key this is. Refer to the PF_KEY data structures.
8073  * OUT:
8074  *    a valid mbuf or NULL indicating an error
8075  *
8076  */
8077 
8078 static struct mbuf *
8079 key_setkey(struct seckey *src, u_int16_t exttype)
8080 {
8081 	struct mbuf *m;
8082 	struct sadb_key *p;
8083 	int len;
8084 
8085 	if (src == NULL)
8086 		return NULL;
8087 
8088 	len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src));
8089 	m = key_alloc_mbuf(len);
8090 	if (m == NULL)
8091 		return NULL;
8092 	p = mtod(m, struct sadb_key *);
8093 	bzero(p, len);
8094 	p->sadb_key_len = PFKEY_UNIT64(len);
8095 	p->sadb_key_exttype = exttype;
8096 	p->sadb_key_bits = src->bits;
8097 	bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src));
8098 
8099 	return m;
8100 }
8101 
8102 /*
8103  * Take one of the kernel's lifetime data structures and convert it
8104  * into a PF_KEY structure within an mbuf, suitable for sending up to
8105  * a waiting application in user land.
8106  *
8107  * IN:
8108  *    src: A pointer to a kernel lifetime structure.
8109  *    exttype: Which type of lifetime this is. Refer to the PF_KEY
8110  *             data structures for more information.
8111  * OUT:
8112  *    a valid mbuf or NULL indicating an error
8113  *
8114  */
8115 
8116 static struct mbuf *
8117 key_setlifetime(struct seclifetime *src, u_int16_t exttype)
8118 {
8119 	struct mbuf *m = NULL;
8120 	struct sadb_lifetime *p;
8121 	int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime));
8122 
8123 	if (src == NULL)
8124 		return NULL;
8125 
8126 	m = key_alloc_mbuf(len);
8127 	if (m == NULL)
8128 		return m;
8129 	p = mtod(m, struct sadb_lifetime *);
8130 
8131 	bzero(p, len);
8132 	p->sadb_lifetime_len = PFKEY_UNIT64(len);
8133 	p->sadb_lifetime_exttype = exttype;
8134 	p->sadb_lifetime_allocations = src->allocations;
8135 	p->sadb_lifetime_bytes = src->bytes;
8136 	p->sadb_lifetime_addtime = src->addtime;
8137 	p->sadb_lifetime_usetime = src->usetime;
8138 
8139 	return m;
8140 
8141 }
8142