xref: /freebsd/sys/netipsec/key.c (revision 545ddfbe7d4fe8adfb862903b24eac1d5896c1ef)
1 /*	$FreeBSD$	*/
2 /*	$KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $	*/
3 
4 /*-
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * This code is referd to RFC 2367
35  */
36 
37 #include "opt_inet.h"
38 #include "opt_inet6.h"
39 #include "opt_ipsec.h"
40 
41 #include <sys/types.h>
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/mbuf.h>
48 #include <sys/domain.h>
49 #include <sys/protosw.h>
50 #include <sys/malloc.h>
51 #include <sys/rmlock.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/sysctl.h>
55 #include <sys/errno.h>
56 #include <sys/proc.h>
57 #include <sys/queue.h>
58 #include <sys/refcount.h>
59 #include <sys/syslog.h>
60 
61 #include <net/if.h>
62 #include <net/if_var.h>
63 #include <net/vnet.h>
64 #include <net/raw_cb.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/ip.h>
69 #include <netinet/in_var.h>
70 
71 #ifdef INET6
72 #include <netinet/ip6.h>
73 #include <netinet6/in6_var.h>
74 #include <netinet6/ip6_var.h>
75 #endif /* INET6 */
76 
77 #if defined(INET) || defined(INET6)
78 #include <netinet/in_pcb.h>
79 #endif
80 #ifdef INET6
81 #include <netinet6/in6_pcb.h>
82 #endif /* INET6 */
83 
84 #include <net/pfkeyv2.h>
85 #include <netipsec/keydb.h>
86 #include <netipsec/key.h>
87 #include <netipsec/keysock.h>
88 #include <netipsec/key_debug.h>
89 
90 #include <netipsec/ipsec.h>
91 #ifdef INET6
92 #include <netipsec/ipsec6.h>
93 #endif
94 
95 #include <netipsec/xform.h>
96 
97 #include <machine/stdarg.h>
98 
99 /* randomness */
100 #include <sys/random.h>
101 
102 #define FULLMASK	0xff
103 #define	_BITS(bytes)	((bytes) << 3)
104 
105 /*
106  * Note on SA reference counting:
107  * - SAs that are not in DEAD state will have (total external reference + 1)
108  *   following value in reference count field.  they cannot be freed and are
109  *   referenced from SA header.
110  * - SAs that are in DEAD state will have (total external reference)
111  *   in reference count field.  they are ready to be freed.  reference from
112  *   SA header will be removed in key_delsav(), when the reference count
113  *   field hits 0 (= no external reference other than from SA header.
114  */
115 
116 VNET_DEFINE(u_int32_t, key_debug_level) = 0;
117 static VNET_DEFINE(u_int, key_spi_trycnt) = 1000;
118 static VNET_DEFINE(u_int32_t, key_spi_minval) = 0x100;
119 static VNET_DEFINE(u_int32_t, key_spi_maxval) = 0x0fffffff;	/* XXX */
120 static VNET_DEFINE(u_int32_t, policy_id) = 0;
121 /*interval to initialize randseed,1(m)*/
122 static VNET_DEFINE(u_int, key_int_random) = 60;
123 /* interval to expire acquiring, 30(s)*/
124 static VNET_DEFINE(u_int, key_larval_lifetime) = 30;
125 /* counter for blocking SADB_ACQUIRE.*/
126 static VNET_DEFINE(int, key_blockacq_count) = 10;
127 /* lifetime for blocking SADB_ACQUIRE.*/
128 static VNET_DEFINE(int, key_blockacq_lifetime) = 20;
129 /* preferred old sa rather than new sa.*/
130 static VNET_DEFINE(int, key_preferred_oldsa) = 1;
131 #define	V_key_spi_trycnt	VNET(key_spi_trycnt)
132 #define	V_key_spi_minval	VNET(key_spi_minval)
133 #define	V_key_spi_maxval	VNET(key_spi_maxval)
134 #define	V_policy_id		VNET(policy_id)
135 #define	V_key_int_random	VNET(key_int_random)
136 #define	V_key_larval_lifetime	VNET(key_larval_lifetime)
137 #define	V_key_blockacq_count	VNET(key_blockacq_count)
138 #define	V_key_blockacq_lifetime	VNET(key_blockacq_lifetime)
139 #define	V_key_preferred_oldsa	VNET(key_preferred_oldsa)
140 
141 static VNET_DEFINE(u_int32_t, acq_seq) = 0;
142 #define	V_acq_seq		VNET(acq_seq)
143 
144 								/* SPD */
145 static VNET_DEFINE(TAILQ_HEAD(_sptree, secpolicy), sptree[IPSEC_DIR_MAX]);
146 static struct rmlock sptree_lock;
147 #define	V_sptree		VNET(sptree)
148 #define	SPTREE_LOCK_INIT()      rm_init(&sptree_lock, "sptree")
149 #define	SPTREE_LOCK_DESTROY()   rm_destroy(&sptree_lock)
150 #define	SPTREE_RLOCK_TRACKER    struct rm_priotracker sptree_tracker
151 #define	SPTREE_RLOCK()          rm_rlock(&sptree_lock, &sptree_tracker)
152 #define	SPTREE_RUNLOCK()        rm_runlock(&sptree_lock, &sptree_tracker)
153 #define	SPTREE_RLOCK_ASSERT()   rm_assert(&sptree_lock, RA_RLOCKED)
154 #define	SPTREE_WLOCK()          rm_wlock(&sptree_lock)
155 #define	SPTREE_WUNLOCK()        rm_wunlock(&sptree_lock)
156 #define	SPTREE_WLOCK_ASSERT()   rm_assert(&sptree_lock, RA_WLOCKED)
157 #define	SPTREE_UNLOCK_ASSERT()  rm_assert(&sptree_lock, RA_UNLOCKED)
158 
159 static VNET_DEFINE(LIST_HEAD(_sahtree, secashead), sahtree);	/* SAD */
160 #define	V_sahtree		VNET(sahtree)
161 static struct mtx sahtree_lock;
162 #define	SAHTREE_LOCK_INIT() \
163 	mtx_init(&sahtree_lock, "sahtree", \
164 		"fast ipsec security association database", MTX_DEF)
165 #define	SAHTREE_LOCK_DESTROY()	mtx_destroy(&sahtree_lock)
166 #define	SAHTREE_LOCK()		mtx_lock(&sahtree_lock)
167 #define	SAHTREE_UNLOCK()	mtx_unlock(&sahtree_lock)
168 #define	SAHTREE_LOCK_ASSERT()	mtx_assert(&sahtree_lock, MA_OWNED)
169 
170 							/* registed list */
171 static VNET_DEFINE(LIST_HEAD(_regtree, secreg), regtree[SADB_SATYPE_MAX + 1]);
172 #define	V_regtree		VNET(regtree)
173 static struct mtx regtree_lock;
174 #define	REGTREE_LOCK_INIT() \
175 	mtx_init(&regtree_lock, "regtree", "fast ipsec regtree", MTX_DEF)
176 #define	REGTREE_LOCK_DESTROY()	mtx_destroy(&regtree_lock)
177 #define	REGTREE_LOCK()		mtx_lock(&regtree_lock)
178 #define	REGTREE_UNLOCK()	mtx_unlock(&regtree_lock)
179 #define	REGTREE_LOCK_ASSERT()	mtx_assert(&regtree_lock, MA_OWNED)
180 
181 static VNET_DEFINE(LIST_HEAD(_acqtree, secacq), acqtree); /* acquiring list */
182 #define	V_acqtree		VNET(acqtree)
183 static struct mtx acq_lock;
184 #define	ACQ_LOCK_INIT() \
185 	mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF)
186 #define	ACQ_LOCK_DESTROY()	mtx_destroy(&acq_lock)
187 #define	ACQ_LOCK()		mtx_lock(&acq_lock)
188 #define	ACQ_UNLOCK()		mtx_unlock(&acq_lock)
189 #define	ACQ_LOCK_ASSERT()	mtx_assert(&acq_lock, MA_OWNED)
190 
191 							/* SP acquiring list */
192 static VNET_DEFINE(LIST_HEAD(_spacqtree, secspacq), spacqtree);
193 #define	V_spacqtree		VNET(spacqtree)
194 static struct mtx spacq_lock;
195 #define	SPACQ_LOCK_INIT() \
196 	mtx_init(&spacq_lock, "spacqtree", \
197 		"fast ipsec security policy acquire list", MTX_DEF)
198 #define	SPACQ_LOCK_DESTROY()	mtx_destroy(&spacq_lock)
199 #define	SPACQ_LOCK()		mtx_lock(&spacq_lock)
200 #define	SPACQ_UNLOCK()		mtx_unlock(&spacq_lock)
201 #define	SPACQ_LOCK_ASSERT()	mtx_assert(&spacq_lock, MA_OWNED)
202 
203 /* search order for SAs */
204 static const u_int saorder_state_valid_prefer_old[] = {
205 	SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
206 };
207 static const u_int saorder_state_valid_prefer_new[] = {
208 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
209 };
210 static const u_int saorder_state_alive[] = {
211 	/* except DEAD */
212 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
213 };
214 static const u_int saorder_state_any[] = {
215 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
216 	SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
217 };
218 
219 static const int minsize[] = {
220 	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
221 	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
222 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
223 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
224 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
225 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_SRC */
226 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_DST */
227 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_PROXY */
228 	sizeof(struct sadb_key),	/* SADB_EXT_KEY_AUTH */
229 	sizeof(struct sadb_key),	/* SADB_EXT_KEY_ENCRYPT */
230 	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_SRC */
231 	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_DST */
232 	sizeof(struct sadb_sens),	/* SADB_EXT_SENSITIVITY */
233 	sizeof(struct sadb_prop),	/* SADB_EXT_PROPOSAL */
234 	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_AUTH */
235 	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_ENCRYPT */
236 	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
237 	0,				/* SADB_X_EXT_KMPRIVATE */
238 	sizeof(struct sadb_x_policy),	/* SADB_X_EXT_POLICY */
239 	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
240 	sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */
241 	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */
242 	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */
243 	sizeof(struct sadb_address),	/* SADB_X_EXT_NAT_T_OAI */
244 	sizeof(struct sadb_address),	/* SADB_X_EXT_NAT_T_OAR */
245 	sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */
246 };
247 static const int maxsize[] = {
248 	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
249 	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
250 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
251 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
252 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
253 	0,				/* SADB_EXT_ADDRESS_SRC */
254 	0,				/* SADB_EXT_ADDRESS_DST */
255 	0,				/* SADB_EXT_ADDRESS_PROXY */
256 	0,				/* SADB_EXT_KEY_AUTH */
257 	0,				/* SADB_EXT_KEY_ENCRYPT */
258 	0,				/* SADB_EXT_IDENTITY_SRC */
259 	0,				/* SADB_EXT_IDENTITY_DST */
260 	0,				/* SADB_EXT_SENSITIVITY */
261 	0,				/* SADB_EXT_PROPOSAL */
262 	0,				/* SADB_EXT_SUPPORTED_AUTH */
263 	0,				/* SADB_EXT_SUPPORTED_ENCRYPT */
264 	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
265 	0,				/* SADB_X_EXT_KMPRIVATE */
266 	0,				/* SADB_X_EXT_POLICY */
267 	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
268 	sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */
269 	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */
270 	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */
271 	0,				/* SADB_X_EXT_NAT_T_OAI */
272 	0,				/* SADB_X_EXT_NAT_T_OAR */
273 	sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */
274 };
275 
276 static VNET_DEFINE(int, ipsec_esp_keymin) = 256;
277 static VNET_DEFINE(int, ipsec_esp_auth) = 0;
278 static VNET_DEFINE(int, ipsec_ah_keymin) = 128;
279 
280 #define	V_ipsec_esp_keymin	VNET(ipsec_esp_keymin)
281 #define	V_ipsec_esp_auth	VNET(ipsec_esp_auth)
282 #define	V_ipsec_ah_keymin	VNET(ipsec_ah_keymin)
283 
284 #ifdef SYSCTL_DECL
285 SYSCTL_DECL(_net_key);
286 #endif
287 
288 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL,	debug,
289 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_debug_level), 0, "");
290 
291 /* max count of trial for the decision of spi value */
292 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt,
293 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_trycnt), 0, "");
294 
295 /* minimum spi value to allocate automatically. */
296 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval,
297 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_minval), 0, "");
298 
299 /* maximun spi value to allocate automatically. */
300 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval,
301 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_maxval), 0, "");
302 
303 /* interval to initialize randseed */
304 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random,
305 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_int_random), 0, "");
306 
307 /* lifetime for larval SA */
308 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime,
309 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_larval_lifetime), 0, "");
310 
311 /* counter for blocking to send SADB_ACQUIRE to IKEd */
312 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count,
313 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_count), 0, "");
314 
315 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
316 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime,
317 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_lifetime), 0, "");
318 
319 /* ESP auth */
320 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth,
321 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_auth), 0, "");
322 
323 /* minimum ESP key length */
324 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin,
325 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_keymin), 0, "");
326 
327 /* minimum AH key length */
328 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin,
329 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_ah_keymin), 0, "");
330 
331 /* perfered old SA rather than new SA */
332 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, preferred_oldsa,
333 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_preferred_oldsa), 0, "");
334 
335 #define __LIST_CHAINED(elm) \
336 	(!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
337 #define LIST_INSERT_TAIL(head, elm, type, field) \
338 do {\
339 	struct type *curelm = LIST_FIRST(head); \
340 	if (curelm == NULL) {\
341 		LIST_INSERT_HEAD(head, elm, field); \
342 	} else { \
343 		while (LIST_NEXT(curelm, field)) \
344 			curelm = LIST_NEXT(curelm, field);\
345 		LIST_INSERT_AFTER(curelm, elm, field);\
346 	}\
347 } while (0)
348 
349 #define KEY_CHKSASTATE(head, sav, name) \
350 do { \
351 	if ((head) != (sav)) {						\
352 		ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \
353 			(name), (head), (sav)));			\
354 		continue;						\
355 	}								\
356 } while (0)
357 
358 #define KEY_CHKSPDIR(head, sp, name) \
359 do { \
360 	if ((head) != (sp)) {						\
361 		ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \
362 			"anyway continue.\n",				\
363 			(name), (head), (sp)));				\
364 	}								\
365 } while (0)
366 
367 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association");
368 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head");
369 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy");
370 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request");
371 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous");
372 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire");
373 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire");
374 
375 /*
376  * set parameters into secpolicyindex buffer.
377  * Must allocate secpolicyindex buffer passed to this function.
378  */
379 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
380 do { \
381 	bzero((idx), sizeof(struct secpolicyindex));                         \
382 	(idx)->dir = (_dir);                                                 \
383 	(idx)->prefs = (ps);                                                 \
384 	(idx)->prefd = (pd);                                                 \
385 	(idx)->ul_proto = (ulp);                                             \
386 	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
387 	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
388 } while (0)
389 
390 /*
391  * set parameters into secasindex buffer.
392  * Must allocate secasindex buffer before calling this function.
393  */
394 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \
395 do { \
396 	bzero((idx), sizeof(struct secasindex));                             \
397 	(idx)->proto = (p);                                                  \
398 	(idx)->mode = (m);                                                   \
399 	(idx)->reqid = (r);                                                  \
400 	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
401 	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
402 } while (0)
403 
404 /* key statistics */
405 struct _keystat {
406 	u_long getspi_count; /* the avarage of count to try to get new SPI */
407 } keystat;
408 
409 struct sadb_msghdr {
410 	struct sadb_msg *msg;
411 	struct sadb_ext *ext[SADB_EXT_MAX + 1];
412 	int extoff[SADB_EXT_MAX + 1];
413 	int extlen[SADB_EXT_MAX + 1];
414 };
415 
416 #ifndef IPSEC_DEBUG2
417 static struct callout key_timer;
418 #endif
419 
420 static struct secasvar *key_allocsa_policy(const struct secasindex *);
421 static void key_freesp_so(struct secpolicy **);
422 static struct secasvar *key_do_allocsa_policy(struct secashead *, u_int);
423 static void key_unlink(struct secpolicy *);
424 static struct secpolicy *key_getsp(struct secpolicyindex *);
425 static struct secpolicy *key_getspbyid(u_int32_t);
426 static u_int32_t key_newreqid(void);
427 static struct mbuf *key_gather_mbuf(struct mbuf *,
428 	const struct sadb_msghdr *, int, int, ...);
429 static int key_spdadd(struct socket *, struct mbuf *,
430 	const struct sadb_msghdr *);
431 static u_int32_t key_getnewspid(void);
432 static int key_spddelete(struct socket *, struct mbuf *,
433 	const struct sadb_msghdr *);
434 static int key_spddelete2(struct socket *, struct mbuf *,
435 	const struct sadb_msghdr *);
436 static int key_spdget(struct socket *, struct mbuf *,
437 	const struct sadb_msghdr *);
438 static int key_spdflush(struct socket *, struct mbuf *,
439 	const struct sadb_msghdr *);
440 static int key_spddump(struct socket *, struct mbuf *,
441 	const struct sadb_msghdr *);
442 static struct mbuf *key_setdumpsp(struct secpolicy *,
443 	u_int8_t, u_int32_t, u_int32_t);
444 static u_int key_getspreqmsglen(struct secpolicy *);
445 static int key_spdexpire(struct secpolicy *);
446 static struct secashead *key_newsah(struct secasindex *);
447 static void key_delsah(struct secashead *);
448 static struct secasvar *key_newsav(struct mbuf *,
449 	const struct sadb_msghdr *, struct secashead *, int *,
450 	const char*, int);
451 #define	KEY_NEWSAV(m, sadb, sah, e)				\
452 	key_newsav(m, sadb, sah, e, __FILE__, __LINE__)
453 static void key_delsav(struct secasvar *);
454 static struct secashead *key_getsah(struct secasindex *);
455 static struct secasvar *key_checkspidup(struct secasindex *, u_int32_t);
456 static struct secasvar *key_getsavbyspi(struct secashead *, u_int32_t);
457 static int key_setsaval(struct secasvar *, struct mbuf *,
458 	const struct sadb_msghdr *);
459 static int key_mature(struct secasvar *);
460 static struct mbuf *key_setdumpsa(struct secasvar *, u_int8_t,
461 	u_int8_t, u_int32_t, u_int32_t);
462 static struct mbuf *key_setsadbmsg(u_int8_t, u_int16_t, u_int8_t,
463 	u_int32_t, pid_t, u_int16_t);
464 static struct mbuf *key_setsadbsa(struct secasvar *);
465 static struct mbuf *key_setsadbaddr(u_int16_t,
466 	const struct sockaddr *, u_int8_t, u_int16_t);
467 #ifdef IPSEC_NAT_T
468 static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t);
469 static struct mbuf *key_setsadbxtype(u_int16_t);
470 #endif
471 static void key_porttosaddr(struct sockaddr *, u_int16_t);
472 #define	KEY_PORTTOSADDR(saddr, port)				\
473 	key_porttosaddr((struct sockaddr *)(saddr), (port))
474 static struct mbuf *key_setsadbxsa2(u_int8_t, u_int32_t, u_int32_t);
475 static struct mbuf *key_setsadbxpolicy(u_int16_t, u_int8_t,
476 	u_int32_t);
477 static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int,
478 				     struct malloc_type *);
479 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src,
480 					    struct malloc_type *type);
481 #ifdef INET6
482 static int key_ismyaddr6(struct sockaddr_in6 *);
483 #endif
484 
485 /* flags for key_cmpsaidx() */
486 #define CMP_HEAD	1	/* protocol, addresses. */
487 #define CMP_MODE_REQID	2	/* additionally HEAD, reqid, mode. */
488 #define CMP_REQID	3	/* additionally HEAD, reaid. */
489 #define CMP_EXACTLY	4	/* all elements. */
490 static int key_cmpsaidx(const struct secasindex *,
491     const struct secasindex *, int);
492 static int key_cmpspidx_exactly(struct secpolicyindex *,
493     struct secpolicyindex *);
494 static int key_cmpspidx_withmask(struct secpolicyindex *,
495     struct secpolicyindex *);
496 static int key_sockaddrcmp(const struct sockaddr *,
497     const struct sockaddr *, int);
498 static int key_bbcmp(const void *, const void *, u_int);
499 static u_int16_t key_satype2proto(u_int8_t);
500 static u_int8_t key_proto2satype(u_int16_t);
501 
502 static int key_getspi(struct socket *, struct mbuf *,
503 	const struct sadb_msghdr *);
504 static u_int32_t key_do_getnewspi(struct sadb_spirange *,
505 					struct secasindex *);
506 static int key_update(struct socket *, struct mbuf *,
507 	const struct sadb_msghdr *);
508 #ifdef IPSEC_DOSEQCHECK
509 static struct secasvar *key_getsavbyseq(struct secashead *, u_int32_t);
510 #endif
511 static int key_add(struct socket *, struct mbuf *,
512 	const struct sadb_msghdr *);
513 static int key_setident(struct secashead *, struct mbuf *,
514 	const struct sadb_msghdr *);
515 static struct mbuf *key_getmsgbuf_x1(struct mbuf *,
516 	const struct sadb_msghdr *);
517 static int key_delete(struct socket *, struct mbuf *,
518 	const struct sadb_msghdr *);
519 static int key_delete_all(struct socket *, struct mbuf *,
520 	const struct sadb_msghdr *, u_int16_t);
521 static int key_get(struct socket *, struct mbuf *,
522 	const struct sadb_msghdr *);
523 
524 static void key_getcomb_setlifetime(struct sadb_comb *);
525 static struct mbuf *key_getcomb_esp(void);
526 static struct mbuf *key_getcomb_ah(void);
527 static struct mbuf *key_getcomb_ipcomp(void);
528 static struct mbuf *key_getprop(const struct secasindex *);
529 
530 static int key_acquire(const struct secasindex *, struct secpolicy *);
531 static struct secacq *key_newacq(const struct secasindex *);
532 static struct secacq *key_getacq(const struct secasindex *);
533 static struct secacq *key_getacqbyseq(u_int32_t);
534 static struct secspacq *key_newspacq(struct secpolicyindex *);
535 static struct secspacq *key_getspacq(struct secpolicyindex *);
536 static int key_acquire2(struct socket *, struct mbuf *,
537 	const struct sadb_msghdr *);
538 static int key_register(struct socket *, struct mbuf *,
539 	const struct sadb_msghdr *);
540 static int key_expire(struct secasvar *);
541 static int key_flush(struct socket *, struct mbuf *,
542 	const struct sadb_msghdr *);
543 static int key_dump(struct socket *, struct mbuf *,
544 	const struct sadb_msghdr *);
545 static int key_promisc(struct socket *, struct mbuf *,
546 	const struct sadb_msghdr *);
547 static int key_senderror(struct socket *, struct mbuf *, int);
548 static int key_validate_ext(const struct sadb_ext *, int);
549 static int key_align(struct mbuf *, struct sadb_msghdr *);
550 static struct mbuf *key_setlifetime(struct seclifetime *src,
551 				     u_int16_t exttype);
552 static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype);
553 
554 #if 0
555 static const char *key_getfqdn(void);
556 static const char *key_getuserfqdn(void);
557 #endif
558 static void key_sa_chgstate(struct secasvar *, u_int8_t);
559 
560 static __inline void
561 sa_initref(struct secasvar *sav)
562 {
563 
564 	refcount_init(&sav->refcnt, 1);
565 }
566 static __inline void
567 sa_addref(struct secasvar *sav)
568 {
569 
570 	refcount_acquire(&sav->refcnt);
571 	IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow"));
572 }
573 static __inline int
574 sa_delref(struct secasvar *sav)
575 {
576 
577 	IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow"));
578 	return (refcount_release(&sav->refcnt));
579 }
580 
581 #define	SP_ADDREF(p)	refcount_acquire(&(p)->refcnt)
582 #define	SP_DELREF(p)	refcount_release(&(p)->refcnt)
583 
584 /*
585  * Update the refcnt while holding the SPTREE lock.
586  */
587 void
588 key_addref(struct secpolicy *sp)
589 {
590 
591 	SP_ADDREF(sp);
592 }
593 
594 /*
595  * Return 0 when there are known to be no SP's for the specified
596  * direction.  Otherwise return 1.  This is used by IPsec code
597  * to optimize performance.
598  */
599 int
600 key_havesp(u_int dir)
601 {
602 
603 	return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
604 		TAILQ_FIRST(&V_sptree[dir]) != NULL : 1);
605 }
606 
607 /* %%% IPsec policy management */
608 /*
609  * allocating a SP for OUTBOUND or INBOUND packet.
610  * Must call key_freesp() later.
611  * OUT:	NULL:	not found
612  *	others:	found and return the pointer.
613  */
614 struct secpolicy *
615 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where,
616     int tag)
617 {
618 	SPTREE_RLOCK_TRACKER;
619 	struct secpolicy *sp;
620 
621 	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
622 	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
623 		("invalid direction %u", dir));
624 
625 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
626 		printf("DP %s from %s:%u\n", __func__, where, tag));
627 
628 	/* get a SP entry */
629 	KEYDEBUG(KEYDEBUG_IPSEC_DATA,
630 		printf("*** objects\n");
631 		kdebug_secpolicyindex(spidx));
632 
633 	SPTREE_RLOCK();
634 	TAILQ_FOREACH(sp, &V_sptree[dir], chain) {
635 		KEYDEBUG(KEYDEBUG_IPSEC_DATA,
636 			printf("*** in SPD\n");
637 			kdebug_secpolicyindex(&sp->spidx));
638 		if (key_cmpspidx_withmask(&sp->spidx, spidx))
639 			goto found;
640 	}
641 	sp = NULL;
642 found:
643 	if (sp) {
644 		/* sanity check */
645 		KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
646 
647 		/* found a SPD entry */
648 		sp->lastused = time_second;
649 		SP_ADDREF(sp);
650 	}
651 	SPTREE_RUNLOCK();
652 
653 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
654 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
655 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
656 	return sp;
657 }
658 
659 /*
660  * allocating a SP for OUTBOUND or INBOUND packet.
661  * Must call key_freesp() later.
662  * OUT:	NULL:	not found
663  *	others:	found and return the pointer.
664  */
665 struct secpolicy *
666 key_allocsp2(u_int32_t spi, union sockaddr_union *dst, u_int8_t proto,
667     u_int dir, const char* where, int tag)
668 {
669 	SPTREE_RLOCK_TRACKER;
670 	struct secpolicy *sp;
671 
672 	IPSEC_ASSERT(dst != NULL, ("null dst"));
673 	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
674 		("invalid direction %u", dir));
675 
676 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
677 		printf("DP %s from %s:%u\n", __func__, where, tag));
678 
679 	/* get a SP entry */
680 	KEYDEBUG(KEYDEBUG_IPSEC_DATA,
681 		printf("*** objects\n");
682 		printf("spi %u proto %u dir %u\n", spi, proto, dir);
683 		kdebug_sockaddr(&dst->sa));
684 
685 	SPTREE_RLOCK();
686 	TAILQ_FOREACH(sp, &V_sptree[dir], chain) {
687 		KEYDEBUG(KEYDEBUG_IPSEC_DATA,
688 			printf("*** in SPD\n");
689 			kdebug_secpolicyindex(&sp->spidx));
690 		/* compare simple values, then dst address */
691 		if (sp->spidx.ul_proto != proto)
692 			continue;
693 		/* NB: spi's must exist and match */
694 		if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
695 			continue;
696 		if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0)
697 			goto found;
698 	}
699 	sp = NULL;
700 found:
701 	if (sp) {
702 		/* sanity check */
703 		KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
704 
705 		/* found a SPD entry */
706 		sp->lastused = time_second;
707 		SP_ADDREF(sp);
708 	}
709 	SPTREE_RUNLOCK();
710 
711 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
712 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
713 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
714 	return sp;
715 }
716 
717 #if 0
718 /*
719  * return a policy that matches this particular inbound packet.
720  * XXX slow
721  */
722 struct secpolicy *
723 key_gettunnel(const struct sockaddr *osrc,
724 	      const struct sockaddr *odst,
725 	      const struct sockaddr *isrc,
726 	      const struct sockaddr *idst,
727 	      const char* where, int tag)
728 {
729 	struct secpolicy *sp;
730 	const int dir = IPSEC_DIR_INBOUND;
731 	struct ipsecrequest *r1, *r2, *p;
732 	struct secpolicyindex spidx;
733 
734 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
735 		printf("DP %s from %s:%u\n", __func__, where, tag));
736 
737 	if (isrc->sa_family != idst->sa_family) {
738 		ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.",
739 			__func__, isrc->sa_family, idst->sa_family));
740 		sp = NULL;
741 		goto done;
742 	}
743 
744 	SPTREE_LOCK();
745 	LIST_FOREACH(sp, &V_sptree[dir], chain) {
746 		if (sp->state == IPSEC_SPSTATE_DEAD)
747 			continue;
748 
749 		r1 = r2 = NULL;
750 		for (p = sp->req; p; p = p->next) {
751 			if (p->saidx.mode != IPSEC_MODE_TUNNEL)
752 				continue;
753 
754 			r1 = r2;
755 			r2 = p;
756 
757 			if (!r1) {
758 				/* here we look at address matches only */
759 				spidx = sp->spidx;
760 				if (isrc->sa_len > sizeof(spidx.src) ||
761 				    idst->sa_len > sizeof(spidx.dst))
762 					continue;
763 				bcopy(isrc, &spidx.src, isrc->sa_len);
764 				bcopy(idst, &spidx.dst, idst->sa_len);
765 				if (!key_cmpspidx_withmask(&sp->spidx, &spidx))
766 					continue;
767 			} else {
768 				if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) ||
769 				    key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0))
770 					continue;
771 			}
772 
773 			if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) ||
774 			    key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0))
775 				continue;
776 
777 			goto found;
778 		}
779 	}
780 	sp = NULL;
781 found:
782 	if (sp) {
783 		sp->lastused = time_second;
784 		SP_ADDREF(sp);
785 	}
786 	SPTREE_UNLOCK();
787 done:
788 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
789 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
790 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
791 	return sp;
792 }
793 #endif
794 
795 /*
796  * allocating an SA entry for an *OUTBOUND* packet.
797  * checking each request entries in SP, and acquire an SA if need.
798  * OUT:	0: there are valid requests.
799  *	ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
800  */
801 int
802 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
803 {
804 	u_int level;
805 	int error;
806 	struct secasvar *sav;
807 
808 	IPSEC_ASSERT(isr != NULL, ("null isr"));
809 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
810 	IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT ||
811 		saidx->mode == IPSEC_MODE_TUNNEL,
812 		("unexpected policy %u", saidx->mode));
813 
814 	/*
815 	 * XXX guard against protocol callbacks from the crypto
816 	 * thread as they reference ipsecrequest.sav which we
817 	 * temporarily null out below.  Need to rethink how we
818 	 * handle bundled SA's in the callback thread.
819 	 */
820 	IPSECREQUEST_LOCK_ASSERT(isr);
821 
822 	/* get current level */
823 	level = ipsec_get_reqlevel(isr);
824 
825 	/*
826 	 * We check new SA in the IPsec request because a different
827 	 * SA may be involved each time this request is checked, either
828 	 * because new SAs are being configured, or this request is
829 	 * associated with an unconnected datagram socket, or this request
830 	 * is associated with a system default policy.
831 	 *
832 	 * key_allocsa_policy should allocate the oldest SA available.
833 	 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
834 	 */
835 	sav = key_allocsa_policy(saidx);
836 	if (sav != isr->sav) {
837 		/* SA need to be updated. */
838 		if (!IPSECREQUEST_UPGRADE(isr)) {
839 			/* Kick everyone off. */
840 			IPSECREQUEST_UNLOCK(isr);
841 			IPSECREQUEST_WLOCK(isr);
842 		}
843 		if (isr->sav != NULL)
844 			KEY_FREESAV(&isr->sav);
845 		isr->sav = sav;
846 		IPSECREQUEST_DOWNGRADE(isr);
847 	} else if (sav != NULL)
848 		KEY_FREESAV(&sav);
849 
850 	/* When there is SA. */
851 	if (isr->sav != NULL) {
852 		if (isr->sav->state != SADB_SASTATE_MATURE &&
853 		    isr->sav->state != SADB_SASTATE_DYING)
854 			return EINVAL;
855 		return 0;
856 	}
857 
858 	/* there is no SA */
859 	error = key_acquire(saidx, isr->sp);
860 	if (error != 0) {
861 		/* XXX What should I do ? */
862 		ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
863 			__func__, error));
864 		return error;
865 	}
866 
867 	if (level != IPSEC_LEVEL_REQUIRE) {
868 		/* XXX sigh, the interface to this routine is botched */
869 		IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA"));
870 		return 0;
871 	} else {
872 		return ENOENT;
873 	}
874 }
875 
876 /*
877  * allocating a SA for policy entry from SAD.
878  * NOTE: searching SAD of aliving state.
879  * OUT:	NULL:	not found.
880  *	others:	found and return the pointer.
881  */
882 static struct secasvar *
883 key_allocsa_policy(const struct secasindex *saidx)
884 {
885 #define	N(a)	_ARRAYLEN(a)
886 	struct secashead *sah;
887 	struct secasvar *sav;
888 	u_int stateidx, arraysize;
889 	const u_int *state_valid;
890 
891 	state_valid = NULL;	/* silence gcc */
892 	arraysize = 0;		/* silence gcc */
893 
894 	SAHTREE_LOCK();
895 	LIST_FOREACH(sah, &V_sahtree, chain) {
896 		if (sah->state == SADB_SASTATE_DEAD)
897 			continue;
898 		if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) {
899 			if (V_key_preferred_oldsa) {
900 				state_valid = saorder_state_valid_prefer_old;
901 				arraysize = N(saorder_state_valid_prefer_old);
902 			} else {
903 				state_valid = saorder_state_valid_prefer_new;
904 				arraysize = N(saorder_state_valid_prefer_new);
905 			}
906 			break;
907 		}
908 	}
909 	SAHTREE_UNLOCK();
910 	if (sah == NULL)
911 		return NULL;
912 
913 	/* search valid state */
914 	for (stateidx = 0; stateidx < arraysize; stateidx++) {
915 		sav = key_do_allocsa_policy(sah, state_valid[stateidx]);
916 		if (sav != NULL)
917 			return sav;
918 	}
919 
920 	return NULL;
921 #undef N
922 }
923 
924 /*
925  * searching SAD with direction, protocol, mode and state.
926  * called by key_allocsa_policy().
927  * OUT:
928  *	NULL	: not found
929  *	others	: found, pointer to a SA.
930  */
931 static struct secasvar *
932 key_do_allocsa_policy(struct secashead *sah, u_int state)
933 {
934 	struct secasvar *sav, *nextsav, *candidate, *d;
935 
936 	/* initilize */
937 	candidate = NULL;
938 
939 	SAHTREE_LOCK();
940 	for (sav = LIST_FIRST(&sah->savtree[state]);
941 	     sav != NULL;
942 	     sav = nextsav) {
943 
944 		nextsav = LIST_NEXT(sav, chain);
945 
946 		/* sanity check */
947 		KEY_CHKSASTATE(sav->state, state, __func__);
948 
949 		/* initialize */
950 		if (candidate == NULL) {
951 			candidate = sav;
952 			continue;
953 		}
954 
955 		/* Which SA is the better ? */
956 
957 		IPSEC_ASSERT(candidate->lft_c != NULL,
958 			("null candidate lifetime"));
959 		IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime"));
960 
961 		/* What the best method is to compare ? */
962 		if (V_key_preferred_oldsa) {
963 			if (candidate->lft_c->addtime >
964 					sav->lft_c->addtime) {
965 				candidate = sav;
966 			}
967 			continue;
968 			/*NOTREACHED*/
969 		}
970 
971 		/* preferred new sa rather than old sa */
972 		if (candidate->lft_c->addtime <
973 				sav->lft_c->addtime) {
974 			d = candidate;
975 			candidate = sav;
976 		} else
977 			d = sav;
978 
979 		/*
980 		 * prepared to delete the SA when there is more
981 		 * suitable candidate and the lifetime of the SA is not
982 		 * permanent.
983 		 */
984 		if (d->lft_h->addtime != 0) {
985 			struct mbuf *m, *result;
986 			u_int8_t satype;
987 
988 			key_sa_chgstate(d, SADB_SASTATE_DEAD);
989 
990 			IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count"));
991 
992 			satype = key_proto2satype(d->sah->saidx.proto);
993 			if (satype == 0)
994 				goto msgfail;
995 
996 			m = key_setsadbmsg(SADB_DELETE, 0,
997 			    satype, 0, 0, d->refcnt - 1);
998 			if (!m)
999 				goto msgfail;
1000 			result = m;
1001 
1002 			/* set sadb_address for saidx's. */
1003 			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
1004 				&d->sah->saidx.src.sa,
1005 				d->sah->saidx.src.sa.sa_len << 3,
1006 				IPSEC_ULPROTO_ANY);
1007 			if (!m)
1008 				goto msgfail;
1009 			m_cat(result, m);
1010 
1011 			/* set sadb_address for saidx's. */
1012 			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
1013 				&d->sah->saidx.dst.sa,
1014 				d->sah->saidx.dst.sa.sa_len << 3,
1015 				IPSEC_ULPROTO_ANY);
1016 			if (!m)
1017 				goto msgfail;
1018 			m_cat(result, m);
1019 
1020 			/* create SA extension */
1021 			m = key_setsadbsa(d);
1022 			if (!m)
1023 				goto msgfail;
1024 			m_cat(result, m);
1025 
1026 			if (result->m_len < sizeof(struct sadb_msg)) {
1027 				result = m_pullup(result,
1028 						sizeof(struct sadb_msg));
1029 				if (result == NULL)
1030 					goto msgfail;
1031 			}
1032 
1033 			result->m_pkthdr.len = 0;
1034 			for (m = result; m; m = m->m_next)
1035 				result->m_pkthdr.len += m->m_len;
1036 			mtod(result, struct sadb_msg *)->sadb_msg_len =
1037 				PFKEY_UNIT64(result->m_pkthdr.len);
1038 
1039 			if (key_sendup_mbuf(NULL, result,
1040 					KEY_SENDUP_REGISTERED))
1041 				goto msgfail;
1042 		 msgfail:
1043 			KEY_FREESAV(&d);
1044 		}
1045 	}
1046 	if (candidate) {
1047 		sa_addref(candidate);
1048 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1049 			printf("DP %s cause refcnt++:%d SA:%p\n",
1050 				__func__, candidate->refcnt, candidate));
1051 	}
1052 	SAHTREE_UNLOCK();
1053 
1054 	return candidate;
1055 }
1056 
1057 /*
1058  * allocating a usable SA entry for a *INBOUND* packet.
1059  * Must call key_freesav() later.
1060  * OUT: positive:	pointer to a usable sav (i.e. MATURE or DYING state).
1061  *	NULL:		not found, or error occured.
1062  *
1063  * In the comparison, no source address is used--for RFC2401 conformance.
1064  * To quote, from section 4.1:
1065  *	A security association is uniquely identified by a triple consisting
1066  *	of a Security Parameter Index (SPI), an IP Destination Address, and a
1067  *	security protocol (AH or ESP) identifier.
1068  * Note that, however, we do need to keep source address in IPsec SA.
1069  * IKE specification and PF_KEY specification do assume that we
1070  * keep source address in IPsec SA.  We see a tricky situation here.
1071  */
1072 struct secasvar *
1073 key_allocsa(union sockaddr_union *dst, u_int proto, u_int32_t spi,
1074     const char* where, int tag)
1075 {
1076 	struct secashead *sah;
1077 	struct secasvar *sav;
1078 	u_int stateidx, arraysize, state;
1079 	const u_int *saorder_state_valid;
1080 #ifdef IPSEC_NAT_T
1081 	int natt_chkport;
1082 #endif
1083 
1084 	IPSEC_ASSERT(dst != NULL, ("null dst address"));
1085 
1086 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1087 		printf("DP %s from %s:%u\n", __func__, where, tag));
1088 
1089 #ifdef IPSEC_NAT_T
1090         natt_chkport = (dst->sa.sa_family == AF_INET &&
1091 	    dst->sa.sa_len == sizeof(struct sockaddr_in) &&
1092 	    dst->sin.sin_port != 0);
1093 #endif
1094 
1095 	/*
1096 	 * searching SAD.
1097 	 * XXX: to be checked internal IP header somewhere.  Also when
1098 	 * IPsec tunnel packet is received.  But ESP tunnel mode is
1099 	 * encrypted so we can't check internal IP header.
1100 	 */
1101 	SAHTREE_LOCK();
1102 	if (V_key_preferred_oldsa) {
1103 		saorder_state_valid = saorder_state_valid_prefer_old;
1104 		arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1105 	} else {
1106 		saorder_state_valid = saorder_state_valid_prefer_new;
1107 		arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1108 	}
1109 	LIST_FOREACH(sah, &V_sahtree, chain) {
1110 		int checkport;
1111 
1112 		/* search valid state */
1113 		for (stateidx = 0; stateidx < arraysize; stateidx++) {
1114 			state = saorder_state_valid[stateidx];
1115 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
1116 				/* sanity check */
1117 				KEY_CHKSASTATE(sav->state, state, __func__);
1118 				/* do not return entries w/ unusable state */
1119 				if (sav->state != SADB_SASTATE_MATURE &&
1120 				    sav->state != SADB_SASTATE_DYING)
1121 					continue;
1122 				if (proto != sav->sah->saidx.proto)
1123 					continue;
1124 				if (spi != sav->spi)
1125 					continue;
1126 				checkport = 0;
1127 #ifdef IPSEC_NAT_T
1128 				/*
1129 				 * Really only check ports when this is a NAT-T
1130 				 * SA.  Otherwise other lookups providing ports
1131 				 * might suffer.
1132 				 */
1133 				if (sav->natt_type && natt_chkport)
1134 					checkport = 1;
1135 #endif
1136 #if 0	/* don't check src */
1137 				/* check src address */
1138 				if (key_sockaddrcmp(&src->sa,
1139 				    &sav->sah->saidx.src.sa, checkport) != 0)
1140 					continue;
1141 #endif
1142 				/* check dst address */
1143 				if (key_sockaddrcmp(&dst->sa,
1144 				    &sav->sah->saidx.dst.sa, checkport) != 0)
1145 					continue;
1146 				sa_addref(sav);
1147 				goto done;
1148 			}
1149 		}
1150 	}
1151 	sav = NULL;
1152 done:
1153 	SAHTREE_UNLOCK();
1154 
1155 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1156 		printf("DP %s return SA:%p; refcnt %u\n", __func__,
1157 			sav, sav ? sav->refcnt : 0));
1158 	return sav;
1159 }
1160 
1161 /*
1162  * Must be called after calling key_allocsp().
1163  * For both the packet without socket and key_freeso().
1164  */
1165 void
1166 _key_freesp(struct secpolicy **spp, const char* where, int tag)
1167 {
1168 	struct ipsecrequest *isr, *nextisr;
1169 	struct secpolicy *sp = *spp;
1170 
1171 	IPSEC_ASSERT(sp != NULL, ("null sp"));
1172 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1173 		printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1174 			__func__, sp, sp->id, where, tag, sp->refcnt));
1175 
1176 	if (SP_DELREF(sp) == 0)
1177 		return;
1178 	*spp = NULL;
1179 	for (isr = sp->req; isr != NULL; isr = nextisr) {
1180 		if (isr->sav != NULL) {
1181 			KEY_FREESAV(&isr->sav);
1182 			isr->sav = NULL;
1183 		}
1184 		nextisr = isr->next;
1185 		ipsec_delisr(isr);
1186 	}
1187 	free(sp, M_IPSEC_SP);
1188 }
1189 
1190 static void
1191 key_unlink(struct secpolicy *sp)
1192 {
1193 
1194 	IPSEC_ASSERT(sp != NULL, ("null sp"));
1195 	IPSEC_ASSERT(sp->spidx.dir == IPSEC_DIR_INBOUND ||
1196 	    sp->spidx.dir == IPSEC_DIR_OUTBOUND,
1197 	    ("invalid direction %u", sp->spidx.dir));
1198 	SPTREE_UNLOCK_ASSERT();
1199 
1200 	SPTREE_WLOCK();
1201 	TAILQ_REMOVE(&V_sptree[sp->spidx.dir], sp, chain);
1202 	SPTREE_WUNLOCK();
1203 }
1204 
1205 /*
1206  * Must be called after calling key_allocsp().
1207  * For the packet with socket.
1208  */
1209 void
1210 key_freeso(struct socket *so)
1211 {
1212 	IPSEC_ASSERT(so != NULL, ("null so"));
1213 
1214 	switch (so->so_proto->pr_domain->dom_family) {
1215 #if defined(INET) || defined(INET6)
1216 #ifdef INET
1217 	case PF_INET:
1218 #endif
1219 #ifdef INET6
1220 	case PF_INET6:
1221 #endif
1222 	    {
1223 		struct inpcb *pcb = sotoinpcb(so);
1224 
1225 		/* Does it have a PCB ? */
1226 		if (pcb == NULL)
1227 			return;
1228 		key_freesp_so(&pcb->inp_sp->sp_in);
1229 		key_freesp_so(&pcb->inp_sp->sp_out);
1230 	    }
1231 		break;
1232 #endif /* INET || INET6 */
1233 	default:
1234 		ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n",
1235 		    __func__, so->so_proto->pr_domain->dom_family));
1236 		return;
1237 	}
1238 }
1239 
1240 static void
1241 key_freesp_so(struct secpolicy **sp)
1242 {
1243 	IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp"));
1244 
1245 	if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1246 	    (*sp)->policy == IPSEC_POLICY_BYPASS)
1247 		return;
1248 
1249 	IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC,
1250 		("invalid policy %u", (*sp)->policy));
1251 	KEY_FREESP(sp);
1252 }
1253 
1254 void
1255 key_addrefsa(struct secasvar *sav, const char* where, int tag)
1256 {
1257 
1258 	IPSEC_ASSERT(sav != NULL, ("null sav"));
1259 	IPSEC_ASSERT(sav->refcnt > 0, ("refcount must exist"));
1260 
1261 	sa_addref(sav);
1262 }
1263 
1264 /*
1265  * Must be called after calling key_allocsa().
1266  * This function is called by key_freesp() to free some SA allocated
1267  * for a policy.
1268  */
1269 void
1270 key_freesav(struct secasvar **psav, const char* where, int tag)
1271 {
1272 	struct secasvar *sav = *psav;
1273 
1274 	IPSEC_ASSERT(sav != NULL, ("null sav"));
1275 
1276 	if (sa_delref(sav)) {
1277 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1278 			printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1279 				__func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1280 		*psav = NULL;
1281 		key_delsav(sav);
1282 	} else {
1283 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1284 			printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1285 				__func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1286 	}
1287 }
1288 
1289 /* %%% SPD management */
1290 /*
1291  * search SPD
1292  * OUT:	NULL	: not found
1293  *	others	: found, pointer to a SP.
1294  */
1295 static struct secpolicy *
1296 key_getsp(struct secpolicyindex *spidx)
1297 {
1298 	SPTREE_RLOCK_TRACKER;
1299 	struct secpolicy *sp;
1300 
1301 	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
1302 
1303 	SPTREE_RLOCK();
1304 	TAILQ_FOREACH(sp, &V_sptree[spidx->dir], chain) {
1305 		if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1306 			SP_ADDREF(sp);
1307 			break;
1308 		}
1309 	}
1310 	SPTREE_RUNLOCK();
1311 
1312 	return sp;
1313 }
1314 
1315 /*
1316  * get SP by index.
1317  * OUT:	NULL	: not found
1318  *	others	: found, pointer to a SP.
1319  */
1320 static struct secpolicy *
1321 key_getspbyid(u_int32_t id)
1322 {
1323 	SPTREE_RLOCK_TRACKER;
1324 	struct secpolicy *sp;
1325 
1326 	SPTREE_RLOCK();
1327 	TAILQ_FOREACH(sp, &V_sptree[IPSEC_DIR_INBOUND], chain) {
1328 		if (sp->id == id) {
1329 			SP_ADDREF(sp);
1330 			goto done;
1331 		}
1332 	}
1333 
1334 	TAILQ_FOREACH(sp, &V_sptree[IPSEC_DIR_OUTBOUND], chain) {
1335 		if (sp->id == id) {
1336 			SP_ADDREF(sp);
1337 			goto done;
1338 		}
1339 	}
1340 done:
1341 	SPTREE_RUNLOCK();
1342 
1343 	return sp;
1344 }
1345 
1346 struct secpolicy *
1347 key_newsp(const char* where, int tag)
1348 {
1349 	struct secpolicy *newsp = NULL;
1350 
1351 	newsp = (struct secpolicy *)
1352 		malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO);
1353 	if (newsp)
1354 		refcount_init(&newsp->refcnt, 1);
1355 
1356 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1357 		printf("DP %s from %s:%u return SP:%p\n", __func__,
1358 			where, tag, newsp));
1359 	return newsp;
1360 }
1361 
1362 /*
1363  * create secpolicy structure from sadb_x_policy structure.
1364  * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1365  * so must be set properly later.
1366  */
1367 struct secpolicy *
1368 key_msg2sp(struct sadb_x_policy *xpl0, size_t len, int *error)
1369 {
1370 	struct secpolicy *newsp;
1371 
1372 	IPSEC_ASSERT(xpl0 != NULL, ("null xpl0"));
1373 	IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len));
1374 
1375 	if (len != PFKEY_EXTLEN(xpl0)) {
1376 		ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__));
1377 		*error = EINVAL;
1378 		return NULL;
1379 	}
1380 
1381 	if ((newsp = KEY_NEWSP()) == NULL) {
1382 		*error = ENOBUFS;
1383 		return NULL;
1384 	}
1385 
1386 	newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1387 	newsp->policy = xpl0->sadb_x_policy_type;
1388 
1389 	/* check policy */
1390 	switch (xpl0->sadb_x_policy_type) {
1391 	case IPSEC_POLICY_DISCARD:
1392 	case IPSEC_POLICY_NONE:
1393 	case IPSEC_POLICY_ENTRUST:
1394 	case IPSEC_POLICY_BYPASS:
1395 		newsp->req = NULL;
1396 		break;
1397 
1398 	case IPSEC_POLICY_IPSEC:
1399 	    {
1400 		int tlen;
1401 		struct sadb_x_ipsecrequest *xisr;
1402 		struct ipsecrequest **p_isr = &newsp->req;
1403 
1404 		/* validity check */
1405 		if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1406 			ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n",
1407 				__func__));
1408 			KEY_FREESP(&newsp);
1409 			*error = EINVAL;
1410 			return NULL;
1411 		}
1412 
1413 		tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1414 		xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1);
1415 
1416 		while (tlen > 0) {
1417 			/* length check */
1418 			if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1419 				ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest "
1420 					"length.\n", __func__));
1421 				KEY_FREESP(&newsp);
1422 				*error = EINVAL;
1423 				return NULL;
1424 			}
1425 
1426 			/* allocate request buffer */
1427 			/* NB: data structure is zero'd */
1428 			*p_isr = ipsec_newisr();
1429 			if ((*p_isr) == NULL) {
1430 				ipseclog((LOG_DEBUG,
1431 				    "%s: No more memory.\n", __func__));
1432 				KEY_FREESP(&newsp);
1433 				*error = ENOBUFS;
1434 				return NULL;
1435 			}
1436 
1437 			/* set values */
1438 			switch (xisr->sadb_x_ipsecrequest_proto) {
1439 			case IPPROTO_ESP:
1440 			case IPPROTO_AH:
1441 			case IPPROTO_IPCOMP:
1442 				break;
1443 			default:
1444 				ipseclog((LOG_DEBUG,
1445 				    "%s: invalid proto type=%u\n", __func__,
1446 				    xisr->sadb_x_ipsecrequest_proto));
1447 				KEY_FREESP(&newsp);
1448 				*error = EPROTONOSUPPORT;
1449 				return NULL;
1450 			}
1451 			(*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1452 
1453 			switch (xisr->sadb_x_ipsecrequest_mode) {
1454 			case IPSEC_MODE_TRANSPORT:
1455 			case IPSEC_MODE_TUNNEL:
1456 				break;
1457 			case IPSEC_MODE_ANY:
1458 			default:
1459 				ipseclog((LOG_DEBUG,
1460 				    "%s: invalid mode=%u\n", __func__,
1461 				    xisr->sadb_x_ipsecrequest_mode));
1462 				KEY_FREESP(&newsp);
1463 				*error = EINVAL;
1464 				return NULL;
1465 			}
1466 			(*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1467 
1468 			switch (xisr->sadb_x_ipsecrequest_level) {
1469 			case IPSEC_LEVEL_DEFAULT:
1470 			case IPSEC_LEVEL_USE:
1471 			case IPSEC_LEVEL_REQUIRE:
1472 				break;
1473 			case IPSEC_LEVEL_UNIQUE:
1474 				/* validity check */
1475 				/*
1476 				 * If range violation of reqid, kernel will
1477 				 * update it, don't refuse it.
1478 				 */
1479 				if (xisr->sadb_x_ipsecrequest_reqid
1480 						> IPSEC_MANUAL_REQID_MAX) {
1481 					ipseclog((LOG_DEBUG,
1482 					    "%s: reqid=%d range "
1483 					    "violation, updated by kernel.\n",
1484 					    __func__,
1485 					    xisr->sadb_x_ipsecrequest_reqid));
1486 					xisr->sadb_x_ipsecrequest_reqid = 0;
1487 				}
1488 
1489 				/* allocate new reqid id if reqid is zero. */
1490 				if (xisr->sadb_x_ipsecrequest_reqid == 0) {
1491 					u_int32_t reqid;
1492 					if ((reqid = key_newreqid()) == 0) {
1493 						KEY_FREESP(&newsp);
1494 						*error = ENOBUFS;
1495 						return NULL;
1496 					}
1497 					(*p_isr)->saidx.reqid = reqid;
1498 					xisr->sadb_x_ipsecrequest_reqid = reqid;
1499 				} else {
1500 				/* set it for manual keying. */
1501 					(*p_isr)->saidx.reqid =
1502 						xisr->sadb_x_ipsecrequest_reqid;
1503 				}
1504 				break;
1505 
1506 			default:
1507 				ipseclog((LOG_DEBUG, "%s: invalid level=%u\n",
1508 					__func__,
1509 					xisr->sadb_x_ipsecrequest_level));
1510 				KEY_FREESP(&newsp);
1511 				*error = EINVAL;
1512 				return NULL;
1513 			}
1514 			(*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1515 
1516 			/* set IP addresses if there */
1517 			if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1518 				struct sockaddr *paddr;
1519 
1520 				paddr = (struct sockaddr *)(xisr + 1);
1521 
1522 				/* validity check */
1523 				if (paddr->sa_len
1524 				    > sizeof((*p_isr)->saidx.src)) {
1525 					ipseclog((LOG_DEBUG, "%s: invalid "
1526 						"request address length.\n",
1527 						__func__));
1528 					KEY_FREESP(&newsp);
1529 					*error = EINVAL;
1530 					return NULL;
1531 				}
1532 				bcopy(paddr, &(*p_isr)->saidx.src,
1533 					paddr->sa_len);
1534 
1535 				paddr = (struct sockaddr *)((caddr_t)paddr
1536 							+ paddr->sa_len);
1537 
1538 				/* validity check */
1539 				if (paddr->sa_len
1540 				    > sizeof((*p_isr)->saidx.dst)) {
1541 					ipseclog((LOG_DEBUG, "%s: invalid "
1542 						"request address length.\n",
1543 						__func__));
1544 					KEY_FREESP(&newsp);
1545 					*error = EINVAL;
1546 					return NULL;
1547 				}
1548 				bcopy(paddr, &(*p_isr)->saidx.dst,
1549 					paddr->sa_len);
1550 			}
1551 
1552 			(*p_isr)->sp = newsp;
1553 
1554 			/* initialization for the next. */
1555 			p_isr = &(*p_isr)->next;
1556 			tlen -= xisr->sadb_x_ipsecrequest_len;
1557 
1558 			/* validity check */
1559 			if (tlen < 0) {
1560 				ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n",
1561 					__func__));
1562 				KEY_FREESP(&newsp);
1563 				*error = EINVAL;
1564 				return NULL;
1565 			}
1566 
1567 			xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr
1568 			                 + xisr->sadb_x_ipsecrequest_len);
1569 		}
1570 	    }
1571 		break;
1572 	default:
1573 		ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__));
1574 		KEY_FREESP(&newsp);
1575 		*error = EINVAL;
1576 		return NULL;
1577 	}
1578 
1579 	*error = 0;
1580 	return newsp;
1581 }
1582 
1583 static u_int32_t
1584 key_newreqid()
1585 {
1586 	static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1587 
1588 	auto_reqid = (auto_reqid == ~0
1589 			? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1590 
1591 	/* XXX should be unique check */
1592 
1593 	return auto_reqid;
1594 }
1595 
1596 /*
1597  * copy secpolicy struct to sadb_x_policy structure indicated.
1598  */
1599 struct mbuf *
1600 key_sp2msg(struct secpolicy *sp)
1601 {
1602 	struct sadb_x_policy *xpl;
1603 	int tlen;
1604 	caddr_t p;
1605 	struct mbuf *m;
1606 
1607 	IPSEC_ASSERT(sp != NULL, ("null policy"));
1608 
1609 	tlen = key_getspreqmsglen(sp);
1610 
1611 	m = m_get2(tlen, M_NOWAIT, MT_DATA, 0);
1612 	if (m == NULL)
1613 		return (NULL);
1614 	m_align(m, tlen);
1615 	m->m_len = tlen;
1616 	xpl = mtod(m, struct sadb_x_policy *);
1617 	bzero(xpl, tlen);
1618 
1619 	xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1620 	xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1621 	xpl->sadb_x_policy_type = sp->policy;
1622 	xpl->sadb_x_policy_dir = sp->spidx.dir;
1623 	xpl->sadb_x_policy_id = sp->id;
1624 	p = (caddr_t)xpl + sizeof(*xpl);
1625 
1626 	/* if is the policy for ipsec ? */
1627 	if (sp->policy == IPSEC_POLICY_IPSEC) {
1628 		struct sadb_x_ipsecrequest *xisr;
1629 		struct ipsecrequest *isr;
1630 
1631 		for (isr = sp->req; isr != NULL; isr = isr->next) {
1632 
1633 			xisr = (struct sadb_x_ipsecrequest *)p;
1634 
1635 			xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1636 			xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1637 			xisr->sadb_x_ipsecrequest_level = isr->level;
1638 			xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1639 
1640 			p += sizeof(*xisr);
1641 			bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len);
1642 			p += isr->saidx.src.sa.sa_len;
1643 			bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len);
1644 			p += isr->saidx.src.sa.sa_len;
1645 
1646 			xisr->sadb_x_ipsecrequest_len =
1647 				PFKEY_ALIGN8(sizeof(*xisr)
1648 					+ isr->saidx.src.sa.sa_len
1649 					+ isr->saidx.dst.sa.sa_len);
1650 		}
1651 	}
1652 
1653 	return m;
1654 }
1655 
1656 /* m will not be freed nor modified */
1657 static struct mbuf *
1658 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1659     int ndeep, int nitem, ...)
1660 {
1661 	va_list ap;
1662 	int idx;
1663 	int i;
1664 	struct mbuf *result = NULL, *n;
1665 	int len;
1666 
1667 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1668 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1669 
1670 	va_start(ap, nitem);
1671 	for (i = 0; i < nitem; i++) {
1672 		idx = va_arg(ap, int);
1673 		if (idx < 0 || idx > SADB_EXT_MAX)
1674 			goto fail;
1675 		/* don't attempt to pull empty extension */
1676 		if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1677 			continue;
1678 		if (idx != SADB_EXT_RESERVED  &&
1679 		    (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1680 			continue;
1681 
1682 		if (idx == SADB_EXT_RESERVED) {
1683 			len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1684 
1685 			IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len));
1686 
1687 			MGETHDR(n, M_NOWAIT, MT_DATA);
1688 			if (!n)
1689 				goto fail;
1690 			n->m_len = len;
1691 			n->m_next = NULL;
1692 			m_copydata(m, 0, sizeof(struct sadb_msg),
1693 			    mtod(n, caddr_t));
1694 		} else if (i < ndeep) {
1695 			len = mhp->extlen[idx];
1696 			n = m_get2(len, M_NOWAIT, MT_DATA, 0);
1697 			if (n == NULL)
1698 				goto fail;
1699 			m_align(n, len);
1700 			n->m_len = len;
1701 			m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1702 			    mtod(n, caddr_t));
1703 		} else {
1704 			n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1705 			    M_NOWAIT);
1706 		}
1707 		if (n == NULL)
1708 			goto fail;
1709 
1710 		if (result)
1711 			m_cat(result, n);
1712 		else
1713 			result = n;
1714 	}
1715 	va_end(ap);
1716 
1717 	if ((result->m_flags & M_PKTHDR) != 0) {
1718 		result->m_pkthdr.len = 0;
1719 		for (n = result; n; n = n->m_next)
1720 			result->m_pkthdr.len += n->m_len;
1721 	}
1722 
1723 	return result;
1724 
1725 fail:
1726 	m_freem(result);
1727 	va_end(ap);
1728 	return NULL;
1729 }
1730 
1731 /*
1732  * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1733  * add an entry to SP database, when received
1734  *   <base, address(SD), (lifetime(H),) policy>
1735  * from the user(?).
1736  * Adding to SP database,
1737  * and send
1738  *   <base, address(SD), (lifetime(H),) policy>
1739  * to the socket which was send.
1740  *
1741  * SPDADD set a unique policy entry.
1742  * SPDSETIDX like SPDADD without a part of policy requests.
1743  * SPDUPDATE replace a unique policy entry.
1744  *
1745  * m will always be freed.
1746  */
1747 static int
1748 key_spdadd(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
1749 {
1750 	struct sadb_address *src0, *dst0;
1751 	struct sadb_x_policy *xpl0, *xpl;
1752 	struct sadb_lifetime *lft = NULL;
1753 	struct secpolicyindex spidx;
1754 	struct secpolicy *newsp;
1755 	int error;
1756 
1757 	IPSEC_ASSERT(so != NULL, ("null socket"));
1758 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1759 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1760 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
1761 
1762 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1763 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1764 	    mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1765 		ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1766 		return key_senderror(so, m, EINVAL);
1767 	}
1768 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1769 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1770 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1771 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1772 			__func__));
1773 		return key_senderror(so, m, EINVAL);
1774 	}
1775 	if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1776 		if (mhp->extlen[SADB_EXT_LIFETIME_HARD]
1777 			< sizeof(struct sadb_lifetime)) {
1778 			ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1779 				__func__));
1780 			return key_senderror(so, m, EINVAL);
1781 		}
1782 		lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1783 	}
1784 
1785 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1786 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1787 	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1788 
1789 	/*
1790 	 * Note: do not parse SADB_X_EXT_NAT_T_* here:
1791 	 * we are processing traffic endpoints.
1792 	 */
1793 
1794 	/* make secindex */
1795 	/* XXX boundary check against sa_len */
1796 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1797 	                src0 + 1,
1798 	                dst0 + 1,
1799 	                src0->sadb_address_prefixlen,
1800 	                dst0->sadb_address_prefixlen,
1801 	                src0->sadb_address_proto,
1802 	                &spidx);
1803 
1804 	/* checking the direciton. */
1805 	switch (xpl0->sadb_x_policy_dir) {
1806 	case IPSEC_DIR_INBOUND:
1807 	case IPSEC_DIR_OUTBOUND:
1808 		break;
1809 	default:
1810 		ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
1811 		mhp->msg->sadb_msg_errno = EINVAL;
1812 		return 0;
1813 	}
1814 
1815 	/* check policy */
1816 	/* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1817 	if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST
1818 	 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1819 		ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__));
1820 		return key_senderror(so, m, EINVAL);
1821 	}
1822 
1823 	/* policy requests are mandatory when action is ipsec. */
1824         if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX
1825 	 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC
1826 	 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1827 		ipseclog((LOG_DEBUG, "%s: some policy requests part required\n",
1828 			__func__));
1829 		return key_senderror(so, m, EINVAL);
1830 	}
1831 
1832 	/*
1833 	 * checking there is SP already or not.
1834 	 * SPDUPDATE doesn't depend on whether there is a SP or not.
1835 	 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1836 	 * then error.
1837 	 */
1838 	newsp = key_getsp(&spidx);
1839 	if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1840 		if (newsp) {
1841 			key_unlink(newsp);
1842 			KEY_FREESP(&newsp);
1843 		}
1844 	} else {
1845 		if (newsp != NULL) {
1846 			KEY_FREESP(&newsp);
1847 			ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n",
1848 				__func__));
1849 			return key_senderror(so, m, EEXIST);
1850 		}
1851 	}
1852 
1853 	/* XXX: there is race between key_getsp and key_msg2sp. */
1854 
1855 	/* allocation new SP entry */
1856 	if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
1857 		return key_senderror(so, m, error);
1858 	}
1859 
1860 	if ((newsp->id = key_getnewspid()) == 0) {
1861 		KEY_FREESP(&newsp);
1862 		return key_senderror(so, m, ENOBUFS);
1863 	}
1864 
1865 	/* XXX boundary check against sa_len */
1866 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1867 	                src0 + 1,
1868 	                dst0 + 1,
1869 	                src0->sadb_address_prefixlen,
1870 	                dst0->sadb_address_prefixlen,
1871 	                src0->sadb_address_proto,
1872 	                &newsp->spidx);
1873 
1874 	/* sanity check on addr pair */
1875 	if (((struct sockaddr *)(src0 + 1))->sa_family !=
1876 			((struct sockaddr *)(dst0+ 1))->sa_family) {
1877 		KEY_FREESP(&newsp);
1878 		return key_senderror(so, m, EINVAL);
1879 	}
1880 	if (((struct sockaddr *)(src0 + 1))->sa_len !=
1881 			((struct sockaddr *)(dst0+ 1))->sa_len) {
1882 		KEY_FREESP(&newsp);
1883 		return key_senderror(so, m, EINVAL);
1884 	}
1885 #if 1
1886 	if (newsp->req && newsp->req->saidx.src.sa.sa_family &&
1887 	    newsp->req->saidx.dst.sa.sa_family) {
1888 		if (newsp->req->saidx.src.sa.sa_family !=
1889 		    newsp->req->saidx.dst.sa.sa_family) {
1890 			KEY_FREESP(&newsp);
1891 			return key_senderror(so, m, EINVAL);
1892 		}
1893 	}
1894 #endif
1895 
1896 	newsp->created = time_second;
1897 	newsp->lastused = newsp->created;
1898 	newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1899 	newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1900 
1901 	SPTREE_WLOCK();
1902 	TAILQ_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, chain);
1903 	SPTREE_WUNLOCK();
1904 
1905 	/* delete the entry in spacqtree */
1906 	if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1907 		struct secspacq *spacq = key_getspacq(&spidx);
1908 		if (spacq != NULL) {
1909 			/* reset counter in order to deletion by timehandler. */
1910 			spacq->created = time_second;
1911 			spacq->count = 0;
1912 			SPACQ_UNLOCK();
1913 		}
1914     	}
1915 
1916     {
1917 	struct mbuf *n, *mpolicy;
1918 	struct sadb_msg *newmsg;
1919 	int off;
1920 
1921 	/*
1922 	 * Note: do not send SADB_X_EXT_NAT_T_* here:
1923 	 * we are sending traffic endpoints.
1924 	 */
1925 
1926 	/* create new sadb_msg to reply. */
1927 	if (lft) {
1928 		n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
1929 		    SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
1930 		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1931 	} else {
1932 		n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
1933 		    SADB_X_EXT_POLICY,
1934 		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1935 	}
1936 	if (!n)
1937 		return key_senderror(so, m, ENOBUFS);
1938 
1939 	if (n->m_len < sizeof(*newmsg)) {
1940 		n = m_pullup(n, sizeof(*newmsg));
1941 		if (!n)
1942 			return key_senderror(so, m, ENOBUFS);
1943 	}
1944 	newmsg = mtod(n, struct sadb_msg *);
1945 	newmsg->sadb_msg_errno = 0;
1946 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
1947 
1948 	off = 0;
1949 	mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
1950 	    sizeof(*xpl), &off);
1951 	if (mpolicy == NULL) {
1952 		/* n is already freed */
1953 		return key_senderror(so, m, ENOBUFS);
1954 	}
1955 	xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off);
1956 	if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
1957 		m_freem(n);
1958 		return key_senderror(so, m, EINVAL);
1959 	}
1960 	xpl->sadb_x_policy_id = newsp->id;
1961 
1962 	m_freem(m);
1963 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
1964     }
1965 }
1966 
1967 /*
1968  * get new policy id.
1969  * OUT:
1970  *	0:	failure.
1971  *	others: success.
1972  */
1973 static u_int32_t
1974 key_getnewspid()
1975 {
1976 	u_int32_t newid = 0;
1977 	int count = V_key_spi_trycnt;	/* XXX */
1978 	struct secpolicy *sp;
1979 
1980 	/* when requesting to allocate spi ranged */
1981 	while (count--) {
1982 		newid = (V_policy_id = (V_policy_id == ~0 ? 1 : V_policy_id + 1));
1983 
1984 		if ((sp = key_getspbyid(newid)) == NULL)
1985 			break;
1986 
1987 		KEY_FREESP(&sp);
1988 	}
1989 
1990 	if (count == 0 || newid == 0) {
1991 		ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n",
1992 			__func__));
1993 		return 0;
1994 	}
1995 
1996 	return newid;
1997 }
1998 
1999 /*
2000  * SADB_SPDDELETE processing
2001  * receive
2002  *   <base, address(SD), policy(*)>
2003  * from the user(?), and set SADB_SASTATE_DEAD,
2004  * and send,
2005  *   <base, address(SD), policy(*)>
2006  * to the ikmpd.
2007  * policy(*) including direction of policy.
2008  *
2009  * m will always be freed.
2010  */
2011 static int
2012 key_spddelete(struct socket *so, struct mbuf *m,
2013     const struct sadb_msghdr *mhp)
2014 {
2015 	struct sadb_address *src0, *dst0;
2016 	struct sadb_x_policy *xpl0;
2017 	struct secpolicyindex spidx;
2018 	struct secpolicy *sp;
2019 
2020 	IPSEC_ASSERT(so != NULL, ("null so"));
2021 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2022 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2023 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2024 
2025 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2026 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2027 	    mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2028 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2029 			__func__));
2030 		return key_senderror(so, m, EINVAL);
2031 	}
2032 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2033 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2034 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2035 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2036 			__func__));
2037 		return key_senderror(so, m, EINVAL);
2038 	}
2039 
2040 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2041 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2042 	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2043 
2044 	/*
2045 	 * Note: do not parse SADB_X_EXT_NAT_T_* here:
2046 	 * we are processing traffic endpoints.
2047 	 */
2048 
2049 	/* make secindex */
2050 	/* XXX boundary check against sa_len */
2051 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2052 	                src0 + 1,
2053 	                dst0 + 1,
2054 	                src0->sadb_address_prefixlen,
2055 	                dst0->sadb_address_prefixlen,
2056 	                src0->sadb_address_proto,
2057 	                &spidx);
2058 
2059 	/* checking the direciton. */
2060 	switch (xpl0->sadb_x_policy_dir) {
2061 	case IPSEC_DIR_INBOUND:
2062 	case IPSEC_DIR_OUTBOUND:
2063 		break;
2064 	default:
2065 		ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
2066 		return key_senderror(so, m, EINVAL);
2067 	}
2068 
2069 	/* Is there SP in SPD ? */
2070 	if ((sp = key_getsp(&spidx)) == NULL) {
2071 		ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__));
2072 		return key_senderror(so, m, EINVAL);
2073 	}
2074 
2075 	/* save policy id to buffer to be returned. */
2076 	xpl0->sadb_x_policy_id = sp->id;
2077 
2078 	key_unlink(sp);
2079 	KEY_FREESP(&sp);
2080 
2081     {
2082 	struct mbuf *n;
2083 	struct sadb_msg *newmsg;
2084 
2085 	/*
2086 	 * Note: do not send SADB_X_EXT_NAT_T_* here:
2087 	 * we are sending traffic endpoints.
2088 	 */
2089 
2090 	/* create new sadb_msg to reply. */
2091 	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2092 	    SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2093 	if (!n)
2094 		return key_senderror(so, m, ENOBUFS);
2095 
2096 	newmsg = mtod(n, struct sadb_msg *);
2097 	newmsg->sadb_msg_errno = 0;
2098 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2099 
2100 	m_freem(m);
2101 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2102     }
2103 }
2104 
2105 /*
2106  * SADB_SPDDELETE2 processing
2107  * receive
2108  *   <base, policy(*)>
2109  * from the user(?), and set SADB_SASTATE_DEAD,
2110  * and send,
2111  *   <base, policy(*)>
2112  * to the ikmpd.
2113  * policy(*) including direction of policy.
2114  *
2115  * m will always be freed.
2116  */
2117 static int
2118 key_spddelete2(struct socket *so, struct mbuf *m,
2119     const struct sadb_msghdr *mhp)
2120 {
2121 	u_int32_t id;
2122 	struct secpolicy *sp;
2123 
2124 	IPSEC_ASSERT(so != NULL, ("null socket"));
2125 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2126 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2127 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2128 
2129 	if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2130 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2131 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__));
2132 		return key_senderror(so, m, EINVAL);
2133 	}
2134 
2135 	id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2136 
2137 	/* Is there SP in SPD ? */
2138 	if ((sp = key_getspbyid(id)) == NULL) {
2139 		ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2140 		return key_senderror(so, m, EINVAL);
2141 	}
2142 
2143 	key_unlink(sp);
2144 	KEY_FREESP(&sp);
2145 
2146     {
2147 	struct mbuf *n, *nn;
2148 	struct sadb_msg *newmsg;
2149 	int off, len;
2150 
2151 	/* create new sadb_msg to reply. */
2152 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2153 
2154 	MGETHDR(n, M_NOWAIT, MT_DATA);
2155 	if (n && len > MHLEN) {
2156 		if (!(MCLGET(n, M_NOWAIT))) {
2157 			m_freem(n);
2158 			n = NULL;
2159 		}
2160 	}
2161 	if (!n)
2162 		return key_senderror(so, m, ENOBUFS);
2163 
2164 	n->m_len = len;
2165 	n->m_next = NULL;
2166 	off = 0;
2167 
2168 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
2169 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2170 
2171 	IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)",
2172 		off, len));
2173 
2174 	n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2175 	    mhp->extlen[SADB_X_EXT_POLICY], M_NOWAIT);
2176 	if (!n->m_next) {
2177 		m_freem(n);
2178 		return key_senderror(so, m, ENOBUFS);
2179 	}
2180 
2181 	n->m_pkthdr.len = 0;
2182 	for (nn = n; nn; nn = nn->m_next)
2183 		n->m_pkthdr.len += nn->m_len;
2184 
2185 	newmsg = mtod(n, struct sadb_msg *);
2186 	newmsg->sadb_msg_errno = 0;
2187 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2188 
2189 	m_freem(m);
2190 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2191     }
2192 }
2193 
2194 /*
2195  * SADB_X_GET processing
2196  * receive
2197  *   <base, policy(*)>
2198  * from the user(?),
2199  * and send,
2200  *   <base, address(SD), policy>
2201  * to the ikmpd.
2202  * policy(*) including direction of policy.
2203  *
2204  * m will always be freed.
2205  */
2206 static int
2207 key_spdget(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
2208 {
2209 	u_int32_t id;
2210 	struct secpolicy *sp;
2211 	struct mbuf *n;
2212 
2213 	IPSEC_ASSERT(so != NULL, ("null socket"));
2214 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2215 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2216 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2217 
2218 	if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2219 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2220 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2221 			__func__));
2222 		return key_senderror(so, m, EINVAL);
2223 	}
2224 
2225 	id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2226 
2227 	/* Is there SP in SPD ? */
2228 	if ((sp = key_getspbyid(id)) == NULL) {
2229 		ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2230 		return key_senderror(so, m, ENOENT);
2231 	}
2232 
2233 	n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid);
2234 	KEY_FREESP(&sp);
2235 	if (n != NULL) {
2236 		m_freem(m);
2237 		return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2238 	} else
2239 		return key_senderror(so, m, ENOBUFS);
2240 }
2241 
2242 /*
2243  * SADB_X_SPDACQUIRE processing.
2244  * Acquire policy and SA(s) for a *OUTBOUND* packet.
2245  * send
2246  *   <base, policy(*)>
2247  * to KMD, and expect to receive
2248  *   <base> with SADB_X_SPDACQUIRE if error occured,
2249  * or
2250  *   <base, policy>
2251  * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2252  * policy(*) is without policy requests.
2253  *
2254  *    0     : succeed
2255  *    others: error number
2256  */
2257 int
2258 key_spdacquire(struct secpolicy *sp)
2259 {
2260 	struct mbuf *result = NULL, *m;
2261 	struct secspacq *newspacq;
2262 
2263 	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2264 	IPSEC_ASSERT(sp->req == NULL, ("policy exists"));
2265 	IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC,
2266 		("policy not IPSEC %u", sp->policy));
2267 
2268 	/* Get an entry to check whether sent message or not. */
2269 	newspacq = key_getspacq(&sp->spidx);
2270 	if (newspacq != NULL) {
2271 		if (V_key_blockacq_count < newspacq->count) {
2272 			/* reset counter and do send message. */
2273 			newspacq->count = 0;
2274 		} else {
2275 			/* increment counter and do nothing. */
2276 			newspacq->count++;
2277 			SPACQ_UNLOCK();
2278 			return (0);
2279 		}
2280 		SPACQ_UNLOCK();
2281 	} else {
2282 		/* make new entry for blocking to send SADB_ACQUIRE. */
2283 		newspacq = key_newspacq(&sp->spidx);
2284 		if (newspacq == NULL)
2285 			return ENOBUFS;
2286 	}
2287 
2288 	/* create new sadb_msg to reply. */
2289 	m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2290 	if (!m)
2291 		return ENOBUFS;
2292 
2293 	result = m;
2294 
2295 	result->m_pkthdr.len = 0;
2296 	for (m = result; m; m = m->m_next)
2297 		result->m_pkthdr.len += m->m_len;
2298 
2299 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2300 	    PFKEY_UNIT64(result->m_pkthdr.len);
2301 
2302 	return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2303 }
2304 
2305 /*
2306  * SADB_SPDFLUSH processing
2307  * receive
2308  *   <base>
2309  * from the user, and free all entries in secpctree.
2310  * and send,
2311  *   <base>
2312  * to the user.
2313  * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2314  *
2315  * m will always be freed.
2316  */
2317 static int
2318 key_spdflush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
2319 {
2320 	TAILQ_HEAD(, secpolicy) drainq;
2321 	struct sadb_msg *newmsg;
2322 	struct secpolicy *sp, *nextsp;
2323 	u_int dir;
2324 
2325 	IPSEC_ASSERT(so != NULL, ("null socket"));
2326 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2327 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2328 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2329 
2330 	if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2331 		return key_senderror(so, m, EINVAL);
2332 
2333 	TAILQ_INIT(&drainq);
2334 	SPTREE_WLOCK();
2335 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2336 		TAILQ_CONCAT(&drainq, &V_sptree[dir], chain);
2337 	}
2338 	SPTREE_WUNLOCK();
2339 	sp = TAILQ_FIRST(&drainq);
2340 	while (sp != NULL) {
2341 		nextsp = TAILQ_NEXT(sp, chain);
2342 		KEY_FREESP(&sp);
2343 		sp = nextsp;
2344 	}
2345 
2346 	if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2347 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2348 		return key_senderror(so, m, ENOBUFS);
2349 	}
2350 
2351 	if (m->m_next)
2352 		m_freem(m->m_next);
2353 	m->m_next = NULL;
2354 	m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2355 	newmsg = mtod(m, struct sadb_msg *);
2356 	newmsg->sadb_msg_errno = 0;
2357 	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2358 
2359 	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2360 }
2361 
2362 /*
2363  * SADB_SPDDUMP processing
2364  * receive
2365  *   <base>
2366  * from the user, and dump all SP leaves
2367  * and send,
2368  *   <base> .....
2369  * to the ikmpd.
2370  *
2371  * m will always be freed.
2372  */
2373 static int
2374 key_spddump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
2375 {
2376 	SPTREE_RLOCK_TRACKER;
2377 	struct secpolicy *sp;
2378 	int cnt;
2379 	u_int dir;
2380 	struct mbuf *n;
2381 
2382 	IPSEC_ASSERT(so != NULL, ("null socket"));
2383 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2384 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2385 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2386 
2387 	/* search SPD entry and get buffer size. */
2388 	cnt = 0;
2389 	SPTREE_RLOCK();
2390 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2391 		TAILQ_FOREACH(sp, &V_sptree[dir], chain) {
2392 			cnt++;
2393 		}
2394 	}
2395 
2396 	if (cnt == 0) {
2397 		SPTREE_RUNLOCK();
2398 		return key_senderror(so, m, ENOENT);
2399 	}
2400 
2401 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2402 		TAILQ_FOREACH(sp, &V_sptree[dir], chain) {
2403 			--cnt;
2404 			n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt,
2405 			    mhp->msg->sadb_msg_pid);
2406 
2407 			if (n)
2408 				key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2409 		}
2410 	}
2411 
2412 	SPTREE_RUNLOCK();
2413 	m_freem(m);
2414 	return 0;
2415 }
2416 
2417 static struct mbuf *
2418 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq,
2419     u_int32_t pid)
2420 {
2421 	struct mbuf *result = NULL, *m;
2422 	struct seclifetime lt;
2423 
2424 	SPTREE_RLOCK_ASSERT();
2425 
2426 	m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2427 	if (!m)
2428 		goto fail;
2429 	result = m;
2430 
2431 	/*
2432 	 * Note: do not send SADB_X_EXT_NAT_T_* here:
2433 	 * we are sending traffic endpoints.
2434 	 */
2435 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2436 	    &sp->spidx.src.sa, sp->spidx.prefs,
2437 	    sp->spidx.ul_proto);
2438 	if (!m)
2439 		goto fail;
2440 	m_cat(result, m);
2441 
2442 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2443 	    &sp->spidx.dst.sa, sp->spidx.prefd,
2444 	    sp->spidx.ul_proto);
2445 	if (!m)
2446 		goto fail;
2447 	m_cat(result, m);
2448 
2449 	m = key_sp2msg(sp);
2450 	if (!m)
2451 		goto fail;
2452 	m_cat(result, m);
2453 
2454 	if(sp->lifetime){
2455 		lt.addtime=sp->created;
2456 		lt.usetime= sp->lastused;
2457 		m = key_setlifetime(&lt, SADB_EXT_LIFETIME_CURRENT);
2458 		if (!m)
2459 			goto fail;
2460 		m_cat(result, m);
2461 
2462 		lt.addtime=sp->lifetime;
2463 		lt.usetime= sp->validtime;
2464 		m = key_setlifetime(&lt, SADB_EXT_LIFETIME_HARD);
2465 		if (!m)
2466 			goto fail;
2467 		m_cat(result, m);
2468 	}
2469 
2470 	if ((result->m_flags & M_PKTHDR) == 0)
2471 		goto fail;
2472 
2473 	if (result->m_len < sizeof(struct sadb_msg)) {
2474 		result = m_pullup(result, sizeof(struct sadb_msg));
2475 		if (result == NULL)
2476 			goto fail;
2477 	}
2478 
2479 	result->m_pkthdr.len = 0;
2480 	for (m = result; m; m = m->m_next)
2481 		result->m_pkthdr.len += m->m_len;
2482 
2483 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2484 	    PFKEY_UNIT64(result->m_pkthdr.len);
2485 
2486 	return result;
2487 
2488 fail:
2489 	m_freem(result);
2490 	return NULL;
2491 }
2492 
2493 /*
2494  * get PFKEY message length for security policy and request.
2495  */
2496 static u_int
2497 key_getspreqmsglen(struct secpolicy *sp)
2498 {
2499 	u_int tlen;
2500 
2501 	tlen = sizeof(struct sadb_x_policy);
2502 
2503 	/* if is the policy for ipsec ? */
2504 	if (sp->policy != IPSEC_POLICY_IPSEC)
2505 		return tlen;
2506 
2507 	/* get length of ipsec requests */
2508     {
2509 	struct ipsecrequest *isr;
2510 	int len;
2511 
2512 	for (isr = sp->req; isr != NULL; isr = isr->next) {
2513 		len = sizeof(struct sadb_x_ipsecrequest)
2514 			+ isr->saidx.src.sa.sa_len
2515 			+ isr->saidx.dst.sa.sa_len;
2516 
2517 		tlen += PFKEY_ALIGN8(len);
2518 	}
2519     }
2520 
2521 	return tlen;
2522 }
2523 
2524 /*
2525  * SADB_SPDEXPIRE processing
2526  * send
2527  *   <base, address(SD), lifetime(CH), policy>
2528  * to KMD by PF_KEY.
2529  *
2530  * OUT:	0	: succeed
2531  *	others	: error number
2532  */
2533 static int
2534 key_spdexpire(struct secpolicy *sp)
2535 {
2536 	struct mbuf *result = NULL, *m;
2537 	int len;
2538 	int error = -1;
2539 	struct sadb_lifetime *lt;
2540 
2541 	/* XXX: Why do we lock ? */
2542 
2543 	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2544 
2545 	/* set msg header */
2546 	m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2547 	if (!m) {
2548 		error = ENOBUFS;
2549 		goto fail;
2550 	}
2551 	result = m;
2552 
2553 	/* create lifetime extension (current and hard) */
2554 	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2555 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
2556 	if (m == NULL) {
2557 		error = ENOBUFS;
2558 		goto fail;
2559 	}
2560 	m_align(m, len);
2561 	m->m_len = len;
2562 	bzero(mtod(m, caddr_t), len);
2563 	lt = mtod(m, struct sadb_lifetime *);
2564 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2565 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2566 	lt->sadb_lifetime_allocations = 0;
2567 	lt->sadb_lifetime_bytes = 0;
2568 	lt->sadb_lifetime_addtime = sp->created;
2569 	lt->sadb_lifetime_usetime = sp->lastused;
2570 	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
2571 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2572 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2573 	lt->sadb_lifetime_allocations = 0;
2574 	lt->sadb_lifetime_bytes = 0;
2575 	lt->sadb_lifetime_addtime = sp->lifetime;
2576 	lt->sadb_lifetime_usetime = sp->validtime;
2577 	m_cat(result, m);
2578 
2579 	/*
2580 	 * Note: do not send SADB_X_EXT_NAT_T_* here:
2581 	 * we are sending traffic endpoints.
2582 	 */
2583 
2584 	/* set sadb_address for source */
2585 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2586 	    &sp->spidx.src.sa,
2587 	    sp->spidx.prefs, sp->spidx.ul_proto);
2588 	if (!m) {
2589 		error = ENOBUFS;
2590 		goto fail;
2591 	}
2592 	m_cat(result, m);
2593 
2594 	/* set sadb_address for destination */
2595 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2596 	    &sp->spidx.dst.sa,
2597 	    sp->spidx.prefd, sp->spidx.ul_proto);
2598 	if (!m) {
2599 		error = ENOBUFS;
2600 		goto fail;
2601 	}
2602 	m_cat(result, m);
2603 
2604 	/* set secpolicy */
2605 	m = key_sp2msg(sp);
2606 	if (!m) {
2607 		error = ENOBUFS;
2608 		goto fail;
2609 	}
2610 	m_cat(result, m);
2611 
2612 	if ((result->m_flags & M_PKTHDR) == 0) {
2613 		error = EINVAL;
2614 		goto fail;
2615 	}
2616 
2617 	if (result->m_len < sizeof(struct sadb_msg)) {
2618 		result = m_pullup(result, sizeof(struct sadb_msg));
2619 		if (result == NULL) {
2620 			error = ENOBUFS;
2621 			goto fail;
2622 		}
2623 	}
2624 
2625 	result->m_pkthdr.len = 0;
2626 	for (m = result; m; m = m->m_next)
2627 		result->m_pkthdr.len += m->m_len;
2628 
2629 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2630 	    PFKEY_UNIT64(result->m_pkthdr.len);
2631 
2632 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2633 
2634  fail:
2635 	if (result)
2636 		m_freem(result);
2637 	return error;
2638 }
2639 
2640 /* %%% SAD management */
2641 /*
2642  * allocating a memory for new SA head, and copy from the values of mhp.
2643  * OUT:	NULL	: failure due to the lack of memory.
2644  *	others	: pointer to new SA head.
2645  */
2646 static struct secashead *
2647 key_newsah(struct secasindex *saidx)
2648 {
2649 	struct secashead *newsah;
2650 
2651 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
2652 
2653 	newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO);
2654 	if (newsah != NULL) {
2655 		int i;
2656 		for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++)
2657 			LIST_INIT(&newsah->savtree[i]);
2658 		newsah->saidx = *saidx;
2659 
2660 		/* add to saidxtree */
2661 		newsah->state = SADB_SASTATE_MATURE;
2662 
2663 		SAHTREE_LOCK();
2664 		LIST_INSERT_HEAD(&V_sahtree, newsah, chain);
2665 		SAHTREE_UNLOCK();
2666 	}
2667 	return(newsah);
2668 }
2669 
2670 /*
2671  * delete SA index and all SA registerd.
2672  */
2673 static void
2674 key_delsah(struct secashead *sah)
2675 {
2676 	struct secasvar *sav, *nextsav;
2677 	u_int stateidx;
2678 	int zombie = 0;
2679 
2680 	IPSEC_ASSERT(sah != NULL, ("NULL sah"));
2681 	SAHTREE_LOCK_ASSERT();
2682 
2683 	/* searching all SA registerd in the secindex. */
2684 	for (stateidx = 0;
2685 	     stateidx < _ARRAYLEN(saorder_state_any);
2686 	     stateidx++) {
2687 		u_int state = saorder_state_any[stateidx];
2688 		LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) {
2689 			if (sav->refcnt == 0) {
2690 				/* sanity check */
2691 				KEY_CHKSASTATE(state, sav->state, __func__);
2692 				/*
2693 				 * do NOT call KEY_FREESAV here:
2694 				 * it will only delete the sav if refcnt == 1,
2695 				 * where we already know that refcnt == 0
2696 				 */
2697 				key_delsav(sav);
2698 			} else {
2699 				/* give up to delete this sa */
2700 				zombie++;
2701 			}
2702 		}
2703 	}
2704 	if (!zombie) {		/* delete only if there are savs */
2705 		/* remove from tree of SA index */
2706 		if (__LIST_CHAINED(sah))
2707 			LIST_REMOVE(sah, chain);
2708 		free(sah, M_IPSEC_SAH);
2709 	}
2710 }
2711 
2712 /*
2713  * allocating a new SA with LARVAL state.  key_add() and key_getspi() call,
2714  * and copy the values of mhp into new buffer.
2715  * When SAD message type is GETSPI:
2716  *	to set sequence number from acq_seq++,
2717  *	to set zero to SPI.
2718  *	not to call key_setsava().
2719  * OUT:	NULL	: fail
2720  *	others	: pointer to new secasvar.
2721  *
2722  * does not modify mbuf.  does not free mbuf on error.
2723  */
2724 static struct secasvar *
2725 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp,
2726     struct secashead *sah, int *errp, const char *where, int tag)
2727 {
2728 	struct secasvar *newsav;
2729 	const struct sadb_sa *xsa;
2730 
2731 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2732 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2733 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2734 	IPSEC_ASSERT(sah != NULL, ("null secashead"));
2735 
2736 	newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO);
2737 	if (newsav == NULL) {
2738 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2739 		*errp = ENOBUFS;
2740 		goto done;
2741 	}
2742 
2743 	switch (mhp->msg->sadb_msg_type) {
2744 	case SADB_GETSPI:
2745 		newsav->spi = 0;
2746 
2747 #ifdef IPSEC_DOSEQCHECK
2748 		/* sync sequence number */
2749 		if (mhp->msg->sadb_msg_seq == 0)
2750 			newsav->seq =
2751 				(V_acq_seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq));
2752 		else
2753 #endif
2754 			newsav->seq = mhp->msg->sadb_msg_seq;
2755 		break;
2756 
2757 	case SADB_ADD:
2758 		/* sanity check */
2759 		if (mhp->ext[SADB_EXT_SA] == NULL) {
2760 			free(newsav, M_IPSEC_SA);
2761 			newsav = NULL;
2762 			ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2763 				__func__));
2764 			*errp = EINVAL;
2765 			goto done;
2766 		}
2767 		xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2768 		newsav->spi = xsa->sadb_sa_spi;
2769 		newsav->seq = mhp->msg->sadb_msg_seq;
2770 		break;
2771 	default:
2772 		free(newsav, M_IPSEC_SA);
2773 		newsav = NULL;
2774 		*errp = EINVAL;
2775 		goto done;
2776 	}
2777 
2778 
2779 	/* copy sav values */
2780 	if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2781 		*errp = key_setsaval(newsav, m, mhp);
2782 		if (*errp) {
2783 			free(newsav, M_IPSEC_SA);
2784 			newsav = NULL;
2785 			goto done;
2786 		}
2787 	}
2788 
2789 	SECASVAR_LOCK_INIT(newsav);
2790 
2791 	/* reset created */
2792 	newsav->created = time_second;
2793 	newsav->pid = mhp->msg->sadb_msg_pid;
2794 
2795 	/* add to satree */
2796 	newsav->sah = sah;
2797 	sa_initref(newsav);
2798 	newsav->state = SADB_SASTATE_LARVAL;
2799 
2800 	SAHTREE_LOCK();
2801 	LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
2802 			secasvar, chain);
2803 	SAHTREE_UNLOCK();
2804 done:
2805 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
2806 		printf("DP %s from %s:%u return SP:%p\n", __func__,
2807 			where, tag, newsav));
2808 
2809 	return newsav;
2810 }
2811 
2812 /*
2813  * free() SA variable entry.
2814  */
2815 static void
2816 key_cleansav(struct secasvar *sav)
2817 {
2818 	/*
2819 	 * Cleanup xform state.  Note that zeroize'ing causes the
2820 	 * keys to be cleared; otherwise we must do it ourself.
2821 	 */
2822 	if (sav->tdb_xform != NULL) {
2823 		sav->tdb_xform->xf_zeroize(sav);
2824 		sav->tdb_xform = NULL;
2825 	} else {
2826 		KASSERT(sav->iv == NULL, ("iv but no xform"));
2827 		if (sav->key_auth != NULL)
2828 			bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2829 		if (sav->key_enc != NULL)
2830 			bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc));
2831 	}
2832 	if (sav->key_auth != NULL) {
2833 		if (sav->key_auth->key_data != NULL)
2834 			free(sav->key_auth->key_data, M_IPSEC_MISC);
2835 		free(sav->key_auth, M_IPSEC_MISC);
2836 		sav->key_auth = NULL;
2837 	}
2838 	if (sav->key_enc != NULL) {
2839 		if (sav->key_enc->key_data != NULL)
2840 			free(sav->key_enc->key_data, M_IPSEC_MISC);
2841 		free(sav->key_enc, M_IPSEC_MISC);
2842 		sav->key_enc = NULL;
2843 	}
2844 	if (sav->sched) {
2845 		bzero(sav->sched, sav->schedlen);
2846 		free(sav->sched, M_IPSEC_MISC);
2847 		sav->sched = NULL;
2848 	}
2849 	if (sav->replay != NULL) {
2850 		free(sav->replay, M_IPSEC_MISC);
2851 		sav->replay = NULL;
2852 	}
2853 	if (sav->lft_c != NULL) {
2854 		free(sav->lft_c, M_IPSEC_MISC);
2855 		sav->lft_c = NULL;
2856 	}
2857 	if (sav->lft_h != NULL) {
2858 		free(sav->lft_h, M_IPSEC_MISC);
2859 		sav->lft_h = NULL;
2860 	}
2861 	if (sav->lft_s != NULL) {
2862 		free(sav->lft_s, M_IPSEC_MISC);
2863 		sav->lft_s = NULL;
2864 	}
2865 }
2866 
2867 /*
2868  * free() SA variable entry.
2869  */
2870 static void
2871 key_delsav(struct secasvar *sav)
2872 {
2873 	IPSEC_ASSERT(sav != NULL, ("null sav"));
2874 	IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt));
2875 
2876 	/* remove from SA header */
2877 	if (__LIST_CHAINED(sav))
2878 		LIST_REMOVE(sav, chain);
2879 	key_cleansav(sav);
2880 	SECASVAR_LOCK_DESTROY(sav);
2881 	free(sav, M_IPSEC_SA);
2882 }
2883 
2884 /*
2885  * search SAD.
2886  * OUT:
2887  *	NULL	: not found
2888  *	others	: found, pointer to a SA.
2889  */
2890 static struct secashead *
2891 key_getsah(struct secasindex *saidx)
2892 {
2893 	struct secashead *sah;
2894 
2895 	SAHTREE_LOCK();
2896 	LIST_FOREACH(sah, &V_sahtree, chain) {
2897 		if (sah->state == SADB_SASTATE_DEAD)
2898 			continue;
2899 		if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID))
2900 			break;
2901 	}
2902 	SAHTREE_UNLOCK();
2903 
2904 	return sah;
2905 }
2906 
2907 /*
2908  * check not to be duplicated SPI.
2909  * NOTE: this function is too slow due to searching all SAD.
2910  * OUT:
2911  *	NULL	: not found
2912  *	others	: found, pointer to a SA.
2913  */
2914 static struct secasvar *
2915 key_checkspidup(struct secasindex *saidx, u_int32_t spi)
2916 {
2917 	struct secashead *sah;
2918 	struct secasvar *sav;
2919 
2920 	/* check address family */
2921 	if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
2922 		ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
2923 			__func__));
2924 		return NULL;
2925 	}
2926 
2927 	sav = NULL;
2928 	/* check all SAD */
2929 	SAHTREE_LOCK();
2930 	LIST_FOREACH(sah, &V_sahtree, chain) {
2931 		if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
2932 			continue;
2933 		sav = key_getsavbyspi(sah, spi);
2934 		if (sav != NULL)
2935 			break;
2936 	}
2937 	SAHTREE_UNLOCK();
2938 
2939 	return sav;
2940 }
2941 
2942 /*
2943  * search SAD litmited alive SA, protocol, SPI.
2944  * OUT:
2945  *	NULL	: not found
2946  *	others	: found, pointer to a SA.
2947  */
2948 static struct secasvar *
2949 key_getsavbyspi(struct secashead *sah, u_int32_t spi)
2950 {
2951 	struct secasvar *sav;
2952 	u_int stateidx, state;
2953 
2954 	sav = NULL;
2955 	SAHTREE_LOCK_ASSERT();
2956 	/* search all status */
2957 	for (stateidx = 0;
2958 	     stateidx < _ARRAYLEN(saorder_state_alive);
2959 	     stateidx++) {
2960 
2961 		state = saorder_state_alive[stateidx];
2962 		LIST_FOREACH(sav, &sah->savtree[state], chain) {
2963 
2964 			/* sanity check */
2965 			if (sav->state != state) {
2966 				ipseclog((LOG_DEBUG, "%s: "
2967 				    "invalid sav->state (queue: %d SA: %d)\n",
2968 				    __func__, state, sav->state));
2969 				continue;
2970 			}
2971 
2972 			if (sav->spi == spi)
2973 				return sav;
2974 		}
2975 	}
2976 
2977 	return NULL;
2978 }
2979 
2980 /*
2981  * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
2982  * You must update these if need.
2983  * OUT:	0:	success.
2984  *	!0:	failure.
2985  *
2986  * does not modify mbuf.  does not free mbuf on error.
2987  */
2988 static int
2989 key_setsaval(struct secasvar *sav, struct mbuf *m,
2990     const struct sadb_msghdr *mhp)
2991 {
2992 	int error = 0;
2993 
2994 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2995 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2996 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2997 
2998 	/* initialization */
2999 	sav->replay = NULL;
3000 	sav->key_auth = NULL;
3001 	sav->key_enc = NULL;
3002 	sav->sched = NULL;
3003 	sav->schedlen = 0;
3004 	sav->iv = NULL;
3005 	sav->lft_c = NULL;
3006 	sav->lft_h = NULL;
3007 	sav->lft_s = NULL;
3008 	sav->tdb_xform = NULL;		/* transform */
3009 	sav->tdb_encalgxform = NULL;	/* encoding algorithm */
3010 	sav->tdb_authalgxform = NULL;	/* authentication algorithm */
3011 	sav->tdb_compalgxform = NULL;	/* compression algorithm */
3012 	/*  Initialize even if NAT-T not compiled in: */
3013 	sav->natt_type = 0;
3014 	sav->natt_esp_frag_len = 0;
3015 
3016 	/* SA */
3017 	if (mhp->ext[SADB_EXT_SA] != NULL) {
3018 		const struct sadb_sa *sa0;
3019 
3020 		sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3021 		if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3022 			error = EINVAL;
3023 			goto fail;
3024 		}
3025 
3026 		sav->alg_auth = sa0->sadb_sa_auth;
3027 		sav->alg_enc = sa0->sadb_sa_encrypt;
3028 		sav->flags = sa0->sadb_sa_flags;
3029 
3030 		/* replay window */
3031 		if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3032 			sav->replay = (struct secreplay *)
3033 				malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO);
3034 			if (sav->replay == NULL) {
3035 				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3036 					__func__));
3037 				error = ENOBUFS;
3038 				goto fail;
3039 			}
3040 			if (sa0->sadb_sa_replay != 0)
3041 				sav->replay->bitmap = (caddr_t)(sav->replay+1);
3042 			sav->replay->wsize = sa0->sadb_sa_replay;
3043 		}
3044 	}
3045 
3046 	/* Authentication keys */
3047 	if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3048 		const struct sadb_key *key0;
3049 		int len;
3050 
3051 		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3052 		len = mhp->extlen[SADB_EXT_KEY_AUTH];
3053 
3054 		error = 0;
3055 		if (len < sizeof(*key0)) {
3056 			error = EINVAL;
3057 			goto fail;
3058 		}
3059 		switch (mhp->msg->sadb_msg_satype) {
3060 		case SADB_SATYPE_AH:
3061 		case SADB_SATYPE_ESP:
3062 		case SADB_X_SATYPE_TCPSIGNATURE:
3063 			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3064 			    sav->alg_auth != SADB_X_AALG_NULL)
3065 				error = EINVAL;
3066 			break;
3067 		case SADB_X_SATYPE_IPCOMP:
3068 		default:
3069 			error = EINVAL;
3070 			break;
3071 		}
3072 		if (error) {
3073 			ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n",
3074 				__func__));
3075 			goto fail;
3076 		}
3077 
3078 		sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len,
3079 								M_IPSEC_MISC);
3080 		if (sav->key_auth == NULL ) {
3081 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3082 				  __func__));
3083 			error = ENOBUFS;
3084 			goto fail;
3085 		}
3086 	}
3087 
3088 	/* Encryption key */
3089 	if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3090 		const struct sadb_key *key0;
3091 		int len;
3092 
3093 		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3094 		len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3095 
3096 		error = 0;
3097 		if (len < sizeof(*key0)) {
3098 			error = EINVAL;
3099 			goto fail;
3100 		}
3101 		switch (mhp->msg->sadb_msg_satype) {
3102 		case SADB_SATYPE_ESP:
3103 			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3104 			    sav->alg_enc != SADB_EALG_NULL) {
3105 				error = EINVAL;
3106 				break;
3107 			}
3108 			sav->key_enc = (struct seckey *)key_dup_keymsg(key0,
3109 								       len,
3110 								       M_IPSEC_MISC);
3111 			if (sav->key_enc == NULL) {
3112 				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3113 					__func__));
3114 				error = ENOBUFS;
3115 				goto fail;
3116 			}
3117 			break;
3118 		case SADB_X_SATYPE_IPCOMP:
3119 			if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3120 				error = EINVAL;
3121 			sav->key_enc = NULL;	/*just in case*/
3122 			break;
3123 		case SADB_SATYPE_AH:
3124 		case SADB_X_SATYPE_TCPSIGNATURE:
3125 		default:
3126 			error = EINVAL;
3127 			break;
3128 		}
3129 		if (error) {
3130 			ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n",
3131 				__func__));
3132 			goto fail;
3133 		}
3134 	}
3135 
3136 	/* set iv */
3137 	sav->ivlen = 0;
3138 
3139 	switch (mhp->msg->sadb_msg_satype) {
3140 	case SADB_SATYPE_AH:
3141 		error = xform_init(sav, XF_AH);
3142 		break;
3143 	case SADB_SATYPE_ESP:
3144 		error = xform_init(sav, XF_ESP);
3145 		break;
3146 	case SADB_X_SATYPE_IPCOMP:
3147 		error = xform_init(sav, XF_IPCOMP);
3148 		break;
3149 	case SADB_X_SATYPE_TCPSIGNATURE:
3150 		error = xform_init(sav, XF_TCPSIGNATURE);
3151 		break;
3152 	}
3153 	if (error) {
3154 		ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n",
3155 		        __func__, mhp->msg->sadb_msg_satype));
3156 		goto fail;
3157 	}
3158 
3159 	/* reset created */
3160 	sav->created = time_second;
3161 
3162 	/* make lifetime for CURRENT */
3163 	sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT);
3164 	if (sav->lft_c == NULL) {
3165 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3166 		error = ENOBUFS;
3167 		goto fail;
3168 	}
3169 
3170 	sav->lft_c->allocations = 0;
3171 	sav->lft_c->bytes = 0;
3172 	sav->lft_c->addtime = time_second;
3173 	sav->lft_c->usetime = 0;
3174 
3175 	/* lifetimes for HARD and SOFT */
3176     {
3177 	const struct sadb_lifetime *lft0;
3178 
3179 	lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3180 	if (lft0 != NULL) {
3181 		if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3182 			error = EINVAL;
3183 			goto fail;
3184 		}
3185 		sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC);
3186 		if (sav->lft_h == NULL) {
3187 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3188 			error = ENOBUFS;
3189 			goto fail;
3190 		}
3191 		/* to be initialize ? */
3192 	}
3193 
3194 	lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3195 	if (lft0 != NULL) {
3196 		if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3197 			error = EINVAL;
3198 			goto fail;
3199 		}
3200 		sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC);
3201 		if (sav->lft_s == NULL) {
3202 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3203 			error = ENOBUFS;
3204 			goto fail;
3205 		}
3206 		/* to be initialize ? */
3207 	}
3208     }
3209 
3210 	return 0;
3211 
3212  fail:
3213 	/* initialization */
3214 	key_cleansav(sav);
3215 
3216 	return error;
3217 }
3218 
3219 /*
3220  * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3221  * OUT:	0:	valid
3222  *	other:	errno
3223  */
3224 static int
3225 key_mature(struct secasvar *sav)
3226 {
3227 	int error;
3228 
3229 	/* check SPI value */
3230 	switch (sav->sah->saidx.proto) {
3231 	case IPPROTO_ESP:
3232 	case IPPROTO_AH:
3233 		/*
3234 		 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values
3235 		 * 1-255 reserved by IANA for future use,
3236 		 * 0 for implementation specific, local use.
3237 		 */
3238 		if (ntohl(sav->spi) <= 255) {
3239 			ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n",
3240 			    __func__, (u_int32_t)ntohl(sav->spi)));
3241 			return EINVAL;
3242 		}
3243 		break;
3244 	}
3245 
3246 	/* check satype */
3247 	switch (sav->sah->saidx.proto) {
3248 	case IPPROTO_ESP:
3249 		/* check flags */
3250 		if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3251 		    (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3252 			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3253 				"given to old-esp.\n", __func__));
3254 			return EINVAL;
3255 		}
3256 		error = xform_init(sav, XF_ESP);
3257 		break;
3258 	case IPPROTO_AH:
3259 		/* check flags */
3260 		if (sav->flags & SADB_X_EXT_DERIV) {
3261 			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3262 				"given to AH SA.\n", __func__));
3263 			return EINVAL;
3264 		}
3265 		if (sav->alg_enc != SADB_EALG_NONE) {
3266 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3267 				"mismated.\n", __func__));
3268 			return(EINVAL);
3269 		}
3270 		error = xform_init(sav, XF_AH);
3271 		break;
3272 	case IPPROTO_IPCOMP:
3273 		if (sav->alg_auth != SADB_AALG_NONE) {
3274 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3275 				"mismated.\n", __func__));
3276 			return(EINVAL);
3277 		}
3278 		if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3279 		 && ntohl(sav->spi) >= 0x10000) {
3280 			ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n",
3281 				__func__));
3282 			return(EINVAL);
3283 		}
3284 		error = xform_init(sav, XF_IPCOMP);
3285 		break;
3286 	case IPPROTO_TCP:
3287 		if (sav->alg_enc != SADB_EALG_NONE) {
3288 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3289 				"mismated.\n", __func__));
3290 			return(EINVAL);
3291 		}
3292 		error = xform_init(sav, XF_TCPSIGNATURE);
3293 		break;
3294 	default:
3295 		ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__));
3296 		error = EPROTONOSUPPORT;
3297 		break;
3298 	}
3299 	if (error == 0) {
3300 		SAHTREE_LOCK();
3301 		key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3302 		SAHTREE_UNLOCK();
3303 	}
3304 	return (error);
3305 }
3306 
3307 /*
3308  * subroutine for SADB_GET and SADB_DUMP.
3309  */
3310 static struct mbuf *
3311 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3312     u_int32_t seq, u_int32_t pid)
3313 {
3314 	struct mbuf *result = NULL, *tres = NULL, *m;
3315 	int i;
3316 	int dumporder[] = {
3317 		SADB_EXT_SA, SADB_X_EXT_SA2,
3318 		SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3319 		SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3320 		SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3321 		SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3322 		SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3323 #ifdef IPSEC_NAT_T
3324 		SADB_X_EXT_NAT_T_TYPE,
3325 		SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3326 		SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3327 		SADB_X_EXT_NAT_T_FRAG,
3328 #endif
3329 	};
3330 
3331 	m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3332 	if (m == NULL)
3333 		goto fail;
3334 	result = m;
3335 
3336 	for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) {
3337 		m = NULL;
3338 		switch (dumporder[i]) {
3339 		case SADB_EXT_SA:
3340 			m = key_setsadbsa(sav);
3341 			if (!m)
3342 				goto fail;
3343 			break;
3344 
3345 		case SADB_X_EXT_SA2:
3346 			m = key_setsadbxsa2(sav->sah->saidx.mode,
3347 					sav->replay ? sav->replay->count : 0,
3348 					sav->sah->saidx.reqid);
3349 			if (!m)
3350 				goto fail;
3351 			break;
3352 
3353 		case SADB_EXT_ADDRESS_SRC:
3354 			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3355 			    &sav->sah->saidx.src.sa,
3356 			    FULLMASK, IPSEC_ULPROTO_ANY);
3357 			if (!m)
3358 				goto fail;
3359 			break;
3360 
3361 		case SADB_EXT_ADDRESS_DST:
3362 			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3363 			    &sav->sah->saidx.dst.sa,
3364 			    FULLMASK, IPSEC_ULPROTO_ANY);
3365 			if (!m)
3366 				goto fail;
3367 			break;
3368 
3369 		case SADB_EXT_KEY_AUTH:
3370 			if (!sav->key_auth)
3371 				continue;
3372 			m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH);
3373 			if (!m)
3374 				goto fail;
3375 			break;
3376 
3377 		case SADB_EXT_KEY_ENCRYPT:
3378 			if (!sav->key_enc)
3379 				continue;
3380 			m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT);
3381 			if (!m)
3382 				goto fail;
3383 			break;
3384 
3385 		case SADB_EXT_LIFETIME_CURRENT:
3386 			if (!sav->lft_c)
3387 				continue;
3388 			m = key_setlifetime(sav->lft_c,
3389 					    SADB_EXT_LIFETIME_CURRENT);
3390 			if (!m)
3391 				goto fail;
3392 			break;
3393 
3394 		case SADB_EXT_LIFETIME_HARD:
3395 			if (!sav->lft_h)
3396 				continue;
3397 			m = key_setlifetime(sav->lft_h,
3398 					    SADB_EXT_LIFETIME_HARD);
3399 			if (!m)
3400 				goto fail;
3401 			break;
3402 
3403 		case SADB_EXT_LIFETIME_SOFT:
3404 			if (!sav->lft_s)
3405 				continue;
3406 			m = key_setlifetime(sav->lft_s,
3407 					    SADB_EXT_LIFETIME_SOFT);
3408 
3409 			if (!m)
3410 				goto fail;
3411 			break;
3412 
3413 #ifdef IPSEC_NAT_T
3414 		case SADB_X_EXT_NAT_T_TYPE:
3415 			m = key_setsadbxtype(sav->natt_type);
3416 			if (!m)
3417 				goto fail;
3418 			break;
3419 
3420 		case SADB_X_EXT_NAT_T_DPORT:
3421 			m = key_setsadbxport(
3422 			    KEY_PORTFROMSADDR(&sav->sah->saidx.dst),
3423 			    SADB_X_EXT_NAT_T_DPORT);
3424 			if (!m)
3425 				goto fail;
3426 			break;
3427 
3428 		case SADB_X_EXT_NAT_T_SPORT:
3429 			m = key_setsadbxport(
3430 			    KEY_PORTFROMSADDR(&sav->sah->saidx.src),
3431 			    SADB_X_EXT_NAT_T_SPORT);
3432 			if (!m)
3433 				goto fail;
3434 			break;
3435 
3436 		case SADB_X_EXT_NAT_T_OAI:
3437 		case SADB_X_EXT_NAT_T_OAR:
3438 		case SADB_X_EXT_NAT_T_FRAG:
3439 			/* We do not (yet) support those. */
3440 			continue;
3441 #endif
3442 
3443 		case SADB_EXT_ADDRESS_PROXY:
3444 		case SADB_EXT_IDENTITY_SRC:
3445 		case SADB_EXT_IDENTITY_DST:
3446 			/* XXX: should we brought from SPD ? */
3447 		case SADB_EXT_SENSITIVITY:
3448 		default:
3449 			continue;
3450 		}
3451 
3452 		if (!m)
3453 			goto fail;
3454 		if (tres)
3455 			m_cat(m, tres);
3456 		tres = m;
3457 
3458 	}
3459 
3460 	m_cat(result, tres);
3461 	if (result->m_len < sizeof(struct sadb_msg)) {
3462 		result = m_pullup(result, sizeof(struct sadb_msg));
3463 		if (result == NULL)
3464 			goto fail;
3465 	}
3466 
3467 	result->m_pkthdr.len = 0;
3468 	for (m = result; m; m = m->m_next)
3469 		result->m_pkthdr.len += m->m_len;
3470 
3471 	mtod(result, struct sadb_msg *)->sadb_msg_len =
3472 	    PFKEY_UNIT64(result->m_pkthdr.len);
3473 
3474 	return result;
3475 
3476 fail:
3477 	m_freem(result);
3478 	m_freem(tres);
3479 	return NULL;
3480 }
3481 
3482 /*
3483  * set data into sadb_msg.
3484  */
3485 static struct mbuf *
3486 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq,
3487     pid_t pid, u_int16_t reserved)
3488 {
3489 	struct mbuf *m;
3490 	struct sadb_msg *p;
3491 	int len;
3492 
3493 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3494 	if (len > MCLBYTES)
3495 		return NULL;
3496 	MGETHDR(m, M_NOWAIT, MT_DATA);
3497 	if (m && len > MHLEN) {
3498 		if (!(MCLGET(m, M_NOWAIT))) {
3499 			m_freem(m);
3500 			m = NULL;
3501 		}
3502 	}
3503 	if (!m)
3504 		return NULL;
3505 	m->m_pkthdr.len = m->m_len = len;
3506 	m->m_next = NULL;
3507 
3508 	p = mtod(m, struct sadb_msg *);
3509 
3510 	bzero(p, len);
3511 	p->sadb_msg_version = PF_KEY_V2;
3512 	p->sadb_msg_type = type;
3513 	p->sadb_msg_errno = 0;
3514 	p->sadb_msg_satype = satype;
3515 	p->sadb_msg_len = PFKEY_UNIT64(tlen);
3516 	p->sadb_msg_reserved = reserved;
3517 	p->sadb_msg_seq = seq;
3518 	p->sadb_msg_pid = (u_int32_t)pid;
3519 
3520 	return m;
3521 }
3522 
3523 /*
3524  * copy secasvar data into sadb_address.
3525  */
3526 static struct mbuf *
3527 key_setsadbsa(struct secasvar *sav)
3528 {
3529 	struct mbuf *m;
3530 	struct sadb_sa *p;
3531 	int len;
3532 
3533 	len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3534 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3535 	if (m == NULL)
3536 		return (NULL);
3537 	m_align(m, len);
3538 	m->m_len = len;
3539 	p = mtod(m, struct sadb_sa *);
3540 	bzero(p, len);
3541 	p->sadb_sa_len = PFKEY_UNIT64(len);
3542 	p->sadb_sa_exttype = SADB_EXT_SA;
3543 	p->sadb_sa_spi = sav->spi;
3544 	p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3545 	p->sadb_sa_state = sav->state;
3546 	p->sadb_sa_auth = sav->alg_auth;
3547 	p->sadb_sa_encrypt = sav->alg_enc;
3548 	p->sadb_sa_flags = sav->flags;
3549 
3550 	return m;
3551 }
3552 
3553 /*
3554  * set data into sadb_address.
3555  */
3556 static struct mbuf *
3557 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
3558     u_int8_t prefixlen, u_int16_t ul_proto)
3559 {
3560 	struct mbuf *m;
3561 	struct sadb_address *p;
3562 	size_t len;
3563 
3564 	len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3565 	    PFKEY_ALIGN8(saddr->sa_len);
3566 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3567 	if (m == NULL)
3568 		return (NULL);
3569 	m_align(m, len);
3570 	m->m_len = len;
3571 	p = mtod(m, struct sadb_address *);
3572 
3573 	bzero(p, len);
3574 	p->sadb_address_len = PFKEY_UNIT64(len);
3575 	p->sadb_address_exttype = exttype;
3576 	p->sadb_address_proto = ul_proto;
3577 	if (prefixlen == FULLMASK) {
3578 		switch (saddr->sa_family) {
3579 		case AF_INET:
3580 			prefixlen = sizeof(struct in_addr) << 3;
3581 			break;
3582 		case AF_INET6:
3583 			prefixlen = sizeof(struct in6_addr) << 3;
3584 			break;
3585 		default:
3586 			; /*XXX*/
3587 		}
3588 	}
3589 	p->sadb_address_prefixlen = prefixlen;
3590 	p->sadb_address_reserved = 0;
3591 
3592 	bcopy(saddr,
3593 	    mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3594 	    saddr->sa_len);
3595 
3596 	return m;
3597 }
3598 
3599 /*
3600  * set data into sadb_x_sa2.
3601  */
3602 static struct mbuf *
3603 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid)
3604 {
3605 	struct mbuf *m;
3606 	struct sadb_x_sa2 *p;
3607 	size_t len;
3608 
3609 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3610 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3611 	if (m == NULL)
3612 		return (NULL);
3613 	m_align(m, len);
3614 	m->m_len = len;
3615 	p = mtod(m, struct sadb_x_sa2 *);
3616 
3617 	bzero(p, len);
3618 	p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3619 	p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3620 	p->sadb_x_sa2_mode = mode;
3621 	p->sadb_x_sa2_reserved1 = 0;
3622 	p->sadb_x_sa2_reserved2 = 0;
3623 	p->sadb_x_sa2_sequence = seq;
3624 	p->sadb_x_sa2_reqid = reqid;
3625 
3626 	return m;
3627 }
3628 
3629 #ifdef IPSEC_NAT_T
3630 /*
3631  * Set a type in sadb_x_nat_t_type.
3632  */
3633 static struct mbuf *
3634 key_setsadbxtype(u_int16_t type)
3635 {
3636 	struct mbuf *m;
3637 	size_t len;
3638 	struct sadb_x_nat_t_type *p;
3639 
3640 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3641 
3642 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3643 	if (m == NULL)
3644 		return (NULL);
3645 	m_align(m, len);
3646 	m->m_len = len;
3647 	p = mtod(m, struct sadb_x_nat_t_type *);
3648 
3649 	bzero(p, len);
3650 	p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3651 	p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3652 	p->sadb_x_nat_t_type_type = type;
3653 
3654 	return (m);
3655 }
3656 /*
3657  * Set a port in sadb_x_nat_t_port.
3658  * In contrast to default RFC 2367 behaviour, port is in network byte order.
3659  */
3660 static struct mbuf *
3661 key_setsadbxport(u_int16_t port, u_int16_t type)
3662 {
3663 	struct mbuf *m;
3664 	size_t len;
3665 	struct sadb_x_nat_t_port *p;
3666 
3667 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3668 
3669 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3670 	if (m == NULL)
3671 		return (NULL);
3672 	m_align(m, len);
3673 	m->m_len = len;
3674 	p = mtod(m, struct sadb_x_nat_t_port *);
3675 
3676 	bzero(p, len);
3677 	p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3678 	p->sadb_x_nat_t_port_exttype = type;
3679 	p->sadb_x_nat_t_port_port = port;
3680 
3681 	return (m);
3682 }
3683 
3684 /*
3685  * Get port from sockaddr. Port is in network byte order.
3686  */
3687 u_int16_t
3688 key_portfromsaddr(struct sockaddr *sa)
3689 {
3690 
3691 	switch (sa->sa_family) {
3692 #ifdef INET
3693 	case AF_INET:
3694 		return ((struct sockaddr_in *)sa)->sin_port;
3695 #endif
3696 #ifdef INET6
3697 	case AF_INET6:
3698 		return ((struct sockaddr_in6 *)sa)->sin6_port;
3699 #endif
3700 	}
3701 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
3702 		printf("DP %s unexpected address family %d\n",
3703 			__func__, sa->sa_family));
3704 	return (0);
3705 }
3706 #endif /* IPSEC_NAT_T */
3707 
3708 /*
3709  * Set port in struct sockaddr. Port is in network byte order.
3710  */
3711 static void
3712 key_porttosaddr(struct sockaddr *sa, u_int16_t port)
3713 {
3714 
3715 	switch (sa->sa_family) {
3716 #ifdef INET
3717 	case AF_INET:
3718 		((struct sockaddr_in *)sa)->sin_port = port;
3719 		break;
3720 #endif
3721 #ifdef INET6
3722 	case AF_INET6:
3723 		((struct sockaddr_in6 *)sa)->sin6_port = port;
3724 		break;
3725 #endif
3726 	default:
3727 		ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n",
3728 			__func__, sa->sa_family));
3729 		break;
3730 	}
3731 }
3732 
3733 /*
3734  * set data into sadb_x_policy
3735  */
3736 static struct mbuf *
3737 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
3738 {
3739 	struct mbuf *m;
3740 	struct sadb_x_policy *p;
3741 	size_t len;
3742 
3743 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
3744 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3745 	if (m == NULL)
3746 		return (NULL);
3747 	m_align(m, len);
3748 	m->m_len = len;
3749 	p = mtod(m, struct sadb_x_policy *);
3750 
3751 	bzero(p, len);
3752 	p->sadb_x_policy_len = PFKEY_UNIT64(len);
3753 	p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
3754 	p->sadb_x_policy_type = type;
3755 	p->sadb_x_policy_dir = dir;
3756 	p->sadb_x_policy_id = id;
3757 
3758 	return m;
3759 }
3760 
3761 /* %%% utilities */
3762 /* Take a key message (sadb_key) from the socket and turn it into one
3763  * of the kernel's key structures (seckey).
3764  *
3765  * IN: pointer to the src
3766  * OUT: NULL no more memory
3767  */
3768 struct seckey *
3769 key_dup_keymsg(const struct sadb_key *src, u_int len,
3770     struct malloc_type *type)
3771 {
3772 	struct seckey *dst;
3773 	dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT);
3774 	if (dst != NULL) {
3775 		dst->bits = src->sadb_key_bits;
3776 		dst->key_data = (char *)malloc(len, type, M_NOWAIT);
3777 		if (dst->key_data != NULL) {
3778 			bcopy((const char *)src + sizeof(struct sadb_key),
3779 			      dst->key_data, len);
3780 		} else {
3781 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3782 				  __func__));
3783 			free(dst, type);
3784 			dst = NULL;
3785 		}
3786 	} else {
3787 		ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3788 			  __func__));
3789 
3790 	}
3791 	return dst;
3792 }
3793 
3794 /* Take a lifetime message (sadb_lifetime) passed in on a socket and
3795  * turn it into one of the kernel's lifetime structures (seclifetime).
3796  *
3797  * IN: pointer to the destination, source and malloc type
3798  * OUT: NULL, no more memory
3799  */
3800 
3801 static struct seclifetime *
3802 key_dup_lifemsg(const struct sadb_lifetime *src, struct malloc_type *type)
3803 {
3804 	struct seclifetime *dst = NULL;
3805 
3806 	dst = (struct seclifetime *)malloc(sizeof(struct seclifetime),
3807 					   type, M_NOWAIT);
3808 	if (dst == NULL) {
3809 		/* XXX counter */
3810 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3811 	} else {
3812 		dst->allocations = src->sadb_lifetime_allocations;
3813 		dst->bytes = src->sadb_lifetime_bytes;
3814 		dst->addtime = src->sadb_lifetime_addtime;
3815 		dst->usetime = src->sadb_lifetime_usetime;
3816 	}
3817 	return dst;
3818 }
3819 
3820 /* compare my own address
3821  * OUT:	1: true, i.e. my address.
3822  *	0: false
3823  */
3824 int
3825 key_ismyaddr(struct sockaddr *sa)
3826 {
3827 
3828 	IPSEC_ASSERT(sa != NULL, ("null sockaddr"));
3829 	switch (sa->sa_family) {
3830 #ifdef INET
3831 	case AF_INET:
3832 		return (in_localip(satosin(sa)->sin_addr));
3833 #endif
3834 #ifdef INET6
3835 	case AF_INET6:
3836 		return key_ismyaddr6((struct sockaddr_in6 *)sa);
3837 #endif
3838 	}
3839 
3840 	return 0;
3841 }
3842 
3843 #ifdef INET6
3844 /*
3845  * compare my own address for IPv6.
3846  * 1: ours
3847  * 0: other
3848  * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
3849  */
3850 #include <netinet6/in6_var.h>
3851 
3852 static int
3853 key_ismyaddr6(struct sockaddr_in6 *sin6)
3854 {
3855 	struct in6_ifaddr *ia;
3856 #if 0
3857 	struct in6_multi *in6m;
3858 #endif
3859 
3860 	IN6_IFADDR_RLOCK();
3861 	TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) {
3862 		if (key_sockaddrcmp((struct sockaddr *)&sin6,
3863 		    (struct sockaddr *)&ia->ia_addr, 0) == 0) {
3864 			IN6_IFADDR_RUNLOCK();
3865 			return 1;
3866 		}
3867 
3868 #if 0
3869 		/*
3870 		 * XXX Multicast
3871 		 * XXX why do we care about multlicast here while we don't care
3872 		 * about IPv4 multicast??
3873 		 * XXX scope
3874 		 */
3875 		in6m = NULL;
3876 		IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m);
3877 		if (in6m) {
3878 			IN6_IFADDR_RUNLOCK();
3879 			return 1;
3880 		}
3881 #endif
3882 	}
3883 	IN6_IFADDR_RUNLOCK();
3884 
3885 	/* loopback, just for safety */
3886 	if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
3887 		return 1;
3888 
3889 	return 0;
3890 }
3891 #endif /*INET6*/
3892 
3893 /*
3894  * compare two secasindex structure.
3895  * flag can specify to compare 2 saidxes.
3896  * compare two secasindex structure without both mode and reqid.
3897  * don't compare port.
3898  * IN:
3899  *      saidx0: source, it can be in SAD.
3900  *      saidx1: object.
3901  * OUT:
3902  *      1 : equal
3903  *      0 : not equal
3904  */
3905 static int
3906 key_cmpsaidx(const struct secasindex *saidx0, const struct secasindex *saidx1,
3907     int flag)
3908 {
3909 	int chkport = 0;
3910 
3911 	/* sanity */
3912 	if (saidx0 == NULL && saidx1 == NULL)
3913 		return 1;
3914 
3915 	if (saidx0 == NULL || saidx1 == NULL)
3916 		return 0;
3917 
3918 	if (saidx0->proto != saidx1->proto)
3919 		return 0;
3920 
3921 	if (flag == CMP_EXACTLY) {
3922 		if (saidx0->mode != saidx1->mode)
3923 			return 0;
3924 		if (saidx0->reqid != saidx1->reqid)
3925 			return 0;
3926 		if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
3927 		    bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
3928 			return 0;
3929 	} else {
3930 
3931 		/* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
3932 		if (flag == CMP_MODE_REQID
3933 		  ||flag == CMP_REQID) {
3934 			/*
3935 			 * If reqid of SPD is non-zero, unique SA is required.
3936 			 * The result must be of same reqid in this case.
3937 			 */
3938 			if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
3939 				return 0;
3940 		}
3941 
3942 		if (flag == CMP_MODE_REQID) {
3943 			if (saidx0->mode != IPSEC_MODE_ANY
3944 			 && saidx0->mode != saidx1->mode)
3945 				return 0;
3946 		}
3947 
3948 #ifdef IPSEC_NAT_T
3949 		/*
3950 		 * If NAT-T is enabled, check ports for tunnel mode.
3951 		 * Do not check ports if they are set to zero in the SPD.
3952 		 * Also do not do it for native transport mode, as there
3953 		 * is no port information available in the SP.
3954 		 */
3955 		if ((saidx1->mode == IPSEC_MODE_TUNNEL ||
3956 		     (saidx1->mode == IPSEC_MODE_TRANSPORT &&
3957 		      saidx1->proto == IPPROTO_ESP)) &&
3958 		    saidx1->src.sa.sa_family == AF_INET &&
3959 		    saidx1->dst.sa.sa_family == AF_INET &&
3960 		    ((const struct sockaddr_in *)(&saidx1->src))->sin_port &&
3961 		    ((const struct sockaddr_in *)(&saidx1->dst))->sin_port)
3962 			chkport = 1;
3963 #endif /* IPSEC_NAT_T */
3964 
3965 		if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, chkport) != 0) {
3966 			return 0;
3967 		}
3968 		if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, chkport) != 0) {
3969 			return 0;
3970 		}
3971 	}
3972 
3973 	return 1;
3974 }
3975 
3976 /*
3977  * compare two secindex structure exactly.
3978  * IN:
3979  *	spidx0: source, it is often in SPD.
3980  *	spidx1: object, it is often from PFKEY message.
3981  * OUT:
3982  *	1 : equal
3983  *	0 : not equal
3984  */
3985 static int
3986 key_cmpspidx_exactly(struct secpolicyindex *spidx0,
3987     struct secpolicyindex *spidx1)
3988 {
3989 	/* sanity */
3990 	if (spidx0 == NULL && spidx1 == NULL)
3991 		return 1;
3992 
3993 	if (spidx0 == NULL || spidx1 == NULL)
3994 		return 0;
3995 
3996 	if (spidx0->prefs != spidx1->prefs
3997 	 || spidx0->prefd != spidx1->prefd
3998 	 || spidx0->ul_proto != spidx1->ul_proto)
3999 		return 0;
4000 
4001 	return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 &&
4002 	       key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0;
4003 }
4004 
4005 /*
4006  * compare two secindex structure with mask.
4007  * IN:
4008  *	spidx0: source, it is often in SPD.
4009  *	spidx1: object, it is often from IP header.
4010  * OUT:
4011  *	1 : equal
4012  *	0 : not equal
4013  */
4014 static int
4015 key_cmpspidx_withmask(struct secpolicyindex *spidx0,
4016     struct secpolicyindex *spidx1)
4017 {
4018 	/* sanity */
4019 	if (spidx0 == NULL && spidx1 == NULL)
4020 		return 1;
4021 
4022 	if (spidx0 == NULL || spidx1 == NULL)
4023 		return 0;
4024 
4025 	if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4026 	    spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4027 	    spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4028 	    spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4029 		return 0;
4030 
4031 	/* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4032 	if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
4033 	 && spidx0->ul_proto != spidx1->ul_proto)
4034 		return 0;
4035 
4036 	switch (spidx0->src.sa.sa_family) {
4037 	case AF_INET:
4038 		if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
4039 		 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4040 			return 0;
4041 		if (!key_bbcmp(&spidx0->src.sin.sin_addr,
4042 		    &spidx1->src.sin.sin_addr, spidx0->prefs))
4043 			return 0;
4044 		break;
4045 	case AF_INET6:
4046 		if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
4047 		 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4048 			return 0;
4049 		/*
4050 		 * scope_id check. if sin6_scope_id is 0, we regard it
4051 		 * as a wildcard scope, which matches any scope zone ID.
4052 		 */
4053 		if (spidx0->src.sin6.sin6_scope_id &&
4054 		    spidx1->src.sin6.sin6_scope_id &&
4055 		    spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4056 			return 0;
4057 		if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
4058 		    &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4059 			return 0;
4060 		break;
4061 	default:
4062 		/* XXX */
4063 		if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4064 			return 0;
4065 		break;
4066 	}
4067 
4068 	switch (spidx0->dst.sa.sa_family) {
4069 	case AF_INET:
4070 		if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
4071 		 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4072 			return 0;
4073 		if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
4074 		    &spidx1->dst.sin.sin_addr, spidx0->prefd))
4075 			return 0;
4076 		break;
4077 	case AF_INET6:
4078 		if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
4079 		 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4080 			return 0;
4081 		/*
4082 		 * scope_id check. if sin6_scope_id is 0, we regard it
4083 		 * as a wildcard scope, which matches any scope zone ID.
4084 		 */
4085 		if (spidx0->dst.sin6.sin6_scope_id &&
4086 		    spidx1->dst.sin6.sin6_scope_id &&
4087 		    spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4088 			return 0;
4089 		if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
4090 		    &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4091 			return 0;
4092 		break;
4093 	default:
4094 		/* XXX */
4095 		if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4096 			return 0;
4097 		break;
4098 	}
4099 
4100 	/* XXX Do we check other field ?  e.g. flowinfo */
4101 
4102 	return 1;
4103 }
4104 
4105 /* returns 0 on match */
4106 static int
4107 key_sockaddrcmp(const struct sockaddr *sa1, const struct sockaddr *sa2,
4108     int port)
4109 {
4110 #ifdef satosin
4111 #undef satosin
4112 #endif
4113 #define satosin(s) ((const struct sockaddr_in *)s)
4114 #ifdef satosin6
4115 #undef satosin6
4116 #endif
4117 #define satosin6(s) ((const struct sockaddr_in6 *)s)
4118 	if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
4119 		return 1;
4120 
4121 	switch (sa1->sa_family) {
4122 	case AF_INET:
4123 		if (sa1->sa_len != sizeof(struct sockaddr_in))
4124 			return 1;
4125 		if (satosin(sa1)->sin_addr.s_addr !=
4126 		    satosin(sa2)->sin_addr.s_addr) {
4127 			return 1;
4128 		}
4129 		if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port)
4130 			return 1;
4131 		break;
4132 	case AF_INET6:
4133 		if (sa1->sa_len != sizeof(struct sockaddr_in6))
4134 			return 1;	/*EINVAL*/
4135 		if (satosin6(sa1)->sin6_scope_id !=
4136 		    satosin6(sa2)->sin6_scope_id) {
4137 			return 1;
4138 		}
4139 		if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr,
4140 		    &satosin6(sa2)->sin6_addr)) {
4141 			return 1;
4142 		}
4143 		if (port &&
4144 		    satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) {
4145 			return 1;
4146 		}
4147 		break;
4148 	default:
4149 		if (bcmp(sa1, sa2, sa1->sa_len) != 0)
4150 			return 1;
4151 		break;
4152 	}
4153 
4154 	return 0;
4155 #undef satosin
4156 #undef satosin6
4157 }
4158 
4159 /*
4160  * compare two buffers with mask.
4161  * IN:
4162  *	addr1: source
4163  *	addr2: object
4164  *	bits:  Number of bits to compare
4165  * OUT:
4166  *	1 : equal
4167  *	0 : not equal
4168  */
4169 static int
4170 key_bbcmp(const void *a1, const void *a2, u_int bits)
4171 {
4172 	const unsigned char *p1 = a1;
4173 	const unsigned char *p2 = a2;
4174 
4175 	/* XXX: This could be considerably faster if we compare a word
4176 	 * at a time, but it is complicated on LSB Endian machines */
4177 
4178 	/* Handle null pointers */
4179 	if (p1 == NULL || p2 == NULL)
4180 		return (p1 == p2);
4181 
4182 	while (bits >= 8) {
4183 		if (*p1++ != *p2++)
4184 			return 0;
4185 		bits -= 8;
4186 	}
4187 
4188 	if (bits > 0) {
4189 		u_int8_t mask = ~((1<<(8-bits))-1);
4190 		if ((*p1 & mask) != (*p2 & mask))
4191 			return 0;
4192 	}
4193 	return 1;	/* Match! */
4194 }
4195 
4196 static void
4197 key_flush_spd(time_t now)
4198 {
4199 	SPTREE_RLOCK_TRACKER;
4200 	struct secpolicy *sp;
4201 	u_int dir;
4202 
4203 	/* SPD */
4204 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4205 restart:
4206 		SPTREE_RLOCK();
4207 		TAILQ_FOREACH(sp, &V_sptree[dir], chain) {
4208 			if (sp->lifetime == 0 && sp->validtime == 0)
4209 				continue;
4210 			if ((sp->lifetime &&
4211 			    now - sp->created > sp->lifetime) ||
4212 			    (sp->validtime &&
4213 			    now - sp->lastused > sp->validtime)) {
4214 				SPTREE_RUNLOCK();
4215 				key_unlink(sp);
4216 				key_spdexpire(sp);
4217 				KEY_FREESP(&sp);
4218 				goto restart;
4219 			}
4220 		}
4221 		SPTREE_RUNLOCK();
4222 	}
4223 }
4224 
4225 static void
4226 key_flush_sad(time_t now)
4227 {
4228 	struct secashead *sah, *nextsah;
4229 	struct secasvar *sav, *nextsav;
4230 
4231 	/* SAD */
4232 	SAHTREE_LOCK();
4233 	LIST_FOREACH_SAFE(sah, &V_sahtree, chain, nextsah) {
4234 		/* if sah has been dead, then delete it and process next sah. */
4235 		if (sah->state == SADB_SASTATE_DEAD) {
4236 			key_delsah(sah);
4237 			continue;
4238 		}
4239 
4240 		/* if LARVAL entry doesn't become MATURE, delete it. */
4241 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) {
4242 			/* Need to also check refcnt for a larval SA ??? */
4243 			if (now - sav->created > V_key_larval_lifetime)
4244 				KEY_FREESAV(&sav);
4245 		}
4246 
4247 		/*
4248 		 * check MATURE entry to start to send expire message
4249 		 * whether or not.
4250 		 */
4251 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) {
4252 			/* we don't need to check. */
4253 			if (sav->lft_s == NULL)
4254 				continue;
4255 
4256 			/* sanity check */
4257 			if (sav->lft_c == NULL) {
4258 				ipseclog((LOG_DEBUG,"%s: there is no CURRENT "
4259 					"time, why?\n", __func__));
4260 				continue;
4261 			}
4262 
4263 			/* check SOFT lifetime */
4264 			if (sav->lft_s->addtime != 0 &&
4265 			    now - sav->created > sav->lft_s->addtime) {
4266 				key_sa_chgstate(sav, SADB_SASTATE_DYING);
4267 				/*
4268 				 * Actually, only send expire message if
4269 				 * SA has been used, as it was done before,
4270 				 * but should we always send such message,
4271 				 * and let IKE daemon decide if it should be
4272 				 * renegotiated or not ?
4273 				 * XXX expire message will actually NOT be
4274 				 * sent if SA is only used after soft
4275 				 * lifetime has been reached, see below
4276 				 * (DYING state)
4277 				 */
4278 				if (sav->lft_c->usetime != 0)
4279 					key_expire(sav);
4280 			}
4281 			/* check SOFT lifetime by bytes */
4282 			/*
4283 			 * XXX I don't know the way to delete this SA
4284 			 * when new SA is installed.  Caution when it's
4285 			 * installed too big lifetime by time.
4286 			 */
4287 			else if (sav->lft_s->bytes != 0 &&
4288 			    sav->lft_s->bytes < sav->lft_c->bytes) {
4289 
4290 				key_sa_chgstate(sav, SADB_SASTATE_DYING);
4291 				/*
4292 				 * XXX If we keep to send expire
4293 				 * message in the status of
4294 				 * DYING. Do remove below code.
4295 				 */
4296 				key_expire(sav);
4297 			}
4298 		}
4299 
4300 		/* check DYING entry to change status to DEAD. */
4301 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) {
4302 			/* we don't need to check. */
4303 			if (sav->lft_h == NULL)
4304 				continue;
4305 
4306 			/* sanity check */
4307 			if (sav->lft_c == NULL) {
4308 				ipseclog((LOG_DEBUG, "%s: there is no CURRENT "
4309 					"time, why?\n", __func__));
4310 				continue;
4311 			}
4312 
4313 			if (sav->lft_h->addtime != 0 &&
4314 			    now - sav->created > sav->lft_h->addtime) {
4315 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4316 				KEY_FREESAV(&sav);
4317 			}
4318 #if 0	/* XXX Should we keep to send expire message until HARD lifetime ? */
4319 			else if (sav->lft_s != NULL
4320 			      && sav->lft_s->addtime != 0
4321 			      && now - sav->created > sav->lft_s->addtime) {
4322 				/*
4323 				 * XXX: should be checked to be
4324 				 * installed the valid SA.
4325 				 */
4326 
4327 				/*
4328 				 * If there is no SA then sending
4329 				 * expire message.
4330 				 */
4331 				key_expire(sav);
4332 			}
4333 #endif
4334 			/* check HARD lifetime by bytes */
4335 			else if (sav->lft_h->bytes != 0 &&
4336 			    sav->lft_h->bytes < sav->lft_c->bytes) {
4337 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4338 				KEY_FREESAV(&sav);
4339 			}
4340 		}
4341 
4342 		/* delete entry in DEAD */
4343 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) {
4344 			/* sanity check */
4345 			if (sav->state != SADB_SASTATE_DEAD) {
4346 				ipseclog((LOG_DEBUG, "%s: invalid sav->state "
4347 					"(queue: %d SA: %d): kill it anyway\n",
4348 					__func__,
4349 					SADB_SASTATE_DEAD, sav->state));
4350 			}
4351 			/*
4352 			 * do not call key_freesav() here.
4353 			 * sav should already be freed, and sav->refcnt
4354 			 * shows other references to sav
4355 			 * (such as from SPD).
4356 			 */
4357 		}
4358 	}
4359 	SAHTREE_UNLOCK();
4360 }
4361 
4362 static void
4363 key_flush_acq(time_t now)
4364 {
4365 	struct secacq *acq, *nextacq;
4366 
4367 	/* ACQ tree */
4368 	ACQ_LOCK();
4369 	for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) {
4370 		nextacq = LIST_NEXT(acq, chain);
4371 		if (now - acq->created > V_key_blockacq_lifetime
4372 		 && __LIST_CHAINED(acq)) {
4373 			LIST_REMOVE(acq, chain);
4374 			free(acq, M_IPSEC_SAQ);
4375 		}
4376 	}
4377 	ACQ_UNLOCK();
4378 }
4379 
4380 static void
4381 key_flush_spacq(time_t now)
4382 {
4383 	struct secspacq *acq, *nextacq;
4384 
4385 	/* SP ACQ tree */
4386 	SPACQ_LOCK();
4387 	for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) {
4388 		nextacq = LIST_NEXT(acq, chain);
4389 		if (now - acq->created > V_key_blockacq_lifetime
4390 		 && __LIST_CHAINED(acq)) {
4391 			LIST_REMOVE(acq, chain);
4392 			free(acq, M_IPSEC_SAQ);
4393 		}
4394 	}
4395 	SPACQ_UNLOCK();
4396 }
4397 
4398 /*
4399  * time handler.
4400  * scanning SPD and SAD to check status for each entries,
4401  * and do to remove or to expire.
4402  * XXX: year 2038 problem may remain.
4403  */
4404 static void
4405 key_timehandler(void *arg)
4406 {
4407 	VNET_ITERATOR_DECL(vnet_iter);
4408 	time_t now = time_second;
4409 
4410 	VNET_LIST_RLOCK_NOSLEEP();
4411 	VNET_FOREACH(vnet_iter) {
4412 		CURVNET_SET(vnet_iter);
4413 		key_flush_spd(now);
4414 		key_flush_sad(now);
4415 		key_flush_acq(now);
4416 		key_flush_spacq(now);
4417 		CURVNET_RESTORE();
4418 	}
4419 	VNET_LIST_RUNLOCK_NOSLEEP();
4420 
4421 #ifndef IPSEC_DEBUG2
4422 	/* do exchange to tick time !! */
4423 	callout_schedule(&key_timer, hz);
4424 #endif /* IPSEC_DEBUG2 */
4425 }
4426 
4427 u_long
4428 key_random()
4429 {
4430 	u_long value;
4431 
4432 	key_randomfill(&value, sizeof(value));
4433 	return value;
4434 }
4435 
4436 void
4437 key_randomfill(void *p, size_t l)
4438 {
4439 	size_t n;
4440 	u_long v;
4441 	static int warn = 1;
4442 
4443 	n = 0;
4444 	n = (size_t)read_random(p, (u_int)l);
4445 	/* last resort */
4446 	while (n < l) {
4447 		v = random();
4448 		bcopy(&v, (u_int8_t *)p + n,
4449 		    l - n < sizeof(v) ? l - n : sizeof(v));
4450 		n += sizeof(v);
4451 
4452 		if (warn) {
4453 			printf("WARNING: pseudo-random number generator "
4454 			    "used for IPsec processing\n");
4455 			warn = 0;
4456 		}
4457 	}
4458 }
4459 
4460 /*
4461  * map SADB_SATYPE_* to IPPROTO_*.
4462  * if satype == SADB_SATYPE then satype is mapped to ~0.
4463  * OUT:
4464  *	0: invalid satype.
4465  */
4466 static u_int16_t
4467 key_satype2proto(u_int8_t satype)
4468 {
4469 	switch (satype) {
4470 	case SADB_SATYPE_UNSPEC:
4471 		return IPSEC_PROTO_ANY;
4472 	case SADB_SATYPE_AH:
4473 		return IPPROTO_AH;
4474 	case SADB_SATYPE_ESP:
4475 		return IPPROTO_ESP;
4476 	case SADB_X_SATYPE_IPCOMP:
4477 		return IPPROTO_IPCOMP;
4478 	case SADB_X_SATYPE_TCPSIGNATURE:
4479 		return IPPROTO_TCP;
4480 	default:
4481 		return 0;
4482 	}
4483 	/* NOTREACHED */
4484 }
4485 
4486 /*
4487  * map IPPROTO_* to SADB_SATYPE_*
4488  * OUT:
4489  *	0: invalid protocol type.
4490  */
4491 static u_int8_t
4492 key_proto2satype(u_int16_t proto)
4493 {
4494 	switch (proto) {
4495 	case IPPROTO_AH:
4496 		return SADB_SATYPE_AH;
4497 	case IPPROTO_ESP:
4498 		return SADB_SATYPE_ESP;
4499 	case IPPROTO_IPCOMP:
4500 		return SADB_X_SATYPE_IPCOMP;
4501 	case IPPROTO_TCP:
4502 		return SADB_X_SATYPE_TCPSIGNATURE;
4503 	default:
4504 		return 0;
4505 	}
4506 	/* NOTREACHED */
4507 }
4508 
4509 /* %%% PF_KEY */
4510 /*
4511  * SADB_GETSPI processing is to receive
4512  *	<base, (SA2), src address, dst address, (SPI range)>
4513  * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4514  * tree with the status of LARVAL, and send
4515  *	<base, SA(*), address(SD)>
4516  * to the IKMPd.
4517  *
4518  * IN:	mhp: pointer to the pointer to each header.
4519  * OUT:	NULL if fail.
4520  *	other if success, return pointer to the message to send.
4521  */
4522 static int
4523 key_getspi(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
4524 {
4525 	struct sadb_address *src0, *dst0;
4526 	struct secasindex saidx;
4527 	struct secashead *newsah;
4528 	struct secasvar *newsav;
4529 	u_int8_t proto;
4530 	u_int32_t spi;
4531 	u_int8_t mode;
4532 	u_int32_t reqid;
4533 	int error;
4534 
4535 	IPSEC_ASSERT(so != NULL, ("null socket"));
4536 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4537 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4538 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4539 
4540 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4541 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4542 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4543 			__func__));
4544 		return key_senderror(so, m, EINVAL);
4545 	}
4546 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4547 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4548 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4549 			__func__));
4550 		return key_senderror(so, m, EINVAL);
4551 	}
4552 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4553 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4554 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4555 	} else {
4556 		mode = IPSEC_MODE_ANY;
4557 		reqid = 0;
4558 	}
4559 
4560 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4561 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4562 
4563 	/* map satype to proto */
4564 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4565 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4566 			__func__));
4567 		return key_senderror(so, m, EINVAL);
4568 	}
4569 
4570 	/*
4571 	 * Make sure the port numbers are zero.
4572 	 * In case of NAT-T we will update them later if needed.
4573 	 */
4574 	switch (((struct sockaddr *)(src0 + 1))->sa_family) {
4575 	case AF_INET:
4576 		if (((struct sockaddr *)(src0 + 1))->sa_len !=
4577 		    sizeof(struct sockaddr_in))
4578 			return key_senderror(so, m, EINVAL);
4579 		((struct sockaddr_in *)(src0 + 1))->sin_port = 0;
4580 		break;
4581 	case AF_INET6:
4582 		if (((struct sockaddr *)(src0 + 1))->sa_len !=
4583 		    sizeof(struct sockaddr_in6))
4584 			return key_senderror(so, m, EINVAL);
4585 		((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0;
4586 		break;
4587 	default:
4588 		; /*???*/
4589 	}
4590 	switch (((struct sockaddr *)(dst0 + 1))->sa_family) {
4591 	case AF_INET:
4592 		if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4593 		    sizeof(struct sockaddr_in))
4594 			return key_senderror(so, m, EINVAL);
4595 		((struct sockaddr_in *)(dst0 + 1))->sin_port = 0;
4596 		break;
4597 	case AF_INET6:
4598 		if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4599 		    sizeof(struct sockaddr_in6))
4600 			return key_senderror(so, m, EINVAL);
4601 		((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0;
4602 		break;
4603 	default:
4604 		; /*???*/
4605 	}
4606 
4607 	/* XXX boundary check against sa_len */
4608 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4609 
4610 #ifdef IPSEC_NAT_T
4611 	/*
4612 	 * Handle NAT-T info if present.
4613 	 * We made sure the port numbers are zero above, so we do
4614 	 * not have to worry in case we do not update them.
4615 	 */
4616 	if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
4617 		ipseclog((LOG_DEBUG, "%s: NAT-T OAi present\n", __func__));
4618 	if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
4619 		ipseclog((LOG_DEBUG, "%s: NAT-T OAr present\n", __func__));
4620 
4621 	if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
4622 	    mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
4623 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
4624 		struct sadb_x_nat_t_type *type;
4625 		struct sadb_x_nat_t_port *sport, *dport;
4626 
4627 		if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
4628 		    mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
4629 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
4630 			ipseclog((LOG_DEBUG, "%s: invalid nat-t message "
4631 			    "passed.\n", __func__));
4632 			return key_senderror(so, m, EINVAL);
4633 		}
4634 
4635 		sport = (struct sadb_x_nat_t_port *)
4636 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
4637 		dport = (struct sadb_x_nat_t_port *)
4638 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
4639 
4640 		if (sport)
4641 			KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port);
4642 		if (dport)
4643 			KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port);
4644 	}
4645 #endif
4646 
4647 	/* SPI allocation */
4648 	spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4649 	                       &saidx);
4650 	if (spi == 0)
4651 		return key_senderror(so, m, EINVAL);
4652 
4653 	/* get a SA index */
4654 	if ((newsah = key_getsah(&saidx)) == NULL) {
4655 		/* create a new SA index */
4656 		if ((newsah = key_newsah(&saidx)) == NULL) {
4657 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
4658 			return key_senderror(so, m, ENOBUFS);
4659 		}
4660 	}
4661 
4662 	/* get a new SA */
4663 	/* XXX rewrite */
4664 	newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4665 	if (newsav == NULL) {
4666 		/* XXX don't free new SA index allocated in above. */
4667 		return key_senderror(so, m, error);
4668 	}
4669 
4670 	/* set spi */
4671 	newsav->spi = htonl(spi);
4672 
4673 	/* delete the entry in acqtree */
4674 	if (mhp->msg->sadb_msg_seq != 0) {
4675 		struct secacq *acq;
4676 		if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) {
4677 			/* reset counter in order to deletion by timehandler. */
4678 			acq->created = time_second;
4679 			acq->count = 0;
4680 		}
4681     	}
4682 
4683     {
4684 	struct mbuf *n, *nn;
4685 	struct sadb_sa *m_sa;
4686 	struct sadb_msg *newmsg;
4687 	int off, len;
4688 
4689 	/* create new sadb_msg to reply. */
4690 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4691 	    PFKEY_ALIGN8(sizeof(struct sadb_sa));
4692 
4693 	MGETHDR(n, M_NOWAIT, MT_DATA);
4694 	if (len > MHLEN) {
4695 		if (!(MCLGET(n, M_NOWAIT))) {
4696 			m_freem(n);
4697 			n = NULL;
4698 		}
4699 	}
4700 	if (!n)
4701 		return key_senderror(so, m, ENOBUFS);
4702 
4703 	n->m_len = len;
4704 	n->m_next = NULL;
4705 	off = 0;
4706 
4707 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
4708 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4709 
4710 	m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off);
4711 	m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4712 	m_sa->sadb_sa_exttype = SADB_EXT_SA;
4713 	m_sa->sadb_sa_spi = htonl(spi);
4714 	off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4715 
4716 	IPSEC_ASSERT(off == len,
4717 		("length inconsistency (off %u len %u)", off, len));
4718 
4719 	n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4720 	    SADB_EXT_ADDRESS_DST);
4721 	if (!n->m_next) {
4722 		m_freem(n);
4723 		return key_senderror(so, m, ENOBUFS);
4724 	}
4725 
4726 	if (n->m_len < sizeof(struct sadb_msg)) {
4727 		n = m_pullup(n, sizeof(struct sadb_msg));
4728 		if (n == NULL)
4729 			return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
4730 	}
4731 
4732 	n->m_pkthdr.len = 0;
4733 	for (nn = n; nn; nn = nn->m_next)
4734 		n->m_pkthdr.len += nn->m_len;
4735 
4736 	newmsg = mtod(n, struct sadb_msg *);
4737 	newmsg->sadb_msg_seq = newsav->seq;
4738 	newmsg->sadb_msg_errno = 0;
4739 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
4740 
4741 	m_freem(m);
4742 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
4743     }
4744 }
4745 
4746 /*
4747  * allocating new SPI
4748  * called by key_getspi().
4749  * OUT:
4750  *	0:	failure.
4751  *	others: success.
4752  */
4753 static u_int32_t
4754 key_do_getnewspi(struct sadb_spirange *spirange, struct secasindex *saidx)
4755 {
4756 	u_int32_t newspi;
4757 	u_int32_t min, max;
4758 	int count = V_key_spi_trycnt;
4759 
4760 	/* set spi range to allocate */
4761 	if (spirange != NULL) {
4762 		min = spirange->sadb_spirange_min;
4763 		max = spirange->sadb_spirange_max;
4764 	} else {
4765 		min = V_key_spi_minval;
4766 		max = V_key_spi_maxval;
4767 	}
4768 	/* IPCOMP needs 2-byte SPI */
4769 	if (saidx->proto == IPPROTO_IPCOMP) {
4770 		u_int32_t t;
4771 		if (min >= 0x10000)
4772 			min = 0xffff;
4773 		if (max >= 0x10000)
4774 			max = 0xffff;
4775 		if (min > max) {
4776 			t = min; min = max; max = t;
4777 		}
4778 	}
4779 
4780 	if (min == max) {
4781 		if (key_checkspidup(saidx, min) != NULL) {
4782 			ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n",
4783 				__func__, min));
4784 			return 0;
4785 		}
4786 
4787 		count--; /* taking one cost. */
4788 		newspi = min;
4789 
4790 	} else {
4791 
4792 		/* init SPI */
4793 		newspi = 0;
4794 
4795 		/* when requesting to allocate spi ranged */
4796 		while (count--) {
4797 			/* generate pseudo-random SPI value ranged. */
4798 			newspi = min + (key_random() % (max - min + 1));
4799 
4800 			if (key_checkspidup(saidx, newspi) == NULL)
4801 				break;
4802 		}
4803 
4804 		if (count == 0 || newspi == 0) {
4805 			ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n",
4806 				__func__));
4807 			return 0;
4808 		}
4809 	}
4810 
4811 	/* statistics */
4812 	keystat.getspi_count =
4813 		(keystat.getspi_count + V_key_spi_trycnt - count) / 2;
4814 
4815 	return newspi;
4816 }
4817 
4818 /*
4819  * SADB_UPDATE processing
4820  * receive
4821  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4822  *       key(AE), (identity(SD),) (sensitivity)>
4823  * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
4824  * and send
4825  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4826  *       (identity(SD),) (sensitivity)>
4827  * to the ikmpd.
4828  *
4829  * m will always be freed.
4830  */
4831 static int
4832 key_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
4833 {
4834 	struct sadb_sa *sa0;
4835 	struct sadb_address *src0, *dst0;
4836 #ifdef IPSEC_NAT_T
4837 	struct sadb_x_nat_t_type *type;
4838 	struct sadb_x_nat_t_port *sport, *dport;
4839 	struct sadb_address *iaddr, *raddr;
4840 	struct sadb_x_nat_t_frag *frag;
4841 #endif
4842 	struct secasindex saidx;
4843 	struct secashead *sah;
4844 	struct secasvar *sav;
4845 	u_int16_t proto;
4846 	u_int8_t mode;
4847 	u_int32_t reqid;
4848 	int error;
4849 
4850 	IPSEC_ASSERT(so != NULL, ("null socket"));
4851 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4852 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4853 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4854 
4855 	/* map satype to proto */
4856 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4857 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4858 			__func__));
4859 		return key_senderror(so, m, EINVAL);
4860 	}
4861 
4862 	if (mhp->ext[SADB_EXT_SA] == NULL ||
4863 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4864 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
4865 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
4866 	     mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
4867 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
4868 	     mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
4869 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
4870 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
4871 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
4872 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
4873 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4874 			__func__));
4875 		return key_senderror(so, m, EINVAL);
4876 	}
4877 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
4878 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4879 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4880 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4881 			__func__));
4882 		return key_senderror(so, m, EINVAL);
4883 	}
4884 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4885 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4886 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4887 	} else {
4888 		mode = IPSEC_MODE_ANY;
4889 		reqid = 0;
4890 	}
4891 	/* XXX boundary checking for other extensions */
4892 
4893 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
4894 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4895 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4896 
4897 	/* XXX boundary check against sa_len */
4898 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4899 
4900 	/*
4901 	 * Make sure the port numbers are zero.
4902 	 * In case of NAT-T we will update them later if needed.
4903 	 */
4904 	KEY_PORTTOSADDR(&saidx.src, 0);
4905 	KEY_PORTTOSADDR(&saidx.dst, 0);
4906 
4907 #ifdef IPSEC_NAT_T
4908 	/*
4909 	 * Handle NAT-T info if present.
4910 	 */
4911 	if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
4912 	    mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
4913 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
4914 
4915 		if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
4916 		    mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
4917 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
4918 			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
4919 			    __func__));
4920 			return key_senderror(so, m, EINVAL);
4921 		}
4922 
4923 		type = (struct sadb_x_nat_t_type *)
4924 		    mhp->ext[SADB_X_EXT_NAT_T_TYPE];
4925 		sport = (struct sadb_x_nat_t_port *)
4926 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
4927 		dport = (struct sadb_x_nat_t_port *)
4928 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
4929 	} else {
4930 		type = 0;
4931 		sport = dport = 0;
4932 	}
4933 	if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL &&
4934 	    mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
4935 		if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) ||
4936 		    mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
4937 			ipseclog((LOG_DEBUG, "%s: invalid message\n",
4938 			    __func__));
4939 			return key_senderror(so, m, EINVAL);
4940 		}
4941 		iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
4942 		raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
4943 		ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__));
4944 	} else {
4945 		iaddr = raddr = NULL;
4946 	}
4947 	if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
4948 		if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
4949 			ipseclog((LOG_DEBUG, "%s: invalid message\n",
4950 			    __func__));
4951 			return key_senderror(so, m, EINVAL);
4952 		}
4953 		frag = (struct sadb_x_nat_t_frag *)
4954 		    mhp->ext[SADB_X_EXT_NAT_T_FRAG];
4955 	} else {
4956 		frag = 0;
4957 	}
4958 #endif
4959 
4960 	/* get a SA header */
4961 	if ((sah = key_getsah(&saidx)) == NULL) {
4962 		ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__));
4963 		return key_senderror(so, m, ENOENT);
4964 	}
4965 
4966 	/* set spidx if there */
4967 	/* XXX rewrite */
4968 	error = key_setident(sah, m, mhp);
4969 	if (error)
4970 		return key_senderror(so, m, error);
4971 
4972 	/* find a SA with sequence number. */
4973 #ifdef IPSEC_DOSEQCHECK
4974 	if (mhp->msg->sadb_msg_seq != 0
4975 	 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) {
4976 		ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u "
4977 			"exists.\n", __func__, mhp->msg->sadb_msg_seq));
4978 		return key_senderror(so, m, ENOENT);
4979 	}
4980 #else
4981 	SAHTREE_LOCK();
4982 	sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
4983 	SAHTREE_UNLOCK();
4984 	if (sav == NULL) {
4985 		ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n",
4986 			__func__, (u_int32_t)ntohl(sa0->sadb_sa_spi)));
4987 		return key_senderror(so, m, EINVAL);
4988 	}
4989 #endif
4990 
4991 	/* validity check */
4992 	if (sav->sah->saidx.proto != proto) {
4993 		ipseclog((LOG_DEBUG, "%s: protocol mismatched "
4994 			"(DB=%u param=%u)\n", __func__,
4995 			sav->sah->saidx.proto, proto));
4996 		return key_senderror(so, m, EINVAL);
4997 	}
4998 #ifdef IPSEC_DOSEQCHECK
4999 	if (sav->spi != sa0->sadb_sa_spi) {
5000 		ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n",
5001 		    __func__,
5002 		    (u_int32_t)ntohl(sav->spi),
5003 		    (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5004 		return key_senderror(so, m, EINVAL);
5005 	}
5006 #endif
5007 	if (sav->pid != mhp->msg->sadb_msg_pid) {
5008 		ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n",
5009 		    __func__, sav->pid, mhp->msg->sadb_msg_pid));
5010 		return key_senderror(so, m, EINVAL);
5011 	}
5012 
5013 	/* copy sav values */
5014 	error = key_setsaval(sav, m, mhp);
5015 	if (error) {
5016 		KEY_FREESAV(&sav);
5017 		return key_senderror(so, m, error);
5018 	}
5019 
5020 #ifdef IPSEC_NAT_T
5021 	/*
5022 	 * Handle more NAT-T info if present,
5023 	 * now that we have a sav to fill.
5024 	 */
5025 	if (type)
5026 		sav->natt_type = type->sadb_x_nat_t_type_type;
5027 
5028 	if (sport)
5029 		KEY_PORTTOSADDR(&sav->sah->saidx.src,
5030 		    sport->sadb_x_nat_t_port_port);
5031 	if (dport)
5032 		KEY_PORTTOSADDR(&sav->sah->saidx.dst,
5033 		    dport->sadb_x_nat_t_port_port);
5034 
5035 #if 0
5036 	/*
5037 	 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0.
5038 	 * We should actually check for a minimum MTU here, if we
5039 	 * want to support it in ip_output.
5040 	 */
5041 	if (frag)
5042 		sav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen;
5043 #endif
5044 #endif
5045 
5046 	/* check SA values to be mature. */
5047 	if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) {
5048 		KEY_FREESAV(&sav);
5049 		return key_senderror(so, m, 0);
5050 	}
5051 
5052     {
5053 	struct mbuf *n;
5054 
5055 	/* set msg buf from mhp */
5056 	n = key_getmsgbuf_x1(m, mhp);
5057 	if (n == NULL) {
5058 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5059 		return key_senderror(so, m, ENOBUFS);
5060 	}
5061 
5062 	m_freem(m);
5063 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5064     }
5065 }
5066 
5067 /*
5068  * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5069  * only called by key_update().
5070  * OUT:
5071  *	NULL	: not found
5072  *	others	: found, pointer to a SA.
5073  */
5074 #ifdef IPSEC_DOSEQCHECK
5075 static struct secasvar *
5076 key_getsavbyseq(struct secashead *sah, u_int32_t seq)
5077 {
5078 	struct secasvar *sav;
5079 	u_int state;
5080 
5081 	state = SADB_SASTATE_LARVAL;
5082 
5083 	/* search SAD with sequence number ? */
5084 	LIST_FOREACH(sav, &sah->savtree[state], chain) {
5085 
5086 		KEY_CHKSASTATE(state, sav->state, __func__);
5087 
5088 		if (sav->seq == seq) {
5089 			sa_addref(sav);
5090 			KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
5091 				printf("DP %s cause refcnt++:%d SA:%p\n",
5092 					__func__, sav->refcnt, sav));
5093 			return sav;
5094 		}
5095 	}
5096 
5097 	return NULL;
5098 }
5099 #endif
5100 
5101 /*
5102  * SADB_ADD processing
5103  * add an entry to SA database, when received
5104  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5105  *       key(AE), (identity(SD),) (sensitivity)>
5106  * from the ikmpd,
5107  * and send
5108  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5109  *       (identity(SD),) (sensitivity)>
5110  * to the ikmpd.
5111  *
5112  * IGNORE identity and sensitivity messages.
5113  *
5114  * m will always be freed.
5115  */
5116 static int
5117 key_add(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5118 {
5119 	struct sadb_sa *sa0;
5120 	struct sadb_address *src0, *dst0;
5121 #ifdef IPSEC_NAT_T
5122 	struct sadb_x_nat_t_type *type;
5123 	struct sadb_address *iaddr, *raddr;
5124 	struct sadb_x_nat_t_frag *frag;
5125 #endif
5126 	struct secasindex saidx;
5127 	struct secashead *newsah;
5128 	struct secasvar *newsav;
5129 	u_int16_t proto;
5130 	u_int8_t mode;
5131 	u_int32_t reqid;
5132 	int error;
5133 
5134 	IPSEC_ASSERT(so != NULL, ("null socket"));
5135 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5136 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5137 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5138 
5139 	/* map satype to proto */
5140 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5141 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5142 			__func__));
5143 		return key_senderror(so, m, EINVAL);
5144 	}
5145 
5146 	if (mhp->ext[SADB_EXT_SA] == NULL ||
5147 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5148 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5149 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5150 	     mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5151 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5152 	     mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5153 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5154 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5155 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5156 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5157 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5158 			__func__));
5159 		return key_senderror(so, m, EINVAL);
5160 	}
5161 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5162 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5163 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5164 		/* XXX need more */
5165 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5166 			__func__));
5167 		return key_senderror(so, m, EINVAL);
5168 	}
5169 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5170 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5171 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5172 	} else {
5173 		mode = IPSEC_MODE_ANY;
5174 		reqid = 0;
5175 	}
5176 
5177 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5178 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5179 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5180 
5181 	/* XXX boundary check against sa_len */
5182 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5183 
5184 	/*
5185 	 * Make sure the port numbers are zero.
5186 	 * In case of NAT-T we will update them later if needed.
5187 	 */
5188 	KEY_PORTTOSADDR(&saidx.src, 0);
5189 	KEY_PORTTOSADDR(&saidx.dst, 0);
5190 
5191 #ifdef IPSEC_NAT_T
5192 	/*
5193 	 * Handle NAT-T info if present.
5194 	 */
5195 	if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
5196 	    mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5197 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5198 		struct sadb_x_nat_t_port *sport, *dport;
5199 
5200 		if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
5201 		    mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5202 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5203 			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5204 			    __func__));
5205 			return key_senderror(so, m, EINVAL);
5206 		}
5207 
5208 		type = (struct sadb_x_nat_t_type *)
5209 		    mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5210 		sport = (struct sadb_x_nat_t_port *)
5211 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5212 		dport = (struct sadb_x_nat_t_port *)
5213 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5214 
5215 		if (sport)
5216 			KEY_PORTTOSADDR(&saidx.src,
5217 			    sport->sadb_x_nat_t_port_port);
5218 		if (dport)
5219 			KEY_PORTTOSADDR(&saidx.dst,
5220 			    dport->sadb_x_nat_t_port_port);
5221 	} else {
5222 		type = 0;
5223 	}
5224 	if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL &&
5225 	    mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5226 		if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) ||
5227 		    mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5228 			ipseclog((LOG_DEBUG, "%s: invalid message\n",
5229 			    __func__));
5230 			return key_senderror(so, m, EINVAL);
5231 		}
5232 		iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5233 		raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5234 		ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__));
5235 	} else {
5236 		iaddr = raddr = NULL;
5237 	}
5238 	if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5239 		if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5240 			ipseclog((LOG_DEBUG, "%s: invalid message\n",
5241 			    __func__));
5242 			return key_senderror(so, m, EINVAL);
5243 		}
5244 		frag = (struct sadb_x_nat_t_frag *)
5245 		    mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5246 	} else {
5247 		frag = 0;
5248 	}
5249 #endif
5250 
5251 	/* get a SA header */
5252 	if ((newsah = key_getsah(&saidx)) == NULL) {
5253 		/* create a new SA header */
5254 		if ((newsah = key_newsah(&saidx)) == NULL) {
5255 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
5256 			return key_senderror(so, m, ENOBUFS);
5257 		}
5258 	}
5259 
5260 	/* set spidx if there */
5261 	/* XXX rewrite */
5262 	error = key_setident(newsah, m, mhp);
5263 	if (error) {
5264 		return key_senderror(so, m, error);
5265 	}
5266 
5267 	/* create new SA entry. */
5268 	/* We can create new SA only if SPI is differenct. */
5269 	SAHTREE_LOCK();
5270 	newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi);
5271 	SAHTREE_UNLOCK();
5272 	if (newsav != NULL) {
5273 		ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__));
5274 		return key_senderror(so, m, EEXIST);
5275 	}
5276 	newsav = KEY_NEWSAV(m, mhp, newsah, &error);
5277 	if (newsav == NULL) {
5278 		return key_senderror(so, m, error);
5279 	}
5280 
5281 #ifdef IPSEC_NAT_T
5282 	/*
5283 	 * Handle more NAT-T info if present,
5284 	 * now that we have a sav to fill.
5285 	 */
5286 	if (type)
5287 		newsav->natt_type = type->sadb_x_nat_t_type_type;
5288 
5289 #if 0
5290 	/*
5291 	 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0.
5292 	 * We should actually check for a minimum MTU here, if we
5293 	 * want to support it in ip_output.
5294 	 */
5295 	if (frag)
5296 		newsav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen;
5297 #endif
5298 #endif
5299 
5300 	/* check SA values to be mature. */
5301 	if ((error = key_mature(newsav)) != 0) {
5302 		KEY_FREESAV(&newsav);
5303 		return key_senderror(so, m, error);
5304 	}
5305 
5306 	/*
5307 	 * don't call key_freesav() here, as we would like to keep the SA
5308 	 * in the database on success.
5309 	 */
5310 
5311     {
5312 	struct mbuf *n;
5313 
5314 	/* set msg buf from mhp */
5315 	n = key_getmsgbuf_x1(m, mhp);
5316 	if (n == NULL) {
5317 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5318 		return key_senderror(so, m, ENOBUFS);
5319 	}
5320 
5321 	m_freem(m);
5322 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5323     }
5324 }
5325 
5326 /* m is retained */
5327 static int
5328 key_setident(struct secashead *sah, struct mbuf *m,
5329     const struct sadb_msghdr *mhp)
5330 {
5331 	const struct sadb_ident *idsrc, *iddst;
5332 	int idsrclen, iddstlen;
5333 
5334 	IPSEC_ASSERT(sah != NULL, ("null secashead"));
5335 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5336 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5337 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5338 
5339 	/* don't make buffer if not there */
5340 	if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5341 	    mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5342 		sah->idents = NULL;
5343 		sah->identd = NULL;
5344 		return 0;
5345 	}
5346 
5347 	if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5348 	    mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5349 		ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__));
5350 		return EINVAL;
5351 	}
5352 
5353 	idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5354 	iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5355 	idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5356 	iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5357 
5358 	/* validity check */
5359 	if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5360 		ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__));
5361 		return EINVAL;
5362 	}
5363 
5364 	switch (idsrc->sadb_ident_type) {
5365 	case SADB_IDENTTYPE_PREFIX:
5366 	case SADB_IDENTTYPE_FQDN:
5367 	case SADB_IDENTTYPE_USERFQDN:
5368 	default:
5369 		/* XXX do nothing */
5370 		sah->idents = NULL;
5371 		sah->identd = NULL;
5372 	 	return 0;
5373 	}
5374 
5375 	/* make structure */
5376 	sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5377 	if (sah->idents == NULL) {
5378 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5379 		return ENOBUFS;
5380 	}
5381 	sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5382 	if (sah->identd == NULL) {
5383 		free(sah->idents, M_IPSEC_MISC);
5384 		sah->idents = NULL;
5385 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5386 		return ENOBUFS;
5387 	}
5388 	sah->idents->type = idsrc->sadb_ident_type;
5389 	sah->idents->id = idsrc->sadb_ident_id;
5390 
5391 	sah->identd->type = iddst->sadb_ident_type;
5392 	sah->identd->id = iddst->sadb_ident_id;
5393 
5394 	return 0;
5395 }
5396 
5397 /*
5398  * m will not be freed on return.
5399  * it is caller's responsibility to free the result.
5400  */
5401 static struct mbuf *
5402 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
5403 {
5404 	struct mbuf *n;
5405 
5406 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5407 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5408 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5409 
5410 	/* create new sadb_msg to reply. */
5411 	n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED,
5412 	    SADB_EXT_SA, SADB_X_EXT_SA2,
5413 	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5414 	    SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5415 	    SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST);
5416 	if (!n)
5417 		return NULL;
5418 
5419 	if (n->m_len < sizeof(struct sadb_msg)) {
5420 		n = m_pullup(n, sizeof(struct sadb_msg));
5421 		if (n == NULL)
5422 			return NULL;
5423 	}
5424 	mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5425 	mtod(n, struct sadb_msg *)->sadb_msg_len =
5426 	    PFKEY_UNIT64(n->m_pkthdr.len);
5427 
5428 	return n;
5429 }
5430 
5431 /*
5432  * SADB_DELETE processing
5433  * receive
5434  *   <base, SA(*), address(SD)>
5435  * from the ikmpd, and set SADB_SASTATE_DEAD,
5436  * and send,
5437  *   <base, SA(*), address(SD)>
5438  * to the ikmpd.
5439  *
5440  * m will always be freed.
5441  */
5442 static int
5443 key_delete(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5444 {
5445 	struct sadb_sa *sa0;
5446 	struct sadb_address *src0, *dst0;
5447 	struct secasindex saidx;
5448 	struct secashead *sah;
5449 	struct secasvar *sav = NULL;
5450 	u_int16_t proto;
5451 
5452 	IPSEC_ASSERT(so != NULL, ("null socket"));
5453 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5454 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5455 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5456 
5457 	/* map satype to proto */
5458 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5459 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5460 			__func__));
5461 		return key_senderror(so, m, EINVAL);
5462 	}
5463 
5464 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5465 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5466 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5467 			__func__));
5468 		return key_senderror(so, m, EINVAL);
5469 	}
5470 
5471 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5472 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5473 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5474 			__func__));
5475 		return key_senderror(so, m, EINVAL);
5476 	}
5477 
5478 	if (mhp->ext[SADB_EXT_SA] == NULL) {
5479 		/*
5480 		 * Caller wants us to delete all non-LARVAL SAs
5481 		 * that match the src/dst.  This is used during
5482 		 * IKE INITIAL-CONTACT.
5483 		 */
5484 		ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__));
5485 		return key_delete_all(so, m, mhp, proto);
5486 	} else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5487 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5488 			__func__));
5489 		return key_senderror(so, m, EINVAL);
5490 	}
5491 
5492 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5493 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5494 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5495 
5496 	/* XXX boundary check against sa_len */
5497 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5498 
5499 	/*
5500 	 * Make sure the port numbers are zero.
5501 	 * In case of NAT-T we will update them later if needed.
5502 	 */
5503 	KEY_PORTTOSADDR(&saidx.src, 0);
5504 	KEY_PORTTOSADDR(&saidx.dst, 0);
5505 
5506 #ifdef IPSEC_NAT_T
5507 	/*
5508 	 * Handle NAT-T info if present.
5509 	 */
5510 	if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5511 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5512 		struct sadb_x_nat_t_port *sport, *dport;
5513 
5514 		if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5515 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5516 			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5517 			    __func__));
5518 			return key_senderror(so, m, EINVAL);
5519 		}
5520 
5521 		sport = (struct sadb_x_nat_t_port *)
5522 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5523 		dport = (struct sadb_x_nat_t_port *)
5524 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5525 
5526 		if (sport)
5527 			KEY_PORTTOSADDR(&saidx.src,
5528 			    sport->sadb_x_nat_t_port_port);
5529 		if (dport)
5530 			KEY_PORTTOSADDR(&saidx.dst,
5531 			    dport->sadb_x_nat_t_port_port);
5532 	}
5533 #endif
5534 
5535 	/* get a SA header */
5536 	SAHTREE_LOCK();
5537 	LIST_FOREACH(sah, &V_sahtree, chain) {
5538 		if (sah->state == SADB_SASTATE_DEAD)
5539 			continue;
5540 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5541 			continue;
5542 
5543 		/* get a SA with SPI. */
5544 		sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5545 		if (sav)
5546 			break;
5547 	}
5548 	if (sah == NULL) {
5549 		SAHTREE_UNLOCK();
5550 		ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5551 		return key_senderror(so, m, ENOENT);
5552 	}
5553 
5554 	key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5555 	KEY_FREESAV(&sav);
5556 	SAHTREE_UNLOCK();
5557 
5558     {
5559 	struct mbuf *n;
5560 	struct sadb_msg *newmsg;
5561 
5562 	/* create new sadb_msg to reply. */
5563 	/* XXX-BZ NAT-T extensions? */
5564 	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5565 	    SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5566 	if (!n)
5567 		return key_senderror(so, m, ENOBUFS);
5568 
5569 	if (n->m_len < sizeof(struct sadb_msg)) {
5570 		n = m_pullup(n, sizeof(struct sadb_msg));
5571 		if (n == NULL)
5572 			return key_senderror(so, m, ENOBUFS);
5573 	}
5574 	newmsg = mtod(n, struct sadb_msg *);
5575 	newmsg->sadb_msg_errno = 0;
5576 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5577 
5578 	m_freem(m);
5579 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5580     }
5581 }
5582 
5583 /*
5584  * delete all SAs for src/dst.  Called from key_delete().
5585  */
5586 static int
5587 key_delete_all(struct socket *so, struct mbuf *m,
5588     const struct sadb_msghdr *mhp, u_int16_t proto)
5589 {
5590 	struct sadb_address *src0, *dst0;
5591 	struct secasindex saidx;
5592 	struct secashead *sah;
5593 	struct secasvar *sav, *nextsav;
5594 	u_int stateidx, state;
5595 
5596 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5597 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5598 
5599 	/* XXX boundary check against sa_len */
5600 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5601 
5602 	/*
5603 	 * Make sure the port numbers are zero.
5604 	 * In case of NAT-T we will update them later if needed.
5605 	 */
5606 	KEY_PORTTOSADDR(&saidx.src, 0);
5607 	KEY_PORTTOSADDR(&saidx.dst, 0);
5608 
5609 #ifdef IPSEC_NAT_T
5610 	/*
5611 	 * Handle NAT-T info if present.
5612 	 */
5613 
5614 	if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5615 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5616 		struct sadb_x_nat_t_port *sport, *dport;
5617 
5618 		if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5619 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5620 			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5621 			    __func__));
5622 			return key_senderror(so, m, EINVAL);
5623 		}
5624 
5625 		sport = (struct sadb_x_nat_t_port *)
5626 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5627 		dport = (struct sadb_x_nat_t_port *)
5628 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5629 
5630 		if (sport)
5631 			KEY_PORTTOSADDR(&saidx.src,
5632 			    sport->sadb_x_nat_t_port_port);
5633 		if (dport)
5634 			KEY_PORTTOSADDR(&saidx.dst,
5635 			    dport->sadb_x_nat_t_port_port);
5636 	}
5637 #endif
5638 
5639 	SAHTREE_LOCK();
5640 	LIST_FOREACH(sah, &V_sahtree, chain) {
5641 		if (sah->state == SADB_SASTATE_DEAD)
5642 			continue;
5643 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5644 			continue;
5645 
5646 		/* Delete all non-LARVAL SAs. */
5647 		for (stateidx = 0;
5648 		     stateidx < _ARRAYLEN(saorder_state_alive);
5649 		     stateidx++) {
5650 			state = saorder_state_alive[stateidx];
5651 			if (state == SADB_SASTATE_LARVAL)
5652 				continue;
5653 			for (sav = LIST_FIRST(&sah->savtree[state]);
5654 			     sav != NULL; sav = nextsav) {
5655 				nextsav = LIST_NEXT(sav, chain);
5656 				/* sanity check */
5657 				if (sav->state != state) {
5658 					ipseclog((LOG_DEBUG, "%s: invalid "
5659 						"sav->state (queue %d SA %d)\n",
5660 						__func__, state, sav->state));
5661 					continue;
5662 				}
5663 
5664 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5665 				KEY_FREESAV(&sav);
5666 			}
5667 		}
5668 	}
5669 	SAHTREE_UNLOCK();
5670     {
5671 	struct mbuf *n;
5672 	struct sadb_msg *newmsg;
5673 
5674 	/* create new sadb_msg to reply. */
5675 	/* XXX-BZ NAT-T extensions? */
5676 	n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5677 	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5678 	if (!n)
5679 		return key_senderror(so, m, ENOBUFS);
5680 
5681 	if (n->m_len < sizeof(struct sadb_msg)) {
5682 		n = m_pullup(n, sizeof(struct sadb_msg));
5683 		if (n == NULL)
5684 			return key_senderror(so, m, ENOBUFS);
5685 	}
5686 	newmsg = mtod(n, struct sadb_msg *);
5687 	newmsg->sadb_msg_errno = 0;
5688 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5689 
5690 	m_freem(m);
5691 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5692     }
5693 }
5694 
5695 /*
5696  * SADB_GET processing
5697  * receive
5698  *   <base, SA(*), address(SD)>
5699  * from the ikmpd, and get a SP and a SA to respond,
5700  * and send,
5701  *   <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5702  *       (identity(SD),) (sensitivity)>
5703  * to the ikmpd.
5704  *
5705  * m will always be freed.
5706  */
5707 static int
5708 key_get(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5709 {
5710 	struct sadb_sa *sa0;
5711 	struct sadb_address *src0, *dst0;
5712 	struct secasindex saidx;
5713 	struct secashead *sah;
5714 	struct secasvar *sav = NULL;
5715 	u_int16_t proto;
5716 
5717 	IPSEC_ASSERT(so != NULL, ("null socket"));
5718 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5719 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5720 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5721 
5722 	/* map satype to proto */
5723 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5724 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5725 			__func__));
5726 		return key_senderror(so, m, EINVAL);
5727 	}
5728 
5729 	if (mhp->ext[SADB_EXT_SA] == NULL ||
5730 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5731 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5732 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5733 			__func__));
5734 		return key_senderror(so, m, EINVAL);
5735 	}
5736 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5737 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5738 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5739 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5740 			__func__));
5741 		return key_senderror(so, m, EINVAL);
5742 	}
5743 
5744 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5745 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5746 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5747 
5748 	/* XXX boundary check against sa_len */
5749 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5750 
5751 	/*
5752 	 * Make sure the port numbers are zero.
5753 	 * In case of NAT-T we will update them later if needed.
5754 	 */
5755 	KEY_PORTTOSADDR(&saidx.src, 0);
5756 	KEY_PORTTOSADDR(&saidx.dst, 0);
5757 
5758 #ifdef IPSEC_NAT_T
5759 	/*
5760 	 * Handle NAT-T info if present.
5761 	 */
5762 
5763 	if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5764 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5765 		struct sadb_x_nat_t_port *sport, *dport;
5766 
5767 		if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5768 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5769 			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5770 			    __func__));
5771 			return key_senderror(so, m, EINVAL);
5772 		}
5773 
5774 		sport = (struct sadb_x_nat_t_port *)
5775 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5776 		dport = (struct sadb_x_nat_t_port *)
5777 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5778 
5779 		if (sport)
5780 			KEY_PORTTOSADDR(&saidx.src,
5781 			    sport->sadb_x_nat_t_port_port);
5782 		if (dport)
5783 			KEY_PORTTOSADDR(&saidx.dst,
5784 			    dport->sadb_x_nat_t_port_port);
5785 	}
5786 #endif
5787 
5788 	/* get a SA header */
5789 	SAHTREE_LOCK();
5790 	LIST_FOREACH(sah, &V_sahtree, chain) {
5791 		if (sah->state == SADB_SASTATE_DEAD)
5792 			continue;
5793 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5794 			continue;
5795 
5796 		/* get a SA with SPI. */
5797 		sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5798 		if (sav)
5799 			break;
5800 	}
5801 	SAHTREE_UNLOCK();
5802 	if (sah == NULL) {
5803 		ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5804 		return key_senderror(so, m, ENOENT);
5805 	}
5806 
5807     {
5808 	struct mbuf *n;
5809 	u_int8_t satype;
5810 
5811 	/* map proto to satype */
5812 	if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
5813 		ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n",
5814 			__func__));
5815 		return key_senderror(so, m, EINVAL);
5816 	}
5817 
5818 	/* create new sadb_msg to reply. */
5819 	n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5820 	    mhp->msg->sadb_msg_pid);
5821 	if (!n)
5822 		return key_senderror(so, m, ENOBUFS);
5823 
5824 	m_freem(m);
5825 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5826     }
5827 }
5828 
5829 /* XXX make it sysctl-configurable? */
5830 static void
5831 key_getcomb_setlifetime(struct sadb_comb *comb)
5832 {
5833 
5834 	comb->sadb_comb_soft_allocations = 1;
5835 	comb->sadb_comb_hard_allocations = 1;
5836 	comb->sadb_comb_soft_bytes = 0;
5837 	comb->sadb_comb_hard_bytes = 0;
5838 	comb->sadb_comb_hard_addtime = 86400;	/* 1 day */
5839 	comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5840 	comb->sadb_comb_soft_usetime = 28800;	/* 8 hours */
5841 	comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
5842 }
5843 
5844 /*
5845  * XXX reorder combinations by preference
5846  * XXX no idea if the user wants ESP authentication or not
5847  */
5848 static struct mbuf *
5849 key_getcomb_esp()
5850 {
5851 	struct sadb_comb *comb;
5852 	struct enc_xform *algo;
5853 	struct mbuf *result = NULL, *m, *n;
5854 	int encmin;
5855 	int i, off, o;
5856 	int totlen;
5857 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5858 
5859 	m = NULL;
5860 	for (i = 1; i <= SADB_EALG_MAX; i++) {
5861 		algo = esp_algorithm_lookup(i);
5862 		if (algo == NULL)
5863 			continue;
5864 
5865 		/* discard algorithms with key size smaller than system min */
5866 		if (_BITS(algo->maxkey) < V_ipsec_esp_keymin)
5867 			continue;
5868 		if (_BITS(algo->minkey) < V_ipsec_esp_keymin)
5869 			encmin = V_ipsec_esp_keymin;
5870 		else
5871 			encmin = _BITS(algo->minkey);
5872 
5873 		if (V_ipsec_esp_auth)
5874 			m = key_getcomb_ah();
5875 		else {
5876 			IPSEC_ASSERT(l <= MLEN,
5877 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
5878 			MGET(m, M_NOWAIT, MT_DATA);
5879 			if (m) {
5880 				M_ALIGN(m, l);
5881 				m->m_len = l;
5882 				m->m_next = NULL;
5883 				bzero(mtod(m, caddr_t), m->m_len);
5884 			}
5885 		}
5886 		if (!m)
5887 			goto fail;
5888 
5889 		totlen = 0;
5890 		for (n = m; n; n = n->m_next)
5891 			totlen += n->m_len;
5892 		IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l));
5893 
5894 		for (off = 0; off < totlen; off += l) {
5895 			n = m_pulldown(m, off, l, &o);
5896 			if (!n) {
5897 				/* m is already freed */
5898 				goto fail;
5899 			}
5900 			comb = (struct sadb_comb *)(mtod(n, caddr_t) + o);
5901 			bzero(comb, sizeof(*comb));
5902 			key_getcomb_setlifetime(comb);
5903 			comb->sadb_comb_encrypt = i;
5904 			comb->sadb_comb_encrypt_minbits = encmin;
5905 			comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
5906 		}
5907 
5908 		if (!result)
5909 			result = m;
5910 		else
5911 			m_cat(result, m);
5912 	}
5913 
5914 	return result;
5915 
5916  fail:
5917 	if (result)
5918 		m_freem(result);
5919 	return NULL;
5920 }
5921 
5922 static void
5923 key_getsizes_ah(const struct auth_hash *ah, int alg, u_int16_t* min,
5924     u_int16_t* max)
5925 {
5926 
5927 	*min = *max = ah->keysize;
5928 	if (ah->keysize == 0) {
5929 		/*
5930 		 * Transform takes arbitrary key size but algorithm
5931 		 * key size is restricted.  Enforce this here.
5932 		 */
5933 		switch (alg) {
5934 		case SADB_X_AALG_MD5:	*min = *max = 16; break;
5935 		case SADB_X_AALG_SHA:	*min = *max = 20; break;
5936 		case SADB_X_AALG_NULL:	*min = 1; *max = 256; break;
5937 		case SADB_X_AALG_SHA2_256: *min = *max = 32; break;
5938 		case SADB_X_AALG_SHA2_384: *min = *max = 48; break;
5939 		case SADB_X_AALG_SHA2_512: *min = *max = 64; break;
5940 		default:
5941 			DPRINTF(("%s: unknown AH algorithm %u\n",
5942 				__func__, alg));
5943 			break;
5944 		}
5945 	}
5946 }
5947 
5948 /*
5949  * XXX reorder combinations by preference
5950  */
5951 static struct mbuf *
5952 key_getcomb_ah()
5953 {
5954 	struct sadb_comb *comb;
5955 	struct auth_hash *algo;
5956 	struct mbuf *m;
5957 	u_int16_t minkeysize, maxkeysize;
5958 	int i;
5959 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5960 
5961 	m = NULL;
5962 	for (i = 1; i <= SADB_AALG_MAX; i++) {
5963 #if 1
5964 		/* we prefer HMAC algorithms, not old algorithms */
5965 		if (i != SADB_AALG_SHA1HMAC &&
5966 		    i != SADB_AALG_MD5HMAC  &&
5967 		    i != SADB_X_AALG_SHA2_256 &&
5968 		    i != SADB_X_AALG_SHA2_384 &&
5969 		    i != SADB_X_AALG_SHA2_512)
5970 			continue;
5971 #endif
5972 		algo = ah_algorithm_lookup(i);
5973 		if (!algo)
5974 			continue;
5975 		key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
5976 		/* discard algorithms with key size smaller than system min */
5977 		if (_BITS(minkeysize) < V_ipsec_ah_keymin)
5978 			continue;
5979 
5980 		if (!m) {
5981 			IPSEC_ASSERT(l <= MLEN,
5982 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
5983 			MGET(m, M_NOWAIT, MT_DATA);
5984 			if (m) {
5985 				M_ALIGN(m, l);
5986 				m->m_len = l;
5987 				m->m_next = NULL;
5988 			}
5989 		} else
5990 			M_PREPEND(m, l, M_NOWAIT);
5991 		if (!m)
5992 			return NULL;
5993 
5994 		comb = mtod(m, struct sadb_comb *);
5995 		bzero(comb, sizeof(*comb));
5996 		key_getcomb_setlifetime(comb);
5997 		comb->sadb_comb_auth = i;
5998 		comb->sadb_comb_auth_minbits = _BITS(minkeysize);
5999 		comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6000 	}
6001 
6002 	return m;
6003 }
6004 
6005 /*
6006  * not really an official behavior.  discussed in pf_key@inner.net in Sep2000.
6007  * XXX reorder combinations by preference
6008  */
6009 static struct mbuf *
6010 key_getcomb_ipcomp()
6011 {
6012 	struct sadb_comb *comb;
6013 	struct comp_algo *algo;
6014 	struct mbuf *m;
6015 	int i;
6016 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6017 
6018 	m = NULL;
6019 	for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6020 		algo = ipcomp_algorithm_lookup(i);
6021 		if (!algo)
6022 			continue;
6023 
6024 		if (!m) {
6025 			IPSEC_ASSERT(l <= MLEN,
6026 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
6027 			MGET(m, M_NOWAIT, MT_DATA);
6028 			if (m) {
6029 				M_ALIGN(m, l);
6030 				m->m_len = l;
6031 				m->m_next = NULL;
6032 			}
6033 		} else
6034 			M_PREPEND(m, l, M_NOWAIT);
6035 		if (!m)
6036 			return NULL;
6037 
6038 		comb = mtod(m, struct sadb_comb *);
6039 		bzero(comb, sizeof(*comb));
6040 		key_getcomb_setlifetime(comb);
6041 		comb->sadb_comb_encrypt = i;
6042 		/* what should we set into sadb_comb_*_{min,max}bits? */
6043 	}
6044 
6045 	return m;
6046 }
6047 
6048 /*
6049  * XXX no way to pass mode (transport/tunnel) to userland
6050  * XXX replay checking?
6051  * XXX sysctl interface to ipsec_{ah,esp}_keymin
6052  */
6053 static struct mbuf *
6054 key_getprop(const struct secasindex *saidx)
6055 {
6056 	struct sadb_prop *prop;
6057 	struct mbuf *m, *n;
6058 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6059 	int totlen;
6060 
6061 	switch (saidx->proto)  {
6062 	case IPPROTO_ESP:
6063 		m = key_getcomb_esp();
6064 		break;
6065 	case IPPROTO_AH:
6066 		m = key_getcomb_ah();
6067 		break;
6068 	case IPPROTO_IPCOMP:
6069 		m = key_getcomb_ipcomp();
6070 		break;
6071 	default:
6072 		return NULL;
6073 	}
6074 
6075 	if (!m)
6076 		return NULL;
6077 	M_PREPEND(m, l, M_NOWAIT);
6078 	if (!m)
6079 		return NULL;
6080 
6081 	totlen = 0;
6082 	for (n = m; n; n = n->m_next)
6083 		totlen += n->m_len;
6084 
6085 	prop = mtod(m, struct sadb_prop *);
6086 	bzero(prop, sizeof(*prop));
6087 	prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6088 	prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6089 	prop->sadb_prop_replay = 32;	/* XXX */
6090 
6091 	return m;
6092 }
6093 
6094 /*
6095  * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
6096  * send
6097  *   <base, SA, address(SD), (address(P)), x_policy,
6098  *       (identity(SD),) (sensitivity,) proposal>
6099  * to KMD, and expect to receive
6100  *   <base> with SADB_ACQUIRE if error occured,
6101  * or
6102  *   <base, src address, dst address, (SPI range)> with SADB_GETSPI
6103  * from KMD by PF_KEY.
6104  *
6105  * XXX x_policy is outside of RFC2367 (KAME extension).
6106  * XXX sensitivity is not supported.
6107  * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6108  * see comment for key_getcomb_ipcomp().
6109  *
6110  * OUT:
6111  *    0     : succeed
6112  *    others: error number
6113  */
6114 static int
6115 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6116 {
6117 	struct mbuf *result = NULL, *m;
6118 	struct secacq *newacq;
6119 	u_int8_t satype;
6120 	int error = -1;
6121 	u_int32_t seq;
6122 
6123 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
6124 	satype = key_proto2satype(saidx->proto);
6125 	IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto));
6126 
6127 	/*
6128 	 * We never do anything about acquirng SA.  There is anather
6129 	 * solution that kernel blocks to send SADB_ACQUIRE message until
6130 	 * getting something message from IKEd.  In later case, to be
6131 	 * managed with ACQUIRING list.
6132 	 */
6133 	/* Get an entry to check whether sending message or not. */
6134 	if ((newacq = key_getacq(saidx)) != NULL) {
6135 		if (V_key_blockacq_count < newacq->count) {
6136 			/* reset counter and do send message. */
6137 			newacq->count = 0;
6138 		} else {
6139 			/* increment counter and do nothing. */
6140 			newacq->count++;
6141 			return 0;
6142 		}
6143 	} else {
6144 		/* make new entry for blocking to send SADB_ACQUIRE. */
6145 		if ((newacq = key_newacq(saidx)) == NULL)
6146 			return ENOBUFS;
6147 	}
6148 
6149 
6150 	seq = newacq->seq;
6151 	m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6152 	if (!m) {
6153 		error = ENOBUFS;
6154 		goto fail;
6155 	}
6156 	result = m;
6157 
6158 	/*
6159 	 * No SADB_X_EXT_NAT_T_* here: we do not know
6160 	 * anything related to NAT-T at this time.
6161 	 */
6162 
6163 	/* set sadb_address for saidx's. */
6164 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6165 	    &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY);
6166 	if (!m) {
6167 		error = ENOBUFS;
6168 		goto fail;
6169 	}
6170 	m_cat(result, m);
6171 
6172 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6173 	    &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY);
6174 	if (!m) {
6175 		error = ENOBUFS;
6176 		goto fail;
6177 	}
6178 	m_cat(result, m);
6179 
6180 	/* XXX proxy address (optional) */
6181 
6182 	/* set sadb_x_policy */
6183 	if (sp) {
6184 		m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6185 		if (!m) {
6186 			error = ENOBUFS;
6187 			goto fail;
6188 		}
6189 		m_cat(result, m);
6190 	}
6191 
6192 	/* XXX identity (optional) */
6193 #if 0
6194 	if (idexttype && fqdn) {
6195 		/* create identity extension (FQDN) */
6196 		struct sadb_ident *id;
6197 		int fqdnlen;
6198 
6199 		fqdnlen = strlen(fqdn) + 1;	/* +1 for terminating-NUL */
6200 		id = (struct sadb_ident *)p;
6201 		bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6202 		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6203 		id->sadb_ident_exttype = idexttype;
6204 		id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6205 		bcopy(fqdn, id + 1, fqdnlen);
6206 		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6207 	}
6208 
6209 	if (idexttype) {
6210 		/* create identity extension (USERFQDN) */
6211 		struct sadb_ident *id;
6212 		int userfqdnlen;
6213 
6214 		if (userfqdn) {
6215 			/* +1 for terminating-NUL */
6216 			userfqdnlen = strlen(userfqdn) + 1;
6217 		} else
6218 			userfqdnlen = 0;
6219 		id = (struct sadb_ident *)p;
6220 		bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6221 		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6222 		id->sadb_ident_exttype = idexttype;
6223 		id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6224 		/* XXX is it correct? */
6225 		if (curproc && curproc->p_cred)
6226 			id->sadb_ident_id = curproc->p_cred->p_ruid;
6227 		if (userfqdn && userfqdnlen)
6228 			bcopy(userfqdn, id + 1, userfqdnlen);
6229 		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6230 	}
6231 #endif
6232 
6233 	/* XXX sensitivity (optional) */
6234 
6235 	/* create proposal/combination extension */
6236 	m = key_getprop(saidx);
6237 #if 0
6238 	/*
6239 	 * spec conformant: always attach proposal/combination extension,
6240 	 * the problem is that we have no way to attach it for ipcomp,
6241 	 * due to the way sadb_comb is declared in RFC2367.
6242 	 */
6243 	if (!m) {
6244 		error = ENOBUFS;
6245 		goto fail;
6246 	}
6247 	m_cat(result, m);
6248 #else
6249 	/*
6250 	 * outside of spec; make proposal/combination extension optional.
6251 	 */
6252 	if (m)
6253 		m_cat(result, m);
6254 #endif
6255 
6256 	if ((result->m_flags & M_PKTHDR) == 0) {
6257 		error = EINVAL;
6258 		goto fail;
6259 	}
6260 
6261 	if (result->m_len < sizeof(struct sadb_msg)) {
6262 		result = m_pullup(result, sizeof(struct sadb_msg));
6263 		if (result == NULL) {
6264 			error = ENOBUFS;
6265 			goto fail;
6266 		}
6267 	}
6268 
6269 	result->m_pkthdr.len = 0;
6270 	for (m = result; m; m = m->m_next)
6271 		result->m_pkthdr.len += m->m_len;
6272 
6273 	mtod(result, struct sadb_msg *)->sadb_msg_len =
6274 	    PFKEY_UNIT64(result->m_pkthdr.len);
6275 
6276 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6277 
6278  fail:
6279 	if (result)
6280 		m_freem(result);
6281 	return error;
6282 }
6283 
6284 static struct secacq *
6285 key_newacq(const struct secasindex *saidx)
6286 {
6287 	struct secacq *newacq;
6288 
6289 	/* get new entry */
6290 	newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
6291 	if (newacq == NULL) {
6292 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6293 		return NULL;
6294 	}
6295 
6296 	/* copy secindex */
6297 	bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx));
6298 	newacq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq);
6299 	newacq->created = time_second;
6300 	newacq->count = 0;
6301 
6302 	/* add to acqtree */
6303 	ACQ_LOCK();
6304 	LIST_INSERT_HEAD(&V_acqtree, newacq, chain);
6305 	ACQ_UNLOCK();
6306 
6307 	return newacq;
6308 }
6309 
6310 static struct secacq *
6311 key_getacq(const struct secasindex *saidx)
6312 {
6313 	struct secacq *acq;
6314 
6315 	ACQ_LOCK();
6316 	LIST_FOREACH(acq, &V_acqtree, chain) {
6317 		if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY))
6318 			break;
6319 	}
6320 	ACQ_UNLOCK();
6321 
6322 	return acq;
6323 }
6324 
6325 static struct secacq *
6326 key_getacqbyseq(u_int32_t seq)
6327 {
6328 	struct secacq *acq;
6329 
6330 	ACQ_LOCK();
6331 	LIST_FOREACH(acq, &V_acqtree, chain) {
6332 		if (acq->seq == seq)
6333 			break;
6334 	}
6335 	ACQ_UNLOCK();
6336 
6337 	return acq;
6338 }
6339 
6340 static struct secspacq *
6341 key_newspacq(struct secpolicyindex *spidx)
6342 {
6343 	struct secspacq *acq;
6344 
6345 	/* get new entry */
6346 	acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
6347 	if (acq == NULL) {
6348 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6349 		return NULL;
6350 	}
6351 
6352 	/* copy secindex */
6353 	bcopy(spidx, &acq->spidx, sizeof(acq->spidx));
6354 	acq->created = time_second;
6355 	acq->count = 0;
6356 
6357 	/* add to spacqtree */
6358 	SPACQ_LOCK();
6359 	LIST_INSERT_HEAD(&V_spacqtree, acq, chain);
6360 	SPACQ_UNLOCK();
6361 
6362 	return acq;
6363 }
6364 
6365 static struct secspacq *
6366 key_getspacq(struct secpolicyindex *spidx)
6367 {
6368 	struct secspacq *acq;
6369 
6370 	SPACQ_LOCK();
6371 	LIST_FOREACH(acq, &V_spacqtree, chain) {
6372 		if (key_cmpspidx_exactly(spidx, &acq->spidx)) {
6373 			/* NB: return holding spacq_lock */
6374 			return acq;
6375 		}
6376 	}
6377 	SPACQ_UNLOCK();
6378 
6379 	return NULL;
6380 }
6381 
6382 /*
6383  * SADB_ACQUIRE processing,
6384  * in first situation, is receiving
6385  *   <base>
6386  * from the ikmpd, and clear sequence of its secasvar entry.
6387  *
6388  * In second situation, is receiving
6389  *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6390  * from a user land process, and return
6391  *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6392  * to the socket.
6393  *
6394  * m will always be freed.
6395  */
6396 static int
6397 key_acquire2(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
6398 {
6399 	const struct sadb_address *src0, *dst0;
6400 	struct secasindex saidx;
6401 	struct secashead *sah;
6402 	u_int16_t proto;
6403 	int error;
6404 
6405 	IPSEC_ASSERT(so != NULL, ("null socket"));
6406 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6407 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6408 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6409 
6410 	/*
6411 	 * Error message from KMd.
6412 	 * We assume that if error was occured in IKEd, the length of PFKEY
6413 	 * message is equal to the size of sadb_msg structure.
6414 	 * We do not raise error even if error occured in this function.
6415 	 */
6416 	if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6417 		struct secacq *acq;
6418 
6419 		/* check sequence number */
6420 		if (mhp->msg->sadb_msg_seq == 0) {
6421 			ipseclog((LOG_DEBUG, "%s: must specify sequence "
6422 				"number.\n", __func__));
6423 			m_freem(m);
6424 			return 0;
6425 		}
6426 
6427 		if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) {
6428 			/*
6429 			 * the specified larval SA is already gone, or we got
6430 			 * a bogus sequence number.  we can silently ignore it.
6431 			 */
6432 			m_freem(m);
6433 			return 0;
6434 		}
6435 
6436 		/* reset acq counter in order to deletion by timehander. */
6437 		acq->created = time_second;
6438 		acq->count = 0;
6439 		m_freem(m);
6440 		return 0;
6441 	}
6442 
6443 	/*
6444 	 * This message is from user land.
6445 	 */
6446 
6447 	/* map satype to proto */
6448 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6449 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6450 			__func__));
6451 		return key_senderror(so, m, EINVAL);
6452 	}
6453 
6454 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6455 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6456 	    mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6457 		/* error */
6458 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
6459 			__func__));
6460 		return key_senderror(so, m, EINVAL);
6461 	}
6462 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6463 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6464 	    mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6465 		/* error */
6466 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
6467 			__func__));
6468 		return key_senderror(so, m, EINVAL);
6469 	}
6470 
6471 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
6472 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
6473 
6474 	/* XXX boundary check against sa_len */
6475 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
6476 
6477 	/*
6478 	 * Make sure the port numbers are zero.
6479 	 * In case of NAT-T we will update them later if needed.
6480 	 */
6481 	KEY_PORTTOSADDR(&saidx.src, 0);
6482 	KEY_PORTTOSADDR(&saidx.dst, 0);
6483 
6484 #ifndef IPSEC_NAT_T
6485 	/*
6486 	 * Handle NAT-T info if present.
6487 	 */
6488 
6489 	if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
6490 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
6491 		struct sadb_x_nat_t_port *sport, *dport;
6492 
6493 		if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
6494 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
6495 			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
6496 			    __func__));
6497 			return key_senderror(so, m, EINVAL);
6498 		}
6499 
6500 		sport = (struct sadb_x_nat_t_port *)
6501 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
6502 		dport = (struct sadb_x_nat_t_port *)
6503 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
6504 
6505 		if (sport)
6506 			KEY_PORTTOSADDR(&saidx.src,
6507 			    sport->sadb_x_nat_t_port_port);
6508 		if (dport)
6509 			KEY_PORTTOSADDR(&saidx.dst,
6510 			    dport->sadb_x_nat_t_port_port);
6511 	}
6512 #endif
6513 
6514 	/* get a SA index */
6515 	SAHTREE_LOCK();
6516 	LIST_FOREACH(sah, &V_sahtree, chain) {
6517 		if (sah->state == SADB_SASTATE_DEAD)
6518 			continue;
6519 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID))
6520 			break;
6521 	}
6522 	SAHTREE_UNLOCK();
6523 	if (sah != NULL) {
6524 		ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__));
6525 		return key_senderror(so, m, EEXIST);
6526 	}
6527 
6528 	error = key_acquire(&saidx, NULL);
6529 	if (error != 0) {
6530 		ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
6531 			__func__, mhp->msg->sadb_msg_errno));
6532 		return key_senderror(so, m, error);
6533 	}
6534 
6535 	return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6536 }
6537 
6538 /*
6539  * SADB_REGISTER processing.
6540  * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6541  * receive
6542  *   <base>
6543  * from the ikmpd, and register a socket to send PF_KEY messages,
6544  * and send
6545  *   <base, supported>
6546  * to KMD by PF_KEY.
6547  * If socket is detached, must free from regnode.
6548  *
6549  * m will always be freed.
6550  */
6551 static int
6552 key_register(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
6553 {
6554 	struct secreg *reg, *newreg = 0;
6555 
6556 	IPSEC_ASSERT(so != NULL, ("null socket"));
6557 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6558 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6559 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6560 
6561 	/* check for invalid register message */
6562 	if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0]))
6563 		return key_senderror(so, m, EINVAL);
6564 
6565 	/* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6566 	if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6567 		goto setmsg;
6568 
6569 	/* check whether existing or not */
6570 	REGTREE_LOCK();
6571 	LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) {
6572 		if (reg->so == so) {
6573 			REGTREE_UNLOCK();
6574 			ipseclog((LOG_DEBUG, "%s: socket exists already.\n",
6575 				__func__));
6576 			return key_senderror(so, m, EEXIST);
6577 		}
6578 	}
6579 
6580 	/* create regnode */
6581 	newreg =  malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO);
6582 	if (newreg == NULL) {
6583 		REGTREE_UNLOCK();
6584 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6585 		return key_senderror(so, m, ENOBUFS);
6586 	}
6587 
6588 	newreg->so = so;
6589 	((struct keycb *)sotorawcb(so))->kp_registered++;
6590 
6591 	/* add regnode to regtree. */
6592 	LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain);
6593 	REGTREE_UNLOCK();
6594 
6595   setmsg:
6596     {
6597 	struct mbuf *n;
6598 	struct sadb_msg *newmsg;
6599 	struct sadb_supported *sup;
6600 	u_int len, alen, elen;
6601 	int off;
6602 	int i;
6603 	struct sadb_alg *alg;
6604 
6605 	/* create new sadb_msg to reply. */
6606 	alen = 0;
6607 	for (i = 1; i <= SADB_AALG_MAX; i++) {
6608 		if (ah_algorithm_lookup(i))
6609 			alen += sizeof(struct sadb_alg);
6610 	}
6611 	if (alen)
6612 		alen += sizeof(struct sadb_supported);
6613 	elen = 0;
6614 	for (i = 1; i <= SADB_EALG_MAX; i++) {
6615 		if (esp_algorithm_lookup(i))
6616 			elen += sizeof(struct sadb_alg);
6617 	}
6618 	if (elen)
6619 		elen += sizeof(struct sadb_supported);
6620 
6621 	len = sizeof(struct sadb_msg) + alen + elen;
6622 
6623 	if (len > MCLBYTES)
6624 		return key_senderror(so, m, ENOBUFS);
6625 
6626 	MGETHDR(n, M_NOWAIT, MT_DATA);
6627 	if (len > MHLEN) {
6628 		if (!(MCLGET(n, M_NOWAIT))) {
6629 			m_freem(n);
6630 			n = NULL;
6631 		}
6632 	}
6633 	if (!n)
6634 		return key_senderror(so, m, ENOBUFS);
6635 
6636 	n->m_pkthdr.len = n->m_len = len;
6637 	n->m_next = NULL;
6638 	off = 0;
6639 
6640 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
6641 	newmsg = mtod(n, struct sadb_msg *);
6642 	newmsg->sadb_msg_errno = 0;
6643 	newmsg->sadb_msg_len = PFKEY_UNIT64(len);
6644 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6645 
6646 	/* for authentication algorithm */
6647 	if (alen) {
6648 		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6649 		sup->sadb_supported_len = PFKEY_UNIT64(alen);
6650 		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6651 		off += PFKEY_ALIGN8(sizeof(*sup));
6652 
6653 		for (i = 1; i <= SADB_AALG_MAX; i++) {
6654 			struct auth_hash *aalgo;
6655 			u_int16_t minkeysize, maxkeysize;
6656 
6657 			aalgo = ah_algorithm_lookup(i);
6658 			if (!aalgo)
6659 				continue;
6660 			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6661 			alg->sadb_alg_id = i;
6662 			alg->sadb_alg_ivlen = 0;
6663 			key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6664 			alg->sadb_alg_minbits = _BITS(minkeysize);
6665 			alg->sadb_alg_maxbits = _BITS(maxkeysize);
6666 			off += PFKEY_ALIGN8(sizeof(*alg));
6667 		}
6668 	}
6669 
6670 	/* for encryption algorithm */
6671 	if (elen) {
6672 		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6673 		sup->sadb_supported_len = PFKEY_UNIT64(elen);
6674 		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6675 		off += PFKEY_ALIGN8(sizeof(*sup));
6676 
6677 		for (i = 1; i <= SADB_EALG_MAX; i++) {
6678 			struct enc_xform *ealgo;
6679 
6680 			ealgo = esp_algorithm_lookup(i);
6681 			if (!ealgo)
6682 				continue;
6683 			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6684 			alg->sadb_alg_id = i;
6685 			alg->sadb_alg_ivlen = ealgo->blocksize;
6686 			alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6687 			alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6688 			off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6689 		}
6690 	}
6691 
6692 	IPSEC_ASSERT(off == len,
6693 		("length assumption failed (off %u len %u)", off, len));
6694 
6695 	m_freem(m);
6696 	return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6697     }
6698 }
6699 
6700 /*
6701  * free secreg entry registered.
6702  * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6703  */
6704 void
6705 key_freereg(struct socket *so)
6706 {
6707 	struct secreg *reg;
6708 	int i;
6709 
6710 	IPSEC_ASSERT(so != NULL, ("NULL so"));
6711 
6712 	/*
6713 	 * check whether existing or not.
6714 	 * check all type of SA, because there is a potential that
6715 	 * one socket is registered to multiple type of SA.
6716 	 */
6717 	REGTREE_LOCK();
6718 	for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6719 		LIST_FOREACH(reg, &V_regtree[i], chain) {
6720 			if (reg->so == so && __LIST_CHAINED(reg)) {
6721 				LIST_REMOVE(reg, chain);
6722 				free(reg, M_IPSEC_SAR);
6723 				break;
6724 			}
6725 		}
6726 	}
6727 	REGTREE_UNLOCK();
6728 }
6729 
6730 /*
6731  * SADB_EXPIRE processing
6732  * send
6733  *   <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6734  * to KMD by PF_KEY.
6735  * NOTE: We send only soft lifetime extension.
6736  *
6737  * OUT:	0	: succeed
6738  *	others	: error number
6739  */
6740 static int
6741 key_expire(struct secasvar *sav)
6742 {
6743 	int satype;
6744 	struct mbuf *result = NULL, *m;
6745 	int len;
6746 	int error = -1;
6747 	struct sadb_lifetime *lt;
6748 
6749 	IPSEC_ASSERT (sav != NULL, ("null sav"));
6750 	IPSEC_ASSERT (sav->sah != NULL, ("null sa header"));
6751 
6752 	/* set msg header */
6753 	satype = key_proto2satype(sav->sah->saidx.proto);
6754 	IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype));
6755 	m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6756 	if (!m) {
6757 		error = ENOBUFS;
6758 		goto fail;
6759 	}
6760 	result = m;
6761 
6762 	/* create SA extension */
6763 	m = key_setsadbsa(sav);
6764 	if (!m) {
6765 		error = ENOBUFS;
6766 		goto fail;
6767 	}
6768 	m_cat(result, m);
6769 
6770 	/* create SA extension */
6771 	m = key_setsadbxsa2(sav->sah->saidx.mode,
6772 			sav->replay ? sav->replay->count : 0,
6773 			sav->sah->saidx.reqid);
6774 	if (!m) {
6775 		error = ENOBUFS;
6776 		goto fail;
6777 	}
6778 	m_cat(result, m);
6779 
6780 	/* create lifetime extension (current and soft) */
6781 	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6782 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
6783 	if (m == NULL) {
6784 		error = ENOBUFS;
6785 		goto fail;
6786 	}
6787 	m_align(m, len);
6788 	m->m_len = len;
6789 	bzero(mtod(m, caddr_t), len);
6790 	lt = mtod(m, struct sadb_lifetime *);
6791 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6792 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6793 	lt->sadb_lifetime_allocations = sav->lft_c->allocations;
6794 	lt->sadb_lifetime_bytes = sav->lft_c->bytes;
6795 	lt->sadb_lifetime_addtime = sav->lft_c->addtime;
6796 	lt->sadb_lifetime_usetime = sav->lft_c->usetime;
6797 	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
6798 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6799 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
6800 	lt->sadb_lifetime_allocations = sav->lft_s->allocations;
6801 	lt->sadb_lifetime_bytes = sav->lft_s->bytes;
6802 	lt->sadb_lifetime_addtime = sav->lft_s->addtime;
6803 	lt->sadb_lifetime_usetime = sav->lft_s->usetime;
6804 	m_cat(result, m);
6805 
6806 	/* set sadb_address for source */
6807 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6808 	    &sav->sah->saidx.src.sa,
6809 	    FULLMASK, IPSEC_ULPROTO_ANY);
6810 	if (!m) {
6811 		error = ENOBUFS;
6812 		goto fail;
6813 	}
6814 	m_cat(result, m);
6815 
6816 	/* set sadb_address for destination */
6817 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6818 	    &sav->sah->saidx.dst.sa,
6819 	    FULLMASK, IPSEC_ULPROTO_ANY);
6820 	if (!m) {
6821 		error = ENOBUFS;
6822 		goto fail;
6823 	}
6824 	m_cat(result, m);
6825 
6826 	/*
6827 	 * XXX-BZ Handle NAT-T extensions here.
6828 	 */
6829 
6830 	if ((result->m_flags & M_PKTHDR) == 0) {
6831 		error = EINVAL;
6832 		goto fail;
6833 	}
6834 
6835 	if (result->m_len < sizeof(struct sadb_msg)) {
6836 		result = m_pullup(result, sizeof(struct sadb_msg));
6837 		if (result == NULL) {
6838 			error = ENOBUFS;
6839 			goto fail;
6840 		}
6841 	}
6842 
6843 	result->m_pkthdr.len = 0;
6844 	for (m = result; m; m = m->m_next)
6845 		result->m_pkthdr.len += m->m_len;
6846 
6847 	mtod(result, struct sadb_msg *)->sadb_msg_len =
6848 	    PFKEY_UNIT64(result->m_pkthdr.len);
6849 
6850 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6851 
6852  fail:
6853 	if (result)
6854 		m_freem(result);
6855 	return error;
6856 }
6857 
6858 /*
6859  * SADB_FLUSH processing
6860  * receive
6861  *   <base>
6862  * from the ikmpd, and free all entries in secastree.
6863  * and send,
6864  *   <base>
6865  * to the ikmpd.
6866  * NOTE: to do is only marking SADB_SASTATE_DEAD.
6867  *
6868  * m will always be freed.
6869  */
6870 static int
6871 key_flush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
6872 {
6873 	struct sadb_msg *newmsg;
6874 	struct secashead *sah, *nextsah;
6875 	struct secasvar *sav, *nextsav;
6876 	u_int16_t proto;
6877 	u_int8_t state;
6878 	u_int stateidx;
6879 
6880 	IPSEC_ASSERT(so != NULL, ("null socket"));
6881 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6882 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6883 
6884 	/* map satype to proto */
6885 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6886 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6887 			__func__));
6888 		return key_senderror(so, m, EINVAL);
6889 	}
6890 
6891 	/* no SATYPE specified, i.e. flushing all SA. */
6892 	SAHTREE_LOCK();
6893 	for (sah = LIST_FIRST(&V_sahtree);
6894 	     sah != NULL;
6895 	     sah = nextsah) {
6896 		nextsah = LIST_NEXT(sah, chain);
6897 
6898 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6899 		 && proto != sah->saidx.proto)
6900 			continue;
6901 
6902 		for (stateidx = 0;
6903 		     stateidx < _ARRAYLEN(saorder_state_alive);
6904 		     stateidx++) {
6905 			state = saorder_state_any[stateidx];
6906 			for (sav = LIST_FIRST(&sah->savtree[state]);
6907 			     sav != NULL;
6908 			     sav = nextsav) {
6909 
6910 				nextsav = LIST_NEXT(sav, chain);
6911 
6912 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
6913 				KEY_FREESAV(&sav);
6914 			}
6915 		}
6916 
6917 		sah->state = SADB_SASTATE_DEAD;
6918 	}
6919 	SAHTREE_UNLOCK();
6920 
6921 	if (m->m_len < sizeof(struct sadb_msg) ||
6922 	    sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
6923 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6924 		return key_senderror(so, m, ENOBUFS);
6925 	}
6926 
6927 	if (m->m_next)
6928 		m_freem(m->m_next);
6929 	m->m_next = NULL;
6930 	m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
6931 	newmsg = mtod(m, struct sadb_msg *);
6932 	newmsg->sadb_msg_errno = 0;
6933 	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
6934 
6935 	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6936 }
6937 
6938 /*
6939  * SADB_DUMP processing
6940  * dump all entries including status of DEAD in SAD.
6941  * receive
6942  *   <base>
6943  * from the ikmpd, and dump all secasvar leaves
6944  * and send,
6945  *   <base> .....
6946  * to the ikmpd.
6947  *
6948  * m will always be freed.
6949  */
6950 static int
6951 key_dump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
6952 {
6953 	struct secashead *sah;
6954 	struct secasvar *sav;
6955 	u_int16_t proto;
6956 	u_int stateidx;
6957 	u_int8_t satype;
6958 	u_int8_t state;
6959 	int cnt;
6960 	struct sadb_msg *newmsg;
6961 	struct mbuf *n;
6962 
6963 	IPSEC_ASSERT(so != NULL, ("null socket"));
6964 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6965 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6966 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6967 
6968 	/* map satype to proto */
6969 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6970 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6971 			__func__));
6972 		return key_senderror(so, m, EINVAL);
6973 	}
6974 
6975 	/* count sav entries to be sent to the userland. */
6976 	cnt = 0;
6977 	SAHTREE_LOCK();
6978 	LIST_FOREACH(sah, &V_sahtree, chain) {
6979 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6980 		 && proto != sah->saidx.proto)
6981 			continue;
6982 
6983 		for (stateidx = 0;
6984 		     stateidx < _ARRAYLEN(saorder_state_any);
6985 		     stateidx++) {
6986 			state = saorder_state_any[stateidx];
6987 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
6988 				cnt++;
6989 			}
6990 		}
6991 	}
6992 
6993 	if (cnt == 0) {
6994 		SAHTREE_UNLOCK();
6995 		return key_senderror(so, m, ENOENT);
6996 	}
6997 
6998 	/* send this to the userland, one at a time. */
6999 	newmsg = NULL;
7000 	LIST_FOREACH(sah, &V_sahtree, chain) {
7001 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
7002 		 && proto != sah->saidx.proto)
7003 			continue;
7004 
7005 		/* map proto to satype */
7006 		if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
7007 			SAHTREE_UNLOCK();
7008 			ipseclog((LOG_DEBUG, "%s: there was invalid proto in "
7009 				"SAD.\n", __func__));
7010 			return key_senderror(so, m, EINVAL);
7011 		}
7012 
7013 		for (stateidx = 0;
7014 		     stateidx < _ARRAYLEN(saorder_state_any);
7015 		     stateidx++) {
7016 			state = saorder_state_any[stateidx];
7017 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
7018 				n = key_setdumpsa(sav, SADB_DUMP, satype,
7019 				    --cnt, mhp->msg->sadb_msg_pid);
7020 				if (!n) {
7021 					SAHTREE_UNLOCK();
7022 					return key_senderror(so, m, ENOBUFS);
7023 				}
7024 				key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
7025 			}
7026 		}
7027 	}
7028 	SAHTREE_UNLOCK();
7029 
7030 	m_freem(m);
7031 	return 0;
7032 }
7033 
7034 /*
7035  * SADB_X_PROMISC processing
7036  *
7037  * m will always be freed.
7038  */
7039 static int
7040 key_promisc(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
7041 {
7042 	int olen;
7043 
7044 	IPSEC_ASSERT(so != NULL, ("null socket"));
7045 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7046 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7047 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7048 
7049 	olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7050 
7051 	if (olen < sizeof(struct sadb_msg)) {
7052 #if 1
7053 		return key_senderror(so, m, EINVAL);
7054 #else
7055 		m_freem(m);
7056 		return 0;
7057 #endif
7058 	} else if (olen == sizeof(struct sadb_msg)) {
7059 		/* enable/disable promisc mode */
7060 		struct keycb *kp;
7061 
7062 		if ((kp = (struct keycb *)sotorawcb(so)) == NULL)
7063 			return key_senderror(so, m, EINVAL);
7064 		mhp->msg->sadb_msg_errno = 0;
7065 		switch (mhp->msg->sadb_msg_satype) {
7066 		case 0:
7067 		case 1:
7068 			kp->kp_promisc = mhp->msg->sadb_msg_satype;
7069 			break;
7070 		default:
7071 			return key_senderror(so, m, EINVAL);
7072 		}
7073 
7074 		/* send the original message back to everyone */
7075 		mhp->msg->sadb_msg_errno = 0;
7076 		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7077 	} else {
7078 		/* send packet as is */
7079 
7080 		m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7081 
7082 		/* TODO: if sadb_msg_seq is specified, send to specific pid */
7083 		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7084 	}
7085 }
7086 
7087 static int (*key_typesw[])(struct socket *, struct mbuf *,
7088 		const struct sadb_msghdr *) = {
7089 	NULL,		/* SADB_RESERVED */
7090 	key_getspi,	/* SADB_GETSPI */
7091 	key_update,	/* SADB_UPDATE */
7092 	key_add,	/* SADB_ADD */
7093 	key_delete,	/* SADB_DELETE */
7094 	key_get,	/* SADB_GET */
7095 	key_acquire2,	/* SADB_ACQUIRE */
7096 	key_register,	/* SADB_REGISTER */
7097 	NULL,		/* SADB_EXPIRE */
7098 	key_flush,	/* SADB_FLUSH */
7099 	key_dump,	/* SADB_DUMP */
7100 	key_promisc,	/* SADB_X_PROMISC */
7101 	NULL,		/* SADB_X_PCHANGE */
7102 	key_spdadd,	/* SADB_X_SPDUPDATE */
7103 	key_spdadd,	/* SADB_X_SPDADD */
7104 	key_spddelete,	/* SADB_X_SPDDELETE */
7105 	key_spdget,	/* SADB_X_SPDGET */
7106 	NULL,		/* SADB_X_SPDACQUIRE */
7107 	key_spddump,	/* SADB_X_SPDDUMP */
7108 	key_spdflush,	/* SADB_X_SPDFLUSH */
7109 	key_spdadd,	/* SADB_X_SPDSETIDX */
7110 	NULL,		/* SADB_X_SPDEXPIRE */
7111 	key_spddelete2,	/* SADB_X_SPDDELETE2 */
7112 };
7113 
7114 /*
7115  * parse sadb_msg buffer to process PFKEYv2,
7116  * and create a data to response if needed.
7117  * I think to be dealed with mbuf directly.
7118  * IN:
7119  *     msgp  : pointer to pointer to a received buffer pulluped.
7120  *             This is rewrited to response.
7121  *     so    : pointer to socket.
7122  * OUT:
7123  *    length for buffer to send to user process.
7124  */
7125 int
7126 key_parse(struct mbuf *m, struct socket *so)
7127 {
7128 	struct sadb_msg *msg;
7129 	struct sadb_msghdr mh;
7130 	u_int orglen;
7131 	int error;
7132 	int target;
7133 
7134 	IPSEC_ASSERT(so != NULL, ("null socket"));
7135 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7136 
7137 #if 0	/*kdebug_sadb assumes msg in linear buffer*/
7138 	KEYDEBUG(KEYDEBUG_KEY_DUMP,
7139 		ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__));
7140 		kdebug_sadb(msg));
7141 #endif
7142 
7143 	if (m->m_len < sizeof(struct sadb_msg)) {
7144 		m = m_pullup(m, sizeof(struct sadb_msg));
7145 		if (!m)
7146 			return ENOBUFS;
7147 	}
7148 	msg = mtod(m, struct sadb_msg *);
7149 	orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7150 	target = KEY_SENDUP_ONE;
7151 
7152 	if ((m->m_flags & M_PKTHDR) == 0 ||
7153 	    m->m_pkthdr.len != m->m_pkthdr.len) {
7154 		ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__));
7155 		PFKEYSTAT_INC(out_invlen);
7156 		error = EINVAL;
7157 		goto senderror;
7158 	}
7159 
7160 	if (msg->sadb_msg_version != PF_KEY_V2) {
7161 		ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n",
7162 		    __func__, msg->sadb_msg_version));
7163 		PFKEYSTAT_INC(out_invver);
7164 		error = EINVAL;
7165 		goto senderror;
7166 	}
7167 
7168 	if (msg->sadb_msg_type > SADB_MAX) {
7169 		ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
7170 		    __func__, msg->sadb_msg_type));
7171 		PFKEYSTAT_INC(out_invmsgtype);
7172 		error = EINVAL;
7173 		goto senderror;
7174 	}
7175 
7176 	/* for old-fashioned code - should be nuked */
7177 	if (m->m_pkthdr.len > MCLBYTES) {
7178 		m_freem(m);
7179 		return ENOBUFS;
7180 	}
7181 	if (m->m_next) {
7182 		struct mbuf *n;
7183 
7184 		MGETHDR(n, M_NOWAIT, MT_DATA);
7185 		if (n && m->m_pkthdr.len > MHLEN) {
7186 			if (!(MCLGET(n, M_NOWAIT))) {
7187 				m_free(n);
7188 				n = NULL;
7189 			}
7190 		}
7191 		if (!n) {
7192 			m_freem(m);
7193 			return ENOBUFS;
7194 		}
7195 		m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t));
7196 		n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7197 		n->m_next = NULL;
7198 		m_freem(m);
7199 		m = n;
7200 	}
7201 
7202 	/* align the mbuf chain so that extensions are in contiguous region. */
7203 	error = key_align(m, &mh);
7204 	if (error)
7205 		return error;
7206 
7207 	msg = mh.msg;
7208 
7209 	/* check SA type */
7210 	switch (msg->sadb_msg_satype) {
7211 	case SADB_SATYPE_UNSPEC:
7212 		switch (msg->sadb_msg_type) {
7213 		case SADB_GETSPI:
7214 		case SADB_UPDATE:
7215 		case SADB_ADD:
7216 		case SADB_DELETE:
7217 		case SADB_GET:
7218 		case SADB_ACQUIRE:
7219 		case SADB_EXPIRE:
7220 			ipseclog((LOG_DEBUG, "%s: must specify satype "
7221 			    "when msg type=%u.\n", __func__,
7222 			    msg->sadb_msg_type));
7223 			PFKEYSTAT_INC(out_invsatype);
7224 			error = EINVAL;
7225 			goto senderror;
7226 		}
7227 		break;
7228 	case SADB_SATYPE_AH:
7229 	case SADB_SATYPE_ESP:
7230 	case SADB_X_SATYPE_IPCOMP:
7231 	case SADB_X_SATYPE_TCPSIGNATURE:
7232 		switch (msg->sadb_msg_type) {
7233 		case SADB_X_SPDADD:
7234 		case SADB_X_SPDDELETE:
7235 		case SADB_X_SPDGET:
7236 		case SADB_X_SPDDUMP:
7237 		case SADB_X_SPDFLUSH:
7238 		case SADB_X_SPDSETIDX:
7239 		case SADB_X_SPDUPDATE:
7240 		case SADB_X_SPDDELETE2:
7241 			ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n",
7242 				__func__, msg->sadb_msg_type));
7243 			PFKEYSTAT_INC(out_invsatype);
7244 			error = EINVAL;
7245 			goto senderror;
7246 		}
7247 		break;
7248 	case SADB_SATYPE_RSVP:
7249 	case SADB_SATYPE_OSPFV2:
7250 	case SADB_SATYPE_RIPV2:
7251 	case SADB_SATYPE_MIP:
7252 		ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n",
7253 			__func__, msg->sadb_msg_satype));
7254 		PFKEYSTAT_INC(out_invsatype);
7255 		error = EOPNOTSUPP;
7256 		goto senderror;
7257 	case 1:	/* XXX: What does it do? */
7258 		if (msg->sadb_msg_type == SADB_X_PROMISC)
7259 			break;
7260 		/*FALLTHROUGH*/
7261 	default:
7262 		ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
7263 			__func__, msg->sadb_msg_satype));
7264 		PFKEYSTAT_INC(out_invsatype);
7265 		error = EINVAL;
7266 		goto senderror;
7267 	}
7268 
7269 	/* check field of upper layer protocol and address family */
7270 	if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL
7271 	 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7272 		struct sadb_address *src0, *dst0;
7273 		u_int plen;
7274 
7275 		src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7276 		dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7277 
7278 		/* check upper layer protocol */
7279 		if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7280 			ipseclog((LOG_DEBUG, "%s: upper layer protocol "
7281 				"mismatched.\n", __func__));
7282 			PFKEYSTAT_INC(out_invaddr);
7283 			error = EINVAL;
7284 			goto senderror;
7285 		}
7286 
7287 		/* check family */
7288 		if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7289 		    PFKEY_ADDR_SADDR(dst0)->sa_family) {
7290 			ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
7291 				__func__));
7292 			PFKEYSTAT_INC(out_invaddr);
7293 			error = EINVAL;
7294 			goto senderror;
7295 		}
7296 		if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7297 		    PFKEY_ADDR_SADDR(dst0)->sa_len) {
7298 			ipseclog((LOG_DEBUG, "%s: address struct size "
7299 				"mismatched.\n", __func__));
7300 			PFKEYSTAT_INC(out_invaddr);
7301 			error = EINVAL;
7302 			goto senderror;
7303 		}
7304 
7305 		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7306 		case AF_INET:
7307 			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7308 			    sizeof(struct sockaddr_in)) {
7309 				PFKEYSTAT_INC(out_invaddr);
7310 				error = EINVAL;
7311 				goto senderror;
7312 			}
7313 			break;
7314 		case AF_INET6:
7315 			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7316 			    sizeof(struct sockaddr_in6)) {
7317 				PFKEYSTAT_INC(out_invaddr);
7318 				error = EINVAL;
7319 				goto senderror;
7320 			}
7321 			break;
7322 		default:
7323 			ipseclog((LOG_DEBUG, "%s: unsupported address family\n",
7324 				__func__));
7325 			PFKEYSTAT_INC(out_invaddr);
7326 			error = EAFNOSUPPORT;
7327 			goto senderror;
7328 		}
7329 
7330 		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7331 		case AF_INET:
7332 			plen = sizeof(struct in_addr) << 3;
7333 			break;
7334 		case AF_INET6:
7335 			plen = sizeof(struct in6_addr) << 3;
7336 			break;
7337 		default:
7338 			plen = 0;	/*fool gcc*/
7339 			break;
7340 		}
7341 
7342 		/* check max prefix length */
7343 		if (src0->sadb_address_prefixlen > plen ||
7344 		    dst0->sadb_address_prefixlen > plen) {
7345 			ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n",
7346 				__func__));
7347 			PFKEYSTAT_INC(out_invaddr);
7348 			error = EINVAL;
7349 			goto senderror;
7350 		}
7351 
7352 		/*
7353 		 * prefixlen == 0 is valid because there can be a case when
7354 		 * all addresses are matched.
7355 		 */
7356 	}
7357 
7358 	if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) ||
7359 	    key_typesw[msg->sadb_msg_type] == NULL) {
7360 		PFKEYSTAT_INC(out_invmsgtype);
7361 		error = EINVAL;
7362 		goto senderror;
7363 	}
7364 
7365 	return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
7366 
7367 senderror:
7368 	msg->sadb_msg_errno = error;
7369 	return key_sendup_mbuf(so, m, target);
7370 }
7371 
7372 static int
7373 key_senderror(struct socket *so, struct mbuf *m, int code)
7374 {
7375 	struct sadb_msg *msg;
7376 
7377 	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
7378 		("mbuf too small, len %u", m->m_len));
7379 
7380 	msg = mtod(m, struct sadb_msg *);
7381 	msg->sadb_msg_errno = code;
7382 	return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7383 }
7384 
7385 /*
7386  * set the pointer to each header into message buffer.
7387  * m will be freed on error.
7388  * XXX larger-than-MCLBYTES extension?
7389  */
7390 static int
7391 key_align(struct mbuf *m, struct sadb_msghdr *mhp)
7392 {
7393 	struct mbuf *n;
7394 	struct sadb_ext *ext;
7395 	size_t off, end;
7396 	int extlen;
7397 	int toff;
7398 
7399 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7400 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7401 	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
7402 		("mbuf too small, len %u", m->m_len));
7403 
7404 	/* initialize */
7405 	bzero(mhp, sizeof(*mhp));
7406 
7407 	mhp->msg = mtod(m, struct sadb_msg *);
7408 	mhp->ext[0] = (struct sadb_ext *)mhp->msg;	/*XXX backward compat */
7409 
7410 	end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7411 	extlen = end;	/*just in case extlen is not updated*/
7412 	for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7413 		n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7414 		if (!n) {
7415 			/* m is already freed */
7416 			return ENOBUFS;
7417 		}
7418 		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
7419 
7420 		/* set pointer */
7421 		switch (ext->sadb_ext_type) {
7422 		case SADB_EXT_SA:
7423 		case SADB_EXT_ADDRESS_SRC:
7424 		case SADB_EXT_ADDRESS_DST:
7425 		case SADB_EXT_ADDRESS_PROXY:
7426 		case SADB_EXT_LIFETIME_CURRENT:
7427 		case SADB_EXT_LIFETIME_HARD:
7428 		case SADB_EXT_LIFETIME_SOFT:
7429 		case SADB_EXT_KEY_AUTH:
7430 		case SADB_EXT_KEY_ENCRYPT:
7431 		case SADB_EXT_IDENTITY_SRC:
7432 		case SADB_EXT_IDENTITY_DST:
7433 		case SADB_EXT_SENSITIVITY:
7434 		case SADB_EXT_PROPOSAL:
7435 		case SADB_EXT_SUPPORTED_AUTH:
7436 		case SADB_EXT_SUPPORTED_ENCRYPT:
7437 		case SADB_EXT_SPIRANGE:
7438 		case SADB_X_EXT_POLICY:
7439 		case SADB_X_EXT_SA2:
7440 #ifdef IPSEC_NAT_T
7441 		case SADB_X_EXT_NAT_T_TYPE:
7442 		case SADB_X_EXT_NAT_T_SPORT:
7443 		case SADB_X_EXT_NAT_T_DPORT:
7444 		case SADB_X_EXT_NAT_T_OAI:
7445 		case SADB_X_EXT_NAT_T_OAR:
7446 		case SADB_X_EXT_NAT_T_FRAG:
7447 #endif
7448 			/* duplicate check */
7449 			/*
7450 			 * XXX Are there duplication payloads of either
7451 			 * KEY_AUTH or KEY_ENCRYPT ?
7452 			 */
7453 			if (mhp->ext[ext->sadb_ext_type] != NULL) {
7454 				ipseclog((LOG_DEBUG, "%s: duplicate ext_type "
7455 					"%u\n", __func__, ext->sadb_ext_type));
7456 				m_freem(m);
7457 				PFKEYSTAT_INC(out_dupext);
7458 				return EINVAL;
7459 			}
7460 			break;
7461 		default:
7462 			ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n",
7463 				__func__, ext->sadb_ext_type));
7464 			m_freem(m);
7465 			PFKEYSTAT_INC(out_invexttype);
7466 			return EINVAL;
7467 		}
7468 
7469 		extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7470 
7471 		if (key_validate_ext(ext, extlen)) {
7472 			m_freem(m);
7473 			PFKEYSTAT_INC(out_invlen);
7474 			return EINVAL;
7475 		}
7476 
7477 		n = m_pulldown(m, off, extlen, &toff);
7478 		if (!n) {
7479 			/* m is already freed */
7480 			return ENOBUFS;
7481 		}
7482 		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
7483 
7484 		mhp->ext[ext->sadb_ext_type] = ext;
7485 		mhp->extoff[ext->sadb_ext_type] = off;
7486 		mhp->extlen[ext->sadb_ext_type] = extlen;
7487 	}
7488 
7489 	if (off != end) {
7490 		m_freem(m);
7491 		PFKEYSTAT_INC(out_invlen);
7492 		return EINVAL;
7493 	}
7494 
7495 	return 0;
7496 }
7497 
7498 static int
7499 key_validate_ext(const struct sadb_ext *ext, int len)
7500 {
7501 	const struct sockaddr *sa;
7502 	enum { NONE, ADDR } checktype = NONE;
7503 	int baselen = 0;
7504 	const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7505 
7506 	if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7507 		return EINVAL;
7508 
7509 	/* if it does not match minimum/maximum length, bail */
7510 	if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) ||
7511 	    ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0]))
7512 		return EINVAL;
7513 	if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7514 		return EINVAL;
7515 	if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7516 		return EINVAL;
7517 
7518 	/* more checks based on sadb_ext_type XXX need more */
7519 	switch (ext->sadb_ext_type) {
7520 	case SADB_EXT_ADDRESS_SRC:
7521 	case SADB_EXT_ADDRESS_DST:
7522 	case SADB_EXT_ADDRESS_PROXY:
7523 		baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7524 		checktype = ADDR;
7525 		break;
7526 	case SADB_EXT_IDENTITY_SRC:
7527 	case SADB_EXT_IDENTITY_DST:
7528 		if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7529 		    SADB_X_IDENTTYPE_ADDR) {
7530 			baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7531 			checktype = ADDR;
7532 		} else
7533 			checktype = NONE;
7534 		break;
7535 	default:
7536 		checktype = NONE;
7537 		break;
7538 	}
7539 
7540 	switch (checktype) {
7541 	case NONE:
7542 		break;
7543 	case ADDR:
7544 		sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7545 		if (len < baselen + sal)
7546 			return EINVAL;
7547 		if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7548 			return EINVAL;
7549 		break;
7550 	}
7551 
7552 	return 0;
7553 }
7554 
7555 void
7556 key_init(void)
7557 {
7558 	int i;
7559 
7560 	for (i = 0; i < IPSEC_DIR_MAX; i++)
7561 		TAILQ_INIT(&V_sptree[i]);
7562 
7563 	LIST_INIT(&V_sahtree);
7564 
7565 	for (i = 0; i <= SADB_SATYPE_MAX; i++)
7566 		LIST_INIT(&V_regtree[i]);
7567 
7568 	LIST_INIT(&V_acqtree);
7569 	LIST_INIT(&V_spacqtree);
7570 
7571 	if (!IS_DEFAULT_VNET(curvnet))
7572 		return;
7573 
7574 	SPTREE_LOCK_INIT();
7575 	REGTREE_LOCK_INIT();
7576 	SAHTREE_LOCK_INIT();
7577 	ACQ_LOCK_INIT();
7578 	SPACQ_LOCK_INIT();
7579 
7580 #ifndef IPSEC_DEBUG2
7581 	callout_init(&key_timer, CALLOUT_MPSAFE);
7582 	callout_reset(&key_timer, hz, key_timehandler, NULL);
7583 #endif /*IPSEC_DEBUG2*/
7584 
7585 	/* initialize key statistics */
7586 	keystat.getspi_count = 1;
7587 
7588 	printf("IPsec: Initialized Security Association Processing.\n");
7589 }
7590 
7591 #ifdef VIMAGE
7592 void
7593 key_destroy(void)
7594 {
7595 	TAILQ_HEAD(, secpolicy) drainq;
7596 	struct secpolicy *sp, *nextsp;
7597 	struct secacq *acq, *nextacq;
7598 	struct secspacq *spacq, *nextspacq;
7599 	struct secashead *sah, *nextsah;
7600 	struct secreg *reg;
7601 	int i;
7602 
7603 	TAILQ_INIT(&drainq);
7604 	SPTREE_WLOCK();
7605 	for (i = 0; i < IPSEC_DIR_MAX; i++) {
7606 		TAILQ_CONCAT(&drainq, &V_sptree[i], chain);
7607 	}
7608 	SPTREE_WUNLOCK();
7609 	sp = TAILQ_FIRST(&drainq);
7610 	while (sp != NULL) {
7611 		nextsp = TAILQ_NEXT(sp, chain);
7612 		KEY_FREESP(&sp);
7613 		sp = nextsp;
7614 	}
7615 
7616 	SAHTREE_LOCK();
7617 	for (sah = LIST_FIRST(&V_sahtree); sah != NULL; sah = nextsah) {
7618 		nextsah = LIST_NEXT(sah, chain);
7619 		if (__LIST_CHAINED(sah)) {
7620 			LIST_REMOVE(sah, chain);
7621 			free(sah, M_IPSEC_SAH);
7622 		}
7623 	}
7624 	SAHTREE_UNLOCK();
7625 
7626 	REGTREE_LOCK();
7627 	for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7628 		LIST_FOREACH(reg, &V_regtree[i], chain) {
7629 			if (__LIST_CHAINED(reg)) {
7630 				LIST_REMOVE(reg, chain);
7631 				free(reg, M_IPSEC_SAR);
7632 				break;
7633 			}
7634 		}
7635 	}
7636 	REGTREE_UNLOCK();
7637 
7638 	ACQ_LOCK();
7639 	for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) {
7640 		nextacq = LIST_NEXT(acq, chain);
7641 		if (__LIST_CHAINED(acq)) {
7642 			LIST_REMOVE(acq, chain);
7643 			free(acq, M_IPSEC_SAQ);
7644 		}
7645 	}
7646 	ACQ_UNLOCK();
7647 
7648 	SPACQ_LOCK();
7649 	for (spacq = LIST_FIRST(&V_spacqtree); spacq != NULL;
7650 	    spacq = nextspacq) {
7651 		nextspacq = LIST_NEXT(spacq, chain);
7652 		if (__LIST_CHAINED(spacq)) {
7653 			LIST_REMOVE(spacq, chain);
7654 			free(spacq, M_IPSEC_SAQ);
7655 		}
7656 	}
7657 	SPACQ_UNLOCK();
7658 }
7659 #endif
7660 
7661 /*
7662  * XXX: maybe This function is called after INBOUND IPsec processing.
7663  *
7664  * Special check for tunnel-mode packets.
7665  * We must make some checks for consistency between inner and outer IP header.
7666  *
7667  * xxx more checks to be provided
7668  */
7669 int
7670 key_checktunnelsanity(struct secasvar *sav, u_int family, caddr_t src,
7671     caddr_t dst)
7672 {
7673 	IPSEC_ASSERT(sav->sah != NULL, ("null SA header"));
7674 
7675 	/* XXX: check inner IP header */
7676 
7677 	return 1;
7678 }
7679 
7680 /* record data transfer on SA, and update timestamps */
7681 void
7682 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m)
7683 {
7684 	IPSEC_ASSERT(sav != NULL, ("Null secasvar"));
7685 	IPSEC_ASSERT(m != NULL, ("Null mbuf"));
7686 	if (!sav->lft_c)
7687 		return;
7688 
7689 	/*
7690 	 * XXX Currently, there is a difference of bytes size
7691 	 * between inbound and outbound processing.
7692 	 */
7693 	sav->lft_c->bytes += m->m_pkthdr.len;
7694 	/* to check bytes lifetime is done in key_timehandler(). */
7695 
7696 	/*
7697 	 * We use the number of packets as the unit of
7698 	 * allocations.  We increment the variable
7699 	 * whenever {esp,ah}_{in,out}put is called.
7700 	 */
7701 	sav->lft_c->allocations++;
7702 	/* XXX check for expires? */
7703 
7704 	/*
7705 	 * NOTE: We record CURRENT usetime by using wall clock,
7706 	 * in seconds.  HARD and SOFT lifetime are measured by the time
7707 	 * difference (again in seconds) from usetime.
7708 	 *
7709 	 *	usetime
7710 	 *	v     expire   expire
7711 	 * -----+-----+--------+---> t
7712 	 *	<--------------> HARD
7713 	 *	<-----> SOFT
7714 	 */
7715 	sav->lft_c->usetime = time_second;
7716 	/* XXX check for expires? */
7717 
7718 	return;
7719 }
7720 
7721 static void
7722 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
7723 {
7724 	IPSEC_ASSERT(sav != NULL, ("NULL sav"));
7725 	SAHTREE_LOCK_ASSERT();
7726 
7727 	if (sav->state != state) {
7728 		if (__LIST_CHAINED(sav))
7729 			LIST_REMOVE(sav, chain);
7730 		sav->state = state;
7731 		LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7732 	}
7733 }
7734 
7735 void
7736 key_sa_stir_iv(struct secasvar *sav)
7737 {
7738 
7739 	IPSEC_ASSERT(sav->iv != NULL, ("null IV"));
7740 	key_randomfill(sav->iv, sav->ivlen);
7741 }
7742 
7743 /*
7744  * Take one of the kernel's security keys and convert it into a PF_KEY
7745  * structure within an mbuf, suitable for sending up to a waiting
7746  * application in user land.
7747  *
7748  * IN:
7749  *    src: A pointer to a kernel security key.
7750  *    exttype: Which type of key this is. Refer to the PF_KEY data structures.
7751  * OUT:
7752  *    a valid mbuf or NULL indicating an error
7753  *
7754  */
7755 
7756 static struct mbuf *
7757 key_setkey(struct seckey *src, u_int16_t exttype)
7758 {
7759 	struct mbuf *m;
7760 	struct sadb_key *p;
7761 	int len;
7762 
7763 	if (src == NULL)
7764 		return NULL;
7765 
7766 	len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src));
7767 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
7768 	if (m == NULL)
7769 		return NULL;
7770 	m_align(m, len);
7771 	m->m_len = len;
7772 	p = mtod(m, struct sadb_key *);
7773 	bzero(p, len);
7774 	p->sadb_key_len = PFKEY_UNIT64(len);
7775 	p->sadb_key_exttype = exttype;
7776 	p->sadb_key_bits = src->bits;
7777 	bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src));
7778 
7779 	return m;
7780 }
7781 
7782 /*
7783  * Take one of the kernel's lifetime data structures and convert it
7784  * into a PF_KEY structure within an mbuf, suitable for sending up to
7785  * a waiting application in user land.
7786  *
7787  * IN:
7788  *    src: A pointer to a kernel lifetime structure.
7789  *    exttype: Which type of lifetime this is. Refer to the PF_KEY
7790  *             data structures for more information.
7791  * OUT:
7792  *    a valid mbuf or NULL indicating an error
7793  *
7794  */
7795 
7796 static struct mbuf *
7797 key_setlifetime(struct seclifetime *src, u_int16_t exttype)
7798 {
7799 	struct mbuf *m = NULL;
7800 	struct sadb_lifetime *p;
7801 	int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime));
7802 
7803 	if (src == NULL)
7804 		return NULL;
7805 
7806 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
7807 	if (m == NULL)
7808 		return m;
7809 	m_align(m, len);
7810 	m->m_len = len;
7811 	p = mtod(m, struct sadb_lifetime *);
7812 
7813 	bzero(p, len);
7814 	p->sadb_lifetime_len = PFKEY_UNIT64(len);
7815 	p->sadb_lifetime_exttype = exttype;
7816 	p->sadb_lifetime_allocations = src->allocations;
7817 	p->sadb_lifetime_bytes = src->bytes;
7818 	p->sadb_lifetime_addtime = src->addtime;
7819 	p->sadb_lifetime_usetime = src->usetime;
7820 
7821 	return m;
7822 
7823 }
7824