1 /* $FreeBSD$ */ 2 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ 3 4 /*- 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * This code is referd to RFC 2367 35 */ 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 #include "opt_ipsec.h" 40 41 #include <sys/types.h> 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/mutex.h> 47 #include <sys/mbuf.h> 48 #include <sys/domain.h> 49 #include <sys/protosw.h> 50 #include <sys/malloc.h> 51 #include <sys/rmlock.h> 52 #include <sys/socket.h> 53 #include <sys/socketvar.h> 54 #include <sys/sysctl.h> 55 #include <sys/errno.h> 56 #include <sys/proc.h> 57 #include <sys/queue.h> 58 #include <sys/refcount.h> 59 #include <sys/syslog.h> 60 61 #include <net/if.h> 62 #include <net/if_var.h> 63 #include <net/vnet.h> 64 #include <net/raw_cb.h> 65 66 #include <netinet/in.h> 67 #include <netinet/in_systm.h> 68 #include <netinet/ip.h> 69 #include <netinet/in_var.h> 70 71 #ifdef INET6 72 #include <netinet/ip6.h> 73 #include <netinet6/in6_var.h> 74 #include <netinet6/ip6_var.h> 75 #endif /* INET6 */ 76 77 #if defined(INET) || defined(INET6) 78 #include <netinet/in_pcb.h> 79 #endif 80 #ifdef INET6 81 #include <netinet6/in6_pcb.h> 82 #endif /* INET6 */ 83 84 #include <net/pfkeyv2.h> 85 #include <netipsec/keydb.h> 86 #include <netipsec/key.h> 87 #include <netipsec/keysock.h> 88 #include <netipsec/key_debug.h> 89 90 #include <netipsec/ipsec.h> 91 #ifdef INET6 92 #include <netipsec/ipsec6.h> 93 #endif 94 95 #include <netipsec/xform.h> 96 97 #include <machine/stdarg.h> 98 99 /* randomness */ 100 #include <sys/random.h> 101 102 #define FULLMASK 0xff 103 #define _BITS(bytes) ((bytes) << 3) 104 105 /* 106 * Note on SA reference counting: 107 * - SAs that are not in DEAD state will have (total external reference + 1) 108 * following value in reference count field. they cannot be freed and are 109 * referenced from SA header. 110 * - SAs that are in DEAD state will have (total external reference) 111 * in reference count field. they are ready to be freed. reference from 112 * SA header will be removed in key_delsav(), when the reference count 113 * field hits 0 (= no external reference other than from SA header. 114 */ 115 116 VNET_DEFINE(u_int32_t, key_debug_level) = 0; 117 static VNET_DEFINE(u_int, key_spi_trycnt) = 1000; 118 static VNET_DEFINE(u_int32_t, key_spi_minval) = 0x100; 119 static VNET_DEFINE(u_int32_t, key_spi_maxval) = 0x0fffffff; /* XXX */ 120 static VNET_DEFINE(u_int32_t, policy_id) = 0; 121 /*interval to initialize randseed,1(m)*/ 122 static VNET_DEFINE(u_int, key_int_random) = 60; 123 /* interval to expire acquiring, 30(s)*/ 124 static VNET_DEFINE(u_int, key_larval_lifetime) = 30; 125 /* counter for blocking SADB_ACQUIRE.*/ 126 static VNET_DEFINE(int, key_blockacq_count) = 10; 127 /* lifetime for blocking SADB_ACQUIRE.*/ 128 static VNET_DEFINE(int, key_blockacq_lifetime) = 20; 129 /* preferred old sa rather than new sa.*/ 130 static VNET_DEFINE(int, key_preferred_oldsa) = 1; 131 #define V_key_spi_trycnt VNET(key_spi_trycnt) 132 #define V_key_spi_minval VNET(key_spi_minval) 133 #define V_key_spi_maxval VNET(key_spi_maxval) 134 #define V_policy_id VNET(policy_id) 135 #define V_key_int_random VNET(key_int_random) 136 #define V_key_larval_lifetime VNET(key_larval_lifetime) 137 #define V_key_blockacq_count VNET(key_blockacq_count) 138 #define V_key_blockacq_lifetime VNET(key_blockacq_lifetime) 139 #define V_key_preferred_oldsa VNET(key_preferred_oldsa) 140 141 static VNET_DEFINE(u_int32_t, acq_seq) = 0; 142 #define V_acq_seq VNET(acq_seq) 143 144 /* SPD */ 145 static VNET_DEFINE(TAILQ_HEAD(_sptree, secpolicy), sptree[IPSEC_DIR_MAX]); 146 static struct rmlock sptree_lock; 147 #define V_sptree VNET(sptree) 148 #define SPTREE_LOCK_INIT() rm_init(&sptree_lock, "sptree") 149 #define SPTREE_LOCK_DESTROY() rm_destroy(&sptree_lock) 150 #define SPTREE_RLOCK_TRACKER struct rm_priotracker sptree_tracker 151 #define SPTREE_RLOCK() rm_rlock(&sptree_lock, &sptree_tracker) 152 #define SPTREE_RUNLOCK() rm_runlock(&sptree_lock, &sptree_tracker) 153 #define SPTREE_RLOCK_ASSERT() rm_assert(&sptree_lock, RA_RLOCKED) 154 #define SPTREE_WLOCK() rm_wlock(&sptree_lock) 155 #define SPTREE_WUNLOCK() rm_wunlock(&sptree_lock) 156 #define SPTREE_WLOCK_ASSERT() rm_assert(&sptree_lock, RA_WLOCKED) 157 #define SPTREE_UNLOCK_ASSERT() rm_assert(&sptree_lock, RA_UNLOCKED) 158 159 static VNET_DEFINE(LIST_HEAD(_sahtree, secashead), sahtree); /* SAD */ 160 #define V_sahtree VNET(sahtree) 161 static struct mtx sahtree_lock; 162 #define SAHTREE_LOCK_INIT() \ 163 mtx_init(&sahtree_lock, "sahtree", \ 164 "fast ipsec security association database", MTX_DEF) 165 #define SAHTREE_LOCK_DESTROY() mtx_destroy(&sahtree_lock) 166 #define SAHTREE_LOCK() mtx_lock(&sahtree_lock) 167 #define SAHTREE_UNLOCK() mtx_unlock(&sahtree_lock) 168 #define SAHTREE_LOCK_ASSERT() mtx_assert(&sahtree_lock, MA_OWNED) 169 170 /* registed list */ 171 static VNET_DEFINE(LIST_HEAD(_regtree, secreg), regtree[SADB_SATYPE_MAX + 1]); 172 #define V_regtree VNET(regtree) 173 static struct mtx regtree_lock; 174 #define REGTREE_LOCK_INIT() \ 175 mtx_init(®tree_lock, "regtree", "fast ipsec regtree", MTX_DEF) 176 #define REGTREE_LOCK_DESTROY() mtx_destroy(®tree_lock) 177 #define REGTREE_LOCK() mtx_lock(®tree_lock) 178 #define REGTREE_UNLOCK() mtx_unlock(®tree_lock) 179 #define REGTREE_LOCK_ASSERT() mtx_assert(®tree_lock, MA_OWNED) 180 181 static VNET_DEFINE(LIST_HEAD(_acqtree, secacq), acqtree); /* acquiring list */ 182 #define V_acqtree VNET(acqtree) 183 static struct mtx acq_lock; 184 #define ACQ_LOCK_INIT() \ 185 mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF) 186 #define ACQ_LOCK_DESTROY() mtx_destroy(&acq_lock) 187 #define ACQ_LOCK() mtx_lock(&acq_lock) 188 #define ACQ_UNLOCK() mtx_unlock(&acq_lock) 189 #define ACQ_LOCK_ASSERT() mtx_assert(&acq_lock, MA_OWNED) 190 191 /* SP acquiring list */ 192 static VNET_DEFINE(LIST_HEAD(_spacqtree, secspacq), spacqtree); 193 #define V_spacqtree VNET(spacqtree) 194 static struct mtx spacq_lock; 195 #define SPACQ_LOCK_INIT() \ 196 mtx_init(&spacq_lock, "spacqtree", \ 197 "fast ipsec security policy acquire list", MTX_DEF) 198 #define SPACQ_LOCK_DESTROY() mtx_destroy(&spacq_lock) 199 #define SPACQ_LOCK() mtx_lock(&spacq_lock) 200 #define SPACQ_UNLOCK() mtx_unlock(&spacq_lock) 201 #define SPACQ_LOCK_ASSERT() mtx_assert(&spacq_lock, MA_OWNED) 202 203 /* search order for SAs */ 204 static const u_int saorder_state_valid_prefer_old[] = { 205 SADB_SASTATE_DYING, SADB_SASTATE_MATURE, 206 }; 207 static const u_int saorder_state_valid_prefer_new[] = { 208 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 209 }; 210 static const u_int saorder_state_alive[] = { 211 /* except DEAD */ 212 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL 213 }; 214 static const u_int saorder_state_any[] = { 215 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 216 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD 217 }; 218 219 static const int minsize[] = { 220 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 221 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 222 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 223 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 224 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 225 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ 226 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ 227 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ 228 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ 229 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ 230 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ 231 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ 232 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ 233 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ 234 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ 235 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ 236 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 237 0, /* SADB_X_EXT_KMPRIVATE */ 238 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ 239 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 240 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ 241 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ 242 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ 243 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */ 244 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */ 245 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ 246 }; 247 static const int maxsize[] = { 248 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 249 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 250 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 251 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 252 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 253 0, /* SADB_EXT_ADDRESS_SRC */ 254 0, /* SADB_EXT_ADDRESS_DST */ 255 0, /* SADB_EXT_ADDRESS_PROXY */ 256 0, /* SADB_EXT_KEY_AUTH */ 257 0, /* SADB_EXT_KEY_ENCRYPT */ 258 0, /* SADB_EXT_IDENTITY_SRC */ 259 0, /* SADB_EXT_IDENTITY_DST */ 260 0, /* SADB_EXT_SENSITIVITY */ 261 0, /* SADB_EXT_PROPOSAL */ 262 0, /* SADB_EXT_SUPPORTED_AUTH */ 263 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ 264 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 265 0, /* SADB_X_EXT_KMPRIVATE */ 266 0, /* SADB_X_EXT_POLICY */ 267 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 268 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ 269 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ 270 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ 271 0, /* SADB_X_EXT_NAT_T_OAI */ 272 0, /* SADB_X_EXT_NAT_T_OAR */ 273 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ 274 }; 275 276 static VNET_DEFINE(int, ipsec_esp_keymin) = 256; 277 static VNET_DEFINE(int, ipsec_esp_auth) = 0; 278 static VNET_DEFINE(int, ipsec_ah_keymin) = 128; 279 280 #define V_ipsec_esp_keymin VNET(ipsec_esp_keymin) 281 #define V_ipsec_esp_auth VNET(ipsec_esp_auth) 282 #define V_ipsec_ah_keymin VNET(ipsec_ah_keymin) 283 284 #ifdef SYSCTL_DECL 285 SYSCTL_DECL(_net_key); 286 #endif 287 288 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, 289 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_debug_level), 0, ""); 290 291 /* max count of trial for the decision of spi value */ 292 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, 293 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_trycnt), 0, ""); 294 295 /* minimum spi value to allocate automatically. */ 296 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, 297 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_minval), 0, ""); 298 299 /* maximun spi value to allocate automatically. */ 300 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, 301 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_maxval), 0, ""); 302 303 /* interval to initialize randseed */ 304 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, 305 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_int_random), 0, ""); 306 307 /* lifetime for larval SA */ 308 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, 309 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_larval_lifetime), 0, ""); 310 311 /* counter for blocking to send SADB_ACQUIRE to IKEd */ 312 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, 313 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_count), 0, ""); 314 315 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ 316 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, 317 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_lifetime), 0, ""); 318 319 /* ESP auth */ 320 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, 321 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_auth), 0, ""); 322 323 /* minimum ESP key length */ 324 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, 325 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_keymin), 0, ""); 326 327 /* minimum AH key length */ 328 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, 329 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_ah_keymin), 0, ""); 330 331 /* perfered old SA rather than new SA */ 332 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, preferred_oldsa, 333 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_preferred_oldsa), 0, ""); 334 335 #define __LIST_CHAINED(elm) \ 336 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) 337 #define LIST_INSERT_TAIL(head, elm, type, field) \ 338 do {\ 339 struct type *curelm = LIST_FIRST(head); \ 340 if (curelm == NULL) {\ 341 LIST_INSERT_HEAD(head, elm, field); \ 342 } else { \ 343 while (LIST_NEXT(curelm, field)) \ 344 curelm = LIST_NEXT(curelm, field);\ 345 LIST_INSERT_AFTER(curelm, elm, field);\ 346 }\ 347 } while (0) 348 349 #define KEY_CHKSASTATE(head, sav, name) \ 350 do { \ 351 if ((head) != (sav)) { \ 352 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \ 353 (name), (head), (sav))); \ 354 continue; \ 355 } \ 356 } while (0) 357 358 #define KEY_CHKSPDIR(head, sp, name) \ 359 do { \ 360 if ((head) != (sp)) { \ 361 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \ 362 "anyway continue.\n", \ 363 (name), (head), (sp))); \ 364 } \ 365 } while (0) 366 367 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association"); 368 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head"); 369 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy"); 370 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request"); 371 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous"); 372 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire"); 373 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire"); 374 375 /* 376 * set parameters into secpolicyindex buffer. 377 * Must allocate secpolicyindex buffer passed to this function. 378 */ 379 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \ 380 do { \ 381 bzero((idx), sizeof(struct secpolicyindex)); \ 382 (idx)->dir = (_dir); \ 383 (idx)->prefs = (ps); \ 384 (idx)->prefd = (pd); \ 385 (idx)->ul_proto = (ulp); \ 386 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 387 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 388 } while (0) 389 390 /* 391 * set parameters into secasindex buffer. 392 * Must allocate secasindex buffer before calling this function. 393 */ 394 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \ 395 do { \ 396 bzero((idx), sizeof(struct secasindex)); \ 397 (idx)->proto = (p); \ 398 (idx)->mode = (m); \ 399 (idx)->reqid = (r); \ 400 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 401 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 402 } while (0) 403 404 /* key statistics */ 405 struct _keystat { 406 u_long getspi_count; /* the avarage of count to try to get new SPI */ 407 } keystat; 408 409 struct sadb_msghdr { 410 struct sadb_msg *msg; 411 struct sadb_ext *ext[SADB_EXT_MAX + 1]; 412 int extoff[SADB_EXT_MAX + 1]; 413 int extlen[SADB_EXT_MAX + 1]; 414 }; 415 416 #ifndef IPSEC_DEBUG2 417 static struct callout key_timer; 418 #endif 419 420 static struct secasvar *key_allocsa_policy(const struct secasindex *); 421 static void key_freesp_so(struct secpolicy **); 422 static struct secasvar *key_do_allocsa_policy(struct secashead *, u_int); 423 static void key_unlink(struct secpolicy *); 424 static struct secpolicy *key_getsp(struct secpolicyindex *); 425 static struct secpolicy *key_getspbyid(u_int32_t); 426 static u_int32_t key_newreqid(void); 427 static struct mbuf *key_gather_mbuf(struct mbuf *, 428 const struct sadb_msghdr *, int, int, ...); 429 static int key_spdadd(struct socket *, struct mbuf *, 430 const struct sadb_msghdr *); 431 static u_int32_t key_getnewspid(void); 432 static int key_spddelete(struct socket *, struct mbuf *, 433 const struct sadb_msghdr *); 434 static int key_spddelete2(struct socket *, struct mbuf *, 435 const struct sadb_msghdr *); 436 static int key_spdget(struct socket *, struct mbuf *, 437 const struct sadb_msghdr *); 438 static int key_spdflush(struct socket *, struct mbuf *, 439 const struct sadb_msghdr *); 440 static int key_spddump(struct socket *, struct mbuf *, 441 const struct sadb_msghdr *); 442 static struct mbuf *key_setdumpsp(struct secpolicy *, 443 u_int8_t, u_int32_t, u_int32_t); 444 static u_int key_getspreqmsglen(struct secpolicy *); 445 static int key_spdexpire(struct secpolicy *); 446 static struct secashead *key_newsah(struct secasindex *); 447 static void key_delsah(struct secashead *); 448 static struct secasvar *key_newsav(struct mbuf *, 449 const struct sadb_msghdr *, struct secashead *, int *, 450 const char*, int); 451 #define KEY_NEWSAV(m, sadb, sah, e) \ 452 key_newsav(m, sadb, sah, e, __FILE__, __LINE__) 453 static void key_delsav(struct secasvar *); 454 static struct secashead *key_getsah(struct secasindex *); 455 static struct secasvar *key_checkspidup(struct secasindex *, u_int32_t); 456 static struct secasvar *key_getsavbyspi(struct secashead *, u_int32_t); 457 static int key_setsaval(struct secasvar *, struct mbuf *, 458 const struct sadb_msghdr *); 459 static int key_mature(struct secasvar *); 460 static struct mbuf *key_setdumpsa(struct secasvar *, u_int8_t, 461 u_int8_t, u_int32_t, u_int32_t); 462 static struct mbuf *key_setsadbmsg(u_int8_t, u_int16_t, u_int8_t, 463 u_int32_t, pid_t, u_int16_t); 464 static struct mbuf *key_setsadbsa(struct secasvar *); 465 static struct mbuf *key_setsadbaddr(u_int16_t, 466 const struct sockaddr *, u_int8_t, u_int16_t); 467 #ifdef IPSEC_NAT_T 468 static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t); 469 static struct mbuf *key_setsadbxtype(u_int16_t); 470 #endif 471 static void key_porttosaddr(struct sockaddr *, u_int16_t); 472 #define KEY_PORTTOSADDR(saddr, port) \ 473 key_porttosaddr((struct sockaddr *)(saddr), (port)) 474 static struct mbuf *key_setsadbxsa2(u_int8_t, u_int32_t, u_int32_t); 475 static struct mbuf *key_setsadbxpolicy(u_int16_t, u_int8_t, 476 u_int32_t); 477 static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int, 478 struct malloc_type *); 479 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src, 480 struct malloc_type *type); 481 #ifdef INET6 482 static int key_ismyaddr6(struct sockaddr_in6 *); 483 #endif 484 485 /* flags for key_cmpsaidx() */ 486 #define CMP_HEAD 1 /* protocol, addresses. */ 487 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ 488 #define CMP_REQID 3 /* additionally HEAD, reaid. */ 489 #define CMP_EXACTLY 4 /* all elements. */ 490 static int key_cmpsaidx(const struct secasindex *, 491 const struct secasindex *, int); 492 static int key_cmpspidx_exactly(struct secpolicyindex *, 493 struct secpolicyindex *); 494 static int key_cmpspidx_withmask(struct secpolicyindex *, 495 struct secpolicyindex *); 496 static int key_sockaddrcmp(const struct sockaddr *, 497 const struct sockaddr *, int); 498 static int key_bbcmp(const void *, const void *, u_int); 499 static u_int16_t key_satype2proto(u_int8_t); 500 static u_int8_t key_proto2satype(u_int16_t); 501 502 static int key_getspi(struct socket *, struct mbuf *, 503 const struct sadb_msghdr *); 504 static u_int32_t key_do_getnewspi(struct sadb_spirange *, 505 struct secasindex *); 506 static int key_update(struct socket *, struct mbuf *, 507 const struct sadb_msghdr *); 508 #ifdef IPSEC_DOSEQCHECK 509 static struct secasvar *key_getsavbyseq(struct secashead *, u_int32_t); 510 #endif 511 static int key_add(struct socket *, struct mbuf *, 512 const struct sadb_msghdr *); 513 static int key_setident(struct secashead *, struct mbuf *, 514 const struct sadb_msghdr *); 515 static struct mbuf *key_getmsgbuf_x1(struct mbuf *, 516 const struct sadb_msghdr *); 517 static int key_delete(struct socket *, struct mbuf *, 518 const struct sadb_msghdr *); 519 static int key_delete_all(struct socket *, struct mbuf *, 520 const struct sadb_msghdr *, u_int16_t); 521 static int key_get(struct socket *, struct mbuf *, 522 const struct sadb_msghdr *); 523 524 static void key_getcomb_setlifetime(struct sadb_comb *); 525 static struct mbuf *key_getcomb_esp(void); 526 static struct mbuf *key_getcomb_ah(void); 527 static struct mbuf *key_getcomb_ipcomp(void); 528 static struct mbuf *key_getprop(const struct secasindex *); 529 530 static int key_acquire(const struct secasindex *, struct secpolicy *); 531 static struct secacq *key_newacq(const struct secasindex *); 532 static struct secacq *key_getacq(const struct secasindex *); 533 static struct secacq *key_getacqbyseq(u_int32_t); 534 static struct secspacq *key_newspacq(struct secpolicyindex *); 535 static struct secspacq *key_getspacq(struct secpolicyindex *); 536 static int key_acquire2(struct socket *, struct mbuf *, 537 const struct sadb_msghdr *); 538 static int key_register(struct socket *, struct mbuf *, 539 const struct sadb_msghdr *); 540 static int key_expire(struct secasvar *); 541 static int key_flush(struct socket *, struct mbuf *, 542 const struct sadb_msghdr *); 543 static int key_dump(struct socket *, struct mbuf *, 544 const struct sadb_msghdr *); 545 static int key_promisc(struct socket *, struct mbuf *, 546 const struct sadb_msghdr *); 547 static int key_senderror(struct socket *, struct mbuf *, int); 548 static int key_validate_ext(const struct sadb_ext *, int); 549 static int key_align(struct mbuf *, struct sadb_msghdr *); 550 static struct mbuf *key_setlifetime(struct seclifetime *src, 551 u_int16_t exttype); 552 static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype); 553 554 #if 0 555 static const char *key_getfqdn(void); 556 static const char *key_getuserfqdn(void); 557 #endif 558 static void key_sa_chgstate(struct secasvar *, u_int8_t); 559 560 static __inline void 561 sa_initref(struct secasvar *sav) 562 { 563 564 refcount_init(&sav->refcnt, 1); 565 } 566 static __inline void 567 sa_addref(struct secasvar *sav) 568 { 569 570 refcount_acquire(&sav->refcnt); 571 IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow")); 572 } 573 static __inline int 574 sa_delref(struct secasvar *sav) 575 { 576 577 IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow")); 578 return (refcount_release(&sav->refcnt)); 579 } 580 581 #define SP_ADDREF(p) refcount_acquire(&(p)->refcnt) 582 #define SP_DELREF(p) refcount_release(&(p)->refcnt) 583 584 /* 585 * Update the refcnt while holding the SPTREE lock. 586 */ 587 void 588 key_addref(struct secpolicy *sp) 589 { 590 591 SP_ADDREF(sp); 592 } 593 594 /* 595 * Return 0 when there are known to be no SP's for the specified 596 * direction. Otherwise return 1. This is used by IPsec code 597 * to optimize performance. 598 */ 599 int 600 key_havesp(u_int dir) 601 { 602 603 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? 604 TAILQ_FIRST(&V_sptree[dir]) != NULL : 1); 605 } 606 607 /* %%% IPsec policy management */ 608 /* 609 * allocating a SP for OUTBOUND or INBOUND packet. 610 * Must call key_freesp() later. 611 * OUT: NULL: not found 612 * others: found and return the pointer. 613 */ 614 struct secpolicy * 615 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, 616 int tag) 617 { 618 SPTREE_RLOCK_TRACKER; 619 struct secpolicy *sp; 620 621 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 622 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 623 ("invalid direction %u", dir)); 624 625 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 626 printf("DP %s from %s:%u\n", __func__, where, tag)); 627 628 /* get a SP entry */ 629 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 630 printf("*** objects\n"); 631 kdebug_secpolicyindex(spidx)); 632 633 SPTREE_RLOCK(); 634 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 635 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 636 printf("*** in SPD\n"); 637 kdebug_secpolicyindex(&sp->spidx)); 638 if (key_cmpspidx_withmask(&sp->spidx, spidx)) 639 goto found; 640 } 641 sp = NULL; 642 found: 643 if (sp) { 644 /* sanity check */ 645 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 646 647 /* found a SPD entry */ 648 sp->lastused = time_second; 649 SP_ADDREF(sp); 650 } 651 SPTREE_RUNLOCK(); 652 653 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 654 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 655 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 656 return sp; 657 } 658 659 /* 660 * allocating a SP for OUTBOUND or INBOUND packet. 661 * Must call key_freesp() later. 662 * OUT: NULL: not found 663 * others: found and return the pointer. 664 */ 665 struct secpolicy * 666 key_allocsp2(u_int32_t spi, union sockaddr_union *dst, u_int8_t proto, 667 u_int dir, const char* where, int tag) 668 { 669 SPTREE_RLOCK_TRACKER; 670 struct secpolicy *sp; 671 672 IPSEC_ASSERT(dst != NULL, ("null dst")); 673 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 674 ("invalid direction %u", dir)); 675 676 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 677 printf("DP %s from %s:%u\n", __func__, where, tag)); 678 679 /* get a SP entry */ 680 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 681 printf("*** objects\n"); 682 printf("spi %u proto %u dir %u\n", spi, proto, dir); 683 kdebug_sockaddr(&dst->sa)); 684 685 SPTREE_RLOCK(); 686 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 687 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 688 printf("*** in SPD\n"); 689 kdebug_secpolicyindex(&sp->spidx)); 690 /* compare simple values, then dst address */ 691 if (sp->spidx.ul_proto != proto) 692 continue; 693 /* NB: spi's must exist and match */ 694 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi) 695 continue; 696 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0) 697 goto found; 698 } 699 sp = NULL; 700 found: 701 if (sp) { 702 /* sanity check */ 703 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 704 705 /* found a SPD entry */ 706 sp->lastused = time_second; 707 SP_ADDREF(sp); 708 } 709 SPTREE_RUNLOCK(); 710 711 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 712 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 713 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 714 return sp; 715 } 716 717 #if 0 718 /* 719 * return a policy that matches this particular inbound packet. 720 * XXX slow 721 */ 722 struct secpolicy * 723 key_gettunnel(const struct sockaddr *osrc, 724 const struct sockaddr *odst, 725 const struct sockaddr *isrc, 726 const struct sockaddr *idst, 727 const char* where, int tag) 728 { 729 struct secpolicy *sp; 730 const int dir = IPSEC_DIR_INBOUND; 731 struct ipsecrequest *r1, *r2, *p; 732 struct secpolicyindex spidx; 733 734 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 735 printf("DP %s from %s:%u\n", __func__, where, tag)); 736 737 if (isrc->sa_family != idst->sa_family) { 738 ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.", 739 __func__, isrc->sa_family, idst->sa_family)); 740 sp = NULL; 741 goto done; 742 } 743 744 SPTREE_LOCK(); 745 LIST_FOREACH(sp, &V_sptree[dir], chain) { 746 if (sp->state == IPSEC_SPSTATE_DEAD) 747 continue; 748 749 r1 = r2 = NULL; 750 for (p = sp->req; p; p = p->next) { 751 if (p->saidx.mode != IPSEC_MODE_TUNNEL) 752 continue; 753 754 r1 = r2; 755 r2 = p; 756 757 if (!r1) { 758 /* here we look at address matches only */ 759 spidx = sp->spidx; 760 if (isrc->sa_len > sizeof(spidx.src) || 761 idst->sa_len > sizeof(spidx.dst)) 762 continue; 763 bcopy(isrc, &spidx.src, isrc->sa_len); 764 bcopy(idst, &spidx.dst, idst->sa_len); 765 if (!key_cmpspidx_withmask(&sp->spidx, &spidx)) 766 continue; 767 } else { 768 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) || 769 key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0)) 770 continue; 771 } 772 773 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) || 774 key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0)) 775 continue; 776 777 goto found; 778 } 779 } 780 sp = NULL; 781 found: 782 if (sp) { 783 sp->lastused = time_second; 784 SP_ADDREF(sp); 785 } 786 SPTREE_UNLOCK(); 787 done: 788 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 789 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 790 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 791 return sp; 792 } 793 #endif 794 795 /* 796 * allocating an SA entry for an *OUTBOUND* packet. 797 * checking each request entries in SP, and acquire an SA if need. 798 * OUT: 0: there are valid requests. 799 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. 800 */ 801 int 802 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx) 803 { 804 u_int level; 805 int error; 806 struct secasvar *sav; 807 808 IPSEC_ASSERT(isr != NULL, ("null isr")); 809 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 810 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT || 811 saidx->mode == IPSEC_MODE_TUNNEL, 812 ("unexpected policy %u", saidx->mode)); 813 814 /* 815 * XXX guard against protocol callbacks from the crypto 816 * thread as they reference ipsecrequest.sav which we 817 * temporarily null out below. Need to rethink how we 818 * handle bundled SA's in the callback thread. 819 */ 820 IPSECREQUEST_LOCK_ASSERT(isr); 821 822 /* get current level */ 823 level = ipsec_get_reqlevel(isr); 824 825 /* 826 * We check new SA in the IPsec request because a different 827 * SA may be involved each time this request is checked, either 828 * because new SAs are being configured, or this request is 829 * associated with an unconnected datagram socket, or this request 830 * is associated with a system default policy. 831 * 832 * key_allocsa_policy should allocate the oldest SA available. 833 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt. 834 */ 835 sav = key_allocsa_policy(saidx); 836 if (sav != isr->sav) { 837 /* SA need to be updated. */ 838 if (!IPSECREQUEST_UPGRADE(isr)) { 839 /* Kick everyone off. */ 840 IPSECREQUEST_UNLOCK(isr); 841 IPSECREQUEST_WLOCK(isr); 842 } 843 if (isr->sav != NULL) 844 KEY_FREESAV(&isr->sav); 845 isr->sav = sav; 846 IPSECREQUEST_DOWNGRADE(isr); 847 } else if (sav != NULL) 848 KEY_FREESAV(&sav); 849 850 /* When there is SA. */ 851 if (isr->sav != NULL) { 852 if (isr->sav->state != SADB_SASTATE_MATURE && 853 isr->sav->state != SADB_SASTATE_DYING) 854 return EINVAL; 855 return 0; 856 } 857 858 /* there is no SA */ 859 error = key_acquire(saidx, isr->sp); 860 if (error != 0) { 861 /* XXX What should I do ? */ 862 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 863 __func__, error)); 864 return error; 865 } 866 867 if (level != IPSEC_LEVEL_REQUIRE) { 868 /* XXX sigh, the interface to this routine is botched */ 869 IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA")); 870 return 0; 871 } else { 872 return ENOENT; 873 } 874 } 875 876 /* 877 * allocating a SA for policy entry from SAD. 878 * NOTE: searching SAD of aliving state. 879 * OUT: NULL: not found. 880 * others: found and return the pointer. 881 */ 882 static struct secasvar * 883 key_allocsa_policy(const struct secasindex *saidx) 884 { 885 #define N(a) _ARRAYLEN(a) 886 struct secashead *sah; 887 struct secasvar *sav; 888 u_int stateidx, arraysize; 889 const u_int *state_valid; 890 891 state_valid = NULL; /* silence gcc */ 892 arraysize = 0; /* silence gcc */ 893 894 SAHTREE_LOCK(); 895 LIST_FOREACH(sah, &V_sahtree, chain) { 896 if (sah->state == SADB_SASTATE_DEAD) 897 continue; 898 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) { 899 if (V_key_preferred_oldsa) { 900 state_valid = saorder_state_valid_prefer_old; 901 arraysize = N(saorder_state_valid_prefer_old); 902 } else { 903 state_valid = saorder_state_valid_prefer_new; 904 arraysize = N(saorder_state_valid_prefer_new); 905 } 906 break; 907 } 908 } 909 SAHTREE_UNLOCK(); 910 if (sah == NULL) 911 return NULL; 912 913 /* search valid state */ 914 for (stateidx = 0; stateidx < arraysize; stateidx++) { 915 sav = key_do_allocsa_policy(sah, state_valid[stateidx]); 916 if (sav != NULL) 917 return sav; 918 } 919 920 return NULL; 921 #undef N 922 } 923 924 /* 925 * searching SAD with direction, protocol, mode and state. 926 * called by key_allocsa_policy(). 927 * OUT: 928 * NULL : not found 929 * others : found, pointer to a SA. 930 */ 931 static struct secasvar * 932 key_do_allocsa_policy(struct secashead *sah, u_int state) 933 { 934 struct secasvar *sav, *nextsav, *candidate, *d; 935 936 /* initilize */ 937 candidate = NULL; 938 939 SAHTREE_LOCK(); 940 for (sav = LIST_FIRST(&sah->savtree[state]); 941 sav != NULL; 942 sav = nextsav) { 943 944 nextsav = LIST_NEXT(sav, chain); 945 946 /* sanity check */ 947 KEY_CHKSASTATE(sav->state, state, __func__); 948 949 /* initialize */ 950 if (candidate == NULL) { 951 candidate = sav; 952 continue; 953 } 954 955 /* Which SA is the better ? */ 956 957 IPSEC_ASSERT(candidate->lft_c != NULL, 958 ("null candidate lifetime")); 959 IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime")); 960 961 /* What the best method is to compare ? */ 962 if (V_key_preferred_oldsa) { 963 if (candidate->lft_c->addtime > 964 sav->lft_c->addtime) { 965 candidate = sav; 966 } 967 continue; 968 /*NOTREACHED*/ 969 } 970 971 /* preferred new sa rather than old sa */ 972 if (candidate->lft_c->addtime < 973 sav->lft_c->addtime) { 974 d = candidate; 975 candidate = sav; 976 } else 977 d = sav; 978 979 /* 980 * prepared to delete the SA when there is more 981 * suitable candidate and the lifetime of the SA is not 982 * permanent. 983 */ 984 if (d->lft_h->addtime != 0) { 985 struct mbuf *m, *result; 986 u_int8_t satype; 987 988 key_sa_chgstate(d, SADB_SASTATE_DEAD); 989 990 IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count")); 991 992 satype = key_proto2satype(d->sah->saidx.proto); 993 if (satype == 0) 994 goto msgfail; 995 996 m = key_setsadbmsg(SADB_DELETE, 0, 997 satype, 0, 0, d->refcnt - 1); 998 if (!m) 999 goto msgfail; 1000 result = m; 1001 1002 /* set sadb_address for saidx's. */ 1003 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 1004 &d->sah->saidx.src.sa, 1005 d->sah->saidx.src.sa.sa_len << 3, 1006 IPSEC_ULPROTO_ANY); 1007 if (!m) 1008 goto msgfail; 1009 m_cat(result, m); 1010 1011 /* set sadb_address for saidx's. */ 1012 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 1013 &d->sah->saidx.dst.sa, 1014 d->sah->saidx.dst.sa.sa_len << 3, 1015 IPSEC_ULPROTO_ANY); 1016 if (!m) 1017 goto msgfail; 1018 m_cat(result, m); 1019 1020 /* create SA extension */ 1021 m = key_setsadbsa(d); 1022 if (!m) 1023 goto msgfail; 1024 m_cat(result, m); 1025 1026 if (result->m_len < sizeof(struct sadb_msg)) { 1027 result = m_pullup(result, 1028 sizeof(struct sadb_msg)); 1029 if (result == NULL) 1030 goto msgfail; 1031 } 1032 1033 result->m_pkthdr.len = 0; 1034 for (m = result; m; m = m->m_next) 1035 result->m_pkthdr.len += m->m_len; 1036 mtod(result, struct sadb_msg *)->sadb_msg_len = 1037 PFKEY_UNIT64(result->m_pkthdr.len); 1038 1039 if (key_sendup_mbuf(NULL, result, 1040 KEY_SENDUP_REGISTERED)) 1041 goto msgfail; 1042 msgfail: 1043 KEY_FREESAV(&d); 1044 } 1045 } 1046 if (candidate) { 1047 sa_addref(candidate); 1048 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1049 printf("DP %s cause refcnt++:%d SA:%p\n", 1050 __func__, candidate->refcnt, candidate)); 1051 } 1052 SAHTREE_UNLOCK(); 1053 1054 return candidate; 1055 } 1056 1057 /* 1058 * allocating a usable SA entry for a *INBOUND* packet. 1059 * Must call key_freesav() later. 1060 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). 1061 * NULL: not found, or error occured. 1062 * 1063 * In the comparison, no source address is used--for RFC2401 conformance. 1064 * To quote, from section 4.1: 1065 * A security association is uniquely identified by a triple consisting 1066 * of a Security Parameter Index (SPI), an IP Destination Address, and a 1067 * security protocol (AH or ESP) identifier. 1068 * Note that, however, we do need to keep source address in IPsec SA. 1069 * IKE specification and PF_KEY specification do assume that we 1070 * keep source address in IPsec SA. We see a tricky situation here. 1071 */ 1072 struct secasvar * 1073 key_allocsa(union sockaddr_union *dst, u_int proto, u_int32_t spi, 1074 const char* where, int tag) 1075 { 1076 struct secashead *sah; 1077 struct secasvar *sav; 1078 u_int stateidx, arraysize, state; 1079 const u_int *saorder_state_valid; 1080 #ifdef IPSEC_NAT_T 1081 int natt_chkport; 1082 #endif 1083 1084 IPSEC_ASSERT(dst != NULL, ("null dst address")); 1085 1086 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1087 printf("DP %s from %s:%u\n", __func__, where, tag)); 1088 1089 #ifdef IPSEC_NAT_T 1090 natt_chkport = (dst->sa.sa_family == AF_INET && 1091 dst->sa.sa_len == sizeof(struct sockaddr_in) && 1092 dst->sin.sin_port != 0); 1093 #endif 1094 1095 /* 1096 * searching SAD. 1097 * XXX: to be checked internal IP header somewhere. Also when 1098 * IPsec tunnel packet is received. But ESP tunnel mode is 1099 * encrypted so we can't check internal IP header. 1100 */ 1101 SAHTREE_LOCK(); 1102 if (V_key_preferred_oldsa) { 1103 saorder_state_valid = saorder_state_valid_prefer_old; 1104 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); 1105 } else { 1106 saorder_state_valid = saorder_state_valid_prefer_new; 1107 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); 1108 } 1109 LIST_FOREACH(sah, &V_sahtree, chain) { 1110 int checkport; 1111 1112 /* search valid state */ 1113 for (stateidx = 0; stateidx < arraysize; stateidx++) { 1114 state = saorder_state_valid[stateidx]; 1115 LIST_FOREACH(sav, &sah->savtree[state], chain) { 1116 /* sanity check */ 1117 KEY_CHKSASTATE(sav->state, state, __func__); 1118 /* do not return entries w/ unusable state */ 1119 if (sav->state != SADB_SASTATE_MATURE && 1120 sav->state != SADB_SASTATE_DYING) 1121 continue; 1122 if (proto != sav->sah->saidx.proto) 1123 continue; 1124 if (spi != sav->spi) 1125 continue; 1126 checkport = 0; 1127 #ifdef IPSEC_NAT_T 1128 /* 1129 * Really only check ports when this is a NAT-T 1130 * SA. Otherwise other lookups providing ports 1131 * might suffer. 1132 */ 1133 if (sav->natt_type && natt_chkport) 1134 checkport = 1; 1135 #endif 1136 #if 0 /* don't check src */ 1137 /* check src address */ 1138 if (key_sockaddrcmp(&src->sa, 1139 &sav->sah->saidx.src.sa, checkport) != 0) 1140 continue; 1141 #endif 1142 /* check dst address */ 1143 if (key_sockaddrcmp(&dst->sa, 1144 &sav->sah->saidx.dst.sa, checkport) != 0) 1145 continue; 1146 sa_addref(sav); 1147 goto done; 1148 } 1149 } 1150 } 1151 sav = NULL; 1152 done: 1153 SAHTREE_UNLOCK(); 1154 1155 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1156 printf("DP %s return SA:%p; refcnt %u\n", __func__, 1157 sav, sav ? sav->refcnt : 0)); 1158 return sav; 1159 } 1160 1161 /* 1162 * Must be called after calling key_allocsp(). 1163 * For both the packet without socket and key_freeso(). 1164 */ 1165 void 1166 _key_freesp(struct secpolicy **spp, const char* where, int tag) 1167 { 1168 struct ipsecrequest *isr, *nextisr; 1169 struct secpolicy *sp = *spp; 1170 1171 IPSEC_ASSERT(sp != NULL, ("null sp")); 1172 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1173 printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n", 1174 __func__, sp, sp->id, where, tag, sp->refcnt)); 1175 1176 if (SP_DELREF(sp) == 0) 1177 return; 1178 *spp = NULL; 1179 for (isr = sp->req; isr != NULL; isr = nextisr) { 1180 if (isr->sav != NULL) { 1181 KEY_FREESAV(&isr->sav); 1182 isr->sav = NULL; 1183 } 1184 nextisr = isr->next; 1185 ipsec_delisr(isr); 1186 } 1187 free(sp, M_IPSEC_SP); 1188 } 1189 1190 static void 1191 key_unlink(struct secpolicy *sp) 1192 { 1193 1194 IPSEC_ASSERT(sp != NULL, ("null sp")); 1195 IPSEC_ASSERT(sp->spidx.dir == IPSEC_DIR_INBOUND || 1196 sp->spidx.dir == IPSEC_DIR_OUTBOUND, 1197 ("invalid direction %u", sp->spidx.dir)); 1198 SPTREE_UNLOCK_ASSERT(); 1199 1200 SPTREE_WLOCK(); 1201 TAILQ_REMOVE(&V_sptree[sp->spidx.dir], sp, chain); 1202 SPTREE_WUNLOCK(); 1203 } 1204 1205 /* 1206 * Must be called after calling key_allocsp(). 1207 * For the packet with socket. 1208 */ 1209 void 1210 key_freeso(struct socket *so) 1211 { 1212 IPSEC_ASSERT(so != NULL, ("null so")); 1213 1214 switch (so->so_proto->pr_domain->dom_family) { 1215 #if defined(INET) || defined(INET6) 1216 #ifdef INET 1217 case PF_INET: 1218 #endif 1219 #ifdef INET6 1220 case PF_INET6: 1221 #endif 1222 { 1223 struct inpcb *pcb = sotoinpcb(so); 1224 1225 /* Does it have a PCB ? */ 1226 if (pcb == NULL) 1227 return; 1228 key_freesp_so(&pcb->inp_sp->sp_in); 1229 key_freesp_so(&pcb->inp_sp->sp_out); 1230 } 1231 break; 1232 #endif /* INET || INET6 */ 1233 default: 1234 ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n", 1235 __func__, so->so_proto->pr_domain->dom_family)); 1236 return; 1237 } 1238 } 1239 1240 static void 1241 key_freesp_so(struct secpolicy **sp) 1242 { 1243 IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp")); 1244 1245 if ((*sp)->policy == IPSEC_POLICY_ENTRUST || 1246 (*sp)->policy == IPSEC_POLICY_BYPASS) 1247 return; 1248 1249 IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC, 1250 ("invalid policy %u", (*sp)->policy)); 1251 KEY_FREESP(sp); 1252 } 1253 1254 void 1255 key_addrefsa(struct secasvar *sav, const char* where, int tag) 1256 { 1257 1258 IPSEC_ASSERT(sav != NULL, ("null sav")); 1259 IPSEC_ASSERT(sav->refcnt > 0, ("refcount must exist")); 1260 1261 sa_addref(sav); 1262 } 1263 1264 /* 1265 * Must be called after calling key_allocsa(). 1266 * This function is called by key_freesp() to free some SA allocated 1267 * for a policy. 1268 */ 1269 void 1270 key_freesav(struct secasvar **psav, const char* where, int tag) 1271 { 1272 struct secasvar *sav = *psav; 1273 1274 IPSEC_ASSERT(sav != NULL, ("null sav")); 1275 1276 if (sa_delref(sav)) { 1277 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1278 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1279 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1280 *psav = NULL; 1281 key_delsav(sav); 1282 } else { 1283 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1284 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1285 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1286 } 1287 } 1288 1289 /* %%% SPD management */ 1290 /* 1291 * search SPD 1292 * OUT: NULL : not found 1293 * others : found, pointer to a SP. 1294 */ 1295 static struct secpolicy * 1296 key_getsp(struct secpolicyindex *spidx) 1297 { 1298 SPTREE_RLOCK_TRACKER; 1299 struct secpolicy *sp; 1300 1301 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 1302 1303 SPTREE_RLOCK(); 1304 TAILQ_FOREACH(sp, &V_sptree[spidx->dir], chain) { 1305 if (key_cmpspidx_exactly(spidx, &sp->spidx)) { 1306 SP_ADDREF(sp); 1307 break; 1308 } 1309 } 1310 SPTREE_RUNLOCK(); 1311 1312 return sp; 1313 } 1314 1315 /* 1316 * get SP by index. 1317 * OUT: NULL : not found 1318 * others : found, pointer to a SP. 1319 */ 1320 static struct secpolicy * 1321 key_getspbyid(u_int32_t id) 1322 { 1323 SPTREE_RLOCK_TRACKER; 1324 struct secpolicy *sp; 1325 1326 SPTREE_RLOCK(); 1327 TAILQ_FOREACH(sp, &V_sptree[IPSEC_DIR_INBOUND], chain) { 1328 if (sp->id == id) { 1329 SP_ADDREF(sp); 1330 goto done; 1331 } 1332 } 1333 1334 TAILQ_FOREACH(sp, &V_sptree[IPSEC_DIR_OUTBOUND], chain) { 1335 if (sp->id == id) { 1336 SP_ADDREF(sp); 1337 goto done; 1338 } 1339 } 1340 done: 1341 SPTREE_RUNLOCK(); 1342 1343 return sp; 1344 } 1345 1346 struct secpolicy * 1347 key_newsp(const char* where, int tag) 1348 { 1349 struct secpolicy *newsp = NULL; 1350 1351 newsp = (struct secpolicy *) 1352 malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO); 1353 if (newsp) 1354 refcount_init(&newsp->refcnt, 1); 1355 1356 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1357 printf("DP %s from %s:%u return SP:%p\n", __func__, 1358 where, tag, newsp)); 1359 return newsp; 1360 } 1361 1362 /* 1363 * create secpolicy structure from sadb_x_policy structure. 1364 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, 1365 * so must be set properly later. 1366 */ 1367 struct secpolicy * 1368 key_msg2sp(struct sadb_x_policy *xpl0, size_t len, int *error) 1369 { 1370 struct secpolicy *newsp; 1371 1372 IPSEC_ASSERT(xpl0 != NULL, ("null xpl0")); 1373 IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len)); 1374 1375 if (len != PFKEY_EXTLEN(xpl0)) { 1376 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__)); 1377 *error = EINVAL; 1378 return NULL; 1379 } 1380 1381 if ((newsp = KEY_NEWSP()) == NULL) { 1382 *error = ENOBUFS; 1383 return NULL; 1384 } 1385 1386 newsp->spidx.dir = xpl0->sadb_x_policy_dir; 1387 newsp->policy = xpl0->sadb_x_policy_type; 1388 1389 /* check policy */ 1390 switch (xpl0->sadb_x_policy_type) { 1391 case IPSEC_POLICY_DISCARD: 1392 case IPSEC_POLICY_NONE: 1393 case IPSEC_POLICY_ENTRUST: 1394 case IPSEC_POLICY_BYPASS: 1395 newsp->req = NULL; 1396 break; 1397 1398 case IPSEC_POLICY_IPSEC: 1399 { 1400 int tlen; 1401 struct sadb_x_ipsecrequest *xisr; 1402 struct ipsecrequest **p_isr = &newsp->req; 1403 1404 /* validity check */ 1405 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { 1406 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", 1407 __func__)); 1408 KEY_FREESP(&newsp); 1409 *error = EINVAL; 1410 return NULL; 1411 } 1412 1413 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); 1414 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1); 1415 1416 while (tlen > 0) { 1417 /* length check */ 1418 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { 1419 ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest " 1420 "length.\n", __func__)); 1421 KEY_FREESP(&newsp); 1422 *error = EINVAL; 1423 return NULL; 1424 } 1425 1426 /* allocate request buffer */ 1427 /* NB: data structure is zero'd */ 1428 *p_isr = ipsec_newisr(); 1429 if ((*p_isr) == NULL) { 1430 ipseclog((LOG_DEBUG, 1431 "%s: No more memory.\n", __func__)); 1432 KEY_FREESP(&newsp); 1433 *error = ENOBUFS; 1434 return NULL; 1435 } 1436 1437 /* set values */ 1438 switch (xisr->sadb_x_ipsecrequest_proto) { 1439 case IPPROTO_ESP: 1440 case IPPROTO_AH: 1441 case IPPROTO_IPCOMP: 1442 break; 1443 default: 1444 ipseclog((LOG_DEBUG, 1445 "%s: invalid proto type=%u\n", __func__, 1446 xisr->sadb_x_ipsecrequest_proto)); 1447 KEY_FREESP(&newsp); 1448 *error = EPROTONOSUPPORT; 1449 return NULL; 1450 } 1451 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; 1452 1453 switch (xisr->sadb_x_ipsecrequest_mode) { 1454 case IPSEC_MODE_TRANSPORT: 1455 case IPSEC_MODE_TUNNEL: 1456 break; 1457 case IPSEC_MODE_ANY: 1458 default: 1459 ipseclog((LOG_DEBUG, 1460 "%s: invalid mode=%u\n", __func__, 1461 xisr->sadb_x_ipsecrequest_mode)); 1462 KEY_FREESP(&newsp); 1463 *error = EINVAL; 1464 return NULL; 1465 } 1466 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; 1467 1468 switch (xisr->sadb_x_ipsecrequest_level) { 1469 case IPSEC_LEVEL_DEFAULT: 1470 case IPSEC_LEVEL_USE: 1471 case IPSEC_LEVEL_REQUIRE: 1472 break; 1473 case IPSEC_LEVEL_UNIQUE: 1474 /* validity check */ 1475 /* 1476 * If range violation of reqid, kernel will 1477 * update it, don't refuse it. 1478 */ 1479 if (xisr->sadb_x_ipsecrequest_reqid 1480 > IPSEC_MANUAL_REQID_MAX) { 1481 ipseclog((LOG_DEBUG, 1482 "%s: reqid=%d range " 1483 "violation, updated by kernel.\n", 1484 __func__, 1485 xisr->sadb_x_ipsecrequest_reqid)); 1486 xisr->sadb_x_ipsecrequest_reqid = 0; 1487 } 1488 1489 /* allocate new reqid id if reqid is zero. */ 1490 if (xisr->sadb_x_ipsecrequest_reqid == 0) { 1491 u_int32_t reqid; 1492 if ((reqid = key_newreqid()) == 0) { 1493 KEY_FREESP(&newsp); 1494 *error = ENOBUFS; 1495 return NULL; 1496 } 1497 (*p_isr)->saidx.reqid = reqid; 1498 xisr->sadb_x_ipsecrequest_reqid = reqid; 1499 } else { 1500 /* set it for manual keying. */ 1501 (*p_isr)->saidx.reqid = 1502 xisr->sadb_x_ipsecrequest_reqid; 1503 } 1504 break; 1505 1506 default: 1507 ipseclog((LOG_DEBUG, "%s: invalid level=%u\n", 1508 __func__, 1509 xisr->sadb_x_ipsecrequest_level)); 1510 KEY_FREESP(&newsp); 1511 *error = EINVAL; 1512 return NULL; 1513 } 1514 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; 1515 1516 /* set IP addresses if there */ 1517 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { 1518 struct sockaddr *paddr; 1519 1520 paddr = (struct sockaddr *)(xisr + 1); 1521 1522 /* validity check */ 1523 if (paddr->sa_len 1524 > sizeof((*p_isr)->saidx.src)) { 1525 ipseclog((LOG_DEBUG, "%s: invalid " 1526 "request address length.\n", 1527 __func__)); 1528 KEY_FREESP(&newsp); 1529 *error = EINVAL; 1530 return NULL; 1531 } 1532 bcopy(paddr, &(*p_isr)->saidx.src, 1533 paddr->sa_len); 1534 1535 paddr = (struct sockaddr *)((caddr_t)paddr 1536 + paddr->sa_len); 1537 1538 /* validity check */ 1539 if (paddr->sa_len 1540 > sizeof((*p_isr)->saidx.dst)) { 1541 ipseclog((LOG_DEBUG, "%s: invalid " 1542 "request address length.\n", 1543 __func__)); 1544 KEY_FREESP(&newsp); 1545 *error = EINVAL; 1546 return NULL; 1547 } 1548 bcopy(paddr, &(*p_isr)->saidx.dst, 1549 paddr->sa_len); 1550 } 1551 1552 (*p_isr)->sp = newsp; 1553 1554 /* initialization for the next. */ 1555 p_isr = &(*p_isr)->next; 1556 tlen -= xisr->sadb_x_ipsecrequest_len; 1557 1558 /* validity check */ 1559 if (tlen < 0) { 1560 ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n", 1561 __func__)); 1562 KEY_FREESP(&newsp); 1563 *error = EINVAL; 1564 return NULL; 1565 } 1566 1567 xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr 1568 + xisr->sadb_x_ipsecrequest_len); 1569 } 1570 } 1571 break; 1572 default: 1573 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); 1574 KEY_FREESP(&newsp); 1575 *error = EINVAL; 1576 return NULL; 1577 } 1578 1579 *error = 0; 1580 return newsp; 1581 } 1582 1583 static u_int32_t 1584 key_newreqid() 1585 { 1586 static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 1587 1588 auto_reqid = (auto_reqid == ~0 1589 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); 1590 1591 /* XXX should be unique check */ 1592 1593 return auto_reqid; 1594 } 1595 1596 /* 1597 * copy secpolicy struct to sadb_x_policy structure indicated. 1598 */ 1599 struct mbuf * 1600 key_sp2msg(struct secpolicy *sp) 1601 { 1602 struct sadb_x_policy *xpl; 1603 int tlen; 1604 caddr_t p; 1605 struct mbuf *m; 1606 1607 IPSEC_ASSERT(sp != NULL, ("null policy")); 1608 1609 tlen = key_getspreqmsglen(sp); 1610 1611 m = m_get2(tlen, M_NOWAIT, MT_DATA, 0); 1612 if (m == NULL) 1613 return (NULL); 1614 m_align(m, tlen); 1615 m->m_len = tlen; 1616 xpl = mtod(m, struct sadb_x_policy *); 1617 bzero(xpl, tlen); 1618 1619 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen); 1620 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 1621 xpl->sadb_x_policy_type = sp->policy; 1622 xpl->sadb_x_policy_dir = sp->spidx.dir; 1623 xpl->sadb_x_policy_id = sp->id; 1624 p = (caddr_t)xpl + sizeof(*xpl); 1625 1626 /* if is the policy for ipsec ? */ 1627 if (sp->policy == IPSEC_POLICY_IPSEC) { 1628 struct sadb_x_ipsecrequest *xisr; 1629 struct ipsecrequest *isr; 1630 1631 for (isr = sp->req; isr != NULL; isr = isr->next) { 1632 1633 xisr = (struct sadb_x_ipsecrequest *)p; 1634 1635 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; 1636 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; 1637 xisr->sadb_x_ipsecrequest_level = isr->level; 1638 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; 1639 1640 p += sizeof(*xisr); 1641 bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len); 1642 p += isr->saidx.src.sa.sa_len; 1643 bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len); 1644 p += isr->saidx.src.sa.sa_len; 1645 1646 xisr->sadb_x_ipsecrequest_len = 1647 PFKEY_ALIGN8(sizeof(*xisr) 1648 + isr->saidx.src.sa.sa_len 1649 + isr->saidx.dst.sa.sa_len); 1650 } 1651 } 1652 1653 return m; 1654 } 1655 1656 /* m will not be freed nor modified */ 1657 static struct mbuf * 1658 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, 1659 int ndeep, int nitem, ...) 1660 { 1661 va_list ap; 1662 int idx; 1663 int i; 1664 struct mbuf *result = NULL, *n; 1665 int len; 1666 1667 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1668 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1669 1670 va_start(ap, nitem); 1671 for (i = 0; i < nitem; i++) { 1672 idx = va_arg(ap, int); 1673 if (idx < 0 || idx > SADB_EXT_MAX) 1674 goto fail; 1675 /* don't attempt to pull empty extension */ 1676 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) 1677 continue; 1678 if (idx != SADB_EXT_RESERVED && 1679 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) 1680 continue; 1681 1682 if (idx == SADB_EXT_RESERVED) { 1683 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 1684 1685 IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len)); 1686 1687 MGETHDR(n, M_NOWAIT, MT_DATA); 1688 if (!n) 1689 goto fail; 1690 n->m_len = len; 1691 n->m_next = NULL; 1692 m_copydata(m, 0, sizeof(struct sadb_msg), 1693 mtod(n, caddr_t)); 1694 } else if (i < ndeep) { 1695 len = mhp->extlen[idx]; 1696 n = m_get2(len, M_NOWAIT, MT_DATA, 0); 1697 if (n == NULL) 1698 goto fail; 1699 m_align(n, len); 1700 n->m_len = len; 1701 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], 1702 mtod(n, caddr_t)); 1703 } else { 1704 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], 1705 M_NOWAIT); 1706 } 1707 if (n == NULL) 1708 goto fail; 1709 1710 if (result) 1711 m_cat(result, n); 1712 else 1713 result = n; 1714 } 1715 va_end(ap); 1716 1717 if ((result->m_flags & M_PKTHDR) != 0) { 1718 result->m_pkthdr.len = 0; 1719 for (n = result; n; n = n->m_next) 1720 result->m_pkthdr.len += n->m_len; 1721 } 1722 1723 return result; 1724 1725 fail: 1726 m_freem(result); 1727 va_end(ap); 1728 return NULL; 1729 } 1730 1731 /* 1732 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing 1733 * add an entry to SP database, when received 1734 * <base, address(SD), (lifetime(H),) policy> 1735 * from the user(?). 1736 * Adding to SP database, 1737 * and send 1738 * <base, address(SD), (lifetime(H),) policy> 1739 * to the socket which was send. 1740 * 1741 * SPDADD set a unique policy entry. 1742 * SPDSETIDX like SPDADD without a part of policy requests. 1743 * SPDUPDATE replace a unique policy entry. 1744 * 1745 * m will always be freed. 1746 */ 1747 static int 1748 key_spdadd(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 1749 { 1750 struct sadb_address *src0, *dst0; 1751 struct sadb_x_policy *xpl0, *xpl; 1752 struct sadb_lifetime *lft = NULL; 1753 struct secpolicyindex spidx; 1754 struct secpolicy *newsp; 1755 int error; 1756 1757 IPSEC_ASSERT(so != NULL, ("null socket")); 1758 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1759 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1760 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 1761 1762 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 1763 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 1764 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 1765 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n")); 1766 return key_senderror(so, m, EINVAL); 1767 } 1768 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 1769 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 1770 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 1771 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1772 __func__)); 1773 return key_senderror(so, m, EINVAL); 1774 } 1775 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { 1776 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] 1777 < sizeof(struct sadb_lifetime)) { 1778 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1779 __func__)); 1780 return key_senderror(so, m, EINVAL); 1781 } 1782 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 1783 } 1784 1785 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 1786 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 1787 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 1788 1789 /* 1790 * Note: do not parse SADB_X_EXT_NAT_T_* here: 1791 * we are processing traffic endpoints. 1792 */ 1793 1794 /* make secindex */ 1795 /* XXX boundary check against sa_len */ 1796 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1797 src0 + 1, 1798 dst0 + 1, 1799 src0->sadb_address_prefixlen, 1800 dst0->sadb_address_prefixlen, 1801 src0->sadb_address_proto, 1802 &spidx); 1803 1804 /* checking the direciton. */ 1805 switch (xpl0->sadb_x_policy_dir) { 1806 case IPSEC_DIR_INBOUND: 1807 case IPSEC_DIR_OUTBOUND: 1808 break; 1809 default: 1810 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 1811 mhp->msg->sadb_msg_errno = EINVAL; 1812 return 0; 1813 } 1814 1815 /* check policy */ 1816 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */ 1817 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST 1818 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { 1819 ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__)); 1820 return key_senderror(so, m, EINVAL); 1821 } 1822 1823 /* policy requests are mandatory when action is ipsec. */ 1824 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX 1825 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC 1826 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { 1827 ipseclog((LOG_DEBUG, "%s: some policy requests part required\n", 1828 __func__)); 1829 return key_senderror(so, m, EINVAL); 1830 } 1831 1832 /* 1833 * checking there is SP already or not. 1834 * SPDUPDATE doesn't depend on whether there is a SP or not. 1835 * If the type is either SPDADD or SPDSETIDX AND a SP is found, 1836 * then error. 1837 */ 1838 newsp = key_getsp(&spidx); 1839 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1840 if (newsp) { 1841 key_unlink(newsp); 1842 KEY_FREESP(&newsp); 1843 } 1844 } else { 1845 if (newsp != NULL) { 1846 KEY_FREESP(&newsp); 1847 ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n", 1848 __func__)); 1849 return key_senderror(so, m, EEXIST); 1850 } 1851 } 1852 1853 /* XXX: there is race between key_getsp and key_msg2sp. */ 1854 1855 /* allocation new SP entry */ 1856 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) { 1857 return key_senderror(so, m, error); 1858 } 1859 1860 if ((newsp->id = key_getnewspid()) == 0) { 1861 KEY_FREESP(&newsp); 1862 return key_senderror(so, m, ENOBUFS); 1863 } 1864 1865 /* XXX boundary check against sa_len */ 1866 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1867 src0 + 1, 1868 dst0 + 1, 1869 src0->sadb_address_prefixlen, 1870 dst0->sadb_address_prefixlen, 1871 src0->sadb_address_proto, 1872 &newsp->spidx); 1873 1874 /* sanity check on addr pair */ 1875 if (((struct sockaddr *)(src0 + 1))->sa_family != 1876 ((struct sockaddr *)(dst0+ 1))->sa_family) { 1877 KEY_FREESP(&newsp); 1878 return key_senderror(so, m, EINVAL); 1879 } 1880 if (((struct sockaddr *)(src0 + 1))->sa_len != 1881 ((struct sockaddr *)(dst0+ 1))->sa_len) { 1882 KEY_FREESP(&newsp); 1883 return key_senderror(so, m, EINVAL); 1884 } 1885 #if 1 1886 if (newsp->req && newsp->req->saidx.src.sa.sa_family && 1887 newsp->req->saidx.dst.sa.sa_family) { 1888 if (newsp->req->saidx.src.sa.sa_family != 1889 newsp->req->saidx.dst.sa.sa_family) { 1890 KEY_FREESP(&newsp); 1891 return key_senderror(so, m, EINVAL); 1892 } 1893 } 1894 #endif 1895 1896 newsp->created = time_second; 1897 newsp->lastused = newsp->created; 1898 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; 1899 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; 1900 1901 SPTREE_WLOCK(); 1902 TAILQ_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, chain); 1903 SPTREE_WUNLOCK(); 1904 1905 /* delete the entry in spacqtree */ 1906 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1907 struct secspacq *spacq = key_getspacq(&spidx); 1908 if (spacq != NULL) { 1909 /* reset counter in order to deletion by timehandler. */ 1910 spacq->created = time_second; 1911 spacq->count = 0; 1912 SPACQ_UNLOCK(); 1913 } 1914 } 1915 1916 { 1917 struct mbuf *n, *mpolicy; 1918 struct sadb_msg *newmsg; 1919 int off; 1920 1921 /* 1922 * Note: do not send SADB_X_EXT_NAT_T_* here: 1923 * we are sending traffic endpoints. 1924 */ 1925 1926 /* create new sadb_msg to reply. */ 1927 if (lft) { 1928 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, 1929 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, 1930 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1931 } else { 1932 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, 1933 SADB_X_EXT_POLICY, 1934 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1935 } 1936 if (!n) 1937 return key_senderror(so, m, ENOBUFS); 1938 1939 if (n->m_len < sizeof(*newmsg)) { 1940 n = m_pullup(n, sizeof(*newmsg)); 1941 if (!n) 1942 return key_senderror(so, m, ENOBUFS); 1943 } 1944 newmsg = mtod(n, struct sadb_msg *); 1945 newmsg->sadb_msg_errno = 0; 1946 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 1947 1948 off = 0; 1949 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), 1950 sizeof(*xpl), &off); 1951 if (mpolicy == NULL) { 1952 /* n is already freed */ 1953 return key_senderror(so, m, ENOBUFS); 1954 } 1955 xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off); 1956 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { 1957 m_freem(n); 1958 return key_senderror(so, m, EINVAL); 1959 } 1960 xpl->sadb_x_policy_id = newsp->id; 1961 1962 m_freem(m); 1963 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 1964 } 1965 } 1966 1967 /* 1968 * get new policy id. 1969 * OUT: 1970 * 0: failure. 1971 * others: success. 1972 */ 1973 static u_int32_t 1974 key_getnewspid() 1975 { 1976 u_int32_t newid = 0; 1977 int count = V_key_spi_trycnt; /* XXX */ 1978 struct secpolicy *sp; 1979 1980 /* when requesting to allocate spi ranged */ 1981 while (count--) { 1982 newid = (V_policy_id = (V_policy_id == ~0 ? 1 : V_policy_id + 1)); 1983 1984 if ((sp = key_getspbyid(newid)) == NULL) 1985 break; 1986 1987 KEY_FREESP(&sp); 1988 } 1989 1990 if (count == 0 || newid == 0) { 1991 ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n", 1992 __func__)); 1993 return 0; 1994 } 1995 1996 return newid; 1997 } 1998 1999 /* 2000 * SADB_SPDDELETE processing 2001 * receive 2002 * <base, address(SD), policy(*)> 2003 * from the user(?), and set SADB_SASTATE_DEAD, 2004 * and send, 2005 * <base, address(SD), policy(*)> 2006 * to the ikmpd. 2007 * policy(*) including direction of policy. 2008 * 2009 * m will always be freed. 2010 */ 2011 static int 2012 key_spddelete(struct socket *so, struct mbuf *m, 2013 const struct sadb_msghdr *mhp) 2014 { 2015 struct sadb_address *src0, *dst0; 2016 struct sadb_x_policy *xpl0; 2017 struct secpolicyindex spidx; 2018 struct secpolicy *sp; 2019 2020 IPSEC_ASSERT(so != NULL, ("null so")); 2021 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2022 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2023 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2024 2025 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2026 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2027 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2028 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2029 __func__)); 2030 return key_senderror(so, m, EINVAL); 2031 } 2032 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2033 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2034 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2035 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2036 __func__)); 2037 return key_senderror(so, m, EINVAL); 2038 } 2039 2040 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 2041 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 2042 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 2043 2044 /* 2045 * Note: do not parse SADB_X_EXT_NAT_T_* here: 2046 * we are processing traffic endpoints. 2047 */ 2048 2049 /* make secindex */ 2050 /* XXX boundary check against sa_len */ 2051 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 2052 src0 + 1, 2053 dst0 + 1, 2054 src0->sadb_address_prefixlen, 2055 dst0->sadb_address_prefixlen, 2056 src0->sadb_address_proto, 2057 &spidx); 2058 2059 /* checking the direciton. */ 2060 switch (xpl0->sadb_x_policy_dir) { 2061 case IPSEC_DIR_INBOUND: 2062 case IPSEC_DIR_OUTBOUND: 2063 break; 2064 default: 2065 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 2066 return key_senderror(so, m, EINVAL); 2067 } 2068 2069 /* Is there SP in SPD ? */ 2070 if ((sp = key_getsp(&spidx)) == NULL) { 2071 ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__)); 2072 return key_senderror(so, m, EINVAL); 2073 } 2074 2075 /* save policy id to buffer to be returned. */ 2076 xpl0->sadb_x_policy_id = sp->id; 2077 2078 key_unlink(sp); 2079 KEY_FREESP(&sp); 2080 2081 { 2082 struct mbuf *n; 2083 struct sadb_msg *newmsg; 2084 2085 /* 2086 * Note: do not send SADB_X_EXT_NAT_T_* here: 2087 * we are sending traffic endpoints. 2088 */ 2089 2090 /* create new sadb_msg to reply. */ 2091 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 2092 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2093 if (!n) 2094 return key_senderror(so, m, ENOBUFS); 2095 2096 newmsg = mtod(n, struct sadb_msg *); 2097 newmsg->sadb_msg_errno = 0; 2098 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2099 2100 m_freem(m); 2101 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2102 } 2103 } 2104 2105 /* 2106 * SADB_SPDDELETE2 processing 2107 * receive 2108 * <base, policy(*)> 2109 * from the user(?), and set SADB_SASTATE_DEAD, 2110 * and send, 2111 * <base, policy(*)> 2112 * to the ikmpd. 2113 * policy(*) including direction of policy. 2114 * 2115 * m will always be freed. 2116 */ 2117 static int 2118 key_spddelete2(struct socket *so, struct mbuf *m, 2119 const struct sadb_msghdr *mhp) 2120 { 2121 u_int32_t id; 2122 struct secpolicy *sp; 2123 2124 IPSEC_ASSERT(so != NULL, ("null socket")); 2125 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2126 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2127 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2128 2129 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2130 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2131 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); 2132 return key_senderror(so, m, EINVAL); 2133 } 2134 2135 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2136 2137 /* Is there SP in SPD ? */ 2138 if ((sp = key_getspbyid(id)) == NULL) { 2139 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2140 return key_senderror(so, m, EINVAL); 2141 } 2142 2143 key_unlink(sp); 2144 KEY_FREESP(&sp); 2145 2146 { 2147 struct mbuf *n, *nn; 2148 struct sadb_msg *newmsg; 2149 int off, len; 2150 2151 /* create new sadb_msg to reply. */ 2152 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2153 2154 MGETHDR(n, M_NOWAIT, MT_DATA); 2155 if (n && len > MHLEN) { 2156 if (!(MCLGET(n, M_NOWAIT))) { 2157 m_freem(n); 2158 n = NULL; 2159 } 2160 } 2161 if (!n) 2162 return key_senderror(so, m, ENOBUFS); 2163 2164 n->m_len = len; 2165 n->m_next = NULL; 2166 off = 0; 2167 2168 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 2169 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2170 2171 IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)", 2172 off, len)); 2173 2174 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], 2175 mhp->extlen[SADB_X_EXT_POLICY], M_NOWAIT); 2176 if (!n->m_next) { 2177 m_freem(n); 2178 return key_senderror(so, m, ENOBUFS); 2179 } 2180 2181 n->m_pkthdr.len = 0; 2182 for (nn = n; nn; nn = nn->m_next) 2183 n->m_pkthdr.len += nn->m_len; 2184 2185 newmsg = mtod(n, struct sadb_msg *); 2186 newmsg->sadb_msg_errno = 0; 2187 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2188 2189 m_freem(m); 2190 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2191 } 2192 } 2193 2194 /* 2195 * SADB_X_GET processing 2196 * receive 2197 * <base, policy(*)> 2198 * from the user(?), 2199 * and send, 2200 * <base, address(SD), policy> 2201 * to the ikmpd. 2202 * policy(*) including direction of policy. 2203 * 2204 * m will always be freed. 2205 */ 2206 static int 2207 key_spdget(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 2208 { 2209 u_int32_t id; 2210 struct secpolicy *sp; 2211 struct mbuf *n; 2212 2213 IPSEC_ASSERT(so != NULL, ("null socket")); 2214 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2215 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2216 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2217 2218 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2219 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2220 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2221 __func__)); 2222 return key_senderror(so, m, EINVAL); 2223 } 2224 2225 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2226 2227 /* Is there SP in SPD ? */ 2228 if ((sp = key_getspbyid(id)) == NULL) { 2229 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2230 return key_senderror(so, m, ENOENT); 2231 } 2232 2233 n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid); 2234 KEY_FREESP(&sp); 2235 if (n != NULL) { 2236 m_freem(m); 2237 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2238 } else 2239 return key_senderror(so, m, ENOBUFS); 2240 } 2241 2242 /* 2243 * SADB_X_SPDACQUIRE processing. 2244 * Acquire policy and SA(s) for a *OUTBOUND* packet. 2245 * send 2246 * <base, policy(*)> 2247 * to KMD, and expect to receive 2248 * <base> with SADB_X_SPDACQUIRE if error occured, 2249 * or 2250 * <base, policy> 2251 * with SADB_X_SPDUPDATE from KMD by PF_KEY. 2252 * policy(*) is without policy requests. 2253 * 2254 * 0 : succeed 2255 * others: error number 2256 */ 2257 int 2258 key_spdacquire(struct secpolicy *sp) 2259 { 2260 struct mbuf *result = NULL, *m; 2261 struct secspacq *newspacq; 2262 2263 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2264 IPSEC_ASSERT(sp->req == NULL, ("policy exists")); 2265 IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC, 2266 ("policy not IPSEC %u", sp->policy)); 2267 2268 /* Get an entry to check whether sent message or not. */ 2269 newspacq = key_getspacq(&sp->spidx); 2270 if (newspacq != NULL) { 2271 if (V_key_blockacq_count < newspacq->count) { 2272 /* reset counter and do send message. */ 2273 newspacq->count = 0; 2274 } else { 2275 /* increment counter and do nothing. */ 2276 newspacq->count++; 2277 SPACQ_UNLOCK(); 2278 return (0); 2279 } 2280 SPACQ_UNLOCK(); 2281 } else { 2282 /* make new entry for blocking to send SADB_ACQUIRE. */ 2283 newspacq = key_newspacq(&sp->spidx); 2284 if (newspacq == NULL) 2285 return ENOBUFS; 2286 } 2287 2288 /* create new sadb_msg to reply. */ 2289 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); 2290 if (!m) 2291 return ENOBUFS; 2292 2293 result = m; 2294 2295 result->m_pkthdr.len = 0; 2296 for (m = result; m; m = m->m_next) 2297 result->m_pkthdr.len += m->m_len; 2298 2299 mtod(result, struct sadb_msg *)->sadb_msg_len = 2300 PFKEY_UNIT64(result->m_pkthdr.len); 2301 2302 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 2303 } 2304 2305 /* 2306 * SADB_SPDFLUSH processing 2307 * receive 2308 * <base> 2309 * from the user, and free all entries in secpctree. 2310 * and send, 2311 * <base> 2312 * to the user. 2313 * NOTE: what to do is only marking SADB_SASTATE_DEAD. 2314 * 2315 * m will always be freed. 2316 */ 2317 static int 2318 key_spdflush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 2319 { 2320 TAILQ_HEAD(, secpolicy) drainq; 2321 struct sadb_msg *newmsg; 2322 struct secpolicy *sp, *nextsp; 2323 u_int dir; 2324 2325 IPSEC_ASSERT(so != NULL, ("null socket")); 2326 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2327 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2328 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2329 2330 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) 2331 return key_senderror(so, m, EINVAL); 2332 2333 TAILQ_INIT(&drainq); 2334 SPTREE_WLOCK(); 2335 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2336 TAILQ_CONCAT(&drainq, &V_sptree[dir], chain); 2337 } 2338 SPTREE_WUNLOCK(); 2339 sp = TAILQ_FIRST(&drainq); 2340 while (sp != NULL) { 2341 nextsp = TAILQ_NEXT(sp, chain); 2342 KEY_FREESP(&sp); 2343 sp = nextsp; 2344 } 2345 2346 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 2347 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2348 return key_senderror(so, m, ENOBUFS); 2349 } 2350 2351 if (m->m_next) 2352 m_freem(m->m_next); 2353 m->m_next = NULL; 2354 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2355 newmsg = mtod(m, struct sadb_msg *); 2356 newmsg->sadb_msg_errno = 0; 2357 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 2358 2359 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 2360 } 2361 2362 /* 2363 * SADB_SPDDUMP processing 2364 * receive 2365 * <base> 2366 * from the user, and dump all SP leaves 2367 * and send, 2368 * <base> ..... 2369 * to the ikmpd. 2370 * 2371 * m will always be freed. 2372 */ 2373 static int 2374 key_spddump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 2375 { 2376 SPTREE_RLOCK_TRACKER; 2377 struct secpolicy *sp; 2378 int cnt; 2379 u_int dir; 2380 struct mbuf *n; 2381 2382 IPSEC_ASSERT(so != NULL, ("null socket")); 2383 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2384 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2385 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2386 2387 /* search SPD entry and get buffer size. */ 2388 cnt = 0; 2389 SPTREE_RLOCK(); 2390 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2391 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 2392 cnt++; 2393 } 2394 } 2395 2396 if (cnt == 0) { 2397 SPTREE_RUNLOCK(); 2398 return key_senderror(so, m, ENOENT); 2399 } 2400 2401 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2402 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 2403 --cnt; 2404 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, 2405 mhp->msg->sadb_msg_pid); 2406 2407 if (n) 2408 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2409 } 2410 } 2411 2412 SPTREE_RUNLOCK(); 2413 m_freem(m); 2414 return 0; 2415 } 2416 2417 static struct mbuf * 2418 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, 2419 u_int32_t pid) 2420 { 2421 struct mbuf *result = NULL, *m; 2422 struct seclifetime lt; 2423 2424 SPTREE_RLOCK_ASSERT(); 2425 2426 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt); 2427 if (!m) 2428 goto fail; 2429 result = m; 2430 2431 /* 2432 * Note: do not send SADB_X_EXT_NAT_T_* here: 2433 * we are sending traffic endpoints. 2434 */ 2435 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2436 &sp->spidx.src.sa, sp->spidx.prefs, 2437 sp->spidx.ul_proto); 2438 if (!m) 2439 goto fail; 2440 m_cat(result, m); 2441 2442 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2443 &sp->spidx.dst.sa, sp->spidx.prefd, 2444 sp->spidx.ul_proto); 2445 if (!m) 2446 goto fail; 2447 m_cat(result, m); 2448 2449 m = key_sp2msg(sp); 2450 if (!m) 2451 goto fail; 2452 m_cat(result, m); 2453 2454 if(sp->lifetime){ 2455 lt.addtime=sp->created; 2456 lt.usetime= sp->lastused; 2457 m = key_setlifetime(<, SADB_EXT_LIFETIME_CURRENT); 2458 if (!m) 2459 goto fail; 2460 m_cat(result, m); 2461 2462 lt.addtime=sp->lifetime; 2463 lt.usetime= sp->validtime; 2464 m = key_setlifetime(<, SADB_EXT_LIFETIME_HARD); 2465 if (!m) 2466 goto fail; 2467 m_cat(result, m); 2468 } 2469 2470 if ((result->m_flags & M_PKTHDR) == 0) 2471 goto fail; 2472 2473 if (result->m_len < sizeof(struct sadb_msg)) { 2474 result = m_pullup(result, sizeof(struct sadb_msg)); 2475 if (result == NULL) 2476 goto fail; 2477 } 2478 2479 result->m_pkthdr.len = 0; 2480 for (m = result; m; m = m->m_next) 2481 result->m_pkthdr.len += m->m_len; 2482 2483 mtod(result, struct sadb_msg *)->sadb_msg_len = 2484 PFKEY_UNIT64(result->m_pkthdr.len); 2485 2486 return result; 2487 2488 fail: 2489 m_freem(result); 2490 return NULL; 2491 } 2492 2493 /* 2494 * get PFKEY message length for security policy and request. 2495 */ 2496 static u_int 2497 key_getspreqmsglen(struct secpolicy *sp) 2498 { 2499 u_int tlen; 2500 2501 tlen = sizeof(struct sadb_x_policy); 2502 2503 /* if is the policy for ipsec ? */ 2504 if (sp->policy != IPSEC_POLICY_IPSEC) 2505 return tlen; 2506 2507 /* get length of ipsec requests */ 2508 { 2509 struct ipsecrequest *isr; 2510 int len; 2511 2512 for (isr = sp->req; isr != NULL; isr = isr->next) { 2513 len = sizeof(struct sadb_x_ipsecrequest) 2514 + isr->saidx.src.sa.sa_len 2515 + isr->saidx.dst.sa.sa_len; 2516 2517 tlen += PFKEY_ALIGN8(len); 2518 } 2519 } 2520 2521 return tlen; 2522 } 2523 2524 /* 2525 * SADB_SPDEXPIRE processing 2526 * send 2527 * <base, address(SD), lifetime(CH), policy> 2528 * to KMD by PF_KEY. 2529 * 2530 * OUT: 0 : succeed 2531 * others : error number 2532 */ 2533 static int 2534 key_spdexpire(struct secpolicy *sp) 2535 { 2536 struct mbuf *result = NULL, *m; 2537 int len; 2538 int error = -1; 2539 struct sadb_lifetime *lt; 2540 2541 /* XXX: Why do we lock ? */ 2542 2543 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2544 2545 /* set msg header */ 2546 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0); 2547 if (!m) { 2548 error = ENOBUFS; 2549 goto fail; 2550 } 2551 result = m; 2552 2553 /* create lifetime extension (current and hard) */ 2554 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 2555 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 2556 if (m == NULL) { 2557 error = ENOBUFS; 2558 goto fail; 2559 } 2560 m_align(m, len); 2561 m->m_len = len; 2562 bzero(mtod(m, caddr_t), len); 2563 lt = mtod(m, struct sadb_lifetime *); 2564 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2565 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 2566 lt->sadb_lifetime_allocations = 0; 2567 lt->sadb_lifetime_bytes = 0; 2568 lt->sadb_lifetime_addtime = sp->created; 2569 lt->sadb_lifetime_usetime = sp->lastused; 2570 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 2571 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2572 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 2573 lt->sadb_lifetime_allocations = 0; 2574 lt->sadb_lifetime_bytes = 0; 2575 lt->sadb_lifetime_addtime = sp->lifetime; 2576 lt->sadb_lifetime_usetime = sp->validtime; 2577 m_cat(result, m); 2578 2579 /* 2580 * Note: do not send SADB_X_EXT_NAT_T_* here: 2581 * we are sending traffic endpoints. 2582 */ 2583 2584 /* set sadb_address for source */ 2585 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2586 &sp->spidx.src.sa, 2587 sp->spidx.prefs, sp->spidx.ul_proto); 2588 if (!m) { 2589 error = ENOBUFS; 2590 goto fail; 2591 } 2592 m_cat(result, m); 2593 2594 /* set sadb_address for destination */ 2595 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2596 &sp->spidx.dst.sa, 2597 sp->spidx.prefd, sp->spidx.ul_proto); 2598 if (!m) { 2599 error = ENOBUFS; 2600 goto fail; 2601 } 2602 m_cat(result, m); 2603 2604 /* set secpolicy */ 2605 m = key_sp2msg(sp); 2606 if (!m) { 2607 error = ENOBUFS; 2608 goto fail; 2609 } 2610 m_cat(result, m); 2611 2612 if ((result->m_flags & M_PKTHDR) == 0) { 2613 error = EINVAL; 2614 goto fail; 2615 } 2616 2617 if (result->m_len < sizeof(struct sadb_msg)) { 2618 result = m_pullup(result, sizeof(struct sadb_msg)); 2619 if (result == NULL) { 2620 error = ENOBUFS; 2621 goto fail; 2622 } 2623 } 2624 2625 result->m_pkthdr.len = 0; 2626 for (m = result; m; m = m->m_next) 2627 result->m_pkthdr.len += m->m_len; 2628 2629 mtod(result, struct sadb_msg *)->sadb_msg_len = 2630 PFKEY_UNIT64(result->m_pkthdr.len); 2631 2632 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 2633 2634 fail: 2635 if (result) 2636 m_freem(result); 2637 return error; 2638 } 2639 2640 /* %%% SAD management */ 2641 /* 2642 * allocating a memory for new SA head, and copy from the values of mhp. 2643 * OUT: NULL : failure due to the lack of memory. 2644 * others : pointer to new SA head. 2645 */ 2646 static struct secashead * 2647 key_newsah(struct secasindex *saidx) 2648 { 2649 struct secashead *newsah; 2650 2651 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 2652 2653 newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO); 2654 if (newsah != NULL) { 2655 int i; 2656 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++) 2657 LIST_INIT(&newsah->savtree[i]); 2658 newsah->saidx = *saidx; 2659 2660 /* add to saidxtree */ 2661 newsah->state = SADB_SASTATE_MATURE; 2662 2663 SAHTREE_LOCK(); 2664 LIST_INSERT_HEAD(&V_sahtree, newsah, chain); 2665 SAHTREE_UNLOCK(); 2666 } 2667 return(newsah); 2668 } 2669 2670 /* 2671 * delete SA index and all SA registerd. 2672 */ 2673 static void 2674 key_delsah(struct secashead *sah) 2675 { 2676 struct secasvar *sav, *nextsav; 2677 u_int stateidx; 2678 int zombie = 0; 2679 2680 IPSEC_ASSERT(sah != NULL, ("NULL sah")); 2681 SAHTREE_LOCK_ASSERT(); 2682 2683 /* searching all SA registerd in the secindex. */ 2684 for (stateidx = 0; 2685 stateidx < _ARRAYLEN(saorder_state_any); 2686 stateidx++) { 2687 u_int state = saorder_state_any[stateidx]; 2688 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) { 2689 if (sav->refcnt == 0) { 2690 /* sanity check */ 2691 KEY_CHKSASTATE(state, sav->state, __func__); 2692 /* 2693 * do NOT call KEY_FREESAV here: 2694 * it will only delete the sav if refcnt == 1, 2695 * where we already know that refcnt == 0 2696 */ 2697 key_delsav(sav); 2698 } else { 2699 /* give up to delete this sa */ 2700 zombie++; 2701 } 2702 } 2703 } 2704 if (!zombie) { /* delete only if there are savs */ 2705 /* remove from tree of SA index */ 2706 if (__LIST_CHAINED(sah)) 2707 LIST_REMOVE(sah, chain); 2708 free(sah, M_IPSEC_SAH); 2709 } 2710 } 2711 2712 /* 2713 * allocating a new SA with LARVAL state. key_add() and key_getspi() call, 2714 * and copy the values of mhp into new buffer. 2715 * When SAD message type is GETSPI: 2716 * to set sequence number from acq_seq++, 2717 * to set zero to SPI. 2718 * not to call key_setsava(). 2719 * OUT: NULL : fail 2720 * others : pointer to new secasvar. 2721 * 2722 * does not modify mbuf. does not free mbuf on error. 2723 */ 2724 static struct secasvar * 2725 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp, 2726 struct secashead *sah, int *errp, const char *where, int tag) 2727 { 2728 struct secasvar *newsav; 2729 const struct sadb_sa *xsa; 2730 2731 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2732 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2733 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2734 IPSEC_ASSERT(sah != NULL, ("null secashead")); 2735 2736 newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO); 2737 if (newsav == NULL) { 2738 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2739 *errp = ENOBUFS; 2740 goto done; 2741 } 2742 2743 switch (mhp->msg->sadb_msg_type) { 2744 case SADB_GETSPI: 2745 newsav->spi = 0; 2746 2747 #ifdef IPSEC_DOSEQCHECK 2748 /* sync sequence number */ 2749 if (mhp->msg->sadb_msg_seq == 0) 2750 newsav->seq = 2751 (V_acq_seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq)); 2752 else 2753 #endif 2754 newsav->seq = mhp->msg->sadb_msg_seq; 2755 break; 2756 2757 case SADB_ADD: 2758 /* sanity check */ 2759 if (mhp->ext[SADB_EXT_SA] == NULL) { 2760 free(newsav, M_IPSEC_SA); 2761 newsav = NULL; 2762 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2763 __func__)); 2764 *errp = EINVAL; 2765 goto done; 2766 } 2767 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 2768 newsav->spi = xsa->sadb_sa_spi; 2769 newsav->seq = mhp->msg->sadb_msg_seq; 2770 break; 2771 default: 2772 free(newsav, M_IPSEC_SA); 2773 newsav = NULL; 2774 *errp = EINVAL; 2775 goto done; 2776 } 2777 2778 2779 /* copy sav values */ 2780 if (mhp->msg->sadb_msg_type != SADB_GETSPI) { 2781 *errp = key_setsaval(newsav, m, mhp); 2782 if (*errp) { 2783 free(newsav, M_IPSEC_SA); 2784 newsav = NULL; 2785 goto done; 2786 } 2787 } 2788 2789 SECASVAR_LOCK_INIT(newsav); 2790 2791 /* reset created */ 2792 newsav->created = time_second; 2793 newsav->pid = mhp->msg->sadb_msg_pid; 2794 2795 /* add to satree */ 2796 newsav->sah = sah; 2797 sa_initref(newsav); 2798 newsav->state = SADB_SASTATE_LARVAL; 2799 2800 SAHTREE_LOCK(); 2801 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav, 2802 secasvar, chain); 2803 SAHTREE_UNLOCK(); 2804 done: 2805 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 2806 printf("DP %s from %s:%u return SP:%p\n", __func__, 2807 where, tag, newsav)); 2808 2809 return newsav; 2810 } 2811 2812 /* 2813 * free() SA variable entry. 2814 */ 2815 static void 2816 key_cleansav(struct secasvar *sav) 2817 { 2818 /* 2819 * Cleanup xform state. Note that zeroize'ing causes the 2820 * keys to be cleared; otherwise we must do it ourself. 2821 */ 2822 if (sav->tdb_xform != NULL) { 2823 sav->tdb_xform->xf_zeroize(sav); 2824 sav->tdb_xform = NULL; 2825 } else { 2826 KASSERT(sav->iv == NULL, ("iv but no xform")); 2827 if (sav->key_auth != NULL) 2828 bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth)); 2829 if (sav->key_enc != NULL) 2830 bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc)); 2831 } 2832 if (sav->key_auth != NULL) { 2833 if (sav->key_auth->key_data != NULL) 2834 free(sav->key_auth->key_data, M_IPSEC_MISC); 2835 free(sav->key_auth, M_IPSEC_MISC); 2836 sav->key_auth = NULL; 2837 } 2838 if (sav->key_enc != NULL) { 2839 if (sav->key_enc->key_data != NULL) 2840 free(sav->key_enc->key_data, M_IPSEC_MISC); 2841 free(sav->key_enc, M_IPSEC_MISC); 2842 sav->key_enc = NULL; 2843 } 2844 if (sav->sched) { 2845 bzero(sav->sched, sav->schedlen); 2846 free(sav->sched, M_IPSEC_MISC); 2847 sav->sched = NULL; 2848 } 2849 if (sav->replay != NULL) { 2850 free(sav->replay, M_IPSEC_MISC); 2851 sav->replay = NULL; 2852 } 2853 if (sav->lft_c != NULL) { 2854 free(sav->lft_c, M_IPSEC_MISC); 2855 sav->lft_c = NULL; 2856 } 2857 if (sav->lft_h != NULL) { 2858 free(sav->lft_h, M_IPSEC_MISC); 2859 sav->lft_h = NULL; 2860 } 2861 if (sav->lft_s != NULL) { 2862 free(sav->lft_s, M_IPSEC_MISC); 2863 sav->lft_s = NULL; 2864 } 2865 } 2866 2867 /* 2868 * free() SA variable entry. 2869 */ 2870 static void 2871 key_delsav(struct secasvar *sav) 2872 { 2873 IPSEC_ASSERT(sav != NULL, ("null sav")); 2874 IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt)); 2875 2876 /* remove from SA header */ 2877 if (__LIST_CHAINED(sav)) 2878 LIST_REMOVE(sav, chain); 2879 key_cleansav(sav); 2880 SECASVAR_LOCK_DESTROY(sav); 2881 free(sav, M_IPSEC_SA); 2882 } 2883 2884 /* 2885 * search SAD. 2886 * OUT: 2887 * NULL : not found 2888 * others : found, pointer to a SA. 2889 */ 2890 static struct secashead * 2891 key_getsah(struct secasindex *saidx) 2892 { 2893 struct secashead *sah; 2894 2895 SAHTREE_LOCK(); 2896 LIST_FOREACH(sah, &V_sahtree, chain) { 2897 if (sah->state == SADB_SASTATE_DEAD) 2898 continue; 2899 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID)) 2900 break; 2901 } 2902 SAHTREE_UNLOCK(); 2903 2904 return sah; 2905 } 2906 2907 /* 2908 * check not to be duplicated SPI. 2909 * NOTE: this function is too slow due to searching all SAD. 2910 * OUT: 2911 * NULL : not found 2912 * others : found, pointer to a SA. 2913 */ 2914 static struct secasvar * 2915 key_checkspidup(struct secasindex *saidx, u_int32_t spi) 2916 { 2917 struct secashead *sah; 2918 struct secasvar *sav; 2919 2920 /* check address family */ 2921 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) { 2922 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 2923 __func__)); 2924 return NULL; 2925 } 2926 2927 sav = NULL; 2928 /* check all SAD */ 2929 SAHTREE_LOCK(); 2930 LIST_FOREACH(sah, &V_sahtree, chain) { 2931 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst)) 2932 continue; 2933 sav = key_getsavbyspi(sah, spi); 2934 if (sav != NULL) 2935 break; 2936 } 2937 SAHTREE_UNLOCK(); 2938 2939 return sav; 2940 } 2941 2942 /* 2943 * search SAD litmited alive SA, protocol, SPI. 2944 * OUT: 2945 * NULL : not found 2946 * others : found, pointer to a SA. 2947 */ 2948 static struct secasvar * 2949 key_getsavbyspi(struct secashead *sah, u_int32_t spi) 2950 { 2951 struct secasvar *sav; 2952 u_int stateidx, state; 2953 2954 sav = NULL; 2955 SAHTREE_LOCK_ASSERT(); 2956 /* search all status */ 2957 for (stateidx = 0; 2958 stateidx < _ARRAYLEN(saorder_state_alive); 2959 stateidx++) { 2960 2961 state = saorder_state_alive[stateidx]; 2962 LIST_FOREACH(sav, &sah->savtree[state], chain) { 2963 2964 /* sanity check */ 2965 if (sav->state != state) { 2966 ipseclog((LOG_DEBUG, "%s: " 2967 "invalid sav->state (queue: %d SA: %d)\n", 2968 __func__, state, sav->state)); 2969 continue; 2970 } 2971 2972 if (sav->spi == spi) 2973 return sav; 2974 } 2975 } 2976 2977 return NULL; 2978 } 2979 2980 /* 2981 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. 2982 * You must update these if need. 2983 * OUT: 0: success. 2984 * !0: failure. 2985 * 2986 * does not modify mbuf. does not free mbuf on error. 2987 */ 2988 static int 2989 key_setsaval(struct secasvar *sav, struct mbuf *m, 2990 const struct sadb_msghdr *mhp) 2991 { 2992 int error = 0; 2993 2994 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2995 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2996 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2997 2998 /* initialization */ 2999 sav->replay = NULL; 3000 sav->key_auth = NULL; 3001 sav->key_enc = NULL; 3002 sav->sched = NULL; 3003 sav->schedlen = 0; 3004 sav->iv = NULL; 3005 sav->lft_c = NULL; 3006 sav->lft_h = NULL; 3007 sav->lft_s = NULL; 3008 sav->tdb_xform = NULL; /* transform */ 3009 sav->tdb_encalgxform = NULL; /* encoding algorithm */ 3010 sav->tdb_authalgxform = NULL; /* authentication algorithm */ 3011 sav->tdb_compalgxform = NULL; /* compression algorithm */ 3012 /* Initialize even if NAT-T not compiled in: */ 3013 sav->natt_type = 0; 3014 sav->natt_esp_frag_len = 0; 3015 3016 /* SA */ 3017 if (mhp->ext[SADB_EXT_SA] != NULL) { 3018 const struct sadb_sa *sa0; 3019 3020 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 3021 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { 3022 error = EINVAL; 3023 goto fail; 3024 } 3025 3026 sav->alg_auth = sa0->sadb_sa_auth; 3027 sav->alg_enc = sa0->sadb_sa_encrypt; 3028 sav->flags = sa0->sadb_sa_flags; 3029 3030 /* replay window */ 3031 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { 3032 sav->replay = (struct secreplay *) 3033 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO); 3034 if (sav->replay == NULL) { 3035 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3036 __func__)); 3037 error = ENOBUFS; 3038 goto fail; 3039 } 3040 if (sa0->sadb_sa_replay != 0) 3041 sav->replay->bitmap = (caddr_t)(sav->replay+1); 3042 sav->replay->wsize = sa0->sadb_sa_replay; 3043 } 3044 } 3045 3046 /* Authentication keys */ 3047 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { 3048 const struct sadb_key *key0; 3049 int len; 3050 3051 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH]; 3052 len = mhp->extlen[SADB_EXT_KEY_AUTH]; 3053 3054 error = 0; 3055 if (len < sizeof(*key0)) { 3056 error = EINVAL; 3057 goto fail; 3058 } 3059 switch (mhp->msg->sadb_msg_satype) { 3060 case SADB_SATYPE_AH: 3061 case SADB_SATYPE_ESP: 3062 case SADB_X_SATYPE_TCPSIGNATURE: 3063 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3064 sav->alg_auth != SADB_X_AALG_NULL) 3065 error = EINVAL; 3066 break; 3067 case SADB_X_SATYPE_IPCOMP: 3068 default: 3069 error = EINVAL; 3070 break; 3071 } 3072 if (error) { 3073 ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n", 3074 __func__)); 3075 goto fail; 3076 } 3077 3078 sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len, 3079 M_IPSEC_MISC); 3080 if (sav->key_auth == NULL ) { 3081 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3082 __func__)); 3083 error = ENOBUFS; 3084 goto fail; 3085 } 3086 } 3087 3088 /* Encryption key */ 3089 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { 3090 const struct sadb_key *key0; 3091 int len; 3092 3093 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT]; 3094 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; 3095 3096 error = 0; 3097 if (len < sizeof(*key0)) { 3098 error = EINVAL; 3099 goto fail; 3100 } 3101 switch (mhp->msg->sadb_msg_satype) { 3102 case SADB_SATYPE_ESP: 3103 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3104 sav->alg_enc != SADB_EALG_NULL) { 3105 error = EINVAL; 3106 break; 3107 } 3108 sav->key_enc = (struct seckey *)key_dup_keymsg(key0, 3109 len, 3110 M_IPSEC_MISC); 3111 if (sav->key_enc == NULL) { 3112 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3113 __func__)); 3114 error = ENOBUFS; 3115 goto fail; 3116 } 3117 break; 3118 case SADB_X_SATYPE_IPCOMP: 3119 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) 3120 error = EINVAL; 3121 sav->key_enc = NULL; /*just in case*/ 3122 break; 3123 case SADB_SATYPE_AH: 3124 case SADB_X_SATYPE_TCPSIGNATURE: 3125 default: 3126 error = EINVAL; 3127 break; 3128 } 3129 if (error) { 3130 ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n", 3131 __func__)); 3132 goto fail; 3133 } 3134 } 3135 3136 /* set iv */ 3137 sav->ivlen = 0; 3138 3139 switch (mhp->msg->sadb_msg_satype) { 3140 case SADB_SATYPE_AH: 3141 error = xform_init(sav, XF_AH); 3142 break; 3143 case SADB_SATYPE_ESP: 3144 error = xform_init(sav, XF_ESP); 3145 break; 3146 case SADB_X_SATYPE_IPCOMP: 3147 error = xform_init(sav, XF_IPCOMP); 3148 break; 3149 case SADB_X_SATYPE_TCPSIGNATURE: 3150 error = xform_init(sav, XF_TCPSIGNATURE); 3151 break; 3152 } 3153 if (error) { 3154 ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n", 3155 __func__, mhp->msg->sadb_msg_satype)); 3156 goto fail; 3157 } 3158 3159 /* reset created */ 3160 sav->created = time_second; 3161 3162 /* make lifetime for CURRENT */ 3163 sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT); 3164 if (sav->lft_c == NULL) { 3165 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3166 error = ENOBUFS; 3167 goto fail; 3168 } 3169 3170 sav->lft_c->allocations = 0; 3171 sav->lft_c->bytes = 0; 3172 sav->lft_c->addtime = time_second; 3173 sav->lft_c->usetime = 0; 3174 3175 /* lifetimes for HARD and SOFT */ 3176 { 3177 const struct sadb_lifetime *lft0; 3178 3179 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 3180 if (lft0 != NULL) { 3181 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { 3182 error = EINVAL; 3183 goto fail; 3184 } 3185 sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3186 if (sav->lft_h == NULL) { 3187 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3188 error = ENOBUFS; 3189 goto fail; 3190 } 3191 /* to be initialize ? */ 3192 } 3193 3194 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT]; 3195 if (lft0 != NULL) { 3196 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { 3197 error = EINVAL; 3198 goto fail; 3199 } 3200 sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3201 if (sav->lft_s == NULL) { 3202 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3203 error = ENOBUFS; 3204 goto fail; 3205 } 3206 /* to be initialize ? */ 3207 } 3208 } 3209 3210 return 0; 3211 3212 fail: 3213 /* initialization */ 3214 key_cleansav(sav); 3215 3216 return error; 3217 } 3218 3219 /* 3220 * validation with a secasvar entry, and set SADB_SATYPE_MATURE. 3221 * OUT: 0: valid 3222 * other: errno 3223 */ 3224 static int 3225 key_mature(struct secasvar *sav) 3226 { 3227 int error; 3228 3229 /* check SPI value */ 3230 switch (sav->sah->saidx.proto) { 3231 case IPPROTO_ESP: 3232 case IPPROTO_AH: 3233 /* 3234 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values 3235 * 1-255 reserved by IANA for future use, 3236 * 0 for implementation specific, local use. 3237 */ 3238 if (ntohl(sav->spi) <= 255) { 3239 ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n", 3240 __func__, (u_int32_t)ntohl(sav->spi))); 3241 return EINVAL; 3242 } 3243 break; 3244 } 3245 3246 /* check satype */ 3247 switch (sav->sah->saidx.proto) { 3248 case IPPROTO_ESP: 3249 /* check flags */ 3250 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) == 3251 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) { 3252 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3253 "given to old-esp.\n", __func__)); 3254 return EINVAL; 3255 } 3256 error = xform_init(sav, XF_ESP); 3257 break; 3258 case IPPROTO_AH: 3259 /* check flags */ 3260 if (sav->flags & SADB_X_EXT_DERIV) { 3261 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3262 "given to AH SA.\n", __func__)); 3263 return EINVAL; 3264 } 3265 if (sav->alg_enc != SADB_EALG_NONE) { 3266 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3267 "mismated.\n", __func__)); 3268 return(EINVAL); 3269 } 3270 error = xform_init(sav, XF_AH); 3271 break; 3272 case IPPROTO_IPCOMP: 3273 if (sav->alg_auth != SADB_AALG_NONE) { 3274 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3275 "mismated.\n", __func__)); 3276 return(EINVAL); 3277 } 3278 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 3279 && ntohl(sav->spi) >= 0x10000) { 3280 ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n", 3281 __func__)); 3282 return(EINVAL); 3283 } 3284 error = xform_init(sav, XF_IPCOMP); 3285 break; 3286 case IPPROTO_TCP: 3287 if (sav->alg_enc != SADB_EALG_NONE) { 3288 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3289 "mismated.\n", __func__)); 3290 return(EINVAL); 3291 } 3292 error = xform_init(sav, XF_TCPSIGNATURE); 3293 break; 3294 default: 3295 ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__)); 3296 error = EPROTONOSUPPORT; 3297 break; 3298 } 3299 if (error == 0) { 3300 SAHTREE_LOCK(); 3301 key_sa_chgstate(sav, SADB_SASTATE_MATURE); 3302 SAHTREE_UNLOCK(); 3303 } 3304 return (error); 3305 } 3306 3307 /* 3308 * subroutine for SADB_GET and SADB_DUMP. 3309 */ 3310 static struct mbuf * 3311 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype, 3312 u_int32_t seq, u_int32_t pid) 3313 { 3314 struct mbuf *result = NULL, *tres = NULL, *m; 3315 int i; 3316 int dumporder[] = { 3317 SADB_EXT_SA, SADB_X_EXT_SA2, 3318 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 3319 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, 3320 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, 3321 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, 3322 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, 3323 #ifdef IPSEC_NAT_T 3324 SADB_X_EXT_NAT_T_TYPE, 3325 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT, 3326 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR, 3327 SADB_X_EXT_NAT_T_FRAG, 3328 #endif 3329 }; 3330 3331 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt); 3332 if (m == NULL) 3333 goto fail; 3334 result = m; 3335 3336 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) { 3337 m = NULL; 3338 switch (dumporder[i]) { 3339 case SADB_EXT_SA: 3340 m = key_setsadbsa(sav); 3341 if (!m) 3342 goto fail; 3343 break; 3344 3345 case SADB_X_EXT_SA2: 3346 m = key_setsadbxsa2(sav->sah->saidx.mode, 3347 sav->replay ? sav->replay->count : 0, 3348 sav->sah->saidx.reqid); 3349 if (!m) 3350 goto fail; 3351 break; 3352 3353 case SADB_EXT_ADDRESS_SRC: 3354 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3355 &sav->sah->saidx.src.sa, 3356 FULLMASK, IPSEC_ULPROTO_ANY); 3357 if (!m) 3358 goto fail; 3359 break; 3360 3361 case SADB_EXT_ADDRESS_DST: 3362 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3363 &sav->sah->saidx.dst.sa, 3364 FULLMASK, IPSEC_ULPROTO_ANY); 3365 if (!m) 3366 goto fail; 3367 break; 3368 3369 case SADB_EXT_KEY_AUTH: 3370 if (!sav->key_auth) 3371 continue; 3372 m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH); 3373 if (!m) 3374 goto fail; 3375 break; 3376 3377 case SADB_EXT_KEY_ENCRYPT: 3378 if (!sav->key_enc) 3379 continue; 3380 m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT); 3381 if (!m) 3382 goto fail; 3383 break; 3384 3385 case SADB_EXT_LIFETIME_CURRENT: 3386 if (!sav->lft_c) 3387 continue; 3388 m = key_setlifetime(sav->lft_c, 3389 SADB_EXT_LIFETIME_CURRENT); 3390 if (!m) 3391 goto fail; 3392 break; 3393 3394 case SADB_EXT_LIFETIME_HARD: 3395 if (!sav->lft_h) 3396 continue; 3397 m = key_setlifetime(sav->lft_h, 3398 SADB_EXT_LIFETIME_HARD); 3399 if (!m) 3400 goto fail; 3401 break; 3402 3403 case SADB_EXT_LIFETIME_SOFT: 3404 if (!sav->lft_s) 3405 continue; 3406 m = key_setlifetime(sav->lft_s, 3407 SADB_EXT_LIFETIME_SOFT); 3408 3409 if (!m) 3410 goto fail; 3411 break; 3412 3413 #ifdef IPSEC_NAT_T 3414 case SADB_X_EXT_NAT_T_TYPE: 3415 m = key_setsadbxtype(sav->natt_type); 3416 if (!m) 3417 goto fail; 3418 break; 3419 3420 case SADB_X_EXT_NAT_T_DPORT: 3421 m = key_setsadbxport( 3422 KEY_PORTFROMSADDR(&sav->sah->saidx.dst), 3423 SADB_X_EXT_NAT_T_DPORT); 3424 if (!m) 3425 goto fail; 3426 break; 3427 3428 case SADB_X_EXT_NAT_T_SPORT: 3429 m = key_setsadbxport( 3430 KEY_PORTFROMSADDR(&sav->sah->saidx.src), 3431 SADB_X_EXT_NAT_T_SPORT); 3432 if (!m) 3433 goto fail; 3434 break; 3435 3436 case SADB_X_EXT_NAT_T_OAI: 3437 case SADB_X_EXT_NAT_T_OAR: 3438 case SADB_X_EXT_NAT_T_FRAG: 3439 /* We do not (yet) support those. */ 3440 continue; 3441 #endif 3442 3443 case SADB_EXT_ADDRESS_PROXY: 3444 case SADB_EXT_IDENTITY_SRC: 3445 case SADB_EXT_IDENTITY_DST: 3446 /* XXX: should we brought from SPD ? */ 3447 case SADB_EXT_SENSITIVITY: 3448 default: 3449 continue; 3450 } 3451 3452 if (!m) 3453 goto fail; 3454 if (tres) 3455 m_cat(m, tres); 3456 tres = m; 3457 3458 } 3459 3460 m_cat(result, tres); 3461 if (result->m_len < sizeof(struct sadb_msg)) { 3462 result = m_pullup(result, sizeof(struct sadb_msg)); 3463 if (result == NULL) 3464 goto fail; 3465 } 3466 3467 result->m_pkthdr.len = 0; 3468 for (m = result; m; m = m->m_next) 3469 result->m_pkthdr.len += m->m_len; 3470 3471 mtod(result, struct sadb_msg *)->sadb_msg_len = 3472 PFKEY_UNIT64(result->m_pkthdr.len); 3473 3474 return result; 3475 3476 fail: 3477 m_freem(result); 3478 m_freem(tres); 3479 return NULL; 3480 } 3481 3482 /* 3483 * set data into sadb_msg. 3484 */ 3485 static struct mbuf * 3486 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq, 3487 pid_t pid, u_int16_t reserved) 3488 { 3489 struct mbuf *m; 3490 struct sadb_msg *p; 3491 int len; 3492 3493 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 3494 if (len > MCLBYTES) 3495 return NULL; 3496 MGETHDR(m, M_NOWAIT, MT_DATA); 3497 if (m && len > MHLEN) { 3498 if (!(MCLGET(m, M_NOWAIT))) { 3499 m_freem(m); 3500 m = NULL; 3501 } 3502 } 3503 if (!m) 3504 return NULL; 3505 m->m_pkthdr.len = m->m_len = len; 3506 m->m_next = NULL; 3507 3508 p = mtod(m, struct sadb_msg *); 3509 3510 bzero(p, len); 3511 p->sadb_msg_version = PF_KEY_V2; 3512 p->sadb_msg_type = type; 3513 p->sadb_msg_errno = 0; 3514 p->sadb_msg_satype = satype; 3515 p->sadb_msg_len = PFKEY_UNIT64(tlen); 3516 p->sadb_msg_reserved = reserved; 3517 p->sadb_msg_seq = seq; 3518 p->sadb_msg_pid = (u_int32_t)pid; 3519 3520 return m; 3521 } 3522 3523 /* 3524 * copy secasvar data into sadb_address. 3525 */ 3526 static struct mbuf * 3527 key_setsadbsa(struct secasvar *sav) 3528 { 3529 struct mbuf *m; 3530 struct sadb_sa *p; 3531 int len; 3532 3533 len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); 3534 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3535 if (m == NULL) 3536 return (NULL); 3537 m_align(m, len); 3538 m->m_len = len; 3539 p = mtod(m, struct sadb_sa *); 3540 bzero(p, len); 3541 p->sadb_sa_len = PFKEY_UNIT64(len); 3542 p->sadb_sa_exttype = SADB_EXT_SA; 3543 p->sadb_sa_spi = sav->spi; 3544 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0); 3545 p->sadb_sa_state = sav->state; 3546 p->sadb_sa_auth = sav->alg_auth; 3547 p->sadb_sa_encrypt = sav->alg_enc; 3548 p->sadb_sa_flags = sav->flags; 3549 3550 return m; 3551 } 3552 3553 /* 3554 * set data into sadb_address. 3555 */ 3556 static struct mbuf * 3557 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, 3558 u_int8_t prefixlen, u_int16_t ul_proto) 3559 { 3560 struct mbuf *m; 3561 struct sadb_address *p; 3562 size_t len; 3563 3564 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + 3565 PFKEY_ALIGN8(saddr->sa_len); 3566 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3567 if (m == NULL) 3568 return (NULL); 3569 m_align(m, len); 3570 m->m_len = len; 3571 p = mtod(m, struct sadb_address *); 3572 3573 bzero(p, len); 3574 p->sadb_address_len = PFKEY_UNIT64(len); 3575 p->sadb_address_exttype = exttype; 3576 p->sadb_address_proto = ul_proto; 3577 if (prefixlen == FULLMASK) { 3578 switch (saddr->sa_family) { 3579 case AF_INET: 3580 prefixlen = sizeof(struct in_addr) << 3; 3581 break; 3582 case AF_INET6: 3583 prefixlen = sizeof(struct in6_addr) << 3; 3584 break; 3585 default: 3586 ; /*XXX*/ 3587 } 3588 } 3589 p->sadb_address_prefixlen = prefixlen; 3590 p->sadb_address_reserved = 0; 3591 3592 bcopy(saddr, 3593 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)), 3594 saddr->sa_len); 3595 3596 return m; 3597 } 3598 3599 /* 3600 * set data into sadb_x_sa2. 3601 */ 3602 static struct mbuf * 3603 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid) 3604 { 3605 struct mbuf *m; 3606 struct sadb_x_sa2 *p; 3607 size_t len; 3608 3609 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); 3610 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3611 if (m == NULL) 3612 return (NULL); 3613 m_align(m, len); 3614 m->m_len = len; 3615 p = mtod(m, struct sadb_x_sa2 *); 3616 3617 bzero(p, len); 3618 p->sadb_x_sa2_len = PFKEY_UNIT64(len); 3619 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 3620 p->sadb_x_sa2_mode = mode; 3621 p->sadb_x_sa2_reserved1 = 0; 3622 p->sadb_x_sa2_reserved2 = 0; 3623 p->sadb_x_sa2_sequence = seq; 3624 p->sadb_x_sa2_reqid = reqid; 3625 3626 return m; 3627 } 3628 3629 #ifdef IPSEC_NAT_T 3630 /* 3631 * Set a type in sadb_x_nat_t_type. 3632 */ 3633 static struct mbuf * 3634 key_setsadbxtype(u_int16_t type) 3635 { 3636 struct mbuf *m; 3637 size_t len; 3638 struct sadb_x_nat_t_type *p; 3639 3640 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type)); 3641 3642 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3643 if (m == NULL) 3644 return (NULL); 3645 m_align(m, len); 3646 m->m_len = len; 3647 p = mtod(m, struct sadb_x_nat_t_type *); 3648 3649 bzero(p, len); 3650 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len); 3651 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; 3652 p->sadb_x_nat_t_type_type = type; 3653 3654 return (m); 3655 } 3656 /* 3657 * Set a port in sadb_x_nat_t_port. 3658 * In contrast to default RFC 2367 behaviour, port is in network byte order. 3659 */ 3660 static struct mbuf * 3661 key_setsadbxport(u_int16_t port, u_int16_t type) 3662 { 3663 struct mbuf *m; 3664 size_t len; 3665 struct sadb_x_nat_t_port *p; 3666 3667 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port)); 3668 3669 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3670 if (m == NULL) 3671 return (NULL); 3672 m_align(m, len); 3673 m->m_len = len; 3674 p = mtod(m, struct sadb_x_nat_t_port *); 3675 3676 bzero(p, len); 3677 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len); 3678 p->sadb_x_nat_t_port_exttype = type; 3679 p->sadb_x_nat_t_port_port = port; 3680 3681 return (m); 3682 } 3683 3684 /* 3685 * Get port from sockaddr. Port is in network byte order. 3686 */ 3687 u_int16_t 3688 key_portfromsaddr(struct sockaddr *sa) 3689 { 3690 3691 switch (sa->sa_family) { 3692 #ifdef INET 3693 case AF_INET: 3694 return ((struct sockaddr_in *)sa)->sin_port; 3695 #endif 3696 #ifdef INET6 3697 case AF_INET6: 3698 return ((struct sockaddr_in6 *)sa)->sin6_port; 3699 #endif 3700 } 3701 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 3702 printf("DP %s unexpected address family %d\n", 3703 __func__, sa->sa_family)); 3704 return (0); 3705 } 3706 #endif /* IPSEC_NAT_T */ 3707 3708 /* 3709 * Set port in struct sockaddr. Port is in network byte order. 3710 */ 3711 static void 3712 key_porttosaddr(struct sockaddr *sa, u_int16_t port) 3713 { 3714 3715 switch (sa->sa_family) { 3716 #ifdef INET 3717 case AF_INET: 3718 ((struct sockaddr_in *)sa)->sin_port = port; 3719 break; 3720 #endif 3721 #ifdef INET6 3722 case AF_INET6: 3723 ((struct sockaddr_in6 *)sa)->sin6_port = port; 3724 break; 3725 #endif 3726 default: 3727 ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n", 3728 __func__, sa->sa_family)); 3729 break; 3730 } 3731 } 3732 3733 /* 3734 * set data into sadb_x_policy 3735 */ 3736 static struct mbuf * 3737 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id) 3738 { 3739 struct mbuf *m; 3740 struct sadb_x_policy *p; 3741 size_t len; 3742 3743 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); 3744 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3745 if (m == NULL) 3746 return (NULL); 3747 m_align(m, len); 3748 m->m_len = len; 3749 p = mtod(m, struct sadb_x_policy *); 3750 3751 bzero(p, len); 3752 p->sadb_x_policy_len = PFKEY_UNIT64(len); 3753 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 3754 p->sadb_x_policy_type = type; 3755 p->sadb_x_policy_dir = dir; 3756 p->sadb_x_policy_id = id; 3757 3758 return m; 3759 } 3760 3761 /* %%% utilities */ 3762 /* Take a key message (sadb_key) from the socket and turn it into one 3763 * of the kernel's key structures (seckey). 3764 * 3765 * IN: pointer to the src 3766 * OUT: NULL no more memory 3767 */ 3768 struct seckey * 3769 key_dup_keymsg(const struct sadb_key *src, u_int len, 3770 struct malloc_type *type) 3771 { 3772 struct seckey *dst; 3773 dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT); 3774 if (dst != NULL) { 3775 dst->bits = src->sadb_key_bits; 3776 dst->key_data = (char *)malloc(len, type, M_NOWAIT); 3777 if (dst->key_data != NULL) { 3778 bcopy((const char *)src + sizeof(struct sadb_key), 3779 dst->key_data, len); 3780 } else { 3781 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3782 __func__)); 3783 free(dst, type); 3784 dst = NULL; 3785 } 3786 } else { 3787 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3788 __func__)); 3789 3790 } 3791 return dst; 3792 } 3793 3794 /* Take a lifetime message (sadb_lifetime) passed in on a socket and 3795 * turn it into one of the kernel's lifetime structures (seclifetime). 3796 * 3797 * IN: pointer to the destination, source and malloc type 3798 * OUT: NULL, no more memory 3799 */ 3800 3801 static struct seclifetime * 3802 key_dup_lifemsg(const struct sadb_lifetime *src, struct malloc_type *type) 3803 { 3804 struct seclifetime *dst = NULL; 3805 3806 dst = (struct seclifetime *)malloc(sizeof(struct seclifetime), 3807 type, M_NOWAIT); 3808 if (dst == NULL) { 3809 /* XXX counter */ 3810 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3811 } else { 3812 dst->allocations = src->sadb_lifetime_allocations; 3813 dst->bytes = src->sadb_lifetime_bytes; 3814 dst->addtime = src->sadb_lifetime_addtime; 3815 dst->usetime = src->sadb_lifetime_usetime; 3816 } 3817 return dst; 3818 } 3819 3820 /* compare my own address 3821 * OUT: 1: true, i.e. my address. 3822 * 0: false 3823 */ 3824 int 3825 key_ismyaddr(struct sockaddr *sa) 3826 { 3827 3828 IPSEC_ASSERT(sa != NULL, ("null sockaddr")); 3829 switch (sa->sa_family) { 3830 #ifdef INET 3831 case AF_INET: 3832 return (in_localip(satosin(sa)->sin_addr)); 3833 #endif 3834 #ifdef INET6 3835 case AF_INET6: 3836 return key_ismyaddr6((struct sockaddr_in6 *)sa); 3837 #endif 3838 } 3839 3840 return 0; 3841 } 3842 3843 #ifdef INET6 3844 /* 3845 * compare my own address for IPv6. 3846 * 1: ours 3847 * 0: other 3848 * NOTE: derived ip6_input() in KAME. This is necessary to modify more. 3849 */ 3850 #include <netinet6/in6_var.h> 3851 3852 static int 3853 key_ismyaddr6(struct sockaddr_in6 *sin6) 3854 { 3855 struct in6_ifaddr *ia; 3856 #if 0 3857 struct in6_multi *in6m; 3858 #endif 3859 3860 IN6_IFADDR_RLOCK(); 3861 TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) { 3862 if (key_sockaddrcmp((struct sockaddr *)&sin6, 3863 (struct sockaddr *)&ia->ia_addr, 0) == 0) { 3864 IN6_IFADDR_RUNLOCK(); 3865 return 1; 3866 } 3867 3868 #if 0 3869 /* 3870 * XXX Multicast 3871 * XXX why do we care about multlicast here while we don't care 3872 * about IPv4 multicast?? 3873 * XXX scope 3874 */ 3875 in6m = NULL; 3876 IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m); 3877 if (in6m) { 3878 IN6_IFADDR_RUNLOCK(); 3879 return 1; 3880 } 3881 #endif 3882 } 3883 IN6_IFADDR_RUNLOCK(); 3884 3885 /* loopback, just for safety */ 3886 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) 3887 return 1; 3888 3889 return 0; 3890 } 3891 #endif /*INET6*/ 3892 3893 /* 3894 * compare two secasindex structure. 3895 * flag can specify to compare 2 saidxes. 3896 * compare two secasindex structure without both mode and reqid. 3897 * don't compare port. 3898 * IN: 3899 * saidx0: source, it can be in SAD. 3900 * saidx1: object. 3901 * OUT: 3902 * 1 : equal 3903 * 0 : not equal 3904 */ 3905 static int 3906 key_cmpsaidx(const struct secasindex *saidx0, const struct secasindex *saidx1, 3907 int flag) 3908 { 3909 int chkport = 0; 3910 3911 /* sanity */ 3912 if (saidx0 == NULL && saidx1 == NULL) 3913 return 1; 3914 3915 if (saidx0 == NULL || saidx1 == NULL) 3916 return 0; 3917 3918 if (saidx0->proto != saidx1->proto) 3919 return 0; 3920 3921 if (flag == CMP_EXACTLY) { 3922 if (saidx0->mode != saidx1->mode) 3923 return 0; 3924 if (saidx0->reqid != saidx1->reqid) 3925 return 0; 3926 if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 || 3927 bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0) 3928 return 0; 3929 } else { 3930 3931 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ 3932 if (flag == CMP_MODE_REQID 3933 ||flag == CMP_REQID) { 3934 /* 3935 * If reqid of SPD is non-zero, unique SA is required. 3936 * The result must be of same reqid in this case. 3937 */ 3938 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) 3939 return 0; 3940 } 3941 3942 if (flag == CMP_MODE_REQID) { 3943 if (saidx0->mode != IPSEC_MODE_ANY 3944 && saidx0->mode != saidx1->mode) 3945 return 0; 3946 } 3947 3948 #ifdef IPSEC_NAT_T 3949 /* 3950 * If NAT-T is enabled, check ports for tunnel mode. 3951 * Do not check ports if they are set to zero in the SPD. 3952 * Also do not do it for native transport mode, as there 3953 * is no port information available in the SP. 3954 */ 3955 if ((saidx1->mode == IPSEC_MODE_TUNNEL || 3956 (saidx1->mode == IPSEC_MODE_TRANSPORT && 3957 saidx1->proto == IPPROTO_ESP)) && 3958 saidx1->src.sa.sa_family == AF_INET && 3959 saidx1->dst.sa.sa_family == AF_INET && 3960 ((const struct sockaddr_in *)(&saidx1->src))->sin_port && 3961 ((const struct sockaddr_in *)(&saidx1->dst))->sin_port) 3962 chkport = 1; 3963 #endif /* IPSEC_NAT_T */ 3964 3965 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, chkport) != 0) { 3966 return 0; 3967 } 3968 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, chkport) != 0) { 3969 return 0; 3970 } 3971 } 3972 3973 return 1; 3974 } 3975 3976 /* 3977 * compare two secindex structure exactly. 3978 * IN: 3979 * spidx0: source, it is often in SPD. 3980 * spidx1: object, it is often from PFKEY message. 3981 * OUT: 3982 * 1 : equal 3983 * 0 : not equal 3984 */ 3985 static int 3986 key_cmpspidx_exactly(struct secpolicyindex *spidx0, 3987 struct secpolicyindex *spidx1) 3988 { 3989 /* sanity */ 3990 if (spidx0 == NULL && spidx1 == NULL) 3991 return 1; 3992 3993 if (spidx0 == NULL || spidx1 == NULL) 3994 return 0; 3995 3996 if (spidx0->prefs != spidx1->prefs 3997 || spidx0->prefd != spidx1->prefd 3998 || spidx0->ul_proto != spidx1->ul_proto) 3999 return 0; 4000 4001 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 && 4002 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0; 4003 } 4004 4005 /* 4006 * compare two secindex structure with mask. 4007 * IN: 4008 * spidx0: source, it is often in SPD. 4009 * spidx1: object, it is often from IP header. 4010 * OUT: 4011 * 1 : equal 4012 * 0 : not equal 4013 */ 4014 static int 4015 key_cmpspidx_withmask(struct secpolicyindex *spidx0, 4016 struct secpolicyindex *spidx1) 4017 { 4018 /* sanity */ 4019 if (spidx0 == NULL && spidx1 == NULL) 4020 return 1; 4021 4022 if (spidx0 == NULL || spidx1 == NULL) 4023 return 0; 4024 4025 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || 4026 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || 4027 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || 4028 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) 4029 return 0; 4030 4031 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ 4032 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY 4033 && spidx0->ul_proto != spidx1->ul_proto) 4034 return 0; 4035 4036 switch (spidx0->src.sa.sa_family) { 4037 case AF_INET: 4038 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY 4039 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) 4040 return 0; 4041 if (!key_bbcmp(&spidx0->src.sin.sin_addr, 4042 &spidx1->src.sin.sin_addr, spidx0->prefs)) 4043 return 0; 4044 break; 4045 case AF_INET6: 4046 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY 4047 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) 4048 return 0; 4049 /* 4050 * scope_id check. if sin6_scope_id is 0, we regard it 4051 * as a wildcard scope, which matches any scope zone ID. 4052 */ 4053 if (spidx0->src.sin6.sin6_scope_id && 4054 spidx1->src.sin6.sin6_scope_id && 4055 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) 4056 return 0; 4057 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr, 4058 &spidx1->src.sin6.sin6_addr, spidx0->prefs)) 4059 return 0; 4060 break; 4061 default: 4062 /* XXX */ 4063 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) 4064 return 0; 4065 break; 4066 } 4067 4068 switch (spidx0->dst.sa.sa_family) { 4069 case AF_INET: 4070 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY 4071 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) 4072 return 0; 4073 if (!key_bbcmp(&spidx0->dst.sin.sin_addr, 4074 &spidx1->dst.sin.sin_addr, spidx0->prefd)) 4075 return 0; 4076 break; 4077 case AF_INET6: 4078 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY 4079 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) 4080 return 0; 4081 /* 4082 * scope_id check. if sin6_scope_id is 0, we regard it 4083 * as a wildcard scope, which matches any scope zone ID. 4084 */ 4085 if (spidx0->dst.sin6.sin6_scope_id && 4086 spidx1->dst.sin6.sin6_scope_id && 4087 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) 4088 return 0; 4089 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr, 4090 &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) 4091 return 0; 4092 break; 4093 default: 4094 /* XXX */ 4095 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) 4096 return 0; 4097 break; 4098 } 4099 4100 /* XXX Do we check other field ? e.g. flowinfo */ 4101 4102 return 1; 4103 } 4104 4105 /* returns 0 on match */ 4106 static int 4107 key_sockaddrcmp(const struct sockaddr *sa1, const struct sockaddr *sa2, 4108 int port) 4109 { 4110 #ifdef satosin 4111 #undef satosin 4112 #endif 4113 #define satosin(s) ((const struct sockaddr_in *)s) 4114 #ifdef satosin6 4115 #undef satosin6 4116 #endif 4117 #define satosin6(s) ((const struct sockaddr_in6 *)s) 4118 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) 4119 return 1; 4120 4121 switch (sa1->sa_family) { 4122 case AF_INET: 4123 if (sa1->sa_len != sizeof(struct sockaddr_in)) 4124 return 1; 4125 if (satosin(sa1)->sin_addr.s_addr != 4126 satosin(sa2)->sin_addr.s_addr) { 4127 return 1; 4128 } 4129 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port) 4130 return 1; 4131 break; 4132 case AF_INET6: 4133 if (sa1->sa_len != sizeof(struct sockaddr_in6)) 4134 return 1; /*EINVAL*/ 4135 if (satosin6(sa1)->sin6_scope_id != 4136 satosin6(sa2)->sin6_scope_id) { 4137 return 1; 4138 } 4139 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr, 4140 &satosin6(sa2)->sin6_addr)) { 4141 return 1; 4142 } 4143 if (port && 4144 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) { 4145 return 1; 4146 } 4147 break; 4148 default: 4149 if (bcmp(sa1, sa2, sa1->sa_len) != 0) 4150 return 1; 4151 break; 4152 } 4153 4154 return 0; 4155 #undef satosin 4156 #undef satosin6 4157 } 4158 4159 /* 4160 * compare two buffers with mask. 4161 * IN: 4162 * addr1: source 4163 * addr2: object 4164 * bits: Number of bits to compare 4165 * OUT: 4166 * 1 : equal 4167 * 0 : not equal 4168 */ 4169 static int 4170 key_bbcmp(const void *a1, const void *a2, u_int bits) 4171 { 4172 const unsigned char *p1 = a1; 4173 const unsigned char *p2 = a2; 4174 4175 /* XXX: This could be considerably faster if we compare a word 4176 * at a time, but it is complicated on LSB Endian machines */ 4177 4178 /* Handle null pointers */ 4179 if (p1 == NULL || p2 == NULL) 4180 return (p1 == p2); 4181 4182 while (bits >= 8) { 4183 if (*p1++ != *p2++) 4184 return 0; 4185 bits -= 8; 4186 } 4187 4188 if (bits > 0) { 4189 u_int8_t mask = ~((1<<(8-bits))-1); 4190 if ((*p1 & mask) != (*p2 & mask)) 4191 return 0; 4192 } 4193 return 1; /* Match! */ 4194 } 4195 4196 static void 4197 key_flush_spd(time_t now) 4198 { 4199 SPTREE_RLOCK_TRACKER; 4200 struct secpolicy *sp; 4201 u_int dir; 4202 4203 /* SPD */ 4204 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 4205 restart: 4206 SPTREE_RLOCK(); 4207 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 4208 if (sp->lifetime == 0 && sp->validtime == 0) 4209 continue; 4210 if ((sp->lifetime && 4211 now - sp->created > sp->lifetime) || 4212 (sp->validtime && 4213 now - sp->lastused > sp->validtime)) { 4214 SPTREE_RUNLOCK(); 4215 key_unlink(sp); 4216 key_spdexpire(sp); 4217 KEY_FREESP(&sp); 4218 goto restart; 4219 } 4220 } 4221 SPTREE_RUNLOCK(); 4222 } 4223 } 4224 4225 static void 4226 key_flush_sad(time_t now) 4227 { 4228 struct secashead *sah, *nextsah; 4229 struct secasvar *sav, *nextsav; 4230 4231 /* SAD */ 4232 SAHTREE_LOCK(); 4233 LIST_FOREACH_SAFE(sah, &V_sahtree, chain, nextsah) { 4234 /* if sah has been dead, then delete it and process next sah. */ 4235 if (sah->state == SADB_SASTATE_DEAD) { 4236 key_delsah(sah); 4237 continue; 4238 } 4239 4240 /* if LARVAL entry doesn't become MATURE, delete it. */ 4241 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) { 4242 /* Need to also check refcnt for a larval SA ??? */ 4243 if (now - sav->created > V_key_larval_lifetime) 4244 KEY_FREESAV(&sav); 4245 } 4246 4247 /* 4248 * check MATURE entry to start to send expire message 4249 * whether or not. 4250 */ 4251 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) { 4252 /* we don't need to check. */ 4253 if (sav->lft_s == NULL) 4254 continue; 4255 4256 /* sanity check */ 4257 if (sav->lft_c == NULL) { 4258 ipseclog((LOG_DEBUG,"%s: there is no CURRENT " 4259 "time, why?\n", __func__)); 4260 continue; 4261 } 4262 4263 /* check SOFT lifetime */ 4264 if (sav->lft_s->addtime != 0 && 4265 now - sav->created > sav->lft_s->addtime) { 4266 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4267 /* 4268 * Actually, only send expire message if 4269 * SA has been used, as it was done before, 4270 * but should we always send such message, 4271 * and let IKE daemon decide if it should be 4272 * renegotiated or not ? 4273 * XXX expire message will actually NOT be 4274 * sent if SA is only used after soft 4275 * lifetime has been reached, see below 4276 * (DYING state) 4277 */ 4278 if (sav->lft_c->usetime != 0) 4279 key_expire(sav); 4280 } 4281 /* check SOFT lifetime by bytes */ 4282 /* 4283 * XXX I don't know the way to delete this SA 4284 * when new SA is installed. Caution when it's 4285 * installed too big lifetime by time. 4286 */ 4287 else if (sav->lft_s->bytes != 0 && 4288 sav->lft_s->bytes < sav->lft_c->bytes) { 4289 4290 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4291 /* 4292 * XXX If we keep to send expire 4293 * message in the status of 4294 * DYING. Do remove below code. 4295 */ 4296 key_expire(sav); 4297 } 4298 } 4299 4300 /* check DYING entry to change status to DEAD. */ 4301 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) { 4302 /* we don't need to check. */ 4303 if (sav->lft_h == NULL) 4304 continue; 4305 4306 /* sanity check */ 4307 if (sav->lft_c == NULL) { 4308 ipseclog((LOG_DEBUG, "%s: there is no CURRENT " 4309 "time, why?\n", __func__)); 4310 continue; 4311 } 4312 4313 if (sav->lft_h->addtime != 0 && 4314 now - sav->created > sav->lft_h->addtime) { 4315 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4316 KEY_FREESAV(&sav); 4317 } 4318 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */ 4319 else if (sav->lft_s != NULL 4320 && sav->lft_s->addtime != 0 4321 && now - sav->created > sav->lft_s->addtime) { 4322 /* 4323 * XXX: should be checked to be 4324 * installed the valid SA. 4325 */ 4326 4327 /* 4328 * If there is no SA then sending 4329 * expire message. 4330 */ 4331 key_expire(sav); 4332 } 4333 #endif 4334 /* check HARD lifetime by bytes */ 4335 else if (sav->lft_h->bytes != 0 && 4336 sav->lft_h->bytes < sav->lft_c->bytes) { 4337 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4338 KEY_FREESAV(&sav); 4339 } 4340 } 4341 4342 /* delete entry in DEAD */ 4343 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) { 4344 /* sanity check */ 4345 if (sav->state != SADB_SASTATE_DEAD) { 4346 ipseclog((LOG_DEBUG, "%s: invalid sav->state " 4347 "(queue: %d SA: %d): kill it anyway\n", 4348 __func__, 4349 SADB_SASTATE_DEAD, sav->state)); 4350 } 4351 /* 4352 * do not call key_freesav() here. 4353 * sav should already be freed, and sav->refcnt 4354 * shows other references to sav 4355 * (such as from SPD). 4356 */ 4357 } 4358 } 4359 SAHTREE_UNLOCK(); 4360 } 4361 4362 static void 4363 key_flush_acq(time_t now) 4364 { 4365 struct secacq *acq, *nextacq; 4366 4367 /* ACQ tree */ 4368 ACQ_LOCK(); 4369 for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) { 4370 nextacq = LIST_NEXT(acq, chain); 4371 if (now - acq->created > V_key_blockacq_lifetime 4372 && __LIST_CHAINED(acq)) { 4373 LIST_REMOVE(acq, chain); 4374 free(acq, M_IPSEC_SAQ); 4375 } 4376 } 4377 ACQ_UNLOCK(); 4378 } 4379 4380 static void 4381 key_flush_spacq(time_t now) 4382 { 4383 struct secspacq *acq, *nextacq; 4384 4385 /* SP ACQ tree */ 4386 SPACQ_LOCK(); 4387 for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) { 4388 nextacq = LIST_NEXT(acq, chain); 4389 if (now - acq->created > V_key_blockacq_lifetime 4390 && __LIST_CHAINED(acq)) { 4391 LIST_REMOVE(acq, chain); 4392 free(acq, M_IPSEC_SAQ); 4393 } 4394 } 4395 SPACQ_UNLOCK(); 4396 } 4397 4398 /* 4399 * time handler. 4400 * scanning SPD and SAD to check status for each entries, 4401 * and do to remove or to expire. 4402 * XXX: year 2038 problem may remain. 4403 */ 4404 static void 4405 key_timehandler(void *arg) 4406 { 4407 VNET_ITERATOR_DECL(vnet_iter); 4408 time_t now = time_second; 4409 4410 VNET_LIST_RLOCK_NOSLEEP(); 4411 VNET_FOREACH(vnet_iter) { 4412 CURVNET_SET(vnet_iter); 4413 key_flush_spd(now); 4414 key_flush_sad(now); 4415 key_flush_acq(now); 4416 key_flush_spacq(now); 4417 CURVNET_RESTORE(); 4418 } 4419 VNET_LIST_RUNLOCK_NOSLEEP(); 4420 4421 #ifndef IPSEC_DEBUG2 4422 /* do exchange to tick time !! */ 4423 callout_schedule(&key_timer, hz); 4424 #endif /* IPSEC_DEBUG2 */ 4425 } 4426 4427 u_long 4428 key_random() 4429 { 4430 u_long value; 4431 4432 key_randomfill(&value, sizeof(value)); 4433 return value; 4434 } 4435 4436 void 4437 key_randomfill(void *p, size_t l) 4438 { 4439 size_t n; 4440 u_long v; 4441 static int warn = 1; 4442 4443 n = 0; 4444 n = (size_t)read_random(p, (u_int)l); 4445 /* last resort */ 4446 while (n < l) { 4447 v = random(); 4448 bcopy(&v, (u_int8_t *)p + n, 4449 l - n < sizeof(v) ? l - n : sizeof(v)); 4450 n += sizeof(v); 4451 4452 if (warn) { 4453 printf("WARNING: pseudo-random number generator " 4454 "used for IPsec processing\n"); 4455 warn = 0; 4456 } 4457 } 4458 } 4459 4460 /* 4461 * map SADB_SATYPE_* to IPPROTO_*. 4462 * if satype == SADB_SATYPE then satype is mapped to ~0. 4463 * OUT: 4464 * 0: invalid satype. 4465 */ 4466 static u_int16_t 4467 key_satype2proto(u_int8_t satype) 4468 { 4469 switch (satype) { 4470 case SADB_SATYPE_UNSPEC: 4471 return IPSEC_PROTO_ANY; 4472 case SADB_SATYPE_AH: 4473 return IPPROTO_AH; 4474 case SADB_SATYPE_ESP: 4475 return IPPROTO_ESP; 4476 case SADB_X_SATYPE_IPCOMP: 4477 return IPPROTO_IPCOMP; 4478 case SADB_X_SATYPE_TCPSIGNATURE: 4479 return IPPROTO_TCP; 4480 default: 4481 return 0; 4482 } 4483 /* NOTREACHED */ 4484 } 4485 4486 /* 4487 * map IPPROTO_* to SADB_SATYPE_* 4488 * OUT: 4489 * 0: invalid protocol type. 4490 */ 4491 static u_int8_t 4492 key_proto2satype(u_int16_t proto) 4493 { 4494 switch (proto) { 4495 case IPPROTO_AH: 4496 return SADB_SATYPE_AH; 4497 case IPPROTO_ESP: 4498 return SADB_SATYPE_ESP; 4499 case IPPROTO_IPCOMP: 4500 return SADB_X_SATYPE_IPCOMP; 4501 case IPPROTO_TCP: 4502 return SADB_X_SATYPE_TCPSIGNATURE; 4503 default: 4504 return 0; 4505 } 4506 /* NOTREACHED */ 4507 } 4508 4509 /* %%% PF_KEY */ 4510 /* 4511 * SADB_GETSPI processing is to receive 4512 * <base, (SA2), src address, dst address, (SPI range)> 4513 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND 4514 * tree with the status of LARVAL, and send 4515 * <base, SA(*), address(SD)> 4516 * to the IKMPd. 4517 * 4518 * IN: mhp: pointer to the pointer to each header. 4519 * OUT: NULL if fail. 4520 * other if success, return pointer to the message to send. 4521 */ 4522 static int 4523 key_getspi(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 4524 { 4525 struct sadb_address *src0, *dst0; 4526 struct secasindex saidx; 4527 struct secashead *newsah; 4528 struct secasvar *newsav; 4529 u_int8_t proto; 4530 u_int32_t spi; 4531 u_int8_t mode; 4532 u_int32_t reqid; 4533 int error; 4534 4535 IPSEC_ASSERT(so != NULL, ("null socket")); 4536 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4537 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4538 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4539 4540 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4541 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 4542 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4543 __func__)); 4544 return key_senderror(so, m, EINVAL); 4545 } 4546 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4547 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4548 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4549 __func__)); 4550 return key_senderror(so, m, EINVAL); 4551 } 4552 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4553 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4554 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4555 } else { 4556 mode = IPSEC_MODE_ANY; 4557 reqid = 0; 4558 } 4559 4560 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4561 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4562 4563 /* map satype to proto */ 4564 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4565 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4566 __func__)); 4567 return key_senderror(so, m, EINVAL); 4568 } 4569 4570 /* 4571 * Make sure the port numbers are zero. 4572 * In case of NAT-T we will update them later if needed. 4573 */ 4574 switch (((struct sockaddr *)(src0 + 1))->sa_family) { 4575 case AF_INET: 4576 if (((struct sockaddr *)(src0 + 1))->sa_len != 4577 sizeof(struct sockaddr_in)) 4578 return key_senderror(so, m, EINVAL); 4579 ((struct sockaddr_in *)(src0 + 1))->sin_port = 0; 4580 break; 4581 case AF_INET6: 4582 if (((struct sockaddr *)(src0 + 1))->sa_len != 4583 sizeof(struct sockaddr_in6)) 4584 return key_senderror(so, m, EINVAL); 4585 ((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0; 4586 break; 4587 default: 4588 ; /*???*/ 4589 } 4590 switch (((struct sockaddr *)(dst0 + 1))->sa_family) { 4591 case AF_INET: 4592 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4593 sizeof(struct sockaddr_in)) 4594 return key_senderror(so, m, EINVAL); 4595 ((struct sockaddr_in *)(dst0 + 1))->sin_port = 0; 4596 break; 4597 case AF_INET6: 4598 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4599 sizeof(struct sockaddr_in6)) 4600 return key_senderror(so, m, EINVAL); 4601 ((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0; 4602 break; 4603 default: 4604 ; /*???*/ 4605 } 4606 4607 /* XXX boundary check against sa_len */ 4608 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4609 4610 #ifdef IPSEC_NAT_T 4611 /* 4612 * Handle NAT-T info if present. 4613 * We made sure the port numbers are zero above, so we do 4614 * not have to worry in case we do not update them. 4615 */ 4616 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) 4617 ipseclog((LOG_DEBUG, "%s: NAT-T OAi present\n", __func__)); 4618 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) 4619 ipseclog((LOG_DEBUG, "%s: NAT-T OAr present\n", __func__)); 4620 4621 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 4622 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 4623 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 4624 struct sadb_x_nat_t_type *type; 4625 struct sadb_x_nat_t_port *sport, *dport; 4626 4627 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 4628 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 4629 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 4630 ipseclog((LOG_DEBUG, "%s: invalid nat-t message " 4631 "passed.\n", __func__)); 4632 return key_senderror(so, m, EINVAL); 4633 } 4634 4635 sport = (struct sadb_x_nat_t_port *) 4636 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 4637 dport = (struct sadb_x_nat_t_port *) 4638 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 4639 4640 if (sport) 4641 KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port); 4642 if (dport) 4643 KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port); 4644 } 4645 #endif 4646 4647 /* SPI allocation */ 4648 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE], 4649 &saidx); 4650 if (spi == 0) 4651 return key_senderror(so, m, EINVAL); 4652 4653 /* get a SA index */ 4654 if ((newsah = key_getsah(&saidx)) == NULL) { 4655 /* create a new SA index */ 4656 if ((newsah = key_newsah(&saidx)) == NULL) { 4657 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 4658 return key_senderror(so, m, ENOBUFS); 4659 } 4660 } 4661 4662 /* get a new SA */ 4663 /* XXX rewrite */ 4664 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 4665 if (newsav == NULL) { 4666 /* XXX don't free new SA index allocated in above. */ 4667 return key_senderror(so, m, error); 4668 } 4669 4670 /* set spi */ 4671 newsav->spi = htonl(spi); 4672 4673 /* delete the entry in acqtree */ 4674 if (mhp->msg->sadb_msg_seq != 0) { 4675 struct secacq *acq; 4676 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) { 4677 /* reset counter in order to deletion by timehandler. */ 4678 acq->created = time_second; 4679 acq->count = 0; 4680 } 4681 } 4682 4683 { 4684 struct mbuf *n, *nn; 4685 struct sadb_sa *m_sa; 4686 struct sadb_msg *newmsg; 4687 int off, len; 4688 4689 /* create new sadb_msg to reply. */ 4690 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 4691 PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4692 4693 MGETHDR(n, M_NOWAIT, MT_DATA); 4694 if (len > MHLEN) { 4695 if (!(MCLGET(n, M_NOWAIT))) { 4696 m_freem(n); 4697 n = NULL; 4698 } 4699 } 4700 if (!n) 4701 return key_senderror(so, m, ENOBUFS); 4702 4703 n->m_len = len; 4704 n->m_next = NULL; 4705 off = 0; 4706 4707 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 4708 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 4709 4710 m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off); 4711 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); 4712 m_sa->sadb_sa_exttype = SADB_EXT_SA; 4713 m_sa->sadb_sa_spi = htonl(spi); 4714 off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4715 4716 IPSEC_ASSERT(off == len, 4717 ("length inconsistency (off %u len %u)", off, len)); 4718 4719 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, 4720 SADB_EXT_ADDRESS_DST); 4721 if (!n->m_next) { 4722 m_freem(n); 4723 return key_senderror(so, m, ENOBUFS); 4724 } 4725 4726 if (n->m_len < sizeof(struct sadb_msg)) { 4727 n = m_pullup(n, sizeof(struct sadb_msg)); 4728 if (n == NULL) 4729 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 4730 } 4731 4732 n->m_pkthdr.len = 0; 4733 for (nn = n; nn; nn = nn->m_next) 4734 n->m_pkthdr.len += nn->m_len; 4735 4736 newmsg = mtod(n, struct sadb_msg *); 4737 newmsg->sadb_msg_seq = newsav->seq; 4738 newmsg->sadb_msg_errno = 0; 4739 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 4740 4741 m_freem(m); 4742 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 4743 } 4744 } 4745 4746 /* 4747 * allocating new SPI 4748 * called by key_getspi(). 4749 * OUT: 4750 * 0: failure. 4751 * others: success. 4752 */ 4753 static u_int32_t 4754 key_do_getnewspi(struct sadb_spirange *spirange, struct secasindex *saidx) 4755 { 4756 u_int32_t newspi; 4757 u_int32_t min, max; 4758 int count = V_key_spi_trycnt; 4759 4760 /* set spi range to allocate */ 4761 if (spirange != NULL) { 4762 min = spirange->sadb_spirange_min; 4763 max = spirange->sadb_spirange_max; 4764 } else { 4765 min = V_key_spi_minval; 4766 max = V_key_spi_maxval; 4767 } 4768 /* IPCOMP needs 2-byte SPI */ 4769 if (saidx->proto == IPPROTO_IPCOMP) { 4770 u_int32_t t; 4771 if (min >= 0x10000) 4772 min = 0xffff; 4773 if (max >= 0x10000) 4774 max = 0xffff; 4775 if (min > max) { 4776 t = min; min = max; max = t; 4777 } 4778 } 4779 4780 if (min == max) { 4781 if (key_checkspidup(saidx, min) != NULL) { 4782 ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n", 4783 __func__, min)); 4784 return 0; 4785 } 4786 4787 count--; /* taking one cost. */ 4788 newspi = min; 4789 4790 } else { 4791 4792 /* init SPI */ 4793 newspi = 0; 4794 4795 /* when requesting to allocate spi ranged */ 4796 while (count--) { 4797 /* generate pseudo-random SPI value ranged. */ 4798 newspi = min + (key_random() % (max - min + 1)); 4799 4800 if (key_checkspidup(saidx, newspi) == NULL) 4801 break; 4802 } 4803 4804 if (count == 0 || newspi == 0) { 4805 ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n", 4806 __func__)); 4807 return 0; 4808 } 4809 } 4810 4811 /* statistics */ 4812 keystat.getspi_count = 4813 (keystat.getspi_count + V_key_spi_trycnt - count) / 2; 4814 4815 return newspi; 4816 } 4817 4818 /* 4819 * SADB_UPDATE processing 4820 * receive 4821 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4822 * key(AE), (identity(SD),) (sensitivity)> 4823 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. 4824 * and send 4825 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4826 * (identity(SD),) (sensitivity)> 4827 * to the ikmpd. 4828 * 4829 * m will always be freed. 4830 */ 4831 static int 4832 key_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 4833 { 4834 struct sadb_sa *sa0; 4835 struct sadb_address *src0, *dst0; 4836 #ifdef IPSEC_NAT_T 4837 struct sadb_x_nat_t_type *type; 4838 struct sadb_x_nat_t_port *sport, *dport; 4839 struct sadb_address *iaddr, *raddr; 4840 struct sadb_x_nat_t_frag *frag; 4841 #endif 4842 struct secasindex saidx; 4843 struct secashead *sah; 4844 struct secasvar *sav; 4845 u_int16_t proto; 4846 u_int8_t mode; 4847 u_int32_t reqid; 4848 int error; 4849 4850 IPSEC_ASSERT(so != NULL, ("null socket")); 4851 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4852 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4853 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4854 4855 /* map satype to proto */ 4856 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4857 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4858 __func__)); 4859 return key_senderror(so, m, EINVAL); 4860 } 4861 4862 if (mhp->ext[SADB_EXT_SA] == NULL || 4863 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4864 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 4865 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 4866 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 4867 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 4868 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 4869 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 4870 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 4871 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 4872 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 4873 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4874 __func__)); 4875 return key_senderror(so, m, EINVAL); 4876 } 4877 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 4878 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4879 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4880 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4881 __func__)); 4882 return key_senderror(so, m, EINVAL); 4883 } 4884 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4885 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4886 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4887 } else { 4888 mode = IPSEC_MODE_ANY; 4889 reqid = 0; 4890 } 4891 /* XXX boundary checking for other extensions */ 4892 4893 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 4894 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4895 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4896 4897 /* XXX boundary check against sa_len */ 4898 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4899 4900 /* 4901 * Make sure the port numbers are zero. 4902 * In case of NAT-T we will update them later if needed. 4903 */ 4904 KEY_PORTTOSADDR(&saidx.src, 0); 4905 KEY_PORTTOSADDR(&saidx.dst, 0); 4906 4907 #ifdef IPSEC_NAT_T 4908 /* 4909 * Handle NAT-T info if present. 4910 */ 4911 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 4912 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 4913 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 4914 4915 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 4916 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 4917 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 4918 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 4919 __func__)); 4920 return key_senderror(so, m, EINVAL); 4921 } 4922 4923 type = (struct sadb_x_nat_t_type *) 4924 mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 4925 sport = (struct sadb_x_nat_t_port *) 4926 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 4927 dport = (struct sadb_x_nat_t_port *) 4928 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 4929 } else { 4930 type = 0; 4931 sport = dport = 0; 4932 } 4933 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL && 4934 mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { 4935 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) || 4936 mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { 4937 ipseclog((LOG_DEBUG, "%s: invalid message\n", 4938 __func__)); 4939 return key_senderror(so, m, EINVAL); 4940 } 4941 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; 4942 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; 4943 ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__)); 4944 } else { 4945 iaddr = raddr = NULL; 4946 } 4947 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { 4948 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { 4949 ipseclog((LOG_DEBUG, "%s: invalid message\n", 4950 __func__)); 4951 return key_senderror(so, m, EINVAL); 4952 } 4953 frag = (struct sadb_x_nat_t_frag *) 4954 mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 4955 } else { 4956 frag = 0; 4957 } 4958 #endif 4959 4960 /* get a SA header */ 4961 if ((sah = key_getsah(&saidx)) == NULL) { 4962 ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__)); 4963 return key_senderror(so, m, ENOENT); 4964 } 4965 4966 /* set spidx if there */ 4967 /* XXX rewrite */ 4968 error = key_setident(sah, m, mhp); 4969 if (error) 4970 return key_senderror(so, m, error); 4971 4972 /* find a SA with sequence number. */ 4973 #ifdef IPSEC_DOSEQCHECK 4974 if (mhp->msg->sadb_msg_seq != 0 4975 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) { 4976 ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u " 4977 "exists.\n", __func__, mhp->msg->sadb_msg_seq)); 4978 return key_senderror(so, m, ENOENT); 4979 } 4980 #else 4981 SAHTREE_LOCK(); 4982 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 4983 SAHTREE_UNLOCK(); 4984 if (sav == NULL) { 4985 ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n", 4986 __func__, (u_int32_t)ntohl(sa0->sadb_sa_spi))); 4987 return key_senderror(so, m, EINVAL); 4988 } 4989 #endif 4990 4991 /* validity check */ 4992 if (sav->sah->saidx.proto != proto) { 4993 ipseclog((LOG_DEBUG, "%s: protocol mismatched " 4994 "(DB=%u param=%u)\n", __func__, 4995 sav->sah->saidx.proto, proto)); 4996 return key_senderror(so, m, EINVAL); 4997 } 4998 #ifdef IPSEC_DOSEQCHECK 4999 if (sav->spi != sa0->sadb_sa_spi) { 5000 ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n", 5001 __func__, 5002 (u_int32_t)ntohl(sav->spi), 5003 (u_int32_t)ntohl(sa0->sadb_sa_spi))); 5004 return key_senderror(so, m, EINVAL); 5005 } 5006 #endif 5007 if (sav->pid != mhp->msg->sadb_msg_pid) { 5008 ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n", 5009 __func__, sav->pid, mhp->msg->sadb_msg_pid)); 5010 return key_senderror(so, m, EINVAL); 5011 } 5012 5013 /* copy sav values */ 5014 error = key_setsaval(sav, m, mhp); 5015 if (error) { 5016 KEY_FREESAV(&sav); 5017 return key_senderror(so, m, error); 5018 } 5019 5020 #ifdef IPSEC_NAT_T 5021 /* 5022 * Handle more NAT-T info if present, 5023 * now that we have a sav to fill. 5024 */ 5025 if (type) 5026 sav->natt_type = type->sadb_x_nat_t_type_type; 5027 5028 if (sport) 5029 KEY_PORTTOSADDR(&sav->sah->saidx.src, 5030 sport->sadb_x_nat_t_port_port); 5031 if (dport) 5032 KEY_PORTTOSADDR(&sav->sah->saidx.dst, 5033 dport->sadb_x_nat_t_port_port); 5034 5035 #if 0 5036 /* 5037 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0. 5038 * We should actually check for a minimum MTU here, if we 5039 * want to support it in ip_output. 5040 */ 5041 if (frag) 5042 sav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen; 5043 #endif 5044 #endif 5045 5046 /* check SA values to be mature. */ 5047 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) { 5048 KEY_FREESAV(&sav); 5049 return key_senderror(so, m, 0); 5050 } 5051 5052 { 5053 struct mbuf *n; 5054 5055 /* set msg buf from mhp */ 5056 n = key_getmsgbuf_x1(m, mhp); 5057 if (n == NULL) { 5058 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5059 return key_senderror(so, m, ENOBUFS); 5060 } 5061 5062 m_freem(m); 5063 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5064 } 5065 } 5066 5067 /* 5068 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL. 5069 * only called by key_update(). 5070 * OUT: 5071 * NULL : not found 5072 * others : found, pointer to a SA. 5073 */ 5074 #ifdef IPSEC_DOSEQCHECK 5075 static struct secasvar * 5076 key_getsavbyseq(struct secashead *sah, u_int32_t seq) 5077 { 5078 struct secasvar *sav; 5079 u_int state; 5080 5081 state = SADB_SASTATE_LARVAL; 5082 5083 /* search SAD with sequence number ? */ 5084 LIST_FOREACH(sav, &sah->savtree[state], chain) { 5085 5086 KEY_CHKSASTATE(state, sav->state, __func__); 5087 5088 if (sav->seq == seq) { 5089 sa_addref(sav); 5090 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 5091 printf("DP %s cause refcnt++:%d SA:%p\n", 5092 __func__, sav->refcnt, sav)); 5093 return sav; 5094 } 5095 } 5096 5097 return NULL; 5098 } 5099 #endif 5100 5101 /* 5102 * SADB_ADD processing 5103 * add an entry to SA database, when received 5104 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5105 * key(AE), (identity(SD),) (sensitivity)> 5106 * from the ikmpd, 5107 * and send 5108 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5109 * (identity(SD),) (sensitivity)> 5110 * to the ikmpd. 5111 * 5112 * IGNORE identity and sensitivity messages. 5113 * 5114 * m will always be freed. 5115 */ 5116 static int 5117 key_add(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5118 { 5119 struct sadb_sa *sa0; 5120 struct sadb_address *src0, *dst0; 5121 #ifdef IPSEC_NAT_T 5122 struct sadb_x_nat_t_type *type; 5123 struct sadb_address *iaddr, *raddr; 5124 struct sadb_x_nat_t_frag *frag; 5125 #endif 5126 struct secasindex saidx; 5127 struct secashead *newsah; 5128 struct secasvar *newsav; 5129 u_int16_t proto; 5130 u_int8_t mode; 5131 u_int32_t reqid; 5132 int error; 5133 5134 IPSEC_ASSERT(so != NULL, ("null socket")); 5135 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5136 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5137 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5138 5139 /* map satype to proto */ 5140 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5141 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5142 __func__)); 5143 return key_senderror(so, m, EINVAL); 5144 } 5145 5146 if (mhp->ext[SADB_EXT_SA] == NULL || 5147 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5148 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5149 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5150 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5151 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5152 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5153 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5154 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5155 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5156 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5157 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5158 __func__)); 5159 return key_senderror(so, m, EINVAL); 5160 } 5161 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5162 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5163 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5164 /* XXX need more */ 5165 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5166 __func__)); 5167 return key_senderror(so, m, EINVAL); 5168 } 5169 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5170 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 5171 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 5172 } else { 5173 mode = IPSEC_MODE_ANY; 5174 reqid = 0; 5175 } 5176 5177 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5178 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5179 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5180 5181 /* XXX boundary check against sa_len */ 5182 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 5183 5184 /* 5185 * Make sure the port numbers are zero. 5186 * In case of NAT-T we will update them later if needed. 5187 */ 5188 KEY_PORTTOSADDR(&saidx.src, 0); 5189 KEY_PORTTOSADDR(&saidx.dst, 0); 5190 5191 #ifdef IPSEC_NAT_T 5192 /* 5193 * Handle NAT-T info if present. 5194 */ 5195 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 5196 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5197 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5198 struct sadb_x_nat_t_port *sport, *dport; 5199 5200 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 5201 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5202 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5203 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5204 __func__)); 5205 return key_senderror(so, m, EINVAL); 5206 } 5207 5208 type = (struct sadb_x_nat_t_type *) 5209 mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5210 sport = (struct sadb_x_nat_t_port *) 5211 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5212 dport = (struct sadb_x_nat_t_port *) 5213 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5214 5215 if (sport) 5216 KEY_PORTTOSADDR(&saidx.src, 5217 sport->sadb_x_nat_t_port_port); 5218 if (dport) 5219 KEY_PORTTOSADDR(&saidx.dst, 5220 dport->sadb_x_nat_t_port_port); 5221 } else { 5222 type = 0; 5223 } 5224 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL && 5225 mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { 5226 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) || 5227 mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { 5228 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5229 __func__)); 5230 return key_senderror(so, m, EINVAL); 5231 } 5232 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5233 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5234 ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__)); 5235 } else { 5236 iaddr = raddr = NULL; 5237 } 5238 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { 5239 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { 5240 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5241 __func__)); 5242 return key_senderror(so, m, EINVAL); 5243 } 5244 frag = (struct sadb_x_nat_t_frag *) 5245 mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 5246 } else { 5247 frag = 0; 5248 } 5249 #endif 5250 5251 /* get a SA header */ 5252 if ((newsah = key_getsah(&saidx)) == NULL) { 5253 /* create a new SA header */ 5254 if ((newsah = key_newsah(&saidx)) == NULL) { 5255 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 5256 return key_senderror(so, m, ENOBUFS); 5257 } 5258 } 5259 5260 /* set spidx if there */ 5261 /* XXX rewrite */ 5262 error = key_setident(newsah, m, mhp); 5263 if (error) { 5264 return key_senderror(so, m, error); 5265 } 5266 5267 /* create new SA entry. */ 5268 /* We can create new SA only if SPI is differenct. */ 5269 SAHTREE_LOCK(); 5270 newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi); 5271 SAHTREE_UNLOCK(); 5272 if (newsav != NULL) { 5273 ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__)); 5274 return key_senderror(so, m, EEXIST); 5275 } 5276 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 5277 if (newsav == NULL) { 5278 return key_senderror(so, m, error); 5279 } 5280 5281 #ifdef IPSEC_NAT_T 5282 /* 5283 * Handle more NAT-T info if present, 5284 * now that we have a sav to fill. 5285 */ 5286 if (type) 5287 newsav->natt_type = type->sadb_x_nat_t_type_type; 5288 5289 #if 0 5290 /* 5291 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0. 5292 * We should actually check for a minimum MTU here, if we 5293 * want to support it in ip_output. 5294 */ 5295 if (frag) 5296 newsav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen; 5297 #endif 5298 #endif 5299 5300 /* check SA values to be mature. */ 5301 if ((error = key_mature(newsav)) != 0) { 5302 KEY_FREESAV(&newsav); 5303 return key_senderror(so, m, error); 5304 } 5305 5306 /* 5307 * don't call key_freesav() here, as we would like to keep the SA 5308 * in the database on success. 5309 */ 5310 5311 { 5312 struct mbuf *n; 5313 5314 /* set msg buf from mhp */ 5315 n = key_getmsgbuf_x1(m, mhp); 5316 if (n == NULL) { 5317 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5318 return key_senderror(so, m, ENOBUFS); 5319 } 5320 5321 m_freem(m); 5322 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5323 } 5324 } 5325 5326 /* m is retained */ 5327 static int 5328 key_setident(struct secashead *sah, struct mbuf *m, 5329 const struct sadb_msghdr *mhp) 5330 { 5331 const struct sadb_ident *idsrc, *iddst; 5332 int idsrclen, iddstlen; 5333 5334 IPSEC_ASSERT(sah != NULL, ("null secashead")); 5335 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5336 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5337 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5338 5339 /* don't make buffer if not there */ 5340 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL && 5341 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5342 sah->idents = NULL; 5343 sah->identd = NULL; 5344 return 0; 5345 } 5346 5347 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL || 5348 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5349 ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__)); 5350 return EINVAL; 5351 } 5352 5353 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC]; 5354 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST]; 5355 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC]; 5356 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST]; 5357 5358 /* validity check */ 5359 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { 5360 ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__)); 5361 return EINVAL; 5362 } 5363 5364 switch (idsrc->sadb_ident_type) { 5365 case SADB_IDENTTYPE_PREFIX: 5366 case SADB_IDENTTYPE_FQDN: 5367 case SADB_IDENTTYPE_USERFQDN: 5368 default: 5369 /* XXX do nothing */ 5370 sah->idents = NULL; 5371 sah->identd = NULL; 5372 return 0; 5373 } 5374 5375 /* make structure */ 5376 sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5377 if (sah->idents == NULL) { 5378 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5379 return ENOBUFS; 5380 } 5381 sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5382 if (sah->identd == NULL) { 5383 free(sah->idents, M_IPSEC_MISC); 5384 sah->idents = NULL; 5385 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5386 return ENOBUFS; 5387 } 5388 sah->idents->type = idsrc->sadb_ident_type; 5389 sah->idents->id = idsrc->sadb_ident_id; 5390 5391 sah->identd->type = iddst->sadb_ident_type; 5392 sah->identd->id = iddst->sadb_ident_id; 5393 5394 return 0; 5395 } 5396 5397 /* 5398 * m will not be freed on return. 5399 * it is caller's responsibility to free the result. 5400 */ 5401 static struct mbuf * 5402 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp) 5403 { 5404 struct mbuf *n; 5405 5406 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5407 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5408 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5409 5410 /* create new sadb_msg to reply. */ 5411 n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED, 5412 SADB_EXT_SA, SADB_X_EXT_SA2, 5413 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, 5414 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 5415 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST); 5416 if (!n) 5417 return NULL; 5418 5419 if (n->m_len < sizeof(struct sadb_msg)) { 5420 n = m_pullup(n, sizeof(struct sadb_msg)); 5421 if (n == NULL) 5422 return NULL; 5423 } 5424 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; 5425 mtod(n, struct sadb_msg *)->sadb_msg_len = 5426 PFKEY_UNIT64(n->m_pkthdr.len); 5427 5428 return n; 5429 } 5430 5431 /* 5432 * SADB_DELETE processing 5433 * receive 5434 * <base, SA(*), address(SD)> 5435 * from the ikmpd, and set SADB_SASTATE_DEAD, 5436 * and send, 5437 * <base, SA(*), address(SD)> 5438 * to the ikmpd. 5439 * 5440 * m will always be freed. 5441 */ 5442 static int 5443 key_delete(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5444 { 5445 struct sadb_sa *sa0; 5446 struct sadb_address *src0, *dst0; 5447 struct secasindex saidx; 5448 struct secashead *sah; 5449 struct secasvar *sav = NULL; 5450 u_int16_t proto; 5451 5452 IPSEC_ASSERT(so != NULL, ("null socket")); 5453 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5454 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5455 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5456 5457 /* map satype to proto */ 5458 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5459 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5460 __func__)); 5461 return key_senderror(so, m, EINVAL); 5462 } 5463 5464 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5465 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5466 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5467 __func__)); 5468 return key_senderror(so, m, EINVAL); 5469 } 5470 5471 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5472 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5473 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5474 __func__)); 5475 return key_senderror(so, m, EINVAL); 5476 } 5477 5478 if (mhp->ext[SADB_EXT_SA] == NULL) { 5479 /* 5480 * Caller wants us to delete all non-LARVAL SAs 5481 * that match the src/dst. This is used during 5482 * IKE INITIAL-CONTACT. 5483 */ 5484 ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__)); 5485 return key_delete_all(so, m, mhp, proto); 5486 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { 5487 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5488 __func__)); 5489 return key_senderror(so, m, EINVAL); 5490 } 5491 5492 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5493 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5494 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5495 5496 /* XXX boundary check against sa_len */ 5497 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5498 5499 /* 5500 * Make sure the port numbers are zero. 5501 * In case of NAT-T we will update them later if needed. 5502 */ 5503 KEY_PORTTOSADDR(&saidx.src, 0); 5504 KEY_PORTTOSADDR(&saidx.dst, 0); 5505 5506 #ifdef IPSEC_NAT_T 5507 /* 5508 * Handle NAT-T info if present. 5509 */ 5510 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5511 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5512 struct sadb_x_nat_t_port *sport, *dport; 5513 5514 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5515 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5516 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5517 __func__)); 5518 return key_senderror(so, m, EINVAL); 5519 } 5520 5521 sport = (struct sadb_x_nat_t_port *) 5522 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5523 dport = (struct sadb_x_nat_t_port *) 5524 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5525 5526 if (sport) 5527 KEY_PORTTOSADDR(&saidx.src, 5528 sport->sadb_x_nat_t_port_port); 5529 if (dport) 5530 KEY_PORTTOSADDR(&saidx.dst, 5531 dport->sadb_x_nat_t_port_port); 5532 } 5533 #endif 5534 5535 /* get a SA header */ 5536 SAHTREE_LOCK(); 5537 LIST_FOREACH(sah, &V_sahtree, chain) { 5538 if (sah->state == SADB_SASTATE_DEAD) 5539 continue; 5540 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5541 continue; 5542 5543 /* get a SA with SPI. */ 5544 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5545 if (sav) 5546 break; 5547 } 5548 if (sah == NULL) { 5549 SAHTREE_UNLOCK(); 5550 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5551 return key_senderror(so, m, ENOENT); 5552 } 5553 5554 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5555 KEY_FREESAV(&sav); 5556 SAHTREE_UNLOCK(); 5557 5558 { 5559 struct mbuf *n; 5560 struct sadb_msg *newmsg; 5561 5562 /* create new sadb_msg to reply. */ 5563 /* XXX-BZ NAT-T extensions? */ 5564 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 5565 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5566 if (!n) 5567 return key_senderror(so, m, ENOBUFS); 5568 5569 if (n->m_len < sizeof(struct sadb_msg)) { 5570 n = m_pullup(n, sizeof(struct sadb_msg)); 5571 if (n == NULL) 5572 return key_senderror(so, m, ENOBUFS); 5573 } 5574 newmsg = mtod(n, struct sadb_msg *); 5575 newmsg->sadb_msg_errno = 0; 5576 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5577 5578 m_freem(m); 5579 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5580 } 5581 } 5582 5583 /* 5584 * delete all SAs for src/dst. Called from key_delete(). 5585 */ 5586 static int 5587 key_delete_all(struct socket *so, struct mbuf *m, 5588 const struct sadb_msghdr *mhp, u_int16_t proto) 5589 { 5590 struct sadb_address *src0, *dst0; 5591 struct secasindex saidx; 5592 struct secashead *sah; 5593 struct secasvar *sav, *nextsav; 5594 u_int stateidx, state; 5595 5596 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5597 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5598 5599 /* XXX boundary check against sa_len */ 5600 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5601 5602 /* 5603 * Make sure the port numbers are zero. 5604 * In case of NAT-T we will update them later if needed. 5605 */ 5606 KEY_PORTTOSADDR(&saidx.src, 0); 5607 KEY_PORTTOSADDR(&saidx.dst, 0); 5608 5609 #ifdef IPSEC_NAT_T 5610 /* 5611 * Handle NAT-T info if present. 5612 */ 5613 5614 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5615 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5616 struct sadb_x_nat_t_port *sport, *dport; 5617 5618 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5619 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5620 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5621 __func__)); 5622 return key_senderror(so, m, EINVAL); 5623 } 5624 5625 sport = (struct sadb_x_nat_t_port *) 5626 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5627 dport = (struct sadb_x_nat_t_port *) 5628 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5629 5630 if (sport) 5631 KEY_PORTTOSADDR(&saidx.src, 5632 sport->sadb_x_nat_t_port_port); 5633 if (dport) 5634 KEY_PORTTOSADDR(&saidx.dst, 5635 dport->sadb_x_nat_t_port_port); 5636 } 5637 #endif 5638 5639 SAHTREE_LOCK(); 5640 LIST_FOREACH(sah, &V_sahtree, chain) { 5641 if (sah->state == SADB_SASTATE_DEAD) 5642 continue; 5643 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5644 continue; 5645 5646 /* Delete all non-LARVAL SAs. */ 5647 for (stateidx = 0; 5648 stateidx < _ARRAYLEN(saorder_state_alive); 5649 stateidx++) { 5650 state = saorder_state_alive[stateidx]; 5651 if (state == SADB_SASTATE_LARVAL) 5652 continue; 5653 for (sav = LIST_FIRST(&sah->savtree[state]); 5654 sav != NULL; sav = nextsav) { 5655 nextsav = LIST_NEXT(sav, chain); 5656 /* sanity check */ 5657 if (sav->state != state) { 5658 ipseclog((LOG_DEBUG, "%s: invalid " 5659 "sav->state (queue %d SA %d)\n", 5660 __func__, state, sav->state)); 5661 continue; 5662 } 5663 5664 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5665 KEY_FREESAV(&sav); 5666 } 5667 } 5668 } 5669 SAHTREE_UNLOCK(); 5670 { 5671 struct mbuf *n; 5672 struct sadb_msg *newmsg; 5673 5674 /* create new sadb_msg to reply. */ 5675 /* XXX-BZ NAT-T extensions? */ 5676 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, 5677 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5678 if (!n) 5679 return key_senderror(so, m, ENOBUFS); 5680 5681 if (n->m_len < sizeof(struct sadb_msg)) { 5682 n = m_pullup(n, sizeof(struct sadb_msg)); 5683 if (n == NULL) 5684 return key_senderror(so, m, ENOBUFS); 5685 } 5686 newmsg = mtod(n, struct sadb_msg *); 5687 newmsg->sadb_msg_errno = 0; 5688 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5689 5690 m_freem(m); 5691 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5692 } 5693 } 5694 5695 /* 5696 * SADB_GET processing 5697 * receive 5698 * <base, SA(*), address(SD)> 5699 * from the ikmpd, and get a SP and a SA to respond, 5700 * and send, 5701 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), 5702 * (identity(SD),) (sensitivity)> 5703 * to the ikmpd. 5704 * 5705 * m will always be freed. 5706 */ 5707 static int 5708 key_get(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5709 { 5710 struct sadb_sa *sa0; 5711 struct sadb_address *src0, *dst0; 5712 struct secasindex saidx; 5713 struct secashead *sah; 5714 struct secasvar *sav = NULL; 5715 u_int16_t proto; 5716 5717 IPSEC_ASSERT(so != NULL, ("null socket")); 5718 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5719 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5720 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5721 5722 /* map satype to proto */ 5723 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5724 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5725 __func__)); 5726 return key_senderror(so, m, EINVAL); 5727 } 5728 5729 if (mhp->ext[SADB_EXT_SA] == NULL || 5730 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5731 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5732 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5733 __func__)); 5734 return key_senderror(so, m, EINVAL); 5735 } 5736 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5737 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5738 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5739 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5740 __func__)); 5741 return key_senderror(so, m, EINVAL); 5742 } 5743 5744 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5745 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5746 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5747 5748 /* XXX boundary check against sa_len */ 5749 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5750 5751 /* 5752 * Make sure the port numbers are zero. 5753 * In case of NAT-T we will update them later if needed. 5754 */ 5755 KEY_PORTTOSADDR(&saidx.src, 0); 5756 KEY_PORTTOSADDR(&saidx.dst, 0); 5757 5758 #ifdef IPSEC_NAT_T 5759 /* 5760 * Handle NAT-T info if present. 5761 */ 5762 5763 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5764 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5765 struct sadb_x_nat_t_port *sport, *dport; 5766 5767 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5768 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5769 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5770 __func__)); 5771 return key_senderror(so, m, EINVAL); 5772 } 5773 5774 sport = (struct sadb_x_nat_t_port *) 5775 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5776 dport = (struct sadb_x_nat_t_port *) 5777 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5778 5779 if (sport) 5780 KEY_PORTTOSADDR(&saidx.src, 5781 sport->sadb_x_nat_t_port_port); 5782 if (dport) 5783 KEY_PORTTOSADDR(&saidx.dst, 5784 dport->sadb_x_nat_t_port_port); 5785 } 5786 #endif 5787 5788 /* get a SA header */ 5789 SAHTREE_LOCK(); 5790 LIST_FOREACH(sah, &V_sahtree, chain) { 5791 if (sah->state == SADB_SASTATE_DEAD) 5792 continue; 5793 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5794 continue; 5795 5796 /* get a SA with SPI. */ 5797 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5798 if (sav) 5799 break; 5800 } 5801 SAHTREE_UNLOCK(); 5802 if (sah == NULL) { 5803 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5804 return key_senderror(so, m, ENOENT); 5805 } 5806 5807 { 5808 struct mbuf *n; 5809 u_int8_t satype; 5810 5811 /* map proto to satype */ 5812 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 5813 ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n", 5814 __func__)); 5815 return key_senderror(so, m, EINVAL); 5816 } 5817 5818 /* create new sadb_msg to reply. */ 5819 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, 5820 mhp->msg->sadb_msg_pid); 5821 if (!n) 5822 return key_senderror(so, m, ENOBUFS); 5823 5824 m_freem(m); 5825 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5826 } 5827 } 5828 5829 /* XXX make it sysctl-configurable? */ 5830 static void 5831 key_getcomb_setlifetime(struct sadb_comb *comb) 5832 { 5833 5834 comb->sadb_comb_soft_allocations = 1; 5835 comb->sadb_comb_hard_allocations = 1; 5836 comb->sadb_comb_soft_bytes = 0; 5837 comb->sadb_comb_hard_bytes = 0; 5838 comb->sadb_comb_hard_addtime = 86400; /* 1 day */ 5839 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100; 5840 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */ 5841 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100; 5842 } 5843 5844 /* 5845 * XXX reorder combinations by preference 5846 * XXX no idea if the user wants ESP authentication or not 5847 */ 5848 static struct mbuf * 5849 key_getcomb_esp() 5850 { 5851 struct sadb_comb *comb; 5852 struct enc_xform *algo; 5853 struct mbuf *result = NULL, *m, *n; 5854 int encmin; 5855 int i, off, o; 5856 int totlen; 5857 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5858 5859 m = NULL; 5860 for (i = 1; i <= SADB_EALG_MAX; i++) { 5861 algo = esp_algorithm_lookup(i); 5862 if (algo == NULL) 5863 continue; 5864 5865 /* discard algorithms with key size smaller than system min */ 5866 if (_BITS(algo->maxkey) < V_ipsec_esp_keymin) 5867 continue; 5868 if (_BITS(algo->minkey) < V_ipsec_esp_keymin) 5869 encmin = V_ipsec_esp_keymin; 5870 else 5871 encmin = _BITS(algo->minkey); 5872 5873 if (V_ipsec_esp_auth) 5874 m = key_getcomb_ah(); 5875 else { 5876 IPSEC_ASSERT(l <= MLEN, 5877 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 5878 MGET(m, M_NOWAIT, MT_DATA); 5879 if (m) { 5880 M_ALIGN(m, l); 5881 m->m_len = l; 5882 m->m_next = NULL; 5883 bzero(mtod(m, caddr_t), m->m_len); 5884 } 5885 } 5886 if (!m) 5887 goto fail; 5888 5889 totlen = 0; 5890 for (n = m; n; n = n->m_next) 5891 totlen += n->m_len; 5892 IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l)); 5893 5894 for (off = 0; off < totlen; off += l) { 5895 n = m_pulldown(m, off, l, &o); 5896 if (!n) { 5897 /* m is already freed */ 5898 goto fail; 5899 } 5900 comb = (struct sadb_comb *)(mtod(n, caddr_t) + o); 5901 bzero(comb, sizeof(*comb)); 5902 key_getcomb_setlifetime(comb); 5903 comb->sadb_comb_encrypt = i; 5904 comb->sadb_comb_encrypt_minbits = encmin; 5905 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); 5906 } 5907 5908 if (!result) 5909 result = m; 5910 else 5911 m_cat(result, m); 5912 } 5913 5914 return result; 5915 5916 fail: 5917 if (result) 5918 m_freem(result); 5919 return NULL; 5920 } 5921 5922 static void 5923 key_getsizes_ah(const struct auth_hash *ah, int alg, u_int16_t* min, 5924 u_int16_t* max) 5925 { 5926 5927 *min = *max = ah->keysize; 5928 if (ah->keysize == 0) { 5929 /* 5930 * Transform takes arbitrary key size but algorithm 5931 * key size is restricted. Enforce this here. 5932 */ 5933 switch (alg) { 5934 case SADB_X_AALG_MD5: *min = *max = 16; break; 5935 case SADB_X_AALG_SHA: *min = *max = 20; break; 5936 case SADB_X_AALG_NULL: *min = 1; *max = 256; break; 5937 case SADB_X_AALG_SHA2_256: *min = *max = 32; break; 5938 case SADB_X_AALG_SHA2_384: *min = *max = 48; break; 5939 case SADB_X_AALG_SHA2_512: *min = *max = 64; break; 5940 default: 5941 DPRINTF(("%s: unknown AH algorithm %u\n", 5942 __func__, alg)); 5943 break; 5944 } 5945 } 5946 } 5947 5948 /* 5949 * XXX reorder combinations by preference 5950 */ 5951 static struct mbuf * 5952 key_getcomb_ah() 5953 { 5954 struct sadb_comb *comb; 5955 struct auth_hash *algo; 5956 struct mbuf *m; 5957 u_int16_t minkeysize, maxkeysize; 5958 int i; 5959 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5960 5961 m = NULL; 5962 for (i = 1; i <= SADB_AALG_MAX; i++) { 5963 #if 1 5964 /* we prefer HMAC algorithms, not old algorithms */ 5965 if (i != SADB_AALG_SHA1HMAC && 5966 i != SADB_AALG_MD5HMAC && 5967 i != SADB_X_AALG_SHA2_256 && 5968 i != SADB_X_AALG_SHA2_384 && 5969 i != SADB_X_AALG_SHA2_512) 5970 continue; 5971 #endif 5972 algo = ah_algorithm_lookup(i); 5973 if (!algo) 5974 continue; 5975 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); 5976 /* discard algorithms with key size smaller than system min */ 5977 if (_BITS(minkeysize) < V_ipsec_ah_keymin) 5978 continue; 5979 5980 if (!m) { 5981 IPSEC_ASSERT(l <= MLEN, 5982 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 5983 MGET(m, M_NOWAIT, MT_DATA); 5984 if (m) { 5985 M_ALIGN(m, l); 5986 m->m_len = l; 5987 m->m_next = NULL; 5988 } 5989 } else 5990 M_PREPEND(m, l, M_NOWAIT); 5991 if (!m) 5992 return NULL; 5993 5994 comb = mtod(m, struct sadb_comb *); 5995 bzero(comb, sizeof(*comb)); 5996 key_getcomb_setlifetime(comb); 5997 comb->sadb_comb_auth = i; 5998 comb->sadb_comb_auth_minbits = _BITS(minkeysize); 5999 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); 6000 } 6001 6002 return m; 6003 } 6004 6005 /* 6006 * not really an official behavior. discussed in pf_key@inner.net in Sep2000. 6007 * XXX reorder combinations by preference 6008 */ 6009 static struct mbuf * 6010 key_getcomb_ipcomp() 6011 { 6012 struct sadb_comb *comb; 6013 struct comp_algo *algo; 6014 struct mbuf *m; 6015 int i; 6016 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6017 6018 m = NULL; 6019 for (i = 1; i <= SADB_X_CALG_MAX; i++) { 6020 algo = ipcomp_algorithm_lookup(i); 6021 if (!algo) 6022 continue; 6023 6024 if (!m) { 6025 IPSEC_ASSERT(l <= MLEN, 6026 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6027 MGET(m, M_NOWAIT, MT_DATA); 6028 if (m) { 6029 M_ALIGN(m, l); 6030 m->m_len = l; 6031 m->m_next = NULL; 6032 } 6033 } else 6034 M_PREPEND(m, l, M_NOWAIT); 6035 if (!m) 6036 return NULL; 6037 6038 comb = mtod(m, struct sadb_comb *); 6039 bzero(comb, sizeof(*comb)); 6040 key_getcomb_setlifetime(comb); 6041 comb->sadb_comb_encrypt = i; 6042 /* what should we set into sadb_comb_*_{min,max}bits? */ 6043 } 6044 6045 return m; 6046 } 6047 6048 /* 6049 * XXX no way to pass mode (transport/tunnel) to userland 6050 * XXX replay checking? 6051 * XXX sysctl interface to ipsec_{ah,esp}_keymin 6052 */ 6053 static struct mbuf * 6054 key_getprop(const struct secasindex *saidx) 6055 { 6056 struct sadb_prop *prop; 6057 struct mbuf *m, *n; 6058 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); 6059 int totlen; 6060 6061 switch (saidx->proto) { 6062 case IPPROTO_ESP: 6063 m = key_getcomb_esp(); 6064 break; 6065 case IPPROTO_AH: 6066 m = key_getcomb_ah(); 6067 break; 6068 case IPPROTO_IPCOMP: 6069 m = key_getcomb_ipcomp(); 6070 break; 6071 default: 6072 return NULL; 6073 } 6074 6075 if (!m) 6076 return NULL; 6077 M_PREPEND(m, l, M_NOWAIT); 6078 if (!m) 6079 return NULL; 6080 6081 totlen = 0; 6082 for (n = m; n; n = n->m_next) 6083 totlen += n->m_len; 6084 6085 prop = mtod(m, struct sadb_prop *); 6086 bzero(prop, sizeof(*prop)); 6087 prop->sadb_prop_len = PFKEY_UNIT64(totlen); 6088 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 6089 prop->sadb_prop_replay = 32; /* XXX */ 6090 6091 return m; 6092 } 6093 6094 /* 6095 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2(). 6096 * send 6097 * <base, SA, address(SD), (address(P)), x_policy, 6098 * (identity(SD),) (sensitivity,) proposal> 6099 * to KMD, and expect to receive 6100 * <base> with SADB_ACQUIRE if error occured, 6101 * or 6102 * <base, src address, dst address, (SPI range)> with SADB_GETSPI 6103 * from KMD by PF_KEY. 6104 * 6105 * XXX x_policy is outside of RFC2367 (KAME extension). 6106 * XXX sensitivity is not supported. 6107 * XXX for ipcomp, RFC2367 does not define how to fill in proposal. 6108 * see comment for key_getcomb_ipcomp(). 6109 * 6110 * OUT: 6111 * 0 : succeed 6112 * others: error number 6113 */ 6114 static int 6115 key_acquire(const struct secasindex *saidx, struct secpolicy *sp) 6116 { 6117 struct mbuf *result = NULL, *m; 6118 struct secacq *newacq; 6119 u_int8_t satype; 6120 int error = -1; 6121 u_int32_t seq; 6122 6123 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 6124 satype = key_proto2satype(saidx->proto); 6125 IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto)); 6126 6127 /* 6128 * We never do anything about acquirng SA. There is anather 6129 * solution that kernel blocks to send SADB_ACQUIRE message until 6130 * getting something message from IKEd. In later case, to be 6131 * managed with ACQUIRING list. 6132 */ 6133 /* Get an entry to check whether sending message or not. */ 6134 if ((newacq = key_getacq(saidx)) != NULL) { 6135 if (V_key_blockacq_count < newacq->count) { 6136 /* reset counter and do send message. */ 6137 newacq->count = 0; 6138 } else { 6139 /* increment counter and do nothing. */ 6140 newacq->count++; 6141 return 0; 6142 } 6143 } else { 6144 /* make new entry for blocking to send SADB_ACQUIRE. */ 6145 if ((newacq = key_newacq(saidx)) == NULL) 6146 return ENOBUFS; 6147 } 6148 6149 6150 seq = newacq->seq; 6151 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0); 6152 if (!m) { 6153 error = ENOBUFS; 6154 goto fail; 6155 } 6156 result = m; 6157 6158 /* 6159 * No SADB_X_EXT_NAT_T_* here: we do not know 6160 * anything related to NAT-T at this time. 6161 */ 6162 6163 /* set sadb_address for saidx's. */ 6164 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 6165 &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY); 6166 if (!m) { 6167 error = ENOBUFS; 6168 goto fail; 6169 } 6170 m_cat(result, m); 6171 6172 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 6173 &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY); 6174 if (!m) { 6175 error = ENOBUFS; 6176 goto fail; 6177 } 6178 m_cat(result, m); 6179 6180 /* XXX proxy address (optional) */ 6181 6182 /* set sadb_x_policy */ 6183 if (sp) { 6184 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id); 6185 if (!m) { 6186 error = ENOBUFS; 6187 goto fail; 6188 } 6189 m_cat(result, m); 6190 } 6191 6192 /* XXX identity (optional) */ 6193 #if 0 6194 if (idexttype && fqdn) { 6195 /* create identity extension (FQDN) */ 6196 struct sadb_ident *id; 6197 int fqdnlen; 6198 6199 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ 6200 id = (struct sadb_ident *)p; 6201 bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6202 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6203 id->sadb_ident_exttype = idexttype; 6204 id->sadb_ident_type = SADB_IDENTTYPE_FQDN; 6205 bcopy(fqdn, id + 1, fqdnlen); 6206 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); 6207 } 6208 6209 if (idexttype) { 6210 /* create identity extension (USERFQDN) */ 6211 struct sadb_ident *id; 6212 int userfqdnlen; 6213 6214 if (userfqdn) { 6215 /* +1 for terminating-NUL */ 6216 userfqdnlen = strlen(userfqdn) + 1; 6217 } else 6218 userfqdnlen = 0; 6219 id = (struct sadb_ident *)p; 6220 bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6221 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6222 id->sadb_ident_exttype = idexttype; 6223 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; 6224 /* XXX is it correct? */ 6225 if (curproc && curproc->p_cred) 6226 id->sadb_ident_id = curproc->p_cred->p_ruid; 6227 if (userfqdn && userfqdnlen) 6228 bcopy(userfqdn, id + 1, userfqdnlen); 6229 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); 6230 } 6231 #endif 6232 6233 /* XXX sensitivity (optional) */ 6234 6235 /* create proposal/combination extension */ 6236 m = key_getprop(saidx); 6237 #if 0 6238 /* 6239 * spec conformant: always attach proposal/combination extension, 6240 * the problem is that we have no way to attach it for ipcomp, 6241 * due to the way sadb_comb is declared in RFC2367. 6242 */ 6243 if (!m) { 6244 error = ENOBUFS; 6245 goto fail; 6246 } 6247 m_cat(result, m); 6248 #else 6249 /* 6250 * outside of spec; make proposal/combination extension optional. 6251 */ 6252 if (m) 6253 m_cat(result, m); 6254 #endif 6255 6256 if ((result->m_flags & M_PKTHDR) == 0) { 6257 error = EINVAL; 6258 goto fail; 6259 } 6260 6261 if (result->m_len < sizeof(struct sadb_msg)) { 6262 result = m_pullup(result, sizeof(struct sadb_msg)); 6263 if (result == NULL) { 6264 error = ENOBUFS; 6265 goto fail; 6266 } 6267 } 6268 6269 result->m_pkthdr.len = 0; 6270 for (m = result; m; m = m->m_next) 6271 result->m_pkthdr.len += m->m_len; 6272 6273 mtod(result, struct sadb_msg *)->sadb_msg_len = 6274 PFKEY_UNIT64(result->m_pkthdr.len); 6275 6276 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6277 6278 fail: 6279 if (result) 6280 m_freem(result); 6281 return error; 6282 } 6283 6284 static struct secacq * 6285 key_newacq(const struct secasindex *saidx) 6286 { 6287 struct secacq *newacq; 6288 6289 /* get new entry */ 6290 newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 6291 if (newacq == NULL) { 6292 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6293 return NULL; 6294 } 6295 6296 /* copy secindex */ 6297 bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx)); 6298 newacq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq); 6299 newacq->created = time_second; 6300 newacq->count = 0; 6301 6302 /* add to acqtree */ 6303 ACQ_LOCK(); 6304 LIST_INSERT_HEAD(&V_acqtree, newacq, chain); 6305 ACQ_UNLOCK(); 6306 6307 return newacq; 6308 } 6309 6310 static struct secacq * 6311 key_getacq(const struct secasindex *saidx) 6312 { 6313 struct secacq *acq; 6314 6315 ACQ_LOCK(); 6316 LIST_FOREACH(acq, &V_acqtree, chain) { 6317 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY)) 6318 break; 6319 } 6320 ACQ_UNLOCK(); 6321 6322 return acq; 6323 } 6324 6325 static struct secacq * 6326 key_getacqbyseq(u_int32_t seq) 6327 { 6328 struct secacq *acq; 6329 6330 ACQ_LOCK(); 6331 LIST_FOREACH(acq, &V_acqtree, chain) { 6332 if (acq->seq == seq) 6333 break; 6334 } 6335 ACQ_UNLOCK(); 6336 6337 return acq; 6338 } 6339 6340 static struct secspacq * 6341 key_newspacq(struct secpolicyindex *spidx) 6342 { 6343 struct secspacq *acq; 6344 6345 /* get new entry */ 6346 acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 6347 if (acq == NULL) { 6348 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6349 return NULL; 6350 } 6351 6352 /* copy secindex */ 6353 bcopy(spidx, &acq->spidx, sizeof(acq->spidx)); 6354 acq->created = time_second; 6355 acq->count = 0; 6356 6357 /* add to spacqtree */ 6358 SPACQ_LOCK(); 6359 LIST_INSERT_HEAD(&V_spacqtree, acq, chain); 6360 SPACQ_UNLOCK(); 6361 6362 return acq; 6363 } 6364 6365 static struct secspacq * 6366 key_getspacq(struct secpolicyindex *spidx) 6367 { 6368 struct secspacq *acq; 6369 6370 SPACQ_LOCK(); 6371 LIST_FOREACH(acq, &V_spacqtree, chain) { 6372 if (key_cmpspidx_exactly(spidx, &acq->spidx)) { 6373 /* NB: return holding spacq_lock */ 6374 return acq; 6375 } 6376 } 6377 SPACQ_UNLOCK(); 6378 6379 return NULL; 6380 } 6381 6382 /* 6383 * SADB_ACQUIRE processing, 6384 * in first situation, is receiving 6385 * <base> 6386 * from the ikmpd, and clear sequence of its secasvar entry. 6387 * 6388 * In second situation, is receiving 6389 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6390 * from a user land process, and return 6391 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6392 * to the socket. 6393 * 6394 * m will always be freed. 6395 */ 6396 static int 6397 key_acquire2(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 6398 { 6399 const struct sadb_address *src0, *dst0; 6400 struct secasindex saidx; 6401 struct secashead *sah; 6402 u_int16_t proto; 6403 int error; 6404 6405 IPSEC_ASSERT(so != NULL, ("null socket")); 6406 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6407 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6408 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6409 6410 /* 6411 * Error message from KMd. 6412 * We assume that if error was occured in IKEd, the length of PFKEY 6413 * message is equal to the size of sadb_msg structure. 6414 * We do not raise error even if error occured in this function. 6415 */ 6416 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { 6417 struct secacq *acq; 6418 6419 /* check sequence number */ 6420 if (mhp->msg->sadb_msg_seq == 0) { 6421 ipseclog((LOG_DEBUG, "%s: must specify sequence " 6422 "number.\n", __func__)); 6423 m_freem(m); 6424 return 0; 6425 } 6426 6427 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) { 6428 /* 6429 * the specified larval SA is already gone, or we got 6430 * a bogus sequence number. we can silently ignore it. 6431 */ 6432 m_freem(m); 6433 return 0; 6434 } 6435 6436 /* reset acq counter in order to deletion by timehander. */ 6437 acq->created = time_second; 6438 acq->count = 0; 6439 m_freem(m); 6440 return 0; 6441 } 6442 6443 /* 6444 * This message is from user land. 6445 */ 6446 6447 /* map satype to proto */ 6448 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6449 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6450 __func__)); 6451 return key_senderror(so, m, EINVAL); 6452 } 6453 6454 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6455 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 6456 mhp->ext[SADB_EXT_PROPOSAL] == NULL) { 6457 /* error */ 6458 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6459 __func__)); 6460 return key_senderror(so, m, EINVAL); 6461 } 6462 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6463 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 6464 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { 6465 /* error */ 6466 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6467 __func__)); 6468 return key_senderror(so, m, EINVAL); 6469 } 6470 6471 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 6472 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 6473 6474 /* XXX boundary check against sa_len */ 6475 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 6476 6477 /* 6478 * Make sure the port numbers are zero. 6479 * In case of NAT-T we will update them later if needed. 6480 */ 6481 KEY_PORTTOSADDR(&saidx.src, 0); 6482 KEY_PORTTOSADDR(&saidx.dst, 0); 6483 6484 #ifndef IPSEC_NAT_T 6485 /* 6486 * Handle NAT-T info if present. 6487 */ 6488 6489 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 6490 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 6491 struct sadb_x_nat_t_port *sport, *dport; 6492 6493 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 6494 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 6495 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 6496 __func__)); 6497 return key_senderror(so, m, EINVAL); 6498 } 6499 6500 sport = (struct sadb_x_nat_t_port *) 6501 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 6502 dport = (struct sadb_x_nat_t_port *) 6503 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 6504 6505 if (sport) 6506 KEY_PORTTOSADDR(&saidx.src, 6507 sport->sadb_x_nat_t_port_port); 6508 if (dport) 6509 KEY_PORTTOSADDR(&saidx.dst, 6510 dport->sadb_x_nat_t_port_port); 6511 } 6512 #endif 6513 6514 /* get a SA index */ 6515 SAHTREE_LOCK(); 6516 LIST_FOREACH(sah, &V_sahtree, chain) { 6517 if (sah->state == SADB_SASTATE_DEAD) 6518 continue; 6519 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID)) 6520 break; 6521 } 6522 SAHTREE_UNLOCK(); 6523 if (sah != NULL) { 6524 ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__)); 6525 return key_senderror(so, m, EEXIST); 6526 } 6527 6528 error = key_acquire(&saidx, NULL); 6529 if (error != 0) { 6530 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 6531 __func__, mhp->msg->sadb_msg_errno)); 6532 return key_senderror(so, m, error); 6533 } 6534 6535 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); 6536 } 6537 6538 /* 6539 * SADB_REGISTER processing. 6540 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. 6541 * receive 6542 * <base> 6543 * from the ikmpd, and register a socket to send PF_KEY messages, 6544 * and send 6545 * <base, supported> 6546 * to KMD by PF_KEY. 6547 * If socket is detached, must free from regnode. 6548 * 6549 * m will always be freed. 6550 */ 6551 static int 6552 key_register(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 6553 { 6554 struct secreg *reg, *newreg = 0; 6555 6556 IPSEC_ASSERT(so != NULL, ("null socket")); 6557 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6558 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6559 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6560 6561 /* check for invalid register message */ 6562 if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0])) 6563 return key_senderror(so, m, EINVAL); 6564 6565 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ 6566 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) 6567 goto setmsg; 6568 6569 /* check whether existing or not */ 6570 REGTREE_LOCK(); 6571 LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) { 6572 if (reg->so == so) { 6573 REGTREE_UNLOCK(); 6574 ipseclog((LOG_DEBUG, "%s: socket exists already.\n", 6575 __func__)); 6576 return key_senderror(so, m, EEXIST); 6577 } 6578 } 6579 6580 /* create regnode */ 6581 newreg = malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO); 6582 if (newreg == NULL) { 6583 REGTREE_UNLOCK(); 6584 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6585 return key_senderror(so, m, ENOBUFS); 6586 } 6587 6588 newreg->so = so; 6589 ((struct keycb *)sotorawcb(so))->kp_registered++; 6590 6591 /* add regnode to regtree. */ 6592 LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain); 6593 REGTREE_UNLOCK(); 6594 6595 setmsg: 6596 { 6597 struct mbuf *n; 6598 struct sadb_msg *newmsg; 6599 struct sadb_supported *sup; 6600 u_int len, alen, elen; 6601 int off; 6602 int i; 6603 struct sadb_alg *alg; 6604 6605 /* create new sadb_msg to reply. */ 6606 alen = 0; 6607 for (i = 1; i <= SADB_AALG_MAX; i++) { 6608 if (ah_algorithm_lookup(i)) 6609 alen += sizeof(struct sadb_alg); 6610 } 6611 if (alen) 6612 alen += sizeof(struct sadb_supported); 6613 elen = 0; 6614 for (i = 1; i <= SADB_EALG_MAX; i++) { 6615 if (esp_algorithm_lookup(i)) 6616 elen += sizeof(struct sadb_alg); 6617 } 6618 if (elen) 6619 elen += sizeof(struct sadb_supported); 6620 6621 len = sizeof(struct sadb_msg) + alen + elen; 6622 6623 if (len > MCLBYTES) 6624 return key_senderror(so, m, ENOBUFS); 6625 6626 MGETHDR(n, M_NOWAIT, MT_DATA); 6627 if (len > MHLEN) { 6628 if (!(MCLGET(n, M_NOWAIT))) { 6629 m_freem(n); 6630 n = NULL; 6631 } 6632 } 6633 if (!n) 6634 return key_senderror(so, m, ENOBUFS); 6635 6636 n->m_pkthdr.len = n->m_len = len; 6637 n->m_next = NULL; 6638 off = 0; 6639 6640 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 6641 newmsg = mtod(n, struct sadb_msg *); 6642 newmsg->sadb_msg_errno = 0; 6643 newmsg->sadb_msg_len = PFKEY_UNIT64(len); 6644 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 6645 6646 /* for authentication algorithm */ 6647 if (alen) { 6648 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6649 sup->sadb_supported_len = PFKEY_UNIT64(alen); 6650 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 6651 off += PFKEY_ALIGN8(sizeof(*sup)); 6652 6653 for (i = 1; i <= SADB_AALG_MAX; i++) { 6654 struct auth_hash *aalgo; 6655 u_int16_t minkeysize, maxkeysize; 6656 6657 aalgo = ah_algorithm_lookup(i); 6658 if (!aalgo) 6659 continue; 6660 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6661 alg->sadb_alg_id = i; 6662 alg->sadb_alg_ivlen = 0; 6663 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); 6664 alg->sadb_alg_minbits = _BITS(minkeysize); 6665 alg->sadb_alg_maxbits = _BITS(maxkeysize); 6666 off += PFKEY_ALIGN8(sizeof(*alg)); 6667 } 6668 } 6669 6670 /* for encryption algorithm */ 6671 if (elen) { 6672 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6673 sup->sadb_supported_len = PFKEY_UNIT64(elen); 6674 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 6675 off += PFKEY_ALIGN8(sizeof(*sup)); 6676 6677 for (i = 1; i <= SADB_EALG_MAX; i++) { 6678 struct enc_xform *ealgo; 6679 6680 ealgo = esp_algorithm_lookup(i); 6681 if (!ealgo) 6682 continue; 6683 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6684 alg->sadb_alg_id = i; 6685 alg->sadb_alg_ivlen = ealgo->blocksize; 6686 alg->sadb_alg_minbits = _BITS(ealgo->minkey); 6687 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); 6688 off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); 6689 } 6690 } 6691 6692 IPSEC_ASSERT(off == len, 6693 ("length assumption failed (off %u len %u)", off, len)); 6694 6695 m_freem(m); 6696 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); 6697 } 6698 } 6699 6700 /* 6701 * free secreg entry registered. 6702 * XXX: I want to do free a socket marked done SADB_RESIGER to socket. 6703 */ 6704 void 6705 key_freereg(struct socket *so) 6706 { 6707 struct secreg *reg; 6708 int i; 6709 6710 IPSEC_ASSERT(so != NULL, ("NULL so")); 6711 6712 /* 6713 * check whether existing or not. 6714 * check all type of SA, because there is a potential that 6715 * one socket is registered to multiple type of SA. 6716 */ 6717 REGTREE_LOCK(); 6718 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 6719 LIST_FOREACH(reg, &V_regtree[i], chain) { 6720 if (reg->so == so && __LIST_CHAINED(reg)) { 6721 LIST_REMOVE(reg, chain); 6722 free(reg, M_IPSEC_SAR); 6723 break; 6724 } 6725 } 6726 } 6727 REGTREE_UNLOCK(); 6728 } 6729 6730 /* 6731 * SADB_EXPIRE processing 6732 * send 6733 * <base, SA, SA2, lifetime(C and one of HS), address(SD)> 6734 * to KMD by PF_KEY. 6735 * NOTE: We send only soft lifetime extension. 6736 * 6737 * OUT: 0 : succeed 6738 * others : error number 6739 */ 6740 static int 6741 key_expire(struct secasvar *sav) 6742 { 6743 int satype; 6744 struct mbuf *result = NULL, *m; 6745 int len; 6746 int error = -1; 6747 struct sadb_lifetime *lt; 6748 6749 IPSEC_ASSERT (sav != NULL, ("null sav")); 6750 IPSEC_ASSERT (sav->sah != NULL, ("null sa header")); 6751 6752 /* set msg header */ 6753 satype = key_proto2satype(sav->sah->saidx.proto); 6754 IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype)); 6755 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt); 6756 if (!m) { 6757 error = ENOBUFS; 6758 goto fail; 6759 } 6760 result = m; 6761 6762 /* create SA extension */ 6763 m = key_setsadbsa(sav); 6764 if (!m) { 6765 error = ENOBUFS; 6766 goto fail; 6767 } 6768 m_cat(result, m); 6769 6770 /* create SA extension */ 6771 m = key_setsadbxsa2(sav->sah->saidx.mode, 6772 sav->replay ? sav->replay->count : 0, 6773 sav->sah->saidx.reqid); 6774 if (!m) { 6775 error = ENOBUFS; 6776 goto fail; 6777 } 6778 m_cat(result, m); 6779 6780 /* create lifetime extension (current and soft) */ 6781 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 6782 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 6783 if (m == NULL) { 6784 error = ENOBUFS; 6785 goto fail; 6786 } 6787 m_align(m, len); 6788 m->m_len = len; 6789 bzero(mtod(m, caddr_t), len); 6790 lt = mtod(m, struct sadb_lifetime *); 6791 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6792 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 6793 lt->sadb_lifetime_allocations = sav->lft_c->allocations; 6794 lt->sadb_lifetime_bytes = sav->lft_c->bytes; 6795 lt->sadb_lifetime_addtime = sav->lft_c->addtime; 6796 lt->sadb_lifetime_usetime = sav->lft_c->usetime; 6797 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 6798 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6799 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; 6800 lt->sadb_lifetime_allocations = sav->lft_s->allocations; 6801 lt->sadb_lifetime_bytes = sav->lft_s->bytes; 6802 lt->sadb_lifetime_addtime = sav->lft_s->addtime; 6803 lt->sadb_lifetime_usetime = sav->lft_s->usetime; 6804 m_cat(result, m); 6805 6806 /* set sadb_address for source */ 6807 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 6808 &sav->sah->saidx.src.sa, 6809 FULLMASK, IPSEC_ULPROTO_ANY); 6810 if (!m) { 6811 error = ENOBUFS; 6812 goto fail; 6813 } 6814 m_cat(result, m); 6815 6816 /* set sadb_address for destination */ 6817 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 6818 &sav->sah->saidx.dst.sa, 6819 FULLMASK, IPSEC_ULPROTO_ANY); 6820 if (!m) { 6821 error = ENOBUFS; 6822 goto fail; 6823 } 6824 m_cat(result, m); 6825 6826 /* 6827 * XXX-BZ Handle NAT-T extensions here. 6828 */ 6829 6830 if ((result->m_flags & M_PKTHDR) == 0) { 6831 error = EINVAL; 6832 goto fail; 6833 } 6834 6835 if (result->m_len < sizeof(struct sadb_msg)) { 6836 result = m_pullup(result, sizeof(struct sadb_msg)); 6837 if (result == NULL) { 6838 error = ENOBUFS; 6839 goto fail; 6840 } 6841 } 6842 6843 result->m_pkthdr.len = 0; 6844 for (m = result; m; m = m->m_next) 6845 result->m_pkthdr.len += m->m_len; 6846 6847 mtod(result, struct sadb_msg *)->sadb_msg_len = 6848 PFKEY_UNIT64(result->m_pkthdr.len); 6849 6850 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6851 6852 fail: 6853 if (result) 6854 m_freem(result); 6855 return error; 6856 } 6857 6858 /* 6859 * SADB_FLUSH processing 6860 * receive 6861 * <base> 6862 * from the ikmpd, and free all entries in secastree. 6863 * and send, 6864 * <base> 6865 * to the ikmpd. 6866 * NOTE: to do is only marking SADB_SASTATE_DEAD. 6867 * 6868 * m will always be freed. 6869 */ 6870 static int 6871 key_flush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 6872 { 6873 struct sadb_msg *newmsg; 6874 struct secashead *sah, *nextsah; 6875 struct secasvar *sav, *nextsav; 6876 u_int16_t proto; 6877 u_int8_t state; 6878 u_int stateidx; 6879 6880 IPSEC_ASSERT(so != NULL, ("null socket")); 6881 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6882 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6883 6884 /* map satype to proto */ 6885 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6886 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6887 __func__)); 6888 return key_senderror(so, m, EINVAL); 6889 } 6890 6891 /* no SATYPE specified, i.e. flushing all SA. */ 6892 SAHTREE_LOCK(); 6893 for (sah = LIST_FIRST(&V_sahtree); 6894 sah != NULL; 6895 sah = nextsah) { 6896 nextsah = LIST_NEXT(sah, chain); 6897 6898 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 6899 && proto != sah->saidx.proto) 6900 continue; 6901 6902 for (stateidx = 0; 6903 stateidx < _ARRAYLEN(saorder_state_alive); 6904 stateidx++) { 6905 state = saorder_state_any[stateidx]; 6906 for (sav = LIST_FIRST(&sah->savtree[state]); 6907 sav != NULL; 6908 sav = nextsav) { 6909 6910 nextsav = LIST_NEXT(sav, chain); 6911 6912 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 6913 KEY_FREESAV(&sav); 6914 } 6915 } 6916 6917 sah->state = SADB_SASTATE_DEAD; 6918 } 6919 SAHTREE_UNLOCK(); 6920 6921 if (m->m_len < sizeof(struct sadb_msg) || 6922 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 6923 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6924 return key_senderror(so, m, ENOBUFS); 6925 } 6926 6927 if (m->m_next) 6928 m_freem(m->m_next); 6929 m->m_next = NULL; 6930 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); 6931 newmsg = mtod(m, struct sadb_msg *); 6932 newmsg->sadb_msg_errno = 0; 6933 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 6934 6935 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 6936 } 6937 6938 /* 6939 * SADB_DUMP processing 6940 * dump all entries including status of DEAD in SAD. 6941 * receive 6942 * <base> 6943 * from the ikmpd, and dump all secasvar leaves 6944 * and send, 6945 * <base> ..... 6946 * to the ikmpd. 6947 * 6948 * m will always be freed. 6949 */ 6950 static int 6951 key_dump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 6952 { 6953 struct secashead *sah; 6954 struct secasvar *sav; 6955 u_int16_t proto; 6956 u_int stateidx; 6957 u_int8_t satype; 6958 u_int8_t state; 6959 int cnt; 6960 struct sadb_msg *newmsg; 6961 struct mbuf *n; 6962 6963 IPSEC_ASSERT(so != NULL, ("null socket")); 6964 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6965 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6966 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6967 6968 /* map satype to proto */ 6969 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6970 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6971 __func__)); 6972 return key_senderror(so, m, EINVAL); 6973 } 6974 6975 /* count sav entries to be sent to the userland. */ 6976 cnt = 0; 6977 SAHTREE_LOCK(); 6978 LIST_FOREACH(sah, &V_sahtree, chain) { 6979 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 6980 && proto != sah->saidx.proto) 6981 continue; 6982 6983 for (stateidx = 0; 6984 stateidx < _ARRAYLEN(saorder_state_any); 6985 stateidx++) { 6986 state = saorder_state_any[stateidx]; 6987 LIST_FOREACH(sav, &sah->savtree[state], chain) { 6988 cnt++; 6989 } 6990 } 6991 } 6992 6993 if (cnt == 0) { 6994 SAHTREE_UNLOCK(); 6995 return key_senderror(so, m, ENOENT); 6996 } 6997 6998 /* send this to the userland, one at a time. */ 6999 newmsg = NULL; 7000 LIST_FOREACH(sah, &V_sahtree, chain) { 7001 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 7002 && proto != sah->saidx.proto) 7003 continue; 7004 7005 /* map proto to satype */ 7006 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 7007 SAHTREE_UNLOCK(); 7008 ipseclog((LOG_DEBUG, "%s: there was invalid proto in " 7009 "SAD.\n", __func__)); 7010 return key_senderror(so, m, EINVAL); 7011 } 7012 7013 for (stateidx = 0; 7014 stateidx < _ARRAYLEN(saorder_state_any); 7015 stateidx++) { 7016 state = saorder_state_any[stateidx]; 7017 LIST_FOREACH(sav, &sah->savtree[state], chain) { 7018 n = key_setdumpsa(sav, SADB_DUMP, satype, 7019 --cnt, mhp->msg->sadb_msg_pid); 7020 if (!n) { 7021 SAHTREE_UNLOCK(); 7022 return key_senderror(so, m, ENOBUFS); 7023 } 7024 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 7025 } 7026 } 7027 } 7028 SAHTREE_UNLOCK(); 7029 7030 m_freem(m); 7031 return 0; 7032 } 7033 7034 /* 7035 * SADB_X_PROMISC processing 7036 * 7037 * m will always be freed. 7038 */ 7039 static int 7040 key_promisc(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 7041 { 7042 int olen; 7043 7044 IPSEC_ASSERT(so != NULL, ("null socket")); 7045 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7046 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7047 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7048 7049 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7050 7051 if (olen < sizeof(struct sadb_msg)) { 7052 #if 1 7053 return key_senderror(so, m, EINVAL); 7054 #else 7055 m_freem(m); 7056 return 0; 7057 #endif 7058 } else if (olen == sizeof(struct sadb_msg)) { 7059 /* enable/disable promisc mode */ 7060 struct keycb *kp; 7061 7062 if ((kp = (struct keycb *)sotorawcb(so)) == NULL) 7063 return key_senderror(so, m, EINVAL); 7064 mhp->msg->sadb_msg_errno = 0; 7065 switch (mhp->msg->sadb_msg_satype) { 7066 case 0: 7067 case 1: 7068 kp->kp_promisc = mhp->msg->sadb_msg_satype; 7069 break; 7070 default: 7071 return key_senderror(so, m, EINVAL); 7072 } 7073 7074 /* send the original message back to everyone */ 7075 mhp->msg->sadb_msg_errno = 0; 7076 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7077 } else { 7078 /* send packet as is */ 7079 7080 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); 7081 7082 /* TODO: if sadb_msg_seq is specified, send to specific pid */ 7083 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7084 } 7085 } 7086 7087 static int (*key_typesw[])(struct socket *, struct mbuf *, 7088 const struct sadb_msghdr *) = { 7089 NULL, /* SADB_RESERVED */ 7090 key_getspi, /* SADB_GETSPI */ 7091 key_update, /* SADB_UPDATE */ 7092 key_add, /* SADB_ADD */ 7093 key_delete, /* SADB_DELETE */ 7094 key_get, /* SADB_GET */ 7095 key_acquire2, /* SADB_ACQUIRE */ 7096 key_register, /* SADB_REGISTER */ 7097 NULL, /* SADB_EXPIRE */ 7098 key_flush, /* SADB_FLUSH */ 7099 key_dump, /* SADB_DUMP */ 7100 key_promisc, /* SADB_X_PROMISC */ 7101 NULL, /* SADB_X_PCHANGE */ 7102 key_spdadd, /* SADB_X_SPDUPDATE */ 7103 key_spdadd, /* SADB_X_SPDADD */ 7104 key_spddelete, /* SADB_X_SPDDELETE */ 7105 key_spdget, /* SADB_X_SPDGET */ 7106 NULL, /* SADB_X_SPDACQUIRE */ 7107 key_spddump, /* SADB_X_SPDDUMP */ 7108 key_spdflush, /* SADB_X_SPDFLUSH */ 7109 key_spdadd, /* SADB_X_SPDSETIDX */ 7110 NULL, /* SADB_X_SPDEXPIRE */ 7111 key_spddelete2, /* SADB_X_SPDDELETE2 */ 7112 }; 7113 7114 /* 7115 * parse sadb_msg buffer to process PFKEYv2, 7116 * and create a data to response if needed. 7117 * I think to be dealed with mbuf directly. 7118 * IN: 7119 * msgp : pointer to pointer to a received buffer pulluped. 7120 * This is rewrited to response. 7121 * so : pointer to socket. 7122 * OUT: 7123 * length for buffer to send to user process. 7124 */ 7125 int 7126 key_parse(struct mbuf *m, struct socket *so) 7127 { 7128 struct sadb_msg *msg; 7129 struct sadb_msghdr mh; 7130 u_int orglen; 7131 int error; 7132 int target; 7133 7134 IPSEC_ASSERT(so != NULL, ("null socket")); 7135 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7136 7137 #if 0 /*kdebug_sadb assumes msg in linear buffer*/ 7138 KEYDEBUG(KEYDEBUG_KEY_DUMP, 7139 ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__)); 7140 kdebug_sadb(msg)); 7141 #endif 7142 7143 if (m->m_len < sizeof(struct sadb_msg)) { 7144 m = m_pullup(m, sizeof(struct sadb_msg)); 7145 if (!m) 7146 return ENOBUFS; 7147 } 7148 msg = mtod(m, struct sadb_msg *); 7149 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); 7150 target = KEY_SENDUP_ONE; 7151 7152 if ((m->m_flags & M_PKTHDR) == 0 || 7153 m->m_pkthdr.len != m->m_pkthdr.len) { 7154 ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__)); 7155 PFKEYSTAT_INC(out_invlen); 7156 error = EINVAL; 7157 goto senderror; 7158 } 7159 7160 if (msg->sadb_msg_version != PF_KEY_V2) { 7161 ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n", 7162 __func__, msg->sadb_msg_version)); 7163 PFKEYSTAT_INC(out_invver); 7164 error = EINVAL; 7165 goto senderror; 7166 } 7167 7168 if (msg->sadb_msg_type > SADB_MAX) { 7169 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 7170 __func__, msg->sadb_msg_type)); 7171 PFKEYSTAT_INC(out_invmsgtype); 7172 error = EINVAL; 7173 goto senderror; 7174 } 7175 7176 /* for old-fashioned code - should be nuked */ 7177 if (m->m_pkthdr.len > MCLBYTES) { 7178 m_freem(m); 7179 return ENOBUFS; 7180 } 7181 if (m->m_next) { 7182 struct mbuf *n; 7183 7184 MGETHDR(n, M_NOWAIT, MT_DATA); 7185 if (n && m->m_pkthdr.len > MHLEN) { 7186 if (!(MCLGET(n, M_NOWAIT))) { 7187 m_free(n); 7188 n = NULL; 7189 } 7190 } 7191 if (!n) { 7192 m_freem(m); 7193 return ENOBUFS; 7194 } 7195 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t)); 7196 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; 7197 n->m_next = NULL; 7198 m_freem(m); 7199 m = n; 7200 } 7201 7202 /* align the mbuf chain so that extensions are in contiguous region. */ 7203 error = key_align(m, &mh); 7204 if (error) 7205 return error; 7206 7207 msg = mh.msg; 7208 7209 /* check SA type */ 7210 switch (msg->sadb_msg_satype) { 7211 case SADB_SATYPE_UNSPEC: 7212 switch (msg->sadb_msg_type) { 7213 case SADB_GETSPI: 7214 case SADB_UPDATE: 7215 case SADB_ADD: 7216 case SADB_DELETE: 7217 case SADB_GET: 7218 case SADB_ACQUIRE: 7219 case SADB_EXPIRE: 7220 ipseclog((LOG_DEBUG, "%s: must specify satype " 7221 "when msg type=%u.\n", __func__, 7222 msg->sadb_msg_type)); 7223 PFKEYSTAT_INC(out_invsatype); 7224 error = EINVAL; 7225 goto senderror; 7226 } 7227 break; 7228 case SADB_SATYPE_AH: 7229 case SADB_SATYPE_ESP: 7230 case SADB_X_SATYPE_IPCOMP: 7231 case SADB_X_SATYPE_TCPSIGNATURE: 7232 switch (msg->sadb_msg_type) { 7233 case SADB_X_SPDADD: 7234 case SADB_X_SPDDELETE: 7235 case SADB_X_SPDGET: 7236 case SADB_X_SPDDUMP: 7237 case SADB_X_SPDFLUSH: 7238 case SADB_X_SPDSETIDX: 7239 case SADB_X_SPDUPDATE: 7240 case SADB_X_SPDDELETE2: 7241 ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n", 7242 __func__, msg->sadb_msg_type)); 7243 PFKEYSTAT_INC(out_invsatype); 7244 error = EINVAL; 7245 goto senderror; 7246 } 7247 break; 7248 case SADB_SATYPE_RSVP: 7249 case SADB_SATYPE_OSPFV2: 7250 case SADB_SATYPE_RIPV2: 7251 case SADB_SATYPE_MIP: 7252 ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n", 7253 __func__, msg->sadb_msg_satype)); 7254 PFKEYSTAT_INC(out_invsatype); 7255 error = EOPNOTSUPP; 7256 goto senderror; 7257 case 1: /* XXX: What does it do? */ 7258 if (msg->sadb_msg_type == SADB_X_PROMISC) 7259 break; 7260 /*FALLTHROUGH*/ 7261 default: 7262 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 7263 __func__, msg->sadb_msg_satype)); 7264 PFKEYSTAT_INC(out_invsatype); 7265 error = EINVAL; 7266 goto senderror; 7267 } 7268 7269 /* check field of upper layer protocol and address family */ 7270 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL 7271 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { 7272 struct sadb_address *src0, *dst0; 7273 u_int plen; 7274 7275 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]); 7276 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]); 7277 7278 /* check upper layer protocol */ 7279 if (src0->sadb_address_proto != dst0->sadb_address_proto) { 7280 ipseclog((LOG_DEBUG, "%s: upper layer protocol " 7281 "mismatched.\n", __func__)); 7282 PFKEYSTAT_INC(out_invaddr); 7283 error = EINVAL; 7284 goto senderror; 7285 } 7286 7287 /* check family */ 7288 if (PFKEY_ADDR_SADDR(src0)->sa_family != 7289 PFKEY_ADDR_SADDR(dst0)->sa_family) { 7290 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 7291 __func__)); 7292 PFKEYSTAT_INC(out_invaddr); 7293 error = EINVAL; 7294 goto senderror; 7295 } 7296 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7297 PFKEY_ADDR_SADDR(dst0)->sa_len) { 7298 ipseclog((LOG_DEBUG, "%s: address struct size " 7299 "mismatched.\n", __func__)); 7300 PFKEYSTAT_INC(out_invaddr); 7301 error = EINVAL; 7302 goto senderror; 7303 } 7304 7305 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7306 case AF_INET: 7307 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7308 sizeof(struct sockaddr_in)) { 7309 PFKEYSTAT_INC(out_invaddr); 7310 error = EINVAL; 7311 goto senderror; 7312 } 7313 break; 7314 case AF_INET6: 7315 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7316 sizeof(struct sockaddr_in6)) { 7317 PFKEYSTAT_INC(out_invaddr); 7318 error = EINVAL; 7319 goto senderror; 7320 } 7321 break; 7322 default: 7323 ipseclog((LOG_DEBUG, "%s: unsupported address family\n", 7324 __func__)); 7325 PFKEYSTAT_INC(out_invaddr); 7326 error = EAFNOSUPPORT; 7327 goto senderror; 7328 } 7329 7330 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7331 case AF_INET: 7332 plen = sizeof(struct in_addr) << 3; 7333 break; 7334 case AF_INET6: 7335 plen = sizeof(struct in6_addr) << 3; 7336 break; 7337 default: 7338 plen = 0; /*fool gcc*/ 7339 break; 7340 } 7341 7342 /* check max prefix length */ 7343 if (src0->sadb_address_prefixlen > plen || 7344 dst0->sadb_address_prefixlen > plen) { 7345 ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n", 7346 __func__)); 7347 PFKEYSTAT_INC(out_invaddr); 7348 error = EINVAL; 7349 goto senderror; 7350 } 7351 7352 /* 7353 * prefixlen == 0 is valid because there can be a case when 7354 * all addresses are matched. 7355 */ 7356 } 7357 7358 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) || 7359 key_typesw[msg->sadb_msg_type] == NULL) { 7360 PFKEYSTAT_INC(out_invmsgtype); 7361 error = EINVAL; 7362 goto senderror; 7363 } 7364 7365 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh); 7366 7367 senderror: 7368 msg->sadb_msg_errno = error; 7369 return key_sendup_mbuf(so, m, target); 7370 } 7371 7372 static int 7373 key_senderror(struct socket *so, struct mbuf *m, int code) 7374 { 7375 struct sadb_msg *msg; 7376 7377 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 7378 ("mbuf too small, len %u", m->m_len)); 7379 7380 msg = mtod(m, struct sadb_msg *); 7381 msg->sadb_msg_errno = code; 7382 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 7383 } 7384 7385 /* 7386 * set the pointer to each header into message buffer. 7387 * m will be freed on error. 7388 * XXX larger-than-MCLBYTES extension? 7389 */ 7390 static int 7391 key_align(struct mbuf *m, struct sadb_msghdr *mhp) 7392 { 7393 struct mbuf *n; 7394 struct sadb_ext *ext; 7395 size_t off, end; 7396 int extlen; 7397 int toff; 7398 7399 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7400 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7401 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 7402 ("mbuf too small, len %u", m->m_len)); 7403 7404 /* initialize */ 7405 bzero(mhp, sizeof(*mhp)); 7406 7407 mhp->msg = mtod(m, struct sadb_msg *); 7408 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */ 7409 7410 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7411 extlen = end; /*just in case extlen is not updated*/ 7412 for (off = sizeof(struct sadb_msg); off < end; off += extlen) { 7413 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); 7414 if (!n) { 7415 /* m is already freed */ 7416 return ENOBUFS; 7417 } 7418 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 7419 7420 /* set pointer */ 7421 switch (ext->sadb_ext_type) { 7422 case SADB_EXT_SA: 7423 case SADB_EXT_ADDRESS_SRC: 7424 case SADB_EXT_ADDRESS_DST: 7425 case SADB_EXT_ADDRESS_PROXY: 7426 case SADB_EXT_LIFETIME_CURRENT: 7427 case SADB_EXT_LIFETIME_HARD: 7428 case SADB_EXT_LIFETIME_SOFT: 7429 case SADB_EXT_KEY_AUTH: 7430 case SADB_EXT_KEY_ENCRYPT: 7431 case SADB_EXT_IDENTITY_SRC: 7432 case SADB_EXT_IDENTITY_DST: 7433 case SADB_EXT_SENSITIVITY: 7434 case SADB_EXT_PROPOSAL: 7435 case SADB_EXT_SUPPORTED_AUTH: 7436 case SADB_EXT_SUPPORTED_ENCRYPT: 7437 case SADB_EXT_SPIRANGE: 7438 case SADB_X_EXT_POLICY: 7439 case SADB_X_EXT_SA2: 7440 #ifdef IPSEC_NAT_T 7441 case SADB_X_EXT_NAT_T_TYPE: 7442 case SADB_X_EXT_NAT_T_SPORT: 7443 case SADB_X_EXT_NAT_T_DPORT: 7444 case SADB_X_EXT_NAT_T_OAI: 7445 case SADB_X_EXT_NAT_T_OAR: 7446 case SADB_X_EXT_NAT_T_FRAG: 7447 #endif 7448 /* duplicate check */ 7449 /* 7450 * XXX Are there duplication payloads of either 7451 * KEY_AUTH or KEY_ENCRYPT ? 7452 */ 7453 if (mhp->ext[ext->sadb_ext_type] != NULL) { 7454 ipseclog((LOG_DEBUG, "%s: duplicate ext_type " 7455 "%u\n", __func__, ext->sadb_ext_type)); 7456 m_freem(m); 7457 PFKEYSTAT_INC(out_dupext); 7458 return EINVAL; 7459 } 7460 break; 7461 default: 7462 ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n", 7463 __func__, ext->sadb_ext_type)); 7464 m_freem(m); 7465 PFKEYSTAT_INC(out_invexttype); 7466 return EINVAL; 7467 } 7468 7469 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); 7470 7471 if (key_validate_ext(ext, extlen)) { 7472 m_freem(m); 7473 PFKEYSTAT_INC(out_invlen); 7474 return EINVAL; 7475 } 7476 7477 n = m_pulldown(m, off, extlen, &toff); 7478 if (!n) { 7479 /* m is already freed */ 7480 return ENOBUFS; 7481 } 7482 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 7483 7484 mhp->ext[ext->sadb_ext_type] = ext; 7485 mhp->extoff[ext->sadb_ext_type] = off; 7486 mhp->extlen[ext->sadb_ext_type] = extlen; 7487 } 7488 7489 if (off != end) { 7490 m_freem(m); 7491 PFKEYSTAT_INC(out_invlen); 7492 return EINVAL; 7493 } 7494 7495 return 0; 7496 } 7497 7498 static int 7499 key_validate_ext(const struct sadb_ext *ext, int len) 7500 { 7501 const struct sockaddr *sa; 7502 enum { NONE, ADDR } checktype = NONE; 7503 int baselen = 0; 7504 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); 7505 7506 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) 7507 return EINVAL; 7508 7509 /* if it does not match minimum/maximum length, bail */ 7510 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) || 7511 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0])) 7512 return EINVAL; 7513 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) 7514 return EINVAL; 7515 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) 7516 return EINVAL; 7517 7518 /* more checks based on sadb_ext_type XXX need more */ 7519 switch (ext->sadb_ext_type) { 7520 case SADB_EXT_ADDRESS_SRC: 7521 case SADB_EXT_ADDRESS_DST: 7522 case SADB_EXT_ADDRESS_PROXY: 7523 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); 7524 checktype = ADDR; 7525 break; 7526 case SADB_EXT_IDENTITY_SRC: 7527 case SADB_EXT_IDENTITY_DST: 7528 if (((const struct sadb_ident *)ext)->sadb_ident_type == 7529 SADB_X_IDENTTYPE_ADDR) { 7530 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); 7531 checktype = ADDR; 7532 } else 7533 checktype = NONE; 7534 break; 7535 default: 7536 checktype = NONE; 7537 break; 7538 } 7539 7540 switch (checktype) { 7541 case NONE: 7542 break; 7543 case ADDR: 7544 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); 7545 if (len < baselen + sal) 7546 return EINVAL; 7547 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) 7548 return EINVAL; 7549 break; 7550 } 7551 7552 return 0; 7553 } 7554 7555 void 7556 key_init(void) 7557 { 7558 int i; 7559 7560 for (i = 0; i < IPSEC_DIR_MAX; i++) 7561 TAILQ_INIT(&V_sptree[i]); 7562 7563 LIST_INIT(&V_sahtree); 7564 7565 for (i = 0; i <= SADB_SATYPE_MAX; i++) 7566 LIST_INIT(&V_regtree[i]); 7567 7568 LIST_INIT(&V_acqtree); 7569 LIST_INIT(&V_spacqtree); 7570 7571 if (!IS_DEFAULT_VNET(curvnet)) 7572 return; 7573 7574 SPTREE_LOCK_INIT(); 7575 REGTREE_LOCK_INIT(); 7576 SAHTREE_LOCK_INIT(); 7577 ACQ_LOCK_INIT(); 7578 SPACQ_LOCK_INIT(); 7579 7580 #ifndef IPSEC_DEBUG2 7581 callout_init(&key_timer, CALLOUT_MPSAFE); 7582 callout_reset(&key_timer, hz, key_timehandler, NULL); 7583 #endif /*IPSEC_DEBUG2*/ 7584 7585 /* initialize key statistics */ 7586 keystat.getspi_count = 1; 7587 7588 printf("IPsec: Initialized Security Association Processing.\n"); 7589 } 7590 7591 #ifdef VIMAGE 7592 void 7593 key_destroy(void) 7594 { 7595 TAILQ_HEAD(, secpolicy) drainq; 7596 struct secpolicy *sp, *nextsp; 7597 struct secacq *acq, *nextacq; 7598 struct secspacq *spacq, *nextspacq; 7599 struct secashead *sah, *nextsah; 7600 struct secreg *reg; 7601 int i; 7602 7603 TAILQ_INIT(&drainq); 7604 SPTREE_WLOCK(); 7605 for (i = 0; i < IPSEC_DIR_MAX; i++) { 7606 TAILQ_CONCAT(&drainq, &V_sptree[i], chain); 7607 } 7608 SPTREE_WUNLOCK(); 7609 sp = TAILQ_FIRST(&drainq); 7610 while (sp != NULL) { 7611 nextsp = TAILQ_NEXT(sp, chain); 7612 KEY_FREESP(&sp); 7613 sp = nextsp; 7614 } 7615 7616 SAHTREE_LOCK(); 7617 for (sah = LIST_FIRST(&V_sahtree); sah != NULL; sah = nextsah) { 7618 nextsah = LIST_NEXT(sah, chain); 7619 if (__LIST_CHAINED(sah)) { 7620 LIST_REMOVE(sah, chain); 7621 free(sah, M_IPSEC_SAH); 7622 } 7623 } 7624 SAHTREE_UNLOCK(); 7625 7626 REGTREE_LOCK(); 7627 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 7628 LIST_FOREACH(reg, &V_regtree[i], chain) { 7629 if (__LIST_CHAINED(reg)) { 7630 LIST_REMOVE(reg, chain); 7631 free(reg, M_IPSEC_SAR); 7632 break; 7633 } 7634 } 7635 } 7636 REGTREE_UNLOCK(); 7637 7638 ACQ_LOCK(); 7639 for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) { 7640 nextacq = LIST_NEXT(acq, chain); 7641 if (__LIST_CHAINED(acq)) { 7642 LIST_REMOVE(acq, chain); 7643 free(acq, M_IPSEC_SAQ); 7644 } 7645 } 7646 ACQ_UNLOCK(); 7647 7648 SPACQ_LOCK(); 7649 for (spacq = LIST_FIRST(&V_spacqtree); spacq != NULL; 7650 spacq = nextspacq) { 7651 nextspacq = LIST_NEXT(spacq, chain); 7652 if (__LIST_CHAINED(spacq)) { 7653 LIST_REMOVE(spacq, chain); 7654 free(spacq, M_IPSEC_SAQ); 7655 } 7656 } 7657 SPACQ_UNLOCK(); 7658 } 7659 #endif 7660 7661 /* 7662 * XXX: maybe This function is called after INBOUND IPsec processing. 7663 * 7664 * Special check for tunnel-mode packets. 7665 * We must make some checks for consistency between inner and outer IP header. 7666 * 7667 * xxx more checks to be provided 7668 */ 7669 int 7670 key_checktunnelsanity(struct secasvar *sav, u_int family, caddr_t src, 7671 caddr_t dst) 7672 { 7673 IPSEC_ASSERT(sav->sah != NULL, ("null SA header")); 7674 7675 /* XXX: check inner IP header */ 7676 7677 return 1; 7678 } 7679 7680 /* record data transfer on SA, and update timestamps */ 7681 void 7682 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m) 7683 { 7684 IPSEC_ASSERT(sav != NULL, ("Null secasvar")); 7685 IPSEC_ASSERT(m != NULL, ("Null mbuf")); 7686 if (!sav->lft_c) 7687 return; 7688 7689 /* 7690 * XXX Currently, there is a difference of bytes size 7691 * between inbound and outbound processing. 7692 */ 7693 sav->lft_c->bytes += m->m_pkthdr.len; 7694 /* to check bytes lifetime is done in key_timehandler(). */ 7695 7696 /* 7697 * We use the number of packets as the unit of 7698 * allocations. We increment the variable 7699 * whenever {esp,ah}_{in,out}put is called. 7700 */ 7701 sav->lft_c->allocations++; 7702 /* XXX check for expires? */ 7703 7704 /* 7705 * NOTE: We record CURRENT usetime by using wall clock, 7706 * in seconds. HARD and SOFT lifetime are measured by the time 7707 * difference (again in seconds) from usetime. 7708 * 7709 * usetime 7710 * v expire expire 7711 * -----+-----+--------+---> t 7712 * <--------------> HARD 7713 * <-----> SOFT 7714 */ 7715 sav->lft_c->usetime = time_second; 7716 /* XXX check for expires? */ 7717 7718 return; 7719 } 7720 7721 static void 7722 key_sa_chgstate(struct secasvar *sav, u_int8_t state) 7723 { 7724 IPSEC_ASSERT(sav != NULL, ("NULL sav")); 7725 SAHTREE_LOCK_ASSERT(); 7726 7727 if (sav->state != state) { 7728 if (__LIST_CHAINED(sav)) 7729 LIST_REMOVE(sav, chain); 7730 sav->state = state; 7731 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain); 7732 } 7733 } 7734 7735 void 7736 key_sa_stir_iv(struct secasvar *sav) 7737 { 7738 7739 IPSEC_ASSERT(sav->iv != NULL, ("null IV")); 7740 key_randomfill(sav->iv, sav->ivlen); 7741 } 7742 7743 /* 7744 * Take one of the kernel's security keys and convert it into a PF_KEY 7745 * structure within an mbuf, suitable for sending up to a waiting 7746 * application in user land. 7747 * 7748 * IN: 7749 * src: A pointer to a kernel security key. 7750 * exttype: Which type of key this is. Refer to the PF_KEY data structures. 7751 * OUT: 7752 * a valid mbuf or NULL indicating an error 7753 * 7754 */ 7755 7756 static struct mbuf * 7757 key_setkey(struct seckey *src, u_int16_t exttype) 7758 { 7759 struct mbuf *m; 7760 struct sadb_key *p; 7761 int len; 7762 7763 if (src == NULL) 7764 return NULL; 7765 7766 len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src)); 7767 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 7768 if (m == NULL) 7769 return NULL; 7770 m_align(m, len); 7771 m->m_len = len; 7772 p = mtod(m, struct sadb_key *); 7773 bzero(p, len); 7774 p->sadb_key_len = PFKEY_UNIT64(len); 7775 p->sadb_key_exttype = exttype; 7776 p->sadb_key_bits = src->bits; 7777 bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src)); 7778 7779 return m; 7780 } 7781 7782 /* 7783 * Take one of the kernel's lifetime data structures and convert it 7784 * into a PF_KEY structure within an mbuf, suitable for sending up to 7785 * a waiting application in user land. 7786 * 7787 * IN: 7788 * src: A pointer to a kernel lifetime structure. 7789 * exttype: Which type of lifetime this is. Refer to the PF_KEY 7790 * data structures for more information. 7791 * OUT: 7792 * a valid mbuf or NULL indicating an error 7793 * 7794 */ 7795 7796 static struct mbuf * 7797 key_setlifetime(struct seclifetime *src, u_int16_t exttype) 7798 { 7799 struct mbuf *m = NULL; 7800 struct sadb_lifetime *p; 7801 int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime)); 7802 7803 if (src == NULL) 7804 return NULL; 7805 7806 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 7807 if (m == NULL) 7808 return m; 7809 m_align(m, len); 7810 m->m_len = len; 7811 p = mtod(m, struct sadb_lifetime *); 7812 7813 bzero(p, len); 7814 p->sadb_lifetime_len = PFKEY_UNIT64(len); 7815 p->sadb_lifetime_exttype = exttype; 7816 p->sadb_lifetime_allocations = src->allocations; 7817 p->sadb_lifetime_bytes = src->bytes; 7818 p->sadb_lifetime_addtime = src->addtime; 7819 p->sadb_lifetime_usetime = src->usetime; 7820 7821 return m; 7822 7823 } 7824