1 /* $FreeBSD$ */ 2 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ 3 4 /*- 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * This code is referd to RFC 2367 35 */ 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 #include "opt_ipsec.h" 40 41 #include <sys/types.h> 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/mutex.h> 47 #include <sys/mbuf.h> 48 #include <sys/domain.h> 49 #include <sys/protosw.h> 50 #include <sys/malloc.h> 51 #include <sys/rmlock.h> 52 #include <sys/socket.h> 53 #include <sys/socketvar.h> 54 #include <sys/sysctl.h> 55 #include <sys/errno.h> 56 #include <sys/proc.h> 57 #include <sys/queue.h> 58 #include <sys/refcount.h> 59 #include <sys/syslog.h> 60 61 #include <net/if.h> 62 #include <net/if_var.h> 63 #include <net/vnet.h> 64 #include <net/raw_cb.h> 65 66 #include <netinet/in.h> 67 #include <netinet/in_systm.h> 68 #include <netinet/ip.h> 69 #include <netinet/in_var.h> 70 71 #ifdef INET6 72 #include <netinet/ip6.h> 73 #include <netinet6/in6_var.h> 74 #include <netinet6/ip6_var.h> 75 #endif /* INET6 */ 76 77 #if defined(INET) || defined(INET6) 78 #include <netinet/in_pcb.h> 79 #endif 80 #ifdef INET6 81 #include <netinet6/in6_pcb.h> 82 #endif /* INET6 */ 83 84 #include <net/pfkeyv2.h> 85 #include <netipsec/keydb.h> 86 #include <netipsec/key.h> 87 #include <netipsec/keysock.h> 88 #include <netipsec/key_debug.h> 89 90 #include <netipsec/ipsec.h> 91 #ifdef INET6 92 #include <netipsec/ipsec6.h> 93 #endif 94 95 #include <netipsec/xform.h> 96 97 #include <machine/stdarg.h> 98 99 /* randomness */ 100 #include <sys/random.h> 101 102 #define FULLMASK 0xff 103 #define _BITS(bytes) ((bytes) << 3) 104 105 /* 106 * Note on SA reference counting: 107 * - SAs that are not in DEAD state will have (total external reference + 1) 108 * following value in reference count field. they cannot be freed and are 109 * referenced from SA header. 110 * - SAs that are in DEAD state will have (total external reference) 111 * in reference count field. they are ready to be freed. reference from 112 * SA header will be removed in key_delsav(), when the reference count 113 * field hits 0 (= no external reference other than from SA header. 114 */ 115 116 VNET_DEFINE(u_int32_t, key_debug_level) = 0; 117 static VNET_DEFINE(u_int, key_spi_trycnt) = 1000; 118 static VNET_DEFINE(u_int32_t, key_spi_minval) = 0x100; 119 static VNET_DEFINE(u_int32_t, key_spi_maxval) = 0x0fffffff; /* XXX */ 120 static VNET_DEFINE(u_int32_t, policy_id) = 0; 121 /*interval to initialize randseed,1(m)*/ 122 static VNET_DEFINE(u_int, key_int_random) = 60; 123 /* interval to expire acquiring, 30(s)*/ 124 static VNET_DEFINE(u_int, key_larval_lifetime) = 30; 125 /* counter for blocking SADB_ACQUIRE.*/ 126 static VNET_DEFINE(int, key_blockacq_count) = 10; 127 /* lifetime for blocking SADB_ACQUIRE.*/ 128 static VNET_DEFINE(int, key_blockacq_lifetime) = 20; 129 /* preferred old sa rather than new sa.*/ 130 static VNET_DEFINE(int, key_preferred_oldsa) = 1; 131 #define V_key_spi_trycnt VNET(key_spi_trycnt) 132 #define V_key_spi_minval VNET(key_spi_minval) 133 #define V_key_spi_maxval VNET(key_spi_maxval) 134 #define V_policy_id VNET(policy_id) 135 #define V_key_int_random VNET(key_int_random) 136 #define V_key_larval_lifetime VNET(key_larval_lifetime) 137 #define V_key_blockacq_count VNET(key_blockacq_count) 138 #define V_key_blockacq_lifetime VNET(key_blockacq_lifetime) 139 #define V_key_preferred_oldsa VNET(key_preferred_oldsa) 140 141 static VNET_DEFINE(u_int32_t, acq_seq) = 0; 142 #define V_acq_seq VNET(acq_seq) 143 144 /* SPD */ 145 static VNET_DEFINE(TAILQ_HEAD(_sptree, secpolicy), sptree[IPSEC_DIR_MAX]); 146 static struct rmlock sptree_lock; 147 #define V_sptree VNET(sptree) 148 #define SPTREE_LOCK_INIT() rm_init(&sptree_lock, "sptree") 149 #define SPTREE_LOCK_DESTROY() rm_destroy(&sptree_lock) 150 #define SPTREE_RLOCK_TRACKER struct rm_priotracker sptree_tracker 151 #define SPTREE_RLOCK() rm_rlock(&sptree_lock, &sptree_tracker) 152 #define SPTREE_RUNLOCK() rm_runlock(&sptree_lock, &sptree_tracker) 153 #define SPTREE_RLOCK_ASSERT() rm_assert(&sptree_lock, RA_RLOCKED) 154 #define SPTREE_WLOCK() rm_wlock(&sptree_lock) 155 #define SPTREE_WUNLOCK() rm_wunlock(&sptree_lock) 156 #define SPTREE_WLOCK_ASSERT() rm_assert(&sptree_lock, RA_WLOCKED) 157 #define SPTREE_UNLOCK_ASSERT() rm_assert(&sptree_lock, RA_UNLOCKED) 158 159 static VNET_DEFINE(LIST_HEAD(_sahtree, secashead), sahtree); /* SAD */ 160 #define V_sahtree VNET(sahtree) 161 static struct mtx sahtree_lock; 162 #define SAHTREE_LOCK_INIT() \ 163 mtx_init(&sahtree_lock, "sahtree", \ 164 "fast ipsec security association database", MTX_DEF) 165 #define SAHTREE_LOCK_DESTROY() mtx_destroy(&sahtree_lock) 166 #define SAHTREE_LOCK() mtx_lock(&sahtree_lock) 167 #define SAHTREE_UNLOCK() mtx_unlock(&sahtree_lock) 168 #define SAHTREE_LOCK_ASSERT() mtx_assert(&sahtree_lock, MA_OWNED) 169 170 /* registed list */ 171 static VNET_DEFINE(LIST_HEAD(_regtree, secreg), regtree[SADB_SATYPE_MAX + 1]); 172 #define V_regtree VNET(regtree) 173 static struct mtx regtree_lock; 174 #define REGTREE_LOCK_INIT() \ 175 mtx_init(®tree_lock, "regtree", "fast ipsec regtree", MTX_DEF) 176 #define REGTREE_LOCK_DESTROY() mtx_destroy(®tree_lock) 177 #define REGTREE_LOCK() mtx_lock(®tree_lock) 178 #define REGTREE_UNLOCK() mtx_unlock(®tree_lock) 179 #define REGTREE_LOCK_ASSERT() mtx_assert(®tree_lock, MA_OWNED) 180 181 static VNET_DEFINE(LIST_HEAD(_acqtree, secacq), acqtree); /* acquiring list */ 182 #define V_acqtree VNET(acqtree) 183 static struct mtx acq_lock; 184 #define ACQ_LOCK_INIT() \ 185 mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF) 186 #define ACQ_LOCK_DESTROY() mtx_destroy(&acq_lock) 187 #define ACQ_LOCK() mtx_lock(&acq_lock) 188 #define ACQ_UNLOCK() mtx_unlock(&acq_lock) 189 #define ACQ_LOCK_ASSERT() mtx_assert(&acq_lock, MA_OWNED) 190 191 /* SP acquiring list */ 192 static VNET_DEFINE(LIST_HEAD(_spacqtree, secspacq), spacqtree); 193 #define V_spacqtree VNET(spacqtree) 194 static struct mtx spacq_lock; 195 #define SPACQ_LOCK_INIT() \ 196 mtx_init(&spacq_lock, "spacqtree", \ 197 "fast ipsec security policy acquire list", MTX_DEF) 198 #define SPACQ_LOCK_DESTROY() mtx_destroy(&spacq_lock) 199 #define SPACQ_LOCK() mtx_lock(&spacq_lock) 200 #define SPACQ_UNLOCK() mtx_unlock(&spacq_lock) 201 #define SPACQ_LOCK_ASSERT() mtx_assert(&spacq_lock, MA_OWNED) 202 203 /* search order for SAs */ 204 static const u_int saorder_state_valid_prefer_old[] = { 205 SADB_SASTATE_DYING, SADB_SASTATE_MATURE, 206 }; 207 static const u_int saorder_state_valid_prefer_new[] = { 208 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 209 }; 210 static const u_int saorder_state_alive[] = { 211 /* except DEAD */ 212 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL 213 }; 214 static const u_int saorder_state_any[] = { 215 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 216 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD 217 }; 218 219 static const int minsize[] = { 220 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 221 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 222 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 223 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 224 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 225 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ 226 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ 227 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ 228 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ 229 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ 230 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ 231 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ 232 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ 233 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ 234 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ 235 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ 236 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 237 0, /* SADB_X_EXT_KMPRIVATE */ 238 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ 239 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 240 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ 241 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ 242 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ 243 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */ 244 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */ 245 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ 246 }; 247 static const int maxsize[] = { 248 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 249 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 250 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 251 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 252 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 253 0, /* SADB_EXT_ADDRESS_SRC */ 254 0, /* SADB_EXT_ADDRESS_DST */ 255 0, /* SADB_EXT_ADDRESS_PROXY */ 256 0, /* SADB_EXT_KEY_AUTH */ 257 0, /* SADB_EXT_KEY_ENCRYPT */ 258 0, /* SADB_EXT_IDENTITY_SRC */ 259 0, /* SADB_EXT_IDENTITY_DST */ 260 0, /* SADB_EXT_SENSITIVITY */ 261 0, /* SADB_EXT_PROPOSAL */ 262 0, /* SADB_EXT_SUPPORTED_AUTH */ 263 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ 264 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 265 0, /* SADB_X_EXT_KMPRIVATE */ 266 0, /* SADB_X_EXT_POLICY */ 267 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 268 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ 269 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ 270 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ 271 0, /* SADB_X_EXT_NAT_T_OAI */ 272 0, /* SADB_X_EXT_NAT_T_OAR */ 273 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ 274 }; 275 276 static VNET_DEFINE(int, ipsec_esp_keymin) = 256; 277 static VNET_DEFINE(int, ipsec_esp_auth) = 0; 278 static VNET_DEFINE(int, ipsec_ah_keymin) = 128; 279 280 #define V_ipsec_esp_keymin VNET(ipsec_esp_keymin) 281 #define V_ipsec_esp_auth VNET(ipsec_esp_auth) 282 #define V_ipsec_ah_keymin VNET(ipsec_ah_keymin) 283 284 #ifdef SYSCTL_DECL 285 SYSCTL_DECL(_net_key); 286 #endif 287 288 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, 289 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_debug_level), 0, ""); 290 291 /* max count of trial for the decision of spi value */ 292 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, 293 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_trycnt), 0, ""); 294 295 /* minimum spi value to allocate automatically. */ 296 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, 297 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_minval), 0, ""); 298 299 /* maximun spi value to allocate automatically. */ 300 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, 301 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_maxval), 0, ""); 302 303 /* interval to initialize randseed */ 304 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, 305 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_int_random), 0, ""); 306 307 /* lifetime for larval SA */ 308 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, 309 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_larval_lifetime), 0, ""); 310 311 /* counter for blocking to send SADB_ACQUIRE to IKEd */ 312 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, 313 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_count), 0, ""); 314 315 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ 316 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, 317 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_lifetime), 0, ""); 318 319 /* ESP auth */ 320 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, 321 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_auth), 0, ""); 322 323 /* minimum ESP key length */ 324 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, 325 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_keymin), 0, ""); 326 327 /* minimum AH key length */ 328 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, 329 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_ah_keymin), 0, ""); 330 331 /* perfered old SA rather than new SA */ 332 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, preferred_oldsa, 333 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_preferred_oldsa), 0, ""); 334 335 #define __LIST_CHAINED(elm) \ 336 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) 337 #define LIST_INSERT_TAIL(head, elm, type, field) \ 338 do {\ 339 struct type *curelm = LIST_FIRST(head); \ 340 if (curelm == NULL) {\ 341 LIST_INSERT_HEAD(head, elm, field); \ 342 } else { \ 343 while (LIST_NEXT(curelm, field)) \ 344 curelm = LIST_NEXT(curelm, field);\ 345 LIST_INSERT_AFTER(curelm, elm, field);\ 346 }\ 347 } while (0) 348 349 #define KEY_CHKSASTATE(head, sav, name) \ 350 do { \ 351 if ((head) != (sav)) { \ 352 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \ 353 (name), (head), (sav))); \ 354 continue; \ 355 } \ 356 } while (0) 357 358 #define KEY_CHKSPDIR(head, sp, name) \ 359 do { \ 360 if ((head) != (sp)) { \ 361 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \ 362 "anyway continue.\n", \ 363 (name), (head), (sp))); \ 364 } \ 365 } while (0) 366 367 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association"); 368 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head"); 369 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy"); 370 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request"); 371 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous"); 372 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire"); 373 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire"); 374 375 /* 376 * set parameters into secpolicyindex buffer. 377 * Must allocate secpolicyindex buffer passed to this function. 378 */ 379 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \ 380 do { \ 381 bzero((idx), sizeof(struct secpolicyindex)); \ 382 (idx)->dir = (_dir); \ 383 (idx)->prefs = (ps); \ 384 (idx)->prefd = (pd); \ 385 (idx)->ul_proto = (ulp); \ 386 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 387 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 388 } while (0) 389 390 /* 391 * set parameters into secasindex buffer. 392 * Must allocate secasindex buffer before calling this function. 393 */ 394 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \ 395 do { \ 396 bzero((idx), sizeof(struct secasindex)); \ 397 (idx)->proto = (p); \ 398 (idx)->mode = (m); \ 399 (idx)->reqid = (r); \ 400 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 401 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 402 } while (0) 403 404 /* key statistics */ 405 struct _keystat { 406 u_long getspi_count; /* the avarage of count to try to get new SPI */ 407 } keystat; 408 409 struct sadb_msghdr { 410 struct sadb_msg *msg; 411 struct sadb_ext *ext[SADB_EXT_MAX + 1]; 412 int extoff[SADB_EXT_MAX + 1]; 413 int extlen[SADB_EXT_MAX + 1]; 414 }; 415 416 #ifndef IPSEC_DEBUG2 417 static struct callout key_timer; 418 #endif 419 420 static struct secasvar *key_allocsa_policy(const struct secasindex *); 421 static void key_freesp_so(struct secpolicy **); 422 static struct secasvar *key_do_allocsa_policy(struct secashead *, u_int); 423 static void key_unlink(struct secpolicy *); 424 static struct secpolicy *key_getsp(struct secpolicyindex *); 425 static struct secpolicy *key_getspbyid(u_int32_t); 426 static u_int32_t key_newreqid(void); 427 static struct mbuf *key_gather_mbuf(struct mbuf *, 428 const struct sadb_msghdr *, int, int, ...); 429 static int key_spdadd(struct socket *, struct mbuf *, 430 const struct sadb_msghdr *); 431 static u_int32_t key_getnewspid(void); 432 static int key_spddelete(struct socket *, struct mbuf *, 433 const struct sadb_msghdr *); 434 static int key_spddelete2(struct socket *, struct mbuf *, 435 const struct sadb_msghdr *); 436 static int key_spdget(struct socket *, struct mbuf *, 437 const struct sadb_msghdr *); 438 static int key_spdflush(struct socket *, struct mbuf *, 439 const struct sadb_msghdr *); 440 static int key_spddump(struct socket *, struct mbuf *, 441 const struct sadb_msghdr *); 442 static struct mbuf *key_setdumpsp(struct secpolicy *, 443 u_int8_t, u_int32_t, u_int32_t); 444 static u_int key_getspreqmsglen(struct secpolicy *); 445 static int key_spdexpire(struct secpolicy *); 446 static struct secashead *key_newsah(struct secasindex *); 447 static void key_delsah(struct secashead *); 448 static struct secasvar *key_newsav(struct mbuf *, 449 const struct sadb_msghdr *, struct secashead *, int *, 450 const char*, int); 451 #define KEY_NEWSAV(m, sadb, sah, e) \ 452 key_newsav(m, sadb, sah, e, __FILE__, __LINE__) 453 static void key_delsav(struct secasvar *); 454 static struct secashead *key_getsah(struct secasindex *); 455 static struct secasvar *key_checkspidup(struct secasindex *, u_int32_t); 456 static struct secasvar *key_getsavbyspi(struct secashead *, u_int32_t); 457 static int key_setsaval(struct secasvar *, struct mbuf *, 458 const struct sadb_msghdr *); 459 static int key_mature(struct secasvar *); 460 static struct mbuf *key_setdumpsa(struct secasvar *, u_int8_t, 461 u_int8_t, u_int32_t, u_int32_t); 462 static struct mbuf *key_setsadbmsg(u_int8_t, u_int16_t, u_int8_t, 463 u_int32_t, pid_t, u_int16_t); 464 static struct mbuf *key_setsadbsa(struct secasvar *); 465 static struct mbuf *key_setsadbaddr(u_int16_t, 466 const struct sockaddr *, u_int8_t, u_int16_t); 467 #ifdef IPSEC_NAT_T 468 static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t); 469 static struct mbuf *key_setsadbxtype(u_int16_t); 470 #endif 471 static void key_porttosaddr(struct sockaddr *, u_int16_t); 472 #define KEY_PORTTOSADDR(saddr, port) \ 473 key_porttosaddr((struct sockaddr *)(saddr), (port)) 474 static struct mbuf *key_setsadbxsa2(u_int8_t, u_int32_t, u_int32_t); 475 static struct mbuf *key_setsadbxpolicy(u_int16_t, u_int8_t, 476 u_int32_t); 477 static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int, 478 struct malloc_type *); 479 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src, 480 struct malloc_type *type); 481 #ifdef INET6 482 static int key_ismyaddr6(struct sockaddr_in6 *); 483 #endif 484 485 /* flags for key_cmpsaidx() */ 486 #define CMP_HEAD 1 /* protocol, addresses. */ 487 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ 488 #define CMP_REQID 3 /* additionally HEAD, reaid. */ 489 #define CMP_EXACTLY 4 /* all elements. */ 490 static int key_cmpsaidx(const struct secasindex *, 491 const struct secasindex *, int); 492 static int key_cmpspidx_exactly(struct secpolicyindex *, 493 struct secpolicyindex *); 494 static int key_cmpspidx_withmask(struct secpolicyindex *, 495 struct secpolicyindex *); 496 static int key_sockaddrcmp(const struct sockaddr *, 497 const struct sockaddr *, int); 498 static int key_bbcmp(const void *, const void *, u_int); 499 static u_int16_t key_satype2proto(u_int8_t); 500 static u_int8_t key_proto2satype(u_int16_t); 501 502 static int key_getspi(struct socket *, struct mbuf *, 503 const struct sadb_msghdr *); 504 static u_int32_t key_do_getnewspi(struct sadb_spirange *, 505 struct secasindex *); 506 static int key_update(struct socket *, struct mbuf *, 507 const struct sadb_msghdr *); 508 #ifdef IPSEC_DOSEQCHECK 509 static struct secasvar *key_getsavbyseq(struct secashead *, u_int32_t); 510 #endif 511 static int key_add(struct socket *, struct mbuf *, 512 const struct sadb_msghdr *); 513 static int key_setident(struct secashead *, struct mbuf *, 514 const struct sadb_msghdr *); 515 static struct mbuf *key_getmsgbuf_x1(struct mbuf *, 516 const struct sadb_msghdr *); 517 static int key_delete(struct socket *, struct mbuf *, 518 const struct sadb_msghdr *); 519 static int key_delete_all(struct socket *, struct mbuf *, 520 const struct sadb_msghdr *, u_int16_t); 521 static int key_get(struct socket *, struct mbuf *, 522 const struct sadb_msghdr *); 523 524 static void key_getcomb_setlifetime(struct sadb_comb *); 525 static struct mbuf *key_getcomb_esp(void); 526 static struct mbuf *key_getcomb_ah(void); 527 static struct mbuf *key_getcomb_ipcomp(void); 528 static struct mbuf *key_getprop(const struct secasindex *); 529 530 static int key_acquire(const struct secasindex *, struct secpolicy *); 531 static struct secacq *key_newacq(const struct secasindex *); 532 static struct secacq *key_getacq(const struct secasindex *); 533 static struct secacq *key_getacqbyseq(u_int32_t); 534 static struct secspacq *key_newspacq(struct secpolicyindex *); 535 static struct secspacq *key_getspacq(struct secpolicyindex *); 536 static int key_acquire2(struct socket *, struct mbuf *, 537 const struct sadb_msghdr *); 538 static int key_register(struct socket *, struct mbuf *, 539 const struct sadb_msghdr *); 540 static int key_expire(struct secasvar *); 541 static int key_flush(struct socket *, struct mbuf *, 542 const struct sadb_msghdr *); 543 static int key_dump(struct socket *, struct mbuf *, 544 const struct sadb_msghdr *); 545 static int key_promisc(struct socket *, struct mbuf *, 546 const struct sadb_msghdr *); 547 static int key_senderror(struct socket *, struct mbuf *, int); 548 static int key_validate_ext(const struct sadb_ext *, int); 549 static int key_align(struct mbuf *, struct sadb_msghdr *); 550 static struct mbuf *key_setlifetime(struct seclifetime *src, 551 u_int16_t exttype); 552 static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype); 553 554 #if 0 555 static const char *key_getfqdn(void); 556 static const char *key_getuserfqdn(void); 557 #endif 558 static void key_sa_chgstate(struct secasvar *, u_int8_t); 559 560 static __inline void 561 sa_initref(struct secasvar *sav) 562 { 563 564 refcount_init(&sav->refcnt, 1); 565 } 566 static __inline void 567 sa_addref(struct secasvar *sav) 568 { 569 570 refcount_acquire(&sav->refcnt); 571 IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow")); 572 } 573 static __inline int 574 sa_delref(struct secasvar *sav) 575 { 576 577 IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow")); 578 return (refcount_release(&sav->refcnt)); 579 } 580 581 #define SP_ADDREF(p) refcount_acquire(&(p)->refcnt) 582 #define SP_DELREF(p) refcount_release(&(p)->refcnt) 583 584 /* 585 * Update the refcnt while holding the SPTREE lock. 586 */ 587 void 588 key_addref(struct secpolicy *sp) 589 { 590 591 SP_ADDREF(sp); 592 } 593 594 /* 595 * Return 0 when there are known to be no SP's for the specified 596 * direction. Otherwise return 1. This is used by IPsec code 597 * to optimize performance. 598 */ 599 int 600 key_havesp(u_int dir) 601 { 602 603 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? 604 TAILQ_FIRST(&V_sptree[dir]) != NULL : 1); 605 } 606 607 /* %%% IPsec policy management */ 608 /* 609 * allocating a SP for OUTBOUND or INBOUND packet. 610 * Must call key_freesp() later. 611 * OUT: NULL: not found 612 * others: found and return the pointer. 613 */ 614 struct secpolicy * 615 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, 616 int tag) 617 { 618 SPTREE_RLOCK_TRACKER; 619 struct secpolicy *sp; 620 621 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 622 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 623 ("invalid direction %u", dir)); 624 625 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 626 printf("DP %s from %s:%u\n", __func__, where, tag)); 627 628 /* get a SP entry */ 629 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 630 printf("*** objects\n"); 631 kdebug_secpolicyindex(spidx)); 632 633 SPTREE_RLOCK(); 634 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 635 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 636 printf("*** in SPD\n"); 637 kdebug_secpolicyindex(&sp->spidx)); 638 if (key_cmpspidx_withmask(&sp->spidx, spidx)) 639 goto found; 640 } 641 sp = NULL; 642 found: 643 if (sp) { 644 /* sanity check */ 645 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 646 647 /* found a SPD entry */ 648 sp->lastused = time_second; 649 SP_ADDREF(sp); 650 } 651 SPTREE_RUNLOCK(); 652 653 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 654 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 655 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 656 return sp; 657 } 658 659 /* 660 * allocating a SP for OUTBOUND or INBOUND packet. 661 * Must call key_freesp() later. 662 * OUT: NULL: not found 663 * others: found and return the pointer. 664 */ 665 struct secpolicy * 666 key_allocsp2(u_int32_t spi, union sockaddr_union *dst, u_int8_t proto, 667 u_int dir, const char* where, int tag) 668 { 669 SPTREE_RLOCK_TRACKER; 670 struct secpolicy *sp; 671 672 IPSEC_ASSERT(dst != NULL, ("null dst")); 673 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 674 ("invalid direction %u", dir)); 675 676 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 677 printf("DP %s from %s:%u\n", __func__, where, tag)); 678 679 /* get a SP entry */ 680 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 681 printf("*** objects\n"); 682 printf("spi %u proto %u dir %u\n", spi, proto, dir); 683 kdebug_sockaddr(&dst->sa)); 684 685 SPTREE_RLOCK(); 686 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 687 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 688 printf("*** in SPD\n"); 689 kdebug_secpolicyindex(&sp->spidx)); 690 /* compare simple values, then dst address */ 691 if (sp->spidx.ul_proto != proto) 692 continue; 693 /* NB: spi's must exist and match */ 694 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi) 695 continue; 696 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0) 697 goto found; 698 } 699 sp = NULL; 700 found: 701 if (sp) { 702 /* sanity check */ 703 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 704 705 /* found a SPD entry */ 706 sp->lastused = time_second; 707 SP_ADDREF(sp); 708 } 709 SPTREE_RUNLOCK(); 710 711 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 712 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 713 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 714 return sp; 715 } 716 717 #if 0 718 /* 719 * return a policy that matches this particular inbound packet. 720 * XXX slow 721 */ 722 struct secpolicy * 723 key_gettunnel(const struct sockaddr *osrc, 724 const struct sockaddr *odst, 725 const struct sockaddr *isrc, 726 const struct sockaddr *idst, 727 const char* where, int tag) 728 { 729 struct secpolicy *sp; 730 const int dir = IPSEC_DIR_INBOUND; 731 struct ipsecrequest *r1, *r2, *p; 732 struct secpolicyindex spidx; 733 734 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 735 printf("DP %s from %s:%u\n", __func__, where, tag)); 736 737 if (isrc->sa_family != idst->sa_family) { 738 ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.", 739 __func__, isrc->sa_family, idst->sa_family)); 740 sp = NULL; 741 goto done; 742 } 743 744 SPTREE_LOCK(); 745 LIST_FOREACH(sp, &V_sptree[dir], chain) { 746 if (sp->state == IPSEC_SPSTATE_DEAD) 747 continue; 748 749 r1 = r2 = NULL; 750 for (p = sp->req; p; p = p->next) { 751 if (p->saidx.mode != IPSEC_MODE_TUNNEL) 752 continue; 753 754 r1 = r2; 755 r2 = p; 756 757 if (!r1) { 758 /* here we look at address matches only */ 759 spidx = sp->spidx; 760 if (isrc->sa_len > sizeof(spidx.src) || 761 idst->sa_len > sizeof(spidx.dst)) 762 continue; 763 bcopy(isrc, &spidx.src, isrc->sa_len); 764 bcopy(idst, &spidx.dst, idst->sa_len); 765 if (!key_cmpspidx_withmask(&sp->spidx, &spidx)) 766 continue; 767 } else { 768 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) || 769 key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0)) 770 continue; 771 } 772 773 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) || 774 key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0)) 775 continue; 776 777 goto found; 778 } 779 } 780 sp = NULL; 781 found: 782 if (sp) { 783 sp->lastused = time_second; 784 SP_ADDREF(sp); 785 } 786 SPTREE_UNLOCK(); 787 done: 788 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 789 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 790 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 791 return sp; 792 } 793 #endif 794 795 /* 796 * allocating an SA entry for an *OUTBOUND* packet. 797 * checking each request entries in SP, and acquire an SA if need. 798 * OUT: 0: there are valid requests. 799 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. 800 */ 801 int 802 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx) 803 { 804 u_int level; 805 int error; 806 struct secasvar *sav; 807 808 IPSEC_ASSERT(isr != NULL, ("null isr")); 809 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 810 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT || 811 saidx->mode == IPSEC_MODE_TUNNEL, 812 ("unexpected policy %u", saidx->mode)); 813 814 /* 815 * XXX guard against protocol callbacks from the crypto 816 * thread as they reference ipsecrequest.sav which we 817 * temporarily null out below. Need to rethink how we 818 * handle bundled SA's in the callback thread. 819 */ 820 IPSECREQUEST_LOCK_ASSERT(isr); 821 822 /* get current level */ 823 level = ipsec_get_reqlevel(isr); 824 825 /* 826 * We check new SA in the IPsec request because a different 827 * SA may be involved each time this request is checked, either 828 * because new SAs are being configured, or this request is 829 * associated with an unconnected datagram socket, or this request 830 * is associated with a system default policy. 831 * 832 * key_allocsa_policy should allocate the oldest SA available. 833 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt. 834 */ 835 sav = key_allocsa_policy(saidx); 836 if (sav != isr->sav) { 837 /* SA need to be updated. */ 838 if (!IPSECREQUEST_UPGRADE(isr)) { 839 /* Kick everyone off. */ 840 IPSECREQUEST_UNLOCK(isr); 841 IPSECREQUEST_WLOCK(isr); 842 } 843 if (isr->sav != NULL) 844 KEY_FREESAV(&isr->sav); 845 isr->sav = sav; 846 IPSECREQUEST_DOWNGRADE(isr); 847 } else if (sav != NULL) 848 KEY_FREESAV(&sav); 849 850 /* When there is SA. */ 851 if (isr->sav != NULL) { 852 if (isr->sav->state != SADB_SASTATE_MATURE && 853 isr->sav->state != SADB_SASTATE_DYING) 854 return EINVAL; 855 return 0; 856 } 857 858 /* there is no SA */ 859 error = key_acquire(saidx, isr->sp); 860 if (error != 0) { 861 /* XXX What should I do ? */ 862 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 863 __func__, error)); 864 return error; 865 } 866 867 if (level != IPSEC_LEVEL_REQUIRE) { 868 /* XXX sigh, the interface to this routine is botched */ 869 IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA")); 870 return 0; 871 } else { 872 return ENOENT; 873 } 874 } 875 876 /* 877 * allocating a SA for policy entry from SAD. 878 * NOTE: searching SAD of aliving state. 879 * OUT: NULL: not found. 880 * others: found and return the pointer. 881 */ 882 static struct secasvar * 883 key_allocsa_policy(const struct secasindex *saidx) 884 { 885 #define N(a) _ARRAYLEN(a) 886 struct secashead *sah; 887 struct secasvar *sav; 888 u_int stateidx, arraysize; 889 const u_int *state_valid; 890 891 state_valid = NULL; /* silence gcc */ 892 arraysize = 0; /* silence gcc */ 893 894 SAHTREE_LOCK(); 895 LIST_FOREACH(sah, &V_sahtree, chain) { 896 if (sah->state == SADB_SASTATE_DEAD) 897 continue; 898 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) { 899 if (V_key_preferred_oldsa) { 900 state_valid = saorder_state_valid_prefer_old; 901 arraysize = N(saorder_state_valid_prefer_old); 902 } else { 903 state_valid = saorder_state_valid_prefer_new; 904 arraysize = N(saorder_state_valid_prefer_new); 905 } 906 break; 907 } 908 } 909 SAHTREE_UNLOCK(); 910 if (sah == NULL) 911 return NULL; 912 913 /* search valid state */ 914 for (stateidx = 0; stateidx < arraysize; stateidx++) { 915 sav = key_do_allocsa_policy(sah, state_valid[stateidx]); 916 if (sav != NULL) 917 return sav; 918 } 919 920 return NULL; 921 #undef N 922 } 923 924 /* 925 * searching SAD with direction, protocol, mode and state. 926 * called by key_allocsa_policy(). 927 * OUT: 928 * NULL : not found 929 * others : found, pointer to a SA. 930 */ 931 static struct secasvar * 932 key_do_allocsa_policy(struct secashead *sah, u_int state) 933 { 934 struct secasvar *sav, *nextsav, *candidate, *d; 935 936 /* initilize */ 937 candidate = NULL; 938 939 SAHTREE_LOCK(); 940 for (sav = LIST_FIRST(&sah->savtree[state]); 941 sav != NULL; 942 sav = nextsav) { 943 944 nextsav = LIST_NEXT(sav, chain); 945 946 /* sanity check */ 947 KEY_CHKSASTATE(sav->state, state, __func__); 948 949 /* initialize */ 950 if (candidate == NULL) { 951 candidate = sav; 952 continue; 953 } 954 955 /* Which SA is the better ? */ 956 957 IPSEC_ASSERT(candidate->lft_c != NULL, 958 ("null candidate lifetime")); 959 IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime")); 960 961 /* What the best method is to compare ? */ 962 if (V_key_preferred_oldsa) { 963 if (candidate->lft_c->addtime > 964 sav->lft_c->addtime) { 965 candidate = sav; 966 } 967 continue; 968 /*NOTREACHED*/ 969 } 970 971 /* preferred new sa rather than old sa */ 972 if (candidate->lft_c->addtime < 973 sav->lft_c->addtime) { 974 d = candidate; 975 candidate = sav; 976 } else 977 d = sav; 978 979 /* 980 * prepared to delete the SA when there is more 981 * suitable candidate and the lifetime of the SA is not 982 * permanent. 983 */ 984 if (d->lft_h->addtime != 0) { 985 struct mbuf *m, *result; 986 u_int8_t satype; 987 988 key_sa_chgstate(d, SADB_SASTATE_DEAD); 989 990 IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count")); 991 992 satype = key_proto2satype(d->sah->saidx.proto); 993 if (satype == 0) 994 goto msgfail; 995 996 m = key_setsadbmsg(SADB_DELETE, 0, 997 satype, 0, 0, d->refcnt - 1); 998 if (!m) 999 goto msgfail; 1000 result = m; 1001 1002 /* set sadb_address for saidx's. */ 1003 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 1004 &d->sah->saidx.src.sa, 1005 d->sah->saidx.src.sa.sa_len << 3, 1006 IPSEC_ULPROTO_ANY); 1007 if (!m) 1008 goto msgfail; 1009 m_cat(result, m); 1010 1011 /* set sadb_address for saidx's. */ 1012 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 1013 &d->sah->saidx.dst.sa, 1014 d->sah->saidx.dst.sa.sa_len << 3, 1015 IPSEC_ULPROTO_ANY); 1016 if (!m) 1017 goto msgfail; 1018 m_cat(result, m); 1019 1020 /* create SA extension */ 1021 m = key_setsadbsa(d); 1022 if (!m) 1023 goto msgfail; 1024 m_cat(result, m); 1025 1026 if (result->m_len < sizeof(struct sadb_msg)) { 1027 result = m_pullup(result, 1028 sizeof(struct sadb_msg)); 1029 if (result == NULL) 1030 goto msgfail; 1031 } 1032 1033 result->m_pkthdr.len = 0; 1034 for (m = result; m; m = m->m_next) 1035 result->m_pkthdr.len += m->m_len; 1036 mtod(result, struct sadb_msg *)->sadb_msg_len = 1037 PFKEY_UNIT64(result->m_pkthdr.len); 1038 1039 if (key_sendup_mbuf(NULL, result, 1040 KEY_SENDUP_REGISTERED)) 1041 goto msgfail; 1042 msgfail: 1043 KEY_FREESAV(&d); 1044 } 1045 } 1046 if (candidate) { 1047 sa_addref(candidate); 1048 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1049 printf("DP %s cause refcnt++:%d SA:%p\n", 1050 __func__, candidate->refcnt, candidate)); 1051 } 1052 SAHTREE_UNLOCK(); 1053 1054 return candidate; 1055 } 1056 1057 /* 1058 * allocating a usable SA entry for a *INBOUND* packet. 1059 * Must call key_freesav() later. 1060 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). 1061 * NULL: not found, or error occured. 1062 * 1063 * In the comparison, no source address is used--for RFC2401 conformance. 1064 * To quote, from section 4.1: 1065 * A security association is uniquely identified by a triple consisting 1066 * of a Security Parameter Index (SPI), an IP Destination Address, and a 1067 * security protocol (AH or ESP) identifier. 1068 * Note that, however, we do need to keep source address in IPsec SA. 1069 * IKE specification and PF_KEY specification do assume that we 1070 * keep source address in IPsec SA. We see a tricky situation here. 1071 */ 1072 struct secasvar * 1073 key_allocsa(union sockaddr_union *dst, u_int proto, u_int32_t spi, 1074 const char* where, int tag) 1075 { 1076 struct secashead *sah; 1077 struct secasvar *sav; 1078 u_int stateidx, arraysize, state; 1079 const u_int *saorder_state_valid; 1080 #ifdef IPSEC_NAT_T 1081 int natt_chkport; 1082 #endif 1083 1084 IPSEC_ASSERT(dst != NULL, ("null dst address")); 1085 1086 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1087 printf("DP %s from %s:%u\n", __func__, where, tag)); 1088 1089 #ifdef IPSEC_NAT_T 1090 natt_chkport = (dst->sa.sa_family == AF_INET && 1091 dst->sa.sa_len == sizeof(struct sockaddr_in) && 1092 dst->sin.sin_port != 0); 1093 #endif 1094 1095 /* 1096 * searching SAD. 1097 * XXX: to be checked internal IP header somewhere. Also when 1098 * IPsec tunnel packet is received. But ESP tunnel mode is 1099 * encrypted so we can't check internal IP header. 1100 */ 1101 SAHTREE_LOCK(); 1102 if (V_key_preferred_oldsa) { 1103 saorder_state_valid = saorder_state_valid_prefer_old; 1104 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); 1105 } else { 1106 saorder_state_valid = saorder_state_valid_prefer_new; 1107 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); 1108 } 1109 LIST_FOREACH(sah, &V_sahtree, chain) { 1110 int checkport; 1111 1112 /* search valid state */ 1113 for (stateidx = 0; stateidx < arraysize; stateidx++) { 1114 state = saorder_state_valid[stateidx]; 1115 LIST_FOREACH(sav, &sah->savtree[state], chain) { 1116 /* sanity check */ 1117 KEY_CHKSASTATE(sav->state, state, __func__); 1118 /* do not return entries w/ unusable state */ 1119 if (sav->state != SADB_SASTATE_MATURE && 1120 sav->state != SADB_SASTATE_DYING) 1121 continue; 1122 if (proto != sav->sah->saidx.proto) 1123 continue; 1124 if (spi != sav->spi) 1125 continue; 1126 checkport = 0; 1127 #ifdef IPSEC_NAT_T 1128 /* 1129 * Really only check ports when this is a NAT-T 1130 * SA. Otherwise other lookups providing ports 1131 * might suffer. 1132 */ 1133 if (sav->natt_type && natt_chkport) 1134 checkport = 1; 1135 #endif 1136 #if 0 /* don't check src */ 1137 /* check src address */ 1138 if (key_sockaddrcmp(&src->sa, 1139 &sav->sah->saidx.src.sa, checkport) != 0) 1140 continue; 1141 #endif 1142 /* check dst address */ 1143 if (key_sockaddrcmp(&dst->sa, 1144 &sav->sah->saidx.dst.sa, checkport) != 0) 1145 continue; 1146 sa_addref(sav); 1147 goto done; 1148 } 1149 } 1150 } 1151 sav = NULL; 1152 done: 1153 SAHTREE_UNLOCK(); 1154 1155 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1156 printf("DP %s return SA:%p; refcnt %u\n", __func__, 1157 sav, sav ? sav->refcnt : 0)); 1158 return sav; 1159 } 1160 1161 /* 1162 * Must be called after calling key_allocsp(). 1163 * For both the packet without socket and key_freeso(). 1164 */ 1165 void 1166 _key_freesp(struct secpolicy **spp, const char* where, int tag) 1167 { 1168 struct ipsecrequest *isr, *nextisr; 1169 struct secpolicy *sp = *spp; 1170 1171 IPSEC_ASSERT(sp != NULL, ("null sp")); 1172 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1173 printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n", 1174 __func__, sp, sp->id, where, tag, sp->refcnt)); 1175 1176 if (SP_DELREF(sp) == 0) 1177 return; 1178 *spp = NULL; 1179 for (isr = sp->req; isr != NULL; isr = nextisr) { 1180 if (isr->sav != NULL) { 1181 KEY_FREESAV(&isr->sav); 1182 isr->sav = NULL; 1183 } 1184 nextisr = isr->next; 1185 ipsec_delisr(isr); 1186 } 1187 free(sp, M_IPSEC_SP); 1188 } 1189 1190 static void 1191 key_unlink(struct secpolicy *sp) 1192 { 1193 1194 IPSEC_ASSERT(sp != NULL, ("null sp")); 1195 IPSEC_ASSERT(sp->spidx.dir == IPSEC_DIR_INBOUND || 1196 sp->spidx.dir == IPSEC_DIR_OUTBOUND, 1197 ("invalid direction %u", sp->spidx.dir)); 1198 SPTREE_UNLOCK_ASSERT(); 1199 1200 SPTREE_WLOCK(); 1201 if (sp->state == IPSEC_SPSTATE_DEAD) { 1202 SPTREE_WUNLOCK(); 1203 return; 1204 } 1205 sp->state = IPSEC_SPSTATE_DEAD; 1206 TAILQ_REMOVE(&V_sptree[sp->spidx.dir], sp, chain); 1207 SPTREE_WUNLOCK(); 1208 KEY_FREESP(&sp); 1209 } 1210 1211 /* 1212 * Must be called after calling key_allocsp(). 1213 * For the packet with socket. 1214 */ 1215 void 1216 key_freeso(struct socket *so) 1217 { 1218 IPSEC_ASSERT(so != NULL, ("null so")); 1219 1220 switch (so->so_proto->pr_domain->dom_family) { 1221 #if defined(INET) || defined(INET6) 1222 #ifdef INET 1223 case PF_INET: 1224 #endif 1225 #ifdef INET6 1226 case PF_INET6: 1227 #endif 1228 { 1229 struct inpcb *pcb = sotoinpcb(so); 1230 1231 /* Does it have a PCB ? */ 1232 if (pcb == NULL) 1233 return; 1234 key_freesp_so(&pcb->inp_sp->sp_in); 1235 key_freesp_so(&pcb->inp_sp->sp_out); 1236 } 1237 break; 1238 #endif /* INET || INET6 */ 1239 default: 1240 ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n", 1241 __func__, so->so_proto->pr_domain->dom_family)); 1242 return; 1243 } 1244 } 1245 1246 static void 1247 key_freesp_so(struct secpolicy **sp) 1248 { 1249 IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp")); 1250 1251 if ((*sp)->policy == IPSEC_POLICY_ENTRUST || 1252 (*sp)->policy == IPSEC_POLICY_BYPASS) 1253 return; 1254 1255 IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC, 1256 ("invalid policy %u", (*sp)->policy)); 1257 KEY_FREESP(sp); 1258 } 1259 1260 void 1261 key_addrefsa(struct secasvar *sav, const char* where, int tag) 1262 { 1263 1264 IPSEC_ASSERT(sav != NULL, ("null sav")); 1265 IPSEC_ASSERT(sav->refcnt > 0, ("refcount must exist")); 1266 1267 sa_addref(sav); 1268 } 1269 1270 /* 1271 * Must be called after calling key_allocsa(). 1272 * This function is called by key_freesp() to free some SA allocated 1273 * for a policy. 1274 */ 1275 void 1276 key_freesav(struct secasvar **psav, const char* where, int tag) 1277 { 1278 struct secasvar *sav = *psav; 1279 1280 IPSEC_ASSERT(sav != NULL, ("null sav")); 1281 1282 if (sa_delref(sav)) { 1283 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1284 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1285 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1286 *psav = NULL; 1287 key_delsav(sav); 1288 } else { 1289 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1290 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1291 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1292 } 1293 } 1294 1295 /* %%% SPD management */ 1296 /* 1297 * search SPD 1298 * OUT: NULL : not found 1299 * others : found, pointer to a SP. 1300 */ 1301 static struct secpolicy * 1302 key_getsp(struct secpolicyindex *spidx) 1303 { 1304 SPTREE_RLOCK_TRACKER; 1305 struct secpolicy *sp; 1306 1307 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 1308 1309 SPTREE_RLOCK(); 1310 TAILQ_FOREACH(sp, &V_sptree[spidx->dir], chain) { 1311 if (key_cmpspidx_exactly(spidx, &sp->spidx)) { 1312 SP_ADDREF(sp); 1313 break; 1314 } 1315 } 1316 SPTREE_RUNLOCK(); 1317 1318 return sp; 1319 } 1320 1321 /* 1322 * get SP by index. 1323 * OUT: NULL : not found 1324 * others : found, pointer to a SP. 1325 */ 1326 static struct secpolicy * 1327 key_getspbyid(u_int32_t id) 1328 { 1329 SPTREE_RLOCK_TRACKER; 1330 struct secpolicy *sp; 1331 1332 SPTREE_RLOCK(); 1333 TAILQ_FOREACH(sp, &V_sptree[IPSEC_DIR_INBOUND], chain) { 1334 if (sp->id == id) { 1335 SP_ADDREF(sp); 1336 goto done; 1337 } 1338 } 1339 1340 TAILQ_FOREACH(sp, &V_sptree[IPSEC_DIR_OUTBOUND], chain) { 1341 if (sp->id == id) { 1342 SP_ADDREF(sp); 1343 goto done; 1344 } 1345 } 1346 done: 1347 SPTREE_RUNLOCK(); 1348 1349 return sp; 1350 } 1351 1352 struct secpolicy * 1353 key_newsp(const char* where, int tag) 1354 { 1355 struct secpolicy *newsp = NULL; 1356 1357 newsp = (struct secpolicy *) 1358 malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO); 1359 if (newsp) 1360 refcount_init(&newsp->refcnt, 1); 1361 1362 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1363 printf("DP %s from %s:%u return SP:%p\n", __func__, 1364 where, tag, newsp)); 1365 return newsp; 1366 } 1367 1368 /* 1369 * create secpolicy structure from sadb_x_policy structure. 1370 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, 1371 * so must be set properly later. 1372 */ 1373 struct secpolicy * 1374 key_msg2sp(struct sadb_x_policy *xpl0, size_t len, int *error) 1375 { 1376 struct secpolicy *newsp; 1377 1378 IPSEC_ASSERT(xpl0 != NULL, ("null xpl0")); 1379 IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len)); 1380 1381 if (len != PFKEY_EXTLEN(xpl0)) { 1382 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__)); 1383 *error = EINVAL; 1384 return NULL; 1385 } 1386 1387 if ((newsp = KEY_NEWSP()) == NULL) { 1388 *error = ENOBUFS; 1389 return NULL; 1390 } 1391 1392 newsp->spidx.dir = xpl0->sadb_x_policy_dir; 1393 newsp->policy = xpl0->sadb_x_policy_type; 1394 1395 /* check policy */ 1396 switch (xpl0->sadb_x_policy_type) { 1397 case IPSEC_POLICY_DISCARD: 1398 case IPSEC_POLICY_NONE: 1399 case IPSEC_POLICY_ENTRUST: 1400 case IPSEC_POLICY_BYPASS: 1401 newsp->req = NULL; 1402 break; 1403 1404 case IPSEC_POLICY_IPSEC: 1405 { 1406 int tlen; 1407 struct sadb_x_ipsecrequest *xisr; 1408 struct ipsecrequest **p_isr = &newsp->req; 1409 1410 /* validity check */ 1411 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { 1412 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", 1413 __func__)); 1414 KEY_FREESP(&newsp); 1415 *error = EINVAL; 1416 return NULL; 1417 } 1418 1419 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); 1420 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1); 1421 1422 while (tlen > 0) { 1423 /* length check */ 1424 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { 1425 ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest " 1426 "length.\n", __func__)); 1427 KEY_FREESP(&newsp); 1428 *error = EINVAL; 1429 return NULL; 1430 } 1431 1432 /* allocate request buffer */ 1433 /* NB: data structure is zero'd */ 1434 *p_isr = ipsec_newisr(); 1435 if ((*p_isr) == NULL) { 1436 ipseclog((LOG_DEBUG, 1437 "%s: No more memory.\n", __func__)); 1438 KEY_FREESP(&newsp); 1439 *error = ENOBUFS; 1440 return NULL; 1441 } 1442 1443 /* set values */ 1444 switch (xisr->sadb_x_ipsecrequest_proto) { 1445 case IPPROTO_ESP: 1446 case IPPROTO_AH: 1447 case IPPROTO_IPCOMP: 1448 break; 1449 default: 1450 ipseclog((LOG_DEBUG, 1451 "%s: invalid proto type=%u\n", __func__, 1452 xisr->sadb_x_ipsecrequest_proto)); 1453 KEY_FREESP(&newsp); 1454 *error = EPROTONOSUPPORT; 1455 return NULL; 1456 } 1457 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; 1458 1459 switch (xisr->sadb_x_ipsecrequest_mode) { 1460 case IPSEC_MODE_TRANSPORT: 1461 case IPSEC_MODE_TUNNEL: 1462 break; 1463 case IPSEC_MODE_ANY: 1464 default: 1465 ipseclog((LOG_DEBUG, 1466 "%s: invalid mode=%u\n", __func__, 1467 xisr->sadb_x_ipsecrequest_mode)); 1468 KEY_FREESP(&newsp); 1469 *error = EINVAL; 1470 return NULL; 1471 } 1472 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; 1473 1474 switch (xisr->sadb_x_ipsecrequest_level) { 1475 case IPSEC_LEVEL_DEFAULT: 1476 case IPSEC_LEVEL_USE: 1477 case IPSEC_LEVEL_REQUIRE: 1478 break; 1479 case IPSEC_LEVEL_UNIQUE: 1480 /* validity check */ 1481 /* 1482 * If range violation of reqid, kernel will 1483 * update it, don't refuse it. 1484 */ 1485 if (xisr->sadb_x_ipsecrequest_reqid 1486 > IPSEC_MANUAL_REQID_MAX) { 1487 ipseclog((LOG_DEBUG, 1488 "%s: reqid=%d range " 1489 "violation, updated by kernel.\n", 1490 __func__, 1491 xisr->sadb_x_ipsecrequest_reqid)); 1492 xisr->sadb_x_ipsecrequest_reqid = 0; 1493 } 1494 1495 /* allocate new reqid id if reqid is zero. */ 1496 if (xisr->sadb_x_ipsecrequest_reqid == 0) { 1497 u_int32_t reqid; 1498 if ((reqid = key_newreqid()) == 0) { 1499 KEY_FREESP(&newsp); 1500 *error = ENOBUFS; 1501 return NULL; 1502 } 1503 (*p_isr)->saidx.reqid = reqid; 1504 xisr->sadb_x_ipsecrequest_reqid = reqid; 1505 } else { 1506 /* set it for manual keying. */ 1507 (*p_isr)->saidx.reqid = 1508 xisr->sadb_x_ipsecrequest_reqid; 1509 } 1510 break; 1511 1512 default: 1513 ipseclog((LOG_DEBUG, "%s: invalid level=%u\n", 1514 __func__, 1515 xisr->sadb_x_ipsecrequest_level)); 1516 KEY_FREESP(&newsp); 1517 *error = EINVAL; 1518 return NULL; 1519 } 1520 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; 1521 1522 /* set IP addresses if there */ 1523 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { 1524 struct sockaddr *paddr; 1525 1526 paddr = (struct sockaddr *)(xisr + 1); 1527 1528 /* validity check */ 1529 if (paddr->sa_len 1530 > sizeof((*p_isr)->saidx.src)) { 1531 ipseclog((LOG_DEBUG, "%s: invalid " 1532 "request address length.\n", 1533 __func__)); 1534 KEY_FREESP(&newsp); 1535 *error = EINVAL; 1536 return NULL; 1537 } 1538 bcopy(paddr, &(*p_isr)->saidx.src, 1539 paddr->sa_len); 1540 1541 paddr = (struct sockaddr *)((caddr_t)paddr 1542 + paddr->sa_len); 1543 1544 /* validity check */ 1545 if (paddr->sa_len 1546 > sizeof((*p_isr)->saidx.dst)) { 1547 ipseclog((LOG_DEBUG, "%s: invalid " 1548 "request address length.\n", 1549 __func__)); 1550 KEY_FREESP(&newsp); 1551 *error = EINVAL; 1552 return NULL; 1553 } 1554 bcopy(paddr, &(*p_isr)->saidx.dst, 1555 paddr->sa_len); 1556 } 1557 1558 (*p_isr)->sp = newsp; 1559 1560 /* initialization for the next. */ 1561 p_isr = &(*p_isr)->next; 1562 tlen -= xisr->sadb_x_ipsecrequest_len; 1563 1564 /* validity check */ 1565 if (tlen < 0) { 1566 ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n", 1567 __func__)); 1568 KEY_FREESP(&newsp); 1569 *error = EINVAL; 1570 return NULL; 1571 } 1572 1573 xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr 1574 + xisr->sadb_x_ipsecrequest_len); 1575 } 1576 } 1577 break; 1578 default: 1579 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); 1580 KEY_FREESP(&newsp); 1581 *error = EINVAL; 1582 return NULL; 1583 } 1584 1585 *error = 0; 1586 return newsp; 1587 } 1588 1589 static u_int32_t 1590 key_newreqid() 1591 { 1592 static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 1593 1594 auto_reqid = (auto_reqid == ~0 1595 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); 1596 1597 /* XXX should be unique check */ 1598 1599 return auto_reqid; 1600 } 1601 1602 /* 1603 * copy secpolicy struct to sadb_x_policy structure indicated. 1604 */ 1605 struct mbuf * 1606 key_sp2msg(struct secpolicy *sp) 1607 { 1608 struct sadb_x_policy *xpl; 1609 int tlen; 1610 caddr_t p; 1611 struct mbuf *m; 1612 1613 IPSEC_ASSERT(sp != NULL, ("null policy")); 1614 1615 tlen = key_getspreqmsglen(sp); 1616 1617 m = m_get2(tlen, M_NOWAIT, MT_DATA, 0); 1618 if (m == NULL) 1619 return (NULL); 1620 m_align(m, tlen); 1621 m->m_len = tlen; 1622 xpl = mtod(m, struct sadb_x_policy *); 1623 bzero(xpl, tlen); 1624 1625 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen); 1626 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 1627 xpl->sadb_x_policy_type = sp->policy; 1628 xpl->sadb_x_policy_dir = sp->spidx.dir; 1629 xpl->sadb_x_policy_id = sp->id; 1630 p = (caddr_t)xpl + sizeof(*xpl); 1631 1632 /* if is the policy for ipsec ? */ 1633 if (sp->policy == IPSEC_POLICY_IPSEC) { 1634 struct sadb_x_ipsecrequest *xisr; 1635 struct ipsecrequest *isr; 1636 1637 for (isr = sp->req; isr != NULL; isr = isr->next) { 1638 1639 xisr = (struct sadb_x_ipsecrequest *)p; 1640 1641 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; 1642 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; 1643 xisr->sadb_x_ipsecrequest_level = isr->level; 1644 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; 1645 1646 p += sizeof(*xisr); 1647 bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len); 1648 p += isr->saidx.src.sa.sa_len; 1649 bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len); 1650 p += isr->saidx.src.sa.sa_len; 1651 1652 xisr->sadb_x_ipsecrequest_len = 1653 PFKEY_ALIGN8(sizeof(*xisr) 1654 + isr->saidx.src.sa.sa_len 1655 + isr->saidx.dst.sa.sa_len); 1656 } 1657 } 1658 1659 return m; 1660 } 1661 1662 /* m will not be freed nor modified */ 1663 static struct mbuf * 1664 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, 1665 int ndeep, int nitem, ...) 1666 { 1667 va_list ap; 1668 int idx; 1669 int i; 1670 struct mbuf *result = NULL, *n; 1671 int len; 1672 1673 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1674 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1675 1676 va_start(ap, nitem); 1677 for (i = 0; i < nitem; i++) { 1678 idx = va_arg(ap, int); 1679 if (idx < 0 || idx > SADB_EXT_MAX) 1680 goto fail; 1681 /* don't attempt to pull empty extension */ 1682 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) 1683 continue; 1684 if (idx != SADB_EXT_RESERVED && 1685 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) 1686 continue; 1687 1688 if (idx == SADB_EXT_RESERVED) { 1689 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 1690 1691 IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len)); 1692 1693 MGETHDR(n, M_NOWAIT, MT_DATA); 1694 if (!n) 1695 goto fail; 1696 n->m_len = len; 1697 n->m_next = NULL; 1698 m_copydata(m, 0, sizeof(struct sadb_msg), 1699 mtod(n, caddr_t)); 1700 } else if (i < ndeep) { 1701 len = mhp->extlen[idx]; 1702 n = m_get2(len, M_NOWAIT, MT_DATA, 0); 1703 if (n == NULL) 1704 goto fail; 1705 m_align(n, len); 1706 n->m_len = len; 1707 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], 1708 mtod(n, caddr_t)); 1709 } else { 1710 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], 1711 M_NOWAIT); 1712 } 1713 if (n == NULL) 1714 goto fail; 1715 1716 if (result) 1717 m_cat(result, n); 1718 else 1719 result = n; 1720 } 1721 va_end(ap); 1722 1723 if ((result->m_flags & M_PKTHDR) != 0) { 1724 result->m_pkthdr.len = 0; 1725 for (n = result; n; n = n->m_next) 1726 result->m_pkthdr.len += n->m_len; 1727 } 1728 1729 return result; 1730 1731 fail: 1732 m_freem(result); 1733 va_end(ap); 1734 return NULL; 1735 } 1736 1737 /* 1738 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing 1739 * add an entry to SP database, when received 1740 * <base, address(SD), (lifetime(H),) policy> 1741 * from the user(?). 1742 * Adding to SP database, 1743 * and send 1744 * <base, address(SD), (lifetime(H),) policy> 1745 * to the socket which was send. 1746 * 1747 * SPDADD set a unique policy entry. 1748 * SPDSETIDX like SPDADD without a part of policy requests. 1749 * SPDUPDATE replace a unique policy entry. 1750 * 1751 * m will always be freed. 1752 */ 1753 static int 1754 key_spdadd(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 1755 { 1756 struct sadb_address *src0, *dst0; 1757 struct sadb_x_policy *xpl0, *xpl; 1758 struct sadb_lifetime *lft = NULL; 1759 struct secpolicyindex spidx; 1760 struct secpolicy *newsp; 1761 int error; 1762 1763 IPSEC_ASSERT(so != NULL, ("null socket")); 1764 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1765 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1766 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 1767 1768 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 1769 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 1770 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 1771 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n")); 1772 return key_senderror(so, m, EINVAL); 1773 } 1774 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 1775 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 1776 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 1777 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1778 __func__)); 1779 return key_senderror(so, m, EINVAL); 1780 } 1781 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { 1782 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] 1783 < sizeof(struct sadb_lifetime)) { 1784 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1785 __func__)); 1786 return key_senderror(so, m, EINVAL); 1787 } 1788 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 1789 } 1790 1791 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 1792 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 1793 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 1794 1795 /* 1796 * Note: do not parse SADB_X_EXT_NAT_T_* here: 1797 * we are processing traffic endpoints. 1798 */ 1799 1800 /* make secindex */ 1801 /* XXX boundary check against sa_len */ 1802 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1803 src0 + 1, 1804 dst0 + 1, 1805 src0->sadb_address_prefixlen, 1806 dst0->sadb_address_prefixlen, 1807 src0->sadb_address_proto, 1808 &spidx); 1809 1810 /* checking the direciton. */ 1811 switch (xpl0->sadb_x_policy_dir) { 1812 case IPSEC_DIR_INBOUND: 1813 case IPSEC_DIR_OUTBOUND: 1814 break; 1815 default: 1816 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 1817 mhp->msg->sadb_msg_errno = EINVAL; 1818 return 0; 1819 } 1820 1821 /* check policy */ 1822 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */ 1823 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST 1824 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { 1825 ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__)); 1826 return key_senderror(so, m, EINVAL); 1827 } 1828 1829 /* policy requests are mandatory when action is ipsec. */ 1830 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX 1831 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC 1832 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { 1833 ipseclog((LOG_DEBUG, "%s: some policy requests part required\n", 1834 __func__)); 1835 return key_senderror(so, m, EINVAL); 1836 } 1837 1838 /* 1839 * checking there is SP already or not. 1840 * SPDUPDATE doesn't depend on whether there is a SP or not. 1841 * If the type is either SPDADD or SPDSETIDX AND a SP is found, 1842 * then error. 1843 */ 1844 newsp = key_getsp(&spidx); 1845 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1846 if (newsp) { 1847 key_unlink(newsp); 1848 KEY_FREESP(&newsp); 1849 } 1850 } else { 1851 if (newsp != NULL) { 1852 KEY_FREESP(&newsp); 1853 ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n", 1854 __func__)); 1855 return key_senderror(so, m, EEXIST); 1856 } 1857 } 1858 1859 /* XXX: there is race between key_getsp and key_msg2sp. */ 1860 1861 /* allocation new SP entry */ 1862 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) { 1863 return key_senderror(so, m, error); 1864 } 1865 1866 if ((newsp->id = key_getnewspid()) == 0) { 1867 KEY_FREESP(&newsp); 1868 return key_senderror(so, m, ENOBUFS); 1869 } 1870 1871 /* XXX boundary check against sa_len */ 1872 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1873 src0 + 1, 1874 dst0 + 1, 1875 src0->sadb_address_prefixlen, 1876 dst0->sadb_address_prefixlen, 1877 src0->sadb_address_proto, 1878 &newsp->spidx); 1879 1880 /* sanity check on addr pair */ 1881 if (((struct sockaddr *)(src0 + 1))->sa_family != 1882 ((struct sockaddr *)(dst0+ 1))->sa_family) { 1883 KEY_FREESP(&newsp); 1884 return key_senderror(so, m, EINVAL); 1885 } 1886 if (((struct sockaddr *)(src0 + 1))->sa_len != 1887 ((struct sockaddr *)(dst0+ 1))->sa_len) { 1888 KEY_FREESP(&newsp); 1889 return key_senderror(so, m, EINVAL); 1890 } 1891 #if 1 1892 if (newsp->req && newsp->req->saidx.src.sa.sa_family && 1893 newsp->req->saidx.dst.sa.sa_family) { 1894 if (newsp->req->saidx.src.sa.sa_family != 1895 newsp->req->saidx.dst.sa.sa_family) { 1896 KEY_FREESP(&newsp); 1897 return key_senderror(so, m, EINVAL); 1898 } 1899 } 1900 #endif 1901 1902 newsp->created = time_second; 1903 newsp->lastused = newsp->created; 1904 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; 1905 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; 1906 1907 SPTREE_WLOCK(); 1908 TAILQ_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, chain); 1909 newsp->state = IPSEC_SPSTATE_ALIVE; 1910 SPTREE_WUNLOCK(); 1911 1912 /* delete the entry in spacqtree */ 1913 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1914 struct secspacq *spacq = key_getspacq(&spidx); 1915 if (spacq != NULL) { 1916 /* reset counter in order to deletion by timehandler. */ 1917 spacq->created = time_second; 1918 spacq->count = 0; 1919 SPACQ_UNLOCK(); 1920 } 1921 } 1922 1923 { 1924 struct mbuf *n, *mpolicy; 1925 struct sadb_msg *newmsg; 1926 int off; 1927 1928 /* 1929 * Note: do not send SADB_X_EXT_NAT_T_* here: 1930 * we are sending traffic endpoints. 1931 */ 1932 1933 /* create new sadb_msg to reply. */ 1934 if (lft) { 1935 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, 1936 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, 1937 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1938 } else { 1939 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, 1940 SADB_X_EXT_POLICY, 1941 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1942 } 1943 if (!n) 1944 return key_senderror(so, m, ENOBUFS); 1945 1946 if (n->m_len < sizeof(*newmsg)) { 1947 n = m_pullup(n, sizeof(*newmsg)); 1948 if (!n) 1949 return key_senderror(so, m, ENOBUFS); 1950 } 1951 newmsg = mtod(n, struct sadb_msg *); 1952 newmsg->sadb_msg_errno = 0; 1953 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 1954 1955 off = 0; 1956 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), 1957 sizeof(*xpl), &off); 1958 if (mpolicy == NULL) { 1959 /* n is already freed */ 1960 return key_senderror(so, m, ENOBUFS); 1961 } 1962 xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off); 1963 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { 1964 m_freem(n); 1965 return key_senderror(so, m, EINVAL); 1966 } 1967 xpl->sadb_x_policy_id = newsp->id; 1968 1969 m_freem(m); 1970 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 1971 } 1972 } 1973 1974 /* 1975 * get new policy id. 1976 * OUT: 1977 * 0: failure. 1978 * others: success. 1979 */ 1980 static u_int32_t 1981 key_getnewspid() 1982 { 1983 u_int32_t newid = 0; 1984 int count = V_key_spi_trycnt; /* XXX */ 1985 struct secpolicy *sp; 1986 1987 /* when requesting to allocate spi ranged */ 1988 while (count--) { 1989 newid = (V_policy_id = (V_policy_id == ~0 ? 1 : V_policy_id + 1)); 1990 1991 if ((sp = key_getspbyid(newid)) == NULL) 1992 break; 1993 1994 KEY_FREESP(&sp); 1995 } 1996 1997 if (count == 0 || newid == 0) { 1998 ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n", 1999 __func__)); 2000 return 0; 2001 } 2002 2003 return newid; 2004 } 2005 2006 /* 2007 * SADB_SPDDELETE processing 2008 * receive 2009 * <base, address(SD), policy(*)> 2010 * from the user(?), and set SADB_SASTATE_DEAD, 2011 * and send, 2012 * <base, address(SD), policy(*)> 2013 * to the ikmpd. 2014 * policy(*) including direction of policy. 2015 * 2016 * m will always be freed. 2017 */ 2018 static int 2019 key_spddelete(struct socket *so, struct mbuf *m, 2020 const struct sadb_msghdr *mhp) 2021 { 2022 struct sadb_address *src0, *dst0; 2023 struct sadb_x_policy *xpl0; 2024 struct secpolicyindex spidx; 2025 struct secpolicy *sp; 2026 2027 IPSEC_ASSERT(so != NULL, ("null so")); 2028 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2029 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2030 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2031 2032 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2033 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2034 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2035 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2036 __func__)); 2037 return key_senderror(so, m, EINVAL); 2038 } 2039 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2040 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2041 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2042 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2043 __func__)); 2044 return key_senderror(so, m, EINVAL); 2045 } 2046 2047 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 2048 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 2049 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 2050 2051 /* 2052 * Note: do not parse SADB_X_EXT_NAT_T_* here: 2053 * we are processing traffic endpoints. 2054 */ 2055 2056 /* make secindex */ 2057 /* XXX boundary check against sa_len */ 2058 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 2059 src0 + 1, 2060 dst0 + 1, 2061 src0->sadb_address_prefixlen, 2062 dst0->sadb_address_prefixlen, 2063 src0->sadb_address_proto, 2064 &spidx); 2065 2066 /* checking the direciton. */ 2067 switch (xpl0->sadb_x_policy_dir) { 2068 case IPSEC_DIR_INBOUND: 2069 case IPSEC_DIR_OUTBOUND: 2070 break; 2071 default: 2072 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 2073 return key_senderror(so, m, EINVAL); 2074 } 2075 2076 /* Is there SP in SPD ? */ 2077 if ((sp = key_getsp(&spidx)) == NULL) { 2078 ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__)); 2079 return key_senderror(so, m, EINVAL); 2080 } 2081 2082 /* save policy id to buffer to be returned. */ 2083 xpl0->sadb_x_policy_id = sp->id; 2084 2085 key_unlink(sp); 2086 KEY_FREESP(&sp); 2087 2088 { 2089 struct mbuf *n; 2090 struct sadb_msg *newmsg; 2091 2092 /* 2093 * Note: do not send SADB_X_EXT_NAT_T_* here: 2094 * we are sending traffic endpoints. 2095 */ 2096 2097 /* create new sadb_msg to reply. */ 2098 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 2099 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2100 if (!n) 2101 return key_senderror(so, m, ENOBUFS); 2102 2103 newmsg = mtod(n, struct sadb_msg *); 2104 newmsg->sadb_msg_errno = 0; 2105 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2106 2107 m_freem(m); 2108 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2109 } 2110 } 2111 2112 /* 2113 * SADB_SPDDELETE2 processing 2114 * receive 2115 * <base, policy(*)> 2116 * from the user(?), and set SADB_SASTATE_DEAD, 2117 * and send, 2118 * <base, policy(*)> 2119 * to the ikmpd. 2120 * policy(*) including direction of policy. 2121 * 2122 * m will always be freed. 2123 */ 2124 static int 2125 key_spddelete2(struct socket *so, struct mbuf *m, 2126 const struct sadb_msghdr *mhp) 2127 { 2128 u_int32_t id; 2129 struct secpolicy *sp; 2130 2131 IPSEC_ASSERT(so != NULL, ("null socket")); 2132 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2133 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2134 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2135 2136 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2137 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2138 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); 2139 return key_senderror(so, m, EINVAL); 2140 } 2141 2142 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2143 2144 /* Is there SP in SPD ? */ 2145 if ((sp = key_getspbyid(id)) == NULL) { 2146 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2147 return key_senderror(so, m, EINVAL); 2148 } 2149 2150 key_unlink(sp); 2151 KEY_FREESP(&sp); 2152 2153 { 2154 struct mbuf *n, *nn; 2155 struct sadb_msg *newmsg; 2156 int off, len; 2157 2158 /* create new sadb_msg to reply. */ 2159 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2160 2161 MGETHDR(n, M_NOWAIT, MT_DATA); 2162 if (n && len > MHLEN) { 2163 if (!(MCLGET(n, M_NOWAIT))) { 2164 m_freem(n); 2165 n = NULL; 2166 } 2167 } 2168 if (!n) 2169 return key_senderror(so, m, ENOBUFS); 2170 2171 n->m_len = len; 2172 n->m_next = NULL; 2173 off = 0; 2174 2175 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 2176 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2177 2178 IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)", 2179 off, len)); 2180 2181 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], 2182 mhp->extlen[SADB_X_EXT_POLICY], M_NOWAIT); 2183 if (!n->m_next) { 2184 m_freem(n); 2185 return key_senderror(so, m, ENOBUFS); 2186 } 2187 2188 n->m_pkthdr.len = 0; 2189 for (nn = n; nn; nn = nn->m_next) 2190 n->m_pkthdr.len += nn->m_len; 2191 2192 newmsg = mtod(n, struct sadb_msg *); 2193 newmsg->sadb_msg_errno = 0; 2194 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2195 2196 m_freem(m); 2197 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2198 } 2199 } 2200 2201 /* 2202 * SADB_X_GET processing 2203 * receive 2204 * <base, policy(*)> 2205 * from the user(?), 2206 * and send, 2207 * <base, address(SD), policy> 2208 * to the ikmpd. 2209 * policy(*) including direction of policy. 2210 * 2211 * m will always be freed. 2212 */ 2213 static int 2214 key_spdget(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 2215 { 2216 u_int32_t id; 2217 struct secpolicy *sp; 2218 struct mbuf *n; 2219 2220 IPSEC_ASSERT(so != NULL, ("null socket")); 2221 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2222 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2223 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2224 2225 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2226 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2227 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2228 __func__)); 2229 return key_senderror(so, m, EINVAL); 2230 } 2231 2232 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2233 2234 /* Is there SP in SPD ? */ 2235 if ((sp = key_getspbyid(id)) == NULL) { 2236 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2237 return key_senderror(so, m, ENOENT); 2238 } 2239 2240 n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid); 2241 KEY_FREESP(&sp); 2242 if (n != NULL) { 2243 m_freem(m); 2244 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2245 } else 2246 return key_senderror(so, m, ENOBUFS); 2247 } 2248 2249 /* 2250 * SADB_X_SPDACQUIRE processing. 2251 * Acquire policy and SA(s) for a *OUTBOUND* packet. 2252 * send 2253 * <base, policy(*)> 2254 * to KMD, and expect to receive 2255 * <base> with SADB_X_SPDACQUIRE if error occured, 2256 * or 2257 * <base, policy> 2258 * with SADB_X_SPDUPDATE from KMD by PF_KEY. 2259 * policy(*) is without policy requests. 2260 * 2261 * 0 : succeed 2262 * others: error number 2263 */ 2264 int 2265 key_spdacquire(struct secpolicy *sp) 2266 { 2267 struct mbuf *result = NULL, *m; 2268 struct secspacq *newspacq; 2269 2270 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2271 IPSEC_ASSERT(sp->req == NULL, ("policy exists")); 2272 IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC, 2273 ("policy not IPSEC %u", sp->policy)); 2274 2275 /* Get an entry to check whether sent message or not. */ 2276 newspacq = key_getspacq(&sp->spidx); 2277 if (newspacq != NULL) { 2278 if (V_key_blockacq_count < newspacq->count) { 2279 /* reset counter and do send message. */ 2280 newspacq->count = 0; 2281 } else { 2282 /* increment counter and do nothing. */ 2283 newspacq->count++; 2284 SPACQ_UNLOCK(); 2285 return (0); 2286 } 2287 SPACQ_UNLOCK(); 2288 } else { 2289 /* make new entry for blocking to send SADB_ACQUIRE. */ 2290 newspacq = key_newspacq(&sp->spidx); 2291 if (newspacq == NULL) 2292 return ENOBUFS; 2293 } 2294 2295 /* create new sadb_msg to reply. */ 2296 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); 2297 if (!m) 2298 return ENOBUFS; 2299 2300 result = m; 2301 2302 result->m_pkthdr.len = 0; 2303 for (m = result; m; m = m->m_next) 2304 result->m_pkthdr.len += m->m_len; 2305 2306 mtod(result, struct sadb_msg *)->sadb_msg_len = 2307 PFKEY_UNIT64(result->m_pkthdr.len); 2308 2309 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 2310 } 2311 2312 /* 2313 * SADB_SPDFLUSH processing 2314 * receive 2315 * <base> 2316 * from the user, and free all entries in secpctree. 2317 * and send, 2318 * <base> 2319 * to the user. 2320 * NOTE: what to do is only marking SADB_SASTATE_DEAD. 2321 * 2322 * m will always be freed. 2323 */ 2324 static int 2325 key_spdflush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 2326 { 2327 TAILQ_HEAD(, secpolicy) drainq; 2328 struct sadb_msg *newmsg; 2329 struct secpolicy *sp, *nextsp; 2330 u_int dir; 2331 2332 IPSEC_ASSERT(so != NULL, ("null socket")); 2333 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2334 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2335 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2336 2337 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) 2338 return key_senderror(so, m, EINVAL); 2339 2340 TAILQ_INIT(&drainq); 2341 SPTREE_WLOCK(); 2342 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2343 TAILQ_CONCAT(&drainq, &V_sptree[dir], chain); 2344 } 2345 /* 2346 * We need to set state to DEAD for each policy to be sure, 2347 * that another thread won't try to unlink it. 2348 */ 2349 TAILQ_FOREACH(sp, &drainq, chain) 2350 sp->state = IPSEC_SPSTATE_DEAD; 2351 SPTREE_WUNLOCK(); 2352 sp = TAILQ_FIRST(&drainq); 2353 while (sp != NULL) { 2354 nextsp = TAILQ_NEXT(sp, chain); 2355 KEY_FREESP(&sp); 2356 sp = nextsp; 2357 } 2358 2359 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 2360 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2361 return key_senderror(so, m, ENOBUFS); 2362 } 2363 2364 if (m->m_next) 2365 m_freem(m->m_next); 2366 m->m_next = NULL; 2367 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2368 newmsg = mtod(m, struct sadb_msg *); 2369 newmsg->sadb_msg_errno = 0; 2370 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 2371 2372 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 2373 } 2374 2375 /* 2376 * SADB_SPDDUMP processing 2377 * receive 2378 * <base> 2379 * from the user, and dump all SP leaves 2380 * and send, 2381 * <base> ..... 2382 * to the ikmpd. 2383 * 2384 * m will always be freed. 2385 */ 2386 static int 2387 key_spddump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 2388 { 2389 SPTREE_RLOCK_TRACKER; 2390 struct secpolicy *sp; 2391 int cnt; 2392 u_int dir; 2393 struct mbuf *n; 2394 2395 IPSEC_ASSERT(so != NULL, ("null socket")); 2396 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2397 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2398 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2399 2400 /* search SPD entry and get buffer size. */ 2401 cnt = 0; 2402 SPTREE_RLOCK(); 2403 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2404 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 2405 cnt++; 2406 } 2407 } 2408 2409 if (cnt == 0) { 2410 SPTREE_RUNLOCK(); 2411 return key_senderror(so, m, ENOENT); 2412 } 2413 2414 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2415 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 2416 --cnt; 2417 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, 2418 mhp->msg->sadb_msg_pid); 2419 2420 if (n) 2421 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2422 } 2423 } 2424 2425 SPTREE_RUNLOCK(); 2426 m_freem(m); 2427 return 0; 2428 } 2429 2430 static struct mbuf * 2431 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, 2432 u_int32_t pid) 2433 { 2434 struct mbuf *result = NULL, *m; 2435 struct seclifetime lt; 2436 2437 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt); 2438 if (!m) 2439 goto fail; 2440 result = m; 2441 2442 /* 2443 * Note: do not send SADB_X_EXT_NAT_T_* here: 2444 * we are sending traffic endpoints. 2445 */ 2446 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2447 &sp->spidx.src.sa, sp->spidx.prefs, 2448 sp->spidx.ul_proto); 2449 if (!m) 2450 goto fail; 2451 m_cat(result, m); 2452 2453 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2454 &sp->spidx.dst.sa, sp->spidx.prefd, 2455 sp->spidx.ul_proto); 2456 if (!m) 2457 goto fail; 2458 m_cat(result, m); 2459 2460 m = key_sp2msg(sp); 2461 if (!m) 2462 goto fail; 2463 m_cat(result, m); 2464 2465 if(sp->lifetime){ 2466 lt.addtime=sp->created; 2467 lt.usetime= sp->lastused; 2468 m = key_setlifetime(<, SADB_EXT_LIFETIME_CURRENT); 2469 if (!m) 2470 goto fail; 2471 m_cat(result, m); 2472 2473 lt.addtime=sp->lifetime; 2474 lt.usetime= sp->validtime; 2475 m = key_setlifetime(<, SADB_EXT_LIFETIME_HARD); 2476 if (!m) 2477 goto fail; 2478 m_cat(result, m); 2479 } 2480 2481 if ((result->m_flags & M_PKTHDR) == 0) 2482 goto fail; 2483 2484 if (result->m_len < sizeof(struct sadb_msg)) { 2485 result = m_pullup(result, sizeof(struct sadb_msg)); 2486 if (result == NULL) 2487 goto fail; 2488 } 2489 2490 result->m_pkthdr.len = 0; 2491 for (m = result; m; m = m->m_next) 2492 result->m_pkthdr.len += m->m_len; 2493 2494 mtod(result, struct sadb_msg *)->sadb_msg_len = 2495 PFKEY_UNIT64(result->m_pkthdr.len); 2496 2497 return result; 2498 2499 fail: 2500 m_freem(result); 2501 return NULL; 2502 } 2503 2504 /* 2505 * get PFKEY message length for security policy and request. 2506 */ 2507 static u_int 2508 key_getspreqmsglen(struct secpolicy *sp) 2509 { 2510 u_int tlen; 2511 2512 tlen = sizeof(struct sadb_x_policy); 2513 2514 /* if is the policy for ipsec ? */ 2515 if (sp->policy != IPSEC_POLICY_IPSEC) 2516 return tlen; 2517 2518 /* get length of ipsec requests */ 2519 { 2520 struct ipsecrequest *isr; 2521 int len; 2522 2523 for (isr = sp->req; isr != NULL; isr = isr->next) { 2524 len = sizeof(struct sadb_x_ipsecrequest) 2525 + isr->saidx.src.sa.sa_len 2526 + isr->saidx.dst.sa.sa_len; 2527 2528 tlen += PFKEY_ALIGN8(len); 2529 } 2530 } 2531 2532 return tlen; 2533 } 2534 2535 /* 2536 * SADB_SPDEXPIRE processing 2537 * send 2538 * <base, address(SD), lifetime(CH), policy> 2539 * to KMD by PF_KEY. 2540 * 2541 * OUT: 0 : succeed 2542 * others : error number 2543 */ 2544 static int 2545 key_spdexpire(struct secpolicy *sp) 2546 { 2547 struct mbuf *result = NULL, *m; 2548 int len; 2549 int error = -1; 2550 struct sadb_lifetime *lt; 2551 2552 /* XXX: Why do we lock ? */ 2553 2554 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2555 2556 /* set msg header */ 2557 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0); 2558 if (!m) { 2559 error = ENOBUFS; 2560 goto fail; 2561 } 2562 result = m; 2563 2564 /* create lifetime extension (current and hard) */ 2565 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 2566 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 2567 if (m == NULL) { 2568 error = ENOBUFS; 2569 goto fail; 2570 } 2571 m_align(m, len); 2572 m->m_len = len; 2573 bzero(mtod(m, caddr_t), len); 2574 lt = mtod(m, struct sadb_lifetime *); 2575 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2576 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 2577 lt->sadb_lifetime_allocations = 0; 2578 lt->sadb_lifetime_bytes = 0; 2579 lt->sadb_lifetime_addtime = sp->created; 2580 lt->sadb_lifetime_usetime = sp->lastused; 2581 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 2582 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2583 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 2584 lt->sadb_lifetime_allocations = 0; 2585 lt->sadb_lifetime_bytes = 0; 2586 lt->sadb_lifetime_addtime = sp->lifetime; 2587 lt->sadb_lifetime_usetime = sp->validtime; 2588 m_cat(result, m); 2589 2590 /* 2591 * Note: do not send SADB_X_EXT_NAT_T_* here: 2592 * we are sending traffic endpoints. 2593 */ 2594 2595 /* set sadb_address for source */ 2596 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2597 &sp->spidx.src.sa, 2598 sp->spidx.prefs, sp->spidx.ul_proto); 2599 if (!m) { 2600 error = ENOBUFS; 2601 goto fail; 2602 } 2603 m_cat(result, m); 2604 2605 /* set sadb_address for destination */ 2606 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2607 &sp->spidx.dst.sa, 2608 sp->spidx.prefd, sp->spidx.ul_proto); 2609 if (!m) { 2610 error = ENOBUFS; 2611 goto fail; 2612 } 2613 m_cat(result, m); 2614 2615 /* set secpolicy */ 2616 m = key_sp2msg(sp); 2617 if (!m) { 2618 error = ENOBUFS; 2619 goto fail; 2620 } 2621 m_cat(result, m); 2622 2623 if ((result->m_flags & M_PKTHDR) == 0) { 2624 error = EINVAL; 2625 goto fail; 2626 } 2627 2628 if (result->m_len < sizeof(struct sadb_msg)) { 2629 result = m_pullup(result, sizeof(struct sadb_msg)); 2630 if (result == NULL) { 2631 error = ENOBUFS; 2632 goto fail; 2633 } 2634 } 2635 2636 result->m_pkthdr.len = 0; 2637 for (m = result; m; m = m->m_next) 2638 result->m_pkthdr.len += m->m_len; 2639 2640 mtod(result, struct sadb_msg *)->sadb_msg_len = 2641 PFKEY_UNIT64(result->m_pkthdr.len); 2642 2643 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 2644 2645 fail: 2646 if (result) 2647 m_freem(result); 2648 return error; 2649 } 2650 2651 /* %%% SAD management */ 2652 /* 2653 * allocating a memory for new SA head, and copy from the values of mhp. 2654 * OUT: NULL : failure due to the lack of memory. 2655 * others : pointer to new SA head. 2656 */ 2657 static struct secashead * 2658 key_newsah(struct secasindex *saidx) 2659 { 2660 struct secashead *newsah; 2661 2662 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 2663 2664 newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO); 2665 if (newsah != NULL) { 2666 int i; 2667 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++) 2668 LIST_INIT(&newsah->savtree[i]); 2669 newsah->saidx = *saidx; 2670 2671 /* add to saidxtree */ 2672 newsah->state = SADB_SASTATE_MATURE; 2673 2674 SAHTREE_LOCK(); 2675 LIST_INSERT_HEAD(&V_sahtree, newsah, chain); 2676 SAHTREE_UNLOCK(); 2677 } 2678 return(newsah); 2679 } 2680 2681 /* 2682 * delete SA index and all SA registerd. 2683 */ 2684 static void 2685 key_delsah(struct secashead *sah) 2686 { 2687 struct secasvar *sav, *nextsav; 2688 u_int stateidx; 2689 int zombie = 0; 2690 2691 IPSEC_ASSERT(sah != NULL, ("NULL sah")); 2692 SAHTREE_LOCK_ASSERT(); 2693 2694 /* searching all SA registerd in the secindex. */ 2695 for (stateidx = 0; 2696 stateidx < _ARRAYLEN(saorder_state_any); 2697 stateidx++) { 2698 u_int state = saorder_state_any[stateidx]; 2699 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) { 2700 if (sav->refcnt == 0) { 2701 /* sanity check */ 2702 KEY_CHKSASTATE(state, sav->state, __func__); 2703 /* 2704 * do NOT call KEY_FREESAV here: 2705 * it will only delete the sav if refcnt == 1, 2706 * where we already know that refcnt == 0 2707 */ 2708 key_delsav(sav); 2709 } else { 2710 /* give up to delete this sa */ 2711 zombie++; 2712 } 2713 } 2714 } 2715 if (!zombie) { /* delete only if there are savs */ 2716 /* remove from tree of SA index */ 2717 if (__LIST_CHAINED(sah)) 2718 LIST_REMOVE(sah, chain); 2719 free(sah, M_IPSEC_SAH); 2720 } 2721 } 2722 2723 /* 2724 * allocating a new SA with LARVAL state. key_add() and key_getspi() call, 2725 * and copy the values of mhp into new buffer. 2726 * When SAD message type is GETSPI: 2727 * to set sequence number from acq_seq++, 2728 * to set zero to SPI. 2729 * not to call key_setsava(). 2730 * OUT: NULL : fail 2731 * others : pointer to new secasvar. 2732 * 2733 * does not modify mbuf. does not free mbuf on error. 2734 */ 2735 static struct secasvar * 2736 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp, 2737 struct secashead *sah, int *errp, const char *where, int tag) 2738 { 2739 struct secasvar *newsav; 2740 const struct sadb_sa *xsa; 2741 2742 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2743 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2744 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2745 IPSEC_ASSERT(sah != NULL, ("null secashead")); 2746 2747 newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO); 2748 if (newsav == NULL) { 2749 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2750 *errp = ENOBUFS; 2751 goto done; 2752 } 2753 2754 switch (mhp->msg->sadb_msg_type) { 2755 case SADB_GETSPI: 2756 newsav->spi = 0; 2757 2758 #ifdef IPSEC_DOSEQCHECK 2759 /* sync sequence number */ 2760 if (mhp->msg->sadb_msg_seq == 0) 2761 newsav->seq = 2762 (V_acq_seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq)); 2763 else 2764 #endif 2765 newsav->seq = mhp->msg->sadb_msg_seq; 2766 break; 2767 2768 case SADB_ADD: 2769 /* sanity check */ 2770 if (mhp->ext[SADB_EXT_SA] == NULL) { 2771 free(newsav, M_IPSEC_SA); 2772 newsav = NULL; 2773 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2774 __func__)); 2775 *errp = EINVAL; 2776 goto done; 2777 } 2778 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 2779 newsav->spi = xsa->sadb_sa_spi; 2780 newsav->seq = mhp->msg->sadb_msg_seq; 2781 break; 2782 default: 2783 free(newsav, M_IPSEC_SA); 2784 newsav = NULL; 2785 *errp = EINVAL; 2786 goto done; 2787 } 2788 2789 2790 /* copy sav values */ 2791 if (mhp->msg->sadb_msg_type != SADB_GETSPI) { 2792 *errp = key_setsaval(newsav, m, mhp); 2793 if (*errp) { 2794 free(newsav, M_IPSEC_SA); 2795 newsav = NULL; 2796 goto done; 2797 } 2798 } 2799 2800 SECASVAR_LOCK_INIT(newsav); 2801 2802 /* reset created */ 2803 newsav->created = time_second; 2804 newsav->pid = mhp->msg->sadb_msg_pid; 2805 2806 /* add to satree */ 2807 newsav->sah = sah; 2808 sa_initref(newsav); 2809 newsav->state = SADB_SASTATE_LARVAL; 2810 2811 SAHTREE_LOCK(); 2812 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav, 2813 secasvar, chain); 2814 SAHTREE_UNLOCK(); 2815 done: 2816 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 2817 printf("DP %s from %s:%u return SP:%p\n", __func__, 2818 where, tag, newsav)); 2819 2820 return newsav; 2821 } 2822 2823 /* 2824 * free() SA variable entry. 2825 */ 2826 static void 2827 key_cleansav(struct secasvar *sav) 2828 { 2829 /* 2830 * Cleanup xform state. Note that zeroize'ing causes the 2831 * keys to be cleared; otherwise we must do it ourself. 2832 */ 2833 if (sav->tdb_xform != NULL) { 2834 sav->tdb_xform->xf_zeroize(sav); 2835 sav->tdb_xform = NULL; 2836 } else { 2837 KASSERT(sav->iv == NULL, ("iv but no xform")); 2838 if (sav->key_auth != NULL) 2839 bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth)); 2840 if (sav->key_enc != NULL) 2841 bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc)); 2842 } 2843 if (sav->key_auth != NULL) { 2844 if (sav->key_auth->key_data != NULL) 2845 free(sav->key_auth->key_data, M_IPSEC_MISC); 2846 free(sav->key_auth, M_IPSEC_MISC); 2847 sav->key_auth = NULL; 2848 } 2849 if (sav->key_enc != NULL) { 2850 if (sav->key_enc->key_data != NULL) 2851 free(sav->key_enc->key_data, M_IPSEC_MISC); 2852 free(sav->key_enc, M_IPSEC_MISC); 2853 sav->key_enc = NULL; 2854 } 2855 if (sav->sched) { 2856 bzero(sav->sched, sav->schedlen); 2857 free(sav->sched, M_IPSEC_MISC); 2858 sav->sched = NULL; 2859 } 2860 if (sav->replay != NULL) { 2861 free(sav->replay, M_IPSEC_MISC); 2862 sav->replay = NULL; 2863 } 2864 if (sav->lft_c != NULL) { 2865 free(sav->lft_c, M_IPSEC_MISC); 2866 sav->lft_c = NULL; 2867 } 2868 if (sav->lft_h != NULL) { 2869 free(sav->lft_h, M_IPSEC_MISC); 2870 sav->lft_h = NULL; 2871 } 2872 if (sav->lft_s != NULL) { 2873 free(sav->lft_s, M_IPSEC_MISC); 2874 sav->lft_s = NULL; 2875 } 2876 } 2877 2878 /* 2879 * free() SA variable entry. 2880 */ 2881 static void 2882 key_delsav(struct secasvar *sav) 2883 { 2884 IPSEC_ASSERT(sav != NULL, ("null sav")); 2885 IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt)); 2886 2887 /* remove from SA header */ 2888 if (__LIST_CHAINED(sav)) 2889 LIST_REMOVE(sav, chain); 2890 key_cleansav(sav); 2891 SECASVAR_LOCK_DESTROY(sav); 2892 free(sav, M_IPSEC_SA); 2893 } 2894 2895 /* 2896 * search SAD. 2897 * OUT: 2898 * NULL : not found 2899 * others : found, pointer to a SA. 2900 */ 2901 static struct secashead * 2902 key_getsah(struct secasindex *saidx) 2903 { 2904 struct secashead *sah; 2905 2906 SAHTREE_LOCK(); 2907 LIST_FOREACH(sah, &V_sahtree, chain) { 2908 if (sah->state == SADB_SASTATE_DEAD) 2909 continue; 2910 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID)) 2911 break; 2912 } 2913 SAHTREE_UNLOCK(); 2914 2915 return sah; 2916 } 2917 2918 /* 2919 * check not to be duplicated SPI. 2920 * NOTE: this function is too slow due to searching all SAD. 2921 * OUT: 2922 * NULL : not found 2923 * others : found, pointer to a SA. 2924 */ 2925 static struct secasvar * 2926 key_checkspidup(struct secasindex *saidx, u_int32_t spi) 2927 { 2928 struct secashead *sah; 2929 struct secasvar *sav; 2930 2931 /* check address family */ 2932 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) { 2933 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 2934 __func__)); 2935 return NULL; 2936 } 2937 2938 sav = NULL; 2939 /* check all SAD */ 2940 SAHTREE_LOCK(); 2941 LIST_FOREACH(sah, &V_sahtree, chain) { 2942 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst)) 2943 continue; 2944 sav = key_getsavbyspi(sah, spi); 2945 if (sav != NULL) 2946 break; 2947 } 2948 SAHTREE_UNLOCK(); 2949 2950 return sav; 2951 } 2952 2953 /* 2954 * search SAD litmited alive SA, protocol, SPI. 2955 * OUT: 2956 * NULL : not found 2957 * others : found, pointer to a SA. 2958 */ 2959 static struct secasvar * 2960 key_getsavbyspi(struct secashead *sah, u_int32_t spi) 2961 { 2962 struct secasvar *sav; 2963 u_int stateidx, state; 2964 2965 sav = NULL; 2966 SAHTREE_LOCK_ASSERT(); 2967 /* search all status */ 2968 for (stateidx = 0; 2969 stateidx < _ARRAYLEN(saorder_state_alive); 2970 stateidx++) { 2971 2972 state = saorder_state_alive[stateidx]; 2973 LIST_FOREACH(sav, &sah->savtree[state], chain) { 2974 2975 /* sanity check */ 2976 if (sav->state != state) { 2977 ipseclog((LOG_DEBUG, "%s: " 2978 "invalid sav->state (queue: %d SA: %d)\n", 2979 __func__, state, sav->state)); 2980 continue; 2981 } 2982 2983 if (sav->spi == spi) 2984 return sav; 2985 } 2986 } 2987 2988 return NULL; 2989 } 2990 2991 /* 2992 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. 2993 * You must update these if need. 2994 * OUT: 0: success. 2995 * !0: failure. 2996 * 2997 * does not modify mbuf. does not free mbuf on error. 2998 */ 2999 static int 3000 key_setsaval(struct secasvar *sav, struct mbuf *m, 3001 const struct sadb_msghdr *mhp) 3002 { 3003 int error = 0; 3004 3005 IPSEC_ASSERT(m != NULL, ("null mbuf")); 3006 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 3007 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 3008 3009 /* initialization */ 3010 sav->replay = NULL; 3011 sav->key_auth = NULL; 3012 sav->key_enc = NULL; 3013 sav->sched = NULL; 3014 sav->schedlen = 0; 3015 sav->iv = NULL; 3016 sav->lft_c = NULL; 3017 sav->lft_h = NULL; 3018 sav->lft_s = NULL; 3019 sav->tdb_xform = NULL; /* transform */ 3020 sav->tdb_encalgxform = NULL; /* encoding algorithm */ 3021 sav->tdb_authalgxform = NULL; /* authentication algorithm */ 3022 sav->tdb_compalgxform = NULL; /* compression algorithm */ 3023 /* Initialize even if NAT-T not compiled in: */ 3024 sav->natt_type = 0; 3025 sav->natt_esp_frag_len = 0; 3026 3027 /* SA */ 3028 if (mhp->ext[SADB_EXT_SA] != NULL) { 3029 const struct sadb_sa *sa0; 3030 3031 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 3032 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { 3033 error = EINVAL; 3034 goto fail; 3035 } 3036 3037 sav->alg_auth = sa0->sadb_sa_auth; 3038 sav->alg_enc = sa0->sadb_sa_encrypt; 3039 sav->flags = sa0->sadb_sa_flags; 3040 3041 /* replay window */ 3042 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { 3043 sav->replay = (struct secreplay *) 3044 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO); 3045 if (sav->replay == NULL) { 3046 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3047 __func__)); 3048 error = ENOBUFS; 3049 goto fail; 3050 } 3051 if (sa0->sadb_sa_replay != 0) 3052 sav->replay->bitmap = (caddr_t)(sav->replay+1); 3053 sav->replay->wsize = sa0->sadb_sa_replay; 3054 } 3055 } 3056 3057 /* Authentication keys */ 3058 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { 3059 const struct sadb_key *key0; 3060 int len; 3061 3062 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH]; 3063 len = mhp->extlen[SADB_EXT_KEY_AUTH]; 3064 3065 error = 0; 3066 if (len < sizeof(*key0)) { 3067 error = EINVAL; 3068 goto fail; 3069 } 3070 switch (mhp->msg->sadb_msg_satype) { 3071 case SADB_SATYPE_AH: 3072 case SADB_SATYPE_ESP: 3073 case SADB_X_SATYPE_TCPSIGNATURE: 3074 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3075 sav->alg_auth != SADB_X_AALG_NULL) 3076 error = EINVAL; 3077 break; 3078 case SADB_X_SATYPE_IPCOMP: 3079 default: 3080 error = EINVAL; 3081 break; 3082 } 3083 if (error) { 3084 ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n", 3085 __func__)); 3086 goto fail; 3087 } 3088 3089 sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len, 3090 M_IPSEC_MISC); 3091 if (sav->key_auth == NULL ) { 3092 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3093 __func__)); 3094 error = ENOBUFS; 3095 goto fail; 3096 } 3097 } 3098 3099 /* Encryption key */ 3100 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { 3101 const struct sadb_key *key0; 3102 int len; 3103 3104 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT]; 3105 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; 3106 3107 error = 0; 3108 if (len < sizeof(*key0)) { 3109 error = EINVAL; 3110 goto fail; 3111 } 3112 switch (mhp->msg->sadb_msg_satype) { 3113 case SADB_SATYPE_ESP: 3114 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3115 sav->alg_enc != SADB_EALG_NULL) { 3116 error = EINVAL; 3117 break; 3118 } 3119 sav->key_enc = (struct seckey *)key_dup_keymsg(key0, 3120 len, 3121 M_IPSEC_MISC); 3122 if (sav->key_enc == NULL) { 3123 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3124 __func__)); 3125 error = ENOBUFS; 3126 goto fail; 3127 } 3128 break; 3129 case SADB_X_SATYPE_IPCOMP: 3130 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) 3131 error = EINVAL; 3132 sav->key_enc = NULL; /*just in case*/ 3133 break; 3134 case SADB_SATYPE_AH: 3135 case SADB_X_SATYPE_TCPSIGNATURE: 3136 default: 3137 error = EINVAL; 3138 break; 3139 } 3140 if (error) { 3141 ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n", 3142 __func__)); 3143 goto fail; 3144 } 3145 } 3146 3147 /* set iv */ 3148 sav->ivlen = 0; 3149 3150 switch (mhp->msg->sadb_msg_satype) { 3151 case SADB_SATYPE_AH: 3152 error = xform_init(sav, XF_AH); 3153 break; 3154 case SADB_SATYPE_ESP: 3155 error = xform_init(sav, XF_ESP); 3156 break; 3157 case SADB_X_SATYPE_IPCOMP: 3158 error = xform_init(sav, XF_IPCOMP); 3159 break; 3160 case SADB_X_SATYPE_TCPSIGNATURE: 3161 error = xform_init(sav, XF_TCPSIGNATURE); 3162 break; 3163 } 3164 if (error) { 3165 ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n", 3166 __func__, mhp->msg->sadb_msg_satype)); 3167 goto fail; 3168 } 3169 3170 /* reset created */ 3171 sav->created = time_second; 3172 3173 /* make lifetime for CURRENT */ 3174 sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT); 3175 if (sav->lft_c == NULL) { 3176 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3177 error = ENOBUFS; 3178 goto fail; 3179 } 3180 3181 sav->lft_c->allocations = 0; 3182 sav->lft_c->bytes = 0; 3183 sav->lft_c->addtime = time_second; 3184 sav->lft_c->usetime = 0; 3185 3186 /* lifetimes for HARD and SOFT */ 3187 { 3188 const struct sadb_lifetime *lft0; 3189 3190 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 3191 if (lft0 != NULL) { 3192 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { 3193 error = EINVAL; 3194 goto fail; 3195 } 3196 sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3197 if (sav->lft_h == NULL) { 3198 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3199 error = ENOBUFS; 3200 goto fail; 3201 } 3202 /* to be initialize ? */ 3203 } 3204 3205 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT]; 3206 if (lft0 != NULL) { 3207 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { 3208 error = EINVAL; 3209 goto fail; 3210 } 3211 sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3212 if (sav->lft_s == NULL) { 3213 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3214 error = ENOBUFS; 3215 goto fail; 3216 } 3217 /* to be initialize ? */ 3218 } 3219 } 3220 3221 return 0; 3222 3223 fail: 3224 /* initialization */ 3225 key_cleansav(sav); 3226 3227 return error; 3228 } 3229 3230 /* 3231 * validation with a secasvar entry, and set SADB_SATYPE_MATURE. 3232 * OUT: 0: valid 3233 * other: errno 3234 */ 3235 static int 3236 key_mature(struct secasvar *sav) 3237 { 3238 int error; 3239 3240 /* check SPI value */ 3241 switch (sav->sah->saidx.proto) { 3242 case IPPROTO_ESP: 3243 case IPPROTO_AH: 3244 /* 3245 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values 3246 * 1-255 reserved by IANA for future use, 3247 * 0 for implementation specific, local use. 3248 */ 3249 if (ntohl(sav->spi) <= 255) { 3250 ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n", 3251 __func__, (u_int32_t)ntohl(sav->spi))); 3252 return EINVAL; 3253 } 3254 break; 3255 } 3256 3257 /* check satype */ 3258 switch (sav->sah->saidx.proto) { 3259 case IPPROTO_ESP: 3260 /* check flags */ 3261 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) == 3262 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) { 3263 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3264 "given to old-esp.\n", __func__)); 3265 return EINVAL; 3266 } 3267 error = xform_init(sav, XF_ESP); 3268 break; 3269 case IPPROTO_AH: 3270 /* check flags */ 3271 if (sav->flags & SADB_X_EXT_DERIV) { 3272 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3273 "given to AH SA.\n", __func__)); 3274 return EINVAL; 3275 } 3276 if (sav->alg_enc != SADB_EALG_NONE) { 3277 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3278 "mismated.\n", __func__)); 3279 return(EINVAL); 3280 } 3281 error = xform_init(sav, XF_AH); 3282 break; 3283 case IPPROTO_IPCOMP: 3284 if (sav->alg_auth != SADB_AALG_NONE) { 3285 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3286 "mismated.\n", __func__)); 3287 return(EINVAL); 3288 } 3289 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 3290 && ntohl(sav->spi) >= 0x10000) { 3291 ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n", 3292 __func__)); 3293 return(EINVAL); 3294 } 3295 error = xform_init(sav, XF_IPCOMP); 3296 break; 3297 case IPPROTO_TCP: 3298 if (sav->alg_enc != SADB_EALG_NONE) { 3299 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3300 "mismated.\n", __func__)); 3301 return(EINVAL); 3302 } 3303 error = xform_init(sav, XF_TCPSIGNATURE); 3304 break; 3305 default: 3306 ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__)); 3307 error = EPROTONOSUPPORT; 3308 break; 3309 } 3310 if (error == 0) { 3311 SAHTREE_LOCK(); 3312 key_sa_chgstate(sav, SADB_SASTATE_MATURE); 3313 SAHTREE_UNLOCK(); 3314 } 3315 return (error); 3316 } 3317 3318 /* 3319 * subroutine for SADB_GET and SADB_DUMP. 3320 */ 3321 static struct mbuf * 3322 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype, 3323 u_int32_t seq, u_int32_t pid) 3324 { 3325 struct mbuf *result = NULL, *tres = NULL, *m; 3326 int i; 3327 int dumporder[] = { 3328 SADB_EXT_SA, SADB_X_EXT_SA2, 3329 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 3330 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, 3331 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, 3332 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, 3333 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, 3334 #ifdef IPSEC_NAT_T 3335 SADB_X_EXT_NAT_T_TYPE, 3336 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT, 3337 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR, 3338 SADB_X_EXT_NAT_T_FRAG, 3339 #endif 3340 }; 3341 3342 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt); 3343 if (m == NULL) 3344 goto fail; 3345 result = m; 3346 3347 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) { 3348 m = NULL; 3349 switch (dumporder[i]) { 3350 case SADB_EXT_SA: 3351 m = key_setsadbsa(sav); 3352 if (!m) 3353 goto fail; 3354 break; 3355 3356 case SADB_X_EXT_SA2: 3357 m = key_setsadbxsa2(sav->sah->saidx.mode, 3358 sav->replay ? sav->replay->count : 0, 3359 sav->sah->saidx.reqid); 3360 if (!m) 3361 goto fail; 3362 break; 3363 3364 case SADB_EXT_ADDRESS_SRC: 3365 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3366 &sav->sah->saidx.src.sa, 3367 FULLMASK, IPSEC_ULPROTO_ANY); 3368 if (!m) 3369 goto fail; 3370 break; 3371 3372 case SADB_EXT_ADDRESS_DST: 3373 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3374 &sav->sah->saidx.dst.sa, 3375 FULLMASK, IPSEC_ULPROTO_ANY); 3376 if (!m) 3377 goto fail; 3378 break; 3379 3380 case SADB_EXT_KEY_AUTH: 3381 if (!sav->key_auth) 3382 continue; 3383 m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH); 3384 if (!m) 3385 goto fail; 3386 break; 3387 3388 case SADB_EXT_KEY_ENCRYPT: 3389 if (!sav->key_enc) 3390 continue; 3391 m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT); 3392 if (!m) 3393 goto fail; 3394 break; 3395 3396 case SADB_EXT_LIFETIME_CURRENT: 3397 if (!sav->lft_c) 3398 continue; 3399 m = key_setlifetime(sav->lft_c, 3400 SADB_EXT_LIFETIME_CURRENT); 3401 if (!m) 3402 goto fail; 3403 break; 3404 3405 case SADB_EXT_LIFETIME_HARD: 3406 if (!sav->lft_h) 3407 continue; 3408 m = key_setlifetime(sav->lft_h, 3409 SADB_EXT_LIFETIME_HARD); 3410 if (!m) 3411 goto fail; 3412 break; 3413 3414 case SADB_EXT_LIFETIME_SOFT: 3415 if (!sav->lft_s) 3416 continue; 3417 m = key_setlifetime(sav->lft_s, 3418 SADB_EXT_LIFETIME_SOFT); 3419 3420 if (!m) 3421 goto fail; 3422 break; 3423 3424 #ifdef IPSEC_NAT_T 3425 case SADB_X_EXT_NAT_T_TYPE: 3426 m = key_setsadbxtype(sav->natt_type); 3427 if (!m) 3428 goto fail; 3429 break; 3430 3431 case SADB_X_EXT_NAT_T_DPORT: 3432 m = key_setsadbxport( 3433 KEY_PORTFROMSADDR(&sav->sah->saidx.dst), 3434 SADB_X_EXT_NAT_T_DPORT); 3435 if (!m) 3436 goto fail; 3437 break; 3438 3439 case SADB_X_EXT_NAT_T_SPORT: 3440 m = key_setsadbxport( 3441 KEY_PORTFROMSADDR(&sav->sah->saidx.src), 3442 SADB_X_EXT_NAT_T_SPORT); 3443 if (!m) 3444 goto fail; 3445 break; 3446 3447 case SADB_X_EXT_NAT_T_OAI: 3448 case SADB_X_EXT_NAT_T_OAR: 3449 case SADB_X_EXT_NAT_T_FRAG: 3450 /* We do not (yet) support those. */ 3451 continue; 3452 #endif 3453 3454 case SADB_EXT_ADDRESS_PROXY: 3455 case SADB_EXT_IDENTITY_SRC: 3456 case SADB_EXT_IDENTITY_DST: 3457 /* XXX: should we brought from SPD ? */ 3458 case SADB_EXT_SENSITIVITY: 3459 default: 3460 continue; 3461 } 3462 3463 if (!m) 3464 goto fail; 3465 if (tres) 3466 m_cat(m, tres); 3467 tres = m; 3468 3469 } 3470 3471 m_cat(result, tres); 3472 if (result->m_len < sizeof(struct sadb_msg)) { 3473 result = m_pullup(result, sizeof(struct sadb_msg)); 3474 if (result == NULL) 3475 goto fail; 3476 } 3477 3478 result->m_pkthdr.len = 0; 3479 for (m = result; m; m = m->m_next) 3480 result->m_pkthdr.len += m->m_len; 3481 3482 mtod(result, struct sadb_msg *)->sadb_msg_len = 3483 PFKEY_UNIT64(result->m_pkthdr.len); 3484 3485 return result; 3486 3487 fail: 3488 m_freem(result); 3489 m_freem(tres); 3490 return NULL; 3491 } 3492 3493 /* 3494 * set data into sadb_msg. 3495 */ 3496 static struct mbuf * 3497 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq, 3498 pid_t pid, u_int16_t reserved) 3499 { 3500 struct mbuf *m; 3501 struct sadb_msg *p; 3502 int len; 3503 3504 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 3505 if (len > MCLBYTES) 3506 return NULL; 3507 MGETHDR(m, M_NOWAIT, MT_DATA); 3508 if (m && len > MHLEN) { 3509 if (!(MCLGET(m, M_NOWAIT))) { 3510 m_freem(m); 3511 m = NULL; 3512 } 3513 } 3514 if (!m) 3515 return NULL; 3516 m->m_pkthdr.len = m->m_len = len; 3517 m->m_next = NULL; 3518 3519 p = mtod(m, struct sadb_msg *); 3520 3521 bzero(p, len); 3522 p->sadb_msg_version = PF_KEY_V2; 3523 p->sadb_msg_type = type; 3524 p->sadb_msg_errno = 0; 3525 p->sadb_msg_satype = satype; 3526 p->sadb_msg_len = PFKEY_UNIT64(tlen); 3527 p->sadb_msg_reserved = reserved; 3528 p->sadb_msg_seq = seq; 3529 p->sadb_msg_pid = (u_int32_t)pid; 3530 3531 return m; 3532 } 3533 3534 /* 3535 * copy secasvar data into sadb_address. 3536 */ 3537 static struct mbuf * 3538 key_setsadbsa(struct secasvar *sav) 3539 { 3540 struct mbuf *m; 3541 struct sadb_sa *p; 3542 int len; 3543 3544 len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); 3545 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3546 if (m == NULL) 3547 return (NULL); 3548 m_align(m, len); 3549 m->m_len = len; 3550 p = mtod(m, struct sadb_sa *); 3551 bzero(p, len); 3552 p->sadb_sa_len = PFKEY_UNIT64(len); 3553 p->sadb_sa_exttype = SADB_EXT_SA; 3554 p->sadb_sa_spi = sav->spi; 3555 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0); 3556 p->sadb_sa_state = sav->state; 3557 p->sadb_sa_auth = sav->alg_auth; 3558 p->sadb_sa_encrypt = sav->alg_enc; 3559 p->sadb_sa_flags = sav->flags; 3560 3561 return m; 3562 } 3563 3564 /* 3565 * set data into sadb_address. 3566 */ 3567 static struct mbuf * 3568 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, 3569 u_int8_t prefixlen, u_int16_t ul_proto) 3570 { 3571 struct mbuf *m; 3572 struct sadb_address *p; 3573 size_t len; 3574 3575 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + 3576 PFKEY_ALIGN8(saddr->sa_len); 3577 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3578 if (m == NULL) 3579 return (NULL); 3580 m_align(m, len); 3581 m->m_len = len; 3582 p = mtod(m, struct sadb_address *); 3583 3584 bzero(p, len); 3585 p->sadb_address_len = PFKEY_UNIT64(len); 3586 p->sadb_address_exttype = exttype; 3587 p->sadb_address_proto = ul_proto; 3588 if (prefixlen == FULLMASK) { 3589 switch (saddr->sa_family) { 3590 case AF_INET: 3591 prefixlen = sizeof(struct in_addr) << 3; 3592 break; 3593 case AF_INET6: 3594 prefixlen = sizeof(struct in6_addr) << 3; 3595 break; 3596 default: 3597 ; /*XXX*/ 3598 } 3599 } 3600 p->sadb_address_prefixlen = prefixlen; 3601 p->sadb_address_reserved = 0; 3602 3603 bcopy(saddr, 3604 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)), 3605 saddr->sa_len); 3606 3607 return m; 3608 } 3609 3610 /* 3611 * set data into sadb_x_sa2. 3612 */ 3613 static struct mbuf * 3614 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid) 3615 { 3616 struct mbuf *m; 3617 struct sadb_x_sa2 *p; 3618 size_t len; 3619 3620 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); 3621 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3622 if (m == NULL) 3623 return (NULL); 3624 m_align(m, len); 3625 m->m_len = len; 3626 p = mtod(m, struct sadb_x_sa2 *); 3627 3628 bzero(p, len); 3629 p->sadb_x_sa2_len = PFKEY_UNIT64(len); 3630 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 3631 p->sadb_x_sa2_mode = mode; 3632 p->sadb_x_sa2_reserved1 = 0; 3633 p->sadb_x_sa2_reserved2 = 0; 3634 p->sadb_x_sa2_sequence = seq; 3635 p->sadb_x_sa2_reqid = reqid; 3636 3637 return m; 3638 } 3639 3640 #ifdef IPSEC_NAT_T 3641 /* 3642 * Set a type in sadb_x_nat_t_type. 3643 */ 3644 static struct mbuf * 3645 key_setsadbxtype(u_int16_t type) 3646 { 3647 struct mbuf *m; 3648 size_t len; 3649 struct sadb_x_nat_t_type *p; 3650 3651 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type)); 3652 3653 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3654 if (m == NULL) 3655 return (NULL); 3656 m_align(m, len); 3657 m->m_len = len; 3658 p = mtod(m, struct sadb_x_nat_t_type *); 3659 3660 bzero(p, len); 3661 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len); 3662 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; 3663 p->sadb_x_nat_t_type_type = type; 3664 3665 return (m); 3666 } 3667 /* 3668 * Set a port in sadb_x_nat_t_port. 3669 * In contrast to default RFC 2367 behaviour, port is in network byte order. 3670 */ 3671 static struct mbuf * 3672 key_setsadbxport(u_int16_t port, u_int16_t type) 3673 { 3674 struct mbuf *m; 3675 size_t len; 3676 struct sadb_x_nat_t_port *p; 3677 3678 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port)); 3679 3680 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3681 if (m == NULL) 3682 return (NULL); 3683 m_align(m, len); 3684 m->m_len = len; 3685 p = mtod(m, struct sadb_x_nat_t_port *); 3686 3687 bzero(p, len); 3688 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len); 3689 p->sadb_x_nat_t_port_exttype = type; 3690 p->sadb_x_nat_t_port_port = port; 3691 3692 return (m); 3693 } 3694 3695 /* 3696 * Get port from sockaddr. Port is in network byte order. 3697 */ 3698 u_int16_t 3699 key_portfromsaddr(struct sockaddr *sa) 3700 { 3701 3702 switch (sa->sa_family) { 3703 #ifdef INET 3704 case AF_INET: 3705 return ((struct sockaddr_in *)sa)->sin_port; 3706 #endif 3707 #ifdef INET6 3708 case AF_INET6: 3709 return ((struct sockaddr_in6 *)sa)->sin6_port; 3710 #endif 3711 } 3712 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 3713 printf("DP %s unexpected address family %d\n", 3714 __func__, sa->sa_family)); 3715 return (0); 3716 } 3717 #endif /* IPSEC_NAT_T */ 3718 3719 /* 3720 * Set port in struct sockaddr. Port is in network byte order. 3721 */ 3722 static void 3723 key_porttosaddr(struct sockaddr *sa, u_int16_t port) 3724 { 3725 3726 switch (sa->sa_family) { 3727 #ifdef INET 3728 case AF_INET: 3729 ((struct sockaddr_in *)sa)->sin_port = port; 3730 break; 3731 #endif 3732 #ifdef INET6 3733 case AF_INET6: 3734 ((struct sockaddr_in6 *)sa)->sin6_port = port; 3735 break; 3736 #endif 3737 default: 3738 ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n", 3739 __func__, sa->sa_family)); 3740 break; 3741 } 3742 } 3743 3744 /* 3745 * set data into sadb_x_policy 3746 */ 3747 static struct mbuf * 3748 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id) 3749 { 3750 struct mbuf *m; 3751 struct sadb_x_policy *p; 3752 size_t len; 3753 3754 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); 3755 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3756 if (m == NULL) 3757 return (NULL); 3758 m_align(m, len); 3759 m->m_len = len; 3760 p = mtod(m, struct sadb_x_policy *); 3761 3762 bzero(p, len); 3763 p->sadb_x_policy_len = PFKEY_UNIT64(len); 3764 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 3765 p->sadb_x_policy_type = type; 3766 p->sadb_x_policy_dir = dir; 3767 p->sadb_x_policy_id = id; 3768 3769 return m; 3770 } 3771 3772 /* %%% utilities */ 3773 /* Take a key message (sadb_key) from the socket and turn it into one 3774 * of the kernel's key structures (seckey). 3775 * 3776 * IN: pointer to the src 3777 * OUT: NULL no more memory 3778 */ 3779 struct seckey * 3780 key_dup_keymsg(const struct sadb_key *src, u_int len, 3781 struct malloc_type *type) 3782 { 3783 struct seckey *dst; 3784 dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT); 3785 if (dst != NULL) { 3786 dst->bits = src->sadb_key_bits; 3787 dst->key_data = (char *)malloc(len, type, M_NOWAIT); 3788 if (dst->key_data != NULL) { 3789 bcopy((const char *)src + sizeof(struct sadb_key), 3790 dst->key_data, len); 3791 } else { 3792 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3793 __func__)); 3794 free(dst, type); 3795 dst = NULL; 3796 } 3797 } else { 3798 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3799 __func__)); 3800 3801 } 3802 return dst; 3803 } 3804 3805 /* Take a lifetime message (sadb_lifetime) passed in on a socket and 3806 * turn it into one of the kernel's lifetime structures (seclifetime). 3807 * 3808 * IN: pointer to the destination, source and malloc type 3809 * OUT: NULL, no more memory 3810 */ 3811 3812 static struct seclifetime * 3813 key_dup_lifemsg(const struct sadb_lifetime *src, struct malloc_type *type) 3814 { 3815 struct seclifetime *dst = NULL; 3816 3817 dst = (struct seclifetime *)malloc(sizeof(struct seclifetime), 3818 type, M_NOWAIT); 3819 if (dst == NULL) { 3820 /* XXX counter */ 3821 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3822 } else { 3823 dst->allocations = src->sadb_lifetime_allocations; 3824 dst->bytes = src->sadb_lifetime_bytes; 3825 dst->addtime = src->sadb_lifetime_addtime; 3826 dst->usetime = src->sadb_lifetime_usetime; 3827 } 3828 return dst; 3829 } 3830 3831 /* compare my own address 3832 * OUT: 1: true, i.e. my address. 3833 * 0: false 3834 */ 3835 int 3836 key_ismyaddr(struct sockaddr *sa) 3837 { 3838 3839 IPSEC_ASSERT(sa != NULL, ("null sockaddr")); 3840 switch (sa->sa_family) { 3841 #ifdef INET 3842 case AF_INET: 3843 return (in_localip(satosin(sa)->sin_addr)); 3844 #endif 3845 #ifdef INET6 3846 case AF_INET6: 3847 return key_ismyaddr6((struct sockaddr_in6 *)sa); 3848 #endif 3849 } 3850 3851 return 0; 3852 } 3853 3854 #ifdef INET6 3855 /* 3856 * compare my own address for IPv6. 3857 * 1: ours 3858 * 0: other 3859 * NOTE: derived ip6_input() in KAME. This is necessary to modify more. 3860 */ 3861 #include <netinet6/in6_var.h> 3862 3863 static int 3864 key_ismyaddr6(struct sockaddr_in6 *sin6) 3865 { 3866 struct in6_ifaddr *ia; 3867 #if 0 3868 struct in6_multi *in6m; 3869 #endif 3870 3871 IN6_IFADDR_RLOCK(); 3872 TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) { 3873 if (key_sockaddrcmp((struct sockaddr *)&sin6, 3874 (struct sockaddr *)&ia->ia_addr, 0) == 0) { 3875 IN6_IFADDR_RUNLOCK(); 3876 return 1; 3877 } 3878 3879 #if 0 3880 /* 3881 * XXX Multicast 3882 * XXX why do we care about multlicast here while we don't care 3883 * about IPv4 multicast?? 3884 * XXX scope 3885 */ 3886 in6m = NULL; 3887 IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m); 3888 if (in6m) { 3889 IN6_IFADDR_RUNLOCK(); 3890 return 1; 3891 } 3892 #endif 3893 } 3894 IN6_IFADDR_RUNLOCK(); 3895 3896 /* loopback, just for safety */ 3897 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) 3898 return 1; 3899 3900 return 0; 3901 } 3902 #endif /*INET6*/ 3903 3904 /* 3905 * compare two secasindex structure. 3906 * flag can specify to compare 2 saidxes. 3907 * compare two secasindex structure without both mode and reqid. 3908 * don't compare port. 3909 * IN: 3910 * saidx0: source, it can be in SAD. 3911 * saidx1: object. 3912 * OUT: 3913 * 1 : equal 3914 * 0 : not equal 3915 */ 3916 static int 3917 key_cmpsaidx(const struct secasindex *saidx0, const struct secasindex *saidx1, 3918 int flag) 3919 { 3920 int chkport = 0; 3921 3922 /* sanity */ 3923 if (saidx0 == NULL && saidx1 == NULL) 3924 return 1; 3925 3926 if (saidx0 == NULL || saidx1 == NULL) 3927 return 0; 3928 3929 if (saidx0->proto != saidx1->proto) 3930 return 0; 3931 3932 if (flag == CMP_EXACTLY) { 3933 if (saidx0->mode != saidx1->mode) 3934 return 0; 3935 if (saidx0->reqid != saidx1->reqid) 3936 return 0; 3937 if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 || 3938 bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0) 3939 return 0; 3940 } else { 3941 3942 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ 3943 if (flag == CMP_MODE_REQID 3944 ||flag == CMP_REQID) { 3945 /* 3946 * If reqid of SPD is non-zero, unique SA is required. 3947 * The result must be of same reqid in this case. 3948 */ 3949 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) 3950 return 0; 3951 } 3952 3953 if (flag == CMP_MODE_REQID) { 3954 if (saidx0->mode != IPSEC_MODE_ANY 3955 && saidx0->mode != saidx1->mode) 3956 return 0; 3957 } 3958 3959 #ifdef IPSEC_NAT_T 3960 /* 3961 * If NAT-T is enabled, check ports for tunnel mode. 3962 * Do not check ports if they are set to zero in the SPD. 3963 * Also do not do it for native transport mode, as there 3964 * is no port information available in the SP. 3965 */ 3966 if ((saidx1->mode == IPSEC_MODE_TUNNEL || 3967 (saidx1->mode == IPSEC_MODE_TRANSPORT && 3968 saidx1->proto == IPPROTO_ESP)) && 3969 saidx1->src.sa.sa_family == AF_INET && 3970 saidx1->dst.sa.sa_family == AF_INET && 3971 ((const struct sockaddr_in *)(&saidx1->src))->sin_port && 3972 ((const struct sockaddr_in *)(&saidx1->dst))->sin_port) 3973 chkport = 1; 3974 #endif /* IPSEC_NAT_T */ 3975 3976 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, chkport) != 0) { 3977 return 0; 3978 } 3979 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, chkport) != 0) { 3980 return 0; 3981 } 3982 } 3983 3984 return 1; 3985 } 3986 3987 /* 3988 * compare two secindex structure exactly. 3989 * IN: 3990 * spidx0: source, it is often in SPD. 3991 * spidx1: object, it is often from PFKEY message. 3992 * OUT: 3993 * 1 : equal 3994 * 0 : not equal 3995 */ 3996 static int 3997 key_cmpspidx_exactly(struct secpolicyindex *spidx0, 3998 struct secpolicyindex *spidx1) 3999 { 4000 /* sanity */ 4001 if (spidx0 == NULL && spidx1 == NULL) 4002 return 1; 4003 4004 if (spidx0 == NULL || spidx1 == NULL) 4005 return 0; 4006 4007 if (spidx0->prefs != spidx1->prefs 4008 || spidx0->prefd != spidx1->prefd 4009 || spidx0->ul_proto != spidx1->ul_proto) 4010 return 0; 4011 4012 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 && 4013 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0; 4014 } 4015 4016 /* 4017 * compare two secindex structure with mask. 4018 * IN: 4019 * spidx0: source, it is often in SPD. 4020 * spidx1: object, it is often from IP header. 4021 * OUT: 4022 * 1 : equal 4023 * 0 : not equal 4024 */ 4025 static int 4026 key_cmpspidx_withmask(struct secpolicyindex *spidx0, 4027 struct secpolicyindex *spidx1) 4028 { 4029 /* sanity */ 4030 if (spidx0 == NULL && spidx1 == NULL) 4031 return 1; 4032 4033 if (spidx0 == NULL || spidx1 == NULL) 4034 return 0; 4035 4036 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || 4037 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || 4038 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || 4039 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) 4040 return 0; 4041 4042 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ 4043 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY 4044 && spidx0->ul_proto != spidx1->ul_proto) 4045 return 0; 4046 4047 switch (spidx0->src.sa.sa_family) { 4048 case AF_INET: 4049 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY 4050 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) 4051 return 0; 4052 if (!key_bbcmp(&spidx0->src.sin.sin_addr, 4053 &spidx1->src.sin.sin_addr, spidx0->prefs)) 4054 return 0; 4055 break; 4056 case AF_INET6: 4057 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY 4058 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) 4059 return 0; 4060 /* 4061 * scope_id check. if sin6_scope_id is 0, we regard it 4062 * as a wildcard scope, which matches any scope zone ID. 4063 */ 4064 if (spidx0->src.sin6.sin6_scope_id && 4065 spidx1->src.sin6.sin6_scope_id && 4066 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) 4067 return 0; 4068 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr, 4069 &spidx1->src.sin6.sin6_addr, spidx0->prefs)) 4070 return 0; 4071 break; 4072 default: 4073 /* XXX */ 4074 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) 4075 return 0; 4076 break; 4077 } 4078 4079 switch (spidx0->dst.sa.sa_family) { 4080 case AF_INET: 4081 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY 4082 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) 4083 return 0; 4084 if (!key_bbcmp(&spidx0->dst.sin.sin_addr, 4085 &spidx1->dst.sin.sin_addr, spidx0->prefd)) 4086 return 0; 4087 break; 4088 case AF_INET6: 4089 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY 4090 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) 4091 return 0; 4092 /* 4093 * scope_id check. if sin6_scope_id is 0, we regard it 4094 * as a wildcard scope, which matches any scope zone ID. 4095 */ 4096 if (spidx0->dst.sin6.sin6_scope_id && 4097 spidx1->dst.sin6.sin6_scope_id && 4098 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) 4099 return 0; 4100 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr, 4101 &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) 4102 return 0; 4103 break; 4104 default: 4105 /* XXX */ 4106 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) 4107 return 0; 4108 break; 4109 } 4110 4111 /* XXX Do we check other field ? e.g. flowinfo */ 4112 4113 return 1; 4114 } 4115 4116 /* returns 0 on match */ 4117 static int 4118 key_sockaddrcmp(const struct sockaddr *sa1, const struct sockaddr *sa2, 4119 int port) 4120 { 4121 #ifdef satosin 4122 #undef satosin 4123 #endif 4124 #define satosin(s) ((const struct sockaddr_in *)s) 4125 #ifdef satosin6 4126 #undef satosin6 4127 #endif 4128 #define satosin6(s) ((const struct sockaddr_in6 *)s) 4129 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) 4130 return 1; 4131 4132 switch (sa1->sa_family) { 4133 case AF_INET: 4134 if (sa1->sa_len != sizeof(struct sockaddr_in)) 4135 return 1; 4136 if (satosin(sa1)->sin_addr.s_addr != 4137 satosin(sa2)->sin_addr.s_addr) { 4138 return 1; 4139 } 4140 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port) 4141 return 1; 4142 break; 4143 case AF_INET6: 4144 if (sa1->sa_len != sizeof(struct sockaddr_in6)) 4145 return 1; /*EINVAL*/ 4146 if (satosin6(sa1)->sin6_scope_id != 4147 satosin6(sa2)->sin6_scope_id) { 4148 return 1; 4149 } 4150 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr, 4151 &satosin6(sa2)->sin6_addr)) { 4152 return 1; 4153 } 4154 if (port && 4155 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) { 4156 return 1; 4157 } 4158 break; 4159 default: 4160 if (bcmp(sa1, sa2, sa1->sa_len) != 0) 4161 return 1; 4162 break; 4163 } 4164 4165 return 0; 4166 #undef satosin 4167 #undef satosin6 4168 } 4169 4170 /* 4171 * compare two buffers with mask. 4172 * IN: 4173 * addr1: source 4174 * addr2: object 4175 * bits: Number of bits to compare 4176 * OUT: 4177 * 1 : equal 4178 * 0 : not equal 4179 */ 4180 static int 4181 key_bbcmp(const void *a1, const void *a2, u_int bits) 4182 { 4183 const unsigned char *p1 = a1; 4184 const unsigned char *p2 = a2; 4185 4186 /* XXX: This could be considerably faster if we compare a word 4187 * at a time, but it is complicated on LSB Endian machines */ 4188 4189 /* Handle null pointers */ 4190 if (p1 == NULL || p2 == NULL) 4191 return (p1 == p2); 4192 4193 while (bits >= 8) { 4194 if (*p1++ != *p2++) 4195 return 0; 4196 bits -= 8; 4197 } 4198 4199 if (bits > 0) { 4200 u_int8_t mask = ~((1<<(8-bits))-1); 4201 if ((*p1 & mask) != (*p2 & mask)) 4202 return 0; 4203 } 4204 return 1; /* Match! */ 4205 } 4206 4207 static void 4208 key_flush_spd(time_t now) 4209 { 4210 SPTREE_RLOCK_TRACKER; 4211 struct secpolicy *sp; 4212 u_int dir; 4213 4214 /* SPD */ 4215 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 4216 restart: 4217 SPTREE_RLOCK(); 4218 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 4219 if (sp->lifetime == 0 && sp->validtime == 0) 4220 continue; 4221 if ((sp->lifetime && 4222 now - sp->created > sp->lifetime) || 4223 (sp->validtime && 4224 now - sp->lastused > sp->validtime)) { 4225 SP_ADDREF(sp); 4226 SPTREE_RUNLOCK(); 4227 key_spdexpire(sp); 4228 key_unlink(sp); 4229 KEY_FREESP(&sp); 4230 goto restart; 4231 } 4232 } 4233 SPTREE_RUNLOCK(); 4234 } 4235 } 4236 4237 static void 4238 key_flush_sad(time_t now) 4239 { 4240 struct secashead *sah, *nextsah; 4241 struct secasvar *sav, *nextsav; 4242 4243 /* SAD */ 4244 SAHTREE_LOCK(); 4245 LIST_FOREACH_SAFE(sah, &V_sahtree, chain, nextsah) { 4246 /* if sah has been dead, then delete it and process next sah. */ 4247 if (sah->state == SADB_SASTATE_DEAD) { 4248 key_delsah(sah); 4249 continue; 4250 } 4251 4252 /* if LARVAL entry doesn't become MATURE, delete it. */ 4253 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) { 4254 /* Need to also check refcnt for a larval SA ??? */ 4255 if (now - sav->created > V_key_larval_lifetime) 4256 KEY_FREESAV(&sav); 4257 } 4258 4259 /* 4260 * check MATURE entry to start to send expire message 4261 * whether or not. 4262 */ 4263 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) { 4264 /* we don't need to check. */ 4265 if (sav->lft_s == NULL) 4266 continue; 4267 4268 /* sanity check */ 4269 if (sav->lft_c == NULL) { 4270 ipseclog((LOG_DEBUG,"%s: there is no CURRENT " 4271 "time, why?\n", __func__)); 4272 continue; 4273 } 4274 4275 /* check SOFT lifetime */ 4276 if (sav->lft_s->addtime != 0 && 4277 now - sav->created > sav->lft_s->addtime) { 4278 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4279 /* 4280 * Actually, only send expire message if 4281 * SA has been used, as it was done before, 4282 * but should we always send such message, 4283 * and let IKE daemon decide if it should be 4284 * renegotiated or not ? 4285 * XXX expire message will actually NOT be 4286 * sent if SA is only used after soft 4287 * lifetime has been reached, see below 4288 * (DYING state) 4289 */ 4290 if (sav->lft_c->usetime != 0) 4291 key_expire(sav); 4292 } 4293 /* check SOFT lifetime by bytes */ 4294 /* 4295 * XXX I don't know the way to delete this SA 4296 * when new SA is installed. Caution when it's 4297 * installed too big lifetime by time. 4298 */ 4299 else if (sav->lft_s->bytes != 0 && 4300 sav->lft_s->bytes < sav->lft_c->bytes) { 4301 4302 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4303 /* 4304 * XXX If we keep to send expire 4305 * message in the status of 4306 * DYING. Do remove below code. 4307 */ 4308 key_expire(sav); 4309 } 4310 } 4311 4312 /* check DYING entry to change status to DEAD. */ 4313 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) { 4314 /* we don't need to check. */ 4315 if (sav->lft_h == NULL) 4316 continue; 4317 4318 /* sanity check */ 4319 if (sav->lft_c == NULL) { 4320 ipseclog((LOG_DEBUG, "%s: there is no CURRENT " 4321 "time, why?\n", __func__)); 4322 continue; 4323 } 4324 4325 if (sav->lft_h->addtime != 0 && 4326 now - sav->created > sav->lft_h->addtime) { 4327 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4328 KEY_FREESAV(&sav); 4329 } 4330 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */ 4331 else if (sav->lft_s != NULL 4332 && sav->lft_s->addtime != 0 4333 && now - sav->created > sav->lft_s->addtime) { 4334 /* 4335 * XXX: should be checked to be 4336 * installed the valid SA. 4337 */ 4338 4339 /* 4340 * If there is no SA then sending 4341 * expire message. 4342 */ 4343 key_expire(sav); 4344 } 4345 #endif 4346 /* check HARD lifetime by bytes */ 4347 else if (sav->lft_h->bytes != 0 && 4348 sav->lft_h->bytes < sav->lft_c->bytes) { 4349 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4350 KEY_FREESAV(&sav); 4351 } 4352 } 4353 4354 /* delete entry in DEAD */ 4355 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) { 4356 /* sanity check */ 4357 if (sav->state != SADB_SASTATE_DEAD) { 4358 ipseclog((LOG_DEBUG, "%s: invalid sav->state " 4359 "(queue: %d SA: %d): kill it anyway\n", 4360 __func__, 4361 SADB_SASTATE_DEAD, sav->state)); 4362 } 4363 /* 4364 * do not call key_freesav() here. 4365 * sav should already be freed, and sav->refcnt 4366 * shows other references to sav 4367 * (such as from SPD). 4368 */ 4369 } 4370 } 4371 SAHTREE_UNLOCK(); 4372 } 4373 4374 static void 4375 key_flush_acq(time_t now) 4376 { 4377 struct secacq *acq, *nextacq; 4378 4379 /* ACQ tree */ 4380 ACQ_LOCK(); 4381 for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) { 4382 nextacq = LIST_NEXT(acq, chain); 4383 if (now - acq->created > V_key_blockacq_lifetime 4384 && __LIST_CHAINED(acq)) { 4385 LIST_REMOVE(acq, chain); 4386 free(acq, M_IPSEC_SAQ); 4387 } 4388 } 4389 ACQ_UNLOCK(); 4390 } 4391 4392 static void 4393 key_flush_spacq(time_t now) 4394 { 4395 struct secspacq *acq, *nextacq; 4396 4397 /* SP ACQ tree */ 4398 SPACQ_LOCK(); 4399 for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) { 4400 nextacq = LIST_NEXT(acq, chain); 4401 if (now - acq->created > V_key_blockacq_lifetime 4402 && __LIST_CHAINED(acq)) { 4403 LIST_REMOVE(acq, chain); 4404 free(acq, M_IPSEC_SAQ); 4405 } 4406 } 4407 SPACQ_UNLOCK(); 4408 } 4409 4410 /* 4411 * time handler. 4412 * scanning SPD and SAD to check status for each entries, 4413 * and do to remove or to expire. 4414 * XXX: year 2038 problem may remain. 4415 */ 4416 static void 4417 key_timehandler(void *arg) 4418 { 4419 VNET_ITERATOR_DECL(vnet_iter); 4420 time_t now = time_second; 4421 4422 VNET_LIST_RLOCK_NOSLEEP(); 4423 VNET_FOREACH(vnet_iter) { 4424 CURVNET_SET(vnet_iter); 4425 key_flush_spd(now); 4426 key_flush_sad(now); 4427 key_flush_acq(now); 4428 key_flush_spacq(now); 4429 CURVNET_RESTORE(); 4430 } 4431 VNET_LIST_RUNLOCK_NOSLEEP(); 4432 4433 #ifndef IPSEC_DEBUG2 4434 /* do exchange to tick time !! */ 4435 callout_schedule(&key_timer, hz); 4436 #endif /* IPSEC_DEBUG2 */ 4437 } 4438 4439 u_long 4440 key_random() 4441 { 4442 u_long value; 4443 4444 key_randomfill(&value, sizeof(value)); 4445 return value; 4446 } 4447 4448 void 4449 key_randomfill(void *p, size_t l) 4450 { 4451 size_t n; 4452 u_long v; 4453 static int warn = 1; 4454 4455 n = 0; 4456 n = (size_t)read_random(p, (u_int)l); 4457 /* last resort */ 4458 while (n < l) { 4459 v = random(); 4460 bcopy(&v, (u_int8_t *)p + n, 4461 l - n < sizeof(v) ? l - n : sizeof(v)); 4462 n += sizeof(v); 4463 4464 if (warn) { 4465 printf("WARNING: pseudo-random number generator " 4466 "used for IPsec processing\n"); 4467 warn = 0; 4468 } 4469 } 4470 } 4471 4472 /* 4473 * map SADB_SATYPE_* to IPPROTO_*. 4474 * if satype == SADB_SATYPE then satype is mapped to ~0. 4475 * OUT: 4476 * 0: invalid satype. 4477 */ 4478 static u_int16_t 4479 key_satype2proto(u_int8_t satype) 4480 { 4481 switch (satype) { 4482 case SADB_SATYPE_UNSPEC: 4483 return IPSEC_PROTO_ANY; 4484 case SADB_SATYPE_AH: 4485 return IPPROTO_AH; 4486 case SADB_SATYPE_ESP: 4487 return IPPROTO_ESP; 4488 case SADB_X_SATYPE_IPCOMP: 4489 return IPPROTO_IPCOMP; 4490 case SADB_X_SATYPE_TCPSIGNATURE: 4491 return IPPROTO_TCP; 4492 default: 4493 return 0; 4494 } 4495 /* NOTREACHED */ 4496 } 4497 4498 /* 4499 * map IPPROTO_* to SADB_SATYPE_* 4500 * OUT: 4501 * 0: invalid protocol type. 4502 */ 4503 static u_int8_t 4504 key_proto2satype(u_int16_t proto) 4505 { 4506 switch (proto) { 4507 case IPPROTO_AH: 4508 return SADB_SATYPE_AH; 4509 case IPPROTO_ESP: 4510 return SADB_SATYPE_ESP; 4511 case IPPROTO_IPCOMP: 4512 return SADB_X_SATYPE_IPCOMP; 4513 case IPPROTO_TCP: 4514 return SADB_X_SATYPE_TCPSIGNATURE; 4515 default: 4516 return 0; 4517 } 4518 /* NOTREACHED */ 4519 } 4520 4521 /* %%% PF_KEY */ 4522 /* 4523 * SADB_GETSPI processing is to receive 4524 * <base, (SA2), src address, dst address, (SPI range)> 4525 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND 4526 * tree with the status of LARVAL, and send 4527 * <base, SA(*), address(SD)> 4528 * to the IKMPd. 4529 * 4530 * IN: mhp: pointer to the pointer to each header. 4531 * OUT: NULL if fail. 4532 * other if success, return pointer to the message to send. 4533 */ 4534 static int 4535 key_getspi(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 4536 { 4537 struct sadb_address *src0, *dst0; 4538 struct secasindex saidx; 4539 struct secashead *newsah; 4540 struct secasvar *newsav; 4541 u_int8_t proto; 4542 u_int32_t spi; 4543 u_int8_t mode; 4544 u_int32_t reqid; 4545 int error; 4546 4547 IPSEC_ASSERT(so != NULL, ("null socket")); 4548 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4549 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4550 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4551 4552 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4553 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 4554 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4555 __func__)); 4556 return key_senderror(so, m, EINVAL); 4557 } 4558 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4559 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4560 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4561 __func__)); 4562 return key_senderror(so, m, EINVAL); 4563 } 4564 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4565 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4566 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4567 } else { 4568 mode = IPSEC_MODE_ANY; 4569 reqid = 0; 4570 } 4571 4572 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4573 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4574 4575 /* map satype to proto */ 4576 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4577 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4578 __func__)); 4579 return key_senderror(so, m, EINVAL); 4580 } 4581 4582 /* 4583 * Make sure the port numbers are zero. 4584 * In case of NAT-T we will update them later if needed. 4585 */ 4586 switch (((struct sockaddr *)(src0 + 1))->sa_family) { 4587 case AF_INET: 4588 if (((struct sockaddr *)(src0 + 1))->sa_len != 4589 sizeof(struct sockaddr_in)) 4590 return key_senderror(so, m, EINVAL); 4591 ((struct sockaddr_in *)(src0 + 1))->sin_port = 0; 4592 break; 4593 case AF_INET6: 4594 if (((struct sockaddr *)(src0 + 1))->sa_len != 4595 sizeof(struct sockaddr_in6)) 4596 return key_senderror(so, m, EINVAL); 4597 ((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0; 4598 break; 4599 default: 4600 ; /*???*/ 4601 } 4602 switch (((struct sockaddr *)(dst0 + 1))->sa_family) { 4603 case AF_INET: 4604 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4605 sizeof(struct sockaddr_in)) 4606 return key_senderror(so, m, EINVAL); 4607 ((struct sockaddr_in *)(dst0 + 1))->sin_port = 0; 4608 break; 4609 case AF_INET6: 4610 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4611 sizeof(struct sockaddr_in6)) 4612 return key_senderror(so, m, EINVAL); 4613 ((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0; 4614 break; 4615 default: 4616 ; /*???*/ 4617 } 4618 4619 /* XXX boundary check against sa_len */ 4620 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4621 4622 #ifdef IPSEC_NAT_T 4623 /* 4624 * Handle NAT-T info if present. 4625 * We made sure the port numbers are zero above, so we do 4626 * not have to worry in case we do not update them. 4627 */ 4628 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) 4629 ipseclog((LOG_DEBUG, "%s: NAT-T OAi present\n", __func__)); 4630 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) 4631 ipseclog((LOG_DEBUG, "%s: NAT-T OAr present\n", __func__)); 4632 4633 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 4634 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 4635 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 4636 struct sadb_x_nat_t_type *type; 4637 struct sadb_x_nat_t_port *sport, *dport; 4638 4639 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 4640 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 4641 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 4642 ipseclog((LOG_DEBUG, "%s: invalid nat-t message " 4643 "passed.\n", __func__)); 4644 return key_senderror(so, m, EINVAL); 4645 } 4646 4647 sport = (struct sadb_x_nat_t_port *) 4648 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 4649 dport = (struct sadb_x_nat_t_port *) 4650 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 4651 4652 if (sport) 4653 KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port); 4654 if (dport) 4655 KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port); 4656 } 4657 #endif 4658 4659 /* SPI allocation */ 4660 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE], 4661 &saidx); 4662 if (spi == 0) 4663 return key_senderror(so, m, EINVAL); 4664 4665 /* get a SA index */ 4666 if ((newsah = key_getsah(&saidx)) == NULL) { 4667 /* create a new SA index */ 4668 if ((newsah = key_newsah(&saidx)) == NULL) { 4669 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 4670 return key_senderror(so, m, ENOBUFS); 4671 } 4672 } 4673 4674 /* get a new SA */ 4675 /* XXX rewrite */ 4676 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 4677 if (newsav == NULL) { 4678 /* XXX don't free new SA index allocated in above. */ 4679 return key_senderror(so, m, error); 4680 } 4681 4682 /* set spi */ 4683 newsav->spi = htonl(spi); 4684 4685 /* delete the entry in acqtree */ 4686 if (mhp->msg->sadb_msg_seq != 0) { 4687 struct secacq *acq; 4688 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) { 4689 /* reset counter in order to deletion by timehandler. */ 4690 acq->created = time_second; 4691 acq->count = 0; 4692 } 4693 } 4694 4695 { 4696 struct mbuf *n, *nn; 4697 struct sadb_sa *m_sa; 4698 struct sadb_msg *newmsg; 4699 int off, len; 4700 4701 /* create new sadb_msg to reply. */ 4702 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 4703 PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4704 4705 MGETHDR(n, M_NOWAIT, MT_DATA); 4706 if (len > MHLEN) { 4707 if (!(MCLGET(n, M_NOWAIT))) { 4708 m_freem(n); 4709 n = NULL; 4710 } 4711 } 4712 if (!n) 4713 return key_senderror(so, m, ENOBUFS); 4714 4715 n->m_len = len; 4716 n->m_next = NULL; 4717 off = 0; 4718 4719 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 4720 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 4721 4722 m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off); 4723 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); 4724 m_sa->sadb_sa_exttype = SADB_EXT_SA; 4725 m_sa->sadb_sa_spi = htonl(spi); 4726 off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4727 4728 IPSEC_ASSERT(off == len, 4729 ("length inconsistency (off %u len %u)", off, len)); 4730 4731 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, 4732 SADB_EXT_ADDRESS_DST); 4733 if (!n->m_next) { 4734 m_freem(n); 4735 return key_senderror(so, m, ENOBUFS); 4736 } 4737 4738 if (n->m_len < sizeof(struct sadb_msg)) { 4739 n = m_pullup(n, sizeof(struct sadb_msg)); 4740 if (n == NULL) 4741 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 4742 } 4743 4744 n->m_pkthdr.len = 0; 4745 for (nn = n; nn; nn = nn->m_next) 4746 n->m_pkthdr.len += nn->m_len; 4747 4748 newmsg = mtod(n, struct sadb_msg *); 4749 newmsg->sadb_msg_seq = newsav->seq; 4750 newmsg->sadb_msg_errno = 0; 4751 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 4752 4753 m_freem(m); 4754 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 4755 } 4756 } 4757 4758 /* 4759 * allocating new SPI 4760 * called by key_getspi(). 4761 * OUT: 4762 * 0: failure. 4763 * others: success. 4764 */ 4765 static u_int32_t 4766 key_do_getnewspi(struct sadb_spirange *spirange, struct secasindex *saidx) 4767 { 4768 u_int32_t newspi; 4769 u_int32_t min, max; 4770 int count = V_key_spi_trycnt; 4771 4772 /* set spi range to allocate */ 4773 if (spirange != NULL) { 4774 min = spirange->sadb_spirange_min; 4775 max = spirange->sadb_spirange_max; 4776 } else { 4777 min = V_key_spi_minval; 4778 max = V_key_spi_maxval; 4779 } 4780 /* IPCOMP needs 2-byte SPI */ 4781 if (saidx->proto == IPPROTO_IPCOMP) { 4782 u_int32_t t; 4783 if (min >= 0x10000) 4784 min = 0xffff; 4785 if (max >= 0x10000) 4786 max = 0xffff; 4787 if (min > max) { 4788 t = min; min = max; max = t; 4789 } 4790 } 4791 4792 if (min == max) { 4793 if (key_checkspidup(saidx, min) != NULL) { 4794 ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n", 4795 __func__, min)); 4796 return 0; 4797 } 4798 4799 count--; /* taking one cost. */ 4800 newspi = min; 4801 4802 } else { 4803 4804 /* init SPI */ 4805 newspi = 0; 4806 4807 /* when requesting to allocate spi ranged */ 4808 while (count--) { 4809 /* generate pseudo-random SPI value ranged. */ 4810 newspi = min + (key_random() % (max - min + 1)); 4811 4812 if (key_checkspidup(saidx, newspi) == NULL) 4813 break; 4814 } 4815 4816 if (count == 0 || newspi == 0) { 4817 ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n", 4818 __func__)); 4819 return 0; 4820 } 4821 } 4822 4823 /* statistics */ 4824 keystat.getspi_count = 4825 (keystat.getspi_count + V_key_spi_trycnt - count) / 2; 4826 4827 return newspi; 4828 } 4829 4830 /* 4831 * SADB_UPDATE processing 4832 * receive 4833 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4834 * key(AE), (identity(SD),) (sensitivity)> 4835 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. 4836 * and send 4837 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4838 * (identity(SD),) (sensitivity)> 4839 * to the ikmpd. 4840 * 4841 * m will always be freed. 4842 */ 4843 static int 4844 key_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 4845 { 4846 struct sadb_sa *sa0; 4847 struct sadb_address *src0, *dst0; 4848 #ifdef IPSEC_NAT_T 4849 struct sadb_x_nat_t_type *type; 4850 struct sadb_x_nat_t_port *sport, *dport; 4851 struct sadb_address *iaddr, *raddr; 4852 struct sadb_x_nat_t_frag *frag; 4853 #endif 4854 struct secasindex saidx; 4855 struct secashead *sah; 4856 struct secasvar *sav; 4857 u_int16_t proto; 4858 u_int8_t mode; 4859 u_int32_t reqid; 4860 int error; 4861 4862 IPSEC_ASSERT(so != NULL, ("null socket")); 4863 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4864 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4865 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4866 4867 /* map satype to proto */ 4868 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4869 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4870 __func__)); 4871 return key_senderror(so, m, EINVAL); 4872 } 4873 4874 if (mhp->ext[SADB_EXT_SA] == NULL || 4875 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4876 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 4877 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 4878 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 4879 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 4880 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 4881 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 4882 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 4883 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 4884 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 4885 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4886 __func__)); 4887 return key_senderror(so, m, EINVAL); 4888 } 4889 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 4890 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4891 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4892 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4893 __func__)); 4894 return key_senderror(so, m, EINVAL); 4895 } 4896 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4897 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4898 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4899 } else { 4900 mode = IPSEC_MODE_ANY; 4901 reqid = 0; 4902 } 4903 /* XXX boundary checking for other extensions */ 4904 4905 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 4906 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4907 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4908 4909 /* XXX boundary check against sa_len */ 4910 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4911 4912 /* 4913 * Make sure the port numbers are zero. 4914 * In case of NAT-T we will update them later if needed. 4915 */ 4916 KEY_PORTTOSADDR(&saidx.src, 0); 4917 KEY_PORTTOSADDR(&saidx.dst, 0); 4918 4919 #ifdef IPSEC_NAT_T 4920 /* 4921 * Handle NAT-T info if present. 4922 */ 4923 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 4924 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 4925 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 4926 4927 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 4928 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 4929 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 4930 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 4931 __func__)); 4932 return key_senderror(so, m, EINVAL); 4933 } 4934 4935 type = (struct sadb_x_nat_t_type *) 4936 mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 4937 sport = (struct sadb_x_nat_t_port *) 4938 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 4939 dport = (struct sadb_x_nat_t_port *) 4940 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 4941 } else { 4942 type = 0; 4943 sport = dport = 0; 4944 } 4945 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL && 4946 mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { 4947 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) || 4948 mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { 4949 ipseclog((LOG_DEBUG, "%s: invalid message\n", 4950 __func__)); 4951 return key_senderror(so, m, EINVAL); 4952 } 4953 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; 4954 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; 4955 ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__)); 4956 } else { 4957 iaddr = raddr = NULL; 4958 } 4959 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { 4960 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { 4961 ipseclog((LOG_DEBUG, "%s: invalid message\n", 4962 __func__)); 4963 return key_senderror(so, m, EINVAL); 4964 } 4965 frag = (struct sadb_x_nat_t_frag *) 4966 mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 4967 } else { 4968 frag = 0; 4969 } 4970 #endif 4971 4972 /* get a SA header */ 4973 if ((sah = key_getsah(&saidx)) == NULL) { 4974 ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__)); 4975 return key_senderror(so, m, ENOENT); 4976 } 4977 4978 /* set spidx if there */ 4979 /* XXX rewrite */ 4980 error = key_setident(sah, m, mhp); 4981 if (error) 4982 return key_senderror(so, m, error); 4983 4984 /* find a SA with sequence number. */ 4985 #ifdef IPSEC_DOSEQCHECK 4986 if (mhp->msg->sadb_msg_seq != 0 4987 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) { 4988 ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u " 4989 "exists.\n", __func__, mhp->msg->sadb_msg_seq)); 4990 return key_senderror(so, m, ENOENT); 4991 } 4992 #else 4993 SAHTREE_LOCK(); 4994 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 4995 SAHTREE_UNLOCK(); 4996 if (sav == NULL) { 4997 ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n", 4998 __func__, (u_int32_t)ntohl(sa0->sadb_sa_spi))); 4999 return key_senderror(so, m, EINVAL); 5000 } 5001 #endif 5002 5003 /* validity check */ 5004 if (sav->sah->saidx.proto != proto) { 5005 ipseclog((LOG_DEBUG, "%s: protocol mismatched " 5006 "(DB=%u param=%u)\n", __func__, 5007 sav->sah->saidx.proto, proto)); 5008 return key_senderror(so, m, EINVAL); 5009 } 5010 #ifdef IPSEC_DOSEQCHECK 5011 if (sav->spi != sa0->sadb_sa_spi) { 5012 ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n", 5013 __func__, 5014 (u_int32_t)ntohl(sav->spi), 5015 (u_int32_t)ntohl(sa0->sadb_sa_spi))); 5016 return key_senderror(so, m, EINVAL); 5017 } 5018 #endif 5019 if (sav->pid != mhp->msg->sadb_msg_pid) { 5020 ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n", 5021 __func__, sav->pid, mhp->msg->sadb_msg_pid)); 5022 return key_senderror(so, m, EINVAL); 5023 } 5024 5025 /* copy sav values */ 5026 error = key_setsaval(sav, m, mhp); 5027 if (error) { 5028 KEY_FREESAV(&sav); 5029 return key_senderror(so, m, error); 5030 } 5031 5032 #ifdef IPSEC_NAT_T 5033 /* 5034 * Handle more NAT-T info if present, 5035 * now that we have a sav to fill. 5036 */ 5037 if (type) 5038 sav->natt_type = type->sadb_x_nat_t_type_type; 5039 5040 if (sport) 5041 KEY_PORTTOSADDR(&sav->sah->saidx.src, 5042 sport->sadb_x_nat_t_port_port); 5043 if (dport) 5044 KEY_PORTTOSADDR(&sav->sah->saidx.dst, 5045 dport->sadb_x_nat_t_port_port); 5046 5047 #if 0 5048 /* 5049 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0. 5050 * We should actually check for a minimum MTU here, if we 5051 * want to support it in ip_output. 5052 */ 5053 if (frag) 5054 sav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen; 5055 #endif 5056 #endif 5057 5058 /* check SA values to be mature. */ 5059 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) { 5060 KEY_FREESAV(&sav); 5061 return key_senderror(so, m, 0); 5062 } 5063 5064 { 5065 struct mbuf *n; 5066 5067 /* set msg buf from mhp */ 5068 n = key_getmsgbuf_x1(m, mhp); 5069 if (n == NULL) { 5070 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5071 return key_senderror(so, m, ENOBUFS); 5072 } 5073 5074 m_freem(m); 5075 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5076 } 5077 } 5078 5079 /* 5080 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL. 5081 * only called by key_update(). 5082 * OUT: 5083 * NULL : not found 5084 * others : found, pointer to a SA. 5085 */ 5086 #ifdef IPSEC_DOSEQCHECK 5087 static struct secasvar * 5088 key_getsavbyseq(struct secashead *sah, u_int32_t seq) 5089 { 5090 struct secasvar *sav; 5091 u_int state; 5092 5093 state = SADB_SASTATE_LARVAL; 5094 5095 /* search SAD with sequence number ? */ 5096 LIST_FOREACH(sav, &sah->savtree[state], chain) { 5097 5098 KEY_CHKSASTATE(state, sav->state, __func__); 5099 5100 if (sav->seq == seq) { 5101 sa_addref(sav); 5102 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 5103 printf("DP %s cause refcnt++:%d SA:%p\n", 5104 __func__, sav->refcnt, sav)); 5105 return sav; 5106 } 5107 } 5108 5109 return NULL; 5110 } 5111 #endif 5112 5113 /* 5114 * SADB_ADD processing 5115 * add an entry to SA database, when received 5116 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5117 * key(AE), (identity(SD),) (sensitivity)> 5118 * from the ikmpd, 5119 * and send 5120 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5121 * (identity(SD),) (sensitivity)> 5122 * to the ikmpd. 5123 * 5124 * IGNORE identity and sensitivity messages. 5125 * 5126 * m will always be freed. 5127 */ 5128 static int 5129 key_add(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5130 { 5131 struct sadb_sa *sa0; 5132 struct sadb_address *src0, *dst0; 5133 #ifdef IPSEC_NAT_T 5134 struct sadb_x_nat_t_type *type; 5135 struct sadb_address *iaddr, *raddr; 5136 struct sadb_x_nat_t_frag *frag; 5137 #endif 5138 struct secasindex saidx; 5139 struct secashead *newsah; 5140 struct secasvar *newsav; 5141 u_int16_t proto; 5142 u_int8_t mode; 5143 u_int32_t reqid; 5144 int error; 5145 5146 IPSEC_ASSERT(so != NULL, ("null socket")); 5147 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5148 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5149 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5150 5151 /* map satype to proto */ 5152 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5153 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5154 __func__)); 5155 return key_senderror(so, m, EINVAL); 5156 } 5157 5158 if (mhp->ext[SADB_EXT_SA] == NULL || 5159 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5160 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5161 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5162 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5163 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5164 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5165 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5166 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5167 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5168 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5169 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5170 __func__)); 5171 return key_senderror(so, m, EINVAL); 5172 } 5173 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5174 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5175 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5176 /* XXX need more */ 5177 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5178 __func__)); 5179 return key_senderror(so, m, EINVAL); 5180 } 5181 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5182 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 5183 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 5184 } else { 5185 mode = IPSEC_MODE_ANY; 5186 reqid = 0; 5187 } 5188 5189 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5190 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5191 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5192 5193 /* XXX boundary check against sa_len */ 5194 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 5195 5196 /* 5197 * Make sure the port numbers are zero. 5198 * In case of NAT-T we will update them later if needed. 5199 */ 5200 KEY_PORTTOSADDR(&saidx.src, 0); 5201 KEY_PORTTOSADDR(&saidx.dst, 0); 5202 5203 #ifdef IPSEC_NAT_T 5204 /* 5205 * Handle NAT-T info if present. 5206 */ 5207 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 5208 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5209 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5210 struct sadb_x_nat_t_port *sport, *dport; 5211 5212 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 5213 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5214 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5215 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5216 __func__)); 5217 return key_senderror(so, m, EINVAL); 5218 } 5219 5220 type = (struct sadb_x_nat_t_type *) 5221 mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5222 sport = (struct sadb_x_nat_t_port *) 5223 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5224 dport = (struct sadb_x_nat_t_port *) 5225 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5226 5227 if (sport) 5228 KEY_PORTTOSADDR(&saidx.src, 5229 sport->sadb_x_nat_t_port_port); 5230 if (dport) 5231 KEY_PORTTOSADDR(&saidx.dst, 5232 dport->sadb_x_nat_t_port_port); 5233 } else { 5234 type = 0; 5235 } 5236 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL && 5237 mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { 5238 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) || 5239 mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { 5240 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5241 __func__)); 5242 return key_senderror(so, m, EINVAL); 5243 } 5244 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5245 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5246 ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__)); 5247 } else { 5248 iaddr = raddr = NULL; 5249 } 5250 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { 5251 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { 5252 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5253 __func__)); 5254 return key_senderror(so, m, EINVAL); 5255 } 5256 frag = (struct sadb_x_nat_t_frag *) 5257 mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 5258 } else { 5259 frag = 0; 5260 } 5261 #endif 5262 5263 /* get a SA header */ 5264 if ((newsah = key_getsah(&saidx)) == NULL) { 5265 /* create a new SA header */ 5266 if ((newsah = key_newsah(&saidx)) == NULL) { 5267 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 5268 return key_senderror(so, m, ENOBUFS); 5269 } 5270 } 5271 5272 /* set spidx if there */ 5273 /* XXX rewrite */ 5274 error = key_setident(newsah, m, mhp); 5275 if (error) { 5276 return key_senderror(so, m, error); 5277 } 5278 5279 /* create new SA entry. */ 5280 /* We can create new SA only if SPI is differenct. */ 5281 SAHTREE_LOCK(); 5282 newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi); 5283 SAHTREE_UNLOCK(); 5284 if (newsav != NULL) { 5285 ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__)); 5286 return key_senderror(so, m, EEXIST); 5287 } 5288 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 5289 if (newsav == NULL) { 5290 return key_senderror(so, m, error); 5291 } 5292 5293 #ifdef IPSEC_NAT_T 5294 /* 5295 * Handle more NAT-T info if present, 5296 * now that we have a sav to fill. 5297 */ 5298 if (type) 5299 newsav->natt_type = type->sadb_x_nat_t_type_type; 5300 5301 #if 0 5302 /* 5303 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0. 5304 * We should actually check for a minimum MTU here, if we 5305 * want to support it in ip_output. 5306 */ 5307 if (frag) 5308 newsav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen; 5309 #endif 5310 #endif 5311 5312 /* check SA values to be mature. */ 5313 if ((error = key_mature(newsav)) != 0) { 5314 KEY_FREESAV(&newsav); 5315 return key_senderror(so, m, error); 5316 } 5317 5318 /* 5319 * don't call key_freesav() here, as we would like to keep the SA 5320 * in the database on success. 5321 */ 5322 5323 { 5324 struct mbuf *n; 5325 5326 /* set msg buf from mhp */ 5327 n = key_getmsgbuf_x1(m, mhp); 5328 if (n == NULL) { 5329 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5330 return key_senderror(so, m, ENOBUFS); 5331 } 5332 5333 m_freem(m); 5334 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5335 } 5336 } 5337 5338 /* m is retained */ 5339 static int 5340 key_setident(struct secashead *sah, struct mbuf *m, 5341 const struct sadb_msghdr *mhp) 5342 { 5343 const struct sadb_ident *idsrc, *iddst; 5344 int idsrclen, iddstlen; 5345 5346 IPSEC_ASSERT(sah != NULL, ("null secashead")); 5347 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5348 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5349 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5350 5351 /* don't make buffer if not there */ 5352 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL && 5353 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5354 sah->idents = NULL; 5355 sah->identd = NULL; 5356 return 0; 5357 } 5358 5359 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL || 5360 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5361 ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__)); 5362 return EINVAL; 5363 } 5364 5365 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC]; 5366 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST]; 5367 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC]; 5368 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST]; 5369 5370 /* validity check */ 5371 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { 5372 ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__)); 5373 return EINVAL; 5374 } 5375 5376 switch (idsrc->sadb_ident_type) { 5377 case SADB_IDENTTYPE_PREFIX: 5378 case SADB_IDENTTYPE_FQDN: 5379 case SADB_IDENTTYPE_USERFQDN: 5380 default: 5381 /* XXX do nothing */ 5382 sah->idents = NULL; 5383 sah->identd = NULL; 5384 return 0; 5385 } 5386 5387 /* make structure */ 5388 sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5389 if (sah->idents == NULL) { 5390 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5391 return ENOBUFS; 5392 } 5393 sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5394 if (sah->identd == NULL) { 5395 free(sah->idents, M_IPSEC_MISC); 5396 sah->idents = NULL; 5397 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5398 return ENOBUFS; 5399 } 5400 sah->idents->type = idsrc->sadb_ident_type; 5401 sah->idents->id = idsrc->sadb_ident_id; 5402 5403 sah->identd->type = iddst->sadb_ident_type; 5404 sah->identd->id = iddst->sadb_ident_id; 5405 5406 return 0; 5407 } 5408 5409 /* 5410 * m will not be freed on return. 5411 * it is caller's responsibility to free the result. 5412 */ 5413 static struct mbuf * 5414 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp) 5415 { 5416 struct mbuf *n; 5417 5418 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5419 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5420 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5421 5422 /* create new sadb_msg to reply. */ 5423 n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED, 5424 SADB_EXT_SA, SADB_X_EXT_SA2, 5425 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, 5426 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 5427 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST); 5428 if (!n) 5429 return NULL; 5430 5431 if (n->m_len < sizeof(struct sadb_msg)) { 5432 n = m_pullup(n, sizeof(struct sadb_msg)); 5433 if (n == NULL) 5434 return NULL; 5435 } 5436 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; 5437 mtod(n, struct sadb_msg *)->sadb_msg_len = 5438 PFKEY_UNIT64(n->m_pkthdr.len); 5439 5440 return n; 5441 } 5442 5443 /* 5444 * SADB_DELETE processing 5445 * receive 5446 * <base, SA(*), address(SD)> 5447 * from the ikmpd, and set SADB_SASTATE_DEAD, 5448 * and send, 5449 * <base, SA(*), address(SD)> 5450 * to the ikmpd. 5451 * 5452 * m will always be freed. 5453 */ 5454 static int 5455 key_delete(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5456 { 5457 struct sadb_sa *sa0; 5458 struct sadb_address *src0, *dst0; 5459 struct secasindex saidx; 5460 struct secashead *sah; 5461 struct secasvar *sav = NULL; 5462 u_int16_t proto; 5463 5464 IPSEC_ASSERT(so != NULL, ("null socket")); 5465 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5466 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5467 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5468 5469 /* map satype to proto */ 5470 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5471 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5472 __func__)); 5473 return key_senderror(so, m, EINVAL); 5474 } 5475 5476 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5477 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5478 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5479 __func__)); 5480 return key_senderror(so, m, EINVAL); 5481 } 5482 5483 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5484 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5485 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5486 __func__)); 5487 return key_senderror(so, m, EINVAL); 5488 } 5489 5490 if (mhp->ext[SADB_EXT_SA] == NULL) { 5491 /* 5492 * Caller wants us to delete all non-LARVAL SAs 5493 * that match the src/dst. This is used during 5494 * IKE INITIAL-CONTACT. 5495 */ 5496 ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__)); 5497 return key_delete_all(so, m, mhp, proto); 5498 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { 5499 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5500 __func__)); 5501 return key_senderror(so, m, EINVAL); 5502 } 5503 5504 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5505 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5506 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5507 5508 /* XXX boundary check against sa_len */ 5509 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5510 5511 /* 5512 * Make sure the port numbers are zero. 5513 * In case of NAT-T we will update them later if needed. 5514 */ 5515 KEY_PORTTOSADDR(&saidx.src, 0); 5516 KEY_PORTTOSADDR(&saidx.dst, 0); 5517 5518 #ifdef IPSEC_NAT_T 5519 /* 5520 * Handle NAT-T info if present. 5521 */ 5522 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5523 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5524 struct sadb_x_nat_t_port *sport, *dport; 5525 5526 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5527 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5528 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5529 __func__)); 5530 return key_senderror(so, m, EINVAL); 5531 } 5532 5533 sport = (struct sadb_x_nat_t_port *) 5534 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5535 dport = (struct sadb_x_nat_t_port *) 5536 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5537 5538 if (sport) 5539 KEY_PORTTOSADDR(&saidx.src, 5540 sport->sadb_x_nat_t_port_port); 5541 if (dport) 5542 KEY_PORTTOSADDR(&saidx.dst, 5543 dport->sadb_x_nat_t_port_port); 5544 } 5545 #endif 5546 5547 /* get a SA header */ 5548 SAHTREE_LOCK(); 5549 LIST_FOREACH(sah, &V_sahtree, chain) { 5550 if (sah->state == SADB_SASTATE_DEAD) 5551 continue; 5552 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5553 continue; 5554 5555 /* get a SA with SPI. */ 5556 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5557 if (sav) 5558 break; 5559 } 5560 if (sah == NULL) { 5561 SAHTREE_UNLOCK(); 5562 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5563 return key_senderror(so, m, ENOENT); 5564 } 5565 5566 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5567 KEY_FREESAV(&sav); 5568 SAHTREE_UNLOCK(); 5569 5570 { 5571 struct mbuf *n; 5572 struct sadb_msg *newmsg; 5573 5574 /* create new sadb_msg to reply. */ 5575 /* XXX-BZ NAT-T extensions? */ 5576 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 5577 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5578 if (!n) 5579 return key_senderror(so, m, ENOBUFS); 5580 5581 if (n->m_len < sizeof(struct sadb_msg)) { 5582 n = m_pullup(n, sizeof(struct sadb_msg)); 5583 if (n == NULL) 5584 return key_senderror(so, m, ENOBUFS); 5585 } 5586 newmsg = mtod(n, struct sadb_msg *); 5587 newmsg->sadb_msg_errno = 0; 5588 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5589 5590 m_freem(m); 5591 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5592 } 5593 } 5594 5595 /* 5596 * delete all SAs for src/dst. Called from key_delete(). 5597 */ 5598 static int 5599 key_delete_all(struct socket *so, struct mbuf *m, 5600 const struct sadb_msghdr *mhp, u_int16_t proto) 5601 { 5602 struct sadb_address *src0, *dst0; 5603 struct secasindex saidx; 5604 struct secashead *sah; 5605 struct secasvar *sav, *nextsav; 5606 u_int stateidx, state; 5607 5608 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5609 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5610 5611 /* XXX boundary check against sa_len */ 5612 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5613 5614 /* 5615 * Make sure the port numbers are zero. 5616 * In case of NAT-T we will update them later if needed. 5617 */ 5618 KEY_PORTTOSADDR(&saidx.src, 0); 5619 KEY_PORTTOSADDR(&saidx.dst, 0); 5620 5621 #ifdef IPSEC_NAT_T 5622 /* 5623 * Handle NAT-T info if present. 5624 */ 5625 5626 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5627 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5628 struct sadb_x_nat_t_port *sport, *dport; 5629 5630 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5631 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5632 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5633 __func__)); 5634 return key_senderror(so, m, EINVAL); 5635 } 5636 5637 sport = (struct sadb_x_nat_t_port *) 5638 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5639 dport = (struct sadb_x_nat_t_port *) 5640 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5641 5642 if (sport) 5643 KEY_PORTTOSADDR(&saidx.src, 5644 sport->sadb_x_nat_t_port_port); 5645 if (dport) 5646 KEY_PORTTOSADDR(&saidx.dst, 5647 dport->sadb_x_nat_t_port_port); 5648 } 5649 #endif 5650 5651 SAHTREE_LOCK(); 5652 LIST_FOREACH(sah, &V_sahtree, chain) { 5653 if (sah->state == SADB_SASTATE_DEAD) 5654 continue; 5655 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5656 continue; 5657 5658 /* Delete all non-LARVAL SAs. */ 5659 for (stateidx = 0; 5660 stateidx < _ARRAYLEN(saorder_state_alive); 5661 stateidx++) { 5662 state = saorder_state_alive[stateidx]; 5663 if (state == SADB_SASTATE_LARVAL) 5664 continue; 5665 for (sav = LIST_FIRST(&sah->savtree[state]); 5666 sav != NULL; sav = nextsav) { 5667 nextsav = LIST_NEXT(sav, chain); 5668 /* sanity check */ 5669 if (sav->state != state) { 5670 ipseclog((LOG_DEBUG, "%s: invalid " 5671 "sav->state (queue %d SA %d)\n", 5672 __func__, state, sav->state)); 5673 continue; 5674 } 5675 5676 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5677 KEY_FREESAV(&sav); 5678 } 5679 } 5680 } 5681 SAHTREE_UNLOCK(); 5682 { 5683 struct mbuf *n; 5684 struct sadb_msg *newmsg; 5685 5686 /* create new sadb_msg to reply. */ 5687 /* XXX-BZ NAT-T extensions? */ 5688 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, 5689 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5690 if (!n) 5691 return key_senderror(so, m, ENOBUFS); 5692 5693 if (n->m_len < sizeof(struct sadb_msg)) { 5694 n = m_pullup(n, sizeof(struct sadb_msg)); 5695 if (n == NULL) 5696 return key_senderror(so, m, ENOBUFS); 5697 } 5698 newmsg = mtod(n, struct sadb_msg *); 5699 newmsg->sadb_msg_errno = 0; 5700 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5701 5702 m_freem(m); 5703 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5704 } 5705 } 5706 5707 /* 5708 * SADB_GET processing 5709 * receive 5710 * <base, SA(*), address(SD)> 5711 * from the ikmpd, and get a SP and a SA to respond, 5712 * and send, 5713 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), 5714 * (identity(SD),) (sensitivity)> 5715 * to the ikmpd. 5716 * 5717 * m will always be freed. 5718 */ 5719 static int 5720 key_get(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5721 { 5722 struct sadb_sa *sa0; 5723 struct sadb_address *src0, *dst0; 5724 struct secasindex saidx; 5725 struct secashead *sah; 5726 struct secasvar *sav = NULL; 5727 u_int16_t proto; 5728 5729 IPSEC_ASSERT(so != NULL, ("null socket")); 5730 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5731 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5732 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5733 5734 /* map satype to proto */ 5735 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5736 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5737 __func__)); 5738 return key_senderror(so, m, EINVAL); 5739 } 5740 5741 if (mhp->ext[SADB_EXT_SA] == NULL || 5742 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5743 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5744 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5745 __func__)); 5746 return key_senderror(so, m, EINVAL); 5747 } 5748 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5749 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5750 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5751 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5752 __func__)); 5753 return key_senderror(so, m, EINVAL); 5754 } 5755 5756 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5757 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5758 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5759 5760 /* XXX boundary check against sa_len */ 5761 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5762 5763 /* 5764 * Make sure the port numbers are zero. 5765 * In case of NAT-T we will update them later if needed. 5766 */ 5767 KEY_PORTTOSADDR(&saidx.src, 0); 5768 KEY_PORTTOSADDR(&saidx.dst, 0); 5769 5770 #ifdef IPSEC_NAT_T 5771 /* 5772 * Handle NAT-T info if present. 5773 */ 5774 5775 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5776 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5777 struct sadb_x_nat_t_port *sport, *dport; 5778 5779 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5780 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5781 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5782 __func__)); 5783 return key_senderror(so, m, EINVAL); 5784 } 5785 5786 sport = (struct sadb_x_nat_t_port *) 5787 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5788 dport = (struct sadb_x_nat_t_port *) 5789 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5790 5791 if (sport) 5792 KEY_PORTTOSADDR(&saidx.src, 5793 sport->sadb_x_nat_t_port_port); 5794 if (dport) 5795 KEY_PORTTOSADDR(&saidx.dst, 5796 dport->sadb_x_nat_t_port_port); 5797 } 5798 #endif 5799 5800 /* get a SA header */ 5801 SAHTREE_LOCK(); 5802 LIST_FOREACH(sah, &V_sahtree, chain) { 5803 if (sah->state == SADB_SASTATE_DEAD) 5804 continue; 5805 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5806 continue; 5807 5808 /* get a SA with SPI. */ 5809 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5810 if (sav) 5811 break; 5812 } 5813 SAHTREE_UNLOCK(); 5814 if (sah == NULL) { 5815 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5816 return key_senderror(so, m, ENOENT); 5817 } 5818 5819 { 5820 struct mbuf *n; 5821 u_int8_t satype; 5822 5823 /* map proto to satype */ 5824 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 5825 ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n", 5826 __func__)); 5827 return key_senderror(so, m, EINVAL); 5828 } 5829 5830 /* create new sadb_msg to reply. */ 5831 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, 5832 mhp->msg->sadb_msg_pid); 5833 if (!n) 5834 return key_senderror(so, m, ENOBUFS); 5835 5836 m_freem(m); 5837 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5838 } 5839 } 5840 5841 /* XXX make it sysctl-configurable? */ 5842 static void 5843 key_getcomb_setlifetime(struct sadb_comb *comb) 5844 { 5845 5846 comb->sadb_comb_soft_allocations = 1; 5847 comb->sadb_comb_hard_allocations = 1; 5848 comb->sadb_comb_soft_bytes = 0; 5849 comb->sadb_comb_hard_bytes = 0; 5850 comb->sadb_comb_hard_addtime = 86400; /* 1 day */ 5851 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100; 5852 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */ 5853 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100; 5854 } 5855 5856 /* 5857 * XXX reorder combinations by preference 5858 * XXX no idea if the user wants ESP authentication or not 5859 */ 5860 static struct mbuf * 5861 key_getcomb_esp() 5862 { 5863 struct sadb_comb *comb; 5864 struct enc_xform *algo; 5865 struct mbuf *result = NULL, *m, *n; 5866 int encmin; 5867 int i, off, o; 5868 int totlen; 5869 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5870 5871 m = NULL; 5872 for (i = 1; i <= SADB_EALG_MAX; i++) { 5873 algo = esp_algorithm_lookup(i); 5874 if (algo == NULL) 5875 continue; 5876 5877 /* discard algorithms with key size smaller than system min */ 5878 if (_BITS(algo->maxkey) < V_ipsec_esp_keymin) 5879 continue; 5880 if (_BITS(algo->minkey) < V_ipsec_esp_keymin) 5881 encmin = V_ipsec_esp_keymin; 5882 else 5883 encmin = _BITS(algo->minkey); 5884 5885 if (V_ipsec_esp_auth) 5886 m = key_getcomb_ah(); 5887 else { 5888 IPSEC_ASSERT(l <= MLEN, 5889 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 5890 MGET(m, M_NOWAIT, MT_DATA); 5891 if (m) { 5892 M_ALIGN(m, l); 5893 m->m_len = l; 5894 m->m_next = NULL; 5895 bzero(mtod(m, caddr_t), m->m_len); 5896 } 5897 } 5898 if (!m) 5899 goto fail; 5900 5901 totlen = 0; 5902 for (n = m; n; n = n->m_next) 5903 totlen += n->m_len; 5904 IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l)); 5905 5906 for (off = 0; off < totlen; off += l) { 5907 n = m_pulldown(m, off, l, &o); 5908 if (!n) { 5909 /* m is already freed */ 5910 goto fail; 5911 } 5912 comb = (struct sadb_comb *)(mtod(n, caddr_t) + o); 5913 bzero(comb, sizeof(*comb)); 5914 key_getcomb_setlifetime(comb); 5915 comb->sadb_comb_encrypt = i; 5916 comb->sadb_comb_encrypt_minbits = encmin; 5917 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); 5918 } 5919 5920 if (!result) 5921 result = m; 5922 else 5923 m_cat(result, m); 5924 } 5925 5926 return result; 5927 5928 fail: 5929 if (result) 5930 m_freem(result); 5931 return NULL; 5932 } 5933 5934 static void 5935 key_getsizes_ah(const struct auth_hash *ah, int alg, u_int16_t* min, 5936 u_int16_t* max) 5937 { 5938 5939 *min = *max = ah->keysize; 5940 if (ah->keysize == 0) { 5941 /* 5942 * Transform takes arbitrary key size but algorithm 5943 * key size is restricted. Enforce this here. 5944 */ 5945 switch (alg) { 5946 case SADB_X_AALG_MD5: *min = *max = 16; break; 5947 case SADB_X_AALG_SHA: *min = *max = 20; break; 5948 case SADB_X_AALG_NULL: *min = 1; *max = 256; break; 5949 case SADB_X_AALG_SHA2_256: *min = *max = 32; break; 5950 case SADB_X_AALG_SHA2_384: *min = *max = 48; break; 5951 case SADB_X_AALG_SHA2_512: *min = *max = 64; break; 5952 default: 5953 DPRINTF(("%s: unknown AH algorithm %u\n", 5954 __func__, alg)); 5955 break; 5956 } 5957 } 5958 } 5959 5960 /* 5961 * XXX reorder combinations by preference 5962 */ 5963 static struct mbuf * 5964 key_getcomb_ah() 5965 { 5966 struct sadb_comb *comb; 5967 struct auth_hash *algo; 5968 struct mbuf *m; 5969 u_int16_t minkeysize, maxkeysize; 5970 int i; 5971 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5972 5973 m = NULL; 5974 for (i = 1; i <= SADB_AALG_MAX; i++) { 5975 #if 1 5976 /* we prefer HMAC algorithms, not old algorithms */ 5977 if (i != SADB_AALG_SHA1HMAC && 5978 i != SADB_AALG_MD5HMAC && 5979 i != SADB_X_AALG_SHA2_256 && 5980 i != SADB_X_AALG_SHA2_384 && 5981 i != SADB_X_AALG_SHA2_512) 5982 continue; 5983 #endif 5984 algo = ah_algorithm_lookup(i); 5985 if (!algo) 5986 continue; 5987 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); 5988 /* discard algorithms with key size smaller than system min */ 5989 if (_BITS(minkeysize) < V_ipsec_ah_keymin) 5990 continue; 5991 5992 if (!m) { 5993 IPSEC_ASSERT(l <= MLEN, 5994 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 5995 MGET(m, M_NOWAIT, MT_DATA); 5996 if (m) { 5997 M_ALIGN(m, l); 5998 m->m_len = l; 5999 m->m_next = NULL; 6000 } 6001 } else 6002 M_PREPEND(m, l, M_NOWAIT); 6003 if (!m) 6004 return NULL; 6005 6006 comb = mtod(m, struct sadb_comb *); 6007 bzero(comb, sizeof(*comb)); 6008 key_getcomb_setlifetime(comb); 6009 comb->sadb_comb_auth = i; 6010 comb->sadb_comb_auth_minbits = _BITS(minkeysize); 6011 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); 6012 } 6013 6014 return m; 6015 } 6016 6017 /* 6018 * not really an official behavior. discussed in pf_key@inner.net in Sep2000. 6019 * XXX reorder combinations by preference 6020 */ 6021 static struct mbuf * 6022 key_getcomb_ipcomp() 6023 { 6024 struct sadb_comb *comb; 6025 struct comp_algo *algo; 6026 struct mbuf *m; 6027 int i; 6028 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6029 6030 m = NULL; 6031 for (i = 1; i <= SADB_X_CALG_MAX; i++) { 6032 algo = ipcomp_algorithm_lookup(i); 6033 if (!algo) 6034 continue; 6035 6036 if (!m) { 6037 IPSEC_ASSERT(l <= MLEN, 6038 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6039 MGET(m, M_NOWAIT, MT_DATA); 6040 if (m) { 6041 M_ALIGN(m, l); 6042 m->m_len = l; 6043 m->m_next = NULL; 6044 } 6045 } else 6046 M_PREPEND(m, l, M_NOWAIT); 6047 if (!m) 6048 return NULL; 6049 6050 comb = mtod(m, struct sadb_comb *); 6051 bzero(comb, sizeof(*comb)); 6052 key_getcomb_setlifetime(comb); 6053 comb->sadb_comb_encrypt = i; 6054 /* what should we set into sadb_comb_*_{min,max}bits? */ 6055 } 6056 6057 return m; 6058 } 6059 6060 /* 6061 * XXX no way to pass mode (transport/tunnel) to userland 6062 * XXX replay checking? 6063 * XXX sysctl interface to ipsec_{ah,esp}_keymin 6064 */ 6065 static struct mbuf * 6066 key_getprop(const struct secasindex *saidx) 6067 { 6068 struct sadb_prop *prop; 6069 struct mbuf *m, *n; 6070 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); 6071 int totlen; 6072 6073 switch (saidx->proto) { 6074 case IPPROTO_ESP: 6075 m = key_getcomb_esp(); 6076 break; 6077 case IPPROTO_AH: 6078 m = key_getcomb_ah(); 6079 break; 6080 case IPPROTO_IPCOMP: 6081 m = key_getcomb_ipcomp(); 6082 break; 6083 default: 6084 return NULL; 6085 } 6086 6087 if (!m) 6088 return NULL; 6089 M_PREPEND(m, l, M_NOWAIT); 6090 if (!m) 6091 return NULL; 6092 6093 totlen = 0; 6094 for (n = m; n; n = n->m_next) 6095 totlen += n->m_len; 6096 6097 prop = mtod(m, struct sadb_prop *); 6098 bzero(prop, sizeof(*prop)); 6099 prop->sadb_prop_len = PFKEY_UNIT64(totlen); 6100 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 6101 prop->sadb_prop_replay = 32; /* XXX */ 6102 6103 return m; 6104 } 6105 6106 /* 6107 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2(). 6108 * send 6109 * <base, SA, address(SD), (address(P)), x_policy, 6110 * (identity(SD),) (sensitivity,) proposal> 6111 * to KMD, and expect to receive 6112 * <base> with SADB_ACQUIRE if error occured, 6113 * or 6114 * <base, src address, dst address, (SPI range)> with SADB_GETSPI 6115 * from KMD by PF_KEY. 6116 * 6117 * XXX x_policy is outside of RFC2367 (KAME extension). 6118 * XXX sensitivity is not supported. 6119 * XXX for ipcomp, RFC2367 does not define how to fill in proposal. 6120 * see comment for key_getcomb_ipcomp(). 6121 * 6122 * OUT: 6123 * 0 : succeed 6124 * others: error number 6125 */ 6126 static int 6127 key_acquire(const struct secasindex *saidx, struct secpolicy *sp) 6128 { 6129 struct mbuf *result = NULL, *m; 6130 struct secacq *newacq; 6131 u_int8_t satype; 6132 int error = -1; 6133 u_int32_t seq; 6134 6135 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 6136 satype = key_proto2satype(saidx->proto); 6137 IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto)); 6138 6139 /* 6140 * We never do anything about acquirng SA. There is anather 6141 * solution that kernel blocks to send SADB_ACQUIRE message until 6142 * getting something message from IKEd. In later case, to be 6143 * managed with ACQUIRING list. 6144 */ 6145 /* Get an entry to check whether sending message or not. */ 6146 if ((newacq = key_getacq(saidx)) != NULL) { 6147 if (V_key_blockacq_count < newacq->count) { 6148 /* reset counter and do send message. */ 6149 newacq->count = 0; 6150 } else { 6151 /* increment counter and do nothing. */ 6152 newacq->count++; 6153 return 0; 6154 } 6155 } else { 6156 /* make new entry for blocking to send SADB_ACQUIRE. */ 6157 if ((newacq = key_newacq(saidx)) == NULL) 6158 return ENOBUFS; 6159 } 6160 6161 6162 seq = newacq->seq; 6163 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0); 6164 if (!m) { 6165 error = ENOBUFS; 6166 goto fail; 6167 } 6168 result = m; 6169 6170 /* 6171 * No SADB_X_EXT_NAT_T_* here: we do not know 6172 * anything related to NAT-T at this time. 6173 */ 6174 6175 /* set sadb_address for saidx's. */ 6176 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 6177 &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY); 6178 if (!m) { 6179 error = ENOBUFS; 6180 goto fail; 6181 } 6182 m_cat(result, m); 6183 6184 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 6185 &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY); 6186 if (!m) { 6187 error = ENOBUFS; 6188 goto fail; 6189 } 6190 m_cat(result, m); 6191 6192 /* XXX proxy address (optional) */ 6193 6194 /* set sadb_x_policy */ 6195 if (sp) { 6196 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id); 6197 if (!m) { 6198 error = ENOBUFS; 6199 goto fail; 6200 } 6201 m_cat(result, m); 6202 } 6203 6204 /* XXX identity (optional) */ 6205 #if 0 6206 if (idexttype && fqdn) { 6207 /* create identity extension (FQDN) */ 6208 struct sadb_ident *id; 6209 int fqdnlen; 6210 6211 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ 6212 id = (struct sadb_ident *)p; 6213 bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6214 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6215 id->sadb_ident_exttype = idexttype; 6216 id->sadb_ident_type = SADB_IDENTTYPE_FQDN; 6217 bcopy(fqdn, id + 1, fqdnlen); 6218 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); 6219 } 6220 6221 if (idexttype) { 6222 /* create identity extension (USERFQDN) */ 6223 struct sadb_ident *id; 6224 int userfqdnlen; 6225 6226 if (userfqdn) { 6227 /* +1 for terminating-NUL */ 6228 userfqdnlen = strlen(userfqdn) + 1; 6229 } else 6230 userfqdnlen = 0; 6231 id = (struct sadb_ident *)p; 6232 bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6233 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6234 id->sadb_ident_exttype = idexttype; 6235 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; 6236 /* XXX is it correct? */ 6237 if (curproc && curproc->p_cred) 6238 id->sadb_ident_id = curproc->p_cred->p_ruid; 6239 if (userfqdn && userfqdnlen) 6240 bcopy(userfqdn, id + 1, userfqdnlen); 6241 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); 6242 } 6243 #endif 6244 6245 /* XXX sensitivity (optional) */ 6246 6247 /* create proposal/combination extension */ 6248 m = key_getprop(saidx); 6249 #if 0 6250 /* 6251 * spec conformant: always attach proposal/combination extension, 6252 * the problem is that we have no way to attach it for ipcomp, 6253 * due to the way sadb_comb is declared in RFC2367. 6254 */ 6255 if (!m) { 6256 error = ENOBUFS; 6257 goto fail; 6258 } 6259 m_cat(result, m); 6260 #else 6261 /* 6262 * outside of spec; make proposal/combination extension optional. 6263 */ 6264 if (m) 6265 m_cat(result, m); 6266 #endif 6267 6268 if ((result->m_flags & M_PKTHDR) == 0) { 6269 error = EINVAL; 6270 goto fail; 6271 } 6272 6273 if (result->m_len < sizeof(struct sadb_msg)) { 6274 result = m_pullup(result, sizeof(struct sadb_msg)); 6275 if (result == NULL) { 6276 error = ENOBUFS; 6277 goto fail; 6278 } 6279 } 6280 6281 result->m_pkthdr.len = 0; 6282 for (m = result; m; m = m->m_next) 6283 result->m_pkthdr.len += m->m_len; 6284 6285 mtod(result, struct sadb_msg *)->sadb_msg_len = 6286 PFKEY_UNIT64(result->m_pkthdr.len); 6287 6288 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6289 6290 fail: 6291 if (result) 6292 m_freem(result); 6293 return error; 6294 } 6295 6296 static struct secacq * 6297 key_newacq(const struct secasindex *saidx) 6298 { 6299 struct secacq *newacq; 6300 6301 /* get new entry */ 6302 newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 6303 if (newacq == NULL) { 6304 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6305 return NULL; 6306 } 6307 6308 /* copy secindex */ 6309 bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx)); 6310 newacq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq); 6311 newacq->created = time_second; 6312 newacq->count = 0; 6313 6314 /* add to acqtree */ 6315 ACQ_LOCK(); 6316 LIST_INSERT_HEAD(&V_acqtree, newacq, chain); 6317 ACQ_UNLOCK(); 6318 6319 return newacq; 6320 } 6321 6322 static struct secacq * 6323 key_getacq(const struct secasindex *saidx) 6324 { 6325 struct secacq *acq; 6326 6327 ACQ_LOCK(); 6328 LIST_FOREACH(acq, &V_acqtree, chain) { 6329 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY)) 6330 break; 6331 } 6332 ACQ_UNLOCK(); 6333 6334 return acq; 6335 } 6336 6337 static struct secacq * 6338 key_getacqbyseq(u_int32_t seq) 6339 { 6340 struct secacq *acq; 6341 6342 ACQ_LOCK(); 6343 LIST_FOREACH(acq, &V_acqtree, chain) { 6344 if (acq->seq == seq) 6345 break; 6346 } 6347 ACQ_UNLOCK(); 6348 6349 return acq; 6350 } 6351 6352 static struct secspacq * 6353 key_newspacq(struct secpolicyindex *spidx) 6354 { 6355 struct secspacq *acq; 6356 6357 /* get new entry */ 6358 acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 6359 if (acq == NULL) { 6360 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6361 return NULL; 6362 } 6363 6364 /* copy secindex */ 6365 bcopy(spidx, &acq->spidx, sizeof(acq->spidx)); 6366 acq->created = time_second; 6367 acq->count = 0; 6368 6369 /* add to spacqtree */ 6370 SPACQ_LOCK(); 6371 LIST_INSERT_HEAD(&V_spacqtree, acq, chain); 6372 SPACQ_UNLOCK(); 6373 6374 return acq; 6375 } 6376 6377 static struct secspacq * 6378 key_getspacq(struct secpolicyindex *spidx) 6379 { 6380 struct secspacq *acq; 6381 6382 SPACQ_LOCK(); 6383 LIST_FOREACH(acq, &V_spacqtree, chain) { 6384 if (key_cmpspidx_exactly(spidx, &acq->spidx)) { 6385 /* NB: return holding spacq_lock */ 6386 return acq; 6387 } 6388 } 6389 SPACQ_UNLOCK(); 6390 6391 return NULL; 6392 } 6393 6394 /* 6395 * SADB_ACQUIRE processing, 6396 * in first situation, is receiving 6397 * <base> 6398 * from the ikmpd, and clear sequence of its secasvar entry. 6399 * 6400 * In second situation, is receiving 6401 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6402 * from a user land process, and return 6403 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6404 * to the socket. 6405 * 6406 * m will always be freed. 6407 */ 6408 static int 6409 key_acquire2(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 6410 { 6411 const struct sadb_address *src0, *dst0; 6412 struct secasindex saidx; 6413 struct secashead *sah; 6414 u_int16_t proto; 6415 int error; 6416 6417 IPSEC_ASSERT(so != NULL, ("null socket")); 6418 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6419 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6420 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6421 6422 /* 6423 * Error message from KMd. 6424 * We assume that if error was occured in IKEd, the length of PFKEY 6425 * message is equal to the size of sadb_msg structure. 6426 * We do not raise error even if error occured in this function. 6427 */ 6428 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { 6429 struct secacq *acq; 6430 6431 /* check sequence number */ 6432 if (mhp->msg->sadb_msg_seq == 0) { 6433 ipseclog((LOG_DEBUG, "%s: must specify sequence " 6434 "number.\n", __func__)); 6435 m_freem(m); 6436 return 0; 6437 } 6438 6439 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) { 6440 /* 6441 * the specified larval SA is already gone, or we got 6442 * a bogus sequence number. we can silently ignore it. 6443 */ 6444 m_freem(m); 6445 return 0; 6446 } 6447 6448 /* reset acq counter in order to deletion by timehander. */ 6449 acq->created = time_second; 6450 acq->count = 0; 6451 m_freem(m); 6452 return 0; 6453 } 6454 6455 /* 6456 * This message is from user land. 6457 */ 6458 6459 /* map satype to proto */ 6460 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6461 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6462 __func__)); 6463 return key_senderror(so, m, EINVAL); 6464 } 6465 6466 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6467 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 6468 mhp->ext[SADB_EXT_PROPOSAL] == NULL) { 6469 /* error */ 6470 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6471 __func__)); 6472 return key_senderror(so, m, EINVAL); 6473 } 6474 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6475 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 6476 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { 6477 /* error */ 6478 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6479 __func__)); 6480 return key_senderror(so, m, EINVAL); 6481 } 6482 6483 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 6484 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 6485 6486 /* XXX boundary check against sa_len */ 6487 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 6488 6489 /* 6490 * Make sure the port numbers are zero. 6491 * In case of NAT-T we will update them later if needed. 6492 */ 6493 KEY_PORTTOSADDR(&saidx.src, 0); 6494 KEY_PORTTOSADDR(&saidx.dst, 0); 6495 6496 #ifndef IPSEC_NAT_T 6497 /* 6498 * Handle NAT-T info if present. 6499 */ 6500 6501 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 6502 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 6503 struct sadb_x_nat_t_port *sport, *dport; 6504 6505 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 6506 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 6507 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 6508 __func__)); 6509 return key_senderror(so, m, EINVAL); 6510 } 6511 6512 sport = (struct sadb_x_nat_t_port *) 6513 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 6514 dport = (struct sadb_x_nat_t_port *) 6515 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 6516 6517 if (sport) 6518 KEY_PORTTOSADDR(&saidx.src, 6519 sport->sadb_x_nat_t_port_port); 6520 if (dport) 6521 KEY_PORTTOSADDR(&saidx.dst, 6522 dport->sadb_x_nat_t_port_port); 6523 } 6524 #endif 6525 6526 /* get a SA index */ 6527 SAHTREE_LOCK(); 6528 LIST_FOREACH(sah, &V_sahtree, chain) { 6529 if (sah->state == SADB_SASTATE_DEAD) 6530 continue; 6531 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID)) 6532 break; 6533 } 6534 SAHTREE_UNLOCK(); 6535 if (sah != NULL) { 6536 ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__)); 6537 return key_senderror(so, m, EEXIST); 6538 } 6539 6540 error = key_acquire(&saidx, NULL); 6541 if (error != 0) { 6542 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 6543 __func__, mhp->msg->sadb_msg_errno)); 6544 return key_senderror(so, m, error); 6545 } 6546 6547 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); 6548 } 6549 6550 /* 6551 * SADB_REGISTER processing. 6552 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. 6553 * receive 6554 * <base> 6555 * from the ikmpd, and register a socket to send PF_KEY messages, 6556 * and send 6557 * <base, supported> 6558 * to KMD by PF_KEY. 6559 * If socket is detached, must free from regnode. 6560 * 6561 * m will always be freed. 6562 */ 6563 static int 6564 key_register(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 6565 { 6566 struct secreg *reg, *newreg = 0; 6567 6568 IPSEC_ASSERT(so != NULL, ("null socket")); 6569 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6570 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6571 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6572 6573 /* check for invalid register message */ 6574 if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0])) 6575 return key_senderror(so, m, EINVAL); 6576 6577 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ 6578 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) 6579 goto setmsg; 6580 6581 /* check whether existing or not */ 6582 REGTREE_LOCK(); 6583 LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) { 6584 if (reg->so == so) { 6585 REGTREE_UNLOCK(); 6586 ipseclog((LOG_DEBUG, "%s: socket exists already.\n", 6587 __func__)); 6588 return key_senderror(so, m, EEXIST); 6589 } 6590 } 6591 6592 /* create regnode */ 6593 newreg = malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO); 6594 if (newreg == NULL) { 6595 REGTREE_UNLOCK(); 6596 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6597 return key_senderror(so, m, ENOBUFS); 6598 } 6599 6600 newreg->so = so; 6601 ((struct keycb *)sotorawcb(so))->kp_registered++; 6602 6603 /* add regnode to regtree. */ 6604 LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain); 6605 REGTREE_UNLOCK(); 6606 6607 setmsg: 6608 { 6609 struct mbuf *n; 6610 struct sadb_msg *newmsg; 6611 struct sadb_supported *sup; 6612 u_int len, alen, elen; 6613 int off; 6614 int i; 6615 struct sadb_alg *alg; 6616 6617 /* create new sadb_msg to reply. */ 6618 alen = 0; 6619 for (i = 1; i <= SADB_AALG_MAX; i++) { 6620 if (ah_algorithm_lookup(i)) 6621 alen += sizeof(struct sadb_alg); 6622 } 6623 if (alen) 6624 alen += sizeof(struct sadb_supported); 6625 elen = 0; 6626 for (i = 1; i <= SADB_EALG_MAX; i++) { 6627 if (esp_algorithm_lookup(i)) 6628 elen += sizeof(struct sadb_alg); 6629 } 6630 if (elen) 6631 elen += sizeof(struct sadb_supported); 6632 6633 len = sizeof(struct sadb_msg) + alen + elen; 6634 6635 if (len > MCLBYTES) 6636 return key_senderror(so, m, ENOBUFS); 6637 6638 MGETHDR(n, M_NOWAIT, MT_DATA); 6639 if (len > MHLEN) { 6640 if (!(MCLGET(n, M_NOWAIT))) { 6641 m_freem(n); 6642 n = NULL; 6643 } 6644 } 6645 if (!n) 6646 return key_senderror(so, m, ENOBUFS); 6647 6648 n->m_pkthdr.len = n->m_len = len; 6649 n->m_next = NULL; 6650 off = 0; 6651 6652 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 6653 newmsg = mtod(n, struct sadb_msg *); 6654 newmsg->sadb_msg_errno = 0; 6655 newmsg->sadb_msg_len = PFKEY_UNIT64(len); 6656 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 6657 6658 /* for authentication algorithm */ 6659 if (alen) { 6660 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6661 sup->sadb_supported_len = PFKEY_UNIT64(alen); 6662 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 6663 off += PFKEY_ALIGN8(sizeof(*sup)); 6664 6665 for (i = 1; i <= SADB_AALG_MAX; i++) { 6666 struct auth_hash *aalgo; 6667 u_int16_t minkeysize, maxkeysize; 6668 6669 aalgo = ah_algorithm_lookup(i); 6670 if (!aalgo) 6671 continue; 6672 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6673 alg->sadb_alg_id = i; 6674 alg->sadb_alg_ivlen = 0; 6675 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); 6676 alg->sadb_alg_minbits = _BITS(minkeysize); 6677 alg->sadb_alg_maxbits = _BITS(maxkeysize); 6678 off += PFKEY_ALIGN8(sizeof(*alg)); 6679 } 6680 } 6681 6682 /* for encryption algorithm */ 6683 if (elen) { 6684 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6685 sup->sadb_supported_len = PFKEY_UNIT64(elen); 6686 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 6687 off += PFKEY_ALIGN8(sizeof(*sup)); 6688 6689 for (i = 1; i <= SADB_EALG_MAX; i++) { 6690 struct enc_xform *ealgo; 6691 6692 ealgo = esp_algorithm_lookup(i); 6693 if (!ealgo) 6694 continue; 6695 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6696 alg->sadb_alg_id = i; 6697 alg->sadb_alg_ivlen = ealgo->blocksize; 6698 alg->sadb_alg_minbits = _BITS(ealgo->minkey); 6699 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); 6700 off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); 6701 } 6702 } 6703 6704 IPSEC_ASSERT(off == len, 6705 ("length assumption failed (off %u len %u)", off, len)); 6706 6707 m_freem(m); 6708 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); 6709 } 6710 } 6711 6712 /* 6713 * free secreg entry registered. 6714 * XXX: I want to do free a socket marked done SADB_RESIGER to socket. 6715 */ 6716 void 6717 key_freereg(struct socket *so) 6718 { 6719 struct secreg *reg; 6720 int i; 6721 6722 IPSEC_ASSERT(so != NULL, ("NULL so")); 6723 6724 /* 6725 * check whether existing or not. 6726 * check all type of SA, because there is a potential that 6727 * one socket is registered to multiple type of SA. 6728 */ 6729 REGTREE_LOCK(); 6730 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 6731 LIST_FOREACH(reg, &V_regtree[i], chain) { 6732 if (reg->so == so && __LIST_CHAINED(reg)) { 6733 LIST_REMOVE(reg, chain); 6734 free(reg, M_IPSEC_SAR); 6735 break; 6736 } 6737 } 6738 } 6739 REGTREE_UNLOCK(); 6740 } 6741 6742 /* 6743 * SADB_EXPIRE processing 6744 * send 6745 * <base, SA, SA2, lifetime(C and one of HS), address(SD)> 6746 * to KMD by PF_KEY. 6747 * NOTE: We send only soft lifetime extension. 6748 * 6749 * OUT: 0 : succeed 6750 * others : error number 6751 */ 6752 static int 6753 key_expire(struct secasvar *sav) 6754 { 6755 int satype; 6756 struct mbuf *result = NULL, *m; 6757 int len; 6758 int error = -1; 6759 struct sadb_lifetime *lt; 6760 6761 IPSEC_ASSERT (sav != NULL, ("null sav")); 6762 IPSEC_ASSERT (sav->sah != NULL, ("null sa header")); 6763 6764 /* set msg header */ 6765 satype = key_proto2satype(sav->sah->saidx.proto); 6766 IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype)); 6767 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt); 6768 if (!m) { 6769 error = ENOBUFS; 6770 goto fail; 6771 } 6772 result = m; 6773 6774 /* create SA extension */ 6775 m = key_setsadbsa(sav); 6776 if (!m) { 6777 error = ENOBUFS; 6778 goto fail; 6779 } 6780 m_cat(result, m); 6781 6782 /* create SA extension */ 6783 m = key_setsadbxsa2(sav->sah->saidx.mode, 6784 sav->replay ? sav->replay->count : 0, 6785 sav->sah->saidx.reqid); 6786 if (!m) { 6787 error = ENOBUFS; 6788 goto fail; 6789 } 6790 m_cat(result, m); 6791 6792 /* create lifetime extension (current and soft) */ 6793 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 6794 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 6795 if (m == NULL) { 6796 error = ENOBUFS; 6797 goto fail; 6798 } 6799 m_align(m, len); 6800 m->m_len = len; 6801 bzero(mtod(m, caddr_t), len); 6802 lt = mtod(m, struct sadb_lifetime *); 6803 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6804 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 6805 lt->sadb_lifetime_allocations = sav->lft_c->allocations; 6806 lt->sadb_lifetime_bytes = sav->lft_c->bytes; 6807 lt->sadb_lifetime_addtime = sav->lft_c->addtime; 6808 lt->sadb_lifetime_usetime = sav->lft_c->usetime; 6809 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 6810 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6811 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; 6812 lt->sadb_lifetime_allocations = sav->lft_s->allocations; 6813 lt->sadb_lifetime_bytes = sav->lft_s->bytes; 6814 lt->sadb_lifetime_addtime = sav->lft_s->addtime; 6815 lt->sadb_lifetime_usetime = sav->lft_s->usetime; 6816 m_cat(result, m); 6817 6818 /* set sadb_address for source */ 6819 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 6820 &sav->sah->saidx.src.sa, 6821 FULLMASK, IPSEC_ULPROTO_ANY); 6822 if (!m) { 6823 error = ENOBUFS; 6824 goto fail; 6825 } 6826 m_cat(result, m); 6827 6828 /* set sadb_address for destination */ 6829 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 6830 &sav->sah->saidx.dst.sa, 6831 FULLMASK, IPSEC_ULPROTO_ANY); 6832 if (!m) { 6833 error = ENOBUFS; 6834 goto fail; 6835 } 6836 m_cat(result, m); 6837 6838 /* 6839 * XXX-BZ Handle NAT-T extensions here. 6840 */ 6841 6842 if ((result->m_flags & M_PKTHDR) == 0) { 6843 error = EINVAL; 6844 goto fail; 6845 } 6846 6847 if (result->m_len < sizeof(struct sadb_msg)) { 6848 result = m_pullup(result, sizeof(struct sadb_msg)); 6849 if (result == NULL) { 6850 error = ENOBUFS; 6851 goto fail; 6852 } 6853 } 6854 6855 result->m_pkthdr.len = 0; 6856 for (m = result; m; m = m->m_next) 6857 result->m_pkthdr.len += m->m_len; 6858 6859 mtod(result, struct sadb_msg *)->sadb_msg_len = 6860 PFKEY_UNIT64(result->m_pkthdr.len); 6861 6862 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6863 6864 fail: 6865 if (result) 6866 m_freem(result); 6867 return error; 6868 } 6869 6870 /* 6871 * SADB_FLUSH processing 6872 * receive 6873 * <base> 6874 * from the ikmpd, and free all entries in secastree. 6875 * and send, 6876 * <base> 6877 * to the ikmpd. 6878 * NOTE: to do is only marking SADB_SASTATE_DEAD. 6879 * 6880 * m will always be freed. 6881 */ 6882 static int 6883 key_flush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 6884 { 6885 struct sadb_msg *newmsg; 6886 struct secashead *sah, *nextsah; 6887 struct secasvar *sav, *nextsav; 6888 u_int16_t proto; 6889 u_int8_t state; 6890 u_int stateidx; 6891 6892 IPSEC_ASSERT(so != NULL, ("null socket")); 6893 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6894 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6895 6896 /* map satype to proto */ 6897 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6898 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6899 __func__)); 6900 return key_senderror(so, m, EINVAL); 6901 } 6902 6903 /* no SATYPE specified, i.e. flushing all SA. */ 6904 SAHTREE_LOCK(); 6905 for (sah = LIST_FIRST(&V_sahtree); 6906 sah != NULL; 6907 sah = nextsah) { 6908 nextsah = LIST_NEXT(sah, chain); 6909 6910 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 6911 && proto != sah->saidx.proto) 6912 continue; 6913 6914 for (stateidx = 0; 6915 stateidx < _ARRAYLEN(saorder_state_alive); 6916 stateidx++) { 6917 state = saorder_state_any[stateidx]; 6918 for (sav = LIST_FIRST(&sah->savtree[state]); 6919 sav != NULL; 6920 sav = nextsav) { 6921 6922 nextsav = LIST_NEXT(sav, chain); 6923 6924 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 6925 KEY_FREESAV(&sav); 6926 } 6927 } 6928 6929 sah->state = SADB_SASTATE_DEAD; 6930 } 6931 SAHTREE_UNLOCK(); 6932 6933 if (m->m_len < sizeof(struct sadb_msg) || 6934 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 6935 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6936 return key_senderror(so, m, ENOBUFS); 6937 } 6938 6939 if (m->m_next) 6940 m_freem(m->m_next); 6941 m->m_next = NULL; 6942 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); 6943 newmsg = mtod(m, struct sadb_msg *); 6944 newmsg->sadb_msg_errno = 0; 6945 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 6946 6947 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 6948 } 6949 6950 /* 6951 * SADB_DUMP processing 6952 * dump all entries including status of DEAD in SAD. 6953 * receive 6954 * <base> 6955 * from the ikmpd, and dump all secasvar leaves 6956 * and send, 6957 * <base> ..... 6958 * to the ikmpd. 6959 * 6960 * m will always be freed. 6961 */ 6962 static int 6963 key_dump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 6964 { 6965 struct secashead *sah; 6966 struct secasvar *sav; 6967 u_int16_t proto; 6968 u_int stateidx; 6969 u_int8_t satype; 6970 u_int8_t state; 6971 int cnt; 6972 struct sadb_msg *newmsg; 6973 struct mbuf *n; 6974 6975 IPSEC_ASSERT(so != NULL, ("null socket")); 6976 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6977 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6978 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6979 6980 /* map satype to proto */ 6981 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6982 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6983 __func__)); 6984 return key_senderror(so, m, EINVAL); 6985 } 6986 6987 /* count sav entries to be sent to the userland. */ 6988 cnt = 0; 6989 SAHTREE_LOCK(); 6990 LIST_FOREACH(sah, &V_sahtree, chain) { 6991 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 6992 && proto != sah->saidx.proto) 6993 continue; 6994 6995 for (stateidx = 0; 6996 stateidx < _ARRAYLEN(saorder_state_any); 6997 stateidx++) { 6998 state = saorder_state_any[stateidx]; 6999 LIST_FOREACH(sav, &sah->savtree[state], chain) { 7000 cnt++; 7001 } 7002 } 7003 } 7004 7005 if (cnt == 0) { 7006 SAHTREE_UNLOCK(); 7007 return key_senderror(so, m, ENOENT); 7008 } 7009 7010 /* send this to the userland, one at a time. */ 7011 newmsg = NULL; 7012 LIST_FOREACH(sah, &V_sahtree, chain) { 7013 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 7014 && proto != sah->saidx.proto) 7015 continue; 7016 7017 /* map proto to satype */ 7018 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 7019 SAHTREE_UNLOCK(); 7020 ipseclog((LOG_DEBUG, "%s: there was invalid proto in " 7021 "SAD.\n", __func__)); 7022 return key_senderror(so, m, EINVAL); 7023 } 7024 7025 for (stateidx = 0; 7026 stateidx < _ARRAYLEN(saorder_state_any); 7027 stateidx++) { 7028 state = saorder_state_any[stateidx]; 7029 LIST_FOREACH(sav, &sah->savtree[state], chain) { 7030 n = key_setdumpsa(sav, SADB_DUMP, satype, 7031 --cnt, mhp->msg->sadb_msg_pid); 7032 if (!n) { 7033 SAHTREE_UNLOCK(); 7034 return key_senderror(so, m, ENOBUFS); 7035 } 7036 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 7037 } 7038 } 7039 } 7040 SAHTREE_UNLOCK(); 7041 7042 m_freem(m); 7043 return 0; 7044 } 7045 7046 /* 7047 * SADB_X_PROMISC processing 7048 * 7049 * m will always be freed. 7050 */ 7051 static int 7052 key_promisc(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 7053 { 7054 int olen; 7055 7056 IPSEC_ASSERT(so != NULL, ("null socket")); 7057 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7058 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7059 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7060 7061 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7062 7063 if (olen < sizeof(struct sadb_msg)) { 7064 #if 1 7065 return key_senderror(so, m, EINVAL); 7066 #else 7067 m_freem(m); 7068 return 0; 7069 #endif 7070 } else if (olen == sizeof(struct sadb_msg)) { 7071 /* enable/disable promisc mode */ 7072 struct keycb *kp; 7073 7074 if ((kp = (struct keycb *)sotorawcb(so)) == NULL) 7075 return key_senderror(so, m, EINVAL); 7076 mhp->msg->sadb_msg_errno = 0; 7077 switch (mhp->msg->sadb_msg_satype) { 7078 case 0: 7079 case 1: 7080 kp->kp_promisc = mhp->msg->sadb_msg_satype; 7081 break; 7082 default: 7083 return key_senderror(so, m, EINVAL); 7084 } 7085 7086 /* send the original message back to everyone */ 7087 mhp->msg->sadb_msg_errno = 0; 7088 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7089 } else { 7090 /* send packet as is */ 7091 7092 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); 7093 7094 /* TODO: if sadb_msg_seq is specified, send to specific pid */ 7095 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7096 } 7097 } 7098 7099 static int (*key_typesw[])(struct socket *, struct mbuf *, 7100 const struct sadb_msghdr *) = { 7101 NULL, /* SADB_RESERVED */ 7102 key_getspi, /* SADB_GETSPI */ 7103 key_update, /* SADB_UPDATE */ 7104 key_add, /* SADB_ADD */ 7105 key_delete, /* SADB_DELETE */ 7106 key_get, /* SADB_GET */ 7107 key_acquire2, /* SADB_ACQUIRE */ 7108 key_register, /* SADB_REGISTER */ 7109 NULL, /* SADB_EXPIRE */ 7110 key_flush, /* SADB_FLUSH */ 7111 key_dump, /* SADB_DUMP */ 7112 key_promisc, /* SADB_X_PROMISC */ 7113 NULL, /* SADB_X_PCHANGE */ 7114 key_spdadd, /* SADB_X_SPDUPDATE */ 7115 key_spdadd, /* SADB_X_SPDADD */ 7116 key_spddelete, /* SADB_X_SPDDELETE */ 7117 key_spdget, /* SADB_X_SPDGET */ 7118 NULL, /* SADB_X_SPDACQUIRE */ 7119 key_spddump, /* SADB_X_SPDDUMP */ 7120 key_spdflush, /* SADB_X_SPDFLUSH */ 7121 key_spdadd, /* SADB_X_SPDSETIDX */ 7122 NULL, /* SADB_X_SPDEXPIRE */ 7123 key_spddelete2, /* SADB_X_SPDDELETE2 */ 7124 }; 7125 7126 /* 7127 * parse sadb_msg buffer to process PFKEYv2, 7128 * and create a data to response if needed. 7129 * I think to be dealed with mbuf directly. 7130 * IN: 7131 * msgp : pointer to pointer to a received buffer pulluped. 7132 * This is rewrited to response. 7133 * so : pointer to socket. 7134 * OUT: 7135 * length for buffer to send to user process. 7136 */ 7137 int 7138 key_parse(struct mbuf *m, struct socket *so) 7139 { 7140 struct sadb_msg *msg; 7141 struct sadb_msghdr mh; 7142 u_int orglen; 7143 int error; 7144 int target; 7145 7146 IPSEC_ASSERT(so != NULL, ("null socket")); 7147 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7148 7149 #if 0 /*kdebug_sadb assumes msg in linear buffer*/ 7150 KEYDEBUG(KEYDEBUG_KEY_DUMP, 7151 ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__)); 7152 kdebug_sadb(msg)); 7153 #endif 7154 7155 if (m->m_len < sizeof(struct sadb_msg)) { 7156 m = m_pullup(m, sizeof(struct sadb_msg)); 7157 if (!m) 7158 return ENOBUFS; 7159 } 7160 msg = mtod(m, struct sadb_msg *); 7161 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); 7162 target = KEY_SENDUP_ONE; 7163 7164 if ((m->m_flags & M_PKTHDR) == 0 || 7165 m->m_pkthdr.len != m->m_pkthdr.len) { 7166 ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__)); 7167 PFKEYSTAT_INC(out_invlen); 7168 error = EINVAL; 7169 goto senderror; 7170 } 7171 7172 if (msg->sadb_msg_version != PF_KEY_V2) { 7173 ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n", 7174 __func__, msg->sadb_msg_version)); 7175 PFKEYSTAT_INC(out_invver); 7176 error = EINVAL; 7177 goto senderror; 7178 } 7179 7180 if (msg->sadb_msg_type > SADB_MAX) { 7181 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 7182 __func__, msg->sadb_msg_type)); 7183 PFKEYSTAT_INC(out_invmsgtype); 7184 error = EINVAL; 7185 goto senderror; 7186 } 7187 7188 /* for old-fashioned code - should be nuked */ 7189 if (m->m_pkthdr.len > MCLBYTES) { 7190 m_freem(m); 7191 return ENOBUFS; 7192 } 7193 if (m->m_next) { 7194 struct mbuf *n; 7195 7196 MGETHDR(n, M_NOWAIT, MT_DATA); 7197 if (n && m->m_pkthdr.len > MHLEN) { 7198 if (!(MCLGET(n, M_NOWAIT))) { 7199 m_free(n); 7200 n = NULL; 7201 } 7202 } 7203 if (!n) { 7204 m_freem(m); 7205 return ENOBUFS; 7206 } 7207 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t)); 7208 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; 7209 n->m_next = NULL; 7210 m_freem(m); 7211 m = n; 7212 } 7213 7214 /* align the mbuf chain so that extensions are in contiguous region. */ 7215 error = key_align(m, &mh); 7216 if (error) 7217 return error; 7218 7219 msg = mh.msg; 7220 7221 /* check SA type */ 7222 switch (msg->sadb_msg_satype) { 7223 case SADB_SATYPE_UNSPEC: 7224 switch (msg->sadb_msg_type) { 7225 case SADB_GETSPI: 7226 case SADB_UPDATE: 7227 case SADB_ADD: 7228 case SADB_DELETE: 7229 case SADB_GET: 7230 case SADB_ACQUIRE: 7231 case SADB_EXPIRE: 7232 ipseclog((LOG_DEBUG, "%s: must specify satype " 7233 "when msg type=%u.\n", __func__, 7234 msg->sadb_msg_type)); 7235 PFKEYSTAT_INC(out_invsatype); 7236 error = EINVAL; 7237 goto senderror; 7238 } 7239 break; 7240 case SADB_SATYPE_AH: 7241 case SADB_SATYPE_ESP: 7242 case SADB_X_SATYPE_IPCOMP: 7243 case SADB_X_SATYPE_TCPSIGNATURE: 7244 switch (msg->sadb_msg_type) { 7245 case SADB_X_SPDADD: 7246 case SADB_X_SPDDELETE: 7247 case SADB_X_SPDGET: 7248 case SADB_X_SPDDUMP: 7249 case SADB_X_SPDFLUSH: 7250 case SADB_X_SPDSETIDX: 7251 case SADB_X_SPDUPDATE: 7252 case SADB_X_SPDDELETE2: 7253 ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n", 7254 __func__, msg->sadb_msg_type)); 7255 PFKEYSTAT_INC(out_invsatype); 7256 error = EINVAL; 7257 goto senderror; 7258 } 7259 break; 7260 case SADB_SATYPE_RSVP: 7261 case SADB_SATYPE_OSPFV2: 7262 case SADB_SATYPE_RIPV2: 7263 case SADB_SATYPE_MIP: 7264 ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n", 7265 __func__, msg->sadb_msg_satype)); 7266 PFKEYSTAT_INC(out_invsatype); 7267 error = EOPNOTSUPP; 7268 goto senderror; 7269 case 1: /* XXX: What does it do? */ 7270 if (msg->sadb_msg_type == SADB_X_PROMISC) 7271 break; 7272 /*FALLTHROUGH*/ 7273 default: 7274 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 7275 __func__, msg->sadb_msg_satype)); 7276 PFKEYSTAT_INC(out_invsatype); 7277 error = EINVAL; 7278 goto senderror; 7279 } 7280 7281 /* check field of upper layer protocol and address family */ 7282 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL 7283 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { 7284 struct sadb_address *src0, *dst0; 7285 u_int plen; 7286 7287 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]); 7288 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]); 7289 7290 /* check upper layer protocol */ 7291 if (src0->sadb_address_proto != dst0->sadb_address_proto) { 7292 ipseclog((LOG_DEBUG, "%s: upper layer protocol " 7293 "mismatched.\n", __func__)); 7294 PFKEYSTAT_INC(out_invaddr); 7295 error = EINVAL; 7296 goto senderror; 7297 } 7298 7299 /* check family */ 7300 if (PFKEY_ADDR_SADDR(src0)->sa_family != 7301 PFKEY_ADDR_SADDR(dst0)->sa_family) { 7302 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 7303 __func__)); 7304 PFKEYSTAT_INC(out_invaddr); 7305 error = EINVAL; 7306 goto senderror; 7307 } 7308 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7309 PFKEY_ADDR_SADDR(dst0)->sa_len) { 7310 ipseclog((LOG_DEBUG, "%s: address struct size " 7311 "mismatched.\n", __func__)); 7312 PFKEYSTAT_INC(out_invaddr); 7313 error = EINVAL; 7314 goto senderror; 7315 } 7316 7317 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7318 case AF_INET: 7319 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7320 sizeof(struct sockaddr_in)) { 7321 PFKEYSTAT_INC(out_invaddr); 7322 error = EINVAL; 7323 goto senderror; 7324 } 7325 break; 7326 case AF_INET6: 7327 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7328 sizeof(struct sockaddr_in6)) { 7329 PFKEYSTAT_INC(out_invaddr); 7330 error = EINVAL; 7331 goto senderror; 7332 } 7333 break; 7334 default: 7335 ipseclog((LOG_DEBUG, "%s: unsupported address family\n", 7336 __func__)); 7337 PFKEYSTAT_INC(out_invaddr); 7338 error = EAFNOSUPPORT; 7339 goto senderror; 7340 } 7341 7342 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7343 case AF_INET: 7344 plen = sizeof(struct in_addr) << 3; 7345 break; 7346 case AF_INET6: 7347 plen = sizeof(struct in6_addr) << 3; 7348 break; 7349 default: 7350 plen = 0; /*fool gcc*/ 7351 break; 7352 } 7353 7354 /* check max prefix length */ 7355 if (src0->sadb_address_prefixlen > plen || 7356 dst0->sadb_address_prefixlen > plen) { 7357 ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n", 7358 __func__)); 7359 PFKEYSTAT_INC(out_invaddr); 7360 error = EINVAL; 7361 goto senderror; 7362 } 7363 7364 /* 7365 * prefixlen == 0 is valid because there can be a case when 7366 * all addresses are matched. 7367 */ 7368 } 7369 7370 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) || 7371 key_typesw[msg->sadb_msg_type] == NULL) { 7372 PFKEYSTAT_INC(out_invmsgtype); 7373 error = EINVAL; 7374 goto senderror; 7375 } 7376 7377 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh); 7378 7379 senderror: 7380 msg->sadb_msg_errno = error; 7381 return key_sendup_mbuf(so, m, target); 7382 } 7383 7384 static int 7385 key_senderror(struct socket *so, struct mbuf *m, int code) 7386 { 7387 struct sadb_msg *msg; 7388 7389 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 7390 ("mbuf too small, len %u", m->m_len)); 7391 7392 msg = mtod(m, struct sadb_msg *); 7393 msg->sadb_msg_errno = code; 7394 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 7395 } 7396 7397 /* 7398 * set the pointer to each header into message buffer. 7399 * m will be freed on error. 7400 * XXX larger-than-MCLBYTES extension? 7401 */ 7402 static int 7403 key_align(struct mbuf *m, struct sadb_msghdr *mhp) 7404 { 7405 struct mbuf *n; 7406 struct sadb_ext *ext; 7407 size_t off, end; 7408 int extlen; 7409 int toff; 7410 7411 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7412 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7413 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 7414 ("mbuf too small, len %u", m->m_len)); 7415 7416 /* initialize */ 7417 bzero(mhp, sizeof(*mhp)); 7418 7419 mhp->msg = mtod(m, struct sadb_msg *); 7420 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */ 7421 7422 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7423 extlen = end; /*just in case extlen is not updated*/ 7424 for (off = sizeof(struct sadb_msg); off < end; off += extlen) { 7425 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); 7426 if (!n) { 7427 /* m is already freed */ 7428 return ENOBUFS; 7429 } 7430 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 7431 7432 /* set pointer */ 7433 switch (ext->sadb_ext_type) { 7434 case SADB_EXT_SA: 7435 case SADB_EXT_ADDRESS_SRC: 7436 case SADB_EXT_ADDRESS_DST: 7437 case SADB_EXT_ADDRESS_PROXY: 7438 case SADB_EXT_LIFETIME_CURRENT: 7439 case SADB_EXT_LIFETIME_HARD: 7440 case SADB_EXT_LIFETIME_SOFT: 7441 case SADB_EXT_KEY_AUTH: 7442 case SADB_EXT_KEY_ENCRYPT: 7443 case SADB_EXT_IDENTITY_SRC: 7444 case SADB_EXT_IDENTITY_DST: 7445 case SADB_EXT_SENSITIVITY: 7446 case SADB_EXT_PROPOSAL: 7447 case SADB_EXT_SUPPORTED_AUTH: 7448 case SADB_EXT_SUPPORTED_ENCRYPT: 7449 case SADB_EXT_SPIRANGE: 7450 case SADB_X_EXT_POLICY: 7451 case SADB_X_EXT_SA2: 7452 #ifdef IPSEC_NAT_T 7453 case SADB_X_EXT_NAT_T_TYPE: 7454 case SADB_X_EXT_NAT_T_SPORT: 7455 case SADB_X_EXT_NAT_T_DPORT: 7456 case SADB_X_EXT_NAT_T_OAI: 7457 case SADB_X_EXT_NAT_T_OAR: 7458 case SADB_X_EXT_NAT_T_FRAG: 7459 #endif 7460 /* duplicate check */ 7461 /* 7462 * XXX Are there duplication payloads of either 7463 * KEY_AUTH or KEY_ENCRYPT ? 7464 */ 7465 if (mhp->ext[ext->sadb_ext_type] != NULL) { 7466 ipseclog((LOG_DEBUG, "%s: duplicate ext_type " 7467 "%u\n", __func__, ext->sadb_ext_type)); 7468 m_freem(m); 7469 PFKEYSTAT_INC(out_dupext); 7470 return EINVAL; 7471 } 7472 break; 7473 default: 7474 ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n", 7475 __func__, ext->sadb_ext_type)); 7476 m_freem(m); 7477 PFKEYSTAT_INC(out_invexttype); 7478 return EINVAL; 7479 } 7480 7481 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); 7482 7483 if (key_validate_ext(ext, extlen)) { 7484 m_freem(m); 7485 PFKEYSTAT_INC(out_invlen); 7486 return EINVAL; 7487 } 7488 7489 n = m_pulldown(m, off, extlen, &toff); 7490 if (!n) { 7491 /* m is already freed */ 7492 return ENOBUFS; 7493 } 7494 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 7495 7496 mhp->ext[ext->sadb_ext_type] = ext; 7497 mhp->extoff[ext->sadb_ext_type] = off; 7498 mhp->extlen[ext->sadb_ext_type] = extlen; 7499 } 7500 7501 if (off != end) { 7502 m_freem(m); 7503 PFKEYSTAT_INC(out_invlen); 7504 return EINVAL; 7505 } 7506 7507 return 0; 7508 } 7509 7510 static int 7511 key_validate_ext(const struct sadb_ext *ext, int len) 7512 { 7513 const struct sockaddr *sa; 7514 enum { NONE, ADDR } checktype = NONE; 7515 int baselen = 0; 7516 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); 7517 7518 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) 7519 return EINVAL; 7520 7521 /* if it does not match minimum/maximum length, bail */ 7522 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) || 7523 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0])) 7524 return EINVAL; 7525 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) 7526 return EINVAL; 7527 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) 7528 return EINVAL; 7529 7530 /* more checks based on sadb_ext_type XXX need more */ 7531 switch (ext->sadb_ext_type) { 7532 case SADB_EXT_ADDRESS_SRC: 7533 case SADB_EXT_ADDRESS_DST: 7534 case SADB_EXT_ADDRESS_PROXY: 7535 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); 7536 checktype = ADDR; 7537 break; 7538 case SADB_EXT_IDENTITY_SRC: 7539 case SADB_EXT_IDENTITY_DST: 7540 if (((const struct sadb_ident *)ext)->sadb_ident_type == 7541 SADB_X_IDENTTYPE_ADDR) { 7542 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); 7543 checktype = ADDR; 7544 } else 7545 checktype = NONE; 7546 break; 7547 default: 7548 checktype = NONE; 7549 break; 7550 } 7551 7552 switch (checktype) { 7553 case NONE: 7554 break; 7555 case ADDR: 7556 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); 7557 if (len < baselen + sal) 7558 return EINVAL; 7559 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) 7560 return EINVAL; 7561 break; 7562 } 7563 7564 return 0; 7565 } 7566 7567 void 7568 key_init(void) 7569 { 7570 int i; 7571 7572 for (i = 0; i < IPSEC_DIR_MAX; i++) 7573 TAILQ_INIT(&V_sptree[i]); 7574 7575 LIST_INIT(&V_sahtree); 7576 7577 for (i = 0; i <= SADB_SATYPE_MAX; i++) 7578 LIST_INIT(&V_regtree[i]); 7579 7580 LIST_INIT(&V_acqtree); 7581 LIST_INIT(&V_spacqtree); 7582 7583 if (!IS_DEFAULT_VNET(curvnet)) 7584 return; 7585 7586 SPTREE_LOCK_INIT(); 7587 REGTREE_LOCK_INIT(); 7588 SAHTREE_LOCK_INIT(); 7589 ACQ_LOCK_INIT(); 7590 SPACQ_LOCK_INIT(); 7591 7592 #ifndef IPSEC_DEBUG2 7593 callout_init(&key_timer, CALLOUT_MPSAFE); 7594 callout_reset(&key_timer, hz, key_timehandler, NULL); 7595 #endif /*IPSEC_DEBUG2*/ 7596 7597 /* initialize key statistics */ 7598 keystat.getspi_count = 1; 7599 7600 printf("IPsec: Initialized Security Association Processing.\n"); 7601 } 7602 7603 #ifdef VIMAGE 7604 void 7605 key_destroy(void) 7606 { 7607 TAILQ_HEAD(, secpolicy) drainq; 7608 struct secpolicy *sp, *nextsp; 7609 struct secacq *acq, *nextacq; 7610 struct secspacq *spacq, *nextspacq; 7611 struct secashead *sah, *nextsah; 7612 struct secreg *reg; 7613 int i; 7614 7615 TAILQ_INIT(&drainq); 7616 SPTREE_WLOCK(); 7617 for (i = 0; i < IPSEC_DIR_MAX; i++) { 7618 TAILQ_CONCAT(&drainq, &V_sptree[i], chain); 7619 } 7620 SPTREE_WUNLOCK(); 7621 sp = TAILQ_FIRST(&drainq); 7622 while (sp != NULL) { 7623 nextsp = TAILQ_NEXT(sp, chain); 7624 KEY_FREESP(&sp); 7625 sp = nextsp; 7626 } 7627 7628 SAHTREE_LOCK(); 7629 for (sah = LIST_FIRST(&V_sahtree); sah != NULL; sah = nextsah) { 7630 nextsah = LIST_NEXT(sah, chain); 7631 if (__LIST_CHAINED(sah)) { 7632 LIST_REMOVE(sah, chain); 7633 free(sah, M_IPSEC_SAH); 7634 } 7635 } 7636 SAHTREE_UNLOCK(); 7637 7638 REGTREE_LOCK(); 7639 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 7640 LIST_FOREACH(reg, &V_regtree[i], chain) { 7641 if (__LIST_CHAINED(reg)) { 7642 LIST_REMOVE(reg, chain); 7643 free(reg, M_IPSEC_SAR); 7644 break; 7645 } 7646 } 7647 } 7648 REGTREE_UNLOCK(); 7649 7650 ACQ_LOCK(); 7651 for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) { 7652 nextacq = LIST_NEXT(acq, chain); 7653 if (__LIST_CHAINED(acq)) { 7654 LIST_REMOVE(acq, chain); 7655 free(acq, M_IPSEC_SAQ); 7656 } 7657 } 7658 ACQ_UNLOCK(); 7659 7660 SPACQ_LOCK(); 7661 for (spacq = LIST_FIRST(&V_spacqtree); spacq != NULL; 7662 spacq = nextspacq) { 7663 nextspacq = LIST_NEXT(spacq, chain); 7664 if (__LIST_CHAINED(spacq)) { 7665 LIST_REMOVE(spacq, chain); 7666 free(spacq, M_IPSEC_SAQ); 7667 } 7668 } 7669 SPACQ_UNLOCK(); 7670 } 7671 #endif 7672 7673 /* 7674 * XXX: maybe This function is called after INBOUND IPsec processing. 7675 * 7676 * Special check for tunnel-mode packets. 7677 * We must make some checks for consistency between inner and outer IP header. 7678 * 7679 * xxx more checks to be provided 7680 */ 7681 int 7682 key_checktunnelsanity(struct secasvar *sav, u_int family, caddr_t src, 7683 caddr_t dst) 7684 { 7685 IPSEC_ASSERT(sav->sah != NULL, ("null SA header")); 7686 7687 /* XXX: check inner IP header */ 7688 7689 return 1; 7690 } 7691 7692 /* record data transfer on SA, and update timestamps */ 7693 void 7694 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m) 7695 { 7696 IPSEC_ASSERT(sav != NULL, ("Null secasvar")); 7697 IPSEC_ASSERT(m != NULL, ("Null mbuf")); 7698 if (!sav->lft_c) 7699 return; 7700 7701 /* 7702 * XXX Currently, there is a difference of bytes size 7703 * between inbound and outbound processing. 7704 */ 7705 sav->lft_c->bytes += m->m_pkthdr.len; 7706 /* to check bytes lifetime is done in key_timehandler(). */ 7707 7708 /* 7709 * We use the number of packets as the unit of 7710 * allocations. We increment the variable 7711 * whenever {esp,ah}_{in,out}put is called. 7712 */ 7713 sav->lft_c->allocations++; 7714 /* XXX check for expires? */ 7715 7716 /* 7717 * NOTE: We record CURRENT usetime by using wall clock, 7718 * in seconds. HARD and SOFT lifetime are measured by the time 7719 * difference (again in seconds) from usetime. 7720 * 7721 * usetime 7722 * v expire expire 7723 * -----+-----+--------+---> t 7724 * <--------------> HARD 7725 * <-----> SOFT 7726 */ 7727 sav->lft_c->usetime = time_second; 7728 /* XXX check for expires? */ 7729 7730 return; 7731 } 7732 7733 static void 7734 key_sa_chgstate(struct secasvar *sav, u_int8_t state) 7735 { 7736 IPSEC_ASSERT(sav != NULL, ("NULL sav")); 7737 SAHTREE_LOCK_ASSERT(); 7738 7739 if (sav->state != state) { 7740 if (__LIST_CHAINED(sav)) 7741 LIST_REMOVE(sav, chain); 7742 sav->state = state; 7743 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain); 7744 } 7745 } 7746 7747 void 7748 key_sa_stir_iv(struct secasvar *sav) 7749 { 7750 7751 IPSEC_ASSERT(sav->iv != NULL, ("null IV")); 7752 key_randomfill(sav->iv, sav->ivlen); 7753 } 7754 7755 /* 7756 * Take one of the kernel's security keys and convert it into a PF_KEY 7757 * structure within an mbuf, suitable for sending up to a waiting 7758 * application in user land. 7759 * 7760 * IN: 7761 * src: A pointer to a kernel security key. 7762 * exttype: Which type of key this is. Refer to the PF_KEY data structures. 7763 * OUT: 7764 * a valid mbuf or NULL indicating an error 7765 * 7766 */ 7767 7768 static struct mbuf * 7769 key_setkey(struct seckey *src, u_int16_t exttype) 7770 { 7771 struct mbuf *m; 7772 struct sadb_key *p; 7773 int len; 7774 7775 if (src == NULL) 7776 return NULL; 7777 7778 len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src)); 7779 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 7780 if (m == NULL) 7781 return NULL; 7782 m_align(m, len); 7783 m->m_len = len; 7784 p = mtod(m, struct sadb_key *); 7785 bzero(p, len); 7786 p->sadb_key_len = PFKEY_UNIT64(len); 7787 p->sadb_key_exttype = exttype; 7788 p->sadb_key_bits = src->bits; 7789 bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src)); 7790 7791 return m; 7792 } 7793 7794 /* 7795 * Take one of the kernel's lifetime data structures and convert it 7796 * into a PF_KEY structure within an mbuf, suitable for sending up to 7797 * a waiting application in user land. 7798 * 7799 * IN: 7800 * src: A pointer to a kernel lifetime structure. 7801 * exttype: Which type of lifetime this is. Refer to the PF_KEY 7802 * data structures for more information. 7803 * OUT: 7804 * a valid mbuf or NULL indicating an error 7805 * 7806 */ 7807 7808 static struct mbuf * 7809 key_setlifetime(struct seclifetime *src, u_int16_t exttype) 7810 { 7811 struct mbuf *m = NULL; 7812 struct sadb_lifetime *p; 7813 int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime)); 7814 7815 if (src == NULL) 7816 return NULL; 7817 7818 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 7819 if (m == NULL) 7820 return m; 7821 m_align(m, len); 7822 m->m_len = len; 7823 p = mtod(m, struct sadb_lifetime *); 7824 7825 bzero(p, len); 7826 p->sadb_lifetime_len = PFKEY_UNIT64(len); 7827 p->sadb_lifetime_exttype = exttype; 7828 p->sadb_lifetime_allocations = src->allocations; 7829 p->sadb_lifetime_bytes = src->bytes; 7830 p->sadb_lifetime_addtime = src->addtime; 7831 p->sadb_lifetime_usetime = src->usetime; 7832 7833 return m; 7834 7835 } 7836