xref: /freebsd/sys/netipsec/key.c (revision 38d120bc13ac1de5b739b67b87016b9122149374)
1 /*	$FreeBSD$	*/
2 /*	$KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $	*/
3 
4 /*-
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * This code is referd to RFC 2367
35  */
36 
37 #include "opt_inet.h"
38 #include "opt_inet6.h"
39 #include "opt_ipsec.h"
40 
41 #include <sys/types.h>
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/mbuf.h>
48 #include <sys/domain.h>
49 #include <sys/protosw.h>
50 #include <sys/malloc.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/sysctl.h>
54 #include <sys/errno.h>
55 #include <sys/proc.h>
56 #include <sys/queue.h>
57 #include <sys/refcount.h>
58 #include <sys/syslog.h>
59 
60 #include <net/if.h>
61 #include <net/if_var.h>
62 #include <net/vnet.h>
63 #include <net/raw_cb.h>
64 
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/ip.h>
68 #include <netinet/in_var.h>
69 
70 #ifdef INET6
71 #include <netinet/ip6.h>
72 #include <netinet6/in6_var.h>
73 #include <netinet6/ip6_var.h>
74 #endif /* INET6 */
75 
76 #if defined(INET) || defined(INET6)
77 #include <netinet/in_pcb.h>
78 #endif
79 #ifdef INET6
80 #include <netinet6/in6_pcb.h>
81 #endif /* INET6 */
82 
83 #include <net/pfkeyv2.h>
84 #include <netipsec/keydb.h>
85 #include <netipsec/key.h>
86 #include <netipsec/keysock.h>
87 #include <netipsec/key_debug.h>
88 
89 #include <netipsec/ipsec.h>
90 #ifdef INET6
91 #include <netipsec/ipsec6.h>
92 #endif
93 
94 #include <netipsec/xform.h>
95 
96 #include <machine/stdarg.h>
97 
98 /* randomness */
99 #include <sys/random.h>
100 
101 #define FULLMASK	0xff
102 #define	_BITS(bytes)	((bytes) << 3)
103 
104 /*
105  * Note on SA reference counting:
106  * - SAs that are not in DEAD state will have (total external reference + 1)
107  *   following value in reference count field.  they cannot be freed and are
108  *   referenced from SA header.
109  * - SAs that are in DEAD state will have (total external reference)
110  *   in reference count field.  they are ready to be freed.  reference from
111  *   SA header will be removed in key_delsav(), when the reference count
112  *   field hits 0 (= no external reference other than from SA header.
113  */
114 
115 VNET_DEFINE(u_int32_t, key_debug_level) = 0;
116 static VNET_DEFINE(u_int, key_spi_trycnt) = 1000;
117 static VNET_DEFINE(u_int32_t, key_spi_minval) = 0x100;
118 static VNET_DEFINE(u_int32_t, key_spi_maxval) = 0x0fffffff;	/* XXX */
119 static VNET_DEFINE(u_int32_t, policy_id) = 0;
120 /*interval to initialize randseed,1(m)*/
121 static VNET_DEFINE(u_int, key_int_random) = 60;
122 /* interval to expire acquiring, 30(s)*/
123 static VNET_DEFINE(u_int, key_larval_lifetime) = 30;
124 /* counter for blocking SADB_ACQUIRE.*/
125 static VNET_DEFINE(int, key_blockacq_count) = 10;
126 /* lifetime for blocking SADB_ACQUIRE.*/
127 static VNET_DEFINE(int, key_blockacq_lifetime) = 20;
128 /* preferred old sa rather than new sa.*/
129 static VNET_DEFINE(int, key_preferred_oldsa) = 1;
130 #define	V_key_spi_trycnt	VNET(key_spi_trycnt)
131 #define	V_key_spi_minval	VNET(key_spi_minval)
132 #define	V_key_spi_maxval	VNET(key_spi_maxval)
133 #define	V_policy_id		VNET(policy_id)
134 #define	V_key_int_random	VNET(key_int_random)
135 #define	V_key_larval_lifetime	VNET(key_larval_lifetime)
136 #define	V_key_blockacq_count	VNET(key_blockacq_count)
137 #define	V_key_blockacq_lifetime	VNET(key_blockacq_lifetime)
138 #define	V_key_preferred_oldsa	VNET(key_preferred_oldsa)
139 
140 static VNET_DEFINE(u_int32_t, acq_seq) = 0;
141 #define	V_acq_seq		VNET(acq_seq)
142 
143 								/* SPD */
144 static VNET_DEFINE(LIST_HEAD(_sptree, secpolicy), sptree[IPSEC_DIR_MAX]);
145 #define	V_sptree		VNET(sptree)
146 static struct mtx sptree_lock;
147 #define	SPTREE_LOCK_INIT() \
148 	mtx_init(&sptree_lock, "sptree", \
149 		"fast ipsec security policy database", MTX_DEF)
150 #define	SPTREE_LOCK_DESTROY()	mtx_destroy(&sptree_lock)
151 #define	SPTREE_LOCK()		mtx_lock(&sptree_lock)
152 #define	SPTREE_UNLOCK()	mtx_unlock(&sptree_lock)
153 #define	SPTREE_LOCK_ASSERT()	mtx_assert(&sptree_lock, MA_OWNED)
154 
155 static VNET_DEFINE(LIST_HEAD(_sahtree, secashead), sahtree);	/* SAD */
156 #define	V_sahtree		VNET(sahtree)
157 static struct mtx sahtree_lock;
158 #define	SAHTREE_LOCK_INIT() \
159 	mtx_init(&sahtree_lock, "sahtree", \
160 		"fast ipsec security association database", MTX_DEF)
161 #define	SAHTREE_LOCK_DESTROY()	mtx_destroy(&sahtree_lock)
162 #define	SAHTREE_LOCK()		mtx_lock(&sahtree_lock)
163 #define	SAHTREE_UNLOCK()	mtx_unlock(&sahtree_lock)
164 #define	SAHTREE_LOCK_ASSERT()	mtx_assert(&sahtree_lock, MA_OWNED)
165 
166 							/* registed list */
167 static VNET_DEFINE(LIST_HEAD(_regtree, secreg), regtree[SADB_SATYPE_MAX + 1]);
168 #define	V_regtree		VNET(regtree)
169 static struct mtx regtree_lock;
170 #define	REGTREE_LOCK_INIT() \
171 	mtx_init(&regtree_lock, "regtree", "fast ipsec regtree", MTX_DEF)
172 #define	REGTREE_LOCK_DESTROY()	mtx_destroy(&regtree_lock)
173 #define	REGTREE_LOCK()		mtx_lock(&regtree_lock)
174 #define	REGTREE_UNLOCK()	mtx_unlock(&regtree_lock)
175 #define	REGTREE_LOCK_ASSERT()	mtx_assert(&regtree_lock, MA_OWNED)
176 
177 static VNET_DEFINE(LIST_HEAD(_acqtree, secacq), acqtree); /* acquiring list */
178 #define	V_acqtree		VNET(acqtree)
179 static struct mtx acq_lock;
180 #define	ACQ_LOCK_INIT() \
181 	mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF)
182 #define	ACQ_LOCK_DESTROY()	mtx_destroy(&acq_lock)
183 #define	ACQ_LOCK()		mtx_lock(&acq_lock)
184 #define	ACQ_UNLOCK()		mtx_unlock(&acq_lock)
185 #define	ACQ_LOCK_ASSERT()	mtx_assert(&acq_lock, MA_OWNED)
186 
187 							/* SP acquiring list */
188 static VNET_DEFINE(LIST_HEAD(_spacqtree, secspacq), spacqtree);
189 #define	V_spacqtree		VNET(spacqtree)
190 static struct mtx spacq_lock;
191 #define	SPACQ_LOCK_INIT() \
192 	mtx_init(&spacq_lock, "spacqtree", \
193 		"fast ipsec security policy acquire list", MTX_DEF)
194 #define	SPACQ_LOCK_DESTROY()	mtx_destroy(&spacq_lock)
195 #define	SPACQ_LOCK()		mtx_lock(&spacq_lock)
196 #define	SPACQ_UNLOCK()		mtx_unlock(&spacq_lock)
197 #define	SPACQ_LOCK_ASSERT()	mtx_assert(&spacq_lock, MA_OWNED)
198 
199 /* search order for SAs */
200 static const u_int saorder_state_valid_prefer_old[] = {
201 	SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
202 };
203 static const u_int saorder_state_valid_prefer_new[] = {
204 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
205 };
206 static const u_int saorder_state_alive[] = {
207 	/* except DEAD */
208 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
209 };
210 static const u_int saorder_state_any[] = {
211 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
212 	SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
213 };
214 
215 static const int minsize[] = {
216 	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
217 	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
218 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
219 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
220 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
221 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_SRC */
222 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_DST */
223 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_PROXY */
224 	sizeof(struct sadb_key),	/* SADB_EXT_KEY_AUTH */
225 	sizeof(struct sadb_key),	/* SADB_EXT_KEY_ENCRYPT */
226 	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_SRC */
227 	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_DST */
228 	sizeof(struct sadb_sens),	/* SADB_EXT_SENSITIVITY */
229 	sizeof(struct sadb_prop),	/* SADB_EXT_PROPOSAL */
230 	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_AUTH */
231 	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_ENCRYPT */
232 	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
233 	0,				/* SADB_X_EXT_KMPRIVATE */
234 	sizeof(struct sadb_x_policy),	/* SADB_X_EXT_POLICY */
235 	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
236 	sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */
237 	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */
238 	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */
239 	sizeof(struct sadb_address),	/* SADB_X_EXT_NAT_T_OAI */
240 	sizeof(struct sadb_address),	/* SADB_X_EXT_NAT_T_OAR */
241 	sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */
242 };
243 static const int maxsize[] = {
244 	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
245 	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
246 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
247 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
248 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
249 	0,				/* SADB_EXT_ADDRESS_SRC */
250 	0,				/* SADB_EXT_ADDRESS_DST */
251 	0,				/* SADB_EXT_ADDRESS_PROXY */
252 	0,				/* SADB_EXT_KEY_AUTH */
253 	0,				/* SADB_EXT_KEY_ENCRYPT */
254 	0,				/* SADB_EXT_IDENTITY_SRC */
255 	0,				/* SADB_EXT_IDENTITY_DST */
256 	0,				/* SADB_EXT_SENSITIVITY */
257 	0,				/* SADB_EXT_PROPOSAL */
258 	0,				/* SADB_EXT_SUPPORTED_AUTH */
259 	0,				/* SADB_EXT_SUPPORTED_ENCRYPT */
260 	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
261 	0,				/* SADB_X_EXT_KMPRIVATE */
262 	0,				/* SADB_X_EXT_POLICY */
263 	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
264 	sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */
265 	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */
266 	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */
267 	0,				/* SADB_X_EXT_NAT_T_OAI */
268 	0,				/* SADB_X_EXT_NAT_T_OAR */
269 	sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */
270 };
271 
272 static VNET_DEFINE(int, ipsec_esp_keymin) = 256;
273 static VNET_DEFINE(int, ipsec_esp_auth) = 0;
274 static VNET_DEFINE(int, ipsec_ah_keymin) = 128;
275 
276 #define	V_ipsec_esp_keymin	VNET(ipsec_esp_keymin)
277 #define	V_ipsec_esp_auth	VNET(ipsec_esp_auth)
278 #define	V_ipsec_ah_keymin	VNET(ipsec_ah_keymin)
279 
280 #ifdef SYSCTL_DECL
281 SYSCTL_DECL(_net_key);
282 #endif
283 
284 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL,	debug,
285 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_debug_level), 0, "");
286 
287 /* max count of trial for the decision of spi value */
288 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt,
289 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_trycnt), 0, "");
290 
291 /* minimum spi value to allocate automatically. */
292 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval,
293 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_minval), 0, "");
294 
295 /* maximun spi value to allocate automatically. */
296 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval,
297 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_maxval), 0, "");
298 
299 /* interval to initialize randseed */
300 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random,
301 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_int_random), 0, "");
302 
303 /* lifetime for larval SA */
304 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime,
305 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_larval_lifetime), 0, "");
306 
307 /* counter for blocking to send SADB_ACQUIRE to IKEd */
308 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count,
309 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_count), 0, "");
310 
311 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
312 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime,
313 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_lifetime), 0, "");
314 
315 /* ESP auth */
316 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth,
317 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_auth), 0, "");
318 
319 /* minimum ESP key length */
320 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin,
321 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_keymin), 0, "");
322 
323 /* minimum AH key length */
324 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin,
325 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_ah_keymin), 0, "");
326 
327 /* perfered old SA rather than new SA */
328 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, preferred_oldsa,
329 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_preferred_oldsa), 0, "");
330 
331 #define __LIST_CHAINED(elm) \
332 	(!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
333 #define LIST_INSERT_TAIL(head, elm, type, field) \
334 do {\
335 	struct type *curelm = LIST_FIRST(head); \
336 	if (curelm == NULL) {\
337 		LIST_INSERT_HEAD(head, elm, field); \
338 	} else { \
339 		while (LIST_NEXT(curelm, field)) \
340 			curelm = LIST_NEXT(curelm, field);\
341 		LIST_INSERT_AFTER(curelm, elm, field);\
342 	}\
343 } while (0)
344 
345 #define KEY_CHKSASTATE(head, sav, name) \
346 do { \
347 	if ((head) != (sav)) {						\
348 		ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \
349 			(name), (head), (sav)));			\
350 		continue;						\
351 	}								\
352 } while (0)
353 
354 #define KEY_CHKSPDIR(head, sp, name) \
355 do { \
356 	if ((head) != (sp)) {						\
357 		ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \
358 			"anyway continue.\n",				\
359 			(name), (head), (sp)));				\
360 	}								\
361 } while (0)
362 
363 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association");
364 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head");
365 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy");
366 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request");
367 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous");
368 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire");
369 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire");
370 
371 /*
372  * set parameters into secpolicyindex buffer.
373  * Must allocate secpolicyindex buffer passed to this function.
374  */
375 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
376 do { \
377 	bzero((idx), sizeof(struct secpolicyindex));                         \
378 	(idx)->dir = (_dir);                                                 \
379 	(idx)->prefs = (ps);                                                 \
380 	(idx)->prefd = (pd);                                                 \
381 	(idx)->ul_proto = (ulp);                                             \
382 	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
383 	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
384 } while (0)
385 
386 /*
387  * set parameters into secasindex buffer.
388  * Must allocate secasindex buffer before calling this function.
389  */
390 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \
391 do { \
392 	bzero((idx), sizeof(struct secasindex));                             \
393 	(idx)->proto = (p);                                                  \
394 	(idx)->mode = (m);                                                   \
395 	(idx)->reqid = (r);                                                  \
396 	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
397 	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
398 } while (0)
399 
400 /* key statistics */
401 struct _keystat {
402 	u_long getspi_count; /* the avarage of count to try to get new SPI */
403 } keystat;
404 
405 struct sadb_msghdr {
406 	struct sadb_msg *msg;
407 	struct sadb_ext *ext[SADB_EXT_MAX + 1];
408 	int extoff[SADB_EXT_MAX + 1];
409 	int extlen[SADB_EXT_MAX + 1];
410 };
411 
412 #ifndef IPSEC_DEBUG2
413 static struct callout key_timer;
414 #endif
415 
416 static struct secasvar *key_allocsa_policy(const struct secasindex *);
417 static void key_freesp_so(struct secpolicy **);
418 static struct secasvar *key_do_allocsa_policy(struct secashead *, u_int);
419 static void key_delsp(struct secpolicy *);
420 static struct secpolicy *key_getsp(struct secpolicyindex *);
421 static void _key_delsp(struct secpolicy *sp);
422 static struct secpolicy *key_getspbyid(u_int32_t);
423 static u_int32_t key_newreqid(void);
424 static struct mbuf *key_gather_mbuf(struct mbuf *,
425 	const struct sadb_msghdr *, int, int, ...);
426 static int key_spdadd(struct socket *, struct mbuf *,
427 	const struct sadb_msghdr *);
428 static u_int32_t key_getnewspid(void);
429 static int key_spddelete(struct socket *, struct mbuf *,
430 	const struct sadb_msghdr *);
431 static int key_spddelete2(struct socket *, struct mbuf *,
432 	const struct sadb_msghdr *);
433 static int key_spdget(struct socket *, struct mbuf *,
434 	const struct sadb_msghdr *);
435 static int key_spdflush(struct socket *, struct mbuf *,
436 	const struct sadb_msghdr *);
437 static int key_spddump(struct socket *, struct mbuf *,
438 	const struct sadb_msghdr *);
439 static struct mbuf *key_setdumpsp(struct secpolicy *,
440 	u_int8_t, u_int32_t, u_int32_t);
441 static u_int key_getspreqmsglen(struct secpolicy *);
442 static int key_spdexpire(struct secpolicy *);
443 static struct secashead *key_newsah(struct secasindex *);
444 static void key_delsah(struct secashead *);
445 static struct secasvar *key_newsav(struct mbuf *,
446 	const struct sadb_msghdr *, struct secashead *, int *,
447 	const char*, int);
448 #define	KEY_NEWSAV(m, sadb, sah, e)				\
449 	key_newsav(m, sadb, sah, e, __FILE__, __LINE__)
450 static void key_delsav(struct secasvar *);
451 static struct secashead *key_getsah(struct secasindex *);
452 static struct secasvar *key_checkspidup(struct secasindex *, u_int32_t);
453 static struct secasvar *key_getsavbyspi(struct secashead *, u_int32_t);
454 static int key_setsaval(struct secasvar *, struct mbuf *,
455 	const struct sadb_msghdr *);
456 static int key_mature(struct secasvar *);
457 static struct mbuf *key_setdumpsa(struct secasvar *, u_int8_t,
458 	u_int8_t, u_int32_t, u_int32_t);
459 static struct mbuf *key_setsadbmsg(u_int8_t, u_int16_t, u_int8_t,
460 	u_int32_t, pid_t, u_int16_t);
461 static struct mbuf *key_setsadbsa(struct secasvar *);
462 static struct mbuf *key_setsadbaddr(u_int16_t,
463 	const struct sockaddr *, u_int8_t, u_int16_t);
464 #ifdef IPSEC_NAT_T
465 static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t);
466 static struct mbuf *key_setsadbxtype(u_int16_t);
467 #endif
468 static void key_porttosaddr(struct sockaddr *, u_int16_t);
469 #define	KEY_PORTTOSADDR(saddr, port)				\
470 	key_porttosaddr((struct sockaddr *)(saddr), (port))
471 static struct mbuf *key_setsadbxsa2(u_int8_t, u_int32_t, u_int32_t);
472 static struct mbuf *key_setsadbxpolicy(u_int16_t, u_int8_t,
473 	u_int32_t);
474 static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int,
475 				     struct malloc_type *);
476 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src,
477 					    struct malloc_type *type);
478 #ifdef INET6
479 static int key_ismyaddr6(struct sockaddr_in6 *);
480 #endif
481 
482 /* flags for key_cmpsaidx() */
483 #define CMP_HEAD	1	/* protocol, addresses. */
484 #define CMP_MODE_REQID	2	/* additionally HEAD, reqid, mode. */
485 #define CMP_REQID	3	/* additionally HEAD, reaid. */
486 #define CMP_EXACTLY	4	/* all elements. */
487 static int key_cmpsaidx(const struct secasindex *,
488     const struct secasindex *, int);
489 static int key_cmpspidx_exactly(struct secpolicyindex *,
490     struct secpolicyindex *);
491 static int key_cmpspidx_withmask(struct secpolicyindex *,
492     struct secpolicyindex *);
493 static int key_sockaddrcmp(const struct sockaddr *,
494     const struct sockaddr *, int);
495 static int key_bbcmp(const void *, const void *, u_int);
496 static u_int16_t key_satype2proto(u_int8_t);
497 static u_int8_t key_proto2satype(u_int16_t);
498 
499 static int key_getspi(struct socket *, struct mbuf *,
500 	const struct sadb_msghdr *);
501 static u_int32_t key_do_getnewspi(struct sadb_spirange *,
502 					struct secasindex *);
503 static int key_update(struct socket *, struct mbuf *,
504 	const struct sadb_msghdr *);
505 #ifdef IPSEC_DOSEQCHECK
506 static struct secasvar *key_getsavbyseq(struct secashead *, u_int32_t);
507 #endif
508 static int key_add(struct socket *, struct mbuf *,
509 	const struct sadb_msghdr *);
510 static int key_setident(struct secashead *, struct mbuf *,
511 	const struct sadb_msghdr *);
512 static struct mbuf *key_getmsgbuf_x1(struct mbuf *,
513 	const struct sadb_msghdr *);
514 static int key_delete(struct socket *, struct mbuf *,
515 	const struct sadb_msghdr *);
516 static int key_delete_all(struct socket *, struct mbuf *,
517 	const struct sadb_msghdr *, u_int16_t);
518 static int key_get(struct socket *, struct mbuf *,
519 	const struct sadb_msghdr *);
520 
521 static void key_getcomb_setlifetime(struct sadb_comb *);
522 static struct mbuf *key_getcomb_esp(void);
523 static struct mbuf *key_getcomb_ah(void);
524 static struct mbuf *key_getcomb_ipcomp(void);
525 static struct mbuf *key_getprop(const struct secasindex *);
526 
527 static int key_acquire(const struct secasindex *, struct secpolicy *);
528 static struct secacq *key_newacq(const struct secasindex *);
529 static struct secacq *key_getacq(const struct secasindex *);
530 static struct secacq *key_getacqbyseq(u_int32_t);
531 static struct secspacq *key_newspacq(struct secpolicyindex *);
532 static struct secspacq *key_getspacq(struct secpolicyindex *);
533 static int key_acquire2(struct socket *, struct mbuf *,
534 	const struct sadb_msghdr *);
535 static int key_register(struct socket *, struct mbuf *,
536 	const struct sadb_msghdr *);
537 static int key_expire(struct secasvar *);
538 static int key_flush(struct socket *, struct mbuf *,
539 	const struct sadb_msghdr *);
540 static int key_dump(struct socket *, struct mbuf *,
541 	const struct sadb_msghdr *);
542 static int key_promisc(struct socket *, struct mbuf *,
543 	const struct sadb_msghdr *);
544 static int key_senderror(struct socket *, struct mbuf *, int);
545 static int key_validate_ext(const struct sadb_ext *, int);
546 static int key_align(struct mbuf *, struct sadb_msghdr *);
547 static struct mbuf *key_setlifetime(struct seclifetime *src,
548 				     u_int16_t exttype);
549 static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype);
550 
551 #if 0
552 static const char *key_getfqdn(void);
553 static const char *key_getuserfqdn(void);
554 #endif
555 static void key_sa_chgstate(struct secasvar *, u_int8_t);
556 
557 static __inline void
558 sa_initref(struct secasvar *sav)
559 {
560 
561 	refcount_init(&sav->refcnt, 1);
562 }
563 static __inline void
564 sa_addref(struct secasvar *sav)
565 {
566 
567 	refcount_acquire(&sav->refcnt);
568 	IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow"));
569 }
570 static __inline int
571 sa_delref(struct secasvar *sav)
572 {
573 
574 	IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow"));
575 	return (refcount_release(&sav->refcnt));
576 }
577 
578 #define	SP_ADDREF(p) do {						\
579 	(p)->refcnt++;							\
580 	IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow"));		\
581 } while (0)
582 #define	SP_DELREF(p) do {						\
583 	IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow"));		\
584 	(p)->refcnt--;							\
585 } while (0)
586 
587 
588 /*
589  * Update the refcnt while holding the SPTREE lock.
590  */
591 void
592 key_addref(struct secpolicy *sp)
593 {
594 	SPTREE_LOCK();
595 	SP_ADDREF(sp);
596 	SPTREE_UNLOCK();
597 }
598 
599 /*
600  * Return 0 when there are known to be no SP's for the specified
601  * direction.  Otherwise return 1.  This is used by IPsec code
602  * to optimize performance.
603  */
604 int
605 key_havesp(u_int dir)
606 {
607 
608 	return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
609 		LIST_FIRST(&V_sptree[dir]) != NULL : 1);
610 }
611 
612 /* %%% IPsec policy management */
613 /*
614  * allocating a SP for OUTBOUND or INBOUND packet.
615  * Must call key_freesp() later.
616  * OUT:	NULL:	not found
617  *	others:	found and return the pointer.
618  */
619 struct secpolicy *
620 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where,
621     int tag)
622 {
623 	struct secpolicy *sp;
624 
625 	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
626 	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
627 		("invalid direction %u", dir));
628 
629 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
630 		printf("DP %s from %s:%u\n", __func__, where, tag));
631 
632 	/* get a SP entry */
633 	KEYDEBUG(KEYDEBUG_IPSEC_DATA,
634 		printf("*** objects\n");
635 		kdebug_secpolicyindex(spidx));
636 
637 	SPTREE_LOCK();
638 	LIST_FOREACH(sp, &V_sptree[dir], chain) {
639 		KEYDEBUG(KEYDEBUG_IPSEC_DATA,
640 			printf("*** in SPD\n");
641 			kdebug_secpolicyindex(&sp->spidx));
642 
643 		if (sp->state == IPSEC_SPSTATE_DEAD)
644 			continue;
645 		if (key_cmpspidx_withmask(&sp->spidx, spidx))
646 			goto found;
647 	}
648 	sp = NULL;
649 found:
650 	if (sp) {
651 		/* sanity check */
652 		KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
653 
654 		/* found a SPD entry */
655 		sp->lastused = time_second;
656 		SP_ADDREF(sp);
657 	}
658 	SPTREE_UNLOCK();
659 
660 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
661 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
662 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
663 	return sp;
664 }
665 
666 /*
667  * allocating a SP for OUTBOUND or INBOUND packet.
668  * Must call key_freesp() later.
669  * OUT:	NULL:	not found
670  *	others:	found and return the pointer.
671  */
672 struct secpolicy *
673 key_allocsp2(u_int32_t spi, union sockaddr_union *dst, u_int8_t proto,
674     u_int dir, const char* where, int tag)
675 {
676 	struct secpolicy *sp;
677 
678 	IPSEC_ASSERT(dst != NULL, ("null dst"));
679 	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
680 		("invalid direction %u", dir));
681 
682 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
683 		printf("DP %s from %s:%u\n", __func__, where, tag));
684 
685 	/* get a SP entry */
686 	KEYDEBUG(KEYDEBUG_IPSEC_DATA,
687 		printf("*** objects\n");
688 		printf("spi %u proto %u dir %u\n", spi, proto, dir);
689 		kdebug_sockaddr(&dst->sa));
690 
691 	SPTREE_LOCK();
692 	LIST_FOREACH(sp, &V_sptree[dir], chain) {
693 		KEYDEBUG(KEYDEBUG_IPSEC_DATA,
694 			printf("*** in SPD\n");
695 			kdebug_secpolicyindex(&sp->spidx));
696 
697 		if (sp->state == IPSEC_SPSTATE_DEAD)
698 			continue;
699 		/* compare simple values, then dst address */
700 		if (sp->spidx.ul_proto != proto)
701 			continue;
702 		/* NB: spi's must exist and match */
703 		if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
704 			continue;
705 		if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0)
706 			goto found;
707 	}
708 	sp = NULL;
709 found:
710 	if (sp) {
711 		/* sanity check */
712 		KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
713 
714 		/* found a SPD entry */
715 		sp->lastused = time_second;
716 		SP_ADDREF(sp);
717 	}
718 	SPTREE_UNLOCK();
719 
720 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
721 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
722 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
723 	return sp;
724 }
725 
726 #if 0
727 /*
728  * return a policy that matches this particular inbound packet.
729  * XXX slow
730  */
731 struct secpolicy *
732 key_gettunnel(const struct sockaddr *osrc,
733 	      const struct sockaddr *odst,
734 	      const struct sockaddr *isrc,
735 	      const struct sockaddr *idst,
736 	      const char* where, int tag)
737 {
738 	struct secpolicy *sp;
739 	const int dir = IPSEC_DIR_INBOUND;
740 	struct ipsecrequest *r1, *r2, *p;
741 	struct secpolicyindex spidx;
742 
743 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
744 		printf("DP %s from %s:%u\n", __func__, where, tag));
745 
746 	if (isrc->sa_family != idst->sa_family) {
747 		ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.",
748 			__func__, isrc->sa_family, idst->sa_family));
749 		sp = NULL;
750 		goto done;
751 	}
752 
753 	SPTREE_LOCK();
754 	LIST_FOREACH(sp, &V_sptree[dir], chain) {
755 		if (sp->state == IPSEC_SPSTATE_DEAD)
756 			continue;
757 
758 		r1 = r2 = NULL;
759 		for (p = sp->req; p; p = p->next) {
760 			if (p->saidx.mode != IPSEC_MODE_TUNNEL)
761 				continue;
762 
763 			r1 = r2;
764 			r2 = p;
765 
766 			if (!r1) {
767 				/* here we look at address matches only */
768 				spidx = sp->spidx;
769 				if (isrc->sa_len > sizeof(spidx.src) ||
770 				    idst->sa_len > sizeof(spidx.dst))
771 					continue;
772 				bcopy(isrc, &spidx.src, isrc->sa_len);
773 				bcopy(idst, &spidx.dst, idst->sa_len);
774 				if (!key_cmpspidx_withmask(&sp->spidx, &spidx))
775 					continue;
776 			} else {
777 				if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) ||
778 				    key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0))
779 					continue;
780 			}
781 
782 			if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) ||
783 			    key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0))
784 				continue;
785 
786 			goto found;
787 		}
788 	}
789 	sp = NULL;
790 found:
791 	if (sp) {
792 		sp->lastused = time_second;
793 		SP_ADDREF(sp);
794 	}
795 	SPTREE_UNLOCK();
796 done:
797 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
798 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
799 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
800 	return sp;
801 }
802 #endif
803 
804 /*
805  * allocating an SA entry for an *OUTBOUND* packet.
806  * checking each request entries in SP, and acquire an SA if need.
807  * OUT:	0: there are valid requests.
808  *	ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
809  */
810 int
811 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
812 {
813 	u_int level;
814 	int error;
815 	struct secasvar *sav;
816 
817 	IPSEC_ASSERT(isr != NULL, ("null isr"));
818 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
819 	IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT ||
820 		saidx->mode == IPSEC_MODE_TUNNEL,
821 		("unexpected policy %u", saidx->mode));
822 
823 	/*
824 	 * XXX guard against protocol callbacks from the crypto
825 	 * thread as they reference ipsecrequest.sav which we
826 	 * temporarily null out below.  Need to rethink how we
827 	 * handle bundled SA's in the callback thread.
828 	 */
829 	IPSECREQUEST_LOCK_ASSERT(isr);
830 
831 	/* get current level */
832 	level = ipsec_get_reqlevel(isr);
833 
834 	/*
835 	 * We check new SA in the IPsec request because a different
836 	 * SA may be involved each time this request is checked, either
837 	 * because new SAs are being configured, or this request is
838 	 * associated with an unconnected datagram socket, or this request
839 	 * is associated with a system default policy.
840 	 *
841 	 * key_allocsa_policy should allocate the oldest SA available.
842 	 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
843 	 */
844 	sav = key_allocsa_policy(saidx);
845 	if (sav != isr->sav) {
846 		/* SA need to be updated. */
847 		if (!IPSECREQUEST_UPGRADE(isr)) {
848 			/* Kick everyone off. */
849 			IPSECREQUEST_UNLOCK(isr);
850 			IPSECREQUEST_WLOCK(isr);
851 		}
852 		if (isr->sav != NULL)
853 			KEY_FREESAV(&isr->sav);
854 		isr->sav = sav;
855 		IPSECREQUEST_DOWNGRADE(isr);
856 	} else if (sav != NULL)
857 		KEY_FREESAV(&sav);
858 
859 	/* When there is SA. */
860 	if (isr->sav != NULL) {
861 		if (isr->sav->state != SADB_SASTATE_MATURE &&
862 		    isr->sav->state != SADB_SASTATE_DYING)
863 			return EINVAL;
864 		return 0;
865 	}
866 
867 	/* there is no SA */
868 	error = key_acquire(saidx, isr->sp);
869 	if (error != 0) {
870 		/* XXX What should I do ? */
871 		ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
872 			__func__, error));
873 		return error;
874 	}
875 
876 	if (level != IPSEC_LEVEL_REQUIRE) {
877 		/* XXX sigh, the interface to this routine is botched */
878 		IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA"));
879 		return 0;
880 	} else {
881 		return ENOENT;
882 	}
883 }
884 
885 /*
886  * allocating a SA for policy entry from SAD.
887  * NOTE: searching SAD of aliving state.
888  * OUT:	NULL:	not found.
889  *	others:	found and return the pointer.
890  */
891 static struct secasvar *
892 key_allocsa_policy(const struct secasindex *saidx)
893 {
894 #define	N(a)	_ARRAYLEN(a)
895 	struct secashead *sah;
896 	struct secasvar *sav;
897 	u_int stateidx, arraysize;
898 	const u_int *state_valid;
899 
900 	state_valid = NULL;	/* silence gcc */
901 	arraysize = 0;		/* silence gcc */
902 
903 	SAHTREE_LOCK();
904 	LIST_FOREACH(sah, &V_sahtree, chain) {
905 		if (sah->state == SADB_SASTATE_DEAD)
906 			continue;
907 		if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) {
908 			if (V_key_preferred_oldsa) {
909 				state_valid = saorder_state_valid_prefer_old;
910 				arraysize = N(saorder_state_valid_prefer_old);
911 			} else {
912 				state_valid = saorder_state_valid_prefer_new;
913 				arraysize = N(saorder_state_valid_prefer_new);
914 			}
915 			break;
916 		}
917 	}
918 	SAHTREE_UNLOCK();
919 	if (sah == NULL)
920 		return NULL;
921 
922 	/* search valid state */
923 	for (stateidx = 0; stateidx < arraysize; stateidx++) {
924 		sav = key_do_allocsa_policy(sah, state_valid[stateidx]);
925 		if (sav != NULL)
926 			return sav;
927 	}
928 
929 	return NULL;
930 #undef N
931 }
932 
933 /*
934  * searching SAD with direction, protocol, mode and state.
935  * called by key_allocsa_policy().
936  * OUT:
937  *	NULL	: not found
938  *	others	: found, pointer to a SA.
939  */
940 static struct secasvar *
941 key_do_allocsa_policy(struct secashead *sah, u_int state)
942 {
943 	struct secasvar *sav, *nextsav, *candidate, *d;
944 
945 	/* initilize */
946 	candidate = NULL;
947 
948 	SAHTREE_LOCK();
949 	for (sav = LIST_FIRST(&sah->savtree[state]);
950 	     sav != NULL;
951 	     sav = nextsav) {
952 
953 		nextsav = LIST_NEXT(sav, chain);
954 
955 		/* sanity check */
956 		KEY_CHKSASTATE(sav->state, state, __func__);
957 
958 		/* initialize */
959 		if (candidate == NULL) {
960 			candidate = sav;
961 			continue;
962 		}
963 
964 		/* Which SA is the better ? */
965 
966 		IPSEC_ASSERT(candidate->lft_c != NULL,
967 			("null candidate lifetime"));
968 		IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime"));
969 
970 		/* What the best method is to compare ? */
971 		if (V_key_preferred_oldsa) {
972 			if (candidate->lft_c->addtime >
973 					sav->lft_c->addtime) {
974 				candidate = sav;
975 			}
976 			continue;
977 			/*NOTREACHED*/
978 		}
979 
980 		/* preferred new sa rather than old sa */
981 		if (candidate->lft_c->addtime <
982 				sav->lft_c->addtime) {
983 			d = candidate;
984 			candidate = sav;
985 		} else
986 			d = sav;
987 
988 		/*
989 		 * prepared to delete the SA when there is more
990 		 * suitable candidate and the lifetime of the SA is not
991 		 * permanent.
992 		 */
993 		if (d->lft_h->addtime != 0) {
994 			struct mbuf *m, *result;
995 			u_int8_t satype;
996 
997 			key_sa_chgstate(d, SADB_SASTATE_DEAD);
998 
999 			IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count"));
1000 
1001 			satype = key_proto2satype(d->sah->saidx.proto);
1002 			if (satype == 0)
1003 				goto msgfail;
1004 
1005 			m = key_setsadbmsg(SADB_DELETE, 0,
1006 			    satype, 0, 0, d->refcnt - 1);
1007 			if (!m)
1008 				goto msgfail;
1009 			result = m;
1010 
1011 			/* set sadb_address for saidx's. */
1012 			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
1013 				&d->sah->saidx.src.sa,
1014 				d->sah->saidx.src.sa.sa_len << 3,
1015 				IPSEC_ULPROTO_ANY);
1016 			if (!m)
1017 				goto msgfail;
1018 			m_cat(result, m);
1019 
1020 			/* set sadb_address for saidx's. */
1021 			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
1022 				&d->sah->saidx.dst.sa,
1023 				d->sah->saidx.dst.sa.sa_len << 3,
1024 				IPSEC_ULPROTO_ANY);
1025 			if (!m)
1026 				goto msgfail;
1027 			m_cat(result, m);
1028 
1029 			/* create SA extension */
1030 			m = key_setsadbsa(d);
1031 			if (!m)
1032 				goto msgfail;
1033 			m_cat(result, m);
1034 
1035 			if (result->m_len < sizeof(struct sadb_msg)) {
1036 				result = m_pullup(result,
1037 						sizeof(struct sadb_msg));
1038 				if (result == NULL)
1039 					goto msgfail;
1040 			}
1041 
1042 			result->m_pkthdr.len = 0;
1043 			for (m = result; m; m = m->m_next)
1044 				result->m_pkthdr.len += m->m_len;
1045 			mtod(result, struct sadb_msg *)->sadb_msg_len =
1046 				PFKEY_UNIT64(result->m_pkthdr.len);
1047 
1048 			if (key_sendup_mbuf(NULL, result,
1049 					KEY_SENDUP_REGISTERED))
1050 				goto msgfail;
1051 		 msgfail:
1052 			KEY_FREESAV(&d);
1053 		}
1054 	}
1055 	if (candidate) {
1056 		sa_addref(candidate);
1057 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1058 			printf("DP %s cause refcnt++:%d SA:%p\n",
1059 				__func__, candidate->refcnt, candidate));
1060 	}
1061 	SAHTREE_UNLOCK();
1062 
1063 	return candidate;
1064 }
1065 
1066 /*
1067  * allocating a usable SA entry for a *INBOUND* packet.
1068  * Must call key_freesav() later.
1069  * OUT: positive:	pointer to a usable sav (i.e. MATURE or DYING state).
1070  *	NULL:		not found, or error occured.
1071  *
1072  * In the comparison, no source address is used--for RFC2401 conformance.
1073  * To quote, from section 4.1:
1074  *	A security association is uniquely identified by a triple consisting
1075  *	of a Security Parameter Index (SPI), an IP Destination Address, and a
1076  *	security protocol (AH or ESP) identifier.
1077  * Note that, however, we do need to keep source address in IPsec SA.
1078  * IKE specification and PF_KEY specification do assume that we
1079  * keep source address in IPsec SA.  We see a tricky situation here.
1080  */
1081 struct secasvar *
1082 key_allocsa(union sockaddr_union *dst, u_int proto, u_int32_t spi,
1083     const char* where, int tag)
1084 {
1085 	struct secashead *sah;
1086 	struct secasvar *sav;
1087 	u_int stateidx, arraysize, state;
1088 	const u_int *saorder_state_valid;
1089 #ifdef IPSEC_NAT_T
1090 	int natt_chkport;
1091 #endif
1092 
1093 	IPSEC_ASSERT(dst != NULL, ("null dst address"));
1094 
1095 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1096 		printf("DP %s from %s:%u\n", __func__, where, tag));
1097 
1098 #ifdef IPSEC_NAT_T
1099         natt_chkport = (dst->sa.sa_family == AF_INET &&
1100 	    dst->sa.sa_len == sizeof(struct sockaddr_in) &&
1101 	    dst->sin.sin_port != 0);
1102 #endif
1103 
1104 	/*
1105 	 * searching SAD.
1106 	 * XXX: to be checked internal IP header somewhere.  Also when
1107 	 * IPsec tunnel packet is received.  But ESP tunnel mode is
1108 	 * encrypted so we can't check internal IP header.
1109 	 */
1110 	SAHTREE_LOCK();
1111 	if (V_key_preferred_oldsa) {
1112 		saorder_state_valid = saorder_state_valid_prefer_old;
1113 		arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1114 	} else {
1115 		saorder_state_valid = saorder_state_valid_prefer_new;
1116 		arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1117 	}
1118 	LIST_FOREACH(sah, &V_sahtree, chain) {
1119 		int checkport;
1120 
1121 		/* search valid state */
1122 		for (stateidx = 0; stateidx < arraysize; stateidx++) {
1123 			state = saorder_state_valid[stateidx];
1124 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
1125 				/* sanity check */
1126 				KEY_CHKSASTATE(sav->state, state, __func__);
1127 				/* do not return entries w/ unusable state */
1128 				if (sav->state != SADB_SASTATE_MATURE &&
1129 				    sav->state != SADB_SASTATE_DYING)
1130 					continue;
1131 				if (proto != sav->sah->saidx.proto)
1132 					continue;
1133 				if (spi != sav->spi)
1134 					continue;
1135 				checkport = 0;
1136 #ifdef IPSEC_NAT_T
1137 				/*
1138 				 * Really only check ports when this is a NAT-T
1139 				 * SA.  Otherwise other lookups providing ports
1140 				 * might suffer.
1141 				 */
1142 				if (sav->natt_type && natt_chkport)
1143 					checkport = 1;
1144 #endif
1145 #if 0	/* don't check src */
1146 				/* check src address */
1147 				if (key_sockaddrcmp(&src->sa,
1148 				    &sav->sah->saidx.src.sa, checkport) != 0)
1149 					continue;
1150 #endif
1151 				/* check dst address */
1152 				if (key_sockaddrcmp(&dst->sa,
1153 				    &sav->sah->saidx.dst.sa, checkport) != 0)
1154 					continue;
1155 				sa_addref(sav);
1156 				goto done;
1157 			}
1158 		}
1159 	}
1160 	sav = NULL;
1161 done:
1162 	SAHTREE_UNLOCK();
1163 
1164 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1165 		printf("DP %s return SA:%p; refcnt %u\n", __func__,
1166 			sav, sav ? sav->refcnt : 0));
1167 	return sav;
1168 }
1169 
1170 /*
1171  * Must be called after calling key_allocsp().
1172  * For both the packet without socket and key_freeso().
1173  */
1174 void
1175 _key_freesp(struct secpolicy **spp, const char* where, int tag)
1176 {
1177 	struct secpolicy *sp = *spp;
1178 
1179 	IPSEC_ASSERT(sp != NULL, ("null sp"));
1180 
1181 	SPTREE_LOCK();
1182 	SP_DELREF(sp);
1183 
1184 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1185 		printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1186 			__func__, sp, sp->id, where, tag, sp->refcnt));
1187 
1188 	if (sp->refcnt == 0) {
1189 		*spp = NULL;
1190 		key_delsp(sp);
1191 	}
1192 	SPTREE_UNLOCK();
1193 }
1194 
1195 /*
1196  * Must be called after calling key_allocsp().
1197  * For the packet with socket.
1198  */
1199 void
1200 key_freeso(struct socket *so)
1201 {
1202 	IPSEC_ASSERT(so != NULL, ("null so"));
1203 
1204 	switch (so->so_proto->pr_domain->dom_family) {
1205 #if defined(INET) || defined(INET6)
1206 #ifdef INET
1207 	case PF_INET:
1208 #endif
1209 #ifdef INET6
1210 	case PF_INET6:
1211 #endif
1212 	    {
1213 		struct inpcb *pcb = sotoinpcb(so);
1214 
1215 		/* Does it have a PCB ? */
1216 		if (pcb == NULL)
1217 			return;
1218 		key_freesp_so(&pcb->inp_sp->sp_in);
1219 		key_freesp_so(&pcb->inp_sp->sp_out);
1220 	    }
1221 		break;
1222 #endif /* INET || INET6 */
1223 	default:
1224 		ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n",
1225 		    __func__, so->so_proto->pr_domain->dom_family));
1226 		return;
1227 	}
1228 }
1229 
1230 static void
1231 key_freesp_so(struct secpolicy **sp)
1232 {
1233 	IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp"));
1234 
1235 	if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1236 	    (*sp)->policy == IPSEC_POLICY_BYPASS)
1237 		return;
1238 
1239 	IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC,
1240 		("invalid policy %u", (*sp)->policy));
1241 	KEY_FREESP(sp);
1242 }
1243 
1244 void
1245 key_addrefsa(struct secasvar *sav, const char* where, int tag)
1246 {
1247 
1248 	IPSEC_ASSERT(sav != NULL, ("null sav"));
1249 	IPSEC_ASSERT(sav->refcnt > 0, ("refcount must exist"));
1250 
1251 	sa_addref(sav);
1252 }
1253 
1254 /*
1255  * Must be called after calling key_allocsa().
1256  * This function is called by key_freesp() to free some SA allocated
1257  * for a policy.
1258  */
1259 void
1260 key_freesav(struct secasvar **psav, const char* where, int tag)
1261 {
1262 	struct secasvar *sav = *psav;
1263 
1264 	IPSEC_ASSERT(sav != NULL, ("null sav"));
1265 
1266 	if (sa_delref(sav)) {
1267 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1268 			printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1269 				__func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1270 		*psav = NULL;
1271 		key_delsav(sav);
1272 	} else {
1273 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1274 			printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1275 				__func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1276 	}
1277 }
1278 
1279 /* %%% SPD management */
1280 /*
1281  * free security policy entry.
1282  */
1283 static void
1284 key_delsp(struct secpolicy *sp)
1285 {
1286 	struct ipsecrequest *isr, *nextisr;
1287 
1288 	IPSEC_ASSERT(sp != NULL, ("null sp"));
1289 	SPTREE_LOCK_ASSERT();
1290 
1291 	sp->state = IPSEC_SPSTATE_DEAD;
1292 
1293 	IPSEC_ASSERT(sp->refcnt == 0,
1294 		("SP with references deleted (refcnt %u)", sp->refcnt));
1295 
1296 	/* remove from SP index */
1297 	if (__LIST_CHAINED(sp))
1298 		LIST_REMOVE(sp, chain);
1299 
1300 	for (isr = sp->req; isr != NULL; isr = nextisr) {
1301 		if (isr->sav != NULL) {
1302 			KEY_FREESAV(&isr->sav);
1303 			isr->sav = NULL;
1304 		}
1305 
1306 		nextisr = isr->next;
1307 		ipsec_delisr(isr);
1308 	}
1309 	_key_delsp(sp);
1310 }
1311 
1312 /*
1313  * search SPD
1314  * OUT:	NULL	: not found
1315  *	others	: found, pointer to a SP.
1316  */
1317 static struct secpolicy *
1318 key_getsp(struct secpolicyindex *spidx)
1319 {
1320 	struct secpolicy *sp;
1321 
1322 	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
1323 
1324 	SPTREE_LOCK();
1325 	LIST_FOREACH(sp, &V_sptree[spidx->dir], chain) {
1326 		if (sp->state == IPSEC_SPSTATE_DEAD)
1327 			continue;
1328 		if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1329 			SP_ADDREF(sp);
1330 			break;
1331 		}
1332 	}
1333 	SPTREE_UNLOCK();
1334 
1335 	return sp;
1336 }
1337 
1338 /*
1339  * get SP by index.
1340  * OUT:	NULL	: not found
1341  *	others	: found, pointer to a SP.
1342  */
1343 static struct secpolicy *
1344 key_getspbyid(u_int32_t id)
1345 {
1346 	struct secpolicy *sp;
1347 
1348 	SPTREE_LOCK();
1349 	LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_INBOUND], chain) {
1350 		if (sp->state == IPSEC_SPSTATE_DEAD)
1351 			continue;
1352 		if (sp->id == id) {
1353 			SP_ADDREF(sp);
1354 			goto done;
1355 		}
1356 	}
1357 
1358 	LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_OUTBOUND], chain) {
1359 		if (sp->state == IPSEC_SPSTATE_DEAD)
1360 			continue;
1361 		if (sp->id == id) {
1362 			SP_ADDREF(sp);
1363 			goto done;
1364 		}
1365 	}
1366 done:
1367 	SPTREE_UNLOCK();
1368 
1369 	return sp;
1370 }
1371 
1372 struct secpolicy *
1373 key_newsp(const char* where, int tag)
1374 {
1375 	struct secpolicy *newsp = NULL;
1376 
1377 	newsp = (struct secpolicy *)
1378 		malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO);
1379 	if (newsp) {
1380 		SECPOLICY_LOCK_INIT(newsp);
1381 		newsp->refcnt = 1;
1382 		newsp->req = NULL;
1383 	}
1384 
1385 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1386 		printf("DP %s from %s:%u return SP:%p\n", __func__,
1387 			where, tag, newsp));
1388 	return newsp;
1389 }
1390 
1391 static void
1392 _key_delsp(struct secpolicy *sp)
1393 {
1394 	SECPOLICY_LOCK_DESTROY(sp);
1395 	free(sp, M_IPSEC_SP);
1396 }
1397 
1398 /*
1399  * create secpolicy structure from sadb_x_policy structure.
1400  * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1401  * so must be set properly later.
1402  */
1403 struct secpolicy *
1404 key_msg2sp(struct sadb_x_policy *xpl0, size_t len, int *error)
1405 {
1406 	struct secpolicy *newsp;
1407 
1408 	IPSEC_ASSERT(xpl0 != NULL, ("null xpl0"));
1409 	IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len));
1410 
1411 	if (len != PFKEY_EXTLEN(xpl0)) {
1412 		ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__));
1413 		*error = EINVAL;
1414 		return NULL;
1415 	}
1416 
1417 	if ((newsp = KEY_NEWSP()) == NULL) {
1418 		*error = ENOBUFS;
1419 		return NULL;
1420 	}
1421 
1422 	newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1423 	newsp->policy = xpl0->sadb_x_policy_type;
1424 
1425 	/* check policy */
1426 	switch (xpl0->sadb_x_policy_type) {
1427 	case IPSEC_POLICY_DISCARD:
1428 	case IPSEC_POLICY_NONE:
1429 	case IPSEC_POLICY_ENTRUST:
1430 	case IPSEC_POLICY_BYPASS:
1431 		newsp->req = NULL;
1432 		break;
1433 
1434 	case IPSEC_POLICY_IPSEC:
1435 	    {
1436 		int tlen;
1437 		struct sadb_x_ipsecrequest *xisr;
1438 		struct ipsecrequest **p_isr = &newsp->req;
1439 
1440 		/* validity check */
1441 		if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1442 			ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n",
1443 				__func__));
1444 			KEY_FREESP(&newsp);
1445 			*error = EINVAL;
1446 			return NULL;
1447 		}
1448 
1449 		tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1450 		xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1);
1451 
1452 		while (tlen > 0) {
1453 			/* length check */
1454 			if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1455 				ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest "
1456 					"length.\n", __func__));
1457 				KEY_FREESP(&newsp);
1458 				*error = EINVAL;
1459 				return NULL;
1460 			}
1461 
1462 			/* allocate request buffer */
1463 			/* NB: data structure is zero'd */
1464 			*p_isr = ipsec_newisr();
1465 			if ((*p_isr) == NULL) {
1466 				ipseclog((LOG_DEBUG,
1467 				    "%s: No more memory.\n", __func__));
1468 				KEY_FREESP(&newsp);
1469 				*error = ENOBUFS;
1470 				return NULL;
1471 			}
1472 
1473 			/* set values */
1474 			switch (xisr->sadb_x_ipsecrequest_proto) {
1475 			case IPPROTO_ESP:
1476 			case IPPROTO_AH:
1477 			case IPPROTO_IPCOMP:
1478 				break;
1479 			default:
1480 				ipseclog((LOG_DEBUG,
1481 				    "%s: invalid proto type=%u\n", __func__,
1482 				    xisr->sadb_x_ipsecrequest_proto));
1483 				KEY_FREESP(&newsp);
1484 				*error = EPROTONOSUPPORT;
1485 				return NULL;
1486 			}
1487 			(*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1488 
1489 			switch (xisr->sadb_x_ipsecrequest_mode) {
1490 			case IPSEC_MODE_TRANSPORT:
1491 			case IPSEC_MODE_TUNNEL:
1492 				break;
1493 			case IPSEC_MODE_ANY:
1494 			default:
1495 				ipseclog((LOG_DEBUG,
1496 				    "%s: invalid mode=%u\n", __func__,
1497 				    xisr->sadb_x_ipsecrequest_mode));
1498 				KEY_FREESP(&newsp);
1499 				*error = EINVAL;
1500 				return NULL;
1501 			}
1502 			(*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1503 
1504 			switch (xisr->sadb_x_ipsecrequest_level) {
1505 			case IPSEC_LEVEL_DEFAULT:
1506 			case IPSEC_LEVEL_USE:
1507 			case IPSEC_LEVEL_REQUIRE:
1508 				break;
1509 			case IPSEC_LEVEL_UNIQUE:
1510 				/* validity check */
1511 				/*
1512 				 * If range violation of reqid, kernel will
1513 				 * update it, don't refuse it.
1514 				 */
1515 				if (xisr->sadb_x_ipsecrequest_reqid
1516 						> IPSEC_MANUAL_REQID_MAX) {
1517 					ipseclog((LOG_DEBUG,
1518 					    "%s: reqid=%d range "
1519 					    "violation, updated by kernel.\n",
1520 					    __func__,
1521 					    xisr->sadb_x_ipsecrequest_reqid));
1522 					xisr->sadb_x_ipsecrequest_reqid = 0;
1523 				}
1524 
1525 				/* allocate new reqid id if reqid is zero. */
1526 				if (xisr->sadb_x_ipsecrequest_reqid == 0) {
1527 					u_int32_t reqid;
1528 					if ((reqid = key_newreqid()) == 0) {
1529 						KEY_FREESP(&newsp);
1530 						*error = ENOBUFS;
1531 						return NULL;
1532 					}
1533 					(*p_isr)->saidx.reqid = reqid;
1534 					xisr->sadb_x_ipsecrequest_reqid = reqid;
1535 				} else {
1536 				/* set it for manual keying. */
1537 					(*p_isr)->saidx.reqid =
1538 						xisr->sadb_x_ipsecrequest_reqid;
1539 				}
1540 				break;
1541 
1542 			default:
1543 				ipseclog((LOG_DEBUG, "%s: invalid level=%u\n",
1544 					__func__,
1545 					xisr->sadb_x_ipsecrequest_level));
1546 				KEY_FREESP(&newsp);
1547 				*error = EINVAL;
1548 				return NULL;
1549 			}
1550 			(*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1551 
1552 			/* set IP addresses if there */
1553 			if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1554 				struct sockaddr *paddr;
1555 
1556 				paddr = (struct sockaddr *)(xisr + 1);
1557 
1558 				/* validity check */
1559 				if (paddr->sa_len
1560 				    > sizeof((*p_isr)->saidx.src)) {
1561 					ipseclog((LOG_DEBUG, "%s: invalid "
1562 						"request address length.\n",
1563 						__func__));
1564 					KEY_FREESP(&newsp);
1565 					*error = EINVAL;
1566 					return NULL;
1567 				}
1568 				bcopy(paddr, &(*p_isr)->saidx.src,
1569 					paddr->sa_len);
1570 
1571 				paddr = (struct sockaddr *)((caddr_t)paddr
1572 							+ paddr->sa_len);
1573 
1574 				/* validity check */
1575 				if (paddr->sa_len
1576 				    > sizeof((*p_isr)->saidx.dst)) {
1577 					ipseclog((LOG_DEBUG, "%s: invalid "
1578 						"request address length.\n",
1579 						__func__));
1580 					KEY_FREESP(&newsp);
1581 					*error = EINVAL;
1582 					return NULL;
1583 				}
1584 				bcopy(paddr, &(*p_isr)->saidx.dst,
1585 					paddr->sa_len);
1586 			}
1587 
1588 			(*p_isr)->sp = newsp;
1589 
1590 			/* initialization for the next. */
1591 			p_isr = &(*p_isr)->next;
1592 			tlen -= xisr->sadb_x_ipsecrequest_len;
1593 
1594 			/* validity check */
1595 			if (tlen < 0) {
1596 				ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n",
1597 					__func__));
1598 				KEY_FREESP(&newsp);
1599 				*error = EINVAL;
1600 				return NULL;
1601 			}
1602 
1603 			xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr
1604 			                 + xisr->sadb_x_ipsecrequest_len);
1605 		}
1606 	    }
1607 		break;
1608 	default:
1609 		ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__));
1610 		KEY_FREESP(&newsp);
1611 		*error = EINVAL;
1612 		return NULL;
1613 	}
1614 
1615 	*error = 0;
1616 	return newsp;
1617 }
1618 
1619 static u_int32_t
1620 key_newreqid()
1621 {
1622 	static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1623 
1624 	auto_reqid = (auto_reqid == ~0
1625 			? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1626 
1627 	/* XXX should be unique check */
1628 
1629 	return auto_reqid;
1630 }
1631 
1632 /*
1633  * copy secpolicy struct to sadb_x_policy structure indicated.
1634  */
1635 struct mbuf *
1636 key_sp2msg(struct secpolicy *sp)
1637 {
1638 	struct sadb_x_policy *xpl;
1639 	int tlen;
1640 	caddr_t p;
1641 	struct mbuf *m;
1642 
1643 	IPSEC_ASSERT(sp != NULL, ("null policy"));
1644 
1645 	tlen = key_getspreqmsglen(sp);
1646 
1647 	m = m_get2(tlen, M_NOWAIT, MT_DATA, 0);
1648 	if (m == NULL)
1649 		return (NULL);
1650 	m_align(m, tlen);
1651 	m->m_len = tlen;
1652 	xpl = mtod(m, struct sadb_x_policy *);
1653 	bzero(xpl, tlen);
1654 
1655 	xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1656 	xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1657 	xpl->sadb_x_policy_type = sp->policy;
1658 	xpl->sadb_x_policy_dir = sp->spidx.dir;
1659 	xpl->sadb_x_policy_id = sp->id;
1660 	p = (caddr_t)xpl + sizeof(*xpl);
1661 
1662 	/* if is the policy for ipsec ? */
1663 	if (sp->policy == IPSEC_POLICY_IPSEC) {
1664 		struct sadb_x_ipsecrequest *xisr;
1665 		struct ipsecrequest *isr;
1666 
1667 		for (isr = sp->req; isr != NULL; isr = isr->next) {
1668 
1669 			xisr = (struct sadb_x_ipsecrequest *)p;
1670 
1671 			xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1672 			xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1673 			xisr->sadb_x_ipsecrequest_level = isr->level;
1674 			xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1675 
1676 			p += sizeof(*xisr);
1677 			bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len);
1678 			p += isr->saidx.src.sa.sa_len;
1679 			bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len);
1680 			p += isr->saidx.src.sa.sa_len;
1681 
1682 			xisr->sadb_x_ipsecrequest_len =
1683 				PFKEY_ALIGN8(sizeof(*xisr)
1684 					+ isr->saidx.src.sa.sa_len
1685 					+ isr->saidx.dst.sa.sa_len);
1686 		}
1687 	}
1688 
1689 	return m;
1690 }
1691 
1692 /* m will not be freed nor modified */
1693 static struct mbuf *
1694 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1695     int ndeep, int nitem, ...)
1696 {
1697 	va_list ap;
1698 	int idx;
1699 	int i;
1700 	struct mbuf *result = NULL, *n;
1701 	int len;
1702 
1703 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1704 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1705 
1706 	va_start(ap, nitem);
1707 	for (i = 0; i < nitem; i++) {
1708 		idx = va_arg(ap, int);
1709 		if (idx < 0 || idx > SADB_EXT_MAX)
1710 			goto fail;
1711 		/* don't attempt to pull empty extension */
1712 		if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1713 			continue;
1714 		if (idx != SADB_EXT_RESERVED  &&
1715 		    (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1716 			continue;
1717 
1718 		if (idx == SADB_EXT_RESERVED) {
1719 			len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1720 
1721 			IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len));
1722 
1723 			MGETHDR(n, M_NOWAIT, MT_DATA);
1724 			if (!n)
1725 				goto fail;
1726 			n->m_len = len;
1727 			n->m_next = NULL;
1728 			m_copydata(m, 0, sizeof(struct sadb_msg),
1729 			    mtod(n, caddr_t));
1730 		} else if (i < ndeep) {
1731 			len = mhp->extlen[idx];
1732 			n = m_get2(len, M_NOWAIT, MT_DATA, 0);
1733 			if (n == NULL)
1734 				goto fail;
1735 			m_align(n, len);
1736 			n->m_len = len;
1737 			m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1738 			    mtod(n, caddr_t));
1739 		} else {
1740 			n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1741 			    M_NOWAIT);
1742 		}
1743 		if (n == NULL)
1744 			goto fail;
1745 
1746 		if (result)
1747 			m_cat(result, n);
1748 		else
1749 			result = n;
1750 	}
1751 	va_end(ap);
1752 
1753 	if ((result->m_flags & M_PKTHDR) != 0) {
1754 		result->m_pkthdr.len = 0;
1755 		for (n = result; n; n = n->m_next)
1756 			result->m_pkthdr.len += n->m_len;
1757 	}
1758 
1759 	return result;
1760 
1761 fail:
1762 	m_freem(result);
1763 	va_end(ap);
1764 	return NULL;
1765 }
1766 
1767 /*
1768  * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1769  * add an entry to SP database, when received
1770  *   <base, address(SD), (lifetime(H),) policy>
1771  * from the user(?).
1772  * Adding to SP database,
1773  * and send
1774  *   <base, address(SD), (lifetime(H),) policy>
1775  * to the socket which was send.
1776  *
1777  * SPDADD set a unique policy entry.
1778  * SPDSETIDX like SPDADD without a part of policy requests.
1779  * SPDUPDATE replace a unique policy entry.
1780  *
1781  * m will always be freed.
1782  */
1783 static int
1784 key_spdadd(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
1785 {
1786 	struct sadb_address *src0, *dst0;
1787 	struct sadb_x_policy *xpl0, *xpl;
1788 	struct sadb_lifetime *lft = NULL;
1789 	struct secpolicyindex spidx;
1790 	struct secpolicy *newsp;
1791 	int error;
1792 
1793 	IPSEC_ASSERT(so != NULL, ("null socket"));
1794 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1795 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1796 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
1797 
1798 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1799 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1800 	    mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1801 		ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1802 		return key_senderror(so, m, EINVAL);
1803 	}
1804 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1805 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1806 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1807 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1808 			__func__));
1809 		return key_senderror(so, m, EINVAL);
1810 	}
1811 	if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1812 		if (mhp->extlen[SADB_EXT_LIFETIME_HARD]
1813 			< sizeof(struct sadb_lifetime)) {
1814 			ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1815 				__func__));
1816 			return key_senderror(so, m, EINVAL);
1817 		}
1818 		lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1819 	}
1820 
1821 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1822 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1823 	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1824 
1825 	/*
1826 	 * Note: do not parse SADB_X_EXT_NAT_T_* here:
1827 	 * we are processing traffic endpoints.
1828 	 */
1829 
1830 	/* make secindex */
1831 	/* XXX boundary check against sa_len */
1832 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1833 	                src0 + 1,
1834 	                dst0 + 1,
1835 	                src0->sadb_address_prefixlen,
1836 	                dst0->sadb_address_prefixlen,
1837 	                src0->sadb_address_proto,
1838 	                &spidx);
1839 
1840 	/* checking the direciton. */
1841 	switch (xpl0->sadb_x_policy_dir) {
1842 	case IPSEC_DIR_INBOUND:
1843 	case IPSEC_DIR_OUTBOUND:
1844 		break;
1845 	default:
1846 		ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
1847 		mhp->msg->sadb_msg_errno = EINVAL;
1848 		return 0;
1849 	}
1850 
1851 	/* check policy */
1852 	/* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1853 	if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST
1854 	 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1855 		ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__));
1856 		return key_senderror(so, m, EINVAL);
1857 	}
1858 
1859 	/* policy requests are mandatory when action is ipsec. */
1860         if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX
1861 	 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC
1862 	 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1863 		ipseclog((LOG_DEBUG, "%s: some policy requests part required\n",
1864 			__func__));
1865 		return key_senderror(so, m, EINVAL);
1866 	}
1867 
1868 	/*
1869 	 * checking there is SP already or not.
1870 	 * SPDUPDATE doesn't depend on whether there is a SP or not.
1871 	 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1872 	 * then error.
1873 	 */
1874 	newsp = key_getsp(&spidx);
1875 	if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1876 		if (newsp) {
1877 			SPTREE_LOCK();
1878 			newsp->state = IPSEC_SPSTATE_DEAD;
1879 			SPTREE_UNLOCK();
1880 			KEY_FREESP(&newsp);
1881 		}
1882 	} else {
1883 		if (newsp != NULL) {
1884 			KEY_FREESP(&newsp);
1885 			ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n",
1886 				__func__));
1887 			return key_senderror(so, m, EEXIST);
1888 		}
1889 	}
1890 
1891 	/* allocation new SP entry */
1892 	if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
1893 		return key_senderror(so, m, error);
1894 	}
1895 
1896 	if ((newsp->id = key_getnewspid()) == 0) {
1897 		_key_delsp(newsp);
1898 		return key_senderror(so, m, ENOBUFS);
1899 	}
1900 
1901 	/* XXX boundary check against sa_len */
1902 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1903 	                src0 + 1,
1904 	                dst0 + 1,
1905 	                src0->sadb_address_prefixlen,
1906 	                dst0->sadb_address_prefixlen,
1907 	                src0->sadb_address_proto,
1908 	                &newsp->spidx);
1909 
1910 	/* sanity check on addr pair */
1911 	if (((struct sockaddr *)(src0 + 1))->sa_family !=
1912 			((struct sockaddr *)(dst0+ 1))->sa_family) {
1913 		_key_delsp(newsp);
1914 		return key_senderror(so, m, EINVAL);
1915 	}
1916 	if (((struct sockaddr *)(src0 + 1))->sa_len !=
1917 			((struct sockaddr *)(dst0+ 1))->sa_len) {
1918 		_key_delsp(newsp);
1919 		return key_senderror(so, m, EINVAL);
1920 	}
1921 #if 1
1922 	if (newsp->req && newsp->req->saidx.src.sa.sa_family && newsp->req->saidx.dst.sa.sa_family) {
1923 		if (newsp->req->saidx.src.sa.sa_family != newsp->req->saidx.dst.sa.sa_family) {
1924 			_key_delsp(newsp);
1925 			return key_senderror(so, m, EINVAL);
1926 		}
1927 	}
1928 #endif
1929 
1930 	newsp->created = time_second;
1931 	newsp->lastused = newsp->created;
1932 	newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1933 	newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1934 
1935 	newsp->refcnt = 1;	/* do not reclaim until I say I do */
1936 	newsp->state = IPSEC_SPSTATE_ALIVE;
1937 	LIST_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1938 
1939 	/* delete the entry in spacqtree */
1940 	if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1941 		struct secspacq *spacq = key_getspacq(&spidx);
1942 		if (spacq != NULL) {
1943 			/* reset counter in order to deletion by timehandler. */
1944 			spacq->created = time_second;
1945 			spacq->count = 0;
1946 			SPACQ_UNLOCK();
1947 		}
1948     	}
1949 
1950     {
1951 	struct mbuf *n, *mpolicy;
1952 	struct sadb_msg *newmsg;
1953 	int off;
1954 
1955 	/*
1956 	 * Note: do not send SADB_X_EXT_NAT_T_* here:
1957 	 * we are sending traffic endpoints.
1958 	 */
1959 
1960 	/* create new sadb_msg to reply. */
1961 	if (lft) {
1962 		n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
1963 		    SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
1964 		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1965 	} else {
1966 		n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
1967 		    SADB_X_EXT_POLICY,
1968 		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1969 	}
1970 	if (!n)
1971 		return key_senderror(so, m, ENOBUFS);
1972 
1973 	if (n->m_len < sizeof(*newmsg)) {
1974 		n = m_pullup(n, sizeof(*newmsg));
1975 		if (!n)
1976 			return key_senderror(so, m, ENOBUFS);
1977 	}
1978 	newmsg = mtod(n, struct sadb_msg *);
1979 	newmsg->sadb_msg_errno = 0;
1980 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
1981 
1982 	off = 0;
1983 	mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
1984 	    sizeof(*xpl), &off);
1985 	if (mpolicy == NULL) {
1986 		/* n is already freed */
1987 		return key_senderror(so, m, ENOBUFS);
1988 	}
1989 	xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off);
1990 	if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
1991 		m_freem(n);
1992 		return key_senderror(so, m, EINVAL);
1993 	}
1994 	xpl->sadb_x_policy_id = newsp->id;
1995 
1996 	m_freem(m);
1997 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
1998     }
1999 }
2000 
2001 /*
2002  * get new policy id.
2003  * OUT:
2004  *	0:	failure.
2005  *	others: success.
2006  */
2007 static u_int32_t
2008 key_getnewspid()
2009 {
2010 	u_int32_t newid = 0;
2011 	int count = V_key_spi_trycnt;	/* XXX */
2012 	struct secpolicy *sp;
2013 
2014 	/* when requesting to allocate spi ranged */
2015 	while (count--) {
2016 		newid = (V_policy_id = (V_policy_id == ~0 ? 1 : V_policy_id + 1));
2017 
2018 		if ((sp = key_getspbyid(newid)) == NULL)
2019 			break;
2020 
2021 		KEY_FREESP(&sp);
2022 	}
2023 
2024 	if (count == 0 || newid == 0) {
2025 		ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n",
2026 			__func__));
2027 		return 0;
2028 	}
2029 
2030 	return newid;
2031 }
2032 
2033 /*
2034  * SADB_SPDDELETE processing
2035  * receive
2036  *   <base, address(SD), policy(*)>
2037  * from the user(?), and set SADB_SASTATE_DEAD,
2038  * and send,
2039  *   <base, address(SD), policy(*)>
2040  * to the ikmpd.
2041  * policy(*) including direction of policy.
2042  *
2043  * m will always be freed.
2044  */
2045 static int
2046 key_spddelete(struct socket *so, struct mbuf *m,
2047     const struct sadb_msghdr *mhp)
2048 {
2049 	struct sadb_address *src0, *dst0;
2050 	struct sadb_x_policy *xpl0;
2051 	struct secpolicyindex spidx;
2052 	struct secpolicy *sp;
2053 
2054 	IPSEC_ASSERT(so != NULL, ("null so"));
2055 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2056 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2057 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2058 
2059 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2060 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2061 	    mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2062 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2063 			__func__));
2064 		return key_senderror(so, m, EINVAL);
2065 	}
2066 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2067 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2068 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2069 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2070 			__func__));
2071 		return key_senderror(so, m, EINVAL);
2072 	}
2073 
2074 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2075 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2076 	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2077 
2078 	/*
2079 	 * Note: do not parse SADB_X_EXT_NAT_T_* here:
2080 	 * we are processing traffic endpoints.
2081 	 */
2082 
2083 	/* make secindex */
2084 	/* XXX boundary check against sa_len */
2085 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2086 	                src0 + 1,
2087 	                dst0 + 1,
2088 	                src0->sadb_address_prefixlen,
2089 	                dst0->sadb_address_prefixlen,
2090 	                src0->sadb_address_proto,
2091 	                &spidx);
2092 
2093 	/* checking the direciton. */
2094 	switch (xpl0->sadb_x_policy_dir) {
2095 	case IPSEC_DIR_INBOUND:
2096 	case IPSEC_DIR_OUTBOUND:
2097 		break;
2098 	default:
2099 		ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
2100 		return key_senderror(so, m, EINVAL);
2101 	}
2102 
2103 	/* Is there SP in SPD ? */
2104 	if ((sp = key_getsp(&spidx)) == NULL) {
2105 		ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__));
2106 		return key_senderror(so, m, EINVAL);
2107 	}
2108 
2109 	/* save policy id to buffer to be returned. */
2110 	xpl0->sadb_x_policy_id = sp->id;
2111 
2112 	SPTREE_LOCK();
2113 	sp->state = IPSEC_SPSTATE_DEAD;
2114 	SPTREE_UNLOCK();
2115 	KEY_FREESP(&sp);
2116 
2117     {
2118 	struct mbuf *n;
2119 	struct sadb_msg *newmsg;
2120 
2121 	/*
2122 	 * Note: do not send SADB_X_EXT_NAT_T_* here:
2123 	 * we are sending traffic endpoints.
2124 	 */
2125 
2126 	/* create new sadb_msg to reply. */
2127 	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2128 	    SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2129 	if (!n)
2130 		return key_senderror(so, m, ENOBUFS);
2131 
2132 	newmsg = mtod(n, struct sadb_msg *);
2133 	newmsg->sadb_msg_errno = 0;
2134 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2135 
2136 	m_freem(m);
2137 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2138     }
2139 }
2140 
2141 /*
2142  * SADB_SPDDELETE2 processing
2143  * receive
2144  *   <base, policy(*)>
2145  * from the user(?), and set SADB_SASTATE_DEAD,
2146  * and send,
2147  *   <base, policy(*)>
2148  * to the ikmpd.
2149  * policy(*) including direction of policy.
2150  *
2151  * m will always be freed.
2152  */
2153 static int
2154 key_spddelete2(struct socket *so, struct mbuf *m,
2155     const struct sadb_msghdr *mhp)
2156 {
2157 	u_int32_t id;
2158 	struct secpolicy *sp;
2159 
2160 	IPSEC_ASSERT(so != NULL, ("null socket"));
2161 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2162 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2163 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2164 
2165 	if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2166 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2167 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__));
2168 		return key_senderror(so, m, EINVAL);
2169 	}
2170 
2171 	id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2172 
2173 	/* Is there SP in SPD ? */
2174 	if ((sp = key_getspbyid(id)) == NULL) {
2175 		ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2176 		return key_senderror(so, m, EINVAL);
2177 	}
2178 
2179 	SPTREE_LOCK();
2180 	sp->state = IPSEC_SPSTATE_DEAD;
2181 	SPTREE_UNLOCK();
2182 	KEY_FREESP(&sp);
2183 
2184     {
2185 	struct mbuf *n, *nn;
2186 	struct sadb_msg *newmsg;
2187 	int off, len;
2188 
2189 	/* create new sadb_msg to reply. */
2190 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2191 
2192 	MGETHDR(n, M_NOWAIT, MT_DATA);
2193 	if (n && len > MHLEN) {
2194 		MCLGET(n, M_NOWAIT);
2195 		if ((n->m_flags & M_EXT) == 0) {
2196 			m_freem(n);
2197 			n = NULL;
2198 		}
2199 	}
2200 	if (!n)
2201 		return key_senderror(so, m, ENOBUFS);
2202 
2203 	n->m_len = len;
2204 	n->m_next = NULL;
2205 	off = 0;
2206 
2207 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
2208 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2209 
2210 	IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)",
2211 		off, len));
2212 
2213 	n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2214 	    mhp->extlen[SADB_X_EXT_POLICY], M_NOWAIT);
2215 	if (!n->m_next) {
2216 		m_freem(n);
2217 		return key_senderror(so, m, ENOBUFS);
2218 	}
2219 
2220 	n->m_pkthdr.len = 0;
2221 	for (nn = n; nn; nn = nn->m_next)
2222 		n->m_pkthdr.len += nn->m_len;
2223 
2224 	newmsg = mtod(n, struct sadb_msg *);
2225 	newmsg->sadb_msg_errno = 0;
2226 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2227 
2228 	m_freem(m);
2229 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2230     }
2231 }
2232 
2233 /*
2234  * SADB_X_GET processing
2235  * receive
2236  *   <base, policy(*)>
2237  * from the user(?),
2238  * and send,
2239  *   <base, address(SD), policy>
2240  * to the ikmpd.
2241  * policy(*) including direction of policy.
2242  *
2243  * m will always be freed.
2244  */
2245 static int
2246 key_spdget(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
2247 {
2248 	u_int32_t id;
2249 	struct secpolicy *sp;
2250 	struct mbuf *n;
2251 
2252 	IPSEC_ASSERT(so != NULL, ("null socket"));
2253 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2254 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2255 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2256 
2257 	if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2258 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2259 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2260 			__func__));
2261 		return key_senderror(so, m, EINVAL);
2262 	}
2263 
2264 	id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2265 
2266 	/* Is there SP in SPD ? */
2267 	if ((sp = key_getspbyid(id)) == NULL) {
2268 		ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2269 		return key_senderror(so, m, ENOENT);
2270 	}
2271 
2272 	n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid);
2273 	KEY_FREESP(&sp);
2274 	if (n != NULL) {
2275 		m_freem(m);
2276 		return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2277 	} else
2278 		return key_senderror(so, m, ENOBUFS);
2279 }
2280 
2281 /*
2282  * SADB_X_SPDACQUIRE processing.
2283  * Acquire policy and SA(s) for a *OUTBOUND* packet.
2284  * send
2285  *   <base, policy(*)>
2286  * to KMD, and expect to receive
2287  *   <base> with SADB_X_SPDACQUIRE if error occured,
2288  * or
2289  *   <base, policy>
2290  * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2291  * policy(*) is without policy requests.
2292  *
2293  *    0     : succeed
2294  *    others: error number
2295  */
2296 int
2297 key_spdacquire(struct secpolicy *sp)
2298 {
2299 	struct mbuf *result = NULL, *m;
2300 	struct secspacq *newspacq;
2301 
2302 	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2303 	IPSEC_ASSERT(sp->req == NULL, ("policy exists"));
2304 	IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC,
2305 		("policy not IPSEC %u", sp->policy));
2306 
2307 	/* Get an entry to check whether sent message or not. */
2308 	newspacq = key_getspacq(&sp->spidx);
2309 	if (newspacq != NULL) {
2310 		if (V_key_blockacq_count < newspacq->count) {
2311 			/* reset counter and do send message. */
2312 			newspacq->count = 0;
2313 		} else {
2314 			/* increment counter and do nothing. */
2315 			newspacq->count++;
2316 			SPACQ_UNLOCK();
2317 			return (0);
2318 		}
2319 		SPACQ_UNLOCK();
2320 	} else {
2321 		/* make new entry for blocking to send SADB_ACQUIRE. */
2322 		newspacq = key_newspacq(&sp->spidx);
2323 		if (newspacq == NULL)
2324 			return ENOBUFS;
2325 	}
2326 
2327 	/* create new sadb_msg to reply. */
2328 	m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2329 	if (!m)
2330 		return ENOBUFS;
2331 
2332 	result = m;
2333 
2334 	result->m_pkthdr.len = 0;
2335 	for (m = result; m; m = m->m_next)
2336 		result->m_pkthdr.len += m->m_len;
2337 
2338 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2339 	    PFKEY_UNIT64(result->m_pkthdr.len);
2340 
2341 	return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2342 }
2343 
2344 /*
2345  * SADB_SPDFLUSH processing
2346  * receive
2347  *   <base>
2348  * from the user, and free all entries in secpctree.
2349  * and send,
2350  *   <base>
2351  * to the user.
2352  * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2353  *
2354  * m will always be freed.
2355  */
2356 static int
2357 key_spdflush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
2358 {
2359 	struct sadb_msg *newmsg;
2360 	struct secpolicy *sp;
2361 	u_int dir;
2362 
2363 	IPSEC_ASSERT(so != NULL, ("null socket"));
2364 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2365 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2366 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2367 
2368 	if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2369 		return key_senderror(so, m, EINVAL);
2370 
2371 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2372 		SPTREE_LOCK();
2373 		LIST_FOREACH(sp, &V_sptree[dir], chain)
2374 			sp->state = IPSEC_SPSTATE_DEAD;
2375 		SPTREE_UNLOCK();
2376 	}
2377 
2378 	if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2379 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2380 		return key_senderror(so, m, ENOBUFS);
2381 	}
2382 
2383 	if (m->m_next)
2384 		m_freem(m->m_next);
2385 	m->m_next = NULL;
2386 	m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2387 	newmsg = mtod(m, struct sadb_msg *);
2388 	newmsg->sadb_msg_errno = 0;
2389 	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2390 
2391 	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2392 }
2393 
2394 /*
2395  * SADB_SPDDUMP processing
2396  * receive
2397  *   <base>
2398  * from the user, and dump all SP leaves
2399  * and send,
2400  *   <base> .....
2401  * to the ikmpd.
2402  *
2403  * m will always be freed.
2404  */
2405 static int
2406 key_spddump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
2407 {
2408 	struct secpolicy *sp;
2409 	int cnt;
2410 	u_int dir;
2411 	struct mbuf *n;
2412 
2413 	IPSEC_ASSERT(so != NULL, ("null socket"));
2414 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2415 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2416 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2417 
2418 	/* search SPD entry and get buffer size. */
2419 	cnt = 0;
2420 	SPTREE_LOCK();
2421 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2422 		LIST_FOREACH(sp, &V_sptree[dir], chain) {
2423 			cnt++;
2424 		}
2425 	}
2426 
2427 	if (cnt == 0) {
2428 		SPTREE_UNLOCK();
2429 		return key_senderror(so, m, ENOENT);
2430 	}
2431 
2432 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2433 		LIST_FOREACH(sp, &V_sptree[dir], chain) {
2434 			--cnt;
2435 			n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt,
2436 			    mhp->msg->sadb_msg_pid);
2437 
2438 			if (n)
2439 				key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2440 		}
2441 	}
2442 
2443 	SPTREE_UNLOCK();
2444 	m_freem(m);
2445 	return 0;
2446 }
2447 
2448 static struct mbuf *
2449 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq,
2450     u_int32_t pid)
2451 {
2452 	struct mbuf *result = NULL, *m;
2453 	struct seclifetime lt;
2454 
2455 	m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2456 	if (!m)
2457 		goto fail;
2458 	result = m;
2459 
2460 	/*
2461 	 * Note: do not send SADB_X_EXT_NAT_T_* here:
2462 	 * we are sending traffic endpoints.
2463 	 */
2464 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2465 	    &sp->spidx.src.sa, sp->spidx.prefs,
2466 	    sp->spidx.ul_proto);
2467 	if (!m)
2468 		goto fail;
2469 	m_cat(result, m);
2470 
2471 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2472 	    &sp->spidx.dst.sa, sp->spidx.prefd,
2473 	    sp->spidx.ul_proto);
2474 	if (!m)
2475 		goto fail;
2476 	m_cat(result, m);
2477 
2478 	m = key_sp2msg(sp);
2479 	if (!m)
2480 		goto fail;
2481 	m_cat(result, m);
2482 
2483 	if(sp->lifetime){
2484 		lt.addtime=sp->created;
2485 		lt.usetime= sp->lastused;
2486 		m = key_setlifetime(&lt, SADB_EXT_LIFETIME_CURRENT);
2487 		if (!m)
2488 			goto fail;
2489 		m_cat(result, m);
2490 
2491 		lt.addtime=sp->lifetime;
2492 		lt.usetime= sp->validtime;
2493 		m = key_setlifetime(&lt, SADB_EXT_LIFETIME_HARD);
2494 		if (!m)
2495 			goto fail;
2496 		m_cat(result, m);
2497 	}
2498 
2499 	if ((result->m_flags & M_PKTHDR) == 0)
2500 		goto fail;
2501 
2502 	if (result->m_len < sizeof(struct sadb_msg)) {
2503 		result = m_pullup(result, sizeof(struct sadb_msg));
2504 		if (result == NULL)
2505 			goto fail;
2506 	}
2507 
2508 	result->m_pkthdr.len = 0;
2509 	for (m = result; m; m = m->m_next)
2510 		result->m_pkthdr.len += m->m_len;
2511 
2512 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2513 	    PFKEY_UNIT64(result->m_pkthdr.len);
2514 
2515 	return result;
2516 
2517 fail:
2518 	m_freem(result);
2519 	return NULL;
2520 }
2521 
2522 /*
2523  * get PFKEY message length for security policy and request.
2524  */
2525 static u_int
2526 key_getspreqmsglen(struct secpolicy *sp)
2527 {
2528 	u_int tlen;
2529 
2530 	tlen = sizeof(struct sadb_x_policy);
2531 
2532 	/* if is the policy for ipsec ? */
2533 	if (sp->policy != IPSEC_POLICY_IPSEC)
2534 		return tlen;
2535 
2536 	/* get length of ipsec requests */
2537     {
2538 	struct ipsecrequest *isr;
2539 	int len;
2540 
2541 	for (isr = sp->req; isr != NULL; isr = isr->next) {
2542 		len = sizeof(struct sadb_x_ipsecrequest)
2543 			+ isr->saidx.src.sa.sa_len
2544 			+ isr->saidx.dst.sa.sa_len;
2545 
2546 		tlen += PFKEY_ALIGN8(len);
2547 	}
2548     }
2549 
2550 	return tlen;
2551 }
2552 
2553 /*
2554  * SADB_SPDEXPIRE processing
2555  * send
2556  *   <base, address(SD), lifetime(CH), policy>
2557  * to KMD by PF_KEY.
2558  *
2559  * OUT:	0	: succeed
2560  *	others	: error number
2561  */
2562 static int
2563 key_spdexpire(struct secpolicy *sp)
2564 {
2565 	struct mbuf *result = NULL, *m;
2566 	int len;
2567 	int error = -1;
2568 	struct sadb_lifetime *lt;
2569 
2570 	/* XXX: Why do we lock ? */
2571 
2572 	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2573 
2574 	/* set msg header */
2575 	m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2576 	if (!m) {
2577 		error = ENOBUFS;
2578 		goto fail;
2579 	}
2580 	result = m;
2581 
2582 	/* create lifetime extension (current and hard) */
2583 	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2584 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
2585 	if (m == NULL) {
2586 		error = ENOBUFS;
2587 		goto fail;
2588 	}
2589 	m_align(m, len);
2590 	m->m_len = len;
2591 	bzero(mtod(m, caddr_t), len);
2592 	lt = mtod(m, struct sadb_lifetime *);
2593 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2594 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2595 	lt->sadb_lifetime_allocations = 0;
2596 	lt->sadb_lifetime_bytes = 0;
2597 	lt->sadb_lifetime_addtime = sp->created;
2598 	lt->sadb_lifetime_usetime = sp->lastused;
2599 	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
2600 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2601 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2602 	lt->sadb_lifetime_allocations = 0;
2603 	lt->sadb_lifetime_bytes = 0;
2604 	lt->sadb_lifetime_addtime = sp->lifetime;
2605 	lt->sadb_lifetime_usetime = sp->validtime;
2606 	m_cat(result, m);
2607 
2608 	/*
2609 	 * Note: do not send SADB_X_EXT_NAT_T_* here:
2610 	 * we are sending traffic endpoints.
2611 	 */
2612 
2613 	/* set sadb_address for source */
2614 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2615 	    &sp->spidx.src.sa,
2616 	    sp->spidx.prefs, sp->spidx.ul_proto);
2617 	if (!m) {
2618 		error = ENOBUFS;
2619 		goto fail;
2620 	}
2621 	m_cat(result, m);
2622 
2623 	/* set sadb_address for destination */
2624 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2625 	    &sp->spidx.dst.sa,
2626 	    sp->spidx.prefd, sp->spidx.ul_proto);
2627 	if (!m) {
2628 		error = ENOBUFS;
2629 		goto fail;
2630 	}
2631 	m_cat(result, m);
2632 
2633 	/* set secpolicy */
2634 	m = key_sp2msg(sp);
2635 	if (!m) {
2636 		error = ENOBUFS;
2637 		goto fail;
2638 	}
2639 	m_cat(result, m);
2640 
2641 	if ((result->m_flags & M_PKTHDR) == 0) {
2642 		error = EINVAL;
2643 		goto fail;
2644 	}
2645 
2646 	if (result->m_len < sizeof(struct sadb_msg)) {
2647 		result = m_pullup(result, sizeof(struct sadb_msg));
2648 		if (result == NULL) {
2649 			error = ENOBUFS;
2650 			goto fail;
2651 		}
2652 	}
2653 
2654 	result->m_pkthdr.len = 0;
2655 	for (m = result; m; m = m->m_next)
2656 		result->m_pkthdr.len += m->m_len;
2657 
2658 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2659 	    PFKEY_UNIT64(result->m_pkthdr.len);
2660 
2661 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2662 
2663  fail:
2664 	if (result)
2665 		m_freem(result);
2666 	return error;
2667 }
2668 
2669 /* %%% SAD management */
2670 /*
2671  * allocating a memory for new SA head, and copy from the values of mhp.
2672  * OUT:	NULL	: failure due to the lack of memory.
2673  *	others	: pointer to new SA head.
2674  */
2675 static struct secashead *
2676 key_newsah(struct secasindex *saidx)
2677 {
2678 	struct secashead *newsah;
2679 
2680 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
2681 
2682 	newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO);
2683 	if (newsah != NULL) {
2684 		int i;
2685 		for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++)
2686 			LIST_INIT(&newsah->savtree[i]);
2687 		newsah->saidx = *saidx;
2688 
2689 		/* add to saidxtree */
2690 		newsah->state = SADB_SASTATE_MATURE;
2691 
2692 		SAHTREE_LOCK();
2693 		LIST_INSERT_HEAD(&V_sahtree, newsah, chain);
2694 		SAHTREE_UNLOCK();
2695 	}
2696 	return(newsah);
2697 }
2698 
2699 /*
2700  * delete SA index and all SA registerd.
2701  */
2702 static void
2703 key_delsah(struct secashead *sah)
2704 {
2705 	struct secasvar *sav, *nextsav;
2706 	u_int stateidx;
2707 	int zombie = 0;
2708 
2709 	IPSEC_ASSERT(sah != NULL, ("NULL sah"));
2710 	SAHTREE_LOCK_ASSERT();
2711 
2712 	/* searching all SA registerd in the secindex. */
2713 	for (stateidx = 0;
2714 	     stateidx < _ARRAYLEN(saorder_state_any);
2715 	     stateidx++) {
2716 		u_int state = saorder_state_any[stateidx];
2717 		LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) {
2718 			if (sav->refcnt == 0) {
2719 				/* sanity check */
2720 				KEY_CHKSASTATE(state, sav->state, __func__);
2721 				/*
2722 				 * do NOT call KEY_FREESAV here:
2723 				 * it will only delete the sav if refcnt == 1,
2724 				 * where we already know that refcnt == 0
2725 				 */
2726 				key_delsav(sav);
2727 			} else {
2728 				/* give up to delete this sa */
2729 				zombie++;
2730 			}
2731 		}
2732 	}
2733 	if (!zombie) {		/* delete only if there are savs */
2734 		/* remove from tree of SA index */
2735 		if (__LIST_CHAINED(sah))
2736 			LIST_REMOVE(sah, chain);
2737 		free(sah, M_IPSEC_SAH);
2738 	}
2739 }
2740 
2741 /*
2742  * allocating a new SA with LARVAL state.  key_add() and key_getspi() call,
2743  * and copy the values of mhp into new buffer.
2744  * When SAD message type is GETSPI:
2745  *	to set sequence number from acq_seq++,
2746  *	to set zero to SPI.
2747  *	not to call key_setsava().
2748  * OUT:	NULL	: fail
2749  *	others	: pointer to new secasvar.
2750  *
2751  * does not modify mbuf.  does not free mbuf on error.
2752  */
2753 static struct secasvar *
2754 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp,
2755     struct secashead *sah, int *errp, const char *where, int tag)
2756 {
2757 	struct secasvar *newsav;
2758 	const struct sadb_sa *xsa;
2759 
2760 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2761 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2762 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2763 	IPSEC_ASSERT(sah != NULL, ("null secashead"));
2764 
2765 	newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO);
2766 	if (newsav == NULL) {
2767 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2768 		*errp = ENOBUFS;
2769 		goto done;
2770 	}
2771 
2772 	switch (mhp->msg->sadb_msg_type) {
2773 	case SADB_GETSPI:
2774 		newsav->spi = 0;
2775 
2776 #ifdef IPSEC_DOSEQCHECK
2777 		/* sync sequence number */
2778 		if (mhp->msg->sadb_msg_seq == 0)
2779 			newsav->seq =
2780 				(V_acq_seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq));
2781 		else
2782 #endif
2783 			newsav->seq = mhp->msg->sadb_msg_seq;
2784 		break;
2785 
2786 	case SADB_ADD:
2787 		/* sanity check */
2788 		if (mhp->ext[SADB_EXT_SA] == NULL) {
2789 			free(newsav, M_IPSEC_SA);
2790 			newsav = NULL;
2791 			ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2792 				__func__));
2793 			*errp = EINVAL;
2794 			goto done;
2795 		}
2796 		xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2797 		newsav->spi = xsa->sadb_sa_spi;
2798 		newsav->seq = mhp->msg->sadb_msg_seq;
2799 		break;
2800 	default:
2801 		free(newsav, M_IPSEC_SA);
2802 		newsav = NULL;
2803 		*errp = EINVAL;
2804 		goto done;
2805 	}
2806 
2807 
2808 	/* copy sav values */
2809 	if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2810 		*errp = key_setsaval(newsav, m, mhp);
2811 		if (*errp) {
2812 			free(newsav, M_IPSEC_SA);
2813 			newsav = NULL;
2814 			goto done;
2815 		}
2816 	}
2817 
2818 	SECASVAR_LOCK_INIT(newsav);
2819 
2820 	/* reset created */
2821 	newsav->created = time_second;
2822 	newsav->pid = mhp->msg->sadb_msg_pid;
2823 
2824 	/* add to satree */
2825 	newsav->sah = sah;
2826 	sa_initref(newsav);
2827 	newsav->state = SADB_SASTATE_LARVAL;
2828 
2829 	SAHTREE_LOCK();
2830 	LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
2831 			secasvar, chain);
2832 	SAHTREE_UNLOCK();
2833 done:
2834 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
2835 		printf("DP %s from %s:%u return SP:%p\n", __func__,
2836 			where, tag, newsav));
2837 
2838 	return newsav;
2839 }
2840 
2841 /*
2842  * free() SA variable entry.
2843  */
2844 static void
2845 key_cleansav(struct secasvar *sav)
2846 {
2847 	/*
2848 	 * Cleanup xform state.  Note that zeroize'ing causes the
2849 	 * keys to be cleared; otherwise we must do it ourself.
2850 	 */
2851 	if (sav->tdb_xform != NULL) {
2852 		sav->tdb_xform->xf_zeroize(sav);
2853 		sav->tdb_xform = NULL;
2854 	} else {
2855 		KASSERT(sav->iv == NULL, ("iv but no xform"));
2856 		if (sav->key_auth != NULL)
2857 			bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2858 		if (sav->key_enc != NULL)
2859 			bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc));
2860 	}
2861 	if (sav->key_auth != NULL) {
2862 		if (sav->key_auth->key_data != NULL)
2863 			free(sav->key_auth->key_data, M_IPSEC_MISC);
2864 		free(sav->key_auth, M_IPSEC_MISC);
2865 		sav->key_auth = NULL;
2866 	}
2867 	if (sav->key_enc != NULL) {
2868 		if (sav->key_enc->key_data != NULL)
2869 			free(sav->key_enc->key_data, M_IPSEC_MISC);
2870 		free(sav->key_enc, M_IPSEC_MISC);
2871 		sav->key_enc = NULL;
2872 	}
2873 	if (sav->sched) {
2874 		bzero(sav->sched, sav->schedlen);
2875 		free(sav->sched, M_IPSEC_MISC);
2876 		sav->sched = NULL;
2877 	}
2878 	if (sav->replay != NULL) {
2879 		free(sav->replay, M_IPSEC_MISC);
2880 		sav->replay = NULL;
2881 	}
2882 	if (sav->lft_c != NULL) {
2883 		free(sav->lft_c, M_IPSEC_MISC);
2884 		sav->lft_c = NULL;
2885 	}
2886 	if (sav->lft_h != NULL) {
2887 		free(sav->lft_h, M_IPSEC_MISC);
2888 		sav->lft_h = NULL;
2889 	}
2890 	if (sav->lft_s != NULL) {
2891 		free(sav->lft_s, M_IPSEC_MISC);
2892 		sav->lft_s = NULL;
2893 	}
2894 }
2895 
2896 /*
2897  * free() SA variable entry.
2898  */
2899 static void
2900 key_delsav(struct secasvar *sav)
2901 {
2902 	IPSEC_ASSERT(sav != NULL, ("null sav"));
2903 	IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt));
2904 
2905 	/* remove from SA header */
2906 	if (__LIST_CHAINED(sav))
2907 		LIST_REMOVE(sav, chain);
2908 	key_cleansav(sav);
2909 	SECASVAR_LOCK_DESTROY(sav);
2910 	free(sav, M_IPSEC_SA);
2911 }
2912 
2913 /*
2914  * search SAD.
2915  * OUT:
2916  *	NULL	: not found
2917  *	others	: found, pointer to a SA.
2918  */
2919 static struct secashead *
2920 key_getsah(struct secasindex *saidx)
2921 {
2922 	struct secashead *sah;
2923 
2924 	SAHTREE_LOCK();
2925 	LIST_FOREACH(sah, &V_sahtree, chain) {
2926 		if (sah->state == SADB_SASTATE_DEAD)
2927 			continue;
2928 		if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID))
2929 			break;
2930 	}
2931 	SAHTREE_UNLOCK();
2932 
2933 	return sah;
2934 }
2935 
2936 /*
2937  * check not to be duplicated SPI.
2938  * NOTE: this function is too slow due to searching all SAD.
2939  * OUT:
2940  *	NULL	: not found
2941  *	others	: found, pointer to a SA.
2942  */
2943 static struct secasvar *
2944 key_checkspidup(struct secasindex *saidx, u_int32_t spi)
2945 {
2946 	struct secashead *sah;
2947 	struct secasvar *sav;
2948 
2949 	/* check address family */
2950 	if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
2951 		ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
2952 			__func__));
2953 		return NULL;
2954 	}
2955 
2956 	sav = NULL;
2957 	/* check all SAD */
2958 	SAHTREE_LOCK();
2959 	LIST_FOREACH(sah, &V_sahtree, chain) {
2960 		if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
2961 			continue;
2962 		sav = key_getsavbyspi(sah, spi);
2963 		if (sav != NULL)
2964 			break;
2965 	}
2966 	SAHTREE_UNLOCK();
2967 
2968 	return sav;
2969 }
2970 
2971 /*
2972  * search SAD litmited alive SA, protocol, SPI.
2973  * OUT:
2974  *	NULL	: not found
2975  *	others	: found, pointer to a SA.
2976  */
2977 static struct secasvar *
2978 key_getsavbyspi(struct secashead *sah, u_int32_t spi)
2979 {
2980 	struct secasvar *sav;
2981 	u_int stateidx, state;
2982 
2983 	sav = NULL;
2984 	SAHTREE_LOCK_ASSERT();
2985 	/* search all status */
2986 	for (stateidx = 0;
2987 	     stateidx < _ARRAYLEN(saorder_state_alive);
2988 	     stateidx++) {
2989 
2990 		state = saorder_state_alive[stateidx];
2991 		LIST_FOREACH(sav, &sah->savtree[state], chain) {
2992 
2993 			/* sanity check */
2994 			if (sav->state != state) {
2995 				ipseclog((LOG_DEBUG, "%s: "
2996 				    "invalid sav->state (queue: %d SA: %d)\n",
2997 				    __func__, state, sav->state));
2998 				continue;
2999 			}
3000 
3001 			if (sav->spi == spi)
3002 				return sav;
3003 		}
3004 	}
3005 
3006 	return NULL;
3007 }
3008 
3009 /*
3010  * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3011  * You must update these if need.
3012  * OUT:	0:	success.
3013  *	!0:	failure.
3014  *
3015  * does not modify mbuf.  does not free mbuf on error.
3016  */
3017 static int
3018 key_setsaval(struct secasvar *sav, struct mbuf *m,
3019     const struct sadb_msghdr *mhp)
3020 {
3021 	int error = 0;
3022 
3023 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
3024 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
3025 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
3026 
3027 	/* initialization */
3028 	sav->replay = NULL;
3029 	sav->key_auth = NULL;
3030 	sav->key_enc = NULL;
3031 	sav->sched = NULL;
3032 	sav->schedlen = 0;
3033 	sav->iv = NULL;
3034 	sav->lft_c = NULL;
3035 	sav->lft_h = NULL;
3036 	sav->lft_s = NULL;
3037 	sav->tdb_xform = NULL;		/* transform */
3038 	sav->tdb_encalgxform = NULL;	/* encoding algorithm */
3039 	sav->tdb_authalgxform = NULL;	/* authentication algorithm */
3040 	sav->tdb_compalgxform = NULL;	/* compression algorithm */
3041 	/*  Initialize even if NAT-T not compiled in: */
3042 	sav->natt_type = 0;
3043 	sav->natt_esp_frag_len = 0;
3044 
3045 	/* SA */
3046 	if (mhp->ext[SADB_EXT_SA] != NULL) {
3047 		const struct sadb_sa *sa0;
3048 
3049 		sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3050 		if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3051 			error = EINVAL;
3052 			goto fail;
3053 		}
3054 
3055 		sav->alg_auth = sa0->sadb_sa_auth;
3056 		sav->alg_enc = sa0->sadb_sa_encrypt;
3057 		sav->flags = sa0->sadb_sa_flags;
3058 
3059 		/* replay window */
3060 		if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3061 			sav->replay = (struct secreplay *)
3062 				malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO);
3063 			if (sav->replay == NULL) {
3064 				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3065 					__func__));
3066 				error = ENOBUFS;
3067 				goto fail;
3068 			}
3069 			if (sa0->sadb_sa_replay != 0)
3070 				sav->replay->bitmap = (caddr_t)(sav->replay+1);
3071 			sav->replay->wsize = sa0->sadb_sa_replay;
3072 		}
3073 	}
3074 
3075 	/* Authentication keys */
3076 	if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3077 		const struct sadb_key *key0;
3078 		int len;
3079 
3080 		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3081 		len = mhp->extlen[SADB_EXT_KEY_AUTH];
3082 
3083 		error = 0;
3084 		if (len < sizeof(*key0)) {
3085 			error = EINVAL;
3086 			goto fail;
3087 		}
3088 		switch (mhp->msg->sadb_msg_satype) {
3089 		case SADB_SATYPE_AH:
3090 		case SADB_SATYPE_ESP:
3091 		case SADB_X_SATYPE_TCPSIGNATURE:
3092 			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3093 			    sav->alg_auth != SADB_X_AALG_NULL)
3094 				error = EINVAL;
3095 			break;
3096 		case SADB_X_SATYPE_IPCOMP:
3097 		default:
3098 			error = EINVAL;
3099 			break;
3100 		}
3101 		if (error) {
3102 			ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n",
3103 				__func__));
3104 			goto fail;
3105 		}
3106 
3107 		sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len,
3108 								M_IPSEC_MISC);
3109 		if (sav->key_auth == NULL ) {
3110 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3111 				  __func__));
3112 			error = ENOBUFS;
3113 			goto fail;
3114 		}
3115 	}
3116 
3117 	/* Encryption key */
3118 	if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3119 		const struct sadb_key *key0;
3120 		int len;
3121 
3122 		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3123 		len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3124 
3125 		error = 0;
3126 		if (len < sizeof(*key0)) {
3127 			error = EINVAL;
3128 			goto fail;
3129 		}
3130 		switch (mhp->msg->sadb_msg_satype) {
3131 		case SADB_SATYPE_ESP:
3132 			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3133 			    sav->alg_enc != SADB_EALG_NULL) {
3134 				error = EINVAL;
3135 				break;
3136 			}
3137 			sav->key_enc = (struct seckey *)key_dup_keymsg(key0,
3138 								       len,
3139 								       M_IPSEC_MISC);
3140 			if (sav->key_enc == NULL) {
3141 				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3142 					__func__));
3143 				error = ENOBUFS;
3144 				goto fail;
3145 			}
3146 			break;
3147 		case SADB_X_SATYPE_IPCOMP:
3148 			if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3149 				error = EINVAL;
3150 			sav->key_enc = NULL;	/*just in case*/
3151 			break;
3152 		case SADB_SATYPE_AH:
3153 		case SADB_X_SATYPE_TCPSIGNATURE:
3154 		default:
3155 			error = EINVAL;
3156 			break;
3157 		}
3158 		if (error) {
3159 			ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n",
3160 				__func__));
3161 			goto fail;
3162 		}
3163 	}
3164 
3165 	/* set iv */
3166 	sav->ivlen = 0;
3167 
3168 	switch (mhp->msg->sadb_msg_satype) {
3169 	case SADB_SATYPE_AH:
3170 		error = xform_init(sav, XF_AH);
3171 		break;
3172 	case SADB_SATYPE_ESP:
3173 		error = xform_init(sav, XF_ESP);
3174 		break;
3175 	case SADB_X_SATYPE_IPCOMP:
3176 		error = xform_init(sav, XF_IPCOMP);
3177 		break;
3178 	case SADB_X_SATYPE_TCPSIGNATURE:
3179 		error = xform_init(sav, XF_TCPSIGNATURE);
3180 		break;
3181 	}
3182 	if (error) {
3183 		ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n",
3184 		        __func__, mhp->msg->sadb_msg_satype));
3185 		goto fail;
3186 	}
3187 
3188 	/* reset created */
3189 	sav->created = time_second;
3190 
3191 	/* make lifetime for CURRENT */
3192 	sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT);
3193 	if (sav->lft_c == NULL) {
3194 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3195 		error = ENOBUFS;
3196 		goto fail;
3197 	}
3198 
3199 	sav->lft_c->allocations = 0;
3200 	sav->lft_c->bytes = 0;
3201 	sav->lft_c->addtime = time_second;
3202 	sav->lft_c->usetime = 0;
3203 
3204 	/* lifetimes for HARD and SOFT */
3205     {
3206 	const struct sadb_lifetime *lft0;
3207 
3208 	lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3209 	if (lft0 != NULL) {
3210 		if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3211 			error = EINVAL;
3212 			goto fail;
3213 		}
3214 		sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC);
3215 		if (sav->lft_h == NULL) {
3216 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3217 			error = ENOBUFS;
3218 			goto fail;
3219 		}
3220 		/* to be initialize ? */
3221 	}
3222 
3223 	lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3224 	if (lft0 != NULL) {
3225 		if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3226 			error = EINVAL;
3227 			goto fail;
3228 		}
3229 		sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC);
3230 		if (sav->lft_s == NULL) {
3231 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3232 			error = ENOBUFS;
3233 			goto fail;
3234 		}
3235 		/* to be initialize ? */
3236 	}
3237     }
3238 
3239 	return 0;
3240 
3241  fail:
3242 	/* initialization */
3243 	key_cleansav(sav);
3244 
3245 	return error;
3246 }
3247 
3248 /*
3249  * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3250  * OUT:	0:	valid
3251  *	other:	errno
3252  */
3253 static int
3254 key_mature(struct secasvar *sav)
3255 {
3256 	int error;
3257 
3258 	/* check SPI value */
3259 	switch (sav->sah->saidx.proto) {
3260 	case IPPROTO_ESP:
3261 	case IPPROTO_AH:
3262 		/*
3263 		 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values
3264 		 * 1-255 reserved by IANA for future use,
3265 		 * 0 for implementation specific, local use.
3266 		 */
3267 		if (ntohl(sav->spi) <= 255) {
3268 			ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n",
3269 			    __func__, (u_int32_t)ntohl(sav->spi)));
3270 			return EINVAL;
3271 		}
3272 		break;
3273 	}
3274 
3275 	/* check satype */
3276 	switch (sav->sah->saidx.proto) {
3277 	case IPPROTO_ESP:
3278 		/* check flags */
3279 		if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3280 		    (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3281 			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3282 				"given to old-esp.\n", __func__));
3283 			return EINVAL;
3284 		}
3285 		error = xform_init(sav, XF_ESP);
3286 		break;
3287 	case IPPROTO_AH:
3288 		/* check flags */
3289 		if (sav->flags & SADB_X_EXT_DERIV) {
3290 			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3291 				"given to AH SA.\n", __func__));
3292 			return EINVAL;
3293 		}
3294 		if (sav->alg_enc != SADB_EALG_NONE) {
3295 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3296 				"mismated.\n", __func__));
3297 			return(EINVAL);
3298 		}
3299 		error = xform_init(sav, XF_AH);
3300 		break;
3301 	case IPPROTO_IPCOMP:
3302 		if (sav->alg_auth != SADB_AALG_NONE) {
3303 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3304 				"mismated.\n", __func__));
3305 			return(EINVAL);
3306 		}
3307 		if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3308 		 && ntohl(sav->spi) >= 0x10000) {
3309 			ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n",
3310 				__func__));
3311 			return(EINVAL);
3312 		}
3313 		error = xform_init(sav, XF_IPCOMP);
3314 		break;
3315 	case IPPROTO_TCP:
3316 		if (sav->alg_enc != SADB_EALG_NONE) {
3317 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3318 				"mismated.\n", __func__));
3319 			return(EINVAL);
3320 		}
3321 		error = xform_init(sav, XF_TCPSIGNATURE);
3322 		break;
3323 	default:
3324 		ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__));
3325 		error = EPROTONOSUPPORT;
3326 		break;
3327 	}
3328 	if (error == 0) {
3329 		SAHTREE_LOCK();
3330 		key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3331 		SAHTREE_UNLOCK();
3332 	}
3333 	return (error);
3334 }
3335 
3336 /*
3337  * subroutine for SADB_GET and SADB_DUMP.
3338  */
3339 static struct mbuf *
3340 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3341     u_int32_t seq, u_int32_t pid)
3342 {
3343 	struct mbuf *result = NULL, *tres = NULL, *m;
3344 	int i;
3345 	int dumporder[] = {
3346 		SADB_EXT_SA, SADB_X_EXT_SA2,
3347 		SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3348 		SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3349 		SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3350 		SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3351 		SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3352 #ifdef IPSEC_NAT_T
3353 		SADB_X_EXT_NAT_T_TYPE,
3354 		SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3355 		SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3356 		SADB_X_EXT_NAT_T_FRAG,
3357 #endif
3358 	};
3359 
3360 	m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3361 	if (m == NULL)
3362 		goto fail;
3363 	result = m;
3364 
3365 	for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) {
3366 		m = NULL;
3367 		switch (dumporder[i]) {
3368 		case SADB_EXT_SA:
3369 			m = key_setsadbsa(sav);
3370 			if (!m)
3371 				goto fail;
3372 			break;
3373 
3374 		case SADB_X_EXT_SA2:
3375 			m = key_setsadbxsa2(sav->sah->saidx.mode,
3376 					sav->replay ? sav->replay->count : 0,
3377 					sav->sah->saidx.reqid);
3378 			if (!m)
3379 				goto fail;
3380 			break;
3381 
3382 		case SADB_EXT_ADDRESS_SRC:
3383 			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3384 			    &sav->sah->saidx.src.sa,
3385 			    FULLMASK, IPSEC_ULPROTO_ANY);
3386 			if (!m)
3387 				goto fail;
3388 			break;
3389 
3390 		case SADB_EXT_ADDRESS_DST:
3391 			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3392 			    &sav->sah->saidx.dst.sa,
3393 			    FULLMASK, IPSEC_ULPROTO_ANY);
3394 			if (!m)
3395 				goto fail;
3396 			break;
3397 
3398 		case SADB_EXT_KEY_AUTH:
3399 			if (!sav->key_auth)
3400 				continue;
3401 			m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH);
3402 			if (!m)
3403 				goto fail;
3404 			break;
3405 
3406 		case SADB_EXT_KEY_ENCRYPT:
3407 			if (!sav->key_enc)
3408 				continue;
3409 			m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT);
3410 			if (!m)
3411 				goto fail;
3412 			break;
3413 
3414 		case SADB_EXT_LIFETIME_CURRENT:
3415 			if (!sav->lft_c)
3416 				continue;
3417 			m = key_setlifetime(sav->lft_c,
3418 					    SADB_EXT_LIFETIME_CURRENT);
3419 			if (!m)
3420 				goto fail;
3421 			break;
3422 
3423 		case SADB_EXT_LIFETIME_HARD:
3424 			if (!sav->lft_h)
3425 				continue;
3426 			m = key_setlifetime(sav->lft_h,
3427 					    SADB_EXT_LIFETIME_HARD);
3428 			if (!m)
3429 				goto fail;
3430 			break;
3431 
3432 		case SADB_EXT_LIFETIME_SOFT:
3433 			if (!sav->lft_s)
3434 				continue;
3435 			m = key_setlifetime(sav->lft_s,
3436 					    SADB_EXT_LIFETIME_SOFT);
3437 
3438 			if (!m)
3439 				goto fail;
3440 			break;
3441 
3442 #ifdef IPSEC_NAT_T
3443 		case SADB_X_EXT_NAT_T_TYPE:
3444 			m = key_setsadbxtype(sav->natt_type);
3445 			if (!m)
3446 				goto fail;
3447 			break;
3448 
3449 		case SADB_X_EXT_NAT_T_DPORT:
3450 			m = key_setsadbxport(
3451 			    KEY_PORTFROMSADDR(&sav->sah->saidx.dst),
3452 			    SADB_X_EXT_NAT_T_DPORT);
3453 			if (!m)
3454 				goto fail;
3455 			break;
3456 
3457 		case SADB_X_EXT_NAT_T_SPORT:
3458 			m = key_setsadbxport(
3459 			    KEY_PORTFROMSADDR(&sav->sah->saidx.src),
3460 			    SADB_X_EXT_NAT_T_SPORT);
3461 			if (!m)
3462 				goto fail;
3463 			break;
3464 
3465 		case SADB_X_EXT_NAT_T_OAI:
3466 		case SADB_X_EXT_NAT_T_OAR:
3467 		case SADB_X_EXT_NAT_T_FRAG:
3468 			/* We do not (yet) support those. */
3469 			continue;
3470 #endif
3471 
3472 		case SADB_EXT_ADDRESS_PROXY:
3473 		case SADB_EXT_IDENTITY_SRC:
3474 		case SADB_EXT_IDENTITY_DST:
3475 			/* XXX: should we brought from SPD ? */
3476 		case SADB_EXT_SENSITIVITY:
3477 		default:
3478 			continue;
3479 		}
3480 
3481 		if (!m)
3482 			goto fail;
3483 		if (tres)
3484 			m_cat(m, tres);
3485 		tres = m;
3486 
3487 	}
3488 
3489 	m_cat(result, tres);
3490 	if (result->m_len < sizeof(struct sadb_msg)) {
3491 		result = m_pullup(result, sizeof(struct sadb_msg));
3492 		if (result == NULL)
3493 			goto fail;
3494 	}
3495 
3496 	result->m_pkthdr.len = 0;
3497 	for (m = result; m; m = m->m_next)
3498 		result->m_pkthdr.len += m->m_len;
3499 
3500 	mtod(result, struct sadb_msg *)->sadb_msg_len =
3501 	    PFKEY_UNIT64(result->m_pkthdr.len);
3502 
3503 	return result;
3504 
3505 fail:
3506 	m_freem(result);
3507 	m_freem(tres);
3508 	return NULL;
3509 }
3510 
3511 /*
3512  * set data into sadb_msg.
3513  */
3514 static struct mbuf *
3515 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq,
3516     pid_t pid, u_int16_t reserved)
3517 {
3518 	struct mbuf *m;
3519 	struct sadb_msg *p;
3520 	int len;
3521 
3522 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3523 	if (len > MCLBYTES)
3524 		return NULL;
3525 	MGETHDR(m, M_NOWAIT, MT_DATA);
3526 	if (m && len > MHLEN) {
3527 		MCLGET(m, M_NOWAIT);
3528 		if ((m->m_flags & M_EXT) == 0) {
3529 			m_freem(m);
3530 			m = NULL;
3531 		}
3532 	}
3533 	if (!m)
3534 		return NULL;
3535 	m->m_pkthdr.len = m->m_len = len;
3536 	m->m_next = NULL;
3537 
3538 	p = mtod(m, struct sadb_msg *);
3539 
3540 	bzero(p, len);
3541 	p->sadb_msg_version = PF_KEY_V2;
3542 	p->sadb_msg_type = type;
3543 	p->sadb_msg_errno = 0;
3544 	p->sadb_msg_satype = satype;
3545 	p->sadb_msg_len = PFKEY_UNIT64(tlen);
3546 	p->sadb_msg_reserved = reserved;
3547 	p->sadb_msg_seq = seq;
3548 	p->sadb_msg_pid = (u_int32_t)pid;
3549 
3550 	return m;
3551 }
3552 
3553 /*
3554  * copy secasvar data into sadb_address.
3555  */
3556 static struct mbuf *
3557 key_setsadbsa(struct secasvar *sav)
3558 {
3559 	struct mbuf *m;
3560 	struct sadb_sa *p;
3561 	int len;
3562 
3563 	len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3564 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3565 	if (m == NULL)
3566 		return (NULL);
3567 	m_align(m, len);
3568 	m->m_len = len;
3569 	p = mtod(m, struct sadb_sa *);
3570 	bzero(p, len);
3571 	p->sadb_sa_len = PFKEY_UNIT64(len);
3572 	p->sadb_sa_exttype = SADB_EXT_SA;
3573 	p->sadb_sa_spi = sav->spi;
3574 	p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3575 	p->sadb_sa_state = sav->state;
3576 	p->sadb_sa_auth = sav->alg_auth;
3577 	p->sadb_sa_encrypt = sav->alg_enc;
3578 	p->sadb_sa_flags = sav->flags;
3579 
3580 	return m;
3581 }
3582 
3583 /*
3584  * set data into sadb_address.
3585  */
3586 static struct mbuf *
3587 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
3588     u_int8_t prefixlen, u_int16_t ul_proto)
3589 {
3590 	struct mbuf *m;
3591 	struct sadb_address *p;
3592 	size_t len;
3593 
3594 	len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3595 	    PFKEY_ALIGN8(saddr->sa_len);
3596 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3597 	if (m == NULL)
3598 		return (NULL);
3599 	m_align(m, len);
3600 	m->m_len = len;
3601 	p = mtod(m, struct sadb_address *);
3602 
3603 	bzero(p, len);
3604 	p->sadb_address_len = PFKEY_UNIT64(len);
3605 	p->sadb_address_exttype = exttype;
3606 	p->sadb_address_proto = ul_proto;
3607 	if (prefixlen == FULLMASK) {
3608 		switch (saddr->sa_family) {
3609 		case AF_INET:
3610 			prefixlen = sizeof(struct in_addr) << 3;
3611 			break;
3612 		case AF_INET6:
3613 			prefixlen = sizeof(struct in6_addr) << 3;
3614 			break;
3615 		default:
3616 			; /*XXX*/
3617 		}
3618 	}
3619 	p->sadb_address_prefixlen = prefixlen;
3620 	p->sadb_address_reserved = 0;
3621 
3622 	bcopy(saddr,
3623 	    mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3624 	    saddr->sa_len);
3625 
3626 	return m;
3627 }
3628 
3629 /*
3630  * set data into sadb_x_sa2.
3631  */
3632 static struct mbuf *
3633 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid)
3634 {
3635 	struct mbuf *m;
3636 	struct sadb_x_sa2 *p;
3637 	size_t len;
3638 
3639 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3640 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3641 	if (m == NULL)
3642 		return (NULL);
3643 	m_align(m, len);
3644 	m->m_len = len;
3645 	p = mtod(m, struct sadb_x_sa2 *);
3646 
3647 	bzero(p, len);
3648 	p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3649 	p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3650 	p->sadb_x_sa2_mode = mode;
3651 	p->sadb_x_sa2_reserved1 = 0;
3652 	p->sadb_x_sa2_reserved2 = 0;
3653 	p->sadb_x_sa2_sequence = seq;
3654 	p->sadb_x_sa2_reqid = reqid;
3655 
3656 	return m;
3657 }
3658 
3659 #ifdef IPSEC_NAT_T
3660 /*
3661  * Set a type in sadb_x_nat_t_type.
3662  */
3663 static struct mbuf *
3664 key_setsadbxtype(u_int16_t type)
3665 {
3666 	struct mbuf *m;
3667 	size_t len;
3668 	struct sadb_x_nat_t_type *p;
3669 
3670 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3671 
3672 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3673 	if (m == NULL)
3674 		return (NULL);
3675 	m_align(m, len);
3676 	m->m_len = len;
3677 	p = mtod(m, struct sadb_x_nat_t_type *);
3678 
3679 	bzero(p, len);
3680 	p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3681 	p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3682 	p->sadb_x_nat_t_type_type = type;
3683 
3684 	return (m);
3685 }
3686 /*
3687  * Set a port in sadb_x_nat_t_port.
3688  * In contrast to default RFC 2367 behaviour, port is in network byte order.
3689  */
3690 static struct mbuf *
3691 key_setsadbxport(u_int16_t port, u_int16_t type)
3692 {
3693 	struct mbuf *m;
3694 	size_t len;
3695 	struct sadb_x_nat_t_port *p;
3696 
3697 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3698 
3699 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3700 	if (m == NULL)
3701 		return (NULL);
3702 	m_align(m, len);
3703 	m->m_len = len;
3704 	p = mtod(m, struct sadb_x_nat_t_port *);
3705 
3706 	bzero(p, len);
3707 	p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3708 	p->sadb_x_nat_t_port_exttype = type;
3709 	p->sadb_x_nat_t_port_port = port;
3710 
3711 	return (m);
3712 }
3713 
3714 /*
3715  * Get port from sockaddr. Port is in network byte order.
3716  */
3717 u_int16_t
3718 key_portfromsaddr(struct sockaddr *sa)
3719 {
3720 
3721 	switch (sa->sa_family) {
3722 #ifdef INET
3723 	case AF_INET:
3724 		return ((struct sockaddr_in *)sa)->sin_port;
3725 #endif
3726 #ifdef INET6
3727 	case AF_INET6:
3728 		return ((struct sockaddr_in6 *)sa)->sin6_port;
3729 #endif
3730 	}
3731 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
3732 		printf("DP %s unexpected address family %d\n",
3733 			__func__, sa->sa_family));
3734 	return (0);
3735 }
3736 #endif /* IPSEC_NAT_T */
3737 
3738 /*
3739  * Set port in struct sockaddr. Port is in network byte order.
3740  */
3741 static void
3742 key_porttosaddr(struct sockaddr *sa, u_int16_t port)
3743 {
3744 
3745 	switch (sa->sa_family) {
3746 #ifdef INET
3747 	case AF_INET:
3748 		((struct sockaddr_in *)sa)->sin_port = port;
3749 		break;
3750 #endif
3751 #ifdef INET6
3752 	case AF_INET6:
3753 		((struct sockaddr_in6 *)sa)->sin6_port = port;
3754 		break;
3755 #endif
3756 	default:
3757 		ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n",
3758 			__func__, sa->sa_family));
3759 		break;
3760 	}
3761 }
3762 
3763 /*
3764  * set data into sadb_x_policy
3765  */
3766 static struct mbuf *
3767 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
3768 {
3769 	struct mbuf *m;
3770 	struct sadb_x_policy *p;
3771 	size_t len;
3772 
3773 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
3774 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3775 	if (m == NULL)
3776 		return (NULL);
3777 	m_align(m, len);
3778 	m->m_len = len;
3779 	p = mtod(m, struct sadb_x_policy *);
3780 
3781 	bzero(p, len);
3782 	p->sadb_x_policy_len = PFKEY_UNIT64(len);
3783 	p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
3784 	p->sadb_x_policy_type = type;
3785 	p->sadb_x_policy_dir = dir;
3786 	p->sadb_x_policy_id = id;
3787 
3788 	return m;
3789 }
3790 
3791 /* %%% utilities */
3792 /* Take a key message (sadb_key) from the socket and turn it into one
3793  * of the kernel's key structures (seckey).
3794  *
3795  * IN: pointer to the src
3796  * OUT: NULL no more memory
3797  */
3798 struct seckey *
3799 key_dup_keymsg(const struct sadb_key *src, u_int len,
3800     struct malloc_type *type)
3801 {
3802 	struct seckey *dst;
3803 	dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT);
3804 	if (dst != NULL) {
3805 		dst->bits = src->sadb_key_bits;
3806 		dst->key_data = (char *)malloc(len, type, M_NOWAIT);
3807 		if (dst->key_data != NULL) {
3808 			bcopy((const char *)src + sizeof(struct sadb_key),
3809 			      dst->key_data, len);
3810 		} else {
3811 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3812 				  __func__));
3813 			free(dst, type);
3814 			dst = NULL;
3815 		}
3816 	} else {
3817 		ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3818 			  __func__));
3819 
3820 	}
3821 	return dst;
3822 }
3823 
3824 /* Take a lifetime message (sadb_lifetime) passed in on a socket and
3825  * turn it into one of the kernel's lifetime structures (seclifetime).
3826  *
3827  * IN: pointer to the destination, source and malloc type
3828  * OUT: NULL, no more memory
3829  */
3830 
3831 static struct seclifetime *
3832 key_dup_lifemsg(const struct sadb_lifetime *src, struct malloc_type *type)
3833 {
3834 	struct seclifetime *dst = NULL;
3835 
3836 	dst = (struct seclifetime *)malloc(sizeof(struct seclifetime),
3837 					   type, M_NOWAIT);
3838 	if (dst == NULL) {
3839 		/* XXX counter */
3840 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3841 	} else {
3842 		dst->allocations = src->sadb_lifetime_allocations;
3843 		dst->bytes = src->sadb_lifetime_bytes;
3844 		dst->addtime = src->sadb_lifetime_addtime;
3845 		dst->usetime = src->sadb_lifetime_usetime;
3846 	}
3847 	return dst;
3848 }
3849 
3850 /* compare my own address
3851  * OUT:	1: true, i.e. my address.
3852  *	0: false
3853  */
3854 int
3855 key_ismyaddr(struct sockaddr *sa)
3856 {
3857 
3858 	IPSEC_ASSERT(sa != NULL, ("null sockaddr"));
3859 	switch (sa->sa_family) {
3860 #ifdef INET
3861 	case AF_INET:
3862 		return (in_localip(satosin(sa)->sin_addr));
3863 #endif
3864 #ifdef INET6
3865 	case AF_INET6:
3866 		return key_ismyaddr6((struct sockaddr_in6 *)sa);
3867 #endif
3868 	}
3869 
3870 	return 0;
3871 }
3872 
3873 #ifdef INET6
3874 /*
3875  * compare my own address for IPv6.
3876  * 1: ours
3877  * 0: other
3878  * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
3879  */
3880 #include <netinet6/in6_var.h>
3881 
3882 static int
3883 key_ismyaddr6(struct sockaddr_in6 *sin6)
3884 {
3885 	struct in6_ifaddr *ia;
3886 #if 0
3887 	struct in6_multi *in6m;
3888 #endif
3889 
3890 	IN6_IFADDR_RLOCK();
3891 	TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) {
3892 		if (key_sockaddrcmp((struct sockaddr *)&sin6,
3893 		    (struct sockaddr *)&ia->ia_addr, 0) == 0) {
3894 			IN6_IFADDR_RUNLOCK();
3895 			return 1;
3896 		}
3897 
3898 #if 0
3899 		/*
3900 		 * XXX Multicast
3901 		 * XXX why do we care about multlicast here while we don't care
3902 		 * about IPv4 multicast??
3903 		 * XXX scope
3904 		 */
3905 		in6m = NULL;
3906 		IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m);
3907 		if (in6m) {
3908 			IN6_IFADDR_RUNLOCK();
3909 			return 1;
3910 		}
3911 #endif
3912 	}
3913 	IN6_IFADDR_RUNLOCK();
3914 
3915 	/* loopback, just for safety */
3916 	if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
3917 		return 1;
3918 
3919 	return 0;
3920 }
3921 #endif /*INET6*/
3922 
3923 /*
3924  * compare two secasindex structure.
3925  * flag can specify to compare 2 saidxes.
3926  * compare two secasindex structure without both mode and reqid.
3927  * don't compare port.
3928  * IN:
3929  *      saidx0: source, it can be in SAD.
3930  *      saidx1: object.
3931  * OUT:
3932  *      1 : equal
3933  *      0 : not equal
3934  */
3935 static int
3936 key_cmpsaidx(const struct secasindex *saidx0, const struct secasindex *saidx1,
3937     int flag)
3938 {
3939 	int chkport = 0;
3940 
3941 	/* sanity */
3942 	if (saidx0 == NULL && saidx1 == NULL)
3943 		return 1;
3944 
3945 	if (saidx0 == NULL || saidx1 == NULL)
3946 		return 0;
3947 
3948 	if (saidx0->proto != saidx1->proto)
3949 		return 0;
3950 
3951 	if (flag == CMP_EXACTLY) {
3952 		if (saidx0->mode != saidx1->mode)
3953 			return 0;
3954 		if (saidx0->reqid != saidx1->reqid)
3955 			return 0;
3956 		if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
3957 		    bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
3958 			return 0;
3959 	} else {
3960 
3961 		/* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
3962 		if (flag == CMP_MODE_REQID
3963 		  ||flag == CMP_REQID) {
3964 			/*
3965 			 * If reqid of SPD is non-zero, unique SA is required.
3966 			 * The result must be of same reqid in this case.
3967 			 */
3968 			if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
3969 				return 0;
3970 		}
3971 
3972 		if (flag == CMP_MODE_REQID) {
3973 			if (saidx0->mode != IPSEC_MODE_ANY
3974 			 && saidx0->mode != saidx1->mode)
3975 				return 0;
3976 		}
3977 
3978 #ifdef IPSEC_NAT_T
3979 		/*
3980 		 * If NAT-T is enabled, check ports for tunnel mode.
3981 		 * Do not check ports if they are set to zero in the SPD.
3982 		 * Also do not do it for native transport mode, as there
3983 		 * is no port information available in the SP.
3984 		 */
3985 		if ((saidx1->mode == IPSEC_MODE_TUNNEL ||
3986 		     (saidx1->mode == IPSEC_MODE_TRANSPORT &&
3987 		      saidx1->proto == IPPROTO_ESP)) &&
3988 		    saidx1->src.sa.sa_family == AF_INET &&
3989 		    saidx1->dst.sa.sa_family == AF_INET &&
3990 		    ((const struct sockaddr_in *)(&saidx1->src))->sin_port &&
3991 		    ((const struct sockaddr_in *)(&saidx1->dst))->sin_port)
3992 			chkport = 1;
3993 #endif /* IPSEC_NAT_T */
3994 
3995 		if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, chkport) != 0) {
3996 			return 0;
3997 		}
3998 		if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, chkport) != 0) {
3999 			return 0;
4000 		}
4001 	}
4002 
4003 	return 1;
4004 }
4005 
4006 /*
4007  * compare two secindex structure exactly.
4008  * IN:
4009  *	spidx0: source, it is often in SPD.
4010  *	spidx1: object, it is often from PFKEY message.
4011  * OUT:
4012  *	1 : equal
4013  *	0 : not equal
4014  */
4015 static int
4016 key_cmpspidx_exactly(struct secpolicyindex *spidx0,
4017     struct secpolicyindex *spidx1)
4018 {
4019 	/* sanity */
4020 	if (spidx0 == NULL && spidx1 == NULL)
4021 		return 1;
4022 
4023 	if (spidx0 == NULL || spidx1 == NULL)
4024 		return 0;
4025 
4026 	if (spidx0->prefs != spidx1->prefs
4027 	 || spidx0->prefd != spidx1->prefd
4028 	 || spidx0->ul_proto != spidx1->ul_proto)
4029 		return 0;
4030 
4031 	return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 &&
4032 	       key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0;
4033 }
4034 
4035 /*
4036  * compare two secindex structure with mask.
4037  * IN:
4038  *	spidx0: source, it is often in SPD.
4039  *	spidx1: object, it is often from IP header.
4040  * OUT:
4041  *	1 : equal
4042  *	0 : not equal
4043  */
4044 static int
4045 key_cmpspidx_withmask(struct secpolicyindex *spidx0,
4046     struct secpolicyindex *spidx1)
4047 {
4048 	/* sanity */
4049 	if (spidx0 == NULL && spidx1 == NULL)
4050 		return 1;
4051 
4052 	if (spidx0 == NULL || spidx1 == NULL)
4053 		return 0;
4054 
4055 	if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4056 	    spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4057 	    spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4058 	    spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4059 		return 0;
4060 
4061 	/* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4062 	if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
4063 	 && spidx0->ul_proto != spidx1->ul_proto)
4064 		return 0;
4065 
4066 	switch (spidx0->src.sa.sa_family) {
4067 	case AF_INET:
4068 		if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
4069 		 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4070 			return 0;
4071 		if (!key_bbcmp(&spidx0->src.sin.sin_addr,
4072 		    &spidx1->src.sin.sin_addr, spidx0->prefs))
4073 			return 0;
4074 		break;
4075 	case AF_INET6:
4076 		if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
4077 		 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4078 			return 0;
4079 		/*
4080 		 * scope_id check. if sin6_scope_id is 0, we regard it
4081 		 * as a wildcard scope, which matches any scope zone ID.
4082 		 */
4083 		if (spidx0->src.sin6.sin6_scope_id &&
4084 		    spidx1->src.sin6.sin6_scope_id &&
4085 		    spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4086 			return 0;
4087 		if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
4088 		    &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4089 			return 0;
4090 		break;
4091 	default:
4092 		/* XXX */
4093 		if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4094 			return 0;
4095 		break;
4096 	}
4097 
4098 	switch (spidx0->dst.sa.sa_family) {
4099 	case AF_INET:
4100 		if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
4101 		 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4102 			return 0;
4103 		if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
4104 		    &spidx1->dst.sin.sin_addr, spidx0->prefd))
4105 			return 0;
4106 		break;
4107 	case AF_INET6:
4108 		if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
4109 		 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4110 			return 0;
4111 		/*
4112 		 * scope_id check. if sin6_scope_id is 0, we regard it
4113 		 * as a wildcard scope, which matches any scope zone ID.
4114 		 */
4115 		if (spidx0->dst.sin6.sin6_scope_id &&
4116 		    spidx1->dst.sin6.sin6_scope_id &&
4117 		    spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4118 			return 0;
4119 		if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
4120 		    &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4121 			return 0;
4122 		break;
4123 	default:
4124 		/* XXX */
4125 		if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4126 			return 0;
4127 		break;
4128 	}
4129 
4130 	/* XXX Do we check other field ?  e.g. flowinfo */
4131 
4132 	return 1;
4133 }
4134 
4135 /* returns 0 on match */
4136 static int
4137 key_sockaddrcmp(const struct sockaddr *sa1, const struct sockaddr *sa2,
4138     int port)
4139 {
4140 #ifdef satosin
4141 #undef satosin
4142 #endif
4143 #define satosin(s) ((const struct sockaddr_in *)s)
4144 #ifdef satosin6
4145 #undef satosin6
4146 #endif
4147 #define satosin6(s) ((const struct sockaddr_in6 *)s)
4148 	if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
4149 		return 1;
4150 
4151 	switch (sa1->sa_family) {
4152 	case AF_INET:
4153 		if (sa1->sa_len != sizeof(struct sockaddr_in))
4154 			return 1;
4155 		if (satosin(sa1)->sin_addr.s_addr !=
4156 		    satosin(sa2)->sin_addr.s_addr) {
4157 			return 1;
4158 		}
4159 		if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port)
4160 			return 1;
4161 		break;
4162 	case AF_INET6:
4163 		if (sa1->sa_len != sizeof(struct sockaddr_in6))
4164 			return 1;	/*EINVAL*/
4165 		if (satosin6(sa1)->sin6_scope_id !=
4166 		    satosin6(sa2)->sin6_scope_id) {
4167 			return 1;
4168 		}
4169 		if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr,
4170 		    &satosin6(sa2)->sin6_addr)) {
4171 			return 1;
4172 		}
4173 		if (port &&
4174 		    satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) {
4175 			return 1;
4176 		}
4177 		break;
4178 	default:
4179 		if (bcmp(sa1, sa2, sa1->sa_len) != 0)
4180 			return 1;
4181 		break;
4182 	}
4183 
4184 	return 0;
4185 #undef satosin
4186 #undef satosin6
4187 }
4188 
4189 /*
4190  * compare two buffers with mask.
4191  * IN:
4192  *	addr1: source
4193  *	addr2: object
4194  *	bits:  Number of bits to compare
4195  * OUT:
4196  *	1 : equal
4197  *	0 : not equal
4198  */
4199 static int
4200 key_bbcmp(const void *a1, const void *a2, u_int bits)
4201 {
4202 	const unsigned char *p1 = a1;
4203 	const unsigned char *p2 = a2;
4204 
4205 	/* XXX: This could be considerably faster if we compare a word
4206 	 * at a time, but it is complicated on LSB Endian machines */
4207 
4208 	/* Handle null pointers */
4209 	if (p1 == NULL || p2 == NULL)
4210 		return (p1 == p2);
4211 
4212 	while (bits >= 8) {
4213 		if (*p1++ != *p2++)
4214 			return 0;
4215 		bits -= 8;
4216 	}
4217 
4218 	if (bits > 0) {
4219 		u_int8_t mask = ~((1<<(8-bits))-1);
4220 		if ((*p1 & mask) != (*p2 & mask))
4221 			return 0;
4222 	}
4223 	return 1;	/* Match! */
4224 }
4225 
4226 static void
4227 key_flush_spd(time_t now)
4228 {
4229 	static u_int16_t sptree_scangen = 0;
4230 	u_int16_t gen = sptree_scangen++;
4231 	struct secpolicy *sp;
4232 	u_int dir;
4233 
4234 	/* SPD */
4235 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4236 restart:
4237 		SPTREE_LOCK();
4238 		LIST_FOREACH(sp, &V_sptree[dir], chain) {
4239 			if (sp->scangen == gen)		/* previously handled */
4240 				continue;
4241 			sp->scangen = gen;
4242 			if (sp->state == IPSEC_SPSTATE_DEAD &&
4243 			    sp->refcnt == 1) {
4244 				/*
4245 				 * Ensure that we only decrease refcnt once,
4246 				 * when we're the last consumer.
4247 				 * Directly call SP_DELREF/key_delsp instead
4248 				 * of KEY_FREESP to avoid unlocking/relocking
4249 				 * SPTREE_LOCK before key_delsp: may refcnt
4250 				 * be increased again during that time ?
4251 				 * NB: also clean entries created by
4252 				 * key_spdflush
4253 				 */
4254 				SP_DELREF(sp);
4255 				key_delsp(sp);
4256 				SPTREE_UNLOCK();
4257 				goto restart;
4258 			}
4259 			if (sp->lifetime == 0 && sp->validtime == 0)
4260 				continue;
4261 			if ((sp->lifetime && now - sp->created > sp->lifetime)
4262 			 || (sp->validtime && now - sp->lastused > sp->validtime)) {
4263 				sp->state = IPSEC_SPSTATE_DEAD;
4264 				SPTREE_UNLOCK();
4265 				key_spdexpire(sp);
4266 				goto restart;
4267 			}
4268 		}
4269 		SPTREE_UNLOCK();
4270 	}
4271 }
4272 
4273 static void
4274 key_flush_sad(time_t now)
4275 {
4276 	struct secashead *sah, *nextsah;
4277 	struct secasvar *sav, *nextsav;
4278 
4279 	/* SAD */
4280 	SAHTREE_LOCK();
4281 	LIST_FOREACH_SAFE(sah, &V_sahtree, chain, nextsah) {
4282 		/* if sah has been dead, then delete it and process next sah. */
4283 		if (sah->state == SADB_SASTATE_DEAD) {
4284 			key_delsah(sah);
4285 			continue;
4286 		}
4287 
4288 		/* if LARVAL entry doesn't become MATURE, delete it. */
4289 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) {
4290 			/* Need to also check refcnt for a larval SA ??? */
4291 			if (now - sav->created > V_key_larval_lifetime)
4292 				KEY_FREESAV(&sav);
4293 		}
4294 
4295 		/*
4296 		 * check MATURE entry to start to send expire message
4297 		 * whether or not.
4298 		 */
4299 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) {
4300 			/* we don't need to check. */
4301 			if (sav->lft_s == NULL)
4302 				continue;
4303 
4304 			/* sanity check */
4305 			if (sav->lft_c == NULL) {
4306 				ipseclog((LOG_DEBUG,"%s: there is no CURRENT "
4307 					"time, why?\n", __func__));
4308 				continue;
4309 			}
4310 
4311 			/* check SOFT lifetime */
4312 			if (sav->lft_s->addtime != 0 &&
4313 			    now - sav->created > sav->lft_s->addtime) {
4314 				key_sa_chgstate(sav, SADB_SASTATE_DYING);
4315 				/*
4316 				 * Actually, only send expire message if
4317 				 * SA has been used, as it was done before,
4318 				 * but should we always send such message,
4319 				 * and let IKE daemon decide if it should be
4320 				 * renegotiated or not ?
4321 				 * XXX expire message will actually NOT be
4322 				 * sent if SA is only used after soft
4323 				 * lifetime has been reached, see below
4324 				 * (DYING state)
4325 				 */
4326 				if (sav->lft_c->usetime != 0)
4327 					key_expire(sav);
4328 			}
4329 			/* check SOFT lifetime by bytes */
4330 			/*
4331 			 * XXX I don't know the way to delete this SA
4332 			 * when new SA is installed.  Caution when it's
4333 			 * installed too big lifetime by time.
4334 			 */
4335 			else if (sav->lft_s->bytes != 0 &&
4336 			    sav->lft_s->bytes < sav->lft_c->bytes) {
4337 
4338 				key_sa_chgstate(sav, SADB_SASTATE_DYING);
4339 				/*
4340 				 * XXX If we keep to send expire
4341 				 * message in the status of
4342 				 * DYING. Do remove below code.
4343 				 */
4344 				key_expire(sav);
4345 			}
4346 		}
4347 
4348 		/* check DYING entry to change status to DEAD. */
4349 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) {
4350 			/* we don't need to check. */
4351 			if (sav->lft_h == NULL)
4352 				continue;
4353 
4354 			/* sanity check */
4355 			if (sav->lft_c == NULL) {
4356 				ipseclog((LOG_DEBUG, "%s: there is no CURRENT "
4357 					"time, why?\n", __func__));
4358 				continue;
4359 			}
4360 
4361 			if (sav->lft_h->addtime != 0 &&
4362 			    now - sav->created > sav->lft_h->addtime) {
4363 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4364 				KEY_FREESAV(&sav);
4365 			}
4366 #if 0	/* XXX Should we keep to send expire message until HARD lifetime ? */
4367 			else if (sav->lft_s != NULL
4368 			      && sav->lft_s->addtime != 0
4369 			      && now - sav->created > sav->lft_s->addtime) {
4370 				/*
4371 				 * XXX: should be checked to be
4372 				 * installed the valid SA.
4373 				 */
4374 
4375 				/*
4376 				 * If there is no SA then sending
4377 				 * expire message.
4378 				 */
4379 				key_expire(sav);
4380 			}
4381 #endif
4382 			/* check HARD lifetime by bytes */
4383 			else if (sav->lft_h->bytes != 0 &&
4384 			    sav->lft_h->bytes < sav->lft_c->bytes) {
4385 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4386 				KEY_FREESAV(&sav);
4387 			}
4388 		}
4389 
4390 		/* delete entry in DEAD */
4391 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) {
4392 			/* sanity check */
4393 			if (sav->state != SADB_SASTATE_DEAD) {
4394 				ipseclog((LOG_DEBUG, "%s: invalid sav->state "
4395 					"(queue: %d SA: %d): kill it anyway\n",
4396 					__func__,
4397 					SADB_SASTATE_DEAD, sav->state));
4398 			}
4399 			/*
4400 			 * do not call key_freesav() here.
4401 			 * sav should already be freed, and sav->refcnt
4402 			 * shows other references to sav
4403 			 * (such as from SPD).
4404 			 */
4405 		}
4406 	}
4407 	SAHTREE_UNLOCK();
4408 }
4409 
4410 static void
4411 key_flush_acq(time_t now)
4412 {
4413 	struct secacq *acq, *nextacq;
4414 
4415 	/* ACQ tree */
4416 	ACQ_LOCK();
4417 	for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) {
4418 		nextacq = LIST_NEXT(acq, chain);
4419 		if (now - acq->created > V_key_blockacq_lifetime
4420 		 && __LIST_CHAINED(acq)) {
4421 			LIST_REMOVE(acq, chain);
4422 			free(acq, M_IPSEC_SAQ);
4423 		}
4424 	}
4425 	ACQ_UNLOCK();
4426 }
4427 
4428 static void
4429 key_flush_spacq(time_t now)
4430 {
4431 	struct secspacq *acq, *nextacq;
4432 
4433 	/* SP ACQ tree */
4434 	SPACQ_LOCK();
4435 	for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) {
4436 		nextacq = LIST_NEXT(acq, chain);
4437 		if (now - acq->created > V_key_blockacq_lifetime
4438 		 && __LIST_CHAINED(acq)) {
4439 			LIST_REMOVE(acq, chain);
4440 			free(acq, M_IPSEC_SAQ);
4441 		}
4442 	}
4443 	SPACQ_UNLOCK();
4444 }
4445 
4446 /*
4447  * time handler.
4448  * scanning SPD and SAD to check status for each entries,
4449  * and do to remove or to expire.
4450  * XXX: year 2038 problem may remain.
4451  */
4452 static void
4453 key_timehandler(void *arg)
4454 {
4455 	VNET_ITERATOR_DECL(vnet_iter);
4456 	time_t now = time_second;
4457 
4458 	VNET_LIST_RLOCK_NOSLEEP();
4459 	VNET_FOREACH(vnet_iter) {
4460 		CURVNET_SET(vnet_iter);
4461 		key_flush_spd(now);
4462 		key_flush_sad(now);
4463 		key_flush_acq(now);
4464 		key_flush_spacq(now);
4465 		CURVNET_RESTORE();
4466 	}
4467 	VNET_LIST_RUNLOCK_NOSLEEP();
4468 
4469 #ifndef IPSEC_DEBUG2
4470 	/* do exchange to tick time !! */
4471 	callout_schedule(&key_timer, hz);
4472 #endif /* IPSEC_DEBUG2 */
4473 }
4474 
4475 u_long
4476 key_random()
4477 {
4478 	u_long value;
4479 
4480 	key_randomfill(&value, sizeof(value));
4481 	return value;
4482 }
4483 
4484 void
4485 key_randomfill(void *p, size_t l)
4486 {
4487 	size_t n;
4488 	u_long v;
4489 	static int warn = 1;
4490 
4491 	n = 0;
4492 	n = (size_t)read_random(p, (u_int)l);
4493 	/* last resort */
4494 	while (n < l) {
4495 		v = random();
4496 		bcopy(&v, (u_int8_t *)p + n,
4497 		    l - n < sizeof(v) ? l - n : sizeof(v));
4498 		n += sizeof(v);
4499 
4500 		if (warn) {
4501 			printf("WARNING: pseudo-random number generator "
4502 			    "used for IPsec processing\n");
4503 			warn = 0;
4504 		}
4505 	}
4506 }
4507 
4508 /*
4509  * map SADB_SATYPE_* to IPPROTO_*.
4510  * if satype == SADB_SATYPE then satype is mapped to ~0.
4511  * OUT:
4512  *	0: invalid satype.
4513  */
4514 static u_int16_t
4515 key_satype2proto(u_int8_t satype)
4516 {
4517 	switch (satype) {
4518 	case SADB_SATYPE_UNSPEC:
4519 		return IPSEC_PROTO_ANY;
4520 	case SADB_SATYPE_AH:
4521 		return IPPROTO_AH;
4522 	case SADB_SATYPE_ESP:
4523 		return IPPROTO_ESP;
4524 	case SADB_X_SATYPE_IPCOMP:
4525 		return IPPROTO_IPCOMP;
4526 	case SADB_X_SATYPE_TCPSIGNATURE:
4527 		return IPPROTO_TCP;
4528 	default:
4529 		return 0;
4530 	}
4531 	/* NOTREACHED */
4532 }
4533 
4534 /*
4535  * map IPPROTO_* to SADB_SATYPE_*
4536  * OUT:
4537  *	0: invalid protocol type.
4538  */
4539 static u_int8_t
4540 key_proto2satype(u_int16_t proto)
4541 {
4542 	switch (proto) {
4543 	case IPPROTO_AH:
4544 		return SADB_SATYPE_AH;
4545 	case IPPROTO_ESP:
4546 		return SADB_SATYPE_ESP;
4547 	case IPPROTO_IPCOMP:
4548 		return SADB_X_SATYPE_IPCOMP;
4549 	case IPPROTO_TCP:
4550 		return SADB_X_SATYPE_TCPSIGNATURE;
4551 	default:
4552 		return 0;
4553 	}
4554 	/* NOTREACHED */
4555 }
4556 
4557 /* %%% PF_KEY */
4558 /*
4559  * SADB_GETSPI processing is to receive
4560  *	<base, (SA2), src address, dst address, (SPI range)>
4561  * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4562  * tree with the status of LARVAL, and send
4563  *	<base, SA(*), address(SD)>
4564  * to the IKMPd.
4565  *
4566  * IN:	mhp: pointer to the pointer to each header.
4567  * OUT:	NULL if fail.
4568  *	other if success, return pointer to the message to send.
4569  */
4570 static int
4571 key_getspi(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
4572 {
4573 	struct sadb_address *src0, *dst0;
4574 	struct secasindex saidx;
4575 	struct secashead *newsah;
4576 	struct secasvar *newsav;
4577 	u_int8_t proto;
4578 	u_int32_t spi;
4579 	u_int8_t mode;
4580 	u_int32_t reqid;
4581 	int error;
4582 
4583 	IPSEC_ASSERT(so != NULL, ("null socket"));
4584 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4585 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4586 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4587 
4588 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4589 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4590 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4591 			__func__));
4592 		return key_senderror(so, m, EINVAL);
4593 	}
4594 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4595 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4596 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4597 			__func__));
4598 		return key_senderror(so, m, EINVAL);
4599 	}
4600 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4601 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4602 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4603 	} else {
4604 		mode = IPSEC_MODE_ANY;
4605 		reqid = 0;
4606 	}
4607 
4608 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4609 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4610 
4611 	/* map satype to proto */
4612 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4613 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4614 			__func__));
4615 		return key_senderror(so, m, EINVAL);
4616 	}
4617 
4618 	/*
4619 	 * Make sure the port numbers are zero.
4620 	 * In case of NAT-T we will update them later if needed.
4621 	 */
4622 	switch (((struct sockaddr *)(src0 + 1))->sa_family) {
4623 	case AF_INET:
4624 		if (((struct sockaddr *)(src0 + 1))->sa_len !=
4625 		    sizeof(struct sockaddr_in))
4626 			return key_senderror(so, m, EINVAL);
4627 		((struct sockaddr_in *)(src0 + 1))->sin_port = 0;
4628 		break;
4629 	case AF_INET6:
4630 		if (((struct sockaddr *)(src0 + 1))->sa_len !=
4631 		    sizeof(struct sockaddr_in6))
4632 			return key_senderror(so, m, EINVAL);
4633 		((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0;
4634 		break;
4635 	default:
4636 		; /*???*/
4637 	}
4638 	switch (((struct sockaddr *)(dst0 + 1))->sa_family) {
4639 	case AF_INET:
4640 		if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4641 		    sizeof(struct sockaddr_in))
4642 			return key_senderror(so, m, EINVAL);
4643 		((struct sockaddr_in *)(dst0 + 1))->sin_port = 0;
4644 		break;
4645 	case AF_INET6:
4646 		if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4647 		    sizeof(struct sockaddr_in6))
4648 			return key_senderror(so, m, EINVAL);
4649 		((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0;
4650 		break;
4651 	default:
4652 		; /*???*/
4653 	}
4654 
4655 	/* XXX boundary check against sa_len */
4656 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4657 
4658 #ifdef IPSEC_NAT_T
4659 	/*
4660 	 * Handle NAT-T info if present.
4661 	 * We made sure the port numbers are zero above, so we do
4662 	 * not have to worry in case we do not update them.
4663 	 */
4664 	if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
4665 		ipseclog((LOG_DEBUG, "%s: NAT-T OAi present\n", __func__));
4666 	if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
4667 		ipseclog((LOG_DEBUG, "%s: NAT-T OAr present\n", __func__));
4668 
4669 	if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
4670 	    mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
4671 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
4672 		struct sadb_x_nat_t_type *type;
4673 		struct sadb_x_nat_t_port *sport, *dport;
4674 
4675 		if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
4676 		    mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
4677 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
4678 			ipseclog((LOG_DEBUG, "%s: invalid nat-t message "
4679 			    "passed.\n", __func__));
4680 			return key_senderror(so, m, EINVAL);
4681 		}
4682 
4683 		sport = (struct sadb_x_nat_t_port *)
4684 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
4685 		dport = (struct sadb_x_nat_t_port *)
4686 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
4687 
4688 		if (sport)
4689 			KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port);
4690 		if (dport)
4691 			KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port);
4692 	}
4693 #endif
4694 
4695 	/* SPI allocation */
4696 	spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4697 	                       &saidx);
4698 	if (spi == 0)
4699 		return key_senderror(so, m, EINVAL);
4700 
4701 	/* get a SA index */
4702 	if ((newsah = key_getsah(&saidx)) == NULL) {
4703 		/* create a new SA index */
4704 		if ((newsah = key_newsah(&saidx)) == NULL) {
4705 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
4706 			return key_senderror(so, m, ENOBUFS);
4707 		}
4708 	}
4709 
4710 	/* get a new SA */
4711 	/* XXX rewrite */
4712 	newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4713 	if (newsav == NULL) {
4714 		/* XXX don't free new SA index allocated in above. */
4715 		return key_senderror(so, m, error);
4716 	}
4717 
4718 	/* set spi */
4719 	newsav->spi = htonl(spi);
4720 
4721 	/* delete the entry in acqtree */
4722 	if (mhp->msg->sadb_msg_seq != 0) {
4723 		struct secacq *acq;
4724 		if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) {
4725 			/* reset counter in order to deletion by timehandler. */
4726 			acq->created = time_second;
4727 			acq->count = 0;
4728 		}
4729     	}
4730 
4731     {
4732 	struct mbuf *n, *nn;
4733 	struct sadb_sa *m_sa;
4734 	struct sadb_msg *newmsg;
4735 	int off, len;
4736 
4737 	/* create new sadb_msg to reply. */
4738 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4739 	    PFKEY_ALIGN8(sizeof(struct sadb_sa));
4740 
4741 	MGETHDR(n, M_NOWAIT, MT_DATA);
4742 	if (len > MHLEN) {
4743 		MCLGET(n, M_NOWAIT);
4744 		if ((n->m_flags & M_EXT) == 0) {
4745 			m_freem(n);
4746 			n = NULL;
4747 		}
4748 	}
4749 	if (!n)
4750 		return key_senderror(so, m, ENOBUFS);
4751 
4752 	n->m_len = len;
4753 	n->m_next = NULL;
4754 	off = 0;
4755 
4756 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
4757 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4758 
4759 	m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off);
4760 	m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4761 	m_sa->sadb_sa_exttype = SADB_EXT_SA;
4762 	m_sa->sadb_sa_spi = htonl(spi);
4763 	off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4764 
4765 	IPSEC_ASSERT(off == len,
4766 		("length inconsistency (off %u len %u)", off, len));
4767 
4768 	n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4769 	    SADB_EXT_ADDRESS_DST);
4770 	if (!n->m_next) {
4771 		m_freem(n);
4772 		return key_senderror(so, m, ENOBUFS);
4773 	}
4774 
4775 	if (n->m_len < sizeof(struct sadb_msg)) {
4776 		n = m_pullup(n, sizeof(struct sadb_msg));
4777 		if (n == NULL)
4778 			return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
4779 	}
4780 
4781 	n->m_pkthdr.len = 0;
4782 	for (nn = n; nn; nn = nn->m_next)
4783 		n->m_pkthdr.len += nn->m_len;
4784 
4785 	newmsg = mtod(n, struct sadb_msg *);
4786 	newmsg->sadb_msg_seq = newsav->seq;
4787 	newmsg->sadb_msg_errno = 0;
4788 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
4789 
4790 	m_freem(m);
4791 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
4792     }
4793 }
4794 
4795 /*
4796  * allocating new SPI
4797  * called by key_getspi().
4798  * OUT:
4799  *	0:	failure.
4800  *	others: success.
4801  */
4802 static u_int32_t
4803 key_do_getnewspi(struct sadb_spirange *spirange, struct secasindex *saidx)
4804 {
4805 	u_int32_t newspi;
4806 	u_int32_t min, max;
4807 	int count = V_key_spi_trycnt;
4808 
4809 	/* set spi range to allocate */
4810 	if (spirange != NULL) {
4811 		min = spirange->sadb_spirange_min;
4812 		max = spirange->sadb_spirange_max;
4813 	} else {
4814 		min = V_key_spi_minval;
4815 		max = V_key_spi_maxval;
4816 	}
4817 	/* IPCOMP needs 2-byte SPI */
4818 	if (saidx->proto == IPPROTO_IPCOMP) {
4819 		u_int32_t t;
4820 		if (min >= 0x10000)
4821 			min = 0xffff;
4822 		if (max >= 0x10000)
4823 			max = 0xffff;
4824 		if (min > max) {
4825 			t = min; min = max; max = t;
4826 		}
4827 	}
4828 
4829 	if (min == max) {
4830 		if (key_checkspidup(saidx, min) != NULL) {
4831 			ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n",
4832 				__func__, min));
4833 			return 0;
4834 		}
4835 
4836 		count--; /* taking one cost. */
4837 		newspi = min;
4838 
4839 	} else {
4840 
4841 		/* init SPI */
4842 		newspi = 0;
4843 
4844 		/* when requesting to allocate spi ranged */
4845 		while (count--) {
4846 			/* generate pseudo-random SPI value ranged. */
4847 			newspi = min + (key_random() % (max - min + 1));
4848 
4849 			if (key_checkspidup(saidx, newspi) == NULL)
4850 				break;
4851 		}
4852 
4853 		if (count == 0 || newspi == 0) {
4854 			ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n",
4855 				__func__));
4856 			return 0;
4857 		}
4858 	}
4859 
4860 	/* statistics */
4861 	keystat.getspi_count =
4862 		(keystat.getspi_count + V_key_spi_trycnt - count) / 2;
4863 
4864 	return newspi;
4865 }
4866 
4867 /*
4868  * SADB_UPDATE processing
4869  * receive
4870  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4871  *       key(AE), (identity(SD),) (sensitivity)>
4872  * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
4873  * and send
4874  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4875  *       (identity(SD),) (sensitivity)>
4876  * to the ikmpd.
4877  *
4878  * m will always be freed.
4879  */
4880 static int
4881 key_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
4882 {
4883 	struct sadb_sa *sa0;
4884 	struct sadb_address *src0, *dst0;
4885 #ifdef IPSEC_NAT_T
4886 	struct sadb_x_nat_t_type *type;
4887 	struct sadb_x_nat_t_port *sport, *dport;
4888 	struct sadb_address *iaddr, *raddr;
4889 	struct sadb_x_nat_t_frag *frag;
4890 #endif
4891 	struct secasindex saidx;
4892 	struct secashead *sah;
4893 	struct secasvar *sav;
4894 	u_int16_t proto;
4895 	u_int8_t mode;
4896 	u_int32_t reqid;
4897 	int error;
4898 
4899 	IPSEC_ASSERT(so != NULL, ("null socket"));
4900 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4901 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4902 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4903 
4904 	/* map satype to proto */
4905 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4906 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4907 			__func__));
4908 		return key_senderror(so, m, EINVAL);
4909 	}
4910 
4911 	if (mhp->ext[SADB_EXT_SA] == NULL ||
4912 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4913 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
4914 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
4915 	     mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
4916 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
4917 	     mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
4918 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
4919 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
4920 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
4921 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
4922 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4923 			__func__));
4924 		return key_senderror(so, m, EINVAL);
4925 	}
4926 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
4927 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4928 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4929 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4930 			__func__));
4931 		return key_senderror(so, m, EINVAL);
4932 	}
4933 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4934 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4935 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4936 	} else {
4937 		mode = IPSEC_MODE_ANY;
4938 		reqid = 0;
4939 	}
4940 	/* XXX boundary checking for other extensions */
4941 
4942 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
4943 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4944 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4945 
4946 	/* XXX boundary check against sa_len */
4947 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4948 
4949 	/*
4950 	 * Make sure the port numbers are zero.
4951 	 * In case of NAT-T we will update them later if needed.
4952 	 */
4953 	KEY_PORTTOSADDR(&saidx.src, 0);
4954 	KEY_PORTTOSADDR(&saidx.dst, 0);
4955 
4956 #ifdef IPSEC_NAT_T
4957 	/*
4958 	 * Handle NAT-T info if present.
4959 	 */
4960 	if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
4961 	    mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
4962 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
4963 
4964 		if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
4965 		    mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
4966 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
4967 			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
4968 			    __func__));
4969 			return key_senderror(so, m, EINVAL);
4970 		}
4971 
4972 		type = (struct sadb_x_nat_t_type *)
4973 		    mhp->ext[SADB_X_EXT_NAT_T_TYPE];
4974 		sport = (struct sadb_x_nat_t_port *)
4975 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
4976 		dport = (struct sadb_x_nat_t_port *)
4977 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
4978 	} else {
4979 		type = 0;
4980 		sport = dport = 0;
4981 	}
4982 	if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL &&
4983 	    mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
4984 		if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) ||
4985 		    mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
4986 			ipseclog((LOG_DEBUG, "%s: invalid message\n",
4987 			    __func__));
4988 			return key_senderror(so, m, EINVAL);
4989 		}
4990 		iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
4991 		raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
4992 		ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__));
4993 	} else {
4994 		iaddr = raddr = NULL;
4995 	}
4996 	if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
4997 		if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
4998 			ipseclog((LOG_DEBUG, "%s: invalid message\n",
4999 			    __func__));
5000 			return key_senderror(so, m, EINVAL);
5001 		}
5002 		frag = (struct sadb_x_nat_t_frag *)
5003 		    mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5004 	} else {
5005 		frag = 0;
5006 	}
5007 #endif
5008 
5009 	/* get a SA header */
5010 	if ((sah = key_getsah(&saidx)) == NULL) {
5011 		ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__));
5012 		return key_senderror(so, m, ENOENT);
5013 	}
5014 
5015 	/* set spidx if there */
5016 	/* XXX rewrite */
5017 	error = key_setident(sah, m, mhp);
5018 	if (error)
5019 		return key_senderror(so, m, error);
5020 
5021 	/* find a SA with sequence number. */
5022 #ifdef IPSEC_DOSEQCHECK
5023 	if (mhp->msg->sadb_msg_seq != 0
5024 	 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) {
5025 		ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u "
5026 			"exists.\n", __func__, mhp->msg->sadb_msg_seq));
5027 		return key_senderror(so, m, ENOENT);
5028 	}
5029 #else
5030 	SAHTREE_LOCK();
5031 	sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5032 	SAHTREE_UNLOCK();
5033 	if (sav == NULL) {
5034 		ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n",
5035 			__func__, (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5036 		return key_senderror(so, m, EINVAL);
5037 	}
5038 #endif
5039 
5040 	/* validity check */
5041 	if (sav->sah->saidx.proto != proto) {
5042 		ipseclog((LOG_DEBUG, "%s: protocol mismatched "
5043 			"(DB=%u param=%u)\n", __func__,
5044 			sav->sah->saidx.proto, proto));
5045 		return key_senderror(so, m, EINVAL);
5046 	}
5047 #ifdef IPSEC_DOSEQCHECK
5048 	if (sav->spi != sa0->sadb_sa_spi) {
5049 		ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n",
5050 		    __func__,
5051 		    (u_int32_t)ntohl(sav->spi),
5052 		    (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5053 		return key_senderror(so, m, EINVAL);
5054 	}
5055 #endif
5056 	if (sav->pid != mhp->msg->sadb_msg_pid) {
5057 		ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n",
5058 		    __func__, sav->pid, mhp->msg->sadb_msg_pid));
5059 		return key_senderror(so, m, EINVAL);
5060 	}
5061 
5062 	/* copy sav values */
5063 	error = key_setsaval(sav, m, mhp);
5064 	if (error) {
5065 		KEY_FREESAV(&sav);
5066 		return key_senderror(so, m, error);
5067 	}
5068 
5069 #ifdef IPSEC_NAT_T
5070 	/*
5071 	 * Handle more NAT-T info if present,
5072 	 * now that we have a sav to fill.
5073 	 */
5074 	if (type)
5075 		sav->natt_type = type->sadb_x_nat_t_type_type;
5076 
5077 	if (sport)
5078 		KEY_PORTTOSADDR(&sav->sah->saidx.src,
5079 		    sport->sadb_x_nat_t_port_port);
5080 	if (dport)
5081 		KEY_PORTTOSADDR(&sav->sah->saidx.dst,
5082 		    dport->sadb_x_nat_t_port_port);
5083 
5084 #if 0
5085 	/*
5086 	 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0.
5087 	 * We should actually check for a minimum MTU here, if we
5088 	 * want to support it in ip_output.
5089 	 */
5090 	if (frag)
5091 		sav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen;
5092 #endif
5093 #endif
5094 
5095 	/* check SA values to be mature. */
5096 	if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) {
5097 		KEY_FREESAV(&sav);
5098 		return key_senderror(so, m, 0);
5099 	}
5100 
5101     {
5102 	struct mbuf *n;
5103 
5104 	/* set msg buf from mhp */
5105 	n = key_getmsgbuf_x1(m, mhp);
5106 	if (n == NULL) {
5107 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5108 		return key_senderror(so, m, ENOBUFS);
5109 	}
5110 
5111 	m_freem(m);
5112 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5113     }
5114 }
5115 
5116 /*
5117  * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5118  * only called by key_update().
5119  * OUT:
5120  *	NULL	: not found
5121  *	others	: found, pointer to a SA.
5122  */
5123 #ifdef IPSEC_DOSEQCHECK
5124 static struct secasvar *
5125 key_getsavbyseq(struct secashead *sah, u_int32_t seq)
5126 {
5127 	struct secasvar *sav;
5128 	u_int state;
5129 
5130 	state = SADB_SASTATE_LARVAL;
5131 
5132 	/* search SAD with sequence number ? */
5133 	LIST_FOREACH(sav, &sah->savtree[state], chain) {
5134 
5135 		KEY_CHKSASTATE(state, sav->state, __func__);
5136 
5137 		if (sav->seq == seq) {
5138 			sa_addref(sav);
5139 			KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
5140 				printf("DP %s cause refcnt++:%d SA:%p\n",
5141 					__func__, sav->refcnt, sav));
5142 			return sav;
5143 		}
5144 	}
5145 
5146 	return NULL;
5147 }
5148 #endif
5149 
5150 /*
5151  * SADB_ADD processing
5152  * add an entry to SA database, when received
5153  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5154  *       key(AE), (identity(SD),) (sensitivity)>
5155  * from the ikmpd,
5156  * and send
5157  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5158  *       (identity(SD),) (sensitivity)>
5159  * to the ikmpd.
5160  *
5161  * IGNORE identity and sensitivity messages.
5162  *
5163  * m will always be freed.
5164  */
5165 static int
5166 key_add(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5167 {
5168 	struct sadb_sa *sa0;
5169 	struct sadb_address *src0, *dst0;
5170 #ifdef IPSEC_NAT_T
5171 	struct sadb_x_nat_t_type *type;
5172 	struct sadb_address *iaddr, *raddr;
5173 	struct sadb_x_nat_t_frag *frag;
5174 #endif
5175 	struct secasindex saidx;
5176 	struct secashead *newsah;
5177 	struct secasvar *newsav;
5178 	u_int16_t proto;
5179 	u_int8_t mode;
5180 	u_int32_t reqid;
5181 	int error;
5182 
5183 	IPSEC_ASSERT(so != NULL, ("null socket"));
5184 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5185 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5186 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5187 
5188 	/* map satype to proto */
5189 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5190 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5191 			__func__));
5192 		return key_senderror(so, m, EINVAL);
5193 	}
5194 
5195 	if (mhp->ext[SADB_EXT_SA] == NULL ||
5196 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5197 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5198 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5199 	     mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5200 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5201 	     mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5202 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5203 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5204 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5205 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5206 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5207 			__func__));
5208 		return key_senderror(so, m, EINVAL);
5209 	}
5210 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5211 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5212 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5213 		/* XXX need more */
5214 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5215 			__func__));
5216 		return key_senderror(so, m, EINVAL);
5217 	}
5218 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5219 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5220 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5221 	} else {
5222 		mode = IPSEC_MODE_ANY;
5223 		reqid = 0;
5224 	}
5225 
5226 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5227 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5228 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5229 
5230 	/* XXX boundary check against sa_len */
5231 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5232 
5233 	/*
5234 	 * Make sure the port numbers are zero.
5235 	 * In case of NAT-T we will update them later if needed.
5236 	 */
5237 	KEY_PORTTOSADDR(&saidx.src, 0);
5238 	KEY_PORTTOSADDR(&saidx.dst, 0);
5239 
5240 #ifdef IPSEC_NAT_T
5241 	/*
5242 	 * Handle NAT-T info if present.
5243 	 */
5244 	if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
5245 	    mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5246 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5247 		struct sadb_x_nat_t_port *sport, *dport;
5248 
5249 		if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
5250 		    mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5251 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5252 			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5253 			    __func__));
5254 			return key_senderror(so, m, EINVAL);
5255 		}
5256 
5257 		type = (struct sadb_x_nat_t_type *)
5258 		    mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5259 		sport = (struct sadb_x_nat_t_port *)
5260 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5261 		dport = (struct sadb_x_nat_t_port *)
5262 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5263 
5264 		if (sport)
5265 			KEY_PORTTOSADDR(&saidx.src,
5266 			    sport->sadb_x_nat_t_port_port);
5267 		if (dport)
5268 			KEY_PORTTOSADDR(&saidx.dst,
5269 			    dport->sadb_x_nat_t_port_port);
5270 	} else {
5271 		type = 0;
5272 	}
5273 	if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL &&
5274 	    mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5275 		if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) ||
5276 		    mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5277 			ipseclog((LOG_DEBUG, "%s: invalid message\n",
5278 			    __func__));
5279 			return key_senderror(so, m, EINVAL);
5280 		}
5281 		iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5282 		raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5283 		ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__));
5284 	} else {
5285 		iaddr = raddr = NULL;
5286 	}
5287 	if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5288 		if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5289 			ipseclog((LOG_DEBUG, "%s: invalid message\n",
5290 			    __func__));
5291 			return key_senderror(so, m, EINVAL);
5292 		}
5293 		frag = (struct sadb_x_nat_t_frag *)
5294 		    mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5295 	} else {
5296 		frag = 0;
5297 	}
5298 #endif
5299 
5300 	/* get a SA header */
5301 	if ((newsah = key_getsah(&saidx)) == NULL) {
5302 		/* create a new SA header */
5303 		if ((newsah = key_newsah(&saidx)) == NULL) {
5304 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
5305 			return key_senderror(so, m, ENOBUFS);
5306 		}
5307 	}
5308 
5309 	/* set spidx if there */
5310 	/* XXX rewrite */
5311 	error = key_setident(newsah, m, mhp);
5312 	if (error) {
5313 		return key_senderror(so, m, error);
5314 	}
5315 
5316 	/* create new SA entry. */
5317 	/* We can create new SA only if SPI is differenct. */
5318 	SAHTREE_LOCK();
5319 	newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi);
5320 	SAHTREE_UNLOCK();
5321 	if (newsav != NULL) {
5322 		ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__));
5323 		return key_senderror(so, m, EEXIST);
5324 	}
5325 	newsav = KEY_NEWSAV(m, mhp, newsah, &error);
5326 	if (newsav == NULL) {
5327 		return key_senderror(so, m, error);
5328 	}
5329 
5330 #ifdef IPSEC_NAT_T
5331 	/*
5332 	 * Handle more NAT-T info if present,
5333 	 * now that we have a sav to fill.
5334 	 */
5335 	if (type)
5336 		newsav->natt_type = type->sadb_x_nat_t_type_type;
5337 
5338 #if 0
5339 	/*
5340 	 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0.
5341 	 * We should actually check for a minimum MTU here, if we
5342 	 * want to support it in ip_output.
5343 	 */
5344 	if (frag)
5345 		newsav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen;
5346 #endif
5347 #endif
5348 
5349 	/* check SA values to be mature. */
5350 	if ((error = key_mature(newsav)) != 0) {
5351 		KEY_FREESAV(&newsav);
5352 		return key_senderror(so, m, error);
5353 	}
5354 
5355 	/*
5356 	 * don't call key_freesav() here, as we would like to keep the SA
5357 	 * in the database on success.
5358 	 */
5359 
5360     {
5361 	struct mbuf *n;
5362 
5363 	/* set msg buf from mhp */
5364 	n = key_getmsgbuf_x1(m, mhp);
5365 	if (n == NULL) {
5366 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5367 		return key_senderror(so, m, ENOBUFS);
5368 	}
5369 
5370 	m_freem(m);
5371 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5372     }
5373 }
5374 
5375 /* m is retained */
5376 static int
5377 key_setident(struct secashead *sah, struct mbuf *m,
5378     const struct sadb_msghdr *mhp)
5379 {
5380 	const struct sadb_ident *idsrc, *iddst;
5381 	int idsrclen, iddstlen;
5382 
5383 	IPSEC_ASSERT(sah != NULL, ("null secashead"));
5384 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5385 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5386 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5387 
5388 	/* don't make buffer if not there */
5389 	if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5390 	    mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5391 		sah->idents = NULL;
5392 		sah->identd = NULL;
5393 		return 0;
5394 	}
5395 
5396 	if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5397 	    mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5398 		ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__));
5399 		return EINVAL;
5400 	}
5401 
5402 	idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5403 	iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5404 	idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5405 	iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5406 
5407 	/* validity check */
5408 	if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5409 		ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__));
5410 		return EINVAL;
5411 	}
5412 
5413 	switch (idsrc->sadb_ident_type) {
5414 	case SADB_IDENTTYPE_PREFIX:
5415 	case SADB_IDENTTYPE_FQDN:
5416 	case SADB_IDENTTYPE_USERFQDN:
5417 	default:
5418 		/* XXX do nothing */
5419 		sah->idents = NULL;
5420 		sah->identd = NULL;
5421 	 	return 0;
5422 	}
5423 
5424 	/* make structure */
5425 	sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5426 	if (sah->idents == NULL) {
5427 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5428 		return ENOBUFS;
5429 	}
5430 	sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5431 	if (sah->identd == NULL) {
5432 		free(sah->idents, M_IPSEC_MISC);
5433 		sah->idents = NULL;
5434 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5435 		return ENOBUFS;
5436 	}
5437 	sah->idents->type = idsrc->sadb_ident_type;
5438 	sah->idents->id = idsrc->sadb_ident_id;
5439 
5440 	sah->identd->type = iddst->sadb_ident_type;
5441 	sah->identd->id = iddst->sadb_ident_id;
5442 
5443 	return 0;
5444 }
5445 
5446 /*
5447  * m will not be freed on return.
5448  * it is caller's responsibility to free the result.
5449  */
5450 static struct mbuf *
5451 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
5452 {
5453 	struct mbuf *n;
5454 
5455 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5456 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5457 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5458 
5459 	/* create new sadb_msg to reply. */
5460 	n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED,
5461 	    SADB_EXT_SA, SADB_X_EXT_SA2,
5462 	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5463 	    SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5464 	    SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST);
5465 	if (!n)
5466 		return NULL;
5467 
5468 	if (n->m_len < sizeof(struct sadb_msg)) {
5469 		n = m_pullup(n, sizeof(struct sadb_msg));
5470 		if (n == NULL)
5471 			return NULL;
5472 	}
5473 	mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5474 	mtod(n, struct sadb_msg *)->sadb_msg_len =
5475 	    PFKEY_UNIT64(n->m_pkthdr.len);
5476 
5477 	return n;
5478 }
5479 
5480 /*
5481  * SADB_DELETE processing
5482  * receive
5483  *   <base, SA(*), address(SD)>
5484  * from the ikmpd, and set SADB_SASTATE_DEAD,
5485  * and send,
5486  *   <base, SA(*), address(SD)>
5487  * to the ikmpd.
5488  *
5489  * m will always be freed.
5490  */
5491 static int
5492 key_delete(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5493 {
5494 	struct sadb_sa *sa0;
5495 	struct sadb_address *src0, *dst0;
5496 	struct secasindex saidx;
5497 	struct secashead *sah;
5498 	struct secasvar *sav = NULL;
5499 	u_int16_t proto;
5500 
5501 	IPSEC_ASSERT(so != NULL, ("null socket"));
5502 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5503 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5504 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5505 
5506 	/* map satype to proto */
5507 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5508 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5509 			__func__));
5510 		return key_senderror(so, m, EINVAL);
5511 	}
5512 
5513 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5514 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5515 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5516 			__func__));
5517 		return key_senderror(so, m, EINVAL);
5518 	}
5519 
5520 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5521 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5522 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5523 			__func__));
5524 		return key_senderror(so, m, EINVAL);
5525 	}
5526 
5527 	if (mhp->ext[SADB_EXT_SA] == NULL) {
5528 		/*
5529 		 * Caller wants us to delete all non-LARVAL SAs
5530 		 * that match the src/dst.  This is used during
5531 		 * IKE INITIAL-CONTACT.
5532 		 */
5533 		ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__));
5534 		return key_delete_all(so, m, mhp, proto);
5535 	} else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5536 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5537 			__func__));
5538 		return key_senderror(so, m, EINVAL);
5539 	}
5540 
5541 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5542 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5543 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5544 
5545 	/* XXX boundary check against sa_len */
5546 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5547 
5548 	/*
5549 	 * Make sure the port numbers are zero.
5550 	 * In case of NAT-T we will update them later if needed.
5551 	 */
5552 	KEY_PORTTOSADDR(&saidx.src, 0);
5553 	KEY_PORTTOSADDR(&saidx.dst, 0);
5554 
5555 #ifdef IPSEC_NAT_T
5556 	/*
5557 	 * Handle NAT-T info if present.
5558 	 */
5559 	if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5560 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5561 		struct sadb_x_nat_t_port *sport, *dport;
5562 
5563 		if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5564 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5565 			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5566 			    __func__));
5567 			return key_senderror(so, m, EINVAL);
5568 		}
5569 
5570 		sport = (struct sadb_x_nat_t_port *)
5571 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5572 		dport = (struct sadb_x_nat_t_port *)
5573 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5574 
5575 		if (sport)
5576 			KEY_PORTTOSADDR(&saidx.src,
5577 			    sport->sadb_x_nat_t_port_port);
5578 		if (dport)
5579 			KEY_PORTTOSADDR(&saidx.dst,
5580 			    dport->sadb_x_nat_t_port_port);
5581 	}
5582 #endif
5583 
5584 	/* get a SA header */
5585 	SAHTREE_LOCK();
5586 	LIST_FOREACH(sah, &V_sahtree, chain) {
5587 		if (sah->state == SADB_SASTATE_DEAD)
5588 			continue;
5589 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5590 			continue;
5591 
5592 		/* get a SA with SPI. */
5593 		sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5594 		if (sav)
5595 			break;
5596 	}
5597 	if (sah == NULL) {
5598 		SAHTREE_UNLOCK();
5599 		ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5600 		return key_senderror(so, m, ENOENT);
5601 	}
5602 
5603 	key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5604 	KEY_FREESAV(&sav);
5605 	SAHTREE_UNLOCK();
5606 
5607     {
5608 	struct mbuf *n;
5609 	struct sadb_msg *newmsg;
5610 
5611 	/* create new sadb_msg to reply. */
5612 	/* XXX-BZ NAT-T extensions? */
5613 	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5614 	    SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5615 	if (!n)
5616 		return key_senderror(so, m, ENOBUFS);
5617 
5618 	if (n->m_len < sizeof(struct sadb_msg)) {
5619 		n = m_pullup(n, sizeof(struct sadb_msg));
5620 		if (n == NULL)
5621 			return key_senderror(so, m, ENOBUFS);
5622 	}
5623 	newmsg = mtod(n, struct sadb_msg *);
5624 	newmsg->sadb_msg_errno = 0;
5625 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5626 
5627 	m_freem(m);
5628 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5629     }
5630 }
5631 
5632 /*
5633  * delete all SAs for src/dst.  Called from key_delete().
5634  */
5635 static int
5636 key_delete_all(struct socket *so, struct mbuf *m,
5637     const struct sadb_msghdr *mhp, u_int16_t proto)
5638 {
5639 	struct sadb_address *src0, *dst0;
5640 	struct secasindex saidx;
5641 	struct secashead *sah;
5642 	struct secasvar *sav, *nextsav;
5643 	u_int stateidx, state;
5644 
5645 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5646 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5647 
5648 	/* XXX boundary check against sa_len */
5649 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5650 
5651 	/*
5652 	 * Make sure the port numbers are zero.
5653 	 * In case of NAT-T we will update them later if needed.
5654 	 */
5655 	KEY_PORTTOSADDR(&saidx.src, 0);
5656 	KEY_PORTTOSADDR(&saidx.dst, 0);
5657 
5658 #ifdef IPSEC_NAT_T
5659 	/*
5660 	 * Handle NAT-T info if present.
5661 	 */
5662 
5663 	if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5664 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5665 		struct sadb_x_nat_t_port *sport, *dport;
5666 
5667 		if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5668 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5669 			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5670 			    __func__));
5671 			return key_senderror(so, m, EINVAL);
5672 		}
5673 
5674 		sport = (struct sadb_x_nat_t_port *)
5675 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5676 		dport = (struct sadb_x_nat_t_port *)
5677 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5678 
5679 		if (sport)
5680 			KEY_PORTTOSADDR(&saidx.src,
5681 			    sport->sadb_x_nat_t_port_port);
5682 		if (dport)
5683 			KEY_PORTTOSADDR(&saidx.dst,
5684 			    dport->sadb_x_nat_t_port_port);
5685 	}
5686 #endif
5687 
5688 	SAHTREE_LOCK();
5689 	LIST_FOREACH(sah, &V_sahtree, chain) {
5690 		if (sah->state == SADB_SASTATE_DEAD)
5691 			continue;
5692 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5693 			continue;
5694 
5695 		/* Delete all non-LARVAL SAs. */
5696 		for (stateidx = 0;
5697 		     stateidx < _ARRAYLEN(saorder_state_alive);
5698 		     stateidx++) {
5699 			state = saorder_state_alive[stateidx];
5700 			if (state == SADB_SASTATE_LARVAL)
5701 				continue;
5702 			for (sav = LIST_FIRST(&sah->savtree[state]);
5703 			     sav != NULL; sav = nextsav) {
5704 				nextsav = LIST_NEXT(sav, chain);
5705 				/* sanity check */
5706 				if (sav->state != state) {
5707 					ipseclog((LOG_DEBUG, "%s: invalid "
5708 						"sav->state (queue %d SA %d)\n",
5709 						__func__, state, sav->state));
5710 					continue;
5711 				}
5712 
5713 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5714 				KEY_FREESAV(&sav);
5715 			}
5716 		}
5717 	}
5718 	SAHTREE_UNLOCK();
5719     {
5720 	struct mbuf *n;
5721 	struct sadb_msg *newmsg;
5722 
5723 	/* create new sadb_msg to reply. */
5724 	/* XXX-BZ NAT-T extensions? */
5725 	n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5726 	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5727 	if (!n)
5728 		return key_senderror(so, m, ENOBUFS);
5729 
5730 	if (n->m_len < sizeof(struct sadb_msg)) {
5731 		n = m_pullup(n, sizeof(struct sadb_msg));
5732 		if (n == NULL)
5733 			return key_senderror(so, m, ENOBUFS);
5734 	}
5735 	newmsg = mtod(n, struct sadb_msg *);
5736 	newmsg->sadb_msg_errno = 0;
5737 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5738 
5739 	m_freem(m);
5740 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5741     }
5742 }
5743 
5744 /*
5745  * SADB_GET processing
5746  * receive
5747  *   <base, SA(*), address(SD)>
5748  * from the ikmpd, and get a SP and a SA to respond,
5749  * and send,
5750  *   <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5751  *       (identity(SD),) (sensitivity)>
5752  * to the ikmpd.
5753  *
5754  * m will always be freed.
5755  */
5756 static int
5757 key_get(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5758 {
5759 	struct sadb_sa *sa0;
5760 	struct sadb_address *src0, *dst0;
5761 	struct secasindex saidx;
5762 	struct secashead *sah;
5763 	struct secasvar *sav = NULL;
5764 	u_int16_t proto;
5765 
5766 	IPSEC_ASSERT(so != NULL, ("null socket"));
5767 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5768 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5769 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5770 
5771 	/* map satype to proto */
5772 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5773 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5774 			__func__));
5775 		return key_senderror(so, m, EINVAL);
5776 	}
5777 
5778 	if (mhp->ext[SADB_EXT_SA] == NULL ||
5779 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5780 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5781 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5782 			__func__));
5783 		return key_senderror(so, m, EINVAL);
5784 	}
5785 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5786 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5787 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5788 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5789 			__func__));
5790 		return key_senderror(so, m, EINVAL);
5791 	}
5792 
5793 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5794 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5795 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5796 
5797 	/* XXX boundary check against sa_len */
5798 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5799 
5800 	/*
5801 	 * Make sure the port numbers are zero.
5802 	 * In case of NAT-T we will update them later if needed.
5803 	 */
5804 	KEY_PORTTOSADDR(&saidx.src, 0);
5805 	KEY_PORTTOSADDR(&saidx.dst, 0);
5806 
5807 #ifdef IPSEC_NAT_T
5808 	/*
5809 	 * Handle NAT-T info if present.
5810 	 */
5811 
5812 	if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5813 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5814 		struct sadb_x_nat_t_port *sport, *dport;
5815 
5816 		if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5817 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5818 			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5819 			    __func__));
5820 			return key_senderror(so, m, EINVAL);
5821 		}
5822 
5823 		sport = (struct sadb_x_nat_t_port *)
5824 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5825 		dport = (struct sadb_x_nat_t_port *)
5826 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5827 
5828 		if (sport)
5829 			KEY_PORTTOSADDR(&saidx.src,
5830 			    sport->sadb_x_nat_t_port_port);
5831 		if (dport)
5832 			KEY_PORTTOSADDR(&saidx.dst,
5833 			    dport->sadb_x_nat_t_port_port);
5834 	}
5835 #endif
5836 
5837 	/* get a SA header */
5838 	SAHTREE_LOCK();
5839 	LIST_FOREACH(sah, &V_sahtree, chain) {
5840 		if (sah->state == SADB_SASTATE_DEAD)
5841 			continue;
5842 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5843 			continue;
5844 
5845 		/* get a SA with SPI. */
5846 		sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5847 		if (sav)
5848 			break;
5849 	}
5850 	SAHTREE_UNLOCK();
5851 	if (sah == NULL) {
5852 		ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5853 		return key_senderror(so, m, ENOENT);
5854 	}
5855 
5856     {
5857 	struct mbuf *n;
5858 	u_int8_t satype;
5859 
5860 	/* map proto to satype */
5861 	if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
5862 		ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n",
5863 			__func__));
5864 		return key_senderror(so, m, EINVAL);
5865 	}
5866 
5867 	/* create new sadb_msg to reply. */
5868 	n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5869 	    mhp->msg->sadb_msg_pid);
5870 	if (!n)
5871 		return key_senderror(so, m, ENOBUFS);
5872 
5873 	m_freem(m);
5874 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5875     }
5876 }
5877 
5878 /* XXX make it sysctl-configurable? */
5879 static void
5880 key_getcomb_setlifetime(struct sadb_comb *comb)
5881 {
5882 
5883 	comb->sadb_comb_soft_allocations = 1;
5884 	comb->sadb_comb_hard_allocations = 1;
5885 	comb->sadb_comb_soft_bytes = 0;
5886 	comb->sadb_comb_hard_bytes = 0;
5887 	comb->sadb_comb_hard_addtime = 86400;	/* 1 day */
5888 	comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5889 	comb->sadb_comb_soft_usetime = 28800;	/* 8 hours */
5890 	comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
5891 }
5892 
5893 /*
5894  * XXX reorder combinations by preference
5895  * XXX no idea if the user wants ESP authentication or not
5896  */
5897 static struct mbuf *
5898 key_getcomb_esp()
5899 {
5900 	struct sadb_comb *comb;
5901 	struct enc_xform *algo;
5902 	struct mbuf *result = NULL, *m, *n;
5903 	int encmin;
5904 	int i, off, o;
5905 	int totlen;
5906 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5907 
5908 	m = NULL;
5909 	for (i = 1; i <= SADB_EALG_MAX; i++) {
5910 		algo = esp_algorithm_lookup(i);
5911 		if (algo == NULL)
5912 			continue;
5913 
5914 		/* discard algorithms with key size smaller than system min */
5915 		if (_BITS(algo->maxkey) < V_ipsec_esp_keymin)
5916 			continue;
5917 		if (_BITS(algo->minkey) < V_ipsec_esp_keymin)
5918 			encmin = V_ipsec_esp_keymin;
5919 		else
5920 			encmin = _BITS(algo->minkey);
5921 
5922 		if (V_ipsec_esp_auth)
5923 			m = key_getcomb_ah();
5924 		else {
5925 			IPSEC_ASSERT(l <= MLEN,
5926 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
5927 			MGET(m, M_NOWAIT, MT_DATA);
5928 			if (m) {
5929 				M_ALIGN(m, l);
5930 				m->m_len = l;
5931 				m->m_next = NULL;
5932 				bzero(mtod(m, caddr_t), m->m_len);
5933 			}
5934 		}
5935 		if (!m)
5936 			goto fail;
5937 
5938 		totlen = 0;
5939 		for (n = m; n; n = n->m_next)
5940 			totlen += n->m_len;
5941 		IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l));
5942 
5943 		for (off = 0; off < totlen; off += l) {
5944 			n = m_pulldown(m, off, l, &o);
5945 			if (!n) {
5946 				/* m is already freed */
5947 				goto fail;
5948 			}
5949 			comb = (struct sadb_comb *)(mtod(n, caddr_t) + o);
5950 			bzero(comb, sizeof(*comb));
5951 			key_getcomb_setlifetime(comb);
5952 			comb->sadb_comb_encrypt = i;
5953 			comb->sadb_comb_encrypt_minbits = encmin;
5954 			comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
5955 		}
5956 
5957 		if (!result)
5958 			result = m;
5959 		else
5960 			m_cat(result, m);
5961 	}
5962 
5963 	return result;
5964 
5965  fail:
5966 	if (result)
5967 		m_freem(result);
5968 	return NULL;
5969 }
5970 
5971 static void
5972 key_getsizes_ah(const struct auth_hash *ah, int alg, u_int16_t* min,
5973     u_int16_t* max)
5974 {
5975 
5976 	*min = *max = ah->keysize;
5977 	if (ah->keysize == 0) {
5978 		/*
5979 		 * Transform takes arbitrary key size but algorithm
5980 		 * key size is restricted.  Enforce this here.
5981 		 */
5982 		switch (alg) {
5983 		case SADB_X_AALG_MD5:	*min = *max = 16; break;
5984 		case SADB_X_AALG_SHA:	*min = *max = 20; break;
5985 		case SADB_X_AALG_NULL:	*min = 1; *max = 256; break;
5986 		case SADB_X_AALG_SHA2_256: *min = *max = 32; break;
5987 		case SADB_X_AALG_SHA2_384: *min = *max = 48; break;
5988 		case SADB_X_AALG_SHA2_512: *min = *max = 64; break;
5989 		default:
5990 			DPRINTF(("%s: unknown AH algorithm %u\n",
5991 				__func__, alg));
5992 			break;
5993 		}
5994 	}
5995 }
5996 
5997 /*
5998  * XXX reorder combinations by preference
5999  */
6000 static struct mbuf *
6001 key_getcomb_ah()
6002 {
6003 	struct sadb_comb *comb;
6004 	struct auth_hash *algo;
6005 	struct mbuf *m;
6006 	u_int16_t minkeysize, maxkeysize;
6007 	int i;
6008 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6009 
6010 	m = NULL;
6011 	for (i = 1; i <= SADB_AALG_MAX; i++) {
6012 #if 1
6013 		/* we prefer HMAC algorithms, not old algorithms */
6014 		if (i != SADB_AALG_SHA1HMAC &&
6015 		    i != SADB_AALG_MD5HMAC  &&
6016 		    i != SADB_X_AALG_SHA2_256 &&
6017 		    i != SADB_X_AALG_SHA2_384 &&
6018 		    i != SADB_X_AALG_SHA2_512)
6019 			continue;
6020 #endif
6021 		algo = ah_algorithm_lookup(i);
6022 		if (!algo)
6023 			continue;
6024 		key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6025 		/* discard algorithms with key size smaller than system min */
6026 		if (_BITS(minkeysize) < V_ipsec_ah_keymin)
6027 			continue;
6028 
6029 		if (!m) {
6030 			IPSEC_ASSERT(l <= MLEN,
6031 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
6032 			MGET(m, M_NOWAIT, MT_DATA);
6033 			if (m) {
6034 				M_ALIGN(m, l);
6035 				m->m_len = l;
6036 				m->m_next = NULL;
6037 			}
6038 		} else
6039 			M_PREPEND(m, l, M_NOWAIT);
6040 		if (!m)
6041 			return NULL;
6042 
6043 		comb = mtod(m, struct sadb_comb *);
6044 		bzero(comb, sizeof(*comb));
6045 		key_getcomb_setlifetime(comb);
6046 		comb->sadb_comb_auth = i;
6047 		comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6048 		comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6049 	}
6050 
6051 	return m;
6052 }
6053 
6054 /*
6055  * not really an official behavior.  discussed in pf_key@inner.net in Sep2000.
6056  * XXX reorder combinations by preference
6057  */
6058 static struct mbuf *
6059 key_getcomb_ipcomp()
6060 {
6061 	struct sadb_comb *comb;
6062 	struct comp_algo *algo;
6063 	struct mbuf *m;
6064 	int i;
6065 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6066 
6067 	m = NULL;
6068 	for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6069 		algo = ipcomp_algorithm_lookup(i);
6070 		if (!algo)
6071 			continue;
6072 
6073 		if (!m) {
6074 			IPSEC_ASSERT(l <= MLEN,
6075 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
6076 			MGET(m, M_NOWAIT, MT_DATA);
6077 			if (m) {
6078 				M_ALIGN(m, l);
6079 				m->m_len = l;
6080 				m->m_next = NULL;
6081 			}
6082 		} else
6083 			M_PREPEND(m, l, M_NOWAIT);
6084 		if (!m)
6085 			return NULL;
6086 
6087 		comb = mtod(m, struct sadb_comb *);
6088 		bzero(comb, sizeof(*comb));
6089 		key_getcomb_setlifetime(comb);
6090 		comb->sadb_comb_encrypt = i;
6091 		/* what should we set into sadb_comb_*_{min,max}bits? */
6092 	}
6093 
6094 	return m;
6095 }
6096 
6097 /*
6098  * XXX no way to pass mode (transport/tunnel) to userland
6099  * XXX replay checking?
6100  * XXX sysctl interface to ipsec_{ah,esp}_keymin
6101  */
6102 static struct mbuf *
6103 key_getprop(const struct secasindex *saidx)
6104 {
6105 	struct sadb_prop *prop;
6106 	struct mbuf *m, *n;
6107 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6108 	int totlen;
6109 
6110 	switch (saidx->proto)  {
6111 	case IPPROTO_ESP:
6112 		m = key_getcomb_esp();
6113 		break;
6114 	case IPPROTO_AH:
6115 		m = key_getcomb_ah();
6116 		break;
6117 	case IPPROTO_IPCOMP:
6118 		m = key_getcomb_ipcomp();
6119 		break;
6120 	default:
6121 		return NULL;
6122 	}
6123 
6124 	if (!m)
6125 		return NULL;
6126 	M_PREPEND(m, l, M_NOWAIT);
6127 	if (!m)
6128 		return NULL;
6129 
6130 	totlen = 0;
6131 	for (n = m; n; n = n->m_next)
6132 		totlen += n->m_len;
6133 
6134 	prop = mtod(m, struct sadb_prop *);
6135 	bzero(prop, sizeof(*prop));
6136 	prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6137 	prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6138 	prop->sadb_prop_replay = 32;	/* XXX */
6139 
6140 	return m;
6141 }
6142 
6143 /*
6144  * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
6145  * send
6146  *   <base, SA, address(SD), (address(P)), x_policy,
6147  *       (identity(SD),) (sensitivity,) proposal>
6148  * to KMD, and expect to receive
6149  *   <base> with SADB_ACQUIRE if error occured,
6150  * or
6151  *   <base, src address, dst address, (SPI range)> with SADB_GETSPI
6152  * from KMD by PF_KEY.
6153  *
6154  * XXX x_policy is outside of RFC2367 (KAME extension).
6155  * XXX sensitivity is not supported.
6156  * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6157  * see comment for key_getcomb_ipcomp().
6158  *
6159  * OUT:
6160  *    0     : succeed
6161  *    others: error number
6162  */
6163 static int
6164 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6165 {
6166 	struct mbuf *result = NULL, *m;
6167 	struct secacq *newacq;
6168 	u_int8_t satype;
6169 	int error = -1;
6170 	u_int32_t seq;
6171 
6172 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
6173 	satype = key_proto2satype(saidx->proto);
6174 	IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto));
6175 
6176 	/*
6177 	 * We never do anything about acquirng SA.  There is anather
6178 	 * solution that kernel blocks to send SADB_ACQUIRE message until
6179 	 * getting something message from IKEd.  In later case, to be
6180 	 * managed with ACQUIRING list.
6181 	 */
6182 	/* Get an entry to check whether sending message or not. */
6183 	if ((newacq = key_getacq(saidx)) != NULL) {
6184 		if (V_key_blockacq_count < newacq->count) {
6185 			/* reset counter and do send message. */
6186 			newacq->count = 0;
6187 		} else {
6188 			/* increment counter and do nothing. */
6189 			newacq->count++;
6190 			return 0;
6191 		}
6192 	} else {
6193 		/* make new entry for blocking to send SADB_ACQUIRE. */
6194 		if ((newacq = key_newacq(saidx)) == NULL)
6195 			return ENOBUFS;
6196 	}
6197 
6198 
6199 	seq = newacq->seq;
6200 	m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6201 	if (!m) {
6202 		error = ENOBUFS;
6203 		goto fail;
6204 	}
6205 	result = m;
6206 
6207 	/*
6208 	 * No SADB_X_EXT_NAT_T_* here: we do not know
6209 	 * anything related to NAT-T at this time.
6210 	 */
6211 
6212 	/* set sadb_address for saidx's. */
6213 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6214 	    &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY);
6215 	if (!m) {
6216 		error = ENOBUFS;
6217 		goto fail;
6218 	}
6219 	m_cat(result, m);
6220 
6221 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6222 	    &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY);
6223 	if (!m) {
6224 		error = ENOBUFS;
6225 		goto fail;
6226 	}
6227 	m_cat(result, m);
6228 
6229 	/* XXX proxy address (optional) */
6230 
6231 	/* set sadb_x_policy */
6232 	if (sp) {
6233 		m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6234 		if (!m) {
6235 			error = ENOBUFS;
6236 			goto fail;
6237 		}
6238 		m_cat(result, m);
6239 	}
6240 
6241 	/* XXX identity (optional) */
6242 #if 0
6243 	if (idexttype && fqdn) {
6244 		/* create identity extension (FQDN) */
6245 		struct sadb_ident *id;
6246 		int fqdnlen;
6247 
6248 		fqdnlen = strlen(fqdn) + 1;	/* +1 for terminating-NUL */
6249 		id = (struct sadb_ident *)p;
6250 		bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6251 		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6252 		id->sadb_ident_exttype = idexttype;
6253 		id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6254 		bcopy(fqdn, id + 1, fqdnlen);
6255 		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6256 	}
6257 
6258 	if (idexttype) {
6259 		/* create identity extension (USERFQDN) */
6260 		struct sadb_ident *id;
6261 		int userfqdnlen;
6262 
6263 		if (userfqdn) {
6264 			/* +1 for terminating-NUL */
6265 			userfqdnlen = strlen(userfqdn) + 1;
6266 		} else
6267 			userfqdnlen = 0;
6268 		id = (struct sadb_ident *)p;
6269 		bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6270 		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6271 		id->sadb_ident_exttype = idexttype;
6272 		id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6273 		/* XXX is it correct? */
6274 		if (curproc && curproc->p_cred)
6275 			id->sadb_ident_id = curproc->p_cred->p_ruid;
6276 		if (userfqdn && userfqdnlen)
6277 			bcopy(userfqdn, id + 1, userfqdnlen);
6278 		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6279 	}
6280 #endif
6281 
6282 	/* XXX sensitivity (optional) */
6283 
6284 	/* create proposal/combination extension */
6285 	m = key_getprop(saidx);
6286 #if 0
6287 	/*
6288 	 * spec conformant: always attach proposal/combination extension,
6289 	 * the problem is that we have no way to attach it for ipcomp,
6290 	 * due to the way sadb_comb is declared in RFC2367.
6291 	 */
6292 	if (!m) {
6293 		error = ENOBUFS;
6294 		goto fail;
6295 	}
6296 	m_cat(result, m);
6297 #else
6298 	/*
6299 	 * outside of spec; make proposal/combination extension optional.
6300 	 */
6301 	if (m)
6302 		m_cat(result, m);
6303 #endif
6304 
6305 	if ((result->m_flags & M_PKTHDR) == 0) {
6306 		error = EINVAL;
6307 		goto fail;
6308 	}
6309 
6310 	if (result->m_len < sizeof(struct sadb_msg)) {
6311 		result = m_pullup(result, sizeof(struct sadb_msg));
6312 		if (result == NULL) {
6313 			error = ENOBUFS;
6314 			goto fail;
6315 		}
6316 	}
6317 
6318 	result->m_pkthdr.len = 0;
6319 	for (m = result; m; m = m->m_next)
6320 		result->m_pkthdr.len += m->m_len;
6321 
6322 	mtod(result, struct sadb_msg *)->sadb_msg_len =
6323 	    PFKEY_UNIT64(result->m_pkthdr.len);
6324 
6325 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6326 
6327  fail:
6328 	if (result)
6329 		m_freem(result);
6330 	return error;
6331 }
6332 
6333 static struct secacq *
6334 key_newacq(const struct secasindex *saidx)
6335 {
6336 	struct secacq *newacq;
6337 
6338 	/* get new entry */
6339 	newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
6340 	if (newacq == NULL) {
6341 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6342 		return NULL;
6343 	}
6344 
6345 	/* copy secindex */
6346 	bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx));
6347 	newacq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq);
6348 	newacq->created = time_second;
6349 	newacq->count = 0;
6350 
6351 	/* add to acqtree */
6352 	ACQ_LOCK();
6353 	LIST_INSERT_HEAD(&V_acqtree, newacq, chain);
6354 	ACQ_UNLOCK();
6355 
6356 	return newacq;
6357 }
6358 
6359 static struct secacq *
6360 key_getacq(const struct secasindex *saidx)
6361 {
6362 	struct secacq *acq;
6363 
6364 	ACQ_LOCK();
6365 	LIST_FOREACH(acq, &V_acqtree, chain) {
6366 		if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY))
6367 			break;
6368 	}
6369 	ACQ_UNLOCK();
6370 
6371 	return acq;
6372 }
6373 
6374 static struct secacq *
6375 key_getacqbyseq(u_int32_t seq)
6376 {
6377 	struct secacq *acq;
6378 
6379 	ACQ_LOCK();
6380 	LIST_FOREACH(acq, &V_acqtree, chain) {
6381 		if (acq->seq == seq)
6382 			break;
6383 	}
6384 	ACQ_UNLOCK();
6385 
6386 	return acq;
6387 }
6388 
6389 static struct secspacq *
6390 key_newspacq(struct secpolicyindex *spidx)
6391 {
6392 	struct secspacq *acq;
6393 
6394 	/* get new entry */
6395 	acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
6396 	if (acq == NULL) {
6397 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6398 		return NULL;
6399 	}
6400 
6401 	/* copy secindex */
6402 	bcopy(spidx, &acq->spidx, sizeof(acq->spidx));
6403 	acq->created = time_second;
6404 	acq->count = 0;
6405 
6406 	/* add to spacqtree */
6407 	SPACQ_LOCK();
6408 	LIST_INSERT_HEAD(&V_spacqtree, acq, chain);
6409 	SPACQ_UNLOCK();
6410 
6411 	return acq;
6412 }
6413 
6414 static struct secspacq *
6415 key_getspacq(struct secpolicyindex *spidx)
6416 {
6417 	struct secspacq *acq;
6418 
6419 	SPACQ_LOCK();
6420 	LIST_FOREACH(acq, &V_spacqtree, chain) {
6421 		if (key_cmpspidx_exactly(spidx, &acq->spidx)) {
6422 			/* NB: return holding spacq_lock */
6423 			return acq;
6424 		}
6425 	}
6426 	SPACQ_UNLOCK();
6427 
6428 	return NULL;
6429 }
6430 
6431 /*
6432  * SADB_ACQUIRE processing,
6433  * in first situation, is receiving
6434  *   <base>
6435  * from the ikmpd, and clear sequence of its secasvar entry.
6436  *
6437  * In second situation, is receiving
6438  *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6439  * from a user land process, and return
6440  *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6441  * to the socket.
6442  *
6443  * m will always be freed.
6444  */
6445 static int
6446 key_acquire2(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
6447 {
6448 	const struct sadb_address *src0, *dst0;
6449 	struct secasindex saidx;
6450 	struct secashead *sah;
6451 	u_int16_t proto;
6452 	int error;
6453 
6454 	IPSEC_ASSERT(so != NULL, ("null socket"));
6455 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6456 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6457 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6458 
6459 	/*
6460 	 * Error message from KMd.
6461 	 * We assume that if error was occured in IKEd, the length of PFKEY
6462 	 * message is equal to the size of sadb_msg structure.
6463 	 * We do not raise error even if error occured in this function.
6464 	 */
6465 	if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6466 		struct secacq *acq;
6467 
6468 		/* check sequence number */
6469 		if (mhp->msg->sadb_msg_seq == 0) {
6470 			ipseclog((LOG_DEBUG, "%s: must specify sequence "
6471 				"number.\n", __func__));
6472 			m_freem(m);
6473 			return 0;
6474 		}
6475 
6476 		if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) {
6477 			/*
6478 			 * the specified larval SA is already gone, or we got
6479 			 * a bogus sequence number.  we can silently ignore it.
6480 			 */
6481 			m_freem(m);
6482 			return 0;
6483 		}
6484 
6485 		/* reset acq counter in order to deletion by timehander. */
6486 		acq->created = time_second;
6487 		acq->count = 0;
6488 		m_freem(m);
6489 		return 0;
6490 	}
6491 
6492 	/*
6493 	 * This message is from user land.
6494 	 */
6495 
6496 	/* map satype to proto */
6497 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6498 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6499 			__func__));
6500 		return key_senderror(so, m, EINVAL);
6501 	}
6502 
6503 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6504 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6505 	    mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6506 		/* error */
6507 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
6508 			__func__));
6509 		return key_senderror(so, m, EINVAL);
6510 	}
6511 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6512 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6513 	    mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6514 		/* error */
6515 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
6516 			__func__));
6517 		return key_senderror(so, m, EINVAL);
6518 	}
6519 
6520 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
6521 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
6522 
6523 	/* XXX boundary check against sa_len */
6524 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
6525 
6526 	/*
6527 	 * Make sure the port numbers are zero.
6528 	 * In case of NAT-T we will update them later if needed.
6529 	 */
6530 	KEY_PORTTOSADDR(&saidx.src, 0);
6531 	KEY_PORTTOSADDR(&saidx.dst, 0);
6532 
6533 #ifndef IPSEC_NAT_T
6534 	/*
6535 	 * Handle NAT-T info if present.
6536 	 */
6537 
6538 	if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
6539 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
6540 		struct sadb_x_nat_t_port *sport, *dport;
6541 
6542 		if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
6543 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
6544 			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
6545 			    __func__));
6546 			return key_senderror(so, m, EINVAL);
6547 		}
6548 
6549 		sport = (struct sadb_x_nat_t_port *)
6550 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
6551 		dport = (struct sadb_x_nat_t_port *)
6552 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
6553 
6554 		if (sport)
6555 			KEY_PORTTOSADDR(&saidx.src,
6556 			    sport->sadb_x_nat_t_port_port);
6557 		if (dport)
6558 			KEY_PORTTOSADDR(&saidx.dst,
6559 			    dport->sadb_x_nat_t_port_port);
6560 	}
6561 #endif
6562 
6563 	/* get a SA index */
6564 	SAHTREE_LOCK();
6565 	LIST_FOREACH(sah, &V_sahtree, chain) {
6566 		if (sah->state == SADB_SASTATE_DEAD)
6567 			continue;
6568 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID))
6569 			break;
6570 	}
6571 	SAHTREE_UNLOCK();
6572 	if (sah != NULL) {
6573 		ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__));
6574 		return key_senderror(so, m, EEXIST);
6575 	}
6576 
6577 	error = key_acquire(&saidx, NULL);
6578 	if (error != 0) {
6579 		ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
6580 			__func__, mhp->msg->sadb_msg_errno));
6581 		return key_senderror(so, m, error);
6582 	}
6583 
6584 	return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6585 }
6586 
6587 /*
6588  * SADB_REGISTER processing.
6589  * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6590  * receive
6591  *   <base>
6592  * from the ikmpd, and register a socket to send PF_KEY messages,
6593  * and send
6594  *   <base, supported>
6595  * to KMD by PF_KEY.
6596  * If socket is detached, must free from regnode.
6597  *
6598  * m will always be freed.
6599  */
6600 static int
6601 key_register(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
6602 {
6603 	struct secreg *reg, *newreg = 0;
6604 
6605 	IPSEC_ASSERT(so != NULL, ("null socket"));
6606 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6607 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6608 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6609 
6610 	/* check for invalid register message */
6611 	if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0]))
6612 		return key_senderror(so, m, EINVAL);
6613 
6614 	/* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6615 	if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6616 		goto setmsg;
6617 
6618 	/* check whether existing or not */
6619 	REGTREE_LOCK();
6620 	LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) {
6621 		if (reg->so == so) {
6622 			REGTREE_UNLOCK();
6623 			ipseclog((LOG_DEBUG, "%s: socket exists already.\n",
6624 				__func__));
6625 			return key_senderror(so, m, EEXIST);
6626 		}
6627 	}
6628 
6629 	/* create regnode */
6630 	newreg =  malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO);
6631 	if (newreg == NULL) {
6632 		REGTREE_UNLOCK();
6633 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6634 		return key_senderror(so, m, ENOBUFS);
6635 	}
6636 
6637 	newreg->so = so;
6638 	((struct keycb *)sotorawcb(so))->kp_registered++;
6639 
6640 	/* add regnode to regtree. */
6641 	LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain);
6642 	REGTREE_UNLOCK();
6643 
6644   setmsg:
6645     {
6646 	struct mbuf *n;
6647 	struct sadb_msg *newmsg;
6648 	struct sadb_supported *sup;
6649 	u_int len, alen, elen;
6650 	int off;
6651 	int i;
6652 	struct sadb_alg *alg;
6653 
6654 	/* create new sadb_msg to reply. */
6655 	alen = 0;
6656 	for (i = 1; i <= SADB_AALG_MAX; i++) {
6657 		if (ah_algorithm_lookup(i))
6658 			alen += sizeof(struct sadb_alg);
6659 	}
6660 	if (alen)
6661 		alen += sizeof(struct sadb_supported);
6662 	elen = 0;
6663 	for (i = 1; i <= SADB_EALG_MAX; i++) {
6664 		if (esp_algorithm_lookup(i))
6665 			elen += sizeof(struct sadb_alg);
6666 	}
6667 	if (elen)
6668 		elen += sizeof(struct sadb_supported);
6669 
6670 	len = sizeof(struct sadb_msg) + alen + elen;
6671 
6672 	if (len > MCLBYTES)
6673 		return key_senderror(so, m, ENOBUFS);
6674 
6675 	MGETHDR(n, M_NOWAIT, MT_DATA);
6676 	if (len > MHLEN) {
6677 		MCLGET(n, M_NOWAIT);
6678 		if ((n->m_flags & M_EXT) == 0) {
6679 			m_freem(n);
6680 			n = NULL;
6681 		}
6682 	}
6683 	if (!n)
6684 		return key_senderror(so, m, ENOBUFS);
6685 
6686 	n->m_pkthdr.len = n->m_len = len;
6687 	n->m_next = NULL;
6688 	off = 0;
6689 
6690 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
6691 	newmsg = mtod(n, struct sadb_msg *);
6692 	newmsg->sadb_msg_errno = 0;
6693 	newmsg->sadb_msg_len = PFKEY_UNIT64(len);
6694 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6695 
6696 	/* for authentication algorithm */
6697 	if (alen) {
6698 		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6699 		sup->sadb_supported_len = PFKEY_UNIT64(alen);
6700 		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6701 		off += PFKEY_ALIGN8(sizeof(*sup));
6702 
6703 		for (i = 1; i <= SADB_AALG_MAX; i++) {
6704 			struct auth_hash *aalgo;
6705 			u_int16_t minkeysize, maxkeysize;
6706 
6707 			aalgo = ah_algorithm_lookup(i);
6708 			if (!aalgo)
6709 				continue;
6710 			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6711 			alg->sadb_alg_id = i;
6712 			alg->sadb_alg_ivlen = 0;
6713 			key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6714 			alg->sadb_alg_minbits = _BITS(minkeysize);
6715 			alg->sadb_alg_maxbits = _BITS(maxkeysize);
6716 			off += PFKEY_ALIGN8(sizeof(*alg));
6717 		}
6718 	}
6719 
6720 	/* for encryption algorithm */
6721 	if (elen) {
6722 		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6723 		sup->sadb_supported_len = PFKEY_UNIT64(elen);
6724 		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6725 		off += PFKEY_ALIGN8(sizeof(*sup));
6726 
6727 		for (i = 1; i <= SADB_EALG_MAX; i++) {
6728 			struct enc_xform *ealgo;
6729 
6730 			ealgo = esp_algorithm_lookup(i);
6731 			if (!ealgo)
6732 				continue;
6733 			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6734 			alg->sadb_alg_id = i;
6735 			alg->sadb_alg_ivlen = ealgo->blocksize;
6736 			alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6737 			alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6738 			off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6739 		}
6740 	}
6741 
6742 	IPSEC_ASSERT(off == len,
6743 		("length assumption failed (off %u len %u)", off, len));
6744 
6745 	m_freem(m);
6746 	return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6747     }
6748 }
6749 
6750 /*
6751  * free secreg entry registered.
6752  * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6753  */
6754 void
6755 key_freereg(struct socket *so)
6756 {
6757 	struct secreg *reg;
6758 	int i;
6759 
6760 	IPSEC_ASSERT(so != NULL, ("NULL so"));
6761 
6762 	/*
6763 	 * check whether existing or not.
6764 	 * check all type of SA, because there is a potential that
6765 	 * one socket is registered to multiple type of SA.
6766 	 */
6767 	REGTREE_LOCK();
6768 	for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6769 		LIST_FOREACH(reg, &V_regtree[i], chain) {
6770 			if (reg->so == so && __LIST_CHAINED(reg)) {
6771 				LIST_REMOVE(reg, chain);
6772 				free(reg, M_IPSEC_SAR);
6773 				break;
6774 			}
6775 		}
6776 	}
6777 	REGTREE_UNLOCK();
6778 }
6779 
6780 /*
6781  * SADB_EXPIRE processing
6782  * send
6783  *   <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6784  * to KMD by PF_KEY.
6785  * NOTE: We send only soft lifetime extension.
6786  *
6787  * OUT:	0	: succeed
6788  *	others	: error number
6789  */
6790 static int
6791 key_expire(struct secasvar *sav)
6792 {
6793 	int satype;
6794 	struct mbuf *result = NULL, *m;
6795 	int len;
6796 	int error = -1;
6797 	struct sadb_lifetime *lt;
6798 
6799 	IPSEC_ASSERT (sav != NULL, ("null sav"));
6800 	IPSEC_ASSERT (sav->sah != NULL, ("null sa header"));
6801 
6802 	/* set msg header */
6803 	satype = key_proto2satype(sav->sah->saidx.proto);
6804 	IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype));
6805 	m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6806 	if (!m) {
6807 		error = ENOBUFS;
6808 		goto fail;
6809 	}
6810 	result = m;
6811 
6812 	/* create SA extension */
6813 	m = key_setsadbsa(sav);
6814 	if (!m) {
6815 		error = ENOBUFS;
6816 		goto fail;
6817 	}
6818 	m_cat(result, m);
6819 
6820 	/* create SA extension */
6821 	m = key_setsadbxsa2(sav->sah->saidx.mode,
6822 			sav->replay ? sav->replay->count : 0,
6823 			sav->sah->saidx.reqid);
6824 	if (!m) {
6825 		error = ENOBUFS;
6826 		goto fail;
6827 	}
6828 	m_cat(result, m);
6829 
6830 	/* create lifetime extension (current and soft) */
6831 	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6832 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
6833 	if (m == NULL) {
6834 		error = ENOBUFS;
6835 		goto fail;
6836 	}
6837 	m_align(m, len);
6838 	m->m_len = len;
6839 	bzero(mtod(m, caddr_t), len);
6840 	lt = mtod(m, struct sadb_lifetime *);
6841 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6842 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6843 	lt->sadb_lifetime_allocations = sav->lft_c->allocations;
6844 	lt->sadb_lifetime_bytes = sav->lft_c->bytes;
6845 	lt->sadb_lifetime_addtime = sav->lft_c->addtime;
6846 	lt->sadb_lifetime_usetime = sav->lft_c->usetime;
6847 	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
6848 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6849 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
6850 	lt->sadb_lifetime_allocations = sav->lft_s->allocations;
6851 	lt->sadb_lifetime_bytes = sav->lft_s->bytes;
6852 	lt->sadb_lifetime_addtime = sav->lft_s->addtime;
6853 	lt->sadb_lifetime_usetime = sav->lft_s->usetime;
6854 	m_cat(result, m);
6855 
6856 	/* set sadb_address for source */
6857 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6858 	    &sav->sah->saidx.src.sa,
6859 	    FULLMASK, IPSEC_ULPROTO_ANY);
6860 	if (!m) {
6861 		error = ENOBUFS;
6862 		goto fail;
6863 	}
6864 	m_cat(result, m);
6865 
6866 	/* set sadb_address for destination */
6867 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6868 	    &sav->sah->saidx.dst.sa,
6869 	    FULLMASK, IPSEC_ULPROTO_ANY);
6870 	if (!m) {
6871 		error = ENOBUFS;
6872 		goto fail;
6873 	}
6874 	m_cat(result, m);
6875 
6876 	/*
6877 	 * XXX-BZ Handle NAT-T extensions here.
6878 	 */
6879 
6880 	if ((result->m_flags & M_PKTHDR) == 0) {
6881 		error = EINVAL;
6882 		goto fail;
6883 	}
6884 
6885 	if (result->m_len < sizeof(struct sadb_msg)) {
6886 		result = m_pullup(result, sizeof(struct sadb_msg));
6887 		if (result == NULL) {
6888 			error = ENOBUFS;
6889 			goto fail;
6890 		}
6891 	}
6892 
6893 	result->m_pkthdr.len = 0;
6894 	for (m = result; m; m = m->m_next)
6895 		result->m_pkthdr.len += m->m_len;
6896 
6897 	mtod(result, struct sadb_msg *)->sadb_msg_len =
6898 	    PFKEY_UNIT64(result->m_pkthdr.len);
6899 
6900 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6901 
6902  fail:
6903 	if (result)
6904 		m_freem(result);
6905 	return error;
6906 }
6907 
6908 /*
6909  * SADB_FLUSH processing
6910  * receive
6911  *   <base>
6912  * from the ikmpd, and free all entries in secastree.
6913  * and send,
6914  *   <base>
6915  * to the ikmpd.
6916  * NOTE: to do is only marking SADB_SASTATE_DEAD.
6917  *
6918  * m will always be freed.
6919  */
6920 static int
6921 key_flush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
6922 {
6923 	struct sadb_msg *newmsg;
6924 	struct secashead *sah, *nextsah;
6925 	struct secasvar *sav, *nextsav;
6926 	u_int16_t proto;
6927 	u_int8_t state;
6928 	u_int stateidx;
6929 
6930 	IPSEC_ASSERT(so != NULL, ("null socket"));
6931 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6932 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6933 
6934 	/* map satype to proto */
6935 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6936 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6937 			__func__));
6938 		return key_senderror(so, m, EINVAL);
6939 	}
6940 
6941 	/* no SATYPE specified, i.e. flushing all SA. */
6942 	SAHTREE_LOCK();
6943 	for (sah = LIST_FIRST(&V_sahtree);
6944 	     sah != NULL;
6945 	     sah = nextsah) {
6946 		nextsah = LIST_NEXT(sah, chain);
6947 
6948 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6949 		 && proto != sah->saidx.proto)
6950 			continue;
6951 
6952 		for (stateidx = 0;
6953 		     stateidx < _ARRAYLEN(saorder_state_alive);
6954 		     stateidx++) {
6955 			state = saorder_state_any[stateidx];
6956 			for (sav = LIST_FIRST(&sah->savtree[state]);
6957 			     sav != NULL;
6958 			     sav = nextsav) {
6959 
6960 				nextsav = LIST_NEXT(sav, chain);
6961 
6962 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
6963 				KEY_FREESAV(&sav);
6964 			}
6965 		}
6966 
6967 		sah->state = SADB_SASTATE_DEAD;
6968 	}
6969 	SAHTREE_UNLOCK();
6970 
6971 	if (m->m_len < sizeof(struct sadb_msg) ||
6972 	    sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
6973 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6974 		return key_senderror(so, m, ENOBUFS);
6975 	}
6976 
6977 	if (m->m_next)
6978 		m_freem(m->m_next);
6979 	m->m_next = NULL;
6980 	m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
6981 	newmsg = mtod(m, struct sadb_msg *);
6982 	newmsg->sadb_msg_errno = 0;
6983 	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
6984 
6985 	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6986 }
6987 
6988 /*
6989  * SADB_DUMP processing
6990  * dump all entries including status of DEAD in SAD.
6991  * receive
6992  *   <base>
6993  * from the ikmpd, and dump all secasvar leaves
6994  * and send,
6995  *   <base> .....
6996  * to the ikmpd.
6997  *
6998  * m will always be freed.
6999  */
7000 static int
7001 key_dump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
7002 {
7003 	struct secashead *sah;
7004 	struct secasvar *sav;
7005 	u_int16_t proto;
7006 	u_int stateidx;
7007 	u_int8_t satype;
7008 	u_int8_t state;
7009 	int cnt;
7010 	struct sadb_msg *newmsg;
7011 	struct mbuf *n;
7012 
7013 	IPSEC_ASSERT(so != NULL, ("null socket"));
7014 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7015 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7016 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7017 
7018 	/* map satype to proto */
7019 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
7020 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
7021 			__func__));
7022 		return key_senderror(so, m, EINVAL);
7023 	}
7024 
7025 	/* count sav entries to be sent to the userland. */
7026 	cnt = 0;
7027 	SAHTREE_LOCK();
7028 	LIST_FOREACH(sah, &V_sahtree, chain) {
7029 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
7030 		 && proto != sah->saidx.proto)
7031 			continue;
7032 
7033 		for (stateidx = 0;
7034 		     stateidx < _ARRAYLEN(saorder_state_any);
7035 		     stateidx++) {
7036 			state = saorder_state_any[stateidx];
7037 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
7038 				cnt++;
7039 			}
7040 		}
7041 	}
7042 
7043 	if (cnt == 0) {
7044 		SAHTREE_UNLOCK();
7045 		return key_senderror(so, m, ENOENT);
7046 	}
7047 
7048 	/* send this to the userland, one at a time. */
7049 	newmsg = NULL;
7050 	LIST_FOREACH(sah, &V_sahtree, chain) {
7051 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
7052 		 && proto != sah->saidx.proto)
7053 			continue;
7054 
7055 		/* map proto to satype */
7056 		if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
7057 			SAHTREE_UNLOCK();
7058 			ipseclog((LOG_DEBUG, "%s: there was invalid proto in "
7059 				"SAD.\n", __func__));
7060 			return key_senderror(so, m, EINVAL);
7061 		}
7062 
7063 		for (stateidx = 0;
7064 		     stateidx < _ARRAYLEN(saorder_state_any);
7065 		     stateidx++) {
7066 			state = saorder_state_any[stateidx];
7067 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
7068 				n = key_setdumpsa(sav, SADB_DUMP, satype,
7069 				    --cnt, mhp->msg->sadb_msg_pid);
7070 				if (!n) {
7071 					SAHTREE_UNLOCK();
7072 					return key_senderror(so, m, ENOBUFS);
7073 				}
7074 				key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
7075 			}
7076 		}
7077 	}
7078 	SAHTREE_UNLOCK();
7079 
7080 	m_freem(m);
7081 	return 0;
7082 }
7083 
7084 /*
7085  * SADB_X_PROMISC processing
7086  *
7087  * m will always be freed.
7088  */
7089 static int
7090 key_promisc(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
7091 {
7092 	int olen;
7093 
7094 	IPSEC_ASSERT(so != NULL, ("null socket"));
7095 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7096 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7097 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7098 
7099 	olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7100 
7101 	if (olen < sizeof(struct sadb_msg)) {
7102 #if 1
7103 		return key_senderror(so, m, EINVAL);
7104 #else
7105 		m_freem(m);
7106 		return 0;
7107 #endif
7108 	} else if (olen == sizeof(struct sadb_msg)) {
7109 		/* enable/disable promisc mode */
7110 		struct keycb *kp;
7111 
7112 		if ((kp = (struct keycb *)sotorawcb(so)) == NULL)
7113 			return key_senderror(so, m, EINVAL);
7114 		mhp->msg->sadb_msg_errno = 0;
7115 		switch (mhp->msg->sadb_msg_satype) {
7116 		case 0:
7117 		case 1:
7118 			kp->kp_promisc = mhp->msg->sadb_msg_satype;
7119 			break;
7120 		default:
7121 			return key_senderror(so, m, EINVAL);
7122 		}
7123 
7124 		/* send the original message back to everyone */
7125 		mhp->msg->sadb_msg_errno = 0;
7126 		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7127 	} else {
7128 		/* send packet as is */
7129 
7130 		m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7131 
7132 		/* TODO: if sadb_msg_seq is specified, send to specific pid */
7133 		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7134 	}
7135 }
7136 
7137 static int (*key_typesw[])(struct socket *, struct mbuf *,
7138 		const struct sadb_msghdr *) = {
7139 	NULL,		/* SADB_RESERVED */
7140 	key_getspi,	/* SADB_GETSPI */
7141 	key_update,	/* SADB_UPDATE */
7142 	key_add,	/* SADB_ADD */
7143 	key_delete,	/* SADB_DELETE */
7144 	key_get,	/* SADB_GET */
7145 	key_acquire2,	/* SADB_ACQUIRE */
7146 	key_register,	/* SADB_REGISTER */
7147 	NULL,		/* SADB_EXPIRE */
7148 	key_flush,	/* SADB_FLUSH */
7149 	key_dump,	/* SADB_DUMP */
7150 	key_promisc,	/* SADB_X_PROMISC */
7151 	NULL,		/* SADB_X_PCHANGE */
7152 	key_spdadd,	/* SADB_X_SPDUPDATE */
7153 	key_spdadd,	/* SADB_X_SPDADD */
7154 	key_spddelete,	/* SADB_X_SPDDELETE */
7155 	key_spdget,	/* SADB_X_SPDGET */
7156 	NULL,		/* SADB_X_SPDACQUIRE */
7157 	key_spddump,	/* SADB_X_SPDDUMP */
7158 	key_spdflush,	/* SADB_X_SPDFLUSH */
7159 	key_spdadd,	/* SADB_X_SPDSETIDX */
7160 	NULL,		/* SADB_X_SPDEXPIRE */
7161 	key_spddelete2,	/* SADB_X_SPDDELETE2 */
7162 };
7163 
7164 /*
7165  * parse sadb_msg buffer to process PFKEYv2,
7166  * and create a data to response if needed.
7167  * I think to be dealed with mbuf directly.
7168  * IN:
7169  *     msgp  : pointer to pointer to a received buffer pulluped.
7170  *             This is rewrited to response.
7171  *     so    : pointer to socket.
7172  * OUT:
7173  *    length for buffer to send to user process.
7174  */
7175 int
7176 key_parse(struct mbuf *m, struct socket *so)
7177 {
7178 	struct sadb_msg *msg;
7179 	struct sadb_msghdr mh;
7180 	u_int orglen;
7181 	int error;
7182 	int target;
7183 
7184 	IPSEC_ASSERT(so != NULL, ("null socket"));
7185 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7186 
7187 #if 0	/*kdebug_sadb assumes msg in linear buffer*/
7188 	KEYDEBUG(KEYDEBUG_KEY_DUMP,
7189 		ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__));
7190 		kdebug_sadb(msg));
7191 #endif
7192 
7193 	if (m->m_len < sizeof(struct sadb_msg)) {
7194 		m = m_pullup(m, sizeof(struct sadb_msg));
7195 		if (!m)
7196 			return ENOBUFS;
7197 	}
7198 	msg = mtod(m, struct sadb_msg *);
7199 	orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7200 	target = KEY_SENDUP_ONE;
7201 
7202 	if ((m->m_flags & M_PKTHDR) == 0 ||
7203 	    m->m_pkthdr.len != m->m_pkthdr.len) {
7204 		ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__));
7205 		PFKEYSTAT_INC(out_invlen);
7206 		error = EINVAL;
7207 		goto senderror;
7208 	}
7209 
7210 	if (msg->sadb_msg_version != PF_KEY_V2) {
7211 		ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n",
7212 		    __func__, msg->sadb_msg_version));
7213 		PFKEYSTAT_INC(out_invver);
7214 		error = EINVAL;
7215 		goto senderror;
7216 	}
7217 
7218 	if (msg->sadb_msg_type > SADB_MAX) {
7219 		ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
7220 		    __func__, msg->sadb_msg_type));
7221 		PFKEYSTAT_INC(out_invmsgtype);
7222 		error = EINVAL;
7223 		goto senderror;
7224 	}
7225 
7226 	/* for old-fashioned code - should be nuked */
7227 	if (m->m_pkthdr.len > MCLBYTES) {
7228 		m_freem(m);
7229 		return ENOBUFS;
7230 	}
7231 	if (m->m_next) {
7232 		struct mbuf *n;
7233 
7234 		MGETHDR(n, M_NOWAIT, MT_DATA);
7235 		if (n && m->m_pkthdr.len > MHLEN) {
7236 			MCLGET(n, M_NOWAIT);
7237 			if ((n->m_flags & M_EXT) == 0) {
7238 				m_free(n);
7239 				n = NULL;
7240 			}
7241 		}
7242 		if (!n) {
7243 			m_freem(m);
7244 			return ENOBUFS;
7245 		}
7246 		m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t));
7247 		n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7248 		n->m_next = NULL;
7249 		m_freem(m);
7250 		m = n;
7251 	}
7252 
7253 	/* align the mbuf chain so that extensions are in contiguous region. */
7254 	error = key_align(m, &mh);
7255 	if (error)
7256 		return error;
7257 
7258 	msg = mh.msg;
7259 
7260 	/* check SA type */
7261 	switch (msg->sadb_msg_satype) {
7262 	case SADB_SATYPE_UNSPEC:
7263 		switch (msg->sadb_msg_type) {
7264 		case SADB_GETSPI:
7265 		case SADB_UPDATE:
7266 		case SADB_ADD:
7267 		case SADB_DELETE:
7268 		case SADB_GET:
7269 		case SADB_ACQUIRE:
7270 		case SADB_EXPIRE:
7271 			ipseclog((LOG_DEBUG, "%s: must specify satype "
7272 			    "when msg type=%u.\n", __func__,
7273 			    msg->sadb_msg_type));
7274 			PFKEYSTAT_INC(out_invsatype);
7275 			error = EINVAL;
7276 			goto senderror;
7277 		}
7278 		break;
7279 	case SADB_SATYPE_AH:
7280 	case SADB_SATYPE_ESP:
7281 	case SADB_X_SATYPE_IPCOMP:
7282 	case SADB_X_SATYPE_TCPSIGNATURE:
7283 		switch (msg->sadb_msg_type) {
7284 		case SADB_X_SPDADD:
7285 		case SADB_X_SPDDELETE:
7286 		case SADB_X_SPDGET:
7287 		case SADB_X_SPDDUMP:
7288 		case SADB_X_SPDFLUSH:
7289 		case SADB_X_SPDSETIDX:
7290 		case SADB_X_SPDUPDATE:
7291 		case SADB_X_SPDDELETE2:
7292 			ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n",
7293 				__func__, msg->sadb_msg_type));
7294 			PFKEYSTAT_INC(out_invsatype);
7295 			error = EINVAL;
7296 			goto senderror;
7297 		}
7298 		break;
7299 	case SADB_SATYPE_RSVP:
7300 	case SADB_SATYPE_OSPFV2:
7301 	case SADB_SATYPE_RIPV2:
7302 	case SADB_SATYPE_MIP:
7303 		ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n",
7304 			__func__, msg->sadb_msg_satype));
7305 		PFKEYSTAT_INC(out_invsatype);
7306 		error = EOPNOTSUPP;
7307 		goto senderror;
7308 	case 1:	/* XXX: What does it do? */
7309 		if (msg->sadb_msg_type == SADB_X_PROMISC)
7310 			break;
7311 		/*FALLTHROUGH*/
7312 	default:
7313 		ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
7314 			__func__, msg->sadb_msg_satype));
7315 		PFKEYSTAT_INC(out_invsatype);
7316 		error = EINVAL;
7317 		goto senderror;
7318 	}
7319 
7320 	/* check field of upper layer protocol and address family */
7321 	if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL
7322 	 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7323 		struct sadb_address *src0, *dst0;
7324 		u_int plen;
7325 
7326 		src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7327 		dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7328 
7329 		/* check upper layer protocol */
7330 		if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7331 			ipseclog((LOG_DEBUG, "%s: upper layer protocol "
7332 				"mismatched.\n", __func__));
7333 			PFKEYSTAT_INC(out_invaddr);
7334 			error = EINVAL;
7335 			goto senderror;
7336 		}
7337 
7338 		/* check family */
7339 		if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7340 		    PFKEY_ADDR_SADDR(dst0)->sa_family) {
7341 			ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
7342 				__func__));
7343 			PFKEYSTAT_INC(out_invaddr);
7344 			error = EINVAL;
7345 			goto senderror;
7346 		}
7347 		if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7348 		    PFKEY_ADDR_SADDR(dst0)->sa_len) {
7349 			ipseclog((LOG_DEBUG, "%s: address struct size "
7350 				"mismatched.\n", __func__));
7351 			PFKEYSTAT_INC(out_invaddr);
7352 			error = EINVAL;
7353 			goto senderror;
7354 		}
7355 
7356 		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7357 		case AF_INET:
7358 			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7359 			    sizeof(struct sockaddr_in)) {
7360 				PFKEYSTAT_INC(out_invaddr);
7361 				error = EINVAL;
7362 				goto senderror;
7363 			}
7364 			break;
7365 		case AF_INET6:
7366 			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7367 			    sizeof(struct sockaddr_in6)) {
7368 				PFKEYSTAT_INC(out_invaddr);
7369 				error = EINVAL;
7370 				goto senderror;
7371 			}
7372 			break;
7373 		default:
7374 			ipseclog((LOG_DEBUG, "%s: unsupported address family\n",
7375 				__func__));
7376 			PFKEYSTAT_INC(out_invaddr);
7377 			error = EAFNOSUPPORT;
7378 			goto senderror;
7379 		}
7380 
7381 		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7382 		case AF_INET:
7383 			plen = sizeof(struct in_addr) << 3;
7384 			break;
7385 		case AF_INET6:
7386 			plen = sizeof(struct in6_addr) << 3;
7387 			break;
7388 		default:
7389 			plen = 0;	/*fool gcc*/
7390 			break;
7391 		}
7392 
7393 		/* check max prefix length */
7394 		if (src0->sadb_address_prefixlen > plen ||
7395 		    dst0->sadb_address_prefixlen > plen) {
7396 			ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n",
7397 				__func__));
7398 			PFKEYSTAT_INC(out_invaddr);
7399 			error = EINVAL;
7400 			goto senderror;
7401 		}
7402 
7403 		/*
7404 		 * prefixlen == 0 is valid because there can be a case when
7405 		 * all addresses are matched.
7406 		 */
7407 	}
7408 
7409 	if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) ||
7410 	    key_typesw[msg->sadb_msg_type] == NULL) {
7411 		PFKEYSTAT_INC(out_invmsgtype);
7412 		error = EINVAL;
7413 		goto senderror;
7414 	}
7415 
7416 	return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
7417 
7418 senderror:
7419 	msg->sadb_msg_errno = error;
7420 	return key_sendup_mbuf(so, m, target);
7421 }
7422 
7423 static int
7424 key_senderror(struct socket *so, struct mbuf *m, int code)
7425 {
7426 	struct sadb_msg *msg;
7427 
7428 	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
7429 		("mbuf too small, len %u", m->m_len));
7430 
7431 	msg = mtod(m, struct sadb_msg *);
7432 	msg->sadb_msg_errno = code;
7433 	return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7434 }
7435 
7436 /*
7437  * set the pointer to each header into message buffer.
7438  * m will be freed on error.
7439  * XXX larger-than-MCLBYTES extension?
7440  */
7441 static int
7442 key_align(struct mbuf *m, struct sadb_msghdr *mhp)
7443 {
7444 	struct mbuf *n;
7445 	struct sadb_ext *ext;
7446 	size_t off, end;
7447 	int extlen;
7448 	int toff;
7449 
7450 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7451 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7452 	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
7453 		("mbuf too small, len %u", m->m_len));
7454 
7455 	/* initialize */
7456 	bzero(mhp, sizeof(*mhp));
7457 
7458 	mhp->msg = mtod(m, struct sadb_msg *);
7459 	mhp->ext[0] = (struct sadb_ext *)mhp->msg;	/*XXX backward compat */
7460 
7461 	end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7462 	extlen = end;	/*just in case extlen is not updated*/
7463 	for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7464 		n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7465 		if (!n) {
7466 			/* m is already freed */
7467 			return ENOBUFS;
7468 		}
7469 		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
7470 
7471 		/* set pointer */
7472 		switch (ext->sadb_ext_type) {
7473 		case SADB_EXT_SA:
7474 		case SADB_EXT_ADDRESS_SRC:
7475 		case SADB_EXT_ADDRESS_DST:
7476 		case SADB_EXT_ADDRESS_PROXY:
7477 		case SADB_EXT_LIFETIME_CURRENT:
7478 		case SADB_EXT_LIFETIME_HARD:
7479 		case SADB_EXT_LIFETIME_SOFT:
7480 		case SADB_EXT_KEY_AUTH:
7481 		case SADB_EXT_KEY_ENCRYPT:
7482 		case SADB_EXT_IDENTITY_SRC:
7483 		case SADB_EXT_IDENTITY_DST:
7484 		case SADB_EXT_SENSITIVITY:
7485 		case SADB_EXT_PROPOSAL:
7486 		case SADB_EXT_SUPPORTED_AUTH:
7487 		case SADB_EXT_SUPPORTED_ENCRYPT:
7488 		case SADB_EXT_SPIRANGE:
7489 		case SADB_X_EXT_POLICY:
7490 		case SADB_X_EXT_SA2:
7491 #ifdef IPSEC_NAT_T
7492 		case SADB_X_EXT_NAT_T_TYPE:
7493 		case SADB_X_EXT_NAT_T_SPORT:
7494 		case SADB_X_EXT_NAT_T_DPORT:
7495 		case SADB_X_EXT_NAT_T_OAI:
7496 		case SADB_X_EXT_NAT_T_OAR:
7497 		case SADB_X_EXT_NAT_T_FRAG:
7498 #endif
7499 			/* duplicate check */
7500 			/*
7501 			 * XXX Are there duplication payloads of either
7502 			 * KEY_AUTH or KEY_ENCRYPT ?
7503 			 */
7504 			if (mhp->ext[ext->sadb_ext_type] != NULL) {
7505 				ipseclog((LOG_DEBUG, "%s: duplicate ext_type "
7506 					"%u\n", __func__, ext->sadb_ext_type));
7507 				m_freem(m);
7508 				PFKEYSTAT_INC(out_dupext);
7509 				return EINVAL;
7510 			}
7511 			break;
7512 		default:
7513 			ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n",
7514 				__func__, ext->sadb_ext_type));
7515 			m_freem(m);
7516 			PFKEYSTAT_INC(out_invexttype);
7517 			return EINVAL;
7518 		}
7519 
7520 		extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7521 
7522 		if (key_validate_ext(ext, extlen)) {
7523 			m_freem(m);
7524 			PFKEYSTAT_INC(out_invlen);
7525 			return EINVAL;
7526 		}
7527 
7528 		n = m_pulldown(m, off, extlen, &toff);
7529 		if (!n) {
7530 			/* m is already freed */
7531 			return ENOBUFS;
7532 		}
7533 		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
7534 
7535 		mhp->ext[ext->sadb_ext_type] = ext;
7536 		mhp->extoff[ext->sadb_ext_type] = off;
7537 		mhp->extlen[ext->sadb_ext_type] = extlen;
7538 	}
7539 
7540 	if (off != end) {
7541 		m_freem(m);
7542 		PFKEYSTAT_INC(out_invlen);
7543 		return EINVAL;
7544 	}
7545 
7546 	return 0;
7547 }
7548 
7549 static int
7550 key_validate_ext(const struct sadb_ext *ext, int len)
7551 {
7552 	const struct sockaddr *sa;
7553 	enum { NONE, ADDR } checktype = NONE;
7554 	int baselen = 0;
7555 	const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7556 
7557 	if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7558 		return EINVAL;
7559 
7560 	/* if it does not match minimum/maximum length, bail */
7561 	if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) ||
7562 	    ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0]))
7563 		return EINVAL;
7564 	if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7565 		return EINVAL;
7566 	if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7567 		return EINVAL;
7568 
7569 	/* more checks based on sadb_ext_type XXX need more */
7570 	switch (ext->sadb_ext_type) {
7571 	case SADB_EXT_ADDRESS_SRC:
7572 	case SADB_EXT_ADDRESS_DST:
7573 	case SADB_EXT_ADDRESS_PROXY:
7574 		baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7575 		checktype = ADDR;
7576 		break;
7577 	case SADB_EXT_IDENTITY_SRC:
7578 	case SADB_EXT_IDENTITY_DST:
7579 		if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7580 		    SADB_X_IDENTTYPE_ADDR) {
7581 			baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7582 			checktype = ADDR;
7583 		} else
7584 			checktype = NONE;
7585 		break;
7586 	default:
7587 		checktype = NONE;
7588 		break;
7589 	}
7590 
7591 	switch (checktype) {
7592 	case NONE:
7593 		break;
7594 	case ADDR:
7595 		sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7596 		if (len < baselen + sal)
7597 			return EINVAL;
7598 		if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7599 			return EINVAL;
7600 		break;
7601 	}
7602 
7603 	return 0;
7604 }
7605 
7606 void
7607 key_init(void)
7608 {
7609 	int i;
7610 
7611 	for (i = 0; i < IPSEC_DIR_MAX; i++)
7612 		LIST_INIT(&V_sptree[i]);
7613 
7614 	LIST_INIT(&V_sahtree);
7615 
7616 	for (i = 0; i <= SADB_SATYPE_MAX; i++)
7617 		LIST_INIT(&V_regtree[i]);
7618 
7619 	LIST_INIT(&V_acqtree);
7620 	LIST_INIT(&V_spacqtree);
7621 
7622 	/* system default */
7623 	V_ip4_def_policy.policy = IPSEC_POLICY_NONE;
7624 	V_ip4_def_policy.refcnt++;	/*never reclaim this*/
7625 
7626 	if (!IS_DEFAULT_VNET(curvnet))
7627 		return;
7628 
7629 	SPTREE_LOCK_INIT();
7630 	REGTREE_LOCK_INIT();
7631 	SAHTREE_LOCK_INIT();
7632 	ACQ_LOCK_INIT();
7633 	SPACQ_LOCK_INIT();
7634 
7635 #ifndef IPSEC_DEBUG2
7636 	callout_init(&key_timer, CALLOUT_MPSAFE);
7637 	callout_reset(&key_timer, hz, key_timehandler, NULL);
7638 #endif /*IPSEC_DEBUG2*/
7639 
7640 	/* initialize key statistics */
7641 	keystat.getspi_count = 1;
7642 
7643 	printf("IPsec: Initialized Security Association Processing.\n");
7644 }
7645 
7646 #ifdef VIMAGE
7647 void
7648 key_destroy(void)
7649 {
7650 	struct secpolicy *sp, *nextsp;
7651 	struct secacq *acq, *nextacq;
7652 	struct secspacq *spacq, *nextspacq;
7653 	struct secashead *sah, *nextsah;
7654 	struct secreg *reg;
7655 	int i;
7656 
7657 	SPTREE_LOCK();
7658 	for (i = 0; i < IPSEC_DIR_MAX; i++) {
7659 		for (sp = LIST_FIRST(&V_sptree[i]);
7660 		    sp != NULL; sp = nextsp) {
7661 			nextsp = LIST_NEXT(sp, chain);
7662 			if (__LIST_CHAINED(sp)) {
7663 				LIST_REMOVE(sp, chain);
7664 				free(sp, M_IPSEC_SP);
7665 			}
7666 		}
7667 	}
7668 	SPTREE_UNLOCK();
7669 
7670 	SAHTREE_LOCK();
7671 	for (sah = LIST_FIRST(&V_sahtree); sah != NULL; sah = nextsah) {
7672 		nextsah = LIST_NEXT(sah, chain);
7673 		if (__LIST_CHAINED(sah)) {
7674 			LIST_REMOVE(sah, chain);
7675 			free(sah, M_IPSEC_SAH);
7676 		}
7677 	}
7678 	SAHTREE_UNLOCK();
7679 
7680 	REGTREE_LOCK();
7681 	for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7682 		LIST_FOREACH(reg, &V_regtree[i], chain) {
7683 			if (__LIST_CHAINED(reg)) {
7684 				LIST_REMOVE(reg, chain);
7685 				free(reg, M_IPSEC_SAR);
7686 				break;
7687 			}
7688 		}
7689 	}
7690 	REGTREE_UNLOCK();
7691 
7692 	ACQ_LOCK();
7693 	for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) {
7694 		nextacq = LIST_NEXT(acq, chain);
7695 		if (__LIST_CHAINED(acq)) {
7696 			LIST_REMOVE(acq, chain);
7697 			free(acq, M_IPSEC_SAQ);
7698 		}
7699 	}
7700 	ACQ_UNLOCK();
7701 
7702 	SPACQ_LOCK();
7703 	for (spacq = LIST_FIRST(&V_spacqtree); spacq != NULL;
7704 	    spacq = nextspacq) {
7705 		nextspacq = LIST_NEXT(spacq, chain);
7706 		if (__LIST_CHAINED(spacq)) {
7707 			LIST_REMOVE(spacq, chain);
7708 			free(spacq, M_IPSEC_SAQ);
7709 		}
7710 	}
7711 	SPACQ_UNLOCK();
7712 }
7713 #endif
7714 
7715 /*
7716  * XXX: maybe This function is called after INBOUND IPsec processing.
7717  *
7718  * Special check for tunnel-mode packets.
7719  * We must make some checks for consistency between inner and outer IP header.
7720  *
7721  * xxx more checks to be provided
7722  */
7723 int
7724 key_checktunnelsanity(struct secasvar *sav, u_int family, caddr_t src,
7725     caddr_t dst)
7726 {
7727 	IPSEC_ASSERT(sav->sah != NULL, ("null SA header"));
7728 
7729 	/* XXX: check inner IP header */
7730 
7731 	return 1;
7732 }
7733 
7734 /* record data transfer on SA, and update timestamps */
7735 void
7736 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m)
7737 {
7738 	IPSEC_ASSERT(sav != NULL, ("Null secasvar"));
7739 	IPSEC_ASSERT(m != NULL, ("Null mbuf"));
7740 	if (!sav->lft_c)
7741 		return;
7742 
7743 	/*
7744 	 * XXX Currently, there is a difference of bytes size
7745 	 * between inbound and outbound processing.
7746 	 */
7747 	sav->lft_c->bytes += m->m_pkthdr.len;
7748 	/* to check bytes lifetime is done in key_timehandler(). */
7749 
7750 	/*
7751 	 * We use the number of packets as the unit of
7752 	 * allocations.  We increment the variable
7753 	 * whenever {esp,ah}_{in,out}put is called.
7754 	 */
7755 	sav->lft_c->allocations++;
7756 	/* XXX check for expires? */
7757 
7758 	/*
7759 	 * NOTE: We record CURRENT usetime by using wall clock,
7760 	 * in seconds.  HARD and SOFT lifetime are measured by the time
7761 	 * difference (again in seconds) from usetime.
7762 	 *
7763 	 *	usetime
7764 	 *	v     expire   expire
7765 	 * -----+-----+--------+---> t
7766 	 *	<--------------> HARD
7767 	 *	<-----> SOFT
7768 	 */
7769 	sav->lft_c->usetime = time_second;
7770 	/* XXX check for expires? */
7771 
7772 	return;
7773 }
7774 
7775 static void
7776 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
7777 {
7778 	IPSEC_ASSERT(sav != NULL, ("NULL sav"));
7779 	SAHTREE_LOCK_ASSERT();
7780 
7781 	if (sav->state != state) {
7782 		if (__LIST_CHAINED(sav))
7783 			LIST_REMOVE(sav, chain);
7784 		sav->state = state;
7785 		LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7786 	}
7787 }
7788 
7789 void
7790 key_sa_stir_iv(struct secasvar *sav)
7791 {
7792 
7793 	IPSEC_ASSERT(sav->iv != NULL, ("null IV"));
7794 	key_randomfill(sav->iv, sav->ivlen);
7795 }
7796 
7797 /*
7798  * Take one of the kernel's security keys and convert it into a PF_KEY
7799  * structure within an mbuf, suitable for sending up to a waiting
7800  * application in user land.
7801  *
7802  * IN:
7803  *    src: A pointer to a kernel security key.
7804  *    exttype: Which type of key this is. Refer to the PF_KEY data structures.
7805  * OUT:
7806  *    a valid mbuf or NULL indicating an error
7807  *
7808  */
7809 
7810 static struct mbuf *
7811 key_setkey(struct seckey *src, u_int16_t exttype)
7812 {
7813 	struct mbuf *m;
7814 	struct sadb_key *p;
7815 	int len;
7816 
7817 	if (src == NULL)
7818 		return NULL;
7819 
7820 	len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src));
7821 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
7822 	if (m == NULL)
7823 		return NULL;
7824 	m_align(m, len);
7825 	m->m_len = len;
7826 	p = mtod(m, struct sadb_key *);
7827 	bzero(p, len);
7828 	p->sadb_key_len = PFKEY_UNIT64(len);
7829 	p->sadb_key_exttype = exttype;
7830 	p->sadb_key_bits = src->bits;
7831 	bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src));
7832 
7833 	return m;
7834 }
7835 
7836 /*
7837  * Take one of the kernel's lifetime data structures and convert it
7838  * into a PF_KEY structure within an mbuf, suitable for sending up to
7839  * a waiting application in user land.
7840  *
7841  * IN:
7842  *    src: A pointer to a kernel lifetime structure.
7843  *    exttype: Which type of lifetime this is. Refer to the PF_KEY
7844  *             data structures for more information.
7845  * OUT:
7846  *    a valid mbuf or NULL indicating an error
7847  *
7848  */
7849 
7850 static struct mbuf *
7851 key_setlifetime(struct seclifetime *src, u_int16_t exttype)
7852 {
7853 	struct mbuf *m = NULL;
7854 	struct sadb_lifetime *p;
7855 	int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime));
7856 
7857 	if (src == NULL)
7858 		return NULL;
7859 
7860 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
7861 	if (m == NULL)
7862 		return m;
7863 	m_align(m, len);
7864 	m->m_len = len;
7865 	p = mtod(m, struct sadb_lifetime *);
7866 
7867 	bzero(p, len);
7868 	p->sadb_lifetime_len = PFKEY_UNIT64(len);
7869 	p->sadb_lifetime_exttype = exttype;
7870 	p->sadb_lifetime_allocations = src->allocations;
7871 	p->sadb_lifetime_bytes = src->bytes;
7872 	p->sadb_lifetime_addtime = src->addtime;
7873 	p->sadb_lifetime_usetime = src->usetime;
7874 
7875 	return m;
7876 
7877 }
7878