1 /* $FreeBSD$ */ 2 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ 3 4 /*- 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * This code is referd to RFC 2367 35 */ 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 #include "opt_ipsec.h" 40 41 #include <sys/types.h> 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/mutex.h> 47 #include <sys/mbuf.h> 48 #include <sys/domain.h> 49 #include <sys/protosw.h> 50 #include <sys/malloc.h> 51 #include <sys/socket.h> 52 #include <sys/socketvar.h> 53 #include <sys/sysctl.h> 54 #include <sys/errno.h> 55 #include <sys/proc.h> 56 #include <sys/queue.h> 57 #include <sys/refcount.h> 58 #include <sys/syslog.h> 59 60 #include <net/if.h> 61 #include <net/route.h> 62 #include <net/raw_cb.h> 63 64 #include <netinet/in.h> 65 #include <netinet/in_systm.h> 66 #include <netinet/ip.h> 67 #include <netinet/in_var.h> 68 69 #ifdef INET6 70 #include <netinet/ip6.h> 71 #include <netinet6/in6_var.h> 72 #include <netinet6/ip6_var.h> 73 #endif /* INET6 */ 74 75 #ifdef INET 76 #include <netinet/in_pcb.h> 77 #endif 78 #ifdef INET6 79 #include <netinet6/in6_pcb.h> 80 #endif /* INET6 */ 81 82 #include <net/pfkeyv2.h> 83 #include <netipsec/keydb.h> 84 #include <netipsec/key.h> 85 #include <netipsec/keysock.h> 86 #include <netipsec/key_debug.h> 87 88 #include <netipsec/ipsec.h> 89 #ifdef INET6 90 #include <netipsec/ipsec6.h> 91 #endif 92 93 #include <netipsec/xform.h> 94 95 #include <machine/stdarg.h> 96 97 /* randomness */ 98 #include <sys/random.h> 99 100 #define FULLMASK 0xff 101 #define _BITS(bytes) ((bytes) << 3) 102 103 /* 104 * Note on SA reference counting: 105 * - SAs that are not in DEAD state will have (total external reference + 1) 106 * following value in reference count field. they cannot be freed and are 107 * referenced from SA header. 108 * - SAs that are in DEAD state will have (total external reference) 109 * in reference count field. they are ready to be freed. reference from 110 * SA header will be removed in key_delsav(), when the reference count 111 * field hits 0 (= no external reference other than from SA header. 112 */ 113 114 u_int32_t key_debug_level = 0; 115 static u_int key_spi_trycnt = 1000; 116 static u_int32_t key_spi_minval = 0x100; 117 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */ 118 static u_int32_t policy_id = 0; 119 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/ 120 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/ 121 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/ 122 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/ 123 static int key_preferred_oldsa = 1; /* preferred old sa rather than new sa.*/ 124 125 static u_int32_t acq_seq = 0; 126 127 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */ 128 static struct mtx sptree_lock; 129 #define SPTREE_LOCK_INIT() \ 130 mtx_init(&sptree_lock, "sptree", \ 131 "fast ipsec security policy database", MTX_DEF) 132 #define SPTREE_LOCK_DESTROY() mtx_destroy(&sptree_lock) 133 #define SPTREE_LOCK() mtx_lock(&sptree_lock) 134 #define SPTREE_UNLOCK() mtx_unlock(&sptree_lock) 135 #define SPTREE_LOCK_ASSERT() mtx_assert(&sptree_lock, MA_OWNED) 136 137 static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */ 138 static struct mtx sahtree_lock; 139 #define SAHTREE_LOCK_INIT() \ 140 mtx_init(&sahtree_lock, "sahtree", \ 141 "fast ipsec security association database", MTX_DEF) 142 #define SAHTREE_LOCK_DESTROY() mtx_destroy(&sahtree_lock) 143 #define SAHTREE_LOCK() mtx_lock(&sahtree_lock) 144 #define SAHTREE_UNLOCK() mtx_unlock(&sahtree_lock) 145 #define SAHTREE_LOCK_ASSERT() mtx_assert(&sahtree_lock, MA_OWNED) 146 147 /* registed list */ 148 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1]; 149 static struct mtx regtree_lock; 150 #define REGTREE_LOCK_INIT() \ 151 mtx_init(®tree_lock, "regtree", "fast ipsec regtree", MTX_DEF) 152 #define REGTREE_LOCK_DESTROY() mtx_destroy(®tree_lock) 153 #define REGTREE_LOCK() mtx_lock(®tree_lock) 154 #define REGTREE_UNLOCK() mtx_unlock(®tree_lock) 155 #define REGTREE_LOCK_ASSERT() mtx_assert(®tree_lock, MA_OWNED) 156 157 static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */ 158 static struct mtx acq_lock; 159 #define ACQ_LOCK_INIT() \ 160 mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF) 161 #define ACQ_LOCK_DESTROY() mtx_destroy(&acq_lock) 162 #define ACQ_LOCK() mtx_lock(&acq_lock) 163 #define ACQ_UNLOCK() mtx_unlock(&acq_lock) 164 #define ACQ_LOCK_ASSERT() mtx_assert(&acq_lock, MA_OWNED) 165 166 static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */ 167 static struct mtx spacq_lock; 168 #define SPACQ_LOCK_INIT() \ 169 mtx_init(&spacq_lock, "spacqtree", \ 170 "fast ipsec security policy acquire list", MTX_DEF) 171 #define SPACQ_LOCK_DESTROY() mtx_destroy(&spacq_lock) 172 #define SPACQ_LOCK() mtx_lock(&spacq_lock) 173 #define SPACQ_UNLOCK() mtx_unlock(&spacq_lock) 174 #define SPACQ_LOCK_ASSERT() mtx_assert(&spacq_lock, MA_OWNED) 175 176 /* search order for SAs */ 177 static const u_int saorder_state_valid_prefer_old[] = { 178 SADB_SASTATE_DYING, SADB_SASTATE_MATURE, 179 }; 180 static const u_int saorder_state_valid_prefer_new[] = { 181 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 182 }; 183 static u_int saorder_state_alive[] = { 184 /* except DEAD */ 185 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL 186 }; 187 static u_int saorder_state_any[] = { 188 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 189 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD 190 }; 191 192 static const int minsize[] = { 193 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 194 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 195 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 196 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 197 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 198 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ 199 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ 200 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ 201 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ 202 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ 203 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ 204 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ 205 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ 206 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ 207 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ 208 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ 209 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 210 0, /* SADB_X_EXT_KMPRIVATE */ 211 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ 212 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 213 }; 214 static const int maxsize[] = { 215 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 216 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 217 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 218 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 219 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 220 0, /* SADB_EXT_ADDRESS_SRC */ 221 0, /* SADB_EXT_ADDRESS_DST */ 222 0, /* SADB_EXT_ADDRESS_PROXY */ 223 0, /* SADB_EXT_KEY_AUTH */ 224 0, /* SADB_EXT_KEY_ENCRYPT */ 225 0, /* SADB_EXT_IDENTITY_SRC */ 226 0, /* SADB_EXT_IDENTITY_DST */ 227 0, /* SADB_EXT_SENSITIVITY */ 228 0, /* SADB_EXT_PROPOSAL */ 229 0, /* SADB_EXT_SUPPORTED_AUTH */ 230 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ 231 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 232 0, /* SADB_X_EXT_KMPRIVATE */ 233 0, /* SADB_X_EXT_POLICY */ 234 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 235 }; 236 237 static int ipsec_esp_keymin = 256; 238 static int ipsec_esp_auth = 0; 239 static int ipsec_ah_keymin = 128; 240 241 #ifdef SYSCTL_DECL 242 SYSCTL_DECL(_net_key); 243 #endif 244 245 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \ 246 &key_debug_level, 0, ""); 247 248 /* max count of trial for the decision of spi value */ 249 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \ 250 &key_spi_trycnt, 0, ""); 251 252 /* minimum spi value to allocate automatically. */ 253 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \ 254 &key_spi_minval, 0, ""); 255 256 /* maximun spi value to allocate automatically. */ 257 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \ 258 &key_spi_maxval, 0, ""); 259 260 /* interval to initialize randseed */ 261 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \ 262 &key_int_random, 0, ""); 263 264 /* lifetime for larval SA */ 265 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \ 266 &key_larval_lifetime, 0, ""); 267 268 /* counter for blocking to send SADB_ACQUIRE to IKEd */ 269 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \ 270 &key_blockacq_count, 0, ""); 271 272 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ 273 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \ 274 &key_blockacq_lifetime, 0, ""); 275 276 /* ESP auth */ 277 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \ 278 &ipsec_esp_auth, 0, ""); 279 280 /* minimum ESP key length */ 281 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \ 282 &ipsec_esp_keymin, 0, ""); 283 284 /* minimum AH key length */ 285 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \ 286 &ipsec_ah_keymin, 0, ""); 287 288 /* perfered old SA rather than new SA */ 289 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, preferred_oldsa, CTLFLAG_RW,\ 290 &key_preferred_oldsa, 0, ""); 291 292 #define __LIST_CHAINED(elm) \ 293 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) 294 #define LIST_INSERT_TAIL(head, elm, type, field) \ 295 do {\ 296 struct type *curelm = LIST_FIRST(head); \ 297 if (curelm == NULL) {\ 298 LIST_INSERT_HEAD(head, elm, field); \ 299 } else { \ 300 while (LIST_NEXT(curelm, field)) \ 301 curelm = LIST_NEXT(curelm, field);\ 302 LIST_INSERT_AFTER(curelm, elm, field);\ 303 }\ 304 } while (0) 305 306 #define KEY_CHKSASTATE(head, sav, name) \ 307 do { \ 308 if ((head) != (sav)) { \ 309 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \ 310 (name), (head), (sav))); \ 311 continue; \ 312 } \ 313 } while (0) 314 315 #define KEY_CHKSPDIR(head, sp, name) \ 316 do { \ 317 if ((head) != (sp)) { \ 318 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \ 319 "anyway continue.\n", \ 320 (name), (head), (sp))); \ 321 } \ 322 } while (0) 323 324 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association"); 325 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head"); 326 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy"); 327 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request"); 328 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous"); 329 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire"); 330 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire"); 331 332 /* 333 * set parameters into secpolicyindex buffer. 334 * Must allocate secpolicyindex buffer passed to this function. 335 */ 336 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \ 337 do { \ 338 bzero((idx), sizeof(struct secpolicyindex)); \ 339 (idx)->dir = (_dir); \ 340 (idx)->prefs = (ps); \ 341 (idx)->prefd = (pd); \ 342 (idx)->ul_proto = (ulp); \ 343 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 344 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 345 } while (0) 346 347 /* 348 * set parameters into secasindex buffer. 349 * Must allocate secasindex buffer before calling this function. 350 */ 351 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \ 352 do { \ 353 bzero((idx), sizeof(struct secasindex)); \ 354 (idx)->proto = (p); \ 355 (idx)->mode = (m); \ 356 (idx)->reqid = (r); \ 357 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 358 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 359 } while (0) 360 361 /* key statistics */ 362 struct _keystat { 363 u_long getspi_count; /* the avarage of count to try to get new SPI */ 364 } keystat; 365 366 struct sadb_msghdr { 367 struct sadb_msg *msg; 368 struct sadb_ext *ext[SADB_EXT_MAX + 1]; 369 int extoff[SADB_EXT_MAX + 1]; 370 int extlen[SADB_EXT_MAX + 1]; 371 }; 372 373 static struct secasvar *key_allocsa_policy __P((const struct secasindex *)); 374 static void key_freesp_so __P((struct secpolicy **)); 375 static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int)); 376 static void key_delsp __P((struct secpolicy *)); 377 static struct secpolicy *key_getsp __P((struct secpolicyindex *)); 378 static void _key_delsp(struct secpolicy *sp); 379 static struct secpolicy *key_getspbyid __P((u_int32_t)); 380 static u_int32_t key_newreqid __P((void)); 381 static struct mbuf *key_gather_mbuf __P((struct mbuf *, 382 const struct sadb_msghdr *, int, int, ...)); 383 static int key_spdadd __P((struct socket *, struct mbuf *, 384 const struct sadb_msghdr *)); 385 static u_int32_t key_getnewspid __P((void)); 386 static int key_spddelete __P((struct socket *, struct mbuf *, 387 const struct sadb_msghdr *)); 388 static int key_spddelete2 __P((struct socket *, struct mbuf *, 389 const struct sadb_msghdr *)); 390 static int key_spdget __P((struct socket *, struct mbuf *, 391 const struct sadb_msghdr *)); 392 static int key_spdflush __P((struct socket *, struct mbuf *, 393 const struct sadb_msghdr *)); 394 static int key_spddump __P((struct socket *, struct mbuf *, 395 const struct sadb_msghdr *)); 396 static struct mbuf *key_setdumpsp __P((struct secpolicy *, 397 u_int8_t, u_int32_t, u_int32_t)); 398 static u_int key_getspreqmsglen __P((struct secpolicy *)); 399 static int key_spdexpire __P((struct secpolicy *)); 400 static struct secashead *key_newsah __P((struct secasindex *)); 401 static void key_delsah __P((struct secashead *)); 402 static struct secasvar *key_newsav __P((struct mbuf *, 403 const struct sadb_msghdr *, struct secashead *, int *, 404 const char*, int)); 405 #define KEY_NEWSAV(m, sadb, sah, e) \ 406 key_newsav(m, sadb, sah, e, __FILE__, __LINE__) 407 static void key_delsav __P((struct secasvar *)); 408 static struct secashead *key_getsah __P((struct secasindex *)); 409 static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t)); 410 static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t)); 411 static int key_setsaval __P((struct secasvar *, struct mbuf *, 412 const struct sadb_msghdr *)); 413 static int key_mature __P((struct secasvar *)); 414 static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t, 415 u_int8_t, u_int32_t, u_int32_t)); 416 static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t, 417 u_int32_t, pid_t, u_int16_t)); 418 static struct mbuf *key_setsadbsa __P((struct secasvar *)); 419 static struct mbuf *key_setsadbaddr __P((u_int16_t, 420 const struct sockaddr *, u_int8_t, u_int16_t)); 421 static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t)); 422 static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t, 423 u_int32_t)); 424 static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int, 425 struct malloc_type *); 426 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src, 427 struct malloc_type *type); 428 #ifdef INET6 429 static int key_ismyaddr6 __P((struct sockaddr_in6 *)); 430 #endif 431 432 /* flags for key_cmpsaidx() */ 433 #define CMP_HEAD 1 /* protocol, addresses. */ 434 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ 435 #define CMP_REQID 3 /* additionally HEAD, reaid. */ 436 #define CMP_EXACTLY 4 /* all elements. */ 437 static int key_cmpsaidx 438 __P((const struct secasindex *, const struct secasindex *, int)); 439 440 static int key_cmpspidx_exactly 441 __P((struct secpolicyindex *, struct secpolicyindex *)); 442 static int key_cmpspidx_withmask 443 __P((struct secpolicyindex *, struct secpolicyindex *)); 444 static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int)); 445 static int key_bbcmp __P((const void *, const void *, u_int)); 446 static u_int16_t key_satype2proto __P((u_int8_t)); 447 static u_int8_t key_proto2satype __P((u_int16_t)); 448 449 static int key_getspi __P((struct socket *, struct mbuf *, 450 const struct sadb_msghdr *)); 451 static u_int32_t key_do_getnewspi __P((struct sadb_spirange *, 452 struct secasindex *)); 453 static int key_update __P((struct socket *, struct mbuf *, 454 const struct sadb_msghdr *)); 455 #ifdef IPSEC_DOSEQCHECK 456 static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t)); 457 #endif 458 static int key_add __P((struct socket *, struct mbuf *, 459 const struct sadb_msghdr *)); 460 static int key_setident __P((struct secashead *, struct mbuf *, 461 const struct sadb_msghdr *)); 462 static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *, 463 const struct sadb_msghdr *)); 464 static int key_delete __P((struct socket *, struct mbuf *, 465 const struct sadb_msghdr *)); 466 static int key_get __P((struct socket *, struct mbuf *, 467 const struct sadb_msghdr *)); 468 469 static void key_getcomb_setlifetime __P((struct sadb_comb *)); 470 static struct mbuf *key_getcomb_esp __P((void)); 471 static struct mbuf *key_getcomb_ah __P((void)); 472 static struct mbuf *key_getcomb_ipcomp __P((void)); 473 static struct mbuf *key_getprop __P((const struct secasindex *)); 474 475 static int key_acquire __P((const struct secasindex *, struct secpolicy *)); 476 static struct secacq *key_newacq __P((const struct secasindex *)); 477 static struct secacq *key_getacq __P((const struct secasindex *)); 478 static struct secacq *key_getacqbyseq __P((u_int32_t)); 479 static struct secspacq *key_newspacq __P((struct secpolicyindex *)); 480 static struct secspacq *key_getspacq __P((struct secpolicyindex *)); 481 static int key_acquire2 __P((struct socket *, struct mbuf *, 482 const struct sadb_msghdr *)); 483 static int key_register __P((struct socket *, struct mbuf *, 484 const struct sadb_msghdr *)); 485 static int key_expire __P((struct secasvar *)); 486 static int key_flush __P((struct socket *, struct mbuf *, 487 const struct sadb_msghdr *)); 488 static int key_dump __P((struct socket *, struct mbuf *, 489 const struct sadb_msghdr *)); 490 static int key_promisc __P((struct socket *, struct mbuf *, 491 const struct sadb_msghdr *)); 492 static int key_senderror __P((struct socket *, struct mbuf *, int)); 493 static int key_validate_ext __P((const struct sadb_ext *, int)); 494 static int key_align __P((struct mbuf *, struct sadb_msghdr *)); 495 static struct mbuf *key_setlifetime(struct seclifetime *src, 496 u_int16_t exttype); 497 static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype); 498 499 #if 0 500 static const char *key_getfqdn __P((void)); 501 static const char *key_getuserfqdn __P((void)); 502 #endif 503 static void key_sa_chgstate __P((struct secasvar *, u_int8_t)); 504 static struct mbuf *key_alloc_mbuf __P((int)); 505 506 static __inline void 507 sa_initref(struct secasvar *sav) 508 { 509 510 refcount_init(&sav->refcnt, 1); 511 } 512 static __inline void 513 sa_addref(struct secasvar *sav) 514 { 515 516 refcount_acquire(&sav->refcnt); 517 IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow")); 518 } 519 static __inline int 520 sa_delref(struct secasvar *sav) 521 { 522 523 IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow")); 524 return (refcount_release(&sav->refcnt)); 525 } 526 527 #define SP_ADDREF(p) do { \ 528 (p)->refcnt++; \ 529 IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow")); \ 530 } while (0) 531 #define SP_DELREF(p) do { \ 532 IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow")); \ 533 (p)->refcnt--; \ 534 } while (0) 535 536 537 /* 538 * Update the refcnt while holding the SPTREE lock. 539 */ 540 void 541 key_addref(struct secpolicy *sp) 542 { 543 SPTREE_LOCK(); 544 SP_ADDREF(sp); 545 SPTREE_UNLOCK(); 546 } 547 548 /* 549 * Return 0 when there are known to be no SP's for the specified 550 * direction. Otherwise return 1. This is used by IPsec code 551 * to optimize performance. 552 */ 553 int 554 key_havesp(u_int dir) 555 { 556 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? 557 LIST_FIRST(&sptree[dir]) != NULL : 1); 558 } 559 560 /* %%% IPsec policy management */ 561 /* 562 * allocating a SP for OUTBOUND or INBOUND packet. 563 * Must call key_freesp() later. 564 * OUT: NULL: not found 565 * others: found and return the pointer. 566 */ 567 struct secpolicy * 568 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag) 569 { 570 struct secpolicy *sp; 571 572 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 573 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 574 ("invalid direction %u", dir)); 575 576 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 577 printf("DP %s from %s:%u\n", __func__, where, tag)); 578 579 /* get a SP entry */ 580 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 581 printf("*** objects\n"); 582 kdebug_secpolicyindex(spidx)); 583 584 SPTREE_LOCK(); 585 LIST_FOREACH(sp, &sptree[dir], chain) { 586 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 587 printf("*** in SPD\n"); 588 kdebug_secpolicyindex(&sp->spidx)); 589 590 if (sp->state == IPSEC_SPSTATE_DEAD) 591 continue; 592 if (key_cmpspidx_withmask(&sp->spidx, spidx)) 593 goto found; 594 } 595 sp = NULL; 596 found: 597 if (sp) { 598 /* sanity check */ 599 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 600 601 /* found a SPD entry */ 602 sp->lastused = time_second; 603 SP_ADDREF(sp); 604 } 605 SPTREE_UNLOCK(); 606 607 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 608 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 609 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 610 return sp; 611 } 612 613 /* 614 * allocating a SP for OUTBOUND or INBOUND packet. 615 * Must call key_freesp() later. 616 * OUT: NULL: not found 617 * others: found and return the pointer. 618 */ 619 struct secpolicy * 620 key_allocsp2(u_int32_t spi, 621 union sockaddr_union *dst, 622 u_int8_t proto, 623 u_int dir, 624 const char* where, int tag) 625 { 626 struct secpolicy *sp; 627 628 IPSEC_ASSERT(dst != NULL, ("null dst")); 629 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 630 ("invalid direction %u", dir)); 631 632 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 633 printf("DP %s from %s:%u\n", __func__, where, tag)); 634 635 /* get a SP entry */ 636 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 637 printf("*** objects\n"); 638 printf("spi %u proto %u dir %u\n", spi, proto, dir); 639 kdebug_sockaddr(&dst->sa)); 640 641 SPTREE_LOCK(); 642 LIST_FOREACH(sp, &sptree[dir], chain) { 643 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 644 printf("*** in SPD\n"); 645 kdebug_secpolicyindex(&sp->spidx)); 646 647 if (sp->state == IPSEC_SPSTATE_DEAD) 648 continue; 649 /* compare simple values, then dst address */ 650 if (sp->spidx.ul_proto != proto) 651 continue; 652 /* NB: spi's must exist and match */ 653 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi) 654 continue; 655 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0) 656 goto found; 657 } 658 sp = NULL; 659 found: 660 if (sp) { 661 /* sanity check */ 662 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 663 664 /* found a SPD entry */ 665 sp->lastused = time_second; 666 SP_ADDREF(sp); 667 } 668 SPTREE_UNLOCK(); 669 670 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 671 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 672 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 673 return sp; 674 } 675 676 /* 677 * return a policy that matches this particular inbound packet. 678 * XXX slow 679 */ 680 struct secpolicy * 681 key_gettunnel(const struct sockaddr *osrc, 682 const struct sockaddr *odst, 683 const struct sockaddr *isrc, 684 const struct sockaddr *idst, 685 const char* where, int tag) 686 { 687 struct secpolicy *sp; 688 const int dir = IPSEC_DIR_INBOUND; 689 struct ipsecrequest *r1, *r2, *p; 690 struct secpolicyindex spidx; 691 692 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 693 printf("DP %s from %s:%u\n", __func__, where, tag)); 694 695 if (isrc->sa_family != idst->sa_family) { 696 ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.", 697 __func__, isrc->sa_family, idst->sa_family)); 698 sp = NULL; 699 goto done; 700 } 701 702 SPTREE_LOCK(); 703 LIST_FOREACH(sp, &sptree[dir], chain) { 704 if (sp->state == IPSEC_SPSTATE_DEAD) 705 continue; 706 707 r1 = r2 = NULL; 708 for (p = sp->req; p; p = p->next) { 709 if (p->saidx.mode != IPSEC_MODE_TUNNEL) 710 continue; 711 712 r1 = r2; 713 r2 = p; 714 715 if (!r1) { 716 /* here we look at address matches only */ 717 spidx = sp->spidx; 718 if (isrc->sa_len > sizeof(spidx.src) || 719 idst->sa_len > sizeof(spidx.dst)) 720 continue; 721 bcopy(isrc, &spidx.src, isrc->sa_len); 722 bcopy(idst, &spidx.dst, idst->sa_len); 723 if (!key_cmpspidx_withmask(&sp->spidx, &spidx)) 724 continue; 725 } else { 726 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) || 727 key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0)) 728 continue; 729 } 730 731 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) || 732 key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0)) 733 continue; 734 735 goto found; 736 } 737 } 738 sp = NULL; 739 found: 740 if (sp) { 741 sp->lastused = time_second; 742 SP_ADDREF(sp); 743 } 744 SPTREE_UNLOCK(); 745 done: 746 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 747 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 748 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 749 return sp; 750 } 751 752 /* 753 * allocating an SA entry for an *OUTBOUND* packet. 754 * checking each request entries in SP, and acquire an SA if need. 755 * OUT: 0: there are valid requests. 756 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. 757 */ 758 int 759 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx) 760 { 761 u_int level; 762 int error; 763 764 IPSEC_ASSERT(isr != NULL, ("null isr")); 765 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 766 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT || 767 saidx->mode == IPSEC_MODE_TUNNEL, 768 ("unexpected policy %u", saidx->mode)); 769 770 /* 771 * XXX guard against protocol callbacks from the crypto 772 * thread as they reference ipsecrequest.sav which we 773 * temporarily null out below. Need to rethink how we 774 * handle bundled SA's in the callback thread. 775 */ 776 IPSECREQUEST_LOCK_ASSERT(isr); 777 778 /* get current level */ 779 level = ipsec_get_reqlevel(isr); 780 #if 0 781 /* 782 * We do allocate new SA only if the state of SA in the holder is 783 * SADB_SASTATE_DEAD. The SA for outbound must be the oldest. 784 */ 785 if (isr->sav != NULL) { 786 if (isr->sav->sah == NULL) 787 panic("%s: sah is null.\n", __func__); 788 if (isr->sav == (struct secasvar *)LIST_FIRST( 789 &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) { 790 KEY_FREESAV(&isr->sav); 791 isr->sav = NULL; 792 } 793 } 794 #else 795 /* 796 * we free any SA stashed in the IPsec request because a different 797 * SA may be involved each time this request is checked, either 798 * because new SAs are being configured, or this request is 799 * associated with an unconnected datagram socket, or this request 800 * is associated with a system default policy. 801 * 802 * The operation may have negative impact to performance. We may 803 * want to check cached SA carefully, rather than picking new SA 804 * every time. 805 */ 806 if (isr->sav != NULL) { 807 KEY_FREESAV(&isr->sav); 808 isr->sav = NULL; 809 } 810 #endif 811 812 /* 813 * new SA allocation if no SA found. 814 * key_allocsa_policy should allocate the oldest SA available. 815 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt. 816 */ 817 if (isr->sav == NULL) 818 isr->sav = key_allocsa_policy(saidx); 819 820 /* When there is SA. */ 821 if (isr->sav != NULL) { 822 if (isr->sav->state != SADB_SASTATE_MATURE && 823 isr->sav->state != SADB_SASTATE_DYING) 824 return EINVAL; 825 return 0; 826 } 827 828 /* there is no SA */ 829 error = key_acquire(saidx, isr->sp); 830 if (error != 0) { 831 /* XXX What should I do ? */ 832 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 833 __func__, error)); 834 return error; 835 } 836 837 if (level != IPSEC_LEVEL_REQUIRE) { 838 /* XXX sigh, the interface to this routine is botched */ 839 IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA")); 840 return 0; 841 } else { 842 return ENOENT; 843 } 844 } 845 846 /* 847 * allocating a SA for policy entry from SAD. 848 * NOTE: searching SAD of aliving state. 849 * OUT: NULL: not found. 850 * others: found and return the pointer. 851 */ 852 static struct secasvar * 853 key_allocsa_policy(const struct secasindex *saidx) 854 { 855 #define N(a) _ARRAYLEN(a) 856 struct secashead *sah; 857 struct secasvar *sav; 858 u_int stateidx, arraysize; 859 const u_int *state_valid; 860 861 SAHTREE_LOCK(); 862 LIST_FOREACH(sah, &sahtree, chain) { 863 if (sah->state == SADB_SASTATE_DEAD) 864 continue; 865 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) { 866 if (key_preferred_oldsa) { 867 state_valid = saorder_state_valid_prefer_old; 868 arraysize = N(saorder_state_valid_prefer_old); 869 } else { 870 state_valid = saorder_state_valid_prefer_new; 871 arraysize = N(saorder_state_valid_prefer_new); 872 } 873 SAHTREE_UNLOCK(); 874 goto found; 875 } 876 } 877 SAHTREE_UNLOCK(); 878 879 return NULL; 880 881 found: 882 /* search valid state */ 883 for (stateidx = 0; stateidx < arraysize; stateidx++) { 884 sav = key_do_allocsa_policy(sah, state_valid[stateidx]); 885 if (sav != NULL) 886 return sav; 887 } 888 889 return NULL; 890 #undef N 891 } 892 893 /* 894 * searching SAD with direction, protocol, mode and state. 895 * called by key_allocsa_policy(). 896 * OUT: 897 * NULL : not found 898 * others : found, pointer to a SA. 899 */ 900 static struct secasvar * 901 key_do_allocsa_policy(struct secashead *sah, u_int state) 902 { 903 struct secasvar *sav, *nextsav, *candidate, *d; 904 905 /* initilize */ 906 candidate = NULL; 907 908 SAHTREE_LOCK(); 909 for (sav = LIST_FIRST(&sah->savtree[state]); 910 sav != NULL; 911 sav = nextsav) { 912 913 nextsav = LIST_NEXT(sav, chain); 914 915 /* sanity check */ 916 KEY_CHKSASTATE(sav->state, state, __func__); 917 918 /* initialize */ 919 if (candidate == NULL) { 920 candidate = sav; 921 continue; 922 } 923 924 /* Which SA is the better ? */ 925 926 IPSEC_ASSERT(candidate->lft_c != NULL, 927 ("null candidate lifetime")); 928 IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime")); 929 930 /* What the best method is to compare ? */ 931 if (key_preferred_oldsa) { 932 if (candidate->lft_c->addtime > 933 sav->lft_c->addtime) { 934 candidate = sav; 935 } 936 continue; 937 /*NOTREACHED*/ 938 } 939 940 /* preferred new sa rather than old sa */ 941 if (candidate->lft_c->addtime < 942 sav->lft_c->addtime) { 943 d = candidate; 944 candidate = sav; 945 } else 946 d = sav; 947 948 /* 949 * prepared to delete the SA when there is more 950 * suitable candidate and the lifetime of the SA is not 951 * permanent. 952 */ 953 if (d->lft_c->addtime != 0) { 954 struct mbuf *m, *result; 955 u_int8_t satype; 956 957 key_sa_chgstate(d, SADB_SASTATE_DEAD); 958 959 IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count")); 960 961 satype = key_proto2satype(d->sah->saidx.proto); 962 if (satype == 0) 963 goto msgfail; 964 965 m = key_setsadbmsg(SADB_DELETE, 0, 966 satype, 0, 0, d->refcnt - 1); 967 if (!m) 968 goto msgfail; 969 result = m; 970 971 /* set sadb_address for saidx's. */ 972 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 973 &d->sah->saidx.src.sa, 974 d->sah->saidx.src.sa.sa_len << 3, 975 IPSEC_ULPROTO_ANY); 976 if (!m) 977 goto msgfail; 978 m_cat(result, m); 979 980 /* set sadb_address for saidx's. */ 981 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 982 &d->sah->saidx.dst.sa, 983 d->sah->saidx.dst.sa.sa_len << 3, 984 IPSEC_ULPROTO_ANY); 985 if (!m) 986 goto msgfail; 987 m_cat(result, m); 988 989 /* create SA extension */ 990 m = key_setsadbsa(d); 991 if (!m) 992 goto msgfail; 993 m_cat(result, m); 994 995 if (result->m_len < sizeof(struct sadb_msg)) { 996 result = m_pullup(result, 997 sizeof(struct sadb_msg)); 998 if (result == NULL) 999 goto msgfail; 1000 } 1001 1002 result->m_pkthdr.len = 0; 1003 for (m = result; m; m = m->m_next) 1004 result->m_pkthdr.len += m->m_len; 1005 mtod(result, struct sadb_msg *)->sadb_msg_len = 1006 PFKEY_UNIT64(result->m_pkthdr.len); 1007 1008 if (key_sendup_mbuf(NULL, result, 1009 KEY_SENDUP_REGISTERED)) 1010 goto msgfail; 1011 msgfail: 1012 KEY_FREESAV(&d); 1013 } 1014 } 1015 if (candidate) { 1016 sa_addref(candidate); 1017 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1018 printf("DP %s cause refcnt++:%d SA:%p\n", 1019 __func__, candidate->refcnt, candidate)); 1020 } 1021 SAHTREE_UNLOCK(); 1022 1023 return candidate; 1024 } 1025 1026 /* 1027 * allocating a usable SA entry for a *INBOUND* packet. 1028 * Must call key_freesav() later. 1029 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). 1030 * NULL: not found, or error occured. 1031 * 1032 * In the comparison, no source address is used--for RFC2401 conformance. 1033 * To quote, from section 4.1: 1034 * A security association is uniquely identified by a triple consisting 1035 * of a Security Parameter Index (SPI), an IP Destination Address, and a 1036 * security protocol (AH or ESP) identifier. 1037 * Note that, however, we do need to keep source address in IPsec SA. 1038 * IKE specification and PF_KEY specification do assume that we 1039 * keep source address in IPsec SA. We see a tricky situation here. 1040 */ 1041 struct secasvar * 1042 key_allocsa( 1043 union sockaddr_union *dst, 1044 u_int proto, 1045 u_int32_t spi, 1046 const char* where, int tag) 1047 { 1048 struct secashead *sah; 1049 struct secasvar *sav; 1050 u_int stateidx, arraysize, state; 1051 const u_int *saorder_state_valid; 1052 1053 IPSEC_ASSERT(dst != NULL, ("null dst address")); 1054 1055 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1056 printf("DP %s from %s:%u\n", __func__, where, tag)); 1057 1058 /* 1059 * searching SAD. 1060 * XXX: to be checked internal IP header somewhere. Also when 1061 * IPsec tunnel packet is received. But ESP tunnel mode is 1062 * encrypted so we can't check internal IP header. 1063 */ 1064 SAHTREE_LOCK(); 1065 if (key_preferred_oldsa) { 1066 saorder_state_valid = saorder_state_valid_prefer_old; 1067 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); 1068 } else { 1069 saorder_state_valid = saorder_state_valid_prefer_new; 1070 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); 1071 } 1072 LIST_FOREACH(sah, &sahtree, chain) { 1073 /* search valid state */ 1074 for (stateidx = 0; stateidx < arraysize; stateidx++) { 1075 state = saorder_state_valid[stateidx]; 1076 LIST_FOREACH(sav, &sah->savtree[state], chain) { 1077 /* sanity check */ 1078 KEY_CHKSASTATE(sav->state, state, __func__); 1079 /* do not return entries w/ unusable state */ 1080 if (sav->state != SADB_SASTATE_MATURE && 1081 sav->state != SADB_SASTATE_DYING) 1082 continue; 1083 if (proto != sav->sah->saidx.proto) 1084 continue; 1085 if (spi != sav->spi) 1086 continue; 1087 #if 0 /* don't check src */ 1088 /* check src address */ 1089 if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, 0) != 0) 1090 continue; 1091 #endif 1092 /* check dst address */ 1093 if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, 0) != 0) 1094 continue; 1095 sa_addref(sav); 1096 goto done; 1097 } 1098 } 1099 } 1100 sav = NULL; 1101 done: 1102 SAHTREE_UNLOCK(); 1103 1104 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1105 printf("DP %s return SA:%p; refcnt %u\n", __func__, 1106 sav, sav ? sav->refcnt : 0)); 1107 return sav; 1108 } 1109 1110 /* 1111 * Must be called after calling key_allocsp(). 1112 * For both the packet without socket and key_freeso(). 1113 */ 1114 void 1115 _key_freesp(struct secpolicy **spp, const char* where, int tag) 1116 { 1117 struct secpolicy *sp = *spp; 1118 1119 IPSEC_ASSERT(sp != NULL, ("null sp")); 1120 1121 SPTREE_LOCK(); 1122 SP_DELREF(sp); 1123 1124 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1125 printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n", 1126 __func__, sp, sp->id, where, tag, sp->refcnt)); 1127 1128 if (sp->refcnt == 0) { 1129 *spp = NULL; 1130 key_delsp(sp); 1131 } 1132 SPTREE_UNLOCK(); 1133 } 1134 1135 /* 1136 * Must be called after calling key_allocsp(). 1137 * For the packet with socket. 1138 */ 1139 void 1140 key_freeso(struct socket *so) 1141 { 1142 IPSEC_ASSERT(so != NULL, ("null so")); 1143 1144 switch (so->so_proto->pr_domain->dom_family) { 1145 #ifdef INET 1146 case PF_INET: 1147 { 1148 struct inpcb *pcb = sotoinpcb(so); 1149 1150 /* Does it have a PCB ? */ 1151 if (pcb == NULL) 1152 return; 1153 key_freesp_so(&pcb->inp_sp->sp_in); 1154 key_freesp_so(&pcb->inp_sp->sp_out); 1155 } 1156 break; 1157 #endif 1158 #ifdef INET6 1159 case PF_INET6: 1160 { 1161 #ifdef HAVE_NRL_INPCB 1162 struct inpcb *pcb = sotoinpcb(so); 1163 1164 /* Does it have a PCB ? */ 1165 if (pcb == NULL) 1166 return; 1167 key_freesp_so(&pcb->inp_sp->sp_in); 1168 key_freesp_so(&pcb->inp_sp->sp_out); 1169 #else 1170 struct in6pcb *pcb = sotoin6pcb(so); 1171 1172 /* Does it have a PCB ? */ 1173 if (pcb == NULL) 1174 return; 1175 key_freesp_so(&pcb->in6p_sp->sp_in); 1176 key_freesp_so(&pcb->in6p_sp->sp_out); 1177 #endif 1178 } 1179 break; 1180 #endif /* INET6 */ 1181 default: 1182 ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n", 1183 __func__, so->so_proto->pr_domain->dom_family)); 1184 return; 1185 } 1186 } 1187 1188 static void 1189 key_freesp_so(struct secpolicy **sp) 1190 { 1191 IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp")); 1192 1193 if ((*sp)->policy == IPSEC_POLICY_ENTRUST || 1194 (*sp)->policy == IPSEC_POLICY_BYPASS) 1195 return; 1196 1197 IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC, 1198 ("invalid policy %u", (*sp)->policy)); 1199 KEY_FREESP(sp); 1200 } 1201 1202 /* 1203 * Must be called after calling key_allocsa(). 1204 * This function is called by key_freesp() to free some SA allocated 1205 * for a policy. 1206 */ 1207 void 1208 key_freesav(struct secasvar **psav, const char* where, int tag) 1209 { 1210 struct secasvar *sav = *psav; 1211 1212 IPSEC_ASSERT(sav != NULL, ("null sav")); 1213 1214 if (sa_delref(sav)) { 1215 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1216 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1217 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1218 *psav = NULL; 1219 key_delsav(sav); 1220 } else { 1221 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1222 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1223 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1224 } 1225 } 1226 1227 /* %%% SPD management */ 1228 /* 1229 * free security policy entry. 1230 */ 1231 static void 1232 key_delsp(struct secpolicy *sp) 1233 { 1234 struct ipsecrequest *isr, *nextisr; 1235 1236 IPSEC_ASSERT(sp != NULL, ("null sp")); 1237 SPTREE_LOCK_ASSERT(); 1238 1239 sp->state = IPSEC_SPSTATE_DEAD; 1240 1241 IPSEC_ASSERT(sp->refcnt == 0, 1242 ("SP with references deleted (refcnt %u)", sp->refcnt)); 1243 1244 /* remove from SP index */ 1245 if (__LIST_CHAINED(sp)) 1246 LIST_REMOVE(sp, chain); 1247 1248 for (isr = sp->req; isr != NULL; isr = nextisr) { 1249 if (isr->sav != NULL) { 1250 KEY_FREESAV(&isr->sav); 1251 isr->sav = NULL; 1252 } 1253 1254 nextisr = isr->next; 1255 ipsec_delisr(isr); 1256 } 1257 _key_delsp(sp); 1258 } 1259 1260 /* 1261 * search SPD 1262 * OUT: NULL : not found 1263 * others : found, pointer to a SP. 1264 */ 1265 static struct secpolicy * 1266 key_getsp(struct secpolicyindex *spidx) 1267 { 1268 struct secpolicy *sp; 1269 1270 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 1271 1272 SPTREE_LOCK(); 1273 LIST_FOREACH(sp, &sptree[spidx->dir], chain) { 1274 if (sp->state == IPSEC_SPSTATE_DEAD) 1275 continue; 1276 if (key_cmpspidx_exactly(spidx, &sp->spidx)) { 1277 SP_ADDREF(sp); 1278 break; 1279 } 1280 } 1281 SPTREE_UNLOCK(); 1282 1283 return sp; 1284 } 1285 1286 /* 1287 * get SP by index. 1288 * OUT: NULL : not found 1289 * others : found, pointer to a SP. 1290 */ 1291 static struct secpolicy * 1292 key_getspbyid(u_int32_t id) 1293 { 1294 struct secpolicy *sp; 1295 1296 SPTREE_LOCK(); 1297 LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) { 1298 if (sp->state == IPSEC_SPSTATE_DEAD) 1299 continue; 1300 if (sp->id == id) { 1301 SP_ADDREF(sp); 1302 goto done; 1303 } 1304 } 1305 1306 LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) { 1307 if (sp->state == IPSEC_SPSTATE_DEAD) 1308 continue; 1309 if (sp->id == id) { 1310 SP_ADDREF(sp); 1311 goto done; 1312 } 1313 } 1314 done: 1315 SPTREE_UNLOCK(); 1316 1317 return sp; 1318 } 1319 1320 struct secpolicy * 1321 key_newsp(const char* where, int tag) 1322 { 1323 struct secpolicy *newsp = NULL; 1324 1325 newsp = (struct secpolicy *) 1326 malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO); 1327 if (newsp) { 1328 SECPOLICY_LOCK_INIT(newsp); 1329 newsp->refcnt = 1; 1330 newsp->req = NULL; 1331 } 1332 1333 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1334 printf("DP %s from %s:%u return SP:%p\n", __func__, 1335 where, tag, newsp)); 1336 return newsp; 1337 } 1338 1339 static void 1340 _key_delsp(struct secpolicy *sp) 1341 { 1342 SECPOLICY_LOCK_DESTROY(sp); 1343 free(sp, M_IPSEC_SP); 1344 } 1345 1346 /* 1347 * create secpolicy structure from sadb_x_policy structure. 1348 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, 1349 * so must be set properly later. 1350 */ 1351 struct secpolicy * 1352 key_msg2sp(xpl0, len, error) 1353 struct sadb_x_policy *xpl0; 1354 size_t len; 1355 int *error; 1356 { 1357 struct secpolicy *newsp; 1358 1359 IPSEC_ASSERT(xpl0 != NULL, ("null xpl0")); 1360 IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len)); 1361 1362 if (len != PFKEY_EXTLEN(xpl0)) { 1363 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__)); 1364 *error = EINVAL; 1365 return NULL; 1366 } 1367 1368 if ((newsp = KEY_NEWSP()) == NULL) { 1369 *error = ENOBUFS; 1370 return NULL; 1371 } 1372 1373 newsp->spidx.dir = xpl0->sadb_x_policy_dir; 1374 newsp->policy = xpl0->sadb_x_policy_type; 1375 1376 /* check policy */ 1377 switch (xpl0->sadb_x_policy_type) { 1378 case IPSEC_POLICY_DISCARD: 1379 case IPSEC_POLICY_NONE: 1380 case IPSEC_POLICY_ENTRUST: 1381 case IPSEC_POLICY_BYPASS: 1382 newsp->req = NULL; 1383 break; 1384 1385 case IPSEC_POLICY_IPSEC: 1386 { 1387 int tlen; 1388 struct sadb_x_ipsecrequest *xisr; 1389 struct ipsecrequest **p_isr = &newsp->req; 1390 1391 /* validity check */ 1392 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { 1393 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", 1394 __func__)); 1395 KEY_FREESP(&newsp); 1396 *error = EINVAL; 1397 return NULL; 1398 } 1399 1400 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); 1401 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1); 1402 1403 while (tlen > 0) { 1404 /* length check */ 1405 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { 1406 ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest " 1407 "length.\n", __func__)); 1408 KEY_FREESP(&newsp); 1409 *error = EINVAL; 1410 return NULL; 1411 } 1412 1413 /* allocate request buffer */ 1414 /* NB: data structure is zero'd */ 1415 *p_isr = ipsec_newisr(); 1416 if ((*p_isr) == NULL) { 1417 ipseclog((LOG_DEBUG, 1418 "%s: No more memory.\n", __func__)); 1419 KEY_FREESP(&newsp); 1420 *error = ENOBUFS; 1421 return NULL; 1422 } 1423 1424 /* set values */ 1425 switch (xisr->sadb_x_ipsecrequest_proto) { 1426 case IPPROTO_ESP: 1427 case IPPROTO_AH: 1428 case IPPROTO_IPCOMP: 1429 break; 1430 default: 1431 ipseclog((LOG_DEBUG, 1432 "%s: invalid proto type=%u\n", __func__, 1433 xisr->sadb_x_ipsecrequest_proto)); 1434 KEY_FREESP(&newsp); 1435 *error = EPROTONOSUPPORT; 1436 return NULL; 1437 } 1438 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; 1439 1440 switch (xisr->sadb_x_ipsecrequest_mode) { 1441 case IPSEC_MODE_TRANSPORT: 1442 case IPSEC_MODE_TUNNEL: 1443 break; 1444 case IPSEC_MODE_ANY: 1445 default: 1446 ipseclog((LOG_DEBUG, 1447 "%s: invalid mode=%u\n", __func__, 1448 xisr->sadb_x_ipsecrequest_mode)); 1449 KEY_FREESP(&newsp); 1450 *error = EINVAL; 1451 return NULL; 1452 } 1453 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; 1454 1455 switch (xisr->sadb_x_ipsecrequest_level) { 1456 case IPSEC_LEVEL_DEFAULT: 1457 case IPSEC_LEVEL_USE: 1458 case IPSEC_LEVEL_REQUIRE: 1459 break; 1460 case IPSEC_LEVEL_UNIQUE: 1461 /* validity check */ 1462 /* 1463 * If range violation of reqid, kernel will 1464 * update it, don't refuse it. 1465 */ 1466 if (xisr->sadb_x_ipsecrequest_reqid 1467 > IPSEC_MANUAL_REQID_MAX) { 1468 ipseclog((LOG_DEBUG, 1469 "%s: reqid=%d range " 1470 "violation, updated by kernel.\n", 1471 __func__, 1472 xisr->sadb_x_ipsecrequest_reqid)); 1473 xisr->sadb_x_ipsecrequest_reqid = 0; 1474 } 1475 1476 /* allocate new reqid id if reqid is zero. */ 1477 if (xisr->sadb_x_ipsecrequest_reqid == 0) { 1478 u_int32_t reqid; 1479 if ((reqid = key_newreqid()) == 0) { 1480 KEY_FREESP(&newsp); 1481 *error = ENOBUFS; 1482 return NULL; 1483 } 1484 (*p_isr)->saidx.reqid = reqid; 1485 xisr->sadb_x_ipsecrequest_reqid = reqid; 1486 } else { 1487 /* set it for manual keying. */ 1488 (*p_isr)->saidx.reqid = 1489 xisr->sadb_x_ipsecrequest_reqid; 1490 } 1491 break; 1492 1493 default: 1494 ipseclog((LOG_DEBUG, "%s: invalid level=%u\n", 1495 __func__, 1496 xisr->sadb_x_ipsecrequest_level)); 1497 KEY_FREESP(&newsp); 1498 *error = EINVAL; 1499 return NULL; 1500 } 1501 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; 1502 1503 /* set IP addresses if there */ 1504 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { 1505 struct sockaddr *paddr; 1506 1507 paddr = (struct sockaddr *)(xisr + 1); 1508 1509 /* validity check */ 1510 if (paddr->sa_len 1511 > sizeof((*p_isr)->saidx.src)) { 1512 ipseclog((LOG_DEBUG, "%s: invalid " 1513 "request address length.\n", 1514 __func__)); 1515 KEY_FREESP(&newsp); 1516 *error = EINVAL; 1517 return NULL; 1518 } 1519 bcopy(paddr, &(*p_isr)->saidx.src, 1520 paddr->sa_len); 1521 1522 paddr = (struct sockaddr *)((caddr_t)paddr 1523 + paddr->sa_len); 1524 1525 /* validity check */ 1526 if (paddr->sa_len 1527 > sizeof((*p_isr)->saidx.dst)) { 1528 ipseclog((LOG_DEBUG, "%s: invalid " 1529 "request address length.\n", 1530 __func__)); 1531 KEY_FREESP(&newsp); 1532 *error = EINVAL; 1533 return NULL; 1534 } 1535 bcopy(paddr, &(*p_isr)->saidx.dst, 1536 paddr->sa_len); 1537 } 1538 1539 (*p_isr)->sp = newsp; 1540 1541 /* initialization for the next. */ 1542 p_isr = &(*p_isr)->next; 1543 tlen -= xisr->sadb_x_ipsecrequest_len; 1544 1545 /* validity check */ 1546 if (tlen < 0) { 1547 ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n", 1548 __func__)); 1549 KEY_FREESP(&newsp); 1550 *error = EINVAL; 1551 return NULL; 1552 } 1553 1554 xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr 1555 + xisr->sadb_x_ipsecrequest_len); 1556 } 1557 } 1558 break; 1559 default: 1560 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); 1561 KEY_FREESP(&newsp); 1562 *error = EINVAL; 1563 return NULL; 1564 } 1565 1566 *error = 0; 1567 return newsp; 1568 } 1569 1570 static u_int32_t 1571 key_newreqid() 1572 { 1573 static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 1574 1575 auto_reqid = (auto_reqid == ~0 1576 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); 1577 1578 /* XXX should be unique check */ 1579 1580 return auto_reqid; 1581 } 1582 1583 /* 1584 * copy secpolicy struct to sadb_x_policy structure indicated. 1585 */ 1586 struct mbuf * 1587 key_sp2msg(sp) 1588 struct secpolicy *sp; 1589 { 1590 struct sadb_x_policy *xpl; 1591 int tlen; 1592 caddr_t p; 1593 struct mbuf *m; 1594 1595 IPSEC_ASSERT(sp != NULL, ("null policy")); 1596 1597 tlen = key_getspreqmsglen(sp); 1598 1599 m = key_alloc_mbuf(tlen); 1600 if (!m || m->m_next) { /*XXX*/ 1601 if (m) 1602 m_freem(m); 1603 return NULL; 1604 } 1605 1606 m->m_len = tlen; 1607 m->m_next = NULL; 1608 xpl = mtod(m, struct sadb_x_policy *); 1609 bzero(xpl, tlen); 1610 1611 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen); 1612 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 1613 xpl->sadb_x_policy_type = sp->policy; 1614 xpl->sadb_x_policy_dir = sp->spidx.dir; 1615 xpl->sadb_x_policy_id = sp->id; 1616 p = (caddr_t)xpl + sizeof(*xpl); 1617 1618 /* if is the policy for ipsec ? */ 1619 if (sp->policy == IPSEC_POLICY_IPSEC) { 1620 struct sadb_x_ipsecrequest *xisr; 1621 struct ipsecrequest *isr; 1622 1623 for (isr = sp->req; isr != NULL; isr = isr->next) { 1624 1625 xisr = (struct sadb_x_ipsecrequest *)p; 1626 1627 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; 1628 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; 1629 xisr->sadb_x_ipsecrequest_level = isr->level; 1630 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; 1631 1632 p += sizeof(*xisr); 1633 bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len); 1634 p += isr->saidx.src.sa.sa_len; 1635 bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len); 1636 p += isr->saidx.src.sa.sa_len; 1637 1638 xisr->sadb_x_ipsecrequest_len = 1639 PFKEY_ALIGN8(sizeof(*xisr) 1640 + isr->saidx.src.sa.sa_len 1641 + isr->saidx.dst.sa.sa_len); 1642 } 1643 } 1644 1645 return m; 1646 } 1647 1648 /* m will not be freed nor modified */ 1649 static struct mbuf * 1650 #ifdef __STDC__ 1651 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, 1652 int ndeep, int nitem, ...) 1653 #else 1654 key_gather_mbuf(m, mhp, ndeep, nitem, va_alist) 1655 struct mbuf *m; 1656 const struct sadb_msghdr *mhp; 1657 int ndeep; 1658 int nitem; 1659 va_dcl 1660 #endif 1661 { 1662 va_list ap; 1663 int idx; 1664 int i; 1665 struct mbuf *result = NULL, *n; 1666 int len; 1667 1668 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1669 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1670 1671 va_start(ap, nitem); 1672 for (i = 0; i < nitem; i++) { 1673 idx = va_arg(ap, int); 1674 if (idx < 0 || idx > SADB_EXT_MAX) 1675 goto fail; 1676 /* don't attempt to pull empty extension */ 1677 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) 1678 continue; 1679 if (idx != SADB_EXT_RESERVED && 1680 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) 1681 continue; 1682 1683 if (idx == SADB_EXT_RESERVED) { 1684 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 1685 1686 IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len)); 1687 1688 MGETHDR(n, M_DONTWAIT, MT_DATA); 1689 if (!n) 1690 goto fail; 1691 n->m_len = len; 1692 n->m_next = NULL; 1693 m_copydata(m, 0, sizeof(struct sadb_msg), 1694 mtod(n, caddr_t)); 1695 } else if (i < ndeep) { 1696 len = mhp->extlen[idx]; 1697 n = key_alloc_mbuf(len); 1698 if (!n || n->m_next) { /*XXX*/ 1699 if (n) 1700 m_freem(n); 1701 goto fail; 1702 } 1703 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], 1704 mtod(n, caddr_t)); 1705 } else { 1706 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], 1707 M_DONTWAIT); 1708 } 1709 if (n == NULL) 1710 goto fail; 1711 1712 if (result) 1713 m_cat(result, n); 1714 else 1715 result = n; 1716 } 1717 va_end(ap); 1718 1719 if ((result->m_flags & M_PKTHDR) != 0) { 1720 result->m_pkthdr.len = 0; 1721 for (n = result; n; n = n->m_next) 1722 result->m_pkthdr.len += n->m_len; 1723 } 1724 1725 return result; 1726 1727 fail: 1728 m_freem(result); 1729 return NULL; 1730 } 1731 1732 /* 1733 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing 1734 * add an entry to SP database, when received 1735 * <base, address(SD), (lifetime(H),) policy> 1736 * from the user(?). 1737 * Adding to SP database, 1738 * and send 1739 * <base, address(SD), (lifetime(H),) policy> 1740 * to the socket which was send. 1741 * 1742 * SPDADD set a unique policy entry. 1743 * SPDSETIDX like SPDADD without a part of policy requests. 1744 * SPDUPDATE replace a unique policy entry. 1745 * 1746 * m will always be freed. 1747 */ 1748 static int 1749 key_spdadd(so, m, mhp) 1750 struct socket *so; 1751 struct mbuf *m; 1752 const struct sadb_msghdr *mhp; 1753 { 1754 struct sadb_address *src0, *dst0; 1755 struct sadb_x_policy *xpl0, *xpl; 1756 struct sadb_lifetime *lft = NULL; 1757 struct secpolicyindex spidx; 1758 struct secpolicy *newsp; 1759 int error; 1760 1761 IPSEC_ASSERT(so != NULL, ("null socket")); 1762 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1763 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1764 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 1765 1766 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 1767 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 1768 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 1769 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n")); 1770 return key_senderror(so, m, EINVAL); 1771 } 1772 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 1773 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 1774 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 1775 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1776 __func__)); 1777 return key_senderror(so, m, EINVAL); 1778 } 1779 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { 1780 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] 1781 < sizeof(struct sadb_lifetime)) { 1782 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1783 __func__)); 1784 return key_senderror(so, m, EINVAL); 1785 } 1786 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 1787 } 1788 1789 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 1790 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 1791 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 1792 1793 /* make secindex */ 1794 /* XXX boundary check against sa_len */ 1795 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1796 src0 + 1, 1797 dst0 + 1, 1798 src0->sadb_address_prefixlen, 1799 dst0->sadb_address_prefixlen, 1800 src0->sadb_address_proto, 1801 &spidx); 1802 1803 /* checking the direciton. */ 1804 switch (xpl0->sadb_x_policy_dir) { 1805 case IPSEC_DIR_INBOUND: 1806 case IPSEC_DIR_OUTBOUND: 1807 break; 1808 default: 1809 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 1810 mhp->msg->sadb_msg_errno = EINVAL; 1811 return 0; 1812 } 1813 1814 /* check policy */ 1815 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */ 1816 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST 1817 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { 1818 ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__)); 1819 return key_senderror(so, m, EINVAL); 1820 } 1821 1822 /* policy requests are mandatory when action is ipsec. */ 1823 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX 1824 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC 1825 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { 1826 ipseclog((LOG_DEBUG, "%s: some policy requests part required\n", 1827 __func__)); 1828 return key_senderror(so, m, EINVAL); 1829 } 1830 1831 /* 1832 * checking there is SP already or not. 1833 * SPDUPDATE doesn't depend on whether there is a SP or not. 1834 * If the type is either SPDADD or SPDSETIDX AND a SP is found, 1835 * then error. 1836 */ 1837 newsp = key_getsp(&spidx); 1838 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1839 if (newsp) { 1840 newsp->state = IPSEC_SPSTATE_DEAD; 1841 KEY_FREESP(&newsp); 1842 } 1843 } else { 1844 if (newsp != NULL) { 1845 KEY_FREESP(&newsp); 1846 ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n", 1847 __func__)); 1848 return key_senderror(so, m, EEXIST); 1849 } 1850 } 1851 1852 /* allocation new SP entry */ 1853 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) { 1854 return key_senderror(so, m, error); 1855 } 1856 1857 if ((newsp->id = key_getnewspid()) == 0) { 1858 _key_delsp(newsp); 1859 return key_senderror(so, m, ENOBUFS); 1860 } 1861 1862 /* XXX boundary check against sa_len */ 1863 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1864 src0 + 1, 1865 dst0 + 1, 1866 src0->sadb_address_prefixlen, 1867 dst0->sadb_address_prefixlen, 1868 src0->sadb_address_proto, 1869 &newsp->spidx); 1870 1871 /* sanity check on addr pair */ 1872 if (((struct sockaddr *)(src0 + 1))->sa_family != 1873 ((struct sockaddr *)(dst0+ 1))->sa_family) { 1874 _key_delsp(newsp); 1875 return key_senderror(so, m, EINVAL); 1876 } 1877 if (((struct sockaddr *)(src0 + 1))->sa_len != 1878 ((struct sockaddr *)(dst0+ 1))->sa_len) { 1879 _key_delsp(newsp); 1880 return key_senderror(so, m, EINVAL); 1881 } 1882 #if 1 1883 if (newsp->req && newsp->req->saidx.src.sa.sa_family) { 1884 struct sockaddr *sa; 1885 sa = (struct sockaddr *)(src0 + 1); 1886 if (sa->sa_family != newsp->req->saidx.src.sa.sa_family) { 1887 _key_delsp(newsp); 1888 return key_senderror(so, m, EINVAL); 1889 } 1890 } 1891 if (newsp->req && newsp->req->saidx.dst.sa.sa_family) { 1892 struct sockaddr *sa; 1893 sa = (struct sockaddr *)(dst0 + 1); 1894 if (sa->sa_family != newsp->req->saidx.dst.sa.sa_family) { 1895 _key_delsp(newsp); 1896 return key_senderror(so, m, EINVAL); 1897 } 1898 } 1899 #endif 1900 1901 newsp->created = time_second; 1902 newsp->lastused = newsp->created; 1903 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; 1904 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; 1905 1906 newsp->refcnt = 1; /* do not reclaim until I say I do */ 1907 newsp->state = IPSEC_SPSTATE_ALIVE; 1908 LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain); 1909 1910 /* delete the entry in spacqtree */ 1911 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1912 struct secspacq *spacq = key_getspacq(&spidx); 1913 if (spacq != NULL) { 1914 /* reset counter in order to deletion by timehandler. */ 1915 spacq->created = time_second; 1916 spacq->count = 0; 1917 SPACQ_UNLOCK(); 1918 } 1919 } 1920 1921 { 1922 struct mbuf *n, *mpolicy; 1923 struct sadb_msg *newmsg; 1924 int off; 1925 1926 /* create new sadb_msg to reply. */ 1927 if (lft) { 1928 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, 1929 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, 1930 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1931 } else { 1932 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, 1933 SADB_X_EXT_POLICY, 1934 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1935 } 1936 if (!n) 1937 return key_senderror(so, m, ENOBUFS); 1938 1939 if (n->m_len < sizeof(*newmsg)) { 1940 n = m_pullup(n, sizeof(*newmsg)); 1941 if (!n) 1942 return key_senderror(so, m, ENOBUFS); 1943 } 1944 newmsg = mtod(n, struct sadb_msg *); 1945 newmsg->sadb_msg_errno = 0; 1946 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 1947 1948 off = 0; 1949 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), 1950 sizeof(*xpl), &off); 1951 if (mpolicy == NULL) { 1952 /* n is already freed */ 1953 return key_senderror(so, m, ENOBUFS); 1954 } 1955 xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off); 1956 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { 1957 m_freem(n); 1958 return key_senderror(so, m, EINVAL); 1959 } 1960 xpl->sadb_x_policy_id = newsp->id; 1961 1962 m_freem(m); 1963 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 1964 } 1965 } 1966 1967 /* 1968 * get new policy id. 1969 * OUT: 1970 * 0: failure. 1971 * others: success. 1972 */ 1973 static u_int32_t 1974 key_getnewspid() 1975 { 1976 u_int32_t newid = 0; 1977 int count = key_spi_trycnt; /* XXX */ 1978 struct secpolicy *sp; 1979 1980 /* when requesting to allocate spi ranged */ 1981 while (count--) { 1982 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1)); 1983 1984 if ((sp = key_getspbyid(newid)) == NULL) 1985 break; 1986 1987 KEY_FREESP(&sp); 1988 } 1989 1990 if (count == 0 || newid == 0) { 1991 ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n", 1992 __func__)); 1993 return 0; 1994 } 1995 1996 return newid; 1997 } 1998 1999 /* 2000 * SADB_SPDDELETE processing 2001 * receive 2002 * <base, address(SD), policy(*)> 2003 * from the user(?), and set SADB_SASTATE_DEAD, 2004 * and send, 2005 * <base, address(SD), policy(*)> 2006 * to the ikmpd. 2007 * policy(*) including direction of policy. 2008 * 2009 * m will always be freed. 2010 */ 2011 static int 2012 key_spddelete(so, m, mhp) 2013 struct socket *so; 2014 struct mbuf *m; 2015 const struct sadb_msghdr *mhp; 2016 { 2017 struct sadb_address *src0, *dst0; 2018 struct sadb_x_policy *xpl0; 2019 struct secpolicyindex spidx; 2020 struct secpolicy *sp; 2021 2022 IPSEC_ASSERT(so != NULL, ("null so")); 2023 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2024 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2025 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2026 2027 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2028 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2029 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2030 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2031 __func__)); 2032 return key_senderror(so, m, EINVAL); 2033 } 2034 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2035 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2036 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2037 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2038 __func__)); 2039 return key_senderror(so, m, EINVAL); 2040 } 2041 2042 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 2043 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 2044 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 2045 2046 /* make secindex */ 2047 /* XXX boundary check against sa_len */ 2048 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 2049 src0 + 1, 2050 dst0 + 1, 2051 src0->sadb_address_prefixlen, 2052 dst0->sadb_address_prefixlen, 2053 src0->sadb_address_proto, 2054 &spidx); 2055 2056 /* checking the direciton. */ 2057 switch (xpl0->sadb_x_policy_dir) { 2058 case IPSEC_DIR_INBOUND: 2059 case IPSEC_DIR_OUTBOUND: 2060 break; 2061 default: 2062 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 2063 return key_senderror(so, m, EINVAL); 2064 } 2065 2066 /* Is there SP in SPD ? */ 2067 if ((sp = key_getsp(&spidx)) == NULL) { 2068 ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__)); 2069 return key_senderror(so, m, EINVAL); 2070 } 2071 2072 /* save policy id to buffer to be returned. */ 2073 xpl0->sadb_x_policy_id = sp->id; 2074 2075 sp->state = IPSEC_SPSTATE_DEAD; 2076 KEY_FREESP(&sp); 2077 2078 { 2079 struct mbuf *n; 2080 struct sadb_msg *newmsg; 2081 2082 /* create new sadb_msg to reply. */ 2083 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 2084 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2085 if (!n) 2086 return key_senderror(so, m, ENOBUFS); 2087 2088 newmsg = mtod(n, struct sadb_msg *); 2089 newmsg->sadb_msg_errno = 0; 2090 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2091 2092 m_freem(m); 2093 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2094 } 2095 } 2096 2097 /* 2098 * SADB_SPDDELETE2 processing 2099 * receive 2100 * <base, policy(*)> 2101 * from the user(?), and set SADB_SASTATE_DEAD, 2102 * and send, 2103 * <base, policy(*)> 2104 * to the ikmpd. 2105 * policy(*) including direction of policy. 2106 * 2107 * m will always be freed. 2108 */ 2109 static int 2110 key_spddelete2(so, m, mhp) 2111 struct socket *so; 2112 struct mbuf *m; 2113 const struct sadb_msghdr *mhp; 2114 { 2115 u_int32_t id; 2116 struct secpolicy *sp; 2117 2118 IPSEC_ASSERT(so != NULL, ("null socket")); 2119 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2120 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2121 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2122 2123 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2124 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2125 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); 2126 return key_senderror(so, m, EINVAL); 2127 } 2128 2129 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2130 2131 /* Is there SP in SPD ? */ 2132 if ((sp = key_getspbyid(id)) == NULL) { 2133 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2134 return key_senderror(so, m, EINVAL); 2135 } 2136 2137 sp->state = IPSEC_SPSTATE_DEAD; 2138 KEY_FREESP(&sp); 2139 2140 { 2141 struct mbuf *n, *nn; 2142 struct sadb_msg *newmsg; 2143 int off, len; 2144 2145 /* create new sadb_msg to reply. */ 2146 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2147 2148 MGETHDR(n, M_DONTWAIT, MT_DATA); 2149 if (n && len > MHLEN) { 2150 MCLGET(n, M_DONTWAIT); 2151 if ((n->m_flags & M_EXT) == 0) { 2152 m_freem(n); 2153 n = NULL; 2154 } 2155 } 2156 if (!n) 2157 return key_senderror(so, m, ENOBUFS); 2158 2159 n->m_len = len; 2160 n->m_next = NULL; 2161 off = 0; 2162 2163 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 2164 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2165 2166 IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)", 2167 off, len)); 2168 2169 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], 2170 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT); 2171 if (!n->m_next) { 2172 m_freem(n); 2173 return key_senderror(so, m, ENOBUFS); 2174 } 2175 2176 n->m_pkthdr.len = 0; 2177 for (nn = n; nn; nn = nn->m_next) 2178 n->m_pkthdr.len += nn->m_len; 2179 2180 newmsg = mtod(n, struct sadb_msg *); 2181 newmsg->sadb_msg_errno = 0; 2182 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2183 2184 m_freem(m); 2185 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2186 } 2187 } 2188 2189 /* 2190 * SADB_X_GET processing 2191 * receive 2192 * <base, policy(*)> 2193 * from the user(?), 2194 * and send, 2195 * <base, address(SD), policy> 2196 * to the ikmpd. 2197 * policy(*) including direction of policy. 2198 * 2199 * m will always be freed. 2200 */ 2201 static int 2202 key_spdget(so, m, mhp) 2203 struct socket *so; 2204 struct mbuf *m; 2205 const struct sadb_msghdr *mhp; 2206 { 2207 u_int32_t id; 2208 struct secpolicy *sp; 2209 struct mbuf *n; 2210 2211 IPSEC_ASSERT(so != NULL, ("null socket")); 2212 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2213 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2214 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2215 2216 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2217 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2218 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2219 __func__)); 2220 return key_senderror(so, m, EINVAL); 2221 } 2222 2223 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2224 2225 /* Is there SP in SPD ? */ 2226 if ((sp = key_getspbyid(id)) == NULL) { 2227 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2228 return key_senderror(so, m, ENOENT); 2229 } 2230 2231 n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid); 2232 if (n != NULL) { 2233 m_freem(m); 2234 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2235 } else 2236 return key_senderror(so, m, ENOBUFS); 2237 } 2238 2239 /* 2240 * SADB_X_SPDACQUIRE processing. 2241 * Acquire policy and SA(s) for a *OUTBOUND* packet. 2242 * send 2243 * <base, policy(*)> 2244 * to KMD, and expect to receive 2245 * <base> with SADB_X_SPDACQUIRE if error occured, 2246 * or 2247 * <base, policy> 2248 * with SADB_X_SPDUPDATE from KMD by PF_KEY. 2249 * policy(*) is without policy requests. 2250 * 2251 * 0 : succeed 2252 * others: error number 2253 */ 2254 int 2255 key_spdacquire(sp) 2256 struct secpolicy *sp; 2257 { 2258 struct mbuf *result = NULL, *m; 2259 struct secspacq *newspacq; 2260 2261 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2262 IPSEC_ASSERT(sp->req == NULL, ("policy exists")); 2263 IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC, 2264 ("policy not IPSEC %u", sp->policy)); 2265 2266 /* Get an entry to check whether sent message or not. */ 2267 newspacq = key_getspacq(&sp->spidx); 2268 if (newspacq != NULL) { 2269 if (key_blockacq_count < newspacq->count) { 2270 /* reset counter and do send message. */ 2271 newspacq->count = 0; 2272 } else { 2273 /* increment counter and do nothing. */ 2274 newspacq->count++; 2275 return 0; 2276 } 2277 SPACQ_UNLOCK(); 2278 } else { 2279 /* make new entry for blocking to send SADB_ACQUIRE. */ 2280 newspacq = key_newspacq(&sp->spidx); 2281 if (newspacq == NULL) 2282 return ENOBUFS; 2283 } 2284 2285 /* create new sadb_msg to reply. */ 2286 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); 2287 if (!m) 2288 return ENOBUFS; 2289 2290 result = m; 2291 2292 result->m_pkthdr.len = 0; 2293 for (m = result; m; m = m->m_next) 2294 result->m_pkthdr.len += m->m_len; 2295 2296 mtod(result, struct sadb_msg *)->sadb_msg_len = 2297 PFKEY_UNIT64(result->m_pkthdr.len); 2298 2299 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 2300 } 2301 2302 /* 2303 * SADB_SPDFLUSH processing 2304 * receive 2305 * <base> 2306 * from the user, and free all entries in secpctree. 2307 * and send, 2308 * <base> 2309 * to the user. 2310 * NOTE: what to do is only marking SADB_SASTATE_DEAD. 2311 * 2312 * m will always be freed. 2313 */ 2314 static int 2315 key_spdflush(so, m, mhp) 2316 struct socket *so; 2317 struct mbuf *m; 2318 const struct sadb_msghdr *mhp; 2319 { 2320 struct sadb_msg *newmsg; 2321 struct secpolicy *sp; 2322 u_int dir; 2323 2324 IPSEC_ASSERT(so != NULL, ("null socket")); 2325 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2326 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2327 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2328 2329 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) 2330 return key_senderror(so, m, EINVAL); 2331 2332 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2333 SPTREE_LOCK(); 2334 LIST_FOREACH(sp, &sptree[dir], chain) 2335 sp->state = IPSEC_SPSTATE_DEAD; 2336 SPTREE_UNLOCK(); 2337 } 2338 2339 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 2340 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2341 return key_senderror(so, m, ENOBUFS); 2342 } 2343 2344 if (m->m_next) 2345 m_freem(m->m_next); 2346 m->m_next = NULL; 2347 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2348 newmsg = mtod(m, struct sadb_msg *); 2349 newmsg->sadb_msg_errno = 0; 2350 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 2351 2352 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 2353 } 2354 2355 /* 2356 * SADB_SPDDUMP processing 2357 * receive 2358 * <base> 2359 * from the user, and dump all SP leaves 2360 * and send, 2361 * <base> ..... 2362 * to the ikmpd. 2363 * 2364 * m will always be freed. 2365 */ 2366 static int 2367 key_spddump(so, m, mhp) 2368 struct socket *so; 2369 struct mbuf *m; 2370 const struct sadb_msghdr *mhp; 2371 { 2372 struct secpolicy *sp; 2373 int cnt; 2374 u_int dir; 2375 struct mbuf *n; 2376 2377 IPSEC_ASSERT(so != NULL, ("null socket")); 2378 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2379 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2380 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2381 2382 /* search SPD entry and get buffer size. */ 2383 cnt = 0; 2384 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2385 LIST_FOREACH(sp, &sptree[dir], chain) { 2386 cnt++; 2387 } 2388 } 2389 2390 if (cnt == 0) 2391 return key_senderror(so, m, ENOENT); 2392 2393 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2394 LIST_FOREACH(sp, &sptree[dir], chain) { 2395 --cnt; 2396 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, 2397 mhp->msg->sadb_msg_pid); 2398 2399 if (n) 2400 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2401 } 2402 } 2403 2404 m_freem(m); 2405 return 0; 2406 } 2407 2408 static struct mbuf * 2409 key_setdumpsp(sp, type, seq, pid) 2410 struct secpolicy *sp; 2411 u_int8_t type; 2412 u_int32_t seq, pid; 2413 { 2414 struct mbuf *result = NULL, *m; 2415 2416 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt); 2417 if (!m) 2418 goto fail; 2419 result = m; 2420 2421 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2422 &sp->spidx.src.sa, sp->spidx.prefs, 2423 sp->spidx.ul_proto); 2424 if (!m) 2425 goto fail; 2426 m_cat(result, m); 2427 2428 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2429 &sp->spidx.dst.sa, sp->spidx.prefd, 2430 sp->spidx.ul_proto); 2431 if (!m) 2432 goto fail; 2433 m_cat(result, m); 2434 2435 m = key_sp2msg(sp); 2436 if (!m) 2437 goto fail; 2438 m_cat(result, m); 2439 2440 if ((result->m_flags & M_PKTHDR) == 0) 2441 goto fail; 2442 2443 if (result->m_len < sizeof(struct sadb_msg)) { 2444 result = m_pullup(result, sizeof(struct sadb_msg)); 2445 if (result == NULL) 2446 goto fail; 2447 } 2448 2449 result->m_pkthdr.len = 0; 2450 for (m = result; m; m = m->m_next) 2451 result->m_pkthdr.len += m->m_len; 2452 2453 mtod(result, struct sadb_msg *)->sadb_msg_len = 2454 PFKEY_UNIT64(result->m_pkthdr.len); 2455 2456 return result; 2457 2458 fail: 2459 m_freem(result); 2460 return NULL; 2461 } 2462 2463 /* 2464 * get PFKEY message length for security policy and request. 2465 */ 2466 static u_int 2467 key_getspreqmsglen(sp) 2468 struct secpolicy *sp; 2469 { 2470 u_int tlen; 2471 2472 tlen = sizeof(struct sadb_x_policy); 2473 2474 /* if is the policy for ipsec ? */ 2475 if (sp->policy != IPSEC_POLICY_IPSEC) 2476 return tlen; 2477 2478 /* get length of ipsec requests */ 2479 { 2480 struct ipsecrequest *isr; 2481 int len; 2482 2483 for (isr = sp->req; isr != NULL; isr = isr->next) { 2484 len = sizeof(struct sadb_x_ipsecrequest) 2485 + isr->saidx.src.sa.sa_len 2486 + isr->saidx.dst.sa.sa_len; 2487 2488 tlen += PFKEY_ALIGN8(len); 2489 } 2490 } 2491 2492 return tlen; 2493 } 2494 2495 /* 2496 * SADB_SPDEXPIRE processing 2497 * send 2498 * <base, address(SD), lifetime(CH), policy> 2499 * to KMD by PF_KEY. 2500 * 2501 * OUT: 0 : succeed 2502 * others : error number 2503 */ 2504 static int 2505 key_spdexpire(sp) 2506 struct secpolicy *sp; 2507 { 2508 struct mbuf *result = NULL, *m; 2509 int len; 2510 int error = -1; 2511 struct sadb_lifetime *lt; 2512 2513 /* XXX: Why do we lock ? */ 2514 2515 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2516 2517 /* set msg header */ 2518 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0); 2519 if (!m) { 2520 error = ENOBUFS; 2521 goto fail; 2522 } 2523 result = m; 2524 2525 /* create lifetime extension (current and hard) */ 2526 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 2527 m = key_alloc_mbuf(len); 2528 if (!m || m->m_next) { /*XXX*/ 2529 if (m) 2530 m_freem(m); 2531 error = ENOBUFS; 2532 goto fail; 2533 } 2534 bzero(mtod(m, caddr_t), len); 2535 lt = mtod(m, struct sadb_lifetime *); 2536 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2537 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 2538 lt->sadb_lifetime_allocations = 0; 2539 lt->sadb_lifetime_bytes = 0; 2540 lt->sadb_lifetime_addtime = sp->created; 2541 lt->sadb_lifetime_usetime = sp->lastused; 2542 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 2543 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2544 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 2545 lt->sadb_lifetime_allocations = 0; 2546 lt->sadb_lifetime_bytes = 0; 2547 lt->sadb_lifetime_addtime = sp->lifetime; 2548 lt->sadb_lifetime_usetime = sp->validtime; 2549 m_cat(result, m); 2550 2551 /* set sadb_address for source */ 2552 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2553 &sp->spidx.src.sa, 2554 sp->spidx.prefs, sp->spidx.ul_proto); 2555 if (!m) { 2556 error = ENOBUFS; 2557 goto fail; 2558 } 2559 m_cat(result, m); 2560 2561 /* set sadb_address for destination */ 2562 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2563 &sp->spidx.dst.sa, 2564 sp->spidx.prefd, sp->spidx.ul_proto); 2565 if (!m) { 2566 error = ENOBUFS; 2567 goto fail; 2568 } 2569 m_cat(result, m); 2570 2571 /* set secpolicy */ 2572 m = key_sp2msg(sp); 2573 if (!m) { 2574 error = ENOBUFS; 2575 goto fail; 2576 } 2577 m_cat(result, m); 2578 2579 if ((result->m_flags & M_PKTHDR) == 0) { 2580 error = EINVAL; 2581 goto fail; 2582 } 2583 2584 if (result->m_len < sizeof(struct sadb_msg)) { 2585 result = m_pullup(result, sizeof(struct sadb_msg)); 2586 if (result == NULL) { 2587 error = ENOBUFS; 2588 goto fail; 2589 } 2590 } 2591 2592 result->m_pkthdr.len = 0; 2593 for (m = result; m; m = m->m_next) 2594 result->m_pkthdr.len += m->m_len; 2595 2596 mtod(result, struct sadb_msg *)->sadb_msg_len = 2597 PFKEY_UNIT64(result->m_pkthdr.len); 2598 2599 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 2600 2601 fail: 2602 if (result) 2603 m_freem(result); 2604 return error; 2605 } 2606 2607 /* %%% SAD management */ 2608 /* 2609 * allocating a memory for new SA head, and copy from the values of mhp. 2610 * OUT: NULL : failure due to the lack of memory. 2611 * others : pointer to new SA head. 2612 */ 2613 static struct secashead * 2614 key_newsah(saidx) 2615 struct secasindex *saidx; 2616 { 2617 struct secashead *newsah; 2618 2619 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 2620 2621 newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO); 2622 if (newsah != NULL) { 2623 int i; 2624 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++) 2625 LIST_INIT(&newsah->savtree[i]); 2626 newsah->saidx = *saidx; 2627 2628 /* add to saidxtree */ 2629 newsah->state = SADB_SASTATE_MATURE; 2630 2631 SAHTREE_LOCK(); 2632 LIST_INSERT_HEAD(&sahtree, newsah, chain); 2633 SAHTREE_UNLOCK(); 2634 } 2635 return(newsah); 2636 } 2637 2638 /* 2639 * delete SA index and all SA registerd. 2640 */ 2641 static void 2642 key_delsah(sah) 2643 struct secashead *sah; 2644 { 2645 struct secasvar *sav, *nextsav; 2646 u_int stateidx; 2647 int zombie = 0; 2648 2649 IPSEC_ASSERT(sah != NULL, ("NULL sah")); 2650 SAHTREE_LOCK_ASSERT(); 2651 2652 /* searching all SA registerd in the secindex. */ 2653 for (stateidx = 0; 2654 stateidx < _ARRAYLEN(saorder_state_any); 2655 stateidx++) { 2656 u_int state = saorder_state_any[stateidx]; 2657 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) { 2658 if (sav->refcnt == 0) { 2659 /* sanity check */ 2660 KEY_CHKSASTATE(state, sav->state, __func__); 2661 KEY_FREESAV(&sav); 2662 } else { 2663 /* give up to delete this sa */ 2664 zombie++; 2665 } 2666 } 2667 } 2668 if (!zombie) { /* delete only if there are savs */ 2669 /* remove from tree of SA index */ 2670 if (__LIST_CHAINED(sah)) 2671 LIST_REMOVE(sah, chain); 2672 if (sah->sa_route.ro_rt) { 2673 RTFREE(sah->sa_route.ro_rt); 2674 sah->sa_route.ro_rt = (struct rtentry *)NULL; 2675 } 2676 free(sah, M_IPSEC_SAH); 2677 } 2678 } 2679 2680 /* 2681 * allocating a new SA with LARVAL state. key_add() and key_getspi() call, 2682 * and copy the values of mhp into new buffer. 2683 * When SAD message type is GETSPI: 2684 * to set sequence number from acq_seq++, 2685 * to set zero to SPI. 2686 * not to call key_setsava(). 2687 * OUT: NULL : fail 2688 * others : pointer to new secasvar. 2689 * 2690 * does not modify mbuf. does not free mbuf on error. 2691 */ 2692 static struct secasvar * 2693 key_newsav(m, mhp, sah, errp, where, tag) 2694 struct mbuf *m; 2695 const struct sadb_msghdr *mhp; 2696 struct secashead *sah; 2697 int *errp; 2698 const char* where; 2699 int tag; 2700 { 2701 struct secasvar *newsav; 2702 const struct sadb_sa *xsa; 2703 2704 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2705 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2706 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2707 IPSEC_ASSERT(sah != NULL, ("null secashead")); 2708 2709 newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO); 2710 if (newsav == NULL) { 2711 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2712 *errp = ENOBUFS; 2713 goto done; 2714 } 2715 2716 switch (mhp->msg->sadb_msg_type) { 2717 case SADB_GETSPI: 2718 newsav->spi = 0; 2719 2720 #ifdef IPSEC_DOSEQCHECK 2721 /* sync sequence number */ 2722 if (mhp->msg->sadb_msg_seq == 0) 2723 newsav->seq = 2724 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq)); 2725 else 2726 #endif 2727 newsav->seq = mhp->msg->sadb_msg_seq; 2728 break; 2729 2730 case SADB_ADD: 2731 /* sanity check */ 2732 if (mhp->ext[SADB_EXT_SA] == NULL) { 2733 free(newsav, M_IPSEC_SA); 2734 newsav = NULL; 2735 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2736 __func__)); 2737 *errp = EINVAL; 2738 goto done; 2739 } 2740 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 2741 newsav->spi = xsa->sadb_sa_spi; 2742 newsav->seq = mhp->msg->sadb_msg_seq; 2743 break; 2744 default: 2745 free(newsav, M_IPSEC_SA); 2746 newsav = NULL; 2747 *errp = EINVAL; 2748 goto done; 2749 } 2750 2751 2752 /* copy sav values */ 2753 if (mhp->msg->sadb_msg_type != SADB_GETSPI) { 2754 *errp = key_setsaval(newsav, m, mhp); 2755 if (*errp) { 2756 free(newsav, M_IPSEC_SA); 2757 newsav = NULL; 2758 goto done; 2759 } 2760 } 2761 2762 SECASVAR_LOCK_INIT(newsav); 2763 2764 /* reset created */ 2765 newsav->created = time_second; 2766 newsav->pid = mhp->msg->sadb_msg_pid; 2767 2768 /* add to satree */ 2769 newsav->sah = sah; 2770 sa_initref(newsav); 2771 newsav->state = SADB_SASTATE_LARVAL; 2772 2773 /* XXX locking??? */ 2774 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav, 2775 secasvar, chain); 2776 done: 2777 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 2778 printf("DP %s from %s:%u return SP:%p\n", __func__, 2779 where, tag, newsav)); 2780 2781 return newsav; 2782 } 2783 2784 /* 2785 * free() SA variable entry. 2786 */ 2787 static void 2788 key_cleansav(struct secasvar *sav) 2789 { 2790 /* 2791 * Cleanup xform state. Note that zeroize'ing causes the 2792 * keys to be cleared; otherwise we must do it ourself. 2793 */ 2794 if (sav->tdb_xform != NULL) { 2795 sav->tdb_xform->xf_zeroize(sav); 2796 sav->tdb_xform = NULL; 2797 } else { 2798 KASSERT(sav->iv == NULL, ("iv but no xform")); 2799 if (sav->key_auth != NULL) 2800 bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth)); 2801 if (sav->key_enc != NULL) 2802 bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc)); 2803 } 2804 if (sav->key_auth != NULL) { 2805 if (sav->key_auth->key_data != NULL) 2806 free(sav->key_auth->key_data, M_IPSEC_MISC); 2807 free(sav->key_auth, M_IPSEC_MISC); 2808 sav->key_auth = NULL; 2809 } 2810 if (sav->key_enc != NULL) { 2811 if (sav->key_enc->key_data != NULL) 2812 free(sav->key_enc->key_data, M_IPSEC_MISC); 2813 free(sav->key_enc, M_IPSEC_MISC); 2814 sav->key_enc = NULL; 2815 } 2816 if (sav->sched) { 2817 bzero(sav->sched, sav->schedlen); 2818 free(sav->sched, M_IPSEC_MISC); 2819 sav->sched = NULL; 2820 } 2821 if (sav->replay != NULL) { 2822 free(sav->replay, M_IPSEC_MISC); 2823 sav->replay = NULL; 2824 } 2825 if (sav->lft_c != NULL) { 2826 free(sav->lft_c, M_IPSEC_MISC); 2827 sav->lft_c = NULL; 2828 } 2829 if (sav->lft_h != NULL) { 2830 free(sav->lft_h, M_IPSEC_MISC); 2831 sav->lft_h = NULL; 2832 } 2833 if (sav->lft_s != NULL) { 2834 free(sav->lft_s, M_IPSEC_MISC); 2835 sav->lft_s = NULL; 2836 } 2837 } 2838 2839 /* 2840 * free() SA variable entry. 2841 */ 2842 static void 2843 key_delsav(sav) 2844 struct secasvar *sav; 2845 { 2846 IPSEC_ASSERT(sav != NULL, ("null sav")); 2847 IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt)); 2848 2849 /* remove from SA header */ 2850 if (__LIST_CHAINED(sav)) 2851 LIST_REMOVE(sav, chain); 2852 key_cleansav(sav); 2853 SECASVAR_LOCK_DESTROY(sav); 2854 free(sav, M_IPSEC_SA); 2855 } 2856 2857 /* 2858 * search SAD. 2859 * OUT: 2860 * NULL : not found 2861 * others : found, pointer to a SA. 2862 */ 2863 static struct secashead * 2864 key_getsah(saidx) 2865 struct secasindex *saidx; 2866 { 2867 struct secashead *sah; 2868 2869 SAHTREE_LOCK(); 2870 LIST_FOREACH(sah, &sahtree, chain) { 2871 if (sah->state == SADB_SASTATE_DEAD) 2872 continue; 2873 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID)) 2874 break; 2875 } 2876 SAHTREE_UNLOCK(); 2877 2878 return sah; 2879 } 2880 2881 /* 2882 * check not to be duplicated SPI. 2883 * NOTE: this function is too slow due to searching all SAD. 2884 * OUT: 2885 * NULL : not found 2886 * others : found, pointer to a SA. 2887 */ 2888 static struct secasvar * 2889 key_checkspidup(saidx, spi) 2890 struct secasindex *saidx; 2891 u_int32_t spi; 2892 { 2893 struct secashead *sah; 2894 struct secasvar *sav; 2895 2896 /* check address family */ 2897 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) { 2898 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 2899 __func__)); 2900 return NULL; 2901 } 2902 2903 sav = NULL; 2904 /* check all SAD */ 2905 SAHTREE_LOCK(); 2906 LIST_FOREACH(sah, &sahtree, chain) { 2907 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst)) 2908 continue; 2909 sav = key_getsavbyspi(sah, spi); 2910 if (sav != NULL) 2911 break; 2912 } 2913 SAHTREE_UNLOCK(); 2914 2915 return sav; 2916 } 2917 2918 /* 2919 * search SAD litmited alive SA, protocol, SPI. 2920 * OUT: 2921 * NULL : not found 2922 * others : found, pointer to a SA. 2923 */ 2924 static struct secasvar * 2925 key_getsavbyspi(sah, spi) 2926 struct secashead *sah; 2927 u_int32_t spi; 2928 { 2929 struct secasvar *sav; 2930 u_int stateidx, state; 2931 2932 sav = NULL; 2933 SAHTREE_LOCK_ASSERT(); 2934 /* search all status */ 2935 for (stateidx = 0; 2936 stateidx < _ARRAYLEN(saorder_state_alive); 2937 stateidx++) { 2938 2939 state = saorder_state_alive[stateidx]; 2940 LIST_FOREACH(sav, &sah->savtree[state], chain) { 2941 2942 /* sanity check */ 2943 if (sav->state != state) { 2944 ipseclog((LOG_DEBUG, "%s: " 2945 "invalid sav->state (queue: %d SA: %d)\n", 2946 __func__, state, sav->state)); 2947 continue; 2948 } 2949 2950 if (sav->spi == spi) 2951 return sav; 2952 } 2953 } 2954 2955 return NULL; 2956 } 2957 2958 /* 2959 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. 2960 * You must update these if need. 2961 * OUT: 0: success. 2962 * !0: failure. 2963 * 2964 * does not modify mbuf. does not free mbuf on error. 2965 */ 2966 static int 2967 key_setsaval(sav, m, mhp) 2968 struct secasvar *sav; 2969 struct mbuf *m; 2970 const struct sadb_msghdr *mhp; 2971 { 2972 int error = 0; 2973 2974 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2975 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2976 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2977 2978 /* initialization */ 2979 sav->replay = NULL; 2980 sav->key_auth = NULL; 2981 sav->key_enc = NULL; 2982 sav->sched = NULL; 2983 sav->schedlen = 0; 2984 sav->iv = NULL; 2985 sav->lft_c = NULL; 2986 sav->lft_h = NULL; 2987 sav->lft_s = NULL; 2988 sav->tdb_xform = NULL; /* transform */ 2989 sav->tdb_encalgxform = NULL; /* encoding algorithm */ 2990 sav->tdb_authalgxform = NULL; /* authentication algorithm */ 2991 sav->tdb_compalgxform = NULL; /* compression algorithm */ 2992 2993 /* SA */ 2994 if (mhp->ext[SADB_EXT_SA] != NULL) { 2995 const struct sadb_sa *sa0; 2996 2997 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 2998 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { 2999 error = EINVAL; 3000 goto fail; 3001 } 3002 3003 sav->alg_auth = sa0->sadb_sa_auth; 3004 sav->alg_enc = sa0->sadb_sa_encrypt; 3005 sav->flags = sa0->sadb_sa_flags; 3006 3007 /* replay window */ 3008 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { 3009 sav->replay = (struct secreplay *) 3010 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO); 3011 if (sav->replay == NULL) { 3012 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3013 __func__)); 3014 error = ENOBUFS; 3015 goto fail; 3016 } 3017 if (sa0->sadb_sa_replay != 0) 3018 sav->replay->bitmap = (caddr_t)(sav->replay+1); 3019 sav->replay->wsize = sa0->sadb_sa_replay; 3020 } 3021 } 3022 3023 /* Authentication keys */ 3024 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { 3025 const struct sadb_key *key0; 3026 int len; 3027 3028 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH]; 3029 len = mhp->extlen[SADB_EXT_KEY_AUTH]; 3030 3031 error = 0; 3032 if (len < sizeof(*key0)) { 3033 error = EINVAL; 3034 goto fail; 3035 } 3036 switch (mhp->msg->sadb_msg_satype) { 3037 case SADB_SATYPE_AH: 3038 case SADB_SATYPE_ESP: 3039 case SADB_X_SATYPE_TCPSIGNATURE: 3040 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3041 sav->alg_auth != SADB_X_AALG_NULL) 3042 error = EINVAL; 3043 break; 3044 case SADB_X_SATYPE_IPCOMP: 3045 default: 3046 error = EINVAL; 3047 break; 3048 } 3049 if (error) { 3050 ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n", 3051 __func__)); 3052 goto fail; 3053 } 3054 3055 sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len, 3056 M_IPSEC_MISC); 3057 if (sav->key_auth == NULL ) { 3058 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3059 __func__)); 3060 error = ENOBUFS; 3061 goto fail; 3062 } 3063 } 3064 3065 /* Encryption key */ 3066 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { 3067 const struct sadb_key *key0; 3068 int len; 3069 3070 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT]; 3071 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; 3072 3073 error = 0; 3074 if (len < sizeof(*key0)) { 3075 error = EINVAL; 3076 goto fail; 3077 } 3078 switch (mhp->msg->sadb_msg_satype) { 3079 case SADB_SATYPE_ESP: 3080 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3081 sav->alg_enc != SADB_EALG_NULL) { 3082 error = EINVAL; 3083 break; 3084 } 3085 sav->key_enc = (struct seckey *)key_dup_keymsg(key0, 3086 len, 3087 M_IPSEC_MISC); 3088 if (sav->key_enc == NULL) { 3089 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3090 __func__)); 3091 error = ENOBUFS; 3092 goto fail; 3093 } 3094 break; 3095 case SADB_X_SATYPE_IPCOMP: 3096 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) 3097 error = EINVAL; 3098 sav->key_enc = NULL; /*just in case*/ 3099 break; 3100 case SADB_SATYPE_AH: 3101 case SADB_X_SATYPE_TCPSIGNATURE: 3102 default: 3103 error = EINVAL; 3104 break; 3105 } 3106 if (error) { 3107 ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n", 3108 __func__)); 3109 goto fail; 3110 } 3111 } 3112 3113 /* set iv */ 3114 sav->ivlen = 0; 3115 3116 switch (mhp->msg->sadb_msg_satype) { 3117 case SADB_SATYPE_AH: 3118 error = xform_init(sav, XF_AH); 3119 break; 3120 case SADB_SATYPE_ESP: 3121 error = xform_init(sav, XF_ESP); 3122 break; 3123 case SADB_X_SATYPE_IPCOMP: 3124 error = xform_init(sav, XF_IPCOMP); 3125 break; 3126 case SADB_X_SATYPE_TCPSIGNATURE: 3127 error = xform_init(sav, XF_TCPSIGNATURE); 3128 break; 3129 } 3130 if (error) { 3131 ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n", 3132 __func__, mhp->msg->sadb_msg_satype)); 3133 goto fail; 3134 } 3135 3136 /* reset created */ 3137 sav->created = time_second; 3138 3139 /* make lifetime for CURRENT */ 3140 sav->lft_c = malloc(sizeof(struct sadb_lifetime), M_IPSEC_MISC, M_NOWAIT); 3141 if (sav->lft_c == NULL) { 3142 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3143 error = ENOBUFS; 3144 goto fail; 3145 } 3146 3147 sav->lft_c->allocations = 0; 3148 sav->lft_c->bytes = 0; 3149 sav->lft_c->addtime = time_second; 3150 sav->lft_c->usetime = 0; 3151 3152 /* lifetimes for HARD and SOFT */ 3153 { 3154 const struct sadb_lifetime *lft0; 3155 3156 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 3157 if (lft0 != NULL) { 3158 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { 3159 error = EINVAL; 3160 goto fail; 3161 } 3162 sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3163 if (sav->lft_h == NULL) { 3164 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3165 error = ENOBUFS; 3166 goto fail; 3167 } 3168 /* to be initialize ? */ 3169 } 3170 3171 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT]; 3172 if (lft0 != NULL) { 3173 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { 3174 error = EINVAL; 3175 goto fail; 3176 } 3177 sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3178 if (sav->lft_s == NULL) { 3179 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3180 error = ENOBUFS; 3181 goto fail; 3182 } 3183 /* to be initialize ? */ 3184 } 3185 } 3186 3187 return 0; 3188 3189 fail: 3190 /* initialization */ 3191 key_cleansav(sav); 3192 3193 return error; 3194 } 3195 3196 /* 3197 * validation with a secasvar entry, and set SADB_SATYPE_MATURE. 3198 * OUT: 0: valid 3199 * other: errno 3200 */ 3201 static int 3202 key_mature(struct secasvar *sav) 3203 { 3204 int error; 3205 3206 /* check SPI value */ 3207 switch (sav->sah->saidx.proto) { 3208 case IPPROTO_ESP: 3209 case IPPROTO_AH: 3210 /* 3211 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values 3212 * 1-255 reserved by IANA for future use, 3213 * 0 for implementation specific, local use. 3214 */ 3215 if (ntohl(sav->spi) <= 255) { 3216 ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n", 3217 __func__, (u_int32_t)ntohl(sav->spi))); 3218 return EINVAL; 3219 } 3220 break; 3221 } 3222 3223 /* check satype */ 3224 switch (sav->sah->saidx.proto) { 3225 case IPPROTO_ESP: 3226 /* check flags */ 3227 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) == 3228 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) { 3229 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3230 "given to old-esp.\n", __func__)); 3231 return EINVAL; 3232 } 3233 error = xform_init(sav, XF_ESP); 3234 break; 3235 case IPPROTO_AH: 3236 /* check flags */ 3237 if (sav->flags & SADB_X_EXT_DERIV) { 3238 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3239 "given to AH SA.\n", __func__)); 3240 return EINVAL; 3241 } 3242 if (sav->alg_enc != SADB_EALG_NONE) { 3243 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3244 "mismated.\n", __func__)); 3245 return(EINVAL); 3246 } 3247 error = xform_init(sav, XF_AH); 3248 break; 3249 case IPPROTO_IPCOMP: 3250 if (sav->alg_auth != SADB_AALG_NONE) { 3251 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3252 "mismated.\n", __func__)); 3253 return(EINVAL); 3254 } 3255 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 3256 && ntohl(sav->spi) >= 0x10000) { 3257 ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n", 3258 __func__)); 3259 return(EINVAL); 3260 } 3261 error = xform_init(sav, XF_IPCOMP); 3262 break; 3263 case IPPROTO_TCP: 3264 if (sav->alg_enc != SADB_EALG_NONE) { 3265 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3266 "mismated.\n", __func__)); 3267 return(EINVAL); 3268 } 3269 error = xform_init(sav, XF_TCPSIGNATURE); 3270 break; 3271 default: 3272 ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__)); 3273 error = EPROTONOSUPPORT; 3274 break; 3275 } 3276 if (error == 0) { 3277 SAHTREE_LOCK(); 3278 key_sa_chgstate(sav, SADB_SASTATE_MATURE); 3279 SAHTREE_UNLOCK(); 3280 } 3281 return (error); 3282 } 3283 3284 /* 3285 * subroutine for SADB_GET and SADB_DUMP. 3286 */ 3287 static struct mbuf * 3288 key_setdumpsa(sav, type, satype, seq, pid) 3289 struct secasvar *sav; 3290 u_int8_t type, satype; 3291 u_int32_t seq, pid; 3292 { 3293 struct mbuf *result = NULL, *tres = NULL, *m; 3294 int i; 3295 int dumporder[] = { 3296 SADB_EXT_SA, SADB_X_EXT_SA2, 3297 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 3298 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, 3299 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, 3300 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, 3301 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, 3302 }; 3303 3304 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt); 3305 if (m == NULL) 3306 goto fail; 3307 result = m; 3308 3309 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) { 3310 m = NULL; 3311 switch (dumporder[i]) { 3312 case SADB_EXT_SA: 3313 m = key_setsadbsa(sav); 3314 if (!m) 3315 goto fail; 3316 break; 3317 3318 case SADB_X_EXT_SA2: 3319 m = key_setsadbxsa2(sav->sah->saidx.mode, 3320 sav->replay ? sav->replay->count : 0, 3321 sav->sah->saidx.reqid); 3322 if (!m) 3323 goto fail; 3324 break; 3325 3326 case SADB_EXT_ADDRESS_SRC: 3327 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3328 &sav->sah->saidx.src.sa, 3329 FULLMASK, IPSEC_ULPROTO_ANY); 3330 if (!m) 3331 goto fail; 3332 break; 3333 3334 case SADB_EXT_ADDRESS_DST: 3335 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3336 &sav->sah->saidx.dst.sa, 3337 FULLMASK, IPSEC_ULPROTO_ANY); 3338 if (!m) 3339 goto fail; 3340 break; 3341 3342 case SADB_EXT_KEY_AUTH: 3343 if (!sav->key_auth) 3344 continue; 3345 m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH); 3346 if (!m) 3347 goto fail; 3348 break; 3349 3350 case SADB_EXT_KEY_ENCRYPT: 3351 if (!sav->key_enc) 3352 continue; 3353 m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT); 3354 if (!m) 3355 goto fail; 3356 break; 3357 3358 case SADB_EXT_LIFETIME_CURRENT: 3359 if (!sav->lft_c) 3360 continue; 3361 m = key_setlifetime(sav->lft_c, 3362 SADB_EXT_LIFETIME_CURRENT); 3363 if (!m) 3364 goto fail; 3365 break; 3366 3367 case SADB_EXT_LIFETIME_HARD: 3368 if (!sav->lft_h) 3369 continue; 3370 m = key_setlifetime(sav->lft_h, 3371 SADB_EXT_LIFETIME_HARD); 3372 if (!m) 3373 goto fail; 3374 break; 3375 3376 case SADB_EXT_LIFETIME_SOFT: 3377 if (!sav->lft_s) 3378 continue; 3379 m = key_setlifetime(sav->lft_h, 3380 SADB_EXT_LIFETIME_SOFT); 3381 3382 if (!m) 3383 goto fail; 3384 break; 3385 3386 case SADB_EXT_ADDRESS_PROXY: 3387 case SADB_EXT_IDENTITY_SRC: 3388 case SADB_EXT_IDENTITY_DST: 3389 /* XXX: should we brought from SPD ? */ 3390 case SADB_EXT_SENSITIVITY: 3391 default: 3392 continue; 3393 } 3394 3395 if (!m) 3396 goto fail; 3397 if (tres) 3398 m_cat(m, tres); 3399 tres = m; 3400 3401 } 3402 3403 m_cat(result, tres); 3404 if (result->m_len < sizeof(struct sadb_msg)) { 3405 result = m_pullup(result, sizeof(struct sadb_msg)); 3406 if (result == NULL) 3407 goto fail; 3408 } 3409 3410 result->m_pkthdr.len = 0; 3411 for (m = result; m; m = m->m_next) 3412 result->m_pkthdr.len += m->m_len; 3413 3414 mtod(result, struct sadb_msg *)->sadb_msg_len = 3415 PFKEY_UNIT64(result->m_pkthdr.len); 3416 3417 return result; 3418 3419 fail: 3420 m_freem(result); 3421 m_freem(tres); 3422 return NULL; 3423 } 3424 3425 /* 3426 * set data into sadb_msg. 3427 */ 3428 static struct mbuf * 3429 key_setsadbmsg(type, tlen, satype, seq, pid, reserved) 3430 u_int8_t type, satype; 3431 u_int16_t tlen; 3432 u_int32_t seq; 3433 pid_t pid; 3434 u_int16_t reserved; 3435 { 3436 struct mbuf *m; 3437 struct sadb_msg *p; 3438 int len; 3439 3440 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 3441 if (len > MCLBYTES) 3442 return NULL; 3443 MGETHDR(m, M_DONTWAIT, MT_DATA); 3444 if (m && len > MHLEN) { 3445 MCLGET(m, M_DONTWAIT); 3446 if ((m->m_flags & M_EXT) == 0) { 3447 m_freem(m); 3448 m = NULL; 3449 } 3450 } 3451 if (!m) 3452 return NULL; 3453 m->m_pkthdr.len = m->m_len = len; 3454 m->m_next = NULL; 3455 3456 p = mtod(m, struct sadb_msg *); 3457 3458 bzero(p, len); 3459 p->sadb_msg_version = PF_KEY_V2; 3460 p->sadb_msg_type = type; 3461 p->sadb_msg_errno = 0; 3462 p->sadb_msg_satype = satype; 3463 p->sadb_msg_len = PFKEY_UNIT64(tlen); 3464 p->sadb_msg_reserved = reserved; 3465 p->sadb_msg_seq = seq; 3466 p->sadb_msg_pid = (u_int32_t)pid; 3467 3468 return m; 3469 } 3470 3471 /* 3472 * copy secasvar data into sadb_address. 3473 */ 3474 static struct mbuf * 3475 key_setsadbsa(sav) 3476 struct secasvar *sav; 3477 { 3478 struct mbuf *m; 3479 struct sadb_sa *p; 3480 int len; 3481 3482 len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); 3483 m = key_alloc_mbuf(len); 3484 if (!m || m->m_next) { /*XXX*/ 3485 if (m) 3486 m_freem(m); 3487 return NULL; 3488 } 3489 3490 p = mtod(m, struct sadb_sa *); 3491 3492 bzero(p, len); 3493 p->sadb_sa_len = PFKEY_UNIT64(len); 3494 p->sadb_sa_exttype = SADB_EXT_SA; 3495 p->sadb_sa_spi = sav->spi; 3496 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0); 3497 p->sadb_sa_state = sav->state; 3498 p->sadb_sa_auth = sav->alg_auth; 3499 p->sadb_sa_encrypt = sav->alg_enc; 3500 p->sadb_sa_flags = sav->flags; 3501 3502 return m; 3503 } 3504 3505 /* 3506 * set data into sadb_address. 3507 */ 3508 static struct mbuf * 3509 key_setsadbaddr(exttype, saddr, prefixlen, ul_proto) 3510 u_int16_t exttype; 3511 const struct sockaddr *saddr; 3512 u_int8_t prefixlen; 3513 u_int16_t ul_proto; 3514 { 3515 struct mbuf *m; 3516 struct sadb_address *p; 3517 size_t len; 3518 3519 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + 3520 PFKEY_ALIGN8(saddr->sa_len); 3521 m = key_alloc_mbuf(len); 3522 if (!m || m->m_next) { /*XXX*/ 3523 if (m) 3524 m_freem(m); 3525 return NULL; 3526 } 3527 3528 p = mtod(m, struct sadb_address *); 3529 3530 bzero(p, len); 3531 p->sadb_address_len = PFKEY_UNIT64(len); 3532 p->sadb_address_exttype = exttype; 3533 p->sadb_address_proto = ul_proto; 3534 if (prefixlen == FULLMASK) { 3535 switch (saddr->sa_family) { 3536 case AF_INET: 3537 prefixlen = sizeof(struct in_addr) << 3; 3538 break; 3539 case AF_INET6: 3540 prefixlen = sizeof(struct in6_addr) << 3; 3541 break; 3542 default: 3543 ; /*XXX*/ 3544 } 3545 } 3546 p->sadb_address_prefixlen = prefixlen; 3547 p->sadb_address_reserved = 0; 3548 3549 bcopy(saddr, 3550 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)), 3551 saddr->sa_len); 3552 3553 return m; 3554 } 3555 3556 /* 3557 * set data into sadb_x_sa2. 3558 */ 3559 static struct mbuf * 3560 key_setsadbxsa2(mode, seq, reqid) 3561 u_int8_t mode; 3562 u_int32_t seq, reqid; 3563 { 3564 struct mbuf *m; 3565 struct sadb_x_sa2 *p; 3566 size_t len; 3567 3568 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); 3569 m = key_alloc_mbuf(len); 3570 if (!m || m->m_next) { /*XXX*/ 3571 if (m) 3572 m_freem(m); 3573 return NULL; 3574 } 3575 3576 p = mtod(m, struct sadb_x_sa2 *); 3577 3578 bzero(p, len); 3579 p->sadb_x_sa2_len = PFKEY_UNIT64(len); 3580 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 3581 p->sadb_x_sa2_mode = mode; 3582 p->sadb_x_sa2_reserved1 = 0; 3583 p->sadb_x_sa2_reserved2 = 0; 3584 p->sadb_x_sa2_sequence = seq; 3585 p->sadb_x_sa2_reqid = reqid; 3586 3587 return m; 3588 } 3589 3590 /* 3591 * set data into sadb_x_policy 3592 */ 3593 static struct mbuf * 3594 key_setsadbxpolicy(type, dir, id) 3595 u_int16_t type; 3596 u_int8_t dir; 3597 u_int32_t id; 3598 { 3599 struct mbuf *m; 3600 struct sadb_x_policy *p; 3601 size_t len; 3602 3603 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); 3604 m = key_alloc_mbuf(len); 3605 if (!m || m->m_next) { /*XXX*/ 3606 if (m) 3607 m_freem(m); 3608 return NULL; 3609 } 3610 3611 p = mtod(m, struct sadb_x_policy *); 3612 3613 bzero(p, len); 3614 p->sadb_x_policy_len = PFKEY_UNIT64(len); 3615 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 3616 p->sadb_x_policy_type = type; 3617 p->sadb_x_policy_dir = dir; 3618 p->sadb_x_policy_id = id; 3619 3620 return m; 3621 } 3622 3623 /* %%% utilities */ 3624 /* Take a key message (sadb_key) from the socket and turn it into one 3625 * of the kernel's key structures (seckey). 3626 * 3627 * IN: pointer to the src 3628 * OUT: NULL no more memory 3629 */ 3630 struct seckey * 3631 key_dup_keymsg(const struct sadb_key *src, u_int len, 3632 struct malloc_type *type) 3633 { 3634 struct seckey *dst; 3635 dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT); 3636 if (dst != NULL) { 3637 dst->bits = src->sadb_key_bits; 3638 dst->key_data = (char *)malloc(len, type, M_NOWAIT); 3639 if (dst->key_data != NULL) { 3640 bcopy((const char *)src + sizeof(struct sadb_key), 3641 dst->key_data, len); 3642 } else { 3643 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3644 __func__)); 3645 free(dst, type); 3646 dst = NULL; 3647 } 3648 } else { 3649 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3650 __func__)); 3651 3652 } 3653 return dst; 3654 } 3655 3656 /* Take a lifetime message (sadb_lifetime) passed in on a socket and 3657 * turn it into one of the kernel's lifetime structures (seclifetime). 3658 * 3659 * IN: pointer to the destination, source and malloc type 3660 * OUT: NULL, no more memory 3661 */ 3662 3663 static struct seclifetime * 3664 key_dup_lifemsg(const struct sadb_lifetime *src, 3665 struct malloc_type *type) 3666 { 3667 struct seclifetime *dst = NULL; 3668 3669 dst = (struct seclifetime *)malloc(sizeof(struct seclifetime), 3670 type, M_NOWAIT); 3671 if (dst == NULL) { 3672 /* XXX counter */ 3673 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3674 } else { 3675 dst->allocations = src->sadb_lifetime_allocations; 3676 dst->bytes = src->sadb_lifetime_bytes; 3677 dst->addtime = src->sadb_lifetime_addtime; 3678 dst->usetime = src->sadb_lifetime_usetime; 3679 } 3680 return dst; 3681 } 3682 3683 /* compare my own address 3684 * OUT: 1: true, i.e. my address. 3685 * 0: false 3686 */ 3687 int 3688 key_ismyaddr(sa) 3689 struct sockaddr *sa; 3690 { 3691 #ifdef INET 3692 struct sockaddr_in *sin; 3693 struct in_ifaddr *ia; 3694 #endif 3695 3696 IPSEC_ASSERT(sa != NULL, ("null sockaddr")); 3697 3698 switch (sa->sa_family) { 3699 #ifdef INET 3700 case AF_INET: 3701 sin = (struct sockaddr_in *)sa; 3702 for (ia = in_ifaddrhead.tqh_first; ia; 3703 ia = ia->ia_link.tqe_next) 3704 { 3705 if (sin->sin_family == ia->ia_addr.sin_family && 3706 sin->sin_len == ia->ia_addr.sin_len && 3707 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr) 3708 { 3709 return 1; 3710 } 3711 } 3712 break; 3713 #endif 3714 #ifdef INET6 3715 case AF_INET6: 3716 return key_ismyaddr6((struct sockaddr_in6 *)sa); 3717 #endif 3718 } 3719 3720 return 0; 3721 } 3722 3723 #ifdef INET6 3724 /* 3725 * compare my own address for IPv6. 3726 * 1: ours 3727 * 0: other 3728 * NOTE: derived ip6_input() in KAME. This is necessary to modify more. 3729 */ 3730 #include <netinet6/in6_var.h> 3731 3732 static int 3733 key_ismyaddr6(sin6) 3734 struct sockaddr_in6 *sin6; 3735 { 3736 struct in6_ifaddr *ia; 3737 struct in6_multi *in6m; 3738 3739 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 3740 if (key_sockaddrcmp((struct sockaddr *)&sin6, 3741 (struct sockaddr *)&ia->ia_addr, 0) == 0) 3742 return 1; 3743 3744 /* 3745 * XXX Multicast 3746 * XXX why do we care about multlicast here while we don't care 3747 * about IPv4 multicast?? 3748 * XXX scope 3749 */ 3750 in6m = NULL; 3751 IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m); 3752 if (in6m) 3753 return 1; 3754 } 3755 3756 /* loopback, just for safety */ 3757 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) 3758 return 1; 3759 3760 return 0; 3761 } 3762 #endif /*INET6*/ 3763 3764 /* 3765 * compare two secasindex structure. 3766 * flag can specify to compare 2 saidxes. 3767 * compare two secasindex structure without both mode and reqid. 3768 * don't compare port. 3769 * IN: 3770 * saidx0: source, it can be in SAD. 3771 * saidx1: object. 3772 * OUT: 3773 * 1 : equal 3774 * 0 : not equal 3775 */ 3776 static int 3777 key_cmpsaidx( 3778 const struct secasindex *saidx0, 3779 const struct secasindex *saidx1, 3780 int flag) 3781 { 3782 /* sanity */ 3783 if (saidx0 == NULL && saidx1 == NULL) 3784 return 1; 3785 3786 if (saidx0 == NULL || saidx1 == NULL) 3787 return 0; 3788 3789 if (saidx0->proto != saidx1->proto) 3790 return 0; 3791 3792 if (flag == CMP_EXACTLY) { 3793 if (saidx0->mode != saidx1->mode) 3794 return 0; 3795 if (saidx0->reqid != saidx1->reqid) 3796 return 0; 3797 if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 || 3798 bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0) 3799 return 0; 3800 } else { 3801 3802 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ 3803 if (flag == CMP_MODE_REQID 3804 ||flag == CMP_REQID) { 3805 /* 3806 * If reqid of SPD is non-zero, unique SA is required. 3807 * The result must be of same reqid in this case. 3808 */ 3809 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) 3810 return 0; 3811 } 3812 3813 if (flag == CMP_MODE_REQID) { 3814 if (saidx0->mode != IPSEC_MODE_ANY 3815 && saidx0->mode != saidx1->mode) 3816 return 0; 3817 } 3818 3819 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, 0) != 0) { 3820 return 0; 3821 } 3822 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, 0) != 0) { 3823 return 0; 3824 } 3825 } 3826 3827 return 1; 3828 } 3829 3830 /* 3831 * compare two secindex structure exactly. 3832 * IN: 3833 * spidx0: source, it is often in SPD. 3834 * spidx1: object, it is often from PFKEY message. 3835 * OUT: 3836 * 1 : equal 3837 * 0 : not equal 3838 */ 3839 static int 3840 key_cmpspidx_exactly( 3841 struct secpolicyindex *spidx0, 3842 struct secpolicyindex *spidx1) 3843 { 3844 /* sanity */ 3845 if (spidx0 == NULL && spidx1 == NULL) 3846 return 1; 3847 3848 if (spidx0 == NULL || spidx1 == NULL) 3849 return 0; 3850 3851 if (spidx0->prefs != spidx1->prefs 3852 || spidx0->prefd != spidx1->prefd 3853 || spidx0->ul_proto != spidx1->ul_proto) 3854 return 0; 3855 3856 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 && 3857 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0; 3858 } 3859 3860 /* 3861 * compare two secindex structure with mask. 3862 * IN: 3863 * spidx0: source, it is often in SPD. 3864 * spidx1: object, it is often from IP header. 3865 * OUT: 3866 * 1 : equal 3867 * 0 : not equal 3868 */ 3869 static int 3870 key_cmpspidx_withmask( 3871 struct secpolicyindex *spidx0, 3872 struct secpolicyindex *spidx1) 3873 { 3874 /* sanity */ 3875 if (spidx0 == NULL && spidx1 == NULL) 3876 return 1; 3877 3878 if (spidx0 == NULL || spidx1 == NULL) 3879 return 0; 3880 3881 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || 3882 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || 3883 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || 3884 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) 3885 return 0; 3886 3887 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ 3888 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY 3889 && spidx0->ul_proto != spidx1->ul_proto) 3890 return 0; 3891 3892 switch (spidx0->src.sa.sa_family) { 3893 case AF_INET: 3894 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY 3895 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) 3896 return 0; 3897 if (!key_bbcmp(&spidx0->src.sin.sin_addr, 3898 &spidx1->src.sin.sin_addr, spidx0->prefs)) 3899 return 0; 3900 break; 3901 case AF_INET6: 3902 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY 3903 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) 3904 return 0; 3905 /* 3906 * scope_id check. if sin6_scope_id is 0, we regard it 3907 * as a wildcard scope, which matches any scope zone ID. 3908 */ 3909 if (spidx0->src.sin6.sin6_scope_id && 3910 spidx1->src.sin6.sin6_scope_id && 3911 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) 3912 return 0; 3913 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr, 3914 &spidx1->src.sin6.sin6_addr, spidx0->prefs)) 3915 return 0; 3916 break; 3917 default: 3918 /* XXX */ 3919 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) 3920 return 0; 3921 break; 3922 } 3923 3924 switch (spidx0->dst.sa.sa_family) { 3925 case AF_INET: 3926 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY 3927 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) 3928 return 0; 3929 if (!key_bbcmp(&spidx0->dst.sin.sin_addr, 3930 &spidx1->dst.sin.sin_addr, spidx0->prefd)) 3931 return 0; 3932 break; 3933 case AF_INET6: 3934 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY 3935 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) 3936 return 0; 3937 /* 3938 * scope_id check. if sin6_scope_id is 0, we regard it 3939 * as a wildcard scope, which matches any scope zone ID. 3940 */ 3941 if (spidx0->dst.sin6.sin6_scope_id && 3942 spidx1->dst.sin6.sin6_scope_id && 3943 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) 3944 return 0; 3945 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr, 3946 &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) 3947 return 0; 3948 break; 3949 default: 3950 /* XXX */ 3951 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) 3952 return 0; 3953 break; 3954 } 3955 3956 /* XXX Do we check other field ? e.g. flowinfo */ 3957 3958 return 1; 3959 } 3960 3961 /* returns 0 on match */ 3962 static int 3963 key_sockaddrcmp( 3964 const struct sockaddr *sa1, 3965 const struct sockaddr *sa2, 3966 int port) 3967 { 3968 #ifdef satosin 3969 #undef satosin 3970 #endif 3971 #define satosin(s) ((const struct sockaddr_in *)s) 3972 #ifdef satosin6 3973 #undef satosin6 3974 #endif 3975 #define satosin6(s) ((const struct sockaddr_in6 *)s) 3976 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) 3977 return 1; 3978 3979 switch (sa1->sa_family) { 3980 case AF_INET: 3981 if (sa1->sa_len != sizeof(struct sockaddr_in)) 3982 return 1; 3983 if (satosin(sa1)->sin_addr.s_addr != 3984 satosin(sa2)->sin_addr.s_addr) { 3985 return 1; 3986 } 3987 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port) 3988 return 1; 3989 break; 3990 case AF_INET6: 3991 if (sa1->sa_len != sizeof(struct sockaddr_in6)) 3992 return 1; /*EINVAL*/ 3993 if (satosin6(sa1)->sin6_scope_id != 3994 satosin6(sa2)->sin6_scope_id) { 3995 return 1; 3996 } 3997 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr, 3998 &satosin6(sa2)->sin6_addr)) { 3999 return 1; 4000 } 4001 if (port && 4002 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) { 4003 return 1; 4004 } 4005 break; 4006 default: 4007 if (bcmp(sa1, sa2, sa1->sa_len) != 0) 4008 return 1; 4009 break; 4010 } 4011 4012 return 0; 4013 #undef satosin 4014 #undef satosin6 4015 } 4016 4017 /* 4018 * compare two buffers with mask. 4019 * IN: 4020 * addr1: source 4021 * addr2: object 4022 * bits: Number of bits to compare 4023 * OUT: 4024 * 1 : equal 4025 * 0 : not equal 4026 */ 4027 static int 4028 key_bbcmp(const void *a1, const void *a2, u_int bits) 4029 { 4030 const unsigned char *p1 = a1; 4031 const unsigned char *p2 = a2; 4032 4033 /* XXX: This could be considerably faster if we compare a word 4034 * at a time, but it is complicated on LSB Endian machines */ 4035 4036 /* Handle null pointers */ 4037 if (p1 == NULL || p2 == NULL) 4038 return (p1 == p2); 4039 4040 while (bits >= 8) { 4041 if (*p1++ != *p2++) 4042 return 0; 4043 bits -= 8; 4044 } 4045 4046 if (bits > 0) { 4047 u_int8_t mask = ~((1<<(8-bits))-1); 4048 if ((*p1 & mask) != (*p2 & mask)) 4049 return 0; 4050 } 4051 return 1; /* Match! */ 4052 } 4053 4054 static void 4055 key_flush_spd(time_t now) 4056 { 4057 static u_int16_t sptree_scangen = 0; 4058 u_int16_t gen = sptree_scangen++; 4059 struct secpolicy *sp; 4060 u_int dir; 4061 4062 /* SPD */ 4063 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 4064 restart: 4065 SPTREE_LOCK(); 4066 LIST_FOREACH(sp, &sptree[dir], chain) { 4067 if (sp->scangen == gen) /* previously handled */ 4068 continue; 4069 sp->scangen = gen; 4070 if (sp->state == IPSEC_SPSTATE_DEAD) { 4071 /* NB: clean entries created by key_spdflush */ 4072 SPTREE_UNLOCK(); 4073 KEY_FREESP(&sp); 4074 goto restart; 4075 } 4076 if (sp->lifetime == 0 && sp->validtime == 0) 4077 continue; 4078 if ((sp->lifetime && now - sp->created > sp->lifetime) 4079 || (sp->validtime && now - sp->lastused > sp->validtime)) { 4080 sp->state = IPSEC_SPSTATE_DEAD; 4081 SPTREE_UNLOCK(); 4082 key_spdexpire(sp); 4083 KEY_FREESP(&sp); 4084 goto restart; 4085 } 4086 } 4087 SPTREE_UNLOCK(); 4088 } 4089 } 4090 4091 static void 4092 key_flush_sad(time_t now) 4093 { 4094 struct secashead *sah, *nextsah; 4095 struct secasvar *sav, *nextsav; 4096 4097 /* SAD */ 4098 SAHTREE_LOCK(); 4099 LIST_FOREACH_SAFE(sah, &sahtree, chain, nextsah) { 4100 /* if sah has been dead, then delete it and process next sah. */ 4101 if (sah->state == SADB_SASTATE_DEAD) { 4102 key_delsah(sah); 4103 continue; 4104 } 4105 4106 /* if LARVAL entry doesn't become MATURE, delete it. */ 4107 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) { 4108 if (now - sav->created > key_larval_lifetime) 4109 KEY_FREESAV(&sav); 4110 } 4111 4112 /* 4113 * check MATURE entry to start to send expire message 4114 * whether or not. 4115 */ 4116 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) { 4117 /* we don't need to check. */ 4118 if (sav->lft_s == NULL) 4119 continue; 4120 4121 /* sanity check */ 4122 if (sav->lft_c == NULL) { 4123 ipseclog((LOG_DEBUG,"%s: there is no CURRENT " 4124 "time, why?\n", __func__)); 4125 continue; 4126 } 4127 4128 /* check SOFT lifetime */ 4129 if (sav->lft_s->addtime != 0 && 4130 now - sav->created > sav->lft_s->addtime) { 4131 /* 4132 * check SA to be used whether or not. 4133 * when SA hasn't been used, delete it. 4134 */ 4135 if (sav->lft_c->usetime == 0) { 4136 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4137 KEY_FREESAV(&sav); 4138 } else { 4139 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4140 /* 4141 * XXX If we keep to send expire 4142 * message in the status of 4143 * DYING. Do remove below code. 4144 */ 4145 key_expire(sav); 4146 } 4147 } 4148 /* check SOFT lifetime by bytes */ 4149 /* 4150 * XXX I don't know the way to delete this SA 4151 * when new SA is installed. Caution when it's 4152 * installed too big lifetime by time. 4153 */ 4154 else if (sav->lft_s->bytes != 0 && 4155 sav->lft_s->bytes < sav->lft_c->bytes) { 4156 4157 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4158 /* 4159 * XXX If we keep to send expire 4160 * message in the status of 4161 * DYING. Do remove below code. 4162 */ 4163 key_expire(sav); 4164 } 4165 } 4166 4167 /* check DYING entry to change status to DEAD. */ 4168 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) { 4169 /* we don't need to check. */ 4170 if (sav->lft_h == NULL) 4171 continue; 4172 4173 /* sanity check */ 4174 if (sav->lft_c == NULL) { 4175 ipseclog((LOG_DEBUG, "%s: there is no CURRENT " 4176 "time, why?\n", __func__)); 4177 continue; 4178 } 4179 4180 if (sav->lft_h->addtime != 0 && 4181 now - sav->created > sav->lft_h->addtime) { 4182 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4183 KEY_FREESAV(&sav); 4184 } 4185 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */ 4186 else if (sav->lft_s != NULL 4187 && sav->lft_s->addtime != 0 4188 && now - sav->created > sav->lft_s->addtime) { 4189 /* 4190 * XXX: should be checked to be 4191 * installed the valid SA. 4192 */ 4193 4194 /* 4195 * If there is no SA then sending 4196 * expire message. 4197 */ 4198 key_expire(sav); 4199 } 4200 #endif 4201 /* check HARD lifetime by bytes */ 4202 else if (sav->lft_h->bytes != 0 && 4203 sav->lft_h->bytes < sav->lft_c->bytes) { 4204 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4205 KEY_FREESAV(&sav); 4206 } 4207 } 4208 4209 /* delete entry in DEAD */ 4210 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) { 4211 /* sanity check */ 4212 if (sav->state != SADB_SASTATE_DEAD) { 4213 ipseclog((LOG_DEBUG, "%s: invalid sav->state " 4214 "(queue: %d SA: %d): kill it anyway\n", 4215 __func__, 4216 SADB_SASTATE_DEAD, sav->state)); 4217 } 4218 /* 4219 * do not call key_freesav() here. 4220 * sav should already be freed, and sav->refcnt 4221 * shows other references to sav 4222 * (such as from SPD). 4223 */ 4224 } 4225 } 4226 SAHTREE_UNLOCK(); 4227 } 4228 4229 static void 4230 key_flush_acq(time_t now) 4231 { 4232 struct secacq *acq, *nextacq; 4233 4234 /* ACQ tree */ 4235 ACQ_LOCK(); 4236 for (acq = LIST_FIRST(&acqtree); acq != NULL; acq = nextacq) { 4237 nextacq = LIST_NEXT(acq, chain); 4238 if (now - acq->created > key_blockacq_lifetime 4239 && __LIST_CHAINED(acq)) { 4240 LIST_REMOVE(acq, chain); 4241 free(acq, M_IPSEC_SAQ); 4242 } 4243 } 4244 ACQ_UNLOCK(); 4245 } 4246 4247 static void 4248 key_flush_spacq(time_t now) 4249 { 4250 struct secspacq *acq, *nextacq; 4251 4252 /* SP ACQ tree */ 4253 SPACQ_LOCK(); 4254 for (acq = LIST_FIRST(&spacqtree); acq != NULL; acq = nextacq) { 4255 nextacq = LIST_NEXT(acq, chain); 4256 if (now - acq->created > key_blockacq_lifetime 4257 && __LIST_CHAINED(acq)) { 4258 LIST_REMOVE(acq, chain); 4259 free(acq, M_IPSEC_SAQ); 4260 } 4261 } 4262 SPACQ_UNLOCK(); 4263 } 4264 4265 /* 4266 * time handler. 4267 * scanning SPD and SAD to check status for each entries, 4268 * and do to remove or to expire. 4269 * XXX: year 2038 problem may remain. 4270 */ 4271 void 4272 key_timehandler(void) 4273 { 4274 time_t now = time_second; 4275 4276 key_flush_spd(now); 4277 key_flush_sad(now); 4278 key_flush_acq(now); 4279 key_flush_spacq(now); 4280 4281 #ifndef IPSEC_DEBUG2 4282 /* do exchange to tick time !! */ 4283 (void)timeout((void *)key_timehandler, (void *)0, hz); 4284 #endif /* IPSEC_DEBUG2 */ 4285 } 4286 4287 u_long 4288 key_random() 4289 { 4290 u_long value; 4291 4292 key_randomfill(&value, sizeof(value)); 4293 return value; 4294 } 4295 4296 void 4297 key_randomfill(p, l) 4298 void *p; 4299 size_t l; 4300 { 4301 size_t n; 4302 u_long v; 4303 static int warn = 1; 4304 4305 n = 0; 4306 n = (size_t)read_random(p, (u_int)l); 4307 /* last resort */ 4308 while (n < l) { 4309 v = random(); 4310 bcopy(&v, (u_int8_t *)p + n, 4311 l - n < sizeof(v) ? l - n : sizeof(v)); 4312 n += sizeof(v); 4313 4314 if (warn) { 4315 printf("WARNING: pseudo-random number generator " 4316 "used for IPsec processing\n"); 4317 warn = 0; 4318 } 4319 } 4320 } 4321 4322 /* 4323 * map SADB_SATYPE_* to IPPROTO_*. 4324 * if satype == SADB_SATYPE then satype is mapped to ~0. 4325 * OUT: 4326 * 0: invalid satype. 4327 */ 4328 static u_int16_t 4329 key_satype2proto(satype) 4330 u_int8_t satype; 4331 { 4332 switch (satype) { 4333 case SADB_SATYPE_UNSPEC: 4334 return IPSEC_PROTO_ANY; 4335 case SADB_SATYPE_AH: 4336 return IPPROTO_AH; 4337 case SADB_SATYPE_ESP: 4338 return IPPROTO_ESP; 4339 case SADB_X_SATYPE_IPCOMP: 4340 return IPPROTO_IPCOMP; 4341 case SADB_X_SATYPE_TCPSIGNATURE: 4342 return IPPROTO_TCP; 4343 default: 4344 return 0; 4345 } 4346 /* NOTREACHED */ 4347 } 4348 4349 /* 4350 * map IPPROTO_* to SADB_SATYPE_* 4351 * OUT: 4352 * 0: invalid protocol type. 4353 */ 4354 static u_int8_t 4355 key_proto2satype(proto) 4356 u_int16_t proto; 4357 { 4358 switch (proto) { 4359 case IPPROTO_AH: 4360 return SADB_SATYPE_AH; 4361 case IPPROTO_ESP: 4362 return SADB_SATYPE_ESP; 4363 case IPPROTO_IPCOMP: 4364 return SADB_X_SATYPE_IPCOMP; 4365 case IPPROTO_TCP: 4366 return SADB_X_SATYPE_TCPSIGNATURE; 4367 default: 4368 return 0; 4369 } 4370 /* NOTREACHED */ 4371 } 4372 4373 /* %%% PF_KEY */ 4374 /* 4375 * SADB_GETSPI processing is to receive 4376 * <base, (SA2), src address, dst address, (SPI range)> 4377 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND 4378 * tree with the status of LARVAL, and send 4379 * <base, SA(*), address(SD)> 4380 * to the IKMPd. 4381 * 4382 * IN: mhp: pointer to the pointer to each header. 4383 * OUT: NULL if fail. 4384 * other if success, return pointer to the message to send. 4385 */ 4386 static int 4387 key_getspi(so, m, mhp) 4388 struct socket *so; 4389 struct mbuf *m; 4390 const struct sadb_msghdr *mhp; 4391 { 4392 struct sadb_address *src0, *dst0; 4393 struct secasindex saidx; 4394 struct secashead *newsah; 4395 struct secasvar *newsav; 4396 u_int8_t proto; 4397 u_int32_t spi; 4398 u_int8_t mode; 4399 u_int32_t reqid; 4400 int error; 4401 4402 IPSEC_ASSERT(so != NULL, ("null socket")); 4403 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4404 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4405 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4406 4407 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4408 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 4409 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4410 __func__)); 4411 return key_senderror(so, m, EINVAL); 4412 } 4413 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4414 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4415 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4416 __func__)); 4417 return key_senderror(so, m, EINVAL); 4418 } 4419 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4420 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4421 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4422 } else { 4423 mode = IPSEC_MODE_ANY; 4424 reqid = 0; 4425 } 4426 4427 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4428 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4429 4430 /* map satype to proto */ 4431 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4432 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4433 __func__)); 4434 return key_senderror(so, m, EINVAL); 4435 } 4436 4437 /* make sure if port number is zero. */ 4438 switch (((struct sockaddr *)(src0 + 1))->sa_family) { 4439 case AF_INET: 4440 if (((struct sockaddr *)(src0 + 1))->sa_len != 4441 sizeof(struct sockaddr_in)) 4442 return key_senderror(so, m, EINVAL); 4443 ((struct sockaddr_in *)(src0 + 1))->sin_port = 0; 4444 break; 4445 case AF_INET6: 4446 if (((struct sockaddr *)(src0 + 1))->sa_len != 4447 sizeof(struct sockaddr_in6)) 4448 return key_senderror(so, m, EINVAL); 4449 ((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0; 4450 break; 4451 default: 4452 ; /*???*/ 4453 } 4454 switch (((struct sockaddr *)(dst0 + 1))->sa_family) { 4455 case AF_INET: 4456 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4457 sizeof(struct sockaddr_in)) 4458 return key_senderror(so, m, EINVAL); 4459 ((struct sockaddr_in *)(dst0 + 1))->sin_port = 0; 4460 break; 4461 case AF_INET6: 4462 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4463 sizeof(struct sockaddr_in6)) 4464 return key_senderror(so, m, EINVAL); 4465 ((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0; 4466 break; 4467 default: 4468 ; /*???*/ 4469 } 4470 4471 /* XXX boundary check against sa_len */ 4472 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4473 4474 /* SPI allocation */ 4475 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE], 4476 &saidx); 4477 if (spi == 0) 4478 return key_senderror(so, m, EINVAL); 4479 4480 /* get a SA index */ 4481 if ((newsah = key_getsah(&saidx)) == NULL) { 4482 /* create a new SA index */ 4483 if ((newsah = key_newsah(&saidx)) == NULL) { 4484 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 4485 return key_senderror(so, m, ENOBUFS); 4486 } 4487 } 4488 4489 /* get a new SA */ 4490 /* XXX rewrite */ 4491 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 4492 if (newsav == NULL) { 4493 /* XXX don't free new SA index allocated in above. */ 4494 return key_senderror(so, m, error); 4495 } 4496 4497 /* set spi */ 4498 newsav->spi = htonl(spi); 4499 4500 /* delete the entry in acqtree */ 4501 if (mhp->msg->sadb_msg_seq != 0) { 4502 struct secacq *acq; 4503 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) { 4504 /* reset counter in order to deletion by timehandler. */ 4505 acq->created = time_second; 4506 acq->count = 0; 4507 } 4508 } 4509 4510 { 4511 struct mbuf *n, *nn; 4512 struct sadb_sa *m_sa; 4513 struct sadb_msg *newmsg; 4514 int off, len; 4515 4516 /* create new sadb_msg to reply. */ 4517 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 4518 PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4519 4520 MGETHDR(n, M_DONTWAIT, MT_DATA); 4521 if (len > MHLEN) { 4522 MCLGET(n, M_DONTWAIT); 4523 if ((n->m_flags & M_EXT) == 0) { 4524 m_freem(n); 4525 n = NULL; 4526 } 4527 } 4528 if (!n) 4529 return key_senderror(so, m, ENOBUFS); 4530 4531 n->m_len = len; 4532 n->m_next = NULL; 4533 off = 0; 4534 4535 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 4536 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 4537 4538 m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off); 4539 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); 4540 m_sa->sadb_sa_exttype = SADB_EXT_SA; 4541 m_sa->sadb_sa_spi = htonl(spi); 4542 off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4543 4544 IPSEC_ASSERT(off == len, 4545 ("length inconsistency (off %u len %u)", off, len)); 4546 4547 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, 4548 SADB_EXT_ADDRESS_DST); 4549 if (!n->m_next) { 4550 m_freem(n); 4551 return key_senderror(so, m, ENOBUFS); 4552 } 4553 4554 if (n->m_len < sizeof(struct sadb_msg)) { 4555 n = m_pullup(n, sizeof(struct sadb_msg)); 4556 if (n == NULL) 4557 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 4558 } 4559 4560 n->m_pkthdr.len = 0; 4561 for (nn = n; nn; nn = nn->m_next) 4562 n->m_pkthdr.len += nn->m_len; 4563 4564 newmsg = mtod(n, struct sadb_msg *); 4565 newmsg->sadb_msg_seq = newsav->seq; 4566 newmsg->sadb_msg_errno = 0; 4567 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 4568 4569 m_freem(m); 4570 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 4571 } 4572 } 4573 4574 /* 4575 * allocating new SPI 4576 * called by key_getspi(). 4577 * OUT: 4578 * 0: failure. 4579 * others: success. 4580 */ 4581 static u_int32_t 4582 key_do_getnewspi(spirange, saidx) 4583 struct sadb_spirange *spirange; 4584 struct secasindex *saidx; 4585 { 4586 u_int32_t newspi; 4587 u_int32_t min, max; 4588 int count = key_spi_trycnt; 4589 4590 /* set spi range to allocate */ 4591 if (spirange != NULL) { 4592 min = spirange->sadb_spirange_min; 4593 max = spirange->sadb_spirange_max; 4594 } else { 4595 min = key_spi_minval; 4596 max = key_spi_maxval; 4597 } 4598 /* IPCOMP needs 2-byte SPI */ 4599 if (saidx->proto == IPPROTO_IPCOMP) { 4600 u_int32_t t; 4601 if (min >= 0x10000) 4602 min = 0xffff; 4603 if (max >= 0x10000) 4604 max = 0xffff; 4605 if (min > max) { 4606 t = min; min = max; max = t; 4607 } 4608 } 4609 4610 if (min == max) { 4611 if (key_checkspidup(saidx, min) != NULL) { 4612 ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n", 4613 __func__, min)); 4614 return 0; 4615 } 4616 4617 count--; /* taking one cost. */ 4618 newspi = min; 4619 4620 } else { 4621 4622 /* init SPI */ 4623 newspi = 0; 4624 4625 /* when requesting to allocate spi ranged */ 4626 while (count--) { 4627 /* generate pseudo-random SPI value ranged. */ 4628 newspi = min + (key_random() % (max - min + 1)); 4629 4630 if (key_checkspidup(saidx, newspi) == NULL) 4631 break; 4632 } 4633 4634 if (count == 0 || newspi == 0) { 4635 ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n", 4636 __func__)); 4637 return 0; 4638 } 4639 } 4640 4641 /* statistics */ 4642 keystat.getspi_count = 4643 (keystat.getspi_count + key_spi_trycnt - count) / 2; 4644 4645 return newspi; 4646 } 4647 4648 /* 4649 * SADB_UPDATE processing 4650 * receive 4651 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4652 * key(AE), (identity(SD),) (sensitivity)> 4653 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. 4654 * and send 4655 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4656 * (identity(SD),) (sensitivity)> 4657 * to the ikmpd. 4658 * 4659 * m will always be freed. 4660 */ 4661 static int 4662 key_update(so, m, mhp) 4663 struct socket *so; 4664 struct mbuf *m; 4665 const struct sadb_msghdr *mhp; 4666 { 4667 struct sadb_sa *sa0; 4668 struct sadb_address *src0, *dst0; 4669 struct secasindex saidx; 4670 struct secashead *sah; 4671 struct secasvar *sav; 4672 u_int16_t proto; 4673 u_int8_t mode; 4674 u_int32_t reqid; 4675 int error; 4676 4677 IPSEC_ASSERT(so != NULL, ("null socket")); 4678 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4679 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4680 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4681 4682 /* map satype to proto */ 4683 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4684 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4685 __func__)); 4686 return key_senderror(so, m, EINVAL); 4687 } 4688 4689 if (mhp->ext[SADB_EXT_SA] == NULL || 4690 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4691 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 4692 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 4693 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 4694 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 4695 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 4696 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 4697 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 4698 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 4699 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 4700 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4701 __func__)); 4702 return key_senderror(so, m, EINVAL); 4703 } 4704 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 4705 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4706 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4707 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4708 __func__)); 4709 return key_senderror(so, m, EINVAL); 4710 } 4711 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4712 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4713 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4714 } else { 4715 mode = IPSEC_MODE_ANY; 4716 reqid = 0; 4717 } 4718 /* XXX boundary checking for other extensions */ 4719 4720 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 4721 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4722 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4723 4724 /* XXX boundary check against sa_len */ 4725 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4726 4727 /* get a SA header */ 4728 if ((sah = key_getsah(&saidx)) == NULL) { 4729 ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__)); 4730 return key_senderror(so, m, ENOENT); 4731 } 4732 4733 /* set spidx if there */ 4734 /* XXX rewrite */ 4735 error = key_setident(sah, m, mhp); 4736 if (error) 4737 return key_senderror(so, m, error); 4738 4739 /* find a SA with sequence number. */ 4740 #ifdef IPSEC_DOSEQCHECK 4741 if (mhp->msg->sadb_msg_seq != 0 4742 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) { 4743 ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u " 4744 "exists.\n", __func__, mhp->msg->sadb_msg_seq)); 4745 return key_senderror(so, m, ENOENT); 4746 } 4747 #else 4748 SAHTREE_LOCK(); 4749 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 4750 SAHTREE_UNLOCK(); 4751 if (sav == NULL) { 4752 ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n", 4753 __func__, (u_int32_t)ntohl(sa0->sadb_sa_spi))); 4754 return key_senderror(so, m, EINVAL); 4755 } 4756 #endif 4757 4758 /* validity check */ 4759 if (sav->sah->saidx.proto != proto) { 4760 ipseclog((LOG_DEBUG, "%s: protocol mismatched " 4761 "(DB=%u param=%u)\n", __func__, 4762 sav->sah->saidx.proto, proto)); 4763 return key_senderror(so, m, EINVAL); 4764 } 4765 #ifdef IPSEC_DOSEQCHECK 4766 if (sav->spi != sa0->sadb_sa_spi) { 4767 ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n", 4768 __func__, 4769 (u_int32_t)ntohl(sav->spi), 4770 (u_int32_t)ntohl(sa0->sadb_sa_spi))); 4771 return key_senderror(so, m, EINVAL); 4772 } 4773 #endif 4774 if (sav->pid != mhp->msg->sadb_msg_pid) { 4775 ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n", 4776 __func__, sav->pid, mhp->msg->sadb_msg_pid)); 4777 return key_senderror(so, m, EINVAL); 4778 } 4779 4780 /* copy sav values */ 4781 error = key_setsaval(sav, m, mhp); 4782 if (error) { 4783 KEY_FREESAV(&sav); 4784 return key_senderror(so, m, error); 4785 } 4786 4787 /* check SA values to be mature. */ 4788 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) { 4789 KEY_FREESAV(&sav); 4790 return key_senderror(so, m, 0); 4791 } 4792 4793 { 4794 struct mbuf *n; 4795 4796 /* set msg buf from mhp */ 4797 n = key_getmsgbuf_x1(m, mhp); 4798 if (n == NULL) { 4799 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 4800 return key_senderror(so, m, ENOBUFS); 4801 } 4802 4803 m_freem(m); 4804 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 4805 } 4806 } 4807 4808 /* 4809 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL. 4810 * only called by key_update(). 4811 * OUT: 4812 * NULL : not found 4813 * others : found, pointer to a SA. 4814 */ 4815 #ifdef IPSEC_DOSEQCHECK 4816 static struct secasvar * 4817 key_getsavbyseq(sah, seq) 4818 struct secashead *sah; 4819 u_int32_t seq; 4820 { 4821 struct secasvar *sav; 4822 u_int state; 4823 4824 state = SADB_SASTATE_LARVAL; 4825 4826 /* search SAD with sequence number ? */ 4827 LIST_FOREACH(sav, &sah->savtree[state], chain) { 4828 4829 KEY_CHKSASTATE(state, sav->state, __func__); 4830 4831 if (sav->seq == seq) { 4832 sa_addref(sav); 4833 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 4834 printf("DP %s cause refcnt++:%d SA:%p\n", 4835 __func__, sav->refcnt, sav)); 4836 return sav; 4837 } 4838 } 4839 4840 return NULL; 4841 } 4842 #endif 4843 4844 /* 4845 * SADB_ADD processing 4846 * add an entry to SA database, when received 4847 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4848 * key(AE), (identity(SD),) (sensitivity)> 4849 * from the ikmpd, 4850 * and send 4851 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4852 * (identity(SD),) (sensitivity)> 4853 * to the ikmpd. 4854 * 4855 * IGNORE identity and sensitivity messages. 4856 * 4857 * m will always be freed. 4858 */ 4859 static int 4860 key_add(so, m, mhp) 4861 struct socket *so; 4862 struct mbuf *m; 4863 const struct sadb_msghdr *mhp; 4864 { 4865 struct sadb_sa *sa0; 4866 struct sadb_address *src0, *dst0; 4867 struct secasindex saidx; 4868 struct secashead *newsah; 4869 struct secasvar *newsav; 4870 u_int16_t proto; 4871 u_int8_t mode; 4872 u_int32_t reqid; 4873 int error; 4874 4875 IPSEC_ASSERT(so != NULL, ("null socket")); 4876 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4877 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4878 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4879 4880 /* map satype to proto */ 4881 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4882 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4883 __func__)); 4884 return key_senderror(so, m, EINVAL); 4885 } 4886 4887 if (mhp->ext[SADB_EXT_SA] == NULL || 4888 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4889 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 4890 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 4891 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 4892 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 4893 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 4894 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 4895 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 4896 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 4897 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 4898 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4899 __func__)); 4900 return key_senderror(so, m, EINVAL); 4901 } 4902 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 4903 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4904 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4905 /* XXX need more */ 4906 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4907 __func__)); 4908 return key_senderror(so, m, EINVAL); 4909 } 4910 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4911 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4912 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4913 } else { 4914 mode = IPSEC_MODE_ANY; 4915 reqid = 0; 4916 } 4917 4918 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 4919 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 4920 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 4921 4922 /* XXX boundary check against sa_len */ 4923 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4924 4925 /* get a SA header */ 4926 if ((newsah = key_getsah(&saidx)) == NULL) { 4927 /* create a new SA header */ 4928 if ((newsah = key_newsah(&saidx)) == NULL) { 4929 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 4930 return key_senderror(so, m, ENOBUFS); 4931 } 4932 } 4933 4934 /* set spidx if there */ 4935 /* XXX rewrite */ 4936 error = key_setident(newsah, m, mhp); 4937 if (error) { 4938 return key_senderror(so, m, error); 4939 } 4940 4941 /* create new SA entry. */ 4942 /* We can create new SA only if SPI is differenct. */ 4943 SAHTREE_LOCK(); 4944 newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi); 4945 SAHTREE_UNLOCK(); 4946 if (newsav != NULL) { 4947 ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__)); 4948 return key_senderror(so, m, EEXIST); 4949 } 4950 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 4951 if (newsav == NULL) { 4952 return key_senderror(so, m, error); 4953 } 4954 4955 /* check SA values to be mature. */ 4956 if ((error = key_mature(newsav)) != 0) { 4957 KEY_FREESAV(&newsav); 4958 return key_senderror(so, m, error); 4959 } 4960 4961 /* 4962 * don't call key_freesav() here, as we would like to keep the SA 4963 * in the database on success. 4964 */ 4965 4966 { 4967 struct mbuf *n; 4968 4969 /* set msg buf from mhp */ 4970 n = key_getmsgbuf_x1(m, mhp); 4971 if (n == NULL) { 4972 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 4973 return key_senderror(so, m, ENOBUFS); 4974 } 4975 4976 m_freem(m); 4977 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 4978 } 4979 } 4980 4981 /* m is retained */ 4982 static int 4983 key_setident(sah, m, mhp) 4984 struct secashead *sah; 4985 struct mbuf *m; 4986 const struct sadb_msghdr *mhp; 4987 { 4988 const struct sadb_ident *idsrc, *iddst; 4989 int idsrclen, iddstlen; 4990 4991 IPSEC_ASSERT(sah != NULL, ("null secashead")); 4992 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4993 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4994 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4995 4996 /* don't make buffer if not there */ 4997 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL && 4998 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 4999 sah->idents = NULL; 5000 sah->identd = NULL; 5001 return 0; 5002 } 5003 5004 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL || 5005 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5006 ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__)); 5007 return EINVAL; 5008 } 5009 5010 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC]; 5011 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST]; 5012 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC]; 5013 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST]; 5014 5015 /* validity check */ 5016 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { 5017 ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__)); 5018 return EINVAL; 5019 } 5020 5021 switch (idsrc->sadb_ident_type) { 5022 case SADB_IDENTTYPE_PREFIX: 5023 case SADB_IDENTTYPE_FQDN: 5024 case SADB_IDENTTYPE_USERFQDN: 5025 default: 5026 /* XXX do nothing */ 5027 sah->idents = NULL; 5028 sah->identd = NULL; 5029 return 0; 5030 } 5031 5032 /* make structure */ 5033 sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5034 if (sah->idents == NULL) { 5035 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5036 return ENOBUFS; 5037 } 5038 sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5039 if (sah->identd == NULL) { 5040 free(sah->idents, M_IPSEC_MISC); 5041 sah->idents = NULL; 5042 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5043 return ENOBUFS; 5044 } 5045 sah->idents->type = idsrc->sadb_ident_type; 5046 sah->idents->id = idsrc->sadb_ident_id; 5047 5048 sah->identd->type = iddst->sadb_ident_type; 5049 sah->identd->id = iddst->sadb_ident_id; 5050 5051 return 0; 5052 } 5053 5054 /* 5055 * m will not be freed on return. 5056 * it is caller's responsibility to free the result. 5057 */ 5058 static struct mbuf * 5059 key_getmsgbuf_x1(m, mhp) 5060 struct mbuf *m; 5061 const struct sadb_msghdr *mhp; 5062 { 5063 struct mbuf *n; 5064 5065 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5066 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5067 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5068 5069 /* create new sadb_msg to reply. */ 5070 n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED, 5071 SADB_EXT_SA, SADB_X_EXT_SA2, 5072 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, 5073 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 5074 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST); 5075 if (!n) 5076 return NULL; 5077 5078 if (n->m_len < sizeof(struct sadb_msg)) { 5079 n = m_pullup(n, sizeof(struct sadb_msg)); 5080 if (n == NULL) 5081 return NULL; 5082 } 5083 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; 5084 mtod(n, struct sadb_msg *)->sadb_msg_len = 5085 PFKEY_UNIT64(n->m_pkthdr.len); 5086 5087 return n; 5088 } 5089 5090 static int key_delete_all __P((struct socket *, struct mbuf *, 5091 const struct sadb_msghdr *, u_int16_t)); 5092 5093 /* 5094 * SADB_DELETE processing 5095 * receive 5096 * <base, SA(*), address(SD)> 5097 * from the ikmpd, and set SADB_SASTATE_DEAD, 5098 * and send, 5099 * <base, SA(*), address(SD)> 5100 * to the ikmpd. 5101 * 5102 * m will always be freed. 5103 */ 5104 static int 5105 key_delete(so, m, mhp) 5106 struct socket *so; 5107 struct mbuf *m; 5108 const struct sadb_msghdr *mhp; 5109 { 5110 struct sadb_sa *sa0; 5111 struct sadb_address *src0, *dst0; 5112 struct secasindex saidx; 5113 struct secashead *sah; 5114 struct secasvar *sav = NULL; 5115 u_int16_t proto; 5116 5117 IPSEC_ASSERT(so != NULL, ("null socket")); 5118 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5119 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5120 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5121 5122 /* map satype to proto */ 5123 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5124 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5125 __func__)); 5126 return key_senderror(so, m, EINVAL); 5127 } 5128 5129 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5130 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5131 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5132 __func__)); 5133 return key_senderror(so, m, EINVAL); 5134 } 5135 5136 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5137 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5138 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5139 __func__)); 5140 return key_senderror(so, m, EINVAL); 5141 } 5142 5143 if (mhp->ext[SADB_EXT_SA] == NULL) { 5144 /* 5145 * Caller wants us to delete all non-LARVAL SAs 5146 * that match the src/dst. This is used during 5147 * IKE INITIAL-CONTACT. 5148 */ 5149 ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__)); 5150 return key_delete_all(so, m, mhp, proto); 5151 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { 5152 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5153 __func__)); 5154 return key_senderror(so, m, EINVAL); 5155 } 5156 5157 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5158 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5159 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5160 5161 /* XXX boundary check against sa_len */ 5162 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5163 5164 /* get a SA header */ 5165 SAHTREE_LOCK(); 5166 LIST_FOREACH(sah, &sahtree, chain) { 5167 if (sah->state == SADB_SASTATE_DEAD) 5168 continue; 5169 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5170 continue; 5171 5172 /* get a SA with SPI. */ 5173 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5174 if (sav) 5175 break; 5176 } 5177 if (sah == NULL) { 5178 SAHTREE_UNLOCK(); 5179 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5180 return key_senderror(so, m, ENOENT); 5181 } 5182 5183 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5184 SAHTREE_UNLOCK(); 5185 KEY_FREESAV(&sav); 5186 5187 { 5188 struct mbuf *n; 5189 struct sadb_msg *newmsg; 5190 5191 /* create new sadb_msg to reply. */ 5192 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 5193 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5194 if (!n) 5195 return key_senderror(so, m, ENOBUFS); 5196 5197 if (n->m_len < sizeof(struct sadb_msg)) { 5198 n = m_pullup(n, sizeof(struct sadb_msg)); 5199 if (n == NULL) 5200 return key_senderror(so, m, ENOBUFS); 5201 } 5202 newmsg = mtod(n, struct sadb_msg *); 5203 newmsg->sadb_msg_errno = 0; 5204 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5205 5206 m_freem(m); 5207 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5208 } 5209 } 5210 5211 /* 5212 * delete all SAs for src/dst. Called from key_delete(). 5213 */ 5214 static int 5215 key_delete_all(so, m, mhp, proto) 5216 struct socket *so; 5217 struct mbuf *m; 5218 const struct sadb_msghdr *mhp; 5219 u_int16_t proto; 5220 { 5221 struct sadb_address *src0, *dst0; 5222 struct secasindex saidx; 5223 struct secashead *sah; 5224 struct secasvar *sav, *nextsav; 5225 u_int stateidx, state; 5226 5227 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5228 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5229 5230 /* XXX boundary check against sa_len */ 5231 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5232 5233 SAHTREE_LOCK(); 5234 LIST_FOREACH(sah, &sahtree, chain) { 5235 if (sah->state == SADB_SASTATE_DEAD) 5236 continue; 5237 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5238 continue; 5239 5240 /* Delete all non-LARVAL SAs. */ 5241 for (stateidx = 0; 5242 stateidx < _ARRAYLEN(saorder_state_alive); 5243 stateidx++) { 5244 state = saorder_state_alive[stateidx]; 5245 if (state == SADB_SASTATE_LARVAL) 5246 continue; 5247 for (sav = LIST_FIRST(&sah->savtree[state]); 5248 sav != NULL; sav = nextsav) { 5249 nextsav = LIST_NEXT(sav, chain); 5250 /* sanity check */ 5251 if (sav->state != state) { 5252 ipseclog((LOG_DEBUG, "%s: invalid " 5253 "sav->state (queue %d SA %d)\n", 5254 __func__, state, sav->state)); 5255 continue; 5256 } 5257 5258 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5259 KEY_FREESAV(&sav); 5260 } 5261 } 5262 } 5263 SAHTREE_UNLOCK(); 5264 { 5265 struct mbuf *n; 5266 struct sadb_msg *newmsg; 5267 5268 /* create new sadb_msg to reply. */ 5269 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, 5270 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5271 if (!n) 5272 return key_senderror(so, m, ENOBUFS); 5273 5274 if (n->m_len < sizeof(struct sadb_msg)) { 5275 n = m_pullup(n, sizeof(struct sadb_msg)); 5276 if (n == NULL) 5277 return key_senderror(so, m, ENOBUFS); 5278 } 5279 newmsg = mtod(n, struct sadb_msg *); 5280 newmsg->sadb_msg_errno = 0; 5281 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5282 5283 m_freem(m); 5284 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5285 } 5286 } 5287 5288 /* 5289 * SADB_GET processing 5290 * receive 5291 * <base, SA(*), address(SD)> 5292 * from the ikmpd, and get a SP and a SA to respond, 5293 * and send, 5294 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), 5295 * (identity(SD),) (sensitivity)> 5296 * to the ikmpd. 5297 * 5298 * m will always be freed. 5299 */ 5300 static int 5301 key_get(so, m, mhp) 5302 struct socket *so; 5303 struct mbuf *m; 5304 const struct sadb_msghdr *mhp; 5305 { 5306 struct sadb_sa *sa0; 5307 struct sadb_address *src0, *dst0; 5308 struct secasindex saidx; 5309 struct secashead *sah; 5310 struct secasvar *sav = NULL; 5311 u_int16_t proto; 5312 5313 IPSEC_ASSERT(so != NULL, ("null socket")); 5314 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5315 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5316 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5317 5318 /* map satype to proto */ 5319 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5320 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5321 __func__)); 5322 return key_senderror(so, m, EINVAL); 5323 } 5324 5325 if (mhp->ext[SADB_EXT_SA] == NULL || 5326 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5327 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5328 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5329 __func__)); 5330 return key_senderror(so, m, EINVAL); 5331 } 5332 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5333 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5334 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5335 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5336 __func__)); 5337 return key_senderror(so, m, EINVAL); 5338 } 5339 5340 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5341 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5342 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5343 5344 /* XXX boundary check against sa_len */ 5345 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5346 5347 /* get a SA header */ 5348 SAHTREE_LOCK(); 5349 LIST_FOREACH(sah, &sahtree, chain) { 5350 if (sah->state == SADB_SASTATE_DEAD) 5351 continue; 5352 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5353 continue; 5354 5355 /* get a SA with SPI. */ 5356 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5357 if (sav) 5358 break; 5359 } 5360 SAHTREE_UNLOCK(); 5361 if (sah == NULL) { 5362 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5363 return key_senderror(so, m, ENOENT); 5364 } 5365 5366 { 5367 struct mbuf *n; 5368 u_int8_t satype; 5369 5370 /* map proto to satype */ 5371 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 5372 ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n", 5373 __func__)); 5374 return key_senderror(so, m, EINVAL); 5375 } 5376 5377 /* create new sadb_msg to reply. */ 5378 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, 5379 mhp->msg->sadb_msg_pid); 5380 if (!n) 5381 return key_senderror(so, m, ENOBUFS); 5382 5383 m_freem(m); 5384 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5385 } 5386 } 5387 5388 /* XXX make it sysctl-configurable? */ 5389 static void 5390 key_getcomb_setlifetime(comb) 5391 struct sadb_comb *comb; 5392 { 5393 5394 comb->sadb_comb_soft_allocations = 1; 5395 comb->sadb_comb_hard_allocations = 1; 5396 comb->sadb_comb_soft_bytes = 0; 5397 comb->sadb_comb_hard_bytes = 0; 5398 comb->sadb_comb_hard_addtime = 86400; /* 1 day */ 5399 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100; 5400 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */ 5401 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100; 5402 } 5403 5404 /* 5405 * XXX reorder combinations by preference 5406 * XXX no idea if the user wants ESP authentication or not 5407 */ 5408 static struct mbuf * 5409 key_getcomb_esp() 5410 { 5411 struct sadb_comb *comb; 5412 struct enc_xform *algo; 5413 struct mbuf *result = NULL, *m, *n; 5414 int encmin; 5415 int i, off, o; 5416 int totlen; 5417 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5418 5419 m = NULL; 5420 for (i = 1; i <= SADB_EALG_MAX; i++) { 5421 algo = esp_algorithm_lookup(i); 5422 if (algo == NULL) 5423 continue; 5424 5425 /* discard algorithms with key size smaller than system min */ 5426 if (_BITS(algo->maxkey) < ipsec_esp_keymin) 5427 continue; 5428 if (_BITS(algo->minkey) < ipsec_esp_keymin) 5429 encmin = ipsec_esp_keymin; 5430 else 5431 encmin = _BITS(algo->minkey); 5432 5433 if (ipsec_esp_auth) 5434 m = key_getcomb_ah(); 5435 else { 5436 IPSEC_ASSERT(l <= MLEN, 5437 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 5438 MGET(m, M_DONTWAIT, MT_DATA); 5439 if (m) { 5440 M_ALIGN(m, l); 5441 m->m_len = l; 5442 m->m_next = NULL; 5443 bzero(mtod(m, caddr_t), m->m_len); 5444 } 5445 } 5446 if (!m) 5447 goto fail; 5448 5449 totlen = 0; 5450 for (n = m; n; n = n->m_next) 5451 totlen += n->m_len; 5452 IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l)); 5453 5454 for (off = 0; off < totlen; off += l) { 5455 n = m_pulldown(m, off, l, &o); 5456 if (!n) { 5457 /* m is already freed */ 5458 goto fail; 5459 } 5460 comb = (struct sadb_comb *)(mtod(n, caddr_t) + o); 5461 bzero(comb, sizeof(*comb)); 5462 key_getcomb_setlifetime(comb); 5463 comb->sadb_comb_encrypt = i; 5464 comb->sadb_comb_encrypt_minbits = encmin; 5465 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); 5466 } 5467 5468 if (!result) 5469 result = m; 5470 else 5471 m_cat(result, m); 5472 } 5473 5474 return result; 5475 5476 fail: 5477 if (result) 5478 m_freem(result); 5479 return NULL; 5480 } 5481 5482 static void 5483 key_getsizes_ah( 5484 const struct auth_hash *ah, 5485 int alg, 5486 u_int16_t* min, 5487 u_int16_t* max) 5488 { 5489 *min = *max = ah->keysize; 5490 if (ah->keysize == 0) { 5491 /* 5492 * Transform takes arbitrary key size but algorithm 5493 * key size is restricted. Enforce this here. 5494 */ 5495 switch (alg) { 5496 case SADB_X_AALG_MD5: *min = *max = 16; break; 5497 case SADB_X_AALG_SHA: *min = *max = 20; break; 5498 case SADB_X_AALG_NULL: *min = 1; *max = 256; break; 5499 default: 5500 DPRINTF(("%s: unknown AH algorithm %u\n", 5501 __func__, alg)); 5502 break; 5503 } 5504 } 5505 } 5506 5507 /* 5508 * XXX reorder combinations by preference 5509 */ 5510 static struct mbuf * 5511 key_getcomb_ah() 5512 { 5513 struct sadb_comb *comb; 5514 struct auth_hash *algo; 5515 struct mbuf *m; 5516 u_int16_t minkeysize, maxkeysize; 5517 int i; 5518 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5519 5520 m = NULL; 5521 for (i = 1; i <= SADB_AALG_MAX; i++) { 5522 #if 1 5523 /* we prefer HMAC algorithms, not old algorithms */ 5524 if (i != SADB_AALG_SHA1HMAC && i != SADB_AALG_MD5HMAC) 5525 continue; 5526 #endif 5527 algo = ah_algorithm_lookup(i); 5528 if (!algo) 5529 continue; 5530 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); 5531 /* discard algorithms with key size smaller than system min */ 5532 if (_BITS(minkeysize) < ipsec_ah_keymin) 5533 continue; 5534 5535 if (!m) { 5536 IPSEC_ASSERT(l <= MLEN, 5537 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 5538 MGET(m, M_DONTWAIT, MT_DATA); 5539 if (m) { 5540 M_ALIGN(m, l); 5541 m->m_len = l; 5542 m->m_next = NULL; 5543 } 5544 } else 5545 M_PREPEND(m, l, M_DONTWAIT); 5546 if (!m) 5547 return NULL; 5548 5549 comb = mtod(m, struct sadb_comb *); 5550 bzero(comb, sizeof(*comb)); 5551 key_getcomb_setlifetime(comb); 5552 comb->sadb_comb_auth = i; 5553 comb->sadb_comb_auth_minbits = _BITS(minkeysize); 5554 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); 5555 } 5556 5557 return m; 5558 } 5559 5560 /* 5561 * not really an official behavior. discussed in pf_key@inner.net in Sep2000. 5562 * XXX reorder combinations by preference 5563 */ 5564 static struct mbuf * 5565 key_getcomb_ipcomp() 5566 { 5567 struct sadb_comb *comb; 5568 struct comp_algo *algo; 5569 struct mbuf *m; 5570 int i; 5571 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5572 5573 m = NULL; 5574 for (i = 1; i <= SADB_X_CALG_MAX; i++) { 5575 algo = ipcomp_algorithm_lookup(i); 5576 if (!algo) 5577 continue; 5578 5579 if (!m) { 5580 IPSEC_ASSERT(l <= MLEN, 5581 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 5582 MGET(m, M_DONTWAIT, MT_DATA); 5583 if (m) { 5584 M_ALIGN(m, l); 5585 m->m_len = l; 5586 m->m_next = NULL; 5587 } 5588 } else 5589 M_PREPEND(m, l, M_DONTWAIT); 5590 if (!m) 5591 return NULL; 5592 5593 comb = mtod(m, struct sadb_comb *); 5594 bzero(comb, sizeof(*comb)); 5595 key_getcomb_setlifetime(comb); 5596 comb->sadb_comb_encrypt = i; 5597 /* what should we set into sadb_comb_*_{min,max}bits? */ 5598 } 5599 5600 return m; 5601 } 5602 5603 /* 5604 * XXX no way to pass mode (transport/tunnel) to userland 5605 * XXX replay checking? 5606 * XXX sysctl interface to ipsec_{ah,esp}_keymin 5607 */ 5608 static struct mbuf * 5609 key_getprop(saidx) 5610 const struct secasindex *saidx; 5611 { 5612 struct sadb_prop *prop; 5613 struct mbuf *m, *n; 5614 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); 5615 int totlen; 5616 5617 switch (saidx->proto) { 5618 case IPPROTO_ESP: 5619 m = key_getcomb_esp(); 5620 break; 5621 case IPPROTO_AH: 5622 m = key_getcomb_ah(); 5623 break; 5624 case IPPROTO_IPCOMP: 5625 m = key_getcomb_ipcomp(); 5626 break; 5627 default: 5628 return NULL; 5629 } 5630 5631 if (!m) 5632 return NULL; 5633 M_PREPEND(m, l, M_DONTWAIT); 5634 if (!m) 5635 return NULL; 5636 5637 totlen = 0; 5638 for (n = m; n; n = n->m_next) 5639 totlen += n->m_len; 5640 5641 prop = mtod(m, struct sadb_prop *); 5642 bzero(prop, sizeof(*prop)); 5643 prop->sadb_prop_len = PFKEY_UNIT64(totlen); 5644 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 5645 prop->sadb_prop_replay = 32; /* XXX */ 5646 5647 return m; 5648 } 5649 5650 /* 5651 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2(). 5652 * send 5653 * <base, SA, address(SD), (address(P)), x_policy, 5654 * (identity(SD),) (sensitivity,) proposal> 5655 * to KMD, and expect to receive 5656 * <base> with SADB_ACQUIRE if error occured, 5657 * or 5658 * <base, src address, dst address, (SPI range)> with SADB_GETSPI 5659 * from KMD by PF_KEY. 5660 * 5661 * XXX x_policy is outside of RFC2367 (KAME extension). 5662 * XXX sensitivity is not supported. 5663 * XXX for ipcomp, RFC2367 does not define how to fill in proposal. 5664 * see comment for key_getcomb_ipcomp(). 5665 * 5666 * OUT: 5667 * 0 : succeed 5668 * others: error number 5669 */ 5670 static int 5671 key_acquire(const struct secasindex *saidx, struct secpolicy *sp) 5672 { 5673 struct mbuf *result = NULL, *m; 5674 struct secacq *newacq; 5675 u_int8_t satype; 5676 int error = -1; 5677 u_int32_t seq; 5678 5679 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 5680 satype = key_proto2satype(saidx->proto); 5681 IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto)); 5682 5683 /* 5684 * We never do anything about acquirng SA. There is anather 5685 * solution that kernel blocks to send SADB_ACQUIRE message until 5686 * getting something message from IKEd. In later case, to be 5687 * managed with ACQUIRING list. 5688 */ 5689 /* Get an entry to check whether sending message or not. */ 5690 if ((newacq = key_getacq(saidx)) != NULL) { 5691 if (key_blockacq_count < newacq->count) { 5692 /* reset counter and do send message. */ 5693 newacq->count = 0; 5694 } else { 5695 /* increment counter and do nothing. */ 5696 newacq->count++; 5697 return 0; 5698 } 5699 } else { 5700 /* make new entry for blocking to send SADB_ACQUIRE. */ 5701 if ((newacq = key_newacq(saidx)) == NULL) 5702 return ENOBUFS; 5703 } 5704 5705 5706 seq = newacq->seq; 5707 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0); 5708 if (!m) { 5709 error = ENOBUFS; 5710 goto fail; 5711 } 5712 result = m; 5713 5714 /* set sadb_address for saidx's. */ 5715 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 5716 &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY); 5717 if (!m) { 5718 error = ENOBUFS; 5719 goto fail; 5720 } 5721 m_cat(result, m); 5722 5723 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 5724 &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY); 5725 if (!m) { 5726 error = ENOBUFS; 5727 goto fail; 5728 } 5729 m_cat(result, m); 5730 5731 /* XXX proxy address (optional) */ 5732 5733 /* set sadb_x_policy */ 5734 if (sp) { 5735 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id); 5736 if (!m) { 5737 error = ENOBUFS; 5738 goto fail; 5739 } 5740 m_cat(result, m); 5741 } 5742 5743 /* XXX identity (optional) */ 5744 #if 0 5745 if (idexttype && fqdn) { 5746 /* create identity extension (FQDN) */ 5747 struct sadb_ident *id; 5748 int fqdnlen; 5749 5750 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ 5751 id = (struct sadb_ident *)p; 5752 bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 5753 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 5754 id->sadb_ident_exttype = idexttype; 5755 id->sadb_ident_type = SADB_IDENTTYPE_FQDN; 5756 bcopy(fqdn, id + 1, fqdnlen); 5757 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); 5758 } 5759 5760 if (idexttype) { 5761 /* create identity extension (USERFQDN) */ 5762 struct sadb_ident *id; 5763 int userfqdnlen; 5764 5765 if (userfqdn) { 5766 /* +1 for terminating-NUL */ 5767 userfqdnlen = strlen(userfqdn) + 1; 5768 } else 5769 userfqdnlen = 0; 5770 id = (struct sadb_ident *)p; 5771 bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 5772 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 5773 id->sadb_ident_exttype = idexttype; 5774 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; 5775 /* XXX is it correct? */ 5776 if (curproc && curproc->p_cred) 5777 id->sadb_ident_id = curproc->p_cred->p_ruid; 5778 if (userfqdn && userfqdnlen) 5779 bcopy(userfqdn, id + 1, userfqdnlen); 5780 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); 5781 } 5782 #endif 5783 5784 /* XXX sensitivity (optional) */ 5785 5786 /* create proposal/combination extension */ 5787 m = key_getprop(saidx); 5788 #if 0 5789 /* 5790 * spec conformant: always attach proposal/combination extension, 5791 * the problem is that we have no way to attach it for ipcomp, 5792 * due to the way sadb_comb is declared in RFC2367. 5793 */ 5794 if (!m) { 5795 error = ENOBUFS; 5796 goto fail; 5797 } 5798 m_cat(result, m); 5799 #else 5800 /* 5801 * outside of spec; make proposal/combination extension optional. 5802 */ 5803 if (m) 5804 m_cat(result, m); 5805 #endif 5806 5807 if ((result->m_flags & M_PKTHDR) == 0) { 5808 error = EINVAL; 5809 goto fail; 5810 } 5811 5812 if (result->m_len < sizeof(struct sadb_msg)) { 5813 result = m_pullup(result, sizeof(struct sadb_msg)); 5814 if (result == NULL) { 5815 error = ENOBUFS; 5816 goto fail; 5817 } 5818 } 5819 5820 result->m_pkthdr.len = 0; 5821 for (m = result; m; m = m->m_next) 5822 result->m_pkthdr.len += m->m_len; 5823 5824 mtod(result, struct sadb_msg *)->sadb_msg_len = 5825 PFKEY_UNIT64(result->m_pkthdr.len); 5826 5827 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 5828 5829 fail: 5830 if (result) 5831 m_freem(result); 5832 return error; 5833 } 5834 5835 static struct secacq * 5836 key_newacq(const struct secasindex *saidx) 5837 { 5838 struct secacq *newacq; 5839 5840 /* get new entry */ 5841 newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 5842 if (newacq == NULL) { 5843 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5844 return NULL; 5845 } 5846 5847 /* copy secindex */ 5848 bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx)); 5849 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq); 5850 newacq->created = time_second; 5851 newacq->count = 0; 5852 5853 /* add to acqtree */ 5854 ACQ_LOCK(); 5855 LIST_INSERT_HEAD(&acqtree, newacq, chain); 5856 ACQ_UNLOCK(); 5857 5858 return newacq; 5859 } 5860 5861 static struct secacq * 5862 key_getacq(const struct secasindex *saidx) 5863 { 5864 struct secacq *acq; 5865 5866 ACQ_LOCK(); 5867 LIST_FOREACH(acq, &acqtree, chain) { 5868 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY)) 5869 break; 5870 } 5871 ACQ_UNLOCK(); 5872 5873 return acq; 5874 } 5875 5876 static struct secacq * 5877 key_getacqbyseq(seq) 5878 u_int32_t seq; 5879 { 5880 struct secacq *acq; 5881 5882 ACQ_LOCK(); 5883 LIST_FOREACH(acq, &acqtree, chain) { 5884 if (acq->seq == seq) 5885 break; 5886 } 5887 ACQ_UNLOCK(); 5888 5889 return acq; 5890 } 5891 5892 static struct secspacq * 5893 key_newspacq(spidx) 5894 struct secpolicyindex *spidx; 5895 { 5896 struct secspacq *acq; 5897 5898 /* get new entry */ 5899 acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 5900 if (acq == NULL) { 5901 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5902 return NULL; 5903 } 5904 5905 /* copy secindex */ 5906 bcopy(spidx, &acq->spidx, sizeof(acq->spidx)); 5907 acq->created = time_second; 5908 acq->count = 0; 5909 5910 /* add to spacqtree */ 5911 SPACQ_LOCK(); 5912 LIST_INSERT_HEAD(&spacqtree, acq, chain); 5913 SPACQ_UNLOCK(); 5914 5915 return acq; 5916 } 5917 5918 static struct secspacq * 5919 key_getspacq(spidx) 5920 struct secpolicyindex *spidx; 5921 { 5922 struct secspacq *acq; 5923 5924 SPACQ_LOCK(); 5925 LIST_FOREACH(acq, &spacqtree, chain) { 5926 if (key_cmpspidx_exactly(spidx, &acq->spidx)) { 5927 /* NB: return holding spacq_lock */ 5928 return acq; 5929 } 5930 } 5931 SPACQ_UNLOCK(); 5932 5933 return NULL; 5934 } 5935 5936 /* 5937 * SADB_ACQUIRE processing, 5938 * in first situation, is receiving 5939 * <base> 5940 * from the ikmpd, and clear sequence of its secasvar entry. 5941 * 5942 * In second situation, is receiving 5943 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 5944 * from a user land process, and return 5945 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 5946 * to the socket. 5947 * 5948 * m will always be freed. 5949 */ 5950 static int 5951 key_acquire2(so, m, mhp) 5952 struct socket *so; 5953 struct mbuf *m; 5954 const struct sadb_msghdr *mhp; 5955 { 5956 const struct sadb_address *src0, *dst0; 5957 struct secasindex saidx; 5958 struct secashead *sah; 5959 u_int16_t proto; 5960 int error; 5961 5962 IPSEC_ASSERT(so != NULL, ("null socket")); 5963 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5964 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5965 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5966 5967 /* 5968 * Error message from KMd. 5969 * We assume that if error was occured in IKEd, the length of PFKEY 5970 * message is equal to the size of sadb_msg structure. 5971 * We do not raise error even if error occured in this function. 5972 */ 5973 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { 5974 struct secacq *acq; 5975 5976 /* check sequence number */ 5977 if (mhp->msg->sadb_msg_seq == 0) { 5978 ipseclog((LOG_DEBUG, "%s: must specify sequence " 5979 "number.\n", __func__)); 5980 m_freem(m); 5981 return 0; 5982 } 5983 5984 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) { 5985 /* 5986 * the specified larval SA is already gone, or we got 5987 * a bogus sequence number. we can silently ignore it. 5988 */ 5989 m_freem(m); 5990 return 0; 5991 } 5992 5993 /* reset acq counter in order to deletion by timehander. */ 5994 acq->created = time_second; 5995 acq->count = 0; 5996 m_freem(m); 5997 return 0; 5998 } 5999 6000 /* 6001 * This message is from user land. 6002 */ 6003 6004 /* map satype to proto */ 6005 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6006 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6007 __func__)); 6008 return key_senderror(so, m, EINVAL); 6009 } 6010 6011 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6012 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 6013 mhp->ext[SADB_EXT_PROPOSAL] == NULL) { 6014 /* error */ 6015 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6016 __func__)); 6017 return key_senderror(so, m, EINVAL); 6018 } 6019 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6020 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 6021 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { 6022 /* error */ 6023 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6024 __func__)); 6025 return key_senderror(so, m, EINVAL); 6026 } 6027 6028 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 6029 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 6030 6031 /* XXX boundary check against sa_len */ 6032 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 6033 6034 /* get a SA index */ 6035 SAHTREE_LOCK(); 6036 LIST_FOREACH(sah, &sahtree, chain) { 6037 if (sah->state == SADB_SASTATE_DEAD) 6038 continue; 6039 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID)) 6040 break; 6041 } 6042 SAHTREE_UNLOCK(); 6043 if (sah != NULL) { 6044 ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__)); 6045 return key_senderror(so, m, EEXIST); 6046 } 6047 6048 error = key_acquire(&saidx, NULL); 6049 if (error != 0) { 6050 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 6051 __func__, mhp->msg->sadb_msg_errno)); 6052 return key_senderror(so, m, error); 6053 } 6054 6055 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); 6056 } 6057 6058 /* 6059 * SADB_REGISTER processing. 6060 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. 6061 * receive 6062 * <base> 6063 * from the ikmpd, and register a socket to send PF_KEY messages, 6064 * and send 6065 * <base, supported> 6066 * to KMD by PF_KEY. 6067 * If socket is detached, must free from regnode. 6068 * 6069 * m will always be freed. 6070 */ 6071 static int 6072 key_register(so, m, mhp) 6073 struct socket *so; 6074 struct mbuf *m; 6075 const struct sadb_msghdr *mhp; 6076 { 6077 struct secreg *reg, *newreg = 0; 6078 6079 IPSEC_ASSERT(so != NULL, ("null socket")); 6080 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6081 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6082 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6083 6084 /* check for invalid register message */ 6085 if (mhp->msg->sadb_msg_satype >= sizeof(regtree)/sizeof(regtree[0])) 6086 return key_senderror(so, m, EINVAL); 6087 6088 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ 6089 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) 6090 goto setmsg; 6091 6092 /* check whether existing or not */ 6093 REGTREE_LOCK(); 6094 LIST_FOREACH(reg, ®tree[mhp->msg->sadb_msg_satype], chain) { 6095 if (reg->so == so) { 6096 REGTREE_UNLOCK(); 6097 ipseclog((LOG_DEBUG, "%s: socket exists already.\n", 6098 __func__)); 6099 return key_senderror(so, m, EEXIST); 6100 } 6101 } 6102 6103 /* create regnode */ 6104 newreg = malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO); 6105 if (newreg == NULL) { 6106 REGTREE_UNLOCK(); 6107 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6108 return key_senderror(so, m, ENOBUFS); 6109 } 6110 6111 newreg->so = so; 6112 ((struct keycb *)sotorawcb(so))->kp_registered++; 6113 6114 /* add regnode to regtree. */ 6115 LIST_INSERT_HEAD(®tree[mhp->msg->sadb_msg_satype], newreg, chain); 6116 REGTREE_UNLOCK(); 6117 6118 setmsg: 6119 { 6120 struct mbuf *n; 6121 struct sadb_msg *newmsg; 6122 struct sadb_supported *sup; 6123 u_int len, alen, elen; 6124 int off; 6125 int i; 6126 struct sadb_alg *alg; 6127 6128 /* create new sadb_msg to reply. */ 6129 alen = 0; 6130 for (i = 1; i <= SADB_AALG_MAX; i++) { 6131 if (ah_algorithm_lookup(i)) 6132 alen += sizeof(struct sadb_alg); 6133 } 6134 if (alen) 6135 alen += sizeof(struct sadb_supported); 6136 elen = 0; 6137 for (i = 1; i <= SADB_EALG_MAX; i++) { 6138 if (esp_algorithm_lookup(i)) 6139 elen += sizeof(struct sadb_alg); 6140 } 6141 if (elen) 6142 elen += sizeof(struct sadb_supported); 6143 6144 len = sizeof(struct sadb_msg) + alen + elen; 6145 6146 if (len > MCLBYTES) 6147 return key_senderror(so, m, ENOBUFS); 6148 6149 MGETHDR(n, M_DONTWAIT, MT_DATA); 6150 if (len > MHLEN) { 6151 MCLGET(n, M_DONTWAIT); 6152 if ((n->m_flags & M_EXT) == 0) { 6153 m_freem(n); 6154 n = NULL; 6155 } 6156 } 6157 if (!n) 6158 return key_senderror(so, m, ENOBUFS); 6159 6160 n->m_pkthdr.len = n->m_len = len; 6161 n->m_next = NULL; 6162 off = 0; 6163 6164 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 6165 newmsg = mtod(n, struct sadb_msg *); 6166 newmsg->sadb_msg_errno = 0; 6167 newmsg->sadb_msg_len = PFKEY_UNIT64(len); 6168 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 6169 6170 /* for authentication algorithm */ 6171 if (alen) { 6172 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6173 sup->sadb_supported_len = PFKEY_UNIT64(alen); 6174 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 6175 off += PFKEY_ALIGN8(sizeof(*sup)); 6176 6177 for (i = 1; i <= SADB_AALG_MAX; i++) { 6178 struct auth_hash *aalgo; 6179 u_int16_t minkeysize, maxkeysize; 6180 6181 aalgo = ah_algorithm_lookup(i); 6182 if (!aalgo) 6183 continue; 6184 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6185 alg->sadb_alg_id = i; 6186 alg->sadb_alg_ivlen = 0; 6187 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); 6188 alg->sadb_alg_minbits = _BITS(minkeysize); 6189 alg->sadb_alg_maxbits = _BITS(maxkeysize); 6190 off += PFKEY_ALIGN8(sizeof(*alg)); 6191 } 6192 } 6193 6194 /* for encryption algorithm */ 6195 if (elen) { 6196 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6197 sup->sadb_supported_len = PFKEY_UNIT64(elen); 6198 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 6199 off += PFKEY_ALIGN8(sizeof(*sup)); 6200 6201 for (i = 1; i <= SADB_EALG_MAX; i++) { 6202 struct enc_xform *ealgo; 6203 6204 ealgo = esp_algorithm_lookup(i); 6205 if (!ealgo) 6206 continue; 6207 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6208 alg->sadb_alg_id = i; 6209 alg->sadb_alg_ivlen = ealgo->blocksize; 6210 alg->sadb_alg_minbits = _BITS(ealgo->minkey); 6211 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); 6212 off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); 6213 } 6214 } 6215 6216 IPSEC_ASSERT(off == len, 6217 ("length assumption failed (off %u len %u)", off, len)); 6218 6219 m_freem(m); 6220 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); 6221 } 6222 } 6223 6224 /* 6225 * free secreg entry registered. 6226 * XXX: I want to do free a socket marked done SADB_RESIGER to socket. 6227 */ 6228 void 6229 key_freereg(struct socket *so) 6230 { 6231 struct secreg *reg; 6232 int i; 6233 6234 IPSEC_ASSERT(so != NULL, ("NULL so")); 6235 6236 /* 6237 * check whether existing or not. 6238 * check all type of SA, because there is a potential that 6239 * one socket is registered to multiple type of SA. 6240 */ 6241 REGTREE_LOCK(); 6242 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 6243 LIST_FOREACH(reg, ®tree[i], chain) { 6244 if (reg->so == so && __LIST_CHAINED(reg)) { 6245 LIST_REMOVE(reg, chain); 6246 free(reg, M_IPSEC_SAR); 6247 break; 6248 } 6249 } 6250 } 6251 REGTREE_UNLOCK(); 6252 } 6253 6254 /* 6255 * SADB_EXPIRE processing 6256 * send 6257 * <base, SA, SA2, lifetime(C and one of HS), address(SD)> 6258 * to KMD by PF_KEY. 6259 * NOTE: We send only soft lifetime extension. 6260 * 6261 * OUT: 0 : succeed 6262 * others : error number 6263 */ 6264 static int 6265 key_expire(struct secasvar *sav) 6266 { 6267 int s; 6268 int satype; 6269 struct mbuf *result = NULL, *m; 6270 int len; 6271 int error = -1; 6272 struct sadb_lifetime *lt; 6273 6274 /* XXX: Why do we lock ? */ 6275 s = splnet(); /*called from softclock()*/ 6276 6277 IPSEC_ASSERT (sav != NULL, ("null sav")); 6278 IPSEC_ASSERT (sav->sah != NULL, ("null sa header")); 6279 6280 /* set msg header */ 6281 satype = key_proto2satype(sav->sah->saidx.proto); 6282 IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype)); 6283 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt); 6284 if (!m) { 6285 error = ENOBUFS; 6286 goto fail; 6287 } 6288 result = m; 6289 6290 /* create SA extension */ 6291 m = key_setsadbsa(sav); 6292 if (!m) { 6293 error = ENOBUFS; 6294 goto fail; 6295 } 6296 m_cat(result, m); 6297 6298 /* create SA extension */ 6299 m = key_setsadbxsa2(sav->sah->saidx.mode, 6300 sav->replay ? sav->replay->count : 0, 6301 sav->sah->saidx.reqid); 6302 if (!m) { 6303 error = ENOBUFS; 6304 goto fail; 6305 } 6306 m_cat(result, m); 6307 6308 /* create lifetime extension (current and soft) */ 6309 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 6310 m = key_alloc_mbuf(len); 6311 if (!m || m->m_next) { /*XXX*/ 6312 if (m) 6313 m_freem(m); 6314 error = ENOBUFS; 6315 goto fail; 6316 } 6317 bzero(mtod(m, caddr_t), len); 6318 lt = mtod(m, struct sadb_lifetime *); 6319 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6320 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 6321 lt->sadb_lifetime_allocations = sav->lft_c->allocations; 6322 lt->sadb_lifetime_bytes = sav->lft_c->bytes; 6323 lt->sadb_lifetime_addtime = sav->lft_c->addtime; 6324 lt->sadb_lifetime_usetime = sav->lft_c->usetime; 6325 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 6326 bcopy(sav->lft_s, lt, sizeof(*lt)); 6327 m_cat(result, m); 6328 6329 /* set sadb_address for source */ 6330 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 6331 &sav->sah->saidx.src.sa, 6332 FULLMASK, IPSEC_ULPROTO_ANY); 6333 if (!m) { 6334 error = ENOBUFS; 6335 goto fail; 6336 } 6337 m_cat(result, m); 6338 6339 /* set sadb_address for destination */ 6340 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 6341 &sav->sah->saidx.dst.sa, 6342 FULLMASK, IPSEC_ULPROTO_ANY); 6343 if (!m) { 6344 error = ENOBUFS; 6345 goto fail; 6346 } 6347 m_cat(result, m); 6348 6349 if ((result->m_flags & M_PKTHDR) == 0) { 6350 error = EINVAL; 6351 goto fail; 6352 } 6353 6354 if (result->m_len < sizeof(struct sadb_msg)) { 6355 result = m_pullup(result, sizeof(struct sadb_msg)); 6356 if (result == NULL) { 6357 error = ENOBUFS; 6358 goto fail; 6359 } 6360 } 6361 6362 result->m_pkthdr.len = 0; 6363 for (m = result; m; m = m->m_next) 6364 result->m_pkthdr.len += m->m_len; 6365 6366 mtod(result, struct sadb_msg *)->sadb_msg_len = 6367 PFKEY_UNIT64(result->m_pkthdr.len); 6368 6369 splx(s); 6370 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6371 6372 fail: 6373 if (result) 6374 m_freem(result); 6375 splx(s); 6376 return error; 6377 } 6378 6379 /* 6380 * SADB_FLUSH processing 6381 * receive 6382 * <base> 6383 * from the ikmpd, and free all entries in secastree. 6384 * and send, 6385 * <base> 6386 * to the ikmpd. 6387 * NOTE: to do is only marking SADB_SASTATE_DEAD. 6388 * 6389 * m will always be freed. 6390 */ 6391 static int 6392 key_flush(so, m, mhp) 6393 struct socket *so; 6394 struct mbuf *m; 6395 const struct sadb_msghdr *mhp; 6396 { 6397 struct sadb_msg *newmsg; 6398 struct secashead *sah, *nextsah; 6399 struct secasvar *sav, *nextsav; 6400 u_int16_t proto; 6401 u_int8_t state; 6402 u_int stateidx; 6403 6404 IPSEC_ASSERT(so != NULL, ("null socket")); 6405 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6406 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6407 6408 /* map satype to proto */ 6409 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6410 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6411 __func__)); 6412 return key_senderror(so, m, EINVAL); 6413 } 6414 6415 /* no SATYPE specified, i.e. flushing all SA. */ 6416 SAHTREE_LOCK(); 6417 for (sah = LIST_FIRST(&sahtree); 6418 sah != NULL; 6419 sah = nextsah) { 6420 nextsah = LIST_NEXT(sah, chain); 6421 6422 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 6423 && proto != sah->saidx.proto) 6424 continue; 6425 6426 for (stateidx = 0; 6427 stateidx < _ARRAYLEN(saorder_state_alive); 6428 stateidx++) { 6429 state = saorder_state_any[stateidx]; 6430 for (sav = LIST_FIRST(&sah->savtree[state]); 6431 sav != NULL; 6432 sav = nextsav) { 6433 6434 nextsav = LIST_NEXT(sav, chain); 6435 6436 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 6437 KEY_FREESAV(&sav); 6438 } 6439 } 6440 6441 sah->state = SADB_SASTATE_DEAD; 6442 } 6443 SAHTREE_UNLOCK(); 6444 6445 if (m->m_len < sizeof(struct sadb_msg) || 6446 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 6447 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6448 return key_senderror(so, m, ENOBUFS); 6449 } 6450 6451 if (m->m_next) 6452 m_freem(m->m_next); 6453 m->m_next = NULL; 6454 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); 6455 newmsg = mtod(m, struct sadb_msg *); 6456 newmsg->sadb_msg_errno = 0; 6457 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 6458 6459 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 6460 } 6461 6462 /* 6463 * SADB_DUMP processing 6464 * dump all entries including status of DEAD in SAD. 6465 * receive 6466 * <base> 6467 * from the ikmpd, and dump all secasvar leaves 6468 * and send, 6469 * <base> ..... 6470 * to the ikmpd. 6471 * 6472 * m will always be freed. 6473 */ 6474 static int 6475 key_dump(so, m, mhp) 6476 struct socket *so; 6477 struct mbuf *m; 6478 const struct sadb_msghdr *mhp; 6479 { 6480 struct secashead *sah; 6481 struct secasvar *sav; 6482 u_int16_t proto; 6483 u_int stateidx; 6484 u_int8_t satype; 6485 u_int8_t state; 6486 int cnt; 6487 struct sadb_msg *newmsg; 6488 struct mbuf *n; 6489 6490 IPSEC_ASSERT(so != NULL, ("null socket")); 6491 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6492 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6493 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6494 6495 /* map satype to proto */ 6496 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6497 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6498 __func__)); 6499 return key_senderror(so, m, EINVAL); 6500 } 6501 6502 /* count sav entries to be sent to the userland. */ 6503 cnt = 0; 6504 SAHTREE_LOCK(); 6505 LIST_FOREACH(sah, &sahtree, chain) { 6506 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 6507 && proto != sah->saidx.proto) 6508 continue; 6509 6510 for (stateidx = 0; 6511 stateidx < _ARRAYLEN(saorder_state_any); 6512 stateidx++) { 6513 state = saorder_state_any[stateidx]; 6514 LIST_FOREACH(sav, &sah->savtree[state], chain) { 6515 cnt++; 6516 } 6517 } 6518 } 6519 6520 if (cnt == 0) { 6521 SAHTREE_UNLOCK(); 6522 return key_senderror(so, m, ENOENT); 6523 } 6524 6525 /* send this to the userland, one at a time. */ 6526 newmsg = NULL; 6527 LIST_FOREACH(sah, &sahtree, chain) { 6528 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 6529 && proto != sah->saidx.proto) 6530 continue; 6531 6532 /* map proto to satype */ 6533 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 6534 SAHTREE_UNLOCK(); 6535 ipseclog((LOG_DEBUG, "%s: there was invalid proto in " 6536 "SAD.\n", __func__)); 6537 return key_senderror(so, m, EINVAL); 6538 } 6539 6540 for (stateidx = 0; 6541 stateidx < _ARRAYLEN(saorder_state_any); 6542 stateidx++) { 6543 state = saorder_state_any[stateidx]; 6544 LIST_FOREACH(sav, &sah->savtree[state], chain) { 6545 n = key_setdumpsa(sav, SADB_DUMP, satype, 6546 --cnt, mhp->msg->sadb_msg_pid); 6547 if (!n) { 6548 SAHTREE_UNLOCK(); 6549 return key_senderror(so, m, ENOBUFS); 6550 } 6551 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 6552 } 6553 } 6554 } 6555 SAHTREE_UNLOCK(); 6556 6557 m_freem(m); 6558 return 0; 6559 } 6560 6561 /* 6562 * SADB_X_PROMISC processing 6563 * 6564 * m will always be freed. 6565 */ 6566 static int 6567 key_promisc(so, m, mhp) 6568 struct socket *so; 6569 struct mbuf *m; 6570 const struct sadb_msghdr *mhp; 6571 { 6572 int olen; 6573 6574 IPSEC_ASSERT(so != NULL, ("null socket")); 6575 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6576 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6577 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6578 6579 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 6580 6581 if (olen < sizeof(struct sadb_msg)) { 6582 #if 1 6583 return key_senderror(so, m, EINVAL); 6584 #else 6585 m_freem(m); 6586 return 0; 6587 #endif 6588 } else if (olen == sizeof(struct sadb_msg)) { 6589 /* enable/disable promisc mode */ 6590 struct keycb *kp; 6591 6592 if ((kp = (struct keycb *)sotorawcb(so)) == NULL) 6593 return key_senderror(so, m, EINVAL); 6594 mhp->msg->sadb_msg_errno = 0; 6595 switch (mhp->msg->sadb_msg_satype) { 6596 case 0: 6597 case 1: 6598 kp->kp_promisc = mhp->msg->sadb_msg_satype; 6599 break; 6600 default: 6601 return key_senderror(so, m, EINVAL); 6602 } 6603 6604 /* send the original message back to everyone */ 6605 mhp->msg->sadb_msg_errno = 0; 6606 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 6607 } else { 6608 /* send packet as is */ 6609 6610 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); 6611 6612 /* TODO: if sadb_msg_seq is specified, send to specific pid */ 6613 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 6614 } 6615 } 6616 6617 static int (*key_typesw[]) __P((struct socket *, struct mbuf *, 6618 const struct sadb_msghdr *)) = { 6619 NULL, /* SADB_RESERVED */ 6620 key_getspi, /* SADB_GETSPI */ 6621 key_update, /* SADB_UPDATE */ 6622 key_add, /* SADB_ADD */ 6623 key_delete, /* SADB_DELETE */ 6624 key_get, /* SADB_GET */ 6625 key_acquire2, /* SADB_ACQUIRE */ 6626 key_register, /* SADB_REGISTER */ 6627 NULL, /* SADB_EXPIRE */ 6628 key_flush, /* SADB_FLUSH */ 6629 key_dump, /* SADB_DUMP */ 6630 key_promisc, /* SADB_X_PROMISC */ 6631 NULL, /* SADB_X_PCHANGE */ 6632 key_spdadd, /* SADB_X_SPDUPDATE */ 6633 key_spdadd, /* SADB_X_SPDADD */ 6634 key_spddelete, /* SADB_X_SPDDELETE */ 6635 key_spdget, /* SADB_X_SPDGET */ 6636 NULL, /* SADB_X_SPDACQUIRE */ 6637 key_spddump, /* SADB_X_SPDDUMP */ 6638 key_spdflush, /* SADB_X_SPDFLUSH */ 6639 key_spdadd, /* SADB_X_SPDSETIDX */ 6640 NULL, /* SADB_X_SPDEXPIRE */ 6641 key_spddelete2, /* SADB_X_SPDDELETE2 */ 6642 }; 6643 6644 /* 6645 * parse sadb_msg buffer to process PFKEYv2, 6646 * and create a data to response if needed. 6647 * I think to be dealed with mbuf directly. 6648 * IN: 6649 * msgp : pointer to pointer to a received buffer pulluped. 6650 * This is rewrited to response. 6651 * so : pointer to socket. 6652 * OUT: 6653 * length for buffer to send to user process. 6654 */ 6655 int 6656 key_parse(m, so) 6657 struct mbuf *m; 6658 struct socket *so; 6659 { 6660 struct sadb_msg *msg; 6661 struct sadb_msghdr mh; 6662 u_int orglen; 6663 int error; 6664 int target; 6665 6666 IPSEC_ASSERT(so != NULL, ("null socket")); 6667 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6668 6669 #if 0 /*kdebug_sadb assumes msg in linear buffer*/ 6670 KEYDEBUG(KEYDEBUG_KEY_DUMP, 6671 ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__)); 6672 kdebug_sadb(msg)); 6673 #endif 6674 6675 if (m->m_len < sizeof(struct sadb_msg)) { 6676 m = m_pullup(m, sizeof(struct sadb_msg)); 6677 if (!m) 6678 return ENOBUFS; 6679 } 6680 msg = mtod(m, struct sadb_msg *); 6681 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); 6682 target = KEY_SENDUP_ONE; 6683 6684 if ((m->m_flags & M_PKTHDR) == 0 || 6685 m->m_pkthdr.len != m->m_pkthdr.len) { 6686 ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__)); 6687 pfkeystat.out_invlen++; 6688 error = EINVAL; 6689 goto senderror; 6690 } 6691 6692 if (msg->sadb_msg_version != PF_KEY_V2) { 6693 ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n", 6694 __func__, msg->sadb_msg_version)); 6695 pfkeystat.out_invver++; 6696 error = EINVAL; 6697 goto senderror; 6698 } 6699 6700 if (msg->sadb_msg_type > SADB_MAX) { 6701 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 6702 __func__, msg->sadb_msg_type)); 6703 pfkeystat.out_invmsgtype++; 6704 error = EINVAL; 6705 goto senderror; 6706 } 6707 6708 /* for old-fashioned code - should be nuked */ 6709 if (m->m_pkthdr.len > MCLBYTES) { 6710 m_freem(m); 6711 return ENOBUFS; 6712 } 6713 if (m->m_next) { 6714 struct mbuf *n; 6715 6716 MGETHDR(n, M_DONTWAIT, MT_DATA); 6717 if (n && m->m_pkthdr.len > MHLEN) { 6718 MCLGET(n, M_DONTWAIT); 6719 if ((n->m_flags & M_EXT) == 0) { 6720 m_free(n); 6721 n = NULL; 6722 } 6723 } 6724 if (!n) { 6725 m_freem(m); 6726 return ENOBUFS; 6727 } 6728 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t)); 6729 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; 6730 n->m_next = NULL; 6731 m_freem(m); 6732 m = n; 6733 } 6734 6735 /* align the mbuf chain so that extensions are in contiguous region. */ 6736 error = key_align(m, &mh); 6737 if (error) 6738 return error; 6739 6740 msg = mh.msg; 6741 6742 /* check SA type */ 6743 switch (msg->sadb_msg_satype) { 6744 case SADB_SATYPE_UNSPEC: 6745 switch (msg->sadb_msg_type) { 6746 case SADB_GETSPI: 6747 case SADB_UPDATE: 6748 case SADB_ADD: 6749 case SADB_DELETE: 6750 case SADB_GET: 6751 case SADB_ACQUIRE: 6752 case SADB_EXPIRE: 6753 ipseclog((LOG_DEBUG, "%s: must specify satype " 6754 "when msg type=%u.\n", __func__, 6755 msg->sadb_msg_type)); 6756 pfkeystat.out_invsatype++; 6757 error = EINVAL; 6758 goto senderror; 6759 } 6760 break; 6761 case SADB_SATYPE_AH: 6762 case SADB_SATYPE_ESP: 6763 case SADB_X_SATYPE_IPCOMP: 6764 case SADB_X_SATYPE_TCPSIGNATURE: 6765 switch (msg->sadb_msg_type) { 6766 case SADB_X_SPDADD: 6767 case SADB_X_SPDDELETE: 6768 case SADB_X_SPDGET: 6769 case SADB_X_SPDDUMP: 6770 case SADB_X_SPDFLUSH: 6771 case SADB_X_SPDSETIDX: 6772 case SADB_X_SPDUPDATE: 6773 case SADB_X_SPDDELETE2: 6774 ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n", 6775 __func__, msg->sadb_msg_type)); 6776 pfkeystat.out_invsatype++; 6777 error = EINVAL; 6778 goto senderror; 6779 } 6780 break; 6781 case SADB_SATYPE_RSVP: 6782 case SADB_SATYPE_OSPFV2: 6783 case SADB_SATYPE_RIPV2: 6784 case SADB_SATYPE_MIP: 6785 ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n", 6786 __func__, msg->sadb_msg_satype)); 6787 pfkeystat.out_invsatype++; 6788 error = EOPNOTSUPP; 6789 goto senderror; 6790 case 1: /* XXX: What does it do? */ 6791 if (msg->sadb_msg_type == SADB_X_PROMISC) 6792 break; 6793 /*FALLTHROUGH*/ 6794 default: 6795 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 6796 __func__, msg->sadb_msg_satype)); 6797 pfkeystat.out_invsatype++; 6798 error = EINVAL; 6799 goto senderror; 6800 } 6801 6802 /* check field of upper layer protocol and address family */ 6803 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL 6804 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { 6805 struct sadb_address *src0, *dst0; 6806 u_int plen; 6807 6808 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]); 6809 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]); 6810 6811 /* check upper layer protocol */ 6812 if (src0->sadb_address_proto != dst0->sadb_address_proto) { 6813 ipseclog((LOG_DEBUG, "%s: upper layer protocol " 6814 "mismatched.\n", __func__)); 6815 pfkeystat.out_invaddr++; 6816 error = EINVAL; 6817 goto senderror; 6818 } 6819 6820 /* check family */ 6821 if (PFKEY_ADDR_SADDR(src0)->sa_family != 6822 PFKEY_ADDR_SADDR(dst0)->sa_family) { 6823 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 6824 __func__)); 6825 pfkeystat.out_invaddr++; 6826 error = EINVAL; 6827 goto senderror; 6828 } 6829 if (PFKEY_ADDR_SADDR(src0)->sa_len != 6830 PFKEY_ADDR_SADDR(dst0)->sa_len) { 6831 ipseclog((LOG_DEBUG, "%s: address struct size " 6832 "mismatched.\n", __func__)); 6833 pfkeystat.out_invaddr++; 6834 error = EINVAL; 6835 goto senderror; 6836 } 6837 6838 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 6839 case AF_INET: 6840 if (PFKEY_ADDR_SADDR(src0)->sa_len != 6841 sizeof(struct sockaddr_in)) { 6842 pfkeystat.out_invaddr++; 6843 error = EINVAL; 6844 goto senderror; 6845 } 6846 break; 6847 case AF_INET6: 6848 if (PFKEY_ADDR_SADDR(src0)->sa_len != 6849 sizeof(struct sockaddr_in6)) { 6850 pfkeystat.out_invaddr++; 6851 error = EINVAL; 6852 goto senderror; 6853 } 6854 break; 6855 default: 6856 ipseclog((LOG_DEBUG, "%s: unsupported address family\n", 6857 __func__)); 6858 pfkeystat.out_invaddr++; 6859 error = EAFNOSUPPORT; 6860 goto senderror; 6861 } 6862 6863 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 6864 case AF_INET: 6865 plen = sizeof(struct in_addr) << 3; 6866 break; 6867 case AF_INET6: 6868 plen = sizeof(struct in6_addr) << 3; 6869 break; 6870 default: 6871 plen = 0; /*fool gcc*/ 6872 break; 6873 } 6874 6875 /* check max prefix length */ 6876 if (src0->sadb_address_prefixlen > plen || 6877 dst0->sadb_address_prefixlen > plen) { 6878 ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n", 6879 __func__)); 6880 pfkeystat.out_invaddr++; 6881 error = EINVAL; 6882 goto senderror; 6883 } 6884 6885 /* 6886 * prefixlen == 0 is valid because there can be a case when 6887 * all addresses are matched. 6888 */ 6889 } 6890 6891 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) || 6892 key_typesw[msg->sadb_msg_type] == NULL) { 6893 pfkeystat.out_invmsgtype++; 6894 error = EINVAL; 6895 goto senderror; 6896 } 6897 6898 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh); 6899 6900 senderror: 6901 msg->sadb_msg_errno = error; 6902 return key_sendup_mbuf(so, m, target); 6903 } 6904 6905 static int 6906 key_senderror(so, m, code) 6907 struct socket *so; 6908 struct mbuf *m; 6909 int code; 6910 { 6911 struct sadb_msg *msg; 6912 6913 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 6914 ("mbuf too small, len %u", m->m_len)); 6915 6916 msg = mtod(m, struct sadb_msg *); 6917 msg->sadb_msg_errno = code; 6918 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 6919 } 6920 6921 /* 6922 * set the pointer to each header into message buffer. 6923 * m will be freed on error. 6924 * XXX larger-than-MCLBYTES extension? 6925 */ 6926 static int 6927 key_align(m, mhp) 6928 struct mbuf *m; 6929 struct sadb_msghdr *mhp; 6930 { 6931 struct mbuf *n; 6932 struct sadb_ext *ext; 6933 size_t off, end; 6934 int extlen; 6935 int toff; 6936 6937 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6938 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6939 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 6940 ("mbuf too small, len %u", m->m_len)); 6941 6942 /* initialize */ 6943 bzero(mhp, sizeof(*mhp)); 6944 6945 mhp->msg = mtod(m, struct sadb_msg *); 6946 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */ 6947 6948 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 6949 extlen = end; /*just in case extlen is not updated*/ 6950 for (off = sizeof(struct sadb_msg); off < end; off += extlen) { 6951 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); 6952 if (!n) { 6953 /* m is already freed */ 6954 return ENOBUFS; 6955 } 6956 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 6957 6958 /* set pointer */ 6959 switch (ext->sadb_ext_type) { 6960 case SADB_EXT_SA: 6961 case SADB_EXT_ADDRESS_SRC: 6962 case SADB_EXT_ADDRESS_DST: 6963 case SADB_EXT_ADDRESS_PROXY: 6964 case SADB_EXT_LIFETIME_CURRENT: 6965 case SADB_EXT_LIFETIME_HARD: 6966 case SADB_EXT_LIFETIME_SOFT: 6967 case SADB_EXT_KEY_AUTH: 6968 case SADB_EXT_KEY_ENCRYPT: 6969 case SADB_EXT_IDENTITY_SRC: 6970 case SADB_EXT_IDENTITY_DST: 6971 case SADB_EXT_SENSITIVITY: 6972 case SADB_EXT_PROPOSAL: 6973 case SADB_EXT_SUPPORTED_AUTH: 6974 case SADB_EXT_SUPPORTED_ENCRYPT: 6975 case SADB_EXT_SPIRANGE: 6976 case SADB_X_EXT_POLICY: 6977 case SADB_X_EXT_SA2: 6978 /* duplicate check */ 6979 /* 6980 * XXX Are there duplication payloads of either 6981 * KEY_AUTH or KEY_ENCRYPT ? 6982 */ 6983 if (mhp->ext[ext->sadb_ext_type] != NULL) { 6984 ipseclog((LOG_DEBUG, "%s: duplicate ext_type " 6985 "%u\n", __func__, ext->sadb_ext_type)); 6986 m_freem(m); 6987 pfkeystat.out_dupext++; 6988 return EINVAL; 6989 } 6990 break; 6991 default: 6992 ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n", 6993 __func__, ext->sadb_ext_type)); 6994 m_freem(m); 6995 pfkeystat.out_invexttype++; 6996 return EINVAL; 6997 } 6998 6999 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); 7000 7001 if (key_validate_ext(ext, extlen)) { 7002 m_freem(m); 7003 pfkeystat.out_invlen++; 7004 return EINVAL; 7005 } 7006 7007 n = m_pulldown(m, off, extlen, &toff); 7008 if (!n) { 7009 /* m is already freed */ 7010 return ENOBUFS; 7011 } 7012 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 7013 7014 mhp->ext[ext->sadb_ext_type] = ext; 7015 mhp->extoff[ext->sadb_ext_type] = off; 7016 mhp->extlen[ext->sadb_ext_type] = extlen; 7017 } 7018 7019 if (off != end) { 7020 m_freem(m); 7021 pfkeystat.out_invlen++; 7022 return EINVAL; 7023 } 7024 7025 return 0; 7026 } 7027 7028 static int 7029 key_validate_ext(ext, len) 7030 const struct sadb_ext *ext; 7031 int len; 7032 { 7033 const struct sockaddr *sa; 7034 enum { NONE, ADDR } checktype = NONE; 7035 int baselen = 0; 7036 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); 7037 7038 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) 7039 return EINVAL; 7040 7041 /* if it does not match minimum/maximum length, bail */ 7042 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) || 7043 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0])) 7044 return EINVAL; 7045 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) 7046 return EINVAL; 7047 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) 7048 return EINVAL; 7049 7050 /* more checks based on sadb_ext_type XXX need more */ 7051 switch (ext->sadb_ext_type) { 7052 case SADB_EXT_ADDRESS_SRC: 7053 case SADB_EXT_ADDRESS_DST: 7054 case SADB_EXT_ADDRESS_PROXY: 7055 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); 7056 checktype = ADDR; 7057 break; 7058 case SADB_EXT_IDENTITY_SRC: 7059 case SADB_EXT_IDENTITY_DST: 7060 if (((const struct sadb_ident *)ext)->sadb_ident_type == 7061 SADB_X_IDENTTYPE_ADDR) { 7062 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); 7063 checktype = ADDR; 7064 } else 7065 checktype = NONE; 7066 break; 7067 default: 7068 checktype = NONE; 7069 break; 7070 } 7071 7072 switch (checktype) { 7073 case NONE: 7074 break; 7075 case ADDR: 7076 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); 7077 if (len < baselen + sal) 7078 return EINVAL; 7079 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) 7080 return EINVAL; 7081 break; 7082 } 7083 7084 return 0; 7085 } 7086 7087 void 7088 key_init() 7089 { 7090 int i; 7091 7092 SPTREE_LOCK_INIT(); 7093 REGTREE_LOCK_INIT(); 7094 SAHTREE_LOCK_INIT(); 7095 ACQ_LOCK_INIT(); 7096 SPACQ_LOCK_INIT(); 7097 7098 for (i = 0; i < IPSEC_DIR_MAX; i++) 7099 LIST_INIT(&sptree[i]); 7100 7101 LIST_INIT(&sahtree); 7102 7103 for (i = 0; i <= SADB_SATYPE_MAX; i++) 7104 LIST_INIT(®tree[i]); 7105 7106 LIST_INIT(&acqtree); 7107 LIST_INIT(&spacqtree); 7108 7109 /* system default */ 7110 ip4_def_policy.policy = IPSEC_POLICY_NONE; 7111 ip4_def_policy.refcnt++; /*never reclaim this*/ 7112 7113 #ifndef IPSEC_DEBUG2 7114 timeout((void *)key_timehandler, (void *)0, hz); 7115 #endif /*IPSEC_DEBUG2*/ 7116 7117 /* initialize key statistics */ 7118 keystat.getspi_count = 1; 7119 7120 printf("Fast IPsec: Initialized Security Association Processing.\n"); 7121 7122 return; 7123 } 7124 7125 /* 7126 * XXX: maybe This function is called after INBOUND IPsec processing. 7127 * 7128 * Special check for tunnel-mode packets. 7129 * We must make some checks for consistency between inner and outer IP header. 7130 * 7131 * xxx more checks to be provided 7132 */ 7133 int 7134 key_checktunnelsanity(sav, family, src, dst) 7135 struct secasvar *sav; 7136 u_int family; 7137 caddr_t src; 7138 caddr_t dst; 7139 { 7140 IPSEC_ASSERT(sav->sah != NULL, ("null SA header")); 7141 7142 /* XXX: check inner IP header */ 7143 7144 return 1; 7145 } 7146 7147 /* record data transfer on SA, and update timestamps */ 7148 void 7149 key_sa_recordxfer(sav, m) 7150 struct secasvar *sav; 7151 struct mbuf *m; 7152 { 7153 IPSEC_ASSERT(sav != NULL, ("Null secasvar")); 7154 IPSEC_ASSERT(m != NULL, ("Null mbuf")); 7155 if (!sav->lft_c) 7156 return; 7157 7158 /* 7159 * XXX Currently, there is a difference of bytes size 7160 * between inbound and outbound processing. 7161 */ 7162 sav->lft_c->bytes += m->m_pkthdr.len; 7163 /* to check bytes lifetime is done in key_timehandler(). */ 7164 7165 /* 7166 * We use the number of packets as the unit of 7167 * allocations. We increment the variable 7168 * whenever {esp,ah}_{in,out}put is called. 7169 */ 7170 sav->lft_c->allocations++; 7171 /* XXX check for expires? */ 7172 7173 /* 7174 * NOTE: We record CURRENT usetime by using wall clock, 7175 * in seconds. HARD and SOFT lifetime are measured by the time 7176 * difference (again in seconds) from usetime. 7177 * 7178 * usetime 7179 * v expire expire 7180 * -----+-----+--------+---> t 7181 * <--------------> HARD 7182 * <-----> SOFT 7183 */ 7184 sav->lft_c->usetime = time_second; 7185 /* XXX check for expires? */ 7186 7187 return; 7188 } 7189 7190 /* dumb version */ 7191 void 7192 key_sa_routechange(dst) 7193 struct sockaddr *dst; 7194 { 7195 struct secashead *sah; 7196 struct route *ro; 7197 7198 SAHTREE_LOCK(); 7199 LIST_FOREACH(sah, &sahtree, chain) { 7200 ro = &sah->sa_route; 7201 if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len 7202 && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) { 7203 RTFREE(ro->ro_rt); 7204 ro->ro_rt = (struct rtentry *)NULL; 7205 } 7206 } 7207 SAHTREE_UNLOCK(); 7208 } 7209 7210 static void 7211 key_sa_chgstate(sav, state) 7212 struct secasvar *sav; 7213 u_int8_t state; 7214 { 7215 IPSEC_ASSERT(sav != NULL, ("NULL sav")); 7216 SAHTREE_LOCK_ASSERT(); 7217 7218 if (sav->state != state) { 7219 if (__LIST_CHAINED(sav)) 7220 LIST_REMOVE(sav, chain); 7221 sav->state = state; 7222 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain); 7223 } 7224 } 7225 7226 void 7227 key_sa_stir_iv(sav) 7228 struct secasvar *sav; 7229 { 7230 7231 IPSEC_ASSERT(sav->iv != NULL, ("null IV")); 7232 key_randomfill(sav->iv, sav->ivlen); 7233 } 7234 7235 /* XXX too much? */ 7236 static struct mbuf * 7237 key_alloc_mbuf(l) 7238 int l; 7239 { 7240 struct mbuf *m = NULL, *n; 7241 int len, t; 7242 7243 len = l; 7244 while (len > 0) { 7245 MGET(n, M_DONTWAIT, MT_DATA); 7246 if (n && len > MLEN) 7247 MCLGET(n, M_DONTWAIT); 7248 if (!n) { 7249 m_freem(m); 7250 return NULL; 7251 } 7252 7253 n->m_next = NULL; 7254 n->m_len = 0; 7255 n->m_len = M_TRAILINGSPACE(n); 7256 /* use the bottom of mbuf, hoping we can prepend afterwards */ 7257 if (n->m_len > len) { 7258 t = (n->m_len - len) & ~(sizeof(long) - 1); 7259 n->m_data += t; 7260 n->m_len = len; 7261 } 7262 7263 len -= n->m_len; 7264 7265 if (m) 7266 m_cat(m, n); 7267 else 7268 m = n; 7269 } 7270 7271 return m; 7272 } 7273 7274 /* 7275 * Take one of the kernel's security keys and convert it into a PF_KEY 7276 * structure within an mbuf, suitable for sending up to a waiting 7277 * application in user land. 7278 * 7279 * IN: 7280 * src: A pointer to a kernel security key. 7281 * exttype: Which type of key this is. Refer to the PF_KEY data structures. 7282 * OUT: 7283 * a valid mbuf or NULL indicating an error 7284 * 7285 */ 7286 7287 static struct mbuf * 7288 key_setkey(struct seckey *src, u_int16_t exttype) 7289 { 7290 struct mbuf *m; 7291 struct sadb_key *p; 7292 int len; 7293 7294 if (src == NULL) 7295 return NULL; 7296 7297 len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src)); 7298 m = key_alloc_mbuf(len); 7299 if (m == NULL) 7300 return NULL; 7301 p = mtod(m, struct sadb_key *); 7302 bzero(p, len); 7303 p->sadb_key_len = PFKEY_UNIT64(len); 7304 p->sadb_key_exttype = exttype; 7305 p->sadb_key_bits = src->bits; 7306 bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src)); 7307 7308 return m; 7309 } 7310 7311 /* 7312 * Take one of the kernel's lifetime data structures and convert it 7313 * into a PF_KEY structure within an mbuf, suitable for sending up to 7314 * a waiting application in user land. 7315 * 7316 * IN: 7317 * src: A pointer to a kernel lifetime structure. 7318 * exttype: Which type of lifetime this is. Refer to the PF_KEY 7319 * data structures for more information. 7320 * OUT: 7321 * a valid mbuf or NULL indicating an error 7322 * 7323 */ 7324 7325 static struct mbuf * 7326 key_setlifetime(struct seclifetime *src, u_int16_t exttype) 7327 { 7328 struct mbuf *m = NULL; 7329 struct sadb_lifetime *p; 7330 int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime)); 7331 7332 if (src == NULL) 7333 return NULL; 7334 7335 m = key_alloc_mbuf(len); 7336 if (m == NULL) 7337 return m; 7338 p = mtod(m, struct sadb_lifetime *); 7339 7340 bzero(p, len); 7341 p->sadb_lifetime_len = PFKEY_UNIT64(len); 7342 p->sadb_lifetime_exttype = exttype; 7343 p->sadb_lifetime_allocations = src->allocations; 7344 p->sadb_lifetime_bytes = src->bytes; 7345 p->sadb_lifetime_addtime = src->addtime; 7346 p->sadb_lifetime_usetime = src->usetime; 7347 7348 return m; 7349 7350 } 7351